Program Product

Information Management
System /360 for the

IBM System/360

Operations Manual

Volume | - Systems Operation

Program Number 5736-CX3

Information Management System/360 is an Qperating
System/360 processing program designed to facilitate the
implementation of medium to large common data bases

in a multiapplication environment. This environment is
created to accommodate both online message processing and
conventional batch processing, either separately or con-
currently. The system permits the evolutionary expansion
of data processing applications from a batch-only to a
teleprocessing environment.

This volume of the Operations Manual includes information
on IMS/360 system distribution and handling, on planning’
the IMS/360 system, and on implementing the system.
System examples and a sample problem are supplied; a
chapter on status codes and completion codes is also included.

Second Edition (July 1970)

This edition applies to Version 1, Modification Level 1, of Program Product Information Management
System/360 for the IBM System/360, 5736-CX3.

This is a major revision obsoleting H20-0635-0. Besides correcting errors, this edition contains
additions and changes supporting Release 18 of the Operating System.

Here is a summary of the majbr new and changed items in this revision.

e Sample problem procedures and examples are expanded and clarified.

o The system definition example is replaced to correspond to APAR changes.
o The illustration of the system configuration is corrected.

Other changes to the text and small changes to illustrations are indicated by a vertical line to the left
of the change; changed or added illustrations are denoted by the symbol e to the left of the caption.

This edition applies to Release 18 of IBM System/360 Operating System and to all subsequent
releases until otherwise indicated in new editions or Technical Newsletters.

Changes are continually made to the specifications herein. Therefore, before using this publication,
consult the latest System/360 SRL Newsletter (GN20-0360) for the editions that are applicable and
current.)

Copies of this and other IBM publications can be obtained through IBM branch offices.

A form for readers’ comments is provided at the back of this publication. If the form has been
removed, address comments to: IBM Corporation, Technical Publications Department, 112 East Post

Road, White Plains, New York 10601.

© Copyright International Business Machines Corporation 1969, 1970

CONTENTS

Chapter 1. Introduction « « o ¢ ¢ &« ¢ ¢ ¢ ¢ ¢ o e o o o o o o o o o
Systems Operation Function ¢ ¢ ¢ ¢ ¢ ¢ v o ¢ 4 4 o o o o
Systems Programming Function <« . & . . .
Machine Operations Function « ¢« ¢« « « o .
Application Programming Function « « « .
Systems Operation Checklist . . . « ¢ « « ¢« « « o .

Chapter 2. System Distribution, Handling, and Maintenance 11
System Distribution « o o o ¢ ¢ ¢ @ ¢ 4 ¢ 4 4 e 4 e e e e e e . . .11
System Handling « . ¢ o o o o o o o o « « o o o s o« o s s « o« o « o« 13
System MaintenancCe . « =« « « o o o o o o o s s s o o o« o « o« = o « 15

Chapter 3. System Design Considerations 16
IMS/360 Processing Regions . . « . « .« . e e e e e e e o o o =« o 16
‘Type 0 and 1 Processing Regions System Flow e e e e e e« e . « « . 16
Type 2 Processing Region System Flow ¢« ¢ o ¢« « « « « « « 18
Type 3 Processing Region System Flow . . . ¢ ¢ ¢ &« & « « « « « « 19
Impact of MFT-II and MVT on IMS/360 <« « « « « « . 21
Estimating Storage and Machine Requirements . . . « « ¢ ¢ ¢ o o« o« o 22
Estimating IMS/360 Type 0 Region Main Storage Requirements . . . 22
Basic Storage Requirements . . . ¢ ¢ o o o o o « « o « o« » o « o« 23
BTAM Device Support . «« - c e o o e o s e e o e o o 23
IMS/360 Control Blocks (Execpt Securlty) « o u e
Security Control Blocks . . . « . « « « . .

.
.
.
.
.
.
.
.
N
w

IMS/360 Buffer POOLS « o« o ¢ o ¢ o o o o o o o o o o o o o o « o« 24
Operating System/360 Requirements ¢ . ¢ ¢ ¢ ¢ « o« o« o o 27
Total IMS/360 Type 0 Storage Requirement ¢ ¢« « ¢« « « « . 29
IMS/360 Type 0 Region Estimates Example . . ¢« ¢ ¢ ¢ ¢ & ¢ « « « « 29
IMS/360 Requirements .« < o « ¢ ¢ « o o o « e o s a « o o o o o« « 29

Operating System/360 Requirements « « « « o« « « « « « « « 30
Estimating IMS/360 Type 1 and Type 2 Region Main Storage

Requirements . . . e e o o e e s e e s o = o o s 2 o o o« o <« 30
Estimating IMS/360 Type 3 Region Main Storage Requirements . . . 31
Basic MOQULES ¢ . ¢ o @ o ¢ o o o o o o o o o o o o o s o o o« o « 31
ContrOl BlOCKS . o o o o o o o ¢ o o o o o o o o o o o o « « « « 31

Data Base Buffers . ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ 4 ¢ ¢ e ¢ e e e o o o w o = o 31
Data Base Organization Modules . . . ¢ ¢ ¢ ¢ ¢ ¢ = o o « « « « » 31
Operating System/360 Control Block Requirements . . . « . « . « . 32
Type 3 Region Storage Reguirement Example ¢ « ¢ « « « . 32

IMS/360 Storage Requirement . . < « ¢ « o« « « o o o o « o« « o o« « 32
Operating System/360 Requirement ¢ . ¢« & &« « « « - . 33
Total Type 3 Region Storage Requirement . . « « « « « « « & « « « 33
IMS/360 Data Base Considerations . . ¢ « ¢ ¢ o ¢ ¢« o « o« « « « « « 33
Variable Length Data Base Record Processing
Data Language/I Record Format . . « ¢« ¢ ¢ o ¢ « o« « « o« « o« « « . 35
Type 1 Record FOrmat .« « ¢ ¢ o ¢ ¢ ¢ « o o o o o o« = o« « o« « « « 36
Type 2 Record Format .
Type 3 Record Format .
Type 4 Record Format .
Type 5 Record Format « e e e e < e « o .
Examples of Types of Data Language/I logical Records 40
Data Base Creation « :
Data Base Creation DD Card Parameters .
ISAM DCB Option COdeS o« « « « « « o o o o o « o o o =
OSAM DCB Option CodeS « « o « « o o o+ o«
Single and Multiple Data Set GroupsS « « « « « « « o o« o « « « « o U4
Cconsiderations of HISAM and HSAM . . ¢ <« ¢ « « « o o o« « =« « o« o U5
BISAM versus QISAM . o < ¢ o o o o o o o o o o o o o o s o« « o « U5
Data Base Reorganization < ¢ ¢ ¢ o & ¢ o 4 o o « o« -« o o U5

.
.
.
.
.
.
.
.
.
.
»
w
w

e o o o a 4 s s e e s s e e s o s o o o 37
e o o o e s s o e s o o e o e e s o o + 38

e o 4 o s e o e e a s s e s s o e a o « 39

. L] . .

e o 4 o o e s e o e o o o 43,

IMS/360 Telecommunications Considerations

Description of Data Language/I Segment Insertion
Root Segment INSErtion .« « o o o« ¢ ¢ ¢ ¢ o o o o o o o s o o =
Dependent Segment Insertion ¢ ¢ ¢ 4 ¢ ¢ ¢ 4 ¢ @ o & o =
Data Base Integrity Through the Use of OSAM . . ¢« « &« & & o « «
Data Language/I Data Base Space Allocation
Allocation Problem Example . . ¢ & ¢ ¢ o « 2 o o o s o o o« = =
ISAM Prime AY€a@ . o « o o o o o o « o o o a « o « =

Index ATEA .« o o o o o o o o o o o s o o o o o o o

OSAM OVErflOoW . . «¢ v o o o o o o o o o o o o o s a o o o o =« =
Example CONClusion . .« o 2 @ ¢ ¢ ¢ ¢ 4 o o o o o o o o s s o @
Program Specification Block Generation ¢ ¢ ¢ ¢ ¢« & « «
JCL for PSB Generation =« « o o o« ¢ o o o o = o o o o o o o < =
Data Base Description Generation ¢
JCL for DBD Generation .« « o o ¢« ¢ o o o o o o 2 o o« o o o o «
Management of Data Bases . . <« « ¢ ¢ ¢ ¢ « & o« .

Communication Terminals and Lines
Master Terminal . . . « « ¢ « « o« o« & « o = o
IMS/360 Systems with No Master Term1na1 e o e s 2 a4 s o o o s
System Definition Considerations with No Master Terminal . . .
Format of IMS/360 Commands Entered from System Console
Remote TerminalsS . v o o o o o o o« o o « « o o o o o 2 o o o =
IMS/360 Logical Terminals e e e e e e e . -
Logical Terminal/Physical Terminal Relatlonshlp on Nonsw1tched
Communications Network e e e e - .« . . .
Logical Terminal/Physical Terminal Relatlonshlp on Sw1tched
Communications Network e e s o o s e o s = e e @
Logical Terminal Types in Switched Communlcatlons Network
ENVIronment « o o o o o o o o o o o o o o o o o s o o a o o o o
Line and Terminal Network« ¢ ¢ ¢ ¢ ¢ ¢ o o o o o = o « &
IMS/360 Terminal Commands and MeSSageS .« . « o« o o o o o « «

. o e 0
.

.

¢ o o
.
.
.
.

IMS/360 MESSage QUEUES < o « « « o o « « s o s o o o = = o o 2 =

Message Queue Space Allocation . . « « ¢ ¢ ¢ ¢ o o o o o 5 o @
Message Queue Space Allocation - Secondary . « « « « « o« « « «

IMS/360 Checkpoint, Restart, Data Base Dump, and Data Base
RECOVEIY =« o « o o o o o = o o o o o o o o o o o s o s s o o s @

Checkpolint .« ¢ ¢ 4 v ¢ ¢ ¢ 4 o @ v 4t ¢ o o o o « 6 o o o o o o
Simple Checkpoint . . « « . . <
Checkpoint Freeze
Checkpoint DUMPQ

Checkpoint PURGE

Data Base Dump .
Checkpoint Guide . . . « + . « ¢« « « . .
Data Base Dump Execution . . « ¢ ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o o o o
Data Base Dump with Stop Execution
Restart ¢« ¢ o o o ¢ o @ 4 o 4 o ¢ ¢ o ¢ 4 @ o o o o e o o o
- Normal Restart Format . . ¢ o ¢ ¢ ¢ ¢ o« ¢ ¢ o o o o « «
Normal Restart Execution . . . ¢ ¢ ¢ o o o o o o o o«

Emergency Restart . « « ¢ o ¢ ¢ ¢ ¢ ¢ o o o o ¢ o o o o &

. * . .
. .
L] .
. .
o
s
¢ o
e o
*
o s
o
. o
s e s 0
o o 0
o o
¢ s
o« o 0
s o 9
o o o
o o o
s s 0
« o o
s o o

.
.
.
.
L]
.
.
.
3
.
s+ o s

Emergency, Restart Execution ¢« ¢« . ¢ « o ' o .
Normal or Emergency Restart in Minimum System
"Data Base Backout « . « ¢« ¢« & o ¢ ¢ ¢ o o o o o o o o
Data Base RECOVEIY o« o o o = o o o o o o o o o o o s o o o «
Data Base Recovery Execution . . . e o o o o e o o e o
Systems Operation Interface with Other Functlons e e o o o o

Interface with Machine Operations
Interface with Management « ¢« ¢« « « « .

Chapter 4. IMS/360 System Deflnltlon . . e e e e s e s e e e s
IMS/360 System Structuring Con51derat10ns o o o o o 4 s e o o o =

Defining the IMS/360 SyStem . « ¢ ¢ ¢ « ¢ o o o o o o o o o« o =
IMS/360 System Definition Macro-Instructions« « . « « .
IMSCTRL MAGCIO « « o o o o « o o o o o o o o o o a o o« o o o o« o
APPLCTN MBCYO « o o 2 o o o o o o o o = o a o s s o« o« w s o o
DATABASE MACYO =« « « o o o w o o o o o o o o o o o o o o o o =

TRANSACT MAGcCXO . ¢ ¢ « « o o = o o o o o s o= o o o o o
LINEGRP MACYO « « o o o « o o « o o s o o o o s o o o = «
LINE MAcCrO . « o « o o o o o o o o o o o o s o o« o o o o
TERMINAL MAcCrO .« o o o o « o @ ¢ o o o s o o o o o s « =
POOL Macro
SUBPOOL Macro . . « =«
NAME MAcrOo .« « « « o « « o« =
MSGQUEUE Macro . . .
MASTTERM Macro . . .
MACLIB Macro
RESLTIB MaCro . .« « o o « o o =«
PGMLIB MacCro . .« « « o o a =
PSBLIB Macro
DBDLIB Macro . . « « «
PROCLIB Macro . . . « «
IMSGEN Macro . . « «
IMSTEST Macro . - ® e o @ o s e ® » e ® o s = s = @
Maximum System Deflnltlon Macro-Instruction Occurrences .
System Definition Job Control Language Statements
IMS/360 System Data Sets . . . e e @ o o s e o o o e @
IMS/360 System Data Set Allocatlon e e s s s e & e o w
System Definition Guide « .« ¢« ¢ ¢ ¢ 4 ¢ ¢ 4 4 4 e e . o
IMS/360 Supervisor Call Routines
Inclusion of IMS/360 SVC Routines in Operating System/360
Nucleus @ o o o s o @ v % e s o = @« @« @
OSAM Channel End Appendage e @ o s s o e e o o o e o o o
OSAM Appendage to SYS1.SVCLIB . ¢ « 2 2 s o o o « o o« o =
DFSILNKO to SYS1.LINKLIB e« o o o e o & o e e @
System Definition Stage 1 Output Warnlngs e o o o o s+ o o
System Procedures e e e e e e o o @
Operating System/360 Link Pack Modules © e e o o e o a
0S/360 Link Pack Procedures . . .« « o« 2 o o « « o « « o
Types of Processing Regions = JCL « « o« o ¢ « o o « o « o
Type O REgiON « 2 o o o o o o o o o o o o a o o« o o o o« =
IMS1 ProcedUre . o« « o s« o = = o o o o o s s o o o o o o
IMSO Procedure . « « o o o o o o o« « « o o « o =
Type 1 REGION « o o 2 o o o o o « « o« o o o« « o
Type 2 REGION o+ & ¢ o o « o « o o o « o o« o « o &«
Type 3 REGION « «c o o o o o o o o o o o = o o o o
System Definition - Type 3 Processing Region . . .
System Definition Error Conditions
System Definition Examples « ¢ ¢ « o &
Teleprocessing Example . « . ¢ ¢ ¢« ¢« ¢ o« o o o«
Batch Stand-Alone Example . . « ¢ ¢ ¢ o o o o « &«

.
.
.
s s s 0
.
.
.
.
.
.
.
.
¢ o 0 0
.
.
.

¢ & s 0
L[]
L]
.
L[]
.
.
.
.
.
.
.
.

. . . - e e o e e e o - - . .

Chapter 5. IMS/360 Security Maintenance Program . . . « « « «
Security Maintenance . . . ¢ ¢ ¢ . ¢ i e 4 e e e s e . o
Password Maintenance . « « o« o ¢ ¢ ¢ ¢ o o o o o o o o o
Terminal Security Maintenance « ¢ ¢ ¢ &« o« ¢ « « &
Control and Data Statements & ¢ o o « o « o « « &
Control and Data Statement Combinations « « . . .
Description of SMP Output . . « ¢ . « ¢ ¢ o ¢ o o« o o o« &«
Security Maintenance Program Execution
Security Maintenance Example ¢ & ¢ ¢ o o o o o o o &

Chapter 6. Statistics and Accounting « . . .
IMS/360 System Log Utility Program . . « ¢ o « o « « « o &
General Description . « o« o o« o o 4 o o o o o o o o
Log Format e o o o e s e s o e ° e o 9 e o
Log Data Set Allocatlon e e e e e 4 e e e e o o o
Statistics RepOrts .« <« ¢ ¢ ¢ ¢ ¢ ¢« o o o o o o o «
Types of Statistics Reports+ « ¢ ¢« ¢« ¢ & o o .
Operating Information e 4 e s e e s e e e e e
Message Select and Copy or Llst e e e o 4 e o o e o o a
Control CardsS « < o o o o o o o o o o o o o o o o o o o

117
120
121
.122
.122
-123
.123
124
.125
.126
127
127
.128
.128
129
.130
.131
.133
.134
.134
.135
.135
141

141
.143
.143
.143
.143
.14y
.152
.153
.153
.154
.154
154
.155
.155

.156
.157
.157
157
.157
.187

.193
.193
.193
.193
.194
197
.198
.199
.205

.208
.208
.208
.209
-209
.210
.211
.212
.213
.213

Transaction Code Control Card .« . « « « . o .
Symbolic Terminal Name Control Card
Hardware Terminal Address Control Card . . .
Time Control Card . « « « o « o & « e e e
Nonprintable Character Control Card e o o o
System Log Utility Program JCL
Statistics Reports Examples . « « « « ¢ « « o o«

Chapter 7. Status Codes and Error Conditions . .
Program Specification Block Generation - PSBGEN
Data Base Description Generation - DBDGEN Error
System Definition Error Conditions
Data Language/I Status Codes

Chapter 8. IMS/360 Sample Problem
Description of Sample Problem
Creating Sample Problem Environment . « o o

Copying IMS/360 Distribution lerarles e .
Performing an IMS/360 System Definition .

Performing a Data Base Description (DBDGEN) Generation . .
Performing a Program Specification Block Generation (PSBGEN) .

Error

Conditions

Conditions . . .

Moving Sample Problem Programs and Control Blocks .
Executing an IMS/360 Data Base Load in a Batch Environment . .

Initializing IMS/360 in an Online Environment

. e e e o

e e e o . e

Executing the Online Applications from User Terminals

INdeX . & & v 4 4 4 4 o o 8 o o o o e o o o o e

.213
.213
.214
. 214
.214
.214
.216

.225
.225
.226
.228
.235

.236
.236
242
.242
.243
.247
.247
.248
.249
-250
.251

.256

CHAPTER 1. INTRODUCTION

The Systems Operation Manual is one of a set of manuals prepared to
define the various functions and personnel relationships involved in the
implementation and system operation of Information Management System/360
(IMS/360). It also includes the IMS/360 sample problem (Chapter 8).

The other manuals in the set are:

IMS/360 Application Description Manual (GH20-0524)
IMS/360 Program Description Manual (SH20-0634)
IMS/360 Operations Manual, Volume II - Machine Operations (SH20-0636)

IMS/360 System Manual, Volume I - Program Logic (LY20-0431)

IMS/360 System Manual, Volume II - Flowcharts (LY20-0432)

This introductory chapter restates some of the same information found
in the introductory chapter of the Program Description and Machine
Operations Manuals.

The necessity for these manuals became apparent during the design
phase of the IMS/360 system. The usual mix of data processing personnel
normally provides for application programming, system programming, and
machine operations functions. With the introduction of IMS/360,
however, the need for a fourth function, a coordinating force in
implementing, administering, and maintaining the system, became
apparent. The function is the "heart"™ of the IMS/360 system and has
been designated the "Systems Operation®” function. The Systems Operation
function and its interface with other functions are delineated in this
manual (see Figure 1).

An understanding of the following is a prerequisite for a thorough
comprehension of this manual:

IMS/360 Application Description Manual

IMS/360 Program Description Manual

IMS/360 Operations Manual, Volume II - Machine Operations

IMS/360 Application Directory

0S/360 COBOL or PL/I Language (GC28-6516 or GC28-8201)

0S/360 Supervisor and Data Management Services (GC28-66u46)

0S/360 Supervisor and Data Management Macro Instructions (GC28-6647)
0S/360 Basic Telecommunication Access Method (GC30-2004)

0S/360 System Programmer's Guide (GC28-6550)

05/360 System Generation (GC28-6554)

0S/360 Job Control Language (GC28-6539)

SYSTEMS
PROGRAMMING

X,
R
Y
1%

5

%
S
%
S
9

0

3

038

%
<

APPLICATION
PROGRAMMING

A
9
35
&S
35
20
<%
%
X
0

SYSTEMS

%
O

v
RS
0%
QL
X8
X
&
%5

9

OPERATION
MACHINE

0
SRR
SRR
3HXHLH R
QIR
SRR
GRS

5 ﬁg“
LRSS
RIS

SRS
OIS

O

N 02090000 0.0.0.0.9.9. 4
D oasaress
X 9.9.9.9.:0.9.9.9.9:9 90,099
R IRRALEK
s

Figure 1. 1IMS/360 functional relationships

SYSTEMS OPERATION FUNCTION
The function of Systems Operation is:

e Configuration planning, for all purposes, of new applications so
that communication lines, consoles, and software are available to

support approved applications

e Responsibility for control over and approval of all new data base
designs and descriptive control blocks

e Maintenance of the data bases under Data Language/I, including all
control, allocation, and data base creation and reorganization

e Maintenance of a catalog of programs "certified" to operate as
message processing programs under IMS/360, including related
documentation, processing priorities, transaction codes, control

blocks, etc.

e Responsibility to provide the capability for reconstruction and
recovery of IMS/360 and its associated data bases when routine
procedures known and understood by the Machine Operations function
are insufficient: for such recovery and reconstruction. The Systems
Operation function also has the responsibility to be available to
participate in such extraordinary operations whenever they are

required.

e Responsibility for the utility programs that process the IMS/360
system log tapes and for causing these programs to process the log
tapes and to yield accounting information, machine operations
statistics, usage and data base statistics, and certain management

SYsS

MAC

reports on utilization and errors incurred. The function also has
the responsibility for auditing these reports for quality and for
assigning certain reports to other functions for analysis, as
appropriate.

Accounting and billing for IMS/360 and message programs and a
background batch program in the IMS/360 environment. Statistics
from the system log tape reflecting activity by system, transaction
type, terminal, line, etc. are also distributed.

Responsibility for IMS/360 system definition and modification

Maintenance of all IMS/360 documentation

TEMS PROGRAMMING FUNCTION
The functions of Systems Programming encompass the following:

Assistance and participation in the hardware installation, test, and
initial operations of any new equipment or changed configurations

Consultation with IMS/360 application programmers in conjunction
with the Systems Operation function to assist in the integration of
applications with IMS/360

Software maintenance and improvement of IMS/360 utility programs and
modifications to Operating System/360

HINE OPERATIONS FUNCTION

In addition to the usual operational assignments, the Machine

Operations function is responsible for:

All master terminal capabilities in accordance with established
procedures, with especially prepared instructions to cover
extraordinary happenings :

Assisting terminal operators at remote terminals in the initial
diagnoses of apparent problems, whether they are concerned with the
remote terminal, the connecting communication line, the central
hardware, the central software, or message processing application
programs. After the initial diagnoses, the Machine Operations
function should have accumulated sufficient information to determine
whose assistance is required and to intelligently describe the
problem, and can assist in determining the degree of emergency
sustained.

APPLICATION PROGRAMMING FUNCTION

The Systems Operation function provides for applications planning,

implementation, and audit. The application programming function must
consider the following in its analysis of a proposed application:

Configuration and storage device requirements for anticipated
applications

Data base structuring, storage device cost/performance tradeoffs,
and commonality of data with existing data bases

Program structuring, to include core storage requirements, duration
of execution, overlay structure, and program chaining

——— i o o o

e Message formats and length, transaction types, priorities,
passwords, and logical terminal names

e Schedule of data base checkpoints, and checkpoint cost versus
reconstruction cost

e Schedule of data base dumps and reorganization

SYSTEMS. OPERATION CHECKLIST

A Systems Operation checklist is provided here as a further aid to
the reader in understanding the tasks of the Systems Operation function.

The items or tasks in the checklist are enumerated in detail later in
this manual. Implementation of these tasks is also described. Examples
and possible error conditions in the performance of the Systems
Operation function are also given.

This checklist is not ordered chronologically.

It is directed toward the information needed from a single
application. Of course, under IMS/360, there is in all probability more
than one application program proposed or in operation. Each application
program must therefore be checked off against this list.

The following is an explanation of the columns of the checklist:
Column 1. The checklist item under consideration.

Column 2. Is a teleprocessing application program affected by this
item? (X means YES.)

Ccolumn 3. Is a batch application program affected?
Column 4. Is the Systems Operation function affected by this item?

Column 5. 1Is IMS/360 DBD generation affected by this item? (X means
YES; entry in Macro column indicates which macro; entry in
Operand column indicates the operand of the macro.)

Column 6. Is IMS/360 PSB generation affected by this item? (X means
: YES; entry in Macro column indicates which macro; entry in
Operand column indicates the operand of the macro.)

Column 7. Is IMS/360 system definition affected by this item? (X
means YES; entry in Macro column indicates which macro;
entry in Operand column indicates the operand of the
macro.)

Column 8. TIs the IMS/360 security maintenance program affected by
this item? (X means YES; entry in Control column
indicates which control statement; entry in Data column
indicates which data statement.)

Column 9. In which manual can more details be found about this
particular item?

Abbreviation Full Title

SOM IMS/360 Operations Manual, Volume I - Systems Operation
MOM IMS/360 Operations Manual, Volume II - Machine Operations
PDM IMS/360 Program Description Manual

SM IMS/360 System Manual, Volume I - Program Logic

0s/360 Appropriate Operating System/360 Manual

SYSTEMS OPERATION CHECKLIST

®
©®
®

4
Z
i 2 0O ® ® ®
[©) X SYSTEM SECURITY DETAIL IN
5§ 3] DBDGEN PSBGEN DEFINITION MAINTENANCE ~ WHICH
ITEM HE S K MACRO OPERAND MACRO _ OPERAND MACRO OPERAND CONTROL DATA MANUAL

1. When consulting with the
application programming
function about the application
program structure, have the

following been considered? PDM, SOM
a. Core mits SOM

b. Overlay structure 08/360
c. Program chaining DM
d. MS/360 restart DM, SOM
e. Storage devices DM, SOM
2, Select Type I programming IMSCTRL |SYSTEM
systems (MVT, MFT-II, or PCP), X X X APPLCTN | PGMTYPE SOM
3. Select type of IMS/360 SYSTEM
processing region (Type 1 or {INDIRECT~
2 or 3). X X I x IMSCTRL | LY) PDM, SOM

4. select how many regions or
partitions all applications

will need at one time
. IMSCTRL | MAXREGN PDM, SOM

a. wWithin those regions or
partitions, how many
requests are
anticipated? (Terminal
I1/0, Message Queues,
and DL/I data base
requests) X IMSCTRL |MAXIO PDM, SOM

5. Select application program
name and check for PASSWQRD
duplication. X X PSBGEN |PSBNAME |APPLCTN PSB(name)z(PRQGéAM PDM, SOM

6. Which application program
language has been selected? X XX PSBGEN |LANG PDM

7. Has enough information been
provided about the selected
telecommunications system
for IMS/360 teleprocessing PDM, SOM
environment analysis? X MOM
a. Terminal hardware and

network (including PDM, SOM
lines) X LINEGRP | UNITYPE MoM
b. Specify transaction) (TRANSACT
codes for application PASSWORD |PDM, SOM
pii‘t))gram- £ - X X X ITRANSACT |CODE TERMINAL |MOM
Specify priority
for each :gg’ soM
transaction code. X ITRANSACT | PRTY
(2) 1Is this
TRANSACT
code an
Inquiry
type or not? X TRANSACT | INQUIRY
C. Are messages to be PDM, SOM
entered at remote [MOM
* terminals single- or
multiple~line? X X ITRANSACT |MSGTYPE
(1) ~ select whether, PDM, SOM
after input of MOM
message, terminal
is to continue
input of other
messages or wait
until previous

message has been
processed. X ITRANSACT |[MSGTYPE

SYSTEMS OPERATION CHECKLIST

®
©
®

Y]
Z
5% ©) ® O] ©)
©) A8 B SYSTEM SECURITY DETAIL IN
é g 2 DBDGEN PSBGEN DEFINITION MAINTENANCE 1ICH
ITEM R MACRO OPERAND MACRO OPERAND MACRO OPERAND CONTROL DATA MANUAL
{2} Have message formats
and length been
reviewed? X X PDM
4. ©Specify the length of
time to process the
message. X X TRANSACT| PROCLIM S0M
e. Specify the number of
messages to be
processed per
application program
load in_a region, X X TRANSACTPROCLIM SOM
f. Specify the line groups
for the same terminal LINEGRP |DDNAME
types. X LINE -— SOM
(I)” Specify whether
line group is dialup
(switched); if so, SUBPOOL
specify telephone LINEGRP [FEAT
number. LINE [FEAT SOM
POOL
g. If 1050 system, specify
whether station control/
switched or station LINEGRP [FEAT
control/non-switched. X LINE FEAT SOM
(1) If station control/
switched, specify
Autoanswer. LINEGRP [FEAT
X LINE FEAT SOM
{2) If station control/
nonswitched, option LINEGRP |[FEAT
is Autopoll. X LINE FEAT SOk
h. If 2740 system, specify
station control/non-
switched or no station
control (transmit LINEGRP (FEAT
control) / switched. X LINE FEAT SOM
(1) If station control/
nonswitched, option
is AUTOPCLL or POLL. LINEGRP FEAT
X LINE FEAT SOM
(2) 1If no station
control (transmit
control)/ switched, LINEGRP [FEAT
option is LINE [FEAT
AUTOANSWER. X POOL [FEAT SOoM
i. Specify each communi-) (TEBMINAL (SEE 8)
cation line by number X X PCB |TYPE=TP | LINE |ADDR) (PTERM PASSWORD
with physical terminals PCB LTERM TERMINALADDR (PHY, som
and logical terminal PCB TYPE=DB SM
names,their features,) (COMMAND
their addresses, and Sgﬂg é&ﬁ;mnams
their component addresses.
Check forpduplication of PASSWOR]
names. TERMINAL

SYSTEMS OPERATION CHECKLIST

®
©
®

4]
z
5og 6] ® @ ®
®] SYSTEM SECURITY DETAIL IN
5§ 15 DBDGEN PSBGEN DEFINITION MAINTENANCE WHICH
ITEM E [g a8, MACRO OPERAND MACRO OPERAND MACRO OPERAND CONTROL DATA MANUAL
j. Describe your input and IMSCNTRL| MSGBUFF
output queue control
record and message data MSGQUEUE| QCRIN
sets desired. Also X MSGQUEUE) QCROUT SoM
are reusable queues MSGQUEUE MSGIN
required? MSGQUEUE| MSGOUT
MSGQUEUE| REUSE
k. Specify master terminal
name after giving
consideration to master
terminal operation
relationship. Check
duplication. X XX MASTTERM logical APM
name SOM
. MOoM
) (PASSWORD
Specify password and :il;uméxé; oM
terminal security. X X CorAS SoM
DATABASE
PROGRAM
PTERN
) (TERMINAL
PASSWORD
TRANSACT
COMMAND
9. Specify all data base names
for each application
program, X X| X | DBD NAME PCB DBDNAME | DATABASHEDED (name) PDM
{52 1tem) (parasask | passworn | 5
a. Specify what type of
processing region. X XX IMSCNTRUSYSTEM
(indirect- PDH
1y) SoM
b. Specify how appli- -
cation program intends PDM
to use each data base soM
(read-only, update,
exclusive use). X X1 X DATABASHINTENT
(1) Also specify
application
program options PDM
(get, delete, som
insert, replace,
load). X XX PCB [PROCOPT
t. Has consideration been PoM
given to logging all som
segments against a data
base for data base
"backout"” during emerg-
ency restart! DATA BASE LOG

SYSTEMS OPERATION CHECKLIST

®
©)
®

[
Z
NG ® @ ®
©) ao 8 SYSTEM SECURITY DETAIL IN
d 2 : DBDGEN PSBGEN DEFINITION MAINTENANCE WHICH
ITEM BAom oM MACRO OPERAND MACRO OPERAND MACRO OPERAND CONTROL DATA MANUAL
10. specify what access method is -
wanted for each data base; DBD ACCESS
their data set names and DMAN DDl
their storage types. X |X | X |DMAN bD2 PDM
DMAN DEV1 SOM
a. Is the organization of
each data base the most
efficient concerning: X X | X X SOM
(1) Prime
(2) Overflow
{(3) Logical record length DMAN LRECL
(4) Blocking factor DMAN BLKFACT
{5) Multiple data set
Groups and single
data set group .
(6) HIZAM and HSAM .
(7) BISAM and QISAM !
(8) variable-length
data base record
processing
11. Specify the application SEGM NAME ISENSEG |{SENSEG- PDM
programs hierarchical SEGM PARENT name SOM
(sensitive) segments and SEGM BYTES parent-
parent relationships. X X | X SEGM FREQ seg-name
a. Describe in detail the FLDK NAME PCB KEYLEN PDM
(sensitive) segments. & TYPE SOM
X X X FLD BYTES
START
b. Is an adequate
history of these X
relationships bein som
maintained Eo: anagysis

of the statistics reports?

12. Check the entry point to

the application program. X | X PDM
a. 1f PL/I, the load
module ENTRY nust le
either IHESAPB or

IHESAPD. X PDM

13. Plan and specify the PDM

statistics reports from SOM
IMS/360 system. X X X MOM

14. Plan the residence of X MACLIB UNIT SOM
MACLIB, RESLIB, PGMLIB, MACLIB |VOLNO MOM
PSBLIB, DBDLIB, and MACLIB |PDS sM

PROCLIB. MACLIB |copy
- RESLIB PDS
RESLIB |UNIT
RESLIB |VOLNO
PGMLIB |UNIT
PGMLIB |VOLNO
PGMLIB |PDS
-) PSBLIB |UNIT
PSBLIB |VOLNO
PSBLIB |PDS
DBDLIB |UNIT
DBDLIB |VOLNO
DBDLIB |PDS
PROCLIB |UNIT
PROCLIB |VOLNO
PROCLIB |PDS

N’

SYSTEMS OPERATION CHECKLIST

®
©
®

[}
Z
RN ® ® ®
©) 48 B SYSTEM SECURITY DETAIL IN
He 5] DBDGEN PSBGEN DEFINITION MAINTENANCE WEICH

ITEM £5 S & MACRO OPERAND MACRO OPERAND MACRO OPERAND CONTROL DATA MANUAL

15. Are the libraries and
procedures set up in accordance
with this plan? (See 14) X

16, Specify data sets, volumes,

I1/0 devices required for

System Definition. X SoM
IMSGEN |UT1SDS HoM
IMSGEN |ASMPRT : sM
IMSGEN LEPRT

17. Specify numbers for 05/360
Type 1 SVC's (for inter-
region communication). X IMSCNTRL| COMMSVC| SOM

MOM
SM

18. Specify OSAM channel end
appendage load module
member name-(IGGO19xx). X IMSCNTRL| OCENDA SOM

MOM
SM

19. Specify the user SVC number
to be the 0SAM type 2 SVC
numbers. X IMSCNTRL| OSAMSVC SOM

SM

20. Has the DBD generation been

executed?

Items 9, 10, 10a, 11, 1lla,

and 20 must have been complete.| X | X| X |PRINT INOGEN PDM
DBDGLCN - SOM
FINISH —
END -

21. Has PSB generation been

executed?

Items 5,6,7i,9,9b(1),11,

1la,&21 must have been M <] x END poM
complete. SoM

22. Has System Definition IMSGEN | UT1SDS
been completed? Stage 1? X x| x SoM
Stage 22 SM
Items 2,3,4,4a,5,7a,7b, IMSGEN ASMPRT
7b(1),74,7e,7£,7£(1) , 79, IMSGEN | LEPRT
7g(1) & (2),7h,7h(l) &

(2),74,73,7%,9,9a,9b
14,16,17,18,19 must have
been completed.

23, Is the Security Maintenance)(pRocRAET- - -
Program required for this) (TRANSALT- = -(°
application? If yes, has) (TERMINAL- - -

SMP been completed? X x| x SOM
Items 5, 7b, 7i, 8 & 9. SM

SYSTEMS OPERATION CHECKLIST

®
©
®

4]
= .
ARG ® ® ®
® he & & SYSTEM SECURITY DETAIL IN
< g 2 DBDGEN PSBGEN DEFINITION MAINTENANCE WHICH
ITEM E N oA f MACRO OPERAND MACRO OPERAND MACRO OPERAND CONTROL DATA MANUAL
24. Concerning the Master Terminal
and the machine operation
function:
a. Have the instructions to
the MT operator about the
types of checkpoints SOM
been delineated? X MOM
b. Have the instructions to
the MT operator about
the restart procedures SOM
been delineated? X MOM
c. llas an operating plan
been worked out between
the MT operator and the
computer console bperator SOM
for the system log tapes? X MoM
d. Are the types of system
shutdown procedures SOM
described? X MOM
e. Have the instructions for
alternate master terminals - SOM
been delineated? X MoM
f. Is the remote terminal PDM
trouble procedure SOoM
adequate? X MOM
g. Have adequate IPL
instructions been SOM
delineated? X MoM
h. Uas a group of command
language vgrbs been re-) (COMMAND! ygRp
stricted to entry from
the master terminal?
25. Make necessary coordination
to handle system ABENDS, PDM
error conditions, and SOM
trouble reports. X MOM
26. Have schedules been planned
for system checkpoint, data
base dumps, and SOM
reorganization? X MOM
a. Has a number been
specified that indicates
a checkpoint log X [IMSCTRL | CKPT SOoM
frequency? MOM

10

CHAPTER 2. SYSTEM DISTRIBUTION, HANDLING, AND MAINTENANCE

. SYSTEM DISTRIBUTION

The distribution of Information Management System/360 (IMS/360) is
made on unlabeled, nine-track, 800-bpi or 1600-bpi magnetic tape, or
unlabeled, seven-track, 800-cpi magnetic tape. The seven-track tape
requires the data conversion feature. The distribution is composed of
two tapes. The basic distribution tape includes two data sets:

e IMS/360 Macro-Definition Library (IMS.GENLIB)
o IMS/360 Load Module Library (IMS.LOAD)

The optional distribution tape includes one data set, which should be
ordered:

e IMS/360 Source Module Library (IMS.SOURCE)

The nine-track tape distribution is recommended because two
nine-track tapes are required for IMS/360 teleprocessing execution. The
three data sets are unloaded copies of direct access partitioned data
sets. They have been moved to tape using the IBM Operating System/360 -
IEHMOVE utility program. When the IMS/360 user receives the IMS/360
distribution tape(s), the IEHMOVE program should be employed to copy
these data sets to direct access storage (Figure 2). The following Job
Control Language statements and utility control cards should assist in
the copy execution. The user should allocate each of the IMS/360
distribution libraries before the move to disk. See the IMS/360
Application Directory for recommended space allocation on direct access
devices. The DCB attributes for the IMS.GENLIB and IMS.SOURCE data sets
should be the same as SYS1.MACLIB. The DCB attributes for the IMS.LOAD
data sets should be the same as SYS1.LINKLIB.

The IMS/360 sample problem as defined in Chapter 8 uses the same Job
Control Language statements and utility control statements as listed
here.

11

OPTIONAL

/

<_ILIBQl =

IMS.GENLIB
IEHMOVE /
(COPY) m
IMS . SOURCE

Figure 2. IEHMOVE to direct access storage device

//COPY
/7/
//SYSPRINT
//SYSUT1
//TAPE1
7/

/7 :
//DISK1
//TAPE2
//

7/
//DISK2
//SYSIN

/%

12

JOB
EXEC
DD
DD
DD

DD
DD
COPY

COPY

COPY

Nine-Track Tape

848, NAME, MSGLEVEL=1

PGM=IEHMOVE, REGION=100K

SYSOUT=A

UNIT=2311,DISP=0LD, VOLUME=SER=111111
UNIT=(2400-4,,DEFER) ,DISP=0LD,
VOLUME=SER=SCRTCH, DCB= (LRECL=80,
RECFM=FB, BLKSIZE=800,DEN=2) ,LABEL=(,NL)
UNIT=2311,DISP=0LD, VOLUME=SER=ILIBO1
UNIT=(2400-4,,DEFER) ,DISP=0LD,
VOLUME=SER=SCRTCH, DCB= (LRECL=80,
RECFM=FB, BLKSIZE=800,DEN=2) , LABEL=(, NL)
UNIT=2311,DISP=0LD, VOLUME=SER=ILIB02

* === ==
PDS=IMS.GENLIB,

FROM=2400-4=(SCRTCH,1),

TO=2311=ILIB01, FROMDD=TAPE1l
PDS=IMS.LOAD, FROM=2400-4=(SCRTCH, 2),
T0O=2311=ILIB01, FROMDD=TAPE1
PDS=IMS.SOURCE, FROM=2400-4= (SCRTCH, 1),
T0=2311=ILIB02, FROMDD=TAPE2

i

Seven-Track Tape

//COPY2 JOB 848, NAME, MSGLEVEL=1
/7 EXEC PGM=IEHMOVE, REGION=100K
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=2311,DISP=0OLD, VOLUME=SER=111111
//TAPE1l DD UNIT=(2400-2, ,DEFER) ,DISP=0LD, X
7/ LABEL=(,NL), X
7/ VOLUME=SER=SCRTCH, DCB=(LRECL=80, X
7/ RECFM=FB, BLKSIZE=800,DEN=2, TRTCH=C)
//DISK1 DD UNIT=2311,DISP=0OLD, VOLUME=SER=ILIBO1
//TAPE2 DD UNIT=(2400-2, ,DEFER), X
/77 DISP=0OLD, LABEL=(, NL), X
7/ VOLUME=SER=SCRTCH, DCB=(LRECL=80, X
7/ ' RECFM=FB, BLKSIZE=800,DEN=2, TRTCH=C)
//DISK2 DD UNIT=2311,DISP=OLD, VOLUME=SER=ILIB02
//SYSIN DD *

COPY PDS=IMS.GENLIB, TO=2311=IBILO1, X

FROM=2400-2=(SCRTCH, 1) , FROMDD=TAPE1
COPY PDS=IMS.LOAD,T0=2311=ILIB0O1, X
FROM=2400-2=(SCRTCH, 2) , FROMDD=TAPE1
COPY PDS=IMS.SOURCE,TO=2311=ILIB02, X

FROM=2400-2=(SCRTCH, 1) , FROMDD=TAPE2

/%

Those parameters which are underlined are user-specifiable (for
example, 2314 rather than 2311). The region parameter is required only
for Operating System/360 MVT execution. Generic name 2400-U4 is
nine-track at 800-bpi with DCB=(DEN=2); generic name 2400-2 is
seven—track with data conversion at 800-bpi with DCB=(DEN=2).

If the SYS1.MACLIB data set DCB characteristics are not 80-character
records, blocked 44, a preallocated IMS.GENLIB partitioned data set
should be used in the move from tape to disk. The DCB characteristics
for IMS.GENLIB should be equated to SYS1.MACLIB.

SYSTEM HANDLING

Once the IMS/360 libraries have been copied from the distribution
tape(s) to direct access storage, the user can begin to tailor IMS/360
to his data processing environment. The tailoring of IMS/360 to a
particular user's data processing environment is accomplished with the
IMS/360 system definition macro-instructions contained within
IMS.GENLIB. The IMS/360 system executes with a collection of control
blocks that describe the user's data processing environment:
application programs, data bases, communication lines and terminals, and
other IMS/360 resources. The system definition process constructs these
control blocks.

The IMS/360 user must prepare a control card input deck for IMS/360
system definition. The control card types and formats are described
later in this manual. Once the control card deck has been prepared, it
is appended to a package of Job Control Language for the .
macro-instruction assembly of system definition. System definition is
required if either an online message processing and batch processing or
a batch-only processing system is desired (Figure 3). :

13

IMS.LOAD
-~

e

DEFINITION
INPUT IMS.GENLIB

SYSIN SYSTEM SYSLIB
® oerniTION |
EXECUTION
< \\
OPTIONAL < ' =

IMS.MACLIB IMS.RESLIB SYS1.SVCLIB

(SYS1.LINKLIB)

IMS.PROCLIB
(SYS1.PROCLIB)

(SYS1.MACLIB)

SYS1.LINKLIB

Figure 3. System definition handling

14

The output from IMS/360 system definition includes:

e Generation and placement in the user-named target load library of
IMS/360 control program control blocks

e Generation of the IMS/360 control program nucleus into the
user-named target load library '

e Generation and placement in the user-named target load library of
the Type 3 region Data Language/I batch processing nucleus

e The linkage edit of three user supervisor calls (SVC's), two of
which are used for interregion communication and one for OSAM
multivolume execution. These are placed in the RESLIB target
library. The user can specify the desired SVC numbers.

e The naming and creation of the OSAM channel end appendage module in
the RESLIB library. The user can specify the module name and must
move the module to SYS1.SVCLIB.

e The moving of procedures to user or SYS1.PROCLIB. These procedures
are used for data base description (DBD) and program specification
block (PSB) generation, IMS/360 execution, message region execution,
batch region execution, etc.

e The creation of IMS.MACLIB

Once IMS/360 system definition has been performed, the three svc
routines must be link-edited with the Operating System/360 nucleus.

The IMS/360 user must have provided for two Type 1 user SVC routines
and one Type 2 user SVC routine in his Operating System/360 system
generation. If the system definition is for Type 3 region batch
execution only, the Type 2 user SVC is all that is required. This SVC
is used by 0SAM. The procedure for relink-editing the Operating
System/360 nucleus with the user SVC routines is specified in Chapter 4
of this manual.

Once system definition and the SVC-Operating System/360 nucleus
link-edit is performed, the user must allocate direct access space for
the DBD and PSB libraries. 1In addition, if online processing is
desired, space should be allocated for message queue data sets. All
these data sets should be cataloged. Chapters 3 and 4 of this manual
describe the execution of these functions.

‘Finally, the user is ready to create DBD's, PSB's, and application
programs. Before any message processing may be performed, the required
- data bases must be created in the Type 3 region batch environment.

SYSTEM MAINTENANCE

Permanent modifications and corrections to problems encountered with
the IMS/360 system will be provided with updated program modules through
a new mod-level distribution of all these IMS/360 libraries. These
mod-level distributions will be provided on a periodic basis. The
IMS.SOURCE library will provide a vehicle for convenient, quick
maintenance of PTF's (Program Temporary Fix). If the system user orders
and maintains the source module library, corrections to erroneous
IMS/360 modules can be distributed over the SECOM network. This
maintenance distribution of PTF's through SECOM is in a format
acceptable to the Operating System/360 utility program IEBUPDTE. The
IMS/360 user will update the appropriate IMS/360 source or
macro-definition member, assemble the affected modules, and link-edit
the new copy of the module into IMS.LOAD. The IMS/360 system definition
may have to be performed again if macro-definition statements have
changed. For source-only update distributions, reprocessing of IMS/360
load modules by the linkage editor will ordinarily suffice.

15

CHAPTER 3. SYSTEM DESIGN CONSIDERATIONS

IMS/360 PROCESSING REGIONS

This section of Chapter 3 describes the system flow of control within
and between each type of IMS/360 system region or partition. Region
types are described in the IMS/360 Program Description Manual. The
communication between regions when necessary is supplied through two
user-defined Type 1 supervisor call routines (SVC's). The control
within the Type 0 IMS/360 control program region, where multiple
input/output operations are occurring asynchronously, is provided by use
of the Operating System/360 multiple wait capability. To assure
compatibility between Operating System/360 MFT and MVT, the IMS/360
control program does not use Operating System/360 multitasking to
execute asynchronous input/output operations.

Type 0 and 1 Processing Regions System Flow

Once the Type 0 region containing the IMS/360 control program and one
or more Type 1 regions to be utilized for the message processing have
been initiated by the job management facilities of Operating System/360,
the following system flow occurs ("Events" refer to Figure' 4):

1. The control facility of the IMS/360 program region gives control
to the telecommunications facility (Event 1) for communication
with the master terminal. From the master terminal, commands
(Event 20) are entered to enable communication with all user
terminals and to restart the system (Event 24).

2. The restart facility, using a previous copy of the system log,
restarts the system with current status and any outstanding
messages from the previous system execution. The system can be
started without a previous system log if the cold start option is
taken. ' ' - :

3. "The restart facility returns (Event 24) to the telecommunications
facility, which enables the master terminal operator to initiate
communication to all user terminals.

4. The telecommunications facility returns to the control facility
(Event 1). When an input message or message line is received
(Event 2), the telecommunications facility is again given control
(Event 1). The common service facility is invoked (Event 3), the
input message is queued and logged (Event #), and control returns
through the telecommunications facility to the control facility.

5. Steps 3 and 4 are repeated until an entire message is received.
Upon receipt of an entire message, the telecommunications
facility notifies the message scheduling facility of input
available to scheduling for processing (Event 5).

6. The control facility in a message processing region notifies the
control facility in the IMS/360 control program region (Event 6),
through a resident SVC, that a message processing region is
available for scheduling.

7. When there are input messages pending and a message region is
available for scheduling, control is passed to the message
scheduling facility (Event 7) to determine the application
message processing program to be scheduled. Control is returned
through the control facility by another resident SVC (Event 8) to

16

10.

11.

12.

13.

14.

the message region. The application program is loaded and given
control (Event 9).

The message processing application program subsequently makes
requests for the input message, and possibly for data base
references (Event 10), through the control facility (Event 6).
The control facility passes control to the Data Language/I
facility (Event 11) either for data base reference (Event 16) or
for message reference (Event 13). The message reference is
accomplished through the common service facility (Event 12).

Whether the data represents a message or a data base segment, it
is communicated to the application program (Event 14), and
control is returned to the application program (Events 11, 8,
15).

The application program uses the same routine of control (Events
10, 6, 11, 13) for sending output messages.

When the application program terminates, control is returned to
the control facility (Event 26) in the IMS/360 control program
region (Event 6).

The control facility passes control to the message scheduling
facility (Event 7), which notifies the telecommunication facility
(Event 27) of pending output.

Subsequently, control passes to the telecommunication facility
(Event 1) to allow output messages to be transmitted. The common
service facility is invoked (Event 3), and the message is
retrieved from the message queue (Event #) and transmitted (Event
8).

At periodic intervals, based upon either message volume or
notification from the master terminal (Event 20), a checkpoint of
the system occurs. The telecommunications facility gives control
to the checkpoint facility (Event 21) for writing status on the
system log. The common service facility is invoked for this
purpose (Event 23).

17

05/360 NUCLEUS
o _CoNkoLAALY_ 7§ T 1
ks iy
: C] — 1
MASTER N . *l " =1 | (!
TERMINAL 1 L
N , 1 i 1) v
2 ! 1 ! MWW s I 4
\ ! I7 [' : ! i APPLICATION
H PROGRAM
b ‘E'LE' -{+i MESSAG'E DA'TA : ! v : : o
N 4 TELEPROCESSING
2| | COMMUNICA SCHEDULING LANGUAGE/! # :' $ APPLICATION L RELATED
TERMINALS FACILITY | racuimy FACIHY; | TReSm 1 BATCH
3 b
|28 T ' MESSAGE | ‘PROCESSING
| | % | 11| PrOCESSING +—+
R it | ! i 11
o I | 11l wlhs I:
[V ¥ I PL——JT | 4
1 CHECKPOINT RESTART | - 19 Ly
1 FACILITY FACILITY | Iy
1 N |]
| + | 1 14
1 AP’ % I v o
lt_.__?__-.g' oy __12___! 16 [7 1y
COMMON 11 Lt
SERV ICE | L=
4 FACILITY 13 L 4
REGION TYPE 0 / \ REGION TYPE 1 REGION TYPE 2

o = = == CONTROL FLOW
DATA DATA FLOW
BASES)
Figure 4. 1IMS/360 Type 1 and Type 2 processing region system flow

Type 2 Processing Region System Flow

Once the IMS/360 regions associated with teleprocessing have been
initiated by Operating System/360, a Type 2 processing (batch) region
can be initiated. This Type 2 processing region may contain an
application program for processing against teleprocessing data bases in
the batch manner. The application program in the batch region is
scheduled by Operating System/360 job management, but may utilize the
Data Language/I facility for teleprocessing data base reference (Figure
4). An application program executed in a Type 2 processing region can
only access IMS/360 data bases which are defined in the IMS/360 Type 0
region ("Events" refer to Figure 4).

1. Any data reference is initiated by the batch application program
(Event 17) - through the control facility (Event 6).

2. Control is given to the control facility in the IMS/360 control
program region. Control is then passed to the Data Language/I
facility (Event 11) to reference the data bases (Event 16).

3. The data base segment requested is supplied to the application
program (Event 19), and control returns through the control
facility to the application program (Events 11, 8, 18). The data
base request may be an addition, update, or deletion of a data
base segment. The flow of control is identical in each case;
however, the data base segment is supplied from the application
program (Event 19) to the data base (Event 16).

A Type 2 processing region, in addition to being able to process data
bases used for message processing, has access to input message queues
and can output to the message queues. The access to the input message
queues is provided by specifying a transaction type to which access is

18

desired in the Job Control Language (JCL) for a Type 2 region. Access
to the output message queues is provided by specifying output terminal
PCB's in the PSB for the application program which executes in the Type
2 processing region. The IMS/360 Program Description Manual describes
output terminal PCB's. The JCL used for a Type 2 processing region is
specified in Chapter 4 of this manual.

Type 3 Processing Region System Flow

Whether or not the teleprocessing capabilities of IMS/360 exist among
jobs executing under Operating System/360, the Data Languages/I facility
of IMS/360 can be used in a nonteleprocessing data base batch
environment ("Events" refer to Figure 5).

1. The application program for Type 3 processing (nonteleprocessing
data base batch processing) is initiated through the job
management routines of Operating System/360 (Event 1).

2. Then the Data Language/I facility is invoked (Event 2). The highest
level Data Language/I module analyzes the data base call request.
Depending upon the I/O function requested in the call, the insert
(Event 11), the retrieve (Event 3), the load (Event 15), the HSAM
(Event 16), or the delete/replace (Event 12) module is invoked.
These modules subsequently invoke either the ISAM modules (Event
4) or the OSAM modules (Event 5) to reference the data base.

3. The data segment is moved to or from the application program's
I/0 work area and the data I/O buffers used by the access method
(Events 8, 9). :

4. Also, the data segment is moved to or from the I/0 buffers and
the data sets representing the data base (Events 6, 7, 13, 14).

5. After the Data Language/I I/0 request has been completed, control
is returned from either ISAM or OSAM (Events 4, 5) to one of the
Data Language/I modules. Subsequently, control is returned to
the Data Language/I analyzer module (Events 3, 11, 12) and
finally to the application program (Event 10).

19

0S/360 NUCLEUS

1 117
1

-t - -

APPLICATION
PROGRAM

FOR

DATA LANGUAGE/I
DATA BASE
BATCH
PROCESSING

2

-l

9
8d 4

-t e] P

—_—

| CONTROL FACILITY
Rl 10

- - — i —

\

11 CALL
m————————— Fem——— ANALYZER f#—— -} oo — o= -

LOAD INSERT RETRIEVE DELETE/ HSAM
MODULE MODULE MODULE REPLACE MODULE

MODULE

A A
L]

'\
| S S H -__9
4, 51

ISAM OSAM ; BSAM

7 : . REGION TYPE 3

‘ .
6
13 ’ DATA I ————— CONTROL FLOW

BASES DATA FLOW

Figure 5. 1IMS/360 Type 3 processing region system flow

[

There is a capability in a Type 3 processing region to specify
through Job Control Language (JCL) parameters a PSB and an application
program with different names. Normally there is a one-to-one
relationship between PSB and application program. However, the ability
to specify different PSB's for one application program opens the door
for the user of IMS/360 to create some general purpose "utility
programs™ which use multiple PSB's (one at a time). Chapter 4 of this

manual describes the JCL available to assist in implementing this
capability.

When the data bases normally used for message processing are not
being used for that pose, they may be processed in a Type 3
procéss1ng region. 'Tﬂls is permitted when the IMS/360 ontrol program

is not operative as an Operating System/360 job. ’ S M)\m

:

20 Q‘d‘)\,\

Impact of MFT and MVT on IMS/360

Certain features in the MFT and MVT operating system options
substantially affect the performance of IMS/360.

One of the major differences is the support of Operating System/360
in the area of storage management. Storage management for MVT is
extended to include subpool management, whereas, under MFT, storage
management resembles PCP storage management; that is, supervisor control
blocks are not resident in system queue space, and modules of code are
packed contiguously in an MFT partition. Under MVT, the storage
management algorithm is based upon use of 2K blocks of storage as the
minimum quantity that can be manipulated by the storage management
facility. In addition, in MVT, FETCH= routines may make a different
subpool call to storage management based upon module attributes. MFT is
essentially transparent to the usability attribute of a load module. As
a result, certain IMS/360 load modules will reside in protection key 0
storage within the problem program region in MVT, whereas under the MFT
environment these modules will essentially be unprotected from
modification. Since MVT does provide the added feature of protected
code in the problem program region, it may be desirable at the time the
system is defined that the IMS/360 resident library (that is, the
library in which all IMS/360 executable modules will reside) be in fact
either SYS1.LINKLIB or SYS1.SVCLIB. One of these two libraries should
be specified, since these are the only two from which Fetch will store
in protect code 0 core in the problem program region.

Another consideration in the differences between MFT and MVT is in
system timing. In Type 0, 1, 2, and 3 regions, the TIME= parameter for
job step timing is available, whereas in an MFT environment this
capability is not implemented. This should not be considered a
disadvantage of MFT; however, the user should be aware that, since the
IMS/360 regions will be expected to persist for many hours of continuous
operation, it is necessary to specify the TIME= parameter in the job
card which initiates the various types of regions. If the TIME=
parameter is not used and job step timing has been selected at Operating
System/360 system definition time, the default time which appears in the
reader procedure used to read the IMS/360 JCL will apply, and IMS/360 in
any of its various type regions will be terminated abnormally by
Operating System/360.

It appears that the starting of region Types 0 and 1 will normally be
done through a procedure. In both MFT and MVT, reader procedures can be
written which in turn invoke full job procedures from a user procedure
library or SYS1.PROCLIB. However, in the case of Type 2 and Type 3
regions, the JCL that initiates these regions will normally be read in
through the user's input stream; the responsibility, therefore, for
placing a time parameter in the job card becomes the user's.

Another consideration is the dispatching priority of the running
IMS/360 region type. 1In an MVT environment, the priority scheduler
selects from a given class input queue the top priority job for
initiation and creates a task control block which functions within the
system at some relative dispatching priority related to the job
selection priority. In MFT, however, dispatching priority is controlled
by the partition number into which a job is scheduled. The normal MFT
algorithm is that partition 0 has the highest priority, and partition n
has the lowest priority. An IMS/360 Type 1 region operating in an MVT
environment will CHAP itself below the dispatching level of the Type 0
region if possible. However, in an MFT environment, this is not
possible. The IMS/360 Type 1 region will terminate with an abnormal
completion code. So, in an MFT environment, the IMS/360 region Types 0
and 1 should have the same relative partition relationship; that is,
IMS/360 should be in a partition number lower than Type 1 and 2 regions.

21

Another difference in IMS/360 operating characteristics under MFT and
MVT is abnormal termination of Type 1 (message processing) and Type 2
(batch against online. data bases) processing regions. Under MVT, the
application program in either of these region types is ATTACHed as an
Operating System/360 subtask. If the subtask abnormally terminates, the
higher level controlling task communicates to the IMS/360 control
program that abnormal termination has occurred. The resources used by
the application program in the IMS/360 control. program are released
(that is, data base buffers, message type, the program, and the data
bases). In the Type 1 region (message processing), the Operating
System/360 job is not terminated, and scheduling of another message
processing program occurs. Using MFT, the IMS/360 control modules and
the application program in a Type 1 or Type 2 processing partition are
part of the same Operating System/360 task. If the application program
abnormally terminates, the entire Operating System/360 job terminates.
The resources used by the Type 1 processing partition within the IMS/360
control program are not released until another message partition control
module is started in the same partition. Through the use of MFT class
initiations, the user should immediately initiate another message
partition control module in the same partition. A good practice may be
to "stack" another copy of the message partition control JCL in the
input queue for that job class. The loss of the message partition will
cause the next copy to be initiated in the same partition. The first
call to the IMS/360 control program by the new message partition job
causes the IMS/360 control program to release resources used by the
ABENDed program.

ESTIMATING STORAGE AND MACHINE REQUIREMENTS

One of the things that must be planned for is the storage
requirements of an Operating System/360-IMS/360 installation. Although
the basic formula for estimating resident storage requirements of
IMS/360 is contained in the IMS/360 Application Description Manual
(GH20-0524) , further detail and examples are contained in this section.
The techniques provided in this section allow the system user to obtain
a more accurate storage estimate than that in the IMS/360 Application
Description Manual. Do not attempt to mix partial estimates obtained
from the following techniques and those obtained from the Application
Description Manual.

Estimating IMS/360 Type 0 Region Main Storage Requirements

The main storage requirements for the Type 0 region are influenced by
the number of data bases defined, the number of telecommunication lines
and line groups, e €lecommunication terminals toO
supported, the buffer requirements to support defined data bases, and
MAXIO specification in the IMSCTRL macro statement of system definition,
performance requirements, etc. IMS/360 system definition supplies a
procedure, IMS0, for the IMS/360 Type 0 region. The IMSO procedure
supplies default parameters in the EXEC card for REGION= and PARM=
operands. These operands determine region size and region storage
usage. The IMSO0 procedure also provides definition of the positional
characters in the PARM= operand. The following data should assist the
user in determining an initial region or partition size. After proper
analysis, the user may wish to change the default values in the IMSO
procedure. Chapter 4 of this manual provides an illustration of IMSO
procedures.

The storage requirements estimates are discussed under the following
headings:
e Basic Storage Requirements
'
e BTAM Device Support

22

e IMS/360 Control Blocks
e IMS/360 Buffer Pools

Basic Storage Requirements

IMS resident nucleus (less control blocks) 60,000 bytes
Data Language/I action modules | 12,800
OSAM access method modules 2,900
ISAM and IMS ISAM simulator modules 7,800
BTAM (less device support modules) 6,600

90,100 bytes
BTAM Device Support -

Add to the basic storage requirements, BTAM device modules for each
line group described at IMS/360 system definition.

1050 nonswitched without autopoll 224 bytes
1050 nonswitched with autopoll 234
1050 switched 323
2740 with dial, transmit control, and checking 304
2740 with station control and checking 240

2740 with station control, checking, and autopoll 224
2260 remote 272
IMS/360 Control Blocks (Except Security)

Add to the basic storage requirements the size of the control
block load module from the linkage editor output of Step 36 of Stage 2
of IMS/360 system definition. If the system user has not performed an
IMS/360 system definition, the following should allow a control block
estimate. The exact size of the control blocks may be calculated by
referring to Chapter 11 of the IMS/360 System Manual.

Basic block requirement 12,000 bytes
Per message or Type 2 batch program 48

Per online data base 30

Per communication line 112

Per communication terminal 30

Per logical terminal (at least one per 64

: communication terminal)
Per transaction code ' 52
Per message or Type 2 batch region 280

Security Control Blocks

If the extended password and terminal security facilities are used,
there are additional main storage requirements beyond those required by
the resident control blocks generated during system definition.
Securlty matrix bounds and main storage requirements may be determined
using the following formula:

(I/8) * R = M = <32767

23

where:

M is the total main storage requirement in bytes.

I is the number of securing resources (passwords or logical terminals).
R is the number of unique combinagions of secured resourcéé.

The storage requirements for the password table may be determined
using the following formula:

P=1L * N
where:
P is the total main storage requirement in bytes.

L is the length in bytes of the longest password. L can vary from one
to eight characters inclusive.

N is the number of passwords = < 32768.

Examples of security control blocks:

1. Terminal security
Assume 200 logical terminals as securing resources, and

100 unique combinations of secured resources
(transactions, command verbs, etc.)

(200/8) * 100 = 2500 < 32768
Terminal security storage = 2500 bytes
2. Password security

Assume 400 passwords as securing resources (maximum password
length is four characters), and

200 unique combinations of secured resources
(transactions, command verbs, etc.)

(400/8) * 100 = 5000 < 32768
Password table 400 * 4 1600 bytes
Password matrix 5000
Password security storage 6600 bytes
IMS/360 Buffer Pools
'IMS/360 requires a set of buffer pools for communication line
buffers, message queue buffers, data base control block buffers, and
data base buffers. The storage requirement for these pools must be
added to the basic storage requirement for the IMS/360 region size.
The following pools are required:
e Queue control record (QCR) and message buffer pool
e Data base buffer, output message buffer, and 2260 buffer pool
e PSB control block pool

e DMB control block pool

24

N

OCR and Message Buffer Pool. One queue control record buffer is
required for each input 2740 and one for each 1050 telecommunication
line to be serviced. Step 4 of Stage 2 of IMS/360 system definition
adds the procedure to the user-defined procedure library named IMSO.
The calculated number of QCR buffers required is defined in the DDD
positions of the PARM= operand on the EXEC card. In that procedure, a
number of message buffers are defined in the EEE positions of the PARM=
operand for the system defined by the user. Message buffers are
utilized for handling multiline messages.

The main storage requirements for these buffers may be determined by
using the following sizes per buffer:

.

Queue control record buffer 176 bytes

One QCR buffer is required for each input communication line and
each message region.

Message buffer 880 bytes N

One message buffer is required for each simultaneous input or
output request for a multisegment message.

Data Base Buffer Pool. When a program is scheduled into a message
region or when a Type 2 batch program is scheduled, the buffers required
for the data bases used by that program are obtained from a general data
base buffer pool. When the application program terminates, the assigned
buffers are returned to the pool. The output of each DBD generation
Step 2 (linkage editor) includes a SETSSI value produced in Step 1.

This value is the data base buffer byte requirement in hexadecimal
required for use of the data base by an application program in an
IMS/360 Type 1 or 2 region. If data base logging is specified for any
data base referenced by a message or batch Type 2 program, the size of a
message buffer (80 bytes) plus 72 bytes (152 bytes total) must be added
to the total buffer requirements for that program. The pool of data
base buffers provided for use in the IMS/360 Type 0 region must be at
least as large as that required by the message program or batch program
in a Type 2 region which uses the largest number of data base buffer
bytes. As an example, assume that program X, the largest user of data
base buffers, uses three data bases which require 5000 bytes of buffer
storage each. The absolute minimum requirement for the data base buffer
pool will be 15,000 bytes. If more than one Type 1 or 2 region is to
execute concurrently, the data base buffer pool must be large enough to
obtain the buffers for the data bases to be used in each message and
Type 2 region concurrently. If the data base buffer requirement
associated with an application program cannot be satisfied at the time
the program is to be scheduled for execution, IMS/360 will wait until
buffer space becomes available. The IMS0 procedure provides a default
size for the data base buffer pool in the HHH positions of the PARM=
operand of the EXEC card.

In addition to data base buffers, space in this pool is used to
supply buffers during a /DBDUMP execution. These additional buffers are
used for the HSAM data base image of the HISAM data base to be dumped.
The total buffer space requirement is equal to twice the buffer
requirement for the largest data base to be dumped.

274071050 output Line Buffer Pool. Output messages to be transmitted
via communication lines are read from queue control record and message
buffers, edited to include line control characters, translated, and
placed in output line buffers. Output line buffers are contained in the
output line buffer pool. The size of this pool is defined by the HHH
positions of the PARM= operand of the EXEC card in the IMSO procedure.
The value specified for the HHH positions of the PARM= operand should

| include the output line buffer pool requirements in addition to the data

25

base buffer pool requirements. A reasonable pool size requirement might
be 200 bytes per buffer and one buffer per three output 2740/1050
communication lines. However, if response is inadequate, the number of
buffers should be increased.

2260 Line Buffer Pool. Buffers required for communication line control
operations with a 2260 terminal are obtained from the 2260 line buffer
pool. The size of this pool is defined by the HHH positions of the
PARM= operand of the EXEC card in the IMSO procedure. The value

'specified for the HHH positions of the PARM= operand should include the

2260 line buffer pool requirements in addition to the 1050/2740 output
line buffer and data base buffer pools. One buffer of 1000 bytes should
be included for each active 2260 line.

PSB and DMB Pool Sizes. A control block called a PSB exists on the PSB
library for each message or batch Type 2 program. This block is loaded
into core storage when the program is scheduled, and is retained as long
as possible. The PSB is maintained in the PSB pool. A control block
called the DBD also exists on the DBD library for each data base. This
block is loaded into core storage and modified to create a DMB when the
data base is initially used. The DMB is retained as long as possible in
the DMB pool. The DMB contains DCB's for the data base in an OPEN
state. The ability of IMS/360 to retain PSB's and DMB's in core depends
upon their respective pool sizes.

The sizes of the PSB and DMB pools are determined by the values
specified in the FFF and GGG positions of the IMSO procedure PARM=
operand. A default value is assigned by IMS/360 system definition to
the FFF and GGG positions of the IMSO0 procedure PARM= operand. These
values must be at least large enough to contain the largest PSB as
expanded during loading and all DMB's required by the application
program that uses the largest number of data bases.

The size of a typical PSB is 500 to 1000 bytes. The size of a
typical DMB is 600 bytes per data set group in the data base. The more
PSB's and DMB's that remain resident, the greater the performance of the
IMS/360 system. The maintenance of PSB's and DMB's in their respective
pools is based upon frequency of use. The more often a program is
scheduled and its data bases accessed, the greater the probability of
retention of the block in core storage. The user can retain all PSB's
and DMB's in core if the pools are defined large enough.

When a PSB is removed from the PSB pool to accommodate a new PSB, all
DMB's used by that PSB and not concurrently used by other PSB's at time
of PSB removal are removed from the DMB pool. This means the closing of
the associated data sets. The user may avoid the removal of HISAM DMB's
through the use of the second position in the PARM= operand on the EXEC
card of the IMSO or IMS1 procedure. However, the user must stipulate a
DMB pool large enough to accommodate all HISAM DMB's used for online
processing and his largest HSAM DMB or the HSAM DMB used in data base
dump for the largest HISAM data base.

PSB Size Calculation. The exact main storage occupancy for a PSB may be
calculated by adding the size of the PSB prefix (PSBPFX), the size of a
teleprocessing program communication block (TPCBSZ), and the size of
each data base program communication block (DPCBSZ). The formula for
the calculation is:

PSBSIZE=PSBPFX + (TPCBSZ*n) + DPCBSZ,...+DPCBSZn

26

where:

PSBPFX = 44 bytes
TPCBSZ = 96 bytes if the PSB generation PSBGEN statement contains the
keyword LANG = PL/I
= 40 bytes, if keyword LANG=COBOL or ASSEM
DPCBSZ = 112+ (132*%DSGn)+ (44*SSEGn) + (LEVs*LEVN)+MKFBs + (12*%FLDn)
where:
DSGn = number of data set groups defined; varies from 1 through
9
SSEGn = number of sensitive segment names defined; varies from 1
through 255
LEVs = 16 bytes plus the length of largest key field as defined
by a FLDK statement in the associated data base
definition, rounded up to the next fullword
LEVNn = number of levels in the data base hierarchy; varies from
1 through 15
MKFBs = length of maximum concatenated key as specified in the
KEYLEN = keyword of the PCB statement
FLDn = number of FLD statements in the associated data base

definition

Note: If the DBDUMP command is to be used, the PSB pool must be large
enough to contain a PSB that is twice the size of the largest
possible data base PCB plus the PSBPFX size.

DMB Size Calculation. The exact storage occupancy for a DMB may be
calculated by adding the size of the DMB prefix to the size of the DCB's
required for each data set group (DSG) that comprises the data base and
the number of segment types times a constant. The formula for size
calculation is:

DMBSIZE = [(IDCBSZ + ODCBSZ + DSGPFX) * DSGN] + DMBNSZ + (NSEGT * 4)

which reduces to:

DMBSIZE = (488 * DSGN) + 8 + (NSEGT * U4)
where:
~IDCBSZ = 252 bytes for an ISAM DCB
ODCBSZ = 228 bytes for an OSAM DCB
DSGPFX = eight bytes
DMBNSZ = eight bytes for DMB name
NSEGT = number of segment types, where O<KNSEGT< 256
DSGN = number of data set groups in the data base

Operating System/360 Requirements
Additional core storage is required in the IMS/360 Type 0 region for

some Operating System/360 modules and control blocks. In addition, when
MVT is used, core storage is required in the system queue space area.

27

| MFT:

Task I/O0 Table (TIOT) 28 + 16n + u4d

n = number of DD cards
| d = number of I/O devices
Program Request Blocks (PRB) (two required) = 64 bytes
Supervisor Request Blocks (SVRB) (at least one
required) = 96 bytes
Loaded Program Request Blocks (LPRB) (38 required) = 1520 bytes

Data Extent Blocks (DEB) - 160 bytes each
(one required per communigation 1ine group)
(five DEB's required for log and message queues)
(one DEB per ISAM data set in each data base)

Data Set Integrity (see MVT)

System Fetch Work Area 390 bytes
OPEN/CLOSE/EOV Work Area 1200 bytes
ABEND Work Area o 1000 bytes
Input/Output Blocks (IOB) . 136 bytes

(one IOB per communication line)
(two IOB's per data set)

MVT: The MVT requirements are divided between the space required in
System Queue Space and the IMS/360 Type 0 region.

System Queue Space:

TIOT = (28 + 16n + 44d) bytes

n = number of DD cards

d = number of I/0 devices
Main Storage Control Blocks and Misc. 500 bytes
PRB's (two required) 64 bytes
SVRB (one required) 96 bytes
LLE,XL, &§ CDE (40 required) 1760 bytes

DEB's - 160 bytes each

(one per communication line group)

(one per ISAM data set)

(two per OSAM data set)

(five for log and message quéues)
TCB's (three requifed) 504 bytes
Data Set Integrity Queue Blocks

sum of nd (14 + L) where nd is number of data sets

allocated and L is number of bytes in the data set
name including concatenation characters

28

_/

Type 0 Region:

System Fetch Work Area 2000 bytes
OPEN/CLOSE/EOV Work Area 1200 bytes
ABEND Work Area 2000 bytes

IOB's — 136 bytes each
(one per communication 1line)
(two per data set)
(ten for log and message queues)
Total IMS/360 Type 0 Storage Requirement
The sum of the basic requirement, device support, control blocks,
message and queue control record buffers, data base buffers, 1050-2740
output message buffers, 2260 line control buffers, and PSB-DMB pool
sizes represents a starting estimate of the region size value for

IMS/360 execution.

IMS/360 Type 0 Reqgion Estimates Example

Assumptions:
MFT

16 — 2740/1050 communication lines (16 terminals)
1 - 2260 line (four terminals)

5 - data bases concurrently open
10 - PSB's concurrently resident

18 - data sets allocated, all of which have eight-character data set

names
2 - message regionms

20 - message programs
40 - transaction codes
20 - logical terminals

IMS/360 Requirements

Basic Storage Requirement 90,100 bytes
© 2740 Station Control, Autopoll, Checking 224
2260 272
1050 - Nonswitched with Autopoll 192
IMS/360 Control Blocks (Step 36 system definition) 18,000
EXEC Card Number of Size of
Pool Type Parameter Buffers Buffers Total
QCR Buffers DDD=020 20 176 3,520
Message Buffers EEE=005 5 880 4,400
PSB Pool , FFF=010 10 1000 10,000
DMB Pool GGG=003 3 1000 3,000
General Pool# HHH=020%** 20,000

* The General Pool includes:

1. 1050/2740 Line Buffers 5 200
2. 2260 Line Buffers . .1 1000
3. Data Base Buffers ‘ 18 1000

**The HHH EXEC card parameter specifies the size of the general
pool in multiples of 1000 bytes.

Total IMS/360 Requirements 155,708

29

Operating System/360 Requirements
TIOT = 28 + 16n + 4d
17 - communication lines

4 - message queue data sets
_2 - tape (log/data base recovery)

23
28 + (16 x 23) + (4 x 23) = 488 bytes
PRB's (2) ; 64
SVRB's (1) 96
LPRB's (38) 1520
DEB's 1 - 1050 line group
1 - 2740 line group
1 - 2260 line group
2 - tapes
4 - message queues ;
15 - data base, data sets -
24 x 160 bytes 3840

Data Set Integrity

18 data sets
8 character names

(14 + 8) * 18= 396
Fetch Work Area . 390
OPEN/CLOSE/EOV Work Area 1200
ABEND Work Area ’ 1000
IOB's 1 - per communication line = 17
2 - per tape = 4
2 - per message queue = 8
4 - per data base = 20
TOTAL IdB's 49
49 x 136 bytes 6,664
Total Operating System/360 MFT Requirement 21,558
Total IMS/360 Requirement 155,708
Total Operating System/360 MFT Requirement 21,558
Total Partition Requirement 177,266

In addition to this total partition storage requirement, storage is
necessary for message processing partitions, the basic MFT nucleus,
system writer (optional), and basic RAM area.

Estimating IMS/360 Type 1 and Type 2 Region Main Storage Requirements

The size of an IMS/360 Type 1 or Type 2 processing region is
determined primarily by the size of the system user's application
programs. The only permanent requirement of IMS/360 is 2000 bytes in

30

\

each message or Type 2 batch region. Prior to loading the user's
application program, IMS/360 requires an additional 4000 bytes to
initiate the processing region.

Estimating IMS/360.Type 3 Region Main Storage Requirements

The core storage requirement within an IMS/360 Type 3 region is
primarily dependent upon:

e The size of the user's application program
¢ The number of data bases to be used and their buffer requirements

e The IMS/360-Data Language/I and Operating System/360 modules
utilized

Basic Modules

The IMS/360 region control modules and the Data Language/I Type 3
region nucleus require about 10,000 bytes. For initialization, about
8000 additional bytes of work space are required prior to loading the
user's application program. When the user's application program is to
be loaded, these 8000 bytes of work space are available.

control Blocks

Associated with each application program is a control block called a
PSB, and associated with a data base is a control block called a DMB
(data management block). The exact formula for calculating PSB storage
requirements will be found in the section titled "Estimating IMS/360
Type 0 Region Main Storage Requirements". Assume 2000 bytes for a PSB
in the following example. A DMB for a single ‘data set group data base
is 500 bytes; a DMB for a multiple data set group data base is 500 bytes
per data set group. As an example, a program that uses two data bases,
one of which has one data set group and one of which has three data set
groups, would require the following control block space:

1 - PSB -~ 2000 bytes 2000 bytes
1 - Single data set group DMB 500 bytes
1 - Three daﬁa set groups DMB 1500 bytes

Total IMS/360 control block space 4000 bytes

Data Base Buffers

The core storage requirement for all data base buffers associated

‘with all data bases used by an application program in an IMS/360 Type 3

region is obtained in that region. The creation of a data base
description (DBD) associated with a data base is provided in a SETSSI
statement. This SETSSI statement gives, in hexadecimal, the number of
bytes required for data base buffers associated with the data base. The

.buffer requirements for a data base are equivalent to two times the ISAM

data set block size for each ISAM data set plus four times the OSAM
logical record length for each OSAM data set within the data base.

Data Base Organization Modules

In addition to the basic IMS/360 modules in a Type 3 region, various
sets of data base organization modules are required. The need for these
modules is dependent upon the type of data base organizations and
processing options employed by the user's application program. The
module sets and their respective core storage requirements are as
follows:

31

Hierarchical Sequential data base with
processing option of GET or LOAD 5,300 bytes

Hierarchical ISAM data base with processing
option of LOAD) 13,000 bytes

Hierarchical ISAM data base with processing
option of GET 20,000 bytes

Hierarchical ISAM data base with processing
option of ALL (GET, ISRT, DLET, REPL) 24,000 bytes

Regardless of the number of data bases used by an application
program, the data base organization module sets are required only once
in the IMS/360 Type 3 region for each data base organization.

Operating System/360 Control Block Requirements

As in the IMS/360 Type 0 region, it is necessary for core storage in
a Type 3 region to contain some Operating System/360 control blocks.
The following list indicates the types of control blocks, their storage
requirements, and their need in the IMS/360 Type 3 region. Some of
these control blocks are maintained in system queue space when operating
with Operating System/360-MVT. The reader should refer to the section
in this manual titled "Estimating IMS/360 Type 0 Region Main Storage
Requirements™ for obtaining Operating System/360 requirements in any
Operating System/360 region.

Type 3 Region Storage Requirement Example

Assumptions for example:
1. User's application program requires 20,000 bytes.
2. iThree data bases are utilized.

1 -- Hierarchical Indexed Sequential data base - single data set
group - processing option equals LOAD (L)

2 -- Hierarchical Indexed Sequential data bases - two data set
groups each - processing option equals ALL (A)

3. All ISAM block sizes equal 2000 bytes, and all OSAM block sizes
equal 1000 bytes.

IMS/360 Storage Requirement

Amount 3

Basic Modules v . "10,000 bytes
User's Application Program 20,000
Control Blocks: ,

PSB 3,000

3 - DMB's (Five data set groups) 2,500
HISAM (processing option equals L) 13,000
HISAM (processing option equals A) | 24,000

Data Base Buffers (2 - ISAM, 4 - OSAM Block
Size Buffers Per Data Set Group)

32

7N

A

./

2 buffers x 5 data set groups x 2000

bytes/buffer 20,000
4 buffers x 5 data set groups x 1000
bytes/buffer - 20,000
Total IMS/360 Requirement 112,500 bytes

Operating System/360 Requirement
TIOT = 28 + 16n + u4d
Assume 5 I/0 devices = d

Assume 10 DD cards = n

= 28 + 160 + 20 208 bytes
Program Request Blocks (2 required) 64
Loaded Program Request Blocks (10 required) 400
Supervisor Request Block (1 required) 96 -
Data Extent Block (20 required) ’ 3200
System Fetch Work Area 390
OPEN/CLOSE/EOV Work Area 1200
ABEND Work Area 1000
Input/Output Blocks (2 per data set) x 10 data sets _1360
A Total Operating System/360-MFT-II Requirement 7560 bytes

Total Type 3 Region Storage Requirement
IMS Type 3 region requirement 112,500 bytes
Operating System/360 region requirement (MFT) 7,918
- Total Region Size 120,418 bytes
In addition to the IMS/360 Type 3 partition or region requirements,
storage is necessary for the basic Operating System/360 nucleus, RAM or
link pack area, and system writer (optional).

IMS/360 DATA BASE CONSIDERATIONS

Variable Length Data Base Record Processing

The data base creation and.processing capabilities of Data Language/I
allow an application to define a data base record structure in
hierarchical segments. The actual number of segments within a
particular data base record may and probably will vary significantly
across all data base records within the data base. This creates the
need for the.ability to handle the physical storage of variable length
application logical records or data base records. The degree of
variable length capability must not be constrained by the physical
attributes (track length) of an input/output device. BAn application
logical record may be a partial track or may exceed a cylinder of direct
access device space.

33

In order to provide this variable length physical storage capability,
Data Language/I has adopted the following philosophy. All segments of a
data base record may be stored in one physical record or in multiple
physical records.

When multiple physical records are required, the first physical
record points to the second by relative direct access device address,
and the second to the third in a like manner. When the Hierarchical
Indexed Sequential organlzatlon is used, the first physical record of
any data base record is an ISAM logical record. Any subsequent physical
records for the same data base record are OSAM physical records (Figure
6).

ISAM
KEY OF
ROOT ROOT DEPENDENT |
ISEGMEQEJISEGMENTISEGMENT 1| J
ISAM
<«— LOGICAL ———
RECORD DEPENDENT | DEPENDENT
SEGMENT 2|SEGMENT 3
OSAM
<—— PHYSICAL————
RECORD DEPENDENT
SEGMENT 4 J
0SAM
4F————PHYSICAL————‘4
RECORD
« : DATA BASE RECORD :l

Figure 6. Multiple physical record example

This concept of variable length data base record support is provided
through the use of OSAM. When an OSAM data set is opened in the
Operating System/360 data management sense, it is used by Data
Language/I for both reading and updating in-place existing segments of a
data base record or for the addition of new segments of a data base
record. BAn OSAM data set may have as many as 16 direct access device
extents and may exist on up to five direct access device volumes. The
physical records of an OSAM data set are the same length as the logical
ISAM records of the same data set group within a data base. OSAM does
not have a variable length physical record capability with a data set.

The OSAM capability has effectively extended the ability of Operating
System/360 ISAM through Data Language/I to create, maintain, and process
variable length application logical records.

34

7N\

S

The foregoing is summarized as follows:

1) 1
| | | | | |
| Record ! Data Set | Organization Segment | Occurrence |
| | | | | |
| e |
| | | | |
| 1 | Primary | IsaM | Root and | Initial |
| I | | Dependents| Loading]
| | | | | |
e it - - -—=- |
| | | | | |
| 2 | Secondary | ISAM | 2nd Level | Initial |
| | ' | | and | Loading |
| 1 i | Dependents| |
| | | | |
| e e e e e e e e |
| | | | | |
| 3 | Primary | OSAM | Root | Insertion |
| | | | Segment |or Addition]|
| | | | overflow | to Data |
| | | | | Base |
| | | | | |
| e e e e e |
| | | | | |
| 4 | Secondary | OSAM | 2nd Level | Insertion |
| l | | overflow |or Addition}|
| | | | Segments | to Data- |
| | | | | Base |
| | | | | |
| e e e e e ————— |
| | | | | |
| 5 | Primary | 0oSaAM | A1l | Both |
| | and | | Dependent | Initial |
| | Secondary | | Segments | Loading]
| | R | | and | |
| i] | | Insertions|
| | | | | |
L 3

Data Language/I Record Format

For the Systems Operation function, it is felt that the actual Data
Language/I record format is required for complete understanding of the
The explanation following assumes that
this data base is of the Hierarchical Indexed Sequential organization

organization of the data base.

and contains multiple data set groups.

organization.
set group organization.

Figure 7 sﬁows the relationship between the different types of

logical record formats.

set group, the ISAM or OSAM data set organization, and whether the

segment is root or dependent. The type numbers in Figure 7 are

There are five logical record
formats for a multiple data set group Hierarchical Indexed Sequential
The first three formats also pertain to the single data

The relationship differs according to the data

explained in the next paragraphs.

