
Sys"tems Reference Library

IBM System/360 Model 20
Disk Programming System
Input/Output Control System

File Number S360(Mod.20)-30
Form C24-9007- 5,

This publication provides information required for
using the Disk Programming System (DPS) Input/Output
Control System (IOCS) for the IBM System/360 Model 20.
The publication contains the following information:

1. General description of the various input and output
functions provided by the IOCS.

2. Definition of the record formats proc@ssed by the
IOCS.

3. Description of the relationship between overlapping
operations and the specification of different Com­
binations-of, I/O areas and work areas.

4. Introduction to the concepts of file organization
and file processing.

5. Detailed descriptions of the IOCS imperative macro
instructions and the file definition statements.

The reader of this publication should be familiar
with basic programming concepts and with the operating
prinbiples of his system as described in the applicable
~RL publications. For a list of pertinent publica­
,tions, refer to the laM System/360 Model 20, Bibliogra­
J2hy, Form A26-3565.

DPS

r--,
I I
ISixth Edition (March. 1969) I
I I
IThis is a major revision of, and obsoletes C24-9007-4. I
I I
IMost of the text has been reorganized and rewritten to make thel
Ipublication easier to understand. These improvements are not marked. I
I I
IThe technical changes incorporated in the publication relate to thel
lavailability of the IBM System/360 Model 20. Submodel 5. The sections I
Iheaded "Monitor Macro Instructions W and wThe ATENT Routinew have beenl
I added. These technical changes and additions are marked in thel
Ifollowing way: Changes to the text, and small changes to illustrations I
lare indicated by a vertical line to the left of the change; changed orl
ladded illustrations are denoted by the symbol • to the left of thel
I caption; added pages are flagged by the symbol. to the left of thel
Ipage number. I
I I
IThis edition applies to the following components of IBM System/3601
I Model 20 Disk Programming System and to all subsequent versions andl
Imodifications until otherwise indicated in new editions or Technical I
jNeWsletters. I
IInput/output and Monitor Macro Definitions version 3 modification 0 I
IPrinter-Keyboard Macro Definitions version 2 modification 0 I
I I
IChanges are continually made to the specifications herein; beforel
lusing this publication in connection with the operation of IBMI
I systems. consult the latest IBM System/360 Model 20 SRL Newsletter"1
IForm N20-0361, for the editions that are applicable and current. I L __ •. _______________________ J

This publication was prepared for production using an IBM
update the text and to control the page and line
impressions for photo-offset printing were obtained from
Printer using a special print chain.

computer to
format. Page
an IBM 1403

Requests for copies of IBM publications should be made to your IBM
representative or to ·the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Laboratories, P:rogramming Publications, 703 Boeblingen/Germany"
P.O. Box 210.

C copyright Interna·tional Business Machines Corporation 1966, 1967"
1968 .. 1969 .

Introduction

},1achine Requirements •
Minimum System Configuration. •
Maximum System Configuration. •

Data Piles
Logical Records
Record Blocking
Record Formats.

Overlapping and StoraQ.e Areas
I/O Areas • • • .. • • •
Work Areas. • • • • • • • •
I/O-Work Area Combinations.

5

6
6
6

8
8
8
8

· 11
· 11
· 12
· 12

Pile Organization and Processing
Concepts • • .. • • 15

15 File Organization
File Processing • • • .. • • 17

IUCS Macro Instructions

Assembly Procedure • •

File Definition statements • •
Format of File Definition
Statements .. • .. • • • • •

Imperative Macro Instructions.

• 18

18

· 18

• 19

· • 20

B agin and End Definitions • • '. 21

D£FBG Statement. •

DTFEN Statement. • •

Instructions for Opaning and Clos1ing
Piles

OPEN Macro Instruction.
CLOSE Macro Instruction

Reopening Closed Files

Initializing Files • •
Opening Card Files.
Opening Printer and

Printer-Keyboard Files • .. •
Opening Magnetic Tape Files •
Opening Disk Files. • • .. •

Terminat.ing Files. .. • • '. • •
Closing Card and Printer Files.
Closing Printer-Keyboard Files.
Closing Magnetic Tape Files •
Closing Disk Files~ • 4 • • • •

· 21

• 22

• 23
• 23
• 23

• 23

• 24
• 24

• 24
• 24
• 26

· 27
• 29
• 29
• 29
• 29

Contents

Instructions for Processing Card Piles · 31

DTFSR Statement. · 31

Imperative Macro Instructions. • 35
PUT Macro Instruction • • . 35
GET Macro Instruction. • • • • • 36
CRDPR Macro Instruction (IBM 2560

MFCM) ••••••••••.••••. 36
CNTRL Macro Instruction • • •• • 37
EOM Macro Instruction (Comtined
Files) • • • • • • • • • • • • • • . 39

LOM Macro Instruction (Comtined
Files) • • • • • • • •••• · . 39

• 40 WAITC Macro Instruction • • • •

Instructions for Processing
Printer Piles.

DTFSR Statement.

Imperative Macro Instructions ••
PUT Macro Instruction • •
CNTRL Macro Instruction •
PRTOV Mac:r:o Inst:r;uction

Instructions for Processing
Printer-Keyboard Piles

DTFPK Statement.

DTFLC Statement.

Imperative Macro Instructions •••
PUT Macro Instruction • .. • • •
READ MaCro Instruction. •
WAITF Macro Instruction •
CNTRL Macro Inst:r;uction •
PRTOV Macro Instruction •

Instructions for Processing Magnetic
Tape Piles

DTFMT Statement. •

Imperative Macro Instructions ••
PUT Macr.o Instruction ••
GET Macro Instruction • •
CNTRL Ma.cro Instruction.
TRUNe Macro Instruction •
RELSE Mac:r:o Instruction ..
LBRET Macro Instruction •
FEOV Mac:r:o Instruction. •

Instructions for Processing Sequential
Disk Piles

DTFSD Statement.

• 44

• 44

• 45
• • 45
• • 45

• 46

• 48

• • • 48

• • 49

• 50
50

• 50
· • 51

• 51
• 52

· • 53

· • 53

• • 58
• 59

• • 59
• • 60
• .. 62

• 62
· • 63
• • 63

• • 65

• • 65

Imperative Macro Instructions ••••.. 68
PUT Macro Instruction • • • 68
GET Macr.o Instruction • • • .. • • • • 69
CNTRL Macro Instruction • • • 69

Instructions for Processing
Direct-Access Disk Files . • • • . • . . 70

DTFDA Statement. • • • • • . • • •••• 70

Imperative Macro Instructions.
WRITE Macro Instruction
READ Macro Instruction.
WAITF Macro Instruction
CNTRL Macro Instruction
CNVRT Macro Instruction

• 72
• 72
• 72
• 72
• 73
• 73

Cylinder, Track and Record References •• 73

Instructions for Processing
Indexed-Sequential Disk Files • • • • • 75

DTFIS Statement. • • • • • • • • • • • • 75

Loading or Extending
Indexed-Sequential Files. • • • •

SETFL Macro Instruction
WRITE Macro Instruction
ENDFL Macro Instruction ••••

Adding Records to Indexed-Sequential

• 80
• 81
• 81
• 82

Files • • • • • • • • • • • • 82
WRITE Macro Instruction ••••• 82
WAITF Macro Instruction • • 82

Random Retrieval and Updating.
READ Macro Inst.ruction.
WRITE Macro Instruction • •
WAITF Macro Instruction

• 82
• 82
• 83
• 83

Sequential Retrieval and Updating. 83
SETL Macro Instruction. • • • • • 84
GET Macro Instruction • • • • • • 84
PUT Macro Instruction • •• • • • 85
ESETL Macro Instruction 85

Organizing and Processing
Indexed-Sequential Files '........ 86

Organizing an Indexed-Sequential
Fi Ie • • • • . • • . • . • • • . • . 86

Processing an Indexed-Sequential
File . • • • • • • • • • 90

Monitor Macro Instructions
COMRG Macro Instruction •
MVCOM Macro Instruction •
FETCH Macro Instruction •
EOJ Macro Instruction • •
IQIPT Macro Instruction •

Programming Considerations
Restrictions. • • • •

• • • • 95
• • • • 95
• • • • 95

• • • • • • 95
• • • • • • 96

• • 96

• • • • • 97
• • 97

Overlay Prograrrming for OPEN and
CLOSE. • . • • • 97

Register Usage.

The Inquiry Program
File Protection •

• 99

• • • • 1 01
• • • • 102

The ATENT Routine. • • 105
.105 ATENT Macro Instruction •

RETRN Macro Instruction •

Control Statements

• • 105

• • • • 106

Device Error Recovery

Language Compatibility

• • • • • • 107

• • • • 1 08

Appendix A. Summary of File Definition
Statements " 1 09

Appendix B. Summary of Imperative
Macro Instructions 1 22

Appendix C. Summary of Monitor Macro
Instructions 1 2 6

Appendix D. Programming Examples127

Glossary

Index. .

.164

• • • • 167

The Disk Programming System (DPS)
Input/Output Control System (laCS) des­
cribed in this publication consists of
macro instructions which in turn select and
generate routines that perform all
input/output operations for card devices,
printer~ printer-keyboard, magnetic tape~
and disk. The laCS also supports the Mag­
netic Character Readers and the Binary
Synchronous Communications Adapter. For
details about the functions and features of
the 1419/1259 DPS laCS and the BSCA IOCS~
refer to the SRL publications IBM
System/360 Model 20" Disk and Tape Program­
ming Systems, Input/Output Control System
for the 1419 and 1259 Magnetic Character
Readers, Form C33-6001; and IBM System/360
Model 20, Input/Output Control System for
the Binary Synchronous Communications Adap­
ter, Form C33-4001.

You can use the laCS only in programs
written in Assembler language. For details
of the Assembler language refer to the SRL
publication IBM System/360 Model 20 q Disk
and Tape Programming Systems~ Assembler
Language, Form C24-9002. Writing Assembler
language programs with IOCS macro instruc-
tions enables you to achieve optimum time
performance. Moreover, you can make use of
extended overlay techniques, which results
in a decrease of main-storage requirements
and facilitates exit handling.

Routines for reading input data, writing
output data" and controlling the
input/output (I/O) devices form a large
part of most progr&ms written in the Assem­
bler language. By using the routines sup­
plied by IBM, you can avoid writing I/O
routines for each of your programs. The
time normally required for writing and
testing I/O routines# you can thus use for
actually solving the problem. The Ioes
routines perform all required input and
output operations. They ensure that
machine interrupt conditions are handled
properly, and that optimum overlapping of
processing and input/output operations
occurs.

The laCS routines are stored, in the
form of macro definitions, in the macro
library of the disk-resident DPS. They can
be included in a problem program through
the use of macro instructions. You are
required to:

1. describe the file by means of dE~clara­
tive macro instructions (referred to as
file definition statements in this
publication),

Introduction

2. refer to the file in imperative macro
instructions that cause the desired I/O
operations, and

3. write your own exit routines that are
entered automatically by the laCS when
an exit condition (e.g., end-of-file)
occurs.

The Assembler uses the file definition
statements and the imperative macro
instructions to select macro definitions
and generate routines that perform all I/O
functions required by the problem program.

Data processing operations that can be
performed by the laCS include record stor­
age, record retrieval, and record updating.
A detailed descrir;tion of each of these
operations is given where the appropriate
macro instructions are described. A brief
summary is given below.

Record storage: The laCS provides for the
storing of information by generating the
routines required to punch records into
cards~ to list them on a printer or on the
printer-keyboard, and to write them onto
magnetic tape or disk.

Record Retrieval: The laCS allows you to
retrieve records from card" magnetic tape,
and/or disk files# and records entered on
the printer-keyboard in sequential order.
For files in disk storage# the laCS pro­
vides for the retrieval of records either
in sequential or random order.

Record Updating: The laCS allows you to
retrieve a record from disk storage# update
it, and then return it to the same location
from which it was retrieved. (The updating
of records in a card or tape file requires
the entire file to be read as input to
produce a new updated file as output. In
the case of a card file, the updated infor­
mation may be punched into the input
cards.)

In addition to the functions described
above~ the laCS is capable of:

• blocking and deblocking magnetic tape
and disk records;

• switching between two I/O areas (if two
areas are specified);

• handling end-of-file conditions;

• handling end-of-volume conditions;

Introduction 5

• handling I/O error conditions; and

• performing I/O control functions such as
card stacking~ tape rewinding, seeking
data on disk, ·etc.

All of these functions are provided by
the IOCS for the processing of files organ­
ized according to any of the three avail­
able methods of file organization:

1. Sequential file organization, which
provides for sequential processing of
card~ printer, printer-keyboard, mag­
netic tape, and disk records.

2. Direct-access file organization, which
provides for random and sequential
processing of disk records.

3. Indexed-sequential file organization.,
which provides for both sequential and
random processing of disk records.

Machine Requirements

MINIMUM SYSTEM CO~FIGURATION

Submodel 2

• An IBM 2020 Central Processing Unit~
Model BC2 (12,288 bytes of main
storage);

• an IBM 2311 Disk Storage Drive~ Model 11
or 12;

• one of the following card reading devi­
ces:

IBM 2501 Card Reader, Model Al or A2,
IBM 2520 Card Read-Punch, Model Al,
IBM 2560 Multi·-Function Card Machine
(MFCM), Model Al;

• one of the following printers:

IBM 1403 Printer, Model Nl~ 2, or 7,
IBM 2203 Printer, Model Al.

Submodel 4

• An IBM 2020 Central Processing Unit,
Model BC4 (12,288 bytes of main
storage) ;

• an IBM 2311 Disk Storage Drive~ Model
1. 2;

• an IBM 2560 MFCM, Model A2;

• an IBM 2203 Printer., Model A2.

6

Submodel 5

• An IBM 2020 Central Processing Unit,
Model BC5 (12,288 bytes of main
storage);

• an IBM 2311 Disk Storage Drive~ Model 11
or 12;

• one of the following card-reading devi­
ces:

IBM 2501 Card Reader, Model Al or A2,
IBM 2520 Card Read-Punch, Model Al,
IBM 2560 Multi-Function Card Machine
(MFCM), Model Al;

• one of the following printers:

IBM 1403 Printer~ Model Nl, 2, or 7,
IBM 2203 Printer, Model Al.

MAXIMUM SYSTEM CONFIGURATION

Submodel 2

• An IBM 2020 Central Processing Unit,
Model D2 (16,384 bytes of main storage);
with or without a Binary Synchronous
Communications Adapter (Feature
No. 2074);

• two IBM 2311 Disk Storage Drives, Model
11 or 12 (both must be the same model);

• an IBM 2415 Magnetic Tape Unit, Model 1
through 6;

• an IBM 2501 Card Reader, Model Al or A2;

•

•

•

an IBM 1442 Card Punch, Model 5;

one of the following card units:

IBM 2520 Card Read-Punch, Model A1,
IBM 2520 Card Punch, Model A2 or A3,
IBM 2560 MFCM, Model Al;

one of the following printers:

IBM 1403 Printer, Model N1, 2, or 7,
IBM 2203 Printer, Model Al;

• an IBM 2152 Printer-Keyboard;
• a 1419 or 1259 Magnetic Character

Reader.

Submodel 4

• An IBM 2020 Central Processing Unit,
Model D4 (16,384 bytes of main storage);
with or without a Binary Synchronous
Communications Adapter (Feature
No. 2074);

• two IBM 2311 Disk Storage Drives, Model
12;

• an IBM 2560 MFCM, Model A2;

• an IBM 2203 Printer, Model A2;

• an IBM 2152 Printer-Keyboard.

Submodel 5

• An IBM 2020 Central Processing Unit,
Model E5 (32,768 bytes of main storage);
with or without a Binary Synchronous
Communications Adapter (Feature
No. 2074;

• four IBM 2311 Disk Storage Drives, Model
11 or 12;

• an IBM 2415 Magnetic Tape unit, Modell
throuqh 6;

• an IBM 2501 Card Reader, Model Ai or A2i

• an IBM 1442 Card Punch, Model 5;

• one of the following card units:

IBM 2520 Card Read-Punch~ Model Al,
IBM 2520 Card Punch~ Model A2 or A3,
IBM 2560 MFCM, Model Al;

• one of the following printers:

IBM 1403 Printer, Model Nl, 2~ or 7,
IBM 2203 Printer, Model Al;

• an IBM 2152 Printer-Keyboard;

• a 1419 or 1259 Magnetic Character
Reader.

Introduction 7

Data Files

Many types of data files are used in data
processing applications. Theoretically
there is no restriction on the logical
content of information that can be proc­
essed, on the relationship of various units
of information in the file, on the organi­
zation, or on the format.

To simpli~y the description of the use
of the IOCS for card input or output, card
files are considered to be either combined
files or simple files. A combined file,
which must be fed from one hopper of the
I/O device, is a set of cards for which the
IOCS performs both input and output opera­
tions J i.e., cards are to be read and
punched during one pass through the I/O
device. (Outrut data may be punched either
into cards containing input data or into
interspersed blank cards.) All other card
files (input only or output only) are con­
sidered to be simple files.

LOGICAL RECORDS

A data file is made up of a collection of
logical records -that normally have some
relation to one another. The logical
record is the basic unit of information for
a data processing program. For example, a
logical record might be one employee's
record in a master payroll file, or the
record of one item in an inventory file.
Much data processing consists of reading,
processing, and writing individual logical
records.

RECORD BLOCKING

Blocking of records is the process of
grouping a number of logical records before
writing them on a storage device. A group
of logical records is referred to as a
block. Blocking improves processing effi­
ciency by reducing the number of I/O opera­
tions required to process a file, and also
saves storage space on the external medium
on which the file resides because there are
no gaps between the individual logical
records in a block.

RECORD FORMATS

Logical records may be in one of three
formats: fixed length (format-F), variable
length (format-V) or undefined lformat-U).
The record format and whether or not the
file is blocked are specified in the file
definition statement for the file.

8

The prime consideration in the selection
of a record format is the nature of the
file itself; that is, the type of input the
program will receive and the type of output
it will produce. The selection of a record
format is based on this knowledge J as well
as an understanding of the type of I/O
device on which the file is written and of
the access method used to read or write the
file.

Format F

Format-F records are fixed-length records.
Figure 1 shows one example of format-F
records on magnetic tape (part A) and of
£ormat-F records on disk (part B). The
number of logical records within a block
(blocking factor) is normally constant for
every block in the file unless the block is
truncated (short block) by a TRUNC macro
instruction.

The TRUNC macro instruction serves to
write truncated blocks on magnetic tape.
Truncated blocks that may be contained in a
tape input file are handled automatically
by the IOCS.

In unblocked format-F records, the logi­
cal record constitutes the block.

The IOCS performs physical-length check­
ing on blocked format-F records and auto­
matically handles truncated blocks.
Because the channel and interruption system
can be used for length checking and because
blocking and deblocking are based on a
const.2<nt. record length, the IOCS processes
format-F records faster than format-V
records.

Format-V records are variable-length
records, each of which describes its own
length. Format-V records can be blocked.
Each block of variable-length records
includes a block length. The IOCS performs
length checking of the block and makes use
of the record length information in
deblocking and blocking. Figure 2 is an
example of format-V records on magnetic
tape. The first four characters of each
logical record contain control information.
Specify the length of the logical record in
the first-two characters when you create
the record; the next two characters are
reserved and must be binary zeros. The
four bytes required for the length indica­
tion are included in the byte count for the
record.

Record

H

IBG = Inter-Block Gap

a. Unblocked Record Format

rOne Physical Record

Record

A B c o E F G H

b. Bloc ked Rec ord Format

Figure lA. Example of Format-F Records on Magnetic Tape

Record 1
(80 Bytes)

S = Sector Address
Unblocked Record Format

Record 1

S = Sector Address

Record 2 Record 3

Blocked Record Format (assuming five Records per Block)

Figure lB. Example of Format-F Records on Disk

~----------------270~ytes-----------------~~

Record 2
(80 Bytes)

.... -50-.... k __ .80 ____ ~~~~:errlaining portion of
is not used

Record 5

Data Files 9

i .•...• :: </
t··· I I
B BL RL Record 1 B BL RL Record 2 i B BL RL

G Data G Data
: •.... , .

XXOO
• ><

< XXOO XXOO xxoo \.iI xxoo XXOO
0 3 4 7 83 0 3 4 7 103 0 34 7

RL = 80 - RL = 100 --
BL = 84 . .. BL = 104

a. Variable Length - Unblocked Record Format

............. , (..... i

I I
B BL RL Record 1 RL Record 2 RL Record 3 B
G Data Data Data G

XXOO XXOO XXOO xxoo
a 3 4 7 83 84 87 183 184 187 233

RL = 80 RL = 100 - RL = 50 -
BL = 234 .

b. Variable Length - Blocked Record Format

BL = Block Length
RL = Record Length
IBG= Inter-Block Gap

.Figure 2. Example of Format-V Records on Magnetic Tape

The first four characters of each block
of format-V records contain block control
information. The first two characters~
which are provided by the IOCS at the time
the records are blocked, specify the length
of the block; the next two characters are
reserved and must be binary zeros.
Although these four characters do not
appear in the record furnished to the prob­
lem program, the input and output areas
must be large enough to accommodate them.

In unblocked format-V records, the logi­
cal record and the block control informa­
tion constitute the block.

Format U

If the record format of a file is referred
to as undefined" the record characteristics
are unknown to the IOCS. Because each
block is treated as an unblocked logical
record# any blocking or deblocking must be
performed in the problem program.

Allowable Formats for Files

The format of a file depends upon the type
of I/O device used. See Figure 3 for the
record format(s) permitted with each type
of I/O device.

10

r---------T---------T---------T-----------,
1 RECORD IFormat-F IFormat-V IFormat-U 1
I FORMATS I {fixed 1 (variable I (length I
I 1 length) I length) I undefined) I
t---------+---------+---------+-----------~
IBlocked ITape** fTape* ** I I
I IDisk I I I
t---------+---------+---------+-----------~
I ICard I I I
I I Pr inter 1 I I
IUnblockedlPrinter- ITape* ** ITape** I
I IKeyboard 1 I I
1 IDisk I I I
I ITape** I I I
}---------~---------~---------~-----------~
1* If a tape file is to be read backwards,
J format-V records are not allowed.
I
1**The Data Conversion feature is required
I if a 7-track tape is used and one of
I the following conditions exists:
I
I
I
I
1
I
I
I
J
I

•

•

•

Format-V records are to be read or
written.
Format-F or format-U records to be
written contain EBCDIC characters
other than those included in the BCD
character set.
Format-F or format-U records to be
read have been written using the
Data Conversion feature~ l ___ J

.Figure 3. Formats Valid in Accordance with
I/O Devices

The IOCS is designed to overlap I/O opera­
tions with each other and/or with the proc­
essing of data.

Submodels 2 and 4. In the case of Hodel 20
Submodels 2 and 4, input/output overlap
with processing is provided for the prin­
ter, the printer-keyboard, and for card
reading and punching. Due to hardware
characteristics of the Submodels 2 and 4,
magnetic tape and disk input and output
operations cannot be overlapped with proc­
essing or with card and printer I/O opera­
tions~ except as follows:

1. The execution of tape or disk control
operations (e.g., tape rewind, seek
operation on disk, etc.) can be over­
lapped with card and printer I/O opera­
tions and/or processing.

2. Magnetic tape and disk I/O operations
can be overlapped with printing on the
IBM 1403 if the print operation has
been started before the I/O instruction
for tape or disk is issued.

Submodel 5. With the Submodel 5, full
overlapping between I/O operations and
processing is possible if the read/compute~
write/compute (RWC) feature is utilized.
If the RWC feature is not utilized, the

Overlapping and Storage Areas

I/O-processing capability is the same as
with Submcdels 2 and 4. The overlapping
capabilities available with the Submodel 5
utilizing the read/compute, write/compute
feature are shown in Figure 4.

The extent of overlapping is governed by
the assignment of I/O areas and work areas
in the source program. The choice of these
areas can affect the amount of time that
the CPU is available for processing. These
areas and the effects of various combina­
tions of them are described below.

I/O AREAS

An I/O area is an area into which input
data is read or from which output data is
written. The data read into or written
from an I/O area consists of one block
(i.e., one physical record).

For each card file, provide either two
I/O areas and one work area or one I/O area
and one work area in the source program.

For printer files, an output area must
only be provided if the dual-feed carriage
feature is uSed. Otherwise, only a work
area should be provided.

r----------T----------T--------T--,
, I 1 Separate I I
I Record INumber of 'Work I j
I Format 11/0 Areas IArea IAmount of Effective Overlap I
r----------+----------+--------+-------------------------~------------------------------4
I I 1 I no INo overlap. I
l , r--------+--~
, I I yes tOverlap processing of all records. I
, I I , (Record move required).
lUnblocked I----------+--------+-----·----------~--~
I ,2, no 10verlap processing of all records. I
I I I I (No record move required). I
I I r--------+--~
I I I yes ~Overlap processing of all records. I
r----------+----------+--------+-----·---~
I I 1 I no ~No overlap. I
I I r--------+-- ------------~
I I 1 yes 10verlap processing of last record in each block. I

I Blocked \----------+--------+-----.---1
I I 2 I no 10verlap processing of full block. I
I I r--------+--~
I I I yes 10verlap processing of full block. I
t----------~----------~--------~--1
INote: overlap given is the maximum achievable. I L ____________________________________ . ___ J

Figure 4. Summary of Overlapping Capabilities with Read/Compute, Write/Compute
Overlap Feature of Submodel 5

overlapping and Storage Areas 11

For each magnetic tape and sequential
disk file you must define at least one I/O
area in the source program; you may also
provide a work area.

For sequential processing of disk and
magnetic tape files with a Submodel 5 uti­
lizing the RWC feature, you can specify two
I/O areas to decreas~ the throughput time.

For direct-access disk files you must
define one I/O area but no work area. For
indexed-sequential files you can specify
one to three I/O areas (IOAREAL, IOAREAR,
IOAREAS) depending on the type of process­
ing involved. You may specify the same
area for IOAREAS., lOAH-EAR, and IOAREAL if
you make sure that you finished processing
the contents of one I/O area before you
start using the area as another I/O area.

Specify the symbolic address of the I/O
area{s} in the file definition statement
for the appropriate file to be processed.
The size of an I/O area must be equal to
the length of the longest block to be proc­
essed and, for disk files, must be a mUlti­
ple of 270. When unblocked records in
indexed-sequential files are processed, add
six bytes to the I/O areas to accommodate
the sequence-link field. with the excep­
tions mentioned in the section One I/O Area
and a Worl<:: Area, under the heading Non---­
Overlap Ivlode, do not use these I/O areas
for any other purpose in the problrnn
prog-ram.

WORK AREAS

A work area is an area that is used for
processing one logical record. The IOCS
moves one logical record from an input area
to a work area or from a work area to an
output area. If a work area is to be used
(a work area must be used for card and
printer files, for printer-keyboard output
files, and for some indexed-sequential
files), you must define it in the source
program and indicate in the file definition
statement for the appropriate file that a
work area is to be used. In addition, an:1-'
GE'J' or PUT macro instruction that refers to
the file must specify the symbolic address
of the work area used. The use of work
areas is not limited to one per file. For
example, you may use a different work area
for every alternate GET or PUT macro
instruction. However, you must specify
only one work area in any GET or PUT macro
instruction. The advantages of using a
work area are explained below under
I/O-Work Area Combinations.

If a work area is not specified, the
IOCS makes all records of that file avail­
able in the I/O area(s).

12

The length of a work area must be equal
to the length of the longest logical
record. Note that the record length of
format-v records is contained within the
first four bytes of the record (see Figure
2). The problem program must include pro­
visions for handling the record length
(e.g., it must insert the record length
into output records). The use of a work
area permits the overlapping of I/O opera­
tions and internal processing, thus reduc­
ing processing time.

I/O-WORK AREA COMBINATIONS

For a particular file, you can specify one
of the I/O-work area combinations as shown
in Figure 5.

I/O operations may require the use of up
to two registers. The record format in
conjunction with the I/O-work area combina­
tion used aetermines whether none, one or
two registers ~ust be specified¥ To deter­
mine when it is necessary to sfecify a
register, refer to Figure 26 in tte section
Programming Considerations.

No I/O Area and a Work Area

Data to be printed on the standard carriage
of an IBM 2203 or on the IBM 1403 is print­
ed from the first 144 main storage posi­
tions that are used as a print buffer.
This is a hardware characteristic. A PU'I'
macro instruction for a printer file (1)
causes the output data to be transferred
from the svecified work area to th9 print
buffer area and (2) initiates the print
operation.

One I/O Area

The specification of just one I/O area is
permitted for magnetic tape and disk files
and is mandatory for printer-keyboard input
files.

When a GET or a PUT macro instruction is
issued while another I/O operation is being
executed, the program enters a waiting loop
and remains there until the current I/O
operation is completed.

One I/O Area and a Work ~rea

You must indicate the use of a work area in
the file definition statement for the file.
Also, define the work areas to be used in
your program and assign a name to each of
them. That name is then specified as the
second operand of each GET or PUT macro
instruction you issue.

Cll,.RD AND PRINTER FILES: For card and prin­
ter files, the use of a work area is manda­
tory. It permits the IOCS to overlap an
I/O operation with processing and/or with
another I/O operation.

The following considerations apply to
the use of I/O areas as work ar.eas for
files being processed in the overlap and
the non-overlap ruode:

Overlap Mode. I/O areas for files proc­
essed in the overlap mode must not be used
as work areas. During processing, a given
record is processed in the specified work
area while other records are simultaneously
read into an input area or punched or
printed from an output area.

Non-overlap Mode. For combined files, only
the punch area may also be used as a work
area. For simple files, the input or out­
put area may be used as a work area. Card­
print areas must not be used as work areas.

PRINTER-l'mYBOARD OUTPUT FIL:CS: PrintE~r­

keyboard output files require a work area
that you must provide in the problem
program. In addition, an output area is
required. If no output area is provided in
the problem program, the output area allo­
cated at the time the Monitor is generated
is used.

lVlAGNETIC TAPE AND DISK FILES: The use of a
work area with Submodels 2 and 4 and with a
Submodel 5 not utilizing the RWC feature
may provide the advantage of additional
processing time becoming available by
allowing to optimize overlap between I/O
operations with processing.

When a work area is used, processing can
be done in a fixed area and no I/O register
is required. These are further advantages
offered by the use of a work area.

Two I/O Areas

For disk and magnetic tape files, the use
of two I/O areas with a Submodel 5 uti­
lizing the RWC feature is recorrmended if
the processing time for the last (or only)
record of a block is shorter than the time
required to read the next record (block).
Two I/O areas are used for sequential disk
or magnetic ta~e files.

Two I/O Areas and a Work Area

Two I/O areas and a work area must be spec­
ified for combined files and may be speci­
fied for simple card files read on a 2501
Card Reader that is working in overlap
mode. This allows the Ioes to maintain
maximum card reading speed.

For magnetic tape and sequential disk
files you should consider the use of two
I/O areas and a work area only if these
files are processed by a Submodel 5 uti­
lizing the RWC feature. No additional
throughput advantage can be gained from
specifying a work area in addition to the
two I/O areas. However~ it might be of
advantage that no I/O register is required
when a work area is specified.

I/O-Work Area Combinations for
Indexed-Sequential Files

For indexed-se~uential files you can speci­
fy up to three I/O areas and up to four
work areas depending on the tYfe of proc­
essing involved (see Figure 5).

overlapping and Storage Areas 13

• f-' hj
.J::' r- .

'..0
C DEVICE & PROCESSING MODE FIRST IOAREA SEC. IOAREA THIRD IOAREA FIRST WORKAREA SEC. WORKAREA THIRD WORKAREA FOURTH WORKARE.b
ti
(I)

U'1 . 2560 MFCM 1/MFCM2 simple IOAREAl M - CRDPRA 0 WORKA M - - -
combined INAREA M OUAREA M CRDPRA 0 WORKA M - - -

H

"
2560 Card Read Punch simple IOAREAl M - - WORKA M - - -

combined INAREA M OUAREA M - WORKA M - - -
0
I

:s 2520 Card Punch IOAREAl M - - WORKA M - - -
0
ti 1442 Card Punch IOAREAl M - - WORKA M - - -
~

2501 Card Reader IOAREAl M IOAREA2 0 - WORKA M - - -
~
ti
(I) 1403 Printer - - - WORKA M - - -
P.I

0
0

2203 Printer standard - - - WORKA M - - -
dual feed IOAREAl M - - WORKA M - - -

:3
tJ r-. 2152 Printer-Keyboard input IOAREA M - - - - - -
:::l
P.I

output IOAREA 0 - - WORKA M - - -
r+ r-.
0
:::l

2415 Magnetic Tape Unit IOAREAl M IOAREA2* 0 - WORKA 0 - - -
en

2311 Disk (sequential) IOAREAl M IOAREA2* 0 - WORKA 0 - - -
2311 Disk (direct-access) IOAREAl M - - - - - -

2311 Disk (indexed-sequential)
LOAD IOAREAL M - - WORKL M - - -
ADD IOAREAL M - - WORKl M WORKA M** - -
ADDRTR

sequential IOAREAl M IOAREAS M - WORKl M WORKA M** WORKS 0 -
random IOAREAL M IOAREAR M - WORKL M WORKA M** WORKR 0 -
random/sequential IOAREAl M IOAREAR M IOAREAS M WORKL M WORKA M** WORKR 0 WORKS 0

RETRVE
sequential IOAREAS M - - WORKS 0 - - -
random IOAREAR M - - WORKR 0 - - -
random/sequential IOAREAR M IOAREAS M - WORKP. 0 - WORKS 0 -

* Only useful with a Submodel 5 utilizing the read/comput, write/compute feature
** Mandatory only for a file containing blocked records
M Mandatory Specification
0 Optional Specification

When planning your input and output files,
consider the following:

1. processing requirements for storing,
updating, or displaying data, and

2. the I/O devices available.

Card, magnetic tape, printer, and
printer-keyboard files are organized in a
sequential order, because they can be proc­
essed only in the existing sequence. Disk
files can also be organized and processed
consecutively. However, for disk files you
are not restricted to sequential file
organization, but have the option of work­
ing with three methods of file organization
and corresponding methods of file process­
ing.

For disk files, it is important to dis­
tinguish between two terms:

1. File Organization refers to the method
of arranging data records on a direct­
access storage device; it is the
technique used to "load" the file.

2. File Processing is the method of
retrieving records from, adding records
to, or updating records in a file.

Note: Files on disk may consist of more
than one disk area (extent); the extents of
a disk file need not be adjacent and may be
contained in more than one volume. 'I'he
lower and upper limit of a single extent
must be contained within one volume. The
XTENT control statement, which is used to
specify the extents of a disk file" is
described in the SRL publication IBM
System/360 Model 20, Disk Programming~
tern, Control and Service Programs, Form
C24-9006.

FILE ORGANIZATION

Card, magnetic tape~ printer and printer­
keyboard files are organized as sequential
files. For disk files, the data records
can be organized as a sequential" direct­
access or indexed-sequential file. With
disk, more than one method of processing
may be used for a single method of file
organization. The method of file
organization best suited to a particular
file depends on the processing requirements
for the file.

File Organization and Processing Concepts

Sequential File Organization

Sequential file organization means that the
records are written consecutively on the
storage medium. The physical order of the
records prior to organization of the file
determines both the physical order of the
organized file and the sequence in whic~
the records will be subsequently processed.
A sequentially o~ganized file is normally
established by sequentially "loading"
records that have been pre-sorted on a
significant control field within each
record. In this case~ the last logical
record is located in the last physical
position of the file on the storage medium.

A sequentially organized card or magnet­
ic tape file can only be processed in the
order in which the records physically
occur, i.e., sequentially. (This is also
the most efficient method for processing a
sequential disk file.) Thus, sequentially
orgapized files are subject to certain
processing limitations such as:

• The only way to retrieve or update a
record in a sequential file is to read
every record in the file beginning with
the first. Therefore, sequential file
organization is the most efficient meth­
od if a large number of records in the
file are updated or examined every time
the file is processed. An extremely low
level of activity, on the other hand,
justifies the use of another method of
file organization that permits random
processing of the file.

• Additions and deletions can only be
accomplished by copying the entire file.
During the copying, the records to be
added are merged in and the records to
be deleted are excluded.

Sequential file organization is used for
all card and magnetic tape files, printer,
and printer-keyboard files.

The sequentially organized disk file is
similar in concept to a sequentially organ­
ized card or magnetic tape file. Sequen­
tial disk files differ from card and mag­
netic tape files in two ways:

1. If processing involves only the updat­
ing of records already in the file, an
updated record may be rewritten into
the same physical location from which
it was retrieved and records that are
to remain unchanged need not be re­
written at all. (With a card or

File Organization and Processing Concepts 15

magnetic tape file, the updated
records~ together with any unchanged
records, must be stored in a newly
created file.)

2. A sequentially organized disk file may
be processed randomly by specifying the
Ioes instructions used for direct­
access files. You must know and
specify the actual physical disk
address of the record to be retrieved.
In your routines, you must also consid­
er the blocking factors of the sequen­
tial file~ i.e., you must deblock the
file.

Direct-Access File Organization

Both the sequential and indexed-sequential
methods of file organization involve
records that are stored in some logical
sequence and are usually processed in that
sequence. With the direct-access method of
file organization, records are retrieved
from or written onto a physically addressed
location on disk. The physical disk
address of a record to be loaded or
retrieved must be calculated in the problem
program. Determine a randomizing "formula"
to convert certain data within the record
to a physical address on disk; the record
is stored at the physical address developed
by the randomizing formula. Thus, normal­
ly, in a file that is being loaded, the
records are not placed in contiguous loca­
tions on the disk but are "scattered"
throughout the area of the pack that is to
contain the file.

In selecting the best method for loading
a direct-access file, it is necessary to
keep two things to a minimum:

1. the number of different records for
which the same disk address is derived,
and

2. the amount of storage space required,
i.e., minimize the amount of wasted
storage space.

A file written on disk by the direct­
access method may be processed randomly or
sequentially. Random retrieval from a
direct-access file is generally faster than
random retrieval from an indexed-sequential
file. The direct-access method, however,
is not best suited to retrieval of records
in a logical sequence.

Indexed-Seguential File Organization

An indexed-sequential file is organized
from records that have been sorted
according to specific control information,
i.e., keys, contained in each record. The
structure of an indexed-sequential file is
basically sequential~ but this type of file

16

organization has the following features
which distinguish it from sequential file
organization:

• The process of locating records by ref­
erencing ~ecord keys permits the option
of processing an indexed-sequential file
in either sequential or random order.

• When an indexed-sequential file is load­
ed the Ioes constructs indexes to be
used to locate records in subsequent
processing. Sequential retrieval
through use of these indexes is almost
as efficient as sequential rrocessing
with a sequential file. In addition,
these indexes make it possible to
retrieve individual records in random
order.

• In a sequential file, the original
sequence can be maintained only by copy­
ing the entire file and inserting the
additions in the appropriate location.
In an indexed-sequential file, overflow
areas can be reserved to accommodate
additions.

As the number of additions increases,.
the efficiency of processing an indexed­
sequential file decreases. This is due to
the additional access-arm movement required
to read records that have been forced onto
the reserved overflow tracks. Therefore,
there is a point at which it becomes
advisable to reorganize an indexed­
sequential file. (That is, to create a new
file from the old one, and~ in the process,
to exclude all ~ecords tagged for deletion.
In the same operation, the Ioes merges all
records in the overflow area into the main
file.)

When the number of additions and
deletions (or even updates) to be made
~egularly in a file is high~ sequential
file organization saves processing time.

Two othe~ factors should be considered
when indexed-sequential file organization
is used:

1. An indexed-sequential file may be
stored on more than one volume~ but all
of these volumes must be on line during
any type of processing~ whereas a
sequential file may be stored on any
number of volumes" which can be mounted
and processed consecutively.

2. An indexed-sequential file cannot be
direct input to the Model 20 DPS
Sort/Me~ge program and to the file-to­
file Utility programs.

FILE PROCESSING

The IOCS provides for the processing of
records in sequential order for
sequentially organized files, in random or
sequential order for direct-access files,
and in random or sequential order for
indexed-sequential files. Both the direct­
access and the indexed-sequential file
organization methods apply only to disk
files.

Processing Sequential Files

sequential processing is used to read,
write, and process consecutive records in a
file. Cards are processed in the order in
which the cards are read. Tape records are
processed beginning with the first record
continuing through the records to the last
one. Disk records are processed beginning
with a starting disk address and continuing
through the records on successive tracks
and cylinders to the ending disk address.

The macro instructions GET and PUT are
used to cause the transfer of data from and
to sequential files. In the case of a
Model 20, Submodel 5, the transfer of data
to and from the I/O devices overlaps fully
with processing. In all other cases~ the
transfer of data in printerJ printer­
keyboard~ and card files overlaps with
processing, unless processing in non­
overlap mode has been specified. The
extent of overlapping depends on the
assignment of I/O areas and work areas.
Regardless of the extent of overlapping~
when a GET macro instruction has been exe­
cuted~ the desired record is available for
processing. Similarly" when a PUT macro
instruction has been executed, you can
begin building the next output record for
the same I/O device.

Processing Direct-Access Files

The IOCS provides routines to read" write,
and process disk records that are organized
according to the direct-access method. The
IOCS locates a disk record for processing
by referring to the physical disk address
which must be supplied in the problem pro­
gram.

The macro instructions READ and WRITE
cause the transfer of data from and to
files when the direct-access method is
used. These macro instructions permit
records to be retrieved from or placed into
a file. They also permit the updating and
replacing of records in a file. When the
record is required for processing, the
problem program must use a WAITF macro

instruction to ensure that the transfer of
data has Deen completed before processing
continues.

Direct-acc~ss files can be [rocessed
sequentially. However, these files are not
best suited to retrieval of records in a
logical sequence.

Processing Indexed-Sequential Files

For indexed-sequential files, the IOCS
provides routines to perform the following
functions:

1. Loading the file.

2. Extending the file with records that
are all higher in sequence than those
already loaded.

3. Adding records in Bequence without
copying the entire file.

4. Retrieving records (with or without
updating) either sequentially or ran­
domly.

Any record stored at any location in the
logical file can be retrieved randomly.
The problem program supplies the control
information (key) of the desired record;
the IOCS initiates a search for the record
and makes it available for processing.

If an indexed-sequential file is proc­
eSl?ed sequentially., the key of the first
record to be processed is specified in the
problem program. The records are made
available, one after the other. When a
macro instruction requires another record,
the IOCS retrieves the succeeding record
from the logical file in the order deter­
mined by the key, until the problem program
terminates the operation.

The macro instructions WRITE and READ
cause the transfer of data to and from an
indexed-sequential file when the records
are loaded or when they are processed in
random orde+. The macro instructions GET
and PUT are used when the records of an
indexed-sequential file are processed
sequentially.

A READ or WRITE macro instruction causes
the I/O operation to be initiated. When
the record is required for processing, the
problem program must use a WAITF macro
instruction to ensure that the transfer of
data has been completed before processing
continues. With GET and PUT macro instruc­
tions. no subsequent WAITF macro instruc­
tion is necessary_

File Organization and Processing Concepts 17

Ioes Macro Instructions

IBr;I supplies two types of macro instruc­
tions for the input/output control of
records from various I/O units:

• declarative macro instructions
(hereafter referred to as ~ile defini­
tion statements), and

• imperative macro instructions.

These instructions are discussed in detail
on the following pages. The description of
the instructions is divided into several
sections according to the device used and
the type of file being processed: card,
printer, printer-keyboard, magnetic tape,
sequential disk, direct-access disk, and
indexed-sequential disk.

Some of the IOCS macro instructions
pertain to all files irrespective of the
device used or the type of file organiza­
tion involved. These instructions are
described in the sections Begin and End
Definition Statements (DTFBG, DTFEN) and
Instructions for ..QBening and Closing Files
(OPEN" CLOSE).

The following conventions apply to the
description of the IOCS macro instructions
in this publication:

1. Upper-case letters and punctuation
marks (except as described in items 3
and 4 below) represent information that
must be coded exactly as shown.

2. Lower-case letters and terms represent
information that you must supply.

3. Information that is contained within
brackets [] represents an option that
can be included or omitted depending on
the requirements of the program.

4. An ellipsis (a series of three periods
enclosed by commas) indicates that a
variable number of items may be includ­
ed.

Assembly Procedure

The file definition statements are used by
the Assembler to generate those routines
that are required to perform the desired
I/O operations wh,=n the program is execut­
ed. The imperative macro instructions
cause the generation of linkages to these
generated routines. The IOCS routines and
the problem program written in the Assem­
bler language are assembled in one run.

18

Figure 6 shows the arrangement of the
assembly input deck for a source program
using IOCS macro instructions.

Source (problem)
Program
Statements
including lacs
Imperative Macro
Instructions

DTFEN Statement

.Figure 6. Arrangement of Source Program
Cards Using the IOCS

Diagnostic Messages

Diagnost.ic messages are provided to indi­
cate error conditions at assemtly time such~
as missi~g operands of macro instructions,
inconsistent combinations of operands, etc.
This checking is in addition to that nor­
mally perfo~med by the Assembler program.

Pile Definition Statements

The file definition statements describe the
logical file, indicate the type of process­
ing to be used for the file, and specify
main-storage areas for the file. It
depends on the device used and on the type
of processing involved which of the differ­
ent file definition statements applies to
you~ file. Only two definition statements
(DTFBG, DTFEN) are used irrespective of the
type of file. The file definition state­
ments a~e:

DTFBG Define The File BeGin. This defini­
tion statement, If-present, must
p~ecede all other file definition
statements. The statement is manda­
tory if the generated program is to
be used as an inquiry program or if
it is to be used as a mainline pro­
gram that permits interrupts by
inquiry programs.

DTFSR Define The File for a Serial Record
device.- ThIs definition statement
is used in conjunction with card and
printer files.

DTFPK Define The File for a Printer­
Eeyboard. This definition statement
is used to define a printer-keyboard
file. When form skipping and
overflow printing are desired for a
printer-keyboard output file, you
must also provide a DTFLC statement.

DTFLC Define The Line-Counter table~ The
DTFLC statement Is used in conjunc­
tion with a printer-keyboard output
file if form skipping and overflow
printing are desired. The DTFLC
statement describes the line-counter
table, which simulates a carriage­
control tape for the printer­
keyboard.

DTFMT Define The File for a Nagnetic Tape.
This definition statement is used to
define a file associated with a
magnetic tape device.

DTFSD ~efine The ~ile for a ~equential
file organization on Disk. This
definition stateme~t Is used
whenever a sequentially organized
disk file is to be processed.

DTFDA Define The File for a Direct-Access
file organization. This de£inition
statement is used whenever a disk
file of direct-access organization
is to be processed.

DTFIS Define The File for an Indexed­
~equentlal file organization~ This
definition statement is used
whenever a file of indexed­
sequential organization is to be
processed.

DTFEN Define The File ENd. A DTFEN
statement must follow the last defi­
nition statement for each program.

At the time of assembly~ the file defi­
nition statements for the file to be proc­
essed must follow the START statement. The
file definition statements may appear in
any order with the following exceptions:

• The DTFBG statement, if specified~ must
be the first file definition statement
in the program.

• All DTFSR statements must be written
contiguously., i. e., DTFSR statements
must not be separated by another type of
definition statement.

• The DTFEN statement must be the last
file definition statement in the pro­
gram.

A summary of the file definition state­
ments is given in Appendix A.

FORl1AT OF FILE DEFINITION STATEMENTS

A file definition statement consist of (1)
a header entry that assigns a name to the
specified file and (2) detail entries that
are required to define parameters such as
the device to be used, the mode of process­
ing, etc.

Note that all file definition cards,
except the last one for each file, must
have a contipuation punch in colUmn 72.
This continuation punch may be any charac­
ter. Punching in continuation cards must
begin in column 16.

Figure 7 is an example of a DTFI"1T file
definition statement followed by a DTFEN
statement.

Header Entries

A header entry consists of a file name in
the name field (starting in column 1) and
the mnemonic of the file definition state­
ment in the ope~ation field, which follows
the name entry with at least one interven­
ing blank. The name entered in the name
field may consist of up to seven charac­
ters; the first of these characters must be
an alphabetic character other than "I".

The file name assigned in a header entry
for a file must be used in all imperative
macro instructions that refer to this file.

Detail Entries

A detail entry (except in the DTFEN and
DTFLC statements) is composed of a keyword
immediately followed by an equal sign (=)

which is, jn turn~ followed by a specifi­
cation.

Each specification must correspond to
the rules and restrictions of programming
in the Assembler language. Expressions are
permitted for all detail entries that
require the specification of a symbolic
address. The length of a specification is
limited to eight characters, and blanks are
not permitted. (Note that a blank within a
detail-entry specification causes the
Assembler to treat the remaining detail
entries as comments). A comma must immedi­
ately follow the specification of each
detail entry, except the last (see Figure
7) •

IOCS Nacro Instructions 19

L..-- I I I ~ I I I I I
STATEMENT

IdMIfiflc.filll'l_ - . "
OpllNI;_ .. "

,. ~~ JO " 40
C_ -. " 50 5.5 60 65 " " 10

O'R.DE'R ~TFMT TY PE F LE = I N PUT_o, R [CJ 0 7i! /1- F I X B L k. , B L k. 5112 £=If<~!¢1 ,~!Et. SIr'.c:.f:i81d')(

VJJJLOA REAl)= FO'RW4 'RJ)4Rf viI N1)= JJ. 1/ ,
y..

PEVA:D JrR=$ Y S ¢~1 .. fIL/tB L=$TJ) j OAR EAt-/). ~'A;z;lFJ) 1 .. 't/,OI1(~ A=:YE~ 1 ~
~ABA]J IJR=LIj BCK~t "R'R.o'PT ,LCO'!< R. WL];' E7tR-J<. !~ o7?/R .. X
EOFA~ J)1(=£N PRTN /

PTfEN OIlLA'I

Figure 7. DTFMT Statement Followed by a DTFEN Statement

The detail entries describe the file and
specify symbolic addresses of routines and
areas used during the processing of a file.
The detail entries may appear in any order.
You should include only those entries that
are applicable to a particular file or
program.

Note: The DTFEN and DTFLC statements are
written accordin9 to the coding rules for
positional macro instructions as described
in the SRL publication IBM System/360 Model
20, Disk and Tape Programming Systems,
Assembler Langua(~, form C24-9002. The
detail entries of positional macro instruc­
tions must be written in a given sequence.
A comma must immediately follo~ the speci­
fication of each detail entry, except the
last; a blank indicates the end of the
sequence of entries.

Imperative Macro Instructions

Imperative macro instructions are included
in the problem program. They perform such
functions as opening a file, making records
available for processing, writing records
that have been processed, etc. The macro
instructions IBM provides for input/output
control are described in separate sections
as follows:

• Instructions for opening and closing
files: OPEN, CLOSE.

20

• Instructions for processing card files:
PUT, GET, CRDPR, CNTRL, EOM, LOM, WAITC.

• Instructions for processing printer
files: PUT, CNTRL, PRTOV.

• Instructions for processing printer­
keyboard files: PUT, READ, WAITF, CNTRL,
PRTOV.

• Instructions for processing magnetic
tape files: PUT, GET, CNTRL, TRUNC,
RELSE, LBRET, FEOV.

• Instructions for processing sequential
disk files: PUT, GET, CNTRL.

• Instructions for processing direct­
access disk files: WRITE, READ, WAITF,
CNTRL, CNVRT.

• Instructions for processing indexed­
sequential disk files: WRITE, READ,
WAITF, PUT, GET, SETFL, ENDFL, SETL,
ESETL.

All macro instructions listed above are
written according to the coding rules for
positional macro instructions as described
in the SRL publication IBM System/360 Model
20, Disk and Tape Programming Systems,
Assembler Language, Form C24-9002.

The possible variations of the
imperative macro instructions are summar­
ized in Appendix B.

DTPBG Statement

This statement, if used, precedes all other
file definition statements in the source
program. The DTFBG statement is mandatory
if a program is to be executed as an
inquiry program and/or as a mainline pro­
gram permitting inquiry interrupts. The
statement is optional for all programs that
are not executed as inquiry programs and do
not allow inquiry interrupts (see No-2Eer­
ands Specified below).

The DTFBG statement has the following
format .•

r----T---------T--------------------------,
INamelOperationlOperands 1

t----t---------t--------------------------~
1 IDTFBG 1 [detail entry] 1
L ____ L _________ L __________________________ J

The name field must be blank and the opera­
tion field must contain DTFBG. The operand
field may be blank, or may contain one or
two detail entries. The detail entries
that may follow a DTFBG header entry are
shown in Figure 8.

Note: To be compatible with the Tape Pro­
gramming System, the specification RWC=YES
in the operand field of the DTFBG statement
does not lead to an error but is ignored.

Begin and End Definition Statements

MAINPRG=YES

Specify this entry if the program is to
function as a mainline program that permits
interrupts by inquiry request.s. You cannot
use the program as an inquiry frogram. The
Open routines for disk files provide for
file protection (see File Protection in the
section The Inguiry Program). If you spec­
ify ATENT=YES together with MAINPRG=YES,
the MAINPRG entry is ignored because a
program using the ATENT entry cannot be
executed as a mainline program that allows
inquiry interrupts.

INQPRG=YES

This specification in the DTFBG statement
allows you to use the program as an inquiry
program. When an inquiry request calls a
program assembled with the entry
INQPRG=YES, the Open routine for any disk
files provides for file Frotection as des­
cribed in the section The Inguiry Program.

A program you specified as an inquiry
program may be executed as a mainline pro­
gram. When the program is loaded as a
mainline program# a warning halt occurs.
The operator may continue the job if the
Monitor input area is not used in the pro­
gram.

r----------------------T------------'--------------------T-----------------,
I 1 Execution of Program IInquiry Interrupti
IDetail Entries .----------------T---------------~ Permitted 1
1 IMainline ProgramlInquir.y Program 1 I
~----------------------t----------------t---------------t-----------------~
1 MAINPRG=YES, INQPRG=YES 1 Yes I Yes I Yes I
I I I I (Mainline only) I
r----------------------t----------------t---------------t-----------------~
IMAINPRG=YES I Yes I No I Yes I
r----------------------t----------------t---------------t-----------------~
IINQPRG=YES I Yes* I Yes I No I
r----------------------t------------"----t---------------t-----------------~
IATENT=YES I Yes I No I No I
~----------------------t----------------t---------------t-----------------~
INo Operand or no I Yes I No I No I
IDTFBG Statement I 1 I 1
~----------------------L------------_---L-------------__ L _________________ ~
1* A program specified as an inquiry program may also be executed as a I
1 mainline program. When the program is loaded as a mainline program, 1
I a warning halt occurs. The operator may continue the job if the I
I Monitor input area is not used in the program. 1
L ___________________________________ • ____________ -----_____________________ J

.Figure 8. Detail Entries of the DTFBG Statement

Begin and End Definitions 21

Enter both operands if the program is to be
executed as both mainline and inquiry pro­
gram. If you specify these two detail
entries, do not use the 1Q1PT macro
instruction to process data in the inquiry
input area in the Monitor. A record is
read into this area only if the program is
used as an inquiry program, but not if it
is executed as a mainline program.

Note: The main-storage requirements of the
problem program increase if you specify
MA1NPRG=YES,INQPHG=YES.

File protection is provided in the Open
and Close routines for programs assembled
with the specification
MA1NPRG=YES,INQPRG=YES. For details refer
to the section The Inquiry Program.

ATENT=YES

Specify the ATENT entry if you provide your
own ATENT subroutine in the problem pro­
gram. (For details on the ~TENT subroutine
refer to the section The ATENT Routine).
You can enter this subroutine by pressing
the Request key on the printer-keyboard.

Since a program using the ATENT=YES
entry does not allow inquiry interrupts, do
not specify MAINPRG=YES and/or INQPRG=YES
together with ATENT=YES. An error occurs
if you specify A'rENT=YES and INQPRG=YES.
Specifying I-ffiINPrlG=YES and ATENT=YES leads
to ignoring the MAINPRG entry.

22

No Operands Specified

Specifying the DTFBG statement without an
operand has the same effect as not speci­
fying a DTFBG statement at all, i.e.# the
object program can be used only as a main­
line program that does not allow inquiry
interrupts. All inquiry requests are
rejected, and no protection is incorporated
in the Open routines for disk files.

This option is recommended to minimize
the main-storage requirements of the object
program if the installation does not use
the inquiry function.

DTFEN Statement

To indicate that all files have been
defined you must issue a DTFEN statement as
the last file definition statement in the
problem program. The DTFEN statement has
the following format.

r----T---------T--------------------------,
INamelOperationlOperand I
t----+---------+--------------------------~
I I DTFEN I [OVLAY] I
l ____ L _________ L __________________________ J

The name field of a DTFEN statement must be
blank. The ope~ation field contains DTFEN.
The operand field may be blank, or it may
contain OVLAY (overlay). The overlay tech­
nique as described in the section Program­
ming Considerations allows you to reduce
the number of main storage positions
required by the program when magnetic tape
or disk files are involved.

This section discusses the macro instruc­
tions re~uired to activate and deactivate a
file, and the actions the IOCS performs
when a file il:; opened or· closed.

Before the first record can be read from
any input file or transferred to any output
file by IOCS macro instructions., you must
ready that file by issuing an OPEN macro
instruction. Likewise, you must deactivate
the file and terminate all pending requests
by issuing a CLOSE macro instruction after
all records of that file have been proc­
essed. The OPEN and CLOSE macro instruc­
tions are described below.

OPEN MACRO INSTRUCTION

The format of the OPEN macro instruction is
as follows:
r------T---------T------------------------l
IName jOperationlOperands I
~------+---------+------------------------~
I [nameJjOPEN Ifilename1, ••• ,filename16 1
l ______ L _________ L ________________________ J

Each specification in the operand field
is the name of a file (assigned to it by an
entry in the name field of the appropriate
file definition statement) to be opened
with this macro instruction. Any number of
files from one to sixteen on various devi­
ces may be opened with one OPEN macro
instruction. The operations performed
depend on the type of device involved and
the labeling technique (if applicable).

For information on label processing and
label formats refer to the SRL publication
IBM System/360 Model 20, Disk Programming
System, Control and Service Program~~ Form
C24-9006.

The actions the OPEN macro instruction .
performs for the different devices are
described in this section under Initializ­
ing Files.

CLOSE MACRO INSTRUCTION

Use this macro instruction to deactivate
any file that was previously made available
by an OPEN macro instruction. You can
close a file at any time by issuing a CLOSE
macro instruction. You must issue t~he
CLOSE macro instruction after all records
in an input file or output file have been
processed. When writing your own Exit
routines~ make sure that you close your
files properly in these routines before you
abort the job.

Instructions for Opening and Closing Files

r------T---------T------------------------,
IName IOperationlOperands j
t------+---------+------------------------~
1 [nameljCLOSE Ifilename1, ••. ,filename16j
l ______ L _________ L ________________________ J

Each operand is the name of a file to be
close~ by this macro instruction; the name
of a file is the symbol appearing in the
name field of the header entry for the file
definition statement that describes the
file. You may close up to 16 files for
various devices with one CLOSE macro
instruction. The operations performed
depend on the type of device involved and
the labeling technique (if applicable).
For information on label processing and
label formats refer to the SRL publication
IBM System/360 Model 20, Disk Programming
System, Control and Service Programs, Form
C24-9006 ..

The operations the CLOSE macro instruc­
tion performs for the different devices are
discussed in this section under Terminating
Files.

Reopening Closed Piles

CARD AND PRINTER FILES. If you issue a
CLOSE macro instruction for a card or prin­
ter file, that file cannot be reopened by a
subsequent OPEN macro instruction.

PRINTER-KEYBOARD FILE. A printer-keyboard
file that has been closed can te reopened.

MAGNETIC TAPE FILE. If further processing
of a magnet~c tape file is desired, the
file can be reopened. If you do this, keep
in mind that the previous CLOSE for the
file has caused the tape to be positioned
in accordance with the rewind option speci­
fied in the DTFMT statement for the file.
Therefore., you should specify REWIND=NORWD
in the DTFMT statement to resume processing
of tape records at the point where the
CLOSE macro instruction occurred. The
first record read from the reopened file
must be a file label if standard labels are
specified for that file. If the tape file
to be reopened is unlabeled or contains
non-standard labels, you must determine
whether the first record read is a data
record or a file label.

If you reopen a multi-volume tape file
for which you included the detail entry
ALTTAPE in the DTFIY1T statement., the IOCS
continues to read from (or write in) the
same volume that was used as input (or

Inst~uctions for Opening and Closing Files 23

output) tape at the time the file was
closed~ i.e., only the volume which was
processed last iB reopened.

DISK FILE. You can reopen a closed disk
file. If this is done* the IOCS performs
all checks as though the file had never
been opened before.

Initializing Piles

This section describes the processing the
IOCS performs for the various types of
files when an OPEN macro instruction is
executed.

OPENING CARD FILES

When an input file is processed in the
overlap mode~ the OPEN macro instruction
causes the first card to be read. The data
read from this card can then be moved from
the input area to the work area when the
first GET for the file is encountered.
When an input file is processed in the
non-overlap mode, the function of the OPEN
macro instruction depends on the type of
file as follows.

1. In the case of a simple file, the OPEN
macro instruction makes the file avail­
able for processing.

2. In the case of a combined file, the
OPEN macro instruction causes the first
card to be read while it is being moved
to the pre-punch station.

OPENING PRINTER AND PRINTER-KEYBOARD FILES

For a printer or printer-keyboard file, the
OPEN macro instruction makes the file
available for processing. The OPEN routine
also tests whether the l'1onitor includes the
PIoes routines for the printer-keyboard.

OPENING MAGNETIC TAPE FILES

When a magnetic tape file with standard
labels is opened, the IOCS expects the
first record read to be a label. An OPEN
macro instruction causes the tape to be
rewound prior to processing, unless you
prevent rewinding by including REWIND=NORWD
in the DTFMT statement for the file. If
you specified REWIND=NORWD, or if you open
a file that begins at some location within
a volume (reel of ta~e), you can position
this volume at the beginning of the
required file by means of a FILES control
statement submitted to the Job Control
program. When a volume has been positioned
in this manner, the first record read is a
label. If the first record is not a label,

24

the IOCS regards this as an error condi­
tion. However, an unlabeled file can be
opened in the middle without causing an
error condition.

When two or more files of a multi-file
tape volume are to be processed by one
problem program, processing of each file
specified must be completed before the next
file in succession is opened.

Example: If the first, second, and third
files of a multi-file tape volume are to be
processed by one problem program, yoU must
write the OPEN instructions for these files
in the following sequence:

OPEN first file

CLOSE first file

OPEN second file

CLOSE secona file

OPEN third file

CLOSE third file

The concurrent processing of two or more
files of a multi-file tape volume is not
possible.

All files in a multi-file volume must
either contain the same type of labels
(either standard or non-standard) or no
labels whatsoever.

