
%

POUGHKEEPSIE PROGRAMMING CENTER

INSTALLATION GUIDE

I

ABDUMP

DEBUGGING PROCEDURES

Third Version
August, i960

PREFACE

This chapter was written assuming the user of OS/360 has coded a
program and faced with the task of debugging the program using the
ABEND hex dump (ABDUMP). Areas such as System Control Flow,
RB Queues and the trace area will be explained and explored as to
their use in debugging. Other sections of this chapter deal with
evaluating I/O error messages and status of DASD data sets. This
chapter will hopefully provide all the diagnostic aids and supporting
literature necessary to evaluate OS/360 debugging facilities in the
Primary Control Program (PpP).

This document assumes that the reader is a programmer who has
a general knowledge of OS/360 logic flow. A recommended
prerequisite to provide this general system knowledge is the IBM
Operating System/360 Concepts and Facilities manual C28-6535,
or Part 1 of the IBM publication; "Introduction to Control Program
Logic, " Z28-6605. _ At specified points within the document it is
recommended that Appendix B of the IBM Messages and Completion
Codes Manual C28-6608, be read to supplement this manual.

-1-

■ ■ '* •
DEBUGGING PROCEDURES * •

Table of Contents

Page

X. INTRODUCTION 4

H. SYSTEM CONTROL FLOW 5

A. TCB & RB explanation * 5
B. RB Queues 8

1. Active RB Queue
2. Load List

C. System Interaction between Queues
D. RB types

1. Program Request Block (PRB)
2. Supervisor Request Block (SVRB)
3. Interrupt Request Block (IRB)
4. Supervisor Interrupt Request Block (SIRB)
5. Loaded Program Request Block (LPRB)
6. Loaded Request Block (LRB)

Ë. TCB & RB Fields from ABDUMP

HL ABDUMP 34■

A. User or System Problem 34
1. Determining the type of Error 34
2. RB Queue Evaluation 34
3. Naming Convention • 35

B. User Problem 36
'1. User program location 36
2. Analyze PSW 37
3. Additional PSW Information 38
4. User Debugging Steps 39

C. System Problem 40
1. Common Erorrs 40
2. System Blocks 40

IV. SAVE AREAS 46

6
12
15
23
25
25
26
28
28
28
29

A. Save Area” Chaining 46
B. Save Area Trace ' 49

1. Format 50
2. Messages ■ 52 V.

V. TRACE 53
A. Table Entry Formats 53
B. Location of Table 55
C. Trace Examples & Explanation 55

-2*

VI DASD DATA SETS

Page

59

A. VTOC Evaluation 59
. ' 1. DADSM 59

2. VTOC - Listing and Description 60
3. Formatted VTOC 61
4. Data Set Control Block (DSCB) 63
5. Dumped VTOC 65
6. Extents 72

B. Partitioned Data Set Directory Information 74
1. Directory Organization' 74
2. Directory Contents 74
3. Directory Size and No. of Entries per block 75

Vn. APPENDIX A 78

SVC Routines 80
Request Block Queues 82
RB Status Field 83
Naming Conventions 85
Completion Codes * 86

-3 -

4

I. INTRODUCTION

Prior to going in and examining the different facets of the ABEND
dump it is necessary to understand the system control flow of the OS/360
control program. This understanding is essential in order to comprehend
and evaluate the full ABDUMP,

Whenever possible, actual dump examples have been included to
supplement the text. However, due to size limitations it is impossible
to include examples in all areas. For this reason it is suggested that
the reader supplement the text using his or her own ABDUMP.

S j

-4-

ïï SYSTEM CONTROL FLOW

A, Task Control Block (TCB) and its associated request blocks (RB)>

1. What is a TCB?

The task control block is the operating system's way of
keeping, in one location, pointers to all pertinent information
about the job step and consequently the task that the job
scheduler has scheduled. In the primary control program
(PCP) there is only one TCB in the system. It is located
in the nucleus and used by all programs that reside in the
problem program as shown in Figures la and b.

'4 Core Storage----------—------

TCB

' Nucleus

Job
Scheduler

a. TCB associated with job scheduler

.Core Storage

TCB

Nucleus

Compiler or
Users Program

b. Reinitialized TCB associated with problem program.

Figure 1

-5-

I *

This one TCB is reinitialized every time the job scheduler
completes its scheduling of a job step and control is given to
the problem program, A similar action occurs when the problem
program completes its function and specifies the RETURN macro.

2. What type of control information is kept in the TCB?

The TCB primarily contains pointers to other system
blocks imbedded in the control program nucleus. For in­
stance, one can determine what I/O devices have been
allocated to this job step by locating the Task I/O table (TIOT);
which data sets are open by checking the DEB list; determine
the end of the nucleus by looking in the main storage supervisor's
boundary box. All of these system created tables and control
blocks are pointed to by the TCB. How each of these fields
are used as diagnostic aids will be covered later.

3, What is a Request Block (RB) and why is it needed?

It is very possible that all the routines for any one problem '
£ program or job scheduler will not be brought into core with j

the initial load module. The use of the LINK, XCTL, ATTACH and .
LOAD mocro used the OPEN routine to dynamically bring in
the access routines, is a good e xample of this. This dynamic
loading capability forces the control program to add a control
block, in addition to the TCB, called a request block (RB).
This request block retains control information at the load
module level. One of these RB's is created by the control
program whenever a dynamic request to fetch a load module
for execution is given. The RB is located in problem core as
indicated in Figure 2a.

-6-

Core StorageIf *
TCB

NUCLEUS

RB load
module A

Problem
Program

a. RB located in problem core

\ -̂------------ ------------- -— Core Storage

TCE RB | load
-----1"
RB

1 ...
load

module A tnodule B

NUCLEUS
LINK B

b. RB created for load module B

Figure 2

Figure 2b shows the relative position of a second RB
which was created when load module A issues a LINK
fnacro. The control program nucleus responded to the
LINK macro by fetching load module B into core and creating
an RB to retain control information about this module.

4. ‘ What kind of control information is kept in an RB?

The content of the RB is an important element of the
debugging procedure. Its content and size vary depending
on what type of RB it is. If we assume that the RB is for
a load module that was LINKed to, as in Figure 2, it
would be 32 bytes in size and would contain such things as
the member name or alias that this load module was
fetched by; the size of this load module and its RB; and the
PSW as it existed when control was passed to the nucleus the
last time. How each óf these fields are used to aid in

• .debugging is covered later.

-7-

/ J

ê *

B.

5. How does the system know which load module'to give
control to? ' v.. >

The question is very valid. Prior to this, the discussion
centered around the TCB and the RB, but not how the two are
interconnected. This is a good point to introduce the two
request block queues that the system uses to control what
load module gets control of CPU time. They are called
the Active RB Queue and the Load List. . The next section
describes their actions.

RB Queues

As indicated earlier, there are two RB queues that the
system creates and maintains. These queues provide the
means by which the primary control program keeps track
of and allocates two very important resources - CPU time
and load modules (programs) currently in core.

1. Active RB Queue

Prior to developing the active RB queue, it is necessary
to explain the TCB - RB relationship. To clarify this - ‘ .
subject, it is convenient to initially assume that; the-job ̂ j

. scheduler has been in core, read the job control language
(JCL) defining the job step; allocated the I/O devices and
requested the control program, via an XCTL macro, to
fetch load module A. The control program nucleus has
created an RB for load module A, fetched the module
into core storage and given control of CPU to module A.
At this point in time, core storage contains the nucleus,
load module A, and its RB in lower core. With the exception
of a system tabl e. in upper core, the rest of core is free
for allocation as indicated in Figure 3.

Load module A was defined to the system via an EXEC
PGM=A card in the input job stream. It should be noted
that the system always places the RB, associated with load
module (program A), on the first doubleword boundary
outside the nucleus (assuming no storage protect). With
storage protect the first RB is placed on the first 2048
byte boundary outside the nucleus. The load module A
is contiguous with the request block.

-8-

\(£---- ---------------------- Core Storage ------------- --------»

TCB RB-A

Nucleus

__________ 1

Load
Module A
(Program A)

Free Core
System
Table
(TIOT)

Figure 3

Logically, the TCB and RB are linked up as shown in
Figure 4. The TCB always contains a pointer to the RB
whose associated load module has control. In our example,
only one load module is in core, so the address of its request
block is placed in the TCB. This pointer in the first RB
contains a pointer to either a previous RB or the TCB. In
our example no previous RB's exist, so this field does point
back to the TCB. Additional fields, such as the member name
and entry point are shown to reflect some of the control
information that is retained in the request block.

TCB
RB-A

SAVE.. .

Program A

RETURN...

Figure 4

* *

The linking of the TCB and RB together creates the .
beginning of the active RB queue. By definition this is
a_aueue.of request blocks that keep track of active
load modules (programs) that have been LINKedf XCTLed,
or ATTACHed.

To elaborate on this, one must expand the previous
example. Assume that program A now LINKS to program
B. The LINK macro, when assembled, degenerates into
an SVC 6 which causes an interrupt and gives control
to the nucleus. Figure 5 shows the updating of the con­
trol block pointers that takes place prior to giving control
to program B.

- 10-

At time(2^vhen Program B gains control of CPU, the
active RB queue is connected as described below.
The top RB pointer in the TCB points to the RB - B
(whose program is in control). The link field in
RB - B points back to RB - A, whose associated
program will regain control when Program B com ­
pletes. The link field in RB - A points to the TCB because
it is the first RB on the queue. A snapshot of core at
time(2)vould look like Figure 6.

Core Storage- Al

TCB RB-A RB-B
“ — ^--------

Nucleus Program A Program B Free Core

■ t f

TIOT

i f
Figure 6

- 11-

I *

s» •
a. How does the nucleus know where to return control to

in Program A?

Referring to time(T), Figure 5, when the SVC 6 causes
an SVC interrupt, the nucleus retains the SVC old
PSW in the request block for program A. This 8
byte field in RB - A, called RESUME PSW, will
therefore contain all pertinent information about
Program A 's resumption point. The nucleus,
between time^^and^T) performs an LPSW
instruction specifying the Resume PSW field of RB - A
and Program A regains control at the proper point.

2. yhe Load List

The load list, by definition, is a queue of request blocks that
keeps track of load modules that have been fetched into core via
the LOAD macro. These programs or load modules will remain
in core until either a DELETE macro is issued for them, or job
Step termination occurs. Modules that are LOADed and their
associated RB's, are fetched into the upper end of core
Storage. As you recall, modules that are XCTLed,ATTACHed,
or IINKed to are fetched into the lower end of core. This tends
to keep contiguous free core between them as shown in Figure 7.

TCB RB-A RB-B RB-L

Nucleus Program A Program B Free Program TIOT

Core (LOADed)

Figure 7

The linking of the TCB and the RB's on the load list differ slightly from
the active RB queue. To understand the need for a different type of
queue, one must understand the logic behind the LOAD and DELETE
macro. Upon issuing the LOAD macro, the nucleus fetches the
requested load module, creates an RB, and initializes a load list as
indicated in Figure 8.

-12-

\ 0 0 0 0
TCB

L WV

— entry pt.

SAVE

Program L

RETURN

SUCCEEDING
PROCEEDING

normal
RB

Figure 8

The nucleus then passes back to the issuer, in Register 0, the entry-
point to the requested routine. At this point the issuer of the LOAD
macro regains control and may, at will, branch to this loaded routine,
using the entry point passed to him. An important fact is that the nucleus
does not know when the user is operating in the loaded routine and there­
fore cannot delete it.'

The system must wait for a DELETE macro to -be issued by the user
or step termination to take place before freeing up the RB and core
associated with a LOADed program.

-13-

Upon issuing of the DELETE macro, the nucleus gains control,
via an SVC interrupt, and searches the Load List for the specified
load module. It uses the two pointers of the extended RB, shown
in Figure 8, to perform this search and find the requested load •
module. The SUCCEEDING pointer contains zeros. The

PRECEEDING pointer of the RB points to the previous RB on the
Load List. This field in the first RB on the Load List points
back to the Load List field in the TCB. The purpose of the two
pointers is evident when one considers that the system must
be able to DELETE load modules whose RB's are in the middle of
the list. Both pointers are necessary to delete the RB and link
both ends of theload list back together again.

a. Does the Primary Control Program use the LOAD macro
to bring in any of its routines?

Yes, a good example of the use of the LOAD macro is
its use by the OPEN routine. Access method routines
are brought into core at OPEN time via the LOAD macro.
At CLOSE time the DELETE macro purges these routines
if they are not in use.

b. How could these access method routines be in use?

When initially LOADed at OPEN time these modules are
brought into core and a one (1) is placed in the USE
COUNT field of the RBs associated with these modules,
ïf a second data set isOPENed, specifying the same access
method or requesting the same load modules, the control
program simply increments the USE COUNT in the RB,
passes back the modules entrypoint in Register 0 and
does not fetch another copy. At CLOSE time the DELETE
macro decrements the USE COUNT in the RB and only
if it goes to zero, purges the module and frees up the core.
Otherwise, the module would remain in and be purgefltat
the CLOSE of the second data set.

• u *

C. System interaction between the two queues

The Active RB Queue and the Load List make up the
contents directory for the sequential system. Depending on
which macro is given, XCTL, ATTACH, LINK or LOAD,
the system reacts differently as to the queues it checks
before it fetches another load module. Let's take a few

• examples to point out the differences.

1. Figure 9 shows the resulting active RB queue .after
Program B LINKs to Program C.

TCB

Figure 9

Upon return from Program C, its RB and associated
load module is purged and the core freed up. The
same action takes place upon the return from Program
B to A. At that point the Active RB Queue looks like
Figure 10.

-15-

__ TCB___

JL.top_RB. RB - A

f TCB

Figure 10

If at this point Program A LINKed to B again, the following
sequence takes place. The Load List is searched for B; if not
found, a new copy of load module B is brought into core; an RB
created; and the Active RB Queue updated accordingly. Control
then passes to B. If load module B has an RB queued on the load
list, then the primary control program (PCP) determines if the
module is usable. If it is, the same RB that is queued on the load
list, is queued on the Active RB Queue and control is given to load
module B as shown in Figure 11. The control program determines
whether a load module is usèble or not by evaluating the STATUS
field of the associated RB. How this STATUS field is set will be
expanded upon later when RB types are covered.

Figure 11

I

»

2. How does the issuing of an XCTL macro differ from
the LINK macro we just talked about?

XCTL's effect on the system is best explained by
referring back to the in core situation indicated
in Figure 6. Basically Program A LINKed to
Program B. Let's assume that the programmer
wished to execute Program C and then RETURN to
Program A without going back to Program B.
XCTL provides this capability by logically over-

' laying Program B with Program C. Upon returning
from Program C processing is resumed in Program A.
At the point when the XCTL macro is issued in
Program B the system blocks are queued as shown
in Figure 12.

-17-

The following events occur in the nucleus upon issuance of
the XCTL macro. It, like LINK, degenerates into an SVC
interrupt allowing the nucleus or control program to gain
control. The first function performed is to search the Load
List for load module C. If found and usable, RB - C is
queued on the Active RB Queue; RB - B and load module
B are purged and its core is freed; and control is given to
C.

