File S360 (Mod 20)-30
Form C24-9003-4 TPS

IBM Systems Heférence Library

IBM System/360 Model 20
Tape Programming System
Input/Output Control System

This publication describes the functions, principal
features, and use of the Input/Output Control System
supplied by IBM as part of the Model 20 Tape Program-
ming System (TPS). This Input/Output Control System
(I0CS) facilitates the programming of input/output
operations.

The following subjects are covered: (1) the defini-
tion statements that describe the files to be pro-
cessed, (2) the initialization macro instruction that
makes the files available to the system for data input
or data output, (3) the processing macro instructions
that cause input/output operations, and (4) the comple-
tion macro instructions that terminate processing of
data for one or more of the files used in an
application.

Also included is a section containing general pro-
gramming considerations, e.g., information about block-
ing and deblocking of records, combinations of input/
output and work areas, tape error routines, and regis-
ter usage. Programming examples are also given.

Readers of this publication should be thoroughly
familiar with the contents of the SRL publication IBM
System/360 Model 20, Functional Characteristics, Form
A26-5847.

Titles and abstracts of other related publications
are given in the publication IBM System/360 Model 20
Bibliography, Form A 26-3565.

This publication is intended for Model 20
programmers using the TPS Input/Output Con-
trol Systenm.

The reader should be familiar with basic
programming concepts and with the operating
principles of his system as described in
the following SRL publications:

IBM_System/360 Model 20

e Functional Characteristics, Form

A26-5847;

e Tape Programming System, Control and;
Service Programs, Form C24-9000;

Disk and Tape Programming Systenm
Assembler Language, Form C24-900

Sa
2.

Lepending on the eguipment and programs
used, the following publications are also
required:

IBM_ System/360 Model 20

e Disk and Tape Programming_sSystems,
Input,/Output_Control System for the_ IBN
1419 and_1259 Magnetic Character

Form C33-6001;

e Input/Qutput Control System for the
Binary_ Synchropnous_Commupications
Form C33-4001;

Titles and abstracts of other related
publications are given in the publication

A26-3565.

\Fifth Edition (March, 1969)

Ll
|
!

|This is a major revision of, and obsoletes, C24-9003-3, and]
|Technical Newsletter N33-8552. The changes are associated]
Jmainly with the introduction of Submodel 5 of the Model 20.]
]Changes to the text, and small changes to illustrations,]
lare indicated by a vertical line to the left of the change;|
Jchanged or added illustrations are denoted by the symbol]
|to the left of the caption.
|

|

JThis edition applies to program version 4, modification]
l|level 0 of IBM System/360 Model 20 TPS IOCS, and to all]
|subsequent releases until otherwise indicated in new edi~-|
|tions or Technical Newsletters. Changes are continually]
|made to the specifications herein; before using thisj
|publication in connection with the operation of IBM Sys-|

ltems, consult the latest SRL Newsletter, Form N20-0361, for]|
|the edition that is applicable and current. |
i, 3
This ' publicaticn was prepared for production using an IBM

computer to update the text and to control the page and 1line

format. Page impressions for photo-offset printing were
obtained from an IBM 1403 printer using a special print
chain.

Reguests for copies of 1IBM publications should be made to

your IBM representative or to the IBM branch office serving

your locality.

provided at the back of this publication for
readers' comments. If the form has been removed, comments
may be addressed to IBM Latoratory, Publications Cegt.,
P.0.Box 24, Uithoorn/Netherlands.

4 form is

© Copyright International Business Machines Corporation 1966,

1967,

1968,

1969

INTRODUCTION

DEFINITICNS .+ o o o o o o o

MACRO INSTRUCTIONS . .
Definition Statements

Initialization . « . . .

Processing Macro Instructions

PREFACE &« ¢ ¢ o o o o o o o o s o a. o

Use and Functions of IOCS “ o e
Other Programs Used by the IOCS

Machine Reguirements « . « o« o o
Minimum System Conflguratlon
Submodel 2 . . ¢ ¢ . v o o @
Submodel 5 . ¢ ¢ o+ o o o .
Maximum System Configuration
Submodel 2 « . . ¢ o o ..
Submodel 5 ¢« ¢ ¢ ¢ o 4 .
Notes: « « o o o o o o @

Machine Features Supported

¢ s ¢ 4 & & s @
L T T Y T Y
® 4 6 4 & 8 4 6 4 8 g @

.
.
.
-

LI

Record - « o .
Fixed- Length Records e e .

Variable-Length Records

Undefined Format

Record Formats Permitted
File o o ¢ o o o o o o o o« .
VOolUME o v o o o o o o o o .
Labels . ¢ v o o ¢ o o o @ .
Card/Printer Overlap Mode .
Read/Compute, Write/Compute Overlap
FeatuUre . . o ¢ s o o o o o s o o o

® o b 3 8 5, & 4
. .

s o 4
.
s o 4

DTFBG Statement . .
Header Entries . . .
Detail Entries
DTFSR Petail Entries . . .
Detail Entries for Most Files .
Additional Letail Entries for
Simple Files . . « . & « & « o
Additional Letail Entries for
Combined Files o o e
Additional Petail Entrles for Card
Printing « o
Additional Letail Entrles for
Checking Functions . . .
DTFMT Detail Entries . .
DTFEN Statement

»

T I T Y
" 5 e & 4

Open Macro Instruction .
Opening Card Files
Opening Tape Files . . .

Common Macro Instructions .
GET Macro Instruction . . .
PUT Macro Instruction . . .
Unblocked Records . . . «
Blocked Records
Undefined Records . « « .
Programming Considerations

¢ & s 8 ¢ b 3 s s & 4
.
.

s & o 8 5 & 5 s 3

Comkined Files « . « «
CNTRL Macro Instruction .

& & o 8 6 4 & 4, s 4, s

¢ & o & ¢ 0 4, 2 4 @

e & 4 & 4 & 3 2 s

oo oonononbnbhnn w

WWWOWWYWWWOoODmo

Completion Macro Instructions

CCNTRCL STATEMENTS .

Specific Card and Printer Macro

Instructions« « < .

CRDPR Macro Instruction . . .

ECMK Macro Instruction . .

LOM Macro Instruction . . .
Frogramming Considerations
and EOM Macro Instructions

PRTOV Macro Instruction

WAITC Macro Instruction . .
Programming with the WAITC
Instruction . . « < ¢ o o o

Specific Tape Macro Instruction

LERET Macro Instruction . . .

OPERAND 1 « o o s & » e s =

OFERAND 2 « o o o o o « o @

RELSE Macro Instruction . .

TRUNC Macro Instruction . .

o o
« s v

Y

(o]
* D e o 8 s s s 8

=
[>]]

¢ o 0 o v Ne (Yo s o e s 0 @
o]

End-of-File Processing . .
End-of-Volume Processing .

CLCSE Macro Instruction .

Closing Card and Printer File
Closing Tape Files
Reopening Closed Files . . .
FEOV Facro Instruction . . .

o s N e o o
5 & ¢ & & s s 3 s

.
6 6 & ¢ s 8 0 ¢ s s 0 v 2

e o o e ® o = o

Format of Volume Statement . . -
Format of Tape Latel qtatement .« .

GENERAL PROGRAMMING CONSIDERATIONS . .

Blocking of Records . « « « « + « &
Deblocking of Records« .
Input/Cutput-Work Area Comblnatlons
One Input/Output Area . . .« =
Cne Input/Cutput Area and One Work
Area . . . « o o s o s @
Two Input/Output Areas « . .« .
Two Input/Output Areas and One
WOLK BTL€Aa & o o o o = « o o o =
Register Requirements
DTF BloCksS ¢ ¢ o ¢ o o o o o o o«
Device Error Recovery
Punched-Card Equipment Errors
Tape Errcor Routines
Register Usage . .
ICCS Assembly ¢ o o o o o o o
Diagnostics for Source Prograns
Using the ICCS . o o ¢ o o o o o &«
Restrictions . « « « « « . .
Use of the FETCH Macro Instruction
in Frograms Using the ICCS

L S)
.

LANGUAGE COMPATIBILITY + « « « o « o =«

PROGRAMMING EXAMPLE 1
PROGRAMMING EXAMPLE 2 . . & « + «' @ &
GLOSSARY « v ¢« ¢ o« & o o s o o o o o« =

INDEX & o ¢ o o« o o o o s o = o o o =

Contents

64
65
66
71
74
78

4 1IBM System/360 Model 20 TPS IOCS

This publication describes the functions,
principal features, and use of the Model 20
Input/Output Control System for punched-
card equipment and magnetic tape.

The Model 20 TPS Input/Output Control
System (IOCS) is a set of tested routines,
in Assembler language, provided by IBM.

The IOCS routines are part of the Model 20
Tape Assembler macro library. The program-
mer can utilize these routines by simply
issuing appropriate macro instructions in
his progranm.

A major part of most programs written in
Assembler language consists of routines
required to read data into the system and
to print (punch or write on tape) the
results of the processing performed on the
input data. By utilizing the IOCS rou-
tines, the programmer can save progranming
time because he can concentrate on solving
his problems and let the IOCS handle data
input and output operations.

Also, the IOCS routines take advantage
of the time sharing feature (this is a
means of overlapping input/output opera-
tions with each other and with processing)
of the Model 20, thereby optimizing
throughput. When a Model 20 Submodel 5 is
used, the IOCS can make use of the read/
compute, write/compute overlap feature,
which allows tape-data transfer to be over-
lapped with processing.

The IOCS provides routines for:

e +transfer of data from input/output
devices to main storage and vice versa,

» checking and writing of lakels (if any),
e blocking and deblocking of records,

e switching between input/ocutput areas
under certain conditions, and

e performing input/output control func-
tions such as card stacking, tape re-
wind, etc.

USE AND FUNCTIIONS CF ICCS

When a program utilizing the IOCS is
assembled, the macro instructions specify
which of the IOCS routines are toc be called
from the macro library. The routines are
extracted, tailored according to the
operands in the macro instructions, and
inserted into the source program. The com-

INTROD

(o]
&)

CII

lo
Iz

plete program now consists of both source
program statements and tailored routines
from the macro likrary in Assemtler lan-
guage. In subsequent phases of the assem-
bly, the entire object program is
assembled.

Two types of macro instructions are
required to cause the desired input/output
functions: declarative macro instructions,
which are referred to as definition state-
ments, and imperative macro instructions.

The programmer uses definition state-
ments to specify the input/output routines
he requires for his particular application.
Based on the information provided, these
routines are selected and developed at as-
sembly time.

A linkage to the selected input/output
routines is required at each point in the
program where an input/output operation is
to occur. The user need not provide these
linkages. He only writes an imperative
macro instruction in his source program at
the point he desires the input/output
operation to occur. When an imperative
macro instruction is read during assenmtly
of the source program, the Assembler auto-
matically inserts the required linkages to
the selected input/output routines.

Other Programs Used_by the IOCS

When a program using the ICCS is executed,
some of the Basic Monitor routines are
used. Therefore, programs using the IOCS
require the Basic Monitor program to be in
main storage when they are keing executed.
The Job Control program is required if the
user's rrogram regquires jol control cards
to be read at the keginning of progranm
execution. The Job Control program is also
required if the IOCS is to make use of the
read/compute, write/compute overlap
feature.

Fcr further information regarding the
Basic Monitor and the Jol Contrcl progranms,
refer to the SRL pubtlication IBM_ System/360
Fcdel 20, Tarpe Frogramming System, Contrcl
and Service Programs_Form C24-9000.

MACHINE REQUIREMENTS

This section describes the minimum and
maximum ccnfigurations for assemtiling and
executing IOCS routines of the tape-
resident systen.

Introduction 5

Minimum_ System Copnfiquration

Sukmodel 2

e An IBM 2020 Central Processing Unit,
Model C2 (8192 bytes of main storage);

e an IBM 2415 Magnetic Tape Unit, Model 2,
3, 5, or 6;

* One of the following card-reading
devices:
IBM 2501 Card Reader, Mcdel A1 or A2,
IBM 2520 Card Read Punch, Model A1,
IBM 2560 Multi-Function Card Machine,
Model A1;

e One of the following printers:
IBM 1403 Printer, Model N1, Z, or 7,
IBM 2203 Printer, Model A1.

Submodel 5

An IBM 2020 Central Processing Unit,
Model C5 (8192 bytes of main storage);

e the same input/output units as described
above for Sutmodel 2.

Maximum System_Configuration

Submodel 2

e An IEM 202C Central Processing Unit,
Model D2 (16,384 bytes of main storage);

e an IBM 2415 Magnetic Tape Unit, PModel 1
through 6;

e an IBM 1442 card Punch, Model 5;
e an IBM 2501 Card Reader, Model A1 or AZ;

e one of the following card units:
IBM 2520 Card Read Punch, Model A1,
IBM 2520 Card Punch, Model A2 or A3,
IBM 2560 Multi-Function Card Machine,
Model A1;

e one of the following printers:
IBM 14C2 Printer, Model N1, 2, or 7,
IBM 2203 Printer, Model 21;

s a Binary Synchronous Communications
Adapter (Feature No.2C74);

e one of the following magnetic character
readers:

6 IBM System/360 Model 20 TPS ICCS

IBEM 1419 Magnetic Character FKeader,
Eodel 1 or 31,

IBM 1259 Magnetic Character Reader,
¥odel 1, 31, or 32.

Submodel_5

e An IEM 2020 Central Erocessing Unit,
Model E5 (32,768 bytes of main storage);

e the same input/output units as described

above for Submodel 2.

otes:

-
.

Only three tape drives are required for
assembly if no literals are used in the
source program and no object-progranm
cutput on tape is required.

2. At least one 9-track tape drive is
required. If 7-track tapes are used,
the data conversion feature is required
if:

e EBCDIC characters other than those
included in the ECIL character set
are to te written, or

» the tape file to Le read has Leen
created using the data conversion
feature.

The ECC character set consists of
the digits O through 9, the alrhabet,
and 28 special characters, all of which
can be represented Ly the six rightmost
bits of a byte.

The translate feature is required if
7-track tapes are used and standard
labels must ke read from or written on
these tages.

MACHINE FEATURES SUPPORTED

The following input/output devices are sup-
rorted ty the ICCS:

1403 Erinter

1442-5 Card Punch

2203 Frinter, standard and dual feed
carriage

2501 Card EKeader

2520 Card Punch

252C Card Read-Funch

2560 Multi-Function Card Machine (MFCHN),
including Card Erint feature

2415 Magnetic Tape Unit and Control,
Models 1 through 6

1259 Magnetic Character Reader

1419 Magnetic Character EKeader, Models 1

and 31.

The IOCS also supports:

e Binary Synchronous Communications Adapt-
er (Feature No. 2074).

e Additional main storage up to 16,384
(Submodel 2), or 32,768 kytes (Submodel
5) .

Note_1: The Data Conversion feature is

required if 7-track tapes are to be used

and either

a. EBCDIC characters other than those
included in the BCD character set are
to ke written, or

b. the tape file to be read has heen
created using the Data Conversion
feature.

The BCD character set consists of the
digits 0 through 9, the alphabet, and 28
special characters, all of which can te
represented by the six rightmost bits of a
byte.

Note 2: The Translate feature is required
if 7-track tapes are used and standard
labels must e read from or written on

these tapes.

Note_ 3: The object program can make use of
the Read/Compute, Write/Compute Cverlap
feature if a Submodel 5 is used.

Introduction 7

RECORD

A record is a unit of information comprised
of one or more alphameric and/or special
characters. For the purpose of the IOCS,
such a uuit of information is referred to
as a logical record. For transfer from the
CPU to magnetic tape and vice versa, data
is compiled in physical units of informa-
tion that are referred to as blocks. A
block may consist of one logical record
only or an integer multiple thereof.

The IOCS accepts three record formats.
They are: (1) fixed length, (2) variable
length, and (3) undefined. Fixed and vari-
able length records may ke klocked or
unblocked. The record formats and the
allowable record types are described below:

Fixed-Length Records

Fixed-length records are logical records
within a set of records that are all of the
same length. They may bte Eklocked or
unblocked. If these records are unblocked,
the IOCS handles each logical record as a
block. If they are blocked (applies only
to records on magnetic tape), one or more
logical records of fixed length comprise
one block. Figure 1 shows an example of
fixed-length records on tape.

Variable-Iength Records

Variable-length records are logical records
of a set of records that vary in length
(aprlies only to records on magnetic tage).
They may ke tlocked or unblocked. If these
reccrds are unblocked, the ICCS handles
each logical record the same way as a
block., If they are klocked, one or more
records of variakle length make up one
bleock.

A variable-length record must contain a
record-length indication. The first four
bytes of a variabkle-length record are used
for this purpose. The first two of these
fcur bytes show the numker of kytes con-
tained in the record in tinary notation.
The remaining two bytes contain tinary
Zeros.

The record-length indication must te
provided bty the user whenever he is creat-
ing a variakle-length record. The four
bytes required for the length indication
are included in the Lyte count for the
record.

A block-length indication is required
fcr each block. This tlock-length indica-
tion consists of four Lkytes that precede
the record-length indication for the first
(or only) logical record of the block.

a. Unblocked Record Format

ke— One Physical Record —-‘

18G = Inter - Block Gap

Record } Record | Record

A B C

=

>

Figure 1.

b, Block Record Format

8 IBM Systemr/360 Model 20 TPS IOCS

Example of Fixed-Length Records on Tape

The first two of these four bytes indicate,
in binary notation, the number of bytes
contained in the block. The remaining twc
bytes contain binary zeros. The block-
length includes the four bytes for the
block-length field itself.

Although the block-length indication
does not appear in the record that is fur-
nished to or made available by the problenm
program, the programmer must define input,
output areas that are large enough to
accomnmodate the four bytes required for the
block-length indication.

Figure 2 is a schematic representation
of variable-length records on tape.

Undefined Format

If the record format of a file is referred
to as undefined, the record characteristics
are unknown to the IOCS. Because each
tlock is treated as an unblocked logical
record, any blocking or deblocking must be
performed under control of the prolblem
program.

Record_Formats_Permitted

The formats that can be used depend on the
type of input/output file as follows:

Card_and_Printer Files: Only unblocked
records of fixed length are allowed.

_______ Eoth Lklocked and unkblocked
records of fixed and variable length and
records of undefined format are allowed,
except when a file is to te read lackward.
When a file is to be read backward,
variable-length blocked records are not
allowed.

FILE

A file is a set of records that contains
related information, e.g. an inventory
file of part numbers, an employee file, or
a customer file. Such a set of records may
be punched into cards (card file), printed
on forms (printer file) , or written on
tape(s) (tape file). For the purpose of
the Model 20 IOCS, files can be of two
types: simple and combined.

1 Sipmple_File
A set of records that are all either
read, printed, punched, card printed,
or written on tape during one fass

through the systen.

Exception: A simple file that is eith-
er read or punched on the 2560 MFCH nmay
also be card printed during the sanme
fass.

2. Copbiped File
X set of card records, some or all of
which will be read and/or punched dur-
ing one pass through the system. The
records comprising a comtined file must
be fed from one hopper. A combined
file that is processed on the 2560 MECH
may also be card printed.

VCLUME
A volume is a tape reel of data. 2 volume
may contain only part of a file (a multi-

reel file, for example) or many files.

LABELS

A label is a tape record used to identify
either a volume or a file. A lakel may ke
standard or non-standard. It is considered
standard if it meets the format require-
ments for standard tape latels.

Label processing and formats of latels
are described in detail in the SRL publica-
tion IBM_System/360_Model 20, Tape_ Program-
ming_System, Control_and Service_ Frograums,
Form C24-9000.

CARD/ERINTER OVERLAF NCLE

This is a mode of operation that allows the
execution of card and printer 1/C opera-
tions and processing to be performed simul-
tanecusly. A mode of operaticn that does
not permit I,0 operations and processing to
be executed simultaneously is referred tc
as non-overlap mode.

READ/CCMEFUTE, WRITE/CCEEUTE CVERLAP FEATURE

When a Submodel 5 is used, the read/
compute, write/compute (RWC) overlap fea-
ture is available. When the CFU is running
in the RWC overlap mode (under control of
the cverlap monitor), data transfer to or
from tape units is overlapped with
processing.

Cefinitions 9

a. Variable Length - Unblocked Record Format

RL Record 1 RL Record 2 RL Record 3
Data Data Data
XX 00 XX 00 XX 00
3)4 7 83184 87 1831184 187 233}
] [}] 1
I <« RL=80 > RL = 100 > < RL=50 ——bn
- BL = 234

b. Variable Length - Blocked Format

o Figure 2.

10 IBM System/360 Model 20 TPS IOCS

Example of Variable-Length Records cn Tage

Macro instructions are provided to reduce
the amount of repetitive coding. A macro
instruction given by the programmer causes
the generation of a set of individual
machine instructions at the time of assem-
bly. The generated instructions cause the
desired machine function to be performed
when the program is executed.

In this publication, the following con-
ventions apply to the description of the
macro instructions:

1. VUpper-case letters and punctuation
marks (except as described in items 3
and 4 below) represent information that
must be coded exactly as shown.

2. Lower-case letters and terms represent
information that must be supplied by
the programmer.

3. Information that is contained within
brackets [] represents an option that
can be included or omitted, depending
on the requirements of the progranm.

4. A series of three periods enclosed by
commas indicates that a variable number
of items may be included.

The programmer writes his macro instruc-
tions on the standard coding form, X28-
6509, provided by IBM. For details regard-
ing the use of this form and how these
instructions are entered on the form, refer
to the SRL publication IBM_System/360 Model

MACRO_INSTRUCTIONS

1. Definition Statements: DTFSR and DTFMT
(both including detail entries), LCTFEN
and DTFBG.

2. Initialization Macro Instruction:
CEEN.

3. Processing Macro Instructions: GET,
PUT, CNTRL, CRDPR, EOM, LOM, PRTCV,
WAITC, LBRET, RELSE, and TRUNC.

4. Completion Facro Instructions: CLOSE

and FEOV.

Figure 8 shows a summary of all the
DTFSR detail entries availatle to the user
of the Model 20 IOCS. This summary shows
the allowable entries and for which inputy
output device(s) a specific entry may be
required. Example for the use of this sum-
mary: If a file is to be read andsor
runched on the IEF 2560 FFCE, the X's in
the 2560 column indicate to the programmer
which entries he may have to provide.

Figure 9 shows a summary of all LTFMT
detail entries that are available to the
user of the Model 20 ICCS.

FPigure 13 is a summary of all imperative
macro instructions. The chart in Figure 13
shows all allowatble entries in the various
fields of the IBM System/360 Assembler Cod-
ing Form.

DEFINITION STATEMENTS

20, Disk and Tape_ Programming Systems,
Assembler _Langquage, Form C24-9002.

Two types of macro instructions are
required for the processing of the records
in a logical file: one declarative macro
instruction (referred to as file definition
statement in this publication) and one or
more imperative macro instructions.

Al]l imperative macro instructions con-
sist of a mnemonic in the operation field
and of one or more operands in the operand
field., The precise format of the impera-
tive macro instructions is shown separately
for each of them later in this publication.
The format of the definition statements is

The input/output macro instructions prec-
vided by IBM are presented in this section
in the following groups:

The programmer must use definition state-
ments to describe to the IOCS the charac-
teristics of each file to ke processed.
Cefinition statements are used to assign a
name tc each of the user's input/output
files, to descrilke the input/output device
used for each file, to define the input/
output areas required, etc. The macro
fhase of the Assembler selects the routines
required by the user on the basis of the
definition statements given Lty the
programmer.,

There are two types of file definition
statements: [L[TFSR (Lefine The File in a
SeRial type device) for card and printer
files and DTFMT (Define The File on Magnet-
ic Tape) for tape files. The user must
write one DTFSR statement for each card and
printer file to be used ty the program. He
must write cne LTFMT statement for each
tape file.

Facro Instructions 11

ll ol [] ng—.‘u . 2 “-!-' » 3] » -] Ic— - 1!1 —
Mg@gn rIEMT] {7y IPETFILE]TTIVIPUIT], RIETCIFlo RIM=TFTTIXIBI K], 1BlLIK 48l e X[1.
L . || Jnlela RO, R =UWLOWD,] i N
Tl EVA =8\YIS - gig\1 o | AZILIABILI=ST OURIEAI=RIEAIT APl WIORKA=TY|69] 4 d
. A BADIDR =L AlACK , EIRRIOPT]-LICOAR, WL =Rclo
' | EloiealplziR= EMDRT Hl
L1 Q% Ve Ay | !
IERREENE i il | L
| [T 1 I 4 '
Figure 3. DTFMT Statement Followed by a DIFEN Statement

A DTFEN statement (Define The File EXNAQ)
must follow the last definition statement
of a given program. A DIFBG statement
(Define The File BeGin), if used, must be
written as the first definition statement.
If the Linkage Editor program is to be
used, all the DTF statements must be con-
tained in one and only one of the programs
to be linked.

The user must write his definition
statements ahead of his problem progran.
If his program includes more than one DTIFSR
statement, the user must write his DTFSR
statements contiguously, i.e., he is not
permitted to write a DTFSR statement for
one file followed by a DTFMT statement and
a DTFSR statement for another file.

Figure 3 is an example of a DTFMT state-
ment followed by a DTFEN statement.

A DTFSR or a LTFMT statement consists of
(1) a header entry that assigns a name to
the file specified and (2) detail entries
as required to define such information as
the device to be used, the mode of proces-
sing, etc. All DTFSR (DTFMT) statement
cards, except the last one, must have a
continuation punch in column 72. This con-
tinuation punch may be any non-tlank
character. Punching in continuation cards
must begin in column 16, except when the
Assembler input format has been changed by
means of an ICTL statement.

DTFBG STATEMENT

If DTFBG RWC=YES is specified, the IOCS
provides the routines that make use of the
read/compute, write/compute overlap fea-
ture. All tape files will then ke pro-
cessed in the overlap mode. The statement
has no name in the name field and must be
written as the first definition statement.

This statement must not ke used when

te:
tape files are to ke processed.

No
no

12 IBM System/360 Model 20 TPS IOCS

HEALCER ENTRBIES

A header entry consists of a file name in
the name field (columns 1 through 8) and
DIFSR (CTFMT) in the operation field
(columns 10 through 14). For the name
entered in the name field, the same rules
as for the BAssembler apply, except as fcl-
lows: it must not exceed seven characters
in length and the letter "I as the first
character is not permitted.

The file name is used in imperative
macro instructions that refer to the file.

CETAIL ENTRIES

A detail entry is composed cf a keyword
immediately followed Ly an equal sign (=)
which, in turn, is followed by one specifi-
cation. The length of a specification is
limited to eight characters, including
expressions with their operators (if any).
Expressions are permitted for all detail
entries that require a symlkolic address. A&
comma must immediately follow the specifi-
cation of each detail entry, except the
last one (see Figure 3).

CAUTICN: A Lklank within a detail entry
specification causes the Assemller to con-
sider the remaining characters of the spe-
cification, and all sulsequent detail
entries of the DTFSR (DTFMT) statement, as

comments,

Together with the header entry, the
detail entries describe the file and speci-
fy symbolic addresses of routines and areas
used when processing the file. This set of
entries is used to generate the 1ICCS rou-
tines for the file during assembly.

Letail entries may be written (and
runched) immediately after the header
entry. They may appear in any order. The
rrogrammer must include only those entries
that apply to a particular file.

The following sections describe all pos-
sible detail entries for the DIFSR and the
DTFMT statements.

DTFSR DETAIL ENTRIES

The DTFSR detail entries are required to
define card and printer files. They can ke
divided into five categories as fcllows:

1. entries applicable for most files,

2. additional entries for simple files,

3. additional entries for comltined files,

4. additional entries for card printing,
and

5. additional entries for certain checking
functions.

Detail Entries_for_ Most_Files

The DTFSR detail entries applicable to most
files are:

DEVICE OVERLAP
TYPEFLE CONTROL
WORKA BINARY

FRINTOV EOFADDR

The entries DEVICE, TYPEFLE, and WORKA
must ke provided for each card and printer
file to be used by the program.

The entries PRINTOV, OVERLAP, CONTROL,
BINARY, and EOFALLR must be provided only
for certain card and printer files to be
used bty the progranm.

e The PRINTOV entry must ke provided for a
printer file if a PRTOV macro instruc-
tion referring to the file is used in
the progranm.

e The CVERLAP entry must be provided for
all files to be processed in non-overlag
mode.

e The CONTROL entry must be provided for a
file if a CNTRL macro instruction refer-
ring to that file is used in the
progran.

e The BINARY entry must be provided for
input files that are to te read in the
column binary mode.

e The EOFADLR entry must ke provided for
all input and combined files.

DEVICE=

This entry identifies the input/output
device to be used to process the particular
file. One of the following specifications
nust be entered immediately after the equal
sign (=) following the keyword:

The file is to ke read and/or
punched ty the IEM 2520 Card
Read-Punch.

CRP20

MFCHM1 The file is to be read and/or
punched with or without card
printing from the Primary Feed
of the IBM 2560 Multi-Function

Card Machine.

The file is to be read and/or
punched with or without card
printing from the Secondary
Feed of the IEM 2560 Multi-
Function Card Machine.

MFCM2

The file is to be printed by an
IBE 2203 Frinter with a stan-
dard carriage or by an IBM 1403
Printer (see Note below).

PRINTER

The file is to be printed on
the lower carriage of an IEM
2203 with the duval feed car-
riage (see Note Lelow).

PRINTLF

The file is to te printed on
the upper carriage of an IBM
2203 with the dual feed car-
riage (see Note below).

ERINTUF

PUNCH20 The file is to be punched by an
IEM 2520 Card Funch.

EUNCHU42 The file is to le punched Lty an
IBM 1442 Card Punch, Model 5.

REALO1 The file is to ke read by an
IEM 2501 Card Feader.

Bcte: If both feeds of an IEM 2203 rrinter
with dual feed carriage are used, the pro-
grammer must write a LTFSR statement for
the file printed ty the lower carriage and
a DTFSR statement for the file printed by
the upper carriage. If the application
requires only one feed of the dual feed
carriage, the lower feed must te used. 1In
this case, the DEVICE=PRINTER entry and not
the DEVICE=ERINTLF entry must ke provided
and only one printer file DTFSR statement
is permitted in a proltlem program.

TYPEFLE=
This entry defines the type of the file
{(i.e., input, output, or comtined). One of

the following specifications must be used:

INELT for a simple input file

¥acro Instructions 13

OUTPUT for a simple output file
CMBND for a comkbtined file.
WORKA=YES

The WORRA=YES detail entry is mandatory for
all card and printer files. The user must
enter the name of his work area as the
second operand in his GET, PUT, and CRDPR
macro instructions for the particular file
and not in the WORKA entry for that file.

PRINTOV=YES

This entry must be included for a printer
file if a PRTOV macro instruction referring
to this file is used in the progranm.

OVERLAP=NO

This entry indicates that the file is to te
processed in non-overlap mode. If this
entry is omitted, the file is processed in
overlap mode. Since printer files are
always processed in the overlap mode, this
entry is not permitted for these files.

I0CS routines for overlapped processing
require more (5C-1CC Lbytes) main storage
space than the routines for non-overlapped
processing.

CONTROL=YES

This detail entry is required if a CNTRL
macro instruction will be issued for the
file, A CNTRL macro instruction causes the
inputoutput device to perform operations
such as stacker select and form skip.

