
R TOS-Extending OS /360 for
real time spaceflight control

by J. L. JOHNSTO~E

International Business Machines Corporation
Houston, Texas

INTRODUCTION

The Real Time Operating System/360 (RTOS/360),
a modified version of the standard IB::\1 System/360
Operating System (OS/360) *, was developed by the
Federal Systems Division (FSD) of IB::'VI for support of
the Real Time Computer Complex (RTCC) during
XASA's Apollo spaceflights. RTOS/360 is a real time,
mUlti-tasking, multi-jobbing operating system that
extends the basic features of OS/360 and adds addition­
al features to:

• Process real time data
• Provide simplicity of use for the applications pro­
grammer

• Ensure fast response system activity (requirements
range from one-tenth of a second to one second)

• Improve efficiency
• Provide support for special devices not supported
byOS/360

• Provide a fail-safe system
• Increase job shop throughput

The presence of these features in OS/360 does not deter
from its basic capabilities; Le., all the facilities of the
current IB::\1 released OS/360 that operate in a
standard or non-real time mode of execution are
available in RTOS/360.

Some of the major functional areas which were devel­
oped at IB~1's FSD Houston Operations and added to
OS/360 in the formation of RTOS/360 were:

• Independent Task :Ylanagement

* IBM System/360 Operating System (OS/360) consists of a
comprehensive set of language translators and service programs
operating under the supervisory control and coordination of an
integrated set of control routines. The operating system is
designed for use with Models 30, 40, 50, 65, and 75 of Computing
System/360.

• System Task Capability
• Queue ~1anagement
• Data and Time Routing
• Time l\1anagement
• Real Time Input/Output Control System
• Data Tables
• Display Formatting Language (DFL)
• Real Time Linkages
• Large Core Storage Support
• Logging
• Simulated Input Control
• Fastime
• Fail-Safe Programs
• Background Utilities
• Houston Automatic Spooling Priority (HASP)
• Statistics Gathering System
• Job Accounting System
• Multi-jobbing

The RTOS environment

Although RTOS/360 can be used in a variety of
applications and computer system configurations, it is
pertinent prior to discussing its functional areas that
we establish the environment in which it was designed
to operate, i.e., the Rea.l Tit1le Computer Complex
(RTCC), the RTCC hardware, and the RTCC applica­
tions programs.

TheRTCC

The RTCC is a ground-based computing and data
processing complex for NASA's manned spaceflight
program. It includes the computer equipment, associ­
ated peripheral equipment and program packages to
monitor and support-in real time-Apollo missions,
simulations, and training exercises. l

RTCC is the core of NASA's Mission Control Center

-- 15 ---

From the collection of the Computer History Museum (www.computerhistory.org)

16 Spring Joint Computer Conference, 1969

(MCC) at Houston, Texas. Flight controllers at lVICC
monitor every phase of a manned spaceflight, from
launch through orbit, reentry, and splashdown. During
a lunar mission, flight controllers also monitor and sup­
port the astronauts during their flight to the moon,
the descent to the moon's surface, the liftoff and
rendezvous with the mother ship, and the return to
earth.

RTCC provides flight controllers with the informa­
tion they need to monitor the flight and make decisions
regarding the mission. This simply means flight con­
trollers sitting at consoles in Houston have precise
information in real time such as the status of every on­
board system, the condition of the astronauts, their
position in space at any desired time up to 40 hours in
advance, or t.he effect that any planned maneuver
would have on the spacecraft or the astronauts.

The RTCC is called on to do many things during a
mission. Some of the more important or more common
requirements include:

• Process radar data during launch and provide
ilight controllers with present position and velocity

• Provide flight controllers with information on
whether or not the spacecraft will achieve orbit

• Process telemetry data and provide flight control­
lers with vital information such as amount of
oxygen remaining in astronaut environmental
control system

• Compute the orbital path of the spacecraft from
radar data

• Predict the position of the spacecraft at some time
in the future

• Compute how and when the spacecraft must
accomplish a particular maneuver to change its
orbital characteristics

• Compute navigation information to update the
Apollo Guidance Computer on board the space­
craft

• Process radar range data and let flight controllers
know the spacecraft is on correct lunar transfer
flight path, and if not, what maneuvers are neces­
sary to get it back on the correct path

• Monitor the Apollo Guidance Computer during
reentry and predict the spacecraft landing point.

In addition to these tasks, and thousands more per­
formed during a typical Apollo mission, the RTCC also
has a key role in flight controller and crew training.

To perform the different requirements of the RTCC,
each of five IBM System/360 Model 75 computers are
assigned a different role and the RTCC is engineered so
that these roles can be exchanged at any moment. This
unified set of computers allows NASA to run either two
actual missions at the same ti..1'fle, two simulated mis-

sions at the same time, or a simulated mission and an
actual mission at the same time. Figure 1, The RTCC,
demonstrates the five systems at work in the latter con­
figuration. In the mission configuration, network data
flows into the RTCC from one of the Communications
Command and Telemetry Systems (CCATS)at MCC.
The data are then sent to the :NIission Operational Com­
puter (MOC) in the RTCC, which processes all the
real time processing tasks of the Mission, and the
Dynamic Standby Computer (DSC), which performs
redundancy processing and is ready to function as the
~![OC, if necessary. In the simulation and training
exercise 1 an Apollo trainer, either at the MCC or Cape
Kennedy, is in a closed loop with one of the identical
Mission Operational Control Rooms (MOCR). (The
other lVIOCR is being used for the mission in progress.)
One simulation computer contains an application pro­
gram which is generating simulated network data; the
other computer is being used as a simulated operational
computer. The fifth computer is a standby computer
for both exercises; however, it is not idle, but per­
forming job shop checkout for future application pro­
gram development.