If load module C is not on the load list, program B and its
RB is purged leaving program A and its RB as the only routine
in user core. The nucleus then fetches module C, creates
an RB, and chains it on to the Active RB Queue as indicated in
Figure 13.

Figure 13

-18-

&

Figure 14 reflects a snap shot of core as it exists while
executing program C.

TCE RB-A

Nucleus Program A

RB-C

Program C

Figure 14

The important thing to note is when an XCTL macro is
issued another level of request block is not created as is with

a LINK or ATTACH macro.

3. How is an ATTACH handled on the primary control program?

The ATTACH macro normally initiates a section of the
overall program, called a subtask, that can be processed
in parallel with the main program asychronously.
However, in the primary control program only one task control
.block exists. It is impossible to dynamically create
another TCB, and impossible to process a sub^ask
asychronously. The next best thing is to allow the use of
the ATTACH macro, when looking ahead to the multitask
operating system, and to perform the ATTACHed routine
serially. This is what the primary control program does.
It performs the ATTACHed routine much like a LINK with
a few exceptions. The ATTACH macro allows specification
of an exit routine (EXTR parameter) and the posting of an
event control block upon completion of the ATTACHed
routine. Both the exit routine and ECB are located within
the ATTACHing load module. These features are handled
by placing additional request blocks on the active RB
Queue as shown in Figure 15.

-19-

RB-EXTR '
■4 RB-A

RB - B
fRB-ATT

Figure 15

In the example shown (Figure 15), program A
ATTACHes program B specifying an exit routine to enter
upon completion of program B, and an event control
block within program A to be posted upon completion of B.
The system makes the normal search of the Load List
as the LINK routine did. If the requested program is not
found, it is fetched into core and the Active RB Queue is
updated as shown in Figure 15. Program B gains control
of CPU. Upon completion of program B, the ATTACH
routine in the nucleus would receive control and POST
the event control block indicated. Control would then be
given to the EXTR routine. Upon RETURN from the EXTR
routine control again passes to program A to resume pro­
cessing.

5. Summary of Sequential Program Execution

Program A was fetched into core as the result of the
Job Scheduler reading an EXEC PGM=A control card.
The logical sequence of control flow that occurs, starting
at IPL time, is something like the following:

a. By depressing the IPL key on the console and
specifying the SYSRES device in the load address
keys, the computing system reads in an IPL
Bootstrap record. This Bootstrap record,
consisting of a chain of channel commands, reads
in the IPL PROGRAM LOADER. At this point
the load light on the console goes out and control
is passed to this IPL Program Loader. Its
function is to read in the nucleus plus the nucleus
initialization program (NIP). NIP and the nucleus
are combined as one load module and written on
the system residence device at system generation,
time.

-20-

b. Once the nucleus and NTP are in core, NIP gains
control and proceeds to initialize the nucleus. Just
prior to NIP's completion the Active RB Queue would
look similar to Figure 16.'

RB-NIP
top RB ----- —

J..

? TCB

Nucleus
Initializations
Program

XCTL-IEFK1

Figure 16

NIP would then logically XCTL to the master
scheduler function of an XCTL, NIP will be
overlayed by the master scheduler. The master
scheduler would then issue the READY message-and
wait for the SET DATE command to be entered at
the console. Upon receiving this command from the
operator, the system will then issue the automatic
START RDR, START WTR commands and wait on
changes to these commands or/and a START command.
The master scheduler XCTL's to the reader interpreter.
At this point the system blocks logically looks like
Figure 17.

-21-

Reader/
Interpreter

X C T L . . .

Figure 17

The Reader Interpreter opens the system input and output
devices and proceeds to read the input stream. It then
creates the system tables necessary for job initiation and
I/O device allocation. The Reader/Interpreter will
.continue to read the input stream and create tables until
DD* card, null card or another JOB card is rea^
Upon recognizing one of these, it XCTL's to the
Initiator. System blocks at this point in the job
step initilation cycle logically looks like Figure 18.

TCB
.----- -- -------- — f

RB-INT

/f\ top RB •

i
t

4s TCB

Initiator

XC TL...
Figure 18

- 22-

The Initiators primary function is to allocate I/O devices
to the job step and obtain DASD space. Once the
allocation of devices is complete the Initiator builds
a task I/O table (TIOT) which lists the ddname and a
pointer to the assigned device or devices for each data
set of this job step. This TIOT table is placed in upper
core and is the system cable that has been referred to
on previous core snapshots. By using this table, one
can determine what devices the job scheduler has
assigned to user data sets. The Initiator then XCTL's
to the load module specified in the EXEC card. In our
example it was program A.

Upon completion of the problem program (A in our
example) the RETURN macro will return control to the
nucleus and it, in turn, will XCTL to the termination section
of the initiator. This phase of the job scheduler takes care
of the disposition of the data sets and frees up the proper
I/O devices. It would then initiate the next job step
or XCTL to the Reader Interpreter to read in the next
JCL. The whole sequence starts again.

Logically, this past sequence of events is how the system
blocks are used both by the job scheduler and the
problem program. Due to the different means of packaging
the job scheduler the names of the modules and the number
of XCTL's will vary.. The sequence shown is for logic ;;
purposes only. Refer to the Job Management PLM for actual :
module names and number of loads.

D. RB Types

Up to this point the assumption has been that there is one type of
request block. In reality there are six different types of request blocks.
The RB type, its size and the fields'used within it varies depending on
the routine or load module it is associated with. To be able to analyze
the RB queues, one must be able to recognize the different types and
and know their function. Figure 19 shows the fields and core size required
by the six different types of request blocks.

i

-2 3 -

V 'M

REQUEST BLOCK (RB) FORMAT *
i

RBSUC
RBPRE
RBNM

5, XSTAB

3E, EP
RBPSW
•

RBQ
T, LNK

RBREG

-8
-4
00

08

12
16

24

32

64

9.6

■K- ~RB Fields-

^ LOADed. Successor
t LOADed Predecessor

-) |I*RB type and length-

A —
PROGRAM ID

Size j Size
RB I Program [

FLAGS

Use i ENTRY POINT ADDRESS
RESUME

PSW
‘TQueues of lEQ.'s

WAIT) f NextRB on RB Queue
Count i or t TCB

SAVE AREA
8 REGS.

SAVE AREA
8 REGS.

EXTENDED
SAVE AREA

For SVC Routines
Max 56 Bytes

Figure 19

LRB

LPRB

V
24

PRB

J l
40

IRB

32

SIRB

aJl _vL
64 64

V

SVRE

96
I •

1

144

LRB - Loaded Request Block
LPRB - Loaded Program Request Block
PRB - Program Request Block
IRB - Interrupt Request Block
SIRB - Supervisor Interrupt Request Block
SVRB - Supervisor Request Block

-24-

1.

* e

Program Request Block (PRB)

The system initially starts out with one PRB
and it is associated with NIP as indicated in
an earlier section. This RB is the most common
and primarily the one described in the previous
examples. PRB's are created by the nucleus when­
ever an XCTL, ATTACH, or LINK macro is
issued. This request block is 32 bytes in size
and always contiguous to the load module that it
is associated with.

I
2. Supervisor Request Block (SVRB)

The supervisor or nucleus when it gains control
of CPU executes its code in two basic operational
modes. The, first operational mode is when an
interrupt occurs, the supervisor executes a
routine which performs some function, and
returns control to the problem program. In

' this mode the supervisor disables all interrupts
except the machine check. Because there is no
possibility of interruption, no request block
is required to retain interruption status. The
second mode of operation occurs when the code that
the supervisor is executing allows interrupts or
operates enabled. This mode, therefore, requires
a request block to retain status and save registers,
in case an interruption occurs. This request
block is called a supervisor request block (SVRB).
It is created for, and associated with, SVC
interrupt routines. An SVRB is dynamically
created by the nucleus whenever the supervisor
determines the requested SVC routine operates
enabled. Free core is obtained at the upper end of
core to build there SVRBs.

a. Do all SVC routines operate with interrupts
enabled ?

No, all SVC routines -are.broken down into
types I through IV as described below.
Type I - These routines are always resident
and operate disabled.
Type n - These routines are also resident;
but are partially enabled and reenterable, i
Type HI - These routines are non-resident
and reentrant. They are brought into the
1024 byte SVC transient area for execution
from the SYS1. SVCLIB data set.

-35-

* {

' K i

Type IV - These are multi-phase type III routines.
They are too large to be brought into the transient
area at one time and must be brought in phases.
Control is passed from phase to phase via an
XCTL macro.

SVRB's are, therefore, created for control of
the type II, III, and IV SVC routines. Appendix
A contains a list of the SVC's and their type
classificatibn.

3. Interrupt Request Block (IRB)

The processing environment of the operating system
is such that at certain points in the processing
cycle functions are defined to be processed if an
asynchronous or unpredictable event occurs.
The IRB is used to control these user and system
asychronous exit routines. A good example
of its use is when a timer routine is specified
in the STIMER macro. This user routine, located
in problem core, is given control when the
specified time internal ends. Because one cannot •
predict when this internal will end, the STIMER
SVC routine creates, by a GETMAIN requesting

‘ upper core, an IRB to control this user timer
 ̂ * routine. When the interval times out and

causes an external interrupt, the supervisor
initializes the IRB, chains it onto the Active
Queue and gives control to the user routine.
The Active RB Queue at this time would look like
Figure 20.

-26-

IRB

SAVE

Program A

RETURN

User Timer
routine

RETURN

Figure 2 0 .

4. ...Supervisor Interrupt Request Block (SIRB)

The function of an SIRB is similar to an IRB only
an SIRB is associated only with the IBM supplied
system I/O error routines. There are two additional
features that are unique to an SIRB. There is only
one SIRB and its associated routine operates out of a
400 hyte transient area in the nucleus. Its associated
routines are fetched from the SYS1. SVCLIB data set

5. .' ! Loaded Program Request Block (LPRB)

These request blocks are used to control programs
that are fetched into core as the result of the LOAD
macro. An LPRB is always chained onto the Load
List via use of the SUCGEEDing and PRECEEDing
pointers which are unique to RB's associated with
LOADed programs. An LPRB may also appear on
the Active RB Queue as the result of an ATTACH,
XCTL, or LINK being issued for its associated load
module. In this case, the RB is maintained on both
queues simultaneously through two different sets of
pointers as indicated in appendix A, Figure 1. The
LPRB is physically located adjacent to its LOADed
routine and are allocated in core storage starting at
the high end and working toward the middle.

6. Loaded Request Block (LRB)
*

This request block is a shortened form of an LPRB
and used to control LOADed modules that have the
only loadable (OL) attribute. This means that once
loaded, this routine may be entered only by a branch.
It is invalid to ATTACH, LINK, or XCTL to modules
with this "OL" attribute. An LRB will be chained onto
the Load List and will never be found on the Active RB
Queue. It will be contiguous with its load module similar
to the LPRB. A load module obtains this "only loadable"
attribute at linkage editor time via the programmer
specifying the OL subparameter in the PARM field of the
EXEC control card. The most common reason for a
programmer to specify this attribute is that he has not
followed the linkage conventions required by the ATTACH,
XCTL and LINK. Both the LRB and LPRB remain on
the Load List until their routines are deleted as described
in section B-3.

-28-

I

E. TCB and RB Fields

This section explains the TCB and RB fields using the
formated output of the ABDUMP.

1. The TCB ABDUMP format is shown in Figure 21

TCB 000180 RB 01F83C PIE 000000
DEB
TRN

01F7BC
00000000

TIOT 01FF5C CMP 0C6000

MSS 00003CB8 PK/FLGS 00910400 FLGS/LDP 00000000
LLS 01F890 JLB 01FEE0 JSE 00000000
ID/FSA 0401FFB4 TCB 0Ó0000 TME 003CCC

Figure

The following is an explanation of TCB fields that are helpful
in debugging problem programs. All TCB fields are dumped,
in hexadecimal. The first 6 hex digits on line 1 of Figure 21
reflect the location of the TCB.

»

a. RB - This 4 byte field contains a pointer to the
top request block on the Active RB Queue.

b. PIE - This 4 byte field contains a pointer to the
Program Interrupt Element (PIE) if a SPIE
macro has been issued by the problem program. •

. Otherwise it contains zeros. A SPIE macro'allows
• the programmer to specify an exit routine to be

entered when specified program interruptions
occur. The control program creates a 32 byte
Program Interrupt Element to accomplish this
function.

c. DEB - This field contains a 4 byte pointer .to the
Data Extent Blocks created for the OPENED data
sets of the current job step. By using this field in
conjunction with the second word in the chained
DEB's one can determine which data sets have
been opened. This area will be expanded later on.

d. TIOT - This 4 byte pointer contains the location
of the Task I/O Table. From this table, one may
determine which I/O device and associated unit
control block (UCB) has been allocated to a specific
data set.

-29-

4

e* CMP - This is a 4 byte field which contains
the task completion code in hexadecimal. Only
the right three bytes are used and these are
split in two. The left three hex digits represent
a completion code supplied by the problem
program through a subparameter of an ABEND
macro-instruction.

f. TRN - A 4 byte fièld used by TESTRAN contains
the address of the Control Core table for controlling
testing in a task ..

g. MSS - A 4 byte field containing a pointer to the
Main Storage Supervisor's boundary box. Useful
in determining core size and resident control
program size.

h. PK/FLGS - The first two hex digits (1 byte) are
the contents of the protection key field. When
protection is implemented this field will contain
the assigned protect key for the problem program.
The last six hex digits are the first three bytes of
the flag field. Interpretation of these flags will
help determine how ABEND was entered.

i. FLGS/LDP - This 4 byte field will be used later
Under Option 2 and 4 environments for additional
flags and indicating dispatching priority.

j. LLS - A 6 digit hex address of the most recently
added request block on the Load List. This is the
Load List pointer that was explained in an earlier
section. Total field length is 4 bytes.

k. JLB - A 6 digit hex pointer to the address of the
' DCB for the job library. If a JOBLIB DD card

was not specified for this job, this field will contain
zeros. Total field length is 4 bytes.

l. JSE - This 4 byte field contains a pointer to the
Inactive Program List explained in an earlier
section.

m. ID/FSA - This is an 8 digit hex number. The
first two digits (1 byte) are always 04 in the PCP.
The last six digits (3 bytes) are the starting
address of the system supplied first problem
program save area.

n. TCB - This is a 4 byte hex field which will contain
zeros. Later, under option 2 and 4, this field
will be used to chain the TCB's together to form
the ready/wait queue.

• o. TME - A 4 byte field which contains a pointer
to the timer element. This field is not printed if .
the computing system does not contain the timer
option at system generation.

?.j

V /

-30-

• It is important to note that the unformatted TCB
within the dump has additional fields that are not
formatted by ABDUMP. Use the Introduction to
Control Program Logic Manual Z28-6605 as a
guide to decipher an unformatted TCB.