35

PRIMARY DSG

e
)

|ryPEL} ' >|TYPE5F 4
(TyeES|

»(TYPE3

ITYPE5|

TYPE3

__/
SECONDARY DSG

|TYPE2f— »| TYPES
|TYPES|

»|TYPE4|
|rYPES|

Figure 7. Logical record format relationship
Type 1 Record Format

The Type 1 logical record Data Language/I format is contained within
the primary data set groups, is in the ISAM organization, pertains to
root segments, and occurs primarily at initial loading of the data base.
The format is:

36

N

| prr1 IP[.D {para | pipf para | prr2 |ojo——o0

3 bytes—ld—— root - 2nd level—blt-— 4 —»Ic-filler-b’
s by

egment segment tes
- ' logical record length
where:
PTR1 = PTR pointer to next root segment (Type 3 format) in OSAM
P = one byte of overhead per segment for physical code of

segment type

D = one byte of overhead per segment for delete code
DATA = actual data for that segment, including its key
PTR2 = PTR pointer to next dependent segment (Type 5 format) in

OSAM, if there is necessity for overflow. Otherwise, all
four bytes are binary zeros.

filler = the remaining area not used by data. The PTR pointer is
filled with binary zeros.

Type 2 Record Format

The Type 2 logical record Data Language/I format is contained within
the secondary data set group, is in the ISAM organization, pertains to
second-level segments (cannot start with root segments; must be no
higher than second level), and occurs primarily at initial loading of
the data base. The format is:

| prr3 |key! P{p [para | pjpypata | prr2 o]0 o |
<3 bytes-»ln-—;la- first —p | second 4 —»le-filler—s
second- second- "bytes
level level
Parent segment segment
root
key
> logical record length lT

37

where:

PTR3 = PTR pointer to next second-level segment (Type 4 format) in
OSAM

Key = The parent root key

P = one byte of overhead per segment for physical code of segment
type

D = one byte of overhead per segment for delete code

DATA = actual data for the segment, including its key

PTR2 = PTR pointer to next dependent segment (Type 5 format) in OSAM,

if there is necessity for overflow. Otherwise, all four bytes
are binary zeros.

filler = the remaining area not used by data. The PTR pointer is filled

with binary zeros.
Type 3 Record Format
The Type 3 logical record Data Language/I format is contained within
the primary data set group, is in the OSAM organization, pertains to

root segment overflow, and occurs primarily at insertion or addition to
the data base. The format is:

PTR1

location|PTR4 |pipypara |p|p|para | prr2 Jojo——o0 |
3 bytes-ﬂ‘—rroot—’i‘an level*—Ll —»la—filler—»
overflow overflow bytes
segment segment
<}———— logical record length >
where:
PTR1
location = location of PTR1l pointer in Type 1 format
PTRYU = PTR pointer to next root segment in OSAM (Type 3 format)
P = one byte of overhead per segment for physical code of segment
type
D = one byte of overhead per segment for delete code
DATA = actual data for that segment, including its key
PTR2 = PTR pointer to next dependent segment (Type 5 format) in
O0SAM, if there is necessity for overflow. Otherwise, all
four bytes are binary zeros.
filler = the remaining area not used by data. The PTR pointer is

filled with binary zeros.

38

a

N

Type 4 Record Format

The Type 4 logical record Data Language/I format is contained within
the secondary data set group, is in the OSAM organization, pertains to
second level overflow segments, and occurs primarily at insertion or
additions to data bases. The format is:

PTR3
location|prrs |xev |pjpjpara |pipypara Jprrz lojo——o |
-3 bytes-| |<-— first -—L—>l<— second —»Ic— 4 —ple—Ffiller—
second- second- bytes
Parent level level
root segment segment
key
- logical record length 7
where:
PTR3
location = location of PTR3 pointer in Type 2 format location
PTRS = PTR pointer to next second level overflow segment (Type 4
format)
KEY = The parent root key
P = one byte of overhead per segment for physical code of
segment type
D = one byte of overhead per segment for delete code
DATA = actual data for that segment, including its key
PTR2 = PTR pointer to next dependent segment (Type 5 format) in
OSAM, if there is necessity for overflow. Otherwise, all
four bytes are binary zeros.
filler = the remaining area not used by data. The PTR pointer is

filled with binary zeros.

39

Type 5 Record Format

The Type 5 logical record Data Language/I format can be contained
within the primary and secondary data set groups, is used as a part of
the OSAM organization, pertains to all dependent segments, and can occur
at both initial loading and insertions into a data base. The format is:

PTR2

E'3)
location| 000 |pypioara |pjp) para |err2 Jojo o |
3 bytes 1st »|e2nd—p 4 —plea—filler :
dependent dependent | bytes.
segment segment
where:
PTR2
location = location.of PTR2 pointer from either Type 1, 2, 3, 4, or 5
format
* = three bytes of binary zeros (reserved)
P = one byte of overhead per segment for physical code of segment
type
D = one byte of overhead per segment for delete code
DATA = actual data for that segment, including its key
PTR2 = PTR pointer to another dependent segment record of the same
type as this one
filler = The remaining area not used by data. The PTR pointer is

filled with binary zeros.
Examples of Types of Data Language/I Logical Records

Figure 8 shows a data base structure that is used to explain, with
examples, the different types of Data Language/I logical records. In
Figure 8, the children (dependent segments) associated with root 1 are a
number with the suffix 1. Such is the case also with roots 3 and 5.
Root 2 and its children are noted in the same manner, but with dashes
because they were not initially loaded into the data base.

40

/-

The examples show these combinations:

Type
Type
Type
Type
Type
Type

OENRNE

to
to
to
to
to
to

Type
Type
Type
Type
Type
Type

oo EwOoen

Note that, for the purposes of example, a short logical record was
constructed to force an overflow of OSAM.

PRIMARY DSG

SECONDARY DSG

CHILDA3

CHILDAS

CHILDALF

CHILDBS

CHILDB3

CHILDBY

CHILDCS, |
CHILDC3

ZHILDESl
LDE3

CHILDC1ES
!
T 1
\CHILDE2,
7 I
CHILDD5
CHILDD3 CHI]
CHILDD1fS CHILDEI—
| |
1 ! T !
[! :
CHILDD2, ICHILDE2 i

——— - -

E2.11 E2.21
- o -

Figure 8. Types of Data Language/I logical records

41

Example Type 1 to Type 5

Primary DSG

152N osan
| 000] 2D [rOOT1] P} D ICHILDAi' 0 loolil—rom loco] #) b ferzrps1 | 000) o] o———o]
| 000|® [D {rooT3|P| D jcHILDA3] 0 |00L2_|__r002 looo]] b |curLpB3|000) 0] 0——0]
LQOO[PIDIROOTS]PIDICHILDAS{Olﬂ%il;J>003[OOOIBJD]CHILDBSlOOOIOI0——————~—0|

Example Type 2 to Type 5

Secondary DSG

ISaM OSAM

KEY
|ooo]Roowllp|D|CH1LDC1IP|D|CHILD01|0|oo;]r-001[ooolplDICHILDE;Jooolo]o_____,ol

KEY - - - - - _ e e = -
ROOT3

KEY - - - - - - e = e -
ROOTS5

Example Type 1 to Type 3

Adding root 2 to data base. See Figure 8.
Primary DSG

1saM OSAM
[gg4|gln|noom3|p[nlcnanasloIooz | '—**’004IQOOIPIDIROOT2IPlD|CHILDA2IOIOOOJ

Example Type 2 to Type 4

Adding root 2's children to secondary data set group. See Figure 8.
Secondary DSG

OSaM

IsaM

KEY ,
b05IROOTBIP|D]CHILDC3|P[DjCHILDD3'0|002|r005[000IgggTZAJ?[DlgHILDCZIP[DICHILDD2bb00l
T

42

!/\\

o’

e Example Type 4 to Type 5

Secondary DSG

IisaM 0SAM

KEY

005 oooIRooTz |P|D|CHILDC2|P|DICHILDD2|0|006]

L 006 Jooo]] pjcrIrDE2] 000} 0]0

o |

e Example Type 5 to Type 5

Secondary DSG

ISAM OSAM

006 |000|P|D|CHILDE2|p|D |crzLpe2.1]0]007 |

|—>007|ooo|P|D|CH1LnEz.2|ooo[olo 0|

Data Base Creation

Initially, the Data Language/I data base must be loaded. Usually the
data exists in a machine-readable form acceptable to COBOL, PL/I, or
Assembler Language. If so, a user program (COBOL, PL/I, or Assembler
Language) must read the data using conventional access methods and then
issue Data Language/I insert calls to load the Data Languages/I data
base. Since the data was not previously organized in a hierarchical
fashion, a certain amount of editing may be necessary before doing the
Data Language/I load. Also, before the initial load, a DBD.GEN and
PSB.GEN must have been done.

Data Base Creation DD Card Parameters

ISAM DCB Option Codes

The.following option codes should be utilized and specified on the DD
cards of the job for each data base creation.

DCB = (DSORG=IS,OPTCD=WM, [RECFM=FB])
where:

Write check

=
n

Master index creation (optional)

=
i

43

The user must not specify OPTCD=L, which indicates the presence of a
delete byte in the ISAM logical record. The user should not specify
OPTCD=1I for ISAM independent overflow, because ISAM is not used to make
additions to a data base. -

The user may specify the RECFM, or it may be omitted. If RECFM is
specified, it must state RECFM=FB.

OSAM DCB Option Codes
No DCB parameters need be sbecified on the DD card for the OSAM data

set within a Data Languages/I data base. However, the user may specify
DCB =(DSORG=PS) if desired.

Single and Multiple Data Set Groups

Before creation of the data base, some consideration must be given to
using single or multiple data set groups. (See "Definition of Multiple
Data Set Groups" in Chapter 4 of IMS/360 Program Description Manual.)
The DBD generation controls whether a data base is composed of single or
multiple data set groups. The application program is insensitive to the
number of data set groups; therefore, it is easy to experlment with
different combinations until the optimum is found.

The advantages of a single data set group are: -

e Only one ISAM index is needed; therefore, less storage space is
used.

s On retrievals, using multiple data set groups, the ISAM index for
the secondary data set group must be used to access segments in the
secondary data set group. This may be more time-consuming than if a

single data set group were used. Particularly on sequential (/
retrieval of all dependent segments of a root, multiple data set ~
groups would probably require more time than a single data set

group.

e More core will be required for buffers using multiple data set
groups.

The advanteges of multiple data set groups are:

e The use of multiple data set groups is best indicated when a root
has either so many or such long dependent segments that, for most
roots, even with a large LRECL, all the dependent segments do not
fit into the prime record.

e Under extreme situations, many OSAM blocks may be required to hold
all the dependent segments for a single root. When this is the
case, it is probably more efficient to use multiple data set groups,
thus decreasing the references to OSAM.

e Using a single data set group, Data Language/I must go sequentially
from the root through dependent segments to satisfy the call. It
may be necessary, therefore, to pass over many dependent segments in
order to satisfy a qualified Get Next or Get Unique type call for a .
second-level or lower segment. If all dependent segments of a root
are contained in one block, this is a fast incore scan; but if the
number of dependent segments requires multiple OSAM blocks,
considerable time may be necessary to access these blocks
sequentially in order to get the one containing the desired segment.
If multiple data set groups are used, considerable scanning and
possible OSAM access time can be saved because Data Language/I goes //
directly to the index of the data set group containing the requested

by

segment. This consideration is Item 10a.(5) in the Systems
Operation checklist.

Considerations of HISAM and HSAM

In deciding whether to use HISAM or HSAM, the HSAM restrictions must
first be considered. Since HSAM is used to reference a sequential data
set, data cannot be added, deleted, or replaced in an existing HSAM data
set. Delete and replace calls are not valid for HSAM. Insert calls are
invalid except when PCB processing options are equal to Load(L).
Although HSAM is a sequential data set, it can be randomly processed
within one volume. The data set will be scanned sequentially either
forward or backward to satisfy the call. Therefore, to use an HSAM data
set processed in a random fashion may be extremely inefficient. HSAM is
not designed for random retrieval. Generally, when random processing is
to be done, HISAM should be used. Exceptions to this may occur when the
backward searches are very short or when all calls can be satisfied by
proceeding forward through a data base.

Whereas a HISAM data set cannot be created online, an HSAM data set
can. HSAM may be used to create an audit trail data base, in which case
the time and date can be used as ascending order keys. This
consideration is Item 10a. (6) in the Systems Operation checklist.

BISAM versus QISAM

The use of BISAM versus QISAM for access to Hierarchical Indexed
Sequential data bases is determined by whether the input/output
operation is executed from a Type 0 region or Type 3 region. BISAM is
used for all ISAM reads and writes for update in a Type 0 region. It is
more efficient than QISAM for direct record access and contains no
embedded Operating System/360 wait instructions. This allows the
IMS/360 control facility to control all Operating System/360 waits in
the Type 0 region. OQISAM is used in all Type 3 processing regions
because it provides better sequential processing across one or more Data
Language/I data base records accessed in a sequential manner. This
consideration is Item 10a.(7) in the Systems Operation checklist.

Data Base Reorganization

Periodically, all data bases should be reorganized. This is
necessary to delete those segments from the data base which have been
marked "deleted®", and to bring the added root segments which are placed
in OSAM physical records during online processing back into ISAM prime
records. It also decreases the amount of reprocessing necessary to
recover from a hard error which requires a data base to be loaded and
the update or additions to it to be reprocessed from the log tape.

The data base may be reorganized either by retrieving all segments
from the HISAM data base and loading them to an HSAM. data set, either on
tape or direct access, or by retrieving them from the HISAM data base
and loading them directly to a new HISAM data base. Going directly from
HISAM to HISAM is the most efficient method, but this requires
sufficient direct access data space to hold both copies of the data set.
After the new one is loaded, the old HISAM packs can be held as the
backup copy. Going to HSAM on tape as an intermediate step is not as
efficient, but allows reloading of the HISAM data set on the same space
previously allocated to it. It also may be convenient for any offline
processing required and allows a tape rather than direct access space to
hold the backup copy of the data base.

It should be noted that two DBD's are necessary if going directly
from HISAM to HISAM. They will be similar but with different DBD names,
and the DD1 and DLIOF entries on the DMAN card must be different. The
DD1 and DLIOF entries specify the DD names on the DD cards. The DSNAMES

45

may be the same on the old and the new data sets. The loading of the
HISAM data base must be done in a Type 3 region. :

Since the reorganization of a large data base requires a significant
amount of time, a pertinent question is, "How can I tell when to N
reorganize my data base?" The answer depends on how volatile the data
base is; that is, how many additions are made and how often these
additions are being referenced.

The number of inserts is shown on the Application Accounting Report
produced from the IMS/360 statistics programs. Another indicator for
reorganization is the Transaction Response Report. When many of the
segments being referenced are in OSAM, and/or the OSBM chains become
long, the response times will become longer because of the increased
amount of direct access arm movement required to respond to the call.

Care must be taken to ensure that there is always unused space
available in the direct access space allocated to the 0OSAM data set.
The IEHLIST utility program can be used to list the data set control
blocks to monitor the amount of unused space available for OSAM
additions. OSAM allows for a maximum of 16 extents across 5 volumes.

Description of Data Lanquage/I Segment Insertion

Data Language/I segment insert logic for hierarchical indexed data
bases is designed to handle (1) root segment insertion, and (2)
dependent segment insertion. This section describes how Data Language/I
implements segment insertion.

Root Segment Insertion

The logic for root segment insertion also includes the handling of
second-level segment insertion on secondary data set groups. If the -
segment to be inserted is a root, Data Language/I proceeds to place the (
segment into OSAM and chain from ISAM of the primary data set group. »
For second-level segment insertion into secondary data set groups, the
insert module calls upon the retrieve module for physical positioning
within the proper data set and buffer as well as verification of the
presence of a root segment. If a root exists for the second-level
segment to be inserted, the retrieve module attempts to find an
associated record on the secondary data set to prohibit duplicate
dependent segments. When no record is found on a secondary data set,
Data Language/I builds a new second-level segment and places the segment
into OSAM with a chain from the ISAM data set of the secondary data set
group. :

/

The insertion operation in Data Language/I is performed by first
searching the appropriate ISAM data set for a root segment key equal to
or greater than the root segment or second-level segment key in a
secondary data set group being inserted. If a segment is found with key
equal, and the segment with a delete bit is turned on, Data Language/I
inserts the new segment in place of the old segment. If a segment is
found with key equal, and the segment with a delete bit is turned off,
the insertion is rejected with the appropriate status code. ‘

For a key-high condition, Data Language/I examines the first three
bytes in the key-high record. This three-byte area signifies whether
there is a chain of additional roots with keys less than the current
key-high record. If the three bytes equal binary zero, Data Language/I
inserts the next available OSAM block number into that three-byte area,
writes the new root record out into 0SAM, and, finally, writes back the
ISAM key-high record, to include a pointer to the new OSAM block.

When the three-byte value is nonzero, Data Language/I reads the OSAM <j
block that the three-byte value addresses and compares the newly read

46

/

root key against the root key of the segment being inserted. If the
newly read key is greater than the insert key, Data Language/I backs up
to the previous record, moves its three-byte pointer into the new
segment record, and writes out the new OSAM- record. After completion of
the successful OSAM write, Data Language/I updates the previous record
by placing the newly written OSAM block number into the three-byte area
and performing a write-back operation. If the key field of the segment
in the 0SAM block read is less than the key field of the segment to be
inserted, the first three bytes of the OSAM block are tested equal or
not equal to zero. If zero, the new segment to be inserted is written
into the next available OSAM block, and the last—-read OSAM block is
updated to point to the new OSAM block. If nonzero, the next OSAM block
chained to is read, and the key field of the segment in this block is
tested against the key field of the segment inserted. At this point,
the insert process will iterate through one of the above situations.

Dependent Segment Insertion

When a dependent segment is to be inserted into an existing data base
record, the insert module of Data Language/I calls the retrieve module
for the positioning action. After positioning action is complete, the
insert module branches to one of four possible conditions, depending on
how much slack space is available in the logical record.

Condition 1. If there is enough space available to insert the new
dependent segment into the existing physical record, this condition
shifts any data that may exist to the right of the new dependent segment
insert position. The new segment is then inserted and a "buffer
pending" flag is turned on.

Condition 2. When the amount of slack is less than the insert segment
length, a test is made to determine whether the new segment length plus
an OSAM block pointer will fit into the area between the insert position
and the end of the logical record. If so, any existing shift data is
moved to a work area and is immediately written out to the OSAM data
set. The new segment and just-written OSAM block number are moved into
the current buffer, and the pending-flag is turned on.

If the new segment plus the OSAM pointer do not fit, another test is
required to determine whether enough space (four bytes) is available to
hold an OSAM block pointer only. ' A YES is handled by Condition 3, and a
NO by Condition 4.

47

CURRENT | |
BUFFER: |000] (segA)Tisegc) 0——0]
INSERT
(segB)

Current buffer before insert

0SAM

BLOCK

#701: 000](segC) O 0
CURRENT

BUFFER: 000 | (segA) (segB) 0701

Current buffer after insert

CURRENT I I ,]'
BUFFER: 000 (segA) (segB),0 0
INSERT
(segD)
Current buffer before insert will
not hold new segment, and slack is
greater than 4 bytes
CURRENT

BUFFER: ~|000|(segA) (segB) 0702 |

OSAM
BLOCK | I
#702: 000] (segD) 0

o

Current buffer after insert

Condition 3. This condition places any new segment and any existing
shifted data into a work area and immediately writes out a new OSAM

record. The just-written block number is moved into the current buffer,
and the pending-flag is turned on.

48

—

~ T

CURRENT
BUFFER: 000] (seghA) (segB) I

INSERT
(segD)

Current buffer before insert has
less than 4 bytes '

CURRENT :
BUFFER: 000] (segA) 0703

0OSAM
BLOCK
#703 000 |(segB) (segD) O

Current buffer after insert

Condition 4. When less than four bytes of slack remain, the segment
prior to insert position must be extracted to allow room for an OSAM
block pointer. The previous segment, new segment, and any shift data
are moved to a work area and are immediately written out to the OSAM
data set. This newly written block number is then moved into the
previous segment position, and the pending-flag is turned on.

Data Base Inteqrity Through the Use of 0OSAM

The modifications made to a Data Language/I data base by the Delete,
Replace, and Insert functions create a need for internal capabilities in
IMS/360 and Data Language/I to attempt to ensure the integrity of a data
base. This is particularly true when operating in a message processing
environment. The most complex Data Language/I input/output function of
the three is Insert. Whenever a segment (root or dependent) is added to
a Data Language/I data base of the Hierarchical Indexed Sequential
organization, a new physical record may have to be generated. The 0SaM
data set(s) of that data base is used for all segment insertion. The
Write-Key-New capability of ISAM is never utilized. The following
diagrams illustrate a dependent segment insertion and are provided in
the sequence of channel program operations. (See Figures 9, 10, and
11.)

49

ISAM //
KEY OF
ROOT ROOT DEPENDENT
lSEGMENTI ‘SEGMENT_ SEGMENT 5 | X
DEPENDENT
ISAM NLISEGMENT 10 |
“4——LOGICAL——»
RECORD 0SAM
4&—PHYSICAD*4
RECORD

\/

Figure 9. Data base prior to segment insertion

ISAM DATA SET OSAM DATA SET

ISAM
KEY OF

ROOT ROOT DEPENDENT X

| seement | | sEGMENT SEGMENT 5|~ DEPENDENT

\ﬂ>ISEGMENT 10

|<—~ ISAM —————.l
LOGICAL RD

RECORD

X+N
DEPENDENT
ISEGMENT 5 IAJ

\/m’/ -

Figure 10. After channel program write and check of new OSAM physical
record

The first OSAM physical record (prior to segment insertion) for the
data base record is at direct access device address X. OSAM space
within a data set is allocated sequentially. Assume that the next
allocatable OSAM space is X+N. Assume that a dependent segment number 1
is to be inserted between the root segment and dependent segment number
5. There is no space available in the ISAM record to insert the
additional segment, and the next available OSAM record address 'is X+N.

A channel program reads the ISAM record, and Data Language/I finds -that
no space exists in the ISAM. Data Language/I also recognizes the
existing direct access pointer to record X. Physical location X+N in
the OSAM data set is allocated for the Insert. An OSAM record with
dependent segment 5 is written at X+N and checked with a channel program
(Figure 10).

50

VR

, ISAM DATA SET OSAM DATA SET

ISAM
KEY OF
ROOT ROOT, DEPENDENT X DEPENDENT
SEGMENT| | sEg | SEGMENT 1| - SEGMENT 10 |
l<—ISAM———>, \\ | ﬁ;é%‘RD |
LOGICAL
RECORD X+N

DEPENDENT
|SEGMENT 5

|
I_,_OSAM __‘,|

— L TmemT

Figure 11. Data base after insertion

The O0SAM record has a physical direct access address pointer to record
X. Once the record at location X+N is successfully written, the ISAM
record is updated, with the root segment and dependent segment 1
unchanged, using a channel program. The OSAM record pointer in the ISAM
record is changed to X+N.

In order to maintain the integrity of the data base, the sequence of
channel programs is important. The user should try an alternate
sequence .and consider the possibility of a system failure after start
but prior to termination of the Insert operation.

Another critical consideration in the use of a sequentially allocated
direct access space such as ISAM overflow areas, the sequential access
methods, and OSAM, is the proper maintenance of the next allocatable
direct access device address. All of the above access methods use a
field in the data set control block (DSCB) to maintain this address
while a data set is closed. When a data set is opened, this information
is placed in a field in the data control block (DCB) in core storage.

As records are added to the data set, the field in the DCB is
appropriately updated. When the data set is closed, the DCB field is
used to update the DSCB with the new allocatable address. If the system
is lost after record adds, and the data set is not closed, the DSCB
field is not updated. Positioning in the data set area is lost.

A special capability has been added to OSAM to alleviate this
problem. Every time an OSAM record is added to a data set, a file mark
(count field with key field and data field lengths zero) is written.
When another new record is written, the file mark is overlaid and a new
file mark is written after the added record. If the system is lost and
the OSAM data set is not closed, the DSCB allocation pointer is not
updated. If the data set is closed correctly, the DSCB is updated from
the DCB. When the 0SAM data set is subsequently opened, the next
allocatable address from the DSCB is used for a record read. If a unit
exception indication is received, the positioning is at a file mark, and
the data set is assumed to have been previously closed correctly. If a
unit exception indication is not received, the OSAM open routine
sequentially reads records until a unit exception is received. This
address then represents the proper positioning in the data set.

51

Data Lanquage/I Data Base Space Allocation

When direct access storage is required for a data base, the amount of
space needed and the device type must be specified. 1IMS/360 follows the
same approach as Operating System/360. Refer to the manual 0S/360
Supervisor and Data Management Services (GC28-6646), Part 3, "Data Set
Disposition and Space Allocation".

The amount of space required can be specified in terms of blocks,
tracks, or cylinders. If it is desired to maintain device-independence
across direct access device types, space requirements should be

‘'specified in terms of blocks. Otherwise, if the request is in terms of

tracks or cylinders, such items as their capacity must be considered.
ISAM data sets must be allocated by cylinder. Table 12 of the 0S/360
Supervisor and Data Management Services manual lists the physical
characteristics of a number of direct access storage devices. The
amount of space is supplied in the data definition (DD) statement for
the data set.

Allocating the space for an IMS/360 Data Language/I data base that
uses ISAM and OSAM is similar to allocating space for an Operating
Systen/360 indexed sequential data set; similar because an Operating
System/360 data set can be divided into three areas, prime, index, and
overflow. The three areas of a Data Language/I data base are index,
prime, and 0OSAM overflow.

Normally, DBD generation computes from the user's definition of
segment frequency the logical record length (LRECL) of a data base. It
considers the device and rounds to the next higher 1/4 track, 1/3 track,
or 1/2 track. The computed LRECL will not exceed 1/2 track for any
device.

For the Systems Operation function, IMS/360 has two additional
parameters that can be inserted when it executes the DBD generation.
These provide an additional means of specifying the LRECL and blocking
factor (BLKFACT) for a data set within a data base.

In the DMAN control card, the additional parameters are LRECL and
BLKFACT. Instead of DBD generation specifying the LRECL, it can be
overridden by specifying the LRECL and the BLKFACT.

Allocation Problem Example

With the reader's knowledge of the data base structure, the
application programs that will access that:structure, and the tools of
IMS/360 DBD generation, the following space allocation example will be
meaningful. The example deals with an IBM 2314 Direct Access Storage
Facility. '

When an IMS/360 Hierarchical Indexed Sequential organization (HISAM)
data base is loaded on an IBM 2314 Direct Access Storage Facility, it is
necessary to allocate space for that data base with JCL data definition
statements. The creation of a Data Languages/I single data set group
data base may require up to three DD statements, one each for the index,
prime, and OSAM overflow areas. This example should provide assistance
in initially determining the amount of space to allocate to these areas
for any specific application. Each data set group within a Data
Language/I multiple data set group can be treated as a Data Language/I
single data set group data base when determining space requirements.

The output of DBD generation also supplies minimum primary ISAM and OSAM
allocation requirements.

52

N

N

ISAM Prime Area

This area contains the majority of the data records and all related
track indexes. For this example, each root segment and all its
dependent segments comprise a single logical data base record. For a
specific data base, a logical record could vary from only the root
segment to the root segment with a maximum number of segment occurrences

for each dependent segment type. The distribution of the lengths of
logical records of this example's data bases is plotted in Figure 12.

600 -
500 -
‘400 -
300 -
200 -

100 -

[o e e s S o — s S s S it et

50% 70% 90% 100%
Figure 12. Logical record length distribution

The graph of Figure 12 indicates that 50% of the logical records are
150 bytes or less in length, 70% of the logical records are 200 bytes or
less in length, 90% of the logical records are 500 bytes or less in
length, and 100% of the logical records are 600 bytes or less in length.

With fixed-length ISAM, it is necessary to establish a fixed value
for the logical record length (LRECL) in the prime area. If a value of
600 bytes is selected for the LRECL, all logical records can fit in the
prime area. However, 90% of the records then have at least 100 bytes of
slack or wasted space; 70% of the logical records have at least 400
bytes of unused space.

In this example, if a value less than 600 bytes is selected for the
size of the LRECL, the ISAM prime area is not capable of holding all the
logical data base records. Those dependent segment occurrences which do
not fit in an ISAM prime LRECL are housed in OSAM overflow records.
Therefore, the determination of an ISAM prime LRECL must consider the
tradeoff between storage in the ISAM prime area and in the OSAM overflow
area.

To determine a best balance between ISAM prime and OSAM overflow, the
following points must be considered:

1. Access to data that is wholly contained in the prime area is more
rapid than access to data contained in two areas. Access 1is even
slower to those logical data base records that require more than
one overflow record.

2. Disk space allocated to OSAM overflow can be used to hold segment
occurrences that overflow from any logical data base record.
Unused space in the prime area is tied to specific roots.

3. Records are blocked in the prime area but unblocked in the OSAM
overflow area. This difference is negligible for large data base
records but can be significant for small records. For example,
with an LRECL of 27 bytes, 4864 records can be stored in one

53

cylinder in the prime area with half-track blocking. Only 840
similar records can be stored in one cylinder of overflow.

4, The nature of the accesses to the large logical data base records
also has an important effect. If the large logical data base
records are highly used, the size of the prime LRECL should be
increased to completely house more logical records, and the total
size of OSAM overflow should be reduced. If the large logical
data base records are infrequently accessed, an opposite shift
should be made to increase the use of OSAM overflow.

Considering these relevant factors for a specific data base, a
percentage balance must be established between the ISAM prime and the
OSAM overflow. For example, it may be best, in the context of
optimizing space and time utilization, that 90% of the logical data base
records completely fit in the prime area and 10% require some OSAM
overflow storage. After this percentage is selected, the frequency of
dependent segment occurrences is developed for the 90th percentile of
the parent segments. The 90% is an estimated value for this specific
data base. This is similar to the DBD generation requirements, except
that the frequency will apply to 90% or more of the parents rather than
to all of them. Those dependent segments that occur with certainty,
that is, with fixed frequency for 100% of that segment's parents, will
be specified at their full value.

Taking the segments contained in the example's data base (Parts List
Data Base), Figure 13 shows the hierarchical structure relationship of
the segments, a table of parent estimated frequency, and segment length.
Note that the segment length in this table contains two overhead bytes
needed for Data Language/I.

54

A

\/

PARTS LIST DATA BASE

] 1
| |
I I
| I
| [————————= 1 |
| 1. I I
| ROOT | |
{ | SEGMENT | |
| s |
| I |
| e | l
| 2. |
	GENERAL	
	DRAWING	
	DATA	
Ly		
r L 1 I		
I	I	
e r 4 1		
	3.	
	PART DATA] .	GENERAL
N t 4 I		
	I	
r L 1		
1		
I r L]		
	u. [5. [
	ITEM	
	QUANTITY	
t—— 4 L 4		
[
lL 1 T 1 LB Jl		
Data Base	Name of Segment	Parent
	[[bytes [
t t : + : {		
Parts List	1. Root Segment	-- i --
Data [
!	2. General Drawing	1.
	Data	
	3. Part Data 1 2. {110(90% have 10	
		lor less)
	4. Item Quantity	3. {2
1	5. Part Specifica-	3.] 1
	tion	
	6. General	2. j4(90% have 4
1 L 4 1 1 d
Figure 13. Hierarchical segment structure and table of parts list data

base

The calculati

ons of the prime LRECL are:

Prime LRECL=20 + 1 {8 + 10 [15 + 2(5) + 1 (10)]1 + 402531} + 7+

Prime LRECL

* The addition of 7 represents overhead bytes per LRECL for Data

Language/I.

= U488 bytes

55

This establishes the fixed record size (calculated LRECL) for the
ISAM prime area needed so that 90% of the logical data base records can
be completely housed in the prime area.

The next step is to determine the IMS/360 LRECL that considers the
calculated LRECL, the track length, and the blocking factor. Assuming
half-track blocking, there are 3476 bytes in one block on the 2314
storage facility. The value of calculated LRECL is divided into 3476 to
determine the number of records in a block, and the remainder from this
division is equally distributed among the records.

The results of this process can be tabulated in the convenient form
shown in Figure 14.

) Al
] Calculated : IMS/360 LRECL's |
| LRECL Range LRECL per Block |
i ‘i
| 1739 - 3476 3476 1 |
| 1159 - 1738 1738 2 I
| 870 - 1158 1158 3 |
| 696 - 869 869 4 |
| 580 - 695 695 5 |
| 497 - 579 579 6 |
| 435 - 196 496 7 |
| 387 - 434 434 8 |
1 348 - 386 386 9 |
1 317 - 347 347 10 |
{ 291 - 316 316 11 |
| 268 - 290 290 12 |
| 249 - 267 267 13 |
| 233 - 248 248 14 I
| 218 - 232 232 15 |
| 205 - 217 217 16 |
1 J

Figure 14. LRECL for half-track blocking on the 2314 direct access
storage facility

A calculated LRECL of 488 falls in the tabulated range of 435 - 496,
which results in an IMS/360 LRECL of 496 bytes, with seven records in a
half-track block.

The next step is to calculate the total amount of space that is
required for the ISAM prime area. An estimate must be made for the
number of roots that exist in the data base. In the example under
consideration, there are 50,000 roots, that is, 50,000 logical data base
records.

Fourteen records are blocked on a single track, and there are 19
tracks on a cylinder, excluding track indexes. Therefore, 266 records
fit in a cylinder, and 188 cylinders hold the prime area. Since there
are 199 usable cylinders in one 2314 pack, the ISAM prime area requires
about 95% of one pack.

Index Area

This area contains master and cylinder indexes associated with the
data set. It exists for any ISAM data set that has a prime area
occupying more than one cylinder. The user can place this area on 2314
or 2301/2303 drum. '

56

N

_/

OSAM Overflow

The OSAM overflow area holds those dependent segment occurrences of a
logical data base record that do not fit on one LRECL in the ISAM prime
area. One or more OSAM records may be required in addition to one ISAM
record to hold one logical data base record. A physical break in a
logical data base record must not divide a segment occurrence. The
determination of the amount of space needed for the OSAM overflow area
depends on the percentage figure used to develop the space for the prime
area. In the Parts List example, 90% of the logical data base records
are expected to completely fit into the prime area.

This percentage figure must also consider the fact that the IMS/360
LRECL is equal to or larger than the calculated LRECL. This may have
the effect of increasing the percentage of logical records that
completely fit in the prime area. Assuming that 90% of the logical data
base records do completely fit in the prime area, the remaining 10% are
of interest in calculating the OSAM requirements.

It is necessary to determine which dependent segment types overflow
and how many of these fit into one OSAM record. It is assumed in this
example that, in the Parts List Data Base, segments 3 and 6 occur
approximately in the proportion of 2-1/2 to 1. Note that if segment 3
overflows, the children of segment 3, segments 4 and 5, overflow with
it. This means that one OSAM record holds approximately 20 segment 3s
and 8 segment 6s. The next step is to determine what part of the 10% of
the logical data base records will overflow into only one OSAM record;
then two OSAM records are considered, and so forth, until the entire 10%
has been specified. For the example under consideration, the statistics
are in Figure 15.

] 1
| Number of OSAM % of Data Number in Number of |
| Records Required Base Data Base --OSAM Records |
| per Logical Record Needed |
1 4
1} L]
| 0 90 45,000 0 |
| 1 6 3,000 3,000 |
| 2 3 1,500 3,000 |
| 5 1 500 2,500]
| |
| |
| 100 50,000 8,500 |
L . J

Figure 15. Statistics on 10% of the overflow of the logical records in
a data base :

Since the overflow records are 496 bytes long and unblocked, 220
records can be stored in one cylinder. Therefore, 39 cylinders are
needed for OSAM overflow. ~

Example Conclusion

Following the above process, which is an estimation process, not a
precise algorithm with exact values, estimates have been developed for
the 2314 space requirements for a sample problem. The space
requirements for the Parts List Data Base are 188 cylinders for the ISAM
prime area and 39 cylinders for OSAM overflow. These values would be
used in data definition statements to allocate space for the Parts List
Data Base.

It should be noted that the objective of this estimation process is

to develop values for use in initially loading and processing an IMS/360
data base. File growth has not been included in this example, but it

57

must be considered. The developed space requirements may be later
refined by historical data on actual space usage. Even without
historical data, however, the use of the estimation process described
here should result in reasonably accurate initial space requirements for
a hierarchical data base of any degree of complexity.

Program Specification Block Generation

The Program Specification Block (PSB) generation utility is an
important part of the IMS/360 system. It is normally the responsibility
of the Systems Operation function to perform this generation from the
information supplied by the Application Programming function.

There is a close relationship between PSB generation and DBD
generation. The data base name must be specified in the PCB control
card in the PSB generation .(see Item 9 in the Systems Operation
checklist). The application program's hierarchical (sensitive) segments
must be named in PSB generation and described in detail in DBD
generation (see Items 11 and 1la of the Systems Operation checklist).

Note that historical data should be kept for reference along with
cross-reference information to sensitive data between application
programs using the same data base.

The only difference between a PSB generation for a program of only
data base usage and one which also includes teleprocessing is that
message PCB's may be included at the beginning of the PSB generation
deck. A message PCB in the PSB is not required for message processing
programs. The input message PCB is part of the resident IMS/360 control
program in the IMS/360 Type 0 region. That is, an input message PCB is
generated for each message region by system definition. It is modified
at scheduling time to reflect the source terminal of the current input
message. The inclusion of PCB's within a PSB for message processing
enables the message program to output messages to destinations other
than the source of the input message. Output destined for the source of
the input message is via the same PCB used for acquisition of the input
message.

This IMS/360 Systems Operation manual describes, in Chapter 4, a
library for residence of PSB's and an Operating System/360 procedure for
creating PSB's. The default name of the program specification block
(PSB) library is IMS.PSBLIB. This library name is used in the procedure
PSBGEN. PSBGEN is a two-step assemble and link-edit procedure to
produce each PSB.

JCL for PSB Generation

Use the procedure PSBGEN when running the different PSB generations.
The JCL cards are:

//PSBGEN JOB MSGLEVEL=1

/7 EXEC PSBGEN, MBR=

//C.SYSIN DD *
PCB
SENSEG Control cards for PSB generation
PSBGEN : '
END

VE;

where keyword operand MBR= is the name of the PSB to be generated.

58

N

Data Base Description Generation

The Data Base Description (DBD) generation is normally the
responsibility of the Systems Operation function. It is an important
factor in building the Data Language/I control blocks used to describe
in detail the structure and storage organization of every data base.

The details of DBD generation are contained in Chapter 7 of the
IMS/360 Program Description Manual. However, two additional parameters
are a part of DBD generation: the logical record length (LRECL=) and
the blocking factor (BLKFACT=). These parameters are a part of the
options of the DMAN control card. The use of the LRECL and BLKFACT is
discussed in the Data Language/I data base space allocation section of
this chapter. Both parameters must be specified if either is used. If
neither is specified, DBD generation attempts to calculate an optimum in
logical record length and block size for the data base.

DMAN DD1=,DEV1i=, [DD2=]1, [DLIOF=],

(LRECIL=,BLKFACT=]

= e s c——)
———— —— —
— . o e

b e e . e

LRECL is a specified number that is less than the maximum length
allowed for a particular direct access device track. If the optional
parameters are not used, the calculated optimum LRECL will be 1/4, 1/3,
or 1/2 track.

The BLKFACT is a number that specifies the number of LRECL's per
physical block.

Each data base to be used under the IMS/360 definition must be
defined by a DBD generation. '

The maximum allowable data base buffer requirements for all data set
groups of any one data base can be calculated with the following
formula:

10
) (BLKSIZE +35) + ((LRECL +19) * 4) <65,536
i=1 i i :

when i = number of data set groups.

Although DBD generation may allow construction of a DBD with greater
buffer storage, execution of IMS/360 with that DBD and data base is not
possible.

The DBD for a data base contains within it the Operating System/360
Data Control Blocks (DCB's) required by Operating System/360 data
management. For HISAM, there are four DCB's - QISAM load mode, QISAM
scan modes, BISAM read/write update, and OSAM. For HSAM, there are two
DCB's - BSAM read and BSAM write. The DCB operands completed by DBD
generation for each DCB type are:

QISAM LOAD: DSORG=IS,MACRF=PM,RECFM=FB,OPTCD=W,LRECL=,
BLKSIZE=,RKP= ,KEYLEN= ,DDNAME=

QISAM SCAN: DSORG=1S,DDNAME= , MACRF=(SK,GL,PU)
OSAM: DSORG=PS,MACRF=E,RECFM=F,BLKSIZE=,
LRECL= DDNAME=

59

BISAM: DSORG=IS,MACRF=(RU,WU), DDNAME=

BSAM: DSORG=PS,MACRF=(RP,WP)RECFM=U, BLKSIZE=,
BUFNO=2, DDNAME=

The QISAM load and OSAM DCB's are used to create a HISAM data base in
a Type 3 region. The QISAM scan and OSAM DCB's are used to read,
update, and add to a HISAM data base in a Type 3 region. The BISAM
read/write and OSAM DCB's are used by Data Langquage/I in the Type 0
region for servicing requests from Type 1 and Type 2 processing regions.

Items 9, 10, 10a, 11, 11a, and 20 in the Systems Operation checklist
must be accomplished before considering DBD generation complete.

The output Assembler Language listing from step.1 of a DBD generation
includes an estimate of the cylinder index space and prime data set
space for all ISAM data sets with a Data Language/I data base.

It is assumed that during IMS/360 system definition, Chapter 4 of
this manual, the user did not specify a name for the DBD library; the
default name, IMS.DBDLIB, is therefore used in the generated DBD
procedure. The generated procedure is DBDGEN, which is a two-step
assemble and link-edit procedure to produce data base definition blocks.

JCL for DBD Generation

Use this procedure, DBDGEN, when running each DBD generation.v The
JCL cards are:

//DBDGEN JOB MSGLEVEL=1

W4 EXEC DBDGEN,MBR=

//C.SYSIN DD *

(DBD

DMAN

SEGM

{ FLDK DBD generation control cards
FLD :)
DBDGEN

FINISH

L END

/%

where keyword operand MBR= is the name for the DBD to be generated.

Management of Data Bases .

Once the system is considered to be online with its data bases,
constant surveillance of these data bases must be maintained. Many
helpful facts can be gained from the statistics reports of IMS/360.

From the Transaction Response Report, response time can be obtained
for the calls to the data base. In the Application Accounting Report,
all requests to Data Language/I are counted. From the 0S/360 IEHLIST
utility, the remaining amount of space can be obtained to receive an
indication of when a data base may need to be reorganized.

Some of the data base statistics which the Systems Operation function
should consider are: '

1. Total data base record volume (total number of root segments)

2. Number of records in prime area and number in overflow area

60

3. Number of unused tracks in overflow area

4. Number of records in the data base marked for deletlon

5. Average number of occurrences of a segment type per parent
segment .

Management of data bases could evolve into the concept of a data
dictionary. (A data dictionary is a descriptive foundation of all data

'used in the data base environment.) The descriptive information relates

to fields, segments, data sets, data bases, and data base interaction.

IMS/360 TELECOMMUNICATIONS CONSIDERATIONS
The telecommunications facilities of IMS/360 are characterized by the

use of remotely located input/output terminals connected to a System/360
computer through a communications network.

Communication Terminals and Lines

The physical communication terminals supported by IMS/360 are IBM
2260 Model 1, 2740 Model 1, and 1050 Model 1 or Model 2. These
terminals may be connected to a System/360 computer through leased,
nonswitched communication lines or by a common-carrier switched
communications network. The 2260 may be attached only via nonswitched
communication lines. To interface with IMS/360, the user of a physical
communication terminal attached through a common-carrier switched
network must dial the System/360 using the data set attached to the
remote terminal. IMS/360 supports elther a single terminal or multiple
terminals on a communication line.

The features of the above terminals, the communications equipment,
and the System/360 control units required for proper IMS/360 support are
described in the manual titled Information Management System/360 for the
IBM System/360, Application Description Manual (GH20-0524).

The remainder of this discussion concerning IMS/360 telecommunication
facilities describes physical communication terminals as physical .
terminals. All physical terminals of the same type (that is, 2260,
2740, or 1050) which are attached through the same communication line
facilities (that is, switched or nonswitched) and which utilize the same
polling technique (that is, autopoll or poll) are considered by IMS/360
to be part of the same BTAM data set line group. Therefore, it is
required that a user of IMS/360 describe a separate line group, via the
LINEGRP macro, to IMS/360 system definition for each of the following
configurations that is employed:

1. 2740 nonswitched with station control and autopoll
2. 2740 nonswitched with station control and poll

3. 1050 nonswitched with autopoll

‘4. 1050 nonswitched with poll

5. 2740 switched with transmit control

6. 1050 switched

7. 2260 remote mode, nonswitched with station control

For further definition of a BTAM data set line group, reference
should be made to Operating System/360, Basic Telecommunications Access
Method (GC30-2004). At least one communication line must exist within
each line group. At least one physical terminal must exist for each
communication line.

The master terminal of IMS/360 must be a 2740 or a 1050 physical
terminal attached through a nonswitched communication line. It must be
either the only terminal on the line or the first terminal on a
multidrop line.

61

Master Terminal

The master terminal is the heart of IMS/360. Particular attention
should be given to the caliber of operator selected for the position.
The operator should have knowledge of all the operating aspects of the
system. The Systems Operation function should decide whether the master
terminal operator is adequately tralned.

The physical location of the master terminal with reference to the
computer console is important. If for security reasons they are not in
close proximity, telephone communication must be provided.

The details of starting the system, checkpoint, restart, and all the
other commands available to the master terminal are contained in the
IMS/360 Operations Manual, Volume II - Machine Operations.

IMS/360 Systems with No Master Terminal

It is strongly recommended that IMS/360 systems be configqured with a
master terminal. Under certain conditions, however, it may be
impractical to provide a master terminal facility; for example, at an
installation intended to support only a small number of switched network
terminals. A specific example might be a Data Center where IMS/360
communications activity might be scheduled infrequently for
demonstration purposes only.

The System/360 console may serve as a master terminal input facility
for the majority of IMS/360 commands and as an output facility for most
IMS/360 messages intended for the master terminal. The following
IMS/360 master terminal functions are not supported for the system
console:

Transaction message input from the system console
Message switching message input from the system console
Transaction or message switching output

/BROADCAST commands (neither input nor output)
/DISPLAY, /RDISPLAY commands (neither input nor output)
/TEST input commands

/EXCLUSIVE input commands

/END input commands

System Definition Considerations with No Master Terminal

Stage 1 input to the system definition procedure must include a
definition of a master terminal. See "System Definition Examples" in
Chapter 4 for appropriate definition.

Punched output from Stage 1 includes a DCB open list, which includes

.a pointer to the master terminal DCB. This list is located at label

DFSICDB within module DFSICLLO. Users intending to execute without a
master terminal may remove the two cards representing the address word
for the DCB that is not to be opened. If the DCB pointer was the last
entry in the list, adjust the end-of-list indicator byte, X'80*, in the
preceding address word. A temporary alternative, and more easily
implemented, would be to simply remove the DD cards generated for that
communication line group in the IMSO and IMS1 cataloged procedures.

Format of IMS/360 Commands Entered from System Console

r nn,'/NRESTART CHRKPT 0'
r nn,'/START LINE 4°

Format is that of Operating System/360 write-to-operator reply messages.

Alphabetic information within quotation marks may be uppercase or
lowercase.

62

./

Remote Terminals

The section entitled "Line and Terminal Network"™ deals with the
initiation of IMS/360 and remote communication lines and terminals. The
details of the remote terminal command language are contained in both
the IMS/360 Program Description Manual and the IMS/360 Operations
Manual, Volume II - Machine Operations.

The training of the remote terminal operator should be monitored by
the Systems Operation function.

There should be communication between the master terminal operator
and the remote terminal operators, probably by way of the /BROADCAST
command.

In the following discussions, references to "physical terminal"”
always refer to the relative physical terminal on the line.

IMS/360 Logical Terminals ’

In addition to the definition and presence of physical terminals,

' communication lines, and BTAM communication line groups, IMS/360

requires a user to define one or more logical terminals for each
physical terminal. A logical terminal is a resource within IMS/360
which is identified by a one- to eight-character alphameric name. Each
logical terminal name within IMS/360 must be unique and must begin with
an alphabetic character. The logical terminal is the means by which
IMS/360 classifies input and output message data for one or more users
of a particular physical terminal. The following list presents some of
the reasons for the use by IMS/360 of the logical terminal concept.

1. Associated with each logical terminal is security definition.
Each logical terminal may have unique or overlapping security
definition with any other logical terminal defined within
IMS/360. v

2. Multiple logical terminals may be associated with a single
~ physical terminal. This can facilitate the use of a single
_physical terminal by multiple users, each associated with his
.unique logical terminal, especially if each logical terminal has
a unique security definition.

3. The logical terminal is the interface between IMS/360 and the
terminal operator and in addition, is the interface between an
application program and a physical terminal. Using this
approach, an application program can be insensitive to the
idiosyncracies of a particular physical terminal and the
communications network type by which it is attached. A
significant degree of equipment independence is achieved, because
the logical terminal provides a symbolic interface to the
~application program.

4. Because a logical terminal is a resource within IMS/360, it can
be dynamically associated with different physical terminals by
means of the /IAM and /ASSIGN commands. These commands thus
allow the IMS/360 user an additional degree of flexibility and
reliability in the use of his physical terminals.

Logical Terminal/Physical Terminal Relationship on Nonswitched
Communications Network : '

The best manner in which to describe the relationship between a
terminal user, a physical terminal, a communication line, and a logical
terminal is a diagram:

63

IMS/360

" | TERMINAL COMMUNICATION LINE,<= TERMINAL|

!]
!
USER |, |PHYSICAL| _ | NON-SWITCHED : LOGICAL ;
!
! .
1]

When an IMS/360 system user defines the IMS/360 system to his data
processing environment, this definition includes the characteristics and
relationships of physical terminals, communication lines, and logical
terminals. On a nonswitched communication line, the relationship
between a physical terminal at one end and a logical terminal within
IMS/360 at the other is a stable relationship defined at system
definition time. If there is only one user of a particular physical
terminal, typically there is a one-to-one relationship between phy31ca1
terminal and logical terminal. However, if a particular physical
terminal is employed by multiple users, it may be more typical to have
many logical terminals associated with the physical terminal. Perhaps
the system definition includes a loglcal terminal for each user of a
particular physical terminal.

Once the relationship is established between a physical terminal and
one or more logical terminals at system definition, the association can
be changed only through the /ASSIGN command or a new system definition.
The /ASSIGN command is normally executable from the master terminal
only.

Logical Terminal/Physical Terminal Relationship on Switched
Communications Network

The logical/physical terminal relationship on a switched
communications network is considerably more complex than in the
nonswitched communication line environment. The IMS/360 system
definition is again the process which defines the characteristics of the
physical terminals, communication lines, and logical terminals.

However, the relationship between a particular physical terminal and a
logical terminal is not established until the remote terminal user dials
the System/360 computer to communicate with IMS/360. The relationship
between a terminal user, a physical terminal, a communication network,
and IMS/360 logical terminals at system definition time is depicted in
the following diagram:

6u

e

N

[

IMS/360
,’®\\ r-=—-=s=-=7=—7== 1
g P S < ! |
USER PHYSICAL|a” A! |LocicaL !
<—| TERMINAL |- ----- @----- > | TERMINALS !
. . [
\\\\ d ,, "L ____________ J

Once the remote terminal user dials the System/360 computer and
issues the /IAM command to sign himself on to IMS/360, a stable
relationship between the physical terminal and one or more logical
terminals is established.

IMS/360
Fo-—m— - 1
LINE !
SIGNED-ON PHYSICAL + |{Logrcan | |
USER »| TERMINAL l#———(X)——p- | TERMINAL !
| o)

Logical Terminal Types in Switched Communications Network Environment

In a switched communications network environment, the IMS/360 user
employs system definition to define one or more communication lines.
One logical terminal must be associated with each of these lines. This
logical terminal is designated as the inguiry logical terminal for the
dialable communication line. In addition to an inquiry logical terminal
for each dialable communication line, pools of logical terminals may be
defined at system definition time. One or more logical terminals from
the pools of logical terminals are associated with a particular line
when a remote terminal user dials the IMS/360 system. The number of
logical terminal pools which are defined for a switched communications
network depends upon the number of WATS areas employed by an IMS/360
user. There is a one-to-one relationship between a WATS area and a
logical terminal pool.

Within any logical terminal pool for a switched communications
network, the IMS/360 user can define logical terminal subpools. A
logical terminal subpool is composed of one or more logical terminals
within a given logical terminal pool. A particular logical terminal can
exist in only one pool and subpool. A remote terminal user can dial the
IMS/360 system and sign on for a single logical terminal or for all
logical terminals within a logical terminal subpool. At system
definition, the environment appears as indicated in the following
diagram: :

65

"""" e |

\l LOGICAL |

1 i1 TERMINAL '

~[INQUIRY 'y poor #1 !

e LOGICAL - M

, TERMINAL ! lLogrcar | !

7 Tl |} ITERMINAL| !
’ ,@ S~ _ v suBPOOL i

REMOTE PHYSICAL| _ -¥ . “[INQUIRY Sy ol !
TERMINAL TERMINAL |4~ . [LOGICAL |~__ 11 \LOGICAL | 1!
USER | . [ERMINAL2 T~~ |1 ITERMINALI 1Y
> : ~ 1! {SUBROOL { !

\ . Pr T !

\ ~ -

\ . _- !]

N = jr———-—=- t]
‘e - [INQUIRY 1| LOGICAL 1
‘@I};LOGICAL I| TERMINAL |
TERMINALN] : : POOL #2 ,:
| fLoGIcAL | |l
| ITERMINAL !
1 !suBPoOL | 1!
----- |
) ﬁ"
!! LOGICAL | h
1 ITERMINAL; "
|1 1SUBPOOL j
L e o di
L ——— - -

After a remote terminal user has dialed a System/360 computer
operating under IMS/360, several situations can 'exist. If the /IAM
command is used to sign on and the LTERM parameter specifies the inquiry
logical terminal, the following diagram applies:

IMS/360
LINE R :
REMOTE PHYSICAL t [INQUIRY
INQUIRY f&—s-|TERMINAL <—>@<——+> LOGICAL '
USER : i |TERMINAL |
| IFOR LINE X |
|
1

— - ——— v o W o — ——

If the /IAM command is used to sign on and the LTERM parameter
specifies a logical terminal from the pools of logical terminals, the
following diagram applies:

66

/A

IMS/360

LINE C_ =T 1!

REMOTE PHYSICAL 1 |nocIcarn ,

TERMINAL | TERMINAL |#———(X) ¢—+| TERMINAL ,

USER I |FrROM i

: POOL |

U |
LINE oo Tt :
REMOTE PHYSICAL 1 [suBpooL |
TERMINAL|<«——{TERMINAL 4——-—»@4—-—1—» OF ,
USER I |LOGICAL :
| |TERMINALS :

|

L e

If the /IAM command is used to sign on and the LTERM and PTERM
parameters are specified, all logical terminals within a subpool are
associated with the physical terminal.

The use of the logical terminal subpool concept allows for efficient
use of communication facilities. All output queued on each of the
logical terminals in the subpool for which the /IAM command was issued
is sent to the physical terminal.

A subpool may be defined to contain the logical terminals for all of
the users of a single physical terminal. While a user is signed onto a
logical terminal within the subpool, the subpool is unavailable to users
signing on from other physical terminals. This is true whether or not
the PTERM parameter is used in the /IAM command.

All inguiry logical terminal names must begin with the same first
four characters. When signing on for an inquiry logical terminal, only
the first four characters are considered significant by IMS/360. This
permits a user to telephone in on any Autoanswer line and to sign on for
and use the inquiry logical terminal for inquiry transactions only, if
he simply knows the first four characters. The inquiry logical terminal
can be used only for immediate-response, nonupdate transactions, and
queued output is preserved on it for the duration of signon. So that
IMS/360 can distinguish inquiry logical terminal names from subpool
logical terminal names at signon, no subpool logical terminal name may
begin with the first four characters used for inquiry logical terminal
names.

Line and Terminal Network

The planning and logistics of the teleprocessing line and terminal
network must be considered. The IBM Field Engineers and the resident
telephone company should have made their final checkout of the network,
thus giving the assurance if IMS/360 is operational that the network
will function.

An additional review of the Systems Operation checklist at this time
should perhaps be made. A look at the section titled "Application
Development and Structuring of IMS/360" in the IMS/360 Program
Description Manual may also be beneficial at this time.

The IMS/360 security maintenance program need not be executed before
the IPL of the IMS/360 teleprocessing system. If password and terminal
security are later installed, they become effective at the next "cold

67

start"™ of IMS/360 or at the master terminal operator's option at the
next "warm start"®.)

the particular application program.

The Systems Operation function should keep records of the
physical-line-to-physical-terminal relationship and the
physical-to-logical-terminal relationship, and of their relationship to

Add the security maintenance

characteristics, when they exist, and any information from the Machine
Operations function as to line and terminal trouble reports.

When lines and terminals are installed and operating, when PSB
generation and DBD generation are complete, and when system definition
is complete, then, and only then, can the line and terminal network
pertaining to an IMS/360 teleprocessing application be employed. The
steps are as follows:

C

IPL IMS/360
(cold start)

)

INVOKE
IMS
PROCEDURE

MTO
STARTS
REGION

INVOKE
IMSMSG
PROC

R SWITCHED
NETWORK
ANSWER LIN

INPUT
MESSAGES
FROM
TERMINALS

SR

REMOTE
TERMINAL
OPERATOR
DIALS
ANSWERING
.| LINE

Y

REMOTE

TERMINAL
OPERATOR
SIGNS ON

This procedure executes IMS/360 Type
0 region, the online processing
region.

Master terminal operator (MTO)
starts region.

This procedure executes IMS/360 Type
1 processing region.

Master terminal operator starts all
communication lines.

IMS/360 Terminal COmmahds and Messages .

follows.

This section serves only to introduce the commands that must be
considered in the development of an IMS/360 system. A quick index

For an operational discussion and details of terminal

| commands, refer to the IMS/360 Operations Manual, Volume II - Machine
| Operations. '

68

T\

For the purpose of dynamically interrogating or altering the
processing functions of IMS/360, special messages may be entered from
terminals. These messages are known as command messages and are
designated by a slash in the first position of the message.

Most command messages are limited to a single line in length. Any
command message results in the issuance of completion or error messages
to the originating and affected terminals. Furthermore, these response
messages override any limiting status of a particular line or terminal.

Certain command messages should be restricted to entry from the
master terminal, the source of systems control and information messages.
These are the messages that interrogate, alter, and control the overall
system. The System/360 console itself may be used as a master terminal
in relation to the entry of master terminal commands.

. Other command messages may be entered from any terminal, within the
limitations of user-defined terminal security provisions. The function
of the remote terminal command language is to change the status or mode
of operation of the user's own terminal to provide extended security
facilities and to provide extended user message entry or data output
facilities. ‘

The master terminal commands for restart, checkpoint, data base dump,
and data base recovery are treated separately in a later section of this
chapter.)

Refer to the Machine Operations Manual for a description of the
commands. The following is provided as a guide in determining which
command to use.

Command Explanation of Command

1. /ASSIGN This command:

e correlates a specified logical
terminal with a specific physical
terminal

e temporarily assigns a current
priority to one or more specific
transaction codes

¢ assigns a particular limit
priority to one or more specific
transaction codes

e assigns a particular normal
priority to one or more specific
transaction codes

® assigns a particular limit count
to one or more specific
transaction codes

* assigns a particular processing
limit count to one or more
specific transaction codes

2. /BROADCAST This command transmits messages to
one or more terminals.

3. /CANCEL ' This command causes the cancellation
of the complete message currently

69

9.

10.

11.

12.

13.

14.

15.

16.

70

/CHANGE

/CHECKPOINT
/DBDUMP

/DBLOG

/DBNOLOG

/DBRECOVERY

/DELETE

/DISPLAY

/END

/ERESTART

/EXCLUSIVE

/IAM

/LOCKR

being entered into the same
terminal.

This command is used to change one
password to another.

(See later section in chapter.)
(See later section in chapter.)

This command starts data base
segment logging, which allows
backout of data base modifications
during emergency restart.

This command stops data base segment
logging.

(See later section in chapter.)
This command:

* eliminates password security for
one or more transaction codes,
.physical terminals, logical
terminals, programs, or data bases

e eliminates terminal security for
one or more transaction codes

This command displays critical
fields of certain IMS/360 control
blocks and system queues.

This command terminates the mode
initiated through the /TEST or
/EXCLUSIVE command.

(See later section in chapter.) -

This command places the user's
terminal into exclusive use or
inquiry mode.

This command allows a terminal user
at a switched line terminal to
identify himself. Required if a
switched (dialup) terminal.

With keyword TRAN, do not schedule
this transaction code.

(If a particular transaction code
cannot be processed correctly, use
this command at the remote terminal
to ensure that this transaction code
is not scheduled.)

With keyword PROGRAM, do not
schedule this program.

(If a particular program cannot be
executed correctly, use this command
at the remote terminal to ensure

—

/

17.

18.

/LOG

/NRESTART

that this program is not scheduled
or used.)

With keyword DATABASE, do not
schedule any program that uses this
data base.

(If a particular data base is not
correct, use this command at the
remote terminal to ensure that no
program is scheduled that uses this
data base.)

With keyword PTERM, queue output but
do not send output to this physical
terminal.

(PTERM applies to the physical
terminal into which the command is
entered. A password may be included
with the keyword PTERM; no
parameters are acceptable. /LOCK
and /UNLOCK are used with
nonimmediate-response-type messages
only. The user can enter a series
of nonimmediate-response-type
messages and lock his terminal. No
response will be printed on the
terminal until such time as the
terminal is unlocked. Exception:
system messages will be printed.)

With keyword LTERM, queue output but
do not send to these logical
terminals.

(These commands are used with
nonimmediate-response-type messages
only. The user can enter a series
of nonimmediate-response-type
messages and /LOCK his terminal.
This normally implies that the
messages must be secured by logical
terminal, since the user must know
what logical terminal or terminals
to lock. No responses will be
printed on the terminal until such
time as the terminal is unlocked.
Exception: system messages will be
printed.)

This command:

e causes the contents of the message

entered at this terminal to be
logged but not processed by a
program. The slash is the first
character logged.

e applies only to the currently
entered message line and does not
establish a continuing operational
mode

(See later section in chapter.)

71

72

19.

20.

/PSTOP

/PURGE

With keyword LINE:

e do not receive input

¢ do not send output

® queue output

With keywords LINE and PTERM:
* do not receive input

e do not send output

* queue output

With keyword LTERM:

e queue output messages

¢ do not send messages to this
logical terminal

With keyword TRAN:
e queue input

o do not schedule this transaction
code

(/PURGE and /STOP stop queuing of
output only if the message to be
queued originates at the terminal
(message switching). Output from an
application program is always
queued.)

With keyword LINE:

e do not poll

e send output

* do not queue output

With keywords LINE and PTERM:

* do not receive input

* send output

* do not queue output

With keyword LTERM:

e do not gqueue output messages

¢ send messages to this logical
terminal

With keyword TRAN:
e do not queue input

e schedule this transaction code

N

/
S

21.

22.

23.

24.

25.

/RDISPLAY

/RESET

/SET

/START

/STOP

This command displays the
identification of the master
terminal.

This command negates the action of
the /SET command. '

This command allows the setting of a
destination mode for messages
entered thereafter into the entering
physical terminal. The destination
must be a TRAN code or an LTERM
(message switching), thereby
eliminating the use of a destination
code.

With keyword LINE:

s poll

e send output

® queue output

With keywords LINE and PTERM:

e receive input

® send output

e queue output

With keyword LTERM:

e gueue output messages

e send messages to this logical
terminal

With keyword TRAN:
e gueue input
¢ schedule this transaction code

With keyword DATABASE, schedule a
program using this data base.

With keyword PROGRAM, schedule this
program.

With keyword REGION, use the
facilities of 0S/360 to start a
message region (one).

(This command is cumulative in
effect. To start two message
regions, the command is entered
twice. The processing is also done
on a net basis. If /START were
entered once, the net result would
be to start one message region.)

(/PURGE and /STOP stop queuing of
output only if the message to be

73

74

26.

27.

/TEST

/UNLOCK

queued originates at a terminal

" (message switching). Output from an

application program is always
queued.)

With keyword LINE:

e do not poll

e do not send output

e do not queue output

With keywords LINE and PTERM:
e do not receive input

e do not send output

e do not queue output

With keyword LTERM:

¢ do not queue output messages

e do not send messages to this
logical terminal

-With keyword TRAN:

e do not queue input

e do not schedule this transaction
code

With keyword DATABASE, do not
schedule a program using this data
base.

With keyword PROGRAM, do not
schedule this program.

‘With keyword REGION, use the

facilities of 0S/360 to terminate a
message region (one).

(This command is cumulative in
effect. To stop two message
regions, the command is entered
twice. The processing is also done
on a net basis. If /STOP were
entered once, the net result would
be to stop one message region.)

This command implies that no
independent messages will be
transmitted to the user"'s terminal.
Messages entered into the user's
terminal are transmitted back to the
user's terminal.

With keyword TRAN, schedule this
transaction code.

N

TN

~——

-

With keyword PROGRAM, schedule this
program.

With keyword DATABASE, a program may
be scheduled that uses this data
base.

With keyword PTERM, queue output and
send output to this logical
terminal.

(PTERM applies to the physical
terminal into which the command is
entered. A password may be included
with the keyword PTERM; no
parameters are acceptable. /LOCK
and /UNLOCK are used with
nonimmediate-response~-type messages
only. The user can enter a series
of nonimmediate-response-type
messages and /LOCK his. terminal. No
response will be printed on the
terminal until such time as the
terminal is unlocked. Exception:
system messages will always be
printed.)

With keyword LTERM, queue output and
send output to these logical
terminals.

A detailed discussion of the commands is in the IMS/360 Operations
Manual, Volume II - Machine Operations.

IMS/360 MESSAGE QUEUES

Because an understanding of IMS/360 message queues affects the
decision for Items 7c¢, 7j, and 16 of the Systems Operation checklist. and

“restart, the following is presented.

The IMS/360 control program provides the capability to queue messages
received on direct access storage and in core storage. Messages may be
received from communication terminals or application programs and may be
destined for communication terminals or application programs. A message
destined for an application program is called a transaction and begins
with a transaction code. All transactions of the same type (same code)
are queued in a serial chain based upon time of receipt by IMS/360. A
serial queue exists for each defined transaction code. All messages
destined for a particular communications logical terminal are queued
serially like transactions. A serial queue exists for each defined
logical terminal (Figure 16).

75

TRANSACTION
CODE

X

QUEUE
CONTROL
BLOCK

BEGINNING OF MESSAGE X QUEUE

l MESSAGE l

W

A
| MESSAGE |
4

END OF
MESSAGE X
QUEUE

MESSAGE

]

COMMUNICATION
LOGICAL
TERMINAL

Y

QUEUE
CONTROL
BLOCK

BEGINNING OF MESSAGE Y QUEUE

MESSAGE

| MESSAGE l
[|

\J
MESSAGE

END OF
MESSAGE Y
QUEUE

Figure 16. IMS/360 message queues

All messages received are written to direct access data sets.
However, the core storage buffers used by the IMS/360 control program -
are used on a rotating basis, thus retaining an image of the message in
core as long as possible. If the message still exists in core storage
when it is dispatched to its destination (input to a program or output
to a terminal or another program), reference to the direct access data
sets is not necessary, since the IMS/360 control program uses the incore
storage image. All messages received are written to direct access data
sets to ensure that a copy is available if the IMS/360 system or
Operating System/360 fails (the contents of core storage are lost). 1In
addition, all messages received are written to the IMS/360 system log in

76

)

consideration of possible failure of the direct access data set queues.
The reuse of core storage buffers that already contain messages which
have not been sent to their destinations is based upon the time that the
message has remained in the system; the oldest buffer is used first.

Messages received may be represented by single or multiple lines of
text. If a message 1s represented by multiple lines of text, the queues
are stored on direct access and in core storage in a blocked format.

The blocking factor is determined by the device upon which the various
queue data sets are resident.

The IMS/360 control program utilizes OSAM data sets for direct access
queue storage. Either two or four data sets are required: one or two
data sets are used for input and output of single-line messages, and one
or two data sets for input and output of multiple-line messages. The
choice of two or four data sets is made by the IMS/360 user at system
definition time (Item 7j on the Systems Operation checklist). Figure 17
shows examples of storage using two or four data base sets.

77

INPUT OR|
OUTPUT
QCB

—

TWO DATA SETS FOR MESSAGE QUEUES

SINGLE LINE DATA SET

pead 03 IXSN

MULTIPLE LINE DATA SET

7

MULTIPLE
LINE MSG HEADER

y |

TRAILER LINES BLOCKED
{(1st buffer full)

SINGLE

LINE MESSAGE

1y
)
e

MORE TRAILER LINES
BLOCKED (last buffer

MULTIPLE :
LINE MSG HEADER

full)

TRAILER LINES BLOCKED

~_

FOUR DATA SETS FOR MESSAGE QUEUES

__ =

INPUT MULTI-

t[TRAILER LINES
LINE MESSAGE

 BLOCKED
INPUT SINGLE
LINE BUFFER

_—-‘#i/
OUTPUT

OUTPUT SINGLE

INE MESSAGE

OUTPUT MULTI-
LINE MESSAGE HEADER

TRAILER LINES
BLOCKED

#3

Figure 17.

—

Examples of two or four data base sets for direct access
queue storage

The IMS/360
initial usage.
with a request

The preformatting is performed by restarting IMS/360
to format.

message queue data sets must be preformatted before
The need to reformat the message queues
arises only if an input/output error occurs within a queue data set.

78

N

The use of preformatted queues provides increased performance and
reliability. Performance is increased through the preassignment of
direct access storage records for any chain of messages, resulting in a
reduction in the number of input/output operations for management of the
queues. Reliability is increased with the preformatted data sets
because the count field of the direct access device record X is not
relied upon to write record X+1. Since direct access space is allocated
‘'sequentially on a chronological basis even though the queue chains are
random, a write error results in the assignment of the next available
direct access record. A write error does not result in the inability to
write subsequent records in the data set as might be the case with
unformatted queue data sets. The effect of a write error is the
automatic assignment by IMS/360 of an alternate direct access record
(the next sequential record in the data set). The preformatted record
in which a write error is encountered is skipped over. No queue chain
points to this record; in effect, it is lost space on the direct access
volume. Approximately 10 seconds is required to format each 2314
cylinder without write-checking and 20 seconds with write-checking in an
IMS/360 message queue data set.

Until formatted space within a direct access device data set used by
IMS/360 for message queues is exhausted, records are allocated on a
sequential basis from the beginning to the end of the data set and no
reuse of space is attempted. When an entire data set is exhausted,
IMS/360 will begin to reuse space (records) which no longer contains
active messages (are already sent to their destinations). Once reuse of
data set records occurs, a reduction in queue performance is experienced
because of the need to maintain a free queue of direct access space.

The IMS/360 system may subsequently be terminated with a checkpoint
purge or dump queue. A restart with build queue operand after a purge
or dump queue causes the allocation of queue space to be reinitialized
to the beginning of the queue data sets.

In order to provide for message queue recoverability if the queue
data sets are destroyed, the IMS/360 control program logs:

1. All input and output message text

2. The queue pointers to each message queue chain whenever a message
is enqueued onto or dequeued from the chain

If a system failure occurs and the message queue data sets are
retained intact, the restart facilities of IMS/360 can properly
reposition the queues by use of the enqueues/dequeue pointers which were
logged. If the queue data sets are destroyed, the restart facilities of
IMS/360 can be employed to rebuild the queues from the log entries of
message text. .

Message Queue Space Allocation

The amount of direct access storage space allocated to the message
queue data sets depends upon how many data sets are used (two or four),
how many messages are received and sent to terminals, and the length of
the messages received and sent. The best way to provide guidance for
space allocation is to consider a specific example. Assume:

1. The system has four message queue data sets.

2. The multiple-line data sets contain physical blocks equal to five
message lines (one message line and prefix is approximately 200
characters -- multiple-line buffer for five lines is
approximately 700 characters; the other four lines do not contain
a prefix).

79

3. 50,000 input messages a day (12 hours of operation) and 50,000
output messages are handled.

4. 10,000 of the 50,000 input messages are multiple-line messages
with an average of five lines. 25,000 of the 50,000 output
messages are multiple-line messages with an average length of ten
lines.

5. Nine multiple-line OSAM records per 2314 track and 20 single-line
OSAM records per 2314 track.

e First, calculate the single-line input/output message space

required:
50,000 = single-line messages
20 single-line messages/track

2500
125 cylinders
125 cylinders

input single-line input tracks
input single-line cylinder
output single-line cylinders

e Second, calculate the multiple-line input message space

required:
10,000 = nmultiple-line input messages
9 multiple-line messages/track
1112 = tracks for multiple-line input
messages
56 = cylinders for multiple-line 1nput
messages

e Third, calculate the multiple-line output message space

required:
2x25,000 = records per output message x multiple-line output messages
9 multiple-line output message/track

5,556 = tracks for multiple-line output messages
278 = cylinders for multiple-line output messages

The total space requirements are 584 cylinders of 2314. This space
requirement is of course an outside limit because no consideration has
been given to the reuse of message queue space. Although reuse of
direct access space is quite practical, it does reduce the efficiency of
message queuing (Item 73j on the Systems Operation checklist).

Using the above example, assume also:

200 transaction types (SMB's)
200 logical terminals (CNT's)

Since reuse of queue space is dependent upon the turnover of
messages, calculate the average message turnover per QCB per hour: -

50,000 = total messages to be processed
12x200 number of hours x number of queue blocks (SMB's or CNT's)
21 = number of messages to be turned around per QCB per hour

To run three hours before reuse begins, allocate

3x21x200 = - hours x turnovers x number of queue blocks
20 single-line messages (QCR's) per 2314 track

80

Input single-line tracks = 12,600 = 630
20

Input single-line cylinders = 630 = 32
20

Output single-line cylinders= = 32

It was determined that one out of five input messages is a multiple
line. Therefore,

12,600 = multiple-line records x number of messages in time period
5x9 total messages x multiple-line records per 2314 track
Input multiple-line tracks = 3150 = 350 tracks
9
Input multiple-line cylinders= 350 = 18 cylinders

(2x25,000) x 12600 = multiple-line records x number of messages in time period

50,000 x 9 total messages x multiple-line records per 2314 track
Output multiple-line tracks = 12,600 = 1400 tracks
9
Output multiple-line cylinders = 1400 = 70 cylinders
20

The total space requirements are 152 cylinders of 2314, if reuse is
allowed after three hours of running. The overhead incurred when reuse
has begun is as follows:

1. For each record written, one read is added to obtain a "next"™
record pointer.

2. For each QCR record written which had message buffer(s)
attached, a message buffer must be read and rewritten to provide
a contiguous chain of message buffer records.

3. When the last QCR of a string has been reused, at least two
additional QCR records must be read and one QCR rewritten to
obtain a new string for reuse.

The I/0 operations per hour prior to reuse are:

Input QCR writes 4150
Input message buffer writes 1050
Output QCR writes 4150
Output message buffer writes 4150

Total 13,500

The I/0 operations per hour after beginning reuse are:

Writes Reads Total I/0
1. Input QCR 4150 4150 8300
Output QCR ‘ 4150 4150 . 8300
Input MSG buffer 1050 1050 2100
Output MSG buffer 4150 4150 8300
13,500 13,500 27,000

2. String MSG buffers for reuse:

Number of strings = number of multiple-line message records
records per message’

81

Input = 1050 = 1050 strings
1
Output = 4150 = 2075 strings
2
Writes Reads Total I/0O
String input message buffers 1050 1050 21.00
String output message buffers 2075 2075 4150
3125 3125 6250

3. To obtain QCR strings for reuse:

Since reuse begins after three hours of operation and all

records have been reused after six hours, the average QCR string

may be calculated:

hours x MSG 3x21+6x21 189 = 94
2 2

The average QCR string obtained is two less than the actual QCR
string:

94-2 = 92

Searches for Input QCR string records required

string length

I
=
iy
o
o

= he

Since the output message queuing requires two physical queues per
CNT, the average QCR string is half as long as an input string:

94 - 2 =15
2

Searches for output QCR strings records required

string length

= 4150
45
= 93
Writes Reads Total I/O
I/0 for input QCR search 46 92 138
I/0 for output QCR search 93 186 279
139 278 417

The overhead imposed by reuse in this instance is:

27,000+6250+417-13,500 = 20,167 I/0 operations per hour

The IMS/360 system definition execution can generate a procedure for

execution of the IMS/360 control program in the Type 0 processing
region. This procedure includes DD cards for the message queue data
sets but assumes the user has allocated the data sets. Message queue
data set allocation is the responsibility of the IMS/360 user. The

message queue data set DD cards should include the following parameters:

SPACE= , DISP= , UNIT= , VOLUME=SER= , and DCB=(DSORG=PS).

82

Message Queue Space Allocation - Secondary

For most efficient operation, message queue data set space should be
allocated in terms of contiguous cylinders on separate devices.
Secondary allocation should not normally be requested. If secondary
allocation is requested, all 16 extents will be obtained at the time the
queue data set is formatted.

IMS/360 CHECKPOINT, RESTART, DATA BASE DUMP, AND DATA BASE RECOVERY

This section attempts to provide the reader with a description of the
checkpoint and restart facilities of IMS/360. The operational details
of checkpoint, restart, data base dump, and data base recovery then
follow in this manual and in the IMS/360 Operations Manual, Volume II -
Machine Operations.

Checkpoint

The checkpoint facilities of the IMS/360 control program provide the
means for periodically recording control information and status to
enable IMS/360 restart after failure. This failure may be the
termination of the IMS/360 control program or the loss of Operating
System/360. In addition, the checkpoint facilities are the means for
terminating the IMS/360 system in an orderly way, creating a tape image
(backup) of a data base used for message processing, or assisting in the
reconstruction of a data base which has been destroyed. There are four
checkpoint commands and two data base dump commands. All these commands
are executed from the master terminal of IMS/360.

Simple Checkpoint

The first checkpoint command is /CHECKPOINT with no operands (simple
checkpoint). It may be invoked automatically by the IMS/360 control
program or from the master terminal. The automatic invocation of simple
checkpoint is based upon the number of entries to the system log. The
user of IMS/360 may specify the number of entries between system-invoked
checkpoints during system definition. The simple checkpoint, like all
other checkpoint commands, uses the IMS/360 system log for recording
control data. The simple checkpoint logs the status of all dynamically
changing IMS/360 control program blocks. These include the
logical-to-physical-terminal relationships, the input and output message
queue control blocks, the security blocks, and others. The simple
checkpoint command causes the scheduling of programs into message
processing regions to halt momentarily while the control block
information is logged. The simple checkpoint command has no effect upon
internal operations in the IMS/360 control program or operations upon
the communication lines. As soon as the simple checkpoint command is
terminated, scheduling into message regions is automatically initiated
by the IMS/360 control program.

Checkpoint Freeze

The three remaining checkpoint commands are each used for orderly
termination of the IMS/360 system. Each is invoked only from the master
terminal. The checkpoint freeze command is the fastest means of orderly
termination. Input communication lines are terminated as soon as any
messages being entered are completely received. Output communication
lines are terminated as soon as any messages being sent are completely
transmitted. Message regions are terminated as soon as the current
messages being processed have been completed. All input messages
remaining to be processed and all output messages remaining to be
transmitted are retained in the message queue data sets. The same
mechanics as in simple .checkpoint are now invoked to log the status of
all control blocks. Finally, the checkpoint facility causes the

83

termination of the IMS/360 control program job. The IMS/360 user should
employ the /NRESTART command without message queue reconstruction to
restart IMS/360 after a /CHECKPOINT FREEZE.

Checkpoint DUMPQ

The checkpoint dump queue command operates in exactly the same manner
as the checkpoint freeze command, but performs the additional function
of dumping all the input and output messages out of the message queue
data sets. The /NRESTART command with message queue reconstruction
should be employed to restart IMS/360 after a checkpoint dump gqueue
termination. The restart of IMS/360 in this manner causes allocation of
space in the queue data sets to start from the beginning of the data
sets. The messages dumped from the queue data sets during the
checkpoint dump queue command are reloaded into the message queue data
set during the /NRESTART with-message-queue-reconstruction command.

Checkpoint PURGE

The checkpoint purge command is the most orderly yet most
time-consuming manner of terminating IMS/360. The input communication
lines are terminated first as soon as all messages being entered are
completely received. ' All messages in the input queue are processed, and
all resultant output messages are transmitted to their specified
destinations (terminals, etc.). The message regions are then
terminated, and output communication lines are stopped. Finally, any
input messages which could not be processed or any output messages which
could not be transmitted are dumped to the IMS/360 system log, and the
IMS/360 control program job is terminated. The /NRESTART command with
message queue reconstruction should be employed to restart IMS/360 after
termination with a /CHECKPOINT PURGE command.

Data Base Dump

The data base dump capabilities of checkpoint include the functions
of creating a dumped tape image of a complete data base and performing
preparatory functions for the reconstruction of a data base.

The /DBDUMP command, which is also entered from the master terminal,
creates a dump tape image by stopping all transaction input from
terminals that would update the data base and processing all
transactions already in the input queue against the data base. A
special utility (a message processing program) is then scheduled for
execution. This message processing program retrieves all segments from
the data base with GET calls and creates a copy on an HSAM tape data
base with ISRT calls. When the data base dump is complete, the tape
volume containing the copy is unloaded. Finally, the update
transactions that were stopped are again allowed entry from terminals.
This command causes a Force End of Volume on the IMS/360 log so that a
new log is started immediately after the data base dump. The user must
create an application program, PSB for the program, and DBD for the HSAM
data base if the dump copy is to be subsequently used to restore the
data base. The application program is executed in a Type 3 region. The
data base recovery command may then be used to reprocess transactions.
The HSAM data base is composed of a BSAM data set with a name
(DFSIDUMP.dbdname), where dbdname is the DBD name associated with the
data base which was dumped.

A second form of the data base dump command is /DBDUMP with STOP.
This command is used in preparatory procedures prior to data base
reconstruction. The /DBDUMP with STOP command causes all update
transactions against a data base that must be reconstructed to be
retained in the input message queue. However, these transactions are
not scheduled for processing. The continuance of input of these
transaction types is allowed, but no processing occurs. The data base

84

must be reconstructed with a batch program executed from an IMS/360 Type
3 region and a previously dumped copy of the data base. Once the data
base is reconstructed with the last dump tape, all transactions from the
data base dump until the current point in time must be reprocessed.

This is accomplished with the old system log tapes and the data base
recovery command.

The DD card for the tape used when dumping a data base to tape with
the data base dqump command is contained in the IMSO procedure supplied
by IMS/360 system.definition. The DD name of the DD card is DBDUMP.

Checkpoint Guide

The following table may be used as a guide in determining which
checkpoint command to use.

Command When to Use

1. /CHECKPOINT If a simple checkpoint is desired
without terminating the IMS/360 system,
use this command.

2. /CHECKPOINT FREEZE Use this command if (1) IMS/360 must be
terminated quickly, (2) the disk message
queues will not be disturbed before
restarting, or (3) the output messages
can wait until later.

3. J/CHECKPOINT DUMPQ Use this command if (1) IMS/360 must be
terminated, (2) the disk message queue
space may be used for other purposes
before restarting, or (3) the output
messages can wait until later.

4. /CHECKPOINT PURGE Use this command if (1) IMS/360 must be
terminated, or (2) it is desired to
process and send all messages currently
in the system.

All the checkpoints output a message identifying the checkpoint.
This message is of the following format:

*CHECKPOINT**yyddd/hhmmtt**type**seriél
where:
yyddd is the Julian date.
hhmmtt is the time in hours, minutes, seconds.
(yyddd/hhmﬁtt £ogether identify the checkpoint.)
type is the checkpoint type: SIMPLE, FREEZE, DUMPQ, or PURGE.

serial is the serial number of the volume on which the checkpoint was
written.

The last three checkpoint commands, FREEZE, DUMPQ, and PURGE,
terminate all message regions and the IMS/360 control region, region O.
For a better understanding of the sequence of events that take place
with each checkpoint command, see Figure 18. The numbers in each column
of Figure 18 indicate the sequence of events occurring for that
checkpoint type. The Abnormal End column defines the termination of
IMS/360 if an abnormal condition occurs that requires immediate

85

termination of the IMS/360 control program. - Under normal operation,
this column should never be used.

SYSTEM CHECKPOINTS

/ SIMPLE SHUTDOWN /

f— ~

&
/&
s /&
PRELIMINARY CONDITIONING Q &

STOP TERMINAL INPUT 1 1 1
STOP TERMINAL OQUTPUT 6 2 2

SEND ALL OUTPUT
‘PROCESS AL.L QUEUED
TRANSACTIONS

FREE MESSAGE REGIONS 1 1 3 3 3

TERMINATE MESSAGE REGIONS A 4 4 4

FORCE END OF VOL. 1 1
LOG TAPE

DUMP QUEUES TO LOG ' 2 2
TAPE
CLOSE QUEUES 5 -3 3
CLOSE ALL DATA BASES 4 4
LOG BLOCKS, TABLES,
STATUS

WRITE CHECKPOINT ID
TO MASTER TERM.
WRITE CHECKPOINT ID .
TO SYSTEM CONSOLE 2 7 7 6
CLOSE LOG : 3 8 8 7

RESUME NORMAL
PROCESSING 3 3

TERMINATE 7 9 9 8

-

H i N

CHECKPOINT ACTION

Figure 18. Checkpoint sequence
Data Base Dump Execution

The data base dump capabilities of checkpoint include the functions
of creating a dumped tape image of a complete data base and performing
preparatory functions for the reconstruction of a data base.

