
Systems Reference Library

IBM System/360 Model 44

Programming System

Concepts and Facilities

File No. S360-36
Forni C28-6810-0

This publication describes the facilities provided by the
IBM Systern/360 Model 44 Programming System.

The Model 44 Programming System consists of a FORTRA.N
compiler, an assembler, a supervisor, and system support
programs. It provides FORTRAN and assembler language proc­
essing and program execution in a monitored environment,
with automatic job-to-job transition, interruption handling,
and input/output supervision. The system has facilities for
the creation and maintenance of libraries and the manipula­
tion of ,their contents. It also provides extensive job
control and program segmentation capabilities for flexibili­
ty and versatility in the preparation of programs for
execution.

This publication describes the functions
and capabilities of the IBM System/360
Model 44 Programming System; it is intended
as a guide in understanding the system's
capabilities and planning for their use.
In order to understand this publication,
the reader should be familirtr with basic
data processing techniques and terminology,
and with the functional characteristics of
the Model 44, as described in the publica­
tions

IBM System/360 System summary, Form A22-
6810

IBM System/360 Principles of Operation,
Form A22-6821

IBM System/360 Model 44: Functional Char­
acteristics, Form A22-6875

Language specifications for the language
processors that are contained in the Model
44 Programming System are given in the
publications:

IB~stem/360 FORTRAN IV Language,
C28-6515

Form

IB~_§ystem/360 Model 44 Programming Sys­
tem: Assembler Language, Form C28-6811

Related literature on specific
input/output devices, educational material,
etc., is described in the IBM System/360
Bibliogr~, Form A22-6822.

The first section of this publication is
a survey of the basic concepts of the
entire system. Subsequent sections discuss
the operation of the supervisor and the
system ~upport programs. In addition,
there is an appendix giving standard label
formats and a glossary of terms.

Detailed specifications on the use of
this system will be provided in subsequent
publications.

Thi3 publication ·"lcL; nr~tarp,.:i for f,rociuctic'n using an IPlIc computer to
update the text and to contr-ol thE' ;'aqe and line format. Page
impressions for Dhot0-otiset rrinting WEre obtai~ed from an IB~ 1403
Printer using a sr;ecial ['ril~t chdin.

Copies of this and other lAM [ualications can be obtained through IP~
Branch Offices.

A fornl for reariers I comrrents appears at the back of this publicatio'1.
It may he> mailed rlirecTelj to 1Ft'!. Address any adoitional comrrents
concerning this ?ublic2tion to the ISM Corporation, Department D39, 1271
Avenue of tne f\.n'(c'rica:s, 'lew YorK, ;~.Y., 10020.

©1966 by International 3usiness Machines Corporation

lVIAC1H NE CONFIGURATION ~

BASIC CONCEPTS • •

System Components. • •
Supervisor.
System Support Programs _

5

7

Language Processors • • • •

7
7
7
8
8
8

System Construction and Editing •
Absolute Loader • . . • • •

System Highlights ••
Job Processing •••••

8
9

Data Management • • . . . • 9
Libraries • • • • • • •
External Storage Assignment •
Summary of Data Management

• • • • 11
• • 12

Relationships. • • • • • • • • • 14
Direct Access Storage Management. • • 14
Input/Output Facilities • • • • 15
Dump Facilities 16
Source Language Input • • • • • • 16
Compatibility . 16

THE SUPERVISOR .

Corrmunication Region .

Interruption Handling •••••.
Supervisor Call Interruption.
External Interruption • • • •
Program Check Interruption. •
Machine Check Interruption. •
Input/Output Interruptions ••

Channel Scheduler. • .

· 18

• 18

• • 18
• • 19

• 19
• • • • 19

· 19
• • 19

• 20

Input/Output Functions • • • • • 20
Resident Input/Output Functions • • • 20
Transient Input/Output Functions. • • 21

Input/Output Error Recovery ••••••• 21

CONTENTS

Program Fetch and program Load ~

Operator-System Communication.
Messages to Operator and Response
Opera tor Commands • • • • • • • • •

Initial Program Loading (IPL)
Procedure • • • • • • .

SYSTEM SUPPORT PROGRAMS.

Job Control Processor ••
Job Control Language.
Sample Deck Setup •

22

• 22
22

• 22

· 23

• 24

• 24
· 24
• 29

Linkage Editor • • • • . • • • • 29
Linkage Editor Processing • • 29
Program Structures. • • • • • • • 29
Linkage Editor Control Statements • • 30

Utility Programs ••••
Volume Utilities •••
Data Set Transmission Utilities

ABSOLUTE LOADER.

APPENDIX. LAEELS AND LABEL PROCESSING.

Direct Access Volume Labels.

Tape Volume Labels . . . · · · ·
Volume Label Format. · · · ·
Format 1 Label .
Format' 4 Label . · · · ·
Format 5 Label

Standard Tape Data Set Label •

GLOSSARY

• 31
· 31
• 31

32

_ 31

• 33

· 33

· 34

· 35

· 37

· 39

• 40

• 42

ILLUSTRATIONS

Figure 1. The Condensing Process •••• 11
Figure 2. Data Management
Relationships • . • • • • • • • • • • • 14

Figure 3. Flow of Control Between
Supervisor and Problem Program During
an Interruption. • • • • • 18

Figure 4. Sample Deck setup ••••••• 28

TABLES

Table 1.
Table 2.

System Unit Assignments. • • • 13
Job Control Summary. •• • 25

Figure 5. Example of Use of Main
Storage by an Overlay Program . •

Figure 6. Volume Label Format.
Figure 7. Format 1 Label ••
Figure 8. Format 4 Label •••
Figure 9. Format 5 Labels • •
Figure 10. Standard Tape Data Set
Label (Header and Trailer) ••

• 30
34

• 35
• 37
• 39

· 40

The machine configuration required for
use of the Model 44 Programming System is
as follows:

• IBM 2044 Processing Unit with its
Console Printer-Keyboard, Single Disk
Storage UL~ve, and at least 32,768
bytes of main storage.

•

•

•

•

•

One multiplexor channel {#5248} and/or
one or two high-speed multiplexor
channels (first: #4598; second:
#4599).

One IBM 2315 Disk Cartridge

One of the following input devices:

IBM 1442 Model Nl Card Read-Punch
IBM 2501 Model Bl or B2 Card Reader
IBM 2520 Model Bl Card Read-Punch
IBM 2540 Model 1 Card Read-Punch
IBM 2401 or 2402 Modell, 2, 3, 4,

5, or 6 Magnetic Tape Unit
1 PM 24 () 3 Made 1 1. .> • 3. t!. :' i 'j.!.. 6

Magnetic Tape Unit and Control
IbM 2404 Model I. 2., or ~ lII\-"lonpt- i ('

Tape Unit and Control

One of the following output listing
devices:

IBM 1403 Model 2, 3, 7, or Nl
Printer

IBM 1443 Model Nl Printer
Any of the magnetic tape units

listed above

One of the following output punching
devices:

IBM 1442 Model N2 Punch
IBM 2520 Model B2 or B3 Punch
Any of the card read-punch units

listed above
Any of the magnetic tape units

listed above

Notes on configurations:

1. In addition to the above requirements,
the system supports the attachment of

MACHINE CONFIGURATION

A second Single Disk Storage Drive
(with 2315 Cartridge)

IBM 2311 Disk Storage Drives (with
IBM 1316 Disk Pack)

Additional magnetic tape units (any
of the models listed above)

2. A system-residence 2315 Disk Cartridge
can be created using the minimum
machine configuration, provided the
input device is a card reader. Assem­
bly is not required in this procedure.
However, if it is desired to assemble
the IBM-supplied components of the
system, two Single Disk storage
Drives, at least one magnetic tape
unit, and 65,536 bytes of main storage
are required.

3. If more than 32,768 bytes of main
storage are available, the system will
take advantaqe of their availability.

4 ~ 'T'hp pnWFRZ\l\] (",,()lTlri 1 P"'- "'-""'3:"1 rnc- r..a.t "'::t.c
2044 be equipped with the floating­
point arithmetic feature (#4427). The
assembler also requires this feature
if it is desired to assemble floating­
point constants.

5. The user may modify the supervisor to
include input/output routines for
additional devices, provided these
devices have start, device end, and
channel end characteristics similar to
those of the supported devices. These

6.

characteristics are detailed in IBM
System/360 Principles of operation;
Form A22-6821, and the appropriate
device manuals.

The Read-Backward feature of the 2400
Series Magnetic Tape Units is not
supported.

Machine Configuration 5

The IBM System/360 Model 44 Programming
System, like the computing system itself,
is designed to meet the specific needs of
the scientific user. The principal object­
ives of the Model 44 system are to increase
the throughput (i.E., L.ue Lcu::.e dt wnlcn
work is handledi performance of the comput­
ing system and, at the same time, to
relieve the programmer of much of the work
involved in program preparation, so that he
can concentrate on the problem-solving
aspects of programming.

SYSTEH COMPONENTS

The system resides on an IBM 2315 Disk
Cartridge mounted on the Model 44 Single
Disk Storage Drive. It includes a supervi­
sor, a set of support programs that perform
system-related and utility functions, and
two language processors: a full FORTRAN IV
compiler and an assembler. It also
includes two stand-alone (i.e., not operat-
in0 under systpm rnntrol) programs that ar~
not resident on the 2315 Disk Cartridge: a
proaram for constructino rl svsrPrn rpsi'1pnrp
volume and a loader for loading system­
produced programs that are in absolute form
and are to be executed independently of
system control.

SUPERVISOR

The supervisor controls the entire
system and provides a common interface to
all processing programs, including the FOR­
TRAN compiler, the assembler, the system
support programs, and user-written pro­
grams. Specifically, the supervisor

• Manages the use of system resources.
A resource is any facility of the
system required by a job and includes
input/output devices, data sets (the
term applied to the major unit of data
handled by the system), and processing
programs.

• Loads the appropriate execution phases
from the phase library <i.e., the
library of programs in absolute form,
ready for execution).

• Handles all standard label checking,
input/output requirements, and
input/output error recovery proce­
dUres. The programmer requests
input/output operations without ref­
erence to a particular device type, so
that he does not have to alter his

•

•

•

BASIC CONCEPTS

source program when data sets are
moved from one device to another.

Services interruptions and passes con­
trol to the appropriate system or user
routine for interruption processing.

Schedules channel use to effect over­
lap of processing with input/output
operations.

Provides for communication with the
console operator.

The supervisor functions are described
in greater detail later in this publica­
tion.

SYSTEM SUPPORT PROGRAHS

The system support programs provide a
wide ranqe of capabilities for use hy horh

•

•

statements provide the parameters that
describe the program(s) to be executed
and the resources required to do so.
This program processes the job control
statements and sets up the tables and
communication areas necessary to exe­
cute a particular program. The job
control processor allocates
input/output resources and provides
data set maintenance functions.

Linkage Editor. The output produced
by the compiler or assembler, called a
module, is in relocatable form. This
program edits the modules into abso­
lute form, automatically combining
these modules with modules from the
module library (one of the system
libraries) where necessary. Since the
formats of compiler-produced modules
and assembler-produced modules are the
same, the linkage editor can combine
modules from both sources. This
facility permits preparation of a pro­
gram from parts written in either
language.

• Utility Programs. These programs pro­
vide data set transmi~sion and exter­
nal storage initialization and main­
tenance functions.

The system support programs
cribed in greater detail later
publication.

are des"­
in this

Basic Concepts 7

LANGUAGE PROCESSORS

The FORTRAN compiler translates programs
written in the FORTRAN language to
System/360 Model 44 relocatable object pro­
gram modules.

The FORTRAN language parallels that of
mathematics and is a familiar tool in
mathematics, science, and engineering.
variables and constants may be either
fixed- or floating-point values in single
or double precision. In addition to the
capabilities of the language itself, there
is a library of subroutines for performing
COITmon mathematical procedures such as
finding square roots, trigonometric func­
tions, logarithmic values, etc. The com­
piler recognizes the subroutine require­
ments and automatically supplies the link­
ages to the subroutine.

Detailed language specifications for the
Model 44 FORTRAN language are given in IBM
£ystero/360 FORTRAN IV Languag~, Form
C28-6515.

The assembler translates System/360
assembler language programs to relocatable
object program modules. The assembler lan­
guage consists of all System/360 Model 44
instruction mnemonics, literals, and a set
of assembler instructions that direct the
assembly process. Detailed language speci­
fications for the assembler language are
given in IBM~ystem/360 Nodel 44 Program­
ml~ System: Assembler Language, Form
C28-6811.

The assembler language programmer may
use instructions in his program that
request functions from the supervlsor. For
example, an instruction to read, inclUded
in an assembler language program, is
actually an instruction to the input/output
procedures portion of the supervisor.

In the case of a FORTRAN program, the
compiler generates the instructions that
interact directly with the supervisor. For
example, a READ statement in a FORTRAN
source program causes the compiler to gen­
erate instructions for the supervisor.

SYSTEM CONSTRUCTION AND EDITING

Each system can be tailored to the
specific system function requirements and
input/output configuration of the installa­
tion. The installation may modify the
IBM-supplied configuration, deleting func­
tions not required by the installation and
adding installation-created functions and
programs. Depending on the nature of the
modifications desired, there are two meth­
ods of creating a system residence volume:
system construction and system editing.

8

System Construction

A stand-alone program is provided that
constructs a system (on a 2315 Disk
Cartridge) from absolute and relocatable
decks containing the executable phases and
the relocatable modules the installation
elects to include in its system. Note that
no reassembly of syste~ components is nec­
essary in this process.

