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PREFACE 

This volume contains an Introduction and a Func­
tional Units description for the IBM 2044 Processing 
Unit, the processor for the IBM System/360 Model 
44. The Introduction gives a general outline to 
digital computers and computing technique, and 
defines the relationship of the IBM 2044 to the 
System/360. Functional Units describes the various 
parts which form the processing unit. 

The manual assumes knowledge of the System/ 
360 as described in IBM System/360 Principles of 
Operation, Form A22-6S21. 

This volume is one of the manuals that constitute 
the IBM Field Engineering Theory of Operation 
manual for the IBM System/360 Model 44. The 
other volumes and their form numbers are: 

System/360 Model 44, Principles of Operation - Processing 

Unit, Form Y33-0002: Describes the operation of the 

instructions for the accelerator and basic machine (other thar 

floating-point instructions), and program and machine 

interrupts. 

System/360 Model 44, Principles of Operation - Channels, 

Form Y33-0003: Describes the Common Channel area, the 

Multiplexor Channel 0 and the High Speed Multiplexor 

Channel. 

These volumes are referenced in other volumes 
by the main element of their titles. 

First Edition 

Reference is also made in these volumes to the 
following associated manuals: 
Field Engineering Theory of Operation (FETO), IBM System/ 

360 Model 44, Floating Point Feature, Form Y33-000S: 

Gives an introduction to floating-point arithmetic, describes 

the functional implementation of floating-point arithmetic 

in the 2044 and details the operation of floating-point 

instructions. 

Field Engineering Theory of Operation (FETO), IBM System/ 

360 Model 44, Single Disk Storage Drive, Form Y33-0006: 

Gives an introduction to the operation of the control unit 

and describes in detail the functional parts and the operations 

that may be performed. 

Field Engineering Maintenance Manual (FEMM), IBM System/ 

360 Model 44, Form Y33-0007: Contains information 

for servicing the 2044 Processing Unit. 

Field Engineering Maintenance Diagrams (FEMD), IBM Syst<e112/ 

360 Model 44, Volume 2, Form Y33-0008: Contains 

maintenance information in the following categories: Data 

Flow Charts, Flow Charts, Timing Charts, MAP's. 

Other related manuals that describe units used in 
the System/360 Model 44 are: 
Field Engineering Manual of Instruction (FEMI), 1052 Adapter, 

Form 223- 2808. 

Field Engineering Maintenance Manual (FEMM) Single Disk 

Storage/Direct Access, Form Y26- 3663. 

This manual makes obsolete Field Engineering Theory of Operation, System/360 Model 44, 

Forms Z33-0001-0, Z33-0002-0, and Z33-0004-0. 

The manual is written basically to Engineering Change Level 390049 and in some cases anticipates 

Engineering Change Level 390063. Significant changes or additions to the information in the manual 

will be covered in subsequent revisions or FE supplements. 

This publication was prepared by IBM European Laboratories, Product Publications. A form is provided 

at the back of this manual for reader's comments. If the form has been removed, comments may be 

addressed to: IBM Corporation, FE Manuals, Dept. B96, PO Box 390, Poughkeepsie, N. Y. 12602 

© International Business Machines Corporation 1966 
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• 

GENERAL COMPUTER FUNDAMENTALS 

• Computers process large quantities of data at 
electronic speeds. 

• Paper-work can be automated because of the 
repetitive actions involved. 

• Electronics have made the modern high-speed 
data processing system possible. 

Modern methods of accounting, measuring, and 
testing generate huge quantities of information that 
must be processed quickly and accurately. A vast 
amount of data constantly pours into such places as 
retail establishments, weather stations, insurance 
companies, and tax bureaus. Also, our rapidly 
expanding scientific investigations need faster and 
faster methods for carrying out increasingly complex 
calculations. To meet these demands, machines 
have been developed which can automatically com­
pute, select, and correlate data at electronic speeds. 

The automation of paper-work is possible because 
the actions involved are sufficiently repetitive. The 
variety of steps necessary in processing business 
records or in computing scientific problems, for 
example, is small in comparison with the number of 
times these steps must be taken. One of the first 
paper-work machines was the ink stamp, possibly 
because the operation of applying a date or a name 
was so obviously repetitive. As additional mechani­
zation was applied to paper-work, machines began to 
take over the long and painstaking tasks of accounting. 

Although accounting applications of business 
machines require a certain amount of arithmetic, 
such as accumulating totals and balances, the prob­
lem is principally one of processing data. A large 
amount of information is fed into these machines 
(input) and a large quantity of information is pro­
duced (output). The machines are therefore called 
data processing machines . 

The first data processing machine had to handle 
information in a series of individual operations. 
These included punching information into cards, 
sorting and classifying cards, producing totals and 
balances, and finally, printing the results. Inter­
mediate results from one machine had to be trans­
ferred to another and many human decisions and 
interventions were necessary for a complete account­
ing procedure. 

When electronic inventions were applied, the rate 
of calculation was vastly increased compared with 
that of other machines. But, of more importance, 
a new technique was introduced. This technique 
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used electronic devices to transport data within the 
machine and to hold intermediate results. 

Full application of these innovations has resulted 
in the modern computer as we know it today, in 
which data is fed into one end of the system and 
final results are presented at the other. 

General Computer Configuration 

• Five functional sections: input, storage, arith­
metic and logic, control, and output. 

• Data and instructions must be in a language and 
format that can be understood by a machine. 

• Input may be a card reader or magnetic tape unit. 

• Storage is usually magnetic cores. 

• Arithmetic and logic section executes instructions 
(add, multiply, compare etc.). 

• Control comes from storage in units of informa­
tion (instructions). 

• Output may include printers, punches, or mag­
netic tape units. 

• A single instruction causes only one operation to 
be performed. 

• Instructions are executed in an automatic sequen­
tial fashion. 

• A series of instructions is called a program. 

A modern computer has five distinct functional sec­
tions: input, storage, arithmetic and logic, control 
and output (Figure 1-1). 

A computer must receive directions that are even 
more specific than those used in a card accounting 
system because a computer does nothing unless 
directed to do so by its control section. Therefore, 
the control section of the computer must receive 
instructions from people who plan the operations to 
be performed by the computer. The advantages of 
using a computer include greatly increased pro­
cessing speeds, a higher degree of automation and 
greater flexibility. 

All information to be used by the computer must 
pass through the input section, which interprets 
information and converts it to a language that the 
computer understands. The input section may include 
such items as card readers and magnetic tape units. 
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Figure 1-1. Functional Sections of a Computer 

The information is directed from the input sec­
tion to the storage section. Most computers use an 
information-holding device, composed of magnetic 
cores, for their main storage unit. This magnetic 
core storage serves as the source of all information 
to be used by the computer. Core storage has impor­
tant advantages over the punched -card storage used 
in mechanical accounting systems. Most important 
of these advantages is the high speed at which infor­
mation may be placed in, or removed from, storage. 
The highest degree of performance from core stor­
age is realized only if the information is arranged in 
a specific order. Once the information is located in 
core storage, it may be called for instantly and in 
any sequence. 

The control section of a computer directs the 
operation of the entire computer. Unlike the card 
system, the control section of a computer receives 
all directions in the form of units of detailed infor­
mation from core storage. These units of informa­
tion, which tell the control section what operations 
are to be performed, are called instructions. The 
part of information in core storage that is to be oper­
ated on is commonly referred to as data. Instruc­
tions as well as data must be delivered to storage 
from the input section. As shown in Figure 1-1; 
the control section receiv~s instructions from stor­
age and then exerts the necessary controls over all 
other sections of the computer. 

Actual operations are, for the most part, per­
formed in the arithmetic and logic section. The 
instructions that may be executed by a given com­
puter may include such operations as add, subtract, 
multiply, divide etc. Also available will be instruc­
tions to place the results back into core storage. 
From core storage, instructions may tell the con­
trol section that the information is to be delivered 
to the output section. The output section may in­
clude printers, punches and magnetic tape units. 
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A single instruction causes only a specific opera­
tion to be performed by the computer. A series of 
instructions pertaining to an entire procedure is 
called a program. In modern data processing sys­
tems the program is stored internally and the system 
has access to the instructions at electronic speeds. 
Such programs are called stored programs. 

When operating under program control, the com­
puter executes one instruction at a time. After 
executing one instruction, the computer automatically 
proceeds to the next instruction. It is important to 
realize that every computer must be directed by 
some type of program during every step of its opera­
tion. 

The generalized stored -program computer, 
illustrated in Figure 1-1, is operated in the following 
manner: 

1. A program consisting of instructions that 
direct the computer in every step of its operation is 
punched into IBM cards. The data to be processed 
is also punched into cards. 

2. The cards are placed in the card reader, and 
a key (or a series of keys) on the computer console 
is pressed to tell the control section that the infor­
mation located in the card reader is to be read into 
core storage. 

3. The control section starts the card reader and 
delivers the information to the proper locations in 
core storage. Information contained in the last card 
tells the control section where to find the next 
instruction. 

4. The control section calls for and decodes the 
first instruction, to determine what operation to 
perform and where the data to be processed is 
located in core storage. 

5. The control section causes this data, also 
located in core storage, to be delivered to the arith­
metic and logic section. 

6. The arithmetic and logic section performs 
the operation called for by the control section. 

7. After the first instruction has been performed, 
the control section calls for the next instruction 
from core storage. 

8. The process continues until an instruction is 
encountered that either tells the machine to stop or 
causes the results (now located in core storage) to 
be delivered to an output section. 

IBM SYSTEM/360 FUNDAMENTALS 

IBM System/360 is a general-purpose system de­
signed for commerCial, scientific, communications 
or control applications. A standard instruction set 
provides the basic computing function of the system. 
A decimal feature may be added to this set to pro­
vide a commercial instruction set, or a floating­
point feature may be added to provide a scientific 



instruction set. When the storage protection feature 
is added to the commercial and scientific features, 
a universal instruction set is obtained. Direct con­
trol and timer features may be added to satisfy 
requirements for teleprocessing systems to allow 
load sharing or to satisfy real-time needs. 

System/360 can accommodate large quantities of 
addressable storage. The markedly increased 
capacities over other presently used storages are 
provided by the combined use of high-speed storage 
of medium size and medium -speed storage of large 
size. Thus, the requirements for both performance 
and size are satisfied in one system by incorpo­
rating a hierarchy of storage units. The design also 
anticipates future development of greater storage 
capacities. 

System/360 incorporates a standard method for 
attaching input/output devices differing in function, 
data rate and access time. An individual System/ 
360 is obtained by selecting the system components 
most suited to the applications from a wide variety 
of alternatives in internal performance, functional 
ability, and input/output (I/O). 

Models of System/360 differ in storage speed, 
width (the amount of data obtained in each instruction 
access), register width, and capability of simulta­
neous processing, yet these differences do not affect 
the logical appearance of System/360 to the pro­
grammer. Several Central Processing Units (CPU's) 
permit a wide range of internal performance. The 
range is such that the ratio of internal performances 
between the largest and the smallest model is approx­
imately 50: 1 for scientific computation and 15: 1 for 
commercial processing. 

Compatibility 

All models of System/360 are upward and downward 
compatible, that is, a program gives identical 
results on any model. Compatibility allows for 
ease in systems growth, convenience in systems 
backup, and simplicity in education. 

The compatibility rule has three limitations: 
1. The systems facilities used by a program 

should be the same in each case. Thus, the optional 
CPU features and the storage capacity, as well as 
the quantity, type, and priority of I/O equipment, 
should be equivalent. 

2. The program should be independent of the 
relation of instruction execution times, I/o data 
rates, access time, and command execution times 
from machine to machine. 

3. The compatibility rule does not apply to detail 
functions for which neither frequency of occurrence 
nor usefulness of result warrants identical action in 
all models. These functions are concerned with the 

handling of invalid programs and machine mal­
functions. 

In the case of the Model 44, programs are com­
patible if they adhere to the limited instruction set. 

System Program 

Interplay of eqUipment and program is an essential 
consideration in System/360. The system is de­
signed to operate with a supervisory program that 
co-ordinates and executes all I/O instructions, . 
handles exceptional conditions and supervises sched­
uling and execution of multiple programs. 

System/360 provides for efficient switching from 
one program to another, as well as for the re­
location of programs in storage. To the program­
mer, the supervisory program and the equipment 
are indistinguishable. 

The interrupt system permits the CPU to change 
state automatically, as a result of conditions arising 
outside the system in I/O units or in the CPU itself. 
An interrupt switches the CPU from one program to 
another by changing not only the instruction address 
but all essential machine-status information. 

A storage protection feature ensures that a pro­
gram, or data in a defined area of storage, cannot 
be accidentally overwritten by another program. 
Main storage may be divided into a maximum of 16 
areas, each of which has a code number or 'key' 
assigned to it. Each Program Status Word (PSW) 
also has a key, and processing under a particular 
PSW may be carried out only in the area of main 
storage defined by the key .. 

If an attempt is made to address any location 
outside the area defined by the PSW key, a protection 
check occurs and this location is not written into. 
For correct operation, no loss of performance is 
caused by the protection feature. 

Programs are checked for correct instructions 
and data as they are executed. This poliCing action 
identifies and separates program errors and machine 
errors. Thus, program errors cannot create ma­
chine checks since each type of error causes a unique 
interrupt. In addition to an interrupt due to machine 
malfunction, the information necessary to identify 
the error is recorded in a predetermined storage 
location. This procedure appreciably reduces the 
mean-time to repair a machine fault. Moreover, 
operator errors are reduced by minimizing the 
active manual controls. To reduce accidental oper­
ator errors, operator consoles and I/O devices 
function under control of the system program. 
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Multi -System Operation 

Several models of System/360 can be combined into 
one multi -system configuration. Three levels of 
communication between CPU's are available. Largest 
in capacity, and moderately fast in response, is 
communication by means of a shared I/O device, 
for example, a disk file. Faster transmission is 
obtained by direct connection between the channels 
of two individual systems. Finally, storage may be 
shared on some models between the CPU's, making 
information exchange possible at storage speeds. 
These modes of communication are supplemented by 
allowing one CPU to be interrupted by another CPU 
and by making direct status information available 
from one CPU to another. 

Input/ Output 

Channels provide the data path and control for I/o 
devices as they communicate with the CPU. In 
general, channels operate asynchronously with 
respect to the CPU and, in some cases, a single 
data path is made up of several subchannels. When 
this is the case, the single data path may be shared 
by several low-speed devices, for example, card 
readers, punches, printers and terminals. This 
channel is called a multiplexor channel. Channels 
that are not made up of several such subchannels 
can operate at higher speed than the multiplexor 
channels and are called selector channels. In every 
case, the amount of data that comes into the channel 
in parallel from an I/O device is a byte (eight bits). 
All channels or subchannels operate in the same 
way and respond to similar I/O instructions and 
commands. 

Each I/O device is connected to one or more 
channels by an I/O interface. This allows present 
and future I/O devices to be attached without altera­
tion to the instruction set or channel function. Con­
trol units are used where necessary to match the 
internal connections of the I/O device to the inter­
face. Flexibility is enhanced by optional access to 
a control unit or device from either of two channels. 

Technology 

System/360 employs solid-logic integrated compo­
nents, which in themselves prOvide advanced equip­
ment reliability. These components are also faster 
and smaller than previous components and lend 
themselves to automated fabrication. 

In the implementation of the accelerator feature 
(prOvision of 16 general-purpose registers in hard­
ware) use is made of monolithic circuits. In this 
technique several register positions (latches and 
gating circuits) are included in one silicon chip. 
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Information Formats 

• Data and instructions must be in a format accep­
table to the machine. 

• Individual units of a coding system are called 
bits (binary digit information).· 

• Bits in various combinations represent all char­
acters valid to the system. 

• Coding systems used are binary, 4-bit and 8-bit 
binary-coded decimal, and hexadecimal. 

Common practice in computers is to refer to indi­
vidual units of a coding system as binary digit infor­
mation or bits. Throughout the computer, compo­
nents are always in one of two possible states: a 
line is active or inaptive, a latch is on or off, a 
trigger is set or reset, a magnetic core is magne­
tized in one direction or the other. Components that 
operate in this manner (on/off, set/reset) are said 
to be binary. A latch, when on, represents the 
presence of a bit; when off, it represents the absence 
of a bit. Bits in various combinations represent all 
the characters valid to the system. 

The system transmits information between main 
storage and the CPU in bytes or multiples of bytes. 
An extra (ninth) bit, the parity or check bit, is 
transmitted with each byte and carries parity on the 
bytes. The parity bit cannot be affected by the pro­
gram; its only effect is to cause an interrupt when a 
parity error is detected. References to the size of 
data fields and registers, therefore, exclude the 
associated parity bits. All storage capacities are 
expressed in number of bytes provided, regardless 
of the physical word size used. 

Figure 1-2 shows sample information formats. 
Bytes may be handled separately or grouped to­
gether in fields. A halfword is a group of two con­
secutive bytes and is the basic building block of 
instructions. A full word is a group of four consec­
utive bytes; a double word consists of two full words. 
The location of any group of bytes, or field, is 
specified by the address of its leftmost byte. 

The lengths of fields are either implied by the 
operation to be performed or stated explicitly as 
part of the instruction. When the length is implied, 
the information is said to have a fixed length, which 
can be either one, two, four or eight bytes. When 
the length of a field is not implied by the operation 
code, but is stated explicitly, the information is 
said to have variable field length. Variable-length 
operands are variable in length by increments of 
one byte. The Model 44 uses only fixed -length 
information. 



A 
1110000011 
o 7 

Halfword 

J K 
1110100011110100101 
o 7 B 15 

IBM 3 
1110010011110000101110101001111100111 
o 7 B 15 16 23 24 31 

Figure 1-2. Sample Information Formats 

Within any program format or any fixed-length 
operand format, the bits making up the format are 
consecutively numbered from left to right starting 
with the number O. 

The System/360 uses four coding systems in­
volving the "bit" principle: binary, 4-bit and 8-bit 
binary-coded decimal, and hexadecimal. 

Binary Coding 

• The binary system is a place-value number system 
with the base 2. 

• All numbers are expressed with the two symbols 
o and 1. 

• Negative numbers are expressed in two's comple­
ment form. 

• Binary numbers of various lengths are used 
within the system. 

The binary code uses two symbols, 0 and 1, to 
represent all quantities. Counting is started in the 
binary code in the same manner as in the decimal 
code with 0 for zero and 1 for one. At two in the 
binary code there are no more symbols to be used, 
so it becomes necessary to take the same move at 
two in the binary system that is taken in the decimal 
system at ten. This move is to place a 1 in the next 
position to the left and start again with a 0 in the 
original position. A binary 10 is equivalent in this 
respect to a 2 in the decimal system. Counting is 
continued in an analogous manner with a carry to the 
next higher-order position every time an increment 
of two is reached instead of every time an increment 
of ten is reached. Counting in the binary code is as 
follows: 

Binary Decimal 

0 0 

10 2 

11 3 
100 4 

101 5 
110 6 
111 7 

1000 8 

Although binary numbers generally have more terms 
than their decimal counterparts (about 3.3 times as 
many), computation in the binary system is quite 
simple. 

Binary Addition 

For binary addition, it is necessary to remember 
the following three rules: 

1. Zero plus zero equals zero 
2. Zero plus one equals one 
3. One plus one equals zero with a carry of one 

to the next position to the left. 
To see how the rules work, consider the addition of 
15 and 7, using these numbers expressed in binary 
notation (15 = 1111; 7 = 111): 

Sixteens Eights Fours Twos Ones Decimal 

Carries (1) (1 ) (1 ) (1 ) 

0 1 15 

+ 0 0 1 7 

0 0 22 

The resultant sum of the addition contains a 1 in the 
sixteens, fours, and twos columns, which is the 
binary representation of 22, the correct sum of 15 
plus 7 (16 plus 4 plus 2 equals 22). 

Binary Subtraction 

The rules for subtraction of binary digits are equally 
simple: 

1. Zero minus zero equals zero 
2. One minus one equals zero 
3. One minus zero equals one 
4. Zero minus one equals one, with one borrowed 

from the left. 
Using the same numbers (15 and 7) as in the addition, 
the subtraction works as follows: 

Sixteens Eights Fours Twos Ones Decimal 

Borrows 0 0 0 0 0 

0 1 15 

0 0 1 1 7 

0 0 0 0 8 
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When subtraction is complete there is a 1 in the 
eights column only, giving an answer of 8. However, 
to facilitate machine operation in System/360, all 
negative binary numbers are expressed in two's 
complement form and the machine logic performs a 
subtraction by adding the two's complement. In the 
following subtract example the -7 decimal is in two's 
complement and appears as 01001 binary. The two's 
complement of any binary number is obtained by 
inverting each bit and then adding a bit in the least­
significant position. The machine now adds the two 
binary values as follows: 

Sixteens Eights Fours Twos Ones Decima:! 

Carries (1) ( 1) (1) ( 1) 

a 1 1 15 
a a a -7 -a a a a 8 

Thus, the same result is obtained by adding the 
two's complement of the subtrahend. 

Note that in the Model 44, the effective result of 
the technique used for subtraction is equivalent to 
the addition of the two's complement. In practice, 
the implementation of the subtraction differs as 
explained in "Chapter 2, Functional Units" of this 
manual. 

Binary Multiplication 

For ordinary binary multiplication, three rules 
apply: 

1. Zero times zero equals zero 
2. Zero times one equals zero; no carries are 

considered 
3. One times one equals one 

For the binary multiplication table, all that is nec­
essary when multiplying one number (multiplicand) 
by another (multiplier) is to examine the multiplier 
digits one at a time and, each time a 1 is found, add 
the multiplicand to the result. Each time a 0 is 
found, no addition is made. Of course, the multi­
plicand must be shifted for each multiplier digit, but 
this does not differ from the shifting that is done in 
the decimal system. 

An example of binary multiplication, using 26 
(11010) multiplied by 19 (10011), is as follows: 

Decimal Binary 

26 16 + 8 + a + 2 + a 11010 

x 19 = 16 + a + a + 1 + 1 10011 
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11010 

11010 

00000 

00000 

11010 

111101110 
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With these rules, the product is arrived at by a 
series of shifts (according to the number of digits) 
and adding the multiplicand whenever a 1 is found in 
the multiplier. 

Interpretation of the binary result of the multipli­
cation by using ones, twos, fours etc., results in, 

256 +.128 + 64 + 32 + 0 + 8 + 4 + 2 + 0 = 494. 
Note that in the Model 44 the pure binary method of 
multiplication is not used. Instead, a technique 
known as the 'carry-look-ahead group-of-ones 
principle' is employed. This makes an economical 
use of the machine's internal facilities and is sum­
marized as follows: 

A group of ones is defined as two or more ones 
together, scanning from right to left, which may be 
interspersed with single zeros. A group commences 
with two ones together and terminates with two zeros 
together. For example, such a group is 00101011. 
The multiplication rules are: 
If the multiplier digit is a one, and is 

first of a group of ones 
not the first of a group of ones 
an individual one 

If the multiplier digit is a.zero, and is 
a zero within a group of ones 
a zero terminating a group of ones 
a zero part of a group of zeros 

Binary Division 

subtract 
shift only 
add 

subtract 
add 
shift only 

In the examples of addition, subtraction and multi­
plication, it has been shown that all of these opera­
tions are accomplished by single addition or repeti­
tive addition. 

Binary division in the Model 44 is performed by a 
series of subtractions. The normal rules of division 
apply: 

1. The reduction (subtraction) cycle is successful 
and a quotient digit is developed if the result of the 
subtraction has the same sign as the original divi­
dend. 

2. The reduction cycle is unsuccessful and no 
quotient digit is developed if the result of the sub­
traction has the opposite sign to the original dividend. 
This condition is called an overdraw. 

3. An overdraw must be followed by a correction 
cycle to add back the divisor and restore the dividend 
field to the value prior to the unsuccessful reduction. 
The following example shows the operation of a 
binary division. 

269 = 0+ 256 + a + a + a + 0+ 8 + 4 + 0+ 1 = 0100001101 

':'7 = 0+0+4+2+1= 00111 

I 
\. 

I 
\ 



A carry-out on the reduction cycle indicates a posi-
tive result and, therefore, a quotient digit. 

Original Dividend 0100001101 

Divisor 00111 

Complement of Divisor 11001 

Operation Carry Out Dividend Field 

0100001101 

11001 

1 Reduction Cycle (Successful) Yes 000010 

2 Shift Divisor 11001 

3 Reduction Cycle (Overdraw) No 11011 

4 Correction Cycle 00111 

000101 

5 Shift Divisor 11001 

6 Reduction Cycle (Overdraw) No 11110 

7 Correction Cycle 00111 

001011 

8 Shift Divisor 11001 

9 Reduction Cycle (Successful) Yes 001000 

10 Shift Divisor 11 00 1 

11 Reduction Cycle (Successful) Yes 000011 
12 Shift Divisor 11001 

13 Reduction Cycle (Overdraw) No 11100 

14 Correction Cycle 00111 

00011 

Quotient 100110 (38) 

Remainder 00011 (3) 

In practice the Model 44 moves the dividend field 
relative to the divisor, and following an overdraw, 
combines the correction and subsequent reduction 
cycle into the one cycle. 

These differences are explained further in rela­
tion to the "divide instructions" in Principles of 
Operation - Processing Unit, Form Y33-0002. 

Hexadecimal Coding 

• Hexadecimal is a place-value system with the 
base 16. 

• Hexadecimal numbers are expressed with 16 
different symbols. 

• Floating-point arithmetic uses the hexadecimal 
number system. 

• One hexadecimal digit is represented by four 
binary bits. 

• Hexadecimal representation is a convenient short­
hand for writing binary numbers. 

In the hexadecimal (hE;lx) code, numerical values are 
expressed in combinations of four bits; however, 
instead of using the base 10 and indicating the deci­
mal numbers 0 to 9, hex uses the base 16 and indi­
cates the decimal numbers 0 to 15 (Figure 1-3). 

Decimal Binary Hexadecimal Decimal Binary Hexadecimal 

0 0000 0 16 10000 10 
1 0001 1 17 10001 11 
2 0010 2 18 10010 12 
3 0011 3 19 10011 13 
4 0100 4 20 10100 14 
5 0101 5 21 10101 15 
6 0110 6 22 10110 16 
7 0111 7 23 10111 17 
8 1000 8 24 11000 18 
9 1001 9 25 11001 19 

10 1010 A 26 11010 lA 
11 1011 B 27 11011 18 
12 1100 C 28 11100 lC 
13 1101 D 29 11101 lD 
14 1110 E 30 11110 IE 
15 1111 F 31 11111 IF 

Figure 1-3. Hexadecimal Symbol Arrangement 

The same move (carry) that is made at two in the 
binary code and at ten in the decimal code is made 
at sixteen in the hexadecimal code. 

Although the System/360 is a binary system, its 
input and output can be hexadecimal format. The 
hexadecimal numbering system is used in the System/ 
360 as a convenient method of representing large 
binary numbers. The hexadecimal number system 
uses 16 symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, 
B, C, D, E and F. The arrangement of symbols to 
represent the same values in decimal, binary, and 
hexadecimal is shown in Figure 1-3. 

To convert binary numbers to hexadeCimal, mark 
off the binary symbols in groups of four from the 
radix point position and substitute a hexadecimal 
symbol for each group of four binary symbols. 

110000111110011011010011. 1001=1100,0011,1110,0110,1101,0011. 1001 

hexadecimal equivalent = C 3 E 6 D 3 

Decimal Coding 

• Every decimal digit is represented by four bits. 

• Two decimal numbers occupy one byte in packed 
decimal format. 

• Only the values 0 to 9 are valid. 

• In packed decimal format the low-order four bits 
contain a sign code. 

• Negative numbers are carried in true form. 

NOTE: The Model 44 does not use decimal arith­
metic, and decimal type arithmetic and decimal type 
instructions are invalid. However, the decimal 
notation is included here as it is used by other mod­
els of System/360. 

Decimal arithmetic within System/360 is per­
formed with four-bit binary-coded decimal numbers, 
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FIXED-POINT NUMBERS 

Fullword Fixed-Point Number 

IS I Integer 

o 1 31 

Halfword Fixed-Poinl Number 

Integer 

o 1 15 

FLOATING-POINT NUMBERS 

Short Floating-Point Number 

I s I Characteristic I Fraction 

o 1 7 8 31 

Long Floating-Point Number 

~IS~I~_C_ha_ra_c_te_r_ist_ic~I~ ______ F_ra_ct_io_n ____ ~~L{ _____ ~ 
o 1 7 8 63 

DECIMAL NUMBERS 

Packed Decimal Number 

I Digit I Digit I Digit [J Digit I Digit I Digit I Digit I Sign I 

Zoned Decimal Number 

I Zone I Digit I Zone [] Digit I Zone I Digit I Sign I Digit I 
LOGICAL INFORMATION 

Fixed-Length Logical Information 

Logical Data 

o 31 

Variable-Length Logical Information 

....,... __ C_ha_r_ac_t_er~I __ C_ha_r_ac_te_r-'1 ~=~ ~~ ~ ~ ~ J Character I 
o 8 16 

Figure 1-4. Data Format 

with two such decimal numbers per byte. This 
format is called tpacked decimal' (Figure 1-4) with 
the zoned decimal format and other data formats to 
be discussed later. In the binary-coded decimal 
notation, only the numbers 0000 to 1001 (0 to 9 
decimal) are valid digit codes. The remaining codes 
1010 to 1111 are used to represent the sign as 
follows: 

1011 = + 
1101 = -

American Standard Code for 
Information Interchange (ASCII) 

1100 = + Extended Binary Coded Decimal 
1101 = - Interchange Code (EBCDIC) 

The two remaining codes, 1110 and 1111, are re­
garded as positive in both coding systems. The 
positioning of the four-bit sign for both packed and 
unpacked formats is shown in Figure 1-4. Genera­
tion of a sign code during decimal arithmetic is 
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governed by the character set preferred, as defined 
by PSW 1 bit 12. 

All character-set-sensitive I/O devices assume 
either one of the two codes, EBCDIC or ASCII. 
These codes are shown in Figures 1-5 and 1-6 
respectively. In both coding systems each character 
is represented by eight bits (one byte), giving a 
possible maximum character set of 256. By means 
of an extended card code, each one of the possible 
256 characters may be punched into a card column. 

Floating-Point Notation 

• Expresses large and small numbers in a short­
ened form. 

• Very small and very large number usually con­
tain many zeros. 

• Zeros in large and small numbers usually serve 
only as 'spacers' (to locate the decimal pOint). 

• As precision is increased, percentage of change 
in value decreases. 

• Data may be either single word (short) or double 
word (long) format. 

• Range of (hexadecimal) numbers obtainable is 
.00000000000001 x 16-64 

to . FFFFFFFFFFFFFF X 1663 • 

• The sign position of the floating-point data word 
is the sign of the fraction. 

• The exponent is modified by adding 1000000 (64) 
to the power of 16 required, to position the radix 
point. 

Floating-point notation is a means of expressing 
large and small numbers in a shortened form. To 
understand floating-point notation and terminology, 
the properties of number representation must first 
be examined. 

Two important characteristics exist in any num­
ber system: the quantities of unique symbols or 
words, and the method used to combine these sym­
bols to express increasing quantities. A number 
system could have a unique symbol for every quan­
tity to be expressed. Such a system would allow the 
shortest notation of any quantity, but would require 
an infinite number of symbols. Practical number 
systems use fewer symbols and combine them to 
represent increasing quantities. The length of 
notation (compactness), therefore, depends on the 
quantity of unique symbols available and the method 
used to combine them. 