The following is a list of events that should be implemented to
perform a data base dump:

86

NS

%
** /BRUADCAST
* *
Bkt Rk ok Rk ok
v
PREZRX XN E TR ERE
* ; *
* BOLMP
DATABASE
* NAMELS) .
HEFERBRABERE Y
LEEEEEEEFEE L L L 20
*QUTPUT-NSG *
Fmm e e *
* %DBDUMP IN %
i PRGGRESS z
ETETE I PR L LS 20

LRSI RS 22 F L
*

*
.
*

When it is decided to do a data base
dump from the master terminal, for
either backup or reorganization, the
appropriate users of remote
terminals should be notified.

This identifies the data base(s) to
be dumped and causes the preparation
in the IMS/360 control program for
dumping the data bases.

All input against the specified data
base(s) is stopped (prohibited
entry) during data base dump. All
enqueued messages are processed. A
simple checkpoint is taken. This
message is output to the master
terminal only.

87

*

*
*
*

% *
PR EFRERAER

RAEFEEEFSEER RS
*0UTPUT-NSG

¥CHECKPOINT
COMPLETED

*
LSRR EEEELE R L

v
EL X TSR F 2T E-2-8 3]
*

*
SCHEDULE OUMP
*PGM INTG MSG *

* REGICN *
* *
(eSS P ST ELEE L)

HHEEIRAFEREEFEK
*CUTPUT-NSG j

% *CEBDUMP *
ﬁ CCMPLETED :

LEE S L EF L2 2 L 2

v
LR E LR RS LRSS E T
*

/BROADCAST,

X
*

The current IMS/360 system log is
closed and a new one opened to
provide a clean starting point in
case of a later data base recovery.
This message is output to the master
terminal only. '

This dumps the data base to tape as
an HSAM tape data base. A special
utility message processing program
which is part of IMS/360 is used for
all data base dumps.

The transactions are started
(allowed entry) and the master
terminal is notified that the dump
is complete and that normal
operations may resume.

The appropriate users should be
notified that normal operations have
resumed.

Data Base Dump with Stop Execution

data base recovery.

Data base dump with STOP is the second form of the /DBDUMP command
and may be used whenever it is desired to stop the message processing
activity against a data base. This command is used in preparation for

The sequence of events for implementing data base

dump with STOP. follows:

88

N

T I TE 2 S L T The terminal users of the data

** ** base(s) should be notified of the
* /BRCADCAST * impending action.
¥ *
* *
P E T E T R
v
kR ddd bk kit
This identifies the data base(s) to
¥ /CEBDUMP * :
C CATABASE * be stopped.
* NAME(S) STOP **
PR RIS
EI T E TR R LT
JOUTPLT-NMSG_ ¢ ~ All transactions which use the data
* %DBOUMP IN & base(s) are PSTOPed (that is, input
f PRCGRESS 3 messages may be entered and will be
enqueued, but will not be
] x3 ’ .
HrEEARAIIIRT processed). The data base(s) is
also closed. A force end of volume
is employed on the current log tape
to allow its use in the /DBRECOVERY
command.
FRF RN AR pRFRBEE
*OUTPUT—-NMSG
*CBDUMP . e .
. COMPLETED This notifies the master terminal
- ke . that all data base activity is
$ERFLSIFEIARLE stopped.

The data base to be rebuilt should now be reconstructed in a Type 3
region with a previously dumped copy. Then the /DBRECOVERY command and
all log tapes from the last dumped copy should be used to reconstruct
the data base to the current point in time.

Restart

The restart facilities of the IMS/360 system provide for the recovery
after failure of IMS/360, its message queues, and the data bases used
for message processing. This section concerns itself with the execution
of all the restart facilities and their commands.

There are two restart commands with various operands, normal and
emergency restart. The normal restart command is used after the IMS/360
system has been terminated in a normal manner (that is, with a
/CHECKPOINT command). The emergency restart command is employed when
the IMS/360 system was not terminated normally. There is an event
listing of each command in this section.

89

The final capability of the restart facilities of IMS/360 is data
base recovery. Data base recovery is used to rebuild or recreate a data
base used for message processing. There is also an event listing of the
data base recovery command in this section.

Normal Restart Format

The normal restart command has two basic versions. One version is a
cold start and involves no previous system log tape. The other version
is a warm start where the system is restarted with the checkpoint data
on a previous (normally the last used) system log tape. The format of
the cold start version is:

)

| |

| /NRESTART | CHKPT 0
| |

L

b s v — o

Checkpoint number zero signifies a cold start. The format of the
warm start version is:

{ 1
| | ‘ |
| /NRESTART | CHKPT 68173/141020 1
| ‘ | |
L J

The checkpoint number specifies Julian date and time of day.

In addition to the checkpoint number operand, both versions of the
normal restart command allow the master terminal operator to format the
message queue data sets. The formatting of the message queue data sets
need be done only at initial system start (first time use of system),
when an input/output error occurs, or when the size of the message queue
data sets is to be. changed. The format for the normal restart command
with formatting is:

/NRESTART CHKPT 0 [(FORMAT ALL]

/NRESTART CHKPT 68165/141050 [BLDQI

[SER number , number]
1 2

[ol —. S — S o — c— — — o—
— N s i S s, = o, S qomnt,
bt s s S— — — — — — — p—a——]

The FORMAT ALL operand causes all message queue data sets to be
formatted.

An additional operand, BLDQ (build queue), may be specified with the
warm start version of the normal restart command. The BLDQ operand
should be specified if the system was terminated with a /CHECKPOINT
PURGE or /CHECKPOINT DUMPQ command. The BLDQ operand assumes that any
messages remaining in the message queue data sets when the /CHECKPOINT
PURGE or DUMPQ terminated were logged to the system log tape. The BLDQ
operand causes the normal restart command to use the old log tape
specified in the CHKPT operand and to reload, from the log to the

90

/

message queue data sets, any retained messages. The format of the
normal restart command is:

/NRESTART CHKPT 68143/11300 .[BLDQ FORMAT ALL]

[SER number , number 1}
1 2

= o o e — ———
hee o S e — — — o

The warm start version of the /NRESTART command without BLDQ assumes
that the IMS/360 system was terminated with a /CHECKPOINT FREEZE
command. All messages are retained in the message queue data sets.
When the /NRESTART command (with warm start) is executed, the data on
the old system log tape provides the IMS/360 system with correct
positioning within the data set.

The security information (password and terminal) employed by the
IMS/360 user can be built from the output of the last security
maintenance program execution located in IMS.RESLIB or from the
checkpoint data used to restart. If the information in IMS.RESLIB is
desired, the normal restart command should include the TERMINAL and
PASSWORD operands. If the security information from the last checkpoint
- is desired, the normal restart command should omit the TERMINAL and
PASSWORD operands. '

When a warm start is performed, the IMS/360 user may specify the log
tape serial number for the o0ld log on a DD card or through an operand of
the normal restart command (that is, SER volume). The use of the SER
operand on a restart command facilitates the use of a cataloged
procedure for the IMS/360 control program.

The IMS/360 Operations Manual, Volume II - Machine Operations
illustrates the use of TERMINAL, PASSWORD, and SER operands for restart.

Normal Restart Execution

The following is a list of events that should be followed in order to
cause a normal restart of IMS/360:

91

92

*
*
*

*
EES X 2 ER SR LR

SRABERRERRBREE S
* *

*
LGAC IMS/360 **
X

B o ok ok b ook
*OUTPLT-MSG *
e ———
* *IMS READY %
: DATE/TINE :

EEERELEL EE L L 22

¥ # . /ERESTART
* ' *NO xkk
]

(o

xI

M

(»
~{XIT
Okt TN

* *
o ok ke kb Ok X

Load IMS/360 as with any Operating
System/360 job.

This message goes to the system
console and to the master terminal.
At this point, the operator must
enter the restart command. No other
command is acceptable.

Was the last IMS/360 job terminated
normally with a checkpoint or will a
cold start be done? If the answer
is no, go to the label /ERESTART.

Begin to enter the restart command.
yyddd/hhmmss is the checkpoint
identification. If cold start,
enter 0 instead of yyddd/hhmmss. No
EOB yet. :

\

« * * « CGLD-START If cold start, go to the label
+ SYES ik COLD-START.
* * % %
% CGLL START ? *> *
% * * *
* * %k
% *
* #
¥ NG
v
* *
" * * £YES ' - Does the input log DD card specify
* the proper tape volume?
X LCG INPUT GD Hmm e
* CARG CK ? *
* *
* *
* %
* NG
v
R e e YT]
% %
* : * Add SER parameter to restart command
* © SER= SERIAL . * and specify tape serial number. It
* NUMBER . should be the serial number from the
FEEXESXAFERERREE - appropriate checkpoint message.
2 e ————— .

v
DUMPQ/PURG* * * * CGLD-START
% *NO ok A
% * How was the system last terminated?
aR *> * Was the checkpoint specified a DUMPQ
PT * or a PURGE?

Go to next page

93

1

v
FhkEk R R REEF
* *
* ¥
* BUILECGQ *
* *

* *
A e oo oo o o o ek o e

: v
COLD—SIART* * ¥* . NRE/SEC
% : ANG k%%
*

v
e FEES I IR LR R L S
* : %*

* *
% FORMAT ALL *
% *

* %
SRR AREEFIERREE

Go to next page

94

Add BUILDQ parameter to restart
command. This will reconstruct the
disk message queues from the
specified checkpoint.

Is disk message queue allocation
new? Has their space been used by
someone else? If warm start, do not
format unless BUILDQ was specified.

Add FORMAT ALL to restart command.
This will preformat the disk message
queues. (This is similar to
Operating System/360 cold start
formatting the JOBQ.) About ten
seconds per 2314 cylinder is
required for formatting each message
queue data set.

N

A4

v
NRE/SEC * = *
% #*NQ
* x
% NEW SECURITY
* ?

2o
3

B3

%* ¥k
%* *
% YES
v
sk 4 e ek sl e die e stesk ek
* k4
* ENTER
- PASSWORD *
. AND/OR
* TERMINAL *
%Yk sk ek koo ek ek
i<-~—-——~—~——--———.
EOR-END V
32 ek s sk oo e ek sk 2k
E *
% ENTER EOB »
* b3

Go to next page

- TRV .

Has terminal or password security
been changed? If the output from
the last execution of the security
maintenance program is different
from the terminal or password
security on the log from the
checkpoint that terminated the
system, which is desired? (They can
be different because of commands
entered from the master terminal.)

Add security parameter(s) to restart
command. Password parameter causes
new password security to be loaded.
Terminal parameter causes new
terminal security to be loaded. The
absence of the SECURITY parameter
indicates that the conditions on the
log tape from the last checkpoint
shutdown will be used. If present,
the tables output from the last
execution of the system security
maintenance program are used.

End of normal restart command,

95

**tt##*;ﬁ*ﬁﬁtt*
*¥OWTPUT-MSG :

*
*¥NRESTART IN *
% PROGRESS :

. Notification to master terminal that
restart is in progress.

* .
PSS TET YL L L
v
. * * NEW-TAPE
* *YES k%%
* * % % . .
* CLLD START 2 %> * If cold start, skip rebuild of
* * %k %
* " *n IMS/360.
* *
] #
] NG
Vv
o Aok kR Rk Rk
**- v **» : : Mount log tape containing specified
* MCUNT QLD LCG * : checkpoint.
** v TAPE **
Bt okl dok e kR ke ok
Rebuild IMS/360 blocks, pointers,
v and queues (if specified) to status
*###t#**&tﬁtﬁ*: of checkpoint.
*

NEw-TAPE
*
.
* MCUNT NEW
*, TAPE
SRR 40k ROk &

vV
%ok ok ok Ak kK
iQUTPUI—MSG :

* XNRESTART. *
* CCOMPLETE :

*
REERAFEEELEREK R

96

R EkRAD FARLRERE
\ *

Mount log tape to be written by this
run of IMS/360.

x
*
*

Complete restart and notify master
terminal. All commands except
restart are now acceptable to
IMS/360.

Emergency Restart

The emergency restart command is used to restart IMS/360 after a
failure which caused the IMS/360 control program region job or Operating
Systen/360 to terminate abnormally. The emergency restart command
always employs the last IMS/360 log tape to reinitiate system operation
if only the contents of core storage are lost. The simplest version.of
the emergency restart command is used when a failure occurs that
involves only the loss of core storage conténts. The format of this
version of the emergency restart command is:

|
/ERESTART | CHKPT 68176/105010 [SER TAPES50]
|

= s e o ey
s e S —

The checkpoint number to be used is the last checkpoint executed prior
to loss of the system. This would have been recorded on the master
terminal as:

*CHECKPOINT COMMAND COMPLETE *68176/105010% SIMPLE #*TAPES50

where *SIMPLE indicates simple checkpoint, and *TAPES0 indicates that
the volume serial of the system log tape was TAPES5O0.

The failure of the IMS/360 or Operating System/360 system may have
included a failure of the message queue data sets. In this situation,
the emergency restart command with FORMAT ALL and BLDQ operands should
be employed. The format of this version of the emergency restart
command is:

/ERESTART CHKPT 68141/091050 [BLDQ FORMAT ALL]

[SER number ,...number]
1 2

= e e ey e c———
— e e w— c——
bt e S c— g S e, ol

This command causes all the message queue data sets to be formatted and
all messages yet to be processed or transmitted to be reloaded from old
system log tapes to the proper message queue data set. Emergency
restart with BLDQ and FORMAT ALL operands requires that the IMS/360
system be restarted from the last cold start or last system termination
in which the message queue data sets were dumped (that is, /CHECKPOINT
PURGE or /CHECKPOINT DUMPQ). If the emergency restart is performed from
a previous cold start, the checkpoint number must be 0.

Either version of the emergency restart command attempts to
reestablish the IMS/360 system as of the time of failure. The message
queue data sets are repositioned for each input message type and each
output logical terminal. If the message(s) being processed at the time
of system failure caused modification of message processing data bases,
an additional function of emergency restart causes "backout" of any
partial data base modifications. This is an optional feature of
emergency restart that is controlled at the data base level. It
involves the logging of all data base modifications during normal system
operation for those data bases for which backout is specified. The
IMS/360 user specifies which data bases are to employ backout in the
DATABASE macro system definition.

97

Emergency Restart Execution

The following is a list of events that should be followed in order to
cause an emergency restart:

*************@*** Load IMS/360 as with any Operating

¥ Py System/360 job.
** LOAD IMS/36C ** ‘

% *
B AR R R KK

v
PP T T TS L T
:GUIPUT—MSG

%

*

* #IMS READY *

: DATE/TINME : This message goes to the system

2o b ok o b ok o ok ok console and to the master terminal.
At this point, the operator must
enter the restart command. No other
command is acceptable.

v
/ERESIART* % * « CGRE-LOSS

X XYES ks
: % k%
* EMERGENCY %> *
RESTART ? * ¥ *
* * e
* *
* * Is this an emergency restart? If
* NG no, enter normal restart.
§
v
Btk ook dok ok %
* *
* UYSE NORMAL =
* RESTART *
: PRUCEBURES :

REEH kSR RRRTREED

Return to normal restart procedure.

98

CORE—LGSS* ¥ * - BUILDQ
* #NG %%%
* * *
% LCS GRE *> *
% x

on
=z

o
=<
wO

¥
< ¥
m
v

FRAFFBAEFHRIXXXS
*

%
T *
E *

*
FRFRA%

*

P bt T>

4
ey

4 T

xRk

L

. % * END~CMD
% *YES k%
% * % *
* LGG INPUT OC *> *
CARD CK ? * % *
% * Hhk
% %
% %
* NG
v
2o % A ool e B ok ke Ak
* *

* *
* SER= SERIAL *
* NUMBER *

* ¥
XL EE L RS L2 L L

Go to next page

Did previous ABEND result in core
loss only? Are disk message queue
intact?

The checkpoint identification will
be the last checkpoint number
printed on the master terminal.

Does the input DD card specify the
proper volume?

The serial number should be that
printed in the checkpoint message.

S

929

Ehd of restart command.

ENC-CMD v NG-BLDU
Rk EEAB IR GE I RE
* * E22
* * ¥ *
* EGE *> *
* X % *
* * kK
Aok Ak Ak
BUILDG
ok gk ok Aok .
* % Emergency restart command with
* /ERESTART * BUILDQ. The tape serial numbers
*, SER= gs%teg’ « must be in chronological order
teT * beginning with the tape used at the
L R SRR L : last IMS/360 cold start or the one
used at the last checkpoint PURGE orxr
DUMPQ. If the message queues are
destroyed, restart cannot be
initiated from a simple checkpoint
or a checkpoint FREEZE. The last
tape to be used is the one mounted
PR - at the time of the ABEND.
*
* *
* FCRMAT ALL *
* %
% *
dEkSd AR R ERTEFEK
This parameter is required for
emergency restart with BUILDQ.
Vv
* * « NEW-SEC
%
* #*NO Fd% This restart must begin at the point .
& RESTART FROM * ** : when the message queues are known to
* o ASHECKRUINT L %3 & be good. This point will be the
x 2 % k% last checkpoint DUMPQ or PURGE or a
* * cold start.
* *
* YES

Go to next page

100

AKX SFEBRKRE
* *
*

»
* LHECKPGINT *
** DATE/TINE **

IR EFE R FREREELF

NEW-SEC
LAE P EEL RS EEL S 2 L
* ®

* %
** CHECKPGINT © **

* *
LR SR 2L Y S X

* #NO
% _
* NEW SECURITY Fmmm———D
* .2 *
* *
* e

* *
¥ YES

v
o ERAREFEIEEERS

* *
* PASS®ORD *
* AND/OR *
** 1ERMINAL -**

EXEEEEERRERE S 2L

ECB-END1 v NCG-BLDQ
FEFFAARRFRFRAEER
*

* *
* EC8 *>
* * X

¥ *
RREF ¥ REREIRERE

Enter checkpoint identification.

Enter CHECKPOINT O.

Did the cold start used in this
restart specify either of the
security parameters?

Use the same parameter as used on
the cold start.

End of restart command.

101

NO-BLDQ
e sk sk sl ol sk ket

iOUTPUT—MSG %

Hm e e *
*%EREST % . . .
* Eﬁ&%&éégsIN * i - Notification to master terminal that
* % emergency restart is in progress.
*******;******x
*******X******* Mount log tape to be written by this
** *% run of IMS/360.
* MOUNT NEW LOG *
x* TAPE **

< _______________
pLD'kgg****¥******* If more than one log tape, they must
** * be mounted in the order specified.
* MOUNT OLD LOG *
% TAPES x

v
e sl sk ok vesioskslok sk
f % Using the information on the log
< sk .
¥ REBUILD * tapes, IMS/360 is restored to the
¥ IMS/360 i point of ABEND.
O
\
b3 sk
* *
* ®YES
#* *
MORE L0G S .
* TAPES 72 *
* W ¥ Process all log tapes.
*
* NO

Go to next page

102

7\

N

oot e e e ok B R ok ok
x START A & The message region is started
% MESSAGE x directly by IMS/360 and will be used
: REGION f in reprocessing partially completed
*******g******* transactions.
v
ook g R ok sk ek ook
% %
% BACK QUT %
* PROCESSER E
*TRAMSXCTI@%S * Any unpredictable results from
desk o ke dk sk ook otk e o transactions in process at the time
of the ABEND are "backed out" to
restore the integrity of the data
bases. :
v
e e st e ARk oK K o
* 3
* *
* ALLOW %*
* PROCESSING =*
* %
ot et oo e kool s e . .
The partially processed transactions
are now rescheduled and allowed to
process normally.
]
|
|
I
I
I
|
I
1
|
1
1
v
FAEFHEXEPEDRI WY
*0UJPLT-MNSG :
¥ .
% ®ERESIART :
¥ COMPLETE % Notification is made to the master
& a0k ds SR RBIBE terminal that restart is completed

and processing may resume.

Normal or Emergency Restart in Minimum System

Where insufficient core storage is available to start the message or
online batch partition following initiation of the Type 0 control
region, the sequence of initiation may be reversed. If message or batch
regions are initiated prior to the Type 0 region, the operator will be
given the option to wait for the Type 0 region. (See "Messages and
Completion Codes™, message IMS050D, in the IMS/360 Operations Manual,
Volume II - Machine Operations for a further explanation.) Obviously,
the user must initiate the IMS/360 Type 1 (message) or Type 2 (batch)
region with a Job Control Language deck from an Operating System/360
SYSIN stream rather than a /START REGION command.

Data Base Backout

When an emergency restart is necessary, IMS/360 has failed for some
reason. When the failure occurred, there may have been one or more Type

103

1 and Type 2 processing regions operative. In addition, these regions
may have been executing an application program which was deleting,
updating, or adding to a data base used for message processing. An
additional function of emergency restart is to "insert" the update,
delete, or add operations being performed by the application programs at
system failure. This insertion attempts to place the data base back
into the state that existed prior to scheduling the application program
into the Type 1 or Type 2 region. This function of data base backout is
provided on an optional basis by data base because it involves writing
all modifications of the datg bases that use the feature to the IMS/360
system log. During emergency restart, any changes made to logged data
bases by all programs actually in progress at the time of failure are
removed. This restores the data bases and the input message queues to
the status they had when the program was scheduled. Processing then
resumes at that point rather than at the point of failure.

Since IMS/360 cannot schedule programs in the IMS/360 Type 2 batch
environment, IMS/360 cannot control during emergency restart the
integrity of any data bases that may be updated in this environment.
For this reason the use of Type 2 batch programs for updating purposes
should be discouraged. A possible method for large volume updating is:

1. The Type 2 batch program is used only as an editing procedure
that reads the input data, formats it, and routes it as an output
message to an SMB rather than to a terminal.

2. As these "messages" are enqueued on the SMB, a message processing
program is scheduled to perform the actual updates.

3. The output can be directly to terminals, to an HSAM file to be
printed by another Type 2 batch job, or to a zero priority SMB
that can be referenced by another Type 2 batch job.

4. To effectively use the data base backout facility of emergency
restart, an audit trail is also needed to allow processing of
input data to resume at the point of failure.

Data Base Recovery

The final capability of the restart facilities of IMS/360 is data
base recovery. Data base recovery is used to rebuild or recreate a data
base used for message processing. The concept involves the periodic
dumping. of each data base, using the /DBDUMP command. This command is
part of the checkpoint facilities of the IMS/360 system. The /DBDUMP
command causes a copy of a data base to be created as an HSAM tape data
base. When a data base must be recreated, the /DBDUMP command with the
STOP operand, the /DBRECOVERY command, and all system log tapes since
the /DBDUMP are employed.

First the data base to be recreated must be restored as the last
dumped copy. This is accomplished by:

1. 1Issuing a /DBDUMP command with STOP operand to halt all
" processing against the data base.

2. Restoring the data base to its state of the last dumped copy. A
batch program in a Type 3 processing region is employed. ,

Then, from the master terminal, a /DBRECOVERY command is issued
specifying the data base names and the volume serial numbers of the log
tapes to be used in reconstructlon. The format of the /DBRECOVERY
command is:

104

N

/DBRECOVERY DATABASE name SERIAL number,,numbers

({222 {]

The DATABASE operand may have multiple names to allow multiple data base
reconstruction. The SERIAL operand specifies the volume serial numbers
of the log tapes to be employed.

[i e s it e wa—
— — —— — c——
b e v . — . —

The output from the reprocessing of messages during the recovery
procedure can be handled in one of three ways:

1. If the TAPE parameter is added to the /DBRECOVERY command, all
reprocessed output will be logged on the system log; it will not
be resent to the terminals.

2. If the RESEND parameter is added to the /DBRECOVERY command, the
output 'is resent to the terminals.

3. If neither TAPE nor RESEND is specified, all reprocessed output
is ignored.

The old log tapes are used to reprocess all transactions against the
data base since the last dump. The DD card used for the tape volumes
durlng data base recovery is supplied in the IMSO procedure. The DD
name is IMSLOGR.

Data Base Recovery Execution

The following is a list of events that should be implemented to
attempt a data base recovery:

105

XS 2SR 22 RS 3
* *

%*
%
*

*
EZEEIEREF SR S 2L 2]

#*
*
*
*

/BRGADCAST:
*

v
FABHEFNFFE MR H
- *

RELGAD DATA
BASE

*
Sk ddok bk dokikd

106

#**%ﬁ#*

<

E
N
C *
*

RY
AME
R -
I1C.
H AR

Go to next page

*
*
*

*
*
*

=

If a data base(s) becomes unusable
and it is decided to attempt a
recovery, -all terminal users of the
data base(s) should be notified that
the data base is unavailable while
it is being reconstructed.

This allows input messages to be
accepted and placed in the IMS/360
message queues, but closes the data
base itself to allow it to be
reloaded. The input messages are
not processed. A "Force End of
Volume® is also issued to the system
log tape.

The latest backup copy of the data
base should be used to reload it.
This is done in an IMS/360. Type 3
processing region (batch)
environment.

This specifies the data base(s) to
be recovered and the log tapes
needed. The serial numbers must be
in chronological sequence. The
sequence starts with the first one
after the backup copy was created
with the /DBDUMP command. Those log
tapes that are used to restore the
data base(s) include all those from
the dump to the log tape mounted
when this command is given.

N

v
FEFFRERXEPEBE R E %
$0UTPLT-KSG ¢
% #DBRECCVERY *
* IN PRCGRESS

HFRFRFAFHFRLREES

v
FoRk A KRR B FRF A HH
*CUTPLT-MSG *

e e e e 3

* #CHECKPOINT =
:CCMMAAD CCMpP z

ook ok ok A Aok bk

MEUNT-TAPE

%
*
x

*

Vv
Y L I T

MGUNT _INPUT
LCG TAPES

¥

* *
EEEE SR EEE 2L

v
LS L LR EREEE LS
* *
* *

% REPRGCESS *

:TRANSACIIGNS :
AR E AR S L L LT

Go to next page

*
*
x

All transactions affecting the data
base(s) are stopped to further
input, and a simple checkpoint is
taken. This message is to the
master terminal only.

At this point, the current log tape
is closed so that it can be used as
input to the recovery program. A
new log tape will be opened. This
message is to the master terminal
only.

The input log tapes will be
requested and processed in the order
specified in the /DBRECOVERY
command. :

The input messages will be processed
from the log tape as if they were
from the terminals.

107

Process all tapes listed in the

« ¥ % * MCUNT-TAPE command. (This is a system decision
% *YES %% that will notify the computer
* * % console.)
* MORE TAPES ? %D *
% ¥ % *
* % ET 2
* *
* *
* NG
ook e b ok e ke
:UUTPbT—MSG :
* *DBRECOVERY
3 COMPLETE % Start all transactions and notify
0 o ok ok Aok Nk % the master terminal that normal
operations may resume.
v
EETEEEL AT IR EL LS
* %
* *
* /BROADCAST *
" . Notify all users that normal
ARERERADASSRkES operations may resume.

Note that the /DBRECOVERY command is a single-line command. If there
are too many tapes for one line, the command must be reentered for the
extra tapes after the first one is completed. If the serial number of
the current log tape is not known, issue a /CHECKPOINT command. The -
checkpoint-completed message will contain the desired serial number.

SYSTEMS OPERATION INTERFACE WITH OTHER FUNCTIONS

The main interfaces to the functional portions of IMS/360 are
delineated in Chapter 1 of this manual. However, a few other planning
items must be considered.

Interface with Machine Operations

1. Monitor to see that necessary manual logs are maintained. The
following manual logs may be required and/or desirable.

a. Log of all checkpoints taken, by checkpoint type

108

/

b. Log for each data base when it was dumped, to what tapes, and
what IMS/360 log tapes are required if reconstruction is
necessary

c. Log of all remote terminals (names, location, telephone
number connections)

d. Log of resources - stopped, PSTOPed, purged, started, etc.
e. Log of all restarts taken, by restart type

2. Coordinate to the satisfication of the Systems Operation function
that normal and emergency master terminal operator procedures are

complete.

3. Monitor to see that instructions for remote terminal trouble
diagnosis and reporting are complete.

4. Supply machine operators with adequate instructions for
monitoring data base overflow records.

5. Supply machine operators with the necessary information for
controlling and protecting the libraries of PSB's and DBD's.
(Can use expiration date protection.)

6. Coordinate and verify procedures for normal, scheduled batch
processing of the system log for accounting data (and statistics)
and interface with users' billing systems.

7. Coordinate and verify the training of master terminal operators
and remote terminal operators. :

Interface with Management

Because the Systems Operation function is the "hub®" of the system
(see Figure 1), another important interface is with Management. IMS/360
provides statistical reports and accounting information that can be
condensed for management analysis. Systems Operation planning should
provide Management with information on the need for additional
equipment, and applications to be added to the system, along with backup
of current and historical data. A weekly and/or monthly report should
be devised that condenses the information with which Management is
concerned.

109

CHAPTER 4. TMS/360 SYSTEM DEFINITION

System definition is the means by which a user of IMS/360 structures
IMS/360 to the data processing environment. This structuring includes a
definition of communication line groups, lines, physical terminals,
logical terminals, pools, and subpools. It also includes the
transactions, application programs, data bases, and various Operating
System/360 interfaces. Security maintenance is the means by which a
user defines the terminal and password security characteristics of a
defined IMS/360 system.

IMS/360 SYSTEM STRUCTURING CONSIDERATIONS

Before structuring the IMS/360 system, the user of IMS/360 must
consider the requirements and capabilities of IMS/360 in relation to his
own requirements for the most expeditious operating environment.
Consideration must be given to such things as the amount of core and
direct access storage to be dedicated to IMS/360, the number of
application programs to be run, and how many of these programs are to be
run concurrently. A determination must be made of the transaction codes
which are going to initiate the various application message processing
programs and how many of these types of transaction codes are necessary.
The user must decide which transaction codes are to be of the response
type and which of the nonresponse type. Decisions must be made
concerning how many transaction codes cause data base updates, and how
many are restricted to entry from a particular terminal. Consideration
must also be given to how many lines and terminals there will be in the
system (Items la, 1le, 4, 5, 7a, 7b, 7c(1), and 7f in the Systems
Operation checklist).

In supplying answers to these questions, the user should consider the
possible impact of his decisions on the operating capability of the
system and the efficiency of its operation.

IMS/360 allows the user to batch online transactions. The user would
be wise to consider whether the types of codes he chooses can be gqueued
up and can wait for processing on an as-required basis. Time accounting
is an example of the type which may fall into this category. Attendance
reporting is another. Transaction codes of these types can be readily
batched, because there is no necessity for an immediate-type response.

("Response-type" and "nonresponse-type" messages should not be
confused with true "message types". See Chapter 5 of the Program
Description Manual under "Message Formats and Structures".)

Whenever he enters a response-type message, the user should always. be
aware that his terminal locks and he must wait for a response before he
can enter another message from that terminal. The nonresponse-type
message is entered and competes with other messages, on a priority
basis, for system resources, but the terminal and communication line are
always available for further message input until response. Note, too,
that a design consideration was that response-type messages be
single-line nonupdate messages. If incore buffer space is
miscalculated, system efficiency can be reduced by allowing
response-type messages to be multisegment messages.

The limit count feature of IMS/360 allows consideration of the number
of messages which a reusable application program can process in one load
of the program. Whether the messages are of the response type is of
vital concern. The limit count feature, in conjunction with the limit

110

7N\

7N

priority, does not say that a program will never be processed if there
are always higher priority messages. It does say that, if the
particular message is not called for execution by the time a certain
number of messages have been received and queued, the selection priority
is changed to a higher one. If there are messages with higher selection
priorities in the system, of course, this message may still have to
wait.

The total IMS/360 system must be considered by the user when
structuring his system. The user must consider what the various types
of transactions mean to the system, what the responses are, how many
there are, etc.

Again, the user must consider the number of programs he wishes to be
operating concurrently, how large these programs are and how many
transaction codes they are operating against, and how many terminals he
will be using. These considerations affect the amount of core which is
-dedicated to IMS/360. Each application program, and the system, at any
given time, may require additional amounts of space. Even the number of
terminals concurrently being transmitted to has an effect upon the
‘amount of core buffer space which should be allocated.

For example, assume a message is entered from a terminal. The
application program for processing this message may send messages to
each of six different terminals; therefore, IMS/360 may require core
buffer space for one line of the message output to each terminal. If
the system is executing three application programs concurrently and
trying to transmit to those six terminals, it will require allocation
for 3 {(number of application programs) times 6 (number of terminals)
buffers in addition to the core required to hold the three application
programs (in message processing regions).

The I/0 units on which a system user chooses to place his message
queues have special significance on system operations. For example, the
choice of disk or drum affects the number of messages run and
consequently how many are processed. Since drum access is faster than
disk, its use allows a greater number of messages to come in and go out
of the system faster than when disk storage is used. Of course, there
is more storage available on disk, but this is part of the tradeoff
analysis to be made while structuring the system.

Defining the IMS/360 System

So far this discussion has centered on what the user wants the
IMS/360 system to do. WNow to be considered are what the system user is
trying to do and how the IMS/360 system is tailored to his needs. This
tailoring is done with the IMS/360 system definition macro-instructions.

The IMS/360 requirements are described above. The modifications
necessary to make IMS/360 compatible with Operating System/360 are
accomplished through the use of three supervisor calls (SVC's), which
must be made a part of Operating System/360. This is a simple matter
for the system programmer to accomplish.

The System/360 used for the IMS/360 two-stage definition process must
be at least a Model 40, with the F-level assembler and at least 128K
storage. The IMS/360 system definition must be run using the same
version of Operating System/360 under which the generated system will
execute. The three SVC's must be placed by the system user into
(link-edited with) the Operating System nucleus of the system under
which IMS/360 execution is to occur. The choice of cataloging IMS/360
system data sets is the user's, but this normally simplifies system
execution and control.

111

If stage 1 was not properly defined, Stage 2 input can be corrected
without the necessity for complete regeneration. A system programmer
knowledgeable in IMS/360 control block structure can accomplish this
function.

IMS/360 System Definition Macro-InstructiQns T

The input to Stage 1 of the IMS/360 system definition is a set of
control cards which invoke macro-instructions. These macro-instructions
tailor IMS/360 to a particular user's environment by creating the
control blocks upon which the IMS/360 modules execute. Two types of
system definition are possible:

1. Complete online and Type 3 batch region system
2. Type 3 processing (batch stand-alone) only

Some IMS/360 system definition macro-instructions appear only once in
the stage 1 input stream, while others may be used multiple times in a
hierarchical set arrangement to describe related user requirements.
Figure 19 lists which macro-instructions are required and which may be
used more than once. The end of this chapter provides examples of
IMS/360 system definition.

] 1
| MACRO- TYPE OF DEFINITION |
| INSTRUCTION | COMPLETE | BATCH TYPE 3]
| | SYSTEM | |
| |
| | I I
| | | |
1 | IMSCTRL | REQUIRED 1 | REQUIRED 1 |
2 | APPLCTN | REQUIRED n | N/a* |
3 | DATABASE | REQUIRED n | N/A |
u { TRANSACT | REQUIRED n | N/A |
5 | LINEGRP | REQUIRED n | N/a |
6 | LINE { REQUIRED n | N/A |
7 - | TERMINAL | REQUIRED n | N/A |
8 | NAME | REQUIRED n | N/ |
9 | POOL | OPTIONAL 1 | N/A |
10 | SUBPOOL | OPTIONAL 1 | N/A |
11 | MASTTERM | REQUIRED 1 | N/A |
12 | MSGQUEUE | REQUIRED 1 | N/a i
13 | MACLIB | OPTIONAL 1 | OPTIONAL 1 {
14 | RESLIB | OPTIONAL 1 | OPTIONAL 1 |
15 | PGMLIB | OPTIONAL 1 | OPTIONAL 1 |
16 | PSBLIB | OPTIONAL 1 | OPTIONAL 1 |
17 | DBDLIB | OPTIONAL 1 | OPTIONAL 1 |
18 | PROCLIB | OPTIONAL 1 | OPTIONAL 1 |
19 | IMSGEN | REQUIRED 1 | REQUIRED 1 |
| | | |
L J

* N/A - Not allowable

Figure 19. Complete IMS/360 system definition macro-instruction

Two groups of macro-instructions form hierarchical sets that are
required for the description of user resources. One group (Figure 20)
describes application programs and their related resources (transactions
and data bases). The other (Figure 21) describes communications line
groups, communication lines, and associated physical and logical
terminals.

112

Note: All macro-instruction positional or keyword operand values that
are names must start with an alphabetic character.

l l
MACRO-INSTRUCTION | NUMBER PER SET| PURPOSE
. - |

APPLCTN Names application
program. Delimits

this set of macro-

instructions.
DATABASE n Names data bases

used by applica-

tion program.
TRANSACT n Names transaction

codes which will
be processed by
the above
application
program.

—— et e g, A s S s, Sl o, S (it S it St ah
e s, s, s s i s — S E— ——— —— ——— — — —— — — o]

- S ——

Figure 20. Application description macro-instruction set

_ | |
MACRO-INSTRUCTION | NUMBER PER SET| PURPOSE
| I

Names collection
of terminals with
like attributes.
Delimits this set
of macro-
instructions.

LINEGRP

1

|
|
|
|
|

|

|

|

|

|

!
LINE Provides address |
of line and |
delimits terminals|
on same line. |
‘ |
TERMINAL Provides physical |
terminal data and |
delimits logical |
terminal name. |
|

|

|

|

|

J

Provides logical

NAME
‘ terminal names.

[s et S e S . —— — — — . —— ——— —— — ———— —— — —— c—
s e ot D D et e it S T i S S, D i ity S, St . S st

Figure 21. Terminal description macro-instruction set

IMSCTRL_ Macro

The IMSCTRL macro-instruction is used to describe the basic IMS/360
control program options and the Operating System/360 environment under
which IMS/360 will operate. The IMSCTRL macro-instruction is always

113

required.

For Type 3 batch definition, the MAXIO, MSGBUFF, MAXREGN, and

COMMSVC operands need not be specified.

For Type 1 and 2 processing regions:

2
0
L]

[. e — —— —— — —— —— -

OSAMSVC = number -

1) 1
| | | |
| | IMSCTRL | SYSTEM = MVT ,ALL],[
| 1 | MFT-II {
| | | I
| | | MAXIO = number, |
| | | MAXREGN = number, |
| | | COMMSVC =(number®, number2),| /
| I l |
| | | OCENDA = appendage suffix, |
| | { OSAMSVC = number, |
| | | MSGBUFF = number, |
| | | CKPT =(1000 ,NO i
| | | number YES |
| | I |
L J
Type 3 processing region:
IMSCTRL SYSTEM = MVT '
(MFT-II BATCH) ’
PCP
OCENDA = appendage suffix,

L)
|
|
|
|
|
I
1
|
I
|
‘.

Note:

The only other macro-instructions needed for stand-alone batch
are the xxxLIB macro-instructions.

Operand field:

SYSTEM=

specifies whether IMS/360 operates in an Operating System/360
environment with a variable number of tasks (MVT) or a fixed
number of tasks (MFT-II). The default value for this keyword is
MVT. If PCP is specified, all other operands of the IMSCTRL
macro-instruction must be omitted except OCENDA and OSAMSVC. ALL
means that IMS/360 teleprocessing and stand-alone Data Language/I

batch systems are generated.

BATCH means that only a stand-alone

Data Language/I batch system is generated.

MAXTO=

114

specifies the maximum number of terminal I/0 requests, message
queue requests, and Data Language/I data base requests which may
be in process in the IMS/360 control program region at any one
time. A recommended minimum number is two times the value
specified in the MAXREGN parameter plus the number of queue data
sets specified. The value should never be less than the value
specified in the MAXREGN parameter. If no value is specified,
IMS/360 definition will provide an optimized value based upon
peak system activity at 50% of possible requests in process at

any one time.

v

;

N/

MAXREGN=

specifies the maximum number of regions or partitions which
IMS/360 is expected to support at any one time. This value
includes Type 2 batch regions as well as Type 1 message
processing regions. Default value is 2.

COMMSVC=

specifies the numbers for the Operating System/360 Type 1 SVC's
which IMS/360 uses for interregion communication. The first
number is for calls to the IMS/360 control program from other
regions; the second is for replies from the IMS/360 control
program. Default values are 253 and 254.

OCENDA=

specifies the load module member name to be given the OSAM
channel end appendage. This module is placed into the IMS/360
load module library during IMS/360 system definition. The name
of this module must start with IGG019. Two additional characters
must be appended. These characters may range from WA to 2Z9.

Only the last two characters of the name should be specified in
the macro operand. The default name is OCENDA=Z9 (that is,
IGG0197Z9). :

OSAMSVC=

specifies the user SVC number to be given the OSAM Type 2 SVC.
This SVC is used to construct and extend OSAM data extent blocks
(DEB) in system queue space when using MVT. The default SVC
number is 255.

MSGBUFF=

specifies the number of incore message buffers for multiple line
messages. See the section "IMS/360 Message Queues®™ in Chapter 3,
for a further definition. _ ‘

CKPT=

specifies a threshold value for the number of log records
written. Upon reaching the threshold, IMS/360 generates an
internal request for a simple checkpoint. Default is 1000.

Range is 500 to 32,767. The second parameter (NO or YES) defines
whether or not logging of replaced data base records is to be
performed.

APPLCTN Macro

The APPLCTN macro-instruction describes the program resource
requirements for application programs which run under the control of the
IMS/360 Type 0 region. When combined with one or more DATABASE and
TRANSACT macro-instructions, the set defines the total scheduling and
resource requirements for an application program. The APPLCTN
macro-instruction describes only programs which operate in Type 1
message processing regions or Type 2 batch processing regions.
Application programs which operate in a Type 3 batch processing region
are not to be described through the APPLCTN macro-instruction.

115

[) 1
	i APPICTN	PSB = psbname,
		TP
	i PGMTYPE =	{ ====—- [,OVLY]]}
N		BATCH
	{	
L J

| If a TP application program outputs messages which are input to
another TP application program and the second program intends to modify
a given data base, the first program must declare at least shared usage
of the same data base for proper execution of the /DBRECOVERY command.
This is performed with a DATABASE macro-instruction.
7

[N b
Operand field: #

PSB=

specifies the logical name of the program specification block
(PSB) as generated using the IMS/360 PSB generation utility. At
execution time, the PSB must exist as a load module member of the
partitioned data set named in the PSBLIB macro-instruction. The
application program must also exist as a load module under the
same member name in the partitioned data set named in the PROGLIB
macro-instruction.

PGMTYPE=

TP identifies a message processing program which executes in a
Type 1 region as a teleprocessing program. A BATCH program may
utilize Data Language/I in the IMS/360 control region and may
reference the message queues. If BATCH is coded, all TRANSACT
macro-statements which follow will be assigned a normal and limit
priority value of zero. The OVLY value indicates that the
application uses overlay design. If OVLY is specified for
application programs which do not use overlay design, it will
result in unnecessary processing overhead. If OVLY is not
specified when required, it will cause unnecessary core storage
to be used in the message processing region and may eventually
cause the message region control program to be abnormally
terminated.

DATABASE Macro

The DATABASE macro-instruction defines all data bases to be used by
the preceding APPLCTN macro-instruction. It is part of the set APPLCTN,
DATABASE, and TRANSACT, which describe the total resource and scheduling
requirements of each application known to IMS/360. The DATABASE
macro-instruction may be omitted or used one or more times with each
APPLCTN macro-instruction.

116

N

DATABASE DBD = dbdname,
UPDATE
INTENT = SHARE v
EXCLUSIVE

LOG= YES
NO

[S o ——— — —— — ——
———— e, T = S c— 2 c—
e e e S e — . o S .]

Operand field:
DBD=
specifies the logical name of the data base description ' (DBD)
block as generated using the IMS/360 DBD generation utility. At

execution time, the DBD must exist as a load module member in the
partitioned data set named in the DBDLIB macro-instruction. The

116.1

116.2

£\

/

name of the DBD load module and the DBD=dbdname must be
identical. This operand is required.

INTENT=

specifies whether the application program named in the preceding
APPLCTN macro-instruction intends to use the data base for
read-only, update, or solely to the exclusion of all other
applications which may use the same data base. SHARE specifies
that the user intends read-only usage.

WARNING: If SHARE is specified, and the program specified in the
APPLCTN macro-instruction attempts to perform a get hold, insert,
replace, or delete operation against the data base, no checking
is performed. The operation is performed, and the call is
treated as valid. Regardless of the processing option specified
at PSBGEN time, the application program will be scheduled for
execution in a processing region. If an application program
performs update operations against a data base toward which SHARE
intent is declared, the integrity of that data base may be
destroyed. In addition, physical coding and pointers contained
in the data base records may be so damaged that the entire data
base can no longer be accessed using Data Language/I.

UPDATE specifies that the program intends to perform insert,
delete, or replace functions against the data base and ensures
that no other program which intends to UBDATE is scheduled for
execution at the same time. EXCLUSIVE specifies that the program
must be scheduled to the exclusion of all other programs which
) use the same data base, regardless of intent. The default value
J is UgEéTE.)

LOG=

If LOG=YES is specified on any DATABASE card -for a particular
data base, all modifications by any application program are
logged. The logging of all segments added, deleted, or replaced
in the data base allows data base "backout" during emergency
restart. The user is cautioned against specifying logging for a
SHARE data base. SHARE logging results in unnecessary overhead
in ordinary operations.

TRANSACT Macro

The TRANSACT macro-instruction may be used one or more times with
each APPLCTN macro-instruction. It specifies the transaction codes
which cause the application program named in the APPLCTN
macro-instruction to be scheduled for execution in an IMS/360 Type 1
message processing region. It also provides the IMS/360 control program
with information which influences the application program scheduling
algorithm,

\

117

TRANSACT CODE transaction code,

PRTY

(normal, limit, limit
count),

MSGTYPE = J(MULTSEG ,{)NONRESPONSE),
(SNGLSEG {)RESPONSE)

PROCLIM = (count, seconds),

NO

INQUIRY NO
YES

o . e . — e — ma, et S—— e — ——]

Operand field:

118

CODE=

specifies the transaction code. The transaction code may be one
through eight characters in length. The first character of
transaction codes and logical terminal names must be any of the
29 characters (A through Z, $, #, and a) as defined by IBM
System/360 Operating System: Assembler Lanquage (GC28-6514).
Transaction codes and NAME macro-instructions must comprise a set
of values, each of which is unique in the system. That is,
transaction codes and logical terminal names collectively may not
contain duplicates. The CODE operand is required.

PRTY=

specifies the priority levels at which this transaction code
contends for scheduling selection with other transaction codes
being processed by the system. The normal and limit values may
range from 0 through 14 and are coded as one or two numeric
digits. The limit count value may range from 1 through 65535.
The normal field is the priority assigned to this transaction
when the number of input transactions enqueued and waiting to be
processed is less than the value specified in the limit count
field. The limit priority field is the priority to which this
transaction code is raised when the enqueued count of waiting
input messages is equal to or exceeds the value specified in the
limit count field. Once the priority of this transaction has
been raised to the limit priority, it is not reduced to the
normal priority until all enqueued messages for this transaction
code have been processed by the program specified in the
preceding APPLCTN macro-instruction, that is, the input queue is
empty. If the limit priority feature is not desired for this
transaction, code the normal and limit values equal and the limit
count value zero. Default values for normal, limit, and limit
count are 1,1, and 65535.

MSGTYPE=

specifies the time at which an incoming message is considered
complete and available to be routed to an application program for
subsequent processing. MULTSEG means that the incoming message
is more than one line in length and is not to become eligible for
scheduling to an application program until the terminal operator
depresses the EOT key. SNGLSEG specifies that the incoming
message is always only one line in length and becomes eligible
for scheduling when the terminal operator depresses the EOB key
(carriage return if the Auto EOB feature is present).

~

NONRESPONSE specifies that, upon completion of the input message,
single or multiple segment, the terminal is to accept further
input without waiting for the completed input message to be

118.1

118.2

N\

AN

processed. RESPONSE specifies that, upon completion of the input
message, single or multiple segment, the terminal and
communication line to which it is attached are to accept no
further input until the program specified in the APPLCTN
macro-instruction has been scheduled, has processed the input
message, and has sent an output message to the input terminal.
Default value is (MULTSEG, NONRESPONSE).

PROCLIM=

INQUIRY=

e
Ent riﬁﬂvalue is used by data basiﬁfecovery and DBDFMP only.ﬁ4
TeHED TER il UG Ly . A 2
If the INQUIRY. operand is NO: YRR St M- 2
1. Data base recovery reprocesses E;lwmessages entered against
this transaction code:-. o
2. No input is allowed aga}nst thlS transaction code durlng
DBDUMP.. <
3, A s 6o kL) !;‘W Q~L ,. i :né/t Wil .‘W\ \,o \ib %l/)‘/y\,v\ 3 M,«/'i{”('{ /le
If the INQQ;RY operand 1s YES, IMS/360 assumes that thlS
transas/;on code will not cause alteratiofls tO\QQFa bases.
// u*x
// \’\\ 119

—

specifies the maximum processing time per message and the maximum
number of messages to be processed per application program load
in a Type 1 IMS/360 message processing region. The seconds field
specifies a numeric value in seconds, which may range from 1
through 65535 and represents the maximum CPU time allowed for
each message to be processed in the message processing region.
The count field specifies the maximum number of messages which
are provided to the application program by the IMS/360 control
program for processing without reloading the application program.
The count field value may range from 1 through 65534. Code the
count field value at 65535 if no limit is to be placed upon the
number of messages processed at a single program load. Default
value for the PROCLIM operands is (65535, 65535).

The seconds value assigned is used for the purpose of application
program erroneous looping control. No attempt need be made to
optimize the seconds value for program-transaction execution
time. However, the seconds time value assigned should not be
less than the expected per-transaction execution time. If the
scheduled application program exceeds the product of seconds and
count, the application program will be terminated abnormally.

The count value assigned is used to determine how many messages
an application program is allowed to process in a single
scheduling cycle, that is, program load. When the application
program has requested and received the number of messages
indicated in the count value, it will receive a "no more
messages™ indicator upon any subsequent requests from the IMS/360
control program. IMS/360 may, in fact, have other messages
enqueued for the application program. Upon receiving the
indication that no more messages are available, the message
processing application program must terminate, thus making
available the region it occupied for rescheduling. This feature
enables IMS/360 to allow scheduling of higher priority
transactions which may have entered the system while the previous
transactions were in process. In addition, if any equal priority
transactions are enqueued, they will become eligible for
scheduling on a first-in, first-out (FIFO) basis.

Therefaqre:

S~
1. Data“base recovery will not reprocess messages entered
against thls\xransactlon code. —

2. Dugigg,DBDUME1w1npu‘*1s*allgwed against this transaction
____——T6de.

~_

LINEGRP Macro

The LINEGRP macro-instruction defines the beginning of a set of
communication lines and physical terminal, logical terminal pool,
logical terminal subpool, and logical terminal description
macro-instructions which include LINE, TERMINAL, POOL, SUBPOOL, and
NAME. These sets are used to describe the user's telecommunications
system. The LINEGRP macro-instruction is used to begin a description of
one or more lines of the same type, over which the same type of terminal
will communicate.

| 1
1		
[namel	LINEGRP	DDNAME = name,
1		{STACTL, NONSWITCH}
		FEAT = TRANSCTL, SWITCHED §,
		{21“_0_}
		UNITYPE = {1050
		2260
L J

Operand field:

DDNAME=

specifies the DD name that is used to allocate the communication
line devices described in the following LINE and TERMINAL
macro-instructions. This name is placed in the DD statements
generated as a part of the execution procedure called IMSO, which
is placed in the procedure library specified in the PROCLIB
macro-instruction during Stage 2 of IMS/360 system definition.
The operand is required.

FEAT=

specifies certain features that establish part of the
characteristics used to determine which lines comprise a line
group. The allowable combinations of values for this operand
related to terminal unit type are shown in the following table.
See also the LINE macro-instruction FEAT operand.

120

N\

Exhibit 41

TERMINAL TYPE
OPERAND
1050 /1117777777
: 2260
/11177777777 2740

VALUES

STACTL STACTL TRANSCTL STACTL

SWITCHED NONSWITCHED | SWITCHED NONSWITCHED
AUTOANS OPTIONAL N/A OPTIONAL N/A
AUTOPOLL N/A OPTIONAL N/A N/A
POLL N/A OPTIONAL N/A OPTIONAL
UNITYPE=

specifies the unit number of the device as either an IBM 1050,
2260, or 2740 communication terminal. All terminals in this
LINEGRP must be the same.

LINE Macro

The LINE macro-instruction defines the beginning of a set of
TERMINALs and NAME macro-instructions which describe the physical and
logical terminals on a single communications line. This
macro-instruction is used to describe both switched and nonswitched
communication lines. If the line described has only one terminal
attached, only one TERMINAL macro-instruction appears after the LINE
macro-instruction. Multiple TERMINAL macro-instructions would appear if
the description were for a multidrop line. Multiple NAME
macro-instructions, each of which describes a logical terminal, may
appear after each TERMINAL macro-instruction that follows a LINE
macro-instruction. Each LINE macro-instruction must be followed by at
least one TERMINAL macro-instruction.

1 1
| | | I
[namel	LINE	FEAT = AUTOANS
		AUTOPOLL, ,
		POLL
)	ADDR = hexnumber,	
L 4

121

Operand field:
ADDR=

specifies the address of the communication line. The address
value is three hexadecimal digits ranging from 000 through 6FF.

FEAT=

describes the features of the terminals which are attached to
this line. See the table following the FEAT operand of the
LINEGRP macro-instruction for restrictions. This operand is
required. If the LINEGRP macro specifies SWITCHED, the only
allowable FEAT operand is AUTOANS. If the LINEGRP macro
specifies NONSWITCH, the only allowable FEAT operands are
AUTOPOLL and POLL. There are no default options.

TERMINAL Macro

The TERMINAL macro-instruction describes a physical terminal which
must be an input device and may, in addition, be an output device. This
macro-instruction describes a physical terminal on a nonswitched line or
the representation to BTAM of a physical terminal on a switched line.
NAME macro-instructions which follow the TERMINAL macro-instruction
supply the logical terminal name(s) associated with the physical
terminal at system definition time. Within the definitions and
restrictions of terminal security, the first NAME macro-instruction
encountered following a TERMINAL macro-instruction becomes the response
. or input/output logical terminal. Each TERMINAL macro-instruction must
be followed by at least one NAME macro-instruction.

l .

[name] i TERMINAL| ADDR = terminal address
| | character,
| |
| | [(UNIT = 2848 unit address]
| I

(= o e e s e ot 9
A p——

Operand field:
ADDR=

specifies the physical terminal addressing character in terminal
code, hexadecimal representation. For example, physical terminal
address "a" for a 2740 would be coded ADDR = E2.

UNIT=

is the 2848-unit address onto which the specified TERMINAL is
attached. This operand is required when the UNITYPE operand on
the preceding LINEGRP is 2260. The value range is 40 - AS8.

POOL Macro

The POOL macro-instruction describes a pool of logical terminals
which are to be associated with a set of switched communication lines.
The IMS/360 user need have only one logical terminal pool for all
autoanswer or communication lines. All POOL macro-instructions must.
follow after all LINE macro-instructions within a LINEGRP. See the
section of this chapter titled "Teleprocessing Example".

122

N

/N

|
POOL | FEAT = AUTOANS

—
[s e et oy
b s s e

Operand field:
FEAT=
specifies the'pool of logical terminals to be associated with
those physical lines defined by the LINE macro-instructions with
the equivalent FEAT operands.

SUBPOOIL Macro

The SUBPOOL macro-instruction defines a set of logical terminals
within a pool which may be associated with a given physical terminal on
a switched communication line when the /IAM command is executed. One or
more subpools may be defined within a POOL macro-instruction. At least
one must be defined for each POOL macro-instruction.

| |
{ suBpPoOL |
| l

o——
i —
bt e S s gud

Operand field:

There are no operands for this macro. This macro-statement defines
the beginning of a subpool set.

NAME Macro

The NAME macro-instruction defines the logical terminal name to be
associated with the physical terminal described by a preceding TERMINAL
or SUBPOOL macro-instruction. At least one NAME macro-instruction must
follow each TERMINAL or SUBPOOL macro-instruction to establish a logical
terminal name for the physical terminal or within the subpool.

Only one NAME macro-instruction defining the inquiry logical terminal
should follow a TERMINAL macro-instruction which describes the BTAM
representation of a physical terminal associated with a switched
communication line. Multiple NAME macro-instructions may follow a
TERMINAL macro-instruction on a nonswitched communication line or a
SUBPOOL macro-instruction where the subpool contains multiple logical
terminals.

All inquiry logical terminal names in a system generation must begin
| with the same first four characters. Only transactions described with
| the TRANSACT macro-instruction with the operand INQUIRY = YES may be
| entered through the inquiry logical terminal on a switched line. No

subpool logical terminal name may start with the first four characters
used for inquiry logical terminal names. See section in Chapter 3
titled "Logical Terminal Types in Switched Communications Network
Environment"” about transactions that can be input when a user signs on
for an inquiry logical terminal.

NAME lterm name,

COMPT= 0 or PTR1

(= et e cams . e =y
—— c—— c—— o—
—— . — c—

et s e S e e

123

Ope

rand field:
lterm name

defines a name for a logical terminal associated with the
preceding TERMINAL or SUBPOOL macro-instruction. The value for
this operand may be one to eight alphameric characters. The
value assigned to this operand must be unique in the collective
group that includes values assigned to the CODE operand of the
TRANSACT macro-instruction. The operand is required.

COMPT=

specifies the particular device in a 1050 terminal complex to
which the specified terminal is associated. The specified lterm
is used to direct output messages to the terminal. Operand
values are:

0 or PTR1 = 1050 printer 1

MSGQUEUE Macro

The MSGQUEUE macro-instruction defines the input and output

single-line message and multiple-line message data sets desired by the

use

r. This macro-instruction is required.

[ot e — — — — — — — —— c—— ca— =y

1

MSGQUEUE QCRIN = (ddname,dsname,unit,serial), |
[QCROUT = (ddname,dsname,unit,serial),]]
MSGIN = (ddname,dsname,unit,serial),[

(ddname,dsname,uhit,serial),]|

(MsGouT

o
&
n
=

I

YES, 100
NO n

— N e .t) S e D e St s
— iy, . e, S S i, S e S o

Ope

124

rand field:'
QOCRIN=

specifies the DD name, DS name, unit type, and volume serial of
the direct access device upon which the input single-line message
data set resides. The value for the unit must be 2311, 2314,
2301, or 2303. The data set itself is not required until
execution time. The information from this macro-statement is
combined with other information to produce a system execution
procedure called IMSO, which is placed in the library named by
the user in the PROCLIB macro-instruction. This operand is
required.

QCROUT=

specifies the DD name, DS name, unit type, and volume serial of
the direct access device upon which the output single-line
message data set resides. The field values are subject to the
same restrictions as the QCRIN operand. If separate data set
control for input and output queue control records is not
desired, omit this operand. All single-line messages are _ .

maintained on the data set as defined in the QCRIN operand. This
operand is optional.

MSGIN=

specifies the DD name, DS name, unit type, and volume serial of
the direct access device upon which the input multiple-line
message data set resides. The field values are subject to the
same restrictions as the QCRIN operand. This operand is
required.

MSGOUT=

specifies the DD name, DS name, unit type, and volume serial of
the direct access device upon which the output multiple-line
message data set resides. The field values are subject to the
same restrictions as the QCRIN operand. If separate data set
control for input and output message buffers is not desired, omit
this operand. TIf this operand is present, all output message
buffers are maintained on this data set. This operand is
optional.

REUSE=

specifies, by the first operand, whether reusable queues are
desired. The second operand specifies the number of queue
records reserved for orderly shutdown of the system queues. When
the number of remaining records on any queue data set is equal to
or less than the entered value, a /CHECKPOINT DUMPQ command is
automatically initiated by IMS/360. If reuse of queue is
desired, previously used records will be reused when the number
of remaining records reaches this point. However, if there are
no records available for reuse, a /CHECKPOINT DUMPQ command will
‘be initiated. A system ABEND will occur if the /CHECKPOINT DUMPQ.
command cannot be honored. (See /CHECKPOINT DUMPQ command.) The
n value of the second operand has a default value of 100 records
and a minimum value of 10 records. The maximum value is 36,863
records; however, the entered value cannot be larger than the
smallest queue data set (if the value is too large, an immediate
/CHECKPOINT DUMPQ will be initiated when IMS/360 is started).

MASTTERM Macro

The MASTTERM macro-instruction identifies the logical terminal that

is the master terminal in the generated system.

o — e — e o

MASTTERM logical name

—— —
b e e e e o

Operand field:

logical name

is the logical name of an input terminal defined in a previous
TERMINAL and NAME macro-instruction set. The master terminal
cannot be attached through a switched communication line.

The associated NAME macro-instruction must be the first NAME
macro-instruction following the associated TERMINAL
macro-instruction. There must be at least two NAME
.macro-instructions in the TERMINAL and NAME macro-instruction set
defining the master terminal.

125

If the terminal referred to by the associated NAME macro-instruction
is on a multidrop line, that is, there are other TERMINAL
macro-instructions within the same line set, the referred-to TERMINAL
macro-instruction must be the first TERMINAL macro-instruction following
the associated LINE macro-instruction.

MACLIB Macro

The MACLIB macro-instruction designates the library upon which
macro-definitions (such as PSB and DBD macro-definitions) output from
Stage 2 are placed. If the MACLIB macro-instruction is used, the
partitioned data set named in the PDS operand must be allocated and
cataloged by the user and must exist in the generating system. If the
MACLIB statement is omitted, no IMS/360 macro-definitions will be
transferred from IMS.GENLIB to any user library, including those
required to perform PSB and DBD generation.

MACLIB UNIT = nane,

VOLNO = serial,

IMS.MACLIB
PDS = name
COPY = UTILITY
ALL

[. . o M o — i, . v S
— . — — — " — e, S i,
— i o — . o— . c—— — — ——

bt s G G v — — — — — o— —]

Operand field:

UNIT=

specifies the unit name of the direct access device upon which
the macro library PDS is to reside in the generated system.
Mandatory entry value must be 2311 or 2314.

VOLNO=

specifies the serial number of the volume that is to contain
IMS/360 macro-definitions in the generated system. Mandatory
entry.

PDS=

is the name of the macro-definition library upon which the
IMS/360 macro-definition will reside in the generated system. If
no PDS name is provided, Stage 2 assumes the PDS name to be
IMS.MACLIB.

COPY=

specifies which macro-definitions are to be transferred to the
PDS specified in the PDS operand. If this operand is omitted,
only those macro-definitions required to perform PSB and DBD
generation are copied. If ALL is specified, all
macro-definitions in IMS.GENLIB are copied. Direct access
allocation space requirements may be found in this chapter under
the topic "IMS/360 System Data Set Allocation".

126

N\

N

RESLIB Macro

The RESLIB statement defines the PDS in the generating and generated
system upon which all IMS/360 load modules are placed during Stage 2.
It must be a preallocated, cataloged data set in the generating system.
It may be SYS1.LINKLIB.

H 1
| | | !
| | RESLIB | UNIT = name, |
| | I |
| | | VOLNO = serial, I
| l | |
| | | PDS =)IMS.RESLIB i
		name
	1	
L s

Operand field:
UNIT=

specifies the unit name of the direct access device upon which
the macro library PDS is to reside in the generated system.
Mandatory entry value must be 2311 or 2314.

VOLNO=

specifies the serial number of the volume that is to contain
IMS/360 macro-definitions in the generated system. Mandatory
entry.

PDS=

specifies the DS name of the library in the generated system upon
which the IMS/360 load module library is placed. If this operand
is omitted, it is assumed that the PDS named IMS.RESLIB is
cataloged and preallocated in the generated system. Direct
access allocation space requirements may be found in this chapter
under the topic "IMS/360 System Data Set Allocation".

PGMLIB Macro

The PGMLIB macro-instruction designates the library upon which all
executable application programs reside.

k]

r 1
| | | I
	PGMLIB	UNIT = name,
	i VOLNO = serial,	
l		
	I IMS.PGMLIB	
i	PDs = name	
L J

Operand field:
UNIT=
specifies the unit name of the direct access device upon which

the application program library is to reside in the generated
system. TIf this operand is omitted, the VOLNO operand must also

127

be omitted. System definition then assumes that the data set is
cataloged on the generated system.

VOLNO=

specifies the serial number of the volume that is to contain
IMS/360 application programs in the generated system. If this
operand is omitted, the UNIT operand must also be omitted. See
UNIT operand above.

PDS =

is the name of the program library. If the PGMLIB statement is
made and the PDS operand is omitted, the default name of the
partitioned data set is IMS.PGMLIB. Direct access allocation
space requirements may be found in this chapter under the topic
"IMS/360 System Data Set Allocation".

PSBLIB Macro

The PSBLIB macro-instruction désignates the library upon which the
output from the IMS/360 PSB generation utility resides.

PSBLIB UNIT = name,

VOLNO = serial,

PDS =

IMS.PSBLIB
name

(= et et e e e S— — oy
— . o —— — g, S—
——— e ——— g, S—

b e s s e — —— —— a— o=

Operand field:
UNIT=

specifies the unit name of the direct access device upon which
the PSB library is to reside in the generated system.

VOLNO=

specifies the serial number of the volume that is to contain the
PSB library.

PDS=

is the name of the PSB library. If the PSBLIB statement is made
and the PDS operand is omitted, the default name of the
partitioned data set is IMS.PSBLIB. The library need not be
allocated in the generated system. Direct access allocation
space requirements may be found in this chapter under the topic
"IMS/360 System Data Set Allocation".

DBDLIB Macro

The DBDLIB macro-instruction designates the library upon which output
from the IMS/360 DBD generation utility resides.

128

-

r 1
| | | |
| | DBDLIB | UNIT = name, |
l | | |
| | | VOLNO = serial, |
| | | I
| | | IMS.DBDLIB |
| | | PDS = name |
l | | |
L J

Operand field:
UNIT=

specifies the unit name of the direct access device upon which
the DBD library is to reside in the generated system.

VOLNO=

specifies the serial number of the volume that is to contain the
DBD library.

PDS=

is the name of the DBD library. If the DBDLIB statement is made
and the PDS operand is omitted, the default name of the
partitioned data set is IMS.DBDLIB. The library need not be
allocated in the generated system. Direct access allocation
space requirements may be found in this chapter under the topic
"IMS/360 System Data Set Allocation".

PROCLIB Macro

The PROCLIB macro-instruction designates the library upon which
procedure output from Stage 2 is placed. If the PROCLIB
macro-instruction is used, the PDS name specified must exist in the
generated system. If the PROCLIB statement is omitted, no user
procedures are generated. If the statement is included, and if all
conditions stated in other generation macros which affect procedure
generation are satisfied, the following procedures are generated.

Name Procedure

PSBGEN Generate (assemble) PSB and link to appropriate
library

DBDGEN : Generate (assemble) DBD and link to DBDLIB library

IMSO0 and IMS1 Execute IMS/360 online system

IMS DASD reader procedure to invoke IMSO procedure

IMSMSG Execute Type 1 processing region

IMSBATCH Execute Type 2 processing region

DLIBATCH Execute stand-alone Type 3 processing region

IMSCOBGO Execute COBOL compile and go Type 3 batch processing,
link to PGMLIB

IMSPLIGO Execute PL/I compile and gd Type 3 processing, link
to PGMLIB

129

(o e e o c— . a——

IMSCOBOL Compile and link COBOL to PGMLIB library
IMSPLI Compile and link PL/I to PGMLIB library
SECURITY Execute security maintenance program assemble, and
link to RESLIB library
DLITCBL Linkage editor input for COBOL compiler
DLITPLI Linkage editor input for PL/I compiler
PROCLIB UNIT = name,

VOLNO = serial,

IMS.PROCLIB
PDS= name

b s s e — — — — —]

Operand field:

UNIT=

IMS

specifies the unit name of the direct access device upon which
the macro library PDS is to reside in the generated system. If
this operand is omitted, the VOLNO operand must also be omitted.
System definition then assumes that the data set is cataloged on
the generated system.

VOLNO=

specifies the serial number of the volume that is to contain
IMS/360 procedures in the generated system. If this operand is
omitted, the UNIT operand must also be omitted. See UNIT operand

above.

PDS=

is the name of the procedure library upon which the IMS/360
procedures reside in the generated system. If no PDS name is
provided, Stage 2 assumes the preallocated PDS name to be

Direct access allocation space requirements may be
found in this chapter under the typic "IMS/360 System Data Set

IMS.PROCLIB.

Allocation"

GEN Macro

130

The IMSGEN macro-instruction is used to specify the data sets,
volumes, and I/O devices required for the definition process, the system
definition output options.

The IMSGEN macro-instruction must be the 1ast macro-instruction in
the Stage 1 input stream.
assembler END statement.

It must be followed immediately by an

__/

) R}
| | | |
l | IMSGEN | UT1SDS = dsname, |
		OFF
1	ASMPRT = ON .	
		i
1	{LEPRT = (valuel,.....value?)]	
	J	

Operand field:
UT1SDS=

specifies the name of the utility data set to be used during
Stage 2 of system definition by the assembler and linkage editor.

ASMPRT=
specifies whether assembly listings are to be procured for the
modules assembled during system definition. ON specifies that
assembly listings are to be generated; OFF, that assembly
listings are not to be generated.

LEPRT= value

specifies linkage editor print options as one or two of the
following values.

Value Print Option

LIST List of control statements in card-image
format

MAP Module map

XREF Cross—~reference table (XREF includes the MAP
option)

If this parameter is omitted, only linkage editor error messages,
if any, are printed. For a more detailed description of these
options, see the publication IBM System/360 Operating System:
Linkage Editor (C28-6538).

IMSTEST Macro

This IMSTEST macro-instruction is designed to provide a means of
generating an alternate IMS/360 nucleus. This macro-instruction alters
the Stage 2 job stream of system definition to provide only those job
steps necessary to create the system control blocks, a composite system
control block module, and the composite system nucleus. A system
definition must have already been performed, creating a standard nucleus
(as previously described), and the MACLIB specification of that standard
generation must have included the COPY=ALL parameter. It is assumed
that the same SVC numbers and the channel end appendage suffix specified
in the standard system definition are also specified when generating an
alternate IMS/360 nucleus using the IMSTEST macro. (While no check is
made to verify that they are the same, execution of the alternate
nucleus would be impossible if they were not.) It is also assumed that
DFSILNKO is in SYS1.LINKLIB (if not, a JOBLIB must be added to the Stage
2 job stream). ’ :

131

Note: Since the basic purpose of the alternate Stage 2 job stream is to
provide the user an alternate composite system control block
module (DFSIBLK) and an executable IMS/360 nucleus (DFSINUC), the
Stage 2 job stream will not affect those IMS/360 modules whose
function is not altered by or part of the alternate nucleus.
These modules are:

DFSIRC00 - region controller module

DFSIPC00 - program controller module

DFSIDLLO - Data Language/I block loader module
DFSISVV0 - MVT interregion SVC routines
DFSISVF0 — MFT interregion SVC routines
DFSIOCEQ0 - OSAM channel end appendage module

The above modules remain unaffected, to allow the alternate and the
standard IMS/360 nuclei to operate with the same Operating System/360
nucleus, if the same SVC numbers and OSAM channel end appendage suffix
values were provided in both generations.

To invoke the alternate IMS/360 system definition, the user includes
an IMSTEST control card with the standard Stage 1 IMS/360 control cards.
The IMSTEST control card must precede all other IMS/360 system
definition control cards and supply three cataloged PDS names to be used
during execution of the Stage 2 job. See the teleprocessing example at
the end of this chapter.

The user supplies a suffix code to be appended to the composite
control block module (DFSIBLK) and the executable nucleus module
(DFSINUC) member names when they are link edited into the specified
RESLIB. A separate cataloged data set can be provided to retain the .
individual control block modules as they are assembled prior to
constructing the composite control block module (DFSIBLK). Since the
individual modules are needed only during the system definition phase,
this data set can be scratched after DFSIBLK is created. Other
cataloged PDS names are provided containing the IMS/360 macros and the
IMS/360 load modules.

|

IMSTEST | GLIB = IMS.MACLIB,
| LLIB = IMS.RESLIB,
| BLIB = IMS.RESLIB,
| CODE = X
|

o s e o G s s
et e o o o s, S

Operand field:

GLIB =
specifies the cataloged PDS to be used as SYSLIB by the assembler
steps of Stage 2 and must ‘contain the IMS/360 macros necessary to
compile the control blocks. The default value is IMS.MACLIB.

LLIB =
specifies the cataloged PDS containing the executable IMS/360
load modules. The modules in this PDS should correspond to the
modules moved to the specified RESLIB by Step 1 of the standard
IMS/360 system definition. The default value is IMS.RESLIB.

BLIB = ’
specifies the cataloged PDS into which the individual'system
control blocks assembled by Stage 2 will be placed. All

132

7N\

N_.”

C

Maxi

assembled system control blocks will be placed in this data se
except DFSIBLK and DFSINUC. This may be a temporary data set

existing only for the duration of the Stage 2 job. The defaul
value is IMS.RESLIB. Note, however, that if the default value
used for this operand, the control block modules will replace

those created by the standard IMS/360 system definition.

ODE =

specifies a one-character suffix to be appended to the load
module member names DFSIBLK and DFSINUC upon placing them into
the specified RESLIB. The default value is X. Note that the
suffix should not be 0 or the original IMS/360 nucleus will be
destroyed.

mum System Definition Macro-Instruction Occurrences

t

t
is

The IMS/360 system produced by IMS/360 system definition has defined

limi
numb

tations on the number of each system resource type. The maximum
er of any resource type is controlled by the maximum number of

occurrences of macro-instructions in each system definition. The

foll

owing table provides a definition of the resource limits:

) 1
Macro -	Maximum Occurrences
Instruction	of Macro-Instruction
- e s ——s—————	
IMSCTRL	1
{ APPLCTN	254
DATABASE	254
TRANSACT	509
LINEGRP	255
LINE	253-A
TERMINAL i 254-B	
{ NAME	509
pooL	254-C
SUBPOOL	254-D
MASTTERM 1 1	
MSGQUEUE	1
MACLIB	1
RESLIB	1
PGMLIB	1
PSBLIB	1
DBDLIB	1
PROCLIB	1
IMSGEN	1
{ | |
L]
where:

A is the number of MAXREGN defined in the IMSCTRL macro-instructio

B

C

plus the number of occurrences of the POOL macro-instruction.
is the number of occurrences of the SUBPOOL macro-instruction.

is the number of MAXREGN defined in the IMSCTRL macro-instructio
plus the number of occurrences of the LINE macro-instruction.

is the number of occurrences of the TERMINAL macro-instruction.

n

n

133

System Definition Job Control Langquage Statements

The Job Control Language (JCL) for Stage 1 of system definition is
for an assembly execution. Use the standard Operating System/360
Assembler procedure (ASMFC) with the following SYSLIB DD card override.
The user generates a card deck of the following format and places these
cards in the job stream. .

/77 JOB

/77 EXEC ASMFC

//ASM.SYSLIB DD DSNAME=IMS.GENLIB,DISP=OLD
//ASM.SYSIN DD *

INPUT CONTROL CARDS -

IMS/360 Stage 1 -
SYSTEM DEFINITION PROGRAM

/¥

The resulting output deck completes Stage 1. The JCL for Stage 2 is
only a JOB card supplied by the user generating the system and placed in
front of the punched card deck received from Stage 1. Place this deck
of cards in the job stream.

Examples of system definition are shown at the end of this chapter.

IMS/360 System Data Sets

The various partitioned data sets used by IMS/360 for libraries must
be defined and allocated by the user. The DCB characteristics for these
data sets should be specified at time of allocation. In all cases,
these DCB characteristics should be equated to existing Operating
Systen/360 partitioned data sets. This can be done with a DCB= operand
of the DD card used for allocation. The following lists the
IMS/360-Operating System/360 data sets which would have equivalent DCB
characteristics:

IMS/360 Operating System/360
IMS.RESLIB SYS1.LINKLIB
IMS.PGMLIB SYS1.LINKLIB
IMS.PROCLIB SYS1.PROCLIB
IMS.MACLIB SYS1.MACLIB
IMS.PSBLIB SYS1.LINKLIB
IMS.DBDLIB SYS1.LINKLIB

It is suggested that the Operating System/360 utility program
IEHPROGM be used to allocate and catalog these IMS/360 system data sets.

To summarize, the different libraries made available or modified by
the user or by the system definition program are as follows:

134

N\

\

Complete System Type 3 Batch

Definition System Definition
IMS.RESLIB IMS.RESLIB
IMS.MACLIB IMS.MACLIB
IMS.PSBLIB IMS.PSBLIB
IMS.PGMLIB IMS.PGMLIB
IMS.PROCLIB IMS.PROCLIB
IMS.DBDLIB IMS.DBDLIB
SYS1.SVCLIB (OSAM channel end SYS1.SVCLIB
appendage)
SYS1.LINKLIB (Link pack modules) SYS1.LINKLIB
IMS. MESSAGE QUEUE DATA SETS = = = = ~—==—c————=--
SYS1.NUCLEUS (Type 1 and 2 SVC's) SYS1.NUCLEUS (Type 2 SVC)

IMS/360 System Data Set Allocation

Space allocation for IMS/360 MACRO, PSB, DBD, PROGRAM, PROCEDURE, and
RESLIB libraries is dependent upon user requirements. Space
requirements for user libraries of programs, program specification
blocks, and data base definition blocks will depend entirely upon the
user's operating environment. Some examples may be useful:

e DBD Library - Each DBD (one per data base) requires approximately
1500 to 2500 bytes of direct access storage. Exact requirements
depend upon the number of data set groups, segments, fields, and
hierarchical levels.

e PSB Library - Each PSB (one per program) requires approximately 250
to 500 bytes of direct access storage. Exact requirements depend
upon the number of data bases used in PSB and the number of
sensitive segments.

e PROCLIB Library - About 10 tracks (2314) of space are required.
e RESLIB Library - About 20 cylinders of 2314 space are required.

e MACLIB Library - About 10 cylinders of 2314 space are required for
ALL macro-instructions. About one cylinder is required for PSBGEN
and DBDGEN macro-instructions only.

PGMLIB lLibrary - This contains application programs.

System Definition Guide

Execution of the system definition utility is shown in the general
flowchart form following. It provides for both Stage 1 and Stage 2 of
system definition and all the other requirements to make IMS/360
operative.

135

*
*

AR ERAERPREERES

START SYS DEF
P2 FE 22 E 2 S EE £

*
*
*

v
#3805 ok ok ok e Al

3

%

CARD LECK OF
CTRL CARDS *

Bk ok %ok ok A b

ETESREIELTE IR S &3
HGENERATNG-SY S:i:
i PERFORM =«

DATA SET =

%*. -
* ALLOCATION *
FREBREXXXXPHEWR

- Y
P 2L 222 55 34
* *

*
%
*

136

SYSTEM
DEFINITION
STAGE 1

¥*
X Dk ok Nk e o A K

Go to next page

*

Start system definition.

Stage 1 system definition is a deck
of control cards prepared from the
macro-instructions of system
definition shown earlier in this
chapter.

The computer system used to execute
Stage 1 and Stage 2 of system
definition need not be the actual
IMS/360 computer system. However,
the version of Operating System/360
used for Stage 2 must be the same
version under which the defined
system will be executed. If it is
not the same system, perform data
set allocation for IMS.GENLIB and
IMS.LOAD, and specify the data set
in the OBJPDS of the operand of the
IMSGEN macro.

System definition Stage 1 requires
an assembly run to compile the
control statements. The assembly
requires its SYSLIB DD statement to
point to the IMS/360 system
definition macro data set
IMS.GENLIB.

7\

p/

Vv
EHRF YRR SRR KRR
* %
PUNCHED CARD
* LECK *
ool 3 o gk et ko ok ol

v
LR EL R R F 2R TR 8 2
X* *

% SYSTEM
* DEFINITION *
*, STAGE 2 #

3 3 3 3 3 Wl g ot e Rk o

v
Hd ok Ak Bk ke
* END OF SYS *
*DEF; CREATEC :

* AS MAX
* JMSNUC & 3 =
* LIBS *
#*s#***}#****#*
v
* % TP
* * ,
* *YES *¥¥
* E *
* A TP ONLINE x> *
* SYSTEM ? ¥ x *
dkk
%* *
* * *¥¥K
* NO £ *
———————— % *
* *
*kx
NGTP

System definition Stage 2 takes as
input a punched deck of cards
created as output from Stage 1.

Perform Stage 2 of system
definition.

When Stage 2 is complete, system
definition creates an IMS/360
nucleus and three libraries (as
maximum output), IMS.RESLIB,
IMS.MACLIB, and IMS.PROCLIB, on the
preallocated data sets specified on
the generating system.

Is the IMS/360 system that was first
generated a teleprocessing (online)
system? If Yes, go to label TP. If
No, go to label NOTP.

137

f14 .
Aok gk ok kK
* PERFOR& a/s *

0
[]w]m
>
-y
Lo
o
=z
L

%
L2 E 2 2T 28 38

#******\L*******
* *

*®
£MOVE DFSILNKOE

x. *
®kkkhhhkkhkkkkok

v
FRAXBRRBFREEERE
MCVE GSAM
SHANNEL EN
PENDAGE T
YS1.SVCLI
F %Ak EE

E
A NDAGE
1.SVCL
Fd ok

*

3% 3¢ 3¢ 3¢ 4 3¢
&M'Uﬁ
HTOO
L XX R RS

%

* - %NO
*

Go to next page

138

CSAM=-SVC

Label TP: If the system being
generated is to process Type 1
and/or Type 2 processing programs,
the message queue data sets must be
allocated on the computer system
under which IMS/360 is to operate.

Label NOTP: Perform PSB and DBD
data set allocation, whether
generated system is a Type 1 and 2,
or a Type 3 processing region
system.

Move DFSILNKO from IMS.RESLIB to
SYS1.LINKLIB.

System definition creates OSAM
channel end appendage and places
this in IMS.RESLIB. OSAM channel
end appendage must be moved to
SYS1.SVCLIB (described later in this
manual) .

Again, is this an online
(teleprocessing) system? If No, go
to label OSAM-SVC.

v
! FHhgRRR R kY
* *
¥ LINK EDIT %
* SVC!'S TC Fmmm———————
% 0S/3¢0 *
* NUCLEUS *
BEAFRTRIFHARAKA
USAM-SVC USER-APPL
B Rk AR ARK
* * Kk
LINK EDIT % %
* CSAM SVC TG0 #———> *
* CS5/360 * * *
* NUCLEUS * Txk
o e AR kR
v
SEC-MAINT* * ¥ « USER-APPL
* ANG wEE
SECURITY * % *
* MAINTENANCE *> *
REQ*LC? * * *
* * Aok
® %
¥ %
% YES

v
A e % ok e e e R Rk R

* *
CARL CECK CF
CTRL CARDS *

FRBFERRBFESREHE

The three user SVC load modules
created in Stage 2 of system
definition must be link-edited into
the 0S/360 nucleus prior to
attempting to execute IMS/360.

Label OSAM-SVC: The OSAM SVC is
required for system definition.
Link-edit OSAM SVC to the Operating
System/360 nucleus.

Label SEC-MAINT: For user's system,
is the IMS/360 security maintenance
program required? If either
terminal or password security is
required, the IMS/360 security
maintenance program must be run.

Set up control cards for input card
deck to the security maintenance

program. (See the description of
control cards in chapter of this
manual.)

139

Vv Execute the security maintenance
*************** ' program (SMP).
%*
*RUN SECURITY *
MAINTENANCE *
: PROGRAM :

kg o kokkkfdok

vV
*********#*****
The output of SMP is added to the

:OUX?H¥ EEMSEC* library specified in the RESLIB
% CHANGES * macro-instruction.
%* IMSNUC *
fodok dfeok A de ok el ok e ok
\
ok okokok ok ki ki
:NRESTART :
*INITIATE NEW *
: SECURITY QGM: The result of the SMP does not
) become effective until the next
FEREEF RS RS EY normal restart (cold start). (See
Chapter 5 of this manual for more
details.)
USER—-APPL v
dedok ok e ke ek ede kg g o
* *

* USER *
* APPLICATION *
** PGM FUNCTIONS **,

i Label USER-APPL: The user must
perform all the application
programming functions; that is, load

: his application programs in the

Go to next page libraries and the names in the

directories, etc.

140

N

The PSB and DBD data sets must be
loaded prior to executing IMS/360.
Any other IMsS/360-oriented
procedures or data sets desired can

#*###4*¥¢***#** also be loaded at this time.
CREATE & LOAD
* PSB, DBD &
#* QCTHER SYS #*
* LIBRARLIES =*
o e 2 0 0 o o e ok ok
#*»*»v*X**»**** The application system data bases
: : must be loaded before execution of
% APPtEé%TION * IMS/360 can proceed.
% SYSTEM DATA *
* BASES *
B H Ak AR FAH K
.V

YR TR ET L LE 2

* %

* READY FOR *

* IMS/360 *
* EXECUTICN *
* * Execute IMS/360 (IPL) per

Rt tod ettt instructions in Chapter 5 of the

IMS/360 Operations Manual, Volume II
-~ Machine Operations.

IMS/360 Supervisor Call Routines

The IMS/360 system utilizes three supervisor call (SVC) routines.
Two of these are used for interregion communication; the third routine
is used by OSAM to create its multivolume data extent block (DEB). All
three routines are required for the online IMS/360 system. Only the
OSAM SVC routine is required for Type 3 region processing. IMS/360 -
system definition creates these routines with user-defined SVC numbers.
The IMS/360 user must link-edit these routines with the Operating
Systemn/360 nucleus. The next section of this chapter explains how to
perform the link edit (Items 17 and 19 on the Systems Operation
checklist).

