File Number S360 (Mod.20)-30 i
Form C24-9007-5. DPS

Systems Reference Library

IBM System/360 Model 20
Disk Programming System
Input/Qutput Control System

This publication provides information required for
using the Disk Programming System (DPS) Input/Output
Control System (IOCS) for the IBM System/360 Model 20.
The publication contains the following information:

1. General description of the various input and output
functions provided by the IOCS.

2. Definition of the record formats processed by the
I0CS.

3. Description of the relationship between overlapping
operations and the specification of different c¢om-
binations: of I/0 areas and work areas.

4. Introduction to the concepts of file organization
and file processing.

5. Detailed descriptions of the IOCS imperative macro
instructions and the file definition statements.

The reader of this publication should be familiar
with basic programming concepts and with the operating
principles of his system as described in the applicable
SRL publications. For a list of pertinent publica-
tions, refer to the IBM System/360 Model 20, Bibliogra-
phy, Form A26-3565.

Sixth Edition (March, 1969)
|

|
|This is a major revision of, and obsoletes C24-9007-4,]

Most of the text has been reorganized and rewritten to make the
publication easier to understand. These improvements are not marked.

The technical changes incorporated in the publication relate to the
availability of the IBM System/360 Model 20, Submodel 5. The sections
headed "Monitor Macro Instructions™ and "The ATENT Routine” have been
added. These technical changes and additions are marked in the
following way: Changes to the text, and small changes to illustrations
Jare indicated by a vertical line to the left of the change; changed or
added illustrations are denoted by the symbol ¢ to the 1left of the
caption; added pages are flagged by the symbol ¢ to the left of the
page number. |

| |
|This edition applies to the following components of IBM Systemn/360]|
|Model 20 Disk Programming System and to all subsequent versions and|
modifications until otherwise indicated in new editions or Technical
Newsletters.

| Input/Output and Monitor Macro Definitions version 3 modification 0
|Printer-Keyboard Macro Definitions version 2 modification 0

|Changes are continually made to the specifications herein; before
|using this publication in connection with the operation of IBM
|systems, consult the latest IBM System/360 Model 20 SRL Newsletter,
|Form N20-0361, for the editions that are applicable and current.

1 8

This publication was prepared for production using an IBM computer to
update the text and to control the page and 1line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Requests for copies of 1IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Laboratories, Programming Publications, 703 Boeklingen/Germany,
P.O. Box 210.

© copyright International Business Machines Corporation 1966, 1967,
1968, 1969

DataFiles .,

Overlapping and Storage Areas

Introduction e v s e e e e e e e e

Machine Requirements . . « « « « &

Minimum System Configuration. .
Maximum System Configuration. .

Logical Records « « o« o« « o &
Record Blocking « o« « o o« o o
Record FormatsS. « « ¢ o o o

s o & 0

I/O0 AY€8S v v v o o o o
WOrk Ar€a@Se o o o o o o o o o o

e« e @

I/0-Work Area Combinations.

File Organization and Processing

Concepts .,
File Organization . « « .« .
File Processing « « - = =+ =

10CS Macro Instructions - e .

Assembly Procedure « . o« o+ o+

File Definition Statements . .
Format of File Definition
Statements « « « o ¢ o o W

Inperative Macro Instructions.

Bagin and End Definitions . .
DIFBG Statement. « « « « « . .

DTFEN Statement. . « « . &« . .

Instructions for Opening and Closing
Files <« « ¢ ¢« ¢ ¢ 4 @« ¢ o« « &
OPEN Macro Instruction. . .
CLOSE Macro Instruction . .

Reopening Closed Files . + . .

Initializing FileS « « « « o
Opening Card Files. « « + .
Opening Printer and

Printer-Keyboard Files . .
Opening Magnetic Tape Files
Opening Disk Files. . « . &

Terminating Files.

Closing Card and lenter Files.
Closing Printer-Keyboard Files.

Closing Magnetic Tape Files
Closing Disk FileS. .« « « «

.

o O O

[eclioolNeoleo)

18

18

18

19

20

21

21

Instructions for Processing Card Files
DTFSR Statement. « + « ¢« ¢« ¢ o« «

Imperative Macro Instructions. . .

PUT Macro Instruction . « « .« .
GET Macro Instruction . . . &

Contents

.

CRDPR Macro Instruction (IBM 2560

MFCM)s o « ¢ o o o a « o« « =« =
CNTRL Macxro Instruction . . .
EOM Macro Instruction (Comblned

FileS) o o o o o o o o o o o
LOM Macro Instruction (Comkined

FileS) o o o o o o o o o o o
WAITC Macro Instruction

Instructions for Processing

PrinterFiles.
DTFSR Statement. . « o « « o +

Imperative Macro Instructions. .
PUT Macro Instruction « + « «
CNTRL Macro Instruction . . .
PRTOV Macro Instruction . . .

Instructions for Processing

Printer-Keyboard Files e e e e .
DTFPK Statement. « ¢« « o o o « &
DTFLC Statement. « o+ o ¢ o o o o

Imperative Macro Instructions. .
PUT Macrco Instruction . « «
READ Macro Instructiocon. - «
WAITF Macro Instruction . « .
CNTRL Macro Instruction . . =
PRTOV Macro Instruction . . .

Instructions for Processing Magnetic

TapeFiles« . .
DTFMT Statement. « ¢ ¢ ¢« ¢ » « =«

Imperative Macro Instructions. .

PUT Macro Instruction . . .

GET Macro Instruction . « .« .
CNTRI. Macro Instruction . . .
TRUNC Macro Instruction . . .
RELSE Macro Instruction . . .
LBRET Macro Instruction . . .

FEOV Macro Instruction. .« .

Instructions for Processing Sequential.
DiskFiles

DTFSD Statement. « « ¢ o o o o

Imperative Macro Instructions. .
PUT Macro Instruction

GET Macro Instruction . . .

CNTRL Macro Instruction . « -«

31
31
35
35
36

36
37

39
39
40

By

Instructions for Processing
Direct-Access Disk Files

DTFDA Statement. . . .

Imperative Macro Instructions

WRITE Macro Instruction
READ Macro Instruction.
WAITF Macro Instruction
CNTRL Macro Instruction
CNVRT Macro Instruction

Cylinder, Track and Record

Instructions for Processing
Indexed-Sequential Disk Files

DTFIS Statement. &

Loading or Extending

Indexed-Sequential Files.
SETFL Macro Instruction
WRITE Macro Instruction
ENDFL Macro Instruction

Adding Records
FileS v o o o o o o o o @
WRITE Macro Instruction
WAITF Macro Instruction

Random Retrieval and Updating.

READ Macro Instruction.
WRITE Macro Instruction
WAITF Macro Instruction

.

erences,

Sequential Retrieval and Updating.

SETL Macro Instruction.
GET Macro Instruction .
PUT Macro Instruction .
ESETL Macro Instruction

to Indexed-Sequential

70

75

75

Organizing and Processing
Indexed-Sequential Files L.

Organizing an Indexed-Sequential
2

Processing an Indexed-Sequential

File v o 4 ¢ o o o o« o o o o &

Monitor Macro Instructions .« e e .
COMRG Macro Instruction
MVCOM Macro Instruction
FETCH Macro Instruction
EOJ Macro Instruction .
IQIPT Macro Instruction

Programming Considerations .« e e
Restrictions.
Overlay Progranming for

CLOSE:. ¢ o o o o o « o o o o =
Register Usage. « o o o o « & «

The Inquiry Program
File Protection . 4+ ¢ ¢ & o o .

The ATENT Routine.
ATENT Macro Instruction
RETRN Macro Instruction . « .« .

Control Statements e e e e e e e s

Device Error Recovery

Language Compatibility e e e e e .

Appendix A. Summary of File Definition
Statements

Appendix B. Summary of Imperative
Macro Instructions e e e e e .

Appendix C. Summary of Monitor Macro
Instructions e e e e e e e e e e

Appendix D. Programming Examples .

Glossary « .« . .

Index - - « ¢« ¢ ¢ ¢ ¢« ¢ ¢ ¢ ¢ o o «

.

OPEN and

B

. 101
.102

.105
.105
.105
.106
.107

.108

-109

<122

.126
-127
164
.167

The Disk Programming System (DPS)
Input/Output Control System (IOCS) des-
cribed in this publication consists of
macro instructions which in turn select and
generate routines that perform all
input/output operations for card devices,
printer, printer-keyboard, magnetic tape,
and disk. The IOCS also supports the Mag-
netic Character Readers and the Binary
Synchronous Communications Adapter. For
details about the functions and features of
the 141971259 DPS IOCS and the BSCA I0CS,
refer to the SRL publications IBM
System/360 Model 20, Disk and Tape Program-
ming Systems, Input/Output Control System
for the 1419 and 1259 Magnetic Character
Readers, Form C33-6001; and IBM System/360
Model 20, Input/Output Control System for
the Binary Synchronous Communications Adap-
ter, Form C33-4001.

You can use the IOCS only in programs
written in Assembler language. For details
of the Assembler language refer to the SRL
publication IBM System/360 Model 20, Disk

Introduction

2. refer to the file in imperative macro
instructions that cause the desired I/0
operations, and

3. write your own exit routines that are
entered automatically by the IOCS when
an exit condition (e.g., end-of-file)
occurs.

The Assembler uses the file definition
statements and the imperative macro
instructions to select macro definitions
and generate routines that perform all I/O
functions required by the problem program.

Data processing operations that can be
performed by the IOCS include record stor-
age, record retrieval, and record updating.
A detailed description of each of these
operations is given where the appropriate
macro instructions are described. A brief
summary is given below.

Record Storage: The IOCS provides for the

and Tape Programming Systems, Assembler
Language, Form C24-9002. Writing Assembler
language programs with IOCS macro instruc-
‘tions enables you to achieve optimum time
performance. Moreover, you can make use of
extended overlay techniques, which results
in a decrease of main-storage requirements
and facilitates exit handling.

Routines for reading input data, writing
output data, and controlling the
input/output (I/0) devices form a large
part of most programs written in the Assem-
bler language. By using the routines sup-
plied by IBM, you can avoid writing I/O
routines for each of your programs. The
time normally required for writing and
testing I/O routines, you can thus use for
actually solving the problem. The IOCS
routines perform all required input and
output operations. They ensure that
machine interrupt conditions are handled
properly, and that optimum overlapping of
processing and input/output operations
occurs.

The IOCS routines are stored, in the
form of macro definitions, in the macro
library of the disk-resident DPS. They can
be included in a problem program through
the use of macro instructions. You are
required to:

1. describe the file by means of declara-
tive macro instructions (referred to as
file definition statements in this
publication),

storing of information by generating the
routines required to punch records into
cards, to list them on a printer or on the
printer-keyboard, and to write them onto
magnetic tape or disk.

Record Retrieval: The IOCS allows you to

retrieve records from card, magnetic tape,
and/or disk files, and records entered on
the printer-keyboard in sequential order.
For files in disk storage, the IOCS pro-
vides for the retrieval of records either
in sequential or random order.

Record Updating: The IOCS allows you to
retrieve a record from disk storage, update
it, and then return it to the same location
from which it was retrieved. (The updating
of records in a card or tape file requires
the entire file to be read as input to
produce a new updated file as output. In
the case of a card file, the updated infor-
mation may be punched into the input
cards.)

In addition to the functions described
above, the IOCS is capable of:

e Dblocking and deblocking magnetic tape
and disk records;

¢ switching between two I/0 areas (if two
areas are specified);

e handling end-of-file conditions;

¢ handling end-of-volume conditions;

Introduction 5

e handling I/0 error conditions; and

+ performing I/O control functions such as
card stacking, tape rewinding, seeking
data on disk, etc.

All of these functions are provided by
the IOCS for the processing of files organ-
ized according to any of the three avail-
able methods of file organization:

1. Sequential file organization, which
provides for sequential processing of
card, printer, printer-keyboard, mag-
netic tape, and disk records.

2. Direct-access file organization, which
provides for random and sequential
processing of disk records.

3. Indexed-sequential file organization,

which provides for both sequential and
random processing of disk records.

Machine Requirements

MINIMUM SYSTEM CONFIGURATION

Submodel 2

e An IBM 2020 Central Processing Unit,
Model BC2 (12,288 bytes of main
storage) ;

* an IBM 2311 Disk Storage Drive, Model 11
or 12;

e one of the following card reading devi-
ces:

IBM 2501 Card Reader, Model Al or A2,
IBM 2520 Card Read-Punch, Model Al,
IBM 2560 Multi-Function Card Machine
(MFCM), Model Al;

e one of the following printers:

IBM 1403 Printer, Model Ni, 2, or 7,
IBM 2203 Printer, Model Al.

Submodel 4

e An IBM 2020 Central Processing Unit,
Model BCHU (12,288 bytes of main
storage) ;

e an IBM 2311 Disk Storage Drive, Model
12;

e an IBM 2560 MFCM, Model A2;

s an IBM 2203 Printer, Model A2.

Submodel 5

An IBM 2020 Central Processing Unit,
Model BCS (12,288 bytes of main
storage) ;

an IBM 2311 Disk Storage Drive, Model 11
or 12;

one of the following card-reading devi-
ces:

IBM 2501 Card Reader, Model Al or A2,
IBM 2520 Card Read-Punch, Model Al,
IBM 2560 Multi-Function Card Machine
(MFCM), Model Al1;

one of the following printers:

IBM 1403 Printer, Model N1, 2, or 7,
IBM 2203 Printer, Model Al.

MAXIMUM SYSTEM CONFIGURATION

Submodel 2

An IBM 2020 Central Processing Unit,
Model D2 (16,384 bytes of main storage);
with or without a Binary Synchronous
Communications Adapter (Feature

No. 2074);

two IBM 2311 Disk Storage Drives, Model
11 or 12 (both must be the same model);

an IBM 2415 Magnetic Tape Unit, Model 1
through 6;

an IBM 2501 Card Reader, Model Al or A2;
an IBM 1442 Carxd Punch, Model 5;

one of the following card units:

IBM 2520 Card Read-Punch, Model Al,

IBM 2520 Card Punch, Model A2 or A3,

IBM 2560 MFCM, Model Al;

one of the following printers:

IBM 1403 Printer, Model N1, 2, oxr 7,
IBM 2203 Printer, Model Al;

an IBM 2152 Printer-Keyboard;
a 1419 or 1259 Magnetic Character
Reader.

Submodel 4

An IBM 2020 Central Processing Unit,
Model D4 (16,384 bytes of main storage);
with or without a Binary Synchronous
Communications Adapter (Feature

No. 2074);

two IBM 2311 Disk Storage Drives, Nodel
12;

an IBM 2560 MFCM, Model A2;
an IBM 2203 Printer, Model A2;

an IBM 2152 Printer-Keyboard.

Submodel 5

An IBM 2020 Central Processing Unit,
Model E5 (32,768 bytes of main storage);
with or without a Binary Synchronous
Communications Adapter (Feature

No. 2074;

four IBM 2311 Disk Storage Drives, Model
11 or 12;

an IBM 2415 Magnetic Tape Unit, Model 1
through 6;

an IBM 2501 Card Reader, Model Al or A2;

an IBM 1442 Card Punch, Model 5;

one of the following card units:

IBM 2520 Card Read-Punch, Model Al,
IBM 2520 Card Punch, Model A2 or A3,
IBM 2560 MFCM, Model Al;

one of the following printers:

IBM 1403 Printer, Model N1, 2, or 7,
IBM 2203 Printer, Model Al;

an IBM 2152 Printer-Keyboard;

a 1419 or 1259 Magnetic Character
Reader.

Introduction

7

Data Files

Many types of data files are used in data
processing applications. Theoretically
there is no restriction on the logical
content of information that can be proc-
essed, on the relationship of various units
of information in the file, on the organi-
zation, or on the format.

To sinmplify the description of the use
of the IOCS for card input or output, card
files are considered to be either combined
files or simple files. A combined file,
which must be fed from one hopper of the
I/0 device, is a set of cards for which the
IOCS performs both input and output opera-
tions, i.e., cards are to be read and
punched during one pass through the I/0
device. (Output data may be punched either
into cards containing input data or into
interspersed blank cards.) 21l other card
files (input only or output only) are con-
sidered to be simple files.

LOGICAL RECORDS

A data file is made up of a collection of
logical records that normally have some
relation to one another. The logical
record is the basic unit of information for
a data processing program. For example, a
logical record might be one employee's
record in a master payroll file, or the
record of one item in an inventory file.
Much data processing consists of reading,
processing, and writing individual logical
records.

RECORD BLOCKING

Blocking of records is the process of
grouping a number of logical records before
writing them on a storage device. A group
of logical records is referred to as a
plock. Blocking improves processing effi-
ciency by reducing the number of I/0O opera-
tions required to process a file, and also
saves storage space on the external medium
on which the file resides because there are
no gaps between the individual logical
records in a block.

RECORD FORMATS

Logical records may be in one of three
formats: fixed length (format-F), variable
length (format-V) or undefined (format-U).
The record format and whether or not the
file is blocked are specified in the file
definition statement for the file.

The prime consideration in the selection
of a record format is the nature of the
file itself; that is, the type of input the
program will receive and the type of output
it will produce. The selection of a record
format is based on this knowledge, as well
as an understanding of the type of I/0
device on which the file is written and of
the access method used to read or write the
file.

Format F

Format-F records are fixed-length records.
Figure 1 shows one example of format-F
records on magnetic tape (part A) and of
format-F records on disk (part B). The
number of logical records within a block
(blocking factor) is normally constant for
every block in the file unless the block is
truncated (short block) by a TRUNC macro
instruction.

The TRUNC macro instruction serves to
write truncated blocks on magnetic tape.
Truncated blocks that may be contained in a
tape input file are handled automatically
by the IOCS.

In unblocked format-F records, the logi-
cal record constitutes the block.

The IOCS performs physical-length check-
ing on blocked format-F records and auto-
matically handles truncated blocks.

Because the channel and interruption system
can be used for length checking and because
blocking and deblocking are based on a
constant record length, the IOCS processes
format-F records faster than format-v
records.

Format-V records are variable-length
records, each of which describes its own
length. Format-V records can ke blocked.
Each block of variable-length records
includes a block length. The IOCS performs
length checking of the block and makes use
of the record length information in
deblocking and blocking. Figure 2 is an
example of format-V records on magnetic
tape. The first four characters of each
logical record contain control information.
Specify the length of the logical record in
the first-two characters when you create
the record; the next two characters are
reserved and must be binary zeros. The
four bytes required for the length indica-
tion are included in the byte count for the
record.

Record Record Record Record
B D E F
IBG = Inter-Block Gap
a. Unblocked Record Format
k—One Physical Record —-I
Record | Record | Record
A B C D E F G H | J K

b. Blocked Record Format

Figure 1A.

Example of Format-F Records on Magnetic Tape

270 Bytes > [270 Bytes
'] Y
Record 1 =, T > - Record 2 =
(80 Bytes) E=Remaining portion of Sector is not used (80 Bytes) not used= —
Sector g Sector
S = Sector Address
Unblocked Record Format
Sector » Sector. -
270 Byfca Lo [l 270 Byfc;
80 »la 80 >l 80- ote30 50—ttt 80 E=——Remaining portion of
Sector is not used
Record 1 Record 2 Record 3 H_—/ Record 5

S = Sector Address

Blocked Record Format (assuming five Records per Block)

Figure 1B.

I‘Record 4—'

Example of Format-F Records on Disk

Data Files

9

RL Record 1 BL RL Record 2 BL RL
Data Data
XX00 i XX00 XX00 XX00 XX00
4 7 83 0 3[4 7 103 3.4 7
-t RL =80 l—————RL = 100 ————————
BL =84 - BL=104—
a.Variable Length = Unblocked Record Format
RL Record 1 RL Record 2 RL Record 3
Data Data Data
XX00 XX00 XX00
3|4 7 83i84 87 183) 184 187
}¢——————RL = 80—l 4————RL = 10—+ ¢————RL = 50—
- BL = 234
b. Variable Length - Blocked Record Format
BL = Block Length
RL = Record Length
IBG= Inter-Block Gap
eFigure 2. Example of Format-V Records on Magnetic Tape
The first four characters of each block fm——————— T———————— T———————— T 1
of format-V records contain block control |RECORD |Format-F |Format-V |[Format-U |
information. The first two characters, | FORMATS | (fixed | (variable} (1ength |
which are provided by the IOCS at the time | |length) |length) |undefined) |
the records are blocked, specify the length - dom——————oe - Fomm e 1
of the block; the next two characters are |Blocked |Tagpe¥* |Tape* ** | |
reserved and must be binary zeros. | |Disk | |
Although these four characters do not p---———-- o t-m—————— Fom—————— q
appear in the record furnished to the prob- | |Card | | |
lem program, the input and output areas | |Printer | | i
nmust be large enough to accommodate them. |Unblocked|Printer- |Tape* ** |Tape*#* |
| | Keyboard | | |
| |Disk | | |
In unblocked format-V records, the logi- | | Tape** | | |
cal record and the block control informa- = }j-—-—----—- = - e —— 4

tion constitute the block. |* If a tape file is to be read backwards, |
| format-V records are not allowed. |
Format U | **The Data Conversion feature is required]
| if a 7-track tape is used and one of |
If the record format of a file is referred | the following conditions exists: |
to as undefined, the record characteristics |
are unknown to the IOCS. Because each | e Format-V records are to ke read or |
block is treated as an unblocked logical | written.
record, any blocking or deblocking must be | ® Format-F or format-U records to be |
performed in the problem program. | written contain EBCDIC characters |
] other than those included in the BCD|
] character set. |
| o Format-F or format-U records to be |
| read have been written using the]
| |
L

Data Conversion feature.

——— —_— e e e e e e o e o e e e e J

Allowable Formats for Files

The format of a file depends upon the type

of I/0 device used. See Figure 3 for the

record format(s) permitted with each type

of I/0 device. eFigure 3. Formats Valid in Accordance with
I/0 Devices

10

The IOCS is designed to overlap I/0 opera-
tions witl each other and/or with the proc-
essing of data.

Submodels 2 and 4. In the case of Model 20
Submodels 2 and 4, input/output overlap
with processing is provided for the prin-
ter, the printer-keyboard, and for card
reading and punching. Due to hardware
characteristics of the Submodels 2 and 4,
magnetic tape and disk input and output
operations cannot be overlapped with proc-
essing or with card and printer I/0 opera-
tions, except as follows:

1. The execution of tape or disk control
operations (e.g., tape rewind, seek
operation on disk, etc.) can be over-
lapped with card and printer I/O opera-
tions and/or processing.

2. Magnetic tape and disk I/0 operations
can be overlapped with printing on the
IBM 1403 if the print operation has
been started before the I1I/0 instruction
for tape or disk is issued.

Submodel 5. With the Submodel 5, full
overlapping between I/O operations and
processing is possible if the read/compute,
write/compute (RWC) feature is utilized.

If the RWC feature is not utilized, the

Overlapping and Storage Areas

I/0-processing capability is the same as
with Submcdels 2 and 4. The overlapping
capabilities available with the Submodel 5
utilizing the read/compute, write/compute
feature are shown in Figure 4.

The extent of overlapping is governed by
the assignment of 1/0 areas and work areas
in the source program. The choice of these
areas can affect the amount of time that
the CPU is availakle for processing. These
areas and the effects of various combina-
tions of them are described below.

I/0 AREAS

An I/0 area is an area into which input
data is read or from which output data is
written. The data read into or written
from an I/O area consists of one block
(i.e., one physical record).

For each card file, provide either two
I/0 areas and one work area or one I1/0 area
and one work area in the source program.

For printer files, an output area must
only be provided if the dual-feed carriage
feature is used. Otherwise, only a work
area should be provided.

[r———————-- T 1
] | | Separate] I
|Record | Number of |Work | |
| Format |I/0 Areas |Area |Amount of Effective Overlap

p-m——- 1 —fmmmmm- o e]
|] 1 | no |No overlap. |
| | T 1
|] | yes |Overlap processing of all records. |
]] | | (Record move required). |
|Unblocked |-—-=-————- Forr——_—————————————— 4
|] 2 | no |Overlap processing of all records. |
] i | | (No record move required).

l | fom e o e e e .
|] | yes jOverlap processing of all records. |
fmmmm - fommmmmm S e - -
| | 1 | no |No overlap. |
| | T S 1
|] | vyes |Overlap processing of last record in each block. |
|Blocked | ————————- - —_—— e q
| | 2 | no |Overlap processing of full block. |
| | T T 1
| | | yes |Overlap processing of full block.

S K —— (R, L |
|Note: Overlap given is the maximum achievable.

Figure 4.
Overlap Feature of Submodel 5

Summary of Overlapping Capabilities with Read/Compute, Write/Compute

Overlapping and Storage Areas 11

For each magnetic tape and sequential
disk file you must define at least one I/0
area in the source program; you may also
provide a work area.

For sequential processing of disk and
magnetic tape files with a Submodel 5 uti-
lizing the RWC feature, you can specify two
1/0 areas to decreasé the throughput time.

For direct-access disk files you must
define one I/0 area but no work area. For
indexed-sequential files you can specify
one to three I/0 areas (IOAREAL, IOAREAR,
IOAREAS) depending on the type of process-
ing involved. You may specify the same
area for IOAREAS, IOAREAR, and IOAREAL if
you make sure that you finished processing
the contents of one I/0 area before you
start using the area as another 1I/0 area.

Specify the symbolic address of the I/O
arca(s) in the file definition statement
for the appropriate file to be processed.
The size of an I/0 area must be equal to
the length of the longest block to be proc-
essed and, for disk files, must be a multi-
ple of 270. When unblocked records in
indexed-sequential files are processed, add
six bytes to the I/0 areas to accommodate
the sequence-link field. With the excep-
tions mentioned in the section One I/0 Area
and a Work Area, under the heading Non-
Overlap Mode, do not use these I/0 areas
for any other purpcse in the problem
prrogram.

WORK AREAS

A work area is an area that is used for
processing one logical record. The IOCS
moves one logical record from an input area
to a work area or from a work area to an
output area. If a work area is to be used
(a work area must be used for card and
printer files, for printer-keyboard output
files, and for some indexed-sequential
files), you must define it in the source
program and indicate in the file definition
statement for the appropriate file that a
work area is to be used. In addition, any
GET or PUT macro instruction that refers to
the file must specify the symbolic address
of the work area used. The use of work
areas is not limited to one per file. For
example, you may use a different work area
for every alternate GET or PUT macro
instruction. However, you must specify
only one work area in any GET or PUT macro
instruction. The advantages of using a
work area are explained below under
I/0-Work Area Combinations.

If a work area is not specified, the
JIOCS makes all records of that file avail-
able in the I/0 areaf(s).

12

The length of a work area must be equal
to the length of the longest logical
record. Note that the record length of
format-vV records is contained within the
first four bytes of the record (see Figure
2). The problem program must include pro-
visions for handling the record length
(e.g., it must insert the record length
into output records). The use of a work
area permits the overlapping of I/O opera-
tions and internal processing, thus reduc-
ing processing time.

I/0-WORK AREA COMBINATIONS

For a particular file, you can specify one
of the I/O-work area combinations as shown
in Figure 5.

I/0 operations may require the use of up
to two registcrs. The record I[ormat in
conjunction with the I/0-work area combina-
tion used determines whether none, one or
two registers must be specified. To deter-
mine when it is necessary to specify a
register, refer to Figure 26 in the section
Programming Considerations.

No I/0 Area and a Work Area

Data to be printed on the standard carriage
£ an IBM 2203 or on the IBM 1403 is print-
ed from the first 144 main storage posi-
tions that are used as a print buffer.
This is a hardware characteristic. A PUT
macro instruction for a printer file (1)
causes the output data to be transferred
from the specified work area to the print
buffer area and (2) initiates the print
operation.

One I/0 Area

The specification of just one 1I/0 area is
permitted for magnetic tape and disk files
and is mandatory for printer-keyboard input
files.

When a GLT or a PUT macro instruction is
issued while another I/O operation is being
executed, the program enters a waiting loogp
and remains there until the current I/0
cperation is completed.

One I/0 Area and a Work -rea

You must indicate the use of a work area in
the file definition statement for the file.
Also, define the work areas to be used in
your program and assign a name to each of
them. That name is then specified as the
second operand of each GET or PUT macro
instruction you issue.

CARD AND PRINTER FILES: For card and prin-
ter files, the use of a work area is manda-
tory. It permits the IOCS to overlap an
1/0 operation with processing and/or with
another I/0 operation.

The following considerations apply to
the use of I/0 areas as work areas for
files being processed in the overlap and
the non-overlap node:

Overlap Mode. 1I/0 areas for files prac-
essed in the overlap mode must not be used
as work areas. During processing, a given
record is processed in the specified work
area while other records are simultaneously
read into an input area or punched or
printed from an output area.

Non-overlap Mode. For combined files, only
the punch area may also be used as a work
area. For simple files, the input or out-
put area may be used as a work area. Card-
print areas must not be used as work areas.

PRINTER-KEYBOARD OUTPUT FILES: Printer-
keyboard output files require a work area
that you must provide in the problemnm
program. In addition, an output area is
required. f no output area is provided in
the problem program, the output area allo-
cated at the time the Monitor is generated
is used.

MAGNETIC TAPE AND DISK FILES: The use of a
work area with Submodels 2 and 4 and with a
Submodel 5 not utilizing the RWC feature
may provide the advantage of additional
processing time becoming available by
allowing to optimize overlap between I/O
operations with processing.

When a work area is used, processing can
be done in a fixed area and no I/0 register
is required. These are further advantages
offered by the use of a work area.

Two I/0 Areas

For disk and magnetic tape files, the use
of two I/O areas with a Submodel 5 uti-
lizing the RWC feature is recommended if
the processing time for the last (or only)
record of a block is shorter than the time
required to read the next record (block).
Two I/0 areas are used for sequential disk
or magnetic tape files.

Two I1/0 Areas and a Work Area

Two I/0 areas and a work area must be spec-
ified for combined files and may be speci-
fied for simple card files read on a 2501
Card Reader that is working in overlap
mode. This allows the IOCS to maintain
maximum card reading speed.

For magnetic tape and sequential disk
files you should consider the use of two
I/0 areas and a work area only if these
files are processed by a Submodel 5 uti-
lizing the RWC feature. No additional
throughput advantage can be gained from
specifying a work area in addition to the
two I/0 areas. However, it might be of
advantage that no I/0 register is required
when a work area is specified.

I/0-Work Area Comkinations for
Indexed—-Sequential Files

For indexed-sequential files you can speci-
fy up to three I/0 areas and up to four
work areas depending on the type of proc-
essing involved (see Figure 5).

Overlapping and Storage Areas 13

T

*G 92InbtJe

SUOTIRUTQUOD BSIY IOM-O/I

DEVICE & PROCESSING MODE FIRST IOAREA SEC. IOAREA THIRD IOAREA FIRST WORKAREA | SEC. WORKAREA | THIRD WORKAREA |FOURTH WORKAREA
2560 MFCM1/MFCM2 simple IOAREA1 M - CRDPRA WORKA |M - - -
combined INAREA M OUAREA M CRDPRA WORKA M - - .
2560 Card Read Punch simple IOAREAT M - - WORKA |M - - -
combined] INAREA M OUAREA M - WORKA |M - - -
2520 Card Punch |OAREA1 M - - WORKA |M - - -
1442 Card Punch |OAREA1 M - - WORKA (M - - -
2501 Card Reader IOAREA1 M IOAREA2 O - WORKA |M - - -
1403 Printer - - - WORKA |M - - -
2203 Printer standard - - - WORKA |M - - -
dual feed IOAREA1] - - WORKA M - - -
2152 Printer-Keyboard input IOAREA M - - - - - -
output 1OAREA o - - WORKA |M - - -
2415 Magnetic Tape Unit IOAREA1 M IOAREA2* - WORKA ®) - - -
2311 Disk (sequential) |OAREA] IOAREA2* - WORKA - - -
2311 Disk (direct-access) IOAREAI - - - - - -
2311 Disk (indexed-sequential)
LOAD IOAREAL M - - WORKL |M - - -
ADD IOAREAL M - - WORKL M WORKA M*¥ - -
ADDRTR
sequential IOAREAL M IOAREAS M - WORKL M WORKA M*¥] WORKS (o] -
random |OAREAL M IOAREAR M - WORKL M WORKA IM** WORKR O -
random/sequential IOAREAL M IOAREAR M |OAREAS WORKL M WORKA [M** WORKR o WORKS o
RETRVE
sequential IOAREAS M - - WORKS o] - - -
random IOAREAR M - - WORKR o - - -
random/sequential IOAREAR M {OAREAS M - WORKEP. o - WORKS O -

Mandatory Specification
Optional Specification

oz

Only useful with a Submodel 5 utilizing the read/comput, write/compute feature
** Mandatory only for a file containing blocked records

When planning your input and output files,
consider the following:

1. processing requirements for storing,
updating, or displaying data, and

2. the I/0 devices available.

Card, magnetic tape, printer, and
printer-keyboard files are organized in a
sequential order, because they can be proc-
essed only in the existing sequence. Disk
files can also be organized and processed
consecutively. However, for disk files you
are not restricted to sequential file
organization, but have the option of work-
ing with three methods of file organization
and corresponding methods of file process-

ing.

For disk files, it i1s important to dis-
tinguish between two terms:

1. File Organization refers to the method
of arranging data records on a direct-
access storage device; it is the
technique used to "load" the file.

2. File Processing is the method of
retrieving records from, adding records
to, or updating records in a file.

Note: Files on disk may consist of more
than one disk area (extent); the extents of
a disk file need not be adjacent and may be
contained in more than one volume. The
lower and upper limit of a single extent
must be contained within one volume. The
XTENT control statement, which is used to
specify the extents of a disk file, is
described in the SRL publication IBM
System/360 Model 20, Disk Programming Sys-—
tem, Control and Serxvice Programs, Form
Cc24-9006.

FILE ORGANIZATION

Card, magnetic tape, printer and printer-
keyboard files are organized as sequential
files. For disk files, the data records
can be organized as a sequential, direct-
access or indexed-sequential file. With
disk, more than one method of processing
may be used for a single method of file
organization. The method of file
organization best suited to a particular
file depends on the processing requirements
for the file.

File Organization and Processing Concepts

Sequential File Organization

Sequential file organization means that the
records are written consecutively on the
storage medium. The physical order of the
records prior to organization of the file
determines both the physical order of the
organized file and the sequence in which
the records will be subsequently processed.
A sequentially organized file is normally
established by sequentially "loading"
records that have been pre-sorted on a
significant control field within each
record. In this case, the last logical
record is located in the last ghysical
position of the file on the storage medium.

A sequentially organized card or magnet-
ic tape file can only be processed in the
order in which the records physically
occur, i.e., sequentially. (This is also
the most efficient method for processing a
sequential disk file.) Thus, sequentially
organized files are subject to certain
processing limitations such as:

e The only way to retrieve or update a
record in a sequential file is to read
every record in the file beginning with
the first. Therefore, sequential file
organization is the most efficient meth-
od if a large number of records in the
file are updated or examined every time
the file is processed. An extremely low
level of activity, on the other hand,
justifies the use of another method of
file organization that permits random
processing of the file,

e Additions and deletions can only be
accomplished by copying the entire file.
During the copying, the recocrds to be
added are merged in and the records to
be deleted are excluded.

Sequential file organization is used for
all card and magnetic tape files, printer,
and printer-keyboard files.

The sequentially organized disk file is
similar in concept to a sequentially organ-
ized card or magnetic tape file. Sequen-
tial disk files differ from card and mag-
netic tape files in two ways:

1. If processing involves only the updat-
ing of records already in the file, an
updated record may be rewritten into
the same physical location from which
it was retrieved and records that are
to remain unchanged need not be re-
written at all. (With a card or

File Organization and Processing Concepts 15

magnetic tape file, the updated
records, together with any unchanged
records, must be stored in a newly
created file.)

2. A sequentially organized disk file may
be processed randomly by specifying the
I0CS instructions used for direct-
access files. You must know and
specify the actual physical disk
address of the record to be retrieved.
In your routines, you must also consid-
er the blocking factors of the sequen-
tial file, i.e., you must deblock the
file.

Direct-Access File Organization

Both the sequential and indexed-sequential
methods of file organization involve
records that are stored in some logical
sequence and are usually processed in that
sequence. With the direct-access method of
file organization, records are retrieved
from or written onto a physically addressed
location on disk. The physical disk
address of a record to be loaded or
retrieved must be calculated in the problem
program. Determine a randomizing "formula"
to convert certain data within the record
to a physical address on disk; the record
is stored at the physical address developed
by the randomizing formula. Thus, normal-
ly, in a file that is being locaded, the
records are not placed in contiguous loca-
tions on the disk but are "scattered"
throughout the area of the pack that is to
contain the file.

In selecting the best method for loading
a direct-access file, it is necessary to
keep two things to a minimumn:

1. +the number of different records for
which the same disk address is derived,
and

2. the amount of storage space required,
i.e., minimize the amount of wasted
storage space.

A file written on disk by the direct-
access method may be processed randomly or
sequentially. Random retrieval from a
direct-access file is generally faster than
random retrieval from an indexed-sequential
file. The direct-access method, however,
is not best suited to retrieval of records
in a logical sequence.

Indexed-Sequential File Organization

An indexed-sequential file is organized
from records that have been sorted
according to specific control information,
i.e., keys, contained in each record. The
structure of an indexed-sequential file is
basically sequential, but this type of file

16

organization has the following features
which distinguish it from sequential file
organization:

¢ The process of locating records by ref-
erencing record keys permits the option
of processing an indexed-sequential file
in either sequential or random order.

¢ When an indexed-sequential file is load-
ed the IOCS constructs indexes to be
used to locate records in subsequent
processing. Sequential retrieval
through use of these indexes is almost
as efficient as sequential processing
with a sequential file. In addition,
these indexes make it possible to
retrieve individual records in random
order.

* In a sequential file, the original
sequence can be maintained only by copy-
ing the entire file and inserting the
additions in the appropriate location.
In an indexed-sequential file, overflow
areas can be reserved to accommodate
additions.

As the number of additions increases,.
the efficiency of processing an indexed-
sequential file decreases. This is due to
the additional access-arm movement required
to read records that have been forced onto
the reserved overflow tracks. Therefore,
there is a point at which it becomes
advisable to reorganize an indexed-
sequential file. {That i1s, to create a new
file from the o0ld one, and, in the process,
to exclude all records tagged for deletion.
In the same operation, the IOCS merges all
records in the overflow area into the main
file.)

When the number of additions and
deletions (or even updates) to be made
regularly in a file is high, sequential
file organization saves processing time.

Two other, factors should be considered
when indexed-sequential file organization
is used:

1. An indexed-sequential file may ke
stored on more than one volume, but all
of these volumes must be on line during
any type of processing, whereas a
sequential file may be stored on any
number of volumes, which can be mounted
and processed consecutively.

2. An indexed-sequential file cannot be
direct input to the Model 20 DPS
Sort/Merge program and to the file-to-
file Utility programs.

FILE PROCESSING

The IOCS provides for the processing of
records in sequential order for
sequentially organized files, in random or
sequential order for direct-access files,
and in random or sequential order for
indexed-sequential files. Both the direct-
access and the indexed-sequential file
organization methods apply onlv to disk

" files.

Processing Sequential Files

Sequential processing is used to read,
write, and process consecutive records in a
file. Cards are processed in the order in
which the cards are read. Tape records are
processed beginning with the first record
continuing through the records to the last
one. Disk records are processed beginning
with a starting disk address and continuing
through the records on successive tracks
and cylinders to the ending disk address.

The macro instructions GET and PUT are
used to cause the transfer of data from and
to sequential files. In the case of a
Model 20, Submodel 5, the transfer of data
to and from the I/0 devices overlaps fully
with processing. In all other cases, the
transfer of data in printer, printer-
keyboard, and card files overlaps with
processing, unless processing in non-
overlap mode has been specified. The
extent of overlapping depends on the
assignment of I/0O areas and work areas.
Regardless of the extent of overlapping,
when a GET macro instruction has been exe-
cuted, the desired record is available for
processing. Similarly, when a PUT macro
instruction has been executed, you can
begin building the next output record for
the same I/0 device.

Processing Direct-Access Files

The IOCS provides routines to read, write,
and process disk records that are organized
according to the direct-access method. The
IOCS locates a disk record for processing
by referring to the physical disk address
which must be sugplied in the problem pro-
gram.

The macro instructions READ and WRITE
cause the transfer of data from and to
files when the direct-access method is
used. These macro instructions permit
records to be retrieved from or placed into
a file. They also permit the updating and
replacing of records in a file. When the
record is required for processing, the
problem program must use a WAITF macro

instruction to ensure that the transfer of
data has been completed before processing
continues.

Direct-access files can be processed
sequentially. However, these files are not
best suited to retrieval of records in a
logical sequence.

Processing Indexed-Sequential Files

For indexed-sequential files, the 1I0CS
provides routines to perform the following
functions:

1. Loading the file.

2. Extending the file with records that
are all higher in sequence than those
already loaded.

3. Adding records in sequence without
copying the entire file.

4. Retrieving records {(with or without
updating) either sequentially or ran-
cdomly.

Any record stored at any location in the
logical file can be retrieved randomly.
The problem program supplies the control
information (key) of the desired record;
the IOCS initilates a search for the record
and makes it available for processing.

If an indexed-sequential file is proc-
essed sequentially, the key of the first
record to be processed is specified in the
problem program. The records are made
available, one after the other. When a
macro instruction requires another record,
the IOCS retrieves the succeeding record
from the logical file in the order deter-
mined by the key, until the problem program
terminates the operation.

The macro instructions WRITE and READ
cause the transfer of data to and from an
indexed-sequential f£ile when the records
are loaded or when they are processed in
random order. The macro instructions GET
and PUT are used when the records of an
indexed-sequential file are processed
sequentially.

A READ or WRITE macro instruction causes
the I/0 operation to be initiated. When
the record is required for processing, the
problem program must use a WAITF macro
instruction to ensure that the transfer of
data has been completed before processing
continues. With GET and PUT macro instruc-
tions, no subsequent WAITF macro instruc-
tion is necessary.

File Organization and Processing Concepts 17

10CS Macro Instructions

IBM supplies two types of macro instruc-
tions for the input/output control of
records from variocus I/0 units:

e declarative macro instructions
{hereafter referred to as file defini-
tion statements), and

¢ imperative macro instructions.

These instructions are discussed in detail
on the following pages. The description of
the instructions is divided into several
sections according to the device used and
the type of file being processed: card,
printer, printer-keyboard, magnetic tape,
sequential disk, direct-access disk, and
indexed-sequential disk.

Some of the IOCS macro instructions
pertain to all files irrespective of the
device used or the type of file organiza-
tion involved. These instructions are
described in the sections Begin and End
Definition Statements (DTFBG, DTFEN) and
Instructions for Opening and Closing Files
(OPEN, CLOSE).

The following conventions apply to the
description of the IOCS macro instructions
in this publication:

1. TUpper-case letters and punctuation
marks (except as described in items 3
and U4 below) represent information that
must be coded exactly as shown.

2. Lower-case letters and terms represent
information that you must supply.

3. Information that is contained within
brackets [] represents an option that
can be included or omitted depending on
the requirements of the program.

L, BAn ellipsis (a series of three periods
enclosed by commas) indicates that a
variable number of items may be includ-
ed.

Assembly Procedure

The file definition statements are used by
the Assembler to generate those routines
that are required to perform the desired
I/0 operations when the program is execut-
ed. The imperative macro instructions
cause the generation of linkages to these
generated routines. The IOCS routines and
the problem program written in the Assem-
bler language are assembled in one run.

18

eFigure 6.

Figure 6 shows the arrangement of the
assembly input deck for a source program
using IOCS macro instructions.

Source (Problem)
Program
Statements

including 10CS
Imperative Macro
Instructions

DTFEN Statement

Source Program

Definition Statements
(for three files)

l¢—— DTFBG Statement

JHJob Control Statements

Arrangement of Source Program
Cards Using the IOCS

Diagnostic Messages

Diagnostic messages are provided to indi-
cate error conditions at assemkly time such*
as missing operands of macro instructions,
inconsistent combinations of operands, etc.
This checking is in addition to that nox-
mally performed by the Assembler program.

File Definition Statements

The file definition statements describe the
logical file, indicate the type of process-
ing to be used for the file, and specify
main-storage areas for the file. It
depends on the device used and on the type
of processing involved which of the differ-
ent file definition statements applies to
your, file. Only two definition statements
(DTFBG, DTFEN) are used irrespective of the
type of file. The file definition state-
ments axe:

DTFBG Define The File BeGin. This defini-
tion statement, if present, must
precede ail other file definition
statements. The statement is manda-
tory if the generated program is to
be used as an inquiry program or if
it is to be used as a mainline pro-
gram that perxrmits interrupts by
inquiry programs.

DTFSR Define The File for a Serial Recorxd
device. This definition statement
is used in conjunction with card and

printer files.

DITFPK Define The File for a Printer-
Keyboard. This definition statement
is used to define a printer-keyboard
file. When form skipping and
overflow printing are desired for a
printer-keyboard output file, you
must also provide a DTFLC statement.

DTFLC Define The Line-Counter table. The
DTFLC statement is used in conjunc-
tion with a printer-keyboard output
file if form skipping and overflow
printing are desired. The DTFLC
statement describes the line-counter
table, which simulates a carriage-
control tape for the printer-
keyboard.

DTFMT Define The File for a Magnetic Tape.
This definition statement is used to
define a file associated with a
magnetic tape device.

DTFSD Define The File for a Sequential
file organization on Disk. This
definition statemert is used
whenever a sequentially organized
disk file is to be processed.
DTFDA Define The File for a Direct-Access
file organization. This definition
statement is used whenever a disk
file of direct-access organization
is to be processed.

DTFIS Define The File for an Indexed-
Sequential file organization.
definition statement is used
whenever a file of indexed-
sequential organization is to be
processed.

This

DTFEN Define The File ENd. A DTFEN
statement must follow the last defi-

nition statement for each program.

At the time of assembly, the file defi-
nition statements for the file to be proc-
essed must follow the START statement. The
file definition statements may appear in
any order with the following exceptions:

e The DIFBG statement, if specified, must
be the first file definition statement
in the program.

e All DTFSR statements must be written
contiguously, i.e., DTFSR statements
must not be separated by another type of
definition statement.

e The DTFEN statement must be the last
file definition statement in the pro-
gram.

A summary of the file definition state-
ments is given in Appendix A.

FORMAT OF FILE DEFINITION STATEMENTS

A file definition statement consist of (1)
a header entry that assigns a name to the
specified file and (2) detail entries that
are required tc define parameters such as
the device to be used, the mode of process-
ing, etc.

Note that all file definition cards,
except the last one for each file, must
have a contiruation punch in cclumn 72.
This continuation punch may be any charac-
ter. Punching in continuation cards must
begin in column 16,

Figure 7 is an example of a DTFMT file

definition statement followed by a DTFEN
statement.

Header Entries

A header entry consists of a file name in
the name field (starting in column 1) and
the mnewmonic of the file definition state-
ment in the operation field, which follows
the name entry with at least one interven-
ing blank. The name entered in the name
field may consist of up to seven charac-
ters; the first of these characters must be
an alphabetic character other than "I".

The file name assigned in a header entry

for a file must be used in all imperative
macro instructions that refer to this file.

Detail Entries

A detail entry (except in the DTFEN and
DTFLC statements) is composed of a keyword
immediately followed by an equal sign ¢=)
which is, in turn, followed by a specifi-
cation.

Each specification must correspond to
the rules and restrictions of programming
in the Assembler language. Expressions are
permitted for all detail entries that
require the specification of a symbolic
address. The length of a specification is
limited to eight characters, and blanks are
not permitted. (Note that a blank within a
detail-entry specification causes the
Assembler to treat the remaining detail
entries as comments). A comma must immedi-
ately follow the specification of each
detail entry, except the last (see Figure
7.

I0CS Macro Instructions 19

L L 1

1 S Y I S SN S SR S T J

STATEMENT

Neme Oparatien Oparend
2

Commanty Sequance

1 3 10 it 18 0
ORDER TFMT

TVPEFLE=INPUT,R[CF02M=FIXBLK;B

READ={FORWAIRD, RENIND=W N L0AD,

Lk5IZlE= 48 REC S[rze-87,

EVADIDR=8Y

P01 ,\FILABL=5TD,I 04R

A XK=

EA1=REATDFDls W.oRKA=Y E3],

L ABADDR=LABCK,

ERROPT|=LCORR WL R

EEP=PCO?W}

£0FADIDR=ENDRTN

TFEM IOVLAY

Figure 7.

The detaill entries describe the file and
specify symbolic addresses of routines and
areas used during the processing of a file.
The detail entries may appear in any order.
You should include only those entries that
are applicable to a particular file or
program.

Note: The DTFEN and DTFLC statements are
written according to the coding rules for
positional macro instructions as described
in the SRL publication IBM System/360 Model
20, Disk and Tape Programming Systems,
Assembler Langquage, form C24-9002. The
detail entries of positional macro instruc-
tions must be written in a given sequence.
A comma must immediately follow the speci-
fication of each detail entry, except the
last; a blank indicates the end of the
sequence of entries.

Imperative Macro Instructions

Imperative macro instructions are included
in the problem program. They perform such
functions as opening a file, making records
available for processing, writing records
that have been processed, etc. The macro
instructions IBM provides for input/output
control are described in separate sections
as follows:

e Instructions for opening and closing
files: OPEN, CLOSE.

20

DTFMT Statement Followed by a DTFEN Statement

¢ Instructions for processing card files:
PUT, GET, CRDPR, CNTRL, EOM, LOM, WAITC.

e Instructions for processing printer
files: PUT, CNTRL, PRTOV.

e Instructions for processing printer-
keyboard files: PUT, READ, WAITF, CNTRL,
PRTOV.

e Instructions for processing magnetic
tape files: PUT, GET, CNTRL, TRUNC,
RELSE, LBRET, FEOV.

e TInstructions for processing sequential
disk files: PUT, GET, CNTRL.

e Instructions for processing direct-
access disk files: WRITE, READ, WAITF,
CNTRL, CNVRT.

e Instructions for processing indexed-
sequential disk files: WRITE, READ,
WAITF, PUT, GET, SETFL, ENDFL, SETL,
ESETL.

All macro instructions listed above are
written according to the coding rules for
positional macro instructions as described
in the SRL publication IBM System/360 Model
20, Disk and Tape Programming Systems,
Assembler Language, Form C24-9002.

The possible variations of the
imperative macro instructions are summar-

ized in Appendix B.

DTFBG Statement

This statement, if used, precedes all other
file definition statements in the source
program. The DTFBG statement is mandatory
if a program is to be executed as an
inquiry program and/or as a mainline pro-
gram permitting inquiry interrupts. The
statement is optional for all programs that
are not executed as inquiry programs and do
not allow inquiry interrupts (see No Oper-
ands Specified below).

The DTFBG statement has the following
format.

ey st 1
lNameIOperatlon|Operands]
e ommmm i
] | DTFBG I[detall entryl |
S oY U 1

The name field must be blank and the opera-
tion field must contain DTFBG. The operand
field may be blank, or may contain one or
two detail entries. The detail entries
that may follow a DTFBG header entry are
shown in Figure 8.

Note: To be compatible with the Tape Pro-
gramming System, the specification RWC=YES
in the operand field of the DTFBG statement
does not lead to an error but is ignored.

[T s s e T T s e
Execution of Program

I |

|Detail Entries

Begin and End Definition Statements

MAINPRG=YES

Specify this entry if the program is to
function as a mainline program that permits
interrvpts by inquiry requests. You cannot
use the program as an inguiry grogram. The
Open routines for disk files provide for
file protection (see I'ile Protection in the
section The Inquiry Program). If you spec-
ify ATENT=YES together with MAINPRG=YES,
the MAINDPRG entry is ignored because a
program using the ATENT entry cannot ke
executed as a mainline program that allows
inquiry interrupts.

INQPRG=YES

This specification in the DTFBG statement
allows you to use the program as an inguiry
program. When an inquiry request calls a
program assembled with the entry
INQPRG=YES, the Open routine for any disk
files provides for file protection as des-
ribed in the section The Ingquiry Program.

A program you specified as an ingquiry
program may be executed as a mainline pro-
gram. When the program is loaded as a
mainline program, a warning halt occurs.
The operator may continue the job if the
Monitor input area is not used in the pro-
gram.

____________________________ 1

|Inqu1ry Interrupt|

| |Mainline Programllnqulry Program| |

______________________________________ +
| MAINPRG=YES, INQPRG=YES | Yes |
| I I
e f-mmm 1
| MAINPRG=YES] Yes [
e ———————— e O R
| INQPRG=YES | Yes* |
——————————— TG
| ATENT=YES] Yes |
T fommmm oo t
| No Operand or no | Yes]
|DTFBG Statement | |
frmm e A R

mainline program.

When the program is loaded as a mainline program,

I

. 1Ling I

a warning halt occurs. The operator may continue the job if the |
I

I

I .

| Monitor input area is not used in the program.
L

eFigure 8. Detail

————————— — | Permitted |
————— 1 —— e

Yes | Yes |
| (Mainline only) |
——————————— fmmmmm
No | Yes |
Mt frmmmm - 1
Yes] No |
——————————— e e
No | No |
——————————— fommmm oo
No] No |
| I
___________ OISR |
e J

Entries of the DTFBG Statement

Begin and End Definitions 21

Enter both operands if the program is to be
executed as both mainline and inquiry pro-
gram. If you specify these two detail
entries, do not use the IQIPT macro
instruction to process data in the inquiry
input area in the Monitor. A record is
read into this area only if the program is
used as an inquiry program, but not if it
is executed as a mainline program.

Note: The main-storage requirements of the
problem program increase if you specify
MAINPRG=YES, INQPRG=YES,

File protection is previded in the Open
and Close routines for programs assembled
with the specification
MAINPRG=YES, INQPRG=YES. For details refer
to the section The Inguiry Program.

ATENT=YES

Specify the ATENT entry if you provide your
own ATENT subroutine in the problem pro-
gram. (For details on the ATENT subroutine
refer to the section The ATENT Routine).
You can enter this subroutine by pressing
the Request key on the printer-keyboard.

Since a program using the ATENT=YES
entry does not allow inquiry interrupts, do
not specify MAINPRG=YES and/or INQPRG=YES
together with ATENT=YES. An error occurs
if you specify ATENT=YES and INQPRG=YES.
Specifying MAINPRG=YES and ATENT=YES leads
to ignoring the MAINPRG entry.

22

No Operands Specified

Specifying the DTFBG statement without an
operand has the same effect as not speci-
fying a DTFEG statement at all, i.e., the
object program can be used only as a main-
line program that does not allow inquiry
interrupts. All inquiry requests are
rejected, and no protection is incorporated
in the Open routines for disk files.

This option is recommended to minimize
the main-storage requirements of the object
program if the installation does not use
the inquiry function.

DTFEN Statement

To indicate that all files have been
defined you must issue a DTFEN statement as
the last file definition statement in the
problem program. The DTFEN statement has
the following format.

A Kttt Kt 1
| Name|Operation|Operand |
e e .
| | DTFEN | LOVLAY] i
b b L J

The name field of a DTFEN statement must be
blank. The operation field contains DTFEN.
The operand field may be blank, or it may
contain OVLAY (overlay). The overlay tech-
nique as described in the section Program-
ming Considerations allows you to reduce
the number of main storage positions
required by the program when magnetic tape
or disk files are involved.

This section discusses the macro instruc-
tions required to activate and deactivate a
file, and the actions the IOCS performs
when a file 1s opened or closed.

Before the first record can be read from
any input file or transferred to any output
file by IOCS macro instructions, you must
ready that file by issuing an OPEN macro
instruction. Likewise, you must deactivate
the file and terminate all pending requests
by issuing a CLOSE macro instruction after
all records of that file have been proc-
essed. The OPEN and CLOSE macro instruc-
tions are described below.

OPEN MACRO INSTRUCTION

The format of the OPEN macro instruction is
as follows:

l[name]lOPEN lfllenamel,...,fllenamel6|
| S I

Each specification in the operand field
is the name of a file (assigned to it by an
entry in the name field of the appropriate
file definition statement) to be opened
with this macro instruction. Any number of
files from one to sixteen on various devi-
ces may be opened with one OPEN macro
instruction. The operations performed
depend on the type of device involved and
the labeling technique (if applicable).

For information on label processing and
label formats refer to the SRL publication
IBM System/360 Model 20, Disk Programming
System, Control and Service Programs, Form
C24-9006.

The actions the OPEN macro instruction
performs for the different devices are
described in this section under Initializ-

ing Files.

CLOSE MACRO INSTRUCTION

Use this macro instruction to deactivate
any file that was previously made available
by an OPEN macro instruction. You can
close a file at any time by issuing a CLOSE
macro instruction. You must issue the
CLOSE macxo instruction after all records
in an input file or output file have been
processed. When writing your own Exit
routines, make sure that you close your
files properly in these routines before you
abort the job.

Instructions for Opening and Closing Files

t
l[name]ICLOS‘ |filenamel,...,filenamel6 |
[A S e J

Each operand is the name of a file to be
closed by this macro instruction; the name
of a file is the symbol appearing in the
name field of the header entry for the file
definition statement that describes the
file. You may close up to 16 files for
various devices with one CLOSE macro
instruction. The operations performed
depend on the type of device involved and
the labeling technique (if applicable).

For information on label processing and
label formats refer to the SRL puklication
IBM System/360 Model 20, Disk Programming
System, Control and Service Programs, Form
Cc24~9006.

The operations the CLOSE macro instruc-
tion performs for the different devices are
discussed in this section under Terminating
Files.

Reopening Closed Files

CARD AND PRINTER FILES. If you issue a
CLOSE macro instruction for a card or prin-
ter file, that file cannot be reopened by a
subsequent OPEN macro instruction.

PRINTER-KEYBOARD FILE. A printer-keyboard
file that has been closed can ke reopened.

MAGNETIC TAPE FILE. If further processing
of a magnetic tape file is desired, the
file can be reopened. If you do this,
in mind that the previous CLOSE for the
file has caused the tape to be positioned
in accordance with the rewind option speci-
fied in the DTFMT statement for the file.
Therefore, you should specify REWIND=NORWD
in the DTFMT statement to resume processing
of tape records at the point where the
CLOSE macro instruction occurred. The
first record read from the reopened file
must be a file label if standard labels are
specified for that file. If the tape file
to be reopened is unlabeled or contains
non-standard labels, you must determine
whether the first record read is a data
record or a file label.

keep

If you reopen a multi-volume tape file
for which you included the detail entry
ALTTAPE in the DTFMT statement, the IOCS
continues to read from (or write in) the
same volume that was used as input (or

Instructions for Opening and Closing Files 23

output) tape at the time the file was
closed, i.e., only the volume which was
processed last is reopened.

DISK FILE. You can reopen a closed disk
file. If this is done, the IOCS performs
all checks as though the file had never
been opened before.

Initializing Files

This section describes the processing the
IOCS performs for the various types of
files when an OPEN macro instruction is
executed.

OPENING CARD FILES

When an input file is processed in the
overlap mode, the OPEN macro instruction
causes the first card to be read. The data
read from this card can then be moved from
the input area to the work area when the
first GET for the file is encountered.

When an input file is processed in the
non-overlap mode, the function of the OPEN
macro instruction depends on the type of
file as follows.

1. 1In the case ¢f a simple file, the OPEN
macro instruction makes the file avail-
able for processing.

2. In the case of a combined file, the
OPEN macro instruction causes the first
card to be read while it is being moved
to the pre-punch station.

OPENING PRINTER AND PRINTER-KEYBOARD FILES

For a printer or printer-keyboard file, the
OPEN macro instruction makes the file
available for processing. The OPEN routine
also tests whether the Monitor includes the
PIOCS routines for the printer-keyboard.

OPENING MAGNETIC TAPE FILES

When a magnetic tape file with standard
labels is opened, the IOCS expects the
first record read to be a label. An OPEN
macro instruction causes the tape to be
rewound prior to processing, unless you
prevent rewinding by including REWIND=NORWD
in the DTFMT statement for the file. If
you specified REWIND=NORWD, or if you open
a file that begins at some location within
a volume (reel of tape), you can position
this volume at the beginning of the
required file by means of a FILES control
statement submitted to the Job Control
program. When a volume has been positioned
in this manner, the first record read is a
label. If the first record is not a label,

24

the IOCS regards this as an error condi-
tion. However, an unlabeled file can be
opened in the middle without causing an
error condition.