BINARY=

This entry is required if the cards are to
be read in the column binary mode. The
entry may be provided for both simple and
combined files. The specifications are:
YES for simple files

INPUT for combined files.

The twelve punch positions of a card
column read in column binary mode are

14 1IBM System/360 Model 20 TPS IOCS

stored in the 6 low-order Lkits of two adja-
cent bytes of the input area. Therefore,
the input and work areas must lte specified
to contain a numkter of bytes that is equal
tc twice the number of columns to ke read.

khen the EBINARY entry is used for a par-
ticular file, the entries SEQNCE and
RFCR¥ETn are not permitted for that file.

EOFALLR=name

This entry specifies the name of the rou-
tine in the source program tc which the
I0CS should tranch on an end-of-file condi-
tion. In that routine, the user can per-
form any operation required for the end of
jeb, and he generally issues a CLCSE macro
instruction.

This entry is mandatory for input and
combined files.

The I0CS detects end-of-file conditions
by sensing an end-of-file card with /*
punched in columns 1 and 2.

Additional Detail Entries for Simple Files

The entries described in this section are
available for simple files only. Cne or
mere of these entries may ke required for a
given file. The detail entries are:

JOAREA1
ICAREA2
BLKSIZE

ICAEREA1=name

This entry specifies the name of the input/
output area to ke used by a simple file.
This name must ke the symkol used Ly the
programmer in defining the area in his
Frogranm.

The ICAREA1 entry is not permitted fcr a
printer file to be printed by the standard
carriage. The printer uses the first 144
main storage positions as a print buffer
and they cannot be used Lty the programmer.

Two files printed ty the dual feed car-
riage require two IOAREA1 entries, i.e.,
cne for each file. The print areas for the
lower and upper feed of the dual feed car-
riage must ke defined as contiquous areas
in main storage with the print area for the
lcwer feed preceding the area for the ufpper
feed (see Figure 4).

Lower-feed
Print Area

Upper—-feed
Print Area

e e

—— T e ™
_—— e]

|Address of

| Lower-feed Area
L

JAddress of
|Upper—feed Area
1

Print Area Format for Dunal Feed
Carriage

Figure 4.

Note that for card and printer files a
work area must be specified in addition to
an input/output area. Refer to the
description of the WORKA=YES detail entry.

IOAREA2=nanme

This entry can be used to indicate the name
of a second input area when the IBM 2501
Card Reader is used in overlap mode. The
name in the specification part of this
entry must be identical with the symbol the
programmer used in defining the area in his
program. The area must be the same length
as the area referred to in the IOCAREA1
entry.

The IOAREA2 entry permits a card to be
read into the area specified in the DTFSR
entry TOAREA1 while the data in the area
specified in the DTFSR entry IOAREAZ2 (fronm
the preceding card) is waiting to be moved
into the work area. This may ke of signi-
ficance, for example, if only a number of
selected cards of the file that is read on
the IBM 2501 require extensive processing
while all other cards reguire very little.
If only one input area is specified, the
data from a card that requires extensive
processing may have to be held available
for too long a period of time to permit
continuous card feeding. In the majority
of cases, specifying a second input area
permits the IOCS to maintain the maximum
card reading speed of the IBM 2501.

This entry must not Le used for a file
being read or punched by any other card
input or output device or when the IBM 25(1
is used in non-overlap mode.

BLKSIZE=n

This entry specifies the length of the
input/output area(s) to Le used by the
file. The specification n must be egqual to
or less than the length in bytes of the
reserved area. A BLKSIZE entry must be
given for a printer file even though the
IOAREA1 entry is not provided.

If two input/output areas are used for a
file (IOAREA1 and IOAREA2), only one
BLKSIZE detail entry is required in the
DCTFSR statement for the file, and this
entry applies to both areas.

Faximum block lengths acceptatle to the
IOCS are as follows:

1. For card files:
binary mode).

80 bytes (160 bytes

2. For_printer_ files: 120, 132, or 144
bytes, depending on the number of print
positions available. If a 2203 printer
with the dual feed carriage feature is
used, the total length of areas speci-
fied for both feeds must be egual to or
less than 144 bytes.

The minimum block-length specificaticns
are:

1. For_input files:
binary mode).

Two Lkytes (four Lytes

2. For_output_files: One byte.

Additional Letail Entries_for Comltined

The entries described in this section nmust
be provided for each combined file. They
are:

INARER
INBLKSZ

CUARER
OUBLKsZ

INAREA=name

This entry is used to specify the name of
the input area to be used Ly the comtined
file. This name must be the symbol used by
the programmer in defining the area in tis
progranm.

INBLKSZ=n

This entry specifies the length in bytes of
the input area to be used Ly the combtined
file. The length applies to the area
defined in the main program and referred to
in the INAREA entry.

The maximum area length permitted is 80
bytes (160 bytes binary mode). The minimum
length is two bytes (four bytes binary
mcde) .

CUAEEA=name
This entry specifies the name of the outrut
area used by the combined file. The name

nust be the symkol used Lty the programmer
in defining the area in his progranm.

Facro Instructiomns 15

CUBLKSZ=n

This entry is used in conjunction with the
OUAREA entry to specify the length in bytes
of the output area required by the combined
file. The maximum block length permitted
is 80 bytes. The minimum length of the
output area is one byte.

Additional Detail Entries for Card Printing

The following detail entries are only
required if the card print feature of the
IBM 2560 MFCM is to be used:

CRLCPRA
CRDPRLn

The two entries apply only to simple or
combined files to be processed ky the IBM
2560 MFCH.

The CRDPRA and CRDPRLn entries are
required in only one DTFSR statement of a
program as they do not refer to a particu-
lar file. A CRDPR imperative macro
instruction must be issued to cause the
printing of data from the areas specified
by the CRLCPRA and CRDPRLn entries. Refer
to the section CRDPR Macro_Instruction.

CRDPEA=nanme

This entry is used in conjunction with
CRDPRLn entries when printing on cards is
desired.

The CRDPRA entry specifies the name of
the area in main storage where the data to
be printed by the lowest numbered MFCH
print head is stored. The areas, from
which the remaining print heads are to
print, must be defined as contigquous 64-
byte areas (refer to Figure 5). The print
heads to be used must be defined by CRDPRILn
entries in ascending order according to the
print head numbers. One CRDPRLD entry must
be included for each print head. Figure 6
shows the detail entries required to allow
printing from the areas shown in Figure 5.

CPAR

= o=l ol

v A A, J
64 Bytes

64 B;tes 64 B;'tu
Figure 5. MFCM Card Print Areas

16 IEBEM System/360 Model 20 TPS ICCS

r——-Cdumnlé

[]) I | 1

CRDPRA Detail Entry with CRDPRLn
Entries

Figure 6.

CRDPRLn=m

Entries of this type are used in conjunc-
tion with the CELFBA=name entry to specify
the print heads to ke used. The keyword is
CEDERLn, where n is the numter of the print
head. The specification m indicates to the
ICCs the number of bytes to ke printed Ly
this print head.

Refer to the example in Figures 5 and 6.
In this example, print head 1 is to print
the first 50 bytes of its 64-byte print
area (part A), print head 2 is to print the
first 40 kytes of its 64-tyte print area,
and print head 5 is to print the first 20
bytes of its 64-byte print area. However,
all three print heads will print the first
50 bytes of their 6U4-tyte print areas.
Therefore, the 64~Lbyte print area for print
head 2 in the example must contain klanks
in Lkytes 41 through 50. ILikewise, all
bytes ur to and including byte 50 of the
64-Lyte print area assigned to print head 5
would have to contain blanks if no printing
were desired from print head 5 during a
card rrint operation.

The programmer need not ke concerned
about f£illing the unused ryte positions of
a print area with blanks as this is an
automatic function of the ICCS. 1f, as in
our example, 50 bytes is the largest number
of bytes specified for one particular print
head, the IOCS clears all print areas up to
and including kyte 50 to rlanks after every
card print operation.

Specification of the number of bytes to
be printed by each individual print head is
required because, when filling a print area
with data to be printed, the ICCS moves
into the print area only the number of
bytes specified for the particular print
head.

The programmer may utilize any unused
portions of the print areas. 1In the
example, bytes 51 through 64 of all three
64-byte print areas could ke used for other
processing (shaded areas in Figure 5).

Additional Letail Entries_for Checking

Functions

The detail entries descriked below are
available for card processing to enable the

user to specify certain checking functions.

SEQNCE RFXIT
SECXIT PFORMTn
RFORMTIn PFXIT

SEQNCE=xXyy

This entry enables the programmer to check
whether the contents of a specified field
in successive input records are equal or in
ascending order.

If the input data is to be read in
column binary mode, a SEQNCE entry must not
te made for this file.

The xx and yy are the numbers of the
first and last card columns, respectively,
of the card field to ke checked. For card
columns 1 through 9, the leading zero is
required. Maximum length of the card field
to be checked is 16 columns.

Only one SEQNCE entry is permitted for
each file. Sequence checking is .accomp-
lished by a logical compare operation.

If the input cards are read in overlap
mode from either an IBM 2520 or an IBMN
2560, a sequence error with a subsequent
branch to the user's SEQXIT routine causes
the IOCS to change the processing mode
{from overlap tc non-overlap) for the GET
that detected the error.

This change in the mode of operation
enables the user to stacker-select the
error card and/cr to cause an error identi-
fication to be punched into this card.

Before branching to the user's routine,
the I0CS places the record containing the
field that led to the error condition into
the work area. If the error card has been
read by the IEM 2560 MFCM or the IBM 252¢
Card Read-Punch, that card is positioned at
the pre-punch station. The next GET or ECM
macro instruction will cause the next rec-
ord to ke read. This record will then be
compared with the record preceding the
error record.

CAUTION:
registers 14 and 15.
Register Usage.

Do not destroy the contents of
Refer to the section

If a SEQNCE errcr and an RFORMT error
are both detected in the same card, only
the action specified for the SEQNCE error
will ke performed.

SEQXIT=name

This entry must be used in conjunction with
the SEQCNCE entry. It indicates the name of
the entry point of the user's routine to
which control is to be transferred when a

sequence error occurs. To return to the
main program, the programmer must provide a
branch to the address contained in register
14, After kranching, the program executes
the instruction following the GET that
detected the sequence error.

RFCRETN=XXyyz

This entry enables the programmer to check
whether a specified input card field (or
fields) contain{s) numeric characters or
all blanks.

If the ipput data is to ke read in
cclumn binary mode, an RFCENMTn entry nust
not be made for this file.

The keyword of this entry is RFCRHNTn,
where n is any number from 0 to 9. The n
position allows the programmer to write up
tc ten different RFCRFTn entries per file
and thus have a maximum of ten fields
checked.

. The xx and yy specify the first and last
card columns, respectively, of the field to
be checked. For columns 1 through 9, the
leading zero is required.

If the field is to be checked for
blanks, z must te 0. If the field is tc te
checked for numeric characters, z must be
1. W®hen checking for numeric characters,
the maximum field length is 16 columns.

When a field is tested for all blanks,
the program kranches to a user-written rcu-
tine (or causes a system halt) if the test
fails.

When a field is tested for numeric
characters, the program branches (or causes
a system halt) if the field contents are
not of the following format (where at least
the last character is numeric with or
without an 11 or 12 zone punch):

bkbkeeeeaeeaesan

klank
numeric character.

where o
n

[

If the input cards are read in overlar
mcde from either an IBM 2520 or an IBM
2560, an RFCERMT error with a sulsequent
tranch to the user's RFXIT routine causes
the I0OCS to change the processing mode
(from overlap to non-overlap) for the GET
that detected the error.

This change in the mode of operation
enables the user to stacker-select the
error card and/or to cause an error identi-
fication to be punched into this card.

Before branching to the user's routine,
the IOCS places the record containing the

Macro Instructions 17

field that led to the error condition into
the work area. If the error card has been
read by the IBM 2560 MFCM or the IBM 2520
Card BRead-Punch, that card is positioned at
the pre-punch station. The next GET or ECM
macro instruction causes the next record to
be read.

CAUTION:
registers 14 and 15,
Begister Usage.

Do not destroy the contents of
Refer to the section

The programmer may use up to ten dif-
ferent RFORNMNTn entries, but only one RFXIT
entry for each file.

If a SEQNCE error and an BFORMTn error
are both detected in the same card, only
the action specified for the SECNCE error
will be performed. Refer to the descrip-
tion of the SEQNCE=xxyy detail entry.

RFXIT=name

This entry is used in conjunction with the
RFORMTn entry. It specifies the name of
the entry point of the user's routine to
which control is to be transferred if the
test on the field specified in the RFORMTn
entry is negative (i.e., the field tested
contains characters other than those speci-
fied) . To return to the main program, the
programmer must prcvide a btranch to the
address contained in Register 14, After
branching, the program executes the
instruction following the GET that detected
the RFORMTn error.

If this entry is omitted and the test is
negative, a programmed halt occurs. This
enables the operator to rerlace the card
that led to the error condition.

PFORMTn=XXyy

This entry enables the programmer to check
those cards of a combined file that are not
read into a work area by GET macro instruc-
tions to ensure that a specified card field
(or f£ields) to be punched contains blanks.

The keyword of this entry is PFORMTH,
where n is any number from 0 to 9. The n
position allows the programmer to write ug
to ten different PFORMTNn entries per file
and thus have a maximum of ten fields
checked. The xx and yy specify the numbers
of the first and last card columns, respec-
tively, of the field to Lbe checked. For
columns 1 through 9, the leading zero is
reguired.

If the field is found not to contain all
blanks, the PUT macro instruction is not
executed. Instead, either control is
transferred to a user-written routine (pro-

18 IBM System/360 Model 20 TPS ICCS

vided the branch address has been furnished
by a EFYIT detail entry), or a programmed
halt occurs.

CAUTICN:
registers 14 and 15.
Register_Usage.

Lo not destroy the contents of
Refer to the section

The specified input area must be large
encugh to permit the program to read the
information in the columns specified in
this entry into main storage.

The programmer may use up to ten dif-
ferent PFORMTn entries, but only one FFXIT
entry for each file.

PFXIT=nane

This entry is used in conjunction with the
PFORMNTn entry. It indicates the name of
the entry point of the user's routine to
which control is to be transferred if the
test on the field specified bty the PFORMTn
entry fails. To return to the main pro-
gram, the programmer must provide a kranch
to the address contained in register 14.
After branching, the program executes the
instruction following the PUT that detected
the FFORMTIn error.

If a PFORNMNTn check occurs, the progranm
branches immediately to the user's routine.
In this case, the contents of the work area
are not moved to the punch area.

If a PUT macro instruction is given that
refers to a comkined file and the prograsm
branches to the PFXIT routine, a subsequent
GET will place the contents of the card
causing the PFORMT error into the work
area. If this GET is in non-overlap mode,
it is possible to punch this card by means
of an additional PUT macro instruction.

If the PFXIT entry is omitted and the
test shows an error condition, a halt
occurs before punching is initiated. This
enables the operator to replace the card
that led to the error condition. That card
is fositioned at the pre-punch station.

CTFMT DETAIL ENTRIES

DTFNT detail entries apply to tape files
only. 2lthough many of them are identical
with DIFSR detail entries, all possible

DTFMT detail entries are described in this
section in this order:

TYPEFLE TIOAREA2
DEVALDR IOREG
RECFORMN WORKA
RECESTIZE BLKSIZE
FILAEL CONTROL
LABADDR VARBLD
ERROPT ALTTAPE
WLRERR READ
ERRIO REWIND
EOFADDR TPMARK
JOAREA1 CKPTREC

TYPEFLE=

This entry defines the type of the file
(i.e., input or output). The allowable
specifications are:

INPUT for an input file
CUTFPUT for an output file.
DEVALDR=

This entry defines the symbolic address of
a tape drive to be associated with the par-
ticular file. The following symbolic
addresses are permitted:

SYSIPT
SYSOPT
SY¥Snnn

where nnn may be any number
from 000 to 015.

An actual tape drive address is assigned
to the symbolic address by means of an
ASSGN control statement that is processed
either (a) by the Job Control program
before the problem program is executed, or
(b) at the time of system generation.

Refer to the SRL publicaticn IBM_Systems/360
Model 20, Tape Programming System, Control
and Service_ Programs, Form C24-59000.

RECFORM=

This entry defines the record format of the
file. The IOCS can handle different types
of records in the same program. However,
the records in a file must ke of the same
type. The following specifications are
possitle:

FIXUNB for fixed length unktlocked records
FIXBLK for fixed length blocked records
VARUNB for variable length unblocked

records

VARBLK for variable length blocked records

UNDEF for undefined records.

If the RECFORM entry is omitted, fixed-
length unblocked records are assumed.

When variable-length records are speci-
fied for a tape output file, the user's
input/output area must include four addi-
ticnal tytes in which the tlock-length in-
dication is built. If these records are
unblocked, the four additional tytes are
used to develop the length indication for
each record {as each record is handled the
same way as a klock). If these records are
blocked, the four additional tytes are used
to develop the length indication for the
entire Llock.

RECSIZE=

This entry arplies to tape files containing
either fixed length blocked records or
undefined format records.

n is specified to indicate the number of
bytes in an individual record for a
tape file containing fixed length
records.

(n) is specified to indicate a register if

the file contains record of undefined

format.

The IOCS uses the specified register
to (1) provide the record size in case
of an input file or (2) derive from it
the record size in case of an output
file. For output files, it is the
user's responsitility to place the
number of tytes contained in a record
into the specified register tefore
this record is written.

If a file containing records of unde-
fined format is to ke read tackward,
the contents of the specified register
must ke used to determine the begin-
ning of each individual record.

The specification is either the number
of the desired register (any ocne of
the numkters 8 through 13), or a symbol
that stands for this register, in
parentheses. (If the user's problem
program contains ICCS macro instruc-
tions that refer to the IBM 1259 or
1419 Magnetic Character Readers, reg-
isters 11 and 12 must not be used.)

The minimum and maximum record lengths

permitted are as shown lelow. Lengths
are given in numker of bytes.

Macro Instructions 19

T 1 T 1
| | Minimum] Maximun 1
| t T + T x|
| Record Type |Input]Cutput|Input|Output]
F + + 1 + —
| FIXUNE | 18 | 18 | 4095] 4095 |
1 i 1 1 4]
T T T 1 ¥ a1
1 FIXBLK 1 1 | 18] 4095] 4085 |
5 + + + + —
i VARUNE* | 14 | 14 | 4091] 4091 |
1 L 1 4 ' J
L 3 Ll T s T L]
| VARBLK*] 1% { 14 | u091] 4091 |
F + + + } —
1 UNLCEF 1 18 | 18 | 4095] 4095 |
.L L L. 1 1 %
| * Excluding the four bytes required for|
| record length indication.

L J
FILABL=

This entry indicates the type of label pro-
cessing to be performed. The allowable
specifications are:

STD for a tape input file, if standard
labels are to be checked; or for a
tape output file, if IBM standard
labels are to be written.

NSTD for input files only, ncn-standard

labels are skipped. The latels

must ke terminated ky a tape mark.

NSTC may also be specified for a
tape input file with IBM standard
labels if these latels are not to
be checked.

NO is specified if no labels exist.

Note: 1If FILABL=NO is specified
for an output file, any existing
volume label on the output tape

will Le overwritten.

The FILAEL entry may lte omitted for an
unlabeled tape.

LABADDR=name

The user may reguire the checking, or
building up, of one, or up to nine, file
labels in addition to the standard file
header or trailer label. If so, he must
provide a routine for this purpose. The
name of his routine is specified in this
entry. This routine is entered after the
I0CS has processed the IBM standard label
or a preceding user label. If this entry
is omitted for an input file having addi-
tional labels, these additional labels are
skipped.

For an input file, the user can deter-
mine the type of label that has been read

20 IBM System/360 Model 20 TPS ICCS

by the identification in the label itself.
Fcr an ocutput file, register 8 contains one
of the following codes:

'b0'- for a header lakel
opened),

(when a file is

*PF'- for an end-of-file laktel (on an end-
of-file condition),

'Vt~ for an end-of-volume lalkel (on an
end-of-volume condition).

where b=blank.

Register 9 contains the address of the
ICCS lalel area at the time the user's rou-
tine is being entered.

At the end of a LAEALLR routine, the
programmer must issue an LBRET macro
instruction to return control to the I0CS.
Refer to LBRET Macro Instruction.

CAUTION:
registers 14 and 15.

Do not destroy the contents of
Refer to the section

EFRCEI=

This entry arplies to tape ipput files; it
specifies functions that are to be per-
fcrmed when an error klock is detected.

%hen the Easic Monitor program detects
an error in a block of input records, the
tape is backspaced and reread 100 times
tefore the rlock is considered to be an
errcr block. Unless the ERRCET entry is
included, which specifies procedures to
fcllcw in the event of an error condition,
a halt occurs and the jol is terminated.
Either IGNORE, SKIP, or the symbolic nake
cf an error routine can le specified in
this entry. One of these specifications is
entered immediately after the = sign in the
keyword. The functions of the three speci-
fications are:

IGNORE The error condition is completely
ignored, and the records are made
availakle to the user for
Frocessing.

SEIE The rlock containing the error is
skipped, i.e., it is not made
available for processing. The next
block is read from tape and proces-
sing continues with the first rec-
ord of that block.

The I0OCS branches to a user-written
error routine which can perform any
chosen error procedure, for
examrle, listing the error
condition.

name

In his routine, the programmer nust
not issue any GET macro iastruc-
tions for records in the error
block. If he uses any cther IOCS
macros in his routine, he must save
the contents of registers 14 and
15. At the end of his routine he
must return to the IOCS by branch-
ing to the address in register 14.
When control is returned to the
problem program, the first record
of the next block is available for
processing in the main progranm.
When two input/output areas are
used, and ERRIO=name is specified,
the address of the input/output
area containing the error block is
placed in the location indicated by
the symbolic name in the ERRIOC
entry. Register 14 contains the
return address.

Note: 1If FILABL=STD is specified, the
error block is always counted in the
block count.

The entry applies to wrong-length rec-
ords if the DTFMT entry WLRERR is not
included.

WLBRERR=nanme

This entry applies only to tape input files
that do not contain undefined records. It
specifies the symbolic name of a user's
routine to which the IOCS branches if a
wrong-length record is read. In his rou-
tine the user may perform any operation he
desires for vwrong-length records. However,
he must not issue any GET macro instruc-
tions for this file. If he uses any other
I0CS macros in his routine, he must save
the contents of registers 14 and 15.

At the end of his routine the user must
return to the IOCS by branching to the
address in register 14. When control is
returned to the problem program, the first
record of the next block is available for
processing.

When two I/0 areas are used, and ERRIC=
name is specified, the address of the I/O
area containing the wrong-length record is
pPlaced in the location indicated by the
symbolic name in the ERRIO entry. Register
14 contains the return address.

Whenever fixed-length blocked records or
variable-length records are specified
(RECFORM=FIXBLK, =VARUNB, or =VARBLK), the
machine check for wrong-length records is
suppressed and the IOCS generates a pro-
grammed check for record length. For
fixed-length blocked records, the record
length is considered incorrect if the block
that is read is not an integer multiple of

the record length (specified in the RECSIZE
entry), ur to the maximum length of the
block {specified in the ELKSIZE entry).
This permits the reading of short blocks of
reccrds without a wrong-length-record
indication.

For variable-length records, record
length is considered incorrect if the
length of the physical record (tklock) is
not the same as the block length specified
in the first two bytes of the Llock.

If fixed-length unklocked records are
specified (RECFORM=FIXUNB), the IOCS uti-
lizes the machine check to determine wheth-
er a record is of correct length. Specify-
ing RECFCRE=FIXUNB causes the numker of
bytes specified in the BLKSIZE detail entry
tc be inserted in the generated XI0
instructions. Any record whose length is
not equal to the specified numter of tytes
causes a wrong-length-record indication.

Note that the IO0CS does not provide to
the user the number of bytes contained in
the wrong-length record.

If the WLEERE entry is omitted from the
set of DTFMT entries, but a wrong-length
record is detected by the ICCS, one of the
following results:

1. If the ERRCEIT entry is included for
this file, the wrong-length record is
treated as an error tlock and handled
according to the user's specifications
for an error {(IGNCRE, SKIPF, or name cf
error routine).

2. If the ERROPT entry is not included,
the job will be terminated since no
error recovery procedure is available
to handle the wrong-length record.

ERRIO=name

This entry specifies the symtolic name of a
two-byte area, in which the IOCS places the
address of:

1. The input area containing the Lblock
that caused an irrecoverable read error
{if the name of the user's error rou-
tine is specified in the ERRCPT entry),
or:

2. The input area containing the wrong-
length record (if the name of the
user's wrong-length record routine is
specified in the WLRERR entry).

If READ=BACK is specified, the address of
the input area plus the specified BLKSIZE
minus 1 (in other words, the last byte of
input the input area) is inserted in the
two-byte area.

Macro Instructions 21

This entry may only be issued if ERROPT=
name, and/or WLRERR=name, and two I/0O areas
are specified.

Rote: Refer to the descriptions of the
detail entries ERROPT= and WLRERR=nanme.

EOFADDR=name

This entry is mandatory for all input
files. It specifies the name of the rou-
tine in the user's program that the IOCS
should kranch to on an end-cf-file condi-
tion. In that routine, the user can per-
form any operation required for the end of
job, and he generally issues a CLOSE macro
instruction. However, the user must not
issue a GET macro instruction in his
EOFADDR routine since no further records
are available for processing.

An end-of-file condition is detected by
reading a tape markX and EOF in the trailer
label when standard labels are specified.
If standard labels are not specified, the
Model 20 IOCS assumes an end-of-file condi-
tion when it reads a tape mark.

ICAREA1=name

This entry specifies the name of the input/
output area to be used. This name nmust be
the symbol used by the programmer in defin-
ing the area in his program.

If the record format is variable length,
four bytes of the input/output area must be
reserved for the block size field. 1In
addition, the input/output area must be
defined at a half-word toundary. Refer to
Input/Output-Hork Area_Combinations.

IOAREA2=name

Two input, or output, areas can be speci-
fied for a tape file, to allow data trans-
fer to ke overlapped with rrocessing. 1In
such a case, IOAREA2=name must ke included.
This operand specifies the symbolic name of
the second I/0 area; this name must be
identical to the name used in the DS or IC
statement defining the area.

The length of the second I/0 area must
be equal to the length of the first I/0
area. The second I/0 area must ke defined
by the programmer at a half-word boundary.

A warning message (MNOTE) is given on
the printer if IOAREA2 is specified without
DTFBG RWC=YES being the first definition
statement. (Refer to InputsOutrut-%ork
Area_Combinations.)

IOREG= (n)

This entry specifies a register. The spe-
cification is either the number of the reg-

22 IEM System/360 Model 20 TPS IOCS

ister (any one of the numbers 8 through 13)
or a symbol that is equated to the regis-

ter, between parentheses.
Ncte: If the user's proklem program con-

tains IOCS macro instructions that refer to
the IEM 1259 or 1419 Magnetic Character
Readers, registers 11 and 12 must not be
used.

An ICREG entry is required when:

1. blocked input or output records are
processed in the input/output area, or

2. varialbtle-length unblocked records are
read backward and are processed in the
input area, or

3. tvo input, or output, areas are used
and the records (either lrlocked or
unblocked) are processed in the input/
cutput area. -

The specified ICREG register contains:

1. for an input file, the address of a
logical record available for
Frocessing,

2. for an output file, the address of an
area that is availalble to the user fcr
building the next record.

WORKA=YES

If the user desires to process the records
of a file in a work area rather than in the
input/output area for the file, he must
include the WCEK2=YES entry and estallish
the work area(s) in main storage. The name
of the work area is entered as the second
operand in GET (PUT) macro instructions for
the particular file. Input/Output areas
fcr tape files must not ke used as work
areas. For further information about the
use cf a work area, refer to the section
Input/Qutput-¥Work Area_ Combipations.

If WCEKA=YES is specified for an output
file containing variatle-length records,
the programmer must define the work area(s)
at a half-word boundary.

BLKSIZE=n

This entry specifies the length of the
input/outrut area. The specification n
must be equal to the number of bytes of a
block. If the record format is variatle,
the specified length must be equal to the
number of bytes contained in the longest
block of records.

The maximum block length acceptable to
the ICCS is 4095 bytes which is equal to
the maximum klock length for IBM 2415
tapes. The minimum tklock length is 18

kytes, except for tape input files contain-
ing checkpoint records. For these tape
files, the minimum area length is 20 bytes.

Note: A message (MNOTE) is given on the
printer if the BLKSIZE entry in the DTF
statement specifies a blocklength of less
than 18 bytes, or if the RECSIZE entry spe-
cifies a record length cof less than 18
bytes for output files, and less than 1
byte for input files (See also the table at
the end of section RECSIZE=). Generation
is then terminated.

If variable-length unktlocked records or
records of undefined format are to be pro-
cessed in a work area, the programmer
should consider the following: A GET
causes the IOCS to move the number of bytes
specified in the BLKSIZE detail entry fronm
the input area into the work area; a PUT
causes the IOCS to move this number of
bytes from the work area into the output
area. Therefore, the programmer must, for
an output file, ensure that the address of
the work area he uses is equal to or lower
than the upper main storage limit minus the
BLKSIZE value.

CONTROL=YES

This detail entry is required if a CNTRL
macro instruction will ke issued for the
file. A CNTRL macro instruction causes the
associated tape drive to perform pperations
such as tape rewind, rewind and unload,
backspace, etc.

VARBLD= (n)

This entry is necessary if an output file
with variable-length blocked records is
being processed and no work area is speci-
fied. This entry specifies a register that
indicates the number of Lkytes in the output
area available for building the next
record.

The specification is either the number
of the desired register (any cne of the
numbers 8 through 13), or a symkol that
stands for this register, in parentheses.
(If the user's protlem program contains
IOCS macro instructions that refer to the
IBM 1419 Magnetic Character Reader, regis-
ters 11 and 12 must not be used.)

After a PUT macro instruction is issued
for a variable length record, the space
still availatle is calculated and placed in
the VARBLL register. The user then com-
pares the length of his next record with
the available space. If the record will
not fit, the user must issue a TRUNC macro
instruction to cause the completed tlock cof
records to be written on the tape file.
Then the present record is placed into the
beginning of the output area and becomes

the first record in the next Lklock. Feor
information regarding the EUT and the TRUNC
macro instructions, refer to the sections
PUT_Pracro_Instruction and TRUNC MacIo
Instruction.

ALTIAEFE=

This entry specifies the symtolic address
of a tape drive that is to be used as an
alternate drive when a tape file is con-
tained in two or more reels (volumes). The
rhysical tape drive address can le assigned
to the specified symbolic address either at
the time of system generation or Ly means
of an assign (ASSGN) statement that is used
by the Jol Control program. The user can
specify one of the following:

SYSIPT
SYSCET
SYSnnn

where nnn may ke any number from
000 to 015.

If the physical tape-drive address is
assigned to the specified symbolic address
by means of an ASSGN statement, the second
(fourth, sixth, etc.) reel of tape may be
mounted on any one of the tape drives that
are attached to the system and available.
The selected tape drive is assigned to the
specified symbolic address. The first
(third, fifth, etc.) reel of tape would
then ke mounted on the tape drive specified
in the LDEVALLR entry of the LTFMT statement
for the file.