2. The RB ABDUMP format is shown in Figure 22.

A001 005AA8 NM LAST SZ/STAB 005Ö00C0
USE/EP 00005AC8 PSW FF05000D 80005BFC

000000 WT/LNK 00000264 UB 005D58

Figure 22

A001 on the first line indicates this is the request block
that is chained to the TCB. (Lowest RB on the Active
RB Queue). The next 6 hex digits indicates the location
of the request block being formatted.

a. NM - This is an 8 character name or program
identifier field.of the request block. The contents
of this field will vary depending on the type of RB.

• A program request block (PRB) will contain the
member name by which the program was fetched.
A supervisor request block (SVRB) for a type lU
and IV SVC routine will contain the signed decimal
SVC code of the routine associated with this SVRB.
For example, ABEND is a type IV SVC routine.
•Its associated SVRB will contain a 01C in this field.
This is the signed decimal number for the ABEND
SVC code

b. SZ/STAB - This is an eight hex digit printout. The
first four hex digits give the size of the RB plus its
associated load module in hex, in doublewords.
In Figure 22 the size field contains hex 0056. This
represents an RB plus load- module size of 688 bytes in
decimal. This size field is used for this purpose
only in loaded program request blocks (LPRB), loaded
request blocks (LRB), or program request blocks
(PRB). In SVRB's, IRB's, and SIRB's the size field
indicates the size of the request blocks on ly .. The
last four hex digits are a set of status indicator
denoting the RB type, active/inactive status, etc.
See Appendix A figure 2 and 3 for a further break­
down of this field.

-31-

k

t

V

c. USE /E P - This is an eight digit hex printout.
The first 2 hex digits are the use count. This
field contains a count of the number of LOAD
requests for a program. As explained earlier, the V- \
use count applies only to LRB's and LPRB's. The .'
next 6 hex digits of this printout contain the entry
point (EP) for the program or load module associated •
with the RB.

d. PSW - A 16 hex digit representation of the resume
program status word (PSW). This field contains
the last old PSW from either an I/O interrupt, or
a type n, EH, TV SVC interrupt.

e. ^ - A 6 hex digit representation of the secondary
queuing field. This field contains one of the following:

•
1. For interruption request blocks (IRB), the

address of a 12- or 16-byte request element.
2. For program request blocks (PRB) and loaded

program request blocks (LPRB), the address
of a loaded program request block, which
describes an entry point identified by an
IDENTIFY macro-instruction.

3. For a supervisor request block (SVRB) for
a type IH or IV SVC routine, system information.

f . WT/LNK - The first two hex digits are the wait count. ^ j
This is the number of WAITS which must be satisfied
before this RB and its associated program may be

• dispatched. The last six digits are a pointer to the
next RB on the Active RB Queue. A pointer to the
TCB will reside in this field for the lowest RB (A001).

g. UB - A three byte field calculated by ABDUMP to
indicate the upper bounds (hex address) of the load
module associated with a PRB, LRB and LPRB.

h. REGS 0-7
REGS 8-15 - These fields represent the contents of
the registers and are associated only with super­
visor request blocks (SVRB) and Interrupt request
blocks (IRB). This field is used like a users save
area for the supervisor routines associated with these
RB's. (These fields are not shown in Figure 22).

r * *

-32-

•

At this point one should have a good knowledge of the system control
flow. This knowledge should be supplemented by locating the various
system queues and control blocks on an actual ABDUMP output.

4 ‘ This would also be a good point to read Appendix B, of the Control
Program Messages and Completion Codes Manual C28-6608, which
explains the fields within ABDUMP. It is recommended that the
reader place Appendix B at the back of this chapter to insure the
ABDUMP writeup and explanation is located in one place.

4 *

i

-33-

4 m .* ABDUMP

A. User or System Problem?

Determining whether the problem is a system deficiency or a
problem program error is the first step in any debugging
process. In using the dump, one must first determine the type
of error and second what program was in control when the error
occurred.

X. Determining the type of error

To determine the type of error, the most positive clue is
the completion code. One can quickly distinguish whether
the user or POP system supplied the completion code.
The system prints out in decimal the user supplied completion
code prèceded by USER=notation. System supplied completion
codes are preceded by SYSTEM=notation and printed in
hexadecimal. A system completion code does not always
mean that the user is not at fault because a user program
can indirectly cause the ABDUMP. Therefore, the answer .
to whether it is a user or system problem cannot be arrived

4 at until the Active RB Queue is investigated.

<i Z, RB Queue Evaluation

The highest priority RB (the top of the Active RB Queue),
will always be an SVRB for the SVC routine 051, which

, is ABDUMP. This SVC routine formats and prints the
dump.. The next RB on the queue below ABDUMP is an
SVRB for the SVC routine 013, which is ABEND. This
SVC routine gains control whenever the system or user
issues the ABEND macro. All RB 's in the chain preceding
these will be either the users, and/or those of data manage­
ment (OPEN, CLOSE, etc.), other Type II, III, IV SVC
routines, or the job scheduler. A typical Active RB Queue
at ABDUMP time is shown in Figure 23.

Figure 23

-34-

It is easily determined, by looking at the NM field in
the RB, whether the users problem program was in
control or not. In Figure 23, assume the load module
called PGMB was in control at the time ABEND was
called. PGMB may, have issued the ABEND macro, in
which case a users completion code would appear on the / , .
dump. A second possibility is that PGMB may have
caused the system to issue an ABEND (i. e. - causing
a program check). In the latter case, a system completion
code would be printed on the dump but the problem was
caused by the users program.

Naming Conventions

The programmer should know his load module names which
appear in the NM field of the RB. However, the NM field
for SVRB's and PRB's associated with system components
is not quite so easily interpreted. It is, therefore,
appropriate at this time to cover the naming conventions
for system components and non-resident SVC routines.
All system component load module names have the first three
characters coded. The prefixes are listed in Appendix A under
Operating System/360 Naming Conventions. If for example,
a PRB was on the Active RB Queue for a job scheduler
module, the NM field of the PRB would contain IEFzzzzz;
where zzzzz represents the rest of the module name unique
within the job scheduler.

The conventions for naming non-resident or transient SVC
routines adds additional conventions to the three unique
characters, IGC, which denotes transient SVC routines.
The following conventions are used:

Type III - IGCOOnnn; nnn is the signed decimal
number of the SVC routine. This name must
be the name of a member of a partitioned data
set (SYS1. SVCLIB).

Type IV - IGCssnnn; nnn is the signed decimal
number of the SVC routine, and ss is the number of
the load module minus one, e. g . , ss is 01 for the
second load module of the routine. This name

1: must be the name of a member of a partitioned
data set (SYS1. SVCLIB). *

-35-

In Figure 23 the load module member name,
on the data set SYS1.SVCLIB, is.IGC401C (in
extended BCD). The system places only the
last four characters, 401C, in the NM field
of the associated SVRB. This is possible
because the system knows that all SVC type
III and IV routines are preceded by IGCO.
SVRB's for Type II SVC routines (enabled and
resident) do not have any meaningful names
in the NM field because the system does not
require a module name, it simply branches
to the appropriate resident routine.

At this point, one should be able to determine via
the completion code and evaluation of the Active RB
Queue, who issued the ABEND, and what load module
was in control at ABEND time. In addition one should
be able to determine, by evaluating the STATUS and
NM fields, of the controlling RB, that the load module
was either a system component or user program.

User Problem

The assumption at this point is that the user has determined
that the problem is either within his program or caused by
some function performed in his program. To cover the first ■-
case, assume the user issued the ABEND. He should be able
to localize the trouble using the completion code, which he
issued in an ABEND macro instruction, and tie this back to
his- source listing. Next step would be to locate his program
in core to analyze the present status of the program.

1. User Program Location

How do I find my program in core? The location of any
program may be calculated using information in the
associated request block. If the entry point of a particular
program is the first instruction in that program, then the
program boundary is given to the user via the EP field and
upper bound (UP) field in the RB. If, as in the case of a
FORTRAN written module, the entry point is not the lower
bounds of the program, there are several ways of calculating
the beginning location. The easiest way is to use the
address of the RB and add 20 hex to its value. This is

. possible because the RB and its associated program are
contiguous to one another.

2. Analyze Current PSW

What was the last instruction given in my program?
• Normally the next step in debugging is to determine
• where, within the failing program, was the last

instruction given. The assumption here is that your
problem is most likely localized in the area that the
ABEND was issued. The last instruction in our
example will be an SVC 13 which is ABEND. The

• answer to "where within the dump is this instruction
located", can be foundan two places. Evaluation of
the 16 digit PSW UPON ENTRY TO ABEND printout
is the first place. This is the current PSW as it
existed upon entry to the ABEND SVC routine. It
should be subdivided as shown in Figure 24.

SYSTEM MASK
- PROTECTION KEY
----- • AMWP bits
---------INTERRUPTION CODE

■vv
FF05000D ,aao.Q46C2

------ INSTRUCTION ADDRESS
— PROGRAM MASK
INSTR., LENGTH CODE & CONDITION CODE

bits 32 and 33 bits 34 and 35

00 - not available 0 0 - 0
0 1 - 2 bytes 0 1 - 1
1 0 - 4 bytes 1 0 - 2
1 1 - 6 bytes 1 1 - 3

Figure 24

-37-

The two fields that are meaningful in our search for the
last instruction executed is the Instruction Address and
Instruction Length Code. The Instruction Address field
contains the address of the next instruction that would be
executed by the CPU. Make sure this address is within
the program boundaries calculated earlier in Step 1. If it
isn't, you're on the wrong track. Assuming the contents
of the Instruction Address field points within the problem
program, the next step is to decrease this address by the
size of the last instruction executed. This value is kept in
the Instruction Length Code and Condition Code field.
The left two bits of this four bit field indicates the length
of the last instruction performed. In Figure 24, the last
instruction length is 2 bytes, subtract this value hexadecimally
from the Instruction Address field and the result (0046C0),
points to the last instruction performed prior to ABEND.

3. Additional PSW Information
. m-— — #

It is convenient at this time to talk about some of the
other fields in this PSW. The AMWP bits are helpful
in quickly distinguishing what mode the system was
operating in when ABEND was issued. If the P bit is
on, ABEND was issued as the result of something that
occurred while the CPU was operating in the problem
state. If the P bit is off, ABEND was issued as the
result of a malfunction while the CPU was operating in
the supervisor state. The Interruption Code field for
an "old PSW" normally varies depending on the type
of interrupt that occurs. For instance, this field in the
I/O old PSW, after an I / O interruption, contains the
hexadecimal address of the device that caused the interrupt;
this field in the PROGRAM old PSW, after a program
interrupt, contains the program exception code of 1 to 15;
this field in the SVC old PSW, after an SVC interruption,
contains the hexadecimal equivalent to the SVC code.
This field in the "PSW upon entry to ABEND" will always
contain QQOdT This fact could cause problems and will
be expanded on in a later section.

The RESUME PSW field, in the RB associated with the
program that issued the ABEND, will also contain the
information as was indicated in the PSW printout at the top
of the dump.

User Debugging Steps

What steps should one take in debugging a user
created problem? This question can best be
answered by stepping through a typical problem.
Assume for this example that the completion code
is a system code 0C6. The following steps should
be taken.

a. Determine, using the IBM Messages and
Completions manual C28-6608 or the list
in Appendix A, what type of error occurred.
In this example, the error is a program
specification.

b. The next step is to evaluate the instruction
address field of the "PSW UPON ENTRY TO
ABEND". Using this address in conjunction
with the Active RB Queue, determine if the
program check was within the boundaries of

' the user program.

c . : Assuming the problem is within the user
program,- the next step is to pinpoint the instruction
that failed. This is accomplished by evaluating the
Instruction Length Code and Instruction Address
fields in the "PSW UPON ENTRY TO ABEND".
This procedure was explained earlier.

d. Now, using the instruction address calculated in
• c, one should find in the hex dump the instruction
that failed and determine its function. At this
point the procedure will vary depending on what
source language the program was written in.

e. If the source program was written in Assembler
Language, it is a simple matter to evaluate the
instruction and determine, using the Principles
of Operation Manual A22-6821, what could cause
this type of programming error.

f. If the source program was written in a higher
level language one must evaluate the instructions
prior to and after the failure to determine what
function they are performing and tie this back to
the source program.

-39-

è +C-
As was indicated earlier, a system completion code does not
mean that the user is free from fault. Careful evaluation
of the completion code explanations and Active RB Queue is
necessary to pinpoint the problem area. It is difficult to
set up a precise sequence one should follow when debugging
a system problem. The following are a few procedures
one might consider.

System Problem
i

1. Common Errors

Some of the more common errors evolve out of
improper use of the job control language. When
this occurs the Active RB Queue will contain an RB
with a meaningful module name. This module name,
indicated in the NM field of the RB, allows the user
to refer to the Job Management PLM, Z28-6613, and
determine what function this module performs. The
primary step one must perform on system problems
is to tie the problem back to a module and refer to the
PLM's to determine its function.

Another factor to consider, when determining
whether the problem is in a user program, is that
the access routines are branched to. They, therefore,
operate under the users RB. If one finds a high address
in the instruction address field of the "PSW UPON
ENTRY TO ABEND", evaluate the Load List to determine

' if the failure occurred within one of the loaded access
routines. If the problem is within an access routine,
refer to the proper PLM to determine the routine's
function.

2. System1 Blocks

How does one find the system blocks not formatted by
the ABDUMP? Listed below are the meaningful system
blocks with an explanation of how to find and use them.

a. Communication Vector Table - (CVT)

{

The Communication Vector Table provides the
means for nonresident routines to refer to information
in the nucleus. The address of the first location of
the CVT is placed in main storage location 16
(decimal) or 10 (hexadecimal). One should refer
to the Introduction to Control Program Logic manual
for the contents of this table. This table is useful
in finding the Unit Control Blocks (UCB) for system
data sets.

-40-

*
b. Task I/O Table (TIOT)

The Task I/O Table is constructed by job
management and resides in the higher portion
of the dynamic area of main storage during
step execution. It provides the I/O support
routines (OPEN, CLOSE, EOV) with pointers
to the Job File Control Blocks (JFCB) and Unit
Control Blocks (UCB). The JFCB, which resides
on disk, contains information specified in the
DD card for a specific data set. The UCB's, one
of which is created for each device specified at

, system generation time, describes the device
or devices allocated to a specific data set by
the job scheduler. The TIOT would therefore
contain the following information about each
data set described for a particular job step:

* disposition and label status
* ddname of the data set
* relative pointer to the JFCB on a

DASD device
* main storage pointer to the UCB's

allocated to this data set.

A pointer to the TIOT may be found in the
fourth word of the TCB.

c« MSS.Boundary Box

The Main Storage Supervisor's (MSS) Boundary
Box is a table of three addresses. It is pointed
to by the MSS field in the TCB. The first address
in the boundary box points to the first Free Queue
Element (FQE) of what could be a chain of FQE's
which describe the free core within the system at
any given time. Each FQE describes a block 'of
contiguous free core of which it is the first 8 bytes
as shown in Figure 25.

