
1.

SYSTEM /360 O. S. LOGIC
TASK MANAGEMENT

Course Outline

Introduction .

A. What is a Task
B. Where Do They Corne From
C. Task States

II. Task Related Routines

A. Task Switching Routine
B. Dispatcher

III. Interrupt Handling

A. What is an Interrupt
B. SVC Interrupt Handling

1. First Level Interrupt Handler
2. Second Level Interrupt Handler
3. Transient Area Handler

C. Exiting Procedures
1. Type I Exit Routine
2. Exit Routine

D. Program Interrupt Handling
1. First Level Interrupt Handler
2. Program Interrupt Element (PIE)
3. Exit Routine

E. External Interrupts
F. I/O Interrupts
G. Machine Check Interrupts

IV. Task Supervisor

A. Attaching a Subtask
B. Detaching a Subtask
C. Task Termination

V. Contents Supervisor

A. Searching for Modules
B. Releasing Modules
C. SpecialFunctions

-2-

VI. Main Storage Supervisor

A. Allocating of Main Storage
B. Freeing of Main Storage

~.

-..

f' r'
CVT 1

I.;'

4

TAS1<
. "

0 .. _, r,
,.....
V

)(S (\jl-

1

Esfabli~hod ('ing

SYSGEN

C"l,- u ""TRAIII~id ~
XSNT . r~d.. (~tJ~L/+I;

