Systems Reference Library

IBM System/360
FORTRAN IV Library Subprograms

Program Number 360S-LM-501
360F-LM-619

This publication describes the library subprograms supplied with
Basic FORTRAN v (E) and FORTRAN 1v (G, H, and MODEL 44) and
tells how to use the subprograms in either a FORTRAN or an assem-
bler language program.

File Number S360-25
Form C28-6596-2

0S
44PS

Preface

The purpose of this publication is to describe the
FORTRAN library subprograms and their use in either
a FORTRAN or an assembler language program. The
body of the publication describes the mathematical
subprograms (which perform computations) and the
service subprograms (which perform testing and
utility functions). This information is intended pri-
marily for the FORTRAN programmer; Appendix E is
intended for the assembler language programmer.
Additional appendixes contain algorithms (the method
by which a mathematical function is computed), per-
formance statistics, descriptions of interruption and
error procedures, storage estimates, and sample stor-
age printouts.

The reader should be familiar with one of the follow-
ing publications:

IBM System/360 Basic FORTRAN IV Language,
Form C28-6629

IBM System/360 Operating System: Assembler
Language, Form C28-6514

IBM System/360 Model 44 Programming System:
Assembler Language, Form C28-6811

In addition, references are made within this publica-
tion to information contained in the following publi-
cations:

IBM System/360 Principles of Operation, Form
A22-6521

IBM System/360 Operating System: Supervisor and
Data Management Macro-Instructions, Form C28-6647

IBM System/360 Model 44 Programming System:
Guide to System Use, Form C28-6812

Standard mathematical notation is used in this publi-
cation. The reader is expected to be familiar with this
notation and with common mathematical terminology.

Note to users of the System/360 Operating System: The information in this publication about the execution-time routines
IHCADJST, IHCTRCH, and IHCUOPT and about the form of the program interrupt message that results from bound-
ary alignment errors will become effective with Release 11 of the System/360 Operating System.

THirp EpITION

This publication is a major revision of Form C28-6596-1. Significant changes have been made to
support the Model 44 Programming System FORTRAN IV library. Revisions made to text or
tables that pertain to the use of the System/360 Operation System are indicated by vertical

bars in the left-hand margin.

Specifications contained herein are subject to change from time to time. Any such changes

will be reported in subsequent revisions or Technical Newsletters.

© International Business Machines Corporation, 1966

Introduction

Mathematical Subprograms

Explicitly Called Subprograms e
Implicitly Called Subprograms

Service Subprograms

\llaf‘l’ii"iﬂ Indicaior lt—‘-cv

Utility Subprograms

Appendix A. Algorithms

xxxCLABS (CDABS) and xxxCSABS (CABS)

Subprogramso

xxxCLEXP (CDEXP) and xxxCSEXP (CEXP)

Subprograms

xxxCLLOG (CDLOG) and xxxCSLOG (CLOG)
Subprograms
xxxCLSQT (CDSQRT) and xxxCSQT (CSQRT)

Subprograms
xxxCLSCN Subprogram (CDSIN and CDCOS).
xxxCSSCN Subprogram (CSIN and CCOS)......
xxxLASCN Subprogram (DARSIN and DARCOS)

IHCLATAN Subprogram (DATAN)

xxxLATN2 Subprogram (DATAN and DATAN2) .
xxxLERF Subprogram (DERF and DERFC)....
xxxLEXP Subprogram (DEXP)
xxxLGAMA Subprogram (DGAMMA and DLGAMA) . .
xxxLLOG Subprogram (DLOG and DLOG10)... . .
xxxLLSCN Subprogram (DSIN and DCOS)......... ..
xxxLSCNH Subprogram (DSINH and DCOSH)

xxxLSQRT Subprogram (DSQRT)

xxxLTANH Subprogram (DTANH)

Tables

Trigonometric Subprograms
Hyperbolic Function Subprograms

@ -1 D O b GO 1D

Exponentiation with Reel Base and Integer
Expcnent

9
10 Exponentiation with Complex Base and Integer
) Exponent
11 The xxxFDUMP Subprogram Format
Specifications
12 Performance Statistics

Explicitly Called ’Vlathematical Subprograms. . . .

Miscellaneous Mathematical Subprograms
Implicitly Called Mathematical Subprograms.
Exponentiation with Integer Base and Exponent. . .

Exponentiation with Real Base and Exponent. . . .

Contents

xxxLTNCT Subprogram (DTAN and DCOTAN).... .. 28
xxxSASCN Subprogram (ARSIN and ARCOS). 29
IHCSATAN Subprogram (ATAN)08
xxxSATN2 Subprogram (ATAN and ATAN2) 30
xxxSERF Subprogram (ERF and ERFC)..... 31
xxxSEXP Subprogram (EXP) 32
xxxSGAMA Subprogram (GAMMA and ALGAMA) 33
xxxSLOG Subprogram (ALOC and ALOGI10) 33
xxxSSCN Subprogram (SIN and COS)........ 34
xxxSSCNH Subprogram (SINH and COSH). 35
xxxSSQRT Subprogram (SQRT) 35
xxxSTANH Subprogram (TANH) 36
xxxSTNCT Subprogram (TAN and COTAN).......... 36
Appendix B. Performance Statisties 38
Appendix C. Interruption and Error Procedures 44
Interruption Procedures 44
Error Procedures 45
® System/360 Operating System 45
Model 44 Programming System........ 45
Appendix D. Storage Estimates. 49
Appendix E. Assembler Language Information 51
Calling Sequences 51
Mathematical Subprograms 52
Service Subprograms oL 52
Appendix F. Sample Storage Printouts 54
Index...... 55
3 1] =
iliustrations
13 Mathematical Subprogram Storage Estimates. 49
14 Service Subprogram Storage Estimates. 50
15 Execution-Time Routine Storage Estlmates
Operating System 50
16 Execution-Time Routine Storage Estimates,
Model 44 System 50
17 Assembler Information for the Service
Subprograms 53
Figures
1 Program Interrupt Message Format,
Operating System, 44
2 Program Interrupt Message Format,
Model 44 System 45
3 General Assembler Language Calling Sequence. ... 52
4 Sample Storage Printouts 54

The FORTRAN 1v library for the System/360 Operating
System and the Model 44 Programming System com-
prises two types of relocatable subprograms: mathe-
matical subprograms and service subprograms. The
mathematical subprograms correspond to a subpro-
gram defined by a ruNcrioN statement in a FORTRAN
source module. These subprograms always return one
answer (function value) to the calling module. The
service subprograms correspond to a subprogram de-
fined by a sUBROUTINE statement in a FORTRAN source
module. These subprograms may or may not return a
value to the calling module.

Calls to the library subprograms are either at the
programmer’s request or in response to program re-
quirements. Under the System/360 Operating System,
all calls are processed by the linkage editor, which
takes the subprograms from the library. The library
subprograms are then combined by the linkage editor
with the calling module (either an object or a load
module) into another load module which is ready for
execution. Under the Model 44 Programming System,
the linkage editor takes the subprograms from the

Introduction

library and combines them with the calling module into
an executable phase.

The library subprograms may be called in either a
FORTRAN or an assembler language program. The next
two sections of this publication contain calling infor-
mation for the FORTRAN programmer; Appendix E con-
tains calling information for the assembler language
programmer.

Subprogram Names

The names of the subprograms described in this pub-
lication are the same whether they are part of the
System/360 Operating System or the Model 44 Pro-
gramming System library, except for a three-character
prefix, which is uniformly IHC for the former and
BOA for the latter. These occupy the portion of the
subprogram name shown as xxx in the text and rables.
Thus, the subprogram here named “xxxcsLoc” has
the name 1HCCsLOG under System/360 Operating Sys-
tem and BoacsLoc under the Model 44 Programming
System.

Introduction 5

Mathematical Subprograms

The mathematical subprograms supplied in the
FORTRAN library perform computations frequently
needed by the applications programmer. The mathe-
matical subprograms are called in two ways: explicitly,
when the programmer includes the appropriate entry
name in a source language statement (see.Table 1);
and implicitly, when certain notation (e.g., raising a
number to a power) appears within a source language
statement (see Table 6).

The following text describes the individual mathe-
matical subprograms and explains their use in a
FORTRAN program. Detailed information about the
actual method of computation used in each subpro-
gram, the performance of the subprogram, interrup-
tion and error procedures, and storage estimates can
be found in the appendixes of this publication.

Explicitly Called Subprograms

Each explicitly called subprogram performs one or
more mathematical functions. Each mathematical
function is identified by a unique entry name that
differs from the name of the subprogram.

A subprogram is called whenever the appropriate
entry name is included in a ForTRAN arithmetic expres-
sion. The programmer must also supply one or more
arguments. These arguments follow the entry name
and are separated by commas; the list of arguments is
enclosed in parentheses.

For example, the source statement

RESULT = SIN (RADIAN)

causes the rHCsscN subprogram to be called. The sine
of the value in raDIAN is computed and the function
value is stored in RESULT.

In the following example, the rHCSsQRT subprogram
is called to compute the square root of the value in
AMNT. The function value is then added to the value
in sTock and the result is stored in Ans.

ANS = STOCK + SQRT (AMNT)

The explicitly called subprograms are described in
the tables that make up the rest of this section.
These tables show the general function, subprogram
name, the FORTRAN library that contains the subpro-
gram, definition, entry name(s), argument information,
type of function value returned, and assembler re-
quirements. The following column headings are used
in the tables:

General Function: This column states the nature of
the computation performed by the subprogram.

6

Subprogram Name: This column gives the module
name of the subprogram. The name of the subprogram
is the same whether it is in the Operating System li-
brary or the Model 44 Programming System library
except for the first three characters, which are uni-
formly 1mc for the former and Boa for the latter. These
three characters occupy the portion of the subprogram
name that is shown as xxx in the text and tables.

Subset: This column indicates those subprograms
that belong to the ¥orTrRAN v (E) library. Unless
otherwise indicated, all subprograms that belong to
the E library also belong to the FortrAN Iv (G, H, and
Model 44) library.

Definition: This column gives a mathematical equa-
tion that represents the computation. An alternate
equation is given in those cases where there is another
way of representing the computation in mathematical
notation. (For example, the square root can be repre-
sented either as y= V/x or y = x!/2) The definition
for those subprograms that accept complex arguments
contains the notation z = x;+ x.i.

Entry Name: This column gives the entry name that
the programmer must use to call the subprogram. A
subprogram may have more than one entry name; the
particular entry name used depends upon the compu-
tation to be performed. For example, the 1HcsscN sub-
program has two entry names: cos and siv. If the
cosine is to be computed, entry name cos is used; if
the sine is to be computed, entry name si¥ is used.

Argument Number: This column gives the number
of arguments that the programmer must supply.

Argument Type: This column describes the mode
and length of the argument. INTEGER, REAL, and
coMPLEX represent the type of number; the notation
*4, *8 and *16 represent the size of the argument in
storage locations.

Note: In FORTRAN v (E), a real argument corre-

sponds to the ReEaL *4 argument, and a double-

precision argument corresponds to the REAL *s argu-

ment. Complex arguments cannot be used with a

FORTRAN 1v (E) compiler.

Argument Range: This column gives the valid range
for an argument. If the argument is not within this
range, an error message is issued and execution of this
load module is terminated. Appendix C contains a
description of the error messages.

Function Value Type: This column describes the
type of function value returned by the subprogram.
The notation used is the same as that used for the
argument type.

Table 1. Explicitly Called Mathematical Subprograms

General Function Specific Function Subprogram Name Entry Name(s)
Logarithmic and exponential Common and natural logarithm xxxCLLOG* CDLOG
subprograms (described in Table 2) xxxCSLOG* CLOG
xxxLLOG DLOG, DLOGI10
xxxSLOG ALOG, ALOGI0
Exponential xxxCLEXP* CDEXP
xxxCSEXP* CEXP
xxx LEXP DEXP
xxxSEXP EXP
Square root xxxCLSQT CDSQRT
xxxCSSQT* CSQRT
xxxLSQRT DSQRT
xxxSSQRT SQRT
Trigonometric subprograms Arcsine and arccosine xxx LASCN* DARSIN, DARCOS
(described in Table 3) xxxSASCN* ARSIN, ARCOS
Arctangent IHCLATAN DATAN
xxx LATN2* DATAN, DATAN2
IHCSATAN ATAN
xxxSATN2* ATAN, ATAN2
Sine and cosine xxxCLSCN* CDSIN, CDCOS
xxxCSSCN* CSIN, CCOS
xxxLSCN DSIN, DCOS
xxxSSCN SIN, COS
Tangent and cotangent xxxLTNCT* DTAN, DCOTAN
xxxSTNCT* TAN, COTAN
Hyperbolic function subprograms Hyperbolic sine and cosine xxxLSCNH* DSINH, DCOSH
(described in Table 4) xxxSSCNH* SINH, COSH
Hyperbolic tangent xxxLTANH DTANH
xxxSTANH TANH
Miscellaneous subprograms Absolute value xxxCLABS* CDABS
(described in Table 5) xxxCSABS* CABS
Error function xxxLERF* DERF, DERFC
xxxSERF* ERF, ERFC
Gamma and log-gamma xxxLGAMA* DGAMMA, DLGAMA
xxxSGAMA* GAMMA, ALGAMA
Maximum and minimum value xxxFMAXD DMAX1, DMIN1
xxxFMAXI AMAXO0, AMINO, MAX0, MINO
xxxFMAXR AMAXI, AMIN1, MAX1, MIN1
Modular arithmetic IHCFMODI MOD
IHCFMODR AMOD, DMOD
Truncation IHCFAINT AINT
IHCFIFIX IDINT, INT
*Not available in FORTRAN 1V (E)
Assembler Requirements: This column gives the reg- 2. Floating-point register 4 is used for intermediate
isters used by the subprogram and the minimum save computation.
area that the assembler language programmer must 3. The save area must be at least nine full-words in
supply. For example, the assembler requirements for length.

the xxxcssQT subprogram are:
registers 0, 2(4)
save area 9F
This information specifies that:
1. The function value is found in floating-point reg-
isters 0 and 2.

Detailed information for the assembler language pro-
grammer is given in Appendix E.

Norte: In the following tables, the approximate value
of 218 « 7 is .82354966406249996D + 06; the approximate
value of 239 « x is .35371188737802239D + 16.

Mathematical Subprograms 7

®Table 2. Logarithmic and Exponential Subprograms

A t(s) Function | Assembler
General Subprogram| Sub- Entry rgument(s Value Require-
Function Name set Definition Name No.| Type' Range Type' ments
Common xxxCLLOG | No y=pv log. (z) CDLOG | 1 | complex | z£0 + 0i complex | registers
and natural See Note 2 *16 See Note 3 *16 0,2
logarithm save area
8F
xxxCSLOG No y=rpvlog. (z) CLOG 1 complex | zs40 + 0i complex | registers
See Note 2 *8 See Note 3 *8 0,2
save area
8F
xxxLLOG Yes y=logex or DLOG 1 | real*8 x>0 real *8 registers
y=Inx 0(2)
save area
9F
y=logx DLOGI10 | 1 | real *8 x>0 real *8 registers
0(2)
save area
9F
xxxSLOG Yes y=log.x or ALOG 1 | real *4 x>0 real ¥4 registers
y=Inx 0(2)
save area
5F
y=logx ALOG10 | 1 real*4 [x>0 real ¥4 registers
0(2)
save area
5F
Exponential | xxxCLEXP No y=e¢? CDEXP 1 | complex | x: = 174.673 complex | registers
i See Note 4 *16 [xe] < (2¥7) | *16 0,2
save area
8F
xxxCSEXP No y=¢e” CEXP 1 | complex | x = 174.673 complex | registers
| See Note 4 *8 x| < (2%+7) | *8 0,2
save area
8F
xxxLEXP Yes y=e¥ DEXP 1 | real *8 x = 174.673 real *8 registers
0(2)
save area
9F
xxxSEXP Yes y=e* EXP 1 real *4 x = 174.673 real *4 register 0
save area
12F
Square root | xxxCLSQT No y=Vzor CDSQRT|{ 1 | complex | any complex complex | registers
y=z? *16 argument *16 0,2 (4)
See Note 3 save area
9F
xxxCSSQT No y=Vzor CSQRT 1 | complex | any complex complex | registers
y=2z? *8 argument *8 0,2 (4)
See Note 3 save area
9F
xxxLSQRT Yes y=Vxor DSQRT 1 | real *8 x=0 real *8 registers
y=x? 0(2,4)
save area
5F
xxxSSQRT Yes y=Vxor SQRT 1 | real *4 x=0 real ¥4 registers
y=x"? 0 (4)
save area
5F
INOTES:
1. In FORTRAN 1V (E), a real argument corresponds to the REAL *4 argument, and a double-precision argument corresponds to
the REAL *8 argument.
2. PV = principal value. The answer given is from that point where the imaginary part (y:) lies between —r and +. More specifi-
cally: =7 <y» <<, unless x, < 0 and x. = —0, in which case, y. = —m.
3. Floating-point overﬂow can occur.
fl4. Where z is a complex number of the form x, + x.i.

® Table 3. Trigonometric Subprograms

Argument () Function | Assembler
General Subprogram { Sub- Entry A Value Require-
Function Name set Definition Name No. Type' Range Type! ments
Arcsine and | xxxLASCN No y = arcsin (x) DARSIN | 1 | real *8 k=1 real registers
arccosine *8 (in 0(2,4)
radians) | save area
13F
y = arccos (x) DARCOS| 1 | real*8 kI=1 real registers
*8 (in 0(2,4)
radians) | save area
13F
xxxSASCN No y = arcsin (x) ARSIN 1 | real *4 xl<1 real registers
*4 (in 0(2,4)
radians) | save area
10F
v = arccos (x) ARCOS 1 | real *4 x|=1 real registers
*4 (in |0 (2 4)
radians) | save area
10F
Arctangent | IHCLATAN | See v = arctan (x) DATAN 1 ! real *8 any real real registers
Note argument *8 (in 0(2,4,6)
2 radians) | save area
; 5F
xxxLATN?2 See y = arctan (x) DATAN 1 ireal *8 any real real registers
Note ! argument *8 (in 0(2,4,6)
2] radians) | save area
5F
X1 DATAN2: 2 | real *8 any real real registers
v = arctan (\—_) arguments *8 (in 0(2,4,6)
(except 0,0) radians) | save area
5F
THCSATAN | Sec y = arctan (x) ATAN 1 ! real*4 any real real registers
Note argument *4 (in 0(2,4,6)
2 radians) | save area
5F
xxxSATN2 See y = arctan (x) ATAN 1 | real ¥4 any real real registers
Note argument *4 {in 5{2,4,6)
2 radians) | save area
5F
_ Xl) ATAN2 2 | real ¥4 any real real registers
y = arctan (x__ arguments *4 (in 0(2,4,6)
(except 0, 0) radians) | save area
5F
Sine and xxxCLSCN No y = sin (z) CDSIN 1 | complex | Ixi{<(2%+x) |complex | registers
cosine See Note 4 *16 (m !Xg! =174.673 *16 0,2 (4)
radians) save area
9F
y = cos (z) CDCOS 1 | complex | [x|<(2¥¢x) complex | registers
See Note 4 *16 (in]x.1 =174.673 *16 0,2 (4)
radians) save area
9F
xxxCSSCN No y = sin (z) CSIN 1 | complex | [x:|<<(2"*n) complex | registers
See Note 4 *8 (in 'x.! =174.673 *8 0,2 (4)
radians) save area
9F
y = cos (z) CCOS 1 | complex | x]/<(2%+x) complex | registers
See Note 4 *8 (in X! =174.673 |*8 0,2 (4)
radians) save area
! 9F

Mathematical Subprograms

9

@ Table 3. Trigonometric Subprograms (Continued)

Ar t(s) Function | Assembler
General Subprogram | Sub- Entry gumentis Value Require-
Function ~Name - set Definition Name No. Type* Range Type* ments
Sine and xxxLSCN Yes y = sin (x) DSIN 1 | real [x]<(2%° %) real *8 registers
cosine *8 (in 0(2,4)
(continued) radians) save area
5F
y = cos {x) DCOS 1 | real [x[<(2%) real *8 registers
*8 (in L 0(2,4)
radians) save area
5F
xxxSSCN Yes y = sin (x) SIN 1 | real x| (2% 7) real *4 registers
*4 (in 0 (2) 4)
radians) save area
5F
y = cos (x) COS 1 | real [x|<<(2%) real *4 registers
*4 (in 0 (2’ 4)
radians) save area
5F
Tangent and | xxxLTNCT No y = tan (x) DTAN 1 | real x| <(2%-7) real *8 registers
cotangent *8 (in See Note 3 0(2,4,6)
radians) save area
5F
y = cotan (x) DCOTAN| 1 | real [x]< (2% m) real *8 registers
*8 (in See Note 3 0(2,4,6)
radians) save area
5F
xxxSTNCT No y = tan (x) TAN 1 | real x| < (2% 7) real ¥4 registers
*4 (in See Note 3 0(2,4)
radians) save area
5F
y = cotan (x) COTAN | 1 |real x| < (2% 7) real *4 registers
*4 (in See Note 3 0(2,4)
radians) save area
5F
NorTEs:
1. In FORTRAN 1V (E), a real argument corresponds to the REAL *4 argument, and a double-precision argument corresponds to
the REAL *8 argument.
2. Instead of the IHCLATAN and THCSATAN subprograms contained in the FORTRAN IV (E) library, the FORTRAN 1V library
contains the xxxLATN2 and xxxSATN2 subprograms. '
3. The argument for the cotangent functions may not be near a multiple of =; the argument for the tangent functions may not be near|
an odd multiple of 7/2.
|]4. Where z is a complex number of the form x:+ xui.