The hardware configurations

There are several System/360 hardware configura­
tions used in the development and execution of the com­
puting systems developed for the real time applications
at NASA. Each configuration is supported by a single
RTOS/360 system. The configuration used on each
of the five computer systems in the RTCC itself con­
sists of a System/360 Model 75 computer with a one­
million byte main memory (IB¥ 2705). (See Figure 2,
System/360 Model 75 for :Mission Support.) An IBM
2361 Large Core Storage (LCS) acts as a four-million
byte exte,nsion of main memory as well as a buffering

MCC

GROUNORAMR

SHIP
COMMUNICA liON

I mls ~ I MISSION

Is~ I COMNre~
75

75 COMPUreR
~, ~ -r:,:,r~.::-

~~~·~~-=---~u· -r::1----
/ ~ ,~ S!MU .... TI~ 

r8~ I ".., I ,~ 
MCC 75 

slMU .... reo 
IEMOre 
SITE 

Figure I-The RTCC 

From the collection of the Computer History Museum (www.computerhistory.org)



2705 CPU 

IMILUONBYT£S 

SELECTOR 
CHANNEL 

6 

(STORAGE 
CHANNEll 

Figure 2-8ystem/360 model 75 for mission support 

IlEAL 
TIME 
INTUFACE 

device for retrieving data and programs from the IB2VI 
2314 disk drives. The IBl\1 2701 provides a rapid de­
mand response interface to the digital display (D/TV) 
system in the MOCR and RTCC. Real time acceptance 
and transmission of large amounts of data and control 
information are accomplished through the use of the 
IBM 2902 Multiplex Line Adapter (::.\lILA). A card 
reader/punch, an IB:'VI 1443 printer, three IB.:Vr 1403 
printers, two IBM 1052 consoles, and eight tape drives 
complete the configuration. 

Another System/360 l\:Iodel 75 configuration is used 
primarily for Simulation exercises. In addition to those 
devices given in the previous configuration, this Model 
75 configuration supports a special Apollo Simulation 
Processor Channel (ASPC), which receives data from a 
Multichannel Demultiplexor and Distributor (MDD), 
an IBl\1 2260 Display Device, and an IBlVI 2844 which 
acts as a control unit for the IBl\1 2314 disk drives. 
Several different System/360 :Model 50 configurations 
are also supported by RTOS/360 at the RTCC. 

The applications 

The applications programming packages used to 
perform in these various configurations include: 

• The Apollo lVlission Systems 
• The Ground Support Simulation Computer Sys-
tems 

• The Dynamic Network Data Generation Systems 
• The Simulation Checkout and Training Systems 
• The Operational Readiness and Confidence Test-
ing Systems. 

We've now placed RTOS/360 in its environment; i.e., 
the RTCC, the RTCC hardware configurations, and the 
RTCC applications used for real time processing under 
RTOS/360 control. 'Vith this environment in mind, we 
can now turn to a description of the various functional 

RTOS 17 

areas and features designed to extend OS/360 to form 
RTOS/360. First, let's look at the functional areas. 

Functional areas of RTOS/360 

Independent task management 

In OS/360, all processing is done in conjunction with 
units of work defined as tasks. Tasks are not programs 
in core storage nor are data for a program a task. A task 
is a unit of work (programs and data) requiring re­
sources (CPU etc.) to complete its functions. A task 
exists only when a Task Control Block (TCB) is es­
tablished and its location is known to the supervisor 
portion of the operating system. The TCB contains 
information on such things as pointers to data (I/O), 
the list of programs needed to operate under the task, 
the priority of the task, etc. In OS/360, the word "mul­
tiprogramming" is replaced by "multi-tasking"; how­
ever, the meaning is still the same, i.e., many tasks 
processing asynch.ronously-through various paths of 
logic with the usage of the CPU being switched ac­
cording to the requirements of the system. (Figure 3, 
A Task, gives a graphic illustration of a task.) 

Some of the characteristics of an OS/360 task are not 
functionally oriented toward the types of work required 
to be performed by a real time system. An OS/360 task 
requires the existence of its creator in order to exist; 
i.e., it is dependent on its creator. This OS/360 concept 
has been extended within RTOS/360 to include tasks 
which are independent of their creators. This causes a 
distinction between dependent and independent tasks. 
(A dependent task is identical to an OS/360 task.) 
Therefore, an independent task does not require the 
existence of its creator in order to exist. 

How do the characteristics of an independent task 
render it more especially suited to real time systems? 
First, a real time system must be able to receive and 
process varying data loads rapidly and efficiently. In 
RTOS/360, an independent task may be defined for 
each type of data to be processed in real time and be 

r--- r-::I ---l 
I~I 

B PROGRAMS 

Figure 3-A task 

From the collection of the Computer History Museum (www.computerhistory.org)



18 Spring Joint Computer Conference, 1969 

available to receive work at all times even if the data 
rate is low or random. The major distinction here 
between dependent and independent tasks is that the 
independent task will continue to exist in the system 
when it has no data to process. During this time it is 
dormant. The OS/360 task requires at least one load 
module executing in order to exist. Each independent task 
is assigned an area in main core called a resource table. 
This is a private area that can be used by the programs 
running under the task. Usually, information is stored in 
this area which is derived from the processing of earlier 
data. In this way, the task can "remember" information 
through periods of dormancy. When data are received by 
the system for an independent task, they are sent to the 
task in the form of a request. Each request has its own 
priority which in turn becomes the task's dispatching 
priority while processing that request. The 08/360 
task has only the priority of its creator. If an independ­
ent task is processing a request when another request is 
generated for it, the new request is enqueued according 
to its priority. Requests in this queue will be given to 
the task as it completes the processing of higher priority 
or older requests. 

When an independent task becomes active, it is 
assigned a unique protect key. This protect key is 
given to all dependent tasks created by the independent 
task while processing a request. Therefore, a program 
running under an independent task or its descendents 
will be protected from all programs controlled by 
other active independent tasks or their descendents. 
Since dependent tasks are assigned the same protect 
key as their creator's, all tasks of a job step in OS/360 
have the same protect key. This is not practical in 
large real time, multiprogramming systems where 
many tasks handle various types of data. Independent. 
tasks ensure that unique protect keys will be assigned 
to unique functions. 

Figure 4, OS/360 Task Structure, represents the 