D~SPATCHER 1}1/
2 ,o/SGEN ~ () c ~

"i', ,/,
U t'

~~~~==-- iI( 

){SNT 
n 

o " I 

I/O 
ERROR 

ROLLOUT / 
ROLLIN 

• 

~"" .. _:;s::;..:.;....,~~-::::::::. 

NUCLEUS j __ 1::1_ ~~_Q 
- - - ~ MASTE~l RrG' 101:'.15 1 k(~r"p~~~~f;U~_ER ,I:. l\l 0"\.._' ,&.~ . 

-==-~=~=':":"' .. :;::-:::~~ 

CONSOLE' 
CO~v1~J1 U~J­
ICATION 

SYSGEN 

SYSGEN 

SYSGEN 
'E fjNr .. 1/ 

~
/I"""", '"I i'\{( r .." . 

,/' .- P '-' "/v 

S'SGEN 

IPL 



WhIr 

WI) l:or 

ATTFiCH 

f 
I 

.> 

( 1>fJIU1f}NT ) 
-,... 
8. 
r.n -"0 

, I a.- . 



L 

Ne,w,: 
e N.~.TC6, 

1(e.iU~N 

, . 

," 

'. 

-r. -S. I\ou fllUc. 
4- IlUvoli;eJ mol"C 

'l-J,o~ 0""1' 
-to t" +J. , \ 

INt e rnA,' 

((fJ " ,,,, NtW) 

._._. __ . ____ -=n?_o~:~ .. , __ . ___ 0_ .. __ •••••• , •• " - - ,'. ___ ._. _ .•. _._ .. __ _ __ .'. - . -.-0 .... :~ __ ~_.__ _ ~_,~ ._. __ ....... _ .......... __ •..• 

"'flO 
~ __ --} charw'je. 

'-----~ '~ NEW 

Ib 

N.W. - ~ewl'1 ~"dl~J 

P. K. - prtu.ou~/'1 
/" \'"tel'" led 

.' , 



CONTROL BLOCK DATA 

TCB Pointer Block 

POINTED TO BY: 

CVTTCBP (CVT + 0) . 

GENERAL FUNCTION: 

Used by task dispatcher to determine if a task switch is required and if so. 
which task should get control 

GENERAL CONTENTS: 

New and old TCB pointers 

New = old task switch not required 

New = old and new = 0 switch to new required 

New = old and new = 0 di.spatcher determines which task to get control 
base~ on priority. 

New can be set by any of the supervisory routines associated with task switching 
(wait. post. ENQ/DEQ. manual purge) 

.. - . -



L' 

NO 

NO 

ch~p,d~~ 
ChA~,\~U 
~Ib\:... -(I 

(. 

NO 

~e5 s,ue ,t 
C"o~i'Wl 



w 

(' 

• 

I 

Type 
I 

• I ABTERM 
RoutiM J 

1 

svc 
I 

T 

SVC FLiH r , 
sve SLiH 

('" 

"ogro'" e~dt 
I 

"011'_ e~c~ FUH 

• • P,ologur 
Rout;ne 

1 I 

f ;wr - Wrillen ,11 
~ Needed SVC Roul'ne 

ro D;~." .. " •• ~: ...... " .. I I 
Rouline i. not 
in Main SloraQlt 

SVC RauliMi 

Type I Type I Type 
2 3 • 

(XCTl) 
Ta Di.polcher if $VC 
Routine Issues on I AllUM 

J Routine 

I Type, I E"it J I Exit Routine I 
RoutIne I -The ("it Rouline is a Type I • I Trensient SVC Routine thot ~. not r_ 

/lnte,.'upted J A'ea Ite f'esh Conl'el 10 the Type 1 bit 
Rou""" 

Rovline Routine. 11 i, Shown Separalol, 
.. 

l for 1II"",otive 'ur;>O~, 

I Dispotc,,=," 

T 
Ro,,'ine Rep'esen'ed by 

~ t 

b, .. _, 
I 

-
hl~'nol FLIH 

Li 

I/O 

1 I I/O FUH 

_Li 
Con.ole I r T;",~, FlIH I I ~o, I S .. ilch uperv.sor 
Routine 

I AITERM 
Routine 

. 
. 

J 

(' 

Moehi"" ClveS. 

J 1 ! 
I SERO I l 

Rou"r.e 
SEtl Rovti ... 

J 
Woit 

J 
Woit 

Stole Stole . 
, 

( ABUtM 
toutin2 J 

I Highe.t - P,iority "Reedy- Tel 1 
Type 1 SVC Rou'ine. Tyi'" 2 SVC Routine. 

CHAP Afloc), 
EXIT Dolete 
EXTRACT DEQ 
fR££tiAiN Detoeh 
GETMAIN ENe 
POST ("it Eflector, Stege I 
TIME leIentify 
TTl MER link, loed, xcn ond 
WAIT Synch 

Overloy Supervi_ 
Spie 
STIMElt 

-

Type 3 SVC Rou'ines 

STA£ Service 
WTO, WTOR, 
WTl 
, 

Type A SVC ROuli ..... 

ABDUMI' 
ABEND 
Chrckpoinl 
Co",,". To,l Rou'e, 
Log end W,it .. log Post 
Re-Iolort -

I 
SVC 
Routine 
Needed 
r--

Transient 
A,eo Fetch 
Routine 

Retrievol of lObl-o'y RoutiM' 

SVC 
librory 

linS., l~...d. 

XCTl, end Sync" 
Routj~ 

The O~t'loy Sup~r"::a.or or.d the t..nlc.. 
lood, XCTl or>d Synch RQu'ine ore 
So.h Type 1 SVC P.ovl;~. 

link 
L;~aoy, 

Job 
Libraoy 
or 
Private 
li~gry 

J 

J 

g 
" :: 
o 
o • 

~ 
o .. 
" .... .... 
g 
i ... 
i 
R 

! 
CD 

'I a 
o 
I 



./ 

~ 

r (*' 

SVC ROUTINE TYPE VERSUS ROUTINE C~~M~&~CTE~uSTICS 

ROUTINE TYPE 

TYPE 1 

TYPE 2 . 

TYPE 3 

TYPE 4 

CHARACTER I STlCS 

SER IALLY REUSABLE OR REENTRANT, NON­
lNTERRUPTABLE 

REENTRANT, INTERRUPTABLE 

REENTRANT, INTERRUPTABLE, SlNGLE ROUTINE 
LES S THAN OR EQUAL TO 1024 BYTES. 

REENTRANT~ lNTERRUPTABLE, n ROUTINES LESS 
THAN OR EOUAL TO 1024 BYTES. ENTERED BY 
XCTL MACRO. 

r 



SVC TABLES 

PCP/MFT without extended SVC table option 

SVC# Prefix 

~l Tab1~1~J---~~~~~~!--------i~~~1 Type 1&2 
I. T 

T T~1--5---t-3-1 ~ 0-0 IESA Type 3&4 

T r ~ Generate name and fetch 

PCP /MFT with'· extended SVC table option 

MVT 

SV~ P~:~i~ ~1-~~~I---~~~~;!;-----r;~~1. Type 1&2 
E3~ 

SVCj 

l~ "-. 1----10--I----8-+---11--~3--F J' L. TT I R I Lengthl ESA" Type 3&4 

"\ '-------c.. Fetch 

(1st m 

with RSVC option 

~------------------------~ 

1---8-~----------24--------

X' 00 'I Address 

... r.- ,.~ 

X' 80 'I . Address 
.~ ,1,. 

1-2-~----12---r-----18----­

III Length 1 T T R 
.f--

Type 1 

Type 2 and 
resident 3&4 

Transient 
type 3&4 

'~Fetch 



r 

r: 

(" f'-

§LuAru~ §~;q V~~«3 [@V tr~~JLE §\fC ~~~u[E~~rnU~~~f~(V~J ~~~b\1g)[Lu:~5 

Machine Action 

Interruption 

~ 
+'VCOldPSW 

(·-:;:r::!''&rW# "J 

Lower 
Main Storege 
(Location 20) 

SVC First-Level SVC Second-Level 
I ntcrruption Handler I nterruption Handler 

-~ :: ¥ 3":WI tiiii!I:IItit: . ,a~.,;..;u: ... a:Z::""iiC",*!"':o:!::':==:3!ih~ $£+ h" 4#: ..... ,.;u:;;: W 'W' ,..\'. 4*ftahA t i' ·a -,. 

General Registers 
t-........-'~Tt.-·\-

Caller's 
Register 
Contents 

.~~""% .3 -''',,,,_,~,,,,_~,,~ 

Lower Main Storage 
(SVC Register Save 
Area, IFASCSAV) . 

TCB SVRB Caller's RB 
H-- '='I) ~- -. ~;;"-"--""" - 0", 

111 ~~g Savel I iB~rsi 
~.n~=dtcEJL~ 

~_ 'L~ .~,,~ 

Note: The caller's register 
contents and SVC old PSW 
are moved by the SVC 
Second -Level Interruption 
Handler to the appropriate 
RBs. 

i ili~~ I nformation Flow 



~ 
~ 

~ 
~ 

~ 
~ 

~ 

~ ~ 
~ a¢='J ~ 

[.1e 
ka ~ ~ 
~ @ m 

~ ~ ~ 
b..:, 

!aat. 
~ ~ ~ 

~ 0 
~ 

~ ~ ~ ~ ~ -==' ~ k.-
~ :> @ b: 

~ 
~ ~ V) c ~ ~ 

m ~ 
.~ 

~ ~ <0? '¢=m C C • oc:::.oza 

(is)''P ~ c=m _. 
@.d) t<= 0 .o:=a .::::= 

~ 
~ 

.¢=:' ~ ~=J 

L 
..c 'qd) 

~ :=s .= ~ 
~ ~ ~ -¢=' ~ 

. 
Q 

Q Q. 
~ ~ 

~ ~ ~ ~ 
~ <?n .¢c=O 

~ ~ 
~. 

~ 
~ ~ 

~ ~ 
~ 

~ .f..=:!J ~ 
~ <RS F: V2) ~ @ 

~ • tl!=mlJ -=:r::::::I ~ 
~ E @j) @.d) ~ ~ 

~ -==' ~ 
e tCS 

~ m ~ ~ ~ @;d) k:.:, 

::> ~ ~ ~ ~ ~ 
~ ID ~ Q ~ ~ 

~ ~ ~ ~. ~ ~ 



CONTROL BLOCK DATA 

SVRB - Supervisor Request Block 

l,. POINTED TO BY: 

TCBRBP (TCB + 0) active or top RB 

GENERAL FUNCTION: 

Maintains information concerning the use of a Type II, III or IV SVC routine 

GENERAL CONTENTS: 

See PRB 

LAYOUT CAN BE FOUND IN: 

PCP & MFT - SCB 

MVT - SCB 

MVTS 

, 



bmue.\, ~~ 
sve SL.I H 

~e. 
y~s svrc6 0,,", .... --c 

TR~-S c.'er 

~JlCJS+ Wi C • 
IA) SURe s 

f f"tt~~rJ"\ 

7>/o(e 97N 
/1.) ,StICG's 
7~w 

~s 

w. C!,. - watt Cout.)+ 
Q) 3icfe W.C!.. 
~ \..V.c. '= )( "FP' 



' . 

.-

• 

L 



L 

SV~BIS 1Or­
~e SQft\e.. 
SUC- (bu~~e 

-. 



Transient Area 
Felch SVRB 

Secondary CVT+C 

_ "Poinler 

c::::::> = Informotion Flow 

TA Felch 
TCB 1 

Addr 
of 
TAB 1 

Addr 

Used for 
transien' 
area felch 

Addr 
of User 
Queue I 

Addr 

NOTES: I. U ... r queue I contains SVRBs whose SVC rouli ... is in TAB 1, 
or was overlaid in TAB I. 

U ... r queue 2 conloins SVRBs who... SVC rouline is in TAB 2, 
or was overlaid in TAB 2. 

2. The requesl queue conlalns SVRBI awailing an available TAB. 

The Transient Area Queues 

.'1 

U ... r Queue I 

Transient Areo Block I (TAB I) 

Transient Area Black 2 (TAB 2) 



....... 
<:I 

(" (" 

REGISTER POINTERS ON EN~rERING AN SVC ROUTINE 
~ 

REGISTER 

3 

4 

5 

14 

0, 1, 15 

MEANING 

Communication Vector Table (CVn Pointer 

Task Control Block (TC B) Pointer 

S upervi sor Request Block (SVR B) Poi nter for 
Types 2, 3 and 4. Last Active Request Block 
for Type 1 Routines 

Contains return address 

" 

Used for passi ng information between routi nes. 
Not restored. 

(' 



-­~ 

r r 
. 

ASPEC1"S FOr~ COr~SIDEritXrION 
~,-== -. ~~~---~=~~~ 

II~ VifR 11~ING SVC ROU'TI1~ ES 
... ___ ~~~~~ n=- tit, ~ 

(1) Use proper control section name 

IGCnnn 

or 

+ 
IGCOOnnn 

or 

+ 
IGCssnnn 

eSEeT Type 1 and 2 

CSECT Type 3 

. CSECT Type 4 

(2) Use proper return or exit ' 

BR 14 All types if register 14 has been saved 
+ . . 

XCTL IGCssnnn' All but last load module of Type 4 routines 

SVC 3 Calls EX IT routine. Types 2, 3 and I·ast load module 
of Type 4. 

(3) ~not modify instructions or data in the routine itself. Instead, use 
register storage and/or GETMAIN macro. 

r 



(\~~~'(~) 

~ 

" 

~C'III !.O\" 
. c.ellb~'~~ 

~:~ 
U~~¢" \ 
t~~~~ 

I 

//a/ 

p~~~~, cl,~ \OU.~t.1'~ 
CS~ .... ~~~'" \.m.~f't 

.' 



· , 11U~. C!ode, 
p~~. '---------

epSW 

~ 1$ l' 1?~u.'n\\)~ 
~----~~~--------~ 

1? ¢ c.()~~1 p~",. u~~. 
-,:( J.. l' --p, E, , 

1? ~ ~\"" pIp 

7/C~7 

I ¢I~~ 't 1?ou:\""~ 

Ilk 

CorJ~'tl\J~~ o~ 
'-}ft~~e ~&s. 

W\\-eaJ ~~uJi1~e. 
~~ c.o~~\. 



CONTROL BLOCK DATA 

PIE - Program Interruption Element 

POINTED TO BY: 

TCBPIE (TCB + 4) 

GENERAL FUNCTION: 

Provide user control of program interruptions - constructed by use 
of SPIE MACRO 

GENERAL CONTENTS: 

PTR to users PICA address 

Old PSW save area 

Register save area 

LAYOUT CAN BE FOUND IN: 

PCPS 

MVTS 



CONTROL BLOCK DATA 

PICA - Program Interruption Control Area 

POINTED TO BY: 

PIEPICA (PIE + 0) 

GENERAL FUNCTION: 

Provide mask and entry point of user's error routine. 

GENERAL CONTENTS: 

Program mask to be used in PSW 

Pointer to user's interruption exit routine 

Mask for program interruption types to be handled by user 

LAYOUT CAN BE FOUND IN: 

MVTS 

I~ 



(' 

0 

,.. ---I! ,-

(' 

ATTACH PROCESSING 

Originating 
Task 

TCBRBP 

i.~ 

PRB 

Program 
Issuing 
ATTACH 

SVR Via.\.. ~) 

r--' Dispatcher 
ATTACH 

I 1 I 
I I 

I I L __ ~----l 
New Task " I J TCROTC I I I 

B 

r- TCBRBP~ -1Q II r----1 . I 
L_~_~ ~_.~ 

I I SVRB I 
L - - - - - - - - i ;~ ~~w I 

LProgro~ 

r 

ATTACH 
Removes Its 
RB,Ma!\es It 
Info 0 Li nk 
And Queues It 
Onto the Ne\1 
TCB 



CONTROL BLOCK DATA 

TCB - Task Control Block 

POINTED TO BY: 

CVTHEAD (CVT + AOJ - Highest priority TCB 

GENERAL FUNCTION: 

Defines a task to the system 

GENERAL CONTENTS: 

Information and pointers associated with the task in progress. 

LAYOUT CAN BE FOUND IN: 

SCB 

MVTS 



r 
- . ~ 

¢ 

IE>; 
-

....... 
ca 

,. 

r J r 
---._- . ------. --1 ~:~ 1 Ten Next lower pl"iority TeB 

JSTcn Job step Tea 
NTC Next (sister) Tc;B 

!C8_~ -.. 
Tee t--A 

JSTC8 +A 
N'TC of- 8. 
OTC +A 
L.TC .¢ 

PR"N fA") , . 

--

-.,. 
TC8 

~s T C.B 
NTC 
OTC 
L- TC 

PR,.y 
3 

OTC Originating (mother) TeB 
LTC Last (daughter) TeB 

TCS A 
Tea C 

tc - 'Tea 8 , 
TC8 t8 -,. 

+A TC (3 t-_E --
¢ JSTCS 'A Tea 

~ iNLT -if t-A NTC J"STCB 
t,E OTC t,B NTC ti_ :rS,.C a 

"'TC 'f/! OTe tA -
\. L.iC ~~ 

1,2,3,4 indicates order in which subtasks created 
--~;-- indica,tes present pointer 

NTC 
oye 
LTC 

.TC·B E 

t/J. 
~ . 

tA 
tD 

'" f/J 

- - - ~ indicates previous pointer which has been removed 
by later action 

MVT TCB PRIORITY QUEUE 



~ .. 

No 

Si~re 
re~"'ttJ ~de 
I'll Te8 

tree .. ~. 
>-......... --11 ( bf'Q~(.." ~~ 

~\"'Q~ 
o.~"'1 
-r<.i/E's 

fV:{:EH41~) 



. ItlJdICO~e. 

t"~~ 
..swi1c.h 

l""rh~~ e. cts 
-..r-il ...... ~s~hcc~\,.\\, u~ ~ 

~e~-.~f~&:,Xr-
~_o _____ ..11 

r,--...;:~, ..... ..,.j--
~~;V~\)e 

lQ..e ~~ 
~,q..) ~u.eu 

.. ~ .. 

WO~~Q! co ~p'C+aQ~ • 
NO\\) d'''fOkhoo;/;fy "'" 

?osY £ree 
,.......;~~. o~cl I~$c:,~;' 

~~ .. '9J ~d 



Request 
Block 
the 
Program 
A 

SPQE 
252 

Task 
Control 
Block 

Contents 
Direc'tory 
Entry for 
Program A 

. @ Example of the Modification of the Content Directory During a Task 

Request 
Block 
for 
Program 
A 

Request 
Block 
for 
Program 
B 

Contents 
___ ~ Directory 

Contents 
Directory 
Entry 
Program A 

Entry for 
Program B 

o Example of the Modification of the Content Directory During a Task 

Request 
Block 
for 
Program 
C 

Contents 
Directory 
Entry for 
Program A 

Contents 
Directory 
Entry for 
Program C 

o Example for the Modification of the Content Directory During a Task 

11 



L 

CONTROL BLOCK DATA 

CDE - Contents Directory Element 

POINTED TO BY: 

RBCDE (RB + D ) 

GENERAL FUNCTION: 

Defines existance of a non-SVC module in core. 

GENERAL CONTENTS 

Attributes of the module, name of module, number of current users, 
entry point, pointer to extent list. 

CDE's are chained together through CDCHAIN (DCE +0). Each search may be 
concerned with 2 CDE chains - link pack area and the job pack area-for the region. 
The link pack area chain is pointed to by CVTQLPAQ (CVT + BC). The job pack 
area chain is pointed to by the job step TCB at TCBJPQ (TCB +2C). 

LAYOUT CAN BE FOUND IN: 

MVTS 

,« 



CONTROL BLOCK DATA 

PRB - Program Request Block 

POINTED TO BY: 

TCBRBP (TCB + 0) aGtive or TOP RB 

GENERAL FUNCTION: 

Maintains information concerning a non-supervisory routine required for this 
execution of the module. 

GENERAL CONTENTS: 

Differs by OS configuration: 

PCP & MFT - contains all information for this execution of the module, 
e.g., module name, attributes, size, resume address if 
interrupted, etc. 

MVT- Contains only the dynamic information for this use of 
. the module 

RB's for a task are chained together through the link field 
(XRBLNK or RBLINK) at RB+IC. The last RB in the chain points back to the 
controlling TCB. 

LAYOUT CAN BE FOUND IN: 

PCP & MFT SCB 

MVT-MVTS 

SCB 

1'\ 



CONTROL BLOCK DATA 

LLE - Load List Element 

POINTED TO BY: 

TCBLLS (TCB + 24) beginning of chain. 

GENERAL FUNCTION: 

Maintain count of number of outstanding load's of a module. 

GENERAL CONTENTS: 

Pointer to next LLE in chain pointer to CDE for the model. 
Use count. 

LAYOUT CAN BE FOUND IN: 

MVTS 



CONTROL BLOCK DATA 

XL - Block Extent List 

POINTED TO BY: 

CDXLMJP (CDE + 14) 

GENERAL FUNCTION: 

Provide contents supervision with information regarding a particular block of 
a module plus note lists for overlay structured modules. 

GENERAL CONTENTS: 

Location of block. 

Size of block. 

TTR of each overlay segment. 

LAYOUT CAN BE FOUND IN: 

MVTS 

L 



CONTROL BLOCK DATA 

GOVRFLB 

POINTED TO BY: 

Location GOVRFLB in module IEAQGM resident nucleus. 

GENERAL FUNCTION: 

Origin list for main storage queues. 

GENERAL CONTENTS: 

PTR to beginning of dynamic area. 

PTR to DQE describing SQA. 

PTR to PQE describing unassigned main storage. 

LAYOUT CAN BE FOUND IN: 

MVTS 



CONTROL BLOCK DATA 

DPQE - Dummy Partition Queue Element 

POINTED TO BY: 

GOVRFLB + 8 free core'- TCBPQE (TCB + 98) allocated region. 

GENERAL FUNCTION: 

Pointers to beginning and mid of PQE chain. 

GENERAL CONTENTS: 

Pointer to first PQE in chain pointer to last PQE in chain. In order to locate 
DPQE. add 8 to the value located in GOVRFLB or TCB. 

LAYOUT CAN BE FOUND IN: 

MVTS 



L 

L 

CONTROL BLOCK DATA 

PQE - Partition Queue Element 

POINTED TO BY: 

DPQE points to beginning and end of chain. 

GENERAL FUNCTION: 

Used to define a region. 

GENERAL CONTENTS: 

Backward and forward PQE pointers 

Pointers to first and last FBQE I s 

Pointer to job step TCB owning the region 

Size of the region 

Core address of the region 

LAYOUT CAN BE FOUND IN: 

MVTS 



CONTROL BLOCK DATA 

FBQE - Free Block Queue Element 

POINTED TO BY: 

PQEFFBQE (PQE + 0) first PQEBFBQE (PQE + 4) last. 

GENERAL FUNCTION: 

Define free block (multiple of 2K) of core within an allocated region. 

GENERAL CONTENTS: 

Forward and backward FBQE pointers. 

Size of free block. 

LAYOUT CAN BE FOUND IN: 

MVTS 



C."ec.k ~, 
sPq£'~ 

. ~----n 

' . 

. ~ 

Pu~~~ uuu\ecl Oladu \e, 
€'XQf\\U\te.. t'rtv'~\h1 bC~w-ed 
~I a~ (~6)tRJ:)' 

S ch~ule. "'R~ / R:t 

'''~CL~~ ~ ~e~tu 
Space VI'" 

I 

~, . 

Feq~ 

. b", 'J j)~t: 
Q IUci c.lua uJ ' 

"10 'l)q~'S -{O. 
f. .(9. 



('. 

~ 

(' 

CORE STORAGE ORGANIZA-rION 

WITHIN A 

PROCESSING PROGRAfJi REGION 

I(EY OF ZERO 

~{EY OF REGION 

2K FETCH \VORK AREA 

REG SAVE 81 PARrv1 INFO 

KEY OF ZERO 

KEY OF ZERO 

~{EY OF REG,ION 

REENTRANT MODULES 
svellB 81 LIN~(LIB 

FREE CORE 

NON REENTRANT fVJODULES 

OR 
JOBLIB ~J10DULES 

::;::t ... ,~; *" g .. ......~~~:::~n=---"';1~--..:.!.--lL.. _-=.::-::!.C=.:"::"::~ 

r 

ONE REGION 



~ 
~ 

(' 

Request 
Block 
for 

o o I Subpool252 
I-:--~--+- --+--­o 0 0 0 

o o 

--f---+---+---o 000 

1-= - -.- - -.- - -+- - -o 000 

~ ~ 

Task 
Control 
Block 

10--"'0--0--*0- -

'o--to--o--+O- -

Example of Main Sforage Allocation CD 

Reque5t 
Block 
for 

Control 
Block 

Example of Main Storage Allocation 

o '0 '0 sUb-I 
~OOISubPOOI252 

0--+0---+0---+0-

O--+O--to--~-

--+---+--+-o 0 0 0 

0--+0 - -1-0- -"7>-

o --to --+0- --+0-

® 

(' 

Region 

Region 

Request 
Block 
for 

Request 
Block 
for 

Control 
Block 

Example of Main Storage Allocation 

Request 
Block 

for 

Request 
Block 
for 
Program 
C 

Control 
Block 

Example of Main Storoqe Allocation 

-::: 

(' 
5 '0 '0 '0 sUb-I 
~OOI Subpool 252 

~--~--+O---+O--I Subpool 
252 

~- -+--+---+---o 0 0 0 

10--+0 --fo-+o--

.J, 
" ,." 

-10--+0--+0-"'0--

10 - +0- -+0-+0--

® 

o o 5 '0 
SUb-I P301 Subpool25Z 

o--+o--~-"""o-I Subpool 
252 

0- +0- -+0- -+0-

0-+0--+0--+0-

0-+5--+5--1g­I Subpool 251 

® 

"Re.JI 

Re1J 



CONTROL BLOCK DATA 

SPQE - Subpool Queue Element 

POINTED TO BY: 

TCBMSS (TCB + 18) beginning of chain 

GENERAL FUNCTION: 

Define existence and identity of a subpool 

GENERAL CONTENTS: 

Pointer to next SPQE in chain 

Status of subpool, e. g., owned, shared or both identity - subpool number 

Pointer to first DQE, or to owning SPQE 

One SPQE will exist for each subpool in a region. 

May have multiple subpools 1-127 within a region, each one owned by a different task 

LAYOUT CAN BE FOUND IN: 

l.. MVTS 



CONTROL BLOCK DATA 

DQE - Descriptor Queue Element 

POINTED TO BY: 

DQE PfR (SPQE + 5) Beginning of chain. 

GENERAL FUNCTION: 

Defines a block (multiple of 2K) allocated for a subpool. 

GENERAL CONTENTS: 

Pointer to first FQE in the block. 

Pointer to next DQE for same subpool. 

Address of the block. 

Size of the block. 

LA YOUT CAN BE FOUND IN: 

MVTS 



CONTROL BLOCK DATA 

FQE - Free Queue Element 

POINTED TO BY: 

FQE PTR (DQE + 0) MVT (BBX + 0) MFT 

GENERAL FUNCTION: 

Defines contiguous free core. 

GENERAL CONTENTS: 

Pointer to next FQE. 

Number of bytes of,free core defined by this FQE. 

LAYOUT CAN BE FOUND'IN: 

MVTS 



T 
.~ 

Logic 

Tentative Calendar 

Day 1 

Introduction to operating Systems 
Development and Purposes 
OS/360 Concepts and Terminology 

Assignment: Read - HVT Control Program Logic Summary (Y20-665B) 
l1VT Job l1anagement PLM (Y28-6660) 
Introduction and Part I 

Day 2 

Interrupts and Tasks 
Interrupts 
TCB and RB's 
Task switching Routines 

. Dispatcher 
System Initialization Overview 
IPL Procedure 

LOl'.D button 
NIP 
Master Scheduler ( , Initialization -l Assigrunent:, Read - HVT Job Nanagement (Y28-6660) 

Part 2, Part 3, Part 6 - Work Queues and 
I/O Device Allocation 

\ ... , .. ' , . , 
~ ....... ' 

iJay 3 

Job Hanagement Overview 
The Work Queue 

SYS1.SYSJOBQB 
QCR's 
Logical Tracks 
Enqueueing work 
Dequeueing \'lOrk 

Process Input 
Definition of Input 

PROGRAHHING/SYS'J.'Dlt> EDUCATION - bDD POUGHKl:.EPSIE 



"Ordinary· Reader Interpreter 

Assignment: Read - l1VT Job ~'~anagcment (Y28-6660) 
Part 3, Part 4, Part 5 

Day 4 

Process Input (continued) 
ASB Reader 
RJE Reader 

Initiate, Terminate work 
Initiator 

Assignment: Read - HVT Job Uanagement (Y28-6660) 
Part 5, Part 6 

Day 5 

Initiate, Terminate Work 
Terminator 

Process Output 
Command Processing 

where commands may appear 
Communication Task 
Command Scheduling 
Command 'l'ypes 

~ Assignment: Read - HVT Supervisor (Y2B-6659) 
Section 1, 2, 9 

Day 6 

'l'ask Hanagement Overview 
Types of Interrupts and Handling of each 

SVC Interrupts 
Program Check Interrupts 
Bxternal Interrupts 
I/O Interrupts 
Machine Checks Interrupts 

Assignment: Read - HVT Supervisor (Y28-6659) 
Sections 3, 4 

Day 7 

Task Supervisor 

PROGRM1NING/SYSTill-1S hDUCA'l'ION - SDD POUGHKEEPSIL 



Task Creation (ATTACH) 
Task Termination (DLTACH) 
Serializing use of a resource (BNQ, OEQ) 

I Contents Supervisor 
........ Hacros 

Search for nodule 
. Alias processing 
Special Processing 
Use/Responsiblility counts 

Assignment: Read - MVT Supervisor (Y28-6659) 
Sections 5, 10 

Day 8 

Main Storage Supervisor 
Space in a region 
Space in SQA and Dynamic Area 
Rollout/Rollin 

Trace Table 
Size and usefulness 
Entrys 
Trace Table Control 

Termination Routines 

Assignment: Read - I/O Supervisor (Y28-6616) 
Introduction and Part I 

Day 9 

I/O Support (Y28-6609), Introduction, opening 
a data set, closing a data set 

Data i·1anagement Overview 

Volumes and Data Sets 
VA volumes 
Tape volumes 

Preparation for I/O 
Data set description 
Access Hetbods 
Control Blocks 
Opening a data set 
End appendages 

EXCP Supervisor 
Validity check 

PROGRNIHING/SYSTE.-iS LDUCATIO~J - SDD POUGHKEEPSIE 

L 



Schedule I/O Request 

l\.ssignment: 

-LDay 10 

Read - I/O Supervisor (Y28-G616) 
. Section II, III 

I/O Interrupt Handler 
i..ocate requeBtor 
Error Routines 
Restart channel 

• 
~' 

PROGHAllllIHG/SYSTE:1S LDUCATlo~r - SUD POUGHKEEPSIE 



Logic 

General Outline 

I Preface I 

A. Check roster I A. 

B. Badges I B. 

c. Description of Course I c. 

D. Intent (objectives) of Course I .,). 

E. Prerequisites I E. 

II Introduction to Operating Systems II 

A. Development and purpose of operating system II A. 

1. History 

2. Increase thruput 

! : . 3. Decrease turnaround tir,lE: 

~) B. 05/360 concepts and Terrninolo'lY II B. 

1 • Resources 

2. Lffective use of resources, by computer program 

3. Control Program Concei.,t 

4. Functions of Control 'Program 

5. Processing Programs 

6. 05/360 resource manager.lent routines 

7. User interface Wi~l OS/360 

8. Job and Step Concepts 

PH.OGRAHHING/SYSTBl-i5 LDuCATIOlJ - ~DD POUGHla;LPSIE 



9. Configurations of 05/360 

10. Tasks, Jobstep and Sub , 
11 • Task states 

~ 
12. Tasks, permanent system 

13. Tasks, TCB queue 

14 •. CPU - l-1ain storage - I/O Subsystem 

15. Instruction cycling 

III Interrupts and Tasks III 

A. Interrupts III A. 

1. Relation of interrupt to active task 

2. Hardware action 

3. Software action 

B. 'l'CD and RB I S III D. 

1. Use of Tca and r~ in interru~t processing l"\. . , ' .' t : . 2. Creation and contents of TCD and RBis 

C. Task'Switching Routines III C. 

1. Function 

2. When used 

3. Use of NE1'l/CURRENT pointers and TCa queue 

u. uispatcher III u. 

1. Function 

2. When entered 

3. Use of NEW/CURRENT pointer and TCB que"ue 

System Initialization OVerview * IV 

PROGRAHl,IIl.JGjSYSTE·.S l:;.iJUCATIOi>J - SDD POUGHIXEPSIL 



A. Initial Program· Load 

B. Nucleus Initialization 

l, c. l-iaster Scheduler Initialization 

v 

VI 

IPL Procedure • 

A. 

B. 

c. 

.LOAD button 

1 • Hardwar'e action 

~. Bootstrap record 

3. IPL CSECT - Software Processing 

4. Software processing 

Nucleus Initialization Program 

1. Building and initializing tables 

2. Initializing, the nucleus 

3. Loa.ding the link pack area 

4. Setting up F inal ~·lain Storage Divisions 

l-Saster Scheduler Ini tializa tion 

1. Console Initialization 

2. SET command 

3. Lxecution of AUTO Commands 

4. Volume Initialization 

5. Log Initialization 

6. SMF Initialization 

Job i·:anagement Overview 

A. the \'JOrk queues 

Process input 

c. Initiate, Terminate work ltasKs) 

PROGIWIHING/SYSTEl·,iS Ei)UCATION - SDD P()UGhKEEPSII; 

IV A. 

IV ~. 

IV C. 

v 

V A. 

V B. 

v c. 

VI 

VI A. 

VI B. 

VI c. 



D. Process output VI il. 

J::. Process conunands VI .1;;. 

LI The Work Queue lSYS1.SYSJOUQX;) VII 

A. SYS1.SYSJOBQE VII i\. 

B. Queue Control Records VII 13. 

c. Logical tracks VII C .-

D. Space management on SYS1.SYSJOBQE VII D. 

,E. Enqueueing work VII l.::. 

F. Dcqueueing work VII F. 

VIII Process Input VIII 

A. uefinition of Input VIII A. 

B. ·Ordinary" Reader/Interpreter VIII .d. 

1 • Function 

2. Control blocks it Luilds 

C ' , 
-- '): 3. Control of the Reader Interpreter 

C. ASB Reader VIII l:. 

1 • Function 

:l. Control of hSB Reader 

D. RJE Reader VIII D. 

1 • HJE Overview 

2. Function 

3. Control of RJE Header 

IX Initiate, Terminate \olork IX 

A. Initiator IX A. 

PROGRAMMING/SYSTEllS EDUCATION - SDD POUGHKEEPSIE 



1 • l"unc tion 

2. Device Allocation 

3. Create jobstep task 

B. Terminator IX B. 

1. Function 

C. Control of Initiator/Terminator IX C. 

1. Started by Operator Command 

2. Region size 

3. Initialization 

4. Stopping an Initiator/Terminator 

x Process Output (Output Writer) x 

A. Function X A. 

B. Control of Writers X B. 

XI Command Processing AI 

l. A. 
Where commands may appear 

1. . Console 

XI A. 

2. Input stream 

B. Communication Task XI B. 

C. Command Scheduling XI C. 

D. COIillland Types XI D. 

1. Task Creating 

2. Existing Task 

XII System Restart • XII 

A. How indicate IPL is for restart XII A. 

B. Inspection of SYS1.SYSJOBQE data set XII 8. 

PROGRAHHIUG/SYSTENS EDUCATION - SOD POUGHKLEPSIl::: 



I I " 

~ C. Processing of entries still on the queue 

n~II Task Management Overview 

XIV 

~ 
\ ) 

A. Tasks (review) 

B. Interrupts (review) 

C. Types of Interrupts anu handling of each 

D. Task Supervisor 

E. Contents Supervisor 

F. Hain Storage Supervisor 

G. Timer Supervisor • 

Ii. Over lay Supervisor • 

I. Trace Table • 

J. Termination Routines 

Types of Interrupts and Handling of Each 

A. SVC "Interrupts 

1. SVC types 

2. SVC FLIH 

3. SVC SLIH 

4. SVC Transient Areas 

5. SVC Exits 

Program Check Interrupts 

1. SPIE facility 

2. P.C. FLIH 

3. User Prog. Check routine exit 

4. Abnormal Termina tion L~' PC FLIH 

PROGRA}'J.1ING/SYST~-lS EDUCATIOiJ - SDD POUGIIKLEPSIE 

I 
!.. 

XII c. 

XIiI 

XIII 1 ... 

XIII B. 

XIII c. 

XIII D. 

XIII E. 

XIII P. 

XIII G. 

XIII H. 

XIII I. 

XIII J. 

XIV 

XIV A. 

XIV B. 



c. 

D. 

E. 

F. 

/' , 
( r G. 

H. 

~xternal Interrupts 

1. External FLlli 

I/O Interrupts 

1. I/O FLIH 

Machine Check Interrupts 

1. Recovery options 

2. SERO 

3. SER1 

4. HCH 

Asynchronous Exit Routines • 

1. Definition of 

2. How specify such a routine 

3. Scheduling of Asynchronous returns and control 
blocks involved 

4. Exit from asynchronous routines 

I;xit procedures (review, for the most part) 

1. From type 1 bVC routine 

2. From user program check handling routine 

3. From routine controlled Ly a SVRB 

4. From routine controlled Ly a PRB 

5. From routine controlled Ly an IRB or SIRB 

6. Common processing 

Task Switching Routines (review) 

1. When entered and why 

2. If NEW=CURREHT 

PROGlWll1ING/SYSTBi'l~ .c:UUCATl;ON - SUD POUGIIKLEPSIE 

XIV C. 

XIV D. 

XIV 1;;. 

XIV F. 

XIV G. 

XIV H. 



3. If i:~EW7'CURRLLJT I i:,jEW7'O 

4. If NEW~DRREHT I Uh\oJ=O 

I. 0ispatcher (review) XIV I. 

1 • When entered and why and how 

2. Use of NEW/CURRENT pointers 

3. Search of TCB queue 

Task 5upervisor XV 

A. Function Overview xv A. 

13. Task Creation (ATTACH) XV B. 

1. ATTACH macro 

2. ATTACH routines 

c. Task Termination (DETACH) xv C. 

1 • ~'lhen need ed 

( .. 
L 

2. Freeing TCB space 

3. Notifying other tasks 

D. Serializing use of a resource (ENQ,OBQ) XV D. 

1. Purpose 

2. How request is issued. and handled 

XVI Contents Supervisor >"'VI 

A. Function Overview XVI A. 

is. iiacros XVI B. 
... 

1 • ATTACH 

2. LINK 

3. 7.CTL 

4. LOAD 

PROGRAMlIING/SYSTI.;HS EOUCl\TIOi~ - SDi:> POUGliKI.:EPSI:C 



L 

c. 

D. 

F. 

Search for module 

1. Requestors region 

2. Private library 

3. Link pack area 

4. LINKLIB 

Alias Processing 

Special Processing 

1. LOAD 