10

Table 4. Hyperbolic Function Subprograms

A t(s) Function Assembler
General Subprogram | Sub- Entry rgument(s Value Require-
Function Name set Definition Name No. Type* Range Type! ments
Hyperbolic | xxxLSCNH | No _e—e™ DSINH 1 | real*8 |x|<174.673 real *8 registers
sine and 2 0(2,4)
cosine save area
9F
_ette™ DCOSH | 1 | real *8 |x|<<174.673 real *8 registers
M 0(2,4)
save area
9F
xxxSSCNH No _e*—e™ SINH 1 | real *4 [x]<<174.673 real *4 registers
YmTe 0(2,4)
save area
9F
_ete™ COSH 1 real *4 Ix|<<174.673 real *4 registers
) 0(2,4)
save area
9F
Hyperbolic | xxxLTANH | Yes _e"—e™ DTANH | 1 | real *8 any real real *8 registers
tangent b argument 0(2)
save area
5F
xxxSTANH Yes _e*—e™ TANH 1 | real ¥4 any real real ¥4 registers
Y= & re= argument 0(2)
save area
5F
INOTE: |
1. In FORTRAN 1V (E), a real argument corresponds to the REAL *4 argument, and a double-precision argument corresponds
to the REAL *8 argument.
Table 5. Miscellaneous Mathematical Subprograms
A t(s) Function Assembler
General Subprogram | Sub- Entry reumentis Value Require-
Function Name set Definition Name No. Type® Range Type* ments
Absolute xxxCLABS No |y=iz|=(x+x")"2 CDABS 1 | complex | any complex real *8 registers
value *16 argument * 0,2 (4)
See Note 2 save area
8F
xxxCSABS No |y=lz|=(x2+x2)"2 CABS 1 | complex | any complex real ¥4 registers
*8 argument 0,2 (4)
See Note 2 save area
8F
Error vex ERF No 5 [T : DERF 1 | real *8 any real real *8 registers
function = '——J e™ du argument 0(2,4,6)
vrJ save area
11F
9 [*®: DERFC 1 | real *8 any real real *8 registers
y="= e du argument 0(2,4,6)
TJ = save area
y=1-—erf (x) 11F

Mathematical Subprograms

11

® Table 5. Miscellaneous Mathematical Subprograms { Continued)

i Areuiment (s Function | Assembler
General Subprogram | Sub- Entry | rgument(s) Value Require-
Function Name set Definition I Name No. i Type' Range Type* ments
Error xxxSERF No o [= . ERF 1 real ¥4 any real real *4 registers
function y=—=|]¢" du argument 0(2,4,6)
(continued) A& save area
11F
2 =, ERFC 1 jreal *4 any real real ¥4 registers
y=—=}¢" du argument 0(2,4,6)
Vo) | ; save area
v=1—erf (x) i 11F
Gamma and | xxxLGAMA | No ® DGAMMA| 1 |real*8 x > 27 and real *8 registers
log-gamma y=fu"‘ e du x < 57.5744 0(2,4,6)
e ' save area
; 11F
y=log. T (x) or DLGAMA | 1 [real*8 x > 0and real *8 registers
% x < 4.2913-10% 0(2,4,6)
y=log. f e du save area
0 11F
xxxSGAMA No w GAMMA 1 |real ¥4 x > 2% and real *4 registers
y=j‘u"‘l e du x < 57.5744 0(2,4,6)
0 save area
11F
y=log. T (x) or ALGAMA | 1 |real*4 x >> 0 and real *4 registers
re x<4.2913-107 0(2,4,6)
y=IogeJ u*e™ du save area
) 11F
Maximum xxxFMAXD | Yes |y=max (x1,...,x) |DMAXI =2 |real *8 any real real *8 register 0
and arguments save area
minimum 9F
values
y=min (X1,...,%) [DMINI =2 freal *8 any real real *8 register 0
arguments save area
9F
xxxFMAXI Yes | y=max (x1,...,%) | AMAXO =2 | integer any integer real *4 register 0
| *2,*4 arguments save area
9F
MAXO0 =2 | integer any integer integer register
| *9, %4 arguments *2, ¥4 See Note 3
save area
9F
y=min (x1,...,%) | AMINO =2 | integer | any integer real *4 register 0
¢ *9, %4 arguments save area
9F
MINO =2 | integer any integer integer | register
1 *2, %4 arguments *2, %4 See Note 3
save area
9F

12

® Table 5. Miscellaneous Mathematical Subprograms { Continued)

A t(s) Function | Assembler
General Subprogram | Sub- Entry rgument (s Value Require-
Function Name set Definition Name No. Type! Range Type* ments
Maximum xxxFMAXR Yes | y=max (x1,...,%) | AMAXI1 >2 real ¥4 any real real ¥4 register 0
?vllld arguments save area
inimum 9F
Values
(continued) MAX1 =2 real*4 | anyreal integer | register
' arguments *2, %4 See Note 3
save area
9F
y=min (x:,..7,%) | AMINI =2 real*4 any real real ¥4 register 0
arguments save area
9F
MIN1 =2 real ¥4 any real integer register
! arguments *2, %4 See Note 3
save area
9F
Modular IHCFMODI | See |y = x: (modulo x:) MOD 2 integer X2~ 0 integer register
1| arithmetic Note| See Note 5 See Note 6 *9, %4 See Note 3
4 save area
9F
THCFMODR | See |y = x: (modulo x=) AMOD 2 real*q X254 0 real *4 | register 0
Note| See Note 5 See Note 6 save area
4 9F
y = x (modulo x-) DMOD 2 real*8 | x40 real *8 | register 0
See Note 5 See Note 6 save area
9F
Truncation | IHCFAINT | See !y = (signx)'n AINT 1 real*4 any real real ¥4 | register 0
Note| where n is the largest argument save area
4 integer = x| 9F
l IHCFIFIX See |y = (signx)*n IDINT 1 real *8 any real integer | register 0
Note | where n is the largest argument See Note 3
4 integer = |x| save area
9F
INT 1 real*q any real integer |register
argument See Note 3
save area
9F
NOTES:
1. In FORTRAN IV (E), a real argument corresponds to the REAL *4 argument, and a double-precision argument corresponds

2. Floating-point overflow can occur.

5. The expression x; (modulo x.) is defined as x; — [ﬁ] - x, where the brackets indicate that an integer is used. The largest in-
Xz

6. If x; = 0, then the modulus function is mathematically undefined. In addition, a divide exception is recognized and an interrup-

to the REAL *8 argument.

. The result is stored in general register 0.

. The coding that performs this function is out-of-line in FORTRAN IV (E) and in-line in FORTRAN IV. Out-of-line coding is
taken from the FORTRAN library by the linkage editor and processed with the calling module. In-line coding is inserted by the
FORTRAN coumpiler at the point in the source module where the function is referenced. This means that the in-line functions
are available in FORTRAN IV by using the appropriate entry name but that they are not part of the library.

teger whose magnitude does not exceed the magnitude of X% is used. The sign of the integer is the same as the sign of RSN
Xz Xz

tion occurs. (A detailed description of the interruption procedure is given in Appendix C.)

Mathematical Subprograms 13

Implicitly Called Subprograms

The implicitly called subprograms perform operations
required by the appearance of certain notation in a
FORTRAN source statement. When a number is to be
raised to a power or when multiplication and division
of complex numbers are to be performed, the FORTRAN
compiler generates the instructions necessary to call
the appropriate subprogram. For example, if the fol-
lowing source statement appears in a source module,

ANS = BASE**EXPON
where BaSE and Exron are values of the form REAL *4,

the xxxFrxPr subprogram is called by the FORTRAN
compiler.

The implicitly called subprograms in the ForTrRAN
library are described in Table 6. This table shows the

o Table 6. Implicitly Called Mathematical Subprograms

general function, subprogram name, the FORTRAN
library that contains the subprogram, implicit function
reference, entry name, argument information, type of
function value returned, and assembler requirements.
The column headed “Implicit Function Reference”
gives a sample source statement that might appear in
a FORTRAN source module and cause the subprogram
to be called. The rest of the column headings in Table
6 have the same meaning as those used with the ex-
plicitly called subprograms.

The action taken within the subprogram depends
upon the type of base and exponent used. Tables 7
through 10 show the result of an exponentiation per-
formed with the different combinations and values of
base and exponent. In these tables, I and J are integers;
A and B are real numbers; C is a complex number.

Implicit Ar ts) Function
General Subprogram | Sub- Function Entry® gument(s Value Assembler
Function Name set Reference* Name No. Type® Type® Requirements
Multiply and xxxCLAS No y=z*z CDMPY# 2 | complex *16 | complex *16 | registers 0, 2 (4, 6)
divide complex save area 5F
numbers y = 21/22 CDDVD# 2 | complex *16 | complex *16 | registers 0, 2 (4, 6)
save area 5F
xxxCSAS No y=z"z CMPY# 2 | complex *8 complex *8 registers 0, 2 (4, 6)
save area 3F
y = 7:/22 CDVD# 2 | complex *§ complex *8 registers 0, 2 (4, 6)
save area 5F
Raise an integer | xxxFIXPI Yes y=i** FIXPI# 2 | i = integer*4| integer *4 register 0
to an integral j = integer*4 See Note 4
power save area 18F
Raise a real xxxFRXPI Yes y =a**j FRXPI# 2 | a =real *4 real *4 register 0
number to an j = integer save area 18F
integral power I \FDXPI | Yes | y=a®*j | FDXPI¥ 2 | a=real*8 | real*8 register 0
= integer*4 save area 18F
Raise a real xxxFPXPR Yes y =a**b FRXPR# 2 | a=real*4 real *4 register 0
number to a b = real *4 save area 18F
real power xxFDXPD | Yes | y=a**b | FDXPD# | 2 |a=real*3 | real”s register 0
b = real *8 save area 18F
Raise a complex | xxxFCDXI No y =z¥¥j FCDXI# 2 | z = complex | complex *16 | register 0
number to an *16 save area 18F
integral power j = integer
xxx FCXPI No y=z*%*j FCXPI# 2 | z = complex | complex *8 register 0
*8 save area 18F
j = integer
NoOTES:
1. This is only a representation of a FORTRAN statement; it is not the only way the subprogram may be called.
2. This name must be used in an assembler language program to call the subprogram; the character # is a part of the name and
must be included.
3. In FORTRAN IV (E), a real argument corresponds to the REAL *4 argument and a double precision argument corresponds to
the REAL *8 argument.
4. The result is stored in general register 0.

14

Table 7. Exponentiation With Integer Base and Exponent

Table 9. Exponentiation with Real Base and Exponent

Base (D Exponent (]) Base (A) Exponent (B)
Y J=0 1<0 s IR S0 B=0 B<0
I1>0 | Compute the ! Function Function value = 1 A >0 | Compute the | Function Compute the
function value | value = 1 ifl=1 function value { value = 1 function value
OthelrW1s_e, Ofunctxon A =0 | Function Error message | Error message
vame = value = 0 THC2441 or IHC2441 or
I=0 Function Error message | Error message THC245I; IHC2451;
value = 0 THC241I; IHC2411, or OA2441 or OA2441
or OA24i1 or OA2411 or OA2451 or OA2451
Compute the | Function Function value= — 1 A <0 | Error message | Function Error message
1<0 function value | value = 1 ifI=—1and THC253I or value = 1 IHC2531 or
if J is an odd THC2631 1HC2631
number
Function value = 1 L .
#I=—1and Table 10. Exponentiation with Complex Base and Integer
if J is an even Exponent
Otlﬁlelxbi;a;, function Base (C) . Exponent ()
value = 0 C=R+HRi J>0 J=0 J<o0
R >0 and Compute the | Function Compute the
Table 8. Exponentiation with Real Base and Integer Exponent Ri >0 function value | value=1 -+ 0i | function vahie
R > 0and | Compute the | Function Compute the
Base (A) Exponent (J) Ri=0 function value | value=1 + 0i | function value
]>0 =0 J<0 R > 0and | Compute the | Function Compute the
A >0 | Compute the | Function Compute the Ri<0 function value | value=1 + 0i | function value
function value | value = 1 function value R=0and | Computethe | Function Compute the
A =0 | Function Error message Error message Ri>0 function value | value=1 + 0i | function value
value = 0 IHC2421 or 1HC242I or R =0and | Functionvalue| Errormessage | Error message
IHC2431; THC2431; Ri=0 0 + 0i IHC246Ior | IHC246I or
or OA2421 or OA2421 THC2471; THC2471;
or OA2431 or OA2431 or OA2461 | or OA2461
A <0 | Compute the | Function Compute the or 0A2471 or OA2471
function value | value = 1 function value R=0and | Computethe | Function Compute the
Ri<0O function value | value=1 + 0i | function value
R < 0and Compute the | Function Compute the
Ri>0 function value | value=1 + 0i | function value
R < 0and Compute the | Function Compute the
Ri=0 function value | value=1 + 0i | function value
R < 0and Compute the | Function Compute the
Ri<O0 function value | value=1 + 0i | function value

Mathematical Subprograms

15

Service Subprograms

The service subprograms supplied in the rFoRTRAN
library are divided into two groups: one group tests
machine indicators and the other group performs
utility functions. Service subprograms are called by
using the appropriate entry name in a FORTRAN source
language caALL statement.

Machine Indicator Test Subprograms

The machine indicator subprograms (xxiFsLrT,
xxxFOVER, and xxxFDvCH) test the status of pseudo in-
dicators and may return a value to the calling program.
When the indicator is zero, it is off; when the indica-
tor is other than zero, it is on. In the following descrip-
tions of the subprograms, i represents an integer
expression and j represents an integer variable.

xxxFSLIT Subprogram

The xxxFsLIT subprogram is used to alter, test, and/or
record the status of pseudo sense lights. Either of two
entry names (SLITE or SLITET) is used to call the sub-
program. The particular entry name used in the caLL
statement depends upon the operation to be per-
formed.

If the four sense lights are to be turned orF or one
sense light is to be turned oN, entry name sLITE is used.
The source language statement is:

CALL SLITE(i)
where i has a value of 0, 1, 2, 3, or 4.

If the value of i is 0, the four sense lights are turned
off; if the value of i is 1, 2, 3, or 4, the corresponding
sense light is turned on. If the value of i is not 0, 1, 2,
3, or 4, an error message is issued and execution of
this module (or phase) is terminated. (This error
message is explained in Appendix C.)

If a sense light is to be tested and its status recorded,
entry name sLITET is used. The source language state-
ment is:

CALL SLITET (4,1)
where:

i has a value of 1, 2, 3, or 4, and indicates which
sense light to test.

i is set to 1 if the sense light was on; or to 2 if the
sense light was off.

If the value of iis not 1, 2, 3, or 4, an error message
is issued and execution of this module (or phase) is
terminated. (This error message is explained in Appen-

dixC.)

16

xxxFOVER Subprogram

The xxxFOVER subprogram tests for an exponent over-
flow or underflow exception and returns a value that
indicates the existing condition. After testing, the over-
flow indicator is turned off. This subprogram is called
by using the entry name OVERFL in a cALL statement.
The source language statement is:
CALL OVERFL (j)
where:
i is set to 1 if a floating-point overflow condition
exists; to 2 if no overflow or underflow condition
exists; or to 3 if a floating-point underflow condi-
tion exists. A detailed description of each exception
is given in Appendix C.

xxxFDVCH Subprogram

The xxxFpvcH subprogram tests for a divide-check
exception and returns a value that indicates the exist-
ing condition. After testing, the divide-check indicator
is turned off. This subprogram is called by using entry
name DVCHK in a CALL statement. The source language
statement is:
CALL DVCHK (j)

where:

i is set to 1 if the divide-check indicator was on; or
to 2 if the indicator was off. A detailed description of
the divide-check exception is given in Appendix C.

Utility Subprograms

The utility subprograms perform two operations for
the FORTRAN programmer: they either terminate execu-
tion (xxxFExrr) or dump a specified area of storage
(xxxFDUMP).

xxxFEXIT Subprogram

tion (xxxFEXIT subprogram terminates execution of this
load module (or phase) and returns control to the
operating system. (This subprogram performs a func-
tion similar to that performed by the sTop statement.)
The xxxrEXIT subprogram is called by using the entry
name EXIT in a cALL statement. The source language
statement is:

CALL EXIT

xxxFDUMP Subprogram

The xxxrpuMP subprogram dumps a spec1ﬁed area of
storage. Either of two entry names (DUMP Or PDUMP)
can be used to call the subprogram. The entry name

is followed by the limits of the area to be dumped and
the format specification. The entry name used in the
CALL statement depends upon the nature of the dump
to be taken.

If execution of this load module (or phase) is to be
terminated after the dump is taken, entry name pump
is used. The source language statement is:

CALL DUMP (ai, by, fi, . . ., Gn, bn, Fu)
where:

a and b are variables that indicate the limits of stor-
age to be dumped (either a or b may represent the
upper or lower limits of storage).

f indicates the dump format and may be one of the
integers given in Table 11. The formats available
depend upon the compiler in use. A sample printout
for each format is given in Appendix F.

Table 11. The xxxFDUMP Subprogram Format Specifications
FORTRAN 1V (E) FORTRAN IV

0 specifies hexadecimal 0 specifies hexademical
4 specifies INTEGER 1 specifies LOGICAL *1
5 specifies REAL 2 specifies LOGICAL *4
6 specifies DOUBLE 3 specifies INTEGER *2
PRECISION 4 specifies INTEGER *4
5 specifies REAL ¥4
6 specifies REAL *8
7 specifies COMPLEX *8
8 specifies COMPLEX *16
9

specifies literal

If execution is to be resumed after the dump is taken,
entry name PbuMP is used. The source language state-
ment is:

CALL PDUMP (ay, by, s, . . . , @n, Dn, fa)

where a, b, and f have the same meaning as explained
previously.