When two or more files of a multi-file
tape volume are to be processed by one
problem program, processing of each file
specified must be completed before the next
file in succession is ogened.

Example: If the first, second, and third
files of a multi-file tape volume are to be
processed by one problem program, you must
write the OPEN instructions for these files
in the following sequence:

OPEN first file

CLOSE first file
OPEN

-

second file

CLOSE second file

OPEN third file

CLOSE third file

The concurrent processing of two or more
files of a multi-file tape volume is not
possible.

All files in a multi-file volume must
either contain the same type of labels
(either standard or non-standaxrd) or no
labels whatsoever.

Opening Tape Input Files

The processing done by the IOCS when an
OPEN macro instruction is executed depends
on whether the file has standaxd labels,
non-standard labels, or no labels. An OPLN
macro instruction causes the following:

1. If standard labels are specified, the
I0CS will:

a. read and check the volume label if
the tape is at load point;

b. Dbypass any user volume labels;

c. read and check the standard file
header label (HDR1);

d. bypass any additional standard
header labels (HDR2-HDRS);

e. test the user labels UHL1~-UHL8 (if
you specified your own label
routine) and make them available to
your label routine as they are
read. If you did not specify your
own -label routine, the user labels
(if present) are skipped; and

f. ©properly position the tape to read
the first data record.

If the file is to be read backward, the
I0CS performs steps e, d, and ¢, in
this sequence; steps a and b are omit-
ted. (The IOCS processes trailer
labels instead of header labels).

2. If you specify non-standard labels, the
file is spaced forward to the first
record following the first tapemark.
Therefore the non-standard labels must
be followed by a tapemark.

3. If no labels are specified, the first
record on tape may be a data record or
a tapemark followed by one or more
tapemarks. The IOCS reads the record
and determines whether it is a tape-
mark. If it is, control is returned to
the problem program. If the record is
not a tapemark, it is assumed to be a
data record, and the tape is backspaced
by one record.

Read-Backward Considerations: 9-track tape
files written on System/360 tape units can
be read backward if they do not contain
variable~-length blocked records; 7-track
tapes can be read backward if they were
written on System/360 tape units without
using the Data Conversion feature. Note
that 7-track tapes containing format-v
records have been written using the Data
Conversion feature and therefore cannot be
read backward. A file to be read backward
is limited to one reel. Any tapemark
sensed while reading data records is con-
sidered to indicate an end-of-file condi-
tion.

When opening a tape file that is to be
read backward, the job is terminated if the
first record read is not a tapemark.

It is your responsibility to properly
position files that are to be read backward
prior to issuing an OPEN macro instruction.
The proper positions are as follows:

Files with standard labels should be
positioned so that the first record read
will be the tapemark following the trailer
label set. Because the file trailer label
is the first label to be checked on a read
backward operation, this trailer label must
be complete and contain both the trailer
and the header information, except HDR, to

properly identify the file. If the file
labels were originally written by the IOCS,
the trailer labels will be comglete.

Files with non-standard lakels should
also be positioned so that the tapemark
following the trailer-label set is the
first record to be read. However, no label
checking is performed.

Unlabeled files should be positioned so
that the first record read will be the
tapemark after the last record of the file.
Unlabeled tape files to ke read backward
must have a tapemark as the first record of
the file (preceding the first data record).
If this tapemark is not present, no end-of-
file (EOF) condition is detected and an
attempt is made to read past the load
point.

Specify the NORWD (no rewind) option in
the file definition statement for the file
to be read backward.

Opening Tape Qutput Files

The processing done by the IOCS when an
OPEN macro instruction is executed depends
on whether or not the file is labeled. An
OPEN macro instruction causes the
following:

1. If standard labels are specified, the
I0CS will:

a. check for a volume label if the
tape is at the load point;

b. read the file header label (if
present) and check the expiration
date to make sure that the data on
the tape is no longer active and
may be destroyed; in a multi-file
volume only the first file is
checked for the expiration date in
the header label;

¢. Dbackspace the tape and write the
new file header label with the
information supplied by the TPLAB
statement (refer to the section
Control Statements); and

d. enter your label routine (if you
specified one) to allow user header
labels (UHL1-UHL8) to ke created
and written.

2. If no labels are specified, the IOCS
will perform the rewind operation and
write a tapemark as the first record on
the tape. The volume label and the
expiration date are not checked, and
any existing label set is destroyed.

Note: The writing of a tapemark may be
suppressed by a TPMARK=NO entry in the
DTFMT statement.

Instructions for Opening and Closing Files 25

3. If non-standard labels are specified
for a file, a diagnostic message is
printed during assembly because the
specification of non-standard labels
for an output file is not permitted.

OPENING DISK FILES

When disk files are opened, the processing
done by the IOCS depends on whether the
file is a sequential file, a direct-access
file, or an indexed-sequential file.
Depending on the type of file, the label
processing may occur at different times
during the execution of the problem pro-
gram.

For sequential files, each disk pack of
the file is opened when it is required.
For direct-access files and indexed-
sequential files, all packs of the file are
opened at one time; if this is not done,
the job cannot continue. Details of the
processing performed when each type of file
is opened are described below for disk
input and disk output files.

You must specify the disk storage areas
used by the file by means of XTENT
statements which you submit to the Job
Control program. For detailed information
about these statements, refer to the SRL
publication IBM System/360 Model 20, Disk
Programming System, Control and Service
Programs, Form C24-9006.

Note: If a program is to be executed as an
inquiry program, you must follow special
rules for opening disk files. These rules
are described in the section The Inguiry

Prog ram.

Opening Disk Input Files

An OPEN macro instruction causes the fol-
lowing:

1. If the file is a sequential file, the
I0CS will:

a. locate and check the volume label
to verify that the proper disk pack
is mounted;

b. locate and check the file label
against data furnished in the DLAB
control statement at Jol Control
time; and

c. check all extent limits in the
format-1 file label and, if appli-
cable, in the format-3 file label
against the limits specified in the
XTENT control statement. The
checked extent limits are stored
within the processing routines for
the file that is being opened.

26

During processing, these extent
limits are used to check for end-
of-extent conditions and to
automatically switch to the next
extent when an end-of-extent condi-
tion occurs. If an end-of-volume
condition is detected (no more
extents available within the
volume), the file processing rou-
tines issue an internal OPEN for
the next volume. The functions for
this internal OPEN are the same as
described above.

2. If the file is a direct-access file,
the IOCS will:

a. locate and check the volume labels
of all volumes used for the file to
verify that the proper disk packs
are mounted;

b. 1locate and check the file labels in
all volumes of the file against
data furnished in the DLAB control
statement; and

c. make all disk areas (defined by
XTENT statements) available for
processing; if one or more areas
are not available, the job will be
terminated.

3. If the file is an indexed-sequential
file, the IOCS will:

a. locate and check the volume labels
of all volumes used for the file to
verify that the proper disk packs
are mounted;

b. locate and check the format-1 file
labels in all volumes of the file
against data furnished in the DLAB
control statement;

c. locate and process the format-2
file label; and

d. make all disk areas (defined by the
XTENT statements) available for
processing; if one or more areas
are not available, the job will be
terminated.

Opening Disk Output Files

An OPEN macro instruction causes the fol-
lowing:

l. If the file is a sequential file, the
I0CS will:

a. locate and check the volume label
to verify that the proper disk pack
is mounted;

check to make sure that the volume
table of contents (VTOC) does not
contain a label with the same file
identifier as the file to be
opened; should the file identifier
be identical, the Open routine
checks the expiration date to
determine whether the file has
expired or not. If it has not
expired, a halt occurs and the
operator has the option to erase
the file or to terminate the job.

check all extents described in the
VTOC for the particular volume
against those extents of the file
that refer to the same volume. If
an extent overlay is detected, the
OPEN routines check the expiration
date of the file to which the over-
laid extent belongs. If the expi-
ration date has been reached, the
file label(s) of the expired file
are erased. All labels in the VTOC
with an address that is higher than
the addresses of the erased labels
are shifted to use up the space
that was previously occupied by the
erased labels. The program halts
if an extent overlay is detected
for an active file. This allows
you to either erase the file orx
terminate the job.

cause the format-1l label and, if
more than three extents are speci-
fied, the format-3 label(s) to be
created and written behind the last
label in the VTOC. If no space is
available within the VTOC, a pro-
grammed halt occurs.

store the checked extent limits
within the processing routines for
the file that is being opened.
During processing, these extent
limits are used to check for end-
of-extent conditions and to
automatically switch to the next
extent when an end-of-extent condi-
tion occurs. If an end-of-volume
condition is detected (no more
extents available within the
volume), the file processing rou-
tines issue an internal OPEN for
the next volume. The functions for
this internal OPEN are the same as
described above.

2. If the file is a direct=-access or an
indexed-sequential file, the IOCS will:

A

locate and check the volume labels
of all volumes to be used for the
file to verify that the proper disk
packs are mounted;

b. check to make sure that the VTOC
does not contain a label with the
same file identifier as the file to
be opened; should the file iden-
tifier be identical, the IOCS
checks the expiration date to
determine whethér the file has
expired or not. In the case of an
indexed-sequential LOAD file, a
halt occurs 1f the file is not
expired. The operator then has the
option to extend the file or to
perform an original load.

c. check all extents described in the
VTOCs of all volumes used by the
file against all the extents speci-
fied for the file; if an extent
overlay is detected, the OPEN rou-
tines check the expiration date of
the file to which the overlaid
extent belongs. If the expiration
date has been reached, the file
labels of the expired file are
erased. All labels in the VTOC
with an address that is higher than
the addresses of the erased labels
are shifted to use up the space
that was previously occupied by the
erased labels. The program halts
if an extent overlay is detected
for an active file. This allows
you to either erase the file or
terminate the job.

d. cause the format-1 label and, if
more than three extents are speci-
fied, the format-3 label(s) to be
created and written after the last
label in the VTOC. 1In the case of
an indexed-sequential file, the
IOCS will also cause the format-2
label to be created and written.
The program halts if no space is
available within the VTOC.

e. store the checked extent limits
within the processing routines for
the file that is being opened.
(During processing, these extent
limits are used to check for end-
of-extent conditions and to
automatically switch to the next
extent when an end-of-extent condi-
tion occurs.)

Terminating Files

After all records of a file have keen pro-
cessed, that file must be closed.

The need to close, or deactivate, a file
is indicated by an end-of-file (EOF) condi-
tion. The EOF condition is determined in
various ways for different types of files
and I/0 devices as follows:

Instructions for Opening and Closing Files 27

1. Card input files. Four cards with the
characters /* in columns 1-2 are
required by the IOCS to properly per-
form end-of-file operations. For the
number of /* cards required during
stacked job processing, refer to Figure
11.

2. Printer-Keyboard input files. The
characters /* typed in on the printer-
keyboard indicate the end-of-file
condition.

3. Tape input files without labels or with
non-standard labels. A tapemark indi-
cates an EOF condition. In your end-
of-file routine you must determine
whether an end-of-file or an end-of-
volume condition exists. The IOCS
cannot determine this.

4, Tape input files with standard labels.
The characters EOF appear as the first
three characters of a trailer label.

5. Tape files with standard labels that
are read backwards. The characters HDR
appear as the first three characters of
a header label.

6. Sequential disk input files or indexed-
sequential input files processed
sequentially. The characters /*b
appear in an end-of-file record, or the
end of the last extent has been
reached.

7. All output files, and direct-access
input files. The problem program de-
termines the end of a file.

End-of-File Processing

When EOF occurs in a card input file, the
IOCS branches to your end-of-file routine.
The address of this routine must be provid-
ed in the EOFADDR=name entry of the defini-
tion statement for the file.

When EOF occurs in a tape input file
with standard labels, the IOCS branches to
the label checking routine to check the
EOF1 label. 1In this routine, the IOCS
compares the block count recorded in the
label with the block count that has been
accumulated during processing. An
‘unequal' condition 1s indicated to the
operator who has the option to either ter-
minate or continue the job. If user labels
(UTL1-UTL8) are to be checked, the IOCS
branches to the LABADDR routine when the
checking of the ZOF1 label has been com-
pleted. (Refer to the description of the
DTFMT detail entxy LABADDR and of the LBRET
macro instruction in the section Instruc-
tions for Processing Magnetic Tape Files).
After all trailex labels have been checked,
the IOCS branches to the EOFADDR routine.

28

If the tape input file has Lkeen read
backward, the functions gerformed by the
IOCS are essentially the same. On reaching
the tapemark preceding the first record of
the file, the IOCS branches to check the
user header labels (UHL1-UHL8), if present,
and then checks the HDR1 label. After
these checks are completed, the IOCS
branches to the EOFADDR routine.

When EOF occurs in a tape input file
without labels or with non-standard labels,
the IOCS branches to the IZOFADLDR routine
when the tapemark following the last data
record is read.

When EOF occurs in a sequential disk
input file or in an indexed-sequential file
processed sequentially, the IOCS kranches
to the EOFADDR routine when the EOF record
containing /*b is read, or the end of the
last extent has been reached.

End-of-Volume Processing

Some of the actions performed ky the CLOSE
routine are also required when an end-of-
volume condition occurs while processing a
magnetic tape or sequential-disk file.
Except for tape input files without labels
or with non-standard labkels, the IOCS
detects EOV conditions and takes the
required actions without the need for addi-
tional routines in the problem program.

During the processing of a magnetic tape
file or of a sequential disk file, an EOV
condition can occur. This indicates that
the next volume of the same file is needed
either for reading more input records or
for writing more output records. The meth-
od of detecting an EOV condition and the
action taken are described below.

TAPE EOV CONDITION: The end of a volume of
a standard-labeled tape file is indicated
in the trailer label of an input reel or by
the reflective marker on an output reel.
The IOCS processes an EOV condition as
follows:

1. For input files, the IOCS (1) checks
the block count, (2) branches to your
LABADDR routine, if specified, and (3)
rewinds the tape if required. The IOCS
then processes the header labkel(s) of
the next volume and makes the first
record of the volume available to the
problem program.

2. For output files, the IOCS causes the
EOV trailer label (including the accu-
mulated block count) to be written. If
a LABADDR routine is specified, the
IOCS branches to this routine to write
additional user trailer lakels
(UTL1-UTL8) and to perform the func-
tions as specified. The IOCS then

processes the header label(s) of the
next volume as described above under
Opening Tape Output Files.

If no labels or non-standard labels have
been specified for an input file, you must
determine an EOV condition and issue an
FEOV macro instruction (refer to the sec-
tion Instructions for Processing Magnetic
Tape Files) to have the IOCS perform the
desired end-of-volume functions. To deter-
mine an EOV condition, you must provide in
your EOFADDR routine a subroutine to which
the IOCS branches as soon as it detects a
tapemark. For multi-volume files, refer to
the description of the detall entry
ALTTAPE.

DISK EOV CONDITIONS: The end-of-volume for
sequential disk files is indicated after
the contents of all disk areas in a volume
(as specified in XTENT control statements)
have been processed. The IOCS processes
EOV conditions as follows:

1. For input files, the IOCS checks the
file label(s) of the next véolume and
makes the first record in the next
volume available for processing.

2. For output files, the IOCS checks
whether or not any extents are over-
laid, writes a volume label and one or
more file labels on the next volume,
and makes the first location in that
volume available for an output record.

CLOSING CARD AND PRINTER FILES

For card and printer files, the CLOSE macro
instruction makes the file unavailable for
further processing. Specifically, the
CLOSE macro instruction erisures:

1. that records remaining in the output
area upon completion of processing are
printed and/or punched,

2. that all processed data cards remaining
in the card feed path (not end-of-file
cards) are selected and sorted into the
appropriate stackers,

3. that all pending interrupts for the
closed file(s) have been handled.

CLOSING PRINTER-KEYBOARD FILES

You should close a printer-keyboard input
or output file after all records in the
file have been processed. The characters
/% in the first two positions of the record
designate the end-of-file for an input
file. For an output file, end-of-file is
determined by the problem program.

CLOSING MAGNETIC TAPE FILES
The operations performed when a magnetic

tape file is closed depend upon whether it
is an input or an output file.

Closing Tape Input Files

The CLOSE macro instruction causes the
input tape to be rewound if this has been
specified in the REWIND entry of the DTFMT
statement for the file. The IOCS then
deactivates the file; no labels are read or
checked.

Closing Tape Output Files

The CLOSE macro instruction causes the
writing of any record or block of records
that has not yet been placed into the file.
If a record block is only partially filled,
it will be written on tape as a short
block. A tapemark is written following the
last record.

If labels have not been specified, a
second tapemark is written and the tape is
rewound if this has been specified in the
DTFMT statement for the file.

If standard labels have been specified
for the file, the I0CS writes the trailer
label after the tapemark. The trailer
label includes the block count accumulated
by the IOCS during the run and the header
label information (except that HDR is
replaced by EOI.

When additional labels are to follow the
standard trailer label, the IOCS branches
to your label routine specified by the
LABADDR=name entry in the DTFMT statement
for the file. This occurs after the stand-
ard label has been written. After building
each label, return to the I0CS using the
LBRET macro instruction. After all trailer
labels have heen written, the IOCS writes
two tapemarks, executes the rewind func-
tion, 1f specified, and deactivates the
file.

Two tapemarks are written at the end of
a tape output file to indicate that no
further data follows. If you specified
REWIND=NORWD for the file, the IOCS causes
the tape to be backspaced by one record.
As a result, the second tapemark is over-
written if another output file is written
onto the same tape.

CLOSING DISK FILES

The operations performed when you close a
disk file depend upon whether it is an
input or an output file.

Instructions for Opening and Closing Files 29

Closing Disk Input Files

. The CLOSE macro jinstruction merely makes
~the file unavailable for further process-
ing.

Closing Disk Output Files

The CLOSE macro instruction causes the
writing of any record or block of records
that has not yet been placed onto disk.
The IOCS writes an end-of-file record fol-

30

lowing the last data record in the file.
The CLOSE macro instruction alsc updates
format-2 labels when you load or extend an
indexed-sequential file or when you add
records to 1it.

Note: In a mainline program that permits
inquiry interrupts, you must provide for
the closing of all disk input and output
files. Details on closing files in a main-
line program are given under File Protec-
tion in the section The Inquiry Program.

The IOCS provides routines for sequentially
processing card files. 2All records in a
card file must be unblocked format-F
records with a maximum length of 80 card
columns.

You must define a card file in the prob-
lem program using the DTFSR file definition
statement, which 1s described in detail
below. The discussion of the DTFSR state-
ment is followed by a description of the
imperative macro instructions supported for
card input and output files.

DTFSR Statement

This file definition statement applies to
card and printer files. The name field of
the header entry must contain the name for
the file, and the operation field must
contain DTFSR.

The header entry is followed by detail
entries. For ease of reference, the detail
entries for card files are described below
in alphabetical order.

BINARY=code

Specify this entry if the cards are to be
read in the column binary mode. You may
provide the entry for both simple and com-
bined files.

Code Type of File
YES Simple input file
INPUT Combined file

The twelve punch positions of a card
column read in column binary mode are
stored in the six low-order bits of two
adjacent bytes of the input area. There-
fore, the input area must be large enough
to accommodate a number of bytes that is
twice the number of card columns to be
read.

When you use the BINARY entry for a
particular file, you are not allowed to
specify the entries SEQNCE and RFORMTn for
the same file.

BLKSIZE=n

This entry specifies the length of the I/O
area(s) to be used by a simple file. The
value of n must be equal to or less than
the number of bytes of the area reserved by
the DS or DC statement in the source pro-
gram.,

Instructions for Processing Card Files

If two I/0 areas are used for a file
(IOAREA1 and IOAREA2), specify the area
size only once because it applies to both
areas. The maximum area length acceptatle
to the I0OCS is 80 bytes (160 bytes if the
input is in column binary mode).

The minimum area length specifications
are:
For input files two bytes (four bytes for
column binary mode)
For output files: one byte.

CONTROL=YLS

Specify this detail entry if you intend to
issue a CNTRL macro instruction for your
card file. The CNTRL macro instruction
causes the I/0 device to perform stacker
selection.

CRDPRA=name

Use this entry in conjunction with CRDPRLn
entries when printing on cards is desired.
The maximum number of lines that can be
printed at one time is six, i.e., the num-
ber of print heads available.

The CRDPRA entry specifies the name of
the area in main storage that contains the
data to be printed by the lowest numbered
MFCM print head. Define contiguous 64-byte
areas from which the remaining print heads
are to print (refer to Figure 9)., The
CRDPRLn entries serve to define the print
heads to be used in ascending order accord-
ing to the print head numbers. Figure 10
shows the detail entries required to allow
printing from the areas shown in Figure 9.

It suffices to specify the CRDPRA and
CRDPRLn entries in only one DTFSR statement
of a program because they do not refer to a
particular file. You must issue a CRDPR
macro instruction to cause printing of data
from the areas specified in the CRDPRA and
CRDPRLn entries. Refer to the description
of the CRDPR macro instruction in this
section.

CRDPRLn=m

Entries of this type are used in conjunc-
tion with the CRDPRA=name entry to specify
the print heads used. You must specify one
CRDPRLn entry for each print head you use,
i.e., you can specify up to six CRDPRLn
entries.

Instructions for Processing Card Files 31

The keyword is CRDPRLn, where n is the
number of the print head (1 to 6). The
specification m indicates to the IOCS the
number of bytes to be printed by this print
head. Specification of the number of bytes
to be printed by each individual print head
is required because, when filling a print
area with data to be printed, the IOCS
moves into the print area only the number
of bytes specified for the particular print
head.

Refer to the example in Figures 9 and
10. In this example, print head 1 1is to
print the first 50 bytes of its 6U-byte
print area, print head 2 is to print the
first 40 bytes of its 6L-byte print area,
and print head 5 is to print the first 20
bytes of its 6U4-byte print area. However,
all three print heads actually print the
first 50 bytes of their 64-byte print
areas, i.e., the largest number of bytes
specified for a particular print head. At
the time of printing, the unused byte posi-
tions of a print area contain blanks, since
the IOCS clears all print areas up to and
including byte 50 (i.e., the largest number
of bytes specified) to blanks after every
card-print operation.

You may utilize those portions of the
print areas that are not cleared by the
I0CS. In the example, bytes 51 through 64
of all three 6U4-pyte print areas could be
used for other processing (shaded areas in
Figure 9).

———————— CPAR

i

l——50 40— b 20+ b
64 Bytes 64 Bytes 64 Bytes

b =blank

Figure 9. MFCM Card-Print Areas

— Column 16

clriDlp PlAlRT INSEEN +1
521, IERIDIPIRILIZI=1418] [CRDIPRILIS |2

RIA|=
CIRIDIPIR|L]1
CRDPRA Detail Entry with
CRDPRLn Entries

" e

Figure 10.

DEVICE=code

This entry, which is required for all card
files, specifies the I/0 device to be used
to process the particular file. Enter one
of the following specifications immediately
after the equal sign (=) in this entry.

32

Code Explanation

A file is to be read and/or
punched by the IBM 2520 Card Read-
Punch.

CRP20

A file is to be read and/or
punched from the primary feed of
the IBM 2560 Multi-Function Card
Machine.

MFCM1

A file is to be read and/orx
punched from the secondary feed of
the IBM 2560 Multi-Function Card
Machine.

MECM2

PUNCH20 A file is to be punched by an IBM

2520 Card Punch.
PUNCH42 A file is to be punched by an IBM
1442 Card Punch, Model 5.
READO1 A file is to be read ky an IBM
2501 Card Reader.

EOFADDR=name

This entry specifies the symbolic name of
the routine in the problem program to which
the IOCS should branch on an end-of-file
condition. In that routine, you can per-
form any operation required for the end of
the job. Normally, a CLOSE macro instruc-
tions is issued.

Note: If, in the end-of-file routine, you

want to terminate the execution of a main-

line program, you must first close all disk
files. The EOFADDR entry is mandatory for

card input and combined files.

The IOCS recognizes an end-of-file con-
dition for card input and comkined files
when the required number of end-of-file
cards (/% in columns 1 and 2) have been
read. During single-job processing, use
four end-of-file cards for all card I/0
devices to ensure that the device remains
in a ready status after end-of-file is
detected. The numker of end-of-file cards
required during stacked-job processing is
device derendent as shown in Figure 11.

[——————- T——————- Fo—m—————— To—T=———=- T————- b
|]] 2501 | 2501 | |
| MFCM1 | MFCM2 | one I/0 | two I/0 | 2520]
| 1 | area | areas |
fmmm———- to—mm——- fo——m———— Frmm—— - 1
| 2 | 2 | 1 | 2 | 1 |
b L i O . J
Figure 11. Number of End-of-File Cards

Required During Stacked-Job
Processing

INAREA=name

This entry specifies the name of the input
area to be used by a combined file. The
specified name must be the symbol used in
defining the area in the source program.

INBLKSZ=n

This entry specifies the number of bytes in
the input area required by a combined file.
The specified length applies to the area
reserved by the DS or DC statement in the
source program and referred to in the
INAREA entry. The maximum area length
permitted is 80 bytes (160 bytes for column
binary mode). The minimum length of the
input area is two bytes (four bytes for
column binary mode).

IOAREAl=name

This entry specifies the name of the I/O
area to be used by a simple file. The
specified name must be the symbol used in
defining the area in the source program.

A work area must be specified in addi-
tion to an I/0 area. Refer to the descrip-
tion of the WORKA=YES entry.

IOAREA2=name

This entry can be used for simple input
files to specify a second input area when
the IBM 2501 Card Reader, Model A2, is used
in overlap mode. The name in the specifi-
cation part of this entry must be the same
as the symbol used in defining the area in
the source program. That area must be of
the same length as the area referred to in
the IOAREA1l entry.

The IOAREA2 entry permits a card to be
read into the area specified in the DTFSR
entry IOAREA1 while the data in the area
specified in the DTFSR entry IOAREA2 (from
the preceding card) are waiting to be moved
to the work area. This may be of signifi-
cance if only a number of selected cards of
the file that is read on the IBM 2501
require extensive processing while all
other cards require very little. If only
one input area is specified, the data from
a card that requires extensive processing
may have to be held available for too long
a period of time to permit continuous card
feeding. In the majority of cases, speci-
fying a second input area permits the IOCS
to maintain the maximum card reading speed
of the IBM 2501.

Do not use the IOAREA2 entry for a file
being read or punched by any other card
input or output device or when the IBM 2501
is used in non-overlap mode.

OUAREA=name

This entry is used in conjunction with the
INAREA entry and specifies the name of the
output area used by a combined file. The

name specified must be the symbol used in

defining the area in the source program.

OUBLKSZ=n

This entry is used in conjunction with the
OUAREA entry to specify the length of the
autput area required by a combkined file.
The specification n is the numker of bytes
in the area. The maximum area length per-
mitted is 80 bytes. The minimum length of
the output area is one byte.

OVERLAP=NO

This entry specifies that the file is to be
processed in non-overlap mode. If this
entry is omitted, the file is processed in
overlap mode.

When the OVERLAP=NO entry is used, the
IOCS routines that are inserted in the
problem program at the time of assembly
require less storage space than they
require when this entry is omitted.

PFORMTNn=xxXyy

This entry applies to combined files only.
It allows you to check a specified field
(or fields), in which data is to ke
punched, for all blanks. These fields are
checked in those cards of a combined file
that are not read but only punched.

The keyword of this entry is PFORMTn,
where n is any number from 0 to 9. The n
allows you to write up to ten different
PFORMTn entries per file and thus have a
maximum of ten fields checked. The xx
specifies the first and the yy the last
card column of the field to be checked.
For columns 1 through 9, the leading zero
is required.

If the field does not contain all
blanks, the PUT macro instruction is not
executed. Instead, the IOCS either trans-
fers control to the routine specified in a
PFXIT entry or it causes a programmed halt.

The specified input area must be large
enough to accommodate the information con-
tained in the columns specified in this
entry.

You may use up to ten different PFORMTn
entries, but only one PFXIT entry for each
file.

Instructions for Processing Card Files 33

PFXIT=namne

This entry is usea in conjunction with the
PFORMTn entry. It specifies the name of
your routine to which the IOCS transfers
control if the test of the field specified
by the PFORMTn entry indicates an error
condition. To return to the main program,
branch to the address contained in register
14,

If a PFORMTn check occurs, the main
program branches immediately to the PFXIT
routine. In this case, the contents of the
work area are not moved to the punch area.

If a PUT macro instruction is issued
that refers to a combined file and the
program branches to the PFXIT routine, a
subsequent GET will place the contents of
the card causing the PFORMTn erxrror into the
work area. If this GET is in non-overlap
mode, it is possible to punch this card by
means of an additional PUT macro instruc-
tion.

If the PFXIT entry is omitted and the
test shows an error conditicn, the machine
halts before punching 1s initiated. This
enables the operator to remove the card
that caused the error condition from the
pre-punch station.

RFORMTN=xxyyz

This entry enables you to check whether a
specified input card field (or fields)
contain(s) numeric characters only or all
blanks.

If the input data are to be read in the
column binary mode, an RFORMT entry must
not be included for the file.

The keyword of this entry is RFORMTn,
where n is any number from 0 to 9. The n
allows you to write up to ten different
RFORMTn entries per file and thus have a
maximum of ten fields checked. The xx
specifies the first and the yy the last
card column of the field to be checked.
For columns 1 through 9, the leading zero
is required. If the field is to be checked
for blanks, z must be a zero (0). If the
field is to be checked for numeric charac-
ters, z must be a one (1). When checking
for numeric characters, the maximum field
length is 16 columns.

When a field is tested for all blanks,
control is transferred to your RFXIT rou-
tine if the field is not blank.

When a field is tested for numeric char-
acters, the test fails if the field con-
tents are not of the following format
(where at least the last character is
numeric with or without an 11 oxr 12 zone
punch) :

34

Ebbecveceeaaan

where b = blank
n = numeric character.

If the input cards are read in overlap
mode from either an IBM 2520 or an IBM
2560, an RFORMT erxrror with a subsequent
branch to your RFXIT routine causes the
IOCS to change the processing mode (from
overlap to non-overlap) for the GET that
detected the error.

Before kranching to the RFXIT routine,
the IOCS places the record containing the
field that led to the error condition into
the work area. If the error card was read
by the IBM 2560 MECM or the IBM 2520 Card
Read-Punch, that card is positioned at the
pre-punch station. The next record will be
read by the next GET or EOM macro instruc-
tion.

In the REXIT routine, save the contents
of register 14 before issuing any macro
instruction. If this is not done the re-
entry address 1s lost during the execution
of the macro instruction in the RFXIT
routine.

You may use up to ten different RFORMTn
entries, but only one RFXIT entry for each
file.

If a SEQNCE error and an RFORMTn error
are both detected in the same card, only
the action specified for the SEQNCE error
will be performed. Refer to the descrip-

tion of the SEQNCE=xxyy entry.

RFXIT=name

This entry is used in conjunction with the
RFORMTn entry. Specify the name of the
routine to which control is to be trans-
ferred if the test of the field srecified
in the RFORMTn entry is negative (l.e., the
tested field contains characters other than
blanks or numerics, respectively). To
return to the main program, branch to the
address contained in register 14.

If this entry is omitted and the test is
negative, the IOCS causes a programmed
halt. This enables the operator to replace
the card that led to the error condition.

SEQNCE=XXyy

This entry enables you to check whether the
contents of a specified field in successive
input records are equal or in ascending
order.

The xx is the first and the yy the last
card column of the card field to be
checked. For card columns 1 through 9, the
lJeading zero is required. The maximum
length of the card field to be checked is
16 columns.

Only one SEQNCE entry is permitted for
each file. If the input data is to be read
in column binary mode, a SEQNCE entry must
not be included for the file.

If the input cards are read in overlap
mode from either an IBM 2520 or an IBM
2560, a sequence error with a subsequent
branch to your SEQXIT routine causes the
I0CS to change the processing mode (from
overlap to non-overlap) for the GET that
detected the errxor.

Before branching to the SEQXIT routine,
the IOCS places the record containing the
Field that led to the error condition into
the work area. If the error card was read
by the IBM 2560 MFCM or the IBM 2520 Card
Read-Punch, it is positioned at the pre-
punch station. The next GET or EOM macro
instruction will cause the next recoxd to
be read. This record will then be compared
with the record preceding the error record.

If the SEQXIT routine contains a macro
instruction, the contents of register 14
should be saved before this macio
instruction is executed. If this is not
done, the re-entry address is lost during
the execution of the macro instruction.

If a SEQNCE error and an RFORMTn error
are both detected in the same card, only
the action specified for the SEQNCE error
will be performed.

SEQXIT=name

This entry must be used in conjunction with
the SEQNCE entry. It specifies the name of
your routine to which control is to be
transferred if a sequence error occurs. To
return to the main program, branch to the
address contained in register 14.

Note: If the sequence-error routine dis-
continues the processing of a program that
is a mainline program, it must contain
CLOSE macro instructions for all disk
files.

TYPEFLE=code

This entry, which is required for all

files, is used to specify the type of file
(i.e., input, output, or combined).

Code Type of File

INPUT A simple input file.

OUTPUT A simple output file.

CMBND A combined file.

WORKA=YES

The WORKA=YES detail entry is mandatory for
all card files. Enter the name of the work
area as the second operand in all GET, PUT,
or CRDPR macro instructions for the parti-
cular file. The length of a work area must
always be the same as that of +the I/0 area.
For additional information regarding the
use of a work area, see Work Areas under
the section Overlapping and Storage Areas.

Imperative Macro Instructions

The imperative macro instructions cause the
desired I/0O operation. They are descrited
below in the following orxder: PUT, GET,
CRDPR, CNTRL, EOM, LOM, WAITC. For the
description of OPEN and CLOSE refer to the
section Instructions for Opening and Clos-~

PUT MACRO INSTRUCTION

This instruction punches logical records
that have been built in a specified work
area.

r————-- T———=————- B et 1
| Name |Operation|Operands]
_______________________________________ 1
| Inamel | PUT |filename,workname |
b [T J

The first operand specifies the name of the
file, the second operand specifies the name
of the work area in which the records are
built.

The PUT macro instruction moves the
record built in the work area to an output
area. When the output area is full, the
I0CS will take the data in that output area
and punch them on the output device speci-
fied in the DTFSR statement for the file.

Individual records for a logical file
may be built in the same work area or in
different work areas, Each PUT macro
instruction specifies the work area in
which the completed record was built. How-
ever, only one work area can be specified
in any one PUT macro instructiocn.

When a card file is processed in the
non-overlap mode, a PUT macro instruction
for the file (1) moves a record from the
work area to the output area, (2) initiates
the punch operation (and the next read
operation in the case of a combined file),
and (3) transfers control to the main pro-
gram when the punch operation has been
completed.

When a card file is processed in the

overlap mode, a PUT macro instruction for
the file (1) moves a record from the work

Instructions for Processing Card Files 35

area to the output area, (2) initiates the
punch (print) operation, and (3) immediate-
ly transfers control to the main program.

If PFXIT has been specified for a com-
bined file and a card to be punched does
not contain all blanks in the field to be
punched, the PUT macro instruction causes
control to be transferred to the specified
PFXIT rxoutine.

The work area is not cleared by the IOCS
after a PUT macro instruction. To avoid
having interspersed characters from preced-
ing records in the output records, ensure
that the records use every position of the
work area, or clear the work area before
the next record is built.

Programming Considerations for Combined
Files

Assuwe that a combined file is being proc-
essed by means of the following sequence of
instructions:

GET F1,Wl

--------------------- no GET, EOM, or PUT
———————————————————— macro instruction
———————————————————— referring to file F1
PUT F1,W2

In this case, the following rules apply:
Non-overlap Mode. The statement PUT F1,W2

causes punching into the card that has been
made available by the statement GET F1,W1l.

Overlap Mode. The statement PUT F1l,W2
causes punching into the card following the
card that has been made available by the
statement GET F1,Wl. The card that has
been made available by the statement

CET F1,Wl has already passed the punch
station when the statement PUT F1l,W2 is
encountered.

GET MACRO INSTRUCTION

This macro instruction makes the next
sequential logical record from an input
file available for processing in a speci-
fied work area.

When a branch condition is detected
{end-of-file, sequence check, or read-
format check), the IOCS transferred control
to the appropriate routine specified in the
EOFADDR, SEQXIT, or RFXIT entry of the file
definition statement.

36

s
| (namel [GET | filename,workname |
(I Lo e J

The first operand specifies the name of
the file. The second operand specifies the
symbolic name of the work area to be used.

The GET macro instruction moves the
record to be processed from an I/0 area to
the work area specified by the second
operand. There can be more than one work
area for a file.

All records from a card file may be
processed in the same work area, or differ-
ent records from the same file may ke proc-
essed in different work areas. In the
first case, each GET macro instruction for
the file specifies the same work area. In
the second case, different GET macro
instructions specify different work areas.
It might be advantageous to plan two work
areas, and to specify each area in alter-
nate GET macro instructions. This permits
the comparison of each record with the
preceding one to determine a possible
change of the control level. .Jdowever, only
one work area can be specified in any one
GET macro instruction.

When a card file is processed in the
non-overlap mode, a GET macro instruction
for the file (1) initiates the reading of
the next record, (2) moves the data from
the input area to the work area when the
read operation is complete, and (3) trans-
fers control to the main program. When a
card file i1s processed in the overlap mode,
the GET macro instruction for the file (1)
moves a record, as soon as it is availakle,
from the input area into the work area, (2)
initiates the next read operation, and (3)
immediately transfers control to the main
program.

When a combined file is processed and
data are to be punched into the input
cards, use one of the programming methods
described in this section in the discussion
of the LOM macro instruction. £A&lso refer
to Programming Considerations for Combined
Files in the preceding description of the
PUT macro instruction.

CRDPR MACRO INSTRUCTION (IBM 2560 MFCM)

This macro instruction (CaRD PRint) applies
only to an IBM 2560 MFCM equipped with the

card-print feature. The format is as fol-

lows:

Because this instruction does not refer
to a specific file, it does not have a file
name as operand 1; the absence of this
operand is indicated by a comma. The sec-
ond operand is the name of the work area,
and the third operand is the name of the
card-print area.

A CRDPR macro instruction moves one line
of information from the specified work area
to the card-print area. However, printing
does not take place until the card is being
moved into and through the print station by
the execution of a subsequent GET, PUT, or
EOM macro instruction. It is therefore
very important to write the CRDPR macro
instruction in proper relationship to PUT,
GET, or EOM macro instructions pertaining
to the same card. The same rules that
apply to the stacker-select CNTRL macro
instruction for the IBM 2560 MFCM are also
applicable to the CRDPR macro instruction
(see No File Name Specified under Stacker
Selection (SS) for the IBM 2560 MFCM).

You must write one CRDPR macro instruc-
tion for each line to be printed. If two
CRDPR macro instructions are issued for the
same line, only the second one will be
executed. At the time of printing, all
print lines, i.e., up to six, are printed
simultaneously. It is not possible to
print only with print head 1 during one
print operation and then with print head 2
and/or another print head during another
print operation. If no data is to be
printed on a line, simply do not enter any
data into the associated print area or, if
processing was perforwed in the area, clear
the area before printing takes place.

CNTRL MACRO INSTRUCTION

The CNTRL macro instruction causes stacker
selection to be performed on the device
associated with the card file. You must
include a CONTROL=YES entry in the DTFSE
file definition statement if you intend to
issue a CNTRL macro instruction for the
card file.

}.
l[name]lCNTRL |filename,SS,n |
_______________]

The first operand specifies the name of the
card file for which the device operation is
described: The mnemonic SS indicates that

stacker selection is to be performed.

Specify the stacker into which the cards
are to be selected as third operand (n).

Stacker Selection (8S8) for the IBM 2520,
Model Al and A2

Either of two stackers can be selected.
Cards fed into the IBM 2520 normally fall
into stackexz 1. The stacker selection
mnemonic (SS) 1is used to select a card into
the stacker, specified by the third operand
n in this macro instruction. Specify 1 for
stacker 1 and 2 for stacker 2.

If two stacker select CNTRL macro
instructions are issued for the same file
before the next GET or PUT macro instruc-
tion for that file, the second CNTRL macro
instruction overrides the first. When
using stacker selection ensure that the
instruction is in proper relationship to
the GET, PUT, or EOM macro instruction
referring to the card to be selected:

1. Processing in overlap mode. The stack-
er select CNTRL must be the last macro
instruction preceding the GET or PUT
‘that refers to the card to be selected.
The example below selects the card, the
contents of which are transferred to or
from the work area by the GET (or PUT)
macro instruction.

______________ no GLT or PUT
______________ referring to file AAA
GET (or PUT) AAA

2. Processing in non-overlap mode. The
stacker select CNTRL must ke issued
after the GET macro instruction or
before the PUT macro instruction that
moves the card to be selected.

The example below selects the card read
by the GET macro instruction.

-------------- no PUT, GET or EOM
—————————————— referring to
—————————————— file AAA

CNTRL AAA,SS,n

The example below selects the card
moved by the PUT macro instruction.

or EOM

______________ no PUT, GET,
______________ referring to
file AAA

Instructions for Processing Card Files 37

Stacker Selection (SS) for the IBM 2560 1.
MFCM

Any of five stackers can be selected.
Since the MFCM connected to a Submodel 4
has no stacker 5, all cards selected for
stacker 5 go into stacker u4.

e e e 1
| Operands }
- To———y——- Operation |
|filename |[code| n |
T B T 1

+
| [filenamel| SS | 1

fmmmmmmms T B i
| (filenamel] SS | Select stacker 2 |

|
.I
|
.].
|
|
R S e i
.I.
|
_l.
|
1

Select stacker 1

[\

Select stacker 3 |

-=-—t
|[filenamel | SS | 5
b § S T

The CNTRL macro instruction for the IBM
2560 MFCM has two forms. One form does not
specify the name of a file, the other does.
The manner in which the forms of the CNTRL
macro instruction are used in the problem
program is different.

No Filename Specified: When the first
operand is omitted, the CNTRL macro
instruction does not specify a file con-
taining a card to be selected; it merely
specifies the desired stacker. If the name
of the file is omitted, its absence must be
indicated by a comma. Hence, the format of
the macro instruction is:

CNTRL ,SS,n

When two CNTRL macro instructions with
this format are issued before the stacker
select operation is performed, the second
CNTRL macro instruction overrides the
first.

Execution of this stacker select CNTRL
macro instruction for the MFCM requires
that the card to be selected is in the
pre-print station when the subsequent PUT,
GET, or EOM macro instruction referring to
an MFCM file is executed.

To ensure that the instruction is in
proper relationship to the GET, PUT, or EOM
macro instruction referring to the card to
be selected, observe the following rules:

38

Processing in overlap mode. If the

card to be selected is punched by a PUT
macro instruction or if the contents of
the card are moved to a work area by a
GET macro instruction, issue the CNTRL
macro instruction prior to any sukse-
quent PUT, GET, or EOM macro instruc-
tion referring to an MFCM file. The
example below illustrates this require-
ment.

PUT (or GET) RARA

—————————————— no PUT, GET, or
—————————————— EOM referring to
—————————————— MFCM files

CNTRL ,SS8,n

Processing in non-overlap mode. If the
card to be selected is punched by a PUT
macro instruction, issue the CNTRL
macro instruction prior to any subse-
quent GET, PUT, or EOM macro instruc-
tion referring to an MFCM file.

The example below illustrates this
requirement.

PUT AAA

—————————————— no PUT, GET or
—————————————— EOM referring to
-------------- MFCM files

CNTRL ,SS,n

There is one exception to the above
usage. Between the PUT macro instruc-
tion for a card to be selected and the
CNTRL macro instruction for this card,
a GET macro instruction for the same
file may be inserted. The example
below illustrates this exception.

PUT ARA

______________ no PUT, GET, or
______________ EOM referring to
______________ MFCM files

GET AAA

______________ no PUT, GET, or
______________ EOM referring to
______________ MFCM files

CNTRL ,SS,n

If the card to be selected is read by a
GET macro instruction, another GET,EOM,
or PUT macro instruction referring to
the file must be issued prior to the
CNTRL macro instruction for this card.
The example below illustrates this
requirement.

————————————

______________ any ccmbination of
______________ macro instructions
______________ referring to
______________ another file

GET AAA

(or PUT ARAA

or EOM AAR)

______________ no pUT, GET, or
______________ EOM referring to
______________ MFCM files

File Name Specified: When the first oper-
and is present, the CNTRL macro instruction
specifies the file containing a card to be
selected. Therefore, the format of the
macro instruction is:

CNTRL filename,SS,n

If this format is used, the functions
are the same as described for the stacker
select CNTRL macro instruction for card
files that are to be processed on the IBM
2520, Models Al and A2,

EOM MACRO INSTRUCTION (COMBINED FILES)

This macro instruction (Entexr Overlap Mode)
applies only to combined files for which a
previous LOM (Leave Overlap Mode) macro
instruction was issued.

F +
|[name]|LOM [£ilename |
________________ PR |

Enter EOM in the operation field and the
name of the file to which the macro
instruction applies as the operand.

This macro instruction causes (1) the
next card to be read into the input area,
and (2) subsequent GET macro instructions
referring to the same file to be -executed
in overlap mode. Processing of the file in
overlap mode begins immediately after the
LEOM macro instruction has been executed.
For further details regarding the use of
EOM macro instructions, refer to Program-
ming with LOM and EOM Macro Instructions
below.

LOM MACRO INSTRUCTION (COMBINED FILES)

This macro instruction (Leave Overlap Mode)
applies to combined files for which overlap
mode was specified.

Enter LOM in the operation field and the
name of the file to which the macro
instruction applies as the operand.

When a LOM macro instruction is issued,
processing of the file in non-overlap mode
begins when the next GET macro instruction
for the specified file is executed. This
permits reading a card and punching data
into the same card of a combined file that
is being processed in overlap mode. If a
LOM macro instruction is issued for a par-
ticular file, all subsequent GET macro
instructions for that file are performed in
non-overlap mode until an EOM macro
instruction is issued.

Programming with LOM and EOM Macro
Instructions

If a card has to ke read and then punched,
it must be xread by a GET macro instruction
in non-overlap mode. There are three pos-
sible ways to cause the GET macro instruc-
tion to operate in non-overlap mode during
this reading and punching of the same card:

1. Provide an OVERLAP=NO detail entxry in
the file definition statement for the
file. In this case, the IOCS generates
GET and PUT routines for this file that
operate in non-overlap mode.

2. Do not provide an OVERLAP=NO detail
entry in the file definition statement
for the file and, in the source pro-
gram, issue an LOM macro instruction
between the OPEN and first GET macro
instructions for the file. In this
case, GET and PUT routines that operate
in the overlar mode are generated for
the file. However, all GET macro
instructions for the file operate in
non-overlap mode.

3. Do not provide an OVERLAP=NO detail
entry in the file definition sStatement
for the file and, in the source pro-
gram, precede each GET macro instruc-
tion with a LOM macro instruction and
follow each GET with a test to deter-
mine if a punching operation is to be
performed on this card. If not, opera-
tion of this file can be changed back
to the overlap mode by an 3SOM macro
instruction.

The first method keeps storage require-

ments at a minimum, but results in a
decrease of program speed.

Instructions for Processing Card Files 39

The second method is the most satisfac-
tory solution when almost all cards of a
file must be both read and punched. The
program speed does not decrease as much as
with the first method because the PUT rou-
tines will operate in the overlap mode.

The third method is usually the most
satisfactory solution when only a few spec-
ified cards in a combined file must be both
read and punched. When this method is
used, each card is read in the non-overlap
mode and can therefore be subsequently
punched.

fiowever, when punching is not required,
the program immediately begins operation in
the overlap mode. This method requires
some additional main storage positions for
the extra LOM and EOM macro instructions,
but it results in a program that runs at
nearly the same speed as a program operat-
ing entirely in the overlap mode.

The coding below is an example of the
use of the LOM and EOM macro instructions.
This coding example assumes that (1) a
combined file (AAA) is to be processed and
(2) data i1s to be punched into each card of
the file that contains a 7-punch in column
1. It is further assumed that an area
named WORKAAA has been defined.

COMPR1 LOM AAA

COMPR2 GET AAA,WORKAAA
CLI WORKAAA,C'7'
BE PUNCHR
EOM AAA
B COMPR1

PUNCHR —— e
PUT AAA,WORKAAA
B COMPR2

The macro instryction "LOM AAA" causes
the subsequent GET for the file AAA to be
executed in non-overlap mode. This permits
the punching of data into the same card
that has been read by means of the GET
macro instruction. If punching is required
(a 7-punch in column 1), control is trans-
ferred to the punch routine (PUNCHR). The
PUT macro instruction for the file may be
followed immediately by a branch to the GET
macro instruction for the file because the
system is still operating in non-overlap
mode.

If punching is not required (no 7-punch
in column 1), the EOM macro instruction is
executed, which causes the operating mode
for the file to be changed back to overlap.

40

WAITC MACRO INSTRUCTION

The format of this macro instruction (WAIT
Card) is:

,_
!
|
!
1
!
1
[
1
1
I
|
|
|
!
|
1
|
[
|
i
i
|
1
1
I
i
|
|
!
|
|
1
i
!
i
|
1
|
|
t
|
-

Since the WAITC macro instruction neith-
er refers to a particular file nor requests
a particular function, no operand is
required.

The WAITC macro instruction causes the
problem program to wait for the completion
of all pending card and printer I/O opera-
tions kefore the next sequential instruc-
tion is executed. This macro instruction
allows you to estaklish uniform operating
conditions for all card and printer I/0
devices that are used in the program.

In a program using the IOCS, a WAITC
macro instruction must precede the
appropriate programmed halt statement if
one of the following three conditions
exists:

1. Card-input is read in overlap mode.
(In the case of a read error, the WAITC
macro permits a programmed halt to
occur, thus allowing the replacement of
the card in exrorx.)

2. Card-input is read on an MFCM in over-
lap mode from one hopper and in non-
overlap mode from the other hopper.
(Function of the WAITC macro
instruction as abkove.)

3. The FETCH macro is used to load another
phase of a multi-phase program into
main storage.

Cxcept for condition 2 above, a WAITC
macro instruction need not be issued for
the replacement of an error card if the
cards of the file are to be read in non-
overlap mode.

Programming with the WAITC Macro
Instruction

A GET macro instruction that refers to a
card file wmay or may not immediately
initiate a read operation. This depends on
the operating condition of the I/0 device
involved. If the initiation of the I/O
aperation is delayed, the IOCS places the
device request into a waiting queue. The
IOCS handles the device requests in this
waiting queue and executes the appropriate
I/0 operation as the requested I/0 devices
become available.

[—————== T B ittt R ittt ke e iy 1
| | | | | Number of Cards to be |
|] | | | Returned |
I | | I et e 1
|] | WAITC | Number of | | Non-error |
|I/0 Device |Mode of Operation | required |Dummy GETS | Error Feed | Feed

T e e T fommm oo e fommmomm e :
| 2501 |Non-overlap | No | 0] 2 | |
| e Fommmmmm e frmmmm oo fommmm oo e 1
| |Overlap with one I/0 area | Yes | 1 | 3 | |
[G — oo frmmm o nee e o m oo 1
| |Overlap with two I/0 areas] Yes] 2 | 4 | |
pommmmm e o rmmmmmmm e fommmmmmmmem frmmmmmmmmm - frmmmmmmmoen 1
| 2560 I I | I | I
] Feed 1 |[Non-overlap | No* | 0 | 3 | 3

| e e frmmmm oo frmmmm e ommmmmm oo 1
| |overlap] Yes** | 1 | 4 | 3
prmmmmmmmm o oo m e e fommmmmmmmen e frmmmmmmm e m 1
| 2560 | | | | | |
| Feed 2 |Non-overlap | No* | 0 | 2 | 2
e fmmmmmmm e frmmm oo frmmmm oo fommmm oo 1
| |Overlap] Yes** | 1 | 3 | 2 |
e e e -t- " ———-4 e i
] 2520 |Non-overlap | No | 0 | 2 | |
T e e frmmmm o frmmmmmmm e fommmmmm oo frmmmmmmm—- 1
| |Ooverlap | Yes | 1] 3 | |
| S —— P L L F L 4
| *WAITC macro instruction is required if a file in the other feed is processed in |
| overlap mode. |
| *¥*A dummy GET is required for both files. |
e e e e e o e e e e 2 e A e o o e e e J
Figure 12. Programming with the WAITC Macro Instruction -- Halt and Restart Information

When a GET macro instruction is. issued,
the IOCS makes the desired card record
available to the problem program in the
specified work area. If the problem pro-
gram determines that this record contains
an error, you can provide a halt (HPR
instruction) to enable the operator to (1)
remove and correct the error card, (2)
return it to the hopper, and (3) resume
normal system operation.

Since you have no means to determine the
status of the waiting queue at the time the
error is detected or the exact position of
the error card in the I/0 device, the
standard restart procedures cannot be
applied.

Before writing the HPR instruction, you
must issue a WAITC macro instruction to (1)
establish uniform operating conditions for
all card and printer I/0 devices and (2)
determine the exact position of the error
card.

After the execution of the WAITC macro
instruction, the waiting list contains no
pending I/0 device requests, except those
for card printing. The error card (to be
fed as the first card on restart) is deter-
mined by the number of cards that have to
be returned to the input deck after the
non-process runout.

The number of cards to be returned to
the input deck depends on the I/0 device
used and, in the case of an MFCM file, on
the mode of operation. For details refer
to Figure 12 which is a summary of the halt
and restart information.

Dummy GET Macro Instructions. To ensure
proper program functions on restart, i.e.,
resume processing with the corrected card
record, issue either one or two dummy GET
macro instructions as shown in Figure 12.
For the explanations below, processing in
the overlap mode is assumed, unless it is
stated that the information apglies to
files that are processed in the non-overlap
node.

a WALTC macro
of the card fol-

After the execution of
instruction, the contents
lowing the error card are already in the
I/0 areas Therefore, the first GET macro
instruction that is encountered after
restart causes the record from the card
following the error card to be moved into
the work area. To make sure that the con-
tents of the corrected error card have keen
moved into the work area before normal
processing is resumed, the first GET macro
instruction encountered after restart must
be a dummy GET, i.e., no processing must be
performed on the record moved into the work
area by means of this GET macro instruc-
tion. If an IBM 2501 is used to read the

Instructions for Processing Card Files 41

cards for a file and two I/0 areas have
been defined for this file, two dummy GET
macro instructions are required.

If an IBM 2560 MFCM is used to process
two input and/or combined files in one
program, an error card in one file requires
one dummy GET macro instruction on restart
for each of the files with one exception:
Only one dummy GET macro instruction is
required for the file that contains the
error card if (1) the other (non-error)
file is an input file whose cards are read
in non-overlap mode and (2) no GET has yet
been issued for the non-error file. You
must provide a switch to determine whether
or not a GET has already been executed for
the non-error file. This is illustrated in
the coding example shown in Figure 13.

A GET macro instruction for a file that
is to be processed in overlap mode may be
preceded by a CNTRL macro instruction
referring to the same file. If this GET
macro instruction detects an error card, do
one of the following in your restart rou-
tine:

1. Repeat the CNTRL macro instruction
after the dummy GET macro instruction
for the file in your restart routine.

2. Branch to the CNTRL macro instruction
preceding the GET macro instruction
that detected the error card.

Similar rules apply if two files are
processed on the IBM 2560 MFCM in one pro-
gram. Any file-dependent CNTRL macro
instruction that precedes the last GET
macro instruction in either file must be
repeated after the dummy GET macro instruc-
tion for the file and before resuming nor-
mal processing. A preceding file-
independent CNTRL macro instruction (no
file name specified) need be repeated only
once.

Figure 12 is provided to facilitate
programming of restart routines and to
furnish you with the required card-handling
information. You must inform the operator
about the number of cards to be returned to
and placed in front of the remaining cards
of the input deck. Any run-out cards that
are not to be returned to the input deck
must be placed into the proper stacker
manually.

A halt caused by the IOCS (due to a
machine check) may occur during or
immediately aftex your restart routine, and
the number of cards in the I/O device may
be less than stated in the appropriate
standard procedure. In this case, only
those cards must be stacked manually which
were in the card feed of the I/C device at

42

the time the halt occurred and they do not
have to be returned to the resgective hop-
per.

The coding example in Figure 13 illus-
trates programming with the WAITC macro
instruction. The example includes a sim—
plified restart routine. For the purpose
of this coding example, it is assumed that:

1. two files (AAA and BBB) have been
defined to be read in the two feeds of
the IBM 2560 MFCM,

2. file AAA is to be processed in the
overlap mode and the cards of this file
are to be fed from hopper 1 of the 2560
MFCM. This file may be an input or a
combined file,

3. file BBB is an input file whose cards
are to be read in non-overlap mode, and

4, any card of file AAA that does not have
a l-punch in column 1 is an error card
and must be replaced.

Only those instructions that illustrate
programming with the WAITC macro instruc-
tion are shown in Figure 13, These
instructions are identified by sequence
numbers in parentheses in the rightmost
column of Figure 13. These sequence num-
bers are used as references in the explana-
tions below.

r———-== To——————== B T i T————= 1
|Name |Operation|Operand |Instzr|
| | | | Sgnce]|
e s oo m oo fommm- 1
| l. | | |
| B 1 | |
| |- | | [
	GET	BBB, WORK2	(1)
	MVI	SW+1,X'00°"	(2)
	-		
	-		
	-]		
	CNTRL	BBB,SS, 4	(3)
	-		
B			
{ -			
RETPT	CNTRL	ARR, SS, 2 Py	
	GET	AAA, WORK1 I 5	
	CLI	WORK1,C'1"	&)
	BE	NOERR	
	WAITC		(8)
	HPR	X'FFF', 0	9
	GE	AAA, WORK1 1oy	
SW	B	BYPASS] (1)	
i [GET	BBB, WORK2 112y		
	CNTRL	BBB,SS, 4	€13)
BYPASS	B	RETPT	(aw)
NOERR	. [
[«			
i I S o J			
Figure 13. Coding Example -- Programming

with the WAITC Macro Instruc-—
tion

If a card of file AAA does not contain a
l1-punch in column 1, the branch to NOERR
(7) is not performed and the program exe-
cutes the WAITC macro instruction (8) that
precedes an HPR instruction (9). On
restart, the program executes either one or
two dummy GET macro instructions. Only one
dummy GET macro instruction for file AAA
(10) is executed if no GET macro instruc-
tion has yet been executed for the file
BBB. In this case, the branch instruction
named SW (1l1) is executed and the second
dummy GET macro instruction for file BBB
(12) and the stacker select CNTRL macro
instruction (13) for this file are
bypassed. Control is returned to the prob-
lem program by a branch to RETPT to repeat
the CNTRL macro instruction preceding the
GET macro instruction that caused the error
card to be detected.

If a GET macro instruction has already
been executed for the file BBB at the time
the error card is detected, the branch
instruction named SW (11) is not executed.
This instruction has been changed to a
no-operation (BC 0). instruction by means of
the MVI instruction (2) following the GET
macro instruction (1) for the file BBB.

The CNTRL macro instruction for file BBB
(3) is only effective when no error card is
detected.

If an error card is detected, four cards
have to be returned for file AAA and two
cards for file BBB.

If the cards of the file BBB are to be
read in overlap mode, instructions (2) and
(11) have to be omitted.

If the cards of a combined file are also
to be card-printed and this file is to be
processed in non-overlap mode, consider the
following:

Unless successive cards are to be read
which are not to be punched, a GET macro
instruction for a card does not initiate
card movement. Card movement is initiated
by the PUT macro instruction for the
preceding card. Therefore, you must issue
a dummy GET macro instruction prior to the
WAITC macro instruction to ensure that the
desired card-print operation for the card
preceding the error card is properly exe-
cuted.

This is further explained in the coding
example shown in Figure 14.

The coding example in Figure 14 is based
on the following assumptions:

(1) +the first card of the file CMBF has
already been read;

(2) data is to be punched into all input
cards; and

(3) all cards that do not contain a
l-punch in column 1 are error cards
and must be replaced by the operator.

The sequence numbers shown in the right-
most column of Figure 14 are used as
references in the explanations below.

