File Numter S360(Mod.20)-32
Form C26-3810-3 DPS

Systems Reference Library

IBM System/360 Model 20
Disk Programming System
Disk Utility Programs

This reference publication provides programmers with
the information needed in order to use the IBM
System/360 Model 20 Disk Utility Programs. The pro-
grams described are:

1. 8ix file-to-file programs for transferring files
from input media to output media.

2. A disk initialization program that prepares IBM
1316 Disk Packs for use on IBM 2311 Model 11 or 12
Disk Storage Drives.

3. A program to clear one or more areas of IBM 1316
Disk Packs.

4, A program that establishes an alternate disk track
for a defective track, and transfers data from the
defective to the alternate track ("Disk Recovery").

5. A disk dump program that prints the contents of
data and count fields.

For a list of associated publications and their
abstracts, see IBM System/360 Model 20 Bibliography
(Form A26-3565).

Preface

This manual describes the IBM System/360
Model 20 Disk Utility programs of the Disk
Programming System (DPS). It includes a
list of the machine configurations to which
the programs apply, and a description of
each of the ten programs with specific
information about the control statements
required to tailor each program to a parti-
cular job.

Ample details, technical data, proce-
dures for program modification, and back-
ground information are presented in the
appendixes.

The programs operate under control of
the IBM System/360 Model 20 Disk

Programming System control programs.
Therefore, you should have a working know-
ledge of the Systen/360 Model 20 and be
familiar with the publication IBM
System/360 Model 20, Disk Programming Sys-—
tem, Control and Service Programs, Form
C24-9006. If you wish to include your own
routines you should be familiar with the
publication IBM System/360 Model 20, Disk
and Tape Programming Systems, Assembler
Language, Form C24-9002, or IBM System/360
Model 20, Basic Assembler Language, Form
C26-3602.

A glossary is arpended to explain termi-
nology used in this publication that may be
unfamiliar to you.

Fourth Edition (March, 1969)

This is

Utility program.

new material, including tables and

|Model 20 and to all subsequent versions

a major revision of, and obsoletes, C26-3810-2, |

The changes and amendments consist of the technical changes due to the
availability of Model 20, Submodel 5, and the inclusion of a Disk Dump
Other changes have been made throughout the text and
illustrations, has
reviewed in its]

and modifications
|otherwise indicated in new editions or Technical Newsletters.

Version

been

incorporated. Therefore, this edition should be

entirety.

| |
|This edition applies to the following components of IBM System/360]|

until

Modification

Disk~to-Disk Utility program

|pisk-to-Tape Utility program

|Tape-to-Disk Utility program

|Disk-to-Card Utility program

|Card-to-Disk Utility program
|Disk-to-Printer Utility program
|Initialize-Disk Utility program
|Clear-Disk Utility program
|Alternate-Track Assignment Utility program
|Disk Dump Utility program

PUWwWwwwwwww

continually made to
publication in

|Changes are
jusing this
|systems,

[eJoNoNofoloNoRNoloNe)

the specifications herein; before|
connection with the operation of IBM|
consult the latest IBM System/360 Model 20 SRL Newsletter, |

|Form N20-0361, for editions that are applicable and current.]
L 1

This publication was prepared for production using an
update the text and to control the page

impressions for photo-offset printing were obtained from

Printer using a special print chain.

Requests for copies of IBM publications

and line format.

IBM computer to

Page
an IBM 1403

should be made to your IBM

representative or to the IBM branch office serving your locality.

A form for reader's comments is
publication.
IBM Laboratories,

P.O. Box 210.

Programming Publications,

© copyright IBM Germany 1967

provided at the
If the form has been removed, comments may be addressed to
703 Boeblingen/Germany,

back of this

© copyright International Business Machines Corporation 1966, 1968, 1969

Introdyection
Description of Programs . . .
Minimum System Configuration.
Maximum System Configuration.
Program Features. . . . o e
Organization of the Publlcatlon

s 3 s s &

General Description of Utlllt)’ Control

Statements . ., . e e e
Utlllty—Modlfler Statement. .
Field-Select Statement. . . .
End Control Statement

Disk—to-Disk Utility Program (DSKDSHK)

« » e

Job-Control Statements « « o o o

Utility Control Statements
Disk-to-Disk Utility-Modifier
Statement. . . . « » a s e o
Field-Select Statement « e e .
End Control Statement «

Sample ProblemS. « + & o o + o o
Disk-to-Tape Utility Program (DSKTAP)
Job-Control Statements . « « « o«

Utility Control Statements
Disk-to-Tape Utility-Modifier
Statement. « ¢ ¢ « 4 e 4 . .
Field-Select Statement. « . .+ .
End Control Statement « .+ « «

Sample problems. + « « ¢ « « o o
Tape-to-Disk Utility Program (TAPDSK)
Job-Control Statements . « . + . .

Utility Control Statements
Tape-to-Disk Utility-Modifier
Statement. « « &« ¢ ¢ o ¢ 4 o« .
Field-Select Statement.
End Control Statement « . + .

Sample ProblemsS. « « « + ¢ 2+ o & o
Disk—to-Card Utility Program (DSKCAR)
Job-Control Statements « « « + « «
Utility Control Statements
Disk-to-Card Utility-Modifiex
Statement. «o o . . .
Field-Select Statement.
End Control Statement . + « .
Sample ProblemnS. « « + « o o s = o

Card-to-Digk Utility Program (CARDSK)

a8 e e

3 s o & & 3

s 3 e o

T T S)

o e s &

WO

15
18
18
20
20

20

25
25
25
25
27
28
28
30
30

30

Job-Control Statements . « . . .

Utility Control Statements
Card-to-Disk Utility-mModifier
Statement. « « « ¢ ¢ ¢ . o .
Field-Select Statement. .
End Control Statement . .
End-of-File Statement . .

e =
* .
« e

Sample Problems. . « « « o & & o«

Disk—to-Printer Utility Program (DSKPRT)

Job-Control Statements . .

Utility Control Statements . . .

Disk-to-Printer UtllltY’MOdl;leI

Statement. . < . ¢ o ¢ e 4 . .
Field-Select Statement. .
Print~Header Statement. .
End Control Statement . .

Sample ProblemsS. « « o« ¢ o o o o

Initialize Disk Utility Program (INTDSHK)
Job-Control Statements

Initializatiog of a Disk Pack. . .

Clear Disk Utility Program (CLRDSK)

Job-Control Statements . « . .+ . .

Utility Control Statements
Clear Disk Utility-Modifier

Statement, .+ <« + < 4 . . e . .

End Control Statement . + « . .

Sample Problems. « « « « « « o « .

Alternate—Track Assignment Utility
Program (ATASGN)

Job-Control Statements « « « + o«

Utility Control Statements
Alternate-Track Assignment
Utility-Modifier Statement . .
End Control Statement
Sample Problems . « ¢ « « o « .

Disk Dump Utility Program (DDUMP) .
Job-Control StatementsS. . « .
Description of Console Switch |
Sample problem. « « « + &+ « o

Sample Problem Shown in Detail . .

Appendix A. Job Control Statements

« 4 o s

Contents

35
36
36
38
39
39

39

41

41

48
50
52
54
54
54

54
55

55

56

Appendix B. Volume and File Labels

Appendix C. Data Formats

Appendix D. Exits to User—-Prepared Routines

Programming Restrictions. .

Example of User Program . « . «

Appendix E. IBM 1316 Disk Pack Description |

Appendix F. Record and Block Formats

.......

. 67

73

. 74

. 75

79

Appendix G. Control Statements for

Utility Program + . .

Appendix H. Diagnostic, Warning,

and Error Messages . « - . «

Appendix I. Use of the UPSI Statament
to Override the End-of-File Record

Appendix J. Processing Multi-Volume

Files on Disk S e s a e e s e e

Glossary . . . v ¢ v ¢ v v v o o o .

Index: « « ¢ =« ¢ ¢« ¢ ¢ o« o o o s o« =

Whatever the specific uses of a data proc-
essing system may be, there are certain
operations which must be performed fre-
quently. These operations may differ in
detail, varying with the particular machine
configuration and data format requirements,
while the essential functions remain the
same. To reprogram these operations each
time they are required by a specific and
perhaps recurring job would be wasteful,
even if advanced languages were used.
Therefore, a set of IBM-supplied programs,
called the DPS Disk Utility programs, are
placed at your disposal to perform these
recurring functions and save you performing
time. Moreover, the Utility programs are
flexible: you can modify them to suit your
particular problem with a minimum of pro-
gramming effort.

Introduction

There are many standard operations which
involve disks, such as reading information
from cards and writing it on disk, or
printing data stored on disk. Such opera-
tions can be performed by the Disk Utility
programs. You need only specify certain
items of information, such as which card
columns are to be copied onto the disk or
which portions of a disk should be printed.
These specifications you enter in your
job-control and utility control statements.

The purpose of this manual is to show
you how to use and modify the Disk Utility
programs by describing the job-control and
utility control statememts and indicating
the variety of disk operations these pro-
grams can perform.

Part 2

Utility

Control Statements

Appropriate Utility Program (Part 2)

Utility Control Statements

Part 1 Appropriate Utility Program (Part 1)
A
//bJO8
Job Control Statements
DPS Control
Programs DPS Control Programs (Monitor)

Figure 1.

Arrangement of Card Input (Card-Resident System Run)

Introduction 5

Each DPS Disk Utility program operation,
except the Disk Dump program (which does
not need any utility control statements),
requires four components.

¢ DPS control programs, as described in
IBM System/360 Model 20, Disk Program-—
ming System, Control and Service Pro-
grams, Form C24-9006

e Job-control statements

e The DPS Disk Utility program supplied by
IBM

¢ Utility control statements

The utility program may be either a card
deck or it may be cn the system disk pack.
To execute a utility operation, the program
nust be supplemented by detailed specifi-
cations which are contained in the utility
control statements. Job-control statements
provide information to the DPS Control
programs, such as a description of the
machine configuration.

If the card-resident version of the DPS
Control programs and the DPS Utility pro-
grams is used, the DPS Control programs
deck is followed by the deck for a single
utility program (see Figure 1). If the
programs are disk-resident, the Control
programs and the DPS Utility programs are
stored on the system disk pack (see Figure
2). The appropriate utility program is
identified from the job-control statements
and is read into main storage.

Urility

Control Statements

Utility Control Statements

Job Control Statements

DPS Control
Programs
and Utility

Programs DPS Control Programs

and Utility Progroms

Figure 2. Arrangement of Card Input

(Disk-Resident System Run)
DESCRIPTION OF PROGRAMS
There is an important restriction on the

use of the six file-to-file utility
programs. They cannot process indexed-

sequential files. The utility programs do
not read or write the labels necessary for
indexed-sequential files, nor do they
include routines to create indexes. There-
fore, the utility programs can be used only
with sequentially organized data files.

Each disk utility program performs a
particular opération.

1. The Disk=-to-Disk program transfers data
from disk packs on one drive to disk
packs on other drives or Letween dif-
ferent locations on the same disk pack.

2. The Disk-to-Tape program transfers a
data file from one or more disk packs
to one or more reels of magnetic tape.

3. The Tape-to-Disk program transfers a
data file stored on one or more reels
of magnetic tape to one or more disk
packs.

4., The Disk-to-Card program punches a data
file stored on one or more disk packs
into cards.

5. The Card-to-Disk program transfers a
data file from punched cards to one or
more disk packs.

6. The Disk-to-Printer program prints a
data file contained on one or more disk
packs.

7. The Initialize-Disk program checks the
surfaces of one or more disk packs for
defective areas (assigning alternate
tracks when appropriate), and formats
cylinder 0 and the Volume Table of
Contents.

8. The Clear-Disk program clears one or
more disk areas by writing a user-
specified character in these areas.

9. The Alternate~Track Assignment program
pairs an alternate track to a defective
track and copies the information stored
on the defective track onto the
alternate.

10. The Disk Dump program prints data and
count fields.

The first six DPS Disk Utility programs
listed above can be grouped together as
logical file-to-file utility programs
because they all transfer data from one
storage medium to another.

The last four utility programs, the disk
maintenance utilities, do not process data
files. However, they are essential for
establishing the files and ensuring that
all records can be retrieved.

To carry out your specific job, you must
modify the program with control information
punched into cards. When a choice is not
indicated by card, the program assumes a
specification called the default specifi-
cation.

The utility control statements for the
file-to-file utility programs are upward
compatible with the IBM System/360 Basic
Programming Support and Basic Operating
System Disk Utility programs when all rele-
vant operands are explicitly stated. IBM
System/360 Model 20 standards are used for
disk labels and IBM System/360 standards
for tape labels.

MINIMUM SYSTEM CONFIGURATION
Submodel 2

An IBM 2020 Central Processing Unit Model
BC2 (12,288 bytes of main storage);

an IBM 2311 Disk Storage Drive Model 11 or
12;

one of the following card reading devices:
IBM 2501 Card Reader Model Al or A2,
IBM 2520 Card Read-Punch Model Al,
IBM 2560 Multi-Function Card Machine
(MFCM) Model Al;

one of the following printers:

IBM 1403 Printer Model N1, 2,
IBM 2203 Printer Model Al.

oxr 7,

Submodel 4

An IBM 2020 Central Processing Unit Model
BC4 (12,288 bytes of main storage);

an IBM 2311 Disk Storage Drive Model 12;
an IBM 2560 MFCM Model AZ2;

an IBM 2203 Printer Model A2.

Submodel 5

An IBM 2020 Central Processing Unit Model
BC5 (12,288 bytes of main storage);

an IBM Disk Storage Drive Model 11 or 12;
one of the following card reading devices:
IBM 2501 Card Reader Model Al or A2,

IBM 2520 Card Read-Punch Model Al,
IBM 2560 Multi-Function Card Machine
(MFCM) Model Al;

one of the following printers:

IBM 1403 Printer Model N1, 2,
IBM 2203 Printer Model Al.

or 7,

MAXIMUM SYSTEM CONFIGURATION
Submodel 2

An IBM 2020 Central Processing Unit Model
D2 (16,384 bytes of main storage);

two IBM 2311 Disk Storage Drives Model 11
or 12 (both must be the same model);

an IBM 2415 Magnetic Tape Unit Model 1
through 6;

an IBM 2501 Card Reader Model Al or A2;

an IBM 1442 Card Punch Model 5;

one of the following card units:
IBM 2520 Card Read-Punch Model A1,
IBM 2520 Card Punch Model A2 or A3,
IBM 2560 MFCM Model Al;

one of the following printers:

IBM 1403 Printer Model N1, 2,
IBM 2203 Printer Model Al;

or 7,

an IBM 2152 Printer-Keyboard (can be used
only for inquiries, not as normal I/O
unit).

Submodel 4

An IBM 2020 Central Processing Unit Model
D4 (16,384 bytes of main storage);

two IBM 2311 Disk Storage Drives Model 12;
an IBM 2560 MFCM Model A2;

an IBM 2203 Printer Model A2,

an IBM 2152 Printer-Keyboard (can be used

only for inguiries, not as normal I/0
unit).

Submodel 5

An IBM Central Processing Unit Model E5
(32,768 bytes of main storage);

four IBM 2311 Disk Storage Drives Model 11
or 12;

an IBM 2415 Magnetic Tape Unit Model 1
through 6;

an IBM 2501 Card Reader Model Al or AZ2;
an IBM 1442 Card Punch Model 5;
one of the following card units:

IBM 2520 Ccard Read-Punch Model Al,

IBM 2520 Card Punch Model A2 or A3,
IBM 2560 MFCM Model Al;

Introduction

one of the following printers:

IBM 1403 Printer Model N1, 2, or 7,
IBM 2203 Printer Model Al;

an IBM 2152 Printer-Keyboard (can be used
only for inquiries, not as normal I/O
unitl.

PROGRAM FEATURES

The DPS Disk Utility programs process
fixed-length records (records of equal
length) of sequentially organized files on
disk or tape. These records may be blocked
or unblocked. If they are blocked, all
blocks must contain the same number of
records. (See exception in Tape-to-Disk
program.) Blocking is a method of file
organization whereby a number of records on
a disk pack or on magnetic tape is grouped
together for more efficient data handling.
Appendixes E and F discuss record and block
formats in detail.

The DPS Disk Utility programs perform a
number of valuable functions for you:

¢ They transfer data files between or
within media in several ways; e.d., from
disk to magnetic tape, from one disk
pack to another, or from one area of a
disk pack to another area on the same
disk pack. They can copy records with-
out change. They can also rearrange or
delete data within each record and
change the data format, They will
change the number of records in each
block if you wish.

* They automatically process a data file
which is stored on more than one disk
pack or more than one reel of magnetic
tape. This is called multi-volume proc-
essing. (For further details refer to
Appendix J).

¢ If required they can check the sequence
of input cards and number output cards
consecutively.

¢ They can read data files from cards in
standard EBCDIC format (one character
per card column), or in column binary
format (see Glossary). But a card data
file may be punched only in the carad
code equivalent of the EBCDIC format.

e They represent numeric information eith-
er in zoned-decimal format with one
digit per byte, or in packed-decimal
format with two digits per byte. They
may also change the input data format
for output.

They print each output record either as
a whole (display format), or in parts
(list format).

A byte can be printed in one of two
forms: (1) as a single character rep-
resenting the EBCDIC graphic for the bit
configuration; or (2) by two characters,
one for the left half-byte (four bits),
and one for the right half-byte. The
possible half-byte values, which range
from 0-15, are represented ky the char-
acters 0-9 and A-F. This latter type of
representation is called hexadecimal.

The Disk Dump program serves as a good
debugging aid in that it prints the
contents of any data or count field(s).

The programs process seven-track as well
as nine-track magnetic tapes.

They process IBM standard volume and
file labels for both disk and tape. If
you want to use your own standard tape
file labels, you must also supply the
appropriate routines to process these
labels. Special exits are provided to
link up with your routines,

Exits are also available for use with
special routines for sterling-currency
conversion in the Disk-to-Card, Card-to-
Disk, and Disk-to-Printer programs.

The programs also process unlabeled tape
files. Several unlabeled tape files on
one tape volume (multi-file-volume) are
always separated by one tapemark. A
tapemark preceding the file at the
beginning of the tape reel may be pre-
sent but is not required.

The utility programs may be executed as
either mainline or inquiry programs. An
exception is the Initialize Disk pro-
gram, which can be used only as mainline
program. Except the Alternate-Track
Assignment and the Disk Dump program,
all utility programs used as mainline
programs may be interrupted by inquiry
programs.

The file-to-file utility programs nor-
mally process a file until an end-of-
file indicator, /*, is encountered. To
ignore this indicator, a UPSI statement
may be included in the job-control
statements which allows the entire spec-
ified extent or volume to be processed.

Note: The block length in the file to be
transferred must not exceed the size of
the extent specified in the XTENT state-
ment. Otherwise, this extent will not
be processed.

ORGANIZATION OF THE PUBLICATION

The manual describes each of the ten DPS
Utility programs and the utility control
statements you must provide to tailor the
program to your specific task. The common
features of utility control statements are
discussed first. Building on the discus-
sion of the general control statements, the
manual continues with ten sections, each
containing a description of the capabili-
ties and use of each utility program.

These utility programs operate under
control of the Model 20 DPS Control pro-

grams. The loading and execution of a
utility program is requested by means of
job-control statements. The job-control
statements required for each of the DPS
Disk Utility programs are described in
Appendix A. The function of each job-
control statement and appropriate entries
for it are discussed in greater detail in
the publication IBM System/360 Model 20,
Disk Programming System, Control and

Service Programs, Form C24-9006.

The appendixes also contain more
detailed discussions of various program
features and technical points.

Introduction

9

General Description of Utility Control Statements

There are two utility control statements
that can be used with each of the six logi-
cal file-to-file utility programs: the
utility-modifier statement and the field-
select statement. The utility-modifier
statement outlines the method of
transferring a set of data records, called
a file, from one storage medium (disk,
magnetic tape, or cards) to another (disk,
magnetic tape, cards, or printer). The
field-select statement describes the trans-
fer in more detail. A third utility con-
trol statement, the print-header statement
is used with the Disk-to-Printer program
and is discussed in the section dealing
with that program. In addition, the END
statement is required as the last utility
control statement in all programs except
the Disk Dump program. If any of the other
control statements is not present, the
program assumes certain standard specifi-
cations (called default specifications).

The Initialize Disk, Clear Disk, and
Alternate~Track Assignment Utility programs
require utility control statements of their
own. The Disk Dump program does not
require any utility control statements.

Throughout this manual, the character
"b" will be used to designate a blank
column. One, and only one, blank column
mast be left between the name and the oper-
ation fields, and between the operation and
the operand fields.

A group of characters set off by a space
or comma is called an operand; e.g.,
A=(input) ,B=f(output). No blank spaces are
allowed within the operand list. The last
operand of a control statement is followed
by a space instead of a comma. The lower-
case letter or letters in each operand
indicate(s) that you have to assign the
appropriate value(s).