Programming Considerations

A load module (or, in the Model 44 Programming
System, a member of the phase library) may occupy
a different area of storage each time it is executed. To
ensure that the appropriate areas of storage are dumped,
the following conventions should be observed.

Note: In the following examples, A is a variable in
COMMON, B is a real number, and the array TABLE is
dimensioned as:

DIMENSION TABLE (20)
If an array and a variable are to be dumped at the

same time, a separate set of arguments should be
used for the array and for the variable. The specifica-

tion of limits for the array should be from the first
element in the array to the last element. For example,
the following call to the mcrpump subprogram could
be used to dump TABLE and B in hexadecimal format
and terminate execution after the dump is taken:

CALL DUMP (TABLE (1), TABLE (20), 0, B, B, 0)

If an area of storage in comMoN is to be dumped
at the same time as an area of storage not in coMMoON,
the arguments for the area in common should be given
separately. For example, the following call to the
*xXFDUMP subprogram could be used to dump the
variables A and B in REAL *8 format without terminat-
ing execution:

CALL PDUMP (A,A,6,B,B6)

If variables not in comMoN are to be dumped, each
variable must be listed separately in the argument
list. For example, if g, p, and @ are defined implicitly
in the program, the statement

CALL PDUMP (R,R,5,P,P,5,0,0,5)
should be used to dump the three variables. If the

statement
CALL PDUMP (R,Q,5)

is used, all main storage between ®r and Q is dumped,
which may or may not include p, and may include
other variables.

If an array and a variable are passed to a subroutine
as arguments, the arguments in the call to the xxxroump
subprogram in the subroutine should specify the
parameters used in the definition of the subroutine.
For example, if the subroutine susi is defined as:

SUBROUTINE SUBI (X, Y)
DIMENSION X(10)

and the call to suB1 within the source modulie is:
DIMENSION A(10)

CALL SUBI (A, B)

then the following statement in the subroutine should
be used to dump the variables in hexadecimal format
without terminating execution:

CALL PDUMP (X(1),X(10),0,Y,Y,0)
If the statement
CALL PDUMP (X(1),Y,0)

is used, all storage between a(1) and v is dumped,
due to the method of transmitting arguments.

Service Subprograms 17

Appendix A. Algorithms

Appendix A contains information about the computations used in the explicitly
called mathematical subprograms. This information is arranged in alphabetical
order, according to the module (or phase) name of the subprogram. The entry
names associated with each subprogram are given in parentheses after the module
(or phase) name.

The information for each subprogram is divided into two parts. The first part
describes the algorithm used; the second part describes the effect of an argument
error upon the accuracy of the answer returned.

The presentation of each algorithm is divided into its major computational steps;
the formulas necessary for each step are supplied. Some of the formulas are
widely known; those that are not so widely known are derived from more common
formulas. The process leading from the common formula to the computational
formula is sketched in enough detail so that the derivation can be reconstructed
by any one who has an understanding of higher mathematics and access to the
common texts on numerical analysis.!

The accuracy of an answer produced by these algorithms is influenced by two
factors: the performance of the subprogram (see Appendix B) and the accuracy
of the argument. The effect of an argument error upon the accuracy of an answer
depends solely upon the mathematical function involved and not upon the partic-
ular coding used in the subprogram.

A guide to the propagational effect of argument errors is provided because
argument errors always influence the accuracy of answers whether the errors are
accumulated prior to use of the subprogram or introduced by newly converted
data. This guide (expressed as a simple formula where possible) is intended to
assist users in assessing the effect of an argument error.

The following symbols are used in this appendix to describe the effect of an
argument error upon the accuracy of the answer:

SYMBOL EXPLANATION
q(x) The result given by the subprogram.
f(x) The correct result.
f(x) — g(x) The relative error of the result
€ f(x) given by the subprogram.
) The relative error of the argument.
E | f(x) — g(x) | The absolute error of the result
given by the subprogram.
A The absolute error of the argument.

The notation used for the continued fractions complies with the specifications
set by the National Bureau of Standards.”

TAny of the common numerical analysis texts may be used as a reference. One such text is F. B, Hildebrand's

Introduction to Numerical Analysis (McGraw-Hill Book Company, Inc., New York, N. Y.. 1956). Background
information for algorithms that use continued fractions may ln fonnd in H. S, Wall's Analytic Theory of
Continucd Fractions (D, VanNostrand Co., Inc., Princeton, N, J., 1948).

2 For more information, sce Milton \hrunn\nt/ and Trene A, Stu'un (editors), Handbook of Mathematical
Functions, Applied Mathematies Series-33 (National Burean of Standards, Washington, 1D.C.), 19653,

xxxCLABS (CDABS) and xxxCSABS (CABS) Subprograms
1. Write |x + iy| = a + ib.
2. Ifx=y=0,thena=0and b = 0.

3. Let v; = max (||, ly|), and
vz = min (|x], [y|).

S —
Then, a = v, °\/ 1+ (%2—)2, and b = 0.

1

>

The algorithms for both complex absolute value subprograms are identical.
Each subprogram uses the appropriate real square root subprogram (xxXLSQRT

iy
OF XXXSSQRT j.

xxxCLEXP (CDEXP) and xxxCSEXP (CEXP) Subprograms

Algorithm

The value of e*+% is computed as e” * cos(y) + i * e * sin(y). The algorithms
for both complex exponential subprograms are identical. Each subprogram uses
the appropriate real exponential subprogram (xxxrLexp or xxxsexp) and the appro-
priate real sine/ cosine subprogram (x*xxLSCN or xxxSSCN).

Effect of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If e*+% = R+ ¢'# then H = y and «(R) ~ A (x).

xxxCLLOG (CDLOG) and xxxCSLOG (CLOG) Subprograms

Algorithm
1. Writelog, (x + iy) = a + ib.

2. Then, a = log, |x + iy|and b = the principle value of arctan% .

The algorithms for both complex natural logarithm subprograms are identical.
Each subprogram uses the appropriate complex absolute value subprogram
(xxxcLaBs or xxxcsaBs), the appropriate real natural logarithm subprogram
(xxxLLOG or xxxsLoG), and the appropriate arctangent subprogram (xXX¥LATN?2
OF XXXSATNZ).

Effect of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If x + iy = r* ¢ and log, (x + iy) = a + ib, then h = b
and E(a) = 8(r).

xxxCLSQT (CDSQRT) and xxxCSSQT (CSQRT) Subprograms
Algorithm

1. Write \Vx + iy = a + ib.

2. Ifx=y=0,thena=0and b = 0.

3. Ifx =0, thena = \}W]_i—l;c—;m

andb =L .
2a

Appendix A. Algorithms

19

20

4. Ifx<0,thena=i
2a

. xl + Jx + iyl
db = . Lt B b A
an (signy) \/ >

The algorithms for both complex square root subprograms are identical. Each
subprogram uses the appropriate real square root subprogram (xXxLSQRT or
XXXSSQRT).

Effect of an Argument Error
The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If x + iy = r * ¢ and vVx + iy = R * ¢'#, then

«(R) ~ %S(r),ande(H) ~ 5(h).

xxxCLSCN Subprogram (CDSIN and CDCOS)
Algorithm
1. If the sine is desired, then
sin(x + iy) = sin(x) * cosh(y) + i+ cos(x) * sinh(y).
If the cosine is desired, then
cos(x + iy) = cos(x) * cosh(y) + i+ sin(x) * sinh(y).
2. If x < 0, then sinh(—x) = —sinh(x).

3. Tfx > 0.3465736, then sinh(z) = ——

4. If 0 = x = 0.3465736, then compute sinh (x) by use of the polynomial:
sinh(x)
x
The coefficients are obtained by expanding the polynomial with respect to the
Chebyshev polynomials over the range 0 = x2 < 0.120113. The relative error
of this approximation is less than 2—218,

=qy + ax®* + axt + ... + azx*°.

5. The value of cosh(x) is computed as cosh(x) = sinh|x| + ﬁ .

This computation uses the real exponential subprogram (xxxLExp) and the
real sine/ cosine subprogram (xxxLsCN).

Effect of an Argument Error

To understand the effect of an argument error upon the accuracy of the answer,
the programmer must understand the effect of an argument error in the xxxLscN,
XXXLEXP, and XxXLSNH subprograms.

xxxCSSCN Subprogram (CSIN and CCOS)

Algorithm
1. If the sine is desired, then
sin (x + iy) = sin{x) * cosh(y) + i+ cos(x) * sinh(y).
If the cosine is desired, then
cos(x + iy) = cos{x) * cosh(y) + i< sin(x) * sinh(y).
2. Tfx <2 0, then sinh(—x) = —sinh(x).

e’ ——

el‘

3. If x > 0.3465736, then sinh(x) =

4. If 0 = x = 0.3465736, then compute sinh {x) by use of the polynomial:
sinh(x) =ay + a;* + axxt.

The coefficients are obtained by expanding the polynomial with respect to the

Chebyshev polynomials over the range 0 = x* = 0.120113. The relative error

of this approximation is less than 2—26-4,

5. The value of cosh(x) is computed as cosh(x) = sinhlx| + —%—i .
e r

This computation uses the real exponential subprogram (xxxsexe) and the
real sine/ cosine subprogram (xxxsscN).

Effect of an Argument Error

To understand the effect of an argument error upon the accuracy of the answer,
the programmer must understand the effect of an argument in the xxxsscN, xxxsexp,
and xxxsscNH subprograms.

xxxLASCN Subprogram (DARSIN and DARCOS)

Algorithm

L H0sx=

I

, then compute arccos(x) as:

arccos

—~

x) = — — arcsin(x).

z
2

S
A
=
A
l\'.)l —

, then compute arcsin(x) by a polynomial of the form:

—

arCSin x) =X + clxs + ngﬁ + PR + wa%.

The coefficients are obtained by expanding the function f(z) = __art;sm(x),

. . 1
z = x?, with respect to the Chebyshev polynomials over the range, 0 = x éT,‘

The relative error of this approximation is less than 2—5%7,
2. If —-12— < x = 1, then compute arcsin (x) as:

arcsin(x) =
hind AN 7/

T
’ 2

— arccos(x).

If —é—< x = 1, then compute arccos (x) as:

arccos(x) = 2 ¢ arcsin (\i ! ; x) .
This case is now reduced to the first case because within these limits,
'l —x 1
= | < =
0 e V 2 fm— 2 *

This computation uses the real square root subprogram (xxxLSQRT).

3. If =1 =x < 0, then arcsin(x) = —arcsinx]
and arccos(x) = = — arccos/x|.

This reduces these cases to one of the two positive cases.

Effect of an Argument Error
_ta
Vv1-—x*
a small A causes a substantial error in the answer. For the arcsine, e ~ § if the
value of x is small.

E~ . For small values of x, E ~ A. Toward the limits (=1) of the range

Appendix A. Algorithms

21

IHCLATAN Subprogram (DATAN)

Algorithm
1. Reduce the computation of arctan (x) to the case 0 = x < 1 by using
arctan(—x) = —arctan(x) or
1]
arctan A arctan |x|

2. If necessary, reduce the computation further to the case |x| = tan 15° by using

arctan (x) = 30° + arctan —YS.—‘C:—I—
x+ V3

The value of M = tan 15° if the value of x is within the range,
x+ v3
tan 15° < x = 1. The value of (\/3+*x — 1) is computed as

(V3—-1)x— % ——i- + x to avoid the loss of significant digits.

3. For |x| = tan 15°, use a continued fraction of the form:

arctan (x) ~14+ ax® as as ay
x - (by + x2) + (b +22) + (bs+x2) + (by+x2) +° 7

The relative error of this approximation is less than 2—57-9. The coefficients of
this formula were derived by transforming the continued fraction:

1 3.4 16 - 25
arctan (%) 3 257 T81-11
x\ =1+ i'i‘ -2) . 23+—2 —_ 59 + x—2)-
5 7 5.9 % 9-13
439
5+11-169

337 L L)
(13.17+") v

15}
; -t x-2
where w has an approximate value of 5 111317 (— x —2 + 40) but the true
64 - 27
5428919

value of w is (179)
-2 +

3e7.T7 T %

Effect of an Argument Error

A
E~ .
1+ a2
effect of € upon 8§ diminishes.

For small values of x, ¢ ~ §, and as the value of x increases, the

xxxLATN2 Subprogram (DATAN and DATAN2)
Algorithm

m

5

1. For arctan(x,, x2), if either x; = O or I > 258 the answer = (signx;) *

2

2

Otherwise, if x; > 0, the answer = arctan (ﬂ) ,and

if x, < 0, the answer = arctan (%) + (signax)
X2

The rest of the computation is identical for either one or two arguments.

2. Reduce the computation of arctan(x) to the case 0= x = 1, by using
arctan(—x) = —arctan(x), or

1 7'r
arctan§ +— § = — — arctan/x|.
x|) 2

3. If necessary, reduce the computation further to the case |x| = tan 15° by using
arctan{x) = 30° + arctan \/3°—x—_1
x4+ V3
V3ex—1
x+ V3
tan 15° < x = 1. The value of (/3 *x — 1) is computed as (/3 — 1) x — 1
to avoid the loss of significant digits.

The value of = tan 15° if the value x is within the range,

4. For |x| = tan 15°, use a continued fraction of the form:
arctan(x) _ a;x2 as as ay
T (by+a)+ (bt x2) + (bs+ %)+ (beta?) +
The relative error of this approximation is less than 2-57%, The coeflicients of
this formula were derived by transforming the continued fraction:

-1 3+4 16+ 25
arctan(x) -1 3 257 7-81-11
= 1T 73 23 59
Lo—2) — IR ST AT S
(?-l-x) 5.9+x) (9'13+x)
4.3-9
5+11+169

7 L)\
(w-u+x2) w

. 2 R
where w has an approximate value of 5 113017 (—x~2 + 40) but the
6427
528919

true value of w is — - Ce
1% _\.
3717)
Effect of an Argument Error
A

Rl
of e upon § diminishes.

For small values of x, e ~ &, and as the value of x increases, the effect

xxxLERF Subprogram (DERF and DERFC)

Algorithm

1. If 0 = x < 1, then compute the error function by the following approximation:
erf(x) = x (@ + a2 + ax* + ... + a,x22).

The coefficients were obtained by expanding the function f(z) = erfx(x)’

z = x2, with respect to the Chebyshev polynomials over the range, 0 < x < 1.
The relative error of this approximation is less than 1.07 » 2-57. The value of
the complemented error function is computed as erfc(x) = 1 — erf(x) and is

1
greater than 6

2. If 1= x < 2.0400009, then compute the complemented error function by the
following approximation:
erfc (x) = by + bz + byz? +... + bygz!®
where z = x — Ty and Ty == 1.999999,5. The coefficients were obtained by ex-

Appendix A. Algorithms

N
[y}

panding the function f(z) = erfc(z + T,) with respect to the Chebyshev poly-
nomials over the range —1 = x = 0.04. The absolute error of this approxima-
tion is less than 1.5 « 261, The limits of this range and the base value for T,
were used to minimize the hexadecimal truncation error. The value of the com-
plemented error function within this range is greater than Eég . The value of
the error function is computed as erf(x) = 1 — erfc(x).

3. If 2.0400009 = x = 13.306, then compute the complemented error function by

the following approximation:
(co+cx 2+ x4+ ...+ coox %) e

x

The coefficients were obtained by expanding the function
f(z) = erfc (x) » x * €®, z = x~2, with respect to the Chebyshev polynomials
over the range 2.04~2 > z = 13.306—2. The relative error of this approximation
ranges from 2-5% at 2.04 to 25! at 13.306. This computation uses the real ex-
ponential subprogram (xxxLEXP).
If x =< 6.092, then the error function is computed as erf(x) = 1 — erfe(x).
If x > 6.092, then the error function is == 1.

4. If 13.306 < «, then the error function is == 1, and the complemented error
function is == 0.

erfc (x) =

5. If x < 0, then reduce to a case involving a positive argument by the use of
the following formulas:
erf(—x) = —erf(x) and erfc(—x) = 2 — erfe(x).

Effeci of an Argumeni Error

E ~ e~% + A. For the error function, as the magnitude of the argument exceeds
1, the effect of an argument error upon the final accuracy diminishes rapidly. For
small values of x, ¢ ~ 8. For the complemented error function, if the value of

x is greater than 1, erfc(x) ~ %x_z. Therefore, ¢ ~ 2x* « §. If the value of «
x

is negative or less than 1, then ¢ ~ ¢=%* * A.

xxxLEXP Subprogram (DEXP)

Algorithm

1. If x < — 180. 2183, then 0 is given as the answer.
2. Divide x by log.2 and write

L = (4a—-b--—4)
log.2 16
where a, b, and ¢ are integers, 0=b =3, 0=c=15, and d is within the range

0=d< —11? _Then, e* = v = 6o+ 2-b+ 2—¢/16.+ 9—d,

y.._..

3. Compute 2—¢ by using the Chebyshev interpolation of degree 6 over the range,

0=d< 1—16 . The maximum relative error of this computation is 2757,

4. If ¢ > 0, then multiply 2—¢ by 2—¢/16, (The 15 values of 2=/ for 1 = ¢ = 15
are included in the subprogram.)

5. If b > 0, then halve the result b times.
6. Finally, add the hexadecimal exponent a to the characteristic of the answer.

Effect of an Argument Error

E ~ A, If the magnitude of x is large, even the round-off error of the argument
causes a substantial relative error in the answer because A = §* x.

xxxLGAMA Subprogram (DGAMMA and DLGAMA)

Algorithm

1. If 0 < x = 2-%2, then compute log-gamma as logJ (x) = —log.(x). This
computation uses the real logarithm subprogram (xxxLroc).

If 2-%2 < x < 8, then compute log-gamma by taking the natural logarithm
of the value obtained for gamma. The computation of gamma depends upon
the range into which the argument falls.

I'z+1)
x

1o

3. If 22 <« x < 1, then use I'(x) = to reduce to the next case.

4. If 1 = x = 2, then compute gamma by the following approximation:
I(x)=a¢+ a1z + @z + ... + a2z
where z = x — 1.5. The coefficients were obtained by expanding the function
f(z) = I'(x) with respect to the Chebyshev polynomial for |z| = 0.5. The
absolute error of this approximation is less than 1.5 » 258,
5. If 2 <x < 8§ thenuseI'(x) = (x — 1) I'(x — 1) to reduce to the preced-
ing case.

6. If 8 = x, then compute log-gamma by the use of Stirling’s formula:
log.T'(x) = x(loge(x) — 1) — %loge(x) + % log.(27) + G(x).

The modifier term G(x) is computed as
G(x) = byx=' + box=3 4+ byx=5 + byx—" + byx—°.

The coefficients were obtained by expanding the function f(z) = chx))
z = x72, with respect to the Chebyshev polynomials over the range

0 < z < 872 The absolute error of the approximation for G(x) is less than
x » 279, Because, in this range, x < log.JI'(x), the contribution of this error
to the relative error of the value for log-gamma is less than 2-%6. This com-
putation uses the real logarithm subprogram (xxxLLoG).

For gamma, compute I'(x) = e¥, where v is the value obtained for log-
gamma. This computation uses the real exponential subprogram (xxxLEXP).

