Third Version
August, 1960

POUGHKEEPSIE PROGRAMMING CENTER

INSTALLATION GUIDE

ABDUMP

DEBUGGING PROCEDURES

PREFACE

This chapter was written assuming the user of 0S/360 has coded a
program and faced with the task of debugging the program using the
ABEND hex dump (ABDUMP). Areas such as System Control Flow,
RB Queues and the trace area will be explained and explored as to
their use in debugging. Other sections of this chapter deal with
evaluating I/O error messages and status of DASD data sets. This
chapter will hopefully provide all the diagnostic aids and supporting
literature necessary to evaluate 0S/360 debugging facilities in the
Primary Control Program (P_CP).

This document assumes that the reader is a programmer who has
a general knowledge of OS/360 logic flow. A recommended
prerequisite to provide this general system knowledge is the IBM
Operating System/360 Concepts and Facilities manual C28-6535,
or Part 1 of the IBM publication; "Introduction to Control Program
Logic," Z28-68605. At specified points within the document it is
recommended that Appendix B of the IBM Messages and Completion
Codes Manual C28-6608, be read to supplement this manual,

N

1V,

V.

DEBJGGING PROCEDURES

Table of Contents

INTRODUCTION

SYSTEM CONTROL FLOW

A,
B.

E.

A,

B.

TCB & RB explanation
RB Queues

1. Active RB Queue

2. Load List

System Interaction between Queues

RB types

Program Request Block (PRB)
Supervisor Request Block (SVRB)
Interrupt Request Block (IRB)
Supervisor Interrupt Request Block (SIRB)
Loaded Program Request Block (LPRB)
Loaded Request Block (LRB)

TCB & RB Fields from ABDUMP

ISR

.ABDUMP

User or System Problem

1. Determining the type of Error
2. RB Queue Evaluation

3. Naming Convention

User Problem

‘1, User program location

2. Analyze PSW

3. Additional PSW Infbrmation
4, User Debugging Steps
System Problem

1. Common Erorrs

2. System Blocks

SAVE AREAS

A.
B.

Save Area’ Chaining
Save Area Trace

1. Format

2. Messages

TRACE

A,
B.
C.

Table Entry Formats
Location of Table
Trace Examples & Explanation

-9

46
49
50
52

53
53
o5
95

(

VL.

VIL

..‘A.

O @

DASD DATA SETS

VTOC Evaluation

DADSM

VTOC - Listing and Descr1pt1on -
Formatted VT'OC

Data Set Control Block (DSCB)

Dumped VTOC

Extents

Part1t1oned Data Set D1rectory Informatxon
1. Directory Organization.

2. Directory Contents

3. Directory Size and No. of Entries per block.

APPENDIX A

SVC Routines
Request Block Queues
RB Status Field
Naming Conventions
Completion Codes *

Page |
59

o9
59 -
60
61
63
65
2
T4
74
T4
75

78

80
82
83
85
86

s

L. INTRODUCTION

Prior to going in and examining the different facets of the ABEND
dump it is necessary to understand the system control flow of the 0S/360

control program. This understanding is essential in order to comprehend
and evaluate the full ABDUMP.

Whenever possible, actual dump examples have been included to
supplement the text, However, due to size limitations it is impossible
to include examples in all areas. For this reason it is suggested that
the reader supplement the text using his or her own ABDUMP,

>

I

<

SYSTEM CONTROL FLOW

A. Task Control Block (TCB) and its associated request blocks (RB).

1. What is a TCB?

The task control block is the operating system's way of
keeping, in one location, pointers to all pertinent information
about the job step and consequently the task that the job
-scheduler has scheduled. In the primary control program
(PCP) there is only one TCB in the system. It is located
in the nucleus and used by all programs that reside in the
problem program as shown in Figures la and b.

1£ Core Storage

>1
T
| f
TCB] ‘
Job |
Scheduler ! |
"Nucleus | ?
l | |
a. TCB associated with job scheduler
pa— .Core Storage >51
l
TCB |
Compiler or |
Users Program
Nucleus [

b. Reinitialized TCB associated with problem program.

Figure 1

-®

This one TCB is reinitialized every time the job scheduler
completes its scheduling of a job step and control is given to
the problem program. A similar action occurs when the problem
program completes its function and specifies the RETURN macro.

2., What type of control information is kept in the TCB?

The TCB primarily contains pointers to other system
blocks imbedded in the control program nucleus. For in-
stance, one can determine what I/O devices have been
aliouzted to this job step by locating the Task I/0 table (TIOT);
which data sets are open by checking the DEB list; determine
the end of the nucleus by looking in the main storage supervisor's
boundary box. All of these system created tables and control
blocks are pointed to by the TCB. How each of these fields
are used as diagnostic aids will be covered later,

3. What is a Request Block (RB) and why is it needed?

It is very possible that all the routines for any one problem -
. Program or job scheduler will not be brought into core with

the initial load module. The use of the LINK, XCTL, ATTACH and
- LOAD mocro used the OPEN routine to dynarmcally brmg in
the access routines, is a good e xample of this. This dynamic
loading capability forces the control program to add a control
block, in addition to the TCB, called a request block (RB).
This requoqt block retains control information at the load
module level. One of these RB's is created by the control
program whenever a dynamic request to fetch a load module
for execution is given. The RB is located in problem core as
indicated in Figure 2a.

-l

< Core Storage ,\fJ
ITCB[RB | 10ad
i | module A
N’UCLEUS Problem
Program
a. RB located in problem core
e : Core Storage , D\
TCH RB \ load .RB\ load
- module Al odule B
NUCLEUS =
LINK B

b. RB created for 1dad module B

Figure 2

Figure 2b shows the relative position of a second RB ’
which was created when load module A issues a LINK
macro. The control program nucleus responded to the
LINK macro by fetching load module B into core and creating
an RB to retain control information about this module.

4.} ~ What kind of control information is kept in an RB?

’

The content of the RB is an important element of the

~debugging procedure. Its content and size vary depending

on what type of RB it is. If we assume that the RB is for

a load module that was LINKed to, as in Figure 2, it

would be 32 bytes in size and would contain such things as

the member name or alias that this load module was

fetched by; the size of this load module and its RB; and the

PSW as it existed when control was passed to the nucleus the

last time. How each of these fields are used to aid in
- .debugging is covered later,

B.

5. How does the system know which load module to give
control to? '

The question is very valid. Prior to this, the discussion
centered around the TCB and the RB, but not how the two are
interconnected. This is a good point to introduce the two
request block queues that the system uses to control what
load module gets control of CPU time. They are called

the Active RB Queue and the Load List. . The next section
describes their actions.

RB Queues

As indicated earlier, there are two RB queues that the
system creates and maintains. These queues provide the
means by which the primary control program keeps track
of and allocates two very important resources - CPU time
and load modules (programs) currently in core.

1. Active RB Queue

Prior to developing the active RB queue, it is necessary
to explain the TCB - RB relationship. To clarify this
subject, it is convenient to initially assume that; the-job
. scheduler has been in core, read the job control language
(JCL) defining the job step; allocated the I/0 devices and -
requested the control program, via an XCTL macro, to
fetch load module A, The control program nucleus has
created an RB for load module A, fetched the module
into core storage and given control of CPU to module A.
At this point in time, core storage contains the nucleus,

load module A, and its RB in lower core. With the exception

of a system table in upper core, the rest of core is free
for allocation as indicated in Figure 3.

Load module A was defined to the system via an EXEC
PGM=A card in the input job stream. It should be noted
that the system always places the RB, associated with load
module (program A), on the first doubleword boundary
outside the nucleus (assuming no storage protect). With
storage protect the first RB is placed on the first 2048
byte boundary outside the nucleus. The load module A

is contiguous with the request block.

WY

./

| e : . Core Storage. 3
TCB |[RB-A
Nucleus |Load o System
Module A Free Core Table
(Program A) n (T1IOT)

Figure 3

Logically, the TCB and RB are linked up as shown in
Figure 4. The TCB always contains a pointer to the RB
whose associated load module has control. In our example,
only one load module is in core, so the address of its request
block is placed in the TCRB. This pointer in the first RB
contains a pointer to either a previous RB or the TCB. In
our example no previous RB's exist, so this field does point
back to the TCB. Additional fields, such as the member name
and entry point are shown to reflect some of the control
information that is retained in the request block.

TCB

RB-A

PwopRB TS —
— AYBBBYY

Program A

RN,

25}

ETURN, .,

Figure 4

o !

The linking of the TCB and RB together creates the .
beginning of the active RB queue. Bydefinition this is
a queue of request blocks that keep track of active

hx%LgxxL£§§J£L~g_énxﬂ_haLhayaJxxxLllNKEQF)ﬂltled,
or ATTACHed. ‘

To elaborate on this, one must expand the previous

example. Assume that program A now LINKs to program
B. The LINK macro, when assembled, degenerates into
an SVC 6 which causes an interrupt and gives control

. to the nucleus. Figure 5 shows the updating of the con-

trol block pointers that takes place prior to giving control
to program B.

TCB RB-B
T _top RB BYEBBEBY

T entry poinh"

hUd

RD=-A . + RP
AVvihypppy
A entry pt. —&

3
®
3

Progfam B

f
d
g
|
I
|
!
[
©
AT

TURN

Figure 5

|
-10- : - {
§

At time@)uhen Program B gains control of CPU, the
active RE queue is connected as described below.
The top RB pointer in the TCB points to the RB - B
(whose program is in control). The link field in

RB - B points back to RB - A, whose associated

program will regain control when Program B com-
pletes. The link field in RB ~ A points to the TCB because " .

it is the first RB on the queue. A snapshot of core at
-time@vould look like Figure 6. o

$ — Core Storage a—; 4

B

TCB| RB-A RB-B

Nucleus |Program A |Program B|Free Core |TIOT

Figure 6

-11~

ooyt
..

a.

How does the nucleus know where to return control to
in Program A? '

Referring to'tim@, Figure 5, when the SVC 6 causes
an SVC interrupt, the nucleus retains the S8VC old
PSW in the request block for program A. This 8

byte field in RB ~ A, called RESUME PSW, will
therefore contain all pertinent information about
Program A's x;esumptlon point. The nucleus,

between times 3 and C performs an LPSW
instruction spec1fy1ng the Resume PSW field of RB ~ A
and Program A regains control at the proper point.

2. The Load List

The load list, by definition, is a queue of request blocks that
keeps track of load modules that have been fetched into core via

the LOAD macro. These programs or load modules will remain

in core until either a DELETE macro is issued for them, or job
gtep termination occurs. Modules that are LOADed and their
associated RB's, are fetched into the upper end of core -

storage.

As you recall, modules that are XCTLed,ATT ACHed,

or LINKed to are fetched into the lower end of core, This tends
to keep contiguous free core between them as shown in Figure 7.

Nucleus Program A| Program B | Free | Program |TIOT

TCB| RB-A RB-B RB-L

Core| (LOADed)

Figure 7

The linking of the TCB and the RB's on the load list differ slightly from
the active RB queue. To understand the need for a different type of
queue, one must understand the logic behind the LOAD and DELETE
macro, Upon issuing the LOAD macro, the nucleus fetches the
requested load module, creates an RB, and initializes a load list as
indicated in Figure 8.

\.l

‘TCB

A top RB

0
W

A load list

0000 SUCCEEDING
TCB PRECEEDING
L ¥ep
-~ entry pt. { normal ’
RB

:

Program L

gt

TURN

Figure 8

The nucleus then passes back to the issuer, in Register O, the entry
point to the requested routine. At this point the issuer of the LOAD
macro regains control and may, at will, branch to this loaded routine,
using the entry point passed to him. An important fact is that the nucleus
does not know when the user is operatmg in the loaded routine and there~
fore cannot delete it.

The system must wait for a DELETE macro to be issued by the user

or step termination to take place before freeing up the RB and core
associated with a LOADed program.

-13-

~ Upon issuing of the DELETE macro, the nucleus gains control,

via an SVC interrupt, and searches the Load List for the specified
load module. It uses the two pointers of the extended RB, shown
in Figure 8, to perform this search and find the requested load
module, The SUCCEEDING pointer contains zeros. .The

PRECEEDING pointer of the RB points to the previous RB on the
Ioad List, This field in the first RB on the Load List points
back to the Load List field in the TCB. The purpose of the two

- pointers is evident when one considers that the system must
be able to DELETE load modules whose RB's are in the middle of

the list, Both pointers are necessary to delete the RB and link
both ends of theload list back together again.

a. Does the Primary Control Program use the LOAD macro
to bring in any of its routines?

Yes, a good example of the use of the LOAD macro is

its use by the OPEN routine. Access method routines
are brought into core at OPEN time via the LOAD macro.
At CLOSE time the DELETE macro purges these routmes
if they are not in use,

b, How could these access method routines be in use?

When initially LOADed at OPEN time these modules are

. brought into core and a one (1) is placed in the USE
COUNT field of the RBs associated with these modules.
If a second data set is OPENed, specifying the same access
method or requesting the same load modules, the control
program simply increments the USE COUNT in the RB,
passes back the modules entrypoint in Register O and
does not fetch another copy. At CLOSE time the DELETE
macro decrements the USE COUNT in the RB and only
if it goes to zero, purges the module and frees up the core.
Otherwise, the module would remain in and be purgedc
the CLOSE of the second data set.

«14-

\\J

C. .

System interaction between the two queues

~ The Active RB Queue and the Load List make up the
contents directory for the sequential system. Depending on
which macro is given, XCTL, ATTACH, LINK or LOAD,
the system reacts differently as to the queues it checks
before it fetches another load module. Let's take a few
examples to point out the differences.

1. Fiqure 9 shows the resulting active RB queue after
Program B LINKs to Program C.

TCB
.4 top RB

t

L

Figure 9

Upon return from Program C, its RB and associated
load module is purgegland the core freed up. The
same action takes place upon the return from Program
B to A. At that point the Active RB Queue looks like
Figure 10.

-15-

- —— e o 2 e

-
AL top RB___7 > RB=- A

TCB

-1

» TCB

~

" Figure 10

If at this point Program A LINKed to B again, the following.
sequence takes place. The Load List is searched for B; if not
found, a new copy of load module B is brought into core; an RB
created; and the Active RB Queue updated accordingly. Control
then passes to B. If load module B has an RB queued on the load

. list, then the primary control program (PCP) determines if the

'~ module is usable. If it is, the same RB that is queued on the load

list, is queued on the Active RB Queue and control is given to load
module B as shown in Figure 11. The control program determines
whether a load module is usable or not by evaluating the STATUS
field of the associated RB. How this STATUS field is set will be
expanded upon later when RB types are covered. '

1 —— —— ‘ —
1 top BR . - ppoo
N TCB
A load list e ‘
. RB- B
r— R
RB-A
—+71 TCB
{l R
Figure 11

2

TCB

How does the issuing of an XCTL macro differ from

the LINK macro we just talked about?

- XCTL's effect on the system is best explained by

- referring back to the in core situation indicated

in Figure 6. Basically Program A LINKed to
Program B. Let's assume that the programmer
wished to execute Program C and then RETURN to
Program A without going back to Program B.
XCTL provides this capability by logically over-

' laying Program B with Program C. Upon returning - ‘
- from Program C processing is resumed in Program A.

At the point when the XCTL macro is issued in
Program B the system blocks are queued as shown
in Figure 12.

RB- B

A top RB

BppY

a4

17

14

WY
1A

RB- A
ABP.....

) X4

MRB~ A

N

| 7 TCB .