2. XCTL 

3. IDENTIFY 

Use-responsibility counts 

1. Where maintained 

2. When incremented and decr~aentcd 

l1ain Storage Supervisor 

A. 

B. 

c. 

Function Overview 

Space in a region 

1. 'l'he region itself D-PQ£, POE, F130E 

2. Jobpack area and its subpool numbers 

3. Subpools 

4. SPQE's, DOE's, FOE's 

5. Owned/shared subpools 

Space in SQA and Dynamic l~ea 

1. DQE for SQA, FQE's in SQA 

2. PQE for Dynamic Area, FBQE's in dynamic area 

PROGRM-IMING/SYSTill·1S l:;DUCATION - SDD POUGHKEEPSIE 

/..VI C. 

XVI D. 

XVI E. 

XVI F. 

XVII 

XVII A. 

XVII D. 

XVII C.· 



D. 

XVIII 

3. GOVHFLlJ 

Hollout/Holl i.n * 
1. uverview 

2. Lihen and how invoked 

3. RORI Criteria Routine 

4. Search for space to allocate 

5. Allocation of another region 

6. Rollin 

Timer Supervisor * 
A. 

B. 

l,;. 

Function OVerview 

The Interval Timer 

1. Hardware feature 

2. Values in it decremented 

3. Initialized at IPL time 

The 'l'imer Queue 

1 • Soft" .. are feature 

2. consists ofTQE's 

3. Routines that handle the queue 

4. 'l'QE co n ten ts 

5. Types of TQE's 

6. Arr<lngement of TQE's in <..lueue 

7. Timer interrupt and the queue 

I). STINER routines 

1 • Respond to STI!lER macro 

2. Build and position TQ~ in the queue 

PROGRMUlING/SYSTEIIS EDUCATIOH - SilD POUGJiKEEPSIL; 

XVII u. 

XVIII 

xVIII A. 

XVIII D. 

XVIII C. 

XVIII u. 



E. 

F. 

G. 

L 

H. 

3. Enqueue returns 

Timer Interrupts 

1. Occur when interval timer Lecomes negative 

2. External FLUl 

3. Timer SLIII 

Task Timing 

1. Options 

2. STIMER return 

3. WAIT option 

'I. REAL option 

5. TASK option 

Jobstep timing 

1. \'lha t can be specified 

2. 

3. 

TIME on JOB and LXEC cards 

TIME on JOB card only 

4. TIME on :eXEC card only 

5. TIME not specified on either 

6. Initiator issues STL~ER for jobstep timing 

7. TOE and how manipulated 

TIME macro routines 

1 • Function 

2. Date from CVT 

3. Time of day 

'I. Elapsed time 

I 

PROGRAMHIUG/SYSTE,HS I.;DUCATIOH - SDD POUGnKEEPSIE 

XVIII E. 

XVIII F. 

XVIII G. 

XVIII H. 



.j. 

I. TTIMER macro routine~ XVIII I. 

1. vetermine time r~Maining in "n interval 

2. Cancel an interval 

3. Calcula tion of rCI,laining time 

4. Cancelling on interval 

XIX Topic veleted XIX 

xx Trace Table * xx 

A. Purpose xx A. 

B. Size and usefulness xx D. 

1. Sysgen option 

2. wrap-a~ound use 

3. I·lVT env ironmen t 

c. Entrys xx C. 

1. When made 

2.. Information in an entry 

D. Trace Table Control xx iJ. 

AXI Termination Routines XXI 

A. Function Overvievl XXI A. 

B. Entered from Exit Routines (SVC 3) XXI D. 

,. 
~·lormal Termination processing ~. XXI c. 

o. Abnormal Termination processing XXI o. 

XXII Data Hanagement Overview XXII 

A. Volumes and Data sets XXII A. 

B. Preparation for I/O XXII B. 

c. Initiating I/O XAII C. 

PROGRAMMING/SYSTEHS EDUCATIOH - SUD POUGHKEEPSIE 



t I . . 

U. J:!XCP Supervisor XXII u. 

E. I/O Interrupt Supervisor XXII 1::. 

XXIII Volumes and Data Sets X'<III' 

A. Direct Accesti Volumes y.xIII A. 

1. Volume label 

2. VTOC 

3. USCB's 

B. '.rape Volumes XXIII .d. 

1. Volume label 

2. Data set header labels 

3. Data set trailer labels 

XXIV preparation for I/O XXIV 

\ : A. J)ata set description XXIV A. 

~ 1 • DCB 
i. 

\ .I l. JFCB 

3. Data set label (USCE if on DA) 

B. Access llethods ;~XIV B. 

1. Function and types 

l. Selection of access methods and loading 

C. Control Blocks XXIV C. 

1 • DCB 

2. lOB 

3. DE CD 

4. ECD 

PROGIWU-lING/SYS7j.:;l·.S LDUCATIOH - SDD POUGIIl,LEPSIE 



!). DEB 

6. TIOT 

L 1. Channel Programs 

D. OPEN'ing a data set XXIV D. 

1 • l-lerge l)SCB Into JFCB 

2. l-1ergE! JFCB into DCB 

3. l"oad accens method executors 

4. Turn on nopen n but in the DCB 

E. End Appendages XXIV B. 

1 • Function and Purpose 

2. SIO (Start I/O) 

3. PCI \Program Controlled Interrupt) 

4. Lnd of Extent 

5. Channel End 

~ 
6. Abnormal End 

XXV EXCP Supervisor XXV 

A. Function Overview XXV A. 

B. Validi t~z' check on Control Blocks XXV B. 

C. Schedule I/O.request XXV c. 

1 • Obtain RQE and fill it in 

:l. Unit checked for availability 

3. Logical channel located. 

4. SIO module 

XXVI I/O Interrupt Handler XXVI 

A. Function Overview XXVI A. 

PROGIW'INING/SYSTEtiS l::DUCATION - SDD POUGIIKI:EPSIE 



B. Locate Requestor XAVI u. 

~ c. 
. 

Error Houtines XXVI C. 

D. Restart Channel XXVI D. 

PROGRAl1HIHG!SYSTEHS EDUCATION - SDD POUGIIKLEPSIE 



I 

! : 

05/360 Logic 
Detail Outline 

Preface I 

A. 

B. 

C. 

D. 

E. 

Check Roster 

Badges 

Course 

1. hours - start, stop 

2. length of course 

3. no machine problems 

4. heavy reading assignments 

!). (no grades) 

Intent of Course 

1. Show the parts of 05/360 and their interaction 

2. Concepts developeu to a detailed level but \l.ill not 
"hit bash" 

I li. 

I C. 

I u. 

3. Describe 05/360 Lut will not justify it nor rationalize 
it 

Prerequisites I E. 

1. EPT/GPT/SPT or 6 montus programming experience 

2. OS/360 User 

3. Knowledge of BAL 

PROGRAMNING/SYSTr:l-~S EDUCA'l'ION - SDD POUGHKEEPSIE 



II Introduction to Operating Systems 

A. Development and purpose of operating systems * 

Ref: Introduction, Part 1 (C28-6534) 

1. History 

a. Computers as machines to solve problems 

b. Fast and accurate 

c. Still, not used to capacity nor maximum 
efficiency 

1) CPU waiting much of the time 

2) Human played too large a roll in computer 
work 

II 

II.A. 

a). had to program everything he wanted done 

d. 

b) operator setup time was too long 

c) human slowness and inaccuracy limited 
machine's usefulness 

much of work done by hwnans could be done by 
computer programs 

1) Space allocation on auxiliary storage devices 

2) Main storage location assignments 

3) Translation of instructions from programming 
to machine language 

e. Such programs could be shared by all users of an 
installation 

1) Functional modularity developed in programs 

2) l.'ieed for and provisions b5 link. from one 
module to another were developed 

PROGRAl1HING/SYS'l'EAS LDUCATIOt! - SDD POUGHKEEPSIE 



B. 

f. CPU could "work on" several programs in main 
s.torage at once (" sirnul taneously") 

2. Increase 'l'hruput 

a. Amount of work performed by a con,puter in a given 
time span is increased (tilruput) 

1) prewritten, commonly used programs increase 
the speed of execution of a module 

2) execution of several programs "simultaneously" 
increases thE::: amount of work performed in a 
unit of' time 

3. Uecrease Turnaround tim~ 

a. A given program executes faster under newer 
computers 

1) prewritten, commonly used programs increase 
speed of execution of a module 

~J execution of several programs "simultaneously" 
increases the amount of work performed in a 
unit of time 

05/360 Concepts and 'l'enninology II B. 

1. Resourc~s 

a. As computers increased in complexity and flexibility, 
they came to De seen as collections of resources 

1 ) humans 

2) programs (in main storage) 

3) data 

ij) CPU time 

5) Hain storage space 

6) I/O channel tir.le 

7) Direct access storage space 

PROGRAMMING/SYSTEHS EDUCATIOH - SDD POUGEKLEPSIl: 



8) I/O devices 

9) the CPU 

To effectively and completely use the resources, computer 
programs were written 

a. to allocate a particular resource to a program 

b. to monitor the use and function of the resource 

c. to provide otHer functions and services needed i.Jy 
most or all users of the computer 

3. The programs that allocate and monitor a resource and 
service requ~sts are }~nO\vn collectively- as the control 
program 

Ref: Handout S1, V25-6156 

a. Since the control program is a program and programs 
are resources, the control prograr.l controls and monitors 
itself 

b. This concept is essential to an operating system - it 
interacts ~ith itself1 it is a resource to Le allocated 
yet it does the allocating 

c. 'i'his "self-monitoring" is accom!)lished via the hard'~ ... are/ 
software interrupt scheme. 

4. The Control Program has three main functions 

a. to accept and scht:!dule work to Le done (Job dgmt.) 

b. to supervise ~ach unit of work as it is done (Task 
Hgmt. ) 

c. to act as a· "cushion" between programs and different 
types of I/O deviceu, data formats, storage mediums, 
etc. (Data Hgrnt.) 

5. Programs, IBN or user \-Jritten, that''Provide functions 
other than the control program are called processing 
programs 

a. Language Translators (Assembler, Compilers) 

b. Service programs (Link Eoitor, Loader) 

PROGRAMIUUG/SYSTEMS EDUCATION - SOD POUGHY-EI:PSII: 



c. Utilities 

d. User programs 

6. The resources of OS/360 alld their managers arc 

a. Hwnans - Haster Scheduler 

b. Programs (in Nain Storage) - Contents Supervisor 

c. Data - Uata ilgmt. (access methods) 

d. CPU Time - Timer Supervisor 

e. Hain Storage - l1ain Storage Supervisor 

f. I/O Channel Time - I/O Supervisor 

g. Direct Access Storage Space - UADSN Returns 

h. I/O Devices - Initiator and I/O Supervisor 

i. CPU - Dispatcher 

7. User Interface with OS/360 

a. JCL - language by which user specifies 

1 ) work he wants computer to do 

2) sequence in wHich he \vants it done 

3) conditions under which he wants it done or 
skipped 

4) data sets and devices his program will need 

b. Linkage conventions 

1) preserving registers 

2) providing another save area 

3) chaining the blo areas 

c. These interfaces are necessarily well defined 
and, in the case of JCL, rigidly enforced; it is 
by these conventions that the user 

PROGRAMHING/SYSTE!·~S l.DUCATIO£J - SDD POUGHKi..EPS IE 



\ 

1) informs the system what he wants done and hm., 

2) allows the system to schedule, monitor and 
execute his program the same way it qoes all 
others 

d. Without adherence to standard conventions t!!e 
concept of a flexible, generalized group of 
programs (the operating system) servicing varied 
user reques·ts (e.g., doing wcrk) would degenerate 
into the original state of computers - each use, 
each job, each application would have to be 
individually and sequentially set up and 
customized. 

8. Job and Step Concepts 

a. A JOB has been variously defined as 

1) uni t of \wrk to a computing center 

2) everything in input stream from one "//JOB" 
card to ~.e next lor to end of file) 

b. A step has been variously defined as 

1) unit of work to a computer 

2) everything in input stream from one "//EXEC" 
card to the next lor to next "//JOB" card 
or to end of file) 

c. BOel words are "input stream" oriented and are 
therefore, external and artificial in an attempt 
to understand OS/360 internals but a job must 
consist of one or more step 

9. Configurations of ~S/360 

Ref: Storage EstiPla tes for Hain Storage Layouts of 
PCP, HFT, i·lVT systems (C28-6551) 

a. The concept of a control program and its functions 
require that a portion of that program Le in main 
storage at all tiT.es, this is called. the nucleus 

b. Various configurations of OS/3GO differ in the 
number of des tinct programs that can be in execution 

PROGRAMHING/SYSTEl1S EDUCATION - SDD POUGIlKLEPSIE 



\ 

at the Silm(;! time .u.ncJ in UlC WiJ.Y main storage.:: is 
assigned and utilized 

c. PCP - Primary Control Program 

1) 

2) 

~ucleus in low core 

Optional reentrant, often used routines above 
it 

3) rest of main storage available for the one 
program that can be executing at any ti~ 

d. MFT - Multiprogramming with a Fixed Number of 
Tasks 

1 ) Nuc leus in lm-1 core 

2) System Qucue Area (SQA) - protected area 
for control blocks - above nucleus 

3) Optional, reentrant, often used programs 
above SQa 

4) Rest of main storage divided into sections 
called Partitions 

a) nwnLer of partitions and size of each 
determined when system initialized 

b) several programs can be executing 
in each partition (can have 
idle partitions though) 

e. l-1VT - Hultiprogramming with a Variable Number of 
Tasks 

1 ) i:~ucleus in low core 

2) System Queue Area above nucleus 

3) Link Pack Area (LPA) - often used, reentrant 
code, not o~tional - in high core. Modules 
in LPA-can be used by any and all programs 
in the system 

4) llaster Scheduler H.egion just belo\,l LPA 

5) Rest of main storage availatlc for allocation 

PROGRAr1MING/SYSTE}1S EDUCATIO~~ - SDD POUGHKr:;EPSIE 



as region~ ~ when region is requested for a new 
program, reqion i!J allocated from wherever 
sufficient space is available (contiguous space) 

6) Regions are of varying size and as many can be 
in existence as dynamic area size will allow 

7) One "main program" in each region (Jobster! task)' 

8) Any nwnber of "sub programs" (subtasks) in the 
region, onl~ limit is siz~ of region. 

10. Tasks, Jobstep and Sub 

a. Tasks 

Ref: . Handout S8 

1) a request for the e~ecution of some code 

note: Deliberate generality in the word "some", 
the prograI1l specified in the EXEC card or 
in ATTACH rllilcro is not, by a long shot, 
all the code that will be executed as that 
task. Also, "request" means just that, 
system may not execute the specified code, 
if various conditions prevent it 

2) that to which resources are allocated 

3) competitor for system resources (or for CPU) 

4) tha t which ABEND's 

h. Every step of a JOB becomes a jobstep task 
when (and if) that step is executed 

c. Tasks in 05/360 configurations 

1) PCP - one task in the sY!:item at any time 

2) MFT - ca~1 have more than one task per partition 
(can have idle partion though), 

3) HVT - one jobstep tas}~ per region (no such 
thing as all idle region, unused dynanic 
space is available or unuseu), any nurru..,er 
of suLtasks per region 

PROGRAMNING/SYSTEl'1S EDUCATION - SOD POUGHKEEPSIE 

r 



'L 

d. Programs (tasks) can issue ArrTACH macro to create 
other tasks (£u~tasks) 

, ) only tasks with protect key of 0 (generally 
system tasks) can create j00ste~ tasks 

2) user ATTACH's create suLtasks 

e. Bvery task is ret1resented to the operating system 
by a Task Control Block (TCB)- a collection 
pointers and indicators used to keep track of 
various resource~ allocated to that task and to 
control and monitor the task 

I 

f. Jobstep andSuLtask TCB's are identical in size 
and format, the fields which distinguis~. the t\>JO 
types of tasks ar~ 

Ref: HV'r Supervisor, Section 12, TCB format (Y28-6b59) 

o. ) JSTCB - pointer to the jobstep task in the 
region, when a TCE contains its own address in 
this field, !! is the jODstep task in the region 

. 
2) OTCB - originating a mother task - points 

3) 

to the TCB of the task that created this one. 
Even jobstep tasks were created by another 
task (an initiator) 

NTCB - next or sister task - points to next 
older task among severa,l tasks vIi th a common 
mother., Each sister points to the next older 
sister, the oldest contains ~eroes in this 
field. 

4) LTCB - last or daughter task - points to 
most recently created (youngest) subtask of 
this one~ Lvery mother task points only 
to its youngest daughter, the daughters are 
chained amongst themselves (NTCB pointer) 
and all point to the common mother task 
(OTCB field) 

5) These pointers are used to maintain the subtask 
queue or n family rela tionsilil-'s" between the 
tasks in a region 

11. Tasks States 

/ 

PROGRAMIUNG/SYSTUolS LDUCATION - SDD POUGm~EEPSI:C 



'<, 

Ref: Handout S2 

a. 

note: 

1\ task can be in one of several states during its 
life in the,system 

1 ) active - the CPU is executing the code of the 
task 

There can be only one active' task in a uniprocessing 
system. 

2) ready - capable of using the CPU but doesn't have 
it 

3) wait - not capable of using the CPU even if it 
had it 

4) dormant - thru executing, system is performing 
housekeeping for the task before destroying the 
TCB 

note: A task "exidts" as long as its TCD does 

b. A task moves from one state to another by various 
interrupts occuring 

1) 

2) 

3) 

4) 

5) 

active to ready - interrupt occurs, some other 
task receives control (displaced) 

ready to active - LPSW executed by dispatcher 
causes task to become active (dispatched) 

active to wait - WAIT SVC issued by active task 

wait to ready - system or another task POST's 
the event complete that the task was WAITing on 

active to dormant - task executes final BR 14 
thereby signalling its termination (via SVC 3 
instruction at address in reg 14) 

12. Tasks, Permanent System 

Ref: INT Supervisor, Section 12, after TCB format (Y28-6659) 

a. The routines in the nucleus (;!xecute as tasks - the 
control program is a resource and must be monitored 
and controlleci, the means of monitoring and con-

PROGRAl1,HIHG/SYSTEHS EDUCATION - SOD POUGHKEEPSIE 



i~ 
13. 

\ 

b. 

~rolling any taDk is it~ TCB 

Certain 'l'CB's are assembled into the· Nucleus and 
thus these tas]~s are "created" by loading the aucleu5. 
These tasks are rermanent (their TCB's are never 
freed) and are system tasks lprot. key 0) 

1> one TCB for each SVC transient area lloads 
the SVC return into the associated area) 

2) System Error TCB lloads and executes I/O 
error recovery routines) 

3) Rollout/Rollin TCB ·(optional - performs 
Rollout/Rollin processing) 

4) Conununications TCB lhandles I/O from any 
system consoles) 

5) Master Scheduler TCB lresponds to operator 
conunands, creates system tasks) 

c. These tasks are usually in the WAIT state, until 
they are made active by a request for the function 
they provide 

'I'asks ,TCB queue 

a. Every TCB in tIle system is on a mas tar queue of 
TCE's, regardless of whether the task is for a 
system program, is a jobstep or subtask 

b. The TCD's are enqueued in descending priority: 
l'lithin -a group of equal priori·ty tasks, enqueueing 
is FIFO 

c. The or ig in of the queue is in t:le CVT 

1 ) loc. 10 contains tlw addre~s of the CVT 

"J.} CVTlILAD contains address of first TCB on the 
queue 

3) the permanent system tasLs are the first TCB's 
on tbe yueue in the order indicated under topic 
12. b. 

d. '1'11e queuing field Ly which the 'l'CE's are entlueued 
is distinct from the "family" queue developed 

PROGRAMMING/SYSTEHS EDUCATION - SOD POUGHKEEPSIE 



e. 

for the various tasks in a region in t1VT 

tf a task changes its priority, it is moved to 
the corresponding position on the queue 

f. When an interrupt is handled and a task is to 
be dispatched, tlle dispatcher uses this queue to 
locate the highest priority ready task and dispatches 
it . 

14. CPU - }fain Storage - I/O Subsystem 

Ref: Principles of Operation, "System Structure" (A22-6821) 

a. Basic concept of a computing system has three pari:s 
which must be treated separately 

b. CPU - Control Processing Unit 

1) contains registers 

2) fetches each instruction to be executed 

3) analyses each instruction 

4) execut~s that instruction 

!» fields interrupts 

c. t-lain storage 

1 ) contains instructions to be executed 

2) contains data the instructions reference 

d. I/O Subsystem - Channels, Control Units, devices 

1 ) Channels are limited CPU's 

a) have limited instruction set 

b) can access main storage independently of 
and simultaneously Witll the CPU 

c) once started by CPU, can function 
independently of the CPU 

2) Generate interrupts 

PROGRAHMING/SYSTEMS EDUCATION - SOD POUGHKEEPSIE 



L e. 

3) Transmit uata from secondary to main storage 
and vice versa 

It i~ the interaction of e1ese 3 parts which 
allo\,Ts multitasking and gives the operating system 
its speed, flexibility and power 

15. Instruction cycling 

a. the execution of instructions is accomplished 
by the CPU fetching instructions, one at a time, 
from main storage, analyzing them and then per­
forming the operations indicated 

b. the execution of instructions is done in a cycle 

c. 

1) I-Time - interpret time in which the CPU 
analyzes the instruction for proper format 
operand addresses, etc. 

2) E-Time - execution time in which the 
operation is performed 

3) pause in which an interrupt may occur, during 
I-Time and E-time, the CPU is not interruptable 

It must Le emphasized that main storage is just the 
repository for instructions - control program, the 
nucleus, problem programs, in short the operating 
system resides in main storage 

d. The CPU takes one instruction at a time, sequentially 
and executes it, thus is the "computing" of a computer 
accomplished. 

PROGRAMMING/SYSTEllS EDUCATION - SDD POUGHKeEPSIE 



tIl Interrupts and Tasks 

A. 

L 
Interrupts . 

1. Relation of Interrupt 
may not be related to 
an I/O interrupt that 
initiated 

to active task - interrupt 
the active task, it may be 
another, waiting, task has 

2. hardware ac tioll . 

. a. In all cases when an interrupt occurs the 
hardware 

1) stores the current PSW in the fixed 
location appropriate to the interrupt 
type 

2) loads the PSW, corresponding to the 
interrupt type, from the appropriate 
fixed location 

b. The code pointed to by the new PSW handles 
the interrupt 

3. Software action 

Ref: HVT Supervisor, Section 2 (Y28-6659) 

a. The routine given control as a result of the 
new PSW being loaded (known as First Level 
Interrupt Handler - FLIH) preserves the status 
of the interrupted task by 

1) storing the registers in a save area (a 
private save area or in the interrupted 
tasks TCE) 

2) moving the stored "old PSW" to a safe place 
(request block chained off interrupted tasks 
TCB) 

b. This routine then analyses the interrupt to try 
to handle it 

PROGRAMMING/SYSTEl·i.S hDUCATION - SDD POUGHKEEPSII; 

III 

III A. 



L B. '-..... 

c. Processing varies for the various types of 
interrupts 

TCB and RBis III B. 

1. 

note: 

Use of in interrupt processing 

a. In most cases, the registers in usc at time of, 
interrupt are evcntLlall~; stored in the '.i'CB of 
the interrupted task 

b. When this is done varies with the type of 
interrupt 

c. 'rhe dispatcher expects the registers to be there 
the next time that task is dispatched 

d. Request blocks cltained off TCB represent levels 
of self-generated, interrupted program control in that 
tas~ 

e. Request blocks used to keep track of module(s) 
at various stages of execution on bellalf of 
the task 

f. Each request block has space for reswne PSW for 
the module the request block represents 

RBis, not TCB's, are associated with the execution 
of modules of code. A task is just the request for 
the execution of some code. 

g. When dispatcher next dispatc:1es a task, it expects 
to get the resume PSW from the RB pointed to from 
the 'rCB 

h. 103 1 s associated with a task are chained to each 
other by a link field 

i. Due to type of interrupt, and linkage conv~ntions 
to program to receive control, some RBis have a 
register save area (SVRB, lRB) 

2. Creation and contents of TeB and RBis 

Ref: NVT Supervisor, Section 12, 'l'CB and RB I S 

Section 3 Task Creation (Y~8-6659) 

PROGRAfvlNlNG/SYSTEHS hDUCATlON - SDD POUGHKEEPSlh 



a. Tca created as result of ATTACH SVC 

b. ATTACH routines 

note: 

note: 

1) determines type of task to be created 

a) jobstep - requestors prot-key lin old PSW) 
is 0 

b) subtask - requestors prot key is hot 0 

2) obtains space in SQA for TCD 

3) initializes the TCB 

4) 

5) 

6) 

7) 

a) PRTY 

b) 'rIOT 

c) space mgmt in region 

d) 

e) 

f) 

g) 

JOBLIB/STEPLIB uCB address 

family TCB pointers 

registers with parameters needed by first 
module to be executed on beb,alf of new task 

pointer to RB for first module of the task 

This HB is the SVRB created as result of 
requestors ATTACH SVC and has been dequeued 
from requestors 'l'CB and enqueued off new TCB 

, 
enqueue TCB on main TCB queu~ according to 
priority 

enqueue on subtask queue in proper relationship 

determine whether mother or daughter has higher 
priority, set NEW pointer to point to that 
task 

exit to dispatcher who dispatches either mother 
or daughter 

At this point in course, this discussion of RB 
and contents supervision is deliberately vague, 
to explain it in detail at this point would be 

PROGRAMMING/SYSTEMS EDUCATION - SOD POUGHKEEPSIE 

i 

I 
! 

I 



L 

( 

L 

c. 

d. 

confusfng 

The RB.thus chained off new TeB contains a PSW 
pointing to. first module to be executed on behalf 
of new task (it is the Contents Supervision Searcil 
routine, which searches for needed module) 

There are 4 types of RBis in OS/360 HVT 

Ref: HVT Supervisor, Section 12, PRB, SVRB, IRB, 
SIRB and associated sections of text (Y28-6659) 

1 ) 

2) 

PRB - for problem programs, contains 

a) resume PSW 

b) pointer to control block describing the 
module 

c) wait COllnt field 

d) link field 

SVRB - for certain SVC routines, contains 

a) resume PSW 

b) indicator of which ~VC is being executed 

c) register save area 

d) wait count field 

e) extended save area (misnomer, is used as 
parameter area between loads of the SVC 
routine) 

f) link field 

3) IRB - Interrupt Request Block for asynchronous 
routine, contains 

a) address of a save area the asyncilronous return 
can use 

b) wait count field 

c) reS\lIne PSW 

PROGRAMMING/SYST.L;l-iS BUUCATION - SDD POUGHKLEPSIE 



L 

c. 

(~ 

d) register save area 

e) link field 

4) SIM - System Interrupt Request Block for I/O 
error recovery routines 

a) name of error routine 

b) wait count field 

c) resume PSW 

d) register save area 

e) link field 

Task Switching routines 

Ref: MVT Supervisor, Section 3 "Services Internal to 
the Supervisor" \Y~8-6659) 

1. Function - to inciicate, not effect, a task switch the 
next time the dispatcher is invokec1 to dispatch a task 

2. When entered 

a. RB wait count in a tasks top RB is cleared to u 

b. TCB non-dispatcllaLility flag(s) cleared 

3. Use of l~EW/CURRENT pointers and maill '.L'CB queue 

a. NEW/CURRLNT pointers are a double word of pointers 
used to determine next task to be dispatched 

b. First word of CVT points to .L\lEW/CURRENT pointers 

c. Task Switch routines passed address of newly 
readied task (subject task) 

,d. If NEW=(,;URRENT 

1) compare subject to Nl:.'W 

III C. 

2) if subject priority high, set L.EW to suLject 'l'CB 

3) if subject priority 10\\', no change 

PROGRAMHIUG/SYSTEl"lS EDUCATION - SDD POUGHKEEPSIE 



( " \ . 

D. 

L 

4) if subject priority equal to I~EW 

a) search 'l'CB queue from NEW 00WN 

b) if suLj ect 'l'CB ~ found, set NEvI 
to subj ect 'l'CB 

c) if subject TCB found, no change 

e. If i'd:,"W~CURRLNT, NEW~O 

(Task switch already indicated Lut dispatcher not 
invoked yet) 

invoked yet, proceed as in d. ) 

f. If l'iEW~CURRENT, ~~EW=O 

(TCB queue search indicated Lut dispatcher not 
1) compare subject priority to CURREL'lT 

2) if subject priority high, set i~E\'l to suLject 'lICE 

3) if su~ject priority low, no change 

4) if suLject priority equal to CURRENT 

a) search 'j,'CI:s queue from CURRENT dOvm 

b) if subject 'l'CB ~ found, set i:U:,W to 
TCD 

c) if subject Tea found, no change 
I 

4. WAIT routines are only ones to set ~mw' field to 0, 
\iAIT is a type I SVC 

I 
a. if it exits before awaited event(s) completed, 

1) set HE.W to 0 

2) invoke dispatcl1er 

subject 

b. this is one of the few situations in which a type I 
SVC does not return directly to the requesting 
program by a LPSW. ' 

Disptacher III j). 

PROGRAMl1ING/SY~TLHS i..DUCATION - SDD POUGHKEEPSIE 



( 

Ref: MVT Supervisor, Section 9, "Dispatching­
(Y28-6659) 

1. Function 

a. Selects and makes active the next task to be 
dispatched 

