File No. S360-25
Form C28-6813-2 44PS

Systems Reference Library

IBM System/360 Model 44
Programming System

Guide to System Use for FORTRAN Programmers

This publication describes how to use the Model 44
Programming System to compile and execute programs
written in the IBM System/360 FORTRAN IV lanquage. A
discussion of proqram optimization and of the
restrictions of the Model u4# FORTRAN IV compiler is
also included.

This publication is directed primarily at
programmers who are familiar with the FORTRAN IV
language. Previous knowledge of the Model 44
Programming System is not required.

1IN 1 1111

PREFACE

The purpose of this publication is to
provide programmers with the information
required to process FORTRAN prodrams under
control of the Model 44 Programming System.
The three steps involved in processing a
FORTRAN program are compilation, editing,
and execution.

This publication is not intended to be
an exhaustive discussion of the
capabilities of the Model 44 Programming
System; only those features that will be
commonly used by FORTRAN programmers are
presented. A more complete description of
system capabilities can be found in the
publication IBM System/360 Model 44
Programming System: _Guide to System Use,
Form C28-6812.

It is assumed that the reader is
familiar with the FORTRAN lanquage as
described in the publication IBM System/360
FORTRAN IV TLanguage, Form C28-6515. No
previous knowledge of the Model 44
Proaramming System is required.

The organization of this publication is
such that the new reader is familiarized
with programming system concepts and learns
of the facilities available to him before
encountering procedural details. The
detailed information also serves as a body
of reference material for the programmer
wvho is already familiar with systen
concepts.

Third Edition (December,1968)

This is a major revision of, and obsoletes,

Technical Newsletters N28-0559 and N28-0571,and
Changes to the text, and small changes
are indicated by a vertical line to the left of

This edition applies to release 5

otherwise indicated in new editions

herein; any such changes will be reported
revisions or Technical Newsletters.

to illustrations,

of IBM System/360 Model
44 Programming System and to all subsequent releases until
or Technical News-
letters.Changes are periodically made to the specifications
in subsequent

C28-6813-0,
C28-6813-1.

the change.

This publication was prepared for production

using

an IBM

computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 printer using a special print
chain.

Requests for copies of IBM publications should
your IBM

your locality.

be made to

representative or to the IBM branch office serving

A form is provided at the back of this publication for
readers' comments. If the form has been removed, comments
may be addressed to IBM Laboratory, Publications Dept.,

P.0O. Box 24, Uithoorn, Netherlands.

© Copyright International Business Machines Corporation 1967,1968

Introduction « ¢« « ¢« « + @ o ¢ 4 e o .
SUPEIVISOT v « o o o o o« o s o o« o &
Job Control Processor . « « « « « o
Linkage EAitor « « ¢ ¢« o &« o o o o
Utility PIOgramsS « . « o« « o o« o o =«
FORTRAN IV Compiler . &« o « « « o o
Assembler Program . . « « « « « o« =
Programming System Operation

Job Definition + ¢ ¢ « ¢ ¢ ¢« .« 4 . .
Job Steps . . . s s s 2= s
Compilation Job Steps « e e s e e
Multiple Phase Execution « . « « .
Types of Jobs « ¢ ¢ ¢ ¢ ¢ o ¢ o o &
Job Definiticn Statements
Job Definition Examples . . « o+ . &«
Other Job Control Statements

Data Sets .« ¢ ¢ ¢ ¢ o ¢« ¢ ¢ o o o o @
Using System Data Sets « « ¢« « « & o« &
Using Private Data Sets .« ¢« ¢ « o o

Unit Record Data Sets . & o« & o « &

Tape Data Sets o« o« o « o o s o o o
Tape Labels . . . ¢« ¢« ¢ & ¢« « o .
Creating Tape Data Sets . . . « .
Using Existing Tape Data Sets . .

Direct Access Data Sets .« « ¢ « .«
Disk Labels « e e e e e
Organization of Dlrect Access Data
SELS o o o o s o o o o o o & o o
Creating Direct Access Data Sets .
Creating a Member of a Directoried
Data Set . &« ¢ &« ¢ ¢ ¢ o o o o 2 @
Using Existing Direct Access Data
SEtS 4 v ¢ 4 e e e e o e e e e o
Using Existing Members of a
Directoried Data Set . . « « « « &

Placing ALLOC and ACCESS Statements

in the Job Deck . ¢« & &« « ¢« « « o«

Symbolic Unit Maintenance Statements

Data Set Maintenance Statements . .

JOb ProcCesSing « o« o« o s o o o o o o

Compilation . . e o e o e o e
Batch Compllatlon « e o s s 8 e e
Editing e e . « o .

Linkage Editor Contrcl Statements
Phase Execution . « « ¢ o« & & o « &
Multiphase Programs e e o« e
Allocation of COMMON by the
Linkage EQitor . « o « o o o o o @
Loading of Phases .« « « « « o «
Complete Phase Overlay
Calling Statement for Ccmplete
Phase Overlay =« o ¢ ¢ o o o o o«
Linkage Editor Contrcl Statements

Root Phase Overlay « « « « o« o =« .
Calling Statement for Root Phase
OVerlay =« o o o o o o o o o & .

Linkage Editor Control Statements
Linkage Editor Operation . «
Define FILE Statements . . . « . .

(oW W) e We WeWe T, |

CONTENTS

Named COMMON and BLOCK DATA Areas

Control Statements
Job Control Statements .

-

« o e

Comments in Job Control Statements

Character Set
Statement Formats . .

.

e o e

ACCESS Statement (Unit Record Data

T

ACCESS Statement (Tape Data Sets)
ACCESS Statement (Direct Access

£22 WL

Data Sets) . « « « . .

ALLOC Statement (Tape Data Sets) N
ALLOC Statement (Direct Access

Data Sets) « « « « « &
CATLG Statement . . .
CONDENSE Statement . .
DELETE Statement . . .

EXEC Statement (FORTRAN)

EXEC Statement (LNKEDT)
EXEC Statement (Phase)
JOB Statement
LABEL Statement . . .
LISTIO Statement . . .
RENAME Statement . . .
RESET Statement . . .
UNCATLG Statement . .

e o o

Linkage Editor Control Statements .

Character Set
Statement Formats . .
INCLUDE Statement . .
MODULE Statement . . .
PHASE Statement . . .

System Output . . . « . .
Compiler Output
Source Listing
Compiler Error/Warning
Storage Map .« « o o .
Module Deck
Linkage Editor Output .
Phase Map « « o « « &
Phase Output

« o .

Messages .

Error Code Diagnostic Messages . .
Messages for Program Interrupts .
Sample Storage Printouts
Messages to the Operator

Programming Considerations
Program Optimization . .
Initialization
Arithmetic Statements

IF Statement« .

DO Loop Considerations
READ/WRITE Statements

.

.

Boundary Alignment of Varlables in

COMMON Blocks and EQUIVALENCE

GTOUPS & o« o o o o o &
FUNCTION Subprograms .

References to FUNCTION Subproqrams

Use of DUMP and PDUMP
Block Length

.

69

70
71
71

Appendix A:

Appendix B:
CodeS o o o o o o o o o o o o o o

Compiler Restrictions . . « « . .
Examples of Job Decks .

EBCDIC And BCLIC Card

Appendix C: Assembler Language
SUbpPrograms . .« .« o o o o ¢ o o o

Subroutine References . « + « « o«
Argument List .« ¢ + ¢ ¢ o « o o
SAave AT€A « o o o + s s o « o @
Calling SeqUENCEe .+ « « o o o« o &

Coding the Assembler Language

Subprogram « .« . ¢ ¢ ¢ ¢ e e . o
Coding a Lovwest level Assenmbler
Language Subprogram
Sharing Data in COMMCN
Higher Level Assembly Language
SUDProgram « « o« o« o « o o o o o

In-Line Arqument List

ILLUSTRATIONS
FIGURES
Fiqure 1. Proqgramming System

Structure . ¢« ¢ ¢« ¢ ¢ « ¢ o e o e .
Figure 2. Root Phase Overlay
Structure .« . ¢ ¢ f e ¢ e e e 4 e e
Figure 3. Order of Phases
Figure 4. Source Listing
Figure 5. Source Listing with Error
Fiqure 6. Compiler Storage Map . .
Fiqure 7. Object Module Deck
Structure . . ¢ ¢ ¢ ¢ 0 e ¢ e o o e
Figure 8. Phase Map e e e s e o
Figure 9. Sample Storage Printouts
Figure 10. Sample of Compile Only

(One Compilation) .« « & o ¢ o« o o &«

TABT.ES

Table 1. Job Control Statements . .
Table 2, Data Set Reference Numbers
and Symbolic Unit Names . « « .« « &«
Table 3, Compiler Restrictions . .
Table 4. Linkage Registers
Table 5. Dimension and Suktscript

Format . .

¢« o e o e o e e s e s *

72
73

83
83

8u
86

1
13
83

86

Getting Arquments from the Argqument

List @ o ¢ ¢ ¢ « o o o o o o o @

Appendix D:
Supervisor Messages « « o o o o
Job Control MesSSagesS « « « o o o o
Compiler MessagesS .« o+ « o « o o« o
Linkage Editor Messages .+ « « « &
Warning Messages,
Severe Error Messages, Severity
Level 12 v ¢ 4« ¢ o « o o o o &
Termination Messages, Severity
Level 12 0Fr 16 ¢« ¢ v ¢ o o o+
Job Step Termination Messages,
Severity Level 12 . ¢« « . . .
Job Termination Messages,
Level 16 ¢ ¢ ¢ o o & o o o o =
Text MeSsSagesS « o o o o o « o
Phase Execution Diagnostic Messages
Execution Error Messages . .
Program Interrupt Messages . .

-

Severity Level

.

System Diagnostic Messages

Severity

Operator MessagesS .« « « « o o o o
Fiqure 11. Sample of Compile Only
(Three Compilations) e e e s e e e s
Figure 12. Sample of Batch Compilation
Fiqure 13. Sample of Edit Only . . .
Figure 14. Sample of Compile and Edit
Figure 15. Sample of Execute Only .
Figure 16. Sample of Edit and Execute
Figure 17. Sample of Compile, Edit,
and Execute . o o« o o « o o o s o o

Figure 18. Save ATea .« « o« « « &

Fiqure 19. Lowvwest Level Assembler
Subprogram e o & o 8 e o e 8 & a
Figure 20. Higher Level Assembler
Subprogram e o s e o o & e s e
Figure 2%. 1In-Line Arqument List

Figure 22.

.

Program Interrupt Message

. 88

. 89
. 93

. 97

. 100

. 100
. 101
101
.101
.106
. 107

. 106

The IBM System/360 Model 44 Programming
System provides a means for compiling and
executing programs written in the FORTRAN
IV language. Under control of the
programming system, a set of FORTRAN IV
source statements is translated to form a
module. In order to be executed, the
module in turn must be processed to form a
phase. The reasons for this will become
clear later. For now it is sufficient to
note that the course of the FORTRAN program
through the programming system is frcm
source statements to module to phase.

Model 44
Programming
System

INTRODUCTION

The Model 44 Programming System itself
is essentially a collection of progranms,
some interrelated, others independent. The
related programs include a supervisor, a
set of system support programs, and two
language processors. There are several
independent or stand-alone programs. Not
all of these component programs are
involved in compiling and executing a
FORTRAN program. Figure 1 shows the
structure of the programming system and
indicates those components that are of
immediate interest to the FORTRAN
programmer.

Supervisor

System

Support
Programs

Language
Processors

Job Control Linkage
Processor Editor

Not directly involved in
FORTRAN IV processing

Figure 1. Programming System Structure

FORTRAN IV
Compiler

Introduction 5

SUPERVISOR

The supervisor is the system control
program. To say that a program operates
under control of the programming system is
to say that it operates under control of
the supervisor. Accordingly, the
stand-alcne programs, although part of the
programnming system, do not operate under
system control.

The main function of the supervisor is
to provide the orderly and efficient flow
of jobs through the progqramming system. (A
job is some specified unit of work, such as
the processing of a FORTRAN program.) The
supervisor loads into the computer the
phases that are to be executed. During
execution of the program, control usually
alternates ketween the supervisor and the
processing proqgram, as the supervisor, for
example, handles all requests for
input/output operations.

Detailed information about the
superviscr's operation need not concern the
FORTRAN programmer. Anyone interested in
this material, however, can find it in the
publicaticn IBM System/360 Model 44
Programming System: Guide to System Use,
Form C28-6812.

JOB CONTROI. PROCESSOR

Among the system support programs is the
job control processor. Its primary
function is the processing of job control
statements, which describe the jobs to be
performed and specify the programmer's
requirements for each job. Job control
statements are written by the programmer,
using the job control language. The use of
job control statements and the rules for
specifying them in job control lanqguage are
discussed later.

LINKAGE EDITOR

The linkage editor, another system support
program, processes modules and incorporates
them into phases. A single module can be
edited tc form a single phase or several
modules can be edited or linked together to
form one executable phase. Moreover, a
module to be processed by the linkage
editor may be cne that was just created
(during the same job) or one that was
created in a previous job and saved.

The use of the linkage editor .tc perform
these functions is controlled by the
programmer through job control statements.
In addition, there are several linkage
editor control statements. Information on
their use is given later.

UTTIITY PROGRAMS

The remaining system support programs are
the utility programs. They are used
primarily for initializing and maintairing
external storage devices and for
transmitting data between external storage
devices. More information about external
storage is given later. Since the utility
programs are not directly involved in
compiling and executing a FORTRAN progranm,
they are not described in this publication.
Details on their function and use can be
found in IBM System/360 Model U4
Programming System: Guide to System Use,
Form C28-6812.

FORTRAN IV COMPITER

The FORTRAN IV compiler is the systen
component that translates FORTRAN source
statements and produces a module. As the
statements are compiled, they are checked
for errors by the compiler, which issues a
diagnostic message for each error
discovered. All of this is discussed more
completely later.

ASSEMBLER PROGRAM

The other lanquage processor is the
assembler program, which, like the FORTRAN
IV compiler, translates source statements
to produce a module. Source statements
processed by the assembler progranm,
however, are written in assembler language.
The assembler program, therefore, is
parallel in function to the FORTRAN IV
compiler and does not directly concern the
FORTRAN programmer.

As will be shown later, it is possible,
under control of the programming system, to
combine modules produced by the FORTRAN IV
compiler with modules produced by the
assembler program to form one executable
phase. In this case, certain conventions
must be followed when the assenmbler
language source programs are written.

These conventions are explained in Appendix
C. For those who are interested, the
assembler lanquage is described in the
publication IBM System/360 Model 4l
Programming System: Assembler T anquage,
Form C28-6811, whereas the use of the
assembler program is explained in the
publication IBM System/360 Model 4i
Programming System: Guide to System Use,
Form C28-6812.

PROGRAMMING SYSTEM OPERATION

The Model 44 Programming System is
distributed to an installation as a deck of
cards. Before it can be used, the systenm

6 System/360 Model 44PS Guide to System Use FORTRAN

must be constructed. System construction
is a process whereby the programming
systemis written onto an IBM 2315 Disk
Cartridge, which is mounted on a single
disk storage drive within the Hodel 44
processing unit. The disk cartridge
containing the system is called the system
residence volume or system residence disk.
Once the system has been constructed, it
can be tailored to meet the needs of the
installation via a process known as system

assembly.

The programming system is put into
operation as a result of an
operator-initiated procedure known as IPL
(initial program load). At this time, the
supervisor is loaded from the system
residence disk into the main storage of the
computer, where it remains for as long as
the programming system is in operation.

The supervisor then loads the job
control rrocessor, which reads and
interprets job control statements. One

type of job control statement (the EXEC
statement) is used to request the execution
of a specific program. When an EXEC
statement is encountered, the job control
processor relays the name of the progqram to
be executed to the supervisor and returns
control to it. The supervisor then loads
the requested proqgram, overlaying the -Hob

control processor.

When the program finishes execution,
control is returned to the supervisor,
which again loads the job control
processor, this time overlaying the program
just executed. The job control processor
continues reading and interpreting job
control statements until another EXEC
statement is encountered (in this case the
above procedure is repeated) or until a
STOP statement is encountered. The STOP
statement terminates the operation of the
programming system. Before the system can
be used again, the operator must put it
back into operation via either the TIPL
procedure or a restart procedure.

Introduction 7

JOB DEFTNITION

A job is a specified unit of work to be
performed under control of the programming
system. As was pointed out earlier, a
typical job might be the processing cf a
FORTRAN program -- compiling source
statements, editing the module thus
produced to form a phase, and then
executing the phase. Or a job might be the
processing of a combined FORTRAN-assembler
lanquage source proqram —-- comgiling
FORTRAN source statements, assembling the
assembler language statements, editing the
modules to produce a phase, and then
executing the phase. Job definition -- the
process of specifying the work to be done
during a single job -- allows the
programmer much flexibility. A job can
include as many or as few jcb steps as the
programmer desires.

JOB STEPS

A job step is exactly what the name implies
~— one step in the processing of a job.
Thus, in the first job mentioned above, one
step is the compilation of source
statements; another is the editing of a
module; a third is the execution of a
phase. The second job mentioned involves
an additional job step: assembling source
language statements. Fach job step is
associated with the execution of a progranm.
A compilaticn requires the executicn of the
FORTRAN IV compiler. Similarly, an
assembly implies the execution of the
assembler program; an editing, the
execution of the linkage editor. Finally,
the execution of a phase is the execution
of the problem program itself.

In contrast to job definition, the
definition of a job step is fixed. Each
job step involves the execution of a
program, whether it be a program that is
part of the Model 44 Programming System or
a program that is written by the user.

Compilation Job Steps

The compilation of a FORTRAN program may
necessitate more than one job step (more
than one execution of the FORTRAN IV
compiler). In many cases, a FORTRAN
program actually ccnsists of a main program
and one or more subprograms, such as
FUNCTTION subprograms and SUBROUTINE
subprograms written by the FORTRAN
programmer. In compiling such a progranm,
the user may wish to employ several job
steps, if, for example, he should select
different compiler parameters for the

various subproqrams, or a different systenm
input device. In this case, the FORTRAN IV
compiler will be executed several times in
succession for the various compilations.

If, on the other hand, the user wishes
to compile a main program and one or more
subprograms, or, in fact, a series of
unrelated programs, in an unvarying systenm
environment, he may do so by batching the
various programs and subroutines and
compiling them as separate modules through
a single execution of the compiler -- that
is, through a single job step. "Batch
Processing" is described in the chapter
"Job Processing."

In either case, the compilation of each
main or subprogram will result in the
production of a module. The separate
modules can then be combined into one phase
by a subsequent job step -- the execution
of the linkage editor. Execution of the
resulting phase requires an additional job
step. Compilation and execution thus
require a minimum of three job steps, but
may necessitate additional job steps to
meet the specific requirements of the user.

Multiple Phase Execution

The execution of a FORTRAN program has thus
far been spoken of as the execution of a
phase. It is possible, however, to
organize a FORTRAN program so that it is
executed as two or more phases. Such a
program is called a multiphase program.

By definition, a phase is that portion
of a program that is loaded into the
computer by a single operation of the
supervisor. (As was mentioned earlier, it
is the programming system supervisor that
loads phases for execution.) A FORTRAN
program can be executed as a single phase
as long as there is an area of main storage
available to accommodate it. On the other
hand, a program that is too large to be
executed as a single phase must be
structured as a multiphase progranm.

The number of phases in a FORTRAN
program has no effect, however, on the
number of job steps required to process
that program. As will be seen, the linkage
editor can produce one or more phases in a
single job step. Similarly, both
single-phase and multiphase progranms
require only one execution job step.
execution is the execution of all the
phases that make up one FORTRAN program.

Phase

8 System/360 Model U44PS Guide to System Use FORTRAN

Detailed information on structuring
multiphase programs, as well as information
on using the facilities of the programming
system to create multiple phases and
execute them, can be found in a subseguen
chapter, "Job Processing." For now, one
need only be aware that the facility for
creating and executing multiphase progranms

exists.

s
19

TYPES OF JOBS

The typical job falls into cne of several
categories. A brief description of these
follows; a more complete discussion apgears
later, in the chapter\"Job Processing."

Compile Only: This type of job involves
only the execution of the FORTRAN IV
compiler. It is useful when checking for
errors in FORTRAN source statements. A
compile-only job is also used to produce a
module that is to be further processed in a
subsequent job.

A compile-only job can consist of one
job step or several successive compilation
job steps.

Edit Only: This type of job involves only
the execution of the linkage editor. It is
used primarily to combine modules produced
in previous compile-only jobs and to check
that all cross-references between modules
have been resolved. The programmer can
specify that all modules be combined to
form one phase; or he can specify that some
modules form one phase and that others form
one or more other phases. The phase output
produced as the result of an edit-only job
can be retained for execution in a
subsequent job.

Compile and Edit: This type of job
combines the functions of the compile-only
and the edit-only jobs. It calls for the
execution of both the FORTRAN IV compiler
and the linkage editor. The job can
include one or more compilations, resulting
in one or more modules. The programmer can
specify that the linkage editor process any
or all of the modules just produced; in
addition, he can specify that one or more
previously produced modules be included in
the linkage editor processing.

Execute Only: This type of job involves
the execution of a phase (cr multiple
phases) produced in a previous job.
FORTRAN program has been compiled and
edited successfully, it can be retained as
one or more phases and executed whenever
needed. This eliminates the need for
re-compiling and re-editing every time a
FORTRAN program is to be executed.

once a

Edit and Execute: This type of job
combines the functions of the edit-only and
the execute-only jobs. It calls for the
execution of both the linkage editor and

+h o Voot Td 3y b £y
LT LEDULLLIIY pPlHAST (O] «

Compile, Edit, and Execute: This type of
job combines the functions of the
compile-and-edit and the execute-only jobs.
It calls for the execution of the FORTRAN
IV compiler, the linkage editor, and the
problem program; that is, the FORTRAN
program is to be completely processed.

When considering the definition of bis
job, the programmer should be aware of the
following: if_a job step is canceled
during execution, the entire job is
terminated; any remaining job_steps_are
skipped. Thus, in a
compile-edit-and-execute job, a failure in
compilation precludes the editing of the
module(s) and phase execution. Similarly,
a failure in editing precludes phase
execution.

For this reason, a job usually should
(but need not) consist of related job steps
only. For example, if twc independent
single-phase executions are included in one
job, the failure of the first phase
execution precludes the execution of the
second phase. Defining each phase
execution as a separate job would prevent
this from happening. If successful
execution of both phases can be quaranteed
before the job is run, however, the
programmer may prefer to include both
executions in a single job.

JOB DEFINITION STATEMENTS

Once the programmer has decided what work
is to be done within his job and how many
job steps are required to perform the job,
he can then define his job by writing job
control statements. Since these statements
are usually punched in cards, the set of
job control statements is referred to as a
job deck. 1In addition to job control
statements, the job deck can include input
data for a program that is executed during
a job step. For example, input data for
the FORTRAN IV compiler -- the FORTRAN
source statements to be compiled -- can be
placed in the job deck.

The inclusion of input data in the Sob
deck depends upon the way the installation
has assigned input/output devices. Job
control statements are read from the unit
named SYSRDR (system reader), which can be
either a card reader or a magnetic tape
unit. Input to the processing programs is
read from the unit named SYSIPT (systenm
input), which also can be either a card
reader or a magnetic tape unit. The

Job Definition 9

installation has the option of assigning
either two separate devices for these units
(one device for SYSRDR, a second device for
SYSIPT) or one device to serve as both
SYSRDR and SYSIPT. If two devices have
been assigned, the job deck must consist of
only job control statements; input data
must be kept separate. If only one device
has been assigned, input data must be
included within the job deck.

There are four job control statements
that can be used for job definition: the
JOB statement, the EXEC statement, the
end-of-job (/&) statement, and the
end-of-data (/%) statement. The discussion
of these job control statements in this
chapter is limited to the function and use
of each statement. The rules for writing
each statement are given in a subsegquent
chapter, "Control Statements."

The JOB statement defines the start of a
job. One JOB statement is required for
every job; it must be the first statement
in the job deck. If the programmer wishes
to name his job, he may specify this name
in the JOB statement. Also, any jot
accounting information required by the
programmer's installation can be placed in
this statement.

The EXEC statement requests the
execution of a program. Therefore, one
EXEC statement is required for each job
step within a job. The EXEC statement
indicates the program that is to be
executed (for example, the FORTRAN IV
compiler, the linkage editcr). As in the
JOB statement, the proqrammer may specify a
name, in this case, for the job step, and
also any accounting information required by
the installation. As soon as the EXEC
statement has been processed, the prcgram
indicated by the statement begins
execution.

The end-of-job statement, also referred
to as the /& -- slash ampersand --
statement, defines the end of a job. B /&
statement must appear as the last statement
in the job deck.

The end-of-data statement, also referred
to as the /% -- slash asterisk --
statement, defines the end of a program's
input data. When the data is included
within the job deck (that is, SYSIPT and
SYSRDR are the same device), it is placed
immediately following the EXEC statement
for the program that requires it. The /x%
statement immediately follows the input
data. Tor example, FORTRAN source
statements would be placed immediately

after the EXEC statement for the FORTRAN IV
compiler; a /% statement would follow the
last FORTRAN source statement.

When input data is kept separate
is, SYSIPT and SYSRDR are separate
devices), the /x statement immediately
follows each set of input data on SYSTPT.
For example, if a job consists of two
compilation job steps, an editing job step,
and an execution job step, SYSIPT would
contain the source statements for the first
compilation followed by a /% statement, the
source statements for the second
compilation followed by a /% statement, any
input data for the linkage editor followed
by a /% statement, and perhaps some input
data for the problem program followed by a
/% statement.

(that

A /% statement must always be used in an
editing job step whether or not there is
any input data for the linkage editor.

When there is input data, the /% statement
immediately follows the input data, whether
it is in the job deck or on a separate
SYSIPT. When there is no input data, the
/* statement either immediately follows the
EXEC statement for the linkage editor or
appears in the appropriate place on a
separate SYSTIPT.

JOB DEFINITION EXAMPLES

The following are examples of "job decks"
for the various tyres of jobs. Their
purpose is to show the order of job
definition statements within a job. VYo
attempt is made to show the contents of
each statement. 1In addition, the examples
are limited to only the job definition
statements and input data; no other job
control statements are shown. (Examples of
complete job decks, indicating the contents
of all statements, are in Appendix A.)

Two compile-only jobs are shown below:
a single compilation and a multiple
compilation. For all other jobs, the,
reader can assume that only one set of
source statements, one module, and/or one
phase is involved. Input data is shown
only for the sake of example; it is not
always required in the job deck.

Compile only (one compilation):

JOB statement

EXEC statement (FORTRAN IV compiler)
Source language statements

/* statement

/& statement

10 System/360 Model U4L4PS Guide to System Use FORTRAN

Compile only (three compilations):
JOB statement

EXFC statement (FORTEAN IV compiler)
Source language statements

/% statement

EXEC statement (FORTRAN IV compiler)
Source language statements

/% statement

EXEC statement (FORTEAN IV compiler)

Source lanquage statements
/% statement
/& statement

Edit_only:
JCB utatement
EXEC statement (linkage editor)
Module to be edited
/% sStatement
/6 statement

Compile and edit:
JOB statement
EXEC statement (FORTRAN IV compiler)
Source lanquage statements
/% statement
EXEC statement (linkage editor)
/% statement
/& statement

Execute only:
JOB statement
EXEC statement (phase)
Data used by problem progranm
/% statement
/& statement

Edit and execute:
JOB statement
EXEC statement {linkage e
Module to be edited
/* statement
EXEC statement!
Data used by problem program
/* statement
/& statement

Al +Ary
Qa oLy

Compile, edit, and execute:
JOB statement
EXEC statement (FORTRAN IV compiler)
Source lanquage statements
/* statement
EXEC statement (linkage editor)
/* statement
EXEC statement?
Data used by prcblem program
/* statement
/& statement

—————

1Tn this case, the program to be executed
need not be indicated; the system will
assume that the phase just produced Lty the
linkage editor is to be executed.

Table 1. Job Control Statements

T
]

STATEMENT | FUNCTION
1

JOB DEFINITION

Defines the start of a job.

Defines the start of a job
step execution and
indicates the program to

]
// JOB |
// |
|
|
| be executed.
|
|
|
|
1

EXEC

Indicates the end of a job.

Indicates the end of input
data for a processing
progranm.

SYMBOLIC UNIT ASSIGNMENT

— e e -y —— —— " — — — —— — —] o——)

ALLOC Allocates space for a new
data set.

Defines the characteristics
of a data set.

Permits access to an
existing data set.

Restores unit assignments to
their status at the start
of the job.

Lists data set and device
assignments.

N
N

|// LABEL

T

|

|

|

{

|

|// ACCESS i
| |
|// RESET |
|

|

|

|

1

LISTIO

R
N

DATA SET MAINTENANCE

Deletes a data set from a
volume or a member from a
dlrectorled data set.

DELETE

~
N

CAanAancacs Y
U uucucco a

T

|

|

|

l

1

1

| set.
| Renames a data set or a
]

|

|

|

|

|

L

Rqrnnan-‘AA Aa+a
Garclilrliricu uUava

~
~N

~
~N
=]
=
=
£
=
b

member of a directoried
data set.

Enters a data set name into
the catalog.

Removes a data set name from
the catalog.

CATLG

N

UNCATLG

N N
N

MISCELLANEOQUS

T

|]Allows pause for operator
| action.

(comments) |[Allows logging of comments
| on system log.

// PAUSE

- e e o ————— — Y s ————— —— s — ———— o — . —— ———
*

// REWIND |Rewinds a tape; repositions
| a data set on a direct
| access volume to its
| Dbeginning.

// UNLOAD |Rewinds and unloads a tape.
1

b e e o o —— e —— e bt s i e o - —— s e o e e e e e e e e e e e e —— e o — e — =

Job Definition 1

1

OTHER JOB CONTROL STATEMENTS

The four job definition statements form
the framework of the job deck. There are
a number of other job control statements
in the job control language. Not all of
them must appear in the job deck; in fact,
some FORTRAN programs can te processed
without using any of these additional
statements. The job control statements
are grouped by category and summarized
briefly in Table 1.

The double slash preceding each
statement name identifies the statement as

a job control statement. Most of the
statements are used for data

management -- creating, manipulating, and
keeping track of data sets (externally
stored collections of data, from which data
is read and into which data is written).

Information about using the remaining
control statements is given in the chapters
"Data Sets" and "Job Processing.'" Rules
for writing these statements are in the
chapter "Control Statements."

12 System/360 Model U4PS Guide to System Use FORTRAN

Almost all FORTRAN programs include
input/output statements calling for data to
be read frcm or written into data sets on
external storage devices. Each data set is
identified by a data set reference number
within the FORTRAN source statement. When
processing data under control of the Model
44 Programming System, the FORTRAN
programmer can share system data

sets -- data sets used by the programming
system itself -- or he can use his own data

sets, referred to hereinafter as private
data_sets.

The data set reference numbers
acceptable to the Model 44 FORTRAN IV
compiler ranae from 1 through 8. Within
the Model 44 FORTRAN IV ccmpiler, each data
set reference number corresronds to a
symbolic unit name, which in turn is
associated with a particular data set. The
correspondence between data set reference
numbers and symbolic unit names is shown in
Table 2.

Table 2. Data Set Reference Numbers and
Symbolic Unit Names

|r 3 - SYs003 6 - SYSOPT i

: 1 - SYS001 4 - SYSOOu 7 - SYSPCH :

; 2 - SYs002 5 - SYSIPT 8 - sSYsS000 :

The data set reference numbers 1, and 5
through 8 refer to system units, symbolic
units that are required for programming
system operation. Each system unit has a
predefined relationship with a system data
set (that is, each system unit name will
have been already associated with a systen
data set by the time the FORTRAN
programmer's job is to be run).

The data set reference numbers 2, 3, and
4 refer to units for which a predefined
relationship (also called a standard unit
assignment) is not required. It is up to
the programmer to determine whether or not
a standard unit assignment for any of these
units exists at his installation.

It is also the programmer's
responsibility to determine whether the
installation has modified the FORTRAN IV
compiler and changed the relationships
between data set reference numbers and
symbolic unit names. The relationships
shown in Table 2 reflect the FORTRAN IV

compiler distributed as part of the Model
44 Programming Systenm.

USING_SYSTEM DATA SETS

To use a system data set, a programmer need
only specify the appropriate data set
reference number in his program. The
FORTRAN IV compiler associates the number
with the corresponding system unit. The
relationship between the system units and
the system data sets is predefined by
standard unit assignments.

The system work data set (data set
reference number 1) is located on the unit
named SYS001. The data set contains
intermediate data from any of the
programming system components.
(Intermediate data is data that is stored
temporarily on an external medium by one
part of a program to be read and processed
by another part of that program.)
Intermediate data for a FORTRAN program can
be written into and read from the system
work data set.

The system input data set (data set
reference number 5) is located on the unit
named SYSIPT. The data set contains input
to the processing programs, such as FORTRAN
source statements and linkage editor
control statements. TInput data for a
FORTRAN program can be placed on SYSIPT
along with any other input data. If SYSIPT

+ AYaA~A A~ CYCDND

cmtAanaAd he same &
LilT oaim QEVvil<T Aao oionun,

is assigned to
the input data should be placed in the job
deck immediately after the EXEC statement

that requests phase execution.

The system output data set (data set
reference number 6) is located on the unit
named SYSOPT. The data set contains systen
print output, such as a listing of FORTRAN
source statements. Print output from a
FORTRAN program can be written into the
system output data set.

The system punch data set (data set
reference number 7) is located on the unit
named SYSPCH. The data set contains all of
the system punch output. Punch output from
a FORTRAN program can be written into the
system punch data set.

The linkage editor input data set (data
set reference number 8) is located on the
unit named SYS000. The data set contains
output from the compiler (or the assembler)
that is to be used as input to the linkage
editor. For example, a module that is

Data Sets 13

produced by the compiler and intended for
editing in a subsequent jck step is written
on SYS0C0. <Later in the job, the linkage
editor reads the module frcm SYS000. The
FORTRAN programmer may use the linkage
editor input data set provided that it is
no longer needed during the job by the
linkage editor (that is, there is no
editing job step subsequent to the job step
in which the FORTRAN programmer uses
SYsS000) .

When using any system data set, the
programmer should be aware of the
installation device assignment for the unit
on which the data set is located. For
example, SYSIPT can be either a card reader
or a magnetic tape unit. SYSPCH can be
either a card punch or a magnetic tape
unit. SYSOPT can be either a printer or a
magnetic tape unit. SYS001 can be either a
magnetic tape unit or an area of disk
storage. Also, if SYS001 is an area of
disk storage, the programmer should know
how large an area the installaticn has
thus, determine whether it can accommodate
the work data for his FORTRAN progranm.

If a programmer can satisfy his data
requirements by using only system data
sets, he need not concern himself with the
details of using private data sets. It is
also unlikely that he will have to use any
of the job control statements intended for
data management. Since the remainder of
this chapter discusses the use and
maintenance of private data sets, the
programmer using only system data sets can
skip to the next chapter.