Inclusion of IMS/360 SVC Routines in Operating System/360 Nucleus

Three user SVC routines must be added to the Operating System/360
nucleus for execution of the IMS/360 system. Only one of these routines
is required if Type 3 region execution is used exclusively. The SvVC
routines are created by IMS/360 system definition from
macro-instructions. The SVC numbers utilized may be specified by the
IMS/360 system user. The load modules which represent the SVC routines
are placed in IMS.RESLIB by system definition. The two SVC routines
used for interregion (partition) communication are Type 1 SVC's. The
SVC routine used for OSAM is a Type 2 SVC.

141

When the IMS/360 user performs his Operating System/360 system
generation, the appropriate accommodations must be made for the later
incorporation of the SVC routines. The IMS/360 SVC routines need not
and normally would not be incorporated at Operating System/360 system
generation. They may, however, be incorporated at that time, if
desired. The following SVCTABLE macro-instructions should be included
in the Stage 1 input to Operating System/360 system generation no matter
when the SVC routines are incorporated. '

SVCTABLE nnn-T1-SO
SVCTABLE nnn-T1-S0O
SVCTABLE nnn-T2~-S0

If the actual SVC routines are not incorporated during Operating
Systen/360 system generation, three "dummy" load modules should be
placed in the RESMODS partitioned data set. This should be done prior
to Stage 2 of Operating System/360 system generation. These modules are
of the format:

IGCXXX CSECT
BR 14
END

where XXX is the unique SVC number. This effectively "no-ops" the SVC
number.

The alternate approach, which would cause inclusion of the actual SVC
routines during Operating System/360 system generation, requires
placement of the actual SVC modules into the partitioned data set
referred to by the RESMODS macro-instruction. This would require
IMS/360 system definition execution prior to Stage 2 of Operating
System/360 system generation. The RESMODS control card could then refer
to the IMS.RESLIB data set for the incorporation of the SVC routines.

If the SVC routines are added after Operating System/360 system
generation, the technique is to relink-edit the Operating System/360
nucleus. Basically, this involves replacing the "dummy" SVC routines
through the link-edit with the actual SVC routines. The best
explanation for performing this link-edit is to:

1. sStart with JCL and control cards of link-edit step from Stage 2
-of 05/360 system generation.

2. Provide an additional card for the IMS.RESLIB data set to access
the SVC modules.

3. Provide an additional DD card to reference the SYS1.NUCLEUS data .
set other than //SYSLMOD.

4. Provide additional INCLUDE control cards for the three SVC
routines from IMS.RESLIB immediately after the INSERT control
cards of the origimal link-edit..

5. Replace the INCLUDE cards from the original Operating System/360
nucleus link-edit with one INCLUDE card for the old Operating
System/360 nucleus (that is, the one without the SVC routines).

6. Provide a NAME card for the new Operating System/360 nucleus (for
example, IEANUCOX).

It may be good practice to consider the output from the link-edit of
the nucleus as another member in SYS1.NUCLEUS (for example, IEANUCO02).
| The 0S/360 Operator's Manual (GC28-6540) explains how to IPL an
alternate Operating System/360 nucleus. If everything executes
properly, then IEANUC02 can be renamed IEANUCO1.

142

N

_/

OSAM Channel End Appendage

OSAM requires a channel end appendage module created as a load module
during execution of IMS/360 system definition. The module is
distributed under the name DFSIOCEO and is renamed during system
definition to the user-specified IGG019XX. The created module is placed
in IMS.RESLIB (Item 18 on the Systems Operation checklist).

OSAM Appendage to_ S¥S1.SVCLIB

It is the user's responsibility to move the created OSAM appendage
module from IMS.RESLIB to SYS1.SVCLIB. This should be done using the
Operating System/360 IEHMOVE program.

DFSILNKQO to SYS1.LINKLIB

Prior to using any of the generated assembler or compiler procedures,
the user must move the module DFSILNKO from IMS.RESLIB to SYS1.LINKLIB.
This module permits the use of SHR disposition on SYSLMOD data sets in
the link steps of procedures. This module invokes the linkage editor
under the alias name LINKEDIT.

System Definition Stage 1 Output Warnings

The following machine listing is an output example from Stage 1 of
IMS/360 system definition. This listing informs the IMS/360 system user
of actions which must be performed prior to IMS/360 system execution.

The following assumptions are made:

e Z8 are the last two letters of the OSAM channel end appendage chosen
by the system user.

e 244 and 245 are the interregion SVC numbers chosen by the user.
e 243 is the OSAM SVC number chosen by the user.

e The PSBLIB card was omitted during Stage 1 of system definition.
e The PROCLIB card indicated PDS name of ICS.PROCLIB.

e The RESLIB card indicated PDS name of ICS.LOAD.

143

1MS/360 SYSTEM DEFINITION SPECIFICATIONS PAGLE 33
LDC ORJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT FOLAUGHS 12/09/68

1684+%% WARNING *#
1685 "0‘.O'Ot"00“..'!"“‘*‘0!“".tlttdlt‘t‘t'tt#.t“tt
1686 U,t#““t“..‘.!tt'tttlttt!lttt.t“ttt#l‘*ttﬁutttu!ttt
1647 ., .
1608 *, 1GGO19Z8 MUST BE MUVED TO SYS1.SVCLIB AND 16C243
1689 #,¥UST BE LUTNK ECITFO WITH THL US/360 NUCLEUS FOR
1690 #,SUCCESSFUL IMS/360 SYSTEM EXECUTION.
1691 %,
1692 %, THE UN LINE(TP) FUNCTIONS OF THL. IMS/360 SYSTEM
1693 * REQJIRE 1GC244 AND IGC24%5 BE LINK EDITED WITH THE

‘ 1694 *,C5/360 NUCLEUS FUR SUCCESSFUL EXECUTIUN UF THESE
1695 *,FEATURES. THE LOAD MEMBER NAME IS UFSISVVC AND 1T
1696 #yWILL BE FLACED IN ICS.LDAD BY STAGE LI OF
1697 #,1MS/360 SYSTEM GENERATION.
1698 *,
1699 #, DATABASE BACKOUT AND DUMP FUNCTIUNS UF IMS/360
1700 *,REQUIRE DFSIBCPO BE MOVED TU AN UNDEFINED PSBLIB AND
1701 *,RENAMED DFSIBCRO FOR SUCCESSFUL EXECUTION OF THESE
1762 #,FEATURES +
1703 *,
1704 %, STEP 28 OF STAGE Il OF IMS5/360 SYSTEM GENERATION
1705 *,REQUIRES SYS1.TELCMLIB UE A CATALUGED DATA SET ON
1706 *,THE GENERATING SYSTEM AND CONTAIN THE INDILATED LOAD
1707 *, MGCULES TG BE INCLUDED IN THE IMS$S/360 NUCLEUS.
1708 .,
1709 . *, PROCEDURE *IMS* MUST BE MOVED TU SYS1.PROCLIB
1710 #,FUR SUCCESSFUL EXECUTION OF THIS PROCEDURE. STAGE I1
1711 . ®,0f IMS/360 SYSTEM GENERATION PLACES ALL PROCEDURES
1712 #,IN ICS.PROCLIB.
1713 #, PROCEDURES "IMSO! AND *IMS1' MUST BE UPDATED
174 *,TO INCLUDE DD CARDS FUK THE DATABASES SPECIFIED
1715 *,BEFNRE THESE PROCEDURES CAN BE SUCCESSFULLY EXECUTED
1716 *,
1717 *, DFSILNKO AND CFSIRCOO SHUULD BE IN SYS1.LINKLIB
1718 *,FOR EFFICIENT IMS/360 SYSTEM OPERATIUN.
1719 .
1720 #, SEE [MS/360 AND (S/360 SYSTEM UPERATIUN MANUALS
1721 *,FOR MUDULES TN BE PLACED IN LINK PACK AREA FUR
1722 #, EFFICIFNT SYSTEM DPERATIUN.
1723 .,
1724 %, USER SHUULD UBTAIN A PDS DIRECTORY LISTING Ur
1728 #yTHE LIRRARIES CREATEC HY STAGE 1l OF IMS/3G0 SYSTEM
1726 *®yGENERATTCN,
1727 L
1728 #y STAGL i OF IMS/360 SYSTEM GENERATION wILL PLACE
1729 #,SYSTLM CUNTROL OLOCKS IN ICS.LOADe UFSIBLKA AND
1730 *,OFSINUCA WILL BE PLACED IN ICS.LOAD.
1731 *, -
1732 LSRR ARSI N LR R IR RS A 2RSS ER TR LT]
1733 0,t‘.OOO"00.“‘00.00"“".‘0't‘l‘lt"#‘.t‘tt"“‘t‘t‘“
1734 END

Underlines refer to text above,

System Procedures

If a PROCLIB macro-instruction is presented as is suggested in the
Stage 1 input of IMS/360 system definition, certain procedures are
created and placed in the library specified. These procedures are
complete only to the extent of the information made available through
the optional library macro-instructions. For example, if the user Jdoes
not specify a name for the program specification block library, the
default DSNAME value of IMS.PSBLIB is used in the generated procedure.
This can mean that the created procedures are not executable in the
IMS/360 operating environment. Other procedures have defaults as
specified in the system definition macro-instruction. Created.
procedures should be examined carefully to determine whether the desired
JCL has in fact been correctly specified. If an online IMS/360 system
has been defined, particular attention should be devoted to the terminal
device allocation created. At the end of Stage 1 definition, a table of
unit addresses and of logical and physical terminals is printed. Before
executing the defined system, the cross-reference table should be
examined to ensure that the specifications provided in Stage 1 define
the desired system. If all optional library macro-statements are

1uy

N

included as input to Stage 1 of IMS/360 system definition, the following
procedures are created:

Procedure Library
Member Name Description

AN

PSBGEN

DBDGEN

IMSCOBOL

IMSPLI

DLIBATCH

IMSCOBGO

IMSPLIGO

IMsS

IMSO

IMS1

IMSMSG

IMSBATCH

SECURITY

DLITCBL

DLITPLI

A two-step assemble and link-edit
procedure to produce program
specification blocks

A two-step assemble and link-edit
procedure to produce data base
definition blocks

A two-step compile and link-edit
procedure for IMS/360 applications
written in COBOL

A two-step compile and link-edit
procedure for IMS/360 applications
written in PL/I

A one-step execution procedure for
stand-alone Data Language/I Type 3
processing region

A three-step compile, link-edit, and go
procedure combining the procedures
IMSCOBOL and DLIBATCH

A three-step compile, link-edit, and go
procedure combining the procedures
IMSPLI and DLIBATCH

DASD reader procedure to read IMSO
procedure into Operating System/360 job
stream from direct access devices

Execution of IMS/360 Type 0 region, the
IMS/360 online control program with
complete JOB PROCEDURE LIBRARY

Execution of IMS/360 Type 0 region, the
IMS/360 online control program with JCL
from system input stream

Execution of IMS/360 Type 1 region, a
message processing region

Execution of IMS/360 Type 2 region, an
online batch region

A three-step execution, assembly, and
link-edit procedure for terminal and
password security which invokes the
security maintenance program

A SYSIN member used by the link steps of
procedures IMSCOBOL and IMSCOBGO ~

A SYSIN member used by the link steps of
IMSPLI and IMSPLIGO. Note that entry
point IHESAPD is specified. This
corresponds to the PARM value OPT=1 in
the corresponding compile procedures.

145

MFDBLOAD . A Data Language/I batch Type 3 execution
procedure used to load the sample
problem data base. Input data for the
data base procedure is contained in the
MFDFSYSN member of the user's MACLIB
when the COPY=ALL option is used in the
MACLIB statement. This procedure is not
included in the user's library unless
COPY=ALL is used in the MACLIB
statement.

MFDBDUMP This is a procedure to dump the sample
problem data base onto a SYSOUT data
set. This procedure is not included in
the user's PROCLIB unless the COPY=ALL
option is used in the MACLIB statement.

~ Note that the generated procedures accommodate the user Type 1

| programming system, either MVT or MFT. Also, volume serial and unit
appear if the specified library is not cataloged. Prior to using the
generated assembler or compiler procedures, the user must move the
module named DFSILNKO to SYS1.LINKLIB. This module permits use of SHR
disposition on the SYSLMOD data sets used by the various procedures.

Specific examples of the default procedures follow:

MEMBER NAME PSBGEN

7/ PROC MBR=TEMPNAME

//C EXEC PFM=IEUASM, PARM="TLOAD, NODECK" , REGION=92K

//SYSLIB DD DSNAME=IMS.MACLIB,DISP=SHR

7/ DD DSNAME=SYS1.MACLIB,DISP=SHR

//SYSGO DD. UNIT=SYSDA,DISP=(,PASS),DCB=(BLKSIZE=400, X
/77 RECFM=FB,LRECL=8dQ;SPACE=(80,(100,100),RLSE)
//SYSPRINT DD SYSOUT=A,DCB=(LRECL=121,RECFM=FBM,BLKSIZE=605, X
7/ SPACE=(121, (500,500) ,RLSE, , ROUND)

//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),SPACE=(1700,(100,50))
//SYSUT2 DD UNIT=SYSDA,DISP=(,DELETE) ,SPACE=(1700,(100,50))

//SYSUT3 DD UNIT=(SYSDA,SEP=(SYSLIB,SYSUT1,SYSUT2)), X
7/ SPACE=(1700, (100,50))
//L EXEC . PGM=DFSILNKO,PARM="XREF,LIST',COND=(0,LT,C), X
7/ REGION=100K
//SYSLIN DD DSNAME=#%,C.SYSGO,DISP=(OLD,DELETE)
Ved DD DDNAME=SYSIN
//SYSPRINT DD SYSOUT=A,DCB=(LRECL=121,RECFM=FBA,BLKSIZE=605), X
7/ SPACE=(121, (100,100),RLSE)

| //SYSLMOD DD DSNAME=IMS.PSBLIB(&EMBR) ,DISP=SHR
//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)), X
/77 DISP=(,DELElE),SPACE=(1024, (100,10) ,RLSE)

146

N

MEMBER NAME DBDGEN

/77 PROC
//C EXEC
//SYSLIB DD
77 DD
//SYSGO DD
7/ ’
//SYSPRINT DD
7/

//SYSUT1 DD
//SYSUT2 DD
//SYSUT3 DD
Vs

//L EXEC
Vo4

//SYSLIN DD
7/ DD
//SYSPRINT DD
7/

//SYSLMOD DD
//SYSUT1 DD
Vo4

MBR=TEMPNAME

PGM=IEUASM, PARM="LOAD, NODECK" , REGION=92K
DSNAME=IMS.MACLIB,DISP=SHR

DSNAME=SYS1.MACLIB, DISP=SHR
UNIT=SYSDA,DISP=(,PASS) ,DCB=(BLKSIZE=400,
RECFM=FB, LRECI~80),SPACE=(80,(100,100) ,RLSE)
SYSOUT=A,DCB= (LRECL=121,RECFM=FBM, BLKSIZE=605,
SPACE=(121, (500,500) ,RLSE, , ROUND)
UNIT=SYSDA,DISP=(,DELETE) ,SPACE=(1700,(100,50))
UNIT=SYSDA,DISP=(,DELETE) ,SPACE=(1700,(100,50))
UNIT=(SYSDA,SEP=(SYSLIB,SYSUT1,SYSUT2)),
SPACE=(1700, (100,50))

PGM=DFSILNKO, PARM=*XREF,LIST',COND=(0,LT,C),
REGION=100K

DSNAME=#_,C.SYSGO,DISP=(0OLD,DELETE)
DDNAME=SYSIN
SYSOUT=A,DCB=(LRECL=121,RECFM=FBA, BLKSIZE=605) ,
SPACE=(121, (100,100) ,RLSE)
DSNAME=IMS.DBDLIB(EMBR) ,DISP=SHR
UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)),

DISP=(, DELETE) ,SPACE=(1024, (100,10) ,RLSE)

146.1

146.2

N\

MEMBER NAME IMSCOBOL

/7 PROC

7/
/77
//SYSPRINT DD
Vo4

7/

MBR=, PAGES=60

//C EXEC PGM=IEQCBLOO,PARM='SIZE=110000,LINECNT=50',REGION=126K
//SYSLIN DD DSNAME=§&LIN,DISP=(MOD,PASS),UNIT=SYSDA,
DCB=(LRECL=80,RECFM=FB, BLKSIZE=400),
SPACE=(CYL, (4,1) ,RLSE)

X
X

SYSOUT=A,DCB=(RECFM=FBA, LRECL=121,BLKSIZE=605), X

SPACE=(605, (§PAGES.0, §PAGES) ,RLSE, ,ROUND)
//SYSUT1 DD UNIT=SYSDA,DISP=(NEW,DELETE), SPACE=(CYL, (10,1) ,RLSE)
//SYSUT2 DD UNIT=SYSDA,DISP={(NEW,DELETE), SPACE=(CYL, (10,1) ,RLSE)
//SYSUT3 DD UNIT=SYSDA,DISP=(NEW,DELETE), SPACE=(CYL, (10,1) ,RLSE)
//SYSUT4 DD UNIT=SYSDA,DISP=(NEW,DELETE), SPACE=(CYL, (10,1) ,RLSE)
//L EXEC PGM=DFSILNKO,REGION=100K,PARM='XREF,LIST,LET',
COND=(4,LT,C)

//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR

// DD DSNAME=SYS1l.PL1LIB,DISP=SHR

//SYSOBJ DD DSNAME=IMS.RESLIB,DISP=SHR NOTE

//SYSLIN DD DSNAME=§ELIN,DISP=(OLD,DELETE)

/7 DD DSNAME=IMS.PROCLIB(DLITCBL),DISP=SHR

// DD DDNAME=SYSIN

//SYSLMOD DD DSNAME=IMS.PGMLIB(&MBR),DISP=SHR

//SYSPRINT DD SYSOUT=A, DCB‘(RECFM—FBA LRECL=121, BLKSIZE—GOS)
SPACE‘(605 (EPAGES. 0, §PAGES) RLSE,,ROUND)
//SYSUT1 DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(CYL,(10,1),RLSE)

7/

Assumes:

1. User supplies source data from SYSIN.

2. Output is Class A.

3. MBR=NAME, when name is load module name for program.
4, SYSDA is generic device name.

5. RESLIB is cataloged.

MEMBER NAME IMSPLI

/77 PROC

/7/

//SYSUT1 DD
/77

//SYSUT3 DD
/7

//SYSPRINT DD
/7

//SYSLIN DD
//

//L EXEC
/77

//SYSLIB DD
/7/ DD
//SYSLIN DD
/7/ DD
/77 DD

//5YSLMOD DD
//SYSPRINT DD
/7/
//SYSOBJ DD
//SYSUT1 DD
//

MBR=, PAGES=50
//C EXEC PGM=IEMAA,PARM="'XREF,ATR,LOAD,NODECK,NOMACRO,OPT=1",

REGION=114K

UNIT=SYSDA, SPACE=(102H,(60,60),RLSE,,ROUND),
DCB=BLKSIZE=1024,DISP=(NEW, PASS)
UNIT=SYSDA,SPACE=(1024, (60,60),RLSE, ,ROUND) ,
DCB=BLKSIZE=1024,DISP=(NEW, PASS)

X

X

X
X
X

SYSOUT=A,DCB=(LRECL=125,BLKSIZE=629,RECFM=VBA) , X

SPACE=(605, (§PAGES.0, EPAGES) ,RLSE)
UNIT=SYSDA,SPACE=(80, (250,80) ,RLSE),
DCB=BLKSIZE=80,DISP=(NEW, PASS)
PGM=DFSILNKO, PARM="'XREF,LIST,LET"®

REGION=100K

DSNAME=SYS1.PL1LIB,DISP=SHR
‘DSNAME=SYS1.COBLIB,DISP=SHR
DSNAME=#%,C.SYSLIN,DISP=(OLD,DELETE)
DSNAME=IMS.PROCLIB(DLITPLI) ,DISP=SHR

DDNAME=SYSIN

DSNAME=IMS.PGMLIB(E§MBR) , DISP=SHR
SYSOUT=A,DCB=(LRECIL=121,BLKSIZE=605,RECFM=FBA) ,
SPACE=(605, (§PAGES.0, EPAGES) ,RLSE)
DSNAME=IMS.RESLIB,DISP=SHR
UNIT=SYSDA,DISP=(NEW,DELETE),
SPACE=(CYL, (5,1) ,RLSE)

Same assumptions as IMSCOBOL

X

,COND=(4,1LT,C) ,X

X

147

MEMBER NAME DLIBATCH

7/ PROC PSB=TEMPNAME

//G EXEC PGM=DFSIRCO00,PARM='3, §PSB',REGION=120K

//IMS DD DSNAME=IMS.PSBLIB,DISP=SHR

7/ DD DSNAME=IMS.DBDLIB,DISP=SHR

//SYSUDUMP DD SYSOUT=A,SPACE=(605,(500,500) ,RLSE, ,ROUND), X
7/ DCB= (RECFM=FBA, LRECL=121, BLKSIZE=605)

Assume that user must append DD cards for data sets representing Data
Language/I data bases.

MEMBER NAME IMSCOBGO

/7/ PROC MBR=, PAGES=60

//C EXEC PGM=IEQCBLO0O, X
7/ PARM="L,INECNT=50,SIZE=110000" ,REGION=126K

//SYSIN DD DSNAME=§E§LIN,DISP=(MOD,PASS) ,UNIT=SYSDA, X
7/ DCB= (LRECY~=80 ,RECFM=FB, BLKSIZE=400) , X
7/ SPACE=(cCYL, (4,1) ,RLSE)

//SYSPRINT DD SYSOUT=A, DCB= (LRECL~121 ,RECFM=FBA,BLKSIZE=605), X
7/ SPACE=(605, (§PAGES.0, §PAGES) ,RLSE, ,ROUND)

//SYSUT1 DD UNIT=SYSDA,DISP=(NEW,DELETE),SPACE=(CYL, (10,1) ,RLSE)
//SYSUT2 DD UNIT=SYSDA, DISP=(NEW,DELETE), SPACE=(CYL, (10,1) ,RLSE)
//SYSUT3 DD UNIT=SYSDA, DISP=(NEW,DELETE), SPACE=(CYL, (10,1) ,RLSE)
//SYSUTY4 DD UNIT=SYSDA, DISP=(NEW,DELETE), SPACE=(CYL, (10,1) ,RLSE)
/7L EXEC PGM=DFSILNKO, REGION=100K,PARM="'XREF,LIST,LET", X
Vo4 ‘ COND= (4, LT, C)

//SYSLIB DD DSNAME=SYS1,COBLIB,DISP=SHR

Vo4 DD DSNAME=SYS1.PL1LIB,DISP=SHR

//SYSOBJ DD DSNAME=IMS.RESLIB,DISP=SHR NOTE 1

//SYSLIN DD DSNAME=§&LIN, DISP=(OLD,DELETE)

V4 DD DSNAME=IMS.PROCLIB{DLITCBL),DISP=SHR

Vo4 DD DSNAME=SYSIN

//SYSIMOD DD DSNAME=IMS.PGMLIB(&MBR) ,DISP=SHR

//SYSPRINT DD SYSOUT=A,DCB=(LRECIL=121,RECFM=FBA,BLKSIZE=605), X

/7 SPACE=(605, §PAGES.0,RLSE, ,ROUND)

//SYSUT1 DD UNIT=SYSDA, DISP=(NEW,DELETE), SPACE=(CYL, (10,1) ,RLSE)
//G EXEC PGM=DFSIRCO00,PARM='3,EMBR",REGION=150K, TIME=2, X
/77 COND= (0, LT)

//IMS DD DSNAME=IMS.PSBLIB,DISP=SHR

Ved DD° DSNAME=IMS.DBDLIB,DISP=SHR

//SYSOUT DD SYSOUT=A,SPACE=(CYL, (1,1)),DCB=(LRECL=133,RECFM=FA)
//SYSUDUMP DD SYSOUT=A, DCB=(LRECL~121,RECFM=FBA,BLKSIZE=3025), X
// SPACE=(3025, (200,100) ,RLSE, ,ROUND)

Assumes:

1. User supplies source data from SYSIN.

2. Output is Class A.

3. MBR=NAME, when name is load module name for program.

4. User must supply a G.STEPLIB card for IMS.RESLIB and IMS.PROGLIB
with DISP=(SHR,PASS).

5. SYSDA is generic device name.

6. RESLIB is cataloged. ’

7. User must append DD cards in execute set for data sets representing
Data Language/I data bases.

8. Efecution time limit of two minutes is specified.

148

MEMBER NAME TIMSPLIGO

4 PROC

MBR=NAME, PAGES=50

//C EXEC PGM=IEMAA,PARM='XREF,ATR,LOAD,NODECK,NOMACRO,OPT=1",

/7

//SYSUT1. DD
//

//SYSUT3 DD
//

//SYSPRINT DD
V4

//SYSLIN DD

V4

/7/L EXEC
/7/

//SYSLIB DD
/7 DD
//SYSLIN DD
// DD
4 DD

//SYSLMOD DD
//SYSPRINT DD
/7

//SYSOBJ DD
//5YSUT1 DD
Va4

//G EXEC
Vo4

/7IMS DD
Vo4 DD
//SYSPRINT DD
Vo4

//SYSUDUMP DD
Vo4

REGION=114K
UNIT=SYSDA,SPACE=(1024, (60, 60) ,RLSE, ,ROUND),
DCB=BLKSIZE=1024 , DISP= (NEW, PASS)
UNIT=SYSDA,SPACE=(1024, (60,60),RLSE, ,ROUND) ,
DCB=BLKSIZE=1024,DISP=(NEW, PASS)
SYSOUT=A,DCB= (LRECL=125, BLKSIZE=629 , RECFM=VBA) ,
SPACE=(605, (§PAGES.0, §PAGES) ,RLSE)
UNIT=SYSDA,SPACE=(80, (250,80) ,RLSE),
DCB=BLKSIZE=80,DISP=(NEW, PASS)

PGM=DFSILNKO, PARM="XREF,LIST,LET',COND=(4,LT,C),
REGION=100K

DSNAME=SYS1.PL1LIB, DISP=SHR
DSNAME=SYS1.COBLIB,DISP=SHR
DSNAME=#.C.SYSLIN,DISP=(OLD, DELETE)
DSNAME=IMS.PROCLIB(DLITPLI) , DISP=SHR
DDNAME=SYSIN

DSNAME=IMS.PGMLIB (EMBR), DISP=SHR
SYSOUT=a,DCB= (LRECL=121, BLKSIZE=605, RECFM=FBA) ,
SPACE=(605, (§PAGES.0, §PAGES) ,RLSE)
DSNAME=IMS.RESLIB,DISP=SHR
UNIT=SYSDA,DISP=(NEW,DELETE),
SPACE=(CYL, (5,1) ,RLSE)
PGM=DFSIRC00, PARM="3, §MBR', COND=(4,LT),
TIME=5,REGION=150K :
DSNAME=IMS.PSBLIB,DISP=SHR
DSNAME=IMS.DBDLIB,DISP=SHR
SYSOUT=A,DCB= (LRECL=121, BLKSIZE=605, RECFM=FBA) ,
SPACE=(605, (500,500) ,RLSE, , ROUND)
SYSOUT=A,DCB=(LRECL=121,BLKSIZE=605, RECFN=FBA) ,
SPACE=(605, {(500,500) ,RLSE, , ROUND)

Same assumptions as IMSCOBGO

MEMBER NAME IMS

X
X
X
X
X
X

>

An example of the IMS procedure is given later in this chapter under

"Type 0 Region".

149

MEMBER NAME IMSO

//IMS0 JOB

1,IMS,PRTY=14,MSGLEVEL=1

P4 D4 D4 DY DA DA D BE X

X

MM X XN MMM

//NUCLEUS EXEC PGM=DFSIRCO0,

Vo4 PARM="00DFSINUC0019010010010020" :

V4 . ABCCCCCCCCDDDEEEFFFGGGHHH PARM

77 REGION TYPE=0 - A

Va4 DMBSDYNAMIC=0, RESIDENT=1 - B

Vo4 NUCLEUS MEMBER NAME ccceecece
V4 NUMBER OF QCR BUFFERS (CALCULATED) DDD

7/ NUMBER OF MSG BUFFERS (CALCULATED) EEE

V4 PSB POOL IN 1K BLOCKS (DEFAULT) FFF

V4 DMB POOL IN 1K BLOCKS(DEFAULT) - ' GGG

Vo4 OSAM & TP POOL SIZE(DEFAULT) - HHH

//7IMS DD DSNAME=IMS.PSBLIB,DISP=SHR

Vo4 DD DSNAME=IMS.DBDLIB,DISP=SHR

//STEPLIB DD DSNAME=IMS.RESLIB,DISP=SHR

//SYSUDUMP DD SYSOUT=A, DCB=(LRECL=125,RECFM=VBA,

Vo4 BLKSIZE=3129),SPACE=(125, (3000,3000) ,RLSE, ,ROUND)
//INQCR DD DSNAME=IMS.IQCRDSET,DISP=OLD

//INMSG DD DSNAME=IMS.IMSGDSET,DISP=0LD

//0UTQCR DD DSNAME=IMS.OQCRDSET,DISP=0LD

//0UTMSG DD DSNAME=IMS.OMSGDSET,DISP=OLD

//IMSLOG DD DSNAME=IMSLOG,DISP=(,KEEP),

Vo4 DCB=(RECFM=V, BLKSIZE=1408, :

/7 LRECL=1400,BUFNO=1) ,VOL=(,,,10),

/7 UNIT=(2400,,DEFER)

//IMSLOGR DD DSNAME=IMSLOG,DISP=OLD,

/7 VOLUME=SER=000000,

Vo4 UNIT=(2400,,DEFER)

//DBDUMP DD DSNAME=DFSIDUMP,DISP=(NEW,KEEP),

/7 UNIT=AFF=IMSILOGR

Vo4 FOLLOWING WILL BE TP DEVICE ALLOCATION AS
V4 SPECIFIED DURING SYSTEM DEFINITION BY USER.
Vo4 USER MUST SUPPLY APPLICATION DATA BASE JCL,
/7 NONE WILL BE GENERATED

150

MEMBER NAME IMS1

//NUCLEUS EXEC PGM=DFSIRC00,REGION=170K,TIME=1440, X
/7/ PARM="00DFSINUC0019010010010020" X
7/ ABCCCCCCCCDDDEEEFFFGGGHHH PARM FLD X
/77 REGION TYPE = 0 A

/7 DMBSDYNAMIC=0, RESIDENT=1 B

/77 NUCLEUS MBR NAME CcCcceeee

/7 NUMBER OF QCR BUFFERS (CALCULATED) DDD X
/7/ NUMBER OF MSG BUFFERS (CALCULATED) EEE X
/77 PSB POOL IN 1K BLOCKS(DEFAULT) FFF X
7/ DMB POOL IN 1K BLOCKS (DEFAULT) GGG X
44 OSAM § TP POOL SIZE(DEFAULT) HHH X
//IMS DD DSNAME=IMS.PSBLIB,DISP=SHR

7/ DD DSNAME=IMS.DBDLIB,DISP=SHR

//STEPLIB DD DSNAME=IMS.RESLIB,DISP=SHR '
//SYSUDUMP DD SYSOUT=A, DCB= (LRECIL~125 ,RECFM=VEA, ‘ X
/77 BLKSIZE=3129),SPACE=(125, (3000,3000) RLSE,,ROUND)
//INCR DD DSNAME=IMS. IQCRDSET DISP=OLD

//INMSG DD DSNAME=IMS.IMSGDSET,DISP=OLD

//0UTQCR DD DSNAME=IMS.OQCRDSET,DISP=OLD

//0UTMSG DD DSNAME=IMS.OMSGDSET,DISP=0LD

//IMSLOG DD DSNAME=IMSLOG,DISP=(,KEEP), X
/7/ DCB= (RECFM=V, BLKSIZE=1408, X
/7 LRECL~]1400, BUFNO=1) ,VOL=(,,,10), - X
7/ UNIT=(2400,,DEFER)

//IMSLOGR DD DSNAME=IMSIOG,DISP=OLD, X
/7/ VOLUME=SER=000000, X
// UNIT=(2400,,DEFER) .
//DBDUMP DD DSNAME=DFSIDUMP,DISP=(NEW,KEEP), X
7/ UNIT=AFF=IMSLOGR

/77 FOLLOWING WILL BE TP DEVICE ALLOCATION AS X
/77 SPECIFIED DURING SYSTEM DEFINITION BY USER. X
/7 USER MUST SUPPLY APPLICATION DATA BASE JCL, X
/7/ : NONE WILL BE GENERATED

Assume that embedded STEPLIB allows only one step or first step only
in JOB.

MEMBER NAME IMSMSG
//MESSAGE JoB - 1,IMS,MSGLEVEL=1

/7/G EXEC PGM=DFSIRC00, PARM=1,REGION=26K
//STEPLIB DD DSNAME=IMS.PGMLIB,DISP=SHR
7/ DD DSNAME=IMS.RESLIB,DISP=SHR
//IMS DD DSNAME=IMS.PSBLIB,DISP=SHR
7/ DD DSNAME=IMS.DBDLIB,DISP=SHR
//SYSUDUMP DD SYSOUT=A,DCB=(LRECL=125,RECFM=VBA, X
7/ BLKSIZE=3129),SPACE=(125, (2500,100) ,RLSE, ,ROUND)
)]
\L/C/-’M
-MEMBER NAME IMSBATCH Yrr~?
7/ PROC PSB=TEMPNAME 4
/7/G EXEC PGM=DFSIRCO00,PARM='2, SPSB',REGION‘ZGK
//IMS DD DSNAME=IMS.PSBLIB,DISP=SHR
7/ DD DSNAME=IMS.DBDLIB,DISP=SHR :
//SYSUDUMP DD SYSOUT=A,DCB=(LRECL=121,RECFM=VBA, X
4 BLKSIZE=3129),SPACE=(125, (2500,100) ,RLSE, ,ROUND)

MEMBER NAME DLITCBL
INCLUDE SYSOBJ(DFSILI00)
ENTRY DLITCBL

151

MEMBER NAME DLITPLI

INCLUDE SYSOBJ(DFSILI00)
ENTRY IHESAPD

MEMBER NAME SECURITY

o/ ADD NAME=SECURITY

«/ NUMBER NEW1=10,INCR=10

/7 PROC OPTN=UPDATE, IMS=*,0"*,SOUT=A
//8 EXEC PGM=DFSISMPO,PARM="EOPTN.&EIMS."

'//STEPLIB DD

7/ DD
//SYSPRINT DD
//SYSPUNCH DD
7/

//SYSLIN DD
Vo4

//SYSUTL - DD
7/

//SYSUT2 DD
Vs »
//SYSIN DD
/7/¢ EXEC
//SYSPRINT DD
//SYSGO DD
77/

//SYSUT1 DD
//SYSUT2 DD
//SYSUT3 DD
//SYSIN DD
/7L EXEC
//SYSPRINT DD
//SYSLMOD DD
//INPUT DD
//SYSUT1 DD
//SYSLIN DD

DSN=IMS.RESLIB,DISP=SHR
DSN=IMS.PGMLIB,DISP=SHR
SYSOUT=§SOUT, DCB= (RECFM=VBA , BLKSIZE=400,BUFL=404
UNIT=SYSDA,SPACE=(80, (800,400),, ;ROUND,
DCB= (RECFM=FB, LRECI=80, BLKSIZE=400) ,DISP=(,PASS)

X

UNIT=SYSDA,SPACE=(TRK, (1,1)), DCB—(RECFM-F BLKSIZE-SO), X

DISP=(, PASS)
UNIT—SYSDA,SPACE=(100,(QOO,QOO),,,ROUND),
DCB=(BLKSIZE=500,RECFM=FB)

X

UNIT-(SYSDA,SEP—SYSUTl) SPACE=(100, (400,400),,,ROUND), X

DCB=%.S.SYSOT1
DSN=NO.SYSIN.DD.ASTERISK:

PGM=IEUASM, PARM="LOAD, NODECK" ,COND=(12,LT, S),REGION—96K

SYSOUT=ESOUT, DCB= (RECFM=FBM, LRECL=121 , BLKSI ZE=605)
UNIT=(SYSDA, SEP=SYSPRINT) , DISP=(,PASS) ,
DCB=#*.S.SYSPUNCH, SPACE=(80, (400,400),, ,ROUND)
UNIT=SYSDA, SPACE= (CYL, (5,1))
UNIT=SYSDA, SPACE= (CYL, (5,1))

UNIT=(SYSDA, SEP=(SYSUT1, SYSUT2)) ,SPACE=(CYL, (5,1))
DSN=+.S. SYSPUNCH, DISP= (OLD, DELETE)

X

PGM—DFSILNKO,PARM"XREF NE,OL' ,REGION=110K,COND=(4,LT, S)

SYSOUT=§£SOUT, DCB= (RECFM=FBA, LRECL=121,BLKSIZE=605)
DSN=IMS.RESLIB,DISP=SHR

DSN=#%.C.SY¥SGO,DISP=(OLD, DELETE)

UNIT=(SYSDA, SEP=INPUT) ,SPACE=(CYL, (5,1))
DSN=%*.S.SYSLIN,DISP=(OLD,DELETE)

MEMBER NAME MFDBLOAD

/7/ PROC SOUT=A

//LOAD
//STEPLIB DD
/7 DD
//IMS DD
/77 DD
//SYSUDUMP DD
//DI21PART DD
/77

//DI21PARO DD
Va4

//SYSouT DD
//INPUT DD

EXEC PGM=DFSIRC00,PARM='3,DFSSAM01",REGION=110K

DSN=ICS.CLOD, DISP=SHR

DSNAME=ICS.CLOD,DISP=SHR

DSNAME=ICS.PSBLIB, DISP=SHR

DSNAME=ICS.DBDLIB, DISP=SHR

SYSOUT=§S0UT

DSNAME=IMS.DI21PART (PRIME) ,DISP=(,KEEP) ,DCB=DSORG=IS,
SPACE= (CYL, 3, , CONTIG) , VOL=SER=§PSER, UNIT=EPUNIT

DSNAME=IMS.DI21PARO,DISP=(,KEEP), SPACE‘(CYL 3, ,CONTIG),
VOL=SER=§60SER, UNIT=§0UNIT

SYSOUT=§S0UT

DSNAME=ICS.BMAC (MFDFSYSN) ,DISP=SHR

MEMBER NAME MFDBDUMP

7/ PROC SOUT=A

//DUMP

//STEPLIB DD
7/ DD
//IMS DD
/77 DD

//SYSUDUMP DD
//DI21PART DD
//DI21PARO DD
//0UTPUT DD

152

EXEC PGM=DFSIRC00,PARM="'3, DFSSAMOS',REGION-llOK

DSN=ICS.CLOD,DISP=SHR
DSNAME=ICS.CLOD,DISP=SHR
DSNAME=ICS.PSBLIB,DISP=SHR
DSNAME=ICS.DBDLIB, DISP=SHR
SYSOUT=§&S0OUT
DSNAME=IMS.DI21PART,DISP=SHR

‘DSNAME=IMS.DI21PARO,DISP=SHR

SYSOUT=§SOUT

X

X

~

\

_/

Operating System/360 Link Pack Modules

Many of the Data Language/I modules, the OSAM modules, and the BISAM
modules used by IMS/360 can be placed in the Operating System/360 RAM
area (MFT-II) or link pack area (MVT). The following module list
indicates those modules whose placement into RAM or link pack is
recommended. The next section of this chapter describes the procedure
that can be utilized to accomplish the placement of these modules in

link pack at Operating System/360 IPL time.

The modules to be included

must previously exist in either the SYS1.SVCLIB or the SYS1.LINKLIB data

set.
From SYS1.LINKLIB
Module Name

DFSIRCO0
DFSIDLRO
DFSIDLHO
DFSIDLIO
DFSIDLDO
DFSIOS20
DFSIOS30
DFSIISMO
DFSIWKNO

Module Definition

IMS/360 Region Controller

Data Language/I HISAM Retrieve

bata Language/I HSAM

Data Language/I HISAM Insert

Data Language/I HISAM Delete/Replace
OSAM Read/Write

OSAM Check

Data Language/I ISAM Simulator

Data Language/I Write Key New Simulator

152.1

152.2

N

From SYS1.SVCLIB

Module Name Module Definition

1GG019Z9+* OSAM Channel End Appendage

IGG019GX BISAM Asynchronous Read/Write

IGG019G9 BISAM Appendage with Write Check

IGG019Jv BISAM Non-Privileged Macro-Time
Read/Write

IGG01937 BISAM Privileged Macro-Time Read/Write

* The last two characters of this module name are determined by the
IMS/360 user during system definition.

0S/360 Link Pack Procedures

The following procedures should be utilized to place IMS/360 in
MFT-II or MVT link pack. This procedure should be placed in
SYS1.PROCLIB using the Operating System/360 utility program IEBUPDTE.

-/ : ADD NAME=IEAIGGO1l,LIST=ALL
SYS1.LINKLIB DFSIDLDO,
: DFSIDLHO,
DFSIDLRO,
DFSIDLIO,
DFSI0S20,
DFSIOS30,
DFSIRCO0O0,
DFSIWKNO,
DFSIISMO

DA D XN

./ ADD NAME=IFAIGG02, LIST=ALL
SYS1.SVCLIB I1GG019GX,
: 1GG019J7,
IGG019G9,
IGG019JV,
IGG019Z9

MoD4 X

The module IGG01929 is the OSAM channel end appendage, the last two
characters of which are user-determined.
When Operating Systen/360 is IPLed and the system responds with:
SPECIFY SYSTEM PARAMETERS

the modules described in the two preceding procedures are placed in
link pack if the response includes:

REPLY 00, 'RAM=01,02"

and are completely user-dependent.

TYPES OF PROCESSING REGIONS -~ JCL

This chapter has described the procedures provided by IMS/360 system
definition for execution of the various processing region types.

153.

Region

Type ‘Region Function Procedure Name Used

0 IMS/360 Control Program IMSO or IMS1

1 IMS/360 Message Processing IMSMSG
Programs

2 IMS/360 .Type 2 Batch IMSBATCH
Processing '

3 IMS/360 Type 3 Batch DLIBATCH
Processing

The IMS and DLIBATCH procedures do not contain DD cards for data
bases. These DD cards must be supplied, added to the procedure, by the
IMS/360 user. The IMSBATCH and DLIBATCH procedures do not include DD
cards for SYSIN and SYSOUT or other user-defined data sets. The
necessary cards must also be added by the IMS/360 user.

Type 0 Region

IMS1 Procedure
To use the IMS1 procedure, the user should supply the following JCL:

//IMS JOB MSGLEVEL=1, PRIORITY=13
//JOBLIB DD DSNAME=IMS.RESLIB,DISP=SHR

7/ EXEC IMS1,REGION=160K,TIME=1440, X
/7/ PARM=*ABCCCCCCCCDDDEEEFFFGGGHHH"'
where:

A indicates region type is 0.

B indicates BTAM=0.

CCCCCCCC is IMS/360 control program nucleus member name.

DDD is number of QCR buffers.

EEE is number of message buffers.

FFF is PSB pool size in 1K blocks.

GGG is DMB pool size in 1K blocks.

HHH is OSAM and teleprocessing buffer pool size in 1K blocks.

The region size of 160K is an estimate based upon the size of the
user's system. It is assumed that the IMS/360 modules are in the
IMS.RESLIB data set.

IMS0 Procedure

The use of the IMSO procedure does not require a user to supply JCL
control cards to an Operating System/360 SYSIN job stream. The IMSO
procedure is invoked by the IMS/360 reader procedure.

The JCL procedure, IMSO, for an IMS/360 Type 0 region may be stored .
complete in a procedure library. To start the IMS/360 control program
(Type 0 region), an operator can override the standard Operating

System/360 start reader command as follows:

S RDR,2311,RESLIB,DSLIB,DSN=SYSI.PROCLIB(IMSO),DISP=SHR

154

_/

It is more convenient to define a reader procedure that defaults to

the IMS/360 job member. BAn example of such a reader procedure is:

//IEFPROC EXEC ~ PGM=IEFIRC, READER FIRST LOAD C
/7 REGION=48K, READER BASIC REGION C
/7 PARM="00103005001024905010SYSDA "DEFAULT C
Ved BPPTTTO0OMMMIITICCCRLSSSSSSSS PARM FID C
/77 DEFINED PROGRAMMER NAME AND B C
/7 - ACCOUNT NUMBER NOT NEEDED C
/7 PRIORITY=01 PP C
7/ JOB STEP INTERVAL=30 MINUTES TTT C
/7 PRIMARY SYSOUT SPACE=50 TRACKS 000 C
V4 SECONDARY SYSOUT SPACE=10 TRACKS MMM C
/77 READER/INTERPRETER DISPATCHING PRIORITY=249 C
7/ JOB STEP DEFAULT REGION=50K cccC C
/7 DISPLAY &§ EXECUTE COMMANDS=1 R C
/77 BYPASS LABEL=0 L C
/77 SYSOUT UNIT NAME=SYSDA SSSSSSss - C
//IEFRDER DD UNIT=2311, C
/7 VOLUME=SER=RESLIB, C
7/ _DCB=BUFNO=1, C
/77 DSNAME=IMS.PROCLIB(IMSO), C
/77 DISP=SHR

//IEFPDSI DD DSNAME=SYS1.PROCLIB, PROCEDURE LIBRARY C
7/ DISP=O0LD

7/ DD DSNAME=IMS.PROCLIB,DISP=SHR

//IEFDATA DD UNIT=SYSDA, SPOOL DEVICE C
/7 SPACE=(80, (500,500) ,RLSE,CONTIG), AMOUNT C
7/ DCB=(BUFNO=2, LRECL=80,BLKSIZE=80, C
/77 RECFM=FB, BUF1=80)

A reader procedure, IMS, is included as a part of the IMS/360
package. Using this procedure with the member name of IMS, the IMS/3
online JCL, IMSO, can be read into the Operating System/360 input que
using the command:

S IMS
The reader procedure, IMS, must be moved from the PDS library

described on the PROCLIB card of system definition to the Operating
Systemv360 SYS1.PROCLIB data set.

Type 1 Region

60
ue

The use of the IMSMSG procedure is provided from the IMS/360 master

terminal through the /START REGION commarid. For this reason, the

procedure includes a JOB statement. If the user wishes to start message

regions through a SYSIN stream with cards rather than with the /START
REGION command, a new message region procedure should be established

which does not contain a JOB statement. The /START REGION and /STOP

REGION commands are detailed in the IMS/360 Operations Manual, Volume
- Machine Operationms.

Type 2 Region

The procedure for Type 2 processing region execution is entitled
IMSBATCH. To invoke this procedure,; the following JCL is required:

//TYPE2 JoB 848, name, MSGLEVEL=1

//JOBLIB DD " DSNAME=IMS .RESLIB,DISP=SHR

a4 DD DSNAME=IMS.PGMLIB,DISP=SHR

/7 EXEC IMSBATCH, X
/7 PARM=2, AAAAAAAA, BBBBBBBB, CCCCCCCC, DDDDDDDD

iz

155

where:

is the type of processing region.

AARAARAAA
is an application program name.
BBBBBBBB

is an optional parameter that allows the user to specify a PSB
name different from the program name specified in parameter
-AAAARAAA. .

cccececcece

is an input transaction code. Use of this parameter is required
only if the Type 2 program intends to access messages of the
specified transaction code from the input queue.

DDDDDDDD

is an output transaction code or logical terminal name, If this

optional parameter is specified, it overrides the original

output destination for all input messages that are processed by

the Type 2 program specified in parameter CCCCCCCC. Even if no

CCCCCCCC parameter is specified, the Type 2 program may output

to the transaction code or logical terminal name specified in

parameter DDDDDDDD. v (’

The user may append DD cards to this procedure for any Operating
System/360 data sets that do not represent IMS/360 data bases.

Type 3 Region

The procedure for Type 3 region execution is entitled DLIBATCH. The
user must append to this procedure DD cards for the data sets that
represent the physical storage of his data bases. The user may append
DD .cards to this procedure for any Operating System/360 data sets that
do not represent IMS/360 data bases. The JCL required for invoking the
DLIBATCH procedure is:

//DLIBATCH JOB MSGLEVEL=1
//JOBLIB DD ~ DSNAME=IMS.RESLIB,DISP=SHR
7/ DD DSNAME=IMS.PGMLIB, DISP=SHR

Where the application program and the PSB have same name:
/77 EXEC DLIBATCH, PARM="'3, PSBNAME"
Where the application program has a different name than the PSB:
/77 EXEC DﬁIBATCH,PARM='3,PGMNAME,PSBNAME'
where: |
PGMNAME equals>the‘application program name.

PSBNAME equals the PSB name. | _ (

156

SYSTEM DEFINITION - TYPE 3 PROCESSING REGION

The system definition requirements for a Type 3 processing region are
a subset of those required for the online IMS/360 system. The necessary
information, including a flow of functions to be performed and the
necessary JCL statements for system definition execution, appears
elsewhere throughout this chapter.
SYSTEM DEFINITION ERROR CONDITIONS

The IMS/360 system definition error conditions are listed in Chapter
7.
SYSTEM DEFINITION EXAMPLES

There are two examples, one for a Type 0, 1, and 2 proce531ng reglon,
and the other for a Type 3 (batch stand—alone) processing region.

The Type 0, 1, and 2 pxocessing region example assumes the following:

e Type 1 programming system being used in MVT

e Three application programs

e Ten transaction codes against those applicstion programs

e Two data bases

* Line Qroups:
nonswitched 1050 communication system with one terminal
switched (dial) 1050 communication system with three terminals
switched (dial) 2740 communication system with three terminals
nonswitched 2740 communication systems with four terminals

See the example below for additional assumptions.

Teleprocessing Example

This example illustrates the output from Stage 1 of the IMS/360
system definition utility program. The input to Stage 1 (that is, the
control cards) is provided in the output listing followed by a summary
of the featgroup specifications, the application specifications, the
communication specifications, and the data set specifications. Next are
the punch statements, followed by the comments considered warnings.

If the user invokes the alternate IMS/360 system definition for an
alternate IMS/360 nucleus, an example would appear as follows:

e The IMSTEST control card would precede all of the other system
definition cards.

IMSTEST GLIB=ICS.MACLIB,LLIB=ICS.LOAD,BLIB=ICS.BLKLIB,CODE=A

e Referring to the teleprocessing example that follows Figure 23, on
Page 17 (upper right of page) is the start of the punch statements.
Note that statement 749 starts Step 1 and there are 38 steps
generated (through Page 53). The alternate system definition
example of the punch statements would not have Steps 1 through 6,
Steps 32 through 35, and Step 38. Step 7, statement 1287, would

157

become Step 1 and all steps that follow would be renumbered

consecutively.

Figure 22 shows, in summary form, the various transaction codes,
programs, and data bases, including their relationship to each other, as

they exist in the following example of system definition.

Figure 23 shows, in summary form, the teleprocessing relationship as

it exists in the following example of system definition.

A review of

the section titled IMS/360 Telecommunications Considerations, in Chapter

3, is recommended.

DATA BASES

-

DI31PHO2

>

TRANSACTION GODE PROGRAMS
DN
DLI
s
IMS HIMASNO1
:
NOP NOPSB
SWIPASS
SWI SWITCH

Note: A review of the section in Chapter 3 titled‘IMS/SGO
Telecommunications Considerations”is recommended.

N—

-

DI31PHO!

N

Figure 22, System definition example summary - transaction codes,
programs,

158

and data bases

2

LOGICAL

PHYSICAL LINE LINE
TERMINAL TERMINAL TYPE GROUP
NAME TYPE

- ONSWITCHE!
L274082 2740 LINE 2740 NONSWIYCHED
1 1T lsmatton et 1

|
74031 1 ONSWITCHEI]
MASTER 2740 1 e
1
L l :
| Nonswitcned] |
127403 M| 2740 LINE
| ; 0
L27403MZ3——] 2740 ! -, r]2740 swircuen
H | 1| LTRANSMIT CN TR
1 i [swimcueo]
m 740 LINE
\ 1 LAuToanswer | |
I ! !
1 ! |
| I 1
| I !
| | :
[} 1 |
| 1 |
i 1 |
])
1 ! !
H | 1
1 | [swircuen : 1050 swiTcHED| 3
INQUIRY 4 1050 LINE STATION CTL
AUTOANSWER

I
i
1
1
!
1

1050

PRINTER
COMPT=0

Fe-=E=r-

m

ONSWITCHE! 1050 NONSW"CHED' 4

13 | |staTion cTL
) i

B} ! !

| ! !
| Hi

L 2260]! [nonswrrcrep |\ [2260 NonswizchE
! N LINE | STATION CTL | 5
1

!

]
|
[}
i
[}
I
!
]
1
1
!
[
!
I
!
|
1
!
|
|
I
1
|
|
1
I
1
|
!
!
I
I
1
!
I
!
|
!
'
I
|
I
]
!
!
!
I
|
1

e m ey

»
Note: A review of the section in Chapter 3 titled IMS/360
Telecommunications Considerations®is recommended.

Figure 23. System definition example summary - teleprocessing

relationship

POOL
TYPE

AUTOANSWER|

2774211

159

LCC CBJECT CCDE ADDRL ADDR2 STMT

LOC OBJECT CODE ADDR1 ADDR2 STMT
47
48
49

50
51

80

SOURCE STATEMENT F30SEP69

IMSCTRL SYSTEM=(MVT 4 ALL)) MAXID=10yMAXREGN=3 M SGBUFF =10,
COMFSVC=1244,245) ,NSAMSV(=243,0CENDA=28,CKPT =500

*y ALL IMS/360 FUNCTIONS ARE SELECTED

*y MVT PROGRAMMING SYSTEM WILL RE USED

*y 3 REGIONS MAY BE OPERATED SIMULTANEQUSLY

*y 10 SUBTASKS MAY BE IN OPERATION TOGE THER

*y 10 TERMINALS MAY BE OPERATED SIMULTANEOUSLY
xy' 0SAM CHANNEL END APPENDAGE - 1GGO19Z8

*y CHECKPOINTS OCCHR AFTER FVERY 500 LOG ENTRIES
*y CUMWUNICATION = ASK SVC NUMBER =~ 244

*y - REPLY SVC NUMBER - 245

*y SUPERVISCR STATE SVC NUMBER - 243

APPLCTN PSR=NDFSSANO2
DATABASE DBD=DI21PART, INTENT=SHARE
TRANSACT CODE=CSPPNyMSGTYPE={ SNGLSEG, NONPE SPONSE)
TRANSACT CODE=PART yMSGTYPE=(SNGLSEG,NONRESPONSE)
APPLCTN PSB=DFSSAMO3
DATABASE CBC=CI21PART s INTENT=SHARE
TRANSACT CODE=DSP[NV.MSGTYP:'(SNGLSEG,NﬂNRESPON%F)
TRANSACT CODE= INVTORY, MSGTYPE=(SNGLSEGyNONRE SPONSE)

APPLCTN * PSR=DFSSANOT
DATABASE DBD=DI21PART, INTENT=SHARE
TRANSACT CODE=CSPALL I, MSGTYPE=(SNGLSEGsNONRE SPONSE)
APPLCTN PSB=DFSSAMO4
DATABASE DBD=DI121PART

- TRANS ACT CODE=ADDI+PRTY=174945)
TRANSACT CODE=ADDINV,PRTY=(7+9,5)
TRANSACT CODE=ADDP ART4PRTY=(T7, 9,5}
TRANSACT CONE=ADDPN+PRTY=(7+9+5)
TRANSACT CODE=NLETI PRTY=(54742)
TRANSACT CODE=DLET [NV PRTY=(5,742)
TRANSACT CODE=DLETPART,PRTY=1(5,742)
TRANSACT CODE=DLFETPN+PRTY=(5,7,2)
APPLCTN PSB=DFSSANOS
DATABASE 0B2=DI21PART
TRANSACT CODE=CLOSE+MSGTYPE=(SNGLSEG yNONRE SPONSE)
TRANSACT GCDE=CLSORD,PRTY=1{7,9,5)
APPLCTN PSB=UFSSANOE |
DATABASE DBD=DI21PART
TRANSACT CCNE=CISB,PRTY=1(9,10,2)
TRANSACT COPE=DISBURSE yMSGTYPE=[SNGLSEG,NONRESPONSE)
APPLCTN PSB=DFSLKMOO
DATABASE CRD=DI31PHOLINTEANT=SHARE
TRANSACT CODE=DFS,PRTY=(5,412,5) +PROCLIM={8,100),
INQUIRY=YES

APPLCTIN PSB=HIMASNOL
SOURCE STATEMENT F30SEP69

DATABASF DBD=DI31PHOL

DATABASE GBD=DI31PH02

TRANSACT CODE=DL1+PRTY=(5,10,5), PROCLIM=(10+10),
MSGTYPE={ SNGLSEG,RE SPCNSE)

TRANSACT CODE=ICS,PRTY=(5,12,5),PROCLIM=(10,100)

TRANSACT CONE=IMS,PRTY=(2,45,10),PROCLIM=(1,100),
MSGTYPE=(SNGLSEG yNONRE SPCNSE)

TRANSACT CODE=CLNs PRTY=(0y3y 3)'PROCL1M=(10'100)

APPLCTN PSB=NOPSB
DATABASE DRD=DI31PHO1, INTENT=SHARE
TRANSACT CODE=NDPy PRTY={141, 115 PROCL IM=(5, 501+ INQUIRY=YES
APPLCTN PSB=SWITCH
DATABASE DHD~D!319H011INTEN1=SHARE
TRANSACT ns-sux,Parv-un.1000).vnoc|.m—|<,n.
TRANSACT on —swlan PRTY-(s‘,s)al.vmcumtzouoo),
Y=YES
TRANSACT CODE=SWIPASS,PRTY=(4,6,1) ,PROCLIM={20,100),
INCUIRY=YES
TRANSACT CONE=SWIPR,PRTY=(14,14,100) ,PROCLIM={20,1001},
INQUIRY=YES '
TRANSACT CODE=SWITSyPRTY= (46 11, PROCL IM=(20,100),
INQUIRY=YES
TRANSACT CODE=SWN , PRTY= (04 4) ¢ PROCLIM=[5,100) » 1NQUIRY=YES
APPLCTN PSB=HIMARJIOL
DATABASE 0BD=D1211RJE)
TRANSACT CODE=#, PRTY=(10, 144 6}
TRANSACT CODE=RJE) PRTY=(2,4,10)
APPLCTN PSB=HIMAJCOL
DATABASE 0BD=DS40JC01 .
TRANSACT CODE=TPPLL,PRTY=(8,8,65535)
APPLCTN PSB=HIMAJCC2
DATABASE 0BD=DS40JCOL
TRANSACT CODE=TPPL2,PRTY=(8,8,65535)
APPLCTN PSB=HIMAJCO3
DATABASE DAD=DI31PHOL

TRANSACT CODE=TUBE PRTY={8,8,65535)
APPLCTN PSB=HIBLSKO14PGMTYPE=BATCH
DATABASE CS8l I131SK01
DATABASE DBD=DI32SKC1

TRANSACT CCDE=SHW1

Bl+#%% WARNING **

2¢G212 PRIORITY VALUES FOR TRANSACTICN CCDES
*y USED BY.BATCH PROGRAMS MUST B8E NULL3
*q VALUES ARE RESET TO PRTY=(0,0,65535)
APPLCTN PSR=HIBASKOl,PGMTYPE=BATCH
DATABASE CRD=DI3LSKOL
DATABASE CBN=N1325KQ1
TRANSACT CODE=SW2,PRTY=(0,2,1000}

8G+x% WARNING *#*

160

PAGE 1

2/12/770

X

PAGE 2

2712770

7

LeC DBJECT CCDE 4DDR1L ADDR2 STMT

LrC CRJECT CrNE ADDR1 ACCR2 STMT
139
140
14l
142
143
144
145
146
147
148
149
150
151
152
153
154
155
15¢
157
158

16C

162
163
164
165
B Y-13
167
168

170

SOURCE STATEMENT F30SEP69
2,6212 PRIORITY VALUES FUR TRANSACTIGCN CCDES
*, ° USEC BY BATCH PROGRAMS MUST BE NULL;
*y VALUES ARE RESET TO PRTY=(0,0,1000}

APPLCTN PSB=HSBASKO1,PGMTYPE=RATCH

DATABASE CBD=DS31SKOL

APPLCTN PSR=ENNOSKOY +PGMTYPE=TP

TRANSACT CODE=ENQ,PRTY=(By8465535)

APPLCTN PSB=HITASKOL 4PGMTYPE=TP

DATABASE CBD=PI131SK01

TRANSACT CODE=SKI1,PRTY={8,8,65535)

APPLCTN PSB=HITASKQ2 PGMTYPE=TP

DATABASE CH8D=DI32$KC1

TRANSACT CNDE=SKI2+PRTY=1(8,8465535)

APPLCTN PSB=HSTASKOL,PGMTYFE=TP

DATABASE CBD=DS31SKO1

TRANSACT CGDE=SKH1,FRTY=(8,8,65535}

LINEGRP DDNAME=DD2740S
LINE FEAT=POLLyACDR=022
TERMINAL ACDR=E2
NAME L2740S82
LINE FEAT=POLL+ADDR=023

DFSCTBMT TERMINAL ADDR=€2
NA|

ME MASTER
NAME L2740S1

LINE FEAT=POLL+ACDR=024
TERMINAL ADDR=E2
NAME L27405M1
TERMINAL ADDR=E4

NAME L2740SM2

LINEGRP OCNAME=DD2740A, FEAT={TRANSCTL s SWITCHED) yUNETYPE=2T740
LINE FEAT=AUTCANS,ADDR=026
TERMINAL ACDR=E2

NAME INQUIRYL

1. INEGRP DONAME=DD10S0AsFEAT=(STACTL »SWITCHED} yUNITYPE=1050
LINE FEAT=AUTOANS,ADDR=027
TERMINAL ACOR=E2
NAME INQUIRY2
POOL FEAT=AUTOANS, 20NE=0
SuBPOOL
NAME CaROL
SUBPOOL
NAME ELEANOR
NAME DAN
NAME HOWARD
SUBPOOL
NAME SHARRON
NAME RICHARD
NAME JOE

SCURCE STATEMENT F30SEP69

LINEGRP DCNAME=D01050 FEAT=(STACTLsNONSWITCH}s UNITYPE=1050
LINE FEAT=POLLyADDR=02A
TERMINAL ADDR=E2?
NAME PRINTER,COMPT=FTRL

NAME T2780,COMPT=PTR1
NAME TAPEPNCH,COMPT=PTPCH
NAME 'MODEL2,COMPT=PTPCH
NAME CARDPNCH,COMPT=3
NAME MODEL2M,COMPT=2

L INEGRP DONAME=DD2260T ,UNITYPE=2260
LINE FEAT=POLL,ADDR=0A2
TERMINAL ADCR=A04UNIT=40
NAME BILL

TERMINAL ADDR=A1l,UNIT=4C
NAME LECNARD
NAME ERNE

TERMINAL ADCR=A2,UNIT=40
NAME ARL

TERMINAL ADDR=A3,UNIT=4C
NAME

BUD
MASTTERM MASTER
PSBL iﬁ PDS=1CS.PSBLIB,UNIT=2314,VOLNO=IMSLIB
0BOLIB “PDS=ICS.DNBDLIE,UNIT=2314,VOLNO=IMSLI1B
PGMLIB PDS=1CS.CLOD,UNIT=2314,VOLNO=IMSLIS
RESLIB PDS=1CS.CLODyUNIT=2314,VOLNO=1MSLIB
MACLIB PDS=ICS«BMAC,UNIT=2314,VOLNO=IN¥SLIBy COPY=ALL
PROCLIB PDS=ICS.PROCLIB,UNIT=2314,VCLNC=STORGE
MSGQUEUE QCRIN={INQCR, ICS+ IQCRDSET 2314, IMSDBS) +REUSE=(YES+15C) 4
MSGIN=(INMSG»ICS.IMSGDSET 32314, IMSDRS)y
QCROUT=IDUTOCR yICS. OCCRDSET 42314, IMSDBS) 4
MSGOUT=({0UTMSGy ICS sOMSGDSETy 23149 IMSDBS)
IMSGEN UT1SDS=TEMPSET ASMPRT=0NyLEPRT=(XREF,LIST)

PAGE 3

2712770

PAGE 4

2/12/70

)
’
’

161

IMS/2AC SYSTEM OSFINITION SPECIFICATICNS PAGE 5

LCC QRJECT CLDE ADURL ADDR2 STHT SOURCE STATEMENT E30SEPGe 2/12/70
172 #,FEATGRP SPECIFICATLINS
174 ®, FEATGRP-
175 %y CCNVERT (INPUT) =0C
176 *y CONVERT(OUTPUT)~UC
179 #y APPLICATION SPECIFICATIMANS
131 %, PSR NAME-DF SSA402 TYPE-TP
182 *y CATABASE~DI2LPART INTENT-SHARE
183 %, TRANSACTION CODE-DSPPN
184 "y ME SSAGE TYPE-SNGLSEG NONRESPONSF
185 T, NIRMAL PTY=-1
186 #y LIMIT PTY-1
187 *, LI41T CNT-65535
188 *, PRCC LMT M$G-565535
189 *y PRCC LMT SEC-65535
190 %y TRANSACTION CODE-PART
191 #, VESSAGE TYPE-SNGLSEG NONRESPONSE
192 *y NORVAL PTY-1
193 %, LIMIT pTY=-1
194 *y LIMIT CNT=-65535
195 *y PRAC LMT MSG-65535
196 ®y PROC LMT SEC-65535
198 *y PSB NAME-DFSSA103 TYPE-TP
169 #, CATARASE-DI21PART INTENT=SHARE.
2¢¢ *, TRANSACTICN CGDE~CSPINV
201 *, MESSAGE TYPE-SNGLSEG NONRESPONSE
202 5, NORMAL PTY-1
203 %, LIMIT PTY-1
204 0y LIMIT CNT=-65535
205 *y PRCC LMT MSG-65535
20¢ #y PRLCC LMT SEC-65535
207 #y TRANSACTION CODE-INVTORY
208 *, MESSAGE TYPE-SNGLSEG NONRESPONSE
209 *, NORMAL PTY=1
210 #, LIMIT PTY=-1
211 *, LIMIT CNT-655238
212 ¥, PRLC LMT MSG-65535
213 *y PRCC LMT SEC-65535
215 *y PSB NAME-CFSSAMOT TYPE-TP
216 *y DATABASE~NI2LPART INTENT-SHARE
217 * TRANSACTION CODE-DSPALLI
218 *y VESSAGE TYPE-SNGLSEG NONRESPONSE
219 *y NORMAL PTY-1
220 *y LIVMIT PTY-1
INS/360 SYSTEM CEFINITION SPECIFICATIONS PAGE 6
LOC OBJECT CUDE ADDR1 ADDR2 STMT SQURCE STATEMENT F30SEPKS 2/12/70
221 *, LIMIT CNT-65535
222 *, PRCC LMT MSG-6553%5
223 *, PROC LMT SEC-65535
225 *y PSB NAFE-DF SSAMO4 TYPE-TP
226 *y CATABASE-DI21PART INTENT-UPDATE
227 *, TRANSACTICN COCE-ADDI .
228 *, MESSAGE TYPE-MULTSEG NONRESPONSE
229 *y NORMAL PTY-7
230 *y LIMIT PTY-9
231 *y LIMIT CNT-5
232 *y PRCC LMT M56-65535
233 wy PRGC LMT SEC-65535
234 *, TRANSACTIGN CODE-ADDINV
235 &, MESSAGE TYPE~MULTSEG NNNRESPONSE
23¢ *y NORMAL PTY=7
237 *y . LIMIT PTY-9
238 *, LIMIT CNT=5
219 *y PRCC LMT MSG=65535
240 *y PROC LMT SEC-65535
241 *, TRANSACTICN CODE~-ADCP 4RT
242 #y MESSAGE TYPE-MULTSEG NONRESPONSE
243 *, NORMAL PTY-7
244 *y LIMIT PTY<9
245 *, LIMIT CNT-5
246 *, PROC LMT MSG-65535
247 %, PRCC LMT SEC-6553%
248 *, TRANSACTICN CCDE-ADDPN
249 *, MESSAGE TYPE-MULTSEG NONRESPONSE
20 *, NORMAL FTY-7
251 *, LIMIY PTY-9
252 *y LIMIT CNT-5
253 *y PRCC LMT MSG-65535
254 #, PROC LMT SEC-65535
255 %, TRANSAGTIGN CODE-DLETI
256 #, MESSAGE TYPE-MULTSEG NONRESPONSE
257 #y NORMAL PTY-5
258 %y LINIT PTY-7
259 %, LIMIT CNT-2
260 . #, PRCC LMT MSG-6553%
241 *y PRIC LMT SEC-65535
262 *y TRANSACTION CONDE-DLETINV
263 *y MESSAGE TYPC-MULTSEG NONRESPONSE
264 *, KIRMAL PTY=5
265 *, LIvIT PTY-7
26¢ LD LIMIT CNT-2
267 #y PREC LMT MSG-65535
268 *, PROC LNMT SEC=65535
269 *y TRANSACTICN CONE~CLETPART
270 #y MESSAGE TYPE-MULTSEG KONRESPONSE

162

7

_/

I45/726C SYSTEM DFEFINITION SPECIFICATICNS

LEE ARJECT CCNE ARDPL ADDR2 . STMT SUURCE: STATEMENT

271
212
273
274
2175
276
217
278
279
246
2d1
282

234
285
28¢
247
2R8
289
290
291
292
292
294
295
29¢
297
298
299

301
02
303
304

306
a7
308
309
31c
311
312
313

315
316

318

319
320

IMS/2£0 SYSTEM DEFINITINN SPECIFICATICNS

LI CBJECT CCDE ADDRL ADDR2 STMT SOURCE STATEMENT

321
32z
323
324
325
326

328
329
330
331
332
333
334
33s
336
337
338
339
340

342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
3517
358

360
361
362
363
3¢4
365
3¢
167
364

370

*y
*y

*y
*9
*y
*y
&y
*y

NORMAL
LIvIT
LIMIT

PRCC LMT
PRGC LMY
TRANSACTION

F30SEP69

PTY-5

PTY-7

CNT=2
MSG-65535
SEC~65535
CODE-DLETPN

MESSAGE TYPE-MULTSEG NONRESPONSE

NORMAL
LIMIT
LIMIT

PRCC LMT
PROC LMT

PSB NAME-DFSSAH0S

PTY=5
pTY-7
CNT=2
MSG+65535
SEC-65535

TYPE-TP

DATABASE-NI2LPART INTENT~UPDATE

TRANSACTION

CODE-CLOSE

MESSAGE TYPE-SNGLSEG NONRESPONSE

NURMAL
LIMIT
Liurr

PROC LMT
PROC LMT
TRANSACTICN

PTY-1

PTY~-1
CNT-65535
MS$G-65535
SEC-65535
CCDE-CLSORD

MESSAGE TYPE~MULTSEG NONRESPONSE

NIRMAL
LImtr
LIMIT

PRCC LNT
PRCC LMT

PSR NAME=~CFSSAMO6

PTY-T7
PTY=9
CNT~5
MSG-65535
SEC-65535

TYPE~-TP

DATABASE-DI2LPART INTENT-UPDATE
TRANSACTION CODE~DISB
MESSAGE TYPE~MULTSEG NONRESPONSE
NORPAL PTY-G
LIMIT PTY-10
LIMIT CNT-2
PRCC LMY M$SG~65535
PRGC- LMT SFC-65535
TRANSACTICON CODE~DISBURSE
MESSAGE TYPE-SNGLSEG NONRESPONSE
NORMAL PTY=-1
LIMIT PTY~1
LIMIT CNT-65535
PROC LMT MSG-85535
PROC LMT SEC-65535

PSR NAME-=DF SLKMGO TYPE-TP
CATABASE~DI31PHOL INTENT~SHARE
TRANSACTICN COCE-DFS

F30SEP6Y

MESSAGE TYPE-MULTSEG NONRESPONSE
NORMAL PTY-5
LIMIT PTY=12
LIMIT CNT=5

PRCC LMT MSG-8

PRCC LNT SEC-100

PSB NAME-HIMASNOL . TYPE~TP
DATABASE=DI31PHOL INTENT-UPDATE
DATABASE-DI 31PH02 INTENT-UPDATE

TRANSACTION CODE-OLI
MESSAGE TYPE-SNGLSEG RESPONSE
MNORMAL PTY-5
LIMIT PTY-10
LIMIT CNT-5
PROC LMT MSG-10
PREC LMT SEC~10
TRANSACTICN CCOE~1CS
MESSAGE TYPE~MULTSEG NONRESPUNSE
NORMAL PTY=5
LEMIT PTY=12
LIMIT CNT-5
PRCC LMT MSG-10
PRCC LMT SEC~100
TRANSACTICN CODE~IMS
MESSAGE TYPE-SNGLSEG NONRESPONSE
NORMAL PTY-2
LIMIT PTY=5
LINIT CNT-10
PROC LMT MSG-1
PROC LMT SEC-100
TRANSACTICN CODE~-DLN
MESSAGE TYPF-MULTSEG NONRESPONSE
NURMAL PTY=0 -
LIMIT PTV=8
LIMIT CNT=3
PRCC LMT MSG-10
PRCC LMT SEC-100

PSB NAME~NOPSB YPE-TP
DATABASE-CI31PHOL INTENT-SHARE
TRANSACTION CODE-NOP
MESSAGE TYPE-MULTSEG NONRESPONSE
NORMAL PTY~1
LIMIT PTY-1
LIMIT CNT=-1
PRCC LNT MSG~5
PROC LMT SEC-50

PSB NAME-SWITCH TYPE-TP

PAGE 7

2712770

PAGE 8

2712770

163

IM$/360 SYSTEM CEFINITION SPECIFICATICNS

LCC OBJECT CODE

ADDR1 ADDR2 STMT

371
372
373
374
315
376
377
318
379
380
38l
382
383
384
385
386
387
388
389
390
391
392
392
394
39¢
396
3917
358
399
400
401
402
403
404
405
406
407
408
4Cs
410
411
412
413

415
416
417
418
419
420

SCURCE STATEMENT

hid
*y
*y

IMS/260 SYSTEM DEFINITION SPECIFICAYIONS

LCC OBJECT CCDE

164

ACOR1 ADCR2 STMT

421
422
423
424
425
426
427
428
429
430

432
423
434
435
436
437
438
439
440

442

450

SOURCE STATEMENT

F30SEPSS. 2/12/70

DATABASE-DI31PHOL INTENT-SHARE

TRANSACTION

CODE-SWI

MESSAGE TYPE-MULTSEG NONRESPONSE

NURMAL
LT

LIMIT

PRCC LMT
PRCC LMT
TRANSACTICN

PTY-1
PTY-7
CNT-1000
MSG-5
SEC-1
CODE-SWIBR

MESSAGE TYPE-MULTSEG NONRESPONSE

NORMAL
LIvIT

LIMIT

PRCC LMT
PROC LT
TRANSACTION

PTY-5

PTY-5

CNT-4
MSG-20
SEC-100
CODE-SWIPASS

MESSAGE TYPE-MULTSEG NONRESPONSE

NORMAL
LImIT

LIMIT

PROC LMT
PRCC LMT
TRANSACTICN

PTY-4
PTY-6
CNT-1
MSG-20
SEC-100
CCOE-SWIPR

MESSAGE TYPE~MULTSEG NONRESPONSE

NCRYVAL
LIMIT

LIMIT

PRCC LMT
PRCC LMT
TRANSACTION

PTY~14
PTY=14
CNT-100
MSG-20
SEC~100
CODE-SWITS

MESSAGE TYPE-MULTSEG NONRESPONSE

NORMAL
LImIT
LIMIT

PROC LMT
PRGC LMT

TRANSACTICN C

PTY-4
PTY-6
CAT-1
MSG-20
SEC-100
DE-SWN

Qi
MESSAGE TYPE-MULTSEG NONRESPONSE

NORMAL
LIMIT
LIMIT

PRCC LMY
PRCC LMT

PSB NAME-HIMARJOL

PTY-0
PTY=4
CNT=4
MSG-5
SEC~100

TYPE-TP

CATABASE-CI21 IRJE INTENT-UPDATE

TRANSACTION CODE-#
MESSAGE TYPE~MULTSEG NONRESPONSE

NORMAL PTY~10

LIMIT PTY-14

PAGE 10

F30SEP69 2/12/70

LIMIT CNT-6
PRCC LMT MSG-65535
PROC LMT SEC-65535
TRANSACTICN CODE-RJE
MESSAGE TYPE-MULTSEG NONRESPONSE

NORMAL
LINMIT
LIMIT

PRCC LMT
PRCC LNT

PSR NAME-HIMAJCOL

PTY-2
PIY~-4
CNT-10
M56-65535
SEC-65535

TYPE-TP

DATABASE-DS40JCO1 INTENT-UPDATE

TRANSACTICN

CODE-TPPL1

MESSAGE TYPE-MULTSEG NDNRESPONSE

NORMAL
LIMT
LIMIT

PRCC LMY
PRCC LMT

PSB NAME-HIMAJCO2

PTYY-8
PTY-8
CNT-65535
MSG-65535
SEC-65535

TYPE-TP

CATABASE-CS40JCOL INTENT-UPDATE

TRANSACTION

CODE-TPPL2

MESSAGE TYPE—-MULTSEG NONRESPONSE

NORMAL
LIMIT
LIMIT

PRCC LMT
PROC LMT

PSB NAME-HIMAJCO3

PTY-8
PTY-8
CNT-65535
MSG-65535
SEC~65535

TYPE-TP

DATABASE-DI31PHOL INTENT-UPDATE
TRANSACTION CODE-TUBE
MESSAGE TYPE-MULTSEG NONRESPONSE
NORMAL PTY-8
LIMIT PTY-8
LIMIT CNT-65535
PROC LMT M$SG-65535
PROC LM SEC-65535

PSB NAME-HIBLSKOL TYPE~-BATCH
DATABASE-DI31SKO1l INYENT-UPDATE
DATABASE-DI32S5KO1 INTENT-UPDATE

TRANSACTION CODE-SW1
MESSAGE TYPE-MULTSEG NONRESPONSE
NORMAL PTY-0
LIMIT PTY-0
LIMIT CNT-65535
PRCC LMT MSG-65535

/

TMS/26C SYSTEM NEFINITION SPECIFICATICNS PAGE 11

LCC ORJRCT CCDE AUDR1 ADDR2 STMT SOURCE STATEMENT - F30SEP69 2712770
471 *y PROC LMT SEC-65535
413 Ty PSB NAME-HIBASKO1 TYPE-BATCH
474 *, DATABASE-DI315K01 INTENT~UPDATE
415 *, DATABASE-DI32SK0l INTENT-UPDATE
476 *, TRANSACTION CODE-SW2
477 *y MESSAGE TYPE~MULTSEG NONRESPONSE
478 *y NORMAL PTY-0
479 *y LIMIT PTY=-0
480 *y LIMIT CNT-1000
481 *, PRGC LMT MSG-65535 .
482 *y PRCC LMT SEC-65535
484 *, PSB NAME-HSBASKO1 TYPF-BATCH
485 *, CATABASE-DS31SKO1 INTENT-UPDATE
426+4%% WARNING *#
487 216048 NO TRANSACT SPECIFICATIONS FOR PSB~HSBASKOL
489 *y PSB NAME-ENQOSKOL TYPE-TP
490+%% WARNING #* g
491 24,6047 NO DATAEBASE SPECIFICATIONS FOR PSB-ENQOSKOL
492 *y TRANSACTION CODE-ENQ
493 *y MESSAGE TYPE~MULTSEG NONRESPONSE
494 *y NORMAL PTY-8
495 *y LIMIT PTY-B
496 *, LIMIT CNT-65535
497 *y PRCC LMT MSG-65535
498 *y PRCC tMT SEC-65535
500 *y PS8 NAME-HITASKOL TYPE-TP
501 *y CATABASE-DI31SKOL INTENT-UPDATE
502 *y TRANSACTION CODE-SKI1
503 *, MESSAGE TYPE-MULTSEG NONRESPONSE
504 *,y NORMAL PTY-8 .
505 *y LIMIT PTY-8
506 *, LIMIT CNT=-65535
507 *y PROC LMT MSG-65535
508 *, PROC LMT SEC-65535
510 *, PSR NAME-HITASKO2 TYPE-TP
511 *y DATABASE-DI32SK01 INTENT-UPDATE
512 *y TRANSACTION CODE~SK12
513 *y MESSAGE TYPE-MULTSEG NONRESPONSE
514 *, NORMAL PTY-8
515 *, LIMIT PTY-8
516 *y LIMIT CNT-65535
517 xy PRBC LMT MSG-65535
518 x4 PROC LMY SEC-65535
520 *y PSB NAME-HSTASKO1 TYPE-TP
IMS/2€0 SYSTEM DEFINITION SPECIFICATICNS PAGE 12
LEC CHIECT CODE ADDRY ADDRZ2 STMT SNURCE STATEMENT F30SEP69 2712770

521 *, CATARASE-DS31SK01 INTENT-UPDATE

522 *y TRANSACTICN CODE-SKHL

523 *y MESSAGE TYPE-MULTSEG NONRESPONSE
524 *y NORMAL PTY-8

5285 . *,y LIMIT PTY-8

526 *y LIMIT CNT-65535

527 *y PRCC LMT MSG-65535

528 *y PRGC LMT SEC-65535

165

IMS/26C SYSTEM CEFINITION SPECIFJCATIDNS ' PAGE 13

LOC OBJECT CCDE ADDR1 ADOR2 STMT SOURCE STATEMENT F30SEP6Y 2/12/70
531 ",y HAREERAEREARXNARARREREARANBRBAS IR IRER RS
532 #, ® . UPDATE ACTIVITY WILL BE LOGGED
533 #y * FOR THE FOLLOWING DATASASES:
534 *y ®
535 ", = NI21PART
536 &, « N131PHO1
537 #y " DI31¢H02
538 #, » DI211RJE
539 *, ® DS43JC01
540 's * ol315K0t
541 *, * NI32SK01
542 *, * NS318K01 :
543 %, A whR
545 ' #y . BASSAARKODBAAERDAERSRBDERPERAARNARRARA AR
546 ®, * THE FCLLOWING TRANSACTION CODES
547 #, » WILL NOT 8F REPRCCESSED BY
548 ey « DATABASE RECEVERY:
549 =y ®
550 . #, * DFS
551 wy * NCP
552 *, * Swi
553 =, - SWIBR
554 “y * SHIPASS
555 *y ® SWI PR
556 * . SWITS
557 o *, * - SWN
558 =, *
IM$/260 SYSTEM CEF INITION SPECIFICATIONS . PAGE 14
LEC CBJECT CCDE . AUCR1 ADDR2 STMT - SCURCE STATEMENT B F30SEP6S 2712770
560 *,COMMUNICATICN SPECIFICAT IONS
" 562 *, LINE~1 SYSTEM#360 OPERATOR'S CONSOLE
564 Sy TERMINAL~0 ADDR-N/A FEATGRP-N/A
565 *, LOGICAL NAME-WTCR FEATGRP-N/A
567 . *; LINEGRP-1 DODNAME~DD2740S FEAT-STACTL NONSKITCH
568 *, UNITYPE-2740
570 *, LINE=2 FEAT-POLL ADDR=022
572 * TERMINAL-1 ADDR=E2 FEATGRP~STANDARD
573" *y LOGICAL NAME-L2740$82 FEATGRP-STANDARD
575 *, LINE-2 FEAT=PCLL ADDR~023
577 *, TERMINAL=2 ADDR=E2 FEATGRP~STANDARD
578 *, LOGICAL NAME-MASTER FEATGRP-STANDARD
579 *, *
580 *, » MASTER TERMINAL *
581 *,y . £] *
582 *, LOGICAL NAME~L2740S1 FEATGRP-STANDARD
584 T, LINE=4 FEAT-PCLL ACDR-024
586 x, TERMINAL=3 ADDR=E2 FEATGRP-STANDARD
587 *, LCGICAL NAME-L27408M1 FEATGRP~STANDARD
5€5 . *, TERMINAL~4 ACOR=E4 FEATGRP=STANDARD
590 * LOGICAL NAME~L2740SM2 FEATGRP=STANDARD
592 *, LINEGRP-2 ODCNAME-DD2740A FEAT~TRANSCTL SWITCHED
593 *y UNITYPE=2740
595 #y LINE=5 FEAT~AUTOAMS ADDR=026
556 *y 20NE COCE IS O
598 *, TERMINAL~5 ADDR=E2 FEATGRP=-STANDARD
599 *, LGGICAL NAME-INQUIRYY FEATGRP~STANDARD
601 *, LINEGRP-3 OCNAME-DD1050A FEAT-STACTL SWITCHED
602 *, UNITYPE=1050
604 *y LINE=6 FEAT=AUTOANS ACOR=-027
605 *, ZCNE CCDE IS O
607 . =, TERMINAL=-6 ADDR=E2 FEATGRP~STANDARD
508 *, LCGICAL NAME=-INQUIRY2 FEATGRP-STANDARD
609 =, COMPT=0

166

A

—

TMS /240 SYSTEM DEFINITION SPECIFICATICNS

LrC QRJECT rCDF ADDRL ADDR2 STHT

611
612
613
614
615

617
618
619

621
622
623
624
LY
626
627

629
630
631
632
633
634
635

637
638

642
643
64b
645
646
641
648
649
650
651
652
653
654

656
657

659

SOURCE STATEMENT

=
#y
*,
*
*,

*y
*,
*y

14$/760 $YSTEM DEFINITION SPECIFICATICNS

Lre GBJECT CNDE ADDR1 ADOR2 $TMT

661
662
663

665
666
667
668

67C
671
672

674
675
676

SOURCE STATEMENT

*
*y
*y

*y
y
*
*y

PAGE 15

F30SEPA9 2/12/70

LINE~T FEAT-AUTOANS ADDR~000
seoeEIRRLE

® LINE. IS A DIAL ANS POCL
b IONE CODE IS O.