00 01 I Bit Position 0 1 10 Bit Positions 0 I 00 I 01 
1 10 III II 00 01 10 11 I Bit Position 2 3 001 0'1 10 1 111 Bit Positions 2 3 

-0-

",,­

.... -
C 
a 

'-
0000 

-
0001 -
0010 -
I~ 
~ 

0101 
-

0110 
-

0111 
-

1000 
,-

-
1001 

-
1010 

-
1011 

-
1100 

-
1101 

-
1110 

-
1111 

-

G) @ ® 0 ?fj ~ 0 ® 
@ 

PF RES BYP PN 

HT NL LF RS 

LC BS EOB UC 

DEL IL PRE EaT 

9 9 9 9 9 9 9 9 
12 12 12 12 

11 11 III 11 
0 0 0 0 

I ... ~---- Zone P~nches 
G) 12-0-9-8-1 
CD 12-11-9-8-1 
® 11-0-9-8-1 

I 00 

00 

I 01 I 10 

SM 

9 9 9 
12 

11 
0 

® 12-11 

o 12-11-0-9-8-1 
® No Punches 
® 12 

I 11 II 00 01 

c 

$ 

* 
( ) 

+ ; 

9 

1 "I 11 

CD 11 
® 12-11-0 
@0-1 

01 

10 11 

@ : 

# 

% (cjJ 

- , 

= 

? " 

1 
0 

1 

I 

1 

Zone Punches ---------i.~1 

-
-

1 -
2 "-- 0; -0-

3 -" ",-u - c .... -
4 ~ 

"- c - .-=. 0 
5 .~ .~ 

r--- o .~ 

6 
a 
"-

'----
7 ;;; 

r-
~ 

Bit Positions 0 

Bit Positions 2 
,---' 

8-1 "-
I--- -0' 

8-2 ",,' 

I--- " .... ' 8-3 -" u C I--- c 
8-4 ~ :~ "-

I---
8-5 '0, 0': 

I--- 0 
8-6 ;;; 

t-------
8-7 

'--

Figure 1-5. Extended Binary Coded Decimal Interchange Code 

0000 ® @I @ @ 8-1 

0001 a i A @ 

0010 b k B K 2 2 

0011 C 3 3 0; 
-" 

0100 d m D M U 4 4 
u 
c 
~ 

"-
0101 e n N V 5 5 .-

m 

0110 a w a w 6 6 0 

0111 g P G P X 7 7 

1000 h q H Q Y 8 8 

1001 Z 9 9 

" 
1 

121 11 

I o I I 
Zone Punches .1 

® 12-0 @ 0-8-2 @ 11-0-9-1 
@) 11-0 @O 

1 

I 
10 

I 
11 L Bit Positions 0 1 

3 001 011 10 I 11 00 01 10 III Bit Posi tions'2 3 

(- .----' 
1010 8-2 - r-
1011 8-3 " - I--- -" u 
1100 8-4 c 

I--- ~ -
1101 ~ .-- Q) 

1110 8-6 0 
- I---

1111 8-7 
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9 9 9 9 
12 12 12 12 12 12 

11 11 11 11 11 11 
0 0 0 0 0 0 

I. Zone Punches .1 
Control Characters 

PF Punch Off BS Backspace PN Punch On 
HT Horizontal Tab I L Idle RS Reader Stop 
LC Lower Case BYP Bypass UC Upper Case 
DEL Delete LF Line Feed EaT End of Transmission 
RES Restore EOB End of Block SM Set Mode 
NL New Line PRE Prefix SP Space 

S~cial Gra~hic Characters 

Cent Sign Asterisk > Greater-than Sign 
Period, Decimal Point Right Parenthesis ? Question Mark 

< Less-than Sign Semicolon Colon 
( Left Parenthesis --, Logical NOT Number Sign 
+ Plus Sign Minus Sign, Hyphen @ At Sign 
I Vertical Bar, Logical OR / Slash Prime, Apostrophe 
& Ampersand Comma Equal Sign 
I Exclamation Point % Percent Quotation Mark 
$ Dollar Sign Underscore 

Bit Pattern Hole Pattern 
Bit Positions 

Zone Punches IDi9it Punches Examples Type 01 234567 

PF Control Character 00000100 12-9-4 
% Special Graphic 01 101100 0-8-4 
R Upper Case 1101 1001 11-9 
a Lower Case 10000001 12-0-1 

Control Character I 00 11 0000 12- 11-0-9-8-1 
function not yet I 

assigned I 
I 
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Bit Position----' ... 76 

r---- 01 ---- ~---10---- r-----ll-----L ~X5 00 

4321 00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 

1> 
0000 NULL DCO blank 0 

0001 SOM DC l I 1 

0010 EOA DC2 " 2 

0011 EOM DC3 # 3 

0100 EOT DC4 $ 4 

0101 WRU ERR % 5 

0110 RU SYNC & 6 

0111 BELL LEM , 
7 

1000 BKSP So ( 8 

1001 HT SI ) 9 

1010 LF S2 * : 

1011 VT S3 + ; 

1100 FF S4 , 

1101 CR S5 - = 

1110 SO S6 

1111 SI S7 / ? 

Figure 1-6. American Standard Code for Information Interchange 

Although the decimal number system is the more 
efficient for the entire range of numbers, the 
floating-point notation used in the System/360 is 
more efficient for most very large and very small 
numbers. It is first necessary to see why the 
floating-point notation is needed for very small and 
very large numbers and what characteristics these 
numbers have that make it possible to create a 
shortened notation. 

Problems in Handling Very Small and Very Large 
Numbers 

Very small and very large numbers are often en­
countered in scientific calculations. The electron, 
for example, has a charge of 0.00000000048 cgs 
(centimeter gram seconds). The sun is approxi­
mately 93,000,000 miles away from the earth. It is 
conceivable that numbers used in scientific calcula­
tions may be 50 digits in length. If a computer were 
designed to process such numbers unaltered, provi­
sion would have to be made for 100 digit positions, 
to allow, for example, multiplication. Such a com­
puter would be expensive to build, and its calculating 
speed would be low. Thus, there arises the need for 
a shortened (floating-point) notation for very small 
and very large numbers. 
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@ P p 

A Q a q 

B R b r 

C S c s 

0 T d t 

E U e u 

F V f v 

G W 9 w 

H X h x 

I Y i y 

J Z i z 

K [ k 

L 

'" 
I 

M ] m 

N , n ESC 

0 +- ° DEL 

Very small and very large numbers usually con­
tain many zeros. To understand why this is so, the 
two cases must be examined separately. 

Very Small Numbers: Very small numbers, such as 
the example showing the charge of an electron 
(0.00000000048), contain zeros that serve only as 
"spacers." These spacers are included as part of 
the number because they locate the position of the 
decimal pOint. It is impossible to change any zero 
in this number without changing the value by a great 
amount; the least effect would be to change the zero 
in front of the four to a one (0.00000000148), but this 
more than triples the number. 

Very Large Numbers: Degrees of Precision: The 
zeros in very large numbers serve as spacers; 
however, the number of zeros in most large numbers 
depends on the instrument used to measure that 
quantity. Although scientific instruments measure 
very small and very large quantities, these instru­
ments are limited in the number of digits that can 
be read accurately. For example, the distance to 
the sun (93,000,000 miles approximately) may be 
92,999,999 miles. To know this, the instrument 
for measuring the distance would have to distinguish 
one part in one hundred million, and is unusual to 



find such an instrument. Furthermore, with quanti­
ties this large, a precise measurement does not 
have the significance that we normally associate 
with the term 'precise'. For example, the difference 
between the figures of 93,000,000 and 92,999,999 is 
one millionth of one percent. So, as precision is 
increased, the percentage of change in value be­
comes so small as to be insignificant. From a 
practical viewpoint, most of the zeros in large num­
bers serve only as spacers. 

Length of Notation 

Scaling: The fact that all very small numbers, and 
most very large numbers, contain many zeros that 
act as spacers can be used to advantage in reducing 
the length of notation for these numbers. For 
example, a programmer wishes to multiply two 
20-digit numbers in a computer built to handle fac­
tors of ten digits or less. The first (and still com­
monly used) method of performing this job is called 
"scaling." The programmer removes the spacing 
zeros from the two factors, remembering how many 
he removes. He then inserts the shortened numbers 
into the computer, where the multiplication is per­
formed. Finally, he adds back the zeros to the 
product obtained from the computer. In this case, 
he adds the same number of zeros to the product that 
he removed from the two factors: 30 x 20 = 3 x 2 
(remember two zeros removed): the product equals 
6 with two zeros, or 600. 

Significant Digits: Throughout this manual the digits 
are called significant digits and the spacer zeros are 
referred to as insignificant digits. The follOwing 
examples illustrate the meaning of the two terms: 

Signi­

ficant 

Digits 

10.200 

Scientific Notation 

0.000123 

Insigni-8B Signi-
ficant ficant 

Digits Digits 

0.00102 

Powers of Ten: In the example of scaling that was 
given, it was necessary for the programmer to 
remember the number of insignificant digits that he 
removed. Scientific notation makes this remem­
bering task simpler. The number 20 can be ex­
pressed in scientific notation as 2.0 x 10. This 
gives a method of notation that can be used to record 
separately the significant and insignificant digits of 
a number. Note the pOSition of the decimal point in 
the example: 20.0 = 2.0 x 10. The value of a digit 
position is always ten times the value of the position 
immediately to its right, and moving the decimal 
point to the left divides a number by ten (20.0, 2.0, 

0.20). Using this fact scientific notation gives 
20.0 = 0.2 x 100; also 20.0 = 0.02 x 1000. As the 
decimal point is moved to the left, the power of ten 
that must be used as a multiplier is increased. Using 
scientific notation, any number can be expressed in 
many ways: 

o 
20.0 = 20.0 x 1 = 20.0 x 10 (zero power of ten) 

1 
20.0= 2.0 x 10 2.0 x 10 (first power of ten) 

2 
20.0 = O. 2 x 100 0.2 x 10 (second power of ten) 

3 
20.0 x 0.02 x 1000 = 0.02 x 10 (third power of ten) 

MOving the Decimal Point: Scientific notation extends 
the same idea to allow moving the decimal point to 
the right. Each movement of the decimal point to 
the right multiplies a number by ten (20.0, 200.0, 
2000.0). In scientific notation, each movement to 
the right increases the power of ten that must be 
used as a divisor (20.0 = 200+10 = 2000+100). The 
division is actually accomplished by multiplying a 
fraction. For example, 20+10 = 20 x 1/10. The 
fractions 1/10, 1/100, 1/1000 are denoted by a 
negative power of ten: 1/10 = 10-1, 1/100 = 10-2, 
1/1000 = 10-3. Summarizing the use of the negative 
power of ten: 

-1 
20 = 200 x 1/10 = 200 x 10 (first negative power of ten) 

-2 
20 = 2000 x 1/100 = 2000 x 10 (second negative power of ten) 

-3 
20 = 20000 x 1/1000 = 20000 x 10 (third negative power of ten) 

The usefulness of the negative powers of ten is more 
readily understood by applying scientific notation to 
a small number: 0.0003 = 3.0 x 10-4. 

It has been shown how scientific notation helps a 
programmer to remember the two halves of fractions 
that he scales: 

2 
100=1.0xlO 

-2 
002 = O. 2 x 10 

Significant~ y. Recorded Number 
Digits for of Insignificant 

Computer Digits 

Handling Zeros: When scaling, it is necessary to 
add zeros to answers obtained from the computer. 
The following examples show how the addition of 
zeros is accomplished for each of the four arithme­
tic operations: multiplication, diviSion, addition 
and subtraction. 
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When using scientific notation, multiplication is 
performed by multiplying the significant digits and 
adding the exponents (powers of ten) arithmetically: 

300 x 150 = 45000 
2 1 

(3 x 10 ) x (15 x 10 ) 
3 

= (45 x 10 ) _manual method 

x 15 = 45 ---_ .. performed by computer} 

x 101 = 10(2 + 1) = 103 .. added by programmer 

3 
= (45 x 10 ) 

Division calls for dividing significant digits and 
arithmetically subtracting exponents: 

300 -7- 150 =2 
2 1 

(3 x 10 ) -+- (15 x 10 ) 
1 0 = (0. 2 x 10 ) Or (2 x 10 ) ---.. mannally 

{ 
3 -+- 15 = O. 2 .. performed by computer} 

102 ~ 101 = 10(2-1) = 101 ___ ... added by programmer 

1 
= (0. 2 x 10 ) 

For addition, the exponent must be made equal by 
shifting the decimal point; the exponent of the result 
is then the same as the exponent of the factors: 

20 + 1 = 21 

1 1 
(2 x 10 ) + (. 1 x 10 ) 

+ . 1 

1 
+10 

= 2 + . 1 = 2. 1 _ performed by computer} 
1 1 

10 10 -added by programmer 

= 2. 1 x 10 
1 

The process of making the exponents equal corre­
sponds to aligning the two factors (aligning the deci­
mal points) in fixed-point arithmetic: 

2 + . 1 = 2. 1 

2.0 

O. 1 
2. 1 

Subtraction is similar to addition. 

20 - 1 = 19 
111 

(2 x 10 ) - (.1 x 10) = (1. 9 x 10 ) 

- .1 = 2 - .1 = 1. 9 _performed by computer} 
1 1 1 . 

- 10 10 10 _ added by programmer 

From these sample calculations the prime disad­
vantage of scaling becomes apparent: the program­
mer is required to keep track of the decimal point; 
he must record the manner in which he scales his 
factors, then manually process the exponents and 
re-scale the results obtained from the computer. 
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Certain applications of the System/360 demand 
extensive handling of numbers having more than 
eight digits. In these applications, the numbers may 
be extremely large, extremely small, or, in some 
cases, unpredictable. Such situations make fixed­
point arithmetic difficult to work with for two rea­
sons: 

1. The size of the number is limited by the size 
of the register. 

2. The programmer must keep track of the radix 
point in all numbers throughout the calculation. 

System/360 Floating-Point 

Floating-point operation codes (op codes) enable the 
System/360 to process numbers in scientific nota­
tion; both the shortened numbers and their exponents 
are processed by the computer. In the floating­
point operation the radix point of the fraction is 
initially located and the computer keeps track of it, 
thereby simplifying the job of scaling. 

Terminology 

Floating-point instructions perform addition, sub­
traction, multiplication and division on a type of 
number representing a numeric shorthand: the 
floating-point number. Very large, and small, 
fixed-point numbers are reduced to a hexadecimal 
fraction and a binary exponent. The fraction and 
the exponent are operated on separately. Operating 
on the fraction provides the significant digit result; 
operating on the exponent places the radix point in 
the result. 

Example: Fraction Exponent 

4 
3500 may be expressed 0.35 x 10 

Fraction Exponent 
3 

570 may be expressed 0.57 x 10 

The product of these two numbers is then calculated 
as: 

0.1995 x 107 or 1,995,000 
System/360 floating-point op codes apply the same 
principle to numbers either too large or too small 
to be conveniently handled by fixed-point arithmetic 
instructions. A large number is reduced toa hexa­
decimal fraction having a radix pOint to the left of 
the high-order digit, and an exponent to the base 16. 
Similarly a small number is reduced to a hexa­
decimal fraction having a radix point to the left of 
the highest order significant digit and an exponent to 
the base 16. 



Data Format 

Floating-point information occupies a fixed-length 
format (Figure 1-4) which maybe either a full word 
or a double word. The first bit in either format is 
the sign bit (S). The subsequent seven bit positions 
are occupied by the exponent, while the fraction field 
may have six or 14 hexadecimal digits (24 or 56 bits). 

Sign Handling 

Both the exponent and the sign of the fraction can be 
either positive or negative. The sign position of the 
data word is always the sign of the fraction, and the 
fraction is always expressed in true form. The 
exponent is modified so that it contains not only the 
exponent of the floating-point number, but the sign 
of the exponent also. The modified exponent is a 
binary number between 0000000 and 1111111, and is 
now called the characteristic. This characteristic 
is obtained by adding 1000000 (64) to the power of 
16 required, to position the radix point properly. 
In this notation 1000000 is considered 16°, 1000001 
is 161 , 1000010 is 162 , 0111101 is 16...3, and so on, 
(assuming a fraction of .1). 

Capabilities and Limitations 

The significant numbers thus obtainable range in 
magnitude between. 00000000000001 x 16-64 to 
• FFFFFFFFFFFFFF X 1663 • The smallest positive 
significant number would appear in floating-point 
notation as: 

I s I Characteri,ti c Fraction )\ I Fraction )t] 
0 7 8 31 32 63 

I 0 I 0000000 I 000---0000 ~~ I 000------00001) 2J 

The largest positive number would appear as: 

~I S~I ____ C_h_a_ra_ct_e_ris_ti_c ____ ~ __ F_ra_ct_io_n~?~~~I ____ F_ra_ct_io_n __ ~)D 
o 7 8 31 32 63 

~I .;...0 .... 1 _____ 1.;...1-'-11.;...1-'-11'--_-'-----'1'-'-1.;...1-_--....;1...;..11~( I 1111-------1111111)~ 
Any floating-point number having a fraction of zero 
is automatically assigned a characteristic of zero. 

All arithmetic operations may be performed with 
the floating-point op codes. 

Normalized Numbers 

A quantity can be represented with the greatest 
precision by a floating-point number of given frac­
tion length when that number is normalized. A 
normalized number has a non-zero high-order hexa­
decimal fraction digit. If one or more high-order 

fraction digits are zero, the number is said to be 
un-'-normalized. The process of normalization con­
sists of shifting the fraction left until the high -order 
hexadecimal digit is non-zero, and reducing the 
characteristic by the number of hexadecimal digits 
shifted. A zero fraction cannot be normalized and 
its associated characteristic therefore remains 
unchanged when normalization is called for. 

Normalization usually takes place when the inter­
mediate arithmetic result is converted to the final 
result. This fraction is called post-normalization. 
In performing multiplication and division, the oper­
ands are normalized prior to the arithmetic process. 
This function is called pre-normalization. 

Floating-point operations may be performed with 
or without normalization. Most operations are post­
normalized. Addition and subtraction may be speci­
fied either way. 

When an operation is performed without normal­
ization, high-order zeros in the result fraction are 
not eliminated. The result may be normalized or 
not, depending on the original operands. 

In both normalized and un-normalized operations, 
the initial operands need not be in normalized form. 
Also, intermediate fraction results are shifted right 
when an overflow occurs; the intermediate fraction 
result is usually truncated to the final result length 
after the shifting, if any. Because normalization 
applies to hexadecimal digits (represented by four 
binary bits), the three high-order bits of a normal­
ized number may be zero. 

MODEL 44 FUNDAMENTALS 

• The CPU of the Model 44 is called the IBM 2044. 

• Except for the single-disk storage drive all I/O 
devices are physically separate from the 2044. 

• Input devices feed instructions and data via the 
channel to the storage. 

• Instructions are read out from storage and 
decoded to provide the system control. 

• Data from storage is processed within the main 
data-flow registers and the result is set back into 
storage. 

• Output devices receive data for recording from 
storage via the channel. 

• All information entering or leaving the computer 
must pass through storage. 

• The functional sections of the 2044 work together 
to process data. 
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The Model 44 is designed specifically for small to 
medium-size scientific applications, advanced data 
acquisition and process-control applications. The 
Model 44 contains a large-capacity high-speed stor­
age 'enabling fast computing speeds with a 32-bit 
data word. A scientific program run on the Model 
50 can be run on the Model 44 up to 60 percent 
faster. Compatibility with other System/360 Models 
is maintained, although a limited instruction set is 
used (decimal arithmetic) and other variable-field­
length instructions are excluded. The Model 44 
contains, as standard equipment, a single-disk 
storage drive (capacity 1,088,000 bytes) with its 
control unit and the console printer /keyboard control 
unit. 

Figure 1-7 shows the functional sections of the 
2044. Note that the two functional sections ('input" 
and "output") in Figure 1-1 have been replaced in 
Figure 1-7 by the one functional section called chan­
nel. The channel is physically located in the central 
processing unit and its function is the control of the 
physically separated input and output devices that are 
connected to it. Thus, all the information from any 
input device passes through the channel before 
entering storage, and similarly, all information to 
an output device from storage must pass through the 
channel. Input information from a device such as a 
reader is fed into main storage. This input consists 
of instructions, specifying the type of operations to 
be performed, and data on which the operations are 
performed. 

Console Storage 

t--------- J 
1 Data 
, , , , 

Channel 

Instructions System 
Control 

l Arithmeti c and 
- ----- Logic Unit 

, , , , 
: Control 

! 
I , 
: 
I 
I 
I 
I , , L ________________________________ ~ 

Figure 1-7. Functional Sections of IBM 2044 

Core storage accepts both instructions and data, 
and retains them in a predetermined sequence until 
required for use during program execution. Each 
unit of information is stored in a numbered location 
in core storage, the number being called an address. 
In System/360, this address is a 24-bit binary-coded 
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address. When required for an operation, the con­
tents of a particular storage location are read out 
and sent to the appropriate functional unit. 

Instructions read out from storage are decoded 
to provide the controls in the correct sequence to 
perform the operation as defined in the instruction. 
The system control functional unit thus controls all 
other functional units, ensuring their correct opera­
tion performing the specified instruction. 

The data required in the operation specified by 
the instruction is then transferred to the arithmetic 
and logic section of the CPU, where the operation is 
performed and a result obtained. This result is 
usually written back into storage or into one of the 
general-purpose registers (GPR). The 2044 con­
tains 16 GPR, each one word (32 bits) wide, which 
may contain either a result or data to be operated 
upon. Thus the GPR may be considered as extra 
storage. 

The result may now be recorded at an output 
device (for example, a printer) by an instruction 
(for example, 'write printer '). Such an instruction 
causes the addressed location of the result in storage 
to be read out and transferred, via the channel, to 
the printer. Then, the printer is allowed to print 
the information. 

For operator and customer engineer intervention, 
console-panel controls allow access to all functional 
parts of the processing unit. 

Thus, a single instruction causes the computer 
to execute only one operation such as add, subtract, 
compare or print. Therefore, many instructions 
must be given to a computer to perform a given 
task, and this sequence of instructions is called a 
program. 

All functional parts of a computer are interde­
pendent. The control section cannot function with­
out the control information (instructions) received 
from core storage. The core storage depends on an 
input device for its supply of instructions and data. 
The arithmetic and logic unit gets its supply of data 
from storage and the information on what to do with 
this data (control) comes from the control section. 
The functional parts of a computer work together to 
form a complete system that processes data. 

MODEL 44 SYSTEM STRUCTURE 

The basic structure of the Model 44 consists of a 
main storage, a CPU and one or more multiplexor 
channels with I/O devices attached to the channel(s) 
through control units. A program routine of opera­
tions (instructions) is loaded, in the required se­
quence with the relevant data, into core storage 
before the system begins to process data. The CPU 
then proceeds sequentially through the program rou­
tine, decoding each instruction and performing the 

/ 

,~ 

I, 
\j 

(' 

/' 



operation defined before progressing to the next 
instruction. 

The CPU contains the facilities for addressing 
main storage, for fetching or storing information, 
for arithmetic and logical processing of data, for 
sequencing instructions in the required order and for 
initiating the communication between storage and 
external devices. The system control section pro­
vides the normal CPU control that guides the CPU 
through the operation necessary to execute the 
instructions. The CPU contains 16 GPR's for fixed­
point operations and, optionally, four floating-point 
registers (FPR) for floating-point operations. 

Instruction Word 

• Instructions can be one or two halfwords long. 

• Instructions must be located on integral halfword 
boundaries. 

The length of a machine instruction can be one or two 
halfwords. It is related to the number of storage 
addresses necessary for performing the operation. 
An instruction consisting of only one halfword cannot 
cause any references to main storage. An instruc­
tion that is two halfwords long has one operand in 
main storage and therefore provides one storage 
address. All instructions must be located in storage 
on integral halfword boundaries. (An integral half­
word bounoary is any 24-bit address whose low­
order bit is 0.) 

Instruction Format 

• The first byte of an instruction contains the op 
code. 

• Up to 256 op codes are possible. 

• Largest instruction set for Model 44 is 112 op 
codes. 

• There are four instruction formats (RR, RX, R8 
and 81). 

The first halfword of an instruction consists of two 
parts (Figure 1-8). In the first part, bits 0 to 7 are 
the op code. Provision is made for up to 256 op 
codes by using the eight-bit binary format. How­
ever, the largest instruction set presently available 
for the Model 44 consists of 112 op codes. 

The second part of the first halfword, bits 8 to 
15, may be used as a register specification, I a mask, 
a byte of immediate data, or it may be ignored. 
Immediate data is held in the instruction format and 
used as one of the operands. 

First Halfword 1 Second Ha I fword 2 
I 
I 

Byte 1 I Byte 2 

I I 
Register Register 
Operand 1 Operand 2 
~ 

Op Code I Rl I R2 RR Format 

0 7 ,8 11 12 15 

I 
Register Address 
Operand 1 
~ 

Operand 2 

'" 
Op Code I Rl 

X2 B2 D2 RX Format 

0 7 8 
I 

11 12 15 ,6 19 20 31 

I I 
Register Register Address 
Operand 1 Operand 3 Operand 2 

Op Code I Rl I R3 I B2 I D2 RS Format 

0 7 8 11 12 15 16 19 20 31 
I I 
I Immediate I Address 

Operand Operand 1 

Op Code 51 Format 

o 7 8 15 16 19 20 31 

Figure 1-8. Four Basic Instruction Formats for Model 44 

The second halfword, when present in the instruc­
tion, always has the same format. This format is a 
four-bit base-address register designation (B), 
followed by a 12-bit displacement address (D). 

The four basic instruction formats are denoted by 
the format codes RR, RX, R8 and 81. The format 
codes express, in general terms, the operation to be 
performed. RR denotes a register-to-register 
operation; RX, a register-to-indexed-storage opera­
tion; RS, a register-to-storage operation; and sr, a 
storage-and-immediate-operand operation. 

For purposes of describing the execution of 
instructions, operands are designated as first and 
second operands or operand 1 and operand 2. These 
names refer to the manner in which the operands 
participate. The operand, to which a field in an 
instruction format applies, is generally denoted by 
the number following the code name of the field, 
for example, R1, B1, D2. The length and format 
of an instruction are specified by the first two bits 
of the op code. For example: 

Bit Positions Instruction Instruction 

(0 and 1) Length Format 

00 One halfword RR 

01 Two halfwords RX 

10 Two holfwords RS or 51 
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The second byte is used either as two four-bit fields 
or as a single eight-bit field. This byte can contain 
the following information: 

Four-bit operand register specification (R1, R2 
or R3) 

Four-bit index register specification (X2) 
Four-bit mask (M1) 
Eight-bit byte of immediate data (12) 

In some instructions a four-bit or the whole second 
byte of the first halfword is ignored. 

The second halfword always has the same format: 
Four-bit base register designator (B1 or B2), 

followed by a 12-bit displacement (D1 or D2). 
The following two examples show the RR and RX 

instructions and their related instruction formats: 

RR Format 

Add II I 7 9 

o 7 8 11 12 15 

Execution of the Add instruction adds the contents of 
GPR 9 to the contents of GPR 7 and the sum of the 
addition is placed in GPR 7. 

RX Format 

Store (!r/r---3--'--10----;---14---'--30-0-'(0 

o 7 8 11 12 15 16 19 20 31 

Execution of the store instruction stores the contents 
of GPR 3 at a main storage location addressed by the 
sum of 300 and the low-order 24 bits of GPR14 and 10. 

Address Generation 

• Base address is a 24-bit number contained in the 
GPR specified by the instruction B field. 

• Index address is a 24-bit number contained in the 
GPR specified by the instruction X field. 

• Displacement address is a 12-bit number con­
tained in the instruction. 

For addressing purposes, operands can be grouped 
in three classes: explicitly addressed operands in 
main storage, immediate operands placed as part of 
the instruction stream in main storage, and operands 
located in the general-purpose or floating-point 
registers. 

To permit the ready re-location of program seg­
ments and to provide for flexible speCifications of 
input, output, and working areas, all instructions 
referring to main storage have the capacity of em­
ploying a full address. 

The address used to refer to main storage is 
generated from binary numbers. 

The base address (B) is a 24-bit number contained 
in a GPR specified by the program in the B field of 
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the instruction. The B field is included in every 
address speCification. The base address can be 
used as a means of static re-location of programs 
and data. In array-type calculations, it can specify 
the location of an array and, in record-type pro­
cessing, it can identify the record. The base ad­
dress provides for addressing the entire main stor­
age. The base address may also be used for index­
ing purposes. 

The index (X) is a 24-bit number contained in a 
GPR specified by the program in the X field of the 
instruction. It is included only in the address speci­
fied by the RX instruction format. The index can be 
used to provide the address of an element within an 
array. Thus, the RX format instructions permit 
double indexing. 

The displacement (D) is a 12-bit number con­
tained in the instruction format, and is included in 
every address computation. The displacement pro­
vides for relative addressing up to 4095 bytes beyond 
the element or base address. In array-type calcu­
lations the displacement may be used to specify one 
of the many items associated with an element. In 
the processing of records, the displacement can be 
used to identify items within a record. 

In forming the address, the base address and 
index are treated as unsigned 24-bit positive binary 
triggers. The displacement is similarly treated as 
a 12-bit positive binary trigger. The base address, 
the index and the displacement are added as 24-bit 
binary numbers, ignoring overflow. Since every 
address includes a base, the sum is always 24 bits 
long. The address bits are numbered 8 to 31, cor­
responding to the numbering of the base address and 
index bits in the GPR. 

The program may have zeros in the base address, 
index, or displacement fields. A zero is used to 
indicate the absence of the corresponding address 
component. A base or index of zero implies that a 
zero quantity is to be used in forming the address 
regardless of the contents of GPR O. A displace­
ment of zero has no special Significance. Initializa­
tion, modification, and testing of base addresses 
and indexes can be carried out by fixed-point instruc­
tions, or by branch and link, ·branch on count, and 
branch on index instructions. 

Instruction Types 

• The standard instruction set provides fixed-point, 
logical, input/output, branching and status switch­
ing operations. 

• The floating-point instruction set is an optional 
feature in Model 44 and includes all System/360 
floating-point instructions. 



The standard instruction set of the Model 44 consists 
of 64 instructions (Figure 1-9). The standard in­
struction set allows the system to perform five types 
of operation: 

Fixed-point arithmetic 
Logical 
Branching 
Status Switching 
Input/Output 

An optional instruction set for floating-point (Figure 
1-10) adds 44 instructions to the standard set and 
permits the system to perform floating-point arith­
metic in RR and RX format with both long and short 
operands. 

INSTRUCTION MNEMONICS 

RR RX RS SI 
Format Format Format Format 

Add AR A --- ---
Add Ha IIword --- AH --- ---
Add Logical ALR AL --- ---
AND NR N --- NI 
Branch and link BALR BAL --- ---
Branch on Condi tion BCR BC --- ---
Branch on Count BCTR BCT --- ---
Compare CR C --- ---
Compare Halfword --- CH --- ---
Compare Logical CLR CL --- CLI 
Diagnose --- --- --- ---
Divide DR D --- ---
Exclu.ive OR XR X --- XI 

Halt I/O --- --- --- HIO 
In.ert Character --- IC --- ---
Load LR L --- ---
Load Address --- LA --- ---
Load and Test LTR --- --- ---
Load Complement LCT --- --- ---
Load Ha I fword --- LH --- ---
Load Negative LNR --- --- ---
Load Positive LPR --- --- ---
Load PSW --- --- --- LPSW 

Move --- --- --- MYI 
Multiply MR M --- ---
Multiply Hallward --- MH --- ---
OR OR 0 --- 01 
Set Program Mask SPM --- --- ---
Set System Mask --- --- --- SSM 
Shift Left Double --- --- SLDA ---
Shift Left Double Logical --- --- SLDL ---
Shift Left Single --- --- SLA ---
Shift Left Single Logical --- --- SLL ---
Shift Right Double --- --- SRDA ---
Shift Right Double Logical --- --- SRDL ---
Shift Right Single --- --- SRA ---
Shift Right Single Logical --- --- SRL ---
Start I/O --- --- --- SIO 
Store --- 5T --- ---
Store Character --- STC --- ---
Subtract SR S --- ---
Subtract Halfword --- SH --- ---
Subtract Log.ical SLR SL --- ---
Supervisor Call SYC --- --- ---
Test and Set --- --- --- TS 
Test Channel --- --- --- TCH 
Test I/O --- --- --- TlO 
Test Under Mask --- --- --- TM 

Figure 1-9. Standard Instruction Set for Model 44 

INSTRUCTION MNEMONICS 

RR Format RX Format 

Long Short Long Short 

Add Normalized ADR AER AD AE 
Add Un-normalized AWR AUR AW AU 
Compare CDR CER CD CE 
Divide DDR DER DD DE 
Halve HDR HER --- ---
Load LDR LER LD LE 
Load and Test LTDR LTER --- ---
Lood Complement LCDR LCER --- ---
Load Negative LNDR LNER --- ---
Load Posi tive LPDR LPER --- ---
Multiply MDR MER MD ME 
Store --- --- STD STE 
Subtract Normalized SDR SER SD SE 
Subtract Un-normalized SWR SUR SW SU 

Figure 1-10. Floating Point Optional Instructions for Model 44 

Logical operations are performed by instructions 
such as: AND, OR, Exclusive OR (EXOR), 'compare 
logical', 'test under mask', 'insert character', and 
'store character'. 

The input/output instructions are: 'start I/O', 
'test I/O', 'halt I/O', and 'test channel'. These 
I/O instructions control the I/O devices and the data 
transfer of information between the CPU and the 
I/O devices. 

The branching instructions provide a means of 
altering the normal program sequence, either direct­
ly and unconditionally, or as a condition dependent 
upon results obtained during computation. Prevailing 
machine conditions may also cause the normal pro­
gram sequence to change when tested by a branch 
instruction. 

Status-switching instructions include: 'load PSW', 
'set program mask', 'set system mask', and'super­
visor call'. All these instructions alter the PSW 
and thus alter the system operation status. 

Sequential Instruction Execution 

• Instructions are executed sequentially under 
control of an instruction address register. 

• The instruction address is updated as instructions 
are executed. 

Normally, the operation of the CPU is controlled by 
instructions taken in sequence. An instruction is 
fetched from a location specified by the current 
instruction address. The instruction address is then 
increased by the number of bytes in the instruction 
to address the next instruction in sequence. The 
instruction is then executed, and the same steps are 
repeated, using the new value of the instruction 
address. 
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In principle, all halfwords of an instruction are 
fetched from storage after the preceding operation 
is completed and before execution of the current 
operation, even though physical storage-word size 
and overlap of instruction execution with storage 
ac-cess may cause actual instruction fetching to be 
different. Thus, it is possible to modify an instruc­
tion in storage by the immediately preceding instruc­
tion. 

A change from the sequential operation can be 
caused by branching, status switching, interrupts or 
manual intervention. 

Branching 

• Branching instructions permit out-of-sequence 
operations. 

• Conditional branch instructions allow decision­
making. 

The normal sequence of instructions is changed 
when reference is made to a subroutine, when a two­
way chOice is encountered, or when a segment of 
coding, such as a loop, is to be repeated. These 
tasks are accomplished with branching instructions. 

Subroutine linkage permits the introduction of a 
new instruction address and the preservation of the 
return address and associated information. In 
general, decision-making is prOvided symmetrically 
by the 'branch on condition' instruction. This in­
struction inspects a two-bit condition code that 
reflects the result of a majority of the arithmetic, 
logical, and I/O operations. Each of these opera­
tions can set the code in any of four states, and the 
conditional branch can specify any selection of these 
four states as the criterion for branching. For 
example, the condition code reflects such conditions 
as non-zero, operand 1 high, overflow, channel 
busy, zero, etc. Once set, the condition code 
remains unchanged until modified by an instruction 
that reflects a different condition code. 