-41-

t *
MSS Boundary Box

Figure 25

-42- i

The first 4 bytes of an FQE contains either;
a pointer to the next FQE or contains zeros
if it's the last FQE on the chain. FQE's are
chained from the top of core (high addresses)
toward the nucleus. The Main Storage Supervisor
allocates user core requests starting at the
top of core and running the FQE's til the request
can be satisfied. The second 4 bytes specifies
the number of free bytes available in this contiguous
block of core. This count is in hexadecimal and
includes the FQE size.

The second word in the boundary box points to
the first available address outside the nucleus.
The third word points to the last address in
core plus one. All three of these pointers are
calculated and initialized by the Nucleus
Initialization Program (NIP) at IPL time.

It is important to note that ABDUMP does not
dump free core. One can calculate the free core
at the time of the dump by scanning the core
addresses-at the left of the dump listing and
noting the number of bytes skipped when non­
contiguous addresses are listed.

d. Data Extent Block (DEB)

The DEB contains an extension of the information
in the DCB. Each DEB is associated with a DCB,
and is created at OPEN time. There is a pointer
(word 3) in the TCB that points to the first DEB
on the chain of DEB's associated with the current
job step. If there is a DEB on this chain, then the
data set associated with this DEB has been OPENed.
The DEB is the key block with which the user can
find all the control blocks associated with a
particular data set. Figure 26 shows the control
block structure and the pointers indicating their
relationship used by data management.

-43-

Figure 26

e • Input/OutpUt Block (IOB). i

The IOB is the communication between a routine
that requests an I/O operation and the I/O
supervisor. All the information required by the

• I/O supervisor to execute an I/O operation is
contained in an IOB or is pointed to by the IOB.
When an EXCP macro is issued by an access
routine Register 1 contains a pointer to the IOB.
This is an important fact to remember when
evaluating the trace table. From the IOB, one
cannot only find the other control blocks but also
locate the list of, channel commands (CCW's)
performed or to be performed on a particular
device. ‘

“4A-*

$

f. Data Extent Control Blocks (DECB)

The DECB is created by the expansion of a READ
or WRITE system macro. It is the communication
link between the user and the access method. The
access method in turn notifies the user of an
completed I/O event by POSTing the Event Control
Block contained in the DECB. This block provides
synchronism between the user and the asynchronous
I/O operation.

g. Unit Control Block (UCB)

There is a UCB for each device attached to the
system. It describes the characteristics of the
device to the I/O supervisor. The UCB is the only
location where the user can obtain all the sense bytes
passed back from the last sense command to a
particular device.

Each of these blocks are further defined in the Introduction
to Control Program Logic Manual Z28-6605.

-45-

To understand the save area trace and its associated messages,
one must understand what responsibilities the user has and what
functions the control program performs when different linkages
take place within a program.

A. Save Area Chaining

The following examples illustrate the chaining of save areas
when different linkages are used, and relate the chaining
sequence to the concept of control levels. Each example
concentrates on (1) the use of words two and three of a save
area, (2) the contents of Register 13 at the point of linkage,
and (3) the responsibility of programs to provide save areas.
Pointers to save areas in higher control level programs are
shown as solid lines and called the back chain; pointers to
save areas in lower control level programs are optional;
are shown as dotted lines; and are called the forward chain.

EXAMPLE-<1: The job stream contains an EXEC statement
for module ALPHA. ALPHA consists of Program A and
Program B, which was included in the module as a result
of a CALL macro-instruction. Program B contains a LINK
macro-instruction to Program C.

4 I V f SAVE AREA

EXAMPLE 1

Program A Program B

•Call to B Link to C

Program C

Word 2
Word 3

Words
6 to 18

0 0 0 0
f Area,2

Registers
; saved by

A

^r'PArea 1
itArea 3

Register
; saved by C

B
•r*

t Area 2
4-Area 4

Save Area 1

T

Registers
saved by

C

Save Area 2 i Save Area 3
Area P ro­
vided by: Contr. Pgm.I Program A
Area
Used by: Program A Program B

Program B

Program C

I Program' C

Unused
li

46-

4* * i

In this example, Program A is considered to be at the
highest control level and Program C at the lowest. When
Program A receives control, word 2 of save area 1, which
is provided by the control program, contains zeros, and
Register 13 points to this save area.

It is Program A 's responsibility to:

* save registers in save Area 1
* place the current register 13 into its

own save Area 2, Word 2
. * place the address of Save Area 2 into

register 13 and word 3 of save area 1.

This procedure insures that at the time of each linkage from
Program A, register 13 points to the save area of the higher
control level program. A similar procedure is necessary
upon entry to Program B. Since Program C does not either
contain a linkage to a lower control level or issue a system
macro instruction, save area 4 is not required. (Program C
need only save register 13 until the return linkage.) The save
area is shown here for generality, since Program C might
require the area during another execution.

Example 2A and 2B:

Program A receives control from a higher level program and
issues a LINK macro-instruction to Program B, which in turn
issues an XCTL macro-instruction to Program C. Finally,
Program C calls Program D. The major consideration here
is the use of save area 2 by both Program B (before the XCTL
macro-instruction Example 2A) and Program C (after the
XCTL macro-instruction, Example 2B).

-47-

jl . ^
EXAMPLE 2A

Word 2
Word 3

Words 6-18

Area
provided
by:

Area used
by:

t Prior Area
FAVëa2 -
Registers
Saved by A

Save Area 1

Higher
Level
Prog.

Program A

EXAMPLE 2B

Program A

LINK to B

Program C

CAlTl to D

__________i ,\ V |
X I

\Word 2 ^ tPrior Area j i✓ X . iArea 1
Word 3 fArea 2 J ** cArea 4 ✓

Words 6-18 Registers . I Registers
Saved by A I Saved by C

Save Area 1 Save Area 2

Area Higher 1 i
provided Level i Program A
by: Prog.

Area used
by: Program A Program C

4" Area 2
Unused

Registers
Saved by D'

Save Area 3

Program C

Program D

lr\'
48-

B. Save Area Trace

This heading identifies the next lines as a trace of the save
' areas for the program being terminated. Each save area is
presented in the dump in three or four lines as shown in
Figure 27. The first line gives information about the linkage
that last used the save area. This line will not appear when
the request block for the linkage cannot be found. The second
line gives the contents of words 0 through 5 of the save area.
The third and fourth lines give the contents of words 6 through
18 of the save area; these words are the contents of Registers 0
through 12.

SAVE AREA TRACE

PROGA WAS ENTERED

SA 0003FFB8 WDl 00002449 HSA 00000000 LSA 00033D04
RET 00003180 EP 400330D0 00 00000030 01 0003FF1C
02 0000006C 03 00002449 04 00005318 05 0003FF4C
06 00003130 07 00000000 08 0000003C 09 4003A41A
10 0003FF0C 11 0003FF4C 12 00002448

SA 0003 3D04 WDl 48D0A004 HSA 0003FFB8 LSA 5AD02014
RET 5003400E EP 00000000 00 19544078 01 0003 3D90
02 0003EDBA 03 0003 3DC C 04 C807DA96 05 0003EDA9
06 0003FCC0 07 00000008 08 0003EDA8 09 00034CA8
10 00033D90 •11 00000000 12 40033CD6

INTERRUPT AT C34CAA

PROCEEDING BACK VIA REG 13

SA 00033D04 WDl 48D0A004 HSA 0003FFB8 LSA 5AD02014
RET 5003400E EP 00000000 00 19544078 01 . 00033D90
02 0003EDBA 03 0003 3DCC 04 C807DA96 05 0003EDA9
06 0003FCC0 07 00000008 08 0Ó03EDA8 09 00034CA8
10 00033D90 11 0000Q000 12 40033CD6

Figure 27

i * To provide a forward (descending) save area trace, the
»reas are presented in the clump in the following order*.

(Rei ■'■renen: Figure 27).

* The save area pointed to in the TCBFSA field V* 1
of the task control block. This save area is
the first one for the problem program; it was
set up by the supervisor when the job step
was initiated.

* if the third word of the first save area was
filled by the problem program, then the second
save area in the dump is that of the next lower
level program of the task. However, if the third..-
word of the first area points to a location whose
second word does not point back to the first area,
the message INCORRECT BACK CHAIN appears
in the dump. This message is followed by the
contents of the possible second save area.

* The third, fourth, etc., save areas are then
presented in the dump, if the third word was
filled in each higher save area and the second
word of each lower save area points to the next
higher save area. This process is continued
until the end of the chain is reached (the third
word, in a save area contains zeros) or the message j
INCORRECT BACK CHAIN appears. , v

Following the forward trace, the line INTERRUPT AT hhhhhh
appears, followed by the line PROCEEDING BACK VIA REG 13.
Next, the save area in the lowest level program is presented,
followed by the save area in the next higher level. The lowest
save area is assumed to be the save area pointed to by the
contents of Register 13. These two save areas appear in the
dump only if the contents of Register 13 point to a full word
boundary and are not zero.

1 . i U \ y)-, m i - n E u K l V i A T

cccccccc WAS ENTERED

The 8-character name of the program that stored
register contents in the save area. This name is
obtained from the request block.

-50-

VIA LINK (CALL) ddddd

Either the LINK or CALL appears. The word
LINK or CALL indicates whether a LINK or
CALL macro-instruction was used to give control
to the next lower level program. The 5-digit
number is the ID. operand, if it was specified, of
the LINK or CALL macro-instruction,

AT EP cccccc . . .

The string of up to 70 characters is the entry
point of the identifier. This identifier appears in,
the dump only if it was specified* in the SAVE
macro-instruction that used the save area being
preserited.

SA. hhhhhbbh

The 8-digit address of the save area being presented.

WD 1 hhhhhhhh

The 8-digit representation of the contents of the
first, word of the save area. (Use of this word
is optional).

HSA hhhhhhhh

The 8-digit representation of the contents of the
second word of the save area; this word contains the
address of the save area in the next higher level
program. In the first save area, this word contains
zeros. In. all other save areas, this word is required

LSA hhhhhhhh

The 8-digit representation of the contents of the
third word of the save area; this word optionally
contains the address of the save area in the called
(lower level) program (register 1,3 contents).

RET hhhhhhhh

The 8-digit representation of the contents of the
fourth word of the save area; this word optionally
contains the return address (register 14 contents).

- 5 1 -

EP hhhhhhhh

The 8-digit representation of the contents of
the fifth word of the save area; this word
optionally contains the address of the entry point i..‘
to the called program (register 15 contents).

00 hhhhhhhh 01 hhhhhhhh . . .1 2 hhhhhhhh

These 8-digit numbers are the contents of
registers 0 through 12 for the program containing
the save area immediately after the linkage.

2. SAVE AREA TRACE MESSAGES

INCORRECT BACK CHAIN

This message indicates that the following three
lines in the dump may not be a save area.

INTERRUPT AT hhhhhh

The 6-digit address of the next instruction to
be executed in the problem program. It is
obtained from the resume program status word
of the last program request block (PRB) or
loaded program request block (LPRB) in the v >
active request block queue.

« PROCEEDING BACK VIA REG .13

This heading indicates that the next two save areas
in the abnormal termination dump are (1) the save
area in the lowest level program, followed by (2)
the save area in the next higher level. If register
13 contains zeros, these two save areas do not
appear in the dump.

s,
I

- 52 -

TRACE

I *

V.

The tracing routine is an Operating System/360 optional feature
which you can use as a debugging and maintenance aid. The
tracing routine stores, in a table, information pertaining to the
following conditions:

* SXO instruction execution.

* SVC interruption.

* I/O interruption.

You can include the tracing routine and its table in the control
program uuring the system generation process. This is done
using the TRACE option in the SUPRVSOR macro-instruction.
The format of this option requires you to supply the number of
entries in the table. Each table entry can contain information
relating to one of the traced conditions. When the last entry in
the table is filled, the next entry will overlay the first.

A. Table Entry Formats

Table entry formats are in Figure 28.

^|I0 Instruction

0 23 13 21 31 0 31 0 31 0 31

0 Device
Address

Channel
Address Word

Channel Status Word
(Meaningful only when bits

1 2-3=01)1
/r

— — SIO Condition Code

I/O Interruption

0 13 16 19 31 0 31 0 31

COO

.
1 0000

l

Channel Status Word

-*— —— — r-
I/O Olxl PSW

SVC Interruption

Ó 13 16 19 31
*

0 31 0 31 0 31

1
t

0001

........*. .

Contents of
Register 0

Contents of
Register 1

SVC ÖTd PSW

Figure 28

* *
B. Location of the Table

The addresses of the last entry made in the table, the
beginning of the table, and the end of the table are contained
in a 12-byte field. The address of this field is contained in
the fall word starting at location decimal 20 (hex 14). The
format of the field is as follows:

0 31 1 0 31 I 0 31

' j
Address of the

t
Address of the

1
1
j Address of the

Last Entry Table Beginning j Table End .

The tracing routine is bypassed during the abnormal
termination procedures.

C. Trace Examples and Explanation ,

1..; SIO entry - A typical SIO entry is shown in Figure 29.
This entry can be distinguished from an I/O interruption
and SVC interruption entry by checking the fourth hex
digit. If this digit is a zero then the trace entry is an
SIO. One would use the channel address word to locate
the channel command words (CCW) which reflect the
operation initiated by the Start I/O instruction. The
Channel Status word entry is meaningful only if the
condition code, set by the SIO instruction, is 1. This
condition code is reflected in the first hex byte, bits
2 and 3 of the first word printed. The unit address
reflects the device which the I/O operation was initiated.

0000,0190 00000F9Q, .00000000

\------------ -------CAW

--------- UNIT ADDRESS

....CONDITION CODE

\
04000000 ,

— CSW

Figure 29

-55-

I/O Interruption Entry - A typical I/O interrupt entry
is shown in Figure 30. By checking of the fourth hex
digit one may distinguish between an SIO and I/O
Interrupt entry. However, to distinguish between an
I/O Interrupt entry and SVC entry, a further check of
the fifth hex digit is necessary. If the fifth hex digit
is zero, then the trace entry is an I/O interrupt. If
the fifth hex digit is one, the entry is an SVC interrupt.
By evaluating the I/O old PSW a number of facts can
be determined. For example, the interrupt code field
(hex digits 5 - 8) contains the address of the device
that caused the interrupt, the AMWP bits (hex digit 4)
indicates whether the interruption occurred in problem
state or supervisor state; and the instructions address
indicates where the interruption occurred. The CSW
provides the user with Unit and channel status about the
device and channel that caused the interrupt. The first
four hex digits of the second word indicates unit status
and channel status respectively.

VFF060190 0000320A, . 001F708 0C000000 ^Y———. - ^ \ , ■■ — y " ,»■*'■ ■■■ — ■—*—

I/O old PSW CSW

Figure 30

In Figure 30 the unit status indicates a channel end and
device end. No channel status bits were on. This
status denotes a successful I/O operation. The Principle
Of Operations manual should be referred to for further
Explanation of the channel and uhit status fields. Upon
determihing that an entry is a successful I/O operation,
the first1 word of the CSW may be checked to determine
what commands have just been completed. The address
in this word reflects the last CCW address plus eight.
In Figure 30 the last command to be performed is located
at IF 700.