SAVE
PROGRAM A PROGRAM B
LINK B

RETURN

Figure 12

-1_7-

The following events occur in the nucleus upon issuance of
tha XCTL macro. It, like LINK, degenerates into an SVC
interrupt allowing the nucleus or control program to gain
control. The first function performed is to search the Load
List for load module C. If found and usable, RB - C is
queued on the Active RB Queue; RB - B and load module
B are purged and its core is freed; and control is given to

If load module C is not on the load list, program B and its
RBis purged leaving program A and its RB as the only routine
in user core. The nucleus then fetches module C, creates

~an RB, and chains it on to the Active RB Queue as indicated in
Figure 13. ' ‘

TCB | | RB-C

7 top KB ——>ICIBE PP

C RB-A “~— |7 RBTE

N
- Trcs
SAVE | ~ SAVE
PROGRAM A PROGRAM C
RETURN RETURN
Figure 13

18-

e

. - Figure 14 reflects a snap shot of core as it exists while
executing program C. o

‘Nucleus .Program A ’Progi'am C | Free Core |TIOT

TCH RB-A| '|RB-C

Figure 14

The important thing to note is when an XCTL macro is

issued another level of request block is notcreated as is with
a LINK or ATTACH macro.

3. How is an ATTACH handled on the primary control program?

The ATTACH macro normally initiates a section of the
overall program, called a subtask, that can be processed
in parallel with the main program asychronously.
However, in the primary control program only one task control

Jblock exists. It is impossible to dynamically create

another TCB, and impossible to process a subfask
asychronously. The next best thing is to allow the use of
the ATTACH macro, when looking ahead to the multitask
operating system, and to perform the ATTACHed routine
serially. This is what the primary control program does.
It performs the ATTACHed routine much like a LINK with
a few exceptions. The ATTACH macro allows specification
of an exit routine (EXTR parameter) and the posting of an
event control block upon completion of the ATTACHed
routine. Both the exit routine and ECB are located within
the ATTACHing load module. These features are handled
by placing additional request blocks on the active RB
Queue as shown in Figure 15.

-19~

E tr,m.,\m«—\

':; v 7 | LA ’ A RB— P . od K
RB-A T FRB-EXTRT * ATTACH ¥ RB- B
/l Arep 4+t RB-A <—RB-EX _—~+{RB-ATT

Figure 15

In the example shown (Figure 15), program A
ATTACHss program B specifying an exit routine to enter
upon completion of program B, and an event control
block within program A to be posted upon completion of B.
The system makes the normal search of the Load List
as the LINK routine did. If the requested program is not
found, it is fetched into core and the Active RB Queue is
updated as shown in Figure 15, Program B gains control
of CPU., Upon completion of program B, the ATTACH
routine in the nucleus would receive control and POST
the event control block indicated. Control would then be
given to the EXTR routine. Upon RETURN from the EXTR

routine control again passes to program A to resume pro-
cessing.

Summary of Sequential Program Execution

Program A was fetched into core as the result of the
Job Scheduler reading an EXEC PGM=A control card.
The logical sequence of control flow that occurs, starting
at IPL time, is something like the following:

&. DBy depressing the IPL key on the console and
specifying the SYSRES device in the load address
keys, the computing system reads in an IPL
Bootstrap record. This Bootstrap record,
consisting of a chain of channel commands, reads
in the IPL, PROGRAM LOADER. At this point
the load light on the console goes out and control
is passed to this IPL Program Loader. Its
Jfunction is to read in the nucleus plus the nucleus
initialization program (NIP). NIP and the nucleus
are combined as one load module and written on

the system residence device at system generation.
time.

~20-

o/

4

‘Once the nucleus and NIP are in core, NIP gains

control and proceeds to initialize the nucleus. Just . .
prior to NIP's completion the Active RB Queue would -
look similar to Figure 16.

TCB ' ~ RB-NIP

A tpRE >

-

™ TCB

Nucleus
Initializations
Program

XCTL~IEFK1

Figure 16

NIP would then logically XCTL to the master
scheduler function .of an XCTL, NIP will be
overlayed by the master scheduler. The master
scheduler would then issue the READY message-and
wait for the SET DATE command to be entered at
the console. Upon receiving this command from the
operator, the system will then issue the automatic
START RDR, START WTR commands and wait on

changes to these commands or/and a START command.
The master scheduler XCTL's to the reader interpreter.

At this point the system blocks logically looks like
Figure 17.

-91-

' TCB : RB-R/I
A ~
< ‘cB
Reader/
~Interpreter
XCTL...
Figure 17

The Reader Interpreter opens the system input and output
devices and proceeds to read the input stream. It then
creates the system tables necessary for job initiation and
1/0 device allocation. The Reader/Interpreter will
.continue to read the input stream and create tables until
DD* card, null card or another JOB card is rea@?

Upon recognizing one of these, it XCTL's to the

Initiator. System blocks at this point in the job

step initilation cycle lpgically looks like Figure 18.

TCB RB-INT
|
N TCB
Tnitiator
XCTL. .

Figure 18 [
-22-

4\J

The Initiators primary function is to allocate I/0 devices

. to the job step and obtain DASD space. Once the

- allocation of devices is complete the Initiator builds
a task I/0 table (TIOT) which lists the ddname and a
pointer to the assigned device or devices for each data
set of this job step. This TIOT table is placed in upper
core and is the system :able that has been referred to

" oh previous core snapshots, By using this table, one

" can determine what devices the job scheduler has
assigned to user data sets. The Initiator then XCTL's
to the load module specified in the EXEC card. In our
example it was program A.

Upon completion of the problem program (A in our

-example) the RETURN macro will return control to the
nucleus and it, in turn, will XCTL to the termination section
of the initiator. This phase of the job scheduler takes care
of the disposition of the data sets and frees up the proper
I/0 devices. It would then initiate the next job step

or XCTL to the Reader Interpreter to read in the next

JCL. The whole sequence starts again.

Logically, this past sequence of events is how the system
blocks are used both by the job scheduler and the

problem program. Due to the different means of packaging
the job scheduler the names of the modules and the number
of XCTL's will vary.. The sequence shown is for logic -
purposes only. Refer to the Job Management PLM for actual :
module names and number of loads.

D. RB Types

Up to this goint the assumption has been that there is one type of
request block, In reality there are six different types of request blocks.
The RB type, its size and the fields used within it varies depending on
the routine or load module it is associated with. To be able to analyze
the RB queues, one must be able to recognize the different types and
and know their function. Figure 19 shows the fields and core size required
" by the six different types of request blocks.

o

-23-

RBSUC
RBPRE
REBNM

3, XSTAB

SE, ED
RBPSW

RBQ
T, LNK

RBREG

32

98

X RB Fields

”

REQUEST BLOCK (RB) FORMAT SR

® LOADed Successor

A * LLOADed Predecessor

PROGRAM ID

Size I Size [

I FLAGS
RB | Program |

Use | ENTRY DOINT ADDRESS

RESUME
PSW__

— |RB type and length ——

\‘/‘
(-

TQueues of IEQ's

WAIT)| 4 Next RB on RB Queue
Count | or M TCB

SAVE AREA
8 REGS.

SAVE AREA
8 REGS.

EXTENDED

SAVE AREA
For SVC Routines

Max 56 Bytes

Figure 19

LRB - Loaded Request Block

LPRB - Loaded Program Request Block
PRB - Program Request Block

IRB - Interrupt Request Block

SIRB ~ Supervisor Interrupt Request Block
SVRB - Supervisor Request Block

oyl

SVRE

144

Program Request Block (PRB)

The system initially starts out with one PRB

and it is assctiated with NIP as indicated in

an earlier section. This RB is the most common
and primarily the one described in the previous
examples. PRB's are created by the nucleus when-
ever an XCTL, ATTACH, or LINK macro is
issued. This request block is 32 bytes in size

“and always contiguous to the load module that it

is associated with.

)

Supervisor Request Block (SVRRB)

The supervisor or nucleus wien it gains control
of CPU executes its code in two basic operational
modes. The first operational mode is when an
interrupt occurs, the supervisor executes a

‘routine which performs some function, and

returns control to the problem program. In

"this mode the supervisor disables all interrupts

except the machine check. Because there is no.
possibility of interruption, no request block

is required to retain interruption status. The
second mode of operation occurs when the code that

‘the supervisor is executing allows interrupts or
- operates enabled. This mode, therefore, requires

a request block to retain status and save registers.
in case an interruption occurs. This recuest
block is calied a supervisor request block (SVRB).
It is created for, and associated with, SVC
interrupt routines. An SVRB is dynamically
created by the nucleus whenever the supervisor
determines the requested SVC routine operates
enabled. Free core is obtained at the upper end of
core to build there SVRBs.

a. Do all SVC routines operate with interrupts
enabled ?

No, all SVC routines are broken down into
types I through IV as described below.

Type I - These routines are always resident
and operate disabled.

Type II - These routines are also resident;
but are partially enabled and reenterable.
Type III - These routines are non-resident
and reentrant. They are brought into the
1024 byte SVC transient area for execution
irom the _SE(SI. SVCLIB data set.

(%10

T ———

Type IV - These are multi-phase type III routines.
They are too large to be brought into the transient

. area at one time and must be brought in phases. -

Control is passed from phase to phase via an

' XC’I‘L macro.

- SVRB's are, therefore, created for control of

the type II, III, 'and IV SVC routines. Appendix
A contains a list of the SVC's and their type
classification.

Interrupt Request Block (IRB)

The processing environm ent of the operating system
is such that at certain points in the processing

cycle functions are defined to be processed if an
asynchronous or unpredictable event occurs.

The TRB is used to control these user and system
asychronous exit routines. A good example

of its use is when a timer routine is specified

in the STIMER macro. This user routine, located
in problem core, is given control when the

specified time internal ends. Because one cannot -

predict when this internal will end, the STIMER
SVC routine creates, by a GETMAIN requesting
upper core, an IRB to control this user timer

" - routine. When the interval times out and

causes an external interrupt, the supervisor
initializes the IRB, chains it onto the Active
Queue and gives control to the user routine.

The Active RB Queue at this time would look like
Figure 20.

-26-

<« .J-

34

IRB

TCB h S

N\ TOPRB__——-o—

1t entry

T RB-A

T T]
C;RB—A
.Y S

f ICB

Figure 29.

-27-

4\ entry) -—_-/

~>

SAVE

Program A

RETURN

User Timer
routine

RETURN

r

-.Supervisor Interrupt Request Block (SIRB)

The function of an SIRB is similar to an IRB only

an SIRB is associated only with the IBM supplied
system I/O error routines. There are two additional
features that are unique to an SIRB, There is only
one SIRB and its associated routine operates out of a -
400 byte transient area in the nucleus. Its associated
routines are fetched from the SYS1. SVCLIB data set.

Loaded ProqravaeQuest Block (LPRB)

These request blocks are used to control programs
that are fetched into core as the result of the LOAD
macro. An LPRB is always chained onto the Load
List via use of the SUCCEEDing and PRECEEDing
pointers which are unique to RB's associated with
LOADed programs. An LPRB may also appear on
the Active RB Queue as the result of an ATTACH,
XCTL, or LINK being issued for its associated load
module. In this case, the RB is maintained on both
queues simultaneously through two different sets of
pointers as indicated in'appendix A, Figure 1. The
LPRB is physically located adjacent to its LOADed
routine and are allocated in core storage starting at
the high end and working toward the middle,

Loaded Request Block (LRB)

This request block is a shortened form of an LPRB

and used to control LOADed modules that have the

only loadable (OL) attribute. This means that once
loaded, this routine may be entered only by & branch.

It is invalid to ATTACH, LINK, or XCTL to modules -
with this "OL" attribute. An LRB will be chained onto
the Load List and will never be found on the Active RB
Queue. It will be contiguous with its load module similar
to the LPRB. A load module obtains this "only loadable"
attribute at linkage editor time via the programmer

‘specifying the OL subparameter in the PARM field of the

EXEC control card. The most common reason for a
programmer to specify this attribute is that he has not
followed the linkage conventions required by the ATTACH,
XCTL and LINK. Both the LRB and LPRB remain on

the Load List until their routines are deleted as described
in section B-3.

98-

E.

' TICB and RB Fields

This section explains the TCB and RB fields using the

~ formated output of the ABDUMP.

1. The TCB ABDUMP format is shown in Fiqure 21 -

TCB 000180 RB 01F83C PIE 000000

DEB OlF7BC TIOT OlFF5C CMP . 0C6000

TRN 00000000

MSS 00003CB8 PK/FLGS 00910400 FLGS/LDP 00000000

'LLS O01F890 JLB OlFEEO JSE 00000000 .

ID/FSA 0401FFB4_TCB 000000 TME 003ccC
Figure 332!

The following is an explanation of TCB fields that are helpful
in dubugging problem programs. All TCB fields are dumped.
in hexadecimal. The first 6 hex digits on line 1 of Figure 21
reflect the location of the TCB.

a.

b.

RB - ThlS 4 byte field contains a pointer to the
top request block on the Active RB Queue.
PIE - This 4 byte field contains a pointer to the
Program Interrupt Element (PIE) if a SPIE
macro has been issued by the problem program. -
Otherwise it contains zeros. A SPIE macro allows
* the programmer to pecify an exit routine to be
entered when specified program interruptions
occur. The control program creates a 32 byte
Program Interrupt Element to accomplish this
function.
DEB - This field contams a 4 byte pointer.to the
Data Extent Blocks created for the OPENED data
sets of the current job step. By using this field in
-conjunction with the second word in the chained
- DEB's one can determine which data sets have
been opened. This area will be expanded later on.
TIOT - This 4 byte pointer contains the location
of the Task I/O Table. From this table, one may
determine which I/O device and associated unit

" control block (UCB) has been allocated to a specific

data set.

- -29-

e.

i

CMP - This is a 4 byte field which contains

‘the task completion code in hexadecimal. Only

the right three bytes are used and these are

- split in two. The left three hex digits represent

a completion code supplied by the problem ‘ 4
program through a subparameter of an ABEND o
macro-instruction.

TRN - A 4 byte field used by TESTRAN contains

the address of the Control Core table for controlling

testing in a task. .

MSS - A 4 byte field containing a pointer to the

Main Storage Supervisor's boundary box. Useful

in determining core size and resident control

program size.

PK/FLGS - The first two hex digits (1 byte) are

the contents of the protection key field. When

protection is implemented this field will contain

.the assigned protect key for the problem program.

The last six hex digits are the first three bytes of
the flag field. Interpretation of these flags will
help determine how ABEND was entered.
FLGS/LDP - This 4 byte field will be used later
under Option 2 and 4 environments for additional

flags and indicating dispatching priority.

LLS - A 6 digit hex address of the most recently

added request block on the Load List. This is the .

Load List pointer that was explained in an earlier \)

section. Total field length is 4 bytes.

JLB - A 6 digit hex pointer to the address of the

DCB for the job library. If a JOBLIB DD card

was not specified for this job, this field will contain

zeros. Total field length is 4 bytes.

JSE -~ This 4 byte field contains a pointer to the

Inactive Program List explained in an earlier

section.

ID/FSA - This is an 8 digit hex number. The

first two digits (1 byte) are always 04 in the PCP.

The last six digits (3 bytes) are the starting

address of the system supplied first problem

program save area.

TCB - This is a 4 byte hex field which will contain

zeros. Later, under option 2 and 4, this field

will be used to chain the TCB's together to form

the ready/wait queue.

TME - A 4 byte field which contains a pomter i

to the timer element. This field is not printed if . |
|
l
|

the computing system does not contain the timer
option at system generation.