ETeY

TERMINAL-7 ADDR=00 FEATGRP-STANDARD
LOGICAL NAME-CARODL FEATGRP-STANDARD

PT-0

TERMINAL-8 ADDR=00 FEATGRP-STANDARD
LCGICAL NAME-ELEANOR FEATGRP=-STANDARD
COoMPT=-0
LOGICAL NAME-DAN FEATGRP-STANDARD
OMPT-0

LCGICAL NAME-HCWARC FEATGRP~STANDARD
COMPT=0

TERMINAL-9 ACCR=00 FEATGRP-STANDARD
LOGICAL NAME~SHARRON FEATGRP-STANDARD
CaMPT~0
LCGICAL NAME~RICHARC FEATGRP-STANDARD
4

UMPT~0
LCGICAL NAME~JOE FEATGRP-STANDARD
COMPT~-0

LINEGRP=4 DDNAME=-DD1050 FEAT-STACTYL AONSWITCH
UNITYPE-1050

LINE-E FEAT-PCLL ADOR~02A

TERMINAL-1Q ADDR=E2-FEATGRP~STANDARD
LCGICAL NAME-PRINTER. FEATGRP-STANDARD

COMPT=-PTRL

LOGICAL NAME-T2780 FEATGRP~STANDARD
COMPT~PTRL

LOGICAL NAME~-TAPEPNCH FEATGRP-STANDARD
COMPT-PTPCH

LOGICAL NAME-MCDEL2 FEATGRP-STANDARD
COMPT-PTPCH

LOGICAL NAME-CARDOPNCH FEATGRP-STANDARD
CoMPT-3 .

LOGICAL NAME~MODELZM FEATGRP~STANDARD
COMPT=3

LINEGRP=5 DONAME-DD2260T FEAT-STACTL NONSHITCH
UNITYPE-2260

LINE-S FEAT~POLL ADDR-0A2

PAGE 16

F30SEP69 2712770

TERMINAL=~11 ADDR=A0 FEATGRP-STANDARD
CCNTROL UNIT=40
LOGICAL NAME-BILL FEATGRP~STANDARD

TERMINAL~12 ADDR=Al FEATGRP-STANDARD
. CONTROL UNIT-40
LOGICAL NAME~LEONARD FEATGRP-STANDARD
LOGIGAL NAME-ERNE FEATGRP-STANDARD

TERMINAL~-13 ACDR=A2 FEATGRP-STANDARD
CONTROL UNIT-40
LCGICAL NAME-CARL FEATGRP-STANDARD

TERMINAL~14 ACDR=A3 FEATGRP-STANDARD
CONTROL UN]T-40
LOGICAL NAME-BUD FEATGRP=~STANDARD

167

IMS/360 SYSTEM DEFINITION SPECIFICATIONS

LCC ORJECT CONE

ADDR]L ADNDRZ STMT

679

681
682
683
684
685
636"
6317
Y1)
689

691
692
693
694
655
696
697
31
659

7€)
702

704
705
706

708
7CS

711
72

T4
715

7
718

SOURGCE STATEMENY F30SEP69

*yIMS/360 DATA SET SPECIFICATIONS

I1MS/26C SYSTEM DEFINITION SPECIFICATICNS

LFC CBJFCT CCOE

168

ADCR1 ANDR2 - STMT
721+
+

122+
723+
7244+
725+
T26+

+
727+
728+
729+
730+
731+
732+
733+
T34+
735+
736+
737+
738+
739+
740+
7414+
T42+
T43+
Tat+
745+
Tabe
747+
T484+
T49+
750+
751+
752+
753+
754+
755%
756+
157+
758+
759+

+
760+
7614+
762+
762+
TH64
7654
T66+
767+

SOURCE STATEMENT

QCR DATA SETS?
QCRIN DONAME-INQCR
OSNAME~ICS .+ IQCRDSET
UNIT=-2314
SERIAL-IMSDBS
QCRCUT DCNAME~OUTQCR
DSNAME=1CS. GQCRDSET
UNIT-2314
SERIAL-IMSDBS

MESSAGE QUEQUE DATA SETS:
MSGIN CCNAME-INMSG
DSNAME=ICS4 IMSGDSET
UNIT-2314
SERTAL-IMSDBS
MSGOUT NDDNAME~CUTMSG
. DSNAME-ICS.OMSGDSET
UNIT-2314
SERIAL-IMSDBS

RESLIB SPECIFICATION:
DSNAME-1CS.CLCD VOLUME-IMSLIB UNIT-2314
MACLIB SPECIFICATION? .
DSNAME-ICS.BMAC VOLUME-IMSLIB
UNIT-2314 COPY=-ALL

PROCLIB SPECIFICATION: .
DSNAME=TCS. PRCCLIE VOLUME=STORGE UNIT-2314

PGMLIB SPECIFICATICN:,
DSNAME~JCS.CLCD VOLUME~IMSLIB UNIT-2314

PSBLIB- SPECIFICATICN:
DSNAME=ICS<PSBLIB VOLUME-IMSLIB UNIT-2314

OADLIB SPECIFICATIONG
DSNAME-ICS.DBDLIB VOLUME-IMSLIB UNIT-2314

F30SEP69

PAGE 17

2712770

PAGE 18

2712770

PUNCH *//TMSGEN JOB 1, %' IMSGEN STAGE IT¢',MSGCLASS=AsMSGLEVEL=X
1 -

PUNCH /7
PUNCH *//

STEPY EXEC PGM=IEHMOVE,REGION=100K*
SYSPRINT DC SYSOUT=A®

PUNCH *7/SYSUT1 DD CSNAME=TEMPSET,DISP=(0LC,yPASS)?
PUNCH -*//DC2 DD DSNAME=IMS.LOAD,DISP=(OLD,PASS)*
PUNCH '*//CD3 oD VOLUME=SER=IMSLIBsDISP=(OLDyPASS)y

PUNCH %77
PUNCH v//
PUNCH
PUNCH
PUNCH
PINCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
' PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH *.
EN
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

e - 4= ®eePemtae s 4 anaatemeaa"eatane.an

CONTINUE?
DSNAME=ICS.CLOD,UNIT=2314*
SYSIN DD *¢
COPY PDS=IMS,LOADyT0=2314=IMSLIB,RENAME=ICS.CLOD®

SELECT MEMBER=DFSIRAQC REGION ANALYZER MODULE*
SELECY MEMBER=DFSIRCCO REGION CCNTROLLER MODULE®
SELECT MEMBER=DFSIPCCC PRUG. CONTROLLER MCDULE®
SELECT MEMBER=DFSIPROO PROG. REQUEST HANDLER®
SELECT MEMBER=DFSILNKO IMS/360 LINKAGE 'EDITOR
SELECT MEMBER=DFSILI0O DL/l LANGUAGE INTERFACE®
SELECT MEMBER<DFSINLRO OL/1 RETRIEVE MODULE®

* SELECT MEMBER=DFSIDLIC DL/I INSERT MODULE®

SELECT MEMBER=DFSIDLDO OL/1 DELETE/REPLACE MODULE®
SELECT MEMBER=DFSINLEO DL/1 DATA BASE LOAD MODULE®
SELECT MEMBER=DFSIOLNO ~ DL/1 BATCH INITIALIZATION®
SELECT MEMBER=DFSIDLHO DL /1 HSAM MODULE!

SELECT MEMBER=DFSIOLTO DL/1 PROGRAM TEST MODULE*
SELECT MEMBER=DFSISNAP DL/1 BLCCK SNAP ROUTINE®
SELECT MEMBER=DFSIISMO OL/1 1SAM SIMULATCR®

SELECT MEMBER=DFSIWKNO DL/I WRITE KEY NEW MODULE®
SELECT MEMBER=DFSIDLKO DL /1 BLOCK LOADER MODULE*
SELECT MEMBER=DFS1U0320 OSAM REAC/WRITE MODULE®
SELECT MEMBER=DFS10S3C 0SAM CHECK ROUTINE'

SELECT MEMBER=DFSIDS60 OSAM OPEN/CLOSE(OVFH)?®
SELECT MEMBER=DFST0S10 CSAM OPEN ROUT INE?

SELECT MEMBER=DFSISMMO STORAGE MANAGE MENT MODULE®

"SELECT MEMBER=DFSIDLOO OL/1 OPEN MODULE'

SELECT MEMBER=DFSIDLCO OL/1 CLCSE MODULE®

SELECT MEMBER=DFSIDBAO DL/I .BATCH ANALYZER®

SELECT MEMBER=DFS IBKRO OL/1 BATCH BLOCK MODULE*
SELECT MEMBER=DFSIINLO INIT - MODULE LODADER®

SELECT MEMBER=DFSIINIOQ INIT = JOBLIB MODULE LOADER!
SELECT MEMBER=DFSIIN20 INIT - SVCLIB MODULE LOADER®

SELECT MEMBER=((DFSIOCEQ,16G01928)) 0SAM CH. END APX

DAGE*

SELECT MEMBER=DFSIXXX0 RESIDENT MODULE MAP?
SELECT MEMBER=DFSISVVO INTER-REGION SVC RTNES®
SELECT MEMBER=DFSIOSPO IMS SUBTASK DISPATCHER®
SELECT MEMBER=DFSIRSTO IMS RESTART®

SELECT MEMBER=DFSIRSIO RESTART INITIALIZATION®
SELECT MEMBER=OFSICPOO IMS CHECKPOINT®

SELECT MEMBER=DFSIINTO INIT ~ CONTROL &€& MISC®
SELECT MEMBER=DFSIINDC INIT - DM8 DIRECTORY®

d

a

IMS/360 SYSTEM DEFINITION SPECIFICATIONS

LCC OBJECT CCOE

ADDR1 ADDR2 STMT

T68+
T69¢
770+
711+
712+
773+
T4+
175+
T7¢+
777+
773+
779+
180+
781+
782+
783+
T84+
785+
786+
787+
788+
789+
790+
791+
792+
793+
794+
795+
796+
797+
798+
799+
800+
301+
302+
803+
804+
805+
806+
807+
808+
809+
310+

811+ -

812+
8134
814+
815+
816+
817+

SOURCE STATEMENT

IMS/3€6C SYSTEM DEFINITION SPECIFICATIONS

LCC DBJECT CUDE

ADDRY ADDR2 STMT

. 818+

819+
820+
821+
B22+
823+
824+
825+
B26+
821+
a2a+
829+
830+

*
831+
832+
833+

+
834+
835+
836+

*
837+
838+
839+
840+
841+
842¢
843+
844+
845+
846+
84T+

+

848+

849+
850+
851+
852+
853+

854+ -

Ll
855+
856+
857+
858+
859+
860+
861+
862+

SOURCE

PAGE 19

F3I0SEPKQ 2712170
PUNCH * SELECT MEMBER=DFSTINSO INLT ~ STORAGE PCOL MGMT?
PUNCH ¢ SELECT MEMBER=DFSIINQC INIT - QUEUE MANAGEMENT®
PUNCH * SELECT MEMPRER=OFSIINRO INIT = COMMUNICATINNS®
PUNCH ¢ SELECT MEMBER=DFSIINXC INIT - PESIQREMT XFR CTL®
PUNCH ' SELECT MEMBER=DFSISMNC STNRAGE PCOL MGMT(N/L)®
PUNCH * SELECT MEMBER=RFSICHLO DATABASE LCGGER MODULE®
PUNCH ¢ SELECT MEMBER=CFSIRDRO DATARASE RECCVERY MIDULE!
PUNCH * SELECT MEMRER=DFSIBNPO DB RECOVEPY PSB MODULE®
PUNCH * SELECT MEMBER=DFSICBRO CBCUMP =~ NBN ANALYZER®
PUNCH ¢ SELECT MEMBER=DFSIASIC SCHEDULER ~ INITIATICN®
PUNCH ' SELECT MEMBERaDFSIASTC - SCHEDULER = TERMINATIGN®
PUNCH * SELECT PEMRER=DFSICLIO COMM INPUT PROCESSOR®
PUNCH * SELECT MEMPER=DFSICLOC CCMM CQUTPUT PROCESSOR
PUNCH * SELECT MEMBER=DFSICLPO COMMANG MSGE PROCE SSOR*
PUNCH * SELECT MEMBER=DFSICLRO MESSAGE FCUTER
PUNCH * SELECT MEMBFR=NFSICLMO MESSAGE GENERATOR®
PUNCH ¢ SELECT MEMBER=DFSICM1O0 COMM MESSAGE TABLE®
PUNCH * SELECT MEMBER=DFSICLTO COMM TRANSLATION MODULE®
PUNCH * SELECT MEMBER=DFSICLBC COMM BACKSPACE EDIT*
PUNCH ' 'SELFCT MEMBER=DFSICLFO SYMBOLIC DEST FINDER®
PINCH * SELECT MEMBER=DFSICLSC SECURITY PROCESSOR
PUNCH * SELECT MEMBER=CFSICLXO RESET POLL®
PUNCH ' SELECT MEMBER=DFSICLLO /DROACCAST CCMMAND®
PUNCH * SELECT MEMBER=DFSICL20 JCHE /RES COMMAND®
PUNCH ¢ SELECT MEMBER=DFSICLAQ /1AM CCMMAND®
PUNCH * SELECT MEMBER=DFSICL30 EDIT CCMMANG MSGE®
PUNCH * SELECT MEMBER=DFSICL4O /STA /STU /PST COMMAND®
PUNCH * SELECT MEMHER=CFSICLSO /TES /EMD JEXC COMMAND®
PUNCH * SELECT MEM3ER=DFSICL60O /CHANGE CCMMAND®
PUNCH * SELECT MEMRER=DFSICLTC /ASSIGN COMMAND®
PUNCH ' SELECT MEMBER=CFSICLAO /NELETE COMMAND!
PUNCH * SELECT MEMBER=DFSICLYC /LOCK JUNLOCK COMMAND!
PUNCH * SELECT MEMBER=DFSICLEO /SET /RESET COMMANDS®
PUNCH ¢ SELECT MEMBER=CFSICLDO /DISPLAY CONTROL MCDULE®
PUNCH ' SELECT MEMBER=DFSIDP10 . TATUS!
PUNCH ¢ SELECT MEMBER=DFSIDP20 " ACT IVE®
PUNCH ' SELECT MEMBER=DFSIOP3C " QUEUES
PUNCH ' SELECT MEMBER=DFSIDP40 n TRAN && LTERM?®
PUNCH * SELECT MEMBER=DFSINPSO " PGM 6& DATABASE':
PUNCH * SELECT MEMBER=DFSINP6D » LINE &L PTERM!
PUNCH * SELECT MEMBER=OFSINP7O " ASS IGNMENT*
PUNCH ¢ SELECT MEMSER=DFSIRCLO . MASTER®
PUNCH * SELECT MEMBER=DFSIOLAC DL/1 CALL ANALYZER®
PUNCH ' SELECT 'MEMEER=CFSIDLMO DL/1 BLOCK MOVER®
PUNCH * SELECT MEMBER=DFSIIDEOQ BLGCK CEQUEUE*
PUNCH * -SELECT MEMBER=DFSIIENG BLNCK ENQUEUE®
PUNCH * SELECT MEMBER=DFSIMBEO SCHECULER — SMB ENQUEUE®
PUNCH * SELECT MEMBER=DFSIM3DO SCHEDULER - SMB CECUEUE®
PUNCH * SELECT MEMBER=DFSIPREQ MSGE AND LOG PREFIX BLDR®
PUNCH * SELECT MEMBER=DFSILO00 WRITE LOG ROUTINE®

PAGE 20

STATEMENT F30SEP69 2712770
PUNCH ¢ SELECT MEMBER=DFSISTPC START REGICN®
PUNCH * SELECT MEMBER=DFS1IPTPO STOP REGION®
PUNCH ' SELECT MEMBER=DFSIASEOQ SIM REGION TERMINATION®
PUNCH ' SELECT MEMBER2DFSIRWQO READ/WRITE MSGE QUEUE?®
PUNCH * SELECT MEMBER=DFSIQMSO QUEUE REUSE MNDULE?®
PUNCH.% SELECT MEMBER=DFSISTO1 IMS STATISTICS MCDULE®
PUNCH ¢ SELECT MEMBER=DFSISTO02 IMS STATISTICS MODULE*
PUNCH ' SELECY MEMBER=DFSISTO3 IMS STATISTICS MODULE'
PUNCH * SELECT MEMBER=DFSISTO04 IMS STATISTICS MCDULE®
PUNCH * SELECT. MEMBER=DFSISMIOQ SECURITY MAINT INIT®
PUNCH ' SELECT MEMBER=DFSISMPO SECURITY MAINT!

PUNCH
PUNCH

PUNCH
PUNCH
PUNCH

PUNCH
PUNCH
PUNCH

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

© PUNCH

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

PUNCH-

xe

*//STEP2 EXEC PGM=IEWL+PARM=**RENTyNCALy XREFsLIST**,REGIX

ON=110K*
*//SYSPRINT DD SYSOUT=A?

9 /7/SYSLIN DD DCNAME=SYSIN®

*//5YSLMOD DD VOLU¥E=SER=IMSLIR,DISP={0OLC,PASS),
CONTINUE®
v . DSNAFE=ICS.CLOD,UNIT=2314"

*//5YSUBJ DU DSNAME
*//SYSUT1 DD
+DELETE) x?

MS, LOAD,OISP=(QLD,PASS)*
UNIT=(SYSDA, SEP={SYSLIN, SYSLMOD)) DISP=(X

7/ SPACE=(17CCy11C0,50),RLSE)*

*//SYSIN DD *¢
¢ CHANGE 1GC255(16C243)"

¢ INCLUNE SYSOBJ(DFSINSVN)

' NAME 1GC243(R)!
s yu

OSAM SVC ROUTENE®

//STEP3 EXEC PGM=IEHMOVE,REGION=100K

*//SYSPRINT DL SYSQUT=A!

1//SYSUT1 DD DSNAME=TEMPSETDISP={CLD,PASS)®
*//CN2 DD DSNAWE=IMS.GENLIB)DISP=(OLDsPASS)?

*//003 DD VCLUME=SER=INSL1B,0ISP=CLN,
. CONTINUE®
v CSNAME=1CS «BMAC,UNTT=2314"

*//SYSIN DD %!

* COPY PDOS=IMS,GENLIB,T0=2314=1NFSLIByRENANESICS,BMAC?

"y

" //STEP4 EXEC PGM=1EBUPDTE yPARM=NEW,REGICN=90K"*

*//SYSPRINT DD SYSDUT=A!

*//5YSUT2 DD VOLUFE=SER=STORGE,DISP=(0OLC,PASS)y
CONTINUE?
A DSNAME=[CS.PROCLIB,UNTIT=2314"

*//SYSIN 0D DATA?
‘el ADD NAME=DLITCBL*
¢ INCLUDE SYSCRJ(DFSILIODI?®

¢ ENTRY OLITCEL! .
1KY ACD NAME=DLITPLI*

' INCLUDE SYSCBJ(DFSILION)®

¢ ENTRY IHESAPD*

169

Lee

Lec

IMS/26C SYSTEM DEFINITION SPECIFICATICNS

PAGE 21

CRJECT CCNE ACDRL ADDR2 STMT SOURCE STATEMENT F30SEP69 2/12/70
863+ PUNCH *o/ ACD NAME=DL IBATCH®
8644+ PUNCH '/ NUMBER NEW1=00000010, INCR=00000010"
865+ PUNCH *// PROC PSB=TEMPNAME®
B66+ PUNCH *//G EXEC PGM=DFSIRCOO+PARM=113,ELEPSB** yREGION=120K"
867+ PUNCH *//IMS DD VCLUME=SER=IMSL]B,DISP=SHR,
+ CONTINUE®
B&B+ PUNCH *//7 CSNAME=ICS oPSBLIByUNIT=2314"
869+ PUNCH *// DD VOLUME=SER=IFSLIB.DISP=SHR, X
»> CONTINUE®*
870+ PUNCH */7 OSNANE=ICS .DBDLIBsUNIT=2314"
871+ PUNCH *//SYSUDUMP DO QVSOU‘IaA.SPACF=(605,(500.500]'RLSE'JOUNDX
+)y
872+ PUNCH /7 ’ nCE=(RECFM*FBA.LRECLtlZl,BLKSllEﬂboﬂ'
873+ PUNCH ¢,/ ADD MAME=IMSCDBOL®
B4+ PUNCH '.I NUMEBER NEW1I=000000104 INCR=00000010°*
875+ PUNCH *// PROC MBR=)PAGES=60"
876+ PUNCH *//C EXEC PGM=IEQCHLOO+PARM=*"SI2E=]1100009LINECNT=5X
+ 0! yREGJON=126K?*
BT+ PUNCH *//SYSLIN DD DSNAME=EEEELIN,DISPa(M0DyPASS) sUNIT=SYSDAX
+ © +DCB=(LRECL=80, X1
878+ PUNCH '// RECFM=FByBLKSIZE=400)ySPACE=(CYLy(441),RX
+ SE)
BT9+ PUNCH '/ISYSFRINT DD SYSQUT=A,DCRB={RECFM=FBA,LRECL=121,BLKSIZEX
+ ®605) X*
880+ PUNCH *// SPACE= (6054 (GEPAGES.0sEGPAGES) yRLSEy 9RCUX
* ND)!
881+ PUNCH *//SYSUT1l OD UNIT=SYSDA,CISP=(NEW,CELETE},SPACE={CYL,y (X
+ 105 114RLSE)
B82+ PUNCH '//7SYSUT2 OD UNIT=SYSDA,DISP=(NEWs DELETE)+ SPACE=(CYL, (X
+ 10,1).RLSE)? .
883+ PUNCH *//SYSUT3 DD UNIT=SYSDADISP=(NEWDELETE) s SPACES(CYLy (X
+ 1041),RLSE)*
884+ PUNCH *//5YSUT4 DD UNIT=SYSDA,DISP=(NEWyDELETE)}+ SPACE={CYLy (X
+ 10,1),RLSE)? .
885+ PUNCH *//L EXEC PGM=DFSILNKO,PARM=* YXREFy)LIST4LEV**,REGIOX
+ N=100K, X*
886+ PUNCH *// - CONC={4,LT,C)*
887+ PUNCH *//SYSLIB DD DSNANE=SYS1 .CCBLIB+DISP=SHR !
8ag+ PUNCH *7/7 oD DSNAME=SYS1,PL1LIB4DISP=SHR?
889+ PUNCH ¢ //SYS0OBJ DD CSNAME=1CS.CLODs DISP=SHR®
890+ PUNCH *//SYSLIN DD DSNAME=GLEELLIN,DISP={CLD, CELETE)"
891+ PUNCH *// ‘0D VOLUMESSER3STORGE ;DI SP=SHR,y X
+ CONT ERUE?
892+ PUNCH */7 DSNAME=1CS. PROCLIBICLITCBL) ,UNIT=2314"
T893+ PUNCH '// Do DDNAME=SYSIN®
894+ PUNCH *//SYSLMCD DD VCLUMESSERSIMSLIByDISP=SHR, X
+ CONTINUE®
895+ PUNCH *// DSNAME=TCS.CLOD(LGEMBR) yUNIT=2314"*
896+ PUNCH '//SYSPRINT D0 SYSOUT=A,DCB=(RECFM=FBA,LRECL=121,BLKSIZEX
+ =605}, X2
IMS/260 SYSTEM DEFINITION SPECIFICATIONS PAGE 22
QRJECT CCDE ADDRL APNR2 STMT SOURCE STATEMENT F30SEPEY 2712770
897+ PUNCH *// SPACE= (605 CEPAGES09RLSEy yROUND) ¢
898+ PUNCH *//SYSUT1 DD UNIT=SYSDADISP=(NEW,CELETE) s SPACE=(CYLs (X
+ 105 114RLSE)
8G9+ PUNCH * o/ ACD NAME=IMSPLI® .
900+ PUNCH ./ NUMBER NEW1=10,INCR=10*
901+ PUNCH '// PROC MBR=,PAGES=50"*
902+ PUNCH *//C EXEC PGNM=[EMAA, PARM= 1 XREFyATRLOADy NODECK #NX
+ OMACRO ,0PY=11¢, x*
903+ PUNCH *// REGICN=114K*
904+ PUNCH ?//SYSUT1 DD UNIT=SYSCA,SPACE=(10244(60,60) yRLSEssROUX
+ ND),y X
905+ PUNCH ¢ CCB= (RLKSIZE=1024) 4DISP=({NEW,PASS] !
06+ PUNCH *//SYSUT3 DD UNIT=SYSDA,SPACE={1024,(60,60)+RLSEy ¢ROUX
+ . ND}y X
907+ PUNCH '/ DCB= (BLKS12E21024) 4DISP=(NEWs PASS)?
908+ PUNCH *//SYSPRINT DD SYSOUT=A,0CBa(LRECL®125,BLKSIZEx629+RECFX
+ M=VBA), X!
9C9+ PUNCH *// SPACE=(605, {ELPAGES 409 EGPAGES) oRLSEDY
910+ PUNCH -*//SYSLIN DD UNIT=SYSDA,SPACE=(80,{250480) yRLSE},DCB=X
+ BLKSIZE=80, X
911+ PUNCH '// DISP=(NEW,PASS)®
912+ PUNCH *//L EXEC PGM=DFSILNKOsPARM=?*XREF 4LIST,LET**,CONDX
+ =(44LT+Cly x*
913+ PUNCH *// REGICN=109K*
914+ PUNCH 'IISVSLIR DD DSNAME=SYS14PL1LIB,DISP=SHR?®
915¢ PUNCH * DSNAMEZSYS 1 COBLIByDISP=SHR"
916+ PUNCH ‘I/‘YSL!N DD DSNAME=*,C4 SYSLIN,DISP={OLD,DELETE)?®
917+ PUNCH *// 0o VOLUME=SER=STORGEsDISP*SHR 4
+ CONT INUE®
918+ PUNCH *// : DSNAME=1CS. PROCLIB(DLITPLI)UNIT=2314"
919+ PUNCH *// oD DDNAME=SYSIN®
920+ PUNCH *//SYSLMCD DD VOLUME=SER=IMSL18,DISP=SHR, X
+ CONTINUE®
921+ PUNCH *// OSNAME=1CS, CLOD(t&HBR)'UNl"-2314'
922+ PUNCH *//SYSPRINT DD SYSOUT=ANCB=(LRECL=121,BLKSIZE=605;RECFX
+ . M=FBA), Xt
923+ PUNCH v// SPACE=(605+ (LEPAGES .0y EEPAGES)oRLSE)®
924+ PUNCH *//SYS0BJ DD DSNAME=1CS.CLOD DI SP=SHR!
925+ PUNCH *//SYSUT1 DO UNIT=SYSCA, DISP=(NEW,DELETE} y SPACE=(CYL¢X
+ (5+1)4RLSE}® .
926+ PUNCH ',/ ADD NAME=1MSCORGO®
927+ PUNCH %,/ NUMBER NEW1=00000010, INCR=00000010"
g28+ PUNCH *// PRCC MBR=4PAGES=60'
929+ PUNCH *//C EXEC PGM=IEQCBLOO,PARM=**SIZE=110000+LINECNT=SX
+ O ' ,REGION=126K"
930+ PUNCH *//SYSLIN DD DSNAME=ELEELIN,DISP=(NOD,PASS) UNIT=SYSCAX
+ +DCB=(LRECL=80, X' .
931+ PUNCH /¢ RECFM=FByBLKSTZE=400)4SPACE=(CYLy (491} 4RX
+ LSE)*
932+ PUNCH *//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA+LRECL=121,BLKSIZEX

170

VRN

./

IM§/36Q SYSTEM CEFINITINN SPECIFICATIONS PAGE 23

LCC DAJECT CODE ADDRYL ADDR2 STMT SOURCE STATEMENT F30SEP6 2/12/70
+ =605) ¢ X
933+ PUNCH *// SPACE=16CS, (CEPAGES.OyEEPAGES) ¢RLSEy s ROUX
+ ND) ¢
934+ PUNCH '//SYSUT1 OC UNTT=SYSDA,DISPa(NEW,CELETE} ,SPACE=(CYLy (X
+ 104 1)4RLSE)?
935+ PUNCH *//SYSUT2 OC UNIT=SYSCACISP={NEW,CELETE) s SPACE={CYLy(X
+ 10411 ,4RLSE)
936+ PUNCH '//SYSUT3 DO UNIT=SYSDA,01SP=(NEW,DELETE) s SPACE={CYL,IX
+ 10911 ,RLSE}Y
937+ PUNCH '//SYSUT4 DD UNLT»SYSDA,DISP=(NEW,DELETE) s SPACE=(CYL, (X
+ 1041)4RLSE)?*
939+ PUNCH *7/L EXEC PGM=DFSILNKO)PARM=Y *XREF,LIST,LET **,REGIOX
+ N=100K, Xt
939+ PUNCH '// CONDa(4,LT,C)?
940+ PUNCH *//SYSLIB DO DSNAME=SYS}.COBLIA,DISP=SHR'
941+ PUNCH 7/ oc DSNAME=SYS1.PL1LIB DI SP=SHR?
942+ PUNCH *//5YS0BJ OC DSNAME=ICS4CLCD4DISP3SHR®
943+ PUNCH */7/SYSLIN DD DSNAME=SLEELINDISP={CLDy DELETE)Y
944+ PUNCH *// DD VOLUME=SER=STORGE,DISP=SHR, X
+ CONTIAUE?
945+ PUNCH /7 DSNAME=1CS. PROCLIBIELITCALYUNIT=2314"
946+ PUNCH 7/ oc DCNAME=SYSIN'
9417+ PUNCH *//SYSLMOD DD VCLUME=SERa{MSLIBsCISPRSHR, X
+ CONTINUE®
948+ PUNCH ¢// DSNAME=[CS.CLOD(EEMBRY,UNIT=2314"
949+ PUNCH *//SYSPRINT CD SVSULTBA-DCSI(R[CFMtFBAqLR‘CL'IZlvBLKSllFX
+ =605},
95C+ PUNCH *// SPAEEt(bOSqBEPAGES.O.RLSEvnRUUNDI'
951+ PUNCH '//SYSUT1 DD UNIT=SYSDA,DI SP={NEW,DELETE} ySPACE={CYLs (X
+ 10,1 }RLSE}!
952+ PUNCH *//G EXEC PGM=DFSIRCO0,PARM=?¢3, £EMBR" 'y REGION=150X
+ KsCOND={ 0, LT}y X
953+ PUNCH 7/ TIME=2"
954+ PUNCH *//1IMS 0D VOLUME=SERSINSLIB, CISP=SHR, X
+ CONTINUE®
955+ PUNCH *// CSNAME=ICS.PSBLIByUNIT=2314"
956+ PUNCH *// no VOLUME=SER=ENSLIByCISP=SHR, X
+ CONTINUE*
957+ PUNCH *// DSNAME=[CS.DEDLIByUNIT=2314"
958+ PUNCH '//SYSOUT nD SYSDUT=A,SPACE={CYL, (1,1}),0CR=(LRECL=13X
+ 34RECFM=FA)
959+ PUNCH *//SYSUDUMP DO SYSCUT®=A,0CB=(LRECL=121,RECFM=FBA,BLKSIZX
. E=3025), xe
960+ PUNCH Y77 SPACE= (30259 (2CCy100) 4RLSE 4 »ROUND}
961+ PUNCH *./ ADD NANE=IMSPLIGC?
962+ PUNCH %,/ NUMBER NEW1=10,INCR=10*
963+ PUNCH /7 PROC MBR=)PAGES=50"
964+ PUNCH *//C EXEC Gl'-lEHAA.PARH:"XREF.ATRVLOADyNODECK'NX
+ OMACRO,0PT=1"", xe
965+ PUNCH *// REGICN=114K*
INS/360 SYSTEM CEFINITION SPECIFICATICNS PAGE 24
LCC OBJECT CODE ADDR1 ADDRZ STMT SCURCE STATEMENTY F30SEPSY 2712770
966+ PUNGH *//SYSUT1 DD U?IT=SVSDA'SPACE=(lOZév(bO.ﬁO)’RLSEo +ROUX
+ NDJy X
967+ PUNCH ¢/ PCB={BLKSTZE=1024) D ISP={NEW,PASS)"
968+ PUNCH '//SYSUT3 DD UNIT=SYSDA, SPACE=110244(60460) yRLSEy+RCUX
+ ND)y Xt
969+ PUNCH *// DCB={BLKSTZE=1024) sCISP={NEW,PASS)*
970+ PUNCH '//SYSPRINT DB SYSOUT=A,NCB={LRECL=125)BLKSTIZE=629sRECFX
+ M3VBA), X
971+ PUNCH */7 SPACE={605,{EEPAGES.0,LEPAGES)} yRLSE)
- 972+ PUNCH *//SYSLIN DD UNIT=SYSDA,SPACE={80,(250,80}yRLSE) ,DCB=X
+ BLKSIZE=80, X
973+ PUNGH *// DISP={NEWh,PASS}*
T4+ PUNCH *//L EXEC PGM=OFSILNKOyPARM=* ¢ XREF,L1ST,LET!®,CONDX
+ ={44LT4C)y X
975+ PUNCH *// REGICN=1COK"
976+ PUNCH '//SYSLIB DO CSNAMEaSYS].PL1L1B,DISP=SHR?
977+ PUNCH ¢// o0 DSNAFE=SYS] .COBL1IByCISP=SHR?
978+ PUNCH *//SYSLIN DD DSNAME=%,C . SYSLINyDI SP=(CLD+DELETE)*
979+ PUNCH *// 8D VOLUME=SER=STORGE ¢4 DISP=SHRy
+ CONTINUE?
980+ PUNCH *// DSNAME=1CS. PROCLIBIDLITPLI)UNIT=2314"
981+ PUNCH * CDNAME=2SYSIN®
982+ PUNCH *//SYSLMOD DD VOLUME=SER=IMSLIBsCISP=SHR, X
+ CONT INUE*
983+ PUNCH V// DSNAME=ICS.CLOD(EEMBR) ,UNIT=2314"
984+ PUNCH *//SYSPRINT DD SYSOUT=A,DCB=(LRECL=121,BLKSIZE=605,RECFX *
+ M=FBA) X
985+ PUNCH /7 SPACE=(605, (CEPAGES,076EPAGES) 4RLSE)
986+ PUNCH *//SYSOBJ DD DSNAME=1CS.CLOD,DISPaSHRY
987+ PUNCH *'//5YSUT1 DO UNIT=SYSDA;DISP=(NEW,DELETE) s SPACE={CYLyX
+ {541} 4RLSE)*
988+ PUNCR *//G EXEC PGM=DFSIRCO0,PARM=9?3, LEMBRY ¢ 4COND=(4,LTX
+ . }+REGION=150K, X
989+ PUNCH */7 TIME=5¢
990+ PUNCH *//1MS Do VOLUME=SER= IMSL 1By DISP=SHR o X
+) CORTINUE?
991+ PUNCH *// DSNAVE=]CS. PSBLTBJUNIT=2314"
992+ PUNCH *// 1] VOLYME=SER= IMSL I8+ DISP=SHRy X
+ CONTINUE?
993+ PUNCH *7/ DSNAME=1CS.OBDLIB,UNIT=2314"
994+ PUNCH *//SYSPRINT DC SYSUUT=A.UCBIIKRECL=1211BLKS!lE:bOS.RECFX
+ M=FBAl»
995+ PUNCH *// SPACF=(605-(5001500)v'”-SEnyUUM))'
996+ PUNCH .:I/SVSUDUHP DG SYSQUT=A¢DCB=(LRECL=1214 BLKSIZE=605,RECFX
+ =FBA) xt
997+ PUNCH '/7 SPACE=({6CSy {500+ 5C0) sRLSEs sROUND} ¢
958+ PUNCH *./ ADD NAME=MFDBOUMP?
999+ PUNCH *o/ NUMBER NEW1=10,INCR=10 '
1000+ PUNCH *// PROC SQUT=A?

1001+ PUNCH *//0UMP EXEC PCM=DFSIRCOQ,PARM='¢3,CFSSAMOB" "¢ REGION=110X

171

Lec

Lce

172

IMS/3£C SYSTEM DEFINITICN SPECIFICATICNS
CRJECT CCODE

+
1002+
1003+
1004+
1005+
1006+
1007+
1008+
1009+
1010+
1011+
1012+
1013+

-
1014+
1015+
1016+
1017+
1018+
1019+

+
1c20+

+
1021+

+
1022+
1023+
1024+
1025+
1026+
1027+
1028+

+
1029+

+
1030+
1031+
1022+

*
1033+
+

- 1034+

+
1035+
1036+

+
1027+

+
1038+
.

IMS/2¢0 SYSTEM DEFINITION SPECIFICATIONS

CBJECT CODE ADOR1 ADDR2 STMT SOURCE
1039+
1040+

+
1041+
1042+
1043+
1044+

+
1045+
1046+

+
1047+
1048+

+

1049+
1050+
1051+
1052+
1052+

+
1054+
+*

1055+
1056+
1057+

+
1058+

+
1056+
B
1060+
1061+
+
1062+
.
1063+
+
1064+
1065+
+
1066+
1067+
1068+
1069+
+
107¢C+
1071+
+
1072+
1073+

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

PUNCH
PUNCH

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

PUNCH
PUNCH
PUNCH
PUNCH

PUNCH

_PUNCH

PUNCH
PUNCH

PUNCH
PUMCH

ADDRL ADDR2 STMT SOURCE STATEMENT

PAGE 25

F30SEP6S

K?
//STEPLIE COD CSN=I1CS.CLCO,DISP=SHR

v/ no
1771M8 no
G e
*/75YSUDUMP DD

*//CI21PART DD
*//DI21PARD 0D
*//0UTPUT DD

NSNAME=1CS.CLCD,DISP=SHR?
DSNAME=1CS.PSBLIB DI SP=SHR®
DSNAME=ICS+DEDL1IB, DISP=SHR?
SYSOUT=&ESOUTY
DSNAME=TIMS. 01 21PART ¢D1 SP=SHR®
DSNANE=TNS,NI21PARD, CISP=SHR?
SYSOUT=£65SOUTY

Yol ADD NAME=VMFCBLMAD?
X4 NUMBER NEW1=10,INCR=10*
N4 PROC SOUT=A¢

//LCAD EXEC PEM=DFSIRCOO,PARM=1%3,DFSSAMO1 *,REGION=110X
K .

Y//STEPL1B DD CSN=ICS4CLCDO+DISP=SHR®

v/ 0C
v/7/148 oD
Nz [ola]
*//SYSUDUMP OC

$//DI21PART DD
CB=CSURG=1S,
7

T=EEPUNIT!
*//D121PARD CC
YL+34,CONTIG) »
v/

*//SYSOUT 0D
*//INPUT DD

DSNAME=1CS.CLCDy DISP=SHR®

OSNAME=ICS. PSBLIBsDISP=SHR'

DSNAME=ICS5.0BDLIB,DISP=SHR?

SYSOUT=EESQUT!

DSNAME=IMSL.DI21 PART({PRIVE} {DISP={ ,KEEP) 4DX
X
SPACE=(CYL1+349CONTIG) s VOL=SER=ELPSER, UNIX

CSNAVE=IMS.0I21PARD,DISP=(, KEEP)}, SPACE=(CX
x*

VOL=SER=ERKOSER JUNI T=EECURNIT?
SYSCUT=ELESOUT Y

DSNAME=ICS.BMAC (MFDFSYSN) o DISP=SHR

Yol ADD KAME=PSRG

‘el NUMBER NEW1=10,INCR=10*

4 PROC MBR=TEMPNAME®

vc EXEC PGM=IEUASM; PARM=**LNAD,NODECK® *yREGICN=1X

00K*

*7/5YSL18 OD VOLUME=SER=IMSLIB,DISP=SHR, X
CONTINUE®

N . DSNAME=1CS.BMAC,UNIT=2314

i oo DSNAME=SYS1,MACLIR,DISP=SHR*

*//5YSG0 OC UNIT=SYSCAsDISP=(4PASS)sCCB=(BLKSIZE=400X

] x?

v RECFM=FB,LRECL=80), SPACE=(£80,(100510C)4RX

LSE)*

Y//SYSPRINT DD SYSOUT=A,DCB=(LRECL=121,RECFM=FBA,BLKSIZX

E=605), X'

v SPACF=(121+1(500,500)4sRLSE, yROUND)*

vY7/SYSUTY DD UNIT=SYSDA,DISP={,DELETE) +SPACE=(17C0, {1X

00,50))

*//5YSUT2 DD UNIT=SYSDAsDISP={,CELETE), SPACE= (1700, (1X

00,50))°"

v*//5YSUT3 0C

gvKT=(SVSDA:SEP=(SYSLIGySVSUTl:SVSUIZ)].X

2/12/70

PAGE 26

STATEMENT F30SEP6S 2712770

PUNCH 7/ SPACE=(1700,(100,50))°*

PUNCH /7L EXEC PGM=DFSILNKO,PARM=¢*XREF,LIST**,COND={0sX
LT4CHy X

PUNCH 177 REGICN=100K"* .

PUNCH '//SYSLIN DD CSNAME=%#,CoSYSGO,0ISP=(DLO,DELETE}®

PUNCH '// oD DDNAME=SYSIN®

PUNCH *//SYSPRINT DL SYSOUT=A,CCR=(LRECL=121,RECFM=FBA,BLKSIZX
E=6C5) x¢ .

PUNCH /7 SPACE=(121+(100,100),4RLSE) "

PUNCH ?//SYSLMOD DD VOLUME=SER=IMSLIBy CISP=SHR, X

CONTINUE!

PUNCH t// CSNAME=TCS.PSBLIB({EEMBR) yUNIT=2314"

PUNCH '//SYSUTL DD UNIT=(SYSNA,SEP={SYSLMOD,SYSLIN))40ISP={X
+OELETED, x*

PUNCH '// SPACE=(1024,(100,10)sRLSE)*

PUNCH t./ ADD NAME=D3IDGEN®

PUNCH ',/ NUMBER NEWl=10,INCR=10"

PUNCH *7/ PROC MBR=TEMPNAME®

PUNCH '//C EXEC PGM=IEUASM,PARM=1"LCADsNODECK®* REGICON=1X
00K?*

PUNCH '//SYsSLIB DD VOLUME=SER=TIMSLIE,CISP=SHR, X

CONTINLE®

PUNCH '// DSNAME=[CS«BMACy UNIT=2314"

PUNCH *// b DSNAME=SYS1 (MACLIB,DISP=SHR®

PUNCH '//SYSGO DD UNIT=SYSDA,DISP={PASS) 4DCB=(BLKSI ZE=400X
’ x*

PUNCH *// RECFM=FB,LRECL=80) 4SPACE={80,{100,100),RX

_LSE} .

PUNCH *//7SYSPRINT CC SYSOUT=A,NCE=(LRECL=121y RECFM=FBAsBLKSIZX
E=2605) x*

PUNCH 7/ " SPACE={121+(500,500)4RLSE,,RQUND)?

PUNCH * //SYSUT1 DD UNIT=SYSCAyDISP={yDELETF}y SPACE=(1700,{1X
004501 "

PUNCH *//SYSUT2 .0D UNIT=SYSCA,DISP={sDELETF)ySPACE=(17C0,(1X

. .00,50))*
PUNCH *//SYSUT3 DD UNIT=(SYSDA,SEP=(SYSLIB,SYSUTL,SYSUT2)},X
M)

PUNCH *// SPACE=(1700,(100,50))"

PUNCH *//L EXEC PGM=DFSILNKOyPARM="#XREF 4LIST** yCOND={CsX
LT,5C)y X

PUNCH */ REGICN=100K"

PUNCH *//SYSLIN 0D DSNAME=%,C,SYSGO,DISP=(0LD+DELETE}*

PUNCH '// op DDNANE=SYSIN'

PUNCH *//SYSPRINT DD - SYSOLT=A,DCB={LRECL=121,RECFM=FBA,BLKSIZX

PUNCH
PUNCH

PUNCH
PUNCH

E=605),

e
$//sYSUT1 np

/
*//SYSLMOD DD
C

Xt
SPACE=(121+(100+100),RLSE)"

VOLUME =SER=IMSLIB,DI SP=SHR, X
ONT INUE®

CSMAME=1CS.DBDLIB(EEMBR) yUNIT=2314"
UNIT=(SYSDA4SEP=[SYSLMCD,SYSLIN}) ,DISP=(X

4

Lee

18§/7260 SYSTEM DEFINITINON SPECIFICATIONS

PAGE 27

CAJECT CCOE ADNR1 ADCR2 STMT SQURCE STATEMENT F30SEP6S 2/12/70
+ +DELETE), xe
1074+ PUNCH 7/ SPACE=(1024,(100410) yRLSE)*
1075+ PUNCH '/ ACD NAME=[MS!
1076+ PUNCH *./ NUMBER NEW1=10,INCR=10"
1077+ PUNCH *//IEFPROC EXEC PGM=IEFIRC, REACER FIRST LOAD X
+ Xt
1078+ PUNCH *// REGICN=48K, REACER BASIC REGION X
+ X0 .
1079+ PUNCH 7/ PARMa2'100103C05001C24905010SYSDA v X
S [
1040+ PUNCH *// . APPTTTCCCMMMETICCCRLSSSSSSSS DEFAX
+ ULT PARM FIELDS X*
1081+ PUNCH /7 PROGRAFMER NAME AND ACCT NBR NOT NEEDEDP X
+ B X1 .
1082+ PUNCH /7 PRIORITY=01 X
+ PP x*
1083+ PUNCH /7 JOB STEP INTERVAL=30 MINUTES X
+ T X!
1084+ PUNCH *// PRIFMARY SYSCUT SPACE=50 TRACKS X
+ 000 X
1085+ PUNCH 47/ SECCNDARY SYSOUT SPACE=10 TRACKS X
+ MMM X
1086+ PUNCH 77/ READER/INTERPRETER DISPATCHING PRIORITY=X
+ 249 r X1
1087+ PUNCH */7/ JOE STEP DEFAULT REGION=350K X
+ cce X!
1088+ PUNCH *// CISPLAY AND EXECUTE COMMANDS=1 X
+ R x¢ .
1089+ PUNCH *7/ BASIC LABEL=0 X
+ L x!
1090+ PUNCH *// SYSPUT UNIT NAME=SYSOA X
+ $5555SSS*
1091+ PUNCH '//IEFRDER DD UNIT=2314, X
+ CONTINUE®
1092+ PUNCH /7 VOLUME=SER=STORGE, X
+ CCNTINUE®
1093+ PUNCH *'// D{SP‘SHR. X
+ X
1094+ PUNCH *// DSNAMF=1CS.PRCCLIEB(IMSO) 4 DCB=BUFNO=1"
1095+ PUNCH *//1EFPDSI OD DSNAME=SYS1.PROCLIB,DISP=0LD PROCEDUREX
+ LIERARY®
1096+ PUNCH *// oD VOLUME=SER=STORGECISP=SHR, X
+ CCNTINUE®
1097+ PUNCH '// OSNKAFE=ICS+PROCLIByUNIT=2314°
1098+ PUNCH '//IEFDATA DD UNIT=SYSDA, SPOOL DEVICE X
+ .
1095+ PUNCH *// SPACE=(8C4 (5004500 ,RLSE+CONTIG), AMOUX
+ NT X
1100+ PUNCH *// . CCB={BUFNO=2,LRECL=80yBLKSIZE=80)RECFM=FX
+ ByBUFL=80)*
IMS/2¢C SYSTEM DEFINITION SPECIFICATIONS PAGE 28
LCC CRJECT CCDE ACDRL1 ADDR2 STMT SOURCE STATEMENT F30SEP69 2/12/70
1101+ PUNCH 'o/ ADD NAME=IMSQ'
1102+ PUNCH *./ NUMBER NEW1=10,INCR=10"*
1103+ PUNCH *//IMSO JCB 17 IMS4PRTY=12, MSGLEVEL=1*
11064+ PUNCH *//NUCLEUS EXEC PGM=DFSTRCOO,REGION=178K, TIME=1440, X
* X
1105+ PUNCH /7 PARM=¢ 'QCDFSINUC0014010010010020°"" X
+ X
1106+ PUNCH '// . ABCCCCCCCCDCCEEEFFFGGGHHH - DEFAULX
+ T PARM FIELD x*
1107+ PUNCH */7 REGICN TYPE=0D A X
+ X
1108+ PUNCH %77 BTAM=0 B X
+ Xt .
1109+ PUNCH /7 NUCLEUS MEMBER NAME cceex
+ ccee X
1110+ PUNCH *// NUMBER OF QCR BUFFERS{CALCULATED) 00D X
+ xe
1111+ PUNCH *// NUMBER OF MSG BUFFERS(CALCULATEOD) EEE X
* Xt
1112+ PUNCH *7/ PSB FOOL IN 1K BLOCKS{DEFAULT} FFF X
e .
1112+ PUNCH '/7 CMB PCOL IN 1K BLOCKSICEFAULT} GGG X
+ ’'y
1114+ PUNCH /7 CSAM E€ TP POOL SIZE(DEFAULT) HHH?*
1115+ PUNCH */71MS Do VOLUME=SER=IMSLIBy DISP=SHR, X
+ - CONTINUE®
1116+ PUNCH *// CSNAME=1CS.PSBL IByUNIT=2314"
1117+ PUNCH /7 oo VOLUFE=SER=IMSLIBsDISP=SHRy X
+ CONTINLE®
1118+ PUNCH *// CSNAME=ICS . DBDLIB,UNIT=2314"
1119+ PUNCH *//STEPLIB ND DSN=ICS.CLCO,DISP=SHR®
1120+ PUNCH '//SYSUDUMP DD SYSOUT=A,DCB={LRECL=125,RECFM=VBA,BLKSIZX
+ E=3129), X
1121+ PUNCH *// SPACE=(125,13000+30C0)sRLSEsyRCUND)*
1122+ PUNCH '//INQCR DD OSNAME=1(S.IQCRDSET,DISP=0LD"*
1122+ PUNCH '//INMSG DD OSNAME=ICS,.IMSGDSET,CISP=0LD?
1124+ PUNCH '//0UTQCR DD DSNAME=1CS,0QCRDSET,DISP=0LD*
1125+ PUNCH *//CUTMSG DD CSNAME=ICS.OMSGDSET,DISP=0LD"
1126+ PUNCH *//IMSLOG DD DSNAVE=IMSLOG4DISP={,KEEP) yUNIT={2400s 40X
+ EFER), Xt
1127+ PUNCH *// DCB= (RECFM=V By BLKSIZE=1408,LRECL=14CCsBUX
+ FNO=1) 4 X
1128+ PUNCH *// VOL={ss,10)¢
1129+ PUNCH *//1MSLOGR DD CSNAFE=INMSLCG, DISP=0LD,VOLUME=SER=000000X
+ ’ '
1130+ PUNCH '// UNIT=(24C0syDEFER) *
1121+ PUNCH *//DBDUMP DD DSNAVE=DFS IDUMP, DISP={NEW, KEEP)9 UNIT=AFFX
+ =IMSLOGR *
1132+ PUNCH ''//DN2740S CC UNIT=022 *% IMS LINE 2°*
1132+ PUNCH 7/ oc UNIT=023 *% [MS LINE 3¢

173

IMS/360 SYSTEM DEFINITION SPECIFICATIONS

tCC OBJECT CODE

ADDR1 ADOR2

STMT

1134+
1135+
1136+
1137+
1138+
1139+
11404+
1141+

+
1142+
+
1143+
+
1144+
+
1145+
+
1146+
+
1147+
+
1148+
+
1149+
+
1150+
+

1151+
1152+
+

1153+
1154+

+
1155+
1156+
1157+

+
1158+
1159+
1160+
1161+
1162+
1163+

+
1164+

+
1165+
1166+

+
1167+

SOURCE STATEMENT

IMS/260 SYSTEM DEFINITION SPECIFICATIONS

LCC OBJECT COOE

174

ADDR1 ADDR2

STMT
1168+
+

1169«
1170+
1171+
1172+
1173+
11744
1175+
1176+
1177+
1178+
1179+

+
1180+

+
1181+
1182+

+
1183+
1184+

+
1185+
1186+
1187+
1188+

1189+ -

1190+
1191+

+
1192+
1193+

+
1194+
1195+

+
1196+
1197+

+
1168+
1199+
1200+
1201+
1202+
1203+
1204+

+
1205+

+
1206+

SOURCE

PAGE 29

F30SEP69 2/12/170
PUNCH /7 00 UN1T=024 *& IMS LINE 4'
PUNCH *//DD27404 CC UNIT=026 #% [MS LINE 5°
PUNCH *//DD1050A DD UNIT=027 *% IMS LINE 6°
PUNCH *//0C1050 Do UNIT=024 #*= IMS LINE 8¢
PUNCH *//DD2260T DD UNIT=04A2 #* [MS LINE 9
PUNCH 4/ ADD NAME=IMS1' .
PUNCH o/ NUMBER NEW1=104 INCR=10"
PUNCH *//NUCLEUS EXEC PGM=DFSIRCOOQ,+REGION=178K,TIME=1440, X
x*
PUNCH /7 PARM=*'QONFSINUCC014C10010010020%" X
X1
PUNCH * ABCCCCCCCCODCEREFFFGGRHHH DEFAULX
T PARM FIELD X
PUNCH 7/ REGICN TYPE=0 A X
X
PUNCH *// BTAM=0 B X
Xt
PUNCH *// NUCLEUS MEMRER NAME ceeex
ceec X!
PUNCH *// NUMBER DF Q(CR BUFFERS{CALCULATED) oot X
X
PUNCH Y/7 NUMBER UF MSG BUFFERS{CALCULATED) EEE X
Xt
PUNCH *// PS8 POOL [N 1K BLOCKS(DEFAULT) FFF X
X :
PUNCH *// DMB POOL IN 1K EBLOCKS(DEFAULT) GGG X
Xt
PUNCH *// CSAM &6 TP POOL SIZE(DEFAULT) HHH?
PUNCH *//1MS DD VOLUME =SER=TMSLIBy DISP=SHR, X
CONTINUE?
PUNCH *// CSNAME=[CS.PSBLIByUNIT=2314"
PUNCH v// on VOLUME =SER=IMSLIB,CISP=SHR, X
CONT INUE*
PUNCH - *// CSNAME=1CS.CEDLIB,UNIT=2314"
PUNCH *//STEPLIB DD DSN=1CS.CLOD,DISP=SHR?Y
PUNCH *//SYSUDUMP DC SYSOUT=A,DCB=(LRECL=125,RECFM=VBA,BLKSIZX
E=2129), X
PUNCH '// SPACE={1254(3000,300G) +RLSE, RCUND)?
PUNCH *//INQCR DD DSMAME=ICS.[GCRCSET,CISP=0LD?
PUNCH '//INMSG DD DSNAME=IC S, IMSGDSET,DISP=0LC*
PUNCH 1//0UTQCR DD DSNAME=]{SeO0JCRDSET,DISP=0LD*
PUNCH *//CUTMSG DD DSNAME=ICS.CMSGDSETsDISP=0OLD
PUNCH *//IMSLOG DD DSNAME=IMSLOG DI SP=[,KEEP) yUNIT=(2400,,0X
EFER), N
PUNCH v// CCB= (RECFM=VE,BLKSIZE=1408,LRECL=1400,BUX
FNO=11, Xt
PUNCH 1/ VOL={y4910}"
PUNCH *//IMSLOGR DD OSNAME=INMSLUG,DISP=GLDsVCLUME=SER=000000X
v Xt
PUNCH v// UNIT=(2400,DEFER)*
PAGE 30
STATEMENT F30SEP69 2012/70
PUNCH ¢//0BDUMP DD DSNAVE=DFSIDUMP,DISP=(NEW, KEEP) UNIT=AFFX
=IMSLOGR?
PUNCH *//DD2740S DD UNIT=022 ** IMS LINE 2°
PUNCH *// oD UNI T=023 *« IMS LINE 3*
PUNCH /7 00 “UNIT=024 s% [MS LINE 4°
PUNCH *//DD2740A DL UNIT=026 *& [MS LINE 5°
PUNCH *//DD1050A DC UNIT=027 #* IMS LINE 6'
PUNCH *//0DC1050 cc UNIT=024 ** [MS LINE 8
PUNCH *//DD2260T " DD UNIT=0A2 ** [MS LINE 9
PUNCH -* o/ ADD NAME=TMSBATCH!
PUNCH '/ NUMBER NEW1=10,INCR=10"?
PUNCH *// PROC PSB=TENPNAME®
PUNCH *//6 EXEC PGM=DFSIRCO0,PARM=$72,6EPSB ! yREGION=26KX
o
PUNCH '//IMS Do VOLUME=SER=INMSLIByDISP=SHR,y X
CONTINUE*
PUNCH *// OSNANE=ICS PSBLIByUNIT=2314"
PUNCH /7 oD VOLUME =SER=IMSLIB,DISP=SHRy X
CONT INUE!
PUNCH *// DSNAME=1CS.DBDLIByUNIT=2314"
PUNCH '//SYSUDUMP DD SYSOUT=A,DCB=(LRECL=121,RECFM=VBA,BLKSIZX
E=31291, Xt
PUNCH '// SPACE=1125,{2500,100) yRLSE,,ROUND)*
PUNCH '/ ADD NAME=[MSMSG?*
PUNCH ./ NUMBER NEW1=10,INCR=10"'
PUNCH *//MESSAGE JOB 1s4IMSyMSGLEVEL=1,PRTY=11"
PUNCH *//G EXEC PGM=DFSTRCO0sPARM=1,REGION=26K*
PUNCH ' //STEPLIB DD CSN=I1CS.CLCD,DISP=SHR®
PUNCR *// 00 VOLUME=SER=IMSLIBsQISP=SHR, X
CONT INUE'
PUNCH 7/ DSNAME=ICS.CLODyUNIT=2314"
PUNCH *//1MS Do VDLUME=SER=IMSLIB,0ISP=SHRy X ’
CONT INUE?
PUNCH *// DSNAME=ICS,PSBLIBJUNIT=2314"
PUNCH /7 0D VOLUME =SER=IMSLIB,DISP=SHR, X
CONTINUE!
PUNCH *// DSNAME=ICS.DBDLIByUNTT=23]14"
PUNCH '//SYSUDUMP DD SYSOUT=A,0CB={LRECL=125,RECFM=VBA,RLKSIZX
E=31291, xe
PUNCH *// SPACE=(125,(2500,100) yRLSE »yROUND) *
PUNCH 2./ ACO NAME=5ECURITY?
PUNCH *,/ NUMBER NEW1=10,INCR=10"
PUNCH ¢// PROC OPTN=UPDATEIMS=*',0%¢,SQ0UT=A"
PUNCH *//S EXEC PGM=DFSISMPO,PARM=*'EEOPTNJLGEIMS, 0 "
PUNCH ¢//STEPLIB OD GSN=ICS.CLCOyDISP=SHR'
PUNCH *//SYSPRINT DD SYSOUT=4ESOUT,DCB={RECFM=VBA,ALKSIZE=400,X
. BUFL=404)"
PUNCH *//SYSPUNCH DD UNIT=SYSDA,SPACE=(80D+(800y400) s+ RCUND),X
Xt
PUNCH 7/ . DCB=(RECFM=FBysLRECL®80,BLKSIZE=400),0ISPX

N\

IMS/26C SYSTEM CEFINITICN SPECIFICATICNS PAGE 31

LCC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT F30SEP69 2/12/70
+ ={yPASS)?
1207+ PUNCH *//SYSLIN DO UNITaSYSDA,SPACE=(TRK,(191))90CB=(RECFM=X
+ F+BLKSIZE=B80),y*
1208+ PUNCH /7 DISP=(,PASS)?
1209+ PUNCH *//SYSUT1 0D UNIT=SYSDA,SPACE={100,{400+400)4+9+ROUND) X
+ L
1210+ PUNCH ¢// DCB={BLKSIZE=500,RECFM=FB) ¢
1211+ PUNCH *//sYsuT2 0D UNIT={SYSDA,SEP=SYSUT1},SPACE={100,(400,X
+ 400) 49 1ROUND) o*
1212+ PUNCH */7 DCR=#, 5, SYSUT1®
1213+ PUNCH ' //SYSIN DC DSN=NO.SYSIN.DD.ASTERISK®
1214+ PUNCH *//C EXEC PGM=IEUASM,PARM='¥LCADyNODECK? 'y COND= (12X
+ LTy S) REGION=96K®
1215+ PUNCH "//SYSPRINT CC SYSCUT=CESCUT,DCE=(RECFM=FBMyLRECL=121,8X
+ LKSIZE=2605)"
1216+ PUNCH *//SYSGO D0 UNIT=(SYSDA, SEP=SYSPRINT)yDISP=(yPASS) +*
1217+ PUNCH */7) DCB=%,5,SYSPUNCHy SPACE= {80, (400,400} 49RX
+ OUND) *
1218+ PUNCH *//SYSUTL DOC UNIT=SYSOA,SPACE=(CYLy{5s1}1)"*
1219+ PUNCH *//SYSUT2 DD UNIT=SYSCA,SPACE=(CYL¢(541))*
1220+ PUNCH *//SYSUT3 OC UNIT=(SYSDA,SEP={SYSUT1,SYSUT2)),SPACE=(X
+ CYLy{5:10)°
1221+ PUNCH *//SYSIN 0D DSN=*,5,SYSPUNCH,CISP=({OLD,DELETE)?
1222+ PUNCH */7/L EXEC PGM=DFSILNKOPARM="* XREF yNE,OL"* yREGION=X
+ 110K+COND=(44LT4S)*
1222+ PUNCH *//SYSPRINT DD SYSCUT=LE£SCUT,DCB={RECFM=FBA,LRECL=121,BX
+ LKSIZE=605)"
1224+ PUNCH '//SYSLMOD OC OCSN=ICS.CLOD,DISP=SHR?
1225+ PUNCH *//INPUT DD DSN=*.C,SYSGO,DISP={OLD,DELETE)*
1226+ PUNCH '//SYSUT1 D0 UNIT={SYSOA,SEP=INPUT)SPACE={CYLs(5,1))X
. .
1227+ PUNCH *//SYSLIN DD OSN=*¢S,SYSLIN,DISP=(OLD,DELETE}"
1228+ PUNCH '/ ENDUF*
1229+ PUNCH ¢ /%
1230+ PUNCH *//STEPS EXEC PGM=IEUASM,PARM=*?LOAD,NODECK®*yREGTION=9X
+ 2Kt
1231¢ PUNCH *//5YSLIB DD DSNAME=INMS.GENLIByCISP=(CLC,PASS)"
1232+ PUNCH /¢ DD DSNAME=SYS1,MACLIB,DISP=SHR®
1223+ PUNCH *//SYSGO DD UNIT=SYSDA,DISP={,PASS),DCB={LRECL=8CsBLX
+ KSIZE=400, X!
1234+ . PUNCh */ RECFM=FB), SPACE=(TRKs(10,410)4RLSE)*
1235+ PUNCH *//SYSPRINT DG S5YSQUT=A,DCB={LRECL=121, BLKSIZE=6054RECFX
+ M=FBAY, X
1236+ PUNCH 7/ SPACE=16C59 (100, 50)yRLSEysROUND}*
1237+ PUNCH *//SYSUT1 DD UNIT=SYSDA,DISP={y DELETE) 4 SPACE= (1700, (1X
+ 00,50)) *
1238+ PUNCH *//SYSUT2 0O UNIT=SYSCA,DISP={,DELETE),SPACE={1700, (1X
+ 00,y50)) ! .
1239+ PUNCH ¢//SYSUT3 DD UNIT=(SYSDA9SEP={SYSLIB,SYSUT1,SYSUT2)),4X
+ DISP=UyDELETE)y X'
I¥5/360 SYSTEM CEFINITION SPECIFICATIONS' . PAGE 32
LOC 0BJECY CODE ADDR1 ADDR2 STMT SOURCE STATEMENT F30SEP6S 2/12/70
1240+ PUNCH %7/ SPACE=(1T700,(100,50))*
1241+ PUNCH *//SYSIN DD *
1242+ PUNCH *'DFSISCO CSECT!
12432+ PUNCH * PRINT ON*
1244+ PUNCH ¢ IMSBATCH CENDA=28, SPVSVC=243¢
1245+ PUNCH * 1sC0 SECTYPE=CSECT®
1246+ PUNCH * END®
1247+ PUNCH '/
1248+ PUNCH '//STEP6 EXEC PGM=IEWLsPARM='?OVLY yNCALyXREFsLIST?*,REGIX
+ ON=110K*
1249+ PUNCH *//SYSPRINT DC SYSOUT=A,0CB=({LRECL=121yBLKSI2E=605,RECFX
+* M=FBA), X*
1250+ PUNCH '// SPACE=(6055(10+10) +RLSE, sRCUND)*
1251+ PUNCH *//SYSLIN DD OSNAME=*,STEPS.SYSGOyDISP=(OLD,DELETE) *
1252+ PUNCH *// DD DDNAME=SYSIN'
1253+ PUNCH *//SYS0BJ 0D VOLUME=SER=IMSLIBsDISP={CLD,PASS), X
+ CONT INUE®
1254+ PUNCH *// DSNAME=TCS.CLOD,UNIT=2314"
1255+ PUNCH *//SYSLMOD DD VOLUME=SER=1MSLIB,DISP=(0LD,PASS)y X
+ CONTINUE®
1256+ PUNCH *¢// DSNAME=ICS.CLOD,UNIT=2314"
1257+ PUNCH *//SYSUT1 DD UNIT=(SYSDAy SEP=(SYSLINy SYSLMOD}) 4DISP=(X
+ yDELETE) xe .
1258+ PUNCH *// SPACE=(1700,(100,50))"
1259+ PUNCH *'//SYSIN DD *
1260+ PUNCH- ¢ SETSSI 05012090
1261+ PUNCH ' INCLUDE SYSOBJ{DFSIDBAO) DL/1 BATCH ANALYZER®
1262+ PUNCH * INCLUDE SYSCBJ(DFSICLAO) DL/I BATCH INITIAL IZATION®
1263+ PUNCH ¢ INCLUDE SYSCBJIDFSISMMO) STORAGE MANAGEMENT!
1264+ PUNCH ' INCLUDE SYSOBJ(DFS10S19) USAM OPEN ROUTINE®
1265+ PUNCH ¢ INCLUDE SYSCBJ(DFS10560) OSAM CLOSE ROUTINE®
1266+ PUNCH ' INCLUDE SYSOBJ(DF SIBKBO) BATCH CONTROL BLOCKS®
1267+ PUNCH * INCLUDE SYSCBJICFSIINLO) INIT -~ MODULE LOADER?
1268+ PUNCH ¢ TINCLUDE SYSCBJIDFSIINLO) INIT - JOBLIB MODULE LOADEX
+ . Rt
1269+ PUNCH * INCLUDE SYSCBJIDFS{IN20) INIT ~ SVCLIB MODULE LOADEX
+ R
1270+ PUNCH * INCLUDE SYSOBJ(DFSIDLOG) OL/1 OPEN MODULE®
1271+ PUNCH ' CHANGE DFSICS60(DFSIOSTO) CHG EP TO OSAM CLOSE RTNE®
1272+ PUNCH * INCLUDE SYSCBJ(DFS10560) CSAM CLQSE RTNE(2ND COPYY’
1273+ PUNCH ' CHANGE DFSTOS€O0(DFSIAS70) CHG DLCO REFERENCE!
1274+ PUNCH * INCLULE SYSCBJ{DFSIOLCO) DL/1 CLOSE MODULE®
1275+ PUNCH ¢ OVERLAY [MSA®
12764 PUNCH * INSERT DFSISMMO®
1271+ PUNCH * OVERLAY [WvSB?
1278+ | PUNCH ' INSERT DFSIDLNO®
1279+ PUNCH ¢ INSERYT DFSTINLO® .
128C+ PUNCH ¢ INSERT ODFSIIN1O® .
1281+ PUNCH * INSERT BFSIIN20*
1282+ PUNCH ¢ OVERL AY [MSA*

175

INS/360 SYSTEM CEFINITION SPECIFICATIONS

LOC O0BJECT CODE

ADDR1 ADDR2

STMT

1283+
1284+
1285+
1286+
1287+
1288+
1289+
1290+
1291+
1292+
1293+
1294+
1295+

+
129¢&+
1297+
1298+

+

1299+
1300+

+*
1301+
1302+

+
1303+
+
1304+
+

1305+
1306+
1307+
1308+
1309+
1310+
1311+
1312+
1313+
1314+
1315+
1316+
1317+
1318+
1319+
1320+
1321+
1322+
1323+
1324+
1325+
1326+

IMS/360 SYSTEM DEFINITION SPECIFICATIONS

LCC OBJECT CODE

176

ADDR1 ADDR2

STMT

1327+
1328+
1329+
1330+
1331+
1332+
1333+
1334+
1335+
1336+
1337+
1338+
1339+
1340+
1341+

1342+

1343+
1344+
1345+
1346+
1347+
1348+
1349+
1350+
1351+
1352+
1353+
1354+
1355+
1356+
1357+
1358+
1359+
1360+
1361+
1362+
1363+
1364+
13¢5+
1366+
1367+

+
1368+
+

1369+
1370+

1371+

1372+

+
1373+

PAGE 33
SCURCE STATEMENT F30SEP6S 2/12/70
PUNCH * INSERY DFSIDLCO!
PUNCH ¢ OVERLAY IMSC*
PUNCH * INSERT CFSICS60*
PUNCH * © OVERLAY TKSD*
PUNCH * INSERT DFS10§10°? .
PUNCH * OVERLAY IMSA®
PUNCH * INSERT DFSIDLCO*
PUNCH OVERLAY [MSE®
PUNCH * INSERT DFSICS70* ’
PUNCH ¢ ENTRY DFSSTART!
PUNCH * NAME CFSIDLBO(R} OL/1 BATCH NUCLEUS®
PUNCH */%?
PUNCH *//STEP7 EXEC PGM=TEUASM,PARM=?1LCAD4NCDECK®* ,REGICN=9X
K'
PUNCH *//SYSLIB D0 DSNAMF=IMS.GENLIB,DISP={SHR,PASS)*
PUNCH '// Do DSNAME=SYS1+MACLIR DI SP=(SHR,PASS)?
PUNCH #/7/SYSGO GO UNIT=SYSCA,DISP=(,PASS),0CB= (LRECL=8C,BLX
KSIZE=40C, X* .
PUNCH */ RECFM=FB),SPACE=(CYLy(1s1) 4RLSE)®
PUNCH *//SYSPRINT DC SYSOUT=A,DCB=(LRECL=121, BLKS1ZE=6054RECFX
M=FBA), Xe
PUNCH *// SPACE=(6CSy (100,50),RLSEy,ROUND}*
PUNCH *//SYSUT1 DD UNIT=SYSDAsDISP={, CELETE),SPACE=(1700, (1X
00,50)) ¢
PUNCH '//SYSUT2 OC UNIT=SYSCAsDISP=(,DELETE) s SPACE=(17C0 (1X
004501)*
PUNCH '//SYSUT3 DD UNIT=(SYSDA,SEP=(SYSLIB,SYSUT1,SYSUT2)),X
OISP=(,DELETE), X'
PUNCH '// SPACE={1700,(100,50) yRLSE)*
PUNCH *//SYSIN OD »'
PUNCH * COPY PCHSSI®
PUNCH ¢ PRINT CNY
PUNCH * DFSPSBD DFSIBDRO,100,0MBL1,0*
PUNCH * DFSPSBC DFSLKMO0,100,DMEL2,0°
PUNCH 1 OFSPSBD DF SSAMC2,100,DMBL3 40
PUNCH ¢ DFSPSBC DFSSAMC3,100,DMBL4,0"
PUNCH ¢ NDFSPSBD DFSSAM04,100,DMBLS 0"
PUNCH * DFSPSBD DFSSAMCS54100,0DMBL6,0°
PUNCH * CFSPSBD DESSAMO6, 100+ DMBLT,0"
PUNCH ¢ DFSPSBD DFSSAMG7,100,DMBLS,0°
PUNCH ¢ DFSPSBD ENQOSKO14100,040° .
PUNCH * DFSPSRD HIBASKO1,010,0MBL10,0*
PUNCH ¢ DFSPSBD NIBLSKclq‘GTU':DMELll.O'
PUNCH * DFSPSBD HIMAJCO1,100,DMBL1240*
PUNCH * DFSPSAC HIMAJCO24100,0MBL13,0"
PUNCH ¢ DFSPSBD HIMAJCC3,100,DMBL14,0°
PUNCH ¥ DFSPSBD HIMARJSC1,100,DMBL15,0*
PUNCH ¥ OFSPSBC HIFASNO1+100,DMBL16,0*
PUNCH * DFSPSBD HITASKO14100,DM8L1740"
PUNCH * CFSPSBD HITASKO2,100,DMBL18,0°
PAGE 34
SOURCE STATEMENT F30SEP69 2/12/70
PUNCH * DFSPSBD HSBASKO1,010,DMBL19,0°
PUNCH ¢ DFSPSBD HSTASKGL, 100,DMBL20,0* 9
PUNCH * OFSPSBD NOPSB,100,DMBL21,0*
PUNCH * DFSPSBD SWITCH,100,0MBL22,1°*
PUNCH *DMBL1 OFSCMBL DFSIBORT,01,1°¢
PUNCH *DMBL2 DFSCMBL CI31PHO1,00,1°
PUNCH *DMBL3 DFscMst g}glPARhOO'i' s
PUNCH *DMBL4 DFSCMBL' DI21PART,Q0s1' et
PUNCH *DMBLS DFSDMBL' DI21PART,10,1°¢ wfd—-'—"""
PUNCH *OMBL6 DFSCMBL DIZ21PART,410,41°"
PUNCH ' DFSCMBL DI21PART,10.1°¢
PUNCH 'DMBLS DFSOMBL DI21PART,0091' Sl
PUNCH *DMBL10Q DFSCMBL DI315KO1,10,0°¢
PUNCH * OFSCMBL D132SKOL410.1°¢
PUNCH *DMBL11 DFSDMBL DI315K0141040°
PUNCH - ¢ DFSCMBL DI325K01410,1°¢
PUNCH *DMBL12 DFSCMBL DS40JCOLl+1041°
PUNCH *OMBL13.....-DFSCMBL DS40JCO1,10,1°
= PUNCH *OMEL14 DFSCMBLY DI31IPHO1,10,1°
PUNCH *DMBL1S DFSDMBL\DI2LIRJE,1041°
PUNCH "DMBL16 DFSCMBL 1 D131PHO1, 1040*
PUNCH * DFSCMBL! DI31PHO24 10414
PUNCH *DMBL17 DFSDMBLAVDI 315K01,1041°
PUNCH *DMBL1S OFSCMBLYDI325K01s10,1°
PUNCH *DMBL19 DFSCMBL2CS315K0L,10,1°
PUNCH 'DMBL20 DF SCMBLY DS315K01,10,1°
PUNCH *DVBL21 DFSCMEL>DI31PH01,000 1"
PUNCH 'DNBL22 DFSCVMBL=DI31PHOL,00,1°*
PUNCH * ENTRY DFSIDMDO?
PUNCH *OFSIRDRT DFSCMD DFSIBORT,00000000°
PUNCH *DI21IRJE DFSOMD DIZ1TRJE,00000010°
PUNCH *DI21PART DFSCMD DI21PART,00000010*
PUNCH *DI31PHOl OFSCMD DI31PHO1,00000010°
PUNCH *D121PH02 DFSOMD DI131PH02,00000010°
PUNCH *DI31SKO1 DFSCMD DI31SK01,00000C1C?
PUNCH *DI325K01 DFSLMD DI32SKC1,00000010°
PUNCH '0S31SK01 DFSDOMD DS315K(C1,C0000010"
PUNCH *DS40JCO1 DFSCMD D540JC01,00000010°
PUNCH * END '
PUNCH /%9
PUNCH '//STEP8 EXEC FGM=IEWL,PARM=**REUS,NCALy XREF,LIST*?,REGIX
ON=110K*
PUNCH '//SYSPRINT DD SYSOUT=A,NCB={LRECL=121yBLKSIZE=605,RECFX
MaFBA), X* .
PUNCH *// SPACE=(6054(10,10) yRLSE, RCUND}?
PUNCH %//SYSLIN DD DSNAME=%,STEP7.5YSGO,DISP={0OLO,DELETE}*
PUNCH *//SYSOBJ DD DSNAME=ICS.CLOD,DISP={0OLD,PASS)®
PUNCH

PUNCH *//SYSUT1

*//SYSLMOD DD DSNAME=ICS.CLOD{DFSIDIRO) ,DISP=(OLD,PASSIX
.

0D UNIT=(SYSDA,SEP=(SYSLIN, SYSLMOD)),DISP=(X

VR

S

IMS/360 SYSTEM DEFINITICN SPECIFICATICNS | PAGE 35

LrC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT : F30SEP6S 2/12/70
+ +DELETE), xr
1374+ PUNCH *// SPACE=(1700,(100450)1}°
1375+ PUNCH *//STEPQ EXEC PGM=[EUASMyPARM=Y"LGAC,NCDECK®'yREGION=9X
+ 2K
1376+ PUNCH '"//SYSLIB DD CSNAME=IMS.GENL IBsDISP={SHR,PASS)"*
1377+ PUNCH *// 0D DSNAME=SYS1+MACLIB+DISP={SHRyPASS)?
1378+ PUNCH *//5YSGO DD UNIT=SYSDA+DISP=(,PASS) sDCB=(LRECL=804BLX
.+ KSI2E=400, Xt
1379+ PUNCH *7/ PECFM=FB) y SPACE=(CYLy (141} ,RLSE)"
1380+ PUNCH '//SYSPRINT DD SYSQOUT=A,0CR={LRECL=121,BLKSIZE=605,RECFX
+ M=FBA), X
1381+ PUNCH *// SPACE=(6C59(1C0450) yRLSE+sROUND}!
1382+ PUNCH *//SYSUT1 DD UNIT=SYSDAyD1ISP=(,DELETE) s SPACE=(1700,¢1X
+ 00450111
1383+ PUNCH *//SYSUT2 DD UNIT=SYSDA,DISP=(DELETE) y SPACE={17004(1X
+ 00450))°
1384+ PUNCH *//SYSUT3 0D UNIT=(SYSDA,SEP=(SYSLIB,SYSUT1,SYSUT2}),X
+ OISP=(4DELETE}, X*
1385+ PUNCH */7 SPACE=(1700,(100,50)4RLSE)*
1386+ PUNCH *//SYSIN 0D »
1387+ PUNCH * COPY PCHSSI®
1388+ PUNCH * PRINT ON!' N
1389+ PUNCH * DFSSM¥B 1046,010001011444484#465535465535"
1390+ PUNCH * DFSSMR 7,5,01000101, 9,128, ADDI+165535,65535°
1391+ PUNCH ¢ DFSSMB 7,5,01000101,9¢y128,A0DINV65535465535°*
1392+ PUNCH * OFSSMB 7454010C0101494128,ADDPARTY65535,65535°
1393+ PUNCH * DFSSMB 745+01000101+9+1289ADDPNy 65535,65535¢
1394+ PUNCH ¢ DFSSMR 1,465535,00000101414160,CLOSE6553546553X
+ 5¢
1395+ PUNCH * CFSSM8.7+5401000101,9,160,CLSORD465535,65535¢
1396+ PUNCH ¢ DFSSFB 5,5,01000001712+32,0FS,8,100"
1397+ PUNCH ¢ DFSSMB '0465535,01000101,1540,DFSIADRS65535,65X
. + 535¢
1398+ PUNCH * DFSSMB 942,4010C010157105192¢0158465535465535°
1399+ PUNCH " DFSSMB 1,65535,000C00101415192,01 SBURSE 965535 46X
+ 55351
1400+ PUNCH * DFSSFB 542,0100010147,4128,0LET 1465535465535
1401+ PUNCH ¢ DFSSMA 5,2,01000101, 74128,0LETINV,165535465535*
1402+ PUNCH OFSSFB 5,2,01000101,7,128, CLETPART 65535, 65535X
+ '
1403+ PUNCH ¢ DFSSMB 5,2,01000101,74128,BLETPN+65535,65535°
1404+ PUNCH DFSS¥B 545,10000101+10+480+0L1410,10°
1405+ PUNCH * DFSS¥B 0,3,01000101,8,480,DLN,10,100"
1406+ PUNCH * DFSS¥B 1,65535, 00000201, 1y224+DSPALLT,65535465X
+ 535¢
1407+ PUNCH ¢ DFSSMB 1,65535,00C0010141,96+DSPINV65535,6553X
+ 5*
1408+ PUNCH * CFSSMB 146553540000010141464,D5PPN+65535,65535X
+ 0
14C9+ PUNCH ¢ DFSS¥B 8965535, 01000101,y892564ENQ965535465535°¢
' . ,
IMS/360 SYSTEM CEFINITION SPECIFICATIONS PAGE - 36
1nC ORJECT CODE ADDRL. ADDR2 STMT SOURCE STATEMENT FIOSEPES 2/12/70
1410+ PUNCH ¢ DFSS¥A 5,5,01000101,12,480 p!CS'IO;‘lUO'
1411+ _PUNCH * DFSSMB 2410+00000101¢5+480,1M5,1,100°
1412+ PUNCH ¢ CFSS¥B 1,65535,00000101 12969 INVTORY, 65535, 655X
+ 35¢
1413+ PUNCH ¥ DFSSMB 151,010C0001915640,NOP454+50°
1414+ PUNCH * OFSSMB 1,65535,000001014 14 64sPART$65535,65535¢
1415+ PUNCH ¢ DFSSMB 2,10,0100010144 448 yRJIE465535,65535¢
1416+ PUNCH * CFSSMB 8,65535,01000101, 8,608y SKH1465535,65535X
+ .
1417+ PUNCH * DFSSFB 8465535,01000101,8,51255K11,465535,65535X
+ 0
1418+ PUNCH * OFSSFB B8465535¢010001019 855449 SK12965535,65535X
+ .
1419+ PUNCH ¢ DFSSMB 1,1000,01C0000197,672ySHI»5,1°
1420+ PUNCH ¢ DFSSN¥B 5,4,01000001,5,672,SHIBR, 20, 100"
14z1+ PUNCH ¢ DFSSMB 441,01000001+69672+SWIPASS+20,100°
1422+ PUNCH * DFSS¥B 14,100,010000014 14,672y SWIPRy20,100"
1423+ PUNCH * DFSSMB 441,0100000196,672,SWITS,20,100°
1424+ PUNCH * DFSSMB 044,901C0000154467245SWN¢5,100°
1425+ PUNCH * DFSSMB 0465535, 010001014 04320¢SW1465535465535"
1426+ PUNCH * DFSSMB 041000,01000101,0+288,5H2965535,65535¢
1427+ PUNCH ¢ DFSSMB 8,65535,0100010148, 352, TPPL] 465535,6553X
+ 54
1428+ PUNCH ¢ DFSSNMB 8465535,01000101,84384,TPPL2,6553596553X
+ 51
1429+ PUNCH * OFSSMB 8465535,01000101, 8,416, TUBE,65535,65535X
+ .
1430+ PUNCH ¢ END?
1431+ PUNCH ' /%*
1422+ PUNCH *//STEP10 EXEC PGM=IEWL,PARM='1REUSNCAL ¢XREF4LIST®*3REGX
+ ION=110K*
1433+ PUNCH *//SYSPRINT DD SYSCUT=A,DCB={LRECL=121,BLKSIZE=605,RECFX
+ M=FBA}, X
1436+ PUNCH 7/ SPACE=(605y {10+ 101 +RLSE+ ROUND} *
1435+ PUNCH '//SYSLIN DD OSNAME=%*,STEP9,SYSGOy DISP={0LDsDELETE)®
1436+ PUNCH *//SYSOBJ DD DSNAME=ICS<CLOD.OISP={(OLDyPASS)* X
. 1437+ PUNCH *//SYSLMOD CC DSNAME=ICS.CLOD(DFSISMBO},DISP=(0LD,PASS)X
+ [
1438+ PUNCH *//SYSUT1 DD UNI T=(SYSDAy SEP={SYSLIN,SYSLMOD)) 4 DISP=(X
+ »DELETE), X
1439+ PUNCH *// SPACE=({1700,(100,50))*
1440+ PUNCH '"//STEP11 EXEC PGM=1FUASMsPARM='*LOAD,NODECK®® yREGION=X
+ 92K
1441+ PUNCH *//SYSLIB DD DSNAME=INMS.GENLIByDISP=(SHR,PASS)*
14424+ PUNCH '// 0D DSNAME=SYS1,MACLIBsDISP=(SHRePASS)®
1443+ PUNCH '//SYSGO DD UNIT=SYSDAsDISP={,PASS}y0CB={LRECL=80+BLX
+ KSIZE=400, ' o
1444+ PUNCH 7/ RECFM=FB)ySPACE={CYLs{1y1) ,RLSE}®
1445+ PUNCH *//SYSPRINT DD SYSOUT=A+DCB=(LRECL=121,BLKSI2ZE=605,RECFX
+ M=FBA), xe

177

1457260 SYSTEM DEF INITION SPECIFICATIONS

LCC CBJECT CCDE

ADBRL ADDR2

STHMT

14464
1441+

+
1448+

*
1449+

+*
1450+
1451+
1452+
1453+
1454+

+
1455+
1456+
1457+
1458+
1459+
1450+
1461+
1462+
1463+
1464+
1465+
14664
1467+
1468+
1469+
1470+
1471+
1472+
1473+
1474+

1475+

1476+
1477+
1478+
1479+
1480+
1681+
1482+
1483+
1484+
1485+
1486+
1487+
1488+
1489+
149C+
1491+

PAGE 37
SOURCE STATEMENT F30SEP69 2/12/70
PUNCH *// SPACF= 1605, {100,501 yRLSEssROUND}*
PUNCH *//SYSUTL DD UNTT=SYSDA,DISP=(,DELETE) ySPACE=(1700s(1X

1MS/360 SYSTEM DEFINITION $PECIFICATIONS

LCC OBJECY CCDE

ADDR1 ADOR2

STMT

1492+
1493+
1494+
1495+
1496+
14974+
1498+
1499+
1500+
15014
1502+
1503+
1504+
1505+
1506+
1507+
1508+
1509+
1510+
1511+

+
1512+
1513+
1514+
1515+

*
1516+
1517+
1518+
1519+

+
1520+
+

1521+
1522+
1523+

+

1524+
1525+
1526+

+
1527+
1528+
1529+

+
1530+
1531+
1532+

+
1533+

SOURCE

PUNCH
PUNCH

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
BUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

PUNCH

PUNCH
PUNCH
PUNCH

PUNCH
PUNCH
PUNCH

PUNCH
PUNCH
PUNCH

PUNCH
PUNCH
PUNCH

PUNCH

00,50))° {
*//8YSuT2 CC UNIT=SYSCA,DISP={,DELETE)y SPACE=(17CCs(1X
00,501}

4//75YSUT3 OO UNIT=(SYSDA,SEP=(SYSLIBy SYSUTL,SYSUT2)) »X"

OISP={DELETE}, X'

‘77 SPACE=(17C0+1100,50) ,RLSE)*

*//SYSIN CC .t

CCPY PCHSSI®

PRINT ON*

. DFSCLB 1414141+800841,00,0 SYSTEM CONSOLE CLX

B
*.DFCL1 ANOP®

! CFSCLR 2414141480€84042840°
. AGO +«DFCL2*
' CFPL1 ANOP!