The method described above allows suffi-
cient time for the operator to mount the
third reel on the tape drive specified in
the DEVALLE entry while the records on the
second reel are processed. He can mount
the fourth reel on the tape drive specified
in the ALTTAPE entry while the records on
the third reel are processed; and so on.

The ALTITAFE detail entry may te speci-
fied for input and output files. If speci-
fied for an cutput file, the ICCS switches
the tape drives in accordance with the ALT-
TAPE specification on detection of an end-
of-volume condition, i.e., when the reflec-
tive marker at the end of the tape is
sensed.

If the entry is specified for input
files, the functions of the ICCS vary
depending on the type of labels (if any)
srecified for the file.

_______________ The ICCS switches the
tape drives in accordance with the ALT-
TAPE specification.

2. Non-Standard _and_No Labels. The ICCS
has nc means of determining the end of

Facro Instructions 23

a volume. When a tape mark is sensed,
the IOCS transfers control to the
user's ECFALLR routine, where he can
determine whether an end-of-file or an
end-of-volume condition exists. 1In
case of an end-of-volume condition, the
user must issue¢ an FEOV macro instruc-
tion. This causes the IO0OCS to switch
the tape drives in accordance with the
ALTTAPE specification, then ICCS
returns control to the instruction fol-
lowing FECV.

Note: ALTTAPE may not be specified when
READ=BACK is specified.

READ=
This entry specifies the direction in which

an input tape is to be read. If this entry
is omitted, IOCS assumes forward reading.

FORWARD 1is specified for a tape to be read
in the normal fcrward direction.

BACK is specified for a tape to be read
backward. However, READ=BACK can-
not be specified:

1. for tape input files contain-
ing variable-length Ltlocked
records,

Zz. when ALTTAPE is specified.

REWIND=

This entry is used to specify the desired
rewind and unload cperation when an OPEN or
a CLOSE macro instruction is given or when
an end-of-volume condition is sensed.
UNLOAD is specified to rewind the tare
when an OPEN macro instruction
is given and to rewind and
unload the tape when a CLCSE
macro instruction is given or
an end-of-volume condition
CCCUrLS.

NCRWD is specified if no rewind is
desired. This entry is manda-
tory if READ=BACK is sprecified
for the file.

If this entry is not included, an OPEN
or CLCSE macro instruction or an end-of-
volume condition causes the tape file to Le
rewound, tut not unloaded.

TEMARK=NO

This entry applies only to unlakeled tape
output files (FILABL=NO). If includeqd,
this entry will rrevent the writing of a
tape mark as the first record on a tape.
If this entry is not included, a tape mark
will be written as the first record.

24 IBM System/360 Model 20 TPS ICCS

CRFIREC=YES

This entry is required if a tape input file
contains checkpoint records interspersed
among the data records. When this entry is
provided, the IOCS recognizes and bypasses
checkpoint records.

Tape files created ry the Model 20 ICCS
programs will not contain any checkpoint
reccrds. Therefore, this entry is only
required when it is desired to read from a
magnetic tape that was written Lty use of
another program and contains interspersed
checkpoint records.

If the CKPTREC detail entry is specified
fcr a tape input file, the programmer must
specify a block size (BLKSIZE entry) of at
least 20 Lbytes, which is the minimum length
of a checkpoint record.

A group of checkpoint records is identi-
fied by a header and a trailer identifier,
each of which contains the characters
s7/77ECHKETL// (where b = tklank). The user
mrust ensure that none of his input blocks
ccntaine this character comktination in the
first twelve positions.

DTFEN STATEMENT

A DTFEN (Lefine The File ENd) statement
must follow the last defining (DIFSR or
CTFET) statement. A LTFEN statement con-
sists of LCTFEN in the operation field, the
name field is left rlank. The operand
field may be left blank or it may have
CVLAY (overlay) specified to reduce the
amount of main storage used for the
rrogram.

The overlay programming technique can Le
used successfully to reduce the number of
storage positions reguired Lty the program
wvhen one or more tape files are involved.
This rrogramming technique permits the user
to have part or all of the OPEN input/
cutput routines for his tape file(s) over-
laid by his protlem program and to have
part cr all of his protlem program overlaid
ky the CLOSE inputsoutput routines for his
tare file(s) .

when CVLAY is specified, the OFEN and
CLOSE input/output routines for the useiis
tape file(s) are not generated as zart of
the LTF routines. Instead, they are
generated in-line, i.e., when the first (or
only) OPEN (or CLOSE) macro instruction for
a tare file is encountered Ly the :
Assemller.

It is not sufficient, however, to speci-
fy CVIAY in the LTEEN statement in order tc
have the OVLAY function performed. 1In

addition, the programmer must observe the
following (refer to Figure 7):

1. Write all user-written label handling
routines, including those needed when
closing a file (or files), ahead of the
first OPEN macro instruction.

2. Position all literals required by these
label routines ahead of the first OPEN
macro instruction. This is accomplished
Ly means of an LTORG Assemlkler
instruction.

3. Open all tape files before the OPEN rou-
tines are overlaid by the problen
progranm.

Note: If (1) a program utilizing the
overlay programming technique is loaded
from cards and (2) the loading device is
also used as input device for a card
file, the programmer must ensure that
the first card of the data file is in
proper position to be fed from the hop-
per of the reading device at the time
the file is opened by means of an OPEN
macro instruction. (A1l program cards
must have been read when the GPEN macro
instruction for the card file is
executed.)

The routines used to open files (and
additional volumes of multi-volunme
files) are not availalle after they have
been overlaid. Therefore, OVLAY can not
be specified in programs that process:

a. multi-volume tare files, and

b. multi-file tape reels if more than
one file on the tape is used.

4. Initiate execution of the OPEN macro
instruction by a subsequent XFR state-
ment (XFR BEGIN in Figure 7) which may
or may not immediately follow the OPEN
macro instruction. A FETCH macro
instruction (FETCH ROUTIN in Figure 7)
must be given following the last OPEN
macro instruction. This FETCH causes
part or all of the user's program to be
loaded.

5. Give an ORG statement (ORG BEGIN in
Figure 7) immediately after the XFR
statement. The operand of this CRG
statement specifies the address where

| USEE-WRITTEN MACRO LCEFIRITICN.

the overlay is to start and may ke the
same as the name of the OPEN macro
instruction.

For details concerning the FETCH, XER,
and ORG statements, refer to the SRL
publications IEM_System/360_Model 20,
Tare Programming System, Control and

System/360 Model 20, Lisk and Tape Prc-
gramping Systems, Assemkler Language,
Form C24-9C02.

6. Use XFR and ORG-statements (XFR ROUTIN
and ORG xxxx in Figure 7) just prior to
the CLCSE macro instruction. The
operand of the ORG statement specifies
an address in the preceding protlem pro-
gram. As in the case of the CEEN macro
instruction, only one CLOSE macro
instruction for all files should te
given.

7. Issue a FETCH macro instruction (FETCH
FINIS in Figure 7) for another progranm
segment (i.e. another part of the pro-
gram) ., This segment would include the
routines that have been generated for
the CLCSE and ECJ macro instructions.
The loading of this segment begins at
the address specified as the ofperand of
the ORG statement preceding the CLCSE
macro instruction.

Steprs 1 through 5, alove, cause some cor
all of the coding between the location
indicated by the operand of the first ORG
statement (BEGIN) and the next XFR state-
ment (XRF BEGIN) to ke overlaid Lty the fpro-
blem program. Steps €6 and 7 cause the
overlaying of part or all of the prollenm
program by the CLOSE and end-of-job
routines.

I1f the fro-
grammer writes his own macro definitions,
»the following restrictions agpply:

e The glckbal SETB symkol €BG69 must not be
used if the program includes ICCS macrc
definitions.

e The global SETE symkols 8EG72 through
&BG77 must not be used if the progranm
includes 1259 or 1419 ICCS macro
defirnitions.

e The global SETE symkols E&EG1 through
§EG19 must not be used if the overlay
programming technigue is used.

Facro Instructions 25

| L]
| START]
j DTF]
| . |
| . |
| DTF |
| . |
1 . |
| DTFEN OVLAY |
1 . Generated EOF and EQV]
| . routines |
|LABADR ——— |
] —_— User label handling |
| —_— routines |
l ———— |
|BEGIN ——— Problem program |
| initialization 1
| ——— |
[OPEN tapefle,tapefle |
l - |
] . Generated OPEN routine |
| . for tape file(s) l
| _— |
l - |
| OPEN tapefle |
| . Generated linkage {to |
| . OPEN routine) |
l ———— l
| FETCH ROUTIN]
i XFR EEGIN |
b 4
| ORG EEGIN |
J|ROUTIN ————— |
| |
| OPEN cardfle i
| Generated linkage (to 1
] DTFSR routine) |
i _— 1
| — |
] — |
| WAITC 1
| FETCH FINIS |
| |
| XFR ROUTIN |
t i
| ORG XXXX |
|FINIS CLOSE |
l ——— |
|]
| EQJ]
| END FINIS |
1 |
Figure 7. Cocding for File Processing Using

the Cverlay Programming
Technique

26 IBM System/360 Model 20 TPS ICCS

Note: At the end of generation of DTFEN,
the global set symbols €BG1 through &BG6S,
EBGY95 and EEG128 are set to zero Ly the
ICCS (€BG1 through €EG19 and &EG6Y9 are only
reset if overlay has not been specified).

ASSIGNMENT CF_EASF _REGISTERS. Since the
OPEN and CLOSE input/output routines are
generated in line, the programmer must con-
sider their approximate sizes when assign-
ing and loading the base registers for his
program. For information on the sizes of
these routines, refer to the SRL publica-
tion IEM_System/360 Model 20, Tape Program-
ming_System, Performance Estimates, Form
c24-39010.

BASE_REGISTER 9. When LCFTEN OVLAY is spe-
cified the routines for the processing of
the IBM standard labels VCL1 and HLR1 are
generated as part of the OPEN routines
instead of as part of the LTF routines. At
the end of these label processing routines,
the Rssembler instruction LECP 9 is
generated. If the user has given a USING
instruction for register 9 at the lkeginning
of bkis program, he must repeat this
instruction immediately after the OPEN
macro instruction. Reloading the register
is not required because its contents is
restored to the value that was contained in
the register Lkefore the execution of the
CEEN macrc instruction.

T T T T T 1
| | | Operand | Applies to |]
l : } % 1 1 L] L) 1 A) { |
] | |Allowable | 12520 12520 1442 | l |] |
jOpera- |Keyword)] Specifications]256C|Read-]|Punch)] ¥od 5]2501]2203]1403|Remarks |
|tion | I l | Punch]| |Punch| | | | |
1 1 [1 L 4 L 1 1 4 4]
§] RE T LI] 1 T T T T . R
|DTFSR | |] x | x | x] x]l x | x |} x |Always f1r§t]
] | | 1 | | l |] | Icard, may include |
l |] | |] |] 1 | jdetail entries |
| | | |] |] | | | {from column 16 |
| l | | I l l i 1 | jto column 71. |
F + + + t + + +---—+ + + 1
| | BINARY | YES | x% | x* | | | x] i |* Only for |
1 | | 1 | 1 | 1] | | simple files. |
| | b + + + } } + 4 t i
| | | INPUT] x | X | | | | | |Cnly fo§ com- i
| | l | } | | l | I lbined files. l
1 L 1 1 1 4 1 uR 1 4 1]
L T R T L] Ll T L ¥ L) T . 1]
| | ELKSIZE|length of sim—- | | | | i 1 1 |Indicates length |
1 | |ple file input/| x | x | x | x] x] x | x |Jof area speci- |
] | |output area | | | | | | | |fied by ICAREA1 - |
|] lin bytes |]] | 1 | ! | ICABEA2 entries. |
F + t + + + t + 4 t + i
1 | CONTROL} YES | x | x | x | 1] x | x |Reguired if a |
l 1 l | I l | | l H |CETEL macro is |
| | l | | | | | l | lgiven for a file. |
L L 1 1 1 L L - - 1 L 1 1
Figure 8. Definition Statement Summary for Card and Frinter Files, Fart 1 of 3

Facro Instructions

27

Operand

Applies to

—— —]

L
|Allowable

Opera-|Keyword | Specifications

|2520 |
256C] Read-| Punch] Fod 5|2501]2203|1403

|2520 |1uu2 l

— e bt —]

Femarks

L] RJ R}
| | |
] + |
| | l
l 1 |
jtion | | | | Punch| IPunchl | | 1 |
+ + + { { -+ + + -+ + } 4
l |CRDPRA |name of user- | x |} | |] 1 | 1 |
] I |defined card]] | 1 1 | |] |
| 1 Iprint area 1] 1 1] | |] |
I + + + + + + + t + + 1
| | CRCPRLn|length of card | x | | | | | | In in the keyword |
| | |print area in | | i | |] | lis a printhead 1
| | | bytes 1 | | | |] | Inunber. |
t + + + } } } i { + + 4
i |DEVICE |MFCH 1 1 x | |]] | i | |
| | I + + + t + + + 1 |
| | JMECH 2 I x| | | |] l |]
| l = } } } } t } + 1]
| | |CRP20 | l x | | | 1 I |]
| | F + + + + + + t 1 |
| | | PUNCH20 |] | x | | 1 1 | |
) l t 4 + + ~+ t t + 1 |
| | JPUNCHU42 i l | I x | |] | l
| | [} + + + + + + + 1 |
1] | READO1 | | | | | | | | |
I | t 1 } i + t -+ + 1 |
| I JPRINTER] 1 | | | I x| | |
|] 1 + + { + + + + + |
] | | PRINTLF | | | | | I x| |For 2203 with [
|] i } + + + +——t 1 {dual-feed- |
| 1 |PRINTUF | | | |] 1 x 1 Jcarriage. 1
t + } 1 + } + t + + + 1
| |EOFADDR|name of user's | | |] | | | {* Only for in- | | |
| | lend-of-file | x* | x* | |] | | | put and/or |
| | |routine | | | | | | | | combined files. |
t + t } + } + + + + t 4
| JINAREA }name of] | | 1] | | |Comkined files | | | |
| | |combined file | x | x | | 1 | | lonly. |
| | linput area | l 1 | 1 | | | |
} + } + + + + + + + 1 4
1 | INBELKSZ)length of com- | x | X | | l | | |]Combined files |
1 | |bined file in- | 1 1] 1 1 | lJonly.]
| | |put area in | | | | | | | I |
| l l|bytes | | | | | | | | |
I t + } + + { + t } } -4
| | IOAREA1 | name of the | x | x | x] x | | x* | |* Entry required |
] | |user—-defined | |] | |]] § for 2203 only 1
| 1 |area | | l 1 | | | | when dual-feed- |
1 1 | 1 1 1 1 | | 1 | carriage used. |
} + + + 1 + + + t + +]
| | ICAREA2 | name of the 1 | | | | | l |Can be used if a |
1] juser-defined 1 1 | | |]] 12501, Model 22, |
]] larea 1 | 1 1 | 1 1 |is used in over- |
| | | } | | | | l 1 |lap mode. |
I + + + + + + + + + + 1
| | CUAREA |name of] x | x | |]] l |Combined files |
| 1 Jcombined file | 1 | 1 | 1 | lonly. i
| | joutput area I | | |] l] | |
t + + + + + + t - + t 1
| |OUBLKSZ}length of com- | x | X | 1 1 | |]Comtined files 1
| | |bined file out-| l |] | | | lonly. |
l | |put area in l | l] |] | | |
| | |bytes | | | | | | | l |
1 1 1 1 A A i 1 - 1 i b |
Figure 8., TLefinition Statement Summary for Card and Erinter Files, Part 2 of 3

28 1IEM System/36C Model 20 TPS I0CS

||||||| 1.||.|u|_...||-.|.llu.ln_wlll.l.||.;1||.|.|.J||l||I..IIa|IJ1|..|I|lln_ll||l|-..,1|.|l|-||J1|.I|I||I|JII..|||J
(Y] =]
] Q Q
Q @ 0 H M @ ”0 = =
—~ s MO b e (=] W Y
[Rl L] - O (0] +~ Q@ o 3 4 | ' .
(™) o O oW o ©.4 O [N =] DTS O e | A w 9] 7]
o S0 = A OAME >y W W >y [*] Q QT @
sV - Q © I “H O H E &0 >0 NS H > w 9] Y =
oo 8850 o o H e} N Rl 2y O
Q0 a 0 - Ot o O M W HHY O 2] u o 0w s n >y
- W VOWMNHD O o Q »w oL + VH U R Q - o
/)] + 0 L -] U E - - e} 8} « O @ g . O H KM
A ~ O ®™ o sl H © H O X © b L x g + @ Q
- B b O Qo NG el P o e VMO HXP S Qe o O
[} O A H O N0 SO W Ma % Eal =] '~ 0T i Le] [=]
=] [} o 0 Q = e > TN~ T O H n oIy SR K]
[oy > S5 04 09 O g ot S 0000 SLS8 © 0 R R R <
<=} Hw QO H DA Oy Ko O H U™ O QUL O O = 0o
lll‘lla.”ljllllll:l llllll -t ——— ——— e o — ——— —— -t —— - o o o e e = e fr e ey — e — o —
(=)
=g » » >
-
oo T e o o —— o — —] [rw = oy - —— —— —— e - —— —— — fo — —— — =] o o o e ey e e e e e — — o
m
o
~N Ll] ”
N
[T e e e T e g = o e = e ey T — e o Ty — o r— e — ey — -, —— e —] b e = e = — o
Lad
Qo
n » " ~ > " » e
o~
e e s e e oo e e — e — . —— . —— fo e o o o e T iy " o oy ——— — - - o — — o] i R R
by 4 - - 4 "
o] o™ 0]
- = YR
2 09 o] tal »
7] Al >3 =71
Qoo b T e T — oy e ey ey e o e e o oy — — — — — o —— o " o oy S — — o e e e o — — —
Hal = .
~—~ (SIS
N s
24 n o b L} »
< oy
e e e e -y e —— o —] [o o o ey T an T ey St T ey S o o — T " e — gy W > o e = e e = ey e
| =
Qo0
N o g
n e » » > > > »]]
N @A » » »
e e e = e —— ——— —— e — — — —] b e e e e e e = e ————— - o o — —— b e e = e e
o 1 -
0
% el b > > " » » » L s »
llllllll _|.||-|ll|lllll|aIJlllllllll.llll|l||||Illlnltllllllllll|..lll||-||.I.ll|lil|||||l|-1l.|l.l.|c|llllll
]
=]
(] [T Iy} [Se] -
o Bal U OH [=] [OONS]
= -~ u=w nn=ay nwuouwn
] Q o S o0med S oEeH S o=
- —~ O O QA (e R
U] Qe Y O~ @ W oK o “H oM«
o @ 44 0O S w ~N [e=N--1] [« =R E™] [
o < o > Eal > - > Bl [= a
Q0 >y Qo >~ QA+ g > Q4+ g+ o oy 2
—~ Q o] 82300 v » 5200 el g3 00 21} e Q wn
—~ o » ™ O .o 12 » g0og » @ O.a8 9 = o = e
= 01 = S H=2P tal S H 3P B H xR L] Q (8] Lol
oo e e e - ———— — e —— — — fe e T e e - —— . —— " —] e . o e . - ——— e e e e s ki e — ———
e} o] =} Ed =} 25}
- (o] 2] Q £ = [} -3
O = = [|2l = [Q s B ~
= al [H = [- = >4 <] e
>~ = o L H o la e} (o] [a¥] [~
U - <] 3] 2] 3] <] = jex] Lol (@]
£ Q ™~ [aT] =] 2] =] %] 0 =] =
_Ill"la_l- lllllll e S — ey W e . — Oy et T gy T ey] o e v ——— Lr lllll TlllllTllllL lllllll l.lllllL
i)
H S
@ O
Oger
O »
b e - — - — —— g T — . — o — ot e - — el — —— —] iy = e o — vran o— wlay —— — - — o] by o - —] T —— e — by o ——— ey w— ey e v —)

29

¥Facro Instructions

Tefinition Statement Summary fcr Card and Erinter Files, Part 3 of 3

Figure 8.

L 4 L] T L]
| | Operand | |
| i T 1 |
]Opera-|Keyword |Allowable |Remarks |
|tion | | Specification | |
¢ + t } 1
|DTFMT | | |Applies to tape files only. |
1] 1 H 4
L) Ll v T L}
| | ALTTAPE] SYSIPT jRequired for multi-volume files using two tape drives. |
| 1 F {SYSIPT, SYSOET, and SISnnn are symbolic addresses to ke |
| |] SYSOPT lused when processing tape files. |
|] k 1]
1 | | SYSnnn | |
t + + + i
] IBLKSIZE|length of file |Length of IOCARE21 as defined in main progranm. |
| | l}input/output | |
| | jarea in bytes | |
| t + + x|
| | CKETREC| YES |Required to read tapes containing interspersed |
| 1] Jcheckpoint records. |
L 1 1 1 . |
L 1]] L] 1
1 | CONTROL| YES |Required if a CNTRL macro is given for the file. |
1 4 1 1 .|
L L) 1 T L
i |DEVADDR | SYSIPT |SYSIPT, SYSCET and SISnnn are symbolic addresses to te |
| l F qused when processing tare files. |
1 | 1SYSOPT | |
| | t 1 |
| | | SYSnnn 1 |
I - + + |
| | EOFALILR| name of user |For input files only. |
1 | Jend-of-file | |
| | jroutine | |
t t + { 4
| |{ERRIC |name of a two- |May only be specified if the ERRCET entry specifies |
| 1 Jkyte area in J]the name c¢f the user's routine and/or if the WLRERR {
1 l Jwhich the IOCS |entry is included in the CTFET definition, and }
|] | places address |if IOABEAZ is also included in this file definition. |
i i Jof wrong-length] |
| } |record or of | |
| | lerror block | |
1 R 1 <4 1
L) T ¥ T . . R
|] ERROPT |IGNCRE |If the ERROPT entry is omitted, a permanent read error |
| 1 b Jcauses the jcb to be terminated. When ERRCET=name

|]] SKIP |is specified, the user must return to the ICCS via]
] 1 3 1register 14.]
1 | | name cf user | |
1 | |routine | |
F + -+ + 4
| JFILAEL |STLC |Standard labels. |
l 1 t + x|
| | | NSTD |Non-standard lakels. Applies to input files only. |
| l F + 1
1 | | NO |No labels. No labels is assumed if the FILABL entry 1
| | l lis omitted. |
F + t + 1
| | ICAREAT | name of the | [
| | Juser—-defined | |
| | larea 1 |
t + t i 4
| JICAREA2]|name of the |First DTF statement must te DTFEG RWC=YES. |
| | |user-defined] |
} I jarea 1 |
L L A i J

® Figure 9.

30

Definition Statement Summary for Tape Files, Part 1 of 2

IEM System/360 Model 20 TPS IOCS

L 1 1 R
| | Operand | i
| t T 4 }
|Opera-]Keyword |Allowable |Remarks i
jtion | | Specification | I
i } + + 2|
1 |ICREG |number of any |Required when either (1) tlocked records are processed |
| | Jregister from 8j)in the I/C area, or (2) varialle length unblocked 1
| } Jto 13 in paren-jrecords are read backward and processed in the input I
| | | theses (n) larea, or (3) records (either Lklocked or unblocked) are |
| | | |processed in the I/C area and ICAREA2 is specified.]
| | | | (If the user's problem program contains ICCS macro]
] l 1 linstructicns that refer to the IEM 1259 or 1419 Magnetic|
| | | |]Character Readers, registers 11 and 12 must not be used)]
1 4 L 1 b
L 1 T ¥ 1
| J|LABADDR |name of user |User must return to main program Ly issuing a LERET]
1 1 | routine {macro instructicn. |
t + + } |
1 |READ | FORWARD |If omitted, ICCS assumes forward reading. I
| | } 1 l
| | | BACK I |
t } + + 1
| |RECFCRM]FIXUNB |Entry may ke omitted if record format is fizxed 1
|] - qunblocked. |
| | | FIXBLK | l
| | t 1 I
] | | VARUNB] i
| | k 1 |
| | | VARBLK | 1
| | t 4 |
| | JUNDEF |]
k } + + 1
l | RECSIZE|numker of kytes|Required if fixed-length rlocked or undefined record 1
| 1 |]in one record |format is specified.]
| | |or number of | (If the user's proklem program contains ICCS macro |
| | |register indi- |instructicns that refer to the IEF 1259 or 1419 Magneticj
]	cating record	Character Readers, registers 11 and 12 must not be used)
]]length in num-		
		ber of bytes,]
i	in parentheses]
F } + +		
	REWIND	UNLOAD
l	t jon OPEN, CLOSE and on end-of-volume condition.	
i		NCRWD]
3 4 4 +]		
]] TPMARK	NO	Applies tc unlabeled tare output files. 1
L 1 1l 1 i		
¥ T 1 1 1		
1	TYPEFLE	INEUT]
1 l — 4 i		
	JOUTPU1T	H
t + + t 4		
	VARBLD	number of re-
]		gister in lare built in the cutput area. (If the user's 1
}	parentheses {(n)	problem program ccntains ICCS macro instructions 1
		for available-
]byte indication	Readers, registers 11 and 12 must not Le used.) 1
+ + + } 1
1 |WLRERR |name of user |The user must return to the ICCS via register 14.]
| | | toutine | i
t + t + {
i | WORKA |YES | |
v 1 ! 1.]
Figure 9. Definition Statement Summary for Tape Files, Part 2 of 2

Facro Instructions 31

INITIALIZATION

Before the first record can be read from
any input file or transferred tc any output
file by means of I0CS macro instructions,
that file must be readied for use by issu-
ing an OPEN macro instruction.

OFEN MACBO INSTRUCTION

The format of this macro instruction is:

T T L
]Name |Operation |Operand
L L L

N S

[3 T Ll
|[name]| OFEN }file1,£file2,...filen
1 B .. 1

Each operand is the name of a file
{(assigned to it by an entry in the name
field of a DTFSR (CTFMT) header entry) to
be opened with this macro instruction. Any
number of files from one to sixteen may te
opened with one OPEN macro instruction.

The operations performed depend on the type
of unit involved and the lakeling technique
(if applicable).

Opening_Card_Files

For card and printer files, an OPEN macro
instruction simply makes the file (s) con-
cerned available for input and/cr output.

Opening Tape Files

When a tape file with IBM standard labels
is opened, the ICCS expects the first rec-
ord read to ke a label. An OPEN macro
instruction causes the tape to be rewound
prior to processing, unless the frogrammer
has specified no rewinding by including
REWIND= NORWL in the DTFMT statement for
the file. If the programmer has specified
no rewinding and if a file teginning in the
middle of the reel is opened, the user can
position the tape ty means of a FILES con-
trol statement for the Job Control progranm
so that the first record read at OPEN time
will be a label. If the first record is
not a label the I0OCS regards it as an error
condition. However, an unlabeled file can
be opened in the middle without causing an
error condition.

When two or more files of a multifile
tape volume are to be processed by one pro-
blem program, processing of each specified
file must be completed before the file next
in succession is opened.

_______ If the second, fourth, and sixth
files of a multi-file tape volume are to ke
processed by one problem rrogram, the pro-
grammer must write the OPEN macro instruc-
tions for these files in the following
sequence:

32 IBM System/360 Model 20 TPS ICCS

OPEN second file

CICSE second file

OPEN fourth file

CLOSE fourth file

CEEN sixth file

CLCSE sixth file

The concurrent processing of two or more
files of a multifile tape volume is not
Ecssitle.

Note that all files on a multifile
vclume must either contain the same type of
labels (standard or non-standard) or con-
tain no labels.

OFENING TAEFE INEUT FIIES: The processing
done by the IOCS when an OPEN macro
instruction is executed depends on whether
the file has IBM standard labels, non-
standard latels, or no labels. If the
input file is to ke read ftackward, the file
must meet the requirements specified under
Read-FEackward_Considerations Lelow. An

OFEN macro instruction causes the
fcllouwing:

1. If IEF standard lalkels are specified,
the IOCS will:

a. read and check the volume lakbel if
the tape is at load point;

E. byrass any user volume latels;

c. read and check the IEM standard
file header lalkel (HDR1);

d. bypass any additional IBM standard
header latels (HLE2-ELES8);

e. test the user laltels (UHL1-UHLS),
if a user's routine is specified,
and make these labels available to
the user's routine as they are read
(refer to the Note below); and

f. properly position the tape to read
the first data record.

Note: If a user's latel routine is not
specified, user labels (if present) are
skipped.

If the file is to Le read backward,
steps e, d, and ¢ are performed in this
sequence; steps a and Lt are omitted

because the ICCS processes trailer
labels instead of header latels.

2. If non-standard_labels are specified,
the file is spaced forward to the first
record following the first tape mark.
Therefore, the non-standard labels must
be followed by a tape mark.

3. If no_laltels are specified, the first
record on tape may be a data record or
a tape mark followed by one or more
tape marks. If the record is not a
tape mark, it is assumed to be a data
record, and the tape is kackspaced by
one record. If the first record is a
tape mark, another record is read. If
this record is a tape mark, the ICCS
causes no further tape movement; other-
wise, the ICCS assumes a data record
and causes the tape to Le backspaced by
one record.

Read-Backward_Consideraticns. 9-track tape
files written on System/360 tape units can
be read backward if they do not contain
variatle-length blocked reccrds; 7-track
tapes can be read backward if they were
written on System/360 tape units without
using the Data Conversion feature. Note
that 7-track tapes containing variable-
length records have always lkeen written
using the Data Conversion feature and,
therefore, can not be read tackward. A
file to be read backward is limited to one
reel. Any tape mark sensed while reading
data records is considered to indicate an
end-of-file condition.

When opening a tape file that is to be
read backward, the job is terminated if the
first record read is not a tape mark. The
user is required to properly rosition files
that are to be read backward prior to issu-
ing an CFPEN macro instruction. The proper
positions are as follows:

IBM_standard-labeled files should Le posi-
tioned so that the first record read will
be the tape mark following the trailer
label set. Since the file trailer label is
the first latel to be checked when a file
is to be read backward, this trailer label
must ke complete; it must ccntain btoth the
trailer and the header information (except
HLCR) to properly identify the file., If the
file labels were originally written by the
I0CS, the trailer labels are complete.

Non-standard latel files should also te
rositioned so that the tape mark following
the trailer label set is the first record
to be read. However, no lakel checking is
performed.

Unlakeled files must be positioned so that
the first record read is the tape mark fol-

lowing the last record of the file to Le
read.

Unlateled tape files to ke read Lackward
must have a tape mark as the first record
cn the tare (preceding the first data rec-
ord) . If this tape mark is not present, no
end-of-file (EOF) condition is detected and
an attempt is made to read past the load
point.

The user must specify the NCEWL (no re-
wind) option in his file definition state-
ment for the file to lte read tackward.