logical structure of tasks operating as a job step in 
OS/360. This structure is obviously pyramidal in form. 
All tasks depend either directly or indirectly on the 
Job Step Task. The Job Step Task can create depend­
ent tasks (subtasks) which in turn can create tasks 
dependent upon them, etc. All tasks compete for system 
resources (CPU, I/O, etc.), and OS/360 awards those 
resources according to the priority assigned to each 
task. 

Figure 5, RTOS/360 Task Structure, represents the 
logical structure of tasks operating as a job step in 
RTOS/360. One can see that a new dimension has been 
added. The Job Step Task and its subtasks exist as in 
OS/360 while each independent task forms the basis of 
another set of tasks which operate independently of and 

ETC. 

ETC. 

JOB STEP 
TASK 

Figure 4-08/360 task structure 

ETC. 

Figure 5-RTOS/360 task structure 

parallel to the Job Step Task and each other. This 
structure is comparable to multi-jobbing in OS/360 
with each independent task analogous to the Job Step 
Task of each active job. However, in RTOS/360, all 
independent tasks and their subtasks function within 
a ";single job step, and all tasks in that job step are 
awarded the system resources according to their dis­
patching priority. 

System task capability 

In the processing of real time data, it was found that 
many units of work (tasks) were unrelated to an existing 
task or could be performed asynchronously to existing 
tasks. T\lese tasks were really tasks of the system. 
Therefore, a capability was developed in RTOS/360 
for these systems tasks. System tasks perform services 
for the RTOS Supervisor or user-created tasks such as 
message writing and logging of real time input data. 
System tasks can be created and returned from within 
1/25th the system overhead time required for either an 
OS /360 defined dependent task or R TOS defined in­
dependent task. This reduction in overhead to perform 
required system services in a real time environment 
can prove tremendously important during those CPU 
critical periods of high, real time, data processing. 

From the collection of the Computer History Museum (www.computerhistory.org)



The large difference in overhead is due to the following: 

• All control blocks required for a System Task have 
been pre-allocated and pre-initialized for efficient 
utilization. 

_ • The entry point for a System Task is an absolute 
location instead of a load module name, as is the 
case for dependent and independent tasks. 

Queue management 

If an independent task is processing a work request 
all other requests for that task must be held by the 
system until the task is ready to begin processing a new 
request. Therefore, RTOSj360 must build and main­
tain a queue of work requests which are waiting to be 
processed by an active independent task. Information 
concerning each request is held in a Real Time Queue 
Element (RTQEL). (Figure 6, Independent Task and 
RTQEL's, shows the logical structure of an independ­
ent task and its RTQEL's which are waiting to be pro .. 
cessed.) Each active independent task will be processing 
one work request and that request is represented by the 
active RTQEL. All other work requests for the inde~ 
pendent task are placed in a queue of waiting RTQEL's. 
This queue is ordered by dispatching priority and, i~ the 
case of equal priorities, it is first-in first-out (FIFO). 
When the task completes processing ()f the ~ctive 
RTQEL, the top RTQEL in the que~ of waiting 
RTQEL's is made active and is given to the task. If 
there are no work requests (RTQEL's) waiting for the 
task, then the task is made dormant and waits in the 
system for the arrival of new work. All work requests 
for independent tasks can be optionally placed under 
queue management controls by directing each RTQEL 
into a Real Time Queue (RTQ). Each RTQ is created 
by a user macro instruction which defines the five 
attributes of the queue: 

• Its unique name, which identifies the RTQ. 
• Its length, which is the maximum number of 
RTQEL's to be held in the RTQ before an over­
flow condition occurs. 

• The sequence in which RTQEL's are to be removed 
from the RTQ and given to independent tasks for 
processing (dispatching priority, FIFO, LIFO). 

• The overflow disposition which identifies the 
RTQEL to be removed from the RTQ and dis­
carded if the queue overflows (newest, oldest, 
lowest priority RTQEL). 

• Whether the RTQ is currently able to give 
RTQEL's to independent tasks (enabled or dis­
abled). 

Figure 7, Real Time Queue Element Control, gives 

RTOS 19 

Figure 6-Independent task and RTQEL's 

RTQC8 

TOPRTQEL 

ACTIVE 
RTQEL NEWEST RTQEL 

Figure 7-Real time queue element control 

an example of the logical structure of HTQEVs con-
t.l"()ll~cl h" on "RTf) Tho huo cd·h.ih.,,+.no " .... ;! A+h,,~ ,,,.'" "' ... ....., ...................... -J ......, ........ ~"' ..... ~ • ..L ....... "'" ~.L l' V c:..tiUU.&..LuuU\J..::! GtI.1..L\.A.. vuJ..1.\".I.J. vVU-

trol information pertaining to the R TQ are held in the 
Real Time Queue Control Block. In the example, the 
RTQEL's would be given to the independent task in 
order one, two, three, four, if they were not controlled 
by the RTQ. That is the sequence of their relative dis­
patching priorities. However, the RTQ has a FIFO 
order attribute; therefore, the RTQEL's will be given 
to the task in the order three, one, two, four. 

If queue management is not used, the RTQEL's for 
independent tasks in the waiting queues can accumu­
late indefinitely unless the tasks can process their work 
requests faster than they are generated. Queue man-

ETC. 

From the collection of the Computer History Museum (www.computerhistory.org)



20 Spring Joint Computer Conference, 1969 

agement provides additional controls over the requests 
in the waiting queues by limiting the maximum number 
of RTQEVs held for independent tasks. It can also be 
used to indirectly control the system load by not giving 
work to an independent task until another independent 
task has completed processing. 

The number and structure of RTQ's is determined 
entirely by the user. An RTQ can contain work requests 
for any number of tasks, and any number of RTQ's can 
contain work requests for the same independent task. 
The point to be made here is that queue management is 
very versatile in that it can be used in many ways to 
regulate the system's \-vork flow. 

Data and time routing concept 

One of the characteristics of many real time, on-line 
systems is that they are driven by the arrival of data to 
be processed and by the passage of time; i.e., some pro­
cessing is accomplished by the programming system 
because certain data have arrived while other processing 
is accomplished because certain reports and displays are 
required at specific times. Another characteristic found 
in the R TCC system is that much of the processing is 
very repetitive; i.e., the same kinds of data come again 