All of the announced support will be
included in the decks as distributed by
IBM. As part of the initial program load­
ing (IPL) procedure, the operator may spec­
ify alterations in the predefined device­
channel configuration and unit functions.

System Editing

The installation may edit the system, by
an assembly process, to change or extend
the machine configuration, change the unit
functions, alter the default conditions for
system options, incorporate installation
functions, etc.

ABSOLUTE LOADER

Programs that are to be executed
independently of system control and support
can be prepared as absolute decks by using
the facilities of the system. The absolute
loader, which is itself a stand-alone pro­
gram, can then be used to load these
absolute decks for execution. The absolute
loader is discussed in greater detail later
in this publication.

SYSTEM HIGHLIGHTS

The programming system for the Model 44
is designed to give the user the combined
benefits of efficiency, flexibility, and
ease of use.

For most applications, the programmer
can state his processing requirements very
simply, since most of the processing/
options have a default condition that rep­
resents the usual case; that is, in ~he
absence of an option specification, the
system performs in the manner most commonly
required. At the same time, the options do
exist that permit a wide range of flexibil­
ity.

Furthermore, the processing options are
selected in statements that are supplied
independently of the source language pro­
gram itself, so that they can be varied
from one run to the next without altering
the source program. Thus, the programmer,
within reasonable limits, can build and
test his program without regard to the
conditions under which it is finally to be

executed and can, in fact, vary these
conditions from execution to execution.

JOB PROCESSING

The system provides for sequential job
processing with automatic job-to-job and
step-to-step transition. A job, which con­
sists of one or more job steps, is defined
as a unit of processing from the standpoint
of installation accounting and operating
system control. A job step is a unit of
processing from the standpoint of the pro­
grammer. It involves a description, via
job control statements, of the resources
required by and the execution of an expli­
citly defined program.

The job steps in a job need not be
related. However, the system considers
them to be interdependent to the extent
that, if a job step fails in execution, the
entire job is terminated. Furthermore,
certain specifications may be made to
extend over all or selected sequences of
the job steps within the job.

The possible combinations of job steps
that make up a single job permit great
flexibility in the DreDaration of nroqrams.
The simplest applic~tion would involve exe­
cuting a program already ill the phase
ilDrary. Another slmple application, done
in three job steps, is to compile (or
assemble) a program into a relocatable
module, edit the module into absolute form,
called a program phase, and load and exe­
cute the absolute phase. The intermediate
step, editing, is done by the linkage
editor. The linkage editor can also edit
several relocatable modules together, auto­
matically adding required modules from the
module library, resolving symbolic cross­
references among them, and producing a
single absolute phase. A more complex
application might consist of several
compilation and/or assembly steps, an edit­
ing step that combines their output modules
(and perhaps library modules and modules
that were assembled or compiled in a pre­
vious job) into one or more absolute phas­
es, and an execution of one or more of
these phases.

The programmer may retain his program
(or parts of his program) in its relocata­
ble and/or absolute form in direct access
storage or on magnetic tape or cards. The
full range of job processing options for a
sequence of related job steps is described
below. Within one job there may be several
such sequences that are logically independ­
ent of one another.

• Compile (or assemble) only useful
when debugging a program or when
creating a program module that is to

•

•

be combined with other modules in
later jobs.

compile (one or more) and edit, or
edit only -- useful again in debug­
ging. to ensure that all rross­
references between modules are correct
and/or to retain a program in absolute
form. Note that a job can consist of
a single editing step, editing
relocatable modules from previous
jobs.

Compile (one or more), edit, and exe­
cute, or edit and execute, or execute
only. Note that a job can consist of
a single execution step, executing a
program that was edited into absolute
form in a previous jOb.

DATA MANAGEMENT

Setting up the mechanics of data and
program storage and retrieval occupies a
large percentage of programming time and
effort. The system provides the programmer
with several aids that reduce this time and
effort both by simplifying the procedures
and by eliminating the redundant effort and
(Jetdiled record-keeping frequentl}~ assc)­
ciated with repeated use of data or pro­
qrams.

Specifically, the system has facilities
for systematically creating, manipulating,
and keeping track of data sets. A data set
is defined as a named collection of data.
The definition of a data set is solely in
terms of its name; the definition is com­
pletely independent of its data content or
the way in which that data will be proc­
essed. Moreover, a data set is defined
externally of any processing program.

Within a processing program, the pro­
grammer expresses his input/output require­
ments in terms of a symbolic data set name.
That is, just as he manipulates symbols
that represent variables with values to be
supplied later, he specifies input/output
operations on a symbolic data set. The
relationship between a symbolic data set
and the data set whose data content is to
be processed is established at the time the
processing program is executed. Thus, the
actual data set that is processed may be
varied from execution to execution without
altering the processing program.

In order for a data set to be used by
the system, it must be identified to the
system by both its name and its location.
There are two ways of identifying a data
set to the system. One is called catalog­
ing. The catalog is itself a data set that
the system uses in a special way. Each
entry in the catalog contains a data set

Basic Concepts 9

name and an indication of
Catalog entries are
programmer's request.

its
made

location.
at the

Once a data set has been cataloged, the
programmer can refer to it by name without
regard to its location. Since the catalog
is a part of the system, a cataloged data
set can be referred to and used indefinite­
ly, by any number of jobs, until its entry
is explicitly removed from the catalog.

The physical location of a data set is
entered in the catalog in terms of a volume
identification, i.e., the installation's
designation of the volume on which it
resides. A volume is defined as all of
that portion of a storage medium that is
accessible at one time by a single
read/write mechanism. Thus, a volume might
be a 2315 Disk Cartridge, a 1316 Disk Pack,
a reel of magnetic tape, or a card deck in
a card reader hopper.

If a data set is not cataloged, the
programmer may still refer to it by name,
but he must also supply ~e volume iden­
tification in a job control statement with­
in his job. The data set is then identifi­
ed to the system for the duration of the
job.

The space on a volume occupied by a
particular data set is called the extent of
that data set. For a deck of cards or a
reel of magnetic tape, it is not necessary
for the programmer to define an extent for
his data set, since only one data set at a
time may occupy or reserve one of these
volumes. For direct access storage
volumes, however, the system must know the
extent of each data set on the volume so
that it can allocate space for new data
sets, locate data sets already on the
volume, etc.

Each direct access volume carries a
volume table of contents (VTOC)1 that iden­
tifies each data set on the volume by name
and extent. In creating a data set that is
to reside on a direct access volume, the
programmer must specify the anticipated
size of the data set. When the system
allocates space for the data set, it auto­
matically makes an entry in the VTOC.
Later references to that data set cause the
system first to locate the volume (either
from a catalog entry or from a job control
statement giving the volume identification)
and then to search the VTOC for the actual
address of the data set.

1The VTOC is actually the collected data
set labels for all data sets on that
volume; see the Appendix for a description
of these labels.

10

Note that the space for a data set is
allocated and named independently of any
reading or writing of the data within it.
Thus, the data set may be empty (i.e., the
space is reserved for data), partially full
(with the potential for later additions),
or completely full. In addition, a data
set may be completely rewritten, i.e., the
data content may be completely replaced.

Data Organization

The facilities for creating data sets
exist principally in the job control proc­
essor. The user may organize his data set
in one of two ways. The first of these,
called seguential, is the familiar struc­
ture in which records are placed in
sequence. Given one record, the next
record to be processed is uniquely deter­
mined. The system processes all data sets
(or members of a directoried data set; see
below) sequentially. However, the program­
mer may alter the sequence of processing
(e.g., for direct access applications)
using input/output functions available in
the system.

In the second organization, called
directoried, each data set is organized in
two-Part~a directory and members. The
directory contains the name of each of the
members, a pointer to the member'S location
in the data set, and the member's length.
The members may be program modules or any
other data. Directoried data sets must
reside in direct access storage. The sys­
tem uses the directory to locate individual
members when they are required.

Note that a symbolic data set can be
related, via job control statements, to a
specific member of a directoried data set,
even though a member is not a data set, but
only a part of one. A member has the
characteristics of a sequential data set
and the processing program is unaware that
it is not a complete data set.

When a member is created, it may be
given more than one name and the multiple
names are also listed in the directory.
This enables the user to obtain the member
using anyone of several names. For exam­
ple, consider the case of a member consist­
ing of one subroutine that performs both
sine and cosine evaluation. If it is
listed in the directory under both SIN and
COS, the programmer can call for the member
by a name that is meaningful in the context
of his program.

The system provides facilities, via the
job control processor and utility programs,
for adding and deleting directoried data
set members. The addition of a member to a
directoried data set is always made start­
ing at the end of the last member added. A

Directory

Del ete LOG, COT AN

Condense

Insert HTAN

SIN
COS

SIN
COS

SIN
COS

TAN

TAN

TAN

Figure 1. The Condensing Process

LOG

EXP

EXP

deletion consists of simply removing the
member entry from the directory. Thus, it
is possible for a directoried data set to
appear to be too full for a new addition
even though sufficient space is actually
available because of previous deletions.
In these circumstances, the data set can be
condensed. The condense function shifts
the-members in the data set to fill up
vacant areas; the order of the members is
not changed. Figure 1 illustrates the
condensing process.

Whichever organization is used for a
particular data set, the following conven­
tions apply:

1. All data sets must have fixed-length
blocks.

2. More than one data set may occupy a
direct access volume, but each data

End Of

EXP COTA~..J ARCTAN

ARCTAN

ARCTAN

ARCTAN HTAN

set must reside on contiguous tracks
and cylinders.

3. Tape reels may not contain more than
one data set.

LIBRARIES

The system incorporates two directoried
data sets that are permanently cataloged -­
the module library and the phase library.

The module library contains relocatable
program modules, produced by the compiler
or assembler, and is a source of input for
the linkage editor. The FORTRAN
input/output conversion and mathematical
subroutines are in this library.

The phase library contains program phas­
es that have been edited into absolute form
by the linkage editor; this library is the

Basic Concepts 11

source from which programs are loaded for
execution. The IBM-supplied processors
reside permanently in this library. User­
written programs may reside in this library
either permanently or temporarily (i.e.,
for the duration of the job).

The presence of the phase library is
essential to the operation of the system~
Therefore, it resides on the 2315 Disk
Cartridge designated as the system
residence volume. The presence of the
module library is optional and it need not
reside on the system residence volume.

As with any other directoried data sets,
the programmer may make additions to and
deletions from the libraries, condensing as
necessary. Note, however, that all addi­
tions to the phase library must be made via
the linkage editor.

EXTERNAL STORAGE ASSIGNMENT

All references within a program to
external storage are made in terms of
symbolic data sets, which are in tUrn
associated with symbolic unit names. The
programmer uses job control statements to
specify the assigning of a symbolic unit to
an actual data set or member of a director­
ied data set.

The standard input/output device assign­
ments and disk storage space allocation
required by the system cOmponents and most
problem programs are defined as data sets
and associated with symbolic unit names
during construction (or editing) of the
system. The term for the predefined data
set-symbolic unit relationships is system
unit§. The programmer can use these data
sets during his job by simply referring to
them by their symbolic unit names; he need
not be concerned with their type or wherea­
bouts. Since these data sets are also used
by the system components, they cannot be

12

preserved from one job step to the next
(with the exception of the print and punch
output data sets).

If the programmer requires access to
data sets whose symbolic unit assignments
are not predefined, or if he needs to
preserve data sets that are normally asso­
ciated with system units, he may request
the assignment of a symbolic unit to the
desired data set (or member of a director­
ied data set). The volume and the location
on the volume of the data set is either
already known to the system (the data set
already exists), or the system is to allo­
cate an extent and name it (the data set is
to be created).

If the symbolic unit name is the same as
one of the predefined system unit names,
the effect is to redefine temporarily the
data set assignment. For example, the
normal source for system input might be the
card reader; the programmer can temporarily
reassign this function Lo a daLa set on a
specific reel of magnetic tape and the
system will then take his input from that
data set.

A symbolic unit can be associated with
only one data set at a time, but different
symbolic units can be assigned to the same
data set at the same time.

Requests for assignments are made in job
control statements that are part of the job
but independent of any job step within the
job. In any case, within a job step the
programmer can refer to all data sets (or
members of a directoried data set) symboli­
cally, so that he is not concerned with
device addresses and disk space allocation
when writing his program.

Table 1 lists the predefined system
units by symbolic name, d~ta set name,
function, and potential device type.

Table 1. System unit Assignments
r------T--------T---T----------------,
I Unit IData setl I Permissible I
I Name I Name I Function I Devices I
r------+--------+---+----------------~
SYSAB1 SDSABS* Phase library; used by program fetch and Disk

SYSAB2 n

SYSREL SDSREL

SYSLOG SDSLOG

SYSRDR SDSRDR

ISYSIPT SDSIPT

SYSLST SDSLST

SYSOPT SDSOPT

SYSUAS SDSUAS

SYSPSD SDSPSD

SYSDMY

SDSCAT*
SDSIPL*

I
SYSOOO SDSOOO

load routines~
Phase library; used by linkage editor.

Module library; used by linkage editor.

Operator-system communication.

Job control processor input.

Processing program input; may be same as
SYSRDR.

System and diagnostic print output.

Processor and user print output; may be same
I as SYSLST.
i
I

I

YUHch UUt..tJUt. •

Job control unit assignment spill.

Pseudo-directory to data set on SYSOOO:
output from FORTRAN compiler, assembler;
input to linkage editor.

General system use.