The two bits of the condition code provide for 
four possible settings: 0,1,2 and 3. (To avoid 
confusion and to relate them to machine operations, 
these settings are commonly referred to by their 
binary equivalents: 00, 01, 10 and 11.) The spe­
cificmeaning of any setting is significant only to the 
operation setting the condition code. 

Loop control can be performed by the conditional 
branch when it tests the outcome of address arithme­
tic and counting operations. For some particularly 
frequent combinations of arithmetic and tests, the 
instructions 'branch on count' and 'branch on index' 
are prOvided. These branches, being specialized, 
provide increased performances for these tasks. 
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Program status Word 

• Two words (PSW 1 and PSW 2). 

• Controls instruction sequencing. 

• Holds and indicates system status. 

The program status word is a double word containing 
the information required for proper program execu­
tion. The PSW includes the instruction address, 
condition code, and other fields (Figure 1-:-11). In 
general, the PSW is used to control the instruction 
sequencing and to hold and indicate the status of the 
system in relation to the program being executed. 
The active, or controlling, PSW is called the cur­
rent PSW. By storing the current PSW during an 
interrupt, the status of the processing unit can be 
preserved for subsequent inspection. By loading a 
new PSW, or part of a PSW, the state of the pro­
cessing unit can be initialized or changed. For 
example, 'set system mask' instruction introduces 
a new eight-bit system mask fieldj the 'load PSW' 
introduces a completely new PSWj 'set program 
mask' introduces a new program mask field into the 
PSW. A summary of the purpose of each field 
follows. 

System Mask: Bits 0 to 7 of PSW 1 are associated 
with the I/o channels, and external signals are 
specified in the following table. When the appro­
priate mask bit is a one, the source can interrupt 
the CPU. When a mask bit is a zero, the corre­
sponding source cannot interrupt the CPU and the 
interrupt remains pending. 

System Mask Bit 

o 
1 

2 

7 

Interrupt Source 

Multiplexor Channel 0 
High Speed Multiplexor 

Channell 
High Speed Multiplexor 

Channel 2 
External 

Protection Key: Bits 8 to 11 of PSW 1 form the 
CPU protection key. 

ASCII (A): When bit 12 of PSW 1 is a one, the codes 
preferred for the extended ASCII code are generated 
for decimal results. When bit 12 of PSW 1 is a 
zero, the codes preferred for EBCDIC are genera­
ted. (See Figures 1-6 and 1-7.) 

Machine-Check Mask (M): When bit 13 of PSW 1 is 
a one, any detected machine malfunction causes the 
machine-check interrupt routine to be initiated. 

I , 



BASE AND INDEX REGISTERS 

Bose Address or Index 

o 7 8 31 

0-7 Ignored 
8-31 Base Address or Index 

PROGRAM STATUS WORD 

(PSW 1) 

I System Mask Key AMWP Interrupt Code 

o 7 8 11121516 31 

(PSW 2) 

Instruction Address 

31 

PSW 1 PSW 2 

0-7 System Mask 0-1 Instruction Length 
0 Channel 0 Code (ILC) 
1 Channell 2-3 Condition Code 
2 Channel 2 4-7 Program Mask 
3 Channel 3 4 Fixed-Point 
4 Channel 4 Overflow Mask 
5 Channel 5 5 Decimal Overflow 
6 Channel 6 Mask 
7 External Mask 6 Exponent Underflow 
8-11 Protection Key Mask 
12 ASC II Mode (A) 7 Significance Mask 
13 Machine Check Mask 8-31 Instruction Address 

(M) 
14 Wait State (W) 
15 Problem State (P) 
16-31 Interrupt Code 

CHANNEL STATUS WORD 

I Key I 0000 I Command Address 

o 3 4 7 8 31 

Status Count 

32 4748 63 

0-3 Protection key 39 Unit Exception 

4-7 Zero 40 Program-Control Interrupt 

8-31 Command Address 41 Incorrect Length 

32-47 Status 42 Program Check 
32 Attention 43 Protection Check 
33 Status Modifier 44 Channel Data Check 
34 Control Unit End 45 Channel Control Check 
35 Busy 46 Interface Control Check 
36 Channel End 47 Chaining Check 
37 Device End 48-63 Count 

38 Unit Check 

Figure 1-11. Control PSW Format 

When bit 13 of PSW 1 is a zero, the CPU is masked 
and any conditions that cause a machine check do 
not initiate the machine-check interrupt routine. 
The interrupt condition does not remain pending. 

Wait State (W): When bit 14 of PSW 1 is a one, the 
CPU is in the wait state. When bit 14 of PSW 1 is a 
zero, the CPU is in the running state. 

CHANNEL COMMAND WORD 

I Command Code Data Address 

0 7 8 

I Flags I 000 I I 
32 3637 3940 4748 

0-7 Command Code 35 
8-31 Data Address 36 
32-36 Command Flags 
32 Chain Data Flag 37-39 
33 Chain Command Flag 40-47 
34 Suppress Length 48-63 

Indication Flag 

COMMAND CODE ASSIGNMENT 

NAMES 

Write CD CC SLI 
Read CD CC SLI SKIP 
Read Backward CE CC SLI SKIP 
Control CD CC SLI 
Sense CD CC SLI SKIP 
Transfer in 

Channel 

CD ~ Chain Data 
CC ~ Chain Command 
SLI ~ Suppress Length Indication 
SKIP ~ Skip 
PC I ~ Program-Control Interrupt 

CHANNEL ADDRESS WORD 

31 

Count 

63 

Skip Flag 
Program-Controlled 
Interruption Flag 
Zero 
Ignored 
Count 

PCI MMMM MMOI 
PCI MMMM MM10 
PCI MMMM 1100 
PCI MMMM MMll 
PCI MMMM 0100 

XXX X 1000 

I Key I 0000 I Command Address 

o 
0-3 
4-7 
8-31 

34 78 

Protection 
Zero 
Command Address 

31 

Problem State (P): When bit 15 of the PSW 1 is a 
one, the CPU is in the problem program state. When 
bit 15 of PSW 1 is a zero, the CPU is in the super­
visor state. 

Interrupt Code: Bits 16 to 31 of PSW 1 identify the 
cause of an I/O interrupt, program interrupt, super­
visor call interrupt or external interrupt. The code 
is zero when a machine check interrupt occurs. 
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Instruction Length Code (ILC): The code in bits 0 
to 1 of PSW 2 indicates the length, in halfwords, of 
the last-interpreted instruction when a program· 
interrupt or supervisor call interrupt occurs. The 
code is unpredictable for I/O external interrupts or 
machine check interrupts. 

Condition Code: Bits 2 and 3 of PSW 2 form the 
two-bit condition code, giving four possible settings. 
The meaning of the condition code setting for the 
different instruction types is given in Appendix G of 
IBM System/360 Principles of Operation, Form 
A22-6821. 

Program Mask: Bits 4 to 7 of PSW 2 are the four 
program mask bits. Each bit is associated with a 
program exception as specified in Figure 1-11. 
When the mask bit is a one, the exception results 
in a program interrupt. When the mask bit is zero, 
no interrupt occurs. 

Instruction Address: Bits 8 to 31 of PSW 2 are the 
instruction address. This address specifies the 
leftmost byte position of the next instruction. 

Interrupts 

• Five types of interrupt are: machine check, 
program check, supervisor call, external, I/O. 

• Each interrupt type has two associated PSW 
locations in main storage: old and new. 

• An interrupt is taken only when not masked for 
the interrupt type. 

• Priority in acceptance of interrupts is: machine 
check (internal), program or supervisor call, 
external, machine check (external), I/O. 

• Interrupt action consists of an exchange of PSW's. 

• Interrupt handling is determined by program. 

The interrupt system allows the CPU to change state 
as a result of conditions external to the system, in 
I/O units, or in the CPU itself. Five classes of 
interrupt conditions are possible: I/O, program, 
supervisor call, external, and machine check. 

Each class has two related PSW's, called old 
and new, in unique main-storage locations (Figure 
1-12). In all classes, an interrupt involves storing 
the current PSW in its old position and making the 
PSW at the new position the current PSW. The old 
PSW holds all necessary status information of the 
system existing at the time of the interrupt. If, at 
the conclusion of the interrupt routine, there is an 
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Address 

Decimal Binary Length 

0 0000 0000 Daubleward Initial Program Loading PSW 
8 0000 1000 Doubleword Initial Program Loading CCWI 

16 00010000 Doubleword Initial Program loading CCW2 
24 0001 1000 Doubleward Extemal Old PSW 
32 00100000 Doubleword Supervisor Call Old PSW 
40 00101000 Doubleword Program Old PSW 
4B 0011 0000 Doubleword Machine Check Old PSW 
56 0011 1000 Doubleword Input/Output Old PSW 
64 0100 0000 Doubleword Channel Status Word 
72 0100 1000 Word Channel Address Word 
76 0100 1100 Word Unused 
80 0101 0000 Word Timer 
84 0101 0100 Word Unused 
88 01011000 Doubleword Extemal New PSW 
96 01100000 Daubleword Supervisor Coil New PSW 

104 01101000 Doubleword Program New PSW 
112 0111 0000 Doubleword Machine Check New PSW 
120 0111 1000 Doubleword Input/Output New PSW 

Figure 1-12. Permanent Storage Assignments 

instruction to make the old PSW the current PSW, 
the system is restored to the state prior to the 
interrupt and the interrupted routine continues. 

Interrupts are taken only when the CPU is inter­
ruptible for the interrupt source. The system mask, 
program mask, and machine-check mask bits in the 
PSW may be used to mask certain interrupts. When 
masked off, an interrupt either remains pending or 
is ignored. The system mask may keep I/O and 
external interrupts pending, the program mask may 
cause four of the 15 program interrupts to be ig­
nored, and the machine-check mask may cause 
machine-check interrupts to be ignored. other 
interrupts cannot be masked off. 

An interrupt always takes place after one instruc­
tion execution is finished and before a new instruction 
execution is started. However, the occurrence of 
an interrupt may affect the execution of the current 
instruction. To permit proper programmed action 
following an interrupt, the cause of the interrupt is 
identified and prOvision is made to locate the last­
executed instruction. 

Input/Output Interrupt 

An I/O interrupt provides a means for the CPU to 
respond to conditions in the channels and I/O units. 

An I/O interrupt can occur only when the related 
channel is not masked. The address of the channel 
and I/o unit involved are recorded in the old PSW. 
Further information concerning the I/O action is 
preserved in the Channel Status Word (CSW) that is 
stored during the interrupt. 

Program Interrupt 

Unusual conditions encountered in a program create 
program interrupts. These conditions include 

\ .... 



incorrect operands and operand specifications as 
well as exceptional results. The interrupt code of 
the PSW identifies the interrupt cause. This inter­
rupt cause is recorded in binary-coded form in bit 
positions 28 to 31 of the old PSW 1. In System/360 
there are 15 possible sources of a program inter­
rupt. Of these, 11 are applicable to the Model 44. 
The significance of each interrupt follows. 

Invalid Operation: Occurs when an operation code is 
unassigned or the operation code is not available on 
the particular model. 

Privileged Operation: Occurs when the CPU is 
operating in the problem program state and a privi­
leged instruction is given. 

Execute: Occurs when the instruction designated by 
an execute instruction is another execute instruction. 

Addressing: Occurs when an address specifies any 
part of data, an instruction, or a control word out­
side the available main storage area for the par­
ticular installation. 

Specification: Occurs when 
1. A data word, instruction word, or control 

word address does not specify an integral 
boundary for the unit of information. A unit 
of information is 32 or 64 bits for floating­
point data, 16 bits for instructions, and 64 
bits for control words. 

2. The R1 field of an instruction specifies an odd 
register address for a pair of general-purpose 
registers that contain a 64-bit operand. 

3. A floating-point register address other than 
0, 2, 4 or 6 is specified. 

4. Bits 8 to 11 of PSW 1 are non-zero; the pro­
tection key must be zero when the protection 
feature is not installed. 

Fixed-Point Overflow: Occurs when a high-order 
carry is generated or high-order significant bits 
are lost in fixed-point add, subtract, shift, or sign­
control operations. 

Fixed-Point Divide: Occurs when a quotient exceeds 
the register size in fixed-point divide. For division 
by zero, the instruction is suppressed. 

Exponent Overflow: Occurs in floating-point add, 
subtract, multiply and divide when the resultant 
exponent exceeds 127. 

Exponent Underflow: Occurs in floating-point add, 
subtract, multiply and divide when the resultant 

exponent is less than zero. The operation is com­
pleted by making the result a true zero. 

Significance: Occurs when the result is an all-zero 
fraction in floating-point add or subtract. 

Floating-Point Divide: Occurs when an attempt is 
made to divide by a floating-point number with an 
all-zero fraction. 

Supervisor-Call Interrupt 

This interrupt occurs as a result of execution of 
the 'supervisor-call' instruction. Eight bits from 
the instruction format are placed in the interrupt 
code of the old PSW, permitting a message to be 
associated with the interrupt. A major use for the 
'supervisor-call' instruction is to switch from the 
problem state to the supervisor state. This inter­
rupt may also be used for other modes of status 
switching. 

External Interrupt 

The external interrupt provides the means by which 
the CPU responds to signals from the interrupt key 
on the system control panel, from the timer, and 
from the external signals. An external interrupt can 
occur only when the system mask bit 7 is a one. The 
source of the interrupt is identified by the interrupt 
code in bits 24 to 31 of PSW 1. The remainder of 
the interrupt code, bits 16 to 23, is made zero. 

Machine-Check Interrupt 

The occurrence of a machine check (if not masked 
off) terminates the current instruction, and causes 
the machine-check interrupt. A machine check 
cannot be caused by invalid data or instructions. 

Note that differentiation is made between an 
internal machine-check interrupt, which occurs as 
a result of CPU errors, and an external machine­
check interrupt, which occurs as a result of channel 
errors. However, there is only one pair of main 
storage fixed locations (old and new) for both types 
of machine check. 

Priority of Interrupts 

During the execution of an instruction, several inter­
rupt requests may occur simultaneously which are 
accepted in the following predetermined order: 

Internal Machine Check (CPU) 
Program or Supervisor Call 
External 
External Machine Check (Channels) 
Input/Output 
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The program and supervisor-call interrupts are 
mutually exclusive and cannot occur at the same 
time. . 

When more than one interrupt-cause requests 
service, the action consists of storing the old PSW 
and fetching the new PSW belonging to the interrupt 
that is taken first. This new PSW subsequently is 
stored without any instruction execution and the next 
interrupt PSW is fetched. This process continues 
until no more interrupts are to be serviced. When the 
last interrupt request has been serviced, instruction 
execution is resumed, using the PSW last fetched. 
The order of execution for the interrupt subroutines 
is, therefore, the reverse of the order in which 
PSW's are fetched. 

Thus, the most important interrupts (I/O, exter­
nal machine check, external, program, or super­
visor call) are actually serviced first. The internal 
machine check, when it occurs, does not allow any 
other interrupts to be taken. 

Program States 

Over-all CPU status is determined by four alterna­
tive types of program state, each of which can be 
changed independently to its opposite, and most of 
which are indicated by a bit or bits in the PSW. The 
program states are named: 'stopped or operating', 
'running or waiting', 'masked or interruptible', and 
'supervisor or problem'. These states differ in the 
way they affect the CPU functions and the manner in 
which their status is indicated and switched. All 
program states are independent of each other in 
their functions, indication, and status switching. 

Stopped or Operating State: The stopped state is 
entered and left by manual procedure. Instructions 
are not executed, interrupts are not accepted, and 
the timer is not updated. In the operating state, 
the CPU is capable of executing instructions and 
being interrupted. 

Running or Waiting State: In the running state, 
instruction fetching execution proceeds in the normal 
manner. The waiting state is normally entered by 
the program to await an interrupt, for example, an 
I/O interrupt or operator intervention from the 
console. In the waiting state, no instructions are 
processed, the timer is updated, and I/O and exter­
nal interrupts are accepted unless masked. Running 
or waiting state is determined by the setting of 
bit 14 in PSW 1. 

Masked or Interruptible State: The CPU may be 
interruptible or masked for the system, program, 
and machine interrupts. When the CPU is interrllp­
tible for a class of interrupts, these interrupts are 
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accepted. When the CPU is masked, the system 
interrupts remain pending. The interruptible states 
of the CPU are changed by changing the mask bits 
of the PSW. 

Supervisor or Problem State: In the problem state, 
all I/O instructions and a group of control instruc­
tions are invalid. In the supervisor state, all in­
structions are valid. The choice of problem or 
supervisor state is determined by bit 15 of PSW 1. 

Input/Output 

• All information transfer in input/output opera­
tions is between main storage and the I/O device. 

• Control of each I/O device attached to a system 
is prOvided by control units. 

• Control units respond to a standard set of sig­
nals from the channel. 

• The channel transmits and receives the standard 
set of signals over an I/O interface. 

• The channel has access to main storage and holds 
the control information necessary for an I/O 
operation. 

Input/output operations involve the transfer of infor­
mation to or from main storage and an I/o device. 
I/O devices include such equipment as card reader/ 
punches, magnetic tape units, disk storage, drum 
storage, typewriter-keyboard devices, printers, 
teleprocessing devices, and process control equip­
ment. 

Many I/O devices function with an external docu­
ment, such as punched cards or a reel of magnetic 
tape. Some I/O devices handle only electrical sig­
nals, such as those found in process-control net­
works. In either case, I/O device operation is 
regulated by a control unit. The control-unit func­
tion may be housed with the I/O device, as is the 
case with a printer, or a separate control unit may 
be used. In all cases, the control-unit function 
provides the logical and buffering capabilities neces­
sary to operate the associated I/o device. From 
the programming point of view, most control-unit 
functions merge with I/O device functions although 
each control unit functions only with the I/O device 
for which it is designed. 

To enable the CPU to control a wide variety of 
I/O devices, all control units are designed to respond 
to a standard set of signals from the channel. This 
control-unit-to-channel connection is called the I/O 
interface. It enables the CPU to handle all I/O 
operations with only four instructions. 



Channels 

• A channel can be regarded as an independent 
computer for processing I/o instructions. 

• The CPU program specifies only the I/O opera­
tion to be performed; execution of the operation 
is then performed solely by the channel. 

• Channels may be physically separated from the 
CPU or they may share the CPU facilities. 

Channels are the connecting link between the CPU 
and the I/O interface and thus between main storage 
and control units. Each channel has facilities for: 

Accepting I/o instructions from the CPU 
Addressing devices specified by I/O instructions 
Fetching channel-control information from main 

storage 
Decoding control information 
Testing control information for validity 
Executing control information 
PrOviding control signals to the I/o interface 
Accepting control-response signals from the I/o 

interface 
Buffering data transfers 
Checking parity of bytes transferred 
Counting the number of bytes transferred 
Accepting status information from I/o devices 
Maintaining channel-status information 
Sending requested status information to main 

storage 
Sequencing interrupt requests from I/O devices 
Signalling interrupts to the CPU 

A channel may be an independent unit, complete with 
necessary logical and storage capabilities, or it may 
share CPU facilities and be physically integrated 
with the CPU as in the 2044. In either case, chan­
nel functions are identical. 

System/360 has two types of channels: multi­
plexor and selector. The channel facility necessary 
to sustain an operation with an I/O device is called 
a subchannel. The selector channel has one sub­
channel; the multiplexor channel has multiple sub­
channels. 

Channels have two modes of operation: burst and 
byte. (Byte mode is sometimes referred to as 
'multiplex mode'. ) 

In burst mode, all channel facilities are monopo­
lized for the duration of data transfer to or from a 
particular I/O device. The selector channel func­
tions only in burst mode. 

The multiplexor channel functions in both burst 
mode and in byte mode. In the byte mode, the multi­
plexor channel sustains simultaneous I/O operations 
on several subchannels. Bytes of data are inter­
leaved together and then routed to or from the selec-

ted I/O devices and to or from the desired locations 
in main storage. 

The Model 44 has only the multiplexor channel 
and this is described later under the heading "Model 
44 Channels. " 

Input/Output Instructions 

The System/360 uses only four I/O instructions: 
Start I/O 
Test Channel 
Test I/O 
Halt I/O 

Input/output instructions can be executed only while 
the CPU is in the supervisor state. 

All I/O operations are initiated by the start I/O 
instruction. If the channel facilities are free, the 
start I/O is accepted and the CPU continues its 
program. The channel independently selects the 
I/O device specified by the instruction. 

Start I/O: Initiates an I/O operation. The address 
part of the instruction specifies the channel and the 
I/O device. 

Test Channel: Sets the condition code in the PSW to 
indicate the state of the channel addressed by the 
instruction. The condition code then indicates chan­
nel available, interrupt condition in channel, chan­
nel working, or channel not operational. 

Test I/O: Sets the condition code in the PSW to 
indicate the state of the addressed channel, sub­
channel, and I/O device. A CSW is stored in main 
storage location 40 hex. 

Halt I/O: Terminates a channel operation. 

Channel Address Word 

Successful execution of a start I/O causes the chan­
nel to fetch a Channel Address Word (CAW) from 
main storage location 48 hex. The CAW specifies 
the byte location in main storage where the channel 
program begins. 

Figure 1-11 shows the format for the CAW. Bits 
o to 3 specify the storage protection key that will 
apply to the I/o operation. (In Model 44 bits 0 to 3 
are ignored since the protection feature is not yet 
available.) Bits 4 to 7 must contain zeros. Bits 8 
to 31 specify the location of the first Channel Com­
mand Word (CCW). 

Channel Command Word 

The byte location speCified by the CAW is the first 
of eight bytes of information that the channel fetches 
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from main storage. These 64 bits of information 
are called a CCW. 

One or more CCW's make up the channel program 
that directs channel operations. If more than one 
CCW is to be used, each one points to the next CCW 
to be fetched, except for the last one, which identi­
fies itself as the last in the chain. 

Six channel commands are provided (Figure 1-11) 
Read Control 
Write Sense 
Read Backward Transfer In Channel 

Read 

The read command causes a read operation from the 
selected I/O device and defines the area in main 
storage to be used. 

Write 

The write command causes a write operation on the 
selected I/o device and defines the data in main 
storage to be written. 

Read Backward 

The read backward command causes a read opera­
tion in which the external data medium is moved in a 
backward direction if so designed. Bytes read back­
ward are placed in descending main storage loca­
tions. 

Control 

The control command contains information used to 
control the selected I/o device. This control infor­
mation is called an order. Orders are peculiar to 
the particular I/O device in use; orders can specify 
such functions as rewinding a tape unit, searching 
for a particular track in disk storage, or line skip­
ping on a printer. 

Sense 

The sense command specifies the first main storage 
location to which status information is transferred 
from the selected control unit. This sense data may 
be one or more bytes long. It provides detailed 
information concerning the selected I/O device, such 
as a stacker-full condition of a card reader or a 
file-protected condition of a reel of magnetic tape 
on a tape unit. Sense data have a significance pecu­
liar to the I/O device involved. 
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Transfer In Channel 

The transfer-in-channel command specifies the 
location of the next CCW to be used by the channel, 
whenever the programmer wants to break the exist­
ing chain of CCW's and cause the channel to begin 
fetching a new chain of CCW's from a different area 
in main storage. 

External documents, such as punched cards or 
magnetic tape, may carry CCW's that the channel 
can use to govern reading of the external document 
being read. These are known as self-describing 
records. 

Input/Output Termination 

Input/output operations normally terminate with the 
'device end' signal and 'channel end' conditions, and 
an interrupt signal to the CPU. 

A command can be rejected during execution of a 
start I/O, however, by a busy condition, program 
check, etc. The rejection of the command is indi­
cated by the condition code in the PSW, and the 
details of the conditions that precluded initiation of 
the I/o operation are provided in the CSW stored 
when the command is rejected. 

Channel Status Word 

The CSW at main storage location 40 hex provides 
information about the termination of an I/o operation. 
It is formed or reformed by a start I/O or test I/O 
instruction, or by an I/o interrupt (Figure 1-11). 

Input/Output Interrupts 

Input/ output interrupts are caused by termination of 
an I/O operation or by operator intervention at the 
I/o device. Input/output interrupts enable the CPU 
to provide appropriate programmed response to 
conditions that occur in the I/o devices or channels. 

Input/ output interrupts have two priority se­
quences, one for the I/O devices attached to a chan­
nel, and another for channel interrupts. A channel 
establishes interrupt priority for its associated 
I/O devices before initiating an I/O interrupt signal 
to the CPU. Conditions responsible for I/O interrupt 
requests are preserved in the I/o devices or channels 
until they are accepted by the CPU. 



Model 44 Channels 

• The two types of channel available are the multi­
plexor channel and the high speed multiplexor 
channel. 

• At least one channel is mandatory with each sys­
tem, but the channel type is optional. 

• Sub channels of the multiplexor channel are in the 
extension of main storage. 

• SLT registers form the sub channel for the high 
speed multiplexor channel. 

The Model 44 uses the System/360 I/o interface. 
All System/360 I/O instructions, and channel com­
mands and functions are provided. All I/o opera­
tions overlap with processing. 

The I/O control section consists of two parts, 
both physically integrated with the CPU: the multi­
plexor (MPX) channel (commonly referred to as 
MPX 0), and the one or two high speed multiplexor 
(HSMPX) channels. At least one channel must be 
installed, but the channel types are optional. 

In the MPX channel, the information associated 
with a sub channel is kept in the extension of the CPU 
main storage; in the HSMPX channels, this informa­
tion is held in the SLT registers associated with the 
high speed channels. One set of SLT registers is 
prOvided for each HSMPX subchannel. (See If Sub­
channels. If) 

On any given channel operating in byte mode, the 
number of I/O devices that can transfer data simul­
taneously depends on: 

1. The speed of the devices; 
2. The maximum aggregate data transfer rate 

of the channel; 
3. The number of sub channels constituting the 

channel; 
4. The number and type of I/o devices attached 

(via control units) to the channel. 
Rates for individual channels are reduced by opera­
tions on other channels as well as by the use of data 
chaining, the Transfer In Channel (TIC) command, 
and Program Control Interrupts (PC I). 

Subchannels 

In the case of the MPX channel, the number of sub­
channels depends on the capacity of main storage. 

Bytes Subchannels 

32,768 (32K) 32 

65,536 (64K) 64 

131,072 (128K) 64 

Each HSMPX channel equips the Model 44 with at 
least one high-speed subchannel; up to three addi­
tional high-speed subchannels can be installed in 
each HSMPX channel. With only one sub channel the 
HSMPX channel is virtually a selector channel. 
Thus, the system maximum is eight HSMPX sub­
channels and 64 MPX subchannels. 

Control Units and Devices 

Up to eight control units can be attached to the MPX 
channel, and two control units can be attached for 
each HSMPX subchannel. Thus, the system maxi­
mum is 24 control units: 16 attached to high-speed 
subchannels (eight on each HSMPX channel) and 
eight attached to the MPX channel. In the follOwing 
examples the console printer-keyboard and single­
disk storage drive(s) require two control unit posi­
tions and two subchannels on the MPX channel, or 
two control unit positions and one sub channel on the 
HSMPX channel. 

Example 1: If 63 MPX subchannels are in use for 
I/O devices or communication lines that are con­
trolled via seven control units, the sub channel 64 
is still available to attach a control unit (such as a 
tape control). 

Example 2: An IBM 2702 Transmission Control, 
to control 31 lines would tie up 31 MPX subchannels. 
This would leave up to 33 subchannels or seven con­
trol units, whichever limit is reached first, for the 
use of other I/o devices attached via the MPX chan­
nel. 

In either case, the HSMPX channel capabilities 
remain available: up to eight control units for I/o 
devices per HSMPX channel. A system maximum 
of 72 devices (one for every MPX and HSMPX sub­
channel) may, if permitted by device and channel 
speeds, transfer data simultaneously. 

Shared Subchannels 

As in other models of the System/360, up to eight 
subchannels on the MPX channel can be shared by 
I/o devices. The capability for sharing provides 
for the control of as many as 16 devices, such as 
tape units, via each shared sub channel. Only one 
device at a time may be involved in data transfer on 
a shared subchannel, but, in the meantime, other 
devices on the same sub channel can be engaged in 
free-running operations, such as tape rewinding. 
Every HSMPX sub channel has the same shared and 
free-running capabilities as the eight MPX sub­
channels that can be shared. 
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Addressing 

The addresses of shared and non -shared sub channels 
and devices are as detailed in the "Input/Output 
Device Addressing" section of IBM System/360 
Principles of Operation, Form A22-6821. 

Of the 11 bits of addressing that specify the chan­
nel, subchannel, and device to be used in an I/o 
operation, the three high-order bits are assigned to 
specify the channel as follows: 

000 - MPX channel 0 
001 - HSMPX channel 1 
010 - HSMPX channel 2 

The eight low-order bits specify the sub channel 
and the device: 

1. For shared MPX subchannels, indicated by 
1 in the high-order position: 1 xxx yyyy (xxx 
specifies one· of the eight subchannels that 
can be shared; yyyy specifies one of the 16 
devices using sub channel and control unit xxx). 

2. For non -shared MPX subchannels, indicated 
by 0 in the high-order position: 0 xxx xxxx 
(xxx xxxx specifies one of the non-shared 
subchannels, and its control unit and device, 
up to 64 subchannels, depending on main 
storage size, less the number of subchannels 
being used as shared subchannels). 

3. For HSMPX subchannels, all having the 
shared capability: 1 hhc xxxx (hh specifies 
one of the four HSMPX subchannels on that 
channel, c specifies one of the two control 
units on the subchannel, and xxxx specifies 
one of up to 16 devices). 

Burst Mode 

In burst mode, either type of multiplexor channel 
(MPX or HSMPX) operates as a selector channel 
that has only one sub channel. Only one device at a 
time communicates with the CPU via the particular 
channel, but communication is at a higher maximum 
data rate than in the byte mode and (in the case of 
the MPX channel) the interference with CPU opera­
tion, per byte of I/O data transferred, is reduced. 

Byte Mode 

In byte mode, each channel can concurrently. sustain 
one data-transferring I/o operation per sub channel. 
provided that the aggregate data rate does not exceed 
the capacity of the channel. Thus, the MPX channel 
may be capable of simultaneous communication with 
as many I/O devices as can be attached to it (up to 
64, via no more than eight control units). Also 
each HSMPX channel may be capable of simultaneous 
communication with as many I/o devices as there 
are subchannels in that channel (up to four). 
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MODEL 44 DATA FLOW AND CONTROL 

Both the main storage section and the arithmetic and 
logic section are controlled by signals generated in 
the system control section (Figure 1-13). These 
three sections are the principal components of the 
CPU. 

Sixteen general-purpose registers are also pro­
vided for temporary storage of information. These 
are located in the extension storage or accommo­
dated in hardware registers if the accelerator fea­
ture is installed. 

Input/ output communication with the CPU is 
achieved through channels which provide their own 
controls, data handling and means of addressing. 
(See Principles of Operation, Channels, Form 
Y33-0003. ) 

The console provides the operator or customer 
engineer with a means of addressing and loading 
data into main storage. 

A more detailed data flow is shown in the FEMD 
IBM System/360 Model 44, Volume 2, Form 
Y33-0008. Main storage general-purpose registers, 
Arithmetic and Logic Section (ALS) registers and all 
data paths are one fullword (32 bits) wide. The CPU 
basic cycle-time is 250 nanoseconds. This basic 
cycle-time is made possible by the extensive use 
of high-speed circuitry. In addition, machine speed 
is helped by the physical layout which keeps connec­
tion paths as short as possible. 

Main and Extension Storage and Associated 
Components 

Core Storage 

The core storage array consists of drivers, ampli­
fiers, etc. The area referred to as main storage 
is the part that is addressable by the programmer. 
Extension storage is the part of the storage that is 
used for temporary storage of channel control infor­
mation, for the least-significant halves of the FPR's 
(long precision) and for the sixteen GPR's when the 
accelerator feature is not installed. Both main 
storage and extension storage are physically packed 
in the same core array. The complete storage is 
in two sections, each two bytes wide. A storage 
access always reads out both sections, that is four 
bytes or one fullword. 

Storage size ranges from32K bytes to 128K bytes 
packaged within the main frame. A further 128K 
bytes may be held in a 'blister', or attachment, to 
the main frame. 

\. 
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Figure 1-13. Simplified Data Flow 

Storage Address Registers 

Each of the two sections of storage has a Storage 
Address Register (SAR 1 or SAR 2) associated with 
it. Each SAR may be set from the 'instruction 
counter', the console, the 'address generate' cir­
cuits (for operand addresses) and the channels. 

The addresses are full word addresses (the two 
least-significant bits are not used). In order to 
handle halfword instructions the contents of SAR 1 
and SAR 2 least-significant positions may differ. 

Ie + 2 

When it is required to address an instruction at a 
halfword boundary, it is necessary to address one 
word with SAR 2, to obtain the least-significant two 
bytes of a fullword (although these are the most­
significant two bytes of the instruction), and to 
address the word at the next higher address with 
SAR 1 (Since this contains the least-significant two 
bytes of the instruction if it is a full word instruc­
tion). 

This manipulation of the address is carried out by 
the unit call IC + 2, the output of which goes to SAR 1. 

Channels 1/0 

The actual manipulation of the two halves of the word, 
so that they are properly aligned in the data flow, is 
accomplished by the true/criss-cross unit. 

Storage Data Register 

All data read into or out of main or extension storage 
passes through the Storage Data Register (SDR). 
Data from storage is parity checked at the SDR and 
correct parity is generated for data to be stored. 

The two bytes from each half of storage are read 
out of their respective halves of the SDR to form a 
full word. Similarly, two bytes from each half of 
the SDR may be written back into their respective 
storage sections. 

Communication of data between CPU and channels 
is made via the SDR. 

True/ Criss -Cross 

The two halves of the SDR (the most-significant two 
bytes and the least-significant two bytes may be in 
the wrong position for processing. Interchange of 
the positions of the two halves (if required) is carried 
out by the true/criss-cross controlled by bit 30 
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of the address (this is one of the bits not used in the 
SAR's). 