-30~

. It is important to note that the unformatted TCB

within the dump has additional fields that are not
formatted by ABDUMP. Use the Introduction to

Cont

rol Program Logic Manual Z28-6605 as a

guide to decipher an unformatted TCB.

The RB ABDUMP format is shown in Figure 22.

AQ01 005AA8 NM LAST - SZ/STAB OOBGOOCO
SE,{EP 00005AC8 P PSW FF05000D 80005BFC
Q. 000000 WT (L 00000264 UB - 005D58
Figure 22
AOO1 on the first line indicates this is the request block

that is chained to the TCB. (Lowest RB on the Active

RB Queue). The next 8 hex digits indicates the location
of the request block being formatted.

a.

NM - This is an 8 character name or program
identifier field of the request block. The contents
of this field will vary depending on the type of RB.

A program request block (PRB) will contain the

member name by which the program was fetched.
'A supervisor request block (SVRB) for a type III
and IV SVC routine will contain the signed decimal
SVC code of the routine associated with this SVRB.
For example, ABEND is a type IV SVC routine.

Tts associated SVRB will contain a O1C in this field.

This is the 51gned decimal number for the ABEND
SVC code (013)

SZ/STAB - This is an eight hex digit printout. The
first four hex digits give the size of the RB plus its
associated load module in hex, in doublewords.

In Figure 22 the size field contains hex 0056. This

represents an RB plus load - module size of 688 bytes in

decimal. This size field is used for this purpose

only in loaded program request blocks (LPRB), loaded

request blocks (LRB), or program request blocks
(PRB). In SVRB's, IRB's, and SIRB's the size field
indicates the size of the request blocks only. The
last four hex digits are a set of status indicator
denoting the RB type, active/inactive status, etc.

See Appendix A figure 2 and 3 for a further break-
down of this field."

-31-

C.

d.

1.

~ USE/EP - This is an eight digit hex printout.

with the RB.

- 3. For a supervisor request block (SVRB) for

- dispatched. The last six digits are a pointer to the

r

The first 2 hex digits are the use count. This

field contains a count of the number of LOAD el
requests for a program. As explained earlier, the =~ ¢ &
use count applies only to LRB's and LPRB's. The S
next 6 hex digits of this printout contain the entry '
point (EP) for the program or load module associated

PSW - A 16 hex digit representation of the resume
program status word (PSW). This field contains:

the last old PSW from either an I/O interrupt, or

a type II, II, IV SVC interrupt.

Q-A6b hex d1g1t representation of the secondary
queuing field. This field contains one of the following:

1. For interruption request blocks (IRB), the

' address of a 12- or 16-byte request element.

2. For program request blocks (PRB) and loaded
program request blocks (LPRB), the address
of a loaded program request block, which
describes an entry point identified by an
IDENTIFY macro-instruction.

a type III or IV SVC routine, system information.

WT/LNK - The first two hex digits are the wait count, oA
This is the number of WAITS which must be satisfied
before this RB and its associated program may be

next RB on the Active RB Queue. A pointer to the

TCB will reside in this field for the lowest RB (AQ01).
UB - A three byte field calculated by ABDUMP to ‘
indicate the upper bounds (hex address) of the load ,
module associated with a PRB, LRB and LPRB. f
REGS 0-7
REGS 8-15 - These fields represent the contents of ' |
the registers and are associated only with super- “
visor request blocks (SVRB) and Interrupt request :
blocks (IRB). This field is used like a users save]
area for the supervisor routines associated with these I
RB's. (These fields are not shown in Figure 22). i

e T T T L S I LT

-32-

- At this point one should have a good knowledge of the system control
flow. This knowledge should be supplemented by locating the various
system queues and control blocks on an actual ABDUMP output.

This would also be a good point to read Appendix B, of the Control -
Program Messages and Completion Codes Manual C28-6608, which
explains the fields within ABDUMP. It is recommended that the
reader place Appendix B at the back of this chapter to insure the
ABDUMP writeup and explanation is located in one place.

-33-

& m¥ asbump
- A. User

or System Problem?

Determining whether the ;ﬁroblem is a system deficiency or a

probl

em program error is the first step in any debugging

process. In using the dump, one must first determine the type

of error and second what program was in control when the error
occurred.

1-

Determining the type of errdr

To determine the type of error, the most positive clue is

the completion code. One can quickly distinguish whether

the user or PCP system supplied the completion code.

The system prints out in decimal the user supplied completion
code preceded by USER=notation., System supplied completion
codes are preceded by SYSTEM=notation and printed in.
hexadecimapl. A system completion code doss not always
mean that the user is not at fault because a user program

can indirectly cause the ABDUMP. Therefore, the answer.
to whether it is a user or system problem cannot be arrived

- at until the Active RB Queue is investigated,

RB Queue E_valuation

The highest priority KB (the top of the Active RB Queue), s
will always be an SVRB for the SVC routine 051, which

is ABDUMP. This SVC routine formats and prints the
dump.. The next RB on the queue below ABDUMP is an
SVRB for the SVC routine 013, which is ABEND. This
SVC routine gains control whenever the system or user
issues the ABEND macro. All RB's in the chain preceding
these will be either the users, and/or those of data manage-
ment (OPEN, CLOSE, etc.), other Type II, I, IV SVC
routines, or the job scheduler. A typical Active RB Queue
at ABDUMP time is shown in Flgure 23.

£ %
/A001 A002 A003 A004

TCB

NMPGMA NMPGMB NMSVC-401C NMSVC-105A
; {

PRB 'PRB SVRB' SVRB

ATCB T'RB L L RB +—RrB

Figure 23 " : o’

-34 -

3.

It is easily determined, by looking at the NM field in

the RB, whether the users problem program was in
control or not. In Figure 23, assume the load module
called PGMB was in control at the time ABEND was

" -called. PGMB may. have issued the ABEND macro, in
which case a users completion code would appear onthe - . .
“dump. A second possibility is that PGMB may have 8

caused the system to issue an ABEND (i.e. - causing

a program check). In the latter case, a system completion
code would be printed on the dump but the problem was
caused by the users prcgram. -

Naming Conventions

The programmer should know his load module names which
appear in the NM f{field of the RB. However, the NM field

for SVRB's and PRB's associated with system components

is not quite so easily interpreted. It is, therefore,

appropriate at this time to cover the naming conventions

for system components and non-resident SVC routines.

All system component load module names have the first three
characters coded. The prefixes are listed in Appendix A under

- Operating System/360 Naming Conventions. If for example,

a PRB was on tne Active RB Queue for a job scheduler
module, the NM field of the PRB would contain IEFzzzzz;
where zzzzz represents the rest of the module name unique -
within the job scheduler. '

The conventions for naming non-resident or transient SVC
routines adds additional conventions to the three unique
characters, IGC, which denotes transient SVC routines.
The following conventions are used:

Type IO - IGCOOnnn; nnn is the signed decimal
number of the SVC routine. This name must
be the name of a member of a partitioned data
set (SYS1. SVCLIB).

- Type IV - IGCssnnn; nnn is the signed decimal
number of the SVC routine, and ss is the number of
the load module minus one, e.qg., ssis Ol for the
second load module of the routine. This name

© must be the name of a member of a partitioned
data set (SYS1.SVCLIB).

-35-

- In Figure 23 the load module member name,
on the data set SYS1.SVCLIB, is IGC401C (in
extended BCD). The system places only the
last four characters, 401C, in the NM f{field
of the associated SVRB. This is possible
because the system knows that all SVC type
III and IV routines are preceded by IGCO.
SVRB's for Type II SVC routines (enabled and
resident) do not have any meaningful names
in the NM field because the system does not
‘require a module name, it simply branches
to the appropriate resident routine.

- At this point, one should be able to determine via
~ the completion code and evaluation of the Active RB
Queue, who issued the ABEND, and what load module
was in control at ABEND time. In addition one should
be able to determine, by evaluating the STATUS and
NM fields, of the controlling RB, that the load module
was either a system component or user program.

User Problem

The assumption at this point is that the user has determined
that the problem is either within his program or caused by
some function performed in his program. To cover the first
case, assume the user issued the ABEND. He should be able
to localize the trouble using the completion code, which he

‘issued in an ABEND macro instruction, and tie this back to

his' source listing. Next step would be to locate his program
in core to analyze the present status of the program.

1. User Program Location

How do I find my program in core? The location of any
program may be calculated using information in the
associated request block. If the entry point of a particular
program is the first instruction in that program, then the
program boundary is given to the user via the EP field and
upper bound (UP) field in the RB., If, as in the case of a
FORTRAN written module, the entry point is not the lower
bounds of the program, there are several ways of calculating
the beginning location. The easiest way is to use the
address of the RB and add 20 hex to its value. This is

" possible because the RB and its associated program are
contiguous to one another.

=30 =

. —— - B ISR SNERp L. SR

2. Analyze Current PSW

What was the last instruction given in my program? .
Normally the next step in debugging is to determine
where, within the failing program, was the last
instruction given. The assumption here is that your
problem is most likely localized in the area that the
ABEND was issued. The last instruction in our
example will be an SVC 13 which is ABEND. The

~+ answer to "where within the dump is this instruction

' located", can be found in two places. Evaluation of
the 16 digit PSW UPON ENTRY TO ABEND printout
is the first place. This is the current PSW as it
existed upon entry to the ABEND SVC routine. It
should be subdivided as shown in Figure 24.

SYSTEM MASK
PROTECTION KEY

AMWP bits
INTERRUPTION CODE

v R

FF05000D \890046C2,

A A

‘ INSTRUCTION ADDRESS
, PROGRAM MASK
INSTR. LENGTE CODE & CONDITION CODE

bits 32 and 33 " bits 34 and 35

00 - not available 00 -0

01 - 2 bytes 01 -1)

10 - 4 bytes 10 -2 '

11 - 6 bytes 11 -3 '
Figure 24

-37-

The two fields that are meaningful in our search for the
last instruction executed is the Instruction Address and
Instruction Length Code. The Instruction Address field
contains the address of the next instruction that would be
executed by the CPU., Make sure this address is within
the program boundaries calculated earlier in Step 1. If it
isn't, you're on the wrong track. Assuming the contents
of the Instruction Address field points within the problem
program, the next step is to decrease this address by the
size of the last instruction executed. This value is kept in

‘the Instruction Length Code and Condition Code field.

The left two bits of this four bit field indicates the length

of the last instruction performed. In Figure 24, the last
instruction length is 2 bytes, subtract this value hexadecimally
from the Instruction Address field and the result (0046C0),
points to the last instruction performed prior to ABEND.

3. Additional PSW Information

It is convenient at this time to talk about some of the
other fields in this PSW., The AMWP bits are helpful
in quickly distinguishing what mode the system was
operating in when ABEND was issued. If the P bit is
on, ABEND was issued as the result of something that
occurred while the CPU was operating in the problem
state. If the P bit is off, ABEND was issued as the
result of a malfunction while the CPU was operating in
the supervisor state. The Interruption Code field for
an "old PSW" normally varies depending on the type

of interrupt that occurs. For instance, this field in the
I/0 old PSW, after an I/O interruption, contains the

hexadecimal address of the device that caused the interrupt;

this field in the PROGRAM old PSW, after a program
interrupt, contains the program exception code of 1 to 15;
this field in the SVC old PSW, after an SVC interruption,
contains the hexadecimal equivalent to the SVC code.
This field in the "PSW upon entry to ABEND" will always

contain 000D. This fact could cause problems and will
be expanded on in a later section.

The RESUME PSW field, in the RB associated with the
program that issued the ABEND, will also contain the

information as was indicated in the PSW printout at the top

of the dump.

-38-

\J

User Debugging Steps

‘What steps should one take in debugging a user

created problem? This question can best be
answered by stepping through a typical problem.
Assume for this example that the completion code

is a system code 0C6. The following steps should_
be taken. .

a.

b.

c.i

e.

Determine, using the IBM Messages and
Completions manual C28-6808 or the list

in Appendix A, what type of error occurred.
In this example, the error is a program
specification.

The next step is to evaluate the instruction
address field of the "PSW UPON ENTRY TO
ABEND". Using this address in conjunction
with the Active RB Queue, deterniine if the
program check was within the boundaries of
the user program.

Assuming the problem is within the user

program,: the next step is to pinpoint the instruction
that failed. This is accomplished by evaluating the
Instruction Length Code and Instruction Address
fields in the "PSW UPON ENTRY TO ABEND",

This procedure was explained earlier.

Now, using the instruction address calculated in

¢, one should find in the hex dump the instruction

that failed and determine its function., At this
point the procedure will vary depending on what
source language the program was written in.

- If the source program was written in Assembler

Language, it is a simple matter to evaluate the
instruction and determine, using the Principles
of Operation Manual A22-6821, what could cause
this type of programming error.

If the source program was written in a higher
level language one must evaluate the instructions
prior to and after the failure to determine what
function they arc performing and tie this back to
the source program.

-39-

2 K

[——

System Problem

As was indicated earlier, a system completion code doeé not

- mean that the user is free from fault. Careful evaluation

of the completion code explanations and Active RB Queue is
necessary to pinpoint the problem area. It is difficult to
set up a precise sequence one should follow when debugging

a system problem. The following are a few procedures
one might consider.

1. Common Errors

Some of the more common errors evolve out of
improper use of the job control language. When

this occurs the Active RB Queue will contain an RB
with a meaningful module name. This module name,
indicated in the NM field of the RB, allows the user

to refer to the Job Management PLM, Z28-6613, and
determine what function this module performs. The
primary step one must perform on system problems
is to tie the problem back to a module and refer to the
.PLM's to determine its function.

Another factor to consider, when determining

“whether the problem is in a user program, is that
the access routines are branched to. They, therefore,
operate under the users RB. If one finds a high address
in the instruction address field of the "PSW UPON
ENTRY TO ABEND", evaluate the Lioad List to determine
if the failure occurred within one of the loaded access
routines, If the problem is within an access routine,
refer to the proper PLM to determine the routine's
function,

2. System Blocks

How does one find the system' blocks not formatted by
the ABDUMP? Listed below are the meaningful system
blocks .With an explanation of how to find and use them.

‘a. Communication Vector Table - (CVT)

The Communication Vector Table provides the

means for nonresident routines to refer to information
in the nucleus. The address of the first location of
the CVT is placed in main storage location 16
(decimal) or 10 (hexadecimal). One should refer

to the Introduction to Control Program Logic manual
for the contents of this table. This table is useful

in finding the Unit Control Blocks (UCB) for system
data sets.

=40~

Task I/O Table (TIOT)

The Task I/O Table is constructed by job

- ‘management and resides in the higher portion

of the dynamic area of main storage during

step execution. It provides the I/O support
routines (OPEN, CLOSE, EOV) with pointers

to the Job File Control Blocks (JFCB) and Unit
Control Blocks (UCB). The JFCB, which resides

~on disk, contains information specified in the

DD card for a specific data set. The UCB's, one -
of which is created for each device specified at
system generation time, describes the device

or devices allocated to a specific data set by

- the job scheduler. The TIOT would therefore

contain the following information about each

‘data set described for a particular job step:

* disposition and label status

* ddname of the data set o

* relative pointer to the JF'CB on a
DASD device -

* main storage pointer to the UCB's

. allocated to this data set.

"A pointer to the TIOT may be found in the

fourth word of the TCB.

MSS.Boundary Box

The Main Storage Supervisor's (MSS) Boundary
Box is a table of three addresses. It is pointed
to by the MSS field in the TCB. The first address

‘in the boundary box points to the first Free Queue
‘Element (FQE) of what could be a chain of FQE's

which describe the free core within the system at
any given time. ‘Each FQE describes a block of
contiguous free core of which it is the first 8 bytes
as shown in Figure 25.