b. Completes scheduling of user asynchronous exit 
returns (stage 3 exit effector) 

c. Handles task and jobstep tL~ing 

d. Handles time slicing 

2. When entered 

a. Generally, after an interrupt has Leen processed 

b. Entered by a branch; dispatcher is a resident, 
non-SVC routine in the nucleus 

3. Use of NEW/CURRENT pointers 

a. If ~:.EW=CURru.;NT 

b. 

1) no tasks switch indicated 

2) restores registers from TCB indicated 

3) loads PSW from fW pointed to from that TCB 

If m:.'W~CURRENT, Nl:;W~O 

1) task sVli tch indicated, NEW points to next task 
to be dispatched 

2) makes NEW/CURRENT pointers equal to task iJeing 
dispatched 

3) restores registers from HEW TCB 

4) loads PSW from RB pointed to from NEW TCB 

c. If l~EW1'CURRENT, LIJEW=O 

1) task queue search indicated, CURRENT task in 
WAIT state 

PROGRAMJ.lING/SYSTEi.·1S l.:DUCATION - SOD POUGHKEEPS IE 



note: 

2) search TCB queue from CURRENT TCB dO\'ln, for 
a ready task 

a) wait count field in top RB is 0 

b) no "non-dispatchaLility" flags in TCB are on 

~'Jhen such a task is found, by the organization of the 
queue, it is highest priority ready task 

3) 

4) 

5) 

6) 

makes Nh~/CURRENT pointers equal to TCB being 
dispa tche<i 

registers loaded from that 'l'C13 

PSW loaded from RB pointed to from that TCB 

if end of TCB Queue reached and no ready task 
is found 

a) a special pseudo-task is "dispatched" 

b) RB is part of TCB (first word of TCB 
contains the address of TCB) 

c) the PSW loaded puts system in an enabled 
WAIT state 

PR<XiRAI'1HING/SYSTEl'1S LDUCATION - SDD POUGHKl:..BPSII; 



IV 

L 

( 

System Initialization Overview • 

A. 

B. 

Initial pr~gram load 

1. IPL is a hardware/software process by which the 
operating system is activated and initialized. 
It consists of 

a. Setting uials on system control panel to 
address the I/O device containing the IP~ 
text, the SYS1.iJUCLEUS data set, etc • 

b. Pushing the LOAD button on tile control panel 

2. '1'his causes hard wired circuitry to perform the 
loading of the IPL program which in turn loads the 
nucleus 

Nucleus Initialization 

1. The IPL program eventually loads the nucleus 
ini tializa tion program whicli 

2. 

a. builds and initializes various tables an~ work 
areas in the nucleus 

b. 

c. 

establishes communication with tile operator 

performs special processing on the basis of 
operator instructions 

d. establishes boundaries of 

1 ) SQA 

2) Master Scheduler Region 

3) LPA 

4) dynamic area 

Control is then passed to the l-iaster Scheduler 
Initialization Routine of the Haster Scheduler 

PROGRAMHING/SYSTL1·1S J:..:uUCATIOH - SUD POUGHKEEPSIE 

IV 

IV A. 

IV B. 



c. 

L 

L 

Master Scheduler Initialization 

1. This routine formats various control blocks used 
by the master scheduler and 

a. displays automatic commands 

b. waits for SET command 

c. initializes work queues if requested to 

d. schedules execution of auto commands 

e. enters wait state 

PROGRAHMING/SYSTEl<iS EDUCATION - SUD POUGHI~Er;PSIE 

IV ~. 



/ 

IPL Procedure 

Ref: IPL/NIP PU1"lY28-6obl) 
IPL Appendix 

A. 

IPL CSECT ,from programming library) 
Handout S7 

:iJOAD button 

1. Hardware Action 

a. Hardware circuitry is set up to 

1) seek to cyl v, track v 9f device atiuressed 
by console dials 

.j read 24 bytes (3 double words) into location 
o of main storage 

b. These:l4 bytes consist of: 

c. 

d. 

1) APSlv - unused in IPL of OS/360 but is used 
in IPL of other systems (DOS, TOS, etc.) 

~} 'i'wo CC\v' s - used to cause reading of IPL 
bootstrap record 

Hardware circuitry causes "execution" of first 
CCW which brings IPL bootstrap record into main 
storage at an address greater than size of IPL 
CSl:;Crl' 

Second CC\v is usually a TIC to IPL bootstrap 
record but may be installation modified to 
something else 

2. Bootstrap Record 

a. Is then "executed" Ly circuitry 

b. It usually consists of a series of CCW's 

c. Wnen "executed" oootstrap causes .. IPL CSECT to 
be brought into location u - the location of the 

PROGRAHI1IHG/SYSTEHS :GLJUCATION - SDD POUGHKEEPSIE 

v 

V A. 



L 

note: 

/" 

, " 

note: 

d. 

bootstrap record was high enough so as not to lJe 
overiayed by IPL CSECT 

Last instruction of bootstrap is a simulated LPSW 
which causes first doubleword of IPL CSECT (which 
is a PSW) to be loaded by the CPU and true 
instruction cycling begins 

3. IPL CSECT 

a. ,Is first true software in IPL Procedure 

h. Operator can cause loading of an alternate nucleus 
or limit storage size by doing an instruction stop 
at location 80 and inserting appropriate indicators 
at locations 8 anu 9 

c. Thus instruction cycling will stop after first 
instruction of IPL CSECT (which is a hALR 15,0 
to establish addressability) allowing insertion 
of the indicators 

IPL CSEC~ uses DC's to construct the PSW at loc. 0, 
and zero out main storage to location 80 , with the 
exception of the program check new PSW which is con­
structed at its required fixed location, first executable 
instruction is the BALH at loc. 80 

Software Processing 

a. IPL CSECT 

1) clears req's 0-14 (15 used as base reg.) 

2) inserts address of a program check handling 
routine in reg. 10 

IPL CSECT has used J.)C I S to construct the PIC new PS~'l at 
appropriate location in low core. It needs that PSW 
as it clears main storage to O'S by doing a STH until 
it gets a program check 

3) checks loc. 8 for alternate nucleus indicator 

a) if 0 - IEANUC01 is fetched 

b) if non 0 - append byte 8 to standard 
name IEM~UCO to form name of nucleus 
to be loaded 

PROGRA.f.11'lING/SYSTE..'1S .t...DUCATIOi.>.J - SDD POUGliKEEPS rr 



note: 

L 

note: 

Can have 9 uifferent nucleui lI~~UC01-0~), all must 
be members of PUS SYS1 .l~UCLEUS on pack from which 
system was IPL'u. 

4) checks core size limit indicator 

5) clears main storage to u's 

a) uses 8TH rather than iIIVI, l-,iVC as register 
to storage is faster ti1an storage to 
storage instruction 

b) starts from end of IPL CSECT 

c) continues until a program check occurs 
or until limit indicated by loc ~ is 
reached 

6) sets all protect keys to 0 

7) searches for nucleus 
c-

a) appends character at loc 8 to IBAHUC0 if 
loc ~ is non ~ero 

lJ) if loc ~ is u, searches for IEANVC01 

c) reads label of system residence device 
(device you IPL'd from) 

d) locates VTOC of residence device 

e) searches VTOC for SYS1.1JUCLJ::US data set 

f) reads scatter/translation record for 
selecteu nucleus into main storage above 
IPL CSBC'l' 

0) builds tables used in loading ana relocating­
the nucleus 

a) size table - determines size of every 
CSBCT in nucleus, uses-CSECT origin 
,relative to origin of load module} obtained 
from scatter table \part of scatter/translation 
recor(1) 

!~ucleus is set up to La scatter loaded - each CSl;;C'l' can 

PROGRANt-n:-1G/SYSTl:.""!8 LDuCA'l'ION - SuD POUGHl~l!:LPSIL 



note: 

be loaded into main storage in distinct locations from 
other CSBC'.f' s ill the load module, the module does not 
have to occupy contiguous bytes of storage as a Llock 
IOaded module does. 

b) address table - for each CSECT an entry 
is constructed indicating where that 
CSECT will be in main storage. uses 
info. in size taLle and previous entry in 
address table to arrive at val:ue for each 
CSECT 

It is assumed the first two CSECT' s of the nucleus \lill 
Le .UP and I/O Interruption ltandler. I/O Interruption 
handler is only CSECT tha t must reside at a fixed Ciddre'ss 
in main storage - at location 0 - Lecause it contains pre­
assembled old and new PSW's that must occupy fixed 
positions in main storage 

9) 

c) relocation factor table - for each ~SECT, 
IPL program calculates relation factor 
to be used in resolving addresses in each 
CSECT. When ciucleus link edited, relative 
origins were determined and the address con­
stants in each CSECT were filled in using that 
relative address. 'l.'ilus it is necessary to 
arrive at a true relocation factor Lasea 
on difference between re!lative and actual 
origin. 

IP~ program now relocates its unexecuted code­
and the tables just built into high core (no 
higher than 252K though) so nucleus can be 
loaded into location 0 and zeroes out the area 
it is vacating 

10) Hucleus CSECT's are loaded 

a) first CSECT is i:ap and is loaded into 
storage just below relocated IP~ code 

b) second CSECT is I/O interrupt handler 
and must be loaded into location 0, 
tables have been built so this happens 

c) other CSECT's loaded as encountered in 
load module 

11) Passes control to dIP program, passing in general 

PROGRAL1NING/SYST1:.:-1S EDuCATION - SDD POUGHKEEPSIE 

r 



L 

B. 

registers 

. a) size of main storage 

b) address of system residence device 

c) address of size table and address table, 
and number of entries per table 

d) address of next double word above nucleus 

e) IPL branches to loc 16C, which is a LPSW 
from 170, the PSW at 170 contains address' 
of f~rst instruction of ~IP 

Nucleus Initialization Program V B. 

1. Builds and initializes tables 

a. CV'J.' 

1 ) CVT is preasscrnLled in I/O Interrupt Handler 

2) NIP puts address of CVT in location 10 

3) As other control blocks and tables built, 
their addresses are put in CVT 

4) Highest main storage address put in CVT 

b. Trace Table initialization - optional 

1} retrieves and rounds to 8-word boundaries the 
entries in the 3-word control area for the trace 
table 

2) address of the 3-word area inserted in 
loc 84 (!:.i4 hex) 

c. Determines size of LCS (2361 cor~ storage) 

d. Determines console readiness 

1) console initialization routine locates con30le 

a} sysgen supplied addresses of primary 
and alternate consoles (e.g. 009) 

b) seaches VCB table for UCD wi~l 

PROGRANMING/SYS'l'EHS EDUCATION - SUD POUGHh.EEPSIL 



note: 

note: 

tha t address 

2)· checks console readiness 

a) if not ready, trie~ alternate console(~), 
if they are not reaC:l' - 'i~AIT state, X'07' 
error coue, al1U must re-IPL, can't just 
ready the console 

L) if ready, continues processing 

Bit settings in UCB indicate whetller device is ready or not, 
but all UCB's are assem0led at sys gen time as online and 
ready, therefore a,TIO is done to verify the consoles readiness 

e. Initializing Ready:JA - UeB' s \uumb .UP) 

1) Checks, via a ~IO instruction, only the Jh UeB's 

2) All vca's generated as online and ready 

3) If device ready, ,up tioes the following 

a} vol. serial of volume mounted read into 
uCB 

bJ TTR of volume VTOC placed in uCli lit~ 
in vol. labelJ 

~uilds taLle of ready DA devices for later 
reference 

~J Smart UIP continues process 

aJ checks only non-UA ~evice uCB's 

b) if not rEO!ady sets Li ts in veil to so indica te 

f. Initializing the System l~esidence \JCD 

1) .UP checks uCti' s for one with device adtiress 
equal to the device you IPL'u from 

Could have tried to IPL from a device- not specified at sytigen 

2) If found, UCB marked so volume mounted on it is 
permanently residence 

3) If not founu, operator message issued to mount 

PROGJW.ll,ailG/SYSTLHS EDUCATIm~ - SDD POUGHKt..;EPSIE 

: 1 



(, . 

SYSRES on a logically lon line) connected device 
and system goes into wait state and must Le re-IPL'ci 

g. Setting up DEB's 

1) Built at hi end of nucleus because multi-extent 
SVCLIB or multi-extent or multi-volume .LlbKLI.u 
requires DEB's that vary in size and \-iill alter 
size of nucleus 

2) lUP builds and initializes DBB for SVCLIB 

3) lJEB for .GOGREC is assemblecl in Uucleus so (~IP 
just initializes it 

'J) Loth data sets must be on SYSRES pack! 

!) uSCB's' read into storage, appropriate information 
moved into DEB's 

2. Initializing the Nucleus 

a. ~imer - Optional 

1 ) sets timer to t) hours 

2) loads a value (varies with model) into rege 1 
and does a one instruction iSC'l' loop 

3) checks timer, if decremented, resets 
to b hours and continues 

4) if timer hasn't Leen decremented, issues message 
timer not working and continues 

b. Defines Control Program Areas 

1) constructs SQh in temporary location above 
nucleus \to allow 
expansion of nucleus by DEB's yet to be 
constructed) 

,,) ilaster Scheduler temporarily defined as all 
main storage from SQA to HIP 

3) builds in SQA 

a) c.1ummy P(jE for I'laster Scheduler region 

PROGRAMl'1Ii~G/SYSTE1-1S LDUCATION - SUD POUGHKl:.EPSIE 

L 



L 

note: 

note: 

L 

b) 

c) 

ti) 

e) 

f) 

g) 

il) 

i) 

PQB for I'laster Scheduler region 

dununy PQE to be used for lIO free area 

PQZ fCJr EtJ free area, initialized later 

DQE for SQA 

FQE for" free space in SQA 

FBQE describing Easter Scheduler region 
(in ~lS region) 

a PQE for Ii1 free space 

PQE for dS region in lil, will be 
initialized only if h1 ~PA Is specified 
space is freed if 111LPA is not built 

j} FUQE descriLing ill space 

k) initial SVRB space is allocate~ at high 
enu of SQA, address stored in transient area 
handler routine 

when SVC interrupt occurs that requires an ~VRB, space 
for one is already available, it is constructed into 
the &VRB needed for that SVC request and a GET~~IN 
issued to obtain space for the next one. This is done 
so the GETMAIN (an SVC) will not have to be issued while 
processing another SVC 

c. Initialize SVC Table 

1) SVC table contains entry for every 5VC numUer, 
is 255 entries long 

2) HIP recognizes type III and TV routines anti 
issues BLDL for that routine llame (IGCOnnnn) 
against SYS1.SVCLlrl 

3) stores T~R of routine in SVc table entry 

~} if BLDL can't find an entry, console message 
is issued to that E.:ffect but does not halt 
processing 

It is this table that ILHIOSUP utility Modifies when it 
is executed, usually uecause of moving or modifying the 

PROGRAMlHNG/SYSTEuS J..;DUCATIOi" - SDD POUGHl~J..;EPSIE 



note: 

L 

, .. 

SYS1.SVC~Id data sct. 

d. rluilding LINKLIB ULB 

1) LINKLIB need not De on sys residence uevice, 
thus HIP handles construction of its control 
blocks separately from SVC.LIB and LOGru.:;C, 
Ln~KLIB mustLe cataloged where ever it is 

2) If not on residence volume \determined Dy 
check of catalog) ~IP determines if volume 
holding .uINKLIB is mounted 

a) if it is, initializes the JEB 

L) if it isn't, issue mount message, 
wai t for interrupt when device becollle.s 
ready 

j) if on residence volume, initialize uEB 

4) UCB representing device containing .wli~KLlb 
is marked permanently resident 

Since the SVCLIll and LliJKLIB data sets may be multi­
extent and LINKLlrl may lJe multi-volume anci since tile 
size of a DEB depends on the nwnber of extents in the 
associated aata set, space allocations for 
these blocks cannot Le anticipated, thus they must be 
buil tat high end of i.~ucleus to allow them to j:)e wha t­
ever size is necessary. '1'0 have pre-allocated space, 
embedded in the nucleus, would not have allowed them to Le 
dynamic in size. 

e. Ini tializing the SYS1. DUL'lP tia ta set 

1) used to contain a dump if system failure 
occurs 

2) ~IP checks catalog for data set 

a) if cataloged, checks if volume is mounted 
verifies Jata set existence ane.. or,tionally 
formats the space 

L) if 1,0t catalogec rC<juests operator to reply 
with address of device to Le used or to 
suppress the function 

PROGRAHi·lII-IG/SYSTEhS .t.DUCATION - SUD POUGHKEEPSIE 



c) if tape - clIP verifies a non-laLelled 
tape is mounted and unit is ready 

ti) LHP initializes tllE.! control Llocla; necessary 
for use o[ data set -
BeE, DCD, u~D an~ IO~ and places addresses 
in CVT 

f. User options (optional) 

note: 

1) if requested at sysgen time, ~IP indicates model 
number of CPU then requests operator to "SPECIFY 
SYSTEH PARAHBTBRS It such as (selected operands) 

a) additional resident modules in LPA \~1= 

If delete HAB, usually have to increase dS 
region to contain certain access methods 
(e.g. BSAM) needed by system routines (e.g. 
log routines) 

b) names in BLUL list (BLDL= ) 

c) additional resident SVC rtns (SVC= ) 

d) specify larger System Queue ~pace (SQS= 

e) minimum region for ini tia tioD CHIN= 

f) master scheduler region (HPS= ) 

g. Locating SYS1.PAfu1LIB 

1) contains lists used in determining 

a) modules from LIHKLID to be loaded into LPA 

b) modules from SVCLIB to Le loaded into LPA 

c) modules \\Those names are to be in .t3:'DL list 

2) ll1IP checks catdlog for PARHLIB 

a) if cataloged, verifies-volume mounted 

L) if not cataloged, assumes its on SYSRES 
and verifies its existence and stores 
track auoress of data set for later use 

PROGRAHHING/SYSTUIS LDUCATIO.'J' - SDD POUGHI~EEPSIE 



t' . 

c) if PAH.MLIlJ not availdLle, messages in­
dicating resident options cannot Le ful­
filled tire issued 

note: C\.!rtain liloc1ules must be in LPA, tltis list is 
not in FAHNLIlJ (just in case PARi·1LI~ not avail­
atre) Lut is in Hucleus. 'J.'llUS those modules 
can always be loaded into LPA 

h. Building list of data sets to be concatenated to 
LINKLIB 

i. 

1) list of data sets obtained from PARHLIB 

2) lHP 'tries to LOCATE each data set 

3) Checks VeB's to verify necessary volumes 
are mounted 

4) builds a 0hB for each data set 

5) this construction expands ~ucleus, pointer 
upda ted to new end of l.~ucleus E.:aCll time a 
new uEB is built 

Initialization of H.ecovery danagement rtuutines lSER) 

1) checks sysgen specified option 

2) loads specified SER module (SEHO, SER1) 

a) SERO - not entirely resident HIP 
loads resident portion, locates & sets 
up !~inter to remaining part 

b) SER1 - resident, iHP loads it 

j. SQA is relocated to just above nucleus, whicIl has 
reached its final size 

k. Time slicing initialized (optional) 

1) time interval converted to times units 

2) done for each time slice group 

3) if cancelle<1 D~' opera tor, sk.ipp~<.l 

1. Initializing r~ollout data set loptional) 

PROGlWlNING/SYSTill1S 'Li)UCATIOI~ - SDD POVGHl\U2PSIE 



1) !:)YS1.~OLi.Ol;T must be cataloged, iHP checks 
catalog for it, if not availaLle, operator 
informeu and I..IP bypasses further rollout 
processing 

2) If availaD:i.e, .ap checks if it is large 
enough to 1101d all of dynamic main storage, 
if not, scratcH and try to reallocate 

31 if big enough, dIP formats the data set to 
allow writing of main storage to pre­
~etermined locations on data set. Lach 
location of main storage mapped to a specific 
location on SYS1.ROLLOUT, algorithm used 
to format th~ data set 

m. Initialization of MCH and cCH loptional, available only 
for Nod 65 and ~~ 

1) Pointers used by machine Check handlers are 
initialized 

~) Writes co~ies of all refreshable nucleus 
modules onto ~YS1.ASRLIB - if ASRLIB can't 
be located, nCB cancelled 

3) ~Jucleus .l:<efresh Table lHRT) built at sysgen 
time, used to locate refreshable nucleus 
modules 

n. Hesetting Liain Storage JJoundaries 

1) Expanding SQA if requested 

~) NIP then relocates itself to 2h block 
just above SQA and reestablishes addressa;.;ility 

3) .uLDL list Duil t above relocated iap, optional 
names being added, then moved to higLest core 
address. ilLDL issued and if requested, a list 
of modules is Vlritten on console 

3 • Link Pac}: area LOAD' ci vii th 

a. :UINKLI3 and SVCLIB modules required ty control program 
(list internal in dIP) 

D. User specified reentrant modules from LINl~LIl) 

PROGRANHL'-IG/SYSTE1'lS ~DUCA'l'ION - SUD POUGlIl~ELPSIE 



C. 

c. Resident SVC routine, iHP modifies SVC table 
entries (for type III and IV moaules to indicate 
they are now resident and inserts main storage 
address of module in the SVC taLle. 

4. Setting up F .i.nal ~ia.in ~tora<Je Divisions 

a. ~ap sets l'laster Scheduler reg ion to 10K unless 
operator specified another size and sufficient 
storage is available 

1) Master Scheduler is ju~t below LPA 

2) Control blocks Luilt describing the region 
and chained out of ;is 'l'CJ3 

b. Dynamic area set up as all storage bet\wen SQA and 
master Scheduler Region 

1 ) Control Dlocks \U-PQE, PQE, FilQE) built to descriue 
dynamic area 

c. HIP then LINK's to l'laster Scheduler Ini tializa tion 
Rtn 

!>laster Scheduler Initialization (IEEVIPL) 

Ref: Job danagement, Part 1, (Y28-G660) 
..IV'!' Supervisor, Section I, lY28-6659) 
IEEVIPL listing (from sy~ qen) 

1. Console Initialization 

v l.. 

a. Performed by LIlJi':' ing to console initialization rtn 
of communication task, by master scheduler 
initialization routine 

b. Consists of placing address of master control LCB 
in the Unit Control .lodule ~UCN) - primary control 
taLle for console communications, is non-executa.i.Jle, 
contains BCB's used in console communications 

Ref: INT Supervisor, Section 12, VCM Format ~Y28-6659) 

c. ECB I S constructeu. in UCH., used in indicating 
messages to be written, etc. 

d. On return, master scheduler IPL rtn \I~LVIPL} 
writes "RLADY" on console and disrlays~JOssi!Jle 

PROGRAHdHJGjSYSTl::.L·1S LDUCATIOlJ - SDD POUGiiKLEPSIE 



2. 

note: 

AUTO conunands 

c. WAIT's for Sl::T cOInmand, cpecifying an l.:cB in DeN 

SET conunand 

a. when issued, master scheduler lPL rtn moves master 
TIOT, assembled in the routine ,to SQA . 

b. Locates PROCLIB anG JOBQE data Gets 

1) SErf command might specify units tllC data sets 
are on 

2) if not, catalog is checked for them 

3) if not cataloged, units specified at sys gen 
are tried 

4) if not there, sys residence volume is checked 

5) if not found there, messages to the Operator 

6) when located, PROCLlB is cataloged on volUIae it 
is on 

c. Pointers to DCB's for PROCLIB and JOBQE are put in the 
master TIOT 

no DCB's, DEB'c, etc., are built for PROCL1B nor JOBQE 
by these routines. nDR tasks use PRUCLI13 so they 
contain necessary control blocks and OPEN the data set 
JOBQE is llandled entirely by Queue Hanager~lcnt routines 
via XDAP anu control blocks required for XDAP are in 
Queue lv.i.a'nagemen tHou tines. 

d. Log Initialization (optional) 

1) If included in system, maGterscheduler IPL 
routine XCTL's to log initialization routine 

2) System log consists of two data sets - SYS1.SYSVLOGX 
or SYS1.SYSVLOGY - so one can receive messages 
while other is being dwuped to an output device 

3) vr~L macro and ~OG command cauSe information to 
be placed in a log data set 

4) Initialization Routine 

PROGRAN.\lING!SYSTU1S BDUCATI(JN - SDD POUGm~Et;PSl:L 



a) locates data sets, they mu~t Le cataloged 

b) sets up log control areas und vuffers 

c) creates UCB's for log data sets 

d) ATTACH's log writer routine to create and 
initialize control olocks for the data sets 

e) WAIT's on log LCD in L'laster S<;hecluler Hesident 
data area 

f) ECB posted \'lhen log data lSet full and activates 
the writer rtIl to write the data set on to an 
out~ut device 

e. If, re(lUested in SE'f conunanu, daster Scbeduler IPL 
.routine A'l'TACH's a task to initialize the SYS1.SYSJOBQE 
data set. This task runs in its own region, Master 
Scheduler HAlT's on its completion 

3. Volume Initialization 

a. .l'iaster Scheduler IPL routine ATTACH's a task to verify 
mounting of volwnes that must be permanently relSident 

b. The task accesses SYS1.PARHLIB for member Pru:;SRES and 
searches UCB's for volumes indicated in PRESRES and 
marks each UCB that holds such a volume permanently 
resident 

c. Informs operator of status and volume serial 
numbers of all permanently resident and reserveu. 

4. Execution of AUTO Commands 

a. Un completion of volume initialization, AUTO commands 
selected by operator are displayed on console and 

b. Execution of same ilS scheduled Ly invoking SVC 34 
routines for each command (if SMF is to te initialized, 
execution of commands pends until after SHF is initialized) 

5.. SHF Initialization (optional) 

a. On return from log initialization, system management 
facilities are initialized. If included in the system 

PROGRAi.vltlIi-iG/SYSTEt:S ~Dl;tATION - SDD POuGHKEEPSIE 



l>. SMF ()verview 

Hef: Planning for SMF, lC~8-67' 2) 

, )- Huutines of control program tCJ 

a) provide history of each joL as it is ~rocessed 

b) lllOnitorB jobs at various points in processing 

2) Control program calls on SL·iF to collect data 

a) IPL 

b) reader/interpreter 

c} ini t/ term 

3} Cdn link to user exits to do additional monitoring 
or processing 

4) Information is collected and written onto SHF 
data sets - SYS1.HAi.>JX and SYS1.11A~~Y, such information 
on 

a) machine configuration, 1/0 devices, stor'age 
size at IPL time and when VARY commands vring 
a device online or offline 

b) Job anel Jobstep information - accour,ting 
inforMation, start time, CPU tiue lactual CPC 
usc time) SYSL~, SYSOU'l' usage, ."0\,, termina tee. 
recorded at Job and Jobstep ~ermination 

c} Counts of references to user 6ata sets 

cl) ~ounts of 40h blocks assigned to and released 
by a task 

JJ User Exits from 

a} l{eader/Interpreter - before eacl1 JC.u Btatement 
is interpreted 

Init/' ... ·erm wllen job is selected for initiation 

c) Init/'l'l..!rm - when step i~. !;)electcd for 
initiation 

PROGRN-L\1I?1G/SYSTJ:;l,:S LD{jCATIOl~ - SDD POUGIIKU':':PSIE 



note: 

L 

d) Ini t/'l'erm - \\'hen step and/or joL is termina ted 

e) rl'imer SLIll - if CPU or \'lAIT time limits arc 
exceeded for a JOD or step 

c. SMF lnitialization routines are ~C~Ltti to by Master 
Scheduler IP..t.. Htn and they 

1) add assembled DD names Si1Fl-~X andSHFMANY into 
!'laster 6chedUler ',nOT 

2) obtain System !·lanagement Control Area ~Sl'1CA) space 
in SQlI., place pointer to SI1CA in ~V'r 

;;$) OPEN PARlviLIB and read member containing ::lHF 
parameters check them for validity, recluests 
parameters from operator if any are incorrect, 
paramete:cs stored in SNCA 

4) SHF data sets allocated (e.g., devices allocatea) 
and o~ened, control blocks \JFCB t s) for SYS 1 .:'lAi~X 
and SYS1 .l-lAt~Y are written into SYS1.SYSJOBQE 

~) ~CBts containing SMF data sets are marked 
permanentl:' resident 

6) on return from the allocation rtns, Initialization 
rtn issues ATTACH to create SHF task and pass control 
to SHF ~vritE!r routine vlho i:)ranches to SHF timer 
routine 

7) Hidch sets 10 minute timer and. returns 

10 minute timer because at least every 10 minutes SdF 
rtns accumulate amount of time CPU was in,~AIl' state 

8) On return, Si·lF wr iter forma ts and wr i tes SAF 
IPL record and XCTL' s to .·laster SC~18duler HAlT 
routine, ~aster Scheduler Initialization is 
complete 

PROGRN'1Eli"m/SYSTL"IS LiJUCATIOi.'-4 - SDD POUGHKEEPSIE 



Job Management Overview VI 

Ref: Handouts S19, V25-6156 

A. The Work Queues 

1. One data set - SYS1.SYSJOBQE, undefined DSORG 

2. Entries in this data set represent work to be 
done by operating system 

a. Jobs to be executed by ~le system - input 

b. SPOOL'd SYSOUT data sets and system messages 
to be printed by ~ystem writers - output 

3. SYS1.SYSJOBQE subdivided into total of 76 subqueues 

a. 15 input queues corresponding to the 15 input 
classes (CLASS operand on JOB card classes A-O) 

b. 36 output queues corresponding to the 36 output 
classes (SYSOUT= or l"lSGCLASS on JOB card, A-Z 
0-9) 

c. RJE queue - contains job definitions transmitted 

VI A. 

to central computer across telecommunications lines 

d. ASB queue - contains condensed JCL images of Job 
definition, for faster interpretation later 

e. Hold queue - contains job entries (input) for jobs not 
to be executed until operator releases tilem (TYPRYN= 
HOLD or operator command) 

f. 21 unused queues 