The true/criss-cross may also be used to block 
the propagation of one of the halfwords. 

Arithmetic and Logic Section 

The main flow of data, after leaving the true/ criss­
cross, is to the ABC funnel and then to the A, Band 
C registers. Data always enters the Band C regis­
ters unless the registers are specifically decondi­
tioned. Data enters the A register only if it is 
specifically conditioned. Entry to the BX register 
is through the B register. Each register is 32 bits 
wide. 

The B register is the most important register of 
the ALS. Arithmetic and logic operations are per­
formed between the B register and the A register. 
The C register is used as a back-up to the B register. 
The BX register is used with the B register when a 
64-bit register is required (for multiply and divide 
operations), and also as an auxiliary address regis­
ter. A path is provided from the BX register direct 
to the instruction counter in PSW 2. 

There are two methods of data entry to the regis­
ters. These are the normal additive method, where 
a 1 overwritten on an existing 1 gives an output of 1, 
and the binary method where a 1 overwritten on an 
existing 1 turns the trigger off to give a O. 

The A register always uses the additive method. 
The B register uses either method depending on the 
source of the data. The C register uses the binary 
method, and the BX register the normal method, 
the data coming from the B register. 

The arithmetic functions are achieved by using 
the register capabilities outlined previously, together 
with the circuitry to provide the correct carries. 
The A and C register contents are analysed in the 
Carry Look Ahead (CLA) unit, and the appropriate 
carries entered into the B register through the ABC 
funnel. 
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System Control Section 

• Three registers are used for control functions: 
1. PSW 
2. Shift 
3. Instruction 

• Timing is achieved by five clocks: 
1. Read/Write 
2. Compute 
3. I/O 
4. Interface 
5. Basic (used for all functions) 

• Cycle and sequence controls are used respectively 
for the read/write and compute clock to define 
the application for a particular clock cycle. 

Control Registers 

The PSW contains information for correct program 
operation. The part of the PSW in the latches con­
taining bits 0 to 31 is known as PSW 1, and the part 
in the latches containing bits 32 to 63 as PSW 2. 

The PSW is loaded from one of 11 positions in 
main storage depending on the reason for the change. 
For example, location 000 supplies the Initial Pro­
gram Loading (IPL) PSW and location 030 hex sup­
plies the 'machine check old PSW'. 

The shift counter register holds the number of 
shifts that are required to be carried out by the B 
and BX registers. As each shift is carried out, the 
value held in the counter is decreased by an amount 
proportional to the number of places shifted. The 
counter is loaded via the B register. 

One of the primary controls of the 2044 is the 
output from the 'instruction decode' area. The 
instruction register contains the operation code and 
the addresses of registers (GPR's) in which the 
operands are contained, or which contain data to 
form a main storage address. The instruction reg­
ister is loaded from main storage via the SDR and 
the true/criss-cross. The register is made up as 
follows: 

op code (8 bits), Ra, Rb and Rc (4 bits each). 



Timing 

A computer moves and operates on data according to 
a predetermined pattern. The sequence in which 
these patterns are performed is decided by pro­
gramming. The sequence of events inside each 
pattern is decided by logical decisions and timing 
pulses. 

It must be possible to define each individual pulse 
during the performance of an operation. 

8 Me N'v 4 Me 
Shaped 

1 Basic 

1 Clack 

Multiplex 10 5 
0 Cycle Sequence 

Requires Controls Controls 
Interface 

"~e 

Input/ Interface Read/ 14' 
Compute r- --, 

Output Clock 1* Write 1* Clock I 4 I 
Clock Clock ~ Floating-: 

t- I I I 
: Pt Seq I 
L ____ J 

2 pulses 4 pulses 4 pulses 8 pulses 6 pulses 
5 pulses 

Figure 1-14. Block Diagram of Timing 

Pulses are generated by a free-running oscillator, 
the output of which is put through circuitry to shape 
and time the pulses to the requirements of the com­
puter. 

These shaped pulses are used to drive the ring of 
latches or triggers which constitute a clock. The 
time required for all latches or triggers in a ring to 
be switched on and off once is defined as a clock 
cycle. The output of one of the latches or triggers 
is a specific clock pUlse. 

An eight-megacycle oscillator provides pulses 
that are shaped and divided to produce square-wave 
four-megacycle pulses (Figure 1-14). These pulses 
of 250 nanoseconds cycle time are the clock-driving 
pulses from which all clocks are derived. 

Produced directly from these pulses are the 
basic clock pulses CP 1 and CP 2. These pulses 
are always available if power is good. The other 
four clocks, read/write, compute, I/O and interface, 
are normally used to gate or define the use of these 
clock pulses. The read/write clock is used for all 
main or extension storage accesses. The compute 
clock is used for register-to-register functions and 
register display for all CPU registers. All chan­
nels use the I/O clock for channel registers. The 
interface clock is used by the multplexor channel 0 
only. 

The I/o clock is continuously running once power 
is good. The interface clock is started whenever 
multiplexor channel 0 uses the interface either for 
input or output. To control the read/write clock 
there are ten cycle controls, one for each type of 
storage access. 

The compute clock is Similarly controlled by five 
sequence controls. During each sequence a similar 
set of registers is used. Each of these five sequen­
ces may be further defined by four sequences de­
signed specially for floating-point operations. 
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ARITHMETIC AND LOGIC SECTION AND REGISTERS 

To avoid duplication, and for simplicity, this section 
of Functional Units is preceded with an explanation 
of the Arithmetic and Logic Section (ALS). The 
individual components performing the arithmetic and 
logic function are described after the introduction. 
For further details on timing and complete operations, 
refer to FEMD IBM System/360 Model 44, Volume 
~, Form Y33-0008 and Principles of Operation -
Processing Unit, Form Y33 -0002. 

INTRODUCTION 

• The ALS does not physically exist as a discrete 
unit. 

• All components and data paths are a full word 
wide. 

• No parity bits are carried around the main data 
flow. 

• The analysis of the operation (op) code determines 
the correct handling of operands. 

• Additions are performed between A and B reg­
isters; the results are developed in the B reg­
ister. 

• Subtraction is the addition of the two's comple­
ment of the second operand. 

• Multiply and divide functions are combinations 
of successive addition or subtraction and shifting. 

Add operations, including development of the effec­
tive address and timer updating, are achieved by 
using several separate components as shown by the 
ALS data flow in Figure 2-1. Each of these compo­
nents has established functions as described later. 

Most ALS operations are essentially variations 
of the basic addition principle. 

Addition 

Principles of Addition 

When an addition is performed with pencil and paper, 
the carries are mentally developed as the calculation 
progresses from right to left. See Example 1. 

CHAPTER 2. FUNCTIONAL UNITS 

Example 1. Add hexadecimal (hex) 15 + 39 = 4E 

11 1 _ Carries 

0001 0101 
0011 1001 

0100 1110 

The machine uses a different method for the same 
operation. Initially, both operands are Exclusive 
OR'ed (EXOR) in the Band C registers (A in Exam­
ple 2). Then, carries which are decided by the 
Carry Look-Ahead (CLA) circuits as shown at B in 
Example 2, are EXOR'ed with the preceding inter­
mediate result in the B register. The final sum 
(C in Example 2) is obtained in the B register after 
completion of these two steps. 

Example 2. Add hex 15 + 39 = 4E 

A 

B 

C 

0001 0101 

0011 1001 

0010 1100 

0110 0010 

0100 1110 

Data Output 

Paths used with Add and Subtract operations 
Paths used for other purposes 

Figure 2-1. Simplified ALS Data Flow 
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Add Operation 

Figure 2-2 is a representation of the machine opera­
tion of adding 15 hex and 39 hex. 

The A, Band C registers are cleared. Operand 
2 enters the Band C registers via the ABC funnel 
and subsequently operand 1 enters the A, Band C 
registers. When the fetching of both operands is 
completed the A register contains operand 1, and the 
B and C registers (because of their EXOR properties) 
contain the half sum of the operands. This half sum 
is an initial addition of the two operands with no 
provision made for the carries. 

The final sum is produced by EXOR'ing the half 
sum of the operands with the CLA output in the B 
register. During this period the A register is not 
conditioned and the C register is deconditioned to 
prevent feedback to the CLA. 

The CLA circuits are fed from the A and C reg­
isters. The principles of carry generation are the 
same as those adopted for ordinary pencil and paper 
addition operation. If it is considered that the situ­
ation is the same as that after the first step in 
Example 2 (previously described), the process is as 
follows: 

Operand 1 is in the A register, while the half 
sum is in the C register (which reflects the 
state of the B register). 

If there is a bit in any A register position and 
there is no bit in the corresponding position of 
the C register, it indicates that two bits have 
been entered in that position of the C and B 
registers and a carry must be generated to the 
next high -order position. 

If there is already a bit in the next high-order 
position of the C (and B) register, the carry 
must be propagated upwards to the next high­
order position, and so on. 

This process represents the two possible ways of 
forming a carry. The carry bit changes the state 

A Register B Register 
OR EXOR 

Triggers Binary Triggers 

1 Reset A, Band ( registers 00000000 0000 0000 

2 Gate operand 2 in Band ( registers - 001 1 1 001 

3 Gate operand 1 inA, Band ( registers 0001 01 01 (0001 01 0 1) 

Contents of the registers are now 0001 0101 001 0 1 1 00 

4 Gate (LA output to B register - (01 1 0 001 0) 

Contents of the registers are now 0001 01 01 0100 1 1 10 
The result is obtained in B register 

Figure 2-2. Add Example (Hex 15 + 39 = 4E) 
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of the position into which it enters, since it enters 
through the ABC funnel end of B register and is 
EXOR'ed. 

The final sum is obtained in the B register and 
gated to the appropriate addressed unit, i. e. Stor­
age Data Register (SDR), Storage-Address Register 
(SAR), General-Purpose Register (GPR) or Floating­
Point Register (FPR). Since the B register is the 
communication link between the ALS and the remain­
der of the CPU, no further handling is needed. 

During effective address computation, the dis­
placement can be considered as operand 2 and the 
contents of the base or index register as operand 1. 
In the case of double indexing, the first sum devel­
oped (with the index register) can be considered as 
operand 2 for the second sum, and the base register 
contents as operand 1. 

Before the second addition takes place the C 
register (which was de conditioned during the CLA 
gating) does not reflect the content of the B register. 
This condition is corrected by gating the B register 
into the C register, as shown by the dotted line 
between the B and C registers in Figure 2-1. 

Subtraction 

Principles of Subtraction 

Since the ALS cannot perform a subtraction opera­
tion, subtraction is achieved by adding the two's 
complement of operand 2 to operand 1. 

Two's complementing is achieved by inverting 
each bit of the operand and by adding one in the 
least-significant position. 

Example 3. 

Hex 98 - 37 = 61 

1001 1000 

-0011 0111 

=0110 0001 

C Register 
EXOR 

Binary Triggers 

0000 0000 

001 1 1001 

(0001 o 1 0 1) 

001 0 1 100 

-

001 0 1 1 00 

equivalent 

to 

Hex 98 + (-37) = 61 

1001 1000 

+1100 1001 

carry_ 0 110 0001 



Subtract Operation 

Figure 2 -3 is a representation of the machine opera­
tion of subtracting 37 hex from 98 hex. 

The A register is reset before the operand is 
fetched and the Band C registers are set to all ones. 
Operand 2 is EXOR' ed into the Band C registers via 
the ABC funnel; at this point the Band C registers 
each contain the one's complement of operand 2. 
Operand 1 is then gated via the ABC funnel into the 
A, B and C registers. 

The contents of the A and C registers are ana­
lyzed in the CLA using the method described for the 
Add operation. In this case, however, a carry-in is 
forced into the least-significant CLA position to 
produce the two's complement. 

The final result is produced by EXOR'ing the CLA 
output with the content of the B register. 

Multiply and Divide 

Multiply and divide operations (and most of the 
floating-point operations) involve double-word oper­
ands (products, dividends, long-precision fractions, 
etc.). To accommodate these double-word operands, 
the B register is extended to the right by the BX 
register, both units then constituting a register, 
64 bits wide, with facilities for left and right shifting. 
The abilities of the B register are maintained and 
utilized in the multiply and divide operations. Prin­
ciples and the full description of the multiply and 
divide operations are given in Principles of Opera­
tion - ProceSSing Unit, Form Y33-0002. 

A Register B Register 
OR EXOR 

Triggers Binary Triggers 

1 Reset A register, set Band C 00000000 1111 1111 
registers 

2 Gate operand 2 in Band C registers -- (0011 o 1 1 1) 

Contents af the regi sters are now 0000 0000 1 100 1000 

3 Gate operand 1 in A, Band C registers 1001 1000 (1001 1000) 

Cantents of registers are now 1001 1000 0101 0000 

" Gate CLA output (with carry-in 
farced) to B register -- (001 1 0001) 

Contents of the registers are now 1001 1000 01100001 
The result is obtained in B register 

Figure 2-3. Subtract Example (Hex 98 - 37 = 61) 

ARITHMETIC AND LOGIC FUNCTION COMPONENTS 

A Register 

• Used for ALS functions (a part of the carry 
generation) and data handling. 

• 32 bits wide. 

• Performs an OR function on data from the ABC 
funnel. 

• Each position is a multi-input trigger. 

• Content can be displayed on the console. 

Use 

The A register, which is 32 bits wide, participates 
in effective-address computing and handles data in 
arithmetic and logical operations. The register is 
also involved in floating-point (FP) operations, as 
detailed in the Functional Units section of the 
Floating-Point Feature, Form Y33-0005. The sign 
bit (position 00 of the register) is used for sign 
analysis with certain instructions as described 
subsequently. 

Input 

The input to the A register is received from the 
ABC funnel or, if the floating-point feature is in­
stalled, from the AX register. The connections to 
a typical A register position are shown in Figure 2-4. 

C Register 
EXOR 

Binary Triggers 

1111 1111 

(001 1 01 1 1) 

1100 1000 

(1001 1000) 

0101 0000 

-
0101 0000 
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Figure 2-4. Typical A Register Position 

Output 

The 32 positions of the A register may be gated to 
the corresponding positions of the ABC funnel or the 
AX register, and are also connected to the CLA. 
With the floating-point feature installed, positions 00 
to 07 may be gated to the exponent funnel. 

Positions 00 and 08 are connected to the condition 
code circuitry in the Program Status Word 2 (PSW 2). 

Position 00 is associated with the load, shift, 
multiply and divide operations and with the update 
timer request for sign inspection. 

Controls 

The timing of the following controls differs from 
instruction to instruction and with the extent of 
instruction progress. Refer to the timing diagrams 
in FEMD IBM System/360 Model 44, Volume 2, 
Form Y33-0008, for details of the different timings. 

DC Reset A Register: This signal clears all posi­
tions of the A register. It is possible however, for 
floating-point requirements, to clear only the eight 
most-significant positions (bits 00 to 07, charac­
teristic). 

Condition A Register; The input of the A register is 
normally deconditioned; therefore, to receive data 
from the ABC funnel, the A register must be condi­
tioned by the' condition A register' signal. The A 
register is always conditioned if the B register is 
deconditioned. 
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Invert A Register: This signal may be required in 
multiply and divide operations as a step in the pro­
cess of complementing the A register. The signal 
can be disabled for floating-point operations. 

Interchange A and AX: This signal is provided for 
floating-point arithmetic purposes and is used to 
display the AX register. 

Description 

Each position of the A register is a multi-input 
trigger as shown in Figure 2-4. Details of the opera­
tion of multi-input triggers are given in Appendix 
B2 of FEMM IBM System/360 Model 44, Form 
Y33-0007. Most of the "act" (shift pulse) signals 
are supplied by the circuit type described in 
Appendix Bl of the same manual. 

Special Aspects 

As the component circuit is effectively a latch, the 
A register performs an OR function on data entering 
from the ABC funnel. The contents of the A register 
can be displayed on the console. 

AX Register 

• Installed as part of the floating-point feature for 
temporary storage of A register contents with a 
return path to the A register. 

• Is 32 bits wide. 

• Controlled by floating-point instructions only. 

• Each position is a multi -input trigger. 

• Contents can be displayed indirectly on the con­
sole by operating the CPU 2 switch. 

Use 

The AX register, which is 32 bits wide, is a slave 
of the A register and is used to provid.e temporary 
storage for the contents of the A register. The AX 
register is always used when long-preciSion oper­
ands are being handled and is sometimes used in the 
execution of operations concerned with short­
precision operands. 

Input and Output 

Input to the AX register is received from the A 
register by interchange, and output is fed to the A 
register only. 

I 
\, 

/-1! 



Controls 

The timing of the following controls differs from 
instruction to instruction and with the extent of 
instruction progress. Details of the different timings 
are given in the timing charts in FEMD IBM 
System/360 Model 44, Volume 2, Form Y33-000S. 

DC Reset AX Register: This signal clears all the 
32 -bit positions of the register. 

Interchange A and AX: This signal interchanges the 
contents of the A and AX registers. 

Description 

Each position of the AX register is a multi-input 
trigger as shown in Figure 2-5. Circuit details of 
the multi-input triggers are given in Appendix B of 
FEMM IBM System/360 Model 44, Form Y33-0007. 

A Re Bit 05 
AX Reg Bit 05 

• FPA AC Interchange A and AX 
FL 

L S 

Not A Reg Bi t 05 S A 

DC Reset AX Reg 

*Flooting Point Feature 
S = Shift Pulse with the Occurrence of the Condition 

Figure 2-5. Typical AX Register Position 

Special Aspects 

The contents of the AX register cannot be directly 
displayed on the console. For display, the contents 
are first interchanged with those of the A register 
when the CPU 2 switch is set. When the A register 
content is then displayed, the actual display is of 
the AX register contents. 

B Register 

• Has multiple uses in every instruction and has 
arithmetic and logical functions. 

• Is the path from the ALS to the SDR. 

• Is 32 bits wide. 

• Performs an EXOR function (binary-triggered) on 
data received from the ABC funnel. 

• Each position is a multi-input trigger and can be 
displayed on the console. 

Use 

The B register, which is 32 bits wide, is used in the 
execution of all instructions, largely because it is 
the only path between the ALS and SDR. The results 
of arithmetic operations are developed in the B 
register. The B register performs program shift 
and automatic shifting in association with byte han­
dling, multiply and divide operations and floating­
point instructions. Shift pulses effectively couple 
the BX regi ster to the left or right of the B register. 

The B register is tested for an all-zero content, 
to check for zero operands (divide) or zero results. 
This test is the result of a zero in several fields 
(such as bits 4 to 7, FP use and bits S to 11, FP 
and non-zero protection key use) covering the whole 
register. 

Input 

Inputs to the B register are derived from the ABC 
funnel, from corresponding positions of the BX 
register and from the B or BX register positions in 
accordance with the shift operation being performed • 
A typical B register position, shOwing input connec­
tions, is shown in Figure 2-6. 

Binary-triggered Entry"-.~ 

"",-,---
ABC Funnel Bit 05 S \ 

BX Rea Bit 05 f--
Shift 32 B Rea S A 
B Rea Bit 06 t--

B Rea Bit 04 
~S 

A 
f-- ORr-

Shift Right] A 
B Re.a Bit 09 St--

;--S A 
B Reg Bit 0] t--
Shift Right 4 

5 A 
DC Set B C Rea 

L-

DC Reset B, C Reg r--

5 ,--
Not B Rea Bit 0] A 
Shift Left 4 

5 -
Not B Rea Bit 09 A 

-
Not B Rea Bit 04 

'--5 
A 

Shift Left] - OR 

Not B Rea Bit 06 
S 

A 

-
Not BX Rea Bit 05 

-S 
A 

-
~S 

Not Decondition B Reg 
A 

Binary-triggered Entry/r-,--

S = Shift Pulse with the Occurrence 
of the Condition 

Figure 2-6. Typical B Register Position 
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Output 

To simplify description, the B register outputs (as 
shown in Figure 2-7) are grouped together and desig­
nated by code numbers. The functions of the groups 
(preceded by the corresponding code number) are: 

B Register -
o 31 

Figure 2-7. B Register Output 

1. All Positions: The outputs of the 32 positions 
are distributed as follows: 

To the corresponding positions of the C register 
for direct setting and binary gating. 

To the corresponding positions of the SDR. 
To the corresponding positions of the BX register. 
To the B register zero detection circuit. 
To the B and BX register positions corresponding 

to the shift pulse. 
To the corresponding positions of the FPR's and 

GPR's. 

2. Positions 00 to 07: These outputs are used in 
conjunction with the 'test under mask' operation and 
the 'system mask' bits (corresponding positions of 
PSW 1). 

3. Positions 00 and 01: These positions are con­
nected to the shift overflow detection circuitry. 

4. Position 00: This position is connected to the 
following circuits: 

Sign analysis for condition code setting during 
load and arithmetic operations and 'update 
timer' interrupt requests. 

Control for shift-right-one insertion and floating­
point multiply and divide operations (B register 
extension bits). 

The content of this position can be gated with inver­
sion for sign correction purposes. See Figure 2-S. 

5 and 6. Positions 02 to 07: These positions are 
connected to the corresponding positions of PSW 2. 
Bits 2 and 3 form the condition code and bits 4 to 7 
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A Reg Bit 00 

Invert B Reg Bit 00 

:...Nc:.ot:...;B~Re",g..:B.:.:.it..:OO-'---+-t ___ --i A 

~B~Re~B~it..:OOc:.-__ +-___ ~A 

* FP Flooting Point Feature 

Figure 2-8. B Register Sign-Correction Gating 

form the program mask. Bits 4 to 7 are also ana­
lyzed for zero by FP-function overflow circuits 
(shift-right-four request). 

7. Positions OS to 31: These positions are fed to 
SAR 2. Positions OS to 14 are compressed into 
SAR 2 position 14, and position 31 gives the even! 
odd address control. 

S. Positions OS to 11: These positions are fed to 
the floating-point ones and zero detection circuitry. 

9. Positions 12 to 15: These positions are fed to 
the corresponding positions of the PSW 1 (machine 
state latches). 

10. Positions 21 to 31: Bits 21 to 23 are fed to the 
channel decode and bits 24 to 31 to the channel 
address. 

11. Positions 26 to 31: These positions are fed to 
the shift counter positions 00 to 05. 

12. Positions 30 and 31: These positions are fed to 
the "parallel" positions, 30 and 31, of the BX reg­
ister for use in multiply and divide operations. 

Controls 

The timing of the following controls differs from 
instruction to instruction and with the extent of 
instruction progress. Details of the different timings 
are given in FEMD IBM System/360 Model 44 
Volume 2, Form Y33-000S. 



DC Reset B, C Registers: This signal clears all 32 
positions of the register. It is possible, however, 
for address-loading and floating-point purposes, to 
clear only the first byte (positions 00 to 07). 

DC Set B, C Registers: This signal is used to set 
all ones into the 32 positions of the register. 

Decondition B Register: In its normal state, the 
input of the B register is conditioned to receive data 
from the ABC funnel. This signal deconditions the 
input of the register and prevents data (from the ABC 
funnel) from being set into it. 

Shift 32: These pulses, which are derived from the 
line 'interchange B and BX', control interchange of 
the Band BX registers. However, with the loading 
of PSW 2, the B register is set into the BX register 
without disturbing the contents of the B register. 

Shift-Right One and Shift-Left-One: These pulses 
are used in the multiply and divide operations, and 
to perform the shift instructions to shift one bit posi­
tion right or left. The pulses always control the B 
and BX registers as a single double-word register, 
the BX register being coupled to the right of the B 
register, even though the BX register is not involved 
in the operation. 

Shift-Right-Four and Shift-Left-Four: These pulses 
are provided for character-handling operations and 
for floating-point arithmetic purposes to shift four 
bit positions right or left. The pulses normally con­
trol the Band BX registers as a single double-word 
register, the BX register being coupled to the right 
of the B register, even though the BX register is 
not involved in the operation. The shift-right-four 
pulse loops the registers. That is, the bits shifted 
from the rightmost four positions (BX register bits 
28 to 31) are coupled to the leftmost four positions 
(B register bits 00 to 03). This process is used for 
floating-point long-precision add, subtract and com­
pare operations only, to shift into the lower-order 
fraction (in the B register), digits from the high­
order fraction (in the BX register), during the match.­
ing of the exponents: at that time, the shift-right-four 
link between the low-order end of the B register and 
the high-order end of the BX register is suppressed. 
Low-order fraction hex digits are shifted out and lost. 

Description 

Each position of the B register is a multi -input 
trigger as shown in Figure 2-6. The contents of the 

. B register can be displayed on the console. 

Special Aspects 

Because each position of the B register is a binary­
coupled multi-input trigger, an EXOR function is 
performed on all data entering through the ABC fun­
nel. The DC setting of this register is one of the 
steps in the two's complementing of data. 

The B register is tested for a zero result in some 
operations (condition code setting, loading PSW 1 and 
floating-point arithmetic). 

As shown in Figure 2-8, a sign-correction circuit 
exists in the path from the B register to the SDR. 

The B register bit 00 can be gated true or inverted, 
according to the analysis shown in Figure 2-8, when 
the results of the following operations are stored: 

Arithmetic left-shift (to give the result its origi­
nal operand sign); 

Divide (to store the maximum negative number); 
The majority of floating-point operations. 

B Register Floating-Point Extension Positions 

When the fraction digits of floating-point operands 
are used in floating-point multiply and divide, no 
provision is made to hold the sign of the partial 
results in the B register, because this register can 
contain up to 32 bits of data. 

With the floating point feature, both the sign of 
the B register partial result and the data bit shifted 
to and from the B register bit 00 are held in two 
extra B register bit positions. The positions are 
called the 'B register extension' bit and the 'B regis­
ter extension sign' bit. 

The 'B register extension' bit is used on FP mul­
tiply to hold the data-bit which is right-shifted into 
the B register bit 00 position during multiply cycles. 
The 'B register extension' bit is also used on FP 
divide cycles to hold the data-bit left-shifted out of 
the B register bit 00 position during the divide cycles. 

The 'B register extension sign' bit is used to hold 
the sign of the partial results in the Band BX regis­
ters during the FP multiply and divide. This bit and 
the arithmetic carry-out of this position are used in 
the control of the FP multiply and divide operations 
in the same manner as the B register bit 00 and CO 
are used in the fixed-point multiply and divide opera­
tions. 

Use of the 'B register extension' bit and 'exten­
sion sign' bit is discussed in greater detail in the 
"Floating-Point Common Multiply" and "Common 
Divide" sections in Floating Point Feature, Form 
Y33-0005 . 
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BX Register 

• Used for double-word handling operations, for 
loading PSW 2 bits B to 31, for loading the 
floating-point scratch register, as temporary 
storage for B register contents, and to develop 
the quotient during divide operations. 

• Width 32 bits, plus two low-order parallel posi­
tions and one dummy position. 

• Each position is a multi-input trigger. 

• Contents are indirectly displayed on the console 
by interchanging with the B register. 

• The parallel positions 30 and 31 are displayed 
separately from the remaining positions. 

Use 

The BX register is provided for handling double 
words in multiply, divide, and floating-point opera­
tions. The register is also used during store opera­
tions to preserve the effective address and the oper­
and. The BX register is the only path to the instruc­
tion counter (bits OB to 31 of PSW 2). In divide 
operations, the quotient is formed in the BX register; 
in multiply operations, the multiplier is analyzed in 
the BX register. 

Input 

The BX register is 32 bits wide. The 32 bits are 
filled from the B register by the Band BX register 
interchange. Inputs are also derived from positions 
in the B register and the BX register, depending 
upon the shift signals. Positions 30 and 31 can 
receive an input from the quotient bit formation cir­
cuit. 

The BX parallel pOSitions receive inputs from the 
corresponding B register positions and participate 
in the shift-right- one and shift-right-four operations 
only. See "Parallel Positions" and Figure 2-9. 

Output 

The 32 positions can be fed to: 
The floating-point scratch register; 
The corresponding positions of the B register 

(shift 32, B register); 
The Band BX register positions corresponding to 

the shift pulses. 
Bit positions OB to 31 are ·fed to the instruction 

counter (PSW 2 corresponding bits). Position 00 is 
used in fixed-point divide control ('possible zero 
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-5 
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A 

'--~ 

S ~ Shift Pulse 

Figure 2-9. BX Register Parallel Bits 30 and 31 

remainder'). Position 30 is fed to the true/ criss­
cross control circuits for 'store character' or 
'store half-word' operations. Parallel positions go 
to the multiply circuits. 

Controls 

The timing of the following controls differs from 
instruction to instruction and with the extent of 
instruction progress. Detailed timing charts are 
given in the IBM System/360 Model 44, Volume 2, 
Form Y33-000B. 

Reset BX Register: This signal is provided to clear 
all 32 poSitions of the BX register. For floating­
point purposes, however, it is possible to reset the 
first byte (exponent) only, pOSitions 04 to 31 only 
(preservation of the guard digit), or positions 24 to 
31 only. In these cases the line name in the ALD 
states the bit positions affected. 

For the BX parallel positions, see Figure 2-9 
(negative logic). 

Set BX Register: This signal is used in conjunction 
with the 'branch on count' instruction and for floating­
point purposes. 

Shift 32: This pulse is used to interchange the con­
tents of B and BX registers. 



Shifts, Right and Left, One and Four: These pulses 
operate in the same way as previously described for 
the B register. The BX parallel bits participate in 
the shift-right-one and shift-right-four. 

Description 

Each of the 32 positions of the BX register is a 
multi-input trigger. Figure 2-6 may be considered 
as a typical BX register position if the binary funnel­
input is ignored and if the Band BX labels are inter­
changed. 

Parallel Positions 

The two BX parallel positions are also multi-input 
triggers as shown in Figure 2-9. These positions 
do not always reflect the state of the normal BX posi­
tions 30 and 31 but, during multiply operations, 
their contents do correspond. 

The parallel positions are set from the corre­
sponding positions of the B register at the same time 
as the remainder of the BX register. They partici­
pate in shift-right-one and shift-right-four operations 
only. The output of these positions is called 'BX 
bit XX for multiply' . 

Special Aspects 

An extra bit position BX 32 is incorporated (but not 
used) in the register because of the mechanical 
considerations in packaging 32 bits. However, owing 
to internal connections, Bx register bit position 31 
feeds to, and is fed from, the bit position 32. On 
the shift-right-one operation, bit 31 is put into bit 
position 32 and is considered lost, although on shift 
left one operation position 32 is put into position 31. 
This is because shift left one operation cannot fol­
low shift right one operation without the BX register 
being reset. 

Display 

The contents of the BX register cannot be displayed 
directly on the console. To display them, the B and 
BX registers are first interchanged by operating the 
CPU 2 switch. When the B register is then displayed 
on the CPU display roller, the actual display is of the 
contents of the BX register. 

The BX parallel positions 30 and 31 are displayed 
on the console by another setting of the CPU display 
roller. 

C Register 

• Is a slave of the B Register. 

• Is part of the carry-generation system. 

• Is 32 bits wide. 

• Performs an EXOR function on data from the ABC 
funnel. 

• Each position is a multi-input trigger and can be 
displayed on the console. 

Use 

The C register is used to reflect (for carry purposes) 
the contents of the B register, and to feed the C LA. 

Input and Output 

Inputs to the C register are derived from ABC funnel 
and from the B register, while output is fed to the 
CLA only. 

Controls 

The timing of the following controls differs from 
instruction to instruction and with the extent of 
instruction progress. Details of the control timings 
are given in the timing charts in FEMD IBM System/ 
360 Model 44, Volume 2, Form Y33-000B. 

Reset C Register: This control clears all 32 posi­
tions of the register. As this signal is the same as 
that which clears the B register, however, provision 
is made for clearing only the first byte (bits 00 to 
07). 

Set C Register: This signal sets ones in all 32 posi­
tions of the register for complementing purposes, as 
in the B register. 

Decondition C Register: In its normal state, the C 
register is conditioned to receive data from the ABC 
funnel; the 'decondition C register' signal therefore 
specifically prevents the entry of data. Note that 
because of the switching speed of its binary entry, 
the C register is de conditioned whenever the CLA 
is gated to the ABC funnel, to avoid feedback to the 
CLA. 

Set B into C Register: This facility is provid,ed to 
adjust the C register contents to the B register con­
tents after the CLA operation, and to prepare for a 
following addition as explained in "Introduction" 
in this Chapter. 
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Description 

Each position of the C register is a multi-input trig­
ger, as shown in Figure 2-10. The binary-triggered 
input to the C register is exceptional in that the 
binary gates are generated by another register (B 
regi ster) , as opposed to being self -gated. However, 
the B and C register contents are always the same 
whenever the C register output is used (CLA gating). 
When the C register content is not used, the differ­
ence between the B and C register contents is not 
significant. 

The content of the C Register can be directly 
displayed on the console. 

DC S B et and C Reg -
ABC Funnel Bit 05 S -

{Nat} B Reg Bit 05 ,-- A OR l 
B Rea Bit 05 

-;: C Reg Bit 0 
r-__ -"--

Set B into C Rea ~~ 

lNot)B ReQ Bit 05 

L-S ~ ORJ 
(Not) Decondition C Reg 

B Rea Bit 05 
DC Reset Band C Reg 

S = Shift Pulse with the Occurrence 
of the Condition 

~ 

'--

Figure 2-10. Typical C Register Position 

Carry Look-Ahead 

FL 

~ 

• Generates and distributes the carries. 

• Boolean expression for CLA function is: 
Kn = A. C + C. Kn - 1. 

• Is 32 bits wide. 

• High-speed logic. 

• Output is controlled by the instruction. 

5 

• The two bigh-order outputs are analyzed for con­
dition code setting. 

• A carry is forced in the low-order position for 
complementing purposes by the subtract trigger. 