UTILITY-MODIFIER STATEMENT

The utility-modifier statement outlines the
job. It

¢ indicates the type of transfer;
s describes the input and output files;

e controls certain input and output device
actions;

s specifies incidental functions (page
numbering, sequence checking).

10

The general format of the utility-
modifier statement is

| i Bttt To—=== it 1
| Name |Operation|Operand |
T T T 1
/7b	Uxxb	Tt,FF,A=(input),
		B=(outputr), Ix,0x,Sx,Px,
		Rx,0=(x,y)
L i _ —L e 3

//bU Identifies the statement as a utility-
modifier statement. It must be
punched starting in column 1.

XX Program initials to designate the
particular Disk Utility program:

DD = disk-to-disk
DT = disk-to-tage
TD = tape-to-disk
D€ = disk-to-card
CD = card—-to-disk
DP = disk-to-printer

The four required operands are:

Tt - type-of-function operand
FF - record-format operand

A = (input) - input record length and
block length operand
B = (output) - output record length and

block length operand

These required operands (Tt through
B=(output)) must be specified in the
utility-modifier statement when it is pre-
sent. The remaining operands (Ix through
0=(x,y)) are optional, and may appear in
any order after the four which are
required. The mandatory operands and the
optional entries, which have somewhat dif-
ferent meanings in different utility pro-
grams, are described separately with each
program.

When any optional operand or the
utility-modifier statement itself is omit-
ted from a Disk Utility program, the pro-
gram automatically assumes specifications
(called "default specifications") for the
missing operand(s). If all the default
specifications correspond to the specifi-
cations required for a particular job, the
program may be run with no utility control
statement but the END statement. The
default specifications for each of the six
file-to-file Disk Utility programs are
listed in Figure 3.

oo ——— T===—T-—=-T -==T ——==-T i Satadeted Sabutnie deluiaind Sububuink dekeiit
| | Tt | FF | A=(input) | B=(output) | Ix | Ox | Sx | Px | Rx | O=(x,¥) |
f-=-==- e e ey Pty T St o
| Disk-~to-disk | TC | FF | A=(270,270)| B=(270,2700| - | oYy | - | - | - | - i
Disk-to-tape	TC	FF	A=(270,270)	B=(270,270)	- J oo	-	-	-	-	
Tape-to-disk	TC	FF	A=(270,270)	B=(270,270)	I	oY	-	-	-	-
Disk-to-card	TR	FF	A=(80,240)	B=(80,80)	-	-	-	-	-	(omit)
Card-to-disk	TR	FF	A=(80,80)	B=(80,240)	Iz J oY	-	-	-	(omit)	
Disk-to-printer	TD } FF	A=(270,270)	B=(120)	-	OX	s1] PY]	RL	-		
L — N SR IRV IO K O, PRIV TRV NP [N (Y (SO 1
Tigure 3. Utility-Modifier Statement Default Specifications

FIELD-SELECT STATEMENT

The field-select statement can be used only
if the type-of-function operand (Tt) of the
utility-modifier statement contains the
specification TF (field-select), TRF
(reblock and field-select), or TLF (list
and field-select). The field-select option
allows:

¢ movement of input record data fields to
different relative positions in the
output record;

e omission of input data fields from out-
put records;

¢ conversion of data format, by field.

When the field-select option is speci-
fied, each data field that is to be includ-
ed in the output is transferred from input
to output area in one of four ways:

» It is moved with no change in field
length, or

» moved and converted from zoned to packed
decimal (the output field is normally
shorter than the input field), or

o moved and converted from packed to zoned
decimal (the output field is normally
longer than the input field), or

* moved and converted from zoned or packed
decimal to hexadecimal characters (the
output field is twice as long as the
input field; this option is used only by
the Disk-to-Printer program).

When the field-select option is used,
only those bytes in the input record that
are specified in the field-select statement
will be moved. The rest will be omitted
from the output record. As a result of
dropping fields and/or ccnverting the data
format, output record length may be differ-
ent from input length.

If fields are specified to overlap, data
in a field moved to the output area will

replace any data
same positions.

ing message will
select statement

previously moved to the

If fields overlap, a warn-
be printed when the field-
is read.

Data is moved in the sequence in which
the entries in the field-select statements
appear, i.e., the first operand is
processed first, the second operand next,
etc. Areas in the output record not filled
by selected data are blank.

Entries can extend to column 80 of a
field-select (FS) statement. The informa-
tion for a particular field, however, must
be completed in one card. A continuation
card is not allowed. Instead, several FS
statements may be used. Blank columns at
the end of a card are permitted.

The general format of the field-select
statement (when there is no data format
conversion) is

S Rttty ettt 1
| Name | Operation|Operand |
p-———t-—-—t——— 1
|74b |FSb lx,s4t/.c. /2,8, t |
[S A 1
where

~

//bFSh identifies the statement as the
field-select control statement. It
must be punched starting in column

1.

r,s,t 1is the operand for a particular
field, where

x - is the starting positicn in the
input record of the field to be
transferred

s - 1is the number of bytes to be trans-
ferred

t - is the starting position in the
output record of the receiving field

General Description of Utility Control Statements 11

The field operands are separated by
slashes; however, the last operand on a
statement must not be followed by a slash.
The field operands may occur in any order,
so long as each is defined correctly, rela-
tive to the first byte of the record.

When a data field is to be moved and
converted (see Appendix C), the operand for
that field assumes a slightly different
form. The entries r and t retain the mean-
ing stated above. The entry s, indicating
the length of a field, is replaced by an
entry defining the conversion to be done
and the length of both input and output
fields. The change in record size must be
considered when f£illing out the utility-
modifier statement.

In the unpacked or zoned-decimal format,
numbers are stored one per byte and the
sign is in the left four bits (half-byte)
of the rightmost byte of the field. 1In the
packed mode, numeric fields are stored with
two digits per byte. An extra half-byte is
now needed to store the sign. For example,
a four-digit unpacked number would need
“only five half-bytes when packed.

Actually, three bytes must be used, since
all fields must consist of full bytes. The
sign in packed-decimal format is stored in
the rightmost half-byte of the field. Note
that System/360 requires a sign position
regardless of whether numeric values are
positive or negative.

Pack
When the: input field is to be packed for
output (in the case of decimal arithmetic,
e.g.,), the operand entry is
r, (P,n,m),t
r starting position in the input record of
the field to be transferred

P identifies the pack operation

n size in bytes of the input field
(unpacked)

m size in bytes of the output field
(packed)

t starting position in the output record
of the receiving field
The parentheses and commas must appear as
shown.
The following formulas may be used to

determine the number of bytes required in
the output field:

12

n+l

If n is odd, m==---
2

n+2

2

If n is even,

For instance, if n=4 or 5, m=3; if n=6
or 7, m=4; etc. However, if you want to
make the packed field larger than required,
m may be a value greater than necessary to
accommodate the input field after packing.
In this case, the excess leftmost positions
of the packed field will be filled with
zeros. An extra zero also is rlaced in the
leftmost half-byte whenever a zoned-decimal
number of an even number of bytes is
packed. If not enough space is provided in
the output field, the most significant
(leftmost) digits will be lost. A warning
message will then be printed.

Unpack

When the input field is to be converted
from packed to zoned decimal for output
(for printing, e.g.), the operand entry is

r,{(U,n,m),t

r starting position in the input record of
the field to be transferred

U identifies the unpack operation

n size in bytes of the input field
(packed)

m size in bytes of the output field
(unpacked)

t starting position in the output record
of the receiving field

The parentheses and commas must appear
as shown.

To ensure that the entire input field
will fit into the output field, the size in
bytes of the unpacked output filed must be
twice the size of the input field, minus
one: m=2n-1. For example, if n=3, m=5; if
n=4, m=7; etc. Of course, if you know that
the leftmost (high-ordexr) half-byte (four
bits) in the packed field is zero, you can
use the formula m=2n-2 to eliminate the
high-order zero. You may specify an output
field that is larger than required; the
excess high-order bytes will then contain
zoned zero values. If not enough space is
provided in the output field, the most
significant (high-order) digits will be
lost. A warning message will then be
printed.

Hexadecimal (Disk-to-Printer Program Only) Output cards are to be created as fol-

lows:
The utility-modifier statement for the Colunns
Disk-to-Printer program includes the option 1-18 the alphameric field (Field 4)
to present the entire record in hexadecimal 19-31 blank
format. For a detailled description of the 32-40 Field 1, unpacked
hexadecimal option refer to the section 4i1-46 blank
Disk-to-Printer Utility Program. b7-49 Field 2, packed

50-80 blank

The two layouts are illustrated in Fig-
Sample Field-Select Problem ure 4,

Two utility control statements {(besides
A disk file contains four data fields in the END statement) are required for this

each record. job - a utility-modifier statement and a
field-select statement. They are shown in
Figure 5.

s Bytes 1 to 5 contain a packed field.

END CONTROL STATEMENT

e Bytes 6 to 10 contain a zoned-decimal The END statement is the last of the utili-
field. ty control statements and must appear even
if none of the others is needed. It is

punched
e Bytes 11 to 12 contain a zoned-decimal fm———y———- ——— 1
field. | Name |Operation|Operand |
T T e 1
|//b |END | |
e Bytes 13 to 30 contain an alphameric O R et Lt 4
field. in columns 1-6.

Input Disk

} | |

Byte # {1 5|6 1014412)13 30

=g

{Unpacked) « 2

Fiotd t | Fieta 2
{(Pacued) KUnpached)

Fietd 4
{Aiphomeric)

|

Output Card
r

}

Fieta 4 Fieta 1

{Atphomeric) iUnpocked)

(Packed) ~ &
a

Cotumn # 14 18419 3132 40144 46}

=
-
o
S

Figure 4. Sample Field-Select Problem

General Description of Utility Control Statements 13

1BM System 360 Assembler Coding Form

[-am SAHPLE FIELD-SELECT STATEWENT | P T T T
[— { oatt I IHISTRUC TIONS. I' s I J l lC‘lD EUHCTRO by
S T T
1D, T, FE, A0, 20, BB,)it s T
T T+ T 11 B
-+ o oty 1} IS
it H tl L] il
(1 Fsi 1 |1e], 1./, (] 1s], B0, [32l7le] [(lel,], jal1], 47 Fleld-etedt datantent | T TTTTTTTTTT]
N +

M e - R - d -
1 ~t t
et i]
Horp Field, | 2] i
L ; | 4 ‘ __H_
Lgm b -t t , - 4+ 4
‘ —t P + *“Jf'f 4 4=
C] . S
. i H ERERADSARERARERERRY
: i ¢ Ki'EL] J 1 i Llad
| —LI ‘;'*ﬁ .
BEEERA HEL il
‘ -t i ++ Li b lP 4+ |l i
e L L
+ + IS bt “ R ; + —+ . '; «1 «———5@— 4+
L . I SN U (N DU 3 O 0 A Pt |
! 1 ! ! . : Vo i | P
. T : I S
& + : . sk e oud 4«__4 L1 + bt f— + -+
N 11 il] : L) r L L [B T

® Figure 5.

14

Sample Field-Select Problem Control Statements

The Disk-to-Disk utility program transfers
a file from one disk pack to another

(max. two drives for Submodels 2 and % and
four drives for Submodel 5), or between
areas (called extents) of the same disk
pack. (Using different cylinders of the
same pack for input and output will reduce
the efficiency of the program).

All input and output records must be
fixed-length, blocked or unblocked.

It is possible to copy the contents of
an entire disk pack by using the Disk-to-
Disk utility program with a special UPSI
statement. This feature is further

explained in Appendix I.

The following job-control and utility
control statements are used by the Disk-to-
Disk utility program.

Job-Control Statements

Operand Entries for
Disk-to-Disk Utility

Statement Use

// JOB Required Program name = DSKDSK

// ASSGN Required Primary input device =
SYSIPT

// ASSGN Required Primary output device =
SYSOPT

// ASSGN Optional Alternate input devices
= SYS002-SYsS004
Alternate output
devices SYS005-SYS007
Logging device = SYSLOG
(See LOG statement)

// ASSGN Optional

// UPSI Optional
// CONFG Required* Main-storage capacity

// DATE Required* Year and day

// VOL Required Input file name = UIN
output file name = UOUT

// DLAB Required One set each per input

and output file
More than one XTENT
statement can be
used per set

// XTENT Required

/77 LOG Optional
or

/77 NOLOG

// EXEC Required

*Unless information is still in main stor-
age.

A detailed description of the job-
control statements is given in Appendix A.

Disk-to-Disk Utility Program (DSKDSK)

Utility Control Statements

Two utility control statements may be used
with the Disk-to-Disk program:

The utility-modifier statement, which

outlines the method of transferring a

set of data records (a file) from disk
to disk.

The field-select statement, which
describes the transfer of fields from
the input record to the output recorad.

A third utility control statement, the
END statement, must be used with every
utility program.

The sequence of statements is as follows:

//bU0 Optional

//bFS Optional (More than one may
be used)

//bEND Required

DISK-TO-DISK UTILITY-MODIFIER STATEMENT

The utility-modifier statement controls the
file transfer by indicating the type of
transfer, describing the input and output
files, and specifying certain input and
output device actions. Its general format

is

=== B e 1
| Name |Operation]Operand |
p----1 === oo 1
|77b |UDDb |Tt,FF,A=(input),B=(out- |
| | | put),Ox |
el ——1_ . e 4

Possible operand entries are shown in
Figure 6.
//bu0 Identifies the statement as a
utility-modifier statement. It must
be punched starting in column 1.

DD Program initials for the Disk-to-Disk
program. They may be omitted since
the JOB statement actually specifies
a disk-to-disk program (Program name
= DSKDSK). If used at all, the ini-
tials must be DD; otherwise a warning
message will be printed.

The required operands are:

Tt ,FF,A=(input) ,B=(output)

Disk-to-Disk Utility Program 15

They start in column 8 if the program
code initials (DD) are used, or in column 6
if DD is omitted. These four operands must
be listed in the above order, and all must
appear unless the card is omitted entirely.
The additional operand Ox may appear after
the four required ones.

Tt - Type-of-Function Operand

This operand specifies the transfer to be
performed, when "t" is replaced by one or
two initials. Files can be transferred in
four ways:

e TC -- Copy. No change is made in the
records or the file itself. This option
is used to produce an identical file.

e TR -- Reblock. The number of records
per block in the output file is differ-
ent from that of the input file. The
record format remains unchanged.

» TF -- Field-Select. The record format
is changed. Data fields within each
record are rearranged, omitted, or con-
verted to zoned or packed decimal. The
output record length may differ from the
input record length; however, the number
of records per block remains the same as
in the input file.

e TRF -- Reblock and Field-Select. This
is a combination of the two preceding
options. It is used when both the
record format and the number of records
per block are to be changed.

FF - Record-Format Operand

The second operand indicates that the
records to be transferred are always in
fixed-length format, i.e., all records
contain the same number of bytes. The
characters FF must be entered.

A=(input) - Input Record Length and Block
Length Operand

It indicates the length of the record and
the block to be read. The format of this
operand is

A=(n,m), where

n is the number of bytes in each record,
and

m is the number of bytes in each block.

Since the number of records per block is
constant, m can be worked out by multi-
plying the number of bytes per record by
the number of records per block. The
values n and m must be separated by a
comma and enclosed in parentheses.

16

B= (output) - Output Recoxd Length and
Block Length Operand

This operand describes the records and
blocks of the output file. Its format is

B=(a,c), where

a is the number of bytes in each record,
and

¢ is the number of bytes in each block.

The value ¢ equals the number of bytes
per record multiplied by the number of
records per block. The values a and c
must be separated by a comma and enclosed
in parentheses.

Ox - Write-Disk Check

Ox is an optional operand that may be
placed behind the four required operands.
If it is omitted, the default specification
(0Y) in Figure 6 is assumed and a write-
disk check is made. The write-disk check
option is used to read and check data
immediately after it has been written on
disk. If the data cannot be written pro-
perly, a message is printed and the program
halts. It is recommended that the write-
disk check option should be used.

If the optional operand (Ox) or the
utility-modifier statement itself is
omitted from the utility program, the pro-
gram automatically assumes certain standard
("default") specifications for the missing
operand(s) .

You can omit the entire Disk-to-Disk
utility-modifier statement (and run your
program with the END statement only), if
all your requirements match the default
specifications as shown in Figure 6:

e Copy only, no field-selection or
reblocking.

e Fixed-length records.

¢ Input record and block lengths are both
270 bytes.

s Output record and block lengths are both
270 bytes.

¢ Write-disk check is to be made.
FIELD~-SELECT STATEMENT

This section provides you with the basic
information you need for writing the Field-
Select statement for the Disk-to-Disk
program. For a more detailed discussion
see the section Field-Select Statement
under General Description of Utility Con-
trol Statements.

- ————————————— - -—=7

i)

LB 1
| | |operand] x |
| |Possible| Speci-| |Default]
|Operand | Forms | fica- |Explanation | Specification |
| | | tion | | |
Bt S oo frmmmmmm e i
|Statement ID|//bUDDb | DD | Disk-to~Disk] |
|77/ bUxxb | | |Jutility identifier i |
| | 7/ bUb | |General utility identifier| //bUb
———————————— 1 Attt T
|Type of | TC | ¢C | Copy | TC 1* |
| Function | TF | F |Field-Select | I
| Tt | TR | R |Reblock | 1
| | TRF | RF |Reblock and Field-Select | |
L N S S
F + + ———=- B ettt +--
| Format | FF | F |Fixed~length records | FF [* |
[FF | | | 1 |
I P po— oo Frmmmmmm - -1
| Input |A=(n, m) |} | Fixed-length records | | * |
|Description | | | | 1 |
| A= (input) I | | | I
| | | n | Input record length, |A=(270,270)] |
] | | m | Input block length | | |
] -]
t -1- + === i e +--1
|Output |B=(a,c) | |Fixed-length records | I* |
|[Description |] |] I
|B=(output) | | a |Output record length, |B=(270,270) | |
| | | ¢ |output block length | |
} -4-- oo oo frommm s 1o~
|Disk Check | oy | Y |Write~disk check | oy |
|ox | ON | N |Do not write-~disk check | 1
O K R K G I, P d
*Default permitted only if entire statement is omitted.
|//bUDDth FF, A—(lnput) B=(output), Oxl
Figure 6. Disk-to-Disk Program Utility-Modifier Statement
The FS statement is only required if TF r,s,t 1is the operand for a particular
or TRF is specified in the Tt operand of field, where
the Disk-to-Disk utility-modifier state-
ment.
r - 1is the starting position in the
The general format of the field-select input record of the field to be
statement (when there is no data format transferred

conversion) is

P et e e 1 s - 1s the numbexr of bytes to be trans-
|Name|0perat10n|0perand | ferred
g 1]
|//b IFSb]r,s t/ee/XyS,t | t - is the starting position in the
———————————————————————— 4 output record of the receiving field
where
To both move and convert a data field,
//bFSb identifies the statement as the specify the operand for that field in one
field-select control statement. It of the following forms, depending on wheth-
must be punched starting in column er the input field is to be packed or
1. unpacked:

Disk~-to-Disk Utility Program 17

Pack -- the input field is to be packed for
output:

r, (P,n,m),t

r starting position in the input record of
the field to be transferred

P pack

n length (in bytes) of the unpacked input
field

m length (in bytes) of the packed output
field

t starting position in the output record
of the receiving field

To determine the minimum number of bytes
required in the output field the following
formulas may be used:

n+l

If n is odd, m = ——-
2

n+2

If n is even, m = ——-
2

Unpack - the input field is to be converted
from packed to zoned decimal for
output:

r, (U,n,m),t

r starting position in the input record of
the field to be transferred

U unpack

n length (in bytes) of the packed input
field

m length (in bytes) of the unpacked output
field

t starting position in the output record
of the receiving field

The formula for determining m is: m=2n-1

END CONTROL STATEMENT

The END statement is the last of the utili-
ty control statements and must appear even

if none of the others is needed. It is
punched

-7 - btk bt g 1
| Name | Operation| Operand |
TR P - -- e
|//b |END |]
(IO I S J

in columns 1-6.

18

Sample Problems

1. Copy data from one disk pack to another
pack. Both the input and the output
packs contain eighty-byte records,
three to a block. Do not make a write-
disk check.

//bUDDbTC, FF,A=(80,240) ,B=(80,240) ,0N
//bEND

No field-select statement is needed.
The control-statement identification field
for a Disk-to-Disk utility program is
//bUDDb, the DD entry being optional. The
job is to copy (TC) fixed-length records
(FF). The size of the input and output
blocks is calculated by multiplying the
number of bytes per record by the number of
records per block (80x3=240).

2. Transfer a file from one area of a disk
pack to another area of the same pack.
The input records are unblocked, eighty
bytes long. Output records are to be
blocked six records to a block. Make a
write-disk check.