CEENING TAFE CUTPUT FILES: The fprocessing
done by the IOCS when an OPEN macro
instructicn is executed depends on whether
or not the file is lalkeled. An CEEN macro
inpstructicn causes the following:

1. If IEF standard lakels are specified,

the I0CS will:

a. check for a volume label if the
file is positioned at loadpoint;

b. read the file header label (if pre-
sent) and check the expriration date
to make sure the data on the tape
is no longer active and may te
destroyed;

c. backspace the tape and write the
new file header lakel with the
information supplied by means of a
TELRAE job control statement (refer
to the section Control Statements) ;
and

d. enter the user lakel routine, if
this routine is specified, to allcw
the creation and writing of user
header laktel (s) (UEL1-UHLE).

will perform the rewind operation and
write a tape mark as the first reccrd
on the tape. The volume label and the
expiration date are not checked, and
any existing lakel set is destroyed.
Note: The writing of a tape mark may
be suppressed by a TPEARK=NC entry in
the CTFMT statement.

3. If pon-standard_lalels are specified
for a file, a diagnostic message is
rrinted during assenkly lecause the
specification of non-standard lalels
for an output file is not permitted.

EBCCESSING_FKACEC_ INSTRUCTICKS

These macro instructions cause input/output
creraticns to be performed. If an operand
of a processing macro instruction is the

Facro Instructions 33

symbolic address of an area or a routine,
relative addressing is permitted. However,
such an operand is limited in length to
eight characters, including expressions
with their operators.

The processing macro instructions common
to all input/ocutput devices are described
first followed by a separate section each
on (1) specific card and printer macro
instructions and (2) specific tape macro
instructions.

COMMON MACRO INSTRUCTIONS

In this section, processing macro instruc-
tions common to all input/output devices
(GET, PUT, and CNTRL) are discussed.

GET MACEO INSTRUCTION

The format of this macro instruction is:

[

L) LI
|Name JOperation |Operand
L 1 1

e e ot e

L] T L]
|[name]| GET]filename[,workname]
| 8 1 L

The GET macro instruction is written in
one of two forms:

1. With one operand only. This format
applies to tape files only. It is used
if records are to be processed directly
in the input area. The orerand speci-
fies the name of the file from which
the record is to ke read. The file
name must be the same as the one speci-
fied in the LTFMT header entry for this
file.

2. With two operands. This format is used
if records are to be processed in a
work area. The first orerand srecifies
the name of the file. The second
cperand specifies the work area to be
used. (Refer to the description of the
WORKA=YES detail entry in the sections
DTFSR_Detail Entries and DIFMI Detail

Processing _in_an_Input Area: The first
form of the GET macro instructicn is used
if records are to be processed directly in
the input area(s). It requires only one
operand. This operand specifies the nanme
of the file from which the record is to kLe
retrieved. The file name must te the same
as that specified in the DTFMT header entry
for the file.

The input area must be specified in the
DTFMT entry ICAREA1. Two input areas may
be used to permit an overlap of data-
transfer and processing operations. The
name of the second area is specified in the
DTFMT entry IOAREA2. Whenever two input

34 IBM System/36C Model 20 TPS IOCS

areas are specified, the 1ICCS routines
transfer records alternately to each area.
They handle this "flip-flop" so that the
next consecutive record is always available
to the program for processing.

¥hen records are processed in the input
area(s), a general purpose register must be
specified in the LTFMT entry IOREG, if:

1. records are blocked,

2. varialle-length unblocked tape records
are read backward, or

3. two input areas are used, for either
tlocked or unblocked records.

This register always contains the abso-
lute address of the leftmost position of
the record currently available. The GET
rcutine places this address in the
register.

Processing_in_a_Work Area: The second forn
of the GET macro instruction is used if
records are to ke processed in a vork area,
It causes the GET macro to move each indi-
vidual record from the input area to a work
area, In the case of variable-length rec-
crds the record includes four tytes which
hold the record length. As in the first
fcrm, the file name must ke entered as the
first operand. The name of the work area
must ke entered as the second operand, and
YES must be specified in the WORKA entry of
the CIFET or LTESR statement. The work-
area name must fe the same as that speci-
fied in the IS or LC instruction defining
this area.

211 records from a file may be processed
in the same work area, or different reccrds
fronm the same file may ke processed in dif-
ferent work areas. In the first case, each
GET macro instruction for the file sgpeci-
fies the same work area. 1In the second
case, different GET macro instructions spe-
cify different work areas. It might ke
advantagecus to plan two work areas, for
exanple, and to specify each area in
alternate GET macro instructions. This
wculd permit the comparison of each record
with the preceding one to determine a pos-
sible change of the control level. Howev-
er, only cne work area can le specified in
any one GET macro instruction.

When variatle-~length unblocked records
or records of undefined format are pro-
cessed in a work area, a GET causes the
ICCS to move the entire input area to the
work area. {(Refer to the description of
the BLKSIZE detail entry in the section
LIFYI_Detail Entries.) If the record to te
processed contains fewer bytes than the
input area, undesired characters may te

moved into the work area along with the
record.

When a card file is processed in the
non-overlap mode, a GET macro instruction
for the file (1) initiates the reading of
the next record, {2) moves the data fron
the input area to the work area when the
read operation is complete, and (3) trans-
fers control to the main program. When a
card file is processed in the overlap mode,
the GET macro instruction for the file (1)
moves a record, as socn as it is available,
from the input area into the work area, {(2)
initiates the next read operation, and (3)
immediately transfers control to the main
progranm.

When a comtined file is processed and
data is to be punched into the input cards,
the programmer must use one of the program-
ming methods described under Programming
with LOM and_EOM Macro_Instructions in the
section LCM Macro Instruction_for Combined
Files. Also refer to Programming Consid-
erations_--_Combined_ Files in the section
PUT_Macro_Instruction below,

For a tape input file, a GET macro
instruction may cause a read forward or a
read backward operation. The type of read
operation performed is determined by the
READ= entry in the DTFMT statement.

PUT MACRC INSTRUCTION

The format of this macro instruction is:

T T 1
| Name |Operation |Operand
[1 1

e e b e

T LB - T
|[name]J|PUT |filename[,workname]
L. 1 1

This macro instruction is written in one
of two forms:

1. With one operand only. This format
applies to tape files only. It is used
if records are to be processed directly
in the input,/cutput area. The operand
specifies the name of the file for
which the user wishes the PUT to be
executed. The file name must be the
same as the one specified in the DTFMT
header entry for the file.

2., With two operands. This format is used
if records are being processed in a
work area. The first operand specifies
the name of the file. The second
operand specifies the work area fron
which the records are moved to the out-
put area.

Building in_an Qutput Area: The first form

cf the PUT macro instruction is used if
records are to ke built directly in the
cutput area(s). It requires only one
operand. This operand specifies the nane
of the file to which the record is to te
transferred. The file name must be the
same as that specified in the DTFMT header
entry for the file,

The output area must te specified in the
DIFMT entry IOAREA1. Two output areas may
be used to permit an overlap of data trans-
fer and processing operations. The name of
the second area is specified in the DTFMT
entry ICAREA2. Whenever two output areas
are specified, the IOCS routines transfer
reccrds alternately from each area. They
handle this %"flip-flop" so that the proper
output area is always available to the pro-
gram for the next consecutive output
record.

%When records are built in the output
area(s), a general purpose register must ke
specified in the LTFMT entry ICREG, if:

1. reccords are Lblocked, or

2. two output areas are used, for either
klocked or untlocked records.

This register always contains the akso-
lute begin address for btuilding the next
record in the output area.

Building_in_a_Work Area: The second fornm
of the PUT macro instruction is used if
reccrds are to ke ruilt in a work area.
This form of the EUT macro instruction
mcves a recocrd from a specified work area
to the fproper location in the output area
specified in the DTFMT or DTFSR statement.
As in the first form, the file name must be
entered as the first operand. The name cf
the work area is entered as the second
cperand. YES must ke specified in the
WORKA entry. The name of the work area
must be the same as that specified in the
DS or DC instruction that defines the area
in main storage. Individual recocrds for a
logical file may be built in the same work
area or in different work areas. Fach FUT
macro instruction specifies the work area
where the completed record was ruilt.
However, only one work area can be sgpeci-
fied in any one PUT macro instruction.

Unblocked Records

Records transferred to card or printer out-
rut files are always considered to te
unblocked. Records transferred to magnetic
tape cutput files may te tlocked or
unblocked. 1If they are to be treated as
unblocked this must te specified in the
CTFMT entry RECFORM.

Macro Instructions 35

Each PUT transfers a single unblocked
(either fixed or variable-length) record
from the output area (or input area if
updating is specified) to the file. If a
work area is specified in the PUT macro
instruction, the record is first moved from
the work area to the output area (or input
area) and then to the file.

Blocked Records

When blocked records are to be writtem on
tape {as specified in the DIFMT entry
RECFORM), the individually built records
must ke formed into a block in the output
area. The block of records is then trans-
ferred to the output file. The blocked
records may be either fixed or variable
length.

Fixed-length blocked _records can be
built directly in the output area or in a
work area., ©Fach PUT macro instruction for
these records either adds an indexing fac-
tor to the register, or moves the completed
record from the specified work area to the
proper location in the output area. When
an output block of records is ccmplete, FUT
causes the block to be transferred to the
output file, and initializes the register
if one is used.

Variakle-length blocked_records can also
be built in either the output area or in a
work area. The length of each variable-
length record must be determined by the
proklem program and included in the output
record as it is built. The record-length
field must occupy the first four tytes of
each record. The first two bytes specify
the length of the record (including the
four bytes for the record-length field
itself), and the next two tytes are binary
zeros. The user must define an output area
that is large enough to accommodate the
four bytes in which the IOCS places the
bFlock-length indicaticn. The Etlock-length
includes the four bytes for the block-
length field itself.

When variakle-length klocked records are
built in a work area, the PUT macro
instruction performs approximately the same
functions as it does for fixed-length
tlocked records. The PUT routines check
the length of each output record to deter-
mine if the record will fit in the remain-
ing portion of the output area. If the
record will fit, PUT immediately moves the
record. If it will not fit, PUT causes the
completed block to be written and then
moves the record. Thus, this record ke-
comes the first record in a new Llock.

If variatle-length blocked records are
to be built directly in the output area, an
additional LCTFMT entry, a TRUNC macro, and
additional user programming are required.

36 IBM System/360 Model 20 TPS ICCS

The user's program must determine whether
each record to be built will fit in the
remaining portion of the output area. This
must be known before processing of the rec-
ord is started, so that, if the record will
nct fit, the completed llock can ke written
and the record can ke Lbuilt at the Legin-
ning of a new block. Thus, the length of
the record must be pre-calculated and ccm-
pared with the amount of remaining space.

The amount of space available in the
cutput area at any time can ke supplied to
the program (in a register) by the ICCS
routines. For this the user must specify a
register in the DTFMT entry VARBLD. This
register is in addition to the register
specified in the DTFMT entry ICREG. Each
time a FUT macro instruction is executed,
I0CS loads into this register the number of
bytes remaining in the output area. The
protlem program uses this to determine
whether the pext varialle-length record
will fit. If it will not fit, a TRUNC
macro instructicn must ke issued to trans-
fer the block of records to the ocutput file
and make the entire output area available
for building the next Llock.

Undefined Records

When undefined records are handled, PUT
treats them as unblocked. The programmer
must provide any rlocking he wants. He
must also determine the length of each rec-
ord (in bytes) and load it in a register
for IOCS use, tefore he issues the PUT
macrc instruction for that record. The
register that will te used for this purpose
must be specified in the LTFMNT entry
RECSIZE.

When a card file is processed in the
ncn-cverlap mode, a PUT macro instructicn
for the file (1) moves a record from the
work area tc the output area, (2) initiates
the punch operation (and the next read
creration in case of a comtined file), and
(3) transfers control to the main progranm
when the punch operation has Lteen
completed.

When a card (or printer) file is pro-
cessed in the overlap mode, a FUT macro
instruction for the file (1) moves a record
from the work area to the output area, (2)
initiates the punch (print) operation, and
(3) immediately transfers control to the
main progranm.

Note: Printer files are always processed
in the overlap mode.

Neither the output area nor the work
area (if used) is cleared by the ICCS when
a FUT macro instruction is executed. Tc
avoid his output records containing inter-

spersed characters from preceding records,
the user must ensure the following:

1. If the records are built in the output
area

a. that the record he builds uses
every position of the output area,
or

b. that he clears the cutput area
before he starts building his next
record.

2. If the records are tuilt in a work area

a., that the record he tuilds uses
every position of the work area, or

b. that he clears the work area before
he starts building his next record.

Frogramming Considerations --_Ccmbined
Files

Assume that a combined file is teing pro-
cessed by means of the following sequence
of instructions:

GET F1,W1
____________________ no GET, EON, or PUT
———————————————————— macro instruction
____________________ referring to file F1
PUT F1,W2

In this case, the following rules apply:

Non-overlap Mode. The statement PUT F1,W2
causes punching into the card that has been
made available by the statement GET F1,W2.

__________ The statement PUT F1,W2
causes punching into the card fcllowing the
card that has been made available Ly the
statement GET F1,W1. The card that has
been made available by the statement GET
F1,W1 has already passed the punch station
when the statement PUT F1,WZ is encoun-
tered. In other words, alternating GET and
PUT statements for the file F1 cause the
first (third, fifth, etc.) card to be read
and the second (fourth, sixth, etc.) card
to be punched.

CNTRL MACRO INSTRUCTION

The format of this instruction (control)
is:

T T 1
|0pera-| |

Name }jtion |Cperand |
+ + 1

[name]J|JCNTRL |filename,mnemonic[,[n][,n]]I
AL 1 .|

po e W o e ™

This macro instruction contains CNTRL in
the operation field, and the name of the
file for which the device operation is
desired as the first operand in the operand
field. BAs a second operand, the programmer
must enter one of the mnemonics listed
below toc specify the desired operation.

The third or fourth operand may or may not
be required depending on the type of crera-
tion specified by the programmer.

The CNTRL macro instruction can be used
by the programmer to cause such non-data
transfer operations as form skipping,
stacker selection, tape rewvinding, etc., tc
be performed on the device associated with
the file., A CCETRCI=YES entry must ke
included in the DTFSR (DTFMT) statement for
a rarticular file if a CNTEKL macro instruc-
tion is given for the file.

The following is a description of avail-
able mnemcnics to ke used as the second
operand, and of the contents of the third
and fourth operands, when required.

STACKER SELECTICN (SS) FCE THE IEM 2520,
MODELS A1, A2, AND A3: Either of two
stackers can te selected.

r T)
| Cperand l |
| . ——7— Function |
| Mnemonic | n | m |]
1 1 4 1 .]
L) T T i 1
| Ss] 11 -] Select stacker 1 |
t 1 -1 -}]
L] v T T 1
| Ss] 2 1 - | Select stacker 2 |
L iR L L]

In the IEM 2520, cards are normally
stacked in stacker 1. The stacker selec-
ticn mnemcnic (SS) is used to select a card
into the other stacker as specified by the
third operand in this macrc instruction.

When two stacker select CNTRL macro
instructions are given for the same file
and before the next GET or PUT macrIo
instruction for that file, the second
stacker select CNTRL macro instruction is
effective; i.e., the seccnd CNTEL macrc
instruction overrides the first. The fol-
lowing must ke olserved Ly the programmer
when issuing a stacker select CNTRL to
ensure that the instruction is in fprcrer
relationship to the GET, PUT, or ECM macro
instruction referring to the card to te
selected:

1. Processing_in_overlap mode. The stack-
er select CNTRL must Lre the last macrc
instruction preceding the GET or PUT
that refers to the card to ke selected.
The example kelow selects the card, the
contents of which are transferred to or
from the work area try the GET (or EUT)
macre instruction. (The second operand

Facro Instructions 37

required in GET (PUT) macro instruc-
tions referring to card or printer
files is not shown.)

—————————————— no GET or PUT
—————————————— referring to file ARA

2. Processing-in-non-overlap mode. The
stacker select CNTRL must be issued
after the GET macro instruction or
before the PUT macro instruction that
moves the card to be selected. The
example below selects the card read by
the GET macro instruction.

--------------- no PUT, GET or ECHM
--------------- referring to file AAA
CNTRL AAA,SS,n

The example below selects the card
noved by the PUT macro instruction.

--------------- no PUT, GET, or EOM
referring to file AAA

PUT AAA

. STACKER_SELECTION_ {SS) FOR_THE IBM 2560
MFCM: Any one of the five available stack-
ers can be selected.

L T 1
| Cperand | |
t T - Function |
| Mnemonic | n | m | |
F t } + 4
| Ss | 11 - | Select stacker 1 |
1 1 1 4]
| T] T 1]
] SS] 2 1 -] Select stacker 2 |
t } 1 } —
l Ss] 3 1 - | Select stacker 3 |
t t } + 1
| Ss] 4 | - | Select stacker 4 |
1 4 L 1 3
) T 1 1]
] SS | 51 - | Select stacker 5 |
L 1 1 1 J

The CNTRL macro instruction for the IBM
2560 MFCM may have one of two formats:

1. CNTRL Filename,SS,n
2. CNTRL ,SS,n

If the first format is used, the func-
tions are the same as described for the
stacker select CNTRL macro instructions for
the IBM 2520, Models A1, A2, and A3.

The second format, which is only possi-
ble for card files to be processed by an

38 IBM System/360 Model 20 TPS ICCS

IBM 2560 MECHK, does not specify a file
name. Absence of the file-name operand is
indicated by a comma.

When two CNTRL macro instructions
vithout a file name are given tefore the
stacker select operation is performed, the
second stacker selection is effective;
i.e., the second CNTRL macro instruction
cverrides the first.

Execution of this type of a stacker
select CNTRL requires that the card to be
selected is in the pre-print station when
the subsequent PUT, GET, or EOM macro
instruction is executed.

T0 ensure the instruction is in proper
relationship to the GET, PUT, or ECM macro
instructiocn referring to the card to Le
selected, the programmer must observe the
fcllowing:

1. PRrocessing ip overlap mode.
If the card to te selected is punched
by a EUT macro instruction or if the
contents of the card are moved to a
work area by a GET macro instruction,
then the CNTRL macro instruction must
be given prior to any suksequent PUT,
GET, or EOM macro instruction addres-
sing an EFCM file. This is illustrated
by the coding example below. (The
second operand required in GET (EUT)
macro instructions referring to card cr
printer files is not shown.)

PUT (cr GET) F1

-------------- No FUT, GET, or
-------------- ECK referring to
—————————————— MFCHM files

2. Processing_in_pon-overlap_mode.
If the card to be selected is punched
by a EFUT macro instruction, the CNTRL
macro instruction must be given prior
to any subsequent GET, FUT, or EOM
macro instruction addressing an MFCHM
file (see the coding example below).

—————————————— No PUT, GET or
-------------- EOF referring to
—————————————— MFCM files

CNIRL ,SS,n

There is one exception to the above.
Between the FUT for a card to ke
selected and the CNTRL for this card, a
GET fcr the same file may Le inserted
(see the coding example below).

PUT F1

—————————————— No PUT, GET, or
-------------- EOM referring te
-------------- MFCM files

GET F1

-------------- No PUT, GET, or
—————————————— EOM referring to
-------------- MFCM files

When the card to ke selected is read by
a GET macro instruction, another GET,
EONM, or PUT to the same file must be
given prior to the CNTRL macro instruc-
tion for this card (see the coding
example below).

GET F1

-------------- any combination of
—————————————— macro instructions
—————————————— referring to another
-------------- file.

GET F1 (or PUT F1)

(or EOM F1)

-------------- No PUT, GET, or
-------------- EOM referring to
-------------- MFCH files

FORM_SFEACING_(SP) FOR_PRINTERS: Line spac-
ing on printers can be controlled.

Cperand
Function

Mnemonic

=]

SP Space n
(n = 0,1,2, or 3)

lines immediately

e — i — s o b —

SP

=

|{n = 0,1,2, or 3)
{lines immediately
land m

l|(m = 0,1,2, or 3)
]lines after printing

;Space m

}(m = 0, 1, 2, or 3)
|lines after printing
L

po St e G o - - B ———) Sy —
=}

1
l
]
|
_‘
|
|
1
]
|Space n |
|
|
|
|
|
i
|
|
]
J

ho e o e e it e e - —— — o o
e o o e s e e e o s s —

This mnemonic is required to control
line spacing. The programmer may onit
either operand n or m. If operand n is
onitted, the omission must be indicated by
a comnma (Example: CNTRL Filename, SP,,2).

If a delayed spacing CNTIRL macro
instruction is not given before the next
PUT for the same file, the form is automat-
ically spaced one line after printing.

When two delayed spacing CNTEL macro
instructions are given before the next PUT
for the same file, the second CNTRL is
effective, i.e., the second CNTRL overrides
the first. If both delayed spacing and
skipping are specified Lkefore a FUT for the
file, only the last specified operation
will be performed.

Eoth the delayed-spacing and the
immediate-spacing specifications of a CNTRL
macro instruction can be given before a PUT
for the particular file. 2as a result, the
form is spaced ty a number of lines that is
equal to the total of lines specified in
the two CNTRL macro instructions. It is
immaterial, which of the two CNTEL macro
instructions is issued first. ©Normally,
hcwever, the programmer would write only
one CNTRL macro instruction, e.g., CNIRL
filename,SE,1,2 (spacing one line immedi-
ately and two lines after printing).

In order to increase system throughput,
delayed spacing should ke used whenever
possible.

FORM_SKIPPING_[(SK)_ FOR _PRINTIERS: Skipping
tc a specific line on a printed form can be
controlled.

Operand
Function

Mnemcnic

=]
e — e e o

SK |Skip to punch in
Jchannel n(n=1,2,...,

112) immediately
41

SK

=}

-

|Skip to punch in
|channel n(n=1,2,...,
112) immediately and
J]to channel
In(n=1,2,+..,12)
lafter printing

3

1

|Skip to punch in
|channel a(m=1,2,...,
112) after printing

SK

..___._.‘..._._._—._._q-_._._.T_.-_.‘
=]

e e ot e o s s o s e L o
e as o e e e M e s e o i e e e e =]
he o e o i e e e e 2t - — b - - o

The form-skipping mnemonic is used to
specify the channel of the carriage control
tape to which the form is to ke skipped
immediately and/or after the printing of a
line. The rrogrammer may omit either
operand n or m. If operand n is omitted,
the omission must be indicated by a comma.
Example: CNTRL filename,SK,,12.

%¥hen two delayed skipping CNTEL macro
instructions are given tefore the next PUT
fcr the printer file, the skipping speci-
fied in the second CNTRL macro instruction
is effective, i.e., the second CNTRL over-
rides the first,

Facro Instructions 39

In order to increase system throughput,
delayed skipping should be used whenever
possible.

TAPE_UNIT CONIROL: For a tape file, a
CNTRL macro instructicn may be issued any-
where in the problem progranm.

The CNTRL macro instruction is used to
control magnetic-tape functions that are
not concerned with reading or writing data
on the tape. The file name and the mnemon-
ic specifying the desired oreration are the
only operands required in CNTRL macro
instructions for tape files. Each mnemonic
used is described separately below.

The FSR (or BSR) function permits the
user to skip over a physical record (from
one interrecord gap to the next). The rec-
ord skipped is not read into main storage.
The FSF (or BSF) operation permits the user
to skip to the end of the logical file,
which is identified by a tape mark.

T 1 1
1 Mnemonic | Function |
t + -1
| BSF | Backspace tape to |
| |preceding tape mark. |
1 L .
1] T |
| BSR |Backspace tape for one |
| | block. |
1 1 J
] T k]
| ERG |Erase tape to produce |
] la gap. |
i 4 J
L B T K]
i FSF |Forward-space tape to I
| |next tape mark. |
t +]
| FSR jForward-space tape to |
| | next inter-tlock gag. |
t + 1
| REW |Rewind tape. |
k + 4
| RON |Rewind and unload tape. |
1 1]
L) T Kl
1 WTM |Write a tape mark. 1
i | 1 J

When a CNTRL macro instruction with BSR
or FSR as the second operand is issued for
a tape input file, the programmer must con-
sider the relative position of the tape to
the record being processed.

For all I/0 area comkinations, with the
exception of one I/0 area and no work area,
I0CS reads the physical tape record follow-
ing the one that is being processed at the
time. Therefore, if a CNTRL FSR function
is performed it is the second physical tape
record following the one being processed,
which will be skipped over.

One I/0 Area_and_N¢_Work Area. A CNTRL
with BSR as the second operand causes:

40 IBM System/360 Model 20 TPS IOCS

1. For a file that is read forward -- the
tape to Le positioned so that the rec-
ord being processed is in proper posi-
tion to ke read on the next read-
forward operation.

2. For a file that is read backward -- the
tape to be positioned so that the
second record after the one being pro-
cessed is in proper position to Le read
on the next read-backward operation.

A CNTRL with FSR as the second operation
causes:

1. Fer a file that is read forward -- the
tape to ke positioned so that the
second record after the one teing pro-
cessed is in proper position to be read
cn the next read-forward operation.

2. For a file that is read tackward -- the
tape to Le positioned so that the rec-
ord being processed is in proper rosi-
tion to be read on the next read-
backward operation.

All 1,0 Comtinations, with the exception of

One I1/0 Area_and No Work Area. A CNTIRL

‘with BSR as the second operand causes:

1. For a file that is read forward -- the
tape to lte positioned so that the klecck
after the one whose last record is
being processed is read on the next
read-forward operation.

2. For a file that is read btackward -- the
tape to be positioned so that the third
block after the one whose last record
is being processed is read on the next
read-backward operation.

A CNTBL with FSR as the second operand
causes:

1. For a file that is read forward -- the
tape to ke positioned so that the third
tlock after the one whose last reccrd
is being processed is read on the next
read-forward operation.

2. For a file that is read backward -- the
tape to be positioned so that the klock
after the one whose last record is
being rrocessed is read on the next
read-tackward operation.

Before forward or tackward-spacing
creraticns (FSR, FSF, ESR, or BSF), the
magnetic tape is positioned at an inter-
block gag.

If blocked input records are keing prec-
cessed, and if the user does not want to
[rocess the remaining logical records in
the Lklock or one or more succeeding blocks,
he must issue a RELSE macro instruction

before the control macro instruction., The
next GET will then make the first record of
the new block available for processing.

If, for example, the CNTRL macro instruc-
RELSE, the tape is advanced, but the next
GET will make the next record of the old
block available for processing.

When a CNTRL macro instruction is issued
for a tape output file, the programmer
should issue a TRUNC macro instruction
(TRUNC = truncate) if it is desired that a
partially filled block of records be writ-
ten on tape before the CNTRL macro instruc-
tion for the file is executed.

If an FSR function (or BSR for a file
that is being read backward) encounters a
tape mark, the IOCS branches to the user's
end-of-file routine.

The functions of the individual mnemonic
are described below focllowing the section
Effect of CNTRL_on Block Count.

Effect of CNTRL on Block Count. When a
CNTRL macro instruction with BSF, BSR, FSF,
or FSR as the second cperand is issued, the
block count written or checked for standard
labels may be wrong. The control routine
does not update the block count. If a tarpe
input file with standard labels is speci-
fied and the Lklock count is in error at end
of volume or end of file, a programmed halt
occurs.

BSF_ (Backspace to_Tape Mark). This mnemon-
ic is used if backspace to the first record
of a tape file is desired. When a BSF
operation is executed, the IOCS causes the
tape to be storped with the tape mark pre-
ceding the first data record of the file in
proper position to be read on the next read
forward operation. In case of an output
file, the tape is positioned so that the
next subsequent PUT for the file causes the
tape mark to be overwritten. Refer to
Effect of CNTRL_on_Block Count.

BSR_{Backspace_to_Inter-Block Gap). This
mnemonic is used if backspacing of a tape
file for one block is desired. The IOCS
branches immediately to the user's end-of-
file routine if (1) a BSR operation is per-
formed for an input file and (2) a tape
mark is detected as a result of this BSR
operation. When a BSR coperation is
executed, the IOCS causes the tape to be
stopped with the block just backspaced in
proper position to be re-read on a read
forward operation. Refer to Effect_of
CNTRL on_Block_ Count.

ERG._(Frase_Gap) . This mnemcnic is used to
erase all signals that may be recorded on a
section of tape; i.e., it creates a length
of blank tape (approximately 3 1/2 inches).

FSF_{Foxrward Space_to_Tape Mark). This
mnemonic is used if the remaining part or
all of a tape input file is to be skipged.
When an FSF operation is executed, the ICCS
causes the tape to lte stopped immediately
after the tape mark following the last data
record of the file that has been read. 1In
case of a file without lalkels or with non-
standard latels, the tape is stopped imme-
diately after the tape mark following the
last block of data has Leen read. Refer to
Effect cf CNTRL on_Block Count.

FSR_(Forward_ Space_ to_Inter-Elock Gap).
This mnemonic is used if one block is to be
skipped. The ICCS Ltranches immediately tc
the user's end-of-file routine if (1) an
FSR operation is performed for an input
file and {2) a tape mark is detected as a
result of this FSR operation. When an FSR
operation is executed, the ICCS causes the
tape to be stopped with the block fcllowing
the one just skipped in proper position to
be read on the next read forward operation.
Refer to Effect of CETRIL on Elock Count.

Note: alwa

towards load point, regardless of read for-
ward or read backward mode.

load point, regardless of read forward or
read backward mode.

REW_(Rewind Tape). This mnemonic is used
if a tape rewind operation is desired.
When a REW coperation is executed, the ICCS
causes the tape to ke storped with the
first record on the tape in proper position
tc be read on a read forward operation.
The reccrd may ke (1) a volume latel if
standard latels have lteen specified, (2) a
tape mark or a data record if no latels
have been specified, or (3) a non-standard
label if non-standard lakels have lLeen
specified.

RUN_(Rewind_and_Unload_Tape). This mnemon-
ic is used if the programmer desires a tape
rewind operation to ke followed by a tare
unlcad coperation.

WIM_{Write_Tape_pdark). This mnemonic is
used if a tape mark is to be written.

SPECIFIC CARD AND PRINTER MACRC
INSTRUCTICRS

kacro instructicns pertaining tc card and
printer files (CRDPR, EOM, LOM, and WAITC)
are discussed in this section.

CRDFR MACEC INSTEUCTICH

This macrc instruction is only applicalkle
if the user has an IBM 2560 MFCM equipped

Macro Instructions 41

with the card print feature. The format of
this macro instruction (CaBD PRint) is:

1 Ll i
|Name |Operation |Operand
L 1 4

| ,#orkname,cardrrintarea

1
|
o
1
|
A4 J

L L
|[name]| CRCPR
i B 1

. Because this instruction does not refer
to a specific file, it does not have a
file-name operand. The absence of this
operand is indicated Lty a comma. The
second operand is the name of the work
area, and the third operand is the name of
the card print area.

A CRDPR macro instruction moves one line
of information from the specified work area
to the card print area. However, printing
does not take place until the card is being
moved into and through the print station by
the execution of a subsequent GET, FUT, or
EOM macro instruction. It is therefore of
particular importance that the programmer
writes his CRLPR statement in proper rela-
tionship to PUT, GET, or EOM macro instruc-
tions related to the same card. The same
rules that apply to the stacker-select
CNTRL macro instructicn for the IBM 2560
MFCM without a file-name operand are also
applicable to the CRDPR macro instruction.