USING_PRIVATE DATA_ SETS

To use one of his own data sets, a
programmer specifies any one of the data
set reference numbers 2, 3, or 4 in his
program. As with the system data sets, the
FORTRAN IV compiler associates the numter
with a particular symbolic unit. Unless a
standard unit assignment exists for this
unit, the FORTRAN programmer must establish
a relaticnship tetween the symbolic unit
and his data set by using job control
statements. Even when a standard unit
assignment is in effect, the programmer can
use job control statements to temporarily
override the assignment and establish a new
relationship.

In addition, the programmer must provide
the system with whatever information it
needs to be able to process the data set.
The nature of the required information
varies according to the type of data set.

One way of classifying a data set is
according to the type of storage medium it

occupies. This places a data set into one
of three categories: unit record data
sets, tape data sets, and direct access
data sets.

UNIT RECORD DATA SETS

Unit record data sets include data sets on
cards and data sets on the printed page.
Card data sets can be further divided into
input data sets, which contain data to be
read, and output data sets, into which data
is to be punched. Card data sets are
processed either by a card reader (for
input) or a card punch (for output).
Printed data sets are processed by a
printer,

It is unusual for private unit record
data sets to be used since the type of data
they contain can be accommodated by the
system data sets. Furthermore, few
installations will have card readers, card
punches, or printers other than those used
for system data sets. However, if the
appropriate devices are available, the
programmer is free to forego using system
data sets.

For each private unit record data set
that he uses, the programmer places an
ACCESS statement in his job deck. 1In this
statement he specifies the name of the data
set and the symbolic unit name with which
the data set is to be associated. He also
indicates, in either of twp ways, the
device containing the data set. He can
indicate a particular device Dby specifying
the physical address of the device. Or he
can indicate that a certain type of device
is to be used by specifying a device type
code. In this case, the system determines
the particular device to be used and prints
a message indicating its choice.

Details on writing the ACCESS statement
for unit record data sets, including a list
of the permissible device type codes and
their meanings, can be found in the chapter
"Control Statements."

TAPE DATA SETS

A tape data set is a data set on a reel of
magnetic tape. A tape data set cannot
extend beyond one reel of tape, nor can a
reel of tape contain more than one data
set.

Tape data sets fall into two categories:
existing tape data sets and new tape data
sets. An existing tape data set already
contains data and has already been assiqgned
to a particular tape volume (reel of tape).

The programmer uses an existing tape data

14 System/360 Model 4U4PS Guide to System Use FORTRAN

set either to read data from it cr to add
data to it.

+ 1= Anc L'L»-\J- r‘t\v\‘-:-‘rq

vililaliis

no data, nor has it been assigned to a tape
volume. A new tape data set must be
created by the programmer before data can
be written into it. The programmer uses a
nev tape data set whenever he is writing an
entirely new collection of data. This
includes intermediate data, which is
written ty one part of a program and read
by another part of that prcgranm.

XA new
a8 LCW

When a data set is created, the
programmer can request that the data set be
placed into the system catalog. This means
that the system will keep track of the data
set and its location (the tape volume to
which it is assigned). A data set in the
system catalog is referred to as a
cataloged data set.

Tape Labels

Each installation has the option of using
tape labels to facilitate the use of tape
data sets. Tape labels include a volume
label, which identifies a particular reel
of tape, and two data set labels, which
provide information about the data set on
the tape.

A volume label is written on the tarpe
when the tape volume is initialized.
(Volumes are initialized by a systenm
utility program and the process usually is
the responsibility of the installation.

vt A +3 1734«
The system utility programs are discussed

in the publication IBM System/360 Model 4i
Programming System: Guide to System_Use,
Form C28-6812.) The volume label contains
a volume serial number, consisting of from
one through six characters, which serves to
identify the tape volunme.

The two data set labels are a header
label and a trailer label. Both labels
contain the name of the data set, its
creation date, and its expiration date (the
date the data set may be deleted). The
header label may be written when the volume
is initialized. Otherwise, it is written
just before any data is written into the
data set on the volume. The trailer label
is written at the end of the data set.

A tape volume is considered labeled if
the installation uses tape labels and if
the tape has been initialized (that is, a
volume label has been written on it). If
the tape volume contains data that is to be
read, it must also contain data set labels
in order to be considered labeled.

Creating Tape Data Sets

The progranmmer must create any new tape
data set that he wants to use. That is, he

must allocate a tape volume to contain the

244003t [53e)

data set -- either a particular tape volume
or, as is more commonly the case, any fresh
tape_volume. A fresh tape volume is one
that either contains no data set or
contains an expired data set.

To create a tape data set, the
programmer places an ALLOC statement in his
job deck. In this statement, he specifies
the name of the data set, the symbolic unit
name with which the data set is to be
associated, and a volume designation.

The volume designation identifies the
device to be used, either through a device
address or through a device type code. It
may also include volume options, which vary
according to the type of tape being used
(that is, 7-track tape, 9-track tape).
Finally, the volume designation indicates
whether a fresh tape volume or a particular
tape volume is to be used.

A fresh volume is requested by
specifying the word FRESH in the volune
designation. A particular tape volume is
requested by specifying a volume
identification (also referred to as the
volid). TIf the tape is labeled, the volid
is the volume serial number in the tape's
volume label. TIf the tape is not labeled,
the volid reflects whatever external
identification is used by the installation.

The programmer can request‘that the data
set be cataloged by specifying the CATLG
parameter in the ALLOC statement. This

causes the name ¢of the data set, and an

indication of its location, to be entered
into the system catalog.

Details on writing the ALLOC statement
for tape data sets, including lists of the
permissible device type codes and volume
options and their meanings, can be found in
the chapter "Control Statements.™

The system determines the device that is
to be used, either the particular tape
drive whose device address was specified or
an available tape drive of the type
specified. 1A message is printed
instructing the operator to mount a tape
volume on that unit, either a fresh tape
volume or a tape volume with the specified
volid. As soon as the tape volume is
mounted, the operator gives a signal for
the system to proceed.

If the tape volume is unlabeled, no
further checking is done. If the tape
volume is labeled, however, the systen
checks to see that it meets the

Data Sets 15.

specifications -- that is, whether the
specified volid matches the volume serial
number in the volume label or whether the
volume is a fresh one (contains no header
label or an unexpired label). If the tape
volume does not meet the specifications, a
message is printed, informing the operator
of the discrepancy. The operator can then
choose between continuing with the same
tape volume or mounting another tape
volume. If he mounts another volume, the
checking procedure is repeated until an
appropriate tape is found.

If the tape volume is labeled, the
programmer must also include a LABEL
statement immediately after the ALLOC
statement in his job deck. In this
statement, he must specify the expiration
date of the data set unless the current
date is to be used as the expiration date.
The LABET statement causes data set labels
to be written (or their ccntents to be
changed) when tte first WRITE instruction
is issued for that data set.

Details on writing the LABEL statement

can be found in the chapter "Control
Statements."

Using Existing Tape Data Sets

To use an existing tape data set, the
programmer places an ACCESS statement in
his job deck. 1In this statement he
specifies the name of the data set, the
symbolic unit name with which the data set
is to be associated, and a volume
designation. (The volume designation is
not required for a cataloged data set
because the system already has a record of
this information.)

The volume designation identifies the
device to be used, either through a device
address or through a device type code. It
may also include volume options, which vary
according to the type of tape Lkeing used
(that is, 7-track tape, 9-track tape).
Finally, the volume designation specifies
the volume identification (volid) of the
tape containing the data set. The volid is
required only if the tape is labeled; it
may or may not be used for unlabeled tapes.

For a labeled tape, the volid is the
volume serial number in the tapet's volume
label. For an unlabeled tape, the volid is
whatever external identificaticn is used by
the installation.

If the programmer is adding data to an
existing data set (rather than reading fron
it), he must also specify an EXT parameter
in the ACCESS statement. This causes the
tape volume to be positicned at the end of
the existing data set.

Details on writing the ACCESS statement
for tape data sets, including lists of the
permissible device type codes and volunme
options and their meanings, can be found in
the chapter "Control Statements."

The system determines the device that is
to be used, either the particular tape
drive whose device address was specified or
an available tape drive of the type
specified. A message is printed
instructing the operator to mount the tape
with the specified volid on that unit. If
no volid was specified in the ACCESS
statement (permitted for unlabeled tapes
only), the message simply tells the
operator to mount a tape volume, It is up
to the programmer to make sure that the
operator knows which volume is to be
mounted.

As soon as the tape volume is mounted,
the operator gives a signal for the systen
to proceed., If the tape volume is
unlabeled, no further checking is done. If
the tape volume is labeled, however, the
system checks to see whether the specified
volid matches the volume serial number in
the volume label. If it does not match, a
message is printed informing the operator
of the discrepancy. The operator can then
choose between continuing with the same
tape volume or mounting another tape
volume. TIf he mounts another volume, the
checking procedure is repeated until an
appropriate tape volume is found.

If the tape volume is labeled, the data
set labels are checked when the first READ
statement is issued for that data set.
Checking a data set label includes
comparing the data set name in the label
with that specified in the ACCESS statement
for the data set.

DIRECT ACCESS DATA SETS

A direct access data set resides on a disk
volume, that is, a disk cartridge or a disk
pack. A direct access data set may not
extend beyond one disk volume; however,
several direct access data sets may reside
on a single volume. Each data set must
reside on contiguous tracks and cylinders.
The space on a volume occupied by a
particular data set is called the extent of
that data set.

Direct access data sets fall into two
categories: existing direct access Jdata
sets and new direct access data sets. An
existing direct access data set has already
been assigned to a particular area of disk
storage (its extent has already been
defined). It may or may not contain any
data.

16 System/360 Model 44PS Guide to System Use FORTRAN

A new direct access data set is one that
contains no data, nor has its extent been
defined. A new direct access data set must
be created by the programmer before data
can be written into it.

Disk Labels

All direct access volumes must be labeled.
Disk labels include a volume label, which
identifies a particular disk volume, and a
volume table of contents (VTOC), which
keeps track of the data sets on that
volume. The VTOC is essentially a
collection of labels, the first of which
defines the VTOC. The VTOC also includes
one label for each data set on the volume;
each label contains such information as the
data set name and the locaticn of the data
set on the volume. Finally, the VTOC
contains one or more labels that manage
space on the volume by keeping track of the
extents of available space.

Disk labels are written on a direct
access volume when the volume is
initialized. Volumes are initialized by a
system utility program and the process is
usually the responsibility of the
installation. (The system utility programs
are discussed in the publication IBM
System/360 Model 44 Programming System:
Guide to_ System Use, Form C28-6812.)

Organization of Direct Access Data Sets

The programmer can organize a direct access
data set in either of twc ways. The first
of these, called sequential, is the
familiar structure in which records are
placed in sequence. In the second
organization, called directoried, each data
set is organized into twc rarts, a
directory and members.

A member of a directoried data set has
the characteristics of a sequential data
set; for example, it has a name, it is
processed sequentially, and it can be
associated with a symbelic unit name.
However, a member is not a data set, but
only part of one. MAlso, a member can have
more than one nanme.

The directory keeps track of each
member, its location in the data set, and
its length. The directory contains at
least one entry for each member. There are
multiple entries for members with more than
one name (one entry for each name). The
system uses the directory to locate
individual members when they are required.

Creating Direct Access Data_ Sets

The programmer must create any new direct
access data sets that he wants to use.
That is, he must allocate all or part of a

disk volume for the data set. The
programmer can request that space for the
data set be allocated on a fresh disk
volume (one that contains no data sets).

Or he can request that space be allocated
on a particular disk volume, either the
volume having a specific volume serial
number or the volume that already contains
a specific data set whose location is known
to the system. (The location of a data set
is known to the system if it is one of the
system data setg, if it is a cataloged data
set, or if it is a data set for which an
ALLOC or ACCESS statement was previously
processed in the djob.)

T¢c create a direct access data set, the
programmer places an ALLOC statement in his
job deck. In this statement, he specifies

the name of the data set and either of two

types of volume designation.

The first type of volume designation is
used when a programmer wants space
allocated either on a fresh volume or on a
particular volume identified by its volume
serial number. It identifies the device to
be used, either through a device address or
through a device type code. 1In addition,
it indicates the type of volume to be used.
A particular volume is requested by
specifying a volume identification (voligd).
The volid is the volume serial number in
the disk's volume label. A fresh volume is
requested by specifying the word FRESH in
the volume designation.

The second type of volume designation is
used when the programmer wants space
allocated on a particular volume that
already holds a specific data set. The
proagranmer specifies the word SAME in the
volume designation. He then identifies the
data set either by specifying its name or
by specifying the symbolic unit name with
which it is currently associated.

Both types of volume designation allow
the programmer to indicate whether or not
write validity checking is to be performed
for the data set. When write validity
checking is performed, the system checks
each block of data as it is written to see
that it has been written correctly.
Standard error recovery procedures are
followed if an error is detected. The
write checking procedure requires an
additional disk revolution for each data
block that is written.

The programmer must also indicate in the
ALLOC statement the length of the data set.
That is, he must specify the number of
blocks that are to be allocated for the
data set. The number of blocks is equal to
the number of FORTRAN records in the data
set.

Data Sets 17

The programmer can request that the data
set be cataloged by specifying the CATIG
parameter in the ALLOC statement. This
causes the name of the data set, along with
an indication of its location, to be placed
into the system catalog.

Within a FORTRAN program, either
sequential or direct access input/output
statements can be used to transfer data to
or from a direct access data set. If
direct access statements (for example, the
DEFINE FILE statement) have been used for
the data set being created, the programmer
must specify the FMT parameter in the ALLOC
statement. This causes the system to
prepare the disk area for direct access
input/output operations.

If a directoried data set is being
created, the length of the directory must
also be specified in the ALLOC statement.
The length of the directory is equal to the
number of entries that are to be made in
it, allowing one entry for each member
name.

If a symbolic unit name is to be
associated with the data set, the
programmer can specify this name in the
ALLOC statement. A symbolic unit name must
be associated with a sequential data set
before it can be used. For a directoried
data set, a symbolic unit name is usually
associated with each member of the data
set, rather than with the entire data set.

The programmer must also include a TABEL
statement in his job deck, immediately
after the ALLOC statement. 1In the LABEL
statement, he must specify the block length
of the data set. The block length is the
number of bytes in each FORTRAN record.
This number cannot exceed 360 unless direct
access input/output operations are to be
performed on the data set. In this cacse,
the block length specified for the data set
in the LABEL statement should agree with
the record length specified for the data
set in the DEFINE FILE statement within the
FORTRAN program.

The programmer can also specify the
expiration date of the data set in the
LABEL statement. The absence of this
specification causes the system to assume
that the current date is to be wused, that
is, that the data set is not to be retained
after the date it is created.

Finally, the programmer can indicate
whether cr not write validity checking is
to be performed for this data set. The
specification given here can be overridden,
however, by the write validity checking
option in the ALLOC statement. In other
words, the system acts in accordance with
the specification in the ALLOC statement.

If nothing is specified in the ALLOC
statement, the system acts in accordance
with the specification in the LABET
statement. If nothing is specified in
either statement, no write validity
checking is performed.

If the information to be given in the
LABEL statement duplicates that given in
the LABEL statement for another data set,
the programmer need not repeat the
information. This is true, however, only
if the other data set is one for which an
ATLOC or ACCESS statement was processed
previously in the job. The programmer need
only specify the word SAME in the LABEL
statement and then identify the other data
set. He can identify it either by
specifying its name or by specifying the
symbolic unit name with which it is
currently associated.

Creating a Member of a Directoried Data Set

In addition to creating a directoried data
set in the manner just described, the
programmer must also create each member of
the data set. Only one member can be
created in a single job step. Whatever is
written into the member during that job
step determines the size of the member.
Once the member is created, its size cannot
be changed.

A member is given one or more unique
names when it is created; the names are
unique in that they may not duplicate any
other member names in the data set. The
number of names given to a member cannot be
increased after the member has been
created, although existing member names can
be replaced by new names (this is explained
in a later section, "Data Set Maintenance
Statements") .

A member of a directoried data set will
be created only if there is space for it in
the data set and if there is room in the
directory for the entries required for that
member.

To create a member, the programmer
places an ACCESS statement in his job deck.
In this statement, he specified the names
to be given to the member, the name of the
data set to which the member is to belong,
and the symbolic unit name with which the
member is to be associated.

The programmer must also indicate the
location of the directoried data set to
which the member is being added, unless its
location is already known to the systen.
The location of the data set is indicated
by a volume designation. The volume
designation can be any of those used in the
ALLOC statement to create a data set, with
one exception. The ACCESS statement cannot

18 System/360 Model 44PS Guide to System Use FORTRAN

indicate that the directoried data set
resides on a fresh volune.

Finally, the programmer must specify the
NEW parameter in the ACCESS statement to

indicate that a new member is being
created.

Using Existing Direct Access Data Sets

To use an existing direct access data set,
the programmer places an ACCESS statement
in his job deck. In this statement, he
specifies the name of the data set, the
symbolic unit name with which the data set
is to be associated, and either of two
types of volume designation. (The volume
designation is not required for a cataloged
data set because the system already has a
record of this information.)

The first type of volume designation is
used to request a volume through its vclume
serial number. It identifies the device to
be used, either through a device address or
through a device type code. It also
specifies the volume identification (volid)
of the disk containing the data set.

The second type of volume designaticn is
used to request the same vclume that
contains another specific data set. The
location of this other data set must be
known to the system. The programmer
specifies the word SAME in the volume
designation. He then identifies the other
data set, either by specifying its name or
by specifying the symbolic unit name with
which it is currently associated.

Both types of volume designation allow
the programmer to indicate whether or not
write validity checking is to be performed
for the data set.

If the programmer is adding data to a
sequential data set (rather than reading
from it), he must also specify the EXT
parameter in the ACCESS statement. This
causes the disk volume to be positioned
after the last item of data in the existing
data set, rather than at the beginning of
the data set. Adding data to a direct
access data set does not affect the size of
the data set. Additional data is limited
to whatever amount can be ccntained in the
extent that was defined for the data set at
the time it was created.

The use of the UNDEF parameter indicates
that the Model 44 Programming System must
use its undefined-read method when reading
the direct access data set. This parameter
must be specified for any direct access
data set that was not created by the Model
44 Programming System, with the exception
of direct access data sets created by the
IBM System/360 Operating System and having

fixed-length standard blocks (i.e., a data
set that contains no truncated blocks or
unfilled tracks, with the possible
exception of the last block or track).

Using Existing Members of a Directoried
Data_Set

A member of a directoried data set, once it
has been created, cannot be enlarqged;
however, data within it can be manipulated
freely or replaced. To use an existing
member of a directoried data set, the
proarammer places an ACCESS statement in
his job deck. 1In this statement, he
specifies one name of the member, the nane
of the directoried data set to which the
member belongs, and the symbolic unit name
with which the member is to be associated.

The programmer must also indicate the
location of the directoried data set to
which the member belongs, unless its
location is already known to the systemn.
The location of the directoried data set is
given by a volume designation. This can be
either of the volume designations valid in
the ACCESS statement for using an existing
direct address data set (discussed in the
previous sectiomn).

PLACING ALLOC AND ACCESS STATEMENTS IN THE
JOB DECK

The ALLOC and ACCESS statements for data
sets that are to be created or used during
a job should be placed before the EXEC
statement for the job step using the data
sets. In most cases, this will be a phase
execution job step. The programmer can
place all of the ALLOC and ACCESS
statements for a job im front of the
EXEC statement in the job deck. This means
that the assignments made by the statements
remain in effect throughout the entire job
or until changed by a RESET statement
(discussed in the next section, "Symbolic
Unit Maintenance Statements").

£t
I 5T

SYMBOLIC UNIT MAINTENANCE STATEMENTS

Two job control statements, RESET and
1.ISTIO, are used in conjunction with AILOC
and ACCESS statements that alter the
assignments of system units.

The RESET statement is used to restore
one or more symbolic units to their
standard assignments. The statement is
used when an assignment has been altered by
an ALLOC or ACCESS statement in a previous
job step. The RESET statement applies only
to those units that were given standard
assignments either when the system was
constructed or when the operator performed
an IPL procedure.

Data Sets 19

One RESET statement can be used to
restore either all units with standard
assignments or just one unit. If more than
one unit is to be restored, but not all, a
separate RESET statement is reguired fcr
each. Rules for writing the RESET
statement can be found in the chapter
"Control Statements."

Regardless of whether RESET statements
are used, all units are restored to their
standard assignments at the end of the job.

The LISTTO statement is used to obtain a
listing of current symbolic unit
assiqgnments. The listing, which is
produced on SYSLST and on SYSLOG, includes
the name of the symbolic unit, its current
device address, the volume designation
(volid) of the volume to which it is
assigned, and the name of the data set
currently associated with the symbolic
unit.

Three types of listing can te obtained.
The programmer can request a listing for a
single unit by specifying its symbolic unit
name in the LISTIO statement. He can
request a listing of all assignments made
or altered by ALLOC or ACCESS statements
during the current job by specifying the
word PROG in the LISTIO statement. (This
listing does not include units already
restored to their standard assignments as a
result of RESET statements.) Finally, the
programmer can request a listing for all
units that have assignments by omitting any
specification from the LISTIO statement.

Rules for writing the LISTIO statement
can be found in the chapter "Cocntrol
Statements."

DATA SET MAINTENANCE STATEMENTS

There are five job control statements used
for the maintenance of data sets: CATIG,
UNCATLG, DELETE, CCNDENSE, and RENAME.
These statements are intended primarily for
use with direct access data sets, although
the CATLG and UNCATLG statements can be
used for other data sets.

Fach of the data set maintenance
statements is discussed here with respect
to its function and use. Rules for writing
these statements can be found in the
chapter "Control Statements."

The CATLG statement is used to make an
entry for a data set in the system catalog.
A cataloged data set can be referred to by
name only, without any need for stating its
location. Catalog entries are retained
until specifically deleted by an UNCATLG
statement or until the data set is deleted.

The name of the data set to be cataloged
may not duplicate the name of a data set
already in the catalog. Catalog entries
can also be made through use of the CATIG
specification in the ALLOC statement that
creates a data set.

The UNCATLG statement is used to delete
a data set entry from the system catalog.
Removal of the catalog entry does not
change the data set itself or the volunme
containing it. The data set entry in the
volume table of contents is also
unaf fected.

The DELETE statement is used to
eliminate a data set or a member of a
directoried data set. When a member has
more than one entry in the directory (more
than one member name), the DELETE statement
can be used to remove one or more of the
entries. The member continues to exist as
long as it is represented by at least one
entry in the directory.

When an entire data set is deleted, the
system removes its entry from the volume
tahle of contents (VTOC), updates one of
the volume's space management labels to
reflect the removal, and, if applicable,
removes the entry for the data set from the
system catalog.

The data set is not physically altered
at this point. It cannot be referred to,
however, and the system treats the space it
occupies as vacant. The same applies to a
member of a directoried data set when all
its entries have been removed from the
directory.

The space occupied by a deleted data set
can be assigned to a new data set; the
space occupied by a deleted member within a
directoried data set, however, cannot be
reassigned. The CONDENSE job control
statement (described later) can be used to
shift existing members toward the beginning
of a directoried data set so that new
members can be added at the end.

A separate DELETE statement is required
for each data set that is to be deleted.
Any number of the members of one director-
ied data set can be deleted with a single
DELETE statement.

Any data set cited in a DELETE statement
must have been referred to in an ALLOC or
ACCESS statement processed previously in
the job.

The CONDENSE statement is used to shift
the contents of a directoried data set in
order to fill space occupied by deleted
members and directory entries. This space
is treated as though it were empty.
Existing members and directory entries are

20 System/360 Model 44PS Guide to System Use FORTRAN

shifted toward the beginning of the data
set to fill the space. The total size of
the data set is not changed. Also, there
is no change in the order in which the

3 . N abricac annoa
.Lu.Luy members and entries appear.

After the data set has been condensed,
all available space is at the end of the
data set and at the end of the directory.
New members may be added and new entries
may be made in the directory.

Any data set cited in a CONDENSE
statement must have been referred to in an
ALLOC or ACCESS statement processed
previously in the job.

The RENAME statement is uUsed to change
the name of a data set or the name of a

member of a directoried data set. When a
data set is renamed, the name is changed in
the VTOC and, if applicatle, in the systenm
catalog. The name of a member is changed
in the Rﬁreh*ﬁrv o0f the data set to which

it belongs. Other names of that member, if
any, are not affected.

The new name may not duplicate an
existing name in the system catalog, volume
table of contents, or data set directory.

System data sets should not Le renamed.

Any data set cited in a RENAME statement
must have been referred to in an ALLOC or
ACCESS statement processed previously in
the job.

Data Sets 21

Form C28-6813-2, page modified June 10,

JOB _PROCESSING

This chapter describes in greater detail
the three types of job steps involved in
processing a FORTRAN program. It describes
the options available to the programmer for
each process and refers to specifications
in job control statements and linkage
editor control statements. Once the reader
has become familiar with the information
presented here, he should be able to write
control statements merely by referring to
the next chapter, "Control Statements."

COMPILATION

Compilation is the execution of the FORTRAN
IV compiler. The programmer requests
compilation by placing in the job deck an
EXEC statement that contains the progranm
name FORTRAN (the name of the FORTRAN IV
compiler) . This is the EXEC FORTRAN
statement.

Input to the compiler is a set of
FORTRAN Source statements, constituting
either a main program or a subprogram.
Source statements punched in either card
code, Extended Binary-Coded-Decimal
Interchange Code (EBCDIC) or
Binary-Coded-Decimal Interchange Code
(BCDIC) , are accertable. (Appendix B

shows the EBCDIC and BCDIC card codes for
each of the 49 characters that are valid in
FORTRAN source statements.)

If any characters of the source
statements are punched in the BCDIC card
code, the programmer must specify BCD as a
compiler option in the EXZC FORTRAN
statement. Otherwise, the FCORTRAN IV
compiler assumes that all source statements
for the compilation are punched in EBCDIC
and, therefore, treats any BCD characters
as invalid. (If BCD is specified, the
character $ must not be used as an
alphabetic character in the source progranm,
and statement numbers passed as arguments
must be coded as $n rather than é&n.)

The FORTRAN source statements are read
from SYSIPT. The job deck is read fron
SYSRDR. If SYSIPT and SYSRDR are assigned
to the same unit, the FORTRAN source
statements should be placed after the EXEC
FORTRAN statement in the job deck.

Output from the FORTRAN IV compiler
includes a source listing, a list of the
source statements exactly as they appeared
in the input deck. The source listing is
produced on SYSOPT. Any errors in the
source statements are indicated in the

22 System/360 Model U4U4PS Guide to System Use

1969,

by TNL N33-8602

source listing and appropriate error
messages are written. (The format of the
source listing is discussed and illustrated
in the chapter "System Output.™) In
addition, the module produced by the
compiler is written on SYS000, the linkage
editor input unit.

The programmer can override the
production of any of this output by
specifying compiler options in the EXEC
FORTRAN statement. The NOSOURCE option
suppresses the production of a source
listing, except for the indication of
errors. The NOLINK option suppresses the
writing of the module on SYS000. The
programmer should specify NOLINK in a
compile-only job or whenever the module is
to be excluded from linkage editor
processing during the same job.

If a module is produced on SYS000, the
programmer should name this module by
specifying a name for the job step in the
EXEC FORTRAN statement. The job step nanme
becomes the module nanme.

The programmer can request output in two
additional forms, again via opticns in the
EXEC FORTRAN statement. The compiler will
produce a module deck (the module, written
on SYSPCH) if the programmer specifies DECK
in the EXEC statement. The module deck can
be used in a subsequent job as input to the
linkage editor.

A compiler storage map is written on
SYSOET if the programmer specifies MAP in
the EXEC statement. This storage map
includes a list of all the variatles (both
local and COMMON variables) that were
defined in the source statements just
compiled. (The contents of the compiler
storage map are discussed and illustrated
in the chapter "System Output.™)

Batch Compilation

Compilations may be tatched; that is, one
EXEC FORTRAN statement may serve for more
than one compilation. When batching, the
source input for one compilation,
terminated by an END statement, is followed
immediately by the source input for the
next compilation. The /* statement
signifies the end of the tatch of
compilations. The compiler options
specified on the EXEC FORTRAN statement
apply throughout the batch.

The names for the modules produced on
SYS00C are generated by the compiler fronm

FCRT RAN

Form C28-6813-2, page modified Jurne 10,

the job step name in the EXEC FORTRAN
statement, If the step name is ABCDEF, the
name of the first module is ABCLDEF, the
name of the second module is ABCDEF01, etc.
If the step name 1s ABCDEFGH, the first
module is named ABCDEFGH, the second is
named ABCDEF01, etc. If the step name is
ABCDEF01, the first module is named
ABCDEF01, the second module is named
ABCDEF02, etc.

No more than 100 compilations may be
processed in one batch.

Zditing is the execution of the linkage
editor., The programmer requests editing by
placing in the job deck an EXEC statement
that contains the program name LNKEDT (the
name of the linkage editor). This is the
EXEC LNKEDT statement.

Input to the linkage editor is a set of
linkage editor control statements and one
or more modules to be edited. These
modules include either or both of the
following:

1. Modules that were compiled previously
in the job and placed at that time on
the linkage editor input unit, SYS000.

2. Modules that were compiled in a
previous job and saved as module
decks. The module decks must be
Flaced on SYSIPT along with the
linkage editor control statements.

In addition, the linkage editor will

library. The module library is a
collection of fregquently used subprograns,
such as the FORTRAN-supplied library
subprograms, in the form of modules. The
module library is on the unit named SYSREL.
(Information about the functions and use of
FORTRAN IV library subprograms can be found
in the publication IBM_System/360: _FORTRAN
IV_Library Subprograms, Form C28-6596.)

Many FORTRAN programs contain references
to FORTRAN-supplied library subprogranms.
Some references are explicit: for exanmple,
the statement B = SQRT(A) contains an
explicit reference to the square root
library subprogram, which computes, in this
case, the square root of A. Other
references are implicit: for example, the
statement C = D**5 contains an implicit
reference to the exponential library
subprogram, which computes, in this case,
the value of D raised to the fifth power

Wwhen the linkage editor processes a
module that makes use of a library
subprogram, it automatically searches the

1969, Lty TNL N33-8602

module library for the requested subprogranm
module and processes it along with the
module that requested it. It is possible
to suppress this automatic linking facility
by specifying NOAUTC as an optlon 1n the
EXEC LNKELT statement. 1In doing so, the
programmer accepts responsibility for
ensuring that all likrary sutprograms
required by a FORTRAN program are included
in linkage editor processing.

Cutput from the linkage editor is one or
more phases. A phase may be an entire
program Oor it may be part of a multiphase
progranm.

A phase produced by the linkage editor
can be executed immediately after it is
produced (that is, in the job step
immediately following the linkage editor
job step). Or it can be executed later,
either in a subseguent jol step of the same
job or in a subsequent Jjob. In either of
the latter cases, the programmer must
specify KEEP as an option in the EXEC
LNKELT statement in order to retain the
phase output. Otherwise, the phase output
is retained only for the duration of one
job step after the linkage editor job step.

In addition to the phase, the linkage
editor produces a phase map on SYSLST. The
contents of the phase map are discussed and
illustrated in the chapter "System Output."
The programmer can suppress the production
of a phase map by specifying the NOMAP
option in the EXEC LNKEDT statement.

Linkage Editor Control Statements

Linkage editor control statements direct
the execution of the linkage editor.
Together with any module decks to be
processed, they form the linkage editor
input deck, which is read by the linkage
editor from SYSIPT. If SYSIPT and SYSRDR
are assigned to the same unit, the linkage
editor input deck should be placed after
the EXEC LNKEDT statement in the job deck.

There are three linkage editor control
statements that may be used ty the FORTRAN
programmer: the MODULE statement, the
FHASE statement, and the INCLUDE statement.
The discussion of these statements in this
chapter is limited to the function and use
of each statement. The rules for writing
each statement are given in a sutsegquent
chapter, "Control Statements."

The MODULE statement is required
whenever a module deck is included on
SYSIPT in the linkage editor input deck.
Cne MODULE statement must precede each
module deck; each MODULE statement must
specify a name for the module deck it
precedes. The MODULE statements and their
associated module decks must appear first

Job Processing 23

Form C28-6813-2, page modified June 10, 1969,

in the linkage editor input deck; no other
linkage editor control statements may
precede then.

As soon as a MODULE statement has been
processed, the module deck following it is
copied onto the linkage editor input unit,
SYS000. Thereafter, it is treated exactly
as any modules already on that unit (that
is, the modules placed there earlier by the
FORTRAN IV comgiler).

The PHASE statement is used to specify a
name for the phase that is to be produced
by the linkage editor and to indicate the
origin of the phase, that is, the first
main storage location that is to be
occupied by the phase when it is loaded.
For a single-phase program, the origin is
specified as the letter S, which indicates
the first main storage location available
to a rroblem program.

The INCLUDE statement identifies a
particular module for inclusion in a phase.
There must be one INCLUDE statement for
each module that is to be included (except
for those subprogram modules in the module
library that will be linked automatically);
all of the INCLUDE statements for a
particular phase must immediately follow
the PHASE statement that names the phase.
The order of the INCLUDE statements
indicates the order in which modules are to
be included in the phase.

Zach INCLUDE statement must identify the
module by name. For a module on S¥YS000
that was produced by the TFORTRAN compiler
earlier in the job, the module name is the
same as the name in the EXEC statement for
the compilation job step. Module names
that are created during batch compilations
are treated differently. The first batch
module has the same name as the jof step.
For the second batch module, this name is
padded on the right with numeric zeros and
a 1 to provide an 8-character name with 01
as the last two characters. 1If the jot
step name was more than six characters, the
01 digits replace the seventh and eighth
characters. However, if the Job Step name
is eight characters, the last two of which
are numerical (NN), the seventh and eighth
characters are replaced by two digits which
are equal to NN + 1. These digits are
incremented by 1 for each subsequent module
in the batch.

The INCLUDE statement must also indicate
the location of the module. If the module
is on SYS00C, the programmer must specify
the letter L; 1if the module is in the
module library, he must specify the letter
R. An INCLUDE statement is regquired for
modules in the module library if the
modules have not been referred to in the

24

by TNL N33-8602

source program or if the automatic linking
facility has been suppressed.

The PHASE and INCLULCE statements can be
omitted from the linkage editor input deck
if all of the following conditions exist:

1. Only one phase is to te produced by
the linkage editor.

2. All of the modules on SYS00O0,
including any that are to ke copied
from module decks on SYSIPT, are to be
included in the phase.

3. The modules are to ke included in the
phase in the order in which they
appear on S5YS000.

If the programmer omits the PHASE and
INCLUDE statements, the linkage editor will
generate these statements. The name of the
phase will be the name of the first module
included in the phase. The origin of the
phase will be the first main storage
location available to a proktlem fprogram
{equivalent to a specification of S).