If the card that is made available by
the normal GET (1) 1s not an error card,
the next PUT for the same file (8) causes
data to be printed on the preceding card.
If the card made available by the normal
GET 1s an error card, the dummy GET (4)
causes the error card to be moved past the
punch station and the card preceding the
error card is properly card-printed. On
restart, the corrected error card is read
by means of the normal GET (1), punched by
means of the subsequent PUT (8), and card-
printed at the time this PUT macxo
instruction is executed for the following
card.

DR S s T 1
Operation|Operand

T
|Name | | Instr]|
| | ! | Sgnce}
e frmmmmm o fommmmm oo -
| |- I | I
	- I		
	-	I	
REPT	GET	CMBF , WRKC	(1)
	CLI	WRKC,C"1"	2)
	BE	8, NERR	(3)]
	GET	CMBF, WRKC	()
]	WAITC		(5)
	HPR	X'FFF',0	(&)
	B	REPT	()
INERR	.		
	-		
I	-]
	PUT	CMBF, WRKC	(8)
1	CRDPR]	(9)	
	B	REPT	
	-		
1	l l		
I § TP 1 ____ d			
Figure 14, Coding Example -- Programming

with the WAITC Macro Instruc-
tion Involving Card Printing

The programming considerations that
apply to card printing are also agpplicable
to stacker-select CNTRL macro instructions
without a file name as the first operand.

Instructions for Processing Card Files 43

Instructions for Processing Printer Files

The IOCS routines to process printer files
can be included in the problem program
through the use of the macro instructions
described below.

Printer files are always organized
sequentially. The records in a printer
file have to be unblocked format-F records.
The length of each record must not exceed
the length of a print line.

DTFSR Statement

This file definition statement describes
the characteristics of the printer file to
be processed. The name field of the header
entry must contain the name of the file,
and the operation field must contain DTFSR.
For ease of reference, the detail entries
to be used in the operand field of the
DTFSR statement for printer files are des-
cribed below in alphabetical order.

BLKSIZE=n

This entry specifies the minimum length of
the areal(s) to be used by a printer file.
The value of n must be equal to or less
than the number of bytes of the reserved
area(s). You must specify a BLKSIZE entry
for all printer files even though the
IOAREALl entry is not provided for a printer
using the standard carriage.

Maximum area lengths acceptable to the
IOCS are 120, 132, or 144 bytes, depending
on the number of print positions available.
One byte is the minimum length you must
specify for a printer file.

CONTROL=YES ‘

Provide this detail entry if a CNTRL macro
instruction is to be issued for the file.
The CNTRL macro instruction causes the
printer to perform form spacing and/or form
skipping.

DEVICE=code

This entry is mandatory for all files. It
specifies the I/0 device to be used to
process the particular file. One of the
following specifications must be entered
immediately following the equal sign(=) in
this entry.

uy

Code Explanation

PRINTER A file is to be printed by an IBM
2203 Printer with a standard car-
riage or by an IBM 1403 Printer.

PRINTLF A file is to be printed on the
lower feed of an IBM 2203 Printer
with the dual-feed carriage.

PRINTUF A file is to be printed on the
upper feed of an IBM 2203 Printer
with the dual-feed carriage.

Note: If both feeds of an IBM 2203 Printer

with dual-feed carriage are used, write
separate DTFSR statements for the file
printed on the lower feed and for the file
printed on the upper feed. If the applica-
tion redquires only one feed of the dual-~
feed carriage, the lower feed must be used.
In this case, the DEVICE=PRINTER entry and
not the DEVICE=PRINTLF entry must be
provided in the printer-file DTFSR state-
ment.

IOAREAl=name

This entry applies only if DEVICE=PRINTLF
or DEVICE=PRINTUF has been specified. It
designates the name of the I/0 area to ke
used by the printer file. The specified
name must be the symbol used in defining
the area in the problem program.

For a printer file for which
DEVICE=PRINTER has been specified (standard
carriage or single file on lower feed of
dual-feed carriage), do not provide the
IOAREALl entry. The printer automatically
uses the first 144 main-storage positions
as a print buffer (printer outrut area).
You cannot use these 144 main-storage posi-
tions in the problem program.

Two files printed on the dual-feed caxr-
riage require two IOAREA1l entries, i.e.,
one for each file. The print areas for the
lower and upper feed of the dual-feed car-
riage must be defined as contiguous areas
in main storage. The print area for the
lower feed precedes the print area for the
upper feed (see Figure 15).

Note that you must specify a work area
in addition to an I/O area. Refer to the
description of the WORKA=YES entry.

[T = m——m— e B it 1
| Lower-feed] Upper-feed |
| Print Area] Print Area |
e e e T J
A A

| |

| |

|Address of |Address of

| Lower-feed Area |Upper-feed Area
(R - L e e e e
Figure 15. Print-Area Format for Dual-Feed

Carriage

PRINTOV=YES

Include this entry for a printer file if a
PRTOV macro instruction referring to this
file is used in the source program.

TYPEFLE=OUTPUT

This entry, which is required for all prin-
ter files, is used to specify the type¢ of
file.

WORKA=YES

The WORKA=YES detail entry is mandatory for
all printer files. Enter the name of the
work area, which must be defined in your
problem program, as the second operand in
your PUT macro instructions for the parti-
cular file. The length of a work area must
always be the same as that of the I/0 area
(if specified). For additional information
regarding the use of a work area, see Work
Areas under the section Overlapping and
Storage Areas.

Imperative Macro Instructions

The imperative macro instructions for proc-
essing sequential printer files are des-
cribed in the following order: PUT, CNTRL,
PRTOV. For a description of OPEN and CLOSE
refer to the section Instructions for Open-
ing and Closing Files.

PUT MACRO INSTRUCTION

This instruction prints logical records
that have been built in a specified work
area.

TOperationiOperands H

] | £ilename, workname |
| . L L

The first operand specifies the name of the
file; the second operand specifies the name
of the work area in which the records are
built. The PUT macro instruction moves the
record from this work area to an output
area. When the output area is full, the
IOCS takes the data in that area and prints
them on the output device specified in the
file definition statement for that file.

Individual records for a logical file
may be built in the same work area or in
different work areas. Each PUT macro
instruction specifies the waork area in
which the completed record was built. How-
ever, only one work area can be specified
in any one PUT macro instruction.

A PUT macro instruction for the printer
file (1) moves a record from the work area
to the output area, (2) initiates the print
operation, and (3) immediately transfers
control to the main program.

The IOCS does not clear the work area
when the PUT macro instruction is executed.
To prevent having interspersed characters
from preceding records in the output
record, ensure that

a) the records use every position of the
work area, or

b) the work area is cleared before the next
record is built.

CNTRL MACRO INSTRUCTION

The CNTRL macro instruction for printer
files causes form spacing or form skipping.
A CONTROL=YES entry must be included in the
file definition statement for a printer
file if one or more CNTRL macro instruc-
tions are issued for the file.

=== N i ——-T -= - -1
|Name |Operation|Operands |
p=——-- e 1
| Inamel | CNTRL |£filename,code,n,m |
. Lo e b

The first operand specifies the name of
the file for which the device operation is
to be performed. As the second operand,
enter the mnemonic SP for form spacing or
SK for form skipping. The mnemonics SP and
SK as well as the operands m and n are
described in detail below.

Form Spacing (SP) for Printers

The form spacing mnemonic SP is used to
control line spacing. The operands n and m
specify the number of lines to be spaced; n
specifies immediate spacing (i.e., spacing
when the CNTRL macro instruction is
executed), and m specifies delayed spacing
(i.e., spacing after the next line has been

Instructions for Processing Printer Files 45

(i.e., spacing after the next line has been
printed by means of a PUT macro
instruction) . The values of both m and n
range from zero to three (0 = no spacing,
i.e., printing on the same line; 3 = two

blank lines, i.e., printing on the third

line) .

[T T T T e e T T e e e 1

| Operands | |

p-——- r=——7-—-=q Operation |
|

e T
|5P | n | |Space n (n =0, 1, 2 oxr 3) |
| | | |lines immediately

e Tt B I
|1SP | n | m |Spacen (n =0, 1, 2, or 3) |
|] |]lines immediately and

| | | Jm (m =0, 1, 2, or 3) lines |
|]] |after printing

e B 1
Sp | | m |Spacem (m =0, 1, 2, or 3) |
| | | |lines after printing |
[S I 1

You may omit either operand n or m. If
operand n is omitted, indicate the absence
of the operand by a comma.

Example: CNTRL filename, SP,,2.

Both delayed spacing and immediate spac-
ing may be specified in a single CNTRL
macro instruction preceding a PUT macro
instruction for the same file.

The form will then be spaced n lines
before, and m lines after the PUT macro
instruction is executed. If two separate
CNTRL macro instructions are issued (one
for the delayed spacing and one for the
immediate spacing) it is immaterial which
of the two instructions is issued first.
Normally, however, only one CNTRL is
issued, e.g., CNTRL filename,SP, 1,2 (space
one line immediately and two lines after
printing) .

If a delayed-spacing CNTRL macro
instruction is not used before the next PUT
macro instruction for the file, the form is
automatically spaced one line after print-
ing. If two delayed-spacing CNTRL macro
instructions are issued before the next PUT
macro instruction for the file, only the
second CNTRL macro instruction is effec-
tive. If both delayed spacing and skipping
are specified before a PUT macro instruc-
tion for the file, only the last operation
specified will be performed.

To increase the rate of output, use
delayed instead of immediate spacing when-
ever possible.

46

Form Skipping (SK) for Printers

You can control the skipping of lines of a
printed form using the form skipping mne-
monic SK. Use operands n and/or m to spec-
ify the channel of the carriage control
tape to which the form is to ke skipped
immediately and/or after printing of a
line.

[m——meoo e i 1
] Operands | |
t———7-—— —9 Operation

lcodel n |m | |
T R Tt S T
] SK | n | |Skip to carriage-tape channel]
| | | In (n=1 2,...,12) immediately |
e et - —mime
]| SK | n |m |Skip to carriage-tape channel]|
		In (n=1,2,...,12) immediately	
		land to carriage-tape channel	
			m (m=1,2,...,12) after
i			printing
R ST			
SK		m	Skip to carriage-tape channel]
			m (m=1,2,...,12) after
		lprlntlng	
[NSV SV R, _ _—

You may omit either operand n or m. If
operand n is omitted, indicate the absence
of the operand by a comma.

Example: CNTRL filename,SK,,12.

When you issue two delayed skipping
CNTRL macro instructions before the next
PUT macro instruction, only the skipping
specified in the second CNTRL macro
instruction is effective. When both del-
ayed and immediate skipping are specified
either in one or in two successive CNTRL
macro instructions, skipping is pexrformed
as indicated in both specifications togeth=-
er (i.e., skip to channel n before print-
ing, and to channel m after printing). To
increase the rate of output, use delayed
rather than immediate skipping whenever
possible,

PRTOV MACRO INSTRUCTION

pmmmm e == -+ --
lfllename n[,address] |

Use this macro instruction
(PRinT-OVerflow) for printer files to ena-
ble the program to recognize the end of a
page. In the operand field, you must spec-
ify the name of the file to which the
instruction pertains and the carriage-tape
channel indicator (n equal to 9 or 12) to
be tested. If you provide your own routine
to which the program should branch on an
overflow condition, specify the name of the
routine as the third operand.

The PRTOV macro instruction allows you
to check for printer-overflow conditions by
testing whether the channel 9 or channel 12
indicator has been set on:

e Dbefore the execution of the last
(preceding) PUT macro instruction refer-
ring to a printer with the standard
carriage,

e Dbefore the execution of the last PUT
macro instruction referring to a printer
with the dual-feed carriage when only
the lower feed is used, and

¢ before the execution of the next to last
PUT macro instruction referring to a
printer with the dual-feed carriage when
both feeds are used.

However, if a skip has been performed or
more than one line has been spaced after
the last PUT macro instruction (or after
the next to last PUT if both feeds of a
dual-feed carriage printer are used), a
punch in channel 9 or 12 that may then be
sensed is lost and cannot be determined by
a PRTOV macro instruction.

The program branches to your end-of-page
routine i1f the tested indicator is on and
the name of your routine has keen specified
as the third operand. 1In the end-of-page
routine, any IOCS macro instruction (except
PRTOV) may be issued, e.g., to print page
totals and, upon a skip to channel 1, head-
ing lines on the new page. At the end of
the routine, control must be returned to
the IOCS by branching to the address con-
tained in register 14.

If IOCS macro instructions are used in
the end-of-page routine, the contents of
register 14 must be saved before these
instructions are executed.

If a third operand has not keen speci-
fied in the PRTOV macro instruction, an
automatic skip to channel 1 is performed
when the tested indicator is on.

The DTFSR file definition statement must
have a PRINTOV=YES entry when a PRTOV macro
instruction is issued for the file.

Instructions for Processing Printer Files 47

Instructions for Processing Printer-Keyboard Files

Input and output records for printer-
keyboard files nust be unblocked format-F
records. The input record length may range
from 2 to 511 bytes, the output record
length, from 1 to 511 bytes. However, if
the simulated carriage-control tape feature
is used, the output length is limited to
125 bytes.

The IOCS routines to process input or
output files on the IBM 2152 Printexr-
Keyboard can be included in the problem
program through the use of the macro
instructions described in this section.
Use the DTFPK file definition statement to
describe your file. Printer-keyboard out-
put files with carriage control also
require a DTFLC statement to define a line-
counter takle. This line-counter table
simulates a carriage-control tape.

DTFPK Statement

This file definition statement describes
the characteristics of the file to be
processed. Since both printexr-keyboard
input and output files can be processed in
a single program, you must write a separate
DTFPK statement for each file. However,
only one printer-keyboard input and one
printer-keyboard output file can be defined
in a single program. If both input and
output operations are performed on the
printer-keyboard in a single program, and
if skipping or use of the print-overflow
routine is desired, take into consideration
that line advances resulting from READ
macro instructions are not registered by
the line-counter.

The name field of the header entry must
contain the file name, and the operation
field must contain DTFPK.

The detail entries to be made in the
operand field describe the file and specify
symbolic addresses of routines and areas
used during the processing of the file.
They may appear in any order. For ease of
reference, they are discussed below in
alphabetical order.

BLKSIZE=n

This entry specifies the length of the
orinter-keyboard input or output records.
The specification n must be equal to, or
greater than, the number of bytes contained
in the longest record. The maximum record
length is 511 bytes. If a line-counter
table (LCTABLE=YIS or PRINTOV=YES) is spec-

48

ified for an output file, the record length
and, therefore, the BLKSIZE must not exceed
125 bytes to avoid line overflow and the
resulting unaccountable line advances. The
minimum record length is two bytes for
input files (to allow for EOF indicator
/%), and one byte for output files.

Note that the actual length of an input
record is determined not by the BLKSIZE
entry, but by pressing the EOT
(End-of-Transmission) key to indicate the
end of a data record.

A BLKSIZE entry is mandatory for input
and output files.

CONTROL=YES

This entry is required if a CNTRL macro
instruction is issued for an output file.

A CNTRL macro instruction causes spacing or
skipping of the form on the printer-
keyboard. If skirpring is desired, enter
the detail entry LCTABLE=YES in the DTFPK
statement and define a line-counter table
by the DTFLC statement.

Note that a CONTROL=YES entry is
required if LCTABLE=YES is specified.

EOFADDR=name

This entry is mandatory for input files.

It specifies the name of the routine in the
problem program to which the IOCS branches
if the WAITF macro instruction in the prob-
lem program detects an end-of-file condi-
tion, In the end-of-file routine you can
perform any operation required for the end
of the file. Usually, a CLOSE macro
instruction is issued.

To indicate the end-of-file condition on
the printer-keyboard enter /* as the first
two characters of a record.

Note: If in a mainline program the end-of-
file routine calls EOJ, you must also close
all disk files in this end-of-file routine.

IOAREA=name

This entry specifies the name of the input
or output area to be used for the file.
The name nust be the symbol used to define
the area in the source program. The area
must be large enough to accommodate the
largest record as defined in the BLKSIZE
entry. The I/0 area is not cleared by the
IOCs.

The IOAREA entry is mandatory for an
input file. Although the length of the
input area must be equal to the maximum
record size, the records entered need not
£fill the entire area, since the operator
indicates the end of the data record by
pressing the End-of-Transmission (EOT) key
on the printer-keyboard. If you omit the
IOAREA entry for an output file, then the
output area (INQOPT) allocated at the time
the Monitor is generated is used for the
file. This output area is provided if the
generated Monitor contains the inquiry
facilities. (For a description of the use
of the printer-keyboard output area in the
Monitor refer to the section The Inquiry

Program) .

LCTABLE=YES

This entry is optional for an output file.
It indicates the presence of a table that
simulates a carriage-control tape for the
printer-keyboard. The table associates
lines with channel numbers. These channel
numbers may then be specified in a CNTRL
macro instruction in the program to provide
form skipping, and in a PRTOV macro
instruction to provide overflow-printing.

You must describe the line-counter table
by the DTFLC statement.

PRINTOV=YES

Include this entry if a PRTOV macro
instruction for an output file is used in
the program to test an overflow condition.
If PRINTOV=YES is specified, control and
Iine-counter routines are generated auto-
matically and the entries CONTROL=YES and
LCTABLE=YES are not required in the DTFPK
file definition statement. However, you
must define a line-counter table by a DTFLC
statement.

RECSIZE=(register)

This entry specifies a register that con-
tains the length of the output record at
the time a PUT macro instruction is execut-
ed in the program. You may specify in
parentheses any one of the registers 8
through 13, or a symbolic name that has
been equated to one of the registers 8
through 13.

In your problem program, lcad the length
of the record into the specified register
before issuing the corresponding PUT macro

instruction. The maximum record length is
511 bytes. If a line-counter table is
specified, the record length must not

exceed 125 bytes. The register must con-
tain the length of the record in binary
format. If the record length loaded into

] decimal value (1 to 254)

the register exceeds the length specified
in the BLKSIZE entry, the record is trun-
cated on the right by the number of charac-
ters in excess of the specified BLKSIZE.

The RECSIZE entry is optional. However,
you are strongly recommended to use this
entry to save processing time. If you omit
the entry, the number of bytes specified in
the BLKSIZE entry will be printed; e.g., if
your record is 5 kytes long, BIKSIZE=125,
and RECSIZE is not specified, 125 charac-
ters (5 as desired and 120 blanks) are
printed.

TYPEFLE=code

This mandatory entry is used to specify the
type of file.

Code Type of File
INPUT An input file
OUTPUT An output file

If you use both a printer-keyboard input
and a printer-keyboard output file, you
must issue a DTFPK statement for each file.

WORKA=YES

The WORKA=YES entry is mandatory for
printer-keyboard output files. Enter the
name of the work area as the second operand
in your PUT macro instructions for the
particular file. The IOCS assumes the
length of a work area to be the same as
that of the I/0 area, or to be equal to the
value in the RECSIZE register if RECSIZE
was specified. When WORKA=YES is omitted,
a warning message is given, but the assem-
bly continues.

DTFLC Statement

The DTFLC statement describes the charac-
teristics of the simulated carriage-control
tape. It is used for an output file on the
printer-keyboard to define the line-counter
table. If DTFLC is specified, either the
LCTABLE and CONTROL entries or the PRINTOV
entry must be included in the DTFPK state-
ment for the file.

The format of the DTFLC statement is as
follows:

The first cperand (formsize) refers to a
specifying the

Instructions for Processing Printer-Keyboard Files 49

total number of lines on the form. The
remaining operands, E1,E2,...,E88, refer to
five-digit decimal values. The first three
digits indicate a line number (001 to 254),
to which a channel number (01 to 12) is
assigned in the fourth and fifth digits.
Only one channel must be assigned to a
line, but more than one line can be
assigned to a channel.

Channel 01 must be specified at least
once. There are no limitations as to the
sequence of entries. The maximum number of
line and channel entries is 48. The name
field of the DTFLC statement must be blank.

An example of the entries in the DTFLC
is given below. Note that high-order zeros
nust be present in each entry except the
formsize entry.

Example:

e N s 1
|Name|0per-10perand |
| |ation] |
e o e
| |pTFLC| 72,00601,01203,06612,06712 |
T T T
| | I |
| | | Number of Line Channel |
|] }lines Number Number |
| | | (Formsize)]
Ll A 3
Note: The line-counter registers only

those carriage advances that are initiated
by the execution of PUT macro instructions
(i.e., the automatic one-line space which
occurs during the execution of a PUT) and
by CNTRL macro instructions. The line
counter does not register carriage advances
caused by:

1. any external manipulation of the form,
i.e., advancing the carriage by hand or
switching the On-line, Off-line key;

2. execution of READ macro instructions
for the printer-keyboard;

3. line overflows due to repeated printing
with suppressed spacing (CNTRL with
delayed space 0).

It is your responsibility to considex
the effects of the above conditions during
the execution of the program.

Imperative Macro Instructions

The imperative macro instructions for proc-
essing printer-keyboard files are described
in the following order: PUT, READ, WAITF,
CNTRL, PRTOV. For a description of OPEN
and CLOSE refer to the section Instructions
for Opening and Closing Files.

50

PUT MACRO INSTRUCTION

I +
l[nam@]lPUT | filename,workname]
[S L. J

The first operand specifies the name of
the file; the second operand specifies the
name of the work area in which the recoxds
are built. You can have more than one work
area if you issue separate PUT macro
instructions for writing records from each.
area.

When a printer-keyboard outrut file is
processed, a PUT macro instruction (1)
moves a record from the work area to the
printer-keyboard output area, (2) initiates
the print operation, and (3) returns con-
trol to the main program. The length of
the record moved to the output area is
derived from the BLKSIZE entry in the DTFPK
statement, or, if RECSIZE is specified,
from the contents of the register specified
under the RECSIZL entvy.

Note that the IOCS dces not clear the
work area or the output area after a PUT
macro instruction. You should ensure that
no characters from a preceding record
remain in the work area.

READ MACRO INSTRUCTION

it Sttt btenk bttt 1
| Name loPeratlonlOperand |
f=—-—-< pommmmmmme TR 1
][name]lREAD | filename |
PN S, e J

This macro instruction is used for printexr-
keyboard input files. The operand
specifies the name of the file from which
the record is to ke read.

The READ macro instruction transfers the
characters typed on the printer-keyboard to
the I/0 area specified in the IOAREA detail
entry of the DITFPK file definition state-
ment. An incorrectly typed-in record can
be cancelled by pressing the Cancel key.
The input area is then cleared and the
input record can be re-entered.

The READ macro instruction is executed
in the overlap mode, i.e., after the READ
has been issued, program execution contin-
ues while the operator enters the input
record. The actual length of the record is
determined by pressing EOT. The maximum
length of the record is defined by the
BLKSIZE entry. If the maximum length is
reached before EOT is pressed, the keyboard
locks. Before the input record can actual-

ly be processed, you must issue a WAITF
macro instruction to ensure that the record
has been completely transferred to main
storage.

Note that the input area is not cleared
by the IOCS when you issue a READ macro
instruction. If your input records do not
have the same length, clear the input area
pefore issuing a READ macro instruction.

WAITF MACRO INSTRUCTION

The operand specifies the name of the file
for which you issue the WAITF macro
instruction. The WAITF macro instruction
ensures that the execution of the preceding
READ macro instruction has been successful-
ly completed. You must issue a WAITF macro
instruction before processing the record
read by the associated READ macro instruc-
tion.

CNTRL MACRO INSTRUCTION

Use the CNTRL macro instruction to
line spacing or form skipping for a
printer-keyboard output file. You must
include a CONTROL=YES entry in the DTFPK
file definition statement if you issue a
CNTRL macro instruction.

specify

For skipping, you must also specify the
DTFPK detail entry LCTABLE=YES and a DTFLC
statement to define a line-counter table
simulating the carriage-control tape.

The CNTRL macro instruction contains CNTRL
in the operation field, and the name of the
file as the first operand. As the second
operand (code), enter the mnemonics 3P (for
spacing) or SK (for skipping). The mnemon-
ics SP and SK, and the operands n and m are
described in detail below.

Form Spacing (SP) for the Printer—-Keyboard

Enter SP as the second operand (code) in a
CNTRL macro instruction to specify line
spacing. The operands n and m specify the
number of lines to be spaced; n specifies
immediate spacing (i.e., spacing when the
CNTRL macro instruction is executed), and m
specifies delayed spacing (i.e., spacing
after the next line has been printed by

Note:

means of a PUT macro instruction). The
values of both m and n range from zero to
three (0 = no spacing, i.e., printing on

the same line; 3 = two blank lines, i.e.,
printing on the third line).
e e et 1
| Operands | |
——————r——— Operation |
|code|] n | m | |
e e
[sP | n | |Space n(n = 0, 1, 2 or 3) |
| | | |lines immediately |
e o i
ISP | n | m |Space n{n =0, 1, 2, or 3) |
			lines immediately and
		Jm(m = 0, 1, 2, or 3) lines	
			after printing
e S			
1sp		m	Space m{m = 0, 1, 2, or 3)
]llnes after printing	
(S Y A S]

You may omit either operand n or m. If
you omit operand n, indicate the absence of
the operand by a comma.

Example: CNTRL filename,SP,,2.

Both delayed spacing and immediate spac-
ing may be specified in a CNTRL macro
instruction preceding a PUT macro instruc-
tion for the same file. If you use two
separate CNTRL macro instruction for
immediate and delayed spacing, specify
immediate spacing before delayed spacing in
order for both specifications to ke effec-
tive. If a delayed-spacing specification
precedes an immediate-spacing specifi-
cation, only the immediate spacing is exe-
cuted.

If a delayed-spacing CNTRL is not issued
before the next PUT macro instruction for
the same file, the form is automatically
spaced one line after printing. When two
delayed-spacing CNTRL macro instructions
are issued before the next PUT macro
instruction for the file, only the second
delayed-spacing CNTRL is effective. If
both delayed spacing and skipping are spec-
ified before a PUT macro instruction for
the file, only the last operation specified
will be performed.

1f you issue a CNTRL macro instruc-
tion with delayed space 0, the automatic
space performed during the execution of the
PUT macro instruction is suppressed and the
type head remains in the print position
following the' last character printed.
Hence, if the end of the print line is
reached during execution of a succeeding
PUT macro instruction, an automatic advance
to the next line occurs. This advance is
not registered in the line counter table.

To increase processing time, use delayed
rather than immediate spacing whenever
possible.

Instructions for Processing Printer-Keyboard Files 51

Form Skipping (SK) for the Printer-Keyboard

Enter SK as the second operand (code) in a
CNTRL macro instruction to specify form
skipping. Operands n and/or m specify the
channel to which immediate and/or delayed
skipping is to be performed.

[T T T T T o 1
| Operands | |
e i T Operation 1
|code] n |m | |
e Bt e
|ISK | n | |Skip to carriage-tape channel]
| | | In (n=1,2...,12) immediately |
T i T T T
ISK | n |m |Sk1p to carriage-tape channel]
| |]l In (n=1,2,...,12) immediately |
|] | |and to carriage-tape channel |
|] | |m (w=1,2,...,12) after

N | | |printing [
T S O T
|SK | |m |Skip to carriage-tape channel}
| | | Im (m=1,2,...,12) after |
| | | lprlntlng |
{ SRR IR AP SO J

You may omit either operand n or m. If
you omit operand n, indicate the absence of
the operand by a comma.

Example: CNTRL filename,SK,,12.

When two delayed-skipping CNTRL macro
instructions are issued before the next PUT
macro instruction, only the skipping speci-
fied in the second CNTRL macro instruction
is effective.

When you specify delayed and immediate
skipping in two separate CNTRL macro
instructions, issue the specification for
immediate skipping first in order for both
specifications to be effective. If you
specify delayed skipping first, only the
immediate-skipping specification is execut-
ed.

If you use form skipping for a printer-
keyboard output file, you must define a
line counter table in the program. This
requires a LCTABLE=YES entry (unless
PRINTOV=YES has been specified) in the
DTFPK statement and a DTFLC line-counter
definition statement.

To increase processing time use delayed

rather than immediate skipping whenever
possible.

52

PRTOV MACRO INSTRUCTION

This macro instruction (PRinT OVerflow)
applies to printer-keyboard output files.
In the operand field, specify the name of
the file to which the instruction pertains
and the channel indicator (n equal to 9 or
12) to be tested. If you provide a routine
to which the program should branch on an
overflow condition, specify the name of
this routine as the third operand.

The PRTOV macro instruction allows you
to check for printer overflow conditions by
testing the channel 9 or the channel 12
indicator. The channel 9/12 indicator is
set on whenever a PUT or CNTRL macro
instruction increases the line counter to
or beyond the line number associated with
channel 9 (12). The indicator is set off
after it has been tested by a PRTOV state-
ment or when channel 1 is reached.

If you specify the address of a routine
as third operand, the program kranches to
this routine if the tested indicator is on.
In the specified routine, you may issue any
IOCS macro instruction except PRTCV. This
allows you, for instance, to print overflow
page headings, At the end of the routine,
return control to the IOCS by kranching to
the address contained in register 14.

If you use IOCS macro instructions in
your routine, you must first save the con-
tents of register 14 to prevent losing the
return address. If you do not provide your
own overflow routine, an automatic skip to
channel 1 is performed when the tested
indicator is on.

Include a PRINTOV=YES in the DTFPK file
definition statement when you use the PRTOV
macro instruction for a printer-keyboard
output file, and provide a line-counter
table simulating the carriage-control tape
by means of a DTFLC statement.

Instructions for Processing Magnetic Tape Files

The IOCS provides routines for processing
magnetic tape files. These files are proc-
essed sequentially. Records in magnetic
tape files can be blocked or unblocked
format~F, format-V, or format-U records.
You must describe your magnetic tape file
in the source program using the DTFMT file
definition statement. To cause the
required I/O operation, you have to issue
imperative macro instructions. The DTFMT
file definition statement and the impera-
tive macro instructions referring to the
magnetic tape files are described in this
section.

DTFMT Statement

The DTFMT statement applies to magnetic
tape files only. The name field of the
header entry must contain the name for the
file and the operation field must contain
DITFMT. For ease of reference, the detail
entries to be made in the operand field are
described below in alphabetical order.

ALTTAPE=code

This entry specifies the symbolic address

of a magnetic tape drive that will be used
as an alternate when a magnetic tape file

has two or more reels (volumes) of data.

Code Magnetic Tape Drive

SYSIPT System input tape drive.
SYSOPT System output tape drive.
SY¥Snnn Any other magnetic tape drives

attached to the system. The
specification nnn may be any num—
ber from 000 to 019,

You can assign the physical tape-drive
address to the symbolic address either when
building the system or by means of an
assign (ASSGN) statement read by the Job
Control program before the problem program
is executed. If you use the ASSGN state-
ment, you can mount the second (fourth,
sixth, etc.) reel of tape on any one of
the magnetic tape drives attached to the
system by merely assigning that drive to
the specified symbolic address. You could
then mount the first (third, fifth, etc.)
reel of tape on the magnetic tape drive
specified in the DEVADDR entry of the DTFMT
statement for the file.

The method described above allows the
operator sufficient time to mount the third
reel on the magnetic tape drive spécified
in the DEVADDR entry while the records on

the second reel are processed. He can
mount the fourth reel on the magnetic tape
drive specified in the ALTTAPE entry while
the records on the third reel are proc-
essed; and sO on.

You can specify the detail entry ALTTAPE
for both input and output files. If you
specify it for an output file, the IOCS
switches the magnetic tagpe drives in accor-
dance with the ALTTAPE specification on
detecting an end-of-volume condition, i.e.,
when the reflective marker at the end of
the magnetic tape is sensed.

If you issue the entry for an input
file, the functions of the IOCS vary
depending on the type of labels (if any)
specified in the file.

1. Standard Labels. The IOCS switches the
magnetic tape drives in accordance with
the ALTTAPE specification.

2. Non-standaxd Labels or No labkels. The
I0CS has no means of determining the
end of a volume. When a tapemark is
sensed, the IOCS transfers control to
the EOFADDR routine, which you may code
to determine whether an end-of-file or
an end-of-volume condition exists. In
the case of an end-of-volume condition,
issue an FEOV macro instruction. This
causes the IOCS to switch the magnetic
tape drives in accordance with the
ALTTAPE specification, and then to
return control to the instruction fol-
lowing the FEOV macro instruction.

Note: ALTTAPE must not be specified when
READ=BACK or DTFEN OVLAY 1s specified.

I/0 device assignment is descriked in
detail in the SRL publication IBM
System/360 Model 20, Disk Programming Sys-
tem, Control and Service Programs, Form
C24-9006.

BLKSIZE=n

This entry specifies the length of the I/0
area to be used by the file. The specifi-
cation n must be equal to the length, in
bytes, of the area reserved in the problemn
program. If the record format is variable-
length, n must be equal to the number of
bytes contained in the longest block of
records.

The maximum length acceptakle to the
IOCS is 4095 pytes, which is equal to the
maximum block length for IBM 2415 Magnetic

Instructions for Processing Magnetic Tape Files 53

Tape Units connected to an IBM System/360
Model 20. The minimum block length is 18
bytes, except for tape input files
containing checkpoint records. For these
tape files, the minimum block length is 20
bytes.

If unblocked records or records of unde-
fined format are to be processed in a work
area, consider the following: A GET macro
instruction causes the IOCS to move the
number of bytes specified in the detail
entry BLKSIZE from the input area to the
work area. A PUT macro instruction causes
the IOCS to move this number of bytes from
the work area to the output area. There-
fore you must ensure that the address of
the work area you use for an output file is
equal to or lower than the upper main-
storage limit minus the BLKSIZE
specification.

Note: For variable-length unblocked
records, the first four bytes of the work
area contain control information (two bytes
record length and two bytes binary zeros).

CKPTREC=YES

This entry is required if a tape input file
contains checkpoint records interspersed
among the data records. When this entry is
provided, the IOCS recognizes the check-
point records and bypasses themn.

Magnetic tape files created by means of
the Model 20 IOCS do not contain any check-
point records. Therefore, this entry is
required only if a magnetic tape is to be
read that was created by means of another
program and contains interspersed check-
point records.

If the detail entxy CKPTREC is specified
for a tape input file, you must specify a
block length (BLKSIZE entry) of at least 20
bytes.

A group of checkpoint records is iden-
tified by a header and a trailer identifi-
er, each of which contains the characters
///bCHKPTb// (where b = blank). You must
ensure that none of the input blocks cor-
tain this character combination in the
first twelve positions.

The IBM Systenv/360 Model 20 DPS IOCS
does not provide for the creation of check-
point records on magnetic tape.

CONTROL=YES

This entry is required if a CNTRL macro
instruction is to be issued for the file.

54

Note: If,

The CNTRL macro instruction causes the
associated magnetic tape drive to perform
operations such as tape rewind, rewind and
unload, backspace, and so on.

DEVADDR=code

This entry specifies the symbolic address
of a magnetic tape drive to be associated
with the particular file. The symbolic
address represents a physical tape drive
address.

Code Magnetic Tape Drive

SYSIPT System input tape drive.

SYSOPT System output tape drive.

SYSnnn Any other tape drives attached to

the system. The specification nnn
may be any number from 000 to 019.

You may assign a physical tape drive
address to the symbolic address either when
building the system or by means of an
assign (ASSGN) statement read ky the Job
Control program before the proklem program
is executed. If the ASSGN statement is
used, a reel of tape may be mounted on any
magnetic tape drive that is availakle at
the time the job is ready to be run; this
drive need then merely be assigned to the
specified symbolic address. Refer to the
SRL publication IBM_System/360 Model 20,
Disk Programming System, Control and Ser-
vice Programs, Form C24-9006.

EOFADDR=name

This entry is mandatory for input files.

It specifies the name of the routine in the
problem program to which the IOCS branches
on an end-of-file condition. In that rou-
tine, you can perform any operation
required for the end of the file, e.g.
issue a CLOSE macro instruction. However,
you must not issue a GET macro instruction
for this file in your EOFADDR routine.

in the end-of-file routine, you
wish to discontinue the processing of a
program that is a mainline program, you
must firxst close all disk files.

An end-of-file condition is detected by
reading a tapemark and the characters EOF
in the trailer lakel when standard labels
are specifiéd. If standard labels are not
specified, the IOCS assumes an end-of-file
condition when it reads a tapemark. Since
the IOCS does not distinguish ketween an
end-of-file condition and an end-of-volume
condition if no labels or non-standard
labels are specified, include in your
EOFADDR routine a test to determine whether
EOF or EOV has occurred.

ERRIO=name

This entry specifies the symbolic name of a
two-byte area, in which the IOCS places the
address of:

1. The I/0 area containing the block that
caused an irrecoverable read error (if
the name of the error routine is speci-
fied in the ERROPT entry),

2. The I/0 area containing the wrong-
length record (if the name of the
wrong-length record routine is speci-
fied in the WLRERR entry).

This entry may only be issued if
ERROPT=name, and/or WLRERR=name, and two
I/0 areas are specified.

ERROPT=code

This entry is required for a tape input
file if you do not want to terminate the
job when a tape read error cannot be cor-
rected by the erxor routine.

Code Explanation

IGNORE The block containing the error is
to be handled as if there were no
errors (it is included in the
block count).

SKIP The block containing the error is
to be skipped, i.e., it should not
be made available for processing.
The next block is read from tape
and processing continues with the
first record of that block. How-
ever, the block containing the
error is included in the block
count.

This is the name of a routine in
the problem program to which the
I0CS should branch on a tape read
error. When the IOCS branches to
this routine, the block containing
the error is in the I/0 area.

name

In this routine, you must not
issue any GET macro instructions
for records in the block.contain-
ing the error because a subsequent
GET macro instruction referring to
the file will read the next block
of records. If you use any other
IOCS macro instructions in this
routine, save the contents of
register 14, At the end of this
routine, you must return control
to the IOCS by means of a branch
to the address contained in reg-
ister 14. When this return branch
has been performed, the IOCS exe-
cutes the instruction following

the GET macro instruction that
made the error record available in
the input area.

The next GET macro instruction
referring to the file that con-
tains the block causing the error
will make the first record of the
next block available for process-
ing.

Note: If, in the error routine,
you wish to discontinue the proc-
essing of a program that is a
mainline program, you must first
close all disk files.

This entry also applies to wrong-length
records if the WLRERR detail entry is not
included. Absence of the ERROPT entry
causes the job to ke discontinued automat-
ically when a permanent read error occurs.

FILABL=code

This entry specifies the type of label
processing ta be performed.

Code Type of Processing

STD For a tape input file, standard
labels are to ke checked. For a
tape outgut file, standard labels
are to be written.

NSTD Non-standard labels exist. The

code NSTD is possible for input

files only. Because the non-
standard labels are skipped, the
non-standard lakel set must be
terminated by a tapemark.

NO No labels exist. Note that any
existing volume label on an output
file will be overwritten if you
specify FILABL=NO for an output
file.

For a magnetic tare without lakels, you can
omit the FILABL entry. The IOCS then
assumes that there are no labels.

IOAREAl=name

This entry specifies the name of the I/O
area to be used by the file. This name
must be the symbol used in the DS or DC
statement that defines the area in the
source program.

If the file contains format-vV records,
reserve four bytes of the I/O area for the
blocksize field. The I/0 area must be on a
halfword boundary. An IOREG=(register)
entry is required unless unblocked records
are processed or a work area is used.

Instructions for Processing Magnetic Tape Files 55

IOAREA2=name

In a Model 20, Submodel 5, you can specify
two input or output areas for a file to
permit overlapping of data transfer with
processing operations. The name nmust be
identical with the symbol used in the DS or
DC statement defining the area in the
source program. When you use an IOAREA2
entry you must also specify either IORLG or
WORKA. The I/O area must be on a halfword
boundary. If the file contains format-v
records, reserve 4 bytes of the I/0 area
for the blocksize field.

IOREG={register)

This entry specifies a register that con-
tains either the address of a logical input
record that is available for processing or
the address of the area that is available
for building the next output record.
Inmediately after the equal sign you must
specify a register number enclosed in
parentheses. Any of the registers 8
through 13 can be used. You may also spec-
ify (in parentheses) a symbolic name that
has been equated to one of the registers 8
through 13. You can use one and the same
register for several files.

You must include an IOREG entry in the
DTFMT file definition statement when:

* blocked input or output records are
processed in the L/0 area; or

o variable-length unblocked records are
read backward and are processed in the
input area; or

e TOAREA2, but no WORKA is specified.

The register specified in the IOREG
entry is loaded by the IOCS during the
execution of the Open routine for the file
concerned.

A GET (PUT) macro instruction you issue
for the file causes the IOCS to increment
the contents of the register specified in
the IOREG entry by the number of bytes
contained in the input (output) record.

Omit this entry if you include a
WORKA=YES entry in the DTFMT statement for
the file.

LABADDR=name

You may use up to eight user labels in
addition to the IBM standard file header or
trailer labels. If so, write a routine to
check or build the user label(s). Specify
the name of the routine in the LABADDR
entry. The IOCS branches to this routine
after it has processed the IBM standard

56

label or a preceding user label. (Refer to
the description of the LBRET Macro

Instruction). If this entry is omitted for
an input file containing user labels, these

additional labels are not checked.

For input files, you can determine the
type of label from the first three Lkytes of
the label contained in the IOCS label area.
For output files, the IOCS indicates the
type of label that is to be written by
putting one of the following codes into the
low-order byte of register 8.

Code Type of Label

c 'o" Header label (when a file is
opened)

C 'F' End-of-file label (on an end-of-
file condition)

c 'v* End-of-volume label (on an end-of-

volume condition)
The high-order byte is blank.

The IOCS places the address of the IOCS
label area into register 9 at the time a
LABADDR routine 1s being entered. At the
end of a LABADDR routine, you must issue a
LBRET macro instruction to return to the
IoCs. (Refer to the description of the
LBRET Macro Instruction).

Note: Do not destroy the contents of
registers 14 and 15. Refer to the discus-
sion on register usage under Programming
Considerations.

READ=code

This entry specifies the direction in which
an input tape is to be read. If you omit
the entry, the IOCS assumes forward read-
inge.
Code Explanation
FORWARD A magnetic tape is to be read in
forward direction.
BACK A magnetic tape is to be read
backward. However, you cannot
specify READ=BACK when the tape
input file contains variakle-
length block records or when the
entry ALTTAPE is specified for the
file.

RECFORM=code

This entry specifies the record format of
the file, The IOCS can handle all of the
different types of records in the same
program. However, all records in one file
must be of the same format. If you omit
the RECFORM entry, the IOCS assumes
unblocked format-F records.

Code Record Format

FIXUNB Unblocked format-F records.
FIXBLK Blocked format-F records.
VARUNB Unblocked format-V records.
VARBLK Blocked format-V records.
UNDEF Format-U records.

For a description of the record formats
refer to Data Files.

When variable-length records are speci-
fied for a tape output file, the I/O area
must include four additional bytes in which
the block-length indication is built. If
these records are unblocked, the four addi-
tional bytes are used to build the length
indication for each record since each
fecord is at the same time a block. If the
records are blocked, the four additional
bytes are used to build the length indica-
tion for the entire block. The minimum and
maximum record lengths permitted are as
shown below, Lengths are given in number

of bytes.
[mmTme s e R 1
] | Minimum | Maximum]
----- B B Eatatntal
| Record Type |Input]output]| Input]|Output]
T Fommmm oo foommm frmmmme 1
| FIXUNB | 1] 18 | 4095] 4095 |
prmmmmm e O fmmmm e oo oo mmee 1
| FIXBLK | 1 | 18 | 4095] 4095 |
frmmm oo D ommam Fom—mv o 1
| VARUNB* |14 | 14] 4091] 4091 |
e ——— oo S Fomomm o 4
] VARBLK* |14 | 14 | 4091 4091 |
prmmmmmm oo fmmme pommon oo pommmmm 1
| UNDE |1 | 18 | 4095] 4095 |
i [L L 4
| * Excluding the four bytes required i
| for record length indication. 1
e e d
RECSIZE=code
This entry applies to magnetic tape files
containing either blocked format-F or
format-U records.
Code Explanation
n The operand n specifies the number
of bytes in an individual record
for a tape file containing blocked
format-F records.
(r) For a tape file containing recoxds

of undefined format, the operand
(r) specifies a register number
enclosed in parentheses, or a
symbolic name (in parentheses)
that has been equated to a reg-
ister number. You may use any of
the registers 8 through 13. The
IOCS uses the register specified
to indicate the record length of

an input file or to derive from
its contents the record length of
an output file. You must place
the number of bytes contained in
an output record into the speci-
fied register before you can issue
a PUT macro instruction for the
file.

REWIND=code

This entry is used to specify the desired
rewind and unload operation when an OPEN oxr
CLOSE macro instruction is issued or when
an end-of-volume or end-of-file condition
is sensed.

Code Operation

UNLOAD Rewind the magnetic tape when an
OPEN macro instruction is issued,
and rewind and unload the magnetic
tape when a CLOSE macro instruc-
tion is issued or an end-of-volume
or an end-of-file condition
occurs.

NORWD No rewind is desired. This entry

is mandatory for files to be read
backward.

If the REWIND entry is not included, an
OPEN or CLOSE macro instruction, an end-of-
volume, or an end-of-file condition causes
the magnetic tape file to be rewound but
not unloaded.

TPMARK=NO

This entry applies only to unlabeled tape
output files (FILABL=NO). If this entry is
included, it will prevent the writing of a
tapemark as the first record on a tape. If
you omit this entry, a tapemark will be
written as the first record.

TYPEFLE=code

This entry is used to specify the type of
file (i.e., input or output).

Code Type of File
INPUT An input file
OUTPUT An output file

VARBLD=(register)

You must specify this entry if you process
an output file with blocked format-Vv
records and if no work area is specified.
The operand (register) must contain a reg-
ister number enclosed in parentheses, or a
symbolic name (in parentheses) that has
been equated to a register numker. Any of

Instructions for Processing Magnetic Tape Files 57

the registers 8 through 13 can be speci-
fied. The contents of the register, which
are loaded by the IOCS, indicate how many
bytes are available in the output area for
building the next record.

After a PUT macro instruction is issued
for a format-V record, the IOCS calculates
the number of bytes still available and
loads this number into the register speci-
fied in the VARBLD entry. You must .then
compare the length of the next record with
the available space. If the record will
not fit, you must issue a TRUNC macro
instruction to cause the completed block of
records to be written on the magnetic tape
file. When the block has been written the
current record is placed into the beginning
of the output area and becomes the first
record in the next block. For information
regarding the PUT 'and TRUNC macro instruc-
tions, refer to the descriptions under PUT
Macro Instruction and TRUNC Macro Instruc-—
tion.

WLRERR=name

This entry does not apply to files contain-
ing undefined records. It specifies the
name of a routine to which the IOCS will
branch if a wrong-length physical record
(block) is read.

When the IOCS branches to the specified
routine, the I/0 area contains the wrong-
length record. In the routine, you may
perform any desired operation for wrong-
length blocks except issuing a GET macro
instruction that refers to any logical
record in the wrong-length block, because
the GET macro instruction following the GET
that detected the length error makes the
first record of the next block available
for processing. A wrong-length block is
included in the block count.

Note: Do not destroy the contents of
registers 14 and 15. Refer to the discus-
sion on register usage under Programming
Considerations.

At the end of your routine, return to
the IOCS by providing a branch to the
address contained in register 14. When
this return branch has been performed, the
IOCS executes the instruction following the
GET that made the wrong-length record
available for processing.

Whenever blocked format-F records or
format-vV records are specified
(RECFORM=FIXBLK, =VARUNB, or =VARBLK), the
machine check for wrong-length records is
ignored, and the IOCS generates a pro-
grammed check of record length. For
blocked format-F records, the record length
is considered incorrect if the block that

58

is read 1s not an integer multiple of the
record length (specified in the RECSIZE
entry) up to the maximum length of the
block (specified in the BLKSIZE entry).
This permits short blocks of records to be
read without a wrong-length record indica-
tion.

For format-V records, the record length
is considered incorrect if the length of
the block is not the same as the block
length specified in the first two bytes of
the block.

If unblocked format-F records are speci-
fied (RECFORM=FIXUNB), the IOCS utilizes
the machine check to determine whether or
not a record is of correct length. Speci-
fying RECFORM=FIXUNB causes the number of
bytes specified in the detail entry BLKSILE
to be inserted in the generated XiO
instructions. Any record whose length is
not equal to the specified numker of Lytes
causes a wrong-length-record indication.

Note that the IOCS does not provide the
number of bytes contained in the wrong-
length record.

If you omit the WLRERR entry and a
wrong-length record is detected by the
I0Cs, one of the following results:

1. If you included the ERROPT entry for
this file, the IOCS treats the wrong-
length record as an error klock and
handles it according to your
specifications for an error (IGNORE,
SKIP, or branch to the error routine).

2. If you omitted the ERROPT entry, the
job will be terminated.

WORKA=YES

This entry specifies that records are to be
processed in a work area rather than in an
I/0 area. The name in the DS or DC state-
ment that reserves the work area must be
used as the second operand of each GET or
PUT macro instruction for the file. You
must specify WORKA=YES i1f you include an
IOAREA2 entry but omit the IOREG entry.

Note: Define the work area on a halfword
boundary if it is used to process blocked
format-V records.

Imperative Macro Instructions

The imperative macro instructions for mag-
netic tape files are described in the fol-
lowing order: PUT, GET, CNTRL, TRUNC,
RELSE, LBRET, FEOV. For a description of
OPEN and CLOSE refer to the section
Instructions for Opening and Closing Files.

PUT MACRO INSTRUCTION
This instruction writes logical records

that have been built directly in an output
area or in a specified work area.

R et -~ — !
|[name]|PUT lfllename[workname) |

_____________________ M |

You can write the PUT macro instruction
with one or two operands, depending on the
area in which the records are built.

1. One Operand Specified. Use this format
if output records are to be built directly
in an I/O area. The operand specifies the
name of the magnetic tape file in which you
want to place the record. The file name
must be the same as the one used in the
header entry of the DTFMT file definition
statement.

When blocked records are processed
directly in an output area, the use of an
I/0 register is required (refer to the
description of the IOREG=(register) detail
entry under DTFMT Statement). " After an
OPEN macro instruction for the file the I/0O
register contains the first available posi-
tion of the output area. A PUT macro
instrucdtion causes the IOCS to (1) include
the current record in a record block and
(2) change the address in the I/0 register
to identify the next available position of
the output area in which you can build the
next record.

For a file with unblocked records, a PUT
macro instruction causes the IOCS to write
the affected record onto magnetic tape.

You do not need an I/0O register when proc-
essing unblocked records, unless IOAREA2 is
specified for the file.

If blocked format-V records are built in
the output area, specify an additional
register into which the IOCS places the
number of bytes that are still available in
the output area for the next record (refer
to the VARBLD=(register) entry under DTFMT
Statement and to the description of the
TRUNC Macro Instruction).

Note: The IOCS does not clear the output
area after a PUT macro instruction. To
avoid having interspersed characters from
preceding records in your output record,
use every position of the output area or
clear the output area after each PUT macro
instruction that writes a block out on
magnetic tape.

2. Two Operands Specified. Use this for-
mat if recoxrds are processed in a work
area. The first operand specifies the name
of the file. The second operand specifies
the name of the work area freom which
records are moved to the output area. When
an output area is full, the IOCS takes the
data in that output area and writes them
onto magnetic tape. You can use more than
one work area if you issue separate PUT
macro instructions for writing records from
each work area.

If blocked format-V records are built in
a work area, the PUT routine checks the
length of the output record to determine
whether or not the record will fit into the
remaining portion of the output area. If
it does, the IOCS moves the record into the
autput area. If the record does not fit,
the PUT routine causes the completed block
to be written and then moves the record
into the output area.

Do not specify IOREG=(register) if you
use a work area (refer to the description
of WORKA=YES under DTFMT Statement).

Note that the IOCS does not clear the
work area after a PUT macro instruction.
You should ensurxe that no characters from
preceding records remain in the area either
by clearing the work area after each PUT
macro instruction or by using every posi-
tion of the work area.

GET MACRO INSTRUCTION

This macro instruction makes the next
sequential logical record from a magnetic
tape input file available for processing in
either an input area or a specified work
area.

When an end-of-file condition is detect-
ed, the IOCS transfers control to the end-
of-file routine specified by the EOFADDR
entry in the DTFMT statement.

The GET macro instruction may cause a
read-forward or a read-backward oreration.
Specify the type of read operation by the
READ=code entry in the DTIFMT statement.

|£filenamel,worknamel |
___________ e]

You can write the GET macro instruction
with either one or two operands, depending
on the area in which the records are
processed.

Instructions for Processing Magnetic Tape Files 59

1. One Operand Specified. Use this format
if records are to be processed directly in
an input area. The operand specifies the
name of the file from which the record is
to be read. This name must be the same as
the one you used in the DTFMT statement for
the file.

When blocked records are processed in an
input area, you must specify an I/0 reg-
ister that the IOCS needs to identify the
next record to be processed. (Refer to the
description of the IOREG=(register) entry
under DTFMT Statement). This I/0O register
always contains the address of the current-
ly available record. The GET routine plac-
es the proper address into the I/0 reg-
ister.

No I/0 register is needed for a file
with unblocked records, unless IOAREA2 is
specified for the file.

2. Two Operands Specified. Use this for-
mat if records are to be processed in a
work area. The first operand specifies the
name of the file. The second operand spe-
cifies the symbolic name of the work area
to be used (refer to the description of the
WORKA=YES entry under DTEMT Statement).

You can specify more than one work area for
a file if you issue separate GET macro
instructions to move the records into the
different work areas (only one work area
can be specified in any one GET macro
instruction). It might be advantageous to
plan two work areas, and to specify each
area in alternate GET macro instructions.
This allows you to determine a possible
change in the control level by comparing
each record with the preceding one.

An I/0 register must not be used when
the records are processed in a work area.

CNTRL MACRO INSTRUCTION

The CNTRL macro instruction is used to
control magnetic tape functions that are
not concerned with reading data from, or
writing data on, the magnetic tape.
Include a CONTROL=YES entry in the DTFMT
file definition statement if you issue a
CNTRL macro instruction for the file.

t T
|[name]|CNTRL | filename, code]
_______________ U

The control macro instruction contains
CNTRL in the operation field, and the name
of the tape file for which the cperation is
described as the first operand. As a sec-
ond operand, enter one of the mnemonics
listed below to specify the operation.

60

------- T

|Operand |

| (Code) |Operation |
O 1

| Backspace flle, i.e., backspace |

| Jtape to preceding tapemark !

BSR	Backspace record, i.e., kack-
	space tape to preceding inter-
	block gap
— o o e 1	
] ERG	Erase gap, i.e., erase tape to
	produce a gap I
e T e SR	
FSE	Forward space file,
	i.e., forward space tape to
	next tagemark
__ 4	
FSR	Forward space record,
	i.e., forward space tape to]
	next interblock gap
e 1	
REW	Rewind tape
———————— e e	
RUN	Rewind and unload tage
———————— e
JWTM |Write a tapemark |
e N B

BSF (Backsrace File). Use this mnemonic if

you want to backspace the tape file. When
a CNTRL macro instruction with BSF as the
second operand is executed, the IOCS causes
the tape to be stopped at the tapemark
preceding the first data record of the
file. 1In the case of an input file, the
tapemark is read during the next read-
forward operation and the program then
branches to your end-of-file routine. 1In
the case of an output file, the next PUT
macro instruction that refers to the file
causes the tapemark to ke overwritten.

BSR (Backspace Record). Use this mnemonic

if you want to backspace a tape file by one
block. When a CNTRL macro instruction with
BSR as the second operand is executed, the
IOCS causes the tape to be stogped at the
block just backspaced in the proper
position for re-reading during the next
read-forward operation. The IOCS immedi-
ately branches to your end-of-file routine
if the operand BSR refers to an input file
and a tapemark is detected when the macro
instruction has been executed.

ERG (Erase CGap): Use this mnemonic if you
want to erase all signals that may be
recorded on a section of tape; i.e., a
length of blank tape (approximately 3 1/2
inches) is created.

FSF (Forward Space File). Use this mnemon-
ic if you want to skip the remaining part
or all of a tape input file. When a CNTRL
macro instruction with FSF as the second
operand is executed, the IOCS causes the
tape to be stogped immediately beyond the
taremark that follows the trailer label set

(if any). In the case of a file without
labels or with non-standard labels, the
tape is stopped immediately beyond the
tapemark that follows the last block of
data. The IOCS branches to your end-of-
file routine when the tapemark following
the last data record has been encountered.

FSR (Forward Space Record). Use this
mnemonic if you want to skip one block.
When a CNTRL macro instruction with FSR as
the second operand 1is executed, the IOCS
causes the tape to be stopped at the begin-
ning of the block following the one just
skipped. This is the proper position for
reading during the next read-forward opera-
tion. The IOCS immediately branches to
your end-of-file routine if the operand FSR
refers to an input file and a tapemark is
detected when the CNTRL macro instruction
has been executed.

REW (Rewind Tape). Use this mnemonic if
you want to rewind a tape. When a CNTRL
macro instruction with REW as the second
operand is executed, the IOCS causes the
tape to be stopped at the first record on
the tape. This is the proper position for
reading during a read-forward operation.
The record may be (1) a volume label if
standard labels have been specified, (2) a
tapemark or a data record if no labels have
been specified, or (3) a non-standard label
if non-standard labels have been specified.

RUN (Rewind and Unload Tape): Use this
mnemonic if you want to rewind and unload a
tape.

WIM (Write Tapemark): Use this mnemonic if
you want a tapemark to be written.

Special Considerations for BSR and FSR

When you issue a CNTRL macro instruction
for a tape input file with BSR or FSR as
the second operand, you must consider the
relative position of the tape to the record
being processed.

Unblocked Records and No Work Area. When a
CNTRL macro instruction with BSR as the
second operand refers to

(1) a file that is read forward, the tape
is positioned so that the record being
processed is in the proper position to
be re-read during the next read-forward
operation;

(2) a file that is read backward, the tape
is positioned so that the second record
stored on the tape behind the one being
processed is in the proper position to
be read during the next read-backward
operation.

When a CNTRL macro instruction with FSR as
the second operand refers to

(1) a file that is read forward, the tape
is positioned so that the second record
following the one being processed is in
the proper position to be read during
the next read-forward operation;

(2) a file that is read backward, the tape
is positioned so that the record keing
processed is in the proper position to
be re-read during the next read-
backward operation.

Unblocked Records and a Work Area. When a

CNTRIL: macro instruction with BSR or FSR as
the second operand is executed, the tape is
in the same position as if no work area
were used.

Blocked Records and No Work Area. When a

CNTRL matcro instruction with BSR as the
second operand refers to

(1) a file that is read forward, the tape
is positioned so that the klock in the
input area is in the proper position to
be re-read during the next read-forward

pexation;

(2) a file that is read backward, the tape
is positioned so that the second block
stored on the tape behind the one
currently in the input area is in the
proper position to ke read during the
next read-backward operation.

When a CNTRL macro instruction with F3R as
the second operand refers to

(1) a file that is read forward, the tarpe
is positioned so that the second klock
following the one currently contained
in the input area is in the proper
position to be read during the next
read~-forward operation;

(2) a file that is read backward, the tape
is positioned so that the klock in the
input area is in the proper position to
be re-read during the next read-
backward operation.

Blocked Records and a Work Area. A CNTRL
macro instruction with BSR or FSR as the
second operand causes the tape to ke
positioned as if no work area were used,
except when the last record of a block is
being processed. 1In this case, the tape is
positioned as described below.

1. When a CNTRL macro instruction with BSR
as the second operand refers to

(a) a file that is read forward, the
tape is positioned so that the
block following the block whose
last record is currently keing
processed is read during the next
read-forward operation;

Instructions for Processing Magnetic Tape Files 61

(b) a file that is read backward, the
tape is positioned so that the
third block stored on the tape
behind the block whose last record
is currently being processed is
read during the next read-backward
operation.

2. When a CNTRL macro instruction with FSR
as the second operand refers to

(a) a file that.is read forward, the
tape is positioned so that the
third block following the block
whose last record is currently
being processed is read during the
next read-forward operation;

(b) a file that is read backward, the
tape is positioned so that the
block stored on the tape behind the
block whose last record is current-
ly being processed is read during
the next read-backward operation.

For tape output files with blocked
records, you should issue a TRUNC macro
instruction if a partially filled block of
records is to be written on magnetic tape
before a CNTRL macro instruction for the
file is issued.