g. One master queue indicating unused space in SYS1.SYSJOBQE 

4. Physically, the first part of JOBQE contains Queue Control 
Records (QCR's) one for each queue, used to enqueue an entry 
on that queue and to dequeue it when syster.t is ready to 
perform the work the entry represents and describes 

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKLEPSIE 

r 



B. 

c. 

L 

5. Rest of space of data set is divided into logical tracks 

a. LTH - Logical Track Leader, serves as address and chain 
field for the series of records called a logical track 

b. logical track - an installation defined number of 176 
byte records, for efficient usage of JOBQE space, should 
have some relationship to physical track 

Process Input VI B. 

1. One function of Job Management is to process input, 

a. read an "input stream" - collection of JCL, 
procedure references, data and commands 

b. convert JCL, proc-references to control blocks, 
place them on a queue 

c. generate messages about the JCL 

d. SPOOL (Simult~neous Peripheral Operation On Line) 
data onto DA space to be able to process JCL­
following it 

2. There are several ways OS/360 HVT has of "reading an 
input stream" 

a. "ordinary" Reader/Interpreter - task that reads 
and interprets (scans for errors, converts to control 
blocks) the input stream in one task 

b. ASB (Automatic SYSIN Batching) Reader - reads and 
interprets as distinct tasks 

c. RJE (Remote Job Entry) Reader - handles job stream 
input submitted from remote work station to central 
computer across telecommunication lines 

d. Restart Reader - used to prepare jobs for restart 
that have abnormally terminated but are eligible 
for automatic step restart 

Initiate/Terminate Work VI C. 

1 • The function of removing enqueued input work from the 
input queue and performing the necessary set-up and 
scheduling of the work and performing housekeeping 
when the job is finished is the function of the 

PRCX:;RAHMING/SYST£HS EDUCATION - SDD POUGHKEEPSIE 



D. 

E. 

Initiator/Terminator 

2. Selects a job and a step of that job to oe executed 

3. Allocates I/O devices to the task 

4. Obtains a region for the task 

5. Creates the task 

6. Establishes time linli ts for the step if requested to 
(TIME operands or JOB and EXEC cards) 

7. Terminates the task (normally or aLnorrnally) when nece~sary, 
frees region and devices 

8. selects next step or job to be processed 

Process Output 

1. System programs generate messages about a job 
as they process it, the program may generate data 
on a SYSOUT data set 

2. Both these types of data are temporarily placed on 
DA space while job is being processed 

3. It is a function of Job Ngmt to write these data 
from where there are (DA space) to where operator/ 
system programmer/problem programmer want them 

4. 'l'his function is performed by the system output 
writers 

VI D. 

5. They operate as separate tasks, in their own regions, are 
an advantage as these are only programs handling above 
data and thus avoid contention for devices where data is 
being \'lritten - usually unit record devices 

6. Also, allow program that creates data or, to which messages 
apply, to execute and be terminated before SPOOL'd data is 
handled thus speeding thruput 

Process Commands VI E. 

1 • Commands start, alter, stop system tasks, cause services 
to be performed, display certain actions, make system 
information known 

PROGRAH .. r.1ING/SYSTEr··1S EDUCATION - SOD POUGHKEEPSIE 



2. Usually entered thru system console, but can appear 
in job stream 

3. They are a communication from operator/programmer to 
system, are accepted by the communications task 

4. Service, requested by command is analyzed and 
Master Scheduler sees to it the service is performed 

5. Can create a new task to perform service, either in· 
MS J:'eg ion or a new one in its own reg ion 

6. Can set bits, POST ECH's so existing tasks can 
perform requested service 

PROGRAMl'lING/SYSTEHS EDUCATION - SDD POUGHKEEPSIE 



! The Work uueues 

Ref: Job Hanagement, Part 6, The Work Queues, 

A. 

B. 

note: 

note: 

Part 1, Initializing the Queue uata Set (Y28-6660) 

SYS1.SYSJOBQE 

1. Space allocated to the data set at sysgen time 

2. Subdivided into total of 76 queues 

a. 15 Input queues 

b. 36 Output queues 

c. Master (free) queue 

d. RJE queue 

e. ASB queue 

f. HOLD queue 

g. 21 unused queues 

Space at physical beginning of the data set contains 
Queue Control Records (OCR's) one for each of the 
76 queues, each QCR contains 

1 • 

2. 

A "top pointer", pointing to the next work, in that 
queue, to te perfcrrned (type of work - job or output -
depends on type of Queue the QCR represents) 

-Top pointer" is used to select next work (job to be 
executed or output to be written) to be performed. 
Points to oldest, highest priority work on that queue 

Fields corresponding to priorities 0-14, pointing to 
work at each priority in that queue (class); work of 
equal priority in a class is enqueued in FIFO order 

These fields are used <;>nly for adding new work to a 
queue, not for dequeuc~ng and performing the work 

PROGRAMMING/SYSTl::HS EDUCATION - SDD POUGHKl:.EPSIE 

VII 

VII A. 

VII B. 



c. 

D. 

3. Pointer to an ECD in main storage, LCB built by 
routines (initiators, \~riters) that perform the work 
that the queue entrys represent. When no work is 
on the queue, the routine WAIT's on the ECB, when 
work enqueued, the Queue Management rtns POST the 
ECB, thus informing the routine of work to be done 

Rest of data set space is formatted into logical Tracks 

1 • Logical Track Head1~r (LUI), used to chain several 
logical tracks together when such space is needed 
to contain control blocks describing the work 

2. logical track - installation defined number of 
176-byte records (specified at sysgen time, can 
be modified at IPL). Should be set up to maximize 
use of space on a physical track (no track overflow 
is allowed on JOBQE) 

Space ,danagement on SYS1.SYSJOBQE 

1. Allocation of space in the data Get is done by 
Queue £'lanagement routines whic!. as~ign and free 
space and read and write the records on it 

2. Space allocated to 

a. Reader (and Interpreter) whicl, create control 
blocks that describe work and contain messages 
about a job 

b. Initiator/Terminators which generate messages 
(allocation, deallocation, etc.) 

VII C. 

VII D. 

3. Space is allocated in logical tracks, such space cannot 
be shared between work entries 

4. OHe logical track allocated at a time, when more 
space needed, another logical track is allocated 
from master (free) queue, from wherever there 
is a free logical track 

s. The various logical tracks allocated to a work entry 
are organized and chained by tl,e LTH I S as follows 

a. For control blocks describing input (job's) 

1) all LTH's, other than first, contain pointer 
to the first 

PROGRAHHING/SYSTEMS EUUCATION - SUD POUGHKEEPSIE 



l 
2) Each LTII gets a pointer to the next LTH when 

and if another logical track is allocated (e.g. 
first LTH points to 2nd, 2nd points to 3rd 
etc., etc.) 

b. For control blocks describing output (SYSOUT 
data sets, messages, etc.) 

1) all LTH's other than first, contain pointer to 
the first 

2) Each LTH receives a pointer to the next LTH 
allocated when and if one is allocated 

c. A pointer in one of the 176-byte records in the 
input entry points to the first LTH allocated 
for output control blocks 

6. Until job termination, the various LTH's for input and 
output control blocks (and a distinct logical track-r5 

7. 

note1 : 

note2: 

used for each distinct output class - SYSOUT= or dSGCLASS= 
used by the job) are treated as a logical group and the 
pointer in the appropriate input QCR priority field 
points to the last LTH allocated for input control 
blocks 

At job termination time, the logical tracks containing 
input control blocks are freed and the logical tracks 
containing control blocks describing that ~ob's output 
(SYSOUT data sets, messnges, etc.) are spl~t up and yueued 
off the appropriate output QCR's according to the job's 
priority 

since the smallest unit of space that can be queued off 
a OCR is a logical track, the control blocks describing 
messages and/or data sets in different output classes 
must be on distinct logical tracks so the logical 
tracks can be separated and each queued on the appropriate 
output class OCR 

the control blocks representing a job's output to a 
particular class are enyueued at job termination time 
(as opposed to each step's output being enqueued at step 
termination time) because the writers handle the work as 
a unit and thus print all of job's output together rather 
than the output of each step interspersed with output 
of other step of other jobs 

PROGRAHMING/SYSTENS EDUCATION - SDD POUGHKEEPSIE 



E. 

L 

F. 

l::nqueueing work VII E. 

Ref: Job l1apagement, Part 6, the Work Queues, (Y28-6660) 

1 • The top pointer in the QCR points to the last L'l'I-! which 
was allocated to the job to contain input control blocks. 
'I'hat (last) LTH points to thE:: first L'fH allocated to the 
job and all other LTH's for input control blocks are hung 
off that (first) LTH 

2. The top pointer points to the highest priority, oldest 
enqueued job on that queue, that is, the next job that 
should be initiated 

3. Each priority pointer in a OCR points to the last LTH 
allocated to a job for input records. 'i'he job it 
points to is the most recently enqueued job at that 
priority . 

4. If there are several jobs enqueued on a QCR at the same 
priority, the job's LTH's are chained by putting, in the 
last LTH for input for each job, a pointer to the last 
LTH for input for the next newest job at that priority. 
That is, if there are three priority 4 jobs in a queue, 
the top pointer points to the oldest job, that (oldest) 
job points to the next oluest and that job points to the 
last (newest) job. Tile Prty 4 pointer in the QCR points 
to the newest priority 4 job. 

5. When a job is addeci to the queue, the priority pointer, 
corresponding to t.ne new job's priority, is set to point 
to the new job's LTH (last LTH for input records). If 
there were other jobs at that priotiry, the last LTH 
of the job that was previously the last job enqueued 
(and is now next-to-the-last), is set to point to the 
last LTH of the newly enqueued job 

Dequeueing Work 

1 • 

2. 

3. 

The initiator follows the top pointer to the job 
that is next to be enqueued from a queue 

In that job's last .GTH - the LTH the top pointer 
points to - is a pointer to the next job that should 
be initiated from the queue 

The pointer to this job is moved to the top pointer 
in the QCR 

PROGRAMI-iING/SYSTENS EDUCATION - SDD POUGHKEEPSIE 

VII F. 



note: 

L 

It should be stresne<.l that, though the above discussions 
tend to imply that reatiers, writers, or initiators eny'ueue 
or dequeue work, allocate or free logical tracks, these 
routines really indicate what they want <.lone to Queue 
Nanagement Routines and these routines (and only these) 
actually manipulate the queues. 

PROGRAMNING/SYSTEI>1S EDUCATION - SDD POUGHKEEPSIE 



,:-TII Process Input 

L 
VIII 

A. 

B. 

L 

note: 

Definition of Input 

1. JCL records 

2. Procedure library references 

3. Operator commands 

4. Data 

"Ordinary" Reader/Interpreter 

,. Function 

Ref: 

a. 

b. 

c. 

d. 

e. 

Job Hanagement, Part 2, Part 6 - the 
Interpreter Rtn (Y28-6660) 

Read records 

Scan for errors 

Accumulate complete JCL statement (continuation 
cards) 

Construct control blocks from JCL statements· 

Cause control blocks to be written on 
SYS1.SYSJOBQE data set, enqueued off appropriate 
input class QCR and at appropriate priority in 
that OCR 

f. SPOOL input stream data to temporary UA space, 
construct control blocks pointing to such data 

g. Intercept input stream commands and validate 
and schedule execution of them if they are valid 

VIII A. 

VIII B. 

when reading and interpreting functions performed in the 
same task, the interpreter performs the reading function, 
not vice versa! 

2. Control blocks built 

PROG~~ING/SYST&~S BuUCATION - SUD POUGHKEEPSIE 



Ref: Job Hanagement, Appendix A (Y28-6660), Handout 
S3, S4, S13 

a. JCT - Job Control Ta~le - built by R/l 

b. 

1) From information on JOB card 

2) Contains, also, pointers to other control 
blocks built for job 

a) first seT 

b) PDQ 

c) first 5MB 

d) job ACT 

e) first SCD 

f) last DSB 

g) DSENQ table (TTR) 

3) Is not completed until next JOB card (or EOF) 
is encountered (needs count of steps in job) 

4) Job is not enqueued (& therefore not capable of 
initiation) until JCT is written out 

SCT - Step Control Table built ~y R/l 

1) From information on EXEC card 

2) Contains pointers to other control blocks 

a) next sel' 

b) first SlOT 

c) first SHE for next step 

d) last 5MB for this step 

e) ACT for this step 

f) VOLT 

PROGRAMHlNG/5YSTEHS EDUCATION - SDD POUGHKBEPSIE 



3) 

g) first DSB in message class 

h) SlOT of data set referenced by PGM=*. 
stepname.ddname operand 

SCT for first step of a job is chained out of 
JCT, each successive SCT is chained out of 
preceding SCT for that job 

c. SlOT - step I/O Table, built by R/I 

1) from device information on each DD card 

2) contains 

a) iJDNAME 

b) pointer to next SlOT 

c) pointer to JFCB 

d) number of units requested 

e) volume count 

f) SYSOUT class (if its a SYSOUT uata set) 

g) pointer to next DSB 

3) SlOT written in Input Logical Track space; used 
for device allocation purposes 

4) SlOT chained out of SCT for step the DD card 
is associated with, other SlOT's for this step 
chained out of this one and each other 

d. JFCB - Job File Control Block - built by R/I 

1) from data set information on each DD card 

2) Contains 

a) da ta set name 

b) label type 

c) volume sequence number 

d) data set creation, expiration dates 

PROGRAMHING/SYSTEHS l!:J.)UCATION - SDD POUGHKEEPSIE 



e) DCB information coded on DD card 

f) volume serial number(s) 

g) space request 

3} If it is a multi-volume data set, JFCB can hold 
first 5 volume serial numbers, if more are specifieu, 
a JFCBX is used to contain· up to 15 more volume 
serial numbers, JFCBX chained out of JFCB 

4} Is built in input logical track space for named 
data sets, is built in output logical track space 
for SYSOUT data sets and is chained off a DSB 
in such space 

5) In the output logical track space, ~le DSd's 
and JFCB's for the SYSOUT data sets of Ule 
same class are chained together 

e. uSB - Data Set Block - space reserved by RII, filled in 
by Terminator 

1) Built for 5YSOUT data sets, at termination time 

2) Contains 

a) pointer to next DSB 

L) DD name 

c) pointer to JFCB 

d) VCB address of unit allocated to data set 

e) name of program to process data set 

3} Space reserved for DSB in output logical track 
space, is filled in by terminator providing add­
ress of JFCB for the SYSOUT data set 

4) Is chained off SlOT (which is in input logical track 
space) built for SYSOUT data set 

5) Other DSB's for SYSOUT data sets of same class 
as this are chained off this one in same logical 
track's allocated for output for this class 

f. 5MB - System i-iessage Block - built by HII or liT as 

PROGRAMHING/SYSTEMS EDUCATION - SuD POUGHKBEPSIB 



.. 

L 

needed 

1) . 

2) 

3) 

4) 

5) 

Built to contain mcssCJ.ges generated aLout the job 
as it isproccss~d by Ht;dder/lntorpreter (JCL images, 
JCL messages) and Initiator/Turminator (allocation/ 
deallocation messages) 

JCL images placed tHO to a Si-1B 

allocation/deallocationmessages packed in 

Resides in output logical track space 

Chained off JCT, other 5MB's chained off this and 
each other 

g. ACT - Accounting Control Table - built by R/I 

1) Euilt to contain accounting information on 
JOB or EXBC card 

2) Chained off JCT or SCT depending on source of 
inf orma tio n 

h. PDQ Directory Block/PDQ Block - Passed Data Queue -
built by R/I 

1) Built when data sets are PASS'd 

2) Built in pairs, each pair contains information 
about three PASS'd data sets 

3) Directory Block contains 

a) max of 3 data set names 

b) pointer to corresponding entry (for each data 
set) in PDQ Block 

4) As many pairs as needed are Luilt and are chained 
off JCT 

5) PDQ Block contains, for each of the 3 data sets 

a) address of JFCB for data set 

b) address of SlOT for data set 

c) address of UCB for data set 

PROGRAMMING/SYSTENS EDUCATION - SUD POUGHKEEPSIE 



i. SCD System Output Class Directory - built by Interpreter 

1) Built for SYSOUT classes used 

2)" Contains an entry for edch distinct output class 
used by job (MSGCLASS, SYSOUT) 

3) One or two (max.) SCD's lJuilt for a job 
chained off JeT 

4) SCD entries used at step termination to create the 
DSa's for each SYSOUT data set 

j. DSENQ - data set enqueue table - built by R/I 

1) Built for each job, chained off JCT 

2) Contains all non-temporary data set names used' 
by any step or-the job 

3) Initiator ~NQ's on this list of names before 
ATTACHing the first step of the JOB 

4) ENQ specifies "share" or "exclusive" control 
depending on DISP parameter on DO card 
DISP=SHR - share 
DISP=OLD,NEW,PASS - exclusive 

k. VOLT - Volume Table - built by R/I 

1) built for each step of a joL, chained off each SCT 

2) Contains volume serial numbers needed for that step 

3) Used during device allocation for each step, used 
to obtain volume information 

3. Control of Reader/Interpreter 

Ref: Job llanagement, Part 6, Interpreter Rtn (Y28-6660) 
Operator Guide, Chapter 3, Operator Corrunands (C28-6540) 

a. Started by operator command, Reader/Interpreter is a system 
task executing in its own region - 48K min. 

• b. Naster Scheduler (really, System Task Control Routine) 
ATTACH's the Reader task, first rtn to receive control 
is Interpreter Header Control Htn which obtains space for 
and build 

PROGRANMING/SYSTE!'lS EDUCATION - SDD POUGHKEEPSIE 



L 

note: 

1) ~EL - Interpreter Entrance list - used in 
communications Letween various routines of 
H./T, contains 

a) pointer to option list 

b) BCB, POST'd when STOP RDR con~and issued 

c) address of input stream if it is to Le processeu 
by special access method 

Under normal conditions input stream is processed 
using QSAM but when it can't be so processed (when 
starting a system task and JCL is constructed in core, or 
ASB reader reads from JOBQE and can't use QSAN but 
must interface with Queue 11gmt, etc.) this word points 
to input. stream 

2) 

d) optional pointer to QHPA (Queue danager 
Parameter Area). If there, control blocks 
built will be added to queue entry associated 
with Q£1.PA. If empty, each job is en<:iueued 
as a separate entry 

e) console identifier indicating to which console 
messages should be routed 

Option list - indicatel::> processing options (SI'1F 
function, track stacking, queue full condition etc.) 
and default values for omitted JCL operands (PRTY, 
REGION, TINE, jobnarne to start with, etc.) 

3) Exit list - address of exit routines (accounting 
routines, input access method, queue manager rtn., 
SHF JCL validation rtn, etc. 

c. Interpreter Initialization rtn LINK'd to and 

1) Stores initializing options (from start command) 

2) GE'l'HAIN' s for Interpreter Work J1.rea (IWA) -
2048 bytes, used to build job description 
tables before they are written to JOBQE 

3) GETI>1AIN' s for .uocal \\Tork Area (LWA) - used 
by JCL statement processors to do their work 

4) Generates unique name base (used to generate 

PROGRAlv1.Hn~G/SYSTENS l::0LJCATION - SDD POUGHKEEPS IE 



unique name for SYSOUT data sets) 

5) OPEN's Input Stream (QSAM) 

6) OPEN's PROCLIB (BPAM) 

d. Interpreter Control Routine receives control 

1) Reads input records 

2) Determines type of record 

3) Processes commands and data records 

4) Passes JCL to JCL scan routine 

5) Locates procedures and reads records from e1em 

e. Scan routine 

1) converts JCL to internal text 

2) accumulates complete JCL statement 

3) passes statement to appropriate JCL processors 

f. JCL Processors 

1) build appropriate tables and control blocks for the 
job and write them (via Queue Hanagement Rtns) on 
logical tracks allocated for the job 

2) create 5MB's and write them, obtain space for 
lJSB's 

3) If a JCL error is detected 

a) job enqueued on HOLD queue 

b) internal CANCEL command executed to 
flush joL thru system 

g. ReaJer/Interpreter Termination 

1) End of file on input stream 

2) I/O error 

3) Operator command 

PROGRlu\l!<IING/SYSTEHS EDUCATION - SDD POUGHKEEPSIE 



c. 

.. ~ 

ASB Reader 

Ref: MVT Job danagement, Part 2, LJ~ing the ASB 
Routine as a Reader (Y28-6660) 

1. Function 

a. Reads JCL records 

b. Compress JCL statements 

c. Writes compressed statement on JOBQE in 
176-byte records allocated to ASB queue 

d. SPOOL's Input stream data and DA space, 
generates replacement DD card referencing 
the SPOOL'd data set 

VIII C. 

e. locates TTR of cataloged procedures, generates special 
record identifying and pointing to the procedure 

f. passes unrecognizable JCL statements to command 
processor 

g. Initiates interpretation of compressed JCL when 

1 ) 

2) 

3) 

number of jobs s~ecified in ASB procedure has 
Leen read and placed in ASB queue 

input stream exhausted 

number of tracks in JOBQE allocated to ASB 
queue exhausted (number is in ASB procedure) 

4) STOP conunand issued for ASB Header 

5) at least one job placed on ASB queue and can't 
allocate more I.)A space on \vhich to SPOOL input 
stream data 

2. Control of ASB Reader 

Ref: Job Hanagement, Part 2, Processing Input, (Y28-6660) 

a. Started by operator command (S'rART RDRA) executes 
in own region - 16K minimum - ATTACU's Interpreter 
when needed, interpreter executes in its own region 
(48K) and when finishes, region is freed 

PROGRAl-IHING/SYSTE!-1S EDUCATION - SDD POUGHKEEPSIE 



b. System Task Control Rtn ATTACH's the ASB 
Initialization rtn which 

1 ) GETMAIN's space for an ASB Work Area (ASBWA) of 
3200 bytes and initializes it, it contains 

a) BCB to communicate between I~SB Reader and 
Interpreter 

b) ECB toS'fOP ASB Reader 

c) Address input stream 

d) Processing options - number of jobs to process 
before A'fTACH'ing Interpreter, number of JOBQE 
tracks to use, etc. 

e) QHPA for accessing JO.8QE 

f) DCB's for ASB data sets 

g) work area 

2) ATTACH's Interpreter Region Regulator Rtn (in LPA) 
which is used to ATTACH Interpreter and communicate 
between routine::; of ASB Reader/Interpreter. This 
time it just performs initialization 

3) On return, Initialization rtn XCTL's to input 
stream processor 

c. Input Stream Processor 

1) reads input records 

2) compresses JCL and writes compressed statement 
on space allocated to ASB Queue in JOBQE data 
set 

3) SPOOL's input stream data and generates DD card refer­
encing SPOOL'd data 

4) for PROCLIB references, locates procedure, generates 
special statement containing TTR of the procedure 

5) passes commands and unrecognizable JCL to command 
processor (by an XCTL) 

PROGRANHING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE 



6) when necessary, ASB Reader invokes Interpreter 
Region Hegulator Rtn to ATTACH the Interpreter 

7) Region Regulator ENQ's an ASB Interpreter (only 
1 can execute at a time uecause it accesses 
ASB queue - a serially reusable resource, also it 
economizes on region space being used) 

8) Region Regulator obtains region for Interpreter and 
ATTACH's it 

d. Interpreter Control Rtn receives control and 

1> constructs NEL, indicating special access method 
for reading JCL and procedures (special access 
method rtns are CSECT's in Interpreter Control Htn) 

2) Option list and exit list also constructed 

3) ATTACH's Interpreter and WAIT's its completion 

e. Interpreter Initialization Rtn receives control to 
Initialize interpreter as in VIII rl. 3. c. above, then 
LINK's to Interpreter Control Rtn 

f. Interpreter Control Htn 

1) Reads records - LINK'ing to special access methods 
of the ASE Queue Header - to read and expand the 
compressed JCL statements in the Special Access 
Hethod Work Area (SAMWA) 

2) When J"\SB Queue reader encounters special PROCLIB 
reference - it causes Interpreter to LINK to 
ASE FIND rtn to locate the procedure for processing 

3) Interpreter interprets JCL as normal, building 
and enqueueing appropriate control blocks on 
JOBQE sI->ace allocated to the interpreter, chaining 
each job entry off corresponding input QCR 

g. On completion of Interpreting the JCL in the ASB Queue, 
Interpreter returns to Interpreter Control Rtn of ASB 
Reader task 

1) If no I/O errors nor queue full conditions, ASB 
rteader is reactivated to process more JCL 
(Interpreter region is freed) 

PROGRAHIHNG/SYSTEHS EDUCATION - SDD POUGHKEEPSIE 



D. 

.1-

.. 

RJE 

Ref: 

1 • 

h. 

Reader 

RJl:: 
RJE 

2) If I/O error - try to recover, if cannot, A'l'TACH 
Interprete.}:" to handle what is in ASB queue, then 
terminate 

3) 

ASB 

1 ) 

2) 

3) 

SRL 
PUI 

If "queue full" 

a) recompress and reenyueue (on ASh queue) JCL 
for job being processed by interpreter 

b) enter timed WAIT to allo\ll jobs to terminate 
and thus free queue space 

c) restart interpreter 

Reader Termination 

end of file (input) 

I/O error 

STOP conunand 

VIII D. 

(C30-2006) 
(Y30-200S) 

RJB Overview 

a. Serves as a sophisticated Input/Output program 

b. Receives job definition across telecommunication 
lines from rer.\ote work stations 

c. Hrites job control statements on IhlE queue 

d. Interprets JCL statements p enqueues on appropriate 
input queue 

e. Allows os to initiate and execute jobs 

f. On termination, sends job output back to remote 
work station 

2. Function of RJE Reader 

a. Reads records from RJE queue 

b. Separates RJE control stateQents from OS JCL 

PROGRN1!1ING/SYSTEHS EDUCATION - SDD POUGHKEEPSIE 



L 

c. Lets RJE Interpreter handle RJE control 
statements 

d. ATTACH's OS Interpreter to process OS JCL 

1) Interpreter Duilds usual control blocks 

2) Enqueues JOD entries on appropriate input 
queues 

3) Uses special access methods to. "obtain" -each 
JCL statement - they are already in core 

3. Control of rtJE Reader 

a. Operates as a subtask of RJE Collector/Emitter 

b. RJE started by opera tor conunand 

c. Termination is by operator stopping RJE or no , 
remote terminal sending input to central computer 

PROGRAMMn~G/SYS'l'E!1S EDUCATION - SDn POUGHKl:EPSIE 



IX Initiate/'l'erminate \vork (Jobstep 'l'asks) IA 

L Hef: MVT Job Hanagement, Part 3, (Y28-6660) 

A. 

note: 

Initiator IX A. 

1. Function 

a. Job selection, jobstep selection 

1) Uses queue management routines to read a 
OCR (corresponding to ,an input class the 
Initiator is serVicing) into storage 

a) dequeue highest priority, longest 
enqueued job 

b) update QCR and rewrite it 

Queue Hanagement rtns I..:NQ's on the input 4ueues 
while doing this so no other initiator can (try 
to) access the queues ~.,hile this one is checking and 
modifying them 

2) 

c) HEAD JOn's JCff into ma in storage (Ini tia tor's 
region) 

Job Selection rtn checks job failed but in JCT, 
if on'it processes job in "flush mode", message 
written on console, Queue J.·ianagement moves output 
portion of the job queue entry to output work 
queue frees input queue space 