//bUDDbLTR, FF, A= (80,80),B=(80,480),0Y
//bEND

oY
//bUbTR, FF, A= (80,80) ,B=(80, 480)
//END

Both pairs of statements are acceptakble
since the program assumes a default value
of OY and the DD code for Disk-to-Disk is
optional. No field-select statement is
needed. Since the number of records per
block is changed, the reblock transfer (TR)
is used. Block size is calculated by
multiplying the number of bytes per record
by the number of records per block. For
the input blocks this is 80x1=80 bytes.
For output blocks it is 80x6=480 bytes.

Note that the utility control statements
do not indicate whether the transfer is
between different disk packs or between
areas of the same pack. This assignment is
made by means of job-control statements.

3. Transfer a file from one disk pack to
another. Make a write-disk check. The
input file was written with 76-byte
records, three to a block. Three
fields in each record are to be packed
and the output blocks are to contain
eight records, each 67 bytes long. The
record formats are shown in Figure 7
and in the following table:

Input Record

Fied 3

Field t Field 2
1 {8

Byte # 15'16

Field §

Fietd ¢
58 65

50 57

Fieltd 6
66 76

Pack

~
o o
< N

Byte #”1 4,5 12[:3

Output Record

46

a1 51’52 5el57 srl)

input record (n=7) and must be at least
(7+1) /72=4 bytes long in the output record
Its starting position in the output
record is byte 1 (t=1).

The second field operand is separated
from the first by a slash (/). Since no

Figure 7. Record Formats for Disk-to-Disk Transfer Problem
Input Ooutput
Field Record Record Conversion
bytes bytes (m=4) .
1 1-7 1-4 To be packed
2 8-15 5-12 Unchanged
3 16-49 13-46 Unchanged
u 50-57 47-51 To be packed
5 58-65 52-56 To be packed
6 66-76 57-67 Unchanged

The required utility control statements
are:

//bUDDLTRF, FF, A= (76,228),B=(67,536),0Y
//bFsbl, (P,7,4),1/8,8,5/16,34,13

//bFsbs0, (P,8,5) ,47/58, (P, 8,5),52/66,11,57
//bEND

The job requires the block size to be
changed from three records per block in the
input file to eight records per block in
the output file. At the same time the
record format is changed: three selected
fields are to be converted to packed deci-
mal, the remaining three are moved to dif-
ferent relative positions in the output
record. Hence the reblock and field-select
option (TRF) is used.

Input records are 76 bytes long and the
blocks are 76x3=228 bytes long. The output
records are 67 bytes long and the bilocks
are 67x8=536 bytes long. The optional
operand OY could be omitted, since the
program would automatically assume a
default specification of OY.

The field-select statement controls the
change in record format. Since field 1 is
to be packed for output, its operand in the
field-select statement is r, (P,n,m), t.
Field 1 starts at byte 1 of the input
record (r=1); it is 7 bytes long in the

conversion is required, the operand assumes
the form r,s,t. The starting point of
field 2 in the input record is byte 8
(r=8). Field length is 8 (s=8); transfer
is to byte 5 of the output record (t=5).

Fields 3 and 6 are also moved without
change. Fields 4 and 5 are eight bytes
long for input and must each be at least
(8+2)/2 = 5 bytes long in the output
record. (The formulas for computing
packed-field lengths are presented in the
section Field-Select Statement).

One FS statement could have accommodated
all field-select specifications. The sec-
ond statement was used for illustrative
purposes only. Note, also, the absence of
a slash (/) after the final operand on each
of the FS statements.

4, Transfer a file from one disk pack to
another pack. The input and output
files contain unblocked 270-byte
records. Write-disk check.

The only utility control statement required
is

//BEND

No utility-modifier or field-select

statement is required. The default speci-
fications satisfy the job (see Figure 6).

Disk-to-Disk Utility Program 19

Disk-to-Tape Utility Program (DSKTAP)

The Disk-to-Tape utility program transfers
a data file from one or more disk packs
mounted on one or more disk drives

(max. two drives for Submodels 2 and 4 and
four drives for sSubmodel 5), to one or more
reels of tape.

All input and output records must be
fixed-length, blocked or unblocked.

It is possible to transfer the contents
of an entire disk pack to a magnetic tape
by using the Disk-to-Tape utility program
with a special UPSI statement. This fea-
ture is further explained in Appendix 1I.

The following job-control and utility
control statements are used by the Disk-to-
Tape utility program.

Job-Control Statements

Operand Entries for

Statement Use Disk=-to-Tape Utility

// JOB Required Program name = DSKTAP

// ASSGN Required Primary input device =
SYSIPT

// ASSGN Required Primary output device
= SYSOPT

// ASSGN Optional Alternate output
device = SYS001

// ASSGN Optional Alternate input devi-
ces = SYS002-sSYSOOu

// ASSGN Optional Logging unit = SYSLOG
(See LOG statement)

// TFILES Optional

// UPSI Optional

// CONFG Required* Main-storage capacity

// DATE Required* Year and day

// VOL Required Input file name = UIN

// DLAB Required One set for input file

// XTENT Required More than one XTENT
statement can be used
in the set

// VOL Required 1If label processing on
output tape
Output file name =
uouT

// TPLAB Required

// LOG or Optional
/7 NOLOG
// EXEC Required

*Unless information is still in main stor-
age.

For a detailed description of the job-
control statements refer to Appendix A.

20

Note: When the Disk-to-Tape utility pro-
gram is used as inquiry program, the tape
files are treated as unlabeled files and
tape labels are not processed. If you have
issued a TPLAB statement, it is ignored.

Tapemark Option

If for an unlabeled output tape a tapemark
is not desired at the beginning of the reel
(Disk-to-Tape only), an UPSI statement must
be provided with the job-control state-
ments. The UPSI statement must have the
following format:

//bUPSIbnnnnlnnn

where n represents any non-blank character.

Utility Control Statements

Two utility control statements may be used
with the Disk-to-Tape program:

The utility-modifier statement, which
outlines the method of transferring a
set of data records (a file) from disk
to tape.

The field-select statement, which des-
cribes the transfer of individual fields
from the input record to the output
record.

A third utility control statement, the
END statement, must be used with every
utility program.

The sequence of statements is as follows:

//b0 Optional

//DbFS Optional (More than one may
be used)

//bEND Regquired

DISK-TO-TAPE UTILITY-MODIFIER STATEMENT

The utility-modifier statement controls the
file transfer by indicating the type of
transfer, describing the input and output
files, and specifying certain input and
output device actions. Its general format
is

S i i 1
|Name | Operation|Operand |
|Tt, FF,A=(input),B=(out- |
put), Ox |

Possible operand entries are shown in
Figure 8.

//bU Identifies the statement as a
utility-modifier statement. It must
be punched starting in column 1.

DT Program initials for the Disk-to-Tape

program. They may be omitted since
the JOB statement actually specifies
a disk-to-tape program (Program name
= DSKTAP). If used at all, the ini-
tials must be DT; otherwise a warning
message will be printed.

The required operands are:
Tt,FF,A=(input) ,B=(output)

They start in column 8 if the program
code initials (DT) are used, or in column 6
if DT is omitted. These four operands must
be listed in the above order, and all must
appear unless the card is omitted entirely.
The additional operand Ox may appear after
the four required ones.

Tt - Type=-of-Function Operand

This operand specifies the transfer to be
performed, when "t" is replaced by one or
two initials. Files can be transferred in
four ways:

s TC -- Copy. No change is made in the
records or the file itself. This option
is used to produce an identical file.

e TR -- Reblock. The number of records
per block on the output tape is differ-
ent from that in the input disk file.
The record format remains unchanged.

s TF -- Field-Select. The record format
is changed. Data fields within each
record are rearranged, omitted, or con-
verted to zoned or packed decimal. The
output record length may differ from the
input record length; however, the number
of records per block remains the same as
in the input file.

s TRF -- Reblock and Field-Select. This
is a combination of the two preceding
options. It is used when both the
record format and the number of records
per block are to be changed.

FF - Record-Format Operand

The second operand indicates that the
records to be transferred are always in
fixed-length format, i.e., all records
contain the same number of bytes. The
characters FF must be entered.

A= (input) - Input Record Length and Block
Length Operand

It indicates the length of the record and
the block to be read. The format of this
operand is

A=(n,m), wWhere

n is the number of bytes in each record,
and

m is the number of bytes in each block.

Since the number of records per block is
constant, m can be worked out by multi-
plying the number of bytes per record by
the number of records per block. The
values n and m must be separated by a
comma and enclosed in parentheses.

B=(output) - Output Record Length and Block
Length Operand

This operand describes the records and
blocks of the output file. Its format is

B=(a,c), where

a is the number of bytes in each record,
and

¢ is the number of bytes in each block.

The value ¢ equals the number of bytes
per record multiplied by the number of
records per block. The values a and c¢
must be separated by a comma and enclosed
in parentheses.

Ox - Rewind Tape

Ox is an optional operand you may specify
after the four required operands. If omit-
ted, its default specification in Figure 8
(0U) is assumed. The rewind-tape option
determines whether the last or only output
tape is to be rewound (OR), rewound and
unloaded (OU), or not rewound (ON) after
use. If there is more than one output
tape, all but the last are rewound and
unloaded after use. Output tapes are not
rewound before use.

If the optional operand (0x) or the
utility-modifier statement itself is omit-
ted from the utility program, the program
automatically assumes certain standard
("default") specifications for the missing
operand(s) .

Disk-To-Tape Utility Program 21

[T B I e et e T——————mToos—— 1
| | lOPerandI | I
] |Possiblelspeci- | |Default
|Operand | Forms |fica- |Explanation |Specification |
| | [tion | | |
poome —4-- R G foommmmmm e 1
|Statement ID|//pUDTb | DT lDlsk—to Tape | |
|7 /bUxxb]] Jutility identifier ! |
| |77/ bU0b | |General utility identifier} //bUb |
————————————— Bt e R T
Type of	T¢	¢	copy	TC %	
Function	TF	F	Field-Select		
Tt	TR	R	Reblock		

] | TRF | RF | Reblock and Field-Select | [
e — oo e --- frmmmmmmmeee $--1
| Format | FF | F |Fixed-1length records | FF I* |
|FF | | 1 | I
—————— —f-- e T
Input	A=(n,m)		Fixed-length records	I*	
Description]]				
A=(input)		n	Input record length,	a=(270,270)	
] m	Input block length			
I rmmmmmem T P frmmmmmmm e 1=					
Output	B=(a,c)		Fixed-length records	1*	
Description					
B=(output)		a	output record length,	B=(270,270)]	
		¢ joutput block length]			
P om oo et e L					
Rewind	ON] N	Do not rewind			
Ooutput Tape	OR]l R	Rewind i			
jox	ou	U	Rewind and unload	Ou	
I R, L S S J					

*Default permitted only if entire statement is omitted.

U U |

Figure 8.

You can omit the entire Disk-to-Tape
utility-modifier statement (and run your
program with the END statement only), if
all your requirements match the default
specifications as shown in Figure 8:

e Copy only, no field-selection or
reblocking.

¢ Fixed-length records.

¢ TInput record and block lengths are both
270 bytes.

¢ Output record and block lengths are both
270 bytes.

¢ Rewind and unload output tape.

FIELD-SELECT STATEMENT

This section provides you with the basic
information you need for writing the Fielad-
Select statement for the Disk-to-Tape
program. For a more detailed discussion

22

Disk-to-Tape Program Utility-Modifier Statement

see the section Field-Select Statement
under General Description of Utility Con-
trol Statements.

The FS statement is only required if TF
or TRF is specified in the Tt operand of
the Disk-to-Tape utility-modifier state-
ment.

The general format of the field-select
statement (when there is no data format
conversion) is

———-1

|Name|0peratlon|0perand

-—1 ——3- —

|//b |FSb
| PSSR N

ltys,t/.../x,s,t
——1_

where

//bFSb identifies the statement as the
field-select control statement. It
must be punched starting in column
l.

r,s,t 1is the operand for a particular
field, where

r - is the starting position in the
input record of the field to be
transferred

s - 1is the number of bytes to be trans-
ferred

t - 1is the starting position in the

output record of the receiving field

To both move and convert a data field,
specify the operand for that field in one
of the following forms, depending on wheth-
er the input field is to be packed or
unpacked:

Pack -- the input field is to be packed for
output:
r, (P,n,m),t

r starting position in the input record of
the field to be transferred

P pack

n length (in bytes) of the unpacked input
field

m length (in bytes) of the packed output
field

t starting position in the output record
of the receiving field

To determine the minimum number of bytes
required in the output field the following
formulas may be used:

n+l

If n is odd, m = ——-=
2

n+2

If n is even, M = ===
2

Unpack - the input field is to be converted
from packed to zoned decimal for
output:

r, (U,n,m),t

r starting position in the input record of
the field to be transferred

U unpack

n length (in bytes) of the packed input
field

m length (in bytes) of the unpacked output
field

t starting position in the output record
of the receiving field

The formula for determining m is: m=2n-1

END CONTROL STATEMENT

The END statement is the last of the utili-
ty control statements and must appear even
if none of the others is needed. It is
punched

——— o e e e s

b----t
|//b |END

| SISO & -

in columns 1-6.

Sample Problems

1. Copy a file from a disk pack to a mag-
netic tape. Both the input and the
output medium contain 85-byte records,
three to a block. Do not rewind the
output tape.

//bUDTbTC, FF¥,A=(85,255) ,B=(85,255) ,0N
//DbEND

The control statement identification for
Disk-to~Tape is //bUDTb, the DT entry being
optional. The job is to copy (TC) fixed-
length records (FF). The block length is
calculated by multiplying the number of
bytes in a record by the number of records
in a block (85x3=255). No field-select
statement is needed since the job is to
copy records.

2. Transfer a file from disk to tape.
Rewind and unload the tape. The input
records are 80 bytes long and there are
three recoxds in a block. On the
output tape, there are to ke ten
records of 80 bytes each to a block.

//bUDTbLTR, FF,A=(80,240),B=(80,800),00
//PEND
ox

//bUbTR,FF,A=(80,240),B=(80,800)
//bEND

Both sets of statements achieve the same
result since the DT code for Disk-to-Tape
is optional and OU is the default specifi-
cation of the tape-rewind option. Since
the block size of the output file is to be
different from that of the input file, the
reblock option (TR) must be used. The
records themselves are copied unchanged;
therefore no field-select statement is
needed. The block sizes are calculated by
multiplying the record size by the number
of records in a block (80x3=240 and
80x10=800).

Disk-To-Tape Utility Program 23

Fiata 1
(Packed)

Disw U

Fietd 3

(Packed)

Fieta 2
(Loned)

-

§0 61 1314 80
—J\ — ‘\ﬁf—J

/

fFierd 3
(lonea)

Fireid 2

Tape (Pocked)

Freta ¢
(Pacned)

t 18 20 24

Figure 9.

3. Transfer a file from disk to tape,
changing the format of the records.
Rewind, but do not unload, the tape at
the end of the job. The input records
are 80 bytes long with three records to
a block. The output record and block
size will be the same. Both input and
output records contain three fields.

//bUDTbTF, FF,A=(80,240),B=(80,240),0R
//bFsbl, 60,21/61, (P,13,7),1/74,(U,7,13),8
//bEND

Figure 9 shows how the transfer is made.
Further specifications are listed in Figure
11.

Since the record format is to be
changed, the field-select statement is
needed; the Tt operand in the utility-
modifier statement becomes TF. The
operands of the field-select statement
describe the format change for each field
in detail.

Since no conversion is required for
field 1, its gemeral operand entry is
r,s,t. The field is moved from bytes 1 -
60 (starting point r=1, field length s=60)
to bytes 21 - 80 of the output record
(t=21).

The field operands are separated from
each other by a slash (/). Field 2 must be
converted from zoned to packed decimal
format; its operand entry must therefore
indicate the pack operation: r,(P,n,m),t.
Field 2 starts at byte 61 of the input

24

80

Field Modification for Disk-to-Tape Transfer Problem

record (r=61) with a length of 13 bytes
(n=13); since this is an odd number, the
length of the field in the output record
must be equal to or greater than (13+1)/2=7
after conversion (m=7). The packed field
is transferred to the first 7 kytes of the
output record (t=1),

Field 3 is to be unpacked; operand entry
is r, (U,n,m),t. It is seven bytes long
during input (n=7) and must have at least
(2x7)-1=13 bytes in the output record
(m=13). It is moved from bytes 74-80
(r=74) to bytes 8-20 (t=8). (The formulas
for minimum field size for packing and
unpacking are presented in the section
Field-Select Statement).

In this problem, the input records and
the output records are of the same size;
therefore, the output deséription operand
of the utility-modifier statement, B=(a,c),
is identical to the input description oper-
and, A=(n,m).

4. Transfer a file from disk to tape with-
out change. Records are unblocked, 270
bytes each. Rewind and unload the
tape.

The only utility control statement needed
is

//bEND

Default specifications for all operands
satisfy the job requirements.

The Tape-to-Disk utility program transfers
a data file from one or more reels of tape
to one or more disk packs mounted on one or
more disk drives (max. two drives for Sub-
models 2 and 4 and four drives for Submodel
5).

All input and output records must be
fixed-length, blocked or unblocked. Input
blocks may (in this program only) contain a
variable number of fixed-length records.
The following job-control and utility con-
trol statements are used by the Tape-to-
Disk utility program.

Job-Control Statements

Operand Entries for

Statement Use Tape-to-Disk Utility

/7 JOB Required Program name = TAPDSK

/7 ASSGN Required Primary input device =
SYSIPT

/7 ASSGN Required Primary output device
= SYSOPT

// ASSGN Optional Alternate input device
= 8¥S000

// ASSGN Optional Alternate output
device = SYS002-SYS004

/7 ASSGN Optional Logging device = SYS-
(See LOG Statement)

// FILES Optional

// UPSI Optional

// CONFG Required* Main-storage capacity

/7 DATE Required* Year and day

/7 VOL Required If label processing on
input tape
Input file name = UIN

// TPLAB Required If Label processing or
input take

/77 VOL Required Output file name =
uouT

// DLAB Required One set for output
file.

// XTENT Required More than one XTENT
statement may be used
in the set.

/77 LOG Optional

or
/7 NOLOG
// EXEC Required

*Unless information is still in main stor-
age.

For a detailed description of the job-
control statements refer to Appendix A.

Note: When the Tape-to-Disk utility pzro-
gram is used as inquiry program, the tape
files are treated as unlabeled files and
tape labels are not processed. If you have
issued TPLAB statement, it is ignored.

Tape-to-Disk Utility Program (TAPDSK)

Utility Control Statements

Two utility control statements may be used
with the Tape-to-Disk program:

The utility-modifier statement, which
outlines the method of transferring a
set of data records (a file) from tape
to disk.

The field-select statement, which des-
cribes the transfer of individual fields
from the input record to the output
record.

A third utility control statement, the

END statement, must be used with every
utility program.

The sequence of statements is as follows:

//blU Optional

//bFS Optional (More than one may
be used)

/7 bEND Required

TAPE-TO~DISK UTILITY-MODIFIER STATEMENT

The utility-modifier statement controls the
file transfer by indicating the type of

transfer,
files,
output device actions.

is

—-

describing the input and output
and specifying certain input and
Its general format

————-

TTTETTTT

| Name |Operation]|Operand |

|//b |UTDb

L

| Tt, FF, A={input) ,B=(out- I

] | put),Ix,0x |
1 i_ —

Possible operand entries are shown in

Figure 10.

//7bU

D

Identifies the statement as a
utility-modifier statement. It must
be punched starting in column 1.

Program initials for the Tape-to-Disk
program. They may be omitted, since

the JOB statement actually specifies

a tape~-to-disk program (Program name

= TAPDSK). If used at all, the ini-

tials must be TD; otherwise a warning
message will be printed.

The required operands are:

code initials (TD) are used,

if

Tt,FF,A=(input), B=(output)

They start in column 8 if the program
or in column 6

TD is omitted. These four operands must

Tape-to-Disk Utility Program 25

r~——-—- T ittt 1
	lOPerandl I			
	Possible	Speci-		Default
Operand	Forms	fica-	Explanation	Specification
	[tion			
o= e e fomomm oo 1				
Statement ID	//bUTDb	TD	Tape-to-Disk]
7/ bUxxb	jutility identifier]		
	7/b0b		General utility identifier	//bUb
———————————— e T e				
Type of	T¢	¢ [copy	Tc P+	
Function !} TF] F	Field-Select] 1t			
Tt	TR	R	Reblock	1
	TRF	RF	Reblock and Field-Select	
prmmmmmmmmmm oo e oo frmmmmmm oo +--1				
Format	FF } F	Fixed-length records	FF 1 *	}
FF				I
———————————— T T e				
Input	A=(n,m)		Fixed-length records] 1*	
Description				
A=(input)		n	Input record length,	2=(270,270)

! | | m lInput block length | I
b oo fommms frmmm oo frmmmmm e -1
]Output |B=(a,c) | |Fixed-length records] 1 * |
|Description | | | | |
|B=(output) | | a]Output record length, |B=(270,270) | |
| | | ¢ {Ooutput block length | {
frmmmmmmmmmmm e fommmmmm T T fommmm - L
|Rewind | IN | N |Do not rewind | |
| Input Tape | IR ! R | Rewind | |
[Ix | 1IU | U |Rewind and unload | IU |
| | IM | M |[Multiple-reel input |

| | | | (A1l reels are rewound | |
|]]]and unloaded) | |
-- -—t-- e T T e 1
|Disk | oY 1 Y |Write-disk check | |
|Check] | | | oY]
|ox | ON] N |Do not write-disk check |]
[, -1 ——— DV, § 3

¥Default permitted only if entire card is omitted.

|//bUTDth FF,A=(input), B-(output) Ix,0x 1

Figure 10. Tape-to-Disk Program Utility-Modifier Statement

be listed in the abcove order, and all must
appear unless the card is omitted entirely.
The additional operands (Ix and Ox) may
appear in any order after the four required
ones.