Effect of CNTRL on Block Count

When a CNTRL macre instruction with BSF,
BSR, FSF, or FSR as the second operand is
issued, the block count written or checked
when using standard labels may be wrong.
The control routine does not update the
block count. If a tape input file with
standard labels is specified and the block
count is incorrect at the end of the volume
or file, a programmed halt occurs.

TRUNC MACRO INSTRUCTION

=== T===" -7 -
|

Name |Operation |Operand |
—mm—=i Fmmmmm oo 1
| [namel | TRUNC | £ilename]
L 1__ S 4

The name of the file to which this macro
instruction (TRUNCate) refers is the only
operand required.

Use this macro instruction when blocked
output records are to be written onto mag-
netic tape. It may be issued for either
fixed- oxr variable-length blocked records.
When you issue a TRUNC macro instruction,
the output area being used to build output
records is considered full. The block of
records in the output area is then written
onto magnetic tape (as a short block) and
the output area is made available for
building the next block of records.

62

The last record included in the short
block is the record that was kullt before
the last PUT instruction preceding TRUNC
was executed. Therefore, if you build
records in a work area and you determine in
the problem program that a record belongs
to a new block, issue a TRUNC macro
instruction followed by a PUT macro
instruction for this particular record.
However, if you build the records in the
output area, determine whether or not a
record belongs to a new block and, if so,
issue a TRUNC macro instruction before you
build the record.

Whenever variable-length blocked records
are built directly in the output area, you
must use the TRUNC macro instruction to
write a completed block of records. When
you issue the PUT macro instruction after
each variable-length record is built, the
output routines supply the numker of bytes
remaining in the output area. From this,
you can determine if the next variable-
length record will fit in the klock. If
not, issue the TRUNC macro instruction to
write out the block and make the entire
output area available for building the
record. The amount of remaining space is
supplied in the register specified in the
VARBLD entry (see VARBLD=(register) in the
description of the DTFMT Statement).

A TRUNC macro instruction causes no
operation if the preceding PUT

o 1is issued after the last record of a
block has been built in the output area;

e causes the last record of a block to be
moved from a work area to the output
area for inclusion in the block.

In either case the entire bklock is written

onto magnetic tape by the PUT macro
instruction.

RELSE MACRO INSTRUCTION

---------- E Sttt
Operation |Operand |

k
| lnamel | RELSE | £ilename |
Lo L S J

The name of the file to which this macro
instruction (RELeaSE) refers is the only
operand required.

You may use this macro instruction when
reading blocked input records from magnetic
tape. RELSE allows you to skip the remain-
ing records in a block and continue proc-
essing with the first record of the next
block, which is read when the next GET
macro instruction is executed.

The RELSE macro instruction can be used,
for instance, in a job in which only the
tirst three recoxrds of each block on mag-
netic tape are to be processed. In this
case you must issue three successive GET
macro instructions followed by a RELSE
macro instruction.

Another example of using the RELSE macxro
instruction is a 3job in which records on
magnetic tape are categorized, and each
category (perhaps a major grouping) begins
with the first record of a block. Categor-
ies can be located readily by checking only
the first record of each block.

The RELSE macro instruction discontinues
deblocking of the current block of records,
which may be either of fixed or variable
length. RELSE causes the next GET macro
instruction to transfer a new block to the
input area and make the first record avail-
able for processing. This GET macro
instruction initializes the I/O register or
moves the first record to a work area.

LBRET MACRO INSTRUCTION

This macro instruction (LaBel RETurn)
applies only to magnetic tape files con-
taining standard user-labels (UHL and/or
UTL) that are to be checked or written.

You must issue a LBRET macro instruction at
the end of your label routine (specified by
the LABADDR entry in the DTFMT statement
for the file) to xeturn to the IOCS after
label processing.

Specify the operand 1 to return to the
IOCS if:

1. an input file with user labels is being
processed and control is to be returned
to the IOCS to eliminate the checking
of one or more user labels. The IOCS
then skips the remaining lakels in the
set and processing continues.

2. an output file with user labels is
being processed and control is to be
returned to the IOCS when the last user
label has been built. The IOCS writes
the last label (from the label output
area) and processing continues. A
LBRET macro instruction with a 1 in the
operand field is always required to
terminate an output label set.

Specify the operand 2 to cause further
label processing for:

1. an input file with standard user labels
to return to the IOCS after each lakel
has been checked. Then the I0CS makes
the next label, if any, availakle for
checking in the label input area. When
the IOCS reads the tapemark following
the label set, it terminates label
processing.

2. output files with user lalkels to return
to the IOCS after each label, except
the last, has been built. The IOCS
causes the writing of the label con-
tained in the label output area. The
IOCS then returns to the LABADDR lakel
routine to allow you to build the next
label. The label set is terminated by
issuing a LBRET macro instruction with
the operand 1. For details on writing
standard labels under control of the
I0CSs, refer to the description of the
LABADDR entry under DTFMT Statement.

The IOCS requires the values it places
into registers 14 and 15 before transfer-
ring control to the LABADDR routine.
Hence, if you want to use one or both of
these registers in the LABADDR routine,
save their contents before you begin using
them. In addition, you must restore these
contents before issuing the LBRET macro
instruction.

FEOV MACRO INSTRUCTION

This macro instruction (Force End Of
Volume) is used for tape input or output
files to force an end-of-volume condition
at a point other than the normal tapemark
(input) or the reflective marker (output).
This indicates that the processing of
records on one volume is considered fin-
ished, but that more records for the same
logical file are to be read from or written
into the following volume.

[————-= e s 1
|Name |Operation |Operand |
p=——==- ommmmmmm o oo i
| [namel | FEOV | filename |
[L i J

The operand contains the name of the
file to which this macro instruction per-
tains; the name must be the same as the one
specified in the header entry of the DTFMT
statement for the file.

When you issue this macro instruction
for an input tape, the IOCS

1. causes the execution of the operation
specified in the REWIND entry,

2. switches to the next reel on another
drive in accordance with the ALTTAPE
detail entry in the DTFMT statement for
the file; and

Instructions for Processing Magnetic Tape Files 63

3. processes the header label (or labels)
as required.

When you issue the FEOV macro instruc-
ticn for an output tape, the IOCS causes
the last block of records to be written, if
necessary, and writes a tapemark, Then
the IOCS

1. causes the writing of the standard
trailer label including the accumulated
block count, and branches to the
LABADDR routine if this is specified;

2. switches to the next reel in accordance

with the ALTTAPE detail entry in the
DTFMT statement for the file; and

6U

3. processes the header label (or labels)
as required.

The following example illustrates the
use of the FEOV macro instruction.

If FILABL=NSTD or FILABL=NO has been
specified for a multi-volume input file,
the I0CS cannot detect an end-of-volume
condition., When a tapemark is detected,
the IOCS transfers control to the EOFADDR
routine, in which you must determine
whether or not an end-of-volume condition
exists. If so, issue a FIOV macro instruc-
tion to have the IOCS perform the end-of-
volume functions in accordance with the
detail entries.

Instructions for Processing Sequential Disk Files

The IOCS provides routines for processing
records of sequential disk files. To
utilize the IOCS functions, you must des-
cribe your sequential disk file in the
problem program using the DTFSD file defi-
nition statement, and issue the appropriate
imperative macro instructions to perform
the desired I/0 operations.

All records in sequential disk files
must be blocked or unblocked format-T
records.

DTFSD Statement

This file definition statement applies to
sequential disk files only. The name field
of the header entry must contain the name
of the file and the operation field must
contain DTFSD. For ease of reference, the
detail entries to be made in the operand
field are described below in alphabetical
order.

BLKSIZE=n

The operand n specifies the length of the
blocks (in number of bytes) that the IOCS
reads or writes. The maximum BLKSIZE you
are allowed to specify is 27000 for blocked
records and U096 for unblocked records.

The specified length must be a multiple
of the record length. Since the IBM 2311
Disk Storage Drive uses a fixed sector
length of 270 bytes, the IOCS adjusts the
specified block length to the next higher
integer multiple of 270. You must take
this into consideration when defining the
I/0 area in the problem program. In the
format-1 file label, however, the original-
ly specified block length, not the adjusted
block length, is entered.

Some block sizes could cause a cylinder
overflow, i.e., not all sectors belonging
to one block would be written on the same
cylinder. The IOCS automatically avoids
this situation. A block that would cause a
cylinder overflow is written as the first
block of the next cylinder. One or more
sectors of the full cylinder may remain
unused. If the writing of a block would
cause an extent overflow, the same tech-
nique is used, i.e., the block is written
as the first block of the next extent (if
available).

The block size of input and correspond-
ing output files should not be different.

COMROUT=YES

This optional entry indicates that a common
I0CS routine is to be generated for several
files of the same type processed by the
same problem program. I/O routines that
fall into this category are (1) input rou-
tines, (2) update routines, and (3) output
routines.

By generating a common routine for sev-
eral files it is possible to reduce the
amount of main storage required for the
simultaneous processing of three or more
files of the same type e.g., three output
files. If only two files are processed
simultaneocusly, the amount of main storage
required 1s not reduced. In some cases, it
is even increased.

CONTROL=YES

This entry is required if a CNTRL macro
instruction is issued for the file. The
CNTRL macro instruction can be used to
initiate a seek operation. Note that this
entry is ignored if you specify two I/O
areas for the file.

DEVICE=DISKI1lF

This entry specifies that a fixed-sector
IBM 2311 Disk Storage Drive (Model 11 or
12) is used as I/0 device for the
sequential-access file. If this entry is
omitted or mispunched, the IOCS assumes the
correct device and issues a warning to the
operator.

DSKXTNT=n

The number n specifies the maximum number
of extents in any one of the volumes for
the file. If the entry is omitted, the
IOCS assumes that there are three extents
for the file. The IOCS uses this informa-
tion to reserve the storage area in which
the addresses of the extent boundaries are
saved. The maximum number of extents per-
mitted is 99 per file.

DTAREX=name

This entry applies to output files only.

If the last extent of the last volume is
filled with data, control is transferred to
the routine specified in the optional entry
DTAREX=name. If you have not specified a
routine, the job is discontinued. The

Instructions for Processing Sequential Disk Files 65

routine specified in the DTAREX entry must
contain the necessary CLOSE macro
instruction(s) . For a mainline program
this includes the closing of all disk
files.

EOFADDR=name

The EOFADDR entry is mandatory for all
input files. This entry specifies the name
of the routine in the problem program to
which the IOCS branches when an end-of-file
condition occurs. In that routine, you can
perform any operation required for the end
of the file. Usually a CLOSE macro
instruction is issued.

If you issue a GET or PUT macro instruc-
tion in your end-of-file routine, a halt
occurs. This halt permits no restart
unless you process an update file. In the
case of an update file, you can make a
restart and continue processing. This
allows you to update, i.e., extend, the
file beyond the EOF record by issuing a GET
macro instruction to read a pseudo record.
Replace this pseudo record by the record to
be added to the file. A subsequent PUT
macro instruction writes the added record
onto disk. After all records have been
added to the file, you must simulate an
end-of-file condition.

An end-of-file condition is detected
when the end-of-file record containing /*b
(where b = blank) in the first three bytes
is read. An end-of-file condition in an
input file can also be detected by an
extent overflow, in case there was not
sufficient space for the end-of-file record
within the extent when the file was written
(see the detail entry DTAREX).

Note: If, in the end-of-file routine, you
want to discontinue/terminate the process-
ing of a program that is a mainline pro-

gram, you must first close all disk files.

ERRIO=name

This entry specifies the symbolic name of a
two-byte area in which the IOCS places the
address of the I/O area containing a block
that caused an irrecoverable read or write
error. Use this entry only if you also
specify ERROPT=name and two I/O areas.

ERROPT=code
Use this entry if you do not want to dis-
continue a job in case a disk read or write

error cannot be corrected by the error
routine.

66

Code
SKIP

Explanation)
The record block containing the

erroxr is to be skipped, i.e., an
input block should not be made
available for processing. This
specification is not permitted for
output files, nor for input files
that are to be updated.

This is the name of a routine to
which the IOCS should branch on a
disk error. An 8-byte error block
that contains information on the
type of error is made available to
the problem program.

name

In the error routine, do not issue
any GET or PUT macro instructions
for records in the block that
caused the read or write error,
because a subsequent GET or PUT
macro instruction referring to the
file will skip that block and
process the next block. To branch
back to the next sequential
instruction following the GET,
PUT, or CNTRL macro instruction
which recognized the error, use
the return address in register 14.

The IOCS provides the address of
the 8-byte error block in a stor-
age area to which you can refer by
using a symbolic address consist-
ing of the name of the file plus
an A-suffix. If, for example, the
name of the file involved is
PAYROLL, the address of the error
block is made available to the
problem program in the storage
area PAYROLLA. If you did not
specify ERRIO=name, the IOCS plac-
es the address of the erxor block
into the storage area PAYROLLA-4,

Note: If, in the error routine,
you want to discontinue the proc-
essing of a program that is a
mainline program, you must first
close all disk files.

The 8-byte error block contains informa-
tion on the type of error, the disk address
where the error occurred, etc. The struc-
ture of the error block is as follows:

Byte 0 =-- first byte of sense information
(status byte); indicates the
following if the corresponding
bit is on:)
Bit 0: not used -- set to zero

1: intervention required

2: end of cylinder

3: equipment check

4: data check

5: seek check

6: no record found

7: track-condition check

Byte 1 -- residual sector count’
This byte indicates the number
of sectors that could not be
processed by a multi-sector I/O
operation
Byte 2 =-- unit status of Channel Status
Word (CSW); indicates the fol-
lowing if the corresponding bit
is on:
Bit 0: not-equal scan
1: status modifier
2: not used -- set to zero
3: busy
L: channel end
5: device end
6: unit check
7: not used -- set to zero
Byte 3 -- used by the IOCS

Byte 4 ==~ displacement of Channel Command
Word (CCW)

This number is added to the CCW

address (bytes 6-7) to compute

the actual address of the CCW

for this operation.
Byte 5 =-- Logical Unit Block dis-
placement

(LUB)

Byte 6~7 - CCW address

Additional information about the opera-
tion in error can be derived from the CCW
itself.

The sum of the CCW address (bytes 6-7)
and the CCW displacement (byte #) is the
actual address of the CCW.
ccw Byte 0: command code

Byte 1: bit 0 = CCW chaining
indicator :
bits 1-7 = sector count
Bytes 2-3: data address (I/0 area)
Bytes U4-5: count-area address
Count Byte 0: not used
Area Bytes 1-2: cylinder address
Bytes 3-4: head address
Byte 5: sector (record) number

For a more detailed description of this
error information refer to the SRL publica-
tion IBM System/360 Model 20, Functional
Characteristics, Form A26-5847. Save the
error information (contained in the.
count-area) , the disk address of the block
that caused the error, and the contents of
the I/0 area, because this information is
essential when an alternate track must be
assigned to replace a defective track. 1In
some cases, a recovery and restart proce-
dure may not be possible. For this reason,
you should always maintain a duplicate of
every file used in the installation.

If you omit the entry ERROPT=code, the
job will be discontinued automatically when
a permanent disk error is detected.

IOAREA1=name

This entry specifies the name of the I/0
area to be used by the file. The name must
be the symbol you specified in the DS or DC
statement defining the area in the source
program. For additional information
regarding the use of the I/0 area, see 1I/0
Areas under Overlapping and Storage Areas.

The length of the area must be equal to
270 bytes or an integer multiple thereof.
If the calculated length is not equal to
270 or an integer multiple thereof, use the
next larger value allowed.

TIOAREA2=name

Two input or output areas can be specified
for a file, to permit overlapring of data
transfer with processing operations in a
Model 20, Submodel 5. The IOAREAZ2 entry
must specify a symbolic name identical with
the one used in the DS or DC statement that
sets up the second I/0 area. Both I«/O
areas must be of the same length.

The length of the area must be 270 bytes
or an integer multiple thereof.

If two I/0 areas are used for disk
files, you must also specify a work area or
include the entry IOREG= (register).

IOREG= (register)

This entry specifies a register which con-
tains either the address of an input record
that is available for processing or the
address of an output area in which you can
build your next record. As operand, you
may specify any of the registers 8 through
13 (enclosed in rarentheses) or a symkolic
name (in parentheses) that has been equated
to one of the registers 8 through 13. You
can use the same register for several
files.

You must include an IOREG entry when
blocked input or output records are proc-
essed in the I/O area.

For a file with unblocked records, you
can omit the IOREG entry, unless you use
two I/0 areas. In that case you must srec-
ify either WORKA=YES or IOREG. However, do
not issue IOREG together with WORKA=YES.

Instructions for Processing Sequential Disk Files 67

RECFORM=code

This entry specifies the record format of
the file. The IOCS can handle both possi-
ble forwats of records in the same program.
However, all records in a given file must
be of the same format. If this entry is
omitted, the IOCS assumes unblocked
format-F¥ records.

Code Record Format

FIXUNB Unblocked format-F records
FIXBLK Blocked format-F records
RECSIZE=n

This entry specifies the number of bytes in
an individual record. The maximum record
iength is 4096 bytes. If records are
unblocked, this entry may be omitted. 1In
this case, the record length is assumed to
equal the block length specified in the
detail entry BLKSIZE.

TYPEFLE=code

This entry is used to specify the type of
file.

Code Type of File
INPUT An input file
OUTPUT An output file
UPDATE=YES

This entry specifies that an input file is
to be updated. When this entry is includ-
ed, a PUT macro instruction will replace,
on disk, the record retrieved by the
preceding GET macro¢ instruction.

VERIFY=NO

You can use this entry only for output
files. When it is specified, the output
records are nct checked. When it is omit-
ted, all records written onto disk are
verified; if a write error is detected, the
I0CS attempts to recover the error as des-
cribed in the section Device Error Recov-

ery.

Although more processing time is needed
when the records are verified, you are
strongly recommended to omit the entry
VERIFY=NO unless you require maximum
throughput.

WORKA=YES

This entry specifies that records are to be
processed in a work area rather than in an
1/0 area. The symbolic name used in the DS
or DC statement that reserves the work area
must be used as the second operand of each
GET or PUT macro instruction for the file.

68

Whenever two I1/0 areas are used for
unblocked records, either the WORKA entry
or the IOREG entry must be used. For addi-
tional information regarding the use and
length of a work area, see the section
Overlapping and Storage Areas.

Imperative Macro Instructions

The imperative macro instructions for
sequential disk files are described in the
following oxrdexr: PUT, GET, CNTRL. Tor a
description of OPEN and CLOSE refer to the
section Instructions for Opening and Clos-

ing Files.

PUT MACRO INSTRUCTION

This instruction writes logical records
that have been built directly in an output
area or in a specified work area.

fm———-= s ettt 1
|Operation |Operands |

f 1
| Ilnamel | PUT | filename ([, worknamel |
[L b J

You can write the PUT macro instruction
with one or two operands, depending on the
area in which the records are Lkuilt.

1. One Operand Specified. Use this format
if zrecords are to ke processed directly in
an I/0 area. The operand specifies the
name of the file in which you want to place
the record. The file name must be the same
as the one used in the header entry of the
DTFSD file definition statement.

When blocked records are processed
directly in an output area, the use of an
I/0 register is required (refer to the
description of the IOREG=(register) detail
entry under DTFSD Statement). For a file
with blocked records, a PUT macro instruc-
tion causes the IOCS to (1) include the
affected record in a record block and (2)
change the address in the I/0 register to
identify the next available position of the
output area in which you can build the next
record. After an OPEN macro instruction
the I/0 register contains the first avail-
able position of the output area.

For a file with unblocked records, a PUT
macro instruction causes the IOCS to write
the affected record onto disk. If two I/O
areas are specified an I/O register or the
WORKA=YES entry is required.

Note: The IOCS does not clear the output
area after a PUT macro instruction. To
avoid having interspersed characters from
preceding records in your output record,
use every position of the output area.

2. Two Operands Specified. Use this for-
mat 1f records are processed in a work
area, The first operand specifies the name
of the file. The second operand specifies
the name of the work area from which
records are moved to the output area. When
an output area is full, the IOCS takes the
data in that output area and writes them
onto disk. You can use more than one work
area if you issue separate PUT macxro
instructions for writing records from each
work area.

Do not specify IOREG=(register) 1f you
use a work area (refer to the description
of the WORKA=YES entry under DTFSD
Statement).

Note that the IOCS does not clear the work
area after a PUT macro instruction. You
should ensure that no characters from
preceding records remain in the area either
by clearing the work area after each PUT
macro instruction or by using every posi-
tion of the work area.

GET MACRO INSTRUCTION

This macro instruction makes the next
sequential logical record from an input
file available for processing in either an
input area or a specified work area.

When an end-of-file condition or an
extent end condition is detected, the IOCS
transfers control to the end-of-file rou-
tine specified by the EOFADDR entry in the
DTFSD statement.

You can write the GET macro instruction
with either one or two operands, depending
on the area in which the records are proc-
essed.

1. One Operand Specified. Use this format
if records are to be processed directly in
an input area. The operand specifies the
name of the file from which the record is
to be read. This name must be the same as
the one you used in the header entry of the
DTFSD statement for the file.

When blocked records are processed in an
input area, you must specify an I/0 reg-
ister that the IOCS needs to identify the
next record to be processed. (Refer to the
description of the IOREG=(register) entry
in the section DTFSD Statement). This I/O
register always contains the address of the

currently availakle record. The GET rou-
tine plalces the rroper address into the I/0
register.

No I/C register is needed for a file
with unblocked records, unless two I/O
areas are specified.

2. Two Operands Srecified. Use this for-

Note:

mat if records are to be to be processed in
a work area. The first operand specifies
the name of the file. The second operand
specifies the symkolic name of the work
area to be used (refer to the description
of the WORKA=YES entry under DTFSD
Statement). You can specify more than one
work area for a file if you issue separate
GET macro instructions to move the records
to the different work areas. It might ke
advantageous to plan two work areas, and to
specify each area in alternate GET macro
instructions. This allows you, for
instance, to determine a possikle change in
the control level by comparing each record
with the preceding one.

Do not specify IOREG=(register) together
with WORKA=YES.

CNTRL MACRO INSTRUCTION

The CNTRL macro instruction is used to
initiate a seek operation. You must
include a CONTROL=YES entry in the DTFSD
file definition statement if you issue a
CNTRL macro instruction for the file.

The control macro instruction contains
CNTRL in the operation field, and the name
of the disk file for which the operation is
specified as the first operand. The second
operand is SEEK.

The CNTRL macro instruction initiates
the access movement for the next GET or PUT
macro instruction for a file. While the
access arm is moving, you may process data
and/or request I/0 operations on other
devices. The CNTRL macro instruction caus-
es the IOCS to seek the track that contains
(or should contain) the next klock of the
file. Howevexr, the CNTRL macro instruction
does not prevent the execution of the seek
operation initiated by the GET/PUT routine.

If two I/0 areas are used, a CNTRL
macro instruction is treated as a no-
operation instruction.

Instructions for Processing Sequential Disk Files 69

Instructions for Processing Direct-Access Disk! Files

The direct-access method of file
organization allows you to process records
in random and seguential order. However,
when processing a direct-access file
sequentially you must observe certain res-
trictions (see Note under the detail entry
BLKSIZE=n of the DTFDA statement).

The IOCS locates the records to be proc-
essed by referring to their physical disk
addresses, which you must supply in the
problem program. Direct-access files apply
to disk only. You must describe your
direct-access file using the DTFDA file
definition statement, and issue the proper
imperative macro instructions to perform
the desired I/0O cperations.

Records in direct-access files must be
unblocked format-F records, one Or more
sectors in length. If you want to apply
the direct-access method to a file contain-
ing blocked format-~F records {(more than one
logical record in one physical record) you
must provide for the blocking and deblock-
ing of records in the problem program.

Supply the disk storage location from
which a record is to be read, or into which
it is to be written, by specifying track
and record references as.described under
Cylinder, Track and Record References.

DTFDA Statement

This file definition statement applies only
to direct-access files. The name field of
the header entry must contain the name of
the file and the operation field must con-
tain DTFDA. For ease of reference, the
detail entries to be entered in the operand
field are described below in alphabetical
order.

ADRTEST=NO

When ADRTEST=NO is specified, the IOCS does
not check whether the address specified in
the SEEKADR entry is valid or whether the
address is within the limits defined in the
XTENT statements. As a result, bits 0 and
1 of the first error byte are not set.
(Refer to ERRBYTE=name).

If this entry is omitted, the IOCS auto-
matically performs these checks and sets
the appropriate bits in the first error
byte.

70

Even though the length of the program is
increased when the addresses are checked,
you are recommended to omit the entry
ADRTEST=NC.

BLKSIZE=n

This entry is mandatory and specifies the
length of the blcocks (in bytes) the IOCS is
to read or write. The maximum block length
you may specify is 16200. Since unblocked
format-F is the only type of record permit-
ted for direct-access files, you must pro-
vide for any blocking or deblocking of
records in your problem progran.

In defining the I/0 area in the problem
program, keep in mind that the IBM 2311
uses a fixed sector length of 270 bytes.

Some block sizes cause a cylinder over-
flow, i.e., not all sectors belonging to
one block can be written on the same cylin-
der. The IOCS automatically continues this
block on the next cylinder, provided this
does not lead to an extent overflow.

Note: Since the actions the IOCS performs
for direct-access files and for sequential
files differ in case of a cylinder over-
flow, you must ensure that no cylinder
overflow occurs if you process a direct-
access file sequentially. You can avoid a
cylinder overflow if the number of sectors
contained in a block is either 1, 2, 5 or
10. If the file starts at the beginning of
a cylinder, the number of sectors can also
be 4, 20, 25, oxr 50.

If the reading or writing of a block
causes an extent overflow, the READ or
WRITE macro instruction is not executed and
bit 0 of the first error byte (see ERRBYTE
entry) is set to indicate this condition.

CONTROL=YES

This entry is required if a CNTRL macro
instruction is to be issued for the file.
The CNTRL macro instruction can be used to
initiate a seek operation.

DEVICE=DISKI11lF

This entry specifies that a fixed-sector
IBM 2311 (Model 11 or 12) is used for the
direct-access file. If this entry is
missing or mispunched, the IOCS assumes the
correct device and issues a warning to the
operatore.

DSKXTNT=n

The value n specifies the number of
extents. If the entry is omitted, the IOCS
assumes n=3. The IOCS uses this informa-
tion to reserve the main-storage area in
which the addresses of the extent boundar-
ies are saved. The maximum number of
extents permitted is 99 per file.

FRRBYTE=name

This entry is mandatory. It specifies the
symbolic address of a two-byte field in
which the IOCS will indicate exceptional
conditions. The indications will be avail-
able after a WAITF macro instruction has
been executed. You may test for the fol-
lowing conditions:

N
| |Exceptional Condition |
|If Bit Is 1 |

= o 1
| | |
|Byte 1 : Bit 0 |invalid address |
] Bit 1]address outside extent }
| Bit 2-7|not used |
 — oo 1
| | |
|Byte 2*: Bit 0 |not used--set to zero |
i Bit 1 |intervention required |
| Bit 2 |end of cylinder

| Bit 3 |equipment check |
| Bit 4 |data check |
I Bit 5 |seek check]
| Bit 6 |no record found |
| Bit 7 |track condition check |
pommm - e e - 1
|*First byte of sense field |
L e e d

IOAREAl=name

This entry is mandatory and specifies the
name of the I/0 area to be used for the
file., The name must be the symbol used in
defining the area in the source programn.
You can specify only one I/0 area for each
direct-access file.

The size of the area must be equal to
270 bytes or an integer multiple of 270.
If the calculated length is not equal to
270 or an integer multiple thereof, the
next larger value allowed nmust be used for
the I/0 area.

READID=YES

This entry is required if records are to be
retrieved from the direct-access file,
i.e., if a READ macro instruction in the
problem program refers to the file.

SEEKADR=name

This mandatory entry specifies the name of
the 8-byte area that contains the disk
address of the record to be read or writ-
ten. The area must be defined in the prob-
lem program. Its format and contents are
descriked under Cylindex, Track and Record
References.

The problem program must place the
address of the desired disk record in the
specified location before issuing a READ or
WRITE macro instruction. If the disk
address is invalid, bit 0 of the first
error byte is set to 1. If the address is
outside the extents specified in the XTENT
statements, bit 1 of the error byte is set
to 1.

TYPEFLE=code

This entry specifies the type of file and
how the disk labels are to be rrocessed.
The entry must not be omitted.

Code Exprlanation

INPUT The labels of an input file are to
ke read and checked.

QUTPUT The labels of an output file are
to be written.

VERIFY=NO

When this entry is specified, the record
just written is not verified. If you omit
this entry, all records written onto disk
are verified. If a write error is detect-
ed, the IOCS attempts to recover the error
as described in the section Device Errox
Recovery. If a permanent write error
occurs, the IOCS inserts into the ERRBYTE
the first byte of the sense field (For a
detailed description of the sense field,
refer to the SRL publication IBM System/360
Model 20 Functional Characteristics, Form
A26-5847).

Although processing time is increased
when the records are verified, you are
strongly recommended to omit the entry
VERIFY=NO unless you require maxirmum
throughput.

WRITEID=YES

This entry is required if records are to be
stored in the direct-access file, i.e., if
a WRITE macro instruction in the problem
program refers to the file. The entry is
also used for input files if they are to be
updated by the problem program.

Instructions for Processing Direct-Access Disk Files 71

Imperative Macro Instructions

The imperative macro instructions for
direct-access files are described in the
following order: WRITE, READ, WAITF, CNTRL,
CNVRT. For a description of OPEN and CLOSE
refer to the section Instructions for Open-
ing and Closing Files.

WRITE MACRO INSTRUCTION

This macro instruction causes a record that
has been built in an output area in main
storage to be written onto disk.

k +
|[name]|WRITE | filename, ID |
________________ Y |

The first operand specifies the name of
the disk file into which the record is to
be placed. The file name must be the same
as the one specified in the header entry of
the DTFDA statement for the file. The
second operand must be ID as shown.

Before this macro instruction is execut-
ed, the problem program must provide the
track and record reference of the disk
location in which the record is to be
stored (refer to Cylinder, Track and Record
References below). When the WRITE macro
instruction is executed, the IOCS searches
the specified track for the desired loca-
tion on the track. When the correct loca-
tion has been found, the data record is
written from the output area in main stoxr-
age. A data record may require one or more
sectors of disk storage; the length of the
data record is specified in the BLKSIZE=n
entry in the DTFDA statement for the file.
If an I/0 error occurs, the appropriate
bits are set as described for the entry
ERRBYTE=name of the DTFDA statement.

If you use the WRITE macro instruction
in a program, you must include the
WRITEID=YES entry in the DTFDA statement
for the file.

READ MACRO INSTRUCTION

This macro instruction causes a record on
disk to be read into main storage.

——t

The first operand specifies the name of
the disk file from which the record is to
be retrieved. The file name must be the
same as the one specified in the header
entry of the DTFDA statement for the file.
The second operand must be ID as shown.

Before this macro instructicn is execut-
ed, the problem program must provide the
track and record reference of the desired
record (see Cylinder, Track and Record
References below). When the READ macro
instruction is executed, the IOCS searches
the specified track for the particular
record. When the correct recoxd has been
located, it is read into the input area in
main storage. If an I/0 error occurs, the
appropriate bits are set as described for
the entry ERRBYTE=name of the DTFDA state-
ment.

If you use the READ macro instruction in
a program, you must include the READID=YES
entry in the DTFDA statement for the file.

WAITF MACRO INSTRUCTION

The WAITF macro instruction ensures that
the reading or writing of a record into or
from the I/0 area for the file has been
completed before further processing in the
same I/0 area is performed. This macro
instruction enables you to overlap seek
operations with processing in a Submodel 2
or 4, or a Submodel 5 not utilizing the
read/compute, write/compute (RWC) feature.
The RWC feature of a Submodel 5, on the
other hand, provides full overlapping of
I/0 operations.

i e ittt 1
| Name |Operatlon]Operand |
b= Fomm e e e 1
l[name]lWAITF |filename |
[e 4

The file name in the operand field must
be the same as the one srecified in the
header entry of the DTFDA statement for the
file.

After an I/0 operation has keen started,
the IOCS immediately returns control to the
probhlem program. Therefore, when the pro-
gram 1s ready to process the input record
or build the succeeding output record for
the same file, make a test to ensure that
the previous I/O operation has been com-
pleted. To do this, issue a WAITF macro
instruction in the problem program. If the
I/0 operation has not been comgleted, the
program enters a waiting loop and remains
there until the entire record has been read
or written. In the problem program, a
WAITF macro instruction should be issued
after each READ or WRITE macro instruction.

The following example shows one possible
placement of the WAITF macro instruction:

processing that does
not refer to the
I/0 area of file AAA

- processing that may
refer to the
I/0 area of file AAA

WRITE (READ) AAA,ID

———— i o o o —

The WAITF macro instruction also makes
the erxror-status information available in
the second byte of the two~byte field spec-
ified by the entry ERRBYTE=name of the
DTFDA statement. If the entry ADRTEST=NO
is not specified, you should check the
error information in the ERRBYTE entry
after every WAITF macro instruction.

CNTRL MACRO INSTRUCTION

This macro instruction is used to position
the access mechanism for the reading or
writing of a disk record. The CNTRL macro
instruction can be used to improve the
performance of the program.

- T B et 1
|Name |Operation |Operands |
—————— fmm e e
| {namel | CNTRL | filename, SEEK]
| [1o__ _—— — J

The first operand specifies the name of
the disk file for which the seek operation
is desired. The file name must be the same
as the one specified in the header entry of
the DTFDA definition statement for the
file. The second operand must be SEEK.

The CNTRL macro instruction causes the
access mechanism to be moved to the disk
address contained in the field specified in
the entry SEEKADR=name of the DTFDA state-
ment. After the CNTRL macro instruction
has started the movement of the access
mechanism towards the specified disk loca-
tion, control is returned to the problem
program, which may process data and/or
request I/0 operations for files on other
I/0 devices.

Each CNTRL macro instruction must be
preceded by a WAITF macro instruction.

CNVRT MACRO INSTRUCTION

This macro instruction is used to convert a
packed decimal address of three bytes into
the format of the seek field as used in
direct-access processing.

Tomm oo ToTTT T e e e 1
|Name [Operation |Operands |
f-—---- oo oo 1
| [lnamel |CNVRT | seekfield, packedfield |
I T b J

The first operand specifies the name of
the 8-byte field to which the converted
address is to be moved. This field has the
same format as, and can be identical with,
the seek field MBBCCHHR specified for the
entry SEEKADR=name of the DTFDA statement.
Note that only the four low-order bytes
representing the disk address CHHR are
altered by this macro instruction. You
must define the eight-byte seek field in
the problem program by first choosing the
appropriate entry for the first byte in a
DC statement and then specifying a DC
statement (e.g., DC XL7'00') to f£ill the
remaining seven bytes with zeros.

The entries for the first kyte are as
follows:

X'00' to refer to the first volume
X'01l' to refer to the second volume
X'02' to refer to the third volume
X'03' to refer to the fourth vclume.

These entries must agree with the defi-
nitions in the VvOL, DLAB, and XTENT control
statements. The entries X'02' and X'03"
apply to the Model 20, Submodel 5 only.

The second operand specifies the name of
a 3~byte field in packed decimal format (in
the proklem program) that contains the disk
address to be converted. The format of
this field must be as follows:

Byte 1 2 3

The meaning of the symbols CCCHR 1is
explained under Cylinder, Track and Recoxd
References.

The packed decimal address is not
checked for validity. Therefore, it is
your responsibility to supply the correct
cylinder, head, and record values. The
highest address that may be specified is
20299.

Since the CNVRT macro instruction uses
register 14, the contents of this register
are overwritten.

Cylinder, Track and Record References

To refer to a specific location in disk
storage, you must provide the cylinder,
track and record references of the loca-
tion. You can derive these cylinder, track
and record references, which constitute the

Instructions for Processing Direct-Access Disk Files 73

sector address, by using a randomizing
formula. Selecting the best formula for a
given file may require some consideration,
since it is desirable to minimize (1) the
number of records for which the same disk
address is derived, and (2) the amount of
wasted storage space, i.e., the number of
unused record locations between the records
of the file.

The cylinder, track and record referen-
ces consist of eight bytes of information
in the following form:

MBBCCHHR

Note that the sector address is for compat-
ibility purposes in the form of the stand-
ard IBM System/360 random-access address.
Make the sector address availlable to the
IOCS in an 8-byte field before issuing a
READ or WRITE macro instruction. The use
of the CNVRT macro instruction is strongly
recommended for this purpose. The symbolic
address of the 8-byte field must be speci-
fied in the SEEKADR entry of the DTFDA
statement for the file.

The contents of these eight bytes are as
shown below. Provide all numbers in binary

notation.
Name and
Symbol Byte(s) Contents
M 0 Pack Number

For Model 20 Submodels 2
and 4, this is either O
or 1; for Submodel 5 it
is any number from 0 to
3. The entry indicates
the specific disk pack.
M must be 0 if only one
pack (volume) is used
for a £ile, regardless
of the drive on which it
is mounted. If more
than oae pack {volume)
is used for a file, M=0
addresses the first
volume, M=1 the second,
and so on, as defined by
the VOL, DLAB and XTENT
control statements. The
symbolic device address-
es for disk dcives can
be assigned physical
device addresses as
desired.

74

Reserved
Zeros

Cylinder Nurber

For Model 12 any value
from 000 to 102, for
Model 11 any value from
000 to 202, indicating
the number of the cylin-
der in which the recoxrd
is located. Note that
the cylinders 1-3 are
used for alternate
tracks on both models,
and that byte 3 will
always contain zeros.

HH 5-6 Head Number

A numper from 0 to 9
indicating the
read/write head to be
used for reading oxr
writing the record.

Fach head reads from, or
writes on, cne disk
surface. Head 0 is
assigned to disk surface
0. Likewise, heads 1
through 9 are assigned
to disk surfaces 1
through 9, respectively.
Note that kyte 5 will
always contain zeros.

Record Refexence

A number from 0 to 9

indicating a specific
record (sector) on a

track.

Identifier (ID): Bytes 3 through 7 (CCHHR)
of the cylinder, track and record reference
are referred to as the ID or identifier.
Each disk record (sector) is preceded by a
count area which contains the ID and other
data. When a READ or WRITE macro instruc-
tion is executed, the computer compares the
ID in the dount area with the corresponding
part of the cylinder, track and record
reference. An equal comparison indicates
that the desired record has been found.

When a READ (WRITE) macro instruction
for the file is executed, the IOCS uses the
cylinder, track and record reference to (1)
select the specific track on the appropri-
ate disk pack and (2) locate the specified
record location (sector).

Instructions for Processing Indexed-Sequential Disk Files

The organization of files according to the
Indexed-Sequential File Management System
(ISFMS) permits disk records to be proc-
essed in random order or in sequential
order by control information. For random
processing, supply the control information
(key) of the desired record to the IOCS and
issue a READ or WRITE macro instruction to
transfer the specified record. For sequen-
tial processing by control information
(key), specify the first record to be proc-
essed and then issue GET or PUT macro
instructions until all desired sequential
records have been processed. The succes-
sive records are made available in sequen-
tial order by their keys. Variations in
macro instructions permit:

* a logical file of records to ke loaded
onto disk (created);

o individual records to be read from,
added to, or updated in the file.

The logical records must be of fixed
length, and the length must be specified in
the RECSIZE entry of thée DTFIS statement.
Logical records may be either blocked (two
or more logical records in one block) or
unblocked (one logical record per block).

Whenever you use an indexed-sequential
file, you must describe the file and the
main-storage areas allotted to the file in
the DTFIS file definition statement.

DTFIS Statement

This file definition statement applies only
to indexed-sequential files. The name
field of the header entry must contain the
name of the file and the operation field
must contain DTFIS.

Foxr ease of reference, the detail
entries to be entered in the operand field
are described below in alphabetical order.

ADAREX=name

This entry is mandatory if IOROUT=ADD or
TIOROUT=ADDRTR is specified.

Each new record to be inserted in an
organized file is entered in an overflow
area. If the specified overflow area is
full and more records are yet to be added,
the IOCS branches to the symbolic address
specified in the ADAREX entry. In this
routine you should terminate the job since

the Model 20 IOCS does not permit the
extents of .a previously organized file to
be changed, and the file must therefore be
wholly reorganized. 1In addition, the
ADAREX routine must contain the CLOSE macro
instructions for all files involved. 1In a
mainline program, all disk files must be
closed in the ADAREX routine. Note that an
ADAREX entry must not be used if
IORQUT=LOAD has been specified.

ALTREX=name

This entry is mandatory if IOROUT=LOAD is
specified. It is optional if IOROUT=ADD ox
IOROUT=ADDRTR is specified.

If a file is to be extended
(IOROUT=LOAD) after records have keen added
to the last track of a file during a pre-
vious add& operation, the IOCS branches to
your ALTREX routine. You must reorganize
the file before it can be extended. The
branch condition is detected during the
execution of the SETFL macro instruction
and before the LOAD operation is initiated.
Therefore, you must not issue an ENDFL
macro instruction in your ALTREX routine.
This instruction would cause the last prime
data record to be overwritten ky an EOF
record and thus destroy your file. Howev-
er, you must issue a CLOSE macro instruc-
tion for your file.

You can avoid that records are added to
the last track of a file if you specify the
ALTREX detaill entry for ADD and ADDRTR
files. 1If the program tries to add a
record to the last track of a file, the
IOCS branches to your ALTREX routine. 1In
this routine you can determine whether the
record can be added to the file or whether
it is to be inserted at a later time. If
the record can be added, i.e., the key of
the record to be inserted is higher than
the key of the last record in the file,
perform a LOAD/Extension run to insert the
record. If the key is not higher, you may
continue processing and add the record

*» after another track has become the last
track of the file during a succeeding
LOAD/Extension run, oOr

e Dby another, program in which ALTREX is
not specified. However, this makes
further extensions of the file impossi-
ble because the EOF record is trans-
ferred to the overflow area.

Instructions for Processing Indexed=-Sequential Disk Files 75

CYLOFL=n

Include this entry if cylinder overflow
areas are to he reserved for a logical
file. A c¢ylinder overflow area is located
on each cylinder within the prime data area
of the data file. It contains records that
overflow from tracks in that cylinder.

To reserve the areas for cylinder over-
flow, this entry is required when the par-
ticular file is to be loaded onto disk and
records are to be added at a later time.
The specification n (where n is any integer
from 1 through 9) is the number of tracks
to be reserved on each cylinder. Note that
the actual size of the cylinder overflow
area may be less than the specified number
of tracks. If the block size of prime data
blocks is such that track overflow blocks
occur (i.e., not all sectors of a block are
on the same track), the last prime data
block of a cylinder uses one or more sec-
tors of the cylinder overflow area. The
maximum number of cylinder overflow sectors
that may be used by the last prime data
block is equal to the number of sectors per
block minus 1.

If you specify an independent overflow
area (by an XTENT statement) in addition to
the CYLOFL entry, overflow records are
written in the independent overflow area
after a cylinder overflow area has been
filled.

CYNDEX=name

This entry is mandatory if IOROUT=LOAD has
been specified for the file. The entry
CYNDEX=name specifies the symbolic address
to which the IOCS branches if the cylinder-
index area becomes full while a file is
being loaded or extended. You must
reorganize the file and specify a larger
disk area for the cylinder index in an
XTENT statement. The CYNDEX routine should
also contain the necessary ENDFL and CLOSE
macro instructions.

Note: If this routine discontinues the
processing of a program that is a mainline
program, the CYNDEX routine must contain
CLOSE macro instructions for all disk
files.

DERREX=name

This entry is mandatory for all indexed-
sequential files. It specifies the
symbolic address to which the IOCS branches
if an irrecoverable disk error has
occurred. If, in this routine, you want to
discontinue the processing of a program
that is a mainline program, you must first
close all disk files.

76

Certain error information is made avail-
able in the problem program 1f the detail
entry ERRINF=YES is specified. The first
hyte of this error information can ke
addressed by using a symbolic address con-
sisting of the file name with the suffix A.
For example, if the name of the file is
PAYROLL, the address of the error informa-
tion will be PAYROLLA.

The first two bytes of this information
contain the address of an error block as
already described for sequential disk
files. (Refer to the detail entry
ERROPT=code in the sectieon Instrxuctions fox
Processing Sequential Disk Filesg).

The next two bytes (keginning at
PAYROLLA+2) contain logical error informa-
tion as described under the detail entry
ERRINF=YIS.

Register 14 contains the return address,
i.e., the address of the next sequential
instruction following the macro instruction
that detected the error. Since the IOCS
macro instructions use register 14, you
must save the contents of this register
before you issue a macro instruction in
your error routines.

You may provide individual error proce-
dures for the various I0CS functions such
as loading, adding, sequential or random
retrieving, updating, etc. However, you
must save the error information and the
contents of the I/O area. This information
is essential in the event that an alternate
track must be assigned to replace a track
that is found to ke defective. It must be
emphasized that in some cases a recovery
and restart procedure may not ke possible,
For this reason you should always maintain
a duplicate of every file you use in the
installation.

Note: For sequential retrieval, you must
first issue an ESETL and then a SETL macro
instruction before you issue the next GET
macro instruction in your error routine.

DEVICE=DISRK11F

This entry specifies that a fixed-sector
IBM 2311 (Model 11 or 12) is used as I/0
device for the indexed-sequential file. If
this entry is omitted or mispunched, the
IOCS assumes the correct device and issues
a warning to the orerator.

DPCRCD=YES

You may specify this entry for ADD and
ADDRTR files to avoid having disk storage
locations reserved in the overflow area for
duplicate records. You should specify this
entry if your ADD or ADDRTR file is likely
to contain duplicate records.

DSKXTNT=n

This entry is mandatory for all indexed-
sequential files. It specifies the maximum
number of extents used for the file. The
number must include (1) all the prime data
area extents, (2) the cylinder index area,
and (3) the independent overflow area (if
used) , all of which are specified by XTENT
statements. Thus, the minimum number spec-
ified by this entry is 2: one extent for a
prime data area and one extent for a cylin-
der index. The maximum number of extents
permitted is 99 per file,

DTAREX=name

This entry is mandatory if IOROUT=LOAD has
been specified for the file. The entry
DTAREX=name specifies the symbolic address
to which the IOCS branches if the prime
data area becomes full while a file is
being loaded. You may issue an ENDFL macro
instruction in your routine to prepare the
newly organized file for closing. This
permits the remaining records to be treated
as additions to the file.

DUPREX=name

This entry specifies the symbolic address
to which the IOCS branches if a duplicate
record (equal keys) 1is detected while load-
ing or extending a file, or when adding a
record to a file. This entry is mandatory
if the specification for IOROUT is either
LOAD, or ADD, or ADDRTR. You can avoid
having disk storage locations reserved for
duplicate records if you specify the detail
entry DPCRCD=YES for ADD or ADDRTR files.

EOFADDR=name

Include this entry when records of the file
are to be retrieved sequentially (i.e., if
either TYPEFLE=SEQNTL or TYPEFLE=RANSEQ has
been specified for the file). The entry
EOFADDR=name specifies the symbolic address
of the routine to which the IOCS branches
when an end-of-file condition occurs. An
end-of-file condition is detected by read-
ing the end-of-file record. In your end-
of-file routine, you may perform any
operations required for the end of the job.
Generally, a CLOSE macro instruction is
issued for the file.

Note: If, in the end-of-file routine, you
want to discontinue/terminate the process-
ing of a program that is a mainline pro-
gram, close all disk files first.

ERRINF=YES
This optional detail entry indicates wheth-

er you require logical error information oxr
not.

If you specify ERRINF=YES, logical
information about each disk error that may
occur is provided in a special field. You
can address this field using a symbelic
name that consists of the file name with
the suffix A+2. For example, if the name
of the file is PAYROLL, the logical error
information is contained in PAYROLLA+2.
The information indicates the disk area in
which the error occurred (the corresponding
bit is on).

T

| Byte |Bit|Area !
----------- $-——+ T e
PAYROLLA+2	0	rrime data area
PAYROLLA+2	1	cylinder overflow area
PAYROLLA+2	2]independent overflow areal	
PAYROLLA+2	3	cylinder index
PAYROLLA+2	4	track index
PAYROLLA+2	5-7]not used	
L IO 1 3

PAYROLLA+3 is not used. If the entry
ERRINF=YES is omitted, no logical error
information is supplied.

TOAREAL=name

This entry is mandatory if the specifi-
cation for IOROUT is LOAD, ADD, or ADDRTR.
The entry IOAREAL=name specifies the sym-
bolic address of the output area to be used
when loading or extending a file, or when
adding records to a file. The specified
name must be the same as the one that
defines the area in the problem program.

For unblocked records of ALD and ADDRTR
files, the output area must be large enough
to contain one record plus the link field,
i.e., the size of IOAREAL must be equal to
or greatexr than the record size specified
in the RECSIZE=n entry plus 6, (see Note
below) . TFor blocked records, the output
area must be large enough to ccntain a
complete block. If records are to be added
to a file of blocked records, the output
area must be preceded by a work area that
is large enough to contain one record.

This work area is used by the IOCS during
the shift procedure which is necessary when
a record is inserted into the prime data
area (see the description of WCRKA=name
below) .

Note: The total length of IOAREAL must ke
equal to 270 bytes or an integer multiple
of 270. If the calculated length is not
270 or an integer multiple thereof, the
next larger allowed value must be used for
the output area.

IOAREAR=name

This entry is mandatory if TYPEFLE=RANDOM
or TYPEFLE=RANSEQ has been specified for
the file., The entry IOAREAR=name specifies
the symbolic address of the I/0 area to be

Instructions for Processing Indexed-Sequential Disk Files 77

used for random retrieval and/or updating
operations. The specified name must be the
same as the one that defines the area in
the problem program. The size of the area
must be an integer multiple of 270 and
large enough to contain a block or, for
unblocked files, a record of the file. No
work area is required.

IOAREAS=name

This entry is mandatory if TYPEFLE=SEQNTL
or TYPEFLE=RANSEQ has been specified for
the file. The entry IOAREAS=name specifies
the symbolic address of the I/0 area to be
used for sequential retrieval and/or updat-
ing operations. The specified name must be
the same as the one that defines the area
in the problem program. The size of the
area must be the same as described for the
entry IOAREAR=name. No work area is
required.

IOREG=(register)

This entry is required only for RETRVE or
ADDRTR files containing blocked records
that are to be processed in the I/0 area.

As operand, specify in parentheses any
of the registers 8 through 13 or a symbolic
name that has been equated to one of the
registers 8 through 13. The specified
register contains the address of a logical
input record that is available for process-
ing. The IOCS places this address into the
register each time a READ or GET macro
instruction is executed. i

IOROUT=code

This entry is mandatory for all indexed-
sequential files. It specifies the type
of function to be performed.

Code Function

LOAD Building a logical file on disk or
extending a file beyond the highest
record currently contained in an
organized file.

ADD Inserting new records into an
organized file.

RETRVE Retrieving records from a file for
either random or sequential proc-
essing and/or updating.

ADDRTR Both inserting new records into a

file (ADD) and retrieving records
for processing and/or updating
(RTR) .

78

KEYARG=name

Include this entry for

1. random retrieval (TYPEFLE=RANDOM or
TYPEFLE=RANSEQ has been specified), and

2. sequential retrieval (TYPEFLE=SEQNTL or
TYPEFLE=RANSEQ has been specified), if
this type of retrieval operation is to
begin with a specific key, i.e., the
operand of the SETL macro instruction
is either KEY or GKEY.

The entry XKEYARG=name specifies the
symbolic address of the location that con-
tains the key of either the record that is
to be retrieved or the record with which
sequential retrieval is to begin.

The probklem program must place the key
into the specified location before issuing
the macro instruction that requires the
key.

KEYLEN=n

This entry is mandatory for all indexed-
sequential files. It specifies the length
of the key in number of bytes (maximum
length is 60 bytes).

KEYLOC=n

This entry is required for all indexed-
sequential files. It specifies the posi-
tion of the leftmost byte of the key rela-
tive to the beginning of the record. For
example, if the key is recorded in posi-
tions 21-25 of each record in the file,
KEYLOC=21 must be specified. To determine
the leftmost byte of the key, the first
byte of the record is counted as byte 1.
The key may be defined as a field anywhere
within a record, however, the rightmost
three bytes of the record must not ke
included.

NRECDS=n

This entry is always required. It speci-
fies the number of records in a block. For
unblocked records, n will be 1.

Because the IBM 2311 uses a fixed sector
length of 270 bytes, the IOCS transfers
from and to disk an area whose length is
equal to the specified number of records
times the number of bytes contained in a
record, provided the product of the two is
an integer multiple of 270. If the product
is not an integer multiple of 270, the IOCS
transfers an area whose length is equal to
the next higher integer multiple of 270.
Take this into consideration when defining
the I/0 ‘area in your program.

RECFORM=code

This mandatory entry specifies the record
format of the file., The IOCS can handle
both of the permissible record formats in
one program. However, all records in a
given file must be of the same format.

Code Record Format
FIXUNB Unblocked format-F records
FIXBLK Blocked format~F records

The specification that is used when the
logical file is loaded onto disk must again
be included whenever the file is processed.

RECSIZE=n

This entry is mandatory for all indexed-
sequential files. It specifies the number
of bytes in a logical record. All logical
records must be of the same length. The
maximum length permitted for records of an
indexed-sequential file is 4096 bytes.

RTRVEX=name

This entry specifies the symbolic address
to which the IOCS branches if the record
with the described key cannot be found in
the file. This entry is always required if
TYPEFLE=RANDOM or TYPEFLE=RANSEQ has been
specified for the file. If TYPEFLE=SEQNTL
has been specified the entry RTRVEX is not
required; however, when you omit this
entry, you may specify only the operand BOF
or GKEY in a SETL macro instruction refer-
ring to the file,

If the IOCS branches to the specified
routine during the execution of a SETL
macro instruction, you must write an ESETL
macro instruction in your routine before
any other macro instruction referring to
the same file is issued.

Note: If the RTRVEX routine discontinues
the processing of a program that is a main-
line program, it must include CLOSE macro
instructions for all disk files.

SQCHEX=name

This entry specifies the symbolic address
to which the IOCS branches if a record is
out of collating sequence while a file is
being loaded or extended.

Note: If the SQCHEX routine discontinues
the processing of a program that is a main-
line program, it must include CLOSE macro
instructions for all disk files.

Instructions for

TYPEFLE=code

This entry is required when a retrieval
function is to be performed (i.e.,
IOROUT=RETRVE or IOROUT=ADDRTR has been
specified) . The TYPEFLE entry specifies
the type of processing to be used for the
file.

Code Type of Processing

RANDOM Random Processing:

Records are retrieved from the file
in random order by key. READ macro
instructions are used to transfer
records from disk to main storage.
SEQNTL Sequential Processing:

The IOCS retrieves records in
sequential order by key. The first
record retrieved may be the first
record of the file or a recorxd
specified by the key (see SETL
Macro Instruction). The problem
program specifies the first key to
be retrieved. GET macro instruc-
tions are used to transfer records
from disk to main storage.

RANSEQ Random and Sequential Processing:
READ and/or GET macro instructions
are used to transfer records from
disk to main storage: READ for
random retrieval and GET for

sequential retrieval.
UPDATE=code
This entry is required if disk records are

to be updated. It specifies the type of
processing used to update records.

Code Type of Processing

RANDOM Random Processing with Updating:

A WRITE macro instruction causes a
record to be written onto disk at
the same location from which this
record was retrieved ky a preceding
READ macro instruction.
UPDATE=RANDOM can only be specified
in conjunction with either
TYPEFLE=RANDOM or TYPEFLE=RANSEQ.
SEQNTL Sequential Processing with Updat-
ing:

A PUT macro instruction causes a
record to be written onto disk at
the same location from which this
record was retrieved by a preceding
GET macro instruction.
UPDATE=SEQNTL can only be specified
in conjunction with either
TYPEFLE=SEQNTL or TYPEFLE=RANSEQ.

Processing Indexed-Sequential Disk Files 79

RANSEQ Random and/or Sequential Processing
with Updating:

A WRITE macro instruction causes a
record to be written onto disk at
the same location from which it was
retrieved by a preceding READ macro
instruction. A record that was
retrieved by a GET macro instruc-
tion is written onto disk by a
subsequent PUT macro instruction.
UPDATE=RANSEQ can only be specified
in conjunction with the
TYPEFLE=RANSEQ detail entry.

VERIFY=NO

When this entry is specified, the recozrds
are not checked after they have been writ-
ten onto disk. If you omit this entry all
records written onto disk are verified. IEf
an irrecoverable disk-write error occurs,
the IOCS branches to your DERREX routine.
Although processing time increases when the
records are verified, you are strongly
recommended to omit the entry VERIFY=NO
unless you require maximum throughput.

WORKA=namne

This entry is required when recorxrds are to
be added to a file containing blocked
records. The entry specifies the symbolic
address of a work area that must immediate-
1y precede the I/0 area specified in the
IOAREAL entry. This work area must be
exactly as long as one logical record. The
specified name must be the same as the one
that defines the area in the problem pro-
gram.

WORKIL=name

This entry must be included whenever a file
is to be loaded or extended, or records are
to be added to a file. The entry specifies
the symbolic address of the work area to
which you must move the data records so
that the IOCS can load them or add them to
the file. The specified name must be the
same as the one that defines the area in
the problem program.

If the file is to contain blocked
records, this work area must be large
enough to accommodate one logical record.
If the file is to contain unblocked
records, six additional bytes must be pro-
vided for ADD and ADDRTR files so that the
pertinent sequence-link field can be suf-
fixed to each record. If unblocked records
are added to a file, the contents of the
area defined by WORKL is destroyed by a
WRITE NEWKEY macro instruction.

80

WORKR=name

Include this entry when (1) the records of
the file are processed in random order and
(2) the individual recoxds are to be proc-
essed in a work area rather than in the I/0
area. The entry specifies the symbolic
address of the work area, and the specified
name must be the same as the one that
defines the area in the problem program.
This work area must be large enough to
accommodate one logical record.

When this entry is included and a READ
or WRITE instruction referring to the file
is executed, the IOCS moves the individual
record to or from this area.

When this entry is included for a file,
the IOREG detail entry must be omitted
unless the entry TYPEFLE=RANSEQ is included
in the problem program.

WORKS=YES

This entry is required if (1) records are
to be processed in sequential order and (2)
the individual records are to ke processed
in work areas rather than in the I/O area.
Each GET or PUT macro instruction must
specify the symbolic address of the work
area to or from which the IOCS is to move
the record. The work area must be large
enough to accommodate one logical record.

When this entry is included for a file,
the IOREG detail entry must be omitted
unless the entry TYPEFLE=RANSEQ is included
in the proklem program.

Loading or Extending Indexed-Sequential Files

Three different macro instructions are
required in the problem program to load the
records of an indexed-sequential file onto
disk: SETFL, WRITE, and ENDFL.

The function of originally loading an
indexed-sequential file onto disk and the
function of extending this file by adding
new presorted records beyond the recoxd
with the highest key are essentially the
same. Both are considered a locad operation
(specified by the IOROUT=LOAD entry in the
DTFIS statement for the file), and they
both use the same macro instructions in the
problem program.

If you wish to load a file with a file
name for which an unexpired file label
exists, a halt occurs. The operator then
has the choice to extend the existing file
or to load the new file. In the latter
case, the file with the unexpired file
label is destroyed. The IOCS automatically
performs an original load function if it

encounters an expired file label with the
same file name. If you want to extend your
file, you must therefore ensure that the
file is not expired, i.e., the date entered
on the DATE card for the job must not be
higher than the expiration date for the
file.

You must specify the areas of the
volumes in which you want to load your file
by means of job control XTENT statements.
The areas are:

1. the prime data area (s)
volumes)
written,

(on one or more
where the data records are

2. a cylinder index area where you want
the IOCS to build the cylinder index,
and

3. an (optional) independent overflow
area.

Note: All extents that are required for the
LOAD function and all extents that might be
required later in order to add new records
must be specified for the initial loading
of the file,

During the load operation, the IOCS
builds the track and cylinder indexes.

SETFL MACRO INSTRUCTION

This macro instruction (SET File Load mode)
prepares the IOCS for a file loading or
extending operation.