Opening Tape Input Files

The proceSSing done by the IOCS when an
OPEN macro instruction is executed depends
on whether the file has standard labels,
non-standard labels, or no labels. An OPEN
macro instruction causes the following:

1. If standard labels are specified, the
IOCS will:

a. read and check the volume label if
the tape is at load point;

b. bypass any user volume labels;

c. read and check the standard file
header label (HDR1);

d. bypass any additional standard
header labels (HDR2-HDRS);

e. test the user labels UHL1-UHL8 (if
you specified your own label
routine) and make them available to
your label routine as they are
read. If you did not specify your
own ~abel routine, the user labels
(if present) are skipped; and

f. properly position the tape to read
the first data record.

If the file is to be read backward, the
IOCS performs steps e. d, and c, in
this sequence; steps a and b are omit­
ted. (The IOCS processes trailer
labels instead of header labels).

2. If you specify non-standard labels, the
file ~s spaced forward to the first
record following the first tapemark.
Therefore the non-standard labels must
be followed by a tapemark.

3. If no labels are specified, the first
record on tape may be a data record or
a tapemark followed by one or more
tapemarks. The IOCS reads the record
and determines whether it is a tape­
mark. If it is, control is returned to
the problem program. If the record is
not a tapemark, it is assumed to be a
data record, and the tape is backspaced
by one record.

Read-Backward Considerations: 9-track tape
files written on System/360 tape units can
be read backward if they do not contain
variable-length blocked records; 7-track
tapes can be read backward if they were
written on System/360 tape units without
using the Data Conversion feature. Note
that 7-track tapes containing format-v
records have been written using the Data
Conversion feature and therefore cannot be
read backward. A file to be read backward
is limited to one reel. Any tapemark
sensed while r€ading data records is con­
sidered to indicate an end-of-file condi­
tion.

When opening a tape file that is to be
read backward, the job is terminated if the
first record read is not a tapemark.

It is your responsibility to properly
position files that are to be read backward
prior to issuing an OPEN macro instruction.
The proper positions are as follows:

Files with standard labels should be
positioned so that the first record read
will be the tapemark following the trailer
label set~ Because the file trailer label
is the first label to be checked on a read
backward operation, this trailer label must
be complete and contain both the trailer
and the header information~ except HDR, to

properly identify the file. If the file
labels were originally written by the IOCS,
the trailer labels will be complete.

Files with non-standard labels should
also be positioned so that the tapemark
following the trailer-label set is the
first record to be read. However, no label
checking is performed.

Unlabeled files should be positioned so
that the first record read will be the
tapemark after the last record of the file.
Unlabeled tape files to be read backward
must have a tapemark as the first record of
the file (preceding the first data record).
If this tapemark is not present, no end-of­
file (EOF) condition is detected and an
attempt is made to read past the load
point.

Specify the NORWD (no rewind) option in
the file definition statement for the file
to be read backward.

Qpening Tape output Files

The processing done by the IOCS when an
OPEN macro instruction is executed depends
On whether or not the file is labeled. An
OPEN macr.o instruction causes the
following:

1. If standard labels are specified~ the
Ioes will:

a. check for a volume label if the
tape is at the load point;

b. read the file header label (if
present) and check the expiration
date to make sure that the data on
the tape is no longer active and
may be destroyed; in a multi-file
volume only the first file is
checked for the expiration date in
the header label;

c. backspace the tape and write the
new file header label with the
information supplied by the TPLAB
statement (refer to the section
Control Statements); and

d. enter your label routine (if you
specified one) to allow user header
labels (UHL1-UrlL8) to be created
and written.

2. If no labels are specified, the IOCS
will perform the rewind operation and
write a tapemark as the first record on
the tape. The volume label and the
expiration date are not checked, and
any existing label set is destroyed.

Note: The writing of a tapemark may be
suppressed by a TPMARK=NO entry in the
DTFMT statement.

Instructions for Opening and Closing Files 25

3. If non-standard labels are specified
for a file, a diagnostic message is
printed during assembly because the
specification of non-standard labels
for an output file is not permitted.

OPENING DISK FILES

When disk files are opened, the processing
done by the laCS depends on whether the
file is a sequent.ial file" .a direct-access
file, or an indexed-sequential file.
Depending on the type of file, the label
processing may occur at different times
during the execution of the problem pro­
gram.

For sequential files, each disk pack of
the file is opened when it is required.
For direct-access files and indexed­
sequential files, all packs of the file are
opened at one time; if this is not done,
the job cannot continue. Details of the
processing performed when each type of file
is opened are described below for disk
input and disk output files.

You must specify the disk storage areas
used by the file by means of XTENT
statements which you submit to the Job
Control program. For detailed information
about these statements, refer to the SRL
publication IBM System/360 Model 20, Disk
Programming System, Control and Service
Programs, Form C 24- 9006.

Not:.§..!.. If a program is to be executed as an
inquiry program, you must follow special
rules for opening disk files. These rules
are described in the section The Ingui~
Program.

Opening Dis~ut Files

An OPEN macro instruction causes the fol­
lowing:

1. If the file is a sequential file, the
laCS will:

26

a. locate and check the volume label
to verify that the proper disk pack
is mounted;

b. locate and check the file label
against data furnished in the DLAB
control statement at Job Control
time; and

c. check all extent limits in the
format-1 file label and, if appli­
cable, in the format-3 file label
against the limits specified in the
XTENT control statement. The
checked extent limits are stored
within the processing routines for
the file that is being opened.

During processing, these extent
limits are used to check for end­
of-extent conditions and to
automatically switch to the next
extent when an end-of-extent condi­
tion occurs. If an end-of-volume
condition is detected (no more
extents available within the
volume), the file processing rou­
tines issue an internal OPEN for
the next volume. The functions for
this internal OPEN are the same as
described above.

2. If the file is a direct-access file,
the laCS will:

a. locate and check the volume labels
of all volumes used for the file to
verify that the proper disk packs
are mounted;

b. locate and check the file labels in
all volumes of the file against
data furnished in the DLAB control
statement; and

c. make all disk areas (defined by
XTENT statements) available for
processing; if one or more areas
are not available, the job will be
terminated.

3. If the file is an indexed-sequential
file, the laCS will:

a. locate and check the volume labels
of all volumes used for the file to
verify that the proper disk packs
are mounted;

b. locate and check the format-1 file
labels in all volumes of the file
against data furnished in the DLAB
control statement;

c. locate and process the format-2
file label; and

d. make all disk areas (defined by the
XTENT statements) available for
processing; if one or more areas
are not available, the job will be
terminated.

Opening Disk output Eiles

An OPEN macro instruction causes the fol­
lowing:

1. If the file is a sequential file, the
IOCS will:

a. locate and check the volume label
to verify that the profer disk pack
is mounted;

b. check to make sure that the volume
table of contents (VTOC) does not
contain a label with the same file
identifier as the file to be
opened; should the file identifier
be identical, the Open routine
checks the expiration date to
determine whether the file has
expired or not. If it has not
expired" a halt occurs and the
operator has the option to erase
the file or to terminate the job.

c. check all extents described in the
VTOC for the particular volume
against those extents of the file
that refer to the same volume. If
an extent overlay is detected, the
OPEN routines check the expiration
date of the file to which the over­
laid extent belongs. If the expi­
ration date has been reached v the
file label(s) of the expired file
are erased. All labels in the VTOC
with an address that is higher than
the addresses of the erased labels
are shifted to use up the space
that was previously occupied by the
erased labels. The program halts
if an extent overlay is detected
for an active file. This allows
you to either erase the file or
terminate the job.

d. cause the format-l label and v if
more than three extents are speci­
fied, the format-3 label(s) to be
created and written behind the last
label in the VTOC. If no space is
available within the VTOC, a pro­
grammed halt occurs.

e. store the checked extent limits
within the processing routines for
the file that is being opened.
During processing, these extent
limits are used to check for end­
of-extent conditions and to
automatically switch to the next
extent when an end-of-extent condi­
tion occurs. If an end-of-volume
condition is detected (no more
extents available within the
volume), the file processing rou­
tines issue an internal OPEN for
the next volume. The functions for
this internal OPEN are the same as
described above.

2. If the file is a direct-access or an
indexed-sequential file, the 10CS will:

a. locate and check the volume labels
of all volumes to be used for the
file to verify that the propE~r disk
packs are mounted;

b. check to make sure that the VTOC
does not contain a label with the
same file identifier as the file to
be opened; should the file iden­
tifier be identical, the IOCS
checks the expiration date to
deter.mine whether the file has
expired or not. In the case of an
indexed-sequential LOAD file, a
halt occurs if the file is not
expired. The operator then has the
option to extend the file or to
perform an original load.

c. check all extents described in the
VTOCs of all volumes used by the
file against all the extents speci­
fied for the file; if an extent
overlay is detected, the OPEN rou­
tines check the expiration date of
the file to which the oVerlaid
extent belongs. If the expiration
date has been reached~ the file
labels of the expired file are
erased. All labels in the VTOC
with an address that is higher than
the addresses of the erased labels
are shifted to use up the space
that was previously occupied by the
erased labels. The program halts
if an extent overlay is detected
for an active file. This allows
you to either erase the file or
terminate the job.

d. cause the format-l label and, if
more than three extents are speci­
fied, the format-3 label(s~ to be
created and written after the last
label in the VTOC. In the case of
an indexed-sequential file, the
IOCS will also cause the format-2
label to be created and written.
The program halts if no space is
available within the VTOC.

e. store the checked extent limits
within the processing routines for
the tile that is being opened.
(During processing, these extent
limits are used to check for end­
of-extent conditions and to
automatically switch to the next
extent when an end-of-extent condi­
tion occurs.)

Terminating Files

After all records of a file have been pro­
cessed, that file must be closed.

The need to close, or deactivate, a file
is indicated by an end-of-file (EOF) condi­
tion. The EOF condition is determined in
various ways for different types of files
and I/O devices as follows:

Instructions for Opening and Closing Files 27

1. Card input files. Four cards with the
characters /* in columns 1-2 are
required by the IOCS to properly per­
form end-of-file operations. For the
number of /* cards required during
stacked job processing, refer to Figure
11.

2. Printer-Keyboard input files. The
characters /* typed in on the printer­
keyboard indicate the end-of-file
condition.

3. Tape input files without labels or with
non-standard labels. A tapemark indi­
cates an EOF condition. In your enu­
of-file routine you must determine
whether an end-of-file or an end-of­
volume condition exists. The IOCS
cannot determine this.

4. Tape input files with standard labels.
The characters EOF appear as the first
three characters of a trailer label.

5. Tape files with standard labels that
are read backwards. The characters HDR
appear as the first three characters of
a header label.

6. Sequential disk input files or indexed­
sequential input files processed
sequentially. The characters /*b
appear in an end-of-file record, or the
end of the last extent has been
reached.

7. All output files, and direct-access
input files. The problem program de­
termines the end of a file.

End-of-File Processing

When EOF occurs in a card input file, the
IOCS branches to your end-of-file routine.
The address of this routine must be provid­
ed in the EOFADDR=name entry of the defini­
tion statement for the file.

When EOF occurs in a tape infut file
with standard labels, the IOCS branches to
the label checking routine to check the
EOFl label. In this routine, the IOCS
compares the block count recorded in the
label with the block count that has been
accumulated during processing. An
'unequal' condition is indicated to the
operator who has the option to either ter­
minate or continue the job. If user labels
(UTL1-UTL8) are to be checked, the IOCS
branches to the LABADDR routine when the
checking of the EOFl label has been com­
pleted. (Refer to the description of the
DTFMT detail entry LABADDR and of the LBRET
macro instruction in the section Instruc­
tions for Processing Magnetic Tape Files).
After all trailer labels have been checked,
the IOCS branche~3 to the EOFADDR routine.

28

If the tape input file has been read
backward, the functions ferformed by the
IOCS are essentially the same. On reaching
the tapemark preceding the first record of
the file, the Ioes branches to check the
user header labels (UHL1-UHL8), if present,
and then checks the HDRl label. After
these checks are completed, the IOCS
branches to the EOFADDR routine.

When EOF occurs in a tape input file
without labels or with non-standard labels#
the Ioes branches to the =OFADDR routine
when the tapemark following the last data
r.ecord is read.

When EOF occurs in a sequential disk
input file or in an indexed-sequential file
processed sequentially, the IOCS branches
to the EOFADDR routine when the EOF record
containing /*b is read, or the end of the
last extent has been reached.

End-of-Volume Processing

Some of the actions performed by the CLOSE
routine are also required when an end-of­
volume condition occurs while frocessing a
magnetic tape or sequential-disk file.
Except for tape input files withqut labels
or with non-standard labels 1 the IOCS
detects EOV conditions and takes the
required actions without the need for addi­
tio~al ~outines in the problem program.

During the frocessing of a magnetic tape
file or of a sequential disk file, an EOV
condition can occur. This indicates that
the next volume of the same file is needed
either for r.eading more input records or
for writing more output records. The meth­
od of detecting an EOV condition and the
action taken are described below.

TAPE EOV CONDITION: The end of a volume of
a standard-labeled tape file is indicated
in the trailer label of an input reel or by
the reflective marker. on an output reel.
The IOCS processes an EOV condition as
follows:

1. For input files, the IOCS (1) checks
the block count, (2) branches to your
LABADDR routine, if specified, and (3)
rewinds the tafe if required. The IOCS
then processes the header label(s) of
the next volume and makes the first
record of the volume available to the
problem program.

2. For output files, the IOCS causes the
EOV trailer label (including the accu­
mulated block count) to be written. If
a LABADDR routine is specified, the
IOCS branches to this routine to write
additional user trailer labels
(UTL1-UTL8) and to perform the func-
tions as specified. The IOCS then

processes the header label(s) of the
next volume as described above under
Opening Tape Output Files.

If no labels or non-standard labels have
been specified for an input file, you must
determine an EOV condition and issue an
FEOV macro instruction (refer to the sec­
tion Instructions for Processing Magnetic
Tape Files) to have the IOCS perform the
desired end-of-volume functions. To deter­
mine an EOV condition, you must provide in
your EOFADDR routine a subroutine to which
the IOCS branches as soon as it detects a
tapemark. For multi-volume files, refer to
the description of the detail entry
ALTTAPE.

DISK EOV CONDITIONS: The end-of-volume for
sequential disk files is indicated after
the contents of all disk areas in a volume
(as specified in XTENT control statements)
have been processed. The IOCS processes
EOV conditions as follows:

1. For input files~ the IOCS checks the
file label{s) of the next v61ume and
makes the first record in the next
volume available for processing.

2. For output files, the IOCS checks
whether or not any extents are over­
laid, writes a volume label and one or
more file labels on the next volume,
and makes the first location in that
volume available for an output record.

CLOSING CARD AND PRINTER FILES

For card and printer files, the CLOSE macro
instruction ma~es the file unavailable for
further processing. Specifically, the
CLOSE macro instruction ensures:

1. that records remaining in the output
area upon completion of processing are
printed and/or punched,

2. that all processed data cards remaining
in the card feed path (not end-of-file
cards) are selected and sorted into the
appropriate stackers,

3. that all pending interrupts for the
closed file(s) have been handled.

CLOSING PRINTER-KEYBOARD FILES

You should close a printer-keyboard input
or output file after all records in the
file have been processed. The characters
/* in the first two positions of the record
designate the end-of-file for an input
file. For an output file# end-of-file is
determined by the problem program.

CLOSING MAGNETIC TAPE FILES

The operations perfornled when a magnetic
tape file is closed devend upon whether it
is an input or an output file.

Closing Tape Input Files

The CLOSE macro instruction causes the
input tape to be rewound if this has been
specified in the REWIND entry of the DTFMT
statement for the file. The IOCS then
deactivates the file; no labels are read or
checked.

Closing Tape Output Files

The CLOSE macro instruction causes the
writing of any record or block of records
that has not yet been placed into the file.
If a record block is only partially filled,
it will be written on tape as a short
block. A tapemark is written following the
last record.

If labels have not been specified, a
second tapemark is written and the tape is
rewound if this has been specified in the
DTFMT statement for the file.

If standard labels have been specified
for the file, the lOCS writes the trailer
label after the tapemark. The trailer
label includes the block count accumulated
by the IOCS during the run and the header
label information (except that HDR is
replaced by EOF).

When additional labels are to follow the
standard trailer label, the IOCS branches
to your label routine specified by the
LABADDR=name entry in the DTFM'I statement
for the file. This occurs after the stand­
ard label has been written. After building
each label, return to the lOCS using the
LBRET macro instruction. After all trailer
labels have been written# the IOCS writes
two tapemarks# executes the rewind fUnc­
tion, if specified, and deactivates the
file.

Two tapemarks are written at the end of
a tape output file to indicate that no
further data follows. If you specified
REWIND=NORWD fo~ the file, the IOCS causes
the tape to be backspaced by one record.
As a result, the second tapemark is over­
written if another output file is written
onto the same tape.

CLOSING DISK FILES

The operations performed when you close a
disk file depend upon whether it is an
input or an output file.

Instructions for Opening and Closing Files 29

Closing Disk Input Files

, The CLOSE macro instruction merely makes
'the file unavailable for further process­
ing.

Closing Disk Output Files

The CLOSE macro instruction causes the
writing of any record or block of records
that has not yet been placed onto disk.
The IOCS writes an end-of-file record fol-

30

lowing the last data record in the file.
The CLOSE macro instruction also updates
format-2 labels when you load or extend an
indexed-sequential file or when you add
records to it.

Note: In a mainline program that permits
inquiry interrupts, you must provide for
the closing of all disk input and output
files. Details on closing files in a main­
line program are given under File Protec­
tion in the section The Inquiry Program.

The IOCS provides routines for sequentially
processing card files. All records in a
card file must be unblocked format-F
records with a maximum length of 80 card
columns.

You must define a card file in the prob­
lem program using the DTFSR file definition
statement, which is described in detail
below. The discussion of the DTFSR state­
ment is followed by a description of the
imperative macro instructions supported for
card input and output files.

DTFSR Statement

This file definition statement applies to
card and printer files. The name field of
the header entry must contain the name for
the file, and the operation field must
contain DTFSR.

The header entry is followed by detail
entries. For ease of reference~ the detail
entries for card files are described below
in alphabetical order.

BINARY=code

Specify this entry if the cards are to be
read in the column binary mode. You may
provide the entry for both simple and com­
bined files.

Code
YES
INPUT

Type of File
Simple input file
Combined file

The twelve punch positions of a card
column read in column binary mode are
stored in the six low-order bits of two
adjacent bytes of the input area. There­
fore, the input area must be large enough
to accommodate a number of bytes that is
twice the number of card columns to be
read.

When you use the BINARY entry for a
~articu1ar fi1e# you are not allowed to
specify the entries SEQNCE and RFORI>1Tn for
the same file.

BLKSIZE=n

This entry specifies the length of the I/O
area(s) to be used by a simple file. The
value of n must be equal to or less than
the number of bytes of the area reserved by
the DS or DC statement in the source pro­
gram.

Instructions for Processing Card Files

If two I/O areas are used for a file
(IOAREAl and IOAREA2), specify the area
size only once because it applies to both
areas. The maximum area lengtb acceptacle
to the 10CS is 80 bytes (160 bytes if the
input is in column binary mode).

The minimum area length specifications
are:

For input files : two bytes (four bytes for
column binary mode)

For output files: one byte.

CONTROL=YES

Specify this detail entry if you intend to
issue a CNTRL macro instruction for your
card file. The CNTRL macro instruction
causes the I/O device to perform stacker
selection.

CRDPRA=name

Use this entry in conjunction with CRDPRLn
entries when printing on cards is desired.
The maximum number of lines that can be
printed at one time is six, i.e., the num­
ber of pr.int heads available.

The CRDPRA entry specifies the name of
the area in main storage that contains the
data to be printed by the lowest numbered
MFCIvl print head. Define contiguous 64-byte
areas from which the remaining print heads
are to pr.int (refer to Figure 9). The
CRDPRLn entries serve to define the print
heads to be used in ascending order accord­
ing to the print head numbers. Figure 10
shows the detail entries required to allow
printing from the areas shown in Figure 9.

It suffices to specify the CRDPRA and
CRDPRLn entries in only one DTFSR statement
of a program because they do not refer to a
particular tile. You must issue a CRDPR
macro instruction to cause printing of data
from the areas specified in the CRDPRA and
CRDPRLn entries. Refer to the description
of the CRDPR macro instruction in this
section.

CRDPRLn=m

Entries of this type are used in conjunc­
tion with the CRDPRA=name entry to specify
the print heads used. You must specify one
CRDPRLn ent~y for each print head you use,
i. e. " you can specify up to six CRDPRLn
entries.

Instructions for Processing Card Files 31

The keyword is CRDPRLn, where n is the
number of the print head (1 to 6). The
specification m indicates to the IOCS the
number of bytes to be printed by this print
head. Specifica-tion of the number of bytes
to be printed by each individual print head
is required because, when filling a print
area with data to be printed, the IOCS
moves into the print area only the number
of bytes specified for the particular print
head.

Refer to the example in Figures 9 and
10. In this example, print head 1 is to
print the first 50 bytes of its 64-byte
print area, print head 2 is to print the
first 40 bytes of its 64-byte print area,
and print head 5 is to print the first 20
byt~es of its 64- byte print area. However,
all three print heads actually print the
first' 50 bytes of their 64-byte print
areas, i.e., the largest number of bytes
specified for a ,tJarticular print head. At
the time of printing, the unused byte posi­
tions of a print area contain blanks, since
the IOCS clears all print areas up to and
including byte 50 (i.e., the largest number
of bytes specified) to blanks after every
card-print operation.

You may utilize those porti9ns of the
print areas that are not cleared by the
IOCS. In the example, bytes 51 through 64
of all three 64-byte print areas could be
used for other processing (shaded areas in
Figure 9).

r------CPAR

'----v-------" "~--___,v~---'/"'-------..~--.-J

64 Bytes 64 Bytes 64 Bytes

n = blank

Figure 9. MFCM Card-Print Areas

.-Column 16

Figure 10. CRDPRA Detail Entry with
CRDPRLn Entries

DEVICE=code

This entry~ which is required for all card
files, specifies the I/O device to be used
to process the particular file. Enter one
of the followinq specifications immediately
after the equal sign (=) in this entry.

32

CRP20

MFCfJll

MFCM2

Explanation

A file is to be read and/or
punched by the IBM 2520 Card Read­
Punch.

A file is to be read and/or
punched from the primary feed of
the IBM 2560 Multi-Function Card
Machine.

A file is to be read and/or
punched from the secondary feed of
the IBM 2560 Multi-Function Card
IvJachine.

PUNCH20 A file is to be punched by an IBM
2520 Card Punch.

PUNCH42 A file is to be punched by an IBM
1442 Card Punch, ModelS.

READOl A file is to be read by an IBM
2501 Card Reader.

EOFADDR=name

This entry specifies the symbolic name of
the routine in the problem program to which
the IOCS should branch on an end-of-file
condition. In that routine, you can per­
form any operation required for the end of
the job. Normally, a CLOSE macro instruc­
tions is issued.

Note: If, in the end-of-file routine" you
want to terminate the execution of a main­
line program, you must first close all disk
files. The EOFADDR entry is mandatory for
card input and combined files.

The IOCS recognizes an end-of-file con­
dition for card input and combined files
when the required number of end-of-file
cards (/* in columns 1 and 2) have been
read. During single-job processing, use
four end-of-file cards for all card I/O
devices to ensur,e that the device remains
in a ready status after end-of-file is
detected~ The number of end-of-file cards
required during stacked-job processing is
device dependent as shown in Figure 11.

r-------T-------T---------T---------T-----'
I 1 I 2501 I 2501 I 1
I MFCMl 1 MFCM2 lone I/O I two I/O I 25201
I I I area I areas I I
~-------+-------+---------+---------+-----~
12121 1 I 2 111 L _______ ~ _______ ~ _________ ~ _________ ~ _____ J

Figure 11. Number of End-of-File Cards
Required During Stacked-Job
Processing

INAREA=name

This entry specifies the name of the input
area to be used by a combined file. The
specified name must be the symbol used in
defining the area in the source program.

INBLKSZ=n

This entry specifies the number of bytes in
the input area required by a combined file.
The specified length applies to the area
reserved by the DS or DC statement in the
source program and referred to in the
INAREA entry. The maximum area length
permitted is 80 bytes (160 bytes for column
binary mode). The minimum length of the
input area is two bytes (four bytes for
column binary mode).

IOAREA1=name

This entry specifies the name of the I/O
area to be used by a simple file. The
specified name must be the symbol used in
defining the area in the source program.

A work area must be specified in addi­
tion to an I/O area. Refer to the descrip­
tion of the WORKA=YES entry.

IOAREA2=name

This entry can be used for simple input
files to specify a second input area when
the IBM 2501 Card Reader, Model A2, is used
in overlap mode. The name in the specifi­
cation part of this entry must be the same
as the symbol used in defining the area in
the source program. That area must be of
the same length as the area referred to in
the IOAREA1 entry.

The IOAREA2 entry permits a card to be
read into the area specified in the DTFSR
entry IOAREA1 while the data in the area
specified in the DTFSR entry IOAREA2 (from
the preceding card) are waiting to be moved
to the work area. This may be of signifi­
cance if only a number of selected cards of
the file that is read on the IBM 2501
require extensive processing while all
other cards require very little. If only
one input area is specified, the data from
a card that requires extensive processing
may have to be held available for too long
a period of time to permit continuous card
feeding. In the majority of cases, speci­
fying a second input area permits the IOCS
to maintain the maximum card reading speed
of the IBM 2501.

Do not use the IOAREA2 entry for a file
being read or punched by any other card
input or output device or when the IBM 2501
is used in non-overlap mode.

OUAREA=name

This entry is used in conjunction with the
INAREA entry and specifies the name of the
output area used by a combined file. The
name specified must be the symbol used in
defining the area in the sourCE program.

OUBLKSZ=n

This entry is used in conjunction with the
OUAREA entry to specify the length of the
output area ~equired by a combined file.
The specification n is the number of bytes
in the ar.ea. The maximum area length per­
mitted is 80 bytes. The minimum length of
the output area is one byte.

OVERLAP=NO

This entr.y specifies that the file is to be
processed in non-overlap mode. If this
ent~y is omitted, the file is processed in
overlap mode.

Hhen the OVERLli.P=NO entry is used, the
IOCS routines that are inserted in the .
problem program at the time of assembly
require less storage space than they
require when this entry is omitted.

PFORMTn=xxyy

This entry applies to combined files only.
It allows you to check a specified field
(or fields)~ in which data is to be
punched, fo~ all blanks. These fields are
checked in those cards of a combined file
that are not read but only punched.

The keyword of this entry is PFORMTn,
where n is a~y nURber from 0 to 9. The n
allows you to write up to ten different
PFORMTn entries per file and thus have a
maximum of ten fields checked. The xx
specifies the first and the yy the last
card column of the field to be checked.
For columns 1 through 9, the leading zero
is required.

If the field does not contain all
blanks, the PUT macro instruction is not
executed. Instead, the lOCS either trans­
fers control to the routine specified in a
PFXIT entry or it causes a programmed halt.

The specified input area must be large
enough to accommodate the information con­
tained in the columns specified in this
entry,.

You may use up to ten different PFORMTn
entries, but only one PFXIT entry for each
,file.

Instructions for Processing Card Files 33

PFXIT=name

This entry is usea in conjunction with the
PFORMTn entry. It specifies the name of
your routine to which the IOCS transfers
control if the test of the field specified
by thE! PFORMTn entry indicates an error
condition. To return to the main program,
branch to the address contained in register
14.

If a PFORMTn check occurs, the main
program branches immediately to the PFXIT
routine. In this case, the contents of the
work area are not moved to the punch area.

If a PUT macro instruction is issued
that refers to a combined file and the
program branches to the PFXIT routine, a
subsequent GET will place the contents of
the card causing the PFORMTn error into the
work area. If this GET is in non-overlap
mode, it is possible to punch this card by
means of an additional PUT macro instruc­
tion.

If the PFXIT entry is omitted and the
test shows an error condition, the machine
halts before punching is initiated. This
enables the operator to remove the card
that caused the error condition from the
pre-punch station~

RFORMTn=xxyyz

This entry enables you to check whether a
specified input card field (or fields)
contain(s) numeric characters only or all
blanks.

If the input data are to be read in the
column binary mode, an RFORMT entry must
not be included for the file.

The keyword of this entry is RFORf.1Tn,
where n is any number from 0 to 9. The n
allows you to write up to ten different
RFORMTn entries ~er file and thus have a
maximum of ten fields checked. The xx
specifies the first and the yy the last
card column of the field to be checked.
For columns 1 through 9, the leading zero
is required. If the field is to be checked
for blanks, z must be a zero (0). If the
field is to be checked for numeric charac­
ters, z must be a one (1). When checking
for numeric characters, the maximum field
length is 16 columns ..

When a field is tested for all blanks,
control is transferred to your RFXIT rou­
tine if the field is not blank.

when a field is tested for numeric char­
acters, ·the test fails if the field con­
tents are not of the following format
(where at least the last character is
numeric with or without an 11 or 12 zone
punch) :

34

bbb •.••••••••• n

where b blank
n = numeric character.

If the input cards are read in overlap
mode from either an IBN 2520 or an IBM
2560, an RFORMT error with a subsequent
branch to your RFXIT routine causes the
IOCS to change the processing mode (from
overlap to non-overlap) for the GET that
detected the error.

Before branching to the RFXIT routine,
the IOCS places the record containing the
field that led to the error condition into
the work area. If the error card was read
by the IBM 2560 MFCM or the IBM 2520 Card
Read-Punch, that card is pOSitioned at the
pre-punch station. The next record will be
read by the next GET or EOM macro instruc­
tion.

In the REXIT routine, save the contents
of register 14 before issuing any macro
instruction. If this is not done the re­
entry address is lost during the execution
of the macro instruction in the RFXIT
routine.

You may use up to ten different RFORMTn
entries, but only one RFXIT entry for each
file.

If a SEQNCE error and an RFORMTn error
are both detected in the same card, only
the action specified for the SEQNCE error
will be performed. Refer to the descrip­
tion of the SEQNCE=xxyy entry.

RFXIT=name

This entry is used in conjunction with the
RFORMTn ent~y. Specify the name of the
routine to which control is to be trans­
ferred if the test of the field specified
in the RFORMTn entry is negative (i.e., the
tested field contains characters other than
blanks o~ numerics, respectively). To
return to the main pr.ogram, branch to the
address contained in register 14.

If this entry is omitted and the test is
negative, the IOCS causes a programmed
halt. This enables the operator to replace
the card that led to the error condition.

SEQNCE=xxyy

This entry enables you to check whether the
contents of a specified field in successive
input records are equal or in ascending
order.

The xx is the first and the yy the last
card column of the card field to be
checked. For card columns 1 through 9, the
leading zero is required. The maximum
length of the card field to be checked is
16 columns.

Only one SEQNCE entry is perrni tted for
each file.. If the input data is to be read
in column binary mode, a SEQNCE entry must
not be included for the file.

If the input cards are read in overlap
mode from either an IBM 2520 or an IBM
2560, a sequence error with a subsequent
branch to your SEQXIT routine causes the
IOCS to change the processing mode (from
overlap to non-overlap) for the GET that
detected the error.

Before branching to the SEQXIT routine~
the rocs places the record containing the
field that led to the error cond~tiun into
the work area. If the error card was read
by the IBM 2560 MFCM or the IBM 2520 Card
Read-Punch, it is positioned at the pre­
punch station. The next GET or EOM macro
instruction will cause ~he next record to
be read. This record wi-II then be compared
with the record preceding the error record.

If the SEQXIT routine contains a macro
instruction, the contents of register 14
should be saved before this mac~o
instruction is executed. If this is not
done, the re-entry address is lost during
the execution of the macro instruction.

If a SEQNCE error and an RFORMTn error
are both detected in the saQe card, only
the action specified for the SEQNCE error
will be performed.

SEQXIT=name

This entry must be used in conjunction with
the SEQNCE entry. It specifies the name of
your routine to which control is to be
transferred if a sequence error occurs. To
return to the main program, branch to the
address contained in register 14.

Note: If the sequence-error routine dis­
continues the processing of a program that
is a mainline program, it must contain
CLOSE macro instructions for all disk
files.

TYPEFLE=code

This entry, which is required for all
files, is used to specify the type of file
(i.e., input, output, or combined).

INPUT
OUTPUT
CMEND

Type of File

A simple input file.
A simple output file.
A combined file.

WORKA=YES

The WORKA=YES detail entry is mandatory for
all card files. Enter the name of the work
area as the second operand in all GET, PUT,
or CRDPR macro instructions for the parti­
cular file. The length of a work area must
always be the -same as that of -'.:he I/O area.
For additional information regarding the
use of a work area J see Work Areas under
the section Ove;laFPing and Storage Areas.

Imperative Macro Instructions

The imperative macro instructions cause the
desired I/O ope~ation. They are described
below in the following order: PUT, GET,
CRDPR, CNTRL, EOM, LOM, WAITC. For the
description of OPEN and CLOSE refer to the
section Instructions for opening and Clos­
ing Files.

PUT MACRO INSTRUCTION

This instruction punches logical records
that have been built in a specified work
area.

r------T---------T------------------------,
I Name 10pe~ationlOperands I
}------+---------+------------------------~
I [nameJIPUT Ifilename,workname I L ______ L _________ L ________________________ J

The first operand spe~ifies the name of the
file, the second orerand specifies the name
of the work area in which the records are
built.

The PUT macro instruction moves the
record built in the work area to an output
area. When the output area is full, the
IOCS will take the data in that output area
and punch them on the output device speci­
fied in the DTFSR statement for the file.

Individual records for a logical file
may be built in the same work area or in
different work areas, Each PUT macro
instruction specifies the work area in
which the com:r;:leted record was built. How­
ever, only one work area can be specified
in anyone PUT macro instruction.

When a card file is processed in the
non-overlap mode, a PUT macro instruction
for the file (1) moves a record from the
work area to the output area, (2) initiates
the punch operation (and the next read
ope~ation in the case of a combined file),
and (3) transfers control to the main pro­
gram when the punch operation bas been
completed.

When a card file is processed in the
overlap mode, a PUT macro instruction for
the file (1) moves a record from the work

Instructions fo~ Processing Card Files 35

area to the output area, (2) initiates the
punch (print) operation, and (3) immediate­
ly transfers control to the main program.

If PFXIT has been specified for a com­
bined file and a card to be punched does
not contain all blanks in the field to be
punched, the PUT macro instruction causes
control to be transferred to the specified
PFXIT routine.

The work area is not cleared by the IOCS
after a PUT macro instruction. To avoid
having interspersed characters from preced­
ing records in the output records, ensure
that the records use every position of the
work area, or clear the work area before
the next record is built.

Pr,2gramming Considerations for Combined
File~

11SSUll1e that a combined file is being proc­
essed by means of the following sequence of
instructions:

GET Fi,Wi

PUT Fi,W2

no GET, EOM , or PUT
macro instruction
referring to file Fi

In this case, the following rules apply:

Non-overlap Mode. The statement PUT Fi,W2
causes punching into the card that has been
made available by the statement GET F1 6 Wl.

Overlap Mode. The statement PUT Yi,W2
causes punching into the card following the
card that has been made available by the
statement GET Fi,Wi. The card that has
been made available by the statement
GET Fi,Wi has already passed the punch
stat~ion when the statement PUT Fi,t-J2 is
encountered.

GET MACRO INSTRUCTION

This macro instruction makes the next
sequential logical record froIll an input
file available for processing in a speci­
fied work area.

When a branch condition is detected
(end-of-file, sequence check, or read­
format check), the lOCS transferred control
to the appropriate routine specified in the
EOFADDR, SEQXIT, or RFXIT entry of the file
definition statewent.

36

r------T---------T--------------------~---,
I Name 10perationiOperands I
t------+---------+------------------------~
I [name] IGET Ifilename,workname I
l ______ L _________ L ________________________ J

The first operand specifies the name of
the file. The second operand specifies the
symbolic name of the work area to be used.

The GET macro instruction moves the
record to be processed from an I/O area to
the work area specified by the second
.operand. There can be more than one work
area for a file.

All reco~ds from a card file may be
processed in the same work area, or differ­
ent reco~ds from the same file may be proc­
essed in difterent work areas. In the
first case, each GET macro instruction for
the file specifies the same work area. In
the second case, different- GET macro
instructions specify different work areas.
It might be advantageous to plan two work
areas, and to specify each area in alter­
nate GET macro instructions. This permits
the comparison of each record with the
preceding one to determine a possible
change of the control level. 30wever, only
one work area can be specified in anyone
GET macro instruction.

When a card file is processed in the
non-overlap model a GET macro instruction
for the file (1) initiates the reading of
the next record, (2) moves the data from
the input area to the work area when the
read operation is complete, and (3) trans­
fers control to the main program. When a
card file is processed in the overlap mode,
the GET macro instruction for the file (1)
moves a record, as soon as it is available,
from the input area into the work area, (2)
initiates the next read operationl and (3)
immediately transfers control to the main
program.

When a combined file is processed and
data are to be punched into the input
cards l use one of the programming methods
described in this section in the discussion
of the LOM macro instruction. Also refer
to Programming Considerations for Combined
Files in the preceding description of the
PUT macro instruction.

CRDPR MACRO I:NSTRUCTION (IBM 2560 MFCM)

This macro instruction (faRD ~Bint) applies
only to an IBM 2560 MFCM equipped with the
card-print feature. The format is as fol­
lows:

r------T----------T-----------------------,
IName IOperation IOperands I
f------+----------+-----------------------i
I [nameJICRDPR I,workname,printarea I l ______ ~ __________ L _______________________ J

Because this instruction does not refer
to a specific file, it does not have a file
name as operand 1; the absence of this
operand is indicated by a comma. The sec­
ond operand is the name of the work area,
and the third operand is the narue of the
card-print area.

A CRDPR macro instruction moves one line
of information from the specified work area
to the card-print area. However, printing
does not take place until the card is being
moved into and through the print station by
the execution of a subsequent GET, PUT, or
EOM macro instruction. It is therefore
very important to write the CRDPR macro
instruction in proper relationship to PUT,
GET, or EOM macro instructions pertaining
to the same card. The same rules that
apply to the stacker-select CNTRL macro
instruction for the IBM 2560 MFCM are also
applicable to the CRDPR macro instruction
(see No File Name Specified under Si:acker
Selection (SS) for the IBM 2560 MFCM).

You must write one CRDPR macro instruc­
tion for each line to be printed. If two
CRDPR macro instructions are issued for the
same line, only the second one will be
executed. At the time of printing. all
print lines, i.e., up to six, are printed
simultaneously. It is not possihle to
print only with print head 1 during one
print operation and then with print head 2
and/or another print head during another
print operation. If no data is to be
printed on a line~ simply do not enter any
data into the associated print area or, if
processing was perforrred in the area, clear
the area before printing takes place.

CNTRL MACRO INSTRUCTION

The CNTRL macro instruction causes stacker
selection to be performed on the device
associated with the car~ file. You must
include a CONTROL=YES entry in the DTFSE
file definition statement if you intend to
issue a CNTRL macro instruction for the
card file.

r------T---------T------------------------,
IName I Operationl Operands I
r------+---------+------------------------i
I [nameJICNTRL Ifilename,SS,n I l ______ ~ _________ ~ ________________________ J

The first operand specifies the name of the
card file for which the device operation is
described. The mnemonic SS indicates that
stacker selection is to be performed.

Specify the stacker into which the cards
are to be selected as third operand (n).

Stacker Selection (8S) for the IBM 25~QL
Model Ai and A2

Either of two stackers can be selected.
Cards fed into the IBM 2520 normally fall
into stacke~ 1. The stacker selection
mnemonic (SS) is used to select a card into
the stacker, specified by the third opera~d
n in this macro instruction. Specify 1 for
stacker 1 and 2 for stacker 2.

If two stacker select CNTRL macro
instructions are issued for the same file
before the next GET or PUT macro instruc­
tion for that file, the second CNTRL macro
instruction overrides the first. When
using stacke~ selection ensure that the
instruction is in proper relationship to
the GET, PUT, or EOM macro instruction
referring to the card to be selected:

1. Processing in overlap mod~. The stack­
er select CNTRL must be the last macro
instruction preceding the GET or PUT
~hat refers to the card to be selected.
The example below selects the card, the
contents of which are transferred to or
from the work area by the GET (or PUT)
macro instruction.

CNTRL AAA,SS,n
-------------- no GET or PUT
-------------- referring to file AAA
GET (or PUT) AAA

2. Processing in non-overlap mode. The
stacker select CNTRL must be issued
after the GET macro instruction or
before the PUT macro instruction that
moves the card to be selected.
The example below selects the card read
by the GET macro instruction.

GET AAA

CNTRL AAA,SS,n

no PUT, GET or EOM
referring to
file AAA

The example below selects the card
moved by the PU'l' IfJaCrO instruction.

CNTRL AAA,SS,n

PUT AAA

no PUT, GET, or EOM
referring to
file AAA

Instructions for Processing Card Files 37

Stacker Selection (SS) for the IBM 2560
NFCM

Any of five stackers can be selected.
Since the MFCM connected to a Submodel 4
has no stacker 5, all cards selected for
stacker 5 go into stacker 4.

r-------------------T---------------------,
I Operands I 1
~----------T----T---~ Operation I
I filename Icodel n I I
~----------+----+---+---------------------~
I [filename] I SS I 1 I Select stacker 1 I
t----------+----+---+---------------------i
I [filename] I SS I 2 I Select stacker 2 I
~----------+----+---+---------------------~
I [filename] I SS I 3 I Select stacker 3 I
~----------+----+---+---------------------i
I [filename] I SS I 4 I Select stacker 4 I
~----------+----+---+---------------------i
I [filename] I SS I 5 I Select stacker 5 I
l_---------~---_~ ___ ~ _____________________ J

The CNTRL macro instruction for the IBM
2560 MFCM has two forms. One form does not
specify the name of a file, the other does.
The manner in which the forms of the CNTRL
macro instruction are used in the problem
program is different.

No Filename Specified: When the first
operand is omitted, the CNTRL macro
instruction does not specify a file con­
taining a card to be selected; it merely
specifies the desired stacker. If the name
of the file is omitted, its absence must be
indicated by a comma. Hence, the format of
the macro instruction is:

CNTRL ,SS,n

When two CNTRL macro instructions with
this format are issued before the stacker
select operation is performed, the second
CNTRL macro instruction overrides the
fin::t.

Execution of this stacker select CNTRL
macro instruction for the MFCM requires
that the card to be selected is in the
pre-print station when the subsequent PUT,
GET, or EOM macro instruction referring to
an MFCM file is executed.

To ensure t~at the instruction is in
proper relationship to the GET, PUT, or EOM
macro instruction referring to the card to
be selected, observe the following rules:

"i8

1.

2.

Processing in overlap mode. If the
card to be selected is punched by a PUT
macro instruction or if the contents of
the card are rr.oved to a work area by a
GET maCLO instruction~ issue the CNTRL
macro instruction prior to any subse­
quent PUT, GET, or EOM macro instruc­
tion referring to an MFCM file. The
example below illustrates this require­
ment.

PUT (or GET) AAA

CNTRL ,SS,n

no PUT, GET, or
EOM referring to
r.-lFCM files

Processing in non-overlap mode. If the
card to be selected is punched by a POT
macro instruction, issue the CNTRL
macro instruction prior to any subse­
quent GET, PUT, or EOM macro instruc­
tion re~~rring to an MFCM file.
The example below illustrates this
requirement.

PUT AAA

CNTRL,SS,n

no PUT, GET or
EOfJJ referring to
MFCM files

There is one exception to the above
usage. Between the PUT macro instruc­
tion for. a card to be selected and the
CNTRL macro instruction for this card,
a GET macro instruction for the same
file may be inserted. The example
below illustrates this exception.

PUT AAA

GET AAA

CNTRL ,SS,n

no PUT, GET, or
EOt1 referring to
MFCM files

no PUT, GET, or
EOM referring to
MFCM files

If the card to be selected is read by a
GET macro instruction, another GET,EOM,
or PUT macro instruction referring to
the file must be issued prior to the
CNTRL macro instruction for this card.
The example below illustrates this
requirement.

GET AAA

GET AAA
(or PUT AAA
or EOM AAA)

CNTRL ,SS,n

any combination of
macro instructions
referring to
another file

no PUT. GET, or
EOM referring to
MFCM files

File Name Specified: When the first oper­
and is present, the CNTRL macro instruction
specifies the file containing a card to be
selected. Therefore, the format of the
macro instruction is:

CNTRL filename,SS,n

If this format is used. the functions
are the same as described for the stacker
select CNTRL macro instruction for card
files that are to be processed on the IBM
2520, Models Ai and A2.

EOM MACRO INSTRUCTION (COMBINED FILES)

This macro instruction (Enter Overlap Mode)
applies only to combined-files-for which a
previous LOM (Leave Overlap Mode) macro
instruction was issued.

r------T----------T-----------------------,
I Name IOperation IOperand I
~------+----------+-----------------------~
I [nameJIEOM [filename I
l ______ ~----------~-----------------------J

Enter EOM in the operation field and the
name of the file to which the macro
instruction applies as the operand.

This macro instruction causes (1) the
next card to be read into the input area,
and (2) subsequent GET macro instruc·tions
referring to the same file to be executed
in overlap mode. Processing of the file in
overlap mode begins immediately after the
EOM macro instruction has been executed.
For further details regarding the use of
EOM macro instructions, refer to Program­
ming with LOM and EOM Macro Instructions
below.

LOM MACRO INSTRUCTION (COMBINED FILES)

This macro instruction (Leave Overlap Mode)
applies to combined files for which overlap
mode was specified.

r------T----------T-----------------------,
I Name IOperation IOperand I
~------+----------+-----------------------~
1 [nameJILOM 1 filename I L ______ ~ __________ ~ ___ - ___________________ J

Enter LOM in the operation field and the
name of the file to which the macro
instruction applies as the operand.

When a LOM macro instruction is issued"
processing 0,£ the file in non-overlap mode
begins when the next GET macro instruction
for the specified file is executed. This
permits reading a card and punching data
into the same card of a combined file that
is being processed in overlap mode. If a
LOM macro instruction is issued for a par­
ticular file, all subsequent GET macro
instructions fo~ that file are performed in
~on-overlap mode until an EOM macro
instruction is issued.

Programming with LOM and EOM Macro
Instru,ctions

If a card has to be read and then punched,
it must be ~ead by a GET macro instruction
in non-overlap mode. There are three pos­
sible ways to cause the GET macro instruc­
tio~ to operate in non-overlap mode during
this reading and punching of the same card:

1. Provide an OVERLAP=NO detail entry in
the file definition statement for the
file. In this case, the IOCS generates
GET and PUT routines for this file that
operate in non-overlap mode.

2. Do not provide an OVERLAP=NO detail
ent~y in the file definition statement
for the file and, in the source pro­
gram, issue an LOt-l macro instruction
between the OPEN and first GET macro
instructions for the file. In this
case, GET and PUT routines that operate
in the overlap mode are generated for
the file. However, all GET macro
instructions for the file operate in
non-overlap mode.

3. Do not provide an OVERLAP=NO detail
entry in the file definition Statement
for the file and, in the source pro­
gram, precede each GET macro instruc­
tion with a LOM macro instruction and
follow each GET with a test to deter­
mine if a punching operation is to be
performed on this card. If not, opera­
tion of this file can be changed back
to the overlap mode by an BOM macro
instruction.

The first method keeps storage require­
ments at a minimum, but results in a
decrease of program speed.

Instructions for Processing Card Files 39

The second method is the most satisfac­
tory solution when almost all cards of a
file must be both read and punched. The
program speed does not decrease as much as
with the first method because the PUT rou­
tines will operate in the overlap mode.

The third method is usually the most
satisfactory solution when only a few spec­
ified cards in a combined file must be both
read and punched. When this method is
useq, each card is read in the non-overlap
mode and can therefore be subsequently
punched.

However, when punching is not required,
the program immediately begins operation in
the overlap mode. This method requires
some additional main storage positions for
the extra LOM and EOM macro instructions#
but it results in a program that runs at
nearly the same speed as a program operat­
ing entirely in t~e overlap mode.

The coding below is an example of the
use of the LOM and EOM macro instructions.
This coding example assumes that (1) a
combined file (AAA) is to be processed and
(2) data is to be punched into each card of
the file that contains a 7-punch in column
1. It is further assumed that an area
named WORKAAA has been defined.

COMPRl
COMPR2

PUNCHR

LOM AAA
GET AAA,WORfu~AA

CLI WORKAAA.C'7'
BE PUNCHR
EOM AAA

B COMPRl

PUT AAA,WORKAAA
B COMPR2

The macro insi:.r1J<l!tion "LOM AAA" causes
the subsequent GET/for the file AM to be
executed in non-overlap mode. This permits
the punching of data into the same card
that has been read by means of the GET
macro instruction. If punching is required
(a 7-punch" in column 1), control is trans­
ferred to the punch routine (PUNCHR). The
PUT macro instruction for the file may be
followed immediately by a branch to the GET
macro instruction for the file because the
system is still operating in non-overlap
mode.

If punching i~; not required (no 7-punch
in column 1), the EOM macro instruction is
executed# which causes the operating mode
for the file to be cha~ged back to overlap.

40

WAITC MACHO INSTRUCTION

The format of this macro instruction (WAIT
Card) is:

r------T----------T-----------------------,
jName IOperation jOperand j
r------+----------+-----------------------~
I [name] IWAITC I I L ______ L __________ i ______________ ~ ________ J

Since the WAITC macrQ instruction neith­
er ~efers to a particular file nor requests
a particular function, no operand is
required.

The WAITC macro instruction causes the
problem pro,gram to wait for the completion
of all pending card and printer I/O opera­
tions before the next sequential instruc­
tion is executed. This macro instruction
allows you to establish uniform operating
conditions for all card and printer I/O
devices that are used in the program.

In a program using the IOCS, a WAITC
macro instruction must precede the
appropriate programmed halt statement if
one of the following three conditions
exists:

1. Card-input is read in overlap mode.
(In the case of a read error, the WAITC
macro permits a programmed halt to
occur, thus allowing the replacement of
the card in error.)

2. Card-input is read on an MFCM in over­
lap mode from one hopper and in non­
overlap mode from the other hopper.
(Function of the WAITC macro
instruction as above.)

3. The FETCH macro is used to load another
phase of a multi-phase program into
main storage.

Except for. condition 2 above, a WAITC
macro instruction need not be issued for
the replacement of an error card if the
cards of the file are to be read in non­
overlap mode.

Programming with the WAITC Macro
.InstruGtion

A GET macro instruction that refers to a
card file mayor may not immediately
initiate a read operation. This depends on
the operating condition of the I/O device
involved. If the initiation of the I/O
operation is delayed, the IOCS places ,the
device request into a waiting queue. The
IOCS handles the device requests in this
waiting queue and executes the appropriate
I/O operation as the requested I/O devices
become available.

r-----------T--------------------------T-----------T-----------T------------------------,
I I I I I Number of Cayds to be I
I I I I I Returned I
I I I I ~--------------T-----------~
I I ! WAITC I Number of I I Non-error I
11/0 Device IMode of Operation I required IDummy GETS I Error Feed I Feed I
~-----------+--------------------------+-----------+-----------+------------+-----------~
1 2501 1 Non-overlap 1 No I 0 I 2 I I
I ~--------------------------+-----------+-----------+------------+-----------~
I loverlap with one I/O area 1 Yes I 1 I 3 I I
I r--------------------------+-----------+-----------+------------+-----------~
I loverlap with two I/O areasl Yes I 2 I 4 I I
~-----------+--------------------------+----~------+-----------+------------+-----------~
I 2560 i I I I I I
I Feed 1 I Non-overlap I No* I 0 I 3 I 3 I
I ~--------------------------+-----------+-----------+------------+-----------~
I I Overlap I Yes** I 1 I 4 I 3 I
~-----------+--------------------------+-----------+-----------+------------+-----------~
I 2560 1 I I I I I
I Feed 2 I Non-overlap 1 No* I 0 I 2 I 2 I
I ~-----------------------.---+-----------+-----------+------------+-----------~
I I Overlap I Yes** I 1 I 3 I 2 I
~-----------+--------------------------+-----------+-----------+------------+-----------~
I 2520 I Non-overlap I No I 0 I 2 I I
I ~--------------------------+-----------+-----------+------------+-----------~
I I overlap I Yes I 1 I 3 I I
~-----------~--------------------------~-----------~-----------i------------l-----------1
I *WAITC macro instruction is required if a file in the other feed is processed in I
I overlap mode. I
I**A dummy GET is required for both files. I
L _____ ~ __ -------__________________________________ J

Figure 12. Programming with the WAITC Macro Instruction -- Halt and Restart Information

When a GET macro instruction is. issued,
the IOCS makes the desired card record
available to the problem program in the
specified work area. If the problem pro­
gram determines that this record contains
an error~ you can provide a halt (HPR
instruction) to enable the operator to (1)
re~ove and correct the error card, (2)
return it to the hopper, and (3) resume
normal system operation.

Since you have no means-to determine the
status of the waiting queue at the time the
error is detected or the exact position of
the error card in the I/O device, the
standard restart procedures cannot be
applied.

Before writing the HPR instruction, you
must issue a WAITC macro instruction to (1)
establish uniform operating conditions for
all card and printer I/O devices and (2)
determine the exact position of the error
card.

After the execution of the WAITC macro
instruction, the waiting list contains no
pending I/O device requests, except those
for ca·rd printing. The error card (to be
fed as the first card on restart) is deter­
mined by the number of cards that have to
be returned to the input deck after the
non-process runout.

The numbe~ of cards to be returned to
the input deck depends on the I/O device
used and, in the case of an MFCM file, on
the mode of operation. For details refer
to Figure 12 which is a summary of the halt
and restart information.

Dummy GET Macro Instructions. To ensure
proper program functions on restart~ i.e.,
resume processing with the corrected card
record, issue either one or two dummy GET
macro instructions as shown in Figure 12.
For the explanations below~ processing in
the ove~lap mode is assumed~ unless it is
stated that the information applies to
tiles that are processed in the non-overlap
mode.

After the execution of a WAITC macro
instruction, the contents of the card fol­
lowing the e~ror card are already in the
I/O area~ Therefore, the first GET macro
instruction that is encountered after
restart causes the record from the card
following the error card to be moved into
the work area. To make sure that the con­
tents of the corrected error card have been
moved into the work area before normal
processing is resumed, the first GET macro
instruction encountered after restart must
be a dummy GET~ i.e.~ no processing must be
performed on the record moved into the work
area by means of this GET macro instruc­
tion. If an IBM 2501 is used to read the

Instructions for Processing Card Files 41

cards for a file and two I/O areas have
been defined for this file, two dummy GET
macro instructions are required.

If an IBM 2560 MFCM is used to process
two input and/or combined files in one
program, an error card in one file requires
one dummy GET macro instruction on restart
for each of the files with one exception:
Only one dummy GET macro instruction is
required for the file that contains the
error card if (1) the other (non-error)
file is an ~nput file whose cards are read
in non-overlap mode and (2) no GET has yet
been issued for the non-error file. You
must provide a switch to determine whether
or not a GET has already been executed for
the non-error file. This is illustrated in
the coding example shown in Figure 13.

A GET macro instruction for a file that
is to be processed in overlap mode may be
preceded by a CNTRL macro instruction
referring to the same file. If this GET
macro instruction detects an error card, do
one of the following in your restart rou­
tine:

1. Repeat the CNTRL macro instruction
after the dummy GET macro instruction
for the file in your restart routine.

2. Branch to the CNTRL macro instruction
preceding the GET macro instruction
that detected the error card.

Similar rules apply if two files are
processed on the IBM 2560 MFCM in one pro­
gram. Any file-dependent CNTRL macro
instruction that precedes the last GET
macro instruction in either file must be
repeated after the dummy GET macro instruc­
tion for the file and before resuming nor­
mal processing. A preceding file­
independent CNTRL macro instruction (no
file name specified) need be repeated only
once.

Figure 12 is frovided to facilitate
programming of restart routines and to
furnish you with the required card-handling
information. You must inform the operator
about the number of cards to be returned to
and placed in front of the remaining cards
of the input deck. Any run-out cards that
are not to be returned to the input deck
must be placed into the proper stacker
manually.

A halt caused by the IOCS (due to a
machine check) may occur during or
immediately after your restart routine, and
the number of caJ::-ds in the I/O device may
be less than stated in the appropriate
standard procedure. In this case, only
those cards must be stacked manually which
were in the card feed of the I/O device at

42

the time the halt occurred and they do not
have to be returned to the resfective hop­
per.

The coding example in Figure 13 illus­
trates programming with the WAITC macro
instruction. The example includes a sim­
plified restart routine. For the purpose
of this coding example, it is ~ssumed that:

1. two files (AAA and BBB) have been
defined to be read in the two feeds of
the IBM 2560 MFCM,

2. file AAA is to be processed in the
overlap mode and the cards of this file
are to be f~d from hopper 1 of the 2560
MFCM. This file way be an input or a
combined file,

3. file BBB is an input file whose cards
are to be read in non-overlap mode, and

4. any _card of file AAA that does not have
a i-punch in column 1 is an error card
and must be replaced.

Only those instructions that illustrate
programming with the WAITC macro instruc­
tion are shown in Figure 13. These
instructions are identified by sequence
~umbers in parentheses in the rightmost
column of Figure 13. These sequence num­
bers are used as references in the explana­
tions below.
r------T---------T------------------T-----'
IName I Operation I Operand IInstrl
I I I I Sqncel
~------+---------+------------------+-----~
I I • I I
I I . I I
I I . I I
I I GET I BBB, WORK2 (1) I
I IMVI ISW+l,X'OO' (2) I
r I· I I
I I . I I
I I • I I
I I CNTRL I BBB, SS,' 4 (3) I
I I· I I
I I • I I
I I · I I
IRETPT ICNTRL IAAA,SS,2 (4) I
I I GET I AAA, WORKl (5) I
I I CLI I WORK1, C' l' (6) I
I I BE I NOERR (7) I
I I WAITC I (8) I
I I HPR I X' FFF' " 0 (9) I
I IGET IAAA,WORKl (10) I
I SW I B I BYPASS (11) I
I IGET IBBB"WORK2 (12) I
I I CNTRL IBBE, SS, 4 (13) I
IBYPASSIR IRETPT (14) I
INOERR I. I I
I I • I I l ______ ~ _________ ~ __________________ ~ _____ J

Figure 13. Coding Example -- Programming
wi th the WAITC f-.1acro Instruc­
tion

If a card of file AAA does not contain a
1-punch in column 1, the branch to NOERR
(7) is not performed and ~he program exe­
cutes the WAITC macro instruction (8) that
precedes an HPR instruction (9). On
restart, the program executes either one or
two dummy GET macro instructions. Only one
dummy GET macro instruction for file FJ.AA
(10) is executed if no GET macro instruc­
tion has yet been executed for the file
BBB. In this case, the branch instruction
named' SW (11) is executed and the second
dummy GET macro instruction for file BBB
(12) and the stacker select CNTRL macro
instruction (13) for this file are
bypassed. Control is returned to the prob­
lem program by a branch to RETPT to repeat
the CNTRL macro instruction preceding the
GET macro instruction that caused the error
card to be detected.

If a GET macro instruction has already
been executed for the file BBB at the time
the error card is detected, the branch
instruction named SW (11) is not executed.
This instruction has been changed to a
no-operation (BC 0), instruction by means of
the MVI instruction (2) following the GET
macro instruction (1) for the file BBB.

The CNTRL macro instruction for file BBB
(3) is only effective when no error ca~d is
detected.

If an error card is detected, four cards
have to be returned for file AAA and two
cards for file BBB.

If the cards of the file BBB are to be
read in overlap mode, instructions (2) and
(11) have to be omitted.

If the cards of a combined file are also
to be card-printed and this file is to be
processed in non-overlap mode, consider the
following:

Unless successive cards are to be read
which are not to be punched, a GET macro
instruction for a card does not initiate
card movement. Card movement is initiated
by the PUT macro instruction for the
preceding card. Therefore, you must issue
a dummy GET macro instruction prior to the
WAITC macro instruction to ensure that the
desired card-print operation for the card
preceding the error card is properly exe­
cuted.

This is further explained in the coding
example shown in Figure 14.

The coding example in Figure 14 is based
on the following assumptions:

(1) the first card of the file CMBF has
already been read;

(2) data is to be punched into all input
cards; and

(3) all cards that do not contain a
1-punch in column 1 are error cards
and must be replaced by the operator.

The sequence numbers shown in the right­
most column of Figure 14 are used as
references in the explanations below.

If the card that is made available by
the normal GET (1) is not an error card,
the next PUT for the same file (8) causes
data to be p~inted on the preceding card.
If the card made available by the normal
GET is an e~r.or card, the dummy GET (4)
causes the er.ror card to be moved past the
punch station and the card preceding the
error card is properly card-printed. On
restart, the corrected error card is read
by means of the normal GET (1), punched by
means of the subsequent PUT (8), and card­
printed at the time this PUT macro
instruction is executed for the following
card.

r------T---------T--------------~---T-----l
IName I Operation I Operand IInstrl
I I I I Sqncel
~------+---------+------------------+-----~
I I . I I I
I I . I I I
I I . I I
IREPT IGET ICMBF,WRKC I (1)
I ICLI IWRKC,C'l' 1(2)
I I BE I 8 , NERR I (3)
I I GET I CMBF, WRKC I (4)
I IWAITC I I (5)

I I HPR I X' FFF' ,0 I (6)
I I B I REPT I (7)
I NERR I· I I
I I • I I
I I • I I
I I PUT I CMBF, WRKC I (8)
1 ICRDPR I I (9)
I IB IREPT I
I I . I I
I I· I I L ______ L _________ L __________________ L _____ J

Figure 14. Coding Example -- Programming
with the WAITC Macro Instruc­
tion Involving Card Printing

The programming considerations that
apply to car.d printing are also applicable
to stacker-select CNTRL macro instructions
without a file name as the first operand.

Instructions for Processing Card Files 43

Instructions fo:r Processing Printer Files

The IOCS routines to process printer files
can be included in the problem program
through the use of the macro instructions
d(:=scribed below.

Printer files are always organized
sequentially. The records in a printer
file haVe to be unblocked format-F records.
The length of each record must not exceed
the length of a print line.

D'fFSR Statement

This file definition statement describes
the characteristics of the printer file to
be processed. The name field of the header
entry must contain the name of the file~
and the operation field must contain DTFSR.
For ease of reference, the detail entries
to be used in the operand field of the
DTFSR statement for printer files are des­
cribed below in alphabetical order.