Note that the programmer must omit toth
the PEASE and the INCLUDE statements if he
wishes to use this feature. 1In cther
words, a PHASE statement in the linkage
editor input deck must always Le
accompanied by a set of INCLUDE statements
and vice versa.

PHASE EZXECUTION

Phase execution is the execution of the
problem program, for example, the rrogranm
written by the FORTRAN programmer. If the
program is a multiphase program, phase
execution actually entails the execution of
all the phases in the progranm.

The phase(s) to be executed must be in
the phase library. The phase library is a
collection of executable phases from which
programs are loaded Lty the supervisor. 1A
phase is written in the phase library by
the linkage editor at the time the phase is
produced. It is retained in the phase
library if the programmer has so requested
via the KEEP option in the EXEC LNKEDT
statement.

The programmer reguests the execution of
a phase by placing in the job deck an EXEC
statement that specifies the name of the
phase. If the phase to be executed was
produced in the immediately preceding job
step, however, its name need not be
specified in the EXEC statement.

The programmer can also regquest, via the
EXEC statement, that the setting of the

variable precision switch be checked. This

System/360 Model 4UPS Guide to System Use FECRTRAN

Form C28-6813-2, page added June 10, 1969, by TNL N33-8602

switch, which is set manually by the
operator, indicates the level of precision
at which floating-point operations are
performed. Precision may be 8, 10, 12, or
14 bits. 1In general, the highest precision
provides greatest accuracy and the lowest
precision provides greatest speed.

Job Processing 24.1

MULTIPHASE PROGRAMS

A FORTRAN program can be executed as a
single phase as long as there is an area of
main storage available to accommodate it
This area, known as the problem program
area, must be large enough to contain the
main proqgram, all called subprograms (both
library subprograms and those written by
the user), and an area of common storage
when applicable (whenever COMMON statements
are used anywhere in the source program).
When a program is too large to be executed
as a sinale phase, it must be structured as
a multiphase progranm.

A multiphase program may have either of
two structures. The tirst of these is a
complete phase overlay structure, permitted
for a program of two or more phases. Only
one phase of the program is in the problem
program area at any given time, each phase
completely replacing, or overlaying, the
previous phase.

The other structure available for
multiphase programs is known as root phase
overlay and is used primarily for programs
of- three or more phases. One phase of the
program is designated the root phase and,
as such, remains in the problem program
area throughout the execution of the entire
program. The other phases in the
program -- subordinate phases -- are loaded
into the problem program area as they are
needed. A subordinate phase may overlay
any previously loaded subordinate phase,
but, under ordinary circumstances, no
subordinate phase should overlay the root
phase. One or more subordinate phases can
reside simultaneously in main storage with
the root pbhase.

In order to choose the overlay structure
best suited for his program, the programmer
should examine the program for subprogram
structures. A subprogram structure is a
series of two or more subproqgrams, the
first of which is called by the main
program; the second subprogram is called by
the first subprogram, the third is called
by the second, and so on. For example,
every FORTRAN main program contains a call
to the library subprogram IBCOM; the IBCOM
subprogram contains a call to the library
subprogram FIOCS; in turn, FIOCS calls the
library subprogram UNITAB. Thus, it can be
said that every FORTRAN main program uses
the subprogram structure consisting of
IBCOM, FIOCS, and UNITAB. As a second
example, consider the group of subprogranms
A, B, C, and D. Subprogram A contains a
call to subprogram B, which, in ‘turn,
contains calls to subprograms C and D. 1In
this example, two subprogram structures
exist -- the first consisting of the
subprograms A, B, and C, the other
consisting of the subprograms A, B, and D.

The root phase overlay structure may be
used whenever the problem program area is
large enough to include the entire main
program, the common area (when applicable),
and the largest subprogram or subprogram
structure used by the main proqram.
Otherwise, the complete overlay structure
must be used.

Allocation of COMMON by the Linkage Editor

For a multiphase program, the linkage
editor allocates a common area equal in
size to the largest common area required by
any phase. The common area is present in
main storage throughout the execution of
the entire progran. Parameters may be
passed through the common area from one
phase to another, making possible
communication between phases.

Loading of Phases

When a multiphase program is to be
executed, the first phase is loaded by the
supervisor as a result of job control
processing. The loading of subsequent
phases, however, is controlled by the
programmer. In doing so, the programmer
makes

use of a special library subprogram,
BOAOVLY, provided expressly for multiphase
programs. For each phase that is to be
loaded, the programmer places in his source
program a call to the BOAOVLY subprogranm,
which causes the appropriate phase to be
loaded.

Since the calling statements differ,
depending on the type of overlay structure
being used, they are discussed in detail in
the appropriate section, that is, "Complete
Phase Overlay" or "Root Phase Overlay."

vvyel

COMPLETE PHASE OVERLAY

The complete phase overlay structure
requires that a FORTRAN main program be
divided into two or more main programs, one
for each phase of the multiphase progranm.
Once the original main program has been
divided by the proqrammer, each newly
formed main program, together with the
subprograms and subprogram structures it
uses, is processed to form one phase of the
new program.

For example, consider a FORTRAN main
program that consists of 300 source
statements and makes use of eight
subprograms, named A through H. Assume
that this main program can be divided into
three parts of 100 statements each, so that
all three parts make use of subproqrams A,
B, and C, only part 1 makes use of
subprograms D and E, only part 2 makes use
of subprograms F and G, and only part 3

Job Processing 25

makes use of subprogram H. The result is a
three-phase program: the first phase
includes part 1, as the main program, and
subprograms A, B, C, D, and E; the second
phase includes part 2, as the main progran,
and subprograms A,B,C,F, and G; the third
phase includes part 3, as the main proagranm,
and subprcgrams A,B,C, and H.

Calling Statement for Complete Phase
Overlay

To request that a new phase be loaded, the
programpmer must place the following CALL
statement in his source proqram:

CAY.L LINK ('phasename')

This statement causes the phase whose name
is specified to be loaded into the problem
program area. In addition, control is
given to the newly loaded phase, which then
begins execution.

The phase name specified in the CALL
statement must be the name of the phase as
specified in a linkage editor PHASE
statement.

Since the CALT LINK statement causes
control to be transferred to a new phase,
it should appear as the last executable
statement in each phase except the last.

The following illustrates the CALT IINK
statement:

CALL LINK ('PHASEC!)
This statement results in the loading of
PHASEC by the supervisor and the transfer
of control to PHASEC.

Linkage Editor Control Statements

Tinkage editor control statements for a
multiphase program using complete phase
overlay are specified exactly as they would
be for a single-phase program. The linkage
editor input deck differs in that there
must be one PHASE statement for each phase
in the program. Each PHASE statement must
specify a unique phase name; as in the case
of a single-phase program, the origin of
each phase should be specified by the
letter S. A set of INCLUDE statements must
follow each PHASE statement to indicate
which modules are to be included in the
phase.

The first PHASE statement in the linkage
editor input deck identifies the phase that
is to be loaded and executed first, unless
the programmer explicitly specifies the

name of another phase in the EXEC statement
for phase execution. For example, with the
following set of control statements, PHASEA
would be executed first:

// EXEC LNKEDT
PHASE PHASEA,S
INCLUDE MOD1,L
INCLUDE MOD2,L
PHASE PHASEB,S
INCLUDE MOD3,L

/%

// EXEC

However, the last statement could have been
written:
// EXEC PHASEB

In this case, PHASEB would be loaded and
executed first.

ROOT PHASE OVERLAY

The root phase overlay structure requires
that the entire FORTRAN main program be
included in a root phase, together with
some of the subprograms it uses. The
remaining subprograms are incorporated into
two or more subordinate phases, so that the
root phase and the largest subordinate
phase can reside in the problem progranm
area simultaneously.

The programmer can construct subordinate
phases of several levels. A first-level
subordinate phase is one that is loaded as
the result of a call from the root phase;
the origin of such a phase usually is the
first available location following the root
phase. A second-level subordinate phase is
one that is loaded as the result of a call
from a first-level phase; its eorigin
usually is the first available location
following the first-level phase. A
third-level subordinate phase is one that
is loaded as the result of a call from a
second-level phase, and so on. When phases
of several levels are used, the root phase
and the largest subordinate phase
structure -- a series of two or more levels
of subordinate phases -- may not exceed the
size of the problem program area.

Fiqure 2 gives an example of a root
phase overlay structure in the problen
program area. In this illustration, ROOT
is the root phase; A, B, and C are
first-level subordinate phases; AA and CC
are second-level phases. Two subordinate
phase structures exist. One consists of
phases A and AA; the other is made up of
phases C and CC.

26 System/360 Model 48PS Guide to System Use FORTRAN

1
|
|
ROOT I
!
|
J

Note that it is permissible to pass
arqguments (represented here by X, Y,
from one phase to a subprogram in another
phase.
executed
made to the calling phase (in the above
example, from phase ALPHA to the root
phase).

and 2Z)

Once the called subprogram has been
in the normal fashion,

return is

Linkage Editor Control Statements

—— e —— ——— — o]

)

[

|

|

a

|

F .
| |
| |
| i
| |
—
| |
|

| AR

|

[

[

|

|

[

/%

Root Phase Overlay Structure

%A%

Figqure 2.

The proarammer is free to structure his
subordinate phases in the way that best
suits the needs of his proqram.

Calling Statement for Root Phase Overlay

To request that a new phase be loaded,
the programmer must place the following
CALL statement in his source program:

CALL LOAD ('phasenamel')
This statement causes the phase whose e
is specified to be loaded into the problem
program area. However, control returns to
the next statement in the calling phase; it
is not transferred to the newly loaded
phase.

3

am
Qo

The phase name specified in the CALL 3.
statement must be the name of the phase as
specified in a linkage editor PHASE
statement.

After the requested phase has been
loaded, the programmer can use any
subprogram within it by means of a CALL
statement addressina that subprogram. For
example, consider a first-level subordinate
phase AVLPHA incorporating the subprograms
BETA and GAMMA. The following sequence of
statements in the root phase will cause
phase ALPHA to be loaded and subprogram
GAMMA to be executed:

CALL LOAD ('ALPHA')

CALL GAMMA (X,Y,2)

ere must be ome PHASE

P R I N
1

statement in the

in

linkage editor input deck for each phase of
a multiphase program using root phase
overlay.
a unique
phase is

Each PHASE statement must specify

rhase name. The origin of each
specified as follows:

The word ROOT is specified for the
origin of the root phase. This causes
the phase to be loaded at the first
available location in the problenm
program area. The specification ROOT
differs from the specification S in
that it identifies the root phase to
the linkage editor.

The character x (asterisk) can be
specified to set the origin of a
sutbordinate phase at the first
location following the most recently
processed phase. For example, assume
that the first PHASE statement in the
deck refers to the root phase;
accordingly, its origin is specified
by ROOT. Assume that the next PHASE
statement refers to a first-level
subordinate phase named ALPHA. The
origin of ALPHA should be specified by
% to cause it to be loaded into the
area immediately following that
occupied by the root phase. If the

next PHASE statement refers to a

second-level subordinate phase named
BETA that is called by phase ALPHA,
the origin of BETA should also be
specified by % to cause it to follow
phase ALPHA in storage.

The name of a phase currently in the
phase library (this includes all
phases previously created in this job
step) can be specified to set the
origin of the current phase equal to
the origin of the phase whose name is
specified. For example, consider
again the linkage editor input deck
discussed in point 2, above. Assume
that the next PHASE statement (after
the PHASE statement for BETA) refers
to another first-level subordinate
phase named GAMMA. Phase GAMMA should
have the same origin as phase ALPHA,
namely, the first available location
following the root phase. This can be
accomplished by specifying the phase
name ALPHA as the origin in the PHASE
statement for GAMMA.

Job Processing 27

If phase GAMMA calls a second-level
subordinate phase, named DELTA, the PHASE
statement for DELTA should be the next
PHASE statement in the linkage editor input
deck. 1Its origin should be specified by x,
which loads DELTA at the first location
followina GAMMA. ©Note that the
specification BETA, the name of the
second-level phase called by ALPHA, should
not be used. The origin of BETA follows
ALPHA; the origin of DELTA should follow
GAMMA. If GAMMA is longer than ALPHA, the
specification BETA would cause DELTA to
overlay part of GAMMA.

If phase GAMMA calls another
second-level phase named ETA, its PHASE
statement should be the next PHASE
statement in the linkaqe editor input deck.
The origin of ETA can be specified by
DETTA, since ETA and DELTA are both
second-level phases called by GAMMA and
should have the same origin.

From the examples given thus far, it can
be seen that phases should be processed in
a given order. The root phase should be
processed first, followed by a first-level
subordinate phase, followed by a
second-level phase, if any, and so on. If
a progranm is to be structured as shown in
Figure 3, the order in which these phases
should be processed and the origin that
should be specified for each is:

Phase Origin
ROOTPH ROOT

A *

AA *

AAA *

AAB AAA

AB AA

B A

BB *

BC BB

C A or B
cC *

D A or Bor C

LINKAGE EDITOR OPERATION

To the linkage editor each module it
processes is a control section (CSECT).
Each CSECT has a name -~ the name of every
-CSECT that is a FORTRAN main program is
MAIN4L; the name of every subprogram CSECT
is the subprogram name followed by an equal
sign. For example, the CSECT name for the
subprogram SUBPRO is SUBPRO=.

The linkage editor processes control
sections according to the following rules:

1. If a CSECT name matches the name of
another CSECT in the same phase or in

r gl
i [
| |
| ROOTPH |
| |
| |
} AJ L] T ‘1
| | | | |
] A | B { c | D |
| | 1 | {
| 1 { | |
| | v |
| | | | i
| | | | |
F T 4 | cc | |
| | | | | [
AR	AB p———a—-v				
			l		
A T W					
= {					
[o N					
t——					
i			(
:AAA:AAB l					
oeteserited]					
Lo o \\ 5					
	% : {				
- SN\ _
Figure 3. Order of Phases

the root phase, the new CSECT is not
included in the current phase. For
example, an attempt to include two
main programs (both shave the CSECT
name MAIN4L4) in one phase causes the
second main program to be ignored.

2. If a CSECT name matches the name of a
CSECT in another phase (except the
root phase), the new CSECT is included
in the current phase but a warning
message is issued. The message is
numbered KAQ2TI. (This does not hold
true when the new CSECT is one
automatically linked from the module
library.) An example of this occurs
when a complete overlay multiphase
program is processed. Each phase
contains a main program with CSECT
name MAIN44. The linkage editor
prints the KAO02I message for each main
program it processes other than the
first. However, in these instances
the warning message can be ignored.

Define FILE Statements

If a direct access data set is referred to
in two or more subordinate phases, it
should be defined in the main program with
a single DEFINE FILE statement.

28 System/360 Model 44PS Guide to System Use FORTRAN

Named COMMON and BLOCK DATA_ Areas

It has already been mentioned that the
linkage editor allocates a common area
equal in size to the largest common area in
any phase. All references to COMMON are
resolved to this area except for references
to a named COMMON of the same name as a
BLLOCKX DATA area. All references to such a
named COMMON are resolved to the BLOCK DATA

area, which is within a phase.

This causes no problem when the complete
phase overlay structure is used. However,
for the root phase overlay structure, the
danger exists that a reference to named
COMMON will be resolved to a BLOCK DATA
area, even though the phase containing the
BLOCK DATA is not in main storage. For
this reason, a BLOCK DATA area of the same
name as a named COMMON should appear only
in the root phase,

Job Processing 29

CONTROL STATEMENTS

The Model 44 Programming System provides
two types of control statements that can be
used by the FORTRAN programmer: job
control statements and linkage editor
control statements. This chapter gives the
rules for writing these control statements
and describes each statement with respect
to format and content.

JOB CONTROI STATEMENTS

Job control statements are designed for an
80-column punched card format. Although
certain restrictions must be observed, the
statements are essentially free form.
Information must start in column 1 and
cannot extend beyond column 71. If the
lenath of a statement exceeds 71
characters, it may be continued on
additional cards, as discussed later in
this section.

L statement may consist of from one
through four fields. The crder of the
fields in the statement are: the
identifier field, the name field, the
operation field, and the operand field.

The identifier field occupies card
colupns 1 and 2. It contaims a
two-character combination that identifies
the statement as a job control statement.
The identifier combination for most job
control statements is //. The exceptions
are /& for the end-of-job statement, /% for
the end-of-data statement, and xb (asterisk
followed by a blank) for the ccmments
statement.

The name field begins in column 3 and
may not extend beyond column 10. The name
field is permitted in only the JOB, EXEC,
ALLOC, and ACCESS statements. Tf the name
field of a statement is not used, column 3
must contain a blank.

The operation field, which identifies
the statement by name (JOB, EXEC, etc.),
may start in any column after column 3. If
the statement has a name field, the
operation field must be separated from the
name field by at least one blank.

The operand field follows the operation
field, separated from it by at least one
blank. The operand field usually consists
of a series of specifications, separated
from each other by commas or parentheses.
Except where otherwise indicated,
specifications should be punched in the
order shown in the statement formats. 1In

30 System/360 Model 44PS Guide to System Use

general, no blanks are permitted within the
operand field. The exception to this rule
occurs when a blank character is permitted
within a specification. Otherwise, the
first blank in an operand field causes any
characters following the blank and
preceding column 72 to be treated as
comments.

Column 72 in each card is the
continuation column. A nonblank character
in this column indicates that the statement
is continued on the next card. The first
card of a statement must contain the
identifier field, the name field (if used),
the operation field, and at least one
specification of the operand field. The
statement can be interrupted only after a
comma used to separate two specifications.

It is not necessary to fill up a card
before continuing the statement on a new
card. The final comma may appear in any
column before column 71; in this case, at
least one blank must follow the comma and
then comments may appear through column 71.
The continuvation character is punched in
column 72.

As many continuation cards as necessary
may be used for a single statement. There
must be a nonblank character in column 72
of each card except the last. Each card
must contain the characters // in columns 1
and 2. The operand field of the statement
must always resume in column 16. If column
16 of any continuvation card is blank, the
text on it and on any subsequent
continuation cards for the statement is
treated as comments.

Columns 73 through 80 of all cards are

iagnored by the system and may be used for
any purpose.

Comments in_Job_Control Statements

There are several ways in which comments
can appear in job control statements. All
such comments are printed on SYSLST.

As was already shown, comments can
appear in job control statements that have
an operand field. They are written after
the operand field (or a portion of an
operand field that is continued on another
card) and separated from it by at least one
blank. Comments can also be written as a
series of continuation cards, the first of
which has a blank in column 16.

FORTRAN

For statements in which an operand field
is permitted but is not being used, the
absence of the field must be indicated by a
comma and at least one blank before the
start of any conmments.

Comments are also permitted in
statements that do not have an operand
field, such as the end-of-job (/§)
statement, as long as the comments are
preceded by at least one blank.

Continuation cards may nct be used,

however, to extend these ccmments.

Comments statements may be placed
anywhere in the job deck. <€olumn 1 must
contain an asterisk; column 2 must contain
a blank; the remainder of the card, up to
column 72, may contain any characters,
including blanks. Comments statements are
designed for communication with the
operator; accordingly, they are written on
the console printer-keyboard, SYSLOG, as
well as being written on SYSLST.

Character Set

Statements may contain any of 39 alphameric
characters recognized by the programming
system. The term "alphameric characters"
refers to both alphabetic and numeric
characters.

Alphabetic characters are defined for
the system as the 26 letters of the
alphabet, A through 2, plus 3 special
characters: $ # 2.

The numeric characters are the digits 0
through 9.

In addition to the 39 alrhameric
characters, the following characters may
appear in job control statements, but only
wvhere specifically indicated in the
statement formats:

asterisk *
comma .
equal sign =
parentheses ()
single guote '
slash /

211 job control statements must be
punched in the Extended
Binary-Coded-Decimal Interchange Code
(EBCDIC) .

Statement Formats

The job control statements are presented in
this chapter in alphabetic order.
statement, the statement format appears
first, showing the contents of the
identifier, name, operation, and operand
fields., Immediately following each
statement format is a specifications table,

For each

which indicates for each specification in
the statement format the reason for
specifying it and how to specify it.

An attempt has been made to keep each
statement format as simple as possible.
For some statements, more complex
specifications in the operand field are
dealt with in additional tables, one for
each of these more complex specifications.
Tn all cases, the reader is directed to the
appropriate table in the specifications
table following the statement format.

The following notation is used in the
statement formats:

1. 11l upper-case letters represent
specifications that are to appear in
the actual statement exactly as shown
in the statement format. For exanple,
JOB in the operation field of the JOB
statement should be punched exactly as
shown -- JOB

2. All lower-case letters represent
generic terms that are to be replaced
in the actual statement. For example,
jobname is a generic term that should
be replaced by the name that the
programmer is giving his job.

3. Hyphens are used to join two or more
words in order to form a single
generic term. For exanmple,
data-length is one generic term.

4. Brackets are used to indicate that a
specification is optional and is not
always required in the statement. For
example, [CATLG] means that the word
CATLG may or may not appear in the
statement, depending on the
programmer's requirements.

5. Braces enclosing stacked items
indicate that a choice of one itenm
must be made by the programmer. For
example:

§2400
1600

means that either 2400 or 1600, but
not both, must appear in the actual
statement.

6. Brackets enclosing stacked items
indicate that a choice of one iten
may, but need not, be made by the
programmer. For example:

Control Statements 31

32

[DECW
NODECK

means that either DECX or NODEC¥X, but
not both, may appear in the actual
statement, or the specification can be
omitted entirely.

An underlined item represents the
default option -- the choice that will
be made by the programming system if
the progqrammer omits a specification.
For example:

NOSOURCE
[§Q§_R§E

means that either NOSOURCE or SOURCE,

but not both, may appear in the actual
statement, or the specification can be
omitted entirely (in which case SOURCE
is assumed by the programming system).

In other words, specifying SOURCE
produces the same result as omitting
the specification entirely.

Note: The default options shown in
this publication are those that exist
in the distributed version of the
Model 44 Programming System. However,
these defaults can be altered by an
installation during the systenm
construction process or the systen
assembly process.

All punctuation marks shown in the
statement formats other than hyphens,
brackets, braces, and underlines are
punched exactly as shown. For
example, [,NOAUTO] means that the
specification, if present in the
statement, should consist of the seven
characters ,NOAUTO so that the initial
comma is included.

System/360 Model 44PS Guide to System Use FORTRAN

ACCESS Statement {Unit Record Data_ Sets)

Id Name Operation Operand

T T T T
i//1 SYsSxxx |ACCESS jdsname, { type= |
] | | | {devadr=}
L 1 1 AL

e e

L o L] v !
| Specification | Reason for Specifying | How to Specify |
F } + !
\//7 | Required |As shown |
1 1l 4 4
r 1 1 1
1SYSxxx IRequired; associates the data |Any valid symbolic unit name {
| |set with a symbolic unit name | {
1 4 R U]
T T] Ll
|ACCESS | Required |As shown |
F 1 + 4
dsname	Required; indicates the name of	From one through eight alphameric
jthe data set	characters, the first of which must	
		be a letter
[+ + {		
ltype=	To identify, throuqh its device	One of the unit record device tvpe
jtype code, the device to be	codes (see next chart), followed by	
	used lan equal sign	
+ } + i
|devadr= |To identify, throuah its device|A three-character device address |
| |address, the device to be used | (supplied by the installation), fol-|
| | |lowed by an equal sign |
L A 1 J

Control Statements 33

Unit Reccrd Device Type Codes:

Code Meaning
r T 1
1442 } IBM 1442-N1 Card Read-Punch | Note: Each code 1is speci-
t t 4 fied as shown.
|1442P |IBM 1442-N2 Card Punch |
l —t 4
12520 |IBM 2520 Card Read-Punch
b + 4
12520P | IBM 2520-B2, B3 Card Punch
L } 4
] 1 1
12501 | IBM 2501 Card Reader |
— t 4
12540 | IBM 2540 Card Read-Punch |
| | (Reader side) |
F + 4
}12540pP { IBM 2540 Card Read-Punch |
| | (Punch side) |
b + i
11403 |IBM 1403 Printer, Model 2, 3, or N1 |
| | (122 characters) |
k } 1
1140317 {IBM 1403 Printer, Model 7]
] | (120 characters) |
1 } " |
L] T 1
114643 |IBM 1443 Printer, Model N1 |
| | ({120 characters) |
1 Il 4
] 1 1
| 1443S | IBM 1443 Printer, Model N1
| | (144 characters) Special Feature |
L L 3
Example:

//SYS0CU ACCESS CARDDATA, t4u2=

This statement causes an IBM 1442-N1
Card Read Punch to be used for the data set
named CARDDATA. The data set is asscciated
with symbolic unit SYS004 (correspcnding to
data set reference number 4).

34 System/360 Model 44PS Guide to System Use FORTRAN

ACCESS Statement (Tape Data Sets)

Id Name Operation Operand

r T T T
\//1 SY¥Sxxx | ACCESS {dsname,volumef,EXT]
i i 1 'y

r T LE 1
| Specification | Reason for Specifying | How to Specify i
b + + 1
\// | Required |As shown |
i 1 i 4
| 1 1 1
}|SYSxxx jRequired; associates the data |Any valid symbolic unit name
| |set with a symbolic unit name | |
k + + i
|ACCESS | Required |As shown |
L I i " |
L} Ll Bl 1
|dsname |Required; indicates the name of |From one through eight alphameric |
| |the data set |characters, the first of which must |
] | |be a letter; for labeled tapes, the |
| | J]data set name as contained in the |
| | |data set label |
— + } 4
|volume |Required; identifies the device|The tape volume designation (see
| jand volume to be used Inext chart) |
1 i [l 4
s L] T 1
|EXT |Indicates that data is to be |As shown |
| |added to the data set | |
L 1 1 i
Control Statements 35

Tape Volume Designation:

ftype [toptions)] =tyolid!
ldevadr} { }

r T L 4 1
| Specification | Reason for Specifying 1 How to Specify |
L 4 4 . |
1 4 L) L) L]
|type |To identify, throuah its device|One of the tape device type codes |
| | type code, the device to be | (see below) |
i |used | |
¢ + + 1
|devadr |To identify, through its device|AR three-character device address |
| |address, the device to be used | (supplied by the installation) |
L i 4 4
L] Bl T A
(options)	To specify tape options for	From one through four tape options
	tape units with device type	(see below), separated by commas;
	codes (see below) 2400T7,	the list must be enclosed in paren-
i 1240077C, or 24(CO0D	theses {	
— } I 4		
¥ 1 + 1		
j='volid®	To identify, through its volid,	From one through six characters (for
jthe tape volume to be used	labeled tapes, the volume serial	
		number from the volume label), en-
i jclosed in single quotes; an equal		
		sign must precede the first gquote
1 4	A4	
T L 1		
1= J]To indicate that the tape has	An equal sign	
jno volid; permitted for unla-		
	beled tapes only	
L A1 A]

Tape Device Type Codes:

Code Meaning

2400 IBM 2400 Magnetic Tape Unit with

9-track read/write head; 800 bpi only

Note: Each code is speci-
fied as shown.

—)

o ——]

¥

]

|

F 4
12400H | IBM 2400 Magnetic Tape Unit with |
| |9-track read/write head; 1600 bpi |
| jonly |
i 1 J
| 1 1
12400D |IBM 2400 Magnetic Tape Unit with |
| |9-track read/write head; dual density]
L N -4
1] T 1
1240077 |IBM 2400 Magnetic Tape Unit with

| |7-track read/write head |
|l <4 " |
L] L
{24C0T7C | IBM 2400 Magnetic Tape Unit with

| |7-track read/write head and the |
| |Convert Feature |
L A]

36 System/360 Model 44PS Guide to System Use FORTRAN

Tape Options:

For tape units of device type code 2400T7:

For tape units of device type code 2400T7C:

w N
6,)
o O
—
o =
L

r—
Iz 3
I3

[

(G N}
wn o
oo

—
10 =

—_

| —
=2 3

—

| —
0 =

[e)
I

]

800
L=
For tape units of device type code 2400D: [800
Lw 0
cption Meaning

;200 ;To indicate a tap of 200 bpii Note: Options may appear in
X + 4 the option list in any or-
{1556 |To indicate a tape density of 556 bpi| der; each option is speci-
+ + 4 fied as shown.
1800 |Default option; indicates a tape den-|
| |sity of 800 bpi |
L 1 J
1 1 L)
116C0 |To indicate a tape density of 1600 |
| ibpi |
k - === —4- 1
1E |To indicate even parity; should not |
| |be specified unless NC is specified |
L I . |
1) T 1
10 |Default option; indicates odd parity |
L R o |
L T 1
IT |To indicate that the translate fea- |
| jture is to be used; should not be |
| |specified unless NC is specified |
L 4 o |
T T 1
INT |Default option; indicates that the |
] |translate feature is not to be used |
— + 1
|NC |]To indicate that the convert feature |
| |is nct to be used; required if eitter|
} |E or T is specified |
— { 1
IC |Default option; indicates that the |
| jconvert feature is to be used {
L A J
Example:

//5¥5004 ACCESS TAPEDATA,2400D(1600)="'T77063"

This statement causes an IBM 2400

Magnetic Tape Unit with 9-track read/write
head and dual density to be used for the
data set named TAPEDATA. The tape density
is 1600 bytes per inch. The data set is

located on the volume whose volid is T7063;
the data set is associated with symbolic
unit SYS004 (corresponding to data set
reference number 4).

Control Statements 37

ACCFSS Statement (Direct Access Data Sets)

14 Name Operation Operand

-

T A Al
1//1 [SYSxxx1 | ACCESS |dsname[(member names)][,volume][,EXT]I{,NEW][,UNDETF] |
L L 1

Reason for Specifying How to Specify

RPequired

.
|
i
L
| As shown
1

T

1
|
_}
|
1
4
|SYSxxx |Associates the data set, or a |Any valid symbolic unit name
	member of a directoried data
	set, with a symbolic unit name
	(2 memter is associated if mem-
{ter names are specified in the	
	operand field); may be omitted
	if no data transmission is in-
]tended for the data set (for
	example, the data set is to be
	deleted, condensed, or renamed
	subsequently in the job)
b +	

+

Fequired As shown

Required; indicates the name of|The name of the data set, as con-
the data set |tained in the VTOC of the volume on
|which it is located
1

4
1
|

4
Ll
|
|
|
i
L)

1
({member names) |For directoried data sets only;|One or more member names, separated
| |required when an existing mem- |by commas; the list must be enclosed
| |ber is to be used or when a new|in parentheses; each member name
| |member is to be created; indi- |consists of from one through eight
{ |cates one name of an existing |alphameric characters, the first of
| |member or one or more names of |which must be a letter
|
F
|

|a new member |
4 i

1 T

volume |To indicate the location of the|One of the disk volume designations
| |data set; may be omitted for | (see next chart)
| |system data sets, cataloged |
| jdata sets, or data sets speci- |
| {fied in a previous ACCESS or |
| JAT.LOC statement within the job |
t } +
| |

+
EXT |Indicates that data is to be As shown
| ladded to the data set; not per-|

i jmitted if member names are spe-|

| jcified |
I
|

T v
NEW {For directoried data sets only;{As shown
| jrequired when a data set member|
| |is to be created |
t + +
{UNDEF }Indicates that the data set is |As shown
|
|
[%

|to be processed using the

|
| jundefined-read method
— 4

b e e e bt e o e e e e e e e e e o — e —— e e e e e e e e e e — e

38 System/360 Model U44PS Guide to System Use FORTRAN

Disk Volume Designations:

To identify a volume through its volid:

1 ='volid"

-

{type
devadr

} [(WRCHY)

(NOQWRCHK)

To identify a volume through another data set it contains:

SAME [(WRCHK) =dsname |
(NOWRCHK) =5YSxxx |

f v Rl 1
| Specification | Reason fcr Specifying | How to Specify |
1 3 4 |
1 T) 1
Itype |To identify, through its devicejOne of the direct access device type|
1 |type code, the device to be |codes (see below) |
| jused | |
¢ + t i
|devadr |To identify, through its device|A three-character device address |
| Jaddress, the device to be used | (supplied by the installation) |
L 4 1)
L T T L]
| (WRCHK) |To indicate that write validity|As shown, enclosed in parentheses {
| jchecking is to ke performed for| |
| |the data set |]
— + + 1
| (NOWRCHK) | To indicate that write validity|lAs shown, enclosed in parentheses |
| Jchecking is not to be performed| {
| |for the data set | |
t + + 8|
=t'volid!	To identify the disk volume	The volume serial number from the
jthat contains the data set; re-	volume label, enclosed in single	
lquired if type or devadr is	guotes; an equal sign must precede	
	specified	the first quote
5 + + q		
SAME	Required wten the volume is be-	As shown
	ing identified through another	
Jdata set it contains		
t } + 9		
I=dsname	To identify the other data set IAn egual siqgn followed by the name	
	by name jof the other data set	
L } 1l ")		
LJ T L R		
=SYSxxx	To identify the cther data set {An equal sign followed by the sym-	
	through the symbolic unit name	bolic unit name associated with the
	currently associated with it	data set
L 1 AL J
Direct Access Device Type Codes:
Code Meaning

I T 1
|SDSD 1Single Disk Storage Drive | Note: Each code is speci-
| | (2315 Disk Cartridqge) | fied as shown.
L . J
I L] 1
11316 JIBM 13216 Disk Pack mounted on
| |an IBM 2311 Disk Storage Drive |
L 1 J

Control Statements 39

ALIOC Statement (Tape Data_ Sets)

Id Name Operation Operand

r T Al R 1
\//1 SYSxxx | ALTOC |dsname,volume[,CATLG] |
L 1 1 A 3
| Rl 1 1
| Specification | Reason for Specifying | How to Specify |
— + + 9
\// { Required |As shown |
— —+- + 4
|SYSxxx | Required; associates the data |Any valid symbolic unit name i
} | set with a symbolic unit name |]
t + + 4
[ATLCC | Required |As shown |
5 1 + 1
dsname	Required; indicates the name of	From one through eight alphameric
	the data set	characters, the first of which must
	Ibe a letter	
t + + 1		
volume	Required; identifies the device	The tape volume designation (see i
land vclume to be used	next chart)	
1 i 4 "		
! K h		
CATLG	To enter the data set into the	As shown
	system catalog	
L A A Jd
40 System/360 Model 44PS Guide to System Use FORTRAN

Tape Volume Designation:

type [(options)] =tyclid!"
devadr =FRESH

|volume is to be used

L

T T T]
| Specification | Reason for Specifying | How to Specify |
— i } '}
3 L] Bl L]
ltype |To identify, through its devicejOne of the tape device type cocdes !
| |type code, the device to be | (see below) |
| |used | |
s % t 1
{devadr jTo identify, through its devicel|A three-character device address]
| laddress, the device to be used | (supplied by the installation) |
L 31 4 J
L 1 \J 1
(options)	To specify tape options for	From one through four tape options
	tape units with device type	(see below), separated by commas;
	codes (see below) 2800T7, Jthe list must be enclosed in paren-	
	2400T7C, or 24CO0D	theses o
1 4 1 4		
¥ T 1 i)		
=tvolid!	To identify, through its volid,	From one through six characters (for
	the tape volume to be used	labeled tapes, the volume serial
		number from the volume label), en-
		closed in single quotes; an equal i
	Isign must precede the first quote	
—	"	
L L] 1		
=FRESH	To indicate that a fresh tape As shown, preceded by an equal sign	

)

F— —+

m m———

Tape Device Type Codes:

Code Meaning
r T =
12400 | IBM 2400 Magnetic Tape Unit with | Note: Each code is speci-
| |9-track read/write head; 800 bpi onlyj ied as shown.
— 4 . |
I 1 1
124008 | IBM 2400 Magnetic Tape Unit with
| |9-track read/write head; 1600 bpi |
| lonly |
L } —
1 3 T]
124C0D |IBM 24C0 Magnetic Tape Unit with |
| |9-track read/write head; dual density]
L 1 Jd
L L 1
12400T7 {IBM 2400 Magnetic Tape Unit with |
| |7-track read/write head |
— + !
12800T7C | IBM 2400 Magnetic Tape Unit with |
| |7-track read/vwrite head and the |
| |Convert Feature |
- 1 3

Control Statements 41

Tape_Opticns:

For tape units of device type code 2u400T7: 200 7]
556
800
For tare units of device type code 2400T7C: 200
556
800
For tape units of device type code 2400D: 800 7
1600 |
option Meaning
— 1 K
1200 |To indicate a tape density of 200 bpi|
L 4 i |
T RS il
1556 |To indicate a tape density of 556 bpi]
L 3 .
T L} 1
1800 | Default option; indicates a tape den-|
| jsity of 800 bpi |
— + 9
11600 |To indicate a tape density of 1600 |
| Ibpi |
k + 1
|E |To indicate even parity; should not |
| |be specified unless NC is specified |
L . 4
T] 1
10 |Default option; indicates odd parity |
1 4 1
r T 1
\ T	To indicate that the translate fea-
	ture is to be used; should not be
	specified unless NC is specified
L.] A	
T T 1	
INT	Default option; indicates that the
	translate feature is not to be used
L 1 1	
r T 1	
I1NC {To indicate that the convert feature	
]is nct to be used; required if either
	F or T is specified
F + 4
IC |Default opticn; indicates that the |
i Jconvert feature is to be used |
L A]
Example:

//SYS003 ALLOC NEWDATA,2400T7C(556) =FRESH

The statement causes an IBM 2400
Maagnetic Tape Unit with a 7-track
read/write head and the ccnvert feature to
be used for the data set named NEWDATA.
The tape density is 556 bytes per inch;
default cptions indicate odd parity,

the 3).