T T e Ll
|Operation iOperand |

| filename |
1

| [name] | SETFL
1

The operand contains the name of the
disk file to be loaded or extended. The
file name must be the same as the one spec~
ified in the header entry of the DIFIS
statement for the file.

The SETFL macro instruction must be

issued whenever a new file is to be loaded
or a loaded file is to be extended.

WRITE MACRO INSTRUCTION

This macro instruction loads one record
into a disk file.

T -T— S 2]
|Name |Operation |Operands 1

p-———-- pommmmmmmmt
| mame] |WRITE | £ilename, NEWKEY]
L 1 I N - J

The first operand specifies the name of
the file into which the record is to be
loaded. The file name must be the same as
the one specified in the header entry of
the DTFIS statement for the file. The
second operand must be NEWKEY.

Before issuing the WRITE macro instruc-
tion, the problem program must place the
record for the file into the work area
whose symbolic address you must provide in
the WORKL=name entry of the DTFIS state-
ment. The WRITE macro instruction causes
the record in the work area to be moved
into the output area specified in the
IOAREAL=name entry of the DTFIS statement.

If records are to be blocked, the block
will be built in the output area and placed
onto disk when it is full; otherwise, one
record is placed onto disk each time a
WRITE macro instruction is executed.

Before the record is moved to the output
area, the IOCS performs a sequence check by
key. The key may be a rart nurber, an
employee serial number, or any other iden-
tifying information that is contained in
every record of a file.

All keys of a file must have the same
length. A key should not consist entirely
of a string of hexadecimal zeros nor should
a key contain any byte in which all the
bits are on (hexadecimal FF).

The key may be positioned anywhere with-
in the record, with the following restric-
tions:

1. The key position must be the same for
all records of the file.

2. At least three bytes must ke available
between the last byte of the key and
the end of the record.

Specify the location of the key in the
KEYLOC and the length of the key in the
KEYLEN entry of the DTFIS statement for the
file. This enables the IOCS to check the
sequence of records and to ensure that each
record is in proper sequence by its key
before the record is moved from the work
area into the output area. The IOCS also
checks for duplicate records, i.e., recorxds
with the same keys. If a record is out of
sequence or a duplicate record is found,
the IOCS branches to the appropriate
routine (s) as specified in the SQCHEX
and/or DUPREX entries of the DTFIS state-
ment for the file.

Instructions for Processing Indexed-Sequential Disk Files 81

ENDFL MACRO INSTRUCTION

Issue this macro instruction (END File Load
mode) if you want to terminate the loading
or extending of your file.

The operand contains the name of the
disk file that has been loaded or extended.
The file name must be the same as the one
specified in the operand field of the SETFL
macro instruction that initiated the opera-
tion.

The ENDFL macro instruction must be
issued to complete the loading or extending
of a file.

Adding Records to Indexed-Sequential Files

The macro instructions used in the problem
program for the insertion of new records
are WRITE and WAITF.

After an indexed-sequential file has
been loaded onto disk, new records can be
inserted into their proper places in the
file. The location of the key in the new
records must be the same as that in the
records already in the file. The functions
required for adding records are provided by
specifying ADD oxr ADDRTR in the IOROUT
entry of the DTFIS statement for the file.

WRITE MACRO INSTRUCTION

This macro instruction inserts one record
into an indexed-sequential file.

|Operat10n]Operands |

t oo mm oo i
|[name]|WRITE | filename, NEWKEY |
______ -1

Before the WRITE macro instruction is
issued, the problem program must store the
record to be added into a work area speci-
fied in the WORKL entry of the appropriate
DTFIS statement.

Note that an additional work area is
required when records are to be added to a
file containing blocked records. Specify
this additional work area in the WOREKA
entry of the DTFIS statement and define it
so that it immediately precedes the area
IOAREAL. The operations caused by a WRITE
macro instruction are described in detail
under Inserting Records in the section
Processing Indexed-Sequential Files.

82

WAITF MACRO INSTRUCTION

This macro instruction ensures that the
execution of the preceding WRITE macro
instruction has been completed before
further processing is done that involves
the work areas specified for the file.
WAITF macro instxruction permits the seek
operation for seeking the track index to be
overlapped with processing.

The

F +
I[nameJIWAITF |filename |
________________ |

The file name must be the same as the
one specified in the header entry of the
DTFIS statement for the file.

The WAITF instruction nmust follow a
WRITE macro instruction. It does not have
to be the next instruction after the WRITE
macro instruction. However, it must ke
written before the next macro instruction
for the same file is issued.

If an error condition is detected during
the execution of the WRITE functions, the
IOCS branches to the appropriate error
routine.

Random Retrieval and Updating

The following three macro instructions are
available for use in the problem program to
retrieve and update records randomly: READ,
WRITE, and WAITF.

If you want to retrieve the records of
an indexed-sequential file in random order
for processing and/or urdating, enter
RETRVE or ADDRTR in the IOROUT entry of the
appropriate DTFIS statement. Random proc-
essing must be specified in the TYPEFLE
entry of the file definition statement, and
updating (if used) must be specified in the
UPDATE entry.

Because random reference to the file is
made by record keys, the problem program
must supply the key of the desired record
to the IOCS. To do this, store the key in
the key area srecified by the KEYARG entry
of the appropriate DTFIS statement. The
key that is placed into the key area speci-
fied in the KEYARG entry designates bLoth
the record to be retrieved and (if updating
is specified) the record location on disk
into which the updated record is to be
written.

READ MACRO INSTRUCTION

This macro instruction causes a specified
record to be retrieved from an indexed-~
sequential file.

T - ==

|Operation |Operands |

The first operand specifies the name of
the file from which a record is to be
retrieved and placed into main storage.

The file name must be the same as the one
specified in the header entry of the DTFIS
statement for the file., The second operand
must be KEY. Place the key of the record
into the field designated by the KEYARG
entry, before issuing the READ macro
instruction.

If a work area is used in addition to
the I/0 area (DTFIS entry WORKR), the
record is also moved into the specified
work area.

If the records of the file are blocked,
the IOCS causes the entire block containing
the desired record to be read into the I/O
area. The record is made available for
processing either in the I/0 area or in the
work area specified in the WORKR entry of
the DTFIS statement. For processing in the
170 area, the IOCS supplies the record
address in the register specified directly
or symbolically in the IOREG entry of the
DTFIS statement.

If the IOCS does not find the specified
record, control is transferred to the rou-
tine specified in the RTRVEX entry of the
appropriate DTFIS statement.

WRITE MACRO INSTRUCTION

This macro instruction causes the record
retrieved by the preceding READ macro
instruction (for the same file) to be writ-
ten onto disk at the location from which it
was retrieved.

The first operand specifies the name of
the file to which a record is to be
returned. The file name must be the same
as the one .specified as the first operand
of the READ macro instruction that
retrieved the record. The second operand
must be KEY.

The WRITE macro instruction causes the
record to be written onto disk .at the loca-
tion specified by the key used by the
preceding READ macro instruction. There-
fore, if you do not change the contents of
KEYARG, the problem program need not supply
the key again.

WAITF MACRO INSTRUCTION

This macro instruction ensures that the
reading of a record into, or the writing of
a record from, the I/O area for the file
has been completed before further process-
ing is done that involves the same 1/0
area. The WAITF macro instruction also
permits the seek operation for seeking the
track index to be overlarped with process-
ing.

|Operatlon]Operand |

+
l[name]lWAITF |filename |
N T, S, b

The file name must be the same as the
one specified in the header entry of the
DTFIS statement for the file.

A WAITF macro instruction must be issued
after every READ or WRITE macro instruction
referring to a file for which random
retrieval and updating has been specified.
After a READ macro instruction, issue a
WAITF macxo instruction before you start
processing the record retrieved by that
READ macro instruction. After a WRITE
macro instruction, issue a WAITF macro
instruction eithex

1. Dbefore you issue another READ macro
instruction referring to the same file,
or

2. Dbefore you start using the I/0 area for
the file in the proklem program, or

3. Dbefore you issue any other macro
instruction that refers to the same
file (including CLOSE),

whichever is earlier.

Sequential Retrieval and Updating

Four macro instructions are availakle for
use in the problem program to cause the
records of an indexed-sequential file to be
retrieved and updated sequentially: SETL,
GET, PUT, and ESETL. If you want to
retrieve and update the records of the file
in both ways, randomly and sequentially,
the macro instructions READ, WRITE, and
WAITF are used for random retrieval as
explained in the section Random Retrieval

and Updating.

From an indexed-sequential file, records
can be retrieved in sequential order by key
for processing and/or uprdating. To cause
the IOCS to perform sequential retrieval
and updating, specify the following in the
detail entries of the arpropriate DTFIS
statement:

Instructions for Processing Indexed-Sequential Disk Files 83

1. Retrieval of records (RETRVE or ADDRTR

in the IOROUT entry).
2. Sequential processing (SEQNTL or RANSEQ
in the TYPEFLE entry).

3. Updating of records (SEQNTL or RANSEQ
in the UPDATE entry).

If the specifications ADDRTR and RANSEQ
are used in these three detail entries, the
records can be retrieved randomly or
sequentially, and new records can be added.

Sequential retrieval can begin either at
a record identified by key or at the begin-
ning of the logical file. Specify the
starting reference as the second operand in
the SETL macro instruction for the file.

The key of the first record must be
moved to the main-storage field specified
in the XEYARG=name entry of the DTFIS
statement for the file. The IOCS derives
the position of the key from the KEYLOC
entry of the DTFIS statement. When search-
ing for the specified record, the IOCS
first locates the correct track and then
examines the key area within each record on
the track to find the specified record.

SETL MACRO INSTRUCTION

This macro instruction (SET Limits) pre-
pares the I0OCS for sequential processing
and determines the point at which process-
ing is to begin.

| [name] | SETL
| inamel | SETL
I[name]ISETL

| filename, BOF |
| filename,KEY |
lfllename GREY]

The SETL macro instruction can be writ-
ten in one of three forms depending on the
specified starting reference. 1In all
forms, the first operand specifies the name
of the file for which sequential retrieval
and updating is desired. The file name
must be the same as the one specified in
the header entry of the DTFIS statement for
the file.

The meaning of the second operand is as
follows:

1. If it is BOF, sequential retrieval
begins with the first record in the
file, i.e., the next GET macro instruc-
tion for the file retrieves the first
logical record of the file.

84

2. If it is KEY, sequential retrieval
begins with the record whose key is
contained in the field specified in the
KEYARG=name entry. If the record is
not found, control is transferred to
the routine specified in the
RTRVEX=name entry of the DTFIS state-
meht.

3. If it is GKEY, sequential retrieval
begins with the record whose key is
contained in the field specified in the
KEYARG=name entry or, if this record is
not found, with the record having the
next greater key. If no greater key is
available, the first GET causes the
IOCS to branch to the address of the
end-of-file routine.

After the SETL macro instruction has
been executed the disk-storage access
mechanism is positioned for retrieval of
the first record; therefore, if the second
operand 1s not BOF, the problem program
must supply the key before the SETL macro
instruction is executed.

Note: Neither BOF nor GKEY require the
RTRVEX entry. However, if RTRVEX is not
specified when KEY is used as the second
operand, an error condition occurs. The
Assembler prints a diagnostic message stat-
ing that KEY is treated as an undefined
symbol.

GET MACRO INSTRUCTION

This macro instruction causes the next
sequential record (according to key) to be
retrieved from an indexed-sequential file.

_____________________ S
| Name]Operatlon]Operands |
T R TR TR T 1
| [namel | GET |filename |
][name]lGET | £ilename, workname |
bl L J

The GET macro instruction can be written
in either of two forms, depending on the
area in which the records will be proc-
essed. In both forms, the first operand
specifies the name of the file from which a
record is to be retrieved. The file name
must be the same as the one specified in
the header entry of the DTFIS statement for
the file.

If records are to be processed in the
I/0 area, no second operand is required.
If records are to be processed in a work
area, the second operand specifies the name
of the work area to which each record is to
be moved.

Because the IOCS waits for the comple-
tion of each GET macro instruction, the
retrieved record is available when the next
sequential instruction in the problem pro-
gram is executed.

PUT MACRO INSTRUCTION

This macro instruction causes the record
retrieved by the preceding GET macro
instruction (for the same file) to be
replaced in the location from which it was
retrieved.

r———-—- T B ettty 1
| Name |Operation |Operands |
pm—m=mv I ——f=- s :
| [name] | PUT | filename]
| [name] | PUT | £ilename, workname |
| L N AN 3

The PUT macro instruction can be written
in either of two forms, depending on the
area in which the recoxrds will be built.

In both forms, the first operand specifies
the name of the file to which a record is
to be returned. The file name must be the
same as the one specified as the first
operand of the GET macro instruction that
retrieved the record.

If records are processed in the I/0
area, no second operand is required. If
records are processed in a work area, the
second operand specifies the name of the
work area from which records will be moved
to the I/0 area. Note that the work area
referred to in the PUT macro instruction
will frequently be the same as the one in
the GET macro instruction. However, any
work area may be referred to in the PUT
macro instruction.

A PUT macro instruction is required only
when a record in the file has been changed
(updated) .

If a PUT macro instruction is not issued
for any record in the block, the subseguent
GET for the file will not cause the writing
of the block. At the end of the file, the
ESETL macro instruction causes the last
block processed to be written, if neces-
sary.

ESETL MACRO INSTRUCTION

This macro instruction (End SET Limit)
indicates the end of a sequential retrieval
and updating operation that was initiated
by a SETL macro instruction.

| T ‘--' T T TT T T TT T T Al
|Name |Operation |Operand]
pommm- pmmmmmmmm e fom oo oo
| [name] | ESETL | £filename

(I L R 1

The operand contains the name of the
file that has been sequentially retrieved
and updated. The file name must ke the
same as the one specified in the orerand of
the SETL macro instruction that initiated
sequential processing.

When, in a program, sequential retrieval
is to be followed by the addition of
records to the file (i.e., IORCUT=ADDRTR
has been specified) or by random retrieval,
write the ESETL macro instruction at the
end of sequential retrieval and before you
issue a WRITE instruction for the first
addition or a READ instruction for the
first record to be randomly retrieved. If
sequential retrieval is to be resumed when
random retrieval and additions have been
completed, issue another SETL macro
instruction. Figure 16 illustrates the
proper use of SETL and ESETL macro instruc-
tions.

=== 7 s T 1
| SETL filename, BOF |
| - [
| . _ x
GET filename
- I
PUT filename
. I
GET filename
-
PUT filename
. save key of last record
- processed sequentially if]
. that key is to be used in
- the next SETL instruction]
ESETL filename
. ,
WRITE filename,NEWKEY
-
WAITF filename
READ filename, KEY
. I
WAITF filename
-
WRITE filename,KEY
. provide proper key for
. the SETL instruction
WAITF filename
[-
SETL filename, GKEY
L— e 4
Figure 16. Use of SETL and ESETL Macro

Instructions for ICROUT=ADDRTR

Instructions for Processing Indexed-Sequential Disk Files 85

Organizing and Processing Indexed-Sequential Files

The first part of this section provides
information on the organization of indexed-
sequential files, i.e., on cylinder and
track indexes and overflow areas. The
second part tells you how an indexed-
sequential file is processed by the I0CS.
This information is not required for coding
a program. However, you might find it
useful reading since some of the
information is liable to help you to
improve your coding.

ORGANIZING AN INDEXED-SEQUENTIAL FILE

When a logical file of presorted records is
loaded onto disk, the IOCS organizes the
file in such a manner that you have direct
access to any record.

Reference can be made to records at
random throughout the logical file, or to a
series of records in the file in their
presorted sequence (collating sequence),
The IOCS routines also provide for addi-
tions to the file at a later time, still
maintaining both the random and the sequen-
tial access capabilities.

The I0CS loads the records one after the
other into a specified area of the disk
volume. This area is called the prime data
area. It may consist of one or more disk
extents. To define the prime data area,
you must specify the starting and ending
limits of its extent(s) in Jjob control
XTENT statements (one for each extent).

The limits of prime data extents must be on
cylinder boundaries.

Indexes

s the IOCS loads a file of records sorted
by control information, it builds two
indexes for the file - a track index and a
cylinder index. These indexes are utilized
for both random and sequential access to
records.

Once a file has been loaded and the
related indexes have been built, the IOCS
routines search for specified records by
referring to the indexes. When a particu-
lar record (specified by the key) is
requested for processing, the IOCS searches
the cylinder index, then the track index,
and finally the individual track.

The indexes are made up of a series of

entries, each of which includes the address
of a track and a key as follows:

86

1. For the track index, this key is that
of the last record on a specific track.
Note: If the length of the last block
on a given track exceeds the availakle
space, the portion in excess is written
on the subsequent track. Thus, the
'last record' of a track may, in
effect, be located on the next higher
track.

2. For the cylinder index, this key is the
highest key within each cylinder.

The entries are normally blocked, i.e.,
one disk sector contains more than one
entry. The exact number of entries per
sector and the number of sectors required
for an index depend on the keylength and on
the number of prime data tracks (10 minus
number of cylinder-overflow tracks). The
track address requires six bytes.

Track Index. The track index is the low-

level index for the logical file. A

separate track index is built for each
prime data cylinder used by the file; it
contains index entries for that cylinder
only. Each track index is located on the
cylinder that it incexes. It always begins
on the first sector of that cylinder.

When the track indexes are originally
built, they contain two identical entries
(normal and ovexrflow) for each track util-
ized on the cylinder. The use of two index
entries for each track is regquired kecause
of overflow records that will occur if more
records are inserted in the file at a later
time. (Refer to Overflow Areas and Addi-
tion of Records.) When overflow records
for a track exist, the second (overflow)
index entry contains the key of the highest
record in the overflow chain and the
address of the lowest record in the over-
flow chain for the track. For example, if
the prime data area of the logical file
utilizes eight tracks on a cylinder when
the f£ile is built and two tracks are over-
flow tracks, the track index (on track 0)
might contain the entries shown in Figure
17. Any subsequent records on track 0 are
logical-file data records. The first data
record following the track index always
begins with a new sector.

Cylindexr Index. The cylinder index is the

high-level index for the logical file.

This index contains one entry for each
prime data cylinder occupied by the file.
The cylinder index is built in a separate
extent, which you specify in a job control
XTENT statement. It must be on cylinder
boundaries., The index must be built on a
cylinder that does not contain data records

for the file (but it may contain the inde-
pendent overflow area). This cylinder may
be on a separate volume provided this vol-
ume is on-line whenever the logical file is
processed.

The cylinder index contains one entry
for each cylinder occupied by the data
file. Each entry contains the highest key
associated with the cylinder and the
address of the track index for that cylin-
der. For example, if a file requires six
cylinders, the cylinder index might contain
the entries shown in Figure 18 . The dummy
entry indicates the end of the cylinder
index.

Overflow Areas_and Addition of Records

After a logical file has been loaded onto
disk, it may subsequently become necessary
to add records to the file. The records to
be added may

1. contain keys that are above the highest
key currently in the file (in this
case, the records constitute an exten-
sion of the file), or

2. contain keys that are either lower than
the lowest key currently in the file or
fall between keys already in the file

(in this case, the records are to be
inserted in proper sequence in the
organized file).

If all records to be added have keys
that are higher than the highest key in the
present file, the new records, which must
be presorted, can ke added by loading them
into the file. ©No overflow area is
required.

If new records are to be inserted among
those already organized, an overflow area
is required. The IOCS uses overflow areas
to permit the insertion of recoxrds without
a complete reorganization of the esta-
blished file. The random and sequential
retrieval of records is maintained by
inserting references to the overflow chains
in the track indexes and by using a chain-
ing technique in the overflow records. For
chaining, a sequence-link field is suffixed
to the data record in the overflow area.
The sequence~link field is a six-byte area.
It contains the address of the record in
the overflow area that has the next higher
key. Thus, a chain of sequential records
can be followed in a search for a particu-
lar record. The sequence-link field of the
highest record in the chain indicates the
end of the chain.

/
Key Track 1 Key Track 1 Key Track 2 Key Track 2 Key Track 3 Key
75 Address 75 Address 150 Address 150 Address 225 Address 225
Normal Entry Overflow Entry Normal Entry Overflow Entry Normal Entry 4
L
Key Track 7 Key O'flow Key Track 8 Key Track 8 Remc;nln% portion
525 Address 530 |Track Address | 605 Address 605 Address ol 1omite
y: J
Normal Entry Overflow Entry Normmal Entry Overflow Entry Dummy Entry
Figure 17. Schematic Example of a Track Index
{
. . Remaining
‘ | i X
o | Sttt [| i iy [| cpaes [
605 e 1355 ? 7150 e 1-Bits e of sector
Address Address Address Address all 1-Bits
7
Dummy Entry

®Figure 18. Schematic Example of a Cylinder Index

Organizing and Processing Indexed-Sequential Files 87

insertion record.

For example, assume tracks 2 and 3 are
organized with the record keys shown in
Figure 19. In this case, records with keys
such as 151, 175, 199, 215, and 239 are
inserted on Track 3 or in the related over-
flow chain that has developed. Any key
lower than 150 is added to either Track 1
or Track 2; any key higher than 250 belongs
to Track 4 or above. The track index over-
flow entries always contain that key which
was the highest on a particular track at
the time the disk file was originally
organized.

Updating of the Track Index. The IOCS
updates the track index to reflect the
changes caused by the addition of records.
The first index entry for the track has the
key field changed to indicate the new last
record located on the track. The second
index entry for the track has the track
address changed to point to the address of
the lowest overflow record of the chain.

If a record with key 102, for example, 1is
added to a file organized as shown in Fig-
ure 19 and if the overflow area is located
on Track 9, the track index records contain
the information shown in Figure 20.

88

/ L
Key Key Key Key Key
Track 2 100 Data 105 Data S & 140 Data 145 Data 150 Data
7/
/L
Key Key Key Key Key
Track 3 200 Data 205 Data S g 240 Data 245 Data 250 Data
7/
Figure 19. Data Records as Originally Organized on Tracks 2 and 3
To add a record, the IOCS searches the
established indexes first to determine on
which track the record must be inserted.
‘The keys of the last records on the tracks
in the present file determine the track
where an inserted record belongs. A record
is always inserted on the track where:
Before Key Track 2 Key Track 2
1. the last key is higher than the key of Addition | 150 Address | 150 Address
the insertion record, and
Track 9
. . Aft
2. the last key of the preceding track (if ,yit. ‘](z L‘:’:;j ng 1 Record X
any) is lower than the key of the Address

Example of Track Index Entries
Before and After Addition of a
Record on Track 2

Figure 20.

Chaining by Sequence Link Field. If a
record is to be placed between the last
record currently on the track and the last
record originally on the track it belongs
in the overflow area. The IOCS writes the
record in the overflow area following the
last record previously written. The IOCS
searches through the chain of records asso-
ciated with the corresponding track for
this record and identifies the sequential
position the record should take. Then the
sequence-link fields of the new record, and
the record preceding it ky sequential key,
are adjusted to point to the proper
records.

I1f, for example, records with the keys
150, 145, and 140 are already in the over-
flow area and record 142 is to be added,
the sequence-link fields of records 140 and
142 must be adijusted (see Figure 21).

|RECORD | SEQUENCE-LINK FIELD |
| fr———— e m e et 1
| | Before Addition | After Addition |
p-—---- frmmmmmmm o e i
| 150 | * | * I
—————— e R R
| 145 | 150 | 150 |
—————— ¥ e
| 180 | 145 | 142 |
_______________________ S |
| 142+ | - | 145 |
______ J._._..__________.____.L_____.____..._.'______.I
|* end of chain]
|+ added record |
L e e _— 4

Example of Sequence-Link Fields
Adjusted for Addition of a
Record (142)

Figure 21.

If a record is inserted into the last
track of a file, the EOF record is trans-
ferred to the overflow area in the same
manner as the last data record on any other
track.

Overflow-Area Options: You may specify the
location of the overflow area(s) for a
logical file. The overflow areas may be
built by one of three methods:

1. The overflow area for records may be
located on each cylinder within the
prime data area that is specified by
one or more job control XTENT state-
ments for the data file. In this case,
you must specify the number of tracks
to be reserved for overflow records on
each cylinder occupied by the file.
The overflow records that occur within
a particular cylinder are written in
the cylinder overflow area for that
cylinder.

Specify the number of tracks to be
reserved for each cylinder overflow
area in the CYLOFL entry of the DTFIS
statement when the records of the par-
ticular file are to be loaded or when
records are to be added to an organized
file.

2. You can specify an independent overflow
area for storing all overflow records
of the logical file. In this case,
include a job control XTENT statement
when the program is executed to specify
the disk extent to be used as overflow
area. This area may be on the same
volume with the data records, or on a
different volume that is on-line. How-
ever, it must be contained within one
volunme.

3. You may use both cylinder overflow
areas (method 1) and an independent
overflow area (method 2). In this
case, overflow records are first placed

in the cylinder overflow areas within
the data file. When any cylinder over-
flow area is full, the additional over-
flow records from that cylinder are
written into the independent overflow
area.

Method 3 (described above) is prefera-
ble to methods 1 and 2, because it
provides faster retrieval and avoids
frequent file re-organizations. Faster
retrieval is achieved because most of
the overflow records are located in the
cylinder-overflow area. File re-
organization is avoided because the
overflow records can be stored in the
independent overflow area if the
cylinder-overflow area is full, so that
the program need not enter the ADAREX
routine.

The block length (depending on the num-
ber and length of the records) for the file
applies to both the prime data area and the
overflow area(s). Since a sequence-link
field (a 6-byte area) is suffixed to each
individual record in an overflow area, the
number of records to a block in that area
may be less than the number of records to a
block in the corresponding prime data area.
You need not be concerned about this
because the IOCS computes the klocking
factor according to the klock length.

Note: The Model 20 IOCS does not permit the
extents of an oxrganized file to be changed.
Therefore, if the available overflow areas

are full and records are still to be added,
the file must be completely reorganized.

When an indexed-sequential file is proc-
essed, a field is made available for updat-
ing the number of tagged deletion records.
You can address this two-byte field in the
problem program. When processing is com-
pleted, i.e., when a CLOSE macro instruc-
tion is issued, the updated field is re-
written into the format-2 label of the
pertinent file.

You may address the first byte of this
area in main storage by defining an address
constant that .contains the file name of the
pertinent file plus a displacement of 120.

If the file name is PAYROLL,
the address constant is:
DC Y(PAYROLL+120)

Exanmple:

Storage Areas

Records in one logical file are transferred
to or from one or more I/0 areas in main
storage. The areas must always be large
enough to contain a block of records or a
single record if unblocked records are
specified. For the functions of adding or
retrieving records, the I/0 area must also

Organizing and Processing Indexed-Sequential Files 89

provide space for a sequence-link field
that is used in conjunction with overflow
records when the entry RECFORM=FIXUNB is
specified (see Overflow Areas and Addition
of Records) above. The I/0 area require-
ments are illustrated in Figure 22 and
described in detail under IOAREAL, IOAREAR,
and IOAREAS in the discussion of the DTFIS
Statement.

Records may be processed directly in the
I/0 area or in a work area. If blocked
records are to be processed in the I/0
area, specify a register directly or sym-
bolically in the IOREG entry of the DTFIS
statement. The specified register is used
for indexing, i.e., to point to the begin-
ning of each record and thus locate the
record for processing.

If the records are to be processed in a
work area, specify one of the DTFIS entries
WORKR or WORKS in the file definition
statement. The IOCS moves each individual
input record from the input area to the
work area where it is available to the
problem program for processing. Similarly,
the IOCS moves a completed record from the
work area o the output area. The work area
must be large enough to accommodate one
data record. Whenever a work area is used,
an I/0 register is not required.

LOAD (ADD) Blocked Records

Multi-File Processing: If multi-file proc-

essing with the same physical file is
desired (i.e., if two file names - A and B
- have been specified in two file defini-
tion statements, but the associated DLAB
cards contain identical disk extents and
file identifiers), issue a CLOSE macro
instruction for the file with the filename
A before opening the file with the filename
B.

PROCESSING AN INDEXED-SEQUENTIAL FILE

This section informs you about the func-
tions the IOCS performs when loading or
adding records, or when retrieving and
updating recoxds randomly or sequentially.

Loading Recoxrds

As records are loaded onto disk, the IOCS
causes the writing of a track-index entry
each time a track is full, and the writing
of a cylinder-index entry each time a cyl-
inder is fudl. When a track index is com-
pleted, the IOCS fills the remaining por-
tion of the sector with 1l-bits.

The ENDFL macro instruction causes the
writing of the last block of data records,
which contains the end-of-file record. It
also causes any required index entries to
be written, including the dummy entry for
the cylinder index,

Data
Length g RECSIZE x NRECDS —
in Bytes (must always be a length of 270 bytes
or an integer multiple thereof)
LOAD (ADD) Unblocked Reords
Data SL
Length L‘ RECSIZE =n, NRECDS =1)‘ﬂ— 6 —»

in Bytes

SL = Sequence Link

Figure 22.

20

I/0 Areas Required for Loading or Adding Function

Adding Recoxds

Before a WRITE macro instruction can be
executed, the access mechanism must locate
the track on which the record is to be
inserted. Normally, this is done by first
searching the cylinder index and then the
track index. However, before the access
mechanism is moved to check the cylinder
index, the IOCS checks the I/0O area in main
storage containing the track index to
determine if the proper track-index sector
is already 'in main storage from a previous
add-record operation. If so, access move-
ment to the cylinder index 1s not necessary
and the appropriate track-index entry is
used to obtain the proper insertion
address. This method of checking the
track-index sector in main storage before
initiating access movement may reduce the
average access time considerably if the
input records are pre-sorted. In this
case, the proper track index is likely to
be in main storage for the majority of the
insertion records.

If the proper track index is not in main
storage, the IOCS causes the following: (1)
a seek to the cylinder index, (2) a search
for the entry pointing to the proper track
index, and (3) a seek to this track index.
The IOCS then transfers control to the
problem program to permit processing while
the access mechanism is moved to the track
index location.

The WAITF macro instruction causes the
remaining functions of the preceding WRITE
macro instruction, i.e., search of the
track index, insertion of the record in the
prime data or overflow area, and updating
of track index entries, to be performed.

When all the functions of the preceding
WRITE macro instruction are completed, the
IOCS returns control to the instruction
immediately following the WAITF macro
instruction.

Inserting Records into a File of Unblocked
Records. The IOCS searches the indexes to
locate the correct track for the record.
If the correct track is not an overflow
track, the IOCS performs a scan if a prime
data block does not occupy more than one
sector. Otherwise, it performs an
equals/high search by comparing the keys of
the records on the track with the key of
the record to be inserted. When a record

is found whose key is equal to or higher
than the key of the insertion record, that
record is read from the track and placed
into main storage (I/0O area). The two keys
are compared to determine if a duplicate
record was found. If a duplicate record
was found, the IOCS branches to the routine
specified in the DUPREX entry of the DTFIS
statement. If no duplicate key was found,
the IOCS causes (1) the insertion record
(in the WORKL area) to be written on the
track and (2) the record that was read from
the track into the I/0 area to be moved
into the WORKL area.

The next record on the track is read
into the I/0 area. Then the record in the
work area is written on the track. This
sequence of operations is repeated until
the last record on the track has been read
into the I/0O area. This last recoxd is
then written into the appropriate overflow
area, and the appropriate track-index
entries are updated. The IOCS uses the
cylinder overflow area, provided this area
has been specified in the CYLOFL entry of
the DTFIS statement and the area is not yet
full. Figure 23 illustrates the status of
the areas in main storage (IOAREAL and
WORKL) during an add-record operation as
described above.

If the cylinder overflow area is full,
or if you specify only an indegendent over-
flow area by means of a job control XTENT
statement, the last record is transferred
to the independent overflow area. If an
independent overflow area has not been
specified for is full) and the cylinder
overflow area is full, there is no place to
store the overflow record. The IOCS then
branches to the routine specified in the
ADAREX entry of the DTFIS statement.

If the propexr track for the insertion
record is an overflow track, the IOCS
searches the overflow chain and checks for
a duplicate record., If a duplicate record
is found, the IOCS branches to the DUPREX
routine. If no duplication is found, the
I0CS causes (1) the record to ke written in
the next available location within the
overflow area, including the 6-byte
sequence=link field and (2) the appropriate
linkages to be adjusted to maintain sequen-
tial order by key. The new record is writ-
ten in either the cylinder overflow area or
in the independent overflow area. If both
these areas are full, the IOCS branches to
the ADAREX xoutine.

Organizing and Processing Indexed-Sequential Files 91

Record to be inserted (in the WORKL Area)

Record 031

Records on Track before Insertion

Record 010 Record 020

Record 030

Record 040 Record 050

Status of Main Storage Areas IOAREAL and WORKL:

[—— IOAREAL ——————==|
After record with
higher key has been Record 040 RSL
found
After insertion
record has been Record 050 RSL
written
After record 040 SL
has been written Record 050

f@—— WORKL Area ———|
is written onto disk af
Record 031 RSL| location previously
occupied by record 040
is written onto disk at
Record 040 RSL| location previously
occupied by record 050
Record 040 RSL

Record 050 is written onto disk in the appropriate overflow area directly from 1OAREAL.

Records on Track after Insertion

Record 010 Record 020 Record 030 Record 031 Record 040
RSL = Reserved Space for Sequence-Link Field Record on
SL = Sequence-Link Field overflow track Record 050 SL
(required to permit proper chaining of overflow' records)

Figure 23.

Status of Main Storage Areas IOAREAL and WORKL During an Add-Record Operation

for a File Containing Unblocked Records

Inserting Records into a File of Blocked
Records. The IOCS searches the indexes to
locate the track that contains the begin
address of the block into which the new
record is to be inserted. This track may
be an overflow track.

If the track that contains the begin
address of the block is not an overflow
track, the IOCS searches the key areas of
the records on the track to locate the
desired block. When located, the block is
read into the I/0 area.

The IOCS then examines the key areas
within each logical record to find the

92

exact position to insert the new record.
The I0OCS checks for duplication of records
and, if a duplication exists, kranches to
the DUPREX routine. If there is no dupli-
cate record, all records below the insert
position are shifted to the left by one
record to make room for the new record that
is moved from the WORKL area into the I/O
area. As a result, the first record of the
block is now contained in the WORKA area.

The block is then written kack onto disk
beginning with the leftmost byte of the
WORKA area. However, the record that orig-
inally was the last record of the block is
not written at this time. This record is

moved into the WORKA area after the comple-
tion of the WRITE operation. A subsequent
read instruction reads the next block from
disk into the I/0 area. This is followed
by a write instruction that begins with the
WORKA area again. This sequence of opera-
tion is repeated until all blocks on the
track have been processed.

After the last block of the track has
been written, one record is left at the end
of the I/0 area. This record is then set
up as an overflow record with the proper
sequence-1link field and written into the
overflow area. The indexes are updated and
the IOCS returns control to the problem
program for the next record to be added.

If no overflow area is available, the IOCS
branches to the ADAREX routine.

Track before Insertion

Figure 24 illustrates the status of the
main storage areas IOAREAL, WORKL, and
WORKA during an add-record operation for a

file containing blocked records.

If the point of insertion is on an over-
flow track, the functions are the same as
described above uncder Inserting Records

into a File of Unklocked Records,

Random Processing

The READ macro instruction causes the I0CS
to search the indexes to determine the
track that contains the desired record.
The search for the appropriate recoxd is

performed in twc different manners.

k& Block A e Block B >
Record Record Record Record Record Record Record Record Record Record
010 020 030 040 050 060 070 080 090 100

Status of Areas in Main Storage
'.—womq.——‘

Becord to be Record 031
inserted
After desired block i-_WORKA _.‘
has been read into Record 010 | Record 020 | Record 030 | Record 040 | Record 050
the 1/O area

e IOAREAL >
After the insertion P—WORKA_’i
of Record 031 Record 010 | Record 020 | Record 030 | Record 031 | Record 040 | Record 050

| IOAREAL —

Note: New block begining with record 010 including record 040 is written onto disk

at the location of block A

|-WORKA—-‘

Record 050 is moved

Record 050 | Record 020 Record 030 Record 031 Record 040 | Record 050
to WORKA
e IOAREAL >
WORKA
After the next "- —..1
block has been read | Record 050 | Record 060 | Record 070 | Record 080 | Record 090 | Record 100
into the 1/O area
|tt— IOAREAL >

Note: New block begining with record 050 including record 090 is written onto disk
at the location of block B. Record 100 is written into an overflow block.

Figure 24.

Status of Main Storage Areas IOAREAL, WORKIL,

Operation for a File Containing Blocked Retords

and WORKA During an Add-Record

Organizing and Processing Indexed-Sequential Files

93

a) If the block length (i.e., the number of
records times therecord length) is less
than 270 bytes, the program simply scans
the track concerned until the appropri-
ate record is found. Then the record is
read into the IZ0 area (IOAREAR).

b) If the block length exceeds 270 bytes,
all records on the given track are suc-
cessively read into the I/O area until
the correct record is encountered.

The WRITE macro instruction causes the
record retrieved by the preceding READ
macro instruction and processed by the
problem program to be rewritten onto disk
at the location from which it was
retrieved.

The WAITF macro instruction causes the
remaining functions of the preceding
READ(WRITE) macro instruction (e.g., search
of the track index, insertion of the
record) to be performed. When all func-
tions are completed, the IOCS returns con-
trol to the instruction immediately follow-
ing the WAITF macro instruction.

Sequential Processing

If a GET macro instruction with the file
name as the only operand is used and the
file contains unblocked records, one logi-
cal record is retrieved and made available
for processing in the I/0 area. If the
file contains blocked records, this GET
causes the entire block to be read into the
I/0 area when no further records are avail-
able from the block that is already in main
storage. The IOCS then makes the addresses
of the records available one at a time in
the register specified directly or symboli-
cally in the detail entry IOREG of the
appropriate DTFI3 statement. Each subse-
gquent GET causes the contents of the I/0O
register to be increased by the number of
bytes contained in one record.

If a GET macro instruction with two
operands (filename and workname) is used
and the file contains unblocked records,
the record read from disk into the I/0 area
is made available for processing in the
specified work area. If the file contains

L

blocked records, this GET causes the entire
block to be read into the I/0 area when no
further records are available from the
block that is already in main storage. The
IOCS then makes the first record of the
block availahle for processing in the spec-
ified work area. Each subksequent GET caus-
es the next record to be made available for
processing.

If a file containing blocked records is
retrieved and updated, the GET macro
instruction determines whether or not an
output operation is necessary. Because a
PUT macro instruction need only be executed
for those records that have been updated,
the PUT macro instruction merely indicates
whether or not a block of records should be
written onto disk after all recorxrds in that
block have been processed. When a GET
macro instruction that refers to the first
record in a new block is executed, the IOCS
determines whether or not a PUT macro
instruction was issued for a record in the
block just completed. If there was, that
block is returned to disk before the new
block is read. If no PUT macro instruction
was issued, the output operation is omitted
because no recorda in the block was changed.

For unklocked records, the execution of
a PUT macro instruction causes a record to
be written into the disk storage location
from which a record was retrieved by the
preceding GET macro instruction for that
file.

For blocked records, the execution of a
PUT macro instruction does not initiate the
writing of records onto disk. Instead, it
only indicates that a block should be writ-
ten before the next one is read. If a work
area is specified, the execution of a PUT
macro instruction will also move the record
from the work area to its proper rosition
within the block. The writing of the block
is controlled as described for the GET
macro instruction above.

For blocked records, the ESETL macro
instruction causes the last block of
records to be returned to disk if a PUT
macro instruction was issued for any record
in that block.

In Assembler language programs, you can
issue five macro instructions to communi-
cate with the Monitor. Two refer to the
communication region (COMRG and MVCOM), two
request functions of the Fetch routine
(FETCH and EOJ) and one refers to the
printer-keyboard input area (IQIPT).
Appendix C is a summary of these Monitor
macro instructions.

COMRG MACRO INSTRUCTION

The COMRG macro instruction is used to
refer to the communication region. It
causes the address of the first byte of the
region, which is on a halfword boundary, to
be placed into register 8. Then, any field
in the region can be referred to by rela-
tive addressing.

The COMRG macro instruction has the
following format:

| St bt S 1
|Name|Operation|Operand i
S e B 1
| | COMRG | }
(RSO [R -— - ———l
Example: The following sequence.of

instructions places the address of the
beginning of the communication region into
register 8, loads the contents of bytes 20
and 21 of the communication region (User
Area II) into register 12, and then stores
the contents of register 12 in a location
whose symbolic address is TEST.

COMRG
LH 12,20(0,8)
STH 12,TEST

MVCOM MACRO INSTRUCTION

The MVCOM macro instruction is used to
modify information in the user area of the
communication region (bytes 12 to 23). The
format of the MVCOM macro instruction is:

Eirst-byte
The relative address of the first byte
to be modified in the user area (can be
any of the decimal values 12-23).

Monitor Macro Instructions

number
The number of bytes to be modified in
the area (can be any of the decimal
values 1-12).

address
The name of the storage location that
contains the modifying bytes. (A relo-
catable expression may be used instead
of a name.)

Note: After the execution of a MVCOM macro
instruction, register 8 contains the
address of the communication region.

Example: If MOD is the symbolic address of
a location containing the binary number
10001111, the statement:

MvcoM 15,1,MOD

causes the number 10001111 to ke moved to
byte 15 of the cormmunication region.

FETCH MACRO INSTRUCTION

The formats of the FETCH macro instruction
are:

i i b s 1
|Name|0peratloﬂ|oyerand |
—————————————— e]
] | FETCH | phasenane]
R Tt e e 1
| | FETCH | |
| S R A J
phasename

In a disk-resident system, the name of
the phase that is to be loaded from the
core-image library into main storage.
In a card-resident system, the phase
that physically follows the phase con-
taining FETCH is to ke loaded (phase
name is ignored).

No Operand
The FETCH macro instruction may ke used

without an operand. In a disk-resident
system, the omission of the operand
causes the next subphase of the last
phase specified to be loaded. A sub-
phase ‘is a separately executable routine
within a phase of a problem program. It
mady be overlaid after execution. In a
card-resident system, the rhase that
physically follows the phase containing
FETCH is to be loaded.

The Monitor uses registers 8, 14, and 15
in executing the FETCH macro instruction
and does not restore their contents. If

Monitor Macro Instructions 95

you use any of these registers in your
program, you should store their contents
before issuing a FETCH macro instruction.

‘When you use card and printer files,
issue a WAITC macro instruction prior to
issuing a FETCH macro instruction to ensure
that all pending card and printer inter-
rupts are handled properly. (Refer to
Loading a Program Phase under Programming
Consideraticns).

EOJ MACRO INSTRUCTION

The EOJ (end of job) macro instruction is
used at the end of the last phase of a
proyram. It indicates to the disk-resident
Monitor that the Job Control program is to
be called to prepare the next job for proc-
essing.

When program execution is controlled by
the card-resident Monitor, an EOJ macro
instruction causes a system halt. Loading
of the next physical program that follows
(the Job Control deck that precedes the
next object program deck) is initiated by
pressing START.

The format of the EOJ macro instruction

is:

| Sntuimiat Rtttk e bttt 1
|Name|Operation]Operand |
S R frrm 1
| | EQJ | |
I I O a

*96

Note: If you use your own input/output
routines instead of the macro instructions
provided by the IOCS, the new PSW may be
used to point to the interrupt routine.
Ensure that all pending interrupts are
cleared and the original contents of the
new PSW -- the begin address of the Monitor
interrupt routine -- is restored before you
issue a FETCH or EOJ macro instruction.

IQIPT MACRO INSTRUCTION

With the IQIPT macro instruction you can
refer to the printer-keyboard input area
defined at Monitor generation time. This
macro instruction loads the begin address
of the input area into register 8. Thus,
you can refer to any field in the area by
means of this base address and a displace-
ment. The format of the IQIPT macro
instruction is:

S St e ettt 1
|Name|Operation]|Operand |
R e frmm o m oo 1
| | IQIPT | [
Ll e 4

Unlike the macro instructions for printer-
keyboard input and output files, the IQIPT
macro instruction is generated in-line in
the program and does not require linkage to
any DTF routines. It can be used only in
programs executed under the control of a
Monitor with a printer-keyboard input area.

This section informs you about the
restrictions you have to observe when writ-
ing a program. It tells you which reg-
isters you may use and how you can reduce
main storage reguirements by applying the
. overlay programming technigque.

RESTRICTIONS

When writing a problem program, observe the
following:

1. To avoid multiple definition of sym-
bols, do not use any symbols starting
with the letter I because all symbols
used by the IOCS start with this let-
ter.

2. Do not use file names that are longer
than seven characters because the IOCS
uses the eighth character position.

3. To avoid multiple-definition of sym-
bols, do not use a file name followed
by an additional character as a symbol
in your program because the Assembler
derives entry points to the IOCS by
adding a character to the file name.
For example, if READCRD has been
assigned as the name of an input file,
do not to use symbols such as READCRDA,
READCRDB, etc., in the source program.

4. When you use the IOCS in your program,
you are not allowed to issue an XIO
instruction because this would cause an
unexpected interrupt and thus interfere
with automatic scheduling of I/0 opera-
tions by the IOCS.

Loading a Program Phase Including File
Definition Statements

When a new program phase including file
definition statements is loaded by means of
a FETCH macro instruction, the permanent
link data area of the Monitor program is
modified to point to the interrupt routines
in the new program phase. As a result, any
I/0 macro instruction referring to a file
defined in the preceding program phase can
no longer be executed. You must also
ensure that all pending card and printer
interrupts from the preceding program phase
have been handled properly. Do this by
issuing a WAITC macro instruction before
you issue the FETCH for loading the next
phase. Figure 25 shows the use of the
WAITC macro instruction when another pro-
gram phase is to be loaded.

Note that a second or subsequent progran
phase cannot be loaded from a card input
device in which data cards were read during
any of the preceding program phases.

Programming Considerations

When, in an inquiry or in a mainline
program, you issue a FETCH macro instruc-
tion for, a separately assembled program
that contains file definition statements,
you must ensure that this program was also
assembled as inquiry or mainline program,
respectively. Otherwise, no file protec-
tion 1is provided for this program during
inquiries.

OVERLAY PROGRAMMING FOR OPEN AND CLOSE

When your program processes one Or more
tape and disk files, you can use the over-
lay programming technique to reduce the
number of main-storage rositions required.
This programming technique allows you to
have part or all of the OPEN I/O routines
for tape and disk files overlaid the prob-
lem program and to have rart or all of the
probklem program overlaid by the CLOSE rou-
tines for tape and disk files.

When you specify OVLAY in the DTFEN
statement, the OPEN and CLOSE routines for
tape and disk files are not generated as
part of the DTF routines. Instead, they
are generated in-line, i.e., when the
Assembler encounters the first {(or only)
OPEN (and CLOSE) macro instruction for a
tape or disk file.

It is not sufficient, however, to speci-
fy OVLAY in the DTFEN statement in order to
have the OVLAY function performed. In
addition, you must observe the following
(refer to Figure 25):

1. Write your own tape label handling
.routines (if any), including those
needed when closing a file (or files),
ahead of the first OPEN macro instruc-
tion.

2. Position all literals required by these

label routines ahead of the first OPEN
macro instruction (use an LTORG Assem-
bler instruction).

3. Open all tape and disk files before the
OPEN routines are overlaid by the prok-
lem program.

Note: If a program utilizing the over-
lay programming technique is loaded
from cards and the loading device is
also used as input device for a card
file, make sure that the first card of
the data file is in proper position to
be fed from the hopper of the reading
device at the time the file is opened
by means of an OPEN macro instruction.
(All program cards must have keen read
when the OPEN macro instruction for the
card file is executed.)

Programming Considerations 97

98

The routines used to open files (and
additional volumes of multi-volume
files) are not available after they
have been overlaid. Therefore, OVLAY
cannot be specified in programs that
process:

e nmulti-volume tape files,

e mnulti-file tape reels if more than
one file on the tape is used, and/or

e multi-volume sequential disk files.

Initiate execution of the OPEN macro
instruction by a subsequent XFR state-
ment (XFR BEGIN in Figure 25) which may
or may not immediately follow the OPEN
macro instruction. A FETCH macro
instruction (the first FETCH in Figure
25) must be issued following the OPEN -
macro instruction. This FETCH causes
part or all of the problem program to
be loaded. Note that the FETCH macro
instruction destroys the contents of
register 8.

Issue an ORG statement (ORG BEGIN in
Figure 25) after the XFR statement.

The operand of this ORG statement spe-
cifies the address where the overlay is
to start and may be the same as the
name of the OPEN macro instruction.

For details concerning the ACTION,
REPRO, XFR, and ORG statements, refer
to the SRL publications IBM System/360
Model 20, Disk Programming System,
Control and Service Programs, Form
C24-9006, and IBM System/360 Model
Disk and Tape Programming Systens,
Assembler Langquage, Form C24-9002.

20,

Use XFR and ORG statements (XFR and ORG
xxx in Figure 25) prior to the CLOSE
macro instruction. The operand of the
ORG statement specifies an address in
the preceding problem program. Only
one CLOSE macro instruction should be
issued for all files.

Issue a FETCH macro instruction (last
FETCH in Figure 25) for another program
subphase (i.e., another part of the
program). This subphase would include
the routines that have been generated
for the CLOSE and EOJ macro instruc-
tions. The loading of this subphase
begins at the address specified as the
operand of the ORG statement preceding
the CLOSE macro instruction.

If the overlay programming technique is
employed, the Open routine, in some
cases, already inserts the first record
into the I/0 area. Therefore, the I/0
areas should be defined immediately
preceding the load address of the indi-
vidual program phases so that they are
not overwritten.

{ __
i START

| DTF

] .

| .

| DTF

| .

| .

| DTFEN OVLAY

i . Generated EOF and EOV

| . routines

| LABADR ==—wm

I —=—— Tape label handling
routines

|BEGIN ————— Problem prograrm

| initialization

| USING 12

| USING 13

I

] DROP 12

| DROP 13

| OPEN diskfle, tapefle

| .

| . Generated OPEN routines
| for disk and tape files
| .

! .

| USING 12

| USING 13

| FETCH

| REPRO

| ACTION DUP

| XFR BEGIN

| REPRO

| ACTION NOLUP
e
|

| ORG BEGIN

| ROUTIN —=-—=

| OPEN cardfle

| . Generated linkage (to

| . DTFSR routine)

I ——

] WAITC

| FETCH

[T

| REPRO

| ACTION DUP

| XFR ROUTIN

| REPRO

| ACTION NODUP
e
|

| ORG XXX

| ———

| DROP 12

| DROP 13

| FINIS CLOSE diskfle, tapefle, cardfle
IO

| EQJ

1 END FINIS

e e e
Figure 25. Coding for File Processing

Using the Overlay Technique

Note: All I/0 areas have to be available
during OPEN, Processing, and CLOSE time.

Steps 1 through 5 cause some or all of
the coding between the location indicated
by the operand of the first ORG statement
(BEGIN) and the next XFR statement (XFR
BEGIN) to be overlaid by the problem pro-
gram. Steps 6 and 7 cause the overlaying
of part or all of the problem program, for
instance, with the CLOSE routine and the
end-of-job routines.

User-Written Macro Definitions

When you use the overlay programming tech-
nique, the program must not include any of
your own macro definitions that contain any
of the global SETB symbols &BGO-&BGL9,
&§BG21, §&BG27-&BG28, §&§BG69, and &BG80-6BG87.
{Note that you should not use the global
SETB symbols &BG13, §BG27, and §BG28 even
when OVIAY is not specified.) You must
either change the global SETB symbols in
your macro definitions or write the program
without the use of the overlay programming
technique.

Assignment of Base Registers

Since the OPEN and CLOSE routines are gen-
erated in-line, consider their approximate
sizes when assigning and loading the base
registers for the program. For information
cn the sizes of these routines, refer to
the SRL publication IBM System/360 Model
20, Disk Programming System, Performance
Estimates, Form C33-6003.

When DTFEN OVLAY is specified, the rou-
tines for the processing of the IBM stand-
ard labels are generated as part of the
OPEN routines and not as part of the DTF
routines. These routines use registers 9
and 10 as base registers.

You must drop your base registers prior
to issuing the first OPEN or CLOSE macro
instruction. Immediately after an OPEN
macro instruction, the USING instructions
must be repeated. It is not necessary to
reload the registers, however, because
their contents are restored to the value
they contained before the OPEN macro
instruction was executed (see Figure 25).

REGISTER USAGE

Registers 11, 12 and 13 have specilal res-
trictions on their use in programs contain-
ing 1419/1259 Magnetic Character Reader
IOCS macro instructions. Refexr to the SRL
publication, IBM System/360 Model 20, Disk
and Tape Programming Systems, Input/Output
Control System for the 1419 and 1259 Mag-
netic Character Readers; Form C33-6001.

Register 14 and 15 have special restric-
tions on their use in programs containing
BSCA IOCS macro instructions. Refer to the
SRL publication, IBM System/360 Model 20,
Binary Synchronous Communications Adapter,
Form C33~4001.

You may freely use any or all of the
registers from 10 through 13. Registers 8,
9, 14, and 15 are not readily availabkle for
reasons explained kelow.

Register 8 is used by the Monitor macro
instructions FETCH, IQIPT, COMRG, and
MVCOM. sSave the contents of register 8
before issuing any of these macro instruc-
tions.

Registers. 8 and 9 are used as operand
registers in the LABADDR routine. In this
routine, the two registers do not contain
the values that were placed into them in
the proklem program. The two registers are
restored to their original values if you
return to the IOCS by issuing an LBRET
macro instruction with a 1 as operand.

Registers 9 and 10 are not readily
available when OVLAY i1s Specified in the
DTFEN statement. If you issued USING
instructions for register 2 and 10 at the
beginning of the program, you must drop
these registers prior to issuing the first
OPEN macro instruction. You must repeat
the USING instructions immediately after
the OPEN macro instruction. Reloading the
register is not required because its con-
tents are restored to the value that was
contained in the register before the execu-
tion of the OPEN macro instruction.

Registers 14 and 15 are used by the
FETCH macro instruction and by the IOCS
imperative macro instructions (GET, PUT,
etc.) 1If you use one or both of these
registers in the proklem program, make sure
that their contents are no longer required
before you issue an imperative macro
instruction or a FETCH macro instruction,
or save the contents of these registers if
you need them at a later time.

If you anticipate transition to a larger
System/360 model, be aware that the Basic
Programming Support and the Basic Operating
System do not allow you to use registers 12
and 13.

Registers Required by the IOCS

The record format and the comkination of
I/0 and work areas used in the problem
program determine the number of registers
(none, one, or two) that must ke specified.
The summary in Figure 26 indicates when it
is required to specify registers IOREG
and/or VARBLD.

Programming Considerations 29

Fixed

Variable Blocked
Variable Blocked
Variable Unblocked
Variable Unblocked

Blocked
Blocked
Blocked
Blocked
Unblocked
Unblocked
Unblocked
Unblocked

Undefined
Undefined

*Output files only.

N MRy VR |

Number of
I/0 Areas

e e e e ey

Work Area
specified
No
Yes
Yes
No
No
Yes
No
Yes
No
Yes
No
Yes
No
Yes

| **Required if read-backward is specified.

eFigure 26.

100

IOREG
required?

Summary of Index Register Requirements

VARBLD
required?

You can use the inquiry-request functions
of the printer-keyboard to temporarily
suspend the processing of a job in order to
load and execute a program cataloged in the
core-image library. Such a program is
referred to as an inquiry program. You
call an inquiry program into main storage
by pressing the printer-keyboard Request
key and entering the program name on the
keyboard. An installation is not limited
to a single inquiry program; any number of
programs can be written and stored in the
core-image library.

For a program that is to be interrupted
by an inquiry request, you must enter the
specification MAINPRG=YLS in the DTFBG
statement. If you want to execute a pro-
gram as an inquiry program, you must speci-
fy INQPRG=YES in the DTFBG statement, and
you must use a Monitor that contains rou-
tines for ingquiry interrupts. (For a des-
cription of this Monitor, refer to the SRL
publication IBM System/360- Model 20, Disk
Programming System, System Generation and
Maintenance, Form C33-6006.,)

The inquiry program specifies the opera-
tions to be performed, using the inquiry
record (if any) and any other files that
are necessary. You can request an inguiry
during the processing of a wide variety of
programs. Note that if mainline rprograms
are processing magnetic tape or card files
that are also accessed by the inquiry pro-
gram, it is probable that the interrupted
program cannot be restored to its original
status. You cannot process tape files with
standard labels in an ingquiry program.

Sspecial file protection routines are
included in the IOCS Open and Close rou-
tines for disk files. These routines are
described under File Protection below.

A recommended technique for disk files
is to reserve at least two logical unit
blocks (LUBs) for the exclusive use of
inquiry programs. Since they are not used
by the mainline programs, their contents
are not altered by job control statements
submitted during a job stream.

The inguiry program, like any other
program, requires that label information be
supplied in order to open disk files to be
used in the program. The disk files, of
course, must be on-line at the time the
inguiry is requested. As an inquiry pro-
gram is called via the printer-keyboard,
i.e., it is not preceded by a separate job

The Inquiry Program

control run, permanent labels should be
used for inguiry programs. If you want to
use temporary labels for an inquiry pro-
gram, you must provide the required job
control information with thée job control
information for the mainline program that
is to be interrupted by the inquiry pro-
grama. (For details concerning the use of
permanent labels, refer to the SRL publica-
tion IBM System/360 Model 20, Disk Program-
ming System, Control and Service Programs,
Form C24-9006.)

Inquiry Record

When the operator wishes to enter an
inquiry, he presses the Request key on the
printer-keyboard. If the current program
can be interrupted, the message 'ENTER
PROGNAME' 1is printed unless a Monitor with
the option INQMSG=NO is used. The operator
must enter the name of the desired inquiry
program and press EOT. If an inguiry
record is processed by the program, i.e., a
Monitor with the INQIPT option is used, the
operator must then enter the data and again
press EOT. If the program does not use an
inquiry record, the EOT key must neverthe-
less be pressed to signify the completion
of input.

Since the inquiry record is read into
the input area INQIPT in the Monitor at the
time an inquiry request is submitted, you
do not have to include a READ macro
instruction for this record in a program
written in Assembler/IOCS language. Nor do
you specify a DTFPK file definition state-
ment for the record. Instead, you must
issue an IQIPT macro instructicn to deter-
mine the location of the input area in the
Monitor. The IQIPT macro instruction loads
the address of the input area INQIPT into
register 8, refer to the IQIPT Macro
Instruction) You can then access the
inquiry record contained in that area. The
length of the inquiry record is limited to
the length of the input area INQIPT. If
you want to process additional printer-
keyboard files in an inquiry program, you
must define those files with a DTFPK file
definition statement and must issue the
necessary imperative macro instructions as
described in the section Instructions for
Processing Printer-Keyboard Files.

The advantage of submitting data as an
inquiry record is that no printer-keykoard
IOCS is required and that the grocessing of
the mainline program continues while the
operator enters the data.

The Inguiry Program 101

Monitor I/0 Areas

If the INQIPT option is used, the Monitor
must contain an input area to accommodate
the inquiry record in main storage and make
it available to the inquiry program. The
output area for printer-keyboard records in
an inquiry program may be located in the
problem program itself, or in an area
immediately following the Monitor in main
storage. The latter area (INQOPT) is allo-
cated at the time the Monitor is generated.
(Refer to the SRL publication IBM
System/360 Model 20, Disk Programming Sys-
tem, System Generdation and Maintenance,
Form C33-6006).

The Monitor output area for the printer-
keyboard is of advantage only in a Model
20, Submodel 5. By specifying an output
area outside the problem program, it is
possible to overlap the printing of the
last output record on the printer-keyboard
with the roll-in and processing of the
mainline program. Note that overlapping is
achieved only if no part of the printer-
keyboard output area is overlaid by the
inquiry program or the interrupted mainline
program. Both should be loaded above this
area.

In a Model 20 system that has no overlap
feature a printer-keyboard output area
located outside the problem program is not
advantageous. In this environment, fewer
bytes of main storage are required if each
inquiry program contains its own printer-
keyboard output area, and if the mainline
programs are loaded immediately behind the
Monitor.

Opening Disk Files

When disk files are opened in an inquiry
program

e all OPEN macro instructions for disk
files must be given together (preferably
at the beginning) in an inquiry program,
and

o all OPEN macro instructions for disk
input files must be given before the
OPEN macro instructions for disk output
files.