BL,KSIZE=n

This entry specifies the minimum length of
the area(s) to be used by a printer file.
The value of n must be equal to or less
than the number of bytes of the reserved
area(s). You must specify a BLKSIZE entry
for all printer files even though the
IOAREA1 entry is not provided for a printer
using the standard carriage.

Maximum area lengths acceptable to the
IOCS are 120, 132, or 144 bytes, depending
on the number of print positions available.
One byte is the minimum length you must
specify for a printer file.

CONTROL=YES

Provide this detail entry if a CNTRL macro
instruction is to be issued for the file.
The CNTRL macro instruction causes the
printer to perform form spacing and/or form
skipping.

DEVICE=code

This entry is mandatory for all files. It
specifies the I/O device to be used to
process the particular file. One of the
following specifications must be entered
immediately following the equal sign(=) in
this entry.

44

Code Explanation

PRINTER A file is to be printed by an IBM
2203 Printer with a standard car­
riage or by an IB~ 1403 Printer.

PRINTLF A file is to be printed on the
lower feed of an IBM 2203 Printer
with the dual-feed carriage.

PRINTUF A file is to be printed on the
upper feed of an IBM 2203 Printer
with the dual-feed carriage.

Note: If both feeds of an IBM 2203 Printer
WIth du~l-f~ed carriage are used, write
separate DTFSR statements for the file
printed on the lower feed and for the file
printed on the upper feed. If the applica­
tion requires only one feed of the dual~
feed car~iage, the lower feed must be used.
In this case, the DEVICE=PRINTER entry and
not the DEVICE=PRINTLF entry must be
provided in the printer-file DTFSR state­
ment.

IOAREA1=name

This entry applies only if DEVICE=PRINTLF
or DEVICE=PRINTUF has been specified. It
designates the name of the I/O area to be
used by the printer file. The specified
name must be the symbol used in defining
the area in the problem program.

For a printer file for which
DEVICE=PRINTER has been specified (standard
carriage or single file on lower feed of
dual-feed carriage), do not provide the
IOAREA1 entry. The printer automatically
uses the fi~st 144 main-storage positions
as a print buffer (printer output area).
You cannot use these 144 main-storage posi­
tions in the problem program.

Two files printed on the dual-feed car­
riage require two IOAREA1 entries, i. e. I'
one for each file. The print areas for the
lower and upper feed of the dual-feed car­
r.iage must be defined as contiguous areas
in main sto:r::age. The print area for the
lower feed pr.ecedes the print area for the
upper feed (see Figure 15).

Note that you must specify a work area
in addition to an I/O area. Refer to the
description of the WORKA=YES entry.

r--------------------T--------------------l
I Lower-feed I Upper-feed I
I Print Area I Print Area I L ____________________ L ____________________ J

A A
I I
I I
IAddress of IAddress of
ILower-feed Area IUpper-feed Area L________________ l _______________ _

Figure 15. Print-Area Format for Dual-Feed
Carriage

PRINTOV=YES

Include this entry for a printer file if a
PRTOV macro instruction referring to this
file is used in the source program.

TYPEFLE=OUTPUT

This entry, which is required for all prin­
ter files, is used to specify the typc of
file.

WORKA=YES

The WORKA=YES detail entry is mandatory for
all printer files. Enter the name of the
work area, which must be defined in your
problem program, as the second operand in
your PUT macro instructions for the parti­
cular file. The length of a work area must
always be the same as that of the I/O area
(if specified). For additional information
regarding the use of a work area, see Work
Areas under the section Overlapping an-d--­
Storage Areas.

Imperative Macro Instructions

The imperative macro instructions for proc­
essing sequential printer files are des­
cribed in the following order: PUT, CrJTRL,
PRTOV. For a description of OPEN and CLOSE
refer to the section Instructions for Open­
ing and Closing Files.

PUT MACRO INSTRUCTION

This instruction prints logical records
that have been built in a specified work
area.

r------T---------T------------------------l
lName \OperationlOperands l
~------+---------+------------------------~
I [name] I PUT Ifilename,workname I l ______ L _________ L ________________________ J

The first operand specifies the name of the
file; the second operand specifies the name
of the work area in which the records are
built. ~he PUT macro instruction moves the
record from this work area to an output
area. When the output area is full, the
IOCS takes the data in that area and prints
them on the output device specified in the
file definition statement for that file.

Individual records for a logical file
may be built in the same work area or in
different work areas. Each PUT macro
instruction specifies the work area in
which the completed record was built. How­
ever, only one work area can be specified
in anyone PUT macro instruction.

A PUT macr.o instruction for the printer
file (1) moves a record from the work area
to the output area~ (2) initiates the print
operation, and (3) immediately transfers
control to the main program.

The IOCS does not clear the work area
when the PUT macro instruction is executed.
To prevent having interspersed characters
from preceding records in the output
record, ensure that

a) the records use every position of the
work area, or

b) the work area is cleared before the next
record is built.

CNTRL MACRO INSTRUCTION

The CNTRL macro instruction for printer
files causes form spacing or form skipping.
A CONTROL=YES entry must be included in the
file definition statement for a printer
file if one or more CNTRL macro instruc­
tions are issued for the file.

r------T---------T------------------------,
IName 10peration\Operands I
~------+---------+------------------------~
I [name]ICNTRL Ifilename,code,n,m I L ______ L _________ L ________________________ J

The first operand specifies the name of
the file for which the device operation is
to be perfo~med. As the second operand~
enter the mnemonic SP for form spacing or
SK for form skipping. The mnemonics SP and
SK as well as the operands m and n are
described in detail below.

Form Spacing (SP) for Printers

The form spacing mnemonic SP is used to
control line spacing. The operands nand m
specify the number of lines to be spaced; n
specifies immediate spacing (i.e., spacing
when the CNTRL macro instruction is
executed)~ a~d m specifies delayed spacing
(i.e., spacing after the next line has been

Instructions for Processing Printer Files 45

(i.e., spacing after the next line has been
printed by means of a PUT macro
instructio~. The values of both m and n
range from zero to three (0 = no spacing,
i.e., printing on the same line; 3 = two
blank lines, i.e., printing on the third
line) •

r------------T----------------------------,
I Operands I I
~----r---T---i Operation I
Icodel n I m I I
~----t---t---t----------------------------i
ISP I n I ISpace n (n = 0, 1, 2 or 3) I
I I I Ilines immediately I
~----t---t---t----------------------------i
ISP I n I m ISpace n ~ = 0, 1, 2, or 3) I
I I I Ilines immediately and I
I I I I m (m = 0, 1 , 2, or 3) Ii ne s I
I I I lafter printing I
~----t---t---t----------------------------~
I SP I I m I Space m (m = 0, 1, 2, or 3) J
I I I Ilines after printing I L ____ ~ ___ l ___ ~ ____________________________ J

You may omit either operand n or m. If
operand n is omitted, indicate the absence
of the operand by a comma.
Example: CNTRL filename,SP,,2.

Both delayed spacing and immediate spac­
ing may be specified in a single CNTRL
macro instruction preceding a PUT macro
instruction for the same file.

The form will then be spaced n lines
before, and m lines after the PUT macro
instruction is executed. If two separate
CNTRL macro instructions are issued (one
for the delayed spacing and one for the
immediate spacing) it is immaterial which
of the two instructions is issued first.
Normally, however, only one CNTRL is
issued, e.g., CNTRL filename,SP,1,2 (space
one line immediately and two lines after
printing) •

If a delayed-spacing CNTRL macro
instruction is not used before the next PUT
macro instruction for the file, the form is
automatically spaced one line after print­
ing. If two delayed-spacing CNTRL macro
instructions are issued before the next PUT
macro instru,.ction for the file, only the
second CNTRL macro instruction is effec­
tive. If both delayed spacing and skipping
are specified before a PUT macro instruc­
tion for the file, only the last operation
specified will be performed.

To increase the rate of output, use
delayed instead of immediate spacing when­
ever possible.

46

Form Skipping (SK) for Printers

You can control the skipping of lines of a
printed form using the form skipping mne­
monic SK. Use operands nand/or m to spec­
ify the channel of the carriage control
tape to which the form is to be skipped
immediately and/or after printing of a
line.

r-----------r-----------------------------,
I Operands I I
r----T---T--i Operation I
Icodel n 1m I I
t----t---t--t-----------------------------~
I SK I n I ,Skip to carriage-tape channell
, I I In (n=1, 2, ••• ,12) immediately I
~----t---t--t-------------------------~---~
I SK I n 1m ISkip to carriage-tape channell
I , I In (n=1,2, ••• ,12) immediately I
, I I land to carriage-tape channel I
, I , 1m (m=1,2, ••• ,12) after I
I , , I printing I
r----t---t--t-----------------------------~
I SK I 1m ISkip to carriage-tape channell
, I I 1m (m=1,2, ••• ,12) after I
I I I I printing I L ____ L ___ ~ __ ~ _____________________________ J

You may omit either operand n or m~ If
operand n is omitted, indicate the absence
of the operand by a comma.
Example: CNTRL filename,SK,,12.

When you issue two delayed skipping
CNTRL macro instructions before the next
PUT macro instruction, only the skipping
specified in the second CNTRL rracro
instruction is effective. When both del­
ayed and immediate skipping are specified
either in one or in two successive CNTRL
macro instructions, skipping is performed
as indicated in both specifications togeth­
er (i.e., skip to channel n before print­
ing, and to channel m after printin~. To
increase the rate of output, use delayed
rather than immediate skipping whenever
possible.

PRTOV MACRO INSTRUCTION

r------T---------T------------------------,
I Name IOperationlOperands I
r------t---------t------------------------1
I [name] I PRTOV I filename,n [, address] I l ______ ~ _________ L ________________________ j

Use this macro instruction
~in!-OVerflow) for printer files to ena­
ble the program to recognize the end of a
page. In the operand field, you must spec­
ify the name of the file to which the
instruction pertains and the carriage-tape
channel indicator Cn equal to 9 or 12) to
be tested. If you provide your own routine
to which the program should branch on an
overflow condition, specify the name of the
routine as the third operand.

The PRTOV macro instruction allows you
to check for printer-overflow conditions by
testing whether the channel 9 or channel 12
indicator has been set on:

• before the execution of the last
(preceding) PUT macro instruction refer­
ring to a printer with the standard
carriage,

• before the execution of the last PUT
macro instruction referring to a printer
with the dual-feed carriage when only
the lower feed is used, and

• before the execution of the next to last
PUT macro instruction referring to a
printer with the dual-feed carriage when
both feeds are used.

However, if a skip has been performed or
more than one line has been spaced after
the last PUT macro instruction (or after
the next to last PUT if both feeds of a
dual-feed carriage printer are used), a
punch in channel 9 or 12 that may then be
sensed is lost and cannot be determined by
a PRTOV macro instruction.

The program branches to your end-of-page
routine if the tested indicator is on and
the name of your routine has been specified
as the third operand. In the end-of-page
routine, any Ioes macro instruction (exce~t
PRTOV) may be issued, e.g., to print page
totals and, upon a skip to channel 1, head­
ing lines on the new page. At the end of
the routine, control must be returned to
the lOCS by branching to the address con­
tained in register 14.

If IOeS macro instructions are used in
the end-of-page routine, the contents of
register 14 must be saved before these
instructions are executed.

If a third operand has not teen speci­
fied in the PRTOV macro instruction, an
automatic skip to channel 1 is performed
when the tested indicator is on.

The DTFSR file definition statement must
have a PRINTOV=YES entry when a PRTOV macro
instruction is issued for the file.

Instructions for Processing Printer Files 47

Instructions for Processing Printer-Keyboard Files

Input and output records for printer­
keyboard files must be unblocked format-F
records. The input record length may range
from 2 to 511 bytes, the output record
length, from 1 to 511 bytes. However, if
the simulated carriage-control tape feature
is used, the output length is limited to
125 bytes.

The IOCS routines to process input or
output files on the IBM 2152 Printer­
Keyboard can be included in -the problem
program through the use of the macro
instructions described in this section.
Use the DTFPK file definition statement to
describe your file. Printer-keyboard out­
put files with carriage control also
require a DTFLC statement to define a line­
counter table. This line-counter table
simulates a carriage-control tape.

DTPPK Statement

This file definition statement describes
the characteristics of the file to be
processed. Since both printer-keyboard
input and output files can be processed in
a single program, you must write a separate
DTFPK statement for each file. However,
only one printer-keyboard input and one
printer-keyboard output file can be defined
in a single program. If both input and
output operations are performed on the
printer-keyboard in a single program, and
if skipping or use of the print-overflow
routine is desired, take into consideration
that line advances resulting from READ
macro instructions are not registered by
the line-counter.

The name field of the header entry must
contain the file name, and the operation
field must contain DTFPK.

The detail entries to be made in the
operand field describe the file and specify
symbolic addresses of routines and areas
used during the processing of the file.
They may appear in any order. For ease of
reference, they are discussed below in
alphabetical order.

BLKSIZE=n

This entry specifies the length of the
printer-keyboard input or output records.
The specification n must be equal to, or
greater than, the number of bytes contained
in the longest record. The maximum record
length is 511 bytes. If a line-counter
table (LCTABLE=YES or PRINTOV=YES) is spec-

48

ified for an output file, the record length
and, therefore, the BLKSIZE must not exceed
125 bytes to avoid line overflow and the
resulting unaccountable line advances. The
minimum record length is two bytes for
input files (to allow for EOF indicator
/*), and one byte for output files.

Note that the actual length of an input
record is determined not by the BLKSIZE
entry, but by pressing the EOT
(End-of-Transmission' key to indicate the
end of a data record.

A BLKSIZE entry is mandatory for input
and output files.

CONTROL=YES

This entry is re.quired if a CNTRL macro
instruction is issued for an output fileo
A CNTRL macro instruction causes spaclng or
skipping of the form on the printer­
keyboard. If skipping is desired, enter
the detail entry LCTABLE=YES in the DTFPK
statement and define a line-counter table
by the DTFLC statement.

Note that a CONTHOL=YES entry is
required if LCTABLE=YES is specified.

EOFADDR=name

This entry is mandatory for input files.
It specifies the name of the routine in the
problem prog+am to which the IOCS branches
if the WAITF macro instruction in the prob­
lem program detects an end-of-file condi­
tion~ In the end-of-file routine you can
perform any operation required for the end
of the file. Usually, a CLOSE macro
instruction is issued.

To indicate the end-of-file condition on
the printer-keyboard enter /* as the first
two characters of a record.

Note: If in a mainline program the end-of­
file routine calls EOJ, you must also close
all disk files in this ehd-of-file routine.

IOAREA=name

This entry specifies the name of the input
or output area to be used for the file.
The name must be the symbol used to define
the area in the source program. The area
must be large enough to accommodate the
largest record as defined in the BLKSIZE
entry. The I/O area is not cleared by the
Ioes.

The IOAREA entry is mandatory for an
input file. Although the length of the
input area must be equal to the maximum
record size, the records entered need not
fill the entire area, since the operator
indicates the end of the data record by
pressing the End-of-Transmission (EOT) key
on the printer-keyboard. If you omit the
IOAREA entry for an output file, then the
output area (INQOPT) allocated at the time
the Monitor is generated is used for the
file. This output area is provided if the
generated Monitor contains the inquiry
facilities. (For a description of the use
of the printer-keyboard output area in the
Monitor refer to the section The Inquiry
Program) •

LCTABLE=YES

This entry is optional for an output file.
It indicates the presence of a table that
simulates a carriage-control tape for the
printer-keyboard. The table associates
lines with channel numbers. These channel
numbers may then be specified in a CNTRL
macro instruction in the program to provide
form skipping, and in a PRTOV macro
instruction to provide overflow-printing.

You must describe the line-counter table
by the DTFLC statement.

PRINTOV=YES

Include this entry if a PRTOV macro
instruction for an output file is used in
the program to test an overflow condition.
If PRINTOV=YES is specified, control and
line-counter routines are generated auto­
matically and the entries CONTROL=YES and
LCTABLE=YES are not required in the DTFPK
file definition statement. However, you
must define a line-counter table by a DTFLC
stat.ement.

RECSIZE=(register)

This entry specifies a register that con­
tains the length of the output record at
the time a PUT macro instruction is execut­
ed in the program. You may specify in
parentheses anyone of the registers 8
through 13# or a symbolic name that has
been equated to one of the registers 8
through 13.

In your problem program, load the length
of the record into the specified register
before issuing the corresponding PUT macro
instruction. The maximum record length is
511 bytes. If a line-counter table is
specified, the record length must not
exceed 125 bytes. The register must con­
tain the length of the record in binary
format. If the record length loaded into

the register exceeds the length specified
in the BLKSIZE entry, the record is trun­
cat~d on the right by the number of charac­
ters in excess of the specified BLKSIZE.

The RECSIZE entry is optional. However,
you are strongly recommended to use this
entry to save processing time. If you omit
the entry, the number of bytes specified in
the BLKSIZE entry will be printed; e.g., if
your record is 5 bytes long, BLKSIZE=125,
and RECSIZE is not specified, 125 charac­
ters (5 as desired and 120 blanks) are
printed.

TYPEFLE=code

This mandatory entry is used to specify the
type of file.

Type of File

INPUT An input file

OUTPUT An output file

If you use both a printer-keyboard input
and a printeL-keyboard output file, you
must issue a DTFPK statement for each file.

WORKA=YES

The WORKA=YES entry is mandatory for
printer-keyboard output files. Enter the
nam~ of the work area as the second operand
in your PUT macro instructions for the
particular fil~. The IOCS assumes the
length of a work area to be the same as
that of the I/O area, or to be equal to the
value in the RECSIZE register if RECSIZE
~as specified. When WORKA=YES is omitted,
a warning m~ssage is given, but the assem­
bly continues.

DTPLC Statement

The DTFLC statement describes the charac­
teristics of the simulated carriage-control
tape. It is used for an output file on the
printer-keyboard to define the line-counter
table. If DTFLC is specified, either the
LCTABLE and CONTROL entries or the PRINTOV
entry must be included in the DTFPK state­
ment for the file.

The format of the DTFLC statement is as
follows:

r----T----------T-------------------------,
INamelOperation \Operands I
~----+----------+--~----------------------~
J IDTFLC Iformsize,E1,E2, ••. ,E48 I L ____ ~ __________ ~ _________________________ J

The f~rst operand (formsize) refers to a
decimal value (1 to 254) specifying the

Instructions for Processing Printer-Keyboard Files 49

total number of lines on the form. The
remaining operands, E1,E2, ••• ,E48, refer to
five-digit decimal values. The first three
digits indicate a line number (001 to 254),
to which a channel number (01 to 12) is
assigned in the fourth and fifth digits.
Only one channel must be assigned to a
line, but more than one line can be
assigned to a channel.

Channel 01 must be specified at least
once. There are no limitatioLs as to the
sequence of entries. The maximum number of
line and channel entries is 48. The name
field of the DTFLC statement must be blank.

An example of the entries in the DTFLC
is given below. Note that high-order zeros
must be present in each entry except the
formsize entry.

Example:
r----T-----T------------------------------,
INameloper-IOperand I
I I ationl I
~----+-----+------------------------------~
I I DTFLC I 72,00601,01203,06612,06712 I

I \ ITT T :
I I INumber of Line Channel I
I I I lines Number Number I
I I I (Formsize) I l ____ ~ _____ ~ ______________________________ J

Note: The line-counter registers only
those carriage advances that are initiated
by the execution of PUT macro instructions
(i.e., the automatic one-line space which
occurs during the execution of a PUT) and
by CNTRL macro instructions. The line
counter does not register carriage advances
caused by:

1. any external manipulation of the form,
i.e., advancing the carriage by hand or
switching the On-line, Off-line key;

2. execution of READ macro instructions
for the printer-keyboard;

3. line overflolrls due to repeated printing
with suppressed spacing (CNTRL with
delayed space 0).

It is your responsibility to consider
the effects of tne above conditions during
the execution of the program.

Imperative Macro Instructions

The imperative macro instructions for proc­
essing printer-k'=yboard files are described
in the following order: PUT, READ, WAITF,
CNTRL, PRTOV. For a description of OPEN
and CLOSE refer ~o the section Instructions
for Opening and Closing Files.

50

PUT MACRO INSTRUCTION

r------T---------T------------------------,
IName I Operation I Operands I
t------+---------+------------------------~
I [name] IPUT Ifilename,workname I l ______ ~ _________ ~ ________________________ J

The first operand specifies the name of
the file; the second operand specifies the
name of the work area in which the records
are built. You can have more than one work
area if you issue separate PUT macro
instructions for wiiting records from each
area.

When a printer-keyboard output file is
processed, a PUT macro instruction (1)
moves a record from the work area to the
printer-keyboard output area, (2) initiates
the print operation, and (3) returns con­
trol to the main program. The length of
the record moved to the output area is
derived .from the BLKSIZE entry in the DTFPK
statement, or, if RECSIZE is specified,
from the contents of the register specified
under the RECSIZE ent~y.

Note that the IOCS dces not clear the
work area o~ the output area after a PUT
macro instruction. You should ensure that
no characte~s from a preceding record
remain in the work area.

READ MACRO INSTRUCTION

r------T---------T------------------------,
I Name 10perationiOperand I
r------+---------+------------------------~
I [name] I READ I filename I l ______ ~ _________ ~ ________________________ J

This macro instruction is used for printer­
keyboard input files. The operand
specifi,es the name of the file from which
the record is tq be read.

The READ macro instruction transfers the
characters typed on the printer-keyboard to
the I/O area specified in the IOAREA detail
entry of the DTFPK file definition state­
ment. An incorrectly typed-in record can
be cancelled by pressing the Cancel key.
The input a~ea is then cleared and the
input re~ord can be re-entered.

The READ macro instruction is executed
in the overlap mode, i.e., after the READ
has been issued, program execution contin­
ues while the operator enters the input
record. The actual length of the record is
determined by pressing EOT. The maximum
length of the record is defined by the
BLKSIZE entry. If the maximum length is
reached before EOT is pressed, the keyboard
locks. Before the input record can actual-

ly be processed, you must issue a WAITF
macro instruction to ensure that the record
has been completely transferred to main
storage.

Note that the input area is not cleared
by the IOCS when you issue a READ macro
instruction. If your input records do not
have the same length, clear the input area
before issuing a READ macro instruction.

HAITF MACRO INSTHUCTION

r------T---------T------------------------,
IName IOperationlOperand I
~------+---------+------------------------~
'[nameliWAITF I filename 1 l ______ ~ _________ ~ ________________________ J

The operand specifies the name of the file
for which you issue the WAITF macro
instruction. The WAITF macro instruction
ensures that the execution of the preceding
READ macro instruction has been successful­
ly completed. You must issue a WAITF macro
instruction before processing the record
read by the associated READ macro instruc­
tion.

CNTRL MACRO INSTRUCTION

Use the CNTRL macro instruction to specify
line spacing or form skipping for a
printer-keyboard output file. You must
include a CONTROL=YES entry in the DTFPK
file definition statement if you issue a
CNTRL macro instruction.

For skipping~ you must also specify the
DTFPK detail entry LCTABLE=YES and a DTFLC
statement to define a line-counter table
simulating the carriage-control tape.

r------T---------T------------------------l
IName IOperationlOperands 1
~------+---------+------------------------~
~[namellCNTRL Ifilename~code,n,m 1 l ______ ~ _________ ~ ________________________ J

The CNTRL macro instruction contains CNTRL
in the operation field, and the name of the
file as the first operand. As the second
operand (code), enter the mnemonics SP (for
spacing) or SK tfor skipping). The mnemon­
ics SP and SK, and the operands nand mare
described in detail below.

Form Spacing (SP) for the Printer-Keyboard

Enter SP as the second operand -(code) in a
CNTRL macro instruction to specify line
spacing. The operands nand m specify the
number of lin[es to be spaced;. n s pecif ies
immediate spacing (i.e., spacing when the
CNTRL macro instruction is executed)~ and m
specifies delayed spacing (i.e.~ spacing
after the next line has been printed by

means of a·PUT macro instruction). The
values of both m and n range from zero to
three (0 = no spacing, i.e., printing on
the sam~ line; 3 = two blank lines, i.e.,
printing on the third line).

r------------T----------------------------,
1 Operands I I
t----T---T---~ Operation I
Jcodel n I m I I
t----+---+--~+----------------------------~
,SP 1 n' ISpace n(n = 0, 1, 2 or 3) I
I I I Ilines immediately I
t----+--~+-~~+----------------------------~
[SP I n I m I Space n(n = 0, 1, 2, or 3) 1
I 1 I Ilines immediately and I
I I I Im(m = 0, 1, 2, or 3) lines I
I , , lafter printing 1

t----+---+---+----------------------------~
'-SP I I m ISpace m(m = 0, 1, 2, or 3) I
I , 1 Ilines after printing I l ____ ~ ___ ~ ___ ~ ____________________________ J

You may omit either operand n or m. If
you omit operand n, indicate the absence of
the opel;and by a comma.
Example: CNTRL filename,SP,,2.

Both delayed spacing and immediate spac­
ing may be specified in a CNTRL macro
instruction preceding a PUT macro instruc­
tion for the same file. If you use two
separate CNTRL macro instruction for
immediate and delayed spacing, specify
immediate spacing before delayed spacing in
order for both specifications to be effec­
tive. If a delayed-spacing specification
precedes an immediate-spacing specifi­
cation, only the immediate spacing is exe­
cuted.

If a delayed-spacing CNTRL is not issued
before the next PUT macro instructio~ for
the same file, the form is automatically
spaced one line after printing. When two
delayed-spacing CNTRL macro instructions
are issued before the next PUT macro
instruction tor the file, only the second
delayed-spacing CNTRL is effective. If
both delayed spacing and skipping are spec­
ified before a PUT macro instruction for
the file, only the last operation specified
will be performed.

~ If you issue a CNTRL macro instrUC­
tion with delayed space 0, the automatic
space perfo~med during the execution of the
PUT macro instructio~ is suppressed and the
type head remains in the print position
following the' last character printed.
Hence, if the end of the print line is
reached during execution of a succeeding
PUT macro instruction, an automatic advance
to the next line occurs. This advance is
not registe~~d in the line counter table.

To increase processing time, use delayed
rather than immediate spacing whenever
possible.

Instructions fo~ Pro~essing Printer-Keyboard Files 51

Form Skipping (SK) for the Printer-Keyboard

Enter SK as the second operand (code) in a
CNTRL macro instruction to specify form
skipping. Operands nand/or m specify the
channel to which immediate and/or delayed
skipping is to be performed.

r-----------T-----------------------------,
I Operands I I
t----T---T--~ Operation I
I code I n 1m 1 I
t----+---+--+-----------------------------i
ISK I n I ISkip to carriage-tape c~annell
I I I In (n=1,2 ••• ,12) immediately I
~----+---+--+-----------------------------~
ISK I n 1m ISkip to carriage-tape channell
I I I In (n=1,2, ••• ,12) immediately I
I I I land to carriage-tape channel I
I I I 1m (m=l, 2 , ••• , 12) after I

.1 1 I 1 printing 1
t----+---+--+-----------------------------i
ISK I 1m ISkip to carriage-tape channell
I I I 1m (m=1,2, ••• ,12) after I
I I I 1 printing I l ____ ~ ___ ~ __ ~ _____________________________ J

You may omit either operand n or m~ If
you omit operand n, indicate the absence of
the operand by a comma.
Example: CNTRL filename,SK,,12.

When two delayed-skipping CNTRL macro
instructions are issued before the next PUT
macro instruction, only the skipping speci­
fied in the second CNTRL macro instruction
is €:'!ffective.

When you specify delayed and immediate
skipping in two separate CNTRL macro
instructions, issue the specification for
immediate skipping first in order for both
specifications to be effective. If you
specify delayed skipping first, only the
immediate-skipping specification is execut­
ed.

If you use form skipping for a printer­
keyboard output file, you must define a
line counter table in the program. This
requires a LCTABLE=YES entry (unless
PRINTOV=YES has been specified) in the
DTFPK statement and a DTFLC line-counter
definition statement.

To increase processing time use delayed
rather than immediate skipping whenever
possible.

52

PRTOV MACHO INSTRUCTION

r------T---------T------------------------,
IName I Operation I Operands I
t------+---------+------------------------1
I [nameJIPRTOV Ifilename,n[,address] I l ______ ~ _________ ~ ________________________ J

This macro instruction (PRinT OVerflow)
applies to pLinter-keyboard-outpu~files.
In the operand field, specify the name of
the file to which the instruction pertains
and the channel indicator (n equal to 9 or
12) to be tested. If you provide a routine
to which the program should branch on an
overflow condition, specify the name of
this routine as the third operand.

The PRTOV macro instruction allows you
to check for printer overflow conditions by
testing the channel 9 or the channel 12
indicator. The channel 9/12 indicator is
set on whenever a PUT or CNTRL macro
instruction increases the line counter to
or beyond the line number associated with
channel 9 (12). The indicator is set off
after it has been tested by a PRTOV state­
ment or when channel 1 is reached.

If you specify the address of a routine
as third operand, the program tranches to
this routin~ if the tested indicator is on.
In the specified routine, you may issue any
IOCS macro instruction except PRTOV. This
allows you, for instance, to print overflow
page headings. At the end of the routine,
return cantLol to the IOCS by tranching to
the address contained in register 14.

If you use IOCS macro instructions in
your routine, you must first save the con­
tents of register 14 to prevent losing the
return address. If you do not provide your
own overflo~ routine, an automatic skip to
channel 1 is performed when the tested
indicator is on.

Include a PRINTOV=YES in the DTFPK file
definition statement when you use the PRTOV
macro instruction for a printer~keyboard
output file, and provide a line-counter
table simulating the carriage-control tape
by means of a DTFLC statement.

Instructions for Processing Magnetic Tape Files

The laCS provides routines for processing
magnetic tape files. These files are proc­
essed sequentially. Records in magnetic
tape files can be blocked or unblocked
format-F, format-V, or format':'U records.
You must describe your magnetic tape file
in the source prOgram using the DTFMT file
definition statement. To cause the
required I/O operation. you have to issue
imperative macro instructions. The DTFMT
file definition statement and the impera­
tive macro instructions referring to the
magnetic tape files are described in this
section.

DTPMT Statement

The DTFMT statement applies to magnetic
tape files only. The name field of the
header entry must contain the name for the
file and the operation field must contain
DTFMT. For ease of reference, the detail
entries to be made in the operand field are
described below in alphabetical order.

ALTTAPE=code

This entry specifies the symbolic address
of a magnetic tape drive that will be used
as an alternate when a magnetic tape file
has two or more reels (volumes) of data.

SYSIPT
SYSOPT
SYSnnn

Magnetic Tape Drive

System input tape drive.
System output tape drive.
Any other magnetic tape drives
attached to the system. The
specif.ication nnn may be any num­
ber from 000 to 019.

You can assign the physical tape-drive
address to the symbolic address either when
building t.he syst.em or by means of an
assign (ASSGN) statement read by the Job
Control program before the problem program
is executed. If you use th0 ASSGN state­
ment, you can mount the second (fourth.,
sixth, etc.) reel of tape on anyone of
the magnetic tape drives attached to the
system by merely assigning that drive to
the specified symbolic address. You could
then mount the first (third, fifth~ etc.)
reel of tape on the magnetic tape drive
specified in the DEVADDR entry of the DTFMT
statement for the file.

The method described above allbws the
operator sufficient time to mount the third
reel on the magnetic tape drive specified
in the DEVADDR entry while the records on

the second ~eel are processed. He can
mount the fourth reel on the magnetic tape
drive specified in the ALTTAPE entry while
the records on' the third reel are proc­
essed; and so on.

You can specify the detail entry ALTTAPE
for both input and output files. If you
specify it for an output file~ the laCS
switches the magnetic tape drives in accor­
dance with the ALTTliPE specification on
detecting an end-of-volume condition, i.e.,
when the reflective marker at the end of
the magnetic tape is sensed.

If you issue the entry for an input
tile, the fu~ctions of the laCS vary
depending on the type of labels (if any)
specified in the file.

~. Standard Labels. The laCS switches the
magnetic tape drives in accordance with
the ALTTAPE specification.

2. Non-standard Labels or No Labels. The
laCS has no means of deterrrining the
end of a volume. When a tapemark is
sensed, the laCS transfers control to
the EOFADDR routine, which you may code
to determine whether an end-of-file or
an end-of-volume condition exists. In
the case of an end-of-volume condition,
i~sue an FEOV macro instruction. This
causes the laCS to switch the magnetic
tape drives in accordance with the
ALTTAPE specification, and then to
return cont~ol to the instruction fol­
lowing the FEOV macro instruction.

Note: ALTTAPE must not be specified when
READ=BACK or DTFEN OVLAY is specified.

I/O device assignment is described in
detail in the SRL publication IBM
System/360 Model 20, Disk Programming Sys­
tem, Control and Service Programs~ Form
C24-9006.

BLKSIZE=n

This entry specifies the length of the I/O
area to be used by t~e file. The specifi­
cation n must be equal to the length~ in
bytes" of the area reserved in the problem
program. If the record format is variable­
length, n must be equal to the number of
bytes contained in the longest block of
records.

The maximum length acceptable to the
laCS is 4095 bytes~ which is equal to the
maximum block length for IBM 2415 Magnetic

Instructions for Processing Magnetic Tape Files 53

Tape Units connected to an IBM System/360
Model 20. The minimum block length is 18
bytes, except for tape input files
containing checkpoint records. For these
tape files, the minimum block length is 20
bytes.

If unblocked records or records of unde­
fined format are to be processed in a work
area, consider the following: A GET macro
instruction causes the IOCS to move the
number of bytes specified in the det~il
entry BLKSIZE from the input area to the
work area. A PUT macro instruction causes
the IOCS to move this number of bytes from
the work area to the output area. There­
fore you must ensure that the address of
the work area you use for an output file is
equal to or lower than the upper main­
storage limit minus the BLKSIZE
specification.

Not~: For variable-length unblocked
records, the first four bytes of the work
area contain control information (two bytes
record length and two bytes binary zeros).

CKP'l'REC=YES

This entry is required if a tape input file
contains checkpoint records interspersed
among the data records. When this entry is
provided, the IOCS recognizes the check­
point records and bypasses them.

Magnetic tape files created by means of
the Model 20 IOCS do not contain any check­
point records. Therefore, this entry is
required only if a magnetic tape is to be
read that was created by means of another
program and contains interspersed check­
point records.

If the detail entry CKPTREC is specified
for a tape input file, you must specify a
block length (BLKSIZE entry) of at least 20
bytes. .

A group of checkpoint records is iden­
tified by a header and a trailer identifi­
er, each of which contains the characters
///bCHKPTb/1 (where b = blank). You must
ensure that none of the input blocks con­
tain this character combination in the
first twelve positions.

The IBM System/360 Model 20 DPS IOCS
does not provide for the creation of check­
point records on magnetic tape.

CONTROL=YES

This entry is required if a CNTRL macro
instruction is to be issued for the file.

54

The CNTRL macro instruction causes the
associated magnetic tape drive to perform
operations such as ~ape rewind, rewind and
unload~ backspace, and so on.

DEVADDR=code

This entry specifies the symbolic address
of a magnetic tape drive to be associated
with the particular file. The symbolic
address represents a physical tape drive
address.

SYSIPT
SYSQPT
SYSnnn

Magnetic Tape Drive

System input tape drive.
System output tape drive.
Any other tape drives attached to
the system. The specification nnn
may be any number from 000 to 019.

You may assign a physical tape drive
add~ess to the symbolic address either when
building the system or by means of an
assign (ASSGN) stat..ement read by the Job
control program before the problem program
is executed. If the ASSGN statement is
us ed" a reel of tape may be mounted on any
magnetic tap~ drive that is available at
the time the job is ready to be run; this
drive need then merely be assigned to the
specified symbolic address. Refer to the
SRL publication IBM System/360 Model 20,
Disk Programming System., control and Ser­
vice Programs, Form C24-9006.

EOFADDR=name

This entry is mandatory for input files.
It specifies the nam~ of the routine in the
problem program to which the IOCS branches
on an end-of-file condition. In that rou­
tine, you can perfo~m any operation
required for the end of the file, e.g.
issue a CLOSE macro instruction. However,
you must not issue a GET macro instruction
for this fLle in you; EOFADDR routine.

Note: If, in the end-of-file routine" you
wish to discontinue the processing of a
program that is a mainline program, you
must fi~st close all disk files.

An end-of-file condition is detected by
reading a tapemark and the characters EOF
in the trailer label when standard labels
are specified. If standard labels are not
specified, the IOCS assumes an end-of~file
condition when it reads a tapemark. Since
the IOCS does not distinguish between an
end-of-file .condition and an end-of-volume
conditiQn it no labels or non-stand~rd
labels are specified, include in your
EOFADDR routine a test to determine whether
EOF or EOV has occurred.

ERRIO=name

This entry specifies the symbolic name of a
two-byte area, in which the Ioes places the
address of:

1. The I/O area containing the block that
caused an irrecov~rable read error (if
the name of the error routine is speci­
fied in the ERROPT entry)#

2. The I/O area containing the wrong­
length record (if the name of the
wrong-length record routine is speci­
fied in the WLRERR entry).

This entry may only be issued if
ERROPT=name# and/or WLRERR=name, and two
I/O areas are specified.

ERROPT=code

This entry is required for a tape input
file if you do not want to terminate the
job when a tape read error cannot be cor­
rected by t.he error routine.

IGNORE

SKIP

name

Explanation

The block containing the ~rror is
to be handled as if there were no
errors (it is included in the
block count).

The block containing the error is
to be skipped, i.e., it should not
be made available for processing.
The next block is read from tape
and processing continues with the
first record of that block. How­
ever, the block containing the
error is included in the block
count.

This is the name of a routine in
the problem program to which the
Ioes should branch on a tape read
error. When the Ioes branches to
this routine, the block containing
the error is in the I/O area.

In this routine~ you must not
issue any GET macro instructions
for records in the block·contain­
ing the error because a subsequent
GET macro instruction referring to
the file will read the next block
of records. If you use any other
Ioes macro instructions in this
routine l save the contents of
register 14. At the end of this
routine, you must return control
to the Ioes by means of a branch
to the address contained in reg­
ister 14. When this return branch
has been performed, the Ioes exe­
cutes the instruction following

the GET macro instruction that
made the error ~ecord available in
the input area.

The next GET macro instruction
ref~rring to the file that con­
tai~s the block causing the error
will make the first record of the
next block available for process­
ing.

Note: If# in the error routine,
you wish to discontinue the proc­
essing of a program that is a
mainline program, you must first
close all disk files.

This entry also applies to wrong-length
records if the WLRERR detail entry is not
included. Absence ot the ERROPT entry
causes the job to be discontinued automat­
ically when a per~anent read error occurs.

FlLABL=code

This entry specifies the type of label
processing to be performed.

STD

NSTD

NO

Type of Pro~essinq

For. a tape input file, standard
labels are to be checked. For a
tape output file, standard labels
are to be written.

Non-standard labels exist. The
code NSTD is possible for input
files only. Because the non­
standard labels are skipped, the
non-standard label set must be
terminated by a tapemark.

No labels exist. Note that any
existing volume label on an output
file will be overwritten if you
speci{y FILABL=NO for an output
file.

For a magnetic tape without latels# you can
omit the FILABL entry. The Ioes then
assumes that there are no labels.

IOAREA1=name

This entr.y specifies the name of the I/O
area to be used by the file. This name
must be the symbol used in the DS or DC
statement that defines the area in the
source prog:r:am.

If the file contains format-V records,
r.eserve four bytes of the I/O area for the
blocksize field. The I/O area must be on a
halfword boundary. An IOREG=(register)
entry is required unless unblocked records
are processed or a work area is used.

Instructions for Processing Nagnetic Tafe Files 55

IOAREA2=name

In a Model 20, Submodel 5, you can specify
two input or output areas for a file to
permit overlapping of data transfer with
processing operations. The name must be
identical with the symbol used in the DS or
DC statement defining the area in the
source program. When you use an IOAREA2
entry you must also specify either IOREG or
WORKA. The I/O area must be on a halfword
boundary. If the file contains format-V
records, reserve 4 bytes of the I/O area
for the blocksiz€ field.

IOREG=(register)

This entry specifies a register that con­
tains either the address of a logical input
record that is available for processing or
the address of the area that is available
for building the next output record.
Immediately after the equal sign you must
specify a register number enclosed in
parentheses. Any of the registers 8
through 13 can be used. You may also spec­
ify (in parentheses) a symbolic name that
has been equated to one of the registers 8
through 13. You can use one and the same
register for several files.

You must include an IOREG entry in the
DTFMT file definition statement when:

• blocked input or output recorus are
processed in the I/O area; or

• variable-length unblocked records are
read backward and are processed in the
input area; or

• IOAREA2, but no WORKA is specified.

The register specified in the lOREG
entry is loaded by the lOCS during the
execution of the Open routine for the file
concerned.

A GET (PUT) macro instruction you issue
for the file causes the lOCS to increment
the contents of the register specified in
the IOREG entry bj the number of bytes
contained in the input (output) record.

Omit this entry if you include a
WORKA=YES entry in the DTFMT statement for
the file.

LABADDR=name

You may use up to eight user labels in
addition to the IBM standard file header or
trailer labels. If so, write a routine to
check or build the user label(s). Specify
the name of the routine in the LABADDR
entry. The lOCS branches to this routine
after it has processed the IBM standard

56

label or a preceding user label. (Refer to
the description of the LBRET Macro
Instruction). If this entry is omitted for
an input file containing user labels, these
additional labels are not checked.

For input files# you can determine the
type of label from the first three bytes of
the label contained in the lOCS label area.
For output files, the IOCS indicates the
type of label that is to be written by
putting one of the following codes into the
low-order byte of register 8.

C '0'

C • F'

C 'v'

1'..Y.I2e of Label

Header label (when a file is
opened)
End-of-file label (on an end-of­
file condition)
End-of-volume label (on an end-of­
volume condition)

The high-order byte is blank.

The lOCS places the address of the IOCS
label area into register 9 at the time a
LABADDR routine is being entered. At the
end of a LABADDR routine, you must issue a
LBRET macro instruction to return to the
IOCS. (Ref~r to the description of the
LBRET Macro Instruction).

Note: Do not destroy the contents of
registers 14 and 15. Refer to the discus­
sion on register usage under Programming
Considerations.

READ=code

This entry specifies the direction in which
an input tape is to be read. If you omit
the entry, the IOCS assumes forward read­
ing.

Explanation

FORWARD A magnetic tape is to be read in
forward direction.

BACK A magnetic tape is to be read
backward. However, you cannot
specify READ=BACK when the tape
input file contains variable­
length block records or when the
entry ALTTAPE is specified for the
file.

RECPORM=code

This entry specifies the record format of
the file. The IOCS can handle all of the
different types of records in the same
program. However, all records in one file
must be of the same format. If you omit
the RECFORM entry. the IOCS assumes
unblocked format-F records.

FIXUNB
FIXBLK
VARUNB
VARBLK
Ui.\JDEF

Record Format

Unblocked format-F records.
Blocked format-F records.
Unblocked format-V records.
Blocked format-V records.
Format-U records.

For a description of the record formats
refer to Data Files.

When variable-length records are speci­
fied for a tape output file" the I/O area
must include four additional bytes in which
the block-length indication is built. If
these records are unblocked, the four addi­
tional bytes are used to build the length
indication for each record since each
record is at the same time a block. If the
records are blocked~ the four additional
bytes are used to build the length indica­
tion for the entire block. The minimum and
maximum record lengths permitted are as
shown below. Lengths are given in number
of bytes.

r---------------T----------~-T------------l
1 1 Minimum 1 Maximum 1
I r-----T------+-----T------~
I Record Type JlnputlOutputllnputloutputl
~---------------+-----+------+-----+------~
I FIXUNB 1 1 I 18 1 40951 4095 1
}---------------+-----+------+-----+------~
\ FIXBLK 1 1 I 18 1 40951 4095 \
r---------------+-----+------+-----+------~
1 VARUNB* \14 I 14 1 4091\ 4091 I
~---------------+-----+------+-----+------1
1 VARBLK* \14 1 14 1 40911 4091 I
~---------------+-----+------+-----+------~
\ UNDEF 1 1 1 18 \ 4095\ 4095 \ r------------___ L _____ L ______ L _____ L ______ ~

1 * Excluding the four bytes required 1
I for record length indication. 1 L ___ J

RECSIZE=code

This entry applies to magnetic tape files
containing either blocked format-F or
format-U records.

n

(r)

Explanation

The operand n specifies the number
of b:ytes in an indi vidual rE~cord
for a tape file containing blocked
format-F records.

For a tape file containing records
of undefined format, the operand
(r) specifies a register number
enclosed in parentheses, or a
symbolic name (in parentheses)
that has been equated to a reg­
ister number. You may use any of
the registers 8 through 13. The
IOCS uses the register specified
to indicate the record length of

an input file or to derive from
its contents the record length of
an output file. You must place
the number of bytes contained in
an output record into the speci­
fied register before you can issue
a PUT macro instruction for the
file.

REWIND=code

This entry is used to specify the desired
rewind and u~load operation when an OPEN or
CLOSE macro instruction is issued or when
an end-of-volume or end-of-file condition
is sensed.

UNLOAD

NORWD

Operation

Rewind the magnetic tape when an
OPEN macro instruction is issued,
and rewind and unload the magnetic
tape when a CLOSE macro instruc­
tion is issued or an end-of-volume
or an end-o,f-file condition
occurs.

No rewind is desired. This entry
is mandatory for files to be read
backward.

If the REWIND entry is not included, an
OPEN or CLOSE macro instruction, an end-of­
volume, or an end-of-file condition causes
the magnetic tape file to be rewound but
not unloaded.

TPMARK=NO

This entry applies only to unlabel~d tape
output files (FILABL=NO). If this entry is
included, it will prevent the writing of a
tapemark as the first record on a tape. If
you omit this entry, a tapemark will be
written as the first record.

TYPEFLE=code

This entry is used to specify the type of
file (i.e., input or output).

INPUT
OUTPUT

Type of File

An input file
An output file

VARBLD=(register)

You must specify this entry if you process
an output file with blocked format-V
records and if no work area is specified.
The operand (register) must contain a reg­
ister number enclosed in parentheses, or a
symbolic name (in parentheses) that has
been equated to a register number. Any of

Instructions for Processing 1-1agnetic Tape Files 57

the registers 8 through 13 can be speci­
fied. The contents of the register, which
are loaded by the IOCS, indicate how many
bytes are available in the output area for
building the next record.

After a PUT macro instruction is issued
for a format-V record, the IOCS calculates
the number of bytes still available and
loads this number into the register speci-.
fied in the VARBLD entry. You must.then
compare the length of the next record with
the available space. If the record will
not fit, you must issue a TRUNC macro
instruction to cause the completed block of
records to be written on the magnetic tape
file. When the block has been written the
current record is placed into the beginning
of the output area and becomes the first
record in the nex1; block. For information
regarding the PUT ~nd TRUNC macro instruc­
tions, refer to the descriptions under PUT
Macro Instruction and TRUNC I,1acro InstrliC=
tion.

WLRERR=name

This entry does not apply to files contain­
ing undefined records. It specifies the
name of a routine to which the IOCS will
branch if a wrong-length physical record
(block) is' read.

When the IOCS branches to the specified
routine, the I/O area contains the wrong­
length record. In the routine, you may
perform any desired operation for wrong­
length blocks except issuing a GET macro
instruction that refers to any logical
record in the wrong-length block, because
the GET macro instruction following the GET
that detected the length error makes the
first record of the next block available
for processing. A wrong-length block is
included in the block count.

Note: Do not destroy the contents of
registers 14 and 15. Refer to the discus­
sion on register usage under Proqramming
Considerations.

At the end of your routine, return to
the IOCS by providing a branch to the
address contained in register 14. When
this return branch has been performed, the
IOCS executes the instruction following the
GET that made the wrong-length record
available for processing.

Whenever blocked format-F records or
format-V records are specified
(RECFORM=FIXBLK, =VARUNB, or =VARBLK), the
machine check for wrong-length records is
ignored, and the IOCS generates a pro­
grammed check of record length. For
blocked format-F records, the record length
is considered incorrect if the block that

58

is read is not an integer multiple of the
record length (specified in the RECSIZE
entry) up to the maximum length of the
block (specified in the BLKSIZE entry).
This permits short blocks of records to be
read without a wrong-length record indica­
tion.

For format-V records, the record length
is considered incorrect if the length of
the block is not the same as the block
length speci.fied in the first two bytes of
the block.

If unblocked format-F records are speci­
fied (RECFORM=FIXUNB), the IOCS utilizes
the machine check to determine whether or
not a re~ord is of correct length. Speci­
fying RECFORM=FIXUNB causes the number of
bytes specified in the detail entry BLKSIZE
to be inserted in the generated XIO
instructions. Any record whose length is
not equal to the specified number of bytes
causes a wrong-length-record indication.

Note that the 10CS does not p+ovide the
number of bytes contained' in the wrong­
length record.

If you omit the WLRERR entry and a
wrong-length record is detected by the
IOCS, one of the following results:

1. If you included the ERROPT entry for
this file, the IOCS treats the wrong­
length record as an error block and
handles it according to your
specifications for an error (IGNORE,
SKIP, or branch to th~ error routine).

2. If you omitted the ERROPT entry, the
job will be terminated.

WORKA=YES

This entry specifies that records are to be
processed in a work area rather than in an
I/O area. The name in the DS or DC state­
ment that reserves the work area must be
used as the second operand of each GET or
PUT macro instruction for the file. You
must specify WORKA=YES if you include an
IOAREA2 entry but omit the IOREG entry.

Note: Define the work area on a halfword
boundary if it is used to process blocked
format-V records.

Imperative Macro Instructions

The imperative macro instructions for mag­
netic tape files are described in the fol­
lowing qrder: PUT, GET, CNTRL, TRUNC,
RELSE, LBRET, FEOV. For a description of
OPEN and CLOSE refer to the section
Instructions for Opening and Closing Files.

PUT MACRO INSTRUCTION

This instruction writes logical records
that have been built directly in an output
area or in a specified work area.

r------y---------T------------------------,
IName 10perationiOperands I
~------+---------+------------------------~
I [nameJIPUT \ filename [,workname] I l ______ L _________ L _______ -------__________ J

You can write the PUT macro instruction
wi th one or two operands" depending on the
area in which the records are built.

1. One Operand Specified. Use this format
if output records are to be built directly
in an IIO area. The operand specifies the
name of the magnetic tape file in which you
want to place the record. The file name
must be the same as the one used in the
header entry of the DTFMT file definition
statement.

When blocked records are processed
directly in an output area, the use of an
IIO register is required (refer to the
description of the IOREG=(register) detail
entry under DTFMT Statement). After an
OPEN macro instruction for the file the IIO
register contains the first available posi­
tion of the output area. A PUT macro
instruction causes the IOCS to (1) include
the current record in a record block and
(2) change the address in the IIO register
to identify the next available position of
the output area in which you can build the
next record.

For a file witn unblocked records, a PUT
macro instruction causes the IOCS to write
the affected record onto magnetic tape.
You do not need an IIO register when proc­
essing unblocked records~ unless IOAREA2 is
specified for the file.

If blocked format-V records are built in
the output areal specify an additional
register into which the IOCS places the
number of bytes that are still available in
the output area for the next record (refer
to the VARBLD=(register) entry under QTFMT
Statement and to the description of the
TRUNC Macro Instruction>.

Note: The IOCS does not clear the ou·t:.put
area after a PUT macro instruction. To
avoid having interspersed characters from
preceding records in your output record,
use every position of the output area or
clear the output area after each PUT macro
instruction that writes a block out on
magnetic tape.

2. Two Operands Specified. Use this for­
mat if records are processed in a work
area. The first operand specifi~s the name
of the file. The second operand specifies
the name of the work area from which
records are moved to the output area. When
an output area is full, the IOCS takes the
data in that output area and writes them
onto magnetic tape. You can use more than
one work area if you issue separate PUT
macro instructions for writing records from
each work area.

If blocked format-V records are built in
a work area, the PUT routine checks the
length of the output record to determine
whether or not the record will fit into the
remaining por,tio.n of the output area. If
it does, the IOCS moves the record into the
output area. If the record does not fit,
the PUT routine causes the comfleted block
to be written and then moves the record
into the output area.

DO not specify IOREG=(register) if you
use a work area (ref~r to the description
of WORKA=.YES under DTFMT Statement).

Note that the IOCS does not clear the
work area after a PUT macro instruction.
You should ensu~e that no characters from
preceding records remain in the area either
by clearing the work area after each PUT
macro instruction or by using every posi­
tion of the work area.

GET MACRO INSTRUCTION

This macro instruction makes the next
sequential logical record from a magnetic
tape input file availabl~ for processing in
either an input area or a specified work
area.

When an end-of-file condition is detect­
ed, the IOCS transfer.s control to the end­
of-file routine specified by the EOFADDR
entry in the DTFMT statement.

The GET macro instruction may cause a
read-forward or a read-backward operation.
Specify the type of read operation by the
READ=code entry in the DTFWf statement.

r------T---------T------------------------,
IName I Operation I Operands I
~------+---------+------------------------~
I [name] I GET I filename [, worknameJ I l ______ L _____ ----L------------------------J

You can wr.ite the GET macro instruction
with either one or two operands, depending
on the ar.ea in which the records are
processed.

Instructions for Processing Magnetic Tafe Files 59

1. One Operand S?ecified. Use this format
if records are to be processed directly in
an input area. The operand specifies the
name of the file from which the record is
to be read. This name must be the same as
the one you used in the DTFMTstatement for
the file.

When blocked records are processed in an
input area, you must specify an I/O reg­
ister that the IOCS needs to identify the
next record to be processed. (Refer to the
description of the IOREG=(register) entry
under DTFMT Statement). This I/O register
always contains the address of the current­
ly available record. The GET routine plac­
es the proper address into the I/O reg­
i~3ter •

No I/O register is needed for a file
with unblocked records, unless'IOAREA2 is
specified for the file.

2.. Two Operand~ecified. Use this for­
mat if records are to be processed in a
work area. The first operand specifies the
name of the file. The second operand spe­
cifies the symbolic name of the work area
to be used (refer to the description of the
WORKA=YES entry under DTFMT Statement).
You can specify more than one work area for
a file if you issue separate GET macro
instructions to move the records into the
different work areas (only one work area
can be specified in anyone GET macro
instruction). It might be advantageous to
plan two work areas, and to specify each
area in alternate GET macro instructions.
This allows you to uetermine a possible
change in the control level by comparing
each record with the preceding one.

An I/O register must not be used when
the records are processed in a work area.

CNTRL MACRO INSTRUCTION

The CNTRL macro instruction is used to
control magnetic tape functions that are
not concerned with reading data from, or
writing data on, the magnetic tape.
Include a CONTROL=YES entry in the DTFMT
file definition statement if you issue a
CNTRL macro instruction for the file.

r------T---------T------------------------,
I Name 10perationiOperands I
r------+---------+------------------------~
I [name] ICNTRL /filename,code I L ______ L _________ L __________________ ------J

The control macro instruction contains
CNTRL in the operation field~ and the name
of the tape file for which the operation is
described as the first operand. As a sec­
ond operand, enter one of the mnemonics
listed below to specify the operation.

60

r--------T--------------------------------,
/Operand / I
I (Code) 10peration I
.--------+--------------------------------~
IESF I Backspace jile, i.e., backspace I
/ Itape to preceding tapemark :
t--------+--------------------------------~
IBSR IBackspace record, i.e., back- I
/ I space tape to preceding inter- /
I Iblock gap l
t--------+--------------------------------~
JERG /Erase gap, i.e., erase tape to I
1 Iproduce a gap I
.--------+--------------------------------~
IFSF /Forward space file, I
I Ii. e. I forward space tape to I
I Inext tapemark I
t--------+--------------------------------~
IFSR IForwa~d space record, I
I li.e., forward space tape to I
I /next interblock gap I
.--------+--------------------------------~
!REW IRewind tape I
t--------+--------------------------------~
~RUN IRewind and unload tape I
t--------+--------------------------------~
IWTM IWrite a tapemark I L ________ L ________________________________ J

BSF (Backspace File). Use this mnemonic if
you want to backspace the tape file. When
a CNTRL macro instruction with BSF as the
second operand is executed. the IOCS causes
the tape to be stopped at the tapemark
preceding the first data record of the
file. In the case of an input file, the
tapemark is r.ead during the next read­
forward ope~ation and the program then
branches to your end-of-file routine. In
the case of an output file, the next PUT
macro instruction that refers to the file
causes the tapemark to be overwritten.

BSR (Backspace Record). Use this mnemonic
if you want to backspace a tape file by one
block. When a CNTRL macro instruction with
BSR as the second operand is executed, the
IOCS causes the tape to be stofped at the
block just backspaced in the proper
position for re-reading during the next
read-fo~ward operation. The IOCS immedi­
ately b~anches to your end-of-file routine
if the operand BSR refers to an input file
and a tapema~k is detected when the macro
instruction has been executed.

ERG (Erase Gap): Use this mnemonic if you
want to erase all signals that may be
recorded on a section of tape; i.e./ a
length of blank tape (approximately 3 1/2
inches) is created.

FSF (Forward Space File). Use this mnemon­
i.c if you want to skip the remaining part
or all of a tape input file. When a CNTRL
macro instruction with FSF as the second
operand is executed, the IOCS causes the
tape to be stopped immediately beyond the
tapemark that follows the trailer label set

(if any). In the case of a file without
labels or with non-standard labeis, the
tape is stopped immediately beyond the
tapemark that follows the last block of
data. The IOCS branches to your end-of­
file routine when the tapemark following
the last data record has been encountered.

FSR (Forward Space Reco~d). Use this
mnemonic if you want to skip one block.
When a CNTRL macro instruction with FSR as
the second operand is executed, the IOCS
causes the tape to be stopped at the begin­
ning of the block following the one just
skipped. This is the proper position for
reading during the next read-forward opera­
tion. The IOCS immediately branches to
your end-of-file routine if the operand FSR
refers to an input file and a tapemark is
detected when the CNTRL macro instruction
has been executed.

REW (Rewind Tape). Use this mnemonic if
you want to rewind a tape. When a CNTRL
macro instruction with REW as the second
operand is executed, the IOCS causes the
tape to be stopped at the first record on
the tape. This is the proper position for
reading during a read-forward operation.
The record may be (1) a volume label if
standard labels have been specified, (2) a
tapemark or a data record if no labels have
been specified, or (3) a non-standard label
if non-standard labels have been specified.

RUN (Rewind and Unload Tape): Use this
mnemonic if you want to rewind and unload a
tape.

WTM (Write Tapemark): Use this mnemonic if
you want a tapemark to be written.

Special Considerations for BSR and FSR

When you issue a CNTRL macro instruction
for a tape input file with BSR or FSR as
the second operand, you must consider the
relative position of the tape to the record
being processed.

Unblocked Records and No Work Area. When a
CNTRL macro instruction with BSR as the
second operand refers to

(1) a file that is read forward, the tape
is positioned so that the record being
processed is in the proper position to
be re-read during the next read-forward
operation;

(2) a file that is read backward, ·the tape
is positioned so that the second record
stored on the tape behind the one being
processed is in the proper position to
be read during the next read-backward
operation.

When a CNTRL macro instruction with FSR as
the second operand refers to

(1) a file that is read forward, the tape
is positioned so that the second record
following the one being processed is in
the proper position to be read during
the next read-forward operation;

(2) a file that is read backward~ the tape
is positioned so that the record being
processed is in the proper position to
be re-read during the next read­
backward operation.

Unblocked Records and a Work Area. When a
CNTRL ma~ro instruction with BSR or FSR as
the second operand is executed, the tape is
in the same position as if no work area
were used.

Blocked Records and No Work Area. When a
CNTRL macro instruction with BSR as the
second operand ~efers to

(1) a file that is read forward, the tape
is positioned so that the block in the
input area is in the proper position to
be ~e-read during the next read-forward
ope:r;ation;

(2) a file that is read backward, the tape
is positioned so that the second block
stored on the tape behind the one
currently in the input area is in the
proper position to be read during the
next read-backward operation.

When a CNTRL macro instruction with FSR as
the second operand ref~rs to

(1) a file that is read forward, the tape
is positioned so that the second block
followi~g the one currently contained
in the i~put area is in the proper
position to be read during the next
read-forward operation;

(2) a file that is read backward, the tape
is positioned so that the block in the
input area is in the proper position to
be ~e-read during the next read­
backward operation.

Blocked Records and a Work Area. A CNTRL
macro instruction with BSR or FSR as the
second operand causes the tape to be
positioned as if no work area were used,
except when the last record of a block is
being processed. In this case, the tape is
positioned as described below.

1. When a CNTRL macro instruction with BSR
as the second operand refers to

Ca) a file that is read forward, the
tape is positioned so that the
block following the block whose
last record is currently being
processed is read during the next
read-forward operation;

Instructions for Processing Magnetic Tape Files 61

(b) a file that is read backward# the
tape is positioned so that the
third bloc~ stored on the tape
behind the block whose last record
is currently being processed is
read during the next read-backward
operation.

2. When a CNTRL macro instruction with FSR
as the second operand refers to

(a) a file that, is read forward, the
tape is positioned so that the
third block following the block
whose last record is currently
being processed is read during the
next read-forward operation;

(b) a file that is read backward, the
tape is positioned so that the
block stored on the tape behind the
block whose last record is current­
ly being processed is read during
the next read-backward operation.

For tape output files with blocked
records, you should issue a TRUNC macro
instruction if a partially filled block of
records is to be written on magnetic tape
before a CNTRL macro instruction for the
file is issued.

Effect of CNTRL on Block Count

When a CNTRL macro instruction with BSF,
BSR, FSF, or FSR as the second operand is
issued, the block count written or checked
when using standard labels may be wrong.
The control routine does not update the
block count. If a tape input file with
standard labels is specified and the block
count is incorrect at the end of the volume
or file, a programmed halt occurs.

TRUNC MACRO INSTRUCTION

r------T----------T-----------------------,
I Name IOperation IOperand I
t~-----+----------+-----------------------~
I [nameJITRUNC I filename I l ______ ~ __________ ~ _______________________ J

The name of the file to which this macro
instruction (TRUNCate) refers is the only
operand required~

Use this macro instruction when blocked
output records are to be written onto mag­
netic tape. It may be issued for either
fixed- or variable-length blocked records.
When you issue a TRUNC macro instruction,
the output area being used to build output
records is considered full. The block of
records in the output area is then written
ont~o magnetic tape (as a short block) and
the output area is made available for
building the next block of records.

62

The last ~ecord included in the short
block is the record that was built before
the last PUT instruction preceding TRUNC
was executed. Therefore, if you build
records in a work area and you determine in
the problem program that a record belongs
to a new block, issue a T~UNC macro
instruction followed by a PUT macro
instruction for this particular record.
However, if you build the records in the
output area, determine whether or not a
record belongs to a new block and, if so,
issue a TRUNC macro instruction before you
build the record.