and again, representing different positions of the space­
craft or different data points for the various telemetered 
activities that are being monitored. In developing 
RTOS/360, and the independent task concept, it was 
recognized that a mechanism was required which would 
examine all types of input data and cause them to be 
sent to the appropriate independent tasks for process­
ing. This mechanism is called data routing, and it acts as 
an interface between the hardware interrupt servicing 
function and the resident nucleus of RTOS/360. Data 
routing is a simple mechanism which requires only that 
the applications programs execute a macro instruction 
to identify the directives to RTOS which link a type of 
input data to an independent task. When input data is 
received in the system via the 2902 ::\fLA, RTOS com­
pares the data with the current data definitions estab­
lished by the applications programs. If a match is found, 
the data are routed to the independent task that will 
process them. If no match is found, the message is dis­
carded. Data routing can also be instructed to accumu­
late a number of data messages (for example, input 
messages) for the same independent task and generate 
a request for the task only after the number of messages 
specified by the user have been received. In this case, all 
the accumulated messages will be sent to the independ­
ent task as one request. 

As stated above, work requests may be gener,ated 
according to the passage of time also. For example, an 

independent task may be created to control a program 
which updates the position of a space vehicle every 
second. The only data necessary to perform this opera­
tion is the position of the vehicle a.t the last second and 
some orbit and velocity parameters. Since this opera­
tion is controlled by an independent task, the necessary 
data and parameters can be saved in the task's resource 
table while it is dormant (possibly out of main memory). 
Since data arrive in a random manner and not nece~­
sarily sequentially or on a time cycle, there is no metllOd 
m:ing input data which will cause requests to be gener­
ated for the task which must process a request each 
second. Therefore, time routing must be used to gener­
ate the required results. To use time routing, a problem 
program requests that a certain independent task is to be 
activated Bot a certain time or cyclical when a given 
delta time has elapsed. RTOS/360 routing and time 
management functions will then activate the independ­
ent task at the time requested. If the activation is to be 
continuous, it is left to the problem programmer to 
request the activation's end. 

The data and time routing functions (which operate 
under a system task) have been constructed so that 
their functions can be combined. For example, it is 
possible to request the accumulation of data under 
data routing with requests generated by time routing 
on some specified interval. Each request generated will 
contain all the data accumulated during the last inter­
val. Another way of using the combined functions is 
that messages can be accumulated over a timed inter­
val and request generated either when the interval ex­
pires or when specified numbers of data messages have 
been received in the system, whichever event occurs 
first. 

Time management 

The System/360 ::\10del 75 computers used to sup­
port X ASA's real time applications are equipped with a 
special high-resolution (lOJ,Ls accuracy) G::\1T (Green­
wich ::\lean Time) clock and interval timer. In order to 
provide support for this special hardware, a time man­
agement supervisor was developed for RTOS/360 which 
functions in parallel with the standard OS/360 time 
management routines. The time management supervisor 
maintains the system thne in a job step pseudo clock, 
and it controls the setting and interrupt processing from 
the G::\IT hardware to keep time and service interval 
timeout requests from the routing function and other 
areas of RTOS/360. Additional functions have been 
added to the time supervisor which provide optional 
controls over the job step pseudo clock. 

From the collection of the Computer History Museum (www.computerhistory.org)



Real time input/output control system 
(RTIOCS) 

It was necessary to develop a Real Time Input/Out­
put Control System in RTOS/360 which would service 
real time input/output requests rapidly and efficiently, 
perform special device-dependent data manipulation, 
and support the special real time input/output devices. 
at the RTCC. RTIOCS is comprised of five logical 
parts discussed in the following paragraphs. 

A real time access method performs device-dependent 
data manipu.lation and sends output messages to the 
special real time output devices at the RTCC. In addi­
tion, standard sequential System/360 output devices 
(2400 tapes, 1403/1443 printers) may be substituted for 
the special RTCC devices simply by altering the UXIT 
designation on cards in the user's input job stream. The 
real time access method is also used to control the read­
ing of information from the IB~.vI 2250 and 2260 graph­
ic display units. This section of the real time access 
method functions closely with the graphic display 
attention control routine, and together, these two areas 
of the real time I/O control system provide RTOS/360 
users the ability to read information from the IB::'v12250 
or 2260 devices. Writing on the display devices is con­
trolled by the real time access method alone. In this 
case, the displays are processed as normal real time 
output requests. 

The real time interrupt servicer and start-stop input 
routine provides software control over the real time 
input devices at the RTCC. The interrupt servicer 
passes input data to the data routing and logging func­
tions in RTOS/360. The start-stop input routine ac­
cepts data whenever an active routing request is pres­
ent for each particular device. An OS/360 OPEN" / 
CLOSE is not required. 

The digital display control routine provides central­
ized and simplified control of the special R TCC devices 
called digital television displays (D /TV). This control 
program is entered by user tasks signaling the change 
of status in one or more of the displays, The current 
status of the display is updated by the control routine, 
and it then gives control to the real time access method 
which updates the actual hardware display. 

The digital/TV display control routine provides a 
software support for the Philco digital/TV display 
system at the RTCC. This program services all digital/ 
TV display requests, maintains information indicating 
which displays are currently being viewed and the con-
8ol,.~ which is viewing them, controls the dynamic alloca· 
tion of the digital/TV channels, and generates work 
requests for the user tasks which create and update the 
actual numbers or figures wit: ':'1 each display. 

RTOS 21 

Data management-data tables 

The large amounts of data required to be accessed by 