Effect of an Argument Error

e ~ y(x) » A for gamma, and E ~ y(x) * A for log-gamma, where ¢ is the
digamma function.

If%< ¥ < 3, then —2 < y(x) < 1. Therefore, E ~ A for log-gamma.

However, because x = 1 and x = 2 are zeros of the log-gamma function, even
a small § can cause a substantial ¢ in this range.

If the value of x is large, then y(x) ~ log.(x). Therefore, for gamma,
e ~ 8 x+ log.(x). In this case, even the round-off error of the argument con-
tributes greatly to the relative error of the answer. For log-gamma with large
values of x, ¢ ~ §.

xxxLLOG Subprogram (DLOG and DLOG10)

Algorithm
1. Write x = 167 » 2—¢ « m, where p is the exponent, g is an integer, 0 =< g =< 3,

and m is within the range, —i—- =m<1

pa

2. Define two constants, ¢ and b (where @ = base point and 2-% = a) as follows:

1 1 1
If ?gm< ﬁ,thena =?andb =1L
It L§m<1,thena =1landb = 0.

i<
A
\ &

Appendix A. Algorithms

25

. __ m-—a _ J1+z
3. Writez = g .Then,m = a [and |z] < 0.17186.
4. Now, x = 241’—‘1—"-} i i,andlogex = (4p — q — b) log2 + loge(} i z)

5. Finally, log,. (} i 2) is computed by using the Chebyshev interpolation of

degree 7 in z? over the range, 0= 22 =0. 02944. The maximum relative error
of this approximation is 2596,

6. If the common logarithm is desired, then log,¢x = logyee * logex.

Effect of an Argument Error

E ~ 8. Therefore, if the value of the argument is close to 1, the relative error can
be very large because the value of the function is very small.

xxxLSCN Subprogram (DSIN and DCOS)
Algorithm
1. Divide |« by% and separate the quotient (z) into its integer part (g) and

. . 4 . .
its fraction part (r). Then, z = |x = q + r, where ¢ is an integer and r
k3

is within the range, 0=r < 1.

2. If the cosine is desired, add 2 to g. If the sine is desired and if x is negative,
add 4 to g. This adjustment 6f q reduces the general case to the computation of
sin (x) for x = 0, because

cos (*x) = sin ([xl +%) ,and

sin (—x) = sin (|x| + =).
3. Let gp=qg mod 8.
W]
4 ’)

go = 1,sin (x) = cos (%(1 - r))
(5)

go = 3,sin (x) = sin (%(1 - r))
go = 4 sin (x) = —sin (: 'r)

go = 5,sin (x) = —cos (%(1 - r))
o = 6,sin (x) = —cos (1 'r)

go = T,sin (x) = —sin (%(1 — r))

Then, for qo = 0,sin (x) = sin (

qo = 2,sin (x) = cos

These formulas reduce each case to the computation of either sin (%— r1) or

Z . 1'1) ; where ry is either r or (1 —r), and is within the range, 0=r, = 1.

CcOS

. . . a
. Finally, cither sin 4 Ti)orcos

[N

Z » r,) is computed, using the Chehyshev

interpolation of degree 6 in 72 for the sine, and of degree 7 in r,2 for the cosine.
The maximum relative error of the sine polynomial is 2-°% and that of the
cosine polynomial is 2643,

Effect of an Argument Error
E ~ A, Ag the value of the argument increases, A increases. Because the function

value diminishes periodically, no consistent relative error control can be main-

tained outside of the principal range, —— =x = +

ks
2
b

xxxLSCNH Subprogram (DSINH and DCOSH)

Algorithm
1. If 'x <« 0.3465736, then compute sinh(x) as:
sinh{x) == v + ox* 4+ cx® + o + cu® + o'
. . . . sinh(x
The coefficients are obtained by expanding the function f(z) = —Ac(—z)

z = x*, with respect to the Chebyshev polynomials over the range,
0 = z < 0.12011326. The relative error of this approximation is less than 2619,

2. If either x = 0.3465736 or the cosh(x) is desired, obtain w = el*l. Then,

N —1 e gp—
u_-i-;b_, and sinh(x) = (sign x) * o 2“

nential subprogram (xxxLexr) is used to compute the value of w.

cosh(x) = . The real expo-

Effect of an Argument Error
For the hyperbolic sine, E ~ A « cosh(x) and ¢« ~ A * coth(x).
For the hyperbolic cosine, E ~ A ¢ sinh(x) and ¢« ~ A * tanh(x).
Specifically, for the cosine, E ~ A over the entire range; for the sine, ¢ ~ §
for the small values of x.

xxxLSQRT Subprogram (DSQRT)

Algorithm

1. If x = 0, then the answer is 0.

2. Writex = 16%—2+ m, where 2p — q is the exponent and ¢ equals either 0 or 1;
m is the mantissa and is within the range, % =m=1L

3. Then, Vx = 167+ 220« \/m,

4. For the first approximation of \/x , compute the following:

) 2 8
y0=2—~4°16p'(?+ 9 'm).

. . . T |
The maximum relative error of this approximation is 5

5. Apply the Newton-Raphson iteration

1
Ynt1 =7(!1u + yi)

four times to y, (the first two times in the short form and the last two times in
the long form). The final step is performed as

1/«
Yys=ya+ 5| —— ¥
Ys = Y3 p) (s Yy s)
to minimize the computational truncation error. The maximum relative error
of the final result is theoretically 2537,

Effect of an Argument Error

e~ —398
92

Appendix A. Algorithins

xxxLTANH Subprogram (DTANH)
Algorithm

1. If |x] < 0.54931, then use the following fractional approximation:

tanh (x) 1— a:x® + asxxt + azx® + «°
X - b(j + b1x2 + b_;x4 + ngﬁ + 8
where:
a, = 676440.765 b, = 2029322.295
as = 45092.124 b, = 947005.29
as = 594.459 b, = 52028.55

b; = 630476

The maximum relative error of this approximation is 2~ 3, The formula was
obtained by transforming the continued fraction

tanh (x) _ 1 +L2 x2 x?
x 3+54+" " 15+w
where w has an approximate value of 0.017, but the true value of w is
x? x?
T+ 19+ "
9. T£ 054931 =< x < 20.101, then use the identity tanh (x) = 1 — ———=——. This

e +1
computation uses the double precision exponential subprogram (xxxLExP).

3. If x = 20.101, then tanh (x) == 1.
4, If x = — 0.54931, then use the identity tanh (x) = — tanh (—x).

Effect of an Argument Error

2A
sinh (2x)°
value of x increases, the effect of § upon e diminishes.

E ~ (1 — tanh®x) A, and € ~ For small values of x , ¢ ~ 8. As the

xxxLTNCT Subprogram (DTAN and DCOTAN)

Algorithm
1. Divide |x| by% and separate the result into the integer part (g) and the
fraction part (7). Then, |x| = —Z— (g + r).

2. Obtain the reduced argument (w) as follows:
if g is even, then w = r.
ifgisodd, thenw =1 —r.
The range of the reduced argument is 0 = w = 1.

3. Let ¢o = g mod 4.
Then, for go = 0, tan |x| = tan (Z . w) and cot |x| = cot (—Z— . w)

90 = 1, tan |x| = cot (Z 'w)andcot |x| = tan (% . w)
go = 2, tan [xl = —cot (Z 'w)andcot ’x| = —tan(Z . w)

qo = 3, tan |x| = —tan(Z . w) and cot x| = —cot(Z . w)

m™ m
7] w) and cot (4

4. The values of tan (. w) are computed as the ratio

of two polynomials.

tan(_z_. w)g%———m,andcot(z . w)E%

where P(w?) is of degree 3 and Q(w?) is of degree 4 in w2 The coefficients
of P and Q are obtained by economizing the continued fraction

tan(:)=1__z_2__:i 2%
z 3— 5— T7-"""
in the following way.
Write: t____an(:) =1 - EaE N z z i
z 3= 5= 7— 9— (11 +d;)— (13+ d:)— (15 + ds)
and determine the values for d;, d., and dj so that the right-hand expression
gives the exact answers for z2 = 0.395, 0.542 and 0.807. Then the maximum

relative error of this formula over the range 0 < z g% is 34 + 10—,

Change the variable from z to w =% + z and rewrite the formula to obtain
P(w?) and Q(w?).
5. If x < 0, then tan(x) = —tan |x, and cot(x) = —cot |x].
Effect of an Argument Error
A 2 , . -
E ~ ——, and ¢ ~ ——— for tan(x). Therefore, near the singularities
cos*(x) sin(2x)

1 . . N
of x = (k+ 5) where k is an integer, no error control can be maintained.

This is also true for cotan(x) for values of x near k=, where k is an integer.

xxxSASCN Subprogram (ARSIN and ARCOS)

Algorithm
1. Ho=x= 17, then compute arccos(x) as:
arccos(x) = —;— — arcsin(x).

Hosx= %, then compute arcsin(x) by a polynomial of the form:

arcsin(x) = x + ;2% + 2% + 327 + cx® + csx'
. . . . arcsin(x)
The coefficients are obtained by expanding the function f(z) = —
z = x*, with respect to the Chebyshev polynomials over the range 0 =< z _s_%.

The relative error of this approximation is less than 2-275,
2. If %< x = 1, then compute arcsin(x) as:

arcsin(x) = % — arccos(x).

If —%— < x = 1, then compute arccos(x) as:

arccos(x) = 2+ arcsin(\/1 ; x)‘

This case is now reduced to the first case because within these limits,

1 —x 1
<< << .
0:\, 2 = 2°

This computation uses the real square root subprogram (xxxssQrr).

3. If =1 =x < 0, then arcsin(x) = — arcsin lx|, and arccos(x) = = — arccos |x.
This reduces these cases to one of the two positive cases.

Appendix A. Algorithms

29

30

Effect of an Argument Error

A
E ~ ————. For small values of x, E ~ A. Toward the limits (£1) of the

V1—x

range, a small A causes a substantial error in the answer.

IHCSATAN Subprogram (ATAN)

Algorithm
1. Reduce the computation of arctan (x) to the case 0 =< x = 1, by using
arctan (—x)-= —arctan (x), or
1
arctan | 7) = -Z- — arctan |x|.
|x 2

2. If necessary, reduce the computation further to the case |x| = tan 15° by using

arctan (x) = 30° + arctan (M) .
___ x4+ V3
V3ex—1
x+ V3
tan 15° < x =< 1. The value of (V3 * x — 1) is computed as
(V3—=1) x — 1 + x to avoid the loss of significant digits.

The value of = tan 15° if the value of x is within the range,

3. For |x| = tan 15°, use the approximation formula:

arctan (x) _ _ . 0.55913709
————£==0.60310579 — 0.05160454x t 51 14087818
This formula has a relative error less than 2—27' and can be obtained by
transforming the continued fraction
x2
arctan (x) _ 1 _xr 5
x 3+ (5 _2)
—+=x - w
7
where w has an approximate value of (——;% =2+ 3%0) 10—4, but the true
45
779

value of w is ——— . ..
43
S a2)+
(7 T)
The original continued fraction can be obtained by transforming the Taylor
series into continued fraction form.

Effect of an Argument Error

A .
E~ TF For small values of x, e ~ 8; as the value of x increases, the effect

of § upon e diminishes.

xxxSATN2 Subprogram (ATAN and ATAN2)

Algorithm

I > 224, the answer = (sign x;) * .

1. For arctan(x, x»), if either x, = 0 or 3

X2

. . X
Otherwise, if x» > 0, the answer = arctan (x—’) ,and

5

if x» < 0, the answer = arctan (;C_l) + (signx;) =
2

The rest of the computation is identical for either one or two arguments.

2. Reduce the computation of arctan(x) to the case 0 = x = 1, by using
arctan(—x) = — arctan(x) or

arctan F 5 — arctan |x].
3. If necessary, reduce the computation further to the case x| = tan 15° by using
arctan(x) = 30° + arctan Lx:_l_
x+ v3

V3sx—1
x+ V3
tan 15° < x =< 1. The value of (/3 * x — 1) is computed as

(V3 —1)x — 1 + x to avoid the loss of significant digits.

The value of = tan 15° if the value of x is within the range,

4. For |x|=< tan 15°, use the approximatjon formula:
arctan(x) _ 2 0.55913709
——=% == 0.060310579 — 0.0516045x2 + = T 14087810

This formula has a relative error less than 2-27-1 and can be obtained by trans-

forming the continued fraction

2

xX
arctan(x) _ 1— x2 5
x - 3+ (5 _
(—+ x 2) —w
7
where w has an approximate value of (- %x'i’ + 3—3—775—) 10—* but the true
4-5
. 77+9
value of w is 5 C
—_ -2
(7. 11 +x) +

The original continued fraction can be obtained by transforming the Taylor
series into continued fraction form.

Effect of an Argument Error

A .
E~ T+ For small values of x, ¢ ~ 8; as the value of x increases, the effect
of 8 upon e diminishes.

xxxSERF Subprogram (ERF and ERFC)
Algorithm

1. If 0 = x = 1.317, then compute the error function by the following approxi-
mation:
erf{x) = x{ay + a;2® + axx* + ... + aex'?).

The coefficients were obtained by expanding the function f(z) =

z=2x2

erf(x)
x >

with respect to the Chebyshev polynomials over the range 0 < x < 1.317. The
relative error of this approximation is less than 2—2¢ The value of the comple-
mented error function is computed as erfc(x) = 1 — erf(x) and is greater

1
than—1—6.

2. If 1.317 < x = 2.0400009, then compute the complemented error function by
the following approximation:
erfe(x) = bo + biz + bez? + ... + ba7
where z = x — T, and T, = 2.0400009. The coeflicients were obtained by
expanding the function f(z) = erfe(x + T,) with respect to the Chebyshev

Appendix A. Algorithms

31

32

polynomials over the range (1.317 — Ty) < z = 0. The absolute error of this
approximation is less than 1.3 « 2—3, The value of the complemented error
1

function within the range 1.317 < x = T\ is greater than 956 The value of the

error function is computed as erf(x) = 1 — erfc(x).

3. If Ty < x = 13.306, then compute the complemented error function by the fol-
lowing approximation:

erfo(x) g(co + cix—2 + czx—4x+ vt cexT12) e

The coeflicients were obtained by expanding the function

f(z) = erfc (x) * x « e, 2 = x—2, with respect to the Chebyshev polynomials

over the range Ty—2 > z = 13.306—2. The relative error of this approximation

is less than 1.2 « 2—23%, This computation uses the real exponential subprogram

(xxxsEXP).

If x = 3.9192, then the error function is computed as erf(x) = 1 — erfc(x).

If x > 3.9192, then the error function is == 1.

4. 1f 13.306 < x, then the error function is = 1, and the complemented error func-
tion is == 0.

5. If x < 0, then reduce to a case involving a positive argument by the use of the
following formulas:
erf(—x) = —erf(x) and
erfc(—x) = 2 — erfe(x).

Effect of an Argument Error

E ~ e~ + A, For the error function, as the magnitude of the argument exceeds 1,
the effect of an argument error upon the final accuracy diminishes rapidly. For
small values of x, e ~ 8. For the complemented error function, if the value of x is

—z2

greater than 1, erfe(x) ~ egx . Therefore, e ~ 2 x2 + 8. If the value of x is negative

or less than 1, then e ~ e=* * A,

xxxSEXP Subprogram (EXP)

Algorithm

1. If x < —180.218, then O is given as the answer.
2. If |x| < 2%, then 1 is given as the answer.

3. Otherwise, divide x by log.2 and write

=_* = —p—
y~loge2 (4¢ — b —d)

where a and b are integers, 0 = b =3and 0=d < L.
Then,e? = 2v = (162+2-%+2-9),

4. Compute 2~ by the following fractional approximation:
9—d o 2d

0.034657359 d? + d + 9.9545958 —

617.97227
d? + 87.417497
This formula can be obtained by transforming the Gaussian-type continued

fraction
1+ 2— 3+ 2— 5+ 2— 7+ 2
The maximum relative error of this approximation is 2-%.
5. Multiply 2—¢ by 22,

6. Finally, add the hexadecimal exponent a to the characteristic of the answer.

Effect of an Argument Error

e ~ A. If the magnitude of x is large, even the round-off error of the argument
causes a substantial relative error in the answer because A = § « «.

xxxSGAMA Subprogram (GAMMA and ALGAMA)

Algorithm

1. 0 < x = 2-2%2, then compute log-gamma as log, I" (x) = ~log, (x). This
computation uses the real logarithm subprogram (xxxsLoc).

2. If 2-252 < x < 8, then compute log-gamma by taking the natural logarithm of
the value obtained for gamma. The computation of gamma depends upon the

ey toaa LT TS T, IR L O
range 1nto wnicn e argument rais.

3. If2-%52 < x < 1, thenuseT (x) = I@ to reduce to the next case.

4. If 1 = x = 2, then compute gamma by the following approximation:
F(x)=ap+ az+ az®>+ ... + ay2°
where z = x — 1.5. The coefficients were obtained by expanding the function
f(z) = T' (x) with respect to the Chebyshev polynomials for |z| = 0.5. The
absolute error of this approximation is less than 1.5 « 2—25.
5 f2 < x< 8 thenuseI (x) = (x — 1) T (x — 1) to reduce step by step to
the preceding case.

6. If 8 = «x, then compute log-gamma by the use of Stirling’s formula:
log. T (x) = x(log. (x) = 1) = 3 log. (x) + 5 log. (2r) + G(x),
The modifier term G(x) is computed as
G(x) = bix— ! + byx—2
The absolute error of the approximation for G(x) is 1.4 » 2-2% This computa-
tion uses the real logarithm subprogram (xxxsLoc).

For gamma, compute I’ (x) = e¥, where y is the value obtained for log-
gamma. This computation uses the real exponential subprogram (xxxsexp).

Eftect of an Argument Error

e ~ ¢ (x) * A for gamma, and E ~ ¢ (x) * A for log-gamma, where ¢ is the
digamma function.

If % < x < 3, then —2 < ¢ (x) < 1. Therefore, E ~ A for log-gamma. How-

ever, because x = 1 and x = 2 are zeros of the log-gamma function, even a small
8 can cause a substantial ¢ in this range.

If the value of x is large, then ¢ (x) ~ log, (x). Therefore, for gamma,
e ~ 3 x * log, (x). In this case, even the round-off error of the argument con-

tributes greatly to the relative error of the answer. For log-gamma with large
values of x, € ~ 8.

xxxSLOG Subprogram (ALOG and ALOG10)

Algorithm
1. Write x = 16 » m, where p is an integer and m is within the range,Tlg =m<Ll
2. Define two constants, @ and b, where ¢ = base point and 2—» = q, as foliows:
1 1 1
—_— < — = — =
1f B=m< 8,thena 16andb 4.
1 1 1
— << —_— = — = 2,
If8 =m< 2,thena 4andb

Ifi§m<l,thena =landb = 0.

[N

Appendix A. Algorithms

34

W __ m—a - . =1
3. Writez = m+a.Then,m ar 4= ,andlzl._:3 .
4. Now, x = 247D t f , and logx = (4p — b) log2 + log. (—i—iz—))

5. Finally, log, (11 -'_- z) is evaluated using the Chebyshev interpolation of degree

. 1 . . .