Error in Inguiry Program

If an irrecoverable error occurs in an
inquiry program, the mainline program may
be re-entered by transferring control to
EOJ. This is accomplished by entering (on
the CPU console) the main-storage address
X'00C2' into register 3.

102

FILE PROTECTION

For disk files, special routines generated
for the OPEN and CLOSE macro instructions
provide for protection of files. These
routines are only included in the Open and
Close routines of programs that are
assembled with a DTFBG statement and the
operands MAINPRG=YES and/or INQPRG=YES. If
a program can be run as either a mainline
program or an inquiry program, the
Open/Close routines for disk files are
prepared/changed at object time to process
disk files according to the requirements of
a mainline or inquiry program.

The protection for disk files during
inquiries is also provided for by RPG. A
mainline program written in Assembler/IOCS
language can be interrurted by an inquiry
program written in RPG, and vice versa.

No protection is provided for card and
magnetic tape files. Therefore, you must
carefully evaluate the use of card and
magnetic tape files in an ingquiry program
if the same files are being prccessed in
the interrupted mainline program. If
standard labels are used for magnetic tape
files, you cannot process these files in an
inquiry program.

Mainline Open and Close Routines

If a program is run as a mainline program
that is to permit interrupts by inquiry
programs, the Open and Close routines for
all disk input and output files are expand-
ed to perform the following functions:

1. Open routines:

a. postpone any interruptions (of the
mainline progran) initiated by
inguiry requests until the end of
the Open routines has keen reached,
i.e., until the label grocessing
performed Lky the Open routines is
completed.

b. move the file-protection switches
from the DTF block of the disk file
being opened to the format-l1l label.

File protection switches are initially
set in the DTF blocks for all disk files
defined in a program assembled with
MAINPRG=YES in the DTFBG statement. These
switches are moved to the format-1 label to
indicate the status of the file being proc-
essed in a mainline program. Whether the
file can be accessed by an ingquiry program
that interrupts mainline processing,
depends on the conditions shown in Figure
27.

2. Close routines: 1.

a. prevent any mainline-program inter-
ruption (initiated by an inquiry a.
request) during execution of the
Close routines, i.e., during label
processing.

b. turn off the file-protection
switches in the format-1 label to
indicate that the mainline program
has finished processing the file.

Note: A mainline program that opens a disk
file must also close it in order to turn
off the protection switches, i.e., to
ensure that it is not protected from access
by later inquiry programs. If disk files
opened in a mainline program have not been
closed (i.e., an error halt occurred and
the mainline program was discontinued), you
should prepare a dummy mainline program
which opens and closes the affected disk
files. b.

Inquiry Open Routines

If a program is executed as an inquiry

program, the Open routines for all disk
input and output files are expanded to

perform the following functions:

Open routines:

test the file protection switches
in the format-1 label.

If these switches indicate that the
file is being processed by a main-
line program, the inguiry program
may still access the file. Howev-
er, if the inquiry program speci-
fies operations (e.g., UPDATE, ADD,
or LOAD) that may conflict with the
operations being performed on the
same file in the mainline program,
the inguiry program is discontinued
and processing of the mainline
program is resumed.

The conditions under which a file
being processed in a mainline pro-
gram is protected are shown in
Figure 27.

check the extent limits of output
files being opened against the
extent limits of all disk files
processed by the interrupted main-
line program. If extent overlay is
detected, the inquiry program is
discontinued and processing of the
mainline program is resumed.

The Inquiry Program 103

t 1
|Mainline Program| IOROUT"LOADI IOROUT= ADD/ADDRTR] IOROUT=RETRVE | IOROUT—ADDRTR] IOROUT=RETRVE |

i | |without UPDATE |with UPDATE |with UPDATE |without UPDATE]
--------------------------- T
| IOROUT=LOAD | P] P] P | P I P |
———————————————— e B
| IOROUT=ADD/ | | | | | |
| ADDRTR | P | P I A | P | A
|without UPDATE | | | 1 i |
b - - e T oo prmmmmm oo 4
| TOROUT=RETRVE | i | | | |
Jwith UPDATE | P i P | P i P I A
———————————————— T e e
| TOROUT=ADDRTR | |] | ! |
|with UPDATE | P l o I P | P [A
pommmmmmmmm oo fommmmm oo frmmmmm oo frmmmmmmm s frmmmmmm oo e 1
| IOROUT=RETRVE }] | | | |
|without UPDATE | P | 2 I A | P [A |
s ——— 1o JE S T L e y
}—‘““°-7'°"7°'“""7 """" - A i
| Sequential Disk or Direct-Access Files |
= T=——=- —-—— ettt =y
] | Inquiry Program |
| b e 1
|Mainline Program|TYPEFLE=OUTPUT | TYPEFLE=UPDATE | TYPEFLE=INPUT |
————————————————————— e
|TYPEFLE=OUTPUT] P | P | P |
! e Fomm e rm e :
|TYPEFLE =UPDATE | P] P | A I
------- - e
]TYPEFLE INPUT I P | A i A |
e 1_ e A e 4
|P - The file that is belng processed in the mainline program is Qrotected from being |
| accessed in the inquiry program. l
|A - Inquiries are allowed. |
b T T T T e e J

Figure 27. Protection of Files During Inquiry Operations

104

If a printer-keyboard is attached to your
system, you can request an interrupt that
allows you, by means of an ATENT routine,
to modify the main routine, set indicators
and switches, and retrieve information
from, or supply information to, the main
routine. You interrupt the program phase
that 1s currently executed by pressing the
Request key on the printer-keyboard. Con-
trol is then transferred to your ATENT
routine whose entry point is provided by
the ATENT macro instruction. You must
issue an ATENT macro instruction as the
first and a RETRN macro instruction as the
last statement in your ATENT routine.

All files used by the ATENT routine must
be defined together with the other files at
the beginning of the program. When using
IOCS imperative macro instructions in the
ATENT routine you must observe the follow-
ing restriction: You are not allowed to use
macro instructions pertaining to a device
for which macro instructions have already
been issued in the main routine. For
instance, if the main routine contains card
routines, you must not issue card macro
instructions in the ATENT routine. The
same rule applies to the printer, magnetic
tape and disk. An exception is the
printer-keyboard. If you have printer-
keyboard output macro instructions in the
main routine, you may issue macro
instructions for printer-keyboard input in
the ATENT routine; and vice vexrsa.

If you include an ATENT routine in your
program, you can execute the program only
as a mainline program that does not allow
inquiry interrupts, i.e., you must specify
ATENT=YES in the DTFBG statement.

Note that the registers are saved and
restored by the ATENT and RETRN macro
instructions. However, the contents of the
registers are not known at the time the
interrupt occurs.

The ATENT Routine

ATENT MACRO INSTRUCTION

The ATENT macro instruction has the follow-
ing format:

| Ilname] | ATENT | |
[Lo L -

The operand field must be blank. Enter

ATENT in the operation field.

The ATENT macro instruction must precede
youxr ATENT routine to which it pxovides the
entry point. The ATENT macro instruction
exchanges PSW addresses and saves all reg-
isters. You can issue the ATENT macro
instruction only in a mainline program that
does not allow inquiry interrupts. There-
fore, you must specify ATENT=YES in the
DTFBG statement (see DTFBG statement under
the section Begin and End Definitions.)

RETRN MACRO INSTRUCTION

The RETRN macro instruction has the follow-
ing format:

T
| Inamel | RETRN | |
L L

The operand field must be blank. Enter

RETRN in the operation field.

Issue the RETRN macro instruction as the
last statement in your ATENT routine. The
RETRN macro instruction returns control to
the point of invocation after restoring all
registers and the PSW address. When you
use the RETRN macro instruction you must
specify ATENT=YES in the DTFBG statement to
indicate that the program is to be run as a
mainline program that does not allow
inquiry interrupts.

The ATENT Routine 105

Control Statements

Depending upon the types of files to be
processed, you may have to supply control
statements that provide information to the
IOCS. Control statements will be read by
the Job Control program before the object
program is loaded. These statements pro-
vide the IOCS with information that is
necessary to (1) check the label(s) of an
input file, (2) create the label(s) for an
output file, or (3) define the limits of
the disk storage area(s) for a disk file.

Two control statements must be supplied
for each labeled tape file. At least three
control statements must be supplied for
each disk file (a minimum of four for
indexed-sequential files). The types of
control statements are:

Volume Control Statement. This statement
specifies the symbolic unit to be used and
the name of the file.

106

Tape Label Control Statement. This state-
ment provides information for checking
and/or creating tape labels for a file.

Disk Label Control Statement. This state-
ment provides information for checking
and/or creating disk labels for a file.

Extent Control Statement. This statement
provides information about the disk extents
to be used and specifies the symbolic unit
to be used. You must provide one statement
for each extent.

Each magnetic tape or disk file requires
one Volume control statement and-one Tape
(Disk) Label control statement. Extent
control statements are required for disk
files only. The format and contents of
each of these control statements are des-
cribed in the SRL publication IBM
System/360 Model 20, Disk Programming Sys-
tem, Control and Service Programs, Form
C24-9006.

The IOCS provides an error recovery routine
for each I/0O device. The actions taken
when an error occurs are described below.

Card, Printer, and Printer-Keyboard
Equipment Errors

When errors, such as feed checks, occur on
card, printer, and printer-keyboard equip-
ment, the IOCS stops the execution of the
program to allow the machine operator to
take corrective action. An error indica-
tion is displayed on the console to iden-
tify the type of error and to indicate the
required operator action.

Tape Error Routines

If a tape read error occurs, the physical
I0Cs (PIOCS) routines cause the tape to be
backspaced and reread 100 times before the
block is considered to be incorrect. If an
error cannot be corrected, the PIOCS rou-
tines indicate this fact either to the IOCS
or to the operator depending on the speci-
fications in, or omission of, the ERROPT
detail entry. (Refer to the description of
the detail entries ERROPT and ERRIO).
Indication to the operator is made by a
display of an error code on the CPU con-

Device Error Recovery

sole. This display indicates the type of
error and the associlated device address.

If a tape write error occurs, the error
tape is backspaced to the beginning of the
block, a gap is skipped, and the Lklock is
rewritten. If necessary, this procedure is
repeated by backspacing to end of last gap,
skipping another gap, and writing. The
block is rewritten 9 times before a tape
write error is indicated.

Disk Error Routines

When a disk read or write exrror occurs, the
I0CS rereads or rewrites the block a stand-
ard number of times before the block is
considered as incorrect. If a read or
write error cannot be corrected by the
error routines, this is indicated to the
problem program. Refer to the ERROPT,
ERRBYTE, ERRINF, ERRIO, and DERREX entries
in the appropriate file definition state-
ment.

Note. Normally, the records are checked
after they have been written. However, if
VERIFY=NO 1is specified in the definition
statement for a particular file, checking
is omitted.

Device Error Recovery 107

Language Compatibility

The DPS IOCS for the System/360 Model 20 is
closely patterned after the Basic Program-
ming Support IOCS and the Basic Operating
System IOCS. Because the DPS IOCS is
designed to support card, printer, printer-
keyboard, magnetic tape and disk I/O
devices that are unique to the Model 20 and
in order to achieve optimum performance of
all devices, some macro instructions and
file definition entries are not identical
to those of the other systems. Therefore,
if you anticipate transition from Model 20

108

to other models of System/360, you should
be aware that programs using the DPS IOCS
require some modification before they can
be processed by the other System/360 Assem-
blers.

All tape data sets created under control
of the DPS IOCS are fully upward compat-
ible. Disk data sets that have been creat-
ed on the IBM 2311, Model 11 and 12, cannot
be processed on the IBM 2311, Model 1, and
vice versa.

Appendix A. Summary of File Definition Statements

The tables in Figures 28 through 36 show all of the file definition statements and the
detail entries available.

The tables are in the same order as the discussions of the file definition statements:
DTFBG - Figure 28; DTFEN - Figure 29; DTFSR - Figure 30; DTFPK - Figure 31;

DTFLC - Figure 32; DTFMT - Figure 33; DTFSD - Figure 34; DTFDA - Figure 35;
DTFIS - Figure 36.

[————————= e T T T T T T T T T T T T T T T e e o —m—— 1
| | Operand | |
| R T — |
|Operation|Keyword|Allowable | Remarks]
[] |Specification| |
—— s e —— -—- --- - —
| DTFBG | | |Applies to all file types. |
frmmm - fommmm e fommm o om e o e 1
| |ATENT | YES |Required if program includes ATENT routine. |
| -1 Y o - 1
| | INQPRG | YES |Required for inquiry programs. |
| — T ——— - T 1
| | MAINPRG | YES |Required if program is executed as mainline program |
]]] |that permits interrupts by inquiry requests. |
b i_ —1 _— L ————————— —_—— e 4

eFigure 28. DTFBG Statement and Assoclated Detail Entries

r———===7""7"7 T - T - === - === D |
| | Operand | |
| T, e 1 |
|Operation|Keyword|Allowable |Remarks |
|] | Specification]| |
et oo e fommmmmaams o 1
|DTFEN |] |Mandatory for all files. |
I T -4 - e e 1
| |OVLAY | |Required if overlay of Open and Close routines for

| | | |magnetic tape and disk files is desired. |
L _— 1 -1 e e ———————————— —— J

eFigure 29. DTFEN Statement and Associated Detail Entry

Appendix A. Summary of File Definition Statements 109

————- T TmTTT TS e T B e i 1
I | I I I I
[| | | | I
]] | Operand | Applies to | |
I pommmmmm prommmmmmmm e s St S S e e 1
l | I I 2520 | I | | I I
]]		Card 2520 1442]					
Opexr-		Allowable		Read-	Card	Mod.5				
]ation	Keyword	Specification	2560	Punch	Punch	Punch	2501]	2203	1403	Remarks
———————————— T A Tt e TSIt										
DTFSR			M	M	M M	M	M	M	Always first card,	
										may include detail
		I I		!			entries from I			
I	[I						column 16 to		
I I		I	I				column 71.			
— poomm oo . T e I R 1										
]	BINARY	YES	O*	O%*			0			*Only for
I		I I			I I [simple files.					
	b mm oo em e et e T - L e 1									
		INPUT	0 10]			Only for com-		
I	I	l	! I	[bined files. I					
et pn e D - R P .										
	BLKSIZE	length of sim-]		Indicates length	

| | |ple file I/0 |0 |0 IM IM | M |M |M jof area specified |
| | larea in bytes | | | | | |] |ty IOAREAT and

| | | | |]] l | | | IOAREA2 entries. |
I e S e e S D e TR 1
I | CONTROL | YES jo |O |0 | | |0 |0 |Required if [
I [I I | | | | | [JCNTRL is issued

| | | I | | | I I | [for a file. l
I e e T T o e B 1
| | CRDPRA |name of |C | | | | | | |

I I | card-print ! | | | | | | I I
| I |area I I | | I | | I |
I e F T e S T oo T e 1
| |CRDPRLn|length of card-|O | | i | | | |n in the key-

] | |print area in |] | | | | | |word is a print

| | |bytes | | | | | | | |head number.

I e vt S f—f - e omee- S P S
| | DEVICE |MFCMI1 | | | | | | | |Mandatory detail |
| | b———————————— IM* fee—— $———- $—————- +--—}---~4----{entry for card

| | | MFCM2 | | | | | | | land printer files. |
| I e e e Rt A T - L s et SR |
I | |CRP20 | M I | [I | I |
| ot s S L — fommem et SEEEE S |
| | |PUNCH20 | | M | |] | | *One of the |
| | B it -t ——— t-——— +-—-——4--—=4-~--]possible specifica-|
|] | PUNCHU4 2 | | | | M |] | |tions must be

| I o e e s T $----}---—4--——fentered. |
| | |READO1 I | | | M I | |
| I e ot D T e e R !
I | | PRINTER I | I | I I (M I
| I e ——— s e oo e T

| | | PRINTLF I | |] | [M* | I I
| ! p-- B e B e I |
| I | PRINTUF I | | | I | | | I
I e - it S $--mmv - B R T 1
| | EOFADDR | name of | | | | | | | | *Only for input

| | |end-of-file |M* | M* | | 1M] |]and comkined

| | | routine | | | | | | | |files. |
| —— R T B e (e e B IO —
| | INAREA |[name | |] | |] | | *Combined files

|] |of combined [M* [M* | | | | | Jonly. |
I | |£ile input area| | | I I | I | |
b——-- Lo e e I 1o Lo~ Y WY ISRV [S ¥
|M = Mandatory O = Optional]
I, e K

Figure 30. Summary of the DTFSR Statement and the Associated Detail Entries, Part 1 of 3

110

o e . i s e et e

I 1 T A
| | Operand | Applies to | |
| t T———= ———to———y————- T————— T————g-———7————7-——=}--— - -——
| |] | 12520 | | | | | | |
| | | | |Caxrd |2520 1442 | | | |]
|Opexr—| |Allowable] |Read-|Card |Mod.5] | | | |
|ation|Keyword|Specification |2560}Punch]|Punch|Punch|2501]2203|1403|Remarks |
----- 1 ——+t- B B T e B e A Rttt bttt |
|DTFSR|INBLKSZ|length of | M* | M* | | | | | | *Combined files

| | | combined file | | | | | | i |only |
| | |input area in | |] | ! | | | |
| | |bytes | | | | | | | | I
T e R T R R R S .
] | ICAREA1|name of first |M |M] M M |0* | | *Entry required

| | |]I/0 area |] |] | | | | foxr 2203 only |
] | | | | | | | | | |when dual-feed

| | | | | | | | | | | carriage is !
] | | | | | | | |] jused. |
I S e t————t———u- t———t-—- tem——t-———t——— 1
| | IOAREA2 |name of second | |] | |0 | | |Can be used if |
] | |I/0 area | | | | | | | 12501, Model A2, |
| | | | | | | |] [|is used in |
| | | | | | | | | | |overlap mode. |
| - t-————— e t-———t———— t————t-———- e A Rt i
] | OUAREA |name of JM*x [M* | | |]] | *Combined |
| | |combined file | | | | | | | |files only. |
| | joutput area | | | | | | | | |
| ——— R T S et S T e 1
| | OUBLKSZ |length of |M* | M* | | | | | | *Combined files |
| | |combined file | | | | | | | |only. |
| | joutput area in | | |] | | | ! [
| [| bytes | | | | | | | | |
| bt ==t t-———t——— to——t————t——— 1
|] OVERLAP | NO |0 |0 | |0 |0 | | |If omitted, file

| | | | | |] | | | |is processed in |
| |] | | | | | | | |overlap mode. |
| e fmmmm oo e R a e 1
	PFORMTn	xXyY	0	0						Indicates that
										the field is
					!				to be checked	
										for blanks
										from columns xx
						I		[to yy prior to		
										punching. [
pmmeee- T —— D P -t e e :										
	PFXIT	name of routine	O	0						
	jused when									
]	PFORMTn					[
		test fails							[
T e - e - $-—mmm o= oo 4										
	PRINTOV	YES]			0	0	Required if	

| | |] | | | | | | | PRTOV is issued |
| | | | | | | | | | |for file. |
I et S R pamt e e s S ORI 1
	RFORMTn	xXyy 2z	0	0]	O			Indicates that	
										input cards are
										to be checked
										for numerics [
I										or blanks from [
										columns xx to yy
! -	S RN R, bl [Y IS [P [4									
M = Mandatory O = Optional]										
, e e e i e e e e e e e o e e e e e A e e 2 o e e o e e e J										

Figure 30.

Appendix A.

Summary of the DTFSR Statement and the Associated Detaill Entries, Part 2 of 3

Summary of File Definition Statements 111

R T R
| | Operand | Applies to |]
I pommms pemmmmmmmmmm e i -7 e - e
I I | | 12520 | | | | | I
| | | | |Caxrd 2520 |1442 | | | | |
| Opex—| |Allowable | | Read~-|Card |Mod.5| | | |
Jation]|Keyword|Specification |2560|Punch|Punch|Punch|2501]2203}1403|Remarks]
——————————————————————————— L D B e Caan S B
|DTFSR|RFXIT |name of routine|O |0 | | |0 | | |

| | jused when | I | | | | [|

I | | RFORMTN I | | | | | | I |
| I |test fails | [| | | | I I |
| e pmmmm e et S S -
| | SEQNCE | xxyy |0 10 | | |0 | | |]Indicates se-

I I | | I I I I | I Jquence check of |
| | I | | [| | | | | input cards de-

] | | | | | |] | | |sired from col. |
|] I I I I I | | I |xx to yy. [
I e oo e s e = L T S 1
| | SEQXIT |name of routine]| | | | | | | |Must be speci-~

]] |used when |0 | | | | | | |fied when SEQNCE |
| | | SEQNCE test |] | | | | | |is specified.

| I |fails I I | I | | I | |
I et G e fommmm e s S 1
| | TYPEFLE | INPUT | | | | |M | | | *One of the three

| | p————————————e 4 | p———- +———- $~-—-}4--——4-——-4specifications must|
| | jOUTPUT | M* | M* 1M M | M |M |be entered.

| R 1 I pommmm T e |
| I | CMBND | I | | | | I I I
| e e R o pommme S S o T 4
| |WORKA | YES |M M M |M M | M M |Mandatory for

| I I I I I I | | | |all card and

I | | | | | | | | | |printer files.

i_ _____ i NP, L e e e e ——————— [RO S, 1 1 —_—dm e L L R T o v e e e e .‘
|[M = Mandatory O = Optional |
b e —_——— ——e ——d

Figure 30. Summary of the DTFSR Statement and the Associated Detail Entries, Part 3 of 3

(r——————= T -7 - T == [t 1
| | | Operand |]
I I s Dt 1 I
| | |Allowab1e | |
| Name |Operation|Keyword|Specifig¢ation |Remarks |
R e ey N Mttt et e i
|Filename |DTFPK { | |Applies to printer-keyboard files

I | I [only. I
pmm oo fommm e T p— t - oo
| | |BLKSIZEILength of largest |Mandatory for input and output files.|
] | | |record: |Must be large enough to accommodate |
| | | |Input 2 to 511 |maximum-size record. If linercounter |
] |] |Output - 1 to 511 |table is used for an output file, |
| | | | | length must not exceed 125. |
1 | fo—meomet o e e e 4
		CONTROL	YES	Optional for output files. Required
]	if CNTRL macro instruction is issued	
				for the file.
I e e -——- P r—— o				
]	EOFADDR	[Name of end-of-file	Mandatory for input files. Name of	
			routine	your routine to which control is

| | | | |given when end-of-file indicator /* |
|] | | |is entered (detected by WAITF macro) . |
| O -—- T TS
| | |IOAREA |[Name of I/O area | Name of your I/0 area. If omitted

]	in the problem program	for output file, output area of Moni-	
]]	tor is used. Must be as large as		
				BLKSIZE.
N + i T]				
		LCTABLE	YES	Optional for output files. Required
				if output control by skipping is
				desired. If used, line-counter takle]
				must be defined by a DTFLC.
I e e DY - s mm oo .				
]]	PRINTOV	YES	Optional for output files. Required	
]]	if PRTOV macro instruction is issued		
]	for the file. If used, line-counter	
]	table must be defined by a DTFLC.	
s et T T 1				
	IRECSIZElReglster (8-13) or	In the specified register, provide		
]	symbolic name of a	the number of characters to ke	

| | | |register (in paren- |printed in the next record. |
: , | | theses) | J
		TYPEFLE	INPUT or OUTPUT	Designates that this DTFPK is for an
]input or an output file on the	
				printer-keyboard.
i	e — I T !			
		WORKA }YES	Mandatory for output files. Length	
]equal to BLKSIZE. If entry omitted aj
]		warning is given.	
S § S Lo N SO J

eFigure 31. Summary of the DTFPK Statement and the Associated Detail Entries

Operatlon

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
1
1
|
|
1
|
|
|
|
:
I
|
i
1
|
|
|
1
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
1
|
|
|
1
|
|
|
1
|
|
1
|
|
-

Operand |Remarks
___________________ - —————— ——— - ————]
Formsize,E1,E2,...,EU8 |This statement is required to define |
]a line-counter table for simulating |

|carriage control. The entries rep- |

|resent the length of the form, and |

| channels associated with rarticular |

|

|

|lines. It may be omitted if no skip-
|ping is used for the output file.

e
o e e e

Figure 32. Summary of DTFLC Statement

Appendix A. Summary of File Definition Statements 113

r———=—==7=""" T L - - = =TT
|] Operand | |
| f=——mmmee gommTm——mes - !
|Operation|Keyword | Allowable | Remarks

| | Specification | |
e e fromm e - m oo - —
| DTFMT] | | Applies to magnetic tape files only.

! e — et e - -1
| | ALTTAPE | SYSIPT | Required for multi-volume files using |
| | | SYSOPT | 2 tape drives.

| | | S¥Snnn | |
| e e T B e e - ~~
] | BLKSIZE | length of file | Mandatory for all magnetic tape files. |
|] | I/0 area | Indicates length of area specified by

| | | in bytes | the IOAREA1 entry.

| E— frmmmm e T R e !
| | CRKPTREC | YES | Required to read tapes containing interspersed |
| | | | checkpoint records. |
n s e ¢ - |
| | CONTROL | YES | Required if a CNTRL macro is issued for the file.}]
1 frmom fomm e o e e e -
| | DEVADDR | SYSPT | Mandatory for all magnetic tape files.

i | | SYSOPT | SYSIPT, SYSOPT, or SYSnnn are the symbolic |
] | | S¥Snnn | addresses to be used when processing a

|] | | magnetic tape file. |
| e $mmmme -4 o e e 1
| | EOFADDR | name of | Mandatory for input files only.

] | | end~of-file | Not used for output files.

| | | routine |]
| prmmmm e fommm s e .
| | ERRIO | name of user- | Use only if ERROPT=name and/or WLRERR=name and |
| | | defined 2-byte | two 1I/0 areas specified.

| I | area I |
| prmmmm e - -t ——m e 1
| | ERROPT | IGNORE | Ignored.

| | t -4 o e 1
| | | SKIP | Error block skipped. |
| | T — P .
| | | name of error | Return to IOCS via register 14.

| | | routine | |
| I m— oo e o o o 1
| | FILABL | STD | Standard labels.

| 1 t - o e .
| | | NSTD | Non-standard labels. |
| 1 F e -—- e :
| | | NO | No labels.

| . B S . S, J
Figure 33. Summary of the DTFMT Statement and the Associated Detail Entries,

Part 1 of

2

= e . i oo 1
| | Operand 1 |
T e Tommom——o—mmme- 4 |
|Operation|Keyword | Allowable | Remarks |
| | | Specification | |
frm—mmm- t + o e 1
| DTFMT | IOAREA1 | name of user- | Mandatory for all magnetic tape files. |
| | | defined area | |
| - } - e e e e e 1
| | IOAREA2 | name of user- | Requires IOREG or WORKA entry. |
| | | defined area | Optional. |
1 — O oo e e .
| | IOREG | register number| Required when blocked records are processed |
] | | from 8 to 13] in the I/0 area. |
		or symbolic	Required if IOAREAR but not work area
		name of	specified.
		register (both	
		in parentheses)	
e S — + — e 1			
	LABADDR	name of user	Return to main routine by issuing a
		routine	LBRET macro.
l prommm e t - - —mmmmem e P !			
	READ	FORWARD	If omitted, IOCS assumes forward
	——————————————— { reading. .]		
I	BACK	!	
I prmm e - e -—- o mmmmmem e 1			
	RECFORM	FIXUNB	Entry may be omitted if record format is
		FIXBLK	f£ixed unblocked.
]	VARUNB		
1		VARBLK I	
I	UNDEF I		
l e oo e i			
]	RECSIZE	number of bytes	Required if fixed length blocked or undefined
]		in one record	record format is specified (number of bytes in
		or number of	one record) .]
		register indi-	
		cating record	
		length in num-	
		ber of bytes or	
		symbolic name	
		of register	
pmmmm - fommom oo oo oo 1			
	REWIND	UNLOAD	If omitted, the tape is rewound but not
	- { unloaded on OPEN or CLOSE, end-of-volume, or		
]	NORWD	end-of-file condition.	
et S -- oo e O ——			
	TPMARK	NO	Optional. Applies to unlabeled tape output files.
— + -—- e T i			
	TYPEFLE	INPUT	
	fommm e 4 Mandatory for all magnetic tape files.		
I		oUTPUT	[
e —— oo -4 -—- e 1			
	VARBLD	number or	Required if variable-length blocked records
		symbolic name	are built in the output area.
		of register (in]	
]]	parentheses)		
]		indicating	
		available bytes]	
e — T o e 1			
	WLRERR	name of user	
]		routine	
e pomm e - e e e 1			
	WORKA	YES	Required for blocked records, or if ICAREA2
			without IOREG specified.
lem o L JE T L _—— S d

Figure 33. Summary of the DTFMT Statement and the Assoclated Detail Entries,
Part 2 of 2

Appendix A. Summary of File Definition Statements 115

[ro——m—mm s e ittt st T - ittt 1
| | Operand | |
| —— - -- - |
| | | Allowable | |
| Operation |[Keyword | Specification | Remarks |
e ——— pommmem - oo e o o o 1
| DTFSD |] | Applies to sequential disk files only. |
| Em—— T e oo
	BLKSIZE	length of block	Mandatory entry. Indicates length of
			one block of records. Length must ke an
			integer multirle of RECSIZE.
ey from oo - T			
	COMROUT	YES	One common routine generated for all
			input files for which entry is

| | | | specified. Same holds analogously for |
| |] | update and output files. |
| premem e from oo fommmmm—e mrm oo ooe e ——
| | CONTROL | YES | Required if a CNTRL macro instruction |
| |] | is issued for the file. |
| e — e o -——- o :
| | DEVICE | DISK11F | Specifies IBM 2311, Model 11 or 12.

| | | | Warning issued in case of error.

| pmm e P fomaamn e e e .
| | DSKXTNT | maximum numbexr of | If omitted, the IOCS assumes |
| | | extents in any one | three extents for the file. |
] | | volume for the file | Maximum is 99. |
1 —— rmmm oo 1 I —
| | DTAREX | name of | Optional entry for output files.

| | | user's routine | If not specified, job is discontinued.

| e — prmm e - -——- S -
| | EOFADDR | name of user's | Mandatory for input files only.

| | | end-of-file routine | Not required for output files. :

| e frmmm oo $ommmee oo 1
| | ERRIO | name of user-defined | Use only if ERROPT=name and two

| | | 2-byte area | I/0 areas specified.

| e — prmm e - e :
| | ERROPT | SKIP | Exrror block is to be skipped.

| 1 O —— T U e 1
| | | name of error routine | Return to program via register 14. |
| e — rmm oo T T 1
| | IOAREA1 | name of a | Mandatory for all disk files.

| | | user-defined area | Length of area must ke 270 Lytes

|] | | or integer multiple thereof. Equal |
|] | | or greater than BLKSIZE. |
! pmommom oo TR 1
| | IOAREA2Z | name of user- | Requires IOREG or WORKA entry. |
] | | defined area | Optional. Length must be 270 or integer|
| | | | mualtiple thereof. |
| Ep—— o S T 1
| | IOREG | number or symbolic | Required when blocked records |
| | | name of a register | are processed in the I/0 area.

|] | (in parentheses) | Required if IOAREA2 but no WORKA

| | | | specified. |
| e — == - $—=m P 4
| | RECFORM | FIXUNB | If not specified, FIXUNB i1s assumed.]
| | E—— . l
| I | FIXBLK] |
1 e - e !
| | RECSIZE | number of bytes in one | Mandatory only for files containing

|] | record | blocked records. If not specified for |
| | 1 | unblocked records, RECSIZE=BLKSIZE.

| |] | Maximum record size is 4096 bytes.

L _ 1__ SN S 1
Figure 34. Summary of DTFSD Statement and the Associated Detail Entries,

Part 1 of 2

e e e . . o = = ey e e =~ o o T o D T e

[T e B Ittty « T
| | Operand |
| pmm oo Tm-—--—- — 1
I | | Allowable |
| Operation |Keyword | Specification |
——————————— e t
| DTFSD | TYPEFLE | INPUT |
| 1 prmmmm e 1
|] | OUTPUT]
| e — t
| | UPDATE | YES |
| e T - -t
| | VERIFY | NO |
| e + +
| | WORKA | YES |
| | I |
| ! | I
b Lo F I, — 1

Required if a record is to ke
processed in a work area. Required if |
IOAREA2 but no IOREG specified.]

Figure 34. Summary of the DTFSD Statement and the Associated Detail Entries,

Part 2 of 2

Appendix A. Summary of File Definition Statements 117

Figure 35,

118

"""""""""""""""""""""" T T
Operand |]
pmmm - Fmmmmm e mm e m e 1 |
| | Allowable | |
| Specification | Remarks |
frmmmmmm - prmmm - $- e 1
|] | Applies to direct-access disk files |
| | | only. |
E—— fmmmm e fmmmmmme T 4
| ADRTEST | NO | Address is not checked for validity |
]] | nor against extent limits specified |
| | | in XTENT statement.
o T Tt R -~
| BLKSIZE | length of I/0 | Mandatory detail entry. Indicates
| | area | length of one block. Maximum block |
| | | size is 16,200 bytes. |
e foommm e T ——— - -4
| CONTROL | YES | Required if a CNTRL macro
] | | instruction is issued for the
| | | £ile. |
F - - e ——mmee 1
| DEVICE | DISK11F | Specifies IBM 2311, |
| | | Model 11 or 12. Warning |
| | | issued in case of error.
frmmmmeae oo e !
| DSKXTNT | maximum number of | If omitted, the IOCS assumes |
] | extents in any one | three extents for the file.
|] volume for the file.]
e —— e frmmmmmmm e e - —— -1
ERRBYTE	name of a	Mandatory detail entry. The IOCS will
	user-defined area	make error indications available in
	’	these bytes.
e — frmmmmmmmmm oo e tm=m- - e 1		
IOAREA1	name of a	Mandatory detail entry. Length of area
]	user-defined area	must be 270 bytes or integer
]		multiple thereof.
—— fommmmmm oo T e 1		
READID	YES	Required if problem program
]		uses READ.
o + e -- o -1		
SEEKADR	name of a user-	Mandatory detail entry. The IOCS
]	defined area	obtains address of desired disk
]	location from this area.]	
prmmmmmm e e pommmmmmmmmem e - - 1		
TYPEFLE	INPUT	Mandatory for all direct-access files.
e - -4		
	OUTPUT	Standard labels are checked.
e —— $—- - -t- -- e e -		
VERIFY	NO	Required if write-checking
	is not desired.	
————————— T T T - e		
WRITEID	YES	Required if problem program
] | | uses WRITE. |
K T, § S - I e J

Summary of the DTFDA Statement and the Associated Detail Entries

———

r T T
| | Operand Type of Processing | |
| t T T T - T - -——q |
i | | | | Retrieve | Add-Retrieve | :
| ‘ T T + T -4 Remarks
Load | | | Random- | | Random- | |
Opera- Allowable and | | sequen- | Ran- | Sequen-|Sequen- | Ran- | Sequen~ | |
tion |Keyword|Specifications|Extend|Add|tial jdom |tial |tial |dom |tial | |
- B e Bt St + toeeet i {
DTFIS | M | M| M | M | M | M [|REclies to indexed]
| | I { { i | } }seguential files }
| | only.
-4 $omm R ¢ + e 1
ADAREX |name of | M | |] M M | |Used when over- |
| | | routine | | | | | | | |flow area is full.|
| b + Tt St I - : e —— 1
| |ALTREX |name of | M | o | | | o] o | |Used to perform orj
| | |routine | | | | | | | lavoid additions to]
| | = ; : H | } } { } ’thg‘iast track of ‘
| a file.
| e m— ¢ t---t e $----1 -4 =mmmoe
| CYLOFL |numker of | ©O] 0] | (e} | o | |Required if | | |
| cylinder | | | | | | }cylinder overflow |
| | overflow | | | | | | |areas are used. |
| | tracks | | | | | | | |
[1 v 3 t | o -
| CYNDEX |name of | M | | | | |Used when cylinder|
] | routine | i] | | l|index area is
| l 1 | | | |full. |
RIS S ettt oo + t-—--% + t t e 1
DERREX |name of] M | M M | M | M | M | M} |Used when a disk |
routine | | | | | | | | |error occurs. |
------- + +---+ === + + -1 - 1
|DEVICE |DISK11lF [¢] | O] (o} o [o]] o) | 0 | o] |Warning issued in | |
| | | | | | |case of error or |
| 1 | | | |if omitted. |
{ DPCRCD I}YES --T o]I'IL 1 |% (o] (o] il (e} -II-J-—B—E ------------ 1
se or
| | | | | | | | |duglicate records.|
et S R o - T S -~
DSKXTNT | maximum number| M | M} M M | M | M | M | M | The maximum |
|of extents | | | | | | | |number is 99. |
|to ke used | | | | | | |
e T ommmmm ==t t-=-=t : ¥ e 1
DTAREX |name of | M | | | | |Used when the |
| | | routine | | | | | |prime data area |
I | |] l | | | |is full. |
l + T e -t vt S mmmmmmmme e 1
| DUPREX |name of] M | M] | M | M | |Used when |
Iroutine { : } i : { {Qupéigat: gey i
is detected.
- 1 1 +--— $----4 et R $-- {
| EOFADDR | name of | } | M | | M | M | | |Mandatory for
| |end-9f—file | | | | | | | | |input fi}es. |
| | |routine | | | | | | |] [Not required for |
} | | l 1 l i l l i l loutput files. }
- ; T==" T T hatuthy bkt i Rk T hal Attt
| ERRINF |YES | o o] c 1o | o | o |Jo | 0 |If not specified, | | |
| | | | | | | | | |no logical error |
| | | | |] | | | |information is |
| | | |] | | | | |supplied. |
| L Lo boocdiao i i oo L 1 R i
lM = Mandatoxy o= |

Optional

eFigure 36.

Appendix A.

Summary of File Definition Statements

Summary of the DTFIS Statement and the Associated Detail Entries, Part 1 of 3

119

r T - - T === === =T === =<1
| | Operand | Type of Processing |

| } T--- 1 T==-7 - - - -1

| { | | | | Retrieve | Add-Retrieve |

| | | | [3 T T -7 T -{ Remarks

| | | |Load | | | | Randomn- | | | Random- |

| Opera-| |Allowable |and | | Sequen- |Ran-| Sequen~ | Sequen- |Ran- | Sequen- |

|tion |Keyword|Specifications|Extend|Add|tial |dom |tial |tial dom |tial |

F + ¢ T v -1 + $-—-t et
|DTFIS |IOAREAL|name of M | M| | | | M | M | M |Length of area

| 1 joutput area | | | | | | | | |must be 270 Lkytes
| | | |] | | | | | | |or integer mult-

| | | | | | | |] | | liple thereof.

| - B t————t-—t-- 1 +- -—t-—————t-——yq -——1- -
| | IOAREAR |name of I/O | | | | M | M | | M] M |Length of area

| | |area | f { | | | | | |must be 270 bytes
| |] | |] | |] | | Jor integer mult-

|] |] | | | | | | | liple thereof.

l e — I et s S $--—-1 D
| | IOAREAS |name of I/0 | |] M | | M | M | | M |Length of area

| | |area | | | | | | | | |must be 270 bytes
I | | | I o | I lor integer mult-

I | i i I | I | l I |iple thereof.

| —— $-- fommmom ot G e + e OIS T
| JIOREG |number of any | | | [¢] } o | o] | o] | o | o] |Required for

| | |register from | | | | | | | | | pxocessing

| | |8 to 13 in | | | | | | | | |blocked records

| | | parentheses | | | | | | | | |in the 1/0 area.

| | lor symbolic | | | | | | | | |

| | |name equated | | | | | | | | |

| [|to register | |] | | | | [|

| } t R e S B e Rt B e
| JIOROUT | LOAD [S i | | | | | |

| | b—-- + -t -t t-————= + + =t -
i | | ADD | | M| |] |] | |

| i -—= t-————t -t -t + + + e
| | | RETRVE | | | M I M Mo | | |

I 1 t et SRS SRR R v v e frmmm oo
| | | ADDRTR | | | | | | ™ M | M |

| F + -—- f————-—t---+ + + +-—- t t-———- oo
| |KEYARG |name of | | | [o] | M | M | o] | M M | IOCS oktains

| | |user-defined | | | | | | | | |key of desired

| | |area | | | | | | | | |record from this

| | | 1 | | | |] | | |area.

i p-—==-- + - - t-—==-- R R e o= e -t- -

| |KEYLEN |number of | M | M| M I M | M | M I M M |Maximurt length is
I | |bytes] | | | | | | | |60 bytes.

] | |in the key | | | | | |] | |

| p-—=—- + + -t---1 t--——1 + -t-———t-—————t-- R ettt
| JKEYLOC }high=-order | M | M| M I M M | M MO M |First kyte cf

| | | position of | | | | | | | | [recoxrd is counted
| | |key field | | | | | | | | las kyte 1.
O Bttt + e to—t————- o p-———t-————
| INRECDS |number of] M | M M | 4 | M | M | M | M |For unklocked

| | | records in onej | | | | | | | |records, use a 1.
| | |block i | | | | | | | |

| fmmmmm e m oo oo + t---t t--—-1 $- s S e
| | RECFORM | FIXUNB | o | o] 0 | o | 0 | o 1 o | o} |Specification

| | I S et Fe———— fm——fm————— B e $-m———— -t Jof RECFORM is

| | | FIXBLK | o | 0| (¢}] o | (o} | (o} 1 o | (¢} | compulsory.

} | ! | | | | | | | | |Only one of the

[| | |] |] | | | | jorerands is per-

] | | I | | | | | | | |mitted at a time.
} L . N L P AR S L L - | L L —_———4 ———

|M = Mandatory O = Ortional

L. I e e e e e
Figure 36. Summary of the DTFIS Statement and the Associated Detail Entries, Part 2 of 3

120

r- T T ks S 1
| | Operand | Type of Processing | |
| e e o |
= } I } } | Retrieve Add-Retrieve | |
T T - -1 Remarks |
| | | |toad | | | Random- | 1 |Rrandom-| i
|Opera- | |Allov._vable) |and | | Sequen- | Ran- | Sequen~ | Sequen- |Ran-| Sequen~- | |
!tlon lKeywordlSpec:Lficatlons!Extend-ll.Addltial jdom |tial |tial |dom |tial | |
- - - - L] 4 1 J 1
r T T T T T T T + '+ """""""""" '|
}DTFIS }RECSIZEHZE?S:E 9f one : M |I M : M { M } M } M } M I| M } |
in |
| | lbytes] | | | | | |] | |
| —smmmef —mmmmemt ommpommm- i R $-- p----t o 1
II :RTRVEX {nam:_of } : }] l| M } M | o] | M | M |Used when desired |
routine | 1 | |record is not |
| | |] | l | | | | | |found. |
! r— - t t==-t o-mt $- ===t CIOETEEEE 1
QCHE name o M | | 1 | |] |Used when a |
| | routine | | | | | | | | |record is out of |
| [i | | | | | | | | | sequence. |
| I — 1 ==t et SRR e T B 1
| | TYPEFLE | RANDOM | | | | M |] | M | |Indicates type of |
} FEEQNTL --4 + 1 n-a_“+“"+ ------- +- e domt———e {retrieval. IGROUT |
i 1 l 1 | | | M |l 1 |specifies RETRVE |
| II_QANSEQ i ------ |I i T—--_T---&—_-T—‘ —i i_— M Tjox AppRIR. I|
| — -- 1 s s G SRR S O 1
} UPDATE |RANDOM |L }- |L (o} |L [e] | o | [¢] | Indicates type of |
F T T T = e t-~ -{updating. |
| SEQNTL i I 1 o | o o | I o | | |
| | F-- $ e e S 1 |
| lRANSEQ ! l ! | (6] | | (o] | |
| 1 P G R fommmmee $--——t T 1
II IVERIFY }NO : (0] : o : (o] | o : (o} | (o] = o | (6] |Required if write |
| |checking is not |
[1 l ! | | | | |) | |desired. |
| t ¢ . e S s e e e B
} =WORKA {g;mve;og}fc ares l] { [¢] } { } } o] |I o | [o] |Required if FIXBLK|
| |is srecified. | | | | | | | | |
|I { ! : ; { } } } | | |Must precede the |
| | jarea srecified |
| { 1 | | | | | | | | |by IOAREAL. |
| liomnks [mame of R | - [R
ame o M [M | |
| [la work area | | |] | |]] | |
i b | T i e e G m==t —fmmmmmm e 1
| |WORKR |name of | | | } o | o | | o | o | |
| | la work area | ! | | ! | |] | |
| e $---—} e St 1
| WORKS |YES | | | (o} o] (o) | | (o} | |
- L L Lo Lo __ ———i Lo— R N {
|M = Mandatory O = optional |

-

________________ - —_— ———— - i o e o i e]

Figure 36. Summary of the DTFIS Statement and the Associated Detail Entries, Part 3 of 3

Appendix A. Summary of File Definition Statements 121

Appendix B. Summary of Imperative Macro Instructions

The table in Figure 37 shows all IOCS macro instructions, including the possible orer-
ands, that are available.

The table in Figure 38 shows all imperative macro instructions used in conjunction
with indexed-sequential files. Each macro instruction is marked with (M) and (0) to
indicate whether it is mandatory or optional for the various types of file processing.

[rom T m o — o T) e b I bty 1
| I I I
| [| |
| Operation | Operand] Remarks |
frmmmmmmmm oo ommm oo oo prmmmmmmomoooooeeoo—e T
| CLOSE | filel,file2,...,file16 | Up to 16 files may be closed with one |
| | | CLCSE macro instruction. |
e -4 P S 1
| CNTRL | filename,BSF | Backspace file. |
| prmm oo e 1
| | filename,BSR | Backspace record. |
| prmmmmm oo pommmmv e 1
| | filename,ERG | Erase gap. |
| - ——m - T |
] | filename,FSF | Forward space file. |
| T —— } -—- oo .
| | f£filename,FSR | Forward srace record. |
| pmmmm T RO 1
| | filename,REW | Rewind tape. |
| e e -1
| | filename,RUN | Rewind and unload tape.

1 . —- o e e e 1
| | filename,SEEK | Search for specified disk location.

| prmm oo oo I ——- Yo -
| | f£filename,SK,n,m | n causes immediate skip to the specified

| | M =1,2,e0., Or 12) | channel.

| m=1,2,..., Or 12) | m causes skip to specified channel after

| | | printing.

| - o PP —
| | £filename,SP,n,m | n causes the specified number of lines

] | ma=20,1,2, or 3) | to be spaced immediately.

| | m=0,1,2, or 3) | m causes the specified number of lines to

| | | be spaced after printing.

! b e -
| | £filename,SS,n | Select stacker of a multi-stacker

| | (n = stacker number) | I70 device. |
-~ e T YT + —om e e e 1
| CNVRT | seekfield,packedfield | Converts packed decimal address |
| | | into format of seek field used

|] | in direct access. |
I ---t T e e e m————— -4
| CRDPR | ,workarea,rrintarea | Card print. DTFSR statement must include |
| | | CRDPRA and CRDPRLn detail entries.
prmmmmmmmm oo t - —mmmmm—t - —mmmemeee -
| ENDFL | filename | End loading or extending of an]
| | | indexed-sequential file. |
L - —l U, —————d

Figure 37. Summary of Imperative Macro Instr

122

uctions, Part 1 of 3

[T——— =TT oo e T T T T T e e e 1
| | I I
| I | |
| Operation | Operand] Remarks |
prm s oo oo -—- t R 4
EOM	filename	Enter overlap mode.
]	Applies to combined files for which a	
]	previous LOM has been given.	
’ T pommme - —mmm oo 1		
r		
ESETL	filename	End sequential processing of an indexed-
		sequential file.]
frmmm oo b . -- -1		
FEOV	filename	Force end of volume.
		Applies to multi-volume tape files.
e oo e $- ——mmmem T — 1		
GET	filename,workarea	The second operand, including the comma
		preceding it, must be omitted if no
]		work area has been specified.
prmmmmm o m oo om e oo - oo aen I —— 4		
LBRET	n	Label return. Required for return to the
	m=1o0r 2)	IOCS from LABADDR routines.
prmm oo e oo oo e 4		
LOM	filename	Leave overlap mode.
		Applies to combined files for which
		overlap mode has been specified.
frm e e T e T 1		
OPEN	filel,file2,...,filel16	Up to 16 files may be opened w1th
		one OPEN macro instruction. (However,
		only one printer-keyboard input and one
]		printer-keyboard output file can be
		specified in a single program.)
— Rt -—- e 1		
PRTOV	filename,n,address	Branch on print overflow.
	(n =9 or 12)	n specifies the channel indicator to be
		tested. An automatic skip to channel 1
		occurs if the last operand (address
		of user routine) is omitted.
prmm oo —1 I T -		
PUT	filename,workarea	The second operand, including the comma
		preceding it, must be omitted if no
		work area has been specified.
prmmm e - frommeme e Jm o s i 1		
	filename	Applies to printer-keyboard files only.
prmmm e - —f———-———- - e —-1		
READ	filename,ID	Applies to direct-access files only.
F - oo m oo T 1		
	f£filename,KEY	Applies to indexed-sequential files
]		only. !
frmmmmm oo oo e fmomomme - pommmmmome T 4		
RELSE	f£filename	Release current block of tape
		input flle.
prmm e o o ov oo o .		
SETFL	filename	Prepare for loadlng or extending an
		indexed-sequential file.
S, IS L e 4
Figure 37. Summary of Imperative Macro Instructions, Part 2 of 3

Appendix B: Summary of Imperative Macro Instructions 123

o e e e o e - ——— — —— - —_———

Remarks
______ _ |
Prepare for sequential processing |
of an indexed-sequential file keginning |
with the first record.
e e e e e e e e ——— 4
Prepare for sequential processing of
an indexed-sequential file beginning with |
the record having the specified key.
Prepare for sequential rrocessing of
an indexed-sequential file beginning
ith the record whose key is equal
o or greater than the specified key.

ot <

Truncate current block of tape output

file.

Wait for the completion of pending card
and printer I/O operations.

Wait for a printer-keyboard input opera- |
tion or a disk operation to end. |

__________________ - ____-_{

Applies to direct-access files only. |

____________________ —_— ___q

Replace a record retrieved from an |
indexed-sequential file. |

|
|
I
§
|
|
1
|
]
1
|
t
|
|
|
|
|
1
|
|
|
i
|
|
1
|
|
t
|
1
|
|
|
]
]
|
1
|
1
|
|
|
|
b

Place a new record into an indexed-
sequential file. |

Fh
,,.I-
[
o
=}
@
=]
)
b e e e e e e e —]

|
|
|
|
|
]
1
|
|
|
|
|
|
1
|
|
|
|
t
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
{
|
|
|
|
!
|
]
]
—

Figure 37. Summary of Imperative Macro Instructions, Part 3 of 3

124

——- - — ——————————————— e —— — _

---------- TP oo T e
|Operation |Operand | Type of Processing |Remarks

e e + -7 T — e B 1
| | |Load |Add] Retrieve | Add-Retriev] |
| | - R O Fo————— - T T -1 I
I I | | | SEQNTL | RANDOM | RANSEQ | SEQNTL | RANDOM | RANSEQ | |
| | | I t T e pommam- I
|CLOSE |filenamel, | M | M |. M | M | M | M | M | M |max. of 16 |
] |filenamen | | | | | | | | |operands]
e —— e —— f--mv S oo et S e 1
| ENDFL |£ilename | M] | | |] | | | same name |
I | | I | | | | | | |as in SETFL]|
frmmmm e P — L S $ommme- fommn e o= = 1
|ESETL |filename |] | M | | M | M | | M2 |same name |
I I I I I | I I | | |as in SETL |
pommmmm e + ¥ S R oo oo oo oo oo e oo oo :
| GET | filename | | | M | | O | ©] | O | |
| I T G T $ommmee pommmmn S frommmn pommmmmm e 1
I |filen,workn | ! | M] | o | o | [0 | |
---------------------- T et SEEE } S S vt ot
|OPEN |£filenamel, | M | M| M | M | M | M | M | M |max. of 16 |
| | filenamen | | | | | | | | |operands |
e mmmee S et ¥ ¥ P o oo e 1
| PUT |filename | | ! O | | © | O] | O | |
| —mmmmmmmeee T S i $ommmee fomm - + e T 1
| |filen,workn | I | o | I o | o | | o | |
e S S e S ot -1
|READ |filen,KEY |] | | M | O | | O | ©O | |
—————————————————————— v S e A T —
| SETFL | filename | M | | | | |] | | |
e e e $ommmee $ommm e e e pommm o 1
| SETL |filen,BOF | I | | | | | ! I |
| |filen,KEY | | | M | o* | o | | 02 | |
I |filen,GKEY | ! I I | I I | I I
e - Ve fommme omome poome v L -4
| WAITF | filename | | M | | M | o | | M | o | |
—————————————————————— T T B mt e e e T e
|WRITE |filen,NEWKEY| M | M |] | | O | © | | |
| T e R e $ommmes — fommme- $--mmmm fommmm !
| |[filen,KEY | | | [o | o | I o | ©o | I
1 I _i___1 ——l —_—d 1 L ——4 S 4
|M = Mandatorxy |
|0 = Optional |
|7 Mandatory if sequential processing is used. 2 A READ or WRITE macro instruction |
| must not be issued between SETL and ESETL referring to the same file. |
e e T e 1

Figure 38. Summary of Imperative Macro Instructions for Indexed-Sequential Files

Appendix B: Summary of Imperative Macro Instructions 125

Appendix C. Summary of Monitor Macro Instructions

Five macro instructions can be
Assembler language programs to
with the Monitor program. Two
(COMRG and MVCOM) refer to the
cation region.

used in Two (FETCH and EOQJ) request functions of
communicate the Fetch routine. One refers to the

of them printer-keyboard input area. Figure 39
communi- shows a summary of the formats and func-

tions of the Monitor macro instructions.

—-= I S 2 = |

T
|Name |Operation |Operands

MVCOM | first-byte,
| number,
|address

phase name

P——— e — ——

IQIPT

[o e o et S s . e o e St S et S B s e s e e e, o

Figure 39. Summary of Monitor

0126

Fmmmmmmm oo T !

|Places the address of the first byte of the communication|
|region in register 8. Enables the communication region to]
|be referred to by relative addressing.
|Modifies information in the user areas of the
| communication region (bytes 12-23).

T

|Disk-resident system: requests the loading of another
| phase or subphase into main storage from the core-image
|library. Card-resident system: loads the phase that
|physically follows the phase containing FETCH.

|

t

]
S S S,

|Disk-resident system: indicates to the Monitor program |
|that a job has been completed and that the Job Control |
|program must be called to prerare for the next job. Card-}
|resident system: causes system halt. To load the

|next Job Control deck, the operator must press START.

|input area into register 8. You can thus refer
|to the area through relative addressing. Required if you

I
I
- i
|Loads the begin address of the printer-keyboard |
[
: : I
|use inquiry record. |

1

______ At e —

Macro Instructions

This appendix provides you with a number of
examples that illustrate the use of the
IOCS for the various types of files.

Example Type of File

1 and 1.1 Card files (2520 Card
Read-Punch) , Overlap

2 Card and printer files (2560
MFCM, 2501 Card Reader,
Printer)

3 ' Printer-keyboard input file
and indexed-sequential file

4y Printer-keyboard output file
and sequential disk file

5 and 5.1 Tape output file with user
labels and card file (2560
MFCM)

6 Tape update file, card file
(2501) and printer file

7 Sequential disk output file
and card file

8 Sequential disk update file
and printer file

9 Sequential disk file

10 Direct-access file
(read/write) and card file
(2501)

1 Indexed~sequential load file
and card file (2501)

12 Indexed-sequential file
(reorganization) and sequen-
tial disk file

13 Indexed-sequential add file
and card file (2560 MFCM)

14 Indexed-sequential file

(random/sequential ADDRTR and
UPDATE) and card file (2501)

15 Indexed-sequential file and
printer-keyboard file in
inquiry program

16 Sequential disk, printer, and
printer-keyboard input/output
files - program includes ATENT
routine

All examples are divided into the sec-
tions

e file definition,

e processing routine,

e exit routines, and

s definition of constants.

Appendix D. Programming Examples

A description of the processing and exit
routines is given separately for each exam-
ple. The numbers in parentheses refer to
the numbers in the left-hand margin of the
individual examples., For information on
the file definition statements and the
definition of constants, which includes the
definition of I/0 and work areas, refer to
the relevant sections in this publication.

Example 1 and 1.1 - Caxd Files

Read-Punch)

In this example, a combined input/output
file is processed on a 2520 Card Read-
Punch. The card input is checked for
blanks (2) in columns 10 through 15 to
determine whether the record is to be
updated. If no update is required, i.e.,
the check for all blanks failed, the next
card is read. If the test is true, the
record is updated (3) and the character
string 'UPDATE' is punched (4) into columns
10 through 15 of the record.

(2520 cCard

It is assumed that most of the cards are
to be updated. Therefore, the OVERLAP=NO
entry has been omitted. However, a LOM
macro instruction is issued (1) between
OPEN and the first GET to cause the GET
routine to work in non-overlap mode.

The IOCS performs a sequence check in
columns 73 through 80 and a read-format
check in columns 1 and 2. If a sequence
error occurs or if columns 1 and 2 are not
blank, the card is selected (5) into stack-
er 2, When the end-of-file card is detect-
ed, the file is closed (6) and the job is
terminated.

This example requires 5940 bytes of main
storage.

Example 1.1 is similar to example 1. How-
ever, this time it is assumed that only a
few cards of the combined file are to be
updated. Therefore, the entry OVERLAP=NO
(1Y is included in the file definition
statement. The program is executed in
non-overlap mode. This means that through-
put is slower while storage requirements
are reduced.

This example requires 5710 bytes of main
storage.