-41 -

‘

2 4

MSS Boundary Box

N 1st FQE

N 1st User Core

T Last Addr. +1

v

Allocated Core

LLLL ///

| Next FQE

of bytes (X)

e————— 8 bytes

-
{

Figure 25

=42 -

7

(O3 ¢

) X.bytes
rfree

:core

»

The first 4 bytes of an FQE contains either;

a pointer to the next FQIS or contains zeros

if it's the last FQL on the chain., FQE's are
chained from the top of core (high addresses)
toward the nucleus. The Main Storage Supervisor
allocates user ccre requests starting at the

top of core and running the FQE's til the request
can be satisfied. The second 4 bytes specifies
the number of free bytes available in this contiguous
block of core. This count is in hexadecimal and
includes the FQE size.

The second word in the boundary box points to

the first available address outside the nucleus.
The third word points to the last address in
core plus one. All three of these pointers are
calculated and initialized by the Nucleus
Initialization Program (NIP) at IPL time.

It is important to note that ABDUMP does not
dump free core. One can calculate the free core
at the time of the dump by scanning the core
addresses-at the left of the dump listing and
noting the number of bytes skipped when non-
contiguous addresses are listed.

Data Extent Block (DEB)

The DEB contains an extension of the information
in the DCB. Each DEB is associated with a DCB,
and is created at OPEN time. There is a pointer
(word 3) in the TCB that points to the first DEB
on the chain of DEB's associated with the current
job step. If there is a DEB on this chain, then the
data set associated with this DEB has been OPENed.
The DEB is the key block with which the user can
find all the control blocks associated with a
particular data set. Figure 26 shows the control
block structure and the pointers indicating their
relationship used by data management.