Tt - Type of Function operand

This operand specifies the transfer to be
performed, when "t" is replaced by one or
two initials. Files can be transferred in
four ways:

¢ TC -- Copy. DNo change is made in the
records or the file itself. This option
is used to produce an identical file.

e TR -- Reblock. The number of recoxds
per block in the output (disk) file is
different from that of the input (tape)

26

file. The record format remains
unchanged.

TF ~- Field-Select. The record format

is changed. Data fields within each
record are rearranged, omitted, or con-
verted to zoned or packed decimal. The
output record length may differ from the
input record length; however, the number
of records per block remains the same as
in the input file.

TRF -- Reblock and Field-Select. This

is a combination of the two preceding
options. It is used when both the
record format and the number of records
per block are to be changed.

FF - Record-Format QOperand

The second operand indicates that the
records to be transferred are always in
fixed-length format, i.e. all records
contain the same number of bytes. The
characters FF must be entered.

A=(input) - Input Record Length and Block
Length Operand

It indicates the length of the record and
the block to be read. The format of this
operand is

A=(n,m), where

n is the number of bytes in each record,
and

m is the number of bytes in each block.

If the input (tape) records are blocked
and the number of records are block var-
ies, n must designate the maximum block
size. The values n and m must be sepa-
rated by a comma and enclosed in paren-
theses.

B=(output) - Output Record Length and Block
Length Operand

This operand describes the records and
blocks of the output file. Its format is

B=(a,c), where

a is the number of bytes in each record,
and
is the number of bytes in each block.

The value c¢ equals the number of bytes
per record multiplied by the number of
records per block. The values a and c
must be separated by a comma and enclosed
in parentheses.

Ix - Rewind Tape

Ix is an optional operand which determines
whether the input tape is to be rewound
{IR), rewound and unloaded (IU), or not
rewound (IN) after use. IU is the default
value., If multiple-reel input is specified
(IM), an alternate input unit may be
assigned and all reels will be rewound and
unloaded after use. Input tapes are not
rewound before use.

Ox - Write-Disk Check

Ox is an optional operand that may occur
after the four required operands. The
write-disk check option is used to read and
check data immediately after it has been
written on disk. If the data cannot be
written properly, a message 1is printed and

the program halts. It is recommended that
the write-disk check option should be used.

If one or both of the optional operands
(Ix, Ox) or the utility-modifier statement
itself are omitted from the utility pro-
gram, the program automatically assumes
certain standard ("default") specifications
for the missing operand(s).

You can omit the entire Tape-to-Disk
utility-modifier statement (and run your
program with the END statement only), if
all your requirements match the default
specifications as shown in Figure 10:

e Copy only, no field-selection or
reblocking.

e Fixed-length records.

¢ Input record and klock lengths are both
270 bytes.

» Output record and block lengths are both
270 bytes.

* Rewind and unload input tape.
s Write-disk check is to be made.
FIELD-SELECT STATEMENT

This section provides you with the basic
information you need for writing the Field-
Select statement for the Tape-to-Disk
program. For a more detailed discussion
see the section Field-Select Statement
under General Description of Utility Con-
trol Statements.

The FS statement is only required if TF
or TRF is specified in the Tt operand of
the Tape-to-Disk utility-modifier state-
ment.

The general format of the field-select
statement (when there is no data format
conversion) is

T Sttt il 1
|Name |Operation|Operand |
T P e i
177b |FSb lx,s,t/c..72,8,t |
bmme e J
where

//bFSb identifies the statement as the
field-select control statement. It
must be punched starting in column

1.

r,s,t 1is the operand for a particular
field, where

x - is the starting position in the

input record of the field to be
transferred

Tape-to-Disk Utility Program 27

s - is the number of bytes to be trans-
ferred
t - is the starting position in the

output record of the receiving field

To both move and convert a data field,
specify the operand for that field in one
of the following forms, depending on wheth-
er the input field is to be packed or
unpacked:

Pack -- the input field is to be packed for
output:

r, (P,n,m),t

r starting position in the input record of
the field to be transferred

P pack

n length (in bytes) of the unpacked input
field

m length (in bytes) of the packed output
field

t starting position in the output record
of the receiving field

To determine the minimum number of bytes
required in the output field the following
formulas may be used:

n+l

If n is 0odd, m & ——-
2

n+2

If n is even, m = ———
2

Unpack - the input field is to be converted
from packed to zoned decimal for
output:

r, (U,n,m), t

r starting position in the input record of
the field to be transferred

U unpack

n length (in bytes) of the packed input
field

m length (in bytes) of the unpacked output
field

t starting position in the output record
of the receiving field

The formula for determining m is: m=2n-1

28

END CONTROL STATEMENT

The END statement is the last of the utili-
ty control statements and must appear even

if none of the others is needed. It is
punched

 Aiminints Bttt 8 Bttt 1
| Name | Operation|Operand |
_____________ —_— — J—
|//b |END | |
bl R, J

in columns 1-6.

{

Sample Problems

1. Copy a file from tape to disk. Both
the input and the output media contain
90-byte records, three to a block. Do
not rewind the input tape. Do not make
a write-disk check.

//bUTDbTC, FF,A=(90,270),B=(90,270) ,IN, ON
//bEND

The control statement identification for
Tape-to-Disk is //bUTDb, the TD entry being
optional. The job is to copy (TC) fixed-
length records (FF). The block length is
calculated by multiplying the number of
bytes per record by the number of records
per block (90x3=270). No field-select
statement is needed since the job is to
copy records.

2. Transfer a file from several reels of
tape to a disk pack. The input records
are eighty bytes long, with four
records in a block. On disk the
records will be stored sixteen to a

block. Make a write-disk check.
//bUTDbLTR, FF,A=(80,320),B3=(80,1280),
IM,O0Y
//bEND

or

//bPUbTR,FF,A=(80,320),B=(80,1280),IM
//bEND

Both pairs of statements are acceptakle
because certain default specifications are
appropriate for this Jjob. An alternate
input device may be assigned. IM indicates
that more than one reel of tape is used as
input. The tapes will be rewound and
unloaded after use. Since the block size
of the output file is different from that
of the input file, the reblock option (TR)
must be used. The records themselves are
copied unchanged; therefore no field-select
statement is needed.

Transfer a file from tape to disk,
changing the format of the records.
Rewind the tape. Do not make a write-
disk check. The input records are
eighty bytes long with three records to
a block. The output record and block
sizes will be the same as the input
sizes. Both input and output records
contain three fields. Further job
specifications are listed in Figure 11,
Figure 9 shows what is changed during
transfer.

//bUTDbTF,FF,A=(80,240),B=(80,240),IR,ON
//bFsbli,60,21/61,(P,13,7),1/774,(0,7,13),8
//bEND

This field-select statement is discussed

in Sample Problem 3 in the section Disk-to-
Tape Utility Program.

4.

Figure 11,

Transfer a file from tape to disk
without change. Records are unblocked,
270 bytes each. Make a write-disk
check and rewind and unload the tape.

The only utility control statement need-
ed is

//bEND

Default specifications for all operands
satisfy the job requirements.

5. Transfer a file from tape to disk. The
90-byte input records are Lklocked, with
the block size ranging from three to
six records per block. The output
records on disk are to be unblocked, 90
bytes long. Rewind and unload the
input tape. Make a write-disk check.

//bUTDbTR, FF, A=(90, 540) , B= (90, 90)
//END

Since the input blocks contain a varia-
ble number of recorxds, the maximum block
size, i.e., 6x90=540 must be srecified.

The Ix and Ox operands assume their default
specifications.

----------------------------- e e
Input Record | Output Record |
——————————————————— — ~4- e
Location | Location |

(bytes) Format | (bytes) Format Conversion |

Field 1 1-60 packed decimal | 21-80 packed decimal none]
Field 2 61-73 zoned decimal | 1-7 packed decimal to be packed |
Field 3 74-80 packed decimal | 8-20 zoned decimal to be unpacked |
1 J

Field Modification for Tape-to-Disk Transfer Problem

Tape-to-Disk Utility Program 29

Disk-to-Card Utility Program (DSKCAR)

The Disk-to-Card utility program transfers
a data file from one or more disk packs
mounted on one or more disk drives

(max. two drives for Submodels 2 and 4 and
four drives for Submodel 5), to punched
cards. The output file is always punched
in the IBM standard card code equivalent to
extended binary coded decimal (EBCDIC).

The output (punched card) records must be
unblocked and must not exceed 80 bytes each
to fit on a single card. Input (disk)
records may be blocked.

A method is provided to exit to a prob-
lem program for Sterling-currency conver-
sion routines. (See Appendix D).

You can transfer the contents of an
entire disk pack to punched cards by using
the Disk-to-Card utility program with a
special UPSI statement. This feature is
further explained in Appendix I.

The following job-control and utility
control statements are used by the Disk-to-
Card utility program.

Job-Control Statements

Operand Entries

Statement Use for Disk-to-Card

// JOB Required Program name = DSKCAR

// ASSGN Redquired Primary input device =
SYSIPT

// RASSGN Required Primary output device
= SYSOPT

// BSSGN Optional Alternate input
devices =
SYS002-SYSO00U

// ASSGN Optional Logging device = SYS-
LOG (See LOG
statement)

// UPSI Optional

// CONFG Required* Main-storage capacity

// DATE Required* Year and day

// VOL Required Input file name = UIN

// DLAB Required One set for input
file.

// XTENT Required More than one XTENT
statement may be used
in the set.

// LOG Optional

or
// NOLOG
// EXEC Required

*¥Unless information is still in main stor-
age.

A detailed description of the job-
control statements is given in Appendix A.

30

Utility Control Statements

Two utility control statements may be used
with the Disk-to-Card program:

The utility-modifier statement, which
outlines the method of transferring a
set of data records (a file) from disk
to card.

The field-select statement, which
describes the transfer of individual
fields from the input record to the
output record.

A third utility control statement, the
END statement, must be used with every
utility program.

The sequence of statements is as follows:

//b0 Optional

//bFS Optional (More than one may
be used)

//bEND Required

DISK-TO-CARD UTILITY-MODIFIER STATEMENT

The utility-modifier statement controls the
file transfer from disk to cards, describes
the input and output files, and specifies
certain input and output device actions.
Its general format is

| Name |Operation|Operand |
e e T G]
|/7b |UDCb |Tt,FF,A=(input), B=(out- |
rut), o=(x,y) |
| T B N J

Possible operand entries are shown in
Figure 12.

//bU0 TIdentifies the statement as a
utility-modifier statement. It must
be punched starting in column 1.

DC Program initials for the Disk-to-Card

program. They may be omitted since
the JOB statement actually specifies
a disk-to-card program (Program name
= DSKCAR). If used at all the ini-
tials must be DC; otherwise a warning
message will be printed.

The required operands are:

Tt,FF,A=(input) ,B=(output)

They start in column 8 if the program
code initials (DC) are used, or in column 6
if DC is omitted. These four operands must
be listed in the above order, and all must
appear unless the card is omitted entirely.
The additional operand Q=(x,y) may appear
after the four required ones.

Tt - Type-of-Function Operand

This operand specifies the transfer to be
performed, when "t" is replaced by one or
two initials. Files can be transferred in
four ways:

s TC -- Copy. No change is made in the
records or the file itself. Since this
option is used to produce an identical
file, the input file must have the same
format as the output file, i.e., the
disk records must already be unblocked
and not exceed 80 bytes each.

» TR -- Reblock. This option is used if
the input records are blocked, and the
record length is up to 80 bytes. During
transfer the file is being unblocked.
The record format remains unchanged.

s TF -- Field-Select. The record format
is changed. Data fields within each
record are rearranged, omitted, or con-
verted to zoned or packed decimal. This
option is used if input records are
unblocked and more than 80 bytes long.

s TRF -~ Reblock and Field-Select. This
is a combination of the two preceding
options. It is used when the record
format is to be changed and the input
records are to be blocked.

FF - Record-Format Operand

The second operand indicates that the
records to be transferred are always in
fixed-length format, i.e. all records
contain the same number of bytes. The
characters FF must be entered.

A=(input) - Input Record Length and Block
Length Operand

It indicates the length of the record and
the block to be read. The format of this
operand is

A=(n,m), where

n is the number of bytes in each record,
and

m is the number of bytes in each block.
Since the number of records per block is
normally constant m can be worked out by
multiplying the number of bytes per
record by the number of records per
block. The values n and m must be sepa-
rated by a comma and enclosed in paren-
theses.

B=(output) - Output Record Length and Block
Length Operand

This operand describes the output file.
Since the output (punched card) records
must be unblocked, the block length is
equal to the record length; thus B=(a,c)
becomes B=(a,a), Where a is the number of
bytes in each punched card.

O=(x,v) = Sequence Numbering

The optional operand 0=(x,y) in the
utility-modifier statement may be used to
punch sequence numbers into the output
cards. The numbers begin with the value 1
(with leading zeros) and increase by one
with each successive card. The value x
designates the first (high-order) column of
the sequence-number field in the output
cards. The value y is the length of the
sequence-number field in the output cards,
which may be one to ten columns. If the
field is not long enough to number all the
cards, the numbers begin again at zero (not
1) and a warning message is printed.

The sequence-number field is the last
field moved to the output area and, there-
fore, replaces any other data that may have
been previously placed in that area. Note
that the output record length refers to the
data transferred from the input medium, and
need not allow for the sequence-number
field if this is to be punched to the right
of the data record. & warning message is
printed if the sequence-number field over-
lays a data output field.

If this operand is omitted,
numbers will not be punched.

sequence

If the optional operand Q0=(x,y) or the
utility-modifier statement itself is omit-
ted from the utility program, the program
automatically assumes certain standard
("default") specifications for the missing
operand(s).

You can omit the entire Disk-to-Card
utility-modifier statement (and run your
program with the END statement only), if
all your requirements match the default
specifications as shown in Figure 12:

Reblocking.

e Fixed-length records.

¢ TInput record length is 80 bytes,
block length is 240 bytes.

e oOutput record and block lengths are both
80 bytes.

e No sequence numbering.

input

Disk-to-Card Utility Program 31

r T T T T I |
| | |Operand| | |
| |Possible|Speci- | |Default]
| Operand | Forms |fica- |Explanation | Specifications]
| | [tions | I |
- N R Fom 1
|Statement ID|//bUDCb | DC |Disk to Card | |
|7 /7bUxxb] | Jutility identifier | |
| |7/bUb | |General utility identifier | //bUb |
fmmm—m— e +—— t e -=-r—1
|Type of | TC | C | Copy | TR | *1
|Function | TF | F |Field-Select | |
|Tt | TR | R |Reblock | |
| | TIRF | RF |Reblock and Field-Select | |
p=———————— e +——= + - B B +-1
| Format | FF | F |Fixed~-length records | FF [*]
|FF | | | | |1
I fommmmoee D pommmmmom— - + ——-$-1
| Input |A=(n,m) | |Fixed-length records | | %]
|Description | | | | |
|A=(input) | | n | Input record length, |a=(80,240) | |
| |] m |Input block length] I 1
—— —+-- -+ ¥ - e -1
|Output |B=(a,a) | |Fixed-length records | [*]
|Description | | | | [
|B=(output) |] a |output record length, |B=(80,80) | 1
]] | a |output block length | |
I oo e fommmmmem e i
| Sequence jo=(x,y) | X |First (high-order) | Sequence
| Numbering | | |card column for | Numbering |
|0=1(x,y) i | | the sequence-number field |Omitted |
i | | ¥ | Length (number of columns) |
| | | Jof the field | |
b i 1 —_ _— e J
*Default permitted only if entire statement is omitted.
|//bUDCth FF,A= (input) ,B={output),Q= (x,y)l
—— e e
Figure 12. Disk-to-Card Program Utility-Modifier Statement
FIELD-SELECT STATEMENT where
This section provides you with the basic
information you need for writing the Field- //bFSb identifies the statement as the
Select statement for the Disk-to-Card field-select control statement. It
program. For a more detailed discussion must e punched starting in column
see the section Field-Select Statement 1.
under General Description of Utility Con- r,s,t 1is the operand for a particular
trol Statements. field, where
r - 1is the starting position in the
The FS statement is only required 1if TF input record of the field to be
or TRF is specified in the Tt operand of transferred
the Disk-to-Card utility-modifier state-
ment. s - is the number of bytes to be trans-
ferred

The general format of the field-select

statement (when there is no data format t - is the starting position in the

conversion) is output record of the receiving field
——— 1 To both move and convert a data field,

|Name|0peratlon10perand | specify the operand for that field in one

e e +——= —_— 4 of the following forms, depending on wheth-

|7/b |FSb |r s,t/.../1,8,t | er the input field is to be packed or

L et ———— 4 unpacked:

Pack -- the input field is to be packed for
output:

r, (P,n,m),t

r starting position in the input record of
the field to be transferred

P pack

n length (in bytes) of the unpacked input
field

m length (in bytes) of the packed output
field

t starting position in the output record
of the receiving field

To determine the minimum number of bytes
required in the output. field the following
formulas may be used:

n+l
If n is odd, m = ——-
2
n+2
If n is even, m = -—-
2

Unpack - the input field is to be converted
from packed to zoned decimal for
output:

r, (U,n,m),t

r starting position in the input record of
the field to be transferred

U unpack

n length (in bytes) of the packed input
field

m length (in bytes) of the unpacked output
field

t starting position in the output record
of the receiving field

The formula for determining m is: m=2n-1

END CONTROL STATEMENT

The END statement is the last of the utili-
ty control statements and must appear even
if none of the others is needed. It is
punched

S S e 1
|Name|Operation|Operand |
p==——1 ‘ - 1
|7/b |END |
| SR S J

[R—

in columns 1-6.

Sample Problems

1. Punch into cards the data from a disk
file consisting of unblocked records,
80 bytes per record. Do not punch
sequence numbers.

//bubCbTC, FF,A=(80,80),B=(80,80)
//bBEND

The job is to copy records without
change (TC). Input and output record and
block length is eighty bytes. WNo field-
select statement is needed.

2. Punch cards with data from a disk file
containing eighty-byte records, six
records to a block. Punch sequence
numbers into columns 71-80.

//bUDCbTR, FF, A= (80, 480) ,B=(80, 80),
0=(71,10)
//bEND

Since the output records must be
unblocked, the reblock (TR) option applies.
The input block size is 80x6=480 bytes.
The sequence-number field starts in column
71 on the output card (x=71); it occupies
ten columns (y=10).

Since the sequence numbers are trans-
ferred after the data has been moved, any
information in bytes 71-80 of the input
will be overlayed.

3. Punch cards with data from a disk file
containing records 200 bytes long, 13
records to a block.

Figure 13 shows how the transfer is
made.

The utility control statements required are

//bUDCbLTRF, FF, A= (200, 2600) , B=(70,70),
0=(71,5)

//bFSb1,20,1/51,20,51/101,
(U,5,9),42

//bFSb151, (P, 20,11),25

//bEND

The record format is changed and the
records have to be unblocked (TRF). The
input block length is 200x13=2600 bytes.

If a serial card punch is used, through-
put speed may be increased by punching less
than 80 columns - provided the surplus
blank columns are on the right-hand side of
the card. Thus, in this example, the out-
put record length has been specified as 70
to save the time of spacing over the last
five columns.

The sequence-number field starts in

column 71 (x=71) and occupies five digits
(y=5).

Disk-to-Card Utility Program 33

Input Disk

. . Field 3 Field 4
Field 1 Field 2 (Packed) (Zoned)
Byte No. 1 20 51) 70]0]/ 105 151 170
Output Card l / *
o
/
2 i
T 9
Field 1 Field 4 Field 3 Field 2 82
(Unchanged) (Packed) (Zoned) (Unchanged) 3 ZD
(liloc! ‘ 20 21 24‘25 35|36 41142 50151 70|71 75|76 80

® Figure 13.

The field-select statement controls the
change in record format. Field 1 is moved
without change in format; starting position
in the input recoxrd r=1, field length s=20,
starting position in the output record t=1.

Operand entries are separated from each
other by a slash (/). Field 2 is likewise
moved without change: from r=51 to t=51;
length s=20.