Whenever variable-length blocked rEcords
are built directly in the output area, you
must use the TRUNC macro instruction to
wr i te a 'completed block of records. When
you issue the PUT macro instruction after
each variable-length record is built, the
output ~outi~es supply the numter of bytes
remaining in the output area. From this,
you can determine if the next variable­
length record will fit in the tlock. If
~ot, issue the TRUNC macro instruction to
write otit the block and make the entire
output area available for building the
record. The amount of remaining space is
supplied in the register specified in the
VARBLD entry (see VARBLD=(register) in the
description of the DTFMT Statement).

A TRUNC macro instruction causes no
operation if the preceding PUT

• is ~ssued after the last reco+d of a
block has been built in the output area;

• causes the last record of a block to be
moved from a work area to the output
area for inclusion in the block.

In either case the entire block is written
onto magnetic tape by the PUT macro
instruction.

RELSE MACRO INSTRUCTION

r------T----------T-----------------------,
IName IOperation IOperand I
~------+----------+-----------------------~
I [nameJIRELSE I filename I l ______ ~ __________ ~ _______________________ J

The name of the file to which this macro
instruction (RELeaSE) refers is the only
ope~and required.

You may use this macro instruction when
reading blocked input records from m'agnetic
tape. RELSE allows you to skif the remain­
ing records in a block and continue proc­
essing with the first record of the next
block, which is read when the next GET
macro instruction is executed.

The RELSE macro instruction can be used,
for instance, in a job in which only the
first three records of each block on mag­
netic tape are to be processed. In this
case you must issue three successive GET
macro instructions followed by a RELSE
macro instruction.

Another example of using the RELSE macro
instruction is a Job in which records on
magnetic tape are ca.tegorized, and each
category (perhaps a major grouping) begins
with the first record of a block. Categor­
ies can be' located readily by checking only
the first record of each block.

The RELSE macro instruction discontinues
deblocking of the current block of records,
which may be either of fixed or variable
length. RELSE causes the next GET macro
instruction to transfer a new block to the
input area and make the first record avail­
able for processing. This GET macro
instruction initializes the I/O register or
moves the first record to a work area.

LBRET MACRO INSTRUCTION

r------T----------T-----------------------,
IName 10peration 10perand I
r------+----------+-----------------------~
I ILBRET 11 I
I ILBRET 12 I L ______ L __________ L _______________________ J

This macro instruction (LaBel RETurn)
applies only to magnetic tape-files-con­
taining standard user-labels (URL and/or
UTL) that are to be checked or written.
You must issue a LBRET macro instruction at
the end of your label routine (specified by
the LABADDR entry in the DTFMT statement
for the file) to xeturn to the IOCS after
label processing.

Specify the operand 1 to return to the
IOCS if:

1. an input file with user labels is being
processed and control is to be returned
to the IOCS to eliminate the checking
of one or more user labels. The IOCS
then skips the remaining labels in the
set and processing continues.

2. an output file with user labels is
being processed and control is to be
returned to the IOCS when the last user
label has been built. The IOCS writes
the last label (from the label output
area) and processing continues. A
LBRET macro instruction with a 1 in the
operand field is always required to
terminate an output label set.

Specify the operand 2 to cause further
label processing for:

1. an input file with standard user labels
to retu~~ to the IOCS after each label
has bee~ checked. Then the IOCS makes
the next label, if any, available for
checking in the label input area. When
the IOCS reads the tapemark following
the label set, it terminates label
processing.

2. output files with user labels to return
to the IOCS after each label, except
the last, has been built. The IOCS
causes the writing of the label con­
tained in the label output area. The
IOCS the~ returns to the LABADDR label
routine to allow you to build the next
label. The label set is terminated by
issuing a LBRET macro instruction with
the ope~and 1. For details on writing
standard labels under control of the
IOCS. refer to the description of the
LABADDR entry under DTFMT Statement.

The IOCS requires the values it places
into register.s 14 and 15 before transfer­
ring control to the LABADDR routine.
Hence~ if you want to use one or both of
these .registers in the LABADDR routine,
save their contents before you begin using
them. In addition, you must restore these
contents before issuing the LBRET macro
instruction.

FEOV MACRO INSTRUCTION

This macro instruction (Korce ~nd Qf
yolume) is used for tape input or output
;files to fo~ce an end-of-volume condition
at a point othe~ than the normal tapemark
(input) or the reflective marker (output).
This indicates that the processing of
records on one volume is considered fin­
ished, but that more records for the same
logical file are to be read from or written
into the fo,llowing volume.

r------T----------T-----------------------,
IName 10peration 10perand I
~------+----------+-----------------------1
I [name] IFEOV Jfilename I L ______ ~ __________ ~ _______________________ J

The operand contains the name of the
file to which this macro instruction per­
tains; the name must be the same as the one
specified in the header entry of the DTFMT
statement for the file.

When you issue this macro instruction
for an input tape, the IOCS

1. causes the execution of the operation
specified in the REWIND entry,

2. switches to the next reel on another
drive i~ accordance with the ALTTAPE
detail entry in the DTFMT statement for
the file; and

Instructions for Processing Magnetic Tape Files 63

3. processes the header label (or labels)
as required.

When you issue the FEOV macro instruc­
tion for an output tape, the laCS causes
the last block of records to be written, if
necessary, and writes a tapemark. Then
the roes

1. causes the writing of the standard
trailer label including the accumulated
block count4 and branches to the
LABADDR rout.ine if this is specified;

2. switches to the next reel in accordance
with the ALTTAPE detail entry in the
DTFMT statement for the file; and

64

3. processes the header label (or labels)
as requi,r.ed.

The following example illustrates the
use of the FEOV macro instruction.

If FlLABL=NSTD or FILABL=NO has been
specified for a multi-volume input file,
the laCS cannot detect an end-af-volume
condition. When a tapemark is detected,
the laCS transfers control to the EOFADDR
r.outine, in which you must determine
~hether or not an end-of-volume condition
exists. If so, issue a FEOV macro instruc­
tion to have the Ioes perform the end-of­
volUffi€ functions in accordance with the
detail entries.

Instructions for Processing Sequential Disk Files

The IOCS provides routines for processing
records of sequential disk files. To
utilize the IOCS fUnctions, you must des­
cribe your sequential disk file in the
problem program using the DTFSD file defi­
nition statement, and issue the appropriate
imperative macro instructions to perform
the desired I/O operations.

All records in sequential disk files
must be blocked or unblocked format-F
records.

DTFSD Statement

This file definition statement applies to
sequential disk files only. The name field
of the header entry must contain the name
of the file and the operation field must
contain DTFSD. For ease of reference, the
detail entries to be made in the operand
field are described below in alphabetical
order.

BLKSIZE=n

The operand n specifies the length of the
blocks (in m.unber of bytes) that the IOCS
reads or writes. The maximum BLKSIZE you
are allowed to specify is 27000 for blocked
records and 4096 for unblocked r8cords.

The specified length must be a multiple
of the record length. Since the IBM 2311
Disk storage Drive uses a fixed sector
length of 270 bytes, the IOCS adjusts the
specified block length to the next higher
integer multiple of 270. You must take
this into consideration when defining the
I/O area in the problem program. In the
format-l file label, however, the original­
ly specified block length, not the adjusted
block length, is entered.

Some block sizes could cause a cylinder
overflow, i.e., not all sectors belonging
to one block would be written on the same
cylinder. The IOCS automatically avoids
this situation. A block that would cause a
cylinder overflow is written as the first
block of the next cylinder. One or more
sectors of the full cylinder may remain
unused. If the ~riting of a block would
cause an extent overflow, the samp t(=ch­
nique is used, i.e., the block is written
as the first block of the next extent (if
available) •

The block size of input and correspond­
ing output files should not be different.

COI-1ROUT=YES

This optional entry indicates that a common
IOCS routine is to be generated for several
files of the same type processed by the
same problem program. I/O routines that
fall into th~s category are (1) input rou­
tines, (2) update routines, and (3) output
routines.

By generating a common routine for sev­
eral files it is possible to reduce the
amount of main storage required for the
simultaneous processing of three or more
files of the same type e.g.~ three output
files. If only two files are processed
simultaneously, the amount of main storage
required is not reduced. In some cases, it
is even increased.

CONTROL=YES

This entry is re.quired if a CNTRL macro
instruction is issued for the file. The
CNTRL macro instruction can be used to
initiate a seek operation. Note that this
entry is ignored if you specify two I/O
areas for the file.

DEVICE=DISK11F

This 8nt~y specifies that a fixed-sector
IBM 2311 Disk Storage Drive (Model liar
12) is used as I/O device for the
sequential-access file. If this entry is
omitted or mispunched, the IOCS assumes the
correct device and issues a warning to the
oper:ator.

DSKXTNT=n

The number n specifies the maximum number
of extents in anyone of the volumes for
the file. If the entry is omitted, the
IOCS assumes that there are three extents
tor the file. The IOCS uses this informa­
tion to reserve the storage area in which
the addresses of the extent boundaries are
saved. The maximum number of extents per­
mitted is 99 per file.

DTAREX=name

This entry applies to output files only.
If the last extent of the last volume is
filled with data, control is transferred to
the routine specif~ed in the optional entry
DTAREX=name. If you have not specified a
r.outine, the job is discontinued. The

Instructions for Processing Sequential Disk Files 65

routine specified in the DTAREX entry must
contain the necessary CLOSE macro
instruction{s). For a mainline program
this includes the closing of all disk
files.

EOFADDR=name

The EOFADDR entry is mandatory for all
input files. This entry specifies the name
of the routine in the problem program to
which the IOCS branches when an end-of-file
condition occurs. In that routine, you can
perform any operation required for the end
of the file. Usually a CLOSE macro
instruction is issued.

If you issue a GET or PUT macro instruc­
tion in your end-of-file routine, a halt
occurs. This halt permits no restart
unless you process an update file. In the
case of an update file, you can make a
restart and continue processing. This
allows you to update, i.e., extend, the
file beyond the EOF record by issuing a GET
macro instruction to read a pseudo record.
Replace this pseudo record by the record to
be added to the file. A subsequent PUT
macro instruction writes the added record
onto disk. After all records have been
added to the file, you must simulate an
end-of-file condition.

An end-of-file condition is detected
when the end-of-file record containing /*b
(where b = blank) in the first three bytes
is read. An end-of-file condition in an
input file can also be detected by an
extent overflow, in case there was not
sufficient space for the end-of-file record
within the extent when the file was written
(see the detail entry DTAREX) •

Note: If, in the end-of-file routine, you
want to discontinue/terminate the process­
ing of a program that is a mainline pro­
gram, you must first close all disk files.

ERRIO=name

This entry specifies the symbolic name of a
two-byte area in which the IOCS places the
address of the I/O area containing a block
that caused an irrecoverable read or write
error. Use this entry only if you also
specify ERROPT=name and two I/O areas.

ERROPT=code

Use this entry if you do not want to dis­
continue a job in case a disk read or write
error cannot be corrected by the error
routine.

66

Code
SKIP

name

Explanation
The record block containing the
error is to be skipped, i.e., an
input block should not be made
available for processing. This
specification is not permitted for
output files, nor for input files
that are to be updated.

This is the name of a routine to
which the IOCS should branch on a
disk error. An 8-byte error block
that contains information on the
type of error is made available to
the problem program.

In the error routine, do not issue
any GET or PUT macro instructions
for records in the block that
caused the read or write error,
because a subsequent GET or PUT
macro instruction referring to the
file will skip that block and
process the next block. To branch
back to the next sequential
instruction following the GET,
PUT, or CNTRL macro instruction
which recognized the error, use
the return address in register 14.

The IOCS provides the address of
the 8-byte error block in a stor~
age area to which you can refer by
using a symbolic address consist­
ing of the name of the file plus
an A-suffix. If, for example, the
name of the file involved is
PAYROLL, the address of the error
block is made available to the
problem program in the storage
area PAYROLLA. If you did not
specify ERRIO=name, the IOCS plac­
es the address of the error block
into the storage area PAYROLLA-4.

Note: If, in the error routine,
you want to discontinue the proc­
essing of a program that is a
mainline program, you must first
close all disk files.

The 8-byte error block contains informa­
tion on the type of error, the disk address
where the error occurred, etc. The struc­
ture of the error block is as follows:

Byte 0 first byte of sense information
(status byte); indicates the
following if the corresponding
bit is on:
Bit 0: not used -- set to zero

1: intervention required
2: end of cylinder
3: equipment check
4: data check
5: seek check
6: no record found
7: track-condition check

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

residual sector count

This byte indicates the number
of sectors that could not be
processed by a multi-sector I/O
operation
unit status of Channel Status
Word ~SW); indicates the fol­
lowing if the corresponding bit
is on:

Bit 0: not-equal scan
1 : status modifier
2: not used -- set to zero
3: busy
4 : channel end
5: device end
6 : unit check
7 : not used -- set to zero

used by the IOCS

displacement of Channel Command
Word (CCW)

This number is added to the CCW
address (bytes 6-7) to compute
the actual address of the CCW
for this operation.

Logical Unit Block (LUB) dis­
placement

Byte 6-7 - CCW address

Additional information about the opera­
tion in error can be derived from the CCW
itself.

The sum of the CCW address (bytes 6-7)
and the CCW displacement (byte 4) is the
actual address of the CCW.

CCW

Count
Area

Byte
Byte

Bytes
Bytes
Byte
Bytes
Bytes
Byte

0: command code
1: bit 0 = CCW chaining

indicator
bits 1-7 = sector count

2-3: data address (I/O area)
4-5: count-area address

0: not used
1-2: cylinder address
3-4: head address

5: sector (record) number

For a more detailed description of this
error information refer to the SRL publica­
tion IBM System/360 Model 20, Functional
Characteristics, Form A26-5847. Save the
error information (contained in the,
count-area) , the disk address of the block
that caused the error, and the contents of
the I/O area, because this information is
essential when an alternate track must be
assigned to replace a defective track. In
some cases, a recovery and restart proce­
dUre may not be possible. For this reason,
you should always maintain a duplicate of
every file used in the installation.

If you omit the entry ERROPT=code, the
job will be discontinued automatically when
a permanent dis.k error is detected.

IOAREA1=name

This entry specifies the name of the I/O
area to be used by the file. The name must
be the symbol you specified in the DS or DC
statement defining the area in the source
program. For additional information
regarding the use of the I/O area, see I/O
Areas under Overlapping and Storage Areas.

The length of the area must be equal to
270 bytes or an integer multiple thereof.
If the calculated length is not equal to
270 or an integer multiple thereof, use the
next larger value allowed.

IOAREA2=name

Two input or output areas can be specified
for a file, to permit overlapping of data
transfer with processing operations in a
Hodel 20, Submodel 5. The IOAREA2 entry
must specify a symbolic name identical with
the one used in the DS or DC statement that
sets up the second I/O area. Both I/O
areas must be of the same length.

The length of the area must be 270 bytes
or an integer multiple thereof.

If two I/O areas are used for disk
files, you must also specify a work area or
include the entry IOREG={register).

IOREG= (register)

This entry specifies a register which con­
tains either the address of an input record
that is available for processing or the
address of an output area in which you can
build your next record. As operand, you
may specify any of the registers 8 through
13 (enclosed in parentheses) or a symbolic
name (in parentheses) that has been equated
to one of the registers 8 through 13. You
can use the same register for several
files.

You must include an IOREG entry when
bl09ked input or output records are proc­
essed in the I/O area.

For a file with unblocked records, yoU
can omit the IOREG entry, unless you use
two I/O areas. In that case you must spec­
ify either WORKA=YES or IOREG. However, do
not issue IOREG together with WORKA=YES.

Instructions for Processing Sequential Disk Files 67

RECFORM= code

This entry specifies the record format of
the file. The IOCS can handle both possi­
ble formats of records in the same program.
However, all records in a given file must
be of the same format. If this entry is
omitted, the IOCS assumes unblocked
format-F records.

cod~ Record Format

FIXUNB Unblocked format-F records
FIXBLK Blocked format-F records

RECSIZE=n

This entry specifies the number of bytes in
an individual record. The maximum record
length is 4096 bytes. If records are
unblocked, this entry may be omitted. In
this case, the record length is assumed to
equal the block length specified in the
detail entry BLKSIZE.

TYPEFLE=code

This entry is uSed to specify the type of
file.

INPUT
OUTPUT

A.n input file
An output file

UPDATE=YES

This entry specifies that an input file is
to be updated. when this entry is includ­
ed, a PUT macro instruction will replace,
on disk, the record retrieved by the
preceding GET macro instruction.

VERIFY=NO

You can use this entry only for output
files. When it is specified, the output
records are not checked. When it is omit­
ted, all records written onto disk are
verified; if a write error is detected, the
IOCS attempts to recover the error as des­
cribed in the section Device Error Recov­
ery.

Although more processing time is needed
when the records are verified" you are
strongly recommended to omit the entry
VERIFY=NO unless you require maximum
throughput.

WORIZA=YES

This entry specifies that records are to be
processed in a work area rather than in an
I/O area. The symbolic name used in the DS
or DC statement that reserves the work area
must be used as the second operand of each
GET or PUT macro instruction for the file.

68

Whenever two I/O areas are used for
unblocked records, either the WORKA entry
or the IOREG entry must be used. For addi­
tional information regarding the use and
length of a work area, see the section
Overlapping and Storage Are~~.

Imperative Macro Instructions

The imperative macro instructions for
sequential disk files are described in the
following o~der: PUT, GET, CNTRL. For a
description of OPEN and CLOSE refer to the
section Instructions for Opening and Clos­
ing Files.

PUT MACRO INSTRUCTION

This instruction writes logical records
that have been built directly in an output
area or in a specified work area.

r------T----------T-----------------------,
IName 10peration 10perands I
t-~----+----------+-------------------~---~
I [nameJIPUT Ifilename[,worknameJ I L ______ ~ __________ ~ _______________________ J

You can write the PUT macro instruction
with one or two operands, depending on the
area in whLch the records are tuilt.

1. One Operand SEecified. Use this format
if ~ecords are to be processed directly in
an I/O area. The operand specifies the
name of the file in which you want to place
the record. The file name must be the same
as the one used in the header entry of the
DTFSD file definition statement.

When blocked records are processed
directly in an output area, the use of an
I/O register. is required (refer to the
description of the IOREG=(register) detail
entry under DTFSD statement). For a file
with blocked records, a PUT macro instruc­
tion causes the IOCS to (1) include the
affected record in a record block and (2)
change the address in the I/O register to
identify the next available position of the
output area in which you can build the next
record. After an OPEN macro instruction
the I/O register contains the first avail­
able position of the output area.

For a file with unblocked records, a PUT
macro instruction causes the IOCS to write
the affected record onto disk. If two I/O
areas are specified an I/O register or the
WORKA=YES entry is required.

Note: The IOCS does not clear the output
areaafter a PUT macro instruction. To
avoid having interspersed characters from
preceding records in your output record"
~se every position of the output area.

2. Two Operands Specified. Use this for­
mat if records are processed in a work
area_ The first operand specifies the name
of the file. The second operand specifies
the name of the work area from which
records are moved to the output area. When
an output area is full., the IOCS takes the
data in that output area and writes them
onto disk. You can use more than one work
area if you issue separate PUT macro
instructions for writing records from each
work area.

Do not specify IOREG=(register) if you
use a work area (refer to the description
of the WORKA=YES entry under DTFSD
Statement). -----

Note that the IOCS does not clear the work
area after a PUT macro instruction. You
should ensure that no characters from
preceding records remain in the area either
by clearing the work area after each PUT
macro instruction or by using every posi­
tion of the work area.

GET MACRO INSTRUCTION

This macro instruction makes the next
sequential logical record from an input
file available for processing in either an
input area or a specified work areau

When an end-of-file condition or an
extent end condition is detected~ the IOCS
transfers control to the end-of-file rou­
tine specified by the EOFADDR entry in the
DTFSD statement.

r------T----------T-----------------------,
IName ,Operation 10perands ,
t------+----------+-----------------------~
I [name] IGET I filename [,workname] , l ______ ~ __________ ~ _______________________ J

You can write the GET macro instruction
with either one or two operands~ depending
on the area in which the records are proc­
essed.

1. One Operand Specified. Use this format
if records are to be processed directly in
an input area. The operand specifies the
name of the file from which the record is
to be read. This name must be the same as
the one you used in the header entry of the
DTFSD statement for the file.

When blocked records are processed in an
input area, you must specify an I/O reg­
ister that the IOCS needs to identify the
next record to be processed. (Refer to the
description of the IOREG=(register) entry
in the section DTFSD Statement). This I/O
register always contains the address of the

cur~ently available record. The GET rou­
tine pla~es the proper address into the I/O
register.

No I/O register is needed for a file
with unblocked records, unless two I/O
areas are specified.

2. Two Operands Specified. Use this for­
mat if records are to be to be processed in
a work area. The first operand specifies
the name of the file. The second operand
specifies the symbolic name of the work
area to be used (refer to the description
of the WORKA=.YES entry under QTFSD
Statement). You can specify mor~ than one
work area for a file if you issue separate
GET macro instructions to move the records
to the diff~rent work areas. It might be
advantageous to plan two work areas, and to
specify each area in alternate GET macro
instructions. This allows you, for
instance~ to determine a possible change in
the contr.ol level by comparing each record
with the pre.ceding one.

Do not specify IOREG=(register) together
with WORKA=YES.

CNTRL MACRO .INSTRUCTION

The CNTRL macro instruction is used to
initiate a seek operation. You must
include a CONTROL=YES entry in the DTFSD
jile definition statement if you issue a
CNTRL macro instruct~on for the file.

r------T----------T-----------------------,
IName 10peration 10perands I
~------+----------+-----------------------~
I [name] I CNTRL I filename, SEEK I l ______ ~ __________ ~ _______________________ J

The control macro instruction contains
CNTRL in the operation field, and the name
of the disk file for which the operation is
specified as the first operand. The second
operand is SEEK.

The CNTRL macro instruction initiates
the access movement for the next GET or POT
macro instruction for a file. While the
access arm is moving~ you may process data
and/or request I/O operations on other
devices. The CNTRL macro instruction caus­
es the IOCS to seek the track that contains
(or should .contain) the next block of the
file. However, the CNTRL macro instruction
does not prevent the execution of the seek
operation initiated by the GET/PUT routine.

~ If two I/O areas are used, a CNTRL
macro instruction is treated as a no­
operation instruction.

Instructions for P~ocessing sequential Disk Files 69

Instructions for Processing Direct-Access Diskl Piles

The direct-access method of file
organization allows you to process records
in random and sequential order. However,
when processing a direct-access file
sequentially you must observe certain res­
trictions (see Note under the detail entry
BLKSIZE=n of the-DTFDA statement).

The IOCS locates the records to be proc­
essed by referring to their physical disk
addresses, which you must supply in the
problem program. Direct-access files apply
to disk only. You must describe your
direct-access file using the DTFDA file
definition statement, and issue the proper
imperative macro instructions to perform
the desired I/O operations.

Records in dizect-access files must be
unblocked format-F records, one or more
sectors in length. If you want to apply
the direct-access method to a file contain­
ing blocked format-F records (more than one
logical record in one physical record) you
must provide for the blocking and deblock­
ing of records in the problem program.

~3upply the disk storage location from
which a record is to be read., or into which
it is to be written, by specifying track
and record references as\described under
Cylinder, Track and Record References.

DTPDA Statement

This file definition statement applies only
to direct-access files. The name field of
the header entry must contain the name of
the file and the operation field must con­
tain DTFDA. For ease of reference, the
detail entries to be entered in the operand
field are described below in alphabetical
order.

ADRTEST=NO

When ADRTEST=NO is specified, the IOCS does
not check whether the address specified in
the SEEKADR entry is valid or whether the
address is within the limits defined in the
XTENT statements. As a result, bits 0 and
1 of the first error byte are not set.
(Refer to ERRBYTE=name).

If this entry is omitted., the IOCS auto­
matically performs these checks and sets
the appropriate bits in the first error
byte.

70

Even though the length of the program is
inc~eased when the addresses are checked,
you are recommended to oroit the entry
ADRTEST='NC.

BLKSIZE=n

This entry is mandatory and specifies the
length of the blocks (in bytes) the IOCS is
to read or write. The maximum block length
you may specify is 16200. Since unblocked
format-F is the only type of record permit­
ted for direct-access files, you must pro­
vide for any blocking or deblocking of
records in your problem prograrr.

In defini~g the I/O area in the problem
program, keep in mind that the IBM 2311
uses a fixed sector length of 270 bytes.

Some block sizes cause a cylinder over­
flow, i.e., not all sectors belonging to
one block can b~ written on the same cylin­
der. The IOCS automatically continues this
block on the next cylinder, provided this
does not lead to an extent overflow.

Note: Since the actions the IOCS performs
.for direct-access files and for sequential
files differ in case of a cylinder over­
flow. you must ensure that no cylinder
overflow occurs if you process a direct­
access file sequentially. You can avoid a
cylinder ove~flow if the number of sectors
contained in a block is either 1~ 2, 5 or
10. If the file starts at the beginning of
a cylinder, the number of sectors can also
be 4, 20, 25, or 5 0 •

If the reading or writing of a block
causes an e,xtent overflow, the READ or
WRITE macro instruction is not executed and
bit 0 of the first error byte (see ERRBYTE
ent~y) is set to indicate this condition.

CONTROL='YES

'rhis entry is required if a CNTRL macro
instruction is to be issued for the file.
The CNTRL macro instruction can be used to
initiate a seek ope~ation.

DEVICE=DISK:11F

This entry specifies that a fixed-sector
IBM 2311 (Model 11 or 12) is used for the
direct-access file. If this entry is
missing or mispunched, the IOCS assumes the
correct device and issues a warning to the
operator.

DSKXTNT=n

The value n specifies the number of
extents. If the entry is omitted, the laCS
assumes n=3. The laCS uses this informa­
tion to reserve the main-storage area in
which the addresses of the extent boundar­
ies are saved. The maximum number of
extents permitted is 99 per file.

ERRBYTE=name

This entry is mandatory. It specifies the
symbolic address of a two-byte field in
which the IOCS will indicate exceptional
conditions. The indications will be avail­
able after a WAITF macro instruction has
Leen executed. You may test for the fol­
lowing conditions:

r----------------T------------------------,
I IExceptional Condition I
IBit Positions IIf Bit Is 1 I
t----------------+------------------------~
I I I
IByte 1 : Bit 0 I invalid address I
I Bit 1 laddress outside extent I
I Bit 2- 7 lnot used I
t----------------+------------------------~
I I I
IByte 2*: Bit 0 Inot used--set to zero I
I Bit 1 Jintervention required I
I Bit 2 lend of cylinder I
I Bit 3 lequipment check J
I Bit 4 Idata check I
I Bit 5 Iseek check I
I Bit 6 Ino record found I
I Bit 7 Itrack condition check I
t----------------~------------------------~
J*First byte of sense field I
L _______ ~---------------------------------J

IOAREA1=name

This entry is mandatory and specifies the
name of the I/O area to be used for the
file. The name must be the symbol used in
defining the area in the source program.
You can specify only one I/O area for each
direct-access file.

The size of the area must be equal to
270 bytes or an integer multiple of 270.
If the calculated length is not equal to
270 or an integer multiple thereof, the
next larger value allowed must be used for
the I/O area.

READID=YES

This entry is required if records ax'e to be
retrieved from the direct-access file,
i.e., if a READ macro instruction in the
problem program refers to the file.

SEEKADR=name

This mandatory entry specifies the name of
the a-byte area that contains the disk
address of the record to be rBad or writ­
ten. The area must be defined in the prob­
lem program. Its format and contents are
described under fYlinder, Track and Record
~ences.

The probl~m prog+am must place the
add~ess of the desired disk record in the
specified location before issuing a READ or
WRITE macro instruction. If the disk
address is invalid, bit 0 of the first
error byte is set to 1. If the address is
outside the extents specified in the XTENT
statements, bit 1 of the error byte is set
to 1.

TYPEFLE=cod~

This entry specifies the type of file and
how the disk labels are to be processed.
The entry must not be omitted.

INPUT

OUTPUT

VERIFY=NO

Explanation

The labels of an input file are to
be read and checked.

The labels of an output file are
to be written.

When this entry is specified, the record
just written is not verified. If you omit
this entry, all records written onto disk
are verified. If a write error is detect­
ed, the laCS attempts to recover the error
as described in the section Device Error
Recovery. If a permanent w~ite error
occurs, the IOCS inserts into the ERRBYTE
the first byte of the sense field (For a
detailed description of the sense field,
r.efer to the SRL publication IBM System/360
Model 20 Functional Characteristics, Form
A26-5847) •

Although processing time is increased
when the re,cords are verified, you are
strongly recommended to omit the entry
VERIFY=NO unless you require maximum
throughput.

vJRITEID=YES

This entry is required if records are to be
sto~ed in the direct-access file, i.e •• if
a WRITE maCLO instruction in the problem,
program ref~r.s to the file. The entry is
also used for input files if they are to be
updated by the problem program.

Instructions for processing Direct-Access Disk Files 71

Imperative Macro Instructions

The imperative macro instructions for
direct-access files are described in the
following order: WRITE~ READ, WAITF, CNTRL~
CNVRT. For a description of OPEN and CLOSE
refer to the section Instructions for Open­
ing and Closing Files.

WRITE MACRO INSTRUCTION

This macro instruction causes a record that
has neen built in an output area in nain
storage to be written onto disk.

r------T----------T-----------------------,
1Name IOperation 10perands I
~------+----------+-----------------------~
I [nameJIWRITE Ifilename,ID I
L ______ L __________ L _______________________ J

The first operand specifies the name of
the disk file into which the record is to
be placed. The file name must be the same
as the one specified in the header entry of
the DTFDA statement for the file. The
second operand must be ID as shown.

Before this macro instruction is execut­
ed, the problem program must provide the
track and record reference of the disk
location in which the record is to be
stored (refer to Cylinder# Track and Record
References below). When the WRITE macro
instruction is executed, the IOCS searches
the specified track for the desired loca­
tion on the track. When the correct loca­
tion has been found, the data record is
written from the output area in main stor­
age. A data record may require one or more
sectors of disk storage; the length of the
data record is specified in the BLKSIZE~n
entry in the DTFDA statement for the file.
If an I/O error occurs~ the appropriate
bits are set as described for the entry
ERRBYTE=name of the DTFDA statement.

If you use the WRITE macro instruction
in a program~ you must include the
WRITEID=YES entry in the DTFDA statement
for the file.

READ BACRO INSTRUCTION

This macro instruction causes a record on
disk to be read into main storage.

r------T----------T-----------------------l
I Name 10peration 10perands I
r------+----------+-----------------------~
1 [nameJIREAD Ifilename,ID I
L ______ L __________ L _______________________ J

72

The first operand specifies the name of
the disk file from which the record is to
be retrieved. The file name must be the
same as the one specified in the header
~ntry of the DTFDA statement for the file.
The second operand must be ID as shown.

Before this macro instruction is execut­
ed, the pro.blem program must provide the
track and record reference of the desired
Lecord (see Cylinder. Track and Record
References below). When the READ macro
instruction is executed~ the IOCS searches
the specified track for the particular
record. When the correct record has been
locatedJ it is read into the input area in
main storage. If an I/O error occurs, the
appropriate bits are set as described for
the entry ERRBYTE=name of the DTFDA state­
ment.

If you use the READ macro instruction in
a program, you must include the READID=YES
entry in the DTFDA statement for the file.

WAITF ~~CRO INSTRUCTION

The WAITF macro instruction ensures that
the reading or writing of a record into or
from the I/O area for the file has been
~ompleted before further processing in the
same I/O area is performed. This macro
instructiun enables you to overlap seek
.ope:r;ations with processing in a Submodel 2
or 4~ or a Submodel 5 not utilizing the
read/compute, write/compute (RWC) feature.
The RWC feature of a Subwodel 5, on the
other hand, provides full overlapping of
I/O operations.

r------T----------T-----------------------,
IName 10peration 10perand i
~------+----------+-----------------------~
I [nameJIWAITF I filename I
L ______ L __________ L_------________________ J

The file name in the operand field must
be the same as the one specified in the
header entry of the DTFDA statement for the
file.

After an I/O ope~ation has teen started,
the IOCS immediately returns control to the
problem program. Therefore, when the pro­
gram is ready to process the input record
or build the succeeding output record for
the same file, make a test to ensure that
the previous I/O operation has been com­
pleted. To do this, issue a WAITF macro
instruction in the p:r::oblem program. If the
I/O ope~atioQ has not been completed, the
program enters a waiting loop and remains
there until the entiLe +ecord has been read
or written. In the problem program, a
WAITF macro instruction should be issued
after eath READ or WRITE macro instruction.

The following example shows one possible
placement of the WAITF macro instruction:

READ (WRITE) AAA,ID

WAITF AAA

processing that does
not refer to the
I/O area of file AAA

-------------- processing that may
-------------- refer to the
-------------- I/O area of file AAA
WRITE (READ) AAA,ID

The WAITF macro instruction also makes
the error-status information available in
the second byte of the two-byte field spec­
ified by the entry ERRBYTE=name of the
DTFDA statement. If the entry ADRTEST=NO
is not specified, you should check the
error information in the ERRBYTE entry
after every WAITF macro instruction.

CNTRL MACRO INSTRUCTION

This macro instruction is used to position
the access mechanism for the reading or
writing of a disk record. The CNTRL macro
instruction can be used to improve the
performance of the program.

r------T----------T-----------------------,
I Name 10peration 10perands I
~------f----------f-----------------------i
([nameJICNTRL (filename,SEEK (L ______ ~ __________ ~ _______________________ J

The first operand specifies the name of
the disk file for which the seek operation
is desired. The file name must be the same
as the one specified in the header entry of
the DTFDA definition statement for the
file. The second operand must be SEEK.

The CNTRL macro instruction causes the
access mechanism to be moved to the disk
address contained in the field specified in
the entry SEEKADR=name of the DTFDA state­
ment. After the CNTRL macro instruction
has started the movement of the access
mechanism towards the specified disk loca­
tion, control is returned to the problem
program, which may procesR data and/or
request I/O operations for files on other
I/O devices.

Each CNTRL macro instruction must be
preceded by a WAITF macro instruction.

CNVRT MACRO INSTHUCTION

This macro instruction is used to convert a
packed decimal address of three bytes into
the format of the seek field as used in
direct-access processing.

r------T----------T-----------------------,
IName (Operation 10perands I
t------f----------f-----------------------i
I [name] ICNVRT Iseekfield,packedfield I L ______ ~ __________ ~ _______________________ J

The first operand specifies the name of
the 8-byte field to which the converted
address is to be moved. This field has the
same format as, and can be identical with,
the seek field MBBCCHHR specified for the
entry SEEKADR=name of the DTFDA statement.
Note that only the four low-order bytes
r.epr,esenting the disk address CHHR are
a~tered by this macro instruction. You
must define the eight-byte seek field in
the problem prog+am by first choosing the
app~opriate entry for the first byte in a
DC statement and then specifying a DC
statement (e.g., DC XL7'00') to fill the
remaining seven bytes with zeros.

The entries for the first tyte are as
follows:

X'OO' to r.efer to the first volume
X'Ol' to refer to the second volume
X'02' to r.efer. to the third volume
X'03' to refer to the fourth volume.

These entries must agree with the defi­
nitions in the VOL, DLAB, and XTENT control
statements. The entries X'02' and X'03'
apply to the Model 20, Submodel 5 only.

The second operand specifies the name of
a 3-byte field in packed decimal format (in
the pro~lem program) that contains the disk
address to be converted. The format of
this field must be as follows:

r-----T-----T-----'
I cc I CH I R+ I L _____ ~ _____ ~ _____ J

Byte 1 2 3

The meaning of the symbols CCCHR is
explained under Cylinder, Track and Record
References.

The packed decimal address is not
checked for validity_ Therefore, it is
your responsibility to supply the correct
cylinder., head, and record values. The
highest address that may be specified is
20299.

Since the CNVRT macro instruction uses
register, 14, the contents of this register
are overwritten.

Cylinder I Track and Record References

To refer. to a specific location in disk
storage, you must provide the cylinder,
track and record references of the loca­
tion. You can derive these cylinder, track
and record ~eferences, which constitute the

Instructions for Processing Direct-Access Disk Files 73

sector address, by using a randomizing
formula. selecting the best formula for a
given file may require some consideration,
since it is desirable to minimize (1) the
number of records for which the same disk
address is derived, and (2) the amount of
wasted storage space, i.e .. , the number of
unused record locations between the records
of the file.

The cylinder, track and record referen­
ces consist of eight bytes of information
in the following form:

MBBCCHHR

Note that the sector address is for compat­
ibility purposes in the form of the stand­
ard IBM System/360 random-access address.
Make the sector address available to the
IOCS in an 8-byte field before issuing a
HEAD or WRITE macro instruction.. '1'he use
of the CNVRT macro instruction is strongly
recommended for this purpose. The symbolic
address of the 8-byte field must be speci­
fied in the SEEKADR entry of the D'I'FDA
statement for the file.

The contents of these eight bytes are as
shown below. Provide all numbers in binary
not,ation.

Symbol

M

74

Name and
Byte(s) Contents

o Pack Number
For Model 20 Submodels 2
and 4, this is either 0
or 1; for Submodel 5 it
is any number from 0 to
3. The entry indicates
the specific disk pack.
M must be 0 if only one
pack (volume) is used
for a iile~ regardless
of the drive on which it
is mounted. If more
than O:'le pack (volume)
is used for a file, M=O
add~esses the first
volume, 1'1=1 the second"
and so on, as defined by
the VOL, DLAB and XTEtJT
control statements. The
symbolic device address­
es for disk drives can
be assigned physical
device addresses as
desired.

BB 1-2

CC 3-4

HH 5-6

R 7

Reserved
Zeros

Cylinder Nurrber
For Model 12 any value
from 000 to 102, for
Model 11 any value from
000 to 202, indicating
the number of the cylin­
der in which the record
is located. Note that
the cylinders 1-3 are
used for alternate
tracks on both models,
and that byte 3 will
always contain zeros.

Head Number
A number from 0 to 9
indicating the
read/write head to be
used for reading or
writing the record.
Each head reads from, or
writes on, one disk
surface. Head 0 is
assigned to disk surface
O. Likewise, heads 1
through 9 are assigned
to disk surfaces 1
through 9, respectively.
Note that byte 5 will
always contain zeros.

Record Reference
A number from 0 to 9
indicating a specific
record (sector,) on a
track.

Identifier (ID): Bytes J th~ough 7 {CCHHR)
of the cyli~der, track and record reference
are refer.red to as the ID or identifier.
Each disk reCord (sector) is preceded by a
count area which contains the ID and other
data. When a READ or WRITE macro instruc­
tion is executed, the computer compares the
ID in the count area with the corresponding
part of the cylinder, track and record
reference. An equal comparison indicates
that the desired record has been found.

When a READ (WRITE) macro instruction
for the file is executed, the IOCS uses the
cylinde~, track and record reference to (1)
select the specific track on the appropri­
ate disk pack and (2) locate the specified
r.ecord location (sector).

Instructions for Processing Indexed-Sequential Disk Files

The organization of files according to the
Indexed-Sequential File Management System
(ISFMS) p~rmits disk records to be proc­
essed in random order or in sequential
order by control information. For random
processing, supply the control information
(key) of the desired record to the IOCS and
issue a READ or WRITE macro instruction to
transfer the specified record. For sequen­
tial processing by control information
(key) " specify the first record to be proc­
essed and then issue GET or PUT macro
instructions until all desired sequential
records have been processed. The succes­
sive records are made available in sequen­
tial order by their keys. Variations in
macro instructions permit:

• a logical file of records to be loaded
onto disk (created);

• individual records to' be read from,
added to, or updated in the file.

The logical records mus~ be of fixed
length, and the length must be specified in
theRECSIZE entr::l of the DTFIS statement.
Logical records may be either blocked (two
or more logical records ih one block) or
unblocked (one logical record per block).

Whenever you use an indexed-sequential
file, you must describe the file and the
main-storage areas allotted to the file in
the DTFIS file definition statement.

DTFIS Statement

This file definition statement applies only
to indexed-sequential files. The name
field of the header entry must contain the
name of the file and the operation field
must contain DTFIS.

For ease of reference l the detail
entries to be entered in the operand field
are described below in alphabetical order.

ADAREX=name

This entry is mandatory if IOROUT=ADD or
IOROUT=ADDRTR is specified.

Each new record to be inserted in an
organized file is entered in an overflow
area. If the specified overflow area is
full and more records are yet to be added,
the IOCS branches to the symbolic address
specified in the ADAREX entry. In this
routine you should terminate the job :since

the Model 20 IOCS does not permit the
extents of.a previously organized file to
be changed, and the file must therefore be
~holly reorganized. In addition, the
ADAREX routine must contain the CLOSE macro
instructions fo~ all files involved. In a
mainline program, all disk files must be
closed in the ADAREX routine. Note that an
ADAREX entry must not be used if
IOROUT=LOAD has been specified.

ALTREX=name

This entry is mandatory if IOROUT=LOAD is
specified. It is optional if IOROUT=ADD or
IOROUT=ADDRTR is spe.cif i,ed.

If a file is to be extended
(IOROUT=LOAD) after records have been added
to the last track of a file during a pre­
vious add operation, the IOCS branches to
you~ ALTREX routine. You must reorganize
the file before it can be extended. The
br~nch condition is detected during the
execution of tbe SETFL macro instruction
and befo~e the LOAD operation is initiated.
Therefore, you must not issue an ENDFL
macro instruction in your ALTREX routine.
This instruc~ion would cause the last prime
data record to be overwritten by an EOF
Lecord and thus destroy your file. Howev­
er, you must issue a CLOSE macro instruc­
tio~ fo~ your file.

You can avoid that records are added to
the last track of a file if you specify the
ALTREX d~tail entry for ADD and ADDRTR
tiles. If the program tries to add a
Lecord to th~ last track of a file, the
IOCS branches to your ALTREX routine. In
.this routine you can determine whether the
record can b~ added to the file or whether
it is to be inserted at a later time. If
the record :can be added, i. e., the key of
the record to be inserted is higher than
the key of the last record in the file,
perform a LOAD/Extension run to insert the
record. If the key is not higher, you may
continue processing and add the record

• afte:r: a:r.J.othe:r;- track has become the last
track of the file during a succeeding
LOAD/Extension run# or

• by apothex; program in which AL'l'REX is
not specified. However, this makes
further extensions of the file impossi­
ble because the EOF record is trans­
ferred to the overflow area.

Instructions for Processing Indexed-Sequential Disk Files 75

CYLOFL==n

Include this entry if cyl!nder overflow
areas are to he reserved for a logical
file. A cylin~er overflow area is located
on each cylinder within the prime ~ata area
of the data file. It contains records that
overflow from tracks in that cylinder.

To reserve the areas for cylinder over­
flow, this entry is required when the par­
ticular file is to be loaded onto disk and
records are to be added at a later time.
The specification n <where n is any integer
from 1 through 9) is the number of tracks
to be reserved on each cylinder. Note that
the actual size of the cylinder overflow
area may be less than the specified number
of tracks. If the block size of prime data
blocks is such that track overflow blocks
occur (i.e., not all sectors of a block are
on the same track), the last prime data
block of a cylinder uses one or more sec­
tors of the cylinder overflow area. The
maximum number of cylinder overflow sectors
that may be used by the last prime data
block is equal to the number of sectors per
block minus 1.

If you specify an independent overflow
area (by an XTENT statement) in addition to
the CYLOFL entry, overflow records are
written in the independent overflow area
after a cylinder overflow area has been
filled.

CYNDEX=name

This entry is mandatory if IOROUT=LOAD has
been specified for the file. The entry
CYNDEX=name specifies the symbolic address
to which the IOCS branches if the cylinder­
index area becomes full while a file is
being loaded or extended. You must
reorganize the file and specify a larger
disk area for the cylinder index in an
XTENT statement. The CYNDEX routine should
also contain the necessary ENDFL and CLOSE
macro instructions.

Note: If this routine discontinues the
processing of a program that is a mainline
program, the CYNDEX routine must contain
CLOSE macro instructions for all disk
files.

DERREX=name

This entry is mandatory for all indexed­
sequential files. It specifies the
symbolic address to which the IOCS branches
if an irrecoverable disk error has
occurred. If, in this routine, you want to
discontinue the processing of a program
that is a mainline program, you must first
close all disk files.

76

certain error information is made avail­
able in the problem program 1f the detail
entry ERRINF=YES is specified. The first
byte of this error information can be
addressed by using a symbolic address con­
sisting of the file name with the suffix A.
For example, if the name of the file is
P.AYROLL, the address of the error informa­
tion will be PAYROLLA.

The first two bytes of this information
contain the address of an error block as
already described for sequential disk
files. (Refer to the detail entry
ERROPT=code in the section Instructions for
Processing Sequential Disk Files).

The next two bytes (beginning at
PAYROLLA+2) contain logical error informa­
tion as descri.bed under the detail entry
ERRINF=YES.

Register 14 contains the return address,
i.e. , the address of the next sequential
instruction tollowing the macro instruction
that detected the error. Since the IOCS
macro instructions use register 14, you
must save the contents of this register
before you issue a macro instruction in
your error ~outines.

You may pr.ovide individual error proce­
dures for the various IOCS functions such
as loading, adding, sequential ox random
ret:r;ieving, npdating, etc. However, you
must save the error information and the
contents of the I/O area. This information
is essential in tlle event that an alternate
track must be assigned to replace a track
that is found to be defective. It must be
emphasiz;ed that in some cases a recovery
and restart procedure may not be possible.
For this reason you should always maintain
a duplicate of every file yo~ use in the
installation.

Note: For sequential retrieval, you must
first issue an ESETL and then a SETL macro
instruction before you issue the next GET
macro instruction in your error routine.

DEVICE=DISK~lF

This entry specifies that a fixed-sector
IBM 2311 (Model 11 or 12) is used as 1/0
device for the indexed-sequential file. If
this entry is omitted or mispunched, the
IOCS assumes the corr.ect device and issues
a warning to the operator.

DPCRCD=YES

You may specify this entry for ADD and
ADDRTR files to avoid having disk storage
locations reserved in the overflow area for
duplicate records. You should specify this
entry if your ADD or ADDRTR file is likely
to contain duplicate records.

DSKXTNT=n

This entry is mandatory for all indexed­
sequential files. It specifies the maximum
number of extents used for the file. The
number must include (1) all the prime data
area extents, {2) the cylinder index area,
and (3) the independent overflow area ~f
used), all of which are specified by XTENT
statements. Thus, the minimum number spec­
ified by this entry is 2: one extent for a
prime data arect and one extent for a cylin­
der index. The maximum number of extents
permitted is 99 per file.

DTAREX=name

This entry is mandatory if IOROUT=LOAD has
been specified for the file. The entry
DTAREX=name specifies the symbolic address
to which the IOCS branches if the prime
data area becomes full while a file is
being loaded. You may issue an ENDFL macro
instruction in your routine to prepare the
newly organized file for closing. This
permits the remaining records to be treated
as additions to the file.

DUPREX=name

This entry specifies the symbolic address
to which the IOCS branches if a duplicate
record (equal keys) is detected while load­
ing or extending a file, or when adding a
record to a file. This entry is mandatory
if the specification for IOROUT is either
LOAD, or ADD, or ADDRTR. You can avoid
having disk storage locations reserved for
duplicate records if you specify the detail
entry DPCRCD=YES for ADD or ADDRTR files.

EOFADDR=name

Include this entry when records of the file
are to be retrieved sequentially (i.e., if
either TYPEFLE=SEQNTL or TYPEFLE=RANSEQ has
been specified for the file). The entry
EOFADDR=name specifies the symbolic address
of the routine to which the IOCS branches
when an end-of-file condition occurs. An
end-of-file condition is detected by read­
ing the end-of-file record. In your end­
of-file routine, you may perform any
operations required for the end of the job.
Generally, a CLOSE macro instruction is
issued for the file.

Note: If, in the end-of-file routine, you
want to discontinue/terminate the process­
ing of a program that is a mainline pro­
gram, close all disk files first.

ERRINF=YES

This optional detail entry indicates wheth­
er you require logical error information or
not.

If you specify ERRINF=YES, logical
information about each disk error that may
occur is provided in a special field. You
can address this field using a symbolic
name that consists of the file name with
the suffix A+2. For example, if the name
of the file is PAYROLL, the logical error
information is contained in PAYROLLA+2.
The information indicates the disk area in
which the error occurred (the corresponding
bit is on) •
r-----------T---T-------------------------,
IByte IBitlArea I
~-----------+---+-------------------------~
IPAYROLLA+2 I 0 Ifrime data area I
IPAYROLLA+2 I 1 I cylinder overflow area I
IPAYROLLA+2 I 2 lindependent overflow areal
IPAYROLLA+2 I 3 Icylinder index I
IPAYROLLA+2 I 4 Itrack index I
IPAYROLLA+2 15-71not used I L ___________ ~ ___ i _________________________ J

PAYROLLA+3 is not used. If the entry
ERRINF=YES is omitted, no logical error
information is sUfflied.

IOAREAL=name

This entry is mandatory if the specifi­
cation for IOROUT is LOAD, ADD, or ADDRTR.
The entry IOAREAL=name specifies the sym­
bolic address of the output area to be used
when loading or extending a file, or when
adding records to a file. The specified
name must be the same as the one that
defines the area in the problem program.

For unblocked records of ADD and ADDRTR
files, the output area must be large enough
to contain one record plus the link field,
i.e., the size of IOAREAL must be equal to
or greater than the record size specified
in the RECSI~E=n entry flus 6, (see Note
below). For blocked records, the output
area must be large enough to ccntain a
complete block. If records are to be added
to a file of blocked records, the output
area must be preceded by a work area that
is large enough to contain one record.
This work area is used by the IOCS during
the shift procedure which is necessary when
a record is inserted into the frime data
area (see the description of WORKA=name
below) •

Not~ The total length of IOAREAL must be
equal to 270 bytes or an integer multiple
of 270. If the calculated length is not
270 or an integer multiple thereof, the
next larger allowed value must be used for
the output area.

IOAREAR=name

This entry is mandatory if TYPEFLE=RANDOM
or TYPEFLE=RANSEQ has been specified for
the file. The entry IOAREAR=name sfecifies
the symbolic address of the I/O area to be

Instructions for processing Indexed-Sequential Disk Files 77

used for random retrieval and/or updating
operations. The specified name must be the
same as the one that defines the area in
the problem program. The size of the area
must be an integer multiple of 270 and
large enough to contain a block or, for
unblocked files J a record of the file. No
work area is required.

IOAREAS=name

This entry is mandatory if TYPEF~E=SEQNTL
or TYPEFLE=RANSEQ has been specified for
the file. The entry IOAREAS=name specifies
the symbolic address of the I/O area to be
used for sequential retrieval and/or updat­
ing operations. The specified name must be
the same as the one that defines the area
in the problem program: The size of the
area must be the same as described for the
entry IOAREAR=name. No work area is
required.

IOREG= (register)

This entry is required only for RETRVE or
ADDRTR files containing blocked records
that are to be processed in the I/O area.

As operand, specify in parentheses any
of the registers 8 through 13 or a symbolic
name that has been equated to one of the
registers 8 through 13. The specified
register contains the address of a logical
input record that is available for process­
ing. The IOCS places this address into the
register each time a READ or GET macro
instruction is executed.

IOROUT=code

This entry is mandatory for all indexed­
sequential files. It specifies the type
of function to be performed.

cod~ Function

Lo.AD Building a logical file on disk or
extending a file beyond the highest
record currently contained in an
organized file.

ADD Inserting new records into an
organized file.

RETRVE Retrieving records from a file for
either random or sequential proc­
essing and/or updating.

ADDRTR Both inserting new records into a
file (ADD) and retrieving records
for processing and/or updating
(RTR).

78

KEYARG=name

Include this entry for

1. random .~etrieval (TYPEFLE=RANDOM or
TYPEFLE=RANSEQ has been specified), and

2. sequential retrieval (TYPEFLE=SEQNTL or
TYPEFLE=RANSEQ has been specified), if
this type of retrieval operation is to
begin with a sp~cific key, i.e.~ the
operand of the SETL macro instruction
is either KEY or GKEY.

The entry KEYARG=name specifies the
symbolic addr.ess of the location that con­
tains the key of either the record that is
to be retrieved or the record with which
sequential retrieval is to begin.

The problem program must place the key
into the specified location before issuing
the mac~o instruction that requires the
key.

KEYLEN=n

This entry is mandatory for all indexed­
sequential .files. It specifies the length
of the key i~ number of bytes (maximum
length is 60 bytes).

KEYLoe=n

This entry is required for all indexed­
sequential files. It specifies the posi­
tion of the leftmost byte of the key rela­
tive to the beginning of the record. For
example, if the key is recorded in posi­
tions 21~25 of each record in the file,
KEYLOC=21 must be specified. To determine
the leftmost byte of the key# the first
byte of the record is counted as byte 1.
.The key may be defined as a field anywhere
within a record, however, the rightmost
three bytes of the record must not be
includ'ed.

NRECDS=n

This entry is always required. It speci­
fies the number of records in a block. For
unblocked records, n will be 1.

Because the IBM 2311 uses a fixed sector
length of 270 bytes# the Ioes transfers
from and to disk an area whose length is
equal to the specified number of records
times the number of bytes contained in a
record, provided the product of the two is
an integer multiple of 270. If the product
is not an i~teger multiple of 270, the Ioes
transfers a~ area whose length is equal to
the next higher integer multiple of 270.
Take this into consideration when defining
the I/O area in your program.

RECFORM=code

This mandatory entry specifies the record
format of the file. The IOCS can handle
both of the permissible record formats in
one program. However, all records in a
given file must be. of the same format.

Code Record Format

FIXUNB Unblocked format-F records

FIXBLK Blocked format-F records

The specification that is used when the
logical file is loaded onto disk must again
be included whenever the file is processed.

RECSIZE=n

This entry is mandatory for all indexed­
sequential files. It specifies the number
of byt~s in a logical record. All logical
records must be of the same length. The
maximum length permitted for records of an
indexed-sequential file is 4096 bytes.

RTRVEX=name

This entry specifies the symbolic address
to which the IOCS branches if the record
with the described key cannot be found in
the file. This entry is always required if
TYPEFLE=RANDOM or TYPEFLE=RANSEQ has been
specified for the file. If TYPEFLE=SEQNTL
has been specified the entry RTRVEX is not
required; however, when you omit this
entry, you may specify only the operand BOF
or GKEY in a SETL macro instruction refer­
ring to the file.

If the IOCS branches to the specified
routine during the execution of a SETL
macro instruction, you must write an ESETL
macro instruction in your routine before
any other macro instruction referring to
the same file is issued.

Note: If the RTRVEX routine discontinues
the processing of a program that is a main­
line program, it must include CLOSE macro
instructions for all disk files.

SQCHEX=name

This entry specifies the symbolic address
to which the IOCS branches if a record is
out of collating sequence while a file is
being loaded or extended.

Note: If the SQCHEX routine discontinues
the processing of a program that is a main­
line program, it must include CLOSE macro
instructions for all disk files.

TYPEFLE=code

This entry is required when a retrieval
function is to be Ferformed (i.e.,
IOROUT=RETRVE or IOROUT=ADDRTR has been
specified). The TYPEFLE entry specifies
the type of processing to be used for the
file.

Type of Processing

RANDOM Random Processing:
Records are retrieved from the file
in random order by key. READ macro
instructions are used to transfer
records from disk to main storage.

SEQNTL Sequential Processing:
The LOCS retrieves records in
sequential order by key. The first
record retrieved may be the first
record of the file or a record
specified by the key (see SETL
Macro Instruction). The problem
program specifies the first key to
be retrieved. GET macro instruc­
tions are used to transfer records
from disk to main storage.

RANSEQ Random and Sequential Processing:
READ and/or GET macro instructions
are used to transfer records from
disk to main storage: READ for
random retrieval and GET for
sequential retrieval.

UPDATE=code

This entry is required if disk records are
to be updated. It specifies the type of
processing used to uFdate records.

Type of Processing

RANDOM Random Processing with Updating:
A WRITE macro instruction causes a
record to be written onto disk at
the same location from which this
record was retrieved by a preceding
READ macro instruction.
UPDATE=RANDOM can only be specified
in conjunction with either
TYPEFLE=RANDOM or TYPEFLE=RANSEQ.

SEQNTL Sequential Processing with Updat­
ing:
A PUT macro instruction causes a
record to be written onto disk at
the same location from which this
record was retrieved by a preceding
GET macro instruction.
UPDATE=SEQNTL can only be specified
in conjunction with either
TYPEFLE=SEQNTL or TYPEFLE=RANSEQ.

Instructions for Processing Indexed-Sequential Disk Files 79

RANSEQ Random and/or Sequential Processing
with Updating:
A WRITE macro instruction causes a
record to be written onto disk at
the same location from which it was
retrieved by a preceding READ macro
instruction. A record that was
retrieved by a GET macro instruc­
tion is written onto disk by a
subsequent PUT macro instruction.
UPDATE=RANSEQ can only be specified
in conjunction with the
TYPEFLE=RANSEQ detail entry.

VERIFY=NO.

When this entry is specified, the records
are not checked after they have been writ­
ten onto disk. If you omit this entry all
records written onto disk are verified. If
an irrecoverable disk-write error occurs,
the Ioes branches to your DERREX routine.
Although processing time increases when the
records are verified, you are strongly
recommended to omit the entry VERIFY=NO
unless you require maximum throughput.

WORKA=name

This entry is required when records are to
be added to a file containing blocked
records. The entry specifies the symbolic
address of a work area that must immediate­
ly precede the I/O area specified in the
IOAREAL entry. This work area must be
exactly as long as one logical record. The
specified name must be the same as the one
that defines the area in the problem pro­
gram.

WOHKL=name

This entry must be included whenever a file
is to be loaded or extended, or records are
to be added to a file. The entry specifies
the symbolic address of the work area to
which you must move the data records so
that the Ioes can load them or add them to
the file. The specified name must be the
same as the one that defines the area in
the problem program.

If the file is to contain blocked
records, this work area must be large
enough to accommodate one logical record.
If the file is to contain unblocked
records, six additional bytes must be pro­
vided for ADD and ADDRTR files so that the
pertinent sequence-link field can be suf­
fixed to each record. If unblocked records
are added to a file, the contents of the
area defined by WORKL is destroyed by a
WRITE NEWKEY macro instruction.

80

WORKR=name

Include this entry when (1) the records of
the file are processed in random order and
(2) the individual records are to be proc­
essed in a work area rather than in the I/O
area. The entry specifies the symbolic
address of the work area, and the specified
name mus~ be the same as the one that
defines the area in the problem program.
This work area must be large enough to
accommodate one logical record.

When this entry is included and a READ
or WRITE instruction referring to the file
is executed, the Ioes moves the individual
record to or from this area.

When this entry is included for a file,
the IOREG detail entry must be omitted
unless the entry TYPEFLE=RANSEQ is included
in the problem p~ogram.

WORKS=YES

This entry is required if (1) records are
to be processed in sequential order and (2)
the individual records are to he processed
in work areas rather than in the I/O area.
Each GET or PUT macro instruction must
specify the symbolic address of the work
area to or from which the Ioes is to move
the record. The work area must be large
enough to a,ccommodate one log ical record.

When this entry is included for a file~
the IOREG detail entry must be omitted
unless the entry TYPEFLE=RANSEQ is included
in the problem program.

Loading or Extending Indexed-Sequential Piles

Three different macro instructions are
r.equired in the problem program to load the
records of an indexed-sequential file onto
disk: SETFL, WRITE" and ENDFL.

The function of originally loading an
indexed-sequential file onto disk and the
function of extending this file by adding
new presorted records beyond the record
with the highest key are essentially the
same. Both are considered a load operation
(specified by the IOROUT=LOAD entry in the
DTFIS statement for the file), and they
both use the same macro instructions in the
problem program.

If you wish to load a file with a file
name for which an unexpired file label
exists, a halt occurs. The operator then
has the choice to extend the existing file
or to load the new file. In the latter
case, the file with the unexpired file
label is destroyed. The Ioes automatically
performs an original load function if it

encounters an expired file ,label with the
same file name. If you want to extend your
file, you must therefore ensure that the
file is not expired, i.e., the date entered
on the DATE card for the job must not. be
higher than the expiration date for the
file.

You must specify the areas of the
volumes in which you want to load your file
by means of job control XTENT statements.
The areas are:

1. the prime data area (s) (on one or more
volumes) where the data records are
written,

2. a cylinder index area where you want
the IOCS to build the cylinder index,
and

3. an (optional) independent overflow
area.

Note: All extents that are required for the
LOAD function and all extents that might be
required later in order to add new records
must be specified for the initial loading
of the file.

During the load operation, the Ioes
builds the track and cylinder indexes.

SETFL MACRO INSTRUCTION

This macro instruction (SET File Load mode)
prepares the Ioes for a file-loadIng or
extending operation.

r------T----------T-----------------------l
I Name IOperation IOperand I
t------+----------+-----------------------~
I [nam~] ISETFL I filename I l ______ ~ __________ ~ _______________________ J

The operand contains the name of the
disk file to be loaded or extended. The
file name must be the same as the one spec­
ified in the header entry of the DTFIS
statement for the file.

The SETFL macro instruction must be
issued whenever a new file is to be loaded
or a loaded file is to be extended.

WRITE MACRO INSTRUCTION

This macro instruction loads one record
into a disk file.

r~-----T----------T-----------------------l
IName IOperation IOperands I
t------+----------+-----------------------~
I [name] I WRITE I filename, NEWKEY I l ______ ~ __________ ~ _______________________ J

The first operand specifies the name of
the file into which the 'record is to be
loaded. The file name must be the same as
the one specified in the header entry of
the DTFIS statement for the file. The
second operand must be NEWKEY.

Before issuing the WRITE macro instruc­
tion, the problem program must place the
record for the file into the work area
whose symbolic address you must provide in
the WORKL=name entry of the DTFIS state­
ment. The WRITE macro instruction causes
the record in the work area to be moved
into the output area specified in the
IOAREAL=name entry of the DTFIS statement.

If records are to be blocked, the block
will be built in the output area and placed
onto disk when it is full; otherwise, one
record is placed onto disk each time a
WRITE macro instruction is executed.

Before the record is moved to the output
area, tbe Ioes performs a sequence check by
key. The key may be a part nurrber, an
employee serial number, or any other iden­
tifying information that is contained in
every record of a file.