-43-

N

DECB

10B =
, D
!
i 'DCB o
W/
: /i\ J
W / :
QCW . DEB Unprotected
list J_ Storage
~~~~~~~~~~~~~~~~~ \;/ W Sl v S . Gt S Aot SR S G S B GRS map S > S G S S W G
i Protected
¢ UCB Storage
Figure 26

‘Input'/ Output Block (IOB).

The IOB is the communication between a routine ' .
that requests an I/O operation and the I/0 W
supervisor. All the information required by the

I/0 supervisor to execute an I/0O operation is

contained in an IOB or is pointed to by the IOB.

When an EXCP macro is issued by an access

routine Register 1 contains a pointer to the IOB.

This is an important fact to remember when

evaluating the trace table. From the IOB, one

cannot only find the other control blocks but also

locate the list of channel commands (CCW's)

performed or to be performed on a particular

device. '

|

<44 .




v 7

o

Data Extent Control Blocks (DECRB)

The DECB is created by the expansion of a READ
or WRITE system macro. It is the communication
link between the user and the access method. The
access method in turn notifies the user of an
completed I/O event by POSTing the Event Control
Block contained in the DECB. This block provides
synchronism between the user and the asynchronous
1/0 operation.

Unit Control Block (UCB)

There is a UCB for each device attached to the
system. It describes the characteristics of the
device to the I/O supervisor. The UCB is the only
location where the user can obtain all the sense bytes
passed back from the last sense command to a
particular device.

Flach of these blocks are further defined in the Introduction
to Control Program Logic Manual Z28-66005.

45



. ‘ IV$ SAVE AREA

To understand the save area trace and its associated messages,
one must understand what responsibilities the user has and what
functions the control program performs when different linkages
take place within a program,

A,

Word 2
Word 3

Words
6to 18

Save Area 1

§

e

Save Area Chaining

The following examples illustrate the chaining of save areas
when different linkages are used, and relate the chaining
sequence to the concept of control levels. Each example
concentrates on (1) the use of words two and three of a save
area, (2) the contents of Register 13 at the point of linkage,

‘and (3) the responsibility of programs to provide save areas.

Pointers to save areas in higher control level programs are
shown as solid lines and called the back chain; pointers to
save areas in lower control level programs are optional,
are shown as dotted lines; and are called the forward chain.

EXAMPLE:1: The job stream contains an EXEC statement
for moduie ALPHA., ALPHA consists of Program A and
Program B, which was included in the module as a result
of a CALL macro-instruction. Program B contains a LINK
macro-instruction to Program C.

EXAMPLE 1

Program A l Program B Program C

| CalltoB | Link to C l =

Nl
0000 \ ket — |

TArea 1 T Area 2 /T MArea 3 |

[
[

PArea ? .

N\

"Area3 47| |TArea4 -’ | Unused

Registers
saved by

|
| I
;Reqlster.a Registers | 'Unused
~ saved by 72 -~
|
j

|
Z~saved by 7 ‘ - _'?"
[= 7o ]
¥ L
|

Y.

\(*

L
T
i

[

BN I

* !
|

Save Area 2 Save Area 3 Save Area 4

Area Pro-

vided by: Contr. Pgm.! Program A

Area
Used by:

1 |
1 i | |
Program A | Program B ‘l Program C | Unused
" |
| |

' Progr;am'B

~48-




In this example, Program A is considered to be at the
highest control level and Program C at the lowest. When
Program A receives control, word 2 of save area 1, which
is provided by the control program, contains zeros, and

“Register 13 points to this save area.

It is Program A's responsibility to:

* save registers in save Area 1
* place the current register 13 into its
own save Area 2, Word 2
¥ place the address of Save Area 2 into

register 13 and word 3 of save area 1.

This procedure insures that at the time of each linkage from

Program A, register 13 points to the save area of the higher

control level program. A similar procedure is necessary
upon entry to Program B. Since Program C does not either
contain a linkage to a lower control level or issue a system

macro instruction, save area 4 is not required. (Program C
need only save register 13 until the return linkage.) The save

area is shown here for generality, since Program C might
require the area during another execution.

Example 2A and 2B:

Program A receives control from a higher level program and
issues a LINK macro-instruction to Program B, which in turn

issues an XCTL macro-instruction to Program C. Finally,

Program C calls Program D. The major consideration here
is the use of save area 2 by both Program B (before the XCTL

macro-instruction Example 2A) and Program C (after the
XCTL macro-instruction, Example 2B).

-47-




{9

EXAMPLE 2A
. N ’\\ S ——— e
) It

Word 2 tPrior Area

Word 3 tArea s -
Registers

Words 6-18 Saved by A
Save Area 1

Area Higher

provided Level

by: Prog.

Area used

by: - Program A

EXAMPLE 2B

o~ ——— e e

Word 2
Word 3

Words 6-18

Area
provided
by:

Area used
by

NN

- +

Program A

Link to B
-

“Area 1
iArea 3 i
Registers |
Saved by B

-~

Save Area 2

Program A

Program A

LINK to B

TPrior Area

FArea R T

Registers
Saved by A

Save Area 1

Higher
Level
Progq.

Program A

6.

Registers
Saved by C

Save Area 2

Program A

Program C

,,l

Prdgram B

—
-

XCTL to C

~

Save Area 3

Program B

Program C

CALL to D

——n

T Aread
~ Unused

Registers
Saved by D

Save Area 3

Program C

Program D -

., SR P D S e S e~ Al W e

b

B



‘B.

"~ Save Area Trace

This heading identifies the next lines as a trace of the save

“areas for the program being terminated, Each save area is

presented in the dump in three or four lines as shown in

Figure 27. The first line gives information about the linkage
that last used the save area. This line will not appear when
the request block for the linkage cannot be found. The second
line gives the contents of words O through 5 of the save area.
The third and fourth lines give the contents of words 6 through
18 of the save area; these words are the contents of Registers 0
through 12. ‘

SAVE AREA TRACE

PROGA WAS ENTERED

SA  O0003FFB8 WD1 00002449 HSA 00000000 LSA 00033D04

RET 00003180 EP 400330D0O 00 00000030 01 0003FF1C
- 02 0000006C 03 00002449 04 00005318 05 0003Fr4C

06 00003130 07 00000000 08  0000003C 09  4003A41A

10  0003FFOC 11 0003FF4C 12 00002448

SA  00033D04 WDl 48D0AC04  HSA O0003FFB8 LSA B5AD02014

RET 5003400E EP 00000000 © 00 19544078 01 00033D90

02 0003EDBA 03  00033DCC 04  C807DAS6 05  OO003EDAY

06  0003FCCO 07 00000008 08  OOO3EDA8 09 00034CA8

10  00033D90 11 00000000 12 40033CD6

INTERRUPT AT C34CAA

PROCEEDING BACK VIA REG 13

SA  00033D04 WD1 48D0A004 = HSA O0003FFB8  LSA 5HAD02014

RET 5003400E EP 00000000 00 19544078 01 . 00033D90

02 OO03EDBA 03 00033DCC 04  CB8OTDAS6 05  OOO3EDAY

06  0003FrCCO 07 00000008 08 0003EDA8 09 00034CA38

10 00033D90 11 00000000 12 40033CD6

Figure 27
49




i °

- To provide o forward (dezcending) save area trace, the
B
Rt ameonao Wigure 27,

wweas ave presented in the dump in the following order:

*® The save area pointed o in the TCBFSA field (W
of the task control block, This save area is
the first one for the problem program; it was
set up by the supervisor when the job step
was initiated. :

* i the third word of the first save area was
filled by the problem program, then the second
save area in the dump is that of the next lower
level program of the task, However, if the third.:
word of the first area points to a location whose
second word does not point back to the first area,
the message INCORRECT BACK CHAIN appears
in the dump. 7This message is followed by the
contents of the possible second save area,

* The third, fourth, etc., save areas are then
presented in the dump, if the third word was
{illed in each higher save area and the second
ward of each lower save area points to the next
higher save area. This process is continued
until the end of the chain is reached (the third
word in 2 save area contains zeros) or the message
INCORRECT BACK CHAIN appears.

Following the forward trace, the line INTERRUPT AT hhhhhh

appears, followed by the line PROCEEDING BACK VIA REG 13,

Next, the save area in the lowest level program is presented,

followed by the save area in the next higher level. The lowest

save area is assumed to be the save area pointed to by the

contents of Register 13. These two save areas appear in the

dump only i the contents of Register 13 point to a full word

boundary and are not zero. ‘

‘ ) IS Y3} \[ | SVRT AN RV & ”A l‘l‘ AN :‘\‘.l.“

ceecceee WAS ENTERED
The 8-character name of the program that stored

registar contents in the save area. This name is
obtained from the request block,

«50-

o 4




VIA LINK (CALL) ddddd

Either the LINK or CALL appears., The word
LINK or CALL indicates whether a 1INK or
CALL macro-instruction was used to give control
to the next lower level program. The 5-digit
number is the ID operand, if it was specified, of
the LINK or CALL macro-instruction.

AT EP ceccece . . .

The string of up to 70 characters is the entry
point of the identifier. This identifier appears in
the dump only if it was specified'in the SAVE
macro-instruction that used the save area being
presented. ’

SA hhhhbhhh

The 8-digit address of the save area being presented.
WD 1 hhhhhhhh

The 8 m.fjiqi.it representation of the contents of the

first word of the save area. (Use of this word

is optional).

HSA hhhhhhhh

The 8-digit representation of the contents of the
second word of the save area; this word contains the
address of the save area in the next higher level
program, In the first save ares, this word contains
zeves, lnoall other save areas, this word is required

Lov

L3A hhhhhhhl

The 8-digit representation of the contents of the
third werd of the save area; this word optionally
contains the address of the save area in the called
(lower level) program (register 13 contents).

RET hhhhhhhh
The 8~digit representation of the contents of the

fourth word of the save area; this word optionally
contains the return address (register 14 contents).

-0l-




2.

EP hhhnhhhh

‘The 8-digit representation of the contents of

the fifth word of the save area; this word
optionally contains the address of the entry point
to the called program (register 15 contents).

00 hbhhhhhh Ol hhhhhhbh . . . 12 hhhhhhhh

These 8-digit numbers are the contents of
registers 0 through 12 for the program containing
the save area immediately after the linkage.

SAVE AREA TRACE MESSAGES

INCORRECT BACK CHAIN

This message indicates that the following three
lines in the dump may not be a save area.

INTERRUPT AT hhhhhh

The 6~digit address of the next instruction to
be executed in the problem program. It is
obtained from the resume program status word
of the last program request block (PRB) or
loaded program request block (LPRB) in the
active request block queue.

PROCEEDING BACK VIA REG 13

This heading indicates that the next two save areas
in the abnormal termination dump are (1) the save
area in the lowest level program, followed by (2)
the save area in the next higher level. If register
13 contains zeros, these two save areas do not
appear in the dump.

59




TRACE

The tracing routine is an Operating System/360 optional feature
which you can use as a debugginq and maintenance aid. The
tracing routine stores, in a table, information pertammg to the
following conditions:

* SIO instruction execution.
* SVC interruption.
* -1/0 interruption.

You ¢an include the tracing routine and its table in the control
program auring the system generation process. This is done
using the TRACE option in the SUPRVSOR macro-instruction.
The format of this option requires you to supply the numbher of
entries in the table. Each table entry can contain information
relating to one of the traced conditions. When the last entry in
the table is filled, the next entry will overlay the first,

A. Table Entry Formats

Table entry formats a're in Figure 28.

o




‘IO Instruction

023 13 21 310 31 |0 31 |0 31
t so Device Channel Channel Status Word
{ Address | Address Word  (Meaningful only when bits
! 2-3=01)]
s
\-'—SIO Condition Code
1/0 Interruption
0 13 16 19 3110 31| 0 3110 31
1 0000 Channel Status Word
[ . J/
1/0 Old PSW
SVC Interruption "
0 13 _ 16 19 3110 310 31 |0 31
1 0001 Contents of Contents of
. Register 0 Register 1
p - e e - J '
SVC Old PSW
Figure 28
-54-

o e e T



C.

Location of the Tabole

The addresses of the last entry made in the table, the
beginning of the table, and the end oi the table are contained
in a 12-byte field. The address of this field is contained in
the full word stariing at locétion decimal 20 (hex 14). The
format of the field is as follows:

31 1! 0 : 31

31

Address of the
Last Entry Table Beginning

Address of the

Address of the
Table End .

The tracing routine is bypassed during the abnormal
termination procedures.

Trace Examples and Explanation

1.,

SIO entry - A typical SIO entry is shown in Figure 29.
This entry can be distinguished from an I/O interruption
and SVC interruption entry by checking the fourth hex
digit. If this digit is a zero then the trace entry is an
SIO. One would use the channel address word to locate
the channel command words (CCW) which reflect the
operation initiated by the Start I/O instruction. The
Channel Status word entry is meaningful only if the
condition code, set by the SIO instruction, is 1. This
condition code is reflected in the first hex byte, bits

2 and 3 of the first word printed. The unit address
reflects the device which the I/0O operation was initiated.

00000190,  \00000F98, 00000000 04000000,

L CAW \———CSW

UNIT ADDRESS

. CONDITION CODE

Figure 29

“55m




I/0 Interruption Entry - A typical I/O interrupt entry
is shown in Figure 30. By checking of the fourth hex
digit one may distinguish between an SIO and I/0

- Interrupt entry. However, to distinguish between an

I/0 Interrupt entry and SVC entry, a further check of
the fifth hex digit is necessary. If the fifth hex digit

is zero, then the trace entry is an I/0 interrupt. If
the fifth hex digit is one, the entry is an SVC interrupt.
By evaluating the I/O old PSW a number of facts can
be determined. For example, the interrupt code field
(hex digits 5 - 8) contains the address of the device
that caused the interrupt, the AMWP Dbits (hex digit 4)
indicates whether the interruption occurred in problem
state or supervisor state; and the instructions address
indicates where the interruption occurred. The CSW
provides the user with unit and channel status about the
device 'and channel that caused the interrupt. The first
four hex digits of the second word indicates unit status
and channel status respectively.

FF060190  0000320A .  OOLF708

N

0C000000

24

I/0 old PSW 3 C3SW

Figure 30

In Figure 30 the unit status indicates a channel end and
device end. No channel status bits were on. This

status denotes a successful I/O operation. The Principle
of Operations manual should be referred to for further
éxplanation of the channel and unit status fields. Upon
determihing that an entry is a successful I/O operation,
the first'word of the CSW may be checked to determine
what commands have just been completed. The address
in this word reflects the last CCW address plus eight.

In Figure 30 the last command to be performed is located .

at 1F700,

-56-




3.

4.

SVC Interruption Entry - A typical SVC interrupt entry
is shown in Figure 31. The first two bytes contain the
SVC old PSW. The last two bytes of the entry reflect
the contents of Register O and Register 1 at the time the

. SVC interrupt occurred. These registers are parameter

passing registers used by many system macros. Most
system macros degenerate into unique SVC interrupts.
Appendix A lists the system macros and their associated
SVC numbers. The interrupt code field (hex digits 6 - 8
of the first word) contains the hexadecimal value of this
SVC number.

In Figure 31 an SVC O or the EXCP macro was issued.
Additional checking of the SVC old PSW will reflect what
mode, problem or supervisor, and where the SVC
instruction was issued. Also note that in the case of an
EXCP macro, Register 1 reflects the address of the IOB
for this I/0 operatlon By knowing the IOB location, one
can find all the associated data management control blocks
for this operation.

A :
\ FF041000 70031E6 , | O00000FT, 0001F'77C ,