Field 3 is to be unpacked; its general
operand entry is r,(U,n,m),t. Field 3
starts at byte 101 of the input record
(r=101) with a length of five bytes (n=5).
It must be assigned at least (5x2)-1=9
bytes in the output record (m=9). The
unpacked field is transferred to bytes 42 -
50 of the output record (t=42).

Field 4 is to be converted to packed
decimal format: r,(P,n,m),t. It is moved
from r=151 on disk to columns 25 - 35 on
the card (t=25). It is 20 bytes long on
disk (n=20) and must be assigned
(20+2) /2=11 bytes (columns) on the card
(m=11). (The formulas for computing the

34

Field Modification for Disk-to-Card Problem No. 3

length of packed or unpacked fields are
given in the section General Description of
Field-Select Statement). Fields not listed
in the field-select statement are blank in
the output cards: columns 21-24, 36-41, and
76-80.

One FS statement would have been enough
for all field-select specifications. The
second FS statement (no continuation state-
ment is allowed!) is used for illustrative
purposes only. Note that there is no slash
after the last operand in each of the FS
statements.

4. Punch cards with all the data from a
disk file composed of 80-byte records,
three to a block. Do not punch
sequence numbers.,

//bEND

Default specifications describe the
problem. The utility-modifier statement
may be omitted; and there is no field-
selection that would require the FS
statement.

® Figure 14.

The Card-to-Disk utility program transfers
the contents of a card file to one or more
disk packs mounted on one or more disk
drives (max. two drives for Submodels 2
and 4 and four drives for Submodel 5). The
input (card) file must be unblocked, with
each record contained in a single cazxd
(i.e., £ 80 columns). Output (disk)
records may be blocked.

The input card file may be read in the
IBM standard card code equivalent to
extended binary coded decimal (EBCDIC) oxr
it may be read in as column binary. In the
latter format, the punches in each card
column are transferred to two successive
bytes of main storage, with the two left-
most bits in each byte set to zero - thus,
the "image" of punches in a card column is
stored in bit equivalents. For example,
the standard card code equivalent to EBCDIC
for the character $ would be 11-3-8: holes
are punched in rows 11, 3, and 8 of a
column (see Figure 14).

Stondard 18M Card Code

Value
12— |*
n — |8
0 — .
1 — .
2 — .
3— |8
4 — .
5 — .
6 —i .
7 — .
8 —t |0
9 — .
Column 1 2 3 4

Punched Card Code of the $-Sign

If the character $ is read in as column
binary, the punches in the upper 6-bit set
of the column (B-A-8-4-2-1) are transferred
to one byte of main storage with the two
leftmost bits set to zero: 0001 0001.

The punches in the lower 6-bit set of
the column (B-A-8-4-2-1) are transferred to
the adjacent byte in main storage with the
two leftmost bits again set to zero:

0000 0010 (See Figure 15).

The maximum input record size is there-
fore 80 bytes for EBCDIC and 160 for column
binary. With column-binary input, the

Card-to-Disk Utility Program (CARDSK)

input record size must be specified as
twice the number of columns to be read,
because two input-area bytes must be avai-
lable for each column. The output record
must also be specified to contain twice as
many bytes as the number of input columns
to be transferred. (See the section Column
Binary Feature in IBM System/360 Model 20,
Functional Characteristics, Form A26~5847.)

A method is provided to exit to a user's
program for Sterling-currency conversion
routines. (See Appendix D.)

The following job-control and utility
control statements are used by the Card-to-
Disk utility program.

Job-Control Statements

Operand Entries

Statement Use for Card—-to-Disk

// JOB Required Program name = CARDSK

// ASSGN Required Primary input device =
SYSIPT

// ASSGN Required Primary output device
= SYSOPT

// ASSGN Optional Alternate output
devices =
SYS002-syso0u

// ASSGN Optional Logging device = SYS-
LOG (See LOG
Statement)

// UPSI Optional

// CONFG Required* Main-storage capacity

// DATE Required* Year and day

// VOL Required Output file name =
UouT.

// DLAB Required One set for output
file.

// XTENT Required More than one XTENT
statement can be used
in the set.

// LOG Optional

or
// NOLOG
// EXEC Required

*Unless information is still in main stor-
age.

For a detailed description of the job-
control statements refer to Appendix A.

Card-to~Disk Utility Program (CARDSK) 35

® Figure 15.

Column Binary Code

Value
. 8
L] A
. 8
. 4
. 2
UL 15 O 0 IO O
L] a
L2 A
L 8
. 4
[] 2
L]
v '
& A8 4 21) 1234
610001 co0oo0010

01234567 01234567

Byte 1 Byte 2

Column Binary Reading of the
$-Sign

Utility Control Statements

Two utility control statements may be used
with the Card-to-Disk program:

The utility-modifier statement, which
outlines the method of transferring a
set of data records (a file) from cards
to disk.

The field-select statement, which des-
cribes the transfer of individual fields
from the input record to the output
record.

A third utility control statement, the
END statement, must be used with every
utility program.

The sequence of statements is as follows:

//bU0 Optional

//bFS Optional (More than one may
be used)

//bEND Required

CARD-TO~DISK UTILITY-MODIFIER STATEMENT

The utility-modifier statement controls the
file transfer from cards to disk, describes
the input and output files, and specifies-
certain input and output device actions.
Its general format is

S St T
|Name|Operation]Operand |

b=+ 1
|7/b | UCDb | Tt,FF,A=(input) ,B=(out- |
| | | put),Ix,0x,0=(x,¥y) |
| I N, e e e J

Possible operand entries are shown in
Figure 16.

36

//bU0 Identifies the statement as a
utility-modifier statement. It must

be punched starting in column 1.

CD Program initials for the Card-to-Disk
program. They may be omitted since
the JOB statement actually specifies
a card-to-disk program (Program name
= CARDSK). If used at all, the ini-
tials must be CD; otherwise a warning
message will be printed.

The required operands are:
Tt, FF,A=(input), B=(output)

They start in column 8 if the program
code initials (CD) are used, or in column 6
if CD is omitted. These four operands must
be listed in the above order, and all must
appear unless the card is omitted entirely.

Ix, Ox, and Q0=(x,y) are optional oper-
ands and may be omitted from the control
statement. These operands may appear in
any order after the four required operands.

Tt - Type-of-Function Operand

This operand specifies the transfer to be
performed, when "t" is replaced by one or
two initials. Files can be transferred in
four ways:

e TC -- Copy. No change is made in the
records or the file itself. This option
is used to produce an identical file
(both input and output records are
unblocked) .

e TR -- Reblock. The unblocked input card
file is transferred with more than one
record per block to the output disk.
This may speed subsequent reading of the
disk data and conserve space on disk.

o TF -- Field-Select. The record format
is changed. Data fields within each
record are rearranged, omitted, or con-
verted to zoned or packed decimal. The
output record length may differ from the
input record length; however, the number
of records per block remains the same as
in the input file.

s TRF -- Reblock and Field-Select. This
is a combination of the two preceding
options. It is used when the record
format is to be changed and the output
records are to be blocked.

FF - Record-Format Operand

The second operand indicates that the
records to be transferred are always in
fixed-length format, i.e. all records
contain the same number of bytes. The
characters FF must be entered.

[~ ————————- o i D T T T=—"" -1
| I |Operand | | |
] |Possible|Speci- | |Default |
|Operand | Forms |fica- |Explanation |Specification |
1 | |tions | | |
f==-=-- T B PRI frmmmmmmmmmm - i
|statement ID|//bUCDb | CD |Card~to-Disk | |
| 7/bUxxb | | |utility identifier] |
| | 7/ bUb | |General utility identifier| //bUb
------------ frmmmmm oot e Tt
|Type of | TC | ¢ |Copy] TR I* |
] Function | TF | F |Field-Select | |
| Tt | TR | R |Reblock I |
] | TRF | RF |]Reblock and Field-Select | [
e e te————— +-—1
| Format | FF | F |Fixed~-1length records | FF |* |
|FF I | | | [
———————————— P e e I Do
Input	A=(n,n)		Fixed-length records		*
Description					
A= (input)	! n	Input record length, 12=(80,80)			
]]	n	Input block length]			
T — mmmmmmem e B T T -f-- -					
output	B=(a,b)		Fixed-length records	1*	
Description]]] 1 1				
B=(output)		a	Output record length,	B=(80,240)	
]	¢ joutput block length				
P oo oo me o T oI -$- -					
Card-Data	11	1	Standard punch	I1	
Code			card code (EBCDIC		
structure] lequivalent)				
Ix	I2	2	Column binary		
- T e TTEY -—--1 i
|Disk | oYy | ¥ |Write-disk check | oy |
|Check | | | | I
|ox | ON | N |Do not write-disk check |
t ——— = B ey —————- ettt 1
| Sequence lo=(x,y) | x |First (high-order) | Sequence |
|Checking |] jcard column of |Checking |
|6=(x,y) |] | the sequence-number field |omitted |
I | 1 vy |Length (number of columns) |]
| |] |of the field |]
L I, X I 1 —— _— e e J

*Default permitted only if entire statement is omitted.

r -= - q
| 7/bUCDbTt, FF, A= (input), B=(output) , Ix,0x,Q0=(x,y) |
1

e e e —————

Figure 16. Card-to-Disk Program Utility-Modifier Statement

A=(input) - Input Record Length and Block

B=(output) - Output. Record

Length and Block

Length Operand

It indicates the length of the record and
the block to be read.

Because the input (card) records are
unblocked, the block length is identical
with the record length; thus A=(n,m)
becomes A=(n,n), where n represents the

number of bytes in each record/block.

Length Operand

This operand describes the
blocks of the output file.

B=(a,c) where

is the number of bytes
and
is the number of bytes

o

1o

records and
Its format is

in each record

in each block.

Card-to-Disk Utility Program (CARDSK)

37

The value ¢ equals the number of bytes
per record multiplied by the number of
records per block. The values a and ¢
must be separated by a comma and enclosed
in parentheses.

IX - Input Format

Ix is an optional operand that specifies
standard card code (I1) or column binary
input (I2).

OxX - Write-Disk Check

The optional write-disk check operand is
used to read back and verify data immedi-
ately after it has been written on disk.

If the data cannot be written properly, a
message is printed, and the program halts.
It is recommended that the write-disk check
option should be used.

o=(x,y) - Sequence Checking

If a sequence-number field is specified in
the utility-modifier statement by Q=(x,y).,
the program will check the numbers in that
field for ascending numeric sequence. (The
numbers need not be consecutive). The
value x designates the first (high order)
column of the sequence-number field in the
input cards. The value y is the length of
the sequence-number field in the input
cards, which may be one to ten columns.

The sequence begins with the number in
the first data card. If a card is out of
sequence, an error message is printed and
processing continues. An error is defined
as either a step-down in sequence, or repe-
tition of the preceding number. The error
message shows of the contents of the
sequence-number field of the first card
that failed to contain an ascending-
sequence number. The error message also
shows the sequence-number field of the
preceding (last correctly sequenced) card.
The number that caused the error message
then starts a new series.

Say, the following numbers occur in the
sequence-number field of a series of cards:

1,3,4,5,4,5,6,6,7

The first error message would print out
numbers 5 and 4. U4 then starts a new
series, i.e., the following number must be
higher than 4. Since number 6 occurs
twice, it is printed out in the second
error message.

If the operand is omitted, no sequence
checking is performed. Neither is it per-
formed if column-binary input (I2) has been
specified.

38

1f one or more of the optional operands
Ix, O0x, Q=(x,y) or the utility-modifier
statement itself are omitted from the util-
ity program, the program automatically
assumes certain standard ("default") speci-
fications for the missing operand(s).

You can omit the entire Card-to-Disk
utility-modifier statement (and run your
program with the END statement only), if
all your requirements match the default
specifications as shown in Figure 16:

* Reblocking.

e Fixed-length records.

e Input record and block lengths are both
80 bytes.

e OQutput record length is 80 Lytes, output
block length is 240 bytes.

¢ Standard card code.

Write-disk check is to be made.

s No sequence checking.

FIELD-SELECT STATEMENT

This section provides you with the basic
information you need for writing the Field-
Select statement for the Card-to-Disk
program. For a more detailed discussion
see the section Field-Select Statement
under General Description of Utility Con-
trol Statements.

The FS statement is only required if TF
or TRF is specified in the Tt operand of
the Card-to-Disk utility-modifier state-
ment.

The general format of the field-select
statement (when there is no data format
conversion) is

[=—==T=—== - bbbt |
| Name |Operation|Operand]
T P 1
|7/b |FSb lx,s,t/ce/2,8,t |
[I— S R J
where

//bFShb identifies the statement as the
field-select control statement. It
must be punched starting in column

1.

r,s,t is the operand for a particular
field, where

T - is the starting position in the
input record of the field to be
transferred

s - 1s the number of bytes to be trans-
ferred

t - 1is the starting position in the

output record of the receiving field

To both move and convert a data field,
specify the operand for that field in one
of the following forms, depending on wheth-
er the input field is to be packed or
unpacked:

Pack -- the input field is to be packed for
output:
r,(P,n,m),t

r starting position in the input record of
the field to be transferred

P pack
n length (in bytes) of the unpacked input
field

m length (in bytes) of the packed output
field

t starting position in the output record
of the receiving field

To determine the minimum number of bytes
required in the output field the following
formulas may be used:

n+1
If n is 0odd, m = ===
2
n+2
If n is even, m = ——
2

Unpack - the input field is to be converted
from packed to zoned decimal for
output:

r,(U,n,m),t

¥ starting position in the input record of
the field to be transferred

U unpack

n length (in bytes) of the packed input
field

m length (in bytes) of the unpacked output
field

t starting position in the output record
of the receiving field

The formula for determining m is: m=2n-1

END CONTROL STATEMENT

The END statement is the last of the utili~-
ty control statements and must appear even
if none of the others is needed. It is
punched

—=—-

T T
| Name |Operation|Operand |

T e ——— e e 1
}7/b |END | |
[S ——1_ —_— 4
in columns 1-6.

END-OF-FILE STATEMENT

The end of the data deck is defined by a
card containing /* in columns 1-2. Unless

columns 3-80 are blank, the card is treated
as a data card.

Sample Problems

1. Create a disk file from a deck of cards
punched in column binary, 80 columns.
Do not block. Perform the write-disk
check.

//buUCDbTC, FF,A=(160,160) ,B=(160,160),
12,07
//bEND

The control statement identification for
a Card-to-Disk program is //bUCDb, the CD
being optional. The job is to copy (TC).

No field-select statement is used.
Column-binary data is counted as two bytes
per column to allow as many as 160 bytes
per card (160,160). The data from each
column is transferred into two bytes on
disk. Sequence checking is not possible
with column binary (I2) input.

2. Write a file on disk, placing the data
from seven 80-column cards in each
block. The cards are punched in IBM
standard card code. Do not make write-
disk check. Check the last seven card
columns for sequence.

//bUCDDbTR, FF,A=(80,80),B=(80,560),
I1,0N,0=(74,7)
// bEND

or

//bUbTR, FF,A=(73,73),B=(73,511), ON,
0=(74,7)
//bEND

The alternate (second) utility-modifier
statement is to be preferred. Besides
omitting the optional program initials CD
(since the JOB control statement actually
specifies the Card-to-Disk utility program)
and the card-data code I1 (the default
specification), an important point is
illustrated: The input and output record
lengths refer to the data to be transferred
and need not allow for the sequence-number
field if this is to the right of the last

Card-to~Disk Utility Program (CARDSK) 39

data field. This can be significant. In
this example, combining seven 80-column
input card records into one disk block
requires 560 bytes per block. Since each
block on disk must begin at a multiple of
270 (see Appendix E), each block would
occupy three disk sectors. However, if the

record length is specified as 73 -- since
the last seven columns of each card contain
only the sequence-number field -- a block

of seven records requires only 511 bytes on
disk, thus occupying only two sectors.

3. Write the data from card columns 32-69
onto a disk file, seven records per
block. The cards are punched in stand-
ard IBM card code. Check the first
five columns for sequence numbers. Do
not write-disk check.

//bUCDDLTRF,FF,A=(69,69),B=(38,266),
Ii,0N,0=(1,5)

//bFSb32,38,1

//bEND

4o

Columns 1 to 69 will be read. However,
only columns 32 to 69 (38 columns) will be
transferred to disk, therefore 38 bytes are
needed in the output record, seven records
per block. The field-select statement
causes the data from card columns 32-69
(r=32) to be transferred to bytes 1-38
(s=38, t=1) of the output record. The
sequence-number field in the input cards
starts in column 1 and occupies 5 columns.

4, Write a disk file from cards, three
records to a block, transferring each
record completely. The card data occu-
pies all 80 coiumns and is punched in
IBM standard card code. Make a write-
disk check. Do not check sequence.

The only utility control statement
required is

// bEND
Neither the utility-modifier nor the

field-select statement is needed; default
specifications will be used.

The Disk-to-Printer utility program prints
data from a disk file contained in one or
more disk packs mounted on one or more disk
drives (max. two drives for Submodels 2 and
4 and four drives for Submodel 5).

The program uses the standard printer
carriage-control tape. A punch in channel
1 indicates the first print line of a page
and a punch in channel 12 indicates the
last print line of a page.

An optional exit to a problem program
for Sterling-currency conversion is
provided. (See Appendix D).

It is possible to list or display the
contents of an entire disk pack by using
the Disk-to-Printer program with a special
UPSI statement. This feature is further
explained in Appendix I.

The following job-control and utility
control statements are used by the bisk-to-
Printer utilily programs

Job Control Statements

Operand Entries

Statement Use for Disk-to-Printer

// JOB Required Program name = DSKPRT

// ASSGN Required Primary input device =
SYSIPT

// ASSGN Required Primary output
device=SYSLST

// ASSGN Optional Alternate input
devices = SYsS002
SYS00u

/7 ASSGN Optional Logging device = SYS-
LOG
(See LOG statement)

// UPSI Optional See Appendix_ I

// CONFG Required* Main-storage capacity

// DATE Required* Year and day

// VOL Required Input File Name - UIN.
still in main storage.

// DLAB Required One set for input

file.

More than one XTENT
statement may be used
in the set.

// XTENT Required

/7 LOG Optional
or

/7 NOLOG

// EXEC Required

*Unless information is still in main stor-
age.

Disk-to-Printer Utility Program (DSKPRT)

For details on the job-control state-
ments refer to Appendix A.

Utility Control Statements

Three utility control statements may be
used with the Disk-to-Printer program:

The utility-modifier statement, which
outlines the method of transferring a
file from disk to the printer.

The field-select statement, which des-
cribes the transfer of individual fields
from the input record to the output
record.

The print—-header statement, which allows
a heading to be printed at the beginning
of a page.

A fourth utility control statement, the
END statement, must be used with every
utility program.

The sequence of statements is as follows:

//bu Optional
//bFS Optional (More than one may
be used)
//bHn Optional (One or two statements)
//bEND Required

DISK-TO-PRINTER UTILITY-MODIFIER STATEMENT

The utility-modifier statement contains the
information required to transfer files from
disk to the printer. The general format of
the statement is

T
| Name | Operation|Operand |

}, _________ - -
|/7b |UDPbL | Tt,FF,A=(input) ,B=(out- |

| | | put),o0x,Sx,Px,Rx |
L L 1__

Possible operand entries are shown in Fig-
ure 17.

//bU0 Identifies the statement as a
utility-modifier statement. It must
be punched starting in column 1.

DP Program initials for the Disk~-to-
Printer program. They may be omitted
since the JOB statement actually
specifies a disk-to-printer program
(Program name = DSKPRT). If used at
all, the initials must be DP;
otherwise a warning message will be
printed.