the Mission Systems at the RTCC during spaceflights 
prompted a careful evaluation of the OS /360 Data 
i\1anagement methods. First, it was found that 
although the methods were adequate for the environ­
ments for which they were designed, the RTCC real 
time environment nroduced a llnim]p, ~it.1Hdi{)n in urhinh ... . _____ ~ ___ _____ ....... _ .................. , ...... .&..&.""',1,1 

system overhead needed to be reduced for reading and 
writing data. Second, there was no efficient means to 
enable RTOS independent tasks to share data. Third, 
due to the critical importance of data in the system, a 
means to ensure data integrity and consistency had to 
be developed. Finally, an easy method had to be devel­
oped to allow users a simple method of reading and 
writing data, thereby eliminating the need for compli­
cated coding techniques. The resolution to these 
RTOS data management problems was the develop­
ment of control programs to support data tables. 

Data tables are blocks or arrays of data maintained 
on direct access devices (2314 disk) in the partitioned 
format. (Data tables are treated as members of parti­
tioned data sets.) Each datg table is identified by its 
unique EBCDIC name and is defined by its block size 
and number of blocks. A data table generation program 
employs these parameters in allocating direct access 
space for each table, providing the controls required to 
access it, and storing its initial data in the direct access 
space provided. 

The main utility of data tables is the additional 
facilities provided by the data table control programs. 
Here, the standard OS/360 Data i\1anagement OPEN/ 
CLOSE logic has been eliminated, thereby increasing 
the speed at which data can be read or updated. Data 
can be used commonly by any number of different 
tasks. The data table programs provide methods of 
"locking" data tables which ensure data integrity and 
consistency by delaying any tasks which try to write 
into a data table until the table is "unlocked." In this 
way, various portions of a table can be read through 
different requests and the user is ensured that no up­
date has taken place between requests. 

Functional arear-Summary 

Briefly, we placed RTOS/360 in its environment and 
outlined the major modifications made to OS/360 in its 
functional areas of Task l\Ianagement, I/O l\Ianage­
ment, Time }lanagement, and Data Ylanagement to 
extend it for real time spaceflight control. In addition, 
we have shown the addition of two new functional 
areas, Routing and Queue l\lanagement, which add 
additional controls necessary for RTOS/36G to effi-

From the collection of the Computer History Museum (www.computerhistory.org)



22 Spring Joint Computer Conference, 1969 

ciently perform the strenuous requirements of real time 
processing. However, RTOS/360 development does not 
end here. Experience had taught us that many addition­
al features and facilities would be necessary in an oper­
ating system to process and develop real time program­
ming packages. These features are outlined in the fol­
lowing section. 

Special features and facilities of RTOS/360 

Large core storage support 

The IB1\1 2361 four-megabyte Large Core Storage 
(LCS) is supported in three modes of operation by 
RTOS/360. The first mode is to use the LCS as a means 
for imprO'lJing job shop operations~ This is accomplished 
by: (1) using the Le8 as assembler work space instead 
of tapes or disks, thereby improving assembler execu­
tion time; (2) using the LCS as work storage for com­
pilers to allow larger compilations to be performed in 
main memory, thereby decreasing compile time and 
increasing job throughput; (3) placing job control in­
formation on the LCS, thereby job throughput is in­
creased; (4) using the LCS as a system residence device 
for nonresident operating systems programs, thereby 
giving faster access to them and increasing throughput. 

The second mode is to use the LCS as an addressable 
extension of main 'Yne'Yfwry. This is especially applicable 
to large applications packages being developed on the 
one-half megabyte main memory System/360 Model 
50's. 

The third mode of operation was initiated by the fact 
that it was known from the initial development of the 
Apollo mission application package that the package 
would exceed the capacity of main memory and the 
LeS. (The Lunar Landing ~ii88ion p.xceeds six mega­
bytes.) Therefore, an LCS algorithm was developed 
that dynamically allows the funneling of data and pro­
grams into main memory (see Figure 8, Allocation of 
1:Iain l\:Iemory). Basically, this dynamic LCS alloca­
tion means that the LCS is used as a high-speed dy­
namically changing residence device for load modules and 
data tables which are heavily used but which cannot be 
contained in main storage for the duration of the need 
for them. A load module or data table will be put on the 
LCS when it is requested and is not presently on the 
LCS. As long as the load module or data table is fre­
quently used, it will be retained on the LCS; when it 
appears that the load module or data table is no longer 
required on the LCS, it may be replaced with another 
load module or data table. 

It is possible to identify load modules and data tables 
with such low response requirements that they need 
never he placed on the LCS, i.e., residence on a direct 
access device is sufficient. Conversely, some load 

2314 DISK 

4 MEGABYTE 
LCS 

1 MEGABYTE 
MAIN 

MEMORY 

Figure 8-Allocation of main memory 

modules and data tables are very critical; therefore, 
these may be permanently "locked" on the LCS. 

To support the third mode of LCS operation, a Large 
Core Storage Access Method (LeSAM) was developed 
to provide the R TOS control program with a facility of 
moving blocks of storage from the LCS to main storage 
or from main storage to LCS. LCSAM will perform the 
data move either with the normal System/360 in­
struction set or by performing a.n I/O operation through 
the storage channel, depending on the size of the block 
of data. 

Real time linkages 

Two problems encountered in large real time systems 
required the development of a feature in RTOS/360 
called Real Time Linkages. The first problem pertains 
to the fact that the system library subroutines refer­
enced by standard OS/360 load modules (programs) 
must be included within each module when built by 
the 08/360 linkage editor. This requirement often 
results in a large duplication of system subroutines 
present in main core at one time. This duplication can 
be very wasteful since the amount of main core available 
is reduced, and the amount of time required to load a 
module is increased, and the amount of space required 
to hold the module on a direct access device is increased. 
Real time linkages solve this problem by allowing load 

From the collection of the Computer History Museum (www.computerhistory.org)



modules to reference common resident reentrant library 