Catalog data set.
Initializing routine for IPL procedure.

Output from FORTRAN compiler, assembler;
input to linkage editor.

SYS001 SDS001 IGeneral system work data set; may be used
I by any processing program.
I
I

Disk

Console Printer-
Keyboard I

Card Reader
Magnetic Tape

Card Reader
Magnetic Tape

Printer
Magnetic Tape

Printer
Magnetic Tape

I Punch
Magnetic Tape

Disk

Disk

Disk
Disk

Disk
Magnetic Tape

Disk
Magnetic Tape

SYS002 INot used by system; available for assignment Any device
I by programmer.
I
I

SYS240 I
~------i--------L-------------------------------------________ L ________________ ~
I * Must be on system residence volume (a 2315 Disk Cartridge). I l __ J

Basic Concepts 13

SYS TEM ~Timeat PROCESSING PROGRAM

~
which relationship Device --

Model 44 with is established r-----'
Single Disk : Sy~bolic :
Storage Drive ~ ~ I Unit I

/1

11 , By supervisor, L - -=-1---.J
" as requ ired. /"

Volume --~/ '\) /
2315 Disk~· By job control
Cartridge ~ ~ processor, when

I \"'\. data set is created.

I \ \
By programmer, in
assembler language

I •
I \

r------r-------~-,

I Extent -- ~\ I
I Fu II track(s} I
I I

I :
I is identified with I
I I

By job control
processor, when
access to data set
is requested.

source program, or
by compiler, during
compi lation.

I I r-- ---,
I Data Set I I I
I I ~~----------___._I Symbolic I
I I During program execution, ~ I Data Set I
L ___________ - ___ .-J when input/output operations L - -- - _.J

are performed on a data set.

*If a data set is directoried, the symbolic unit assignment can be to a specific member rather than to the
entire data set, and the member is treated as a data set for the duration of the assignment.

Figure 2. Data Management Relationships

SUMMARY OF DATA MANAGEMENT RELATIONSHIPS

Figure 2, using the 2315 Disk Cartridge
as an example, illustrates the relation­
ships involved in data management and the
times at which they are established.

DIRECT ACCESS STORAGE MANAGEMENT

The system controls the disposition of
all direct access storage space. In order
to keep track of the space that is in use,
the system creates a special label on each
direct access volume as part of volume
initialization. This label, called a for­
mat 5 label,1 ~ndicates the extents of any
space that is not occupied by a data set.
Each time a data set is added to or deleted
from a volume, the system automatically
updates the format 5 label.

All direct access storage space is allo­
cated in units of a full track, starting at

1This is a label designation of Operating
System/360, which supports a volume label,
five standard direct access storage data
set labels, and the standard magnetic tape
data set labels. Of these labels, the
Model 44 system supports the creation and
use of the volume, formats 1, 4, and 5, and
the tape labels. Labels and label process­
ing are discussed in the Appendix.

14

a track boundary. If the programmer
requests an amount that results in a par­
tial track, the system automatically
extends the amount to the next track bound­
ary.

The locations occupied by one data set
must be contiguous in the volume. If there
is sufficient space on a 2315 Disk Cart­
ridge for a new data set but the space is
not properly located (i.e., it is not
contiguous), the volume may be condensed in
a manner similar to the condensing function
available for directoried data sets. This
function shifts the data sets on the volume
to ~ ~ , ,

.L..L..L..L up lower numbered tracks that are
not in use. Once a disk volume has been
condensed, all the availabl~ space starts
at the end of the last data set and
continues to the end of the volume. The
system updates the format 5 label and all
affected volume labels as part of the
condensing process.

Note that condensing a volume is a
function of the utility processor, whereas
condensing a directoried data set is a
function of the job control processor.

Since the system identifies a data set
by its extent as well· as its name, any
attempt to write beyond the extent is an
error. Thus, if it is necessary to extend
a data set beyond the boundaries initially
set for it, the programmer must request

allocation of an entirely new area, large
enough to contain his extended data set,
and treat the data set as a new one.

INPUT/OUTPUT FACILITIES

The system provides two levels of
input/output facilities to relieve the pro­
grarr~er of the need to prepare his owo
routines. At the higher level, called
read/write, the programmer invokes
read/write functions to call system L~U­
tines that will execute the input/output
operation. The lower level, called execute
channel program, uses a combination of
routines supplied by the programmer and the
system. Assembler-language programmers
invoke the input/output functions, at both
levels, via an assembler-language calling
sequence. The FORTRAN programmer is not
concerned with either level, since his
input/output requests are handled by the
FORTRAN compiler.

Use of the read/write level gives the
assembler language programmer device inde­
pendence. He can specify his input/output
requirements without indicating a particu­
lar device type or device address. This
enables him to concentrate on the main
elements of his program and also eliminates
the need to revise proqrams when data sets
are moved to dltterent devices.

Device independence is made possible by
the system's use of control blocks for each
active symbolic data set. When a program
calls for an input/output operation for a
particular symbolic data set (by now asso­
ciated, via the symbolic unit, with a
particular data set) the system examines
the current control blocks for that data
set to determine which input/output rou­
tines must be used.

The system's
(EXCP) level is
with nonsupported
wish to replace
system's routines

Data Format

execute channel program
for programmers working
devices and for those who
or supplement some of the
with their own.

The system works only with fixed-length
data blocks. All blocks within a data set
must be of the same length, although block
lengths may vary among different data sets.
The programmer is responsible for all
blocking and unblocking of logical records
within a block.

Channel Overlap

Input/output operations normally are
overlapped with the main program's process­
ing. A programmer can, however, suspend
processing until an input/output operation

has been completed and he has made sure the
transmission was successful. In any case,
the system always examines the last pre­
vious operation that used a control block
before starting another operation for the
same control block. This examination is
made each time the program calls for an
input/output transmission. All unusual
conditions are indicated to the program.

Control Blocks

All communication between the problem
program and data sets at the read/write
level is through the system, which main­
tains a request control block for each data
set that is used. When the program calls
for a read/write operation, the system
examines the appropriate request control
block for the data set for information
about the device involved. It uses this
information to determine which device­
dependent routines are needed to satisfy
the request.

The request control block contains an
input/output block that is the basic
structure for communication between the
system and the channel scheduler. The
channel sc:heonlpr is rJ spt of routines that:
keep track of the requests for use of
device~ OIl each chdIluel dud dctudlly ini­
tiate the input/output transmission.

Request control blocks are allocated
main storage space and are partially filled
out by the programmer; the system completes
the control information in the block during
program execution.

Execute Channel Program (EXCP)

The execute channel program (EXCP) level
of the system enables a programmer to work
with devices not supported by the system,
provided they transmit acceptable channel
end, device end, and control unit end
signals. The EXCP level also enables a
programmer to replace or supplement some
system routines with his own.

The EXCP level schedules input/output
requests, starts command execution, directs
interruption handling, and restarts channel
activity, when necessary. An EXCP program­
mer must be familiar with the system's
control blocks and must provide a channel
program and an interruption analysis rou­
tine for each request he issues.

Interruption analysis routines are
device-dependent routines that maintain the
status of an operation, examine the results
of an interruption for errors or unusual
conditions, and initiate any necessary
error recovery procedures.

Basic Concepts 15

The EXCP programmer must construct an
input/output block for the system to use in
order to communicate with the channel
scheduler. He also must be familiar with
the unit control block for each device he
uses. This block reflects the current
status of the device.

The system's EXCP scheduler examines
input/output requests to ensure that they
are properly constructed. An invalid
request causes abnormal termination of the
operation. The scheduler also checks to
see whether there is room for the request­
in the channel queue and whether the chan­
nel and device are available. If the queue
is full, the request is reissued until it
is accepted, and control returns to the
calling program. The request is executed
as soon as the device and channel are free
and previous requests for the same facili­
ties have been satisfied.

DUMP FACILITIES

The system provides two types of dump
facilities:

1. The programmer can specify in his job
control statements that, in the event
of an abnormal termination (e.g., one
that results from a program check
interruption), the system is to pro­
duce a hexadecimal dump before pro­
ceeding to the next job.

The console operator can also
request this dump when he terminates a
job with a cancel command (see
"Operator-System Communication").

2. The subroutines DUMP and PDUMP, which
reside in the module library, can be
linkage-edited into the program and
called by source program statements.
These subroutines provide for dumping
prograIT@er-specified areas V~ main
storage with the following format
options: hexadecimal, integer, real,
logical, complex, and literal.

The DUMP routine causes the job to
terminate after the dump is taken; the
PDUMP routine returns control to the
calling program and processing is
resumed.

SOURCE LANGUAGE INPUT

Input to the FORTRAN compiler may be in
either Extended Binary-Coded-Decimal Inter­
change Code (EBCDIC) or Binary-Coded­
Decimal Interchange Code (BCDIC), but the
codes cannot be mixed in the input for any
one job step.

16

Input to the rest of the system (i.e.,
the assembler languag~ statements, job
control statements, linkage editor control
statements, utility control statements)
must be in EBCDIC.

COMPATIBILITY

The Model 44 programming system rep­
resents a selected subset of the features
available in the IBM System/360 programming
support systems designed for the M0dels 30,
40, 50, 65, and 75 specifically,
System/360 Operating System (OS/360),
System/360 Disk Operating System (DOS/360>,
System/360 Tape Operating System (TOS/360),
and System/360 Basic Operating System
(BOS/360).~ Thus, there are certain areas
of compatibility and interchangeability
among these systems, as described below.

Source programs written in the Model 44
FORTRAN language can, without modification,
be compiled by the OS/360 FORTRAN IV com­
piler for execution under control of
OS/360. This also applies to DOS/360,
TOS/360, and BOS/360, provided that the
source program observes the language level
supported by those systems.

Source programs written in the Model 44
assembler language can be assembled, with
little or no modification, by the OS/360,
DOS/360, or TOS/360 assembler, provided
that any source statements involving sub­
routine linkages or supervisor functions
are modified to the format specified for
OS/360, DOS/360, or TOS/360, respectively,
and that there are no statements using
machine instructions peculiar to the Model
44 or assembler instructious peculiar to
the Model 44 assembler. The assembler
language publication cited in the preface
includes a detailed comparison of the fea­
tures of the various assemblers.

Data Sets and Volumes

Removable volumes (2400 Series Magnetic
Tape Reels, 1316 Disk Packs) are interchan­
geable between the Model 44 using the Model
44 system and other System/360 models using
OS/360, DOS/360, TOS/360, or BOS/360,
subject to the following conditions:

All data sets to be read by the
Model 44 system must have names of
no more than eight characters, be
of fixed block length, sequential
organization, and contained in

~Publications detailing these systems are
listed in the IBM System/360 Bibliography,
Form A22-6822.

single extents on single volumes.
They may not contain any check­
point records.

Data sets produced at the read/write
level of the Model 44 system can be read
and updated at the highest level of OS/360,
DOS/360, TOS/360, or BOS/360 if the user
maintains their standard fixed-length (type
F) or variable-length (type V) logical
record formats within the blocks.

A volume created by OS/360 can be read,
updated, and written by the Model 44 sys­
tem.

A volume created by DOS/360, TOS/360, or
BOS/360 can be read and updated by the
Model 44 system, but no additional data
sets may be written on it except where the
format 5 label is up to date. These
systems create a format 5 label (i.e.:
reserves space for it) at tne time of
volume initialization, but do not maintain
it. A Model 44 utility function, map, is
available for updating the format 5 label.

Label formats 2 and 3 do not apply to
the Model 44 system. If they are present
on a volume, they will be ignored except by
the MAP function.

Basic Concepts 17

THE SUPERVISOR

The supervisor is that portion of the
system that controls system operation; it
also performs functions required in common
by the various processing programs, includ­
ing user-written programs.

The routines that collectively make up
the supervisor fall into two categories,
resident and transient, defined by their
use---oI main storage. As their name
implies, the resident routines are always
present in main storage and represent func­
tions that are frequently used or that
simply must be present for the system to
operate at all. The functions provided by
the resident supervisor include:

communication region
Interruption handling
program fetch and program load
Channel scheduler
Input/output routines
Resident input/output error recovery
Timer services

The transient routines, on the other
hand, share a predefined area of main
storage. They are loaded only when their
functions are needed and overlay each other
in the transient area. The major functions
of the transient supervisor include:

Input/output error recovery
Operator communications
Open, close functions

COMMUNICATION REGION

The communication region is an area
within the resident supervisor main storage
wherein the job control processor stores
parameters to direct the system in process­
ing the next job step. It provides for
communication between the supervisor and a
processing program, and among processing
programs. Included in this area are option
parameters, parameters describing the lim­
its of main storage, the job name, etc.

The job control processor is described
in the section "System Support Programs."

INTERRUPTION HANDLING

An interruption is an automatic transfer
of control from any storage location to a
predetermined storage location. It can be
caused by either a program instruction or a
machine condition. The supervisor automat­
ically handles all interruptions so that

18

the programmer need not be directlY con­
cerned with them. In most cases, after an
interruption is handled. control is
returned to the point of interruption as if
no break had occurred in the instruction
sequence.

There are tive kinds
as follows:

1. Supervisor call

2. External

3. Program check

4. Machine check

5. Input/output.

of interruptions,

Interruption

SUPERVISOR

Interruption

PROGRAM I

Machine
Check

(Problem Program State) (Supervisor State)

*Return from a program check interruption is dependent on the type of
interruption and whether the probl em program has requested control.