CAUTION: Wwhen a CRDPR macro instruction is
executed, the data that is contained in the
specified work area is moved into the spe-
cified card print area. If the programmer
desires to have the contents of the cards
of a file printed on the same cards and the
file is processed in non-overlap mode, he
must consider the following: 1TIwo GET macrc
instructions (or one GET and one EUT macro
instruction are required to move a card to
and through the print station. 1If the two
work areas specified in the GET macro
instructions are the same, the contents of
the card that was read Ly the second GET is
card-printed on the card that was read by
the first GET.

The programmer must write one CRDPR
macro instruction for each line to ke
printed. If two CRLPR macro instructions
are given for the same line, only the last
of them will be executed. At the time of
printing, all print lines specified for a
particular card are printed simultaneously.
It is not possible to print only with print
head 1 during one print operation and then
with print head 2 andsor another print head
or with all print heads during another
print operation. If no data is to Le
printed on a line, the rrogrammer simply
does not enter any data into the associated
print area or, if processing was performed
in the area, he clears the area befcre

42 IBM System/360 Model 20 TPS ICCS

printing takes place. BRefer to CRLPRLn=mn

in the section Additional Detail Entries

ECF MACEC INSTRUCTICN

The format of this macro instruction
Overlap Mode) is:

(Enter

¥ R L
| "ame |Operation |Cperand
[l 1 1

T
Jfilename
1

e e b —

T L)
|[name]| EOM
L 1

EOM is entered in the operation field
and the name of the file to which the
instruction refers is specified as the
crerand.

An ECM macro instruction applies only tc
combined files for which a previous LCHM
macrc instruction has teen given (see
below). The EOM macro instruction causes
(1) the next card to te read into the read
area, and (2) subsequent GET macro instruc-
tions referring to the same file to Le
executed in overlap mode. The processing
cf the file in overlap mode ltegins immedi-
ately after the EOM macro instruction has
been given. TFor further details regarding
the use of the EOM macro instruction, refer
tc ICE_PFacio_Instructiocn, kelow.

LOM MACRO INSTRUCTION

The format of this macro instruction (Leave
Overlap Mode) is:

T

T T
|Name |Operation |Operand
1 1 1

RPN S

r L) T .
|[name]| LCH |filename
L L i

Except for the mnemonic in the operation
field, the format of this macro instruction
is the same as that of the ECM macro
instruction. The LOM macro instruction
arplies tc combined files for which overlag
mode has Lteen specified. The processing of
the file in non-overlap mode legins when
the next GET macro instruction for the spe-
cified file is executed. This pernits
reading a card and punching into the same
card cf a combined file that is teing pro-
cessed in overlap mode. if an LCM macro
instruction is given for a particular file,
all subsequent GET instructions for that
file are rerformed in non-overlar mode
until an EOM macro instruction is given.

Programming Considerations -_LOM and EQHM
Macro Instructions

A card of a combined file carn pe read and
then punched only if the <a:d is read by a
GET macro instruction in non-overlap mode.
There are three possitle ways to cause the
GET to operate in non-overlap mode during
this reading and punching of the same card:

1. Provide an OVERLAP=NO detail entry for
the file. 1In this case, the ICCS
generates GET and PUT routines for this
file that operate in non-overlap mode.

2. Do not provide an OVERLAP=NC detail for
the file and, in the source progranm,
give an LCM macro instruction between
the OPEN and the first GET macro
instruction for the file. 1In this
case, GET and PUT routines that operate
in the overlap mode are generated for
the file. However, all GET macro
instructions for the file operate in
non-overlap mode.

3. Do not provide an OVERLAP=NC detail
entry for the file and, in the source
program, precede each GET macro
instruction with an LOM macro instruc-
tion and follow each GET with a test to
determine if a punching operation is to
be performed on this card. If not,
operation of this file can ke changed
ktack to the overlap mode bty an EOHN
macro instruction.

The first method keeps storage require-
ments at a minimum, but results in a
decrease of program speed.

The second method is the most satisfac-
tory solution when nearly every card of a
file must be both read and punched. The
program speed does not decrease as much as
with the first method because the PUT rou-
tines will operate in the overlap mode.

The third method is usually the most
satisfactory solution when only a few spe-
cified cards in a comtined file must Le
both read and punched. W®hen this method is
used, each card is read in the non-overlap
mode and thus can be punched sulsequently.
However, when punching is not to be per-
formed, the program immediately begins
operation in the overlap mode. This method
{third) requires some additional main
storage positions for the extra LCM and ECH
macro instructions, but it results in a
program that runs at nearly the same speed
as a program operating entirely in the
overlap mode.

The coding below is an example of using
the LCM and EOM macro instrcutions. This
coding example assumes that (1) a combined
file (BAARD) is to be processed and (2) data

is to be punched into each card of the file
that contains a 7-punch in column 1. It is
further assumed that an area named WCRKRAR
has been defined.

COMPRT LOM BRAA

CCMER2 GET 2ARR,WCRKARAR
CLI WORKAAA,C'7?
BE FUNCHR

EUNCHR
EUT 22R,WORKRRAR
B COMPR2

The macro instruction "LCE RAA"™ causes
the subsequent GET for the file AAA to be
executed in non-overlap mode. This pernmits
the punching of data into the same card
that has Lbeen read by means of the GET
macro instruction. If punching is required
{a 7-punch in column 1), control is trans-
ferred to the punch routine (PUNCHR). The
EUT macro instruction for the file may te
followed immediately bty a branch to the GET
macrc instruction for the file ltecause the
system is still operating in non-overlap
mcde.

If punching is not reguired (no 7-punch
in column 1), the EOM macro instruction is
executed, which causes the operating mode
for the file to Le changed back to overlap.
PETOV MRACEO INSTRUCTION

This macro instruction (PRinT OVerflow)

applies to printer files only. Its format
is:

1 T . T Ll
|Nare |Cperation |Cperand]
b -+ + 4
}[name]J|PRTOV |filename,n[,address] i
i . R 1 J

In the operand field, the programmer
must specify the name of the file to which
the instruction refers and the carriage
tape channel indicator n to Le tested
(either 9 or 12). If the programmer pro-
vides his own routine to which the prcgranm
should branch on an overflow condition, he
must srecify the name of the routine as the
third operand. This macro instruction
allows the rrogrammer to check fcr printer
overflow conditions Ly testing the channel
9 or the channel 12 indicator Ltefore:

1. the execution of the last EUT macIc

instruction referring to a printer with
the standard carriage,

facro Instructicns 43

2. the execution of the last PUT macro
instruction referring to a printer with
the dual feed carriage when only the
lower feed is used, and

3. the execution of the next to last PUT
macro instruction referring to a print-
er with the dual feed carriage when
both feeds are used.

However, if a skip has been performed
after the last PUT macro instruction ({or
after the next-to-last PUT if both feeds of
a dual feed carriage printer are used), a
punch in channel ¢ or 12 that may then be
sensed is lost and canncot be determined by
a PRTOV macro instruction.

The program branches to the programmer's
routine if the tested indicator is on and a
third operand has been specified. At this
point, any IOCS macro (except PRTCV) may be
issued, e.g., to print overflow page head-
ings. At the end of the routine, return to
I0CS by branching to the address in regis-
ter 14. If I0CS macros are used, the con-
tents of register 14 must be saved for this
purpose. If a third operand has not been
specified, an automatic skip to channel 1
is performed when the tested indicator is
on. A PRINTCV=YES entry is required when a
PRTOV macro instruction is issued for a
file.

WAITC MACRO INSTRUCTION

The format of this macro instruction (WAIT
Card) is:

r N . L] =
| Name |(Operation |Operand |
1 1 1 i]
L) i T 1]
|[name]J|WAITIC]]
1 1 A |

Since the WAITC macro instruction neith-
er refers to a particular file nor requests
a particular function, no operand is
required.

The WAITC macro instruction causes the
problem program to wait for the completion
of all pending card and printer input/
output operations before the next sequen-
tial instruction is executed. 1This macro
instruction enables the programmer to esta-
blish uniform operating conditions for all
card and printer input/output devices that
are used in his progranm.

In a program using the IOCS, a WAITC
macro instruction must be issued if one of
the following three conditions exists:

1. 2 programmed stop is required to permit
an error card to be replaced in a file

44 TIBM System/360 Model 20 TPS IOCS

whose cards are to be read in overlap
rode.

2. A programmed stop is required to permit
an error card to be replaced in a file
whose cards are to ke read on the IEM
2560 MFCM in non-overlap mode and a
file in the other feed of the MFCHM is
to be processed in overlap mode.

3. 1In case of a multi-phase program, the
next rrogram phase is to ke locaded Ly
means of a FETCH macro instruction.

Except for the condition 2, above, a
WAITC macro instruction need not ke issued
for the replacement of an error card if the
cards of the file are to Lke read in non-
overlap mode.

Programming _with the BAITC Macro

A GET macro instruction that refers to a
card file may or may not immediately initi-
ate a read operation. This depends on the
operating conditicn of the input/output
device involved. If the initiation of the
input/output operation is delayed, the ICCS
rlaces the device request into a waiting
list. The IOCS handles the device requests
in this waiting list and executes the
appropriate input/output operation as the
requested input/output devices Leconme
available.

¥hen a GET macro instruction is issued,
the I0OCS makes the desired card record
available to the problem program in the
specified work area. If the protlem pro-
gran determines that this record contains
an error, the programmer may want to pro-
vide a stop (HPR instruction) to enable the
operator to (1) remove and correct the
error card, (2) return it to the hogper,
and (3) resume normal system operation.

The programmer has no means to determine
the status of the waiting list at the time
the error is detected. Moreover, he is not
able to determine the exact positicn of the
error card in the input/output device.
Therefore, the standard restart procedures
cannot be applied.

Before he issues the HPR instruction,
the programmer must issue a WRAITC macro
instruction to (1) estatblish uniform
operating conditions for all card (and
printer) input/output devices and (2)
determine the exact position of the error
card.

After the execution of the WAITC macro
instruction, the waiting list contains no
pending inputs/output device requests,
excert those for card printing. The error
card (to ke fed as the first card on

restart) is determined by the number of
cards that have to be returned to the input
deck after the non-process runout.

The number of cards to be returned to
the input deck depends on the input/output
device used and, in case of an MFCHM file,
on the mode of operation. For details,
refer to Figure 10, which is a summary of
the stop and restart information,

DUMMY GET MACRO_INSTRUCTIONS. To ensure
proper program functions on restart, i.e.,
resume processing with the corrected card
record, the programmer must issue either
one or two dummy GET macro instructions as
shown in Figure 10. For the explanations
below, processing in the overlap mode is
assumed, unless it is stated that the
information applies to files that are pro-
cessed in the non-overlap mode.

After the execution of a WAITC macro
instruction, the contents of the card fol-
lowing the error card is already in the
input/output area. Therefore, the first
GET macro instruction that is encountered
after restart causes the record from the
card following the error card to be moved
into the work area. To make sure that the
contents of the corrected error card have
been moved into the work area kefore norrmal
processing is resumed, the first GET macro
instruction encountered after restart must
be a dummy GET, i.e., no processing must ke
performed on the record moved into the work
area by means of this GET macro instruc-
tion. If an IBM 2501 is used to read a
card file and two input/output areas have
been defined for this file, two dummy GET
macro instructions are required.

If an IBM 2560 MFCM is used to process
two input andsor combined files in one pro-

!

gram, an error card in one file requires
one dummy GET macro instruction on restart
for each of the files with one exception:
only one dummy GET macro instruction is
required for the file that contains the
error card if (1) the other (non-error)
file is an input file whose cards are read
in non-overlap mode and (2) no GET has yet
been given for the non-error file. The
programmer must provide a switch to deter-
rine whether or not a GET has already teen
executed for the non-error file., This is
illustrated in the coding example shown in
Figure 11.

A GET macro instruction for a file that
is toc be processed in overlap mode may Le
preceded by a CNTRL macro instruction ref-
erring to the same file. If this GET macro
instruction detects an error card, the pro-
grammer must do either of the fcllowing in
his restart routine:

1. Regpeat the CNTRL macro instruction
after the dummy GET macro instruction
for the file in his restart routine.

2. Eranch to the CNTRI macre instructicn
preceding the GET macro instruction
that detected the error card.

Similar rules apply if two files are
processed on the IBM 2560 MFCM in one pro-
gram. Any file-dependent CNTRI macro
instruction that precedes the last GET
macrc instructicn in either file must te
repeated after the dummy GET macro instruc-
tion for the file and Lefore resuming ncrm-
al processing. A preceding file-
inderendent CNTFL macro instruction (no
file name specified) need be repeated only
cnce.

Facro Instructicns U5

L) LY Ll Ll L 1
| | l | | Numter of Cards to Lte |
| 1 | | | returned |
1 Inputy l | | t T 2|
| Output | | WAIIC | Bumber of | | Non-error |
| Device | Mode of Cperation | required |Dummy GETs | Error Feed | Feed]
t + + + + +)
| 2501 |Non-overlap | Ne | 0] 2 | |
| I + + } + i
1 |Overlap with one inputy/ | Yes 1 1 | 3 i 1
| joutput area |]]] i
| t 1 + + i 4
1 |Overlap with two input/ | Yes 1 2 | 4 | |
| joutput areas i | |] |
1 1 IR 1 —t 1 b |
L 3 L3 T T ¥ k] R
i 2560 | | ! | | |
| Feed 1 |Non-overlap i No* | 0] 3 | 3 |
| t + + 1 t)
] |Overlap | Yes ** | 1 1 4] 3]
[N L 4 1 L 1 Jd
L} L Ll v) Ll 1
| 2560] | |]] |
1 Feed Z |Non-overlap 1 No* i 0 i Z | 2 |
| b + + t } |
| |Overlap | Yes ** | 1 | 3 1 2 [
1 } 34 -4 } 4]
] R L] Ll L T 1
| 2520 | Non-overlap } Bo | 0] 2] |
| F + 4 + } {
|]Overlap | Yes 1 1 | 3 1]
IL L [& 1 1 L j|
| *WAITC macro instruction is required if a file in the other feed is processed in over-|
| lap mode. |
|**¥0nly required for the file containing the error card. 2 dummy GET is required l
| for both files. |
L]
Figure 10. Programming with the WAITC Macro Instruction -- Halt and Restart Information
Figure 10 is provided to facilitate pro- includes a simplified restart routine. For

gramreing of restart routines and to furnish
card-handling information that is not
covered in the Model 20 IOCS Cperating Pro-
cedures. The programmer must inform the
operator about the number of cards to be
returned to and placed in front of the
remaining cards of the input deck. Any
run-out cards that are not to be returned
to the input deck must be placed into the
proper stacker manually.

An ICCS provided halt (due to a machine
check) may occur during or immediately
after the user-programmed restart routine
and the number of cards in the input/output
device may be less than stated in the
appropriate standard procedure as provided
in the SRL publication IBM_ System/360_ Model
20 Card Programming Support, Input,/Cutput
Control System, Operating Procedures, Form
C26-3803. 1In this case, only those cards
must be stacked manually which were in the
card feed of the input/output device at the
time the halt occurred and do not have to
ke returned into the respective hopper.

The coding example in Figure 11 is pro-
vided to illustrate programming with the
WAITC macro instruction. The example

46 IBM System/360 Model 20 TPS IOCS

the purpose of this coding example, the
fcllowing is assumed:

1. Two files (AAA and BBB) have been
defined to be read in the twoc feeds of
the IBM 2560 MFCHM.

2. File AAA is to be processed in the
ocverlap mode and the cards of this file
are to ke fed form hopper 1 of the 2560
FFCK. This file may Le an input or a
combined file.

3. File BBB is an input file whose cards
are toc ke read in non-overlap mode.

4, BAny card of file R2A that does not have

a 1-punch in column 1 is an error card
and must be replaced.

Only those instructions that illustrate
programmping with the WAITC macro instruc-
tion are shown in Figure 11. These
instructions are identified ty sequence
numkers in parentheses in the rightrost
cclumn of Figure 11. These sequence num-
bers are used as references in the explana-
tions below.

T T 1 -1
| Name]0perat10n]0perand |Instr)|
| | | | Sgnce|
t + } + 4
| l. | | |
| |- | | |
l |- | | |
1 |GE | EBB,WORK2 1 (1) 1
| JMVI]SW+1,X'00" 1 (2) 1|
	-		
l.			
l.]			
	CNTRL	BBB,SS,U 1 (3) 1	
l. }	l		
l.]	
l.]		
JRETPT	CNTRL	AAA ,SS,2 P4	
	GET	RAA ,WORK1 1 (5) 1	
	CLI	WORK1,C*1?	(6)
	BE	NOERR 1 ()	
	WAITC	1 (8)	
	BER JX*FFF?',C I (9 1		
	GET	AAA ,WORK1 1 (10)	
SW]B	BYPASS 1(11)		
	GET	EBB ,WORK2 1{12) 1	
} JCNTRL {BEBB,SS, 4 1 {(13)]			
BYPASS	B	RETET 1(18)	
NOERE	. 1 i		
l.			
L A 1 i]
Figure 11. Coding Example -- Programming
with the WAITC Macro
Instruction

If a card of file AAA does not contain a
1-punch in column 1, the branch to NOERR
(7) is not performed and the progranm
executes the WAITC macro instrcution (8)
that precedes an HPR instruction (9). On
restart, the program executes either one or
two dummy GET macro instructions. Only one
dummy GET macro instruction for file RAA
{(10) is executed if no GET macro instruc-
tion has yet been executed for the file
BBB. In this case, the branch instruction
named SW (11) is executed and the second
dummy GET macro instruction for file BBB
(12) and the stacker select CNTRL macro
instruction (13) for this file are
bypassed. Control is returned to the pro-
klem program by a branch to RETPT to repeat
the CNTRL macro instruction preceding the
GET macro instruction that caused the errcr
card to be detected.

If a GET macro instruction has already
been executed for the file BBB at the time
the error card is detected, the branch
instruction named SRW (11) is not executed.
This instruction has been changed to a no-
operation (EC 0) instruction :ty means of
the MVI instruction (2) following the GET
macro instruction (1) for the file BBB.

The CNTRL macro instruction for file BEB
(3) is only effective when no error card is
detected.

If an error card were detected, four
cards would have to be returned for file
AAR and two cards for file EEB.

If the cards of the file BEE were tc lLe
read in overlap mode, instructions (2) and
(11) would have to ke omitted.

If the cards of a combined file are also
to be card-printed and this file is to be
processed in non-overlap mode, the follow-
ing must be considered bty the programmer.

Unless successive cards are to be read
which are not to ke punched, a GET macrc
instruction for a card does not initiate
card movement. Card movement is initiated
by the PUT macro instruction for the pre-
ceding card. Therefore, the programmer
must issue a dummy GET macro instruction
prior to the WAITC macro instruction to
ensure that the desired card-print opera-
ticn for the card preceding the error card
is properly executed. This is further
explained in the coding example shown in
Figure 12.

r T T T |
|Fame |Cperation|Cperand |Instr|
| 1 1 | Sqnce]
[1 1 1 .|
[]) T T 1
l l. | 1 |
] | I | |
] l. | l |
|EEET |GET |CMEF, WREKC I (1) 1
| |cLI | WRKC,C* 1! 1 (2 1
l |BE 18,NERR 1 (3) 1
| |GET | CKEF,WEKC (W 1
] |WAITC | 1 5) |
| |HER 1X'FFE',0 1 (6) 1
| |B IREPT (N
| NERE |. I] |
| |-] | i
| l. | | |
| jPUT JCHMBF , WRKC 1 (8) |
	CELEE	1 (9)
	B	REET 1(10)
l.		
] l. | | l
L 1 1 1 3
Figure 12. Coding Example —-- Programning

with the WAITC Macro Instruc-
tion Involving Card Friating

The coding example in Figure 12 is based
on the assumption that:

1. the first card of the file CMKEF has
already Leen read,

2. data is to lte punched into all input
cards, and

3. all cards without a 1-punch in column 1

are error cards and must be replaced by
the orerator.

Facro Instructicns 47

The sequence numbers shown in the right-
most column of Figure 12 are used as
references in the explanations ltelow.

If the card that is made availalble by
the normal GET (1) is not an error card,
the next PUT for the same file (8) causes
the preceding card to be printed on. If
the card made available by the normal GET
is an error card, the dummy GET (4) causes
the error card to be moved past the punch
station and the card preceding the error
card is properly card-printed. On restart,
the corrected error card is read by means
of the normal GET (1), punched by means of
the subsequent PUT (8), and card-printed at
the time this PUT macro instruction is
executed for the fcllcwing card.

The programming considerations that
apply to card printing are also applicable
to stacker-select CNTRL macro instructions
without a file name as the first operand.

LOADING _THE NEXT PROGRAM_PHASE. W%hen
another program phase is loaded by means of
an XFR and a FETCH statement, the program-
mer must ensure that all pending card and
printer interrupts that may have resulted
from processing under controcl of the pre-
ceding program phase have been handled pro-
perly. This is accomplished ly issuing a
WAITC macro instruction prior to the FETICH
statement causing the program-load opera-
tion. Figure 7 shows the use of the WAIIC
macro instruction when ancther program
phase is to ke lcaded.

Note that a second or sukbtsequent progranm
phase cannot be loaded from a card input
device in which data cards were read during
any of the preceding program phases.

SPECIFIC TAPE MACRC INSTRUCTIONS

Macro instructions pertaining to tape files
{({LBRET, RELSE, and TRUNC) are discussed, in
this section.

LBRET MACRO INSTRUCTION

The format of this macro instruction (LaBel
RETurn) is:

r Rl . Ll hl
|Name |Operation]Cperand |
F + t 1
|[name]| LERET 11 1
|[name J|LBRET 12 1
1 1 L ¥ |

The LBRET (label return) macro instruc-
tion applies only to tape files that con-
tain additional user latels, that the user
wants to check or ruild/write. It must be
issued at the end of the user's label rou-

48 TIEM System/360 Model 20 TPS IOCS

tine (specified Ly the LTFFT entry
LABALLR), to return to ICCS after header or
trailer lakels have Leen processed. This
macro instruction requires one or both of
the fcllowing ofperands:

CEERANT 1

Additional_ lalels, Input_file: To return

to I0CS when the user wants to eliminate
the checking of all remaining user latels,
operand 1 is required. TIOCS then skips the
remaining laltels in the set, and rrocessing
continues. If all lakels are to be
checked, cperand 2 is used and ICCS ter-
minates laltel processing when the tape mark
fcllowing the last latel is read.

_______ To return
to IOCS when the user determines that the
last additional user lalbel has been built,
operand 1 is used. ICCS writes the last
label (from the label output area) and pro-
cessing continues. Operand 1 is always
required to terminate the cutput label set.

OPEBAND 2

Additional_ labels, Input file: Cperand 2

is required to return to ICCS after each
additional user lakel has Leen checked.
I0CS makes the next label, if any, avail-
able for checking in the lakel input area.
When IOCS senses the end of the label set
(tape mark) , it terminates latel
processing.

Additional lalkels, Qutput file: Cperand 2

is required to return to IOCS after each
additional user lakel except the last has
been built. IOCS writes the label from the
label output area and returns to the user's
label routine to permit him to build his
next laktel. The user must then use operand
1 to terminate the output label set.

The LBRET routine requires the values
that the ICCS has placed into registers 14
and 15. Hence, if the user requires one or
both of these registers in his routine, he
must save the value placed. into these reg-
isters by the ICCS tefore he starts using
them. He must restore this value prior to
issuing the LBRET macro instruction.

RELSE MACROC INSTRUCTION

The format of this macro instruction
(RELeaSE) is:

r T .
| Name |Operation
1 i

Operand
f

ilename

R
T W

LS T
|[name]|RELSE
L L

The name of the file to which this macro
instruction refers (name field entry on the
DTFMT header entry line) is the only
operand required.

This macro instruction is used in con-
junction with blocked input records read
from tape. It allows the programmer to
skip the remaining records in a block and
continue processing with the first record
of the next block read when the next GET
macro instruction is issued.

The RELSE macro instruction can he used,
for instance, in a job in which only the
first three records of each block on tape
are to be processed. In this case, three
successive GET macro instructions followed
by a RELSE macro instruction are required.

Another example of using the RELSE macro
instruction is a job in which records on
tape are categorized, and each category
(perhaps a major grouping) starts with the
first record of a block. Categories can ke
located readily by checking only the first
record of each block.

The RELSE macro instruction discontinues
deblocking of the present block of records
which may be of either fixed or variable
length. RELSE causes the transfer of a new
block to the input area. The next GET
makes the first record available for pro-
cessing, either by the initialization of a
register or by moving the record to a spe-
cified work area.

A RELSE macro instruction causes no
operation to be performed if the preceding
GET:

1. causes the last record of the rlock tc
be made available for processing in the
input area; or

2. causes the last record of the block to

be made available for processing in a
work area.

TRUNC MACRO INSTRUCTION

The format of this macro instruction
(TRUNCate) is:

r Ll R
| Name |Operation |Operand
1 'l 1

S

)
lfilename
1

4 L)
}[name] TRUNC
1 1

The name of the file to which this macro
instruction refers (name field entry on the
DTFMT header entry line) is the only
operand regquired.

This macro instruction is used in con-
junction with blocked output reccrds that
are to be written on tape. It allows the
rrogrammer to write a short tlock of rec-
ords (blocks do not include padded rec-
crds). When a TRUNC macro instruction is
issued, the output area keing used to build
output records is considered full. The
block of records in the output area is then
written on tape and the output area is nmade
available to build the next block of
reccrds.

The last record included in the short
block is the record that was built before
the last FUT macro instruction preceding
TRUNC was executed. Therefore, if records
are built in a work area and the proltlen
program determines that a record belongs in
a new block, the TRUNC macro instruction
should be issued first, followed by the FUT
macro instruction for this particular rec-
ord. 1If records are tuilt in the output
area, however, the programmer must deter-
mine if a record kelongs in the block

S o=

Whenever varialkle-length blocked records
are built directly in the output area, this
TRUNC macro instruction must be used to
write a completed klock of records. Rhen
the PUT macro instruction is issued after
each variable-length record is tuilt, tbhe
output routines supply the programmer with
the srace (number of Lytes) remaining in
the output area. From this, the programmer
determines if his next variatle-length rec-
ord will fit in the Lklock. If it will not
fit, he issues the TRUNC macro instructicn
to write out the klock and make the entire
cutput area availalkle to tuild the record.
The amount of remaining space is supplied
in the register specified in the LTENT
VARELD entry (see VARBLD=(n) in the DTIFMT
Detail Entries section).

A TRUNC macro instruction causes no
creration to be performed if the preceding
PUT:

1. causes the last record of a block to be
included in the output tlock; or

2., causes the last record of a block to be
mcved from a work area to the outrut
area for inclusion in the block before
it is written on the particular cutput
tape.

In either case, the en®ire block is
written on tage.

COMPLETION_MACRO_INSTRUCTICNS

After all records of a file have been pro-
cessed, that file must ke deactivated. The
macro instructions CLCSE and FECV (Force

Macro Instructions 49

End of Volume) are provided for this pur-
pose. Note that the FEOV macro instruction
actnally does not deactivate the specified
file, but merely forces an end-of-volume
condition.

The need to deactivate a file is indi-
cated by an end-of-file (EOF) condition.
The EOF condition is determined in various
ways for different types of files and
input/output devices as follows:

1. Card input files. Four cards with the
characters /* in columns 1-Z are
required by the ICCS to properly per-
form end-of-file operations.

2. Tape input files with standard labels.
The record following the tape mark is a
label whose first three characters are
ECF.

3. Tape_files with standard lakels_that
are_read backwards. The record follow-
ing the tape mark is a latel whose
first three characters are HDR.

4. Tape input_files without lakels or with
non-standard labels. A tapre mark indi-
cates an EOF condition. (The user's
end-of-file routine must determine
whether and end-of-file or an end-of-
volume condition exists.)

5. All output files. The user's progran
determines the end of a file.

End-of-File Frocessing

When EOF occurs in a card input file, the
I0CS branches to the prcgrammer's end-of-
file routine. The address of his routine
must be provided in the EOFALLR=name entry
of the definition statement for the file.

When ECF occurs in a tape input file
with standard labels, the IOCS checks the
EOF1 lakel and compares the bklock count
recorded in the label with the tklock count
that has been accumulated during proces-
sing. An unegqual condition is indicated to
the operator who has the option to either
terminate or continue the job. If user
laktels (UTL1-UTL8) are to ke checked, the
I0CS branches to the user's LABALDR routine
when the checking of the EOF1 lakel has
been completed. (Refer to the description
of the LAEALLR detail entry in the section
DIFMI_Detail Entries and to the section
LBRET Macro_Instruction.) After the check-
ing of trailer label(s) has been completed
the ICCS branches to the usert's ECFADDR
routine.

If the tape input file has been read
backward, the functions performed Lty the,
IOCS are essentially the same. Cn reaching
the tape mark preceding the first record cf

50 IBM System/36C Model 20 TPS IOCCS

the file, the ICCS tranches to the LAEBALLR
routine to check the user header labels
(UHL1-UHL8) , if present, and then checks
the HLCR1 latel. When these checks are com-
Fleted, the 10CS tranches to the user's
EOFALLR routine.

When EOF occurs in a tape input file
without labels or with non-standard latels,
the I0OCS branches to the user's ECFADDR
rcutine when the tape mark following the
last data record is reagd.

In his end-of-file routine, the progranm-
mer may issue a CLOSE macro instruction to
deactivate one or more files. The acticns
performed when a file is closed are

End-of-Volume Processing

Some of the actions performed ky the CLCSE

macro instruction are also required when an
end-of-volume (EOV) condition occurs while

Frocessing a tape file.

The IOCS detects an EOV condition for
standard-lakel input files by means of the
characters ECV in a trailer laktkel. For
output files, the IOCS detects an EOV con-
dition by sensing the reflective marker at
the end of the output tape. For all other
types of files, the ICCS has no means of
detecting an EOV condition.

Curing the processing of a tape file, an
EOV conditicn can occur. This indicates
that the next volume of the same file is
required, either for reading more input
tecords or for writing more output records.

If FILAEL=STD has leen specified for a
file, the IOCS processes an EOV condition
as follows:

1. For ipput files, the ICCS (1) checks
the block count, (2) bkranches to the
user's routine that processes addition-
al user lakbels, if such processing has
been specified, and (3) perferms the
rewind option. The IOCS then processes
the header lakel(s) of the next vclunme
and makes the first record of the
velume availaltle to the protlenm
program.

2. For output files, the ICCS causes the
EOV trailer label (including the accu-
mulated rlock count) to te written. If
a LABALLR routine is specified, the
I0CS tranches to this routine to write
additional user trailer lakels (UTL1-
UTLE) and to perform the functions that
the programmer desires. The ICCS then
processes the header label(s) of the
next volume as descrited in the section

Opening Tape Output Files under Open
Macro_Instruction.

If no labels or non-standard labels have
been specified for an input file, the user
must determine an EOV condition and issue
an FEOV macro instruction to have the IOCS
perform the desired end-of-volume func-
tions. To determine an EOV condition, the
user must provide a subroutine in his
EOFADDR routine, to which the ICCS tranches
on detection of a tape mark. For multi-
volume files, refer to the description of
the ALTTAPE detail entry.