42 System/360 Model 44PS Guide to System Use FORTRAN

1O t9

@)

nonuse of the translate feature,
use of the convert feature.
is assigned to a fresh tape volume and
associated with symbolic unit SY¥S003
(corresponding to data set reference number

I
I

1= 3 |z +3
=] I3
[E— [
—
N =

O
| I—

Note: Options may appear in

tte option list
der; each option is
fied as shown.

in any or-

speci-

and the
The data set

ALLOC Statement (Direct Access Data Sets)

Id Name Operation Operand

r T T T
\//1 [SY¥Sxxx] | ALLOC |dsname[,volume],data lengthf ,directory length][,FMT][,CATLG] I
L 1 AL A

T T T al
{ Specification | Reason for Specifying | How to Specify |
F + + {
\// | Required |As shown |
- + + 4
|SY¥YSxxx ITo associate the data set with |Any valid symbolic unit name

| {a symbolic unit name | |
} + } 4
[ALLCC | Required [As shown |
t + + 4
tdsname {Required; indicates the name of|From one through eight alphameric |
| |the data set |characters, the first of which must |
| | tbe a letter |
t + + 1
lvolume |Tdentifies the device and/or {One of the disk volume disignations |
| jvolume on which space for the | (see next chart)]
jdata set is to be allocated;		
jrequired unless the data set is		
	to be allocated on the sytenm	
	residence volume	
= } } !		
Jdata length	Required; indicates the number [A decimal number from 1 through	
	of blocks to be allocated for 65535	
	the data set	
H + + 1		
directory length	Required for a directoried datal	lA decimal number from 1 through
	set only; indicates the number	65534
jof entries in the directory,		
jone for each member name		
L. [l [l .		
i 1] T 1		
FMT	Required if FORTRAN direct ac-	As shown
	cess input/output cperations	i
]are to be performed on the datal	
	set 1	
F + : 1		
JCATLG]To enter the data set into the	As shown	
	system catalog	
i i i)]

Control Statements 43

Disk Volume Designations:

To request a fresh volume or a volume having a particular volid:

type (WRCHY) =FRFSH
devadr (NOWRCHY) =tyolid?"

To reguest a volume that contains ancther particular data set:

SAME[(WRCHK) =dsname
(NOWRCHK) =SYSXxXX

r T T hl
| Specification | Reason for Specifying | How to Specify |
L 3 4 4
Ll 1 T a
|type]To identify, through its device|One of the direct access device type]
| |type code, the device to be |codes (see next chart) |
| jused | |
= + 1 1
|devadr |To identify, through its device|l three-character device address |
| {address, the device to be used | (supplied by the installation) |
L 41 4 1
T L) L 1
| (WRCHK) |To indicate that write validity{As shown, enclosed in parentheses |
| |checking is to be performed forj| |
[|the data set | |
} + + {
| (NOWRCHK)] To indicate that write validity|As shown, enclosed in parentheses |
] {checking is not to be performed| |
| |for the data set | |
+ + + 4
|=FRESH |To indicate that a fresh disk |As shown, preceded by an egual sign |
| |volume is to be used | |
i [l i N |
I 1 L 1
|='volid?]To identify, through its volid, |The volume serial number from the | |
| |the disk vclume to be used |[volume label, enclosed in single |
| i |quotes; an equal sign must precede |
| | |the first quote |
i | i |
L | T T il
|SAME |Required wtea a volume contain-|As shown |
| |ing ancther particular data set| |
{ |is to be used | |
t + + 1
|=dsname |To identify the other data set |An equal siqgn followed by the name |
| | by name |of the other data set |
| o + ; + {
=SYSxxx |To identify the cther data set |An equal sign followed by the sym- |

l

|

J

o e

| through the symbolic unit name |bolic unit name associated with the

{currently associated with it jdata set
i 1

44 System/360 Model 44PS Guide to System Use FORTRAN

Direct Access Device Type Codes:

Code Meaninag
r T 1
|SDSD |Single Disk Stcrage Drive | Note: Fach code 1is speci-
| | (2315 risk Cartridae) | fied as shown.
= + 1
11316]IBM 1316 Disk Pack mounted on
| fan IBM 2311 Disk Storage Drive |
L L " |
Example:

//S¥S002 ALLOC DISKDATA, 1316 (NOWRCHK) =*D0036",50

This statement causes 50 blocks of space SYS002 (corresponding to data set reference
to be allocated on an IBM 1316 Disk Pack number 2).
for the data set named DISKDATA. The disk
pack has the volume identificaticn D0O036.
No write checking is performed for the data (Note: This statement must be immediately

set, which is associated with symbolic unit followed by a LABEL statement.)

Control Statements 45

CATLG Statement

Id Name Operation Operand

L] T T T 1
\//1 { CATLG |}dsname[,volume] |
L 1 —_ 1 1 J
— T N b
| Specification | Reason for Specifying | How to Specify |
— { + 1
\// | Required {As shown |
L 1 4 d
| T T 1
{CATTG | Required }As shown |
— } t 1
dsname	Required; indicates the name of	From one through eight alphameric
fthe data set to be entered into	characters, the first of which must	
	the system catalog	be a letter; may not duplicate any
	jdata set name already in the catalog]	
L 1 L o |
— T T E
{volume jIndicates the location of the |The cataloging volume designation

Jdata set to the system; may be	(see below)	
jomitted for a system data set		
	or a data set specified in a	
	previous ALLOC or ACCESS state-—	
	ment within the job	
L 1 i)
Cataloging Volume Degignaticn:

typel (options) 1=t'volid!

T T AJ 1
| Specification | Reason for Specifying | How to Specify |
L . L 4
L] L] 1 1
|type |To identify the device contain-|Any of the unit record, tape, or

| ling the data set by its device |direct access device type codes |
| |type code {listed for the ACCESS statement |
8 1 i]
[4 T LI 1
| (options) | To specify tape options or the |From one through four options, sepa-|
| |write checking options for Irated by commas; the list must be |
| |direct access devices jenclosed in parentheses (see the

| | J]ACCESS statement for permissible |
| [{options) |
F + + 4
='volid:?]To identify, through its volid, {The volume serial number, enclosed	
	the volume containing the data	in single guotes; an equal sign must
	set	precede the first quote
L L L. 1
Examrle:

// CATLG DISKDATA,1376(NOWRCHK) =*T0036"

This statement causes an entry for the an IBM 1316 Disk Pack with volume
data set named DISKDATA to be placed in the identification D0036. No write checking is
system catalog. The data set is located on to be performed for the data set.

46 System/360 Model 44PS Guide to System Use FORTRAN

CONDENSE Statement

Id Name Operaticn Operand

r T T

-
1CONDENSE
Lt - L

4

L 1 1

Specification | = Eeason for Specifying

"
»

[e]
=

“r
(o]

-

/7

As shown

(RS LRSS L Fol)

JY IR S S
(=g
n
n
len
Q
]
3

Qi
n
o]
joi
3
(0]

| Required;

|condensed
1 .

(o - — — - g o— e - -

|]the directcried data set to te

|which it is loc
A

indicates the name of|The name of the data set as con-
|tained in the VTOC of the volume on

ated

b o o e whe e e e e

Example:

// CONDENSE DRCTRYB

This statement causes the directoried
data set named DRCTRYB tc be condensed.
-After condensing, all space in the data set
follows the data set; all space in the
directory follows the last entry in the
directory.

Control Statements

47

DELETE Statement

Td Name Operation Operand

T T s T 1
\//1 | DELETE |dsname[(member names)] |
L L I 1 J
| j j L T 1
| Specification | Reason for Specifying | How to Specify |
- + + 1
\// | Required |As shown |
— ¢ + 4
|DELETE | Required |As shown |
— t + al
|dsname |Required; indicates the name of|The name of the data set as con-

| |the data set that is to be de- (tained in the VTOC of the volume on |
| jleted or from which one or morejwhich it is located |
| |member names are to be deleted | |
(W 4 I N |
L L 1)
| (mnember names) | For directoried data sets only;|One or more member names, separated |
| {to delete one or more member |by commas; the list must be enclosed]
	names from a data set (deletinglin parentheses; each member name	
}all the names c¢f a particular	must appear exactly as specified in	
	member deletes the member)	the ACCESS or RENAME statement that
i	assigned the name to the member {	
[. 1 L . |
Example:

// DELETE DISKDATA

This statement causes the data set named
DISKDATA to Le deleted frcm the volume on
which it is located. 1Its name is removed
from the volume table of contents (VTOC)
and from the system catalog, if applicable.
(Note: This statement must be preceded in
the job deck by an ALLOC or ACCESS
statement that refers to DISKDATA.)

48 System/360 Model 44PS Guide to System Use FORTRAN

EXEC Statement (FORTRAN)

Id Name

Operation

Operand

I T T
|//|[stepname]| EXEC
L L A

T
|FORTRAN[(parameter list)][, (VPSnn) J[,accounting information]

1

f v v 1
| Specification | Reason for Specifying | How to Specify |
L] 4 4
) T 1 1
\// | Required |As shown |
k + + !
|stepname |To name the job step; required |From one through eight alphameric |
|]to name the module produced by jcharacters, the first of which must |
| |the compiler, unless NOLINK is |be a letter |
| |specified in the parameter list| |
F + + 1
|EXEC | Required |As shown |
= t +)
|FORTRAN | Required |As shown |
= t + 4
| (parameter list) | To specify compiler options |From one through five parameters |
| | { (see next chart), separated by i
| | lcommas; the list must be enclosed |
| | |in parentheses |
I 1 1 .|
LB v L . . L]
{ (VPSnn) |To ensure that the variable |One of the following, enclosed in |
| | precision switch is set to the |parentheses: |
| {value nn I !
| | 1 VPS14 VPS10 |
| { | VPS12 VPs08 |
b 4 + 1
laccounting |To satisfy any installation re-|From 1 through 16 alphameric charac-|
| information |guirement lters, the first of which must be i
] | J]other than a left parenthesis or a |
|] |blank |
1 1 L |

Control Statements 49

Parameters:

DECXK NOSOURCE NCTI INX BCD MAP
NODECX SOURCE LINK EBCDIC [NOMAP]

Parameter Reason for Specifying
— T !
|DECK {To produce a module deck on SYSPCH |
1 4 4
r T !
| NODECK |Default option -- no deck produced |
1 1 |
[] L] 1
| NCSCURCE | To sugprress production of a source
{ |listing on SYSOPT |
1 Il |
] T 1
{SOURCE |Default option -- source listing pro-|
| |duced on SYSOPT |
[1]
I L) 1
|INOLINK |To surrress the writing of the module|
| Jon SYSCGO, the linkage editor input |
| Iunit {
L -+ . |
3 Ll 1
|LINK |Default option -- module written on |
| 1SYsS0CO |
F t 4
|BCD |Required if any source statements arel
| |punched in BCDIC |
t 4 i)
r T 1
|{EBCDIC |Default option -- source statements |
| fare punched in EBCTIC }
- 1 .|
L] L 1
| MAP | To produce a compiler storage map on |
I | SYSLST |
1 I -4
1 L]
| NOMAP |Default opticn —-- no compiler storage
i
L

- —

|map produced
1

50 System/360 Model 44PS Guide to System Use FORTRAN

Note: Parameters may appear
in the parameter 1list in
any order; each ©parameter
is specified as shown.

EXEC Statement (LNKEDT)

Id Name Operation Operand

T T R s T
|//|[stepname]} EXEC |LNKEDT[(parameter list)][,accounting information]]
[} 1 1

A B]

; ; - .
| Specification | Reason for Specifying | How to Specify 1
L i 4 o |
L] | T 1
\// | Required |As shown |
F t + 4
|stepname |To name the job step {From one through eight alphameric |
|] icharacters, the first of which must |
{ | |be a letter i
— [1 J
L] T Ll 1
| EXEC | Required {As shown |
b + + 1
|LNKEDT | Required |As shown |
1 i 1 [}
T Li L 1
| (parameter 1list) |To specify linkage editor op- |From one through three parameters |
| |tions | (see below), separated by commas; |
H i jthe list must be enclosed in paren- |
{ 1 {theses i
t ~ + + 4
laccounting |To satisty any installation re-|)From 1 through 16 alphameric charac-|
| information |quirement |ters, the first of which must be |
| | jother than a left parenthesis or a |
| { {blank i
L 1 L A
Parameters:
[KEEP] (NOMAP] [NOAUTO]
NOKEEP | | MAP |
Parameter Reascn for Specifying
L T 1
|[KEEP |To retain the phase output produced | Note: Parameters may appear
| |by the linkage editor; required if | in the parameter 1list in
| | phase execution is desired subsequent] any order; each parameter
| |to the job step immediately following} is specified as shown.
| |the linkage editor job step]
= t]
{NOKEEP |Default option -- phase output is |
| |discarded at the end of the job step |
I |immediately following the linkage ed-|
| {itor jct step |
F + 1
| NOMAP | To suprress the prcduction of a phasel
| |map on SYSLST |
¥ + 1
|MAP |Default opticn -- rhase map produced |
| jon SYSLST 1
- + 4
|NOAUTO |To surpress the automatic linking |
| |facility of the linkage editor during|
| }this jot step |
L. 1 |

Control Statements 51

EXEC Statement (Phase)

Id Name Operaticn Cperand

1 L T v
\//1[stepname]| EXEC | phasename]{, (VPSnn)][,accounting information]
L L . A1

r T T 1
| Specification | Reason fcr Specifying | How to Specify |
k t + 1
\// | Required |As shown |
— { + 4
stepname	To name the job step	From one through eight alphameric
		characters, the first of which must
		be a letter
H + + i		
EXEC }Required	{As shown	
- t + !
|phasename |To identify the phase that is |The name of the phase, exactly as |
| |to be executed; may be omitted |specified on the PHASE card used at |
|]if phase was produced by the jthe time the phase was created |
| |linkage editor in the immedi- | |
| |ately preceding jol step | |
L i 1 d
s Ll 1 4 1
| (VPSnn) |To ensure that the variable |one of the following, enclosed in {
| |precision switch is set to the |parentheses: |
| fvalue nn | |
| | | Vpsi4 VPsS10 |
| | | VpS12 Vps08 |
[+ + |
jaccounting 1To satisfy any installation re-|From 1 through 16 alphameric charac-|
| dinformation |quirement |ters, the first of which must be |
| | |]other than a left parenthesis or a |
| | |blank |
L L 1 J

52 System/360 Model 44PS Guide to System Use FORTRAN

JOB Statement

Id Name Operation Operand

L T Al T a1
t1//4[jobnamel } JCB { rpuMPp 1 .,accounting information) |
- | | | xopuse | |
[1 A A1 . |
L T T Al
| Specification | Reason for Specifying | How to Specify |
k + + |
\// |Required |As shown |
— = - } 4
| jobname |To name the job |From one through eight alphameric |
| | jcharacters, the first of which must |
{ | |be a letter |
F + } {
{JOB |Required |As shown |
IS 1]]
1] L) i 1
|DUME |To produce a dump if the pro- (As shown |
{ |gram terminates abnormally; the] |
| |contents of main storage and of| |
| |the general registers are writ-| |
| Iten on SYSLST [|
F + + i
|NCDUMP |Default opticn -- no dump pro- |As shown |
| |duced | |
t + } 4
|accounting |To satisfy any installation re-|{From 1 through 16 alphameric charac-|
| information jquirement fters, the first of which must be |
| i |other than a left parenthesis or a |
| | |blank |
L L A (]

Control Statements 53

IABEL Statement

1d Name Operation Operand

L R X T a
/71 | LABEL | [label-information |
[1 | {=dsname I
i | | { | SAME k=SYSxxx} |
L i i L 1

L T L 1
| Specification | Reason for Specifying | How to Specify |
1 } 4 J
L] LB ¥ 1
\// | Required |As shown |
1 4 1 i
T L] L] 1
| LABEL | Required |As shown |
k + t x!
{label-information |To provide label information |Label specifications (see next i
| |for a data set; required for |chart) |
| |direct access data sets unless | |
1 | SAME is specified | |
i } + !
|SAME |To indicate that the label in- |As shown |
| |formation for a data set dupli-| |
] jcates the information already | |
{ |given for ancther data set | |
F + + 1
|=dsnane |To identify the cther data set |An equal sign followed by the name |
| Iby name J]of the other data set |
F + + 1
|=SY¥Sxxx |To identify the other data set |An equal sign followed by the sym- |
| |through the symbolic unit name |bolic unit name associated with the |
{ |currently associated with it |other data set |
L 1 A J

54 System/360 Model 44PS Guide to System Use FORTRAN

label Specifications:

[block-length][,expiration-date] [,WRCHK][,NL]

s NOWRCHK
L J

Specification

T

d— 4

Reason for Specifying | How to Specify

block-length

iRequired for direct access data|Either a decimal number from 1

|sets; indicates the number of {(through 360

|bytes in a FORTRAN record |number specified for record length

|in a DEFINE
|the FORTRAN
(|

o ——

or a number equal to the

FILE statement within
program

- —— e o —

— e o — — - -

expiration-date

F————

]To specify the date on which |The date in
jthe data set may be deleted; | (two digits
jotherwise, the current date is |resents the
Jused as the expiration date |digits from

4

| |sents the day of the year
1

the form yyddd, where yy|
from 00 through 99) rep-|
year and ddd (three |
C01 throuagh 366) repre-

=

RCHK

T]

|To indicate that write checking|As shown
Jis to ke performed on a direct |

|access data set; can be cver-
|ridden by a specification of
| NOWRCHK in an ALLOC or ACCESS

|statement for the data set
i

- —— ——

NOWRCHK

Bl

]To indicate that write checking|As shown
]is not to be performed on a di-|

|rect access data set; can be |
foverridden by a specification
fof WRCHK in an ALLCC or ACCESS

|statement for the data set
4

(o e m — — — t—— e —— o ——
=
(o)

1
|To indicate that a tape is not |As shown
}labeled

L

|
|
|
+
|
{
N

|
|
|
[
{
{
!
|
1
|
l
|
|
[
|
!
!
l
J

Control Statements 55

LISTIO Statement

1d Name Operaticn Operand

L Ll T Li 1
\//1 | LISTIO | [PROG |
| | | | SYSxxx |
L L 4 A 4
r . . 1 v 1
| Specification | Reason for Specifying | How to Specify |
— } + 4
\// | Required |As shown |
— } { s
|LISTIO | Required |As shown |
1 '} i 4
T Al v 1
PROG	To limit the list cf current {As shown	
junit assignments to only those		
	assignments made or altered	
	during the current job	
t + + 1		
SYSxxx	To request that the current as-	The name of the symbolic unit whose
	signment of a single symbolic	current assignment is to be listed
	unit be listed	
L 1 1)

56 System/360 Model uUUPS Guide to System Use FORTRAN

RENAME Statement

4 |

new-memker-name

-

R T

|To indicate the new name of the|From one through eight alphameric
|member whose name is to be jcharacters, the first of which must
jchanged jbe a letter

L 1

14 Name Operation Operand
f T v T "~ Bl
1//71 | RENAME | fold-dsname, new-dsname i
|| | | |dsname (cld-member-name, new-member-name)} |
L L L 1.]
r Al L Al
| Specification | Reason for Specifying i How to Specify
b + + \
\// | Required {As shown |
L 1 L g
L] Bl 1 1
{RENAME | Required |As shown |
— + + 4
|old-dsname]To indicate the data set whose |The name of the data set as it |
| {name is to be changed lappears in the volume table of |
| | |contents |
t + t 1
new-dsname	To specify the new name for a	From one through eight alphameric
jdata set whose name is to be	characters, the first of which must	
	changed	be a letter
i + e + i		
dsname	To indicate the name of a	The name of the data set as it {
jdirectcried data set containinglappears in the volume table of		
	a member whose name is to be	jcontents
	changed	
b — + 1		
old-member-name	To indicate the member name IThe name of the member as it appears	
{that is to be changed	in the directory	
e "		
1		
]

Control Statements

57

ESET statement

Id Name Operation Operand

L] T L T 1
/71 | RESET |[SY¥Sxxx] |
L L i 41 J
f . . T T 1
| Specification | Reason for Specifying | How to Specify |
1 L K . 1
1 § 1 RS t
\// | Required |As shown |
L 41 1 4
— T T N
|RESET | Required |As shown |
- + -+)
[|SYSxxx |To indicate the unit whose |The symbolic unit name of any unit |
| |assignment is to be restored; |having a standard assignment |
| |the absence of this specifica- | |
| |tion causes all units with | |
| | standard assignments to be | |
| jrestored | |
L L 1 1
UNCATLG Statement

14 Name Operaticn Operand

r L] Al T 1
\//1 | UNCATLG |dsname {
L L L A]
r BB T . 1
| Specification | Reason for Specifying i How to Specify |
L i i 4
r T T 1
1// | Required |As shown]
— t + 1
|UNCATLG | Required |As shown |
— 1 + 4
]dsname	Required; indicates the name of	The name of the data set as it was
	the data set to be removed from	entered into the system catalogq
	the system catalog	
L L 1]

58 System/360 Model U4U4PS Guide to System Use FORTRAN

LINKAGE EDITOR CONTROL STATEMENTS

Linkage editor control statements consist
of only two fields -- an operation field
and an operand field. Both fields are
required.

The operation field, which identifies
the statement by name, may start in any
column after column 1. The operand field
follows the operation field, separated from
it by at least one blank. The operand
field consists of from one through three
specifications, separated from each other
by commas. Specifications must be punched
in the order shown in the statement
forpmats. No blanks are permitted within
the operand field.

Linkage editor control statements may
not be continued; all information must be
punched in one card. Comments may be
written in the statements; they must be
separated from the last character of the
operand field by at least one blank and

must not extend beyond cclumn 71.

Character Set

In addition to the 39 alrhameric characters
permitted in job control statements,

linkage editor control statements allow the
use of the characters comma and asterisk,
but only where specifically indicated in
the statement formats.

All linkage editor control statements
must be punched in the Extended
Binary-Coded-Decimal Interchange Code
(EBCDIC) .

Statement Formats

The linkage editor control statements are
presented here in aiphabetic order. For
each statement, the statement format
appears first, showing the contents of the
operation and operand fields. TImmediately
following each statement format is a
specifications table, which indicates for
each statement format specification the
reason for specifying it and how to specify
it.

The notation used in these statement
formats is the same as that used for the
job control statements.

Control Statements 59

INCLUDE Statement

Operaticn Operand

r T Al
| INCLUDE |module, {I } |
| | R |
L —1 Jd
1 4 B . i 1 T Al
| Specification | Reason for Specifying | How to Specify |
L i 4 o |
1 § L] 1 1
|INCLUDE | Required |As shown |
L 1 4 4
| L] L 1
module	Required to identify the module	The name of the module as it appears
	that is to be included in the	in a MODULE statement or as derived
	phase {from the name field of an EXEC	
		FORTRAN statement (see "Compila-
	ftion")	
L '} I ']		
L] L Bl L]		
L	To indicate that the mcdule to	As shown i
	be processed can be found on	
I 1SYS000	i	
L d 4 i		
1 T T Ll		
IR	To indicate that the module to	As shown i
	te processed can be found in	
{the module library]		
L 1 L J

MODULE Statement

Operation Operand
L T A}
| MODULE | name |
L L J
L] 1 Al 1
| Specification | Reason for Specifying | How to Specify {
L 1 1 4
[} L] Ll A
| MODULE | Required |As shown |
L i 4 2
|] v Ll |
name {Required; indicates the name of	From one through eight alphameric
{the module	characters, the first of which must
	Ibe a letter
L L 1 d

60 System/360 Model U44PS Guide to System Use FORTRAN

Operation Operand

r T 2]
i i 5 |
| PHASE |phasename, | * [,NORUTO] |
| i ROOT |
| ! { phase i
L R J
r S T 1
| Specification | Reason for Specifying | How to Specify]
t + } 4
| PHASE |Required | As shown H
I t + |
| phasename |Required to name the phase |From one through eight alphameric |
| | |characters, the first of which must |
| | |be alphabetic]
+ } +—]
|S | To specify that the phase have |As shown |
| |its origin at the first avail- | |
| Jable location in the problenm |]
| |program area | |
| * | To specify that the phase have |As shown |
| Jits origin at the first avail- |]
| Jable location after the most | |
| frecently processed phase in |]
] Jthe job step; equivalent to the]]
| |S specification if this is | |
| |the first PHASE statement in] |
| Jthe linkage editor input |]
| |deck | !
k + + 2
] RCOT | For multiphase programs only; |As shown]
| J]identifies the phase as a root |]
] jphase (its origin is the first | |
] lavailable location in the prob-| |
| |lem program area | |
t +- +— 4
|phase | To indicate that this phase is |The name of the other phase as spec-|
| Jto have the same origin as J]ified in the linkage editor PHASE |
| lanother phase currently in statement that named it |
| Jthe phase library | |
t t + 1
|NOAUTO | To suppress the automatic link-|As shown |
| ting facility for this phase] |
| lonly I |
L R A J

Control Statements 61

® figure 4.

Form C28-6813-2, page modified June 10,

The components of the Model 44 Programming
System produce aids that may be used to
document and debug programs. This chapter
describes the listings, maps, card decks,
and error messages produced by these
components.

COMPILER OUTPUT

Output from the compiler includes a source
listing, a compiler storage map, and/or a
module deck, dePending on options specified
by the programmer in the EXEC statement for
the FORTRAN compiler.

1969,

by TNL N33-8602

Source Listing

Unless the NOSOURCE option is specified, a
source listing is written on the systen
output unit SYSOPT. An example of a source
listing is shown in Figure 4.

Compiler Frror/warning Messages

The error/warning messages produced by the
compiler are noted on the source listing.

Figure 5 illustrates a source listing with
error messages.

FORTRAN IV MODEL 44 PS VERSION X, LEVEL Y DATE 69161
0001 SUBROUTINE SUBA

0002 DIMENS1ON JNPUT(10),JUNOUT(10)
0003 30 FORMAT (1015)

0004 10 FORMAT ('1',1015)

0005 INDEX = 100

0006 READ (1,30)(JUNPUT(J),u=1,10)
0007 DO 40 1=1,10

0008 UNPUT(I) = JUNPUT(I) - INDEX
0009 40 JUNOUT(1) = JNPUT(I)

0010 WRITE (3,10)CJINOUT(Y),U=1,10)
0011 RETURN

0012 END

PAGE 0001

Source Listing

62 System/360 Model Uuu4PS Guide to System Use FORTRAN

® Figure 5.

Form C28-6813-2, page modified June 10, 1969, by TNL N33-8602

FORTRAN 1V MODEL 44 PS VERSION X, LEVEL Y DATE

0001 DIMENSION A(10,10),8(10,10)
0002 READ (1,5) E,F,G

0003 1 60 T0 2

oook Do 10, I=1,10

$ $
01) NA02I LABEL 02) NA131 SYNTAX

0005 DO 20 J=2,10

0006 10 ACI,J) = BCI,J)*C(I,J)
0007 20 CONTINUE

0008 WRITE (3,6) A,

01) NA131 SYNTAX
0009 6 FORMAT (5F10.2

01) NA131 SYNTAX
0010 END

69161 PAGE 0001

Source Listing with Errors

Error information for a source statement
containing errors appears on the listing
lines immediately follcwing that statement.
For each error encountered, a dollar sign
is printed beneath the active character
preceding the one that was being inspected
when the error was detected. The listing
line that follows the printed statement
contains only the dollar sign markers.

The next line of the listing describes
the marked errors. The errors are numbered
within the statement (counting from one for
the first error marked); the number is
followed by a right parenthesis, the error
number, and the type of error. Four errors
are described on each line, for as many
lines as are required to list all the
marked errors in the source statement.

For a description of error/warning
messages, see Appendix D.

Storage Map

If the KAF option is specified, a compiler
storage map is written on SYSOPT. The map
is divided into several tables, classified
as follows:

e COMMON variables

EQUIVALENCE variables

e Scalar variatles

e Array variables

e Subprograms called

e NAMELIST variables

e Statement latels

In the case of COMMON variables, a

separate table is provided for each blank
or named COMMON defined in the set of

System Output 63

Form C28-6813-2, page modified June 10,

1969,

by TNL N33-8602

classification, with the appropriate
heading preceding the data. The variable
names, Sstatement labels or subprogram names
are arranged across the page, five to a
line. The relative location of each
appears next to the name. If a particular
classification of names is not used
anywhere in the source program, the
corresponding table does not appear in the
storage map.

Figure 6 shows a samPle compiler storage
map. The number of bytes required for the
program is supplied so that the programmer
can ensure that adeguate main storage is
available for execution. The severity code
is given to show the programmer whether the
mistakes which were made are serious enough
to prohibit execution.

If the DECK option is specified, a module
deck is produced on the system punch unit,

FORTRAN 1V MODEL 44 PS VERSION X, LEVEL Y DATE 69161 PAGE 0002

SYMBOL LOCATION SYMBOL LOCATISSMNON B;s:;o(LOCA4IS:P SIZESV:ggslo LOCATION SYMBOL LOCATION
M) 000000 CM2 000004 CM3 000008 My 00000C

SYMBOL LOCATION SYMBOL LOCATIggMMON Bteﬁ:o(NC”iOCA4lg:P SIZESY:ggE°8 LOCATION SYMBOL LOCATION
AA 000000 88 000004

SYMBOL LOCATION SYMBOL LOCAYlng"ON B?Sﬁ:oi NCMEOCA4ISQP SlZESYgggtos LOCATION SYMBOL LOCATION
cc 000000 oD 000004

SYMBOL LOCATION SYMBOL LOCAT[;&ALAR M::MBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
8 0000EY4 (4 0000ES8 A 0000EC D 0G00FO E 0000F4

1 0000F8 J 0000FC L 000100 F 00010% K 000108

ARRAY MAP

i;::gL ;g;:;éON fr:?OL tgg?;;ON SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
SYMBOL LOCATION SYMBOL LOCATIS:BPROGRQCZBSCLLEDLOCAYION SYMBOL LOCATION SYMBOL LOCATION
FRXPR= 000328 1BCOM= 00032C SIN 000330

SYMBOL LOCATION SYMBOL LOCATIZGMELISstagoL LOCATION SYMBOL LOCATION SYMBOL LOCATION
XX 000340 Yy 0003A4

LABEL MAP
LABEL LOCATION LABEL LOCATION LABEL LOCATION LABEL LOCATION LABEL LOCATION
1 000454 10 00045A 7 000466 5 0004CO
TOTAL MEMORY REQUIREMENTS 000514 BYTES
COMPILER HIGHEST SEVERITY CODE WAS 0
® Figure 6. Compiler Storage Map
source statements. In all other cases, a SYSPCH. This deck is made up of four types
separate table is produced for each of cards -- TXT, RLD, EST, and END. A

functional description of these cards is
given in the following paragraphs.

MODULE DECK CARDS: Every card in the
module deck contains a 12-2-9 punch in
column 1 and an identifier in columns 2
through 4. The identifier consists of the
characters ESD, RLD, TXT, or END. The
first four characters of the name of the
program are placed in columns 73 through 76
with the sequence number of the card in
columns 77-80.

E Ca Four types of ESD cards are
generated as follows:

ESD, type ©

contains the program name of the
module and indicates the beginning of
the deck. The program name is the

module name followed by an ampersand.

64 System/360 Model uUu4PS Guide to System Use FORTRAN

ESD, type 1
contains the entry roints (where
control is given to begin execution of
the module). An entry roint is the
name in a SUBROUTINE, FUNCTION or
ENTRY statement, or the name MAINU4.

[xs]
w0
©

, type 2
contains the names cf subprograms
referred to in the source module Ly
CALY statements, EXTERNAL statements,
explicit function references, and
implicit function references.

ESD, type 5
contains information about each CCMMON
area.

The number 0, 1, 2, or 5 is placed in
card column 25.

RLD _Card: An RLD card is generated for
external references indicated in the ESD,
type 2 cards. To complete external
references, the linkage editor matches the
addresses in the RLD card with external
symbols in the ESD card. When external
references are resolved, the storage at the
address indicated in the RLD card contains
the address assiqgned to the subprogranm
indicated in the ESD, type 2 card. RLD
cards are also generated for a branch list
produced for statement numbers.

TXT Card: The TXT card contains the
constants and variables used by the
programmer in his source statements, any
constants and variables generated by the
compiler, coded informaticn for FORMAT
statements, and the machine instructions
generated by the ccmpiler from the set of
source statements.