4 in z2 over the range, 0 < z2 << — . The maximum relative error of this ap-
=T =9

proximation is 2278,

6. If the common logarithm is desired, then log;ox = logiee * logex.

Effect of an Argument Error

E ~ 8. Specifically, if § is the round-off error of the argument, e.g., § ~ 6 + 105,
then E ~ 6 * 108, Therefore, if the argument is close to 1, the relative error can
be very large because the value of the function is very small.

xxxSSCN Subprogram (SIN and COS)

Algorithm

1. Define z = 4
™

x| and separate z into its integer part (q) and its fraction part

(). Thenz = g + rand el = (0) + (r).
L\ 7

2. If the cosine is desired, add 2 to q. If the sine is desired and if x is negative,
add 4 to g. This adjustment of g reduces the general case to the computation
of sin (x) for x = 0 because

cos (£x) = sin (—g-+ x) ,and

sin (—x) = sin (= + x).

3. Let qo = q mod 8.
Then, for g, = 0, sin (x) = sin(Z . r)

go = 1 sin (x) = cos(—z—(l - r))
go = 2,sin (x) = COS(-:I—'r)
go = 3,sin (x) = sin (—4’3—(1 - r))

go = 4,sin (x) = —sin (Z '7)
go = 5,sin (x) = —cos (-:;—(1 - r))
go = 6,sin (x) = —cos (TI—' 1')

go = T7,sin (x) = —sin (%—(1—-1‘))

. . . T
These formulas reduce each case to the compntation of either sin (") or

cos (%- 1) where 7y is either r or (1 — r) and is within the range,

0=n=1

4, Finally, the computation for either the sine or the cosine is performed, using

the Chebyshev interpolation of degree 3 in 7,2 The maximum relative error
of the sine polynomial is 27281 and that of the cosine polynomial is 2—24¢,

Effect of an Argument Error

E ~ A, As the value of x increases, A increases. Because the function value dimin-
ishes periodically, no consistent relative error control can be maintained outside
T

the principal range, — =<z = + B)

2 ==
xxxSSCNH Subprogram (SINH and COSH)
Algorithm

1. If |x| < 0.3465736, then compute sinh(x) as:
sinh(x) == x + 0.16666505x® + 0.00836915x°.

The coefficients were obtained by expanding the function f(z) = sm};(x) s
z = 2, with respect to the Chebyshev polynomials over the range

0 < z < 0.12011326. The relative error of this approximation is less than

2—26.5-
2. If either |x| = 0.3465736 or the cosh(x) is desired, obtain w = ekl. Then,
w+ w?! w

W= W The real
2 —2—. € real exponen-

tial subprogram (xxxsexp) is used to compute the value of w.

cosh(x) = , and sinh(x) = (sign x).

Effect of an Argument Error

For the hyperbolic sine, E ~ A * cosh(x) and e ~ A ¢ coth (x).
For the hyperbolic cosine, E ~ A ¢ sinh (x) and e ~ § * tanh(x).

Specifically, for the cosine, ¢ ~ A over the entire range; for the sine, ¢ ~ § for
small values of x.

xxxSSQRT Subprogram (SQRT)
Algorithm
1. If x = 0, then the answer is 0.

2. Write x = 16% * m, where p is an integer and m is within the range,

1

3. Then, vz = 16° « \Vm, where p is the exponent of the answer and m is the
mantissa of the answer.

4. For the first approximation of \/m, take hyperbolic approximations of the form

a+ b where the values of a, b, and ¢ depend upon the value of m as follows:

c+ax
a. 1f1—16 <m < 1,then a = 1.80713
b= —157797
¢ = 0954182

These values minimize the maximum relative error (e) over the range,
while making an exact fit at m = 1. The exact fit at m = 1 minimizes the
computational loss of the last hexadecimal digit for the values of m slightly
less than 1. The relative error of this approximation is less than 2544,

Appendix A. Algorithms

36

b. If %é <m <% _then @ = 0.428795
b = —0.0214398
¢ = 0.0548470

These values minimize m!/8 « ¢, over this range of m where ¢, denotes the
relative error of this approximation. ¢ is less than 265 « m—1/8,

5. Multiply the result by 16° to obtain the first approximation (y,) of the answer.
6. To obtain the final answer, the Newton-Raphson iteration

_1 x
Ynt1 = 7(Yn +—n)

must be applied twice to yo. For E— = m < 1, the final relative error is
theoretically less than 2—247; for ﬁ =m<yg 6 , the final absolute error is

theoretically less than 2—2° « 16°.

Effect of an Argument Error

€~ 3548

2

xxxSTANH Subprogram (TANH)

Algorithm
1. ¥ !z = 21 then tanh (

4 Lailil

x) =«
x) =x.
2. If 2712 < x| < 0. 931, use the following fractional approximation:

tanh (x) 1 x% + 35.1535

* x2 + 451842 +——105 4605

This approximation has a relative error less than 2—27. The formula can be
obtained by transforming the continued fraction

tanh (x) _ a2 a?
=14 3% 5% 7w
where w has an approximate value of 0.0307, but the true value of w is
9+ 11+ "
3. If 054931 = x < 9.011, then use the identity tanh (x) = 1 — ?271— The

computation for this case uses the real exponential subprogram (xxxsexp).
4. If x = 9.011, then tanh (x) == 1.

5. If x = —0.54931, then use the identity tanh (x) = —tanh (—x).
Effect of an Argument Error

E ~ (1 —tanh®x) A,and ¢ ~ —2A—- For small values of x, ¢ ~ 8, and as the
sinh (2x)

value of x increases, the effect of 8 upon e diminishes.

xxxSTNCT Subprogram (TAN and COTAN)
Algorithm

1. Divide |[x| by%and separate the result into the integer part (q) and the

fraction part (r). Then, |x| = —Z—(q + r).

2. Obtain the reduced argument (w) as follows:

if giseven, thenw = r,
if gisodd, thenw = 1 — r.
The range of the reduced argumentis 0 =< w =< 1.

. Let go = g mod 4.

Then, for g, = 0, tan |x[= tan(Z . w) and cot [xi = cot (Z . w)
go = 1, tan [x[= cot(;r . w) and cot |x[= i‘.an(;;:r . w)
Y. = 9 l.'ﬂn 1""! _ =T I/—’T— * 4".\I Onf} NNt "V! = oYy I/ m L] ‘l\\l
10 Sy vanl A LU \ 4 W} ana Cot | x) = i \ 4 W}
go = 3, tan }x' = —tan (Z . w) and cot lxl = —cot (Z . w)

. The values of tan(Z . w) and cot(Z

two polynomials.

tan(Z .w)%%,andcot(z .w)z%

where P(w?) = 212.58037 — 12.559912w?
Q(w?) = 270.665736 — 71.645273w? + w*

. w) are computed as the ratio of

This approximation is obtained by economizing the continued fraction

tan(z)=1_59__z_‘i_z_2
z 3— 5—T7="""
in the following way:
tan(z) z2 z2 2>

Write: =]
z

T B+d)- (5+d)— (T+ds)

and determine values for d;, ds, and d; so that the right-hand expression
gives the exact answers for 22 = 0.19, 0.432, and 0.594. Then the maximum

relative error of this formula over the range 0 < z g%is 1.74 - 108,

Change the variable from z to w = 4. z and rewrite the formula to ob-
™
tain P(w?) and Q(w?).
5. If x < 0, then tan ||, and cot(x) = —cot [x|.

Effect of an Argument Error

~ cos?(x)’

<

and ¢ ~

2 . "
sn(2%) for tan(x). Therefore, near the singularities

1 . . o
k +—), where k is an integer, no error control can be maintained.

2

This is also true for cotan(x) for x near kr, where k is an integer.

Appendix A. Algorithms

37

Appendix B. Performance Statistics

Appendix B contains accuracy and timing statistics for
the explicitly called mathematical subprograms. These
statistics are presented in Table 12 and are arranged
in alphabetical order, according to the entry names.
The following column headings are used in Table 12:

Entry Name: This column gives the entry name that
must be used to call the subprogram.

Argument Range: This column gives the argument
range used to obtain the accuracy figures. For each
function, accuracy figures are given for one or more
representative segments within the valid argument
range. In each case, the figures given are the most
meaningful to the function and range under consid-
eration.

The maximum relative error and standard deviation
of the relative error are generally useful and revealing
statistics; however, they are useless for the range of a
function where its value becomes 0, because the slight-
est error in the argument can cause an unpredictable
fluctuation in the magnitude of the answer. When a
small argument error would have this effect, the maxi-
mum absolute error and standard deviation of the
absolute error are given for the range. For example,
absolute error is given for sin(x) for values of x near =.

Sample: This column indicates the type of sample
used for the accuracy figures. The type of sample de-
pends upon the function and range under consid-
eration. The statistics may be based either upon an
exponentially (E) distributed argument sample or a
uniformly (U) distributed argument sample.,

Accuracy Figures: This column gives accuracy fig-
ures for one or more representative segments within
the valid argument range. The accuracy figures sup-
plied are based upon the assumption that the argu-
ments are perfect (i.e., without error and, therefore,

38

having no error propagation effect upon the answers).
The only error in the answers are those introduced by
the subprograms. Appendix A contains a description
of some of the symbols used in this appendix; the
following additional symbols are used in the presenta-
tion of accuracy figures:

The maximum

— f(x) — g(x) relative error
M(e) = Max f(x) produced
during testing.
The standard
f(x;) — g(x:)* deviation (root-

o(e) = \}%Ei

f(x;) mean-square) of
1 .

the relative error.

The maximum

absolute error

produced

during testing.

M (E) = Max|f(x) — g(x) |

The standard
deviation (root-
mean-square) of
the absolute error.

£(m) — glx)|

o(5) = JFZ

In the formulas for the standard deviation, N repre-
sents the total number of arguments in the sample;
i is a subscript that varies from 1 to N.

Accuracy for the Model 44 is based on performance
with the FLOATING-POINT PRECISION switch in the “14”
(vertical) position. This position selects the highest
(56) of the four long-precision increments permitted.

Average Speed: This column gives the timing statis-
tics. These statistics represent the average speed in
microseconds for the various System/360 models. Sta-
tistics are supplied for Models. 30, 40, 44, 50, 65, and
75. Statistics for the Model 75 are based upon two-way
interleaving,

SOMS1IEIS S0UBWIO}I] g xipuaddy

Table 12. Performance Statistics

Entry Argument Sample »—‘ Accuras:{i; igures o Average Speed (Microseconds)
Name Range E/U M () o (e) M (E) o (E) 30 | 40] s0] 631 75 44
(See Note 8) | (Sce Note 9)
ALGAMA | 0<x = 0.5 U 109 X 10-6 | 3.35 x 107 10500| 2800| 865|221 |131 727 553
05<x<3 U 9.65 X 107 3.74 X 10—7 10500| 2820| 884|225 |133 734 560
3=x<8 U 1.21 X 10-6 | 2.86 X 107 12100 3250(1020 [259 |[151 820 638
8=x<16 U 1.25 X 10-6 | 3.89 x 10~7 7600| 2010| 617|162 | 97.3 | 470 356
16 = x < 500 U 1.04 X 10-6 | 2.03 x 10—7 7600| 2010| 617]162 | 973 | 477 362
ALOG 05=x=15 U ' 3.46 X 10—7 8.62 X 108 4481 1178] 361| 91.9| 523 | 220 176
x<05,x>15 E 8.32 x 10-7 | 1.20 x 10—7 4481 | 1178] 361 or9| 523 | 220 176
ALOGI0 [05=x=15 U 1.64 X 10—7 478 x 10-8 4847| 1278| 388 981 561 | 248 193
x<05,x>15 E 1.05 X 10-6 | 2.17 x 10~7 4847| 1278| 388 98.1| 561 | 248 193
ARCOS |-1=x:=+1 U 1.80 X 10~7 | 3.29 X 10—6 5340 1460] 451|118 | 70.6 | 325 238
ARSIN [—1=x=+1 U 8.56 x 10~7 | 238 x 10-7 1 5270| 1450 445|114 | 684 | 312 228
ATAN The full range Note7 | 975 x 10-7 | 4.54 x 10-7 For ATAN in FORTRAN IV (E) | 165 195
(Mod. 44: 3602 913 255 68.8 40.6
tan y, y in Additional time for ATAN in
T FORTRAN 1V
R 104 47 24 8 5.9
ATANZ | The full range Note 7 | 9.75 X 10-7 | 4.54 x 10—7 4874 | 1288[a75[103 | 197 | — —
CABS The full range Notel | 1.87 X 10—% | 7.65 x 10—7 5194 | 1421] 306|108 | 684 | 299 205
Ccos x| = 10, x| = 20 U 179 X 10—6 | 7.21 x 10-7 I 15783 | 4433 (1320 [334 [203 | 1089 848
See Note 2
CDABS The full range Note 1 3.32 X 10—15 | 516 X 10—16 14021 | 3061 | 638 |150 89.0 733 656
CDCOS | |x| = 10, s = 1 U 516 x 1015 | 342 x 10—-16 |) 48343 [11705 [2335 [507 [301 | 3020 2807
See Note 3
CDEXP [|x] =1, [xl = —’2'— U 4.04 X 10—16 | 1,39 x 10—16 41737 10144 [2048 |456 |260 2616 2419
x| = 20, x| = 20 U 3.63 x 10-15 | 1.29 x 10-16 | 41737 [10144 [2048 [456 260 | 2611 2415
CDLOG | The full range Notel | 873 x 10—15 | 6.38 x 10—17 53362 [11940 [2393 [542 [317 | 3105 2860
CDSIN ||x| =10, x| =1 U 3.72 X 10—15 | 3.49 x 10—16 o o 48250 11668 [2322 [503 [298 | 3018 2808
See Note 4
CDSQRT | The full range Notel | 9.86 x 10—-16 | 1.91 x 10—16 ” 27951 | 5906 [1282 [301 181 | 1543 1392
CEXP x| = 170, x| 5—2’5 U 1.18 X 10—6 | 2.34 x 10—7 13731 | 3888|1166 [291 |177 958 732
[= 170, S R :
x B U 1.06 X 10—6 | 2,51 X 10—7 13899 | 3930|1180 |294 |178 971 746
E < [le = 20
CLOG | The full range Notel | 2.00x 10-6 | 1.56 x 10—7 - | 15504 | 4246 [1261 (338 [216 | 1014 777
- except (1 + 0i)

s Table 12. Performance Statistics (Continued)

Entry Argument Sample Accuracy Figures Average Speed (Microseconds)
Name Range E/U M (e) o (e) M (E) o (E) 30 | 40| 50] 651 75 44
(See Note8) | (See Note 9)
COs O=x=nwr U 1.47 X 10—7 5.48 X 10—8 3934 11047 | 298| T4.2| 44.0 196 | 157
-10=x<0 U 1.42 X 10—7 5.67 X 10—8 3990 |1061| 303 | 75.4| 44.5 198 | 159
r<x=10
10 < [x| = 100 U 1.35 X 10—7 5.61 X 10—8 3990 | 1061 | 303 | 75.4| 44.5 200 | 161
COSH -5=x=+5 U 1.31 X 10—¢ 3.40 X 106 6110 | 1810} 570|145 89.2 486 | 312
COTAN x| = —;1 U 1.29 x 10—¢6 3.68 X 10—7 4420 (1180 | 341 | 86.7{ 56.0 227 | 180
T K= U 3.80 X 10—¢ 7.70 X 10—+ 4610 {1220 | 351 | 89.3| 55.5 233 | 188
4 9 See Note 5
L 1.13 X 10—8 -6.03 X 10—7 4580 1210 | 348 | 88.1] 55.0 233 | 188
o <Ix[=10 U See Note 5
10 < |x] = 100 1.67 x 10—5 6.67 X 10—7 4580 | 1210 348 | 88.1| 55.0 233 | 187
See Note 5
CSIN x| =10, |x:| =1 U 1.97 x 10—6 7.09 X 10—7 15690 | 4397 |1316 | 331 |200 1081 | 843
See Note 6
CSQRT The full range Note 1 1.61 x 10—¢ 4.58 X 10—7 10408 | 2870| 805|219 | 140 676 | 493
DARCOS |- 1=x=+1 U 2.72 X 10—18 | 9.35 X 10—17 22600 | 5100 (1100 | 246 | 143 1439 |[1289
DARSIN |—-1=x=+1 U 2.40 x 10—18 | 6.00 X 10—17 22400 | 5060 (1090 | 243 |140 1440 [1292
DATAN | The full range Note 7 2.08 X 10—16 | 6.64 X 10—17 For DATAN in FORTRAN IV (E)
(Mod. 44: 19056 4000 715 153 83.6 | 1010 966
tany, y in Additional time for DATAN in
i FORTRAN IV
R 104 47 24 8 5.9
DATAN2 | The full range Note 7 2.08 X 10—16 | 6.64 X 10—17 . 229281 | 4734 886195 22.9 —_ | —
DCOS 0=x=nr U 1.79 x 1016 6.40 X 10—17 13133 | 3146 | 605 | 132 74.2 761 | 713
~10=<
112 =2 ﬁ) 0 U 176 X 10—16 | 593 X 1017 13133 | 3146| 605|132 | 742 | 762 | 714
10 < |x| = 100 U 2.65 x10—15 1.01 X 10—15 13133 | 3146 | 605 | 132 74.2 759 | 712
DCOSH |[-5=x=+35 U 4.81 X 10—18 | 1.34 X 10—16 18300 | 4260 | 898 [206 [119 | 1050 | 923
DCOTAN | |x| g% U 3.46 X 10—18 | 838 X 10—17 15300 | 3590 | 675 | 150 89.2 869 | 819
Tk =T U 172 X 10—13 | 5.00 X 10—15 15900 | 3640 | 715 | 156 89.8 906 | 856
4 =2 See Note 5
kL U 5.33 X 10—13 | 1.09 x 10—14 15800 | 3690 | 706 | 155 89.1 901 | 852
2 <kl=10 See Note 5
10 < |x| = 100 U 8.61 X 10—13 | 461 X 10—14 15800 | 3690 | 706|155 89.1 899 | 849
See Note 5

SO1ISTIRIG dourULIoNa] g xipuaddy

17

Table 12. Performance Statistics (Continued)

Accuracy Figures
(=]

Average Speed { Microscconds)

Entry Argument Sample |
Name Range E/U M (e) ole) M (E) o (1) 30 [40 [50| 651 75 44

(Sce Note 8) | (See Note 9)

DERF x| = 1.317 U 1.70 X 1016 | 271 x 10—17 18400 | 4610 | 879[190 | 109 | 1208 | 1083
1.317 < |x| = 2.04 U 991 x 1017 | 1.17 x 10—17) 24300| 6060[1150] 250 | 141 | 1635 | 1467

2.04 < |x < 6.092 U 1.70 x 1017 | 8.03 x 10—18 4520010900 [2080] 449 [259 | 2868 | 2626

DERFC | —-6<x<C0 U 1.88 X 10—16 | 6.84 X 10—17 | - 36700 | 8920(1700(369 | 218 2355 | 2147
0=x=1317 U 3.52 x 10-16 | 7,62 x 10—17 T 18600 | 4650 891|193 | 111 | 1213 | 1086

1317 < x = 2.04 U 445 x 10-16 | 1.27 x 10—16 ' 24100 | 6000 [1130]244 | 139 | 1623 | 1454

204 < x < 4 U 402 X 10—15 | 1.24 x 10-15 - 45000 [10800 |2060 | 444 | 258 | 2854 | 2612
4=x<133 U 5.02 X 1015 | 1.40 x 10—15 - - 45200 [10900 [2090 | 451 | 263 | 2871 2628

DEXP MNES! U 237 x 1016 | 7.49 x 10—17 T12145| 2007] 607|138 | 755 | 720 | 648
1< |x =20 U 2.31 X 1015 | 8.69 X 10—16 I ’ 12145| 2907 607|138 | 755 | 716 | 644

20 < |x| =1 170 U 2.33 X 1015 | 9.33 x 10~16 12145| 2907| 607|138 | 755 | 715 | 643