Appendix D. Programming Examples @127

%
* FILE DEFINITION
% 00 memmmm—m— e —————
*
START 9000
START EQU %
ORG *+4608
PRINT NOGEN
*
CARD1 DTFSR CONTROL=YES,
EOFADNR=FOFC1,
DEVICE =C RP 20,
IMAREA=AREAL,
INBLKSZ=80,
DUAREA=AREA2,
OUBLKSZ=80,
RFORMT1=01020,
RFXIT=RFEX1,
SEQMCE=7380,
SEQXIT=SQF X1,
TYPEFLF=CMBND,
WORKA=YES
DTFEN
EJECT
#*
* PROCESSING ROUTINE
K eeee—————————————
*
USING START,04+1,2,3
BEGIN EQU *
OPEN CARD1
]—————=LOM CARD1
*
LOGOP1 EQU *

GET CARD1,AREA3
cLC AREA3409(6),=C"
2———-—38NE Loorl
*
3————— MVC
*
4 ————— = pPUT CARD14AREA?3
B LONP1

EXIT ROUTINES

e o e om0

3t 5t * 3¢

SQEX1 EQU *
HPR X'FOL',0

TITLE 'INDCS EXAMPLE NO 1 - CARD FILE ON 2520°

PREFERABLE IF NEARLY ALL CARDS ARE
TO BE PUNCHED T.E. TO BE UPDATED

GET IS WORKING IN NON OVERLAP MODE
' CHECK IF UPDATE POSSIBLE

AREA3+09(6)y=C*IPDATE®* COLUMNS 10-15 ARE UPDATED BY

CHARACTER STRIMG *'UPDATE!
PUT TS WORKING TN QVFRLAP MNDE

EXIT IF SEQUENCE CHECK QCCURS
HALT AND CONTINUE AS FOR RFEX1

RFEX 1 EQU * EXIT 1IF TEST FOR BLANKS IN COLUMNS

* 1-2 FAILS

* NO UPDATE REQUIRED

5 ————————+ CNTRL CARD1,S5S,2 SELECT ERRQR CARD INTO HOPPER 2

8 LooP1

%*

ENFC1 EQU * EQF-CONDITINN DETECTED

6 ——————+ CLNSE CARD]

EQJ

* TERMINATION OF J0OB

*

* DEFINTTION OF CONSTANTS

*

-3

AREA1l DC 8nc* ¢ INAREA FOR 2520

AREA2 bla goc' ! OUAREA FOR 2520

AREA3 boC 8oc! ¢ WORKAREA FNR 2520

%*
LTORG

*
END BEGIN

Example 1. Card File (2520 Card Read-Punch), Overlap

0128

TITLE '10CS EXAMPLE NM 1.1 - CARD FILE ON 2520'

GET IS WORKING IN NNN NVERLAP MODE
' CHECK IF UPDATE POSSIBLE

MVC AREA3+09(6),=C"UPDATE' COLUMNS 10-15 ARE 1JPDATED BY

*
* FILE DEFINITION
% 0000 cememe—emcc———m———
*
START 0000
START EQU %
0RG *+4608
PRINT NOGFEN
CARD1 DTFSR CONTROL=YES,
DEVICE=CRP 20,
EOFADDR=ENFC1,
INAREA=AREA1,
INRLKSZ=80,
OUAREA=AREA2,
OQURLKSZ=80,
1 OVERLAP=NQ,
RFORMT1=01020,
RFXIT=RFEX]),
SEQNCE=7380,
SEOXTIT=SQEX1,
TYPEFLE=CMRND,
WORKA=YES
DTFEN
EJECT
*
* PROCESSING ROUTINE
* —————————————————
* .
USING START,041492,3
BEGIN EQU *
OPEN CARD1
LooP1 EQU *
GET CARD1,AREAZ
cLC AREA3+409(6),y=C"
BNE LooP2
*
E3
PUT CARD1,APEAR
;) LOCP1
LoNpP2 EQU *
%
#*
CMTRL CARD1,S5S,2
B LOOPY
*
£ EXIT ROQUTIMES
* ————— e
*
SQEX1 EQU *
HPR X'FOl1',0
RFEX1 EQU *
*«
*
CNTRL CARD1,SS,2
B LOOP1
ENFC1 EQU *
CLOSE CARN1
E0J
*
*
% DEFINITION OF CONSTANTS
* —
*
AREA1 0oC goc* !
AREA?2 DC soct
AREA3 0C goce ¢
*

LTORG
END BEGIN

CHARACTER STRING 'UPDATE!
PUT IS WORKING IN NNN.NVERL AP MODE

EXIT IF TEST FOR BLANKS IN COLUMNS
10-15 FAILS 1.EFE. THE CARD IS ALREANY
UPDATED

SELECT CARD FOR HOPPER 2

EXIT IF SEQUENCE CHECK OCCURS

HALT AND CONTINUE AS FGR RFEX1

EXIT -IF TEST FOR BLANKS 1IN COLUMNMS
1-2 FAILS

NO UPDATE REQUIRED

SELECT ERROR CARD INTO HOPPER 2

EQF-CONDITION DETECTED
TERMINATION OF 408
INAREA FOR 2520

QUAREA FOR 2520
WORKAREA FOR 2520

Example 1.1.

Card File (2520 Card Read-Punch), Non-Overlap

Appendix D. Programming Examples

129

TITLE 'I0CS EXAMPLE ND 2 - FOR CARD/PRINTER FILE'

*
*

START 4608

PRINT NOGEN
*
* FILE DEFINITIONS
X000 eeeme——————————
*
CARD1 DTFSR BLKSIZE=80,

DEVICE=REANOL,
EQOFADDR=EQFC1,
INAREA1=AREAL,
ICAREA2=AREA2,
TYPEFLE=INPUT,
WORKA=YFS

CARD2 DTFSR BLKSIZE=80,
CONTROL=YES,
DEVICE=MFCM1,
EOFADDR=EQFC2,
TNAREA1=AREA3,
TYPEFLF=INPUT,
WORKA=YES

CARD3 DTFSR BLKSIZF=80,
CONTROL=YES,
CRDPRA=AREA4,
CRDPRL1=64,
CRNPRL 2=64,
DEVICE=MFCM2,
ICAREA1=AREAS,
TYPEFLE=NUTPUT,
HORKA=YES

PRINT NDTFSR BLKSIZE=120,
CONTRQL=YES,
DEVICE=PRINTFR,
PRINTNV=YES,
TYPEFLE=QOUTPUT,

WORKA=YES
DTFEN
EJECT

*

* PROCESSING ROUTINE

X eeemeemeeeeceeea———- -

*

BEGIN EQU
BASR 8,0 LOAD BASE REGISTER

USING *,8,49
BSREG LH 9yRSADD

OPEN CARD1,CARD2,CARD3,PRINT

CNTRL PRINT,SK,1 SKIP

MVC WORKP+DSPL1(32),=C*'LIST COMPARE RUN ON 2501 / MFCML!'

LOOP1 EQU *

| ————— puT PRINT,WORKP PRINT -HEADER LINE

PRTOV PRINT,12

8

LNAD BASE RFGISTER 9

SWITY NOP LOOP2 FIRST SWITCH, YNTTTALLY NO BRANCH
2——————+= MVI SWIT1+1,X'FO° SET FIRST SWITCH TO BRANCH
CNTRL PRINT,SP,3 SPACE 3 LINES
%
LooP2 EQU

MvC WORKP+1(120),WORKP CLEAR PRINT WOFK ARFA

GET CARD1, WORK1
GET CARD2,WORK 2

BE LooP1

J———= MVC WORKP+DSPL3(RO),WORK? PREPARE FOR LISTING
4 ——— CLC WORK1(80),WORK?2 CHECK T1F CARDS EQUAL

Example 2.

0130

Card and Printer Files, Part 1 of 2

MVC WNRKP+DSPL2(3),=C'OLD' INDICATE RECORD AS OLD
5 ————————=PUT PRINT,WORKP PRINT THE RECORD IN ERROR
PRTOV PRINT, 12
CNTRL 4SS,4 SELECT ERROR CARD
MVC WORKP+DSPL3{80),WNRK1 PREPARE NEW RECGQRD
6—————— = MVC WNRKP+DSPL2(3),=C '"NEW' INDICATE RECORD AS NEW
MVC WORK3(80),WORK1
7 —————— PUT PRINT,WNRKP PRINT MEW RECORD
PRTOV PRINT,12 .
CNTRL CARD3,SS,1 SELECT NEW CARD TO BE PUNCHED INTO
* STACKER1 1.F. MERGE INTN CARD2 FILE
PUT CARD3,WORK3 PUNCH AND PRINT NEW RECORN
MVC WORK&4(64),WORK3 PREPARE FIRST 64 BYTES FOR HEAD 1
MVC WORK&4+112(16),WORK3+ 64
8 i CRDPR ,WNRK4 ARFA4
" { CROPR ,HORK4+64, APEA4+64
CNTRL PRINT,SP,1 SPACE 1 LINE
B LOOP2
*
* EXTT RNOUTINES
* ———————————-—
*
EOFC1 EQU * FOF CONDITINN DETECTED
ENFC2 EQU *
CNTRL PRINT,SKy1 SKTP
CLOSE CARD1,CARD2,CARD3,PRINT
£0J
* TERMINATION OF J0B
* DEFINITINN OF CONSTANTS
%
*
AREA1 DC goc* * I0AREAL FOR 2501
AREA2 DC 80C* * INAREA2 FOR 2501
AREA3 DC soc* TOAREAL FOR MFCML
AREA4 oc 128C* ! CARD PRINT AREA FOR MFCM?2
AREAS DC 8oC* * I0AREAL FOR MFCM1
*
WORK 1 oC 8ocY WORAREA FOR 2501
WORK 2 DC goc* WORKAREA FOR MFCM1
HORK 3 nc goct v WNRKAREA FOR MFCM2
WORK 4 DC 128C" * WORK AREA FOQR CARD PRINT
WORKP nC 120C* * WORK ARFA FOR PRINTER
*
BSADD nc Y{BSREG+4096)
*
DSPL1 EQU 10
DSPL 2 EQU 25
NSPL 3 EQU 30
LTORG
END BEGIN

Example 2. Card and Printer Files, Part

Example 2 - Card and Printer Files (2560
MFCM, 2501 card Reader, Printer)

A card input file read on a 2501 is com-
pared with an input file read on an MFCM1
A card output file and a printer file are
created.

After the files have been opened, a
header line is prepared and printed (1),
and three lines are spaced. The switch i
then modified (2) so that the space
instruction is by-passed after subseguent
print operations.

2 of 2

A card is read from each input file and
the record read on the MFCM1 is moved (3)
into the work area of the printer file.
The records are compared (4). If they are
equal, the record in the print area is
printed, and the next two cards are read.
If the records are not equal, the record
read from the MFCM1 is indicated as 'OLD'
and printed (5). The characters 'NEW' are
inserted (6) in the record read from the
2501, and the record is printed (7). The
card output file is punched and card-
printed (8).

S

This example requires 3130 bytes of main
storage.

Appendix D. Programming Examples @131

TITLE *INCS EXAMPLE NO 3 - FOR PRINTER KEYBOARD INPUT FILE!
*
E 3
START 4608
PRINT MDGEN
*
* FILE DEFINITIONS
| eceecececee—a——————
*
DTFBG MAINPRG=YES
DATA1 DTFIS DERREX=ERRC1, -
DEVICE=DISKI11F, -
DSKXTNT=4, -
INAREAR=AREA1, -
INROUT=RETRVE, -
KEYARG=KEYA1l, -
KEYLEN=10, -
KEYLNC=1, -
NRECNS=16, -
RECFORM=F IXBLK, -
RECSIZE=80, -
RTRVEX=RTR EX, -
TYPEFLE=RANDOM, -
UPDATE=RANDNM, -
WNRKR =WNRK1
PUTIN DTFPK BLKSI7E=15, -
EOFADDR=EQFC1, -
TI0OAREA=AREA2, -
TYPEFLE=INPUT
DTFEN
EJECT
*
* PROCESSING RNUTINE
* s e e e o e e o e
&
BEGIN EQU *
BASR 8,40 LOAN BASE REGISTER 8
USING *,8
%
OPEN DATA1,PUTIN
%*
LonP1 EQU *
READ PUTIN READ PRINTFR KEYBOARD RECCRD 1.E.
* 10 BYTES KEY INFORMATION AND
* 5 BYTES UPDATE INFORMATION
| = WAITF PUTIN WAIT FNR COMPLETINON OF READ
2 ———— s MVC KEYAl,AREA2 INSERT KEY INTO KEYARG FIFLD
3——— = READ DATA1l,KEY RETRIEVE RECNRD
WAITF DATAL WATT FOR COMPLETION OF READ
s
MVC WORK1+15(5),AREA2+10 INSERT UPDATE INTO RECORD
*
4 ————————= WRITE DATA1l,KEY RETURN RECORD TN DISK
WAITF DATAl WATT FOR COMPLETION OF WRITE
B LOOP1
Py
* EXIT ROUTINES
K eeeee—ceceea-
*
ERRC1 EQU * DY SK ERROR CONNITION
HPR X*FO1'(1),0 HALT 1F IRRECOVERABLE DISK ERROR
B ENQFC1
%
RTREX EQU *
HPR X'FO1*,0 RFQUTRED RECORD MOT FOUND
EOFC1 EQU * /% TYPEND ON PRINTER KEYBNARD
CLOSE DATA1l,PUTIN
EDJ
* TERMINATION NOF JNB
Example 3. Printer-Keyboard Input File and Indexed-Sequential File, Part 1 of 2

0132

* DEFINITIONS OF CONSTAMTS
* —_——
*

AREAY DC 135CL10*
AREA2 DC 15C* ¢
%

I0OAREA FOR DISK NDATAL
T0AREA FOR PRINTER KEYBOARD INPUT

WORK 1 DC 8oc' * WORKAREA FNOR DISK DATAl
KEYAl DC ce ' KEYARG FIELD FOR KEY ON DISK DATAL
*
END BEGIN
Example 3. Printer-Keyboard Input File and Indexed-Sequential Disk File, Part 2 of 2

Example 3 = Printer-Keyboard Input File and
Indexed-Sequential File

A record from an indexed-sequential file is
retrieved randomly and updated according to
control information typed in on the
printer-keyboard. The control information
consists of ten bytes of key information
and five bytes of update information.

Aftexr the record has been completely
transferred to the input area (1), the key
information is inserted into the KEYARG
field (2). Then, the record is retrieved
(3) , updated, and written back on disk (4).

This example requires U450 bytes of main
storage.

Appendix D. Programming Examples 133

#* % 3+ 3

TITLE

START
PRINT

*IDCS EXAMPLE NDO 4 -~ FOR PRINTER KEYBOARD OUTPUT FILE?

Xt1200°"
NOGEN

FILE DEFINITIONS

DTFBG

DATA1 DTFSD

ouTPT DTFPK

' NO MAINLINE AND NO INQUIRY PROGRAM
BLKSTZE=800, -
DEVICE=DISKI1F, -
EOFADDPR=EQFC], -
ERROPT=SK1P, -
TCAREAL1=AR EAlL, -
I0AREA2=AREA2, -
I0REG=(13), -
RECFNRM=F IXBLK, -
RECSIZE=80, -
TYPEFLE=INPUT

CONTROL=YES, -
BLKSTZE=30, -
TOAREA=AREA3, -
LCTABLE=YES, -
PRINTOV=YES, -
TYPEFLE=QUTPUT, -
WORKA=YES

DTFLC 45,00301,04012
DTFEN
EJECT
¥
* PROCESSING RNUTINE
X 0 ememcccecae- - -
*
BEGIN FQU =
BASR 10,0 LOAD BASF REGISTER 10
USING *,10
*
OPEN DATALl,NUTPT
*
COMRG LOAD ADDRESS OF COMMUNICATION
* REGION INTO REGISTER 8
MVC HEAD1+22(21,0(8) PREPARE DATE IN HEAD1 (MONTH)
J————— { MVC HEAD1+25(2),2(8) (DAY)
MVC HEAD1428(2),4(8) (YEAR)
PUT OQUTPT,yHEAD1 TYPE HFEAD1
PUT OUTPT,HEAD2 TYPE HEAD2
CNTRL OUTPT,SP,3 SPACE 3 LINES
LooP1 EOY %
GET DATAlL
22— CLC 0(6413),=C" TFST FOR BLANKS IN COLUMNS 1 - 6
BE Lo0P1
%k
3—————— MVYC WORK1(30),0(13) IF NOT, MOVE FIRST 30 BYTES TO WORKL
PRTOV OUTPT,12 TEST FOR END OF FORM ,TF YES
* SKIP TQ MEXT PAGE
PUT OUTPT,WORK1 TYPE RECORD
B LooP1
*
* EXIT ROUTINFS
¥ 0000 eeeeoceec———————
%
EOFC1 EQU %
CNTRL OUTPT,SP,1 SPACE 1 LINE
MVI WORK1,X'4N°Y CLEAR AREA WORK1
MVC WNRKY(3N),WORK]
MVC WORK1(11),=C'END OF FILE*
4—————— PYT OUTPT,WORK] TYPE EOF CONDITION
CLOSE DATAl,0UTPT
E0J

TERMINATION 0OF JOB

Example 4.

el134

Printer-Keyboard Output File and Sequential Disk File, Part 1 of

% DEFINITIONS OF CONSTANTS
*
*
AREAl DC 8icL1io0"' * 10
AREA2 DC g1cLio*
AREA3 oC 30C* I0AREA FOR QUTPT
*
HEAD1 bC C'FILE = DATAl, DATE = / /7
HEAD2 ocC C'IDENTIFIED RECORDS RETRIEVED
*
WORK1 EQU HEAD1 wn
*
LTORG
*
END BEGIN

AREAS FOR DATAS

RKAREA FOR OUTPT

Example 4. Printer-Keyboard Output File and Sequential Disk File, Part 2 of 2

Example 4 - Printer-Keyboard Output and
Sequential Disk File

A sequential disk file is checked for
records containing blanks in columns 1
through 6. Records that do not contain
blanks in these columns are printed on the
printer-keyboard. The current date in the
communication region is fetched and printed
on the printer keyboard (1) . A record of

the sequential file is read and checked
(2) . If the record does not contain blanks
in columns 1 through 6, it is moved to the
printer-keyboard work area and printed (3).
When the end of the file is reached, the
message 'END OF FILE' is printed (4).

This example requires 4270 kytes of main
storage.

Appendix D. Programming Examples 135

TITLE *'10CS EXAMPLE NO 5 - TAPE OUTPUT FILE WITH USER LABELS'

START 4608
USING *-46084041,2,3
PRINT NOGEN

*

* FILE DEFINITINN
* e ————————
*
D

ATAY DTFMT BLKSIZF=360,
DEVADDR=SYSO010,
FILABL=STN,
I0AREAL1=AREAL,
LABADDR=LABEL,
READ=FORWARD,
RECFORM=FIXBLK,
RECSIZE=90,
TYPEFLE=0UTPUT,
WORKA=YES

CARD1 DTFSR BLKSIZE=80,
CONTROL=YES,
DEVICE=MFCM1,
EOFADDR=EOQOFC1,
INDAR EA1=AREA2,
TYPEFLE=INPUT,

WORKA=YES

DTFEN

EJECT
%
* PROCESSING ROUTINE
K em—e—————————————
*
BEGIN ENU %

OPEN DATA1,CARD1
*

LOOP1 EQU *
GET CARD1, WNRK2

| ————— ap WOPK1,yCONT1 UPDATE RECORD COUNT
PUT DATA1,WORK1
B LoOP1
*
* EXIT ROUTINES
* ————— e ——————
*
EQFC1 EQU % EXIT FOR FOF CONDITION
CLOSE DATAL,CARD1
ENJ
* TERMINATION OF JOB
*
* USER LABEL HANDLING
*
LABEL EQU %
* DN NNT USF REGISTERS 14 AND 15
2————— cH 8y TYPE CHECK TF HEADEP LABEL REQUIRED
BE LABLL BRANCH IF HEADER LABEL REOUIRED
LH REG2,LABLS LNAD RFG2 WITH TRATLER-LABEL ADDR.
B LABL2 IF ND HEADEP LABEL INDICATION,
* RETURN TO 10CS
LABL1 LH REG2yLABL6
AH REG2,LABLN UPDATE LABEL POINTER
3——————= CH REG2,LABL7 CHECK BRANCH TC LBRET 1
BE LABL2 IF EQUAL,BRANCH TO LBRET1
4————= MVC 0(80,9),0(REG2) BUTLD ADDITTONAL LABEL TNFORMAT IOM
STH REG2,LABL6
5 —————— LBRET2 RETURN TN 10CS AFTFR BUILDING USER
* LABEL EXCEPT THE LASY OME
LABL 2 MVC 0(80,9),0(REG2)
6 ——————— LBRET1 RETURN TO 10CS AFTER BUTLDING LAST
* T.E. FOURTH USER LABEL

Example 5. Tape Output File with User Labels and Card File, Part 1 of 2

e136

%
7 —= LABLS5 EQU *
nC CL24"UHL1
DC s6C' ¢
DC CL24"UHL2

* DEFINITINN OF CONSTANTS FOR USER LABEL

DEFINITIOM NF USER LABEL INFORMATION
FIRST USER LABEL'

SECOND USER LABEL!

nc 56C*
DC CL24'UHL3 THIRD USER LABEL'!
nc 56C' !

DC CL24"UHL4 LAST USER LABEL!

DC 56C' !
LABL6 DC Y(LABLS5-80) BEGIN POINTER OF LABLS5 AND SAVEFIFLD
LABLY nc Y(LABL 5+3%8n) END PQOINTER OF LABLS
%
LABLS DoC Y(*+2)
DC CL24'UTL1 USER TRAILFR LABEL!
DC 56C*
*
* DEFINITION OF CONSTANTS
* R
%
AREA1 Lo 36CL10Y ° T10AREA FOR DATAL
AREA2 DC goce ¢ I0AREA FOR CARD1
WORK 1 neC PL10O'+0" WORK AREA FOR DATA1
8 —» WORK 2 DC 08CL1Q" ° WORK AREA FOR CARD + DATAl
DS OH
TYPE nc cr o
*
LABLN DC H'80" LENGTH OF USER INFORMATION
CONT1 oc PL1O'+1"
%
REG2 EQU 13
#
END BEGIN
Example 5. Tape Output File with User Labels and Card File, Part 2 of 2

Example 5 - Tape Output File with User
Labels and Card File (2560 MFCM)

A tape output file is created from a card
input file read on the 2560 MFCM1l. The
output file has four additional header
labels and one additional trailer label.

The processing loop reads the cards and
writes the records on magnetic tape. Con-
mon overlapping work areas are used (8) for
this purpose. A record count is prepared
in the first ten bytes of the tape records
(1). The LABADDR routine checks (2) if

header labels are required. If no labels
are to be written, control is returned to
the IOCsS. If labels are to be built, the
label constants (7) are moved to the label
area used by the open routine (4). The
label information pointer is checked (3).
If further labels are to be written, LBRET
2 is executed (5). Otherwise a branch to
LBRET 1 is taken (6).

This example requires 3230 bytes of main
storage.

Appendix D. Programming Examples @137

#* 3

ATAY

CARD1

TITLE 'I0CS EXAMPLE NO

START 4608
USING *-46084041,2,3
PRINT NOGEN

FILE DEFINITION

DTFMT BLKSIZE=380,
DEVADDR=SYSO10,
FILABL=STD,
I0ARFA1=AREAL,
IOREG=(REG2),
LABADDR=LABEL,
READ=FORWARD,
REWIND=NORWD,
RECFNRM=VARBLK,
TYPEFLE=0UTPUT,
VARRLD=(REG1)
BLKSI1ZE=80,
CONTROL=YFS,
DEV ICE=MF(C M1,
ECFADDR=EQFC1,
TOAREA1=AREA2,
TYPEFLE=TINPUT,
WORKA=YES

DTFSR

DTFEN
EJECT

PRNCESSING ROUTINE

EQU *

OPEN DATA1l,CARD1

SR REG1,REG]

EQU *

GET CARD1,WORK2+10
CH REG14RECLN

BNL LoopP2

TRUNC DATA1L

MvC WORKL(?2),RECLN
LH REGY,RECLN
SH REGLy=H'1"
STH REG1,+MOVE1L
MVY MOVEl,X'D2"

MveC 0(84,REG2),WORKL
AP WORK24 CONT1

PUT DATAL

B LONP1

EXIT ROUTINES

—————— — e o e

CLOSE DATAlsCARD1
EQJ

USER LABFL HANDLING

EQU *

CH 8,TYPE

BE LABL1

LH REG2,LABLS
8 LABL2

— TAPE QUTPUT WITH USER LABELS!

CHECK IF AREA OVERFLOW
IF YES TRUNCATE BLOCK

MOVE RECPRD LENGTH INTO WORK AREA
PREPARE MOVE INSTRUCTIOM

INSERT LEMGTH INTO INSTRUCTION
RESTORE OP-CODE

MOVE RECORD INTO TOAREA

UPDATE RECORD COUNT

TERMINATIQN OF J08B

DO NOT USE REGISTERS 14 AND 15

BRANCH TF HEADFR LABEL INDICATION
LOAD REG2 WITH TRATLER-LABEL ADDR.
IF MO HEADER LABEL INDICATION,
RETURN TO TOCS

Example 5.1.

e138

Tape Output File with User Labels and Card File,

Part 1 of 2

LABL1 LH REG2,LABL6
AH REG2,LABLN
CH REG2,LARLT
BE LABL2
MVC 0(80,9),0(REG2)
STH REG2,LABL6
LBRET2
*
LABL2 MVC 0(80,9),0(REG2)
LBRET1
*
* NEFINITION OF CONSTANTS FO
*
LABLS FQU %
nc CL24'UHL1 FIRST US
oc 56C ¢
nc CL24'UHL2 SECOND US
nc 56C"
DC CL24'UHL3 THIRD USE
oc 56Ct
DC CL24'UHL4 LAST USFR
DC 56CT
LABL6 nC Y(LABL5~80)
LABLY DC Y(LABL5+3%80)
LABLS nC Y(%+2)
DC CL24'UTL1 USER TRAI
nC 56C"
*
* DEFINTITINN OF CONSTANTS
¥ 000 eeeee—e—eccae ;e e
*
AREA1 DC HY34Q°
oC H'O"
nC 208CY ¢
DC 208C* ¢
AREA2 DC sact ¢
WORK 1 nC HY 84"
DC H'O
WORK 2 DC PL10'+0"
oC 08CL10* °
DS 0H
TYPE DC cr 01
6— RECLN DC HY84"
CONT1 DC PLIO"+1*
LABLN nc HY80"
*
REG1 EQU 13
REG? EOY 12
END BFEGIN

UPDATE LABREL POINTER

CHECK BRANCH Tr LBRET

IF EQUAL,BRANCH TO LBRET1

BUILD ADDITIONAL LABEL INFORMAT ION

RETURN TO T0OCS AFTER BUILDING USER
LABEL EXCEPT THE LAST ONE

RETURN TO TOCS AFTER BUILDING LAST
1.E. FOURTH USER LABEL
R USER LAREL

DEFINITION OF USER LABEL INFORMATION
EP LABEL®

ERP LABEL!
R LABEL!
LABEL'

BEGIN POINTER OF LABLS AND SAVEFIELD
END POINTER DF LABLS

LER LABEL'

I0AREA FOR DATAL

I0DAREA FOR CARD1
WORKAREA FOR DATAL

DATA AREA FOR DATA1.

FIELD FOR CURRENT RECORD LENGTH

Example 5.1. Tape Output File with User Labels and Card File, Part 2 of 2

Example 5.1 - Tape Output File with User
Labels and Card File (2560 MFCM)

This example is very similar to example 5.

However, (pseudo) variable records are
built for the tape output file.

It is assumed that the field RECLN (6)
contains the record length. Before the
record is moved to the I/0 area (5),

a check (1) is performed to determine
whether the block has to be truncated (2)
or whether the record fits into the area.

The number of bytes that are still avail-
able in the I/0 area are contained in REG2,
i.e., in the VARBLD register. The record
length is inserted into the first two bytes
of the work area (3). The required length
is inserted into the MVC instruction (&),
i.e., record length minus one. Then, the
record is moved to the I/0 area (5) and
written onto tape.

This example requires 3340 Lkytes of main
storage.

Appendix D. Programming Examples @139

TITLE
START

USING
PRINT

DTFMT

DUTPT DTFMT

CARD1 DTFSR

PRINT DTFSR

DTFEN
EJECT

*I0CS EXAMPLE NO 6 - TAPE UPDATE WITH CARD

4608
*¥=460840491y243
NOGEN

FILE NEFINITIONS

ALTTAPE=SYS008,
BLKSTZF=360,
DEVADDR=SYS007,
ENFADDR=EONFC1,
ERRIO=ERRIO,
ERROPT=ERRC1,
FILABL=STD,
TOAREA1=AREAl,
IOAREA2=AREA2,
IDREG=(REG1),
READ=FORWARD,
RECFORM=FIXRBLK,
RECSI7ZF=90,
REWIND=UNLNAD,
TYPEFLE=INPUT
ALTTAPE=SYSO11,
BLKSIZ7E=180,
DEVADDR=SYSO10,
FILARL=STD,
IOAREAL1=AREA3,
IOARFA2=ARFA4,
IDREG=(REG2),
READ=FORWARD,
RECFORM=FIXBLK,
RECSIZE=90,
REWIND=UNLQAD,
TYPEFLE=OUTPUT
BLKSIZE=20,
DEVICE=READN],
EOFADDR=EQOFC2,
IOAREA1=AREAS,
IOAREA2=AREA6,
SEQNCE=0110,
SEOXIT=SEQEX,
TYPEFLF=IMPUT,
WORKA=YES
BLKS17E=90,
DEVICE=PRINTER,
TYPEFLE=OUTPUT,
WARKA=YES

* PROCESSING ROUTINE

e e ————————

USING
EQU
OPEN

BEGIN

LOOP1 EQU

| —————— MV1
GET
PACK

2—L00P2 GET
—————— MV(C

4————— (p
SWIT1 BNE

*

MVC

My C

s

6——e—op» MV1
7—=L00P3 PUT
SWIT2 NOP

§—— 8

DSECTsREG?2
*

INPUT?

PUTIN, QUTPT,CARD1,PRINT

%
SWIT2+14X*00"
CARD1, WORK1

UPDTL(10),UPDTL(1N)

PUTIN

0(904REG2),4N(REGL)
RCRN1(10),UPDTI(10)

LOCOP3

RCRD2{3),UPDT2
RCRD4(7),UPNT3
SWIT2+1,X'FO?
ouTPT

LONP1

LooP2

CHANGE SWITCH 2 TO NOP
GET NEXT CARD

GET TAPE RECORD

CHECK TIF UPDATE REOQUIRED

IF NOT, PUT RECNRD IMMEDIATELY

ON TAPE

INSFRT UPMATE INFORMATION FROM CARD
INTO TAPE RECORD

CHANGE SWITCH 2 TQ BRANCH

BRANCH TN GET NEXT CARD
BRANCH TO GET NEXT TAPE RECORD

Exanmple 6.

0140

Tape Update File,

Card File

and Printer File, Part 1 of 2

*

*
#
*

*

*

9 —= EQFC2

ERRC1
10 —>PUTPR
11 —=ERRIO

SEQEX

AREA1
AREA2
AREA3
AREA4
AREAS
AREA6
WORK 1
uenT1
UPDT2
uePDT3

12— DSECT
RCRD1

RCRD2
RCRD3
RCRN4

REG1
REG2
REG3

EXIT ROUTINES

EQU * END OF TAPE TNPUT FILE

CLOSE PUTIN,OUTPT,CARD1,PRINT

£0J
TERPMINATION OF J0OB

EQU * EMD OF CARD FILE CONDITINN

MVTY SWIT2+1,X'00" DEACTIVATF CARPD READING

B LoopP2 TRANSFER REST QF TAPE FILF

EQU * TAPE ERROR FOR INPUT FILE

PUT PRINT 4% PRINT ERRMR PECORD

EQU PUTPR +4 INDAREA IN ERROR ADDRESS WILL BE
TNSERTED AS PRINTAREA ADDRESS

B SWIT2 RETURN TO LOOP

EQU *

WAITC

HPR X'FO1',0 HALT INDICATFS CARN NUT OF SEQUENCE
THE CARD WILL BE SKIPPED OM RESTART

GET CARD1,WORK1 . ONE DUMMY GET REQUIRED

8 LonPy RETURN TO LNNP

DEFINITION OF CONSTANTS

DS OH

0C 36CL1OY *

DC 36CL1O" ¢

DC 18CL1O"

] 18CL10" *
'
'

DC 02CL10O*
DC oa2cL10!

EQU * WORKAREA FOR CARD1, CONTAINING
DC 10C* FIELD1

DC n3ce ¢ FIELD2

DC o7ct ! FIELD3

DSECT

DS CL10 FIELD 1 IN INPUT RFECORD

DS cLs

DS CL3 FIELD 2 IN TMPUT RECNRD

DS cL2

DS cL7 FIFLD 3 IM INPUT RECORD

NO FUPTHER DEFINITION MUST BE GIVEN, TF NOT REQUIRED IN DSECT
EQU 08 EQUATING OF REGISTERS

EQU 09

EQU 10

END BEGIN

I0AREAS FOR INPUT
TOAREAS FOR OUTPT

IOAREAS FNR CARD1

Example 6.

Tape Update File,

Example 6 - Tape Update File, Card File

(2501) and Printer File

A tape input file is updated by a presorted

card input file, and an output file is
created on tape.

A card is read and the branch switch,
which causes the next card to be read, is
set to no-operation (1) . Tape records are
read (2) and moved from the input to the

output area

3.

The card record and the

Card File and Printer File, Part 2 of 2

tape record are compared (d4) to determine
whether they have the same identifier. If
they do, the record is updated (5) and the
read switch is changed (6) so that the next
card can be read. If no update is
required, the card is immediately written
onto tape (7) and the next tape record is
read (8) .

In the card end-of-file routine (9) the
switch for card reading is turned off and
the rest of the tape file is copied. If an
error occurs in the tape input file, the

Appendix D. Programming Examples o141

error routine prints (10) the first record
of the block preceding the block that con-
tains the error record. ERRIO (11) is
equated to PUTPR+4 to cause the address of
the I/0 area containing the error record to
be inserted as work area address in the PUT
macro instruction. For ease of reference,
a dummy section is generated for the tape
output area (12) . The referenced base
register REG2 is the IOREG of the tape
output file.

This example requires 3680 bytes of main
storage.

o142

Exanmple 7 - Sequential Disk Output File and

Card File

This example illustrates the creation of a
sequential disk output file from a card
input file. A card is read, moved to the
I/0 area (2) and written onto disk (3).
IOREG must be specified (1) because blocked
records are processed in the I/0 area and
no work area is specified.

This example requires 4050 kytes of main
storage. -

TITLE *I0CS EXAMPLE NO 7 - SEQUENTIAL DISK OUTPUT

START 4608
USING *-4608404914243
PRINT NNGEN

FILE DEFINITIONS

DTFSR BLKSIZE=8N,
DEVICE=READOl,
EOFADDR=EN¥FC1,
T0OAREAY=AREAL,
IOAREA2=AREA2,
TYPEFLE=INPUT,
WORKA=YES

DTFESD BLKSIZE=800,

DEVICE=DISKI11F,

DTAREX=DTAEX,

ERPOPT=ERRC1,

IOAREA1=AREA3,

IOREG=(REG1),

3—=L0NpP2

T 3 3% 3 3t

TAEX

FOFC1

¥*
ERRC 1

AREA1
AREA2
AREA3
%
WNRK 1
*

REG1
*

RECFORM=F IXBLK,
RECSIZE=80,
TYPEFLE=QUTPUT

PROCESSING ROUTINE

i et e o e

OPEN CARD1,NDATAL

#*

*

%

#*

*

*«

CARD1

DATAL

1

DTFEN
EJECT

*

*

)

#*

BEGIN EQU *

*

L00P1 EQU *

GET CARD1,WORK1
MVC 0(B0,REGL),WORK]

PUT DATAL
B Lnnp1

EXIT ROUTINES

EQU *

HPR XYFO1'40
EQU *

CLOSE CARD1,DATAL
ECY

EQU *

HPR X'FO1Y(1),0
R EQFC1

DEFINITINN OF CONSTANTS

DC goc* !

nc 8oc! !

ncC 81cLio*
DC gocet
EQU 8

END BEGIN

MOVE ONE RECORD

EXIT ON EXTENT OVERFLOW ON DISK
HALT AND COMTINUE AS FOR EOFC1

EXIT ON EOF CONDITINN ON 2501

TERMINATION QOF JOB

FILEY

EXIT ON PERMANENT DISK ERROR

HALT REQUIRES ALTERNATE TRACK ASSGN.

INPUT AREAS FOR 2501
QUTPUT AREA FOR DISK

WQRK AREA FNR 2501

Example 7. Sequential Disk Output File and Card File

Appendix D. Programming Examples

o143

TITLE *I0CS EXAMPLE NN 8 — SEQOUENTTAL DTSK UPDATE FILE'
*x
PRINT NOGEN
START 4608
UQXNG *‘460810111213
%
* FILE DEFYNITIONS
¥ eemeseeaceee———— -
-4
DATA1L DTFSD BLKSIZE=800,
DEVICE=NTISK11lF,
EOFADDR=ENFCY,
ERROPT=ERRC1,
IOAREA1=AREAL,
IOARFA?=ARFAZ,
IOREG={(REG1),
RECFORM=FIXBLK,
RECSIZE=80,
TYPEFLE=IMPUT,
UPDATE=YES
PRINT DTFSR BLKSIZE=80,
DEVICE=PRINTER,
PRINTAV=YES,
TYPEFLE=QUTPUT,
CONTROL=YES,
WARKA=YES
DTFEN
EJECT
E3
* PRNCESSING RNUTINE
% e et e er o a——— -
%
BEGIN EOU %
NPEN DATA1,PRINT
CNTRL PRINTySKy1 SKIP
PUT PRINT,WORK1 PRINT HEADING
CNTRL PRINT,SP,3 SPACE 3 LINES
%
L0NP1 EQU %
GET DATAL
1 ———————— CLC 0(64RFGL1),=C" CHECK FOR UPNATE INDICATION
BE Lonp2 BPANCH TIF UPNDATE IS REQUIRED
8 Lonet
LODP2 EQU *
MVC 0(AyRFGL)y=CYUPNDATE"' TINSERT UPDATE TINFORMATINN
2 ————————= MVC WNARK1(80),0(RFG1) MOVE RECNRD INTND WORKARFA FOR PRINT
PRTOV PRINT,12
3—————— pyT PRINT, WORK1 PRINT UPDATED RECORD
44— MV1 SWCH1+1,X'FO" CHANGE SWITCH1 TO BRANCH
55— —o— PUT DATAl REWRITE UPDATED RECNRD
B LOoP1
£ EXIT ROUTINES
0 ee——————————
*
FOFC1 EQU * EXIT ON EOF CONDITION
SWCH1 NOP CLOSFE
MVC WORKL1(10),NOTEL
——r————> PUT PRINT s WORK1 PRINT NOTE *NO RECQORDS UPDATED®
CLOSE EQU *
CLOSE DATA14PRINT
EOJ
* TERMINATION NF JOBR
ERRC1 EQU * EXIT ON DISK ERRNDR
CNTRL PRINT, SP,1
MVC WORK1(80),N(PFGY) RECORDS OF NEXT BLNCK BEHIND THE
PUT PRINT s WORK1 BLOCK CNNTAIMING THFE PRINTED RECORD
* TS UNREADABLE
CNTRL PRINT,SP,1
MVI SWCH1+1,X'FN*
B LooP1 SKIP THE ERROR BLOCK
Example 8. Sequential Disk Update File and Printer File, Part 1 of 2

elll

TNPUT AREAS FODR DATA1

* DEFINITINN NF CONSTANTS
* - -
*
AREA1 DC 81CL10" ¢
AREA2 nC 81CcL10" ¢
£
WORK 1 nc CL30'LISTING OF RECORDS UPDATED®
DC CL10' ON DATAL
nC 40C ¢
NOTE1 DC cLio* NO*
*
REGY EQU 8
%
LTORG
*
END BEGIN

Example 8.

Example 8 - Sequential Disk Update File and
Printer File

A sequential disk file is to be updated by
inserting the characters 'UPDATE'. Each
record is read and checked (1) if update is
required. If so, the update information is
moved to the I/0 area and the recoxd is
made available for printing (2). The
record is printed (3) and written back onto

Sequential Disk Update File and Printer File, Part 2 of 2

disk (5). Switch 1 is changed to by-pass
the printing of the message that no records
are updated (4,6). If an error is detected,
the error routine prints the first

record of the block preceding the block
that contains the error record.

This example requires 4730 bytes of main
storage.

Appendix D. Programming bLxamples o145

TITLE *INCS EXAMPLE NO 9 — FXTENSIOM OF SEQUENTTIAL DISK FILFE!
%
*
START 4608
USING *=460840451,42,3
PRINT MOGFN
*
* FILE DEFINITIMN
* o o e s e S > e
&
DATA1 DTFST BLKSI7E=800,
DEVICE=DISK11F,
EQOFADNR =LNOP2,
INAREA1=AREA1l,
IOREG=(REG1),
RECFORM=FIXBLK,
RECSIZE=80,
TYPEFLE=INPUT,
UPDATE=YES
PRINT DTFSR BLKSI7E=80,
COMTROL=YES,
DEVICE=PRINTER,
PRINTOV=YES,
TYPEFLE=0QUTPUT,
WORKA=YES
DTFEN
EJECT
o
* PROCESSING POUTINE
* e e e e e
%*
BEGIN EQU %
OPEN DATAL1,PRINT NPEN FILES
CNTRL PRINT,SKy1
MV1 X'O0OCE*'yX'0NO* CLEAR 'CE'-BYTF
Loor1 EQU * '
| ———————— GET DATA1
MvC WORK1+9(70),2(RFG1)
-] LooP1
2—»L00P2 NQP CLNSE ROUTINE TO EXTEND THE FILE
MV LOOP2+14X'FO! ACTIVATE BRANCH TO CLOSE
LOGP3 EQU *
MVC 0({804REGL), WORK1 MOVE RECORD TO IOAREA
3 —————————» PUT DATAl
PRTOV PRINT,12
4 ——————-= PUT PRINT,WORK1
5§ ————» MVI 80(REG1Y,X%X'00" CLEAR FURTHFER PNSSTBLE /* TINDICATOR
GET DATAL UPDATE RECORD PDINTER
6 ———e—t CL 1 X'OOCE'yX'EF? CHECK CE-RYTE FNR FOF INDICATICN
SWCH1 BNE LONP3 TIF NOT COMTIMUF EXTENMSINN
MVI SWCH1+1,X*NN?Y SET BRANCH NFF
7 ————— MVC WORK1(3),=C'/% INSERT /% AS EOF CDNDITION
CH REG1y=Y(AREA1+9%80) EMSURE PRNPFR WRITING OF EQF CONDIT.
BL LO0P3
MVC 0(8N3,REG1)4WNRK1
8 —————» PUT DATAL WPITE LAST BLOCK
CLOSE DATALl,PRINT CLOSE FILES
EDJY
* TERMINATION OF J0OB
* DEFINITION OF CONSTANTS
%
>
AREA1 oC g1cL10" ¢ I0AREA FOR INPUT
WORK 1 DS ocL 8o
DC CLIOYEXTENSIOM ¢
bC 7CL10"
REG1 EQU 8
END BEGIN
Example 9. Extension of a Sequential Disk File

Example 9 - Extension of a Sequential Disk
File

This example shows how a sequential disk
update file may be extended. The file(l) is
read until the EOF condition is encountered
and the EOF routine (2) is entered. In the
end-of-file routine, a switch is set in
order to transfer control to EOJ if the EOF
routine is entered a second time, i.e., if
the end of an extent is reached or if a /*
is detected which does not belong to the
current file. Therefore, all disk extents
should be cleared or an apporpriate restart
should be provided for those cases.

The recoxd to be added to the file is
moved to the I/O area, written onto disk

(3) and printed (4). Possible EOF indica-
tors in subsequent records are replaced by
binary zeros (5). When all records have
been added to the file, X'EF' must be
entered into the CE-byte to simulate the
end-of-file condition (6) . The characters
/%% are inserted (7) in each record of the
last block, which is written onto disk by
another PUT (8).

When /* is encountered the first time,
the execution of the PUT macro instruction
(3) leads to a halt. A restart is
required. However, X'EF' must not ke
entered into the CE-byte at this time.

This example requires 3640 bytes of main
storage.

Appendix D. Programming Examples o147

%

CARD1

DATAY

LoorP3

b——rorr———»

7—=100P4

FRRC1

8§ — >

ERRC 2

-

TITLE

START
USTING
PRINT

'I0CS EXAMPLE NN 10 - DIRECT ACCRSS ONTN

46N8
=4 6N8 40414243
NOGEN

FILE DEFINITIONS

DTFSR

DY ENA

DTFEN
EJ ECT

BLKSIZE=80,
DEVICE=READN],
EDFADDR=FOFC1,
TOAREA1=AREAL,
IOAREA2=AREA2,
TYPEFLFE=INPUT,
WORKA=YES
BLKSYZE=240,
DEVICE=DISK11F,
FRRBYTE=ERRBT,
TOAREA1=AREA3,
READID=YES,
SEEKADR=SEEKA,
TYPEELE=IMPUT,
WRITEID=YES

PRNCESSING ROUTINE

EQU
NP EN
EQU
GET
MVN
PACK
CNVRT

cL1
BE
READ
WATITF
BAS

MvC

R
EQU
MVC
WRITE
WATTF
BAS

)

EQU
™

BZ

*
CARD1,DATAL

*

CAPD1, WORK1
SEEKA(1),WORK1

PACKF{3),WORK1+1(5)

SEEKA,PACKF

INDIC,C'
LnOpP3
DATALl, ID
DATA1
14,ERRCY

AREA3(10), TEXT1

Lo0OP4
*

AREA3(70),TEXT1

DATALl, ID
DATA1
144 ERRC2
Lonpi

*

ERRBT,R'1100000N"

ERRC2
XYFOY',0
LoorP1

*

ERPBT+1,B'N1N10N00"

ERRC3
X'0OCF ', X'00"
X'F0O2'(1),0

X*O0CE"y X 'FF?
EOFC1

ERRBT+1,B8'00001110°

0(0,14)
X'FN31'(1),0
Loor1

NISKY

IMSERT VOLYUME NUMBER *'N!

PACK THE DISK ADDPESS *'CCCHR!
CONVERT DEC. TO HEX. DISK ADDRESS
CHECK IF UPDATE REQUIRED

IF NOTy, GO TO WRYTE

CHECK IF ERROR DOCCURS

UPDATE RECNRD

BUILD NFEW RECOPD

CHECK TF DISK FRROR NCCURS

TEST IF ADDR. TS IMVALID COR

NUTSTDE EXTENTS

HALT TNDICATES USER ERROR
READ NEXT CONTROL CARD

TEST IMTERVENTINN REO./ENUIPM. CHECK

HALT INDICATES EQUIPMENT CHECK
SWITCH DISK DRIVE ON/DFF
IF X*'FF' IS EMTERED GN TO FOJ

TEST DATA/SFEK CHECK NR MN REC.FOUND

HALT TMDICATES DISK ERROR
READ NFXT CONTROL CARD

Example 10.

o148

Direct-Access Tile and Card File, Part 1 of 2

* EXIT ROUTINE

X ceea——me————
*
FOFC1 EQU *

CLOSE CARD1,DATA1L

EOJ
*
%k
* DEFINITION OF CONSTANTS
* —
*
AREA1 ne 8oc'
AREA2 DC 8nce

27CL10Y

AREA3 DC
e

WORK 1 DC CLT'NCCCHR®
INDIC DC cLartye
TEXT1 DC cLior *

DC 60C*
*
ERRBT oC H'O®
SEEKA 0C XL 10N *

XLarone

PACKF nc
*

END BEGIN

TERMINATION NF J0B

INPUT AREAS FNR 2501
OUTPUT AREA FOR DISK

DPIVE AND DISK ADDRESS - PACKED
UPDATE TNDICATOR

UPDATE IMFORMATION AMD

NEW RECORD TNFMRMATION

RESERVATION FNR ERROR INFORMAT ION
SEEK ADDR.FYELD "MBRCCHHR!
PACK FIELD X*'CCCHR+!

Example 10,

Example 10 - Direct-Access File and Card
File

A direct-access file is processed by con-
trol information read on the 2501 Card
Reader.

The cards contain the following informa-
tion:

cols. 1-6 the disk address NCCCHR
col. 8 I for update, or
b indicating that a new
record is to be created
cols. 10-80 data.

The disk address is converted (2) if it
is in packed format (1). A test is per-
formed (3) to see whether an update is
required, If it is, the disk address is
checked for validity (4, 8). The next card

Direct~Access File and Card File,

Part 2 of 2

is read if the address is invalid. Other-
wise, the update information is inserted
(5, and the record is written onto disk
(7). If column 8 contains a blank, a new
record is created (6) and written onto disk
7 .

In case of an equipment error (9), the
job is aborted. If no record is found or
the data=seek check fails, the next card is
read (10).

In this example it is assumed that the
file has already been loaded. If this is
not the case, TYPEFLE=OUTPUT must be speci-
fied to create a label in the VTOC.

This example requires 3420 bytes of main
storage.

Appendix D. Programming Examples @149

i

#* 3 3 3%

CATAl

CARD1

#* 3t 3¢

USING
AREA1L
AREA2
AREA3
WORK 1
USADD
EJADD
*

1—

*
%
*
FRRC1
2 —»
ERRC2
BEGIN

s el

TITLE *INCS EXAMPLE N0 11

START 4608
PRINT NOGFEN

FILE DEFINITIONS

DTFRG

DTFIS ALTREX=ALEX1,
CYLOFL=3,
CYNDEX=CYEX1,
DERREX=FRRC1,
DEVICE=NTISK11F,
DSKXTNT=4
DTAREX=DTE X1,
DUPREX=DUFX1,
IOAREAL=AREAL,
10RNUT=LOAD,
KEYLEN=19,
KEYLOC=1,
NRECDS=16,
RECFORM=F IXBLK,
RECSTZE=80,
SQCHEX=SOE X1,
WORKL =WORK1
BLKSTZE=80,
DEVICE=READO1,
ENFADDR=ENFC1,
10AREA1=AREA2,
I0ARFEA2=AREA3,
TYPEFLE=INPUT,
WORKA=YES
DTFEN OVLAY

EJECT

DTFSR

DEFINITION OF CONSTANTS

USING USING,9

FQU *

nc 135CL10' !
DC snce

DC 80CY

nc g0C* *

bC Y(USING)
nC Y(EDJOB)

PROCESSING ROUTINE

EQU *

HPR X'FN1'(1),0
B ENFC1

EQU *

DC X*4890°"

nc Y{USADD)
DROP 9

NPEN DATAl,CARD1
USING USING,9
SETFL DATA1

FETCH

REPRN

ACTINN DUP

XFR BEGIN

REPRN ,

ACTION NODUP

NRG

BEGIN

- LOADING AN TSFMS FILE®

NI SK FRROR FXIT
HALT REQUIRES ALTERNATE

LH 9,USADD I.E.
LOAD BASE REGISTER 9

OPEN ROUTINF IS
OVERLAID BY
PPOBLEM PROGRAM

TRACK ASSGN.

Example 11.

150

Indexed-Sequential Load File and Card File,

Part 1 of 2

LOO0OP1 EQU
GET

4 —————reet

ENFC1 FQU

S5—— MvC

FOFC2 EQU

{ XFR

I
et

ORG

EQJOB EO0J

END

FETCH
LTORG
REPRO
ACTION DUP

RFEPRD
ACTION NNODUYP

DROP
CLOSE NDATAl,CARD1
USING USING,9

*
CARD1,WORK1

WRITE DATALl,NEWKEY

B LonePl
*
* EXIT ROUTINES
* ——— e ———————
*
ALEX EQU *
HPR X*FO1*,0
*
B ENFC2
DTEX 1 EQU *
CYEX1 EQU *
HPR X'FO2',0
*
B EOFC1
*
DUEX 1 EQU *
SQEX1 FQU *
HPR X'FN3¢,0
B LonPl

%
ERRC2+2(2),EJADD

ENDFL DATAl

*

BEGIN

BEGIN

9

BEGIN

ALTREX EXIT
HALT TMDICATES NO LNAD EXTENSION
POSSTBLE, REORGANISATINN REQUIRED

PRIME DATA OVERFLOW EXIT

CYLINDER INDEX OVERFLOW EXIT

HALT INDICATES NO FURTHER LOADING
POSSIBLE, RELOADING/RENRGANISATION
REQUIRED

DUPLICATE RECORD DETECTED
RECORD NUT NF SFQUENCE

RFTURN

CHANGE ERROR EXIT ADDRESS

PROBLEM PPNGRAM
1S OVERLAIN
BY CLOSE ROUTINME

TERMINATION OF JOB

Example 11. Indexed-Sequential Load File and Card File, Part 2 of 2

Example 11 - Indexed-Sequential Load File

and Ccard File (2501)

during the Close routine.

In order to

avoid a program loop, the address of the
error routine is changed (5) to the EOJ

Records contained in punched cards are
loaded onto disk as an indexed-sequential
file. The overlay technigue is used for
the Open (3) and Close (6) routines. All
I/0 and work areas (1) must precede the
overlay address BEGIN. The same applies to
the error routines (2) which may be entered

address before the Close routine is
entered. Processing consists of reading a
card and writing the record onto disk (4).

This example requires 5570 bytes of main
storage.

Appendix D. Programming Examples 151

SQSAV

% 3 % 3

BEGIN

LOCP1

TITLE

REPRN
PHASE

PRINT
START
ORG

'IN0CS EXAMPLE NN 12 - RENRGANISATION

RENRGL,A,4608

NNGEN
0
*+46N8

FILE DEFINITICONS

DTFIS

DTFESH

DTFEN
EJECT

DERREX=FRRC1,
DEVICE=DISK11F,
DSKXTNT=4,
EOFADDR=EQOFCY,
IOAREAS=AREAL,
INREG=1(8),
IORQUT=RETRVE,
KEYARG=KEYAl,
KEYLEN=10,
KEYLOC=1,
NRECDS=16,
RECFORM=FIXBLK,
RECS1Z2E=80,
TYPEFLE=SEQNTL
BLKSTZF=1600,
DEVICE=DISKI1lF,
I0OAREA1=AREA2,
IOREG=(9),
RECFORM=FIXBLK,
RECSIZE=80,
TYPEFLE=0UTPUT

PRNACESSING ROUTINE

USING
EQN
NPEN
SETL

FQU
GET
PACK

MVC
PUT
B

START 30414243
*

DATAl, SOSAV
DATAl,BOF

*
DATAL
KEYPK(6),KEYAL(1N) SAVE THE KEY FOR

OF AN ISFMS FILE!

LATER USE

I.E. IF ERRNR COCCURS

0(80,9),0(8) TRANSFER RECORD
SQSAV
LONP1

EXIT ROUTINES

——— . e e

EQU
HPR

ESETL
AP
UNPK
SETL
B

EQU
ESETL
CLOSE

FETCH

* READ ERROR NN DATAl

X*FN1'(1),0

DATAL

KEYPK(6)y=P*1? IMCREASE KEY BY NNF

KEYAL{10),KEYPK(A) RESTORE THE KEY
DATAl,GKEY
LooP1

*
DATAY
DATA1l, SOSAV

REORG?2

Example 12. Indexed-Sequential File (Reorganization)

0152

and Sequential File,

Part 1 of 3

AREAL
AREA2
*

KEYPK
KEYA1l

ATA2

SQSAV

DEFINITINN OF CONSTANTS

———— e - > —

N 10CL135
DS 10CL160

nc 6Ct ¢
o] 10C* ¢

END BEGIN

TITLE 'INCS EXAMPLE NO 12 — RENORGANISATION OF AN ISFMS FILE®

- —— ———

THE FOLLOWING SECOND PHASE MUST BE SFEPARATELY

-1
ASSEMBLED 1

REPRN
PHASE REDRG24A,4608

START 0
ORG *+4608
PRINT NOGEN

FYLE DEFINITIONS

DTFIS ALTREX=ALEXLl,
CYLOFL=3,
CYNDEX=CYE X1,
DERREX=ERRC1,
DEVICE=DISKI11F,
DSKXTNT=5,
DTAREX=DTEX1,
DUPREX=DUEX1,
INAREAL=AREA]L,
I0ROUT=LOAD,
KEYLEN=10,
KEYLOC =1,
NRECDS=16,
RECFORM=F IXBLK,
RECSI7E=80,
SQCHEX=SQEX1,
WORKL =WORK1

DTFSND BLKSIZE=1600,
DEVICE=DISK11F,
EOFADDR=EOFC1,
ERRNP T=SKIP,
INAREAL1=AREA2,
RECFNRM=FIXBLK,
RECSIZE=80N,
TYPEFLE=INPUT,
WORKA=YES

DTFEN

EJECT

PROCESSING ROUTINE

USING START+0419243
FQU *

OPEN DATA?,SQSAV
SETFL DATA2

FQU *

GET SQSAV s WORKY
WRITE DATAZ,NEWKEY
R LonP1

-—-1

Example 12. Indexed-Sequential File (Reoxganization)

Appendix D. Programming Examples

and Sequential File, Part 2 of 3

e153

*
* EXIT RNOUTINES
* 0 eema—eaee—a——
* .
CYEX1 EQU * CYLINDER INDEX AREA OVERFLOW EXIT
DTEX 1 EQU * PPIME DATA AREA NVERFLOW EXIT
HPR X'FOL',0 CHANGE EXTENT CARDS
*
ENFC1 EQU *
ENDFL DATA2
CLNSE DATA2,SOSAV
E0J
* TERMINATION OF JNB
*
ERRC 1 EQU * EPROR EXIT
HPR X'FO1'(1),0 WRITE ERROR DN DISK
B ENFC1
*
ALEX 1 FQU EXIT ON OCCUPTED LAST TRACK
5 —=SOEX1 EQU * EXIT ON SEQUENCE ERROR
DUEX 1 EQU % EXIT OM DUPLICATE RECORD
HPR X'FN21(1),0 EPROR HALT
B LnoP1
%
* DEF INITIONS OF CONSTANTS
00 eeemececccccccccc e e ——————
%
AREAY ns 106L135
AREA? DS 10CL160
*
WORK 1 ns 80C
%
END BEGIN

Exanmple 12.

Example 12 - Indexed-Seguential File
(Reorganization) and Seguential Disk File

This example illustrates the reorganization
of an indexed-seyuential file., The program
consists of two phases which must be assem-
bled separately. Records of the indexed-
sequential file are retrieved and written
back onto disk in sequential order (2).
Then, in the second program phase, the
sequential file is read and loaded onto
disk in indexed-sequential order (4). To
allow maximum time performance, the I/O
areas must be as large as possible.

The error routine for the indexed-
sequential input file skips all error
records. When an error occurs, the last
key saved is updated by one (3). The key
is assumed to contain an unpacked decimal
value. It is retrieved with the option
GKEY. If another error occurs, the key is
again retrieved and updated until the GET
is executed without an error. The key
save-field KEYPK is supplied with the key
each time a GET has been executed (1).

The exits (5) are abnormal, i.e., they

should only occur if there is an error in
the system or in the IOCS routines.

o154

Indexed-Seguential File (Reorganization) and Sequential File, Part 3 of 3

This example requires 11,700 bytes of
main storage in phase 1 and 12,470 bytes in
phase 2.

Example 13 - Indexed-Sequential ADD File
and Card File

Records read on a 2560 MFCM are added to an
indexed-sequential file.

The processing routine reads the cards
and adds the records to the disk file (1).
If a duplicate record occurs no add opera-
tion is performed, and the card is selected
(2) into stacker 4, If records are to be
added to the last track of the prime data
area, those cards are not added but select-
ed (3) into stacker 5. They can be includ-
ed in the file during a subsequent
load/extension run. If all overflow areas
are full (4), the job is terminated. The
file must be reorganized before further
records can be added. The error routine
EREX1 checks for errors in the track or
cylinder index (5). If an error occurs,
the job is aborted.

This example requires 10,430 bytes of
main storage.

TITLE 'I0CS EXAMPLE NN 13 — ADDING RFCNRDS TN AN ISFMS FILE!

*
*
START 0
USING *,0,142,3
ORG *+4608
PRINT NOGEN
*
* FILE DEFINITIONS
* - -
*
DATA1 DTFIS ADAREX=ADFX1, -
ALTREX=ALEX1, -
CYLOFL=3, -

NDERREX=EREX1, -
DEVICE=DISK1lF, -
NDSKXTNT=4, -
DUPREX=DUEX1y -
ERR INF=YES, -
TOAREAL=AREAL, -
IOROUT=AND, -
KEYLEN=10, -
KEYLOC=1, -
NRECDS=16, -
RECFORM=FIXBLK, -
RECSIZE=80, -
WORKA=AREAD, -
WORKL =WORK1

CARD1 DTFSR. BLKSTZE=80, -
CONTROL=YES, -
DEVICE=MFCMI1, -
ENFADDR=ENFC1, -
I0AREA1=AREA2, -
TYPEFLE=INPUT, -
WORKA=YES

DTFEN NVLAY

EJECT
*
* DEFINITINN OF CNNSTANTS
* ———
%
AREAO DS 80C INAREAS FOR ADD FILE (MANDATORY §E-
AREA1L DS 10CL135 QUENCE)
AREA2 DS 8nc INPUT AREA FOR CARD
*
WORK 1 DS 80C WNRK AREA
%k
%k
£
* PROCESSING ROUT INE
%

DS OH
BEGIN EQU *
OPEN DATA1,CARD1

FETCH

REPRN

ACTION DUP OPEN ROUTINE IS
XFR BEGIN OVFRLAID BY
REPRN , PROBLEM PROGRAM
ACTINN NODUYP

ORG BEGIN

LOoOP1 EQU *
GFT CARN1, WORK1Y
l——————= WRITE DATAL,NEWKEY
WAITF DATAl
8 LOOP1

Example 13. Indexed-Sequential ADD File and Card File, Part 1 of 2

Appendix D. Programming Examples 155

EXIT RNOUTINES

Q 3 # 3 st

UEX 1 EQU x
2———————— CNTRL +$S+4
B Lonp1
*
ALEX1 EQU %
33— CNTRL ,55,5
B LonpP1

4 —> ADFX1 EQU *
HPR X'FO1',0
B EOFCL

EREX1 EQU *
HPR X*Fo1*(1),0
CMTRL +SS+5

S5———— = 1
80 ENFC1

B LooP1

ENFC1 EQU *
CLOSE DATA1,CARDI
EOJ

END BEGIN

EXIT ON DUPLICATE RECORD
SELECT INTN STACKER 4

EXIT 0ON RECORDS FOR LAST TRACK
SELECT INTO STACKER 5

EXIT ON OVERFLOY AREA FULL

EXIT ON PERMANEMT DISK ERROR

SELECT INTO STACKERS5 THOSE
* RECNRDS THAT ARE NOT ADDED
DATA1A+2,B'00011000% TEST IF ERROR IN INDEX

IF YES, ABNRT THE JOB

EXIT ON EOF CONDITYON

% TFRMINATION OF JOB

Example 13.