END Card: One END card is generated for
each set of compiled source statements.
This card indicates the end of the module
to the linkage editor, the relative
locaticn of the main entry pcint, and the
length (in bytes) of the module.

MODULF DFCK_STRUCTURF: Fiqure 7 shows the
FORTRAN module deck structure. The cards
are listed in the order in which they
appear in the module deck.

LINKAGE EDITOR OUTPUT

The linkage editor produces a phase map
unless the NOMAP option is specified. The
linkage editor aiso produces diagnostic
messages, which are listed in Appendix D.

Phase Map

The phase map is written on SYSLST. To the
linkage editor, each program (main or

subprogram) is a control section (CSECT).

Each control section name is written
along with the origin and the length of th
control section. The-origin and length of
a. control section are written in
hexadecimal numbers.

For each control section, any entry
points and their locations are also
written; any functions called from the
module library are listed.

Fiqure 8 shows a sample phase nmap.

|ESD, Type 0 Program Name of the Module

ESD, Type 1 Entry Points

ESD, Type 5 COMMON Area

ESD, Type 2 External References

—
>4
3

Cards for NAMELIST Tables

Iz
toid
=]

Cards for Literal Constants

Cards for FORMAT Statements

=3
<
(=]

3
>
-3

Cards for Temporary Storage and
Constants

Cards for Module Code

=]
<
=]

3
>
-3

Cards for the BASE Table

TXT Cards for the BRANCH Table

TXT Cards for Subprogram Argument Lists

TXT Cards for Subprogram Addresses

TXT Cards for Address Constants

=]
[
o

Cards for the Module

=
=
(=]

Card

I-—-I-—_I-—-L.—_h—-l-—-L—--—-II-—-—-L.—.-I-—dh—-—-h——-——l——-

M (o e e mm oy o ar o e e oy S ar e — . — s — e — [oy — e ——

igure 7. Object Module Deck Structure

System Output 65

67/000 PHASE TRANSFER ADDR. LOCORE HICORE BLOCK NO. ESD TYPE LABEL LOADED REL-FACTOR
COMMON COMMON 004200 0001A0
COMMON COMMON CTRL 0043A0 000004
ROOT RTPHAS 0043A8 0043A8 007947 293 CSECT MAINLL4E 0043A8 0043A8

* ENTRY MAINGY 0043A8
CSECT BOAIBCOM 004B98 004B98
ENTRY IBCOM= 004898
* ENTRY ADCON= 004C54
ENTRY FIRSTIM 005004
CSECT BOAFEXIT 007170 607170
ENTRY EXIT 007176
CSECT BOAOVLY 007190 007190
ENTRY LOAD 0071A8
ENTRY LINK 007198
CSECT BOAFI0CS 007288 007288
ENTRY RCBORG= 007890
ENTRY BUFORG= 00788C
ENTRY FI0CS= 007288
* ENTRY VDIOCS= 007894
ENTRY FIOCD= 0072C2
CSECT BOAUOPT 007888 007888
ENTRY USEROPT 0078B8
CSECT BOAUNITB 0078C0 0073CO
ENTRY UNITAB= 0078C0
Pl 007948 007948 0086C7 313 CSECT SuB= 007948 007948
ENTRY SUB 007948
CSEC BOAFRXPI 008610 008610
ENTRY FRXPI= 008618
P2 007948 007948 0086F7 318 CSECT CFUNC= 007948 007948
ENTRY CFUNC 007948
CSECT BOAFRXPI 008640 008640
ENTRY FRXPI= 008648
LINKAGE EDITOR HIGHEST SEVERITY WAS O
Figure 8. Phase Map
PHASE OQUTPUT OAxxxI

At execution time, FORTRAN phase execution
diagnostic messages are generated in three
forms -- error code diagnostic messages,
program interrupt messages, and operator
messages. An error code indicates an
input/output error or a misuse of a FORTRAN
library function. A program interrupt
message indicates a condition that is
beyond the capacity of the programming
system to correct. An operator message is
generated when a STOP or PAUSE statement is
executed.

Error Code Diagnostic Messages

When an error condition arises during
execution of a FORTRAN program, a message
is written on SYSOPT, as fcllows:

The error code is the number specified by
the digits xxx. These error codes are
described in Appendix D. If any error is
detected, its severity is evaluated. Major
errors cause cancellation of the job step
or job.

Messages for Progqram Interrupts

A prodgram interrupt message containing the
old Program Status Word (PSW) is produced
on SYSLST to provide information regarding
program interrupts. For a description of
these messages, see "Program Interrupt
Messages" in Appendix D.

66 System/360 Model 44PS Guide to System Use FORTRAN

Sample Storage Printouts

Fiqure 9 shows a sample printout for each
dump format that can be specified in a call
to DUMP or PDUMP. The printouts are given
in the following order: hexadecimal,
LOGICAL%x1, TOGICAL%U4, INTEGER*2, INTEGERxU,
REAL %4, REAT %8, COMPLEX«%8, COMPLEXx%16, and
literal.

Messaqgqes to the Operator

A message is transmitted to the operator
when a STOP or PAUSE statement is executed.
Operator messaqges are written on SYSLOG,
the console printer. For a description of
these messages, see "Operator Messages" in
Appendix D.

CALL PDUMP WITH HEXADECIMAL FORMAT SPECIFIED

42800000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000060 00000000

00A3ED 485F5E10 00000000 48S5F5E10 10000000 42100000
006DC8
006DF8 C0000000 00000000 41200000 41566666 ©0000000C 41100000

CALL PDUMP WITH LOGICAL*1 FORMAT SPECIFIED

OUBEILE T F

CALL PDUMP WITH LOGICAL*4 FORMAT SPECIFIED

006E10 F T

CALL PDUMP WITH INTEGER*2 FORMAT SPECIFIED

006E18 10
006ELA -100
006E1C 10

CALL PDUMP WITH INTEGER®*4 FORMAT SPECIFIED

006E20 1 2 3 4
COGE4SB 11 12

CALL PDUMP WITH REAL*4 FORMAT SPECIFIED

006E00 0.20000000E 01 0.53999996E 01

CALL PDUMP WITH REAL*8 FORMAT SPECIFIED

006DC8 0.1759999999999999D 03

CALL PDUMP WITH COMPLEX*8 FORMAT SPECIFIED

0060D0C (3.0000000,4.0000000)

(4.0000000,8,0000000)

CALL PDUMP WITH COMPLEX*16 FORMAT SPECIFIED

006DEO (0.9999999999999990,0.9999999999999990)>

(-0.9999999999999990,-0.9999999999999990)

CALL PDUMP WITH LITERAL FORMAT SPECIFIED

006E5C THIS ARRAY CONTAINS ALPHAMERIC DATA

Figure 9. Sample Storage Printcuts

System Output 67

PROGRAMMING CONSIDERATIONS

This section discusses program optimization
and limitaticns of the ccmriler.

PROGRAM CPTIMIZATICN

Facilities are available in the FORTRAN
lanquage that enable a programmer to
optimize compilaticn and execution speed
and to reduce the size of the phase.

Initialization

The programmer should initially set to zero
all variatles that are nct initialized by
arithmetic statements in his program. The
value of a variable cannot be quaranteed
until the programmer has given that
variable a value by a replacement
statement. For example, in the follocwing
subprogram:

SUBROUTINE ALPHA (X,Y,Z)
A=B+2.0

the result A may contain any value, because
B was npt initialized. If the programmer
expects B to be zero, he should initialize
B as shown in the following statements:

SUBROUTINE ALPHA (X,Y,2)
B=0.0
A=B+2.0

.

Whenever possible, for greater
efficiency the DATA initialization
statement should be used to define initial
values.

Arithmetic Statements

When the programmer wants to calculate the
square root, the square root library
subprogram should be used instead of the
exponential function. Fe¢r example, the
statement:

HYPOT=SQRT (A%A+BxB)
is more accurate than the statement:
HYPOT= (A%A+Bx%B) %xx0.5

because the SQRT function is more accurate
than the exponential function.

The mixed mode arithmetic expression is
provided as a convenience to the
programmer. The number of instructions
generated to perform conversions can be
reduced, however, if the order of
evaluation of expressions is kept in mind.

For example, in the expression:
A =13k +1+ 3

where A is real and I and J are integer,
the evaluation is from left to right.
Instructions are, therefore, produced to
convert I to real before it is added to A,
and additional instructions are included to
convert J to real before it is added to the
previcus result. If the expression is
written in either of the following ways:

A
A

A+ (T +)

o
=]
+
[
+
o

one of the conversions is eliminated
because I and J are added together first,
and the result is converted to real before
being added to A.

IF_Statement

An arithmetic IF statement lists three
statement numbers. One of the listed
numbers should immediately follow the IF
statement to eliminate unnecessary
branching in the phase. For example, the
coding represented by the following
statements:

IF (A-B) 20,30,30
30 a=0.0

20 B=0.0

is more efficient than the coding
represented by the statements:

IF (a-B) 20,30,30

10 X=2.+Y
30 a=0.0
20 B=0.0

68 System/360 Model U4U4PS Guide to System Use FORTRAN

DO _lLoop Considerations

Values for expressions that remain constant
within a DO lcop should ke calculated
before entry into the loop, instead of
calculating the expressicn each time
through the loop. For example, in the
following statements:

DO 10 I=1,1C0
X(I)=2.Ux (G+ALPHR) +Y (I)
10 CONTINUE

the expression 2.U4x%(G+ALPHA) must be
calculated each time the DC loop is
executed. For greater efficiency, the
following statements should be substituted:

BETA=2.4 % (G+ALPHA)
DO 10 I=1,100
X{(I) =BETA+Y (I)

10 CONTINUE

Because the expression 2.Ux(G+ALPHA) is
calculated only once, the executicn time is
decreased.

Any subscripts that remain constant
within the range of a DO should not ke used
in the DO loop. For example, in the
following statements:

DO 10 I=1,50

X(I) =Y (1) +2 (J)

10 CONTINUE

a subscript calculation for Z(J) is
performed each time the DO loor is
executed, even though Z(J) remains constant
for each execution of the loop. By
substituting the fcllowing statements:

B=2 (J)
DO 10 I=1,50

X(I)=Y(I)+B
10 CONTINUE

only one subscript calculation is made for
Z(J) and execution time is decreased.

READ/WRITE Statements

3
[}
(=
=]

To read or write an array, an implied
a READ/WRITE statement should be used
instead of a DO loop. For example, 5
records, each containing two values, are
written by the following statements:

10 FORMAT (F20.5,I10)
Do 15 I=1,5
15 WRITE(5,10)A(I),J(I)

In the statements:

10 FORMAT (5(F20.5,T10))
WRITE (5, 10) (A (I),J(I),I=1,5)

only one record containing 10 values is
written. The use of an implied DO saves
phase execution time and space on the
volume.

Extra subscript calculation within the
range of an implied DO should be avoided.
This is the same consideration shown in
regard to the DO lpop. For example, if the
statements:

2 FORMAT (' 0', 10F12.6)

READ(1,2) (A (1) ,I=4,31,3)
are substituted for the statements:

2 FORMAT('C!',10F12.6)
READ(1,2) (A(3%I+1),I=1,10)

the intricacy of the subscript calculation

is reduced and the phase execution time is
reduced.

Boundary Aliqnment of Variables in COMMON

Blocks and EQUIVALENCE Groups

The Model 44 Programming System will adijust
improper boundary alignments resulting from
the ordering of variables in a COMMON block
or in an EQUIVALENCE group. However,
considerable efficiency is lost during
program execution if the order of the
variables is such that they are not located
on proper boundaries. A complex variable
of length 16 or a real or complex variable
of length 8 should be located on a
double-vword boundary; a real, integer, or
logical variable of length 4 should be
located on a fullword boundary; an integer
variable of length 2 should be located on a
halfword boundary. (Information on
avoiding improper alignment of variables
and the resulting loss in efficiency can be
found in the discussions of COMMON blocks
and EQUIVALENCE groups in the publication

Programming Considerations 69

IBM System/360 FORTRAN IV lanquage, Form
C28-6515.,)

If a variable is located cn an improper
boundary, each machine-instruction
reference to the variable requires that:

1. The specification exception resulting
from this reference be processed.

2. The boundary adjustment routine be
invoked to simulate the execution of
the instruction containing the
reference in order to circumvent the
boundary violation.

The use of the boundary adjustment
routine is an installation cption; that is,
at the time the system is assembled, an
installaticn can indicate whether or nct
the routine is to be invoked.

An installation can alsc modify the
system to request that a boundary
adjustment message be printed. The message
indicates that a boundary adjustment is to
take place. It is printed once for each
boundary alignment error, up to a maximum
of n errors. The value c¢f n is determined
by the installation. Boundary adjustment
takes place, however, whether or not the
boundary adjustment message is printed.

The format of the messaqge is:

OA210I PROGRAM INTERRUPT (A)
IS XXXXXXXXXXXXXXXX

OLD PSW

The A in parentheses identifies boundary
ad justment as the cause c¢f the messaqe.

The boundary adjustment routine is
invoked whenever a boundary viclaticn
occurs in either a FORTRAN main program or
subprogram. The routine is also available
to assemkler lanquage subprograms that
operate in a FORTRAN environment (see
Appendix C).

When, for scme reason, the boundary
adjustment routine cannot be loaded from
the phase litrary, the diagncstic message
OA219I is printed. The loading of the
boundary adjustment routine is dependent
upon the amount of space available in the
problem program area. The first location
available to the boundary adjustment
routine is the one immediately following
the highest location thus far occcupied by
any phase of the user's program. This is
not necessarily the highest location
occupied by the phase in which the boundary
alignment error occurs.

‘

FUNCTION Subprograms

The function variables for the principal
entry and for each alternate entry to a
FUNCTION subprogram are made equivalent.

As a result, the value returned for a
function is the value of the last function
variable set before the RETURN statement
causing the return, regardless of the entry
point used. For example:

FUNCTION SIN (X)

ENTRY COS (X)

SIN = X-X*x%3/6+X%%5/120
COS = SQRT (1.0-SIN%x%2)
RETURN

END

always returns the cosine value, since the
variables SIN and COS occupy the same space
in storage. In order to produce the
desired result, the FUNCTION subprogqran
should be coded:

FUNCTION SINCOS (X)
ENTRY SIN (X)
Y = X-PI/2.0
GO TO 5
ENTRY COS (X)
Y = X
5 SINCOS = 1-Ys%2/2.0+X%xl/24.0
RETURN
END

In this case, the valuye in SINCOS is the
sine of the angle X when the SIN entry to
the function is used, and the cosine of X
when the COS entry to the function is used.

References to FUNCTION Subprograms

The convention for linkage to FUNCTION
subprograms requires that all registers
containing active partial results from an
expression be saved before branching to the
FUNCTION subprogram. As a result, more
efficient codes can be produced by placing
FUNCTION references so that they are
evaluated before the rest of the expression
in which they appear is evaluated.

For example, in the statement:
A =B %x C+ D x E x FN(G)

the partial results B % C and D * E must
both be stored in temporary locations
before a call is made to the FUNCTION
subprogram FN. If the statement is
rewritten as follows:

A = FN(G) D x E + B x C
the unnecessary STORE instructions are

eliminated because no partial results exist
when FN is called.

70 System/360 Model 44PS Guide to System Use FORTRAN

Form C28-6813-2, page modified June 10,

Use of DUMP and PDUMP

The storage locations assigned to variables
in a FORTRAN program are listed in the
compiler storage map. Whenever possible,
the programmer should refer to the storage
map before using the DUMP or PDUMP
subroutines. The statement format is:

CALL { DUMP)
\ PDUMP f

(21,by,fy,++.an,bn,fn)

where:

a and b are variables that indicate the
limits of storage to be dumped. f
indicates the dump format; it must be one
of the integers shown below.

specifies hexadecimal format
specifies LOGICAL*1
specifies LOGICAL*Y
specifies INTEGER*2
specifies INTEGER*4
specifies REAL*Y

specifies REAL*8

specifies COMPLEX*8
specifies COMPLEX*16
specifies literal

COYOT N F W L0

The following conventions should be
observed when using the DUMP or PDUMP
subroutines to insure that the appropriate
areas of storage are dumped.

In the following exanmples, A is a
variable in COMMQN, B is a real number, and
the array TABLE 1s dimensioned as:

DIMENSION TABLE (20)

If an array and a variable are to be
dumped at the same time, a separate set of
arguments should be used for the array and
for the variable., The specification of
limits for the array should be from the
first element in the array to the last
element. For example, the following
statement could be used to dump TABLE and B
in hexadecimal format, and to terminate
execution after the dump is taken:

CALL DUMP (TABLE(1),TABLE(20),0,B,B,0)

If an area in COMMON is to be dumped at
the same time as an area of storage not in
COMMON, the arguments for the area in
COMMON should be given separately. For
example, the following statement could be
used to dump the variables A and B in real
format without terminating execution:

CALL PDUMP (A,A,5,B,B,5)

1969, ty TNL N33-8602

If variables not in COMMON are to be
dumped, the programs shoulé list each
variable separately in the argument list.
For example, if R, P, { are defined
implicitly in the program, the statement:

should be used to dump the three variables
in storage. If, however, the statement:

CALL PDUMP(R,Q,5)

is used, all main storage between R and ¢
is dumped.

If an array and a variable are passed as
arguments to a subroutine, the arguments in
the call to DUMP or PDUMP in the subroutine
should specify the parameters used in the
definition of the sutroutine. For exanmple,
if the subroutine SUBI is defined as:

SUBROUTINE SUBI(X,Y)
DIMENSION X (10)

and the call to SUBI within the source
program is:

DIMENSION A(10)

CALL SUBI(A, B)

then the following statement in the
subroutine should be used to dump the
variables in hexadecimal format without
terminating execution:

CALL PDUMP ({X(1),x(10),0,Y,Y,0)

If the statement
CALL PDUMP ({X(1),Y,0)

is used, all storage between A(1) and Y is
dumped, as the result of the method of
transmitting arguments.

Block Length

A block of data written Lty the FORTRAN IV
compiler is never less than 360 bytes long.
Even though the LABEL jol control statement
permits a block length specification
smaller than 360, the size of the buffer
from which records are written is always at
least 360 bytes. While writing his source
program, the FORTRAN programmer should try
to format his records so that optimum use

Programming Considerations 71

Form C28-6813-2, page modified June 10,

is made of the 360-byte buffer, thereby
conserving space on external storaje media.

COMPILER RESTRICTIONC

Tatle 3 is a list of the limitations
imposed on the source program by the
FORTRAN compiler.

IBCCY Buffer: The FORTRAN Library
Input/Output Support routine (IBCCF)
buffer which is equal in size to the
maximum record length field in the DEFINZE
FILE statement or 360 bytes, whichever is
greater. If no DEFINE FILE statement
appears in the program, then a 360-btyte
buffer is assigned. In addition, 40 bytes
are rejyuired for the RCB and 8 bytes are
required for alignment. The buffer and the
RCB are used for execution-time
implementation of FORTRAN Input/Cutput
source statements. To allow for this area,
the programmer must reduce the space
available for the execution of his projran
by the size of the buffer plus 48 bytes.

uses a

72

1969,

by TNL N33-8602

Table 3. Compiler Restrictions

r T ——_‘
| J¥AXINMUK|
i ITEY | NUMBER]
k } 1
|Unijue variatle names | 2000
b= - t 1
iUnique array names | 30C0|
F + —
|Vvariables and arrays in COMXCN | 2800¢ |
1 } § |
b T !
|[Names in ZQUIVALENCE statements | 5000}
| rlus numter of EQUIVALZNCE i |
| lists | |
5 t 4
| Statement numbers, including one | 160C0]
| additional statement numker |]
| for each DO, Logical IF, and |]
| 1implied LCO in an input/output |]
| list] |
t + —
|Names in Explicit Specification | 8000
| statements | |
t t —
|Unique real constants] 16000
2 + 1
jUnique integer constants | 160C0]
L l ’]
r L] 1
|Unigque doutle-precision real | 8000 |
| constants] |
t + —
|Unique cecmplex constants | 8000
F —_— Il]
¥ 1 1
JUnique double-precision complex | 40C01
| constants | |
1 1 1
| o T N
|References to unique subprogram | 80C0}
| entry point names (explicit | |
] and implicit) | |
t } !
|Statement function definitions | 8000 |
L |]
L T 1
|Nested statement function | 15

| definitions i |
- t 1
jDummy arguments for a subprogram | 8000}
1 1 . |
F v K
|Total arguments to all | 16000
| subprograms and statement | |
| functions | |
% + {
|Nested DO statements | 3000}
— + —
| Nested FUNCTION sutprogram | 20
| references | |
t } —
| For FCRMAT codes: Group count] 255
| and field length] |
L 1 3

System/360 Model U44PS Guide to System Use FORTRAN

This appendix illustrates a number of
job decks, representina several types of
jobs, that could be used with the Model ug
Programming System. For each example, it
is assumed that SYSTPT and SYSRDR are
assigned to the same device; however,
portions of the job deck read by SYSIPT
(that is, all input data) are indicated so
that they can easily be removed in the
event SYSIPT and SYSRDR are assianed to
separate devices.

+h A~
Lilc

Compile only (one compilation) :
Fiagure 10 shows a job that consists of one
job step -- a FORTRAN compilation. A Fjob

APPENDIX A: EXAMPLES OF JOB DECKS

name and accounting information are
provided in the JOB statement. The comna
in the operand field is required by the
absence of the DUMP or NODUMP
specifications (indicating that NODUMP is

+Nn
tc be assumed).

The EXEC statement indicates that the
job step is to be unnamed, that a module
deck and a coppiler map are to be produced,
and that a module is not to be written on
SYs000. By default, a source listing is
produced and it is assumed that source
statements are to be punched in EBCDIC.

//JOBONE JOB
// EXEC

,PGNO3410

FORTRAN source statements

FORTRAN (DECK,NOLINK,MAP)

SYSIPT

[— e o - —— — — — — — —— — — -

e e e e e o —— ——— —)

/% (end of data)
/& (end of job)
Figure 10. Sample of Compile Only (One Compilation)

Appendix A: Examples of Job Decks 73

Compile only (three compilations):

Figure 11 shows a job that consists of
three job steps -- three FORTRAN
compilations involving one main program and
two subproagrams. The job steps are named
MATNPRO, SUBA, and SUBB. 1In each job step,
a module deck, a compiler map, and a source

listing are produced and no module is
written on SYS000. The EXEC statement for
job step SUBA indicates that the source
statements following it are in BCD; for the
other two job steps, EBCDIC is assumed.

The EXEC statements for MAINPRO and SUBB
illustrate that compiler options may be
specified in any order.

//JOBTHO JOB
//MATNPRO EXEC

,PGNO34 11

.

/% {end of data)

FORTRAN(DECK,NOIINK,MAP)____\

FORTRAN source statements (main progranm)

>‘SYST.PT

~/

//SUBA

FORTRAN (DEC¥,NOLIN¥,MAP, BCD)

.

/% (end of data)

FORTRAN source statements (subprogran) >—SYSTPT
/% (end of data) ./
//SUBB EXEC FORTRAN(DECK,MAP,NOLINK)———-\
FORTRAN source statements (subproqranm) SYSIPT

|
|
|
{
|
|
|
|
|
{
|
i
|
[
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
| /& (end of job)
|

|

—

Figqure 11.

Sample of Compile Only (Three Compilations)

74 System/360 Model U44PS Guide to System Use FORTRAN

Batch Compilation (three compilations):

Form C28-6813-2, page modified June 10, 1969,

Figure 12 shows how the main program and module deck, a compiler map, and a source
the two subprograms shown in Figure 11 listing are produced;

-

rotel Be bl

could be Ted ac 5
LChOusru LU LOUNPLLIEUW adS a

ciid
the options given in the one EXEC FCRTRAN

statement applied to all three

compilations. For each compilation, a

Lot b nrard 342 &L

' . 1
vatieu pLuvidou 11

S A SVonANnnD
[Vil SISUUU .

ty TNL N33-8602

no module is written

T 1
| |
| 1
|} //JOBTHWO JOB ,PGNO3411]
| //MAINPR EXEC FORTRAN (DECK,NOL INK, MAP) |
| . I
i . i
| . I
| FORTRAN source statements (main progran) SYSIPT |
| . I
I i]
| . !
| END |
| . |
| . |
| . |
| FORTRAN source statements (subprogranm) SYSIPT |
| . |
I . [
] . |
| END |
| .]
| . 1
| . l
| FORTRAN source statements (subprogram) SYSIPT |
| . |
] . !
| . !
| END |
A {end of data) |
| /& (end of jok) |
| |
| I
Figure 12. Sample of Batch Compilation

Appendix A: Examples of Job Decks

75

Edit only:

figure 13 shows a job that consists of one
job step -- the editing of three module
decks. The EXEC statement indicates that
the job step is unnamed and that the phase
output produced by the linkage editor is to
be retained in the phase library for use in
subsequent Jjobs. By default, a phase map
is produced on SYSLST.

The modules to be edited are named FAIN,
SUBONE, and SUBTWO and will be copied in
that order onto SYS000 by the linkage
editor. A single phase, named ALPHA, is to
be produced; its origin is to be the first
available location in the problem program
area. The INCLUDE statements indicate that
phase ALPHA is to be composed of modules
MAIN, SUBONE, and SUBTWO, in that order,

and that each module will re found on
SYS000. (Note that the PHASE and INCLUDE
statements could be omitted from the job
deck; the only difference in the results
obtained is that phase ALPHA would instead
te named MAIN, the name of the first module
to be included in the phase.)

The three module decks to be edited herz=
could well te the three decks produced in
the previous example of three compilations.
Although the job steps in that example are
named MAINPRO, SUBA, and SUBB, these names
are not carried over with the module decks
into another jok. 1In order to be edited,
the modules must be named again in MODULE
statements. Of course, the names used for
the compilation jot steps could ke repeated
in the MODULE statements or, as is the case
here, entirely new names could ke used.

//JOBTHREE JOB ,PGNC3412
/7 EXEC LNKELT (KEEP)
MODULE MAIN

Kodule deck

(main progranm)

MODULE SUBCNE

¥odule deck (subprogranm)

MODULE

SUBTRWO

Module deck

(subprogram)

PHA SE ALPHA,S
INCLUDE MAIN,L
INCLUDE SUBONE,L
INCLUDE SUBTWO,L

o e e T e T e St e e . T e . - — — T — .

>> SYSIPT

Mt o e e - e . e — ——— — —— — — — ——— — — — — —— — . —— —— — i — — —— — —

Vil {end of data) _J
/& (end of job)
Figure 13. Sample of Edit Only

76 System/360 Model U44PS Guide to System Use FCRTRAN

Compile and edit:

Figure 14 shows a job that consists of two
job steps -- a FORTRAN compilation and the

Addtinag AF tha raciiltinas madnla anAd o
€G1ting &7 Tn€ ISSUitTihng

module deck produced in a previous job.
The compilation job step is named MAINPRO;
output from the compiler is to include a
source listing, a compiler map, and a
module on SYS000. Thre name of the module
on SYS000 will be the jok step name,
MAINPRO. No module deck is produced and
source statements are assumed to be in
EBCDIC.

The editing job step is unnamed; phase
output from the job step is to be retained
in the phase library; a phase map is to be
produced. The module deck, which will be
copied onto SYS000 by the linkaqe editor,
is named SUBPROG. One phase, BETA, is to
be produced and is to include the modules
MAINPRO and SUBPROG in that order; both
modules will be found on SYS000. The PHASE
and INCTUDE statements could be left out of
this job deck without affecting the results
in any way other than phase BETA being
named MAINPRO instead.

//JOBFOUR JOB
//MAINPRO EXEC

+PGNO3413
FORTRAN (MAP)

.

FORTRAN source statements

/* (end of data)

\

> SYSIPT

7/ EXEC LNKEDT (KEEP)

MODUTLE SUBPROG

.

Module deck

J

. > SYSIPT
PHASE BETA,S
INCLUDE MAINPRO,L
INCLUDE SUBPROG L
/% \cuu of data) _/
/& (end cf job)
Fiqure 14. Sample of Compile and Edit

Appendix A: Examples of Job Decks 77

xecute only:

Figqure 15 shows a job that consists of one
job step -- the execution of the phase,
BETA, produced in the previously
illustrated compile-and-edit jobk. The JOB
statement now indicates that a dump is to
be produced if the job terminates
abnormally.

Refore the phase is executed, two data
sets required by it are associated with
symbolic unit names. The ACCESS statement
associates the data set named INPUT with
symbolic unit SYS004 (which corresponds to
data set reference number #). The device
to be used for this data set is an IBRM 2400
Magnetic Tape Unit with a 9-track

read/write head and a recording density of
800 bytes per inch; the data set itself is
located on the tape whose volid is T645.

The ALTOC statement associates the data
set named MASTER with symbolic unit SYS002
(which corresponds to data set reference
number 2). In addition, 20 blocks of spac
are allocated for the data set on a fresh
disk volume, which must be an IBM 1316 Dis
Pack mounted on an IBM 2311 Disk Storage
Drive. Finally, the data set MASTER is to
be entered into the system catalog. The
LABEL statement, which is required after
the ALLOC statement shown, indicates a
FORTRAN record length of 360 bytes and an
expiration date of January 1, 1968.

e

k

— 1
| |
| i
! //JOBFIVE JOB DUMP,PGNO3414 |
| //SYS004 ACCESS INPUT,28400='T645" |
| //SYs002 ALLOC MASTER, 1316=FRESH,20,CATLG |
\ /7 LABEL 360,68001 |
/7 EXEC BETA |
| /& (end of job) {
{ |
1 |
L J
Figure 15. Sample of Execute Only

78 System/360 Model 4u4PS Guide to System Use FORTRAN

Edit and execute:

Fiqure 16 shows a job that consists of two
job steps -- the editing of twc module
decks and the execution of the resulting
phase. The editing job step is unnamed and
no phase map is to be produced. Also, the
phase output can be discarded at the end of
the next job step (in this case,
immediately after the phase is executed).

The modules to be edited are named
PAYMATN and PAYSUB and will be copied in
that order onto SYS000 by the linkage
editor. The absence of PHASE and INCLUDE
statements causes the linkage editor to
generate the following statements:

PHASE PAYMAIN, %
INCLUDE PAYMAIN,L
INCLUDE PAYSUB,L

The result is that a single phase named
PAYMAIN is produced and the two modules on
SYS000 (namely, PAYMAIN and PAYSUB) are
included in the phase in that order. The
origin of the phase is the first available
location in the problem program area.

The presence of input data after the
phase execution EXEC statement indicates
that the data set reference number 5
{corresponding to SYSIPT) is cited in the
source progran.

//JOBSIX JOB DUMP, PGNO3415

T 1
| |
| |
| |
\ /7 EXEC LNKEDT (NOMAP) |
I MODULE PAYMAIN N I
\ . I
| . |
| . |
| Module deck |
| . |
| . |
| . |
| MODULE PAYSUB > SYSIPT |
| . |
| . [
| . |
| Module deck |
| . |
| . |
| . |
| /% (end of data) _J |
v /7 EAanl I
i .) |
| . |
| . |
| Input data to FORTRAN program > SYSTPT |
{ . |
| . |
| . |
| /% (end of data) _) |
| /& (end cf job) |
| |
| |
L Jd
Figure 16. Sample of Edit and Execute

Appendix A: Examples of Job Decks 79

Compile, edit, and execute:

Figure 17 shows a job that consists of four
job steps -- two FORTRAN compilations
involvina a subprogram and a main progranm,
the editing of the two resulting modules,
and the executicn of the resulting phase.
The compilation job steps are named SUBPROG

and MAIN,.
listing,

In each job step, a source
a compiler map, and a module cn

SYS000 are to be produced, a module deck is

not to be produced,

and the source

statements are punched in EBCDIC. (Note
that in the EXEC statement for job step

SUBPROG,
specified,
job step MAIN,

omitted.)

be produced.

all compiler options are
while in the EXEC statement for
the default options are

The editing job step is unnamed; phase
output is to be retained; a_phase map is to

is to be produced;

A single phase, named GAMMA,
its origin is to be the

first available location in the problenm
program area. The phase is to include two
modules, MAIN and SUBPROG, in that order;
the source of each module is SYS000. (Note
that the omission of the PHASE and INCT.UDE
statements from this job deck would cause a
change not only in the phase name, but also
in the order in which the modules are
included in the phase.)

Before the phase is executed, one data
set required by it is associated with a
symbolic unit name. This is the data set
MASTER (cataloged in the execute-only
example), which is again associated with
symbolic unit SYS002. No further
information is required in the ACCESS
statement because MASTER is a cataloged
data set. The presence of input data after
the phase execution EXEC statement
indicates that data set reference number 5
(corresponding to SYSIPT) is cited in the
source program.

(o e o i — — i — ——— —— — o T — i S — T — — — o — —— — i o et ot ettt e,)

//JOBSEVEN JOB
//SUBPROG EXEC

FORTRAN source

.

/%
//MATIN EXEC
FORTRAN source
/%
// EXEC
PHASE
INCLUDE
INCLUDE

/%
//SYs002 ACCESS

// EXEC

DUMP,PGNO3416

FORTRAN(NODECK,SOURCE,LINKLgAP,EBCDIC)

statements (subprogranm)

(end of data)
FORTRAN (MAP)

? SYSIPT

statements (main program) > SYSIPT

(end of data)
LNKEDT (KEEP)

GAMMA,S
MAIN,L
SUBPROG,L
(end of data)

SYSIPT

MASTER

Input data to FORTRAN progranm

>. SYSIPT

N
b o o o e e e e —— — —— —— —— —— —— ———— —— —— ————— ——— o — . — e]

V& (end of data) W,
/& (end of job)
Figure 17. Sample of Compile, Edit, and Execute

80

System/360 Model 44PS Guide to System Use FORTRAN

Form C28-6813-2, page modified June 10, 1969, by TNL N33-8602

AEPENDIX B: EBCDIC AND BCDIC CARD CODES

Character EBCDIC BCDIC This appendix provides a list of the 49
r - 1 1 characters valid in a FCRTRAN source
| (blank) | | | program {except in literal data where any
|+ | 12-8-6] 12] valid card code is acceptable). The EBCDIC
| - | 1 | | punch comtination for each character is
|/ 1 0-1] i shown. A BCDIC punch combination is shown
| =] 8-6 | 3-8 | only when it differs from the EBCDIC punch
| . (period)] 12-3-8 | combination, Only five characters
1) | 11-5-8] 12-4-8 i
|o* I 11-4-84 i
| , (comma) | 0-3-8 | I + =) !
I | 12-5-8] 0-4-8 |
| ' (apostrophe) | 5-8 | 4-8]
| & 1 12 | | have different punch combinations; in all
| 0 | 0 | | other cases, the EBCDIC and BCDIC
| 1 | 1 | | combinations are the sanme.
12 |2 | |
|3 |3 | |
|4 | U | | Note:
I 5 | 5 I |
1 6 | 6 | |
| 7 17 | | If the source program is punched entirely
| 8 | 8 | | in EBCDIC (that is, the EBCDIC ogption is in
1 9 | 9 |] effect), statement numters passed as
| A | 12-1] | arguments must be coded as &n (where n
| B | 12-2 | | represents the statement numter).
(e I 12-3 | 1
I D Po12-4 |
| E 1 12-5 | | If BCD characters appear in the source
| F | 12-6 | | program (that is, the BCD option is in
| G] 12-7 | | effect), the character $ must not be used
| H | 12-8 | | as an alphabetic character in the source
| I I 12-9 | | program, and statement numbers passed as
| J | 11-1 | | arguments must bte coded as $n rather than
| K Po11-2 | | &n.
| L 1 11-3]
i [R B i
| N 1 11=5 | |
| O 1 11-6 | |
| P 1 11=7 I
1 Q 1 11-8 | |
| R 1 11=-9 |
1 S] 0-2 | |
I T I 0-3 ! |
| U | 0-4] |
(I | 0-5 | |
(| | 0-6 | |
| X i 0-7 | |
I Y | 0-8 ! |
| 2 | 0-9 | |
| $ | 11-3-8) |
| N 1 1 J

Appendix B: EBCDIC and BCDIC Card Codes 81

APPENDIX C: _ASSEMBLER LANGUAGE SUEBPROGRAMS

A FORTRAN programmer can use assembler
language subprograms with his FCRTRAN
program., This section describes the
linkage conventions that must be used by
the assembler language subprogram to
communicate with the FORTRAN program.