SVC Interruption Entry - A typical SVC interrupt entry
is shown in Figure 31. The first two bytes contain the
SVC old PSW. The last two bytes of the entry reflect
the contents of Register 0 and Register 1 at the time the
SVC interrupt occurred. These registers are parameter
passing registers used by many system macros. Most
system macros degenerate into unique SVC interrupts.
Appendix A lists the system macros and their associated
SVC numbers. The interrupt code field (hex digits 6 - 8
of the first word) contains the hexadecimal value of this
SVC number.

In Figure 31 an SVC 0 or the EXCP macro was issued.
Additional checking of the SVC old PSW will reflect what
mode, problem or supervisor, and where the SVC
instruction was issued. Also note that in the case of an
EXCP macro, Register 1 reflects the address of the IOB
for this I/O operation. By knowing the IOB location, one
can find all the associated data management control blocks
for this operation.

, |

. FF041000 70031E6 , v 000000F7. v 0001F77C ,V—---- r-.--------^----- •----------- ' N--------V------ ' '-------V------- f
SVC old PSW Register 0 Register 1

Figure 31

There is one case where the:SVC entry may be misleading.
This occurs when a program interruption causes the
ABDIJMP. In this case, an SVC 13 is placed in the trace
table;that gives all indications that the users program
issued the ABEND macro. Actually the system issued the
ABEND using the PSW as it existed when the program
interruption occurred.

What Is the recommended method of using the trace table?

The trace should be used to further pinpoint system and
user problems. A suggested procedure is to:

a. find the last entry made in the trace table.

b. ;back up from that entry to the last SVC entry
made indicating the problem state.

| ,
-57-

tie this entry back to some function performed
in the user's program.

work forward in the trace table from this problem
state entry and try to determine what functions took
place between this entry and the last entry prior to
ABEND.

-58-

DASD DATA SETSVL

This section will discuss the availability and location of information
about DASD data sets that would be of interest to the installation
programmers.

The items to be covered are broken down into the following groups:

* The Volume Table of Contents — VTOC
* Data Set Control Block — DSCB
* Partitioned Data Set Directory Entry

A. , The Volume Table of Contents (VTOC) Evaluation
J" ’ 1,1 1 ... v ■ 1 ' "~n ' ‘ ~r 1 ■ 1 1 ~'r

Prior to evaluating the contents of the VTOC one should under­
stand the functions performed by the direct access device space
management (DADSM) routines.

lv DADSM

Direct-access device space management (DADSM)
consists of routines that allocate space to data sets on

I. direct-access volumes. DADSM performs this function
by maintaining the volume table of contents (VTOC), itself
a data set that is included in every direct-access volume
by the volume initialization utility program (DADSI). A
VTOC contains a data set control block (DSCB) for each
data set on the volume and for all unused space on the

'I . volume.

DADSM routines update VTOCs by creating DSCBs for
new:data sets and deleting the DSCBs of data sets purged
from storage. When a data set is created or an existing
data set is enlarged, DADSM finds unused space by
searching the appropriate DSCB in the VTOC, allocating
the space to the extent of the data set, and removing it from
available space. When DADSM deletes a data set, it also
removes the DSCB of the data set from the VTOC; and the

* i extent of the data set identified in the DSCB is again
available for future allocation. DADSM can also return
unused space at the end of a data set extent to available
space by updating the DSCB of the data set.

' : (.
, Additional information concerning DADSM can be found in

;; IBM System 360 O/S Direct Access Device Space Manage­
ment PLM - Form #Z28-6607.

-59-

ftfr *• Zê VTOC - Listing and Description
\ . *

The first step in checking the status of a DASD data
set requires the execution of the IEHLIST program
which will print the contents of the VTQC.

The VTOC is a data set that contains a DSCB for every
data set and for all available space on the Direct A ccess
volume. The VTOC data set is always a single contiguous

t , area. Its size and location are determined when the volume
is initialized by the VTOCD control card in the DASDI
input stream. On a Primary Systems pack, the VTOC

1 can be located anywhere following the IPL records and
volume label. On other than Primary Systems packs,
the VTOC can be anywhere following the volume label.
The starting address of the VTOC is recorded in the
standard volume label. •

4ft

The characteristics of the VTOC data set, following;
volume initialization, are as follows:

\ i;
a. The initial volume label contains the absolute

track address of the VTOC data set.

b. The VTOC* contains two DSCB's:

li. The first is a Format 4 DSCB which describes'
the VTOC data set: This DSCB is always the ̂ '
first block of the VTOC. -

* 2. The second DSCB,' a Format 5, describes
' : the space on the volume not occupied by data

■ sets. This is located immediately after the
Format 4 DSCB of the VTOC.

n
c. Every DSCB in the VTOC is 140 bytes in length

(44 byte key and 96 byte, data portion). Unoccupied
space in the VTOC contains all zeros (Format 0
DSCB's).

d. AiDSCB, Format 1, is created as a result of a DD
card specifying a data set name and including a
space parameter. The information from the DD
card statement is included in the DSCB for investigation
and use by the DADSM routines.

-60-

3. Formated VTOC

A sample formated VTOC of a volume with serial
number 111111 is shown in Figure 32, For reference
purposes, the information about the data set SYS1.LINKLIB
will be investigated. The following items are found;

a. Created - This is the date that the data set was
created. The date being picked up from the set date
command given by the operator during the IPL
operation.

b. Purge - This is the date that the data set may be
purged. This date is entered when the data set
is created by a parameter of the DD card.

c . File Type - This item specifys the type of data
set organization.

d. - Extents - A data set may have up to 16 extents.
:: The extents containithe physical location of the data
l set on disk. Three extents can be contained in the

Format 1 DSCB. If more are needed, a Format 3
DSCB which can contain up to 13 extents, is chained
to a Format 1 DSCB-to account for the 16 possible
extents.

e. File Serial - This is the serial number of the data
set contained in the DSCB.

i;
f. Volume Sequence Number - If the data set requires

multiple volumes, this is the method of keeping
track of the order of volumes.

g. Security - None at this time.

Figure 32 is the formated IEHLIST of the VTOC. An example
of a dumped VTOC will be covered later in this chapter.

-61-

4 P

CONTENTS GF VTOC CN VGL 111U1
Data set name

SYSCTLG
SYS 1 • SVCL IB ' '
S Y S1. S YSÜ C B CE
S Y S U L I N K U O
SYS1.PR0CLIE
SYS1.NUCLEUS
SYSI.SCRTLIE _ ___ . . i:
SYS1-COBLIB
SYS1.FORTH E
SYS1.DLCCKL IB
SYS 1•OBJ
F*ASSEMÜLR.FASTER-TESTCASE
F.MACROGEN.FASTER.PATChES • _
SYSi.LCGREC ' _____*1 *“'J~ '
‘F.MACRCIGEN. MAST ER. LIBRARY
F.ASSEMBLR-MASTER.PATCHES
F.ASSEKBIR.FASTER.LIBRARY :
THERE ARE C067 EMPTY CYLINDERS PLUS 0012 EMPTY
THERE ARE C141 BLANK DSCBS IN THE VTOC ON THIS

CREATED PURCE FILE TYPl
07066 35099’ NOT DEFINED
07066"." 35099 PART IONFD
36917 36917... NOT DEFINED
07066 35099 PART I ONF.O
07066 35099 PARTI ONeD
08B66 3 6 5 9 B PARTIONED
07066 35099 _, PARTIONFD
Ó7066 35099 .PARTI ONED "
07066“ ‘*35099 " p a r t i o n e d '
36099 35099 PARTIONEO
35599 35599 PARTIONED
00166 35099 SEQUENTIAL
00166 35099 SEQUENTIAL
35599 35599 SEQUENTIAL ‘
00166* " 35099 **“ PARTIONED
00166 35099 SEQUENTIAL
00166 35099 ... PARTIONED.
’ TRACKS ON THIS VOLUME
i VOLUME . ..

SYSCTLG (cont.)
SYSl.SVC LIB (cont.)
SYSI. SYSJOBQE (co n t.).
SYS1. LINKLIB (co n t.)
SYSI. PROCLIB (cont.) 1
SYSI. NÜCLEUS (cont.)
SYSI. CÓBLIB (contj!)
SYSI. FORTLIB (cont.)
SYSI. BLOCKL1B (cont.)
SYS. OBJ (cont.)

EXTENTS FILE SERIAL " VOL. SEQ. SECURITY
00001 l i n n ...ooooo NO

.00001 n u n 00000... .NO *.......
.*"0000 L l i n n ooooo *N0
00001 l i n n 0000Ö NO
00001 l i n n ooooo NO
00001- n u n ooooo NO
obooi m i n .. ooooo NO
00001 l i n n 00000'... NO
-0Ö001 l i n n ooooo1™ " n o " '
00001 n n n n ooooo1 NO
‘00001 l i n n ooooo NO
00001 n u n ooooo NO
OOOOL l i n n .00000 NO

"00001.. n n n ooooo NO
OOOOl"""’ n u n ooooo NCI " *..... .
00001 n u n 0000Q NO
00001 44Jin ooooo • NO

I

Figure 32

- 62-

* f >

4. The Data Set Control Block (DSCB)

' For each data set on a direct-access volume, there
must be a corresponding data set control block (DSCB)
in the VTOC of that volume. A DSCB, which describes

j1 the attributes and extents of a data set, consists of up
to three physical blocks chained together to form one

r logical record (DSCB) in a VTOC. Each block is 140
r bytes long (a 44-byte key and a 96-byte data portion),

and.contains information used by data management to
control access to a data set. If a data set resides on more
than one volume, there must be a DSCB for the data set
in each VTOC.

DSCBs consist of blocks of which there are seven formats:

rA format 1 block can identify any data set, except
for the VTOC, on direct-access storage. Within

-its structure, it can identify up to three noncontiguous
;. nare as of a data set extent. Additional format 2 or

format 3 blocks can be chained to a format 1 block
, ;;to constitute one DSCB.

- i

'A format 2 block describes an indexed sequential
-data set. A format 2 block, if used, must be chained
(to a format 1 block. :)

:A format 3 block describes multiple extents of a data
■set if more than three noncontiguous areas are allocated.
.A format 3 block, if used must be chained to a format 1
■;or format 2 block. A (maximum of 13 non-contiguous
areas may be described by a format 3 block.

; • i ; ’
A format 4 block describes the extent of the VTOC.

■ It always appears first in any VTOC. One format 4
 ̂ ' block constitutes one DSCB and can not be chained

to other blocks.

A format 5 block describes up to 26 noncontiguous
areas that are available for allocation on a volume.

' Each area is indicated in a separate "extent entry"
1! in the block. Format 15 blocks can be chained together,
' i f the volume contains more than 26 available areas.

-63-

<
i *

J

A format 6 block describes up to 26 split-cylinder
data set extents. This block has the same format
as the format 5 block, but describes extents shared
by more than one data set. Each area of an extent
is identified in a separate "extent entry" in the
block.

A format 0 block is available space in the VTOC.
The block contains all zeros, and can be imagined
as a "hole". When a data set is deleted from a
volume, a format 0 block is written over the DSCB
of the data set.

Except on basic operating system volumes and on volumes
containing split cylinder data sets, the total number of
tracks accounted for in all DSCBs of a VTOC, at any time,
is the total number of tracks on the volume. The unused
tracks are identified in the format 5 DSCB, and used
tracks are identified in blocks of format 1, 3, and 4 of
data set DSCBs.

i !■
When & data set is created, the ALLOCATE routine finds
space on the volume by searching the format 5 DSCB. A
new DSCB is created for the new data set and is placed in
the VTOC in the first available hole (format 0 block).
When a data set is deleted, its format 1, format 2, and '
format 3 blocks are replaced :by format 0 blocks (holes),
and the extent used by the data set is returned to available
space (i. e ., added back into the format 5 DSCB).

The DSCB of one data set consists of one, two, or thre e
blocks, depending on the access rmethod used to process
the dath set, and on the number of noncontiguous areas .
in the data set1 s extent. The blocks arë chained together
in the VTOC in the following sequences:'

a ;,
a* A format 1 block alone for a data! set with an

Extent of not more than three noncontiguous areas,
c *

b. A format 3 block chained to a format 1 block for a
dhta set with more thamthree noncontiguous areas. |

c. A format 2 block chained to a format 1 block for f
an indexed sequential data set with an extent of ' I
ho more than three noncontiguous areas, [

-64-

j-

V* ‘

ll
i

d. A format 3 block chained to a format 2 block,
which is chained to a format 1 block, for an
indexed sequential data set with an extent of more
than three noncontiguous areas.

The blocks of one DSCB do not necessarily appear in the VTOC
as contiguous blocks or in a defined sequence. Except for the
first and, second DSCB blocks in a VTOC, new blocks are
placed in the hole nearest the beginning of the VTOC when
they are created. The relationship of two blocks is shown
by chain addresses.

5. Dumped VTOC

From the previous section it is seen that the DSCB
contains all the information about data sets. When the
IEHLIST program is run requesting a Dumped VTOC,

' the result is the DSCB listed as shown in Figure 33.
We will again look at the data set named SYS1. LINKLIB.
There are a number of items that did not appear in the
formated VTOC. In order to easily decipher the Format 1
DSCB bytes, two templates will be used. These templates

 ̂ are shown in figures 35 through 38.:
f: : i
P Assume that the characteristics of the SYS1. LINKLIB
t - data set listed below are needed. M
l: * .

a. type of organization
.i

b. number of extents

c. r location of the first extent

d. record format i

e. block length t
, ' ■)

f . i secondary allocation
"l 'i ■■

By! placing the template, Figures 35 and 36, over lines one
and two of the DSCB, the items above can be answered as
follows:

a. Item K --2 bytes—0200—Bits 0000 00 10 0—0,
J bit 6 is on—Partitioned Organization.

!'

-65-

t • - , ~ >
»

b. Item F —1 byte—01 extent

c . . —not found on line 1 or 2 ,

d. Item L —1 byte—CO Bits 1100 0000 11 - undefined

e. Item N—2 bytes—0400—1024 bytes ,

f. Item S—last 3 bytes of a 4 byte field—000000— ‘
no secondary allocation.