Figure 3. Flow of Control Between Supervi­
sor and Problem Program During
an Interruption

Figure 3 illustrates the flow of control
between the supervisor and a problem pro­
gram during an interruption. Control is in
the problem program initially. An inter­
ruption occurs, the status of the program
is saved in the old Program Status Word

(PSW), and control is transferred to the
supervisor. Depending on the type and
reaSOn for the interruption, control is
given to an appropriate handling routine.
Upon completion of the routine, the program
...- ___ 1.- _ ____ ~ ___ ..:I ~_ .!~ ___ .!_.! __ , ___ .3~1-.! __

lllClY uc .LCO::>I.-V.LCU I.-V .1.1.-0::> V.L.1.Y.l.llCl..l. t.,;VllU.l.L.l.Ull

(via an old PSW). Control is normally
given back to the problem program at the
point where it was interrupted. If
desired, the user may have control of
certain types of program check and external
interruptions.

SUPERVISOR CALL INTERRUPTION

The supervisor call interruption is
caused when the SVC instruction is execut­
ed. The SVC (Supervisor Call) instruction
provides communication between the problem
program and the supervisor. Each SVC has a
certain interruption code that indicates to
the supervisor which interruption handling
routine is to be executed.

The interruption routine analyzes the
code and gives control to another routine
within the supervisor, such as the program
fetch routine, for the actual handling of
the interruption.

An external interruption can be caused
by the timer feature, or by. the operator
pressing the console interrupt key, or by
an external signal. Interrupt-key and
external-signal interruptions are not sup­
ported by the Model 44 system; control
returns immediately to the point of inter­
ruption.

If a timer interruption occurs, control
is given back to the interrupted program
unless the user has provided an address of
his own handling routine. When this is the
case, control is transferred to the address
specified.

The Timer Feature

The timer featUre enables the supervisor
to provide three functions:

1. Maintain the time of day, to which the
user can refer at any point within the
execution of the problem program.

2. Time-stamp the beginning and end of a
job. This information can be used for
accounting and can be incorporated in
a job log.

3. Enable the user to set the timer for a
specified interval of time and to get
control at a prespecified user's rou­
tine after the time interval has

elapsed, provided this occurs during
execution of the job step that set the
timer.

If the presence of the timer feature is
not specified when rne system is edited,
all timer interruptions are ignored and
control is returned
interrupted program~

immediately

PROGRAM CHECK INTERRUPTION

to the

A program check interruption is caused
by unusual conditions encountered ~n the
program (e.g., overflow). Each program can
select which one of the following options
is to be taken in the event of a program
check interruption, except that the third
option is not available for all types of
program check interruptions.

1. Cancel: The job being executed is
terminated and a message to the opera­
tor describes the cause of the termi­
nation.

2. Dump and cancel: In addition to a
message, all registers, all Program
Status Woeds, dnd the problem program
area are printed in the system listing
J.a to. Sel. Tilt:: juL 1::> Lbell Le.r.Hl.Llld Leu.

3. Transfer to user routine: If the
address of a subroutine is supplied by
the user, the program-check interrUp­
tion routine will branch to that sub­
routine when an appropriate interrup­
tion occurs. The user routine can
determine the cause of the interrup­
tion and handle it accordingly.

MACHINE CHECK INTERRUPTION

A machine check interruption results
from a machine malfunction. When such an
interruption occurs, the supervisor will
attempt to list the machine check old PSW,
the date, the time of day, and the program
identification on the Console Printer­
Keyboard, and to store information in a
special area for later analysis. It then
places the system in the wait state. The
system can be restarted only through an
initial program loading procedure.

INPUT/OUTPUT INTERRUPTIONS

An input/output interruption can
caused by:

be

1. Input/output completion (channel end).
The channel has completed sending to a
device the information needed to carry
out an input/output operation. The

The Supervisor 19

channel is now available for another
operation.

2. Input/output attention. This results
from pressing the request key of the
Console Printer-Keyboard.

3. Device available (device end). A
device that was busy or not ready is
now available for use.

4. Control unit available (control unit
end). A control unit that was busy is
now available for use.

When one of these conditions is detect­
ed, control transfers to the channel
scheduler.

CHANNEL SCHEDULER

The channel scheduler is a supervisor
routine that keeps track of channel activi­
ty and initiates the actual input/output
transmissions.

The channel scheduler deals only with
queued requests. When a program calls for
an input/output operation, the request is
put in a queue with other pending requests
for the same channel. The channel schedul­
er determines when each will be executed.
It examines the status of the requested
facilities and the order in which the
requests were received and schedules opera­
tions to make the most efficient use of all
available channel resources.

The channel scheduler is device
independent. It must know what device is
requested and must keep track of whether
that device is busy or available. but it is
not concerned with the type of device. The
channel scheduler examines the appropriate
control block to determine whether a
device-dependent initialization routine
must be entered. The initialization rou­
tine sets up the command or chain of
commands needed to satisfy the request. if
it has not been constructed previously.
When its work is finished. it returns the
address of the command list to the channel
scheduler, which starts the transmission.

When there is a channel end interruption
without device end, the interruption han­
dler gives control to the channel schedul­
er, which examines the queue for requests
for other devices. If such a request is
pending. the operation is started. When
the interruption handler gives control to
the channel scheduler after a device end
interruption, the channel scheduler passes
control to a device-dependent interruption
analysis routine. This routine examines
data sent from the device and the channel
to determine whether the transmission was

20

successful. An error recovery procedure is
entered when an error or unusual condition
is detected. Then, unless execution of
additional commands is required to satisfy
the request, control returns to the inter­
rupted program. If further command execu­
tion is needed, control returns to the
channel scheduler. No other operation for
the same device is initiated until this
additional sequence is completed.

Note that execute channel program (EXCP)
prograrrllilers must supply their own interrup­
tion handling routines. The system handles
these functions for the read/write program­
mer.

INPUT/OUTPUT FUNCTIONS

This section contains a list of the
input/output functions available to an
assembler-language programmer; they are
invoked by assembler-language calling
sequences. A brief description of thp
function's purpose accompanies each entry.
Note that in the function descriptions the
term "data set" is used to mean both an
entire data set and a member of a director­
ied data set.

The first group, resident input/output
functions, includes the functions most com­
monly used in a program, such as read and
write. The supervisor routines required to
execute these functions always are present
in main storage.

The second group, transient functions,
includes the open and close operations.
The routines for these functions are less
frequently used in a program and are called
into main storage only when actually need­
ed. If a program uses more than one data
set, time can be saved by grouping open
functions together and close functions
together so that these transient routines
do not have to be recalled frequently.

RESIDENT INPUT/OUTPUT FUNCTIONS

The Read Function: The read function is
used to transmit data from a data set to an
area of main storage. Its parameters
include the name of a request control block
set up earlier by the program. Before
starting any new operation, the system
examines this block to determine whether
there was a permanent error in the last
previous operation associated with it. If
there is any unusual condition, an indica­
tion is returned to the program and the
read is not started.

The Write Function: The write function is
used to transmit data from an area of main
storage to a data set. The system makes

the same examinations and takes the same
action in caseS of permanent error as for
the read function.

The Check Function: The check function is
used to determine that an input/output
operation has been completed before proc­
essing resumes.

The Note Function: The note function is
used to determine the current position, in
termQ of a block number, of a symbolic unit
relative to its beginning. The note func­
tion is generally used in conjunction with
the point function (see below). These two
functions enable the programmer to process
data sets in a nonsequential manner.

The Point Function: The point function is
used--to reposition a symbolic unit to a
specified data block. The programmer spe­
cifies the desired block by supplying its
block nurr~er relative to the beginning of
the data set (or member). Thus, an argu­
ment of zero results in the symbolic unit
being positioned at the beginning of the
first data block.

The Write-End-of-File (WEF) Function: The
WEF function is used to write an end-of-
fi le m<:lrk.

The "Qpwind Fnnction: 'T'he rewinil fU T1 rt-;0n

is used to rewind a magnetic tape volume to
its load point or, on a direct access
volumn, to position a symbolic unit to its
first block.

The Unload Function: The unload function
is used to rewind and unload a magnetic
tape volume or, on a direct access volumn,
to position a symbolic unit to its first
block.

The abov~ read/write-level functions
make use of the following resident
functions, which can be called directly by
the EXCP-Ievel programmer:

The Execute Channel PrQgram (EXCP) Func­
~ion~ The EXCP function is used by pro­
grammers at the execute channel program
level to initiate an input/output opera­
tion. All control blocks and interruption
analysis routines must be constructed
before this function is invoked.

The wait Function: The wait function is
used to suspend all proc~ssing until an
input/output operation is completed.

TRANSIENT INPUT/OUTPUT FUNCTIONS

The open Function: The open function caus­
es the system to validate labels and, if
necessary, reposition symbolic units. All
data sets should be opened, regardless of

whether the programmer is operating at the
read/write level or at the EXCP level.

The Close Function: The
when applied to a data

close function,
set on magnetic

tape, instructs the system to write any
necessary end-of-file marks and trailer
labels~ This function also is used to
indicate the disposition of a data set or
volume (e.g., whether a magnetic tape reel
should be unloaded, rewound, or left as it
is.)

INPUT/OUTPUT ERROR RECOVERY

Examinations for input/output errors and
unusual conditions are made at three points
for programs at the read/write level.

The first is when a program calls for an
input/output operation. The program's
request is examined, and the operation is
cancelled if errors are found.

Another check is made immediately after
the system initiates the physical opera­
tion. The system makes certain the command
has been accepted by the channel and device
and that the operation has started proper-
ly_ F .. ctiun is terrrlirlCited if t.his exarnirla-
tion reveals proqram errors or a non-
0perat-innal ievice. In some cases, such as
when the device has not finished execution
of a previous command, control returns to
the interrupted or calling program until
the device is free and the system can
reissue the command.

The final check is made immediately
after completion of the physical operation.
At this time, the system examines data
provided by the channel and the device. If
the possibility of error or an unusual
condition is indicated, the system normally
issues another command that causes the
device to provide additional, more detailed
information.

Interruption Analysis Routines

The examinations for unusual conditions
at the completion of physical operations
are made by the system's interruption
analysis routines. When no errors are
detected, these routines act mainly as
record keepers, noting such data as the
number of blocks read or written, and
preparing the syst~m for the next
input/output operation for the data set.

Interruption analysis and error recovery
procedures differ according to the type of
device. In some cases (e.g., a reader
check), when an error condition can be
removed by operator intervention, a message
is written on the Console Printer-Keyboard.
Normally, the system repeats the

The Supervisor 21

input/output operation, a process that eli­
minates the most common errors. No other
operation is initiated for the device while
the error recovery procedure is in pro­
gress. If the error continues to appear
and is classified as permanent, the system
updates the count of permanent errors in
the unit control block for the device.
Unusual conditions are indicated to the
program.

Programmers at the EXCP level must han­
dle their own interruption analysis and
error recovery routines. The same channel
and device data that the system uses is
made available to these programmers in the
input/output control block and the unit
control block. Detailed information on
this data and the conditions to be checked
can be found in IBM System/360 Principle~

2f~2eration (section entitled "Termination
of Input/Output Operations"), Form
A22-6821, and the appropriate device manu­
als.

PROGRAM FETCH AND PROGRAM LOAD

Any program that is to be executed under
system control must reside in absolute form
in the phase library. This includes the
supervisor transient routines, the language
processors, the system support programs,
and all user-written programs. within the
library, programs are stored as phases.
Each phase represents a segment of code
that is to be loaded into main storage at
one time. The phase may be an entire
program, or a part of a multiphase program.

The program fetch function loads a phase
into main storage from the phase library
and transfers control to the phase entry
point, an absolute address specified at the
time the phase was processed by the linkage
editor. A fetch operation may be invoked
automatically by the supervisor (e.g., when
it is necessary to load a transient
routine) or by the job control processor
when it processes an EXEC (execute) state­
ment, or explicitly by processing programs
that are multiphase.

The program load function also loads
phases into main storage from the phase
library, but it does not transfer control
to the entry point. Instead, it returns
control to the invoking program. The phase
load address may be one of the parameters
supplied when the load function is invoked,
thus permitting the programmer to relocate
a phase at load time. The load operation
can be invoked explicitly by processing
programs. This function allows the pro­
grammer to load phases of nonexecutable
code (e.g., tables).

22

The organization of programs into multi­
phase structures is discussed in "Linkage
Editor."

OPERATOR-SYSTEM COMMUNICATION

The supervisor provides for two-way com­
munication between the operator and the
system, via the Console Printer-Keyboard.
Three types of communication are permitted:

1. Messages to the operator:

2. Operator response to requests for
operator action.

3. Operator-initiated commands to the
system.

MESSAGES TO OPERATOR AND RESPONSE

Messages to the operator can be initiat­
ed by the system or by the programmer's job
(via the job control PAUSE and comments
statements).

The messages may indicate that an opera­
tOr action (e.g., mounting a volume) or
decision is required, or they may simply
contain information (e.g., for a job log).
In the first case, the system will suspend
processing until the operator responds with
an indication that the action or decision
is complete. In the second case, process­
ing continues without interruption.

OPERATOR COMMAND3

The operator may enter a command in any
of the following instances:

1. He has pressed the request key.

2. The system has requested operator
response and processing has been sus­
pended.

3. The job has requested operator
response with a PAUSE statement and
processing has been suspended.

There are three types of operator com­
mands: intervention, input/output, and
information. Except for the intervention
commands, the system will accept only com­
mands that are entered between job steps.