All keys of a file must have the same
length. A key should not consist entirely
of a string of hexadecimal zeros nor should
a key contain any byte in which all the
bits are on (hexadecimal FF) •

The key may be positioned anywhere with­
in the record, with the following restric­
tions:

1. The key position must be the same for
all records of the file.

2. At least three bytes must ce available
between the last byte of the key and
the end of the record.

Specify the location of the key in the
KEYLOC and the length of the key in the
KEYLEN entry of the DTFIS statement for the
file. This enables the IOCS to check the
sequence of records and to ensure that each
record is in proper sequence by its key
before the record is moved froIT. the work
area into the output area. The IOCS also
checks for duplicate records, i.e., records
with the same keys. If a record is out of
sequence or a duplicate record is found,
the Ioes branches to the appropriate
routine(s) as specified in the SQCHEX
and/or DUPREX entries of the DTFIS state­
ment for the file.

Instructions for Processing Indexed-Sequential Disk Files 81

ENDFL MACRO INSTRUCTION

Issue this macro instruction (END File Load
mode) if you want to terminate the-loading
or extending of your file.

r------T----------T-----------------------,
I Name IOperation IOperand I
~------+----------+-----------------------~
I [nameJIENDFL 1 filename I l ______ ~ __________ ~ _______________________ J

The operand contains the name of the
disk file that has been loaded or extended.
The file name must be the same as the one
specified in the operand field of the SETFL
macro instruction that initiated the opera­
tion.

The ENDFL macro instruction must be
issued to complete the loading or extending
of a file.

Adding Records to Indexed-Sequential Piles

The macro instructions used in the problem
program for the insertion of new records
are WRITE and WAITF.

After an indexed-sequential file has
been loaded onto disk. new records can be
inserted into their proper places in the
file. The location of the key in the new
records IHUSt be t:he same as that in the
records already in the file. The functions
required for adding records are provided by
specifying ADD or ADDRTR in the IOROUT
entry of the DTFIS statement for the file.

WRITE MACRO INSTRUCTION

This macro instruction inserts one record
into an indexed-sequential file.

r------T----------T-----------------------,
iName IOperation jOperands I
~------+----------+-----------------------~
l[nameJ I WRITE Ifilename,NEWKEY I
l ______ L __________ L _______________________ J

Before the WRITE macro instruction is
issued, the problem program must store the
record to be added into a work area speci­
fied in the WORKL entry of the appropriate
DTFIS statement.

Note that an additional work area is
required when records are to be added to a
file containing blocked records. Specify
this additional work area in the WORKA
entry of the DTFIS statement and define it
so that it immediately precedes the area
IOAREAL. The operations caused by a WRITE
macro instruction are described in detail
under Inserting Records in the section
Processing Indexed-Sequential Files.

82

WAITF MACRO INSTRUCT.ION

This macro instruction ensu~es that the
execution of the preceding WRITE macro
instruction has been completed before
further processing is done that involves
the work areas specified for the file. The
WAITF macro instr,uction permits the seek
operation EOL seeking the track index to be
ove~lapped with processing.
r------T----------T-----------------------,
IName IOperation IOperand I
}------+----------+-----------------------~
I [nameJIWAITF I filename I
l ______ L __________ L _______________________ J

The file name must be the ssme as the
one specified in the header entry of the
DTFIS statement for the file.

The WAITF instruction must follow a
WRITE macro instruction. It does not have
to be the next instruction after the WRITE
macro instruction. However, it must be
written before the next macro instruction
for the same file is issued.

If an error condition is detected during
the execution of the WRITE functions, the
IOCS branches to the appropriate error
routine.

Random Retrieval and Updating

The following three macro instructions are
available EOL use in the problem program to
Letrieve and update records randomly: READ,
WRITE, and WAITF.

If you want to retrieve the records of
an indexed-sequential file in random order
for processing and/or, updating, enter
RETRVE or ADDRTR in the IOROUT entry of the
appropriate DTFIS statement. Random proc­
essing must be specified in the TYPEFLE
entry of the file definition statement, and
updating (if used) must be specified in the
UPDATE entry.

Because random reference to the file is
made by record keys, the problem program
must supply the key of the desired record
to the IOCS. TO do this, store the key in
the key area SF~cified by the KEYARG entry
of the appropriate DTFIS statement. The
key that is placed into the key area speci­
fied in the KEYARG entry designates both
the record to be retrieved and (if updating
is specified) the record location on disk
into which the updated record is to be
written.

READ MACRO INSTRUCTION

This macro inst~uction causes a specified
record to be retrieved from an indexed­
sequential file.

r------T----------T-----------------------,
I Name 10peration 10perands I
t------+----------+-----------------------~
I [name] IREAD I filename,KEY I l ______ ~ __________ ~ _______________________ ~

The first operand specifies the name of
the file from which a record is to be
retrieved and placed into main storage.
The file name must be the same as the one
specified in the header entry of the DTFIS
statement for the file. The second operand
must be KEY. Place the key of the record
into the field designated by the KEYARG
entry, before issuing the READ macro
instruction.

If a work area is used in addition to
the I/O area (DTFIS entry WORKR), the
record is also moved into the specified
work area.

If the records of the file are blocked,
the IOeS causes the entire 'block containing
the desired record to be read into the I/O
area. The record is made available for
processing either in the I/O area or in the
work area specified in the WORKR entry of
the DTFIS statement. For processing in the
I/O area, the IOCS supplies the record
address in the register specified directly
or symbolically in the IOREG entry of the
DTFIS statement.

If the IOCS does not find the specified
record, control is transferred to the rou­
tine specified in the RTRVEX entry of the
appropriate DTFIS statement.

WRITE MACRO INSTRUCTION

This macro instruction causes the record
retrieved by the preceding READ macro
instruction Uor the same fil~ to be writ­
ten onto disk at the location from which it
was retrieved.

r------T----------T-----------------------,
I Name 10peration 10perands I
t------+----------+-----------------------~
I [nam~ IWRITE Ifilename,KEY I l ______ ~ __________ L _______________________ J

The first operand specifies the name of
the file to which a record is to be
returned. The file name must be the same
as the one ,specified as the first operand
of the READ macro instruction that
retrieved the record. The second operand
must be KEY.

The WRITE macro instruction causes the
record to be written onto disk at the loca­
tion specified by the key used by the
preceding READ macro instruction. There­
fore, if you do not change the contents of
KEYARG, the problem program need not supply
the key again.

WAITF ~ACRO INSTRUCTION

This macro instruction ensures that the
reading of a record into, or the writing of
a record from, the I/O area for the file
has been completed before further process­
ing is done that involves the same I/O
area. The WAITF macro instruction also
permits the seek operation for seeking the
track index to be overlapped with process­
ing.

r------T----------T-----------------------,
IName 10peration 10perand I
t------+----------+-----------------------~
I [name] I WAITF I filename I l ______ ~ __________ ~ _______________________ J

The file name must be the same as the
one specified in the header entry of the
DTFIS statement for the file.

A WAITF macro instruction must be issued
after every READ or WRITE macro instruction
referring to a file for which random
retrieval and updating has been specified.
After a READ macro instruction, issue a
WAITF macro instruction before you start
processing the record retrieved by that
READ macro instruction. After a WRITE
macro instruction, issue a WAITF macro
instruction either

1. before you issue another READ macro
instruction referring to the same file,
or

2. before you start using the I/O area for
the file in the problem program, or

3. before you issue any other macro
instruction that refers to the same
file (including CLOSE) ,

whichever is earlier.

Sequential Retrieval and Updating

Four macro instructions are available for
use in the problem program to cause the
records of an indexed-sequential file to be
retrieved and updated sequentially: SETL,
GET, PUT, and ESETL. If you want to
retrieve and update the records of the file
in both ways, randomly and sequentially,
the macro instructions READ, WRITE, and
WAITF are used for random retrieval as
explained in the section Random Retrieval
and Updating.

From an indexed-sequential file, records
can be retrieved in sequential order by key
for processing and/or updating. To cause
the IOCS to perform sequential retrieval
and updating, specify the following in the
detail entries of the appropriate DTFIS
statement:

Instructions for Processing Indexed-Sequential Disk Files 83

1. Retrieval of records (RETRVE or ADDRTR
in the IOROUT entry).

2. Sequential processing (SEQNTL or RANSEQ
in the TYPEFLE entry).

3. Updating of records (SEQNTL or RANSEQ
in the UPDATE entry).

If the specifications ADDRTR and RANSEQ
are used in these three detail entries, the
records can be retrieved randomly or
sequentially~ and new records can be added.

sequential retrieval can begin either at
a record identified by key or at the begin­
ning of the logical file. Specify the
starting reference as the second operand in
the SETL macro instruction for the file.

The key of the first record must be
moved to the main-storage field specified
in the KEYARG=name entry of the DTFIS
statement for the file. The IOCS derives
the position of the key from the KEYLOC
entry of the DTFIS statement. When search­
ing for the specified record, the IOCS
first locates the correct track and then
examines the key area within each record on
the track to find the specified record.

SETL MACRO INSTRUCTION

This macro instruction (SET Limits) pre­
pares the IOCS for sequential processing
and determines the point at which process­
ing is to begin.

r------T----------T-----------------------,
IName \Operation \Operands \
t------+----------+-----------------------~
I [nameJISETL Ifilename,BOF I
I [nameJISETL Ifilename,KEY I
I [nameJ ISETL Ifilename,GKEY \
L ______ L __________ L_----------------------J

The SETL macro instruction can be writ­
ten in one of three forms depending on the
specified starting reference. In all
forms, the first operand specifies the name
of the file for which sequential retrieval
and updating is desired. The file name
must be the same as the one specified in
the header entry of the DTFIS statement for
the file.

The meaning of the second operand is as
follows:

1. If it is BOF, sequential retrieval
begins with the first record in the
fileJ i.e •• the next GET macro instruc­
tion for the file retrieves the first
logical record of the file.

84

2. If it is KEY, sequential retrieval
begins ~ith the record whose key is
contained in the field specified in the
KEYARG=name entry. If the record is
not fou~d, cont+,ol is transferred to
the routine specified in the
RTRVEX=name entry of the DTFIS state­
ment.

3. If it is GKEY~ sequential retrieval
begins with the record whose key is
contained in the field specified in the
KEYARG=·name entry or, if this record is
not found., with the record having the
next gr~ater key. If no greater key is
available, the first GET causes the
IOCS to branch to the address of the
end-of-file routine.

After the SETL macro instruction has
been executed the disk-storage access
mechanism is positioned for retrieval of
the first record; therefore., if the second
operand is not BOP, the problem program
must supply the key before the SETL macro
instruction is executed.

~ Neither BOF nor GKEY require the
RTRVEX entry. However, if RTRVEX is not
specified when KEY is used as the second
operand, an error condition occurs. The
Assembler prints a diagnostic message stat­
ing that KEY is treated as an undefined
symbol.

GET MACRO INSTRUCTION

This macro instruction causes the next
sequential record (according to key) to be
ret~ieved from an indexed-sequential file.

r------T----------T-----~-----------------l
I Name 10pe~atiqn 10perands I
t------+----------+-----------------------~
I [nameJIGET I filename I
I (namellGET \filenameJworkname I L ______ L __________ L _______________________ J

The GET macro instruction can be written
in either of two forms, depending on the
area in wh~ch the records will be proc­
essed. In both forms. the first operand
specifies the name of the file from which a
record is to be retrieved. The file name
must be the s·ame as the one specified in
the header entry of the DTFIS statement fqr
the file",

If re~ords are to be processed in the
I/O area, no second ~perand is required.
If records are to be processed in a work
area, th~ second ope~and specifies the name
of the work area to which each record is to
be moved.

Because the IOCS waits for the comple­
tion of each GET macro instruction, the
retrieved record is available when the next
sequential instruction in the problem pro­
gram is executed.

PUT MACRO INSTRUCTION

This macro instruction causes the record
retrieved by the preceding GET macro
instruction (for the same file) to be
replaced in the location from which it was
retrieved.

r------T----------T-----------------------,
I Name 10peration 10perands I
~------+----------+-----------------------~
I [name] I PUT I filename I
I ~am~ IPUT Ifilename,workname I l ______ ~ __________ ~ _______________________ j

The PUT macro instruction can be written
in either of two forms, depending on the
area in which the records will be built.
In both forms, tne first operand specifies
the name of the file to which a record is
to be returned. The file name must be the
same as the one specified as the first
operand of the GET macro instruction that
retrieved the record.

If records are processed in the I/O
area, no second operand is required. If
records are processed in a work area, the
second operand specifies the name of the
work area from which records will be moved
to the I/O area. Note that the work area
referred to in the PUT macro instruction
will frequently be the same as the one in
the GET macro instruction. However, any
work area may be referred to in the PUT
macro instruction.

A PUT macro instruction is required only
when a record in the file has been changed
(updated) •

If a PUT macro instruction is not issued
for any record in the block, the subsequent
GET for the file will not cause the writing
of the block. At the end of the file, the
ESETL macro instruction causes the last
block processed to be written, if neces­
sary.

ESETL MACRO INSTRUCTION

This macro instruction (End SET Limit)
indicates the end of a sequential retrieval
and updating operation that was initiated
by a SETL macro instruction.

r------T----------~-----------------------,
IName 10peration 10perand I

t[~~~~]t;~;;~-----tfil~~~~~---------------1
l ______ ~ __________ ~ _______________________ J

The operand contains the naffie of the
file that has been sequentially retrieved
and updated. The file name must be the
same as the one specifiEd in the operand of
the SETL macro instruction that initiated
sequential processing.

When, in a program, sequential retrieval
is to be followed by the addition of
records to the file (i.e., IORCUT=ADDRTR
has been specified) or by random retrieval,
write the ESETL macro instruction at the
end of sequential retrieval and before you
issue a WRITE instruction for the first
addition or a READ instruction for the
first record to be randomly retrieved. If
sequential retrieval is to be resumed when
random retrieval and additions have been
completed, issue another SETL ffiacro
instruction. Figure 16 illustrates the
proper use of SETL and ESETL macro instruc­
tions.

r-----------7-----------------------------,
SETL filename,BOF

GET filename

PUT filename

GET filename

PUT filename

ESETL filename

save key of last record
processed sequentially if I
that key is to be used in
the next SETL instruction

WRITE fiiename,NEWKEY

WAITF filename
I READ filename, KEY
I .
IWAITF filename
I •
IWRITE filename, KEY
I • provide proper key for
I • the SETL instruction
IWAITF filename
I •
ISETL filename,GKEY l ___ J

Figure 16. Use of SETL and ESETL Macro
Instructions for ICROUT=ADDRTR

Instructions for processing Indexed-Sequential Disk Files 85

Organizing and Processing Indexed-Sequential Piles

The first part of this section provides
information on the organization of indexed­
sequential files, i.e., on cylinder and
track indexes and overflow areas. The
second part tells you how an indexed­
sequential file is processed by the IOeS.
This information is not required for coding
a program. However, you might find it
useful reading since some of the
information is liable to help you to
improve your coding.

ORGANIZING AN INDEXED-SEQUENTIAL FILE

When a logical file of presorted records is
loaded onto disk, the laCS organizes the
file in such a manner that you have direct
access to any record.

Heference can be made to records at
random throughout the logical file, or to a
series of records in the file in their
presorted sequence (collating sequence).
The laCS routines also provide for addi­
tions to the file at a later time, still
maintaining both the random and the sequen­
tial access capabilities.

The laCS loads the records one after the
other into a specified area of the disk
volume. This area is called the prime data
area. It may consist of one or more disk
extents. To define the prime data area,
you must specify the starting and ending
limits of its extent(s} in job control
XTENT statements (one for each extent).
The limits of prime data extents must be on
cylinder boundaries.

As the laCS loads a file of records sorted
by control information" it builds two
indexes for the file - a track index and a
cylinder index. These indexes are utilized
for both random and sequential access to
records.

Once a file has been loaded and the
related indexes have been built, the laCS
routines search for specified records by
referring to the indexes. When a particu­
lar record (specified by the key) is
requested for processing, the laCS searches
the cylinder index# then the track index,
and finally the individual track.

The indexes are made up of a series of
entries, each of which includes the address
of a track and a key as follows:

86

1. For the track index, this key is that
of the last ~ecord on a specific track.
~ If the length of the last block
on a given track exceeds the available
s~ace, the portion in excess is written
on the subsequent track. Thus, the
'last record' of a track may, in
effect, be located on the next higher
track.

2. For the cylinder index, this key is the
highest key within each cylinder.

The entries are normally blocked, i.e.,
one disk sector contains more than one
ent~y. The exact number of entries per
sector and the number of sectors required
for an index depend on the keylength and on
the number of prime data tracks (10 minus
number of cylinder-overflow tracks). The
track address requires six bytes.

Track Index. The track index is the low­
level index for the logical file. A
separate track index is built for each
prime data cylinder used by the file; it
contains index entries for that cylinder
only. Each track index is located on the
cylinde~ that it in6exes. It always begins
on the first sector of that cylinder.

When the track indexes are originally
built. they contain two identical entries
(no~mal and ove~flow) for each track util­
ized on the cylinder. The use of two index
ent~ies for each track is required because
of overflow records that will occur if more
records are inserted in the file at a later
time. (Refer to Overflow A;eas and Addi­
tion of Recor.ds ..) When overflow records
for a track ~xist, the second (overflow)
index entry contains the key of the highest
~ecord in the overflow chain and the
address of the lowest record in the over­
flow chain £or the track. For example, if
the prime data area of the logical file
utilizes ei.ght tracks on a cylinder when
the file is built and two tracks are over­
flow tracks, the track index (on track 0)
might contain the entries shown in Figure
17. Any subsequent records on track 0 are
logical-file data records. The first data
record following the track index always
begins with a new sector.

Cylinde; Index. The cylinder index is the
high-level index for the logical file.
This index contains one entry for each
prime d&ta cylinder occupied by the file.
The cylinder index is built in a separate
extent, which you specify in a job control
XTENT statemsnt. It must be on cylinder
boundaries. The index must be built on a
cylinder that does not contain data records

for the file (but it may contain the inde­
pendent overflow area). This cylinder may
be on a separate volume provided this vol­
ume is on-line whenever the logical file is
processed.

The cylinder index contains one entry
for each cylinder occupied by the data
file. Each entry contains the highest key
associated with the cylinder and the
address of the track index for that cylin­
der. For example~ if a file requires six
cylinders, the cylinder ind~x might contain
the entries shown in Figure 18. The dummy
entry indicates the end of the cylinder
index.

Overflow Areas and Addition of Records

After a logical file has been loaded onto
disk, it may subsequently become necessary
to add records to the file. The records to
be added may

1. contain keys that are above the highest
key currently in the file (in this
case, the records constitute an exten­
sion of the file), or

2. contain keys that are either lower than
the lowest key currently in the file or
fall between keys already in the file

Key Track 1 Key Track 1 Key Track 2
75 Address 75 Address 150 Address

Normal Entry Overflow Entry Normal Entry

I I Key Track 7 Key O'flow Key Track 8
) 525 Address 530 T rack Address 605 Address

" Normal Entry Overflow Entry Normal Entry

(in this case, the records are to be
inserted in proper sequence in the
organized file).

If all records to be added have keys
that are higher than the highest key in the
present file, the new records, which must
be presorted, can be added by loading them
into the file. No overflow area is
r.equired.

If new records are to be inserted among
those alr.eady organized" an overflow area
is required. The Ioes uses overflow areas
to permit the insertion of records without
a complete r.eorganization of the esta­
blished file. The random and sequential
r.etrieval of records is maintained by
inserting references to the overflow chains
in the track indexes and by using a chain­
ing technique in the overflow records. For
chaining, a sequence-link field is suffixed
to the data record in the overflow area.
The sequence-link field is a six-byte area.
It contains the address of the record in
the ove~flow area that has the next higher
key. Thus, a chain of sequential records
can be followed in a search for a particu­
lar record. The sequence-link field of the
highest record in the chain indicates the
end of the chain.

Key Track 2 Key Track 3 Key) 150 Address 225 Address 225

Overflow Entry Normal Entry /

Key Track 8
Remaining portion

605 Address
of sector

al.1 1-Bits

Overflow Entry Dummy Entry

Figure 17. Schematic Example of a Track Index

Key
605

Cylinder 4
Track 0
Address

Key
1355

Cylinder 5
Track 0
Address

,
Key
7150

I \

eFigure 18. Schematic Example of a Cylinder Index

Cylinder 9
Track 0
Address

Cylinder 9
Remaining

All
Track 0

portion
l-Bits

Address
of sector
all l-Bits

Dummy Entry

Organizing and Processi~g Indexed-Sequential Files 87

I

Track 2
Key

Data
Key

Data) 100 105) Key
Data Key

Data
Key

Data
140 145 150

I

/

Track 3
Key

Data
Key Data) 200 205 \ Key

Data
Key

Data
Key

Data
240 245 250

I

Figure 19. Data Records as Originally Organized on Tracks 2 and 3

To add a record, the IOCS searches the
established indexes first to determine on
vl1hich track the record must be inserted.
The keys of the last records on the tracks
in the present file determine the track
where an inserted record belongs. A record
is always inserted on the track where:

1. the last key is higher than the key of
the insertion record, and

2. the last key of the preceding track (if
any) is lower than the key of the
insertion record.

For example, assume tracks 2 and 3 are
organized with the record keys shown in
Figure 19. In this case, records with keys
such as 151, 175, 199, 215, and 239 are
inserted on Track 3 or in the related over­
flow chain that has developed. Any key
lower than 150 is added to either Track 1
or Track 2; any key higher than 250 belongs
to Track 4 or above. The track index over­
flow entries always contain that key which
was the highest on a particular track at
the time the disk file was originally
organized.

Updating of the Track Index. The IOCS
updates the track index to reflect the
changes caused by the addition of records.
The first index entry for the track has the
key field changed to indicate the new last
record located on the track. The second
index entry for the track has the track
address changed to point to the address of
the lowest overflow record of the chain.
If a record with key 102, for example, is
added to a file organized as shown in Fig­
ure 19 and if the overflow area is located
on Track 9, the track index records contain
the information shown in Figure 20.

88

Before
Addition

After
Addition

Key
150

Track 2
Address

Key
150

Track 2
Address

Track 9
Record X
Address

Figure 20. Example of Track Index Entries
Before and After Addition of a
Record on Track 2

Chaining by Seguence Link Field. If a
r.ecord is to be placed between the last
record currently on the track and the last
record orig~nally on the track it belongs
in the overflow area., The IOCS writes the
record in the overflow area following the
last record previously written. The IOCS
sea~ches through the chain of records asso­
ciated with the corresponding track for
this record and identifies the sequential
position th~ record should take. Then the
sequence-link fields of the new record, and
the record Fr.eceding it by sequential key,
are adjusted to point to the proper
r.ecords.

If, for example, r.eco~ds with the keys
150., 145, and 140 are already in the over­
flow area and record 142 is to be added,
the sequence-link fields of records 140 and
142 must be adjusted (see Figure 21).

r------T----------------------------------,
I RECORD I SEQUENCE~LINKFIELD I
I t-----------------T----------------~
I I Before Addition I After Addition I
~------+-----------------+----------------4
I 150 I * 1 * I
t------+-------~---------+----------------~
I 145 I 150 I 150 I
t------+-----------------+----------------~
I 140 I 145 I 142 I
.------+-----------------+----------------~
1 142+ 1 1 145 1
t------~-----------------~----------~-----~
1* end of chain 1
1+ added record 1
l ___ J

Figure 21. Example of Sequence-Link Fields
Adjusted for Addition of a
Record (142)

If a re~ord is inserted into the last
track of a file, the EOF record is trans­
ferred to the overflow area in the same
manner as the last data record on any other
track.

Overflow-Area Options: You may specify the
location of the overflow area(s) for a
logical file. The overflow areas may be
built by one of three methods:

1. The overflow area for records may be
located on each cylinder within the
prime data area that is specified by
one or more job control XTENT state­
ments for the data file. In this case,
you must specify the number of tracks
to be reserved for overflow records on
each cylinder occupied by the file.
The overflow records that occur within
a particular cylinder are written in
the cylinder overflow area for that
cylinder.

Specify the number of tracks to be
reserved for each cylinder overflow
area in the CYLOFL entry of the DTFIS
statement when the records of the par­
ticular file are to be loaded or when
records are to be added to an organized
file.

2. You can specify an independent overflow
area for storing all overflow records
of the logical file. In this case~
include a job control XTENT statement
when the program is executed to specify
the disk extent to be used as overflow
area. This area may be on the same
volume with the data records, or on a
different volume that is on-line. How­
ever, it must be contained within one
volume.

3. You may use both cylinder overflow
areas (method 1) and an independent
overflow area (method 2). In this
case, overflow records are first placed

in the cylinder overflow areas within
the data file. When any cylinder over­
flow area is full, the additional over­
flow records from that cylinder are
written into the independent overflow
area.

Method 3 (described above) is prefera­
ble to methods 1 and 2~ because it
provides faster retrieval and avoids
frequent file re-organizations. Faster
retrieval is achieved because most of
the overflow records are located in the
cylinde~-overflow area. File re­
organization is avoided because the
overflow records can be stored in the
independent overflow area if the
cylinder-overflow area is full, so that
the progr.am need not enter the ADAREX
routine.

The block length (depending on the num­
ber and length of the records) for the file
applies to both the prime data area and the
ove~flow area(s). Since a sequence-link
,field (a 6-byte area) is suffixed to each
individual record in an ove*flow area, the
number of r~cords to a block in that area
may be less than the number of records to a
block in the corresponding prirr.e data area.
You need not be concerned about this
because the IOCS computes the blocking
factor according to the block length.

Note: The Model 20 IOCS does not permit the
extents of an organized file, to be changed.
Therefo~e, i.f the available overflow areas
are full and records are still to be added,
the file must be completely reorganized.

When an indexed-sequential file is proc­
essed, a field is made available for updat­
ing the number of tagged deletion records.
You can add~ess this two-byte field in the
problem progr.am. Wh~n processing is com­
pleted, i.e., when a CLOSE macro instruc­
tion is issued, the updated field is re­
~ritten into the format-2 label of the
pertinent file.

You may address the first byte of this
area in main storage by defining an address
constant that contains the file name of the
pertinent file plus a displacement of 120.

Example: If the file name is PAYROLL,
the address constant is:
DC Y(PAYROLL+120)

Storage Areas

Records in one logical file are transferred
to or from one or more I/O areas in main
storage. The areas must always be large
enough to contain a block of records or a
Single record if unblocked records are
specified. For the functions of adding or
retrieving records, the I/O area must also

Organizing and processing Indexed-Sequential Files 89

provide space for a sequence-link field
that is used in conjunction with overflow
records when the entry RECFORM=FIXUNB is
specified (see Overflow Areas and Addition
of Records) above. The I/O area require­
ments are illustrated in Figure 22 and
described in detail under IOAREAL, IOAREAR,
and IOAREAS in the discussion of the DTFIS
statement.

Records may be processed directly in the
I/O area or in a work area. If blocked
records are to be processed in the I/O
area, specify a register directly or sym­
bolically in the IOREG entry of the DTFIS
statement. The specified register is used
for indexing, i.e., to' point to the begin­
ning of each record and thus locate the
record for processing.

If the records are to be processed in a
work area~ specify one of the DTFIS entries
WORKR or WORKS in the file definition
statement. The IOCS moves each individual
input record from the input area to the
work area where it is available to the
problem program for processing. Similarly~
the IOCS moves a completed record from the
work area 0 the output area. The work area
must be large enough to accommodate one
data record. Whenever a work area is used,
an I/O register is not required.

LOAD (ADD) Blocked Records

Multi-File Processing: If multi-file proc­
essing with the same physical file is
desired (i.e., if two file names - A and B
- have been -specified in two file defini­
tio~ sta~em~nts, but the associated DLAB
cards contain identical disk extents and
tile identifiers), issue a CLOSE macro
instruction for the tile with the filename
A before opening the file with the filename
B.

PROCESSING AN INDEXED-SEQUENTIAL FILE

This section informs you about the func­
tions the laCS performs when loading or
adding reco~ds, or when retrieving and
updating records randomly or sequentially.

Loading Records

As records ar.e loaded onto disk, the IOCS
causes the V?r.iting of a track-index entry
each time a track is full~ and the writing
of acyl inder;- index entry each time a cyl­
inder is fu~l. When a track ind~x is com­
pleted, the IOCS fills the remainin~ por­
tion of the sector with i-bits.

The ENDFL macro instruction Causes the
writing of the last block of data records,
which contains the end-of-file record. It
also causes any required index entries to
be written, including the dummy entry for
the cylinder index.

Length
in Bytes

L_----------RECSIZf :a':RECDS -------------.. ;Il0l1

LOAD (ADD) Unblocked Reords

Length
in Bytes

I ..

SL = Sequence Link

(must always be a length of 270 bytes
or an integer multiple thereof)

Data

RECSIZE = n, NRECDS = 1 --------... ~I f-

Figure 22. I/O Areas Required for Loading or Adding Function

90

SL I

Adding Records

Before a WRITE macro instruction can be
executed, the access mechanism must locate
the track on which the record is to be
inserted. Normally~ this is done by first
searching the cylinder index and then the
track index. However, before the access
mechanism is moved to check the cylinder
index, the Ioes checks the I/O area in main
storage containing the track index to
determine if the proper track-index sector
is already 'in main storage from a previous
add-record operation. If so, access move­
ment to the cylinder index is not necessary
and the appropriate track-index entry is
used to obtain the proper insertion
address. This method of checking the
track-index sector in main storage before
initiating access movement may reduce the
average access time considerably if the
input records are pre-sorted. In this
case, the proper track index is likely to
be in main storage for the majority of the
insertion records.

If the proper track index is not in main
storage, the Ioes causes the following: (1)
a seek to the cylinder index, ·(2) a search
for the entry pOinting to the proper track
index~ and (3) a seek to this track index.
The Ioes then transfers control to the
problem program to permit processing while
the access mechanism is moved to the track
index location.

The WAITF macro instruction cause:3 the
remaining functions of the preceding WRITE
macro instruction, i.e., search of the
track index, insertion of the record in the
prime data or overflow area, and updating
of track index entries, to be performed.

When all the functions of the preceding
WRITE macro instruction are completed, the
Ioes returns control to the instruction
immediately following the WAITF macro
instruction.

Inserting Records into a File of Unblocked
Records. The Ioes searches the indexes to
locate the correct track for the record.
If the correct track is not an overflow
track, the Ioes performs a scan if a prime
data block does not occupy more than one
sector. Otherwise, it performs an
equal/high search by comparing the keys of
the records on the track with the key of
the record to be inserted. When a record

is found whose key is equal to or higher
than the key of the ins'ertion record, that
Lecord is r~ad from the track and placed
into main storage (I/O area). The two keys
are compared to dete~mine if a duplicate
record was found. If a dUplicate record
was found, the Ioes branches to the routine
specified in the DUPREX entry of the DTFIS
statement. If no duplicate key was found,
the Ioes causes (1) the insertion record
(in the WORKL area) to be written on the
track and (2) the record that was read from
the track i~to the 1/6 area to be moved
into the WORKL area.

The next record on the track is read
into the I/O area. Then the record in the
work area is written on the track. This
sequenc~ of operations is repeated until
the last record on the track has been read
int6 the I/O area. This last record is
then written into the appropriate overflow
area, and the appropriate track-index
entries are updated. The Ioes uses the
cylinder overflow area, provided this area
has been specified in the CYLOFL entry of
the DTFIS sta·tement and the area is not yet
full. Figure 23 illustrates the status of
the areas in main storage (IOAREAL and
WORKL) during an add-record operation as
described ~bove.

If the cylinder overflow area is full,
or if you sp~cify only an independent over­
tlow area by means of a job cont~ol XTENT
statement, the last record is transferred
to the indep~ndent overflow area. If an
independent overflow area has not been
specified (or is full) and the cylinder
overflow area is full, there is no place to
store the overflow record. The Ioes then
branches to the routine specified in the
ADAREX entry of the DTFIS statement.

If the prope~ track for the insertion
Lecord is an overflow track, the Ioes
searches the overflow chain and checks for
a duplicate record. If a duplicate record
is found, the loes branches to the DUPREX
routine. If no duplication is found, the
Ioes causes (1) the record to te written in
the next available location within the
overflow area, including the 6-byte
sequence4 link field and (2) the appropriate
linkages to be adjusted to maintain sequen­
tial order by key. The new record is writ­
ten in either the cylinder overflow area or
in the independent overflow area. If both
these areas are full, the Ioes branches to
the ADAREX l:outine.

Organizing and ProcessiQg Indexed-Sequential Files 91

Record to be inserted (in the WORKL Area)

Record 031

Records on Track before Insertion

[Record 010 Record 020 Record 030 Record 040 Record 050

Status of Main Storage Areas IOAREAL and WORKL:

After record with
higher key has been
found

After insertion
record has been
written

After record 040
has been written

l--- IOAREAL -----1· ... 1

Record 050

Record 050

j4--WORKL Area

I Recoro 031

Record 040

Record 040

is written onto disk at
location previously
occupied by record 040

is written onto disk at
location previously
occupied by record 050

Record 050 is written onto disk in the appropriate overflow area directly from IOAREAL.

Records on Track after Insertion

Record 010 Record 020 Record 030 Record 031 Record 040

RSL = Reserved Space for Sequence-Link Field
SL = Sequence-Link Field

{required to permit proper chaining of overflow' records}

Record on
overflow track

Record 050

Figure 23. Stat.us of Main storage Areas IOAREAL and WORKL Du~ing an Add-Record Operation
for a File Containing Unblocked Records

Inserting Records into a File of Blocked
Records. The laCS searches the indexes to
locate the track that contains the begin
address of the block into which the new
record is to be inserted. This track may
be an overflow track.

If the track that contains the begin
address of the block is not an overflow
track~ the laCS searches the key areas of
the records on the track to locate the
desired block. When located, the block is
read into the I/O area.

The IOCS then examines the key areas
within each logical record to find the

92

exact position to insert the new record.
The IOCS checks for duplication of records
and~ if a duplicatio~ exists, tranches to
the DUPREX routine. If there is no dupli­
cat~ record, all records below the insert
position ar~ shifted to the left by one
~ecord to make room for the new record that
is moved from the WORKL area into the I/O
area. As a ~esult, the first record of the
block is no~ contained in the WORKA area.

The block is then written back onto disk
beginning with the leftmost byte of the
WORKA area. However, the record that orig­
inally was the last record of the block is
not written at this time. This record is

moved into the WORKA area after the comple­
tion of the WRITE operation. A subsequent
read instruction reads the next block from
disk into the 1/0 area. This is followed
by a write instruction that begins wit.h the
vlORKA area again. This sequence of opera­
tion is repeated until all blocks on the
track have been processed.

After the last block of the track has
been written. one record is left at the end
of the 1/0 area. This record is then set
up as an overflow record with the proper
sequence-link field and written into the
overflow area. The indexes are updated and
the IOCS returns control to the problem
program for the next record to be added.
If no overflow area is available, the IOCS
branches to the ADAREX routine.

Track before Insertion

Figu~e 24 illustrates the status of the
main storag~ areas IOAREAL. WORKL, and
WORKA during an add-record operation for a
file cODtaining blocked records.

If the point of insertion is on an over­
flow track, the functions are the same as
described above un~er Inserting Records
into a File of Unblocked Records.

Random P~ocessing

The READ macr.o instruction causes the IOCS
to search th~ indexes to determine the
track that contains the desired recore.
The search for the apprppriate record is
performed in two difjerent manners.

14..---------- Block A Block B ------------II~

Record to be
inserted

After desired block
has been read into
the I/O area

After the insertion
of Record 031

Retord 050 is moved
to WORKA

After the next
block has been read
into the I/O area

Status of Areas in Main Storage

r-WORKL-1

I Record 031 I

Record 010 Record 020 Record 030 Record 040 Record 050 I
~---------IOAREAL ... 1

~-----------------IOAREAL-------------------------~

Note: New block begining with record 010 including record 040 is written onto disk
at the location of block A

~----------------------IOAREAL-----------------------------~

Note: New block begining with record 050 including record 090 is written onto disk
at the location of block B. Record 100 is written into an overflow block.

Figure 24. Status of Main Storage Areas IOAREAL, WORKL, and WORKA During an Add-Record
Operation for a File Containing Blocked Records

Organizing and Proc~ssi~g InJexed-Sequential Files 93

a) If the block length (i.e., the number of
records times therecord length) is less
than 270 byt2s, the program simply scans
the track concerned until the appropri­
ate record is found. Then the record is
read into the I/O area (IOAREAR).

b) If the block length exceeds 270 bytes,
all records on the given track are suc­
cessively read into the I/O area until
the correct record is encountered.

The WRITE macro instruction causes the
record retrieved by the preceding READ
macro instruction and processea by the
problem program to be rewritten onto disk
at the location from which it was
retrieved.

The WAITF macro instruction causes the
remaining functions of the preceding
READ (WRITE) macro instruction (e.g., search
of the track index, insertion of the
record) to be performed. When all func­
tions are completed, the Ioes returns con­
trol to the instruction immediately follow­
ing the WAITF macro instruction.

Sequential Processing

If a GET macro instru~tion with the file
name as the only operand is used and the
file contains unblocked records~ one logi­
cal record is retrieved and made available
for processing in the I/O area. If the
file contains blocked records, this GET
causes the entire block to be read into the
I/O area when no further records are avail­
able from the block that is already in main
storage. The Ioes then makes the addresses
of the records available one at a time in
the register specified directly or symboli­
cally in the detail entry IOREG of the
appropriate DTFIS stateloent. Each subse­
quent GET causes the contents of the I/O
register to be increased by the number of
bytes contained in one record.

If a GET macro instruction with two
operands (filename and workname) is used
and the file contains unblocked records,
the record read from disk into the I/O area
is made available for processing in the
specified work area. If the file contains

94

blocked reco~ds, this GET causes the entire
block to be read into the I/O area when no
jurther records are available from the
block that is al~eady in main storage. The
loes then makes the first record of the
block av~ilable for processing in the spec­
ified work area. Each subsequent GET caus­
es the next record to be made available for
processing.

If a file containing blocked records is
retrieved and updated, the GET macro
instruction determines whether o~ not an
output operation is necessary. Because a
PUT macro instruction need only be executed
for those records that have been updated,
the PUT macro instruction merely indicates
whether or not a block of records should be
written onto disk after all records in that
block have been processed. When a GET
macro instruction that refers to the first
record in a new block is executed, the Ioes
determines whether or not a PUT macro
instruction was issued for a record in the
block just completed. If there was, that
block is returned to disk before the new
block is read. If no PUT macro instruction
was issued, the output operation is omitted
because no record in the block was changed.

For unblocked records, the execution of
a PUT macro instruction causes a record to
be written into the disk storage location
from which a record was retrieved by the
preceding GET macro instruction for that
file.

For blocked records, the execution of a
PUT macro instruction does not initiate the
writing of records onto disk. Instead, it
only indicates that a block should be writ­
ten before the next one is read. If a work
area is spe~ified, the execution of a PUT
macro instruction will also move the record
from the work area to its proper position
~ithin the block. The writing of the block
is controlled as described for the GET
~acro instruction above.

For blocked records, the ESETL macro
instruction causes the last block of
records to be returned to disk if a PUT
mac~o instruction was issued for any record
in that block.

In Assembler language programs. you can
issue five macrO instructions to communi­
cate with the Monitor. Two refer to the
communication region (COMRG and MVCOH) " two
request functio~s of the Fetch routine
(FETCH and EOJ) and one refers to the
printer-keyboard input area (IQIPT).
Appendix C is a summary of these Monitor
macro instructions.

COMRG MACRO INSTRUCTION

The COMRG macro instruction is used to
refer to the communication region. It
causes the address of the first byte of the
region. which is on a halfword boundary, to
be placed into register 8. Then, any field
in the region can be referred to by rela­
tive addressing.

The COMRG macro instruction has the
following format:

r----T---------T--------------------------,
INamelOperationlOperand i
}----+---------+--------------------------i
I ICOMRG I J l ____ ~ _________ ~ __________________________ J

Example: The following sequence of
instructions places the address of the
beginning of the communication region into
register 8, loads the contents of bytes 20
and 21 of the communication region (User
Area II) into register 12, and then stores
the contents of register 12 in a location
whose symbolic address is TEST.

COr.1RG
LH 12,20(0,8)
8TH 12,TEST

l'1VCOM MACRO INSTRUCT ION

The MVCOM macro instruction is used to
modify information in the user area of the
communication region (bytes 12 to 23)" The
format of the MVCOM macro instruction is:

r----T---------T--------------------------,
INameloperationloperands I
}----+---------+--------------------------i
I 1 MVCOM I first-byte, number, address I
L ____ L _________ L __________________________ J

first-byte
The relative address of the first byte
to be modified in the user area (can be
any of the decimal values 12-23).

Monitor Macro Instructions

number
The number of bytes to be modified in
the area (can be any of the decimal
values 1-12).

address
The name of the storage location that
contains the modifying bytes. (A relo­
catable expression may be used instead
of a name.)

Note: After the ~xecution of a MVCOM macro
InStruction, register 8 contains the
add~ess of the communication region.

Example: If MOD is the symbolic address of
a location containing the binary number
10001111, the statement:

MVCOM 15,l,MOD

causes the ~umber 10001111 to be moved to
byte 15 of the corrmunication region.

FETCH MACRO INSTRUCTION

The formats of the FETCH macro instruction
are:

r----T---------T--------------------------,
INamelOperationlOperand I
t----+----------+--------------------------i
I I FETCH Iphasename I
r----+---------+--------------------------i
I I FETCH I I
l ____ L _________ L __________________________ J

phasename
In a disk-resident system, the name of
the phase that is to be loaded from the
core-image library into main storage.
In a card-resident system, the phase
that physically follows the phase con­
taining FETCH is to be loaded (phase
name is ignored).

No Operand
~he FETCH macro instruction may be used
without an operand. In a disk-resident
system, the omission of the operand
causes th~ next subphase of the last
phasesp~cified to be loaded. A sub­
phase 'is a separately executable routine
within a phase of a problem program. It
may be overlaid after execution. In a
card-resident system, the phase that
physically follows the phase containing
FETCH is to be loaded.

The Monitor uses registers 8, 14, and 15
in executing the FETCH macro instruction
and does not restore their contents. If

Monitor Macro Instructions e95

you use any of these registers in your
program, you should store their contents
before issuing a FETCH macro instruction.

When you use card and printer files,
issue a WAITC macro instruction prior to
issuing a FETCH macro instruction to ensure
that all pending card and printer inter­
rupts are handled properly. (Refer to
Loading a Program Phase under Programming
Considerations).

EOJ MACRO INSTRUCTION

The EOJ <end of job) macro instruction is
used at the end of the last phase of a
program. It indicates to the disk-resident
Monitor that the Job Control program is to
be called to prepare the next job for proc­
essing.

When program execution is controlled by
the card-resident Monitor, an EOJ macro
instruction causes a system halt. Loading
of the next physical program that follows
(the Job Control deck that precedes the
next object program deck) is initiated by
pressing START.

The format of the EOJ macro instruction
is:

r----T---------T--------------------------,
/Namel Operation\ Operand I
~----+---------+--------------------------~
I \EOJ I \
l ____ L _________ L __________________________ J

-96

Note: If you use your own input/output
routines ins±ead of the macro instructions
provided by the IOCS~ the new PSW may be
used to poi~t to the interrupt routine.
Ensure that all pending interrupts are
cleared and the original contents of the
new PSW -- the begin address of the Monitor
interrupt routine -- is restored before you
issue a FETCH or EOJ macro instruction.

IQIPT MACRO INSTRUCTION

with the IQIPT macro instruction you can
r.efer to the printer-keyboard input area
defined at Monitor generation time. This
macro instruction loads the begin addre~s
of the input area into register 8. Thus.
you can r.ef~r. to any field in the area by
means of this base address and a displace­
ment. The format of the IQIPT macro
instruction is:

r----T---------T--------------------------,
IName\OperationlOperand \
t----+---------+--------------------------~
I I IQIPT I \
l ____ L _________ L __________________________ J

Unlike the macro instructions fo~ printer­
keyboard input and output files, the IQIPT
macro instruction is generated in-line in
the program and does not require linkage to
any DTF routines. It can be used only in
programs executed under the control of a
Monitor with a printer-keyboard input area.

This section informs you about the
restrictions you have to observe when writ­
ing a program. It tells you which reg­
isters you may use ~nd how you can reduce
main storage requirements by applying the
overlay programming technique.

RESTRICTIONS

When writing a problem program, observe the
following:

1. To avoid multiple definition of sym­
bols, do not use any symbols starting
with the letter I because all symbols
used by the IOCS start with this let­
ter.

2. Do not use file names that are longer
than seven characters because the IOCS
uses the eighth character position.

3. To avoid multiple-definition of sym­
bols J do not use a file name followed
by an additional character as a symbol
in your program because the Assembler
derives entry points to the IOCS by
adding a character to the file name.
For example~ if READCRD has been
assigned as the name of an input file,
do not to use symbols such as READCRDA,
READCRDB, etc., in the source program.

4. When you use the IOCS in your program~
you are not allowed to issue an XIO
instruction because this would cause an
unexpected interrupt and thus interfere
with automatic scheduling of I/O opera­
tions by the IOCS.

Loading a Program Phase Including File
Definition Statements

When a new program phase including file
definition statements is loaded by means of
a FETCH macro instruction~ the permanent
link data area of the Monitor program is
modified to point to the interrupt routines
in the new program phase. As a result, any
I/O macro instruction referring to a file
defined in the preceding program phase can
no longer be executed. You must also
ensure that all pending card and printer
interrupts from the preceding program phase
have been handled properly. Do this by
issuing a WAITC macro instruction before
you issue the FETCH for loading the next
phase. Figure 25 shows the use of the
WAITC macro instruction when another pro­
gram phase is to be loaded.

Note that a second or subsequent program
phase cannot be loaded from a card input
device in which data cards were read during
any of the preceding program phases.

Programming Considerations

When, in an inquiry or in a mainline
program, you issue a FETCH macro instruc­
tion for, a separately assembled program
that contains file definition statements,
you must ensure that this program was also
assembled as inquiry or mainline program,
respectively. Otherwise, no file protec­
tion is provided for this program during
inquiries.

OVERLAY PROGRAMMING FOR OPEN AND CLOSE

When your program processes one or more
tape and disk files~ you can use the over­
lay programming technique to reduce the
number of main-storage positions required.
This programming technique allows you to
have part OL all of the OPEN I/O routines
for tape and disk files overlaid the prob­
lem program and to have part or all of the
problem pro.gram overlaid by the CLOSE rou­
tines for tape and disk files.

When you specify OVLAY in the DTFEN
statement, the OPEN and CLOSE routines for
tape and disk files are not generated as
part of the DTF routines. Instead, they
are generated in-line, i.e.~ when the
Assembler encounters the first (or only)
OPEN (and CLOSE) macro instruction for a
tape or disk file.

It is not sufficient, however, to speci­
fy OVLAY in the DTFEN statement in order to
have the OVLAY function performed. In
addition~ you must observe the following
(refer to Figure 25):

1. Write your own tape label handling
.routines (if any), including those
needed when closing a file (or files),
ahead of the first OPEN macro instruc­
tion.

2. Position all literals required by these
label routines ahead of the first OPEN
mac~o instruction (use an LTORG Assem­
bler instruction).

3. Open all tape and disk files before the
OPEN routines are overlaid by the proh-
1 em prog.r.am.

Note: If a program utilizing the over­
lay progr.amming technique is loaded
from cards and the loading device is
also used as input device for a card
file# make sure that the first card of
the data file is in proper position to
be fed fr.om the hopper of the reading
devi.ce at the time the file is opened
by means of an OPEN macro instruction.
(All program cards must have been read
when the OPEN macro instruction for the
card file is executed.)

Programming Considerations 97

The routines used to open files (and
additional volumes of multi-volume
files) are not available after they
have been overlaid. Therefore, OVLAY
cannot be specified in programs that
process:

• mUlti-volume tape files.
• multi-file tape reels if more than

one file on the tape is used, and/or
• mUlti-volume sequential disk files.

4. Initiate execution of the OPEN macro
instruction by a subsequent XFR state­
ment (XFR BEGIN in Figure 25) which may
or may not immediately follow the OPEN
macro instruction. A FETCH macro
instruction (the first FETCH in Figure
25) must be issued following the OPEN
macro instruction. This FETCH causes
part or all of the problem program to
be loaded. Note that the FETCH macro
instruction destroys the contents of
register 8.

5. Issue an ORG statement (ORG BEGIN in
Figure 25) after the XFR statement.
The operand of this ORG statement spe­
cifies the address where the overlay is
to start and may be the same as the
name of the OPEN macro instruction.
For details concerning the ACTION,
REPRO, XFR, and ORG statements, refer
to the SRL publications IBM System/360
Model 20 t Disk programming System,
Control and Service Programs, Form
C24-9006, and IBM System/360 Model 20,
Disk and Tape Programming Systems,
Assembler Language, Form C24-9002.

6. Use XFR and ORG statements (XFR and ORG
xxx in Figure 25) prior to the CLOSE
macro instruction. The operand of the
ORG statement specifies an address in
the preceding problem program. Only
one CLOSE macro instruction should be
issued for all files.

7. Issue a FETCH macro instruction (last
FETCH in Figure 25) for another program
subphase (i.e., another part of the
program). This subphase would include
the routines that have been generated
for the CLOSE and EOJ macro instruc­
tions. The loading of this subphase
begins at the address specified as the
operand of the ORG statement preceding
the CLOSE macro instruction.

8. If the overlay programming technique is
employed, the Open routine, in some
cases, already inserts the first record
into the I/O area. Therefore, the I/O
areas should be defined immediately
preceding the load address of the indi­
vidual program phases so that they are
not overwritten.

98

(---,
I I
I START I
I DTF I
I I
I I
I DTF I
I I
I I
I DTFEN OVLAY I
I Generated EOF and EOV I
I routines I
ILABADR
I
I
IBEGIN

USING 12
USING 13

Tape label handling
routines
Problem program
initialization I

I
I
I
I
I
I
I
I

DROP 12
DROP 13
OPEN diskfle, tapefle

I
I
I
I
I
I

USING 12
USING 13

I FETCH
I REPRO

Generated OPEN routines
for disk and tape files

I ACTION DUP
I XFR BEGIN
I REPRO I
I ACTION NODUP I
t---~
I I
I ORG BEGIN I
I ROUT IN I
I OPEN cardfle I
I Generated linkage (to I
I DTFSR routine) I
I I
I I
1 WAITC I
I FETCH I
I I
I REPRO I
I ACTION DUP I
I XFR ROUTIN I
I REPRO I
I ACTION NOD UP I
r---~
I 1
I ORG xxx I
I I
I DROP 12 I
I DROP 13 I
IFINIS CLOSE diskfle, tapefle, cardfle I
I I
I EOJ I
I END FINIS I
L ___ J

Figure 25. Coding for File Processing
Using the Overlay Technique

Note: All I/O areas have to be available
during OPEN" Processing, and CLOSE time.

Steps 1 through 5 cause some or all of
the coding between the location indicated
by the operand of the first ORG statement
(BEGIN) and the next XFR statement (XFR
BEGIN) to be overlaid by the problem pro­
gram. Steps 6 and 7 cause the overlaying
of part or all of the problem program, for
instance, with the CLOSE routine and the
end-of-job routines.

User-Written Macro Definit~ons

When you use the overlay programming tech­
nique, the program must not include any of
your own macro definitions that contain any
of the global SETB symbols &BGO-&BG19,
&BG21~ &BG27-&BG28, &BG69, and &BG80-&BG87.
(Note that you should not use the global
SETB symbols &BG13, &BG27, and &BG28 even
when OVLAY is not specified.) You must
either change the global SETB symbols in
your macro definitions or write the program
without the use of the overlay programming
technique.

Assignment of Base Registers

Since the OPEN and CLOSI.: routines are gen­
erated in-line, consider their approximate
sizes when assigning and loading the base
registers for the program. For information
on the sizes of these routines, refer to
the SRL publication IBM System/360 Model
20, Disk Programming System, Performance
Estimates, Form C33-6003.

When DTFEN OVLAY is specified, the rou­
tines for the processing of the IBM stand­
ard labels a+e generated as part of the
OPEN routines and not as part of the DTF
routines. These routines use registers 9
and 10 as base registers.

You must drop your base registers prior
to issuing the first OPEN or CLOSE macro
instruction. Immediately after an OPEN
macro instruction, the USING instructions
must be repeated. It is not necessary to
reload the registers, however, because
their contents are restored to the value
they contained before the OPEN macro
instruction was executed (see Figure 25).

REGISTER USAGE

Registers 11, 12 and 13 have special res­
trictions on their use in programs contain­
ing 1419/1259 Magnetic Character Reader
IOCS macro instructions. Refer to the SRL
publication, IBM System/360 Model 20" Disk
and Tape Programming Systems, Input/Output
Control System for the 1419 and 1259 Mag­
netic Character Readers; Form C33-6001.

Register 14 and 15 have special restric­
tioY).s on their use in program's containing
BSCA IOCS macro instI;uctions. Refer to the
SRL publication, IBM System/360 Model ~
Binary SynchLonous Communications Adapter,
Form C33-4001.

You may t~eely use any or all of the
Legisters from 10 through 13. Registers 8,
9, 14, and 15 are not readily available for
reasons explained below.

Register 8 is used by the Monitor macro
instructions FETCH, IQIPT, COMRG, and
MVCOM. Save the contents of register 8
before issuing any of these macro instrUC­
tions.

Registers 8 and 9 are used as operand
registers in the LABADDR routine. In this
Loutine, the two registers do not contain
the values that were placed into them in
the problem ,prog+am. The two registers are
Lestored to their original values if you
return to the IOCS by issuing an LBRET
mac~o instruction with a 1 as operand.

Registers 9 and 10 are not readily
available when OVLAY is specified in the
DTFEN statement. If you issued USING
instructions for register 9 and 10 at the
beginning of the program, you must drop
these registers prior to issuing the first
OPEN macro instruction. You must repeat
the USING instructions immediately after
the OPEN maCLO instruction. Reloading the
register is not +equired because its con­
tents aI;e restored to the value that was
contained in the register before the execu­
tion of the OPEN macro instruction.

Registers 14 and 15 are used by the
FETCH macro instruction and by the IOCS
imperativernacro instructions (GET, PUT,
etc.) If you use one or both of these
registe~s i~ the problem program, make sure
that their contents are no longeI; required
before you issue an imperative macro
instruction or a FETCH macro instruction,
or save the contents of these registers if
you need them at a later time.

If you a~ticipate transition to a larger
System/360 model, be awaI;e that the Basic
Programming Suppprt and the Basic Operating
System do not allow you to use registers 12
and 13.

Registers Regui~ed by the IOCS

The record format and the combination of
I/O and work areas used in the problem
program dete~mine the number of registers
(none, one, or two) that must be specified.
The summary in Figur~ 26 indicates when it
is required to specify registers IOREG
and/or VARBLD.

Programming Considerations 99

r---------------------T-----------T-----------T-----------T-----------,
I Record Format I Number of I Work Area I IOREG I VARBLD I

I I I/O Areas I specified I required? I required? I

~---------------------+-----------+-----------+-----------+-------~---~
I Fixed Blocked I 1 I No I Yes I No I

I Fixed Blocked 1 1 I Yes 1 No I No I
I Fixed Blocked 1 2 I Yes I No 1 No I
I Fixed Blocked I 2 I No I Yes I No I
I Fixed Unblocked I 1 I No 1 No I No I

I Fixed Unblocked I 1 I Yes I No I No i
I Fixed Unblocked I 2 I No I Yes I No I
I Fixed Unblocked I 2 I Yes I No I No I

I Variable Blocked 1 1 I No I Yes I Yes* I

I Variable Blocked I 1 I Yes 1 No I No I
I Variable Unblocked 1 1 I No I No** I No I
I Variable Unblocked I 1 I Yes I No I No I

I Und~fined I 1 I No I No I No I
I Undefined I 1 I Yes I No I No I

t---------------------L-----------L-----------L-------____ L _______ ~---~

1 *Output files only. I
1 **Required if read-backward is specified. I
l ___ J

.Figure 26. Summary of Index Register Requirements

100

You can use the inquiry-request functions
of the printer-keyboard to temporarily
suspend the processing of a job in order to
load and execute a program cataloged in the
core-image library. Such a program is
referred to as an inquiry program. You
call an inquiry program into mnin storage
by pressing the printer-keyboard Request
key and entering the program name on the
keyboard. An installation is not limited
to a single inquiry program; any number of
programs can be written and stored in the
core-image library.

For a program that is to be interrupted
by an inquiry reguest, you must enter the
specification MAINPRG=YES in the DTFDG
statement. If you want to execute a pro­
gram as an inquiry program, you must speci­
fy INQPRG=YES in the DTFBG statement, and
you must use a Monitor that contains rou­
tines for inquiry interrupts. (For a des­
cription of this Monitor, refer to the SRL
publication IBlL.§ystem/360 Model 20, Disk
Programming System, System Generation and
Maintenance, Form C33-6006.)

The inquiry program specifies the opera­
tions to be performed, using the inquiry
record (if any) and any other files that
are necessary. You can request an inquiry
during the processing of a wide variety of
programs. Note that if mainline programs
are processing magnetic tape or c~rd files
that are also accessed by the inquiry pro­
gram, it is probable that the interrupted
program cannot be restored to its original
status. You cannot process tape files with
standard labels in an inqairy program.

special file protection routines are
included in the laCS Open and Close rou­
tines for disk files. These routines are
described under File Protection below.

A recommended technique for disk files
is to reserve at least two logical unit
blocks (LUBs) for the exclusive use of
inquiry programs. Since they are not used
by the mainline programs, their contents
are not altered by job control statements
submitted duri!1!] a job stream.

The inquiry program~ like any other
program J requires that label ~nformation be
supplied in order to open disk files to be
used in the program. The disk files, of
course, must be o~1-line aJc the time the
inquiry is requested. As an inquiry pro­
gram 1S called via the printer-keyboard,
i.e., it is not preceded by a separate job

The Inquiry Program

control run, pe:t;manent labels should be
used for inquiry programs. If you want to
use tempora~y labels for an inquiry pro­
gram, you must provide the required job
control information with the job control
information for the mainline program that
is to be interrupted by the inquiry pro­
gram. (For details concerning the use of
permanent labels, refer to the SRL publica­
tion IBM System/360 Model 2~Disk Program~
ming System, Control and Service Programs,
Form C24-9006.)

Inquiry Record

When th~ operator wishes to enter an
inquiry, he presses the Hequest key on the
printer-keyboard. If the current program
can be interrupted, the message 'ENTER
PROGNAME' is printed unless a Monitor with
the option INQMSG=NO is ~sed. The operator
must enter the name of the desired inquiry
program and press EaT. If an inquiry
record is processed by the program, i.e., a
Monitor with the INQIPT option is used, the
operator must then enter the data and again
press EaT. If the program does not use an
inquiry record, the EaT key must neverthe­
less be pressed to Signify the completion
of input.

Since the inquiry record is read into
the input area INQIPT in the Monitor at the
time an inquiry request is submitted, you
do not have to include a READ macro
instruction for this record in a program
written in Assembler/laCS language. Nor do
you specify a DTFPK file definition state­
ment for the record. Instead, you must
issue an IQIPT macro instruction to deter­
mine the lO.cation of the input area in the
MO!1itor. The IQIPT macro instruction loads
the add~ess of the input area INQIPT into
register 8, refer to the IQI?T Macro
Instruction) You can then access the
inquiry record contained in that area. The
length of the inquiry record is limited to
the length of the input area INQIPT. If
you want to process additional printer­
keyboard files in an inquiry program, you
must define those files with a DTFPK file
definition statement and must issue the
necessary imperative macro instructions as
described in the section Instructions for
Proc~ssiOg Printer-Keyboard:Files.

~he advantage of submitting data as an
inquiry record is that no printer-keyboard
laCS is required and that the processing of
the mainline program continues while the
operator enters the data.

The Inquiry Program 101

Monitor I/O Areas

If the INQIPT option is used, the Monitor
must contain an input area to accommodate
the inquiry record in main storage and make
it available to the inquiry program. The
output area for printer-keyboard records in
an inquiry program may be located in the
problem program itself, or in an area
immediately following the Monitor in main
storage. The latter area (INQOPT) is allo­
cated at the time the Monitor is generated.
(Refer to the SRL publication IBM
System/360 Model 20, Disk Programming Sys­
tem, System Generation and Maintenance,
Form C33-6006).

The Monitor output area for the printer­
keyboard is of advantage only in a Model
20, Submodel 5. By specifying an output
area outside the problem program, it is
possible to overlap the printing of the
last output record on the printer-keyboard
with the roll-in and processing of the
mainline program. Note that overlapping is
achieved only if no part of the printer­
keyboard output area is overlaid by the
inquiry program or the interrupted mainline
program. Both should be loaded above this
area.

In a Model 20 system that has no overlap
feature a printer-keyboard output area
located outside the problem program is not
advantageous. In this environment, fewer
bytes of main storage are required if each
inquiry program contains its own printer­
keyboard output area, and if the mainline
programs are loaded immediately behind the
Monitor.

Opening Disk Files

When disk files are opened in an inquiry
program

• all OPEN macro instructions for disk
files must be given together (preferably
at the beginning) in an inquiry program,
and

G all OPEN macro instructions for disk
input files must be given before the
OPEN macro instructions for disk output
files.

Error in Inquiry Program

If an irrecoverable error occurs in an
inquiry programJ the mainline program may
be re-entered by transferring control to
EOJ. This is accomplished by entering (on
the CPU console) the main-storage address
X'00C2' into register 3.

102

FILE PROTECTION

For disk files, special routines generated
for the OPEN and CLOSE macro instructions
provide for protection of files. These
Loutines are only included in the Open and
Close routines of programs that are
assembled with a DTFBG statement and the
operands MAINPRG=YES and/or INQPRG=YES. If
a program can be run as either a mainline
program or an inquiry program, the
Open/Close routines for disk files are
prepared/changed at object time to process
disk files according to the requirements of
a mainline or inquiry program.

The protection for disk files during
inquiries is also provided for by RPG. A
mainline program written in Assembler/IOCS
language can be interrupted by an inquiry
program written in RPG, and vice versa.

No protection is provided for card and
magnetic tape files. Therefore, you must
carefully evaluate the use of card and
magnetic tap~ files in an inquiry program
if the same files are being processed in
the interrupted mainline program. If
standard labels are used for magnetic tape
files, you cannot process these files in an
inquiry program.

Mainline Open and Close Routines

If a program is run as a mainline program
that is to permit interrupts by inquiry
programs, the Open and Close routines for
all disk input and output files are expand­
ed to perfo~m the following functions:

1. Open routines:

a. postpone any interruptions <of the
mainline prograrr) initiated by
inquiry requests until the end of
the Open routines has teen reached,
i.e., until the label processing
performed by the Open routines is
completed.

b. move the file-protection switches
from the DTF block of the disk file
being opened to the format-l label.

File protection switches are initially
set in the DTF blocks for all disk files
defined in a program assembled with
I'mINPRG=YES in the D'l'FBG statement. Thes e
switches are moved to the format-1 lubel to
indicate the status of the file being proc­
essed in a mainline program. Whether the
file can be accessed by an inquiry program
that interrupts mainline processing,
depends on the conditions shown in Figure
27.