Item 0 does not appear on lines one or two so template,
Figures 37 and 38, will be used to look at line 3 of the
DSCB. The first extent location description is Item C —
10 bytes —

First byte 81 — The extent begins and ends on
cylinder boundaries. f' '

" i /

Second byte 00 — Extent sequence number.
, t ■, 1 \ ■

Third - Sixth bytes — 00 14 00 00 lower limit
C C H H of extent

$

Seventh - Tenth bytes -r 00 3B 00 09 upper limit
C C H H o f extent ■

f:

,c

n

;t

- 66- -
. M

• W

S Y '> 1 t <S 3 S Ü ̂ r* u/s *

r
3

r '

/ '

Cü\Tl;i\7.> üh VTUC j\ Vu l . i l l i l i
i. i i\£ 1
LiNfc 2
LiNfc J
f u KM AI

üS.MAKG
- A 5 . 50

iüb= 100 . .
A O Vl-o

•. ■ - - F A G Ü 0 9 Ü O <J 2 Ü 1 0
........ . .. UGOUÜÜÖOÜUOCÜ
FORMAT t> OSCu

f3üüü0Güu0üüG
OüOCOüUGüOOÜü

SYSl.LCuhëC
.. . FlFirlfiFiPiF

. . .0J 1404AlOGuuü
SYSl.SYSjCdCü

FiFifiFiflflF
ÜcGFrrCGGüüCo

SYSi.SVCliü
..... .. FififlFiflFif
. . . - •.. . .. 4002057GOuOGu
S YS i . L INKi. 1 ë ■

FlFlfiriflflF
FAO 309u30Uü Cct

'■ ■' *’■ n 3 • » * . i O . • « .15 • . . .20
* * •> • * * • 'ö ‘J * • • m KJ CJ * • » « / O « # * #75
* iiÜ #■ * ̂ iij> » • • 1 2Ü m 9 9 lift) • • » 13 ü,

0<i 0 4 0 4 0 4 0 * 1 w 4 0 4 0 4(KG<VQ4Ü4 0 4 Q 4 0 4 0 4 0 4 G 4 0 4 G V
uGüu kGOüül uUü.G OöC b 00<J AÜ tl 2 V 5 2 3 . 7 1 4 0 1 0 2 1 ^ 1 0]
00 0 Ou VGÜQ^OOÜGÜO JvjOüOOOOOOOOOOOOOÓCOOCOO
ü > 3 t a) :> O 3 ü C O i O O C O U V C 3 h C 0 O ü 1 0 C O O 2 2 O O 2 A O 9 U C
uüu GüGüüOÜGGOuüuG üGOOüOUüOOOOOOOÜOOOOOüO
OuUuuGgOGüGOüGOOüü(jOüOOOüüoOOOOüOOOOOüOO

j

üüOGü^GüG i GOG^OGOOOOOOOOüOOOOOüüOOüOOüöO
GGGGu2 OOOGöOOGüOOGü.UOOOOOOüOuüOOOOOöÜQOO

ü 2 2 G o L o ü ü
i C ü Q u ü ^ C ü

0 u G 0 u G G U ̂
OGGUüüOGG

lO ü ü G G ü O ü
iO CGüC ICO

1 ÜuGO 11 1 I
i ü ü ü u ü 3 C o

i ü 0 O O G ü O O
küQüüÜAuLf

I
ilili ii 10 l Ü O C ü G ü ü O ü ü U U O O ü O ü G ü O O ü Ó G G O O O ü O
üOOüO ö O O O V O ü U O O G O O G O O O O ü O O O O ü O O O O ü C ü O O O O

l
OOó2u.i6UÜiOOOOOOüüOOÜOC/OOOOOO.öOüOOOOOöO()
O uuO i 3 000.5 GOüUüüOOGO.OQOüüOUüOOOöGOÜOCOOO,

SYSCTLG
FiFiFlFiF.lFlF

— ÜUPi-Qé29üGüü{i

iüüüüC 0 oo 0üo2 o ióüG l'.OGOOGüGO0 0 0 0 0 0 O O Ü O O O C O O U O O 0000
i GOOD 14 G O O G 0030 0 U Ü 9 G 0 C 0 0 C C u G ü O ü U ü ü 0 0 C 0 0 0 0 0 C 0 0 0 0 G U i
i üuüüÜGCOGOOF u io GG iÜ Gü Gü OO OOOGO OOüOüOüCOO OOG ÜGC Oü
1 ü 0 0 0 3 c UGüGuOJu o O Q 9 0 0 0 O ü O u Oü üG üOü ü Oü Oüü OO OOü OOö OO

.Form at 4 (cont.)

.Form at 5 .(cont..).... ,___

JSYS1. LOGREC (cont.) _

_SYS.1 ...SYSJOBQE (cont,..)

„S Y S l.S V C L IB (con t,) ___

_S Y S 1. LINKLIB _{conU)___

SYSCTEG (cont.)

2 r
J »

» m m » (i O *> *
. . . 13 5

.. 0404 04 GA O'•* O
O AÜ O 000 O OOGC! i
0000 0000 00 00 O'.

. .000000000000(5-

1. •-* o

0 0 0 0 0 0 0 0 ü 0 ü u ' 1 ü 0 1) 0 0 0 0

• „ 0 0 0 0 0 0 0 0 0 0 C u - V ü 0 ’ ■0 0 0 0

!

‘ ■ • O O O O O O O O O O Ü O c ü ' . , ;) c ö ö o

i O O O O O . O O O G O O O ' . , O C ; . ! i lJ 0 0 .

~ j 0 0 0 ü O Ü G 0 O O (5: M. . w ü l ' Ü ^

. 0 0 0 0 0 0 0 0 0 0 0 <' o 0 0 0 U 0

’ o o 0 0 0 0 vi(10 Li1 ! v •;) ü •' (• 0 C »"> 0

j O O O O O O ö O ö O u O ' f ü - - 0 0 (; .

0 0 0 0 0 0 v- 0' 0 0 ! 1 -/ v. v ' \; ' U K.,

" • O O O O O O O ü O O - J O . ‘ . ;)

j O O O O O G O O 0 O C H'4 . - 0 C

o o o o o o o o o o o c : ■,: ; m) Ö

. . .'3 5 4 0 ,
• . . 90 . . • .95

D S C 3 ACöft (CCWHC.)
4 U O 4 O A O 40 4 04 O 4 O 404 O 4 O4 O'*04 04 O *•

; O C ■ J O Q O 0 G O O O O ü O O 0 O O O O O O O C ö 0 O C O c o
' .000,0 0 0 0 9 0 0 0 0 0 1
, 0 OOOCODOO

OOOUGOOOOGOOOOOOOOOOOOOCO
0009000002

0009000003

0009000004

0009000005

0009000006

0000 ,000000000000000000000.00
........... 000900000.7....... .

FP i,y;"'»gr

DATA .SET CONTROL BLOCK

FORMAT 1 LINE 1 and 2 L.

(B-
(C
D:

1
6
2
,3

<E) 3
CF) 1
(G) .1
e $ l - 7

13
, 2

Format identifier - Hex FI
Data set serial number
Volume sequence number
Creation date - ydd
where y * year (0-99)

dd = day (1 - 386)
Expiration date
Number of separate extents
Number of bytes used in the last PDS directory block
Reserved for future use
System code to identify the programming system
Data set organization

Specified Bits
0

Settings Meaning
Reserved for future use

PS 1 ■ 1 Physical sequential organisation
DA 2 n

3-5 r
1 Direct organization

Reserved for future use
PO 6 :» :'.1 Partitioned organization

cu .7 :
r

1 Unmovable - the data contains
location dependent information

2nd Byte - Reserved for future use

@ ' • 1 Record Format ■■

Specified Bits- Settings Meaning
F ' * r o -i'-f l . 1Ö ’ Fixed !
V r 0-1 '01 Variable
u 0-1 1' 11 Undefined
T c 2 „ 1 Track overflow
B 3 1 'Blocked*;.may not occur with U
S 4 ' 1 Standard: no truncated blocks or

unfilled tracks are embedded in
the data ;set

A .5-6 1 .10 ASA control character
M . 5-6 : 01 Machine icontrol character

i 5-6 i’ 00 No control character
7 " 0 Always zero

Data Set Name

m r v r r

Figure 35

- 68-

v ~ i r n r “TE ~V Fvro^r

41
DATA SET CONTROL BLOCK

FORMAT 1 LINE 1 and 2 R.

<3> •1
2

C R)

2
1
2
1

Option code - same as DC BOPTCD field in DCB
Block length for fixed length records or maximum block for ,
variable or undefined length records
Logical record length
Key length
Relative key position in the data block
Data set indicators

i

4

Bits Settings Meaning
0 1 This is the last volume on which

this data set normally resides
1 1 Reserved for future use
2 1 Block length must always be a

multiple of 8 bytes
3-7 Reserved for future use

Secondary Allocation
F irst Dy+e - Allocation parameters i

This field indicates the type of request that was issued for
initial allocation and is to be usèd for subsequent extensions.

Bits Settings Meaning

0-1 ... 00
; \

Original request was in tracks relativé
to a specific location.- No secondary
allocation will be allowed

0-1 . ' 01 . Original request was in blocks (physical
records)

0-1 10 Original request was in tracks
0-1
2-3

1Ï Original request was in cylinders
Reserved for future use

4 1 i Original request was for a contiguous
extent

5 1 Original request was for the maximum
contiguous extent on the volume

6 r- Original request was for the five (or
less) largest extents that are greater
than or equal to a specified minimum

7 l Original request in records was to be
rounded up to a cylinder boundary

Last Three Bytes - Secondary allocation quantity

The contents óf this binary field indicate the number of blocks,
tracks, or cylinders to be re quested at end of data set when
processing a sequential data set.

J Y K \ £ \ Ü r N

Figure 36 '*
-69-

* >

< S ; '5

. © 2

© 10

(P> 10

ipATA SET CONTROL BLOCK

(FORMAT 1 LINE 3 L;.

Last block pointer: The contents of this field identifies the
last block written in a sequential or partitioned organization
data set. It is in the format TTRLL:

TT is the relative address of the track containing the last block
R is the block number on that track
LL is the number of bytes remaining on that track following the block

If the entire field contains binary zeros, the last block pointer does
not apply.

v

Reserved for future use.

First extent description

Cl First Byte - Data Set extent type indicator

Hex
Meaning

Following 9 bytes do not indicate any extent.
The extent contains the data blocks (user's
blocks)
The extent described is sharing one or more
cylinders with one or more data sets
The extent described begins and ends on
cylinder boundaries, i. e ., the extent is
composed of one or more cylinders

C2 Second Byte - Extent sequence number

C3 Third i- Sixth Bytes - lower limit of this extent (CCHH)

C4 Seventh - Tenth Bytes - upper limit of the extent (CCHH)

Second extent Inscription - same format as SD1EXT1

I Figure 37

V

-70-

DATA SET CONTROL BLOCK

FORMAT 1 LINE 3 R.

9 “>

E 10 Third cextent description - same format as DS1EXT1

E' 5 Pointe}
descrit

? to Format 3 DSCB if a continuation is needed to
>e this data set. This pointer has the format CCHHR.

È 5 DSCB ADD (CCHHR)

. %
J

Figure 38

-71-

I

6. Extents

There ids a possibility of having a data set composed
of up to 16 separate extents. The Format 1 DSCB
can contain 3 extents. Further expansion of the data
set requires a Format 3 DSCB to contain the extent
information. The following discussion describes the
Format 3 DSCB and also shows how it is located.
Refer to Figure 39 and the description of the Format 3
DSCB injthe Introduction to Control Program Logic
Manual 2128-6605 to follow the example given.

The data set, SYS1.UT3, will be looked at by using
the templates of Figures 37 and 38. It is seen that 3
extents are used in the Format 1 DSCB. There is a
pointer op line 3 of the . Format 1 DSCB to 00 05 00 00 0E
(CCH HR). At this location in the VTOC there is a Format
3 DSCB. This DSCB contains extents that are part of the

t) ;

data set,
Program
byte fields that are similar to the extent fields of the
Format 1'

SYS1.UT3. From the introduction to Control
Logic Manual, it is seen that there are 13 - 10

DSCB.

-72-

S * ‘ j

■ |

1 I

o

JO
JJ
It

u
15

U
13
12

SYSi.UT3
' • FlC<0|3C$C2r OF2000 04200ó5*i20 0651 OOUOOOOOOOOOOOOOOOCü'J

OOOOOE29000CO 10000000007 0000000701.01 0000 000 ó 00 O 00 0.0-8
8Y 3 i . 5 0 8 T l 1 r

f l C ' i E 6 ‘j C 2 F Cf* 1 u C ü (. g g Gc gi . 6'2C 1 oi ' Cl CCOuOOC öCO jüOO GOOC U l
2 »*'J ï Lui' /OOuLv. L O J 0 G *» Uü C u 0 <j 5 o O O C s (J 0 O v.' 0000 j üOOO'J JOO 0 u O

SYSl.LCC-KtC
 ̂i i* 1 F) F 1 r 1 r~ 1 F 1 uwuC’i 2oO 5 c‘< 2 C C3 t u 1 UCoCuCGul/C JtK/UuüOuüu
O 2 i C l*c|o 5 g g C g L#1 C G C l u U O 0 1 ̂ '0v u O C o o CoO*JOuOOUvi!J O i J O O ü u

3Y 5 1 .iNLCLfcL 5
.......... F1F 11' llrlr iT- 1 F- ICG CC 42GÜ'71.42 CC 7 Cu l C'GÜOCOGGGCOoüOOCOOv*..

• ü 6 ü 3 0 4kj i 0 ü i. C G 10 C C C 5 c CO C 5 w 0 5C 0 0 C4 00 -j 0 0 0 O 0 ü 00 0 o J 900 00 C
Fu k W/O 5 CSvü 0 5 c 3 C 3 O 3 G l (F3 0 C 6 0 G C O o ü C 3 0 C- 0 0 0ü 1.

r 3o 10 /LCs CU'0̂ *i uuZ>C 0004 l 1 g ei 0 0‘>UOOC.5u0 3000050 i0yUÜ3UG0
C C C 4 C C p 0 C C C 5 C 10 9 C v. ‘j 1 0 o C 0 C G 5 1 o 0 0 0 u 10 £ C ü 5 10 O 'J 1005 10 ü 0 i

**8Y3cTl

.,SYS1. UT.3. 000OCü00O0000OO00 400CC CüCOOCOCOOOOOCOOOOOö'OüCOOO 100GüOüuUl
0 1 O 2 0 ü do 0 0 O 9 O O O 0 O O 90 0.0 3,0 0,0 ü 0 E 0 0 0 5 0 0 0 0 0 A

ü U ‘J’CuOOOOOOOOOu'0 J CCOC oOü O 2 0 0 C 0 0 0 0 4 CCOOOOOOOOOOOCclOOOOÜOAOO
0 0 0 0 0 0 o p O O'O 0 0 0 0 O O O O O O U O O O O 0 0 O O ' 0 0 0 5 0 0 0 0 0 3

OO O O O ü ü b.O G O O O C O O O C C 0 0 0 0 0 4 0 0 C O 8 0 0 CG2 6 GO2 6 0 2 COOOCC6SOOCOOOOO
OOOOOOOÜÜCOOOOOOOÜÜOÜOOOOOOOOO 0 0 0 5 0 0 0 0 0 C

OOOOOoOyCuóOOOOOOOOCOOOOO 2 UOC COCC4CGGOOOOO C 0 0 0 0 C 8 0 0 0 0 0 0 AOO
o o o o o o o i o o c o o o o u c o o o o o o j o ó o o o o “ 0 0 0 5 0 0 0 0 0 0
O ACCiCOffiO 1 0 0 5 0 0 0 0 1C. 1 0 5 C G 3 0 0 0 0 2 0 0 5 0 C C O 2 0 1 0 6 CC5 GOOG 3 0 0 5 0 0 0 0 3
O ó O 0 6 0 O vJ 0 c> O l O 4 0 0 3 0 O O 0 7 G O:»O O O O 7 O L O O O O 5 O 0 O O 8 C ü 5 O O O O ó 0 1 0 C O O 5 O
0 1 0 F 0 C 8 K K ' 0 2 0 0 : » LOOC2 0 0 0 0 0 CCCCO 0 C G 5 0 0 0 0 0 E

J
•c

F i g u r e 3 9

-73-

* *

B. Partitioned Da

informatio
attributes are
when thé pro gr
placed in tne s

a Set (PDS) Directory Information

The output load module produced by the linkage editor
contains all the information nebessary to load and relocate
the module in main storage. When the load module is placed

odule library, the name of the module and
control information describing its characteristics are placed
in the library partitioned data set directory. Pertinent

about the load module, such as the module
ised by the Control program fetch routine
am is loaded for execution. They are also
atus field of the RB associated with the load

module. It's important, therefore, to be able to locate this
type of information in the PDS directory.