subroutines. 

A second problem pertains to the fact that certain 
constants (such as the diameter of the earth) used in the 
real time missions must be identical to all programs and 
be under close control by the coordinators of the total 
application mission system. The real time linkage 
mechanism solves this problem. 

By holding task priorities in a common parameter 
table, the system can be "tuned" by simply changing 
those priorities found in that single tab]e rather than 
performing a reassembly of a large number of programs. 

Real time linkages resolve all the external references 
that a load module cop.tains for system subroutines or 
common parameters when the module is loaded into 
core for execution. The system subroutines and common 
parameters are loaded into main core during real time 
initialization and held there for the duration of the run 
(job step). Therefore, the addresses of these routines 
and parameters can be inserted into the appropriate 
external address constant fields contained in a module 
as it is loaded so that the cost at execution is no greater 
than if they appeared in the load modules in the norma] 
fashion. 

Logging 

In most real time applications, especially those which 
require post-run analysis, it becomes important to per­
form some type of recording activity which saves the data 
received, transmitted, and processed by the system. 
This feature is referred to as logging in RTOS/360. 
Logging automatically records all real time input and 
oatput messages on magnetic tape. Also, a macro in­
struction has been provided which will write problem 
program generated information on the log tape if an 
application programmer wants a record of selected 
data or processing results. 

Simulated input control 

One important factor, which is almost essential in the 
develop~ent of real time systems, is the ability to send 
simulated input data to the applications programs. In 
real time environments, it is impossible to employ or 
always obtain the necessary equipment to produce 
"live" data for all applications program checkout. To 
solve this situation, RTOS/360 contains a feature 
termed Simulated Input Control (SIC), which allows 
the uer to run his development programs with simu­
lated input data in an attempt to find most interface 
proble'llS between modules and programming errors 
prior t ) final checkout with actual data. 

The SIC programs which operate as part of RTOS/ 

RTOS 23 

360 obtain the simulated input data from cards or tape, 
or both. All data have a time of receipt associated with 
each data message which allows SIC to send each one to 
the data routing function when the time of receipt on 
the message equals the current internal computer time 
(job step pseudo clock time). This in turn generates 
requests for independent tasks which will process the 
data as if they were a real time message. For convenience, 
the SIC package has been designed so that magnetic 
tapes produced by the logging function can be used as 
SIC input sources without special editing. The SIC 
programs will pass over all output messages on the log 
tape and send only the input messages to the data 
routing function. 

Fastime 

Another special RTOS/360 function that has become 
very valuable at RTCC is Fastime. Fastime is often 
used in conjunction with SIC when testing new areas of 
the user's system. Its only function is to step the job 
step pseudo clock when there is no system activity. 
Fastime operates as the lowest priority task in the 
system so that it is entered when there is no other 
activity. If the Fastime program running under this 
task determines that there is no further work to be per­
formed before the next routing request, the time manage­
ment function is signaled to step the pseudo clock to the 
time of the next routing request. One can see that many 
hours of computer time can be saved because the system 
will not wait for the actual passage of time to generate a 
time queue if the system becomes inactive, as time 
queues will be generated immediately when idle C;PU 
time occurs. This function is further enhanced in SIC 
runs because the SIC programs use time queues in 
determining the exact moment a message is to be sent to 
data routing. Therefore, in a SIC run, time may be 
stepped to the time of the next data message. This mes­
sage will be immediately sent to data routing and then 
to a task for processing. In this way, simulated data 
messages can be given to tasks as fast as the tasks can 
process them, thereby reducing the actual computer 
time to Mst new programs. By using Fastime with SIC, 
the checkout of an 80-minute orbit can be performed in 
about 10 minutes. Fastime and simulated input control 
have no place and are not used when the system is 
performing its real time production work. These func­
tions are used only in testing new versions of the appli­
cation systems. 

Display- formatting language 

There is a large variety of display devices at the 
RTCC that have different internal format requirements. 

From the collection of the Computer History Museum (www.computerhistory.org)



24 Spring Joint Computer Conference, 1969 

There is a high probability of change in these devices, 
their internal formats, and the displays shown on them. 
This changeable character of the display devices in­
creased the need for a series of display formatting 
programs. To meet this need, RTOS/360 programmers 
designed and developed a versatile display formatting 
language (DFL) which isolates the applications pro­
grammers from the unique characteristics of each dis­
play device and the internal format changes resulting 
from modifications to those devices. 

The display formatting process consists of two steps. 
First, the user must define his display by assembling the 
DFL format macro instruction with his program. The 
format macro instruction expands into a "format state­
ment" or character stream when assembled. 

This character stream provides the display format 
controls used by the DFL conversion routines in the 
building of an actual output block for the desired dis­
play. During execution, the applications programmer 
can prepare output data for a display by executing the 
DFL conversion macro instruction. When the conver­
sion routines complete processing and return control to 
the calling program, the data are in converted form and 
ready to be sent to the device specified by a particular 
control card (DD card) in the job control language for 
the job step. The user can subsequently output the 
data to the display device via the real time access meth­
od portion of the real time I/O control system. The con­
version routines build output blocks for a particular 
device. The device is specified by identifying to the con­
version routines the DD name of the DD card for the 
data set. From this information, the conversion rou­
tines can identify the particular device whICh is to re­
ceive the converted data and activate the appropriate 