SUBROUTINE REFZIRENCES

The FORTRAN programmer can refer to a
subprogram in two ways: by a CALL
statement or by a function reference within
an arithmetic expression. For each
subprogram reference, the compiler
generates:

1. An argument list; the addresses of the
arguments are placed in this list to
make the arguments accessitle to the
subprogranm.

2. A save area in which the subprogranm
can save information related to the
calling program. :

A calling sequence to pass control to
the subprogranm.

The argument list contains addresses of

used as arguments. CEach entry in the
arqument list is four tytes and is aligned
on a fullword boundary. The last three
bytes of each entry contain the 24-bit
address of an argument. The first byte of
each entry contains zeros, unless it is the
last entry in the argument list. For the
last entry, the first (leftmost) bit in the
entry is set to 1.

The address of the argument list is
placed in general register 1 by the calling
program.

Save_Area

The calling program contains a save area in
which the subprogram places information,
such as the entry point for the called
subprogram, an address to which the
subprogram returns, general register
contents, and addresses of save areas used
by programs other than the sutprogram. The
amount of storage reserved by the calling
program is 18 words. Figure 18 shows the
layout of the save area and the contents of
each word. The address of the save area is
placed in general register 13.

FORTRAN programs save floating-point
registers before calling a subprogram. The
subprogram does not have to save and re-

variables, arrays, and subprogram names store thenm.
AREA >]
(word 1) |This word is part of the standard linkage convention used Lty the programnming]
|system. An assembler lanquage subprogram Can use the word for any purpose. |
AREA+4 >h— 1
(word 2)]If the program that calls the assembler language subprogram is itself a |
|subprogram, this word contains the address of the save area of the calling
| program. Otherwise, this word is not used. |
AREA+8 >t 1
(word 3) IThe address of the save area of the called subprogranm. |
AREA+12 >t |
(word 4) | The contents of register 14; that is, the return address. When a subprogram|
Ireturns control, the first byte of this word is set to ones. |
AREA+16 db— 1
(word 5) | The contents of register 15; that is, the entry address. |
AREA+20—=> ¢ 1
(word 6) IThe contents of register O. |
AREA+24 >F 4
(word 7) | The contents of register 1.]
b i
. | . |
. | . |
. | . !
AREA+68 >h 4
(word 18) | The contents of register 12. |
L J
Figure 18. Save Area

82 System/360 Model U4U4PS Guide to System Use

FORTRAN

Calling Sequence

A calling sequence is generated to transfer
control to the subprogram. The address of
the save area in the calling program is
placed in general register 13. The address
cf the argument list is placed in general
register 1, and the entry address is placed
in general reqgister 15. A btranch is made
to the address in general register 15 and
the return address is saved in general
register 14. Table 4 illustrates the use
of the linkage registers.

CODING THE ASSEMBLER LANGUAGE SUBPROGRAM

Two types of assembler lanquage subprograms
are possilkle: +the first tyre (lowest
level) assembler subprogram does not call
another subprogram; the second type (higher
level) subprogram does call ancther
subprogranm.

Coding a Towest Tevel Assembler Lanquage
Subprogram

For the lowest level assemfler language
subprogram, the linkage instructions nust
include:

1. 1An assembler instructicn that names an
entry pcint for the subprcgram.

2. Instructions to save any qgeneral
registers used by the subprogram in
the save area reserved by the calling
program. (The contents of linkage
registers 0 and 1 need not be saved).

3. Instructions to restore the "saved"
registers before returning control to
the calling progran.

4, An instruction that sets to ones the

first byte in the fourth word of the

save area, indicating that control is
returned to the calling progranm.

5. An instruction that returns control to
the calling progran.

Figure 19 shows the linkage conventions
for an assembler language subprogram that
does not call another subprogram. In
addition to these conventions, the
assembler program must provide a method for
transferring arquments from the calling
program and returning the argquments to the
calling program.

Sharing Data in COMMON

Both named and blank COMMON in a FORTRAN IV
program can be referred to by an assembly
lanquage subprogram. To refer to named
COMMON, the A-type address constant

name DC A(name of CCMMON)

is used. The parameter (name of COMMON)
must te defined in an EXTRN statement. To
refer to blank COMMON, it must be defined
in the assembly lanquage subprogram (by the
COM instruction), and referenced by an
A-type address constant

name DC A(name of first DC or DS
in COM control section).

Table 4. Linkage Registers

) J A)
|Register | | |
|Numter |Register Name| Function |
L. [} 1 " |
] Ll T)
l 0 | Result {Used fcr function subprograms only. The result is returned in |
	Register	general or floating-point register 0. (For subroutine subpro-
	lgrams, the result is returned by the subprogram in a variable	
		passed to the subprogram by the programmer's CALL statement.)
N 1 4 L		
i Ll T 1		
1 {Argument List	Address of the arqument list passed to the called subprogram.	
l	Register	
— + + 1		
13	Save Area	Address of the area reserved by the calling program in which
	Register Ithe contents of certain registers are stored by the called	
l		progranm.
F + + 2l		
14	Return	Address of the location in the calling program to which control]
	Register	is returned after execution of the called program.
= + + —		
15 { Entry Point	Address of the entry point in the subproqgram.	
i | Register | |
L 1 i J

Appendix C:

Assembler Lanquage Subprograms 83

Higher Level Assembly Langquage Subprogran 3. An assembler instruction that

A higher level assembler sutprcgram must

indicates an external reference to the
subprogram called by the higher level

include the same linkage instructions as subprogram.

the lowest level subprogram,

but because

the higher level subprogram calls another

it must simulate a FORTRAN 4, Additional instructions in the return
subprogram reference statement and include: rcutine to retrieve entries in the

subprogranm,

1. A save area and additional

save area.

instructions to insert entries into
its save area.

Fiqure 20 shows the linkage conventions

2. A calling sequence and a parameter for an assembler subprogram that calls
list for the subprogram that the another assembler subprogranm.
higher level subprogram calls.

r Ll ¥ L
|{Name | Oper. |Operand comments |
k + + 1
|deckname| START |0 [
| | ENTRY jname NAME THE ENTRY POINT FOR THIS SUBPROGRAM |
| | USING |%,15 \
|name | BT 115,%+12 {
| | DC |X'm+1? m MUST BE EVEN TO INSURE THAT THE PROGRAM |
| | DC jCLm'name! STARTS ON A HALF-WORD BOUNDARY. THE NAME MAY BE |
I * | | PADDED WITH BLANKS, I
| | ST 114,12(13) THE CONTENTS OF REGISTERS 14, 15, AND 2 THROUGH R ARE |
i | ST 115,16 (13) STCRED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS ANY|
	ST 12,28 (13) NUMBER FROM 2 THROUGH 12 AND D IS THE APPROPRIATE
i	. DISPLACEMENT
	.
	.
{ ST IR,D(13)	
	user
	I .
	[
	L 12,28 (13) THE CONTENTS OF REGISTERS 2 THROUGH R ARE RESTORED.
i 1 .	
	.
l	.
{ L IR,D(13) '	
	MVI 112 (13) ,X'FF! INDICATE CONTROL RETURNED TO CALLING PROGRAM
	BCR 115,14 RETURN TO CALLING PROGRAM
L A 1 J

Figure 19.

Lowest Level Assembler Subrrogram

84 System/360 Model 4U4PS Guide to System Use FORTRAN

1]
jdeckname START O

| ENTRY name, ENTRY NAME FOR THIS SUBPROGRAM

| EXTRN name, ENTRY NAME THE CALLED SUBPROGRAM

| USING %,15

|namey BC 15,%+12

| DC X'm+ 1

i bC CLm'name,;’

| ST 14,12(13) SAVE RCUTINE

| ST 15,16(13)

| ST 0,20(13)

| :

| .

| .

| ST R,D(13)

| LR r2,13 LOADS REGISTER 13, WHICH POINTS TO THE SAVE AREA OF THE
| % CALLING PROGRAM, INTO ANY GENERAL REGISTER, Rz, EXCEPT
| % 0, 13 AND 15 (BASE REGISTER)

| LA 13,AREA IOADS THE ATDRESS OF THIS PROGRAM'S SAVE AREA INTO

| * REGISTER 13.

| ST 13,8 (0,r5) STORES THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO THE
| % CALLING PROGRAM'S SAVE AREA

| ST r2,4(0,13) STORES THE ADDRESS OF THE PREVIOUS SAVE AREA (THE SAVE
| % AREA OF THE CALLING PROGRAM) INTO WORD 2 OF THIS PRO-
| GRAM'S SAVE AREA

i BC 15,prok,

|ARERA DS 18F RESERVES 18 WORDS FOR THE SAVE AREA

|* user-written program statements

iproby

* CALLING SEQUENCE

LR 12,15 SAVE BASE REGISTER FOR THIS PROGRAM

LA 1,ARGLIST LOAC ALDRESS OF ARGUMENT LIST

L 15,ADCCN

BALR 14,15

LR 15,12 RESTORE BASE REGISTER FOR THIS PROGRRAM

* Mmore user-written program statements

RETURN ROUTINE
L 13,AREA+U LOADS THE ADDRESS OF THE PREVIOUS SAVE AREA BACK INTO

#*

— o —— ——m— — ——— — ——— — — — — t— —— — —
e e o . —— — —— . —— A —— — —— — —— — a— —— ———— i — — —— ——— —— —— — — —————— e ———— —— — —— — —— — ——, — — o]

* REGISTER 13
L 2,28 (13)
L R,D(13)
L 14,12(13) LOADS THE RETURN ADDRESS INTO REGISTER 14.
MVI 12(13) ,X'FF!
BCR 15,14 RETURN TO CALLING PROGRAM
j* END OF RETURN ROUTINE
|ADCON DC A(namey)
|* ARGUMENT LIST
|ARGLIST DC ALU4 (arg,4) ADDRESS OF FIRST ARGUMENT
1 .
i .
| .
] DC Xt80! INDICATE LAST ARGUMENT IN ARGUMENT LIST
| DC AL3 (argp) ADDRESS OF LAST ARGUMENT
L

Fiqure 20. Higher Level Assembler Subprogram

Appendix C: Assembler Lanquage Subproqrams B85

In-line Arqument List

The assembler programmer can establish an
in-line arqument list instead of an
out-of-line list. In this case, he may
substitute the calling-sequence and
arqument list shown in Figure 21 for that
shown in Figure 20.

L q,0 (1)
L r,0(q)
ST r,VAR
L r,4(q)
ST r,VAR+4

where q and r are any qgeneral registers.

For a subprogram reference, an address

statement

A(D1,D2,D3) {A(C1%xV1+J1,C2%xV2+32,C3%xV3+J3)
L

T v T 1

| Name | Oper. |Operand | of a storage location is placed in the

F + + | argqument list. This storage location is

|ADCON | DC {A(namey) [the entry point to the subprogram. The

| [- | | following instructions can be used to enter

| | . | | subprogram B from the subprogram to which B

| | LR 112,15 | is passed as an arqument.

| | La {14, RETURN |

| | L 115,ADCCN | 1. 15,4 (1)

| | CNOP 2,4 | BALR 14,15

i | BALR |1,15 |

| i DC |ALY4 (arqgy) | For an array, the address of the first

| | . | | variable in the array is placed in the

i i . | | arqument list. An array [for example, a

i | | | three-dimensional array C(3,2,2)] appears

| | pC |X'80! | in this format in main storage.

|) | bC |AL3(argn) |

{RETURN | LR 115,12 | c(1,1,1) c(2,1, 1) c(3,1,1 C(1,2,1)—4

L. L 1 i | J
r i

Figure 21. 1In-Line Argument List C(2,2,1) C(3,2,1) C(1,1,2) C(2,1,2)—

]

r
—C(3,1,2) C(1,2,2) C(2,2,2) C(3,2,2)
Table 5 shows the general subscript format

GETI'ING ARGUMENTS FRCM THE ARGUMENT LIST for arrays of 1, 2, and 3 dimensions.

The arqument list contains addresses fcr

the arquments passed to a subprogram. The Table 5. Dimension and Subscript Format

crder of these addresses is the same as the r T

order specified for the arguments in the |Array A | Subscript Format

calling statement in the main rrogram. The b }

address for the arqument list is placed in |A(D1) JA(C1xV1+J1)

register 1. Fcr example, when the |A(D1,D2) |A(C1xV1+31,C2%V2+J2)
='

CALL MYSUB(A,B,C)

is ccmpiled, the following argument list is

generated.

T T 1
1000000C0]) address for A |
[N | 4
L] T 1
100000000} address for B |
k + 1
{10000000} address for C |
L L 3
For purposes of discussicn, assume A is a
double-precision (realx8) variable, B is a

subprogram name, and C is an array.

The address of a variable in the calling
program is placed in the arqument list.
The following instructions in an assembler
language subprogram can be used to move the
double-precision variable A to location VAR

-in the subprogran.

{D1, D2, and D3 are integer
}in the DIMENSION statement.
|31, J2, and J3 are integer
{v1l, V2, and V3 are inteqger
L

constants used
c1, c2, C3,

constants.

variables.

b e o e e — e

The address of the first variable in the
array is placed in the arqument list. To
retrieve any other variables in the array,
the displacement of the variable, that is,
the distance between the variable and the
first variable in the array, must be
calculated. The formulas for computing the
displacement (DISPLC) of a variable for
one, two, and three dimensional arrays are:

DISPLC=(C1%V1+J1-1) %L

DISPLC={C1%V1+J1-1) %L+ (C2%V2+J2-1) *D 1%L

DISPLC= (C1%V1+J1-1) %L+ (C2%V2+J2-1) «D 1%
+ (C3%V3+J3-1) *«D2%xD 1%L

where L is the length of each variable in
the array.

86 System/360 Model 44PS Guide to System Use FORTRAN

For example, the variable C(2,1,2) in 1 q,8 (1)
the main program is to be moved to a L r,DISPLC
location ARVAR in the subprogram. Using L s.0(q,T)
the formula for displacement of variables ST s,ARVAR

in a three-dimensional array, the

displacement (DISPLC) is calculated to be where q, r, and s are general registers.
28. The following instructions can be used

to move the variable:

Appendix C: Assembler Lanquage Subprograms 87

APPENDIX D: SYSTEM DIAGNOSTIC MESSAGES

This appendix contains a detailed
description of the diaqnostic messages
produced during operation of the Model 44
Programming System. Messages are discussed
in the following order:

e Supervisor messages

e Job control messages

s Compiler messages

e Linkage editor messages

e Phase execution messages

SUPERVISOR MESSAGES

Supervisor messages may appear at any time
during execution. They are written by the
supervisor.

FAOCI ERR LDING MESS WRTR

Explanation: An input/output error
occurred while the system was loading
its message writer routine. The job
is canceled.

FAODI cuu NOT OPERATICNAT

Explanation: cuu is the physical
address of an inputy/output device. An
input/output operaticn was reguested
for a data set on a device that is not
operational. Tre job is canceled.

FAOEI cuu SNSE UN CHF

Explanation: cuu is the physical
address of an input/output device. A
unit check interrupticn occurred in
resronse to a sense operation on a
device. The job is canceled.

FAOFI cun I/O PROG CHK

Explanation: cuu is the physical
address of an input/output device. A
program check cccurred during
execution of an input/output
operation. This may be the result of
a zero count in a data transmission
request or an invalid data address.
The job is canceled.

FA10I xxxx CAN'T BE LOADED

Explanation: xxxx is the name of a
system routine. The routine is needed
by a system proqram, but it cannot be
found or it cannot be loaded because
of an input/output error on SYSAB1.
The job is canceled.

FBOBI OPRTR CNCTED

Explanation: A job has been canceled
by the operator.

FB11I CNCL IN CNCL RTN

Explanation: A CANCEL was requested
by the operator while the system wvas
executing the CANCEL routine.

GAO6I PD LST FULL

LAST SVC PSW XXXXXXXXXXXXXXXX

Explanation: The x's are replaced by
the new program status word for the
last supervisor interruption. Too
many supervisor calls have been issued
in too short a time. The job is
canceled.

GAO7I ILLEG CODE - SVC x
Explanation: x is an invalid code
that was used in a supervisor call.
The job is canceled.

GAO8I xxxxxxxx CAN'T BE FTCHD

Explanation: XXXXXXXX was used as the
name of a phase. The system cannot
find any phase with this name in the
phase library. The job is canceled.

PROG CHK INT CODE x
HAQ2I 1IN USER PROG CHK RTN
Explanation: A program check
developed during execution of a user's
program check interruption routine.
x is the interruption code. The job
is canceled.

88 System/360 Model 44PS Guide to System Use FORTRAN

PROG CHX INT CODE x
HAO3I USER RTN NOT APPLICABLE
on: X is the program check
interruption code. On interrupt codes
1 through 5, no user program check
routine is entered. The jol is
canceled.

Explanation:

PROG CHK INT CODE x

HAQ4I NO USER RTN SPECIFIED
Explapatipon: x is the prcgram check

interruption code. There is no user
program check routine srecified t

handle this type of program check.
The job is canceled.

PROG CHX INT CODE x
HAO5T PSHW - XXXXXXXXXXXXXXXX IN SPVSR STATE

Explanation: x is the program check
code and the other x's are replaced by
a program status word. A program
check occurred in the supervisor
state. The PSW is the last problenm
program PSW. The job is canceled.

JAOAI JCB CANCELLED
Explanation: A job has been canceled.

Another message usually appears giving
the reason for the cancellaticn.

JOB CONTROL MESSAGES

Messages written by the jot control
processor are distinquished by the initial
characters IA.

These messages are written cn SYSLST.
In the following listing, they are grouped
by type. Each group shares a commecn text
message, but the identification code
differs to indicate the source of the error
condition.

The messages are as follows:

TAxxx STMNT FMT ERR

Messages IAO01I through IA09I indicate an
error in the text of a job control
statement. The xxx porticn identifies the
problem area more specifically, as follows:

IA01I - Identification field. The first
two columns do nct ccntain the
proper characters for a job
contrcl statement. The job is
canceled.

IA02T - Name field. An invalid name has
been specified. It may not be
appropriate for the statement, as
when something other than a
symbolic unit name is specified
in the name field of an ALLOC or
ACCESS statement. The job is
canceled.

—~
bd
]
w

T - Operation field. The svstem does
not recognize the operation

specified. The job is canceled.

IAQ4I - Operand field. A required
parameter is missing. The qjob is

canceled
canceled.

IA05I - Operand delimiter. An improper
character has been used as a
delimiter. The job is canceled.

IA06I - Field size or count. A parameter
in the operand field is too long,
or specifies an unacceptable
size, or there are too many
characters within a pair of
parentheses. The job is
canceled.

IAO07I - Operand field. The operand field
contains a parameter that cannot
be recognized or that should not
be used in this statement. The
job is canceled.

IAQ08I - Continuation error. The first
two columns of a continuation
statement do not contain the //
characters, information starts
before column 16, or a
continuation statement is
required but column 72 is not
punched. The job is canceled.

IAQ09I - VPS field. The VPS field of an
FXEC statement contains an
invalid entry, or a VPS setting
has been specified for a systen
that is not equipped with this
facility. The job continues, but
the parameter is ignored.

TAxxx STMNT SEQ ERR

Messages IA11I througqh IA17I indicate
improper use of a job control statement.
The xxx portion identifies the specific
problem, as follows:

TA11I - A LABEL statement was misused.
For & unit record data set or a
tape data set, the LABEL
statement did not follow an
ACCESS or ALLOC statement. For a
direct access data set, it did
not follow an ALLOC statement.
Otherwise, it appeared in an

Appendix D: System Diaqnostics 89

IA12T

TA13I

IAI4T

IA15T

IA16I

IAVTT

TAXxxX

invalid place in the job deck.
The job is canceled.

An ALLOC statement for a direct
access data set was not follcwed
by a LABEL statement. The job is
canceled.

The system read a // statement
that was not a JOB statement and
was not preceded by a JOB
statement. The job is canceled.

The phase name field of an EXEC
statement is blank and the job
step does not immediately follow
a successful linkage editor -job
step, or the linkage editor
reported an error severity level
of 12. The jol is canceled.

A DELETE, CONDENSE, or RENAME
statement refers to a data set
that was not cited in an ACCESS
or ALLOC statement previously in
the job. The statement is
ignored.

A data set or symbolic unit
referred to in the SAME=parameter
field of a LABEL statement was
not defined previously in the job
nor is it a system data set. The
job is canceled.

An invalid statement appears
among the job control statements
or an EXEC statement is missing.
Job control skips to the next
recognizable jcb ccntrol
statement.

VCL REQ ERR

Messages IA21I through IA28I apply to
volumes requested in ALLOC or ACCESS
statements.

IA21T

TA22T

IA23I

IA25T

The system has nc record of the
volume or device referred to.
The job is canceled.

A request for a particular type
of device cannot be satisfied.
Not enough devices of this type
are available. The job is
canceled.

The volume field of an ACCESS or
ALLOC statement ccntains an entry
that cannot be resolved. The job
is canceled.

An attempt has been made to
remove the system residence
volume. The job is canceled.

IA261 - A statement has requested
assignment of a device that is
not operational. The job is
canceled.

IA27I - The volume field of an ACCESS or
ALLOC statement specifies the
address of a device that was
assigned to another data set
previously in the same job step.
The job is canceled.

IA28I - A job control maintenance
statement has been detected for a
data set on a volume that is not
mounted. The statement is
ignored.

TAxxX DSNAME ERR XXXXXXXX

Messages IA31I through IA38I apply to the
names of data sets and members. The nanme
causing the condition is printed with the
message.

TA31T The required data set cannot be
found in the volume specified.

The job is canceled.

IA32I - The required member cannot be
found in the data set specified.
The job is canceled, unless the
condition is encountered while
processing a DELETE request for a
member, in which case the request
is ignored.

IA33T - The data set named cannot be
found in the system catalog. The
action requested for the data set
is not performed.

IA34T - The name specified for a data set
duplicates the name of a data set
that is already on the same
volume. The job is canceled.

TA35T - The name of a member in a
directoried data set duplicates
another name already in the
directory. The job is canceled.

IA36I - A data set name duplicates
another name in the systenm
catalog. The job is canceled.

IA37T - The block length requested for
the data set is too large for the
device. The job is canceled.

IA38T - An attempt has been made to close
a new member of a directoried
data set,but the member was never
written.

90 System/360 Model U4U4PS Guide to System Use FORTRAN

JA41T TINSUFF SP XXXXXX be handled at the installation. The
job is canceled.
Explanation: xXxXXxXx 1s a volume
identification number. This message
indicates there is not enough rocm on
a disk volume to permit a requested
operation. The job is canceled.

i
=
wm
<
H
b1
oy}
=2
=)
@)
=]

Explanation: The job did not include

a /& (end-of-job) statement. The job
IA42TI TINSPFF SP XXXXXX is canceled.

Explanation: xxxxxx is the volume

identification number of a disk vclume

whose volume table of contents is IA55T hhmmss
full. No new data sets can be added

to the volume until scme of those

already on it are deleted or, if there Explanation: This message, appearing
is vacant space on the disk, the after a JOB statement, gives the time
volume table of contents is enlarged that the execution of the job started,
through reinitialization. The jot is expressed in hours, minutes and
canceled. seconds.

JA43T INSUFF SP XXXXXXXX
IA58I CUU RW RR RN PW PR PN
Explanation: xxxxxx¥Xx is the name of
a directoried data set whose directory TA59T xxXXx XX XX XX XX XX XX
is full. No new members can be added

until some directory entries are Explanation: These messages report
deleted. The job is canceled. the number of input/output errors

detected during the job. The count is
listed in columns by device. The CUU

IA44T INSUFF SP XXXXXXXX column is the device address; RW is
the number of recovered writing

Explanation: xxxxXxxxx is the name of errors; RR, recovered reading errors;
a directoried data set in which there RN, the number of recovered nondata
is not enough room to add another transmit errors; PW, permanent writing
memker, or it is the name of a data errors; PR, permanent reading errors;
set of any type in which there is not and PN the number of permanent nondata
enough room to write another blcck of transmit errors.

data. The job is canceled.

TA61I NEW NAME NOT CAT
IA45I TINSUFF SP CATIG

Explanation: A renamed data set

Explanation: There is not enough cannot be cataloged. The name has
space in the system catalcqg to add been changed, as specified in a RENAME
another entry. The job is canceled. statement, but the new name cannot be

entered in the system catalog.

JA46T INSUFF SP JOBTABLE

IA62I SYSERR
Explanation: The job ccntrol

processor's working space is full. Explanation: An unrecoverable system
The job is canceled. Either the size error has occurred. The operator must
of the job must be reduced or the size reinitiate the initial program loading
of the system's SDSPAS data set must procedure.

be increased before the next run.

IA70I DA FMT ERR XXXXXX
TAU47I INSUFF SP FCB

Explanation: XXXXxx is the volume

Explanation: The system does not have identification number of a volume
enough space in main storage to whose volume label is unreadable or in
construct a file control block for the an improper format. The volume cannot
symbolic unit cited in an ALLOC or be used by the system until it is
ACCESS statement. The symbolic unit initialized via a system utility
nunber may exceed the number that can program. The job is canceled.

Appendix D: System Diagnostics 91

JA71I DA PMT ERR XXXXXX IA79T ©NO CATLG

Explanation: xxxxxx is the vclume Explanation: A cataloging request has
identification number of a volume been made but cannot be executed

whose volume lakel has keen changed because the system does not have a
during the job. The job is canceled. catalog.

IA82I JC INIT DONE
IA72I DA FMT ERR XXXXXX

Explanation: The system has just
completed an initial program loading
Explanation: xxxxxx is the volume procedure,
identification number of a volume
whose volume table of contents is not

in the proper format. The volume TA86I CAUTION JOB TBL FULL

cannot be used until it is initialized

via a system utility program. The job Explanation: The job control

is canceled. processor's working space is full.

This is only a warning message. Any
additional job control statement will
overlay a previous entry. TIf this

IA73I DA FMT ERR XXXXXXXX happens, some references to data sets
or symbolic units mentioned in

Explanation: xxxxxxxxXx is the name of previous statements may not be
a sequential data set for which a acceptable, and some symbolic unit
directoried data set request has keen assignments may not be made. The size
made. The job is canceled, unless the of the job should be reduced, or the
condition is encountered while - size of system data set SDSUAS should
processing a CONDENSE request, in be increased.

which case the request is igncred.

TA88I SYSxxx cuu dsname volid
IA74T DA FMT EFR XXXXXXXX.

Explanation: SYSxxx is a symbolic

Explanation: xxxXxxxxX is the name of unit name, cuu is the unit's physical

a data set being accessed; the format address, dsname is the data set

1 label for that data set dces not associated with the unit, and volid

contain a block size. The job is identifies the volume containing the

canceled. data set. This format is used by the
system in responding to a LISTIO
request.

IA75I DISK I/0 ERR

Explanation: The system's standard IA89I M cuu volid

error recovery procedure has failed.

The system is unable to write on a Explanation: M is the abbreviation

disk vclume during an ACCESS or ALLOC for Mount, cuu is a device address,

operation, either in handling the and volid is a volume identification

volume table of contents or a data number. A new volume has just been

set., The job is canceled. assigned to a disk device. The

operator can mount the volume to

prepare for the IA90A message.
IA761 DISK I/0 EERR

Explanation: The system's standard IA90A M ALL REQ DISKS

error recovery procedure failed while

attempting to recover an input/output Explanation: This message instructs
error during a DELETE operation. The the operator to mount all disk volumes
job is canceled. requested in preceding IA891 messages.

When this is done, he signals the

system to continue processing.
IA771I DISK I/0 ERR.

Explanation: The standard error IA91D VOL xxxxxx UNREADABLE

recovery. procedure has failed to read

or write disk during a CONDENSE Explanation: XXXXXx represents a vol-
operation. Processing continues. ume identification number. This

92 System/360 Model 44PS Guide to System Use FORTRAN

message appears after an IAS0A
message. It indicates that the systenm
is unableto read the volume label of a
disk that has been mounted. The
operator can mount another volume,
instruct the system to ignore the
volume but continue processing, or
cancel the job.

IA92I JCT OFLOW

EZxplanation: A LABEL statement uses
the SANME parameter, but the reference
cannot be resolved because the Job
control processor's working space was
filled earlier in the program. This
message follows an IAB86I message. The
job 1is canceled.

IA93I OPEN ERR SYSxxx

Explanation: SYSxxx identifies a
system unit. An error was detected
while the job control processor was
opening a data set on the specified
system unit. The data set is not

opened, but processing continues.
IA94I CLOSE ERR SYSxxx

Explanation: SYSxxx identifies a
system unit. An error was detected
while the job control processor was
closing a data set on the specified
system unit. The data set is not

closed, but processing continues.

COMPILER MESSAGES

This section contains a list of the
error/warning messages produced by the
FORTRAN IV compiler. An explanation of
each message, including its condition code
setting, is given.

The condition code indicates the
severity of the error. A code of 16
reguires immediate termination of the job.
A code of 12 causes termination of the job
step. An 8 code signifies a serious
condition, but processing continues. A
code of 4 is a warning message calling the
programmer's attention to a condition that
may be an error.

NAO1I ILLEGAL TYPE

Explanation: The variable in an
Assigned GO TO statement is not an
integer variable; or, in an assignment
statement, the variable on the left
side of the equal sign is of logical
type and the expression on the right
side is not. (Condition code -- 12)

NAO2I LABEL

Zxplanation: A statement that should
be lateled is not. For example, a
FORNMAT statement or a statement
following a GO TO statement is not
labeled. {Condition code -- &)

NAO3I NAME LENGTH

Explanation: The name of a variatle,
COMMCON block, NAMELIST, or subprogranm
exceeds six characters in length; or
two variable names appear in an
expression without a separating
operation symhol. (Condition

code -- 8)

NAO4TI COMMA

Explanation: A comma regquired in a
statement does not appear. (Condition
code —-- W)

NAOSI TLLEGAL LABEL

Explanation: 1Invalid use of a
statement label has occurred; for
example, an attempt has been made to
branch to the label of a FORMAT

statement. (Condition code -- 12)
NAO6I DUPLICATE LABEL

Explanation: The latel appearing in
the label field of a statement is
already defined (has apreared in the
label field of a previous statement).
{Condition code -- 12)

NAO7I ID CONFLICT

Explanation: The name of a variatble
or subprogram has been used in
conflict with the type that was
defined for it in a previous
statement. For example, the name
listed in a CALL statement is the name
of a variable, not a sutprogram; or a
single name appears more than once in
the dummy list of a statement
function; or a name listed in an
EXTERNAL statement has already been
defined in another context.
(Condition code -- 12)

NAC8I ALLOCATION

Explanation: The storage assignment
specified by a source statement cannot
be performed because the use of a
variable name is either improper or in
conflict with some prior use of that
name. For example, a name listed in a
COMMON block has been listed in
another COMMON tlock; or a variable
listed in an EQUIVALENCE statement is

Appendix D: System Diagnostics 93

Form C28-6813-2, page modified June 10, 1969,

followed ty more than seven
subscripts. (Condition code -- 12)

NAOSI ORDER

Explanation: Source statements are
used in an improper sejuence. For
example, an IMPLICIT statement appears
as other than the first statement in a
main program or the second statement
in a subprogram; or an ENTRY statement
appears within a DO lcop. (Condition
code -- 12)

NA10I SIZE

Explanation: A number used in a
source statement does not conform to
the values allowed for its use. For
example, a label used in a statement
exceeds the maximum value for a
statement label; or the size
specification in an Explicit
Specification statement is not one of
the acceptable values; or an integer
constant is too large. (Condition
code -- 12)

NA10T SIZE WRN.

Explanation: A non-subscripted array
initialized with a DATA initialization
statement is only partially
initialized. The uninitialized
elements of the array will contain
Zeros. (Condition code -- 4)

NA11I UNDIMENSIONED

Explanation: The use »f a variable
name indicates an array (that is,
subscripts follow the name), but the
variable has not been dimensioned.
(Condition code -- 12)

NA12I SUBSCRIPT

Explanation: The number of subscripts
used in an array reference is either
too large or too small for the array.
{Condition code -- 12)

NA13I SYNTAX

94

Explanation: A statement or part of a
statement does not conform to the
FORTRAN IV syntax. For example, a
statement cannot be identified; or a
nondigit appears in the label field;

or fewer than three labels follow the

by TNL N33-8602

expression in an Arithmetic IF
statement; or a constant that begins
with a decimal point does not have a
digit as its second character.
(Condit ion code -- 12)

NAT4TI CONVERT

Explanation: In a DATA statement or
in an Explicit Specification statement
containing data values, the mode of a
constant is different from the mode of
the variable with which the constant
is assoclated. The constant is
converted to the correct mode by the
compiler; this message is simply a
notification to the programmer that
the conversion is performed.
(Condition code —-- U4)

NA15I NO END CARD

Explanation: The set of source
statements does not contain an END
statement. {Condition code -- W)

NA16I ILLEGAL STA.

Explanation: The context in which a
statement has been used is invalid.
For example, the statement "s" in a
Logical IF statement (the result of
the true condition) is a Specification
statement, a DO statement, etc.; or an
ENTRY statement appears in a main

program. (Condition code -- 12)

NA17I ILLEGAL STA. WRN.