DGAMMA | 0< v < 1 U 2.18 X 10—16 | 7.93 x 1017 30700 7500 |1400| 304 | 175 | 2058 | 1853
l1=x=2 U 302 X 1017 | 845 x 10—18 | B] 28200 | 7050 [1340 [2092 | 169 | 1921 1714

2<x=4 U .69 X 10-15 | 4.60 X 10— 16 30100 | 7520 (1430|312 | 180 | 2034 [1827

4<x<8 U 2.85 X 1015 | 9.46 X 1016 R 33900 | 8470 [1610] 352 | 205 | 2268 |2054

8=x<16 U 6.42 x 10-15 | 2.0l x 10-15 [- | 40600 | 9560 1940 [434 [241 2498 |2294

16 = x < 57 U 6.2 x 10—1¢ | 2.96 x 10-14 40600 | 9560 [1940 [434 | 241 | 2503 [2298

DLGAMA [0 <x=05 U 411 X 10-16 | 1.60 X 10—16) 46900 [11300 [2160 [471 [267 | 3056 [2783
05 <x<3 U 2.86 x 10-16 | 1.16 x 10—16 | 44900 [11100 [2130 [466 | 264 | 2983 [2709

3=x<8 U 2.38 X 10—16 | 3.99 x 10—16 ’ 45900 [12200 [2330 [512 [2092 | 3228 |2947

8=x<16 U 3.36 X 10—16 | 1,18 x 10—16 28200 | 6580 {1310 |296 | 161 1712 | 1572

16 = x < 500 U 162 X 10-15 | 2.43 x 10—16 28200 | 6580 [1310 [296 | 161 1725 | 1585

DLOG 05=x=15 U 1.85 x 10-16 | 7.99 x 10—17 16044 | 3769 | 734|161 | 865 | 929 | 855
x<05 x> 15 E 3.31 X 10-16 | 546 x 10-17 16041 | 3765 | 733161 | 865 | 920 | 855

DLOGL0 [05=x=15 U 823 X 10-17 | 3.09 X 10—17 17149 | 4048 | 778 [171 | 923 | 997 | 920
x <05, x> 15 E 6.14 X 10—16 | 9.96 X 10—17 17147 | 4044 | 777|170 | 920 | 996 | 920

DSIN N == U 408 X 10-16 | 485 x 10-17 | 9.10 X 10-17 | 2.17 X 10-17 13145 | 3148 | 609133 | 755 | 762 | 714
?"< x| < 10 U 1.64 X 10-16 | 6.35 x 10—17 13145 | 3148 | 609|133 | 755 | 763 | 715

10 < [x|= 100 U o 2.69 X 101 1.03 X 10—15 13145 | 3148 [609 133 | 755 | 761 | 714

DSINH | [x| = 0.34657 U 2.10 X 10—16 | 529 x 10—17 8650 | 2170 | 408 | 885 524 | 505 | 457
0.34657 < |x| =5 U 359 x 10-16 | 873 x 10—17 18400 | 4280 | 901 [207 [119 | 1049 | 925

[N
o

Table 12. Performance Statistics (Continued)

Entry Argument Sample Accuracy Figures Average Speed (Microseconds)
Name Range E/U M (e) o (e) M (E) o (E) 30 | 40 [50] 65| 75 44

(See Note 8) | (See Note 9)
DSQRT | The full range E 1.08 x 10-16 | 217 X 10—17 8173 |1684 | 355 | 85.3 | 492 | 370 | 334
DTAN |l =T 5.25 X 10—16 | 9.26 x 10—17 15100 | 3500 | 647 |142 | 84.1 | 852 | 806
ERU 1.67 X 10-12 | 3.69 X 10—14 15700 | 3660 | 696 151 | 86.8 | 902 | 854]

4 =g See Note 5
T =10 U §'57 X 10-13 | 451 X 10-15 15600 | 3640 [688 {150 | 86.1 | 895 | 848

ce Note 5
10 < |x| = 100 U 379 X 1012 | 9,50 x 10— 14 15600 [3640 [688 [150 | 86.1 | 893 | 846 |

Sce Note 5
DTANH | |s| = 054931 U 200 X 10—16 | 4.45 X 10-17 12299 [2850 | 477{106 | 555 | 668 | 641
054931 < x| = 5 U 1.99 X 1016 | 254 X 1017 16078 | 3778 | 833|192 [110 979 | 874
EXP =1 I 465 X 10-7 | 1.28 x 107 4173 [1250 | 388 | 952 53.4 | 311 | 192
x| = 170 U 469 x 10-7 | 117 x 10—7 4183 | 1250 | 387 | 94.8| 534 | 308 | 189
ERF x| = 1.317 Y 9.26 X 10~7 | 1.43 X 10-7 4140 [1120 | 363 | 885 | 527 | 276 | 189
1317 < |x| = 2.04 U 9.02 X 10—% | 342 x 10—+ 4500 [1230 397 | 99.1| 58.8 | 322 | 220
2.04 < |x| = 3.9192 U 6.07 X 10-% | 3.42 x 10-~ 10000 | 2800 | 845 (213|127 740 | 525
ERFC —38<x<0 Y 910 X 10-7 | 297 x 10-1 7040 [1960 | 607 [153 | 91.6 | 521 | 367 |
0=x= 1317 U 3.90 X 10=6 | 5.65 x 10-7 4250 [1150 [374 | 92.0 | 543 | 284 | 195
1317 < x = 2.04 U 102 X 10-% | 213 x 10-7 4410 [1210 | 387 | 96.0 | 580 | 319 | 216
204 < x < 4 U 120 X 10—% | 3.60 X 107 9950 |2780 | 835 (210 [126 737 | 521 |
4=x=133 U 152 X 10-5 | 8.45 x 10—6 10100 | 2840 | 859|216 [131 749 | 532
GAMMA [0<x<1 U 9.86 X 10-7 | 345 x 107 5840 | 1560 | 484 (123 | 74.0 | 433 | 306
1=x=2 U 100 X 107 | 3.74 x 10—8 5620 {1520 | 489|123 | 735 | 428 | 301
2<x=4 U 929 x 10-7 | 3.63 x 107 6330 [1700 | 546 [137 | 81.1 | 460 | 330
1<x<8 U 225 x 10-% | 814 x 107 7740 [2070 | 659 166 | 962 | 538 | 402
8=x<16 U 229 x 10—5 | 7.67 X 10-5 12000 | 3320 [1020 [263 |[155 845 | 618
16 = x < 57 U 136 x 107 | 1.45 x 10-5 12000 | 3320 [1020 (263|155 842 | 616
SIN =T 139 X 10-6 | 2.02 x 10-7 131 X 10-7 5.55 X 10—8 3876 [1036 | 298 | 74.2| 443 | 194 | 155
T <10 U 141 X 10—7 553 X 10—% 3989 | 1064 | 307 | 76.4 | 453 | 201 | 163
10 < x| = 100 U 1.46 X 10—7 5.61 X 10—% 3989 | 1064 | 307 | 76.4 | 453 | 200 | 162 |
SINH ~5=x=+5 U 1.20 X 10-6 | 3.20 x 107 5890 | 1740 | 545 (139 | 853 | 461 | 297
SQRT The full range E 870 X 10-7 | 1.68 x 10—7 2965 | 801|210 59.1| 358 | 142 | 90

sonsnelg douruiIojIad g xrpuaddy

Table 12. Performance Statistics (Continued)

Entry Argument Sample Accuracy Figures Average Speed (Microseconds)
Name Range E/U M (o) o (e) M (E) o (E) 30 | 40 50| 651 75 44
(See Note 8) | (Sec Note 9)
TAN x| §% 1.56 x 10—¢ 3.22 X 107 4220 | 1120 | 319 | 79.9{ 51.3 209 166
T =T 658 X 10—5 | 1.67 x 10—6 | 4500 [1184 | 338 | 85.3 | 52.8 | 232 188
4 M=3 See Note 5
ki <Ix| =10 U 4.92 X 108 1.28 X 10—86 4460 (1170 | 335 | 84.1 | 52.4 226 183
2 X= See Note 5
10 < |x| = 100 U 3.35 X 10—5 1.02 X 10—¢ 4460 [1170 [335 | 84.1 | 52.4 227 184
-] See Note 5 |
TANH |x| = 0.54931 U 8.12 X 10—7 1.66 x 10—7 2581 | 649 | 173 | 46.1 | 29.0 89 63
054931 < x| =5 U 5.74 X 10—7 7.53 X 10—8 5952 | 1774 | 551 |142 86.3 446 294

Notes to Table 12
These notes are associated with Table 12 and contain

more detailed information about samples and relative
errors for certain functions.

Note 1: The distribution of sample arguments upon
which these statistics are based is exponential radially
and is uniform around the origin.

Note 2: The maximum relative error cited for the
ccos function is based upon a set of 2000 random argu-
ments within the range. In the immediate proximity of

the points (n + -;—) m + 0i (where n= 0, £1, £2,

.. .,) the relative error can be quite high, although
the absolute error is small.

Note 3: The maximum relative error cited for the
cocos function is based upon a set of 1500 random
arguments within the range. In the immediate prox-

imity of the points (n + -;—) = + 0i (where n = 0,

*=1, £2,...,) the relative error can be quite high
although the absolute error is small.

Note 4: The maximum relative error cited for the
cosIN function is based upon a set of 1500 random
arguments within the range. In the immediate prox-
imity of the points nz + 0i (where n = =*1, *2
. . .,) the relative error can be quite high although
the absolute error is small.

Note 5: The figures cited as the maximum relative
errors are those encountered in a sample of 2500 ran-
dom arguments within the respective ranges. See the
appropriate section in Appendix A for a description
of the behavior of errors when the argument is near a
singularity or a zero of the function.

Note 6: The maximum relative error cited for the
csiN function is based upon a set of 2000 randon argu-
ments within the range. In the immediate proximity
of the points nr + 0i (wheren = *1, &2, ...,) the
relative error can be quite high although the absolute
error is small.

Note 7: The sample arguments were tangents of

numbers uniformly distributed between - % and + %

Note 8: The statistics for the Model 75 are based
upon two-way interleaving,

Note 9: The second column of speeds for the Model
44 applies to that machine with high-speed registers.

Appendix C.

Appendix C contains descriptions of the procedures
followed when the execution of a load module is dis-
continued. Execution may be discontinued due to one
of two reasons: an interruption or an error. After an
interruption is processed, execution of this load module
or phase continues; after an error is processed, execu-
tion of this load module or phase is terminated. The
following text explains the procedure used to handle
each case.

Interruption Procedures

An interruption is a computer-originated break in the
flow of processing. When an interrupt occurs, an indi-
cator is set to record exponent overflow, underflow, or
divide exception. (The status of the indicators can be
tested by using the subprograms described in “Service
Subprograms.”} A program intcrrupt mcssage is then
written. After the interruption is handled, execution of
the load module (or phase, in the Model 44 Program-
ming System) continues from the point at which it
was interrupted.

The program interrupt message contains the old pro-
gram status word (psw), which indicates the cause
of the interrupt. Figure 1 shows the format of the
message as it is issued by the operating system. Figure
2 shows the format as issued by the Model 44 system. If
the letter A appears in parentheses in the program
interrupt message, boundary adjustment has taken
place. The eighth character in the Psw represents the
code number associated with the type of interruption.
These interruptions are described in the following
paragraphs. (For more information on the psw, see
the publication IBM System/360 Principles of Opera-
tion, Form A22-6621.)

Specification Exception (Code 6): The specification
exception (code 6) is recognized when a data address

Interruption and Error Procedures

does not specify an integral boundary for that unit of
information. A specification error would occur, for ex-
ample, during the execution of the following program
segment:

DOUBLE-PRECISION D, E
COMMON A,B,C
EQUIVALENCE (B, D)

D = 3.0D02

Fixed-Point Divide Exception (Code 9): The fixed-
point divide exception (code 9) is recognized when
division of a fixed-point number by zero is attempted.
A fixed-point divide exception would occur during exe-
cution of the following statements:

[T

a

7-:»—1'—4

0
7
1/]

Exponent-Overflow Exception (Code C): The ex-
ponent-overflow exception, (code C) is recognized
when the absolute value of the result of a floating-
point addition, subtraction, multiplication, or division
is greater than or equal to 16% (approximately 7.2 x
1075). For example, an exponent overflow would occur
during execution of the statement:

A= LOE + 75 + 72E + 75

Exponent-Underflow Exception (Code D): The ex-
ponent-underflow exception, {code D) is recognized
when the absolute value of the result of a floating-point
addition, subtraction, multiplication, or division, is less
than 16—% (approximately 5.4 x 10=7) but not equal
to 0. An exponent-underflow exception would occur
during execution of the statement:

A= —-10E-50 * 10E — 50

Floating-Point Divide Exception (Code F): The
floating-point divide exception (code F) is recognized
when division of a floating-point number by zero is

IHC2101 PROGRAM INTERRUPT (A) OLD PSW IS xxxxxxx

MmOOVYNOWL A

XXXXXXXX

® Figure 1. Format of Program Interrupt Message, Operating System

44

o

(

S
0

-n O

QAZ2101 PROGRAM INTERRUPT (A) OLD PSW IS xxxxxxx ? C % XXXXXXXX

Figure 2. Format of Program Interrupt Message, Model 44 System

attempted. A floating-point divide exception would
occur during execution of the following statements:

B =100
A=10
C=A/B

System/360 Operating System

(The following paragraphs do not apply to the
Model 44 Programming System.)

The interrupt message is written in the system out-
put data set.

A specification exception program interrupt message
(code 6) is issued only if the BouNDRY = ALIGN option
was specified in the FORTLIB macro-instruction during
system generation and a boundary alignment error
occurs. Then the boundary alignment routine is in-
voked to correct the boundary misalignment. If an
instruction that has been processed for boundary mis-
alignment also contains a protection, addressing, or
data error, the interrupt message will be reissued with
the appropriate code (4, 5, or 7). (In these cases, the
letter A appears in parentheses in the program inter-
rupt message.) Then the job will terminate because
both a specification error and a protection, addressing,
or data error have been detected. The completion code

) I . . ;)
in the dump will specify that the job terminated be-

cause of the specification error.

The number of warning messages printed is limited
to ten. After ten boundary alignment adjustments have
been made, the message is suppressed, but boundary
alignment violations continue to be corrected.

Protection Exception (Code 4): The protection ex-
ception (code 4) is recognized when the key of an
operand in storage does not match the protection key
in the psw. A message is issued only if a specification
exception (code 6) has already been recognized in the
same instruction. Otherwise, the job terminates abnor-
mally without a message.

Addressing Exception (Code 5): The addressing ex-
ception (code 5) is recognized when the address of
the data is outside of available storage for the particu-
lar installation. A message is issued only if a specifica-
tion exception (code 6) has already been recognized
in the same instruction. Otherwise, the job terminates
abnormally without a message.

Data Exception (Code 7): The data exception (code
7) is recognized when the sign or digit codes for a
CONVERT TO BINARY instruction are incorrect. A message
is issued only if a specification exception (code 8)
has already been recognized in the same instruction.
Otherwise, the job terminates abnormally without a
message.

Model 44 Programming System
(The following paragraphs do not apply to System/
360 Operating System.)

The interrupt message is written in SYSOPT.

The program interrupt message (with code 6, as
described in “Specification Exception”) that results
when the boundary specification convention is vio-
lated will contain the “(A)” only if the &rFix option
has been turned on (seta 1) in BoavorT. With that
option on (as it is in the distributed version of the sys-
tem), a routine that adjusts for the misalignment is
executed each time such a violation occurs, and proc-
essing continues.

With the &Fix option on, the number of program
interrupt messages put out as the result of boundary
violations is limited to a message for each of the first
n violations per execution, where n is the operand of
the seTA instruction for the &PRNTMES option. In the
system as distributed, this operand is equal to 0. Only
the message, and not the alignment correction, is
inhibited.

Error Procedures

During execution, the mathematical subprograms as-
sume that the argument(s) is the correct type. No
checking is done for erroneous arguments (ie., the
wrong type, invalid characters, the wrong length, etc.);
therefore, a computation performed with an erroneous
argument has an unpredictable result. However, the
nature of some mathematical functions requires that
the input be within a certain range. For example, the
square root of a negative number is not permitted.
If the argument is not within the valid range given in
Tables 2 through 6, an error message is written in the
data set associated with system output. The execution
of this load module or phase is terminated and control
is returned to the operating system.

Appendix C. Interruption and Error Procedures 45

The error message that is issued has the format:

IHCyyyl
TRACEBACK FOLLOWS . ..
or

OAyyyl
The former message is issued by the operating system,
the latter by the Model 44 system. Traceback is a diag-
nostic tool for the Operating System FORTRAN IV
only. It is a list of routines in the direct line of call to
the routine in which the error occurred. It is described
in either IBM System/360 Operating System FOR-
TRAN IV Programmer's Guide: FORTRAN IV (G),
Form No. C28-6639, or FORTRAN IV (H), Form No.
(C28-6602. The yyy is a numeric code that identifies the
error detected. The following text lists the error mes-
sages in numeric order, explains the error, and indi-
cates what action the system takes. In the following
explanations, x represents the argument supplied by
the programmer.

IHC2161; OA216l

Explantation: In the xxxFsLrT subprogram, a value of
ithatisnot0, 1,2, 3, or 4 is an error.

System Action: Execution of this load module or
phase is terminated.

IHC2411; OA2411

Explanation: In the xxxrixpi subprogram, a base
number of zero and an exponent = 0 is an error.
System Action: Execution of this load module or
phase is terminated.

IHC2421; OA242]

Explanation: In the xxxFrxpr subprogram, a base
number of zero and an exponent = 0 is an error.
System Action: Execution of this load module or
phase is terminated.

IHC2431; 0A2431

Explanation: In the xxxrpxpr subprogram, a base
number of zero and an exponent = 0 is an error.
System Action: Execution of this load module or
phase is terminated.

IHC2441; 0A244I

Explanation: In the xxxFrxpr subprogram, a base
number of zero and an exponent = 0 is an error.
System Action: Execution of this load module or
phase is terminated.

IHC2451; OA2451

Explanation: In the xxxrpxpp subprogram, a base
number of zero and an exponent = 0 is an error.
System Action: Execution of this load module or
phase is terminated.

46

IHC2461; OA2461

Explanation: In the xxxrcxpr subprogram, a base
number of zero and an exponent = 0 is an error.
System Action: Execution of this load module or
phase is terminated.

IHC2471; OA2471

Explanation: In the xxxrcpxi subprogram, a base
number of zero and an exponent = 0 is an error.
System Action: Execution of this load module or
phase is terminated.

IHC2511; OA2511

Explanation: In the xxxssQrr subprogram, a value
of x < 0is an error.
System Action: Execution of this load module or
phase is terminated.

IHC252I; OA2521

Explanation: In the xxxsexp subprogram, a value of
x > 174.673 is an error.

System Action: Execution of this load module or
phase is terminated.

IHC2531; OA253I

Explanation: In the xxxsLoc subprogram, a value of
x = 0 is an error. Because this subprogram is also
called by an exponentiation subprogram, this mes-
sage also indicates that an attempt has been made
to raise a negative real base to a power.

System Action: Execution of this load module or
phase is terminated.

IHC2541; 0A2541
Explanation: In the xxxsscN subprogram, a value of
lx|= 2'# « r is an error.
System Action: Execution of this load module or
phase is terminated.

IHC2551; OA2551

Explanation: In the xxxsatN2 subprogram when
entry name ATAN? is used, a value of x; = x, = 0 is
an error.