CLOSE_Macro_Instruction

The format of this macro instructien is

¥ L] L]
|Name |Operation |Operand
L 1 1

r 1 T
|[name]JCLOSE 1file1,file2,...filen
i 1 1

The name of the file that is to be
closed (assigned to it by the entry in the
name field of a LTFSR or DTFMT header
entry) must be specified as operand. Any
number of files from one to sixteen may be
closed with one CLCSE macro instruction.

The CLOSE macro instruction is used to
deactivate any file that has previously
been made available by an OPEN macro
instruction. The CLOSE macro instruction
ensures proper handling of the file after
all records have been processed. The func-
tions performed depend on (1) the type of
file and the type of input/cutput device
involved and (2) the labeling technique (if
applicatle).

A file may be closed at any time by
issuing a CLCSE macro instruction.

Closing Card and Printer Files

For card and printer files, the CLCSE macro
instruction makes the file unavailable for
further processing. Specifically, the
CLOSE macro instruction ensures that:

1. records remaining in the output area
upon completion of processing are
printed and/or punched,

2. all processed data cards remaining in
the card feed path (not end-of-file
cards) are selected into the appropri-
ate stackers, and

3. all pending interrupts for the closed
file(s) have been handled.

Closing_Tape_Files

The functions performed when a tape file is
closed depend upon whether it is an input
or an output file.

CLOSING_TAPE_INPUT FILES: The CLOSE macro

instruction causes the input tape to be
rewcund according to the rewind option spe-
cified in the LTFFT statement for the file.
The IOCS then deactivates the file; no
labels are read or checked.

CLOSING_TAFE_CUTBUT FILES: The CLCOSE macroe
instruction causes the writing of any rec-
crd or klock of records that has not yet
been placed into the file. If a reccrd
block is only partially £filled, it will be
written on tare as a short tlock. (When a
file with short blocks is used as input,
the ICCS handles these records properly.)
No action by the programmer is required. A
tape mark is written following the last
record.

If labels have not been specified, a
seccnd tape mark is written and the tape is
rewound as specified in the LTFMT statement
for the file.

If standard labels have been specified
for the file, the ICCS writes the trailer
label after the tape mark. The trailer
label includes the klock count accumulated
by the 10CS during the run and the header
label informaticn (except that HLER is
replaced by EOF).

When additional latels are to follow the
standard trailer latel, the ICCS tranches
to the user's routine specified in the
LABALCLR=name detail entry in the LCTFMT
statement for the file. This occurs after
the standard lalkel has leen written. After
tuilding each label, the programmer nust
return control to the ICCS Ly use of the
LBRET macro instruction. After all trailer
labels have been written, the IOCS writes
two tape marks, executes the specified re-
wind functicn, and deactivates the file.

Two tape marks are written at the end of
a tape output file to indicate that no
further data follows. If NCRWD has been
specified for the file, the ICCS causes the
tape to be lackspaced Ly one record. As a
result, the second tare mark is overwritten
if another output file is written on the
same tage.

Reorening_Closed_Files

. LTF¥T statement for the file.

If a CLCSE macro instruction has teen
issued for a card or printer file, this
file cannct ke recpened ty a sulseguent
OPEN macro instruction.

If further processing of a closed tape
file is desired, the file can te reopened.
If this is done, the user must be aware
that the previous CLOSE for the file has
caused the tape to Lke positioned in accecr-
dance with the REWIND detail entry in the
Therefore,

Facro Instructicns 51

to resume the processing of tape records at
the point where the file was closed,
REWIND=NORWD should be specified in the
DTFMT statement.

The first record read from the reopened
tape file must be a file label if standard
labels are specified for that file. If the
tape file to ke reopened is unlakteled or
contains non-standard labels, the user must
identify the first record read as a data
record or a file label.

When a multi-volume file is reopened and
the DTFMT entry ALTTAPE is included in the
definition statement for the file, the IOCS
continues to read from (or write in) the
same volume that was used as input (or out-
put) tape at the time the file was closed.

FEQV_Macro_TInstruction

The format of this macro instruction (Force
End-0f-Volume) is:

1
| Name

1
L g

|name
L

] ¥
|Operation |Operand
1 'R

P SR

i
|filename
1

L
|FEOV
1

The name of the file to which this macro
instruction refers (assigned to it by the
entry in the npame field on the DTFMT header
entry line) is the only operand required in
this macro instruction.

This macro instruction is used for eith-
er input or output files on tape to force
an end-of-volume condition at a point other
than the normal tage mark (input) or a
reflective marker {output). This indicates
that processing of records on one volume is
considered finished, Lut that more records
pertaining to the same file are to be read
from or written on the fcllowing volunme.

52 IBM System/360 Model 20 TPS ICCS

If this macro instruction is issued focr
an input tape, the I0CS immediately causes
execution of the rewind option selected Ly
the user, provides for a reel change in
acccrdance with the ALTTRAFE detail entry in
the DTFMT statement for the file, and pro-
cesses the header lakel (or laltels) of the
next volume as required.

If this macro instruction is issued for
an output tape, the ICCS causes the last
block of records to ke written, if neces-
sary, followed by a tape mark. Then the
ICCs

1. causes the writing of the standard
trailer label including the accumulated
block count, and tranches to the
LABADDR routine, if this is specified;

2. provides for a reel change in accor-
dance with the ALTTAEE detail entry in
the DIFMT statement for the file; and

3. processes the header latel (or latels)
as required.

An exanmple for the use of the FEOV macro
instruction is given Lelow.

If FILABL=NSTL or FILAEL=NC has lLeen
specified for a multi-volume input file,
the ICCS has no means to detect an end-cf-
volume condition. When a tape mark is
detected, the ICCS transfers control to the
user's ECFADDE routine in which the user
nust determine the end of a volume. After
the last klock of a volume has fkeen read,
the user must issue an FEOV macro instruc-
tiop to have the 1I0CS perform the end-of-
volume functions in accordance with his
detail entries.

¥ T Ll k]
|Operation |Cperand | Remarks |
I -+ t 1
| CLOSE }filel,file2,file3,...,file16 JUp to 16 files may be closed 1
] | |with one CLCSE macro instruction |
+ + : |
}CNTRL | filename,Operation,n |Control |
| |filename,Operation,n,m] |
| | | |
1 |Possible operation_and_n(m)-operands:| i
] |BSF ({backspace to tapemark), no | Applies to tape files only |
| | n({m)-operand | 1
l |BSR {backspace to inter-block gap) | 2pplies to tape files only]
| | no n{m)-operand | |
1 |ERG (erase gap), no n (m)-operand |Applies to tape files only |
| |FSF (forward space to tape mark), |Applies to tape files only |
| i no n{m)-operand i |
| |FSR (forward space to inter-block |Applies to tape files only |
i | gap) , no n(m)-operand |

	REW (rewind tape), no n{(m)-operand	Applies to tape files only
	RUN (rewind and unlcad), no	Applies to tape files only
	n{m) -operand	
l		
1 1SK (skip) n: 1,2,.4.,12 In causes immediate skip		
]	to specified tape channel	
] m: 1,2,e0.,12	m causes skip to specified 1	
	1 tape channel after printing 1	
	SP {form spacing)	
	n: 0,1,2, or 3 In causes immediate form	
]] spacing by specified numker	
		of lines
	m: 0,1,2, or 3	m causes form spacing Lty
		specified number of lines
1	after printing 1	
]	SS(stacker select), n-operand	Applies to multi-stacker card input/
i required joutput devices only. The n-operand		
]	lis the number of the stacker]	
	l]into which cards are to te selected.	
i B 1 i]
Figure 13. Summary of Imperative Macro Instructions, Fart 1 of 2

Macro Instructions

53

-
Operand |Remarks
1

peration

T
yworkname,cardprintarea J]Card Frint
|Absence of file-name operand is
|indicated by a comma. Fequires
| CRDPRA and CRDPRLn DTFSR
|detail entries.
-4
Ll
lenanme |Enter Overlap Mode.
|Arplies to comtined files for
|which a previous LOM macro
linstruction has been given.
1
¥
filename | Force End of Volume.
|2pplies to multi-volume tape
|files only.

Ol o

RDER

=
=]
=
™S

£

]
b=
o
<3

cond operand must Le omitted

filename,workname e
hen no work area has been specified.

1
1
]
|
+
|Label Return.

| Required for return to ICCS from
|the LABALDR routine.
4

=1
-
-]

= 1 or 2)

¥
filename | Leave Cverlap Mode.
|Arplies to combined files for which
|cverlap mode has Leen specified.
file1,file2,...,file16 |Up to 16 files may ke opened with
|one OFEN macro instruction.
1
T
filename,n,address |Print Overflow.
In is either 9 or 12 and denotes the
jchannel indicator to ke tested. The
| third orerand specifies a tkranch
|address if a branch is desired on an
|overflow condition. 2 skip to channel
|1 is performed if the third operand
|has been omitted.
1
]
lename,vorknanme |Second operand must be omitted
|when no work area has leen
|specified.
[

PRTOV

— —— o — — O ——— — — — . — —— i oo e il e St e il — — — — it — — — — — . o—

-]
(=]
]
"™,

f

Lo i _

t
filenanme | Release.
|Aprlies to tlocked record tape input

{files.

4
T

filename |Truncate.
| Applies to tlocked record tapre outgput

|files.
i

-
<}
[}
n
t=

TRUNC

4

| Required if (1) card files are
|Irrocessed in overlap mode and {2) a

| program using the ICCS is executed in
|several phases.

1

WAITC

|
o
=
b e e e e e e e b e e e e e e e e e e e e e e e e e e — e o e

[o e ot S e e e B e e e S - — Y G S - — " — - — — s - ft Bt o e Gy o e S e o et B e e o R Gy e S —
=}
9
=
=
be o e e e e e e e ade e —

Figure 13. Summary of Imperative Macro Instructicns, Fart 2 of 2

54 IBM System/360 Model 20 TPS IOCS

If labeled tape files are to be processed,
the I0CS requires two tyres of control
statements which are used by the Job Con-
trol program when the program is executed.
These two types of control statements are
(1) the Tape Volume Statement and (2) the
Tape Label Statement. The format of each
of these two statements is descrited below.

The volume and label statements provide
the IOCS with the necessary label informa-
tion to check lakels for an input file or
to create latels for an output file. For
each labeled tape file, one volume state-
ment and one label statement are required.

For a given file, the volume statement
must always precede the label statement
that describes the file on the volunme.

Format of Volume Statement

¥ 1 B2
|Name |Operation |Operands
L [| 4

SO

r T T
\// | VOL |S¥ISnnn, XXXXXXX
v 1 1

The specified symbolic address cf the tape
drive used is the location of the first (cr
only) volume of the file. It is six char-
acters in length. The name assigned to the
file by the LTFMT statement must ke used in

CORTEOL STATEMENTS

the file name field of the volume
statement.

Format of Tape Label Statement

1 4 T T
| Rame |Cperaticn |COperands
1 1 -4

e e sk e o

F T T
/7 | TPLAB J*XXX.e0ueos 2XX?
L 1 1

The following information is required in
the label information field:
No. of Char's
File Identification 17
File Serial Number
Volume Sequence Numler
File Sequence Number
Generation Numker (if used)
Version Number (if used)
Creation Date (LYYDDD)
Expiration Date ({LYYLLL)

oo EEEO

The label information must be written as
cne character string enclosed in apostro-
phes, i.e., an apostrophe Lkefore the first
character and after the last character in
the label information field. The precise
format of tape latels is descrilted in the
SRL publication IBM_System/360 Mgdel 20,

L= 2%

Tare FErogramming_System, Control and Ser-

A

vice Frcqrams, Form C24-9C00.

Control Cards 55

GENERAL_PROGRAMMING CONSIDERATICNS

BLOCKING OF RECORLS

Blocking of records is not possible for
card and printer files. Blocking of tape
file records offers the advantage that no
unused gaps exist between individual rec-
ords written on tape. A gap is provided
between the last record of a tlock and the
first record of the following block. This
decreases the number of necessary tape
starts and stops and permits the user to
write more data on a tape.

Blocking of records is accomplished by
means of appropriate detail entries in the
DTFMT statement for the particular file.

If the records to ke tlocked are of
fixed length, the user must include the
following detail entries:

1. RECFORM=FIXBLK to indicate the record
format.

2. BLKSIZE=n to indicate the length of a
block.

3. RECSIZE=n to indicate the length of the
logical records.

Note: If the DIFMT statement for the file
does not include the WORKA=YES detail
entry, an IOREG=(n) detail entry is
required in addition to the three entries
mentioned above.

If the records to be blocked are of
variatle length, the following detail
entries are required:

1. RECFORM=VARELK and
2. ELKSIZE=n.

Note: 1If the DIFMT statement fcr the file
does not include the WORKA=YES detail
entry, the detail entries IOREG={(n) and
VARBLD=(n) are reguired in addition to the
two entries mentioned above.

If the user builds his records in the
output area the value in the IOREG register
is used to address the record space avail-
abkle in the output area. A PUT macro
instruction is issued each time a record
has keen built. The IOCS then checks if
the output area is filled. If the output
area is not filled, the IOCS increases the
value in the IOREG register by the number
of bytes contained in the record. There-
fore, the IOREG register points to the
address of the next available record space
where the user can build his next record.

56 IBM System/360 Model 2C TPS IOCS

If the ocutput area is filled, the ICCS
causes all records currently in the output
area to be written on tape as one block of
reccrds. In addition, the value in the
IOREG register is reset to the starting
address of the output area. Note that the
OFEN routine places the starting address of
the output area into the ICEEG register.

If the user Ltuilds his records in a work
area a PUT macro instruction causes the
reccrd in the work area to ke moved intc
the output area. In addition, the ICCS
checks to determine if the ocutput area is
filled. 1If the output area is not filled,
the ICCS returns contrecl to the main pro-
gram and the next PUT macro instruction
causes the record now in the work area tc
be moved into the next available record
srace in the output area. When the cutgput
area is filled, the IOCS causes all records
in the cutput area, including the one that
was moved into the output area by the PUT
macrc instruction, to Lke written on tage as
one block of records.

CEBLOCKING OF RECORDS

Becords are deblocked by including detail
entries in the DTFMT statement for the file
as descrilted Lelow.

If the records to be deblocked are of
fixed length, the detail entries required
are:

1. BRECFORM=FIXELK to indicate the record
format.

2. BLKSIZE=n to indicate the length of a
block.

3. RECSIZE=n to indicate the length of the
logical records.

Ncte: If the CTIFMT statement for the file
dces not include the WCEKA=YES detail
entry, an ICREG={n) detail entry is
required in addition to the three entries
mentioned akove.

If the records to ke deklocked are of
varialkle length, the detail entries
reguired are:

1. EECFORN=VARBLK and

2. BLERSIZE=n.

Note: If the DIFMT statement for the file
does not include the WORKA=YES detail
entry, an IOREG=(n) detail entry is
required in addition to the two entries
mentioned above.

After a GET has caused the entire block
of records to be read into the input area,
the first logical record of the block is
immediately available for processing (eith-
er in the input area or in the work area).
The next GET for this file will make the
next logical record available for proces-
sing. This function is repeated until the
last logical record of the klock has been
made available for processing.

INPUT/CUTEUT-WORK AREA COMBINATIONS

The user must define, in his main source
program, an area into which input data can
be read and from which output data can be
written by the IOCS routines. The name of
this area must be used as the specificaticn
in the IOAREA detail entry (or entries) for
the file. When a work area is not speci-
fied, all records are processed in the
input/output area(s).

For a particular file, the user can spe-
cify one of the following input/output-work
area combinations:

1. One inpuwt/cutput area.
2. COne input/output area and one work area.

3. Two inputy/output areas (for tape files
only) .

4. Two input/output areas and one work area
(for files associated with the IBNM 2501
Card Reader, or for tape files).

The size of an input/output area must Le
equal to the length of the longest klock to
be processed. The size of a work area
should be equal to the length of an indivi-
dual record. However, if varialtle-length
unblocked records or records of undefined
format are specified, the programmer nmust
take into consideration the numkter of bytes
specified in the BLKSIZE detail entry when
defining his work area(s). (Refer to the
description of the BLKSIZE detail entry in
the section DIFMT_Detail Entries.)

One Input/Output Area

Specifying an input/output area without a
work area is permitted for tape files only.

When a GET or a PUT macro instruction is
given for a file while another input/output
operation is executed, the IOCS enters a
waiting loop to wait for the completion of
this input/output operaticn, except when

this input/output operation is a tape re-
wind operation on another tape drive or a
print operation on the 1403 printer.

Cne_Input/Cutput Area and Cne Work BArea

If the processing of records is done in a
work area rather than in the input/output
area, the programmer must include a WCRKA=
YES entry in the DTIFSR (DTFMT) statement
fcr the file. (For card and printer files,
the use of a work area is mandatory.)

Alsc, he must define a work area in his
program and assign a name to it. That name
is then specified as the second vperand
whenever he issues a GET or a PUT macro
instruction for the file.

Note: Input/Qutput areas for tape files
must not be used as work areas.

When a GET macro instruction is given
fcr a file that uses a work area a record
is moved from the input area intoc the work
area. When a PFUT macro instruction is
given, a record is moved from the work area
intc the output area.

Fer card files, the combined use cof a
work area with one I/C area permits the
ICCS to overlap an input/output cperaticn
with processing and/or with another inputy
output cperation. The same applies for
tape files if a Submodel 5 is used and the
RWC feature is specified. This increases
system throughput, i.e., it increases the
amount of records processed within a given
time.

For tape files, the use of a work area
rrovides the advantage of increased systen
throughput only if the program utilizes
card and print devices (excluding the IEM
1403) . If a GET is issued for a tape file
that uses a work area specified, the IOCS
performs as follows:

1. The next record in the input/output area
is made availaltkle for processing Ly mcv-
ing it into the work area.

2. If the record moved into the work area
is the last one availalle from the
input/output area, the GET macro
instruction causes, at the same time, an
actual device request to re issued that
will be executed as soon as CEU time is
available. ©Until this request can be
executed processing is continued. If
CEU time does not tecome availatle fcr
execution of the device request before
the next GET macro instructicn requires
the first record of the next block, the
[Icgram enters a waiting loog.

If a work area is not used, the next
tlock of records is requested by the GET

General Programming Considerations 57

s

8 R Ll T fmut §
|Record | |Separate] |
{Format | Humber of| Work] Amount of Effective Overlap |
| (Blocked or|I/C Areas|Area | |
|Unklocked) |]]]
t + + 1 —
] 1 1] no |No overlap |
| | ; } 1
1 | | yes |Overlap processing of each record |
1 1 |] {Record move required) |
|Unblocked | + + 4
|] 2 | no |0verlap processing of each record |
i i | | (No record move required) |
1 | F + -
|] | yes |O0verlap processing of each record]
|] | | (No advantage to specify a work area) 1
L 4 1 4]
L 3 L L] T 1
|] 1 | no |No overlatg]
1 | [} 4
| | | yes |]Ooverlap processing of first or last record in each tlock]
| Blocked } } } 4
|] 2 | no |overlap processing of full tlock |
| | F + |
] 1 | yes |Cverlap processing of full tlock |
| | | | (No advantage tc specify a work area)]
| L - 1 4

Note: Overlap given is the maximum achievable.

Figure 14.

Summary of Achievable Overlap of Processing and Input/Output when

a Submodel 5 is used and the Read,/Compute, Write/Compute Cverlap

Feature is employed.

record of the new block. If the CPU is
busy servicing another input/output device
that does not permit concurrent tape input/
output, processing is not possilkle because
the record to be processed is not yet
available. The program then enters a wait-
ing loop until the current input/output
operation is completed.

To summarize, the use of a wecrk area
causes the device request for a new record
block to Le given already at the time the
last record of the preceding block is made
available for processing. If nc work area
is specified, the device request for a new
block is not issued until the first record
of the new block is required.

If a PUT macro instruction is given
while the CPU is busy servicing another
input/output device, the record in the work
area is moved into the output area. If
this was the last record to be moved into
the output area, this PUT macro instruction
will also cause a device request to be
issued that will be executed immediately
after completion of the current input/ out-
put operation. Until the request can be
executed, the CPU can perform processing cn
the first record of the next block. 1If a
work area is not specified, the progranm
must enter a waiting loop until the current
input/output operation is completed. Dur-
ing this time, no processing is possible
and processing time is lost.

58 IBM System/360 Model 20 TPS ICCS

When a work area is used, the user can
dc all his fprocessing in a predetermined
area. Also, an IOREG register is not
required. These are further advantages
offered by the use of a work area.

Two _Input,/Qutrut Areas

The use of two input/output areas without a
werk area is only permitted for tape files.
The user can only take advantage of speci-
fying a second I/0 area when he uses a Sub-
model 5 and the program makes use of the
read/compute, write/compute overlag
feature.

a. Input.
The combined use of two input/
output areas allows the overlap of
the processing of one block with
the reading of the next one. When
the last logical record of a block
in one area has Leen processed, the
reading of the next block from tape
into the same area is overlaprped
with the processing of the block in
the other area.

b. Cutput.
The comtined use of two input/
output areas allows the overlap of
the writing of one Lklock with the
building of the next one. When one
output area is full, the lklock is
written onto tape. Meanwhile,

T T T T T 3
; Record Format } Number of | Work Area | ICREG] VARELL | BRECSIZE=(n) |
I | Input/ | Specified | Reguired? | Required? | Required? l
l | output | l | l |
| | Areas | |] | |
T 1 1 [l I 1 1
. T T T T T L
| Fixed Blocked] t1or 2 | ¥o | Yes | No | No]
| Fixed Elocked 1 1 or 2 | Yes | No | No | No |
t t } } } + 1
| Fixed Unblocked | 1 | Ko | Ko | ¥o | Ko 1
| Fixed Unblocked } 1 or 2 | Yes | No | No 1 No |
| *Fixed Unblocked | 2 | Yes | No | No | No |
| Fixed Unblocked 1 2 | No | Yes | No | No]
L ' 4 i 1 i 4 H
] Ll T 1 1 T 3
| Variable Blocked } 1 or 2 | No | Yes i Yes** | No |
| Variable Blocked | 1or 2 | Yes | No 1 No | No |
i + t + + t 4
| Variable Unblocked | 1 | No | No+ | No | No |
| Variable Unblocked | 1 or 2 l Yes | Ko l ¥No | No 1
| Variable Unblocked | 2 | Nc l Yes | No | No |
t + t } + + |
| Undefined i 1 | No | No+ | ¥No | Yes |
| Undefined] 1 or 2 | Yes | No 1 No | Yes]
] Undefined i 2 | No | Yes | No I Yes i
: 1 i 1 X 1 %
| *0Only for card-input files tc be read by the IEM 2501 in overlap mode. |
| **¥putput files only. i
| +Required if read tackward is specified. 1
L J

Figure 15. Register Requirements

another block is Lkuilt in the other
area. Thus, a maximum degree of
overlap is obtained.

Two_Input/Output Areas and One Work Area

The use of two input/output areas together
with a work area is permitted only for card
input files that are to be read by the IBM
2501 Card Reader in overlap mode, or for
tape files.

1. For the IEM 2501 Card Reader: This
area combination permits the IOCS to
maintain the maximum card reading speed
of the IEM 2501,

2. For tape files:

The user can only take advantage of
specifying a second I/0 area when he
uses a Submodel 5 and the program makes
use of the read/compute, writeycompute
overlap feature (see also Figure 14).
The information ccntained in the pre-
vious section, Two_Input/Qutpui Areas
(subsections a and b), should also be

ccnsidered when using two input/ocutput
areas and a work area.

Register Regquirements

The record format in conjunction with the
input/output-work area combination used
determines whether none, one, or twvo regis-
ters (IOREG, VARBLD and/or RECSIZE) must be
specified. Figure 15 indicates when it is
necessary to specify a register.

DTF BLOCKS

For each tape file to te processed in a
rrogram that uses the ICCs, a tatle is
built in main storage during the generation
rhase of the assemkly. This talle is
referred to as the DTF block. It contains
such information for the file as the sfpeci-
fied rewind function the type of labels
used, the accumulated rlock count, etc.
Figure 16 shows the layout of and the type
of information contained in the DTF block.

General Programming Considerations 59

1
BYTE |BIT|

R

CONTENTS

0-1

)
T

|Address of LTF Block -- in bipary nctation.

2

4
L

|OPEN Rewind Option -- command byte of CCW used when the file is opened:

Jor NOP.

REW

1
|
4
K}
|
1
1
|

w

4
Ll
|CLOSE Rewind Option -- command byte of CCW used when the file is closed:

|REW, RUN, or NOP.
L

F
!
wn

Residual Count -- in binary notation.

=]
!
~

— e e e - - o

]Attention

| Status Modifier
|Control Unit End
|Busy

|Channel End
|Device End

JUnit Check

|Unit Exception
N

Unit Status Bytes -- reserved for ICCS internal use; the user is not per-
mitted to change the bit configuration of these two bytes.

~SNoUiswhh=ao NoaOmswho=ao

T
|Incorrect Record Length

|Wait Bit

|In Error Recovery
| Wait for CPU Availability

|Reserved

|Device End Significant
|Accept Input,/Output Error

| Reserved
L

+
|Logical Unit Displacement -- the displacement of the logical unit klock

| (symbolic device address) with reference to the begin address of the logical
The ccntents of these two Lytes may ke one
(shown in hexadecimal notation)
| 04 for SYSIFT

06 for SYSOPT

lunit table in Linary notation.

|of the following

|
| oC tbhrough 2A for SYSCCO through SYS015, respectively.

| (In increments
| of two per

| symbolic ad-

| dress)

|

|The user is not permitted to change the bit

|bytes.

configuration of these two

10-11

L]
|Address of CCH.

4

e i e e e e S R e e e Rl e ol I VU SR
P e s e e e - e s s s " o T et S e g s W S S T — T S G et s ot e oh e o s = o e e
SNoumEWwNhao

T

| Not used.

|Type of File --
|FEOV Switch --

| ECF/EOV Indicator --
J CEEN Indicator --
|Alternate Drive Switch --

|Not used
|Not used
i

[T N Y

oo e

Ingut;
Yes;
EQF;
Cpen
Yes;

Cutput
No

ECV
Closed
No

|
4
|
|
1
l
i
|
|
|
|
|
I
|
|
|
|
|
i
1
|
|
|
1
|
l
|
|
1
|
l
|
|
|
|
|
|
|
|
l
|
1
|
1
|
1
|
|
|
|
l
|
|
|
J

Figure 16.

60 IBM System/360 Model 20 TPS ICCS

Layout of and Type of Information Contained

in the DTF Block, Part 1 of 2

r ¥ Ll 1
] BYTE |BIT| CCRTIENTS |
F + } 1
| 13} 0 jstandard Latels Indicator -- 1 = Yes; 0 = No i
] 1 1 fAuxiliary Labels Indicator -=- 1 = NSID; O = No labels i
| | 2 |Rewind Unload Switch -- 1 = Yes; 0 = No |
|] 3 |Rewind Option Indicator -- 1 = NRRL; O = BREW i
1] 4 |Read Option Indicator -- 1 = Back; O = Forward |
| | 5 |User LABALDR routine -- 1 = Yes; 0 = No l
| | 6 |Tape Mark Option -- 1 = No; 0 = Yes |
i] 7 |Not used. |
I t + z
| 14-15] |EOF Address -- address of user-routine in binary notation. 1
t { } 1
] 16-17] |Alternate Unit Address Displacement -- the displacement of the logical unit |
l l |block (symbolic device address) for the specified alternate tape drive. The]
] | jdisplacement is given with reference to the begin address of the logical

i 1 lunit table. i
t + + i
1 18-23) |CCW for Set Tape Mode Operation.]
1 . | 1 1
L) L] T)
| 24-29] |CCW for Tape Input/Cutput Operation. |
1 1 4 4
L 1 1 L]
1*30-33]) JAccumulated Block Count —-- in racked decimal format. I
L i 1]
] L]) 1
| *34-35] | LABADDR Address —-- address of user-routine in binary notation. 1
1 4 1 1
L g] 1 1
|*36-421 |File Name -- the symbol specified in the name field of the LTFKT statement |
| } |for the file. 1
t + + !
|*43-91] |Standard Latel -- the contents of fields 3 through 10 of the standard file |
| | | label. I
b L 1 : :|
}*This type of informaticn is included only in the LTF Lblocks of files for which stan- |
| dard labels have been specified. i
1 |

e Figure 16.

There are two methods ty which the user
can obtain access to individual bytes of
the DTF klock for a file:

The first byte (byte 0) of the DTF
klock is addressaltle Ly using the file
name as a symbolic address. For
example, to refer to the CCW for input/
output operations the user must specify
the file name+24 in his instruction.

1.

If the instruction that is to refer to
a location within the DTF block is not
preceded by an IOCS macro instruction
that refers to another file, register
15 contains the address of the first
tyte (byte 0) of the DTF block. In
this case, the programmer may use reg-
ister 15 as base register and write an
appropriate displacement to obtain
access to the desired btyte in the DTF
block.

Access to the information contained in
the DTF block for a file permits the user
to test and/or modify the contents of the
CTF klock. He may, for example, test the

Layout of and Type of Information Ccntained in the LTF Elock, Part 2 of 2

accumnulated klock count on a tape read or
write error and correct it after the error
reccvery.

CEVICE ERROR RECOVERY

Punched-Card_ Equipment Errors

When errors {(read checks, feed checks,
etc.) ~occur on punched-card equipment, the
I0CS discontinues the execution of the pro-
gram to allow the operator to take correc-
tive action. An error indication is dis-
rlayed on the CEU console to identify the
type of error and to indicate the reguired
restart procedure.

Tare_ Error_Eoutines

The ICCS routines provide that on tape read
errors the tape is tackspaced and re-read
1C0 times before the rlock is considered an
error block. The IOCS routines further
rrovide that any error which can nct te
corrected is indicated to either the main
Erogram or the operator. Fefer to the

General Frogramming Consideraticns 61

description oi the ERROPT detail entry.
Indication to the operator is by means of a
display on the CPU console. This display
indicates the type of error and the device
address.

If a tape write error occurs, the IOCS
causes the tape to be back-spaced by one
block, the error block to be erased, and
the output block to be written on a new
section of tape. The IOCS makes a total of
10 attempts to rewrite a block as described
above. If the tenth attempt does not
result in a correctly written output block,
a programmed halt occurs.

REGISTER USAGE

The programmer may freely use any or all of
the registers 10 through 13.

Registers 8, 9, 14, and 15 are not
readily available to the programmer for
reasons explained kelow.

Registers 8 and 9 are used by the ICCS to
communicate with the LABADDR routine (see
___________ Eefore branching to that
routine, the IOCS saves the values that are
contained in these registers. The two reg-
isters are restored to their original
values if the programmer uses the LBRET
macro instruction to return to the main
program.

Registers_14_and 15 are used Ly the IOCS
imperative macro instructions (GET, PUT,
etc). If the programmer uses one or both
of these two registers in his program, he
must make sure their contents are no longer
required before he issues an IOCS impera-
tive macro instruction. He must save these
registers if he requires their contents
later in his progran.

When an IOCS-controlled kranch to a
user-routine (ERROPT, LABADDR, FFXIT,
RFXIT, SCXIT, or WLERR) occurs, the con-
tents of registers 14 and 15 must not be
destroyed. If the user desires to issue an
I0CS macro instruction in his routine, he
must save the contents of the two registers
before this macro instructicn is executed.
He must restore the contents of the two
registers to their original values Lkefore
he returns control to the IOCS.