conversion modules. This means that the DFL package 
provides complete device independence among those 
devices supported (see Figure 9, Device Independent 
I:ispla.y Language). 

Through the simple alteration of control cards in the 
mer's job stream, the user can alter his display devices. 
This feature can be very valuable when the actual dis­
play devices are not readily available. The applications 
programmers can code and debug their display pro­
grams using common or standard devices, such as IB:;VI 
1403 printers. When t.he display devices become avail­
able, the programs will be ready for actual production 
work after changing the appropriate control cards. 
The d3vices currently supported by the DFL package 
are printers: IB.M 1403, IBNI 1443; display devices: 
IB1\'J 2250, IBl\l 2260, Raytheon l\lCVG, Philco 
RTCC Digital/TV; plotters: RTCC X-Y Plotboards, 
RTCC Scribers; and Teletypes. The device independ­
ence feature and some of the devices supported by D FL 
are also shown in Figure 9. 

RTPUT 

~ RTPUT 

® ) 

aBJ 
ItAYTHEON COMMNY 
MCVG 

FORMAT STATEMENT 

\ 

\ 
HELP 

I 
ITPUT 

I 

! 

-- -\ 
IBM 2250 

DISPLAY UNIT 

I 
I 

RTPUT 
! 

PHILCO COlPOIATION 
TV 

Figure 9 ---Device independent display lang uage 

Fail-safe programs 

Because of the critical nat.ure of real time manned 
spaceflights, it is extremely important that RTOS/360 
be able to process abnormal conditions so that it is 
virtually impossible for a portion of a flight to go un­
monitored because of a software, data, or hardware 
failure. Four areas of software support have been de­
veloped and included in R TOS /360 to meet this need: 
selectover, high-speed restart, error recovery, and time-out. 

Selectover is performed by exchanging the operation­
al roles of the :\'Iission Operational Computer (MOC) 
and the Dynamic Standby Computer (DSC) without 
interruption to the input/output data on the real time 
interfaces. During Selectover, the integrity of the mis­
sion outputs is maintained. 

The Apollo mission support system operating under 
RTOS/360 in a System/360 lVIodel 75 with one mega­
byte main storage and four megabytes LCS, may be re­
started in less than 10 seconds on an alternate Model 
7!> computer system which may be idle, processing job 
shop, or performing real time test operations. This is 
accomplished through IBIVI Channel-to-Channel Adapt­
ers (CCA) which link each comhination of two out of 
five machines. An Initial Program Load (IPL) sequence 
is generated from a remote console to the proper CCA 
on the operational computer system, simultaneously 

From the collection of the Computer History Museum (www.computerhistory.org)



enabling the CCA path between the two systems. A 
special IPL hardware modification enables a restart 
even if the machine to be restarted is in manual state. 
All of allocated storage is then transferred over the 
CCA from the operational system to the selected stand­
by system before resuming in the restarted system. A 
similar restart can be performed from magnetic tape by 
creating the tape on an operational computer and 
carrying it to the standby computer for IPL. (This 
operation takes about five minutes.) 

The error recovery package of R TOS allows the 
system to recover from errors due to the program errors, 
hardware-malfunctions, or abnormal conditions arising 
within the system itself. As recovery occurs, appro­
priate messages and recommendations are printed 
which indicate the current status of the system. A part 
of the error recovery activity includes device switching, 
i.e., if one I/O device fails, RTOS will automatically 
(or by external signal) select another device of that 
type. When the control program detects an error con­
dition, an end-of-tape, or when a user requests a device 
switch, Alternate Device Support (ADS) is invoked to 
locate an alternate unit of the same device type and 
perform the necessary adjustments to allow the alter­
nate to replace the primary device. RTOS/360 pro­
grams contain built-in logic which allows recovery 
from a situation where an alternate is unavailable. The 
computer operator is informed on the console type­
writer of all device switching operations. Currently, 
device switching is provided for the 1052 typewriter, 
tapes, printers, and 2314 disks. 

Certain I/O device failures are such . that an inter­
rupt to the CPU is never generated to signal the com­
pletion of the I/O operation or an error condition. A 
software timeout facility exists in RTOS/360 which 
will check once per second to determine if an I/O opera­
tion has not completed in a period of time which is 
normal for the particular device. When such an occur­
rence is detected, the I/O operation will be purged and 
appropriate messages will be printed. Normal use of the 
device will be attempted on subsequent requests. 

Houston automatic spooling priority system 

The tremendous development effort required to meet 
critical mission schedules requires that the computer 
systems be used to the maximum at all times during job 
shop operations. It was known from the onset of Apollo 
development that either a large number of "peripheral" 
off -line support computers would be required to per­
form such operations as loading jobs for execution and 
printing the vast amounts of output (usually large core 
and LCS dumps) or the Model 75 computers would 
have to be used to their maximum CPU availability. 

RTOS 25 

Since the former was far too expensive, a programming 
system was developed specifically for RTOS/360 that 
allowed all the peripheral functions normally associated 
with off-line support computers to be performed in the 
single l\10del 75 CPU. The system was called the Hous­
ton Automatic Spooling Priority (HASP) system. 
HASP acts as a dependent task under RTOS/360 (co­
habitates in a single CPU with other RTOS/360 opera­
tions) and uses small amounts of prLlllsry CPU thne to 
operate the peripheral functions. These functions in­
clude transferring the job stream to direct access to 
await execution, collecting job output on direct access, 
and printing and punching job output from direct 
access following job execution. Jobs awaiting any stage 
of processing (print, punch, or execution) are queued on 
a priority basis so that the effect of a true priority 
scheduler is gained not only for normal job execution 
but for associated peripheral functions as well. 

A complete "warm start" capability also exists in 
HASP so that untimely interruptions of the system will 
cause no loss of job input or output queued for pro­
cessing under HASP. Sophisticated operator commu­
nications exist that provide control over the number of 
input job streams, the number of output devices, and 
the order of job executions. 

Background utilities 

There are many utility functions in any data process­
ing operation, especially a system which employs 
disks, that must be performed. These include: dumping 