2. Close routines:

a. prevent any mainline-program inter­
ruption (initiated by an inquiry
request) during execution of the
Close routines, i.e., during label
processing.

b. turn off the file-protection
switches in the format-l label to
indicate that the mainline program
has finished processing the file.

Note: A mainline program that opens a disk
file must also close it in order to turn
off the protection switches, i.e., to
ensure that it is not protected from access
by later inquiry programs. If disk files
opened in a mainline program have not been
closed (i.e., an error halt occurred and
the mainline program was discontinued)~ you
should prepare a dummy mainline program
which opens and closes the affected disk
files.

Inquiry Open Routines

If a program is executed as an inquiry
program, the Open routines for all disk
input and output files are expanded to
perform the following functions:

1. Open routines:

a. test the file protection switches
in the format-1 label.

If these switches indicate that the
file is being processed by a main­
line program, the inquiry program
may still access the file. Howev­
er, if the inquiry program speci­
fies operations (e.g., UPDl'~TE, ADD,
or LOAD) that may conflict with the
operations being performed on the
same file in the mainline program,
the inquiry program is discontinued
and processing of the mainline
program is resumed.

The conditions under which a file
being processed in a mainline pro­
gram is protected are shown in
Figure 27.

b. check the extent limits of output
files being opened against the
extent limits of all disk files
processed by the interrupted main­
line program. If extent overlay is
detected~ the inquiry program is
discontinued and processing of the
mainline program is resumed.

The Inquiry Program 103

r---,
IInqu~ry-Mainline Program - Same File I
~---~
IIndexed-Sequential Files I
t----------------T---~~
\ I Inquiry Program I
I f-----------T-----------------T-------------T-------------T--------------~
IMainline Program \ IOROUT=LOAD\ IOROUT=ADD/ADDRTRIIOROUT=RETRVEIIO ROUT=ADDRTRIIOROUT=RETRVE I
I I Iwithout UPDATE \with UPDATE lwith UPDATE \without UPDATE I
r----------------+-----------+-----------------+-------------+-------------+--------------~
I IORO UT= LOAD I PIP I PIP I P I
~----------------+-----------+-----------------+-----------~-+-----~-------+--------------~
I IOROUT=ADD/ I I I I \ I
I ADDRTR I PIP I A I P I A I
\without UPDATE \ I I I I I
r----------------+-----------+-----------------+-------------+-------------+--------------~
I IOROUT=RETRVE I I I \ I \
Iwith UPDATE 1 PIP I PIP I A I
r----------------+-----------+-----------------+-------------+-------------+--------------~
I IOROUT=ADDRTR J I 1 r I I
Iwith UPDATE \ PIP I PIP I A I
r----------------+-----------+-----------------+-------------+-------------+--------------~
\ IOROUT=RETRVE l I I \ \ I
Iwithout UPDATE \ P \ P I A I P I A I
t~---------------L-----------L-----------------L------_______ L _____________ L ______________ ~
r--'--~-------~-------------------~--~
\Sequential Disk or Direct-Access File$ I
r----------------T--.-~
\ I Inquir.y Program \
I r-------------------T-----------------------T----------------------------~
IMainline ProgramITYPEFLE=OUTPUT rTYPEFLE=UPDATE I TYPEFLE=INPUT I
r----------------+-------------------+--------------------~~-+----------------------------~
\ TYPEFLE=OUTPUT I P \ PIP I
t----------------+-------------------+-----------------------+----------------------------~
I TYPEFLE=UPDATE 1 PIP I A I
r----------------+-------------------+-----------------------+----------------------------~
) TYPEFLE=INPUT I P \ A I A I
r--'--------------L-------------------L---------------___ -----L-----_----------------------~
IP - The file that is being processed in the mainline prog~am is protected from being I
\ accessed in the inquiry program. I
IA - Inquiries are allowed. I
l __ -------------________ ----------J

Figure 27. Protection of Files During Inquiry Operations

104

If a printer-keyboard is attached to your
system~ you can request an interrupt that
allows you" by means of an ATENT routine"
to modify the main routine~ set indicators
and switches~ and retrieve information
from~ or supply information to~ the main
routine. You interrupt the program phase
that is currently executed by pressing the
Request key on the printer-keyboard. Con­
trol is then transferred to your ATENT
routine whose entry point is provided by
the ATENT macro instruction. You must
issue an ATENT macro instruction as the
first and a RETRN macro instruction as the
last statement in your ATENT routine.

All files used by the ATENT routine must
be defined together with the other files at
the beginning of the program. When using
IOCS imperative macro instructions in the
ATENT routine you must observe the follow­
ing restriction: You are not allowed to use
macro instructions pertaining to a device
for which macro instructions have already
been issued in the main routine. For
instance, if the main routine contains card
routines" you must not issue card macro
instructions in the ATENT routine. The
same rule applies to the printer, magnetic
tape and disk. An exception is the
printer-keyboard. If you have printer­
keyboard output macro instructions in the
main routine, you may issue macro
instructions for printer-keyboard input in
the ATENT routine; and vice versa.

If you include an ATENT routine in your
program, you can execute the program only
as a mainline program that dGes not allow
inquiry interrupts, i.e.~ you must specify
ATENT=YES in the DTFBG statement.

Note that the registers are saved and
restored by the ATENT and RETRN macro
instructions. However~ the contents of the
registers are not known at the time the
interrupt occurs.

The ATE NT Routine

ATENT MACRO INSTRUCTION

The ATENT macro inst:r;uction has the follow­
ing format:

r------T---------T------------------------,
I Name IOpe~ationlOperand I
~------+---------+--~---------------------~
I [nameJIATENT I J L ______ ~ _________ ~ ________________________ J

The operand field must be blank. Enter
ATE NT in the operation field.

The ATENT macro instruction must precede
your ATENT :r::outine to which it p~ovides the
ent~y point. The ATENT macro instruction
exchanges PSW addresses and saves all reg­
isters. You can issue the ATENT macro
instruction only in a mainline p:r;ogram that
does not allow ipquiry interrupts. There­
tore~ you must specify ATENT=YES in the
DTFBG statement (see DTFBG statement under
the section Begin and End Definitions.)

RETRN MACRO INSTRUCTION

The RETRN macro instruction has the follow­
ing format:

r------T---------T------------------------,
I Name IOperationlOperand I
r------+---------+------------------------~
I [nameJIRETRN I I L ______ ~ _________ ~ ________________________ J

The operand tield must be blank. Enter
RETRN in the operation field·.

Issue the RETRN macro instruction as the
last statement in your ATENT routine. The
RETRN macro instruction ~eturns control to
the point of invocation after restoring all
registers and the PSW address. When you
use the RETRN macro instruction you must
specify ~TENT=YES in the DTFBG statement to
indicate that the program is to be run as a
mainline pro.gram that does not. allow
inquiry inte.r.rupts.

The ATENT Routine el05

Control Statements

Depending upon the types of files to be
processed, you may have to supply control
statements that provide information to the
IOCS. Control statements will be read by
the Job Control program before the object
program is loaded. These statements pro­
vide the IOCS with information that is
necessary to (1) check the label(~) of an
input file, (2) create the label(s) for an
output file, or (3) define the limits of
the disk storage area(s) for a disk file.

Two control statements must be supplied
for each labeled tape file. At least three
control statements must be supplied for
each disk file (a minimum of four for
indexed-sequential files). The types of
control statements are:-

Vol ume Control Statement. 'This statement
s~ecifies the symbolic unit to be used and
the name of the file.

106

Tape Label Control statement. This state­
ment provides informatio~ for checking
and/or creating tape labels for a file.

Disk Label Cont~ol statement. This state­
ment provid~s information for checking
and/or creating disk labels for a file.

Extent Cont~ol statement. This statement
provides information about the disk extents
to be used and speci.fies the symbolic unit
to be used. You must provide one statement
for each extent.

Each magnetic tap~ or disk file requires
one Volume control statement and-one Tape
(Disk) Label control statement. Extent
control statements a~e required for disk
files only. The format and contents of
each of these control statements are des­
cribed in the SRL publication IBM
System/360 Model 20, Disk Programming Sys­
tem, Control and Service Programs" Form
C24-9006.

The Ioes provides an error recovery 'routine
for each I/O device. The actions taken
when an error occurs are described below.

Card, Printer, and Printer-Keyboard
Equipment Errors

When errors J such as feed checks# occur on
card, printer# and printer-keyboard equip­
ment, the Ioes stops the execution of the
program to allow the machine operator to
take corrective action. An error indica­
tion is displayed on the console to iden­
tify the type of error and to indicate' the
required operator action.

Tape Error Routines

If a tape read error occurs, the physical
Ioes (PIOeS) routines cause the tape to be
backspaced and reread 100 times before the
block is considered to be incorrect. If an
error cannot be corrected, the Ploes rou­
tines indicate this fact either to the Ioes
or to the operator depending on the speci­
fications in, or omission of, the ERROPT
detail entry. (Refer to the description of
the detail entries ERROPT and ERRIO).
Indication to the operator is made by a
display of an error code on the CPU con-

Device Error Recovery

sole. This display indicates the type of
error and the associated device address.

If a tape write er.ror occurs, the error
tape is backspaced to the beginning of the
block, a gap is skipped# and the block is
r.ewritten. If necessary# this procedure is
r.epeated by backs~acing to end of last gap,
skipping anothe~ gap# and writing. The
block is rew~itten 9 times before a tape
write er~or is indicated.

Disk Error Routines

When a disk read or write error occurs, the
Ioes rereads or rewrites the block a stand­
ard number of. times before the block is
considered as incorrect. If a read or
write er~or cannot be corrected by the
error routines, this is indicated to the
problem progr.am. Refer to the ERROPT,
ERRBYTE~ ERR~NFJ ERRIO, and DERREX entries
in the appropriate file definition state­
ment.

Note. Normally, the records are checked
aft.er they have been written. However, if
VERIFY=NO is specified in the definition
statement fo~ a particular file, checking
is omitted .•

Device Error Recovery 107

Language Compatibility

The DPS IOCS for the System/360 Model 20 is
closely patterned after the Basic Program­
ming Support roes and the Basic Operating
System IOCS. Because the DPS IOCS is
designed to support card, printer, printer­
keyboard~ magnetic tape and disk I/O
devices that are unique to the Model 20 and
in order to achieve optimum performance of
all devices, some macro instructions and
file definition entries are not identical
to those of the other systems. Therefore~
if you anticipate transition fro~ Model 20

108

to other models of System/360, you should
be aware that programs using the DPS IOCS
r.equire som~ modification before they can
be processed by the other System/360 Assem­
blers.

All tape data sets created under control
of the DPS IOCS are fully upward compat­
iblew Disk data sets that have been creat­
ed on the IBM 2311, Model 11 and 12, cannot
be processed on the IBM 2311. Modell, and
vice versa.

Appendix A. Summary of File Definition Statements

The tables in Figures 28 through 36 show all of the file definition statements and the
detail entries available.

The tables are in the same order as the discussions of the file definition statements:

DTFBG - Figure 28; DTFEN - Figure 29; DTFSR - Figure 30; DTFPR - Figure 31;
DTFLC - ~igure 32; DTFMT - Figure 33; DTFSD - Figure 34; DTFDA - Figure 35;
DTFIS - Figure 36.

r---------T---------------------T---,
I I Operand I I
I ~-------T-------------~ I
I Operation I Reyword I Allowable I Remarks I
I I I Specification I I
~---------+-------+-------------+---~
IDTFBG I I IApplies to all file types. I
~---------+-------+-------------+---~
I lATENT I YES IRequired if program includes ATENT routine. I
I ~-------+-------------+---~
I IINQPRG I YES IRequired for inquiry programs. I
I t-------+-------------+---------------------~---------------------------------~
I IMAINPRGI YES IRequired if program is executed as mainline program I
I I I Ithat permits interrupts by inquiry requests. I L _________ ~ _______ ~ _____________ ~ _________________________________ --------------------__ j

.Figure 28. DTFBG Statement and Associated Detail Entries

r---------T---------------------T---,
I I Operand I I
I ~-------T-------------~ I
I Operation I Keyword I Allowable I Remarks I
I I I Specification I I
~---------+-------+-------------+---------~~--~
IDTFEN I I IMandatory for all files. I
t--------~+-------+-------------+-------------------------~-----------------------------~
I IOVLAY I IRequired if overlay of Open and Close routines for I
I I I Imagnetic tape and disk files is desired. I
L _________ ~ _______ L _________ ----~---------------------__________________________________ J

.Figure 29. DTFEN Statement and Associated Detail Entry

Appendix A. Summary of File Definition Statements 109

r-----~-------T----------------T-------------------------------------T-------------------,

I I I I I I
I I I I I I
I I I Operand I Applies to I I
I ~-------+---------------+----T-----T-----T-----T----T----T----+-------------------~
I I I I 12520 I I I I I I I
I 1 1 1 ICard 12520 11442 I I I 1 I
lOper-I 1 Allowable I I Read-I Card I Mod. 51 I I I I
lationlKeywordlSpecification 12560lPunchiPunchiPunchl250112203114031Remarks I
~-----+-------+---------------+----+-----+-----+-----+----+----+----+-------------------1
IDTFSRI I 1M 1M 1M 1M 1M 1M 1M IAlways first card, I
I I I I I I I I I I I may include detail I
I I I I I I I I I I I entries from I

I I I I I I I I I I column 16 to I
I I I I I I I I I Icolumn 71. I
~-------+---------------+----+-----+-----+-----+----+----+----+-------------------~
I BINARY I YES 10* 10* I I 10 I I I *Only for I
1 1 1 I I 1 I I I Isimple files. I
I ~---------------+----+-----+-----+-----+----+----+----+-------------------~
I I INPUT 10 10 I I I I I 10nly for com- I
I I I I I I I I I Ibined files. I
~-------+---------------+----+-----+-----+-----+----+----+----+-------------------~
I BLKSIZE I length of sim- I I I I I I I I Indica tes length I
I Iple file I/O 10 101M 1M 1M 1M 1M lof area specified I
I I area in bytes I I I I I I I I by IOAREA 1 and I
I I I I I I I I I IIOAREA2 entries. I
t-------+----------------+----+-----+-----+-----+----+----+----+-------------------~
I CONTROL I YES 10 10 10 I I 10 10 IRequired if I
I I I I I I I I I I CNTRL is issued I
I I I I I I I I I I for a file. I
~-------+---------------+----+-----+-----+-----+----+----+----+-------------------~
ICRDPRA Iname of 10 I I I I I I I I
I Icard-print 1 I I I I I I I I
I larea I I I I I I I I I
t-------+----------------+----+-----+-----+-----+----+----+----+-------------------~
ICRDPRLnilength of card-IO I I I I I I In in the key- I
I I print area in I I I I I I I I word is a print I
I I bytes I I I I I I I I head number. I
~-------+---------------+----+-----+-----+-----+----+----+----+-------------------~
I DEVICE I MFCM 1 I I I I I I I I Mandatory detail
I r---------------~M* ~-----+-----+-----+----+----+----1entry for card
I IMFCM2 I I I I I I I land printer files.

~---------------+----+-----+-----+-----+----+----+----~
I CRP2 0 I I M I I I I I I
t---------------+----+-----+-----+-----+----+----+----~
I PUNCH2 0 I I I M I I I I I *One of the
~---------------+----+-----+-----+-----+----+----+----~possible specifica-
I PUNCH42 I I I I M I I I I tions must be
~---------------+----+-----+-----+-----+----+----+----1 entered.
I READO 1 I I I I I M I I I
~---------------+----+-----+-----+-----+----+----+----~
I PRINTER I I I I I I 1M I
r---------------+----+-----+-----+-----+----1 ~----1
I PRINTLF I I I I I I M* I I
t---------------+----+-----+-----+-----+----~ r----~
I PRINTUF I I I I I I I I I

~-------+---------------+----+-----+-----+-----+----+----+----+-------------------~
IEOFADDRlname of I I I I I I I I*Only for input I
I IE:md-of-file IM* IM* I I 1M I I land comtined I
I I routine I I I I I I I Ifiles. I
r-------+---------------+----+-----+-----+-----+----+----+----+-------------------~
IINAREA Iname I I I I I I I I*Combined files I
I lof combined I M* I M* I I I I I I only. I
I If ile input area I I I I I I I I I r-----L-______ L _______________ L ____ L _____ L _____ L _____ L ____ L ____ L ____ L ___________________ ~

1M = Mandatory 0 = Optional I l ___ J

Figure 30. Summary of the DTFSR Statement and the Associated Detail Entries, Part 1 of 3

110

r-----T-----------------------T-------------------------------------T-------------------,
I I I I I
I I Operand I Applies to I I
I ~-------T---------------t----T-----T-----T----~----T----T----t-------------------~
I II I 12520 I I I I I I I
I I I I ICard 12520 11442 I I I I I
I Oper- I I Allowable I I Read-I Card I Mod. 51 I I I I
lationlKeywordlSpecification 12560lpunchipunchiPunchl250112203114031Remarks I
~-----t-------t---------------t----t-----t-----t-----t----t----t----t-------------------~
DTFSR I INBLKSZ I length of I M* I M* I I I I I I *Combined files I

I I combined file I I I I I I I I only I
I linput area in I I I I I I I I I
I I bytes I I I I I I I I I
t-------t---------------t----t-----t-----t-----t----t----t----t-------------------~
I IOAREA1 I name of first 1M 1M 1M 1M 1M 10* I I*Entry required I
I I I/O area I I I I I I I I for 2203 only I
I I I I I I I I I I when dual-feed I
I I I 1 I I I I I I carriage is I
I I I I I I I I I I us ed. I
~-------t---------------t----t-----t-----t-----t----+----t----t-------------------~
IIOAREA2lname of second I I I I 10 I I ICan be used if I
I II/O area I I I I I I I 12501, Model A2, I
I I I I I I I 1 I I is used in I
I I I I I I I I 1 I over lap mode. I
~-------t---------------t----t-----t-----t-----t----t----t----t-------------------~
10UAREA I name of I·M* IlJJ* I I I 1 I I *Combined I
I I combined file I I I I I I I I files only. I
I loutput area I I I I I I I I I
t-------t---------------t----t-----t-----t-----t----+----t----t-------------------~
I OUBLKSZ I length of I M* I V.I* I I I I I I *Combined files I
I I combined file I I I I I I I 1 only. I
1 loutput area in I 1 1 1 I I 1 1 I
I I bytes I 1 1 I I I 1 I I
~-------t---------------t----t-·----t-----t-----t·----t----t----t-------------------~
I OVERLAP I NO 1 0 I 0 I 0 I 0 I 0 I I I If omi t ted, f il e 1
1 1 I 1 I I I I I I is processed in I
I til I I I 1 1 1 overlap mode. I
t-------t---------------t----t-·----t-----t-----t----t----t----t-------------------~
I PFORMTnI xxyy 10 10 1 I I I 1 1 Indicates that I
1 I I 1 1 I I I I I th e fie 1 dis I
I I I I I I I I I I to be checked I
I I 1 1 1 I 1 I 1 I for blanks I
I I I I I I I I I Ifrom columns xx I
I I I 1 I I 1 1 1 Ito yy prior to I
I 1 I 1 I I I I I I punching. I
~-------t---------------t----t-·----t-----t-----t----t----t----t-----~-------------~
IPFXIT Iname of routinelO 10 I I 1 I I I I
I lused when 1 I I I I I 1 1 I
1 IPFORMTn I 1 I I 1 1 I I I
I I test fails I I I I I 1 1 I I
~-------t---------------t----t-·----t-----t-----t----t----t----t-------------------~
IPRINTOVIYES 1 II I I 10 10 IRequired if I
I 1 1 I I I I I I IPRTOV is issued I
I I I I I I I I I Ifor file. I
~-------t---------------t----t-·----t-----t-----+----t----t----t-------------------~
IRFORMTnlxxyyz 10 10 I I 10 I I IIndicates that I
I I I I I I I I I I input cards are I
1 I I I I I I I I Ito be checked I
1 1 I I I I I I 1 I for numerics I
I I I I I I I I I lor blanks from I
I I I I I I I I I Icolumns xx to yy I

~-----~-------~---------------~----~-.----L-----i-----L ____ L ____ i ____ ~ ___________________ ~
1M = Mandatory 0 = Optional I
L __________________________________ --.------___ J

Figure 30. Summary of the DTFSR Statement and the Associated Detail Entries, Part 2 of 3

Appendix A. Summary of File Definition Statements 111

r-----T-----------------------T-------------------------------------T-------------------,
I I I I I
I I Operand I Applies to II
I .-------T---------------+----T-----T-----T-----T----T----T----+-------------------i
I I I I 12520 I I I I I I I
I I I I ICard 12520 11442 I I I I I
I Oper- I I Allowable 1 I Read- I Card I Mod. 51 1 I I I
lationl Keyword I S2ecification 12560lPunchiPunchiPunchl250112203114031Remarks I
~-----+-------+---------------+----+-----+-----+-----+----+----+----+-~-----------------i
DTFSRIRFXIT Iname of routinelO 10 I I 10 I I I I

I lused when I I 1 1 1 I I I I
I I RFORMTn I I I I I I I I I
I I test fails I I I I I I I I I
.-------+---------------+----+-----+-----+-----+----+----+----+-------------------i
ISEQNCE Ixxyy 10 10 I I 10 I I IIndicates se- I
I I I I 1 1 I I I I quence check of I
I I I' I 1 I I I I input cards de- I
I I I'" I I I I sired f rom col. I
I I I I 1 I I 1 1 I xx to yy. I
t-------+---------------+----+-----+-----+-----+----+----+----+-------------------i
I SEQXIT I name of routine I I I I I I I I Must be speci - I
I lused when 10 10 1 I 10 I I Ified when SEQNCE I
I I SEQNCE test I 1 I I I , I I is specified. I
I 1 fails I I 1 I I I I I I
.-------+---------------+----+-----+-----+-----+----+----+----+-------------------i
I TYPEFLE I INPUT I I I I 1M I I I*One of the three I
I ~---------------i I ~-----+-----+----+----+----ispecifications mustl
I , OUTPUT I M* I M* I M I M I I M I M I be entered. I
I .---------------i I ~-----+-----+----+----+----~ j
I , CMBND I I 1 I I I I I I
~-------+---------------+----+-----+-----+-----+----+----+----+-------------------~
'WORKA 'YES 1M 1M 1M 1M 1M 1M 1M IMandatory for I
I I I I I I I I I I all card and I

I I I I I I I I I I I printer files. I
~-----~-------~---------------~----~-----~-----i-----~----i----~----~-------------------i
1M = Mandatory 0 = Optional I l _______________ . __ J

Figure 30. Summary of the DTFSR Statement and the Associated Detail Entries, Part 3 of 3

112

r--------T---------T------------------------------T-------------------------------------,
I I I Operand . I I
I I ~-------T----------------------i I
I I I IAllowable I I
I Name I Operation I Keyword I Specification I Remarks I
r--------+---------+-------+--------·--------------+-------------------------------------~
IFilenamelDTFPK ~ I IApplies to printer-keyboard files I
I I I I I only. I
~--------+---------+-------+--------.--------------+-------------------------------------~
I I IBLKSIZEILength of largest IMandatory for input and output files.1
I I I Irecord: IMust be large enough to accommodate I
I I I IInput 2 to 511 Imaximum-size record. If linercounter I
I I I 10utput - 1 to 511 Itable is used for an output file, I
I I I I Ilength must not exceed 125. I
I I ~-------+--------.--------------+-------------------------------------~
I I I CONTROL I YES 10ptional for output files. Required I
I I I I lif CNTRL macro instruction is issued I
I I I I I for the f il e • I
I I ~-------+----------------------+-------------------------------------~

I IEOFADDR/Name of end-of-file IMandatory for input files. Name of /
I I I routine Iyour routine to which control is I
I I I Igiven when end-of-file indicator /* I
I I I lis entered (detected by WAITF macro).1
I ~-------+----------------------+-------------------------------------~
I IIOAREA IName of I/O area I Name of your I/O area. If omitted I
I I lin the problem programlfor output file, output area of Moni-I
I I I Itor is used. Must be as large as I
I I I IBLKSIZE. I
I ~-------+----------------------+-------------------------------------~
/ I LCTABLEI YES 10ptional for output files. Required I
I I I lif output control by skipping is I
I I I Idesired~ If used, line-counter tablel
I I I Imust be defined by a DTFLC. I
I ~-------+----------------------+-------------------------------------~

IPRINTOVIYES 10ptional for output files. Required I
II lif PRTOV macro instruction is issued I
I I Ifor the file. If used, line-counter I
I I I table must be defined by a DTFLC. I
~-------+--------.--------------+-------------------------------------i
IRECSIZEIRegister (8-13) or lIn the specified register, provide I
I I symbolic name of a Ithe number of characters to be I
I Iregister (in paren- Iprinted in the next record. I
I I theses) I I
~-------+----------------------+-------------------------------------~
ITYPEFLEIINPUT or OUTPUT I Designates that this DTFPK is for an I
I I linput or an output file on the I
I I I printer-keyboard. I
r-------+-----------------------+-------------------------------------1
IWORKA IYES IMandato~y for output ·files. Length I
I I lequal to BLKSIZE. If entry omitted al

I I I I Iwarning is given. I l ________ L _________ L _______ l _______________________ L _____________________________________ J

.Figure 31. Summary of the DTFPK Statement and the Associated Detail Entries

r-------T----------T------------------------------T-------------------------------------,
I Name I Operation I Operand I Remarks I
~-------+----------+-----------------.-------------+-------------------------------------~
I I DTFLC I Formsize,E1,E2, ••• ,E48 IThis statement is required to define I
I I I la line-counter table for simulating I
I I I Icarriage control. The entries rep- I
I I I Iresent the length of the form, and I
I I I Ichannels associated with farticular I
I I I Ilines. It may be omitted if no skip-I
I I I Iping is used for the output file. I
l _______ l __________ L ______________________________ l _______ ------------------------------J

Figure 32. Summary of DTFLC Statement

Appendix A. Summary of File Definition Statements 113

r---------T--------------------------T--,
/ / Operand / /
/ ~---------T----------------~ /
/Operation/Keyword I Allowable / Remarks /
/ / I Specification / /
~---------+---------+----------------+--~
DTFMT / / / Applies to magnetic tape files only. I

~---------+----------------+--~
/ ALTTAPE I SYSIPT / Required for multi-volume files using /
/ / SYSOPT / 2 tape drives. /
/ / SYSnnn / /
~---------+----------------+--~
/ BLKSIZE I length of file / Mandatory for all magnetic tape files. /
/ I I/O area I Indicates length of area specified by /
/ / in bytes / the IOAREA 1 entry. /
~---------+----------------+--~
/ CKPTREC / YES / Required to read tapes containing interspersed /
/ / / checkpqint records. /
~---------+----------------+--------------------7-----------------------------~
/ CONTROL / YES / Required if a CNTRL macro is issued for the file./
r------·---+----------------+--~
/ DEVADDR / SYSPT / Mandatory for all magnetic tape files. /
/ / SYSOPT / SYSIPT, SYSOPT, or SYSnnn are the symbolic /
/ / SYSnnn / addresses to be used when pr.ocessing a /
/ I / magnetic tape file. /
t---------+----------------+--~
/ EOFADDR / name of / Mandatory for input files only. /
/ / end-of-file / Not used for output files. /
/ / routine / /
t---------+----------------+--~
/ ERRIO / name of user- I Use only if ERROPT=name and/or WLRERR=name and /
/ / defined 2-byte I two I/O areas specified. /
/ / area / /
t---------+----------------+--~
I ERROPT / IGNORE I Ignored. /
/ t----------------+--~
/ I SKIP / Error block skipped. /
/ ~----------------+--~
/ / name of error I Return to IOCS via register 14. /
/ / routine / /
t---------+----------------+--~
I FILABL / STD I Standard labels. /
I ~----------------+--~
/ / NSTD / Non-standard labels. /
/ J----------------+--~
/ / NO I No labels. / _________ ~ ______ . ___ L ________________ ~ __ J

Figure 33. Summary of the DTFMT Statement and the Associated Detail Entries,
Part 1 of 2

114

r---------T--------------------------T--,
, 'Operand , ,
, ~---------T----------------i ,
,Operation I Keyword I Allowable , Remarks ,
I I I Specification , I
t---------t---------t----------------t--~
DTFMT I IOAREA1 I name of user- I Mandatory for all magnetic tape files. I

I I defined area , ,
~---------t----------------t--~
I IOAREA2 , name of user- 'Requires IOREG or WORKA entry. ,
I I defined area ,Optional. ,
t---------t----------------t--~ r IOREG ,register number I Required when blocked records are processed ,
, I from 8 to 13 I in the I/O area. ,
I I or symbolic I Required if IOAREAR but not work area ,
I I name of , specified. I
, I register (both I I
I I in parentheses) , ,
t---------t----------------t--~
, LABADDR , name of user I Return to main routine by issuing a ,
, I routine , LBRET macro. ,
t---------t----------------t--~
'READ 'FORWARD , If omitted, IOCS assumes forward ,
, t----------------~ reading. ,
, , BACK , ,

~---------t----------------t--~
, RECFORM , FIXUNB , Entry may be omitted if record format is ,
I , FIXBLK , fixed unblocked. ,
I I VARUNB I ,
I , VARBLK , ,
, I UNDEF , I
r---------t----------------t--i
, RECSIZE , number of bytes, Required if fixed length blocked or undefined ,
, I in one record I record format is specified (number of bytes in ,
, I or number of lone record) • ,
, , register indi- , ,
, , cating record , I
, I length in num- , ,
, , ber of bytes or' ,
, , symbolic name I ,
I I of register I ,
~---------t----------------·t--~
'REWIND ,UNLOAD , If omitted, the tape is rewound but not ,
, ~----------------~ unloaded on OPEN or CLOSE, end-of-volume, or ,
I I NORWD I end-of-file condition. ,
r---------t----------------t--~
'TPMARK I NO I Optional. Applies to unlabeled tape output files.,
r---------t----------------t--~
I TYPEFLE , INPUT , ,
, r----------------~ Mandatory for all magnetic tape files. ,
, , OUTPUT , I
r---------t-----------------t--~
'VARBLD 'number or , Required if variabl~-length blocked records ,
I , symbolic name ,are built in the output area. ,
, , of register (in, ,
, ,parentheses) I I
, , indicating , I
, , available bytes, I
r---------t----------------t---------------------------------------~----------~
I WLRERR I name of user , ,
I , routine I i
t---------t----------------t--~
I WORKA I YES , Required for blocked records, or if ICAREA2 I
I I I without IOREG specijied. I _________ L _________ L ________________ L ____ --_________ ~ _ _________________________________ J

Figure 33. Summary of the DTFMT Statement and the Associated Detail Entries,
Part 2 of 2

Appendix A. Summary of File Definition Statements 115

r-----------T----------------------------------T--,
I I Operand I I
I ~---------T------------------------~ I
I I I Allowable I I
I Operation IKeyword I Specification I Remarks I
t-----------t---------t------------------------t--4
I DTFSD I I I Applies to sequential disk files only. I
1 ~---------t------------------------t--~

I BLKSIZE I length of block I Mandatory entry. Indicates length of I
I I lone block of records. Length must be ani
I I I integer multiple of RECSIZE. I
~---------t------------------------t--------------·--------------------------~
I COMROUT I YES lOne common routine generated for all I
I I I input files for which entry is I

I I I specified. Same holds analogously for I
I I I update and outfut files. I
r---------t------------------------t----------~-----------------------------4
I CONTROL I YES I Required if a CNTRL macro instruction I
I I I is issued for the file. I

~---------t------------------------t---------~------------------------------~
I DEVICE I DISK11F I Specifies IBM 2311, Model 11 or 12. I
I I I Warning issued in case of error. I
r---------t------------------------t--4
I DSKXTNT I maximum number of I If omitted, the IOCS assumes I
I I extents in anyone I three extents for the file. I
I I volume for the file I Maximum is 99. I
~---------t------------------------t--4
I DTAREX I name of I Optional entry for output files. I
I I user's routine I If not specified, job is discontinued. I
r---------t------------------------t--~
I EOFADDR I name of user's I Mandatory for input files only. I
I I end-of-file routine I Not required for output files. I
~---------t---·---------------------t--4
I ERRIO I name of user-defined I Use only if ERROPT=name and two I
I I 2-byte area 1 I/O areas specified. I
~---------t------------------------t--4
I ERROPT I SKIP I Error block is to be skipped. I
1 ~------------------------t--4
I I name of error routine I Return to program via register 14. I
r---------t------------------------t--4
I IOAREA1 I name of a I Mandatory for all disk files. 1
I 1 user-defined area I Length of area must be 270 tytes I
I J I or integer multiple thereof. Equal I
I I I or greater than BLKSIZE. I
~---------t------------------------t--~
I IOAREA2 I name of user- I Requires IOREG or WORKA entry. I
I I defined area I Optional. Length must be 270 or integerl
I I I multiple thereof. I

~---------t------------------------t--4
I IOREG I number or symbolic I Required when blocked records I
I I name of a register I are processed in the I/O area. I
I I (in parentheses) I Required if IOAREA2 but no WORKA I
I I I speci.fied. I
r---------t------------------------t--4
I RECFORM I FIXUNB I If not specified, FIXUNB is assumed. I
I ~------------------------~ I
I I FIXBLK I I
r---------t------------------------t--~
I RECSIZE I number of bytes in one I Mandatory only for files containing I
I I record I blocked records. If not specified for I
I 1 I unblocked records, RECSIZE=BLKSIZE. I

I I I I Maximum record size is 4096 bytes. I l ___________ ~ _________ ~ ________________________ ~ __ J

Figure 34. Summary of DTFSD Statement and the Associated Detail Entries,
Part 1 of 2

116

r-----------T--------------------~-------------T--,

I I Operand I I
I r---------T------------------------~ I
I I I Allowable I I
I Operation IKeyword I Specification I Remarks I
r-----------t---------t------------------------+--~

DTFSD I TYPEFLE I INPUT I I
I t------------------------~ Mandatory for all disk files. I
I I OUTPUT I I
}---------+------------------------+--~
I UPDATE I YES I Required if records are to be updated. I
r---------+-------------·-----------+--~
I VERIFY I NO I Required if write checking not desired. I
}---------+------------_._----------+--~
I WORKA I YES I Required if a record is to be I
I I I processed in a work area. Required if I
I I I IOAREA2 but no IOREG specified. I ___________ ~ _________ ~ ________________________ ~ __ J

Figure 34. Summary of the DTFSD Statement and the Associated Detail Entries,
Part 2 of 2

Appendix A. Summary of File Definition Statements 117

r-----------T----------------------------------T--,
I' I I
I I Operand I I
I ~---------T------------------------i I
I , I Allowable I I
I Operation ,Keyword I Specification ,Remarks I
t-----------t---------t------------------------t--~
I DTFDA I I I Applies to direct-access disk files I
I I I I only. I
I t---------t------------------------t~---------------------------------------~
I I ADRTEST I NO I Address is not checked for validity I

I I I nor qgainst extent limits sPecified I
I I I in XTENT statement. I
~---------t------------------------t--~
I BLKSIZE I length of I/O I Mandatory detail entry. Indicates I
I I area I length of one block. Maximum block I

I' lsi z e is 1 6, 200 byt e s • I
t---------t------------------------t----------~-----------------------------~
I CONTROL I YES I Required if a CNTRL macro I
'I I instruction is issued for the I
I I I file. I
t---------t------------------------t--~
I DEVICE I DISK11F I Specifies IBM 2311, I
'I I Model 11 or 12. Warning I
I I I issued in case of error. I
t---------t------------------------t--~
I DSKXTNT I maximum number of I If omitted, the IOCS assumes I
I I extents in anyone I three extents for the file. I
I 1 volume for the file. I I
~---------t------------------------t-------~--------------------------------~
I ERRBYTE I name of a I Mandatory detail entry. The IOCS will I
I I user-defined area I make error indications available in I
I I I these bytes. I
~---------t------------------------t.------------------------------------.----~
I IOAREA1 I name of a I Mandatory detail entry. Length of area I
I I user-defined area I must be 270 bytes or integer I
I I I multiple thereof. I
t---------t------------------------t--i
I READID I YES I Required if problem program I
I I I uses READ. I
t---------t------------------------t--~
I SEEKADR I name of a user- I Mandatory detail entry. The IOCS I
I , defined area I obtains address of desired disk I
I I I location from this area. I

t---------t------------------------t--~
I TYPEFLE I INPUT I Mandatory for all direct-access files. I
I ~------------------------~ I
I I OUTPUT I Standard labels are checked. I

t---------t------------------------t---------------------------------------~~
I VERIFY I NO I Required if write-checking I

I I I is not desired. I
t---------t------------------------t--~
I WRITEID I YES I Required if problem program I

I I I I uses WRITE. I l ___________ ~ _________ ~ ________ ------__________ ~ __ J

Figure 35. Summary of the DTFDA Statement and the Associated Detail Entries

118

r------T----------------------~--T------------------,
I I Operand I Type of Processing I ,
I ~-------T--------------+------T---T--------------------T--------------------~ ,
I I' I' ~ Retrieve ,Add-Retrieve I ,
, I' I I ~-------T----T-------+-------T----T-------~ Remarks ,
I I I I Load I ~ I I Random-I " Random- , ,
lopera-I I Allowable I and I il Sequen-I Ran-I Sequen-I Sequen-I Ran-I sequen-I ,
,tion IKeyword'SpecificationsIExtendIAdd~tial Idorn Itial ,tial Idom Itial , ,
~------+-------+--------------+------+---+-------t----+-------t-------+----+-------+------------------i
DTFIS I I , M I M ~ M I M 1M, M 1M, ~ ,Applies to indexed,
I' 'I ~ I I , I I Isequential files ,
I I 'I II I I I I I I only. ,
~-------+--------------+------+---t-------t----+-------+-------+----+-------+------------------i
IADAREX Iname of I I M ~ I I ,M, M I M IUsed when over- ,
, I routine I ,! I I I I I ,flow area is full.,
~-------+--------------t------+---+-------+----+-------+-------+----+-------+------------------i
'ALTREX Iname of I M I 0 II I I I 0 I 0 I 0 IUsed to perform or'
I I routine I I II I I , I I I avoid additions to,
I I I' I " , I I ,the last track of ,
" 'I ~ " , 'I la file. ,
~-------+--------------t------+---t-------+----+-------+-------+----t-------t------------------i
ICYLOFL ,number of I 0 I 0 II 'I ,0, 0 , 0 ,Required if ,
, I cylinder , 'II J I I I' Icylinder overflow I
I I overflow I 'Ii I I I " 'areas are used. ,
I I tracks I I II I I I I I I ,
~-------+--------------+------+---+-------+----+-------+-------+----+-------+------------------i
I CYNDEX I name of 1M, II 'I , 'I 'Used when cylinder'
I I routine I ,t 'I I " ,index area is ,
'I 'I II 'I I I I ,full. ,
~-------+--------------+------+---t-------+----+-------+-------+----+-------+------------------i
'DERREX Iname of ,M, M 1M, M , M 1M, M t M ,Used when a disk ,
I I routine I 'I t I , I' 'error occurs. ,
~-------+--------------+------+---+-------+----+-------+-------+----+-------+------------------i
,DEVICE IDISKllF ,0, 0' 0 I 0 I 0 , 0 ,0 I 0 ,Warn.ing issued in I
I I I' l 'I I I I 'case of error or ,
I' I I' I' I " 'if omitted. I
~-------+--------------+------+---t-------+----+-------+-------+----+-------+------------------t
'DPCRCD 'YES I' 0 I 'I ,0, 0 I 0 ,Used for I
" 'I I. I I I " ,duplicate records.'
~-------+--------------+------+---+-------+----+-~-----+-------+----+-------+------------------i
'DSKXTNTlmaximum numberl M I M ~ M 'M I M I M 1M, M IThe maxinum ,
I lof extents I 'I I' , 'I 'number is 99. ,
I I to be used I " 'I I I I I ,
~-------+--------------+------+---+-------+----+-------+-------+----+-------+------------------i
IDTAREX 'name of I M I I 'I , I I ,Used when the ,
, 'routine , I' I I I I' ,prime data area ,
'I 'I I 'l , " I is full. ,
.-------+--------------+~-----+---+-------+----+-------+-------+----+-------+------------------i
IDUPREX lname of I M I M I I I I M I M I M ,Used when ,
I I routine , 'I 'I I 'I ,duFlicate key ,
'I I'" I , I I I is detected. ,
~-------+--------------+------+---t-------+----+-------+-------+----+-------+------------------i
'EOFADDR'name of , I' M , , M 1M, I M IMandatory fer I
I I end-of-file' I I I' I I' 'input files. ,
, I routine , " " , 'I ,Not required for ,
I' "" I I ~ I ,output files. ,
~-------+.--------------+------+---+-------+----+-------+-------+----+-------+------------------i
IERRINF IYES I 0 I 0' 0 I 0 I 0 I 0 I 0 I 0 IIf not specified, I
" I' I I I I " 'no logical error ,
I I I I I I I , I' ,information is I

I I I I I I I' I I I I supplied. ,
~------~--_----~--------------~------~---L--~----~----~-------L-------~----L-------~------------------i
1M = Mandatory 0 = Optional I
l ___ J

eFigure 36. Summary of the DTFIS Statement and the Associated Detail Entries, Part 1 of 3

Appendix A. Summary of File Definition Statements 119

r------T----------------------T--T------------------,
I I Operand I Type of Processing , I
I .-------T--------------+------T---T--------------------T--------------------~ ,
I j I I I I Retrieve ,Add-Retrieve, , , I' I I .-------T----T-------+-------T----T-------~ Remarks ,
I I' I Load, I I I Random- I 'I Random- , I
10pera-1 I Allowable I and I I Sequen-I Ran-I Sequen-I Sequen-l Ran-I S"equen-I ,
Ition IKeywordlSpecificationslExtendlAddltial Idom Itial Itial Idom Itial , ,
.------+-------+--------------+------+---+-------+----+-------+-------+----+-------+------------------~
IDTFIS IIOAREALlname of 1M I M I I I I M I M I M ILength of area ,
I I loutput area I I I I I I I I Imust be 270 tytes ,
I I I 'I I I I I I' lor integer mult- I
I I I I I I I' , I I I iple thereof. ,
I r-------+--------------+------+---+-------+----+-------+-------+----+-------+------------------~
I IIOAREAR,name of I/O' I I 'M 1M, 'M I M ,Length of area ,
I I 'area ,t I I I I I I 'must be 270 bytes I
I I' I I I 'I , I I ,or integer II'ul t- ,
I " I' I I I I " ,iple thereof. I
, .-------+---_._---------+------+---+-------+----+-------+-------+----+-------+------------------~
, I IOAREAS 'name of I/O' "M, , M 1M, , M ,length of area ,
I , , area I I I I I I I I 'must be 27 0 bytes I
I I I "I I I I " 'or integer Jrul t- ,

" I I I I' I I' I iple thereof". ,
f-------+----·----------+------+---+-------+----+-------+-------+----+-------+------------------~
tIOREG Inumber of any I I I 0 I 0 I 0 I 0 I 0 I 0 IRequired for ,
I I register from , 'I I' I I I ,processing ,
I 18 to 13 in I I I 'I I I I ,blocked records ,
I I parentheses I 'I I I , 'I 1 in the I/O area. ,
I lor symbolic 1 'I I I , I" ,
I 1 name equated, I I I I , I l ' ,
I I to register, 'I 'I I 'I I ,
.-------+--------------+------+---+-------+----+-------+-------+----+-------+------------------~
IIOROUT 'LOAD , M I I 'I I I" ,
I .--------------+------+---+-------+----+-------+-------+----+-------+------------------~
I ,ADD I I M I I I , '" I
, t--------------+------+---+---~---+----+-------+-------+----+-------+------------------~
I I RETRVE I I I M I M 1M' I I I ,
I .--------------+------+---+-------+----+-------+-------+----+-------+------------------~
I , ADDR'fR , I I I I 'M' M 1M, ,
f-------+--------------+------t---+-------+----+-------+-------+----t-------+------------------~
IKEYARG 'name of I 'I 0 I M 1M, 0 I M i M ,IOCS obtains ,
, I·user-defined I I I I I I 'I ,key of desired I
I I area "I I I I 'I 'record from this ,
I' 'I"" I' , area. , .-------+--------- -----+------+---+-------+----+-------+-------+----+-------+------------------~
,KEYLEN 'number of 1M' M' M 'M , M , M 1M, M I~aximurr length is I
, I bytes , " I I I I I I 60 bytes. ,
I 'in the key, " I I , '" ,
.-------+--------------+------+---+-------+----+-------+-------+----+-------+------------------~
IKEYLOC Ihigh-order 1M' M' M I M 1M, M ,M I M ,First tyte of ,
, I position of I " " , " I record is counted I
, 'key field , " " , 'I 'as tyte 1. ,
.-------+--------------+------+---+-------+----+-------+-------+----+-------t------------------~
'NRECDS 'number of 'M' M 1M' M I M I M I M I M 'For untlocked ,
I I records in one' I I 'I , " ,records, use a 1. I
, I block I 'I I I , I I' ,
!-------+---_._---------+------+---+-------+----+-------+-------+----+-------+------------------~
IRECFORM,FIXUNB ,0, 0, 0 ,0 I 0 , 0 ,0 , 0 ,Specification ,
I .--------------+------+---+-------+----+-------+-------+----+-------~of RECFORM is ,
I 'FIXBLK , 0 '0' 0 '0 , 0 , 0 I 0 , 0 ,compulsory. ,
I' 'I I I I I I' 10nly one of the ,
" 'I' I I , I' ,operands is per- ,
I' 'I I 'I , " ,mittedat a time. ,

.------~-------~--------------~------~---~-------~----~-------~-------~----~-------~------------------~
1M = Mandatory 0 = Optional ,
l ___ J

Figure 36. Summary of the DTFIS Statement and the Associated Detail Entries, Part 2 of 3

120

r------T----------------------T--~---T------------------,
I I Operand I Type of Processing I I
I ~-------T--------------+------T---T--------------------T--------------------~ I
I I I I I I Retrieve I Add-Retrieve I I
, I I I I ~-------T----T-------+-------T----T-------~ Remarks I
I I I I Load I I I I Random-I I I Random- I I
IOpera-1 I Allowable land I ISequen-IRan-\Sequen-ISequen-IRan-ISequen-1 ,
Ition IKeywordlSpecificationslExtendlAddltial Idom \tial Itial Idom Itial I I
~------+-------+--------------+------+---+-------+----+-------+-------+----+-------+------------------i
DTFIS IRECSIZEllength of one I M I M I M I M I M I M I M I M I I

I I record in I I I I I I I I I ,
I I bytes I I I I I I I I I I
~--- ----+--------------+-.-----+---+-------+----+-------+-- -----+----+-------+------------------i
IRTRVEX Iname of I I' 0 'M I M I 0 I M I M IUsed when desirej I
I I routine I I I I' , I' I record is net I
I I I I I I' I I I I found. I
~-------+--------------+------+---+-------+----+-------+-------+----+-------+------------------~
ISQCHEX Iname of I M I I I \ I I I IUsed when a I
I I routine I I I I I I I I I record is out of I
I I I I I I I I I I I sequence. I
~-------+--------------+------+---+-------+----+-------+-------+----+-------+------------------i
I TYPEFLE I RANDOM I 'I 'M I I I M I I Indicates type of ,
I r--------------+------+---+-------+----+-------+- ·-----+----+-------~retrieval. IOROUT ,
I ISEQNTL I I I M I I I M I I Ispecifies RETRVE I
I r-· ------------+------+---+-------+----+-------+-------+----+-------~or ADDRTR. I
I I RANSEQ I I I I I M I I I M I I
r-------f--------------+------+---+-------+----+-------+-------+----+-------+------------------i
IUPDATE IRANDOM I " I 0 I 0 I '0 I 0 IIndicates type of ,
I r--------------+------+---+-------+----+-------+-------+----+-------~updating. ,
I I SEQNTL I 'I 0 I I 0 , 0 I I 0 I I
I ~--------------+------+---+-------+----+-------+-------+----+-------~ I
I I RAN SEQ , I' I I 0 I I I 0 I ,
r-------+--------------+------+---+-------+----+-------+-------+----+-------+------------------~
'VERIFY INO I 0 I 0 I 0 I 0 I 0 I 0 I 0 , 0 'Required if write I
I I I' I I I I 'I I checking is not I
I I I I I I I I I I I desired. I
~-------+--------------+------+---+-------+----+-------+-------+----+-------+------------------i
I WORKA I name of I I 0 I I I I 0 I 0 I 0 I Required if FIXBLK I
I lof work area I I I I' I I I I is specified. I
I I I I I I I I I I I Must precede the I
I I I I I I I I I I I area specified I
I I I I I I I I I I I by IOAREAL. I
~-------+--------------+------+---+-------+----+-------+-------+----+-------+------------------i
I WORKL I name of I M I M I I I I M I M I 1".l I I
I I a work area I I I I I I I I I I
~-------+--------------+------+---+-------+----+-------+-------+----+-------+------------------i
I WORKR I name of I I I I 0 I 0 I I 0 I 0 I I
I I a work area I I I I I I I I I I
~-------+--------------+------+---+-------+----+-------+-------+----+-------+------------------i
I WORKS I YES I I I 0 I I 0 I 0 I I 0 I I

~------~-------~--------------~------~---~-------~----~-------~-------~----~-------~------------------i 1M = Mandatory 0 = Optional I L ___ J

Figure 36. Summary of the DTFIS Statement and the Associated Detail Entries, Part 3 of 3

Appendix A. Summary of File Definition Statements 121

Appendix B. Summary of Imperative Macro IInstructions

The table in Figure 37 shows all IOCS macro instructions, including the possible oper­
ands, that are available.

The table in Figure 38 shows all imperative macro instructions used in conjunction
with indexed-sequential files. Each macro instruction is marked with (M) and (O) to
indicate whether it is mandatory or optional for the various types of file processing.

r------------------T--------------~---------T---,
I I I I
I I I I
I Operation I Operand I Remarks I

t------------------t------------------------t---~
I CLOSE I file1,file2, ••• ,file16 I Up to 16 files may be closed with one I

I I I CLOSE macro instruction. I

t------------------t------------------------t---~
CNTRL I filename,BSF I Backspace file. I

t------------------------t---~
I filename,BSR I Backspace record. I
t------------------------t------------~------------------------------~
I filename, ERG I Erase gap. I
t------------------------t---~
I filename,FSF I Forward space file. I
t------------------------t---~
I filename,FSR I Forward space record. I
t------------------------t---~
I filename,REW I Rewind tape. I
t------------------------t---~
I filename, RUN I Rewind and unload tape. I
t------------------------t---~
I filename, SEEK I Search for specified disk location. I
t------------------------t----------------------------.--------------~
I filename,SK,n,m I n causes immediate skip to the specified I
I (n = 1,2, ••• , or 12) I channel. I
I (m = 1,2, ••• , or 12) I m causes skip to specified channel after I
I I printing. I
t------------------------t---~
I filename,SP,n,m I n causes the specified number of lines I
I (n = 0,1,2, or 3) I to be spaced immediately. I
I (m = 0,1,2, or 3) I m causes the specified number of lines to I
I I be spaced after printing. I

r------------------------t---~
I filename,SS,n I Select stacker of a multi-stacker I
I (n = stacker number) I I/O device. I

t------------------t------------------------t---1
I CNVRT I seekfield,packedfield I Converts packed decimal address I
I I I into format of seek field used I
I I I in direct access. I
t------------------t------------------------t-----------------------------------~-------1
I CRDPR I ,workarea,printarea I Card print. DTFSR statement must include I
I I I CRDPRA and CRDPRLn detail entries. I
t------------------t------------------------t-------------~----------------------~------~
I ENDFL I filename I End loading or extending of an I
I I I indexed-sequential file. I L __ • ________________ ~ ________________________ ~ ______________ ~ ____________________________ J

Figure 37. Summary of Imperative Macro Instructions, Part 1 of 3

122

r------------------T------------------------T---,
I I I I

I I I I
I Operation I Operand I Remarks I
t------------------t------------------------t------------~------------------------------4
I EOM I filename I Enter overlap mode. I
I I I Applies to combined files for which a I
I I I previous LOM has been given. I
t------------------t------------------------t---~
I ESETL I filename I End sequential processing of an indexed- I
I I I sequential file. I

t------------------t------------------------t---1
I FEOV I filename I Force end of volume. I

I I I Applies to multi-volume tape files. I

~------------------t------------------------t---4
I GET I filename,workarea I The second operand, including the comma I

I I I preceding it, must be omitted if no I

I I I work area has been specified. I

t------------------t------------------------t---4
I LBRET I n I Label return. Required for return to the I

I I (n = 1 or 2) I Ioes from LABADDR routines. I

t------------------t------------------------t---4
I LOM I filename I Leave overlap mode. I

I I I Applies to combined files for which I

I I I overlap mode has been specified. I

r------------------t------------------------t---~
I OPEN I file1,file2, ••• ,file16 I Up to 16 files may be opened with I
I I lone OPEN macro instruction. (However, I
I I I only one printer-keyboard input and one I

I I I printer-keyboard output file can be I

I I I specified in a single program.) I
~------------------t---------------------~--t---~
I PRTOV I filename,n,address I Branch on print overflow. I
I I (n = 9 or 12) I n specifies the channel indica tor to be I
I I I tested. An automatic skip to channel 1 I

I I I occurs if the last operand (address I
I I I of user routine) is omitted. I

t------------------t------------------------t---4
I PUT I filename,workarea I The second operand, including the comma I

I I I preceding it, must be omitted if no I

I I l work area has been specified. I
t------------------t------------------------t---4
I I filename I Applies to printer-keyboard files only. I

I t------------------------t---~
I READ I filename,ID I Applies to direct-access files only. I

I t------------------------t---4
I I filename, KEY I Applies to indexed-sequential files I

I I I only. I
r------------------t------------------------t---4
I RELSE I filename I Release current block of tape I
I I I input file. I
~------------------t------------------------t-------------~-----------------------------~
I SETFL I filename I Prepare for loading or extending an I

I I I indexed-sequential file. I L __________________ ~ ________________________ ~ ___ J

Figure 37. Summary of Imperative Macro Instructions, Part 2 of 3

Appendix B: Summary of Imperative Macro Instructions 123

r------------------T------------------------T---,
I I I I
I I I I
I Operation I Operand I Remarks I

t------------------t------------------------t---~
I SETL I filename,BOF I Prepare for sequential processing I

I I I of an indexed-sequential file teginning I
I I I with the first record. I

I r------------------------t---~
I I filename,KEY I Prepare for sequential processing of I
I I I an indexed-sequential file beginning with I
I I I the record having the specified key. I
I r------------------------t---~
I I filename,GKEY I Prepare for sequential ~rocessing of I
I I I an indexed-sequential file beginning I

I I I with the record whose key is equal I
I I I to or greater than the specified key. I
r------------------t------------------------t---~
I TRUNC I filename I Truncate current block of tape output I

I I I file. I
r------------------t------------------------t---~
I WAITC I I Wait for the completion of pending card I
I I I and printer I/O o~erations. I
t------------------t------------------------t---~
I WAITF I filename I Wait for a pr.inter-keyboard input opera- I
I I I tion or a disk o~eration to end. I
r------------------t------------------------t---~
I WRITE I filename,ID I Applies to direct-access files only. I
I r------------------------t---~
I I filename,KEY I Replace a record retrieved from an I
I I I indexed-sequential file. I
I }------------------------t---~
I I filename,NEWKEY I Place a new record into an indexed- I
I I I sequential file. I l __________________ ~ ________________________ ~ ___ ~-J

Figure 37. Summary of Imperative Macro Instructions, Part 3 of 3

124

r---,
I Indexed-Sequential processing Macros I
~----------T------------T---T-----------~
IOperation IOperand I Type of Processing IRemarks I
~----------+------------+-----T---T--------------------T-~--------~---------+-----------~
1 1 ILoad IAddl Retrieve I Add-Retrieve I 1

1 1 ~-----+---+------T------T------+------T------T------~ I
I III I SEQNTLIRANDOMIRANSEQI SEQNTLI RANDOM IRANSEQI I
I I I I ~------+------+------+------+------+------~ I
I CLOSE Ifilename1, 1 M I M I· M I M I M I M I M I M Imax. of 16 I
I IfilenameD' I' , , , , I ,operands I
~----------+------------+-----+---+------+------+------+------+------+------+-----------~
'ENDFL ,filename ,M " I , I I I I same name I
I I '" I , , I I I as in SETFL I
~----------+------------+-----+---+------+------+------+------+------+------+-----------~
IESETL I filename I I I M I I M I Mil M2 Isame name I
I I I I I 1 , 1 I I I as in SETL 1
~----------+------------+-----+---+--,----+------+------+--~---+------+------+-----------~
I GET I filename I 11M I ,0 1 0, I 0, 1

, ~------------+-----+---+------+------+------+------+------+------+-----------~
, IfileD,workg 1 I' M, 1 0 1 0 1 1 0 1 1

~----------+------------+-----+---+------+------+------+------+------+------+-----------~
,OPEN Ifilename1, 1 M I M 1 M 1 M 1 M 1 M 1 M I M 'max. of 16 1

1 Ifilenameg 1 I' I I I I I I operands 1

~----------+------------+-----+---+------+------+------+------+------+------+-----------~
'PUT ,filename I I I 0, I 0 I 0 I I 0 1 ,

1 ~------------+-----+---+------+------+------+------+------+------+-----------~
1 I fileg,workg I 1 1 0 1 I 0 I 0 1 1 0 1 1

~----------+------------+-----+---+--.----+------+------+------+------+------+-----------~
1 READ IfileD,KEY 1 1 11M , 0, ,0, 0 I I

~----------+------------+-----+---+------+------+------+------+------+------+-----------~
ISETFL ,filename ,M I' I , I I I' ,
~----------+------------+-----+---+------+------+------+------+------+------+-----------~
,SETL , fileD, BOF' 'I , I , , " I
, 1 fileD, KEY , "M, 1 0" , 0 11

' ,012 1 I
I ,fileD,GKEY, I' , , , , " ,
~----------+------------+-----+---+------+------+------+------+------+------+-----------~
I WAITF I filename , 1M, ,M, 0, ,M I 0 I 1

~----------+------------+-----+---+------+------+------+------+------+------+-----------~
'WRITE IfileD,NEWKEYI M I M I I I I 0 1 0 I 0 I 1

, ~------------+-----+---+------+------+------+------+------+------+-----------~
I I fileD,KEY 1 I 1 I 0 , 0 1 I 0 1 0 I 1
~----------L------------L-----L---L------L------L-----_L ______ L ______ L ______ L ___________ ~
1M = Mandatory 1
10 = Optional 1
11 Mandatory if sequential processing is used. 2 A READ or WRITE macro instruction ,
, must not be issued between SETL and ESETL referring to the same file. 1
l ___ J

Figure 38. Summary of Imperative Macro Instructions for Indexed-Sequential Files

Appendix B: Summary of Imperative Macro Instructions 125

Appendix C. Summary of Monitor Macro Instructions

Five macro instructions can be used in
Assembler language programs to communicate
with the Monitor program. Two of them
(COMRG and MVCOM) refer to the communi­
cation region.

Two (FETCH and EOJ) request functions of
the Fetch routine. One refers to the
printer-keyboard input area. Figure 39
shows a summary of the formats and func­
tions of the Monitor macro instructions.

r-----T----------T------------T---,
IName IOperation IOperands I Functions I
~-----t----------t------------t---~
I ICOMRG I IPlaces the address of the first byte of the communication I
I I I Iregion in register 8. Enables the communication region tol
I I I Ibe referred to by relative addressing. I
t-----t----------t------------t---~
I I MVCOM I first-byte, P10difies information in the user areas of the I
I I I number, Icommunication region (bytes 12-23). I
I I I address I I
~-----t----------t------------t---~
I I FETCH Iphase name IDisk-resident system: requests the loading of another I
I I FETCH I Iphase or subphase into main storage from the core-image I
I I I I library. Card-resident system: loads the phase that I
I I I Iphysically follows the phase containing FETCH. I
t-----t----------t------------t---~
I IEOJ I IDisk-resident system: indicates to the Monitor program I
I I I Ithat a job has been completed and that the Job Control I
I I I Iprogram must be called to prepare for the next job. Card-1-
I I I Iresident system: causes system halt. To load the I
I I I Inext Job Control deck, the operator must press START. I
t-----t----------t------------t---~
I IIQIPT I ILoads the begin address of the printer-keyboard I
I I I linput area into register 8. You can thus refer I
I I I Ito the area through relative addressing. Required if you I
I I I luse inquiry record. I L _____ ~ __________ ~ ____________ ~ ___ J

Figure 39. Summary of Monitor Macro Instructions

.126

This appendix provides you with a number of
examples that illustrate the use of the
IOCS for the various types of files.

ExamEle

and 1 • 1

2

3

4

5 and 5.1

6

7

8

9
10

11

12

13

14

15

16

TYEe of File

Card files (2520 Card
Read-Punch), Overlap
Card and p+inter files (2560
MFCM, 2501 Card Reader,
Printer)
Printer-keyboard input file
and indexed-sequential file
Printer-keyboard output file
and sequential disk file
Tape output file with user
labels and card file (2560
MFCM)
Tape update file, card file
(2501) and printer file
Sequential disk output file
and card file
Sequential disk update file
and printer file
Sequential disk file
Direct-access file
(read/writ~ and card file
(2501)
Indexed-sequential load file
and card file (2501)
Indexed-sequential file
(reorganization) and sequen­
tial disk file
Indexed-sequenti~l add file
and card file (2560 MFC~
Indexed-sequential file
(random/sequential ADDRTR and

UPDATE) and card file (2501)
Indexed-sequential file and
printer-keyboard file in
inquiry program
Sequential disk, printer, and
printer-keyboard input/output
files - program includes ATENT
routine

All examples are divided into the sec­
tions

• file definition,

• processing routine,

• exit routines, and

• definition of constants.

Appendix D. Programming Examples

A description of the processing and exit
routines is given separately for each exam­
ple. The numbers in parentheses refer to
the numbers in the left-hand margin of the
individual examples. For information on
the file definition statements and the
definition of constants, which includes the
definition of I/O and work areas, refer to
the relevant sections in this fUblication.

ExamEle 1 and 1.1 - Card Files (2520 Card
Read- Punch)

In this example, a combined input/output
file is processed on a 2520 Card Read­
Punch. The card input is checked for
blanks (2) in columns 10 through 15 to
determine whether the record is to be
updated. If no update is required, i.e.,
the check for all blanks failed, the next
card is read. If the test is true, the
record is updated (3) and the character
string 'UPDATE' is punched (4) into columns
10 through 15 of the record.