Use 

The carry look-ahead, which is 32 bits wide, is part 
of the arithmetic and logic section and furnishes the 
carries, when and where they are needed, during the 
progress of operations. 
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Input and Output 

Inputs to the CLA are fed directly from the A and C 
registers. 

The outputs from the CLA are gated to the corre­
sponding positions of the ABC funnel. The entry is 
usually to the B register only, where an EXOR oper­
ation is performed with the original B register con­
tents. Each of the two most-significant outputs of 
the CLA is used to set a latch (CO and C1), the anal­
ysis of which is used in many operations to set the 
condition code. 

Controls 

There are no controls on the inputs to the C LA but 
gating-out of the CLA contents is controlled. The 
timing of these controls differs from instruction to 
instruction and in accordance with the extent of 
instruction progress. Details of the timings are 
given in the timing charts in FEMD IBM System/360 
Model 44, Volume 2, Form Y33-000S. 

Description 

The CLA is a 32-bit-wide block of unlatched high­
speed logic. The reasons for the existence of the 
CLA and its action during an operation are given in 
the Introduction to this section of the Chapter. 

Carries are produced by comparing the corre­
sponding bit positions of the A and C registers 
according to the following rules: 

1. A one bit in the A register and a zero bit in 
the C register generate a carry-out to the 
next high-order bit position (Boolean expres­
sion: A. C = K out). 

2. A one bit in the C register and a carry-in to 
the position propagate the carry to the next 
high-order bit position (Boolean expression: 
C.K in = K out). 

Propagation is thus from right to left. 
Figure 2-11 shows the circuitry associated with 

the four least-significant positions of the C LA. 
Such a block of four is repeated eight times to form 
the 32-bits-wide CLA logic. 

Generation and propagation circuits exist for each 
position of the CLA. In addition, the most-significant 
position of each block of four collects the carries 
leaving the block, thus avoiding the need for the 
carry to ripple through any other position inside the 
block: this avoids the accumulation of transition 
times in too many CLA positions and speeds the 
availability of the output at the ABC funnel. There­
fore, in the worst case (namely, a carry generated 
in the lowest block of four having to ripple up to the 
CLA bit 00), ten logic circuits (instead of 31) must 
be traversed. 
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Figure 2-11. CLA Four Least- Significant Positions 

Bit positions 01 of both the A and C registers 
produce a CLA bit 00 output which is gated to the 
ABC funnel and is used also to set the C1 latch (used 
for condition code setting). 

Bit positions 00 of both the A and C registers 
produce a CLA output ('adder carry-out') which is 
not fed to the ABC funnel, but is used only to set the 
CO latch. The state of this latch is used later for 
floating-point purposes and for condition code 
setting. 

Special Aspects 

No CLA Bit 31: As shown in the ALD's, CLA bit 30 
is the least-significant CLA position and is produced 
from the A and C register bit 31 positions. Never­
theless, a carry-in can be forced to the CLA for 
two's complementing purposes (during any subtrac­
tion operation). This carry-in should be termed 

'CLA bit 31' but, being produced only by the sub­
tract trigger, it is called 'subtract trigger carry­
in' . 

Negative Logic: In the ALD's, succeeding blocks of 
logic alternate in sign and in function; therefore a 
'plus AND' equals a 'minus OR' and vice versa. 

ABC Funnel and Hardware Funnel 

• The ABC funnel collects information directed to 
A, B or C registers. 

• The Hardware (HW) funnel is used as an extension 
of the ABC funnel. 

• Both funnels are 32 bits wide. 

• Unlatched logic. 

• Controlled by the instruction. 

• Use of negative logic in the HW funnel permits 
the timer value generation. 

The ABC funnel collects all information which is to 
be handled by the A, Band C registers. It can also 
be considered as part of the arithmetic and logic 
section data flow and is involved in the 'halfword 
expansion' operation. 

Input and Output 

Inputs and outputs associated with the ABC funnel 
are shown in Figure 2-12. Note that in the figure 
reference is made to two detailed Figures, 2-13 
and 2-14. 

Funnel Controls 

Positions 05 and 21 are given as detailed examples 
in Figure 2-14. 

The timing of the following controls differs from 
instruction to instruction and with the extent of 
instruction progress. Details of the timing are given 
in IBM System/360 Model 44, Volume 2, Form Y33-
OOOS. 

ABC Funnel Controls 

Refer to Figures 2-12, 2-13 and 2-14 for the ABC 
funnel controls described below. 
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Figure 2-12. ABC Funnel Inputs and Outputs 

+ Gate PSW 2 to HW Funnel 
- Decimal Overflow Mask 
+ Gate HW Re 00 to 07 
- MSLS Out ut Bit X 

+ Gate Scratch Reg to HW Funnel 
A 

HW Bit X 
- Scratch Reg Bi t X 

- Gate Exponent Reg B 
to HW Funnel 

_-~E~x~p~on~e~n~t~Re~g~B~Bi~t~0~5 ____ __ 
OR 23 only (As below) ~

Bits 00 to 07,21,22 or 

- Hi h Res Timer Fitted 

Bit 21 
+ T C cle Not Console Function 

+ SW for Timer 1 (50 cps) 
Bit 22 

+ T Cycle Not Console Function 

+ SW for Timer 2 (60 c s) 
Bit 23 

+ T Cycle Not Console Function 

Figure 2-13. Hardware Funnel Controls 

2-12 7/66 Model 44 FETO 

Set True/Criss-Cross to Funnel: Can be applied as 
follows: 

To positions 00 to 31: To gate the fullword to the 
registers. 

To positions 16 to 31: To gate a halfword operand. 
To positions 00 to 15: When expansion of a half­

word negative operand is required, and for 
'test and set' operations. For information on 
the former, see Introduction to "Fixed-Point 
Arithmetic" in Principles of Operation -
Processing Unit, Form Y33-0002. 

To positions 20 to 31: To gate the displacement 
during RX format I-fetch. 

To positions 16 to 23, or 24 to 31: With even and 
odd address decoding respectively in the SI 
format ' compare logical' operations. 

To positions 00 to 07, 00 to 15, 00 to 23, depen­
ding on the floating-point precision switch 
setting on the console (8, 10, and 12 respec­
tively) when fetching the floating-point long 
operand second word. Note that position 14 
gates the positions 00 to 31. 

Set CLA to ABC Funnel: Gates the 32 positions of 
the CLA for use during arithmetic and logic opera­
tions. 

Set A Register to ABC Funnel: Gates the 32 posi­
tions of the A register for use in the ALS and for 
other purposes. 

True/Crisscross 
SDR Bi t 05 (See ALD's) r-r-

(Not) Gate SDR 00 to 15 True OR 

SDR Bit 21 ~ A 1, 
(Not)GateSDRI6t031 Crisscross OR ABC Funnel 

-'-- r/xc Bit 05.---.--
Set T/XC to ABC Funnel 00 to 07 A 
A Rell Bit 05 I-
Set A Reg to ABC Funnel A 
CLA Bit 05 I- ABC Funnel 
Set C LA to ABC Funnel OR A Bit 05 
HW Funnel Bit 21 I--
Gate HW 16 to 31 to ABC 00 to 15 A 
Set HW Funnel to ABC Funnel 00 to 07 f-
HW f:. n;;;;l Bi t 05 A 

L- '---

T rue/ Cri sscross 
SDR Bit 21 (See ALD's) r-r-

(Not)GateSDRI6t031 True OR 

SDR Bit 05 I-- A ~. 
(Notl Gate SDR 00 to 15 Crisscross OR ABC Funnel 

L-I..-- r/XCBit21.--.---
Set T/XC to ABC Funnel 20 to 24 A 
A Reo Bit 21 r-
Set A ReQ to ABC Funnel A 
CLA Bit 21 r- ABC Funnel 
Set CLA to ABC Funnel OR A Bit 21 
Rb Rea Bit 1 r-
Set Ra Rb to ABC Funnel 16 to 23 A 
Set HW Funnel to ABC Funnel 08 to 31 r-
HW Funnel Bi t 21 A 

'--'---

Figure 2-14. Two Positions of the ABC Funnel 



Gate HW 16 to 31 to ABC 00 to 15: This facility 
exists only with the accelerator feature incorporated 
and provides the means to criss-cross a halfword 
from a G PR for halfword or byte storage. 

Set Ra, Rb, Registers to ABC Funnel: This is 
provided to bring the immediate operand into the 
appropriate place for CLI (compare) operation, 
without using shift cycles. 

Set HW Funnel to ABC Funnel: This gates the HW 
funnel to the ABC funnel. It can select positions 
00 to 31 (full word), 00 to 07 (byte 0), or 08 to 31 
(bytes 1, 2 and 3) while gating floating-point regis­
ters or the floating-point scratch register. 

Hardware Funnel Controls 

The HW funnel output is one of the inputs to the ABC 
funnel. The output line for each bit position of the 
HW funnel is derived from a dot-AND circuit as 
shown in Figure 2-13. 

The normal condition of all inputs to the dot-AND 
is positive, as both the 'floating-point scratch reg­
ister' gated bit and the' exponent register B' gated 
bit lines are positive in their normal state; i. e., 
these lines assume the status of the corresponding 
register only if it is gated to its output bus. 

The four controls which determine the output of 
the HW funnel are: 

'Gate PSW 2 to HW funnel' 
'Gate hardware register to HW funnel'. 
'Gate scratch register to HW funnel' . 
'Gate exponent register B to HW funnel' (bits 

00 to 07). 
Each of these controls generates the 'gate HW 

funnel to ABC funnel' signal. 
The f gate hardware register to HW funnel f control 

is interlocked with the other controls so that it is 
degated if any of the remaining controls are active. 

Figure 2-13 shows that when one of the above 
controls is made active, the corresponding bit 
governs the input (and thus output) of the dot-AND. 

In the normal static condition (no gates active), 
the HW funnel output of each position is active. This 
output of all ones is used for generating the timer­
decrement constant used in the fupdate-interval­
timer f operation; for this operation, the HW funnel 
output in bit positions 21 and either 22 or 23 (depend­
ing on the line frequency) is forced to zero during 
the timer update cycle. 

Logic and Description 

Refer to Figures 2-12, 2-13 and 2-14 for logic and 
description. 

The ABC funnel is 32 positions wide. Each posi­
tion is similar to those shown in Figure 2-14 and is 
implemented in a combination of medium-speed 
circuitry (HW funnel and true/criss-cross) and 
high-speed circuitry (ABC funnel proper). 
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SYSTEM CONTROL COMPONENTS 

INSTRUCTION REGISTERS 

• Instruction registers are the Op register and the 
Ra, Rb and Rc registers. 

• They are used to store the first 20 bits of the 
instruction during the address indexing and the 
execution. 

• The Op register originates signals and conditions 
appropriate to the operation. 

• The Ra, Rb and Rc registers originate GPR and 
FPR addresses. 

• The Ra and Rb register contents can be used 
directly for operations CLI, TM, BCT, BCTR 
and SVC. 

• All instruction register contents are displayed on 
the console. 

Use 

TheOp register is used to store the instruction code. 
The Ra, Rb and Rc registers are used to hold infor­
mation associated with the addressing of operands 
and indexes for use during I - fetch indexing. cycles 
and during instruction execution. 

The output of the Op register is decoded to pro­
duce the signals that set up the cycle and sequence 
latches and the appropriate conditions for controlling 
the required operation. 

The Ra, Rb and Rc registers hold respectively 
the Rl, R2 or X2 and B2 fields of the instruction. 
Their output is used to generate the GPR and FPR 
addresses that are loaded into the SARIs (extension 
storage addressing) or that are used to read from or 
write into hardware registers. The content of the 
Ra and Rb registers can also be used: 

As an immediate operand in the SI format, 
'compare logical' operation (CLI), 

As a mask in the 'test under mask' (TM) operation 
and in the RX or RR formats 'branch on count' 
operation (BCT or BCTR respectively), or 

As an interrupt code in the 'supervisor-call' 
(SVC) operation. 
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Description 

The Op register is eight bits wide and the Ra, Rb 
and Rc registers are each four bits wide. Each 
register position is a high-speed latch. The logic 
of a typical register position is shown in Figure 
2-15. The contents of all instruction registers are 
displayable on the console by selecting the appro­
priate roller switch setting. 

Bit 02 

Figure 2-15. Typical Instruction Register Position 

Input and Output 

The inputs to the instruction register are from the 
SDR via the true/criss-cross. The outputs are dis'­
tributed as follows: 

Bits 00 and 01 (instruction format): To PSW 2 
bits 00 and 01 (ILC). Refer to "PSW Registers" 
in this Chapter. 

Bits 00 to 07 (op code): To the op decode cir­
cuitry, including invalid op detection. 

Bits 08 to 11 (Ra register): To the 'branch on 
condition' circuitry and to hardware register 
address decode (floating-point and/or accelera­
tor feature). 

Bits 08 to 15 (Ra and Rb registers): To the reg­
ister address specification circuitry for floating­
point operations and multiply and divide opera­
tions (double-word operands), to the ABC funnel 
(CLloperation), to the 'test under mask' and to 
the FPR address generation circuitry. 

Bits 08 to 19 (Ra, Rb and Rc registers): To the 
storage address generation logic or to the GPR 
address decode (accelerator feature). 

Bits 12 to 19 (Rb and Rc registers): To the zero 
detection circuits (I-fetch use). 

Controls 

The instruction registers are set and reset during 
an I-cycle. 



PSW REGISTER 

Introduction 

• U sed in program execution. 

• PSW bits 0 to 31 are referred to as "PSW 1 bits 
o to 31. " 

• PSW bits 32 to 63 are referred to as "PSW 2 bits 
o to 31. " 

• The PSW register consists of several separate 
registers and unlatched logic. 

• The entire PSW, or in certain circumstances 
only part of it, can be stored or loaded. 

• PSW 1 is displayed indirectly via the SDR. 

• PSW 2 is displayed indirectly by the SDR via the 
HW funnel, the ABC funnel and the B register. 

From: 

0 

PSW 1 I 
0 

The information held in the PSW register is used 
for correct program execution. Refer to IBM 
System/360 Principles of Operation, Form A22-6821, 
for further details. 

NOTE: In terms of System/360 architecture the 
PSW is considered to be 64 bits long. To facilitate 
the numbering system, however, and since PSW 
handling in the 2044 always necessitates two complete 
cycles, PSW bits 0 to 31 are named "PSW 1 bits 0 
to 31" and PSW bits 32 to 63 are named "PSW 2 bits 
o to 31. " 

As shown in Figure 2-16, PSW 1 is loaded from 
the corresponding bit positions of the B register 
(0 to 7 and 12 to 15) and stored through the SDR (0 
to 7, 12 to 31). Only bits 2 to 7 of PSW 2 are loaded 
from the B register. Bit pOSitions 8 to 31 are loaded 
from the corresponding bit positions of the BX reg­
ister (instruction address). PSW 2 is stored via the 
HW funnel, the ABC funnel and the B register to the 
SDR. 

The PSW registers consist of several separate 
sections that are physically located throughout the 

CPU and I/O 
Irpt Code Ckt 

To: Irpt Ckt Irpt Ckt (M, P) 

From: 

Op Code Reg 
Bits 0 and 1 

B Reg Corresponding 
Positions 

Wai State Ccts (W) 

SDR Corresponding Positions 

BX Reg Carrespondi"g Posi ti ons 
Console (15 to 30) 
IC + 2 (14 to 30) 