Disk-to-Printer Utility Program 41

[rmm T T—— === T T It T 1
| I |Operand| | |
| |Possible|Speci- | |Default
|Operand | Foxms }fica- |Explanation |Specification |
| | [tions | I I
————————————————————— R T
|Statement ID|//bUDPb | DP |Disk-to-Printer | |
| 7/7bUxxDb] |utility identifier |
| | 7/ bUb | |General utility identifier| //bUb
———————————— g —- R B |
Type of	TD	D	Display	TD 1*	
Fanction	TL	L	List		
Tt	TLF	LF	List and Field Select		
: $-- - oo oo fommmmmmmm -1					
Format	FF	F	Fixed-length records	FF 1*	
FF					
o $-- S T P —]					
Input	A=(n,m)		Fixed-length records	A=(270,270)	*
Description		n	Input record length,	I	
A=(input)] m	Input block length]			
———————————— P S T e TS					
Output	B= (p)		Printer output	B=(120) 1*	
Description			Size of the print line		
B=(output)			(Maximum: 120,132, or 1u44)		
T — Fommmmmmm oo e e e e					
Print	OX] X	Hexadecimal printout	oX (if TD)		
output	oc	C	Character (alphameric)	Joc (if TL or]	
Jox l		printout	TLF)		
————— 1 3 e					
Spacing	s1	1	Single spacing	s1	
Sx	s2 I 2	Double spacing			
(only if TL	83] 3	Triple spacing			
or TLF)		I l			
R e fomm o oo e frmmm oo 1					
Page	PY	¥	Number pages	PY	
Numbering	PN	N	Do not number pages		
Px	I				
b= e = tommm e tomm—— 1					
First	Rx	x	Sequential position in	R1	
Record			input file of first recordj		
Printed			to be printed; x-1]	
Rx i		records bypassed			
e B T, O, e L —_—]					
*Default permitted only if entire statement is omitted.					
—_ e 1					
7/bUDPbTt, FF, A=(input), B=(output),0x, Sx,Px,Rx					
R, e 1
Figure 17. Disk-to-Printer Program Utility-Modifier Statement
The required operands are: 1. TD -- Display. A complete, byte-for=-
byte representation of the file is
Tt,FF,A=(input) ,B= (output) printed, starting with the first byte
of the logical record. Blocked or
They start in column 8 if the program unblocked fixed-length records can be
code initials (DP) are used, or in column 6 displayed. No change is made in the
if DP is omitted. These four operands must format of the records or file.

be listed in the above order, and all must

appear unless the card is omitted entirely.
The first twénty print positions are
reserved for file description: block

Tt - Type-of-Function Operand number, block size and record number.
(These are printed at the beginning of
This operand specifies the transfer to be every record),

performed, when "t" is replaced by "D"
(Display), or "L" (List), or "LF" (List and
Field-select).

42

Output is normally (default
specification of the Ox operand) hexa-
decimal, with two characters represent-
ing the left and right halves of a
byte, although character-format output
may be specified instead. Print lines
are single-spaced with a blank line
between data blocks.

A scale line is printed at the top and
bottom of each page. This line iden-
tifies every tenth print position
(i.e., 10, 20, 30, etc.).

Each record begins on a new line; a
number designating the sequential posi-
tion of the record within the block is
printed preceding the data of each
record. If the record requires more
than one print line, the file descrip-
tion is not printed on the overflow
lines. Overflow of a single record
occurs when the specified print span
limit is reached, regardless of the
position within the record.

When a data transmission error occurs,

the program attempts to print the
record.

TL -- List. Blocked or unblocked

fixed-length records can be listed.
Each record starts on a new line and is
restricted to a single line of print.
The entire print line is available for
data; no file description is printed.
If a record exceeds the specified print
span, the excess right-hand positions
of the record are truncated. Output is
normally (default specification of the
Ox operand) in character format,
although hexadecimal format may be
specified instead. Hexadecimal output
requires two print positions to display
each byte; therefore, care must be
taken to avoid exceeding the print
span.

Single-spacing between lines is normal
(default specification of the Sx
operand), but double-and triple-spacing
are available.

TLF =-- List and Field Select. This is

a combination of the list (TL) option
with field selection (TF) and requires
the use of a field-select statement.

It allows you to select input data
fields and to arrange them in any print
order on the line. (Editing, in the
sense of zero suppression, punctuation,
or sign symbols, is not available).
Fields may also be unpacked before
printout.

All selected fields are printed in
character (alphameric) format, unless
individual fields are specified - with
a field-select statement - to be print-
ed in hexadecimal format. (The number
of print positions is then twice the
number of data bytes).

All three print options permit header
line printing on each page.

Consecutive page numbers, starting with
1, are also normally (default specification
of the Px operand) printed-at the bottom of
each page on a predetermined line con-
trolled by carriage-tape. The maximum size
of the page number is nine digits; heading
zeros are dropped. Page numbering can be
suppressed.

Ff - Record-Format Operand

The second operand indicates that the
records to be transferred are always in
fixed-length format, i.e. all records
contain the same number of bytes. The
characters FF must be entered.

=(input) ~ Input Record Length and Block
Length Operand

It indicates the length of the record and
the block to be read, where

n is the number of bytes in each record,
and

m is the number of bytes in each block.

Since the number of records rer block is
constant, m can be worked out by multi-
plying the number of bytes per record by
the number of records per block. The
values n and m -must be separated by a
comma and enclosed in parentheses.

B={output) = Output Description

This operand is used with records to be
printed. Its format is B=(p)

The value p must be enclosed in paren-
theses; it represents the maximum number of
characters to be printed on one line. It
must not exceed the print span of the prin-
ter on the system (120 for the 1403 and
2203 Printer, 132 for the 1403, or 1u4 for
the 2203 Printer). A warning message is
printed if, as a result of unpack or hexa-
decimal operands in a field-select state-
ment, the output record size exceeds the
value p.

Oox, Sx, Px and Rx are optional operands.
They may be omitted from the control state-
ment. These operands may occur in any
order after the four required operands.

Disk-to-Printer Utility Program 43

Ox - Print Format

Ox indicates whether the printout is to be
in hexadecimal (0X) or character (0OC) for-
mat. The default specification is hexa-
decimal for data Display (TD) and character
for data List (TL). If the TLF option is
selected, the Ox operand is ignored and OC
is assumed. Individual fields can still be
printed in hexadecimal format by the

r, (X,n),t operand in a field-select state-
ment. (See the section Hexadecimal, under
Field-Select Statement).

Packed numbers are efficiently rep-
resented in hexadecimal without unpacking.

Sx - Spacing Control

Sx controls line spacing for the data List
(TL or TLF) option. S1, S2, and S3 cause
single, double and triple spacing, respec-
tively: S1 is the default specification.
This operand is ignored if it is specified
for a Display (TD) function.

Px - Page Numbering

Px is the operand that indicates whether
pages are to be numbered. PY causes page
numbers to be printed; it is the default
specification. PN causes page numbering to
be suppressed.

RXx - File Positioning

RX controls the number of records at the
beginning of the file to be bypassed before
printing. The first x-1 recoxds are
bypassed. The default specification is 1;
since 1-1=0, printing would begin with the
first record of the - file. The maximum
value of this operand is R99999.

When one or more of the optional oper-
ands or the utility-modifier statement
itself are omitted from the utility pro-
gram, the program automatically assumes
certain standard ("default") specifications
for the missing operand(s). If all the
default specifications correspond to the
specifications required for a particular
job, the program may be run with the END
statement only. Figure 17 lists the
default specifications that apply when the
utility-modifier statement is omitted.

FIELD~SELECT STATEMENT

This section provides you with the basic
information you need for writing the Field-
Select statement for the Disk-to-Printer
program. For a more detailed discussion
see the section Field-Select Statement
under General Description of Utility
Control Statements.

by

The FS statement is only required if the
TLF function i1s specified in the Tt operand
of the Disk-to-Printer Utility-Modifier
statement.

The general format of the Field-Select

statement (when there is no data format
conversion) is

it Sttt S —m— e 1
|Name |Operation|Operand |
e D T i
|7/b |FSb |res,t/ese/x,8,t |
b e L e e e J
where

//bFSb identifies the statement as the
field-select control statement. It
must be punched starting in column
1.

r,s,t 1s the operand for a particular
field, where

r - 1is the starting position in the
input record of the field to be
transferred

s - 1is the number of bytes to be trans-
ferred

t - 1s the starting position in the

output record of the receiving field

To both move and convert a data field,
specify the operand for that field in one
of the following forms, depending on wheth-
er the input field is to be packed or
unpacked:

Pack -- the input field is to be packed for
output:

r, (P,n,m),t

r starting position in the input record of
the field to be transferred

P pack

n length (in bytes) of the unpacked input
field

m length (in bytes) of the packed output
field

t starting position in the output record
of the receiving field

To determine the minimum number of bytes
required in the output field the following
formulas may be used:

n+l
If n is odd, m = —=-
2
n+2
If n is even, m = ——-
2

Unpack - the input field is to be converted
from packed to zoned decimal for
output:

r, (U,n,m),t

r starting position in thé input record of
the field to be transferred

U unpack

n 1length (in bytes) of the packed input
field

m length (in bytes) of the unpacked output
field

t starting position in the output record
of the receiving field

The formula for determining m is: m=2n-1

Hexadecimal - the input field is to be
printed in hexadecimal format:

In the List mode (TL or TLF) of the Disk-
to-Printer program, the entire record is
normally printed in character format. The
utility-modifier statement for that program
includes an optional operand (0OX) to
present the entire record in hexadecimal
format.

Specifyihg hexadecimal for one or more
operands in the field-select statement and
listing with the TLF option will cause one
or more particular fields to be printed in
hexadecimal format and the remainder of the
record in character format. The specifi-
cation hexadecimal in the field-select
statement supersedes -- for the specific
field(s) only -- the stated data format or
default specification in the utility-
modifier statement for a Disk-to-Printer
program used to list (TLF) data.

The conversion of a field to hexadecimal
format is specified by

r, (X,n),t

r 1is the
record

starting position in the input

of the field to be transferred

X causes ‘conversion to hexadecimal

n is the number of bytes in the input
field. The output field is assumed to
require twice as many print positions as
there are bytes in the input field.
Care should be taken when filling out
the utility-modifier statement that
sufficient space is allotted for this
expansion.

t is the starting position in the output
record of the receiving field.

PRINT-HEADER STATEMENT

One line of heading information can be
printed at the beginning of each page under
both the Display and the List options (TD,
TL, TLF). The heading is punched into ocne
or two header cards. The format of the
first is //bH1b in columns 1-6, followed in
columns 7-80 by the heading to be printed
in print positions 1-74. If a second card
is needed, it contains //bH2b in columns
1-6, and is followed by the information to
be printed on the rest of the print line.

For example, print the heading THIS
OUTPUT ILLUSTRATES THE DATA-DISPLAY OPTION
OF THE IBM SYSTEM/360 DISK-TO-PRINTER
UTILITY PROGRAM. One hundred thirty-two
print positions have been specified as the
print span of the printer.

m IBM System/360 Assembler Coding Form s
[rowm Sample _Print- Header Statement Jrwome Jowe T T T T T T T Tua o
[nowmu oart ___ FN" I]]]] J l Jcnom:nouw.
| e [et TR n hrw 3 W o “ Py Cm— ot
Ji/] HIL TIHITIS| loluT|PiLl 1L L USTIRIATE|S| [TIHE! DIAIT|A|-[DIT|S|PILIAN| [giPTI QlF| [TIHIE| |18
/ 1/ [H2] [SNISITIEMI/|316 LISIK- TiOl- IPIRIIINITIEIR| WiTTIL LTIV RIA
|
T |

Figure 18. Sample Print-Header Statement

Disk-to-Printer Utility Program 45

The heading is 101 characters long.
Centering it requires 15 blank spaces to
the left and 16 to the right of the head-
ing. The header cards are shown in Figure
18. Place them between the FS and the END
statements.

END CONTROL STATEMENT

The END statement is the last of the utili-
ty control statements and must appear even
if none of the others. is needed. It is
punched

r T
|Name|Operation|Operand

————3 4 e
T

|//b |END I
| ISR I —— L

in columns 1-6.

Sample Problems

1. Print, in Display format, data from a
disk file containing unblocked records,
200 bytes each. Print in character
mode; number the pages. Print every
record. The printer 1403 has 132 print
positions.

//bUDPLTD, FF, A=(200,200),B=(132),0C,
PY,R1
//bEND

The field-select statement is not nec-
essary, nor can it be used with the TD
option.

2. Print the data from a disk file, in
List format, double-spaced. The
recoxds are unblocked and 80 bytes

long. The printer (2203) has 144 posi-
tions. The printout should be in hexa-
decimal format. Pages are not to be
numbered. Bypass the first record of
the file.
//bUDPbLTL,FF,A=(80,80),B=(144),0X,

PN, S2,R2
//bEND

Hexadecimal printout reguires two print
positions per input byte: 80x2=160.
Therefore, the rightmost eight bytes of
input will be truncated, and not print-
ed: (160-1u44):2=8. This could be
avoided by using the TLF option, and
selecting the essential fields, omit-
ting at least eight bytes. Alterna-
tively, one might specify the character
mode with the TLF option and use the
field-select statement to convert most
fields to hexadecimal, leaving enough
of them in character mode to stay with-
in the print span.

4é

Since the printout is to start with the
second record, Rx must be specified as R2;
then 2-1 = 1 record will be byprassed.

3. Print data from a disk file in List
format on a printer with 120 positions.
Records are 100 bytes long, five to a
block. Only five fields are to be
printed.

Input Disk Output Printerx Special
Bytes Positions Conversions
1-20 1-20
21-30 31-49 unpack
91-100 56-75 hexadecimal
56-75 76-95
76-80 106-114 unpack

Except for the third field, printing
will be in character format, single-
spaced. Pages are to be numbered. Do
not print the first five records.

//bUbTLF,FF,A=(100,500) ,B=(114) ,R6
//bFsbl,20,1/21,(y,10,19),31/91, (X,10),56
//bFsb56,20,76/76,(U,5,9),106

//bEND

Since the output record requires 114
print positions, B=(p) has been specified
as 114 rather than the maximum number of
positions for the printer (120). Using
this technique saves processing time.

The field-select statements control the
change in record format. Field 1 is
printed without change; its general operand
entry is r,s,t. Starting position in the
input record r=1, field length s=20, start-
ing position in the printed output record
t=1.

Operand entries are separated from each
other by a slash (/). Field 2 is to be
unpacked; its general operand entry is
r,(U,n,m),t. It starts at byte 21 of the
input record (r=21) with a length of ten
bytes (n=10). It must be assigned at least
2x10-1=19 bytes in the output record
(m=19). The unpacked field is transferred
to bytes 31-49 of the output record (t=31).

Field 3 is to be printed in hexadecimal
format; its general operand entry is
r, X,n),t. It is moved from input bytes
91-100 (r=91) to bytes 56-75 in the output
record (t=56). Input field length n=10.
The output field length is not explicitly
stated; it is assumed to occupy twice as
many print positions as there are bytes in
the input field.

Field 4 is moved unchanged from r=56 to
t=76 with a length of s=20.

The last field is unpacked and trans- Hexadecimal printout is requested.

ferred from r=76 to t=106; its input field Pages are to be numbered, and printing
length n=5. Therefore 2x5-1=9 bytes must is to begin with the first record.
be allotted for it in the output record
(m=9) .
//bEND
The default specifications are the same
as those requested for Ox, Sx, and Px. No utility-modifier statement is neces-
These operands may therefore be omitted. sary since default specifications des-
Example 2, above, explained the field cribe the problem, nor is a field-
expansion for hexadecimal printout. select statement used. Note that each
record requires six print lines (540
4. Print data from a disk file in the print positions for the data in
Display mode. Input records are 270 hexadecimal format, plus the first 20
bytes long. Records are unblocked. positions on each line reserved for
The print line is 120 characters long. file description).

Disk-to-Printer Utility Program 47

Initialize Disk Utility Program (INTDSK)

This program prepares one or more IBM 1316
Disk Packs for use on IBM 2311 Model 11 or
12 pDisk Storage Drives (max. two drives for
Submodels 2 and 4 and four drives for Sub-
model 5). Three separate options are avai-
lable with the Initialize Disk Utility
program.

1) Primary Initialization (TPI) is per-
formed to initialize a disk pack that is
to be used on either an IBM 2311 Model
12 Disk Drive or an IBM 2311 Model 11
Disk Drive. The following functions are
performed:

a) Checking the Volume Table of Con-
tents, if present, for uncxpired
files (see Appendix B).

b) Performing a surface analysis of the
alternate track area (cylinders 1-3)
to locate defective tracks that
should not be assigned as alternate
tracks.

c) Performing an analysis of the disk
surface to locate defective tracks
and assign alternate tracks.0 In the
course of this analysis, the data
fields are set to binary zeros.

d) Recording an IBM standard volume
label on cylinder 0, track 1, sector
0.

e) Assigning a cylinder for the Volume
Table of Contents (VTOC) and record-
ing the VvTOC label (i.e., the
Format-U4 file label for the VTOC
itself - see Appendix B).

f) Assigning one or two tracks for the
Label Information Area (LIA) used by
the Job Control program.

2) Secondary Initialization (TSI) is per-
formed to complete the initialization of
a disk pack, previously initialized for
an IBM 2311 Model 12 Disk Storage Drive,
that is intended for use on Model 11.
The preparation consists of two steps.

a) Checking the VTOC label to verify
that the second half of the disk pack
(cylinders 103-202) contains no unex-
pired files.

b) Performing a surface analysis of
cylinders 103 through 202 to locate

48

defective tracks and assign alter-
nates. The data fields are set to
binary zeros in cylinders 103 through
202.

3) List VTOC (TL) - This option of the
program lists the Volume Table of Con-
tents from one or more disk packs. When
this option is selected, other activi-
ties cannot be performed simultaneously.
The print format of the VTOC listing is
presented in Figures 19 and 20.

VTOC - Label Checking

The Initialize-Disk program first checks
for the presence of a volume label. If one
is found, the program searches the file
labels in the existing VTOC for unexpired
files. 1If such files are found, a message
is written, the program halts and you may
either continue to process or, if you want
to save the file, remove that disk pack
before continuing to process.

Surface Analysis

Surface analysis involves testing a track
for areas upon which data cannot be written
owing to a disk surface defect.

It is performed first on the alternate
track area (cylinders 1-3), which - unless
defective - will be used as alternates for
defective tracks. If a track in cylinders
1-3 is found defective, bit 6 of the flag
byte of the count field (see Arpendix E) in
each sector of that track is changed to 1.
The track then cannot be assigned as an
alternate. Cylinders 1-3 are only availa-
ble as alternate tracks.

After these cylinders have Lkeen ana-
lyzed, the remaining cylinders are tested.
If a bad track is found, an alternate is
set up and a message is written for your
information.

When assigning an alternate track, the
program changes the flag byte in each sec-
tor of both the defective and the alternate
tracks. In each sector of the defective
track, bit 6 of the flag byte is changed
from 0 to 1, indicating a bad track; and
the cylinder number and head number of the
alternate track (cchh) are written in the
track address portion of each count field.
In the alternate track, the cylinder number
and the track number of the bad track are

o T T T e e e e e e e ————— — 9
| VOLUME TABLE OF CONTENT PHIOO1 |
I I
| NEXT NUMBER OF DEVICE ERASE VTOC EXTENT |
| ALT TRK ALT TRKS SIZE 0=NO LOWER UPPER
| CCCHH AVAILABLE 1=YES CCCHH CCCHH |
I |
] 00100 30 102 1 00003 00100 |
I |
| LIA EXTENT |
| LOWER UPPER |
I CCCHH CCCHH |
| I
| 00001 00002 |
| I
L e 1
Figure 19. Volume Table of Contents - Volume Information

VOLUME TABLE OF CONTENTS 202020
FILE NAME FILE VOL CREA- EXPI- EXT FILE REC WRITE BLCK RECD EXT EXT LOWER UPPER

SERIAL SEQ TION RATION CNT TYPE FMT DISK LNTH LNTH TYPE SEQ LIMIT LIMIT

NO. NO. DATE DATE CHECK NO. CCCHH CCCHH

SYSTEM/360 MOD 20 DPS WORK FILE 2 202020 0001

Figure 20.

written in the track address portion (cchh)
of the count fields. Furthermore, bit
seven of the flag byte is changed from 0 to
1, indicating an alternate track.

For example, suppose track 7 on cylinder
53 has defective areas and track 0 of cyl-
inder 1 is assigned as the alternate. The
track address portion of the count field of
every sector on cylinder 53, track 7, will
be filled with the address of cylinder 1
track 0. The track address portion of the
count fields of the alternate track
(cylinder 1, track 0) will contain the
address of cylinder 53, track 7.

The flag byte in each sector of the bad
track will be changed from all binary zeros
to 00000010; and the flag byte in each
sector of the alternate track is changed
from all binary zeros to 00000001.

Analysis continues until the entire disk
pack has been processed. Defective tracks
are listed on the system logging device to
provide you with a record of the condition
of the disk pack. If more than thirty
defective tracks are found, the program
terminates immediately. When analysis has
been completed, each track contains a count
field at the beginning of each sector. The
data field for all sectors of good tracks
contains binary zeros.

67-150 67-150

01 4000 F U C 00240 00080 1 00 09800 10000

Volume Table of Contents - File Information

Volume Label Creation

The Initialize-Disk Utility program formats
cylinder 0 and the Volume Table of Contents
as shown in Figure 21. The program writes
the volume label (which you have to provide
in the VOL control statement) on cylinder
0, track 1, sector 0.

VITOC Format Creation

The Initialize-Disk program pre-formats the
Volume Table of Contents (VIOC) by writing
the (Format 4) file label for the VTOC
itself in the first record location. The
VTOC control statement indicates the loca-
tion on the disk pack in which the VTOC is
to be placed.

The standard location of the VTOC is on
cylinder 0, and extends over tracks 2-9 of
the cylinder. The VITOC can apprear on any
cylinder, but cannot exceed 10 tracks. A
VTOC placed anywhere other than in the
standard location may start at any track.
The first label begins in the first sector
of the first track assigned.