3) If job failed but not on, Queue Nanagement rtns 
read first SCT (pointed to from JCT) into storage 

4) CSCB built when a job is dequeued for initiation, 
added to chain of CSCB's out of Master Scheduler 
Resident Data Area contains 

Hef: Job !'1anagement, Appendix h, CSCB Format (Y28-6660) 

a) address of initiator's TCH 

\ .. 

PROGRAl·UUNG/SYSTL!1S EDUC1i.TION - SDD POUGHKEEPSIE 



L 

L 

5) 

b) name of the job 

c) pointer to JeT for the job being processed 

seD read into main storage and info~ation in it is 
used to build a QMP~ which is used when initiator 
or terminator generates messages to be added to the 
job's message class - SMil's containing messages 
are added to output logical tracks via queue 
managemen t rtns . 

6) Job selection rtns read DSENQ Table into storage 
and construct BHQ paramete,r list for non-temporary 
data sets useu by the job 

a) ~NQ not issued yet, parameter list just built 

b) each data set is ENQ'd on for exclusive or 
shared control depending on DISP operand on 
DD Card 

(1) iJISP=0LD,NEW,NOD - exclusive 

(2) DISP=SHR - shared 

c) ENQ issued at beginning of job and lasts duration 
of joil because 

(1) increases thruput by avoiding having to issue 
-ENQ at beginning of each step and possible 
waiting to get access to the required data 
sets 

(2) if one step of a job does some modification 
of a data set and successive steps perfor~ 
more changes - the data set must not bE:.! u~ed 
or modified by other jobs in the interval 
between steps of tllis job 

d) EHQ issued from LPA just before obtaining I/O Device 
allocation region (first step of the job only), thus 
any wait for data sets does not tie up a region 

b. Region 1·1anagement 

Ref: Job ~1anagement, Part 3, Hegion Ilanagemcnt (Y28-6660) , .. 
1) Performed by initiator modules 

PROGRAMHING/'SYSTEI-lS EDUCATION - SDD POUGHKEEPSIE 



-L 

2) Several factors are involved in deciding if a new 
region is needed and how big it should Le 

a) user specified minimum initiator region size, 
specified at sysgen time, is }?laced in BAHINPAR 
field of master scheduler resident area 

b) ,-lIP - calculated minimum joLstep region size -
calculated on basis of whether or not IEFSD061 
module of Initiator (joL selection, termination, 
region size detennination functions) is in LPA 

(1) if IEFSD061 in LPA, minimum joustep region 
is difference bet.ween BAHINPAR and ·sizeof 
IEFSD061 (ca. 40K), difference stored in 
BANI PAR 2 field of I'!aster Scheduler Resident 
Dat.a Area 

(2) if IEFSD061 not in LPA, m~n~mum jobstep 
region is equal to B1\HINPAR and BAl-1IPAR2 
is left as initialized (e.g., zeroes) 

c) User specified region on JOB or EXEC card 

3) There are 3 times in processing a job when initiator 
may (or does) free present region and get another 

a) When initiator is WAITling for work and is POSTld 
that work is available, a minbnum initiator region 
(BMUNPAR) is obtained, it is in this region that 
the QCR(s) are read in and a job is selected to be 
initiated (this region is referred to as job 
selection region) 

b) Wilen a job ha s been selected, Ini tia tor frees 
present region (job selection region) and gets a 
new region in which to perform I/O Device allocation. 
The size of this region is the greater of 

(1) SCT specified REGION (from EXEC or JOB card) 

(2) l1inirnum Initiator Region (BAMINPAR) 

note1: I/O Device Allocation Region can~ be less than 52K 

note2: If is after the job selection region has been freed and 
before. I/O Device AUocation Hegion has been obtained 
for first step of a job that the ENQ on the non-temporary 
data sets is issued 

(,. PROGRAMMING/~Y..STLL'lS EDUCA'l'ION - SDD POUGHKEEPSIE 



note: 

c) nhen jobstep is to be ATTACn'd a new region is 
obtained only if the present one (I/O Device 
Allocation Hegion) is larger than necessary 
and if IEFSD061 is in LPA. The region oLtained 
is the larger of: 

(1) minimum jobstep region (BAHIPAR2) 

(2) SCT specified region (EXEC or JOB card) 

4) When initiating a system task (e.g., interpreter, 
writer, initiator, etc.) if the region specified for 
that task (on procedure JCL) is smaller than the size 
needed to te:r:minate a task, the smaller region is 
allocated and when the task is terminated, a larger 
region is obtained in which to perform the termination 
functions 

5) Just before getting the I/O Device Allocation Region, 
Initiator routines in LPA 

a) Clmp Initiator's priority to a level similar to 
that of the job being processed, ~lis is done 
for all steps of a job 

b) issue r:NQ on non-temporary data sets, if it 
is first step of a job 

This is done so competition for I/O devices and, later, the 
jobstep region will be done at job's priority instead of 
the initiator's 

2. Allocation of I/O Devices - assigning devices to data sets 

Ref: HVT Job Nanagement, Part 6, I/O Device Allocation (Y28-6660) 

a. Allocation Interface routine entered after ele allocation 
region is obtained, routines 

1) Obtain space for step parameter list (specified in 
BXEC card) 

2) If track stacking specified - initialize the stack, 
(via Stack Initialization rtns) 

3) Build allocation parameter list 
\, . 

4) LINK to I/O device allocation rtn 

PROGRAMMING!SYSTEHS EDUCA'fION - SDD POUGHKEEPSIE 



note: 

., 

L 

note: 

~ .. 

b. I/O Device Allocation Houtines 

1) ENQ's on all UCB's 

2) Obtain an SHB, for messages to be generated (allocation 
messages). Nore 5MB's obtained as needed. 

3) Write jobname on console (if DISPLAY JOBNAMES conunand 
has been issued) 

4) Examine COND operand specified on step being processed. 
If comparison to completion codes ih previous SeT's 
indica tes tlds step should not be run, it is processed 
in flush made and return coc:re-to allocation interface rtn 
indicates step is not to be executed . 

a) all data sets, except SYSIN and OLD SYSOUT data 
sets, are treated as DUHNY data sets - no units 
assigned 

b) TIOT constructed but only entrys are for SYSL~ 
and OLD SYSOUT data sets 

This is done because SYSIN and OLD SYSOUT data sets have already 
been allocated devices (SYSn; when data SPOOL'd by iVIi OLD 
SYSOUT when created by Drevious steps) 

5) If step is to be run, information is gathered from various 
sourc~s and I/O allocation routine 

a) builds tables, fills them in with information from 
SlOT, JFCB, SCD, PDQ, etc. 

b) as allocations performed, fills in information in 
these COll trol bloc]:s (e. g ., unit alloca ted to SYSOUT 
data sets, newly PASS'd data sets information rut in 
PDQ, etc.) 

c) If DO card specifies a dedicated data set, dedication 
determination rtns entered 

Dedicated data sets are allocated in initiator's cataloged 
procedure when initiator is started; they are available for 
use by any jobsteI:i the initiator is s~rvicing; re'1uest is 
by DSN = & specifying the nar.1e of thE:: dedicated data set 

6) Dedication Roubines 

PROGRNUUlJG/SYSTEI,1S BDUCATIOI-J - SDD POUGlj]~EEPSIl. --



7) 

/" 

a) check for correct JCL operands 

(1) USORG not ISAl-1 

(2) DSN. rna tches ddname on one. of ini tia tor' s 
dedicated data sets 

(3) SPACE parameter specifies average blocks 
and does not exceed space allocated to dedicated 
data set when initiator started 

b). if reference is valid, routines 

(1) force "no checkpoint" indicators in SCT 

(2) force DISP=(OLD,KEEP) to avoid deletion of 
data set 

(3) copy unit and volume info aLout data set 
into SlOT and JFCB created from the step's 
UD card referencing the dedicated data set 

(4) updates VOLT and PDQ (so dedicated data sets 
can be passed to successive steps) 

c) If reference not valid, control returned to process 
the DD card (SlOT, JFCB) as a request for a temporary 
<.lata set (as "&" in front of data set name indicates) 

If COND operands allow step to be executed, tables are 
built that will be used in allocation processing 

a) AVT - Allocate Volume Table 

(1) one entry for each DD card (i.e., data set) 

(2) \V'hen unit assigned, VCB address placed in AVT 
entry corresponding to the data set 

(3) used to create TIOT, later 

b) AWT - Allocate Work Table 

(1) one entry for each data set to be allocated a unit 

(2) contains bit settings indicating all units avail­
able for allocation to that data set 

PROGRAl·llUNG/SYSTEi-lS EDUCATIGI~ - SDD POUGHKEEPS II; 



note1: 

note2: 

(3) when a unit becomes ineligible for a data set, 
corre!3ponding bit in that data sets entry is 
turned off 

c) ACB - Allocation Control Block - keep track of all 
other tables 

8) Attempt is made to equalize channel usage 

Ref: Job danagement, Part 6, I/O Dl::vice Allocation, 
Channel Load Assignments (Y28-6650) 

a) a channel isa discrete. path from a device to the 
CPU OR main storage; each subchannel in a multi 
plexor channel is treated as ~ separate path (channel) 

b) Channel Load Table (CLT) built by allocation rtns 

(1) each entry in CLT represents a logical channel and 
shows number of data sets being accessed thru that 
logical channel 

This count is oLtained from user count field in the associated 
UCBs 

A "logical channel" for allocation purposes, is the collection 
of devices accessible thru or by a discrete physical path or 
channel. This should not be confused with the logical channel 
concept developed in I/O Supervisor PLM. Though the same 

,phrase is used, the meanings are distinct 

c} CLT entrys point to collections of UCB addresses in 
the Scheduler Lookup Table (SLT). The group of UCBs 
indicated by a CLT entry defines the devices accessible 
thru the corresponding logical channel (i.e., the 
logical channel represented by the CLT entry) 

d) CLT entry also contains a count of data sets being 
accessed thru tLat logical channel (obtained from 
user count fields in corresponding UCB's) 

e} allocation rtns search SL~ for UCB passed to it 
(by otner allocation rtns) and a mask is 
constructed with Lits indicating logical channels 
the UCB is associated with. This mask is used with 
channel load information in CLT entry to equalize 
channel usage 

note: A device can "belong to" several logical channels and a 

(..,,' PROGRA"1MING/SYSTm1S l;;DUCATIOU - SDO POUGHKEEPSIE 



physical channel (or subchannel) can be "in" only one 
logical channel according to this def'n of "logical channel". 
Such is not the case in the I/O Supervisor's definition of 
"logical channel" 

9) Demand Allocation routines - allocate to data sets 
for which no choice of units is possiLle 

a) volume serial number specified is permanently 
resident or a reserved volume - such volumes 
cannot be dismounted and therefore the unit they 
are mounted on is the only unit that can De 
allocated to the data set 

b) specific unit is reyuestea (e.g., UNIT = 282 or 
UNIT=SYSCP where SYSCP list has only one entry) 

c) device range reduction performed - Lit settings 
in AWT entrys set off corresponding to ineligible 
devices for a data set 

(1) off line units 

(2) primary console 

(3) units holding reserved and private volumes are 
ineligible unless DO card specifies correct 
VOL=SER= 

(4) units holding system residence devices unavail­
able for allocation for private volume 
requests unless correct volume serial 
specified 

(5) already allocated units are ineligible except 
for UA Devices specifying shared requests etc. 

10) Automatic Volume Recognition (AVR) Rtns 
entered if included in s:i"stem. Allow mounting of 
volumes before needed or requested by system (when 
device comes READY, AVR puts vol serial n~~ber in 
UCB) 

a) AVR allocates to data sets specifying volume serial 
numbers 

b) . UCB's scann~d for vol serial numbers requestea 
by data sets that are as yet unallocated 

PROGRANMING/SY~'rEHS EDUCATI01~ - SDD POUGHImr:PSIE 



c) next AVR allocates on-line devices with no 
volumes mounted (issues r,:OliNT messages) 

d) finally Ava Allocates units holding unneeded 
volumes (lJI~HOUNT & ImUNT messages issued) 

e) if not enough online devices available -
allocation recovery me3sages issued, AVR 
WAIT's on operator response 

f) if required units can't be allocated, step 
terroina te,d (e. g ., 4 tapes reques ted and only 
3 are generated in the.systeQ) 

g) AVR rtns branch to Decision Allocation 
routines 

11) Decision Allocation i{outines entered to allocate 
data sets still not allocated; entered from Demand 
Allocation if AVR not in the system 

a) allocates devices to as yet unallocated 
data sets requiring private volumes or 
specifying volume serial numLers 

b) allocates devices to PASS'd data sets (volume 
containing PASS'd data set could have been 
dismounted) 

c) allocates devices to data sets for which 
eligible units are reduced to point where 
no choice exists 

d) attempts to satisfy channel and unit 
separation requests 

e) units violating separation requests are 
made ineligi0le by turning off corresponding 
bit in ATflT mask field corresponding to the 
data set 

f) devices allocated based on "restrictiveness" 
of,request 

PASS'd 8 
Channel Sep 4 
Unit Affini,t.y 2 
Chan Affinity 1 

PROGRAMr.IING/S~STENS EDUCATIm,; - SDD POUGhKeEPSIE 



note: 

note: 

c. 

thus a data set that was PASS'd and re4uesting 
cl~nnel separation is a more restrive request 
(& therefore dllocated first) ttan one that 
was PASS'd and requesting channel affinity 

12) TIOT constructed 

13) 

a) one entry for each D1.) card 

b) for data sets requiring spac~ on pu~lic 
volume and for \lhich there is a choice of 
units, 'l'IOT entry containsUC13 aadresses 
of the units 

c) uADSl~ rtns invoked to assign space for 
~~EW data sets 

d) if space is to be allocated to a data set 
for which there is a choice of units, DADSH 
\-lorks thru the list of units (if it needs 
to) to find one with sufficient available 
space to allocat~ 

e) if space cannot be allocated - step terminated 

f) if space allocated - TIOT compressed by 
replacing list of units with the unit that 
was al;l.ocated 

Alloca tion messages constructed in S1-ill' sand SHB' s 
written to JOBQ~ 

14) Allocation routines DEQ on UCB's and return to 
Allocation Interface 

Public volllr:1e - one the system can allocate to a 
temporary data set when a nonspecific volume request 
is made and PRIVATE not coded ,in VOL operand 

On return, allocation interface checks return code 

1) if non zero - step cannot be run - EXEC cmm 
codes ~atisfied or devices could not be allocated -
alternate step delete routine entered 

a.)' dummy TCll created and passed to regular 
termination routines 

This is done ,to provide interface with termination 

-
PROGRM1MIUG/SYSTE~S EDUCA'l'IO~~ - SDD POUGHKl:EPSlr: 



t' ' 

routines who "terminate" the step even though it was 
never run 

b) SYSIN data sets deleted 

c) execute accounting rtn 

d) check JOB card COND codes (if m~t, rest of 
job bypassed - JeT job failed but turned on 
and rest of job processed in "flush mode" 

e) initiators priority CHAPtd back up to original 
value 

f) next step selected - this is done in same 
region that the terminator routines worked 
in, that is the jobstep region - the step 
selection routines are in IEFSD061 as are 
termination rtns 

2) If zero, allocation interface prepares to ATTACH 
jobstep task 

d. Flush mode processing 

1) performed for 

a) jobs with JCL error (JCL job failed Lit is on) 

b) jobs cancelled by operator (even those cancelled 
while still enqueued) 

c) jobs whose corm operands (in JOB or EXEC cards) 
are satisfied 

d) jobs with unrecoverable errors encountered by 
interpreter or initiator 

2) processing 

a) I/O allocati0n region obtained for each 
remaining step of the job 

b) no device allocation performed tLough, data sets, 
except SYSU~'~ treated as DUL·lHY 

c) TIOT built t.ut only entries are for SYSIH data 
sets and old SYSOUT data sets 

PROGRAMt-lING/SYSTEllS EDUCATION - SDD POUGHKEEPSIE 



,.~ 

d) Device allocation rtns return non-zero return 
code to I/O interface rtn 

e) I/O interface rtn invokes alternate step termination 
routine 

nef: Job !·lanagCl.IEmt, Part 3, '.i..'erminating the JoL 
Step (Y28-6660) 

3. creating Jobstcp task 

note: 

Ref: Job Hanagement, Part 3, Att'aching.'the Jobstep (Y28-6660) 

a. Allocation Interface routines 

1) uetermine priority at which task is to be A'fTACli'<l 

Ref: Operators Guide, Chapter 3, 0perator Commands, 
START (C28-6540) 
Job i'1anagernent, Part 3, Attaching the Jobstep (Y28-6660) 
Supervisor and Data Hanagernent Services, section I, 
Task Creation (C28-6646) 

a) limit priority - specified in START INIT command, is 
maximum priority the initiator can assign to a task 
it initiates. This is the initiator's own 

b) 

limit priority. 

force priority - specified in START INIT command, 
associated with a jObclass. All jobs from that 
class are l-iTTACH I d at the force priority,. regard­
less of the JOB/LXEC card prioritys, but not higher 
than the limit priority 

c) DPRTY operand on EXEC card - converted to dispatching 
priority (internal value) for the step 

d) PRTY operand on JOB card - converted to limit priority 
(internal value) for the step 

DPRTY operand can have two values: DPRTY=(V1, V2), 
internal priority calculated as follows: (V1 x 16) + V2; 
the pair (V1, V2) can range from (0,0) to (15,15); PRTY 
operand is a single value: PRTY=n, 0~n~13, 
internal ~riority calculated as follows: (n x 16) + 11 

\ .. 
e) 'I'ask priority determined as follows 

(1) . force priority used if specified and if 

.' 

PROGRAMHIIJG/SYSTD1S EDUCATION - SDIJ POUGHKEEPSIE 



L 

it is less than or e':iual to limit priority 
if force greater than limit, limit value 
is used 

(2) if no force priority specified, and UPRTY 
is specified, the smaller of the two 
values: DPRTY and initiator's limit 
priority is used, 

(3) if no force priority nor DPRTY specified, 
and a PRTY is specified, the smaller of tile 
two values: PRTY and initiator's limit 
priority is 'used" 

(4) if no force, limit, DPRTY nor PRTY values 
specified, the reader interpreter !laS inserted 
a default priority in JeT for job and tnat value 
is used 

2) TIOT structured into 176 byte records and ~ritten onto 
JOBQE data set: this is done in case system fails and 
job can be restarted - the TIOT has thus been 
preserved 

3) JeT and seT rewritten into JOBQE - having been mOdified 
by initiation processing 

4) 

5) 

if first step of JOD and JOBLIB or STEPLIB, data sets 
specified -.space for DeB's obtained and opened 

determines if allowing step to use amount of time 
specified (on EXEC card) VJould cause it to exceed 
JOB time limit (JOB"card), sets up ti@er parameter 
specifying smaller of: difference oetween 
remaining job time and requested step time, and 
requested step time 

6) builds AT'l'ACH parameter list 

7) passes control to routine in LPA to 

a) purge track stacl;. 

b) recreates ~IOT in SQA 

c) CHAP's initiators priority to value similar 
to that at which task wiJ,l be ATTACH'd 
(jobstep priority could be higher than 
present priority of initiator (if force 

PROGRAl-lNING/SYS'rr:liS LDUCATIO~l - SDD POUGl~KEEPSIE 



B. 

note: 

d) 

e) 

present priority of initiator (if force 
priority is used, DPRTY on ,l:;Xl::C card, etc.) 

ATTACII's the jobstep 

if necessary, re-CHAP's initiators priority to 
previous level . 

initiator has performed I/O device allocation at a 
priority similar to the job's JOB card priority 
which· may be lower than the priority assigped to 
this jobstep task 

f) issues S'l'I11ER for value ,'arrived at Ly 
calculations above 

g) issues WAIT on cancel or ATTACHJ:;CB's 

Terminator IX B. 

Ref: Job Hanagernent, Part 3, Terminating Jobsteps, 
(Y28-6660), Handout S19 

1. Function 

a. Bntered whenever a step terminates normally or abnonnally 

b. Creates interface with termination routines to 

c. 

1 ) Dispose of d~ta sets used by task 

2) execute accounting routine 

3) Check JOB COHD operand 

4) ReleaseI/U devices allocated to task 

5) CHAP's initiator's priority back to 
original level 

Step abnormally terminated when 

1) Jobste~ re~uests abnormal termination 

2) Supervisor abnormally terminates it because 
of an error 

3) Job ,'s CANCEL' ed \ .. 

PROGRAHMING/SYSTK"1S ElJUCATION - SDD POUGHKEEPSIE 



C. 

d. 

4) Steps time interval expires 

When a job terminates 

1) Uueue Hanagement rtns read DSENQ into storage, 
build and issue DEQ move on non-temporary- data 
sets 

2) Deletes jobs input queue entry 

3) Deletes jobs CSCBfrom queue and frees its space 

4) Enqueues job's logical tracks containing control 
blocks describing job's SYSOOT data sets and 
messages on appropriate output QCR's, at job's 
priority 

Control of Initiator/Terminator IX C. 

Ref: Job Management, Part 3, Initializing the 
Initiator (Y28-66GO) 
Operator's Guide, Chap. 3, Operator Commands 
(C28-654 0) 

1. Started by operator command, executes in own 
region of 52K minimum 

2. In response to START command, L~aster Scheduler 
obtains 52K region and ATTACH's the System Task 
Control 'l'ask in that reg ion 

3. System Task Control rtns ATTACH the initiator 
task, first rtn to receive control is Initiator 

'Initialization rtn which 

a. Performs syntax check on START command pardmeters 

1) if no parameters coded, check PArol Field of 
initiator cataloged procedure 

2) if an error in parameters - Initiator is 
terminated (by System Task Controlrtn) 
if no errors - continue 

b. Space for Linkage Control Table (LCT), two register 
save areas and QMPA's for message class and 
input qu~ues is obtain~~ 

c. Address of track stack parameter list is put in 

PROGRAHNING/SYSTEIIS EDUCATION - SDD POUGH KEEPS IE 



QNPA'S 

d. Duffer number put in track otack parameter area 

e. LCT initialized with 

1) QHPA pointer 

2) UCD list pointer 

3) start parameter list (SPL) 

4) . return address (to Syste."n Ta~k Control Rtn) 

f. Force and limit priorities are put in LCT 

Ref: Job danagement, Part 3, j\ttaching the Jobstep (Y28-6660) 
Operator Guide, Chapter 3, Operator Commands, START, 

(C28-654 0) 

note: 

g. Obtains space for ECB list, one ECB for each job 
class the initiator is to service, hCBls initialized 
with complete bit "on" 

h. Scans list of Group Control Blocks (GCB) for one 
corresponding to this initiators procedure name 

i. 

1) if one exists, increases count in it by 1 

2) if none exists, create it and puts it in GCB queue 

GeB's used by HODIFY command routines 

Passes control to job selection routine which 

1) reads OCR for each input queue that this initiator 
is to service (QCR read via Queue L\lanagement Rtns) 

2) examines "top pointer", if it points to work - begin 
initiating the job 

3) if no work, turn off "complete bit" in EC~ corresponding 
to that class and check other QCR's 

j. If no queues the initiator is to service have work, frees 
the region and retreats to LPA and from there 
issues "HhITING FOR ~JOR1(" message and enters WAIT 
state, waiting on the ~CB's for the input queues 

PROGRAMHING/SYSl'l::MS EDUCATION - SDD POUGuKl:;EPSIE 



note: Last word in each QCR (which the Initiator is to service) 
points to on ~CB associated with the first initiator 
started to service that class. If there are several 
initiators servicing the same class, the corresponding 
ECB's, in the lists Quilt for each initiators, are 
chained together. Hhen work is enqueued on that QCR, 
all the ECB's are POS'!' I d and various ini tia tors scraml>le 
for the work 

4. Stopping on Initiator/Terminator 

a. Operator command 

b. Permanent I/0 error 

, .. 

, . 

PROGRAHHING/SYSTEHS LUUCATIOH - SDD POUGIIKLEPSIl:: 



t t 

Process Output (Output Writers) x 

Ref: Job Nanagement, Part 4, (Y28-G660) 

A. Function 

1. Access SYS1.SYSJOBQE to find control blocks 
indicating data to be written 

2. Uses uSB's and JFCB's created by Reader/Interpreter 
and Terminator descriLing SYSOUT aata sets 

3. Also uses SHB's containing JCL images and system 
messages 

4. Activated when an BCB is posted lJy a terminator when it 
enqueues output work on a class the writer is 
servicing 

s. If separator pages are to be written, rtn to 
create them is invoked 

6. uequeues on entry, determines if it is a SI-1B or DSB 

a. If 5MB - passes control to 5MB processor which 
extracts and writes message 

b. If DSB - passes control to standard writer rtn 
or user's progrum 

X A. 

Ref: Job Nanagement, Appendix A. CSCB format (Y28-6G60) 

1) Obtains :Jpace and formats a CSCB used when 
operator Cfu~CEL's DOL to cause WTR to stop 
processing which ever data set it is now 
processing but the Wr£R task: is not terminated 

2) ATTACH's either standard writer routine or 
user program 

3) WAIT's suLtask completion 
\ .. 

7. Writer dynamically initializes itself to handle variou~ 
input data sets 

PROGRAHHIHG/SYSTEI:S EDUCATION - SDD POUGIIKLEPSIE - . 



9. 

• When a data set is processed, writer enters rtn to 
scratch the data set 

When a job's output has been processed, writer enters 
rtn to free the logical tracks the queue entry 
occupied . 

10. When there is no more work to be done writer enters HAlT 
state, waiting on BCE list for classes i·t services 

B. . Control of Output Writers 

Ref: Job Management, Part 4 (Y28-6660) 
Operator Guide, Chapter 3, Operator Commands 

(C28-6540) 

1. Started by operator command on up to 8 output classes 

2. Executes in own region of each 20K 

3. Bntered from System Task Control Rtns at Writer 
Initialization Routine which 

a. Sets up output UCh 

b. Determines if it is to use Standaru USAN, or 
special access method, uses s~ecial access 
method when 

1) output device is printer or punch 

2) data set uses machine control characters 

3) PCl is not used 

4) 4 or more buffers used for output 

c. Appropriate control blocks are set up if Special 
Access Method is to be used 

X B. 

d. Valida tes STAR'!' command operands and PARH field on 
EX~C statement of WTR cataloged procedure 

e. Builds a set of ECHis to be used when waiting 
fqr work, one E~B for each class the \olriter is to 
service1 l;;CB's initialized with "complete bit" 
on 

PROGRAHH'li~G/SYSTEdS l:.:DUCATIUN - SuD POUGHKEEPSIE 



f. Sets up special communications ECB, used to 
communicate Letween various routines of the 
writer and Letwcen \vriter and user routines 
specified to handle a particular data set 

g. Passes control to main logic routine to 

1) Process a command (e.g., 110DIFY) 

2) Process an output queue entry 

3) Handle a permanenet I/O error (frees workareas, 
and returns to system .task control rtn (i.e., 
the writer dies» 

4. Stopping a wr iter 

a. by opera tor command (STOP \"lTR) 

b. Permanent 1/\.) error 

, .. 

PROGRAf.U·IING/SYSTEl'iS l.:lJUCATION - SDD POUGUKLEPS IE 



XI Command processing XI 

A. 

B. 

C. 

\'lhere commands may appear XI A. 

1. Console - operator presses "REQUEST" on console 
keyboard generating I/O Interrupt 

2. Input stream - Reader Interpreter or ASB reader 
immediately pass control to command processing 
routines to schedule execution of the con~and 

Communication XI B. 

Ref: HVT Supervisor, Section 7, (Y28-66~9) 

lIandou t S 1 9 

1. Activated by I/O Interrupt from operator's console 

2. I/O Interrupt Handler, determining the interrupt 
came from console, passes control to resident 
attention routine which POST's the communication task 

3. Wilen acti va ted, the communication task issues SVC 72 
which gives control to a router module which determines 
the service to be performed and passes control to 