Transition_Considerations. If the user
anticipates transition to a higher System/
360 model, he must be aware that the Basic
Programmeing Support or the Basic Operating
System Supervisor do not permit the pro-
grammer to use registers 12 and 13.

In the LABADDR user routine, the Model
20 I0CS uses registers 8 and 9 as communi-
cation registers (see the description of
the LABADDR=name detail entry). 1The Basic

62 IBM System/36C Model 20 TBS IOCS

Programming System and the Easic Operating
System IOCS use registers 0 and 1 for this
purpose in the LAEALLR and other routines
such as ERROPT and WLRERR.

IOCS ASSEMELY

Both the 10CS portion and the user written
program instructions are assembled in one
and the same run. Figure 17 shous the
arrangement of the input cards for a source
program using the ICCS.

Source (Problem)
Program Cards,
including 10CS
Imperative Macro
Instructions

j¢ —— DTFEN Card

Source Program
DTFEN

DTFSR HEADER Definition Statements
Stort (for three files)

L
// Job

-/2 Job Control Cards

Arrangement of Source Program
Cards Using the IOCS

Figure 17.

ICCs

During the assembly of a program using the
I0Cs, the IOCS portion of the program is
subject to extensive checking for format
errors. This checking is performed in two
steps as follows:

1. during each macro rhase of the assently
-- i.e.,, during the generation of a
routine that is to replace a macro
instruction in the proklem program and/
or the generation of DTF routines; and

2. during the assembly of the problem
FIogram.

The checks performed during step 2 are
those that are normally performed by the
Assemtler.

CBJECT COLDE ADDR1 ADDR2 STHMNT

SCURCE STATEMENT

0362 FILE
0363

c364

0365

0366

0367

0368

0369

0370

0371

0372

0373 MNGTE

0374 MNCTE
ERR
0375 MNCTE
ERR
0376 MNOTE
ERR
0377 MNOTE
ERR
0388 MNOTE
ERR
0379 MNOTE
ERR
0380 MNOTE

|
i
!
1
l
|
l
|
!
|
|
i
]
|
| ERR
|
|
|
l
|
1
|
|
I
|
|
|
|
| ERR

DTFMT LEVALLR=SIS001,

TAPEMARK OPTION SPEC'D FOR INPUT FILE
VARBLL SPEC'D BUT NOT REQUIRED

NO RECSIZE SPEC'D

IOREG SPEC'D WITH WORKA

IMPROPER BLKSIZE

INVALID DEVALLR SPEC

LABADLR SPEC!

GENERATION TERMINATED

EOFADDR=NAME,
FILABL=NC,
IOAREA1=NAME,
IOREG=(10),
LABADDR=NC,
RECFCRM=FIXELK,
TPMARK=NO,
TYEEFLE=INEUT,
VARBLD=SYMBOL,
WORKA=YES

D FOR A NO LABEL FILE

L

Note:
Figure 18.

Checking During the Macro Phase. The IBM-
supplied IOCS macro definitions include
conditional-assembly instructions that
cause the user-specified operands and DTFMT
(DTFSR) detail entries to be checked. When
an error is detected, an appropriate MNOTE
diagnostic message is printed in the pro-
gram listing. Figure 18 shows an example
of MNOTE diagnostic messages that were
printed as a result of incorrect and/or
inconsistent detail entries to a DTFMT
statement. The MNCOTE diagnostic messages
describe the type of errcr(s) detected dur-
ing the macro phase of the assembly.

When an error is detected, diagnosing
continues until it is completed for all of
the macro instruction operands and detail
entries involved. However, the generation
of source language coding for the macro
instruction (definition statement) that
contains the error is suppressed.

Some errors cause the printing of more
than one MNOTE diagnostic message. For
example, assume that FILABL=STAND has Lkeen
specified for a file with standard labels.
Further assume that a label exit routine
has been specified for this file. As a
result of the erroneous FILABL detail

Continuation punches (column 72) are nct shown.

Example of MNOTE Diagnostic Messages

entry, the following two MNCTE diagnostic
messages are printed.

MNOTE IMERCEER FILAEL SEEC'T

MNOTE SPEC'D WITH STAND

LAEEL FILE

The second of these two MNCTE diagnostic
messages is printed because a LABADDR
detail entry is only permitted if
FILABL=STD has lteen specified for the file.

Checking During the Assembly of the Problem
______ The source-language instructiocns
generated from ICCS macro instructions and
definition statements are assembled togeth-
er with the instructicns in the user's [pro-
blem program. Both the generated instruc-
tions and the user-coded instructions are
tested by the Assembler to detect such cod-
ing errcrs as undefined symkols, invalid
length values, etc.

Three examples of error indications Ly
the Assembler are given Lbelow. These
exanples explain some of the error ccndi-
tions that are detected Lty the Assembler
during the assembly of the prollem progran.

General Programming Considerations 63

1. Assume that IOAREA1=0UTPUT has been
specified in the definition statement
for a file and that, in his progranm,
the programmer has erroneously omitted
a definition of the symbol CUTPUT. 1In
this case, all references to OUTPUT in
10CS macro instructions and/or instruc-
tions in the problem program are iden-
tified as undefined-symkol errors.

2. An undefined-symbol error occurs if the
program calls for an IOCS function that
is not available for the referenced
file. For example, a RELSE macro
instruction referring to a file named
PAYROLL is issued in a problem program
and this file has been defined as an
input file that consists of unblocked
records. Since the RELSE routine is
only available for blocked-record
files, the generated reference to the
RELSE-routine entry point is identified
as an undefined-symtol error. A simi-
lar situation occurs if a TRUNC macro
instruction is issued for an output
file that is to consist of unblocked
records.

3. Undefined-symbcl errors may occur if
the generation of an IOCS routine has
been terminated because of an error
condition during the macro phase of the
assembly. In this case, references are
made to non-generated routine entry
points, and all of these references are
identified as undefined-symktol errors.

RESTRICTIONS

When writing his own routines, the prograe-
mer has to observe the following:

1. He must not use any names starting with
the letter "I" Lecause all names used
by the ICCS start with this letter.
This is to eliminate the possibility of
multiple-defined names.

2. He must not use file names that are
longer than seven characters (refer tc

character position is required by the
IoCs.

64 IBM System/36C Model 20 TPS IOCS

3. To avoid multi-definition of names, the
first seven characters of names used by
the programmer should not ke identical
with the first seven characters of
names given to files. The assemktler
derives the entry points to the ICCS
rcutines by adding a character to the
end of the file name.

_______ If REALCRL has leen assigned
as name to an input file, the program-
mer should not use names such as
READCRLCA, READCRDB, etc. in his source
rrogram.

4, The name assigned to a file to be pro-
cessed by the ICCS routines must nct te
used in the name field of a statement
in his progranm.

5. It is not permitted to give an XIO or
an SESW instruction as this would cause
an unexpected interrupt and thus inter-
fere with automatic scheduling of
input/output operations by the ICCs.

tse_of the FETCH_PFacro_1lnstruction_in
Programs_Using_the ICCS

When a program (or a program phase) that
includes input/output routines for new
files is loaded, the programmer must ensure
that all files used in the preceding pro-
gram have been closed. If any of the files
so closed are required during the newly
loaded program, such files must le rede-
fined and sulsequently opened in the new
Frogram.

Bote that the operator is required to
run-out the cards in the associated card
ipput/cutput device if a card file is toc te
closed for the purpose of loading a new
fFrogram. Also, a second or sulksequent gro-
gram cannot te loaded from a card input
device in which data cards were read during
any of the preceding progranms.

The Model 20 IOCS is closely patterned
after the Basic Programming Support IOCS
and the Basic Operating System IOCS. Since
the Model 20 IOCS is designed to support
card and printer input/output devices that
are unique to the Model 20 and to achieve
optimum performance of all devices, some
macro instructions and DTFSR entries are
not identical to those of the other sys-
tems. Users who anticipate transition from
Model 20 to other System/360 models should

LANGUAGE COMPATIEILITY

therefore ke aware that programs using the
Model 20 I0CS require some modification
pricr tc generation by the other /360
Systems.

311 control cards and lakels used and/or
required by the Model 20 IOCS as well as
card and tape data sets created under con-
trol of the Fodel 20 ICCS are fully upward
compatible.

Language Compatibility 65

PROGRAMMING EXAMPLE 1

This example (Figure 19) illustrates the
files and main-storage area assignments for

tvo tape files and one card file.

It is a

simplified order and inventory job in which
a master tape is updated and written onto a
new tape and a card file of detail orders

is processed.

The following assumptions

are made:

L]

The o0l1d master inventory tape contains
quantity on hand and unit price in addi-
tion to the identifying information.

The card file reflects gquantities
ordered. It is to be completed with
quantity available for shipment, unit
price, and the extensicn of quantity
shipped times the unit price.

The new master inventory tape reflects
the decrease in quantity on hand due tc
the current orders or an increase when
items are returned.

The paragraph numbers of the following text
correspond to the coded numlers in Figure

19.

1.

66

The illustration shows this setup:

Job Control cards to indicate to the
Basic Monitor program the type of job
(assembly run) to Le executed.

Definition statements to define the
three files.

a. 01d master tape file. This is an
input file to be read forward. It
contains standard volume and file
labels and additional user 80-
character file labels. It is a card-
image file with a tlocking factor of
5. Register 10 is assigned for
locating individual records in the
input area.

. New master tape file. This is an
output file with the same character-
istics as the input file. Register
11 is assigned for locating the next
available output-record area.

c. Detail card file. This is a combined
file used to update input records
from the 0ld master tape file. The
cards are in the primary feed of an
IBM 2560 MFCM and are read in the
read station of that machine.

d. End of the three file definition
macro instructions. The user's
source program follcws this
statement.

IBM System/360 Model 20 TPS IOCS

3.

Sample instructions to open files and
locate master records that have current
activity. This illnstrates the
following:

a. The registers used in the progranm
are defined Ly means:- of USING
instructions. Register 12 is used
as base register ard the address of
the next instruction is loaded into
this register. The use of registers
10 and 11 is explained later in this
section.

. 21l files
I0CS nmust

to ke processed Ly the
te opened.

unklocked record to be
a work area causes the
record to te transferred from the
input/output device to main storage.
This makes the record available to
the problem progranm.

c. A GET for an
processed in

d. The first GET for a record in a
blocked file causes the physical
transfer of the tlock of data frcm
the input/output device tc the
input/output area. It also places
the address of the first record into
the specified ICEEG register. Each
succeeding GET causes the address of
the currently availalle record tc te
placed in the IOREG register, and
may or may not cause a transfer cf
data.

e. The master and detail item numbers
are compared with each other to
determine if either (1) a master
record is missing or a card with a
new detail item number has been
read, or (2) the pmaster record is to
be updated, or (3) the master record
is to be written unchanged on the
output tape.

To address any field within the
CESTE input record teing processed
(AREA1), register 10 has been
assigned by the Assemller as tase
register because this register pro-
duces the lowest displacement.

Since register 10 has also been spe-
cified in the ICREG entry for the
OMSTR file, the IOCS automatically
loads the register and changes its
contents to point to the begin
address of the record keing pro-
cessed. When this programming tech-
nique is used, the programmer need
not specify a ltase register in

instructions referring to fields of
the OMSTR input record currently
being processed.

The same programming technigue is
used to address the NMSTR output
records. However, register 11 has
been assigned by the Assembler as a
Lase register for the addresses of
the fields within the NMSTR record
being processed (AREA2).

The UPLATE routine is entered when-
ever it is determined that a record
from the OMSTR input file requires
updating.

When output files specify an IOREG
register, the register is initial-
ized by the OPEN routine. A PUT to
an output file for which a work area
was not specified merely causes the
address of the next availalble reccrd
area to be placed into the specified
IOREG register. No data is moved
within storage, and a transfer of

a new detail number has Lteen
detected. In this routine, the user
may build a record for inclusion in
the new master file.

4. User routines for processing additional
standard laktels,

6.

211 files that have Leen opened must be

closed.

This is normally done in an

end-of-file routine.

Assembler instructions to define the
input and output areas for the three
files.

a.

Twe input/output areas and one werk
area are reserved for detail card
records. Because these are single
unklocked records, the individual
fields within the records may te
defined along with the allocation of
the work area as shown.

the data to the ocutput device may or b. Bn input/output area is reserved for
may not occur. each of the two master files. Note
the use of the zero-duplicaticn fac-
g. The ERROR routine is entered when tor to define fields within logical
either a master record is missing cr records of the CFSTB input file.
1M System/380 Assambler Coding Porm o
moaw JOCS EXAMPLE rnicno e moe f o §
| rrocAAMMER Imn emcHons FUNCH ! T
‘|’ IOB) ns " MER ® 2 % A . » » - o nl In =
O iR
ADY SITIART] 1259
® TILIE| [DEFITINIIT[L]O SFcrlmm
i3 TIER] [FTILE DEFIJF 9]N TINPUIT] [FILILIE
@) :
OMSIT] DIT|FMT] [TIYP|EIFILE™ gr T|, READ=FIOR LIFIIIL =9T|D1, REICIFloRM=ALXIBIL|
ISILiZE=49]d], RECISICIZIE=i8d], T IAREAL EA%T PREG=AAeDLT 11T 1[N 1]
ARBADIDIR=ICIKIOILIAIB, IEIRRIOIPITI=ISKILIP|, [ElOFIAIDDR={EOIFMISIT], [RIEMTINDUINLIOJADY, IX L
EVADIDR=SYIS | i f
¥ AlSITIEIR [FIIILIE ED A4S q]uTPu AL]
@ |NMisT DIEMT] Y PEFLIES0UTiPUT], IFTILABLFST] .R%gcr M=FINELK, , 1
EI0STIAE=R], [TOARIEAT=IAIREIAD], [ToRERI=ICITIT),[LIABADDIR o
{ EWIINDI=IUINILIOADI, IDEVIADIDIR=ISYIS !
Figure 19. Programming Example 1, Part 1 of 6

Programming Example 1 67

IBM Bystem/300 Assambler Coding Parm

o |
3
—_—
o X
T
i = < L=
L1)) Qll (=)=
o« [[T R.I
s [(ERES [an
=t ul (4 =
M) 1Y)
[T Wi | [(V3]
_wa 1) TA)
=30 Y
9 LK) Ty ﬂ.m‘.m..«mw v =
SR 7, R T () .AWMW
<[N[O =)
C= [¥Ti[m
M [<4
¥ LL =] LX) (75| =
QD = o} ul pa
M= < D B@ T
e e
A\
b 1] VY Tl << o
o < OS] O [Ct=

mw wl The ocler] 4
E = 1= Tl | NS <C
— m- = W) i<l
] < = r-)

g - w = 1)1
- [W i o EW Y] 1L
| = A aivy

>0 = > <[— |
b (= = [=) p —~ L
| g EEeaan e
— =
m J rﬂrﬁ iy F="('| E.mm
= | BN} N3] -] << A
7 Eu i [) O
[=) =) =
T Tl Tl MHHM | 3 (=
[| Wi | o) W <<

- o Elw CommE= N Ul [¥3

3 L [[=) - e [<C|

| w ~ o & . i [<)YH —

o o & [¥T] - =
[= W [o] W o LY
(& =) i e =) 1< =
wa - = [Ze =TT
=BT NImK SVDA
C*ERL]
o nt = g T J.
Y < - @] -~ o«
o (TR [¥T) ~i [)
< |wlec Sl < < 3 (=
= [O-l<T < [73)(=) D=
_lmr > *. s [-4 = OT
2 X
N = A=
= [T2)
by mww 00| [
< m o Al Tl
x =[] <| DD Czl [=" R CNEY
1) - == DD > W [o]db)
Wy -]
S
~ T
<3 =
ir — X
=<
i e :
AN ESEES EJEAE IS EXMEX EJ
o v b

Programming Example 1, Part 2 of 6

Figure 19,

IBM System/380 Assembler Coding Ferm

T
NS |~
4
w [
2 g 1 1
3o [Y2) (]
Ll e — L =%
T jl
= L O:& =) o = (<4
MEE) QlE=lef [) =)W =
3 »| S =Y ﬁ =3 WU
=S Al Ol < ud
W=l ~i<t] T—Bla er (Y|
=[O > o =S [T =
.ﬂml.l ¥y O Moo W o v
b LTSRS OO TS O [z
Wi Y o= . [=
N AN D= = wad =]
HASnldy S N W (ol [
Ol [l [SL'T] - OOk [4)
orli—[odlod) = (-4 S S) 1)
.Dktuhwnu = .UmmILrDAK TR - T =
(@)= Y aeglol |
WOl | Si= _NQdH T3]
Sk ol No|N B[(=)1 ==
- Wl I == | ol = il
" | A =[S NN 3 [<X ("] <<
HE wicel vy TAECSP-A [¥Y] IS
=[] Ww.a_.m =GN e AT Twil - =z
(%2 w [Ye) EC A=) B i
3 SWLHT Wijvd m
o |<<[2=[wn] () | lua Wr_-ﬂ Wlcn |
£ MT.r_luﬁUN| - EON (= EOT.S
= <l
w wl o[[=Y Hm <]
¥ <z >) <<l (e Z 2T
A= (SI=e) Ny SiE =i
3 (<ol o[~ |] o] <T] = =] oo
= COM.SNUOEF..UuD = wn T:T...KE
5 el
2l [] = Ol e AN IO [T Hoal—Jloe
Dzl TS |
oS =
IS [~
- - O_S_...F_ O3]
HER. = weon] |-
1 =) = M|
[T Ll = W
3 = =
3 <C = =r=m
Ms w) < | [y Ol [}
= I~ =TT l=) (%) Sl |
R S (=)= SN Ol |
= <= Daec] o= |
- L) —d [
*of o] [. & ||
[} [=) Ed =
J = A= Eem [=
Q| = ¢ o] o] J
T RIS w1 = S] o-j
< . 0 s[s (%] ele (e
x P -
w }ES &= 1=
Wi [=C e W =
a i 0| -
O -
O
H = =
e —
< |} S
il | 5 S =
)
£ ¥| | (o T EIMED * S =

Programming Example 1, Part 3 of 6

Figure 19.

IEM System/360 Model 20 TPS IOCS

68

-
Nt B8,

mooam I0CS EXAMPLE —— o I Jnot & & &
MOGMMMER].,... uNCH TS RIS raniais
ll e [10 Opeemien 14 Y O;:’—l » a3 - - o Q{ » oo] o

LAagp NiG! [Roju 9 |
ClidolL |A TINISIT % TITIoNS [Tlol ICIHECK USEIR [STIANDIARD L] S 0N T

TR [FIILE
‘ ET| |2 U ; Tio! |RE[T ul CiS VINTITIL] JAILL E
C
I C|
(@) {[CkiNLAB 0 ISITIRUIC u RISTIAN :
be of SITIR IFILILIEL. L1 |
LIBIR 2| VISEED] Mol RIETUIRIN [Tio] |T] F L S El Mo

BE]| N
pe .
| RIET] 1 ISED (To IRETVIRN [Tio| [TjolC f Tﬂ; L
& HAlS| [RE
& ENP— FIF OUTILINES
[E[lFIDIELT, . SITRVICITITIoNS| [T]o| IClolply| |AN NINIG| [REICORDIS| [FIRIO

(@1 A al S ON NMS)

Elo[FMsT] [| Iciiols]e] DITIAITIL], NMISTIR] ,|OM&! "
{ E07] 7
il L]

Figure 19. Programming Example 1, Part 4 of 6

I1BM Sysiem/360 Asssmbler Cading Porm e
nooun TOCS EXAMPLE [oo [ceme T Jue 6 o« @
PROGRAMMIR (om m— J:‘ puNcH T E e
- DIETIACIL] IFiTiLE) TINPWIT],] (VPP DIATIIING], P S n
D
DIETICID! DIS, cLI8) CAIRID| {ZINPUIT A
WKDIE[T DIS CIL8] DETATL CARD |TMAGE]

DILITIEM S ClL4] i N O|REIS| |CIATIAILIOG] 1
DS CLILS! ITIEM DESCRIPTIIoON H INT| WISED] [IN| [T] A
S| CiL{2]1 VISTTIOMER [NU Rl - INIO[T] [USIED] [IM PRIOGRAM
DS ClL 1] IINVOITICE| N R -] Nom| USED] TN [THLS! IPIROGRAM | |
9 ClL2 LIINIE] [NUIMBIER] [0]N| [L/NY|OITICIE] H N[O[T] Jv[SIED] [T i
ROK{RAM |
\DICH DIS| Ll TR':\:F! CTIION ICoDe| [H ITISSUEL,] RETVRMN {Tld |9 9,
e Tl ‘ ’
(:>4 qg T S CIL[S QUAN 0 ED| 0 T
S CIL[2]5]
00T DE DS L8l AITIE| ICIAIRD] [IMAGE
| S CIL! ANK| (F TIEl PIUIN N
FILIL DiS CLS QUANTLT 0 BIE| [SHIPPED ATl [THIIS [T[IM
) CALCIULATIED]) | 4
UNICISIT D[S CIL[7 UNIZIT] PRIICE| 0F] |1] - FROM MASITER] [F ECO
oy DY RFIE EX[TIENS|ZIOIN| [0]F [UNILIT] ICIoiST] [BY] [QUIANT]T PIPE[D.
| orle] M {on [a| [RETIURN],! [PUNK (CIREDILT] P4 {TN| [THTS|
pe HIELD. 7
P
uTl/oluTPluT] ARIEAS] [FloiR] TILE] UISAGE!]
@ [| 1 [T

Figure 19. Programming Example 1, Part 5 of 6

Programming Example 1 69

Pﬁ TBM Systun/300 Asssmbier Coling Ferw _—
mom TOCS EXAMPLE [e ot 6 o 6
—— Tom i rﬁ—H Tl ST ——
EA BV T[] MA F NPT ARE T
| S C E 1%0 SITORIEI ICIAITIAL
| S CLB!3 DEISCIRIPITIT oW, | REF Rl POINT.[[E =
USIED HIS] [PROGRA 7.
[T ClolsiT 1TEM
L UANTIIITY E
5 a NIT LT FlOR! [SITIORELS
6 b i KIORIDIE sm% ClUSTOMERS
©‘ S L VAINTIT HEET FIR TIOREIS
, D Yl RET|UR T [OREIS
[9 Cl REA [HOR B IRECIoRDIS! olF [BLoC
4 S FITILIE] o{UTIP[T]l;ms
CAUTIL - ONISIT] AREA L DEEFT] H i
MBILE DISE] RE. oS EMBIL -
SIE SIE| AREAS].] [SIRICE o TIS| [0F .
M VIARY! DIURIT | UTILON|, | [FALKIE] [EF[FECTTINE| ADD-
B REISKIEIS| WOl 0 .
Lloc

Figure 19. Programming Example 1, Part 6 of 6

70 1IBM System/360 Model 20 TIPS ICCS

The following simple example (Figure 20)

illustrates how the read/compute, write/com-

pute overlap feature is used, in connection
with two I/0 areas and a work area.

A maximum degree of overlap is achieved
as follows:

Input. The combined use of two input
areas allows the processing of one block to
be overlapped with the reading of the next
one. When the last logical record of a
block in one area has been processed, the
reading of the next block from tape into
the same area is overlapped with the pro-
cessing of the block in the second input
area.

Output. The combined use of two output
areas allows the writing of one block to be
overlapped with the building of the next
one. When one output area is full, the
block is written onto tape and, at the same

PROGRAMMING EXAMPLE 2

time, another block is built in the second
output area.

The job being done is basically the same
as in the previous example. An old master
inventory tape contains quantities on hand
together with identifying information. A
card input file reflects quantities received
or dispatched (only the first 20 columns of
each card contain data). The new master
output file contains the resulting new
quantities. A list is printed of all rec-
ords on tape; any changed quantities are
marked with an asterisk in the last print
position.

For simplicity, no error routine is
included. The program halts if a card is
read for which there is no corresponding
tape record, or if the end-of-tape has
been reached before the last card has
been processed. When the last tape record

has been processed, the job is completed.

IBM (B Byt 00 Assommblor Coding Form e
moomn RWC EXAMPLE [oS— omarvec mot [o
| reoommswan Jour ramcnons e e *
STATEMENT
1 ~‘- 1] 10 4 4 T » 3 o » Comerme (-] o !_‘l e L
/ 1708] | | JAISISIE 1 I)
/] TEXEKC 1 0
#1101l L LI
BEGIWPR | [START] |2580 | : 1] :
FEEEEERELEEE AN N i ? :
* ! ReaA'D/coan'urzl,wlazrf clowelurlel lovieR|eAlP] ‘FleATU RE 1S [s PECr|FlIED
X ! L Pl l ! |]
L TFIBG| |RwiC:=Y|ES| | RN !
% | i ! [l] L |
x| B GHA E\FI N I|TII|OM |S|EICITI OV] '
1 i H i i {
b3 [i H H el l
x ralre lnduﬁ FllL'e i N
| [T '
% : ; |
TAREZ M DT AMiT] (Bl S]1]zle]= , [Dlelvialplpirl=Islyis pigldl, [£lolFla plR|=|elo|F|r A, | c
1 zoaR ela s = 1'MalrlElAlL] | 7lolalRlE|Al2]=] T|MAlR ElA 2], [R ElclH olrM=| 7 x| de|Ad .
| ECSIlzE=88,|TYPEIFLE=IWPUT, WORKA=YES :
ES ' . IENERE NN Lol
* TAPE lolurrur| F1L'8 ' i ' o R Bl
, ' EEENEEN ANl NNEH
TAlplelolulr] | BT MT] [BLks T|zE= 4ol [oleviADD R :ls %@gz RN ! NN
. roarelas=idlualrleals], [roialelelAl2l=olula RIEAl] RlE|clF olRIM | Flr XiBlL|K],
£cs/lzies] TIYPlelF|LE loluTiPlulr], wiolRiklA = YiE]S
L | i
I N LT z
@ Figure 20, Programming Example 2, Part 1 of 5

Programming Example 2 71

XID-4300-3 U/ MOSO
Printed In U.S.A,

I
|
l
5

RWC EXAMPLE = Mo, o [2 :“_5' _
1] ol 1] IDMIA W B cond » = - I’} o]] bi o %}
¥ - L] K [| 1 |
x chrp, |1wipur |FiLiLE] [(DIAITIAL |AIRIE] IclowlTiAlTIME]D £ |[ArRisiT]
x| i AR wewTly] [culRlD| lclol jumMs] lomLly
C ARDIIN TESR| BLKST|ZIE=2 VICEl=READE L], | E0F ADIDR - EI0F CIRD, |
L ’ i | MIOAREAL=CR REP.'YPEE E=[IVMPUT, W-ORKAl=YIES d
. ‘ ER
PRINMTAR FrlLlE
T
PRIWMIT TIFISR] |BLKSIIZE=OUL. |CloN[TIR = S;ILEVIC =|PRIS R, (@
Uy pes|ugl=dolripulr, IMolelxial- Yels c
IFE, N B . I
s1.NG |BeGcTwWPR-251d] [d.[1 120,13 | [nAlils] [1]s] Ia] Wio- [RElL|dcATABILIE [PRIOGRIAM
NEX %ﬂgN Tl el [APleoldlr, lclalRDl W], (PRl | [[olelew] [Flrlelels
CWTRIL AR NV, ISIK], |4 siklrie drlol i MEL] |4
cuRD]1|M, [WolRIKCIRID R C !
7T AP GlE TAPIE TN, WO RIKTIP MAIKIE! RIEICIORID AVAILAIBLIE 1IN IWORIK AIREIA
e oc R, Wolrialple clolulplalRl] qdﬂ ol 7w ich Ao 1[4
ey M _RlEcoldn
PDA 7] KD FOW!
L R Dz clATElS| (Al LIS iIING| |REICARID] o |4
Pulr] || InAPElolT, WolRAlrP) Reicorlpl ioir] vielr| [rolnipl, | kclolely| Rlelclollp]
I towER| - NUMBIER| o] QUITPIUT! AP
AU 7, IMORIX|T Rl AT | :
[1] i] :
® Figure 20. Programming Example 2, Part 2 of 5
m 10M Systeen/300 Avsombine Coding Porsn thu.sA.
moom R C EXAMPLE ANOWO Lantind wot 3 o
| mocasme l‘“‘ ETRUCTIONS e -
TATE MY
1 el [} 18 Orerien AL} Ty ;] ~1‘5~1 » F] o o » lc-— g» o nl_L T
DT Wvr JJeastJc’ ciawk| Telalsirl PRz [Plois]rlr ' i
i‘ ETTAPE; RANC|H| [Td ﬁ%7 WlElxlT] ORI
% Al -]! :
x - lrours ro_wepAlrie Tarle. IReckrol.| | nue QuanTlzrly] [tlv [dug [rialp
Rlpl /s IINCREAISED' Bly THE] AMTZITY, IN_ THIE ICARD AIMD
THE PRUINT AREA l1ls MARIKED wirmu ad.| | |] !
o ; ; !
UPDATE | [Pack | lQUANTICD!, QUlAINTC
L | pack [IFrecnl, quaNny z !
‘ AP FI E4D, QUANITCD AMTIITY] ((Slum] Maly. wor,
uUNPK | lguan rp.Fqum+z() : j ‘ | [lexiclech| ol)
vi LAST JC **) | MFV e 710 ILASIT IPRINT] POSZITILONM
7_|lcArpriy, woRIKCRD! | | £4 X1 jCARD |
; come | | N RAMCH! [Tl i omPAIR *
" Rl 4 i []] i 1 | z
: ERROR| IROuT IWE, FOIR, MIISISING IRECOR xj] L
HERE LT 15, loNLY. Al HAL REREEE L I
RIROR! pR LK FF] [HEEN I ! ‘ 1
' ¥/ i} | }‘ | | E 1
| i i
okF| |F7 LiE] ROUTUWESS, T I
N BN | i L 2
oAdRD) vic | | Wocirip], Mrive] [T (7] 1 7 k] Wussierl riol [Wldd valcule],)

® Figure 20. Programming Example 2, Part 3 of 5

72 IBM System/360 Model 20 TPS IOCS

m 1004 Syvton/ 200 Assembinr Coding Povmn I-4500-3 L ME%0

Printed In U.5.A.
”noon- l RWC EXAMPLE l."" rmomo t::: mat é= o 5 _
STATEMENT
[:- [y uf’"" (TR TY » o » 23 ;4_ o Commame " el
MEENEEE RS '- i legzlﬁg.~ 7 1ex1]s[7 1o TrjAl?
+ ; T c.oyP ; _ W T lcpiAv: IRemalriv .jd_ﬂ;
EQFTP ceC | IvocRrD|, NINE] | HAS| EIOF] CAIRD PRECIEDE
‘ E___||PREND i YIES,' oK,
: HPR X' FF’, @ | | VO, EIR ALT
T L H I H] T
bt |f i K= 4 ' | 1 i |
PRENMD. | | | |t aS A [TAPEIN , TAPIEOUT], ICARDIM, [PIRIINT] LiolSiEl A1lLE]s
i1 leog il il I
! 1 . . N
i i i - I
*_, ; INPUTYIOUTPUIT AREAS: iR , ~ 1
x : i 1
INAREAL | DS woc |~ 1! RS
INARIEIAL2 S Jlpec |, 1 L
ouARAAL [Iols . Thipec [[1{ []1] AR AR
OUAREAZ | DS 49 PC SEEEES . N
CRDIARIE 3 oC SN NN RN NARNEAEE
% i IR N '
" wolrlx WlRE] ’ T ‘ !
R . 1T 1 |
WolRrlklc s L2 | WREA IFloR| lclalD
s Lls, ,
OCIRID: D L6 U | |
i 1 T
® Figure 20. Programming Example 2, Part 4 of 5
IBM IBM Sysiom/260 Acvombler Coding Porm A
o RWC EXAMPLE — mo S o 5
oo —IO*“ I INSTRUCHONS. l [«
STATEMENT
1 e [] |0°-"- “ 18 x D-ZI‘ » 3 L] A% 50 - 33 S >‘. %] n -~
ouantcd |Ips CLé o ‘. Trry | [CPols].] 17 cleli e Al
. 4 R | ol | melel- | T1[] Dl1lsiplalrcH{ED
workre llps dicL 60 il ‘ olRlki_{alelelal [FloR ' ple] D! PRl InrE]
, DS CLd ; N L H
NOTAPE DS c.Lé i I ITEM WUMBER | I
S CL 39 . . EEE B
QuANTTA | DS cL6 N L leuavidriry L
N 1 2720 DU SO FE R EREE BESEREREYREARE L H
tasr. ;| [loc cr * T T T T dAlsle RN p;oEFr‘rw ERURSRENNEEEE
S E T L ;
x |lorHer| lrEAS , SRR RAREE ; LR BN ‘
i . : . | '
&I-EL.D s cL 6 o ‘ \l ! l, i
v 1 ME DC c’9a9dlagq’ | ., | | L e I
| END JEGINIEX NN Pl Po i
V ' | . e |
! ; I :
SN RNEE RSN LY RSN SNNEN ANRRNARREE NI RRRRN EE ’
s i 11 i = T t T t IL 1
; T et et — R
HES 1 NEERE SRERE HIN0E ERURN NNEEE ANRR NRRN NEEAE Rl
B IBEER N B | HEEE : ‘
T T 4 T
] 2B ; - | L[l P ; ;
! L. L | [T P! RER N l

® Figure 20. Programming Example 2, Part 5 of 5

Programming Example 2 73

GLOSSARY

Address.