System Action: Execution of this load module or
phase is terminated.

IHC2561; OA256l

Explanation: In the xxxsscNH subprogram, a value
of x| = 174.673 is an error.

System Action: Execution of this load module or
phase is terminated.

IHC2571; OA2571
Explanation: In the xxxsascN subprogram, a value
of |x| > 1is an error.
System Action: Execution of this load module or
phase is terminated.

IHC2581; OA258I

Explanation: In the xxxst~xcr subprogram, a value of
x| = 2 * = is an error.

System Action: Execution of this load module or
phase is terminated.

1HC259%91; OA2591

Explanation: In the xxxst~cr subprogram, a value of

. : 3
x too close to one of the singularities (= %, =+ 377, ce
for the tangent; =, *+2x, ... for the cotangent) is

an error.
System Action: Execution of this load module or
phase is terminated.

IHC2611; OA2611

Explanation: In the xxxLsQrr subprogram, a value
of x < 0is an error.
System Action: Execution of this load module or
phase is terminated.

IHC2621; OA2621

Explanation: In the xxxLExp subprogram, a value of
x > 174.673 is an error.

System Action: Execution of this load module or
phase is terminated.

1HC2631; OA263i

Explanation: In the xxxLLoG subprogram, a value of
x = 0 is an error. Because this subprogram is also
called by an exponentiation subprogram, this mes-
sage also indicates that an attempt has been made
to raise a negative real number to a power.

System Action: Fxecution of this load module or
phase is terminated.

1HC264I; OA264]

Explanation: In the xxxrscN subprogram, a value of
lxi = 230« ~ is an error.

System Action: Execution of this load module or
phase is terminated.

IHC2651; OA2651

Explanation: In the xxxLaTN2 subprogram when
entry name DATAN? is used, a value of x; = x, = 0
is an error.

System Action: Execution of this load module or
phase is terminated.

IHC2661; OA2661

Explanation: In the xxxrscxu subprogram, a value
of 'x! = 174.673 is an error.

System Action: Execution of this load module or
phase is terminated.

I1HC2671; OA2671
Explanation: In the xxxLAscN subprogram, a value
of ;x > 1 is an error.
System Action: Execution of this load module or
phase is terminated.

I1HC2681; OA268!

Explanation: In the xxxLTNCT subprogram, a value of
x| = 2% « 7 is an error.

System Action: Execution of this load module or
phase is terminated.

IHC2691; 0A2691
Explanation: In the xxxLTNCT subprogram, a value of

. o s .3
x too close to one of the singularities (& %, ig, e
for the tangent; ==, *=2x, ... for the cotangent) is

an error.
System Action: Execution of this load module or
phase is terminated.

IHC2711; OA2711

Explanation: In the xxxcsexp subprogram, a value
of x; > 174.673 is an error.

System Action: Execution of this load module or
phase is terminated.

IHC2721; OA272I1

Explanation: In the xxxcsexp subprogram, a value
of Xrgl = 9218 » 1 i5 an error.

System Action: Execution of this load module or
phase is terminated.

IHC2731; OA273I
Explanation: In the xxxcsLoc subprogram, a value
of x; = x, = 0is an error.
System Action: Execution of this load module or
phase is terminated.

IHC2741; OA274i
Explanation: In the xxxcsscN subprogram, a value
of 1x1! = 218 ¢ 1 is an error.
System Action: Execution of this load module or
phase is terminated.

IHC2751; OA2751
Explanation: In the xxxcsscN subprogram, a value
of }le > 174.673 is an error.
System Action: Execution of this load module or
phase is terminated.

IHC2811; OA2811

Explanation: In the xxxcLEXP subprogram, a value
of x; > 174.673 is an error.

System Action: Execution of this load module or
phase is terminated.

Appendix C. Interruption and Error Procedures 47

IHC2821; OA282I

Explanation: In the xxxcLEXP
of |x2[= 250 « {5 an error.
System Action: Execution of
phase is terminated.

IHC283I; OA283]

Explanation: In the xxxcLLoG
of x; = x, = 0O is an error.
System Action: Execution of
phase is terminated.

IHC284I; OA284]

Explanation: In the xxxcLscN
of ‘xll = 250+ 1 is an error.
System Action: Execution of
phase is terminated.

IHC2851; OA2851

48

Explanation: In the xxxcLscN
of |xz| > 174.673 is an error.

Ciretom Artion.
Sysiem LCUon.

phase is terminated.

an of

Fyvaniiti
LalCUllilT Ui

subprogram, a value

this load module or

subprogram, a value

this load module or

subprogram, a value

this load module or

subprogram, a value

IHC290I; OA290I

Explanation: In the xxxscama subprogram for the
gamma function, a value of x <X 2—2%2 orx = 57.5744
is an error.

System Action: Execution of this load module or
phase is terminated.

IHC2911; OA2911

Explanation: In the xxxscama subprogram for the
log-gamma function, a value of x = 0 or x = 4.2937
* 107 is an error.

System Action: Execution of this load module or
phase is terminated.

IHC3001; OA300I

Explanation: In the xxxLcaMA subprogram for the
gamma function, a value of x << 2252 or x = 57.5744
is an error.

System Action: Execution of this load module or
phase is terminated.

IHC3011; OA3011

Explanation: In the xxxrLcama subprogram for the
log-gamma function, a value of x = 0 or x = 4.2937
+ 107 is an error.

110t pm ~fa .
System Action:

phase is terminated.

Tyvamitinn

of +
axecuuon ot ©

Appendix D contains decimal storage estimates (in
bytes) for the library subprograms. The estimate given
does not include any additional library subprograms
or FORTRAN execution-time routines that the subpro-
gram needs during execution. The names of any addi-

tional library subprograms needed are given in Tables

13 and 14 in the column headed “Additional Subpro-
grams.”

Some library subprograms also require execution-
time routines for input/output, interruption, and error
procedures.

If the programmer has not made allowances for the
storage required by any of these additional routines
(see Tables 15 and 16), the amount of available storage
may be exceeded and execution cannot begin. The pro-
grammer must add the estimates for all subprograms
and routines needed to determine the amount of stor-
age required.

System/360 Operating System

The 1HcrFIOsSH routine performs input/output pro-
cedures for both FORTRAN 1v (E) and FORTRAN 1v. [This
routine refers to a table (mcuarsn) for information
about the input/output devices used during execu-
tion.] The mHCFCOME routine performs interruption and
error procedures for FORTRAN v (E) library subpro-

grams; the IHCFCOMH, IHCFCVTH, IHCTRCH, and THCUOPT

routines perform the procedures for FORTRAN 1v library
subprograms. If a system contains both compilers, the
IHCFCOMH-THCFCVTH routines are used. Tables 13 and
14 indicate which library subprograms require these
execution-time routines.

In addition, several other execution-time routines
may be needed to resolve external references in a
FORTRAN 1v object module.

1. If a source module specifies direct-access input/
output operations, the compiler generates a call to
the 1HCDIOSE routine.

2. At the point that errors are encountered during
compilation, the compiler generates a call to an
error routine (IHCIBERR for FORTRAN 1v (E) and
IHCIBERH for FORTRAN 1v). If execution of the load
module is attempted, the error routine is called,
a message is issued, and execution is terminated.

3. If a FORTRAN 1v (E) source module contains a com-

puted co TO, the compiler generates a call to the
HCCGOTO routine.

Appendix D. Storage Estimates

Table 13. Mathematical Subprogram Storage Estimates

Uses
Input/
0S/360|44 PS Output
Deci- {Deci- and
mal | mal Inter-

Subprogram | Esti- |Esti- Additional ruption

Name mate |mate Subprograms Routines
xxxCLABS 170 | 200 |xxxL.SQRT Yes
xxxCLAS 216 | 220 No
xxxCLEXP 250 | 280 |xxxLEXP, xxx.SCN Yes
xxxCLLOG 260 | 310 [xxxCLABS, xxxLLSQRT,| Yes

xxxLLOG, xxxLATN2
xxxCLSCN 400 | 500 |xxxLEXP, xxxLSCN Yes
xxxCLSQT 200 | 240 [xxxLSQRT Yes
xxxCSABS 160 | 190 [xxxSSQRT Yes
xxxCSAS 190 | 200 No
xxxCSEXP 240 |280 }|xxxSEXP, xxxSSCN Yes
xxxCSLOG 240 | 290 |xxxSABS, xxxSSQRT Yes
xxxSLOG, xxxSATN2

xxxCSSCN 380 | 440 [xxxSEXP, xxxSSCN Yes
xxxCSSQT 190 | 230 |xxxSSQRT Yes
IHCFAINT 80 | — No
xxxFCDXI 300 {370 [xxxCLAS Yes
xxxFCXPI 280 | 350 |[xxxCSAS Yes
xxxFDXPD 210 | 240 |xxxLLOG, xxxLEXP Yes
xxxFDXPI 160 | 200 Yes
IHCFIFIX 120 | — No
xxxFIXPI 170 | 230 Yes
xxxFMAXD 1160 170 No
xxxFMAXI 210 {290 No
xxFMAXR 210 | 290 No
IHCFMODR| 120 | — No
IHCFMODI 60 | — No
xxxFRXPI 150 | 190 Yes
xxxFRXPR 210 | 250 |xxxSLOG, xxxSEXP Yes
xxxLASCN 400 |520 |xxxLSQRT Yes
THCLATAN | 320 | — No
xxxLATN2 500 | 520 Yes
xxxLERF 800 {920 |xxxLEXP Yes
xxxLEXP 460 | 480 Yes
xxxLGAMA 730 |820 |xxxLLOG, xxxLEXP Yes
xxxLLOG 380 |430 Yes
xxxLSCN 380 |390 Yes
xxxLSCNH 230 400 {xxxLEXP Yes
xxxLSQRT 150 | 160 Yes
xxxLTANH 340 | 350 |xxxLEXP Yes
xxxLTNCT 390 | 400 Yes
xxxSASCN 300 |380 [xxxSSQRT Yes
THCSATAN 200 [— No
xxxSATN2 360 | 380 Yes
xxxSERF 450 560 [xxxSEXP Yes
xxxSEXP 290 | 340 Yes
xxxSGAMA 510 [600 |xxxSLOG, xxxSEXP Yes
xxxSLOG 270 | 280 Yes
xxxSSCN 260 | 270 Yes
xxxSSCNH 280 |340 |[xxxSEXP Yes
xxxSSQRT 180 | 180 Yes
xxxSTANH 270 | 280 |xxxSEXP Yes
xxxSTNCT 290 | 310 Yes

Appendix D. Storage Estimates

49

4. If a FORTRAN 1v source module contains any input/
output operations that refer to a NAMELIST name,
compiler generates a call to the HCNAMEL routine.

5. If a ForTRAN 1v source module uses the debug
facility, the compiler generates a call to the mcpsUG
routine.

6. If boundary alignment was specified during system
generation, the mHCAD]ST routine will be loaded if a
boundary-alignment error occurs.

Model 44 Programming System

In the rorTrAN library of the Model 44 Programming
System, the BoAFIOCS routine is the interface with the
system input/output services. This routine refers to a
table, BoAUNTTB, for information about the input/output
devices used during ekXecution. The BoAIBCcOM routine
performs interruption and error procedures. If a source
program contains any input/output operation(s) re-
ferring to a NAMELIST name, the compiler generates a
call to the BOANAMEL routine.

Table 14. Service Subprogram Storage Estimates

Table 15. Execution-Time Routine Storage Estimates, Oper-
ating System

Routine Decimal
Name Estimate Used By
IHCAD]JST 1,090 FORTRAN 1V
ITHCCGOTO 60 FORTRAN 1V (E)
IHCDBUG 2,600 FORTRAN IV
IHCDIOSE 2,500 Both
IHCFCOME 5,500 FORTRAN IV (E)
IHCFCOMH 4,050 FORTRAN IV
IHCFCVTH 4,090 FORTRAN IV
IHCFIOSH 3,800 + IHCUATBL | Both
(See Note)

IHCIBERH 210 FORTRAN IV
IHCIBERR 260 FORTRAN IV (E)
IHCNAMEL 2,250 FORTRAN IV
IHCTRCH 590 FORTRAN IV
IHCUOPT 8 FORTRAN IV
Note: The number of bytes in table IHCUATBL may be

computed by the formula

12n + 8
where n is the number of data set reference numbers
requested during system generation.

Table 16. Execution-Time Routine Storage Estimates, Model
44 System

Routine Name Decimal Estimate

oS 44 PS Uses Input/Output
Subprogram | Decimall Decimal and Interruption
Name Estimate| Estimate Routines
xxxFDVCH 80 120 Yes
xxxFDUMP 450 760 Yes
xxxFEXIT 30 40 Yes
xxFOVER 90 130 Yes
xxxFSLIT 190 280 Yes

50

BOADIOCS 680
BOAFIOCS 1,488
BOAIBCOM 9,172
BOANAMEL 2,520
BOAUNITB (see Note 1)
BOAUOPT 8
BNXADJST 1,000
(Note 2)

Note 1: Thé number of bytes in CSECT BOAUNITB may
be computed by the formula
8n +8
where n is the number of data set reference numbers|
requested during system construction.
Note 2: BNXADJST does not reside in the library of relo-|
catable modules, but in the absolute phase library.

Appendix E.

The mathematical and service subprograms in the
FORTRAN 1v library are available to the assembler lan-
guage programmer. The following text explains the
method of calling a library subprogram in an assembler
language program, and then gives additional informa-
tion necessary to use each type of subprogram. (The
assembler language programmer should also be fami-
- H g K.

S T S -
¢]

MATIoNn CONTainea

Calling Sequences
To call either tvpe of library subprogram, the assem-
bler language programmer supplies an entry name,
an argument list, and an area used by the subprogram
to store information (i.e., a save area). The following
conventions must be observed when calling a library
subprogram in an assembler language program:

1. The address of the entry name must be in general
register 15.

2. The address of the point of return to the calling
program must be in general register 14.

3. The address of the argument list must be in general
register 1.

4. The argument list must be assembled on a full-word
boundary; it consists of one 4-byte address constant
for each argument. The last argument must have
a 1 in its high order bit.

. The address of the save area must be in general
register 13.

6. The save area must be assembled on a full-word
boundary. Although the minimum size of the save
area depends upon the subprogram, the program-
mer is advised to use a save area of 18 full-words
for all library subprograms. The minimum save
area sizes are given in Tables 2 through 6 for the
mathematical subprograms, and in Table 17 for the
service subprograms.

7. If the information in a floating-point register is to
be retained, the programmer must save and restore
the contents of the register. The subprograms that
make use of the floating-point registers contain no
provisions for saving the information.

8. If a main program in assembler language contains
any calls to those library subprograms that use the
FORTRAN execution-time routines (see Appendix D),
the following instructions must be included before
the call to the subprogram is issued:

(0N I 44PS

L 15=V(IBCOM#) EXTRN IBCOM#
BAL 14,64(15)

Ut

L 15,=A(IBCOM#)
BAL 14,64(15)

Assembler Language Information

These instructions cause the initialization of return
coding and the interruption exceptions described in
Appendix C. If these instructions are omitted, the
occurrence of an interruption or an error causes un-
predictable termination of the execution of this load
module.

Note: In an assembler language program, a decimal-

Py
i

ion may occur, This causes the char-
acter B to appear in the program interruption
message described in Appendix C.

PR L
aivitiie oxoe]

The user of System/360 Operating System may use
several methods to call a ForTrAN library subprogram:
the appropriate macro-instructions described in the
publication IBM System/360 Operating System: Su-
pervisor and Data Management Macro-Instructions,
Form C28-6647 or the general assembler language
calling sequence (given in Figure 3). If the macro-
instructions are used, the address of the save area must
be placed in general register 13 before using a macro-
instruction to give control to the subprogram. For
example, if the square root of the value in AMNT is to
be computed and savE is the address of the same area,
the following statements could be included in an as-
sembler language program to call the 1mcssQrr sub-
program:

L 15,=V(IBCOM#)
BAL 14.64(15)

LA " 13,SAVE

CALL SQRT,(AMNT),VL

SAVE DS 18F

If the general assembler language calling sequence
shown in Figure 3 is used, the programmer must en-
sure that all of the conventions discussed previously
are followed. For example, to call the 1HCSSQRT sub-
program to compute the square root of the number in
Ay, the following statements would be included in
the source program:

LA 13,SAVE

LA LARG

L 15.ENTRY

BALR 1415
ENTRY DC V(SQRT)
SAVE DS . 18F
ARG DC T OX80°

DC AL3(AMNT)

Appendix E. Assembler Language Information 51

General register 13 contains the address of the save area.
General register 1 contains the address of the argument list.
General register 15 contains the address of the subprogram.

General register 14 contains the address of the point of return to the

This statement is optional. The id represents the binary calling sequence
identifier. This number is supplied by the programmer and may be any
hexadecimal integer less than 216 — 1,

Note: In this case, the entry name must be defined by an EXTRN instruc-
tion to obtain proper linkage.

This statement defines the save area needed by the subprogram. The xx
represents the minimum size of the save area required; however, the pro-
grammer is advised to use a save area of 18 full-words for all subprograms.
(The minimum save area requirements are given in Tables 2 through 6
for the mathematical subprograms and in Table 16 for the service sub-

Aligns the argument list at a full-word boundary.
Indicates the first byte of the only argument.

Contains the address of the argument.

LA 13, area
LA 1, arglist
L 15, entry
BALR 14,15
calling program.
NOP X'id’
* * *
entry DC V (entry name)
entry DC A (entry name)
* * *
area DS xxF
* * ¥ programs.)
CNOP
arglist DC X’80°
DC AL3 (arg)
or for more than one argument:
arglist DC A (arg)

DC A (arg:)

DC X80’
DC AL3 (arg.)

Contains the address of the first argument.

Contains the address of the second argument.

Indicates the first byte of the last argument.

Contains the address of the last argument.

Figure 3. General Assembler Language Calling Sequence

When the load module is executed, the mcsQrT sub-
program is called to compute the square root of the
number in AMNT; the result is stored in floating-point
register 0. The binary calling sequence identifier is
not used.

The assembler language user of the Model 44 Pro-
gramming System will use the calling sequence given
in Figure 3. He will, however, use only the A-type
address constant where the choice between that and
the V-type is given. As the note in the figure states,
the label in the operand portion of the address constant
must be made the object of an ExTrRN statement to
obtain proper linkage.

Mathematical Subprograms

The assembler language programmer supplies one or
more arguments for each mathematical subprogram.
The arguments may be either integer values or nor-
malized floating-point real or complex values.

An integer argument is four bytes in length and
starts on a full-word boundary. A real argument is
either four or eight bytes in length. The four-byte

52

argument starts on a full-word boundary. The eight-
byte argument starts on a double-word boundary and
occupies two adjacent words. The first word contains
the most significant digits. This word is also the ad-
dress of the entire argument; the second word con-
tains the least significant digits.

A complex argument is either eight or sixteen bytes
in length and starts on a double-word boundary. The
first half of the argument contains the real part of the
complex argument; the second half contains the
imaginary part. The address of the real part of the
argument is the address of the entire argument.

Each mathematical subprogram returns a single
answer. This answer is either an integer value or a
normalized floating-point real or complex value. An
integer answer is stored in general register 0, a real
answer is stored in floating-point register 0, and a
complex answer is stored in floating-point registers
0 and 2.

Tables 2 through 6 contain additional information for
using the mathematical subprograms in an assembler
language program. These tables give the floating-point

Table 17. Asserubler Information for the Service Subprograms registers that are used by the subprogram and the
save area required by the subprogram.