direct access volumes to tape, restoring direct access 
volumes from tape, copying and comparing tapes, 
labeling tapes, changing volume serial numbers on 
direct access devices, etc. This is especially true when a 
large variety of applications systems are under develop­
ment as in the RTCC. Utility operations usually re­
quire the complete dedication of the computer while 
they are being performed. This dedication was found to 
be unrealistic from both the cost and time required; 
therefore, all utility operations were designed so that 
.'1 , , I· tll 1 ", 1 T"'\rnACt loon tney COUla operate III --oacKgrounu-- unuer 1\,.1VO/OUU 

control as dependent tasks. These background utilities 
execute asynchronously with the normal job processing 
and can be initiated and terminated by the computer 
operator at the console typewriter. 

Job accounting system 

With the large number of computers being used by a 
vast array of development groups, it was found tbt 
the R TCC required a means to report accounting and 
system measurement data. This was accomplished by 
the inclusion of a set of programs called the Job Ac-

From the collection of the Computer History Museum (www.computerhistory.org)



26 Spring Joint Computer Conference, 1969 

counting System (JAS). Since all computer operations 
at the RTCC are under control of RTOS/360, JAS 
automatically generates, through punched cards, a 
data base for three types of reports which are valuable 
for both the accounting and system measurement pur­
poses. The three report types are: 

• A Job Shop Analysis Report which provides job 
mix and computer system performance statistics. 

.A Computer Utilization Report which is used to 
charge compute! time to user. 

• A Management Report which provides information 
on program development costs through statistics 
on the use of the computer by individual program­
mers. 

Statistics gathering and modeling activities 

Each Apollo mission presents the RTCC with a 
unique set of processing requirements. For example, 
real time data sources may change in number, arrival 
rate, or message size. These and other such factors 
cause changes in the performance of real time computing 
systems. So that changes do not cause the systems to 
perform below acceptable limits, performance of current 
systems is measured and that of future systems is 
modeled.2 

To measure the performance of a real time system 
and monitor its execution, a comprehensive Statistic 
Gathering System (SGS) was developed. SGS is a pro­
gram and not a hardware device attached to the com­
puter. It provides an accurate means of measuring 
performance on RTOS/360 by collecting: 

• Timing information on control program services 
and application programs 

• Percentage figures showing how definable system 
functions use the CPU resource 

• Elapsed time figures showing task response time in 
a multiprogramming environment. 

The SGS design for RTOS/3oo is patterned after an 
earlier version used with the Gemini 7094 Executive 
Control Program. 

The Real Time Computer Complex is not a project 
that is blessed with a firm definition of mission require­
ments. Results of each mission impose requirements for 
future missions and, thus, levy new demands for real 
time support. It is essential to the orderly development 
of RTCC real time systems to anticipate problems in 
computer system configuration or system program 
design that could impair the success of future missions. 
To analyze future system performance, RTCC uses 
models written in the language of the General Purpose 
Simulation System (GPSS/3OO). 

r-----------------------~-l 

MASTER 
SCHEDUliR 

~~TIATOR JOt INITIATOR JOt INITIATOR ~~~:SOUND HASP 
TERMINATOR TERMINATOR TERMINATOR JOt SYSTEM 

L ________________________ J 

Figure Io-A multi-jobbing/multi-tasking RTOS/360 

Information obtained from SGS is used in these 
modeling activities. 

Multi-jobbing in RTOS 

Within this paper, it has been shown that RTOS/360 
in the real time environment is a multi-jobbing system 
in the broad sense; i.e., a real time job step can be pro­
cessing several independent paths of logic (independ­
ent tasl{s vthich could be termed jobs since the)T sb...are 
the system resources) at the same time the multi-tasks 
are performing, and the background utilities and HASP 
are also vying for the CPU. However, after careful in­
vestigation of statistics obtained from SGS and JAS, it 
was found that large amounts of time were still spent in 
the I/O wait state, and that the full computing power 
of the System/3oo Model 75 was not being used. There­
fore, the final feature to RTOS/360 was developed­
real time mUlti-jobbing under RTOS/3oo control. 
The RTOS/360 multi-jobbing differs from the OS/360 
multi-jobbing in that RTOS/360 does not require parti­
tioned memory nor, of course, a fixed number of tasks. 
An illustration of RTOS/360 multi-jobbing is shown in 
Figure 10, A Multi-jobbing/Multi-tasking RTOS/360. 

CONCLUDING REMARKS 

The development of real time control systems for 
~~ ASA's spaceflight programs has been an evolutionary 

From the collection of the Computer History Museum (www.computerhistory.org)



process. For the Mercury Program, IBM devel?ped the 
Mercury Monitor, which performed only real tIme con­
trol and occupied only a small portion of an IBM 7090 
computer. Next came the development of the real time 
Executive Control System for the Gemini program. 
Executive occupied about 13,000 words of an IBM 
7094-11 computer. The third system in this evolutionary 
process was the RTOS/360, which is presented in this 
paper. RTOSj360, a 150,000 byte system, was the first 
system not only containing real time control facilities, 
as in the Mercury Monitor and Executive, but also 
containing the complete gambit of operating system 
functions (assemblers, compilers, job shop processing 
techniques, etc.). 

Today, RTOS/360 has not only successfully su~ported 
several NASA Apollo Missions, but because of l~ real 
time facilities and special features, coupled with the 
current OS/360 System, is being used by other instal­
lations outside the RTCC to meet their special require-

RTOS 27 

ments for a real time operating system. 

ACKNOWLEDGMENTS 

I wish to acknowledge the contributions of all those 
members of the RTOS departments whose documents 
and comments aided in the preparation of this paper. 
Special thanks go to Ray Strecker and Ken Adams, 
whose technical documents on RTOS were a major 
source oi iniormaiion. For ihe encouragement to write 
the paper, I wish to thank W. D. Pollan. 

REFERENCES 

1 J JOHNSTONE 
A real time executive SY8tem for manned 8paceflight 
Proc F J C C 1967 

2 W STA...~LEY H HERTEL. '; 
Statistics gathering and simulation for the apollo re4l ti1iU 
operating system 
IBM Systems Journal Vol 7 No 21968 

From the collection of the Computer History Museum (www.computerhistory.org)



From the collection of the Computer History Museum (www.computerhistory.org)