1. Director]1, Organizations

The PDS directory occupies the beginning of the extent
allocated
The directory consists of variable-length logical records
arranged
value of the member name or alias.

The directory-records are blocked into 256 - byte blocks,,
each containing as many complete entries as will fit in
a majximi.m of 254 bytes.

Each
TTR,
field.
block

anc.
Tfc

has

2. Directory

in ascending order according to the binary

v J

logipal record in a directory block contains a name,
count field. It may also contain a user data

e last logical record in the last active directory
a name field of maximum binary value.

Contents

The method of investigating a member of a PDS starts
with the execution of the IEHLIST program with a LISTPDS
control card included for the particular data set that
contains the member in question.

The intor
The conteh
can be used

a.

b.

c.

^nation listed as a result is shown in figure 40.
.ts of the PDS directory entry, Format 1,

to answer the following questions:

What is the relative location of the member in the
datal set?

Howl much core storage Is required?

Is the member name an alias?

-74-

~\:
u

J

4

i
i

!
!;

d. Is the module in overlay structure?

e. What are the System Status Indicator Values?

3.

Using the tempLate, Figure 41, and the member IEABDLOO
shown on Figure 40, the following values are found for the
above questions:

a. The relative TTR is 001907 - Item B

b. 00 00 A0 — Contiguous Core required - Item F

c. Bit 0 of the indicator byte is zero,, therefore, name
is not alias - Item B

d. Bit 2 of attribute byte one is zero, therefore,
not overlay structure - Item E.

00 05 31 36 — SSI bytes — Item J

Directory Size and Number of Entries

The PDS Directory entry provides ready reference

i
 information about a member of PDS.

may be necessary to expand or contract the size of
PDS. 'In order to do this you need to know how many
rectory blocks are needed and how many entries can

be contained in one block.

The following method can be used to look at a PDS
as it appears on the DISK.

AL

B.

Using the IEBPTPCH program, define the PDS
as a sequential data set. This will cause the
directory to be printed. Each directory block is
256 bytes long so it is possible by inspection to
check the number of directory blocks that were 1
specified. The number of entries per block can
also be determined by inspection.

$

Using the IEBPTPCH program, define the PDS as
a PDS and select any or all members of the data set
for listing.
Refer to SRL C28-6586-1 page 38, for further
information.

-75-

:* c
r
c
c
C'

,

r. -r
«~-C- c*.
C C n‘r.-'r* r.StV 7"

o r .
r. c*

L U ^r !rr !r- r. c ' a c c.
r r . , o r

r-
Cs
r*

• r c
- r x T - t x 2

o
r*
7*.

<tYrr
r
t/

r ^ ~
c...> > r c c r

r
— C' >’

> i- r*c . r r
> A

fc >
C* i;

H
n r
> > CO >
o >

r* ‘rv r- (v p r r* *r. rr r r r r r rr- rr r»
> t i. > r- >i >

-» V*
r-
X X u’.

>> >*•
t

TT
T> 7> «
C. X-

i* 5. er e X —< -< •K ! *< -< fv X F x >- 0*# x C c*. C; H- *; O < . c . o o c c. C
»>•
C: o c o c

•
c

V
c

V l
c* r c

% .
r#

V .
rfv r . u \ —• n v.» c r ;c n: N-

1
X " r f Pr C <*? r r . cv C” r o 'r« er ^ c> N) r—o o o c r o cv o r K*. .v

• e ° c:]r:£> o r r c ‘c - io i*. C' I r !c ' c c r o c- r r* o c c o c r* n er C C'
! i
r> c rv o <-« c r r* r r* rvV % C"

h N
v*. •<* r * r
.V.fvlfv fV. r c

f\»
o ‘o c.
fN* ;.VTv

c
rs

c,s ‘O *cW- c
■»—

c. C i *
•- H- C i c. cik- k.. — »*. r r o c rI— «M» U fM.

V ̂
►—

r C.’
»«-■

r ;c>— -kMt
n
>-

o c C' ;c c; O
►»- cv

. «*. C U -I • V X v>.* r r *r 'r1 c: c-i c v »• t*- t* c c V0 / rr a s. . «o ft w o r »r V** X*» er „VO C. C. CT *• CV (. c* c c* k*%c- jr- CV 7 . V- r- r C‘ ►*- V- C. ♦—* c* o c c o O r* o c* V-» f— #- * i / c* c ‘rr rr rv e.k- o «Is t* • * C . c * r1C"‘ v?- — r •sj Iv V c. •fc* \» * o >-•« r : 0s j> V—C* M VC c. -V/ u r V X ►« r -V u *f..*V IV N*' IN* f* is* N .X »'V ,V fV. re K* i ! n: ^ ,;.X .Nj X Tc iV NT- $X X; IX ix Ni fv |N’ NT fX x IXr •v re rx <v rs. iv rv .x fv? fv#C. C C* • c*. c* cv C C’ c !o *C r c T er r C- CV X C* c. c ' r r 7 D 7 C C c* c.. c. e r . c c er C‘ c c e C C

,T** o e > e: o o e e o . o o c> o
O o o r. e e o C' O C“* e* o e*—* r—« >—* ► ** #~* r—
sT X? ,C [e’1o cv o -o. .•»■ v‘ e e
r- O r- O rv O r*. o r> |r> *** »—• r 'r* O U* H vT er !—• C- * -»v V>' VV e r*
vT’ o r \r* CV e* r- O O ’Cï C' r s..*t'V O ‘O *v“J rv r r ' rv r# o cv O rv
< O o e. e. rv cv o o r . rr e • cve O C' C < V o O e o < o o o
cv o :r? 'e. r . o e O O ‘C . o 4* e*c^ o *• * .cv C : cv r O r . . :T: s' o o
o o !r. \v cv e V# o r r e *>o oC J O V C o o V. o c;> o O cv cvC’‘ o e. r e e* r- O O !C- e e: c*>
o o e !o o e o

'ee CV O ;*»r» o o e. r.- c< o 0 *0: 0 o o r VV.»NJ n) ,u :u* w Cs' ev> VO :U' . VO x» X.
e o ,<**• ;-e -sl -e -sj *< : -e ; -g -e e rx
o o c v r CV o CT 0 |0 , 0 o o o
e O *»o ie o o O 0 !0 ;C. o o e-
e O ;0 JvV CO o O O 'O 'o cv o ee: o •■-.■ i O o e o io ,O C-/ o oX o ;»v X vO s>. ;-%s i O o o X:
-s< > :u ‘ L ' x ro O ?0 !cx w e e»̂O O -> o o n* c ic * «> rr o *O o ; o ‘c e* e- o o : o ! o o o Orx» o ‘o .n; eo #—c>: eo ;e.i }o o o X*

er. ;4'' > X- O O O W u 0s v>>
o > O • * >—• 4' rr. o o * >; : P* rv >

O o o ‘o o o o Io .o O O o oO o .cv ,o o o O o ; o o o cv cvo o o o o o o O iO o w o oo o o o o o o O O ‘O cv o cv

O C'
<r- o

o
c:

r*v
C C
O T
7> ’O >—
c* c* r*
c 'o o
c*
c

e: er
r\ o
m* er
O O
o c*.

o r> er cv
O c c- e-
.CV C;
r« 'o
;0 *C-
e; o
o e,
o C?

o C: .o u co ;rx
•■o •< e*OiC O

o

cv
o
e
v ’?

o
o

U V w.
o o
o
o
e: o o cv
cco co co
-s. —►* -e
o o o
o o c*.C O C' C' C'C
V «A* v> ‘
.x; o-, m

o o o o
o ;o o oO ;Q O O
O o o
o 'o o
o c o

cv o o o
\J\ \J\ ►— '
U » vM O ' Vv
o o o o

C! O ^ S >"* r* r-» >-’
»— er i\j 4s er- «*>j en er-

Figure 40 ! j

c !
o :
e.*
c

C'*<

re
o-
c.

A '
r*
f~
er

ö&
(B >

(B)

©
CS)

K • . . V * * # * V '
PARTITIONED DATA SET (PDS) DIRECTOItYoENTRY - FORMAT 1

’m e m b e r n a m e • ‘ <B Second
— •». ■ * ■ r

Byte - .
3 TTR of the first block of the named member Bit
1 Indicators ' • Bits- Settings Meaning

Bit 0 1 Module can be processed ori
Bits Settincrs Meanincr by F level of linkage editor
0 1 Name is an alias ' 0 0 Module can be processed by
1-2 (variable) Number of TTR's in the user data * levels of linkage editor

field. A maximum of three is aliov/ed. 1 i Linkage editor assigned oric
3-7 (variable) Length of the user data field in half

words.
C) 3 • TTR o f the first block of text

X
3

3
2
.3

Zeros
TTR of the Note List’ or Sc after/Translation Table.
Used for modules in scatter load format or overlay
structure only.
The number of entries Ln the note list for modules
in overlay structure; otherwise zero.
rr’otaI continuous main storaae recuirement of modulo
Length of the first block of text

CD
©

3
2

Entry point address associated with member name or
with alias name if the alias indicator is on
Linkage editor assigned origin of the first block of text
Attributes First ByteBit
Bits Settings Meaning
0 1 Reenterable
1 1 Reusable
2 •1 Ln overlay structure
3 1 Module to be tested - TESTRAN
4 1 Only loadable
5 1 Scatter format
6 1 Executable
7 • 1 Module contains no RLD items and only

one block of text
7 0 Module contains multiple records with

at least one block of text
Figure 41

o f first block of text is zero
Linkage editor assigned oric
of first block of text is not z

3
4

1 -
1

5

6-7

Ü

Entry point assigned by linke
editor is zero
Module contains no RLD iter.
Module cannot be reprocessc
by. linkage editro
Module contains TESTBAN .
symbol cards
Reserved for future use

-*r~ ~t*y—x —v# r rx'r

APPENDIX A

£Ii
This appendix contains two
whose expansion includes s.
with that instruction; the s
requested via the SVCs anci
are described:

lists: the first is a list of those macro-instructions
SVC instruction and the SVC number (decimal) associated

iecond is a list of the routines thatperform the services
the program logic manuals (PLMs) in which these routines

j

Macro-Instruction 1
3VC
sro.

Hexa­
decimal Macro -Instruction

SVC
No.

Hexa­
decimal

ABEND ' :13 0D FEOV 31 IF

ATTACH 12 2A FIND 18 12

BLDL L8 ' 12 FREEBUF 57 39

BSP 39 45 FREEMAIN 05 05

CATALOG 26 1A GETMAIN 04 04

CHAP 44 2C IDENTIFY 41 29

CHKPT 50 32 INDEX 26 ‘ 1A

GIRB 43 2B LINK 06 06

CLOSE • 20 14 IOHALT 33 21

CLOSE (TYPE=T) 23 17 LOAD 08 08

DELETE I39 09 LOCATE 26 1A

DEQ, 18 30 OBTAIN 27 IB

DEVTYPE ;24 18 OPEN 19 13

DETACH i52 3E OPEN (TYPE=*J) 22 16

ENQ 56 38 POST 02 02

EOV 55 37 PURGE 16 10

EXCP 00 00 RELEX 53 35

EXTRACT . •40- 28 RENAME 30 IE

SVC Routines
-78-

Appendix A, Page 2

Macro-Instruction
SVC
No.

Hexa­
decimal Macro-Instruction

SVC
No.

Hexa-
decima.

RESTART 52 34 SYNCH 12 OC
RESTORE 17 11 TIME 11 OB
SCRATCH 29 ‘ i d TTIMER 46 2E
SEGLD 37 25 W A n 01 01
segWt 37 25 WAITR 01 01
SPIE 14 . 0E WTO 35 23
STAE 60 3C WTOR 35 23
STIMER 47 2F WTL 36 24
STOW 21 15 XCTL 07 07

SVC Routines

ïn the following list,
referred to in the associates
system generation time, the
number indicated is the doroir
explicitly specified.

Use of an SVC number that in the
interruption handler to abnormally terminate
nonsupported SVCs fail into this category*

I.OUTINE NAME* indicates the name by which each SVC routine is
> PLM. Two entries in the •TYPE * field indicate that at
user can choose either type for this SVC routine. The first
ant one and is the type assigned unless the second number is

has

Use of the remaining nonsu
tion. An interruption will
SVC; it immediately passes
Unassigned SVC numbers cannot

C?

•ROUTINE NAME*
the job step.

field causes the SVC
All unassigned and some

pported SVC numbers is effectively a no-operation instruc-
occur, but after the SVC interruption handler analyzes the

U control to the SVC exit routine. Nonsupported or
be assigned to user-written SVC routines.