appropriate process modules 

a. External interruption (from INTERRUPT button on 
control panel, indicates main console is do~n 
and searches for alternate console, if can't 
find one - OS dies 

b. I/O from 1052 keyvoard console 

c. Input from unit record devices 

d. Output to unit record devices 

4. Appropriate processor module accepts input from console 
places it in a buffer and issues SVC 34 to pass control 
to command scheduling routines 

Command Scheduling (SVC 34) 

PROGRAM11ING/SYSTEHS BDUCATIOU - SlJD POUGHKEl!:PSIE 

XI c. 



Ref: Job Hanagement, Part 5 (Y28-6660) 

, . Determines where command comes from {console or 
interpreter (JCL» 

2. Translates lower case EBCDIC to upper case 

3. Passes control to router module to scan buffer for 
command verb and: 

a. $earch verb table 

b. . Determine if command source has authority to issue 
the command 

c. If authorized - passes control to routine addressed 
by verb table entry 

d. If not authorized - passes control to message routine 
to say so 

4. COImland Scheduling handles commands in various ways 

note: 

a. Create CSCB - task creating commands, put CSCB 
on a chain (origin in Master Scheduler Resident 
Data Area) marks it pending and POST's Master 
Scheduler who scans chain for pending CSCB's and 
ATTACH's appropriate task to execute the command 

Two types of task crea ting commands - those tI!a t 
execute in t·~S region and those that execute in their 
own region 

b. Update existing CSCB and POST's existing task to 
perform action indicated by settings in CSCB 

c. Build a Command Input Buffer (CIB) cl!ain it off 
START parameter list (SPL) and notify existing 
task to check the eIE and take action accordingly 
sP ..... chained. out of CSCB, SPL points to cn~ 

d. Store command in system talJle ana. notify existing 
task which in!;>pects bits in the ta.bles during an 
operating cycle and begins or ceases to perform 
the function {e.g. DISPLAY JOBNIJ1bS} 

\ .. 
e. Pass control to a routine of command sclu::duling 

routines and specifying action required via parameter 
in registers 

PROG~1ING/SYSTU1S BUUCATION - SDD POUGHKEEPSIE 



D. 

f. When parameters won't fit in registers, build a 
parameter list and proceed as in e. above 

Command Types 

1. Task creating commands 

XI D. 

a. Generally these are the commands which involve 
performance of a continuing system ~unction 
(Initiation) or access a serially reuseable resource 
(the work queues) 

b. A CSCB constructed, master scheduler POS'l"d to 
create appropriate task 

c. STAR':!' conunands cause [,laster Scheduler to AT'l'.z\CII 
system control routine in its own region (size 
specified at sysgen time - default of 44K or user value) 

Ref: Job Management, Appendix A, CSCB format (Y28-6660) 

d. Systen Task Control Routine (L-Shaped Program) 

1) Performs syntax check on command 

2) Uuilds JCL statements from PROCLIb member 
specified in command (e.g. S RDR, RDR is a 
catalqged procedurE), and operator command 
operands, and generates a JOB card, these 
JCL images are stored in main storage; CSCB 
set up to point to the JOB image 

3) XCTL's to Interpreter Control rtn to build 
NBL for interpreter (Indicating special access 
method since JCL is in storage) 

4) LINK's to Interpreter to interpret the JCL 
statenents and Duild appropriate control 
tables but not to write them on SYS1.SYSJOBQE 

5) Interpreter Control, on return from LINK, passes 
control to allocation interface rtn of initiator 
to allocate devices to data sets needed by the 
task being started 

6)" ]illocation\'Interface XC'l'L's to ATTACHOR rtn 
of System Task. Control Rtn (in l..PA) to ATTACH 
the system task in the same region occupied 

PROGRAMHING/SYSTl:.i,lS l;;UUCATIO~-J - SDD POUGHKEEPSIE 



7) 

by System Task Control Rtns 

v;hen the system task terminates, it passes 
control to AT'l'ACHOR which brings in Termination 
rtns to perform. terraination functions as for 
any task 

2. Existing task commands 

a. Involve notifying existing system task of a service or 
function to be performed 

b. Notification by one of metnods listed in 4. b., 
c., d., e., f.,· above 

PROGRAMM"lNG/SYSTEr-iS EDUCATION - SDD POUGHKEEPSIE 



XII System Restart * 
Ref: Job Uanagement, Part 1, System Restart (Y28-6660) 

A. To indicate that IPL is for system restart, 
omi t "pH operand to Q= keyword to SBT cOIl'unand 

B. Inspection of SYS1.SYSJOBQE 

1. When Master Scheduler IPL rtn ATTACH's queue 
initialization routines, these routines do not 
format queue but inspect it to p~epare for 
restart 

2. Possible queue entries 

a. Incomplete input entry 

1) exist if system halted during input stream 
processing 

2) entries purged, queue space freed 

b. Incomplete output entry 

1) exist and represent system output for jobs 
that have not yet been processed 

2) if job has not been enqueued, free queue 
space reserved for output entry - it doesn't 
yet represent any output 

3) if job enqueued, leave· queue space as is, 
job will need it when it (job) is processed 

c. Incomplete ASB entry 

1) exist if system halted during ASB task 

2) queue space freed 

'd. Incomplete RJE entry 

1) exist if system halted while job entry was 

, .. 

PROGRAMMING/SYSTl.;NS l:.;DUCATION - SDD POUGHK}';EPSIE 

XII 

XII A. 

XII B. 



ueing transmitted to control system 

2) queue space freed 

e~ Enqueued input, o~tput, hold, ASB and RJ£ entries 

1) may exist 

2) remain in queue, processed normally when 
system restarted 

, 
f. Dequeued input queue entry' 

1) exist for jobs selected for initiation but not 
completely processed 

2) if job can be restarted, it is; if not 
input queue space freed, output queue entrys 
enqueued to be processed 

9. Dequeued output queue entry 

h. 

1) exist for partially completed system output 
processing 

2) queue entry modified so unprocessed data will 
be processed 

Dequeued hold queue entry 

1) exist if system halted while altering status 
of a job (cancelling it, releasing it, etc.) 

2) entries re-enqueued in hold yueue 

i. Dequeued ASB queue entries 

1) exist for jobs processed Ly ASB input stream 
processor and are partially processed by inter­
preter 

2) entries re-enqueued in ASB queue 

j. Dequeued HJE queue entries 

1 ) 
, .. 

exist for joLs being processed by RJE reader 
(RJE Collector/Emitter accepts joLs and puts 
JCL images in RJE queue, RJE reader removes 
the .entry anci reads and interprets the JCL) 

PROGRAHHIHG/SYSTEHS EDUCATION - SDD POUGHKeEPSIE 



C. 

or processed Ly RJB reader 

2) entries are rc-enqueued on RJE queue 

Processing of entries in queue XII (;. 

1. Tables constructed 

a. To keep track of each logical track in JOBQE as 
it is processed (Table A) 

b. To point to first entry in each queue (Table B) 

c. To find control blocks representing system output 
in queue entries with system output (Table C) 

d. Jobnames Table - names of jobs in incomplete input 
queue entries and dequeued input queue entries, 
used to inform operator of jobs that cannot be 
restarted 

e. Purge Queue - pointing to dequeued input, output, 
hold, ASB and RJB queue entries; used during later 
processing of each case 

2. . All entries in Table A c::orresponding to unused tracks are 
set to 0 as are entries corresponding to tracks assigned to 
enqueued input, output, hold, l~SB and RJB entries. (These 
queue entires remain as is, therefore 'rable A entries 
corresponding to their queue space are "processed" by 
doing nothing) 

3. A Purge queue constructed pointing to each 

a. dequeued input entry 

b. dequeued hold queue entry 

c. dequeued ASB and P.JE entries 

d. dequeued output entry 

4. Jobnames table buil t, contain jobnaI:te from each 

a. incomplete input yueue entry 

b. dequeued input queue entry 

5. Control blocks used to connect input queue entries 

PROGRAHUJNG/SYSrr}:;!lS l,;DUCATION - SDU POUGHKI;i.:PSIE 



6. 

with corresponding system output are read into storage 
and checked for accuracy, updated if necessary 

Queue space correslJonding to incomplete queue entries 
is freed 

7. Operat()r informed of jobnames for incomplete input 
entries (can't be restarted) 

B. Processing of remaining queue entries 

a. Dequeued output entry. - queue records read, 
examined, updated to indicate whether or not 
corresponding SPOOL'd system data set exists 
and entry is re-enqueued 

b. uequeued input entry 

1) if proce~sing after step selection but 
before execution - can't be restarted 
(TIOT lost) output queue entry enyueued, 
input queue entry deleted . 

2) if processing stopped while a step was in 
execution, check if RESTART requested if yes 
initiate restart, if no - enqueue job's 
output queue entry delete input queue entry 

3) if processing stopped during termination 
of a step oeter than last - termination 
completed, re-enqueue input entry 

4) if processing stopped during termination 
of last step, complete termination, delete 
input queue entry 

c. Dequeued P~E queue entry 

1) reenqueued on P~E queue 

2) LTH of P~E queue entry modified if input 
queue entry had not been enqueued 

d. Dequeued ASB qu~ue entries - re-enqueued on ASB 
queue (regular input queue entry for this Asn entry 
is· in-complete (,clse this ASB queue entry wouldn't 
exist» and has been freed 

e. Dequeued hold queue - re-enqueued on hold queue 

PROGRAHMING/SYSTI.:MS EbUCATIOH - SDD POUGHKEEPSIE 



.. ~ 

9. List of ready ues's built and USCB's searched for 
data set names corresponding to system generated 
temporary names 

a. Output data set - increment user count field 
in UCB by 1 

b. Input data set - .uses jobnames table to see if 
it corrcsI~nds to job that cannot be. restarted, 
if it does, data set is scratched 

10. This terminates the system restart work, queue initialization 
region is freed and control returned to master scheduler 
initialization IPL rtn (to execute AUTO Commands) 

, .. 

PROGRAMMIHG/SYSTEMS I:;J.)UCATION - SOD POUGHKEEPSIB 



XIII Task l1anagement Overview 

L 
Ref: Handout 520, V2S-61S6 

A. Tasks (review) 

1. Definition 

a. Request for execution of some code 

b. Thing to which resources are allocated 

c. Competitor for system resources 

d. Thing which ABEND's 

e. Represented to system by a TCB 

2. Types of Tasks 

3. 

4. 

a. Permanent system tasks 

b. 

c. 

Jobstep taskS} 

Sub tasks 

d. Creation of each 

Task States 

. a. Active 

b. Ready 

c. Wait 

d. Dormant 

'l'ask queues 

not mutually exclusive 

a. Main (Dispatcher) queue - origin in CVT 

b. Subtask (family relationships) queue origin 
in jobstep task for the region 

, .. 

PROGRAHHING!SYSTEllS EDUCATION - SDD POUGfiKEEPSIE 

XIII 

XIII l~. 



B. 

C. 

o. 

Interrupts (review) 

Ref: Handout S9 

XIII B. 

1. OS/360 is interrupt driven - active task remains active 
until an interrupt occurs that causes it to cease being 
the active task 

2. Interrupt is an electric pulse 

3. Originally fielded by har~ware 

a. CPU circuitry determines type of interrupt 

b. Stores current PSW (in CPU) in appropriate fixed 
location in main storage 

c. Makes appropriate new PSW active 

d. This new PSvl points to code which analyzes and 
handles the interrupt 

Five types of Interr~pts, each handled differently 

1. SVC - 4 types of SVC routines 

XIII C. 

2. Program Check - depenas on state of task (problem program 
or supervisor) c3:nd whether SPIE macro has been issued 

3. External - "INTERRUPT" key on control panel or timer 
interrupt 

4. I/O - "first time" switch is checked or set and control 
Ipassed to I/O Interrupt Handler 

5. l'1achine Check - control passed to SERO, SER1, or .'lCli 
rou tines or system put in \vAIT sta te 

Task Supervisor 

1. Creates, monitors and destroys tasks, serializes use 
of resources when requested to do so 

2. Performs ATTACH function 

a. Obtains space fdr and initializes TeB 

b. Enqueues TCB on appropriate c;ueues 

PROGRAHl\UNG/SYS'l'EHS EDUCATIOl; - S0D POUGH:KLEPSIE 

XIII D. 



E. 

F. 

G. 

H. 

3. Performs Dl:TACH function (when needed) 

a. Frees control blocks chained out of TCB 

b. JJequeues TCB and frees its space 

4. Serializes use of a resource - ENQ, DEQ macros 

Contents Supervisor 

1. Searches for requested programs 

2. Builds or updates control blocks' describing such 
programs 

3. Invokes program FETCH to load and relocate the 
program 

4. Constructs RB and inserts PSW pointing to entry 
point of the program, enqueues RB off requesting task 

Hain Storage Supervisor 

1. Handles all requests for main storage space, 
from dynamic area or within a region, or in SQS 

2. Searches control blocks representing available' space, 
tries (in most cases) to allocate space from highest 
possible address 

3. Builds and enqueues control blocks describing space 
so allocated 

Timer Supervisor * 
1. Handles requests for establishing a timer interval 

or expiration of such an interval 

2. Builds TQE, inserts it on timer queue 

3. Hanipulates queue as necessary when task gets or 
loses control of the CPU 

4. Gives control to user timer routines when time 
interval expires 

Overlay Supervisor * ,. , 

PROGRAl>1MIlJG/SYSTEUS EDUCATION - SOD POUGHKl,;r:;PSIE - ' 

XIII L. 

XIII P. 

XIII (i. 

XIII h. 



L 
I. 

J. 

1. Dynamically loads segments of a planned overlay 
program when needed 

2. Modifies tables to indicate which segments art! 
now in core and where they are 

3. Passes control to segment loaded 

Trace Table * 
1. Debugging aid 

2. Contains entries describipg interrupts and initiation 
of I/O 

. , 

XIII I. 

3. An entry made for all interrupts (except machine check), 
execution of SIO Instruction and execution of dispatcher 

4. Lach entry 8 words long, containing 

a. PSW At time entry is made 

b. Reg's, usually 0, 1, and 15, when entry is made 

c. Address of TCB causing entry 

d. Timer at time of entry 

5. Size of table determines usefulness of table 

6. Table used in cyclic fashion; when full, next entry 
overlays first entry in the table and space is reused 

7. Table controlled by a 3 word control area addressed 
from location 54 (84~), 3 words are 

a. Current entry 

b. Beginning of table 

c. End of table 

Termination routines 

, . 
2. 

Entered when SVC 3 instruction executed 

Hot to pe confused w~:t;.h terminator routines of 
Initiator/Terminator 

PROGRAMMn~G/SYSTEI1S EDUCATIO~IJ - SDD POUGHKEEPSIE 

XIII J. 



3. D~lete control blocks representing programs or execution 
of programs 

4. Decrement use/responsibility counts and when 
zero, delete the programs ,(if not in LPA), or mark them 
for deletion ---

5. When realize they have been entered from last 
program of a task, perform task termination 
functions 

a. Inform appropriate ancestor task of termination 
of this task and do not destroy terminating task's 
TeB 

b. or, delete terminating task and do not notify 
any other task 

, .. 

PROGRAl'lN!l~G/SYSTEI'~S EDUCATION - Si)~ POUGHKEEPSIE 



XIV Types of Interrupts and Handling of each XIV 

Ref: 

A. 

Jl1VT Supervisor, Section 2, SVC Interrupt Handling 
(Y28-6659) 
Handout S9 

BVC Interrupts XIV A. \ 

1. SVC types 

2. 

a. Type 1 - resident in nucleus, runs disabled, 
no size lin.it 

b. Type 2 - resident in nucleus, runs enabled (at 
least part of the time), no size limit 

c. Type 3 - not resident (may be in LPi~), runs enabled, 
less than 1024 byteH, if not in ~PA executes in 
5VC transient area 

d. Type 4 - not resident (may be in LPA), runs enabled, 
larger than 1024 bytes, structured into 1024 byte 
XCTL segments, if not in LPA executes in SVC 
transient area 

e. Types 2, 3 and 4 execute under a SVRB, type one 
does not 

a. \'lhen an SVC interrupt occurs, new PSW points 
to SVC first level interrupt handler whicb 

1) saves registers in lBASCSAV in nucleus 
(private save area used only by SVC FLIH) 

2) checks SVC table to see if request specifies 
a valid sve number (if not - ABEND) 

3) determines SVC type 

a) If type 1 - branch to it, setting 
reg. 14 to address of Type 1 exit 
routine 

" . 

PROGRAMMIHG!SYSTmlS EDUCATION - SUD POUGHKEEPSIl;:; 



note: 

b. 

No SVRB buil t, OLD PS\V not moved nor are registers 

If type 2, 3, or 4 pass control to S~IH (Second 
Level Interrupt Handler) having loaded reg. 14 
with appropriate return address - ~le SVC 3 instr-
uction in the CVT . 

3. SVC SLIH 

a. 'Initializes SVRB (Supervisor aequest ,Block), contains: 

1) size and type of RB 

2) queue field, 

3) resume PSW (constructed, originally, by SLIH) 

4) register save area 

note: SLIH has a pointer to space already allocated in 
which to build SVRB, when this SVRB is initialized and 
enqueued it gets space for next one. This is done 
to avoid issuing GE'i'NAIN SVC while Frocessing 
an outstanding SVC and thus cause another SVC interrupt 
which would destroy first requestors PSW and 
registers 

b. Enqueues SVRB off requestor I s 'l'CB - makes it the 
,RB the TCB points to, the "current" 1lli 

c. Haves PSW from low core location to the RB following 
this (new) SVRB on tasks chain of Rti's 

d. Hoves registers from IEASCSAV to register save area 
in this SVRB 

e. Locates appropriate bVC routine 

1) if type 2 - its in nucleus, locate address and 
branch to it. 

2) if type 3 or 4 and in LP~ - locate address 
and branch to it. 

3) if type '3 or 4 and not in ~PA - invoke SVC 
transient area handling rtns to bring module 
into a trans'ien t area 

PROGR1WU1.ING/SYST1~HS EDUCATIOH - SDD POUGIIKr;LPSIE 



L 

4. SVC Transient Areas 

note: 

a. 1024 byte buffers in nucleus, minimwn of one pair, 
can request more E?irs at sysgen ti~e 

Usefulness of more tildn 3 pair douLtful, processing 
to utilize the tran~ient areas is s~fficiently 
involved so system cannot use more than 3 pair efficiently 

b. Transient area handling routines invoked to 

1) see if required SVC already in an area 

2) locate on "available" transient area 

3) . load required SVC routine into it and set up 
requesting task to execute it 

c. Transient Area Handler 

1) determines if required SVC Rtn is already 
in a transient area 

a) searches 'l'ransient Area Control Table ('l'ACer) 
which contains the following for each 
transient area 

(1) address of associated transient area 

(2) address of user queue (of SVRB's 
representing tasks shdring a block 
not necessarily all executing same 
SVC rtn) 

(3) TTR of SVC rtn (or XC"I"L segment of a 
SVC Htn) presently in the associated block 

(4) addr of TCB which loads SVC rtns into 
associated block 

(5) The TACT contains one request queue pointer -
not one for each transient area - for 
requests that must wait for an available 
area 

b) search is <lone by comparing TTR of re'1uested 
SVC routine (in SVRB) to T'l'n of SVC routine 
in a block (in TACT entry corresl'onuing to 
tha t block). If compares are equal, tlte 

PROGRAHMlt~G/SYSTLr'lS I.;DUCATIOlJ - SOL> POUGhKEEPSIE 



note: 

note: 

2) 

required SVC has been located. 

if Rtn is in a Transient block 

a) enqueues new SVRB to user queue 
for the block 

The SVRB is now on the queue of RB's chained out of 
requestor's Tca and on the "user queue" associated 
with a SVC Transient area - each SV~ has two 
queueing fields 

3) 

b) request for execueJ.on of SVC Rtn that· the SVRB 
represents is satisfied on a task priority basis 

c) Trans Area Handler Sets up a branch 
instruction to point to beginning of the 
block, loads the registers and branches 
to the Llock to begin execution 

If routine is not in a 'l'ransient block 

a) Transient Area Handler checks for a block that 
can be overlai~ by requestor (a block can be 
overlaid if ne~.' requestor has priority greater 
than any tasks now using the block or if 
all users of the block are not "ready") 

A user is not ready if one or more non dispatcllability Lits 
are on it that users TCB. A block might also Le free -
the routine in it is not being executed by any task 

L) If no area found that can be overlaid, SVRB's 
wait count made non-zero and it is enqueued on 
a request ljueue out of TACT, PS\'J in SVRB is set 
to point to an entry point in Trans Area Handler 
so when SVRB made ready and task dispatched, 
routines executed are same as for a new SVC 
reyuest (e.g., search for a block, etc.) 

c) If an area is found that can Le overlaid, Trans 
Area Handler 

(1) locdtes all SVRB's on user y:ueue with a 
TTR equal to TTR in TACT entrx for the 
associated block 

\ .. 
note: For given Trans l.llock, the user queue can contain SVRB's 

for several different svc rtnsi the only SVRB's that 

L PROGRAMMING/SYSTEl'vlS LPUCATIOU - SDD POUGEKEEPSIE 



note: 

note: 

should be put in a WAIT state at this point in time are 
those SVRB's representing the bVC rtn now in the Llock 

(2) moves present WAIT count in tho~e SVRB's 
to the wait count save area in the SVRD 
and replaces it with X'FF' 

'l'l,is is anothE;r r8tlSOn for }?rocessing only tl.e SVRB' s 
associated with the routine in the block. If other 
SVRB's have already :'-een processed ..lS in (2), their 
wait counts are X'FP', if that value was moved to the 
wait count save area it would overlay the valid wait 
count in that area. If tl.e block is not in use, there 
will be no &'VRB's on its user queue and (1) and (2) 
will not be performed 

(3) stores in new SVRB a PSW pointing to 
the transient area block (to be used 
oy dispatcher when resuesting task is 
eventually dispatched) 

(4) sets up registers as needeu by SVC 
rtn being located and puts them in 
requestors TCB 

(5) puts this new SVRB in wait state 
pending loading of the routine 

(6) cnyucues SVRB on user queue for the block 

(7) address of next entry in TACT saved in 
Trans Area Handler cOcle - used as 
starting point of search for a block 
when next SVC re"iuest or for an XC'i'L 
request issued by a type 4 SVC rtn 

The different modules of a type 4 f,VC can execute in 
different transient area blocks 

(8) makes task that will load the SVC rtn 
(a permanent system task) ready and 
indicates a task switch to dispatcher; 
address of this task is in 'rACT entry 
corresponding to the block 

(9) Trans Area Handler branches to dispatcher 
w~~cl~ dispatches tHe Transient Area Fetch 
routine under control of the TCB corres­
ponding to the block 

PROGRAMNIHG/SYST1::.dS EDUCATlm-s - SDD P()UGIIl~EEPSIE 



note: 

note: 

(, 

d. 

There is one copy of the fetch routine, eacn transient 
area TCB points to a SVRB which contains a PSW pointing 
to the fetch routine. The routine is in the nucleus 
and reentrant 

Transient Area Fetch i{outine 

1) Uses TTR of SVC Rtn and its length (in SVRB for 
the SVC being loaded, put there from SVC table 
when SVRB initialized) to load the routine 
and relocate it 

2) If I/O errors occur, requesting task ABEND'd 

3) If no errors, locates all SVRB's (in the transient 
areas' user queue) requesting module just loaded 
and resets wait count to the value in the SVllli's 
wait count save area 

4) dequeues and makes ready all SVRB's on re4uest 
queue 

There is one request queue, SVRB's put on it (in 
wait condition) when their priorities do not allow 
them to get a block when their SVC request was 
originally issued 

5) Transient Area Fetch puts itself in wait 
condition and branches to dispatcher 

6) Eventually the task issuing the SVC request that 
started all this will be dispatched thus executing 
the loaded SVC rtn. In the meantirne of course 
another task of higher priority than this requestor 
could cause overlaying of the block just loaded 
before the routine just loaded could be executed 

e. Transient Area XCTL Routine 

1) Entered when XCTL issued by one segment of a type 4 
SVC to pass control to next segment 

2) dequeues SVRB for that svc rtn from user queue for 
the block and proceeds as follows: 

a) searches SVRB's chained off permanent TA 
fetch tasks for name of requested segment. 
The nam~'will Le found in the SVRB if it 
has been loaded into a transient area and 

PROGRAHHING/SYSTL,t.lS EDUCATION - SDD POUGHKEEPSIE 



is still there. 

(1) if requested segment found, requestor's 
SVllli updated with data from TACT (e.g. 
TTR of segment, lenge} of routine, 
address of transient area it is in, etc.) 

(2) if requested segment not found, proceed 
as follows 

b) search for an "available" trapsient area as 
described above in handling a new 
SVC reCIuest 

c) if no area is available, defer the request 

d) if an area is available, invoke corresponding 
transient area fetch task to load routine. 
Set resume PSW in the fetch task's RB to 
appropriate entry point: 

(1) to perform a BLDL on segment name 

(2) to bypass the BLDL, if XCTL used DE operand 

f. Transient Area Refresh Routine 

Ref: NVT Supervisor, Section 9, Trans. Area Refresh 
Routine (Y28-6659) 

1) Entered when an SVC routine terminates with an 
SVC 3 instruction (types 2, 3, and 4) 

2) Determines is an SVC rtn was overlaid in a 
Trans area and thus needs refreshing 

3) Scans user queues for all ~rans area blocks 
for SVRB's with TTR's in SVRD different from 
T'rR of rtn in the block - this means the SVRB' s 
SVC rtn had been overlaid and must be reloaded 
(the resume PSW in the SVRB points to the next 
instruction in the SVC rtn to be executed and 
thus when·reloadeu, the task can be redispatched 
and execution of the SVC rtn will resume) 

4) The SVC rtn to be reloaded into the block is determined 
by the higbest priority, "ready" SVRlJ ontha 
user queue for"a block. A user SVRB is ready if 
it is top RB on its TCB queue and TCB has no 

PROGRNlUING/SYSTEl-1S EDUCATIO:; - SDD POUGHKLLPS IE 



5. SVC 

a. 

Ref: 

5) 

non-disptaehable bits set 

Refresh routine puts all user SVRDls in wait 
condition moves ~ait count to save area, replace 
it with IFF' and makes Fetch TCB associated 
with the block ready 

6) When dispatched" the Fetch task loads the 
required module and proceeds as in Ie.' 

7) If all user SVRBls in queue for block just 
loaded are WAIT'ing, refresh rout"ine removes 
all SVRB's from request (wait) queue, clears 
wait count to 0, invokes· task switching rtn~ 
for each associated task to see if it is of 
higher priority than current tasL 

8) Hhen finished with this processing, branches 
to dispatcher 

Exits 

Type 1 SVC exit 

aVT Supervisor, Section 9 (Y28-6659) 

1) Taken by type 1 SVC' s "Vlhen requesting routine 
is not in a HAlT state 

" 2) Registe~s are restored from lEASCSAV 

3) PSW loaded from lov.' core location where it 
was stored when interrupt occurred 

4) Dispatcher is not invoked 

5) WAIT SVC rtns are type 1, if wait count in 
current RB is non-zero by the time the WAIT 
rtn finish processing 

a) Hequesting rtn cannot be resumed 
(its still WAIT'ing) 

b) PSW rIoved into current RB of requesting 
task 

c) Registers moved into requesting TCE ,. " 

d) NE~'J TCB Pointer set to zero 

PROGRAMHIHG/SYSTEMS l:DUCATION - SOD POUGHKEEPSIE 
- . 



L 

B. 

'l, 

. 
~, 

e) Dispatcher invoked 

b. All other SVC exits 

1) Noves regi,sters from exitinq SVRl3 to TCB 

2) Stores reg's 0, 1, 15 in TCB as exiting SVC 
left them (parameters to requesting program, etc.) 

3) Dequeues SVRB from task's RB Queue 

4) If exiting SVC is type 3 .or 4, removes SVRD 
from user queue associated Wi~l a transient 
area 

5) checks for EOT - if so, branches to LOT rtns 

6) checks if next rill (now, the top RB) is lvAIT'ing 
if no, insures that a task switch is indicated 

7) Frees the SVRB 

8) Branches to transient area refresh routine 