Each record of the VIOC contains a
135-byte data field. The first record of
the VTOC is reserved for a specific record
- the file label (Format 4) for the vVolume
Table of Contents itself (see Appendix B).

Initialize Disk Utility Program 49

T T T £l
|Cylinder{Track|Sector| Bytes|Contents
P t--—-- T t-————— to—m———
| 0 | 0 | 0-9 |
| | | | |
| 0 1 0]
| | | | | (eyl. X,

] | | | |

| 0 | 1 | 1-9 |

| | | | |

| b2 | 0-9 |

| | | |

| x | v | 0 |

| | | | |

|]] 1136-270|Binary zeros
| | | | |

| | | T

b) L e e
Figure 21.

The following job-control and utility
control statements are used with the
Initialize-Disk Utility program.

Job Control Statements

Operand Entries

]
|
|
t
I
|
|
t
|
]

|reserved (for initial program loading)

1-80|Volume label, field 5 pointing to the VTOC file label
track Y)

|used by Job Control to store label information (LIA)
|used by Job Control to store label information (opt.)

|
1-135}vTOC file label (Format 4)

Formats of the Volume Table of Contents and Cylinder O

To list one or more VTOCs,
ASSGN statements are used:
// ASSGN Required Primary input device
SYSIPT
Additional input de-
vices = 8YS002-SYsS004

// ASSGN Optional

// ASSGN Required
SYSLST

the following

Primary output device=

Statement Use for Initialize-Disk
A detailed description of the job con-
// JOB Required Program name = INTDSK trol statements is given in Appendix A.
// ASSGN Required Primary output device
= SYSOPT Utility control Statements
// ASSGN Optional Additional output
devices = The first three statements comprise a set
SYS002-8YS004 and, if present, must be submitted in the
// ASSGN Optional Logging device = SYS- indicated order.
LOG (See LOG
statement) //bUIN Optional One per INTDSK job
// CONFG Required* Main-storage capacity for TPI
// DATE Required* Year and day Required One for each disk pack
// LOG Optional for TSI to be initialized
or //bVTOC Optional One per disk pack or
// NOLOG one per INTDSK job
// EXEC Required VOLl Required One per disk pack
being initialized
under TPI
*¥Unless information is still in main stor- //bEND Required
age.
Initialize-Tisk Utility Modifier Statement
The format of the first statement is
r T ' B TTTTET T T k!
| Name | Operation | Operand]
——————t T 1
| 77b | UIND | Tt,CYLNDR=(m),VERIFY=(n),ERASE |
| L. A il

50

r T
|Operand |Possible Forms|Default

-T ———— e e e e e e e 7 e e e e e

o ————— — e s . e e e e

CYLNDR=(m) [CYLNDR=(102)]102 for
|Model 12,
1202 for
|Model 11

| VERIFY=(1)

I
| CYLNDR= (202)

|
VERIFY=(n) | n=1-256

ERASE ERASE or Blank

blank

[o e S s e e s s i o i i e e et e e S, e s B it e e e G . e e s

e e e e e e
e e e e e e e e e e e e e

VTOC Control Statement

The VTOC control statement provides the
control information necessary to create the
VIOC. The VTOC control statement can be
written in either of two forms:

r === K I h}
| Name |Operation|Operands |
e e 1
|7/7b |VTOCh | STANDARD |

_______________________________________ i
|//7b |VTOCD | STRTADR= (cccchhh), |
| | | EXTENT=(n),LIA=(m) |

L 1_ Lo e 1

Default
Speci-
fica-

Operand tions Explanation

STANDARD Assume all default
specifications.

STRTADR= 0000002 The beginning address of
the VTOC (the cylinder
and head number).

EXTENT= 8 The number of tracks

(n) in the VTOC.

LIA=(m) 1 The number of reserved
tracks for Job Control
Label Information (m = 1
or 2).

|ends with cylinder 202.

|analysis so dictates.
|zation this operand will be ignored and the

|disk pack will be initialized in the same mode
|as the Primary Initialization of the first half

—mmommee —- -4

|Type of initialization to be performed. For]
| |Primary Initialization (TPI), processing begins|
| jwith cylinder 0 and ends with cylinder 102 or |
| |cylinder 202,
I | (Ts1),
|
|
|
|

For Secondary Initialization
processing begins with cylinder 103 and
The List (TL) option

|causes one or more VIOCs to be listed. 1If
jused,

it must be the only operand specified on

|the utility-modifier control statement.
|Last cylinder to be initialized.

]

|

|

|

]

|

|

|

i

|The number of times the test pattern is to be |
|written and verified during the surface analy- |
|sis. |
| execute the VERIFY option, verification should |
I

|

|

]

|

|

{

|

|

|

|

|

Due to the amount of time required to

| be requested only once.

|If ERASE is not specified, all the tracks

do not ERASE |already flagged as defective will remain
|£lagged.
|each previously recognized defective track is
|cleared; the track will be flagged again as
|defective only if the result of the surface

If ERASE is specified, the flag of

For Secondary Initiali-

Note: If LIA=(2) is specified, i.e., if
two tracks are to be reserved as Label
Information Area, the beginning of the VTOC
(STRTADR=) must be cylinder 0 track 3 or
higher.

Volume-Label Statements

A volume-label (VOL) control statement
containing an IBM standard volume label
must be prepared for each disk pack to be
initialized under TPI. It must not be
present for TSI or TL options. The card
must contain an exact image of fields 1-8
of the 80-byte label.

The format of the VOL control statement
is shown in Figure 22.

The volume label is placed in cylinder
0, track 1, sector 0 of the disk pack. If
more than one symbolic device is assigned,
the order of the volume-label statements
must correspond.

Initialize Disk Utility Program 51

|
|
1
-

"o T T T
| Field | Bytes | Contents |Explanation

o o o= 1=

| 1 | 1- 3 | voL | Label identifier

| 2 | 4 1 1 |Indicates standard volume label
| 3 | 5-10 | Alphameric

| 4] 11 | O or 1 |Volume security

] 5% | 12-21 | binary

| | | | (cchhr) of the VTOC.

| |]

| 6-7 | 22-41 | reserved |To be left blank

| 8 | 42-51 | Alphameric |Installation code

| | | |Owner's name-and-address code.
| 9] 52 | Volume protection |Protection for printer-keyboard support:
| | | byte (1 byte): 140 = volume not protected

| |] X'40' or X'OF' |0F = volume protected

| 10 | 53-54 | End pointer

| | | (2 bytes, binary) |permanent label in the LIA.

| 11 | 55-56 | Label count

|] | (2 bytes, binary) |

| 12] 80 | Extent indicator

| | | (1 byte) |

[——— § S U

*Note: Field 5 is

Figure 22.

END Control Statement

The END control statement indicates that no

more disk packs are to be initialized. The
format of the END control statement is

———-T S it 1
| Name|Operation|Operand {
T et i
|//b |END] |
Y S J

Initialization of a Disk Pack

If you want to initialize a disk pack that
has never before been used on a Model 20,
the ERASE option must be specified on the
utility-modifier control statement. Since
the default specification is 'no erase’',
the utility-modifier statement must be
present with ERASE specified.

Reinitialization

The reinitialization procedure should
involve Primary Initialization (TPI) with
CYLNDR=(102) for disk packs to be used on
IBM 2311 Model 12 Disk Drives; and Primary
Initialization with CYLNDR=(202) for disk
packs to be used on Model 11 Drives.

Since Primary Initialization performs
surface analysis on the alternate track
area (cylinders 1-3), initializing the disk
pack to be used on the Model 11 with TPI
and CYLNDR=(102) may result in assigning as
an alternate to a track within cylinders
0-102 one which is still assigned to a
track within cylinders 103-202. When this
occurs, the second half of the disk pack

52

|Volume serial number. Unique ID for each volume.
|The first five bytes contain the starting address

|The r is always 0. The last 5 bytes are blank.

|Contains the disk address (hr) of the last
| Number of permanent label blocks in the LIA.

|Contains number of LIA tracks (1 or 2).

1
]
|
P S

(not used).

e o e e —— ——— — —— — ——— —— —

left blank in the Volume-Label Statement.

Format of the VOL Control Statement

(cylinders 103-202) must be considered
unusable.

Reinitializing a disk pack to be used on
the Model 11 with Secondary Initialization
(TSI) is not recommended, since a file may
have extents within cylinders 0-102 and
cylinders 103-202. In this case, the
entire file (including the portion within
cylinders 0-102) will be deleted when the
file expiration date is reached. To per-
form TSI safely, the Clear-Disk Utility
Program should first be executed over cyl-
inders 103-202, to clear all expired files.

1. Primary Initialization of two disk
packs for use on IBM 2311 Model 12 Disk
Drives. Verification is to be per-
formed once. Erase existing flags on
defective tracks and reflag, if neces-
sary. Volume serial numbers are to be
1275 and 1276. The installation code
is ABCDOO7USA. The VTOC on the first
pack is to be on cylinder 0, tracks
2-9. The VTOC on the second pack is to
be on cylinder 52, tracks 0-6.

The utility control statements needed
are shown in Figure 23.

Two ASSGN statements must be present.
The first assigns a disk drive as primary
output device (symbolic device SYSOPT).

The second assigns the alternate disk drive
(SYS002).

Since the VTOC for the first pack is to
be on cylinder 0, tracks 2-9, the default
specifications apply and the STANDARD
option can therefore be used. With the

second pack the position of the VTOC has to
be explicitly stated, since it is not the
standard location.

For a description of the standard volume
label format see Appendix B.

2. Secondary Initialization of a disk pack
for use on IBM 2311 Model 11 Disk
Drives. Verification is to be per-
formed once,

//bUINbLTSI,CYLNDR=(202),VERIFY=(1)
//bEND

For Secondary Initialization the VTOC
statement and the volume-label statement

are not required. One ASSGN statement must
be present. It assigns SYSOPT as primary
output device. The ERASE feature will be
applied as specified for the Primary Ini-
tialization of the disk pack.

3. List the contents of the VIOC of two
disk packs.

//bUINbLTL
//bEND

Two ASSGN statements that assign two
disk drives as primary and additional input
(symbolic units SYSIPT and SYS002) must be
present,

Inu 1BM Systam/360 Assembdler Coding Form o
mow INITIAL I1ZE - DISK DTILITY CONTROLL"SETATEMENT’S o, [LI —
L] e 1] 10 Oowrsrion A 16 2 Op:"wd 30 a5 - L) 45 L] 35 Commern »0 &5 7 73 e 90,
/Y OUNLTTIPL] e L vDiR (= [(L 2] |, ivielR]t [ivl=[(1)], EIRIASIE j
/I viTioic] [s[rAN/DIA[RD] L]
VO Li4[2e]112(7151 A8 D|d g 7|Us s
1/ lviroicl siririTlap[R]=|(17\¢|512/dlele]) |, lEiX|TIEIMT]~|(]7]
VOIL 112p]112(7l6]1 e
[l [END BEENE

T T Ll LT

Figure 23. Initialize-Disk Utility Control Statements

Initialize Disk Utility Program 53

Clear Disk Utility Program (CLRDOSK)

This program clears the data areas of good
tracks in one or more IBM 1316 Disk Packs
on one or more disk drives (max. two drives
for Submodels 2 and 4 and four drives for
Submodel 5) placing a character in the
cleared areas. This character you have to
specify in a contrcl statement in either
hexadecimal or EBCDIC format. The extents
are specified in XTENT job-control state-
ments. The size of each cleared data area
can range from a single track to the entire
disk pack. All ten sectors in each desig-
nated track are cleared.

The program can also clear the areas of
indexed-sequential organized files, but
note that the extent type in the XTENT
statement must be specified as a 1 also for
the areas defined by the cylinder-index
extent and the independent-overflow extent
(see Appendix A. Job Control Statements -
XTENT Statement).

If the extent includes a defective track
as indicated by the flag byte (see Initial-
ize Disk Utility Program and Appendix E),
the referenced alternate track data areas
are cleared.

The area specified in the XTENT state-
ments 1is first checked to determine whether
it contains part or all of an unexpired
file. If the area overlaps with any part
of an unexpired file, the program halts.

By continuing, you indicate that the entire
file is to be deleted. Thus more than one
file may be deleted with a single Clear
Disk job. However, the fill character will
be inserted only in the specified extents.

Note: When the Clear Disk Utility program
is executed under a Monitor which allows
inquiry requests, a temporary file name
consisting of 44 dollar signs is created
and deleted again at the end of the job.
If an identical file name is already pre-
sent in the VTOC of the disk pack to be
cleared, the job must not be prematurely
terminated to ensure the deletion of the
temporary file name. A file name consist-
ing of U4 dollar signs must not be used in
an inquiry program interrupting the Clear
Disk program.

The following job-control and utility

control statements are used with the Clear
Disk program:

54

Job Control Statements

Operand Entries for

Statement Use Cleaxr Disk Utility

// JOB Required Program name = CLRDSK

// ASSGN Required Primary output device=
SYSOPT

Alternate output devi-
ces = SYS002-SYS004
Logging device = S¥YS-
1OG (see LOG
Statement)
Main-storage capacity

// ASSGN Optional

// ASSGN Optional

// CONFG Required*

// DATE Required* Year and day
// VOL Required File name = UCUT
// DLAB Required

More than one XTENT
statement may be used.

// XTENT Required

// LOG Optional
or

// NOLOG

// EXEC Required

*Unless information is still in main stor-
age.

For a detailed description of the job-
control statements refer to Appendix A.

Utility Control Statements

//b0
//bEND

Optional
Required

CLEAR DISK UTILITY-MODIFIER STATEMENT

This utility-modifier statement has two
operands. The first defines the £i1l1 char-
acter and the second the option to make a
write-disk check. The statement has the
following format:

-7 . 25 a
| Name | Operation|Operand |
P Pt o e :
|7/b |UCLb |£i11,0x |
{ A S e 4
Definition:

//bUCL Clear-Disk utility identifier.
The CL is optional.

fill This operand specifies the

£fill character:

If the f£ill character is
specified as EBCDIC, a C is
punched followed by the
EBCDIC fill character
enclosed in apostrophes.

If the fill character is
specified in hexadecimal
format, an X is punched
followed by two hexadecimal
characters enclosed in apos-
trophes.

X'aa'

ox Write-disk check
oY indicates write-disk check

ON indicates do not write-disk
check.

The default specification is OY. The
write-disk check option is used to read
back and verify data immediately after it
has been written on a disk. If the data
cannot be written properly, a message is
printed, the system halts, and the program
is terminated. It is recommended that you
use the write-disk check option.

If the utility-modifier statement is
omitted, the following default specifi-
cations are used:

//bUbX'00',0Y

When the card is present, the first operand
(£1i11) must be specified.

Four forms of the statement are accepta-
ble:

//bUcLbC'a',0yY
//bUCLbC'a',ON
//bUCLbX'aa', oY
//bUCLbX'aa',ON

END CONTROL STATEMENT
The END control statement indicates that no

more disk packs are to be cleared. The
format of the END control statement is

r=—=-7T - 1
|Name | Operation|Operand |
S s |
|7//b |END | |
L o 1___ —_ J

Sample Problems

1. Clear a disk area and insert zeros
specified in EBCDIC. Perform a write-
disk check.

//buUCLbC'0*,0Y
/ /bEND

or

//bUbC' 0"
//bEND

The proper disk drive has been assigned
as the primary system output device with an
ASSGN statement. An XTENT statement is
used to indicate the area to be cleared on
the disk pack.

2. Clear disk areas on a pack and fill
each byte with bits 00000001. Do not
make a write~disk check. .

//bUCLbX'01*,0N
//bEND

The proper disk drive has been assigned
as the primary output device, and the areas
to be cleared are indicated on XTENT
statements.

3. Clear two disk packs. Fill with binary
zeros. Make a write-disk check. The
drive with the first disk pack has been
assigned as primary output device, and
that with the second as alternate out-
put device.

//bEND

One ASSGN statement and one XTENT state-
ment are needed for each disk pack. No
utility-modifier statement is needed, since
all job requirements are met by the default
specifications.

Clear Disk Utility Program 55

Alternate-Track Assignment Utility Program (ATASGN)

This program assigns an alternate track to
a defective track in an IBM 1316 Disk Pack,
and transfers the data contained on the
defective track to the alternate track. It
also performs a surface analysis of the
defective track to determine whether the
error 1is permanent. 'This program does not
detect defective tracks but assumes that
you are already aware that a specific track
is defective.

Locating a defective track is done by
the Initialize Disk program: If a bad track
is found, an alternate track is set up and
a message is written.

To assign an alternate track,
gram does the following:

the pro-

1. It checks the VTOC file label (see
Initialize Disk Utility Program) for
the location of the next good alternate
track available. If one is found, the
data is transferred to it. (See item 2
below.) If no alternate tracks are
available, a message is printed and the
job is terminated.

2. It prints a message with the location
of the alternate track. Data on the
defective track is transferred, sector
by sector, to the alternate track. A
sector containing an error is trans-
ferred as it is read. If specified by
a control statement, data in the track
that contains an error is printed in
hexadecimal format.

3. It places the address of the alternate
track in the track-address portion of
the count field of each sector of the
defective track. This address is used
as a pointer to the alternate track.
Also, the address of the defective
track is written in the track-address
portion of the count field of each
sector of the alternate track. The
flag byte in each sector of the alter-
nate track is changed to 00000001.

4. It checks the surface of the defective
track. If the defect is permanent, the
flag byte in each sector of that track
is changed to 00000010 to indicate a
defective track. The data remains on
the alternate track and the job is
complete.

If the defect was temporary, and the
FORCED option is not specified, the
data is transferred back to the origi-
nal track. Any errors written on the

56

alternate track will be transferred
back as errors. The program does not
correct errors in the data. The flag
bytes of the alternate track are reset
to binary zeros to indicate that the
track 1s unassigned. If the FORCED
option is specified, the data is not
transferred back to the original track.

5. The VTOC file-label is modified to
contain the address of the next availa-
ble alternate track.

The following job-control and utility
cornitrcl statements are used with the
Alternate-Track Assignment program:

Job Control Statements

Operand Entries
for Alternate-Track

Statement Use Assignment Utility

// JOB Required Program name = ATASGN

// ASSGN Required Primary output device=
SYSOPT

// ASSGN Optional Logging device =
SYSLOG

(See LOG statement)

// CONFG Required* Main-storage capacity

// DATE Required* Year and day
// LOG Optional

or
// NOLOG

// EXEC Required

*Unless information is still in main stor-
age.

For details on the job-control state-
ments refer to Appendix_A.

Utility Control Statements

//bU0 Required (More than one may
be submitted)
//bEND Required

ALTERNATE~TRACK ASSIGNMENT UTILITY-MODIFIER

STATEMENT

This utility-modifier statement contains
the address of the defective track and an
option indicating whether sectors contain-
ing errors are to be printed. The general
format of the statement is

S ettty th et 8!
| Name|Operation|Operand]

|//b |UATb [R=(cccchhh) , 0x, VERIFY=(n) , }

| | | FORCED
| IpN—

————al

The program handles the transfer of data
only from a single track; therefore, one
utility-modifier statement per track is
used.

Operand definition:

//bUATD Statement identifier. The AT

is optional.

R=(cccchhh) Defective track location. This
operand must be present and it
must be the first operand. The
address consists of a cylinder
number (0000 or 0004-0202 for
Model 11; 0000 or 0004-0102 for
Model 12) and a head number
(000-009). The address must be
enclosed in parentheses. If an
alternate track becomes defec-
tive, 8 second alternate track
is assigned. But in no case
should the address of an alter-
nate track (cylinders 1-3) be
specified. The address in
parentheses is not that of the
alternate track but that of the
original defective track.

ox Print operand. It has two

forms:

0OY if the data in a track
containing invalid recoxds
is to be printed;

ON 1f the data in this track
is not to be printed.

This operand has a default
value of OY.

The value n indicates the num-
ber of times the program should
write and verify a test pattern
during surface analysis to
determine whether the defect is
permanent or temporary. The
default specification is
VERIFY=(1). Any value between
1 and 256 may be specified.

VERIFY=(n)

FORCED This operand indicates that the
defect is to be considered
permanent. The default speci-
fication is the absence of

FORCED.
END CONTROL STATEMENT

The END control statement indicates that no
more alternate tracks are to be assigned.
You must submit this statement. The format
of the END control statement is

~ T =T~ B
| Name |[Operation| Operand |
——— $—— —————————————— e 4
|//b |END | |
[il ————————————— 4

SAMPLE PROBLEMS

1. Track 4 of cylinder 051 has been found
to be defective. Assign an alternate
track and transfer the data. Print the
track containing the errors.

The required utility control statements
are

//bUATbR=(0051004) ,0Y
//bEND

or

//bUbR=(0051004)
//bEND

Both pairs of statements achieve the
same results. The second pair uses the
default specification for the print option,
and omits the optional program initials.

2, Assign an alternate track for track O
of cylinder 31, and transfer the data
from the defective track. Do not print
the invalid track.