15

16
17
18
19
2°

21
22
23
24
25

26
27
28
29
30

31
32
33
34

35

36
37

SVC ROUTINE
NUMBER NAME TYPE PLM

00 EXCP 1 Input/Output Supervisor
01 Wait 1 Fixed-Task Supervisor
02 j Post 1 Fixed-Task Supervisor
03 Exit 1 Fixed-Task Supervisor
04 Getmain 1 Fixed-Task Supervisor
05 Freeraain 1 Fixed-Task Supervisor

06 Link 2 Fixed-Task Supervisor
07 XCTL 2 Fixed-Task Supervisor
08 Load 2 ‘ Fixed-Task Supervisor
09 ♦ Delete • 1 Fixed-Task Supervisor
10 Getmaixv/Freeirai.n 1 Fixed-Task Supervisor

11 Time 1 Fixed-Task Supervisor
12 SYNCH 2 Fixed-Task Supervisor
13 ' ABEND 4 Fixed-Task Supervisor
14 SPIE 3,2 Fixed-Task Supervisor

ERREXCP

Purge
Restore
B LDL
Open
Close

Stow
OpenJ
Tclose
DEVTYPE
Track Balance

Catalog
Obtain
. CVOL
Scratch
Rename

EOV
Allocate
10HALT
Master Command
EXC?
Write to
Operator

Overlay
Supervisor
Resident SVC

3
3
2
4
4

3
4
4
3
3

4
3
4
4
4

4
4
3

4

3

2
2

Input/Output Supervisor

Input/Output Supervisor
Input/Output Supervisor
Sequential Access Methods
Input/Output Support (CPEN/CLOSE/EOV)
Input/Output Support (OPEN/CLOSE/EOV)

Sequential Access Methods
Input/Output Support (OPEN/CLOSE/EOV)
Input/Output Support (OPEN/CLOSE/EOV)
Input/Output Supervisor
Sequential Access Methods

Catalog Management
Direct Access Device Space Management
Catalog Management
Direct Access Device Space Management
Direct Access Device Spaae Management

Input/Output Support (OPEN/CLOSE/EOV)
Direct Access Device Space Management
Input/Output Supervisor

Job Management

Job Management

Not supported in this configuration

Fixed-Task Supervisor
TESTRAN

SVC Routines

SVC ROUTINE
NUMBER NAME TYPE PLM

39 * + Unassigned
40 Extract 3,2 Fixed-Task Supervisor
41 Identify 3,2 Fixed-Task Supervisor
42 Attach 3,2 Fixed-Task Supervisor
43 CIRB 3 Fixed-Task Supervisor
44

A Not supported in this configuration
• 45 Overlay

Supervisor 2 Fixed-Task Supervisor

46 Ttimer 1 Fixed-Task Supervisor
47 Stiroer 2 Fixed-Task Supervisor
48 * Not supported in this configuratidn
49 Ttopenl 3 TESTRAN
50 Not supported in this configuration

51 ABDUMP 4 Fixed-Task Supervisor
52 Not supported in this configur«tion
53 + + Not supported in this configuration
54 + + Not supported in this configuration
55 EOV 4 ! Input/Output Support (OPEN/CLOSE/EOV)

Sequential Access Methods

56 Not supported in this configuration
57 + * Not supported in this configuration
58 ♦ * Unassigned A
59 ♦ * Not supported in this configuration
60 Not supported in this configuration

61 Save 3 TESTRAN
6 2 Not supported in this configuration
63 ¥ v Unassigned
64 RDJFCB 3 Input/Output Support (OPEN/CLOSE/EOV)
6.*> + * Not supported in this configuration

6 6 * * Not supported in this configuration
67 * * Not supported in this configuration
6 8 V v Not supported in this configuration
6 9 Backspace 3 Sequential Access Methods
70 GSSRV 2 Graphics Access Method

71 ¥ ¥ Not supported in this configuration
72-199 ¥ ¥ Unassigned

200-255 Availaole ior assignment
to user-wr itten SVC rou-
tines, Unt il a 'number is
assigned, its use in a
processing program
causes ter nination.

TCBRBPh

Active Request Block Queue

jXll
i

BLNK \ -

I
I IXRBLNK J~

1ÏIRB t-----j
SVRB

nr-------- 1 r—H XRBSucj--- ,
I • I I rH XRBPRE Kl IXRBLNK -------- -I

IRB

TCBLLSf----MXF

Loaded Program List

| XRBLNK |~..f-+*T_
I*

LPRB

BSUC (• H XRBSUC (■— -H XRBSUC J
•I XRBPRE H XRBPRE K — H XRBPRE |«f— J

I
I

XRBQ|*0
I

___J
IP
(Mi

RB
inor)

I XRBQ ,
I IL----- — J
LPRb LRB

TCB

Inactive Program List (Optional)

figure 1.

<5

-82-

| XRBLNK J-
I I

PRB

r--------i
<»H XRBSUC | -0
— (XRBPRE|

LRB

Request Block Queues
kl ■> ■■ ; '

This is a breaks
(RB) for the se

1 2

own of the status bytes (STAB) in the Request Blocks
iduential system.

bits 0
STAEfo o o on o a

6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 ! 0 0 0 0

11
2-

3

4 •

. 5

6

7

' 8

9

10

11

12

13

14

15

Used to distinguish between PRB, IRB, SERB, and SVRB.(see chart 1)

determines,if program is LOADed or not

zero

s if program is in transient area or not
)

priv ileged

se zero

primary queueing field addresses TCB

active (program

program, 16 registers saved in RB

rescheduab.e program (re-enterable or reusable)

RB for jlOS

IQE's ajpperiied are I2*'s

RB exists disjoint from program (RB freed by EXIT routine)

off - WAIT cn single event or all events
on - WAIT oil fewer than the number of events specified.

12 13
0 0 - no IQjS's
0 1 - 12 byte IQE's
1 1 - 16 byte IQE's

FIGURE 2

x;
-83- RB Status Field

The combination of
specified definition

the first four bits in the first flag byte have the
s shown in chart 1

01

00

00

00

00

01
01
01
01

10
10
10
10

11
11
11
11

BITc

0
0
1
1

0
0
1
1

0
0
1
1

0
1
0
1

0
1
0
1

0
1
0
1

Description

PRB, not LOADed, doés not have
minor entries. (IDENTIFYed)

PRB, not LOADed, does have minor
entries.

PRB, LOADed, no minor entries.

PRB, LOADed, minor entries

IRB

SIRB

SVRB, Type II
SVRB, Type m
PRB, LOADed, Minor entry
LRB

FIGURE 3

-84-

RB Status Field

OPERATING’

IEA
I E B
IEC
ÏEE
IEF
IEG
IEH
IEI
IEJ
IEK
I£M
IEN
IEP
IEQ
IER
IES
IET
IEU '
IEW
IFB'
IFC
IFF
IGC
IGE
IGG
IHB
IHC
IHD'-
IHE

SYSTEM/360 NAMING CONVENTIONS

SUPERVISOR
DATA SET UTILITIES
INPUT/OUTP1
MASTER SCHEDULER
BATCH SCHEDULER
PROGRAM TEST
SYSTEM AND SUPPORT UTILITIES
SYSTEM GENERATOR
FORTRAN COMPILER (E)
FORTRAN COMPILER (H)
PL/1 COMPILER (F)
PL/1 COMPILER (H)
COBOL COMPILER (E) •
COBOL COMPILER (F)
SORT/MERGE
REPORT PROGRAM GENERATOR
ASSEMBLER (E)
ASSEMBLER (F)
LINKAGE EDITOR
SYSTEM ENVIRONMENT RECORDING AND RETRY, SERO, SERI
ENVIRONMENT1 RECORDING EDIT AND PRINT
GRAPHIC PROGRAMMING SUPPORT
TRANSIENT- SVC ROUTINES
I/O ERROR ROUTINES
CLOSE, OPEN AND RELATED ROUTINES •
SYSTEM MACRO-INSTRUCTION DEFINITIONS
LIBRARY SUBROUTINES (FORTRAN)
LIBRARY SUBROUTINES (COBOL)
LIBRARY SUBROUTINES (PL/1)

-85-

V.i,.,, Na.minrr Pormpyvtir>r

i!' ')M

; OOI
002
008
020

’ 025
. 03Q

031
032
033
034

, 035

1036
t

1037
| 038
I
; . 3 9
03A

! ÖB0
| OCX

0 F 1
OF 2
100
101
102
108

IYSTEM/360 OPERATING SYSTEM

Completion Codes Excerpts from Form C28-6608

BSAM CHECK with no SYNAD routine oi* QSAM DCBEROPT specified termination.
BSAM Write or QSAM Put record exceeds track length.
SYNAD routine error following a BSAM CHECK/
BDAM OPEN with an invalid DCBMACRF.
BDAM processing error DCBSQND address outside task boundaries.
BISAM or QISAM OPE:ST. with an invalid DCBMACRF.
QISAM processing error and DCB did not contain a SYNAD routine.
BISAM or QISAM OPE] ST with an invalid DCBMACRF field.
BISAM highest level in lex I/O error.
BISAM OPEN main sto rage area too smalll to contain the highest level index.
BISAM OPEN with the DCBMSWA and DCpSMSW specifying too small an area to
contain one track of pr:me data. i
BISAM or QISAM OPEI f with no space allocated as the prime area in the DD Card
or DSCB was modified erroneously.
BISAM or QISAM OPEN with an invalid buffer specification.
QISAM OPEN for load mode with insufficient space allocated or (2) the high level
indexes crossed volume s the DD Card SPACE parameter.
QISAM scan reached the end with no DCBEODAD routine.
BISAM or QISAM CLOS3 I/O error in updating the Format 2 DSCB.
Job Scheduler I/O error in SYS 1SYSJOBQE.
A program check occurred without a’ recov
Code

1
2
3
4
5
6
7

Procrram interruption Cause
Operation
Privilege^ operation
Execute
Protection
Addressing
Specification
Data

A program check occurr

WAIT error from more

ery routine. X specifies:
Code Program Interruption Cause

8 Fixed-point overflow
9 Fixed-point divide
A Decimal overflow
B Decimal divide
C Exponent overflow
D Exponent underflow
E Significance
F Floating-point divide

:ed in the I/O Supervisor..
A program check occurijed in the execution! of a Type 1 SVC routine.
Device not operational.

events than available ECB’s.
POST error from an invalid ECB address.
LINK, LOAD, ATTACH Dr XCTL error indicated in register 15;
OD Invalid record type found when loading the program.
OE Invalid address found
OF I/O error occurred v,

when loading the program,
hen loading the program.

- 86- Completion Codes

Page 2

117
122
126
1 2 D
131
137
200 ̂
201
202
207
213

214
217
222
22D
237

301
308
313'

14
317
326
331
337
400
406

413

414-
417
425
426
431
437
506
513
514
517
c r\

331
J04

OPEN I/O error i:i reading the JFCB or (2) failure to locate the JFCB pointer
in TYPE =JOPEN.
BSAM CLOSE I/O error on tape.
CANCEL, DUMP requested by the operator.
TESTRAN error from a* modified TESTRAN CSECT.
Overlay Supervisor found incorrect words 3 and 4 of the segment table.
TESTRAN error from a modified TESTRAN CSECT. j
E of V I/O error in tape label processing.
I/O error occurred with all I/O request elements in use.
WAIT error from an invalid ECB address.
POST error from an invalid RB address in the ECB end.
A SYNAD routine attempted to execute an XCTL macro instead of RETURN.
CPEN failed to fine the DSCB or had I/O error.
Verify the DISP parameter of the DD card.
CLOSE I/O error in tape positioning or volume disposition.
BSAM CLOSE I/O error in reading the JFCB.
CANCEL requested by the operator. No dump requested.
Overlay Supervisor found an invalid address in the segment table.
E of V verification error in label processing. Correct the volume serial
number in the DD card and re-execute.
WAIT specif led an ECB whose wait bi: was on.
LOAD error when Option 3 but not 4 i.s included.
OPEN I/O error in reading a Format 3 DSCB.
CLOSE I/O error in reading the DSCB.
BSAM CLOSE I/O error in reading a DSCB.
TESTRAN instructions exceeded the limit specified.
TESTRAN needs an address for the -TEST OPEN instruction.
No DCBEODAD routine available for the end of a data set.
An invalid DCB, DEB, IOB or an improper DD Card detected.
LINK, ATTACH, or XCTL error from "only loadable" program or an IDENTIFY
entry point program specified without Option 4 in the PCP.
OPEN failed in reading the volume label, the volume could not be mounted on the
allocated device, - or no volume serial number was specified in the SER parameter
of the DD Card.
CLOSE I/O error in updating the DSCB.
BSAM CLOSE I/O error in writing the updated DSCB.
SEGWT error during execution of an overlay program.

■ TESTRAN output limit exceeded.
TESTRAN symbol table and control dictionaries could not be read.
End of Volume error when the DEBDEBID protection key did not match the TCBPKF
LINK, LOAD, ATTACH or XCTL used in an overlay program under TESTRAN.
OPEN for a data set on a magnetic tape! used for another data set.
CLOSE I/O error in reading the JFCB.
BSAM CLOSE error because the PCP used does not support user labels.
TESTRAN used without a TEST OPEN instruction.
TESTRAN used without a DD statement for the unedited data.
GETMAIN error from an erroneous address or length in an inactive program,
(2) and erroneous address in the macro, or (3) a free area exceeded the
bounds of the task.

-87-

^ 5
w j 6
60A
613
614
626
637

.700
705
706 4
713

714
717
800
804
914’
926
937
A04
AO 5

")A

A 13
A14

A26
304
BO 5
30A
314

FREEMAIN error from a free area exceeding the bounds of the task.
LINK, LOAD, ATTACH, or XCTL error from lack of available storage.
GETMAIN or FREEMAIN error from a.n erroneous address in an inactive program's*
OPEN I/O error in tape positioning or label processing.
CLOSE I/O error in writing the end-of-file.
TESTRAN encountered a machine-check while tracing the program.
End of Volume I/O error, in writing the tape, mark, positioning the tape, or
reading the label.
Unit Check Status Indication set on.
FREEMAIN issued with L operand and PCP Option 4 not included.
LINK, LOAD, ATTACH, or XCTL requested an unexecutable program. _
OPEN for an unexpired data set created with an EXPDT or RETPD parameter
in the DD Card. •
CLOSE I/O error in tape label processing.
BSAM CLOSE I/O error in tape label processing.
Program or Protection Interruption during an I/O operation.
GETMAIN with EU or VU mode operand not supported by the PCP in use.
CLOSE functions not supported by the PCP in use.
Machine Check when TESTRAN attempted to return control to the user program.
End of Volume functions not supported by the PCP in use.
GETMAIN error from an erroneous address or length in an inactive program.
FREEMAIN error when an address and length specification in the release request
defined an area overlapping a free area.
GETMAIN or FREEMAIN found the address and length specification in an inactive
program or released program defined an overlapped free area.
OPEN failed to find the DD Card specified file sequence number on tape.
CLOSE I/O error in the release of unused storage on the DASD as specified in
the DD Card.
TESTRAN ec'Ud not return to the problem address specified.
GETMAIN specified a subpool number greater than 127.
FREEMAIN specified a subpool number greater than 127.
GETMAIN or FREEMAIN specified a subpool number greater than 127./
CLOSE error when STOW was issued. STOW was unable to store, modify, or
delete data. The error is indicated in register 15:
04 Name already exists in the directory.
0C No space is left in the directory.
10 A I/O error during the search.
EOV occurred with no space available for required functions and no volume
available for dismounting.

.OPEN I/O error cr (2) a concatenated data set could not be found.
Overlay Supervisor detected an invalid record type when loading.
Output area filled and no secondary quantity SPACE parameter supplied for a DASD.
Overlay Supervisor detected an invalid address when loading.
Output area filled or (2) 16 Extents already used in a PDS.
OPEN failed to find a member name specified in a DD Card or (2) there are
conflicting or unsupported parameters in the DCB.
Overlay Supervisor detected an incorrect length or an I/O error when loading.
QSAM FEOV I/O error in writing the remaining output buffers.
EOV or secondary space allocation I/O error.
Invalid SVC operand, nn - the SVC number.

- 88- Completion Code

	‎\\OMV-TC\temp\Scan\ABDUMP_Debugging_Procedures_V3a_Aug_1966.pdf‎
	‎\\OMV-TC\temp\Scan\ABDUMP_Debugging_Procedures_V3b_Aug_1966.pdf‎
	‎\\OMV-TC\temp\Scan\ABDUMP_Debugging_Procedures_V3c_Aug_1966.pdf‎