Intervention Commands

The intervention commands, which are
accepted at any time and processed immedi­
ately, provide two functions:

1. Immediately cancel the job currently
in execution and proc€ed to the next

job. The operator may request a dump
in the cancellation command and the
system will produce a hexadecimal dump
before proceeding to the next job.

2. Cause the job control processor to
pause at tne end of the job step
currently in execution. This allows
the issuing of other operator commands
at a time when they can be accepted_

In~ut/output Commands

The input/output commands provide the
following functions:

1. Assign a symbolic unit to a physical
input/output device.

2. Indicate that a device is temporarily
unavailable to the system.

3. Indicate that a device, detached as in
item 2, has been restored to availabi­
lity status.

The following input/output commands per­
mit temporary alteration of the machine
configuration (until the next IPL). They
may be issued only as part of an IPL
procc1urc (sec below):

4. Indicatp thp a~aitinn nf a ~pvirp ~0
the machine configuration.

5. Indicate the deletion of a device from
the machine configuration.

Information Commands

The information commands provide the
following functions:

i. r.i st_ thp input /()l1tPUt assignments cur­
rently in effect.

2. Initialize the date and time of day.

3. Indicate the end of operator commands
so thdt the system can proceed to the
next job step.

INITIAL PROGRAM LOADING (IPL) PROCEDURE

Operation of the Model 44 system is
initiated through an initial program load­
ing (IPL) procedure. An IPL procedure is
required whenever it is necessary to load
or reload the system.

The IPL procedure loads the resident
portion of the supervisor and the job
control processor and opens the data sets
associated with system units. Control is
glven to thp job conLrol ~LocessoL. At
this time, the system will pause and the
nrpr<'ltnr rnllS~ C'p~ ~}-1p ria~p '''IT"lri ~rp time> '"'f
day. He may also enter any other operator
commands required before signalling the
system to proceed.

The Supervisor 23

SYSTEH SUPPORT PROGRAMS

There are three processors, resident in
the phase library, that are classified as
system support programs. Two of these, the
job control processor and the linkage edi­
tor, are integral to the operation of the
system. The third processor is a collec­
tion of programs that provide utility func­
tions under control of the system.

JOB CONTROL PROCESSOR

The job control processor is loaded
(originally during the initial program
loading procedure and, thereafter, by the
program fetch routine) between each job
step. It then proceeds to read and inter­
pret job control language statements from
the system reader unit.

The principal function of the job con­
trol language is to describe the job step
to be done -- the program to be executed
and the information required to do so.
From the information in the job control
statements, the processor sets up, within
the supervisor, the input/output tables,
program parameters, communication words,
etc., that define the requirements for this
step.

When all of the job control statements
for this step have been processed, the
processor returns control to the supervi­
sor. The supervisor then fetches, from the
phase library, the processing program asso­
ciated with the step and loads it over the
job control processor. Actual control of
the step during execution is a function of

24

the supervisor. At the end of the job
step, the supervisor again loads the job
control Drocessor.

The job control language is also used to
call special functions of the job control
processor that are not associated wi~h a
particular job step (e.g., condensing a
directoried data set).

JOB CONTROL LANGUAGE

The statements in the job control lan­
guage fall into four categories, as fol­
lows:

1. Job definition -- define the program
execution requirements (i.e., which
programs and in what sequence> for the
job.

2. Symbolic unit assignment -- describe
the data set and device resources the
job will need during execution.

3. Data set maintenance -- specify some
action to be taken on a data set.

4. Miscellaneous functions specify
comments, operator action pause, or
repositioning a volume.

The job control statements are grouped
by category and summarized briefly in Table
2. The double slash (//), the slash fol­
lowed by an ampersand (/&) or an asterisk
(/*), or the asterisk alone <*) identify
these statements as job control statements.

Table 2. Job Control Summary
r------------T--,
I I I
I I I
; GTATEr91Et~T ; FU~!CTIO!'! I
~------------~--~
I I
I JOB DEFINITION I
~------------T--~
I I I
1// JOB IDefines the start of a Job. I
j// EXEC IDefines the start of a job step execution and I
I I the program to be executed. I
1/& IDelimits the end of a job. I
1// STOP IDelimits the end of all jobs. I
1/* IDelimits the end of data in the input stream. I
~------------~--~
I I
I SYMBOLIC UNIT ASSIGNMENT I
~------------T--~
I I I
1// ALLOC IAllocates space for a new data set. I
1// LABEL IDefines characteristics of a data set. I
1// ACCESS IPermits access to an existing data set. I
1// RESET IRestores unit assignments to status at start I
I I of job. I
1// LISTIO ILists data set and device assignments on I
I I system log. I
t------------~--~

l-
I
1//

I
1//
1//

I
1//

DELETE

CONDENSE
RENAME

CATLG

DATA SET MAINTENANCE
I

I
IDeletes a data set from a volume or a member
I from a directoried data set.
ICondenses a directoried data set.
IRenames a data set or a member of a directoried
I data set.
IEnters a data set name into the catalog.

I
I

..• ~

I
I
I
I
I
I
I

1// UNCATLG IRemoves a data set name from the catalog. I
~------------~--~
I I
I MISCELLANEOUS I
~---~--------T--~
I I I
1// PAUSE IAllows pause for operator action. I
1* (comments) I Allows logging of comments to system log. I
1// REWIND IRewinds a tape volume; repositions a data set I
I I on a direct access volume to beginning. I
1// UNLOAD IRewinds and unloads a tape. I l ____________ ~ __ J

Job Definition Statements

The JOB Statement:
required for each job
card of the job deck.
ing information to
accounting routine and
of the job control
job.

The JOB statement is
and must be the first
It supplies account­

the installation
indicates the start
information for this

The EXEC Statement: The EXEC (execute)
statement is required for each job step and
must be the last job control statement

before execution of a processing program.
It indicates the end of control card infor­
mation for a job step and that execution of
the processing program for this step is to
begin. The processing program named in an
EXEC statement must reside in absolute form
in the phase library.

If the name field of the EXEC statement
is blank, the preceding job step must have
been an execution of the linkage editor.
The system will then execute the program

System Support Programs 25

phase(s) produced from that linkage editor
job step.

The EXEC statement is used to request
that the operator set the variable­
precision switch and to specify that a dump
is to be taken in the event that the job
step fails in execution.

The EXEC statement also supplies any
option parameters that are to be passed to
the processing program. These include
compiler and assembler options and can also
be used by user-written programs. One of
the options the user may specify in the
EXEC statement for a compilation or assem­
bly step is that the relocatable module
produced by this step is to be linkage­
edited later in this same job. The system
will then direct the relocatable module to
a data set where it can be immediately
retrieved by the linkage editor.

The EXEC statement
accounting information
job step.

may also include
particular to this

The End-of-Job Statement: The end-of-job
(/&) statement is required for each job and
must be the last card of the job deck. It
initiates the post-job housekeeping that
restores any system variables that were
altered during the job. This includes
resetting the system units, rewinding all
tapes, clearing all pending interruptions,
setting the interval timer, and posting
final job accounting information.

The STOP Statement: The STOP (end-of-jobs)
statement is used to close all data sets
associated with system units. If this
statement is used, an IPL procedure is
necessary to restart the system.

The End-of-Data Statement: The end-of-data
(/*) statement is required immediately
following any input data on the system
input unit when this unit is the same
volume as the system reader unit.

This statement is not actually read by
the job control processor; instead, it is
recognized as an end-of-file mark by what­
ever processing program is currently read­
ing the system input data set.

~mbolic Unit Assignment Statements

The ALLOC statement: The ALLOC (allocate)
statement is used to create a data set;
that is. to allocate space for it and name
it. Within this statement the programmer
can, if he desires:

i. Give the data set a name of up to
eight characters.

26

2. Assign this data set to a particular
symbolic unit name.

3.

4.

Specify residence on a particular vol­
ume or type of volume.

Specify that the
i.e., no other data
resident on it.

volume be "fresh,"
set is currently

5. Indicate that the data set is to be
directoried, and the desired size of
the directory; the space will be allo­
cated accordingly. The ACCESS state­
ment (see below) is used to create
individual members within the data
set.

6. Specify that the space allocated be
rounded upward to the next higher
cylinder boundary (rounding to the
next higher track boundary is
automatic).

7. Request that the
loged.

data set be cata-

From the information in the ALLOC state.­
ment, the system locates the desired vol­
ume, allocates the space and, if the volume
is a direct access one, updates the VTOC to
reflect the creation of this data set.

The ALLOC statement is required only
when the programmer wishes to create a new
data set. Once one has been created,
subsequent jobs can gain access to it by
using the data set name if it has been
cataloged or the data set name and the
volume identification if it has not been
cataloged.

If the data set has been assigned to a
symbolic unit name, this assignment remains
in force until either

1. the assignment is redefined within the
job (i.e., by an ALLOC or ACCESS
statement);

2. an applicable RESET is encountered
(i. e. , the unit named was one of the
predefined system units); or

3. the end of job is reached.

The ACCESS Statement: The ACCESS statement
is used to gain access to a data set that
has been created by an ALLOC statement
either previously in this job or in a prior
job. This statement is also used to add a
new member, assigning multiple names if
desired, or refer to an existing member of
a directoried data set.

If the data set named in the ACCESS
statement has been cataloged, then the name
alone is sufficient to locate it. Other-

wise, the volume identification must be
supplied in addition so that the system can
locate the data set.

Normally, when an existing data set is
requested in an ACCESS statement and subse­
quently opened, iL is po~itioned at the
beginning of the data-set. If, however,
the prograrr~er wishes to add to the data
set, he can indicate this in his ACCESS
statement and the data set will be posi­
tioned at the end of the last entry made in
the data set.

Another ACCESS statement option allows
the programmer to make references to a
non-existent data set so that his program
can operate without actually performing
input/output operations on a data set.
When this option is used, input/output
requests for this data set are handled as
follows:

1. A read request results in an end of
file.

2. A write request is recognized but no
data is transmitted.

This option is useful not only in test­
ing and debugging, but also for bypassinq
rcference5 to data
procedures. For

selS useu in regular
example, a new job that

":.t-,J..J.::'C~ ~;-~ c.:.-.:.i .. ~lil-.i'::l "-i-lQvleL HlClY u~e d UW(uuy
master until the first detail data set is
processed and the first master is produced.

The ACCESS statement is required whenev­
er a job step within the job:

1. Uses a data set that was allocated in
a previous job.

2. Uses a data set that was allocated in
this job, but the ALLOC statement did
not give a symbolic unit assignment.

3. Requires a redefinition of a current
data set-symbolic unit assignment.

4. Refers to a member of a directoried
data set.

5. Refers to a data set that does not
exist.

The LABEL Statement: The LABEL statement
followS immediately after an ALLOC state­
ment or, for data sets on unlabeled tape
volumes, an ACCESS statement. It further
defines the characteristics of the data set
named by the ALLOC or ACCESS. Within this
statement, the programmer supplies the
information from which the system will
either generate the data set labels or, for
an unlabeled tape data set, fill out the
control blocks.

Labels and label processing are des­
cribed in the Appendix.

The RESET Statement: The RESET statement
is used to restore either a selected one of
the system unit assignments or all of them
to their status at the beginning of the
job. There is an implied RESET at the end
of every job.

The LISTIO Statement: The LISTIO (list
in~ut/output) statement causes the printing
on the system log of either a selected One
or all of the symbolic unit names and their
current data set and device assignments.

Data Set Maintenance Statements

The DELETE Statement: The DELETE statement
can be applied either to an entire data set
or'to a single member of a directoried data
set. In the first case, the statement
causes deletion of the VTOC entry for the
named data set and the updating of the
volume's format 5 label. If the data set
is cataloged, its entry is also deleted
from the catalog. In the second case, the
data set member name is simply removed from
the directory. If this member has multiple
names in the directory, it is still acces­
sible via the other namp(s).

The CONDENSE Statement: The CONDENS£ -.------
statement causes a directoried data set to
be condensed. The condense function is
described in the section "Data Organiza­
tion."

The CATLG Statement: The CATLG (catalog)
statement causes a data set entry to be
added to the catalog. Since a cataloging
option is also available in the ALLOC
statement, this statement is necessary only
when a data set has been created previously
and it is now desired to catalog it.

The UNCATLG Statement: The UNCATLG
(uncatalog) statement causes a data set
entry to be deleted from the catalog. The
data set itself and the volume on which it
resides are unchanged.

The RENAME Statement: The RENAME statement
can be used to rename either an entire data
set or a member of a directoried data set.
In the first case, the change is made in
the VTOC; the catalog is also checked and,
if an entry for the data set occurs in the
catalog, the name is changed there as well.
In the case of a member, the name is
changed in the directory. No change is
made to any other names for the same member
that might occur in the directory.

Miscellaneous Statements

The PAUSE Statement: The PAUSE statement
permits the programmer to specify a pause

System Support Programs 27

in processing so that the console operator
can take some action. The statement, which
can include the programmer's instructions
to the operator, is printed on the Console
Printer-Keyboard and the machine then waits
for the operator's signal to proceed.

The Comments Statement: The comments (*)
statement gives the programmer a convenient
means of documenting his job. The contents
of the comments statement will be printed
on the Console Printer-Keyboard. This
statement, when followed by a PAUSE state­
ment, can also be used to specify operator

action in the event that the programmer's
directions do not fit within the limits of
the PAUSE statement.