_ v Y4

v

SVC old PSW - Register O Register 1

)

Figure 31

There is one case where the:SVC entry may be misleading.
This occurs when a program interruption causes the
ABDUMP. 1In this case, an SVC 13 is placed in the trace
table'that gives all indications that the users program
issued the ABEND macro. Actually the system issued the
ABEND using the PSW as it existed when the program
interruption occurred.

What is the recommended method of using the trace table?

The trace should be used to further pinpoint system and
user problems. A suggested procedure is to:

a. find the last entry made in the trace table.

b. back up from that entry to the last SVC entry
‘made indicating the problem state.

-57-




c.

,

~ tle this entry back to some function performed

in the user's program.

work forward in the trace table from this problem |
state entry and try to determine what functions took

place between this entry and the last entry prior to
ABEND,

-58~




DASD DATA SETS

. This section will discuss the availability and location of information
about DASD data sets that would be of interest to the installation

programmers.

The items to be éovered are broken down into the following groups:

*

The Volume Table of Contents -- VTOC
* Data Set Control Block -- DSCB
¥ PartitionedData Set Directory Entry

A, , The Volume Table of Contents (VTOC) Evaluation

Prior to evaluating the wcontent's of the VTOC one should under-
stand the functions performed by the direct access device space
management (DADSM) routines.

1y

DADSM

Direct-access device space management (DADSM)
consists of routines that allocate space to data sets on
direct-access volumes. DADSM perforins this function
by maintaining the volume table of contents (VTOC), itself
a data set that is included in every direct-access volume
by the volume initialization utility program (DADSI). A
VTOC contains a data set control block (DSCB) for each
data set on the volume and for all unused space on the
volume.

DADSM routines update VI'OCs by creating DSCBs for
new:data sets and deleting the DSCBs of data sets purged
from storage. When a data set is created or an existing
data set is enlarged, DADSM finds unused space by
searching the appropriate DSCB in the VTOC, allocating
the space to the extent of the data set, and removing it from
available space. When DADSM deletes a data set, it al so
removes the DSCB of the data set from the VTOC; and the
extent of the data set identified in the DSCB is again
available for future allocation. DADSM can also return
unused space at the end of a data set extent to available
spaJce by updating the DSCB of the data set.

,. Addltlonal information concerning DADSM can be found in

IBM System 360 O/S Direct Access Device Space Manage-
ment PLM - Form #228-6607.

-50-




VTOC Listing and Description

The ﬁrst step in checking the status of a DASD data
set requires the execution of the IEHLIST program
which will print the contents of the VTOC.

- The VTOC is a data set that contains a DSCB for every

data set and for all available space on the Direct Access
volume. The VTOC data set is always a single contiguous

area. Its size and location are determined when the volume ..

is initialized by the VTOCD control card in the DASDI
input stream. On a Primary Systems pack, the VTOC
can be located anywhere following the IPL records and

~volume label. On other than Primary Systems packs,

the VTOC can be anywhere followmg the volume label.
The starting address of the VTOC is recorded in the
standard volume label.

The characteristics of the VTOC data set, following:

volume initialization, are as follows:

a. The initial volume labely'contains the absolute
track address of the VTOC data set.

b. | ’I‘he VTOC contains two DSCB'

1.  The first is a Forf,nat 4 DSCB which describes’
the VTOC data set: This DSCB is always the
first block of the VTOC. .

2o The second DSCB, a Format 5, describes

o the space on the vdlume not occupied by data
sets. This is located immediately after the
Format 4 DSCB of the VTOC.

I
c. Every DSCB in the VTOC is 140 bytes in length

(44 byte key and 96 byte data portion). Unoccupied

space in the VTOC contains all zeros (Format O

DSCB’S)

d. AuDSCB, Format 1, is created as a result of a DD
card specifying a data set name and including a
space parameter. The information from the DD

card statement is included in the DSCB for investigation

and use by the DADSM routines.

I

-60-

ey e Ao A et



3. Formated VTOC

.~ A sample formated VTOC of a volume with serial
- number 111111 is shown in Figure 32. For reference
~ purposes, the information about the data set SYS1. LIN'KLIB
- will be investigated, The following items are found:

a.

C..

g.

Created - This is the date that the data set was
created. The date being picked up from the set date
command given by the operator during the IPL
operation.

Purge - This is the date that the data set may be
purged. This date is entered when the data set

is created by a parameter of the DD card.

File Type - This item specifys the type of data
set orgamzatlon '

Extents - A data set may have up to 16 extents.

The extents containithe physical location of the data
set on disk. Three extents can be contained in the
Format 1 DSCB. If more are needed, a Format 3
DSCB which can contain up to 13 extents, is chained
to a Format 1 DSCB to account for the 16 possible
extents. 4

File Serial - This is the serial number of the data
set contained in the DSCB.

I
Volume Sequence Numbver - If the data set requires
multiple volumes, this is the method of keeping

track of the order of volumes.

Security - None at thls time.,

Figure 32 is the formated IEHLIST of the VTOC. An example
- of a dumped VTOC will be covered later in this chapter.

-61-~




5 %
CONTENTS GF VTOC CN VGL 111111 :
: DATA SET NAME ‘" CREATED punce . FILE TvypL
... SYSCTLG e ke et e e 4 2t 2t e mmrrn s im0 000 35099 NOT DEFINCD
L SYSLeSVeLEe e T TTTT07066 . 35099 PARTIONFD
SYS1.SYSUCBCE , 36917 °6917 NOY DEFINED
SYSLoLINKLIE ' ' . 07066 35099  PARTIONED
SYSl.PROCLIE : 3 07066 35099 PARTIONED
SYS1.NUCLEUS - g 08866 34598 PARTIONED
SYSYoSCRTLIE 07056 _ 35099 __ PARTIONED
_SYsi.COBLIB T T T 07066 35099, PARTIONED
TSYS1.FORTLIE T 07066 35099 PARTIONED
SYS1.0LOCKL I8 o N 36099 35099 PARTIONED
SYS1.08J : . 35599 . 35599 PART IONED
FeASSEMBLR.FASTERLTESTCASE 00166 35099 SEQUENT IAL
FoMACROGEN.MASTERLPATCHES -~~~ 00166 35099 ___ SEQUENTIAL
”7‘svs¢.Lccaec 35599735599 T 'SEQUENTIAL |
" F.MACROGEN. MASTER.UIBRARY ~ ) 7700166735099 " PARTIGNED
. FoASSEMBLRMASTER.PATCHES | ; 00166 35099 SEQUENTIAL
FoASSEMELR4MASTERLLIBRARY ‘ 00166 35099 ., PARTIONED.

THERE ARE C067 EMPTY CYLINDERS PLUS 0012 EMPTY TRACKS ON THIS VOLUME
.. THERE_ARE (141 BLANK DSCBS_IN THE VTOC ON THIS VCLUME

‘asmrew .ﬁ-...-':..u.l&m.‘..'..- “ o

EXTENTS FILE SERIAL VOL. SFQ. SECURITY

SYSCTLG (cont. ) ~0000L 111111 _ . 00000 . NO e e
SYSL.SVCLIB (cont,)  ..0000L " "7111111° " ""Too000 T ng e
SYS1.SYSJQBQE (cont. ). . 00001 1111ty U7 700009 NO T T T
'SYSl. LINKLIB (cont,) 00001 111111~ 00000 NO : |
SYSl. PROCLIB (cont.) + 00001 111111 . 00009 NO
SYSI.NUCLEUS (cont, ) OQOO]: , 111111 000004 NO
SYSI. COBLIB (cont) 8388{ ool ggggg.-_.-. B
Seal ggggkﬁgc(mg) 00001 "7 111111 7T 00000 NO) -
5YS, OBJ (cont. ) - 00001 111111 ' ooooo!  NO
- | 700001 111111 000060 NO
00001 111111 00000 ND
o ..0000L 111111 00000 _ .  NO.
00001 "1 T T 7 o000 T Tn T T e
00001 111011 B o127 Yoo R Y«
: 00001 111111 00000 ~ NO '
/ . 00001 404 L 00000 - NO
) o : o
! ' Figure 32 '
. f {
) | -62- :




4,

|

The Data Set Control Block (DSCB)

' For each data set on a direct-access volume, there

must be a corresponding data set control block (DSCB)

" in the VTOC of that volume. A DSCB, which describes
' the atf,;rlbutes and extents of a data set, consists of up
- to three physical blocks chained together to form one

logical record (DSCB) in a VTOC. Each block is 140

" Dbytes long (a 44-byte key and a 96-byte data portion),

and contains information used by data management to

control access to a data set. If a data set resides on more

than one volume, there must be a DSCB for the data set
in each VTOC.

DSCBs consist of blocks of which there are seven formats:

“A format 1 block can identify any data set, except
for the VIOC, on direct-access storage. Within

its structure, it can identify up to three noncontiguous

nareas of a data set extent. Additional format 2 or
format 3 blocks can be chained to a format 1 block
to constitute one DSCB

,\

A format 2 block descrlbes an indexed sequential

“data set. A format 2 block, if used must be chained

ito a format 1 block B

V

:A format 3 block describes multiple extents of a data
:set if more than three noncontiguous areas are allocated.
A format 3 block, if used must be chained to a format 1
sor format 2 block. A:maximum of 13 non-contiguous

areas may be described by a format 3 block.

!

A format 4 block describes the extent of the VTOC.
It always appears first in any VTOC, One format 4
» block constitutes one DSCB and can not be chained

to other blocks.

+ A format 5 block desoribes up to 26 noncontiguous

. areas that are available for allocation on a volume.

. Each area is indicated in a separate "extent entry"

in the block. Format!5 blocks can be chained together.
' if the volume contains more than 26 available areas.

o
!

-63-




r

A format 6 block describes up to 26 split-cylinder
data set extents. This block has the same format
as the format 5 block, but describes extents shared
by more than one data set. Each area of an extent
is identified in a separate "extent entry" in the
block.

A format O block is available space in the VTOC.
‘The block contains all zeros, and can be imagined -
as a "hole". When a data set is deleted from a
volume, a format O block is written over the DSCB
of the data set. '

Except on basic operating system volumes and on volumes
© containing split cylinder data sets, the total number of
tracks accounted for in all DSCBs of a VTOC, at any time,

is the total number of tracks on the volume. The unused

tracks are identified in the format 5 DSCB, and used
tracks:are identified in blocks of format 1, 8, and 4 of
- data set DSCBs. - \
B

When é; data set is created, the ALLOCATE routine finds
space on the volume by searching the format 6 DSCB. A
new DSCB is created for the new data set and is placed in
the VTOC in the first available hole (format O block).
When a data set is deleted, its format 1, format 2, and
format 3 blocks are replaced by format O blocks (holes),
and the extent used by the data set is returned to available
- space (i.e., added back into the format 5 DSCB). '

The DSCB of one data set consists of one, twa, or three
‘blocks, depending on the access method used to process
the dath set, and on the number of noncontiguous areas.
in the data set's extent. The blocks are chained together
in the VTOC in the following sequences:!
q |
a. A format 1 block alone for a data'set with an
extent of not more than three noncontiguous areas.
C - T
b. A format 3 block chained to a format 1 block for a
data set with more than:three noncontiguous areas.
, ) X

c. A format 2 block chained to a format 1 block for
an indexed sequential data set with an extent of
no more than three noncontiguous areas,

v




d. A format 3 block chained to a format 2 block,
which is chained to a format 1 block, for an
indexed sequential data set with an extent of more
than three noncontiguous areas.

The blocks of one DSCB do not necessarily appear in the VTOC -
as contiguous blocks or in a defined sequence. Except for the
first and second DSCB blocks in a VTOC, new blocks are
placed m the hole nearest the beginning of the VTOC when

. they are created. The rela.txonshlp of two blocks is shown

by chain addresses.

>5.

FTOTT I ey s -

Du,mped VTOC

From the previous section it is seen that the DSCB
contains all the information about data sets., When the
IEHLIST program is run requesting a Dumped VTOC,

the result is the DSCB listed as shown in Figure 33.
We will again look at the data set named SYS1, LINKLIB.
There are a number of items that did not appear in the
formated VTOC. In order to easily decipher the Format 1
DSCB bytes, two templates will be used. These templates
are shown in fiqures 35 tmrough 38,

]

Assume that the charactemstmcs of the SYS1, LINKLIB

. data set listed below are needed.

a.  type of orgamzatlon

b.  number of extents

c.’” location of the first extent
d. .'A‘. record format

e.” block length

f. secondary allocatioﬁ

i i

By.placing the template, Figures 35 and 36, over lines one
and two of the DSCB, the items above can be answered as
follows: ;

a.  Item K--2 bytes--0200--Bits 0000 00 10 0--Q,
1 bit 6 is on--Partitioned Organization.

. -B5-




Item F--1 byte--01 extent

~ —-not found on line 1 or 2

Item L--1 byte--CO Bits '1100 0000 11 - undefined

Item N--2 bytes--0400--1024 bytes

Item S--last 3 bytes of a 4 byte field--OOOOOO-- |
no secondary allocation.

Ttem C does not appear on lines one or two so templaté,
‘Figures 37 and 38, will be used to look at line 3 of the

' DSCB. The first extent location description is Item C --

10 bytes -

- ¢ylinder boundaries.

Pirst byte 81 -~ The extent begins and ends on

(8]

-

"Second byte 00 -« Extent sequence number.

#

Third - Sixth bytes -- OO 14 00 00 lower limit
A . C C H H of extent

$eventh Tenth bytes -~ 00 3B 00 09 upper limit
C CHHOof extent -

=66~




‘I

i’ ' SYHTemd Survun,
ch et - - - . o . - . “rew e . . - - s . W v wm e S Wt e Bmem b e o '
PO - s e e LUI\[LA\I D &Jf VTUL T \(h . L lll B l
‘_ll\t l = bbN‘-\M " - - L3 .‘) . - L] -J.O L ] L ] L ] ‘15 - - L ] .20

Lll\t 2 49 o . . -b() - . o e 26 TR - - X)) . - . -{15 e o o ‘/0 « o o 75
LINE 3 =000 & & o Q0D v & o 1iU « v 2 0i5 « v 4 120 o o o 125 « » . 130
FURMAT 4 UsScic VauaiuhUalaua0404020406040404606040406040y
e e - F40009000204002200L00U0CULLEUUULVULUO0CHU0VALY (2%523.71401021910
. e .. 0000UV000VVOCTLULOLLYCIVGLIUYLCOY000LLVUVUIULOUO000V0000000C00C08
rURNAT b D>Co Un0%020%000100C00YC3FLCO00LUC0L22002A090C
ES00V0CUU0V0COUVULULULULULLIUOUUVUUULLUUUULUULU0ULU0OV0000O0UUU0
OUOCOuduUUJOUOuuuuuuGuuuHuquOQuuOuuUOUOUOUUOUOUUOOOOUOOUOOOOO

bel LCukEC
FlFLrlFAF¢FlCLUUUbUUUUOUuVUUVvULuuuuUUOUUOOOUOUUUOOOUJOOOOOUOO
OJIQOQAIOOUUdLbuOUOLbuUUuuuéquvObdquOOOJOOUUOOOOUOUOOUOOOQOO
SYbl SYSuGBGE: !
FLrl.L-Lrlrirlbuuullkkxlklxtllu CUGUULVOVLUVVIOULLOVOJ0GNOLGOCCLO
JLUrFrLLOUOLOLOODUUJLuUuuuu0UOUVuUOUUOQVUUUUUOOGOOUQOOOOCOUOOO
bYSL.SVLL;d ]
. e FLFLFLIFLIFLFLFLUOCUGEGO0UGZULGLOLOVUIL0U0VO0U0CUV0TUR0000G0C0GOCNH
i QUO&UVIUQUULULUOOLUAbVUUUU«}UOUQUOUUOUUUUOJQOUVOQUUOOOUOOOCOOO
SYSL LLNKLLC
FlFlrLrLrlrlr(ubbutvuuuuoku}oUulObUGUUUUUCOOOOOOOOOOOOOUOOOOOU
F4U309L3000Cui000ULI4CU0OULHLOL0YCOSUO00UGULD0VVUOCOU000GI00000,

SYSCTLG I
e em PLFLFl?;FlFlrLuubb(uuuuoczu HLLULLUUGUDVO00CGU0500LOLOVCO00VGCO0U0L
- - _...:uqu-Oc.awwduluuowumuuw L0009 00VU0VLOGUGO00U00000008000CG00
e e u25 e e BT v e e 235 e e e 440 4 e e e
e e o 200 . . S T S, '9“.’ e o «95 e o o
: S L DSCE ACDR (CCHHR)
Format 4 “Knﬂ;) 0404040409090 000 4040606040404040604040404 04
T JAOVOBEDLOI 1 UL 20ULU0DI0060E000000000CICOCOCH | .

00000000000 LICan0 0009002001

Format Sicoﬁb)m_HMLM,~000000036u«Uav\ruv)u\ooouUOOOLOOOOOOOOOOOOOCGUOG

UOOUUvOLUuULb'“’HUU)OUQQQDUUOOUUUUOOnOCQOCOOOUCO
000003 0CQLCLUCLG LG LND 0009000002

' t. | _
”SYSIJLOGREK:(COQHJJ”~bOOOOOOOOQQQVuM,&CJHUQOOZGOOOOOZOOOCOOOUOOOCOQOO

: 0000000U0LGLULC0 D00 . ... 0009000003 .
—SYS1.SYSIOBRE (cont.)_ 000000CLULT - L UEEO00RO0C0G0G0000000000060680
OOquU\Jvﬂ”Pux [EESIVIVIY! 0009000004 ‘

ont, ‘
—S¥S1. SVCLIB (cont. ). ~000060CUut . ._m:':,.z,.»,:.«,;a;;,»omoooo_ocoooooooooooooocooo__,_

000000GGGLU: EENTOL R VRV . . 0009000005 . . ... ...

. LINKLIB (cont.)
-BY8L LR "'(‘”“""'“"“""oooouc; CUUCLLLL L 00 0040000000000000080000082G0
T 00000COuUNDUN T 0009000006
TLG (cont.) §
-SYSCTLG (eont:) . 0000000 UTOU T o G000000000000600000000000000

EOOOOOQUuQQwVﬁ.‘ SdGo ... eogseovoecor.. L L.




s
@ 1
® 6
{C 2
D 3

- >&§’, 3

o 1

R (c YN

- @D 1-7
O 18

®,

'DATA SET CONTROL BLOCK
FORMAT 1 LINE 1 and 2 L.

Format identifier - Hex F1
Data set serial number
Volume sequence number
Creation date - ydd
where - y = year (0-99)

dd = day (1 - 366)
Expiration date
Number of separate extents

" Number of bytes used in the last PDS directory block

Reserved for future use