*OFPLL DFTRMLST WRAPLST,(E2) *

' AGD LDFPL2Y

1L CFCL2 © ANDP®

: DFSCL8 34142425800840456,0°
AGD JDFCLZY

*.OFPL2 ANCP!

'DFPLZ OFTRMLST WRAPLST,(E2) °*

AGOD LOFPLI*

*,CFCL3 ANGP®

' DFSCLR 441,343,80E8,0484,0¢
AGO . JDFCL4'

1 .CFPL3 ANCP?

SDFPL3 DFTRMLST WRAPLST,(E24E4) !
. AGD JDFPL4"Y

*.LERB1 ANOP!

SLERB1 LERB 2,{200,10,5,5)"

. AGO .LERB2'

€,DFCL4 ANCE®

. DFSCLR 59254,148CE8,01140,0'
. AGG JDFCLS®

', DFPL4 ANGP?

YOFPL4 DFTRMLST DIALST,0,(E2)*

AGG JDFPL5®

1. LERB2 ANOPY

CLERB2 LERB 14(200,10,5y5)°*

' AGD JLERB3®

YLOFCLS ANGP®

' OFSCLB 69395919 8CEBy0,168,0°"
AGC L DFCL&?

" OFPL5 ANOP?

YOFPLS DFTRMLST DIALSTyO04{E215)¢
AGG, JDFPL6!

¢.OFCLE ANOP?

BrYvNS e 0
1DFSDCBL DCB CSORG=CXyMACRF=(RyW)y ERROPT=CTRH,LERB=LERBIX
' CONTINUE?

CCNANME=LCC2740S!

EJECT® .
YDFSDCB2 CCB USORG=CXyMACRE= (R, W) ¢ ERROPT=C TR, LERB=LERB2X
CONTINUE® .
DDNAME=DD2T40A"
EJECT?
'DFSOCB3 DCB CSORG=CXyMACRF= (RyW) ERROPT=CTRW,LERB=LERB3X

CONTINUE ¢ .

ODNAME=DD1C50A*
N . EJECT'
¢DFSCCB4 DCB NSORG=CXyMACRF=(R W} yERROPT=C TRW, LERB=LERB4X
* CONTAINUE?
. DDNAME=DD1050*
N EJECT?
*OFSCCBS £CB CSORG=CXsMACRF={RyW)¢ FRROPT=CTRH)LERB=LERBSX
CONTINUE®

DONAME=DD22€0T*

-u

e

PAGE 38

ST ATEMENT F30SEP69 2712770

PUNCH * OFSCLB 74346+2+80E8+0019640°"

PUNCH * AGD ,DFCL?!

PUNCH *.DFPL6 ANOP?

PUNCH *DFPL6 DFTRMLST DIALST,0,(0015)¢

PUNCH ¢ AGO JDFPLT*

PUNCH *.LERB3 ANCP'

PUNCH 'LERB3 LERB 2,(200410,5,5)¢

PUNCH * AGO JLERBA'

PUNCH 1.OFCLT ANOP!

PUNCH * DFSCLB 8444741,80£840,280,0°

PUNCH ¢ AGD .DFCLB!

PUNCH *,DFPLT ANCP!

PUNCH *OFPLT DFTRMLST WRAPLST,(E215) ¢

PUNCH ! AGO L DFPLE®

PUNCH *.LERB4 ANCP

PUNCH *LERB4 LERB '1,1200,105545)"

PUNCH * AGD JLERBS!

PUNCH *,DFCL8 ANCP®

PUNCH * DFSCLB 9+5,8+1,8CE8,0+308,0

PUNCH ¢ TITLE *YDFSICLLO - COMMUNICATION LINE POLLING X
LISTS t0 0

PUNCH * AGD LOFPLYY

PUNCH ¢ .DFPL8 ANOPY

PUNCH *DFPL8 DFTRMLST WRAPLST, (4OFF) ¢

PUNCH ¢ TITLE **DFSICLLO — COMMUNICATICN LINE ERROR BLX
OCKS' L] .

PUNCH ¢ AGO JLERB1*

PUNCH ', LER3S ANCP?®

PUNCH 'LERBS LERB 14(200,10,5¢5)°

PUNCH * TITLE '*DFSICLLO ~ COMMUNICATION LINE GROUP. DCX

N

Lce

IMS/360 SYSTEM CEFINITION SPECIFICATIONS

PAGE 39

LOC OBYECT CCNE ADDRL ADDR2 STMT SOURCE STATEMENT F30SEP69 2/12/70
1534+ PUNCH ¢ e TITLE **OFSICCEO -~ COMMUNICATION LINE OPEN LISX
+ .
1535+ PUNCH 'DFSICDBO CSECT*
1536+ PUNCH * ENTRY DFSICDB®
1537+ PUNCH 'DFsSICDB DS one
1538+ PUNCH ¢ oc ALL(0)!
1539+ PUNCH ¢ o4 AL3{DFSDCRL)*
1540+ PUNCH * oc AL1(0)*
1541+ PUNCH ¢ oc AL3(CFSDCR2)*
1542+ PUNCH * oC ALLLO)*
1543+ PUNCH * DC AL 3(DFSDCB3)*
1544+ PUNCH * oc AL1CO) Y
1545+ PUNCH * nc AL3(DFSDCB4)*
1546+ PUNCH ¢ nC AL1(128)¢
1547+ PUNCH ¢ oc AL3(CFSDCRS5)
1548+ PUNCH ¢ END?
1545+ PUNCH */ %
1550+ PUNCH *//STEP12 EXEC PGM=IEWL PARM=?*REUSyNCAL yXREF,LIST?*4REGX
+ I0N=110K*
1551+ PUNCH '//SYSPRINT DC SYSOUT=A,DCB={LRECL=121,BLKSIZE=605,RECFX
+ M=FBA) 4 Xv
1552+ PUNCH *// SPACE=(605,(10410) yRLSE,+RCUND) *
1553+ PUNCH *//SYSLIN DD DSNAME=#.STEPL11.SYSGOyOISP=(OLD¢DELETE)"
1554+ PUNCH *//SYSOBJ DD DSNAME=ICS.CLCDsDISP=(OLD,PASS)*
1555+ PUNCH *//SYSLMOD DD DSNAMF=ICS.CLOD(DFSICLLO},DISP={0LD,PASS)X
. 0
1556+ PUNCH *//SYSUTL DD UNIT=(SYSDA+SEP=(SYSLIN,SYSLMOD)})y DISP={X
+ + DELETE), X4
1557+ PUNCH */7 SPACE=(1700,{100+50))¢
1558+ PUNCH *//STEP13 EXEC PGM=IEUASM,PARM=**LCAD,NODECK®* 4REGION=X
+ 92K’
1559+ PUNCH *//SYSLIB DD DSNAME=1NVS.GENL 184DISP=(SHR,PASS)*
1560+ PUNCH *// oD DSNAME=SYS1.MACLIB+DI1SP=(SHRsPASS)*
1561+ PUNCH *//SYSGO 0D UNIT=SYSDAy DISP={4PASS) 4DCB=(LRECL=80,BLX
+ KSIZE=400y ¢
1562+ PUNCH *// RECFM=FB),SPACE=(CYLs(1,1) \RLSE}*
1563+ PUNCH *//SYSPRINT DC SYSOUT=A,0CB=(LRECL=121,BLKSIZE=605,RECFX
+ M=FBA) , X' R
1564+ PUNCH 7/ SPACE=(6C55{1C0450) yRLSE yoROUND}*
1565+ PUNCH '//SYSUTL 0D UNIT=SYSDA,DISP={, DELETE), SPACE= {1700, (1X
+ 00,50))*
1566+ PUNCH *//SYSUT2 DD UNIT=SYSCA,DISP=(,DELETE),y SPACE={17C0,(1X
+ 00,501)¢
1567+ PUNCH *'//SYSUT3 DD UNIT=(SYSDA ySEP=(SYSLIB,SYSUTL ySYSUT2)) X
+ DISP=(,DELETE)y X!
1568+ PUNCH *// SPACE=(1700,(100+5014RLSE}*
1569+ PUNCH *//SYSIN DO e)
1570+ PUNCH * CCPY PCHSSI?
1571+ PUNCH * PRINT CN?
1572+ PUNCH *BILL DFSCNT 000040+308+BILL965535°
IMS/260 SYSTEM DEFINITIUN SPECIFICATIONS PAGE 40
C3JECT CODE ADDRL ADDRZ2 STMT SCURCE STATEMENT F30SEP6S 2/12/70
1573+ PUNCH *BUD DFSCAT 0000,0+392,BUDy65535
1574+ PUNCH *CARDPNCH DFSCAT. 0000y 3,280, CARDPNCH+MODEL2M-DFSICNT®
1575+ PUNCH *CARL DFSCNT 0000y 09364, CARLy65535¢
1576+ PUNCH *CARCL OFSCAT 0002,0 9196, CAROL,65535"
1577+ PUNCH *DAN DFSCAT 0002y 0y224+DAN4HOWARD-DFSICNT?
1578+ PUNCH 'ELEANOR DFSCNT 00020224, ELEANDOR,DAN-DFSICNT®
1579+ PUNCH 'ERNE DFSCAT 00005093364 ERNE+65535¢
1580+ PUNCH 'HOWARD DFSCNT 0002,0,224,HOWARD 465535
1581+ PUNCH *INQUIRYL DFSCNT 0001504140, INCUIRY1,65535¢
1582+ PUNCH *INQUIRY2 DFSCNT 000140+168,INQUIRY2,65535"
1583+ PUNCH *JOE DFSCNT 0002, 0y2525J0E65535°
1584+ PUNCH *LEONARD DFSCAT 000050+336,LEONARDy ERNE-DFSICNT®
1585+ PUNCH *L2740SM1 OFSCAT 0000,0984,L2740SM1,465535*
1586+ PUNCH '£2740SM2 CFSCAT 000050+112,L2740SM2,65535°*
1567+ PUNCH *L2740S1 DFSCAT 0000+0¢5641274051465535¢
1588+ PUNCH 'L2740S2 DFSCNT 000CyCy284L274052465535¢
1589+ PUNCH *MASTER DFSCNT 400090956y MASTERsL2740S1~-DFSICNT?
1590+ PUNCH *MODEL2 OFSCAT 00004272804MODEL2 yCARDPNCH~DFSICNT®
1591+ PUNCH *MODEL2M DFSCNT 0000, 3,280,MODEL2M,65535¢
1592+ PUNCH *PRINTER CFSCMT 000040,2804PRINTER, T2780-DFSICNT®
1593+ PUNCH *RICHARD DFSCANT 000209252 +RICHARDy JOE-DFSECNT?
1594+ PUNCH *SHARRON DFSCAT 0002y 02524 SHARRONsRICHARD-DF SICNT*
1595+ PUNCH *TAPEPNCH DFSCAT 0000,2,280,TAPEPNCHyMODEL2-DFSICNT*
1596+ PUNCH *T2780 OFSCNT 0000,04280,72780, TAPEPNCH-DFSICNT®
1597+ PUNCH *WTOR DFSCAT 0000, Oy Os WTOR 655351
1558+ PUNCH ¢ TITLE **DFSICTMO -~ COMMUNICATION TERMINAL MATRX
+ Xt v
1596+ PUNCH 'DFSICTMO CSECT!
1600+ PUNCH * ENTRY CFSICTM®
1601+ PUNCH 'DFSICTM ©S co!
1602+ PUNCH *CTMROW1 DC B'*00003000* *
1603+ PUNCH ¢ oc Bf*0C000000** ¢
1604+ PUNCH * ocC B*r01000000** *
1605+ PUNCH ¢ oc B'*01000000'* *
1606+ PUNCH 'CTMROWZ2 DC BYrllLlllLLre ¢
- 1607+ PUNCH ¢ oC BrrIl111111ee ¢
1608+ PUNCH ¥ oC 89111111110 ¢
1609+ PUNCH ¢ oc B11CC00000% ¢
1610+ PUNCH * END?
1611+ PUNCH * /%
1612+ . PUHCH %//STEP14 EXEC PGM=IEWL,PARM=? SREUSyNCAL 4XREF,LIST**,REGX
* 10N=110K*
1613+ PUNCH *//SYSPRINT DC SYSOLT=A,DCB=({LRECL=12158LKSIZE=605,RECFX
+ M=FBA), x
1614+ PUNCH *7/ ' SPACE=(605,110410),RLSEs yROUND}*
1615+ PUNCH *//SYSLIN OD DSNAME=%,STEP13.SYSGOyDISP=(0OLDsDELETE)®
1616+ PUNCH *//SYSOBJ 0D DSNAME=ICS.CLOD,DISP=(DLD,PASS)?
1617+ PUNCH ' //SYSLMCO 0D DSNAME=ICS.CLCO(DFSICNTO),DISP=(OLD,PASSIX
+ ' .
lel8+ PUNCH *//SYSUTL DD UNIT={SYSDAsSEP=(SYSLINy SYSLMOD)) +DISP=(X

179

IMS/360 SYSTEM CEFINITION SPECIFICATICNS PAGE 41

L0C OBJECT CCODE ADDRL ADDR2 STMT SOURCE STATEMENT F30SEP6S 2/12/70
+ JDELETE) » X¢
1619+ PUNCH // SPACE={170C,(100,501)°*
1620+ PUNCH '//STEP1S EXEC PGM=[EUA3M,PARM="*LOAD,NODECK®',REGION=X
+ 92K
1621+ PUNCH '//SYSLIR DD DSNAME=IMS.GENLIB DI SP=(SHR,PASS)®
1622+ PUNCH *// co DSNAME=SYS1.MACL IB,DISP=(SHR, PASS)*
1623+ PUNCH *//SYSGD ND UNIT=SYSDAsDISP=(,PASS),DCB= (LRECL=80,BLX
+ KSTZE=400, X?
1624+ PUNCH *// RECFM=FB)sSPACE={CYLs {1y 1),RLSE}*
1625+ PUNCH *//SYSPRINT DD SYSOLT=A,DCB=(LRECL=121,BLKSIZE=605,RECFX
. M=FBA),y X*
1626+ PUNCH '// SPACE=(6054(100,50)sRLSEsy ROUND)*
1627+ PUNCH *//SYSUT1 DD UNLT=SYSDA4DISP=(+DELETE} 4 SPACE={1700, {1X
+ 00,5010
1628+ PUNCH '//svi.utz oo UNIT=SYSCA,CISP=(,CELETE),SPACE={1700, {1X
+ 00,50))°*
1629+ PUNCH *//SYSUT3 CC UNIT=(SYSDA, SEP=(SYSLIR,SYSUT1,SYSUT2)),X
+ DISP=l,DELETE), X* .
1630+ PUNCH *// SPACE={17CC,(100450) yRLSE)*
1621+ PUNCH *//SYSIN 0D *t
1632+ PUNCH * CNPY PCHSSI®
1633+ PUNCH ¥ PRINT ON*
1634+ PUNCH ¢ DFSCTB 0,1,E215,0000,1600,1, 1050
1635+ PUNCH ¢ DFSCTB 2+2,E281900004102492,2740"
1636+ PUNCH * ENTRY OFSCTEMT!
1637+ PUNCH *DFSCTBMT EQU #¢
1638+ PUNCH * DFSCTB 293,E261,400041088,3,2740"
1639+ PUNCH * ODFSCTB Z2444E281,0C0C) 832, 442740°
164C+ PUNCH * DFSCTB Z949E481400009896¢542740°
1641+ PUNCH ¢ OFSCTB 49 59E2€1+CC0045764642740°
1642+ PUNCH ¢ DFSCTE 5464E202,0000 64057, 1050
1643+ : PUNCH ¢ OFSCTB 557,000252000425648,1050,NONE®
1644+ PUNCH * OFSCTB 59740002, 20005 38499, 1050,NONE?
1645+ PUNCH ¢ DFSCTB 547,000242000,1408710,1050,NONE*
1646+ PUNCH * DFSCTB 7+8,E2C2,0000,1280411,1050"
1647+ PUNCH * DFSCTE 09994040, 000040y 12,2260
1648+ PUNCH * DFSCYE C49,4081,0000,768+1342260°
1649+ PUNCH * DFSCTR €y$44CA2,0000,192+14,2260°
165G+ PUNCH * DFSCTB C19940A3,0000+64152260°
1651+ PUNCH * END®
1652+ PUNCH $/%1
1653+ PUNCH *//STEP16 EXEC PGM=I1EWL,FARM=**REUSyNCAL XREF,LIST"'',REGX
' + ION=110K?*
. 1654+ PUNCH *//SYSPRINT OC SYSOUT=A,0DCR=(LRECL=121,BLKSIZE=605,RECFX
+ MzFBA) X
1655+ PUNCH *// SPACE=(605,(10,10) yRLSEy RCUNDI®
1656+ PUNCH *//SYSLIN DD DSNAME=#.STEP15,SYSGO,DISP={OLD+DELETE)*
1657+ PUNCH *//SYSCBY DD DSNAME=ICS.CLCD,DISP=(OLL,PASS)*
1658+ PUNCH *//SYSLMOD 0D DSNAME=1CS.CLCD(DFSICTBO)+DISP=(0LD,PASS)X
+* 1
.
IMS/360 SYSTEM DEFINITION SPECIFICATIONS PAGE 42
LCC DBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT F30SEP6S 2/12/70
1659+ PUNCH *//SYSUT1 DD UNTT={ SYSDA,SEP=(SYSLIN,SYSLMOD}), DISP=(X
+ ¢ DELETE), x*
166C+ PUNCH *// SPACE=(1700,(100450))*
1661+ PUNCH #//STEP17 EXEC PGM=IEUASM,PARM=#'LCAD,NODECK®? ,REGION=X
. 92K
1662+ PUNCH *//SYSLIB DD DSNAME=INS.GENLIB,DISP=(SHR,PASS)*
1663+ PUNCH *// DD DSNAME=SYS1.MACLIB ,DISP={SHR,PASS)*
1664+ PUNCH *//SYSGO DD UNIT=SYSDA,DISP={,PASS) DCB={ LRECL=80,BLX
+ KSIZE=400, x®
1665+ PUNCH *// RECFM=FB)y SPACE=(CYL,(141) JRLSED?
1666+ PUNCH *//SYSPRINT DC SYSOUT=A,DCB={LRECL=121,RLKSIZE=605,RECFX
+ M=FBA) Xx*
1667+ PUNCH *7/ SPACE={605+(1C0,50) +RLSE44ROUND)*
1668+ PUNCH %//SYSUT1 0D UNIT=SYSDAsDISP=(, DELETE}s SPACE= (1700, {1X
+ 00,50)) " .
1669+ PUNCH *//SYSUT2 DD UNIT=SYSCA,DISP={,DELETE), SPACE=(1T7C0,(1X
. 00,5001 .
1670+ PUNCH *//SYSUT3 DD UNTT=(SYSDA ySEP=(SYSLIB,SYSUTL,SYSUT2)),X
+ DISP={,DELETE)y X'
1671+ PUNCH *// SPACE=(17004(100550)4RLSE)*
1672+ PUNCH *//SYSIN DD »
1673+ PUNCH ¢ COPY PCHSSI*
1674+ PUNCH ¢ PRINT CN?
1675+ PUNCH *CTT2260 1CTTG IDLYAB=({40,80) yIDLNL=(0A,01) s10LLF=(40,8X
. 0) JLLINE=84, x4
1676+ PUNCH * LTC=C,0PT={TERMINAL,VALID,FIRST,TUBE,VALX
+ 1C,NOCARRG X4 .
1677+ PUNCH * STACTLyNCSWITCH) s TREC=TECTRSCI,TSND=TECTX
+ SSCI NTRYL=3, X!
1676+ PUNCH * SPACE=SPCRT,BUFSZ=1000*
1679+ PUNCH *CTT7770 ICTTG OPT={(TERMINAL,VALID,FIRSTyNOTUBE,VALIDsNOX
+ CARRGy STACTL, X! .
168C+ PUNCH * SWITCHED),LTC=2, TREC=1ECTRF40, BUFSZ=132*
1681+ PUNCH *CTT2740S ICTTG TREC=IECTRF40,NTRYL=2!
1682+ PUNCH 'CTT2740N ICTTC OPT=(TERMINAL,VALID,FIRST,NOTUBE,INVALIDX
+ +CARRG, X*
1683+ PUNCH ¢ NOSTACTL {NOSWITCH s TREC=TECTRF40 ¢ NTRYL=0X
+ ‘
1684+ PUNCH *CTT2740A ICTTC OPT={TERMINAL,INVAL 1Dy FIRST,NOTUBE,INVALX
+ 1D4CARRG xe
1685+ PUNCH * NOSTACTL » SWITCHED) s TREC=TECTRF 40,NTRYL=2X
. .
1686+ PUNCH 'CTT1050A ICTTG OPT=(CCMPCAT,INVALID,FIRST 4NOTUBE, INVALIX
+ Dy CARRGy STACTLy X*
1687+ PUNCH SWITCHED) s TREC=TECTRFS0, TSND=1ECTSD50,NTX
+ RYL=3"
1688+ PUNCH TCTT1050N ICTTC QPT={COMPONT, INVAL IDsFIRST,NOTUBE s INVALIX
+ DyCARRGy x¢
1689+ PUNCH ¢ NOSTACTL {NOSHITCH) s TREC=IECTRFS0,TSAD=]EX
+ CTSD50 /NTRYL=3" .

180

-

1¥§/360 SYSTEM CEFINITION SPECIFICATIONS

PAGE 43

LeC 0RJECT CUDE ADDR1 ADDR2 STNT SOURCE STATEMENT FIOSEP6I 2/12/70
l69C+ PUNCH *CTT1050S ICTTG OPT=(CCMFONT, INVALID)FIRSTyNOTUBE, INVALIX
+ . Dy CARRGy STACTL, X*
1691+ PUNCH * NOSWITCH) ¢ TREC=IECTRF50, TSND=1ECTSDS0,NTX
+ RYL=3' .
1692+ PUNCH *CTT2740B ICTTG TREC=IECTRF404NTRYL=3"
1653+ PUNCH * ASMTETAB RF40,S050,RF50,RSCT ¢
1694+ PUNCH * COPY TRATABLE *
1695+ PUNCH * END ¢
1656+ PUNCH */%¢
1697+ PUNCH *//STEP18 EXEC PGMaIEWL,PARM=* REUSNCAL +XREF+LISTY ¢ ,REGX
+ I0ON=110K"*
1658+ PUNCH ¢//SYSPRINT DC SYSOUT=2,CCB=(LRECL=121,BLKSIZE=605,RECFX
+ M=FBA), x4
1659+ PUNCH /7 SP2CEa (605, (109 10}4RLSEy yROUND)®
1700+ PUNCH *//SYSLIN DD DSNAME=#,STEP17.SYSCO,0ISP={OLD,DELETE)*
1701+ PUNCH *//SYSORJ OD DSNAME=[CS,CLOD+DISP=(0OLD,PASS)*
17C2¢ PUNCH *//SYSLMCD CD CSNAME=1CS.CLOC(DFSICTTO},DISP={OLD,PASS)IX
. .
1703+ PUNCH *//SYSUTL DD UNIT=(SYSDA,SEP={SYSLINy SYSLMOD)) ,D1SP={X
+ +OELETE) » X
17C4+ PUNCH /77 SPACE={1700,(100,501)*
1705+ PUNCH *//STEP19 EXEC PGM=TEUASM,PARM="®*LOADyNODECK®*,REGION=X
* 92kK*
1706+ PUNCH *//SYSL1B DD OSNAME3IMS,GENLIB,DISP={SHR yPASS)*
1707+ . PUNCH *// no DSNAME=SYS1.MACL IB,DISP=(SHR,PASS) ¢
1708+ PUNCH *//5YSGO DD UNIT=SYSDA,DISP=(,PASS),CCB={LRECL=80,BLX
+ KS1ZE=2400, Xt
17C9¢ PUNCH '// RECFN=aFB) SPACE={CYLe (1, 1) ,RLSE}*
1710+ PUNCH *//SYSPRINT DD SYSOUT=A,DCB={LRECL=121,BLKSIZE=605,RECFX
+ M=FHA), xe
1711+ PUNCH 7/ SPACE=(6054{100+50)4RLSEssROUND)*
1712+ PUNCH *//SYSUTl DD UNIT=SYSDA+DISP=(,DELETE) s SPACE={1700,(1X
+ 00,501) " .
1713+ PUNCH *//SYSUT2 DD UNIT=SYSCA,DISP=(¢DELEYE),SPACE={1T700, (1X
+ 00,50)) "
17144 PUNCH *//SYSUT3 DD UNIT=(SYSDAsSEP=(SYSLIBySYSUTLySYSUT2) 14X
* DISP=(,DELETE) 4 X'
1715+ PUNCH v// SPACE=(1700+{100+50) yRLSE)*
1716+ PUNCH *//SYSIN DD *
1717+ PUNCH ¢ COPY PCHSSI®
1718+ PUNCH ¢ PRINT ON?
1719+ PUNCH * CVBG /START,CL40,CTM=0"
1720+ PUNCH * CVBG /STOP,CL40,CTM=0Q"
1721+ PUNCH * CVBG /PSTOP,CL40,CTM=0"
1722+ PUNCH * CVBG /PURGE,CL40,CTM=0"
17234 PUNCH ¢ CVBG /DISPLAY,CLDO,CTHM=0*
1724+ PUNCH * CVBG /RDISPLAY,CLDO*
1725+ PUNCH * CVBG /CHANGE CL60+CTM=0"
1726+ PUNCH * CVBG /ASSIGN.CL70.CTM=0"*
1727+ PUNCH * CVBG /DELETE,CLBO,CTM=0"
IMS/3£0 SYSTEM DEFINITION SPECIFICATICNS PAGE 44
ORJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT F30SEP69 2/12/70
1728+ PUNCH ¢ CVBG /BROADCASTsCL1O,CTM=4?
1729¢ PUNCH * CVeG /CHECKPOINT,CL20,CTM=0"
1730+ PUNCH * CVBG /DBOUMP,CL20,CTM=0"
1731+ PUNCH * CVvBG /LOCK,CLS0*
1732+ PUNCH * CVBG /UNLOCKsCL90O'
1733+ PUNCH ¢ CVBG /TEST,CL50,YP=80"*
1734+ PUNCH * CVBG /EXCLUSIVE,LL50,TP=80C *
1735+ PUNCH ¢ CVBG /ENDsCLS50,TP=80"*
1736+ PUNCH * CVvBG /LCG,CLPO®
1737+ PUNCH * CVBG /CANCEL,CLPO,TP=CO *
1738+ PUNCH * CVBG /OBLCGyCL404CTM=0"
1739+ PUNCH * CVBG /DBNCLOG,CL40,CTM=0"
1740+ PUNCH ¢ CVBG /NRESTART,CL20, TP=204CTH=0"
1741+ PUNCH ¢ CVBG /ERESTART,CL20+TP=20,CTM=0"*
1742+ PUNCH * CVBG /DBRECOVERYsCL20,CTM=0?
1743+ PUNCH * CVEG /IAM,CLAO*
1744+ PUNCH * CVBG /SET,.CLEO®
1745+ PUNCH * CVBG /RESET+CLEO.TP=80 °*
1746+ PUNCH v END®
1747+ PUNCH */s¢
1748+ PUNCH %//STEP20 EXEC PGM=TEWL,PARM=*SREUS)NCAL 9 XREF LI ST? ¢ ,REGX
+ TON=110K*
1749+ PUNCH *//SYSPRINT DD SYSOL1=A,DC8={LRECL=121,BLKSIZE=605,RECFX
+ M=FBA), X
1750+ PUNCH 7/ SPACE=(6054(10+1014RLSEysRCUND)*
1751+ PUNCH *//SYSLIN DD OSNAME=#*,STEP19.5YSGO,DISP=(OLD,DELETE)"
1752+ PUNCH *//SYSC8J DO DSNAME=ICS.CLODyDISP={DLD,PASS}*
1752+ PUNCH 7//SYSLMOD DD DSNAME=]CS.CLCO(DFSICVBO)4DISP=(OLD,PASSIX
* .
1754+ PUNCH *//SYSUT1 0D UNIT=(SYSDAsSEP={SYSLIN,SYSLMOD))4 DISP=(X
+ +DELETE), X
1755+ PUNCH 17/ SPACE=(1700,(100,5C)}*
1756¢ PUNCH *//STEP21 ' EXEC PGM=1EUASM,PARM=? 9| OAD,NODECK * % yREGION=X
+ 92K
1757+ PUNCH *//SYSLIB DC DSNAME= [MSGENL IBs DISP={ SHR 4PASS}*
1758+ PUNCH %7/ 21] DSNAME=SYSL « MACLIB,DISP={SHR,PASS)*
1759+ PUNCH *//SYSGO DD UNIT=SYSDA+DISP=(,PASS) +DCB2{LRECL=80,BLX
+ KSIZE=400, X
1760+ PUNCH *// RECFM3FB) 4 SPACE={CYLy(1s1)}4RLSE)"
1761+ PUNCH "//SYSPRINT DD SYSOUT=A,DCB=(LRECL=121,BLKSIZE=605,RECFX
+ M=FBA), b34
1762+ PUNCH Y7/ SPACE=(6054(1C0s50) 4RLSE,oROUND)*
1763+ PUNCH *//5YSUT1 DD UNIT=SYSDAsDISP=(,DELETE) + SPACE={1T700y(1X
+ 00,501)*
1764+ PUNCH *//5YSUT2 OD UNIT=SYSDA,DISP={,CELETE)) SPACE=(1700,(1X
+ 00,450))*
17¢5¢+ PUNCH *//SYSUT3 DD UNIT=(SYSDA,SEP=(SYSLIBySYSUT1,SYSUT2)),X
+ OISP={,DELETE), X°®
1766+ PUNCH *// SPACE=(17C0y(100450)4RLSE} "
1767+ PUNCH %//SYSIN ©OD *

181

IME/2€0 SYSTEM DEFINITION SPECIFICATICNS

LCC OBJECT CODE

ADDR1 ADDR2

STMT

1768+
1765+
1770+
1771+
1772+
1773+
1774+
1775+
1776+
1777+
1778+
1779+
1780+
1781+

+
1782+
1783+
17844+
1785+
1786+
1787+
1788+
1789+
1790+
1791+
1792+
1793+
1794+
1795+
1796+
1797+
1758+
1799+
1800+
1801+
1802+
1803+
1804+
1805+
1806+
1807+
1808+
1809+
181C+
1811+
1812+
1813¢
1814+
1815+
1816+

SOURCE STATEMENT

PUNCH ¢
PUNCH
PUNCH ¢

PUNCH *DFSISDBO
.

PUNCH

PUNCH *DFSISDB
.

PUNCH
PUNCH ¥
PUNCH *
PUNCH '
PUNCH
PUNCH ¢
PUNCH ¢
PUNCH ¢

PUNCH *S¥BL

PUNCH *SMBLL

PUNCH ¢
PUNCH ¢
PUNCH *
PUNCH *
PUNCH
PUNCH ¢
PUNCH *
PUNCH *
PUNCH *
PUNCH *
PUNCH *
PUNCH ¢
PUNCH *
PUNCH *
PUNCH *
PUNCH *
PUNCH ¢
PUNCH *
PUNCH ¢
PUNCH *
PUNCH *
PUNCH *
PUNCH !
PUNCH *
PUNCH *
PUNCH *
PUNCH *
PUNCH *
PUNCH ¢
PUNCH *
PUNCH . ¢
PUNCH *
PUNCH *

IMS/36C SYSTEM DEFINITION SPECIFICATICNS

LOC OBJECT CCDE

182

ADDR1 ADDR2

STMT

1817+
1818+
1819+
1820+
1821+
1822+
1823+
1824+
1825+
1826+
1827+
1828+
1829+
1830+
1831+
1822+
1833+
1834+
1835+
1836+
1837+
1838+
1839+
1840+
18414+
1842+
1843+
1844+
1845+
1846+
1847+
1848+
1849+
1850+
1851+
1852+
1853+
1854+
1855+
1856+
1857+
1858+
1859+
1860+
1861+
1862+
1863+
1864+
1865+
1866+

SOURCE STATEMENT

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH *

e ewa

PUNCH 'SMBLE

PUNCH 'CNTL

PUNCH *CNTLL

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH ¢ .
PUNCH "CNTL
PUNCH *DMDL

e e et cem e ancascaneen e

© PUNCH *DMDLL

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

e % eosenna

MASTER

DMDLE

cary

PRINT ON
TITLE **DFSISNBO - SECURITY DIRECTORY BLOCKS**!®

PC?SS['

OFFSET
OFFSET
CFFSET
OFFSET
CFFSET
OFFSET
OFFSET

10
T0
10
10
10

1m0 CT
MASTER CNT®

To

F30SEP6S

SMB
CNT
DMD
L&1:]
cve

@

LIST!
LIST®
LIST®
LIST?
LIST®
LIST®

PAGE 45

2/12/70

OFFSET TOX

AL2{(SMBLE-SMBLL)/L""SMBLLsL"*SMBLL) ¢
ccLer

F30SEP69

AL2{(CNTLE=CNTLL)/LY*CNTLL,L* 'CNTLL} *
ocLat

AL2{(DMDLE-DMDLL)/L"*DMDLL.L**CMOLL)Y *

CSECT!

ENTRY DFSISDE?

DS on?

oc A(SMRL~CFSISDB)
[A{CNTL=DFSISO0B)
oc A(DMDL-DFSISDB)
[+ ALPSEL=DFSISDB)
oc A(CVEL-DFSISDB)
oc A(CTBL-DFSISDB)
oc A(MASTER-DFS ISDB)
oc AC(CTBL~DFSISDB}+{(2-1)%5))
DC

Ds

oc cLgt R ¢

oc CL8Y*ADDIIY ¢

bC CLBY *ADDINVEY o
4 CL8 1 ADGPART " ¢
oC CLBTYADDPNY* ¢

oc CL8Y1CLOSE Y ¢

oc CLB*'CLSORDYY *
oc CLBY*OFS*Y ¢

11 CLB*INDFSIBORS® Y ¢
cc CL8* OISR ¢

oc CLB**JISRURSE" " ¢
oc CLBY*DLETI' ¢

nc CLB*'OLETINVY ¢
oc CLB''DLETPART? ¢
oc CLBY'OLETAN' Y ¢
oc cLst DL ¢

oc

ocC

£c L

6c CLB'*DSPPN*Y

cc CLBYIENQY" ¢

oC CLBIYICS Y

oc CLBYIMSYY ¢

cc CLB**INVTORY Y ¢
oc CLBYYNOPTY ¢

oC CLEBYIPARTIY ¢

DC CLBTYRJE®T ¢

oc CLBYISKHLY @

oc N

oC ’

oC M

oc CLOt*SHIBRYY ®
Pl CLBYSWIPASS® @
nc CLBY*SWIPR! Y ¢

oc CLB'ISHIT '

DC CLBYISWN®! ¢

oc CLBTISHLIY ¢

oc CLBYISW2?! v

oc cL8 P TPPLLYY ¢

tc CL8 *TPPL2Y® ¢

oc CLBY*TUBE!* ¢

€QU *e

2[4

223

CC CLB'4BILL'* *

oC '

DC CLB**CARDPNCH'' ¢
OC CL8''CARL** *

CC CL8YICAROL'' ¢

2] CLBEIDAN®® ¢

DC CLA'YELEANOR®Y ¢
nC CLB ' *ERNE?

DC CLB'*HOWARD'® *

0C CLB'*INQUIRYL1'® ¢
OC CLB** INQUIRY2'® ¢
DC CLB*'JOE'* !

oc EONARD®Y ¢
DC L8P L2740SM10 Y ¢
OC - CLB'1L274QSM2%* ¢
DC CLB'YL2740S1°° ¢
DC CLB''L2740S2¢¢ ¢
DC CLBY'MASTER'® ¢

DC CLB**MODEL2'Y °*

OC CL8'*MODEL2MI® ®
DC CLBY'PRINTER®® *
ocC 81 'RICHARD® *
DC .
oC *
oc

DC CLBY*WTOR'® ¢

EQU e

oc

0s ocL8?

[CL8'*DFSIACR '
oc CL8!*DI2LIRJE Y *
oc CLB!IDI21PART ¢ ¢
oc CL8' *DI31PHOL' Y ¢
DC CL8Y*DI31PHO24Y ¥
cc CL8''DI31SKOL* *
oC CLBY*DI32SK0Le Y ¢
oc CLBY'DS31SKOLV Y v
oC CLB?*DS40JCO1YY ¥
EQU *e

PAGE 46

2/12/70

/

Lee

Lec

IMS/26C SYSTEM DEFINITION SPECIFICATICNS

QRJECTY CODF

ADNRL ADDRZ STMT

1867+
1868+
1869+
1870+
1371+
1872+
1873+
1874+
1875+
1876+
1877+
1878+
1879+
1880+
1881+
1882+
1883+
1884+
1885+
1886+
1887+
1888+
1889+
1390+
1891+
1892+
1863+
1894+
1895+
1896+
1897+
1898+
1899+
1900+
1901+
1902+
1903+
1904+
1905+
1906+
1907+
1908+
1909+
1910+
1911+
1912+
1913+
1914+
1915+
1916+

IMS/260 SYSTEM DEF INITION SPECIFICATICNS

OBJECT CCOE

ADDR1 ADDRZ STMT

1917+
1918+
1919+
1920+
1921+
1922+
1923+
1924+
1925+
192¢+
1927+
1928+
1929+
1930+
1931+
1922+
1933+
1934+
1935+
1936+
1937+
1938+
1939+
1940+
1941+

+
1942+
+

1943+
1944+
1945+
1946+

+
1947+
+

1948+
1949+

+
1950+
1951+
1952+

+
1953+
1954+

+
1955+
1956+

+
1957+
+

PAGE

PAGE

SOURCE STATEMENT F30SEP69
PUNCH $PSBL DC AL2((PSBLE-PSBLL)/L'*PSBLLL® *PSBLL)
PUNCH "PSBLL cS ocLa*

PUNCH ¢ DC CL8Y'DFSIBDRO!Y *
PUNCH ¢ DC CLB''DFSLKMOQ*? ¢
PUNCH DC CLB'YDFSSAMO2¢* ¢
PUNCH ¢ DC CLB!'DFSSAMO3®Y ¢
PUNCH DC CLBYODFSSAMO4!? ¢
PUNCH * DC CLBY*DFSSAMOS*S »
PUNCH ¢ OC CLBYIDFSSAMOE!
PUNCH ¢ CC CL8YIDFSSAMOT®® ¢
PUNCH ¢ DC CL8Y'ENQOSKOL*Y ¢
PUNCH DC CLBYSHIBASKOL'' ¢
PUNCH * CC CL8'*HIBLSKO1'® ¢
PUNCH ¢ OC CL8'*HIMAJCOL'® *
PUNCH ¢ DC CLB''HIMAJCO2®! ¢
PUNCH * oc CL8**HIMAJCO3® ¢
PUNCH DC CLB''HIMARJOLYS ¢
PUNCH CC CLB**'HIMASNOLYY ¢
PUNCH ¢ DC CLBY'HITASKOL'Y #
PUNCH DC CLB''YHITASKO2'
PUNCH * DC CL8*YHSBASKOL®® ¢
PUNCH ¢ DC CLBY*HSTASKOL'S ¢
PUNCH ¢ oc CLBY'NOPSBYs ¢
PUNCH ¢ DC CLBF*SWITCH®Y ¢
PUNCH *PSBLE EQU **

PUNCH *CVBL DC AL2(CVBLE~CVBLL)/L®*CVBLL,L®*CVBLL) *
PUNCH *CVBLL DS OCL10®

PUNCH DC CLIC'!START*'®
PUNCH ¢ oC CL10'*STOP!
PUNCH ¢ DC cL10'* PSTOP
PUNCH DC CL10'*PURGE
PUNCH * DC CL1O**NISPLAY?®?
PUNCH ¢ DC CLIO**RDISPLAY!!®
PUNCH ¢ DC CL1C*fCHANGE®*"
PUNCH DC CLLO**ASSIGN®®*
PUNCH ¢ DC CLLOY*DELETE®"*
PUNCH DC CL10**BROADCAST
PUNCH * nc CLIO**CHECKPOINT s *
PUNCH ¢ DC CL10**OBDUMPII®
PUNCH DC CL1Q''LOCK! e
PUNCH * nc

PUNCH oc cL

PUNCH * OC CL10*TEXCLUSIVE®#¢
PUNCH DC CLLQ'*ENCY*?
PUNCH DC CL10Y*LOG!'!
PUNCH * oC

PUNCH ¢ nC

PUNCH * CC CL10**DBNOLOGY®*
PUNCH * DC CLLO**NRESTART®!*
PUNCH DC CL1Q**ERESTARTS

SOURCE STATEMENT F30SEP6Y

PUNCH ¢ BC CL10*'DBRECOVERY?®?

PUNCH ¢ DC CLIO"* 1AN*" "

PUNCH ¢ DC CLLO*'SET*®®

PUNCH ¢ oc CLIQY*RESET

PUNCH '*CVBLE EQU ¢

PUNCH * DS oF!

PUNCH *CTBL DE AL2{15,5)*

PUNCH ¢ DC C''ODLE2** $/360 OPERATOR*'S CONSOLE'

PUNCH * oC C11002E2 " ¢

PUNCH * DC C''003E2'¢ ¢

PUNCH DC CY'004E2°* *

PUNCH * DC C''004E4*" ¥

PUNCH * DC Cr100SE2'Y ¢

PUNCH ¢ DC C C6E2 .

PUNCH * OC C''00700°¢ ¢

PUNCH * DC C'100700°* ¢

PUNCH ¢ DC C€*t00700'" ¢

PUNCH ' oc 4 ’

PUNCH * oc C .

PUNCH ¢ bC .

PUNCH * DC C'1009A2°% ¢

PUNCH ¢ DC C*1009A3" ¢

PUNCH * END*

PUNCH ¢ /%1

PUNCH ' //STEP22 EXEC PGM=IEWL,PARM=® *REUSsNCAL JXREF,LIST?? ;REGK
ION=110K'

PUNCH *//SYSPRINT DD SYSOUT=A,DCE=(LRECL=121, BLKSTZE=605,RECFX
M=FBA} 4 Xt .

PUNCH /7 SPACE= (605, (1C¢10) yRLSEy yROUND)?

PUNCH *//SYSLIN DD DSNAME=%,STEP21,SYSGO, DISP=(OLDsDELETE)?

PUNCH *//SYSOBJ DD DSNAME=ICS.CLOD+DISP=(OLDsPASS)?

PUNCH '//SYSLMCD 0O OSNAME=I1CS.CLOD(DFSISDBO)sDISP=(OLDsPASS)X
'

PUNGH *//SYSUTL DD UNIT=(SYSDA+SEP={SYSLIN,SYSLMOD)) ¢ DISP=(X
JDELETED Xt

PUNCH /7 SPACE=(17004(100,501)"

PUNCH '//STEP23 EXEC PGM=I1EUASM,PARM=*LOAD,NODECK** ,REGIOA=X
92K*

PUNCH *//SYSLIB DD DSNAME=IMS.GENLIByDISP=(SHR,PASS)*

PUNCH *// DD DSNAME=SYS1.MACLIB,DISP=(SHR,PASS)®

PUNCH *//5YSGO DD UNIT=SYSCAsDISP={,PASS),DCB= (LRECL=80,BLX
KSI1ZE=400, Xt

PUNCH /7 RECFM=FB)y SPACE={CYLy{1y1) {RLSE)?

PUNCH '//SYSPRINT DC SYSOUT=A,DCB= (LRECL=121,BLKSIZE=605y RECFX
M=FBA), Iz

PUNCH /¢ SPACE=(6C55 (1004 50)sRLSEssROUND) ¢ -

PUNCH 1//SYSUT1 DD UNIT=SYSCA,DISP={,DELETE),SPACE=(1700, (1X
00,501)" I

PUNCH '//SYSUT2 OD UNIT=SYSDA,CISP=(,DELETE), SPACE={17C0,{1X

00,501 "

47

2/12/70

48

2/712/70

183

IMS/360 SYSTEM DEFINITICN SPECIFICATICNS

LCC OBJECT CCGDE

ADDRL ADDR2 STMT
1958+
+

1959+
1960+
1961+
1962+
1963+
1964+
1965+
196¢€+

+
1967+
+

1968+
1969+
197C+
1971+

+
1972+
+

1973+
1974+

+
1975+
1976+
1977+

+
1978+
1979+

+
198C+
1981+

+
1982+

+
1982+

+
1984+
1985+
1986+
1987+

1988+

1989+
199C+
1991+
+
1992+
+

1993+
1994+

IMS/360 SYSTEM DEFINITICN SPECIFICATICNS

LOC OBJECT CCDE

184

ADDR1 ADDR2 STMT

1995+
1996+
+
1997+
+

1958+
1999+

+
2000+
2001+
2002+

+
2003+
2004+

+
2005+
2006+

+
2007+

+
2008+

+
2009+
2010+
2011+
2012+
2013+
2014+
2015+
2016+

+
2017+
+

2018+
2019+
202C+
2021+

+
2022+
+
2023+

2024+
+

2025+ °

2026+
2027+
+
2028+
2029+
+

PAGE 49

SOURCE STATEMENT F30SEP6S 2/12/70
PUNCH *//SYSUT3 DD "UNIT=(SYSDA,SEP=(SYSLIB,SYSUT1SYSUT2))X
DlSP-('DELEYEI. Xt
PUNCH SPACE=(17004(1C0,50) yRLSE}*
PUNCH '//SVS!N 00 *e
PUNCH * CCPY 'PCHSSI®
PUNCH * PRINT ON*
PUNCH * DFSAVARA 12.EVEN1S=14.SECIVPF=CSECY'
PUNCH ¢ END*
PUNCH /¢
PUNCH *//STEP24 EXEC PGM=IEWLy PARM=" !REUSNCAL »XREF LI ST? ¢ ,REGX
10N=110K*
PUNCH ¢//SYSPRINT DC SYSOUT=A,DCB=(LRECL=121,BLKSIZE=605,RECFX
M=FBA) , xe
PUNCH *// SPACE=(6C5¢{10+10) yRLSEy yRCUND)®
PUNCH *//SYSLIN CD DSNAMEa*,STEP23,SYSGO,DISP={OLD,DELETE)®
PUNCH *//SYSOBJ DC CSNAME=ICS.CLODsDISP=(0OLD,PASS)?
PUNCH '//tVSLMoo DD usnAns:tcs.CLcD(DFSISAvo),uxsv (OLD,PASSIX
PUNCH -//svsurx oc UNIT=(SYSDA.SEP-tSVSLlN.SVSLMnn)),DISP—(x
+DELETED, x*
PUNCH *7/ SPACE=(17CC,(2C0,5C)) "
PUNCH *//STEP25 EXEC PGN=1EUASMyPARM=? *LCAD, NODECK ** yREGION=X
92K*
PUNCH *//SYSL1B OC DSNBME=IMS.GENL 1BsD1SP={SHR 4PASS)*
PUNCH *// 0D NSNAME=SYS1 oMACL [84DISP=(SHRy PASS)?
‘PUNCH */75YSGO DD UNIT=SYSDADISP=(PASS) ,DCB=(LRECL=R0,BLX
KS1ZE=400, X
PUNCH *// RECFM=F81,SPACE=(CYLy (1,1} ,RLSE)?
PUNCH *//SYSPRINT DD SYSOUT=A,DCR={LRECL=121,BLKSI2E=605,RECFX
M=FBA), Xt
PUNCH *// SPACE=(605y(1C0,50) yRLSEy9RCUND)®
PUNCH '//sv§u71 oD UNIT=SYSDA,DISP=(,DELETE) y SPACE=(27CC,(1X
60,501)¢
PUNCH 5//svsur2 DD UNIT=SYSDA,DISP={,CELETE) ; SPACE=(17C0,y (1X
045011
PUNCH *//SYSUT3 DD UNIT=(SYSDA,SEP={SYSLIBy SYSUT1,SYSUT2)}sX
DISP=(4DELETE), X*
PUNCH *// SPACE=(17(Cy (100,50)4RLSE)*
PUNCH *//SYSIN DD *t
PUNCH ¢ COPY PCHSSI?
PUNCH * PRINT ON°®
PUNCH * DFSIPST REGICNS=3¢
PUNCH * END?
PUNCH % /%*
PUNCH *//STEP26 EXEC PGM=IEWL,PARM=1¢REUS,NCAL yXREFsLIST? ,REGX
TON=110K* .
PUNCH '/£5Y§FRINT nc SYSOUT=A.DCB=(LRECL=121.BLKSIZE=605'RECFX
=FBA) »
PUNCH *// SPACE=1605.(10.10),RLSE..RUUND)'
PUNCH *//SYSLIN DD OSNAME=#,STEP25.SYSGOy DISP=(OLD,DELETE)?
PAGE 50
SOURCE STATEMENT F30SEP69 2/12/70
PUNCH *//SYSOBJ DD DSNAME=ICS.CLOD,DISP={0LD,PASS)*
PUNCH *//SYSLMOD OD OSNAME=ICS.CLOD{DFSIPST-0},DISP=(0LD,PASSIX
.
PUNCH *//SYSUT1 DD UNIT=(SYSDA¢SEP={SYSLIN,SYSLMOD)),DISP=(X
+DELETE)y Xt
PUNCH *// SPACE=(1700,{100,50))"
PUNCH *//STEP27 EXEC PGM=IEUASM,PARM=**LOAD,NGDECK®* ,REGION=X
92K"
PUNCH *//SYSLIB DD DSNAMEaIMS.GENLIB,DISP=(SHR,PASS}*
PUNCH *// 0D DSNAME=SYS14MACLIB DI SP=(SHR,PASS)?
PUNCH *//SYSGO DD UNIT=SYSCA,DISP={,PASS),CCB={LRECL=8C,BLX
KSIZE=400, X*
PUNCH 7/ RECFM=FB)SPACE=(CYLs{ 1511 RLSE)?
PUNCH *//SYSPRINT D8 SYSQUT=A,DCE=(LRECL=121,BLKSIZE=605, RECFX
M=FBA) x*
PUNCH *// SPACE= (6054 (100,50) yRLSE 5 yROUND) *
PUNCH '//SYSUT1 DD UNIT=SYSDA,DISP={,DELETE),SPACE=(1700, {1X
00,50)) ¢
PUNCH 'I/SY?UTZ Do UNIT=SYSDA,DISP={DELETE}, SPACE= (17CCy(1X
00,50)) ¢
PUNCH '//SYSUT3 DD UNTT=(SYSDAs SEP=({SYSLIB,SYSUTL,SYSUT2)},X
DISP={,DELETE), X!
PUNCH '/7 SPACE=(17C0,{100,50) 4RLSE)*
PUNCH *//SYSIN DD e
PUNCH * COPY PCMSSI®
PUNCH * PRINT ON'
PUNCH ¢ DFSQUEUE TASK=3,L INES=9'
PUNCH ¢ ENC'
PUNCH 7%
PUNCH *//STEP28 EXEC Pcn‘lewL.PAnna--REUS,NCAL,XREF.LIsr-',necx
ION=110K*
PUNCH '//SYSPRINT DD SYSULtsn.nca-lLRECL=121,BLKSIZE=605,RECFx
M=FBA), X1
PUNCH *// SPACE=(605,(10,10) 4RLSEs»RCUNDY?
PUNCH *//SYSLIN DD DSNAME=#*,STEP27.SYSGO,DISP=(OLD4DELETE)?
PUNCH *//SYS0BS DC DSNAME=ICS+CLODyDISP={0LDy PASS)*
PUNCH '//SYSLMOD DD DSNAME=ICS.CLCD(DFSIQUEOD) »0ISP={0LD,PASSIX
.
PUNCH *//SYSUT1 DC UNIT=(SYSDA,SEP=(SYSLIN, SYSLMGC)),DISP=(X
syDELETE), X
PUNCH *// SPACE=(1700,(1C0,5C))*
PUNCH '//STEP29 EXEC PGM=I1EUASM,PARM=* ¢LOAD, NODECK **,REGION=X
92K
PUNCH *//SYSLIB 0D CSNAME=IMS.GENL IB,DI5P=(SHR +PASS) *
PUNCH *// 0D OSNAME=SYS1 . MACLIB,DISP={SHR,PASS)?Y
PUNCH *//SYSGO ©DC UNIT=SYSDA+DISP=(,PASS) ,DCR=(LRECL=80,8LX
. KSTZE=400, X
PUNCH */7/ RECFM=FB)ySPACE={CYL¢(1,1) yRLSE}®
PUNCH *//SYSPRINT DD SYSOUT=A,DCB={LRECL=1214BLKSIZE=605,RECFX

M=FBA}Y, X!

N\

/

N

I¥5/260 SYSTEM CEFINITICN SPECIFICATIONS

LCC NBJECT CODE

ADDR1 ADNR2

STHT

2030+
2031+
+
2032+
+

2033+
+

2034+
2035+
2036+
2037+
2038+
2039+

+
2040+
+
2041+
+
2042+
+
2043+
2044+
2045+
2046+
+
2047+
+
20484
2049+
2050+
2051+
+
2052+
+

2053+

2054+

+
2055+
2056+
2057+

+
2058+
2059+

+
2060+
2061+

+
2062+

+
2063+

IMS /340 SYSTEM DEFINITION SPECIFICATICNS

LCC OBJECT CNDE

ADDR1 ADDR2

STMT

+
2064+
2065+
2066+
2067+
2068+

+
2065+
+
2070+
+
2071+
+
2072+
+
2073+
+

2074+

+
2075+
2076+
2077+
2078+

+
2075+

+
2080+
2081+
2082+
2083+

+
2084+
+

2085+
2086+

+
2087+
2088+
2085+

+
2090+
2091+

+
2092+
2093+

+
2094+
+

2095+
+

PAGE 51

SOURCE STATEMENT F30SEP6S 2/12770
PUNCH *// SPACE={605,{100450)yRLSE 4 yROUND)*
PUNCH *//SYSUT1 DD UNIT=SYSCAsDISP=(,DELETE)y SPACE=(17C0,(1X
00450)) ¢
PUNCH *//SYSUT2 DD UNIT=SYSCADISP={ DELETE) 4 SPACE=(1700,(1X
00+50))*
PUNCH *//SYSUT3 0D UNIT=(SYSDASEP=(SYSLIBySYSUT1,SYSUT2))X
DISP={,NELETE), X! .
PUNCH *// SPACEs {1700, (100450},RLSE)*
PUNCH *//SYSIN 00 *0
PUNCH COPY PCHSSI®
PUNCH ¢ PRINT CN'
PUNCH ¢ DFSIC10B NUMIOB=10*
PUNCH * TMSGSIZE QCRBUFN=144MSGBUFN=10,0EVTYPE=(2314,2X
314,2314,42314) ¢
PUNCH * MSGDCB IQCRONM=INQCR, X
CCNT INUEY
PUNCH ¥ CQCRCNM=0UTQCR, X
CONTINUE®
PUNCH * TMS GCNM= INMS Gy X
CCNTINUE!
PUNCH * OMSGONM=DUTMSG*
PUNCH * END!
PUNCH t/#?
PUNCH *//STEP30 EXEC PGM=IEWL+PARM3 " 'REUS¢NCAL ¢ XREF+LIST®* JREGX
10N=110K*
PUNCH *//SYSPRINT OD SYSOUT=A,DCB=(LRECL=121+BLKSIZE=605,RECFX
M=FBA), xt
PUNCH ¢// SPACE=(605,(10+10)4RLSEy sROUND}®
PUNCH *//SYSLIN DD DSNAME=#%,STEP29.SYSGO,DISP=(OLD,DELETE)*
PUNCH *//5YSGBJ COD OSNAME=[CS.CLOD»DISP=({0LD,PASS)*
PUNCH *//SYSLMOD DD DSNAME=ICS.CLCD{DFSICS40),01SP={0OLD,PASS)X
0
PUNCH *//SYSUT1 CD UNIT=(SYSOA4SEP=(SYSLINy SYSLMOD)),DISP=(X
vDELETE) x?
PUNCK /7 SPACE={1700,(100,5C))"*
PUNCH '//STEP31 EXEC 'PGM=1EUASM,PARM=¢ ¢ 0AD,NODECK®® REGION=X
92K*
PUNCH *//sYSLIB CC DOSNAME= IMSoGENL 1By DI 5P={ SHR 4PASS) ¢
PUNCH #// o] OSNAME=SYS1 «MACLIB,DISP={SHRyPASS)*
PUNCH *'//SYSGO DD UNIT=SYSDA4DISP=(4PASS) ,0CB={LRECL=80,8LX
KSTZE=400y X
PUNCH '// RECFM=FB)ySPACE=(CYL,y(1y1)4RLSE)"
PUNCH *//SYSPRINT DO SYSOUT=A,DCB=(LRECL=121,BLKSIZE=605+sRECFX
M=FRBA), X
PUNCH t// SPACE=16059(100950) ¢RLSE 9 ROUND)?
PUNCH *//SYSUT1 DD UNIT=SYSDA,DISP={,DELETE) s SPACE={1700,{1X
00,50))
PUNCH *//SYSUT2 DD UNIT=SYSCA4DISP=(,DELETE)y SPACE=(1700,(1X
00,50))°*
PUNCH '//SYSUT3 DD UNIT=(SYSDA,SEP={SYSLIBy SYSUT1,SYSUT2)), X
PAGE 52
SOURCE STATEMENT F30SEP69 2/12/70
DISP=(4DELETE)y X*
PUNCH *// SPACE=(17C04+(100+50),RLSE) "
PUNCH ¢//SYSIN DD 1
PUNCH * COPY PCHSSL*
PUNCH ¢ PRINT CN'
PUNCH * DFSGLES PSB=22,DMB=9,SMB=41, X
CONTINUE?
PUNCH ¢ CLB=9,CTB=15,CNT=264C0B=5, X
CONTINUE*
PUNCH ¢ PST=3,SAV=12,WAT=14,RQE=2,QUE=(1,150), X
CCATINUE®
PUNCH * SVC=12444245) y0SAM=(243428)4,CVB=27,CTM=2X
2CTML=41
PUNCH * 15CB SECTYPE=CSECT,CPGPT=500, X
CONTINUE®
PUNCH ¢ PUNIT=2314,PSER=STORGE,PLIB=ICS, PROCLIB X
.
PUNCH ¢ TMSGSIZE QCRBUFN=14yMSGBUFN=104DEVTYPE=(2314+2314X
1231442314
PUNCH * DFSINT QCRS=14,MS5GS=10*
PUNCH * END*
PUNCH */%¢
PUNCH ¢//STEP32 EXEC PGM=IEWLyPARM=*REUSyNCALs XREFsLIST®*yREGX
ION=110K*
PUNCH *//SYSPRINT DC SYSGUT=A,DCB=(LRECL=1214BLKSIZE=605,RECFX
M=FBAY, x¢
PUNCH *// SPACE= (605, (10510)4RLSEy yRQUND) *
PUNCH %//SYSLIN DD CSNAME=%,STEP31,SYSGOyDISP=(0OLDyOELETE)®
PUNCH *//SYSQBJ DD DSNAME=ICS.CLOD +DISP={OLD,PASS)*
PUNCH *//SYSLMOD CO DSNAME= ICS.CLDD{DFSISCDQ),DISP={OLD,PASS) X
.
PUNCH *//SYSUT1 DD UNIT={SYSDA,SEP={SYSLINySYSLMOD) } »DISP=(X
+DELETE) X
PUNCH *// SPACE={17004{100,50}}*
PUNCH '//STEP33 EXEC PGM=IEUASM,PARM="*LOAD,NODECK®? yREGION=X
2K?
PUNCH *//SYSLIB DD DSNAMEsIMS,GENLIB4OISP=(SHR,PASS)*
PUNCH *// 0o OSNAME=SYS1eMACLIB,DI SP=({SHR4PASS)*
PUNCH *//5YSGC DD UNIT=SYSCA+DISP=(,PASS)sCCB={LRECL=80,BLX
KSIZE=400, X
PUNCH * RECFM=FB), SPACE={CYLy(1,1) ,RLSE)*
PUNCH

PUNCH
PUNCH

PUNCH

PUNCH

v//SYSPRINT DO SYSQUT=A,DCB={LRECL=12),BLKSIZE=605,RECFX
M=FBA), xt

v/ SPACE={6059 (100950)yRLSE»»ROUND) ¢
*//SYSUT1 DD UNIT=SYSCA,DISP={sDELETE) 4 SPACE= {1700, (1X
00,5001

*//5YSuT2 OC UNIT=SYSCA;DISP=(,CELETE), SPACE=(17CO0,(1X
00,50)) *

*/75YSUT3 DD UNIT=(SYSDAySEP={SYSLIB,SYSUTL,SYSUT2)),X
DISP={,CELETE), X*

185

IMS/260 SYSTEM DEFINITION SPECIFICAT IONS

LLC DBJECT CODE

ADDRL ADDR2

STMT

2096+
2097+
2058+
2099+
2100+
2101+
2102+
2103+
2) 04+
2105+
2106+
2107+
2108+

+
2109+

+
2110+
2111+
2112+
21132+
2114+

+
2115+
+

2116+
2117+

+
2118+
2119+
2120+

+
2121+
2122+

+
2123+
2124+

+
2125+
2126+
2127+
2128+
2129+
2130+
2131+
2122+
2133+
2134+
2135+
2136+
2137+

IMS/2€C SYSTEM CEFINITION SPECIFICATIONS

LCC ORJECT CODE

186

ADDR1 ADDR2

STMT

2138+
2139+
2140+
2141+
2142+
2143+
21464+
2145+
2146+
2147+
2148+
2149+
2150+
2151+
2152+
2153+
2154+

+
2155+
2156+

+
2157+
2158+
2159+
2160+

+
2161+

+*
2162+
2163+
2164+
2165+
2166+
2167+
2168+
2169+
2170+
2171+
2172¢
2173+
2174+
2175+
2176+
2177+

+
2178+
2179+

+
2180+

2181+

PAGE 53

SOURCE STATEMENT F30SEP6S 2/12/70
PUNCH *// SPACE={1700,(100,50) 4RLSE} '
PUNCH '//SYSIN DD we |
PUNCH ¢ COPY PCHSSI® N
PUNCH * PRINT ON?

PUNCH *YDFSISVAD CSECT'’

PUNCH * SVC 244 ASK SVC NUMBER®

PUNCH * BR 40

PUNCH * ENTRY DFSISVROY

PUNCH *DFSISVRO SVC 245 REPLY SVC NUMBER®

PUNCH * BR 14

PUNCH ¢ END®

PUNCH */%' amm

PUNCH '//STEP34 EXEC PGM=TEWL,PARM="*RENT ,REFRsNCAL sXREF,LISTX
19 ,REGINN=110K?

PUNCH "//SYSPRINT DD SYSOUT=A,0OCB=(LRECL=121,BLKS12E=605,RECFX
M=FRA), X1

PUNCH *// SPACE={605,(10510)yRLSEy ¢ROUND)®

PUNCH *//SYSLIN DD DSNANE=*,STEP33, SYSGO,CISP=(OLD,DELETE)*

PUNCH *// on DDNAME=SYSIN'®

PUNCH '//SYS08BJ DT DSNAVE=ICS.CLCDsDISP={0OLDsPASS)*

PUNCH *//SYSLMOD DD DSNAME=ICS.CLOD(DFSISVAO},DISP={0OLDsPASSX

[

PUNCH *//SYSUTL DD UNIT=(SYSDA,SEP={SYSLIN,SYSLMOD)),DISP=(X
+DELETE), Xt

PUNCH *// SPACE={1700, (100950} RLSE}®

PUNCH '//STEP35 EXEC PGM=IEWL,PARM="*RENTyREFRyNCALyXREFsLISTX
19 REGION=110K*

PUNCH *//SYSPRINT DC SYSCUT=A"'

PUNCH *//SYSLIN DD DONAME=SYSIN'

PUNCH '//SYSLMOD DD VOLUME=SER=IMSLIB,DISP={OLDsPASS), X

CONT INUE!
PUNCH *// DSNAME=1C $.CLODUNIT=2314"*
PUNCH '//SYSOBJ DO VOLUME=SER=IMSLIB,DISP=(0LDsPASS) X
CONTINUE®

PUNCH *// DSNAME=ICS,CLODUNIT=2314"

PUNCH '//SYSUT1 DD UNIT=(SYSOAs SEP=(SYSLIN, SYSLMOD)}),DISP=(X
+DELETE) x4

PUNCH *// SPACE={1700,(100,50) yRLSE)*

PUNCH *//SYSIN DD *t

PUNCH * SETSSI 05012090¢

PUNCH ' CHANGE DFSIASKO(IGC244)¢

PUNCH ¢ CHANGE DFSIFEPO(1GC245)¢

PUNCH ' INCLUDE SYSCBJ(DFSISVVO) INTER-REGION SVC RTNES®

PUNCH ' NAME DFSISVVO(R)'

PUNCH ¢ SETSSI 05012090°

PUNCH * INCLUDE SYSOBJ{DFSISVAQ) SVC Bywmpse

PUNCH * INCLUDE SYSCBJ(DFSIRCCO)®

PUNCH ' ENTRY DFSIRCQO®

PUNCH ' NAME DFSIRCCO(R) REGICN CONTROLLER MODULE®

PUNCH * SETSSI 05012090

-
.
PAGE 54

SCURCE STATEMENT F30SEP69 2/12/70
PUNCH * INCLUDE SYSOBJ(DFSISVAO) SVC BUMPS
PUNCH * INCLUDE SYSCEBJ(DFSIPROO)*

PUNCH * INCLUDE SYSCRJU{DFSIPCCO)*

PUNCH * ENTRY DFSIPCOO?

PUNCH * NAME DFSIPCCO(R) PROG. CONTROLLER MODULE®

PUNCH * SETSSI 05012€9C

PUNCH ' INCLUDE SYSOBJ{DFSISVAO) SVC BUMPS®

PUNCH ' INCLUDE SYSCTBJ{DFSIDLKD)?

PUNCH * ENTRY DFSIDLLO! X

PUNCH * NAME DFSIDLLO(R) DL/1 BLOCK LOADER MOQULE®

PUNCH * SETSSI 05012090

PUNCH * INCLUDE SYSOBJIDFSIBDDO) DATABASE RECOVERY MODULE!

PUNCH * INCLUNE SYSCAJ(DFSILIOO) DL/ LANGUAGE INTERFACE!

PUNCH * ENTRY DLITCEL®

PUNCH * NAME DFSIBCRO(R)?

PUNCH /%' e

PUNCH *//STEP36 EXEC PGM=1EWL,REGION=110K, b3
wn CONTINUE?® wum

PUNCH *// PARM=' YREUS,LET {NCAL ,XREF,LISTO ¢

PUNCH

PUNCH
PUNCH
PUNCH
PUNCH

PUNCH

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

PUNCH
PUNCH

PUNCH
PUNCH

9//SYSPRINT DD SYSOUT=A,DCB=(LRECL=121 4 BLKSIZE=605 yRECFX
MFBA), X!
wy SPACE={605,110,101,RLSE, 4ROUND) !
1//SYSOBY DD . DSNAME=ICS.CLOD,DISP=({0LD,PASS)?

DT DSNAME=ICS.CLOD,DISP=(0LD,PASS)*
*//SYSLMOD DD OSNAME=ICS.CLCD(DFSIBLKO),DISP=(OLDs PASSIX
'

*/7SYSUTL CD UNIT=(SYSDA, SEP={SYSOBJs SYSLMOD))sDISP=(X
+DELETED , x*

e SPACE=(17CC,(10045C))"*

T//SYSLIN DD * *

. SETSS1 05012090¢

INCLUDE SYSCBJ{DFSIDIRQ) PSB OMBL AND DMD BLOCKS

.

' INCLUDE SYSCBJ(DFSISMBO) SCHEDULER MSGE BLOCKS®

* INCLUDE SYSOBJ{DFSICLLO) CCMM LINE BLOCKS®

' INCLUDE SYSCBJ(OFSICTBO) COMM TERM BLOCKS®

* INCLUDE SYSCBJ(DFSICNTO) COMM NAME TABLE?

+ INCLUDE SYSOBJDFSICTTO) COMM TRANS TABLE®

* INCLUDE SYSCBJ(DFSICVRO) COMM VERB TABLE?

¢ INCLUDE SYSCBJ(DFSIOS40) OSAM CCNTROL BLOCKS®

' INCLUDE SYSOBJ(DFSIPSTO) PARTITION SPEC YABLE®

¢ INCLUDE SYSGBJ(CFSISAVO) IMS/340 SAVE AREA SETS'

* INCLUDE SYSCBJ(DFSIQUEO) QUEUE CONTROL BLCCKS'

v INCLUDE SYSOBJIDFSISCDO) SYSTEM CONTENTS DIRECTORY'

* NAME DFSIBLKO(R) ' IMS/360 CONTROL BLOCKS MOOX

ULE® \

AL S

*//STEP3T EXEC PGM=I1EWL,REGION=110K e X
N ¢ () T T NUE ¢ T T K

PARM=%TOVLY,LET4NCAL s XREF,LISTt? ¢

A
1 //SYSPRINT DD SYSOUT=Ay0CE8=(LRECL=1214BLKSIZE=605RECFX

[M$/760 SYSTEM DEFINITICN SPECIFICATICNS PAGE 55
LCC CBJECT CCDE ADDR1 ADDR2 STMT SOURCE STATEMENT F3NSEPAY 2/12/70
+ M=FBA), x¢
2182+ PUNCH *// SPACE= (605, (10,10)yRLSEy ;ROUND)
2183+ PUNCH *//SYSORJ DD NSNANE=ICS,CLCDyOISP=(0LD,PASS)*
2184+ PUNCH *// 0D ISNAME=1CS.CLCDSDISP=(OLD,PASS)?
2185+ PUNCH *//SYSLMCD TC OSNAPE=[CS,CLID(DFSINUCO),NISP=(OLD,PASS)X
+ .
2186+ PUNCH '//SYSUT1 CC UNII=(SYSDA,SEP=(SYSNBJ,SYSLMOD)) ,D1SP=(X
+ . sDELETE) X*
2187+ PUNCH "7/ SPACE=(17C04(1€0,50)1¢
2188+ PUNCH *//TELLIB CD CSNAME=SYSL1.TELCMLIRsDISP=SHR®
2189+ PUNCH *//SYSLIN DD *
2190+ PUNCH * SETSSI-05012090°
2191+ PUNCH * INCLUDE SYSCBJ(DFSIXXX0) RESIDENT MNDULE MAP®
2192+ PUNCH ¢ [INCLUDF SYSCBJ(DFSIBLKO) IMS CCNTROL ELOCKS'
2193+ PUNCH * INCLUDE SYSCBJ(DFSINSPO) IMS SU3TASK DISPATCHER®
2194+ PUNCH * INCLUDE SYSCBJICFSIRSTO) IMS RESTART!
2195+ PUNCH * INCLUDE SYSCBJ(DFSIRSIO) RESTART INITIALIZATION®
2196+ PUNCH ' INCLUCE SYSCBJ(DFSICPCO) IMS CHECKPOINT®
2197+ PUNCH ¢ INCLUDE SYSCBJIDFSIASIO) SCHECULER ~ INITIATION!
2198+ PUNCH ' INCLUDE SYSCBJ(DFSIASTO) SCHEDULER = TERMINATICN!
2199+ PUNCH ' INCLUDE SYSCBJ(DFSIMBEO) SCHEDULER - SMB ENQUEUE'
2200+ PUNCH * [NCLUDE SYSCBJ{DFSIMRO) SCHECULER - SMB DEQUEUE!
2201+ PUNCH ' INCLUDE SYSCBJ(DFSICLIO} COMM INPUT PROCESSGRY
2202+ PUNCH ¢ INCLUCE SYSCRJ(DFSICLOO) CCMM CUTPUT PROCESSOR®
2203+ PUNCH ' INCLUDE SYSCBJIDFSICLPO) ~ COMMANC MSGE PROCESSOR®
2204+ PUNCH ' INCLUDE SYSCBJ(DFSICLRO) MESSAGE ROUTERY
2205+ PUNCH * INCLUDE SYSCBJIOFSICLMO) MESSAGE GENERATOR®
2206+ PUNCH * INCLUDE SYSCBJ{DFSICLTO) COMP TRANSLATION MODULE®
2207+ PUNCH ' INCLUDE SYSCRJIDFSICLBO) .COMM RACKSPACE EDIT!
2208+ PUNCH * INCLUDE SYSCBJIDFSICLFO) SYVBCLIC DEST FINDER!
2209+ PUNCH * INCLUDE SYSOBJ(DFSICLSO) SECURITY PRNCESSCR'
2210+ PUNCH ¢ INCLUDE SYSCRJ(CFSICLXO) CCMM RESET oOLL!
2211+ PUNCH * INCLUDE SYSCBJIDFSICLLO) /BROACCAST CCMMAND®
2212+ PUNCH ' INCLUDE SYSOBJ(DFSICL20) /CHE /RES COMMAND'
2213+ PUNCH ' INCLUDE SYSCBJIDFSICLAD) /1A% CCMMAND®
2214+ PUNCH * INCLUDE SYSOBJ(DFSICL30) EDIT COMMAND MSGE!
2215+ PUNCH * INCLUDE SYSCEBJ{CFSICL4D) /STA /STG /ST COMMAND!
2216+ PUNCH ' INCLUDE SYSCBJ(DFSICL50) /TEST /END /EXC COMMANDS'
2217+ PUNCH * INCLUDE SYSOBJ(DFSICLED) /CHA COMMAND?
2218+ PUNCH * INCLUDE SYSCRJ(DFSICL70) /ASSIGN CNMMAND®
2219+ PUNCH * INCLUDE SYSCBJ(DFSICL8O) /CEL CCMMAND!
2220+ PUNCH * INCLUDE SYSOBJ(DFSICLSO) /LOCK / UNLOCK COMMARD®
2221+ PUNCH ¢ INCLUDE SYSCBJ(CFSICLDO) /DISPLAY CONTROL MODULE'
2222+ PUNCH * INCLUDE SYSCBJ(DFSIDP10) " STATUS!
2223+ PUNCH-* INCLUDE SYSGBJ(OFS{DP20} " ACTIVE®
2224+ PUNCH * INCLUDE SYSCRJ(DFSICP30) “ QUEUES'
2225+ PUNCH * INCLUDE SYSCBJIDFSIDP40) " TRAN £& LTERM®
2226+ PUNCH ¢ INCLUDE SYSCEJ(LFSICP50) “ PGM & DATABASE®
2227+ PUNCH * [ACLUDE SYSCBJ(CFSIDP6O} ® LINE & PTERM®
2228+ PUNCH * INCLUGE SYSGBJ(DFSIDP70) n ASSIGNMENT®
IMS/360 SYSTEM DEFINITION SPECIFICATIONS PAGE 56
LCC OBJECT CCDE ADDR1 ADDR2 STMT SOURCE STATEMENT F30SEP6S 2/12/70
2229+ PUNCH * INCLUDE SYSCEJ(DFSIRG10) n MASTER®
2230+ PUNCH * INCLUDE SYSCBJ{DFSIDLAO) DL/ CALL ANALYZER®
2231+ PUNCH * INCLUDE SYSCBJ(DFSIDLMO) DL/I BLOCK MOVER'
2232+ PUNCH * INCLUDE SYSCBJIDFSICLGO) OL/I OPEN MODULE®
2233+ PUNCH * INCLUDE SYSCBJ(DFSIOS10) CSAM CPEN!
2234+ PUNCH * INCLUDE SYSCRJ{CFSIIDEO) BLOCK DEQUEUE MODULE®
2235+ PUNCH * [NCLUDE SYSCBJ(OFSITENO) BLOCK ENQUEUE MODULE®
2236+ PUNCH * INCLUDE SYSCBJ(DFSIDBLO) DB SEG’LCG FCR BACKCUT®
2237+ PUNCH * INCLUDE SYSCRJ(DFSIPREO) MSGE AND LOG PREFIX BLDR®
2238+ PUNCH ' INCLUDE SYSCEJ(DFSILCCO) WRITE LCG ROUTINE!
2239+ PUNCH * INCLUDE SYSCBJ(DFSISTPO) START REGION!
2240+ PUNCH * INCLUDE SYSCEJ(CFSIPTPO) STOP REGION®
2241+ PUNCH * INCLUDE SYSCRJ(DFSIASEO) SIM REGION TERMINATION®
2242+ PUNCH * INCLUDE SYSCBJ(DFSIRWQO) READ/WRITE MSGE QUEUE®
2243+ PUNCH * INCLUDE SYSCBJIDFSIQMSO) REUSE QUEUE MODULE®
2244+ PUNCH * INCLUDE SYSCBJ{OFSISMNO) STORAGE POCL MGMT!
2245+ PUNCH * INCLUDE TELLIB(IECTLOPN) BTAM SAD/ENABLE®
2246+ PUNCH ' INCLUDE TELLIBUIECTCHGN} !
2247+ PUNCH ' INCLUDE SYSOBJ(DFSICM10} COMM MESSAGF TABLE!
2248+ PUNCH * INCLUDE SYSCBJ(OFSICLEO) /SET /RESET COMMANDS®
2249+ PUNCH * INCLUDE SYSCBJ{DFSISMIO) SECURITY MAINT INIT®
2250+ PUNCH * INCLUDE SYSCBJ(DFSIINTO) INIT — CONTROL &6 MISC'
2251+ PUNCH * INCLUDE SYSCBJ(OFSIINLO) INIT - MODULE LOADER®
2252+ PUNCH ' INCLUDE SYSCBJIDFSIINIO) INIT-- JOBLIB MODULE TABLEX
. .
2252+ PUNCH * INCLUDE SYSCBJIDFSIIN20) INIT - SVCLIB MODULE TABLEX
+ 1
2254+ PUNCH ' INCLUDE SYSCBJ(DFSIINDO) INIT - DMB DIRECTORY®
2255+ PUNCH * INCLUDE SYSCBJ(DFSIINSO) INIT — STORAGE POOL MGMT®
2256+ PUNCH ' INCLUDE SYSCBJ(DFSIINQO) INIT = QUEUE MANAGEMENT!
2251+ PUNCH * INCLUDE SYSCBJ(DFSIINEO) INIT ~ COMMUNICATIONS!
2258+ PUNCH ¢ INCLUDE SYSDBJ(OFSIINXO) INIT ~ RESIDENT XFR CTL®
2259+ PUNCH * INCLUDE SYSCBJ(DFSIOS60) OSAM CLOSE RCUTINE®
2260+ PUNCH * CHANGE OFSICS60(DFST0S70) CHG EP TQ OSAM CLOSE RTNE!
2261+ PUNCH ' INCLUDE SYSCBJIDFSIOS60) GSAM CLCSE RTNE(2ND CCPY1!
2262+ PUNCH ' CHANGE CFSICSE0(DFST0ST0) CHG DLCO PEFERENCE'
2263+ PUNCH * [NCLUDE SYSCBJ{DFSIOLCO) DL/ CLOSE MODULE®
2264+ PUNCH * ENTRY DF SSTART!
2265+ PUNCH * OVERLAY IMSA®
2266+ PUNCH ' INSERT DFSICLLOY
2267+ PUNCH * OVERLAY [MSA®
2268+ PUNCH * INSERT DFSICL20"
22694y PUNCH * OVERLAY TMSAY
2270+ PUNCH * INSERT DFSICL30*
2271+ PUNCH * OVERLAY [MSA®
2272+ PUNCH ' INSERT DFSICL40Y
2273+ PUNCH * OVEKLAY IMSA®
2274+ PUNCH * INSERT DFSICLS50'
2275+ PUNCH ! OVERLAY IMSA®
2276+ PUNCH * INSERT DFSICL60'

186.1

IMS/360 SYSTEM DEFINITION SPECIFICATIONS

LOC O0BJECT CCDE

ADDR1 ADDR2

STMT

2277+
2278+
2279+
2280+
2281+
2282+
2283+
2284+
2285+
22B¢&+
2287+
2288+
2289+
2290+

2291+

2292+
2293+
2294+
2295+
2296+
2297+
2298+
2299+
2300+
2301+
2302+
2303+
2304+
2305+
2306+
2307+
2308+
2309+
2310+
2311+
2312+
2313+
2314+
2315+
2316+
2317+
2318+
2319+
2320+
2321+
2322+
2323+
2324+
2325+
2326+

SOURCE STATEMENT

TMS/360 SYSTEM DEFINITION SPECIFICATIONS

LCC OBJECT CODE

186.2

ADDR1 ADDR2

STMT

2327+
2328+
2329+
233C+
2331+
2332+
2333+
2334+
2335+
23364+
2337+
2338+
2339+
2340+
2341+
2342+

*
2342+
2344+
2345+
2346+
2347+
2348+

2350
2351

SCURCE

F30SEP6S
PUNCH ¢ QVERLAY [MSA?
PUNCH ¢ INSERT DFSICL7C?
PUNCH ¢ OVERLAY IMSA®
PUNCH * INSERT DFSICL8O"
PUNCH * OVERLAY [MSA*
PUNCH ¢ INSFRY CFSICL90O*
PUNCH * OVERLAY INSAT
PUNCH * INSERT DFSIDP10O*
PUNCH ¢ OVERLAY [NMSA®
PUNCH * INSERT DFSIDP20"
PUNCH * OVERLAY IMSA®
PUNCH * INSERT DFSIDP30*
PUNCH ' QVERLAY TIMSA?
PUNCH ¥ INSERT CFSICP40O’
PUNCH 1 OVERLAY [NMSA®
PUNCH ¢ INSERT DFSIDP50!
PUNCH * OVERLAY IMSA®
PUNCH ¢ INSERT DFSIDP6O*
PUNCH ¥ OVERLAY IMSA®
PUNCH * INSERT CFSICPT70O!
PUNCH CVERLAY [MSA?
PUNCH * INSERT DFSIRCI1O!
PUNCH ¢ QOVERLAY 1MSA?
PUNCH ¢ INSERT DFSISMIO*
PUNCH ¢ OVERLAY IMSA?
PUNCH ¢ INSERT DFSIINTO?
PUNCH INSERT DFSIINXO*
PUNCH * COVERLAY [MSA?
PUNCH * INSERT OFSTINLO®
PUNCH * INSERT DFSIINLO®
PUNCH ¢ INSERY DFSIIN20*
PUNCH ¢ OVERLAY IMSB
PUNCH * INSERT DFSTINDO?
PUNCH * OVERLAY IMSR*
PUNCH ! INSERT DFSIINSO*
PUNCH ¢ INSERT DFSINTBO®
PUNCH ' OVERLAY [¥SBY
PUNCH * INSERT DFSIINQO?
PUNCH * COVERLAY IMSB'
PUNCH * INSEPT DFSITINBO®
PUNCH * OVERLAY IMSA®
PUNCH ¢ INSERT DFSISTPO!
PUNCH * OVERLAY [IMSC*
PUNCH ¢ INSERT DFSIPTPO?
PUNCH * INSERT CFSIASEQ *
PUNCH * OVERLAY IMSA!
PUNCH * INSERT DFSIDLNO*
PUNCH ¢ CVERLAY [MSD*
PUNCH INSERT DFS10S6Q°
PUNCH ' OVERLAY [IMSE?
STATEMENT F30SEP6Y
PUNCH INSERT DFSIOS10*
PUNCH * GVERLAY ImsAt
PUNCH * INSERT CFSICLCO
PUNCH *) CVERLAY [MSF*
PUNCH * INSERT DFSIOS7C*
PUNCH ¢ OVERLAY IMSA®
PUNCH ¢ INSERT DFSICLEO"
PUNCH * OVERLAY IMSA®
PUNCH INSERT DFSICM1Q®
PUNCH * QOVERLAY [IMSA*
PUNCH - * INSERT DFSIRSIO®
PUNCH * NAME DFSINUCO(R) IMS/360 ONLINE NUCLEUS'
PUNCH ® /%1
PUNCH *//STEP38 EXEC PGM=TEHLIST,REGION=100K*
PUNCH ' //SYSPRINT DD SYSOUT=A?
PUNCH *//RESLIB DD VOLUME=SER=IMSLIByDISP=(OLD,PASS),
CONT INUE*
PUNCH *// CSNAME=ICS.CLOD,UNIT=2314"
PUNCH *//SYSIN DD *
PUNCH * LISTVTOC DSNAME=ICS.CLOD,VOL=2314=IMSLIB’
PUNCH * LISTVTOC DUNP,DSNAME=ICS.CLCDyVOL=2314=IMSLIR"®
PUNCH * LISTPDS OSNAME=ICS.CLOD,VOL=2314=]MSLIB"
PUNCH v /%!