The REWIND Statement: The REWIND statement
is used either to rewind a tape volume or,
on a direct access volume, to position a
data set to its first block (block number
0) •

The UNLOAD Statement: The UNLOAD statement
is used to rewind and unload a specified
reel of magnetic tdpe.

r--T------------------------------------,
I statement I Comments I
~--+------------------------------------~
//JOBl JOB I Beginning of job JOEl.
//SYSOPT ALLOC output data set,special unit I Give special assignment to system

// EXEC assembler, link
assembler language source deck

/*
//

//
//

//
//SYS006

//SYS005

//
//
/&
//JOB2
//SYSOO8

//SYSOO5

//SYSOO6

//
//

//
//

//SYS005

//SYS007
//
//

//

RESET

EXEC
ALLOC

LABEL
ACCESS

ACCESS

CATLG
EXEC

JOB
ACCESS

ACCESS

ALLOC

T 1\n'l:1T
J..U"l..D.1JU

ALLOC

LABEL
EXEC

ACCESS

ACCESS
PAUSE
EXEC

UNCATLG

linkage editor
data set 1, disk volume 10

label information
data set l(member 1a)

data set 2, tape volume 20

data set 2

data set 1 (member 1a), disk
volume 10

data set 2

data set 3, tape volume 21

label information
data set 4, disk volume 11

label information
program aa

data set 5

data set 4
SAVE SYS006
program bb

data set 53

I output unit
I Assemble following source deck.
I (SYSRDR and SYSIPT are the same.)
I End of source deck.
I Reset SYSOPT to standard
I assignment.

Edit program just assembled.
Data set 1 to be created on disk

volume 10.
Label information for data set 1.
Set up to write member 1a of data

set 1; unit assigned is SYS006.
Set up to use data set 2 (allocated

to tape volume 20 in a previous
job); unit assigned is SYS005.

Catalog data set 2.
Execute the edited program.
End of job JOB1.
Beginning of job JOB2.
Set up to use member la (written in

JOEl); unit assigned is SYS008.
Set up to use data set 2 (cataloged

in JOB1); unit assigned
is SYS005.

Data set 3 to be created on tape
volume 21.

Label information for data set 3.
Data set 4 to be created on disk

volume 11 (will be written by
program bb).

Label information for data set 4.
Execute program aa from phase

library.
Reassign SYS005 and set up to use

data set 5 (cataloged in a
prpvious job).

Assign data set 4 to SYS007.
Operator action pause.
Execute program bb from phase

library.
Remove entry for data set 53 from

catalog.
/& End of job.

1// STOP I End of jobs. I l __ ~ __ - _________________________________ J

Figure 4. Sample Deck Setup

28

SAMPLE DECK SETUP

Figure 4 illustrates a sample deck setup
using the ALLOC and ACCESS statements for
data set creating and symbolic unit assign­
ment. Note that the statements in Figure 4
are not complete; only those parameters
that are meaningful to the example have
been included. The parenthetical remarks
in the comments indicate assumptions that
have been made for the purposes of this
example.

LINKAGE EDITOR

Output from the compiler or the assem­
bler is always in the form of relocatable
object program modules. Each module con­
sists of an external symbol dictionary, the
text of the module (i.e., the instructions,
in a relocatable format), and a relocation
dictionary. The text consists of one or
more control sections, as specified in the
assembler or FORTRAN source language pro­
gram. A control section is defined as a
unit of text that can be independently
relocated.

These modules must be processed by the
linkage editor before they can be executed.
Tt'le princi[.:o 1 furl l: Li(~.n. of tllt-~ l.irll<" .. d.l:le eUl ~

tor is to convert the relocatable text into
;=jhc::nlll+ p -f0YTT' ro;=t1y +n he> l""'-'ip~l ~r'3

executed. The linkage editor includes
facilities for linking together several
control sections from one or more relocata­
ble modules into one absolute executable
program. The process of "linking" involves
determining the absolute load addresses for
each of the control sections and, from
information in the external symbol dic­
tionaries associated with the several
modules, replacing symbolic cross­
references between control sections with
the absolute address of the referenced
value.

The facilities provided by the linkage
editor permit the programmer to construct
programs that are multiphase; this topic is
discussed in "Program Structures."

LINKAGE EDITOR PROCESSING

The programmer may specify at the
execution of one or more compilation or
assembly steps that the linkage editor will
be called later in the job to edit the
relocatable modules produced by the compi­
lation or assembly step(s). The modules
will then be stored in a data set from
which the linkage editor can immediately
retrieve them. In addition, the programmer
may specify, through linkage editor control
statements, that other modules are to be
included as well. Or he can set up a job

without compilation or assembly steps and
specify, again through linkage editor con­
trol statements, that certain relocatable
modules, produced in previous jobs, are to
be edited together.

T"I"\Y""\.l'~ " +-h_ 1": _1, ____ ...::I': .L. ______ ..! _-1- __ C t:"-..... '-'-.J '-.l.l.-C; ..L..L.l.ln..a.yC CU..1..L'-".L \"';Ul1~.J..;t;:)L~ UL

linkage editor control statements and relo­
eatable object program modules. Generally
speaking, the primary sources of linkage
editor input are:

1.

2.

3.

The system unit that serves as inter­
mediate storage for the relocatable
modules as they are produced by the
compiler or assembler. That is, this
is the source of modules that were
produced in job steps within this same
job.

The system
this source
system unit
Thereafter,
the other
unit.

input unit. Input from
is first written on the
described in item 1 above.
it is treated exactly as

modules already on that

The mOdule library, which contains
frequently used subroutines, such as
the FORTRAN mathematical subroutines.
Input from this source is automatic;
that lS, no linkage editor control
statements are necessary to indicate
::~: .. J. ~ the r21,-,~~ tatlc ~li0Ju.1L~ f Lviu LllC
module library required by this pro­
gram should be included.

The output from the linkage editor is
directed to the phase library. (A phase
may be punched out as an absolute deck
using the utility processor punch
function. 1) The programmer can indicate in
his linkage editor EXEC card that residence
in the phase library is to be either
temporary (for the duration of the job) or
permanent (the program is available for
execution at any time until explicitly
deleted from the library).

PROGRAM STRUCTURES

As discussed above, the input to the
linkage editor is in units of modules.
Output from the linkage editor is in units
of phases. A phase is that portion of an
absolute program that is to be loaded by a
single program fetch or load operation.
The phase may be an entire program or a
part of a program.

1All entries in the phase library must be
made by the linkage editor. Therefore, to
enter an absolute deck into the phase
library for execution under system control,
the deck must be reprocessed by the linkage
editor as if it were a relocatable module.

System Support Programs 29

The simplest case is a single-phase
program. However, the linkage editor per­
mits the programmer to set up his program
with an overlay structure wherein each
phase is a part of the program that may be
combined with or loaded over other phases
during execution of the program. That is,
after a phase is loaded and executed, the
next phase may be loaded into the same area
of main storage, overlaying the previous
phase. Each phase has a programmer­
specified origin and the phases are
executed in a programmer-sp~cified
sequence. Thus, the
which parts of the
overlaid and when.

prograIT®er controls
program are to be

Note that there is no means of executing
multiphase programs written solely in the
FORTRAN language. However, the FORTRAN
programmer can use the linkage editor to
incorporate in his program assembler­
language routines that will invoke the
fetch operation for loading subsequent
phases.

Figure 5 illustrates the use of main
storage by an overlay progra~. The loading
sequence in Figure 5 is ROOTPH, Ai, Bl, B2
(overlaying Bl), A2 (overlaying Al and B2).
Although this illustration shows a root
phase (ROOTPH) as resident in main storage
throughout execution, there is no require-

000000----------------------,

Supervisor

Resident

Transient
SYSORG~-------------------~

Phase: ROOTPH

Phase: A1

ment for a root phase. Programs may be
structured into phases all of which origi­
nate atSYSORG.

LINKAGE EDITOR CONTROL STATEMENTS

Following the EXEC statement specifying
the linkage editor, the programmer uses
linkage editor control statements to speci­
fy which control sections are to be includ­
ed, the phase structure, and the origin of
each phase. The sequence of execution of
the phases is determined by the fetch or
load requests within his program. There
are four of these statements, as follows:

MODULE

PHASE

Indicates that the sequence of
cards or card images immediately
following this statement on the
system input unit consists of a
relocatable module intended for
inclusion in the linkage editor
input.

Any use of MODULE statements
and their associated modules must
precede any other linkage editor
control statements in this job
step.

Defines a phase by providing the
linkage editor with a phase name

Problem
Program
Area

Phase: A2

Phase: B2

Phase: B1

SYSEND 1-------
Installation Resident Routines

Time a ------i.~

Figure 5. Example of Use of Main Storage by an Overlay Program

30

INCLUDE

ENTRY

(the member name to be entered in
the directory of the phase
library> and the origin of the
phase.

An option in this statement
_ _ 1-._ _-...:3 ~ __ ______ ~ __ ~1....":_

<..;QU UC UVCU \..V ;:,Ul-'~LCO::>O::>, LVL \..11..1.0::>

phase, the automatic linking to
modules in the module library.

Identifies a particular module,
or control section(s) within a
module, for inclusion in a phase.

Defines the phase entry point.
If ENTRY is omitted, the entry
point is assumed to be the first
entry name encountered in a
module END card in the phase or,
if none exists, the first loca­
tion of the phase.

UTILITY PROGRAMS

The utility programs fall into two cate­
gories: volume initialization and main­
tenance, and data set transmission. These
programs are called by an EXEC statement
specifying the utility processor, followed
by a statement specifying the desired util­
it.y funct.ion.

VOLUlwm UTILITIES

There are three volume utility func­
tions:

Initialize: Initializes a direct access
volume or a tape volume, creating the
standard labels as described in the appen­
dix.

If the volume being initialized is
direct access, this function performs an
analysis of the recording surface, checking
for defective tracks. If a defective track
is found, it is flagged, an alternate track
is assigned, and the system thereafter uses
the alternate track in place of the defec­
tive one.

If a volume should develop a defective
track after initialization, a message is

printed to the operator giving the number
of the defective track. The volume can be
partially initialized thereafter to accom­
plish assignment of an alternate track.
The contents of the defective track are
lost.

Map: Examines the VTOC of a direct access
volume and, if necessary, updates the for~

mat 5 label. No data set is deleted or
moved, but a map of the volume is produced
with the expired data sets flagged.

Squeeze: Condenses a 2315 Disk cartridge.
This condensing operation is similar to
that described for directoried data sets
(see "Data Organization"). However, the
squeeze function does not include condens­
ing any directoried data sets that might be
on that volume. The VTOC is updated but is
not moved; the format 5 label is also
updated.

DATA SET TRANSMISSION UTILITIES

There are four
utility fUnctions:

data set transmission

~ Reads a data set from
unit and writes it into a

a symbolic
data set on

another :::>ymboll.c unit. The data set being
copied may be written as a member of the
rcceivin~ aat~ ~ct, if t~t l~l~tl ~0 dlL~~
toried. Data sets may be reblocked by
using the copy function.

Print: Reads a data set from a symbolic
unit and writes it on the system printer
unit.

Punch: Reads
unit and writes
unit.

a data set from a symbolic
it on the system punch

Print-punch: Reads a data set from a
symbolic unit and writes it on both the
system printer unit and the system punch
unit.

If the data set being copied, printed,
or punched is directoried, the user can, if
he desires, write a single member without
its directory entry, or write one or more
members with their directory entry.

System support Programs 31

ABSOLUTE LOADER

The programmer may use the facilities of
the system to prepare programs that are to
be executed independently of system control
and support. As described in the section
on the linkage editor, the linkage editor
output, which is in a form ready for
execution, can be punched out on cards.
The linkage editor permits the specifi­
cation of origins at any location, includ­
ing below the upper limit of supervisor
main storage.

32

The absolute loader, which is itself
independent of system control, can be used
to load these decks for execution. The
user is cautioned that none of the system
facilities (e.g., input/output request
handling) are available to his program
during its execution, nor is there any
protection against inadvertent destruction
of the system residence volume, should it
be mounted on-line.

The use of standard labels enables the
system to identify volumes and ensure that
the correct volume is beinq used and that
no current information is inadvertently
destroyed.

The standard labels include one volwue
label for each volume and one (direct
access) or two (magnetic tape) data set
labels for each data set on the volume.

DIRECT ACCESS VOLUME LABELS

All direct access storage vOlumes to be
used in the environment of the Model 44
Programming System must have certain stand­
ard labels, as follows:

Volume Label (Figure 6): Always the third
record on cylinder 0, track 0, of a direct
access volume, this label contains the
volume identification and the address on
the volume of the volume table of contents
(VTOC) .

The VTOC contains all the data set
labels for the volume, as tollows:

Format 1 Labels (Figure 7): One for each
data set on the volume, this label contains
the data set name and other data pertinent
to system identification and use of this
data set.

Format 4 Label (Figure 8): The first label
in the VTOC, this label defines the VTOC
itself. There is only one format 4 label
on each volume.

Format 5 Label (Figure 9): Used for man­
agement of the space on the volume, this
label lists the extents of available space.

The volume initialization function of
the utility programs creates the volume
label, format 4 label, and format 5 label,
and reserves space for the format 1
labels • .1

.1The format 2 and format 3 labels, related
to indexed-sequential data sets and multi­
ple extents, respectively, do not apply to
the Model 44 system.

APPENDIX. LABELS AND LABEL PROCESSING

TAPE VOLUME T.ABEl.S

The installation can edit the system to
specify that the tape volumes to be used
wlth the system will not have standard
labels. In this case, the system assumes
that all tape volumes are unlabeled.