It is assumed that most of the cards are
to be updated. Therefore, the OVERLAP=NO
entry has been omitted. However~ a LOM
macro instruction is issued (1) between
OPEN and the first GET to cause the GET
routine to work in non-overlap mode.

The IOCS performs a sequence check in
columns 73 through 80 and a read-format
check in columns 1 and 2. If a sequence
error occurs or if columns 1 and 2 are not
blank, the card is selected (5) into stack­
er 2. When the end-of-file card is detect­
ed, the file is closed (6) and the job is
terminated.

This example requires 5940 bytes of main
storage.

Example 1.1 is similar to examfle 1. How­
ever, this time it is assumed that only a
few cards of the combined file are to be
updated. Therefore, the entry OVERLAP=NO
(1) is included in the file definition
statement. The program is executed in
non-overlap mode. This means that through­
put is slower while storage requirements
are reduced.

This example requires 5710 bytes of main
storage.

Appendix D. Programming Examples .127

2

3

.(

5

6

TITL'= 'IOCS EXAMPLE NO 1 - CARD FILE ON 2520'

*
*
*
*
START

* CARDl

*
*
*
*

FIL ~ DEF INITION

STA RT '>000
EQU *
ORG *+460A
PRINT NOGEN

DTFSR CONTROL=YES,

OTFEN
EJ ECT

EOFADf)R=J:OFC1,
OEV IC E =C RP 20,
HIAR EA =AR fA 1,
INRLKSZ=80,
OUAR EA=AR EA2,
CHJBLKSZ=80,
R FORMT1=0l020,
RFXIT=RFEX1,
S EQI\IC E =73 80,
S EQX I T=SQE Xl,
TYP EFL F=CMBN[),
WORKA =YE S

PROCESSING RnUTINE

USING START,0,1,2,3
BEGIN EQU *

OP EN CAR Dl
-----' ... LOM CARDl

*
LOOPl EQU

GET
~ CL C

------. 1 BN E
*

* CAPDl,APEA3
AR EA3+09(6 I, =C '
LOOPl

PPEFERABL~ IF NEARLY ALL CARDS ARE
TO B~ PI'NCH'=D t.E. T(1 BE UPDATED

GET IS WORKING IN N~N OVERLAP MODE
, CHECK IF UpeATF POSSIBLE

-----..... MVC

*
AREA3+09(6),=C"'POATE' COLUMNS 11"1-15 ARE UPDATED BY

CHARACTER STR H!G 'UP!)AT E'
-----...... PUT CARD1,AREA~ PUT IS WORKING IN OVFRLAP I>1nDE

*
*
*
*
SQEX 1

RFEX 1
*
*

*
,=flFCl

*
*
*
*
* AREAl
AREA2
AREA3

*
*

•

B LOOPl

EX IT ROUT INE S

EQU
HPR
EQU

CNTRL
B

EQU

* X'FOl',Q

*

CARDl,SS,2
LOOPI

*
- CLOSE CAR 01

EOJ

DEFl~lTION OF CONSTANTS

DC
DC
DC

L TORG

80C' ,
80C' ,
aoc' ,

END BEr,IN

EXIT IF SEQUENCE CHf:CK OCCURS
HALT AND CONTINUE AS FOR RFEXl
EXIT IF TEST FOR BLANKS IN COLU~INS

1-2 FAILS
NO UPDAT E REQIJ1 REO
SELECT ERROR CARD If\JTO HOPPER 2

EOF-CONDITION QETECTED

TERMINATION OF JOB

INAREA FOR 2520
OUAREA FOR 252.0
WORKAREA FOR 2520

Example 1. Card File (2520 Card Read-Punch)~ Overlap

.128

*
*
*
*
START

CAROl

*
*
*
*
BEGIN

LOOP1

*
*

LOOP2

*
*

*
*
*
* SQEX 1

RFEX 1

*
*

EnFC 1

*
* .*
*
* AREA 1
AREA2
AREA3

*

TITLE 'IDCS EXAMPLE Nn 1.1 - CARn FILE ON 2520'

FILE DEFINITION

STAq,T 0000
EQU *

'OR c; *+4608
PRINT NOGJ:N
DTFSq, CONTROL=YES,

DTFEt-.1
EJ ECT

D FV ICE =C R P 20 ,
EOFADDR=EnFC 1,
INAREA=AREA1,
INRLKSZ=80,
OUAREA=AREA2,
OURLKSZ=A(),
OVERLAP=NO,
R FOR~H 1=0 1020,
RFX IT=Rf=EX1,
SEQ NC f ='7380,
SEeXIT=SQEXl,
TYP EI=L E=C r~RN[),
WORKA=YES

PROCESSIr--IG ROUTINE

USING
EQU
nPEr..J
EQU
GET
CLC
BNE

START,0,1,2,3

* CAROl

* CAR 01, AR E A '3
AREA3+09(6),=C'
LCOP2

GET IS WORKING Ir..J NnN nVJ:PLAP MODE
I CHECK IF UPDATE POSSIBLE

MVC AREA3+09(6),=C'UPDATE' COLUMNS 10-15 AP~ 'JPDATEO BY
Cf-lARACTER STR H'G 'UPOAT E'

PUT CARD1,APEA1 PUT IS loJORKINGIN NnN,OVERLAP MODE
A LOOP1
EQU * EXIT IF TEST FOR BLANKS IN COLUMNS

10-15 FAILS I.f. THE CARD IS ALREA~Y

UPDATF.D
Cr--1TRL CARD1,SS,2 SELECT CARD FOR HOPP£=R 2
B LOOPI

EXIT ROUTlt-.1ES

EQU *
HPR X'F01 ' ,O
EQU *

CNTRL CAR 01, SS, 2
B LOOPI
EQU *
CLOSE CARfll
EOJ

DEF IN I T ION 0 F CO NSTANT S

-------------------~---

DC
DC
DC

LTnRG

80C' ,
80C' I

SOC' I

END BEG IN

EXIT IF SEqUENCE CHJ:CK OCCURS
HALT AND CONTINUE AS FOR RFEX1
EXIT IF TEST FOR BLANKS IN COLUMNS
1-2 FAILS
NO UPDATE REOUIREO
SE LECT ERROR CARD HITO HO PP ER 2

EOF-CONDITION DETECTED

TERMINATION OF JOB

I NARE A FOR 2.520
QUAREA FOR 2520
WORKAREA FOR 2520

Example 1.1. Card File (2520 Card Read-Punch)~ Non-Overlap

Appendix D. Programming Examples e129

T ITL E ' IDCe; EXA~PLE NO 2 - FOR CAPO/PRINTER FYLE'

*
* START 4608

PRBIT NOGEN

*
* FILE OEFINITIONS

* ----------------
* CAROl OTFSq BLKSIlf:=80,

I) EV IC E=R E An01,
EOFADDR=EOfC1,
InAR EA l=AR f:A 1,
WAR EA 2=AP EA 2,
T Y P E F L E = I N PUT,
WQRKA=YFS

CARD2 DTFSq BLKSIZE=8(\,
CONTROL=YES,
DEVICE=MFCMl,
J:OFAO()P=F.OFC2,
InAREA1=AREA3,
TYP EFL F= INPUT,
'"'OR KA=YE S

CARD3 DTFSq BLKSIZF=80,
CONTROL=YES,
CRDPRA=AREA4,
CRDPRL 1=64,
CRnp~L 2=64,
DEVICE=MFCM2,
IOAREAl=AREA5,
TYP J: FL F=n UTPUT,
HOR KA=YE S

PRINT DTFSR BLKSIZE=120,
CONTR 0 L=YF S,
DEV IC E=PR I NTI=R,
PRINTnV=YES,
TYPEFLE=£1UTPUT,
WORKA=YES

OTFJ:N
EJ ECT

*
* PROCJ:SS ING ROllTINE

* ------------------
*
B~GIN EQU * BASR A,O LOAD BASE REGI~TER 8

USING *,A,q
ASREG LH 9,FlSAOD LnAD BA SE RFGISTF=R 9

* OPEN C AR 01 , CA R 0 2, CAR 0 3 , P R I NT

* CNTRL PR.INT,SK,1 SKI P
'·1VC wnRKP+DSPLl(32),=C'LIST COMPARE RUI'I ON 2501 , r4FC t-1l '

* LOOP1 EQU * . PUT PR INT, \-JOR KP PRINT·HEADER L1 NE
PRTOV PRINT,12

SWIll NOP LOQP2 FIR ST SHITCH, TNTHALLY NO BRANCH
2 I '·1 V I SWIT1+l,X'FO' SET FIR ST SWITCH TO BRANCH

CNTRL PR.INT, sp, 3 SPACE 3 LINF.S

* LOOP2 EQIJ * MVC wnPKP+l(l?O),WORKP CLE AR PRINT wnPK ARF.A
GET CARD1,WORK1
GET CAP 02, WORK 2

3 . MVC wnRKP+OSPL~(RO),WORK? PPFPARE I=OR LISTING
4 • CLC '"'0 R K 1 (80 1 , ImR K 2 CHECK If CAPOS EQI-'AL

BE LOOP1

Example 2. Card and Printer Files, Part 1 of 2

·130

MVC
5 -----•• PUT

PRTOV
CNTR.L
MVC

6 ------•• MVC
MVC

7 • PUT

*

PRTOV
CNTRL

PUT
MVC
,.1VC

. CRDPR.
8-----· J CRDPR

*

CNTRL
B

wnRKP+DSPL2(3),=C'OlD' INDICATE RECORD AS OLD
PR INT, WORKP PRI NT THE RECORD IN ERROR
PRINT,12
,SS,4 SFLECT ERROR CARD
WORKP+DSPL3(SO),WORK1 PREPARE NEW RECORD
wnRKP+DSPl2(3),=C'NEW' INDICATE RECORD AS NEW
WORK3(SO),I-IORK1
PR INT ,WnRKP
PR INT, 12
CAR 03, SS, 1

PRINT NEW RECORD

SELECT NEW CA~O TO BE PU~CHED INTO
STACKER1 I.E. MERGE INTO CARn2 FILE

CAPI)3,W()RK3 PIJNC,", AND PRINT ~'EW RECORn
WnRK4(64),WORK3 PREPARE FIRST ~4 BYTES FOR HEAD 1
WORK4+112(16),WnRK3+64 .
,wnRK4,ARF.A4 .
,WORK4+64,APEA4+64
PR INT" SP, 1
LOOP?

SPACr: 1 Ll NE

* EXIT RnUTINES

*
* EOFC 1 EQU * EnF CONDITInN DETECTED
EnFC2

*
*
*
* AREAl
AREA2
AREA3
AREA4
AREA5

* WORKI
W\lRK 2
101 aRK 3
WORK4
WQRKP

* BSAOD

* DSPL 1
DSPL 2
I)S PL '3

EQU *
CNTRL PRINT,SK,l SKIP
CLOSE CARD1,CARD2,CAR.03,PRINT
EOJ

DEFI~ITInN OF CONSTANTS

DC
DC
DC
DC
DC

DC
DC
DC
DC
I)C

I)C

EQU
EQU
EQU
LTORt;

SOC' ,
BOC' ,
SOC' ,
128C' ,
SOC' ,

SOC' ,
SOC' ,
SOC' ,
128C' ,
120C' ,

Y(BSREG+4096)

10
25
30

EN I) A EG IN

TERMINATION OF JOB

IOAREA1 FOR 2501
yr'l ARE A2 FOR 2 50 't
IOAREA1 FOR MFCMl
CARD PRINT AREA FOR MFCM2
I OARE A1 FOR MFCMl

WORAREA FOR 2501
WORKAREA FOR MFCM1
wnRKAREA FOR MFCM2
WORK AREA FOR CARD PRI~T
WORK AREA FOR PRINTER

Example 2. Card and Printer Files# Part 2 of 2

A card input file read on a 2501 is com­
pared with an input file read on an MFCM1.
A card output f~lp and a prjnter file are
created.

~fter the files have been opened, a
header line is prepared and printed (1),
and three lines are spaced. The switch is
-then modified (2) so that the space
instruction is by-passed after subsequent
print operations.

A card is read from each input file and
the record read on the MFCIY11 is moved (3)
into the work area of the printer file.
The records are compared (4). If they are
equal, the record in the print area is
printed, and the next two cards are read.
If the records are not equal, the record
read from the HFCf.Vl1 is indicated as 'OLD'
and printed (5). The characters 'NEW' are
inserted (6) in the record read from the
2501, and the record is printed (7). The
card output file is punched and card­
printed (8).

This example requires 3130 bytes of main
storage.

Appendix D. Programming Examples e131

TITLE 'Incs EXAMPLE NO 3 - FOR PRINT~R KEYBOARD INPUT FILE'

*
*

* :(I:

:(I:

'*
DATAl

PUTIN

*
'*
*
* BEGIN

*
'*

STI\RT 4608
PRINT ~lnGEN

FILE DEFINITIONS

DTFBG MA p.jpp G=YE S
DTFIS DERREX=ERRCl,

D EV ICE =0 I S K 11 F ,
DSKXTNT=4,
InA~EAR=AREAl,

InROUT=RETR VE,
K EYAR G=K~YA 1,
KEYLEN=ll),
K EYLnc =1,
NR EcnS=16,
R EC FOP M=F IXBLK,
RECSIZE=81),
RTR VEX=RTP EX,
TYP EFl E=R ANDOM,
UP DAT E =R A NDf1~1,
WrJRKR=wnRKl

DT F P K B L K S I7 E = 1 5 ,

OTFEN
EJ ECT

EO FA DOR=EOFC 1,
IOAREA=AREA2,
TYPEFLE=INPUT

PROCESSING RnUTINF

EQU *
BASR 8,0
USING *,8

OPEN DATAI,PUTIN

LOOPI EQU *

'*
*

READ PUTIN

1 -----..... WAITF PUTIN
2 ~ MVC KEVAl,AREA2
3 • READ DATAl,KEY

WAITI= DATAl

* MVC WORKl+15(5),AREA2+10

* 4 -----~ WR ITE DATAl, KEY
WAITF DATAl

*
*
*
'* E'RRC 1

* RTREX

EOFC 1

B lOOPl

EX IT ROUT INE S

EQU
HPR
B

* X'FOl'(I),O
EOFCI

EQU *
HPR X'FOl',O
EOU *
CL n S E DA TAl, P lJT I N
EOJ

LOAn BASE REGISTER 8

RFAD PRINTFR KEYBOARD REcrRD I.E.
In BYTES KEY INFORMATION AND

5 BYTF~ UP~ATE INFORMATION
WAIT FOR COMPLFTION OF READ
INSERT KEY INTO KEYARG FIFlD
RFTRIEVE RECOR['I
WAIT FOR COMPLFTION OF READ

INSERT UPDATE INTO RECORD

RFTURN RECORD T~ DISK
WAIT FOR COMPLFTION OF WRITE

DISK ERROP CONnITION
HALT IF IRRECOVERABLE DISK ERROR

RFQUIRED RECORD MOT FrJUND
f* TYPED ON PRINTER KEYBrJARD

'* TFP~INATION nF JOB

Example 3. Printer-Keyboard Input File and Indexed-Sequential File, Part 1 of 2

.132

* DEFINITIONS OF CONSTANTS

*'
* AREAl DC l3 5C L 1 0' , IOAREA FOR DISK nATAl
AREA2 DC l5C" IOAREA FOR PRINTER KEYBOARD INPUT

* WORK 1 DC
DC

BOC' ,
C'

wnRKAREA FOR DISK DATAl
KEYAl KEYAPG FIELD FOR KEY ON DISK ~ATAl

* END BEGIN

Example 3. Printer-Keyboard Input Fi.le and Indexed-Sequential Disk File, Part 2 of 2

Example 3 - Printer-Keyboard Input File and
Indexed-Seguential File

A record from an indexed-sequential file is
retrieved randomly and updated according to
control information typed in on the
printer-keyboard. The control information
consists of ten bytes of key information
and five bytes of update information.

After the record has been completely
transf erred to the input area (1), the key
information is inserted into the KEYARG
field (2). Then, the record is retrieved
(3), updated, and written back on disk (4).

This example requires 4450 bytes of main
storage.

Appendix D. programming Examples .133

2

3

4

*

*
*
*
*
DATAl

OUTPT

* *
*
* BEGIN

*

*
*

LOOPI

*

*

*
*
*
* EOFCl

*

•

TrTlE 'IDCS EXAMPLE NO 4 - FOR PRINTER KEYBOAQ.D OllTPLlT FILE'

I
•

ST AR T X '1200 '
PRI~T NOGE~

FILE OEFINITII"1NS

DTFBG
DTFSD

DTFPK

OT Fl C
DTFEN
EJ ECT

,
BlKSTZE=8(H),
o EV I C [= =D I S K 11 F ,
EOFADf"'R=I:OFC1,
ERROPT=SKIP,
IOAREA1=AP EAl,
IOAR. EA 2=AR EA2,
lOR EG=(13),
RECFnRr4=F IXBlK,
R EC S I Z E = A (\ ,
TYP Efl F= 1 NPUT
CONTROl=YF:S,
BlKSIl.E=31),
IDA REA =A REA 3 ,
lCTARl[==YES,
PR INTO V=YE S,
TYPEFLF=OUTPUT,
WORKA=YES
45,00301,04012

PROCES S I"" G R nUT lNE

FQU * BASR 10,0
USI~G *,10

OPEN DATA1,OUTPT

cm~ Rt; ,
~VC H EA 0 1 + 2 2 ('2) ,0 (8)
rwc H EA 01 + 2 5 (2) , 2 (8)
MVC HEADI+2A(2),4(q)
PUT OUTPT,HFAOI
PUT OUTOT, HEAf)2
CNTRL OUTPT, SP, 3
EOIl * GET DATAl
etc o (6 , 13) , =(•
BE LOOPI

.. MVC WO Q. K l(30) , 0 (1 3)
PRTOV OUTPT,12

PUT o UTP T , WOR K 1
B LOOPl

EX IT ROUTIN~S

EQU *
CNTRl OUTPT,SP,1
MVI WQRK1,X'4f'1'
MVC WnRK1(3n),WORK1
MVC ~nRK1(11),=C'END

.. PUT OUTPT, WOR K 1
CLOSE DATA1,QUTPT
EOJ

NO MAINLINE AMn Nn I~~JIRY PRnGRAM

LOAD BASF ReGISTER 10

LOAD ADDR~SS OF COMMUNICATION
REGION INTO REGISTFR A
PREPARE DATE IN HEAOI (MONT H)

(DAY)
(YEAR)

TVPE Hr::A01
TYPE HEAD2
SPACE :3 LINFS

TFST FOR BLANKS IN CEllU MNS 1 - 6

IF NOT, MOVE FIRST 30 BYTES fa WORK 1
TF ST FOR END OF FORM ,T F YES
SKI P TO NFXT PAGE
TYPE RECORO

SPACE I LlNE
CLEAR AREA WORK1

OF FILE'
TYPE EOF CONDITION

TE RMI NA TI ON OF JOB

Example 4. Printer-Keyboard Output File and Sequential Disk File~ Part 1 of 2

.134

* DEFl~ITIONS OF CONSTANTS

*
* AREAl
APEA2
AREA3
,.,..

DC
DC
DC

alCL10' ,
aiCL10' ,
30C' ,

lOAR~AS FnR DATAS

1 OARF A FOR OUTPT

HEADl
HEAD2

DC
OC

C'FILF = DATAl, DATE = , ,
C'IDENTIFIED R~CORDS RETRIEVEO

* ,.IORK 1 EQU HEADl wnRKAREA fOR OUTPT

* L TORG

* END BEGIN

Example 4. Printer-Keyboard Output File and Sequential Disk File, Part 2 of 2

Example 4 - Printer-Keyboard Output and
Sequential Disk file

A sequential disk file is checked for
records containing blanks in columns 1
through 6. Records that do not contain
blanks in these columns are printed on the
printer-keyboard. The current date in the
communication region is fetched and printed
on the printer keyboard (1). A record of

the sequential file is read and checked
(2). If the record does not contain blanks
in columns 1 through 6, it is moved to the
printer-keyboard work area and printed (3).
When the end of the file is reached, the
message 'END OF FILE' is printed (4).

This example requires 4270 tytes of main
storage.

Appendix D. programming Examples .135

*
*

*
*
*
*
DATA 1

CAROl

,~

:/"

*
*
REG If',1

* lOOPI

•

*
*
,,~

* EOFC 1

*
*
*
*
LABEL
*

2 a

* L ABL 1

3 •

4 •
5 a

* LABL 2
6 a

*

TITL~ 'IOCS EXAMPLE NO 5 - TAPE OUTPUT FILE WITH USER LABELS'

START 4608
USING *-4608,0,1,2,3
PRINT t\JOGEN

FIL E DEF IN IT ION

DTFMT BLKSIZF=36(),

I)EVADDR=SYSOI0,
FILABL=STr),
lOAR EA l=AP EA 1,
LABAODR=LABEL,
READ=FnRWARI),
R ECFOR M=F IXBLK,
RECSIZE=90,
TYP ~ FL E=O UTPUT,
WOP KA =YF S

DTFSR BLKSI7E=80,
COt\JTROl=YES,
o EV IC E=r·1FC M I,
EnFADDR=EOFCI,
mAP EA I=AR EA2,
TYPEFLE=tNPUT,
WORKA=YES

DTFF.f\J
EJ ECT

PROCESS ING ROUTINE

E()U *
OP EN DATA h CAROl

EQU *
GET CAR 01, wnRK 2
AP WOPKl,(ONTl
PUT DA T ~ I , "'OR K 1
B LOOPI

EXIT ROUTINES

EQU *
CLOSE DA TAl, CA R 0 1
EOJ

USER LABEL HANDL ING

EQU *
CH 8,TYPE
BF. LABL1
LH REG2,LABL8
B LABL2

LH R EG2, LABL6
AH REG2,lABlN
CH REG2,LABL7
BE LABL2
MVC 0(8t),9),()(QEG2)
STH REG2,LABL6
L 8R ET2

r~vc ()(80,9)'O(REG2)
L BR ET1

UPDATE RECORn COUNT

EXIT FOR FOF CONDITION

TFRMINATlOf\! OF JOB

Dn NnT USF REGISTERS 14 A~D 15
Cf-lECK IF HFADEP LABEL REQLlI RED
BRANCH IF H~ADER LABFL REOUIRED
LnAD RFG2 WITH TRAILER-LABEL ADOR.
IF NO HEADER LABEL INDICATION,
R.ETURN TO loes

UPDATE LABEL POYNTER.
CHECK BRANCH Tr LBRET 1
IF EQUAL,BRANCH TO LBRET1
B1IILD ADOITlONAL LABEL INFORMATION

RFTURN Tn IOCS AFTFR BUILQING USER
LABEL EXCEPT THE LAST ONE

RETURN TO lacs AFTER. BUILDING LAST
I.E. FOURTH USER LABEL

Example 5. Tape output File with User Labels and Card File, Part 1 of 2

e136

*
* 7-LABL5

LABL6
LABL 7

* LABL8

*
*
*
* AREAl
AREA2
wORK 1

8 --.... WORK 2

TYPE

* LABLN
CONTl

* REG2

*

DEFINITynN OF CONSTANTS FO~ USER LABEL

EQU
nc
DC
DC
OC
DC
nc
DC
DC
DC
DC

DC
DC
DC

* DEFINITION OF USER LABEL INFORMATION
CL24'UHll FIRST USER LABEL'
56C' ,
CL24'UHL2 SFCOND USER LABEL'
56C' ,
CL24' UHl3 THI RO USEP LAB EL'
56C' ,
CL24'UHL4 LAST USER LABEL'
56C' ,
Y(LABL5-8n) 8EGIN POHITER OF LABL5 AN[) SAVEFIFLD
Y(LABL 5+3* Sn) HID POI NTER OF LAAl5

Y(*+21
CL24'UTLl USER TRAILFR LABEL'
56C' ,

DEFIN1TION OF CONSTANTS

DC 36CLlO'
DC SOC' ,
DC PLIO'+O'
DC 08CLlO'
OS OH
DC C' 0'

DC H'SO'
DC PLlO'+l'

EQU 13

END BEG IN

•

1

IOAREA FOR OATAI
IOAREA FOR CAROl
WORK AREA FOR DATAl
WORK AREA FOR CARD + DATAl

LENGTH OF USER INFORMATION

Example 5. Tape Output File with User Labels and Card File, Part 2 of 2

A tape output file is created from a card
input file read on the 2560 MFCM1. The
output file has four additional header
labels and one additional trailer label.

The processing loop reads the cards and
writes the records on magnetic tape. Com­
mon overlapping work areas are used (8) fo.r
this purpose. ~ record count is prepared
in the first ten bytes of the tape records
(1). The L~DADDR routine checks (2) if

header labels are required. If no labels
are to be written, control is returned to
the IOCS. If labels are to be built, the
label constants (7) are moved to the label
area used by the open routine (4). The
label information pointer is checked (3).
If further labels are to be written, LBRET
2 is executed (5). Otherwise a branch to
LBRET 1 is taken (6).

This example requires 3230 bytes of main
storage.

Appendix D. Programming Examples e137

2

*
*

*
*
*
* DATAl

CAROl

*
*
*
* BEGIN

* LOOPI

* 3-LOOP2

4

5-MOVEI

1,<

*
*
* EOFC 1

1,<

*
* 1,<

LABEL

*

1,<

It

II:

II:

TITLE 'IOCS E~AMPLE NO 5.1 - TAPE OUTPUT WITH USER LABELS'

STAQT 4608
USIN~ *-4608,0,1,2,3
PRINT NOGEN

FILE DEFINITION

DT FtH BLK S IZ E=38 0,
DEVADOR=SYS010,
F ILABL =STO,
IOAR F.A l=AR EA 1,
IOREG=(REG2),
L ABADDR =LA BEL,
REA !)=FOR WA RO,
R EW IND=NOR WD,
R EC FOR M=VA RB LK,
TYP EFL E=OUTPUT,
YAP ~L D=(R EG1)

OTFSR BLKSIZE=80,
CONTROL=YF S,
DEVICE=~F(M1,

EQFAODR=EOFC1,
IOAR EA I=AREA2,
TYPEFLE=lNPUT,
WORKA=YES

DTF E"J
EJ ECT

P R () C E S S HI G ROUT INE

EQtJ *
OPEN DATAI,CAROI
SR REGl,REGl

EQU * GET CAR 0 I, WOR K 2+ 10
CH REGI,RECLN
BNL LOOP2
TRUNe DATAl

MVC WORKl(t') ,RECLN

~ LH
R EGl, P ECLN

SH RE(;l,=H'I'
STH R EGI, MOVE 1
MVt MOVEI,X'D2'
MVC O(84,REG2),WORK1
AP WORK2, CONT 1
PUT DATAl
B lOOPI

EX IT ROUT tN E S

CLOSE OATAl,CARDl
EOJ

USER LABFL HANDLING

EQU *

CH 8, TYP E
BE LABLI
LH REG2,LABL8
8 lABL2

C~ECK IF AREA OVERFLOW
IF YES TRUNCATE BLOCK

MnVF REC~RD LENGTH INTO WORK AREA
PREPARE MOVE INSTRUCTION

INSERT LENGTH INTO INSTRUCTION
RE STORE OP-CODE
MOVE RECQRf) INTO IOAREA
UPDATE RECORD COUNT

TFRMINATION OF JOB

DO NOT USE REGISTERS 14 AND 15

BRANCH IF HEADFR LABEL INDICATlnN
LOAD REG2 WITH TRAILER-LA8EL ADDR.
IF NO HEADEP LABEL INDICATION,
RETURN TO toes

Example 5.1. Ta~e Output File with User Labels and Card File, Part 1 of 2

LABL 1

* LABL?

*
*
* LABL 5

LABL6
LABL 7
LABLS

*
*
*
* AREAl

AREA2
HORK 1

WORK2

TYPE
6---. RECLN

CONTl
LABLN

* REGl
REG2

LH REG2,LABL6
AH REG2,LABLN UPOAT~ LAPEL POINTER.

CHECK BRANCH Tr LBPETl CH REG?,LABL7
BE LABL2 IF EQIJAL,BRANCI-I TO LBRETl
MVC 0(SO,9l,O(REG2) BUILD ADDITIONAL LABEL INFORMATION
STH REG2,LABL6
L BR ET 2 RFTURN TO IOCS AFTER BUILDING USER

LABEL EXCEPT TI-IE LAST ONE
MVC O(An,9),O(REG2)
LBRETl RETURN TO IOCS AFTER BUILDING LAST

I. E. F('lURTH USER LABEL
nE~I~ITION OF CONSTANTS FOR USER LAPEL

EQU
DC
DC
DC
DC
DC
DC
DC
DC
,)C
DC
DC
DC
DC

* DFFINITION OF USER LABEL INFORMATION
CL24'UHLl FIRST USEP LABEL'
56C' ,
CL24'UHL2 SECOND USEP LABEL'
56C' ,
CL24'UHL3 THIRD USER LABEL'
56C' ,
CL?4'UHL4 LAST USFR LABEL'
56C' ,
Y(LABL5-80l BEGIN POINTER O~ LABL5 AND SAVEFIELD
Y(lABL5+3*SO) END POINTER OF LABLS
Y (*+2)
CL?4'UTLl USER TRAILER LAAEL'
56C' ,

DE F I t\J I T In N fl F CON S T A NT S

DC
DC
DC
DC
DC
DC
DC
DC
DC
OS
DC
DC
DC
DC

EQU
EQ',
Et--ID

H'340'
H'O'
20RC' ,
20AC' ,
SOC' ,
H'A4'
H'O'
PL10'+O'
ORCL10'
OH
C' fl'
H'84'
PL10'+l'
H'SO'

13
12
BEGIN

1

IOAREA FOR DATAl

IflAREA FOR CAROl
WORKAREA FOR DATAl

DATA AREA FOR OATAI.

FIELD FOR CURRENT RECORD LENGTH

Example 5.1. Tape Output File with User Labels and Card File, Part 2 of 2

Example 5.1 - Tape Output File with User
Labels and Card File (2560 MFCM)

This example is very similar to example 5.
However, (pseudo) variable records are
built for the tape output file.

It is assumed that the field RECLN (6)
contains the record length. Before the
record is moved to the I/O area (5),
a check (1) is performed to determine
whether the block has to be truncated (2)
or whether the record fits into the area.

The number of bytes that are still avail­
able in the I/O area are contained in REG2,
i.e., in the VARBLD register. The record
length is inserted into the first two bytes
of the work area (3). The required length
is inserted into the MVC instruction (4),
i.e., record length minus one. Then, the
record is moved to the I/O area (5) and
written onto tape.

This example requires 3340 bytes of main
storage.

Appendix D. Programming Examples .139

*

*
*
* PUTIN

nUTPT

tAR01

PRINi

*
*
BEGIN

* LOOP1

2-LOOP2

•

3-----...
4-----

.. ..
SWIT 1

*

T IT L '= 'In C SEX AMP l F. NO 6 - TAP E IJ PO ATE WIT H CAR DIN PU T '

START 4608
USING *-4608,0,1,2,3
P R I NT t-1O G EN
FILE !,)EFINITIONS

DTFMT ALTTAPE=SYS008,
BLKSIZF=36('),
DEVADDR=sysn07,
En~ADDR::EOFCl ,
ERR IO = ER R 1(1,
ERROPT=ERRC1,
F ILABL =STO,
IOAREA1=AREA1,
IOAR FA 2=AR EA2,
TOREG=(RFG1),
REA D = F OP WA R D ,
R EC FOR M=F I XRlK,
R FC S 17 F =90,
R EW IND =UNL OAD,
TYP EHF=lNPUT

DTFMT ALTTAPE::SYS011,
BLKS 17 E=180,
DEVADDR=SYSOI0,
F ILARL =STD,
H1AR EA 1=AR J::A3,
IOAR F.A 2=AR ~A4,
IOREG=(REG2),
REA D=FOR WA RD,
REfFORM=FI'X'RLK,
R EC S I Z E = 9 ° ,
R E\of IND=UNLQAD,
TYPEFLF.=OUTPUT

DTFSR BLKSIZE=2n,
DEV ICE=R EAD,)1,
EOFADDR=Em=C2,
IOAR EA l=AR EA5,
IClAREA2=AREA6,
SEQ NC E =0 11 0,
S En x IT:: SEQ EX,
TYP EFl F= HlP UT,
WORKA=YES

DTFSR BLKSI7E=90,

DTFEN
EJ ECT

DEV IC E =PR HITER,
TYPEFLE=nUiPUT,
HORKA=YES

PROCESSING POUTINE

USING DSECT,~EG2
EQU *
OPEN PUTIN,OUTPT,CARn1,PRINT

EQU *
rAVI SWIT2+1,X'OO' CHANGE SWITCH 2 TO NOP
GET CARD1,WORK1 GET NEXT CARD
PACK UPDT1(lO),UPDT1(10)
GET PUTIN GET TAPE REC ORO
MVC 0(90,REG2),,)(PEG1)
CP RCROl(10) ,lJPDTU10} CHFCK IF tlPDATF REOUIRED
BNE LOOP3 IF NnT, PUT R E(rJRD Hl~'E D I AT EL Y

flN TAPE
INSFRT IJPOATE FROM 5------lMVC RCR02{,3} ,UPDT2 INFORr~ATl ON

• r~vc R CR D4(7}, upnT3]NTO T.APE REr.nRD
6------• MVI SWIT2+1,X'Fn' CHANr,E SWITCH 2 TO BRANCH
7-LOOP3 PUT OUTPT

SWIT2 NOP LOOP1 BRANCH Tn GET NJ::XT CARD 8------• B LOOP2 BR ANCH Tn GET NEXT TAPE RECORD

Example 6. Tape Update File, Card File and Printer File J Part 1 of 2

.140

CARD

*
*
* EOFCI

* 9 --'EOfC2

ERR.C 1
10--.PUTPR
11 --'ERRIO

*
SEQEX

*

*
*
*
AREAl
AREA2
AREA3
AREA4
AREA5
AREA6
WORK 1
U PDT 1
UPDT2
UPOT3

* 12~DSECT
RCRDl

RCRD2
RCR03
RCRI)4

* REGI
REG2
REr,3

EX I T ROUT IN FS

EQU * HIO OF TAPE TNPLJT FILE
CLOSE PUTlN,OUTPT,CARDI,PRH!T
J:OJ

FQU
MVI
B
EQU
PUT
EQU

B
EQU
WAITe
HPR

GET
B

*
SWIT2+1,X'''H)'
lOOP2
*
PRINT,*
PUTPR+4

SWIT2
*

X' F 01 ' ,0

CAR 01 , WO R K 1
LOOPl

TEPM1NAnON OF JOB
END OF CAPO FILE CONnITION
DEACTIVATF CAPG PEADING
TRANSFER PEST OF TAPE FILE
TAPE ERROR FOR INPUT FILE
PRINT ERRnR. PECORD
IOARFA IN ERROR ADDRESS WILL BE
INSERTED AS PRINTAREA ADORFSS
RFTURN TO LOOP

HALT INOICATFS CARn nUT OF SEQUENCE
THE CAR.O WILL ~E SKIPPED O~ REST~RT
ONE DUMMY GET REQUIRED
RF nIp. N Tn LnrlP

DEFI~ITION Of CONSTANTS

OS
DC
DC
DC
DC
DC
DC
EQU
DC
DC
DC

nSECT
OS
OS
OS
OS
OS

OH
36CL 1 ()' ,
36CLlO' ,
l8CllO' ,
l8Ct10' ,
02CLlO' ,
02CLlO' •
* 10C' ,
()3C' •
07C' •

CL 10
CLR
CL 3
CL2
CL 7

NO FUPTHER DEFIN1TION
EQU 08
EQU OQ
EQU 10
END BEG IN

I OARE AS FOR INPUT

IOAREAS FOR OUTPT

I OARE AS FOR CAROl

WORKAREA FOR CAROl, CONTAINING
FIELDI
FIELD2
FI ElD3

FIELD 1 IN INPUT RFcnR.D

FI ELD 2 IN HIPUT REcnRD

FIELD 3 I"! INPUT REcnRI)
MUST BE GIVEN, IF Nor REQUIRED IN DSECT

E0UATING Of RFf,ISTFR~

Example 6. Tape Update File, Card File and Printer File, Part 2 of 2

Example 6 - Tape Update File, Card File
(2501) and Printer File

A tape input file is updat~d by a presorted
card input file, and an output file is
created on tape.

A card is read and the branch switch,
which causes the next card to be read, is
set to no-operation (1). Tape records are
read (2) and moved from the input to the
output area (3). The card record and the

tape record are compared (4) to determine
whether they have the same identifier. If
they do, the record is updated (5) and the
read switch is changed (6) so that the next
card can be read. If no update is
required, the card is immediately written
onto tape (7) and the next tape record is
read (8).

In the card end-of-file routine (9) the
switch for card reading is turned off and
the rest of. the tape file is copied. If an
error occurs in the tape input file, the

Appendix D. Programming Examples .141

error routine prints (10) the first record
of the block preceding the block that con­
tains the error record. ERRIO (11) is
equated to PUTPR+4 to cause the address of
the I/O area containing the error record to
be inserted as work area address in the PUT
macro instruction. For ease of reference,
a dummy section is generated for the tape
output area (12). The ref erenced base
register REG2 is the IOREG of the tape
output file.

This example requires 3680 bytes of main
storage •

• 142

Example 7 - Seguential Disk Output File and
Card File

This example illustrates the creation of a
sequential disk output file from a card
input file. A card is read, moved to the
I/O area (2) and written onto disk (3).
IOREG must be specified (1) because blocked
records are processed in the I/O area and
no work area is specified.

This example requires 4050 bytes of main
storage.

TITLE 'IDes FXAMPLF NO 7 - SEQUENTIAL DISK OUTPUT FILE'

*
*

*
*
*
* CARDl

DATA 1

START 4608
USINr, *-4608,O,l,~,3
PRINT NnGEN

FILE OEFINITHlt\lS

DTFSR BlK~IZE=A~,

DEVICE=READOl,
EOfAOOR=EnFC l,
IOAR EAl=AREAl,
IOAR EA 2=AR EA 2,
TYPEFlE=INPUT,
WOP K A =YF S

DTFSD BlKSIZE=800,
D EV ICE =0 IS K 11 F ,
DTAQ. EX=DTA f:;X,
ER~OPT=ERRCl,

IOAREAl=AREA3, ---------1 IOREG=(REGll,
R'=CFORM=F IXBlK,
RECSIZE=80,

*
*
*
* 8EGIN

*

DTFE~

EJ I=CT

TYP EFl E=OUTPUT

PROCESS~NG ROUTlt\lE

EQII *
OPEN CARDl,nATAl

LOOPl EQU * CARDl,WORKl GET
2-----•• MVC O(AO,R EGl) ,WOPKl

*
*
*
* DTAEX

* EOFC 1

*
* E~RC 1

*
*

AREAl
AREA2
AREA3
>:'

* REGl

*

PUT
B

DATAl
lnf'Pl

E X I T ROUT IN E S

EQU
HPR * X'FOl',O

EQU *
ClOS'= CARDl,DATAl
EOJ

EQU
HPR
R

* X'F()l' (U,O
EOFC 1

DEFINITlf'N OF cnNSTANTS

DC BOC' ,
nc BOC' ,
DC 8lCllO' ,

DC aoc' ,

EQU a

END BEGIt\l

MOVE Ot--!E RECORD

EXIT ON EXTENT OVERFLOW ON DISK
HALT AND CONTINUE AS FOR EOFCl

EXIT ON EOF CO~DITI~N ON ?501

TERMINATION OF JOB

EXIT ON PERMANFt\lT DISK ERROR
HALT REQUIRES ALTERt\lATE TRACK ASSGN.

INPUT AREAS FOR 2501

OUTPUT AREA FOR OISK

WORK AREA FnR 2~Ol

Example 7. Sequential Disk output File and Card File

Appendix D. Programming Examples .143

TITL~ 'IOCS EXAMPLE ~n 9 - SEQUENTIAL OTSK UPOATE FILE'

*

*
*
*
* DATAl

PRINT

* ;:.:

* ;:.:

B EGI N

;:.:

Lonp1

PRINT NOGEN
START 4608
USING *-4608,0,1,2,3

FILE DEF~NITIONS

DTFSO BLKSIZE=S00,
OEV Ie E=I)I SKllF,
EOFADOR=EnFC 1,
ERROPT=ERRC1,
IOAREAl=AREA1,
IClARI:A?=ARFA2,
IOREG=(REG1),
RECFORM=FIXBLK,
R EC S I Z E = ~ 0 ,
TYPEfLE=UIPUT,
UPDATE =YE S

DTFSR BLKSIZE=80,
DEVICE=PR INTER,
PR INTOV=YE S,
TYP EfL E=rJUTPUT,
CONTR("lL=YE S,
wnRKA=YES

DTFE~

EJ ECT

PROCESSING Pf1UTINE

EOU
OPI:N
CNTRL
PUT
CNTRL

EQU
GET

* OAT A 1, PR IN T
PRINT,~K,l

P R I NT, \OlOR K 1
PRI~T,SP,3

* DATA 1
------- CLC

BE
B

() (6 ,R 1= G 1) , =C '
LOOP 2
Lonp1

L(lOP2 *

SKIP
PRINT HEADING
SPACE 3 L1NES

, C!-IECK Ff1R. upnAT~ I~nICATI(lN

BPANCH IF upnATE IS REQI)lPED

EQU
MVC OU"RF=Gll,=c'upnATE' INSERT UPDATE INFORMATIIJN

2------- rwc WnRKl(sn),O(RFG1) MnVE RECORD INTQ WORKAREA FOR PR I "IT
PRTOV

3 - PUT
PRINT,l2
PRINT,\o/ORKl
SWCI-I1+ 1, X' FO'
DATAl

4 • MVI
5 - PUT

;:.:

* I:OFC 1
SWCHI

B
EXIT

EQU
NOP
MVC

LOOP1
POUTINFS

* CLC1SI:

6----------.- PUT
HORKl(10),NOTE1
P R IN T , WO R K 1

CLOS E

* ERRC 1

*

EOll
CLOSE
EOJ

* DATA1,PRINT

~OU *
CNTRL PR INT, SP, 1
MVC WORKl(80),n(~1=r,1)

PUT PRINT,WORKl

CNTRL PR 1NT, SP, 1
MVI SWCHl+l,X'Fn'
B L("lOPl

PPINT UPDATFD RECOP!)
CHANGE SWITCHl Tn BRANCH
REWRITE upnATEP REcnRD

EXIT ON EOF CONDITION

PRINT NOTE 'NO RECOROS UPDATED'

TFPMINATTO~ nF Jf1R
EXIT ON DISK ERRnR

Rl=rOROS nF NEXT 8LnCK BEHIND THE
BLOCK cnNTAINlNG THE PRTNTFD RECORD
Te:; UNREAnARLE

SKIP THE ERROR BLOCK

Example 8. Sequential Disk Update File and Printer File, Part 1 of 2

.144

* DEFINITlnN OF CnNSTANTS

'*
* AREAl OC 81 CL 10' , INPUT AREAS FOR DATAl
AREA2 OC 81CL 10' ,

* WORK 1 OC
DC
OC
DC

CL3n'LISTINr, OF R~CORDS UPDATED'

NOTE 1

* REGl

*
*

CL I 0' ON OA TA 1. '
40C' ,
CLIO' NO'

EQU 8

L TnR t;

END BEG1N

Example 8. Sequential Disk Update File and Printer File, Part 2 of 2

A sequential disk file is to be updated by
inserting the characters 'UPDATE'. Each
record is read and checked (1) if update is
required. If so, the update information is
moved to the I/O area and the record is
made available for printing (2). The
record is printed (3) and written back onto

disk (5). Switch 1 is changed to by-pass
the printing of the message that no records
are updated (4,6). If an error is detected,
the error routine prints the first
record of the block preceding the block
that contains the error record.

This example requires 4730 bytes of main
storage.

Appendix D. PrograMning Lxamples .145

*
*

*
* *
* DATA 1

PRINT

* *
*
* BEGIN

LOOPI
•

2-LOOP2

LOOP3

3 •
4 •
5 •
6 •

SWCHI

7 •

8 •

*
* *
'* AREAl
WORK I

REGI

TITLE'IOCS EXAMPLE r-.JO 9 - FXTE~'SlnN OF ~F.ClUENTIAL f'llSK FILE'

STAQ.T 4608
US ING *-460S,0,1,2,3
PRINT NOGF.'"

FIll:: DEFINITH'N

DTFSI") BLK S I7 E=SOO,

OEV TC E=D I SKIp:: ,
EOFADnp =lfJnP2,
If"lAR.EAI=AQEAI,
IOREG= (REG1)'
R.F.CFORM=FIXBLK,
RECSIZE=SO,
TYP EFL F= INPUT,
UPT)ATE=YES

DTFSR. BL K S 17 E = SO,
CON TRO L=YE S,
OEVICE=PRINTER,
PR INTOV=YE S,
TYPEFLE=OUTPLlT,
WORKA=YES

DTFEN
EJ ECT

PROCESS INr; POUTINE

EQU *
OPEN DATA1,PPINT
CNTRL PPINT,SK,l
MVI X'OOCE',X'OO'
EQU * GET OATAI
MVC WORKI+Q(70),O(RF~I)

B LOOPI
NOP CLOSE
MVI LOOP2+I,X'FO'
EQU * MVC O(80,R EGl), wnRKI
PUT DATAl
PRTOV PRINT,12
PUT P R I NT, wnR K I
MVI 80(REGIl,')('OO'
GET DATA I
CL 1 X' OOC E', X' EF'
BNE Lonp3
MVI S we HI + I, X • 'l t') •
MVC WaR K I (3) , =C ' If.< ,
CH REGI,=Y(AREA1+Q*AO)
f3L LOOP3
MVC O(SI),R EG I), WORKI
PUT DATAl
CLOSE DATAI,PRINT
EOJ

DEFIr-.JITION OF CONSTA~TS

DC AICL 10' •
OS OCLao
DC CL 1 0' EXTFN SImi •
DC 7CLIO'
EQU 8
END BEGIN

flPfN FILES

CLEAR 'CE'-BYTF

RnUTINE TO EXTEND THE FILE
ACTIVATE BRANCH Tn CLOSE

MOVE RECORO TO IOAREA

CLEAR FURTHFR POSSIBLE 1* INDICATOR
UPDATE RECORD POINTEP
CHECK CE-RYTE FOR EflF IND1CATION
IF "'£1T Cm'THIIJF EXTHISIfJN
SFT 8RANCH nFF
INSERT 1* AS EOF cnNnITI0N
ENSURE PROPFR WRITING OF EOF CONDIT.

HP I TEL A S T B L DC K
CL{1SE FILES

TFRMINATI{1M OF JOB

I OARF A FOR I N PUT

Example 9. Extension of a Sequential Disk File

.146

Example 9 - Extension of a Sequential Disk
File

This example shows how a sequential disk
update file may be extended. The file(l) is
read until the EOF condition is encountered
and the EOF routine (2) is entered. In the
end-of-file routine, a switch is set in
order to transfer control to EOJ if the EOF
routine is entered a second time, i.e., if
the end of an extent is reached or if a /*
is detected which does not belong to the
current file. Therefore, all disk extents
should be cleared or an apporpriate restart
should be provided for those cases.

The record to be added to the file is
moved to the I/O area, written onto disk

(3) and printed (4). Possible EOF indica­
tors in subsequent records are replaced by
binary zeros (5). When all records have
been added to the file, X'EF' must be
entered into the CE-byte to simulate the
end-of-file condition (6). The characters
/*~ are inserted (7) in each record of the
last block, which is written onto disk by
another PUT (8).

When /* is encountered the first time,
the execution of the PUT macro instruction
(3) leads to a halt. A restart is
required. However, X'EF' must not be
entered into the CE-byte at this time.

This example requires 3640 bytes of main
storage.

Appendix D. Programming Examples .147

TtTL'= 'IOCS EXAMPL'= Nn 10 - QIRECT ACC~SS Or--ITr) '1ISK'

*

CAROl

DA.T A 1

*
*
*
* REGIN

LOOPl

STA~T 46 n a
USl~G *-46~8,0,l,2,3

PR HH NOr,EN

FILE n~FINITIONS

DTFSQ. 8LKSIZE=AO,
o EV I C F =R F A Dt') 1 ,
EnFA DDR =F.OFC l,
J(lAQ. ~A l==AR EA l,
IOAREA2=AREA2,
TYPEFLF.=INPUT,
WORKA=YES

DTF!)~ BLKS1Z E=240,

DTFE~

EJ ECT

o EV ICE =0 I S K 11 F ,
F.RR 8YT E=ER RB T,
IOAREA1=AREA3,
R.EADID=YES,
SEEKADP=SEEKA,
TYP F.~L ~= HIPUT,
WRITEID=YES

PRnCESSING ROUTlt-'F

EQU
OPEN * CARD1,DATAl

* CAPDl,WORKl
EQU
GET
'~Vt-I SEEKA(U ,I.IORKl HISERT VOLUME NUt·1BFR 'N'

1 ------.~ PACK
2 • CNVRT

* 3------~. eLI

LOOP2
BE
READ
WAITF

4 ------.~ BAS

* 5 -----~. MVC
R

LOOP3 EQU
6 -------~~ MV C
7-LOOP4 "IRITE

WAITF
BAS
8

FRRC 1 EQU
8 ------~~ TM

* BZ
HPR
B

ERRC 2 EQU
TM
BZ

9-------.... '..,VI
HPR

* CL I
BE

F.RRC3 TM
RZ
HPR

1O-----... B

PACKF(,3),WORKl+1(5) PACK THE DISK A!)DPESS "CCCHR'
SEEKA,PACKF CQNVERT DEC. TQ HEX. f)ISK ADDRESS

INfJIC,C' ,
Lnnp3
DATAl, ID
DATA 1
l4,EPRCl

AREA3(10),TEXTl
LOOP4

* AREA3(70), TEXTl
DATA1,1O
DATAl
14, ERR C2
LonPl

* EPRBT,B'llooooon'

ERR C2
X'FO" ,0
LOOPl

*

CHECK I F UPDATE REQIHREO
IF NOT, GO TO WRITE

CHECK I F ERROR OCC'IRS

UPOATE RECORD

BUI LD NEW REC OP!)

CHECK IF fJISK FRROR rCCURS

TFST IF ADDR. lS I~VALIO OR
OIlTSIDE EXTENTS

HALT lNDICATFS USFR ERROR
READ NEXT CONTPOL CARD

ERPBT+I,B'Olnlonoo' TFST IMTEPVFNTlnN QE0./E0UIPM. CHECK
ERR C3
X'OOCF',X'OO'
X'F02' n) ,0

x ' OOC E ' , X ' F F '
EOFCI
ERPBT+l,B'OOOOll10'
0(0,14)
X 'Ft')'P n), 0
LOOP1

HALT INDICATF.S ~QUIPM~NT CHECK
SW1TCH DISK DR1VE QN/OFF
IF X'FF' IS ENTEREQ Gn TO EOJ

TEST DATA/SF~K CHECK nR Nn REC.FOUND

HALT lNDICATES DISK ERROR
READ NFXT cnNTROL CARD

Example 10. Direct-Access File and Card File, Part 1 of 2

.148

* >',<

* !=flFC 1

*
*
*
*
* AREAl
APEA2
APEA3

* WORK 1
INDIC
TEXTl

* ERRBT
SEEK A
PACK'F

*

EXIT ROUTINE

FQU *
CLOSE CARDl,OATAI
EOJ

DEFI~ITION OF CONSTANTS

DC 80C' ,
DC ane' ,
OC 27CLIO ' ,

DC CL7'NCCCHR'
DC CL3' I'
DC CLIO' ,
DC 60C •

,

DC H'O'
DC Xl R 'on'
nc XL~'OI')'

END BEG IN

TFRMINATION 8F JOB

INPUT AREAS FOP 25nl

OUTPUT AREA FflR DISK

DPIVE AND DISK ADORESS - PACKED
UPOATE lNDICATflR
UPDATE INFORMATInN AND
NEW RECORD INFflRMATlflN

RFSERVATION FnR ERROR INFORMATION
SEEK ADDR.FJELD 'M8~CCHHR'

PACK FIELD X'CCCHR+'

Example 10. Direct-Access File and Card File, Part 2 of 2

Example 10 - Direct-Access File and Card
File

A direct-access file is processed by con­
trol information read on the 2501 Card
Reader.

The cards contain the following informa­
tion:

cols. 1-6
col. 8

cols. 10-80

the disk address NCCCHR
I for update, or
D indicating that a new

record is to be created
data.

The disk address is converted (2) if it
is in packed format (1). A test is per­
formed p) to see whether an update is
required. If it is, the disk address is
checked for validity (4, 8). The next card

is read if the address is invalid. Other­
wise, the update information is inserted
(5), and the record is written onto disk
(7). If column 8 contains a blank, a new
record is created (6) and written onto disk
(7) •

In case of an equipment error (9), the
job is aborted. If no record is found or
the data-seek check fails, the next card is
read (10).

In this example it is assumed that the
file has already been loaded. If this is
not the case, TYPEFLE=OUTPUT must be speci­
fied to create a label in the VTOC.

This example requires 3420 cytes of main
storagee

Appendix D. programming Examples .149

*
*

*
*
*
*
CATA 1

CAROl

*
*
*
*
US If\.IG
AREAl

lAREA2
1--" AREA3

WORK 1
USADD
EJADD

2--..

*
*
*
*
lFRRC 1

ERRC2
BEGIN

*

3----

TITLE 'Incs EXAMPLE ~n 11 - LOADING AN ISFMS ~ILE'

START 460e
PR I NT NOGF.N

FILE DEFINITIONS

DTF~G
nTFIS ALTREX=AlFX1,

CYLOFL=3,
CYNOEX=CYEX1,
DERR E X =F.RRC 1,
D FV I C F. =n I S K 11 F ,
DSKXTNT=4,
DTAREX=DTI:X1,
OUPRI=X=DUI=X1,
IOAREAL=AREA1,
IORI1UT=LOAD,
KEYLFt-1=11'),
K EYLOC=l,
NR ECOS=16,
R EC FORM=F I XBLK,
R EC SIZ E=80,
SQCI-iEX =SClE Xl,
WOR KL =WOR K 1

DTFSR BLKSTZE=80,
OEVICE=READ01,
FOFADDR=EnFC1,
IOAR F.A l=AR EA2,
IOARF.A2=AREA3,
TYP E~L F= INPUT,
",ORKA=YES

DTFE"I OVlAY
FJ ECT

nEFINITION OF cnNSTANTS

US ING
I=QU
nc
DC
DC
DC
DC
DC

USING,Q

* 135CL10' ,
81)C' ,
~OC' ,
aoc' ,
Y(USINGl
Y(F.OJOB)

PROCESS ING ROUTINE

EQU
HPR
B
EQU
DC
DC

* X'F01' (l),1)

EOFC1

* X'4890'
Y(USADDl

DROP 9
nPEN DATA1,CARDl
USING USING,Cl
SETFL DATA 1
FETCH

(REPRI")
} ACT 111".1 DIIP

/

XFR BEGIN
REP RIl ,
ACTION NOOIJP
nRG BEGIN

I)ISK I=RROR FXIT
HALT RFQUIRES ALTERNATE TRACK ASSGN.

LH 9,USADI) I.E.
LOAD BASE REGISTF.R 9

OPEN ROUTINF IS
OVERL AID BY
PPOBLEM PPIlGRAM

Example 11. Indexed-Sequential Load File and Card File, Part 1 of 2

.150

lOOPI EQU * .. • 1 GET CAR 01, WaR K 1
WR I TE DATAl,NEHKEY
B LonPl

*
'* EXIT ROUTINE=S

* -------------
* AL EX 1 EQU * AlTREX EXIT

HPR X'FOl',O HALT INDICATES Nn LOAO EXTENSION

* POSSIBLE, REOR~ANISATION REQLJIRED
B EOFC~

OTEX 1 EQU '* PRIME DATA OVEPFLOW EXIT
CYEX 1 EQU * CV~INDER IN~EX OVERFLOW EXIT

HPR X' F02' ,0 HALT INDICATES NO FURTHER LOADING

'* pnSSIBLE, RELOADING/PEORGANISATION
B EOFC 1 REQUIRED

* DIJEX 1 EQU * DUPLICATE RECORD DETECTED
SQEX 1 I=QU * RECORD nUT OF S I=QUENC r:

HPR X'F03',O
B LOOPl RFTUP N

EOFCI F.QU * 5 .. MVC ERR C2+ 2(2) ,EJADD C!-IANGE ERROR EXIT ADDRESS
ENDFL DATAl

F.OFC2 EQU * FETCH
L TORr,

\ REDRO • PPOBLEM ppnr,RAM
ACT ION DUP IS OVERLAP)

6 • ~ XFR BEGIN BV CLOSE ROUTI~r:
RF;PR'J
ACTION NnDIJP
ORG S'::GIN

* DROP 9
CLOsr: f)ATAl,CARDI
USING USING,9

EOJOB EOJ

* TFRMINATI~N OF JOB
END BEGIN

Example 11. Indexed-Sequential Load File and Card File, Part 2 of 2

Records contained in punched cards are
loaded onto disk as an indexed-sequential
file. The overlay technique is used for
the Open (3) and ClOSe (6) routines. All
I/O and work areas (1) must precede the
overlay address BEGIN. The same applies to
the error routines (2) which may be entered

during the Close routine. In order to
avoid a program loop~ the address of the
error routine is changed (5) to the EOJ
address before the Close routine is
entered. Processing consists of reading a
card and writing the record onto disk (4).

This example requires 5570 bytes of main
storage.

Appendix D. Programming Examples e151

TITL'= 'tOCS EXA~PLE Nfl 12 - PEORGANI5ATIOf\J OF AN ISH'S FILE'

*
*

R EPR'J
PH~S'= REnRGl,A,461)8

*
PRlf\lT NnGEN

C:;TART STAQ.T 0
ORG *+461)8

*
* FILE 8EF1NITI~NS

"" ----------------
*
DATAl OTFIS D EP REX =!= P PC 1 ,

DEV IC E=D I SK llF,
DSK XHIT=4,
EOFA!"lDR=EnFCl,
IOAR EA S=AR EA l,
InPEG=(8l,
lOR OUT =R E TI~, Vf ,
KEYARG=KEYAl,
KEYLEN=10,
KEYLOC=l,
NRECDS=l6,
Q.ECFORM=FIXBLK,
R F:C S IZ E=80,
TYPEI=LE=SEQNTL

SQSAV DTfSI) BLKSIZF=I(,nr),
D EV I C F. =1) I S K 11 F ,
IOAR EA I=AR EA2,
IOREG=(9',
R EC fOR M=F I XBLK,
RECSIZE=80,
TYPEFLF.=OUTPUT

DTFF:N
EJ ECT

*
"" PRnC,=SSING P~UTINE
* ------------
"" USING START,O,l,2,3
BEGIN EQ" *

OPEN OAT A l, SO SA V
SETL DATAl,BOf

*
LOOPI FQU *

GET OATAI
• PACK KEYPK(6),KEYA111n} SAVE TH E KEY FOR LATER US E

* I. E. IF ERROR rCCURS
MVC 0(81),9}'O(8) TRANSfER RECORn

2 • PUT SQSAV
B Lnnp I

*

* EXIT ROUT tNE S
* -------------
"" ERRC I EQU * RFAD ERROR flN DATAl

HPR X'F()l'(l),O
*

ESETL DATAl
3 • AP KEYPK(6},=P'1' HICRF. AS!: KF:V BY ONE

UNPK KEYAI(lnl,KEYPK«(,} RE STO RE THE KEY
SETL DATA l, GKEY
A LOnPl

"" EnFC 1 EQtJ *
ESF.TL DATAl
CLOSE DATAl, SOSAV

*
FETCH R EORG2

Example 12. Indexed-Sequential File (Reorganization) and Sequential File, Part 1 of 3

.4

*
*
* AR~AI
AI:lEA2

* KFYPK
KEYA 1

*
*
*

OEFI~ITION OF CONSTANTS

OS
OS

I')C
DC

IOCL 1,5
IOCLl60

6C' ,
IOC' ,

END BEGIN

TITLE 'IOCS EXAMPLE NO 12· - ~FORGANISATIf1N OF AN ISFMS FILE'

* * 1---I
* I THE FOLLnWING SECONI') PHASE MUST BE S~PARATELY ASSEMPLED 1
* 1---I

*

* START

*
*
*
* OATA2

SQSAV

*

*
*

*
BEGU'

*
L{10PI

R EPRrJ
PHASE REORr.2,A,460A

START ()
ORG *+460A
PR INT NOGEN

FILE DEFINITIONS

DTflS ALTREX=ALEXI,
C YlnFL =3,
C YN D F X =C Y F X 1 ,
DERREX=ERRCI,
DEVICE=DISKllF,
f)SK XTNT= 5,
o TAR EX =D T r:: Xl,
DlJPR EX=OUEXI,
InAR EAL=AQ EA I,
TORnUT=lOAO,
KEYLEN=ln,
K EYLOr =1;
NRFCDS=16,'
RECFORM=F IXBLK,
R ECS 17 E=8(),
SQCHEX=SQEXl,
WORKL=WORKI

DTFS~ BlKSIZE=1600,
DEVICE=DISKllF,
EO FAODR =EOFC 1,
EPROPT=SKIP,

DTFE~

EJ ECT

I r) ARE A I =A REA 2 ,
R EC FnR M=F I XBLK,
RECSI7.E=sn,
TYPEFLF=INPUT,
WORKA=YES

PROCESSING ROUTINE

US1Nr; START,O,I,2,3
FQU *
OPEN DATA', SQSAV
SET FL DATA2

~QU * l GET
• WR I TE

SQSAV,I-'ORKI
DATA2,NFWKEY

R LonPI

Example 12. Indexed-Sequential File (Reorganization) and Sequential File, Part 2 of 3

Appendix D. Programming Examples .153

:«

* EXIT RnUTINES
:« -------------
* CVEX 1 EQU
OTEX 1 EQU

HPR
*
* X'FOl',O

CVLINOER INDEX AREA OVERFLOW EXIT
PPI~E DATA AREA nVERFLnW EXIT
CHANGE EXTENT CARDS

* EnfC 1 EQU * ENDFL DATA2
CLns,= DATA~,S()SAV

EOJ ,,, TFRMINATlnN OF Jne

* ERRC 1 EQU :« EPROR EXIT
HPR X'FOl'lll,fl WPITE ERROR ON DISK
B EnFC 1

'* AL EX 1 EQU
5 -SQEXI EQU *

*
~XIT ON OCCUPIED LAST TRACK
EXIT ON SEQUENCE ERROR.