I coyer I 
~~~8 ______________________ ~ _______________________ ~31 

To: 

/////// 

PSW 2 

Not existing 
State not used 

Figure 2-16. Model 44 Program Status Word 

® 
Instruction Address 

SAR 1 
SAR 2 

Hardware Fonne I 

(14 fo 30) 
(8 to 30) 
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main frame. For clarity, the two registers are shown 
as a whole on the CPU data flow. 

To enable the program to change the state of the 
CPU, fields of the current PSW can be changed dur­
ing normal processing without preserving the pre­
vious conditions. These changes can be made as 
follows: 

The 'system mask' can be changed by the 'set 
system mask' operation. 

The Instruction Length Code (ILC) is set accord­
ing to the current instruction. 

The condition code is set according to the type and 
result of the operation performed. 

The condition code and the 'program mask' can 
be changed by the 'set program mask' operation. 

The Instruction Counter (IC) is updated during 
normal processing but can be changed by branch 
operations (or bits 15 to 30 from the console in 
the 'manual stop state ') . 

The remaining fields are changed only by loading 
the entire PSWas in the load-PSW operation, 
or from the console. 

However, to allow the status of the CPU to be 
inspected at certain times, the PSW must be stored 
(then becoming the "Old PSW"). This is achieved 
as follows: 

PSW 2 is stored by branch and link operations. 
At the same time, the IC can be changed if 
required; the remainder of PSW 2 and PSW 1 
is not changed. 

The IC is stored in the BX register by the 'system 
reset' routine (from the console). 

The entire PSW 1 and PSW 2 is stored and loaded 
by the 'supervisor call' (SVC) operation and by 
any interrupt (Irpt). The loaded PSW mayor 
may not differ from the former PSW.· 

PSW 1 can be displayed in the 'manual stop state' 
by pressing the display pushbutton while the storage 
select rotary switch is set to PSW 0-31. Operation 
of the pushbutton causes the contents of the PSW 1 
register (bits 0 to 7 and 12 to 15) to be set into the 
SDR; the remaining bits are made zero as the 2044 
is not prOvided with a storage key and an interrupt 
code is generated only by an interrupt. The SDR 
then displays the contents of the PSW 1 register. 

PSW 2 is displayed in the 'manual stop state' by 
pressing the display pushbutton while the storage 
select rotary switch is set to PSW 32-63. Operation 
of the pushbutton gates the entire PSW 2 through the 
HW funnel and the ABC funnel to the B (and C) reg­
ister. The contents of the B register are subse­
quently gated to the SDR, which then displays the 
contents of the PSW 2 register. 
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System Mask 

• Eight positions wide. 

• Four positions only (PSW 1 bits 0, 1, 2 and 7) of 
the eight positions are used. 

• Loaded via the B register and stored via the SDR. 

• Each position is a medium -speed conventional 
latch. 

PSW 1 bits 0 to 7 are associated with the I/O channel 
and external signals to allow an interrupt to occur 
if the relevant bit is a one or to hold the interrupt 
pending if the relevant bit is a zero. 

Provision is made to accommodate all eight bits 
of the 'system mask' but the state of positions 3 to 
6 does not concern the program. The significance 
of the four positions used is as follows: 

Bit 0: Multiplexor channel 0 
Bit 1: High speed multiplexor channel 1 
Bit 2: High speed multiplexor channel 2 
Bit .7: Timer, interrupt key and external signals 
The system mask is changed (through the B reg-

ister only) by certain operations. These are 'load 
PSW', 'set system mask', 'supervisor call', any 
interrupt, and console operations (with the storage 
select rotary switch set to PSW 0-31) in the 'manual 
stop state' only. 

Each position is implemented in a conventional 
medium -speed latch, an example of which is given 
in Figure 2-17. 

+B Reg Bit 02 

Refer to Figure 2-16 
For Fields 1 , 3 and 7 

+ S stem Mask 

(PSW 1) 
Bit 02 

Figure 2-17. Typical PSW Latch (as used in Fields 1, 3 and 7) 



Protection Key 

• Positions 8 to 11 of PSW 1. 

• The protection key field is checked for all zeros 
in B register during the loading of the new PSW 1, 
on CPU's with protection feature not fitted. 

On CPU's where the protection feature is not fitted, 
no provision is made to accommodate positions 8 
to 11 of PSW 1. The protection key of the new 
PSW 1 is checked for zeros in the B register when 
PSW 1 is loaded and sets the 'protect key not zero' 
latch when it is not zero. 

Machine State 

• PSW 1 positions 12 to 15. 

• Each position is a conventional latch. 

• Bit 12: 1 0= ASCII mode (not used by the program) 
o 0= EBCDIC mode. 

• Bit 13: 1 0= Machine check interrupt masked. 

• Bit 14: 1 0= CPU in wait state 
o 0= Running state. 

• Bit 15: 1 0= CPU in problem state 
o 0= Supervisor state. 

• Loaded from the B register with the entire PSW 1 
and PSW 2. 

The machine state latches consist of four bit positions 
(PSW 1 bits 12 to 15), each position being a medium­
speed conventional latch as shown in Figure 2 -1 7 . 
These mask bits can be changed only when the entire 
PSW 1 and 2 is loaded ('load PSW', SVC and any 
interrupt) . 

Position 12 (ASCII) 

This position controls the coding generation for 
decimal data. Since decimal data is not used in the 
2044 the state of this position is ignored by the pro­
gram and the machine is therefore always in EBCDIC 
mode. 

Position 13 (Machine Check Mask) 

When on (a 1 bit), detected machine malfunctions 
are allowed to cause an interrupt. When off (zero), 
machine checks are ignored and the machine will 
attempt to complete the current instruction followed 
by the next sequential instruction. Refer to the 
section "Checking" in this Chapter. 

Position 14 (Wait State) 

When set to zero, this position alloY.'s the CPU to 
run. When set to one, the position forces the CPU 
into the wait state, and the wait lamp on the operator's 
console is lit. 

Position 15 (Problem State) 

When set to one, the privileged instructions are not 
allowed and cause a program interrupt to occur. 
When set to zero (supervisor state) all instructions 
are valid. 

Interrupt Code 

• PSW 1 bits 16 to 31. 

• Used to identify the cause of an interrupt. 

• Implemented in unlatched logic. 

• Gated to the SDR only on an interrupt. 

The cause of an interrupt can be found by analyzing 
the interrupt code of the old PSW. An interrupt code 
is generated only while storing the PSW during the 
interrupt handling. Therefore, no provision is made 
to accommodate this field in the current PSW. 

A table of the interrupt codes applicable to the 
2044 appears in the "Interrupts" section of Principles 
of Operation - Processing Unit, Form Y33-0002. 

Instruction Length Code 

• PSW 2 bits 0 and 1. 

• Formed from the Op register bits 0 and 1. 

• The old PSW gives the ILC in halfwords (program 
and SVC interrupts only). 

• Changes when Op register bits 0 and 1 change. 

PSW 2 bits 0 and 1 indicate the length, in halfwords, 
of the last interpreted instruction when a 'program' 
interrupt or SVC interrupt occurs. The ILC is un­
predictable (and useless) for I/O, external, or 
machine check interrupts; in other cases, it helps 
to locate the instruction which was being handled 
when the interrupt occurred and is set according 
to the table shown in Figure 2-18. These positions 
are not latches but are derived directly from the 
Op register bits 0 and 1 as shown in Figure 2-19. 

NOTE: An instruction length code of three (11) 
is set in an SS format operation, since an invalid 
op code is detected from the Op register after the 
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PSW 2 OpCode 
ILC Bits 0 and] Bits 0 and] Instruction Length 

0 00 Impassible without ILC circuit malfunction 

] OJ 00 ] Halfward (RR) 

2 ]0 0] or ]0 2 Halfwords (RX, RS or 51) 

3 II ]] 3 Halfwords (55) 

Figure 2-18. Instruction Length Code Table 

PSW 2 Bit 0 

P5W 2 Bit] 

Figure 2-19. PSW 2 Bits 0 and 1 (Instruction Length Code) 

register has been set, and because the invalid op 
code gives a program interrupt in the 2044. 

Condition Code 

• PSW 2 bits 2 and 3 are also known as the condi­
tion code bits 0 and 1. 

• Set according to the final result in most opera­
tions. 

• Meaning depends on the operation performed. 

• Also loaded with a new PSW or 'set program 
mask' operation. 

Figure 2-20 shows a typical section of the logic asso­
ciated with setting the condition code. The logic 
shown is associated with the add, subtract and com­
pare operations. 

The setting of the condition code needs two sig­
nals. The first signal is produced by combining the 
result obtained with the op decode output (refer to 
the lines 'data condition code Bit 0' and 'data con­
dition code Bit l' in Figure 2-20). The other signal 
is the 'set' timing. The op decode output again 
selects a suitable timing pulse (refer to 'set condi­
tion code' line shown). If the data condition code 
bit line is not active, the reset is performed by the 
set line by deconditioning the OR block marked with 
an asterisk (*). 
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The condition and timing which bring up these 
two signals vary with the operation performed in 
order to match the operation end. This is shown 
in the ALD's. The condition codes for all instruc­
tions are summarized in the section "Branching" in 
IBM System/360 Principles of Operation, Form 
A22-6821. 

Program Mask 

• PSW 2 bits 4 to 7 (Bit 5 not used). 

• Each position is a conventional latch. 

• Allows the masking of three kinds of program 
interrupt: 

Bit 4: Fixed-point overflow. 
Bit 6: Exponent underflow. 
Bit 7: Significance. 

• Can be loaded from the B register with 'set pro­
gram mask', 'load PSW' and any interrupt. 

• Is stored via the B register with 'branch and link' 
instructions and any interrupt. 

The program mask positions consist of four medium­
speed latches of the type shown in Figure 2-17. 

Each bit is associated with a program exception. 
When the corresponding mask bit is a one, an inter­
rupt is allowed to occur. When the mask bit is zero, 
no interrupt occurs and the exception is ignored. 
Details of program exceptions are given in the 
"Interrupts" section of Principles of Operation -
Processing Unit, Form Y33 -0002. 

The program mask may be replaced by information 
(PSW) from the corresponding positions of the B 
register during any interrupt cycles (including SVC), 
'load PSW' and 'set program mask' operations. 

The program mask can be stored as a part of the 
old PSW during any interrupt cycle or it can be 
stored during the 'branch and link' instruction (in a 
GPR). 

The functions associated with each bit are as 
follows: 

Bit 4 (Fixed-point Overflow) 

When bit 4 is zero, a 'fixed-point overflow' exception 
does not cause an interrupt. The condition code is 
set regardless of the program mask bits. 

Bit 6 (Exponent Underflow) 

This position is used when the floating-point feature 
is installed. When it is zero, no interrupt occurs 
on an 'exponent underflow' exception. 



Not B ReQ Zero Result r-;;:---./ 
CO equal to C1 
Not B Reg Bit 00 A 

~ 
Add alg, Subtalg, Comp <].Ig 

OR 
- Data Condition Code Bit a 

f---
Not Comp alg 

>---

A 
Not CO equal to C1 

vA, ~A + PSW 2 Bit 2 
'--" OR FL "OR A FL (Condi tion Code Bi t 0) 

fA ~ 

'7:'---..1 Arith and Log ops -
Seq Latch 2 OR 

+ Set Condition Code 

CC 6. CP 2 Time 
A 

A 
,.-.",--" 

+PSW 2 Bit 3 
f'....I'-'R A FL (Condi tion Code Bi t 1) -

JA roJnR 
OR FL 

I"A 

B Reg Bit 00 'A''--'' 
f---

CO equal to C1 
A 

>---
f--- OR 

- Data Condition Code Bit 1 13-'---

Not CO equal to C1 
'--- A 

vA, 
'--" 

Figure 2-20. Typical Setting of the Condition Code Latches 
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Bit 7 (Significance) 

This position masks a 'significance' exception 
(fraction result zero in FP add or subtract opera­
tions). The state of the position is used when the 
floating-point feature is installed. The result is 
made zero in the case of an exception, regardless 
of the state of the program mask bit. 

Instruction Address 

• PSW 2 bits 8 to 31. 

• Known as the instruction counter (IC) in the 
ALD's. 

• Specifies the leftmost byte position of the next 
instruction. 

• Each position is a multi-input trigger. 

• Bits 15 to 31 are displayed on the console. 

• Loaded from the BX register or from the console; 
the console loads bits 15 to 30 only. 

• Positions 14 to 30 are updated with the IC + 2 
operation. 

• Used to generate extension storage addresses 
during the 'system reset' process. 

The instruction counter is formed by bits 8 to 31 of 
PSW 2 and specifies the address of the first byte of 
the next instruction. Except for 'system reset', the 
24-bit address is gated to the SAR's during an I-cycle 
to address an instruction. The IC is then updated 
according to the instruction length in order to con­
tain the next sequential instruction address. The 
principles of the incrementing (by IC + 2 operation) 
are given in detail in "Main Storage Addressing" in 
this chapter. 

Figure 2-21 shows a typical IC position as used 
for bits 15 to 30. Each position is a multi-input 
trigger which is described in Appendix B2 of FEMM 
IBM System/360 Model 44, Form Y33-0007. The 
shift pulses shown are generated by a circuit of 
the type described in Appendix B1 of the same 
manual. 

Because the maximum storage capacity is 131,072 
bytes, and since an instruction address must be 
even, only positions 15 to 30 are needed. To detect 
program errors, however, the entire 24-bit address 
is loaded from the corresponding BX register posi­
tions (bits 8 to 31) with branching instructions or 
with the new PSW loading. Oversize storage ad­
dressing is detected by compressing the IC bits 8 to 
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~~ 

Carry into IC Bit 18 r--S A 
** Gated Address Sw 18 - I--

Set IC Console Bits A OR 

BX Rea Bit 18 S....!.-

rS 
A 

I~ -'--
FL 

Set BX Re~ into IC 

SA U -Not BX Reg Bit 18 
____ f--

Increment IC S A OR 

Reset IC ,e.:: 
-

*** 
S = Shift Pulse with the Appearance af the Condition 
* = Delay for Bits 8 to 14 and 31 
** = Delay for Bits 8 to 13 and 31 
*** = Not for Position 14 

Figure 2-21. Typical Instruction Counter Position 

14 to SAR 2 bit 14. The presence of a bit in the IC 
bit 31 position sets the 'odd address' latch. If 
either SAR 2 bit 14 or the 'odd address' latch is on, 
an addressing exception is caused. See the section 
"Checking" in this Chapter. 

Loading from the console address switches is to 
IC bits 15 to 30 only. However, loading PSW 2 from 
the console loads all 32 pOSitions of the PSW 2 (24 IC 
bits). 

Because of the addressing exception detection, 
IC + 2 affects bits 14 to 30 only. 

During a 'system reset' routine, the normal 
content of the IC is stored in the BX register. The 
IC is then used to scan areas of the extension stor­
age with the aid of IC + 2 (see "Console" in FEMM 
IBM System/360 Model 44, Form Y33-0007). 

SHIFT COUNTER 

• Specifies the number of positions to be shifted in 
the B and BX registers. 

• Six-position register numbered 0 (leftmost) to 5. 

• Maximum (decimal) capacity is 63. 

• Each position is a multi-input trigger displayable 
on the console. 

• Value is reduced by one for each shift cycle. 

• It is set from the B register (shift operations) or 
by logic circuitry. 



The Shift Counter (SC) is loaded with the number of 
single shifts to be performed in the B and BX reg­
isters. (These function as a single 64-bit register.) 
As there are six positions, the maximum number of 
shifts is 63, corresponding to shifting all bits but 
one out of the B and BX register pair in shift double 
operations. 

Description 

Each shift counter position is a multi -input trigger 
as described in Appendix B2 of FEMM IBM System! 
360 Model 44, Form Y33-0007 and the logic of a 
typical position is shown in Figure 2-22. The shift 
pulses are delivered by circuits of the type described 
in Appendix Bl of the same manual. 

The entire register is displayable on the console 
with the CPU display roller in the appropriate set­
ting. The value in the shift counter is reduced as 
shown in Figure 2-23. With each decrementing 
pulse the value of the counter content is reduced by 
one. The decrement is made with the aid of the shift 
counter carry circuits (represented inside the broken 
line area of Figure 2-23). 

The decrementing pulse appears normally during 
every shift cycle, usually with the same timing as 
the shift pulse (shift operation) but, in certain cases, 
the value in the shift counter may be reduced without 
an accompanying shift; refer to the "Machine Instruc­
tions" section in Principles of Operation - Processing 
Unit, Form Y33 -0002. 

Set SC Bit I -
L-

SC Carry Bit I 

A ORn 
B Rea Bit 27 

-S_ 

Gate B Rea to SC A ~ S __ 

FL 

cS Lf Never conditioned A 
Decrel!1ent SC S-

A OR 

Clear Data Flow ,-
'--

.. S = Sh,ft Pulse WIth the Appearance of the Cond,t,on 

Figure 2-22. Typical Shift Counter Position 
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I 
I Bit 1 

Not SC Bit 2 - ~S A Fl 
Not SC Bit 3 r - 1 
Not SC Bit 4 A 
Not SC Bit 5 ~S A 

Not Bit I - L 

I Bit 2 

r-S A Fl 
Nat SC Bit 3 

r 2 
Not SC Bit 4 J A !-
Not SC Bit 5 I 

I r-S A 
Not Bit 2 

I 

I 
I Bit 3 

Not SC Bit 4 >--S A Fl 

r !-
3 

Not SC Bit 5 A I . 
~S A 

__ SC. Carry Gener?tio~ r- Not Bit 3 

I Bit 4 

~S A Fl 

r !- 4 

f--S A 
Not Bit4 

I 

I Bit 5 

Always Conditioned ~S A FL 
5 

L -
Decrement SC 

S A 
Not Bit 5 r-

S = Shift Pulse with the Appearance of the Condition 

Figure 2-23. Shift Counter Decrementing Circuits 

Input and Output 

With any shift operation, the input to the shift coun­
ter is from the B register positions 26 to 31, B 
register bit position 26 corresponding to shift coun­
ter position 0, etc. Circuitry is also provided to 
set the shift counter automatically with the correct 
value for any other operations using shifts one or 
four (FP A); for example: 

Divide operations force shift counter bits 0 and 5 
to one (content equals 33); 

Multiply operations force shift counter bit-O to 
one (content equals 32); 

Multiply halfword operation forces shift counter 
bit 1 to one (content equals 16). 
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other shift counter values can be set in floating­
point operations according to the type and progress 
of the operation and depending upon the 'FP pre­
cision' switch setting. 

In addition to the carry generation and the detec­
tion of a shift counter zero value, the output decoding 
circuits also give several combinations that are 
used during multiply, divide and floating-point 
operations; these are indicated in the ALD's. 

TIMING 

The purpose and function of the various clocks and 
controls is to provide timed pulses for sequencing 
and controlling all operations within the 2044. 

Clocks 

• All clocks are driven from one 8-megacycle (Mc) 
oscillator. 

• After shaping and timing, the pulse cycle is 
250 nanoseconds (ns). 

• The clocks used in the 2044 are: 
Basic clock 
Read/write clock 
Compute clock 
I/O clock 
Interface clock 

Oscillator 

An 8-Mc oscillator (OSC) provides pulses that are 
shaped and divided to produce square-wave 4-Mc 
pulses, of 250-ns cycle time, for clock driving; see 
Figure 2-24. The clock driving pulses (from which 
all clocks are derived) are distributed in the follow­
ing forms: 

Clock special input/output (Clock special I/O) 
Clock special, compute clock or read/write 

(Clock special CC + RW) 
Gate A1 
For SAR Reset 

Main Clock Pulses 

The main clock pulses, CP 1 and CP 2, are formed 
from the clock driving pulses by an inverting ampli­
fier circuit which produces two pulses, 180 degrees 
out of phase and delayed by 62.5 ns. Each clock 
pulse is on for 125 ns and off for 125 ns. 

These pulses are used to define the outputs of the 
other clocks. CP 1 defines the 'odd' latch output 
and CP 2 the 'even' latch output (Figures 2-24 and 
2-25). 
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Figure 2-24. Oscillator Clock Shaping and Distribution 

Early Clock Pulse 

In some operations, for example multiply, the CP 1 
pulse defining compute clock 1 (CC 1) does not occur 
early enough to meet the needs of shifting sequences; 
in floating-point operations an early CC 1 - CP 1 
pulse is also needed. 

To satisfy these requirements,a clock special 
pulse (for convenience, the I/o pulse) is delayed by 
37 ns only (instead of the normal 62.5 ns) and is 
gated with CC 1. The resultant composite pulse 
(Special CC 1-CP 1 Early), of 125-ns duration is 
25 ns in advance of the normal CP 1 pulse occurring 
at CC 1 time. Figure 2-26 shows the generation 
and timing of the early clock pulse. 

Read/Write Clock 

The read/write clock is used for main storage 
access. Figure 2-27 shows the logic associated 
with the generation of the read/write clock pulses. 

The clock consists of eight output latches and a 
split cycle latch. These latches are turned on and 
off by the special compute clock (CC) and read/ 
write clock (R/W) pulses, and delayed pulses derived 
from them, on a line 'special dly R/W' shown in 
Figure 2-27. Each output latch is on for 250 ns and 
overlaps the next output latch by 125 ns as indicated 
in Figure 2-25. 

The four outputs of the read/write clock, Read 
Clock 1 to Read Clock 4 (RC 1 to RC 4), define the 
read portion of the storage cycle, while the four 
outputs, Write Clock 1 to Write Clock 4 (WC 1 to 
WC 4), define the write portion. A storage cycle 
consists of the pulses RC 1 to WC 4 and takes 1 J.l.s. 
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Figure 2- 25. Relationship of Clock Pulses 
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Figure 2-26. 'Special Cel - CPl Early' Pulse 
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Split Cycling 

Split cycling is u$ed when time can be saved by 
delaying the writing back of data into storage. If 
the result of an operation will be available within 
six cycles from read time, it is advantageous to 
delay the write cycle until the six cycles are con­
cluded, then to write back the results of the com­
pleted operation. See Figure 2-28 for timing com­
parison. 

Compute Clock 

The compute clock is used for moving data from 
register to register throughout the CPU, except for 
data movement exclusively in the input/output 
channel. 

The compute clock, which is formed and driven 
in a similar manner to the read/write clock, con­
sists of six output latches. The compute clock is 
asynchronous with respect to the read/write clock, 
except that odd pulses of both clocks are defined by 
CP 1 pulses and even pulses by CP 2 pulses. There­
fore, when both clocks are running together, odd 
pulses of one clock will always overlap odd pulses 
of the other. See Figures 2-25 and 2-29. 

The compute clock may run in any of the follow­
ing cycles depending on the operation being per­
formed: 

CC 1 to CC 2 
CC 1 to CC 4 
CC 1 to CC 6 
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RC I 

FL 

Reset CPU 

RC 2 

FL 

Not Clock S ecial 

Reset CPU 

Set S lit C cle Tri er 

RC 3 
Clock Special Diy R!W FL 
Clock Special R/W 

Reset CPU 

Not Clock S ecial R!W 

Reset CPU 

Slit C de 

RC 2 Set Slit C de T ri er 

Reset 

WC 20n 

Last Even CC 

OR~~---. ___ W~C~I_ 
FL 

Reset CPU 

Figure 2-27. R/W Clock RC1 to RC4 and Continuation to WC1 

One complete compute clock cycle may be followed 
immediately by another compute clock cycle as 
required by a particular operation (for example, 
multiply). 

It is sometimes necessary for the compute clock 
to cycle CC 1-CC 2, CC 1-CC 2, and so on. The 
'wrap compute clock at 250' latch is set on at the 
beginning of CC 2 to accomplish this. A signal to 
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start the compute clock goes to the CC 1 latch at the 
same time as a 'stop' signal is sent to the CC 3 and 
CC 5 latches. Thus the compute clock is prevented 
from running on CC 1-CC 2-CC 3, etc. but is star­
ted again at CC 1. 

If, during compute cycles, main storage is not 
being accessed (the read/write clock is not running), 
the I/o channels may have access to main storage by 
starting the read/write clock for an I/o cycle. Refer 
to "Cycle Controls" in this chapter for further 
explanation. 

I/O Clock 

The I/O clock is provided for channel-only functions 
and i-s physically similar to the previously-described 
clocks. Four output latches are driven by special 
I/o pulses from the main oscillator circuit. The 
I/o clock differs, however, from the other clocks 
in that the latches form a continuous ring so that, 
when the clock is started, it runs continuously while 
machine power is on (see Figure 2-25). 

The four outputs are A, B, C and D and, as with 
the other clocks, the pulses are defined by the clock 
pulses CP 1 and CP 2, A and C pulses are defined 
by CP 1, and B and D are defined by CP 2. 

Interface Clock 

The interface clock is used only for multiplexor 
channel 0 operations. The clock is generated from 
2-Mc pulses (clock special I-F) that are derived 
from the I/o clock pulse A delayed by 15 ns. Figure 
2-30 shows the interface clock generation. 

The generating pulses are continuously running, 
but the interface clock runs only when it is gated. 
It is started on any clock special 1-F pulse. The 
interface clock comprises two sets of parallel 
pulses: 

Overlapping pulses of 485-ns duration on four 
lines. 

Non-overlapping pulses of approximately 235-ns 
duration on four lines. 

An interface clock cycle lasts for approximately 
1. 25 /LS. 

Clock Distribution 

The distribution of all pulses is designed to com­
pensate as much as possible for the shortening of 
pulses caused by their transit through logic blocks. 
CP 1 is adjustable by 5-ns increments and is set to 
be mid-way in the odd-numbered pulses of clocks. 
CP 2 is out of phase with CP 1 and delayed by 8 ns. 

The reference point of all clocks is the rise of 
the CP 1 pulse at board A2 on gate A. 

! 

'''" 
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Figure 2-28. Timing Comparisons 

Controls 

Cycle Controls 

• Ten types of storage-access cycles. 

• Read/write cycles are defined. 

• Only the cycles needed for a particular operation 
are initiated. 

• Each of the ten types of access has a 'cycle 
control' latch and a cycle latch. 

• Setting the 'cycle control' latch on also starts the 
read/write clock. 

, , 

The normal sequence of the 2044 when obeying pro­
gram instructions stacked in storage is: initial 
program load, I-fetch, execute, I-fetch, execute 
and so on, until the final instruction is executed. 

The link between the previous instruction and the 
next I-fetch operation is the signal 'last execute' 
and 'no interrupt request' which sets the I-cycle 
control latch initiating the next I-fetch. The execute 
phase can overlap the next instruction phase by 
250 ns. 

During I-fetch, the first part of the instruction 
containing the operation code is read into the instruc­
tion registers and is decoded into signals which 
control the execution of the instruction. These con­
trol signals determine the order in which storage 
cycles and compute cycles are to be taken. 
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The classification of the ten types of main-storage 
access is shown in tabular form in Figure 2-31. 

To handle the PSW during interrupts, the inter­
rupt cycles are further defined by two special sets 

Each group has a 'cycle control' latch and a cycle 
latch as shown in Figure 2-32. The read/write 
clock is started by a request to set a 'cycle control' 
latch on. Thus, every time the read/write clock is 
used, the type of cycle is defined as one of the ten 
groups shown in Figure 2-31. 

of control latches. The PSW 1 control latch and 
PSW 1 latch are used to define the first and second 
interrupt cycles. The PSW new control period is 
used for the first and third cycles, and the PSWold 
control period is used for the second and last (fourth) 
cycles. Therefore, each cycle is clearly defined. 

Only those cycles needed for a particular opera­
tion are initiated (see Figure 2-28). The cycle 
controls are parity checked. If an even number are 
on a 'cycle control' check occurs. 

Cycle Priority 

I/O operations always take precedence over CPU 
operations. Cycle control latches are set and reset as shown 

in Figure 2-17. Cycle latches are all set at RC 4, 
CP 2 time and are reset at RC 3, CP 1 time of the 
next read/write cycle. Thus, there should always 
be either a 'cycle control' latch on or a cycle latch 
on during normal operation. 

I/O data requests are sampled at the I/O cycle 
control latch one clock pulse before any other cycle 
requests are sampled. If an I/o request for storage 
access is found, the next CPU cycle control latch is 
allowed to be set but its effect (output) is inhibited or 

Address Cycle Con'rol 
Purpose Latch latch turned on by lurn On Turn Off ALD Ref 

I Fetch Instructions Instruction 1. Console Leave Wait State Untimed WC2-CP2 KC381 
Counter of 2. End Execute. NOT T Cycle Req. CP2 or 
PSW 2 NOT Wait Bit. NOT INT Cycle Req. CP5 Cansole 

3. System Reset. NOT PSW to be Wait State 
loaded 

B Fetch Core Bose Reg Contents Rc B Cyc Ie Request WC4.CP2 WC2.CP2 KC371 
KC501 

X Fetch Core Index Reg Cantents Ra X Cycle Request WC4.CP2 WC2.CP2 KC371 
KC501 

Rl Fetch Core R 1 Operand Ra 1. Rl Cycle Request WC4.CP2 KC361 
2. Rl Required (Compute Clock CP2 WC2.CP2 KC511 

Running) KC801 

R2 Fetch Core R2 Operand Rb R2 Cyc Ie Request WC4.CP2 WC2.CP2 KC362 
KC501 

EA Fetch Operand from Effective B Reg 1. EA Cycle Request WC4.CP2 KC363 
Add 2. Force EA Cycle and PSW 1 CC6 WC2.CP2 KC521 

Latch (PSW Restart 1 PL) 1/0 CP.WC2 KA121 

1/0 Fetch or Store 1/0 Data or Channel 1. 1/0 Request with any Cycle 
Fetch Cantral Information ContralON WC3.CPl WC2.CP2 KC352 

2. 1/0 Request. NO Cycle Controls, 
RCI to coincide with 1/0 clock 
A or D Only CPl 

Far Status Switching due to 1. End Execute, Interrupt Cycle CP2 KKOOI 
Forced request 

INT Interrupts Fixed 2. Interrupt Cycle Required WC2.CP2 WC2.CP2 KK043 
Lac. (Int. Cycle NOT Old PSW 2 periad 

NOT Wait for 1/0 because they 
are slow OR 1/0 Interrupt Latch. 
C Cycle. NOT C Cycle Req. Latch) 

T Update Interval Timer Forced End Execute. Update Timer SS 
(Every 20 ms or 16.6 ms) Fixed Lac. NOT Interrupt Cycle Request CP2 WC2.CP2 KK101 

C Fetch Channel Address Word Forced C Cycle Request. 1/0 Clock Pulse D CP2 WC2.CP2 FC351 
and change Channel Status Fixed Lac. (Dummy AND Position Available.) FZ141 
Word 

Figure 2-31. Cycle Control Chart 
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Figure 2-32. Examples of Cycle Control Latches 
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(Set IC into SAR 1) 

I-Cy Ctl (Turn on 
I-Cy Latch) 

I-Cycle Control 
Latch 

Start W Clock 

EA Cycle Control 
Latch 

gated off until the I/O operation has finished with 
storage. Thus a means is provided of remembering 
the next CPU cycle to be resumed after the I/O 
operation has finished with main storage. See 
Figures 2-33 and 2-34. 

An interrupt request initiates an interrupt cycle 
at 'end execute' and holds off the normal I-cycle. 
Similarly, a timer cycle is initiated at 'end execute' 
if there is an output from the update timer single­
shot and 'interrupt request' is not up. C cycles 
occur during an I/O operation or during an I/O 
interrupt sequence. In an I/O operation, they are 
controlled by the operation being performed and 
occur as required. C cycles are used for fetching 
the Channel Address Word (CAW) and for manipu­
lating the Channel status Word (CSW). 

All other cycles occur as required after I -cycles 
except that EA cycles can be forced on at the end of 
Initial Program Load (IPL) and 'force PSW restart' 
(see Figure 2-32). 

Interrupts 

Interrupts are taken between the end of the E -phase 
and the start of the next I-phase. 

I/O data requests are serviced between storage 
cycles on a "cycle-stealing" basis. If the CPU is 
occupied by a succession of compute cycles, but 
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main storage is not being used, an I/O data service 
accesses storage without interfering with the pro­
gress of the instructions. I/O data cycles require 
only the use of SAR and Storage Data Register (SDR) 
so that the rest of the data flow registers are undis­
turbed when I/O breaks in. 

There are a few cases (PSW and CSW handling) 
where the CPU must take two consecutive main­
storage cycles (double cycle) without interference. 
I/O operations are held off by a 'double cycle' latch 
which makes the two storage cycles appear as one 
cycle to the channels. 

Sequence Controls 

• Five sequence controls. 

• Compute clock cycles are defined by sequence 
controls. 

• The number and order of sequence depend on the 
operation being performed. 

In some operations, more than one complete com­
pute clock cycle of the full six pulses CC 1 to CC 6 
may be needed. Sequence controls are used so that 
each pulse of an operation may be exactly defined. 

Each compute clock is defined by one of five 
sequence controls numbered 1 to 5. In some opera­
tions, the same set of events may need to be re­
peated, in which case the same sequence control is 
repeated. 

Single Cycle Mode 

The 2044 can be operated for diagnostic purposes in 
'single cycle' mode. This mode permits instruc­
tions to be stepped through manually, one cycle at a 
time, from the console. While the rate switch is in 
the single cycle position, the machine is in the 
hard stop state. 

Single cycle operations are as follows: 
1. If a cycle control latch is on and no 'sequence 

control' latch is on, the machine takes a full read/ 
write clock cycle. If, during this cycle (prior to 
WC 4, CP 2) the compute clock is started, the com­
pute clock cycle is completed as well as the read/ 
write cycle. 

2. If a 'sequence control' latch is on and no 
'cycle control' latch is on, the machine takes a 
compute clock cycle and stops at the end of that 
cycle (CC 2, CC 4 or CC 6). 

3. If a 'sequence control' latch is on and a cycle 
control latch is on, the machine takes the compute 
clock cycle and stops with the cycle control latch 
still on. The next depression of the start push­
button produces the read/write clock cycle. 



Not CP 2 

Not An Console Clock Control 

S stem Reset 

WC2.CP2 

Not Console Inh Start 

Double CPU C cle 
Double CPU C cle 

Figure 2-33. I/O Cycle Control Latches 

4. If a split cycle is initiated, the machine com­
pletes the split cycle and stops at the end of WC 4. 

5. If a double cycle is initiated, the machine 
takes both read/write clock cycles before stopping. 

6. When single cycling channel-to-CPU opera­
tions, the machine stops at the end of each main 
storage cycle. 

7. When single cycling channel-to-device opera­
tions, the machine stops at each outbound tag 
request, that is, when the in tag is received and the 
out latch is set, but immediately prior to setting the 
'out tag' latch. 

NOTE: Although sequencing is stopped, the 
setting of cycle controls and sequence controls is 
not inhibited. This ensures that the CPU will restart 
at the correct read/write or compute cycle when the 
start pushbutton is operated. 

N 
I/O Cycle Control MS 

I/O Cyc Ie Control 
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Figure 2-34 I/O Cycle Control Timing Chart 
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MAIN STORAGE ADDRESSING 

INTRODUCTION 

• The IBM 2044 CPU has a split main storage. 

• Main storage output is 32 bits (4 bytes) wide. 

In order to address a halfword or word in main stor­
age an address register is required. In the 2044 
CPU, two Storage Address Registers (SAR 1 and 
SAR 2) are used. A register, called the Storage 
Data Register, is also required to read data into 
or out of main storage. 

The 2044 has a split main storage with an output 
one halfword wide from each half. The main storage 
consists of two or more basic operating memories, 
each having a capacity of 16K or 32K bytes (9 bits), 
dependent on the model. A storage capacity table 
of the models and further details of storage capacity 
and locations are contained in the "Main Storage" 
section of this chapter. 

As the main data flow in the 2044 is 32 bits wide, 
and data must often be operated on in halfwords 
only, a facility for interchanging each 16 bits is 
required. The interchange function is performed by 
the true/criss-cross which is located on the data 
flow between the SDR and ABC funnel. 

Storage Address Registers 

• Two registers are used: SAR 1 and SAR 2. 

Two storage. address registers are needed for ad­
dressing locations on halfword boundaries. Each 
SAR has a 17-bit capacity (numbered 14 to 30) and 
the contents can be displayed on the console. The 
least-significant bit in the instruction counter (bit 
31) does not form part of the address in the SAR. 

In order to obtain any full word instruction lo­
cated on a halfword boundary in main storage, the 
address in the two SAR's must be different. This 
difference is accomplished by the same address 
being placed in both registers and the value of SAR 1 
being increased by two, thus changing the address 
by one halfword. Figure 2-35 shows a typical posi­
tion of the SAR. 

Storage Data Register 

The storage data register has a capacity of four 
bytes (32 bits), plus four parity bits. As bad parity 
must not be stored in main storage, the SDR checks 
the parity of its contents and if necessary, generates 
the required parity bit. For parity checking infor­
mation refer to "Checking" in this chapter. 

IC Bit 29 
Set IC to SAR A 
Set HSC Address to SAR ~ 

HSMPX Address Bus Bit 29 A 
Set Channel 0 Address to SAR ~ 
Chonne I 0 Address Bi t 29 A SAR Bit 29 
Set B into SAR I-- OR FL 
B Reg Bit 29 A 
Set Data Swi tch to SAR ~ 
Gate Address Swi tch 29 A 
Gen Address to SAR Bi t 29 L- L.-.--

'------

Figure 2-35. Sample Position of SAR 

This register is used to place data into or receive 
data from main storage, sending data to the funnel 
or the channels and receiving data from the B reg­
ister and the channels. 

The contents of the SDR can be displayed by the 
console lights and can be changed by manual switch­
ing; refer to "Console" in FEMM IBM System/360 
Model 44, Form Y33-0007. Figure 2-36 shows a 
typical position of the SDR. 

Display Bus Bit 08 
Gate Display to SDR A 
B Reg Bit 08 -
Set B into SDR 08 to 15 A 

~ 

+ Channel 0 Data in Bit - OR 
A _ SDRBit08 Irt~ Channel 0 Byte 1 

A 
HSMPX Data Bus in Bit 08 - ~ FL 
H SMPX Byte 1 to S DR A _ OR 

-'--

"'-

Memory Sense 08 Byte 0 
Gate Storooe to SDR 08 to 15 

Figure 2- 36. Sample Position of SDR 

True/Criss-Cross Function 

• Used for 16-bit interchange. 

• Capable of producing all ones. 

The true/criss-cross function is required to enable 
the interchange of the two halfwords contained in the 
SDR, should this be required by the operation. This 
function, which is logically contained in the output of 
the SDR, is performed as follows. Each bit position 
of the SDR output is controlled by one of four gates: 

Gate SDR bits 0 to 15 true. 
Gate SDR bits 16 to 31 true. 
Gate SDR bits 0 to 15 criss-cross. 
Gate SDR bits 16 to 31 criss-cross. 
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These gates control which of two bits from equiv­
alent positions in the two halfwords (for example: 
bits 0 and 16) shall be placed on any given output 
line. The four gates and the way in which they are 
used are shown in Figure 2 -3 7. 

+GtSDROOto 15 True 
- SDR Bit 00 
Memor Sense 00 Byte 0 

+ Gt SDR 16 t031 Crisscross 

-SDR Bit 16 

+GtSDR16t031 True 
- SDR Bit 16 
Memory Sense 16 Byte 2 

+GtSDROOto 15 Crisscross 

- SDR Bit 00 

Gate 
True 

+ 

-
+ 

-

Gate 
Crisscross 

+ 

-
-
+ 

+ SDR Crisscross 00 to 16 

(normal Bit 0 line) 

+SDRCrisscross 16tooo 
{normal Bit 16 line 

Output 
to Funnel 

Impossible 
Condition 

All One's 

True Bit 

Crisscross Bit 

Figure 2-37. True/Criss-cross Output (Two Positions) 

The control over which facility (true or criss­
cross) is used is exercised mainly by SAR 2 bit 30. 
To have a criss-cross output from SDR, the condi­
tions of this bit are opposed for instruction and data 
addresses, as follows: 

Instruc:o.on addressing when SAR 2 bit 30 = 1. 
Data addressing when SAR 2 bit 30 = o. 
These controls are explained more fully under the 

heading, "Addressing" in this section. 
An indirect feature of the true/criss-cross func­

tion is the ability to produce all ones at the input to 
the ABC funnel. The all-ones output is achieved by 
raising the four previously-mentioned gates and is 
used by the arithmetic registers under the control 
of a gating pulse at the ABC funnel; the resultant 
action of the four possible gate conditions is shown 
in Figure 2-37. 

Instruction Counter and IC + 2 Carry Generator 

• The instruction counter is contained in bits 8 to 
31 of PSW 2. 

• Updating the instruction counter is performed by 
the Ie + 2 carry generator. 
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The instruction counter (IC) of the 2044 is located 
in the PSW 2 register, bit positions 8 to 31. Of the 
existing bit positions, only 15 to 31 are used to 
accommodate the instruction address. Bits 8 to 14 
are compressed to check for a one bit (invalid ad­
dress) which, if found, signals an 'address excep­
tion'. Bit 31 of the IC does not form part of the 
address in the SAR and, if set during an I-cycle, 
will cause a 'specification exception' to occur. For 
the handling of both these conditions, refer to 
"Checking," in this chapter. Bit 31 of the Ie can 
however be set, for example, in store or insert 
character operations and I/O control. In these 
instances, it is used to set the 'odd address' latch 
which is subsequently used in the particular opera­
tion. 

The instruction counter is updated by the IC + 2 
carry generator. It is incremented by two or by 
four, by the IC + 2 function being performed either 
once or twice depending on whether the instruction 
is on halfword or word boundaries. The IC + 2 
carry generator also modifies the instruction counter 
output to SAR 1 (see Figure 1001 in the FEMD, Form 
Y33-0008) by changing the address by plus two; the 
change is accomplished by placing the instruction 
counter contents in SAR 1, changing the state of bit 
30, and propagating any carry. 

Split Main 
Storage 
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I 

x .. 4 .. xlx . . 5 .. x , 
x .• 8 .. xlx .. 9 .. x 
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x. 12 .. x'x. 13 .. x 
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etc. 

I 
x .. 2 .. xx .. 3 .. x 

I 

x •• 6 .. xlx .. 7 .. x 
I 

x.l0 . . x:x.ll .. x 

x. 14 .. x'x. 15 .. x 

Data 