If standard labeling is specifi2d, the
system expects all tape volumes to have
standard labels. A tape that is found not
to have standard labels is treated as
unlabeled and no further attempt will be
made to check labels on an input volume or
write labels on an output volume.

The standard tape volume labels are as
follows:

Volume Label (Figure 6): This label is the
first label on the tape and contains the
volume identification.

Header Lane1 (Fiallrp 1n)~ F'nllnwino

ImmedIately-afterthe -volumelabel, this
label provides the data set name and other
data pertinent to system identification and
use of this data set.

Trailer Label (Figure 10): Except for the
label identification field, this label is
the same as the header label and indicates
the end of the data set.

These labels are created (t~e header and
trailer labels as dummy labels) by the
volume initialization function of the util­
ity programs .•

Figures 6-10, in the sections following,
illustrate the format and contents of the
standard labels supported by the Model 44
Programming System. Facilities are availa­
ble for creatlng the full labels, even
though certain of the fields are not used
and, therefore, are ignored by the Model 44
system.

Appendix. Labels and Label Processing 33

VOLUME LABEL FORMAT

Volume
label

Field Number

I II N"m~'

t
Label
Identifier

Data Set

t
Volume
Security

Reserved For Future Expansion

5

Figure 6. Volume Label Format

6 7 8

Reserved Reserved Owner Name

9

The volume label (80 bytes) is used for both tape and direct access
storage volumes.

Field 1---

2

3

4

5

6-7

8

9

Name and Length
Label Indentifier,
3 bytes

Volume Label Number,
1 byte

Volume serial Number,
6 bytes

Volume Security,
1 byte

Data Set Directory,
10 bytes

Reserved, 20 bytes

Owner Name and
Address code,
10 bytes

Reserved, 29 bytes

Description
contains VOL.

position of this label in a group of
volume labels. For the Model 44
system, this field must be 1.

Identification code assigned to this
volume by the installation.

Security status of a volume; not used
by the Model 44 system.

On direct access volumes, the address
of the VTOC; on tapes, recorded as
blanks.

Reserved.

A specific user, installation, and/or
system to which the volume belongs.

Reserved.

All reserved fields should be recorded as blanks to facilitate their use
in the future. The Model 44 system will ignore these fields at the
present time.

34

FORMAT 1 LABEL

Field

I L '121 31 Data Set

/

1 Data Set Name II /1 Serial II

Number

I-I I~I~I~I I I I 1:;1
t

Creation
Date

4 5

Extent
Sequence Count
Number

6 7 7 7
ABC

System Code

Reserved

Lmt
19

K€COra

Pointer

Figure 7. Format 1 Label

8

Format
Identifier

Option Record Key
Codes length location

9
Reserved Data

Set
Type

Fonnat

32
1 Pointer

17 18

Secondary
Allocation

This format is cornmon to all data sets on direct access storage
volumes.

Field
1-

2

3

4

5

Name and Length
Data set Name,
44 bytes, EBCDIC

Format Identifier,
1 byte, EBCDIC

Data set Serial Number,
6 bytes. EBCDIC

Volume Sequence Number,
2 bytes, binary

Creation Date, 3 bytes,
discontinuous binary

Description
Each data set on the volume must have

a unique name. Names are left­
justified in the field and the
remaining bytes are recorded as
blanks. In the Model 44 system~
data set names are restricted to
eight characters.

1 = Format 1.

Identifies a data set-volume relation­
Ship; it is identical to the volume
serial number.

The order of this volume relative to
the first on which the data set
resides. For the Model 44 system,
this field must be 1.

The date on which the data set was
created.

Appendix. Labels and Label Processing 35

7A

7B

7C

8

9

10

11

12

13

14

15

16

17

36

Name and Le~!:h
Expiration Date,
3 bytes,
discontinuous binary

Extent Code, 1 byte

Bytes used in Last
Block of Directory,
1 byte, binary

Reserved, 1 byte

System Code, 13 bytes

Reserved, 7 bytes

Data Set Type, 2 bytes

Record Format, 1 byte

Option Codes, 1 byte

Block Length, 2 bytes,
binary

Record Length,
2 bytes, binary

Key Length, 1 byte,
binary

Key Location,
2 bytes, binary

Data Set Indicators
1 byte

Description
The date on which the data set may be

deleted.

The number of extents for this data
set on this volume. For the Model
44 system, must be 1.

Used for directoried data sets.

Reserved.

Identifies the programming system.

Reserved.

Identifies the type of data set. Not
used by the Model 44 system.

Identifies type of records in the data
set: record length, track overflow
(not used by the Model 44 system),
record blocking, record truncation,
control character, and record keys.

One-bit switches indicating options
used in building data set. Bit 0
indicates whether data set was
created using Write Validity Check.
Bits 1-7 are reserved.

Block length used in data set.

Record length used in data set.

Length of keys on data records in data
set.

High-order position of the embedded
key in the data record.

One-bit flags, with the on position
indicating:

o The last volume on which data set
resides. For the Model 44, this
bit is always on.

1 This data set must always reside
in the same absolute location on
the volume. In the Model 44 sys­
tem, this bit is always off.

2 The block length must always be a
multiple of 8 bytes. Not used by
the Model 44 system.

3 This data set is security­
protected and requires a password
for access. Not used by th~ Model
44 system.

4-7 Reserved.

Field
18--

20

21

22

23

24

25-32

33

Name and Length
Secondary Allocation,
4 bytes, binary

Last Record Pointer,
5 bytes, discontinuous
binary

Reserved, 2 bytes

Extent Type Indicator,
1 byte

Extent Sequence Number,
1 byte, binary

Lower Limit, 4 bytes,
discontinuous binary

Upper Limit, 4 bytes,
discontinuous binary

Additional Extents,
20 bytes

Pointer, 5 bytes,
discontinuous binary

FORMAT 4 LABEL

Field

Available
Data Set

Description
Indicates amount of storage to be

requested for this data set at End
of Extent. Not used by the Model 44
system.

Points to the last record written in a
sequential or directoried data set.

Reserved.

Indicates the type of extent.
used by the Mod~i 44 system.

Indicates the extent sequence
multi-extent data set. For
Model 44 system, must be 1.

Not

in a
the

Starting address of this extent compo­
nent.

Ending address of this extent compo­
nent.

Not used by the Model 44 system.

Pointer to next data set label within
this label set. Not used by the
Model 44 system.

2 Device Constants 9

Reserved

Format iD

VTOC Extent 15

II 14
Reserved

Figure 8. Format 4 Label

Appendix. Labels and Label Processing

10

37

This format is used to describe the volume table of contents and is
always the first label in the VTOC. Each volume must have one of these
labels.

Field
1-

2

3

4

5

6

7

8A

8B

9

10

11-14

15

38

Name and Length
Key Field, 44 bytes,
binary

Format Identifier,
1 byte, EBCDIC numeric

Last Active Format 1,
5 bytes

Available Data Set
Label Records, 2 bytes.
binary

Description
Each byte contains the hexadecimal

code 04.

4 Format 4.

Address of the last active format 1
label; used to stop a search on a
data set name.

The number of unused records in the
VTOC.

Highest Alternate Track, The highest address of a block of
aside as alternates for 4 bytes tracks set

bad tracks.

Number of Alternate
Tracks. 2 bytes, binary

VTOC Indicators,
1 byte

Number of Extents,
1 byte

Reserved, 2 bytes

Device Constants,
14 bytes

Reserved, 29 bytes

VTOC Extent, 10 bytes

Reserved, 25 bytes

The nuwber of alternate tracks
able.

avail-

Bit 0, if on, indicates format 5 label
does reflect true status of volume.

Contains the hexadecimal constant 01
to indicate one extent in the VTOC.

Reserved.

Contains constants describing the
device on which the VTOC was
created, including device size,
track length, record overhead,
flags, tolerance, labels per track,
and directory blocks per track.

Reserved.

The extent of the VTOC; identical in
format to fields 21-24 of the format
1 label.

Reserved.

FORMAT 5 LABEL

Field

Il::: II 213 9 !JOj
II II Avaiiable I' I I Extent Available Extents in Key

bli i~ I ~I I I I~ I~ Iii Iii I I I I;: I ~I
t t

Key Format
Identification Identifier

1

11 Available Extents I

~llll I I I I II I I I I II I I I I I I I I I I I I I II I I I 1I11I1111111 I I II II~

28 29
Pointer

Available Extents to Next
Fonnat 5

Figure 9. Format 5 Labels

This format is used for direct access storage space management.

2

3-9

10

11-28

29

Name and Length
Key Identification,
4 bytes

Available Extent,
5 bytes

Available Extents in
Key, 35 bytes

Format Identifier,
1 byte, EBCDIC

Available Extents,
90 bytes

Pointer to Next
Format 5

Description
Each byte contains the hexadecimal

code 05.

Indicates an extent available for
allocation to a data set. The first
two bytes are relative track
address; the next two are the number
of full cylinders in the extent.
The last is the number of tracks in
addition to the cylinders.

These fields, identical to field 2,
are in relative track address
sequence.

5 = Format 5.

These fields are the same as field 2.
There are altogether (fields 2-9,
11-28) 26 extent fields in the for­
mat 5 label.

Contains the address of the next for­
mat 5 label on the volume.

Appendix. Labels and Label Processing 39

STANDARD TAPE DATA SET LABEL

Data Set
Label

Field Number

I ~
4.12

Identifier

11

Data Set Identifier

12 13

3 4
Data Set
Serial
Number

14

5 6 c:
0

Volume Data Set --5 Q;
Sequence Sequence ~~ Number Number (!) ::l

7 8

Number of
Generation

9

Creation Expiration

Date Date

Block
Count

System Code Reserved

Data Set
Spc.mity

Figure 10. Standard Tape Data set Label (Header and Trailer)

Tape volumes not having the standard volume label (Figure 7), or
having the volume label but not the standard tape data set labels
(Figure 11) are considered to be unlabeled by the Model 44 system.

2

3

4

5

6

7

40

Name and Length
Label Identifier,
3 bytes, EBCDIC

Data Set Label Number,
1 byte, EBCDIC

Data Set Identifier,
17 bytes, EBCDIC

Data Set Serial
Number, 6 bytes
EBCDIC

Volume. Sequence
Number, 4 bytes

Data Set Sequence
Nwnber, 4 bytes

Generation Number,
4 bytes

Description
HDR = Header Label -- beginning of a

data set
EOF = End of File -- end of a data set
EOV = End of Volume -- end of a volume

in a multivolume data set. Treated
as EOF by the Model 44 system.

Always a 1.

The data set name, left-justified,
with remaining bytes written as
blanks. In the Model 44 system,
data set names are restricted to
eight characters.

Identifies a data set-volume relation­
ship; it is identical to the volume
serial number.

Indicates the order o·f a volume in a
data set. For the Model 44 system,
must be 1.

Assigns numeric sequence to a data set
on the volume. For the Model 44
system, must be 1.

Not used by the Model 44 system.

10

9

10

11

12

13

14

Name and Length
Version Number of
Generation, 2 bytes

creation Date, 6 bytes

Expiration Date,
6 bytes

Data Set Security,
1 byte

Block Count, 6 bytes

System Code, 13 bytes

Reserved, 7 bytes

Description
Not used by the Model 44 system.

The date the data set was created.

The date the data set may be deleted.

Indicates if
protection.
44 system.

data set has security
Not used by the Model

Used for trailer labels only. Indi-
cates the number of blocks written
in the data set from the header
label to the trailer label, exclu-
sive of tape marks.

Identifies the programming system.

Reserved; should be recorded as
blanks.

Appendix. Labels and Label Processing 41

absolute form: A form of program text
wherein the instructions have a predeter­
mined load address and all sywbolic address
references have been replaced with machine
address values.

absolute loader: A stand-alone program that
loads decks in absolute form for execution
independent of system control.

allocate: To reserve external storage space
for a data set.

block
1.

2.

(records) :
To group records
conserving storage
the efficiency of
ing.
A physical record

catalog:

for the purpose of
space or increasing

access or process-

so constituted.

1. The data set containing the names and
volume identifications of selected
data sets; used by the system to
locate data sets specified by name
only.

2. To include in the catalog the name and
volume identification of a data set.

cataloged data set: A data set that is
represented in the catalog.

communication region: A control block with­
in the resident supervisor that provides
for communication between the supervisor
and a processing program, and among proc­
essing programs.

condense: On a direct access volume, to
shift~he data sets, maintaining their
original sequence, to fill up available
extents on lower-numbered tracks. In a
directoried data set, to shift the members
and, separately, the directory entries,
maintiining their original sequence, to
fill up unused space caused by deletion of
members. After condensing, data sets on a
volume or members within a directoried data
set occupy contiguous locations.

control block: A storage area through which
a--partIcular type of information required
for control of the system is communicated
among its parts.

control section: The smallest separately
relocatable unit of a program; that portion
of text specified by the programmer to be
an entity, all elements of which are to be
loaded into contiguous main storage loca­
tions.

42

data management: A general term that col­
lectively describes those functions of the
system that provide creation of and access
to data sets, enforce data storage conven­
tions, and regulate the use of input/output
devices.

data organization: A term that refers to
the data management conventions for the
arrangement of a data set, i.e., sequential
and directoried.

data set: The major unit of data storage
and retrieval in the system, consisting of
a collection of data in a prescribed
arrangement and described by control infor­
mation to which the system has access.

data set label: A collection of information
that describes the attributes of a data set
and that is normally stored with the data
set.

device independence: The ability to request
input/output operations without regard to
the characteristics of the input/output
devices.

directoried data set: A data set in direct
access storage that is organized so that
the first part contains an index
(directory) to the members following.

directory: The initial portion of a direc­
toried data set that indexes the subsequent
members by name; it provides the means of
gaining access to the members.

dump
1.