Explanation: A RETURN statement
appears in a main program; or a RETURN
1 statement appears in a FUNCTION
subprogram. (Condition code -- 4)

NA18I NUMBER ARG

Explanation: A reference to a library
subprogram specifies an incorrect
number of arguments. (Condition

code -- 8)

NA19I FUNCTION ENTRIES UNDEFINED

Explanation: The program being
compiled is a FUNCTION subprogram, but
there is no scalar with the same name
as the FUNCTION nor is there a
definition for each ENTRY. A list of
the undefined names follows the
message. (Condition code -- 4)

System/360 Model 4U4PS Guide to System Use FORTRAN

Form C28-6813-2,

NA20I COMMON BLOCK/ /ERRORS

Explanation: This message pertains to
errors that exist in the definitions
of EQUIVALENCE sets that refer to the
COMMON area. The message is produced
when there is a contradiction in the
allocation specified, when there is an
attempt to extend the beginning of the
COMMON area, or if the assignment of
COMMON storage results in an attempt
to allocate a variable at a location
that does not fall on the appropriate
boundary. The name of the COMMON
block in error appears between the two
slashes. A 1list of the variatles that
could not be allocated because of the
errors follows the message.

(Condition code -- 8)

NA21I UNCLOSED DO LOOPS

Explanation: This message is produced
if one or more DO loops are initiated,
but their terminal statements do not
exist, or if the terminal statement
for an outer DO precedes the terminal

statement for an inner DO (improper

page modified June 10, 1969, Lty TNL N33-8602

NA25I DUMMY DIMENSION ERRORS

Explanation: 1If variables specified
as dummy array dimensions are not in
COMMON and are not dummy arguments,
this message is produced. A list of
the dummy variables that are in error
follows the message. (Condition
code —- 12)

NA26I BLOCK DATA PROGRAM ERRCRS

Explanation: This message is produced
if variables in the source statements
have been specified within a BLOCK
DATA subprogram but have not also heen
defined as COMMON. A list of these
variables follows the message.
(Condition code -- 4)

NA27I PUNCH ERROR, DECK CUTPUT DELETED

Explanation: The DECK option was
specified in the EXEC FCRTRAN
statement, but an unrecoverable error
has occurred on SYSPECH. The punching
of the requested deck is terminated.
(Condition code =-- 4)

nesting). A list of the undefined
labels that appeared in the DO
statements follows the message. When NA28I SYS000 OUTPUT ERROR, LINK OUTPUT
the message results from improper DELETED

nesting, this list will include the
labels of incorrectly placed terminal
statements. (Condition code -- 12)

Explanation: The LINK option was
specified or assumed in the EXEC
FORTEAN statement, tut an
unrecoverable output error has
occurred on SYS000. The writing of
the module on SYS000 is terminated.
Compilation continues. (Ccndition
Explanation: Labels used 1in the set code -- 12)

of source statements are not defined.
A list of the undefined latels follows
the message. (Condition code -- 12)

NA22I UNDEFINED LABELS

NA29I CCMEFILER INTERRUPT, COMPILATION BATCH
TERMINATED

NA23I EQUIVALENCE ALLOCATION ERRCRS Explanation: An interruption occurred

in a phase other than Parse or is of a

type other than exponent underflow cor

exponent overflow. Compilation is

termina ted. (Condition code ~-- 12)

Explanation: This message is produced
when there is a conflict between two
EQUIVALENCE groups, or if there is an
incompatible boundary alignment in an
EQUIVALENCE groupr. A list of the
variables that could not be allocated
according to source statement
specifications follows the message.
(Condition code -- 8)

NA3CI I/C ERROR SYSPSD ON INPUT, LINK
MODULE DELETED

Explanation: An unrecoverable input
error has occurred on SYSPSD. The jcb
is terminated. ({Condition code —-- 16)

NA24TI EQUIVALENCE DEFINITICN ERRORS

Explanation: This message denotes an

NA30I I/C ERROR SYSPSLC ON OUTPUT, COMPILA-

error in an EQUIVALENCE group when an
array element is outside the array. A
list of the errors follows the
message. ({Condition code -- 8)

TION TERMINATED

Explanation: An unrecoveraktle ocutput
error has occurred on SYSPSD:

Appendix D: System Diagnostics 95

Compilation terminates. (Condition

code =-- 16)

NA31I SYsSOOC OR SYS0C1 OPEN ERRCR, COMEILA-
TION BATCH TERMINATEL

anati An error code is
returned after opening SY¥S001 or
SYS000. The job is terminated.
(Condition code -- 16)

NA32I MORE THAN 100 COMPILATICNS/BATCH
NO SYSPSD UPDATE

Explanation: This message occurs at
the end of the 101st compilation of a
batch. One hundred is the maximum
number of unique directory entries
that can be generated for a single
compilation batch. Compilation is
terminated. (Condition code -- 12)

NA33I SYsS001 READ END OF FILE, COMPILATION
TERMINATED

Explanation: An end-of-file mark was
erroneously read on S5YSC01 by the
compiler as it was reading Polish
notation. Compilation is terminated.
(Condition code ~- 12)

NA34I SYSOCT1{READ|ERROR, COMPILATICN TERMI-
NATED (WRIT

Explanation: Arn unrecoveratle input
or output error has occurred on SYS001
while the compiler was reading Polish
notation. Compilation is terminated.
(Condition code -- 12)

NA35I EXIT ROLL FULL, COMPILATICN TERMI-
NATED

______ This message is produced
when the EXIT roll (an internal table
used by the compiler) has exceeded the
amount of main storage assigned for
it. Compilation is terminated.
(Condition code -- 12)

NA36I WORK ROLL FULL, COMPILATICN TERMI-
NATED

Explanation: This message is produced
when the WORK roll (an internal table
used by the compiler) has exceeded the
amount of main storage assigned for
it. Compilation is terminated.
(Condition code -- 12)

NA37I NO MORE CORE AVAILABLE, COMPILATICN
TERMINATED

Explapation: This message is produced
when the program being compiled

exhausts the supply of main storage
available to the compiler. (Condition
code -- 12)

NA38I SYSIPT I,/0O ERROR, COMPILATION TER-
MINATED

Explanation: An input/output error
occurred while the compiler was
reading a card from SYSIPT. The job
is terminated. (Condition code -- 16)

NA39I SYS000 or SYS001 CLOSE ERROR
Explanation: An error code was
returned when the system attempted to
close SYS000 or SYS001. (Condition
code —-- 4)

NA4OI ERRCR PRINTING LAST LINE
Explanation: An error occurred on
SYSOPT when the system attempted to
write the line preceding this message.
The system tries to print this warning
message and to continue. If it cannot
continue, the job is terminated.
(Condit ion code -- 4 or 16)

LINKAGE ELCITOR MESSAGES

Linkage editor error messages are written
on SYSLST during the linkage editing jcb
step. These messages apply to the ESD,
TXT, REP, RLD, and END statements produced
by the language processors and to the
linkage editor control statenments.

In most cases, an error message is
accompanied by a listing of the statement
containing or causing the error.

Some of the statements rerroduced in an
error listing do not correspond exactly to
the actual input statement. This is
tecause the linkage editor does some
processing of the statements in the
statement input area, and some fields have
been altered by the time an errcr is
detected. This applies mainly to the byte
count, length, and type fields of the ESD
statement. In no case, however, should
there be any problem identifying the
statement.

For TXT and RLL cards, only the first 36
columns of the variable field are printed.
For a REP carc error, other than a sequence
error, the error code is printed
immediately after the REP card listing.

The notation FOR REP CARD is printed next
to the error code.

36 Systemn/360 FKodel UUPS Guide to System Use FORTRAN

Form C28-6813-2, page added June 10, 1969, by TNL N33-8602

Error messages fall into four 2. Severe Errors. These messages are
categories: written when the linkage editor
detects errors that would prohibit
successful execution of the progran.

1. Warning Messages. These are produced
Linkage editing continues, but 1its

te call a programmer s attention to a
condition that may or may not
represent an error, They do not

affect continuation of the job step.

Appendix D: System Diagnostics 96.1

output is flagged so that it will not
be accepted for execution.

3. Job Step Termination Messages. These
mescages are written when conditions
develop that require immediate
termination of the linkage editcr job
step. All system data sets are left
in proper status for subsequent job
steps in the job.

4, Job Termination Messages. These
mescsages are written when conditicns
develop that require immediate
termination of the job. Most of these
are not the fault of the program, but
represent an inability of the systen
to continue functioning properly.

Most of these messages are written in
the format ¥AxxI, where KA identifies a
linkage editor error messaqge, XX reprecsents
a numeric code identifying a particular
message, and T means the message is for
information. A few messages include
written text, as discussed in the fcllowing
list of numeric codes and their
corresponding messages.

The last line of any linkage editor
listing contains the message LINKAGE EDITOR
HIGHEST SEVERITY WAS xx, where xx indicates
the severity level, as follows:

0 indicates no significant errors and
execution of the job may continue.

4 indicates that one or more warning
messages have been printed, but
execution may continue.

12 indicates that the program ccntains
errors that prevent its execution.
The phase or phases heing edited
are not entered in the phase
library. In some cases, the jcb
step is terminated, but the systen
attempts to execute subsequent
steps in the job.

16 indicates that a termination
condition exists, and editing has
not been completed. No phases have
teen entered in the phase library.
The job is canceled.

Warning Messages, Severity Level 4

The follcwing messages are designed solely
to call a programmer's attention to an
unusual condition.

Error

Code Condition

KAO1I A COMMON control section has the
same name as a reqular control
section, but their lengths
differ. Space has been
reserved for the longer.

¥A02I Two or more control sections in
different phases have the same
name.

KAO03I The previous control section had
a length of 0. If this
condition is not intentional,
it could have heen cauced by an
error of the language
processor.

KAQOUI An END card that should indicate

the length of a control section
does not. The length of the
last or only control section in
the external symbol dictionary
is 0. This does not represent
an actual error if the control
section contains only
instructions to the language
processor that do not require
any main storage space.

KAO5I A control section name in a CSECT
list in an INCLUDE statement is
duplicated.

KAO06I A job control statement other
than /% was read. It has been
saved for processing at the end
of the job step.

Severe Error Messages, Severity Level 12

The following messages document errors that
prohibit execution of the program. Linkage
editing continues.

Error
Code Condition
KA11I The type field of an ESD

statement contains an invalid
entry. This usually represents
a language Processor error.

KA12I A COMMON control section has the
same name as an entry point.

KA13I A Label Definition type entry in
an ESD statement does not point
to a Section Definiticn or
Private Code type entry. This
usually represents a lanquage
processor error.

Appendix D: System Diagnostics 97

Error
Code

Error

Condition Code

¥AT4TI

KA151

KA16T

KA18I

KAa191

KA351

KA36I

KA37I

¥A381I

KA39T

KA401

Condition

An origin for a ccntrol section
that should ke aligned on a
double word boundary is not so
aligned. This usually
represents a language Frocessor
error.

Kau1l

KAU2T
An ESD statement indicates that a
private code section is named.
A private code section cannot
be named. This usually
represents a language [IrCCESSOT
error.

An SD, LD, or ER type entry with
a blank name field is invalid.
This usually represents a
language processcr error.

An entry point name improperly
duplicates another entry point
or control section name.
KA431

Two or more ESD statements in the
same input mcdule have the same
identification number. This
usually represents a lanquage
PrOCeSSOr error.

KAULT
System unit SYS000 or SYSREL
contains a statement that is
either invalid or cut of
sequence., Module cards must be
in the order ESD, TXT, RLD,
REP, and END.

A MODULE statement was not
followed by a statement with
the 12-2-9 1lcader
identificaticn punch in its
first column. KAUST

The linkage editor has read
teyond the last block of an
input module. The input deck
is out of sequence, or an END
card is missing.

A statement on SYSIPT is invalid
or out of sequence.

A job control statement other
than the /% (end-of-data)
statement has been read. The
/% statement is the cnly job
control statement that should
te read by the linkage editor.

A hexadecimal field in a PHASE or
REP card contains an invalid
character.

98 System/360 Model 44PS Guide to System Use FORTRAN

A module contains an ESD identi-
fication number of 0 or dgreater
than 255. Except for REP
cards, this usually represents
a language processor €rror.

A TXT, REP, RLD, or END statement
contains an ESD identification
number that is not in the mod-
ule's external symbol diction-
ary. Except for a REP card, it
may represent a language
processor error. For a TXT or
REP card, it also may mean that
the ESD number does not point
to a control section. This
message is written only for the
first TXT or REP card contain-
ing the error even though the
following cards may contain the
Ssame erroneous number.

The operand field of a control
statement extends beyond column
71; the variable field of a REP
card extends beyond column 71;
or the last field in a REP card
contains a number of characters
that is not divisible by four.

An entry point in the external
symbol dictionary has an ESD
number -that should point to a
control section, but the con-
trol section that it points to
is not in the external symbol
dictionary. This may represent
the loss of cards or a lanqguaqge
processor error. This error is
detected when an END card is
processed, so the message is
listed with the END card.

The CSECT name list of an INCLUDE
statement contains one or more
control section names that are
not in the module. This error
code is printed with the END
card since the error cannot be
detected earlier. 1In some
cases, this message is given
because the control section in
the external symbol dictionary
was not processed as the result
of another error condition,
usually made by a lanquage
processor. In this case,
ESD card for the control
section has been printed with
another error code. If a phase
map has been produced, the
control sections specified in
the INCLUDE statement that were
actually included in the phase
are listed.

the

Error
Code

Condition

KAL46I

KA47I

KAU8T

KALQAT

KA50T

KAS51T

KA521I

KAS53I

KA541

KAS55T

KA561I

KAS57T

KAS58I

An RLD statement contains a
positicn pointer to an ESD
number in the ESD dictionary
that is not of the SD or PC
type. This usually represents
a language processor error,

An entry in the operand field of
a linkage editcr ccntrol
statement contains tco many
characters.

A required entry is missing fronm
the operand field of a linkage
editor control statement.

A linkage editor ccntrcl
statement contains an invalid
delimiter, or a required
delimiter is missing.

A decimal field in a PHASE
statement contains a
non-decimal character.

The third specification in the
operand field of a PHASE
statement is invalid. Only
NOAUTO can be specified in this
field.

A name in a PHASE or MODULE
statement contains an invalid
character.

Two or more phases in the rrcgran
have the same nanme.

A PHASE statement with an % or S
origin also has a rhase
gualifier. This is permitted
only when a control section or
entry point is specified as the
ori- gin.

A symbol specified in a PHASE
statement for the origin of the
phase was not defined
previously.

A PHASE statement specifies a
negative origin.

The END statement for the
previous phase contains an
invalid entry in its transfer
address field.

The previous phase contained no
text. This may occur vwhen the
linkage editor is unable to
find the modules named in an
INCLUDE statement.

Error

Code Condition

KA59I The entry point specified in an
ENTRY statement is not the name

point or control section.

KA60T A TXT or REP statement contains a
load address outside the limits
of the current phase. This
usually represents a lanquage
processor error, when it is in
a TXT statement.

KA61I The program calls for a phase
size greater than 368,640
bytes.

KA62I The control section name field of
an INCLUDE statement contains
the names of more than five
control sections.

KA63TI A specification other than R or L
appears as the second operand
of an INCLUDE statement.

KA64T A module named in an INCLUDE
statement cannot be found in
the place indicated by the R or
L specification.

KA65I The linkaqge editor has read a job
control statement for the next
job step and is unable to save
it in the user communication
region. When the linkage
editor reads a job control
statement at the end of the job
step, it attempts to save it
for the job control processor.
This message is written when
the attempt to store it in the
user communication region
results in an error return.

KA66I A PHASE statement identifies a
phase as ROOT but also
specifies a phase qualifier or
relocation factor.

Termination Messages, Severity Level 12 or
16

The following messages cover input/output
error conditions so severe that the linkage
editor cannot continue. The severity
depends upon which unit experienced the
error. The linkage editor job step
terminates when severity 12 conditions
occur. The entire job is canceled for
severity 16 conditions. 1In either case,
the system prints a messaqge code, the
message LINKAGE EDITOR CANNOT CONTINUE,
and, on the next line, a notation of the
highest severity level encountered in the
job step.

Appendix D: System Diagnostics 99

Along with the error message code, the
system prints a code numter that identifies
the unit experiencing the error. These
numbers are 2 for SYSAB2, 3 for SYSREL, 6
for SYSIET, 7 for systsT, 10 fcr SYSPSD, 16
for SYS000, and 17 for SYS00'. These are
the units used by the linkage editcr.
Errors on SYSIPT and those cn SYSPSD and
SYS000 when a MODULE card and its
associated MODULE are being prccessed have
a severity level of 16. Fcr others, the
severity level is 12.

Error

Code Condition

KA80I End of extent was detected during
a Write operation. The output
data set is not large enough.

KA81I A permanent transmissicn errcr
was detected during an
input/output operation.

KA82I An input/output operation
terminated without transmitting
any data.

KA83I An input/output operation
terminated because of an
invalid command.

KA84I An input/output operation

terminated with an incorrect
length condition.

Job Step Termination Messages, Severity
level 12

These messages document conditions that
require termination of the linkage editor
job step. The system prints the error code
and the message LINKAGE EDITOR CANNOT
CONTINUE.

Error

Code Condition

KA87I An invalid end-of-extent
condition was detected while
reading SYSAB2 or the
directories cn SYSPSD or
SYSREL.

KA88I No phase can be created because

there are no entries in the
SYSPSD directory. This message
also appears when the entry
name field contains blanks.

The EXEC statement name field
was blank when the module was
assembled or ccmpiled.

Error

Code Condition

KA90TI The linkage editor's control
dictionary and linkage table
are full. The program probably
contains too many control
sections and entry points. A
maximum of 2047 control
dictionary entries is
permitted. TIf there is no ROOT
phase, the maximum is 2048.

KA91I The program specifies a phase
name that duplicates the name
of a phase already resident in
the phase library.

KA92I There is not enough room in the
phase library directory for all
the phases in this progranm.

KA93I The system is unable to open the
SDS000 or SDS001 data sets.

The volumes containing these
data sets may not be mounted,
symbolic unit SYS000 or SYS001
may have been reassigned, or an
error condition may have
developed during opening.

KA95I SYS001 is assigned to a 7-track
tape without the convert
feature on; or SYS000 and
SYS001 are assigned to the same
data set.

Job Termination Messages, Severity Level 16

A job is cancelled when one of the
following conditions occurs.

Error
Code
KA961

Condition

There is not enough room in the
SYSPSD directory to list a
module specified in a MODULE
statement; or an illegal end of
extent was encountered while
reading the last block of the
directory. The requested
module cannot be included in
the proqranm.

KAS7I The system is unable to close
SYS000 or SYs00t. This indi
cates that a system error
condition developed during the

job step.

100 System/360 Model 44PS Guide to System Use FORTRAN

Text Mescsages

The following messages are written by the
linkage editor. In some cases, as
indicated, the phase ocutput is flagged so
that it cannot be executed, but linkage
editing is not interrupted.

KA70I XXXX ITLEGAL OPTION FOR LINKAGE EDI-
TOR

lanation: This message appears
when the EXEC LNKEDT statement
contains an invalid parameter. The
xxxx field is replaced with the
inccrrect parameters.

KAT71TI xxxx UNRESOTVEL ADDRESS CONSTANTS

Explanation: This message appears
when a control section contains an
address constant for an external
symbol in another module, and the
linkage editor is unable to supply an
address. The xxxx field is replaced
with the number of such unresolved
external references. If MAP is
specified, a list of unresolved
symtols is written. The phase output
is flagged so it cannct be executed.

KA72TI xxxx ADDRESS CONSTANTS OUTSIDE LIMITS
OF PHASE

Explanation: This message is written
when the progqram contains address
constants with load addresses
referring to points outside the limits
of the rhase that contains the address
constant. The xxx field is replaced
with the number of such address
constants. This condition usually
represents a language pPLOCESSOT €IICT.
The phase output is flagged so it
cannot te executed.

The following messages are written only
if the MAP option has been specified in the
EXEC LNKEDT statement. They are warning
messages and do not prevent linkage editing
or execution.

ROOT PHASE OVERLAID BY ANCTHER PHASE

Explanation: The program specifies a
phase origin that would overlay all or
part of a phase that has been
designated a root phase. The phase
that causes the overlay ccndition is
marked by the word CVEROOT in the
listing.

POSSIBLE INVALID ENTRY POINT DUPLICATICN IN
INPUT

Explanation: The input contains
possible duplication of entry pecint

names. This may cccur when control
sections from a single module are
being split among different phases, in
which case the messaqge can be ignored.
When this message appears, one Or more
entry points in the input have been
ignored. The phase map shows whether
an entry point for a certain control
section is missing. If it is, any
reference to the entry point has
probtably been resolved to the wrong

T A~ 3
location.

PHASE EXECUTION DIAGNOSTIC MESSAGES

ct

puring phase executiocn, threec types of
diagnostic messages are produce

o
<

L o]

O~

e Execution error messages.
e Program interrupt messages.

e (Operator messaqes.

Execution EIrror Messages

In the following text, the error codes are
given with an explanation describing the
type of error. Preceding the explanation,
an abbreviated name is given indicating the
origin of the error. Unless specified
otherwise, a condition code of 12 is
generated and the job step is terminated.

The abbreviated name for the origin of
the error is:

IBC - BOAFCOMH routine (performs
interruption, conversion, and error
procedures) .

FIOCS - BOAFIOCS routine (performs
input/output operations for FORTRAN
phase execution).

NAMEL - BOANAMEL routine (performs the
processing of NAMELIST specifi-
cations).

DIOCS - BOADIOCS routine (performs
direct-access input/output operations
for FORTRAN phase execution).

LIB - FORTRAN-supplied library. 1In the
explanation of the messages, the
module name is given followed by the
entry point name(s) enclosed in
parentheses.

0A200T

Explanation: FIOCS -- An attempt was
made to-read from a data set for which
input operations are not allowed.

Appendix D: System Diagnostics 101

0a201I

Explanation: FIOCS -- An attempt was
made to write into a data set for

which output operaticns are not
allcwed.

0a2021

Explanation: FIOCS -- A READ or WRITE
operation was attempted on a data set
whose most recent oreration resulted
from an ENDFILE statement.

0A2031

Explanation: FIOCS -- An attempt was
made to rewind, backsrpace, or write an
end-of-file mark on cne of the systenm

units SYSOPT, SYSPCH, or SYSIPT.
OA204T
Explanation: FIOCS -- An attempt was

made to rewind, backsrace, cr write an
end-of-file mark on a data set
described by a DEFINE FILE statement.

OA205T

Explanation: FIOCS -- A data set
reference number outside the unit
table range (i.e., less than 1 or
greater than 15) has been used in an
input/output statement. The unit
table contains the data set reference
numbers and symbolic unit names shown
in Table 2 in the chapter "Data Sets."

OR206I

Explapation: FIOCS -- An attempt was
made to open a data set, but the data
set could not be found. This message
arpears when a data set reference
number not valid for the installation
has been used in an input/output
statement.

OA207I

Explanation: FIOCS -- A label error
was detected when a data set was
opened. The condition code is 4.

0A208T

Explanation: FIOCS -- An input/output
request has been made that is invalid
for a data set.

0A2091

Explanation: 1IBC -- There is
insufficient main stcrage to allocate
one request control block and one
360-byte buffer.

OA210T

Explanatipn: IBC -- Progran
Interrupt. See "Program Interrupt

Messages", later in this chapter.

0OA211I

Explanation: TIBC -- An invalid
character has been detected in a
FORMAT statement.

OA212T

Explanation:

been made

a. to read or write, under FORMAT
control, a record that exceeds the
I/0 bpffer length (360 bytes).

b. to write, under FORMAT coantrol, a
record that exceeds the maximum
record size allowed on the I/0
medium (80 characters for a
punched card, line length for a
printed line).

IBC -- An attempt has

OA213T

Explanation: IBC -- The input list in
an input/output statement without a
FORMAT specification is larger than
the logical record.

OA215T

Explanation: IBC -- An invalid
character exists for the decimal input

corresponding to an I, E, F, or D
format code.

OA2161
Explanation: IBC -- An invalid sense-

light number was detected in the
argument list in a call to the SLITE
or SLITET subprogranm.

0A2171

Explanation: IBC -- An end-of-data
condition was sensed during a READ
operation or an end-of-extent
condition was detected during a WRITE
operation.

OA2181

Explanation: IBC -- A permanent
input/output error has been
encountered.

OA2191

Explanation: IBC -- A boundary error
has occurred but the boundary
alignment routine could not be found
in the phase library.

102 System/360 Model U44PS Guide to System Use FORTRAN

Form C28-6813-2, page modified June 10, 1969, by TNL N33-8602

CA2201I
Explanation: IBC -- A boundary error
has occurred but there is not enough
space in main storage for the boundary

alignment routine to be loaded.

OA221I
Explanation: NAMEL —-- An input
variable name exceeds eight
characters.

O0A2221
Explanation: NAMEL -- An input

variable name is not in the NAMELIST
dictionary, or an array is specified
with an insufficient amount of data.

OA223I

Explanation: NAMEL -- An input
variable name or a subscript has no
delimiter.

OA 2241

Explanation: NAMEL -- A subscript is
encountered after an undimensioned
input name.

OA 2251

Explanation: IBC -- An invalid
character is encountered on input for
the Z format code.

OA2261I

Explapation: LIB -- In the subroutine
BOAOVLY (OVLY#), the phase name used
in the CALL LOAD cor CALL LINK
statement can not be found in the
phase library. The phase name must be

enclosed in single quotes.
0RA2271

Explanation: LIB -- In the subroutine
BOAOVLY (OVLY#), a CALL LOAD or CALL
LINK statement has loaded a phase
which overlays input/output storage
(RCB and buffer).

0a2281

Explanation: NAMEL -- The number of
subscript quantities in a subscripted
NAMELIST array name differs from the
number of dimensions for that array.

0A229I

Explanation: NAMEL -- NAMELIST input
cata contains a subscripted array name
with a subscript quantity having a
negative or zero value or a value that

exceeds the corresponding dimension
bound.

Explanation: DIOCS -- An I/O error
was detected while attempting to closs
a direct access data set. The
condition code is 8.

CA2311I

Explanation: DIOCS -- TLirect-access
input/output statements are used for a
seguential data set.

OR232I

Explanation: DIOCS -- The relative
position of a record is not a positive
integer, or the relative position
exceeds the number of records in the
data set.

0A2331

_____ DIOCS -- The record
length specified in the DEFINE FILE
statement exceeds the physical
limitation of available main storage.

CA234rI

Explanation: DIOCS -- Direct access
input/output statements have been used
for one of the system units SYSIPT,
SYSPCH, or SYSOPT.

CAa2351I

Explanation: DIOCS -- A data set
referred to in a direct access
input/output statement was not
previously descrited in a DEFINE FILE
statement.

CA236I

Explanation: DIOCS -- A data set
reference number used in a DEFINE FILE
statement has no corresponding
symbolic unit.

0A2371

Explanation: DIOCS -- Error on a
POINT operation which can be caused by
trying to POINT within a non-formatted
direct-access data set.

CA241I

Explanation: LIB -- For an
exponentiation operation (i**j) in the
subprogram BOAFIXPI (FIXPI#) where i
and j represent integer variatles or
integer constants, the value of i is

Appendix D: System Diagnostics 103

zero and the value of j is less than
or egqual to zero.

OA242I

Explapation: LIB -- For an
exponentiation operation (r**j) in the
subprogram BOAFRXPI (FRXPI#) , where r
represents a real*4 variable or
integer constant, the value of r is
zero and the value of j is less than
or equal to zero.

OA2431

Explanation: LIB -- For an
exponentiation operation (d**3) in the
subprogram BOAFDXPI (FDXPI#), where d
represents a real*8 variable or real*8
constant and j represents an integer
variable or integer constant, the
value of 4 is zero and the value of j
is less than or equal to zero.

OA2044T

Explanation: LIB -- For an
exponentiation operation (r**s) in the
subprogram BOAFRXPR (FRXPR#) , where r
and s represent real*4 variatles or
real*l4 constants, the value of r is
zero and the value of s is less than
or equal to zero.

OA245T

Explanation: LIB -- For an
exponentiation operation (d**p) in the
subprogram BOAFDXPD (FDXPD#), where d
and p represent real*8 variables or
real*8 constants, the value of d is
zero and the value of p is less than
or equal to zero.

CA2461

Explanation: LIB -- For an
exponentiation operation (z**j) in the
subprogram BOAFCXPI (FXCPI#), where z
represents a complex*8 variable or
integer constant, the value of z is
zero and the value of j is less than
or equal to zero.

OA2471

Explanation: LIB -- For an
exponentiation operation (z**3j) in the
subprogram BOAFCDXI (FCDXI¥), where z
represents a complex*16 variable or
complex*16 constant and j represents
an integer variable or integer
constant, the value of z is zero and
the value of j is less than or equal
to zero.

0a2511I

104

Explanation: LIB -- In the sukprogran
BOASSQRT (SQRT) , the value of the
argument is less than zero.

OA252I

EZxplanation: LIB -- In the sukprogranm
BCASEXP (EXP), the value of the
argument is greater than 174.673.

OA253I

Explanation: ©LIB -- In the subprogram
BCASICG (ALOG and ALOG10), the value
of the argument is less than or egual
to zero. Because this subprogram is
called by an exponential sutprogranm,
this message also indicates that an
attempt has been made to raise a
negative base to a real power.

OA254T

Explanation: LIB -- In the subprogram
BOASSCN (SIN and COS), the absolute
value of an argument is greater than
or equal to 218

(218 = ,82354966406249996D+06)

OR255I

Explanation: LIB -- In the subprogram
BOASATN2, when entry name ATAN2 is
used, the value of toth arguments is
zero.

CA2561

Explanation: LIB -- In the subprogram
BOASSCNH (SINH or CCSH), the value of

the argument is greater than or equal

to 174.673.

OA2571

Explanation: LIB -- In the subprogranm
BCASASCN (ARCSIN or ARCOS), the
absolute value of the argument is
greater than one.

CAa258I

Explanation: LIB -- In the subprogranm
BOASTNCT (TAN or COTAN), the absolute

value of the argument is greater than

or equal to 218

(218 = _,82354966406249996D+06)

OA259I

Explanation: LIB -- In the subprogram
BOASTNCT (TAN or COTAN), the value of
the argument is too close to one of
the singularities (/2, 3 /2, ... for
the tangent; , 2 ,... for the
cotangent).

System/360 Model 44PS Guide to System Use FORTRAN

Form C28-6813-2, page added June 10, 1969, by TNL N33-8602

0A261I 0A263I
Explanation: LIB -—- In the subprogran
BOALSQRT (DSQRT), the value of the Explanation: LIB -- In the subprogram
argument is less than zero. BCALICG (DLOG and CLOG10), the value

of the argument is less than or equal

OA2621I to zero. Because the sutprogranm is
called by an exponential subprogranm,
Explanation: LIB -- In the subprogranm this message also indicates that an
BOALEXP (DEXP), the value of the attempt has been made to raise a
argument is greater than 174.673. negative base to a real power.

Appendix D: System Diagnostics 104.1

OR264T

Explanation: LIB -- In the subprogram
BOALSCN (DSIN and DCOS), the absolute

value of the arqument is greater than
or equal to 2590 .,

(250 = ,353711887378C2239D+16)

OA2651
Explanation: ULIB -- In the subprogranm
BCAIATN2, when entry name DATAN2 is
used, the value of both arquments is
Zero.

OA2€61
Explanation: TIB -- In the subtrcgranm
BCALSCNH (DSINH or LCCSH), the

absclute value of the argument is
greater than or equal to 174.673.

OA267I

lanation: TIB -- In the subrroqram
BOATASCN (DARSIN or TLARCOS), the
absclute value of the argqument is
greater than one.

OA2681I

Explanation: LIB -- In the subprogranm
BOALTNCT (DTAN or DCCTAN), the
absclute value of the argument is
greater than or equal to 250 ,

(250 = .3E£3711887378C2239D+16)

OA269I

Explanation: ULIB -- In the subprogranm
IHCLTNCT (DTAN or DCOTAN), the value
of the arqument is too close to one of
the singularities (/2, 3 /2, ... for
the tangent; , 2 ,... for the
cotangent) .

OA271I

Explanation: ULIB -- In the subprogranm
BOACSEXP (CEXP), the value cf the real
part of the arqgument is greater than
174.673.

OA272T

Explanation: LIB -- In the subprcgranm
BOACSEXP (CEXP), the absolute value of
the imaginary part of the argument is
greater than or equal to 218 ,

(218 = ,82354966406249996D+06)
OA2731
Explanation: LIB -- In the subprogram

BOACSLOG (CLOG), the value cf both the
real and imaginary parts of the
arqument is zero.

OA2741T

Explanation: LIB -- In the subprogranm
BOACSS5CN {C3IN or CC0Sj, the absolute

value of the real part of the arqument
is greater than or equal to 218

(218 = .82354566406249996D+06)

OA2751

Explanation: LIB -- In the subproqram
BOACSSCN (CSIN or CCOS), the absolute
value of the imaginary part of the
arqument is greater than 174.673.

OA2811

Explanation: TLIB -- In the subprogram
BOACLEXP (CDEXP), the value of the
real part of the argument is greater
than 174.673.

OA2821

Explanation: LIB -- In the subprogranm
BOACLEXP (CDEXP), the absolute value
of the imaginary part of the argument
is greater than or equal to 250 .

(250 = .35371188737802239D+16)

OA283I

Explanation: LIB -- In the subprogranm
BOACLLOG (CDLOG)., the value of both
the real and imaginary parts of the
argument is zero.

ORA2841

Explanation: ©LIB -- In the subproqgram
BOACLSCN (CDSIN or CDCOS), the
absoiute value of the real part of the
argument is greater than or equal to
250 ,

(250 = ,35371188737802239D+16)

OA2851

Explanation:y UIB -- In the subprogram
BOACLSCN (CDSIN or CDCOS), the
absolute value of the imaginary part
of the arqument is greater than
174.673.

0A2901

Explanation: LIB -- In the subprogranm
BOASGAMA (GAMMA), the value of the
arqument is outside the valid range.
(Valid range: 2—252<x<57.5744)

OA291I

Explanation: LIB -- In the subprogranm
BOASGAMA (ALGAMA), the value of the
arqument is outside the valid range.
{(Vvalid range: 0<x<4.2937x1073)

Appendix D: System Diagnostics 105

OA210I PROGRAM INTERRUPT() - OLD

CONTAINED IXXXXXXXXXXXXXXX

- o — —

PSW IS XxXxXxXXXX 2

{ XXXXXXXX REGISTER

——

o OWwWoO
et 4

o o ——

Figure 22. Program Interrupt Message

0a300I

Explanation: ©LIB —-- In the subprcqram
BOALGAMA (DGAMMA), the value cf the
argument is outside the valid range.
(Vvalid range: 2-252<x<57.5744)

OA301I
Explanation; LIB -- In the subprogram
BOATLGAMA (DLGAMA), the value of the

argument is outside the valid range.
(Vvalid range: 0<x<#,2937x1073)

Program Interrupt Messages

A program interrupt message containing the
0old Program Status Word (PSW) is produced
on SYSLST when one of the followving
excefptions occurs:

e Specification Excepticn (6)

s Fixed-Point Divide Exception (9)

e Exponent-Overflow Exception (C)

e Exponent-Underflow Exception (D)

e Floating-Point Divide Exception (F)

Operator intervention is not required
for any cf these interrurticns, and
execution is not terminated. Figure 22
shows the interruption message format.