Addresses 

xxxOOzz 

xxx{) 1 zz 

xxxl0zz 

xxx'lzz 

= IC Bit 31 

Output of 
Crrsscross 

Figure 2-38. Instruction Address with Criss-cross 



ADDRESSING 

• There are two types of addressing: for instruc­
tions or for data. 

• The contents of SAR 1 and SAR 2 are the same 
only during data addressing. 

Main storage can be addressed for either instruc­
tions or data. When instructions are addressed, the 
SAR contents differ as SAR 1 is incremented by 2; 
whereas when data is addressed, the address on the 
data bus is placed directly into the SAR's. 

Instruction Address 

The address contained in the instruction counter 
consists of 17 bits, but, when this address is placed 
into the two SAR's, the least-significant bit in each 
SAR is ignored as it does not form part of the re­
quired address. The SAR's address their respec­
tive halves of storage for one halfword from each, 
these halfwords being placed in the SDR. 

SAR 2 bit 30 is used to control the true/criss­
cross operation. In instruction addressing, when 
SAR 2 bit 30 equals 1 a criss-cross will be per­
formed on the data contained in SDR when it is gated 
to the ABC funnel. If SAR 2 bit 30 equals zero, no 
criss-cross operation is performed as the SDR con­
tents are in the required format. 

Figure 2-38 shows an instruction address with 
criss-cross. 

Data Address 

Of the 17 bits in the data address, only 16 are placed 
on the data address bus to the SAR's. 

As with instruction addressing, the least­
significant bit of each SAR (bit 30) is not used for 
addressing purposes and, similarly, bit 30 of SAR 2 
controls the true/criss-cross. However, in this 
instance, the need to criss-cross is governed by the 
following conditions: 

The operation is a data fetch 
SAR 2 bit 30 = 0 
Operation is on halfword operands 

If any of these conditions is not satisfied the data 
in SDR will be gated direct on to the data flow. 

Figure 2-39 shows data addressing with a resul­
tant true output. 
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I 
I 

Data Address 
x_xxxOll(l) 

Outputi. True 

xxxOOzz 
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= SAR Bit 30 

SDR Content 

Output 
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Figure 2-39. Data Address with True Output 
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MAIN STORAGE 

INTRODUCTION 

• The main storage is controlled by the CPU. 

• 1. 0 microsecond read/write cycle. 

• Full word (four bytes) operation is provided. 

• The main storage uses SL T circuitry and 
packaging. 

The main storage for the IBM 2044 CPU is a mag­
netic core storage. The functions of the storage 
unit are to accept and retain data input from the 
CPU or from input/output units, and to deliver data 
to the CPU or the I/O units. The storage unit han­
dles all input and output as data, making no distinc­
tion between program instructions, control words or 
data. On each access, the storage either writes or 
reads one full word (four bytes of eight bits with 
parity for each byte). 

Capacity 

• Three sizes of main storage are available: 32K, 
64K or 128K bytes, dependent on model. 

• The extension storage is additional, its size 
depending on model. 

Main storage consists of two sections: 
1. The main storage section 
2. The extension storage section. 

The extension storage is not addressable by the 
programmer, except by using the diagnose instruc­
tion. Extension storage is a reserved area of main 
storage for channel Unit Control Words (DCW' s), 
basic GPR's, and FPR's. 

16K or 32K byte modules of storage known as 
Basic Operating Memories (BOM's), are assembled 
as gates to make up the required storage sizes of 
the IBM 2044. The BOM has data positions that are 
only 18 bits wide; to provide the simultaneous, full 
word, 36-bit (32 bits of data plus four parity bits) 
access that is required, two BOM's are addressed 
at the same time. The two 18-bit output words from 
the two BOM's fill each half of the 36-bit wide stor­
age data register. 

Main storage is available in three sizes while the 
size of the extension storage section increases with 
the size of main storage to a maximum of 8K bytes. 
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The storage sizes of the various models are as 
follows: 

Model 2044E 2044F 2044G 

Main Storage Size 32K 64K 128K 

(Bytes + Parity Bits) (32,768) (65,536) (131,072) 

Extension Storage Size 2K 4K 8K 
(Bytes + Parity Bits) (2,048) (4,096) (8,192) 

BOM Array Size 16K 32K 32K 

(Bytes) 

Quantity of BOM's 2 2 4 

The terms 32K, 64K and 128K (number of bytes of 
main storage and extension storage shown in the 
table) are used to denote a specific storage size, 
and are employed in the remainder of this descrip­
tion of main storage. 

In order to provide the maximum main storage 
size of 128K bytes, four BOM's, each of 32K bytes, 
are used. 

In both read and write cycles four bytes are 
handled. Two storage units are addressed simul­
taneously, each unit handling one halfword. 

• 1. 0 microsecond read/write cycle. 

• Split-cycle operation with a CPU write cycle 
always follOwing a CPU read cycle. 

• storage access time is approximately 450 
nanoseconds. 

The cycle time is defined as the time required by 
the CPU for reading out or writing a full word. 

In a CPU read cycle a full word is read from 
main storage, one CPU read cycle taking 0.5 micro­
seconds (!J.s). In a CPU write cycle, a full word is 
written into main storage, one CPU write cycle 
taking 0.5 !J.s. There may be a gap of indefinite 
duration follOwing the CPU read cycle (split-cycle 
operation), but a CPU write cycle must always fol­
Iowa CPU read cycle. The CPU read cycle develops 
a signal called 'read call' which is sent to the stor­
age to initiate a storage read cycle. The maximum 
period between the time when the read call pulse 
from the CPU reaches the main storage logic, and 
when the data (read from the storage) is available to 
the CPU, is known as the "access" time; this time is 
of approximately 450 ns duration. 



Core Array 

Array Fan 

Figure 2-4Q. 2044 Storage Unit (BOM) 
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storage Cycles 

• The system specifies read or write operation. 

• The cycles have asynchronous operation. 

• The system provides the start signal. 

• The system provides the address. 

• The storage data register provides data to be 
stored and accepts data read-out. 

The main storage integral circuits control the read­
ing or writing of data. The CPU sends to the main 
storage logic circuitry the basic commands 'read 
call' or 'write call'. The storage cycle then pro­
ceeds under control of the storage unit clock, inde­
pendently of the CPU timing. 

Because the storage units are entirely indepen­
dent of the 2044, communication between the two 
takes place over a number of signal lines which 
form collectively the storage/CPU interface (refer 
to "Core storage Unit Interface" in this section). 
Essentially, this interface transfers address infor­
mation, input data, output data, and timing signals. 
The basic data flow is as follows: 

1. The CPU places the address into SAR 1 and 
SAR 2. 

2. SAR 1 provides the address for storage units 
(BOM's) 1 and 3. SAR 1 bit 15 selects either 
storage unit 1 or 3 (when SAR 1 bit 15 = 0, 
storage unit 1 is selected and when bit 15 = 1, 
storage unit 3 is selected). 

3. SAR 2 provides the address for storage units 
2 and 4. SAR 2 bit 15 selects either storage 
unit 2 or 4 (when SAR 2 bit 15 = 0 storage unit 
2 is selected and when bit 15 = 1, storage unit 
4 is selected). 

These controls are summarized in the follOwing 
table (applicable to 128K storage only): 

SAR Bit 15 storage Unit Selected 

1 0 storage Unit 1 
1 1 storage Unit 3 
2 0 storage Unit 2 
2 1 storage Unit 4 

At the appropriate time, the storage unit is sig­
nalled by the CPU to begin a storage read cycle 
(read call). The halfwords located at the addresses 
specified by SAR 1 and SAR 2 are read out of the 
storage and placed on the data line to the SDR. When 
the storage read cycle is complete, the storage stops 
and awaits a write cycle. 

The full. word of data read out may be placed back 
into storage (the two halfwords to the locations 
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specified by SAR 1 and SAR 2) or a different full 
word may be placed in these addressed locations on 
the following CPU write cycle. 

The full word to be placed into main storage is 
first set into the SDR. The CPU then signals the 
storage to begin a storage write cycle (write call). 
The storage timing circuits start and the same posi­
tions are again addressed. This time, however, a 
write operation is performed and the full word in the 
SDR is placed into storage. One halfword, bytes 0 
and 1, is placed in the location addressed by SAR 1; 
the other halfword, bytes 2 and 3, is placed in the 
location addressed by SAR 2. 

FUNCTIONAL UNITS 

Basic Operating Memory 

The basic operating memory is shown in Figure 2-40. 
The BOM is available with two different sizes of 

storage array. The smaller of these is a nine-plane 
array containing 16K bytes of main storage and 1K 
byte of extension storage, while the other is an 
18-plane array which contains 32K bytes of main 
storage and 2K bytes of extension storage. The 
BOM also contains the array heater and fan, two 
logic gates and their fans, and the resistor gates. 
The three storage sizes of the 2044 are made up 
from these basic modules as shown in the preceding 
table in "Capacity" and in Figure 2-41. 

Model 2044 E 

2 BOM's {each 
containing a 16K 
Array} 

32K Bytes 

Model 2044 F 

2 BOM's 

64K Bytes 

Model 2044 C;; 

4 BOM's 

128K Bytes 

SAR 1 Addresses 

Figure 2-41. Main Storage Capacity 

~ 
~ 

SAR 2 Addresses 



Core Array 

• The core array consists of a number of discrete 
core planes. 

• Three wires pass through each core. 

• The horizontal drive lines are called X lines. 

• The vertical drive lines are called Y lines. 

• A combined sense/inhibit line is used. 

The arrangement of the 32K storage array is shown 
in Figure 2-44. An array is built from a number of 
core planes. Each plane is constructed of a plastic 
frame (approximately 6-1/2 inches square) that is 
crossed horizontally by 128 X lines and vertically by 
136 Y lines and fitted at each intersection of X and 
Y lines with a ferrite core. Of the 17,408 cores in 
each plane, 16,384 are used for main storage and 
1,024 .for extension storage. 

The core plane consists of four sections. Each 
X line passes through two of these sections (Figure 
2-42) and, therefore, each X line crosses any Y line 
at two points; thus two bit positions can be addressed 
in each plane by the selection of a single pair of X 
and Y lines. 
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(8 in Extension Storage) 
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(16,384 Cores in Main Storage and 
1,024 Cores in Extension Storage) 

Figure 2-42. Core Plane 

A combined sense/inhibit line in each section is 
wound parallel to the X lines and also passes through 
each core as shown in Figure 2-43. 

The 16K storage array consists of nine planes, 
eight data bits and one parity bit. Two of these 
arrays are used to form the 32K array as shown in 
Figure 2 -44. The two arrays share a common set 
of Y lines, each of which passes through all 18 
planes. Two sets of X lines are used in the 32K 
array, one set in the 0 to 8K halfword addressable 
section, and one set in the 8 to 16K halfword address­
able section. 

In each section the X lines are divided into two 
groups. Thirty-two of these lines are selected by 
SAR bit 29 and pass through sections A1 and A2, 
while the remaining 32 are selected by Not SAR 
bit 29 and pass through sections B1 and B2. A core 
in section A1 or B1 is a byte 0 bit, while a core in 
section A2 or B2 is a byte 1 bit. As each X line 
selects two bit positions, bits 0 and 8, 1 and 9, 2 
and 10, etc. are addressed simultaneously. 

Y + 1/2 

-1/2 ~ 
/ 

/ x + 1/2 
Sense 

/ 
- 1/2 Z 

/ 

~ -1/2 

Figure 2-43. Core Wires (Three- Wire System) 

Common Sense/Inhibit 

• Sense/inhibit lines run parallel to X lines . 

• Both legs of a sense/inhibit line are connected 
together at one end. 

• Open ends feed sense amplifiers and inhibit cur­
rent terminators. 

• Looped end is connected to the inhibit driver. 

The 32K storage array contains eight sections each 
having nine planes, therefore providing a total of 72 
combined sense/inhibit lines for each array. The 
sense/inhibit logic is shown in Figure 2-45. Eighteen 
sense amplifier/inhibit driver cards are used in 
each storage unit, each card containing four sense 
amplifiers (SA's) and four inhibit drivers. The four 
sense/inhibit lines associated with each data bit in 
the array are connected to one card. 
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Typical Byte 1 0-8K A 

Typical Byte 0 0-8K A 

Lines 
SAR 29 
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Figure 2-44. Storage Array (32K) 
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As only one of the four locations associated with 
each bit can be active at one time, the sense ampli­
fiers and inhibit drhzers are gated, depending on 
SAR bits 16 and 29 as shown in the following table. 

SAR 8K Section for which SA and 

Bits Section Inhibit Drivers are active 

16 29 Byte 0 Byte 1 

0 o to 8K Ai A2 

0 0 o to 8K B1 B2 

8 to 16K Ai A2 

0 8 to 16K Bl B2 

Sense 

• The X and Y current attempts to flip all cores to 
zeros during the read cycle. 

• Cores that were at one produce a sense pulse. 

The logic of the sense circuit is shown in Figure 
2-46. 

During the read cycle the coincidence of an X and 
Y current will attempt to flip all cores to a zero 
state. Any core that contains a one bit will flip 
causing a pulse on the sense line, while any core 
that was at zero will remain at zero and therefore 
produce no pulse on the sense line. 

The open ends of the sense line are connected to 
a sense amplifier which is gated by the contents of 
bits 16 and 29 of SAR. The output of the four sense 
amplifiers associated with each bit are dot OR'ed 
and fed to a detector which is gated by a strobe 
pulse derived from the core clock. The detector, 
in turn, drives a sense latch the output of which is 
fed to the SDR. 

Inhibit 

• The current in X and Y wires during the write 
cycle would write all ones. 

• The inhibit current opposes the X current and 
prevents core flipping. 

The inhibit logic is shown in Figure 2-46. 
During the read cycle all cores in the addressed 

location are flipped to zero. During the write cycle 
the half-write current flowing in both the X- and 
Y -drive lines would flip the cores to ones. If the 
bit to be stored is a zero, inhibit current is raised 
in the sense/inhibit line in the opposite direction to 
the current flOwing in the X line, thereby cancelling 
the half-write current in the X line and preventing 
the core from flipping. 
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Figure 2-46 shows a diagram of the inhibit driver 
arrangement for one core plane of an array. The 
outputs of the corresponding SDR bit positions are 
fed to all four inhibit drivers for that bit. The cor­
rect driver is then selected, depending upon the 
contents of SAR bits 16 and 29. 

Core Storage Unit Interface 

• The Core Storage Unit (CSU) used in the 2044 is a 
standard unit. 

• The CPU communicates with the core storage by 
means of the CSU interface. 



The core storage unit of the 2044 is a standard unit 
used also in other System/360 models. Therefore it 
is necessary to provide a standard set of signal lines 
(CSU interface) for communication between the CPU 
and core storage. All addresses, data and control 
signals are transmitted over this interface. The 
CSU interface is shown in Figure 2-47. 

Storage Addres sing 

• SAR 1 is used to address storage units 1 and 3. 

• SAR 2 is used to address storage units 2 and 4. 

Fifteen lines are used to carry addresses from the 
SAR's to the storage units. The storage units always 
access a full word, therefore SAR bit 30 is not 
transferred from SAR to the storage units. If SAR 
bit 14 is on, it denotes an invalid storage address. 
It is therefore necessary to transfer only SAR bits 
15 to 29 across the CSU interface. 

On machines having 128K of main storage, SAR 
bit 15 is used to select either storage units 1 and 2, 
or 3 and 4, as shown in the preceding table under the 
heading "Storage Cycles." 

The addresses are set into the SARIS at the 
beginning of the read cycle (RC 1, CP 1) and, at the 
same time, the signal 'read call' is generated. Thus, 
at read call time, the SARIS are not valid. It is 
therefore necessary to start the read cycle in all 
storage units irrespective of the required address. 
Later in the read cycle, SAR bit 15 is used to gate 
the X and Y current in the correct storage units. 

If extension storage is to be addressed, the 
'extension storage' latch is set, blocking one end of 
the normal Y lines and activating the extension stor­
age Y lines. 

Storage Data-Bit Lines 

• Thirty-six lines transfer data from the SDR to 
main storage. 

Thirty-six data-bit lines are used to connect the 
SDR to the storage unit inhibit drivers. Eighteen of 
these lines connect SDR bytes 0 and 1 to storage 
unit 1; the remaining 18 lines connect SDR bytes 2 
and 3 to storage unit 2. In a 128K main storage, 
these lines are carried by inter-unit cables from 
storage unit 1 to storage unit 3 and from storage 
unit 2 to storage unit 4. 

Storage Sense-Bit Lines 

• Thirty-six lines carry the sense data from main 
storage to the SDR. 

Thirty-six storage sense-bit lines connect the 'sense 
amplifier detector' latches to the SDR. Eighteen of 
these lines carry bytes 0 and 1 from storage unit 1 
to the SDR while the other 18 lines carry bytes 2 and 
3 from storage unit 2 to the SDR. As with the stor­
age data-bit lines inter-unit cables are used to con­
nect storage units 1 and 3, and 2 and 4. 

Storage Clocks 

• Each storage unit has a separate clock. 

• The clock consists of delay lines and timing 
latches. 

• The clock is started by either read call or write 
call. 

The storage clock and timing can be seen in Figures 
2-48 (read clock) and 2-49 (write clock). 

Each storage unit of the 2044 contains its own 
clock. This allows the storage to operate indepen­
dently with respect to the CPU. The clock cycles 
are started by one of two signals from the CPU; if a 
read cycle is required, the CPU generates 'read 
call', whereas, if a write cycle is required, 'write 
call' is generated. Both of these lines start the 
'storage delay' line that consists of two 250-ns delay 
lines connected together to form a 500-ns delay line. 
The delay line is tapped at 25-ns intervals, and the 
outputs are used to control a set of latches which 
provide the timing pulses required by the storage. 

PRINCIPLES OF OPERATION 

Read Call to storage 

The 'read call' to storage is generated whenever the 
CPU requires a storage read cycle. The read clock 
in the CPU is started and at RC 1, CP 1 time, 'read 
call' is sent to all storage units via the CSU inter­
face. The read cycle timing is shown in Figure 2-48; 
the timings depicted do not take circuit delays into 
account. 

Purpose of Latches used during Read Cycle 

Read Set Latch: The 'read set' latch controls the set 
and reset of the other timing latches during the read 
cycle. 

Pulse Width Latch: This latch produces a 100-ns 
pulse to the delay line input. 

Read 1 Latch: This latch provides timing to the 
X-control drivers and the 'strobe' latch. 
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Address 
Decode Sense Inhibit 
and 
Drive 

Timing Gate I 
and (BaM 4) 
Cantral 32K Bytes 

Control (4 lines (128K only) 

Sense Data Read (18 lines) 

Store Data Write (18 lines) 

I 
SAR2 Bits 15-29 T T 

:;: 
Address 
Decode 
and Sense Inhibit 
Drive 
Timing Gate H 
and (BaM 2) 

1j--3 16K or 

Control 
32K Bytes 

-- -- - --- --- - --

I 

I SAR 21 SDR 
Bytes 2-3 

I 

Read Call 
Write Call 
Extension Storage 
SyS tem Reset 

Figure 2-47. Core Storage Unit Interface (64K) 

Read 2 Latch: This latch provides timing to the 
Y -control drivers. 

-

I 
I 

X-Source Read Latch: This latch provides the timing 
pulse to the X-source read driver. 

Y -Source Read Latch: This latch provides the timing 
pulse for the Y -source read driver. 

Strobe Latch: The output of this latch is fed to a 
further delay line which provides the strobe pulse 
for the sense amplifier circuits; 
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~ ...... ...... 

Address 
Sense Inhibit Decode 

and 
Drive 

Timing Gate G 
and (BaM 3) 
Control 32K Bytes 

!,-ontrol (4 lines) 
(128K only) 

Store Data Wri te 1(18 li nes) 

Sense Data Read (18 Llnes) 

I I 
SAR 1 Bits 15-29 == T ~ -Address 

Decode Sense Inhibit 
and 
Drive 
Timing 

Gate F 
and 

(BaM 1) 

I.-J 16K or 

Control 
32K Bytes 

Memo ry --- ---
CPU 

j 

SDR I SAR 1 
Bytes 0-1 

I L-

Write Call to Storage 

The write cycle timing is shown in Figure 2-49. 
The 'write call' to storage is generated when the 

CPU requires a storage write cycle. If the cycle is 
not a .split cycle, the write clock is started at RC 4. 
During split-cycle operation, the write clock will be 
started as soon as the data to be stored is available. 
The 'write call' is generated at WC 1, CP 1 of the 
write clock cycle, and starts the storage clock in all 
storage units. The 'write set' latch for each stor­
age unit to be used is set by 'write call' under the 
control of SAR bit 15. 
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X-Source Read 
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Figure 2-48. Read Cycle 
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Go 
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System Reset 

o ns 

400 ns 
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Write Call 

Wri te Set Latch 

Write Latch 

Inhibit Latch 
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FL 
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I 
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V-Source Write ~~------.. ------...... ~ 

~~------~-------

Figure 2-49. Write Cycle 

Purpose of Latches used during Write Cycle 

Write Set Latch: This latch controls the set and 
reset of the write cycle timing latches. 

Write Latch: This latch provides the timing to the 
X- and Y -control drivers during a write cycle. 

X-Source Write Latch: The 'X-source write' latch 
provides timing for the X-source driver during a 
write cycle. 

Y -Source Write Latch: This latch provides timing 
for the Y -source driver during a write cycle. 

Inhibit Latch: The 'inhibit' latch provides the timing 
to the inhibit driver. 

System Reset: The effect of 'system reset' on the 
storage clock circuits is that the 'read set' latch and 
the 'write set' latch are both reset. However, the 
delay line drive pulse is brought up and the delay 
line takes a cycle, in order to provide a reset to the 
remaining clock latches. 
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X- and Y-Drive Current Sources 

• These current sources supply drive current to the 
X and Y windings. 

• Four sources only are necessary for each ROM. 

• The sources are divided into two groups: X-read 
and X-write, and Y-read and Y-write. 

• The sources are common to all array addresses 
within a storage unit and depend on gates to select 
a specific address. 

Figure 2-50 shows the circuit of a current source. 
Each current source consists of a transformer 

secondary winding. The primary windings of each 
transformer are driven by a transistor circuit. 
During a storage read cycle, the 'Y -source read' 
latch provides the timing pulse to the Y -read current 
source. If a storage unit is selected, the Y -source 
circuit is turned on causing current to flow in the 
Y -source read transformer primary winding. This 
current, in turn, causes the transformer secondary 
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Figure 2-50. X-and Y-Drive Current Sources 

current to flow. By this time, the selection circuitry 
has coupled the source transformer to a 'Y -drive' 
line, and current flows through the drive line. During 
a storage write cycle, 'Y-source write' is turned on 
which, in turn, causes current flow in the opposite 
direction in the same 'Y -drive' line. 

The same action occurs in the X-source read and 
X-source write circuits. 

X- and Y-Drive Gate and Selection Circuits 

• The gate and selection system directs drive cur­
rent to a single X line and a single Y line. 

• The gate and selection logic consists of control 
drivers, address decodes and gates. 

The principle of the gating and selection system is 
shown in Figure 2-51. 

The purpose of the gate and selection system is 
to route drive current from a current source to a 
single X line and a single Y line. The gate and 
selection system acts as a switch at each end of the 
drive lines. Thus the current source supplies the 
operating current and the gate and selection circuitry 
routes the current to the appropriate drive lines. 
The X and Y drivers are shown schematically in 
Figure 2-52. 

Two 8K addressable sections are used in the 
storage unit. In both 8K sections, eight read/write 
decode drivers are distributed at both ends of the 
64 X-drive lines. Each decode drive consists of a 
read decode drive and a write decode drive. 

X-Read Decode Drive 

Three basic inputs to the read decode drive are as 
follows: 

1. The AND'ed input of SAR bits 24, 25 and 26 at 
one end and SAR bits 27, 28 and 29 at the other 
end. These inputs select one of eight read 
decode drivers at one end and one of eight read 
decode drivers at the other end. 

2. The timing from the X-read control driver. 
Two X-read control drivers are used in each 
8K section, SAR bit 16 controlling the setting 
of these drivers. When SAR bit 16 equals 0 
and the storage clock is on, the X-read con­
trol drivers in the 0 to 8K section are active; 
when SAR bit 16 equals 1 and the storage 
clock is on, the X-read control drivers in the 
8 to 16K section are active. 

3. The currents supplied by the X-read current 
source. 

To select and drive one X-drive line during a read 
operation, the following action takes place: 

1. One of the eight read decode drivers on one 
side of the array is active. 

2. The eight lines from this decode drive are 
each routed to a separate read decode drive on 
the other side of the array. 

3. One of these separate read decode drivers is 
also active, allowing current to flow through 
one only of the eight lines. 

X-Write Decode Drive 

Three basic inputs to the write decode drivers are 
as follows: 

1. The AND'ed input of SAR bits 24, 25 and 26 on 
one side of the array and SAR bits 27, 28 and 
29 on the other side; these signals are com­
mon with read decode drive. 
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Figure 2-51. Gate and Selection System 

2. Timing from the X-write control driver. Two 
X-write control drivers are used in each 8K 
storage section, SAR bit 16 controlling the 
setting of these drivers. If SAR bit 16 equals 
o and the storage clock is present (output and 
X-write latch), the X-write control drivers in 
the 0 to 8K section are turned on; if SAR bit 16 
equals 1 and the storage clock is present, the 
X-write control drivers in the 8 to 16K section 
are turned on. 

3. The current supplied by the X -write current 
source. 
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To select and drive one X-drive line during a write 
operation, the following conditions must be met: 

1. One of the eight write decode drivers on one 
side of the array must be active. 

2. One of the eight separate write decode drivers 
on the other side of the array also must be 
active, allowing current to flow through one 
only of the eight lines. 

The address decode is common to both the read 
and write decode drives. Thus the same X lines 
are driven in both read and write operations although 
the write current is in the opposite direction to the 
read current. 

\ 

" ( 
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Figure 2-52. Main Storage X and Y Line Drivers 

Y-L:ine Drivers 

The Y -line driver arrangements are similar to 
those for X-l:ine drive. Because there are 128 Y 
l:ines in the 32K storage array, 16 read and write 
decode drivers are needed at each end of the array. 
SAR bits 17, 18, 19 and 20 are AND'ed at one end of 
the array and SAR bits 18, 21, 22 and 23 are AND'ed 
at the other end of the array. The output from this 
AND'ing selects one of the 16 read/write decode 
drivers at each end of the array. 

To select and drive one Y -drive line, the follOwing 
conditions must be met: 

1. One of the 16 read/write decode drivers on one 
side of the array must be active. The eight Y 
lines from this decode drive are each routed 
to the separate read/write decode drivers on 
the other side of the array. 

2. One of these other decode drivers also must 
be active, allowing current to flow through one 
of the eight lines. 

SAR bit 18 is used to select a read/write decode 
drive at each end of the array. The eight read/write 
decode drives at one end of the array are selected 
when SAR bit 18 equals 0 and those at the other end 
when SAR bit 18 equals 1. 

X- and Y -Decode Numbering Scheme 

The numbering scheme used to identify the X- and 
Y -decode drivers makes it possible to identify the 
active circuit by knowing which bits are present :in 
the SAR. See. Figure 2-53. 
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Figure 2-53. X-and Y-Decode Drivers 

X-Decode: The X-decode drivers use SAR bits 24 to 
29. The following three symbols are used in the 
ALD's to show the conditions necessary to activate 
a decode driver: 

this bit is not used to control this driver. 
1: this bit must be present in order to activate 

this driver. 
0: this bit must not be present in order to acti-

vate this driver. 
Therefore the X-decode driver specified in Figure 
2-53 is activated when bit 27 of the SAR is on, bit 28 
of the SAR is off and bit 29 of the SAR is on. The 
status of bits 24, 25 and 26 will not affect this driver. 
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Y -Decode: The Y -decode drivers use SAR bits 17 to 
23 and are shown in the ALD's in the same way as 
the X -decode drivers. Therefore~ the: Y -decode 
driver specified in Figure 2-53 is activated when 
SAR bits IS, 21 and 23 are on, and bit 22 is off. 
Bits 17, 19 and 20 will not affect this driver. 

Example of Storage Read/Write 

Assume that the following binary address is in the 
storage address register: 

o 
15 

0111 0111 0111 1 0 o 
29 30 31 

The sequence of operation is that the CPU calls 
first for a read cycle, then for a write cycle. The 
byte read out is either regenerated (placed back into 
the addressed location) on the write cycle or new 
information is set to the SDR by the CPU to be 
stored on the write cycle. The operational sequence 
is as follows: 

1. start the storage clock. 
Read call 
Not pulse width control 

2. Turn on the 'read set' latch to enable a read 
cycle. 

Read call 
Not pulse width control 

3. Set the 'use main storage' line to define the 
area of storage to be addressed: 

+ Use main storage = Main storage addressed 
- Use main storage = Extension storage 

addressed. 
4. Select and drive one Y line with read current. 

This operation requires the turning on of two read 
control drivers (one for each end of the Y line), two 
address decode switches (one for each end of the 
Y line), two read gates (one for each decode switch), 
and the Y -read current source. 

a. Turn on the Y -control drivers RD 0 to 16KB 
and RD 0 to 16KA. 
These drivers provide the signals, RD 2 con­
trol 0 to 16KA and RD 2 control 0 to 16KB. 

Use main storage 
Read 2 (from storage clock) 

b. Turn on the Y-read current source. 
Y -source read (from storage clock) 
Go (Not SAR bit 15) 

c. Turn on RD - 1 - - 111. This is a Y-decode 
switch for the source side of the Y line. The 
gates are on the same logic page and feed the 
decode switches di rectly. 
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Y -read current source 
Read 2 control 0 to 16KA 
SAR bit 22 
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SAR bit 23 
SAR bit 21 control 
SARhit 18 control 

d. Turn on RD 11. 1 0- - -. This is the Y -decode 
switch for the sink side of the Y line. 

RD 2 control 0 to 16KB address 
RD current sink 
SAR bit 17 and bit IS 
Not SAR bit 20 
SAR bit 19 

5. Select and drive one X line with read current. 
This operation involves the turning on of two read 
control drivers (one for each end of the X line), two 
address decode switches (one for each end of the 
X line), two read gates (one for each address decode 
switch), and the X-read current source. 

a. Turn on the X-control drivers RD 0 to SKA 
and RD 0 to SKB. 

RD 1 (from clock) 
Not SAR bit 16 

b. Turn on the X-read current source. 
X -source read 
Go (Not SAR bit 15) 

c. Turn on RD - - -1 1 O. This is the X-decode 
switch for the source side of the X line. 

X-read source 
RD 1 control 0 to SKA address 
SAR bit 27 
Not SAR bit 28 
SAR bit 29 

d. Turn on RD 0 1 1 - - -. This is the sink side 
of the X line. 

X-RD sink 
RD 1 control 0 to 8KB address 
Not SAR bit 24 
SAR bit 25 
SAR bit 26 

6. Condition the sense amplifier gates so that 
the appropriate sense windings are gated to their 
respective sense amplifiers. The gates for this 
address are 0 to SK Bl (to byte-O sense amplifiers) 
and 0 to SK B2 (to byte-l sense amplifiers). 

Not SAR bit 16 
Not SAR bit 29 
Read 2 (from clock) 
Go (Not SAR bit 15) 

7. Amplify and gate the sense pulses to the sense 
amplifier detector latches. 

SA gate 0 to SK Bl (byte-O sense amplifiers) 
SA gate 0 to 8K B2 (byte-l sense amplifiers) 
SA input, any bit, 0 to 8K 
Strobe 0 to 16K (from clock) 

S. The sense amplifier detector latches are set 
into the SDR. 



9. Without changing address in the SAH's, the 
CPU requests a storage write cycle and starts the 
storage clock. 

Write call 
Not pulse width latch. 

10. Set up the storage clock for a write cycle by 
turning on the write set latch. 

Write call 
Go (Not SAH bit 15) 

11. For the write cycle it will be necessary to 
select and drive the same X- and Y-drive lines as 
were driven on a read cycle. On the write cycle, 
however, the current flow must be in the opposite 
direction. For the Y line, it is necessary to turn on 
two control drivers (one for each end of the Y line), 
two address decode switches (one for each end of the 
Y line), two address gates (one for each decode 
switch), and the Y-write current source. 

a. Turn on the Y -control drivers, WR control 0 
to 16KB and WH control 0 to 16KA. 

Write A (from clock) 
Use main storage 

b. Turn on the Y-write current source driver. 
Y -source write (from clock) 
Go (Not SAH bit 15) 

c. Turn on the WR - 1 - -1 1 1 write address 
decode driver. This includes the address gate 
and is on the sink end of the Y line. 

SAR bit 18 control 
SAR bit 21 control 
SAR bit 23 
SAR bit 22 
Y -write current sink 
WR control 0 to 16KA address 

d. Turn on the WR 1 1 1 0 - - - write address 
decode driver. This includes the address gate 
and is on the source end of the Y line. 

SAR bits 17 and 18 
Not SAR bit 20 
SAH bit 19 
WR control 0 to 16KB address 
Y -write current source 

12. Select and drive the same X line in the oppo­
site direction. This requires two control drivers 
(one for each end of the X line), two address decode 
switches (one for each end of the X line), two ad­
dress gates (one for each decode switch), and the 
X-write current source. 

a. Turn on X-control drivers WR 0 to 8KA 
address, and WR 0 to 8KB address. 

Write B (from clock) 
Not SAR bit 16. 

b. Turn on the X-write current source. 
X-source write 
Go (Not SAR bit 15) 

c. Turn on the X-decode driver for the sink end 
of the X line. This is WR- - -110. 

SAH bit 27 
Not SAR bit 28 
SAH bit 29 
X-write sink 
WH control 0 to 8KA address 

d. Turn on the X-decode driver for the source end 
of the X line. This is WH 0 1 1-

SAH bit 25 
Not SAR bit 24 
SAH bit 26 
X-write source 
WR control 0 to 8KB address 

13. The appropriate set of inhibit drivers must be 
gated so that only one set of these drivers turns on. 
For this address, inhibit 0 to 8K B1 (to byte-O inhibit 
drivers) and 0 to 8K B2 (to byte-1 inhibit drivers) 
must be turned on. 

Not SAH bit 16 
Not SAH bit 29 
Inhibit (from clock) 

14. For those bits that are to be set on, the inhibit 
driver must be blocked from turning on. The store 
lines block their respective inhibit drivers. 

15. For those bits that are to be blocked from 
setting, the appropriate inhibit drivers are turned 
on by the (Not) store lines. Inhibit current opposes 
the effect of the X-drive current and the core is not 
set. 

Extension Storage Addressing 

Figures 2-54 and 2-55 show the basic principle of 
extension storage addressing. 

Extension storage shares with main storage the 
external control circuits, the internal control and 
timing circuit, the sense/inhibit system and X-line 
driving. A separate extension storage Y -drive 
scheme is used to select any of the eight extension 
storage Y -drive lines in the storage unit. 

Use Extension 

Storage 

X-Gate 
Decode 

Figure 2-54. Extension Storage Addressing Scheme 
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* Each Y-line driver is connected to eight additional main 
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shown drive ten lines. 

- Read Source 
Ext Even DR Lines 

Figure 2-55. Extension Storage Y Read and Write Drive 

The X-line selection, the X drive and Y drive are 
common with main storage. The selection of exten­
sion storage Y lines is implemented as follows .. 

Eight additional Y lines are used for extension 
storage in each storage unit (BOM) . On one side of 
the array, these eight lines are arranged into four 
pairs and added to four of the normal read/write 
decode sets. These decode sets are: 

SAR bits 18, 21, 22, 23 
18, 21, 22, 23 
18, 21, 22, 23 
18, 21, 22, 23 

Bits 22 and 23 are fed to the decode of the normal 
output of the SARIs. However, bits 18 and 21 are 
split by extension storage. On the other side of the 
array, these eight lines enter two pairs of gate 
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decoders which are active only when there is a call 
for extension storage. SAR bit 21 is used to deter­
mine whether odd or even lines are active. These 
eight Y lines and normal selection of the X lines 
allow access to all extension storage locations up to 
the maximum extension storage size. 

TEMPERATURE CONTROL AND POWER SUPPLIES 

Storage Temperature Control 

• The speed at which a core flips is dependent on 
temperature. 

• For stable operation a constant core temperature 
is required. 



The speed of a core storage unit will vary apprecia­
bly depending upon the temperature at which it is 
operating, and the magnitude of the current which is 
used to drive the cores. In order to stabilize the 
operation of the cor.e it is necessary to either vary 
the current according to temperature, or to stabilize 
the temperature. The storage of the IBM 2044 is 
held at a constant temperature by a core heater and 
fan arrangement which is mounted at the bottom of 
the array. Each BOM is fitted with a heater box 
assembly. 

6The normal operating temperature of the array is 
37 C (990 F). However, it is possible to use the core 
when its temperature has reached 340 C (930 F). 

The core heater consists of 13 wire-wound resis­
tors connected in parallel. The resistors provide a 
total heat dissipation of 450 watts when operated at 
20Sv ac. Connected in series with these resistors 
are two Silicon Controlled Rectifiers (SCR's), the 
operation of which is controlled by a proportional 
control unit and a thermistor. 

The proportional control unit consists essentially 
of a power supply, a transistorized differential 
amplifier and a triggering circuit, the output of which 
is fed to the SCR's. This is shown in Figure 2-56. 
By altering the point in the mains sine wave at which 
the SCR's are fired, it is possible to either raise or 
lower the output of the heater. This firing point is 
decided by the thermistor which is mounted in the 
storage array. Thus, if the core temperature is 
low, the thermistor allows the control unit to fire 
the SCR's early in the sine wave, but if the tempera­
ture is high, the firing point will occur later. Refer 
to Figure 2-57. 

Two thermal switches are used to indicate to the 
CPU that the core temperature is above 340 C (930 F) 

o 0 0 0 
and not more than 49 C (120 F). The 34 C (93 F) 
thermostat consists of a glass tube containing mer­
cury. Two wires pass through this tube, one of 
which becomes the switch common contact. A con­
nection is made through the mercury to the other 
wire whenever the temperature exceeds 340 C (930 F). 
The switch detail is shown in Figure 2-5S. 

Proportional Control Unit 

Power 
Supply 

Differential 
Amplifier 

Trigger 

Thermistor 

r--'Wv---. 
I 

Temperoture 

208vac 

Core I 
Over Temperature 

Core Array Heater 

49"c (12o"F) 

01-------, 

~Kl Core 
Temp~ature Good 

I 
I 

Figure 2-56. Storage Temperature Control 
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Silicon Controlled Rectifiers 
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Figure 2-57. Core Heater Voltage 
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Figure 2-58. Thermostat Detail 
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Power Supplies to Main storage 

• Main storage power comes from the power sup­
plies section of the main frame. 

• An 18-volt supply is generated in the main stor­
age frame, input coming from the CPU -30v 
supply. 

Power for the storage frames comes from the Mid­
Pac modules located in the main frame. The power 
supplies used by main storage are shown in the 
following table: 

Power 
Supply Voltage Comments 

PS 1 +3v Standard 
PS 2 - 30v Used to Produce - 18v 
PS 6 +6v 
PS 12 - 3v 
24v +24v dc Used for Heater Control Relays 

The -18v (±lv) supply is generated in the storage 
frame by means of two series regulator cards. The 
output of this power supply is used by the sense 
amplifiers. The voltage regulator is protected 
against short circuits. H the regulator output is 
shorted to ground, the power supply will automati­
cally cut off and, when the short circuit is removed, 
will automatically turn on again. 



CHECKING 

MACHINE MALFUNCTION CHECKING 

CPU Checking 

• Failures are detected by: 
extensive software diagnostic programs, or 
limited hardware checking circuits. 

• Parity checking can be made: 
in the storage area, 
in the high speed multiplexor channel, or 