#ow%% SUCCESSFLL IMS/360 SYSTEM DEFINITION
*y GENERATICN WILL BE FOR ALL IMS/360 FUNCTIONS.

PAGE 57

2/12/70

PAGE 58

2/12/10

N

IMS/36C SYSTEM DEFINITION SPECIFICATICNS

PAGE 59

L(C ORJFCT CNNE ADDR1 ADDR2 STMT SNURCE STATEMENT F30SEP69S 2/12/70
2353423 WARNING *¥
2354 B L R R R e
2355 *, P P
2356 *y *
2357 *, 1GG01928 FUST BE MOVED TO SYS1.SVCLIB AND 1GC243
2358 *yMUST BE LINK ECITED WITH THE 0S/360 NUCLEUS FOR
2359 *y SUCCESSFUL IMS/360 SYSTEM EXECUTICN.
2360 *,y
2361 *y THE CN LINC(TP) FUNCTICNS OF THE IMS/360 SYSTEM
2362 *yREQUIRE 16C244 AND 16C245 BE LINK EDITED WITH THE
23¢3 *405/360 NUCLELS FCR SUCCESSFUL EXECUTION OF THESE
2364 *,FEATURES, THE LOAD MEMBER NAME IS DFSISVVO AND IT
2365 *yWILL BE PLACED IN ICS.CLOD BY STAGF I! OF
23¢6 * *4IMS/360 SYSTEM GENERAT ION.
23¢7 *,
2368 *y OATABASE BACKOUT AND DUMP FUNCTIONS OF 1MS/36¢
2369 *REQUIRE DFSIEBDPO BE MOVED TO ICS.PSBLIB AND
2370 *yRENAMED DFSIBDRO FCR SUCCESSFUL EXECUTION OF THESE
2371 *,FEATURES
2372 *,y
2373 *y STEP 37 OF STAGE 11 OF IMS/360 SYSTEM GENERATICN
2374 *yREQUIRES SYS1.TELCMLIB BE A CATALOGED DATA SET ON
2375 *yTHE GENERATING SYSTEM AND CONTAIN THE INOICATED LOAD
2376 *yMOCULES TO BE INCLUDED IN THE IMS/360 NUCLEUS.
2377 *,
2378 %y PRCCEDURE *IMS* MUST BE MOVED TC SYS1.PROCLIB
2379 *y FOR SUCCESSFUL EXECUTICN OF THIS PROCEDURE. STAGE I1I
2380 *,CF IMS/360 SYSTEM GENERATICN PLACES ALL PROCEDURES
2381 *y IN 1ICS.PROCLIB.
2382 *y
2383 *y PROCEDURES *IMSO' AND *IMS1' MUST BE UPDATED TO
2384 *, INCLUDE DD CARDS FOR THE DATABASES SPECIFIED DURING
2385 *yIMS/360 SYSTEM DEFINITION BEFORF THESE PROCEDURES
238¢ *9CAN BE SUCCESSFULLY EXECUTED.
2387 *y .
2388 *y DFSILNKO AND DFSIRCCQ SHOULD BE IN SYS1.LINKLIB
2389 *,FOR EFFICITENT IMS/360 SYSTEM CPERATION.
2390]
2391 *y SEE IMS/3€0 AND 05/360 SYSTEM OPERATION MANUALS
2392 *,FOR MODULES 10 BE PLACED IN LINK PACK AREA FOR
2393 *EFFICIENT SYSTEM OPERATION.
2394 *y
2395 *y APPROXIMATE SI2€ OF DFSIBLKO WILL BE 19500 BYTES.
2396 #*y IF CALCULATEL AND DEFAULT BUFFER AND POOL SIZES ARE
2397 *3USED; THE TCTAL SIZE WILL BE 52000 BYTES,
2398 *y
2399 *y STAGE II OF IMS/360 SYSTEM GENERATICN WILL PLACE
2400 *9ALL SYSTEM LCAC MODULES IN 1CS.CLCD.
2401 *y *
2402 HyRERABRE AR RN AR ARR 5k

INS/260 SYSTEM CEFINITION SPECIFICATIONS PAGE 60

LrC CBJECT CCDF ADORL ADDR2 STMT SOURCE STATEMENT F30SEPES 2/12/70
2403 H REERRRERERRANRRRED IR RADRRARRR
2404 END

186.3

186.4

/"

Batch Stand~Alone Example

This example illustrates the
definition. The input to Stage
provided in the output listing,
Specifications, followed by the
the end.

output from Stage 1 of IMS/360 system
1 (that is, the control cards) is
as is a summary of the Data Set

punch statements and warning comments at

PAGE 1
LOC N3JECT CODE ADDRI ADDRZ STMT SOURCE STATEMENT FN1JANGS 10/16/68
1 IMSCTRL SYSTEME{MVT ,BATCH] JOSAMSVC= 245 ,0CENDA=NA
3 %, BATCH IMS/367 FUNCTIONS ARE SELECTED
4 *, MVT PROGRAMMING SYSTEM WILL BE USED
5 ®, DSAM CHANNEL END APPENDAGE - 1GGOL9WA
6 #, SUPERVISOR STATE SVC NUMBER - 245
8 RESLIB UNIT=2311,VOLNO=ILIBOL
9 MACLIB UNIT=2311,VOLNO=IL1802
10 PGMLIB
11 PSBLIS
12 DBOL1B
13 PROCL IS
14 IMSGEN UT1SDS=GENSET,LEPRT=(LISToXREF) ,ASHPRT=ON
145/360 SYSTEM OLF INITINN SPECIFICATIONS PAGE 2
LEC NAJECT COOE ADURL ADDR2 STMT SAURCE STATEMENT FOLJANGS 10716768
16 *,145/360 DATA SET SPECIFICATIONS (BATCH)
18 *, RESLIB SPECIFICATION:
19 * DSNAME- [MS,RESLIB VOLUME-ILIBYY UNIT-2311
21 %, MACLIB SPECIFICATION:
22 . DSNAME=-1NS . MACLIB VOLUME-ILIBY2
23 . UNIT-2311 COPY-UTILITY
25 *, PROCLIB SPECIFICATION:
26 * DSNAME-[NS.PROCLIB VOLUME-N/A UNIT-N/A
28 *, PGMLIB SPECIFICATION:
29 - DSNAME=IMS,PGMLIB VOLUME-N/A UNIT=N/A
31 «, PSBLIB SPECIFICATION:
32 . DSNARE-[MS.PSBLIB VOLUME=N/A UNIT-N/A
34 +, DODLIB SPECIFICATION:
15 . DSNAME-[MS,DBDLIB VOLUME-N/A UNIT-N/A

187

LCC OHJECT CODE

Lec

188

1MS/360 SYSTEM DEF INITION SPECIFICATIONS

ADDR1 ADDR2 STMT
38+
+

39+
40¢
41+
424
43¢+

+
LT1d
45¢
46+
47+
48+
49+
5%+
51+
52+
53¢
54¢
55+
56+
ST+
58+
59+
60+
6l+
624
63+
(134
65+
66¢
67+
68+
69+
104+
Tie
T2+
13+

+
Ta+
T5¢
76+
17+
T8+

.
79+
80+
81+

+
82+
83+
84+
85+
B6¢
87+

PAGE 3

SOURCE STATEMENT FOLJANGE 10716768

1MS/36N SYSTEM DEFINITION SPFCIFICATIONS

0BJFCT CODE

ADNRY1 ADNR2 STMT

88+
89+
90+
91+
92+
93¢
e
95¢
96+
9T
98+
99+
100+
101¢
102+
103+
104+
105+
+
176+
107+
108+
109+
110+
111+
112+
113¢
1144
115¢
116¢
117+
118+
119+
120+
121¢
122¢
123+
1244
125¢
126+
127+
128+
129+
130+
131+
132¢
133+
134¢
135¢
136+
137+
138+
139+«
140¢
1414

SNURCE

PUNCH,

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

PUNCH
PUNCH
PUNCH

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

;7IIHSGEN JOB 1,¢9 IMSGEN STAGE I199,MSGCLASS=A,MSGLEVEL=X
.

'//STEP) EXEC PGM=[EHMOVE,REGION=100K"*

*//SYSPRINT DD SYSOUT=A!

//SYSUTL DD DSNAME=GENSET,DISP={OLD,PASS)

*//0D02 DD DSNAME=IMS.LDAD,DISP=(0OLD,PASS)®

*//003 oo VOLUME=SER=ILIBOLsDISP=(0LDy PASS), X
CONTINUE®

A DSNAME=[MS.RESLIB,UNIT=2311*

*//SYSIN DD #¢

* COPY PDS=IMS.LOADsTO=2311=IL{BO1,RENAME=IMS,RESLIB"

SELECT MEMBER=DFSIRADN REGION ANALYZER MODULE®

SELECT MEMBER=DFSIRCCO REGION CONTROLLER MODULE*

SELECT MEMBER=DFSIPCCO PROG. CONTROLLER MODULE®

SELECY MEMBER=DFSIPROO PROG. REQUEST HANDLER®

SELECT MEMBER=DFSILNKD IMS/360 LINKAGE EDIVOR®

SELECT MEMBER=DFSILION OL/1 LANGUAGE INTERFACE®

SELECT MEMBER=DFSIDLRO DL/T RETRIEVE MODULE®

SELECT MEMBER=DFSIODLIO DL/1 INSERT MODULE®

SELECT MEMBER=DFSIDLDO OL/! DELEVE/REPLACE MODULE®

SELECT MEMBER=DFSIDLEO DL/1 DATA BASE LOAD MODULE'

SELECT MEMBER=DFSIDLNO DL/1 BATCH INITIALIZATION®

SELECT MEMBER=DFSIOLHO OL/1 HSAM MODULE!

SELECY MEMBER=DFSIDLT) OL/1 PROGRAM TEST MODULE®

SELECT MEMBER=DFSISNAP DL/1 BLOCK SNAP ROUTINE®

SELECT MEMBER=DFSIISMO DL/1 ISAM SIMULATOR®

SELECY MEMBER=DFSIWKND OL/J WRITE KEY NEW MODULE®

SELECT MEMBER=DFSIDLXO DL/1 BLOCK LDADER MODULE®

SELECT MEMBER=DFSINS20 OSAM REAO/WRITE MODULE®

SELECT MEMBER=DFSIOS30 OSAM CHECK ROUTINE®

SELECT MEMBER=DFSIOS60 OSAM OPEN/CLOSE(OVFW)*

SELECT MEMBER=DFS[0S10 OSAM OPEN ROUTINE¢

SELECT MEMBER=DFSISMMO STORAGE MANAGEMENT MODULE®

SELECT MEMBER=DFSIOLOO DL/1 OPEN MODULE*

SELECT MEMBER=DFSIDLCOD DL/1 CLOSE MODULE®

SELECY MEMBER=DFSIDBAO DL/1 BATCH ANALYZER®,

SELECT MEMBER=DFSIBKBO DL/1 BATCH BLOCK MODULE®

SELECT MEMBER=((DFSIOCEOQ, IGGO19WA)) DSAM CH, END APX

PENDAGE*

¥

V//STEP2 EXEC PGM=[EWL ¢PARM=" *RENT yNCALLISToXREF¢® ¢

*//SYSPRINT DD SYSOQUT=A®

*//SYSLIN DD DDNAME=SYSIN®

*/7SYSLMOOD 0D VOLUME=SER=ILIBO1,DISP={DLOyPASS), X
CONTINUE®
7 DSNAME=IMS.RESLIByUNIT=2311"

//SYSNBJ DD DSNAME=[MS,LOAD.DISP=(OLDyPASS)

*//8YSUT1 DO UNIT=(SYSDA¢SEPa(SYSLINs SYSLMOD}), DISP=(X
+DELETED, X

WA SPACE={1700,(100,50)4RLSE)*

*//SYSIN DD *¢

* CHANGE IGC255(1GC245)°

* INCLUDE SYSOBJ(DFSIOSVH) OSAM SVC ROUTINE®

¢ NAME [GC245(R)*

* INCLUDE SYSORJ{DFSISVN3)*

PAGE 4
STATEMENT FOLJANGS 10/16/68
PUNCH * INCLUDE SYSDBJ(DFSIRCCO)®
PUNCH ' ENTRY DFSIRCOQ!
PUNCH * NAME DFSIRCOO(R) REGION CONTROLLER MODULE®
PUNCH * [NCLUDE SYSOBJ(DFSISVNI)®
PUNCH ' INCLUDE SYSOBJ{DFSIPR0D)?
PUNCH ¢ INCLUDE SYSOBJIDFSIPCCO)®
PUNCH * ENTRY DFSLPCOO
PUNCH ' NAME DFSIPCOO(R} PROG. CONTROLLER MODULE®
PUNCH * [NCLUDE SYSOBJIDFSISVNO)®
PUNCH * INCLUDE SYSOBJ(DFSIDLKO)®
PUNCH * ENTRY DFSIDLLO®
PUNCH ' NAME DFSIDLLO(R} OL/1 BLOCK LOADER MODULE!
PUNCH 178+ .
PUNCH *//STEP3 EXEC PGM= [EHMOVE,REGION=100K®
PUNCH %//SYSPRINT DD SYSOUT=A®
PUNCH *//SYSUT1 DD DSNAME=GENSET,DISP=(OLD,PASS)®
PUNCH *7/DD2 DD DSNAME=LMS.GENLIB,DISP={0LD,PASS}®
PUNCH *//D03 DD VOLUME=SER=1LIB02,D1SP=0LD, x
CONTINUE*
PUNCH *// DSNAME=1NS (MACLIB,UNIT=2311"
PUNCH "//SYSIN DD **
PUNCH ' COPY PDS=IMS.GENLIB,TO=2311=1L1802,RENAME= NS NACLIB®
PUNCH ¢ SELECT MEMBER=DSD®
PUNCH ¢ SELECT MEMBER=DBDFP*
PUNCH ¢ SELECT MEMBER=DBOFP1*
PUNCH SELECT MEMBER=DBDGEN®
PUNCH * SELECT MEMBER=DMAN®
PUNCH ¢ SELECT MEMBER=SEGM?
PUNCH ¢ SELECT MEMBER=GLOBALS®
PUNCH ¢ SELECT MEMBER=1DCBOS?
PUNCH * SELECT MEMBER=CONVERT®
PUNCH ¢ SELECT MEMBER=FINISH?
PUNCH * SELECT MEMBER=FLD®
PUNCH ¢ SELECY MEMBER=FLDK®
PUNCH ¢ SELECT MEMBER=PCB®
PUNCH * SELECT MEMBER=PSBGEN'
PUNCH ¢ SELECT MEMBER=SENSEG®
PUNCH */w»¢
PUNCH *7/STEP4 EXEC PGM=TEBUPDTE,PARM=NEW,REGION=90K®
PUNCH *//SYSPRINT DD SYSOUT=A®
PUNCH *//SYSUT2 0D DSNAME=[NS.PROCLIB,DISP=0LO*
PUNCH *//SYSIN DD DATA®
PUNCH *4/ ADD NAME=DLITCBL®
PUNCH * INCLUDE SYSOBJ(ODFSILINO}?
PUNCH ¢ ENTRY DLITCBL'
PUNCH /7 ADD NAME=DLLITPLLY
PUNCH * ' INCLUDE SYSOBJ(OFSILEOD)®
PUNCH * ENTRY [HESAPR®
PUNCH ¢,/ ADD NAME=DLI"*
PUNCH %,/ NUMBER NEW120090010, INCR=20000710*
PUNCH %// PROC PSB=TEMPNAME®
PUNCH *//G EXEC PGM=DFSIRCNO,PARM=®93,65PSBY? \REGION=120K?
PUNCH *//IMS DD DSNAME=[MS.PSBLIB,DISP=SHR®
PUNCH *// DD DSNAME=[MS,DROLIByDISP=SHR®
PUNCH *//SYSUDUMP DD SYSOUT=A,SPACE={605,(500,500) yRLSE , s ROUNDX

s

LCr 'DAJECT CNOE

Ltre

IMS/360 SYSTEM DEFINITION SPECIFICATIONS

.
142¢
143
144+
145¢
146+

3
147+
+
148+
+
149+
.
159+
+
151+
.
152¢
+
153+
.
154+
+

155+

+
156¢
157+
158+
159+
160+
161+
162+
le3¢
lo4e

*
165+
166+

*
167+
168+
169+
1704+

+*
171+
172+

+
173+
174+

*
175+
176+

+
177+
178+

+

TMS/306" SYSTEM DEFINITION SPECIFICATIONS

OHJECT CONE ADDRY ADDR2 STYMT SOURCE
179+
1ane
141
182+
133+
1d4e
1R5+
186+

+
167+
188+
149+

.
193¢
191+
192¢
193+

+
194+
+*
195+
+
196+
+

197+
+
198+
*
159+
+
20504
.
201+
+
202+
+
203+
294+
205+
206+
207+
278+
209+
210+
211+
+

212+
213+
*

214+

.
215+
216+
217+
218+

ANDR1 ADDR2 STMT SOURCE STATEMENT

PUNCH
PUNCH
PUNCH
PUNCH
PUNCH

PUNCH

PUNCH

PAGE 5
FOlJAN6S 10/16/68
be xe
v/ DCB=(RECFM=FBAJLRECL=121,BLKSIZE=605)"
Yol ADD NAME=145C0A0L?
Yol NUMBER NEW1=17019010,INCR=J0000710°
v PROC MBR=,PAGES=s0*
‘r7/c EXEC PGM=1EQCBLIN,PARM=Y¢SIZE=110070,L INECNT=S5X

N**,REGION=126K*

*/7/SYSLIN 0D OSNAME=LLELLINGISP=(MODyPASS) JUNIT=SYSDAX
+DCR=(LRECL=8C, X

v/ PECFMaF3,BLKSIZE=470) ¢ SPACE=(CYL (4 1) ¢RX
LSE)?

¢//SYSPRINT DD SYSOUT=A,DCB*(RECFMaFBAJLRECL®121¢BLKSIZEX

PUNCH
=615), . x*

PUNCH *// SPACE=(605, (CEPAGES.DsLEPAGES) 4RLSE s sROUX
NDD®

PUNCH 1//SYSUTL DD UNIT=SYSDA,DISP=(NEW,DELETE), SPACE=(CYL, (X
19¢ 114 RLSEDY

PUNCH *//SYSUT2 DD UNIT=SYSDA,DISPx(NEWDELETED s SPACE={CYL (X
12911 ,RLSE)!

PUNCH *//SYSUT3 DD UNIT=SYSDA,DISP=(NEWsDELETE)sSPACE=(CYL,(X
10+ 1) 4RLSED®

PUNCH *//SYSUT4 DD UNIT=SYSDA,DISP=(NEW,DELETE) ¢ SPACE=(CYL, (X
170 1) RLSED®

PUNCH *//L EXEC PGM=DFSILNKN, PARM= ¢ Y XREF +LIST,LET ¢ JREGIOX
N=100K, X

PUNCH /7 COND=(4yLT4C)*

PUNCH *//SYSLIB DD DSNAME=SYS1.COBLIB¢DISP=SHR®

PUNCH /7 DD DSNAME=SYS1.PLIL1BsDISP=SHR®

PUNCH '//SYSDOBJ DD DSNAME=[MS.RESLIBsDISP=SHR®

PUNCH *//SYSLIN DD DSNAME=(CLELINyOISP={OLDJDELETED®

PUNCH *// DD DSNAME=IMS.PROCLIB(CLITCBL) (DISP=SHR®

PUNCH /7 DD DDNAME=SYSIN®

PUNCH *//SYSLMOD DD DSNAMEs<IMS.PGMLIB(EEMBR) 4DISP=SHR?

PUNCH *//SYSPRINT DD SYSOUT=4,DCB=(RECFM=FBA,LRECL=121,BLKSIZEX
=605), x¢

PUNCH /7 SPACE= (605 ,EEPAGES.04RLSEy yROUND)

PUNCH "//SYSUTL DD UNIT=SYSDA,DISP={NEW,DELETE),SPACE=(CYL, (X
1001)RLSE)®

PUNCH *./ ADD NAME=IMSPLI®

PUNCH *./ NUMBER NEWL=10,INCR=10*

PUNCH */7 PROC MBR=,PAGES=50*

PUNCH '//C EXEC PGM=lEMAA,PARM=" 9 XREF yATR oL OADs NODECK ¢ NX
OMACRO,OPT=10%, X!

PUNCH *// REGION=114K®

PUNCH *//SYSUTL DD UNIT=SYSDAySPACE= {1024+ (60,60) yRLSE s sROUX
ND) o xe

PUNCH *// DCB=(BLKSIZE=2024) yDISP={NEW,PASS)®

PUNCH *//SYSPRINT DD SYSOUT=A,DCB=(LRECL=121,BLKSIZE=605,RECFX
M=FBAD ¢ x?

PUNCH /7 SPACE={605, (CEPAGES.0¢GEPAGES) yRLSE)®

PUNCH $//SYSLIN DD UNIT=SYSDA,SPACE=(80,(250,80)yRLSE) 0CB=X
BLKSIZE=80, xe

PUNCH */7 DISP=(NEWsPASS)®

PUNCH *//L EXEC PGM=DFSILNKO,PARM=® ¢ XREF(LIST,LET® ¢,CONDX

4
w{4yLT4C)y Xe

PAGE 6

STATEMENT FOLJANGS 10/16/68

PUNCH 47/ REGION=109K*

PUNCH *//SYSLIB DD DSNAME=SYS1.PLILIB,DISP=SHR®

PUNCH ¢/7 00 DSNAME=SYS1.COBLIB,DISP=SHR®

PUNCH *//SYSLIN DD CSNAME=® ,C.SYSLIN, DISP={OLD,DELETE)®

PUNCH 1// [OSNAME=({HS,PROCLIBIDLITPLI),DISP=SHR?

PUNCH /7 0D DDNAME=SYSIN®

PUNCH '//SYSLMOD DD OSNAME=IMS.PGMLIBIEEMBR) 4DISP=SHR®

PUNCr *//SYSPRINT DD SYSOUT=A,0CB=(LRECL=121,BLKSIZE=605,RECFX
MEFBA) . xe

PUNCH *// SPACE=1605+ (EEPAGES .29 EEPAGES) 4RLSE)®

PUNCH *//SYSCBJ DD DSNAME=IMS RESLIB,DISP=SHR*

PUNCH *//SYSUT1 DD UNIT=SYSDA,DISP=(NEWsDELETE) SPACE=(CYL,X
(5¢1)4RLSED®

PUNCH Y4/ ADD NAME=IMSCOBGO*

PUNCH *./ NUMBER NEW1=00000010,INCR=00000010*

PUNCH 177 PROC MBR=,PAGES=60" >

PUNCH %//C EXEC PGM=[EJCHLON,PARM=I#SIZEn110000sL INECNT=5X
0 ¢, REGION=126K*

PUNCH *//SYSLIN DD DSNAME=SEELLIN,DISP={MOD,PASS) yUNIT=SYSDAX
+DCB=(LRECL=80, ’

PUNCH /7 RECFMsFB,BLKSIZE=400) o SPACE=ICYL (49 1) 4RX
LSE) !

PUNCH *//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBAJLRECL*121+BLKSIZEX
=605}, x*

PUNCH *// SPACE=(605y (GEPAGES. 0y EEPAGES) yRLSE yROUX
ND)®

PUNCH *//SYSUT1 DD UNLT=SYSDA.DISP=(NEW,DELETE)+SPACE=(CYLsIX
10411 4RLSE)*

PUNCH '//SYSUT2 DD UNIT=SYSDA,DISP=(NEMsDELETE)+ SPACE=ICYL,(X
1091)4RLSE)*

PUNCH *//SYSUT3 DD UNITaSYSDA,DISP={NEMsDELETE),SPACE={CYLs(X
1041),RLSED®

PUNCH "//SYSUT4 DD UNIT=SYSDA,DISP=(NEW,DELETE) ¢ SPACE=(CYLs(X
1941)4RLSED}*

PUNCH /7L EXEC PGM=OFSILNKOsPARM=® IXREF,LISToLET*,REGIOX
N=109K s x*

PUNCH 7/ COND={4+LT,C)®

PUNCH $//SYSL1B DD OSNAME=SYS1.COBLIB,DISP=SHR®

PUNCH Y// ND DSNAME=SYS1.PLILIB,DISP=SHR!

PUNCH *//SYSNBJ DD OSNAME=[MS,RESLIB,DISP=SHR®

PUNCH ¢//SYSLIN DD DSNAME=LEGEL IN,OISP=(OLD,DELETE)®

PUNCH *// DD DSNAME=IMS,PROCLIBIDLITCBL) 4DISP=SHR®

PUNCH 7/ N0 DONAME=SYSIN®

PUNCH '//SYSLMOD DD NSNAME=IMS.PGMLIB(LLMBK) ,»DISP=SHR®

PUNCH ¢//SYSPRINT DD SYSOUT=A,DCB=(RECFMaFBA,LRECL=121,BLKSIZEX
26951, xe

PUNCH *// SPACE= (56054 LEPAGES.ORLSE, +ROUND}®

PUNCH *//SYSUT1 DD UNIT=SYSDA,DISP={NEWsDELETE) +SPACE~ICYL, (X
10910 pRLSE)®

PUNCH *//6 EXEC PGMsDFSIRCODT,PARM=*93,LEMBR® * yREGION=150X
KyCOND=(O4LT), X

PUNCH %// TIME=2" .

PUNCH *//1MS 0D DSNAME=IMS,PSBLIB,DISP=SHR®

PUNCH 7/ oD DSNAME=1MS.0BDLIByDISP=SHR®

PUNCH ¢//SYSDUT DO SYSOUT=A 4SPACE=(CYLy (1+1)) ,DCB=(LRECL=13X

189

1M$/7360 SYSTEM OEFINITION SPECIFICATIGNS PAGE 7
LCC NHJFCT CODE ADDRY ADOR2 STMT SOURCE STATEMENT FOLJANGR 10/16/68

. I RECFM=FA}¢

219+ PUNCH *//SYSUDUMP DD SYSOUT=A,0CB=(LRECL=121,RECFM=FBA,BLKSIZX
. E=3025), x!

220+ PUNCH %7/ SPACE=(3025 (20041007 ,RLSE,sROUND)®

221+ PUNCH *./ ADD NAME=IMSPLIGO*

222+ PUNCH ./ NUMBER NEW1x19,INCR=10¢

223+ PUNCH /7 PROC MBR=,PAGES=50¢

224+ PUNCH *//C EXEC PGM=IEMAA,PARMs* * XREF yATR yLOAD, NODECK 4 NX
. OMACRO,0PT=1%', X*

225+ PUNCH %// REGICN=114K®

226+ PUNCH *//SYSUT1 D UNIT=SYSDALSPACE=(10264(60562) yRLSE, yROUX
. ND) x¢

221+ PUNCH /7 DCB=(BLKSIZE=1024) +DISP=(NEW,PASS)*®

226+ PUNCH %//SYSPRINT DD SYSOUT=A,DCB={LRECL=121,BLKSI2E=605,RECFX
. M=FBA), x*

229+ PUNCH *// SPACE= {605, (LEPAGES.de CEPAGES) 4RLSE) ®

230 PUNCH *//SYSLIN 0D UNIT=SYSOA,SPACE*(80,(250,89),RLSF)DCBaX
+ BLKSIZE=80, x*

231+ PUNCH */7 DISP=(NEW,PASS)®

232+ PUNCH *//L EXEC PGMsDFSILNKD,PARM=? ¢ XREF,LIST,LET*¢,CONDX
+ ={4yLTeC)y .

233+ PUNCH *// REGION=100K*®

234+ PUNCH *//SYSLIB ND DSNAME=SYS1.PL1LIB,DISP=SHR!

235+ PUNCH ¢/ oD DSNAME=SYS1.COBLIBDISP=SHR®

2364 PUNCH *//SYSLIN DD DSNAME=#,C.SYSLINyDISP=(OLD,OELETED®

237+ PUNCH *// no DSNAMESTMS,PROCLIB(DLITPLINoDISPsSHRY

238+ PUNCH /7 oo DDNAME=SYSIN'

239+ PUNCH *//SYSLMOD DD DSNAME=IMS.PGMLIBUEGEMBR) +DISP=SHR®

2404 PUNCH *//SYSPRINT DO SYSOUT=A,DCB=(LRECL=1214BLKSIZE=605,RECEX
. M=FBA) x*

2414 PUNCH *// SPACE= 1605, { ELPAGES.Dy LEPAGES) JRLSE) *

242+ PUNCH *//SYSDRJ DD OSNAME=TNS RESLIB,DISP=SHR

243¢ PUNCH */77SYSUTL 0D UNIT=SYSDA,DISP={NEW.DELETE) ¢ SPACE=(CYL X
+ (Se11eRLSEN® .

244¢ PUNCH *//6 EXEC PGM=DFSIRCOD,PARM=+3,LEMBRY ' yCOND=(4,LTX
. 1 oREGION=150K, X

245+ PUNCH *// TIME=S?

246+ PUNCH *//1NMS oD DSNAME=IMS.PSBLIB,DISP=SHR*

247+ PUNCH /7 00 DSNAME=IMS.DBOLIB, DI SP=SHR Y

248+ PUNCH *//SYSPRINT DD SYSOUT=A,DCB={LRECL*121¢BLKSIZE=6D5,RECFX
+ M2FBA) y x®

269+ PUNCH *// SPACE= {605, (570,500)9yRLSEy yROUND) ¢

250+ PUNCH *//SYSUDUMP DD SYSOUT=A,DCB=(LRECL=121¢BLKSIZE=605,RECFX
. MxfBA) x*

251+ PUNCH *// SPACE= (605, (50045001 sRLSE, yROUND)®

252¢ PUNCH *./ ADD NAME=PSBGEN®

253+ PUNCH %/ NUMEER. NEW1=10,iNCR=10¢

254¢ PUNCH *// PROC MBR=TEMPNAME

255+ PUNCH 1//C EXEC PGW=[EUASM,PARM=® *LDAD(NODECK? *yREGIONa9X
+ 2K*

2564 PUNCH *//5vSLIB DD VOLUME =SER=1LEBO2,DISP=SHR, x
. CONTINUE?

257+ PUNCH v// OSNAME=[MS.MACLIBsUNIT=2311?

258+ PUNCH *// 00 OSNAME=SYS] o MACLIB,015P=SHR®

259+ PUNCH *//5YSGO DD UNIT=SYSDA+DISP=(oPASS)yDCB=(BLKSTZE=400X

14S/360 SYSTEM DEFINITION SPECIFICATIONS
LCC OCBJECT CNOE ADNDRL ADDRZ STMT SOURCE
+
260¢
*
261¢
*

262¢
263+

.
264¢
*
265¢
+

266+
267+

.
268+
269+
270+
271+

+
272«
273+
274

.
275+
274+
277+
278+
279+

.
280+

+

281+
282¢
283+

+
2844+

+
285+
.
286+
287+

+
288+
+
2R9+
+

290+
291+

+
292+
293+
294+
295¢

+

190

PAGE 8
STATEMENT FOL1JANGS 10/16768
B 'g
PUNCH 'é/ RECFMaFByLRECL=80) ¢SPACE=[80,(1004100)4RX
LSE)*
PUNCH *//SYSPRINT DD SYSOUT=A,DCB=(LRECL=1219RECFM=FBA,BLKSIZX
E=605), x*
PUNCH *7/ SPACE=(121,1500,500) ¢RLSEs +ROUND}*®
PUNCH 'I/SV?UYI oD UNIT=5YSOA,0ISP={,DELETE) 4 SPACE= (1700, (12X
00,50})¢

PUNCH
PUNCH

PUNCH
PUNCH

PUNCH
PUNCH
PUNCH
PUNCH

*//SYSUT2 DD UNIT=SYSDA,DISP=(oDELETED, SPACE=(1700,11X

00,5019 .

v//SYSUT3 0D UNET=(SYSDA,SEP=(SYSLIB.SYSUT1,SYSUT2)) X
xe

v SPACE=(1700,(100,50))"

n EXEC PGMsDFSILNKO,PARM="*XREF,LIST®*,COND={0yX
LT,0)y X

v REGION=10JK*

//SYSLIN DD DSNAME=#,C.SYSGO,DISP={OLD,DELETE)

LA 0] DONAME=SYSIN®

//SYSPRINT DD SYSOUT=A,0CB(LRECL=121yRECFM=FBA,BLKSIZX
26051, X*

PUNCH *7/ . SPACE=(121,(1994100),RLSE}*
PUNCH *//SYSLMOD DD DSNAME=IMS,PS3LIB{EEMBR) yDISP=SHRY
PUNCH *//SYSUT1 0D UNIT=(SYSDAy SEP=(SYSLMOD¢SYSLIN))4DISP=(X
+DELETE), x*
PUNCH ¢// SPACE={1024, (1N0,10) yRLSE)*
PUNCH *./ ADD NAME=DBDGEN"
PUNCH ¢,/ NUMBER NEW1=10,INCR=10*
PUNCH *// PROC MBR=TEMPNAME!
PUNCH *//C EXEC PGM=IEUASM,PARM="*LOADsNDOECK® *yREGTION=9X
. '
PUNCH *//5YSL18 DD VOLUME=SER=ILEBO2yDISP=SHR,, X
CONT INUE*
PUNCH *// OSNAME=1MS.MACLEIByUNIT=23]11"
PUNCH *// 0D DSNAMEsSYS1.MACL [B¢DISP=SHR?
PUNCH *//5YSGO DD UNIT=SYSDA,DISP= (4 PASS) o OCB={BLKSIZE=4NNX
.
’
PUNCH // RECFM2FByLRECL=80) ySPACE={80,(100,100)4RX
LSE)®
PUNCH */7/SYSPRINT N0 . SYSOUT=A,DCB={LRECL=121,RECFM=FBA,BLKSIZX
E*615), x*
PUNCH "7/ . SPACE=(121,(500,500)¢RLSEyyROUND)*
PUNCH '//SYSUT1 DD UNIT=SYSDAsDISP=(yDELETE) s SPACE= (1797, (1X
02,501
PUNCH *//SYSUT2 DD UNIT=SYSDAD1SP={,DELETE), SPACE= (1700, (1X
004570
PUNCH *7/SYSUT3 DD UNIT=(SYSDA+SEP={SYSLIBsSYSUTL¢SYSUT2))X
X
PUNCH -V // SPACE={1790,(170,50))¢
PUNCH *//L EXEC PGM3DFSILNKD ¢PARM=? S XREFyLIST?*yCOND=(0,yX
LT,Chy X¢
PUNCH ¢ REGION=100K*
PUNCH *//SYSLIN OD NSNAME=*,CoSYSGOsOISP=(OLD+DELETE) Y
PUNCH *// DDNAME=SYSIN®
PUNCH *//SYSPRINT DD SYSOUT=A,0CB=(LRECL=121,RECFM=FBA,BLKSIZX

Ea6N5), x*

.

4

Lce

Lre

1MS/360 SYSTEM DEFINITION SPECIFICATIONS

DBJECT CoDE

URJFCT CONE

PAGE 9

ADDR1 ADDR2 STMT SMNURCE STATEMENT FN1JANGB 10/16/68
296+ PUNCH *// SPACE=2{121,(1N0,109)4RLSE)*
297+ PUNCH *//SYSLMUD DD DSNAME=IMS.DBDLIB(GLMBR) yDISP=SHR®
298+ PUNCH *//SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLMOD,SYSLIN)) 4DISP={X
+ +DELETED, X
299+ PUNCH *// SPACE={1024+1100,11) 4RLSE)®
300+ PUNCH ¢,/ ENDUP*
301+ PUNCH */%¢
302+ PUNCH *//STEP5 EXEC PGM=IEUASM,PARM='*LOADINCOECK®*yREGIUN=9X
+ v |
3N3e PUNCH *//SYSLIB ND DSNAME=IMS.GENLIB+DISP={OLD(PASS)®
3044 PUNCH *7// no DSNAME=SYS1.MACLIB,DISP=SHR?
N5+ PUNCH *//SYSGD DD UNIT=SYSDA,DISP={4PASS) ¢DCB=(LRECL=89,BLX
+ KSIZE=400, X
3n6e PUNCH *// RECFMzFB) ¢ SPACE=(TRK,(10410) +RLSE)*
INT+ PUNCH *//SYSPRINT DD SYSOUT=A,0CB=(LRECL=121,BLKSIZE=6N5,RECFX
. MaFBA}, x4
308¢ PUNCH *//- SPACE=(605,1170,50)sRLSE »+ROUND)*
319+ PUNCH *//SYSUT1 DD UNIT=SYSDA,DISP=(4DELETE)s SPACE=(1790,(1X
+ €Dy50) 0
3104 PUNCH *7/SYSUT2 DD UNIT=SYSDA,DISP=(4DELETE)s SPACE=(1777, {1X
. NN,y50N)Y
311+ PUNCH *//SYSUT3 DD UNIT=(SYSDA,SEP=(SYSLIBySYSUTL1.SYSUT21)X
+ DISP=(4DELFTE), X*
312+ PUNCH *// SPACE={170n, (1n0,50))°*
313+ PUNCH *//SYSIN DD s
3144 PUNCH °*DFSISCO CSECT!
315+ PUNCH ¢ PRINT ON*
316+ PUNCH * IMSBATCH CENDA=WASPVSVC=245"
317+ PUNCH * 1sCD SECTYPE=CSECT®
318+ PUNCH ¢ END?
319+ PUNCH */%¢
320+ PUNCH '//STEP6 EXEC PGM=IEWLyPARM=*'RENT ¢NCALyLIST o XREF**,REX
+ GION=110K"
321+ PUNCH '//SYSPRINT DD SYSOUT=A,DCB=(LRECL=1214ALKSIZE=6054RECFX
. M=2FBA), xe
322+ PUNCH *// SPACE=(6C5,(10,10) yRLSEy +ROUND)*
323+ PUNCH *//SYSLIN DD DSNAME=%,STEP5,5YSGO,D1SP=(NLD,DELETE)*
324+ PUNCH *7/ oo DDNAME=SYSIN®
325+ PUNCH #//SYS08J DD VOLUME=SER=1L 1801, 01SP={0LDsPASS), X
+ CONTINUE®
3726+ PUNCH '// OSNAME=IMS RESLIB,UNIT=2311¢
327+ PUNCH '//SYSLMOD DD VOLUME=SER=1ILIB01,DISP={OLDyPASS), X
+ CONTINUE®
328+ PUNCH *// DSNAME=IMS,RESLIBsUNIT=2311"
329+ PUNCH '//SYSUTl DD UNIT=(SYSDAsSEP=(SYSLINySYSLMOD))+ DISP={X
+ yDELETED s xe
3304+ PUNCH /7 . SPACE={1700,(100,50))*
331+ PUNCH *//SYSIN DD *e
3372+ PUNCH * INCLUDE SYSOBJ(DFSIOS1D) 0SAM OPEN ROUTINE®
333+ PUNCH * INCLUOE SYSOBJ(DFSISMMO} STORAGE MANAGEMENT MOOULE®
3344 PUNCH ' INCLUDE SYSOBJ{DFSIDLOY) DL/1 OPEN MODULE®
335+ PUNCH ' INCLUDE SYSNBJ{OFSIDLCO) DL/1 CLOSE MODULE®
336+ PUNCH * INCLUDE SYSOBJ(DFSIDBAD} OL/1 BATCH ANALYZER®
337+ PUNCH * INCLUDE SYSOBJ(DFSIBKBO) DL/1 BATCH BLOCK MODULE®
338+ PUNCH ¥ ENTRY DFSSTART®
1MS/3A0 SYSTEM DEFINITIIN SPECIFICATIONS PAGE 10
ATORL ANDR? STMT SNURCE STATEMEMT FOLJANGR 10/16/68
339+ PUNCH * NAME DFSIDLBMR) OL/1 BATCH NUCLEUS!
3ane - PUNCH /%
342 ®yes SUCCESSFUL 1457360 SYSTEM DEFINITION
343 * NEFINITION IS FIR BATCH [IMS/367 FUNCTIONS,.

191

[MS/7260 SYSTEM DEFINITION SPFCLIFICATINNS

LTC NUYFCT Crae

a4dnkl ADNY?

STAY

34543%% JARNING *#
346

367
LY
349
367
351
382
353
354
355

357
354
359
160
16l
362
3¢3
264
3os
EL.1Y
167
168
349

N STATEMENTS FLAGGED IN THIS ASSEMHLY

466 PRINTED LINES

192

SOURCE STATEMENT FOLJANGS

D T T Y
L T T T e T L P PO PR L
*, *
*, 1GGN19mA MUST #E MUVED TO SYS1.SVCLIB AND [GC245
#yMLST BE LINK EDITED wiTH THE 0S/369 NUCLEUS FOR
*,SUCCESSFUL [MS/360 SYSTEM EXECUTION,

'

* NFSILNKN AND OFSIRCAD SHOULD BE IN SYSLl.LINKLIB
*,F02 EFFICIENT IMS$/367 SYSTEM UPERATION,

*

*, SFE IMS/36N AND 115/367 SYSTEM OPERATION MANUALS
*#,FJR MODULES T BE PLACED IN LINK PACK AREA FOR
*,EFFICTENT SYSTEM OPSRATION,

*y

* USER SHOULD ('ATAIN A PDS OIRECTORY LISTING OF
*yTHE LIBRARIES CREATED BY STAGF Il OF IM5/360 SYSTEM
*yGENFRATICN,

*

* STAGE Il OF [YS/367 SYSTEM GENERATION WILL PLACE
*,ALL SYSTEM LOADP wODJLES IN IMS.RESLIB.

*, *
D T T T T P LT T Y AT
T T T T TP T TR T Y

PAGE 11

10/16/68

CHAPTER 5. IMS/360 SECURITY MAINTENANCE PROGRAM

SECURITY MAINTENANCE

Although IMS/360 system definition creates the majority of resident
control blocks for the IMS/360 control program, it does not supply
security capabilities. These capabilities are supplied in IMS/360
through a security maintenance program which allows the IMS/360 user the
flexibility of changing security information without redefining his
entire system. Security is provided by terminal and by password.

The reader should be familiar with IMS/360 system definition to
obtain the best use of the following information.

The function of the security maintenance program (SMP) is to create
or alter password or terminal protection of an online IMS/360 system.
The generated IMS/360 system has only a minimum subset of terminal
security to protect DISPLAY, NRESTART, CHECKPOINT, ERESTART, START,
CHANGE, STOP, PURGE, DBRECOVERY, DBLOG, DBNOLOG, DBDUMP, ASSIGN, DELETE,
and PSTOP commands. The security maintenance program creates password
and terminal security for transactions and additional commands entered
from terminals; it also creates password security on data bases and
programs. The control of the security maintenance program is such that
the user may view his system in terms of resources to which passwords
may have access, or he may view the system as a security profile system,
that is, by defining a password which has access to a set of resources.
The detailed explanation covers the use of the various control cards to
describe either a "profile-oriented" system or a "resource-oriented"
system of security maintenance. There is no restriction on the use of
both types of description within the same security maintenance program
execution.

Password Maintenance

If password maintenance control cards are presented in the input
stream for the SMP, the password maintenance function is performed.
Using the SMP password control cards, the following functions are
available: :

e Add passwords to or delete passwords from the IMS/360 communication
password table (CPT).

e Change the password security requirements for transaction .codes,
terminal command verbs, program status changes, data base status
changes, and logical or physical terminal status changes.,

IMS/360 password table and password matrix changes become effective
the next time IMS/360 is restarted. If the next restart is a "cold
start", the master terminal operator may specify that the system-defined
status be used or that the new table and matrix be used. If the next
restart is a "warm start”", the master terminal operator may specify that
the current status of the password table and matrix is to be restored
using the system checkpoint records, or that the new password table and
matrix are to be used.

Terminal Security Maintenance

If terminal security maintenance control cards are presented in the
input stream for the SMP, maintenance functions are performed upon the
IMS/360 communications terminal matrix. Using the SMP terminal security
control cards, the following function is available:

193

e Add to or delete from terminal security requirements for command
verbs and application program transaction codes.

.Terminal security changes become effective the next time IMS/360 is
restarted. If the next restart is a cold start, the master terminal
operator may specify that the system-defined status be restored or that
the new terminal matrix is to be used. If the next start is a warm
start, the master terminal operator may specify that the current status
of terminal security be restored using system checkpoint records, or
that the new terminal security matrix is to be used.

The security maintenance program will not execute until an IMS/360
system definition has been performed. Input requirements for the SMP
include an IMS/360 system description block (SDB), which is created at
system definition time and which must reside in the same library with
the IMS/360 control program nucleus. If multiple IMS/360 systems exist,
the SMP maintains as many as nine sets of security control blocks in the
same library. If errors are encountered in processing SMP control
cards, no security block update functions are performed. Diagnostic
error messages are produced for the entire input stream. At user .
option, the SMP performs a no-update run, producing a printed analysis
of IMS/360 security requirements. In addition, each execution of the
SMP produces a printed analysis of the IMS/360 configuration being
maintained.

Control and Data Statements

The security maintenance program control and data statements
available are PASSWORD, TERMINAL, TRANSACT, COMMAND, DATABASE, PROGRAM,
and PTERM. In general, each of these cards may be used as required.

The specifications to be considered in designing a password security
system must be tailored to the particular environment in which IMS/360
is to run. The control cards above are used to describe the security
environment that the IMS/360 system is to use in processing messages and
commands.

Control statements are identified by) (characters (close and open
parentheses in combination) in positions 1 and 2, followed by a blank in
column 3. Data statements are identified by a blank in position 1. A
control statement remains in effect until another control statement or
end of input data is encountered. Each statement, control or data, has
only one allowable operand. Valid combinations of control and data
statements are shown in Figure 24..

194

7N

N

L 3 1
| |
| NAME OPERATION OPERAND |
| |
| | : | |
1) (| PASSWORD | password |
| | | |
| | TERMINAL | logical terminal name |
I ! | |
| | TRANSACT | transaction code |
I | | |
	COMMAND	command language verb
	DATABASE	name
I		
{	PROGRAM	name
		I
	PTERM	name
I	I	
	I .	
1)¢	TERMINAL { logical terminal name	
I		
	PASSWORD	password
I		
	TRANSACT	transaction code
	COMMAND	command language verb
I		
		,,
)¢	TRANSACT] transaction code	
I		I
i	PASSWORD	password
	! I	
	TERMINAL	logical terminal name
I	i I	
1)¢	COMMAND	command language verb
l I		
	PASSWORD	password
I I I I		
	TERMINAL	logical terminal name
	I	
1)¢	DATABASE	name
I or I		
)¢	PROGRAM	name
I or I		
) (PTERM	name
I		
i	PASSWORD	password
!		
L J
where:
password

A password must contain only alphameric characters and may be one

through eight characters in length. . The longest password
statement encountered in the input stream governs the maximum

length of the input password that will be accepted by the system.

195

Data statements are terminal transact command, data base,
program, and PTERM.

logical terminal name

A valid logical terminal name may be one through eight characters
in length. Terminal names that are not defined in the system
being maintained are invalid and will be rejected by the security
maintenance program.

transaction code

A valid transaction code may be one through eight characters in
length and must be defined in the IMS/360 online system being
maintained. If it is not, it is treated as invalid by the
security maintenance program. :

name

A valid data base name, program name, or physical terminal number
is available from Stage 2 output of IMS/360 system definition.

command language verb

valid command language verbs may be obtained from the Stage 2
output of IMS/360 system definition. The command verb, less
leading slash, may be abbreviated to the first three characters.

Notes: Only the first three characters of the operation code are
required to identify control or data statements. Physical
‘terminal numbers may be found in the terminal map printed in the
assembly of DFSISDBO in Stage 2 of IMS/360 system definition.

To define additional passwords, a PASSWORD control statement may
be used with no following data statements:

)(PASSWORD ABCD

) (PASSWORD EFGH
DATA CONTROL CARD TYPE
CARD
TYPE PASSWORD | TERMINAL | TRANSACT [COMMAND |DATABASE | PROGRAM| PTERM
PASSWORD | - NO YES YES YES YES YES YES
TERMINAL YES NO YES YES NO NO _NO
TRANSACT YES YES NO NO NO NO NO
COMMAND YES YES NO NO NO NO NO
DATABASE YES NO NO NO NO NO NO
PROGRAM YES NO NO NO NO NO NO
PTERM YES NO NO NO NO NO NO

Figure 24. Security maintenance control and data card types

196

N

control and Data Statement Combinations

The following outlines the use of various control and data statement
combinations:

Control

Statement

PASSWORD
TERMINAL

PASSWORD

TRANSACT

PASSWORD
COMMAND

PASSWORD
DATABASE

PASSWORD
PROGRAM

PASSWORD
PTERM

TERMINAL
TRANSACT

COMMAND
TERMINAL

Data

Statement Explanation

TERMINAL To require a password to be used with

PASSWORD the logical terminal name when
modifying the status of a logical
terminal via a /LOCK, /UNLOCK,
or /IAM command

TRANSACT To require a password to be entered

PASSWORD from the input terminal following the
transaction code for each message

COMMAND To require a password to be entered

PASSWORD following the command verb when
using the terminal command language

DATABASE To require a password to be entered

PASSWORD following the data base name when
modifying the status of a data base via
a /LOCK or /UNLOCK command

PROGRAM To require a password to be entered

PASSWORD following the program name when
modifying the status of a program (PSB)
via a /LOCK or /UNLOCK command

PTERM To require a password to be entered

PASSWORD following the keyword PTERM when

o modifying the status of a physical
terminal via a /LOCK, /UNLOCK, or /IAM
command

TRANSACT To restrict use of a transaction code

TERMINAL to a specific logical terminal.
Note: Entry of the named transaction
codes will be only permitted from the
terminals specified.

TERMINAL To restrict use of a command verb to

COMMAND specific logical terminals

Input statements may be used as control cards or data cards. Using

the input statements, security requirements may be expressed as either
profile-oriented or resource-oriented. A profile security system

describes the resources to be secured in terms of the securing element.

) (PASSWORD SAMSMITH

For example, the following describes a profile for password SAMSMITH.

TRANSACT
TRANSACT
COMMAND
COMMAND
DATABASE
PROGRAM

PAYROLL
PERS
LOCK
UNLOCK
PAYREC
PAYPROG

To describe these same security requirements by resource, the

following statements are required.

197

)(TRANSACT PAYROLL
PASSWORD SAMSMITH
) (TRANSACT PERS
PASSWORD SAMSMITH
) (COMMAND LOCK
PASSWORD SAMSMITH
) (COMMAND UNLOCK
PASSWORD SAMSMITH
) (DATABASE PAYREC
PASSWORD SAMSMITH
) (PROGRAM PAYPROG
PASSWORD SAMSMITH

As the preceding example illustrates, passwords may be more easily
described by using the securing elements as data. Terminal security,
however, is more easily described by using the secured element, the
transaction, as a control statement, followed by the security elements,
the terminals, as data. ~

) (TRANSACT PAYROLL
TERMINAL DEPT40
TERMINAL DEPT65
TERMINAL VPPERS-

) (. TRANSACT PERS
TERMINAL DEPTLO

The reverse or profile example would be:

) (TERMINAL DEPT40

TRANSACT PAYROLL
TRANSACT PERS
) (TERMINAL DEPT65
TRANSACT PAYROLL
) (TERMINAL VPPERS
TRANSACT PAYROLL

The basic online system provides terminal security only for a subset
of the command language. The following example would secure a more
typical set of commands against entry from any terminal except the
master terminal:

) (TERMINAL master terminal name

COMMAND START
COMMAND sSTOP
COMMAND NRESTART
COMMAND CHECKPOINT
COMMAND PSTOP
COMMAND ERESTART
COMMAND DBRECOVERY
COMMAND . ASSIGN
COMMAND BROADCAST
COMMAND CHANGE
COMMAND DBDUMP
COMMAND DUMPQ
COMMAND PURGE
COMMAND LOG

Description of SMP Output

The security maintenance program produces three printed reports. The
first report is the logical configuration of system being maintained,
the second is the password table generated, and the third is the matrix
for the security of a particular nucleus.

198

Security Maintenance Program Execution

The security maintenance run is a three-step job. The first step
accepts the input control and data cards for the security maintenance -
program and edits them for correct format and validity against the
IMS/360 system being maintained. If there are no errors in the first
step, the second step, an Operating System/360 assembly, will be
performed. Step three is a link-edit which takes the assembly output
from step two and creates the communication password table,
communications password matrix, and communication terminal matrix load
modules used by the IMS/360 control program. Depending upon the input
presented, a variable number of output load modules will be created.

The maximum bounds of the generated matrices, terminal or password
are expressed as:

(I/8) * R = M = < 32767

where:

M is the total main storage rgquirement in bytes.

I is the number of securing resources (passwords or logical terminals).

R is the number of unique combinations of secured resourcesf

The maximum number of entries in the password table is expressed as:

I/8 = < 32768

where I is the total number of passwords.

To perform a security maintenance run, the user must have previously
defined an IMS/360 control program using the value ALL as the second
sublist entry of the SYSTEM operand of the IMSCTRL macro-instruction.
One of the modules created during Stage 2 of IMS/360 system definition
is a directory of resources of the defined system, which is placed in
the IMS.RESLIB data set. This directory and the security maintenance
control cards comprise the input requirements for the security
maintenance program (SMP). Output from the SMP consists of four
sequential members in IMS.RESLIB. These members may not be reprocessed
using the linkage editor. The four members contain:

1. Communication Password Table (CPT)
2. Communication Terminal Matrix (CTM)
3. Terminal Offset List (CTL)
L. Password Offset List (CPL)

In addition, the SMP provides a listing of the created maintenance
tables. Each run of the SMP replaces previously created members.
Figure 25 depicts the security maintenance flow.

199

INPUT
STATEMENTS

SYSTEM
DESCRIPTION
BLOCK
SECURITY
MAINTENANCE
PROGRAM
4/
SECURITY
LISTING
COMMUNICATION
PASSWORD
TABLE
etc.

Figure 25. Security maintenance flow

200

The table below shows the Job Control statements by step necessary to
execute the security maintenance utility.

1 3 1
| | |
| STATEMENT | USAGE l
| | |
| - -—-= |
JoB	Initiates security maintenance job
statement	
=== - e —m——————	
JOBLIB	Defines the partitioned data set named in
statement	RESLIB macro-statement during IMS system
	definition. Contains the members DFSINUCH
	and DFSISMPO.
= e e e e e e	
step s	
- -- - -	
EXEC	Specifies the program name (PGM=DFSISMP0)
statement	and may contain a PARM keyword value of
1	the form
1 PARM = *UPDATE, 0"*	
	‘*option,number"
i 1 option	
	LIST - validity check and list new
i security tables	
§	UPDATE - validity check, list, and
i i update security tables in RESLIB	
	number i
i a value ranging from 0-9 which is	
i the last character of the IMS/360	
	nucleus member name to be maintained
memmm—mm s ———e——	
SYSPRINT	Defines a sequential message data set.
DD	The data set can be written to system
statement	output devices, magnetic tape, or direct
	access volumes. The following DCB
	parameters must be specified:
	RECFM=VBA
	BLKSIZE=125 or greater
	BUFL=value of BLKSIZE + 4
L]

201

202

(o — s S e ——a— ases c——

SYSPUNCH
DD
statement

—— — v —— ——

SYSLIN
DD
statement

|

| Defines a sequential output data set

| which contains Assembler statements

| produced by step S. The data set may be
| passed to step C. The following DCB

| parameters must be specified:
|
|
|
|
|

RECFM=F or FB
LRECL = 80
BLKSIZE = 80 or multiple of 80

Defines a sequential output data set
which contains linkage editor control
statements produced by step S. The data

RECFM=F or FB
LRECL = 80

|

|

|

|

| s he

| ing DCB parameters must be specified:

|

!

| BLKSIZE = 80 or multiple of 80
|

SYSUT1
DD
statement

———— ————

Defines a sequential work data set used
only during step S. The following DCB
parameters must be specified:

RECFM=F or FB .
BLKSIZE = 100 or multiple of 100

SYSUT2
DD
statement

statement

- -

]
|
I
|
|
I
|
|
I
|
|
|
I
|
|
:
set may be passed to step L. The follow- |
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
1

|
| Defines a sequential work data set used |
| only during step S. The following DCB |
parameters must be specified: |
' |

|

|

|

|

| RECFM=F or FB

| BLKSIZE = 100 or multiple of 100
|

| Defines a sequential data set or a member |
| of a partitioned data set which contains |
| security maintenance input statements. |
| The following DCB parameters must be |
| specified: |
| |
| |
| |

|

RECFM=F or FB
BLKSIZE = 80 or multiple of 80

N

-

/

Specifies the program name (PGM=IEUASM)

-—— e ——— —————

BLKSIZE=121 or multiple of 121
/

|
EXEC |
statement | of the assembler. Following parameters
| must be present:
|
| PARM="*LOAD, NODECK"
| COND=(12,LT,S)
i
I .)
SYSPRINT | Defines a sequential message data set.
DD | The data set can be written to system
statement | output devices, magnetic tape, or direct
| access volumes. The following DCB
| parameters must be specified:
|
| RECFM=FM or FBM
| LRECL = 121
|
, |
A l i .
SYSGO | Defines a sequential temporary data set
DD | for object output from the assembler.
statement | The data set may be passed to step L.
|
|
I . o
SYSUT1 | Defines sequential data sets used for work]
SYSUT2 | space by the assembler only during step C.
SYSUT3 | :
DD |
statements|
|
l . s
SYSIN | Defines passed sequential input data set
DD | created in step S using DD name SYSPUNCH.
statement |
|

b s e o S e . ey S — —

——— — —— — — — — — — — — — — t— — — —— G— — —— — —— — —— — — — ——]

203

Specifies the program name (PGM=IEWL)
of the linkage editor. Following
parameters must be present:

PARM="LIST, NE,OL"
COND=(4,LT,S)

Defines a sequential message data set

for the linkage editor. The data set can
be written to system output devices,
‘magnetic tape, or direct access volumes.
The following DCB parameters must be

|
SYSPRINT |
|
|
|
|
| specified:
|
|
|
|
|

DD
statement

RECFM=FA or FBA
LRECL=121
BLKSIZE=121 or multiple of 121

——— o —————

|
SYSLMOD | Defines output partitioned data set for
DD | the linkage editor. Normally the same
|
|

\
|
|
|
1
1
1
|
i
]
|
1
|
|
|
|
]
\
|
1
|
4
’ .
e o o e e e e e e e i e o S i e . S S G B o = it . S S e (. o S e . S S S, S . s, e . St S, G, e . s s,

statement data set specified for DD name JOBLIB.
|) .
INPUT | Defines passed sequential temporary data
DD | set created using DD name SYSGO in step C.
- statement |
|
_ |
SYSUT1 | Defines sequential temporary data set
DD | used in step L by the linkage editor.
statement |
|
') ')
SYSLIN | Defines passed sequential temporary data
DD | set created using DD name SYSLIN in
statement | step S.
|

Once created, these new matrices and the password table are not made
available to the online system until a restart is performed. At normal
restart time, the operator has the option of incorporating or not
incorporating the newly created security tables. At either cold start
(that is, NRESTART CHECKPOINT 0) or warm restart (NRESTART any
checkpoint number), the new security tables are not included unless
specifically requested by the system operator. The two keyword operands
of the NRESTART command, which are used@ to request new security, are
PASSWORD, for password security, and TERMINAL, for terminal security.
Once these two keywords are used in a normal restart, the system
checkpoint facility causes the new security maintenance to continue
through subsequent warm starts. If the user desires, once a normal
successful restart using the normal keywords has been accomplished, he
may change his system security configuration. Again, these changes will

204

N\

not become effective until the user specifically requests them at normal
restart time.

SECURITY MAINTENANCE EXAMPLE

The following is an example of the input cards for the security

maintenance program that reflects the system definition example in this

chapter.
e A password exists for each program.

e A password exists for each data base.

A password exists for each transaction code except INQUIRY.

The list of terminals can use each transaction code,

This example assunes:

required password.

along with the

Some IMS/360 terminal commands are limited to the master terminal.

The master terminal can enter all IMS/360 terminal commands and

transaction codes defined by the system definition example in this
manual.

) (

) (

) (

) (

)(

) (

)(

)(

) (

) ¢

) (

) (

PROGRAM
PASSWORD

PROGRAM
PASSWORD

PROGRAM
PASSWORD

PROGRAM
PASSWORD

DATABASE
PASSWORD

DATABASE
PASSWORD

DATABASE
PASSWORD

DATABASE
PASSWORD

DATABASE
PASSWORD

DATABASE
PASSWORD

TRANSACT
PASSWORD
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL

TRANSACT
PASSWORD

ACCT
DOLLAR

ENG560
PARTNO

LOGREC
NONE

AGCO0568
MONEY

ACCTLOG
LOG

ACCTREC
REC

ACTIVITY
ACTIVE

ENGREC
PTERSQ

PARTSREC
PIERSQ

PARTSREC
ASSY

ACCTCHG
CHARGE
A875111
C8751112
D8751113
A8751114
A8751115

ACTY
GO

205

206

TERMINAL
TERMINAL
TEFRMINAL
TERMINAL
TERMINAL

) (TRANSACT

PASSWORD
TERMINATL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINATY,
TERMINAL
TERMINAL
TERMINAL

) (TRANSACT
PASSWORD |

TERMINAIL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL

) (TRANSACT

PASSWORD
TERMINAL
TERMINAL
TERMINAL,
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL
TERMINAL

A8751111
Cc8751112
D8751113
A8751114
A8751115

TNL

OTY

DEPT 650

DEPT 610

DEPT 620
DEPT 631
DEPT 632
DEPT 630
DEPT 640
DEPT 641
DEPT 642

ING
QUESTION
DEPT310
DEPT311
DEPT312
DEPT410
DEPT411
DEPTH412
DEPTS510
DEPT511
DEPT512
DEPT100
DEPT200
DEPT686
MASTER
ALTMAST
MAINT
DEPT710
DEPT720
DEPT8US8
DEPT850
DEPT900
TEST1
TEST?2

INVNTRY
SUBASSY
DEPT310
DEPT311
DEPT312
DEPTH410
DEPT411
DEPTU12
DEPT510
DEPT511
DEPT512
DEPT100
DEPT200
DEPT686
MASTER
ALTMAST
MAINT
DEPT710
DEPT720
DEPTS848
DEPT850
DEPT900

VR

TERMINAL TEST1
TERMINAL TEST2

) (TRANSACT ACCT
PASSWORD LEDGER
TERMINAL DEPT310
TERMINAL DEPT311
TERMINAL DEPT312
TERMINAL DEPT410
TERMINAL DEPTH411
TERMINAL DEPTU412
TERMINAL DEPT510
TERMINAL DEPTS511
TERMINAL DEPT512
TERMINAL DEPT100
TERMINAL DEPT200
TERMINAT, DEPT686
TERMINAL MASTER
TERMINAL ALTMAST
TERMINAL MAINT
TERMINAL DEPT710
TERMINAL DEPT720
TERMINAL DEPT848
TERMINAL DEPT850
TERMINAL DEPT900
TERMINAL TEST1
TERMINAL TEST2

) (TERMINAL MASTER
TRANSACT ACCTCHG
TRANSACT ACTY
TRANSACT TNL
TRANSACT INQUIRY
TRANSACT INQ
TRANSACT ENG
TRANSACT ACCT
COMMAND BROADCAST
COMMAND START
COMMAND sSTOP
COMMAND PSTOP
COMMAND PURGE
COMMAND CHANGE
COMMAND DELETE
COMMAND ASSIGN
COMMAND CHECKPOINT
COMMAND CHECKPOINT PURGE
COMMAND CHECKPOINT FREEZE
COMMAND DBDUMP
COMMAND NRESTART
COMMAND ERESTART
COMMAND DBRECOVERY
COMMAND DBLOG
COMMAND DBENOLOG

207

CHAPTER 6. STATISTICS AND ACCOUNTING

One of the basic components of the IMS/360 control program is the
IMS/360 system log.

The information placed on the system log is used for many purposes,
including statistics, accounting, restart, and data base recovery. A2all
input messages received and all output messages sent are logged. All
messages processed, the processing tige, and the number and type of data

- base references made are recorded. This information is used to supply
statistics about message volume by communication line and terminal.
Error message counts as well as other data can be obtained. Accounting
information about computer usage by application program can be derived.

An IMS/360 utility program is placed by IMS/360 system definition in
IMS.RESLIB and may be used for analyzing the information on the IMS/360
system log tapes. The name of this program is DFSISTO1l.

IMS/360 SYSTEM LOG UTILITY PROGRAM

General Description

The IMS/360 control program includes a common serxrvice routine, the
system recorder, designed to facilitate the placing of data on the
system log. This information is used primarily for restart and offline
statistical analysis (accounting etc.). The following information is
written:

Data When Written

1. For restart:

a. Message queue control blocks When they change

b. Checkpoint data When checkpoint is taken

c. Record indicating an When an IMS/360 data set
Operating System/360 data used for message processing
set open or close is opened or closed ‘

d. Record indicating When a data base insert,

changes to a data base delete, or replace is made
2. For both restart and statistics:
a. Message received from When a cbmplete

terminal message is received or
when disk block is full

b. Message sent to a When a complete
terminal or another message is received or
program when disk block is full

208

N

3. For statistics only:

a. Error segments When hardware error is
detected receiving or
sending to a terminal

b. Completion of send record At completion of sending a
message to a terminal

c. Application accounting When an application
record program terminates
d. IMS/360 accounting record When system is started or
stopped
Log Format

Records are written on the log using QSAM variable-length blocked
records. Since different types of records are written on the log for
different purposes, some method must be used to identify each logical
record.

The first byte of .each logical record is called the log flag and can
be used to identify that logical record. The user can then look at the
first byte of each logical record, process those records with which he
is concerned, and bypass any record (first byte of log flag) with which
he is not concerned.

Each logical record written on the log must be of the following
format: .

f t]
LL iBB E FLAGE RECORD
)+ <) <]—» <———VARIABLE -
- L -

where LL is a halfword binary number representing the total length of
the logical record, bb is a halfword used by O0S, flag is a one-byte log
flag, and the record is of variable length.

Each message received or sent carries control information in the form
of the message prefix. In this prefix are message destination or
source, date and time, and an input or output sequence number.

When the log routine receives a request to log a message, it first
requests a prefix builder routine. On return from the prefix builder,
the log routine logs the message. The majority of other log records are
completely edited by the calling program; no processing is performed by
the logging routine.

Log Data Set Allocation

The IMSO procedure includes DD cards for old and new log data set
allocations. The old log DD card name is IMSLOGR. The new log DD card
name is IMSLOG.

209

Statistics Reports

Statistics reports provide a means of evaluating line and terminal
loading, traffic volumes, response times, and accounting (billing)
information. Samples of statistics reports are shown at the end of this
chapter.

The flow of the system log utility program is shown in Figure 26.

LOG DATA SET

~©

[EDIT PASS 1 | prsisro1

o
S
4.__F:><q;__23 F:)-qi__

| EDIT PASS 2 | DFSISTO02

<:2_ MESSAGES AND STATISTICS RECORDS
EXPLODED FROM MESSAGES

L%igl_ﬂnﬂjﬂﬂAU) [SORT I
MESSAGES (IN SEQ. BY DFSIST03 _

| REPORT WRITER |
(:2_ TRANSACTION CODE)

+ DFSIST04

MESSAGE SELECT
AND DISPLAY ~ |REPORT

<j§i;SGS |I!iil|

Figure 26. System log utility program flow

N\

210

The functions of Edit Pass 1 are to select from the log those records
used by statistics and to edit the prefix of the message so that, when
sorted, computer input message and all outputs sent as a result of that
input are contiguous.

The function of Edit Pass 2 is to explode from system messages the
records to be used to produce statistics reports.

Tybes of Statistics Reports

The types of statistics reports are outlined below:

1.

Messages Queued but Not Sent - by Terminal

* Generated message appears on log, but no record appears to
indicate the message was sent to the terminal

Line and Terminal Report

e Shows line and terminal loading by time of day (could be used
to determine line and terminal utilization, peak traffic
periods, etc.)

Error Report

¢ Same format as 2, above

e Input is those segments on which hardware errors were detected

e Could be used to pinpoint lines or terminals having excessive
error routes :

Messages Queued but Not Sent - by Terminal Code

e Similar to 1, above, input

s Sorted by transaction code rather than by terminal address
Transaction Report

e Purpose: to show loading by transaction code and by time of
day

e Same format as 2, above
e Input sorted by transaction code
Transaction Response Report

e Measures time from complete receipt of input message until
response to that message starts back to terminal

e Percentile report shows shortest response, longest response,
and 25th, 50th, 75th, and 95th percentile response.

Application Accounting Report

e Purpose: to provide sufficient data to allow machine charges
to be distributed back to terminal users

* Following information contained in this report:

Counts of all requests to Data Language/1

211

Amount of CPU task time

Task timer is set when request for scheduling is made. {(Value
is maximum time per transaction multipled by maximum number of
transactions.) Remaining time is requested first prior to next
request for scheduling. (This time is actual time program
executed, not including any wait time for data accesses.)

All requests for services from Data Language/I, for access to
either messages or data bases, are counted. These counts are
accumulated by program, by transaction code within program, and
by priority within transaction code.

Counts of messages processed and of "get uniques™ are included
(will be different because of "get unique" issued on which
end-of-file is returned).

Average CPU time is total message CPU time divided by number of
nessages. Number of move calls reflects number of times block

mover was requested to get the DBD and PSB blocks and move them
to IMS/360 region.

Number of bad completion codes reflects number of times program
terminated abnormally.

8. IMS/360 Accounting Report

® Shows amount of CPU time used by IMS/360 region. (This is task
time, not including wait time.)

e Can be used in conjunction with Application Accounting Report
to distribute IMS/360 time to users on the basis of services
performed.

Operating Information

212

e Reports are produced either with or without date control.
e The program determines whether input was sorted on date.

e A control break occurs whenever the date changes; totals are
printed, and a new report is started.

e If not sorted on date, should allow merging activity for a
consecutive period (for example, one week) to produce one
summary report.

¢ To sort by date, the sort control card is:

SORT FIELD=(5,1,CH,A,9,4,PD,A,13,36,CH,A)

e To sort disregarding date, the sort control card is:
SORT FIELD=(5,1,CH,A,13,36,CH,A),SIZE=XXXX

e The other control is a LINCNT=XX parameter included in the
execute card. This is the only parameter expected and is
optional. If not included, the default line count is 36.

e Printing of the different statistics reports is not optional;
they are all generated.

N

Message Select and Copy or List

The execution of the message select and copy or list is optional; it
may be executed as a separate step in the same job with the statistics
reports or may be run independent of the statistics reports.

This utility takes output of the second edit program before it is
sorted (when in line and terminal sequence), or after sorting (in
transaction code sequence), and selects messages on the basis of control
cards read from SYSIN. Messages selected are printed and/or copied onto
an output data set. TIf a DD card named IMSLOGO is included, an output
data set will be created. If a DD card named IMSLOGP is included,
messages selected will be printed. :

Ccontrol Cards

All control cards begin in column 1, with a keyword identifying that
control card. Following the keyword is a series of parameters, enclosed
within parentheses and separated by commas. Control cards cannot be
continued beyond column 71. Multiple control cards with the same
keyword starting in column 1 are permitted. Within parentheses, all
parameters are positional; missing parameters must be indicated by
commas.

A group of names may be indicated by terminating the parameter with
an *. For example, INV* would cause name of INV, INVENTORY, INVA, or
INVB to be selected.

The name parameter "all"™ may be used to select all names rather than
a specific name.

Transaction Code Control Card
The format of the transaction code control card is:
TRANS CODE=(TRANSCOD,I,O0), (TRANSA,I), (INV#,,0), (ALL,I,0)

e The first parameter is a transaction code of from one to eight
bytes.

e The second is I to indicate that input messages with this code are
to be selected.

e The third is O to indicate that output messages resulting from this
code are to be selected.

e The transaction code of ALL indicates selection of all transaction
codes.

e An asterisk within the transaction code causes only characters
preceding the asterisk to be compared with the corresponding number
of characters from the input transaction code to determine
selection. This may also be used to select groups of transaction
codes.

Symbolic Terminal Name Control Card
An example of the symbolic terminal name control card is:

SYM NAME=(TERMA,I,O), (TERM#*,I), (TERMINV,,O,ALL)
SYM NAME=(TERMPAY,I,O,TERM)

e The first parameter is a symbolic terminal name of from one to eight

bytes.

213

e The second and third parameters are I and O respectively, to select

input from and output to this symbolic terminal.

The O may be further qualified with another symbolic name to cause
only output to that symbolic name which resulted from inputs from
preceding name to be selected. If ALL is specified, all output
resulting from the preceding name will be selected.

Hardware Terminal Address Control Card

The format of the hardware terminal address control card is:
TERM ADDR=(3,A,I1,0), (#2,C,,0,21,A), (I,ALL,I,O)

Selection by hardware terminal name is similar to selection by
terminal symbolic name, except that, instead of symbolic name, line
number and terminal address are specified.

The first parameter is the line number.

The second parameter is the terminal address.

The third and fourth parameters are I and O for selection of 1nput
to and output from this terminal.

Output may be further qualified (similar to symbolic terminal
output).

ALL may be specified instead of terminal address or line number.

Time Control Card

The format of the time control card is:

'/‘\

TIME=(68014,1620,68015,1900)

The first parameter is the starting date - year and day of year.
The second parameter is the starting time - hours and minutes..
The third parameter is the ending date.

The fourth parameter is the ending time.

If this card is included, only messages falling within the time slot
are selected.

Nonprintable Character Control Card

Svys

The format of the nonprintable character control card is:
NON PRINT=HEX
If this control card is included, nonprintable characters will be
printed in hexadecimal on two lines, with one hexadecimal character
above the other.

By default, if this card is not included, nonprlntable characters
will appear as blanks.

tem Log Utility Program JCL

is

214

The JCL for the execution of the IMS/360 system log utility program
shown ‘in Figure 27. (

\‘

//STATS JOB 848 +NAME,MSGCLASS=14MSGLEVEL=1,PRTY=8
//J0BLIB DD DSNAME=IMS.RESLIB4DISP=SHR

//STAT EXEC

//L0OGDCB DD DSNAME=IMS.L0G,DISP=(0LD,DELETE)
DSNAME=E&EDIT1,DISP={NEW,PASS) ,UNIT=SYSDA, X
SPACE=(CYL,(545)),DCB=(RECFM=VB,BLKSI2E=1404,LRECL=1400, X+ NOTE 2l

//EDITDCB1 DD
//

/7

//7SYSOUT no
//SORT EXEC
//SYSOUT Dn
//SORTIN DD
//SORTOUT DD
/7

//

//SORTWKO1 DD
//SORTWKO2 DD
//SORTWKO3 DD
//SORTWKO4 DD
//SORTWKOS DD
//SORTWKO6 DD
//SYSIN OD

SORT FIELDS=(%,14CHyA49,4,PDyA,13,24,CH,A),SIZE=E200

/%

//STATO02 EXEC
//EDITDCB1 DD
//FDITDCB2 DD
/7

//

//5YSOUT DD
//SORT EXEC
//SYSOUT DD
//SORTIN DD
//SORTOUT DD
/7

7/

//SORTWKO1 DD
//SORTWKO2 DD
//SORTWKO3 DD
//SORTWKO4 DD
//SORTWKOS DD
//SORTWKO6 DD
//SYSIN DD

SORT FIELDS=(541yCHyAy9444PDyAy134364CHyA)SIZE=E200

//RPTWRT EXEC

//EDITDCB2 DD DSNAME=IMS.EDIT,DISP=(0OLD+KEEP) UNIT=2311,VOL=SER=222222
SYSOUT=1,DCB=(BLKSIZE=0133,LRECL=133,RECFM=FA)geuu
//SIDEX1 EXEC PGM=DFSIS104 =
//71MSLOGI DD DSNAME=IMS,.EDIT,DISP=(OLD,DELETE) UNIT=2311,VL=SER=222222
//1MSLOGP DD SYSOUT=14DCB=(BLKSIZE=0133,LRECL=133,RECFM=FBA)

//PRINTDCB DD

//SYSIN DD *

PGM=DFSISTO1

BUFND=3)

SYSouT=1
SORTD,REGION=T72K

SYSOUT=A
DSNAME=&E&EDIT1,DISP=(0OLD,DELETE)

DSNAME=EEEDIT1S,DISP=(NEW,PASS) sUNIT=SYSDA,
SPACE={(CYLy(545)) +DCB=(RECFM=VB,BLKSIZE=1404,LRECL=1400,X

BUFNO=3)
UNEIT=SYSDA,SPACE=(CYL,(05),+CONTIG)
UNIT=SYSDA,SPACE=(CYL,(05),,CONTIG)
UNIT=SYSDA,SPACE=(CYL(05),+CONTIG)
UNIT=SYSDA,SPACE=(CYL,(05),,CONTIG)
UNIT=SYSDA,SPACE=(CYL+(05)44CONTIG)
UNIT=SYSDA,SPACE=(CYL,(05),4,CONTIG)
*

PGM=DFSISTO02.
DSNAME=EE&EDIT1S,DISP=(0OLD,DELETE)

DSNAME=EEEDIT2,DISP=(NEW,PASS),UNIT=SYSDA.
SPACE={CYL+(595))+DCR={RECFNM=VR,BLKSIZE=1404,LRECL=1400,X

BUFNO=3)

SYsSouT=1

SORTDyREGION=72K

SYSOUT=1
DSNAME=E&EEDIT2,D15P=(0LD,DELETE)
DSNAME=IMS.EDIT,DISP=(NEW,KEEP),
VOL=SER=222222,UNIT=2311,

SPACE=(CYLy(141))4DCR=(RECFM=VB,BLKSIZE=1404,LRECL=1400)

UNIT=SYSDA,SPACE=(CYL,(05),,CONTIG)
UNIT=SYSDA,SPACE=(CYL+(05)4,CONTIG)
UNIT=SYSDA,SPACE=(CYL,(05),,4CONTIG)
UNIT=SYSDA,SPACE=(CYL,(05),+CONTIG)
UNIT=SYSDA,SPACE=(CYL,{05),,CONTIG)
UNIT=SYSDA,SPACE=(CYL,4(05),,CONTIG)
%*

PGM=DFSISTO3

TRANS COPE=(ALLs1+0) &

NDN PRINT=HEX

Figure 27. JCL for the system log utility program

Notes:

INCLUDE VOL AND UNITw= NOTE 1

NOTE

NOTE
NOTE

NOTE

NOTE

(SN

1. Concatenate if necessary other volumes and units under DD cards

if multiple data sets are to be processed.

215

2. BLKSIZE and LRECL may be changed here and in subsequent steps.
LRECL must be at least as large as the largest buffers used for
message queues.

3. Sort control card shown is for sorting by data and therefore
producing reports under date control. To sort disregarding date
and subsequently not control on date when producing reports, the
sort control card is:

SORT FIELDS = (5,1,CH,A,13,36,CH,A),SIZE=XXXX

4. Output may be blocked or unblocked; all I/0 for statistics
program is done using QSAM, with Q0SAM acquiring the buffers.

5. See preceding section, titled "Message Select and Copy or List",
as this is a variable portion of the JCL where the user has
different options.

6. See preceding section titled "Transaction Code Control Card", as
this is a variable portion of the JCL.

STATISTICS REPORTS EXAMPLES
Following is a list of types of statistics reports available to the
user of IMS/360. Examples follow on subsequent pages.

® Messages queued but not sent (by terminal)

e Line and terminal

e Error

e Messages queued but not sent (by transaction code)
e Transaction .

e Transaction response

s Application accounting

e IMS accounting

e Messages

MESSAGES--QUEUED BuUT NDT SENT N ATF N2/29/68 PAGE 1
TOTAL
TRM ‘MESSAGES
T1360689. 9

77N

216

VR

LT NE AND TERMINAL REPCRT O ATE 05/27/68 PAGE 1

TOTAL TOTAL AVG HOURLY DISTRIBUTION

LINE TRM R/S MESSAGES CHARACTERS SIZE 00-07 C7-08 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18-19 19-24

0cz2 A
*MASTER S 67 25229 33 0 0 0 0 0 0 31 7 14 9 6 0 0 0
R 50 1617 32 0 0 0 0 0 0 18 8 12 10 2 0 0 0
*POSTA S 1 17 17 0 [\ 0 0 0 [¢] [+] Q [4)] 1 [s] 0 0
*P682A S 1 17 17 0 Q 0 0] 0 9 [0 0 1 0 0 0
*P682C S 1 17 17 0 0 0 0 0 (4] 0 0 0 0 1 [} 0o 0
TRM S 70 2,280 32] 0 0 0 0 0 31 T 14 9 9 0 0 0
TOTALS P 50 1,617 32 0 0 0 o 0 0 18 8 12 10 2 0 0 0

0n3 A
*2743A2 S 73 24657 36 0 0 0 0 0 0 19 34 5 14 1 o 0 [}
R 104 2,487 23 Q 0 9 0 4] 0. 27 39 16 22 0 [o] [+] 0

005 A
*P663 S 190 1¢522 39 0 0 0 0 0 0 38 64 58 30 0 0o [0
P 249 5,508 22 0 o 0 0 [o] 0 49 82 17 41 o} 0 0 0

009 A
*P0S7A S 46 14785 38 0 3] 0 0 0 0 13 7 1 19 0 0 0 0
R 59 1,367 23 0 0 0 0 0 0 16 12 10 21 0 0 0 0

SYSTEM S 669 21,619 41 9 0 0 0 0 0 147 167 198 147 10 0 0 0

L1Z

TOTALS ¥ A4t 734323 27 0 0) 0 0 0 168 230 261 185 2 0 0 0

P AGE

13-14 14-15 15-16 146—-17 17-18 1°-17 1a.74

E 03/31/67
N T
1 2

AT

HOURLY

SIZE 00-07 07-08 08-09 09-19 11-11

PORT
AVG

£

R

TOTAL
CHARACTERS

FRPRDOR

LINE TRM

218

A0

001

—-—

-t

——

——

———"

———

e

——

gt

———"

<+

———

S

-4

T15CAS1A

A0
T15CAS2A

002

——

-t

———

-

-t

-

—t—

-t

——r—t

oc
[ladT o}

co
~~

&3
———t

N

-4

——

-

et

—

———"

-

S

LA g
———t

S

-4

T15CAS28

e

R 1Y

NV

Ny

o

Ny

o

NN

Ny

et
Ney

S
R

TRM
TOTALS

003 A0

-~

-t

——

-

——t

-

——

-t

o0
[Tala}

oo
~~

LA
—~—t

S

-4

T15CAS3A

-

——

———

———

-t

——

———

———

——

Llal

co
[Ta]"a)

oo
~~

LA
]

S

o

T15CAS38

T15CAS3C

-

-

ot

——

-t

<3
lalal

S

4

™Mo

ne

o,

[alsa

©om

"

“ee

.o

[Lalial

men

o

NN
LA 4

S
R

TRM
TOTALS

80
T15CAS3D

——t

———

-t

——

———

gt

———

50
50

700
700

A
o

S

-4

-ty

———

——

———

——

-t

——

——

790
700

b s

ot gt

S
R

T1SCAS3FE

——

———

——

-

——t

oy

me
Tno

A
-t

S

-3

T15CAS3F

e~

e

Ll

o

.0

e

oo

e

o

nee

Tenee

TRM
TOTALS

00

P4

L

<X

N0

L4

el

e

O

34
84

[N

[l

XN

oo

oc

oo

oo

co

oo

co

cc

oo

oo

L0

ot

7N

N

N

MESSAGES-—-QUEUED
10N TNTAL

MESSAGES
A 9
L} 9

-]

u

T

N O

T

SENT

DATE 05/31/67

PAGE

1

219

0ze

YR AN SACTION T REPORT T TR E T 05797768 - CCFAGE T T
TRANSACT ICN TOTAL TOTAL AVG HOURLY DISTRIBUTION ‘

CODE R/S MESSAGFS CHARACTERS STZE 00-07 C7-C8 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 16-17 17-18 18~19 19-24
C/CRECKPT R T T T T T T ey TRy 0 " o 0 o T o o o T o TTITTTTe T o
JENC, R 1 10 10 0 0 0 0 0 0 0 1 9 0 0 0 0 0
/START s 56 1,356 25 0 0 0 0 0 0 35 5 8 6 0 0 0 0
e R Lo .61’ 20 o __ O _ O _ O .0 _ O 17 3 _6 4 0 __ 0 _ 0 _ 0
/STOP < 7 182 26 0 0 0 0 0 0 0 3 2 2 0 0 0 0

R 4 72 18 a 0 0 0 0 0 0 2 1 1 0 0 0 0
/TEST.) 1 11 11 0 0 0 0 0 0 a 1 0 0 0 0 o o
TeaT T TR T T 1 o 8 8 0 0] 0 0 0o o) 1T 770" "o T o0 o
PA /JCINC R 1 15 15 0 0 0 0 0 0 0 1 0 0 0) 0 0
PA s 23 1,121 48 0 0 0 0 0 0 4 7 3 9 0 0 0 0
e R FCT RNURR. 2 3 § 10 100) n o o__..9 o __10 11 .8 _12 0 0. .0 __ 0 _
ea s 4 276 69 0 0 0 0 0 0 0 2 2 0 0 0 0 0
R 7 919 131 0 0 b 0 0 0 0 4 3 0 0.0 0 0
PC s an 2,156 24 0 0 0 0 0 o 21 32 17 18 0 0 0 0
e R 89 .2.421 27 _ 9 __©0 _ 9. __O0 0 .0 _ _ 22 32 _ 17 _ 18 -0 L0___. 0 __ 0o
PO s 5 219 43 0 0 0 0 0 0 0 5 0 0 0 0 0)
R 5 116 23 0 0 0 0 0 0 0 5 0 0 0 0 0 0
PI s 11 395 35 0 0 0 0 0 0 2 2 4 3 0) 0 0
S 11e ...ls508 13 e 9o _ o0 o ___O0 _ 0 31 __34 28 21 __ . O0__0O0__ 0 O
PI123456 ¥ 1 13 13 0 0 0 0 0 0 0 1 0 0 0 0 0 0
T 3 15 4CA 27 0 o 0 0 0 0 4 1) 4 0 0 0 0
P 16 336 21 0 0 0 0 0 0 4 1 6 5 0 0 0 0

SYSTEM S (3
TCTALS ¥V .