Subprogram Entry Save Area
Name Name(s) (Full Words)
wxxFDUMP DUMP 18 H
PDUMP 18 Service Subprograms
wxFDVCH DVCHK 10 The service subprograms do not use the floating-point
o FEXIT EXIT 5 registers during execution; however, each service sub-
wxFOVER OVERFL 10 program requires a save area. The minimum size of
xxxFSLIT SLITE 9 the save area depends upon the subprogram to be
SLITET 10 used and is given in Table 17.

Appendix E. Assemblier Language Information 53

Appendix F. Sample Storage Printouts

A sample printout is given below for each dump for-
mat that can be specified for the xxxrpump subpro-
gram. The printouts are given in the following order:
hexadecimal, LOGICAL *1, LOGICAL *4, INTEGER *2,
INTEGER *4, REAL *4, REAL *8, COMPLEX *8, COMPLEX *16,
and literal (see Figure 4). Note that the headings on
the printouts are not generated by the system, but
were obtained by using FORMAT statements.

CALL PDUMP WITH HEXADECIMAL FORMAT SPECIFIED

006E4S 11 12

00A3EQ 485F5E10 00000000 485FSEL0 10000000 42100000

006DC8 42800000 00000000 00000000 00000000 000DONOO0 000000N0 ©NONONNC 0CNOCOO0 00000060 00000000 00000000 00000000
006DF8 C0000000 00000000 41200000 L1S66666 00NOOCNONC 41100000

CALL PDUMP WITH LOGICAL*1 FORMAT SPECIFIED

006E1E T F

CALL PDUMP WITH LOGICAL*L FORMAT SPECIFIED

00GE1Q FT

CALL PDUMP WITH INTEGER*2 FORMAT SPECIFIED

006E1S8 10

006ELA ~100

006ELC 10

CALL PDUMP WITH INTEGER*4 FORMAT SPECIFIED

006E20 1 2 3 4 6 7 8 9 10

CALL PDUMP WITH REAL*4 FORMAT SPECIFIED

006EQO 0.20000000E 01 0.53999996E 01

CALL PDUMP WITH REAL*8 FORMAT SPECIFIED

006DC8 0.1759999999999999D 03

CALL PDUMP WITH COMPLEX*8 FORMAT SPECIFIED

006DDO (3.0000000,4.0000000)

(4,0000000,8.0000000)

CALL PDUMP WITH COMPLEX*16 FONRMAT SPECIFIED

006DEO (0.9999999999999990,0.9999999999939990)

(-0,9999979999999990,-0,9999999999999990)

CALL PDUMP WITH LITERAL FORMAT SPECIFIFD

D06ESC THIS ARRAY CONTAINS ALPHAMFRIC DATA

Figure 4. Sample Storage Printouts

Absolute error 18, 38
Absolute value 7,11, 19, 49
Accuracy statistics 38-43
AINT (see IHCFAINT)
ALGAMA (see xxxSGAMA)
Algorithms 18-37
ALOG (see xxxSLOG)
ALOG10 (see xxxSLOG)
AMAXO (see xxxFMAXI)
AMAXII (see xxxFMAXR)
AMINO (xxxFMAXI)
AMINI (see xxxFMAXR)
AMOD (see IHCFMODR)
Arccosine subprograms 7, 9, 21, 29-30, 49
ARCOS (see xxxSASCN)
Arguments 6, 52
ARSIN (see xxxSASCN)
Arcsin subprograms. 7,9, 21, 29-30, 49
Arctangent subprograms. 7, 9, 22-23, 30-31, 49
Assembler language calling sequence. 50-51
Assembler requirements 7, 8-13, 14, 50-52
ATAN (see THCSATAN or xxxSATN2)
ATAN2 (see xxxSATN2)
CABS (see xxxCSABS)
Calling sequence 51-52
Calling FORTRAN subprograms
explicitly 6-13
implicitly 14-15
in assembler language 51-52
CALL macro-instruction 51
CALL statement 5,16-17

CCOS (see xxxCSSCN)
CDABS (see xxxCLABS)
CDCOS (see xxxCLSCN)
CDDVD# (see xxxCLAS)
CDEXP (see xxxCLEXP)
CDLOG (see xxxCLLOG)
CDMPY# (see xxxCLAS)
CDVD (see xxxCSAS)
CDSIN (see xxxCLSCN)
CDSQRT (see xxxCLSQT)
CEXP (see xxxCSEXP)
CLOG (see xxxCSLOG)
CMPY# (see xxxCSAS)
CSQRT (see xxxCSSQT)
Common logarithm subprograms. .. .7, 8, 19, 25-26, 33-34, 49
Complemented error functicn subprogram
7, 11-12, 23-24, 31-32, 49
COS (see xxxSSCN)
COSH (see xxxSSCNH)

Cosine subprograms. 7, 9-10, 20-21, 26-27, 34-35, 49
COTAN (see xxxSTNCT)
Cotangent subprograms 7, 10, 28-29, 36-37, 49

CSIN (see xxxCSSCN)

DARSIN (see xxxLASCN)

DARCOS (see xxxLASCN)

DATAN (see IHCLATAN or xxxLATN2)
DATAN2 (see xxxLATN2)

DCOS (see xxxLLSCN)

DSCOSH (see xxxLSCNH)

DCOTAN (see xxxLTNCT)

DERF (see xxxLERF)

DERFC (see xxxLERF)

Index

DEXP (see xxxLEXP)

DGAMMA (see xxxLGAMA)

Divide-check exception 16, 44
DLGAMA (see xxxLGAMA)

DLOG (see xxxLLOG)

DT OO (cop v TT.NOON
PO BIVAS SRV 0.0 S MR WA 3

DMAXI1 (see xxxFMAXD)
DMINT1 (see xxxFMAXD)
DMOD (see IHCFMODR)
DSIN (see xxxLSCN)
DSINH (see xxxLSCNH)
DSQRT (see xxxLSQRT)
DTAN (see xxxLTNCT)
DTANH (see xxxLTANH)
DUMP (see xxxFDUMP)
DVCHK (see xxxFDVCH)
Entry name 6
ERF (see xxxSERF)
ERFC (see xxxSERF)

Error
absolute 18, 38
MESSAZES © . oo oe e 45-48
Procedurest 45-48
propagation 38
relative 18, 38
Error function subprograms 7, 11-12, 23-24, 31-32, 49
Execution-time routines 49-50

EXIT (see xxxFEXIT)
EXP (see xxxSEXP)

Explicitly called subprograms....................... 5, 6-13
list of 7
performance statistics 39-43
size of ... 49
tables 8-13
use in FORTRAN cc.... 6-7
use in assembler language. 51-53

Exponential subprograms 7, 8, 19, 24, 32, 49

Exponent overflow exception 16, 44

Exponent underflow exception 16, 44

FCDXI# (see xxxFCDXI)
FCXPI# (see xxxFCXPI)
FDXPD# (see xxxFDXPD)
FDXPI# (see xxxFDXPI)
FIXPI# (see xxxFIXPI)
FRXPI# (see xxxFRXPI)
FRXPR# (see xxxFPXPR)

Function value 5,6

GAMMA (see xxxSGAMA)

Gamma subprograms. 7, 12, 25, 33, 49

Hyperbolic cosine subprograms 7,11, 27, 35, 49

Hyperbolic sine subprograms 7, 11, 27, 35, 49

Hyperbolic tangent subprograms. 7,11, 28, 36, 49

IDINT (see IHCFIFIX)

Implicity called subprograms. 5, 6, 14-15
listof 14
resultofuse L 15
SIZE . . 49
USE o ot e 14

INT (see IHCFIFIX)

Interruption procedures 44

Linkage editor 5

Logarithmic subprograms. 7, 8, 19, 25-26, 33-34, 49

Log-gamma subprograms. 7, 12, 25, 33, 49

Index 55

56

Machine indicator test subprograms 16, 50, 52

Mathematical subprograms oL 5 6
algorithms 18-37
definition 5
explicitly called 6-13
implicitly called 14-15
list of 7,14
performance 38-43
SIZES . . i 48
use in FORTRAN 6-15
use in assembler language. L. 52

Maximum value subprograms 7, 12-13, 49

MAXO0 (see xxxFMAXI)

MAX1 (see xxxFAMAXR)

MINO (see xxxFMAXI)

MINI1 (see xxxFMAXR)

Minimum value subprograms 7,12-13, 49

MOD (see IHCFMODI)
Model 44 Programming System. .5, 38-43, 44, 45-46, 50, 51, 52

Modular arithmetic subprograms 7, 13, 49
Natural logarithm subprograms 7, 8, 19, 25-26, 33-34, 49
Operating System, System/360. 5, 38-43, 44, 45-46, 49, 51
OVERFL (see xxxFOVER)
PDUMP (see xxxFDUMP)
Pseudo sense lights 16
Relative error 18, 38
Sample dump printouts 54
Sampling techniques 38
Sense lights i 16-17
Service subprograms
machine indicator test 18
SIZES . 50
use in assembler language 51-52
use in FORTRAN 16-17
utility ... 16-17
SIN (see xxxSSCN)
Sine subprograms. o7, 9-10, 20-21, 26-27, 34-35, 49
SINH (see xxxSSCNH)
SLITE (see xxxFSLIT)
SLITET (see xxxFSLIT)
SQRT (see xxxSSQRT)
Square root subprograms. 7, 8, 19-20, 27, 35-36, 49
Standard deviation 38
Storage estimates 49-50
Storage printouts 54
Subprogram names 5
Subprograms and execution-time routines
BOADIOCS routine 50
BOAFIOCS routine 50
BOAIBCOMroutine, 50
BOANAMEL routine 50
BOAUNITB routine 50
BOAUOPT routineo .. 50
BNXADIST routine 50
THCCGOTO routine. 49, 50
xxxCLABS subprogram
algorithm 19
effect of an argument error. 19
performance 39
SIZE . . 44
USe ... e 11
xxxCLAS subprogram
SIZE .. 49
USE .« ot ittt 14
xxxCLEXP subprogram
algorithm 19
effect of an argument error. 19
€ITOT MESSAZES .« - .« o o oot e 47, 48
performance i 39

SIZE ... 49
USE oo 8
xxxCLLOG subprogram
algorithm 19
effect of an argument error. 19
EITOT MESSALE . .. oo oottt 48
performance 39
SIZE 49
USE .o 8
xxxCLSQT subprogram
algorithm 19-20
effect of an argument error. 20
performance 39
SIZE ... 49
USE . oo 8
xxxCLSCN subprogram
algorithm 20
effect of an argument error. 20
EITOr MESSAZESt 48
performance 39
SIZE .. e 49
USE o vt 9
xxxCSABS subprogram
algorithm 19
effect of an argument error. 19
performance 39
SIZE .o 49
USE .o 11
xxxCSAS subprogram
SIZE .. 49
USE Lttt 14
xxxCSEXP subprogram
algorithm 19
effect of an argument error. 19
€ITOT MESSAZESt 47
performance 39
SIZE . 49
USE . oot 8
xxxCSLOG subprogram.
algorithm 19
effect of an argument error. 19
€ITOTY MESSAZESot io e 47
performance 39
SIZE o 49
USE .ot 8
xxxCSSQT subprogram
algorithm L 19-20
effect of an argument error, 20
performance i 40
SIZE 49
USE o oot 8
xxxCSSCN subprogram
algorithm 20-21
effect of an argument error, 21
€ITOT MNESSAZES oo oo et e et et 47
performance 39-40
SIZE .o 49
USE . ot it 9
IHCDBUG routine 49, 50
IHCDIOSE routine 49, 50
IHCFAINT subprogram
SIZE ... 49
USE .ottt 13
xxxFCDXI subprogram
error message L 46
result of use 15
SIZE © 49
WS o v et e 14
THCFCOME routineciiieniionn. 49, 50
THCFCOMH routineccoooiooioa.e. 49, 50

IHCFCVTH routine 49, 59
xxxFCXPI subprogram

EITOT MESSAZE oot e i e e 46

resultofuse o . 15

SIZ@ . . 49

USE o oottt 14
xxxFDUMP subprogram

assembler requirements 52-53

format specification 17

programming considerations 17

sample printouts 54

SIZE .. 50

USE o oo 16-17
xxxFDVCH subprogram

assembler requirements 52-53

SIZE . o 50

USE it 16
xxxFDXPD subprogram

€ITOr MESSAZEot iet e e 46

resultofuse 15

SIZE . . 49

TUSE o\ oot e 14
xxxFDXPI subprogram

©ITOT MIESSAZE . . . oo ooe it et e 46

resultofuse 15

SIZE ... 49

USE . ot 14
xxxFEXIT subprogram

assembler requirements 52-53

SIZE . .. 50

USE . ottt e 16
IHCFIFIX subprogram

SIZE .« o 49

USE . oot e 13
xxxEIXPI subprogram

EITOT MESSAZE oot e 46

resultof use, 15

SIZE . .. 49

USE . . . e 14
xxxFMAXI subprogram

SIZE ... 49

USE . oottt e e e e 12
xxxFMAXD subprogram

SIZE .. 49

USE o ottt e 12
xxxFMAXR subprogram

SIZE . . 49

USE o oot 13
IHCFMODI subprogram

SIZ€ ... e 49

USE ottt 13
IHCFMODR subprogram

SIZE . .. 49

USE o ot 13
xxxFOVER subprogram

assembler requirements 52-53

SIZE . . 50

WSE .« ottt 16
xxxFRXPR subprogram

EITOr TNESSAZE o ooot e 46

resultofuse 15

SIZE . 49

USE . oo 14
xxxFRXPI subprogram

EITOT MESSAZE o oottt et 46

resultofuse 15

SIZe .. 49

USE o i e e 14
xxxFSLIT subprogram

assembler requirements 52-53

EITOT MIESSALE o oeie e 46

SIZe ... 30
US€ . .., 16
IHCIBERH routine 49, 50
IHCIBERR routine 49, 50
xxxLASCN subprogram
algorithm 21
effect of an argumenterror 21
€ITOT MESSAZE . .. oo oo 47
performance 40
SIZE ... 49
USE . ot 9
IHCLATAN subprogram
algorithm 22
effect of an argumenterror 22
performance 40
SIZe ... T 49
USE oot 9
xxxLATN2 subprogram
algorithm L. 22-23
effect of an argumenterror 23
EITOT TESSAZE . . oo ot oot ettt e e 47
performance 40
SIZE oot 49
USE oottt 9
xxxLERF subprogram
algorithm oL 23-24
effect of an argument error 24
performance 41
SIZE .. 49
USE o ot ee 11
xxxLEXP subprogram
algorithm 24
effect of an argument error 24
€ITOT INESSAZEoov it it 7
performance 41
SIZE . 49
USE . o 8
xxxLGAMA subprogram
algorithm 25
effect of an argument error 25
€ITOT MESSALESo oo oottt et 48
performanceo 41
SIZE e 49
USE . oo i e 12
xxxLLOG subprogram
algorithm 25.26
effect of an argument error, .. 26
EITOT TESSAZE . . . o oo oot e e e e 47
performance 41
SIZE . ot e e e 49
USE ottt 8
xxxLSCN subprogram
algorithm 26
effect of an argument error. 27
EITOT IMESSAZE -+ o o v eee et e e 47
performance 40, 41
SIZE . e 49
USE . .ot 10
xxxLSCNH subprogram
algorithm 27
effect of an argument error. 27
EITOL THESSAZE o o oo et 47
performance 40, 41
SIZE . . 49
USE . o o 11
xxxLSQRT subprogram
algorithm oL 27
effect of an argument error. 27
EITOT MESSAZE . . . - - o oottt e et e s 47
performance 42
SIZE . 49

58

WSE oo 8
xxxLTANH subprogram
algorithmo 28
effect of an argument error. 28
performance, 42
SIZE 49
WS ot 11
xxxLTNCT subprogram
algorithm 28-29
effect of an argument error. 29
€ITOr MESSAZESo oeei e 47
performance 40, 42
SIZE . 49
USE ottt 10
IHCNAMEL routine 49, 50
xxxSASCN subprogram
algorithm 29
effect of an argument error. 30
€ITOT MIESSAZE - . .ot e e 46
performance 39
SIZE L 49
TS o ot e 9
IHCSATAN subprogram
algorithm 30
effect of an argument error. 30
performance 39
SIZE .. 49
USE . . oot e 9
xxxSATN2 subprogram
algorithm o i 30-31
effect of an argument error. 31
€ITOT MIESSAZE . . . oo oo et e e 46
performance 39
SIZE 49
WSE . ot 9
xxxSERF subprogram
algorithm oo 31-32
effect of an argument error. 32
performance 42
SIZE L 49
USE .« vttt e e e 12
xxxSEXP subprogram
algorithm 32
effect of an argument error. 33
EITOT MIESSAZE - . - - o oo ee e et e 46
performance 42
SIZE . 49
USE o ottt 8
xxxSGAMA subprogram
algorithm 33
effect of an argument error. 33
EITOT MESSALES o ottt e e e 48

performance, 39, 42
SIZE 49
USE . .. 12
xxxSLOG subprogram
algorithm 33-34
effect of an argument error. 34
€ITOT MIESSAZE . .« .o oottt e e 46
performance 39
SIZE . 49
USE oottt 8
xxxSSCN subprogram
algorithm 34-35
effect of an argument error. 35
€ITOT MESSAZEo ovte e 46
performance 40, 42
SIZE . 49
USE ..ottt 10
xxxSSCNH subprogram
algorithm 35
effect of an argument error. 35
EITOT MESSAZE . .. oo v in et it e e 46
performance 40, 42
SIZE L 49
USE .\ it 11
xxxSSQRT subprogram
algorithm o 35-36
effect of an argument error. 36
EITOT MESSAZE . - . . o e ottt et e 46
performance 42
SIZE 49
USE .ttt e 8
xxxSTANH subprogram
algorithm o o 36
effect of an argument error. 36
performance 43
SIZE .. 49
USE .« v oot e e e 11
xxxSTNCT subprogram
algorithm 36-37
effect of an argument error. 37
€ITOT MESSAZES . - - oottt e e ia e 47
performance 40, 43
SIZE . 49
USE ottt e e 10
TAN (see xxxSTNCT)
Tangent subprograms 7, 10, 28-29, 38-37, 49
TANH (see xxxSTANH)
Timing statistics 38-43
Trigonometric subprograms. . . .7, 9-10, 20-23, 26-31, 34-37, 49
Truncation subprograms 7,13,49
Utility subprograms. 16-17, 49, 50-53

READER’S COMMENT FORM
Title: IBM System/360 Form: C28-6596-2
FORTRAN IV Library Subprograms
Your comments assist us in improving the usefulness of our publications; they
are a major part of the input used for Technical Newsletters and revisions.
Please do not use this form for technical questions about the system; it only
delays the response. Instead, direct your fechnical questions to your local

IBM representative.

Corrections or clarifications needed:

Page Comment

If you wish a reply, please include your name and address below.

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C28-6596-2

fold fold
FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.
L |
I
BUSINESS REPLY MAIL []
NO POSTAGE NECESSARY IF MAILED IN THE UNITEQ STATES I
]
|
POSTAGE WILL BE PAID BY . . .]
]
IBM CORPORATION I
]
1271 AVENUE OF THE AMERICAS ——
NEW YORK, N.Y. 10020 N
]
]
Attention: PUBLICATIONS]
]
fold fold

B

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
{USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

09€/S wal

"V'$°N Ul pajung

-9659-838D

C€28-6596-2

TSI

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Carporation
821 United Nations Plaza, New York, New York 10017
[International]

V'STN Ul pajuld

T9659-82°D

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	replyA
	replyB
	xBack