across the standard interface. 

• Control checking can be made on: 
active storage cycle controls, 
sequence control latches, or 
floating-point sequence-control latches. 

• Provision is made to force a machine check 
(from the console for customer engineer use). 

• A machine check: 
can be ignored, 
can give a hardstop, or 
can give a machine check interrupt. 

Circuit malfunctions are detected and located mainly 
by diagnostic programs (for customer engineer use 
only). The descriptions and handling of these pro­
grams are given in the "Diagnostic Aids" section in 
FEMM, Form Y33-0007. 

However, hardware checking circuits have been 
provided to allow limited detection of single machine 
errors. These circuits are associated with the fol­
lowing areas. 

Redundancy Checking: Odd parity is generated and 
checked with information in the storage area, in the 
high speed multiplexor (HSMPX) channels, and 
across the standard interface. See Principles of 
Operation - Channels, Form Y33-0003, for the 
last two items. 

Control Checking: This check is provided to ensure 
that only one active storage cycle control is on at 
one time, or that only one sequence control latch 
(including any floating-point sequence-control latch) 
is set. Note that a sequence-control cycle and a 
floating-point sequnce-control cycle may occur 
together and at the same time as an active storage 
cycle control. 

Console Forced Machine Check: Although this is 
not a malfunction check, certain conditions and con-

sole settings allow a machine check to be generated 
from the console circuits in order to simulate an 
error. The simulated error in turn allows a ma­
chine check interrupt to occur. The console switch 
settings are the check control rotary switch set to 
FORCED RESTART or the MS address-compare 
rotary switch set to LOOP. This facility is essen­
tially for customer engineer use. 

The system is able to record intermittent parity 
or control failures detected by circuits. The sys­
tem does not necessarily stop and intermittent 
failures have a minimum impact on customer use 
of the equipment, as the failures are stored in 
check latches. The outputs of the check latches 
are combined with several console and/or program 
conditions to give no reaction, a hardstop, or a 
machine check interrupt. The interrupt routine is 
usually programmed in order to perform diagnose 
instructions. 

Parity Checking and Generation 

• Odd parity is carried with each byte to and from 
storage or the HSMPX channels. 

• Each parity checking circuit can set the SDR par­
ity check latch. 

• A parity check inhibit latch can prevent checking 
for each byte. 

• A parity generation circuit is provided for each 
byte. 

• An HSMPX channel parity error signal is sent 
back to the HSMPX channel. 

• The SDR check lamp is lit when the SDR parity 
check latch is on. 

Circuits are provided to check and to generate the 
odd parity bits for data associated with storage. 
These circuits are interleaved as shown in Figure 
2-59. 

Odd parity implies that when the number of bits 
within a byte is odd, no parity bit is required. The 
requisite analysis is made by the ODD block in 
Figure 2-59 (See Appendix B4 of the FEMM, Form 
Y33-0007, for a description of the ODD block.) 
The ODD block receives each SDR bit except the 
parity bit. The result of the analysis is EXOR' ed 
with the state of the SDR parity bit latch. Any 
error sets the SDR parity check latch at WC 2, CP 3 
time or at the corresponding time during split cycles 
(CC 2, CP 2) when the data that has been read is 
used. The latch is reset with 'master reset for 
check latches' which is raised as shown in Figure 
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Figure 2-59. Example of Parity Checking (Byte 0) 

2 -60 on a system reset, by the console check reset 
switch, or when a 'machine check interrupt' is 
handled (reset CPU error latches). 

The on state of the SDR check latch is indicated 
on the console by the SDR check lamp. 

The parity bit of a byte sets the corresponding 
SDR parity bit latch in the same way as it sets other 
SDR bit positions. Parity is carried with a byte 
only if it originates in either main storage or an 
HSMPX channel. In all other cases, the inhibit byte 
check latch is set, which prevents the setting of the 
SDR parity check latch. This operation also condi­
tions the parity generating circuits which produce 
correct parity for the byte before it enters main 
storage. 

When an I/O channel is gated to or from the SDR, 
however, the SDR parity check latch is inhibited, 
but special high -speed circuitry detects an SDR 
parity check on an I/O cycle. See Figure 2-59. The 
HSMPX parity check signal is sent back to the ap­
propriate HSMPX channel, where it is combined 
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with the relevant subchannel to set a subchannel data 
check latch. (See Principles of Operation - Channels, 
Form Y33-0003.) The SDR parity check 1/0 cycle 
will generate the machine check interrupt code. 

Fixed-Point and Floating-Point Sequence Control 
Checking 

• The sequence control check latch is set with: 
more than one fixed-point sequence-control 

latch on, or 
more than one floating-point sequence-control 

latch on. 

• One fixed-point sequence-control latch and one 
floating-point sequence-control latch may be on 
together and at the same time as an active stor­
age cycle control latch. 

• The sequence control latch is set at CC 1, CC 2 
and reset with the master reset for check latches. 
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Figure 2-60. Control Checking 
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Latches 

FL 

Sequence Control Check 

Figure 2-60 shows the circuitry which ensures that 
only one of the sequence controls (1, 2, 3, 4, 5) is 
on at one time. In the same way, the floating-point 
sequence controls (A, B, C or D) are also controlled, 
as shown, on the same OR block. Fixed-point and 
floating-point sequence controls are not combined; 
this allows one of each to be on at one time and, 
eventually, at the same time as an active storage­
cycle control latch. 

Any error condition is recorded by the sequence­
control check latch which is set at CC 1, CC 2. This 

check latch is reset by the 'master reset for check 
latches' signal as explained previously. The on 
state of this latch is shown on the console by the 
control check lamp. 

Cycle Control Checking 

• An even number of active storage-cycle controls 
set the cycle control check latch. 

• The cycle control check latch is set at RC 2, 
CP 2. 

The cycle control check latch (Figure 2-60) is set 
whenever an even number of active storage-cycle 
controls are on at one time. 

The function of the checking is to verify that only 
one active storage-cycle control is on at one time. 
Ideally, this would be achieved in the same way as 
the sequence control checking described in the pre­
ceding section. However, because of the improba­
bility of having 3, ~, 7 or 9 active storage-cycle 
controls on at the same moment, and in order to 
save using 55 AND blocks, the associated OR blocks, 
and the corresponding response time, an ODD block 
has been used. The ODD block is explained in 
Appendix B4 of the FEMM, Form Y33-0007. 

The lamp of the console displays the on state of 
the storage cycle control latches, even when the 
storage-cycle controls are inactive. The storage­
cycle controls are active only if there is no I/o 
cycle request or console cycle request. 

Circuitry is provided to inhibit the checking when 
'any console clock control' and 'I/o cycle control' 
are active together, since the I/o cycle control is 
effective only in the absence of 'any console clock 
control' • 

The on state of the cycle control check latch 
lights the console control check lamp (which is also 
used for sequence control checking). 

Console Force Machine Check 

• Simulates a machine check detection. 

• Occurs with defined console settings: 
with FORCED RESTART switch position, 
with LOOP ON MS switch position. 

In some cases the customer engineer may wish to 
initiate a machine check. Although this is not a 
machine malfunction check, the console force ma­
chine check is one of the conditions capable of giv­
ing a 'machine check interrupt' request. 

Figure 2-61 shows the circuitry provided to allow 
this simulated machine check to occur. The Signifi­
cance of the lines shown is as follows. 
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S stem Reset PB 2 
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Not System Res Pushbutton 

Not IPl Latch 

R 

Figure 2-61. Console Force Machine Check 

Fl 

Forced Restart 
Latc 

Console Force 
Machine Check 
Latch 

The check-control rotary switch in the FORCED 
RESTART position causes the forced-restart latch 
to be set each time the interval timer singleshot 
fires at the main-line frequency. (See "Update Inter­
val Timer" in Principles of Operation - Processing 
Unit, Form Y33 -0002.) Firing in turn sets the 
console force machine check latch at the end of the 
system reset which was initiated by the same condi­
tions (namely, the check control switch position 
FORCED RESTART and the interval timer singleshot). 

When the main storage address -compare rotary 
switch is at LOOP ON MS, the console force ma­
chine check latch is set every time the end of sys­
tem reset approaches (sytem reset latch 3 and CC 1, 
CC 2). In this case, a system reset is initiated 
when a 'main storage address' comparison occurs. 

The on state of the console force machine check 
latch is not recorded on the console. 

Effects of Machine Check Detection 

• Depending on certain program, console, or 
error conditions, a machine check: 

can be ignored (disabled), 
can cause a machine check interrupt, 
can cause a hardstop, or 
can be recorded in the CSW for channel 

malfunction. 

Machine Check Disabled 

• A machine check is disabled if PSW 1 bit 13 is 
zero. 

• A machine check is disabled if the Console Check 
Control rotary switch is at DISABLE. 

• A console machine check cannot be masked. 

Figure 2-62 shows the logic circuitry provided to 
allow an interrupt to take place when a machine 
check is detected. A machine check interrupt cannot 
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RC 2.CP 2 
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A Fl 
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Figure 2-62. Machine Check Interrupt Enabling Circuitry 

occur if any of the conditions on the AND block 
marked with an asterisk (*) are not met. The 
machine-check mask auxiliary latch reflects the 
state of the PSW 1 bit 13 (machine check mask). If 
this latch is off or if the check control rotary switch 
is on DISABLE (these two conditions override each 
other to suppress interrupts), the line 'allow ma­
chine check interrupt' can be active only on aconsole­
forced machine check. In all other cases a machine 
check is ignored. If the check control rotary switch 
is in the stop position, an interrupt does not occur 
but a hardstop results. 

Nevertheless, an ignored machine check remains' 
pending while the check latches are not reset. Since 
the reset is achieved by the signal 'master reset for 
check latches' shown in Figure 2-60, a new PSW 
(with a PSW 1 bit 13 of one) can cause a machine 
check interrupt to occur. This is relevant for a 
fault detected under the control of the previous PSW. 
The signal 'master reset for check latches' is raised 
under the follOwing conditions: 

1. During a system reset. 
2. By the console check-reset pushbutton. 
3. With 'reset CPU error latches', which is 

active during a machine check interrupt, as 
described in Figure 2-64. 

Condition 3 has no practical use, but a PSW 1 bit 13 
of zero can be used, for example, to shorten an 
error loop. Further explanation is given in the 
Diagnostic Aids section of the FEMM, Form Y33-
0007. 

Machine Check Interrupt 

• Can occur with 'allow machine check interrupt' 
active. 

• Raised by 'machine check interrupt request'. 

• 'End execute' is forced as soon as possible. 

'. 



If none of the conditions arise that would disable the 
machine check interrupt (as described in the pre­
ceding section), the line 'allow machine check inter­
rupt' in Figure 2-62 is active. Figure 2-63 shows 
the machine check interrupt circuitry. When the 
line 'allow machine check interrupt' is active with 
'any CPU error' (which is activated when any CPU 
check latch is set), a 'machine check interrupt 
request' is raised. This condition causes 'interrupt 
cycle request' to be raised. The remaining condition 
that is required to set the machine-check interrupt 
latch is 'end execute'. This is raised as soon as 
possible. Therefore, as shown in Figure 2-63, the 
condition 'allow machine check interrupt' is used in 

R eset 

conjunction with a sequence control check to inhibit 
the starting and the wrapping of the compute clock 
and, in conjunction with 'any CPU error', to force 
'end execute' at we 4. 

However, a forced 'end execute' is prevented 
during load PSW operations or during interrupt 
cycles as it might cause only part of the PSW to be 
stored. The condition is prevented by the OR block 
marked with an asterisk (*) in Figure 2-63. 

As soon as the compute and storage clocks are 
halted, 'end execute' is raised by 'machine check 
end execute'. 'Set interrupt latches' is then active 
with the first CP 2 and the machine check interrupt 
latch is set. 

ystem 
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Figure 2-63. Machine Check Interrupt Circuitry 
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Figure 2-64. Machine Check Hardstop Circuitry 

The machine-check interrupt latch remains on 
until the end of the interrupt cycles caused by it. 
Further details of the interrupt are given in the 
"Interrupts" section of Principles of Operation -
Processing Unit, Form Y33 -0002. 

Machine Check Hardstop 

• Occurs with a "double error" detection. 

• Occurs \vith the check control rotary switch at 
the stop position. 

• Takes place when a machine check occurs during 
an IPL, a system reset, or a 'regenerate main 
storage' . 

Figure 2-64 shows the logic associated with a hard­
stop or a machine error detection. 

The upper AND block shown as part of the hard­
stop latch detects any machine check occurring 
during a machine-check interrupt cycle (storing old 
PSW, fetching new PSW). Detection is made with 
the double-error sample latch which is on during the 
machine-check interrupt cycles. Note that the check 
latches are reset at RC 2 before the double-error 
sample latch is set (at RC 4). 

The second AND block that can set the hard stop 
latch is activated by 'machine master error' (which 
is raised by any machine error detection as shown 
in Figure 2-64). 'Machine master error' is gated if 
the check-control rotary switch is not in the disable 
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position, during an IPL or a regenerate-main­
storage function, or if the switch is in the stop 
position. 

The lower AND block can set the hardstop latch if 
the check-control rotary switch is not on DISABLE 
during that part of the system reset where the exten­
sion storage is validated (regeneration of the GPR's 
and cancellation of the UCW's). Any error detection 
(such as bad parity), sets the hardstop latch by 
raising the machine-error Signal. 

The hardstop latch is reset at the beginning of a 
system reset or when the start latch is set. Further 
details of the hardstop state are given in the "Console" 
section of FEMM, Form Y33 -0007. 

Channels and Device Checking 

Channels and device checking is described in the 
sections dealing with the multiplexor channel 0 and 
the high speed multiplexor channel in Principles of 
Operation - Channels, Form Y33-0003. 

Other Checking 

Other checking includes all power supply checking 
and is separately described in the "Power Supplies" 
section of FEMM, Form Y33 -0007. 

PROGRAM EXCEPTION DETECTION 

This section describes the circuitry used to generate 
a program interrupt, and covers the exception 
detection circuits and the setting of the program 
interrupt latch while initiating the interrupt cycle. 

The handling of interrupt cycles is explained in 
the "Interrupts" section of Principles of Operation -
Processing Unit, Form Y33 -0002. 

The ten following exceptions, introduced in 
"Interruptions" in System/360 Principles of Opera­
tion, Form A22-6S21, are applicable to the 2044: 

Operation exception 
Privileged operation exception 
Specification exception (items 1, 2,3 and 7 in 

Form A22-6S21) 
AddreSSing exception 
Fixed-point overflow exception 
Fixed-point divide exception 
Floating-point significance exception 
Floating-point divide exception 
Floating-point exponent overflow exception 
Floating-point exponent underflow exception 

The detection of any exception sets the corresponding 
exception latch which afterwards causes the program 
interrupt latch to be set as explained subsequently 
in "Program Exception Handling. " 

As the checking is done in such a way that the 
program fault is detected as soon as possible, the 



• 

operation is suppressed, terminated, or completed, 
depending of the type of exception, the point in the 
operating cycle at which the exception occurs and 
its impact on the result. Control of the operation is 
determined by whether or not' end execute' is forced. 

Operation Exception 

• Is set by an invalid operation at approximately 
the end of an I-cycle. 

• Is cancelled by a system reset or at the end of 
interrupt cycles. 

• Decoding circuits detect any non-assigned or non­
available operation code. 

The logic circuitry for this exception is shown in 
Figure 2-65. It detects all possible op codes that 
do not correspond to an operation that is valid for 
the 2044~ 

As shown in Figure 2-65, the signal 'invalid 
operation' sets the operation exception latch towards 
the end of the instruction cycle in which the invalid 
op code is read. This latch remains on until the 
beginning of the last cycle of an interrupt or until 
the occurrence of a system reset. (The latch is 
turned off by reset interrupt requests.) If a speci­
fication interrupt occurs at the same time, the 
operation exception latch is reset to generate the 
correct interrupt code, since specification super­
sedes an operation exception. 

The signal 'invalid operation' can be raised by 
nine separate AND blocks which perform together an 
invalid operation decode in the same way as the 
instruction decode is performed. The circuit oper­
ation (Figure 2-65) is as follows: 

AND block 1 eliminates non-assigned RR format 
operation codes and Set or Insert Storage Key 
(SSK or ISK). 

AND block 2 eliminates non-assigned RR and RX 
format operation codes, Convert to Binary 
(CVB) and Convert to Decima! (CVD). 

AND block 3 detects non-assigned RX format 
operation codes. 

AND block 4 eliminates the execute operation. 
AND block 5 discards floating-point instructions 

if the floating point feature is not installed. ~ 

Note that the switch is provided by a particular 
SLT card which is wired accordingly. 

AND blocks 6 and 7 eliminate non-assigned opera­
tion codes in the floating-point range. 

AND block 8 eliminates all SS format operation 
codes. Note that an exception created in this 
way causes an interrupt, under which circum­
stances, the old PSW 2 contains an instruction 
length code of 11 (see "PSW Registers" in the 

section "System Control Components" in this 
chapter). 

AND block 9 detects all non-assigned and non­
available RS and SI format operation codes. 

Privileged Operation Exception 

• Is set towards the end of the I -cycle when a 
privileged operation is attempted while the CPU 
is in the problem state. 

• Is cancelled by reset interrupt requests. 

• Feature instructions are privileged operations. 

The privileged operations are: 
Start I/o Load PSW 
Halt I/o Set system mask 
Test I/O Diagnose 
Test channel Feature instructions 

Figure 2-65 shows the conditions able to set the 
privileged operation exception latch if PSW 1 bit 15 
is present, that is, when the CPU is in the problem 
state. The latch is set approximately at the end of 
the I-cycle in which the privileged operation code 
has been read. 

The latch is reset by a reset interrupt request 
which is raised during a system reset or at the end 
of interrupt cycles. 

The five feature instructions, consisting of read 
or write direct word, enable or disable priority 
mask, and exit priority interrupt are considered as 
privileged operations. 

Specification Exception 

• Detects an improper boundary specification for 
data or information held in core storage. 

• Detects an improper GPR address. 

• Detects invalid FPR addresses. 

• Requests an interrupt when a PSW with a non­
zero storage protection key is loaded. 

Figure 2 -66 shows the logic circuitry which is pro­
vided to detect addresses that specify incorrect 
boundaries for the particular unit of information. 
The detection applies to main storage, the GPR's 
and the FPR's. The actual addressing specifications 
for each instruction are given in System/360 Princi­
ples of Operation, Form A22-6821. 

Circuitry is also provided to detect a non-zero 
storage protection key during a PSW loading as 
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Diagnose Operation 
Feature Instructions 
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Figure 2-65. Operation and Privileged Operation Exceptions 

referred to previously under the heading "PSW 
Register" in the section "System Control Compo­
nents" in this chapter. 

The specification interrupt request latch can be 
set by ten separate AND blocks. Each AND block 
is active at the time appropriate to the particular 
check, as checks are performed as soon as possible. 
The latch is reset by reset interrupt requests. The 
function of each AND block in Figure 2-66 is as 
follows: 

AND block 1 prevents any attempt to address an 
odd-numbered GPR as operand 1 for fixed­
point divide, multiply (except multiply half­
word), and double-shift operations, since these 
involve a double-word operand 1 which implies 
that the addressed GPR must be even-numbered. 
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Privileged Operation Exc~ion 

AND block 2 ensures that an instruction address 
defines a halfword boundary address in main 
storage (a multiple of 2). The block therefore 
rejects odd addresses which are on byte bound­
aries only. 

AND blocks 3, 4, 5 and 6 are used with floating­
point operations. Blocks 3 and 4 prevent an 
operand 1 from being addressed outside the 
correct FPR addresses which, in this case, 
are 0, 2, 4 and 6. Blocks 5 and 6 are used 
for the detection of incorrect operand 2 ad­
dresses in FPR's (RR format). 

AND block 7 is used to determine if double-word 
information or data, such as PSW's or long­
precision floating-point operands, is located in 
core storage on double-word boundaries (mul­
tiples of 8). 
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~I 
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~rotectlon Key 

WC 4.CP 2 Not Zera Latch 

PSW 1 Latch 
A FL 

Not B Reg Zero Bits 8 to 11 
System Reset 1 roR Old PSW 1 Control Period 

Figure 2-66. Specification Exceptions 

AND block 8 sets the specification interrupt 
request latch during the old PSW 2 period (third 
status switching cycle) if the protection-key­
not-zero latch is on. This latch is set during 
PSW 1 loading (second status switching cycle) 
if the storage protection key (PSW 1 bits 8 to 
11) of the new PSW is not zero. The storage 
protection key is analyzed in the B register 
which is the normal path for loading the PSW. 
(See "PSWRegisters" in the "System Control 
Components" section of this chapter.) 

AND block 9 gives an exception if the address of a 
halfword operand is not on a halfword boundary 
in main storage (multiple of 2). This block 
also gives an exception if the address of a 
normal single-word operand 2 is not on a word 
boundary in main storage (multiple of 4). 

S ~peci ication Interrupt 

FL 
Request 

Addressing Exception 

• An exception is recognized when the main storage 
address is outside the available storage capacity. 

• The exception latch is set towards the end of the 
cycle in which the information is read . 

An addreSSing exception is recognized whenever an 
attempt is made to address data or information out­
side the available storage capacity of the particular 
model of the 2044. Figure 2-67 shows the logic 
circuitry associated with the addressing exception. 

The address interrupt request latch differs from 
other exception latches in usage because of the way 
in which available SLT modules are connected to 
give the required latch function. The second logic 
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OR 
Rest Interruet Requests '---

Figure 2-67. Addressing Exception 

block allows the addressing of a halfword instruction 
situated on the last two locations of storage, since 
the address interrupt request latch is set at WC 3, 
CP 1 after the output from the instruction registers 
and decode circuits (for an eventual RR format 
operation) has been determined. The latch is reset 
by 'reset interrupt requests' (see Figure 2-65). 

Fixed-Point Overflow Exception 

• Can be masked by PSW 2 bit 4. 

• Is set with add, subtract and shift arithmetic 
operations and with load positive or complement. 

• Is reset by the reset interrupt requests signal. 

Figure 2-68 shows the logic circuitry provided to 
generate a fixed-point overflow exception. 

B R B· 00 eg It 

B Reg Bit 01 10E 
Shift Overflow 

Shift Left 1 ~ FL 

Clear Data Flow 

Shift Arithmetic Operation 

Add,Sub Arith, Load Pos,Comp 'Olli 6 Fixed-point Overflow Mask Latch (PSW2 Bit4)'"1 A Fl 
Not CO equal to C1 A 
Set Carryout Latches 

-2 Reset Interrupt Requests 
Reset Carryout Latches A 

Fixed-point Overflow 

s ~ Shi It pulse wi th the appearance of the condition 

Figure 2-68. Fixed-Point Overflow Exception 
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Two conditions must be active to set AND block 1 
which, in turn, sets the fixed-point overflow latch. 

1. The first condition occurs when a shift over­
flow has been detected during a shift opera­
tion. The shift overflow is stored in the FL 
block, which is a multi-input trigger as 
described in Appendix B2 of FEMM, Form 
Y33-0007. (Note that the shift pulse shown in 
Figure 2-68 is derived from a circuit of the 
type described in Appendix Bl of the same 
manual.) The effect of the output from the 
EX OR block is further described in the Fixed­
Point Instruction section of Principles of 
Operation - Processing Unit, Form Y33-0002. 

2. The second condition is derived from an AND 
block with shift arithmetic operations (logical 
shifts do not take note of lost bits) and with 
the fixed-point overflow mask latch (PSW 2 
bit 4) on. 

AND block 2 also needs the second condition of 
AND block 1, in conjunction with the condition of 
carry-out latches CO and Cl not equal. (see "Add 
and Subtract Instructions" in Principles of Opera­
tion - Processing Unit, Form Y33-0002.) 

The validity of operation of the latch with AND 
block 2 is clarified in Appendix B3 of FEMM, Form 
Y33 -0007, since the peculiarities of setting the CO 
and Cl latches apply equally to the fixed-point over­
flow latch. 

The latch remains on until the reset interrupt 
requests signal is raised (see Figure 2-65), as the 
output from the reset carry-out latch is also fed 
to the latch to ensure correct logical operations. 

Fixed-Point Divide Exception 

• Recognized when the first divide cycle generates 
a quotient bit. 

• Recognized towards the end of the operation with 
a quotient bit in the second cycle which is not the 
maximum negative number. 

• Reset by 'reset interrupt requests'. 

A fixed-point divide exception is generated when the 
quotient size (sign + integer) exceeds the quotient 
register size (BX register, 32 bits). 

Two separate AND blocks are used to detect an t 

oversized quotient (Figure 2-69). AND block 1 sets 
the exception latch if a quotient bit is developed 
during the first divide cycle, since 32 left shifts 
(corresponding to 32 divide cycles) are still to follow 
at this point. In this case, the signal 'end execute 
fixed-point divide' is active at the end of the compute 
cycle with CC 6 and stops the divide operation. A 
program interrupt then takes place immediately. 
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Figure 2-69. Fixed-Point Divide Exception 

If a quotient bit is developed during a second 
divide cycle, it would normally be in position 00 at 
the end of the operation (31 left shifts from the 
least-significant position). Position 00 is the sign 
position, and the presence of a bit in this position at 
this point again indicates that the register capacity 
has been exceeded. If, however, the quotient is the 
:maximum negative number and (Since a quotient is 
developed in true form) one more position is needed 
to accommodate it, this number should be a one 
followed by 31 zeros. Therefore, when a quotient 
bit has resulted from the second divide cycle, it 
is stored by the possible divide exception latch which 
gives an output 'possible maximum negative number' • 
The quotient bit is not inserted in the BX register. 
It is used, with already existing circuits, to facil­
itate a test for zero (in the B register after inter­
change with the BX register), to. make sure that it 
is the maximum negative number. 

If it was anticipated that the quotient sign would 
be negative (from the previously set sign latches) 
and the possible 0 remainder latch is not set, an. 
exception is not set and the B register bit 00 (sign) 
is gated inverted on completion of the operation. 
(See Figure 2-8 in this chapter.) If any of the con­
ditions produce an output from OR block 1, a 'fixed­
point divide exception' is recognized. The R1 stor­
age cycle control produced to store the result is 
inhibited by divide exception and the result is not 
recorded. 

Floating-Point Arithmetic Exceptions 

• FP arithmetic exceptions are: 
FP Significance exception 
FP divide exception 
FP overflow exception 
FP underflow exception 

• The FP significance exception can be masked by 
PSW 2 bit 6. 

• The FP underflow exception can be masked by 
PSW 2 bit 7. 

• The logic is present only when the floating point 
feature is installed. 

All the above FP ari:ilimetic exceptions can cause a 
program interrupt to be requested. For the FP 
Significance and the FP underflow exceptions, the 
corresponding mask bit in PSW 2 must be a one for 
the exception to be recognized. 

For a full explanation of these types of exceptions 
refer to Floating Point Feature, Form Y33-0005. 

PROGRAM EXCEPTION HANDLING 

• An exception generates end execute if necessary. 

• An exception generates a program interrupt if 
there is no machine check. 

• An exception with program interrupt generates 
the appropriate program interrupt code. 

The handling of a program exception consists nor­
mally of three main steps: 

1. Termination of the operation (optional). 
2. Generation of a program interrupt (if there 

is no machine check interrupt request). 
3. Generation of an interrupt code (PSW 1 bits 

28, 29, 30 and 31). 

Termination of the Operation 

According to the kind of exception and the time at 
which it is recognized, end execute (which is nor­
mally raised at the end of an operation) can be 
forced. Figure 2-70 shows the exceptions capable 
of forcing end execute. 

The 2044 meets the specifications established 
by System/360 architecture, concerning the exe­
cution of the operation (completed, terminated or 
suppressed). 
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Figure 2-70. Program Exceptions Handling 

Fixed -point overflow, exponent underflow, signi­
ficance exceptions, and 2044 floating-point 
exponent overflow exceptions do not stop the 
operation; the interrupt is taken when end exe­
cute appears normally. 

As shown in Figure 2-70, operation, privileged 
operation, addressing and specification excep­
tions force 'end execute' at we 4. 

A fixed-point divide exception forces 'end execute' 
at ee 6, as shown in Figure 2-69. 

A floating-point divide exception ~orces 'end exe­
cute' at ee 4 (and sequence 5A). 

The foregoing methods of ending an operation are 
summarized in tabular form at the end of this section. 
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Program Interrupt Generation 

Figure 2 -70 shows the logic circuitry provided to 
set the program interrupt latch. This is achieved 
with the output of AND block 1 which is active at 
end execute (see "Termination of the Operation") 
and ep 2 with any program interrupt request. The 
signal 'set interrupt latches' starts the interrupt 
cycles (old psw 1 control cycle). 

The latch is not set if there is a machine check 
interrupt request as this has a higher priority than 
program interrupt. 

The latch is reset at the end of the interrupt 
cycles or during system reset, or at we 4, ep 2 

( 



if there is a machine check interrupt request. 
For complete details on the handling of program 

interrupts refer to "Interrupts" in Principles of 
Operation - Processing Unit, Form Y33-0002. 

Interrupt Code Generation 

As described in "PSW Registers" in the System 
Control Components section of this chapter, an 
interrupt code is generated at the time of storing the 
old PSW 1. Figure 2 -71 shows the circuitry which 
generates the interrupt code as given in the following 
table according to the type of exception. 

If a floating-point exception (exponent overflow, 
exponent underflow, significance or FP divide) 
occurs at the same time as either a specification 
or addressing exception, the FP exception latch is 
reset to prevent an FP interrupt code generation, in 
favor of a specification or addressing interrupt code. 

In the same manner, a specification exception 
has priority over an operation exception. (See 
Figure 2-65.) 
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Figure 2-71. Program Interruption Code Generation 
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ACCELERATOR FEATURE 

HARDWARE GENERAL-PURPOSE REGISTERS 

MSLS Logic Modules 

• Monolithic circuit using single silicon chip. 

• Provides circuits for six bits per module. 

• Packaging dictates that the six bits are used as 
three bits for each of two words. 

The 16 hardware general-purpose registers for the 
accelerator feature consist of Medium -Speed Local 
Storage (MSLS) modules. Each module, manufac­
tured as monolithic circuits on one silicon chip, is 
an integrated network of three bits for each of two 
words on a 16-pin SLT module package (Figure 
2-72). It consists of the following circuits: 

6 latches (EXOR L) bit stores 
2 write gates : drivers 
6 read gates 
1 unit cell inverter 

Write Line 

Read Line 

Write line 

Read Line 

Write 
o------j Gate 
11 

12 

Write 
o------j Gate 
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5 

Data In 
1 

XOR-L 
Latch 

EXOR-L 
Latch 

Numerals 1-16 represent the MSLS pin numbers 

Read 
Gate 

Read 
Gate 

Data In 
3 

2 
Data Out 

EXOR-L 
Latch 

EXOR-L 
Latch 

Inverter In Unit Inverter Out 
o---------lCell 
9 Inverter 10 

Figure 2-72. Six-Bit MSLS Logic Block 
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The inputs and outputs of this unit are compatible 
with SLT circuit levels. No special drivers, sense 
amplifiers or output latches are required. 

Each bit, or cell, has separate read and write 
lines, and common data-in and data-out lines. This 
allows a higher packaging density on a card, because 
card pins are the limiting factor. 

MSLS Card 

• MSLS card contains 16 MSLS modules. 

• MSLS card provides 12 bits for each of eight 
words. 

• Each card is divided into four MSLS arrays. 

• MSLS array provides three bits for each of eight 
words. 

• ALD representation shows MSLS arrays. 

A MSLS card contains 16 MSLS modules (Figure 
2-73) . The data lines and the read/write lines of 
these modules are coupled in such a way that each 

Read 
Gate 
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4 
Data Out 
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Latch 
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Latch 
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Read 
Gate 
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8 
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Bits 
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16 Modules: Eight 12-Bit Words 

Figure 2-73. MSLS 96-Bit, 24-Pack Card 

horizontal row of bit positions is in the same word, 
and each vertical column of bits represents the 
corresponding bit position of these words. 

On the card shown in Figure 2-73, the horizontal 
rows represent words 1 to 8 and the vertical col­
umns bits 1 to 12 of these words. 

Each vertical column of MSLS modules within a 
card is termed an MSLS array for the purposes of 
ALD representation. Thus, each MSLS array 
represents three bits for each of eight words. 

MSLS ALD Representation 

• MSLS circuits are represented as MSLS arrays. 

• MSLS array contains three bits for each of eight 
GPR's. 

• Data-in lines are commoned to the corresponding 
bits of each of the eight words. 

• Data-out lines common to corresponding bits of 
each of the eight words. 

The ALD representation of the MSLS array (Figure 
2-74) shows the data-in and data-out lines for each 
of the three bits, and the 'array drive write' and 
'array drive read' lines for each of the eight words. 

For GPR's 0 to 7, eleven arrays are required 
which provide 33 bits; the last bit positions of the 
arrays for each of the eight words are unused. 

A further eleven MSLS arrays are required for 
GPR's 8 to 15. 

MSLS Array Read/Write Controls 

Read Out Operation 

• Non-destructive read out. 

• Read out with positive signal. 

Data is read out of the appropriate three bits of the 
MSI.S array when an 'array drive read' line is acti­
vated. This line causes the output data line to 
reflect the data in these bit positions, for as long 
as the read line remains active, without affecting 
the data in the cell, that is, the read out is non­
destructive. 

Write-In Operation 

• 'Array drive write' is positive-going ac signal. 

• Writes data in from corresponding data-in line. 

The MSLS write drive line is normally positive. 
When this write line is made negative, the bits for 
that word are set to the state of the corresponding 
data-in line when the 'array drive write' line next 
rises to its positive condition. 

Positive Data In Negative Data Out 

B Reg Bit 20 
,.-..--

Data Out Bit 20 GPR 0-7 
·Array 

B Rea Bit 19 
GPR 

Data Out Bit 19 GPR 0-7 
W658C 

B Reg Bit 18 
6149A3 

Data Out Bit 18 GPR 0-7 

Wra .. r,PR n .... 
? .... 
3 ..... 
4. "-

5 "-

6 ..... 
7 "-

Arrav Drive Read GPR 0 
1 
? 
1 
4 
5 
6 
7 

2J AC -
Refer also to ALD page RG 011 

Figure 2-74. MSLS Array CPR's 0 to 7 Bits 18 to 20 
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MSLS Addressing Read Drive 

• 'GPR read address' bits (GPR number) are read 
out of Ra, Rb, Rc or address switches, according 
to operation. 

• Address bits are decoded in primary-read decode 
and secondary-read decode to provide 'GPR read 
drive' for the addressed GPR. 

• Read drive is active only during the time the 
address is gated to provide 'GPR read address' 
bits. 

The signals 'gate out Ra register', 'gate out Rb reg­
ister', 'gate out Rc register' or 'display latch' cause 
the corresponding GPR address bits to be gated to 
the GPR address bit lines. The one exception is for 
a floating-point instruction, when the FPR address 
decode is made active and the GPR address decode 
inhibited. 

The GPR address bit lines enter the primary­
read decode, where the bit pattern of the GPR num­
ber is used to make active two of the following eight 
binary patterns: 

0--0 -00- 1--0 -10-
0--1 -01- 1--1 -lI-

The output of this primary-read decode then enters 
the secondary-read decode, where the bit patterns 
are combined to provide the appropriate read drive 
GPR line. 

For example, if the GPR to be addressed is GPR 
12, the 'GPR read address' lines are: 

GPR read address bit 0 1 
GPR read address bit 1 1 
GPR read address bit 2 0 
GPR read address bit 3 0 

The active primary-read decode patterns are: 
1--0and-10-

These two lines combine in the secondary-read 
decode to provide the 'read drive GPR 12' line. 

MSLS Addressing Write Drive 

• 'GPR write address' permanently gated from Ra 
register. 

• Address bits decoded in primary-write decode to 
provide address patterns. 

• Output of primary-write decode combines with 
write strobe in secondary-write decode to provide 
write drive for the addressed GPR. 

The content of the Ra register is permanently avail­
able as an input to the GPR primary-write decode 
circuits, provided that a floating-point instruction is 
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not being executed. For the latter case the FPR 
decode is used and the GPR decode is inhibited. 

This primary-write decode produces two bit 
pattern lines in a similar manner to the primary­
read decode. 

The output of the primary-write decode network 
is made available to the secondary-write decode 
when the write strobe is generated for the MSLS. 

This secondary-write decode then decodes the 
two bit patterns, in a similar manner to the 
secondary-read decode, to provide the write drive 
for the addressed GPR. 

The write strobe controls the write-in to the 
GPR. When the strobe is active, the appropriate 
GPR is selected; when the strobe next drops to the 
inactive state, the GPR is loaded with the data on 
the corresponding data-in lines. 

Data Flow 

The 16 hardware GPR's are coupled into the main 
data flow (Figure 2-75) with an access time of 250 
nanoseconds for a full 32-bit access to each register. 
This compares with the basic machine access time 
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Figure 2-75. Accelerator Data Flow (Simplified) 
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of 1.0 microsecond (refer to "Speed" section in this 
chapter). The hardware GPR's have common data 
input lines from the B register output bus. Their 
output lines are also commoned and combine with 
the FPR's output on the hardware-register bus. 
This bus is taken to the HW funnel, whose output 
provides two separate inputs for the ABC funnel. 
These two inputs allow gating of full-word data to 
the ALS section of the CPU and allow for alignment 
of halfword operands (bits 16 to 31) or characters 
(bits 24 to 31) from the GPR's to either half of the 
main data flow. (See "ABC Funnel and HW Funnel" 
in this chapter.) 
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