The necessary utility control state-
ments are

//bUATbR=(0031000) ,0ON
//bEND

Alternate-Track Assignment Utility Program (Disk Recovery) 57

Disk Dump Utility Program (DDUMP)

The Disk Dump utility program prints the
contents of disk data (record) fields and
count fields. The output is in hexadecimal
notation and in character format. All
kinds of data can be dumped, regardless of
labels or extents.

The following information for the pro-
gram must be provided via console switches:

1. Drive number.

2. Lower limit of area to be dumped.

3. Termination of program (by entering
X'E' or X'F').

After the program has been loaded, an
initial halt occurs indicating that new
information is to be entered on the console
switches. A halt does not automatically
occur after an extent has been dumped;
therefore, unless X'E' or X'F' is entered
on the console switches, the program con-
tinues dumping one track after the other
until the end of the pack is reached.

JOB-CONTROL STATEMENTS

The Disk Dump utility program can be either
disk-resident or card-resident. If you use
the disk-resident version, the program can
be executed as either mainline or inquiry
program (each under supervision of the DPS
control programs). When you use the card-
resident resident version, it can be
executed under DPS, or it can be used as a
stand-alone program consisting of an object
deck which is preceded by an absolute load-
er. An object deck can be obtained with
the CSERV program (See the publication IBM
System/360 Model 20, DPS Control and Serxr-
vice Programs, Form C23-9006).

The following control statements are
used with the Disk Dump utility program
(unless it is run as a stand-alone
program) :

Operand Entries for
Disk Dump

Statement Use

// JOB Required Program name = DDUMP

/7 ASSGN Required Primary output device
= SYSLST

// ASSGN Optional Logging device =
SYSLOG (see LOG
statement)

// DATE Required

// LOG Optional

or
// NOLOG
// EXEC Required

® 58

For a detailed description of the job-
control statements refer to Appendix A.

The Disk Dump program does not need any
utility caontrol statements.

DESCRIPTION OF CONSOLE'SWITCH INPUT

Data switch 1: If this switch is changed

after the initial halt occurs, the program
starts with the new information from the
console switches. If it is changed to a
value between X'0' and X'D', the informa-
tion in data switch 2 and the register data
switches is analysed. Then a new page is
started and the extent is dumped as speci-
fied in the switches. If data switch 1 is
changed to X'E* or X'F', the program is
terminated.

Data switch 2: This switch specifies the
drive number, which can be 1,2,3, or 4.

The register data switches specify the
lower limit (cchxr) of the extent to be
dumped:

Register data switches 1 and 2 specify
the cylinder number in hexadecimal nota-
tion (cc).

Register data switch 3 specifies the
head number in hexadecimal notation (h).

Register data switch 4 specifies the
record number in hexadecimal notation
(r).

SAMPLE PROBLEM

Dump the contents of cylinder 0, head 1, of
drives 1, 2, and 4 and the contents of
cylinder 106, head 1, record 5, of drive 1.

1. Call the Disk Dump program and wait for
initial halt.

2. Specify the following values on the
console switches:

|
|
D1 | D2
0-D*|
|

*Any value between X'0' and X'D'

1

e e o e

|

|

[

[

|

|
—— e — —

]

|

1

]

|

|

[

|

|

|
______ R

|

!

PRSP S

Press START.

Change D2 to 2 and change D1 after
completion of output from drive 1 to a
value between X'0' and X'D'.

Change D2 to U4 and change D1 after
completion of output from drive 2 to a

value between X'0' and X'D'.

Change D2 to 1, R1 to 6, R2 to A
(decimal 106 = hexadecimal 6A), R3 to
1, and R4 to 5. Change D1 after com-
pletion of output from last extent to a
value between X'0' and X'D'.

When all information from drive 1,
cylinder 106, head 1, record 5 has been
retrieved, change D1 to X'E' or X'F' to
terminate the job.

Disk Dump Utility Program (Ddump) @ 59

Sample Problem Shown in Detail

Transfer a file from one disk pack to PR0002. The records of the file are 270
another to create a back-up file. bytes long, 10 records to a block.
For this example, it is assumed that the
disk pack onto which the file is to be Control statements necessary to define
copied contains the volume serial number this problem are shown in Figure 24,
mu 1BM System '360 Assembler Coding Porm painee
[--wm DISK - TO-DISK _EXAMPLE : e | e e
. il 0 T L » hcul » » © m @ p T o al s oo |
L 1]l LT
¥l [o D!
L DT 6 Al | |4s],] 1119
ol CoNFlg! |t | na
e) ASiS|GIN 1eir], x| iBigle ' |, D[3
AN n N
[N yolL SITIP(T], (LT M {
(AN LAB | ' PlAYIRIO|LIL| IFTiL P Ll del] |
| ! gl ' 1
(AN L4 1), Ol1 !]} lsyisltipir
Ul Sisi6iN| ISy NARE" N
dod l |SISIENM| U NN -
/L . ulT ;
ANEENEE LIA t IPIAY FIEILIE] P N -
SN 1], 16 21,1 i B
I i XTIENCT] L, U ‘aﬁiﬁ P
ne Ex|Elc
/i uin T, [FlE, [al=[((2]70], |2] 4&-(27{0.27 1,10
il EN i !
e — : 1 d
i
o 44 SR }
S i jRng I
B I I I L

® Figure 24. Control Statements for Sample Disk-to-Disk Problem

60

Job-control statements are required to
prepare the system for the execution of a
utility program.

All job-control statements contain three
fields. The first field (name field)
always contains // in columns 1-2 to iden~
tify the card as a job-control statement.
The name field is followed by at least one
blank column and then by the operation
field, up to five columns long, specifying
the operation code (e.g., JOB or ASSGN).
The second field must be separated from the
third by at least one blank column. The
third field is the operand field. Depend-
ing on the type of statement, this field is
blank, one operand, or contains a series of
operands separated from each other by com-
mas.

For ease of reference, the job control
statements are described in alphabetical
order below.

ASSGN_Statement

One ASSGN statement must be prepared for
each input/output device used. It sexrves
to associate a physical input or output
device with a symbolic device name. An
ASSGN statement may be omitted when the
information on it is still in storage from
a previous job. The statement contains a
symbolic device address, the physical
device address and type, and specifications
for 7-track or 9-track tape when applica-
ble.

The use of two physical tape devices
with multiple-reel input or output makes it
possible to mount additional reels without
delaying the operation of the program.

When one disk drive serves as both input
and output device, the same physical device
address is used in two ASSGN statements
with two different symbolic device address-
es.

The statement has the foliowing format:

i ettt e 1
|Name| Operation|Operand j
|77 | ASSGN | S¥YSxxx,X'cuu', dd,X'ss" |
| I S, i . : - 1

Appendix A. Job Control Statements

ASSGN
SYSxxx

ASSGN statement identification
Symbolic device address
SYSIPT -- primary input device
SYSOPT -- primary output device
SYSLOG -- control-statement logging
device (printer)
SYS000-SYS007 -- altérnate input
and output tape and disk drives
Physical device \
address, in |
hexadecimal no- |
tation |
dd Type of device
X'ss' Tape character- |
istics, in hex- |
adecimal nota- |
tion Ve

X'cuu'

See Figure 25
> for operand
specifications

(This field is entered only when a
tape device is being assigned)

For an IBM 2415 with the 9-Track Compat-
ibility special feature (#5320 or #7135)
installed, a tape characteristic specifi-
cation (ss) must be assigned for a 9-track
output drive. A tape characteristic must
always be assigned for 7-track tape.

//ASSGN SYSOPT,X'785",T2,X'C8*

assigns a 9-track tape drive with the
device address 85 as the primary output
device., The tape will be written at 800
bytes per inch. (Model 4, 5, or 6 with
9-Track Compatibility feature is assumed).

// ASSGN SYSIPT,X'781',T1,X'68"

address 81 as the primary input device.
This tape has been recorded at 556 bpi
(bytes per inch) with even parity. Every
6-bit character from the 7-track tape is
translated to an 8-bit EBCDIC byte in main
storage.

// ASSGN SYSIPT, X'801',D4

assigns a 2311 Disk Storage Drive Model 12
with the device address 01 as the primary
input device.

Appendix A. Job Control Statements 61

S - -
] Device
] Address
(cuu)

12311 Disk Storage Drives

} Model 11 8xx (xx=01-04)
| Model 12 8xx (xx=01-04)
|1403 Printer 400
12203 Printer 400
1442 Card Punch 300
12520 Card Punch 200
12501 Card Reader 100
12560 MFCM Primary Feed 200
2560 MFCM Secondary Feed 200
12520 Card Read-Punch 200
12415 7-track Tape Drives Txx (xx=00-FF)
12415 9-track Tape Drives Txx (xx=00-FF)

Tape
Characteristic
(ss)

i
1
1

See table below
c8 (if 800 bpi)
CO(if 1600 Dbpi)

]
w
Sy Uy SO PP |

___________ - e
|Fox 7-track tape: |
|BPI (Bytes Translate Convert |
|Per inch) Parity Feature Feature (ss) |
e e 3
1200 odd off on 10 |
| even off off 20

| even on off 28 |
| odd off off 30 |
] odd on off 38]
| |
1556 odd off on 50 |
| even off off 60]
| even on off 68]
| odd off off 70 |
| odd on off 78 |
| |
1800 odd off on 90 |
| even off off A0

| even on off A8 |
| odd off off BO |
| odd on off B8 |
L P —_— - e e e et S T 2 o o e e e S o PR . o e e e e e o e o e 4
Figure 25. Operand Specifications for the ASSGN Statement

If you do not wish to use the alternate
input or alternate output tape (SYS000 and
SYsS001, respectively), you must submit
ASSGN statements to "unassign" the logical
devices.

// ASSGN SYS000,UA
// ASSGN s¥YS001,0A

Failure to unassign these tapes will
cause an "INVALID ALTERNATE ASSIGNMENT"
error halt if SYS000 and/or SYS001 are not
already unassigned from a previous job.

CONFG_Statement

The CONFG statement defines the amount of
main storage available. It is required
unless this information is still in main
storage from a previous job. If the CONFG
statement is submitted for a job operating

62

under a Monitor with inquiry support, the
statement is ignored, i.e., a halt occurs
and normal processing continues when START
is pressed on the CPU. The CONFG statement
has the following format:

fm———7-——-
|Name |Operation|Operand |
1

1
|7/ |CONFG | xx |
| ESS NN S 1

CONFG statement identification

A decimal representation of main
storage capacity in K bytes. The
following codes are valid:

CONFG
XX

12 (for 12,288 bytes)
16 (for 16,384 bytes)
24 (for 24,576 bytes)
32 (for 32,768 bytes)

For example, to represent a Model 20 with a
12,288~-byte main storage capacity, the
CONFG statement will be

// CONFG 12

DATE Statement

The DATE statement contains the current
date. It is required unless this informa-
tion is still in storage from a previous

DLA Statement

The disk=-label statement (completed in a
continuation statement) contains file label
(Format 1) information for disk label
checking and creation. This statement must
immediately follow its related volume (VOL)
statement. The DLAB statement has the
following format:

Basic Statement:

job. The format is

r - -7 ——=- 1
| Name| Operation]Operand |
. e B - —-
|77/ |DATE | yydaad i
(IS R RE— —_— 4

DATE DATE statement identification
yy Last two digits of the year

ddd Number of the day of the year
(001-366)

For example, to specify August 31, 1967,
the 243rd day of the year, the statement is

/7 DATE 67243

DELET Control Statement

The DELET control statement is used to
remove one or more permanent file labels
from the Label Information Area.

The DELET control statement has one of
the following formats:

—_— 1
'
|one or more operands

|7/ |DELET |
L P L

b e bt e e —

DELET statements of the first format
above may contain one or more file names
separated by commas. A blank must follow
the last operand. The field must not
extend beyond column 71 of the card.

DELET statements of the second format
above cause blanks to be moved into the
Label Information Area, (i.e., the area is
cleared).

Note: A DELET statement must precede the
first VOL statement within a Job Control
deck. Otherwise, an error halt occurs.

|7/ |DLAB

|] | £file label fields 1-3',P|

[I e J

DLAB DLAB statement identifi-
cation.

' (apostrophe) Start of disk file label
fields 1-3.

Model 20 standard
disk file label
fields 1-3

' (apostrophe)

(See Appendix B for
details of file

label fields).

End of disk file label
fields 1-3.

P Optional; if specified,
the label information on
disk is permanent.

Continuation Statement:

The entire DLAB information cannot be
entered in one card. Therefore, a charac-
ter (any character) must be punched in
column 72 to indicate that a continuation
statement follows. The continuation state-
ment contains blanks in columns 1-15, and
fields u4~6 of the Model 20 standard disk
file label starting in column 16. (See
Appendix B for a complete description of
the fields in the Model 20 standard disk
file label). The continuation statement
has the following format:

XxXxX, yyddd, yyddd, ' XXXXXXXXXXXXX'

Volume sequence number. This
4-digit number is the decimal
equivalent of the 2-byte binary
volume sequence number in Field 4
of the label.

The file creation date followed

by the file expiration date. These
two 5-digit numbers are the decimal
equivalents of the 3-byte discon-
tinuous binary dates in Fields 5
and 6 of the label. yy is the year
(00-99) ddd is the day of the year
{(001-366) .

' XXXXXXXKXXXXXX" System code (optional).
This 13 character field
must be enclosed in apos-
trophes.

XXXX

yyddd,
yyddd

Appendix A. Job Control Statements 63

DSPLY Control Statement

If SYSLOG is assigned, the DSPLY statement
causes the listing of all permanent labels
contained in the Label Information Area.

If SYSLOG is unassigned or NOLOG is encoun-
tered, the DSPLY statement causes no print
request.

The DSPLY control statement has the
following format:

r——- —_— - —_—

|Name|0perat10n|0perands

F b +
|77/ |DSPLY |
L P -1 ——

If no permanent labels are present in
the Label Information Area on disk, and the
DSPLY statement is encountered, the message
NO LABEL FOUND is listed on the printer
assigned to SYSLOG before processing con-
tinues.

The listing consists of the file name,
the expiration date, (i.e., the format used
in the DLAB statement), the symbolic device
address, the type of extent, and the lower
and upper extent limits in decimal nota-
tion.

EXEC Statement (Required)

The EXEC statement is the last statement in
the group of job-control statements. It
indicates that execution is to begin. Its
format is

|Name|0peratlon|0perand
f——--1

|77 |EXEC
L1

[Ly |

o e =

FILES Statement

The FILES control statement is used to
position a reel of magnetic tape at a
specific file by skipping a specified num-
ber of tapemarks. The statement has the
following format:

r T T
|Name|Operation|Operand

QSYSxxan

FILES FILES statement identification

SYSXXX Symbolic device address of tape

drive concerned

n Number of tapemarks to be skipped

64

The number of tapemarks to be skipped
(n) is counted from the load point, and may
be any number from 1-999. It must take
into account the tapemarks associated with
labels, as well as file tapemarks.

JOB Statement

This is the first control statement for a
job, and contains the name of the program
to be run. The operand field must contain
the name of the program. The statement
format is:

———-T -7 - -
| Name |Operation|Operand |
O G o 1
|77 {JOB | xxxxxx]
(I} 1 e J

JOB JOB statement identification
xxxxxx Name of program to be run, such as
CLRDSK, DSKTAP, etc.

LOG or NOLOG Statement (Optional)

To log is to list control statements on the
printer assigned to the symbolic device
SYSLOG. If a LOG statement is sukmitted,
job-control statements will be listed until
a NOLOG statement is read. A LOG statement
used in one job will cause logging in all
subsequent jobs until a NOLOG statement is
read. Conversely, if a NOLOG statement is
submitted, no job-control cards are listed
in this and all subsequent jobs until a LOG
statement is encountered.

The formats of the two statements are:

\// |LOG
|77 lNOLOG

-+
|
1
|
|
|
1
|
1
|
[
1
|
{
|
1
1
1
|
[}
|
|
|
|
|
1
[}

.

Utility programs will list the various
operand specifications established by the
job -- such as record size, block size,
etc. -- whenever SYSLOG is assigned.

OPTN Control Statement

The OPTN control statement is used to ini-
tiate error statistics.

The OPTN control statement has the fol-
lowing format:

_____________ T —— 1

|Name|0perat10n|0perand]

+
|77 lOPTN
| S E - - ~d

OPTN OPTN statement identification.

TES Tape error statistics are to be ini-
tiated.

Note: Error statistics will only be listed
on the printer when a LOG statement is
issued and the Job Control program is
reloaded after execution of the problem
program.

TPLAB Statement

One TPLAB statement is required for each
input and each output tape file on which
standard file label processing is to be
done. It must immediately follow the
appropriate VOL statement and must contain
the file label associated with the symbolic
device described in that VOL statement.
This statement contains an image of a por-
tion -- fields 3 to 10 -- of the IBM stand-
ard tape file label. The format of this
label is presented in Appendix E. Label
fields 3-10 are always punched just as they
appear in the label. These are the only
fields processed.

The format of the TPLAB statement is:

[
|Name|0perat10n10perand

TP SE— |

|77 | TPLAB | 'IBM standard flle label

] 1 | fields 3-10°

[——1 -

TPLAB TPLAB statement
identification

' (apostrophe) Start of tape file label

IBM standard (See Appendix B, Figure

tape file 28, for details of tape

label fields file label fields).

' (apostrophe) End of tape file label

Example:

/7 VOL SYSIPT,UIN
/7 TPLAB '1967bSALESbbbbbbbABCDEF000000
00000701b67140b68031"

would be used to check that the tapes
mounted on the input devices contain a file
labeled "1967 SALES" that had been generat-
ed on May 20, 1967 and would not expire
until January 31, 1968.

UPSI Statement

The UPSI control statement is used to set
switch indicators in the problem program.
The format is as follows:

177 IUPSI | nnnnnnnn
| I S —— J I

b e s e i

Each n represents one bit of the UPSI
byte in the Monitor communication region.
(For details on the UPSI byte refer to the
SRL publication IBM System/360 Model 20
Disk Programming System, Control and Ser-
vice Programs, Form C24-9006.)

VOL Statement

One VOL statement is required for each
input and each output tape file on which
standard file label processing is to be
performed and for each disk ingput and out-
put file. The statement contains the sym-
bolic device name associated with the file
(see ASSGN statement), and a logical file
name (left-aligned). The statement format
is :

_____________ -—
|77 lVOL |SYSxxx fEfff |
bl ——————— J
VOL VOL statement identification
SYSxxx The symbolic device name
fffff File name (left-aligned) as speci-

fied in the individual program.

XTENT Statement

An XTENT statement defines an area, or
extent, of a disk file, on a disk pack. An
extent limit can only refer to a track, not
to a sector within that track.

XTENT statements cannot reference the
alternate track area (cylinders 1-3 and
cylinder 0 track 1). When the program
encounters a defective track (within the
extent) for which an alternate track has
been assigned, the disk utility program
automatically references the appropriate
alternate track and then continues at the
next track within the extent.

One or more XTENT statements must follow
each DLAB statement. Figure 26 defines the
operands which are used with the XTENT
statement. The XTENT statement has the
following format:

Stk etk istet Rl ———= -1
]NamelOperatlonIOperand |
f--—-1 -—4- mmmmmmmmeeo—-
|// | XTENT | type, sequence, lower limit, |
|] | upper limit, ‘volume |

serial no.',SYSxxx]

| | |
| I

—_——t - ————d

Example:

// XTENT 1,000,0010000,0012009,'124356"',
SYSIPT

would be used to define an extent that

occupies the thirty tracks on cylinders 10,
11, and 12 of a disk input file.

Appendix A. Job Control Statements 65

The program checks
the extents specified

to determine whether If an extent specified for an output
in XTENT statements file overlaps with any unexpired file on

for an input file coincide with those in the disk pack, a programmed halt occurs.
the file label. If they do, processing

continues normally. If the XTENT statement To process a multi-volume file, submit
specifications extend beyond the file lim- XTENT statements to define the extents of
its, the program halts. each intermediate volume (See Appendix J).

- ——r——

[R— — ———————— - ———— e 1

T
| | Number of] |

|Operand]Columns |Explanation |
{ 1 —— | I —_——— e . o . e e e 2 S 2 e . . 7 o S . e o e 0 o e o o _l
) T T

|type i i |Extent Type - contains a 1 (data extent) |
------------ e £ -—- - -1
| sequence | 3 |Extent Sequence Number]
| | |Contains a 3-digit number from 000 to 255, indicating the

|] | sequence number of this extent within a multi-extent file.
prmmmmmmm e }--- T 1
|lower limit | 7 |Contains the lowest address of the extent in the decimal form |
| | | cccchhh, where I
| | |ccce= cylinder number (0000 to 0202 for Model 11, or 0000 - 0102]
| | for Model 12). |
] | | hhh = head number (000 to 009)

R oo en T 1
|Jupper limit | 7 |Contains the highest address of the extent, in the same form as |
| | |the lower limit. (Cannot be less than lower limit).

—— —-- $--- e
| ' volume | 6 |Six-column alphameric field, punched