1. An identification, as represented by a
name, or numkexr, for a register, loca-
tion in storage, or other data source
or destination.

2. Loosely, any part of an instruction
which specifies the location of an
operand for the instruction.

Allocate. To assign storage locations or
areas of storage for specific routines,

portions of routines, constants, data, etc.

_______ A generic term for alphabetic
letters, numerical digits, and special
characters.

Ascending Order. A sequence of records
such that the control fields of each suc-
cessive record collate equal to or higher
than those of the preceding record.

Assemble. To prepare an object-language
program from a symbolic-language program Ly
substituting machine operation codes for
symbolic operation codes and absoclute or
relocatable addresses for symbolic
addresses.

Basic Monitor. The main control fprogranm.
Available in a card, a tape, and a disk
version. Resident in main storage when
control required. Loads programs into main
storage and causes their execution.

1. A characteristic or property involving
a selection, choice, or condition in
which there are two possitilities.

2. The number representation system with a
Lase of two.

Bit. A binary digit.

Blank Character. Any character or charac-

ters used to produce a character space on

an output medium.

Block (records) .

1. To group records for the purpose of
conserving storage space or increasing
the efficiency of access or processing.

2. A physical record so constituted, or a
portion of a telecommunicaticns message
defined to be a unit of data
transmission.

1. To depart from the normal sequence of
executing instructions in a computer.
2. A machine instruction that can cause a

74 1IBM System/360 Model 20 TPS IOCS

derarture as in (1). Synonymous with

‘transfer'.

Buffer_ (Frogram_Input/Cutput). 2 porticn
of main storage into which data is read, or
from which it is written.

Byte. 2 sequence of adjacent linary digits
operated upon as a unit.

Card _Stacker. A mechanism which stacks
cards in a pocket after they pass through a
machine.

Central Processing Unit. A unit of a com-
puter that includes circuits controlling
the intergretation and execution of
instructions.

_________ 2 point in a program atout
which sufficient information is stored to
Fermit restarting the protlem from that
point.

____________ Pertaining to the Linary
representation of data on punched cards in
which adjacent positions in a column corre-
spond to adjacent bits of data.

Command. An instruction in machine

A fixed or invariable value or

Ccntrol Program. A set of programs which
rrovide the management functions necessary
for continuous operation of a computing
system.

Control sStatement. Any of the statements
in the inrut to a specific jol that define
the requirements of the job, its options,
or centrol its actions.

Ccunter. 1A device such as a register or
storage location used to represent the
numker of occurrences of an event.

CEU. See Central FProcessing Unit.

Cycle.

1. 2Ap interval of space or time in which
one set of events is completed.

2. Any set of operations that is repeated
regularly in the same sequence. The
operations may ke sutject to variations
cn each repetition.

Lata. Any representation, such as charac-
ter quantities, to which meaning might te
assigned.

________ A collection of related records
treated as a unit and consisting of data in
one of several prescribed arrangements and
described by control information to which
the system has access.

Data_Management. See File Management.

_____________ A systematic sequence of
operations performed on data.

Data Frocessing _System. A netwcrk of
machine components capable of accepting
information, processing it according to a
plan, and producing the desired results.

See Logical Record.

Data_Set. See Data File.

1. A characteristic cr property involving
a selection, choice or condition in
vhich there are ten possibilities.

2. The numbker representation system with a
base of ten.

Deck. A collection of punched cards.

Default Value. The operand specification

assumed by a program when the value is

omitted.

DCescending Order. A sequence of records
such that the control fields of each suc-
cessive record collate equal to or lower
than those of the preceding record.

Ligit.

1. Any of the arabic numerals 1 to § and
the symbol 0.

2. One of the elements that combine to
form numbers in a system other than the
decimal system.

EBCDIC. (Extended Binary Coded Decimal

Interchange Code) A specific set of eight-

bit codes standard throughout System/360.

Error. A general term to indicate that a
data value is not correct or that a machine
component is malfunctioning.

File. 1A collection of related records

treated as a unit, e.g., in inventory con-
trol, one line of an invcice forms an iten,
a complete invoice forms a record, and the
complete set of such records forms a file.

File_Management. A general term that
collectively describes those functions of
the control program that provide access to
files, enforce data storage conventions,
and regulate the use of input/output
devices.

Fixed-Length Record. A record having the
same length as all other records with which
it is logically or physically associated.

Halfword Boundary. Even-numbered byte
rcsition in main storage, coincident with
the left byte of a halfword.

Hexadecimal. A numler system using the

equivalent of the decimal number 16 as a
base. The values 0-15 are represented by
the digits 0-9 and the alphaktetic charac-

ters A-F.

Hopper. A device that bholds cards and
makes them available to a card feed
mechanism. Contrast with card stacker.

_______ A technique of address modifica-
tion often implemented ky means of index
registers.

___________ A register whose contents
is added to or subtracted from the operand
address prior to or during the execution of
an instruction.

Initialize To set certain counters,
switches and addresses at specified times
in a computer routine.

input.

1. The data to be processed.

2. The state or sequence cf states occur-
ring on a specified input channel.

3. The device or collective set of devices
used for bringing data into another
device.

4. A channel for impressing a state cn a
device or logic element.

_________ The area of internal storage
into which data is transferred from extern-
al storage.

Input/Cutput.

1. Common atbreviation I/C. 23 general
term for the equipment used to ccmmun-
icate with a computer.

2, The data involved in such

communication.

3. The media carrying the data for
input/output.

Instruction. A statement that specifies an

creration and the values or locations of
all operands. In this context, the term
instruction is preferatle to the terms com-
mand cr order which are scmetimes used as
synonyms. Comrmand should be reserved for
electronic signals. <Crder should te
reserved for sequence, interpolation and
related usage.

Instruction_Format. The allocation of bits
or characters of a machine instruction tc
specific functions.

Glossary 75

Interrupt.

1. A break in the normal flow of a systenm
or routine such that the flow can be
resumed from that point at a later
time.

2. To cause an interrupt

I/0 _Area. An area (pertion) of main
storage into which data is read or from
which data is written. I/0 means
Input/Output.

Job_Control Program. A System Control pro-
gram. Called into main storage Letween
jobs and provides for automatic job-to-job
transmission. Processes control statements
in the input stream that identify a job or
define its requirements and options.

Label.
magnetic tape

A physical identification record cn
(or disk).

Linkage. The interconnections tetween a
main routine and a closed routine,i.e.,
entry and exit for a closed routine from
the main routine.

Load. To place data into internal storage.

Location. A position in storage that is

usually identified by an address.

Logical Record. A record identified from
the standpoint of its cocntent, function,
and use rather than its physical attri-
kutes. It is meaningful with respect to
the information it contains. (Contrast
with Physical Recoxd.)

Machine_Instruction. An instruction that
the particular machine can recognize and
execute.

Macro_Instruction. A statement that is
used in a source program and replaced by a
specific sequence of machine instructions
in the associated object program.

Macro_Library (Tape). An area of the macro
library section of the system tape. Has
four priority sections, each of which con-
tains the macro definitions required by the
macro instructions in user progranms.

Magnetic Tape. A tape with a magnetic sur-
face on which data can te stored.

Main_gStorage. The fastest general purpose
storage of a computer. Also, for the Model
20, storage within the CPU that can be
addressed toth for reading and writing

data.

Mnemonic Code. A mnemonic code resembles
the original word and is usually easy to
rementer, e.g., EL for edit and MVC for
move characters.

76 IBM System/360 Model 20 TPS IOCS

Name. RAn alphameric character string,
normally used to identify a progranm.

____________ A fully assemtled progran
ready to be loaded in the computer.

_____ That which is operated upon. An
cperand is usually identified try an address
part of an instruction.

1. The act specified ty a single coemputer
instruction.

2. A program step undertaken or executed
by a computer, e.g., addition, multip-
lication, extraction, comparison,
shift, or transfer. The operation is
usually specified by the operation part
of an instruction.

Oreration Code. The code that represents
the specific operations of a computer.

Cutput.

1. Data that has leen processed.

2. The state or sequence of states occur-
ring on a specified output channel.

3. The device or collective set of devices
used for taking data out of a dJevice.

4. A channel for expressing a state cn a
device or logic element.

_________ The area of internal storage
from which data is transferred to external
storage.

Overlar. To do something at the same time
that something else is fteing done; for
example, to perform input/output operations
while instructions are Leing executed Ly
the central processing unit.

Overlay. To place a phase or subphase into
main stcrage locations occupied by another
phase or subphase that has already Leen
processed.

Pack. To comktine two or more units of
information into a single physical unit to
conserve storage.

Padding. A technique used to £ill a bleck
of information with dummy records, words cor
characters.

__________ A record identified from
the standpoint of the manner or form in
which it is stored and retrieved; that is,
one that is meaningful with respect to
access. (Contrast with Logical Record.)

Problem Program. A general term for any
rrogram that is not a control prograr.

Erogranm.

1. The plan for the solution of a protlem
including data gathering, processing
and reporting.

2. A group of related routines which solve
a given problenm.

Process. A systematic sequence of opera-

tions to produce a specified result.

Read. To transfer information from an
input device to internal or auxiliary
storage.

Read/Compute, WritesCompute Overlap_ Fea-
ture. A feature of the IBM System/360
Model 2C, Submodel 5 that permits data
transfer from or to I/0 units to Le over-
lapped with processing.

BReader. A device which converts informa-
tion in one form of storage to information
in another form of storage.

Reblock. To change the format of a file so
that a different number of logical records
comprises one physical record. See Block.
Record. A general term for any unit of
data that is distinct from all others when
considered in a particular context.

Register. A device capaltle of storing a
specified amount of data such as one
halfword.

Relocate. 1In programring, to move a rou-
tine from one portion of internal storage
to another and to automatically adjust the
necessary address references so that the
routine, in its new locaticn, can te

executed.

_________ The modification of address
constants regquired to compensate for a
change of origin of a phase or subphase.

Routine. An ordered set of instructions
that may have some general or freguent use.

RWC Feature. See Ready/Compute, Writey
Compute Overlap Feature.

Source_Language. A language that is an
input to a given translaticn process.

Source Erogram. A program written in a

source language.

Special Character. In a character set, a
character that is neither a numeral nor a
letter, e.g., —-*$ = and klank.

_________ In computer programming, a
meaningful expression or generalized
instructicon in a source language.

EX==

1. Pertaining to a device into which data
can be entered and from which it can be
retrieved at a later time.

2. Loosely, any device that can store
data.

Storage Capacity. The amount of data (in
bytes) that can be contained in a storage
device.

1. To enter data into a storage device.
2. Tc retain data in a storage device.

__________ 2 routine that can le part of
another routine.

Switch.

1. A symbol used to indicate a branching
point, or a set of instructions to con-
dition a tranch.

2. A physical device which can alter flow.

clic An address expressed in
symtols convenient to the programmer.

Symbelic_Address.

Systenm.

1. 2 collection of consecutive operaticns
and procedures required to accomplish a
sprecific objective.

2. An assemtly of objects united to form a
functional unit.

_____ A special symbol that can be
read from, or written on, magnetic tare.
Used to distinguish the end of a file or
file segment, and to segregate the labels
from data.

Tape Mark.

Truncate. 1To cut off at a specified sgot
(as contrasted with round or pad).
Unpack. To recover the original data fronm

racked data.

Jclu That portion of a single unit cf
storage media that is accessiltle to a
single read-write mechanism. For exanmple,
a reel of magnetic tape for a 2415 magnetic
tape drive, or one 1316 L[isk Fack for a
2311 Lisk Storage Drive.

Glossary 77

INDEX

Alternate Tape Drive . .
ALTTAPE: o o o o o o o o
Assembly of IOCS » « « &

BACK (READ= specification) .

Backspace to Inter-Block
Backspace to Tape Mark .
Base Registers,
BINABY L] . - - L] - » L] L]

Binary Synchronous Communicat

BLKSIZE: o o v s o ¢« o
Block. . . - . - L] - L] -
Block Count. « o« o ¢ & o
Block-Length Indication.
Blocked Records. « ¢« «
Blocking (of Records). .
BloCkSiZ€e + o« o o ¢ o =
BSF' - - - - . -
BSRQ - - - L] » L] - * - .

Card Print Area. . . .
Card Printing. « « « .«
Card/Printer Overlap
Checking

Punch Pormat . . .

Read Format. . « .

SEQUENCEe « « o « o
Checkpoint Record. + .«
CKPTREEC: o o ¢ o o o
Clear Card-Print Area.
Clear Output Area. . .
Clear Work Area. « o+ o
CLOSEs o o o o o o
CMBND (TYPEFLE= SPEPlfl
CNTRL. o« o o s s « o
Combined File. . « » =
Compatibility. . « - .

Oolﬂotlll-.fc

Completion Macro Instructicns

Continuation Punch ., . .
CONTROL: o o s o o 5 s

Corgrol (Macro Imstruction)

Contrcl Statements
Tape Label . .

volume « « o « » o .
CRDPR. L] . » L] L] L] . . L]
CRDPRA ¢ ¢ o o o s o &
CRDPRLNe o o o o o ¢ o @
CRP20 (DEVICE= specifica

Data Conversicn Feature.
Deblocking {of Records).

Assignment of

Mode.

Gap

. e
e e

.

@ & & & & & s 6 o e o & 8 ®
[¢]

S & o o ¢ s & 3 8 Me s s s
/]

® & 6 @& & & 2 s
-

® & ¢ 6 6 ¢ Lo o [ye & o & B

& & o 8 s &
e s & & & ¢ &

« +oe o« oo 16,U42,47

.
.
.
.
.
.
.
O

« o & o &

« o e ¢ & s 8 & 8 o &
-
)}
-
=
8]

e o & 5 6 & B 8 3 8 & & & o 0 s
@ & 8 6 & & & 5 s 8 0 & s s v s

. - -
- . .
« . e
. . .
« . .
L] - L]
. . .
- L] *
tion)
- - -
- » -
L] . -
icns.
. » -

L] .

. o

* o o ¥ o

e 8 s & e e
e & & & o 3
e« o o s e
e + 8 & o &
@ o o o & @
ey
[e)}

.
L]
n

on)

* ® ® s s s

«a ® ® s & » 3 e

Definiticn Statement Summary

Card and Printer Files .

Tape Files ¢« o« o «
Definiticn Statements.
Delayed Skipping . . .
Delayed Spacing.
Detail Entries .

DTFMT. o o «

s e =
- e e
* e .

78 IBM System/360 Model

o« o s &
(73]
o

e e o ¥

2,27,30
18,30

a o & & 4
s & ¢ & 3 ¢ &
e o & o o o o

20 TPS 1I0CS

DTFSRe o o ¢ o s s o
for card printing. . .
for checking functions
for combined files . .
for simple files .
for tape files . .
DEVADDR: « o« o o o »
DEVICE o s 4 o o o o =
Device Error Recovery.
DTF BloCk: ¢« o o o «
DTFBG Statement. . . «
DTFEN Statement. . . .
DTFMT Detail Entries .
DTFMT Statement., . . =
DTFSR Detail Entries .
DTFSR Statement. . . =«
Dummy GET Macro Instruc

.-
.
.
.
.
3
.
.
-
.
3
.
.
.
.
.
3

8 8 6 8 8 e % ¢ ¢ & © & & 8 o s o

.
.
.
.
L]
.
[¢]

t

ion

End-of-File. . . .
End-of-Volume. . .
Enter Overlap Mode
EOFADDR., « . &
EONM. « « & .
Erase, Gap .
ERG‘ - - - -
ERRIO. « =« .
ERROPT « o+ «

Y

Error Option
Error Recover

S & & o o o B 5 5 s o
® & o 4 & & o & & & o
® & 6 s 2 8 & & o+ & »
¢« & ¢ & & e 3 & s 0+ &
* 8 & o o s & o s & @
¢ & 6 ¢ & @ o e o s 2

® ¢ o o o * @
e & 8 & o o o

FEOV . . .
FETCH. . .
FILABL , .
File « « « « & « s e
File Definition Statement
File Name:. o« o « « .
FIXBLRK (RECFORM= spec1f1cat10n)
Fixed-Length Records . . .
FIXUNB (RECFORM= spec1flcat10n)
Form Skipping. « « ¢ o o o o @
Format of

Definition Statement . .

Macro Instruction. . « .

Records. « « o o « o =
FORWARD (RFAD= spec1f1cat10n)
Forward Space to Inter-Block
Forward Space to Tape Mark .
FSFe o« o o o o o o o o o s =
FSRe o o » e s e e @
Functions of IOCS. e v e s e

« o o
"« e o
s o
e« & o
s e

. . »
. . e
. . e
. ¢ o
. e

.
-
n

General Programming Comsiderations

GETe o o o o s o o s o & s o @
GET, DURMMY o o o o o o = o o o

Ga

8 8 e e & » & 8 8 4 8 & o & & ¢ o

s & ¢ 8 s s s o e @

» s s e i s v s .

® 8 e & & & &+ & S e e & s & e s o

® & & . & e e o 3 e &

8 ¢ & 3 o o & & &

. s s e & o » &

Halt and Restart Information (WAITC)

Header Entries « « ¢« o « o »

IGNORE (ERROPT= specification)
Immediate Skipping « « « + .+
Imnediate Spacing. « « o+ « o+ »
Imperative Macro Instructions.
INARREA « o o ¢ o o o s 2 o o =
INBLKSZe o o o o o o o » o s o
Initialization Macro Instructio
Input ATE3 « o o o o s o o o =
Input/Output Devices + + « + »
INPUT

(BINARY= specification).

(TYPEFLE= specification)
TOAREAT: o o o o o o o s 3 »
JIOAREA2. o o o o o 5 o s o o
I0CS

Assembly 0fe ¢« o ¢ o s ¢ .

Functions cf « s .

Other Programs used by .

1259/1419 Macro Instructlons
IOREGe o o o o o o o o s o » o o

s e e s & s s 0

L]
. o o 3

Keyvworde. « o+ o o o o o o s o o o

LABADDR. + ¢ ¢ o o o o 2 o o o o
Label
Definiticen . . .
Checking Routine
Processing . . .
Return « + « « &
Language Compatibility
LBRET: o o o o« o s o &
Leave Overlap Mode . .
Literals « « o o s+ o o
Loading Program Phases
Logical Record « + . .
LOMC . . . - . . . L .
Lower Feed Print 2rea.

o ¢ o ¢ e o 8 ¢ 3 & & o
« & e o o 2 & ¢ s s ¢
¢ 8§ o ¥ 8 e & & & 2 o &
s & & © & o 2 o & 0+ e

a e ¢ 8 @+ 8 0 6 3 & s o

Machine Features Supported . .
Machine Reguirements
Macro Definiticn, User Written
Macro Instructions . . « « « &
Card and Printer File.
Common (all Files) . .
Completion . « + .
Declarative. .
Imperative . .
Initialization
Processing . .
Tape File. . . .
Maximum Block Length
Maximum Record Length. . . .

e & 9 o g &6 8 & o

e o * s o @
e« o o o+ & s =

Maximum System Configuration
MFCM1 (DEVICE= specification)
MFCM2 (DEVICE= specification)

Minimum Block Length
Minimum Record Length. . . .
Minimum Sytem Configuration.

® ® 5 & e & 6 © 8 6 & & .« & & & o 6 @ o

Name of
Card Print Area. .
Input/Output Areas
User Routines. . .
Names (Symbols). « + &

s o o &
& o o o
* & s &
» e e o
*« s e o

s 6 & o ®» 6 o s

s & ¢ & & 8 o ® 5 & o »

e & % & &5 e 6 6 8 8 e & o & & 3 s s " »

20
39
» « o 39
5,11,53
15
15
o o 0« 32
14,34,57
P

» e e

e 2 »

D £
. 13,19
» 14,22
15,19,22

. 62
. 5
. 5
. 22
- 22

* o 8 o
e & 8 & &

12

20

. . 9
. 20
32,&8
. 48

.« 65

o o ® NS o ¢ ¢ ¥ o s o

¢ 6 e n s o o s
[»))
- N
3%}
[5,]

? e 8 6 & 3 & & s & o
(o8}
&

¢« & 4 &« & & o & 8 * e &

@ 8 & o s & ® & & 2 5 &6 & e & & s 8 v

. 14,22
14,17,20
62

o« »

Non-overlap Mode« .
NORWD (REWIND= spec1f1catlon). .
NSTD (FILABL= specification) . .

OPEN « & 4 o o ¢ o o o o o s s »
ORGs = o o s s s s o o s s o o o
OURAREA & ¢ o o o o o o o o s o o
QUBLKSZe o o o s o o o o o o o =
OUTPUT (TYPEFLE= specification).
Qutput Areas o« o o o o o 5 o o

OVERLAP: o« o s » o o o o s o o o
cverlap Mode ¢ o o o o ¢ o o o o
OVETrlaYe o o s o o 5 s o o » o »
OVLAYe o ¢ o 2 s o s o o o o o =

PFORMTN. & o 5 o o ¢ s o o o o o
PFXITe o o o o o o s o s s o s
Print ATC@ » o« o o o o o s » o o
PRINTER (DEVICE= specification).
Printer Overflow « . « o & « o
PRINTLF (DEVICE= specification).
PRINTOV. « « & e s s o s e e
PRINTOP (DEVICE— specification).
Programming Consideratiomns
Combined Files « « .+ &
ECM and LOM., « « o+ « &
General. « « o o o o o
Programming Examples . . .
Programming with WAITC . .
Programs, others used by IO
PRTOVs o o o o o o 5 o o =
Punch Format Checking. . « . .
Punched Card Equipment Errors.
PUNCH20 (DEVICE= specification).
PUNCHU42 {DEVICE= specification).

PUTe o o o o o o s 2 o o s o o »

e Yo ¢ o o o
wn

.
.
.
.
.
.
.
L)
.

READ 5 o o o ¢ o o o o o« o a o &
Read Backwarde o« o« » o ¢ o o o «
Read-Format Checking . . « « =
Read/Compute, Write/Compute
Overlap Feature. . . -
READO1 (DEVICE= spec1flcat10n)
RECFORM: o o ¢ ¢ o ¢ o o o o @
Record Length.
Record-Length Indication . . .
Records
Blocking of. . .
Checkpoint . . .
Deblocking of. .

s & s e e e e =

Definition of,
Fixed-Length .
Format of. . . .
Format permitted
Undefined Format
Variable-Length. .
RECSIZE:. o o o+ o = o »
Registers
JOREGse o o o o =

- 8 e & & e

o « & e o ¢ s & s @
@ o o & o ° & 8 o o
«a 8 8 & 6 o o o o »
® ¢ 8 ¢ & ¢ & o o o

RECSIZE:s « o o o o 2 o o o o
Requirements of. +« . + « + &
Usage Of o« o o o o o o o o @
VARBLD o « o o s o s o s s @
Release (processing of block). .
RELSEe o o o o s o o s 2 o « o »

-
* * De o0 o s o o
¥
N
N
-

-
—~d
&

~

e 8 o 8 o o e &
8 e 8 o e s o
e ® & o o s o o

® 6 ¢ & 8 o & 5 s s ¢ o

We ®» & o a ¢ ¢ s o o &

. 21,

.

« 8 o e o

e * s o o s e o

e o 4 & o o o o o @

« o s & o .

. 2“
24,33
. 17

Reopen FileS + 2 s o« o« o« o o o o o o o o« 51
Requirements fcor WAITC . « + s » o o o o U4
REWe 4 o o o o o o o o o o o o s s » o « 41
REWIND o 4 o o o o o o o o o o o o o o o 20
Rewind and Unlcad TAPe « o« =« s o s « o« o« U1
Rewind TapPee o o o s o s o o o o o o 24,1417
RFOBRMTHY + ¢ o o o o o o o o o o o = o o 17
RFXIT4. o o » o s s o« s o o o =« a » o o «» 18
RUN. L] . L] - . L] . . - . L] L] . . . - u1
RWC, see Read/Compute, Write/Compute
SEQNCE ¢ ¢ o o o o o o o o o o 2 o o » « 17
Sequence Checkingas « o« o « o « o o o o o 17
SEQXIT 4 ¢ o ¢ s o o o s s o o o o o o o 17
Simple Fil€e o « o o o s o o o o » o o« o 9
SK o 4 s o+ s o s o o & s o« o« o« s o = « « 39
SKIP {(ERROPT= specification) . . « « » « 20
SKIiPPANG 4 o o o o s = s o » o« s o o s » 39
SP . L] . . . L] - - L] . L] . - . - L] . - L] 39
SPACiNnge « o o s o s o o o o o o o o o o 39
SPSH & o o o o s a o o o s s a o o« o a « 64
SS {stacker select mnemenic) . « « « o« o 37
Stacker Select . o ¢« &+ ¢ o o o o s » . 37
Standard Labels. « « o o o o o o« 23,9 32,50
STD (FILABL= stecification). . . « « « « 20
Summary

Definition Statements, Card/Printer. 27

Definition Statements, Tape Files. . 30

Imperative Macro Instructions. . . . 53
SYMDOLSe ¢ o o o o o o s o » s = o« o o » 64
SYSaan

(ALTTAPE= specificaticn) . « « « « o 23

{DEVADDR= specification) . « « « « « 19
SYSIPT

(ALTTAPE= specification) « . . « « . 23

(DEVADDR= specification) . « « « « . 19
SYSOPT

(ALTTAPE= specification) « « « ¢« « « 23

(DEVADDR= specification) . . « ¢« « . 19
Tape

Error Routines « . « « o o « +» 61

Input File o« ¢ « o o o o 51 19 32,48

Label Statements . . « 2 « o « « « « 55

80

IBM System/360 Model 20 TPS IOCS

Mark . - L] L] L] .
Output File. . .
Unit Control . .
Time Sharing Feature
TP HARK . L] L] L] - - -
Translate Feature.
TRUNCe ¢« o & .
Truncate (hlock)
TYPEFLE: « o o

e o o ®

e & o ® & & o & o
S s s o 5 & o & o
® o 3 s & & o s o
e & o s & o o o
® o o 6 & ¢ o o o
e 8 o o o 8 »

Unblocked RecOTrdS. « « « o o o
UNDEF (RECY¥ORM= specification)
Undefined Format Records . . .
UNLOAD (REWIND= specification)
Unloading Tape « + « o o o o
Upper-Feed Print Area. . . .
Usage of Registers « . « «
User Label Routine
User Standard Labels . . « .
User-¥Written Macro Definition

VARBID 4 o o o « o o o o o o s
VARBLK (RECFORM= specification).
Variable-Length Records. « « « .
VARUNB {RECFORM= specification).
VOlUME « o o o o o o o o o o o o
Volume Statement . « « +« o « « &

wAITC L] - - L] - . . - . L] L] L] .
Halt and Restart Information
Programming with .
Requirements .

WLRERR ¢ ¢ o ¢ o o

for

WOork Area. . « « o« « o
wORKA. . . - - . * . .
Write Tape Mark. « « « «
¥rong-length Block (Record)
WTMC L] L] - - L] L] . . L] L] L]

XFR. e e o 8 o o & * © o & o o

XIOO . L . » - - . . . L4

51,

e o & o o &

-~d
o o & o =6 s o o &

« 24,51
48,19,33
.« » 40
« + 5
. 6,7
41,49
.« o B9
13,19

. . L 19
9,19,36
24
24

. . 15
« 59,62
20,48,49
20,32,48
25

.
e o 0
.

23
- . . 19
8,19,34
19

55

o
44,46
. . 4
4y
.. 21
2,34,57
14,22
41
21,21
81

s & o & N)e s o+ ¢

»

25
64

C24-9003-4

TIBIM

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

09¢/weishs wal

VSN Ul pasuld

r-€006-¥2D

ececsscsses

READER’'S COMMENT FORM

IBM System/360 Model 20,
Tape Programming System,
Input/Output Control System

e How did you use this publication?

As a reference source ...
As a classroom text ...
As a self-study text ...

® Based on your own experience, rate this publication . . .

As a reference source:

As a text:

¢ What is your occupation?

Form C24-9003-4

e We would appreciate your other comments; please give specific page and line references

where appropriate. If you wish a reply, be sure to include your name and address.

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C24-9003-4

YOUR COMMENTS, PLEASE . ..

This SRL manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this

material. All comments and suggestions become the property of 1BM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys-
tem should be directed to your IBM representative or to the IBM sales office serving your

locality.

Fold

@ 00 e P e 0000 EeETleResta00000E0NRts000000e0000000000000000000000000000CEIEIEOIEOIOCOIOITIOIOGOIOGTREOIOTTORRTBROIORSRTSS sevsresessessssevssonnen

......

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N. Y.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . ..

IBM Corporation
112 East Post Road

White Plains, N. Y. 10601

Attention: Department 813 U

sescesan L I I R I L I R S R R R A N N N A N N N W AN I N I I ST I

Fold

TIBIML

International Business Machines Corparation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
(USA Dnly])

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International]

...

e nasa

3NIT SIHL ONOV 1ND -~

ceazee

sssecssccscsvseesan

09€/woisAs wa|

¥S'N ut pajuig

-£006-¥20

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84