DUEX 1 EQU
I-iPR '* X'l=n2' (1) ,0

EXIT ON DUPLICATE RECORn
EP,ROR HALT

A LOOPl

*
'* DEF Ir..I IT InN S OF CONSTANTS

'* ------------------------
* AREAl ns 1. OrL 1 '3 5
AR,EA2 OS 10CL 160

* \.IGR.K 1 I)S 80C
* HID BEGIN

Example 12. Indexed-Sequential File (Reorganization) and Sequential File~ Part 3 of 3

This example illustrates the reorganization
of an indexed-sesuential file. The program
consists of two ~hases which must be assem­
bled separately. Records of the indexed­
sequential file are retrieved and written
back onto disk in sequential order (2).
Then, in the second program phase, the
sequential file is read and loaded onto
disk in indexed-sequential order (4). To
allow maximum time performance, the 1/0
areas must be as large as possible.

The error routine for the indexed­
sequential input file skips all error
records. When an error occurs, the last
key saved is updated by one (3). The key
is assumed to contain an unpacked decimal
value. It is retrieved with the option
GKEY. If another error occurs, the key is
again retrieved and updated until the GET
is executed without an error. The key
save-field KEYPK is supplied with the key
each time a GET has been executed (1).

rhe exits (5) are abnormal, i.e., they
should only occur if there is an error in
the system or in the laCS routines.

e154

This example requires 11,700 bytes of
main storage in phase 1 and 12,470 bytes in
phase 2.

Records read on a 2560 MFCM are added to an
indexed-sequential file.

The processing routine reads the cards
and adds the records to the disk file (1).
If a duplicate record occurs no add opera­
tion is performed, and the card is selected
(2) into stacker 4. If records are to be
added to the last track of the prime data
area, those cards are not added but select­
ed (3) into stacker 5. They can be includ­
ed in the file during a subsequent
loadlextension run. If all overflow areas
are full (4)1 the job is terminated. The
file must be reorganized before further
records can be added. The error routine
EREX1 checks for errors in the track or
cylinder index (5). If an error occurs~
the job is aborted.

This example requires 10,430 bytes of
main storage.

TITLE 'IOCS EXAMPLE N" 13 - AOOING RFcnRDS TO AN ISFMS FILE'

*
*

*
*
*
* DATAl

CAR I) 1

':<

*

*
*

* ARt=:AO
ARF.A 1
AREA2

* WORK 1

*
* >,'<

':<

*
BEGIN

*

*

ST AR T 0
USING *,",1,2,3
ORG *+4608
PRINT NOGEN

FILE DEFINITIONS

DTFIS AOAR EX=AI)FX1,
AL TREX=ALEX1,
CYLOFl =~,
OEPREX=EREX1,
OEV IC E=D I SKIIF"
f1SKXTNT=4,
DUPREX=DUEX1,
ERR INF=YE~,
IOAREAl=AREAl,
IOROIJT=Af1D,
KEYLEN=10,
KEYLOC =1,
NRECDS=16,
R EC FnP'-1=F I XBLK"
RECSIZE=80,
\'!OQ KA=AP EA 0,
WOR KL =WORK 1

[)TFSR BlKSIIE=8n,
CONTROL=YES,
DEVICE=MFCMl,
EnFADDR=EnFC1. ,
IOAREA1=AREA2,
TYPEFLE=INPUT,
WOP KA =YF. S

DTFEN nVLAY
EJ ECT

DEFINITION ~F cnNSTANTS

OS
OS
OS

OS

80C
10CL 13 5
8"C

80C

PROCESSING ROUTINE

OS OH
EQU *
OPEN DATAl,CARDl

FETCH
REPRO
ACT I'lN DUP
XFR BEGIN
REPR'l ,
ACT 1I1N NO I)IJP
ORG BEGIN

LOOPl EQlJ *
GF.T CAR r)l, WOR Kl

-----..... ~ WR ITE DATA1,NHIKEY
WAITF DATAl
B LOOPl

InAREAS F~R ADD FILl: (MANDATORY SE­
QUENCEl
I NPUT ARE A FOP CAR n

wnRK AR EA

nPEN ROUTINE I~

OVFRl AI D BY
PPOBLEM PPOr,RAM

Example 13. Indexed-Sequential ADD File and Card File, Part 1 of 2

Appendix D. Programming Examples e155

*
*
*
*

EXIT RnUTINES

DlIEX 1 EQU *
2 • CNTRL ,S5,4

R LOOPl

* ALEXl EQU *
3

* 4- ADF.Xl

*

• CNTRL ,55,5
B LOOPl

EQU
HPR
B

* X'FOl",O
EOFCl

EXIT ON DUPLICAT~ R~CORD
SELECT INTn STACKER 4

EXIT ON RECnRDS ~nR LAST TRACK
SELECT INTO STACKER 5

EXIT ON OVERFLO~ AREA FULL

EREXl EQU * ~XIT nN PERMANfMT DISK ERRnR
HPR X'FOl'(ll,O
CNTRL ,SS,5 SELECT INTO STACKER5 THOSE

* REcnRDS THAT ARE NOT ADDED
5 • TM OATAlA+2,B'OOOllOOO' TEST IF ERROR IN INDEX

AO EOFCl IF YF.S, ABORT THE JOB

* 8 LOOP 1

* EflFC 1 EQU * EXIT ON EOF CONOITION
CLOSE DATA1,CARDl
EOJ

* TFRMINATI~N OF JOB
END BEGIN

Example 13. Indexed-Sequential ADD File and Card File, Part 2 of 2

Example 14 - Indexed-Sequential File
(Random/Sequential ADDRTR) and Card File

Records of an indexed-sequential file are
retrieved randomly or sequentially, and
updated. The card input file is read on
the 2501 Card Reader.

The cards contain the following informa­
tion

cols. 1-10 key
col. 11 blank
cols. 12-13 number of records to be

retrieved
cols. 15-20 update information
cols. 15-80 add information

The overlay technique for Open (1) and
Close (19) is used. After reading (2) a
card, a check is performed to determine
whether the number of records to be
retrieved is a valid decimal number. If it
is invalid, it is set to C'OO'. If only
one record is to be retrieved (3), random
processing is performed (LOOP3), i.e., the

• 156

record is read (12), updated (13), printed
(14), and, if desired, written back onto

disk (15). If more than one record is to
be retrieved, the number is packed (4) and
the first record is retrieved sequentially
with the option KEY. Columns 15 through 20
are checked for blanks (6). If they are
not blank, the record is updated and the
switch for writing (9) is changed (7) so
that the record can be put onto disk. The
switch is reset (5) before the next record
is checked for update. Each record
retrieved is printed (8). If the record
count becomes zero (10), the next card is
read (11, 2).

If a record could not be found, a new
record is built and added to the file (16).
This record is indicated as an addition
(17) and printed. In the end-of-file rou­
tine for the indexed-sequential file (18) the
next card is read. At the end of the card
file, all files must be closed.

This example requires 8870 tytes of main
storage •

*
*

*
*
*
* DATAl

CAROl

PRINT

*
*
*
* AREAO
AREAl
AREA2
AREA3
AQEA4
AREA5

* HORK 1
wnRK2
WORK1

KfYA1

* COUNT

*

TITLE 'IOCS EXAMPLE ~n 14 - PANSEQ ADQ-PFTPIEVE PROCESSING'

PRI~T N(1GF.~

START 4608
USI~~ *-4608,0,1,2,3
PRI~T NOGEN

FILE OEFINITynN~

OTFIS AOAREX=ADEXl,
CYU)Fl=3,
DER R EX =ER E Xl,
DEVICE=OISKllF,
OSKXTNT=4,
DUPREX=OUEX1,
EOFAT)OR =EOFC 1,
InAREAl=AREA1,
'JOAREAP=AREA2,
IOAREAS=AREA3,
IOREG=(8),
IOROUT=ADOR TR,
KEYARG=KEYA1,
K!==YlEN=10,
K EYLOC =1,
NRECOS=16,
R EC FORM=F I XBLK"
R EC S 17 E = 8 () ,
RTRVEX=RTEX1,
TYP EFL E=RA~SEQ"
UPI")ATE=RAN SEQ,
WORKA =AR EA 0,
wn R K l = wn R K 1

OTFSR BLKS17E=80,
I") EV IC E =R E A 01) 1,
EnFAODR=,=nFC2,
InAR EA 1=AREA4,
IOAREA2=AQEA5,
TYP E Fl F = I NP UT ,
W1RKA=YES

DTFSR BlKSIZE=100,
CONTROL=YE S,
OEVICE=PRINTER 1

PR I~TOV=YES,
TYP EFL E=OUTDUT 'r

WflRKA=YES
OTFEN OVlAY
EJ ECT

OE~INITtnNS OF cnNSTANTS

OS
OS
I)S
OS
OS
OS

80C
l35CL10
l35CllO
1 ,5CL 10
80r.
80C

I f' ARE AS FnR A1"Q

IOAREA FQP PANOOM RETRIEVAL
I(lARFA FOR SEQUENTIAL RFTRIEI/AL
IOAREAS FOR 2501

DC
DC
DC
DC
DC
EQU

80C' , "'(1RK AREA FOR CARO/01SK

DC

L TOR';

C'DATAl PROC' WORK AREA FnR PRINTER
CL'3I)'FSSEO BY ~ANS!==Q ADD-RETRIEVE W'
CLlO'TTH UPDATE'
50C' ,
WORKl

Pl2'O'

Example 14. Indexed-Sequential File (Random/Sequential ADDRTR and UPDATED), Part 1 of 3

Appendix D. Programming Examples e157

*
*
*
*
BEGIN

*

PROf:I:SSYNG ROUTINE

I)S OH
FQU *
OPEN DATAl,CARDl

ACT IflN DtlP ~
FETCH
R EPRt'J

-----~XFR BEGH,I
REP R" ,
ACTION NnOIlP
ORG BEr,IN

*

LnOPl

CNTRL
PUT
CNTRL
MVC
EOU
OITRL

2 ------. GET

LOP12
LOP13

LnP14
LOP15

*

CL I
BL
CL I
BNH
r4VI
CL I
BL
CL I
BNH
MVI
EQU

PRINT,SK,l
PR INT, Hf"lRK2
PRtNT,SP,3
wn R K 2 (1 n) , =C L 1 0 ' ,

* PRINT,SP,l
CAROl, wnRKl
HORKl+11,C '0'
LOP12
WOR K 1 + 11, C ' 9 '
LOP13
\40 R K 1 + 11 , C ' rl'
Wf"l R K 1 + 12 , C ' 1')'

LOP14
WO R K 1 + 12, C ' 9 '
LOP15
1-10 R K 1 + 12 , C ' n'
*

OPI:N ROUTIN~ I~

nVERLAID P.Y
PR nB L E r·' PR flr, RAt·'

SKIP
P R t NT H F. AD!: R

CLEAR PART n~ HEADER

SPACE ONE LHIE

CHECK FOR CORRECT TWO DIr,lT DECIMAL
NtJr·1B ER

IF FIRST DYC,IT INCORRECT, SET IT 0

IF SECOND I)IGIT INCORRECT, SET IT 0

3 ------. CL C
BNH

HORKl+11(2),=C'Ol' CHECK TF RANDOM PROCESSING REQUIRED
lnOP3

*
*
* MVI

4------.. PACK
SETL

* 5 ------.. MV I
EQU
GET

6 ------. CL C
BE
~VC

7 ------.. MVI
lOP2l EQU

MVC
PPTOV

8 ------. PUT

* 9-SHCHl R
PUT

U)P2? FQU
SP

10 • CP
BH

*

SFOlJENTIAL PROCESSING

RTFX1+1,x'nn' SFT SWITCH Tn ~np
COIINT(2),\oIORK1+11(2l PACK NO. OF RECORDS Tn BF UPDATED
DATA1,KEY

SHCl-Il+l,X'FO'

* DATAl
\·10 R K 1 + 14 (5) , = 5C' ,
LOP2l
45(5,8),WORKl+14
SHCHl+1,,)('no'

* wnRK3(80) ,I')un
PRtNT,12
PRINT,WORK2

LOP22
DATAl

* COUNT(2),=PL2'1'
C () UN T (2 1 , = P L 2 ' n'
LflOP2

SFT SWITCH TO BRANCH

CHECK IF tlPDATE PEQUTRED

UPDATE RECORD
SET SWYTCH TO ~flP

PRINT RETRIEVEn RECORI)

CHECK If N~XT PECORD IS Tr BE
UPDATEO, IF NflT READ ~EXT CARD

ESETL DATA 1
11-----•• B LonPl

Example 14. Indexed-Sequential File (Random/Sequential ADDRTR and UPDATE)" Part 2 of 3

e158

*
* RANDOM PROCESSINr.

* LOOP3 EQU * MVl RTEXl+l,X'fn' SF.T S\"1 TCH TO BRANCH
'WI S"'CH2+l,X'FO' RE SET SWITCH TO BRANCH

12 • READ DATA1,KEY
\·!AI TF DATA 1
CLC wn R K 1 + 14 (5 1 , = 5C ' , C\-IECK IF lIPDA TF. REQUIRED
BE Lnp'3l

13 • MVC 45(5,8),WnRKl+14 UPDATJ: RECORD
rWI SWCH2+l,x'no' SET S WI TCH TO NOP I.E. UPDATE REQ.

L OP3l EQU * MVC HOP K'3 (8n) , n (8)
PRTOV PRINT,12

14 • PUT PRINT,WORK2

* WAITF DATAl
$\oIICH2 B LonPI

15 • \olR ITE DATAI,KEY WRITE UPDATED RECORD ON DISK
WAITF DATAl
B LOOPl

*
* EXIT RnUTINF.S

* -------------
* RTEX 1 NOP RTEX2 EXIT IF NO RECORD HAS BEEN FO~ND

ESI=.TL DATAl
RTEX 2 FO" * 16 • WR 1 T~ DATAl,NEWKF.Y

MVC wnRK3(AO) ,WORKl MnVF RECOPD TO PRINT AR EA
17 • MVC HORK2+5(3),=C'ADD' r~nVE ADD I DHITl FIER

PRTOV PRINT,l2
PUT PR INT,WORK2
MVC WORK2+5(3) ,=C' CLEAR ADD IDENTIFIER
WAITF DATAl
13 Lnnpl

* 18-EnFCl B LOOPI EXIT ON FOF cnNDITION

* ADEX 1 EOU * EXIT ON nVERFLn~ AREA FULL
HPR X'J:Ol',O HALT INDICATES NO ADD POSS I BLE
B LnnPl

* DUEX 1 EQU * EXIT ON I)IJPlICATE RECnR D
HPR X'F02' ,') ABNnRMAL HALT
B EnJOB

* ERJ::X 1 EQU * PER r~ANFIIH 1)1 SK ERROR
HPR X'FOl'(l),/) ERROR HALT
B EOJOB

* F.OJOB EQU * ~"'II) OF JOB HANrlING
EOfC2 EQU *
* fETCH

LTnRG
\ • E·R~ • PROBl EM PROGR AM

ACT InN DUP IS OVERLAID
19 tXFR BEGIN BV ClI''lSE RnUTII\'F;

REPRO
ACTION NnDIJP
ORG BEGIN

* CLOSE DATAI,CARDl,PRINT
EOJ

* TF RMI NA TI ON OF JOB
END BEGIN

Example 14. Indexed-Sequential File (Random/SequentialADDRTR and UPDATE);r Part 3 of 3

Appendix D. Programming Examples e159

TITLt: 'rocs SAMPLE NO 15 - INQIIIPY PROGRA"'1'

*

*
*
*
DATAl

f1UTPT

*
'* BEGIN

START 461'\8
PR INT NOGEN

FIL E DF:F INITIONS

DTFBG INQPRG=YES
DTfIS DERREX=F:RRC1,

I") EV ICE =0 IS K 11 F ,
OSKXTNT=4,
EOFADDR=EOFCl,
IOAR EA S=AR EA 1,
IOROUT=R E TRVE,
K EYAR G=KE YA 1,
KEYLEN=ll),
K EYLOC =1,
NRECI)S=16,
R EC FO R M= F I XB L K ,
RECS 17. E=80,
R TR VEX=R TE Xl,
TYP E FL E= SE QNTL ,
WORKS=YES

I)TFPK TYPEFLE=nUTPUT,

DTFE~

EJ ECT

BLKSI7E=80,
WORKA =YE S

PROCESSING ROUTINE

EQIJ *
BASR Q,O
USING *,Q
nPEN DATA1,f)"TPT

--____ 11 IQIPT ,

* 2-----.... • t4VC
CLC
RE

KEYA1(lO),0(8)
ll(3,R),=C'
LOOP1
COUNT(2),ll(3,8)
DATA1,GKEY

3 ------- PACK
SETL LOOP1

UJOP2 EQlJ
4 ------11 GET * DA TA 1, wnR K 1

PUT OUTPT, WOR K 1
SP

S-----~ CP
cn UN T (2) , = P L ? ' + 1 '
COUNT(2), =PL2' 0'
LOOP2

CLOS E

*
*
*
'* ERRC1

'* EOFCl
RTEX 1

*
*
* AREAl
HORK 1
KEYA 1
cnUNT

BH
EQU
ESETL
CLOSE
EOJ

* DATAl
DAT AI, nUTPT

E X I T ROUT IN E S

EQU *
HPR X' F01' {1) , 0

EQU *
EOU *
B CU1SE

DEFINITION OF CONSTANTS

DC
OC
DC
DC
L TORr,

l35CLln' ,
80C' ,
laC 1 ,

PL2'+1'

END BEG IN

LOAD ADDRESS nF INQUIRY RECORD
INPUT AREA INTQ REGISTER 8
I ~I SER T KEY I r.nn KEYARG FI FL 0
CHECK If NO. OF RECORDS IS INDICATED

PACK t-!\Jt.1BER PHD RECf"lRD COUNT

CHECK IF ANOTHFR RFCORD IS REQUIRED

IF YES RETURN INTn Lnnp2

TFRMINATION OF JOB ANO RETURN TO
MAINLHIE PRnGRAM

EXIT FnR DISK FRROR
HAL TIN 01 CAT E SAL T ERN AT E DIS K
ASSIGNMENT IS REQUIRED
END Of ~ILE EXIT
Nn REC(H~f) FnlJND EXIT

KF YARG FI ELD

.Example 15. Indexed-Sequential File and Printer Keyboard File in Inquiry Program

160

Example 15 - Indexed-Sequential File and
Printer-Keyboard File in Inguiry Program

The inquiry program retrieves records of an
indexed-sequential file by key.

The key has the following format:

10 bytes
1 byte
3 bytes

key information
blank
number of records to be
retrieved.

The printer-keyboard input area (INQIPT)
in the Monitor must be at least 14 bytes
long. The IQIPT macro instruction (1)
places the address of the input area that
is to contain the inquiry record into reg­
ister 8. The key is moved to the KEYARG
field (~ and the record count is initial­
ized (3). Records are retrieved (4) and
printed until the count is zero (5). If it
is zero, EOJ is entered and control is
returned to the mainline program.

This example requires 4660 bytes of main
storage.

T ITL E '10 CS EXAM PLE NO 16 - AN ATENT POliTI NE'

*
*

*
*
*
*
DATAl

PRINT

PUT IN

TVPHI

START 46fl8
USING *-4608,0,1,2,3
PRINT NnGEN

FILE DE~INITInNS

DTFBG ATENT=YES
OTFSD BLKSIZE=800,

DEVIC E=DI SK 11 F "
EOFADDR =EOFC 1,
IOAR EA 1=AR EA 1,
R EC FOR M=F I XBLK"
RECSIZE=8n,
TVP EFt E= INPUT,
UPOATE=VE S,
WORKA=YES

DTFSR. BlKSIZE=8r),
CON TRO L=VE S,
OEV IC E =PR INTER "
PR INTOV=YE S,
TVPEFLF=OUTPUT"
WOR KA=VE'S

OTFPK BLKSIZE=8l,
EnfADDR=EnFC2,
lOA REA =A REA 2 ,
TYP EFl E=1 NPUT

DTFPK BlKSI1f=80,

DTFE"I
EJ ECT

IOAREA=AREA3,
TVP F Fl E=OUTPUT"
WORKA=YES

Example 16. Sequential Disk, Printer, and Printer-Keyboard Files - ATENT Routine, 1 of 3

Appendix D. Programming Examples .161

* PROCESSING ROUTINE

*
* BEGIN

* 1--- OPENl
SWCHO

* LOOPI

* 2--- SWCHl

* 3--- SWCH2

LOOP~

EQU
OPJ:N
CNTRL

OPE~

MVI
MVI

EQU
GET

B
PUT

B
PRTOV
PUT

R
PUT
EQU
B
ATENT

* PRINT,PUTIN,TYPFN
PR INT, SK, 1

DATAl
SWCH3+l,)('FO'
SXCHO+l,')('FO'

* OA TAl, "'0 R K I

SWCH2
T YP EN , \-/0 R K I

SWCH~
PRINT,12
PRINT,wnRKI

LOOP2
DATAI,WORK2

* LOOPI
ROUTINE

p,mDIFY SWITCH FOP uonATE
PESF.T SWITCH MO~IFIEP

SWITCH FOR TYPING

SWITCH FnR PRINTING

SHITCH FOP UPOATE

*
*
*

ATENT

5 ------- REA I)
WAITF
lH

ATEOO EQU
6 ------- CL C

BNE
7 - MVI
8---ATEn2 CLC

9- ATE04

10- ATE06

11- ATE08

*

BN~
MVI
CLC
BNE
MVI
ClC
BNE
MVI
ClC
BNE
~VI

12- ATEtO CL 1
BNE

13 - 'WC
14 - MV I

* AT E20 AH
15------- CH

BNl
CL 1
BNE
AH
B

* 16- ATE30 RF:TR~

PUTIN
PUTIN
POINT,=Y(AREA2)

*

READ C~NTROL INFOR~ATION

LnAD POINT~P WITH AREA2 ADDRESS

O(3,POINT),=C'J:OJ' DECISION ANn MODIFING ROUTINE
ATE02
SWCH4+I,X'FO' ACTIVATE EOJ F~R NEXT EOF CONDITION
O(4,POINTl,=C'TYPE'
ATE04
SHCHl+l,X'OO' ACTIVATE TYPINC
O(6,POINT),=C'NOTYPE'
ATEf"I6
SWCHI+l,X'FO' DEACTIVATE TYPING
O(5,POINT),=C'PRINT'
ATEn8
SWCH2+1,X'OO' ACTIVATE PRINTING
O(7,pnINT),=C'NnPRINT'
ATEIO
SMCH2+I,X'FO' OFACTIVATE PRI~TING

AREA2,C'='
ATF2n
WORK2(AO},AREA2+1
SWCHO+l,X'OO'

CHECK IF UPDATE PEQUIRED

MOVE UPDAT~ TEXT
ACTIVATE UpnATE FOR N~XT PEOPEN

pnINT,=H'I' UPDATE AREA2 POINTER
POINT,=Y(AREA2+81}
ATE31"'1
O(POINTl,C', ,
ATE20
POI NT, =H' I '
ATEOO

* END OF ATENT ROUTINE

Example 16. Sequential Disk, Printer, and Printer-Keyboard Files - ATENT Routine, 2 of 3

.162

* EXIT ROUTINES

* EnFC 1 EQU
NOP
CLOSE
B

* EOFC2
EOF rmII)ITl"N FOP. SHlllENTIAL DISK

17- SWCH4

EQU
CLOS~

J:nJ

DATAl
OPENl

* DATAl, PR INT,PUTIN,TYPf.N

* TFRMINATIrN OF JOB

*
*
* nEFI~ITInN OF CONSTANTS

*
* AREAl oc aOCL I 0' , IMPUT AREA FOR DATAl
AREA2
ARJ:A3

[)C
DC

A2C'
aoc'

• , I~PUT AREA ~nQ cnNTROL INFORMATION
OllTPUT ARF.A pOINTER KJ:YROARD

* WORK 1 DC aoc' • wnRK APEA FnR rATAl
wnRK2 DC aoc •

, "'ORK AREA FOR UPDATE DATAl

* pnINT

*
fOU 10 POINTER FOQ. APFA2

L TOQ.G

* EN!) 1:\ EG IN

Example 16. Sequential Disk, Printer, and Printer-Keyboard Files - ATENT Routine, 3 of 3

Example 16 - Sequential Disk, Printer, and
Printer-Keyboard Input/Output Files =
Program Includes ATENT Routine

An inquiry Monitor is required for this
example, which demonstrates the use of the
ATENT routine. The program reads a se~uen­
tial disk file and is modified by control
information supplied in the ATENT rou­
tine. Valid control information is:

/* - Close files and terminate job.
EOJ - Control is transferred to EOJ

with the next CLOSE.
TYPE - All records are typed on the

printer-keyboard.
NOTYPE - Typing of records is suppressed.
PRINT - All records are printed.
NOPRINT - Printing of records is suppressed.

Incorrect control information is
ignored. More than one option can be given
at a time, if separated by a comma, e.g.,
NOPRINT, EOJ.

In the mainline program, a sequential
disk file is read. On end-of-file, the
disk file is closed (17), reopened ("I), and
read again. Print, type, EOJ, and update
options are activated and deactivated by
the ATENT routine. SWCH1 controls typing
on the printer-keyboard (2), SWCH2 provides
for printing of records (3), and SWCHO and

SWCH3 control updating of records (4).
SWCH4 determines (17) whether or not the
job is to be terminated if the next end-of­
file condition for DATA1 (disk file) is
encountered. After the ATENT routine has
been entered, control information is
entered on the printer-keyboard (5).

Checking and modifying is performed
according to this control information (6)
(14). If, for instance, the check for EOJ
(6) is true, SWCH4 (17) is set to branch
(7), i.e., all files are closed and the job
is terminated (18) the next time an end-of­
file condition is detected. Likewise,
tests for typing (8), suppression of typing
(9) , printing (10), and suppression of
printing (11) are performed. If updating
is required (12) I i.e., if an equal sign is
typed in, the update information is entered
immediately after the equal sign and moved
to the work area (13). SWCHO is modified
to change (14) SWCH3 to NOP. The next time
the file is reopened, the whole file will
be updated. A register (POINT) is used to
check (15) whether all options have been
processed. If this is the case, the RETRN
macro instruction (16) is executed. If /*
is typed in on the printer-keyboard, all
files are closed (18) and the job is
terminated.

This example requires 4230 bytes of main
storage.

Appendix D. Programming Examples .163

Glossary

Access Method: Any of the data management
techniques available for transferring data
between main storage and an input/output
device.

Access Time: (1) The time interval between
the instant at which data is called for
from a storage device and the instant
delivery is completed, i.e., the read time.
(2) The time interval between the instant
at which data is requested to be stored and
the instant at which storage is completed,
i.e., the write time.

Allocate: To assign storage locations or
areas of storage for specific routines,
portions of routines, constants, data, etc.

Alternate Drive: When two drives are given
for one multi-volume file, the first drive
is the primary drive and the second drive
is the alternate drive. Tape reels or disk
packs are mounted such that the first is on
the primary drive, the second on the alter­
nate drive, the third on the primary drive,
etc.

Alternate Track Area: An area of three
cylinders on the disk pack in which tracks
may be used as alternatives to defective
tracks occurring elsewhere on the disk
pack.

Assemble: To prepare a machine-language
program from a symbolic-language program by
substituting absolute operation codes for
symbolic operation codes and absolute or
relocatable addresses for symbolic address­
es.

Assembler: A program that prepares an
object language program by producing abso­
lute or relocatable machine code from a
machine-oriented source program of state­
ments containing symbolic operation codes
and symbolic operands.

Assembler Language: A symbolic language
(used to write source programs) which ena­
bles the programmer to use all machine
functions as if he were coding in machine
language.

b: The symbol for a blank space.

Binary Synchronous Communications Adapter
(BSCA): A feature that may be built into

the Central Processing Unit of a Submodel
2, 4, or 5. It permits the system to func­
tion on a switched or leased communications
network as a processor terminal •

• 164

Block:
1. To group records for the purpose of

conserving storage space or increasing
the efficiency of access or processlng.

2. A physical record on tape or disk.

Blocking Factor: The number of logical
records in a physical record.

Buffer (Program Input/Output): A portion
of main storage into which data is read, or
from which it is written.

Checkpoint Records: Records that contain
the status of the job and the system at the
time the records are written by the check­
point routine. These records provide the
necessary information for restarting a job
without having to return to the beginning
of the job.

Communication Region: An area of the Moni­
tor. Contains date, storage-capacity
specification, UPSI byte, user areas 1 and
2, program-name area, and various control
bits used by the system. Provides for
communication within a program and between
programs.

Data File: A collection of related records
treated as a unit and consisting of data in
one of several prescribed arrangements and
described by control information to which
the system has a~cess.

Data Management: See File Management.

Data Set: See Data File.

Deblock: To change the format of a file so
that a physical record comprises only one
logical record.

Direct Access: Retrieval or storage of
data by a reference to its location on a
volume, rather than relative to the pre­
viously retrieved or stored data.

Disk Label: A physical identification
record on disk which identifies the volume
or file.

EOF Record: End-of-file record which ter­
minates a logical set of input records (/*b
in columns 1 through 3) •

Extent: Area of a disk file sfecified by
an upper limit and a lower limit.

File Label: Label containing information
applicable to a given data file or portion

of a data file stored on a particular vol­
ume.

File Management: A general term that col­
lectively describes those functions of the
control program that provide access to
files, enforce data storage conventions,
and regulate the use of input/output devi­
ces.

File Organization: Refers to the method of
arranging data records on an external stor­
age device.

File Processing: The method of retrieving
records from, adding records to, or updat­
ing records in a file.

File Reorganization: A term used to des­
cribe the process of writing a new file
from an indexed-sequential file, purging
records that are tagged for deletion, and
placing records in the overflow area into
their sequential positions in the prime
data area.

Fixed-Length Record: A record having the
same length as all other records with which
it is logically or physically assoc~ated.

Index (Data Managemen~ :
1. A table in the catalog structure used

to locate files.
2. A table used to locate the records of

an indexed-sequential file.

Inquiry Programs: Inquiry programs are
initiated by pressing the Request key on
the printer-keyboard and typing in the name
of the program. The current contents of
main storage (excluding the Monitor) are
rolled out on the system disk pack; then
the inquiry program is loaded and proc­
essed; after execution is completed, the
old status is restored and execution of the
mainline program resumes. Inquiry programs
can be executed only under control of a
Monitor that supports inquiry facilities.

Inter-Block Gap: A blank space on magnetic
tape that separates physical records.

I/O Area: An area (portion) of main stor­
age into which data is read or from which
data is written.

Logical File: Used to describe a file that
shares a reel of tape or a disk with other
files.

Logical Record: A record identified from
the standpoint of its content, function,
and use rather than its physical attri­
butes. It is meaningful with respect to
the information it contains.

Logical Unit Block (LUB)
Logical Unit Table.

An entry in the

Logical Unit Table: A part of the Monitor.
It has logical unit blocks, each of which
refers to one specific symbolic I/O
address. These symbolic addresses are
related to actual I/O device addresses by
means of ASSGN control statements.

Macro Definition: A set of statements in
the macro library used by the DPS/TPS
Assembler program to expand a macro
instruction specified in the source program
into a series of machine instructions.

Macro Instruction: A macro instruction is
a statement that is used in a source pro­
gram and replaced by a specific sequence of
machine instructions in the associated
object program.

Mnemonic: A contraction or abbreviation
whose characters are suggestive of the full
expression.

Monitor: The main control program in DPS.
Resident in main storage throughout a sys­
tem run. The IBM distribution package
contains the standard Monitor and several
Monitor macro definitions. Instead of
employing the standard Monitor, you can
tailor a Monitor according to the system
requirements by specifying certain macro
instructions~ and generate it by means of
an assembly run.

Monitor 'I/O Area. An area of main storage
within the Monitor used as a buffer by the
Fetch routine when loading problem pro­
grams.

Object Program: The output of a single
execution of an assembler or ccmpiler.

Operand: The representation of a value
that must be supplied to define a selective
function to the program.

Overlay: To place a phase or subphase into
main storage locations occupied by another
phase or subphase that has already been
processed.

Phase: (1) A portion of a program executed
as one main-storage load. (2) The smallest
addressable unit in the core-image library
of a tape or disk-resident system.

Physical Disk and Tape I/O Routines: A set
of routines that is contained in the Moni­
tor program and performs tape and disk I/O
operations for the Monitor and problem
programs.

Physical Unit Block (PUm: An entry in the
Physical Unit Table.

Physical Unit Table: A feature of the
Monitor program. It has up to ten physical
unit blocks, each of which contains a phy-

Glossary .165

sical device address. Pointers to these
entries are inserted into the logical unit
table by means of ASSGN control statements.

Physical Record: A record identified from
the standpoint of the manner or form in
which it is stored and retrieved; that is,
one that is meaningful with respect to
access. (Contrasted with Logical Record.)

Problem Program: A general term for any
program that is not a control program.

Read/Compute, Write/Compute Overlap Fea­
ture~ A feature of the IBM System/360
Model 20, Submodel 5 that permits data
transfer from or to I/O units to be over­
lapped with processing.

Reblock: To change the format of a file so
that a different number of logical records
comprises one physical record. See Block.

Record: A general term for any unit of
data that is distinct from all others when
considered in a particular context.

Restart: To re-establish the status of a
job using the information recorded at a
checkpoint.

RWC feature: See Read/Compute,
Write/Compute Overlap Feature.

Seek: To position the access mechanism of
a direct-access device at a specified loca­
tion.

Source Program: A series of statements in
the symbolic language of an assembler or
compiler, which constitutes the entire
input to a single execution of the assem­
bler or compiler.

Stacked Job Processing: A technique that
permits multiple job definitions to be
grouped (stacked) for presentation to the
system, which automatically recognizes the
jobs, one after the other.

Statement: A meaningful expression or
generalized instruction in a source lan­
guage.

SUbphase: A separately assembled routine
within a phase of a problem program. It
may be overlaid after execution. The meth­
od of building a program from subphases is
used when a large problem program is to be
executed.

• 166

Symbolic I/O Address: A symbol used in
IBM-supplied and user-written frograms to
refer to an I/O device (e.g., SYSRES,
SYSIPT, SYS005). This address is related
to an actual address by means of the logi­
cal unit table.

SYSIPT: See SystEm Input Unit.

System Disk Pack: The disk pack on which
your disk-resident system is stored.

System Input Unit: A device specified as a
source of an input job stream.

System Tape: The reel of magnetic tape on
which the tape-resident system is located.

Tape Labels: Special records at the begin­
ning and end of tape files. There are
volume, header, and trailer labels. They
are used to identify the reel of tape and
the file they precede. They also contain
certain housekeeping information.

Tapemark: A special symbol that can be
read from, or written on, magnetic tape.
Used to distinguish the end of a file or
file segment, and to segregate the labels
from data.

Throughput: A measure of system efficien­
cy: the rate at which work can be handled
by a computing system.

Unblock: To change the format of a file so
that a physical record comprises only one
logical record. See Block.

Variable-Length Records: Logical records
in a file in which the number of bytes in
each record is not a fixed value, but may
vary within prescribed limits.

Volume: That portion of a single unit of
storage media that-is accessible to a sin­
gle read/write mechanism. For example, a
reel of magnetic tape for a 2415 magnetic
tape drive, or one 1316 Disk Pack for a
2311 Disk Storage Drive.

Volume Label: A label which uniquely iden­
tifies a volume.

Volume Table of Contents (VTOC): A table
associated with a direct-access volume,
which describes each data set on the vol­
ume •

ADAREX •••• 0 •••••••••••••••••••••••••••••

ADD (IOROUT=specification) •••••••••••••
Adding of records ••••• ~ ••••••••••••••••

instructions for •••••••••••••••••••••
Addition of records

(indexed-sequential files) ••••••••••••
ADDRTR {IOROUT=specification} ••••••••••
ADRTES'T ••••••••••••••••••••••••••••••••
Alternate tape drive
ALTREX •••••••••••••••••••••••••••••••••
ALTTAPE ••••••••••••••••••••••••••••••••

75
78
91
82

87
78
70
53
75
53

Assembly procedure ••••••••••••••••••••• 18
ATENT macro instruction ••••••••••••••• 105
ATENT routine ••••••••••••••••••••••••• 105

BACK (READ=specification) •••••••••••••• 56
Backspace file (BSF) ••••••••••••••••••• 60
Backspace record (BSR) •••••••••••••• 60,61
Base registers, assignment of •••••••••• 99
Begin definition (DTFBG) ••••••••••••••• 21
BINARy ••••••••••••••••••••••••••••••••• 31
BLKSIZE

card ...•........•.•...••...••....••.. 31
direct-access disk ••••••••••••••••••• 70
printer •••••••••••••••••••••••••••••• 44
printer-keyboard ••••••••••••••••••••• 48
sequential disk •••••••••••••••••••••• 65
tape•..... 53

Block count, effect of CNTRL on •••••••• 62
Blocked records ••••••••••••• 8,59,61,92,94
Block size

card •..••••.•••..•.•..••.•••.•••. 3 1
disk 65,70,78
printer ••••••••••••••••••••••••••••••
printer-keyboard •••••••••••••••••••••
tape 1 ••••

BOF (starting reference for sequential

44
48
53

processing) ••••••••••••••••••••••. ,.... 84
BSF (backspace file) ••••••••••••••• , • • •• 60
BSR (backspace record) ••••••••••••. ,. 60,61

Card files, instructions for •••••••••••
Card-print area ••••••••••••••••••••••••
Card printing ••••••••••••••••••••••••••
Chaining records •••••••••••••••••••••••
Checkpoint records •••••••••••••••••••••
CKPTREC ••••••••••••••••••••••••••• f) ••••

31
32
36
88
54
54

CLOSE macro instruction •••••••••••••••• 23
Close routines, mainline program ••••••
Closing card files •••••••••••••••••••••
Closing disk files •••••••••••••••••••••
Closing printer files ••••••••••••••••••
Closing printer-keyboard files •••••••••
Closing tape files •••••••••••••••••••••
CMBND (TYPEFLE=specification) ••••••••••
CNTRL macro instruction

103
29
30
29
29
29
35

card ..•......•.....•..•....•.... 0 •••• 37
direct-access disk ••••••••••••••••••• 73
printer •••••••••••••••••••••••••••••• 45
printer-keyboard ••••••••••••••••••••• 51
sequential disk •••••••••••••••••••••• 69
tape II •••• 60

Index

CNVRT macro instruction •••••••••••••••• 73
Coding restrictions •••••••••••••••••••• ~7
Co~bined files ••••••••••••••••••••••• 8,36
COMRG macro instruction •••••••••••••••• 95
COMROUT •••••••••••••••••••••••••••••••• 65
CONTROL

card ,•.......
direct-access disk •••••••••••••••••••
printer ••••••••••••••••••••••••••••••
printer-keyboard •••••••••••••••••••••
sequential disk ••••••••••••••••••••••

31
70
44
48
65

tape•................... 54
Control statements •••••••••••••••••••• 106
Count area •••••••••••••••••••••••••••••
CRDPR macro instruction ••••••••••••••••
CRDPRA •••••••••••••••••••••••••••••••••

67
36
31

CRDPRLn •••••••••••••••••••••••••••••••• 31
CRP20 (DEVICE=specification) ••• ~ • • • • • •• 32
Cylinder index ••••••••••••••••••••••••• 86
Cylinder number (CC) ••••••••••••••••••• 74
Cylinder overflow area •••••••••••••• 76,87
CYLOFL ••••••••••••••••••••••••••••••••• 76
CYNDEX ••••••••••••••••••••••••••••••••• 76

Data files •••••••••••••••••••••••••••••• 8
Definition statements •••••••••••••••••• 18

summary of •••••••••••••••••••••••••• 109
DERREX ••••••••••••••••••••••••••••••••• 76
Detail entries ••••••••••••••••••••••••• 19
DEVADDR •••••••••••••••••••••••••••••••• 54
DEVICE

card•..................... 32
disk ••••••••••••••••••••••••••• 65,70,76
printer •••••••••••••••••••••••••••••• 44

Device error recovery ••.••••.••••...•• 107
Diagnostic messages •••••••••••••••••••• 18
Direct-acces files

instructions for •••••••••••••••••••••
organization of ••••••••••••••••••••••
processing of ••••••••••••••••••••••••

Disk end-of-volume condition •••••••••••
Disk error routines •••••••••••••••••••
Disk files

70
16
17
29

107

direct-access •••••••••••••••••••••••• 70
indexed-sequential•.••..•••••... 75
sequential ..•.••.••••.••.•..•....••.. 65

Disk label control statements ••••••••• 106
DISK11F (DEVICE=specification) 65,70,76
DPCRCD ••••••••••••••••••••••••••••••••• 76
DSKXTNT •••••••••••••••••••••••••• 65,71,77
DTAREX •••••••••••••••••••••••••••••• 65,77
DTFBG statement •••••••••••••••••••••••• 21
DTFDA statement •••••••••••••••••••••••• 70
DTFEN statement •••••••••••••••••••••••• 22
DTFIS statement •••••••••••••••••••••••• 75
DTFLC statement •••••••••••••••••••••••• 49
DTFMT statement •••••••••••••••••••••••• 53
DTFPK statement •••••••••••••••••••••••• 48
DTFSD statement •••••••••••••••••••••••• 65
DTFSR statement ••••••••••••••••••••• 31,44
Duplicate records ••••••••••••••••••• 76,77
DUPREX ••••••••••••••••••••••••••••••••• 77

Index 167

End file load mode (ENDFL) •••••••••••••
ENDFL macro instruction ••••••••••••••••
End definition (DTFEN) •••••••••••••••••
End-of-file condition ••••••••••••••••••
End-of-file processing •••••••••••••••••
End-of-volume condition

disk files •••••••••••••••••••••••••••
tape files •••••••••••••••••••••••••••

End-of-volume processing •••••••••••••••
End set limit ~SET~ •• ~ •••••••••••••••
Enter overlap mode (EOM) •••••••••••••••
Entries

detail
header •••••••• 0 .••••••••••••••••••••••

EOFADDR

82
82
22
28
28

29
28
28
85
39

19
19

card •••••••••• 0 •• 32
indexed-sequential disk •••••••••••••• 77
printer-keyboard ••••••••••••••••••••• 48
sequential disk •••••••••••••••••••••• 66
tape ••••••••••••••••••••••••••••••••• 54

EOF cards, stacked-job processing •••••• 32
EOJ macro instruction •••••••••••••••••• 96
EOM macro instruction •••••••••••••••••• 39
Erase gap (ERG) •• 60
ERG •••••••••••••••••••••••••••••••••••• 60
ERRBYTE •••••••••••••••••••••••••••••••• 71
ERRINF ••••••••••••••••••••••••••••••••• 77
ERRIO ••••••••••••••••••••••••••••••• 55,66
ERROPT •••••••••••••••••••••••••••••• 55,66
Error block •••••••••••••••••••••••••••• 66
Error information {ERRIN~ ••••••••••••• 77
Error option (ERROPT) ••••••••••••••• 55,66
Error recovery routines ••••••••••••••• 107
ESETL macro instruction •••••••••••••••• 85
Extension (indexed-sequential files) 80
Extent control statement •••••••••••••• 106
Extents, number of ••••••••••••••• 65,70,76

FEOV macro instruction •••••••••••••••••
FETCH macro instruction ••••••••••••••••
FI LABL •••••••••••••••••••••••••••••••••
File definition statements •••••••••••••

format of ••••••••••••••••••••••••••••
s·uInmary of ••••••••••••••••••••••••••

File organization

63
95
55
18
19

109

direct-access files •••••••••••••••••• 16
indexed-sequential files •••••••••• 16,86
sequential files ••••••••••••••••••• 15

File proceSSing
direct-access files •••••••••••••••• 17
indexed-sequential files •••••••••• 17,90
sequential files ••••••••••••••••••••• 17

Fi Ie protection ••••••••••••••••••••••• 102
Files

closing •••••••••••••••••••••••••••••• 29
combined •••••••••••••••••••••••••••••• 8
opening •••••••••••••••••••••••••••••• 24
reopening •• 23
simple •••••••••••••••••••••••••••••••• 8

FIXBLK (RECFORM=specification) 57,68,79
Fixed-length records •••••••••••••••••••• 8
FIXUNB (RECFORM=specification) 57,68,79
Force-end-of-volume (FEO~ ••••••••••••• 63
Format-F records •••••••••••••••••••••• 8
Format-U records • • • • • •• • • •• • • • • • • • • • •• 9
Format-V records •••••••••••••••••••••••• 8

168

Form skipping
printer •••••••••••••••••••••••••••••• 46
printer-keyboard ••••••••••••••••••••• 52

Form spacing
printer •••••••••••••••••••••••••••••• 45
printer-keyboard ••••••••••••••••••••• 51

FORWARD ~EAD=specification) ••••••••••• 56
Forward space file (FSF) ••••••••••••••• 60
Forward space record (FSR) ••••••••••••• 61
FSF •••••••••••••••••••••••••••••••••••• 60
FSR •••••••••••••••••••••••••••••••••••• 61

GET macro instruction
card file •••••••••••••••••••••••••••• 36
disk file ••••••••••••••••••••••••• 69,84
dummy •••••••••••••••••••••••••••••••• 41
tape file •••••••••••••••••••••••••••• 59

GKEY (starting reference for
sequential processing) 84

Halt and restart information ••••••••••• 41
Header entries ••••••••••••••••••••••••• 19
Head number (HH) ••••••••••••••••••••••• 74

Identifier (ID) •••••••••••••••••••••••• 74
IGNORE (ERROPT=specification) •••••••••• 55
Imperative macro instructions •••••••••• 20

card files ••••••••••••••••••••••••••• 35
closing files •••••••••••••••••••••••• 23
direct-access files •••••••••••••••••• 72
indexed-sequential files ••••••••••••• 80
opening files •••••••••••••••••••••••• 23
printer files •••••••••••••••••••••••• 45
printer-keyboard files ••••••••••••••• 50
sequential disk files •••••••••••••••• 68
summary of •••••••••••••••••••••••••• 122
tape files ••••••••••••••••••••••••••• 58

INAREA ••••••••••••••••••••••••••••••••• 33
INBLKSZ •••••••••••••••••••••••••••••••• 33
Independent overflow area •••••••••••••• 89
Indexed-sequential files

instructio~s for ••••••••••••••••••••• 75
organization of ••••••••••••••••••• 16,86
processing of ••••••••••••••••••••• 17,90

Indexes
cylinder ••••••••••••••••••••••••••••• 86
track •••••••••••••••••••••••••••••••• 86

Index regist·er •••••••••••••••••••••••• 100
Initializing files ••••••••••••••••••••• 24
Inquiry Open routine •••••••••••••••••• 103
Inquiry program ••••••••••••••••••••••• 101

errDr in •••••••••••••••••••••••••••• 102
opening disk files in • • • • • • • • •• 102

Inquiry record •••••••••••••••••••••••• 101
Inserting records ••••••••••••••••••• 91,92
IOAREA ••••••••••••••••••••••••••••••••• 48
IOAREAL •••••••••••••••••••••••••••••••• 77
IOAREAR
IOAREAS
IOAREAl
IOAREA2
IOCS

• •• 77
78

•••••••••••••••••••• 33,44,55,67,71
•••••••••••••••••••••••••• 33,56,67

macro instructions ••••••••••••••••••• 18
registers required by ...•.•.......... 99

IOREG •••••••••••••••••••••••••••• 56,67,78

IOROUT ••••••••••••••••••••••••••••••••• 78
I/O areas •••••••••••••••••••••••••••••• 11
I/O registers •••••••••••••••••••••••••• 99
IQIPT macro instruction •••••••••••••••• 96
ISFMS •••••••••••••••••••••••••••••••••• 75

Key •••••••••••••••••••••••••••••••••••• 8 1
KEY

retrieving a record •••••••••••••••••• 83
starting reference for sequential
processing •••••••••••••••••••••••••• 84

writing a record ••••••••••••••••••••• 83
KEYARG ••••••••••••••••••••••••••••• " ••• 78
KEYLEN ••••••••••••••••••••••••••••• " ••• 78
KEYLOC 78

LABADDR 56
Label checking routine ••••••••••••••••• 56
Label return (LBRET) ••••••••••••••••••• 63
Labels

specifying type of ••••••••••••••• 0 ••• 55
handling by IOCS ••••••••••••••• 2L~,27,29

Language compatibility •.•..•.•...••.•. 108
LBRET macro instruction •••••••••••••••• 63
LCTABLE •••••••••••••••••••••••••••••••• 49
Leave overlap mode (LOM) ••••••••••••••• 39
Line-counter ••••••••••••••••••••••••••• 50
Line-counter table ••••••••••••••••••••• 49
Line skipping

printer •••••••••••••••••••••••••••••• 46
printer-keyboard ••••••••••••••••••••• 52

Line spacing
printer •••••••••••••••••••••••••••••• 45
printer-keyboard ••••••••••••••••••••• 51

LOAD (IOROUT=specif ication) • • • • • • • • • • •• 78
Loading an indexed-sequential file ••••• 90

instructions for ••••••••••••••••••••• 80
Loading a program phase •••••••••••••••• 97
Logical records ••••••••••••••••••••••••• 8
LOM macro instruction •••••••••••••••••• 39

Machine requirements •••••••••••••••••••• 6
Macro definitions, user-written •••••••• 99
Macro instructions

coding conventions for ••••••••••••••• 18
declarative ••••••••••••••••••••••••••• 5
iroperati ve ••••••••••••••••••••••••••• 20
IOCS ••••••••••••••••••••••••••••••••• 1 8
monitor •••••••••••••••••••••••••••••• 95
summary of •••••••••••••••••••••••••• 126

Mainline program
Open and Close routines ••••••••••••• 102

MAINPRG •••••••••••••••••••••••••••••••• 21
MFCM 1 (DEVI CE=sp eci fica t ion) ••••••••••• 32
MFCM2 (DEVICE=speci fication) ••••••••••• 32
Monitor I/O areas ••••••••••••••••••••• 102
Multi-file processing •••••••••••••••••• 90
MVCOM macro instruction •••••••••••••••• 95

NEWKEY
inserting a record ••••••••••••••••••• 82
loading a record ••••••••••••••••••••• 81

Non-overlap mode
processing in •••••••••••••••••• 35,38,39
programming considerations for

combined files •••••••••••••••••••••• 36

use of CNTRL macro instruction in •••• 37
work area assignment ••••••••••••••••• 13

Non-standard labels
tape input file •••••••••••••••• 25,53,55
tape output file •••••••••••••••••• 26,29

No record found •••••••••••••••••••••••• 79
NORWD (REWIND=specification) ••••••••••• 57
NRECDS ••••••••.••••••••••••••••••••••••• 78
NSTD (FILABL=specification) •••••••••••• 55

Opening card files ••••••••••••••••••••• 24
Opening disk files •••••• ~ •••••••••••••• 26
Opening files, instructions for •••••••• 23
Opening multi-file tape volumes •••••••• 24
Opening printer files •••••••••••••••••• 24
Opening printer-keyboard files ••••••••• 24
Opening tape files ••••••••••••••••••••• 24
OPEN macro instruction ••••••••••••••••• 23
Open routines

inquiry program ••••••••••••••••••••• 103
mainline program •••••••••••••••••••• 102

Organizing files
direct-access •••••••••••••••••••••••• 16
indexed-sequential ..••••••.•.•.••. 16,86
sequential ••••••••••••••••••••••••••• 15

OUAREA ••••••••••••••••••••••••••••••••• 33
OUBLKSZ •••••••••••••••••••••••••••••••• 33
Output areas ••••••••••••••••••••••••••• 11
Overflow areas ••••••••••••••••••••••••• 87
Overflow area options •••••••••••••• -_ •• 89
Overflow records ••••••••••••••••••••••• 87
OVERLAP •••••••••••••••••••••••••••••••• 33
Overlap mode

programming considerations for
combined ,files •••••••••••••••••••••• 36

use of CNTRL macro instruction in •••• 37
work area assignment ••••••••••••••••• 13

Overlapping •••••••••••••••••••••••••••• 11
Overlay programming •••••••••••••••••••• 97
OVLAY •••••••••••••••••••••••••••••••••• 22

Pack number (M) •• •• 74
PFORMTn •••••••••••••••••••••••••••••••• 33
PFXIT •••••••••••••••••••••••••••••••••• 34
Positioning of tape files ••••••••••• 25,53
Prime data area •••••••••••••••••••••••• 86
Print-area format •••••••••••••••••••••• 45
PRINTER (DEVICE=specification) ••••••••• 44
Printer files

instructions for processing •••••••••• 44
Printer-keyboard files

instructions for processing •••••••••• 48
PRINTLF (DEVICE=specification) ••••••••• 44
PRINTOV ••••••••••••••••••••••••••••• 45,49
PRINTUF (DEVICE=,specification) ••••••••• 44
Processing files

direct-access •••••••••••••••••••••••• 17
indexed-sequential •..••...•......• 17,90
sequential .•••.••....•........•••.•.. 17

Programming considerations ••••••••••••. 97
Programming restrictions ••••••••••••••• 97
PRTOV macro instruction

printer •••••••••••••••••••••••••••••• 46
print~r-keyboard ••••••••••••••••••••• 52

PUNCH20 (DEVICE=specification) ••••••••• 32
PUNCH42 (DEVICE=specification) ••••••••• 32

Index 169

PUT macro instruction
card files ••••••••••••••••••••••••••• 35
disk files •••••••••••••••••••••••• 68,85
printer files •••••••••••••••••••••••• 44
printer-keyboard files ••••••••••••••• 50
tape files ••••••••••••••••••••••••••• 59

RANDOM
(TYPEFLE=specification) •••••••••••••• 79
(UPDATE=specification) ••••••••••••••• 79

Random processing •••••••••••••••••••••• 93
Random retrieval

instructions for ••••••••••••••••••••• 82
Random updating

instructions for ••••••••••••••••••••• 82
RANSEQ

(TYPEFLE=specification) •••••••••••••• 79
(UPD.ATE=specification) 80

READ detail entry •••.•••••.••••..•••••. 56
READ macro instruction

direct-access •••••••••••••••••••••••• 72
printer-keyboard ••••••••••••••••••••• 50
random retrieval and updating 82

Read backward considerations ••••••••••• 25
Read format checking ••••••••••••••••••• 34
READID ••••••••••••••••••••••••••••••••• 71
READO 1 (DEVICE=specification) •••••••••• 32
RECFORM 56,68,79
Record length checking ••••••••••••••• 8,10
Record reference •••••••••••••••••••• 73,74
Record retrieval •..•••.••••.••.••.•••... 5
Records

blocking of ••••••••••••••••••••••••••• 7
format of ••••••••••••••••••••••••••••• 7
logical •••.•..•...••.•••••••...•••••.. 7

Record storage •••••••••••••••••••••••••• 5
Record updating ••••••••••••••••••••••••• 5
RECSIZE ••••••••••••••••••••••• 49,57,68,79
Registers

base ••••••••••••••••••••••••••••••••• 99
I/O •••••••••••••••••••••••••••••••••• 99
, required by IOCS ••••••••••••••••••• 99
usage of •••••••••••••••••••••••••••• 100

Release (processing of a block) •••••••• 62
RELSE macro instruction •••••••••••••••• 62
Reopening closed files ••••••••••••••••• 23
Restrictions, programming •••••••••••••• 97
Retrieving records

randomly .•..•.•••••.••••.•••.••••. 82,93
sequentially .••••..•.•••.••••..••. 83,94

RETRN macro instruction ••••••••••••••• 105
RETRVE (IOROUT=specification) •••• • • • • •• 78
REW (rewind tape) •••••••••••••••••••••• 61
REWIND •••••••• '. •• 57
Rewind and unload tape (RUN) ••••••••••• 61
Rewind tape (REW) ••••••• • • • • • • • • • • • • • •• 61
RFORMTn •••••••••••••••••••••••••••••••• 34
RFXIT •••••••••••••••••••••••••••••••••• 34
RTRVEX .' ••• ' •• '.'. •• 79
RUN (rewind and unload tape) •••• oo...... 61

Sector address ••••••••••••••••••••••••• 74
Sector count ••••••••••••••••••••••••••• 67
SEEKADR •••••••••••••••••••••••••••••••• 71
SEEK

CNTRL for direct-access files •••••••• 73
CNTRL for sequential disk files •••••• 69

Seek field ••••••••••••••••••••••••••••• 73

170

Sense information •••••••••••••••••••••• 71
SEQNCE ••••••••••••••••••••••••••••••••• 34
SEQNTL

(TYPEFLE=specification) •••••••••••••• 79
(UPDATE=specification) ••••••••••••••• 79

Sequence checking •••••••••••••••••••••• 34
Sequence link field

chaining by •••••••••••••••••••••••••• 88
Sequential disk files

instructions for processing •••••••••• 65
Sequential files

organization of •••••••••••••••••••••• 15
processing of •••••••••••••••••••••••• 17

Sequential processing (ISFMS) • • • • • • • • •• 94
Sequential retrieval (ISFMS)

instructions for ••••••••••••••••••••• 83
Sequential updating (ISFMS)

instructions for ••••••••••••••••••••• 83
SEQXIT ••••••••••••••••••••••••••••••••• 35
Set file load mode (SETFL) ••••••••••••• 81
SETFL macro instruction •••••••••••••••• 81
SETL macro instruction ••••••••••••••••• 84
Set limits (SETL) •••••••••••••••••••••• 84
Simple files ••••••••••••••••••••.•••••••• 8
SK (skipping forms) ••••••••••••••••• 46,52
SKIP (ERROPT=specif ication) •••••••••••• 55
Skipping

printer •••••••••••••••••••••••••••••• 46
printer-keyboard ••••••••••••••••••••• 52

SP (spacing forms) •••••••••••••••••• 45,51
Spacing

printer •••••••••••••••••••••••••••••• 45
printer-keyboard ••••••••••••••••••••• 51

SQCHEX ••••••••••••• ' ••••••••••• '. • • • • • • •• 79
SS (stacker selection) •••••••••••••• 37,38
Stacker selection

2520 ••••••••••••••••••••••••••••••••• 37
2560 ••••••••••••••••••••••••••••••••• 38

Standard labels
tape input files ••••••••••••••• 24,53,55
tape output files ••••••••••••••••• 25,29

Status byte •••••••••••••••••••••••••••• 66
STD (FILABL=specification) ••••••••••••• 55
Storage areas

for indexed-sequential files ••••••••• 89
I/O 11
wqrk areas ••••••••••••••••••••••••••• 12

SYSIPT
(ALTTAPE=specificatio~ •••••••••••••• 53
(DEVADDR=specif ication) ••••• • • • • • • • •• 54

SYSOPT
(ALTTAPE=specif ication) •••••••••• ' • • •• 53
(DEVADDR=specification) •••••••••••••• 54

SYSnnn
(ALTTAPE=specification) •••••••••••••• 53
(DEVADDR=specification) •••••••••••••• 54

Tape control operations •••••••••••••••• 60
Tape end-of-volume condition ••••••••••• 28
Tape error recovery ~ •••••••••••••••••• 107
Tape files

instructions for processing •••••••••• 53
non-standard-Iabeled •••••••• 25,29,53,55
standard labeled •••••••••••• 24,29,53,55
unlabeled ••••••••••••••••••• 25,29,53,55

Tape label control statement •••••••••• 106
Terminating files •••••••••••••••••••••• 27
TPMARK ••••••••••••••••••••••••••••••••• 57

Track index •••••••••••••••••••••••••••• 86
updating of •••••••••••••••••••••••••• 88

Track reference •••••••••••••••••••••••• 74
Truncate (write short block) ••••••••••• 62
TRUNC macro instruction •••••••••••••••• 62
TYPEFLE

card•..•..... 35
disk 68,71,79
printer ••••••••••••••••••••••••••••••
printer-keyboard •••••••••••••••••••••
tape •••••••••••••••••••••••••••••••••

45
49
57

Unblocked records ••••••••••• 8,59,61,91,94
UNDEF (RECFORM=specification) •••••••••• 57
Undefined-format records •••••••••••••••• 9
Unlabeled tape input file •••••••• 25,53,55
Unlabeled tape output file •••••••••• 25,29
UNLOAD (REWIND=specification) •••••••••• 57
UPDATE •••••••••••••••••••••••••••••• 68, 79
Updating indexed-sequential records

randomly .••••.•..•••••.•••.•••••..•.. 82
sequentially .•.••..•.••••••••••.••••• 83

Updating of the track index •••••••••••• 88

VARBLD detail entry ••..••..•••••••.•... 57
VARBLD register •••••••••••••••••••• 57,100
VARBLK (RECFORM=specification) ••••••••• 57
Variable-length records ••••••••••••••••• 8
VARUNB (RECFORM=specification) ••••••••• 57
VERIFY ••••••••••••••••••••••••••• 68,71,80
Volume control statement •••••••••••••• 106

WAITC macro instruction •••••••••••••••• 40
WAITF macro instruction

adding records to an
indexed-sequential file ••••••••••••• 82

direct-access file ••••••••••••••••••• 72
printer-keyboard file •••••••••••••••• 51
random retrieval and updating •••••••• 83

WLRERR 5 8 , 5 5
WORKA

card•..• e .••••••••• •••••••••• 35
disk •••••••••••••••••••••••••••••• 68,80
printer •••••••••••••••••••••••••••••• 45
printer-keyboard ••••••••••••••••••••• 49
tape ••••••••••••••••••••••••••••••••• 58

Work areas ••••••••••••••••••••••••••••• 12
WORKL ••••••.••••••••••••••••••••••••••• 80
WORKR •••••••••••••••••••••••••••••••••• 80
WORKS •••••••.••••••••••••••••••••••••••• 80
WRITEID •••• e.. •• 71
WRITE macro instruction

adding records to indexed-sequential
files 82

direct-access files •••••••••••••••••• 72
loading indexed-sequential files 81
random retrieval and updating •••••••• 83

Write tapemark (WTM) ••••••••••••••••••• 61
Wrong-length records •••••••••••••••• 55,58
WTM (write tapemark) ••••••••••••••••••• 61

XTENT control statement 26,86

Index 171

C24-9007-5

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

VI

~
it
~
(,J
0-
o
.."

;"
[
;"

~
VI

>
()
~ 'f .,..
I

§
" I
01

READER'S COMMENT FORM

IBM System/360 Model 20
Disk Programming System
Input/Output Control System

• How did you use this publication?

As a reference source D
As a classroom text D
As a self-study text D

• Based on your own experience, rate this publication

As a reference source:

As a text:

• What is your occupation? .

Very
Good

Very
Good

Good

Good

Fair

Fair

Poor

Poor

Very
Poor

Very
Poor

Form C24-9007-5

• We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address .

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C24-9007-5

YOUR COMMENTS, PLEASE ...

This SRL manual is part of a library that serves as 'a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the hack of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys­
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold
Fold

n
c
--i

»
r
o
Z
C)

--i
I
(/)

r
Z
m

...

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation

112 East Post Road

White Plains. N. Y. 10601

Attent ion: Department 813 BP

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS. N. Y.

..

Fold

•
International Business Machines Corporation
Data Processing Divilion
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International)

Fold

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174