System code to 6dentify the programming system
Data set organization
I
Spec;if_ied }Bitsh Settings Meaning

nd By_te - Reserved for future use

Record Format

| _pec;i@ed Blts Settings Meaningw

) ] Reserved for future use
- P8 1 1 Physical sequential organization
DA 2 » 1 Direct organization
T 3-br ‘Reserved for future use
PO - T e § Partitioned organization
U R (N | . Unmovable - the data contains

roo location dependent im‘;ormatlon

o 01‘1.10' Fixed
v - 0-1 % .01 .Variable
U - 0-1 ‘\ 11 Undefined
T 2 .1 Track overflow
B 3 1 ‘Blocked:'may not occur with U
S 4 1 ‘Standard: no truncated blocks or
unfilled tracks are embedded in
the data:set ,
vo5-6 1 10 ASA control character
5.6 ! 01 Machinelcontrol character
. b8! 00 No control character
7 o0 Always zero '
Data Set Name
P ,
: Figure 35 v
: | '
-68- : ~




- Mf\(

FMoOHEDD D

DATA SET CONTROL BLOCK |

FORMAT 1 LINE 1 and 2 R.

I

' Optloh code - same as DCBOPTCD field in DCB -
Block length for fixed length records or maximum block for |

variable or undefined length records
Logical record length

Key length

Relative key position in the data block:
Data set indicators

Bits Settings Meaning

0 - 1 ' This is the last volume on which

this data set normally resides

1 " Reserved for future use

2 1 "~ Block length must always be a
; - multiple of 8 bytes

3-17 ' Reserved for future use

Secondary Allocation
FlI‘ST. Zte - Allocation parametersli .
This Iield indicates the type of request that was issued for
initial allocation and is to be used for subsequent extensions.

Bits Settings Meaning
0-1 . 00 Original request was in tracks relativeé

B ~ to a specific location.- No secondary
allocation will be allowed

0-1 S0 . Original request was in blocks (physical
N ‘ records)
0-1 10 Original request was in tracks
0-1 11 Original request was in cylinders
2-3 | Reserved for future use
4 1: Original request was for a contiguous
L -+ extent _ _
5 1 Original request was for the maximum -
. ’ contiguous extent on the volume
6 . 1 Original request was for the five (or -
less) largest extents that are greater
3 than or equal to a specified minimum -
- : 1 Original request in records was to be

| rounded up to a‘'cylinder boundary
Last Three Bytes - Secondary allocat-ion quantity

The contents of this binary field mdlcate the mimber of blocks,
tracks, or cylinders to be requested’at end of data set when
processing a ?equentlal data set.
Figure 36 "
-69~ : 3

T YRR N VSR G R . s




ER

®®

10

|

DATA SET CONTROL BLOCK
|

FORMAT 1 LINE 3 L.

| '

Last block \Pomter The contents of this field identifies the
last block written in a sequential or partitioned organization
data set. I# is in the format TTRLL

TT is the rélatwe address of the track containing the last block
R is the block number on that track

' LL is the m\imber of bytes remaining on that track following the bloek

It the entire\ field contains binary zeros, the last block pomter does
not apply. \
\

Reserved fo% future use.
First extent description

|
Cl Firstl‘ Byte ~ Data Set extent type indicator

\
Hex :
ode Meaning
0 Following 9 bytes do not indicate any extent.
0 The extent contains the data blocks (user's
blocks)
8

The extent described is sharing one or more
cylinders with one or more data sets

The extent described begins and ends on
cylinder boundaries, i.e., the extent is
composed of one or more cylinders

@® _
pa//fa—-*ﬂcr

C2 Secon Byte - Extent sequence number

C3 Third l- Sixth Bytes - lower limit of this extent (CCHH)
C4 Seventl%x - Tenth Bytes - upper limit of the extent (CCHH)
Second extent hescription - same format as SD1EXT1

t

\\ Figure 37

| -70-




\ DATA SET CONTROL BLOCK
\ FORMAT 1 LINE 3 R.

|

|
|

| .
E 10  Third fextent description - same format as DSIEXT1

E.

5

Pointe* to Format 3 DSC,B if a continuation is needed to
describe this data set. “This pointer has the format CCHHR.
. | : .

DSCB ADD (CCHHR)

| Figure 38

| -T1-




2

Extents

There is a possibility of having a data set composed

of up to (16 separate extents. The Format 1 DSCB

can contpin 3 extents. Further expansion of the data ,
set requjires a Format 3 DSCB to contain the extent
information. The following discussion describes the
Format 3 DSCB and also shows how it is located.

Refer to|Figure 39 and the description of the Format 3
DSCB in|the Introduction to Control Program Logic
Manual Z28-6605 to follow the example given.

The data|set, SYS1,UT3, will be looked at by using

the templates of Figures 37 and 38. It is seen that 3
extents are used in the Format 1 DSCB. There is a
pointer on line 3 of the Format 1 DSCB to 00 05 00 00 OE

(CCH HR). At this location in the VTOC there is a Format |

3 DSCB. | This DSCB contains extents that are part of the
data set, |SYS1.UT3. From the introduction to Control
Program|Logic Manual, it is seen that there are 13 - 10
byte fields that are similar to the extent fields of the

- Format 1| DSCB.

-2




SYS1
20
)14
a7 osvsi

15 Fun
4

k) ‘

12 a8y

5

eSO YS1. UT3.

SYsi.uT3

SYSiSURTLILY

O P R

* Gt e Lo

I
)
d

F1C4D 69c2F0F20000420065420065loouoooooooooodoooucuu
00000E29000C01GN0O0GC0U0OT7000H03CT01L01000C0008000000.08

':;flﬁﬂﬁ‘LQCZFCFlbLULUbGLQDUBClb?LlCCCQQCCOCUJUCUOQUCUL
EAJTLAF TULCLLLULLLY4UICuLUYeudCa iU UuvIudu0IILUUUG
-LCGH&C . .
ELELFLFLeler P luculbnzullen2ClniCleCitiCuebdUiusiucuy
U2i0udouSUutiellCutiuuuiul COLUUULELUUIUUIUUUDU0dUGLULY
«ALCLELS . '
T FLFLEIFIF LR LFICSULGAZaC TR 42CCTHGLCODEGOCSLCuLl0Cou Gy
CUBUBCYOLGUCCTLIGCLL3e CUC SO U0CaTuoUIuVIU0RUYIICITad
Mal 3 UGS TV RO D IRV N R YRR WV VIV L o TR TS de TCI A IV B U
F3GIUTRCOCUC LM uunUlUGLLLauuIULGlSul5utouss iosulvuldy
CCLOULBUCOUSCLUNLULLILUGULUYTUCUCULLEGUSLICULIGUS Lyl

SLTl

BN VI TYEIVEY: UOOUCUGtUGQUOOGUJqouCQCucoocoooonoo0000005000000fOO
Vlu2d0 00009&000&0O9HC£59%000E 0005000004

UUUEUOOUUCUOUOQOJCCOOUOCOZOOCOOOU&QCOOOOOOCOOOOGUOOOOOOAOO“
QUOVVSVBCUGAGEHCICC0CuU0N00GA00 " - 70005000008 o

000LUUGROGO0LCULUCLUOLL040CCEEVCCE2¢002602C000C8C6800G00000
A0000VPUCTOCINUIUGCUOV000IDGC 0005009000C

D000VUCPLGTONVLEICOCI0D0D200LCGCC4CAGE0NA0CO0COC8000Q000400
VO0CIGCYPL0COVLTUSO300ULVIN0QV00 ~ 0005000000 '
UACCLE0EULULEE3RULG105Cun0Cei2G050CC020106CC50G005308500003
06005I0Juo0luactH0iI0Teu50030701030050002865G500008010C0059
VI0FUCH 10002003 10802000C08cCCCL 0C0500000€

.- . e me e mmmnae e e

Figure 39 . /

..'73.- ) » } to \‘\.




B.

“when the
* placed in

Pattitioned Data Set (PDS) Directory Information

The output load module produced by the linkage editor
contains all the information necessary to load and relocate
the module in main storage. When the load module is placed
in the output module library, the name of the module and
control information describing its characteristics are placed
in the library partitioned data set directory. Pertinent
information abput the load module, such as the module
attributes are fised by the Confrol program fetch routine
ogrm is loaded for execution. They are also

e status field of the RB associated with the load
module. It's important, therefore, to be able to locate this
type of information in the PDS directory. :

1, DireLto r Organizations |

The PDS |directory occupies the beginning of the extent
allocated|to the data set on a direct-access device.

The direg¢tory consists of variable-length logical records
arranged|in ascending order according to the binary

value of the member name or alias.

The diregtory reécords are blocked into 256 - byte blocks,.

each containing as many complete entries as will fit in
a maximym of 254 bytes.

- Each/logigal record in a directory block contains a name,
TTR, and count field. It may also contain a user data
field. THe last logical record in the last active directory
block has|a name field of maximum binary value.

2. ~ Dire tory] Contents

The method of investigating a member of a PDS starts
with the execution of the IEHLIST program with a LISTPDS
control card included for the particular data set that
contains the member in question.

The information listed as a result is shown in figure 40.
The contents of the PDS directory entry, Format 1,
canb usj[‘d to answer the following questions:

a. Whalt is the relative location of the member in the
datg set?

b.  How much core storage is required?

c. Is the member name an alias?

a ! v
r -




d. Is the module in overlay structure?
e. What are the System Status Indicator Values?

Using the template, Figure 41, and the member IEABDLOO

shown on Figure 40, the following values are found fcr the
above questions:

The relative TTR is 001907 - Item B
00 00 AO -- Contiguous Core required - Ttem F

Bit 0 of the indicator byte is Zero, . therefore, name
is not alias - Item B

Bit 2 of attribute byte one is zero, therefore,
not overlay structure.- Item E.

00 05 31 36 -~ SSI bytes -- Item J

irectory Size and Number of Entries

he PDS Directory entry provides ready reference
information about a member of PDS.

It may be necessary to expand or contract the size of
PDS. ‘In order to do this you need to know how many
irectory blocks are needed and how many entries can
be contained in one block.

The following method can be used to look at a PDS
as it appears on the DISK.

Using the IERPTPCH program, deline the PDS

as a sequential data set. This will cause the
directory to be printed. Each directory block is
256 bytes long so it is possible by inspection to
check the number of directory blocks that were
specified. The number of entries per block can
also be determined by inspection.

Using the IEBPTPCH program, define the PDS as

a PDS and select any or all members of the data set
for listing.

Refer to SRL C28-6586-1 page 38, for further
information.

f

~75..




»Ms:nﬁzr.»\mw
R FIVIY A N W
iEaANATOL
-»~.¢\.:.‘:Cﬁ
itasiLGC
».n..uuu.:,.w.l.ucr
seRAPLLL
ibAaarAul
,»mls.:.»q...:\.ﬁ
1LAATAOL
teanfi4l?
IcAAlitDs
itnalitc4

oseanTXMuy
T ULAAARGL
IFa8DLO0 (00l9072D 0019090000 0000000260 0000A00CGA0 0C

«t ASEAGL

Lol
TiLLaSel

oA INTLL
TealSICT
tt A ivy
stAlTiul
i w:nw(;...:P
frolLsGe

tibeartoC

inalniSC.

it e e cwteem e e @i o s as

G«F~»- /NS

L S UN
. B

UuliCitau
UL 1HCs0Ca0
w31 C090CLU
Uuls{liCri_

€CS140F 20
LCivcisau
LGliCtz20
Loivieldo

Y VT
KOV iy AP iV

R L XAV

f..-.,.)_.crs;hsﬁn\o

GLILCACULY
Dol LuCly
Oviulall
Cululad ey
U911 L30TCy
LOG1IT Gl
VU110t
V0lclliled
CULLTELLCD
CulslsCCLl
uulamllocouy

RN YRR VI
CuléiiLdb
CCluiily
Cltrelecy
U 161020

LL110%2u
wLl7dule
LuoluGCslu
LeieCizu
Gy .“ ~;..C\.r.
DDS RIRCPAT
[SIVR R TP PPV VAV I LY R ICFE SR Y
Lilulic¢l wulallolid
Culasazi U1 CeCLLG
Celétbz, LiinledLuv

CLialiZio ol

UuinmiiZu
Cuiueall
LLIeL320
Cuistual

U1l LLCCi
vuluuClng
vu i .Pntﬁ\\ﬁcc

SUlPUET LTILLTLES-

r:_:r*h‘rc‘
vuicCLlLCCy CCULICOZLU U .~_JC{~.\Q o
£2021la 000CCHLOCE DCO

-

IR SITLS nou~a c:c o0LEY
.\ﬁ.\.\...\f..w~0 DOJ¢ ucwmu”u
GCLCLQ03 /10 Qul22uL02240
L«.C&..:ONOO LOCO&F??&F
e.n:o:cv\rt&<crﬂm 092
CuLeClO37C QUG43 143

csOhﬁuo\ho CLiZ3AT23A

WILUUGIZou ocomcmcoon
VAAVIH R R J OV [ R G T X
C0IUT03T0 JOQUIADLIA

srcc_ncuume&wx

COOSCO3710 GOC3LUC3CD
ULULCCT370 0CLYnelsDE
JCO0UGL3TS 000! anuliadg
voLOUCU3TC 0CUSrLULZAL

.. o.
—\

CUCULCL260 Uuie 274
CLLDO0028Y 00L27¢u212
TLLLLCS
C( \:C?C»

19 DU HeuL9E_ QU0

nﬁ~r:r_¢~

R e s eee e et e ein eme

COOULSGO0D
OG0oLSUI0N
DI B IIVISIVIS)
0000VLLLTC
50d0000GC0
200000¢C0C0
DGLCHO0ULG)
D0OSLCS6I0
J0JC0LGOCH
GGUONGUI00

GOC
OCCO0J000GC
0GOCATO0UG
OCCO2GI0GL

26006006 LCU
0LOCTGLYOTU

¢6J U0L2ALCG24C GGIDSO0GCO Cu

CDC Q

HGLU01I0130
OLGLOLD150

CAL(\ #.\U\Q
06LUGCON350

Deeola130

CLLOHSNG 547
SC0BD03559
J003¢600551
N0O0329540
0OCIEII0501L

JCoLCeo131
NZ60sN9131
NCGOO0G1€0

Oooor 0550

ULCuniess0
DHLLDLETS
0000450540

CMCC\C\\C QR50LLGGI5 05GCILUD0E0 YCCoCTIS40

~e

LouCelu2ey 00z
CULULLLLTL. SOUT w.vow\
GCGLLLG25U oovvub 353

3066953890

15
15
15
42
15
T4
42
05
91
91

401,536 C oo oooouoc uCoe xocwoo 21
GO00CCY 0GOOVGOL3L 80

3l
32

67
SUGOU3TL_U0T2600240 _G00C6N0CE0O 0CO00 13130 15

COIYLSLLCL CohLCuUSTE 080 6505054 0GC08GI00C OCOCOLRN54T T4
CO0J00DC0 0CH3DC0531 36

42
42
31
56
59

00GOUGN GLEGOGHEE0 40
.40

OGUOLLGOGC UCGI026540 59

GCCacocuohn

AW o Wa Wi

o CUT (CC Y

58C

plsiotslotels]

GUGDGCLU5%0, 26

47

.

.Q;\

Volulesh  UUILLSLUECE

—.\.\-A\‘la\rCNn»L‘ ,-w- ..._l\ N.- S 2y {3

T 2 A A

- Y A

e emae

. e dae

A BT A -XEEI % A

» r \ﬁ:.\}x

troliL T,
1heCurYo
~rcrt1<r
fttnclrYe
teolrvui
Cirtoervalz

tasiueise s
.nrc.rur

‘»PCP SUNN

trulbnlrs

I T PP I

situuiarll

,frmzc.mr

T LC N.._\.; ,

Qlezivel
235720 TuGga T Fugte
cracnw.nnc
O LECLCS

UCr{scccy

L S7o0 el
ﬂ\.{h n\fk«Nw\
A\.\hs UNP\‘

UL Cinely GuuiiBUZed 2056040490 GGOGHIGOT

-~y -l

LELLoGU260 GUIEDLF0400
LCUCCUE2L0 00L22,0221

COLCUGT 70D 0L 231C40C
r.\..\m.“ﬁnm..‘ 4 AT Y 40

I enes . -

LOMrCz2u  wulr TTLCCE LCliudn2o 8024600
\\&é#&¢dﬂﬁ\‘¢Uﬂﬂﬁﬂddduk¢<oc.;ouw cccmumowww ccrc::uooc
Lzl L5200 nCCS CGOLuuuu3s It DIGLTISGOoTE 0500LOC00D
LLelL?20  GGrICuClCo LitOULU3 TG GO0CTTALG YA DT2000T0C0
Luebbudl DueLienCty cgccﬁrcmcm-rmyva 240C .coocooooch
R Vﬁ..\t;!,.umrwkhxﬁ LCLLLCUe NT-K&P%,CC.£@:007CU ;GC0C
Clzivi2L  CbzaLTICCoL CLCLUCOZEL 034350430 5000092069
LoziLiZ QL CILUSS LOLDGTU200 8OCLCCIL00 GTA0UITUECT
LLe3l%luy LU {1LCiC UIACLLLLELT H53THBULZAD JTITRIBLLG
CLe2iuzel ULz QL lTO GLuLILG2¢0 00T 749138 $030200000

o

101 HIsLiTe Lé1vIs)

3 GCO0ULUD00

CD.\.\

QCo020

Wy (VR 28
yGHGUD 590
OCGGES30540
o<nocc<noo
005015530
0CO3C3C500

0GOSTR0S00

SISO ISIVE B IR )
JC0J255%10
OL2GNNDL3)
JCLS000360

GCO0D6N590
snu‘\Cuao
COCOuINNLYE

TC15C1L00U0_LiLLLCCZED ccnmmwc»oc oo\ccoaocc NGGHC10330 15

54
11

Ca

13

JOL

96
54

GO

61
34
35
il

$:3




4 - ’ SR W o o oW
' PARTITIONED DATA SET (PDS)_ DIRECTORYo,cNTR - FORMAT1

o e ——— - —— e == S e ¢ o g—— A - - . a et e e s - . - .

.

(d 'MEMBER NAME | . . (® Second Byte « -
® 2 TTRoftn e first block of the named member - Bit
1 Indicators- ) Bits- Settings Meaning
. Bh E : A 0 1 Module can be processed ort
Bits  Settings Meaning . , ‘ by F level of linkage editor
0 1 Name is an alies ' & 0 0 Module can te processed &y
1-2  (variable) Number of TTR's in the user data, . . " levels of linkace editor
field. A maximum of three isallowed. 1 1 Linkage editor assigned cric
_ 3-1 (varlabie) Length of the user data field in haif . ' ~ of first block of text is zer
o words. o 1 0 Linkage ediior assigred oric
© 3 TTR of the first block of text ) - v . of first block of text is noti z
1 Zeros ' 7 T2 1 . Entry point assigned by link:
® 3 TTR of the Note List'or Scatter/Translation Table. editor is zerc '
Used for modules in scalter load format or overlay , 3. 1 . Module contains no RLD iier
struc-‘"*e only. - 4 1 Module c2nnot te regrocess
1 The number ci entries in the note list for modules ‘ by linkace =¢iiro ’
in overlay stru -urO, otherwise zero. . ’ , o) 1 Module contzains TESTRAN
3 Total contiguous main sleorage recguirement of module ‘ - - _symbo! cards
@ 2 Lengthof she first lock of text 6-7 Reservea for fu-u*e u3e
@ 3 E-“ry point 2ccress associated with member name or X
with alies name if the alizs indicator is on 2 bytes
(D 3 Linkage editor assigned crigin of the first block of text S |
i T - 1 i
@ 2 Attr lougi irst Byt'? Serial ‘I\umae_ E f
Bits Seftincs Meaning TTTTTTTTTTTTTETETT -
0 1 Reenteralhle SM Flag. |
1 1 Reussable ritical Flag
2 1 In overlay structure —Dependency Flag
"3 1 Module to be tested - TESTRAN L—————Product- Tempora:
4 1 Only loadzble : Fix Flag
5 1 Scatter format S Local-Fix Flag
6 1 Executable : 1= rorce Flag
T 1 Module contains no RLD items and only . ' : (Reservec)
T one block of text , v P ' - : ) |
7 0 Module contzins multiple recerds with ' Format of SSI Bytes |

at least one tiock of text . _
Figure 41 . : _ : .

N -
P e 0 e e ¢ — - — — 2 B enanss U sssnaune e AF S*=an AV o P \r ' § N




. w, APPENDIX A :
‘This appendix qontains twa lists: the first is a list of those macro-instructions
whose expansion includes an SVC instruction and the SVC number (decimal) associated
with that instruction; the second is a list of the routines thatperform the services
requested via the SVCs and the program logic manuals (PLMs) in which these routines
are described: : ' ‘
‘ SVC  Hexa- - SVC Hexa-
Macro-Instruction - No. decimal Macro-Instruction No. decimal .
ABEND - 13 0D FEOV 31 1F
‘A'I-‘TA‘CH . 42 2A FIND B 18 12
BLDL | 18 © 12  FREEBUF 57 39
© BSP | 69 45 FREEMAIN 05 08
CATALOG @8 1A GETMAIN ot o
~ CHAP 44 2C IDENTIFY 41 29 -
CHKPT 50 32 °  INDEX 26 1A
GIRB 43 2B LINK 06 06
CLOSE - | 20 14 IOHALT 33 a2l