2.
3.

(main storage):
To copy the contents of all or part of
main storaqe onto an output device, so
that it ca~ be examined.-
The data resulting from 1.
A routine that will accomplish 1.

entry point: Any location within a module
to which control can be passed by another
module.

extent: The physical locations on a volume
occupied by or reserved for a particular
data set.

fetch (program):
1. To obtain a requested phase, load it

into main storage at the locations
assigned by the linkage editor, and
transfer control to the phase entry
point.

2. A routine that accomplishes 1.

initial program loading (IPL): As applied
to the system, the initialization procedure
that loads the supervisor and the job
control processor and begins normal opera­
tions.

installation: A general term for a particu­
lar computing system, in the context of the
overall function it serves and the indivi­
duals who manage it, operate it, apply it
to problems, service it, and use the
results it produces.

jQ~: An externally specified unit of work
for the computing system from the stand­
point of installation accounting and oper­
ating system control. A job consists of
one or more job steps.

job control processor: The processing pro­
gram that reads and interprets job control
statements and sets up the system to exe­
cute a specific program using specific
resources.

job control statement: Anyone of the
control statements in the input stream that
identifies a job or defines its require-

jc~ st~: "!~ ~~~i"::: ":)f T;lO~k f~:·:: :_flC 2:J:T~f..-~tir::1

system from the standpoint of the user,
presented to the system by job control
statements as a request for execution of a
specific program and a description of the
resources required by it.

library: A collection of objects associated
with a particular use and having a directo­
ry to locate individual objects. In this
context, see module library, phase library.

linkage: The means by which communication
is effected between two routines or control
sections.

linkag~ editor: A program that produces one
or more program phases by transforming
relocatable modules into a format that is
acceptable to fetch, combining separately
produced modules, replacing, deleting, and
adding control sections as requested, and
resolving symbolic cross-references among
them.

load:
1.

2.

Generally, to read a phase into main
storage.
Program load--to read a phase into
main storage, and return control to
the invoking program.

main storage: All addressable storage from
which instructions can be executed or from
which data can be loaded directly into
registers.

member: An entity within a directoried data
set, indexed in the data set's directory
and having data content.

module; The uniL of output from a single
execution of the assembler or compiler, in
relocatable form and consisting of one or
more control sections with control informa­
tion to permit relocation and symbolic
cross-references to other modules.

module library: A directoried data set
containing selected modules and serving as
an automatic source of input to the linkage
editor.

multiphase program: A program in absolute
form that requires more than one fetch or
load operation to complete execution.

multiple names: In a directoried data set,
more than one name entry in the directory
referring to the same member.

name: A set of one or more characters that
identifies a statement, data set, module,
phase, etc., and that is usually associated
with the location of that which it iden­
tifies.

operator command: A statement to the super­
~v~l:::;or, is::,ueJ V..La Lilt: \...ull:::>U.l.e .21.iULeL­

Keyboard, that causes the supervisor to
provide requested information, alter normal
operations, terminate a job, etc.

phase: The unit of output of the linkage
editor, in absolute form, that is loaded by
a single program fetch or program load
operation; may represent an entire program
or part of a program.

phase library: The directoried data set
that contains program phases, processed and
entered by the linkage editor; the source
from which program phases are loaded for
execution.

problem program: Any of the class of
routines that perform processing of the
type for which a computing system is
intended, and including routines that solve
problems, perform computations, monitor and
control industrial processes, etc.

processing program: A general term for any
program other than the supervisor.

record: A general term for any unit of data
that is distinct from all others when
considered in a particular context.

relocatable form: A form of program text
wherein the instructions have variable load
addresses and symbolic cross-references,
plus control information to permit later
conversion to absolute form.

Glossary 43

relo~ation: The modification of address
constants required to compensate for a
change of origin of a module or control
section.

resource: Any facility of the computing
system or operating system required by a
job and including input/output devices,
data sets, and processing programs.

sequential data set: A data set organized
so that, given one record, the next record
to be processed is uniquely determined.

stand-alone program: Any program that oper­
ates independently of system control; gen­
erally, it is either self-loading or loaded
by another stand-alone program.

supervisor: As applied to the Model 44
system, the routines executed in response
to a requirement for altering or interrupt­
ing the flow of operations through the
central processing unit, or for performance
of input/output operations, and, therefore,
the medium through which the use of resour­
ces is coordinated and the flow of opera­
tions through the central processing unit
is maintained.

~mbolic data set: In coding a program, the
designation used to refer to a data set;
the actual data set whose data content is
to be processed during a particular execu­
tion of the program is determined later.
The later assignment may be an entire data
set or a specific member of a directoried
data set.

symbolic unit: In coding a program, the
designation used to refer to external stor­
age; the actual storage to be used during a
particular execution of the program is
determined later.

§ystem data set: A data set that has a

44

particular system use and/or content and a
predefined relationship to a system unit.

system residence volume: The volume (a 2315
Disk Cartridge) containing the phase
library, the catalog, and the IPL routine.

system support programs: '1 nose processing
programs that contribute dlrectly to the
use and control of the system and the
production of results: the job control
processor, the linkage editor, and the
utility programs.

system unit: A symbolic unit that has a
particular system use and a predefined
relationship to a system data set.

text: The instructions or data content of a
phase or of the control sections of a
module, collectively.

throuqhput: A measure of system efficiency;
the rate at which work can be handled by a
computing system.

user: Anyone who requires the services of a
computing system.

utility programs: A collection of programs
(together, the utility processor) that per­
form volume initialization and maintenance
and data set transmission functions.

volume: All of that portion of a single
unit of storage media which is accessible
via a single read/write mechanism.

volume identification: The installation's
designation for a particular tape or direct
access volume.

volume table of contents (VTOC): A table
associated with a direct access volume that
describes each data set on the volume.

INDEX

loading 8,32
punching 29

absolute form 9,42
absolute loader 8,32
ACCESS statement 26
accounting information

job 25
job step
timer 19

26

8,23
10,26

addition of
devices
members

allocate 42
ALLOC statement
alternate tracks
assembler 8

BCDIC 16

26
31

Binary-Coded-Decimal Interchange Code
blocks

definition 42
format 15,17
length 15

cancel
operator-initiated

_ _ -_ ~ c-:
~t:"I....J...""'''--'1....4

catalog
definition
description
manipulation

42
9

27
cataloged data set

definition 42
description 9,10

CATLG statement 27
channel

overlap 15
queue 20
scheduler

check function
close function

20
21
21

22

commands, operator 22
comments (*) statement 28
communication, operator-system
communication region 18
compatibility 16
condense 42
CONDENSE statement
condensing

27

directoried data set
2315 Disk Cartridqe

control block 15,42
control section 29,42
control statements

job 25-28
linkage editor
utilities 31

copy function 31

30-31

11,27
14,31

22

16

nata
.c ______ .L

.L.ULlllUL.

data management 9
data manaqcment relationships
data organization 10
data set

26 access
creation
definition
directoried
labels 33

26
42

10

maintenance statements
sequential 10
transMission utilities

defective tracks 31
DELETE statement 27
deleting

data sets from catalog
devices 8,23
members 10,27

device
addition 8,23
assignment 12,23,26
deletion 8,23
independence 7,15

devices, sun~orted S

27

31

27

cnrect access storage manaqernent
dirpct Arcess volllme

"-'\.-...I.i...lCCll • .:>....Llll..-j vI 2~~...J .l.'i:, J.l.

initialization of 31
labels 33

directoried data set
access 26
creation 26
definition 42
format 10

directory
allocation 26
definition 42
function 10

, " -L .~

14

disk storage space allocation 14,26
dump 16
dump and cancel
dump facilities

EBCDIC 16

16,22
16

end-of-data (/*) statement 26
end-of-file mark 21
end-of-job statement 26
entry point 22,31
ENTRY statement 31
error recovery procedures 15,21
EXCP

function 21
level 15
scheduler 16

EXEC statement 25
execute channel program

function 21
level 15

Index 45

Extended Binary-Coded-Decimal Interchange
Code 16

extent 10
external interruption 19
external-signal interruption 19
external storage assignment 12

fetch 22
floating-point feature 5
format 1 label

format 35
function 33

format 4 label
format 37
function 33

format 5 label
compatibility 16
format 39
function 33

FORTRAN 8
FORTRAN subroutine library
fresh option 26

header label
format
function

40
33

INCLUDE statement 31

8,11

information operator commands 23
initialization, volume 31
initialize function 31
initial program loading procedure

alterations during 8
definition 43
description 23
input/output commands during

input/output
block 15
error recovery 15,21
facil~ties 15
functions 20
interruption 19
operator commands 23

input, source language 16
installation 43
interruption

analysis routines 21
external 19
flow of control during 18
handling 18
input/output 19
machine check 19
program check 19
supervisor call 19

interrupt-key interruption 19
intervention operator commands 22
IPL

description 23
input/output commands during

job 9
job accounting information

for a job 25

46

for a job step 26
timer 19

23

23

job control
language 24
processor 7,24
statements 25-28
summary table 25

job definition statements
job processing 9
JOB statement 25
job step 9,25

LABEL statement 27
labels 33
language processors 8
levels of input/output 15
libraries 11
linkage 29,43
linkage editor

control statements 30
definition 43
description 7,9,29

LISTIO statement 27
load 22,43

25

machine check interruption 19
machine configuration 5
main storage 43
main storage layout for multiphase

program 30
maintenance

data set 27
directoried data set 27
volume 31

map function 17,31
member 10,20,26
messages to operator 22
miscellaneous job control statements
module

definition 43
description 7,29
linkage editor processing of

module library
definition 43
description 11
linkage editor use of 29

MODULE statement 30
multiphase program 9,30
multiple names

definition 10,43
manipulation of 26,27

name 43
nonstandard labels 33
note function 21

open function
description 21
positioning 27

operator action pause 22
operator commands

information 23
input/output 23
intervention 22

operator-system communication 22
option parameters 18,26
overlay 30

27

29

PAUSE statement 27
phase

definition 43
description 9,29
fetch and load 22
linkaqe editor processing of

phase entry point 31
phase library
- definition 43

description 11
linkage editor use of 29
program fetch and load from

PHASE statement 30
point function 21
print function 31
print-punch function 31
problem program 43
processing program 43
program check interruption 19
program fetch 22
program load 22
program structures 29
punch function 31

15

8,43

read function 20
read/write level
record 43
relocatable form
relocatable object
relocation 44

program modules

p£N&M£ statement 27
request control block
RESET statement 27
resident input/output
resident supervisor
resource 44
rewind function 21
REWIND statement 28

sequential data set
access 26
creation 26
definition 44
format 10

15

functions
18

•
16 source language input

squeeze function 31
stand-alone program 7,8,44
standard labels 33

8,11
STOP statement 26
subroutine library
supervisor 7,18,44
supervisor call interruption
SVC instruction 19
symbolic data set

19

assignment to symbolic
definition 44
description 9

unit

symbolic unit
assignment statements 26

29

22

8,9,29

20

12

definition 44
description of 12
operator assignment 23

system construction 5,8
system data set 12,44
system editing 5,8
system residence volume

construction 8
contents 13
definition 44
phase library on 12

system support programs 7,24,44
system unit

assignments 13
definition 44
description 12

tape data set label
tape reels 11
tape volume labels

40

format 34
function 33

text 29
throughput 44
timer feature 19
timer interruption
tracks, alternate
trailer label

19
31

format 40
function 33

transient input/output
transient supervisor

UNCATLG statement 27
unit control block 16
unlabeled tape

handling 33

functions
18

LABEL statement for 27
unload function 21
UNLOAD statement 28
user 44
utility programs 7,31

variable-precision switch 26
volume

definition 44
identification 10
initialization 31
label 33,'34
maintenance 31
utilities 31

volume table of contents
contents 33
definition 44
description 10

VTOC 10

wait function 21
write end-of-file function 21
write function 20

21

Index 47

READER'S COMMENTS

Title: IBM System/360 Model 44
Programming System
Concepts and Facilities

Is the material:

Easy to read?
Well organized?
Complete?
Well illustrated?
Accurate?
Written for your technical level?

How did you use this publication?

Yes No

-----As an introduction to the subject

Other-------------------------

Please check the items that describe your position:

-----Customer personnel ----Operator
-----IBM personnel ----Programmer
-----Manager ----Customer Engineer
-----Systems Analyst ----Instructor

Form No. C28-681C-C

-----For additional
knowledge

-----Sales Representative
-----Systems Engineer
-----Trainee
-----Other---------------

Please check specific criticisms, give page numbers, and explain below:

-----Clarification on pages
-----Addition on pages
-----Deletion on pages
-----Error on pages

Explanation:

If you wish a reply, be sure to include your name and address.

28·6810·0

fold

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

ATTENTiON: PUBLICAiiONS, DEPT. D39

POSTAGE WILL BE PAID BY ...

IBM CORPORATION

1271 AVENUE OF THE AMERICAS
NEW YORK, N.Y. 10020

FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.

fold

. ~ .. " ~ :
fold fold

TIrn~ • International Business M~chines Corporation

Data Processing Division

11? Il' Pn ... Rna~ WhHA PlRins N.Y. 10601

n
to.)
CD

0-
CD

o
b

C28-6810-0

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

n
10.)
co
0-
co

o
o

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	replyA
	replyB
	xBack