The five characters in the PSW (i.e., 6,
9, C, D, or F) represent the code number
(in hexadecimal) associated with the type
of interruption. The last portion of the
message chows the contents of the results
register when an exponent overflow or
underflow exception occurs. This is
discussed further later in this chapter.

specification Exception: The specification
exception, assigned code number 6, is
recognized whenever a data address does not
specify an integral boundary for that unit
of information. A specificaticn error
would occur, for example, during the
execution of the following program segment:

DOUBLE-PRECISION D, E
COMMON A,B,C

106 System/360 Model U44FS Guide to System

EQUIVALENCE (B, D)
D = 3.0D02

Fixed-Point-Divide Exception: The fixed-

point-divide exception, assigned code
number 9, is recoagnized whenever division
of a fixed-point number by zero is
attempted. A fixed-point-divide exception
would occur during execution of the
following statements:

J=20
I =17
K =1I/0

Exponent-Overflow Exception: The

exponent-overflow exception, assigned code
number C, is recognized whenever the result
of a floating-point addition, subtraction,
multiplication, or divisiocn is greater than
or equal to 1663 (approximately 7.2 x
1075) . For example, an exponent-overflow
exception would occur during execution of
the statement:

A = 1.0E+75 + 7.2E+75

When the interruption cccurs, the result
register contains a floating-point number
whose fraction and sign are correct. The
characteristic no longer reflects the true
exponent, however, and the number is not
usable. The floating-point number is
printed at the end of the program interrupt
message in hexadecimal notation.

With exponent overflow, the
characteristic represents an exponent that
is 128 smaller than the correct one.
Treating the characteristic, bits 1 to 7 of
the number, as a binary integer, the true
exponent (TE) may be computed as follows:

TE = (Bits 1 to 7) + 128 - 64

Before program execution continues, the
FORTRAN library sets the result register to
the largest possible floating point number
that can be represented in short precision
(1663%(1-16—6)) or in long precision
(1663%x(1-16—14)), The sign of the result
is not changed, and the condition code is
not altered.

Jse FORTRAN

Exponent-Underflow Exception: The
exponent-underflow excepticn, assigned code
number D, is recognized whenever the result
of a floating-point addition, subtraction,
multiplaication, or divisicn is less than
16—€5 (approximately 5.4x10-79). An
exponent-underflow exception wculd occur
during execution of the statement:

A = 3.2E-40%5.4E-50

When the interruption occurs, the result
register contains a floating-pcint numter
whose fraction and siqn are correct. The
characteristic no longer reflects the true
exponent, and the number is not usable.
This floating-point number is printed at
the end cf the program interrupt message in
hexadecimal notation.

With exponent underflow, the
characteristic represents an exponent that
is 128 larger than the correct one.
Treating the characteristic, bits 1 tc 7 of
the number, as a binary integer, the true
exponent (TE) may be computed as follows:

TE = (Bits 1 to 7) - 128 - &4

Before program execution continues, the
FORTRAN library sets the result register to
a true zero of correct precision. If a
floating-point addition or subtraction
caused the interrupt, the condition code is
set to zero.

Floating-Point-Divide Excerption: The
floating-point-divide exception, assigned
code number F, is recognized when division
of a floating-point number by zero is
attempted. A floating-point-divide
exception would occur during execution of
the follcwing statements:

0.0
1.0
A/B

B
A
C

Operator Messages

Operator messages for STOP and PRAUSE are
generated during phase execution.

Explanation:

The message for a PAUSE can be one of
the forms:

PAUSE n

PAUSE *message’
PAUSE 0

where:

n is the 1- through 5-diqgit
unsigned integer constant
specified in a PAUSE
source statement

message is the literal constant
specified in a PAUSE
source statement

0 is printed when a PAUSE

statement that does not
specify an integer or
literal constant is
executed

The programmer should give
instructions that indicate the action to be
taken by the operator when the PAUSE is
encountered.

User Response: To resume execution, the

operator presses the EOB key on the console
keyboard.

The message for a STOP statement can be
one of the forms:

STOP n
STOP O
where:

n is the i- through 5-digit
unsigned integer constant
specified in a STOP source
statement

0 is printed when a STOP

statement that does not
specify an integer
constant is executed

User Response: None

Appendix D: System Diagnostics 107

INDEX

/6 Statement. e e eeietieieenacneanasaanncns
/% Statement.cceoseecevececssecercsacennns

ACCESS statement
for direct access data sets.....c.0.
for direct access data sets,format..
for tape data SetS.eeeeesncescnccnans
for tape data sets, example of......
for tape data sets, format...cececee
for unit record data SetSeecececeoas
for unit record data sets, example..
for unit record data sets, format ..
position in job deCKe.ceceaaasoansss
adding a member to a directoried data se
adding data to a
direct access data S€teeeeecsecssascs
sequential data set..ieceeiennnnanns
tape data set.ieeeeececececcnanncanns
ALLOC statement
for direct access data setsS.........
for direct access data sets, format.
for direct access data sets,exanple.
for tape data setS.eeeieeecereccncnns
for tape data sets, example of......
for tape data sets, format..........
position in job deCKeseeeecesonecans
allocation of a direct access data set..
allocation of a tape data set.ieececeens
argument 1liSt .ceeeseccecvecscanccnacans
getting arquments fOCivieieaseeoccsas

... 10
... 10

ce 17
.o 38
.o 16
... 37
o035
R R
... 34
«es33
eee19
t..18

«ee 19
.o 19
... 16

eee 17
ce 43
... 45
«e. 15
ea 2
... 40
.. 19
vee 17
oo 15
...82
«..86

arquments, total number allowed in source

PLOGLaAM: e e sonseosoossocccoacnsacsasansns
ATTAY NAMES e s sssessescenssosassenssnnssas
array variables in storage mapPeceeceeceses
assembler languadgde subprogramsS...ceecess
aSSEMblEer PrOdraMaec e sesccassosccasssasasse
automatic library search.e.c.eecececeecess

batch compilatioNeeesceseecacesonsannsas
BCD compiler OpPtiONecececescacccososcansns
BCDIC card CodeSeeeeeeeersnceneaconnnnnas
BCDIC input to the compileTececeasescsss
BLOCK DATA G €8 ceescessossosccssossnsocsan
block lengtheieeeeeeeeeeeseecsoceanoannnnse
boundary ad justment mMEeSSag€.eceesecacesss
boundary adjustment routine....ceecenccn.
boundary alignment...eeeeceecocsscocoanse

CALTI LINK statement.eceeeecoseeoescscscnsee
CALLI LOAD statement.ceeocececccccccancns
Calling SEegUEeNCECeceeeessnsccsocsassssasss
calling statements for multiphasing.....
catalog
placing a data set in..cceecee...15,
removing a data set froMeeseeeeeeoans
cataloged data set, definition of.......
cataloging a data Seteeeccecsessassesasl15,
cataloging volume designatioN.ieeeceeecas
CATLG parameter in ATTOC statement......
CATLG statement cs.eiiieveeescceccscacenns
example Of.ceeecesecoecsoososncssancs
fOrmateee s ecceeeeasecaasennancsasnses
changing the name of a data seteeeeeeses
changing the name of a member.i.cieceeesss
character set for job control statements
character set for linkage editor control
Statements seeveceveticrtctcsenncoons
coding assembler language subprogranms...

ces72
cea 12
veeb63
...82
)
vees23

...75
ce.22
...81
ve.22
v..29
18,71
.. 70
v. .69
ve.69

0. 26
ees27
«e.83
e 26

18,20
«es20
«es 15
18,20
ce 46
15,18
.. 20
ce b
oo 46
eee21
eee 21
e e 31

«ee59
-..83

108 S/360 Mod 44 Guide to System Use FORTRAN

comments in job control statements......30,31
COMMON blocks, improper boundary alignment.69
COMMON variables in storage mapeececeesece...63
COMMON, allocation by linkage editor.......25
COMPilation .eveeeeecesacssscnsscnonsssceaseesll
multiple job StepPSecceececcesccccecences8
compile-and-edit Job c.iciiiecietcasaassanacead
example Ofiieeeeccsosenancassccnesasonesll
job definition statements for seeeeeesa11
compile-edit-and-execute jOb .ieieececcecass9
example Of cieeeceeecnsensoscaansascnees80
job def stmnts fOTeeesescesscsssecansaaall
compile-0ONnly JOD eceeeccssacocccscoccncsnesnasd
exXamples Ofceeeerssseesosaacnssasasal3, Tl
job definition statements for..ceeeee..10
compiler error/warnRing MESSAJES seceesceeeasb2
example Of civeeeieceaneccsacsneasenasaab3
1iSt Of ceveeesoeasacccesosenssancesaeead3
COMPLller inNpPUtecescesosccscssceoccossseasansneall
compiler MESSAJeSeeeeosssssascosssasccsacscsad3
compiler options in EXEC statement22
1iSt Of cieeeenenessssncssscosacserssssssdl
compiler OUtPUt.eeeeeeeeesasesecccasneeaeael2,62
compiler reStriCtioONS.ieceececcccccccasenasael
compiler StOrage MAP eoceceeccsssecsonssseell2,b3
eXampPle Of ciieeceeesrescosacccncosnocssasbl
complete phase OVErlay .eeecessccceceacsaaald
linkage editor cntrl stmntsS .ecececessa26
StTUCtULGeeeessoessaseccsscsccesaacanesld
complex CONStANtSeessseceesssccensoncsosansl?
CONDENSE statement cceeeecececcecscceeceseas20
examPle Of civecerosossnsansccococasocnsesl?
fOrmateeesececececsecsccanscansacanseasecoald?
condensing a datad S€tececcecccccccccccassesall
continuation cards in job deCk.eeeaceeeeess30
control section, definition Of..ccveccseeasab5
control statementS.cesseseosacsesascscsasases30
creating a member of a directoried data
SCleeeesesocesscsssssssosscssnseansncasassalB
creating direct access data SetSicecescessal’
creating tape data SetSeciecesseccsccecsasasald

data management, definition of...cieveeeeea2
data set member
CreatiNgeceeeseccscscssasscsassccscacsenesl8
definition Ofceieeeeceseseescacssencasnsasl’
deletinNgeieeseesasaoscssesassenssnaseseall
EX1StiNgeeeeeeossssssssencasoacacnssnael?
NEWeeoooasanssssasssssnsscssccsncsncnacacsslB
TeNaAMinge . sesesvssccessccscanssscsaasseell
data SE€t veeecsceesctoscserscccosveassenssssesl3
CONAeNSiNgeeeecescssssocsncaaascasacsasasll
definition of.eeeeeeeccenascscassccaseall
deletinNgeeeeeeesscascessossssasscnssoacesll
eXtenNtiieeeeeeosceasossosccossesoscssnansalb
labels fOr TaAPEeS.csssencecsansasarcnsaald
lengthe eeeeeecsacensossocasacssossassasssasl?
maintenance statementS.seeseecsscesaces20
reference NUMbErS..eeececceacscasaeassesasl3
TENAMINTe e eeseoseasoocscosaassnonssssaal]
DECK OPtiOMNeceeeeacessescvococosnasscoonccnssasnell
DEFINE FILE statemenNt.eeceecessaccccsassscacaslB
DELETFE statement .sceeeececscsoscacssasosassl
exampPle Of e veeeosveecnnsnassaasenaasaslB
fOTMAt e eeeeeocoasencasasasncsascacaseasl8
deleting a data Seteeeeseecccaccsceaccsoaasell
deleting a member of a directoried data

SEteseessscsasscassssccsscscsansenasnsess2

=

device type codes XEC statement for phase execution24
direct access data setS..ceeecceeses39,U45 R of - .)

tape data SetsS. . it 36 01 execute-only 40D::::ccireccasecrsannasaal
unit record data SetSscecescoscraancsas 3l example Of teiieeiinernncesassnsosennsnael8
diagnostiC MEeSSAGEeSesaceassrsssossaascsssnsssal8 jot definition statements for.e.eeeeee..11
direct access data SetS teeiececccccssascnaaalb existing direct access data sets
CreatinNgeeceessecseescscasssasonsssansaall definition Ofceeeeseseesecsesecncacsnaelb
Festrictions fOliieeeeeeeeanscacecnceaslb USE Ofveieecaceeeessssscancscsassacncnnasld
USING eeesoenssesaerosasoassscsacasssasceseld existing members, USEe Oficeeccecseencacesssll
direct access device type codes.........39,45 existing tape data sets
directoried data set definition Of.ieeiieeseerecacscancacaesalll
CONAeNSINg.eecesoscasacsasssacssascssessl USE Ofceeeeeeceossasscscscsosascsnscacecselb
definition of.ieeeceecaveccossasnsscnsaasl? exponent-overflow exceptioNeieereceseseees 106
directory lengtheieeeeeeeeeeeecesnaceneaeaaslB exponent-underflovw exceptiONececsseseeeees 106
directory, definition Of.i.eeieieeesnncneoaeal? exponential fUNCUiOTeescesseosssscscsasceseeabd8
disk labelS.iceieecescesocsnnsnscaasansasaasld EXT parameterlececccecececcsasasasssosaseasasalb6,19
disk volume designations extent Oof @ data Seticeeeciecersessacasaaneaalbd

ACCESS statemenNtesceisosccecnscancansanaasi39d
ALT.OC StatemeNteiceeacsesccancasseansseaslil fixed-point-divide exceptioONeiesececessssss 106
disk volume, definition of..ciceecccsascneaalb floating-point-divide exception.s.eeeees..106
DO loop considerationSeseeeeseecessscsocseebld FMT parametelececececsccssssscesannacanassslB
dollar sign character FORTRAN IV COMPileTreceeccececsassacnsecadb,22
BCDIC restrictioOn ON.eeecescacesaacesaaa8l fresh disk volume, defintion of.c.ceieaceasl?
markers in source 1istinNgeceeeeeceessaeab3 FRESH OPtiONeessceevtcsnccsoncssascsennaeceatd, 17
double-precision complex constantSesesecees’?2 fresh tape volume, defintion of...cceceeeea15
double-precision real constantSeeeeeecesessal2 FUNCTICN subprograms
dUMmMY @rgUMENtSesceccecessssasscscsscaassnaall references tO0ieesesccvesscssncensecsesnsl0
AUnp fOIMAtSeeeeeeeseeoescsascssasossasssb?, 67 USE€ Of i iiveeenesonascnssoasecoaancsacasnell
DUMP SUDIOULINE eeeeesenscsnncsscscsnsoasaaab’
USE OFf i eeeiieeeoeeeneccssastoncssasnaasll header label.cececececasecenscssacscocsaaaaslb
dumping arrays and variableS.i.ceceecccecccacoall higher level assembler SUDPIOM secsoseesese8l
example of linkage..i.ceeececeaccaecaaeaa8dh
EBCDIC Ccard COdE€Sececesssosecsccososcsseseccsesdl
EBCDIC in job control statementsS....eeeesss3i identifier field...eiveeeevsosescanneannsss3l
EBCDIC input to the compiler.eeeeecscacessesl? IF statementeieeeeeciasereasesoscassceneaeab8
edit-and-execute JOb teeeeeessacsoncassasasasd implied DO, US@ Ofieiieecsenssansosocsncsaasb?
example Of.ceieeeescecoesnsocnssansseansel9 in-line arqument 1iSt.e.eceesccsccseasnsessaBb
job definition statements for ceeaeecas 11 INCLUDE and PHASE statements, omission of..24
€dit-only JjoOb seeeeiveccenccsosccssrsssanesanssd INCLUDF statement ceeeeecsccecssccscsccseseal3
exXxampPle Ofieeeceecsseocescccaoncacnsaaslh fOIrMAteseoseseascersosssasencscsnnsscasaabl
job defintion statements foreieececsaas11 order of statementsS.c.eceeeecocncocesea3
€Aitingeeeeseessccaosscssosossvscsacsssccseasl3 initial program load procedur€..cceseseccacees?
END Cardecuierrsecesennncnsnceccassocssssssbl,B5 initialization of variableS..ccescecseseesqsab8
end-of-data statemeNt.cieceececsccsescasncoasll initialization of VOluUMES.ceseeececcaeaaaal5, 17
end-of-job statement.cececcecescecansanscaasl0 input deViCeSieesecesrsasscaaconsans
EQUIVALENCE groups, improper boundary input
alignmentecececsecscasencossssssccscecanaessb? to the COmMPiler.ceeeecescosscscsscncanasll
EQUIVALENCE 1iStSececcececcacsscscscssssaaell tp the linkage €ditOTeecececccersaseeaaaal3
EQUIVALENCE variables in storage map.esec...63 integer constantSe.eeeesscsccscosssaccnacacall
error code diagnosticC MESSA0ESeciceccessccessbbd intermediate data@ceesececcoccsccecceccncseeell
error indications during compilation.ss....22 interruption CodeS.cceesesssssccssccsassncssebb
error messages interruption MEeSSA0eS.iceceasccsscccscsasessabh
COMPileTeceeesesecscsoscsssansaascasesedl IPL pProCedUr@.ceesscccsccssscesoccacanasascasl
job cOntrol pProCeSSOLeececsscscsasesass8d
linkage €3itOleeceacesscscoscssssscnessdb job control MEeSSAgeSisseceoscsscssecacasssesB9
phase eXxeCutioN.cecececeesscaascsaceaaassl01 job CONtrol pProCeSSOrecsccscccacscsacscanssabd,’
SUPEIViSOTeeaeessseasssasascssasscnsecessdB job control statements cceceeeescsecsessceces?
ESD CArdS teeeecececsscsnosscsscnsssasssscsssbll rules for Writing..eseeeseoceeaasassees30
tYPE Ouievevercansocncoseassansanssesaasbll table Ofcieeieneeecececncncasasonncnsnaall
tYPEe Teieeeeeceancencensosnnccancacsseansbh job deck
tYPE 2iieeeciteraccetersansscsaccanccsasb5 definition of...ceieeeceveccscaascancnsaad
LYPE Sevececsascesreccsescsncssscsosasneabb EXAMPleSeeeseevcessossnscssnsscacsscssneall
examples Of job deCkSeeeeveessoncsseansssaell job 3efinition seeecescscsncscacsccssosssnasl
EXEC FORTRAN statement ...cevceserncccsceese?? eXaAMPleSeessaasssssscesssssscosscnnssssell

seceeseesl

formateee ceeeasscescssesncssssasscssenesshd StatementSeeceeesseseccacecassasssassnaned
EXEC LNKEDT statement ..cceccecesssasacceaad3 JOB statement ccceeacessssacencsscsassacsanasasll
format.ee ceeeeecevssascscsccacncasncaesdl formatececeecoooceeocancceacsecnsssasesead3

EXEC statement..ceciieceeeeeeenceeccacaeeaall job step name in EXEC FORTRAN statement....22

INDEX 109

job step, definition of... .. iieiececrnceeeas8
JOb terminationeeeseiceseeesesacacssensnsaasd
job, defintion Of.iiieiiiieiienerncencnncersss8

KEEP OPtiOMeceeeseeoeeancscaacassaccsaannssall

LABEL statement
for direct access data SetSeeeceoceseas 18
for tape data SetS.eceeieaecccacsosacasaslb
fOrmateeeeeseceesacescascanannsansnsnssasdll
label specifications fOCeseescessaseasabd5
labeled tape volume, conditions fore.......15
library SUbpProgramSeecessceecsccacecsaseasasall
linkage CONVENtioNS.esesesacesscansssascases83
linkage €ditingeceececeecsecsascacssaasaeadll
linkage editor control statements23
rules for Writing.e.e.ieeececesscecassasdab9d
linkage €ditOr teuvseesvecccccncsncsnosasnassabd
INpUteeeseeeeeesesecessacsososnonssnansandell
input data set (see SYS000)
input deCKeesseoeeensvsosooaoccescesasel3
MESSA0ESe et seessserssessoscssscnsssnsssasedb
operation of..iieiieicieecneeceancensaad2B
OPtiONSesesesssescosossesosoocsaosossncssesdl
OUtPULe caesseasaasssnssanassasssnassl3,bh
listing of symbolic unit assignments.......20
LISTIO statement .eeeeeacscvacocasasaassnesll
formateseceseeecsesssacssocscsossscssessdb
loading multiple phaSeS.cescesocccecscsecseaeld
location of @ MOAUlE€eieieeeensesscansaasesadlll
lowest level assembler SUDPIQM eceecsecoseasa83
example of linkage.ecieeececeeseaonessa8l

MAP OPt1OMN:esceeueceeuscsaocssoncosasasansancell3
members
CredatinNgeeesecesecenesescssaanccaassacasl8
definition Ofceseecasecesccacaasananessll
deletingeeeeeeessesassssscsanancanssses20
TENAMINGe sasesscscnosssosasanacscscnssesll
mixed-mode arittmetic expressionS..........68
Model 44 Programming SySteMeccesecececescecssesd
module deCK teveetesesonsssosccancasseeal2, bl
CACdS INuessesesssssscsencnsesasssesessbl
location in the input stream...........23
StIUCEUTC s et teeeerssecesesosnnnseenssaanebh
module 1ibrary.eeeeceeeassccacecacesaasosaall
MOdUlE NAME «oeeveeosecasnsessscnnnacseaeeall 23
in INCLUDE statement..ceceeceecaseeseassll
in MODULE statement...eceececeesesasesal3
MODULE statement seecessccessssacsscecssesseldl
format.eeceieeeenecscecsencsescsscacsscasb0
modules
compiled in a previous job....eeeese...23
compiled in the same job.ieeeeeeecanseaa22
copied from SYSIPT to SYS000...eeeeese.2l
multiphaSe ProgralSe.ccseceesccecoseccsessaasB,25
multiphasing
linkage editor operatiONeeccecececeasecssal8
named COMMON and BTLOCK DATA areasS......29
multiple compilation job StepS.cescececcccssss8
multiple directory entrieSecescscecesceceeadl?
multiple MeMbEer NAMES.cessossssasncenssaseasll
multiple phase exeCUtiON..cieecsecansoacesas8

name field.seeeeeeesrsscescsnsacsccaansascaasl3l
named COMMON.:.uveeoenoscascnssasasssscooscsesdd
NAMELIST variables in storage Ma@Peeeeseceesb63
names in EQUIVALENCE statementSeececcececeses’2

110 S/360 Mod 44 Guide tc System Use FORTRAN

names in Explicit Specification statements.72
nested DO statementSeeieecescescoscesssanesaell
nested FUNCTION subprogram references......72
nested statement function definitions......72
new direct access data sets
CreatiNgeceececescsccssasscccssccnsssncsnaall
definition Of.ieieeeveaescscassacanseasesl?
NEW pPaArameterlsceceseccscsseaccccssscansssasssld
new tape data sets
CreatiNgeeseceessessascescsasssassassccnsealb
definitiONiseeeescacescosssacscnasssasnaald
NOAUTO OPtiONeissesececseossaasascasosscssacassadl
NOLINK OpPtiONeceeasecsccesscaceacessnssaceall
NOMAP OpPtiONesecesessncsosssssaasaaseacsesall
NOSOURCE OpPtiONeeeseceesooecacceasaansnensel?
notation used in statement formatS..eeacecee.31

obtaining a listing of symbolic unit

ASSigNMEeNtSessesscasscesccsncescsosescasaadll
omitting PHASE and INCLUDE statements......24
operand field.ieeeseeeoeosescscesoscsnccsasall
operation field.eeeseesecassscaccasacanassa3l
OperatoOr MEeSSA0CSesssssscasscesssacsasaseb?,107
organization of direct access data sets....17
origin of @ pPhaSE.eeceeececssnnaeaesa2l, 26,27
output from the compileTrsieeecscesceecees22,62
output from the linkage editor.e.e<ee....23,65
overlay structures

conmplete phase OVerlaye.eceececesscaseald

roOt phase OVerlaYeeesossessssoseeeald, 26

PAUSE statement in FORTRAN pProqraliecce......66
PDUMP subroutine cececeeeccrecoscacsnnsaaneab’
USE Of cveevseecoccnossnoncscennansssaasll
PHASE and INCLUDE statements, omission of..24
Phase €XeCUtiONeieeseceesccacsnsosncnsessasll
phase execution diagnostic messageSesessss 101
Phase 1ibraryececeeeeossssssccccsosasscncseselll
PhAQSe MAP etesescecccsscassasssssssncssseseal3,bh
example Ofceiieieeeiecencsosecanasocaeaabtd
PhASE NAME ceeessososcnsssssscsascnccnnsaassll
specifying in EXEC statement.....c.c...28
phase OrigiNesecececscasescsascsnssonseselld, 26
Phase OUtPUt.eeeseeeosacaasecnsccesasasccseesbb
PHASE statement .ceeeeeeceocancnacencensasall
fOrMat.eeeeeeeeceecececcccssassonsaanasbl
phase, definition Ofeeeccescccosssscsacsseasl
placing ACCESS and ALLOC statements in the
FOb deCK ceeeeseassnssccacansensanssensssald
placing module decks in the input stream...23
private data sets
definition Ofceieececesesscssnsensanaasl3
US€ Of tiiinieenneeeneeceanensennoenaneaslll
problem program area, definition of........25
program interrupt MeSSAgeS «seeessesss66,106
format.eeeeeeeeseeenseceacassocesanaaeesbb6
program sStatusS WOLdeeeeeeeoecccecssaceccsaeabb
Programming SYSteM seeveeccecsesssccscasasecnsed
OpPEratiONeeeeessssacasssccascssosssacasshb
StIUCTULGeeeieteeaeeenceosneosasssansnnasced

PSHeeeoososcoseasrsaonssosscssasscnsssonacsssansbb

READ statement.ceeeeecesssceecscssossnossssb9
reading @8N AITa@V.ecesescsaascoascosccesaasseb?
real CONStaANtSeeesesccessccassascscocsnssasnaell
references to FUNCTION subproqrams ...eee..70
nested..eeeeeeeaersoscnscsonassssssannnsnssll
relationship data set ref nbrs - symbolic

UNitSeeeerosossannsnsasssssscosassanssossnsasl3

removing a data set from the systenm
CataloTesesaassssensssanssssassssasssess20
RENAME statementciceeesescccsesas2l
fOrMAteeseceaeesososssnasncscassnssaseasnadl
renaning a data Seleeseseccscccscnsscnsoaasal
renaming a data set membeTr.iseeeeecesecrsaaaa’l
RESET STATEMENT seeeeesossesosssaccncscsssaeil
o o 11 = 5 o 1

restoring symbolic units to standard
aSSignementSeeseeceseesssonasasssscacaael9
RLD CAIdSceeescasacarsocasaanssccssssssesasbl, 65
root phase overlay ceeeececsecscsssenseal5, 26
example Of..eeeverenenceeacecscocnnennnall
linkage editor control statement.......27

R

U TP e £ e
LO0OL pliase, USLIHLIULILIOUI U' seesescsessessacsesnedl)

SAME option
in ACCESS statemeNt.c.vecesscrosccncasald
in ALTOC statement.eeeieeesscccessasaaal?
in LABEL statement.....eeceececesecesaasl8
SAVE ACLCAessosssosassssassnesessssseseseaB2,83
scalar variables in sStoOrage MAPesseseasseeseab63
sequential data set, definition of.ieesasad17
SOUrCe 11StiNg eecesceseoscorscacaasosseeeell, 62
example Of..eeeeiiieeeinncrecasonnnns
specification eXCeptiONececcacssasceass 0,10
SORT funCtiON.seecsscooeoeacecsscassasesecsasb8
square root library sSubprogram.escssseccessassb8
stand-alone PrOgraAMS . cceeececscesansssnsanssad
standard unit assignmentS.ceeeccecacasceaaas 3
statement formatsS.ceeeceeeietecesscnonnneaall
statement function defintionNS..iecieeeieeeeaaT?
statement labels in storagde MaPeeiseeceeseab3
statement NUMDETrS.eeeeieseesncccnrecanaaseall
step name in EXEC FORTRAN statement........22
STOP control statement....eeececesecsocnnnadl
STOP statement in FORTRAN PrOQTaMescssssecssbb
storace map
COMPiler.eeeeeerenceeoncncecasaannos
linkage editor (see phase map)
subordinate phase StIUCtULCetsistasseassnseseld
subordinate PhaSESesieeecescrsorsasnsoseccesasld
subprogram entry point namesS.......ceoeeeea.l2
subprogram StIUCLUrEeS..iveceesscssssseoaeasnseeldd
subscripts in a DO 1OOP.:::c:scccccasacessebd
SUPEIVISOT ecesssssssasccaasnnnsssnssesb,’, 22U
NESSATCSe ceesancacrsaesasacansanssses
symbolic unit maintenance statements.......19
Symbolic UNit NAMEeS.eeseceecerersoncnsanceasell
SYSTPTutueosseoenooeasoaensseaanesassd, 13,22,23,73
SYSLOGeeeoeensosssensaossnssanssaeas13,20,31,67
SYSISTeeeseesacensanscaesessassa20,23,30,31,65
SYSOPTeeseoseassossnsnoseasanseseseal3,22,63,66
SYSPCHeaosessoeonssasoansacanssceaansnssl3,22,6U
SYSRDResssacsscosssoacsnsasanneseead,22,23,73
system assembly.ee e iecieeseenscascnccnsennnal
system Catalog cecececriassnasosssascsccsasasld
placing a data set in...veeees...15,18,20
removing a data set fromMeceeeceeoceasa.20
System CONStTUCtiON.eeeeeteeesneocsaaocansasd
SYStem CONtIClecececeasssacanconscnccsasasssabd
system data SEtS ceeeieieccecerercnssccsanas 13

.
.
o]
N

-
[e)
w

.
.
[ee)
o]

Use of. ittt ittt ieicrascatresesnranaael3
system diagnostiC MEeSSadeSieececcosscecsaaaB88
system input data set (see SYSIPT)

system log (see SYSLOG)

SysStem outpUtesceeeeeestesececasansscoceeasb2
system output data set (see SYSOPT)
system punch data set (see SYSPCH)
system residence VOlUME...cievevoeoccnacnaaal
System Support pProgramS.eseceecceces
SYStem UNitS.ieeeeectacecnsacacnnnss

system work data set (see SYS001

)

SYS000 .. ieeeeaeeenanostncannnsnnns

SYSO00Teeeeeeeaasonosnsoannaannns

tape Jdata SETS eeeeoecsscncsansns
CreatiNgessececsscecasssonsas
USINJeeesacessscasesnnsasnesse
tape device type COd€Seceeesnsae
tape labelS.eieeencesancesennsnes
tape OpPtiONS.eececeiocecscsecnaacs
tape volume designations
ACCESS statement.icecseceanses
ALTOC statemeNteceecececsences
tape volume, definition of..eee.
termination of @ jobeieeieeneaen
trailer label.veeeveeeeeacncanne
TXT CALdS.ieeeeececcssssasannnns
types Of jObSeeeeieeeeevanesnann

UNCATLG statement .eececscecscase
fOIMateeeeeeseasecossannsnosne
unit record data SetS.cececenans
unit record device type codes...
using existing data sets
direCct aCCeSSeisessscsancnas

taPCeesesscssssoscssaacnnsan

?

-

.

-

I 1

P K

. 13,14,22
tesesaaa13

P 1

I B
ceesesaalb

using existing members of a data set.......19

Utility pProgramS.eceeccesecesees

variable names in source progranm.

variable precision switCh.ieeesse
variables and arrays in COMMON..
VOlideeeieieaeonaoaacncecaanonss
volume designations for disk ...
ACCESS statement......cca...
ALTIOC statementeseeececacecees
volume designations for tapes ..
ACCESS statementSeieecseesocses
ALTIOC statementescececesccsnse
volume identification.c.ececesss
volume initializatioNee.eseeasas
volume labels
diSKeseeersnoasasessscacoccns
1APE:iceceecsesosscscascanses
volume serial nNumber...c.ceeeeoes
volume table of contentsS..seee..

VIOC.iceeaeooeccnsssecscscaanasascas

HRITE statement.ecececeroonacsees
write validity checkinge.eseesss
Writing an arrayececccsceesacses

ceveeesel2
ceseoess 2l

..... 15,16
ceses 18,19
P 1
veeeesa il
eesae 15,16
eeesesss 36
N A
ceeseeaslb
ceeed 15,17

I
P I
[)
ceceanaa 17
S X

R
..17,18,19

cesesseceab9

-

NDEX 11

A

IBM

Technical Newsletter File No. $360-25
Re: Form No. C28-6813-2

This Newsletter No. N33-8602

Date: June 10,

Previous Newsletter Nos.

This Technical Newsletter, a part of release 6 of IBM System/360

Model 44 Programming System, provides replacement pages for
IBM System/360 Model 44 PS, Guide to System Use for FORTRAN
Programmers, Form C28-6813-2. These replacement pages remain
in effect for subsequent releases unless specifically altered.
Pages to be inserted and/or removed are listed below.

21-24, 24.1
61-64

71,72

75,76

81,82

93-96, 96.1
103,104, 104.1

A change to the text or a small change to an illustration is
indicated by a vertical line to the left of the change; a
changed or added illustration is denoted by the symbol e to
the left of the caption.

Summary of Amendments

Addition of three execution error messages.

Addition of a new compiler message.

Addition of format of CALL DUMP and CALL PDUMP statements.
. Minor corrections to the text.

=W N

File this cover letter at the back of the manual to provide a
record of changes.

IBM Laboratory, Publications Dept., Uithoorn Netherlands

PRINTED IN U.S.A.

READER'S COMMENT FORM

IBM System/360 Model 44 Form C28-6813-2
Programming System

Guide to System Use for

FORTRAN Programmers

¢ How did you use this publication?

As a reference source ... 0
As a classroom text]
As a self-study text ... O

® Based on your own experience, rate this publication . . .

As a reference source: i

Asatext: el

¢ What is your occupation? ... USSR U OO SOUPSUUROPRON

e We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address.

¢ Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C28-6813-2

YOUR COMMENTS PLEASE. . .

This SRL bulletin is one of a series which serves as reference sources for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons respounsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys-
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

FIRST CLASS
PERMIT NO. 1359

WHITE PLAINS, N.Y,
I
I
]
BUSINESS REPLY MAIL
L]
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

L]
|
I

POSTAGE WILL BE PAID BY ...
]
L]
IBM Corporation EE—
112 East Post Road I
. . L

White Plains, N. Y. 10601
I
L]
Attention: Department 813 I——
]
Fold Fold

T8I

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

seeesscseevsscease

seessesee

cecssoee

R

eseceesesncsscene

ececcssccssrrsevsssresnns

VSN Ul PaULY 098/ weishS Wil

Z-€189-820

C28-6813-2

B

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM Waorld Trade Corporation

821 United Nations Plaza, New York, New York 10017
[International]

09¢/wais4s wWal

VSN Ul pRuLg

Z-£189-82D

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024.0
	024.1
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096.0
	096.1
	097
	098
	099
	100
	101
	102
	103
	104.0
	104.1
	105
	106
	107
	108
	109
	110
	111
	112
	replyA
	replyB
	xBack