Example 14 - Indexed-Sequential File
(Random/Sequential ADDRTR) and Card File

Records of an indexed-sequential file are
retrieved randomly or sequentially, and
updated. The card input file is read on
the 2501 Card Reader.

The cards contain the following informa-
tion

cols. 1-10 key

col. 11 blank

cols. 12-13 number of records to be
retrieved

cols. 15-20 update information

cols. 15-80 add information

The overlay technique for Open (1) and
Close (19) is used. After reading (2) a
card, a check is performed to determine
whether the number of records to be
retrieved is a valid decimal number. If it
is invalid, it is set to C'00'. If only
one record is to be retrieved (3), random
processing is performed (LOOP3), i.e., the

0156

Indexed-Sequential ADD File and Card File, Part 2 of 2

record is read (12), updated (13), printed
(14) , and, if desired, written back onto
disk (15 . If more than one record is to
be retrieved, the number is packed (#) and
the first record is retrieved sequentially
with the option KEY. Columns 15 through 20
are checked for blanks (6). If they are
not blank, the record is updated and the
switch for writing (9) is changed (7) so
that the record can be put onto disk. The
switch is reset (5) before the next record
is checked for update. Each record
retrieved is printed (8). If the recoxrd
count becomes zero (10), the next card is
read (11, 2).

If a record could not be found, a new
record is built and added to the file (16).
This record is indicated as an addition
(17) and printed. In the end-of-file rou-
tine for the indexed-sequential file (18) the
next card is read. At the end of the card
file, all files must be closed.

This example requires 8870 kytes of main
storage.

ATAl

CARD1

PRINT

3¢ 3 3k H#

AREAO
AREAY
AREA2
AREA3
AREA4
AREAS
%

WORK 1
WNRK 2
WORK?

KEY AL
*

COUNT
*

TITLE

PRINT
START
USING
PRINT

'YIOCS EXAMPLE NN 14 — RANSEQ ADD-PFTRIEVE PROCESSING'

NOGEN

4608

*-4608 101112'3
NOGEN

FILE DEFINITIONS

DTFIS

DTFSR

DTFSR

DTFEN
EJECT

DEFINITIONS OF CONSTANTS

DS
DS
ns
DS
DS
DS

DC
nc
DC
DC
DC
EQU

DC

LTORA

ADAREX=ADEX1,
CYLNFL=3,
DERREX=EREX1y
DEVICE=DISK1lF,
DSKXTNT=4,
DUPREX=DUEX1,
EOFANDR=EQFC1,
INAREAL=AREAL,
YOAREAR=AREA2,
I0AREAS=AREA3,
IOREG=18),
10ROUT=ADDRTR,
KEYARG=KEYA1l,
KEYLEN=10,
KEYLOC=1,
NRECDS=16,
RECFORM=FIXBLKy
RECSI7E=80,
RTRVEX=RTE X1,
TYPEFLE=RANSEQ,
UPNATE=RANSEQ,
WORKA=AREAQ,
WORKL=WNRK1
BLKS17E=80,
NEVICE=READN1,
ENFADDR=ENFC2,
INAREA1=AREA4,
IOAREA2=AREAS,
TYPEFLE=INPUT,
WARKA=YES
BLKSTZE=100,
CONTROL=YES,
DEVICE=PRINTER,
PRINTQV=YES,
TYPEFLE=0UTPUT,
WNRKA=YES
OVLAY

80C
135CL10
135CL10
135CL10
8aC
80C

8oct
C'DATA1 PROC!

CL3N'FSSED BY RANSEQ ADD-RETRIEVE W!
CL10O'*TTH UPDATE?

50C* ¢
WORK1

PL20"

TCAREAS FOR APD

I0AREA FOP PANDOM RETRIEVAL
I0AREA FOR SEQUENTIAL RFETRIEVAL
TDAREAS FOR 2501

VORK AREA FOR CARD/DISK
WORK AREA FOR PRINTER

Example 14. Indexed-Sequential

File (Random/Sequential ADDRTR and UPDATED) ,

Appendix D. Programming Examples

Part 1 of 3

®157

PROCESSING ROUTINE

#* 3% 3 3

ns OH
BEGIN FQU *
OPEN DATA1l,CARDI1

E-3
FETCH
REPRN
ACTINN DUP OPEN ROUTINF 1S
} ———— { XFR BEGIN NVERLAID RY
REPRN , PRNBLEM PRNGRAM
ACTION NNDUP
ORG BEGIN
*
CNTRL PRINT,SK,y1 SKIP
PUT PRINT,HORK?2 PRINT HEADER
CNTRL PRINT,SP,3
MVC WORK2(10),=CL10' * CLEAR PART NF HEADER
LNOP1 EQU *
CNTRL PRINT,SP,1 SPACE OME LIME
2——————— GET CARD1, WORK1
cL1 WORK1+11,C 0" CHECK FNR CORRECT TWO DIGIT DECIMAL
BL LOP12 MUMBER
cLI WORK1+11,C'9°
BNH LOP13
LOP12 MVI WORK1+11,C*n? IF FIRST DIGIT INCORRECT, SET IT ©
LOP13 cL1 WORK1+12,C'n?
BL LOP14

CLt WORK1+12,C'9!

BNH LOP1S
LNP14 MVI WORK1+12,C*N* IF SECOND DYGIT INCORRECT, SET IT O
LOP15 EQU *
*

3—— —» ¢ WORK1411(2)y,=C*'01' CHECK TF RANDOM PROCESSING REQUIRED
BNH Lnoe3 ’
s
* SEOUENTYAL PROCESSING
%
MVI RTEX1+1,X'0ON?Y SET SWITCH TN nAP
4 ——— PACK CO'INT(2)sWORK1+11{2) PACK NO. OF RECORDS T0 BF UPDATED
SETL DATAl,KEY
*

5§————— MvI SHCHI+1,X'FO" SET SWITCH TO BRANCH
LNne2 EQU *
GET DATA1
6 —————— (LC WORK1+14{(5),=5C* * CHECK TF UPDATE REQUTRED
BE Lop21
MVC 45(5,8),WORK1I+14 UPDATE RECORD
7 —— Mv1 SWCHI+1,X'N0! SET SWITCH TO NNP

Lop21 EQU *
MvC WNRK3(80)40(8)
PRTOV PRINT,12

§ ——— pyT PRINT,WORK?2 PRINT RETRYEVED RECORD
%
9 —* SHCH1 8 LoP22
PUT DATAl
Loer2? FQU *
sp COUNT(2),=PL2'1? CHECK TIF NEXT RECORD IS TC BE
10 ————» CP COUNT(2),=PL2%N?" UPDATED, IF NNT READ NEXT CARD
BH LOOP?2
*
ESETL DATAl
Mm—a3 Lonp1

Example 14. Indexed-Sequential File (Random/Sequential ADDRTR and UPDATE), Part 2 of 3

o158

*
%*
*
LO0P3

22—

By3—

LOP31

Yy

SWCH2
15

TEX1

RTEX 2
16

17

%
18 —=ENFC1
*

ADEX1
X
DUEX1

EREX1

EOJOB
EOFC2
%*

99—

l

|

e

EQU *
MV RTEX1+1yX'FO?
MVT SWCH2+1,X*FO"
READ DATAY,KEY

WATITF DATAL

cLC WORK1+14(5),=5C" !
BE LoP31

MVC 45(548),WINRK1+14
MVI SWCH2+1, X' N0
EQU *

MVC WORK3A(80),0(8)
PRTOV PRINT,12

PUT PRINTyWNRK2

WAITF DATA1l
B LONPY
WRITE DATALl,.KEY
WAITF DATAL
B Loarl

EXIT ROUTINES

s T

NGP RTEX2
ESETL DATAl
FQU *

WRITE DATAl4NEWKEY

MvVC WARK3(80) 4 WNRK1
MvC HORK2+5(3),=C*ADD
PRTOV PRINT,12

PUT PRINT,WORK?2

MVC WORK2+5(3),=C" '
WAITF DATAL

B

LoNpy
B LOOP1
EQU *
HPR X*F01*,0
B LOonP1
EQU *
HPR X'F02¢,1
B ENJNB
EQU *
HPR X'FO1'(1),0
8 E0J08B
QU *
£QU *
FETCH

LTORG

REPRN ,
ACTINN DUP
XFR BEGIN
REPRN

ACT ION NNDUP
ORG BEGIN

CLOSE DATA1,CARD1,PRINT
EOJ

ENMD BEGIN

RANDOM PROCESSING

SET SWITCH T0O BRANCH
RESET SWITCH TO BRANCH

CHECK T1F UPDATE REQUIRED

UPDATE RECORD
SET SWITCH TO NOP I.E. UPDATE REQ.

WRITE UPDATED RECORD ON DISK

EXIT IF NO RECORD HAS BEEN FOUND

MOVE RECOPD TO PRINT AREA
MOVE ADD IDEMTIFIER

CLEAR ADD IDENTIFIER
EXIT ON ENF CONDITION
EXIT ON NVERFLOW AREA FULL

HALT INDICATES NO ADD POSSIBLE

EXIT ON DUPLICATE RECNRD
ABNNRMAL HALT

PERMANFENT DISK ERROR
ERROR HALT

END OF JOB HANCLING

PROBLEM PROGRAM
IS OVERLAID
BY CLNSE RNUTINE

TERMINATION 0OF JOB

Example 14. Indexed-Sequential File (Random/Sequential ADDRTR and UPDATE), Part 3 of 3

Appendix D. Programming Examples

®159

TITLE 'I0CS SAMPLE NO 15 - INQUIRY PROGRAM!

START 4608
PRINT NOGEN

DEFINITIONS

DTFBG INQPRG=YES
DATA1 DTFIS DERREX=FRRC1, -
NDEVICE=DISK11lF, -
DSKXTNT=4, -
EOFADDR=EOQFCY, -
T0AREAS=AREAL, -
IOROUT=RETRVE, -
KEYARG=KEYA1, -
KEYLEN=10, -
KEYLOC=1, -
NRECDS=16, -
RECFORM=F IXBLK, -
RECSIZE=80, -
RTRVEX=RTEX1, -
TYPEFLE=SEQNTL, -

* 3
m
—
~
m

WORKS=YES
nUTPT NTFPK TYPEFLE=NUTPUT, -
BLKSIZE=80, -
WORKA=YES
DTFEN
EJECT
* PROCESSING ROUTINE
* ———
BEGIN EQU %
BASR 9,0
USING %,9
NPEN DATA1,NUTPT
| ———— 101IPT , LOAD ADDRESS 0OF INQUIRY RECORD
* INPUT AREA INTQ REGISTER 8
2———————= MVC KEYA1(10),0(8) IMSERT KEY INTN KEYARG FIFLD
CLC 11(3,R),=C' ¢ CHFECK TF NON. OF RECORDS IS INDICATED
RE Loor1
3—————= PACK COUNT(2),11(3,8) PACK NUMBER TMTO RECMRD COUNT
LOOP1 SETL DATAY, GKEY
Lnop2 EQU %
——————— GET DATA1,WPRK1
PUT NUTPT, WORK1
sp COUNT(2)y=PL2'+1' CHECK TF ANOTHFR RECORND IS REQUIRED
§——— (P COUNT(2),=PL2" 0"
BH LooP?2 TF YES RETURN INTO LONP2

CLOSE EQU *
ESETL DATAl
CLOSE DATA1l,0OUTPT

EQY
* TFRMINATION OF JOB AND RETURN TO
* MATNLINE PROGRAM
#* EXIT ROUTINES
% -t 2> 2 e o e
ERRC1 EQU * EXIT FOR DISK FRROR
HPR XT'FO1'{1),0 HALT INDICATES ALTERNATE DISK
* ASSIGNMENT 1S REQUIRED
EOFC1 EQU % END OF FILE EXTT
RTEX 1 EOU *® NO RECORD ENUND EXTT
8 CLNSE
*
* DEFINTTION OF CONSTANTS
%
AREA1L DC 135¢CL1NY *
WORK 1 nC goce ¢
KEYA1 0C 10CT ¢ KEYARG FIELD
COUNT DC PL2V+1?
LTORG
END BEGIN

eExample 15. Indexed-Sequential File and Printer Keyboard File in Inquiry Program

160

Example 15 - Indexed-Sequential File and
Printexr-Keyboard File in Inquiry Program

The inguiry program retrieves records of an
indexed-sequential file by key.

The key has the following format:

10 bytes
1 byte
3 bytes

key information

blank

number of records to be
retrieved.

The printer-keyboard input area (INQIPT)
in the Monitor must be at least 14 bytes
long. The IQIPT macro instruction (1)
places the address of the input area that
is to contain the ingquiry record into reg-

ister 8. The key is moved to the KEYARG
field (2) and the record count is initial-
ized (3) . Records are retrieved (4) and

printed until the count is zero (5). If it
is zero, EOJ is entered and control is

returned to the mainline program.

This example requires 4660 bytes of main
storage.

START 4608
USING *=460840914243
PRINT NOGEN

FILE DEFINITIONS

3+ 3% 3 3

DTFBG6 ATENT=YES

DTFSD BLKSIZE=800,
DEVICE=DTISKI11lF,
EOFADDR=EOFC1,
TOAREA1=AREAY,
RECFORM=FIXBLKy,
RECSIZE=80,
TYPEFLE=INPUT,
UPDATE=YES,
WORKA=YES

DTFSR BLKSIZE=80,
CONTROL=YES,
DEVICE=PRINTER,
PRINTOV=YES,
TYPEFLF=0UTPUT,
WORKA=YE'S

DTFPK BLKSIZE=81,
ENFADDR=ENFC2,
IOAREA=AREA2,
TYPEFLE=TNPUT

DTFPK BLKSIZF=80,
IOAREA=AREA3,
TYPEFLE=0UTPUT,
WNRKA=YES

DATAl

PRINT

PUTIN

TYPEN

DTFEN
EJECT

TITLE 'I0CS EXAMPLE NN 16 — AN ATENT ROUTINE?

[

1

Example 16.

Sequential Disk, Printer, and Printer-Keyboard Files - ATENT Routine, 1 of 3

Appendix D. Programming Examples 161

PROCESS ING ROQUTINE

P 3¢ 3t 3

EGIN EQU %
OPEN PRINT,PUTIN,TYPFN
CNTRL PRINT,SKy1
*
1—e OPEN1 OPEN DATAL
SWCHO MVI SWCH3+1,X'FQ" MNDIFY SWITCH FOP UPDATE
MVI SXCHO+1,X'FO" RESET SWITCH MOODIFIER
*
LOOP1 EQU *
GET DATA1,VORK1

*
2— SWCH1 B SWCH2 SWITCH FOR TYPING
PUT TYPEN,HWORK1
*
33—+ SWCH2 B SWCH3 SWITCH FNR PRINTING
PRTOV PRINT,12
PUT PRINT,WARK1
*
4 — SYCH3 8 LOQP?2 SWITCH FOR UPDATE
PUT DATA1, WORK2
LOOP? FQU %
B LOOP1
* ATENT ROUTINE
* —————————————
*
ATENT
%
§e——— = READ PUTIN READ CNNTROL INFORMATION
WAITF PUTIN
LH POINT, =Y(AREA2) LOAD POINTERP WITH AREA2 ADDRESS

ATEOO EQU *
6 — = CLC 0(3,POINT),=C*'EDJ*' DECISION AND MODIFING ROUTINE
BNE ATEOQ2
77— MVI SHWCH4+1,X'FO°* ACTYVATE EQJ FOR NEXT EQF CONDITION
8 —= ATEN?2 CcLC 0(4,POINT),y=C*TYPE"
BNE ATEO4
MV1 SHCH1+1,4X'00" ACTIVATE TYPINC
9— ATEOS CLC 0(64POIMT),=C'NOTYPE?
BNE ATENG
MVI SHCHI+1sX'FO? DEACTIVATE TYPING
10— ATEOSG cLC 0(5,POINT),=C*PRINT!
BNE ATENS
MVI SHWCH2+1,X*00" ACTIVATE PRINTING
N — ATEOS cLC O(T4yPOINT)s=C*NOPRINT®
BNE ATE10
MV1 SHWCH2+1,X*'FO" DFACTIVATE PRIMTING
*
12— ATE1l0 CcL1 AREA2,C'=" CHECK IF UPDATE REQUIRED
BNE ATE20
13 ——————— nvC WNRK2(ARO),AREA2+1 MOVE UPDATE TEXT
14 MVI SWCHO+1, X' 00! ACTIVATE UPDATF FOR NFXT REOPEN

*
ATE20 AH POINT,=H"1" UPDATE AREA2 POINTER
15—~ CH POINT,=Y(AREA2+81)
BNL ATE3N
CcL1 O(POINTI,C*y"

BNE ATE20
AH POINT,=H"1?
B ATEOO
® -
16— ATE30 RETRN
*
* END OF ATENT ROUTINE

Example 16. Sequential Disk, Printer, and Printer-~Keyboard Files - ATENT Routine, 2 of 3

0162

EOF COMDITIPN FNR SEOUENTTIAL DISK

TERMINATION OF JNB

IMPUT AREA FOR DATAl
INPUT AREA FOR CONTROL INFORMATION
OUTPUT ARFA PPRINTER KEYBNARD

WORK AREA FNR DATAL
WORK AREA FOR UPDATE DATAl

POINTER FOR ARFA2

* EXIT ROUTINES
X eeemee—eca———
ENFC1 EQU *
17— SWCH4 NDP ENFC2
CLOSE DATA1L
B DPEN1
EOFC?2 EQU *
18— CLNSFE DATAl,PRINT,PUTIN,TYPEN
Ny
*
%
%
* DEFINITINN OF CONSTANTS
* —— ———
b3
AREA1 nc gocLlor
AREA2 neC 82Ct ¢
AREA3 DC 80C" *
%
WORK 1 DC goct *
WORK 2 DC 8oc ¢
*
POINT EOU 10
%*
LTNRG
*
END BEGIN

Example 16.

Example 16 - Sequential Disk, Printer, and
Printer-Keyboard Input/Output Files -

Program Includes ATENT Routine

An inquiry Monitor is required for this
example, which demonstrates the use of the
ATENT routine. The program reads a sequen-
tial disk file and is modified by control
information supplied in the ATENT rou-
tine. valid control information is:

/¥ -
EOJ -

Close files and terminate ‘job.
Control is transferred to EOJ
with the next CLOSE.

TYPE - All records are typed on the
printer-keyboard.

NOTYPE - Typing of records is suppressed.
PRINT - All records are printed.
NOPRINT - Printing of records is suppressed.

Incorrect control information is
ignored. More than one option can be given
at a time, if separated by a comma, e.9g.,
NOPRINT, EOJ.

In the mainline program, a Sequential
disk file is read. On end-of-file, the
disk file is closed (17), reopened (1), and
read again. Print, type, ECJ, and update
options are activated and deactivated by
the ATENT routine. SWCH1 controls typing
on the printer-keyboard (2), SWCH2 provides
for printing of records (3), and SWCHO and

Sequential Disk, Printer, and Printer—-Keyboard Files -~ ATENT Routine, 3 of 3

SWCH3 control updating of records (4).
SWCH4 determines (17) whether or not the
job is to be terminated if the next end-of-
file condition for DATA1 (disk file) is
encountered. After the ATENT routine has
been entered, control information is
entered on the printer-keyboard (5).

Checking and modifying is performed
according to this control information (6) -
(14)y . If, for instance, the check for EOJ
(6) is true, SWCH4 (17) is set to kranch
(7Y, i.e., all files are closed and the job
is terminated (18) the next time an end-of-
file condition is detected. Likewise,
tests for typing (8), suppression of typing
(9) , printing (10) , and suppression of
printing (11) are performed. If updating
is required (12), i.e., if an equal sign is
typed in, the update information is entered
immediately after the equal sign and moved
to the work area (13). SWCHO is modified
to change (14) SWCH3 to NOP. The next time
the file is reopened, the whole file will
be updated. A register (POINT) is used to
check (15) whether all options have been
processed. If this is the case, the RETRN
macro instruction (16) is executed. If /*
is typed in on the printer-keyboard, all
files are closed (18) and the job is
terminated.

This example requires 4230 bytes of main
storage.

Appendix D. Programming Examples 163

Glossary

Access Method: Any of the data management
techniques available for transferring data
between main storage and an input/output
device.

Access Time: (1) The time intexrval between
the instant at which data is called for
from a storage device and the instant
delivery is completed, i.e., the read time.
(2) The time interval between the instant
at which data is requested to be stored and
the instant at which storage is completed,
i.e., the write time.

Allocate: To assign storage locations or
areas of storage for specific routines,
portions of routines, constants, data, etc.
Alternate Drive: When two drives are given
for one multi-volume file, the first drive
is the primary drive and the second drive
is the alternate drive. Tape reels or disk
packs are mounted such that the first is on
the primary drive, the second on the alter-
nate drive, the third on the primary drive,
etc.

Alternate Track Area: An area of three
cylinders on the disk pack in which tracks
may be used as alternatives to defective
tracks occurring elsewhere on the disk
pack.

Assemble: To prepare a machine-language
program from a symbolic-language program by
substituting absolute operation codes for
symbolic operation codes and absolute or
relocatable addresses for symbolic address-
es.

Assembler: A program that prepares an
object language program by producing abso-
lute or relocatable machine code from a
machine-oriented source program of state-
ments containing symbolic operation codes
and symbolic operands.

Assembler Language: A symbolic language
(used to write source programs) which ena-
bles the programmer to use all machine
functions as if he were coding in machine
language.

b: The symbol for a blank space.

Binary Synchronous Communications Adapter
(BSCA) : A feature that may be built into
the Central Processing Unit of a Submodel
2, 4, or 5, It permits the system to func-
tion on a switched or leased communications
network as a processor terminal.

@164

Block:

1. To group records for the purpose of
conserving storage space or increasing
the efficiency of access or processing.

2. A physical record on tape or disk.

Blocking Factor: The number of logical
records in a physical record.

Buffer (Program Input/Output) : A portion
of main storage into which data is read, or
from which it is written.

Checkpoint Records: Records that contain
the status of the job and the system at the
time the records are written by the check-
point routine. These records provide the
necessary information for restarting a job
without having to return to the beginning
of the job.

Communication Region: An area of the Moni-~
tor. Contains date, storage-capacity
specification, UPSI byte, user areas 1 and
2, program-name area, and various control
bits used by the system. Provides for
communication within a program and ketween
programs.

Data File: A collection of related recoxrds
treated as a unit and consisting of data in
one of several prescribed arrangements and
described by control information to which
the system has access.

Data Management: See File Management.

Data Set: See Data File.

Deblock: To change the format of a file so
that a physical record comprises only one
logical record.

Direct Access: Retrieval or storage of
data by a reference to its location on a
volume, rather than relative to the pre-
viously retrieved or stored data.

Disk Label: A physical identification
record on disk which identifies the volume
or file.

End-of-file record which ter-
(/*b

EOF Record:
minates a logical set of input records
in columns 1 through 3).

Extent: Area of a disk file specified by
an upper limit and a lower limit.

File Label: Label containing information
applicable to a given data file or portion

of a data file stored on a particular vol-
ume.

File Management: A general term that col-
lectively describes those functions of the
control program that provide access to
files, enforce data storage conventions,
and regulate the use of input/output devi-
ces.

File Organization: Refers to the method of
arranging data records on an external stor-
age device.

File Processing: The method of retrieving
records from, adding records to, or updat-
ing records in a file.

File Reorganization: A term used to des=-
cribe the process of writing a new file
from an indexed-sequential file, purging
records that are tagged for deletion, and
placing records in the overflow area into
their sequential positions in the prime
data area.

Fixed-Length Record: A record having the
same length as all other records with which
it is logically or physically associated.

Index (Data Management) :

1. A table in the catalog structure used
to locate files.

2. A table used to locate the records of
an indexed-sequential file.

Inquiry Programs: Inquiry programs are -
initiated by pressing the Request key on
the printer-keyboard and typing in the name
of the program. The current contents of
main storage (excluding the Monitor) are
rolled out on the system disk pack; then
the inquiry program is loaded and proc-
essed; after execution is completed, the
old status is restored and execution of the
mainline program resumes. Inquiry programs
can be executed only under control of a
Monitor that supports inquiry facilities.

Inter-Block Gap: A blank space on magnetic
tape that separates physical records.

I/0 Area: An area (portion) of main stor-
age into which data is read or from which
data is written.

Logical File: Used to describe a file that
shares a reel of tape or a disk with other
files.

Logical Record: A record identified from
the standpoint of its content, function,
and use rather than its physical attri-
butes. It is meaningful with respect to
the information it contains.

Logical Unit Block (LUB) :
Logical Unit Table.

An entry in the

Logical Unit Table: A part of the Monitor.
It has logical unit blocks, each of which
refers to one specific symbolic I/O
address. These symbolic addresses are
related to actual I/0 device addresses Ly
means of ASSGN control statements.

Macro Definition: A set of statements in
the macro library used by the LPS/TPS
Assembler program to expand a macro
instruction specified in the source program
into a series of machine instructions.

Macro Instruction: A macro instruction is
a statement that is used in a source pro-
gram and replaced by a specific sequence of
machine instructions in the associated
object program.

Mnemonic: A contraction or abbreviation
whose characters are suggestive of the full
expression.

Monitor: The main control program in DPS.
Resident in main storage throughout a sys-
tem run. The IBM distribution package
contains the standard Monitor and several
Monitor macro definitions. Instead of
employing the standard Monitor, you can
tailor a Monitor according to the system
requirements by specifying certain macro
instructions, and generate it by means of
an assembly run.

Monitor 'I/0 Area. An area of main storage
within the Monitor used as a buffer by the
Fetch routine when loading proklem pro-
grams.

Object Program: The output of a single
execution of an assembler or ccmpiler.

Operand: The representation of a value
that must be suprlied to define a selective
function to the program.

Overlay: To place a phase or subphase into
main storage locations occupied by another
phase or subphase that has already been
processed.

Phase: (1) A portion of a program executed
as one main-storage load. (2) The smallest
addressable unit in the core-image library
of a tape or disk-resident system.

Physical Disk and Tape I/0 Routines: A set
of routines that is contained in the Moni-
tor program and performs tape and disk I/0
operations for the Monitor and problem
programs,

Physical Unit Block (PUB):
Physical Unit Table.

An entry in the

Physical Unit Table: A feature of the
Monitor program. It has up to ten physical
unit blocks, each of which contains a phy-

Glossary @165

sical device address. Pointers to these
entries are inserted into the logical unit
table by means of ASSGN control statements.

Physical Record: A record identified from
the standpoint of the manner or form in
which it is stored and retrieved; that is,
one that is meaningful with respect to
access., (Contrasted with Logical Record.)

Problem Program: A general term for any
program that is not a control program.

Read/Compute, Write/Compute Overlap Fea-
ture: A feature of the IBM System/360
Model 20, Submodel 5 that permits data
transfer from or to I/0 units to be over-
lapped with processing.

Reblock: To change the format of a file so
that a different number of logical records
comprises one physical record. See Block.

Record: A general term for any unit of
data that is distinct from all others when
considered in a particular context.

Restart: To re-establish the status of a
job using the information recorded at a
checkpoint.

RWC feature: See Read/Compute,
Write/Compute Overlap Feature.

Seek: To position the access mechanism of
a direct-access device at a specified loca-
tion.

Source Program: A series of statements in
the symbolic language of an assembler or
compiler, which constitutes the entire
input to a single execution of the assem-
bler or compiler.

Stacked Job Processing: A technique that
permits multiple job definitions to be
grouped (stacked) for presentation to the
system, which automatically recognizes the
jobs, one after the other.

Statement: A meaningful expression or
generalized instruction in a source lan-
guage.

Subphase: A separately assembled routine
within a phase of a problem program. It
may be overlaid after execution. The meth-
od of building a program from subphases is
used when a large problem program is to be
executed.

0166

Symbolic I/0 Address: A symbol used in
IBM-supplied and user-written rrograms to
refer to an I/0 device (e.g., SYSRES,
SYSIPT, SYS005). This address is related
to an actual address by means of the logi-
cal unit table.

SYSIPT: See System Input Unit.

System Disk Pack: The disk pack on which
your disk-resident system is stored.

System Input Unit: A device specified as a
source of an input job stream.

System Tape: The reel of magnetic tape on
which the tape-resident system is located.

Special records at the begin-
ning and end of tape files. There are
volume, header, and trailer labels. They
are used to identify the reel of tape and
the file they precede. They also contain
certain housekeeping information.

Tape Labels:

Tapemark: A special symbol that can be
read from, or written on, magnetic tape.
Used to distinguish the end of a file or
file segment, and to segregate the labels
from data.

Throughput: A measure of system efficien-
cy: the rate at which work can be handled
by a computing system.

Unblock: To change the format of a file so
that a physical record comprises only one
logical record. See Block.

Variable-Length Records: Logical recoxrds
in a file in which the number of bytes in
each record is not a fixed value, but may
vary within prescribed limits.

Volume: That portion of a single unit of
storage media that-is accessible to a sin-
gle read/write mechanism. For example, a
reel of magnetic tape for a 2415 magnetic
tape drive, or one 1316 Disk Pack for a
2311 Disk Storage Drive.

vVolume Label: A label which uniquely iden-
tifies a volume.

Volume Table of Contents (VIOC): A table
associated with a direct-access volume,
which describes each data set on the vol-
ume.

ADAREX ceecesscecscsssascascscsanssnsasas 1D
ADD (IOROUT=specification)
Adding Of TeCOYAS eeceevsoscsacscccccacas I

instructions fOr .eeeccecccscessasececas 82
Addition of records

(indexed-sequential fileS) .eeaccescses 87
ADDRTR (IOROUT=specification) .cceeeee.. 78
ADRTEST ceescecsccoscosccscscscnnssssssses /0
Alternate tape AYiVEe ceeeessccccosnsacses 53
ALTREX cceecccsccsarscsscccnscsonasassscae 15
ALTTAPE cecoesncccccasesccsosscosscssasscccss D3
Assembly procedUre ceeeeceocescscccsceases 18
ATENT macro instruction .ceececeecececees 105
ATENT rOUtiN€ ceceeescecccsccscsccecacces 105

ceccssscsvees /8

BACK (READ=specification) eeccecececsess 56
Backspace file (BSF) cscecececsccasasseses 00
Backspace record (BSR) eeescesesscesas 60,61
Base registers, assignment Of ..ecceee.. 99
Begin definition (DTFBG) ecececcscccccecss 21
BINARY ceccecocccsnscoscscsascccscssascscscsss 31
BLKSIZE
CAYA cevocoscsssessocssocconssccnssnasccos 31
direct-access diSK ceeesscescvsccaceas 70
Printer ceceeecesceceacossnacenacocsanas Ul
printer-keyboard c.eeceecsccccaccacsss U8
sequential diSK eecececerccccosassencess 65
AP cesssccescssccsosccsscscccncsacces D3
Block count, effect Oof CNTRL ON eceeececees 62
Blocked records ..ceceoeces-.e 8,59,61,92,94
Block size
CAYA cesecccssasscsesnsascscccsvcsssasnsnc 31
diSK eeceecsoscscrsscnssssacanses 05,70,78
PriNnter eceeececcescecscsoscccsccnnoscacss Ul
printer-keyboard .cececcesscccecscccsss U8B
tAPE ceseesccccscccscscsnsssosnsccncnes D3I
BOF (starting reference for sequential
processing)
BSF (backspace £1l€) eceveecscscccsncsess 60
BSR (backspace record) 60,61

P - 1

Card files, instructions fOY ceeeecacess 31
Card-print Area seceececcccsccscascsscesss 32
Card printing ceececececceccesccsencosss 36
Chaining reCOYrdS c.cecececescccsccscceees 88
Checkpoint XrecOords eceeeececsscccsscsncsss OU
CKPTREC teecvececcsacscccccnsacsasvaonense U
CLOSE macroO inStrucCtion .eeceeeccccecsvecss 23
Close routines, mainline program 103
Closing card fileS cceecesccecsscccocsss 29
Closing disk fileS seeeesesccceoccssnsess 30
Closing printer fileS sceeceeccececveess 29
Closing printer-keyboard files ..ceaee.. 29
Closing tape f£ileS ceesceoccscccsecnscas 29
CMBND (TYPEFLE=specification) ...e¢eveess. 35
CNTRL macro instruction
CAYA seevevsnscsasccsccssencccoacsavnonne 37
direct-access AiSK ceeeecevcecscenenes 73
Printer ceeecececececccccenccsccsccnenes U5
printer-keyboard cececeescescsccsnases D1
sequential disSk ceecececesccsecessnenes 09

tAPE seeececccsccccsssccscscasscscneses 00

Index

CNVRT macro instruction ceeesscsceaccecss 73
Coding restrictionsS eceeseeccesccesccacess 97
Combined £ileS cececescccsaccnccsnncses 8,36
COMRG macro instruction .ececeeceecccseceass 95
COMROUT veeevecoccssancscsscssscsoscrsssssass 05
CONTROL
CAYA eeeeesccosccassascsssscscscacassaa 31
direct~access diSK secececsnsccsscsess 10
PrinteY ceeececsccessssccscccssssconss LU
printer-keyboard ceeeecceccccccecscacsas 48
sequential AiSK ececevecsanccencsacees 05
tAPE cesecsccccscsoccccssssosssonecssses OU
Control statementsS eceeeesceccscssesesss 106
CoUnt AXEaA eececcosncccscscscssccnsensaas 07
CRDPR macro instruction .ceeecesceecceccecas 36
CRDPRA teeeeecsecsnsccnscsassassoescnsacnacs 31
CRDPRIN cecescecocsscnsncecsoncsvsscsncsssas 31
CRP20 (DEVICE=specification)
Cylinder indeX eeeecesececcssssesssscaes 86
Cylinder number (CC) ccececscsccensscees U
Cylinder overflOw AQr€a eceeesceseseaes 16,87
CYLOFL ecveeeecscscocecnscsanasancsnasnccnscs 10
CYNDEX eceveceacceccccnscccsasascassscsnnceas 10

eeaccecseas 32

Data fileS ceeecvscccssscessnsscosssassesee 8
Definition statementsS ceceeecseccecssees 18
SUMMAYY Of ceceeecocccesccescsocacsas 109
DERREX ceescscccccsccnccsacaansscsasaassas /0
Detall entrieS ecececevceccsscsoscnsesssseacs 19
DEVADDR seececcccccccscsscancssossconcssnas DU
DEVICE
CAYA eescevccsccscsscscccansscsnvssaccnss 32
diSK eecevecsaccans eeeccsssecsss 65,70,76
Printer ceeeececcesscscccncscsssscasanss LU
DeviCe errOY YECOVELY eeeseccscccseccsss 107
Diagnostic meSSagesS eceeccecesoccssasococas 18
Direct-acces files
instructions fOr eeeeeccccsvcccsnceseas /0
organization Of .ccceceescsccssscscses 16
processing Of c.iveeeececceccccsancaces 17
Disk end=of=-volume condition eceeeeeeeases 29
Disk error routinesS secececcecscescssss 107
Disk files
AlrecCt=acCCeSS ceescosscccsassccccnsenas 10
indexed-sequential ceeeeecsecccccsnses 715
sequential ccecoececccccscccsccscncscas 05
Disk label control statementsS eeeeeceess 106
DISK11F (DEVICE=specification) ... 65,70,76
DPCRCD ceeecoccccccsscccosseansosscssssseacs 16
DSEXTNT eceescccossccsascssnssesees 05,71,77
DTAREX seeonccerscncsccccncsacsnncscssas 05,77
DTFBG sStatement ceeeececcccsconcesscsseacs 21
DTFDA statement ceecececcscocescsasscsces 710
DTFEN statement eceecececcsceccosccscscococce 22
DTFIS statement .eceeeeccccscecscccscscsss 75
DTFLC statement ceeeceeececcccsnsssccnoces 149
DTFMT statement sceeecscesscscscccscscose 93
DTFPK Statement ceecsescccccesscscsscccsas U8
DTFSD statement .ecceececescacsncncaccsces 05
DTFSR statement .sceeeecscecescssccesseass 31,044
Duplicate reCordS seeeececececsssceeacss 16,77
DUPREX cvceecvccecssscesncccancssccscacanaaes 17

Index 167

End file load mode (ENDFL)
ENDFL macro instruction
End definition (DTFEN)
End-of-file condition
End-of«~file proceSSiNng .cceeeecsevssceesss 28
End-of-volume condition

disk fil€S eeeececssncscveasscncssnsonsas 29

tape £1leS cueeceeccsecscccccccnsnssss 28
End-of-volume processSing eesescscesscees 28
End set limit (ESETL) .ecececcoevecceses 85
Enter overlap mode (ECM)
Entries

detaill c.eecececcesaceascoascncensancsss 19

header c.ceeessessensccccscnncasenssnsaa 19
EOFADDR

CAYA ceesesnscscnsossnssoscsacsscacaacssenss 32

indexed-sequential disk eeevecececeess 77

printer-keyboard e.cecescccesccecsacss 48

sequential diSK eeceecesescacssccsnccees 06

tAPE cceccecnsesscsaccsessscrecacecsass DU
EOF cards, stacked-job processing 32
EOJ macro instruction
EOM macro instruction
Erase gap (ERG)
ERG ceveseessassscsscnsssssassssccnssses 00
ERRBYTE
ERRINF
ERRIO teeveceacasn seesecesesccceccansesn
ERROPT ceececaccocsnsacccsscssnsscsscascss
Error block

B - V]
P -
ctsenesesesnacses 22

cecevccssesrcessss 28

D |

P
39

esscosevavsacscescacasse 00

Y A

cececccscssccesccssssccscccnccoss 17

55,66
55,66

S 1 &

Error information (ERRINF) .eeeececesseas 17
Error option (ERROPT) ..ceesescceaseess 55,66
Exrror recovery YoUutinesS ecceeeccecececsas 107
ESETL macro instruction .eeesesessoceses 85
Extension (indexed-sequential files) ... 80

evesecesseeses 106

65,70,76

Extent control statement
Extents, number of

eeecescesecrsacnoe

FEOV macro instrucCtion eesesecaccesscees 63
FETCH macro instruction
FITABL wcececaceccccccoscssscscsascnssasses DD
File definition statements
format of
SUMMAYY Of ceeeeececsocasncocsccncncss
File organization
direct-access file€S c.essvoscccccccacas 16
indexed-sequential fileS ..caees0.. 16,86
sequential fileS ...ccceveeeeccscavscees 15
File processing

cecssessensesses I5

cececseasacces 18

D

109

direct-access fileS ..ceeeecccccncaanas 17
indexed-sequential filesS .ceceeee.. 17,90
sequential fileS eeeececcccssasasnscss 17

File protection ceeeecesscoccsssnaceass 102
Files

ClOSING eecevecesssncsccncosscenonssas 29

comMbined eeeececececsasesccancesossncas 8
OPENING eeeesecececscccsosccaacooasaas 2U
TYeOPeNning eeeececescnceccscscacscsanses 23

SIiMPle ceceeccscoccosnccasccacaconccsans 8
FIXBLK (RECFORM=specification) 57,68,79
Fixed-length recordsS e..cceececececceccees 8
FIXUNB (RECFORM=specification) 57,68,79

.aee

Force—-end-of-volume (FEOV} eeeeevcesecnss 63
Format—~F YEeCOTAS cucascscscsaaccscasncassas 8
Format-U XeCOYAS aecessscccscccescaansceca I
Format-V reCOYAS s eeecsscscsancecascsncnses 8

168

Form skipping
Printer ceecececcsccecscsnscscasnncancs
printer-keyboard cceeececeecccscceansas
Form spacing
Printer eeceesscssossescccsssacsscssnsse
printer-keyboard ceeeeececcsccsecccccccss
FORWARD (READ=specification)
Forward space file (FSF) eecesscoscasscnse
Forward space recOrd (FSR) seseescccsces

FSF ceeenccceoscccccosscccoscssonsaosncsansnas

FSR

" 0eeecs e P es s eseseses s ecse0enss 0000

GET macro instruction
CArd f1l€ eeceocssenscsscsssssssasncnan
disk file
AUIMY eeeceecccccecaccceeassacsossccsocans
tape fil€ teeeecccocccnccnccsccsncanan

GKEY (starting reference for

sequential processing)

R A I R R

Halt and restart information ..ceeceececess
Header eNtrieS weeeessosccssssscsssssnss
Head number (HH) .cceecececcocosccccccssces
Identifier (ID)
IGNORE (ERROPT=specification)
lmperative macro instructions
card fileS ceeesceescscsscccccscascnaas
Closing fi1leS caevecesecccaccnsacnscas
direct-access files
indexed-sequential files ...
opening fileS .eeceecerccoccecs
printer fileS cecececcnseccncenscnnsas

L N I I I A)
R N Y

D I N A

printer-keyboard files

sequential disk files

summary of

tape £ileS ceeevscscccscccsssscccncnaae
INAREA ceeececenccceancsccsnssanccossnoncas
INBLKSZ ceceeecoccseasccossacccscsoscsccnscecs
Independent OVerflOwW 3r€a eeecessaccesss
Indexed-sequential files

instructions fOXr eceeseecccscccsccsessns

organization of .eeeeecsccceccaccans

PYOCeSSiNg Of ceeecoscocccccscosacsns
Indexes

CYlinder eeseesccscccesassscsssnacscasns

track
Index regisSter ccceeseccesccceccaccnnens
Initializing fileS ceeecescssccncsacnces
Inquiry Open routine ...eececccecacacees
INQUiry pProgram seceecsececssecsss

exrror in .

opening disk files in .
INQUIiTy YECOYd eeeesssccecossasssacnscs

L R A R I I I N N A R A I I TN S AP P

se s eco e
e e s s s eceoevsosconncoee ees s secceee

eceesvessecaccace

Inserting reCOrdS eecesecccsescacassss 91
IOAREA cescccsscae
TJOAREAL eeuce-e- seaceccsonasascenasocnnnasn
IOCAREAR
JORREAS ceeeeeensccccccencscccnsossansncssa
TJOAREAT weeeonocosscsccnaans
IOAREA2
I0CS
macro inStructions eeceececcccccccoces
registers required DY eecececescosccscs
IOREG

e®s e e eescsssecrscssccnse

I I R I A I I I R I I R N A N N N R)

LR R I I A I S R R N A L I Y

e oscensracssccsssaccscncscssacn

46
52

45
51

60
61
60
61

36

69,84

41
59

84

122
58
33
33
89

75

16,86
17,90

86
86
100
24
103
101
102
102
101
92
48
77
77
78

33,44,55,67,71
33,56,67

18
99

56,67,78

TJOROUT eeveececsocscsscccassssassccnnscsa /8
JI/0 AYECAS eeeeesevcccccccscsnnsnsasssnsss 11
I/0 regiSterS ceececvescccseccccccacnceasss I9
IQIPT macro insStrucCtioOn ceeseecessccecses 96
ISFMS seeevesccocscscscsccsesssescacsnssase 15

KEY ceeceessssesocassoscasanseosncosssssnse 81
KEY
retrieving a record cecceeccecccecscscss 83
starting reference for sequential
PrOCeSSiNg eceeeececececescscescnseanass 84U
writing a record .cececsecccccccssaness 83
KEYARG cececcecccscccccscscscccscancannese /8
KEYLEN coceecsccosccensasnccccocsscccsnsses /8
KEYLOC ceececcscosscsccoscessavoecsccsanees /8

LABADDR scveceavscscsnvscssceasasnsascansaonese DO
Label checking routine ..eeescecccesnses 56
Label return (LBRET)
Labels

specifying type Of cueceeceecscennsnsee 55

handling by IOCS ..ceeececcccesss 24,27,29
Language compatibility ceecececcececoss 108
LBRET macro instruction eeeesececcecoess 63
LCTABLE eececcccosncecccccsscccsocsssssnase U9
Leave overlap mode (LOM)
Line-CcoUunter .cceesceccscscssscsscsacssae 50
Line-counter table .ceeeievcencceccncanss U9
Line skipping

Printer .seeeeceecceccccsscccsaconacess UB

printer-keyboard ceeeececceccsccncneass 52
Line spacing

Printer .eeeeecesssccssessssccsosscssas U5

printer-keyboard cececescceccccsasaass D1
LOAD (IOROUT=specification)
Loading an indexed-sequential file 90

instructions fOr e.ceececeencncenansss 80
Loading a program PhaSe ceeeecsssscsacess 97
Logical recCOrdS .eeeececesessccscccssccsses 8
LOM macro instruction sesecesascsecsccass 39

teccecsceccscsansess 63

cececscesscaeas 39

cecencsvacea 18

Machine requirements .iceeceeecesceneceas 6
Macro definitions, user-written eeceeeee. 99
Macro instructions
coding conventions fOr e.cesecceccescs 18
declarativVe ccecececscesscccsccnaccancs D
iMPEerative ceeceecsssccssssccscscsccas 20
TOCS wueeecesacscsnsasesnascsncasncesas 18
MONItOY seceavesccesescceanssanosanssa 95
sSummary Of ceeeeeeececececncccaceanees 126
Mainline program
Open and Close roUutinesS .eeeceecsssees 102
MAINPRG cccecccccosossscoscsccosnccnccnse 21
MFCM1 (DEVICE=specification) .secceeeceees 32
MFCM2 (DEVICE=specification) eseeseceeeces 32
MONitor I/0 AYEAS eeeesscenccsscasnsaas 102
Multi-file pProcesSSing seeescseccsscescnass 0
MVCOM macro instruction seeececececcsceceeas 95

NEWKEY
inserting a reCord eceeeeecececesecesess 82
loading a recOrd eceeeecsccececccscases 81
Non-overlap mode
processing in eeceeeeeececcecessss 35,38,39
programming considerations for
combined fileS .eceeeenccesncscsncecas 36

. Pack number (1)

use of CNTRL macro instruction in 37

work area assignment ceeceececccencasess 13
Non-standard labels

tape input file ceeeeecececeecess 25,53,55

tape output file ceeveccsasscaseases 26,29
NO record fouUnd .ceceecececcscsncsansnacss 79
NORWD (REWIND=specification)
NRECDS .eeceeccceccsconcccncsosnccsonsocas /8
NSTD (FILABL=specification)

cerescecsses 57

cecesscacsss D5

Opening card fileS secececoceccoccsnssas 24
Opening disk fileS ceeceeccecocccsvcacess 26
Opening files, instructions for ..ees... 23
Opening multi-file tape volumes 24
Opening printer filesS .c.eeeeecesecescsss 24
Opening printer-keyboard files ...eeses.. 24
Opening tape £ileS ceceecesscccoscsacass 24U
OPEN macro instruction ..eceecaceecscces. 23
Open routirnes

iNQUiry PrOgGraAM seeceeecscssscsccassss 103

mainline Program eeeesceecseccascsscass 102
Organizing files

direCt~aCCESS teveccccscccssnascensces 10

indexed-sequential ..ececcecccssces 16,86

sequential cecececcccscacscscsccssnses 15
OUAREA +eeceocvesecasoscsccccancsasencsss 33
OUBLKSZ eceesvecscecssscscocsesnsecsanssnas 33
OULPUL AXEAS eeececcevccsccnsncccrssnseas 11
OVerflOw Gre3S cececcccscscssncesassenss 87
Overflow area OptionsS ceeececsccecceca--a. 892
Overflow reCOXdS eceeececscessccsccnccnas 87
OVERLAP eccceceecncsoscccsscsccscnseaccscscns 33
Overlap mode

programming considerations for

combined £i1eS teeceeecscaccccsescess 36

use of CNTRL macro instruction in ... 37

WOrk area asSsSignment ce.esececsecscsassecs 13
Overlapping eeeceeccscccsccssescessccases 11
Overlay pProgramming eeesececsceccecsscososea 937
OVIAY counceccesessccccsaanscccscsscncnconcacs 22

ceecrsccecacccsaseensess U

PFORMTNl eessccesasacscvecccsssscsossccasces 33
PFXIT .ceveeecesococcssssossancssnscnscnsncnsses U
Positioning of tare files .eeeeevess. 25,53
Prime data Are€a@ eeeeeecesssceccaccscsaaa 86
Print-area format .ceecececececccecanccaaa U5
PRINTER (DEVICE=specification) .eceeeee.. U4
Printer files

instructions for processSing eeeeeees.. Ui
Printer-keyboard files

instructions for processing ...eceee... 48
PRINTLF (DEVICE=specification) .ece.eeece... 44
PRINTOV eceeococcccsccansncsenscecsnese 45,49
PRINTUF (DEVICE=specification) ..eeee... 44
Processing files

AlreCt~a8CCESS weeessocscosencnocsansaa 17

indexed-sequential ceescececceeeasss 17,90

sequential cececececcoccncaccaccncsncss 17
Programming considerations eeeceecececeaces. 97
Programming restrictions .c.eecececeeceaas 97
PRTOV macro instruction

PrINter cieeeeececececccoscsccaonncneess UHB

printer-keyboard ceeeececeecescceaccnceas 52
PUNCH20 (DEVICE=sprecification) .eeeeceee. 32
PUNCH42 (DEVICE=specification) ..ceae... 32

Index 169

PUT macro instruction
card £1leS scevecccccscsscensascensses 35
disk fil€S eeeececoccscsvcnccseseas 08,85
printer fileS .eeeececceccccccscaccsss Ul
printer~keyboard fileS ceceeecsensecsses 50
tape £ileS ceeveecsccvcsssccvonssccess DI

RANDOM
(TYPEFLE=specification)
(UPDATE=specification)

Random ProOCeSSiNg eceveesscvsescsssssceass I3

Random retrieval

instructions fOr eeeeeceacscecsonsocaes 82

Random updating

instructions fOr seeeceesccsccsncaseass 32

RANSEQ
(TYPEFLE=specification)
(UPDATE=specification) seceeseesessses 80

READ detail entry seeseccsssccccsscnceas DO

READ macro instruction

direct-acCCeSS cecesecscccscssscssnscvane 12
printer-keyboard e.cceececsscccssoacecss 50
random retrieval and updating ..s.esee.. 82

Read backward considerations ..eeeeceecs. 25

Read format checking ceecececesececseccoass U

READID eececccccoccssccnsascsoscsasnaaccae 71

READO1 (DEVICE=specification) e.cceeesoes 32

RECFORM scecccccccossascnsanssnaas 56,68,79

Record length checking eceeceesecceceesss 8,10

Record reference .ceceececececcsccasacas 13,74

Record retrieVal ceceececcscscscscsscscscee O

Records

blocking Of ecieeeeeececncacecaccancancs 7
format Of seeeeecncescoescsonessonccnns 7
10gicCal cecvecccccsoscsconccncccsncocsnns 1
ReCOYE SLOYXAQE ceveecscrcenscecccasasccnns O
5

9

cteveensecseas 19

feseecvsssvseee 19

ccevsesscscees 19

Record UPdating ceeececeeccccccascsccancasne
RECSIZE evessacscccccsacesscass 49,57,68,7
Registers

DASE ceeecessccseccscccssseansannsnsnses 29

T/0 ceeesoecscsocccscssssansnsacsssnsse 99

, required by IOCS ceeeecsascccsascaas 99

USage Of ceveceessccnccoccncccsesnaeas 100
Release (processing of a block)ce.. 62
RELSE macro insStruction .eeecsceccesesecsss 62
Reopening closed f1l€S ceeecececensocense 23
Restrictions, programming eccsececececseceece 97
Retrieving records

Yandomly eceeeuvsocecssccssescsncnsss 82,93

sequentially weccecsscsasssessaccese 83,94
RETRN macro instruction eeseceeesseasss 105
RETRVE (IOROUT=specification) e.e..ceese.. 78
REW (rewind taPe) eseeccccscscscscscsccess 01
REWIND eececcocscosacscccscsoosasosccncccsnsnss D7
Rewind and unload tape (RUN)
Rewind tape (REW) ceeecscesccncssscscsss 61
RFORMTN ceesoseescacscoscscscsacnccccsoscssse 3k
REXIT ceececssssccasocsssnacssscassnasncascs 3l
RTRVEX ceceecocsnocvecncnsssocaassncaans 19
RUN (rewind and unload tape)

etecsesvsss 01

ceecseecees 01

Sector addreSS cecescccecsccassaccasncess T4
SectOor COUNt cceeeeceaccescasccansscncnes 07
SEEKADR csveaacecccccscosnnasascscscasasa 71
SEEK
CNTRL for direct-access fileS seeeeees 73
CNTRL for sequential disk files seee.. 69
Seek field seeecccsccecscescscccsonccess 13

170

Sense information ceeeeceecescscccacccceas 71
SEQNCE eeeeecccocvesccnaacancacacaassnss 34
SEQNTL

(TYPEFLE=specification)

(OPDATE=specification)
Sequence CheCking ecececesecceensssesacssecas 3l
Sequence link field

chaining by .eeceeeeceescccesasvseceesses 88
Sequential disk files

instructions for processing .ec.ecee... 65
Sequential files

organization Of eeeeceececceccscscsess 15

ProcesSSing Of ceeceseccecccncconcacsses 17
Sequential processing (ISFMS)
Sequential retrieval (ISFMS)

instructions fOr c.ceeececvccsscesoess 83
Sequential updating (ISFMS)

instructions fOr ceeecescesrocecceacsass 83
SEQXIT ccoesessescsccccascconcscssancansnse 3D
Set file load mode (SETFL)
SETFL macro instruction sceeecessessecacass. 81
SETL macro instruction ..eceeececeeess... 84
Set limits (SETL)
Simple fil1€5 ceecoveccsacccossaccsacnseanas 8
SK (skipping fOrmsS) eceececeeccscsesss 46,52
SKIP (ERROPT=specification)
Skipping

Printer ceecececcecsccenceccccecocacsas UD

printer-keyboard eseceececcenccarceceees 52
SP (spacing forms)
Spacing

Printer seeceeccescsencsescnccccaccsass U5

printer-keyboard cecececccvccercecacss 51
SOCHEX cevecsccccencncconcssscsassccconeca 19
SS (stacker selection) eeeesececsseces 37,38
Stacker selection

2520 ceieeeavecectccnencccssceennnenes 37

cevecssccnseess 19

ccesecsvennsace 19

ceescesess I

D - X

cesvsescesnssecenveass Ob

esecsacscsss D5

eresssvseasessesss U5,51

2560 cceceveccocncoccaccacncennccncass 38

Standard labels
tape input files .ceeceecsecseess 24,53,55
tape output filesS .s.eeveesecccecsess 25,29

Status DYLte eeeeeccccecccsscccansccssens 06

STD (FILABL=specification)

Storage areas
for indexed-sequential files .e.cea... 89
O I |
WOYK QYEAS eeececcsssnccscscacceacnssna 12

SYSIPT
(ALTTAPE=specification)

cecvesssncaes D5

X

(DEVADDR=specification) ..cceesecececess 5l
SYSOPT
(ALTTAPE=specification) ..eeeeeeeccesas 53

(DEVADDR=specification) eseseseccecesesecs SU
SYSnnn
(ALTTAPE=specification)

(DEVADDR=specification)

cesssseeeseces D3

1

Tape control operationsS .ecceceecseccesss 60
Tape end-of-volume condition ...eceee... 28
Tape €rrOY YECOVEXY eeeeecsecccsesesase 107
Tape files
instructions for processSing eeceeeees.. 53
non-standard-labelede.. 25,29,53,55
standard labeled ceeececeesa. 24,29,53,55
unlabeled eecessccccncececess 25,29,53,55
Tape label control statement e.ceceeses 106
Terminating £ileS ceeeereeceesaccscscaes 27
TPMARK cvecevacacecssnscscassanccassancsssea D7

Track indeX ececececcssccscccscssccsssess 80
updating 0f cceeeececrsesvecacccconsases 88
Track referencCe .eceeescccscsccsscssnsses /U
Truncate (write short block)
TRUNC macro instruction ceeeescsscocesss 62
TYPEFLE
CAYA ceeveccccccesscncscsnsnnsassssnesae 35
AiSK eececocvcscnccnssssnceccnnsss 08,71,79
Printer eeeecescoscccocccncccnscccasnaas U5
printer-keyboard cececececcrnccccessses LI
tape

cevecccesas 02

ceessesessccstsssessesssocscscsanss D7

8,59,61,91,94

cececsssce 57

Unblocked recCOrds ceeeceececeece
UNDEF (RECFORM=specification)
Undefined-format records
Unlabeled tape input file ..ese... 25,53,55
Unlabeled tape output file .eeeeceess 25,29
UNLOAD (REWIND=specification) eeeeeeceee.. 57
UPDATE ceveceensccscccscccsncsncssssss 08,79
Updating indexed-sequential records
Yandomly eeeecececccsocscccncscnsccsess 82
sequentially ceececccccsnceccsccccccsss 83
Updating of the track indeX eeeceeeecssss. 88

P |

VARBLD detail entry eceeeeececsssccccsasses 57
VARBLD YegiSter .ceeecececccessccesess 57,100
VARBLK (RECFORM=specification) eeeeeseees 57
Variable-length recordS eceeeceeceecccsseecses 8
VARUNB (RECFORM=specification) eeecsevee 57
VERIFY cevevcenccecsncessenscesssss 08,71,80
Volume control statement eseeececescececesse 106

WAITC macro instruction
WAITF macro instruction
adding records to an

indexed-sequential file ceeeeveccsons
direct-access £ile ccceececscscccnnces
printer-keyboard file ..eceececccccoss
random retrieval and updating eeceeecese.
WLRERR
WORKA
card
AiSK eeveessscossesccossssacsscasanss
PTINtEY ceeesecsccscssccncsccccsoscncnss
pPrinter-keyboard cecececececcscsccnens
TAPE ceeccvosccocecssccscscscsncsscccssccnes
Work areas
WORKL cceeccncccscccccccscccscscasccancnse
WORKR
WORKS seseccnccsscscsccncsnsnascsssssssnes
WRITEID ccceocscscsscsccsccsccosccoscssescnscse
WRITE macro instruction
adding records to indexed-sequential
files
direct-access files
loading indexed-sequential files
random retrieval and updating .cccees..
Write tapemark (WTM)
Wrong-length recordS ceeececccccscace
WTM (write tapemark)

R R N I I R A A A I A A A N A N Y

LI R I I R A A N I R A N R I A A I I I B Y

XTENT control statement

@evsees ecss s o0

Index

40

82
72
51
83

58,55

35

68,80

45
49
58
12
80
80
80
71

82
72
81
83
61

55,58

61

26,86

171

C24-9007-5

BV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

§-£006-¥ZD "V°$°N Ul pajulg 09/ waisks wai

READER'S COMMENT FORM

IBM System/360 Model 20
Disk Programming System
Input/Output Control System

e How did you use this publication?

As a reference source ...
As a classroom text ...
As a self-study text ...

e Based on your own experience, rate this publication . . .

As a reference source: ...

As a text:

Form C24-9007-5

® What is your 0CCUPAtIONT ... e

e We would appreciate your other comments; please give specific page and line references

where appropriate. If you wish a reply, be sure to include your name and address.

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C24-9007-5

YOUR COMMENTS, PLEASE . ..

This SRL manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys-
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

FIRST CLASS
PERMIT NO. 1359
WHITE PLAINS, N. Y.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . ..

IBM Corporation
112 East Post Road

White Plains, N. Y. 10601

Attention: Department 813 BP

esenee sscccane seeacsen Sesescccslossentr et asseee EERREE cecovnnse LR R

TIBIM

International Business Machines Corparation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
- [International]

6006600006640 8 0000000006000 000088 0000800006 esecoesvodtetocsssosscelonsnesncsccssossscsoesn

cesanse

3INIT SIHL ONOV LN -+

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Fold

D I S R A R I I A I I NP)

aeecassancas

§-£006-¥ZD "V'S'N Ul paiutid 09g/waishs we|

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174