N

R4t

9 21,619
21,323

n 0 0 0 0 (o] 147
0 0. o . .0 o
7N

167
0 . les _ 230

198 147 10 0 0
261 185 2 o .0

TZ¢

TFANSACTIPN RESPCNSE REFBRT L ATE 05/27/68 : PAGE 1
___TYPE_______1o¥aL 1UAGEST 95 5% sng ._.25%2 _ _SHORTEST
TRANSACT FEepiincee “ESPPNSF PESPONSE FESBONSE RESPINSE RESPONSE RE SPOINSE
A Cc1.65 0e.25 L0105 Cl.BS. . __01.8S_ . _0L.1S ___

PR o 1,93 nl.ces 01.8S 01.75 01.4$ 01.4S
pC : o £ 13 42,75 ' .g2.08 11.2% 01.1S cl.1s$ 01.0S
P S BLe2S o Plk2Ss Mle2s o 0l.ds _O0lels Ol.ds
[11 22478 22.75 01428 01.25 0l.15 01.1S
PK o “1h €2.25 02,28 7 7 01,25 ’ 01.1s" 7 ot.is - 01.1S’
[C B! Cocl.2s 01.25 01,18 T eratsTT T T 0l1.18 R 01.15
PN 1 e ClelS 01,13 01,18 o _.El.S§ 01.1S_ 01.1$.
PC 1 e1.18 01.1$ 0l.1S 01.1S 01.1S "01.15
Tpp T T R A c1.3s ‘01,35 01,18 7T o1etsT T T TToL.s © 0l.1s
PQ 33 $2.08 01.9% 01,78 1.1 01.1S or.08 . _ .
PR 3 4€ a3 48465 Ul.6S 01.6S 01.6S 01.6$
Tes T T T T TR T T T 24a1s T T T T T TazessT T T T e s T T Tatad1s T T ot.lsT T 01.0S)
_bpv 19 €2.95 02.75S 01,28 01.18 01.1$ 01.08
W 7 01,45 01.4S 01425 01.1S 01.15 01.1S
BT S & R 2% £ - 2 - S D O -) £ (3 8 -) -1 3
\

cite

AP PN AT T ON TAC E O UNTEING TREPARTTT D AT E 05737768 T T T PAGE 1
PROGRAM TRANSACTICM MFSSAGE— = — — COUNTS DATA = = = = — = = = = BASE = = = = = — — - COUNTS MOVE BAD TOT MESS AVR
NAME NAME PRT OTY GU GN [SRT GuU GN GNP GHU GHN GHNP ISRT DLET REPL CALL ccC CPU TIME TIME
TURYENG01 PK T2 TIE T TR T BT TTTE T T T e T T T e TR T TR T 6 0 77 T00.4S 0.024S
PS C1_ 272 574 0430 0 0 0 258 0 0112 1155 1 0 08.7S _0.030S
Ex €1 15 0 0o 25) 0 0 0 0 0o 37) 0 0 0 00.45 0.029S
T Tawwww ek w303 5496 00 473w T T AT 0 T ToT 163 7T TIes T 1 T 07 7 09.65 0.030S
Us1eNM002 PA cs __ 3a 15 174 199 0 0 o 15 0 0 84 0 3 1 0 13.25S 04333$
U818M003 P8 ce 7 14 €3 84 0 0 0 57 0 0) 0 48] 0 01.0S 0.145S
CTTTOTTRPC TG TTRYT Y e T T T3 T T T T TR T ey T Ty T T T 22T T s TTTdz T T T e T703.35 0.0365
sxrxasss wx 96 152 63___215 0 0 N 148 0 0 22 4130 1 0 04,45 0,044S
U818M004 PI €1 1la 227 c 303 111 103) 0 0) 0 0 0 0 0 03,05 0.025S
B ¥ o 2 R 2 ¢ T« o N+ R« B J+ R« B 00,05 0.048S
Pr c1 1 2 C 2 o] 0 0 n 0 0 0 0 0 0 0 00,05 0.032S
PP €3 49 S8 ¢ 140 121 138 ¢ 0 0 o o 0 0 1 0 01.8S 0.035S
T S WS R 15 Y I S W Y, & 2 « R S R+ B < DY + IR+ IERR S TT07.88 0.147S
PV €1 &1 62 . ¢ as 41 0 0 0 0 c - 0 0 .] 0 0 01.1S 0.026S
Txaskkkr kx 257 612 C 1079 324 241 407 e 0 0 0 0 9 1 0 13.85 0.0518
TUBLIAMOOS PN T T TEZ TR T e TG TR T T e AT T T3 T T T T 0 (o] oo T 700,05 0,014
PC €1 13 th 0 58 0 0 0 22 a 0 11 0 16 1 0 00.95 0.,027S
whRt AT KK 36 72 ¢ 64 0 0 0 35 0 0 11 0 16 1 0 00.9S 0.026S
us18vM006 PC T t1 T & I 8 A T7% o "2 6" "o 4 ‘o 2 o o 00,15 6‘.’6375’
PR t1 3 o C 2 a 0 0 0 0 o o 0 0] 0 10.05 3.216S
Pi €l 7 H c 12 2 n_ a0 n o o 2 0 0 1 o 00.2S 0.028S
Y S n 23 2 n n 2 0 0 A a 2 1 0 10,45 0.667S
SYSTEM TOTALS 745 1415 231 2044 342 241 40T 512 0 0 286 5 320 6 n 52.55 0.067S

* [NDICATES TNTAL SHOWM_IM _100°S

2 INBICATES TOTAL SHOWN T4 10,00D°S

A

M S ACCOUNTING — RFEPORT 77777

"0A T ET05/27/68

PAGE 1

I M'S CPU TIME FOK DAY 08727768 TS~~~ T01M 11,45 BR ~ 71.4S T
[MS CPL_TOTAL TIVE 1S 0lM 11.4S OR 71.4S

223

hee

inNPUT
SLTPUT

INPUT
REFIX

INPUT

InNPLT
PREFIX

INPLT
lebT.
IAPUT
CLTPUT
CuTPUT

INFUT
REFIX

INPUT

INPUT
PREFIX

GLIPLT

MESSAGES

$E€=C0L LEN=117 ¥Al RF=Cl CF=CC TYPE=105C LINE=001 TERM=A0 SEQ=001
%, STAT,C01CG,0C10C*
SEG=CC1 LEN=117 *Al RF=C3 CF=0C TYPE=105C LINE=001 TERM=A0 SEQ=001
. %, STAT,C02C0,C0200%
TRANSACTICN LINE TERM SEG SYMHGLIC
LCCE NG ADDR NC ALDRESS DATE TIME

al oGl A0 00001 TEST 01 67.24G 01.01.01
SEG=CCl LEMN=117 #»/CANCEL CF=0(TYPE=2740 LINE=CO02 TErM=B0 SEQ=002

y 200706,007Ce
TRANSACIICN LINE TERM SEQ SYMBuLIC

CCLE NG ACOR NC ACDRESS DATE TIME
JCANCEL 02 80 00GO2 TEST 03 67,241 01,01.41
SEG=CC1 LEN=L117 *B1 RF=01 CF=08 TYPE=2740 LINE=002 TERM=BO SEQ=001
,NUST,003C0,0030C
SEG=CC2 LEN=117 #BL RF=01 CF=00 TYFE=2740 LINE=0GZ TERM=80 SEQ=001
*,NGST,C04C0,00400%
SEG=CC3 LEN=117 #381 RF=01 CF=04 TYFE=2740 LINE=002 TERM=BO SEQ=001
*4,NGST+C05C0,C0500%
SEG=CCl LcM=117 *Bl RF=03 CF=08 TYPE=2740 LINE=002 TERM=BO SEQ=0Cl
#,NOST ,00600,00600%
SEG=CC2 LEN=117 #Bl RF=03 CF=04 TYPE=2740 LINE=002 TERM=BO SEQ=001
%4 NOST,007C0,C0700%
TRANSACTICN LINE TERM SEG SYMBOLIC
CCCE NG ACUR NL ADDRESS CATE TIME
Bl (v 80 00001 TEST 02 67241 O0le.0l-21
SEG=CC1 LEN=117 *Cl RF=Cl CF=0C TYPE=1030 LINE=003 TERM=CO SEQ=001
* »yCO8CC,CCBAO*
TRANSACTIGN LINE TERM SEG SYMBULIC
CCLE NG ADDR NC ADURESS DATE TIME
cl cC3 CC C0001 TEST 04 67.241 01.01.41

SEGSCCL LeEM=124 #C2 RF=C3 C(F=0C TYyPE=1050 LINE=003 TERM=D0 SEw=001
* +COYC0O4009INEXT LIN®

NAME=TEST 01 DATE=67.240 TIME=01l+01,01CS-IN, -DUT*
NAME=TEST 01 DATE=67.240 TIME=01.01.01 ~-IN,CS-0UT*

GUTPUT LINE TERM SEQ SYYBOLIC ‘
PREFIX NG ADDR ND ADDRESS DATE TIME

001 AO 81984 TEST 01 67,241 01,00,01

NAME=TEST 03 DATE=67.241 TIME=n1,01.41CANCEL 00705%

NAME=TEST 02 DATE=67,240 TIME=01.01,.21FS-IN, -0UT*
NAME=TEST 02 DATE=67+240 TIME=01.01.21IS5-INy -ouT=
NAME=TEST~ 02 DATE=67.26L TIME=01.01,21L S-IN,DAY-CH*
NAME=TEST 02 DATE=67.241 TIME=01.01.21 ~IN,FS5-0UT*
NAME=TEST 02 DATE=67.241 TIME=01.01.21 -IN,LS-0UT*

ouTePuT LINE TERM SEQ SYYBOLIC
PREFIX NG ADDR NO ADDRESS. DATE TINME

THIS OUTPUT MESSAGE WAS NOT SENT

NAME=TEST 04 DATE=6T7.241 TIME=01.0141INPUT ONLY

NAME=TEST 05 DATE=67.241 TIME=01.01.5100CTPUT ONLY *

CHAPTER 7. STATUS CODES AND_ ERROR CONDITIONS

PROGRAM SPECIFICATION BLOCK GENERATION - PSBGEN ERROR CONDITIONS

Erroneous Control

Card Error Message

PCB ---PCB010---PCB type parameter
missing or invalid

PCB ---PCB020---PCB LTERM parameter
not specified for TP PCB

PCB ---PCB030---DBDNAME parameter not
specified for DB PCB

PCB --~-PCBO40--—KEYLEN parameter not
specified for DB PCB

PCB ---PCB050---PROCOPT parameter not
specified for DB PCB

PCB ---PCB060--~-DBDNAME specified for
TP PCB

PCB ~--PCB070---PROCOPT specified for
TP PCB

PCB ---PCB080~--KEYLEN operand for TP PCB

PCB -—-PCB090---LTERM operand specified
for DB PCB

PCB ---PCB100---Invalid processing option
in PCB :

PCB ---PCB110---TP PCB must occur before
any DB PCB's

SENSEG ---SEG010---Segment name parameter
invalid

SENSEG —-fSEG020--—TOO many SENSEG cards;
255 maximum

SENSEG ---SEG030-~~SENSEG invalid for TP
PCB's

SENSEG ---SEGO040---Parent name parameter
invalid

SENSEG ---SEG050~---Parent segment not.

' predefined :

SENSEG ---SEG060---Parent name parameter
omitted or invalid

SENSEG ---SEG070---Duplicate segment
name

225

PSBGEN

PSBGEN
PSBGEN

PSBGEN
PSBGEN

PSBGEN

---PSB010---PCB in error, generation
terminated

---PSB020---PSBNAME not specified
---PSB030---Invalid language operand

---PSBO40---No sensitive segments
for DB PCB

---PSB050---PSB name must begin with
alpha character

---PSB099---System error, generation
terminated

DATA BASE DESCRIPTION GENERATION - DBDGEN ERROR CONDITIONS

Erroneous Control

Card

226

DBD

DBD

DBD

DBD

DMAN

DMAN

DMAN

DMAN

DMAN

DMAN

DMAN

DMAN

DMAN

DMAN

DMAN

Error Messages

---DBD010---Incorrect or missing
access method

---DBD020---DBD name parameter
not specified

---DBD030---Too many DBD cards

---DBD0O40---DBD name must
begin with alphabetic characters

---DMAN010~---Incorrect device
specification

---DMANO20---Incorrect access

.specification

---DMANO030~--DD2 parameter invalid
with ACCESS equal to ISAM

~--DMANO40---Too many DMAN cards

—--DMANO050---BLKFACT specified but

no LRECL

---DMAN060---LRECL specified but no
BLKFACT operand

-~-DMANO70---LRECL BLKFACT greater
than track length

---DMAN080---Missing DLIOF operand
with access equal to ISAM

---DMAN090---DLIOF is present or DD2
is missing with access equal to SAM

---DMAN100---DD1 operand omitted

---DMAN110---DD1 and DD2 have same
DD names for HSAM

7

/

DMAN
SEGM
SEGM
SEGM
SEGM
SEGM
SEGM
SEGM
SEGM
SEGM

SEGM

SEGM

F1LD

FLD
FLD

FLD

FLD

FLD

FLD

FLD

---DMAN120~---DD1/DLIOF duplicate
DD names for HISAM

~--SEGM10---Segment name not
specified

---SEGM20---Segment bytes parameter
not specified

---SEGM30---Segment frequency
parameter not specified

---SEGM40---ROOt Segment parent
must equal zero

---SEGM50---Parent operand not
specified for dependent segment

---SEGM60~~-Too many SEGM cards;
255 maximum

---SEGM70---Segment length greater
than DASD track

---SEGM80---Segment length specified
as zero

---SEGM90---Segment frequency of
zero invalid

---SEGM100--—-Duplicate segment names

---SEGM110---Segment length greater than
specified LRECL

---FLD010---Field name parameter
not specified or invalid (that is,
more than 8 characters)

—---FLDOU40---Type paraméter not
specified or invalid

-==FLD050---FLDK card not first
after SEGM card

---FLD060---Too many FLD or FLDK
cards specified

---FLD070---Field length extends
beyond segment end

---FLD080---First byte of segment is 1

---FLD100---Duplicate field name
in segment

---FLD110---Bytes parameter invalid
(that is, a nonnumeric field, 0 or
less, or greater than 256)

---FLD120---Start parameter is invalid.

(1 - if the size of the field is greater
than the size of the segment that it is in
2 - size of the start parameter is a
nonnumeric field)

227

FLD ---FLD130---Specified fields in segment
exceed 255

FLDK ---FLDK010---Key field specified
inappropriately

DBDGEN ---DGEN010---Segment X parent
Y not found

DBDGEN ---DGEN020---Invalid number of DMAN
cards for access method specified

DBDGEN ---DGEN030---DAM not supported

DBDGEN ---DGEN040---No segments for DMAN X

DBDGEN —---DGEN050---DAM not supported

DBDGEN ---DGEN060---Errors in this DBD

DBDGEN ---DGEN070---Toco many levels in data
base segment hierarchy

DBDGEN ---DGEN080---First segment in
secondary data set group lower than
level two

FINISH ---FINI10---No successful DBD"s

in this run

SYSTEM DEFINITION ERROR CONDITIONS

Stage 1 Error Messages:

G000 IMSCTRL MUST BE 1ST MACRO, IMSGEN MUST BE LAST
kEx ENTERED DDNAME IS A DUPLICATE - name
*¥kk ENTERED DDNAME IS RESERVED - name

The following ddnames are reserved ddnames: IMSLOG, IMS,
IMSCspP, IMSLOGR, SYSUDUMP, SYSABEND, JOBLIB, STEPLIB. Note
that this list may be modified by 0S/360 system changes.

IMSCTRL
G001 MORE THAN ONE IMSCTRL MACRO SPECIFIED
G002 SYSTEM OPERAND OMITTED OR INVALID
| The generation type must be BATCH or ALL.
G003 MAXREGN OPERAND OMITTED OR INVALID
Range is 1 -~ 255.
GOoou MAXTO OPERAND INVALID
Range is 1 - 255.
G005 MSGBUFF OPERAND OMITTED OR INVALID

Range is 1 - 255.

228

G006 OCENDA OPERAND OMITTED OR INVALID

Value range is WA to Z9.
G007 CKPT LOG FREQ OPERAND IS INVALID

Range is 500 - 36863.

228.1

228.2

7\

G008

APPLCTN

G101

G102

G103

G104

G105
G106
DATABASE

G201

G202

G203
G204
G205

G206

G207

TRANSACT

G301

G302

G303

G304

G305

G306

ONE OR MORE OF THE SVC OPERANDS ARE INVALID ALL SVC OPERANDS
MUST BE MUTUALLY EXCLUSIVE SVC OPERAND RANGE IS 128 - 255

APPLCTN SPECIFICATION IS NOT COMPATIBLE WITH GENTYPE
SPECIFICATION (BATCH) IN IMSCTRL MACRO

PSB OPERAND OMITTED OR INVALID

Cannot exceed 8 characters.

PGMTYPE OPERAND OMITTED OR INVALID

APPLCTN SPECIFICATION LIMIT EXCEEDED

No more than 255 applications can be specified.
PSB - name - PREVIOUSLY SPECIFIED

PSB OPERAND MUST BEGIN WITH ALPHA - name

DATABASE SPECIFICATION IS NOT COMPATIBLE WITH GENTYPE
SPECIFICATION (BATCH) IN IMSCTRL

DATABASE SPECIFICATION NOT IN APPLCTN GROUP

Data base specification must be preceded by an application
specification.

DBD OPERAND OMITTED OR INVALID

INTENT OPERAND OMITTED OR INVALIDV

DBD OPERAND MUST BEGIN WITH ALPHA - name
DATABASE SPECIFICATION LIMIT EXCEEDED
Maximum number of data bases is 255.

LOG OPERAND IS INVALID - name

TRANSACT SPECIFICATION IS NOT COMPATIBLE WITH GENTYPE
SPECIFICATION (BATCH) IN IMSCTRL MACRO

TRANSACT SPECIFICATION NOT IN APPLCTN GROUP
Transact must be preceded by an application.
CODE OPERAND OMITTED OR INVALID

Cannot exceed 8 characters.

PRTY OPERAND OMITTED OR INVALID

?ROCLIM OPERAND OMITTED OR INVALID

MSGTYPE OPERAND OMITTED OR INVALID

229

G307 TRANSACT SPECIFICATION LIMIT EXCEEDED

Maximum is 255.

G308 CODE OPERAND MUST BEGIN WITH ALPHA - name

G309 TRANSACT CODE - name - PREVIOUSLY SPECIFIED

G310 INQUIRY OPERAND IS INVALID - code

G311 - TRANSACTION CODE - code - DEFINED AS AN LTERM warning message

G312 PRIORITY VALUES FOR TRANSACTION CODES USED BY BATCH PROGRAMS
MUST BE NULL; VALUES ARE RESET TO PRTY= (0,0, limit count)

LINEGRP

G401 LINEGRP SPECIFICATION IS NOT COMPATIBLE WITH GENTYPE
SPECIFICATION (BATCH) IN IMSCTRL MACRO

G402 UNITYPE OPERAND OMITTED OR INVALID
Must be one of the IMS/360-supported devices (1050, 2260, or
2740) .

G403 DDNAME OPERAND OMITTED OR INVALID
Maximum of 8 characters.

Gu4ou LINEGRP SPECIFICATION LIMIT EXCEEDED
Maximum number is 255.

Guo05 LINEGRP DDNAME - name - PREVIOUSLY SPECIFIED

G406 DDNAME OPERAND MUST BEGIN‘WITH ALPHA - name

G407 FEAT OPERAND OMITTED OR INVALID

LINE |

G501 LINE SPECIFICATION IS NOT COMPATIBLE WITH GENTYPE
SPECIFICATION (BATCH) IN IMSCTRL MACRO

G502 'LINE SPECIFICATION CANNOT OCCUR BEFORE LINEGRP

G503 ADDR OPERAND OMITTED OR INVALID

G504 LINEGRP FEAT SPECIFICATION -- feat
IS NOT COMPATIBLE WITH LINE SPECIFICATION -- feat

G505 FEAT OPERAND OMITTED OR INVALID

G506 LINE SPECIFICATION LIMIT EXCEEDED
Maximum number is 25S5.

G507 DIAL ZONE CODE LIMIT EXCEEDEb
Range limits 0 - 15.

SUBPOOL

G610 SUBPOOL SPECIFICATION IS NOT COMPATIBLE WiTH GENTYPE

SPECIFICATION (BATCH) - IN IMSCTRL MACRO

230

VR

G611
G612

G613

TERMINAL

G601

G602
G603

Gé6ou

G605

G606

POOL

G510

G511
G512
G513
G514
G515
NAME

G701

G702

G703

G704
G705
G706

G707

SUBPOOL SPECIFICATION CANNOT PRECEDE POOL
TERMINAL/SUBPOOL SPECIFICATION LIMIT EXCEEDED

TELNO OPERAND OMITTED OR INVALID

Number cannot exceed 16 digits.

TERMINAL SPECIFICATION IS NOT COMPATIBLE WITH GENTYPE
SPECIFICATION (BATCH) IN IMSCTRL MACRO

ADDR OPERAND OMITTED OR INVALID

TERMINAL SPECIFICATION CANNOT PRECEDE LINE MACRO
TERMINAL SPECIFICATION LIMIT EXCEEDED

Maximum number is 255.

UNIT OPERAND OMITTED OR INVALID

Unit operand is mandatory for 2260 line groups.
UNIT OPERAND SEQUENCE ERROR

The 2848 unit addresses mustvappear in ascending sequence
within a line.

POOL SPECIFICATION IS NOT COMPATIBLE WITH GENTYPE
SPECIFICATION (BATCH) IN IMSCTRL MACRO

POOL SPECIFICATION CANNOT OCCUR BEFORE LINEGRP
POOL SPECIFICATION INVALID FOR NONSWITCH LINEGRP
FEAT OPERAND INVALID - feat

LINE/POOL SPECIFICATION LIMIT EXCEEDED

DIAL ZONE CODE LIMIT EXCEEDED

NAME SPECIFICATION IS NOT COMPATIBLE WITH GENTYPE
SPECIFICATION (BATCH) IN IMSCTRL MACRO

NAME SPECIFICATION MUST FOLLOW TERMINAL/SUBPOOL

"LTERM NAME OPERAND OMITTED OR INVALID

Maximum of 8. characters.

LTERM - name - PREVIOUSLY SPECIFIED

NAME SPECIFICATION LIMIT EXCEEDED

NAME OPERAND MﬂST BEGIN WITH ALPHA - name

WIOR PREDEFINED NAME - RESERVED FOR SYSTEM USE

231

G708

G709
MASTTERM

G801

G802

G803

G80ou

G805

G806

G807

G808

MSGQUEUE
G801

G802
G803
G80ou
G805
G806

G807

G808

G809

G810

232

COMPT OPERAND IS INVALID - compt

Component value must be 0, 1, 2, or 3 and is mandatory for
1050 line groups.

LTERM - name - DEFINED AS A TRANSACTION CODE

MASTTERM SPECIFICATION IS NOT COMPATIBLE WITH GENTYPE
SPECIFICATION (BATCH) IN IMSCTRL MACRO

MULTIPLE MASTER TERMINAL SfECIFICATIONS
MASTER TERMINAL NAME OMITTED OR INVALID
Maximum of 8 characters.

NAME OPERAND'MUST BEGIN WITH ALPHA - namei

MASTER TERMINAL CANNOT BE ON A.SWITCHED LINE LINEGRP - n LINE
= N TERMINAL - n NAME - n

MASTER TERMINAL NAME NOT DEFINED

Master terminal name must be defined on a previously
encountered NAME macro.

THE NAME SELECTED FOR MASTER MUST APPEAR AS THE 1ST NAME FOR
TERMINAL - x of LINE - n IN LINEGRP - n

MASTER TERMINAL MUST BE FIRST TERMINAL ON LINE X

MSGQUEUE SPECIFICATION IS NOT COMPATIBLE WITH GENTYPE

SPECIFICATION (BATCH) IN IMSCTRL MACRO

MULTIPLE MSGQUEUE SPECIFICATIONS

QCRIN OPERAND OMITTED OR INVALID

MSGIN OPERAND OMITTED OR INVALID

QCROUT OPERAND SPECIFICATION IS INVALID
MSGOUT OPERAND SPECIFICATION IS INVALID
QCRIN DbNAME SUBFIELD IS INVALID

Must be 1 - 8 characters.

QCRIN DDNAME bPERAND MUST BE ALPHA - name
First character must be alpha.

QCRIN DSNAME SUBFIELD IS INVALID

Must be 1 - 16 characters.

QCRIN DSNAME OPERAND MUST BE ALPHA - name

First character must be alpha.

VR

N _”

NG

G811 QCRIN UNIT SUBFIELD IS INVALID
Must be 2311, 2314, 2301, 2303.
G812 QCRIN SERIAL SUBFIELD IS INVALID

Must be 1 - 6 characters.
G813 through G818 same as G807 - G812 except for MSGIN operands.
G819 through G824 same as G807 - G812 except for QCROUT operands.
G825 through G830 same as G807 - G812 except for MSGOUT operands.
G831 REUSE OPERAND OMITTED OR INVALID - Value.

RESLIB, MACLIB

G901 NO MORE THAN ONE RESLIB CAN BE SPECIFIED

G902 PDS OPERAND. OMITTED OR INVALID

G903 VOLNO OPERAND OMITTED OR INVALID

G904 UNIT OPERAND OMITTED OR INVALID

G905 PDS OPERAND MUST BEGIN WITH ALPHA - name

PSBLIB, DBDLIB, PROCLIB, PGMLIB

G901 -~ G905 SAME AS FOR RESLIB AND MACLIB

G906 IF VOLNO OR UNIT IS ENTERED BOTH MUST BE ENTERED
IMSGEN |

G030 NO APPLCTN SPECIFICATIONS

G031 NO LINEGRP‘SPECIFICATIONS

G032 " NO LINE SPECIFICATIONS FOR LINEGRP - n

G033 NO TERMINALS ON LINE - n

G034 MASTER TERMINAL CANNOT BE ON A SWITCHED LINE
G035 NO MASTER TERMINAL SPECIFICATION

G036 TERMINAL - n HAS NO LOGICAL NAME SPECIFICATION
G037 MSGQUEUE DATA SETS NOT SPECIFIED

G038 RESLIB NOT SPECIFIED

G039 UTISDS OPERAND OF IMSGEN OMITTED OR INVALID
Must be 1 - 16 characters.
Gou4o0 UNSUCCESSFUL IMS/360 SYSTEM DEFINITION

Occurs whenever any error occurs during definition.
Definition is terminated.

233

IMSGEN WARNING MESSAGES

k¥ k%

Goul

G042

Gou3

Go4y

G045

GOu6

Go47
Gous

G049

IMSTEST

G090
G091
G092
G093

G094

234

DDNAME CHECK TABLE FULL

DLI PROCEDURE IS NOT INCLUDED;

REQUIRED LIBRARIES ARE NOT SPECIFIED

IMSCOBOL AND IMSPLI PROCEDURES ARE NOT INCLUDED;
REQUIRED LIBRARIES ARE NOT SPECIFIED

IMSCOBGO AND DLIPLIGO PROCS ARE NOT INCLUDED; REQUIRED
LIBRARIES ARE NOT SPECIFIED

PSBGEN PROCEDURE IS NOT INCLUDED; REQUIRED LIBRARIES ARE NOT
SPECIFIED '

DBDGEN PROCEDURE IS NOT INCLUDED; REQUIRED LIBRARIES ARE NOT
SPECIFIED

IMS ONLINE PROCEDURES ARE NOT INCLUDED; REQUIRED LIBRARIES
ARE NOT SPECIFIED

NO DATABASE SPECIFICATIONS FOR PSB - name
NO TRANSACT SPECIFICATIONS FOR PSB —~ name

THE TERMINAL SELECTED FOR MASTER SHOULD HAVE MORE THAN ONE
LOGICAL NAME ASSIGNED TO IT

IMSTEST MACRO MUST PRECEDE IMSCTRL MACRO
CODE OPERAND OMITTED

CODE OPERAND MUST BE ONLY ONE CHARACTER
CODE OPERAND IS INVALID

ONE OR MORE OF THE SPECIFIED LIBRARIES ARE OMITTED OR INVALID

7N

DATA LANGUAGE/I STATUS CODES

DATA BASE CALLS 156 CALLS
STATUS|GU [GN |GNP |DLET|ISRT |ISRT CALL ERROR |1/0 OR
CODE _|GHU|GHN & GHNP|REPL |<LOAD) | {ADR)] GU| GNf 1SRT fCOMPLETED | IN CALL|SYST,ERROR DESCRIPTION
AB X|x x| x| «x X {x (x| x X SEGMENT 1/0 AREA REQUIRED, NONE SPECIFIED Ih CALL
AC x[xi x! X X X HIERARCHICAL ERROR IN SSA’S
AD TN X INVALID FUNCTION PARAFETER
AE X X ROOT SEGMENT SPECIFIED BY THIS CALL, NOT ALLOWED
GNP CALLS
AF I 1 X DLET OR REPL CALLS CANNOT HAVE SSA’S SPECIFIED
A6 x| X X X FIRST SSA SPECIFIED IS NOT LEVEL 1
A x| X | X X CALL REQUIRES SSA’S. NONE PROVIDED
Al X x x x| x X X DATA MANAGEMENT OPEN ERROR
Al xtoxox X X X INVALID SSA QUALIFICATION FORFAT
AK x| x x X X X INVALID FIELD NAME IN CALL
AL x| x x x| x | x X | CALL USING TERM PCB IN TYPE 3 (BATCH)
M x| X x x| x X X CALL FUNCTION NOT COMPATIBLE W/ PROCESSING OPTION
AN X X 1 T x 6N CALL FOLLOWING ISRT CALL TS INVALIv :
A0 XX X x[x | x X 1/0 ERROR TSAM OR BSAM
e x| oxoxp x] x| x|] |x | X [7170 ERROR osAM T
AQ x| x X READ 1/0 ERROR. MESSAGE CHAIN CANNOT KE FOLLGWE,
K - MINIMUM OF ONE MESSAGE LOST = =
AR ; x| x X READ 1/0 ERROR. MESSAGE SEGMENT HAS BEEN LOST.
:) 1 _ MESSAGE CHAIN IS STILL INTACT.
AS) XX X QUEUES NOT AVAILABLE
AT F""T'_“ T X X TRANSACTION CODE DOES NOT MATCH PCB NAME IN
PGM-TO-PGM MSG SWITCH
DA X X SEGMENT KEY FIELD HAS BEEN CHANGED
DJ X X NO PRECEDING SUCCESSFUL GET HOLD CALL
A X X X CROSSED HIERARCHICAL BOUNDARY INTO HIGHER LEVEL *
(RETURNED ON UNQUALIFIED CALLS ONLY)
GB x o END OF DATA SET, LAST SEGHENT REACHED.
GE x| X X || SEGHENT NOT FOUND T e
6K X . X DIFFERENT SEGHENT TYPE AT SANE LEVEL RETURNEW
. i (RETURNED .ON UNQUALIFIED CALLS ONLY)
G X : X ' AGNP CALL AND NO PARENT, OR REQUESTED
. SEGMENT LEVEL NOT LOWER THAN PARENT
— LEVEL
1 X " | SEGMENT 70 INSERT ALREADY EXISTS IN DATA bASE
LB X SEGMENT TO INSERT ALREADY EXISTS IN DATA BASE
L X S R KEY FIELD OF SEGMENTS OUT OF SEQUENCE
LD . X R O PARENT FOR THLS SEGNENT HAS BEEN LOAUED
LE { ; SEQUENCE OF SIBLING SEGMENTS NOT THE SAHE AS
R UBD SEQUENCE
ac i X - NO MORE INPUT MESSAGES
) , k] NO MORE SEGMENTS FOR THIS MESSAGE
QE X X GET NEXT REQUEST BEFORE GET UNIQUE
oF | 11 X " | SEGHMENT LESS THAN FIVE CHARACTERS (SEG LEWGTH 1S
| 116 TEXT LENGTH PLUS FOUR CONTROL CHARACTERS)
o ! X TERMINAL SYMBOLIC ERROR - OUTPUT LESIGNATION
UNKNOKN TO IMS/360 (LOGICAL TERNINALS OR
- . TRANSACTION CODE) _
al L ! i X X GET NEXT AFTER END OF MESSAGE
x x| x [x x| x [x]x
BB Mzimmls BLANK BILANK 1 X G00D! NO STATUS CODE RETURNED, PROCEED!

* SEE PARAGRAPH ON CROSS-HIERARCHICAL BOUNDARY DEFINITION IN IMS/360 PDM

235

CHAPTER 8. IMS/360 SAMPLE PROBLEM

The IMS/360 basic distribution tape contains two data sets,
These data sets are unloaded versions of
direct access partitioned data set libraries as produced by the

IMS.GENLIB and IMS.LOAD.

Operating System/360 utility program IEHMOVE.

Contained in these

libraries are the program modules and macro-definitions which comprise

the sample application.

A series of steps is involved in the creation of the sample
Detailed background information regarding
these steps is available from the references shown below:

application environment.

° Copying IMS/360 distribution libraries SOM
to direct access storage devices MOM

U] Performing an IMS/360 : SOM
system definition MOM

. Performing a data base description PDM
(DBDGEN) SOM

. Performing a program specification PDM
block generation (PSBGEN) SOM

L] Moving sample problem programs and SOM
control blocks

] Executing an IMS/360 data base load in MOM

the batch environment

e Initializing IMS/360 in an online MOM
environment. Executing the online
application program from user terminals.

Chapter 2
Chapter 4

Chapter 4
Chapter 4

Chapter 7
Chapter 3

Chapter 7
Chapter 3

Chapter 8

Chapter 4

Chapter 4

Before proceeding with the instructions for setting up the sample
application, a description of the application and its data bases is

appropriate.

DESCRIPTION OF SAMPLE PROBLEM

The application included within the sample problem is taken from the
This application in its full sense includes the
creation, use, and maintenance of the logical data bases associated with
This product data can be contained in three
subject data bases. The product data is either related to engineering
drawings, part numbers, or systems equipment structure.
logical data bases, each organized under one of the above subjects.

manufacturing industry.

the product data systems.

These are three

To facilitate the implementation of these three logical data bases,
they have been split into three data bases, comprising five data set

groups (see Figure 28).

236

H

/

PARTS

DRAWINGS

END
ITEMS

Figure 28.

LOGICAL DATA BASES

<>

. STD DATA
. PARTS

USAGE
+ INVENTORY
. ORDER

P UsaGE

CONTROL

PHYSICAL DATA BASES

<

. STD DATA
PARTS

. INVENTORY

< >

» ORDER
CONTROL

Logical and physical data bases

L

L

2 DATA SET
GROUPS

2 DATA SET
GROUPS

1 DATA SET
GROUP

The five physical data bases and the segments contained within these
data bases are described in Figures 29, 30, and 31.

237

PART MASTER

T

= DATA SET GROUP 1
STANDARD DATA DRAWING REF STOCK STATUS
: » IN INVENTORY
DRAWING
CONFIG.
-MIN,/MAX. BACK ORDERS
CYCLE COUNT | | SUSPENDED
STOCK
A
—
| DATA SET GROUP 2
WORK ORDER RAW MATERIAL STANDARDS
OPERATION STOCK DESCRIPTION TOOLING
LOCATION RESERVATION
Fiqure 29. Part data base

238

AN

DRAWING/DOCUMENT

NUMBER

r = DATA SET GROUP 1
STD DATA REVISION LTR
ADVANCE CHANGE
NOTICE
APPROVAL DRAWING CONFIG,
CONTROL ITEM
ACTUAL
EFFECTIVITY
%%ﬂ DATA SET GROUP 2
PART NUMBER
CONFIG, -
OWNER CODE .
REFERENCE/SPEC || REFERENCE
DESIGNATOR
Figure 30. Drawing data base

(EDRS

SYSTEM

MAPL/EAPL
¢ PARTS
LIST

239

END ITEM NUMBER

f

END ITEM DATA

PART NUMBER

EFFECTIVITY

¢ EAPL/MAPL

ACCOUNT NUMBER

v MASTER

CONTRACT NUMBER

SCHEDULE

SCHEDULES

Figure 31. End item data base

The application portion of the IMS/360 sample problem includes the
implementation of a small subset of this entire application. The data
base structure of the application in the sample problem includes the
segments and their structure described in Figure 32.

PART MASTER

STANDARD
DATA

STOCK STATUS
IN INVENTORY

[

]

CYCLE COUNT

BACK ORDERS

Figure 32. Sample problem -- application data base

This data base subset structure includes:

e One part number description segment for each part within the data

base

e A standard data segment for each part. This segment provides
additional information of a standard nature about the part.

240

SN

e Inventory stock status segments for each part. The application is
designed with multiple inventory locations permissible and normally
required for any particular part.

e Zero to n cycle count and back-order segments for each inventory
location of a particular part

In addition to the application data base substructure, the sample
problem includes application programs:

1. To create the data base substructure in an IMS/360 Type 3 batch
processing region. The input data for part, inventory, cycle
count, back order, and standard part data to load into the data
base substructure is provided.

2. For message processing programs and associated transactions to
execute in an IMS/360 Type 1 region to:

a. Inquire about a part and its description

b. Inquire about a part's total inventory in all locations or by
specific inventory location

c. Add a new part and its description

d. Add part inventory information by location to an existing
part description '

e. Delete part inventory information by location

f. Delete a part after deletion of all its subordinate part
inventory information

g. Close a part order to increase the part inventory at a
specific location

h. Disburse a specific quantity of a particular part on a
planned or unplanned basis at a particular part inventory
location, thereby reducing inventory

Figure 33 interrelates the sample problem transactions, programs, and
data bases.

241

PART
Inquire on

|Part Descr 4

Inventory
Status of a

Inventory

Part Descr.

Program

Single Location

Inventory
Program

Part Location|

of a Part at
all Locations

Increase a
Part's
Inventor

DISBURSE

Decrease a
Part's

All Location
Inventory
Program

Increase a
Part's Inventory
Program

— | Inventory

Decrease a Part's|

i

DATA

BASE

Inventor Program
ADDPART
_—___———"‘ DATA BASE HIERARCHICAL STRUCTURE
Add New Part
to Data Base
PART
W MASTER
ADDL Add/Delete T
Add Part Part and f m
Inventory Inventory STANDARD STOCK STATUS
Location | g Location DATA - IN INVENTORY
DLETPART Program y— ‘
Delete Part CYCLE BACK
from Data Base] COUNT ORDERS
pLETINY
Delete Pary
Inventory
Location
TRANSACTIONS PROGRAMS

Figure 33. Sample problem transactions, programs, and data bases

CREATING SAMPLE PROBLEM ENVIRONMENT

As outlined in the introduction to this chapter, a series of steps

must be performed to create the sample problem environment.

The

remainder of this chapter describes these in detail or provides
references for the required steps.

Copying IMS/360 Distribution Libraries

Figure 34 is an example of the JCL necessary for the allocation and
cataloging of the data sets required for IMS/360 system definition and

execution.

The tape move described in Chapter 2 should move the data sets into

direct access libraries.

If the DCB attributes of IMS.GENLIB and
SYS1.MACLIB differ, it may be necessary to reblock IMS.GENLIB using the

IEBCOPY utility prior to performing the IMS/360 system definition.

242

7\

N/

Performing an IMS/360 System Definition

Prior to performing Stages 1 and 2 of IMS/360 system definition,
certain data sets must be allocated and cataloged. Figure 34 is an
example of the JCL required to allocate and catalog the data sets
required by the sample problem. Space requirements should be adjusted
if devices other than 2311 are to be used. If data set names are to be
changed from those shown in Figures 34 and 35, refer to Chapter 4 of
this manual for assistance.

243

-

X

\

X //ALLOCATE JOBY)MS,MSGCLASS=A,MSGLEVEL=1, PRTY=12

//7EXEC PGM=TFHPROGM

.//TWO DD VOL=SER=222222,UNIT=2311,DISP=0OLD

//THR DD VOL=SER=333333,UNIT=2311,DISP=OLD
//ILIBO1 DD VOL=SER=ILIBO01l,UNIT=2311,DISP=0OLD

/7/ILIB02

DD VOL=SER=ILIB02,UNIT=2311,DISP=OLD

//SYSPRINT DD SYSOUT=A
//SYSIN DD *,DCB=BLKSIZE=80

SCRATCH VTOC,VOL=2311=222222, PURGE

SCRATCH VTOC,VOL=2311=333333, PURGE

SCRATCH VTOC,VOL=2311=ILIB01, PURGE

SCRATCH VTOC,VOL=2311=ILIB02, PURGE
//LIBRARYS EXEC PGM=IEHPROGM,REGION=100K
//SYSPRINT DD SYSOUT=A

//SIDCO1 DD UNIT=2311,VOL=SER=SIDCO1,DISP=0LD

//TEMPSET DD DSN=TEMPSET,UNIT=2311,VOL~SER=222222,DIS

7/

//7CATALOG DD DSN=SYSCTLG,UNIT=2311, VOL—SnR‘ILIBOZ DISP"(KEEP) ,

/77

//RESLIB DD DSN=IMS.RESLIB,UNIT=2311,VOL=SER=ILIB02,DISP=(,KEEP),

/77

//MACLIB DD DSN=IMS.MACLIB, UNIT—2311 VOL=SER=ILIBO1, DISP=(KEEP) ,

/7

//PGMLIB DD DSN=IMS.PGMLIB,UNIT=2311,VOL=SER=ILIB01,DISP=(,KEEP),

77/

//PSBLIB DD DSN=IMS.PSBLIB,UNIT=2311,VOL=SER=ILIB02,DISP=(,KEEP),

/77

//DBDLIB DD DSN=IMS.DBDLIB,UNIT=2311, VOL=SER=ILIB02, DISP=(,KEEP),

/77

7/

//IMSG DD DSN=IMS.IMSG,VO

/77

//0QCR DD DSN=IMS.OQCR,VOL=SER=ILIB02,DISP=(,KEEP) ,UNIT=2311,

7/

//0MSG DD DSN=IMS.OMSG,VOIL-SER=ILIB02,DISP=(,KEEP) ,UNIT=2311,

4

//SYSIN'

SPACE=(TRK, (1,1))

SPACE=(TRK, (2,1))

SPACE=(CYL, (40,5,20)) ,DCB=SYS1 .LINKLIB
SPACE=(CYL, (30, 5 15)),DCB=SYS1.MACLIB
space=(cyL, (10,2,10)) ,DCB=SYS1.LINKLIB
SPACE=(CYL,(10,2,5)),DCB=SYS1.LINKLIB
SPACE=(CYL, (10,2,5)) ,DCB=SYS1.LINKLIB

SPACE=(CYL, (5,\1}) ,DCB=DSORG=PS

//IQCR DD DSN=IMS.IQCR,V?%ESER=ILIB01,DISP=(,KEEP),UNIT=2311,

SPACE=(CYL, (5,{1))) ,DCB=DSORG=PS
SPACE=(CYL, (5/1)) ,DCB=DSORG=PS

SPACE=(CYL, (10 f4)) , DCB=DSORG=PS
DD *,DCB=BLKSIZE=8

RELEASE INDEX=IMS

DLTX INDEX=IMS,CVOL=2311=SIDCO1

CONNECT INDEX=IMS,CVOL=2311=SIDC01,VOL=2311=ILIB02
CATLG DSNAME=IMS.GENLIB,VOL=2311=222222,CVOL=2311=ILIB02
CATLG DSNAME=IMS.LOAD,VOL=2311=333333,CVOL=2311=ILIB02

CATLG

CATLG
CATLG
CATLG
CATLG
CATLG
CATLG
CATLG
CATLG
CATLG

DSNAME=IMS.RESLIB,VOL=2311=ILIB02,CVOL=2311=ILIB02

DSNAME=IMS.MACLIB,VOL=2311=ILIB01, CVOL=2311=ILIB02
DSNAME=IMS.PGMLIB,VOL=2311=ILIB01,CVOL=2311=ILIB02
DSNAME=IMS.PSBLIB,VOL=2311=ILIB02,CVOL=2311=ILIB02
DSNAME=IMS.DBDLIB,VOL=2311=ILIB02,CVOL=2311=ILIB02
DSNAME=IMS.PROCLIB,VOL=2311=ILIB01,CVOL=2311=ILIB02
DSNAME=IMS.IQCR,VOL=2311=ILIB01l,CVOL=2311=ILIB02
DSNAME=IMS.OQCR,VOL=2311=ILIB02,CVOL=2311=ILIB02
DSNAME=IMS.IMSG,VOL=2311=ILIB01,CVOL=2311=ILIB02
DSNAME=IMS.OMSG,VOL=2311=ILIB02,CVOL=2311=ILIB02

Figure 34. Example of allocation and catéloging

Having completed the allocation of required data sets, Stage 1 of
system definition is performed next. Figure 35 describes the
cards needed as input to system definition. The TRANSACT,
PROGRAM, and DATABASE cards describe the resources of the application
For the sake of simplicity, only one telecommunications line
group, one line, and one physical terminal (2740) are described.
terminals, the MASTER and one named HOWARD, are described.

IMS/360
control

sample.

logical

24y

(,CATLG) ,

SER=ILIBO1,DISP=(,KEEP),UNIT=2311,

Logical terminal HOWARD is used by the application as a destination for
exception messages.

If the user of the sample problem desires to perform the sample
problem by means of a 2260 Display Station, it must be included in his
Stage 1 system definition. The user must follow the rules of Chapter 4
of this manual for system definition and modify the Figure 35 control
cards accordingly. (Warning: IMS/360 does not support the 2260 Display
Station as a master terminal.) Prior to Stage 1 of IMS/360 system
definition, IMS.GENLIB and IMS.LOAD must be cataloged. Those parameters
in the system definition control cards which are underlined can be
redefined by the IMS/360 user to meet the requirements of his data
processing environment with no effect on the application.

245

|

{//IMSDEF JOB 1,IMS,MSGLEVEL=1

|7/STEP EXEC PGM=IEUASM, PARM="DECK, NOLOAD*
|//SYSLIB DD DSN=IMS.GENLIB,DISP=SHR

|77

DD DSN=SYS1.MACLIB,DISP=SHR

|//SYSPRINT DD SYSOUT=A
|//SYSPUNCH DD SYSOUT=B
|7/S8YSUT1 DD UNIT=SYSDA,SPACE=(1700,(500,50))
|/7/SYSUT2 DD UNIT=SYSDA,SPACE=(1700,(500,50))

|//SYSUT3 DD UNIT=(SYSDA,SEP=(SYSUT1,SYSUT2)),
(77 SPACE=(1700, (500,50))
|//SYSIN DD *

IMSCTRL SYSTEM=(MVT,ALL) ,MAXI0=7 ,MAXREGN=1,

|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
!
|
|
|
|
|
|
|

COMMSVC=(244,245) ,0CENDA=Z8,
OSAMSVC=243,MSGBUFF=10, CKPT=500

APPLCTN PSB=DFSSAMO02, PGMTYPE=TP v
DATABASE DBD=DI21PART, INTENT=SHARE
TRANSACT CODE=PART,PRTY=(7,10,2), INQUIRY=YES
APPLCTN PSB=DFSSAM03, PGMTYPE=TP
DATABASE DBD=DI21PART, INTENT=SHARE
TRANSACT CODE=DSPINV,PRTY=(7,10,2),INQUIRY=YES
APPLCTN PSB=DFSSAMOY4 , PGMTYPE=TP
DATABASE DBD=DI21PART, INTENT=UPDATE, LOG=YES
TRANSACT CODE=ADDPART, PRTY=(7,10,2), INQUIRY=NO
TRANSACT CODE=ADDINV,PRTY=(7,10,2),INQUIRY=NO
TRANSACT CODE=DLETPART,PRTY=(7,10,2), INQUIRY=NO
TRANSACT CODE=DLETINV,PRTY=(7,10,2),INQUIRY=NO
APPLCTN PSB=DFSSAMO05 , PGMTYPE=TP
DATABASE DBD=DI21PART, INTENT=UPDATE, LOG=YES
TRANSACT CODE=CLOSE,PRTY=(7,10,2),INQUIRY=NO
APPLCTN PSB=DFSSAM06 , PGMTYPE=TP
DATABASE DBD=DI21PART, INTENT=UPDATE, LOG=YES
TRANSACT CODE=DISBURSE,PRTY=(7,10,2), INQUIRY=NO
APPLCTN PSB=DFSSAM07, PGMTYPE=TP
DATABASE DBD=DI21PART, INTENT=SHARE
"TRANSACT CODE=DSPALLI,PRTY=(7,10,2),INQUIRY=YES

LINEGRP DDNAME=DD2740
LINE FEAT=POLL, ADDR=032 :
TERMINAL ADDR=E2
NAME MASTER
NAME 'HOWARD
MSGQUEUE QCRIN=(IQCR,IMS.IQCR,2311,ILIB01),

QCROUT=(0OQCR, IMS.OQCR, 2311,ILIB02),

MSGIN=(IMSG, IMS. IMSG, 2311, ILIB0O1),

MSGOUT=(0OMSG, IMS .0OMSG, 2311, ILIB02)
MASTTERM MASTER

MACLIB COPY=ALL, UNIT=2311, VOLNO=ILIBO1

RESLIB UNIT=2311,VOLNO=ILIB02

PGMLIB

PSBLIB _

DBDLIB .

PROCLIB PDS=SYS1.PROCLIB

IMSGEN ASMPRT=0N, LEPRT= (XREF, LIST) , UT1SDS=TEMPSET
END ‘

L]

S

Figure 35. Input to system definition

control card changes.

names and the IMS/360 library names should be reviewed.

246

Refer to Chapter 4 of this manual if assistance is required in making
In particular, the message queue data set DD

VR

The communication line and terminal operands may be modified as
required to conform to the user's System/360 and Operating System/360
specifications. Chapter 4 of this manual provides information on the
various operands permitted.

Once Stage 2 of system definition is successfully completed, the
IMS/360 user must perform the following.

1. Include the two Type 1 and the one Type 2 IMS/360 SVC modules in
* the Operating System/360 nucleus. This can be done with a
relink-edit of the Operating System/360 nucleus if available user
SVC numbers were generated at the time of Operating System/360
system generation. If available SVC numbers do not exist, the
user must perform at least an Operating System/360 nucleus-only
system generation to provide the required SVC numbers.

2. Copy the OSAM channel end appendage IGG019Z8 or the equivaient to
SYS1.SVCLIB.

3. Allocate and catalog the four sequential data sets used for
message queuing in this example. Their DD names are IQCR, OQCR,
IMSG, and OMSG. The associated data set names are IMS.IQCR,
IMS.OQCR, IMS.IMSG, and IMS.OMSG. Chapter 3 of this manual
provides information for allocation of these data sets.

A narrative is provided at the end of the output listing from IMS/360
system definition Stage 1. This narrative describes the additional
functions a system user must perform prior to execution of his IMS/360
system. Please read this narrative.

Performing a Data Base Description (DBDGEN) Generation

Part of the sample problem is the generation of a data base
description which will be used by the sample application. The
generation process consists of an assembly and linkage edit. A member
in IMS.MACLIB titled DI21PART contains the source input to generation of
a DBD. A procedure is placed in SYS1.PROCLIB by system definition. The
following JCL should be used to invoke this procedure and use the DBD
source input to create the DBD. The output of the DBD generation
becomes a member in the partitioned data set IMS.DBDLIB.

//DBD JOB SAMPLE, MSGLEVEL=1
/77 EXEC DBDGEN, MBR=DI21PART
//C.SYSIN DD DSNAME=IMS.MACLIB(DI21PART), DISP=SHR

Performing a Program Specification Block Generation (PSBGEN)

A part of the sample problem involves generation of a program
specification block (PSB). The generation process is called PSBGEN.
Like DBDGEN, the process consists of an assembly and linkage edit. A
member of IMS.MACLIB named DFSSAPO4 contains the source input which will
generate the PSB for the online application program named DFSSAMO4.
IMS/360 system definition places a procedure named PSBGEN in
SYS1.PROCLIB. The following JCL uses this procedure to place the output
PSB in the partitioned data set IMS.PSBLIB as defined in the PSBLIB
statement of system definition.

//PSB JOB 1,IMS,MSGLEVEL=1
//STEP EXEC PSBGEN,MBR=DFSSAMO4
//C.SYSIN DD DSN=IMS.MACLIB(DFSSAPO4) , DISP=SHR

Note: The input member DFSSAPO4 creates an output PSB named DFSSAMOL.

~

247

Moving Sample Problem Programs and Control Blocks

The next step in the sample problem is to have the IMS/360 user
relink-edit the remaining PSB's and programs for data base creation and
message processing from IMS.LOAD into their respective IMS libraries
(that is, IMS.PSBLIB and IMS.PGMLIB).

A load module exists within IMS.LOAD for each PSB and application
program. The following JCL and link-edit control statement are used to
relink-edit the PSB's from IMS.LOAD to IMS.PSBLIB.

//PSBMOVE JOB 1, IMS,MSGLEVEL=1

/7 EXEC PGM=IEWL, REGION=110K, , X
7/ _ PARM=" XREF, LIST, LET, NCAL, SIZE=(100K, 7248) "

//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR

//SYSLIN DD DDNAME=SYSIN

//SYSLMOD DD DSNAME=IMS.PSBLIB,DISP=0LD

//SYSPRINT DD SYSOUT=I

//SYSOBJ DD DSNAME=IMS.LOAD,DISP=SHR

//SYSUT1 DD UNIT=2311,DISP=(NEW,DELETE), X
7/ SPACE=(CYL, (10,1) ,RLSE)
//SYSIN DD +*

INCLUDE SYSOBJ (DFSSAM11)

NAME DFSSAMO1(R)

INCLUDE SYSOBJ (DFSSAM12)

NAME DFSSAMO2 (R) ’

INCLUDE SYSOBJ (DFSSAM13)

NAME DFSSAMO3 (R)

INCLUDE SYSOBJ (DFSSAM15)

NAME DFSSAMOS5 (R)

INCLUDE SYSOBJ (DFSSAM16)

NAME DFSSAMO6 (R)

INCLUDE SYSOBJ (DFSSAM17)

NAME DFSSAMO7(R)

INCLUDE SYSOBJ (DFSSAM18)

NAME DFSSAMO8 (R)

/% .

The parameters in the JCL statements that are underlined should be
modified to conform to the user's system configuration.

The following JCL and control card statements are used to relink-
edit the application program load modules from IMS.LOAD to IMS.PGMLIB.

248

N

{
|
|
|

//PGMMOVE JoB 1,IMS,MSGLEVEL=1

// EXEC PGM=IEWL, REGION=110K, X
7/ PARM="'XREF, LIST,LET,NCAL,SIZE=(100K,7248) "

//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=SHR

//SYSLIN DD DDNAME=SYSIN

//SYSLMOD DD DSNAME=IMS.PGMLIB,DISP=0LD

//SYSPRINT DD SYSOUT=I

//SYSOBJ DD DSNAME=IMS.LOAD,DISP=SHR

//8YSUT1 DD UNIT=2311,DISP=(NEW,DELETE), X
7/ SPACE=(CYL, (10,1) ,RLSE)
//SYSIN DD =*

INCLUDE SYSOBJ (DFSSAMO01)

ENTRY DLITCBL

NAME DFSSAMO1 (R)

INCLUDE - SYSOBJ (DFSSAMO02)
ENTRY DLITCBL

NAME DFSSAMO2 (R)

INCLUDE SYSOBJ (DFSSAMO03)
ENTRY DLITCBL

NAME DFSSAMO3 (R)

INCLUDE SYSOBJ (DFSSAMOL)
ENTRY DLITCBL

NAME DFSSAMOL (R)

INCLUDE SYSOBJ (DFSSAMO05)
ENTRY DLITCBL

NAME DFSSAMO5 (R)

INCLUDE SYSOBJ (DFSSAMO06)
ENTRY DLITCBL

NAME DFSSAMO6 (R)

INCLUDE SYSOBJ (DFSSAM07)
ENTRY DLITCBL

NAME DFSSAMO7(R)

INCLUDE SYSOBJ (DFSSAMO08)
ENTRY DLITCBL

NAME DFSSAMO08 (R)

Executing an IMS/360 Data Base Load in a Batch Environment

Once the programs and PSB*'s have been relink-edited to their
respective libraries, the application data base may be created. Before
this data base is loaded, the user must allocate for the Operating
System/360 data sets which represent the data base. One ISAM and one
OSAM data set are required. The DD card ddnames for the ISAM and OSAM
data sets are DI21PART and DI21PARO, respectively; the data set names
for the ISAM and OSAM data sets are IMS.DI21PART and IMS.DI21PARO,
respectively.

The user should now catalog these two data sets using the Operating
System/360 utility IEHPROGM as shown in Figure 34. These data sets must
be allocated for and cataloged before the data base load. IMS/360
system definition has placed into SYS1.PROCLIB a procedure to execute
the data base load. The input data for the data base load execution,
which contains the SYSIN for load, is a member of IMS.MACLIB. The name
of the member is MFDFSYSN. The following JCL statements will invoke the
procedure to create the data base.

//DBLOAD JOB 1, IMS,MSGLEVEL~=1
//STEP EXEC MFDBLOAD, PSER=333333, PUNIT=2311,0SER=222222,0UNIT=2311

The symbolic parémeters designate the volume serial and unit for the
prime and OSAM data sets.

The data base must be scratched and reallocated if a second execution
of the MFDBLOAD procedure is desired.

249

A message is printed on the Operating System/360 console when the
data base load is started, and another when the load is completed.

Initializing IMS/360 in an Online Environment

At this point, the IMS/360 system has been defined for the user's
environment, the application sample DBD has been created, the PSB's and
programs have been relink-edited to their respective libraries, and the
data base has been built.

- The user is now ready to execute the IMS/360 telecommunications (Type
0) region control program and to perform message processing in an
IMS/360 Type 1 region.

The system user should review Chapter 3 of this manual and the
Ims/360 Operations Manual, Volume II - Machine Operations for
information concerning IMS/360 cold start. The procedure named IMS1,
which is described in this manual, should be used to start the IMS/360
control program. The user must use the following JCL override
statements which allocate the data sets created in the prior data base
load.

//IMS JOB MSGLEVEL=1, PRTY=13
V4 EXEC IMS1

//NUCLEUS..DI21PART DD DSN=IMS.DI21PART,DISP=OLD,VOL=SER=333333,UNIT=2311
//NUCLEUS.DI21PARO DD DSN=IMS.DI21PARO,DISP=OLD,VOL=SER=222222,UNIT=2311
7%

After the IMS/360 Type 0 region has been initiated as an Operating
System/360 job, a message is printed on both the Operating System/360
system console and the IMS/360 master terminal indicating IMS READY.

At this point,'the master terminal operator should enter the restart
command message:

77N

/NRESTART CHKPT 0 FORMAT ALL

The FORMAT ALL parameter will cause the IMS/360 message queues to be
formatted. Formatting is required only at the initial cold start or
after an 1I/0 error occurs in the queue data sets. Formatting requires
about 2-1/2 seconds per 2311 cylinder and 10 seconds per 2314 cylinder.
These times are approximately doubled if write-checking is included.
Immediately upon entry of the cold start command, the IMS/360 system
responds with a message:

#*NRESTART IN PROGRESS

After completion of the restart, which includes opening the message log
and message queue data sets and formatting the message queue data sets,
the following message is generated:

*IMS COLD START COMPLETE, ENTER START COMMANDS

The éystem, via the Operating System/360 console, will request the
mounting of a standard-label, nine-track tape for the system log during
cold start. : :

Although the IMS/360 control program is now available for message
entry, no message region exists for message processing. This may be
accomplished by entering the /START REGION command from the master
terminal.

250

The start region command causes an Operating System/360 reader, which
will read the JCL packet for a message region into the Operating
System/360 job queue, to be started. The JCL packet for the message
region is obtained from the PROCLIB library specified in IMS/360 system
definition. Once the message region has been started and has
communicated with the IMS/360 Type 0 region, a message, IMS MESSAGE
REGION STARTED, is transmitted to the master terminal. Message
processing may now begin.

Executing the Online Applications from User Terminals

At this point, each transaction code is discussed. Both input and
output information and format are included in the discussion. Figure
36, at the end of this discussion, provides a list of some part number
records placed into the data base at the time of data base load. Those
part numbers may be used by the system user to enter transactions. The
generic transaction format for all the following transactions is:

TRANSCODEbOPERAND1, OPERAND2, . . .

The transaction code is separated from the first operand by one blank
(b). All transactions described here are defined during system
definition as INQUIRY=NO. Therefore, the transactions cannot be entered
on an inquiry logical terminal associated with a dial communication
line.

The first transaction, PART, allows the terminal operator to inquire
into the part number data base for information from the part master and
standard information segments of a particular part number. The input
format is: -

transaction code part number
part an960C10

The output or response format is:

part number description procurement code

PART=AN960C10 ; DESC=WASHER ; PROC CODE=74
INV CODE=2 MAKE DEPT=12-00 PLAN REV NUM= MAKE TIME= 63 COMM CODE=14
The second transaction,; DSPALLI, allows the terminal operator to

display all inventory, cycle count, and back-order information for a
particular part. The input format is:

transaction code part number
dspalli an960c10

The output format is:

part number description procurement code

PART=AN960C10 ; DESC=WASHER ; PROC CODE=74

followed by inventory description and detail information:

251

AREA INV PROJ DIV UNIT CURRENT ON IN TOTAL COUNT BACK

DFPT €D PRICE RFQOMTS ORDER STOCK DISBURSF TAKEN ORDR -~
1. AA 165 11 126 85~ 126 209 N n =
2. AK 287 7F 38 0 88 137 N 0
3, 2 80 091 26 630 0 680 1057 N 0

The third transaction, DSPINV, allows the terminal operator to
display inventory information at a particular inventory location.
Assume that it is wished to display only the third inventory entry
listed in the above output. The inventory location key is obtained by
concatenating AREA, INVDEPT, PROJCD, and DIV.

The input format for this transaction is:

transaction code part number inventory key
dspinv an960c10, 28009126

The resultant output is:

PART=AN960C10 ; DESC=WASHER ; PROC CODE=74

ARFA=2; INV DFPT=80; PRJ=091; DIV=26; PRICE= .000; STK CT DATE=513; UNIT=EACH

CURR REQMTS= 630 ; ON ORDER= 0 ; TOTAL STOCK= 680 (:
DISB PLANNED= 1053 ; DISB UNPLANNED= L ; STK CT VARIANCE= 0

The fourth transaction, ADDPART, allows the terminal operator to add
a new part into the data base with its associated description.

The input format is:

transaction code part number description proc.code
addpart ab%960c10, rivet, 74

The resultant terminal output is:
PART NUMBER AB960C10 ADDED TO DATA BASE

The fifth transaction, ADDINV, allows the terminal operator to add
"inventory information to an existing part in the data base.

The input format is:

transaction code part number inventory key

addinv ab960c10, © 8009126
The resultant output is:

INVENTORY 8009126 ADDED TO PART NUMBER AB960C10 .

252

If the operator wishes to display the part's inventory information,
he can enter:

DSPINV ab960c10,8009126

The resultant output is:

252.1

252.2

'; PROC CODE=74

PART=AB960C10 ; DESC=RIVET
AREA=8; INV DEPT=00; PRJ=912; DIV=6 ; PRICE= .000; STK CT DATE= ; UNIT=
CURR REQMTS= 0 ; ON ORDER= 0 ; TOTAL STOCK= 0

DI1SB PLANNED= 0 ; DISB UNPLANNED= 0 ; STK CT VARIANCE= 0

The sixth transaction code, DLETINV, allows the terminal operator to
delete a specific inventory item for a specific part. The input format

is:

inventory key

transaction code part number

dletinv ab960c10, 8009126

The resultant output is:

INVENTORY 8009126 DELETED FROM PART NUMBER AB960C10

If all the inventory items are deleted, then a particular part number
may be deleted from the data base with the transaction code DLETPART.
The input format is:

transaction code part number

dletpart ab960c10
The resultant output is:

PART NUMBER AB960C10 DELETED FROM DATA BASE

The terminal operator may now wish to close an open order for a
specific part in a specific inventory item. The transaction to close an
open order is CLOSE. The input format is:

quantity
inventory key received

transaction code part number

close an960c10, 28009126, 15, 15

. The resultant output is:

UPDATE COMPLETE
The terminal operator may now wish to display inventory item 28009126
for part AN960C10. The output format is:

part number inventory key

transaction code

an960cl10, 28009126

dspinv
253

The resultant output is:

PART=ANI960C1N ; DFSC=WASHER ; PROC CODE=74

ARFA=2; INV DEPT=80; PRJ=091; DIV=26; PRICE= .000; STK CT DATF=513; UNIT=FACH
CURR RFNAMTS= 630 ; OM ORDFR= 15-; TOTAL STOCK= 695

NISB PLANNFD= 1053 ; DISR UNPLAMNFD= L ; STK CT VARIAMCE= 0

Notice that the on-order quantity has been reduced by 15 and the
| total stock quantity has been increased by 15 to.695 from the earlier
display of this inventory information.

The final transaction code, DISBURSE, allows the terminal user to
allocate a quantity on a planned or unplanned basis of a given part from
a given inventory item. The input format is:

disbursement
transaction part inventory planned or quantity
code number key unplanned ~ disbursed
DISBURSE an960cl0, 28009126, u, 10

The resultant output is:

UPDATE COMPLETED

If the terminal operator now wishes to display the inventory
information for key 28009126 and part number AN960C10, the input format
is:

transaction code part number inventory key

dspinv _ an9%960c10, 28009126

The resultant output is:

PART=AN960C10 ; DFSC=WASHER ; PROC CODF=7u4

ARFA=2; INV DFPT=80; PRJ=091; DIV=26; PRICF= .600; STK CT DATF=513; UNIT=EACH
CURR RENMTS= 630 ; ONM ORDFR= 15-; TOTAL STOCK= 685

DISB PLANNED= 1053 ; DISB UNPLANNED= 14t ; STK CT VARIANCF= 0

The user may now terminate the IMS/360 system with a checkpoint
command such as described below.

254

/

Terminal input:

/checkpoint purge
Resultant output:

CHECKPOINT COMMAND IN PROGRESS
*CHKPT 99365/132102#%+*IMSDBS**PURGE**

The following is a list of available part records in the data base
which the user may employ for message processing. Those parts marked
with an asterisk have dependent back-order segments. All parts have at

least one dependent inventory status segment.

Part Numbers Back Order Segments

AN960C10

3003806 *
3007228

3013412

652799

7438995P002
7618032P101 *
922399-001

82125-869

A complete listing of the part numbers available on the data base may
be obtained by executing the procedure MFDBDUMP as follows:

//DBDUMP JOB 1, IMS,MSGLEVEL=1
//STEP EXEC MFDBDUMP

This procedure assumes the data sets IMS.DI21PART and IMS.DI21PARO
are cataloged.

255

INDEX /SET 73

/START 73

[STOP 174
Accounting, Statistics 208 J/TEST 74
After Channel Program Write and Check of New OSAM JUNLOCK 74

Physical Record 50 . Communication Terminals and Lines 61

Allocation Problem Example 52 Control and Data Statement Combinations - SMP 197
Allocation and Cataloging Example, Sample Problem 244 Considerations of HISAM and HSAM 45
Appendage, Channel End, OSAM 143 Control Blocks
Appendage to SYS1.SVCLIB, OSAM 143 Sample Problem Programs, Moving 248
APPLCTN Macro 115 Type 3 Region Estimates 31
Application Description Macro-Instruction Set 113 Type 0 Region Estimates 23
Application Programming Function 3 Control Cards, Statistics 213
/ASSIGN Command 63, 69 Character, Nonprintable 214

Hardware Terminal Address 214
Backout 97,103 _ Symbolic Terminal Name . 213
Backout, Data Base 103 Time 214
Basic Modules, Type 3 Estimates 31 ‘Transaction Code 213
Basic Storage Requirements, Type 0 Region Estlmates 29 Creating Sample Problem Environment 242
Batch Stand-Alone Example, System Definition 187 Creation, Data Base 43

BISAM versus QISAM 45

/BROADCAST Command 63, 69 Data Base 31

BTAM Device Support, Type 0 Region Estimates 23 After Insertion 51
Buffer Pools Backout 103
2260 24 Buffer Pool, Type 0 25
2740/1050 Output Line 24) Considerations 33
Creation 43
Call Routines, Supervisor 141 Data Language/I, Space Allocation 52
JCANCEL Command 69 Data Set Allocation 135
Cards, Control, Statistics 213 Description Generation — DBDGEN 52, 59
Cataloging, Allocation, Example 244 Hierarchical Segment Structure and Table of
/CHANGE Command 70 Parts List 55
Channel End Appendage, OSAM 143 Integrity Through the Use of OSAM 49
Checklist, Systems Operation 4 : Load in Batch Environment, Execution, Sample
Checkpoint 70, 83, 84 Problem 249
DUMPQ 83 Logical and Physical, Execution, Sample Problem 237
FREEZE 83 Macro 116
Guide 85 Management 60
PURGE 84,85 Organization Modules 31
Restart, Data Base Dump, and Data Base Recovery 83 Prior to Segment Insertion S50
Simple 83 Record Processing, Variable Length 33
Cold Start 90, 97, 100, 193, 204 Recovery 104
Commands from Master System Console, Format 62 Recovery Execution 105
Commands, Terminal 68, 75 ‘ Reorganization 45
[ASSIGN 63,68 Data Base Allocation Problem Example 52
/BROADCAST 63, 69 Data Base Creation DD Card Parameters 43
/CANCEL 69 Data Base Description Generation (DBDGEN) 52, 59
JCHANGE 69 Data Base Dump 84
/CHECKPOINT 70, 84 Execution 86
/DBDUMP 170 Recovery, Restart, Checkpoint 83
/DBLOG 70 With Stop 88
/DBNOLOG 70 : With Stop Execution 88
- /[DELETE 70

Data Base Space Allocation 52

/DISPLAY 70 Logical Record, Types, Examples 40 -
[END 70, 63 Record Format 35

[ERESTART 170, 97, 98 : Segment Insertion, Description 46
/EXCLUSIVE 170 Status Codes 235

/1AM 70, 63 Data Set Groups, Single and Multiple 44
/LOCK 70 Data Statements, Control 197

/LOG 71 DBDGEN 52, 59

/NRESTART 71, 89,91 Error Conditions 226

[PSTOP 72 Performing for Sample Problem 247
[PURGE 72 DBD Generation 59

/RDISPLAY 73 DBDLIB Macro 128

/RESET 73

256

o/

/DBDUMP Command 70, 84

/DBDUMP with STOP Command 84, 88

/DBLOG Command 70

/DBNOLOG Command 70

DBRECOVERY Command 104, 70

DCB Option Codes, ISAM, DB Creation Parameters 44
DCB Option Codes, OSAM, DB Creation Parameters 44
Defining the IMS/360 System 111, 110

/DELETE Command 70

Dependent Segment Insertion, Data Language/I 46
Description of Sample Problem 236

Description of SMP Output 198

/DISPLAY Command 70

Display Station, 2260 26,61, 120, 121, 245

DMAN Control Card 59

DMB Pool Size Calculation 27

DMB Size Calculation 26

Emergency Restart 97
Execution 98
In Minimum System, or Normal 103

/END Command 70, 63
/ERESTART Command 70, 97, 98

Error Conditions, System Definition 157, 228
Error Conditions, and Status Codes 225
DBDGEN Error Conditions 226
PSBGEN Error Conditions 225
. System Definition Error Conditions 228
Estimates, Security Control Block 23
Estimating Type 0 Region Main Storage, Example 22
IMS/360 Requirements 29
0S/360 Requirements 29
Requirements 30
Total Type O Storage Requirement 29
Estimating Type 1 and Type 2 Region Main
Storage Requirements 30
Estimating Type 3 Region Main Example 32
0S/360 Requirement 33
Storage Requirements 31, 32
Total Type 3 Storage Requirement 33
Estimating Storage and Machine Requirements 22
Example of Two or Four Data Sets for Direct Access
Queue Storage 78
Example of Types of Data Language/I Logical Record 40
Examples, System Definition 157
Alternate 157
Batch Stand-Alone 187
Teleprocessing 157
/EXCLUSIVE Command 70
Executing Data Base Load in a Batch
Environment, Sample Problem 249
Executing Online Application from User Terminals,
Sample Problem 251
Execution of Security Maintenance Program 199

Format of Commands Entered From System Console 62
Functional Relationships (System) 2

Generation, DBD 52, 59
Generation, PSB 58, 247

Handling, System Distribution, Maintenance 11

Hierarchical Segment Structure and Table of Parts
List Data Base 55

HISAM, HSAM Considerations 45

HSAM, HISAM Considerations 45

/IAM Command 70, 63
IEHMOVE to Direct Access Storage Device 11
IMSCTRL Macro 113
IMSGEN Macro 130
IMSTEST Macro 131
Index Area, DB Allocation Example 56
Initializing IMS/360 in an Online Environment,
Sample Problem 250
Interface
with Machine Operations 108
with Management 109
Introduction 1
ISAM DCB Option Codes 43
ISAM Prime Area, DB Allocation Exampie 53

JCL

Allocation and Cataluging Example, Sample
Problem 244

DBD Generation 60

PSB Generation 58

Sample Problem, System Definition 247

System Definition 134

System Log Utility 214

Type 0 Processing Region. 154

Type 2 Processing Region 155

Type 3 Processing Region 156

Types of Processing Regions 153

Libraries 145

Libraries, System, Procedures 144

Line and Terminal Network 67

Line Buffer Pool, 2260 24

LINEGRP Macro 120

LINE Macro 121

Link Pack Modules, 0S/360 152

Link Pack Procedures, 0S/360 153

/LOCK Command 70

/LOG Command 71

Log Data Set Allocation 209

Log Format 209

Logical and Physical Data Bases, Sample Problem 237

Logical Record, Data Language/I Types, Examples 40

Logical Record Format Relationship 36

Logical Record in Data Base, Overflow, Statistics 57

Logical Record Length Distribution 53

Logical Terminal/Physical Terminal Relationship on
Nonswitched Communication Network 63

Logical Terminal/Physical Terminal Relationship on
Switched Communication Network 64

Logical Terminal Types in Switched Communication

Network Environment 65
Logical Terminals 63

Machine Operations Function 3
Machine Operations, Interface with 108
MACLIB Macro 126
Macro-Instruction

Set, Application Description 112

Set, Terminal Description 113

System Definition, IMS/360 110
Macros

APPLCTN 115

DATABASE 116

DBDLIB 128

IMSCTRL 113

IMSGEN 130

IMSTEST 131

LINE 121

LINEGRP 120

MACLIB 126

MASTTERM 125

MSGQUEUE 124

NAME 125

PGMLIB 127

POOL 122

PROCLIB 129

PSBLIB 128

RESLIB 127

SUBPOOL 123

TERMINAL 122

TRANSACT 117
Management, Interface with 109
Management of Data Bases 60
Master Terminal 62
MASTTERM Macro 125
Maximum System Definition Macro-Instruction

Occurrences 133
Message Queue Space Allocation 79
Message Queue Space Allocation, Secondary 83
Message Queues 75
Message Select and Copy or List, Statistics 213
MFT and MVT, Impact on IMS/360 21
Modules, Link Pack, 0S/360 152
MSGQUEUE Macro 124
Multiple Data Set Groups, and Single 44
Multiple Physical Record Example 34
MVT, MFT, Impact on IMS/360 21

NAME Macro 123 .
Nonswitched Communication Network, Logical Terminal/
Physical Terminal Relationship 63
Normal Restart 71, 89,91
Execution 91
Format 90
Minimum System, or Emergency 103
/NRESTART Command 71, 89,91
Nucleus, Inclusion of SVC Routines in
Operating System/360 141

Operating System/360
" Control Block Requirements — Type 3 Regio:
Estimates 32
Type 0 Region Estimates 27
MFT 28
MVT 28
Operator, Master Terminal 62
Operator, Remote Terminal 68
OSAM
Appendage to SYS1.SVCLIB 143
Channel End Appendage 143
Data Base Integrity 49
DCB Option Codes 44
Link Pack Modules 152
Link Pack Procedures 153
Overflow, DB Allocation Example 57
Physical Record, New, After Channel Program
Write and Check 50
Output Line Buffer Pool, 2740, 1050 24

Password Maintenance 193
PGMLIB Macro 127
Physical Record Example, Multiple 34

258

Physical Terminal 61, 63
Polling 61
POOL 65
POOL Macro 122
Problem, Sample 236
Procedures
DBDGEN 145, 146
DLIBATCH 145, 148,153
DLITCBL 145,151
DLITPLI 145,152
IMS 149, 145
IMSO 145, 150, 154
IMS1 145,151,154
IMSBATCH 145, 151
IMSCOBGO 145, 148
IMSCOBOL 145, 147
IMSMSG 145,151, 154
IMSPLI 145, 147
IMSPLIGO 145, 149
Linkpack 153
PSBGEN 145, 146
SECURITY 145,152
System 144
Processing, Record, Data Base Variable Length 33
Processing Regions 16
System Flow, Type 0 and 1 16
System Flow, Type 2 18
System Flow, Type 3 19
Type 0, JCL 154
Type 2, JCL 155
Type 3, ICL 156
Type 3 System Definition 157
Types 154 -
PROCLIB Macro 129 \
Program Specification Block Generation 58, 247
Programs, Sample Problem, and Control Blocks, Moving 248
PSB and DMB Pool Sizes 26
PSB Generation 58,247
PSBGEN Error Conditions 225
PSBGEN, Performing for Sample Problem 247
PSBLIB Macro 128
PSB Size Calculation 26 .
/PSTOP Command 72
/PURGE Command 72

N\

QCR and Message Buffer Pool 25
QISAM versus BISAM 45

/RDISPLAY Command 70
Record Format

Data Language/lI 35

Type 1l 36

Type2 37

Type 3 38

Type4 39

Type5 40
Record Length, Logical Distribution 53
Recovery, Data Base 104
Recovery Execution, Data Base 105
Region Estimates, IMS/360 Main Storage Requirements 22, 33
Regions, Processing IMS/360 16
Regions, Processing, Types 154
Remote Terminals 63
Reorganization, Data Base 45
Reports, Statistical, Types 211

Requirements, Machine and Storage, Estimating 22
/RESET Command 73
RESLIB Macro 127
Restart 89
' Data Base Dump, Recovery, Checkpoint 83
Emergency 97
Emergency Execution 98
In Minimum System 103
Normal Execution 91
In Minimum System 103
Normal 71, 89,91
Root Segment Insertion, Data Language/l 46

Sample Problem 236
Copying Distribution Libraries 242
Creating Environment 242
Description of 236
Executing DB Load in Batch Environment 249
Initializing IMS/360 in an Online Environment 250
Moving Sample Problem Programs and Control
Blocks 248
Performing DBDGEN 247
Performing PSBGEN 247
Performing System Definition 243
Security Control Block Estimates 23
Security Maintenance 193
- Control and Data Card Types 196
Control and Data Statements 194, 196
Control Block Estimates 23
Description of Output 198
Example 205
Flow 200
Password 193
Program 193
Program Execution 199
Terminal 193
Segment Insertion
Data Language/l 46
Dependent 47
Root 46
/SET command 73
Simple Checkpoint 83
Single and Multiple Data Set Groups 44
SMP Output, Description 198
Space Allocation, Message Queue 79
Space Allocation, Secondary Message Queue 83
/START Command 73
/START REGION Command 155
Statements, Control and Data 197
Statistics 208
and Accounting 208
Control Cards 213
Hardware Terminal Address 214
Nonprintable Character 214
Symbolic Terminal Name 213
Time 214
Transaction Code 213
JCL (System Log Utility) 214
on a 10% of the Overflow of the Logical Records in
a Data Base 57
Reports 210
Reports, Examples 216
Reports, Types 211
Utilities, System Log, Program Flow 210
Status Codes and Error Conditions 225
Status Codes, Data Language/I 235

/STOP Command 73

/STOP REGION Command 154
Storage Estimates, IMS/360 22
Subpool 68

SUBPOOL Macro 123
Supervisor Call Routines 141

SVC Routines in Operating System/360 Nucleus, Inclusion 141

Switched Communication Network, Logical Terminal/
Physical Terminal Relationship 64

Switched Communication Network Environment, Logical

Terminal Types 65
System Console, Format of Commands Entered
From 62 .
System Data Set Allocation, IMS/360 135
System Data Sets, IMS/360 134
System Definition 110
Error Conditions 228, 157
Examples 157
Alternate SD 157
Batch Stand-Alone 187
Teleprocessing 157
Guide 135
Input, Sample Problem 246
JCL 134
Macro-Instructions, IMS/360 112
Macro-Instruction Occurrences, Maximum 133
Performing for Sample Problem 243
Stage 1 Output Warnings 143
Type 3 Processing Region 157
With No Master Terminal 62
System Design Considerations 16
System Distribution 11
Handling and Maintenance 11
System Flow '
Processing Regions Type O and 1 16
Processing Region Type 2 18
Processing Region Type 3 19
System Handling 13
System Procedures 144
System Log Utility Program 208
JCL 214
System Maintenance 15
System Programming Function 3
System Structuring Considerations 110
Systems, IMS/360, with No Master Terminal 62
Systems Operation 2
Checklist 4
Function 2
Interface with Other Functions 108

Telecommunications Considerations 61
Teleprocessing Examples (System Definition) 157

Terminal Address Control Card, Hardware, Statistics 214

Terminal Commands (See ‘“Commands”)

Terminal Commands and Messages, IMS/360 68

Terminal Description Macro-Instruction Set 112

Terminal, Logical 63

Terminal, Logical, Relationship on Nonswitched
Communication Network 63

TERMINAL Macro 122

Terminal, Master 62

Terminal Name Control Card, Symbolic 213

Terminal Network, Line 67

Terminal, Physical, Relationship on Nonswitched
Communication Network 63

259

Terminal, Physical, Relationship on Switched
Communication Network 64
Terminal Security Maintenance 193 .
Terminals, Remote 63
/TEST 74
Total Type 0 Storage Requirements 29
Total Type 3 Examples 33
Transaction Code Control Card 213
TRANSACT Macro 117
Type 0 and 1 Processing Regions System Flow 16
Type 0 Region, JCL 154
Type 0 Region Main Storage Requirements 22
Type 0 Region Main Storage Requirements, Example 29
Type 1 Record Format, Data Language/I 36
Type 1 Region, JCL 155
Type 1 and 2 Region Main Storage Requirements 30
Type 2 Processing Region System Flow 18
Type 2 Record Format 18
Type 2 Region, JCL 37
—,

260

Type 3 Processing Region System Flow 19

Type 3 Record Format 38 P
Type 3 Region, JCL 156 ’
Type 3 Region Main Storage Requirements 31

Type 3 Region Main Storage Requirements, Example 32

Type 4 Record Format 39

Type 5 Record Format 40

Type 3 Region Storage Requirements Example 32

Types of Data Language/I Logical Records, Example 40

Types of Processing Regions — JCL. 153

Types of Statistical Reports 211

J/UNLOCK Command 74
Variable Length Data Base Record Processing 33

Warm Start 90,91, 193, 204
Warnings, System Definition Stage 1 Output 143

SH20-0635-1

BV

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, New York 10601
(USA only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(Internationat)

1-GE90-0ZHS °V'S'N ul palulid INO 09E/S NG| 841 10} 09g/S 1uawabeuey uoltew.oju)

N

READER’'S COMMENT FORM

Information Management S/360 for the IBM S/360
Operations Manual

SH20-0635-1

Please comment on the usefulness and readability of this publication, suggest additions and
deletions, and list specific errors and omissions (give page numbers). All comments and sugges-
tions become the property of 1M, If you wish a reply, be sure to include your name and address.

esecesses

fold

fold

COMMENTS

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.
FOLD ON TWO LINES, STAPLE AND MAIL.

fold

fold

SH20-0635-1

YOUR COMMENTS PLEASE...

Your comments on the other side of this form will help us improve future editions of this pub-
lication. Each reply will be carefully reviewed by the persons responsible for writing and pub-
lishing this material.

Please note that requests for copies of publications and for assistance in utilizing your mM
system should be directed to your 1BM representative or the 1BM branch office serving your
locality. :

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N.Y.

]
|
BUSINESS REPLY MAIL E—
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES
:]
‘]
POSTAGE WILL BE PAID BY
. L]
IBM Corporation T —
112 East Post Road I
White Plains, N. Y. 10601 R
Attention: Technical Publications
fold fold

BV

®

International Business Machines Corparation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
{USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

seeecssnsee

R LX)

R

1-S€90-0THS V'S’ Ul pajulid WO 09€/S WAI 213 10§ 09¢/S 1uswageuey uoneuroyuy