CLOSE (TYPE=T) ' 23 17 LOAD 08 08
DELETE D9 | 09 '~ LOCATE | 26 1A
DEQ 48 30 OBTAIN | 27 1B
DEVTYPE 24 18 OPEN - 19 13
DETACH 62 SE OPEN (TYPE=J) 22 16
ENQ ) 38 POST 02 02
EOV b] 37 DPURGE 16 10
EXCP 00 00 RELEX 53 35
EXTRACT | .40 28 RENAME 30 1E
8V C Routines
-78-
[




Py &

N

- Appendix A, Page 2

. Macro-Instruction

- RESTART

RESTORE

SCRATCH

SEGLD

SEGWT

SPIE
STAE
STIMER

STOW

47

-70-

SVC  Hexea-

No, decimal Macro-Instruction

55 34 SYNCH

17 11 TIME

29 1D TTIMER

37 25 WAIT

37 25 WAITR

14 OE WTO

60 . 3C WTOR.
2F WTL

21 15 XCTL

SVC  Hexa-
No., decima
12 oC
11 0B
46 2E
01 01
01 01
35 23
35 23
36 24
07 07

SVC Routines




e e , s

& 4

In the following list, 'ROUTINE NAME' indicates the name by which each SVC routine is
referred to in the associated PLM. Two entries in the 'TYPE' field - indicate that at
system generation time, the |user can choose either type for this SVC routine. The first
numper indicated is the dominant one and is tne type assigned unless the second numbér is
explicitly specified.

Use of an SVC numpber that has *#¢' in the °‘ROUTINE NAME'
interruption handler to abnormally terminate the job step. -
nonsupported S§VCs fall into this category.

field ‘causes the SVC
All unassigned and sore

flse of the remaining nonsupported SVC numbers is effectively a no-operation instruc-
tion. An interruption willl occur, but after the SVC interruption handler analyzes the:
- 8vc, it immediately passes CPU control to the SVC exit routine. Nonsupported ox
. unassigned SVC numbers cannot| be assigned to user-written SVC routines.

sve ROUTINE

NUMBER NAME TYPE PLM
00 _ EXCP 1 Input/Output Supervigor
01 Wait 1 Fixed-Task Supervisor
02 Post 1 Fixed-Task Supervisor
- 03 Exit 1 Fixed-Task Supervisor
04 Getmain 1 Fixed-Task Supervisorg
05 Freemain 1 Fixed-Task Supervisor
06 Link 2 Fixed-Task Supervisor
07 XCTL 2 Fixed-Task Supervisor
08 Load 2 " Fixed-Task Supervisor
09 . . Delete -1 Fixed-Task Supervisor
10 . Getmain/Freexai b Fixed-Task Supervisor
11 Time 1 Fixed-Task Supervisor
12 SYNCH 2 Fixed-Task Supervisor
13 ABEND 4 Fixed~Task Supervisor
4 SPIE 3,2 Fixed-Task Supervisor
‘15 ERREXCP B | Input/Output Supervisor
16 Larqge 3 Input/Output Supervisor
17 Restore. 3 Input/Output Supcervisor
18 BLDL 2 Sequential Access Methods
19 Open 4 Input/Output Support (CPEN/CLOSE/EOV)
20 Close 4 Input/Output Supporxt (OPEN/CLOSE/EOQV)
21 Stow 3 Sequential Access Methods
22 Opend 4 Input/Output Support (OPEN/CLOSE/EOV)
23 Tclose ‘ 4 Input/Output Support (OPEN/CLOSE/EOV)
24 DEVTYPE . 3 Input/Output Supervisor
25 °  Track Balance 3 Sequential Access Methods
26 Catalog 4 Catalog Management
27 Obtain 3 Direct Access Device Space Management
28 _CVOoL 4 Catalog Management
29 Scratch 4 Direct Access Device Space Management
30 Renane 4 Direct Access LCevice Spage Management
31 EOV 4 Input/Output Support (OPEN/CLOSE/EQOV)
32 Allocate 4 Direct Access Device Space Management
. 33 ‘ IOHALT 3 Input/Output Supervisor :
34 Master Command
EXC? 4 .-Job Management
35 Write to
: Operator 3 'Job Management
36 ’ : o ' Not supported in this configuration
a7 Overlay )
Supervisor o 2 . Fixed~Task Supervisor
23 Resident §VC : 2 TESTRAN

SVC Routines

'S




N,

sSvC

NUMBER

69
70

71
72-199

200-2595

ROUTINE
NAME

o
Extract
Identify
Attach
CIRB

Overlay
Supervisorx

Ttimer
Stimer

Ttopeni

'ABDUMP

» %
* %

_ EOV

LR
* %
¥

Save

L

RDJFCB
i

* %
»a
LAY
3ackspace
GSERV

“u
* ¥

Availaple f
to user-wri
tines. Unti
assigned,
processing
. causes tern

R

or assignment
tten SVC rou-
1 a ‘numper is
its use 1in a
program
ination.

W NN

[PV S B o e N

-81-

PLM
Unassigned

Fixed-Task Supervisor
Fixed-Task Supervisor
Fixed-Task Supervisor
Fixed-Task Supervisor
Not supported in this

Fixed-Task Supervisor

Fixed-Task Supervisor
Fixed-Task Supervisor
Not supported in this
TESTRAN

Not supported in this

Fixed-Task Supervisor
Not supported in this
Not supported in this
Not supported in this

configuration

configuratidn
configuration
configure tion

configuration
configuration

Input/Output Support (OPEN/CLOSE/EOV)
Sequential Access Methods

Not supported in this configuration
Not supported in this configuration
Unassigned N :

Not supported in this configuraticn
Not supported in this configuration

TESTRAN .
Not supported in this configuration
Unassigned

Input/Output Support (OPEN/CLOSE/EOV)
Not supported in this configuration

Not supported in this confiquration
Not supported in this configuration
Not supported in this configuration
Sequential Access Methods

Graphics Access Method

Not supported in this configuration
Unassigned



ie » MW
=
N 0]
- =
€
(- T T e T e e R e e — - k -
; 8
g .
. o —t -
[ [ B ~ v
ETTY TR B m
R Z i 1858 1 0
-1 K] IR 1M
{ m 1 { mm | % o
[ " “ A 1 [RS] -3
£ 1 XX 1 o'
| i :
g o e e s e e e e e i e e e e e o e e L | R
1 1 1
t ri——t———————— e — ——— —
0 A S
{881 & |
D | Z m
KRR o
1 Am | ) m e
-1 -4 ~ ~
1XX 4 X, 9 ~
7Y 2
L ~ )
(| 1 1
[} e e e e e e - | ¥
3 1 Iy o
% . .lllmollll..- e e oy =t e Q
a | & | 281 :
2 |3 12 a5t 2 g
(3} 1 - “ - ) Rm ~ m e
9 ! X 4 @ | XX 4 i »
, S AR ) - SO
| 3 F A LR g
H 1 ] L afandendandand and - <
| ) 1 CE 1y i i N y
; w e Aee—m—n o l haabunts. ahmntetsdands ) i o
! ) 1 X t N o” le] o N3
: ) i = 1 o D @ ) M [s¢)
“ o | .m o 0 A 4 N 1
{ @ i1 m 1 W aQ = O -
| o [ {0 o 160 €] )
S i R >
‘ ) ) % lllll < L] [N S— o
| ; . s 1l 8
- 1 Q o
) i - . .M. B «
Q r—-t—— .m ATy e e ey ~ " .
P I X 1 1o o N I
“ Z iq 1D ) M O .
<] 16 R 14 ]
1 m 1H 1mm | 23 f A
Y 4 T -
* > ] XX <
. a2 ISR
, 171
| B -
— Ay
Q4
2 i
@ ]
i 8 ] :
.- P
m
QO .
3] .
:’ L] <
. 1 415
) @
B 4 . 5
. o e e e e e e e T S e m s S e o e e e e e e e e e u.“




|

\

This is a breakgown of the status bytes (STAB) in the Raquest Blocks '
(RB) for the sequential system.

©w oo 3 O

11

12

.13

14

15

1011 12131415

067 89
00000 0 O

0000/

- ]

|
deter\min%

Used to distinguish between PRB, IRB, SIRB, and SVRB (see chart 1)

s if program is LOADed or not

deter ings if program is in transient area or not

‘mu tbe

must e zd

must be ze

Zero

ro

ro

must be ze

o

prima#y qJeueing field addresses TCB

active program

privile@ged program, 16 registers saved in RB

resche%iuab le program (re-enterable or reusable)

‘ 12 13
RB f S =< =2 :
RB for [0 0 0 - nolIQE's
IQE's appended are 12*'s 0 1 - 1l2Dbyte IQE's
' 1 1 - 16 byte IQE's

RB exists disjoint from program (RB freed by EXIT routine)

off - W \I'I‘

single event or all events

on - WAIT on fewer than the number of events specified.

N

|
|

FIGURE 2

-83- RB Status Fiold




' 'The combination of the first four bits in the first flag byte have the
- specified deﬁnit?on s shown. in chart 1

\ " 8
| |
BITS
joxl 2 3 | — Description
W .
00 o | o PRB, not LOADed, doés not have
’ : \\ o ~ minor entries. (IDENTIFYed)
i ‘ ' . .
00 0 1 PRB, not LOADed, does have minor
\ entries,
\
. ' ,
00 1 0 ' PRB, LOADed, no minor entries.
& -
00 1 1 'PRB, LOADed, minor entries o
\
\ B
01 0 \ 0 IRB
01 o 1 ‘ .
01 1 0 @
01 1 \ 1 SN
| |
|
10 o 0 SIRB
10 0 1 '
10 1 0
10 1 1
' —
11 o o SVRB, Type II
11 0o 1 SVRB, Type I
11 1 0 PRB, LOADed, Minor entry
11 1|1 LRB
I |
| |
|
|
. \ x
|
\
' FIGURE 3
| "
| .
| |
| -84-
N | ' RB Status Field



IEA
IEB
- IEC
IEE
IEF

IEG

IEH
IEI

IET

IEK
IEM
IEN
IEP
IEQ
IER
IES

IET

IEU

IEW
IFB
IFC

IGC
IGE
IGG
IHB
IHC

IHE .

OPERATING SYSTEM/360 NAMING CONVENTIONS

SUPERVISOR

DATA SET UTILITIES | I
INPUT/OUTPUT N S . Lot
MASTER SCHEDULER | -
BATCH SCHEDULER |

PROGRAM TES
SYSTEM AND S

T
UPPORT UTILITIES

SYSTEM GENERATOR
FORTRAN COMPILER (E)
FORTRAN COMPILER (H)
PL/1 COMPILER (F)
PL/1 COMPILER (H)
COBOL COMPILER (E)
COBOL COMPILER (F)

SORT/MERGE

REPCRT PROGRAM GENERATOR
ASSEMBLER (E)
ASSEMBLER (¥)

LINKAGE EDIT

OR

SYSTEM ENVIRONMENT RECORDING AND RETRY, SERO, SER1
ENVIRONMENT RECORDING EDIT AND PRIN'I‘
GRAPHIC PROGRAMMING SUPPORT

TRANSIENT- 3V
I/0 ERROR
CLOSE, OPEN
SYSTEM MACR

LIBRARY SUB
LIBRARY SU

LIBRARY SUBR{OU'I'INES (FORTRAN)

C ROUTINES

ROUTINES

AND RELATED ROUTINES -
O-INSTRUCTION DEFINITIONS

UTINES (COBOL)
OUTINES (PL/1)

“85-

Wi Naming Conventinn

4)




&

"M SYSTEM/360 OPERATN

001

002
008
020

025
. 03

031
- 032

033

034
, 035

'036

038

e oo emamrte e =

.,39
| 03A

' 0Cx

OF1
0F2
100
101
102

108

037

Completion Codés

|G SYSTEM

BSAM CHECK with nc

Excerpts from Form C28-6608
SYNAD routine ot QSAM DCBEROPT specified termination.

BSAM Write or QSAM|Put record exceeds track length.

SYNAD routine error following a BSAM CHECK,:

BDAM OPEN with an ihvalid DCBMACRF.

BDAM processing err¢or DCBSQND address outside task boundarles.
BISAM or QISAM OPEN-with an invalid DCBMACRF.’

QISAM processing errpr and DCB did not contain a SYNAD routine,

"BISAM or QISAM OPEN with an invalid DCBMACREF field.

BISAM highest level inflex I/O error.
BISAM OPEN main storage area too sma]% to contain the highest level index.

BISAM OPEN with the

DPCBMSWA and DCBSMSW specifying too small an area to
. contain one track of prime data.

BISAM or QISAM OPEN with no space ‘all cated as the prime area in the DD Card

or DSCB was modified

erroneously.

BISAM or QISAM OPENwith an invalid buffer specification,

indexes crossed volumd

' QISAM OPEN for load mode with insufficient space allocated or (2) the high level

s the DD Cerd SPACE parameter.

- QISAM scan reached th¢ end with no DCBEODAD routine,
" BISAM or QISAM CLOSE

~ Job Scheduler I/0 errox
A program check occury

I/O error in updating the Format 2 DSCB. \
in SYS LSYSTOBQE. :

ed without a recovery routine. X specifies:
Code Program Interruption Cause Code Program Interruption Cause

1 Operation 8 Fixed=-point overflow
2 Privileged operation 9 Fixed~-point divide
3 Execute A Decimal overflow
4, Protection B Decimal divide
5 Addressing C Exponent overflow
8 Specification D Exponent underflow
7 Data B Significance

' F Floating-point divide

A program check occurrled in the I/0O Supervisor.

A program check occurred in the execution of a Type 1 SVC routine.

Device not operational.

POST error from an invalid ECB address.

LINX, LOAD, ATTACH pr XCTL error indicated in register 15:
OD Invalid record type fgund when loading the program.

OE Invalid address found when loading the program.

OF 1I/0 error occurred when loading the program., ~

WAIT error from more evehts than availa’je ECB's.

'. Completion Codes

-86-




e

~Page 2

13

117
122
128
12D
131
137
2009
- 201
202
- 207
213

214
217
222
22D
237

301
308
313

317
328
1 331
- 337
400
406

413

414
417
425
426
431
437
206
513
ol4
o17

rROA

CcdaQ

. 231
- 304

/

OPEN I/O error in reading the JFCB or (2) failure to locate the JFCB pointer
in TYPE=JOPEN, , : " '

BSAM CLOSE I/Olerror on tape.

CANCEL, DUMP requested by the operator.

TESTRAN error from a’ modified TESTRAN CSECT.

Overlay Supervisor found incorrect words 3 and 4 of the segment table.
TESTRAN error fiom a modified TESTRAN CSECT, . '

E of VI/0 error in tape label processing.

I/O error occurred with all I/O request elements in use,

WAIT error from 4n invalid ECB address.

POST error from gn invalid RB address in the ECB end.

A SYNAD routine attempted to executz an XCTL macro instead of RE'I'URN
CPEN failed to find the DSCB or had [/O error.

Verify the DISP parameter of the DD card.

CLOSE I/0 error in tape positioning or volume disposition.

BSAM CLOSE I/0 error in reading the JFCB.

CANCEL requested by the operator. No dump requested.

Overlay Supervisor found an invalid address in the segment table.

E of V verification error in label processing. Correct the volume serial
number in the DD card and re-execute.

WAIT specified an ECB whose wait bi: was on.

LOAD error when Option 3 but not 4 is included.

OPEN I/O error in reading a Formeat 3 DSCB.

CLOSE I/0 error in reading the DSCE.

BSAM CLOSE I/O error in reading a IDSCB.

TESTRAN instructions exceeded the limit specified.

TESTRAN needs an address for the ‘TEEST OPEN instruction.

No DCBEODAD routine available for the end of a data set.

An invalid DCB, DEB, IOB or an improper DD Card detected.

LINK, ATTACH or XCTL error from. "only loadable" program or an IDENTIFY
entry point program specified without Option 4 in the PCP.

OPEN failed in reading the volume labzl, the volume could not be mounted on the
allocated device, -or no volume serial 'mmber was specxfied in the SER parameter
of the DD Card.

CLOSE I/0O error in updating the DSCE.

BSAM CLOSE I/O error in writing the updated DSCB.

SEGWT error during execution of an overlay program.

- TESTRAN output 1limit exceeded.

TESTRAN symbol table and control dictionaries could not be read.

End of Volume error when the DEBDERID protection key did not match the TCBPKF
LINK, LOAD, ATTACH or XCTL used in an overlay program under TESTRAN,
OPEN for a data set on a magnetic tape used for another data set.

CLOSE I/O error in reading the JECB,

BSAM CLOSE error because the PCP used does not support user labels.
TESTRAN used without a TEST OPEN instruction.

TESTRAN used without a DD statement for the unedited data.

GETMAIN error from an erroneous adcress or length in an inactive program,

(2) and erroneous address in the macro, or (3) a free area exceeded the

bounds of the task.

_87-




“wJb
60A
613
814
626
8317

700
705
706
713

714
Y
800
804
914
926
937
AQ4
A0S

JA

A13
Al4

A26
BO4
219
BOA
314

FREEMAIN error from a free areg exceeding the bounds of the task.

LINK, LOAD, ATTACH, or XCTL error from lack of available storage.

GE T\/LAIN or FREm\/IAIN error from an erroneous address in an inactive program‘v
OPEN I/O error in tape positioning or label processing.

CLOSE 1/0 error in writing the end-of-file.

TESTRAN encountered a machine-check while tracing the program..

Znd of Volume I/0O error. in writing the tape mark, positioning the tape, or
reading the label.

" Unit Check Status Indication set on.

FRZEMAIN issued with L operand and PCP Option 4 not included _
LINX, LOAD, ATTACR, or XCTL requested an unexecutable program.

OPVN for an unexmreo data set created with an EXPDT or RETPD parameter
in the DD Ceax :

CLOSE 1/0 c::or in tape label processing.
- BSAM CLOSE I/0 error in tape label processing.

Program or rotection Interruption during an I/O operation.

GETMAIN with EU or VU mode operand not supported by the PCP in use.

CLOSE functions not supported by the PCP in use. '
Machine Check when TESTRAN attempted to return control to the user program.
End of Volume functions not supported by the PCP in use.

GETMAIN error from an erroneous address or length in an inactive program.
FREEMAIN error when an address and length spec1ﬁcat10n in the release request
defined an area overlapping a iree area.

GETMAIN or FREEMAIN found the address and length specification in an inactive
program or released program defined an overlapped free area. I
OPEN failed to find the DD Card specified file sequence number on tape.

" CLOSZ I/0 error in the release of unused storage on the DASD as specified in

the DD Card.

TESTRAN ccvld not return to the problem address specified.

GETMAIN szecified a subpool number greater than 127.

FRoEMAIN specified a subpool number greater than 127,

GETMAIN or FREEMAIN specified a subpool number greater than 127
CLC3E error when STOW was issued. STOW was unable to store, modify, or
celete data. The error is indicated in register 15:

C4 Name already exists in the directory.

OC No space is left in the directory.

10 A I/0 error during the search,

EOV occurred with no space available for required functions and no volume
available for dismounting.

.OPEN I/C. error cr (2) a concatenated data set could not be found.

Overlay Supervisor detected an invalid record type when loading.

Outpu. area filled and no secondary quantity SPACE parameter supplied for a DASD.
Overlay Supervisor detected an invalid address when loading.

Output area filled or (2) 16 Extents already used in a-PDS,

OPEN failed to find a member name specified in a DD Card or (2) there are
conilicting or unsupported parameters in the DCB;

Overiay Supervisor detected 22 incorrect length or an I/O error when loading,
QSAM FEOV I/0 error in wriiing the remaining output buffers. \J '
=0V or seconcary sovace zlccation I/0O error.
1nvalld SVC operand. nn = the SVC number.

-88- | \ Completion Code




	‎\\OMV-TC\temp\Scan\ABDUMP_Debugging_Procedures_V3a_Aug_1966.pdf‎
	‎\\OMV-TC\temp\Scan\ABDUMP_Debugging_Procedures_V3b_Aug_1966.pdf‎
	‎\\OMV-TC\temp\Scan\ABDUMP_Debugging_Procedures_V3c_Aug_1966.pdf‎