Program Check Interrupts 

Ref: Supervisor and Data 1'·,ianagement Services, Section I, 
Program :lanagement Services (C28-6646) 

Supervisor and Data Manager.lent Uacros, Section II, 
SPIE Macro (C28-6647) 

HVT Supervisor, Section 2, Program Interruptions, 
(Y28-6659) 

Handout S9 

1. SPIE Facility 

XIV B. 

a. Allows user pro~rams to indicate a routine to 
receive control in event of certain program checks, 
also, specified by user 

b. User codes SPIE macro indicating the routine to be 
given control and for Wllich program checks 

c. SPIE SVC creates a 

1) 'PIE - Program"Interrupt Element - constructed 
only on first issuance of SPIE macro in a 
task, address put in TCB of task, PIE contains 

PROGRAMMD-JG/SYSTEI'lS EDUCATION - SDD POUGIIKEI:PSIE 



a) address of current PICA 

b) save area for PiC old PSW 

c) register ~ave area for reg's 14-2 

2) PICA - Program Interrupt Control Area -
constructed for each SPIE issued in a tasr. 
contains 

a) mask field used in task's PSW (to allow 
program cllecks normally masked off if 
user rtn is to handle such interrupts) 

b) address of user rtn 

c) mask field indicating which program checks 
the user routine is to handle 

d. When a program check occurs that the user rtn is to 
handle 

1) High order 0it of PIE set to 1 

2) PIC old PSW moved into save area in PIE 

3) Registers 14-2 moved into reg save area in PIE 

4) Problem program registers restored and control 
passed to user routine 

2. When program check occurs, PC FLIH receives control and 

a. Saves registers in private save area 

b. Checks state of offenQing task 

1) if supervisor state ABEND 

2) if problelil program state 

c. Checks if SPIE has Leen issued (presence of 
PIE pointer in TCB) 

1) if not - ABEND 
\ ' . 

2) if so - check 

PROGRAHl>1ING/SYSTBl1S EDUCA'l'IOU - SDD POUGHKEEPSIE 



d. If already in SPIE routine (high order uit of 
PIE sot to 1?) 

1) if set to 1 - ABEND 

2) if set to 0 -

e. Cilecks if user has indicated he can handle the program 
check that has occurred (raask field in PICA) 

1) if user cannot handle it· - ABEJ.'JD 

2) if user can handlE! it - . 

f. PSW moved from lov,' core, where it was saved 
as result of interrupt, to save area in PIE 

g. Registers 14-2 moved from private save area to 
save area in PIE 

h. Registers restored from private save area 

i. Reg 14 set to point to an SVC3 instruction located 
just before entry point of PC FLIH 

j. PSW modified to point to user routirle and is loaded 
thus passing control to user rtn 

k. User rtn can modify PC old PSW at ',.;ill but only 
changes to right half of it will have any effect 

1. User rtn should terminate with a ilR 14 for two reasons 

1) exit rtns set high order bit of PIE back to 0 

2) cause right half of PC old PSW be made right 
half of tasks resume PSW 

3. User Program Check Routine Exit 

Ref: HVT Supervisor, Section 9, Return from User Program 
Check Routine (Y28-6659) 

a. SVC 3 instruction, executed as result of BR 14, 
causes updated PSH to be stored and SVC new PSW 
made current , .. 

b. First function of SVC 3 rtn (regardless of how 
entered, they have no way of knowing yet) is 

PROGRAMHING/SYSTENS EDUCATION - SDD POUGHKEEPSIE 



~ .. 

.. 

L 

note: 

to compare instruction address in stored SVC old PSW to 
entry point of PC FLIH 

1) if equal, SVC 3 rtns were entered from 
user PC rtn and SVC rtns perform special 
processing 

2) ·if unequal - SVC 3 rtns were entered from 
a routine other than a user PC rtn and do 
not perform .special processing 

c. Special processing when SVC 3 rtns entered from 
user PC rtn .' . 

1) . set high order hit of PIE to 0 

2) form composite PSW from 

a) left half of PSW stored as result of 
SVC 3 interrupt 

b) right half of PSW in PIE (possibly 
modified by user rtn) 

3) move this composite PSW into the current 
RB chained off the task that issued SVC3 
(SVC3 rtns are type 1 so there is no SVRB 
for them) 

This composi te PSvl is formed so user can modify 
instruction address portion but cannot change 
protection key or supervisor/problern:state bit 
of PSU 

4) move registers from SVC FLIH private save area 
to TCB then overlay registers 14-2 in TCB \vith 
corresponding data in PIE 

4. Abnormal Termination Ly Prog. Check FLIH 

Ref: ~WT Supervisor, Section 10, Abnormal Termination 
(ABTERM Prologue), (Y28-6659) 

a. PC FLIH Runs uninterruptable, cannot issue 
SVC13 (or anyother SVC for that matter) 

b. Must cause the o£fending task to 
issue its own SVC 13 

PROGRMlMI_NG/SYSTD1S EDUCATIO:-1 - SDD POUGEKEEPSIE 



note: 

c. Does this by entering ABTERN prologue \vhich 

d. 

1) Refreshes loc 16 hex to point to CVT (just 
in case it was overlaid by the error) 

2) Obtains address of Tcn to be terminated from 
CURRENT TCB Pointer 

3) Saves the offending PSW in OPSW field (resume 
PSW field) of the current lill of the task 

4) Hoves registers ,from p.C save area in low core 
to register save area in TCB to Le terminated 

5) sets up completion code, it will be stored in 
the TCB by ABTERM rtns (passed in a register) 

6) Sets up return address to be used by ABTEIDl 
(return is to the dispatcher) 

7) Turn on the dump flag (passed in completion 
code register) to request a dump 

8) Branches to the ABTERM routines 

ABTERM rtns is a disabled, serially reusable, non-SVC 
program resident in the nucleus 

ABTERM rtn-

1) Refreshes CVT address (again!) 

2) Saves right half of resume pm-; (in current RB 
of task being terminated) in RBABOPSW 
field of the H.B 

3) Stores completion code and dump flags in TCB 

4) 110difies resume PSW to point to an SVC 13 instr­
uction in the CVT 

5) Sets non-dispatchable any inco~plete subtasks 
of the task being terminated 

6) Returns to address specified by caller - in this 
case the dLspatcher who dispatches the task to be 
terminated. The first instruction executed on 
behalf of this task is the SVC 13 

- -
PROGRAMMING/SYSTE1'1S EDUCATION - sno POUGIIKCEPSIE 



c. 

L 

Lxternal Interrupts 

Ref: MVT Supervisor, Section 2, ~xternal Interruption, 
(Y28-6659) 

Handout S9 

1. External FLIH 

a. Receives control when external new PSW made 
current by interrupt circuitry 

b. Saves registers in CURRENT TCB 

c.Saves PSW in current RB chained off that TCB 

d. Determines cause of interrupt 

1) " I N'l'ERRUP '1' " key pressea on control panel 

a) means master console is inoperative 

b) resident external routine given control 

c) it searches for an alternate console(s) 

d) if one found messages issued to request 
designation of a 'new master console by 
operator conunand (such a command can be 
issued from any alternate console) 

e) if one not found, OS dies 

2) Timer interval expired 

a) Timer SLIH given control 

XIV C. 

b) checks TQE that has expired, . takes action 
according to macro op~rands indicated in 
the TQE 

(1) terminates task 

(2) clears wait count 

(3) reconstructs TQE into IRB, IQE, invokes 
Stage 2 exit affector to schedule user 

,exit routine 

c) Exits to FLIH 

PROGRAMl-jING/SYSTEhS EDUCATION - SDD POUGHKEEPSIE 



D. 

/ 

e. Branches to dispatcher 

I/O Interrupts XIV D. 

Ref: HVT Supervisor, Section 2, I/O Interruptions 
(Y28-6659) 

Handout S9 

1. I/O FLIII 

note: 

a. Receives control when I/O newPSWinade active 
by circuitry 

b. Cr.ecks switch to see if another I/O Interrupt 
was being handled when this one \vas allowed 

1) If bit off (no other I/O Interrupt being 
handled) 

2) 

a) saves registers in CURRENT TCB 

b) saveS PSW in current RB of that TCB 

c) passes control to I/O Interrupt handler 

If bit on (another I/O interrupt was being 
handled) 

a) registers nor PSW saved 

b) passes control to I/O Interrupt Handler 

I/O Interrupt Handler is reusable, when "first" 
entered, CURREHT tasl~ I s registers and PSW saved 
and interrupt handled; while still in control, I/O 
Interrupt Handler enables I/O Interrupts (to handle 
stacked interrupts) and if there are stacked interrupts 
(stacking done in hardware) processes them. When there 
are no more I/O Interrupts to handle, the "first time 
switch" is set off and exits to Dispatcher, next I/O 
Interrupt causes switch to be checked and registers 
and PSW of them CURRENT task are saved. 

On processing stacked interrupts, registers and 
PSW are not saved as they are not the registers 
nor PSW of the task that was CURRENT when original 
I/O Interrupt 'occurred yet I/O Interrupt Handler 
is executing under that TCB. Thus if it saved 

PROGRAMHING/SYSTilllS EDUCATION - SDD POUGHKEEPSIE 
- . 



'I '--~ 

1::. 

registers and PSW on recycle for a stacked interrupt 
it would destroy the registers and PSW of the task 
that will eventually be redispatched 

Machine Check Interrupts 

Ref: MVT Supervisor, Section 2, Machine Interruption, 
(Y28-6659) 

Handout S9 

1. Machine Cneck PSW points to recovery routines 
selected at sys gen time 

2. SERO (System Environment Recording) 

a. Least complex of the options, is not entirely 
resident, HC ne\,7 PSW points to a resident 
routine that loads the'rest of the module into 
storage 

b. Operates without OS/360 facilities and is non 
reusable 

c. Is given control as result of a machine check or 
a channel check (in latter case, I/O Interrupt 
Handler loads the Me new PSW 

d. Functions as follows 

1 ) Halts I/O on all devices 

2) Reads first 1024 bytes of non-resident 
module into storage, if can't do this in 
10 retrys - ring bell and vlAIT 

XIV E. 

3) Non-resident module loads rest of itself into 
storage 

4) Determines whether machine check or channel 
check has occurred ·(loc 50 is initially X'FF', 
a machine check overlays this, channel check 
does not) 

5) Checks registers for valid parity 

6) Checks bu~y bit in UCB to see how many UCB's 
were busy when check occurred 

7) Collects information to be written to 

~ 

PROGRAMHING/SYSTENS: EDUCATION - SDD POUGHKEEPSIE 



/ 

SYS1.LOGREC, and writes it 

8) If more checks occur while error data is 
being accW11Ulated (3 of them) error message 
is printed and SERa stops 

9) In any case, SERa tries to write a message 
to console indicating extent and outcome 
of its data accumulation 

10) Loads a waiting PSW 

3. SER1 

note: 

. 
a. More complex than SERa, collects and writes error 

data, tries to' associate error with a task and 
terminate that ta~k. Is resident and is serially 
reusable 

b. Uses OS/360 facilities 

c. Receives control as result of machine check or channel 
check causing machine check new PSW to be loaded 

d. Collects data and writes it to SYS1.LOGREC using 
EXCP unless control program was damaged in which 
case it uses its own I/O routines 

e. 

f. 

Tries to associate the error with a task and if 
it can, invokes ~~TERM to terminate that task so 
system can resume execution 

no task from master scJ.leduler up (on main TCD queue) 
will be ABEND'd this way. If error is associated 
with one of these tasks, system put in WAIT state. 

If successive machine checks occurred during data 
collection or error could not be associated with a 
task or the control program was damaged by an error 
or the error record could not be wr i tten, a \vAI'l' 
PSW is loaded 

4. Men (valid option only for Model Nod 65 MP or .. '1od 85) 

a. Most sophisticated error recovery routine, is 
partially resident, other modules on SVCLIB, 
attempts to recover from a machine check 

PROGRAMMING/SYSTEI1S EDUCATION - SDD POUGHKEEPSIE 



F. 

t 

b. Given control as result of machine check interrupt 
causing machine check new PSW to be loaded 

c. Tries to retry the instruction being executed when 
failure occurred 

d. If instruction retry not possible, tries to repair 
progr am damage 

1) Defective storage protect feature - repaired 
by SSK (set storage key) instruction 

., 

2) Defective storage location - repaired by 
reloading (refreshing) module at that location 
(checks nucleus refresh table - NRT - and tries 
to refresh-module from copy on SYS1.ASRLIil) 

e. If program repair is possible, MCR retries interrupted 
instruction 

1) if retry successful, !lCE has corrected the error 

2) if retry or repair unsuccessful, MCE can continue 
partial system operation or put CPU in WAIT state 

f. Partial system operation attempted if a problem program 
task was interrupted and damage not too extensive, 
abnormally terminates jobste~ task and tries to continue 

g. CPU put in wait s~ate if system task was interrupted 
or damage. extensive 

h. In H65r.1P - Storage Reconfiguration rtn schedules 
task for selective ABEND and logically removes failing 
storage from system. System operation resumed 

Asynchronous Exit Routines * 
Ref; HVT Supervisor, Section 3, Scheduling a User Exit 

Routine (Y29-6659) 

XIV F. 

1. Definition - routines, usually user written, to be given 
control when certain events occur that cannot be 
anticipated by the system nor sysnchronized with other system 
processing 

2. How specify 
\ .. 

a. ATTACH macro, ETXR operand - routine of parent 

PROGRAMMING/SYSTE.HS EDUCATION - SDD POUGHKEEPSIE 



task to be given control when the ATTAOI'd task 
terminates 

b. STlMER macro, user routine - routine of the requesting 
task to be given control when specified time interval 
expires 

3. Scheduling of Asynchronous Routines 

note: 

a.ATTACH, ETXR rtn 

1) ATTACH SVC rtns detect ETXR operand 

2) Branch to Stage 1 Exit Effector to 

a) obtain space for an IOE (Interrupt Queue Element) 

b) obtain space for an IRB (Interrupt Request Block) 
if one does not already exist for the routine 

Mother task could ATTACH several daughters, specifying 
same ETXR rtn for each. In each ATTACH, a new IQE would 
be built but the same IRB would be used for all requests. 
'1'he IQE is associated with the request, the IRB is 
associated with the routine 

c) Initialize lRB, includes address of exit 
routine 

d) TOake type 1 exit to caller (i.e. the 
ATTACH routines) 

3) On return ATTACH rtns initialize lOE and 
chain it of ne\ll:( created TCB, lOE points 
to lRB at this t~me 

4) When this (new) task terminates, termination 
routines detect the IQE pointer in the TCB 
being terminated and link to Stage 2 Bxit 
effector to 

a) enqueue the IQE on the AEQJ (Asynchronous 
Exit Queue) 

b) set "stage 3" switch and return to caller 

5)' Hhen dispat'c"her next entered, it checks 
"stage 3" switch and finding it set, enters 
Stage 3 Exit Effector to 

PRCXiRAHMI-UG/SYSTEHS EDUCATION - SDD POUGHKEEPSIE 



note: 

a) scan AEQJ for IQE's 

b) checks IRE's chained off IQE's 

(1) if IRB is already queued off a 
task - chain IOE off the IRB to 
indicate reuse of the routine the 
IRB represents 

(2) if IRB not queued off' a TCB, 
enqueue it off the TCE pointed 
to by the IOE and initialize it 

(a) set up PSW to point to entry 
point of user rtn 

(b) move registers noVl in the 'l'CB 
to the IRB register save area 

(c) set up registers in TCB for 
entry to user rtn 

c) Stage 3 Exit Effec'tor returns to the 
dispatcher after all IQE's are processed 

At this time the IRE enqueued off a TCB (the 
task that issued the ATTACH specifying the ETXR 
rtn) has at least one IOE (representing at least 
one reques£ for the associated rtn) chained off 
it. If several ATTACH' s \llE!re issued specifying 
this rtn as an ~TXR rtn, and those subtasks have 
terminated while the rtn was executing for the 
first such subtask's termination, the IQE's re­
presenting tlle other requests are chained off ,the 
first IOE hung out of the IRB 

4. Exit 

Ref: MVT Supervisor, Section 9, (Y28-6659) 

a. Hhen user BTXP. rtn terrnina tes wi th a BR 14 
(and therefore an SVC 3 instruction), the 
termination rtns 

1) Uequeue the IOE pointed to from the IRB 
" , 

2) Check if that IOE points to another IOE 
(representing a second request for the 

PROGRAM}HNG/SYSTEMS EDUCATIOH - SDD POUGHKEEPSIE 



G. 

same rtn) 

a} if no other IOE pointed to - free 
the one IOE, dequeue and free ti1e IRB (moving 
registers in IRE to TeB) 

b. 

b) if it does point to another IOE, 
free first IOE, re-set IRB to 
point to next IOE, reset PSW in 
IRB to point to entry point of 
user ETXR rtn, re-set registers 
for user rtn in TCB· . 

STlMER, user routine . ' 

1) STL~ER SVC Rtns build TQE, put timer 
value in it 

2) Enqueue TQE in timer queue at position 
corresponding to the timer interval 

3) When time interval expires, TQB recon­
structed into IRB and IQE 

4) Stage 2 Exit affector invoked, processing 
continue as in 4. a. above 

Exiting Procedures (Review, for the most part) 

Ref: HVT Supervisor, Section 9 (Y28-G659) 
Handout S11 

1. Exit from a type 1 SVC 

ao Usual exit 

b. 

1) Restore registers (Li·l instr) from SVC 
FLIH private save area 

2) Load PS\v (LPSW) from SVC old PSW location 

3) Hequesting task thus "dispatched" by the 
SVC rtn itself, without using dispatcher 
rtns 

Special exit 

1) Taken by WAIT - routines (type 1 SVC) when 

PROGRAMNING/SYSTENS EDUCATION - SDD POUGHKEEPSIE 

XIV G. 



2. 

.. ~ 

note: 

3 • 

.. ~ 

Bxit 

a. 

b. 

c • 

d .. 

2) 

3) 

4) 

5) 

from 

requesting task's wait count not zero when 
WAIT SVC rtns have finished processing 
(would be ridiculous to take usual type 1 
exit - that would cause a waiting task to 
be dispatched) 

Hove PSW to current RB for requesting 
task 

Nove registers from SVC FLIH save area to 
TCB 

Set UEW pointer to 0 

Branch to dispatcher 

User Program Check Routine 

Exit routines. (SVC 3 routines, type 1 SVC) 
entered by SVC 3 instruction placed just before entry 
point of Prog. Check FLIH 

~xit routines compare address in PSW stored as 
result of SVC 3 interrupt to entry point of PC 
FLIH - equal compare indicates how they were 
entered and causes special processing 

High order bit of PIE set to 0 

Registers in SVC FLIH save area (put there 
as result of SVC 3 interrupt) moved to TeE 
of task that issued SVC 3 

e. Composite PSW built, in current RB for that 
TCB, from 

f. 

1) Left half of PSW in SVC old PSW - stored 
as result of SVC 3 interrupt 

2) Right half of PSW in PIE - user modified 

This allows user to modify instruction address 
in PSW but not the storage protect key nor 
supervisor mode bit 

\ .. 
Branch to the dispatcher 

Exit from a routine controlled by an SVRB 

PROGRAHMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE 



a. Exit routines entered by SVC 3 instruction 
(SVC 3 in CVT) 

b. Exit routines determine that an SVRB is current 
RB for requesting ,task 

c. Subroutines invoked to 

1) Hove regist.ers 2-14 from SVRB to TCB 

2) Set up registers 0, 1, and 15 in TCB as 
terminating routine indicates (parameters. 
to caller) 

3) If terminating SVC is transient, SVRB dequeued 
from transient area queue 

d. Return to exit common processing (6. below) 

4. Exit from routine controlled by a PRB 

a. Exit routines entered by SVC 3 instruction in CVT 

b. Exit routines determine PRB is current RB on requesting 
TCB 

c. Subroutines invoked to 

1 ) Hove registers from SVC FLIH save area to re­
questing taskti TCB 

2) Check if this RB is last on TCB queue 

a) if so - branch to end of task routines 

b) if not 

3) Branch to contents directory rtn to 

a) Locate terminating programs' CDE 
and reduce the use/responsibility 
count by one 

b) If program is serially reusable and there 
is at least one outstanding request for it 
(use/resp count not yet 0, also PGMQ field 
of PRS for terminating program points to next 
requestor) 

--
PROGRAMMING/SYSTID1S ~DUCATION - SDD POUGHKLEPSIE 



(1) Addr. in COE updated to point to next 
PRB (from PGNQ field of terminating 
PRE) 

(2) This next PRB 's wait count cleared to 0 

(3) Sets PSW in new PRB to point to entry 
point of requested program 

(4) Branch to task switching routines (new 
RB's·task may exceed others in prty) 

(5) Task switching rtns return to exit 
routines which perform common processing 
(6. beloH) 

c) If there are no outstanding requests for 
terminating program 

(1) Hon-functional flag set in CDB for 
program 

(2) Program attributes checked and processed 
accordingly 

(3) If in LPA - no processing, return to 
exit common processing 

(4) If not in LPA and either reusable or re­
entrant set purge flag in CDE, which 
will be tested by GETI1AIN when space needed 

(5) If neither reusable nor reentrant -
storage used by program freed as are 
its control blocks (COE, XL) 

(6) Return to exit routine common processing 

5. Exit from program controlled by IRE or SIRB 

--

a. Exit routines entered from SVC 3 in CVT 

b. Exit routines determine IRB or SIRB is 
current RB on requesting TCB 

c. Subroutines invoked to 
\ .. 

1) For SIRB - immediate return to caller, no 
processing 

PROGRAN,t..qNG/SYSTE11S EDUCA'l'ION - SOD POUGHKEEPS IE 



H. 

2) For Inn - checks use count in IRB for zero -
if not zero parent task has requested multiple 
use of the exiting routine 

3) Dequeues top IOE from IRB and frees it 

q) Resets IRB (PSW) for reexecution of user 
rtn 

5) If use count 0 - dequeue IRE, move registers 
'in it to TCB and free IRB 

6) Branch to transient area refresh routines 

6. Exit common processing 

Task 

Ref: 

1 • 

2. 

3. 

4. 

a. Routines of Exit SVC entered after special pro­
cessing for different RB's has been performed 

h. Check if exiting rtn is under control of last 

c. 

RB on its TCB queue - if yes TeE is dequeued and 
"normal termination" flag is set in it 

If not last RB, check is made to see if next RB 
is in Wait state, if it is - test NEW/CURRENT pointers 
to see if task s\vitch has been indicated, if not, 
sets NEW to 0; if already has been indicated, no 
change 

d. Dequeues terminating program's Rb and frees ~le 
RB if it can (cannot free SIRE) 

e. Branches to transient area refresh routine - which 
processes as described in XII A. 4. f. 

Switching Routines (Review) 

MVT Supervisor, Section 3, Services Internal 
to the Supervisor (Y28-6659) 

When entered and why 

if NEW=CURRENT 

if NEW~CURRENT, NE~,y~O . 

if NEWFCURRENT, NEW=O 

-' PROGRAHMING/SYS TEL lS EDUCATION - SDD POUGHKEEPSII:: 

XIV lie 



I Dispatcher (Review) 

Ref: MVT Supervisor, Section 9, Dispatching (Y28-6659) 

1. When entered and how 

2. Use of HEW/CURRENT pointer 

3. Search of TeD queue 

, .. 

PRCX;RAMHING/SYSTEHS EDUCATION - SOD POUGHKEBPSIE 

XIV I. 

Ii 
Ii 
I 

'I 

11 
!I 
I 



Task Supervisor 

L Ref: 

A. 

B. 

HVT Supervisor, Section 3 (Y28-6659) 

Function Overview 

1. Creates tasks as result of ATTACH macro 

2. Detaches and deletes tasks on request (DETACH) 

3. Serializes use of resources ENQ/UEQ 

Task Creation (ATTACH) 

Ref: Handout S15 

1. ATTACH macro expands into an SVC call 

2. ATTACH SVC routines 

a. Obtain space for TCB (also IQE and IJ;{B if 
necessary) 

b. Initialize TCB with 

1) Priorities (limit and dispatching) 

2) Subpool pointers and subpools 

3) TIUT Pointer (from parent TCB - including 
initiator) 

4) IQE pointer (if ETXR specified) 

5) BCB address (if ECB specified) 

6) Subtask pointers 

7) Save area address 

c. Determine if ne,; task is jobstep or not by 
PSW protect key of requestor (requestors PSW 
is in SVC old PSW) 

, .. 

PROGRAHMING/SYSTEl·iS EDUCATION - SuD POUGHKEEPSIE 

xv 

xv A. 

xv B. 



C. 

.. :L 

d. 

1) . If protect key is 0 - new t~sk is jobstcp 

2) If protect key is non-O - new task is 
subtask 

New 'rCB enqueued 011 'lCD Ciueuc: (dispatcher queue) 
according to dispatching priority 

e. Registers in SVH.B for ATTACH routines moved into 
requestors TCD, reg 1 set to point to new TCB, 
R13 pointer set of next llB on requestors queue 

f.. SVRB for ATTACH routines is ,nO\,v' chained off new TCD, 
module name spccified in ATTACH put in SVRB 

g. PSW in SVRB sct to point to Contents Supervisor 
rtns to locate requested module 

h. NEW TCB pointer set to higher priority task of 
the requestor or its new suLtask 

i. Dispatcher branched to 

Task Termination (DETl1.CH) 

1. When needed 

a. 

b. 

When ATTACH 'l'hat caused suLtask creation specifieci 
either or bOel of ECD, BTXR operands 

TCB's for subtasks so created will not be deleted 
unless specifically 0ETACll'd 

2. Freeing TCB 

xv C. 

a. All other control Llocks associated \Ji th the 
subtask were removed and/or freed when subtask 
invoked exit routines (SVC 3) and it was deterr.1ined 
that a task (rather than a program) was terminating 

3. TeB is not freed automatically if BCB and/or ETXR operands 
coded in ATTACH as these operands indicate panmt task 
wants to be notified of subtasks completion and do some 
checking on its completion 

a. If subtask ATTACH'd with neither Een nor i::l'XR 
operands its termination will causE.:: its 'rCB to 
be freed and parent will not 1>e notified of 
subtask's completion (normal or abnormal) 

PROGRAl:·1HIl~G/SYSTENS hlJUCATION - SDD POUGHKEEPSIE 



D. 

b. If DETACH issued for a suLtask that is incom­
plete, it is abnormally terminated 

c. If a DETACH is issued" for a TCll not on requestor's 
subtask queue, requestor is ABEND'd 

Serializing Use of a Resource (ENQ/DEQ) xv D. 

1. Purpose 

a. To allow programs to request use of a serially 
reusable resource 

b. To make their request and eventual use of that 
resource known to other requestors 

c. And thus prevent two requestors from using 
the same resource simultaneously 

d. Requires that a common name be assigned to e1e 
resource and known and used by all requestors 

note: the specification of the name and consistant use of 
it is a matter of prograrruner communication. The EHQ/ 
DEQ routines do not know what resource a name represents 
nor do they prevent use of that resource if a programmer 
fails to use an ENQ. 

2. ~ow request is issued and handled 

note: 

a. 

b. 

ENQ macro specifies resource name (Qname and 
Rname) and exclusive or shared control of 
resource, also whetlier it is a system wide 
or region wide resource 

Might request exclusive control of a data set 
if your task is going to modify it. When your 
program gets the resource, you are the only task 
using it. Request slJ.ared control of the data set 
if you are not going to modify it but want the 
fact that you are using it known so no other task 
(requesting exclusive control) can change it while 
you are using it 

LNQ generates SVC, ENQ routines construct control 
blocks 

1) new qname and rname 

PROGRAHMING/SYSTJ::r.1S BDUCATION - SDD POUGHKEEPSIE 



a) 

b) 

c) 

major QCE (Queue Control Blcok) built 
for qname 

minor QCB. built for rname 

QEL (Queue Element) built to represent 
requesting task, chained out of minor 
QCB 

(1) if it's a region wide resource 
(known only t6 tasks in requestox:'s 
region), region protects key is 
put in QEL 

(2) if its a system wide resource 
(kno~~ to all tasks in the system) 

a IFF' is put in the QEL in place of 
protect key 

2) qname already used by this requestor or another 
requestor, but new rname 

a) no major QCB built, one already exists 

b) 

c) 

minor QCB built for new rname, queuea 
off other minor QCB already queued off 
major QCB 

QEL built representing requestor as above 
chained off newly built minor QCB 

3) Previously used qname and rname 

a) no major or minor QCB's built, they 
already exist 

b) QEL built to represent requestor, 
chained off other QEL's off minor QCE 

c. QEL's represent tasks requesting use of the 
resource named by qname, rname combination 

d. 'l'asks represented by QEL's for a particular 
resource are allqwed to use the resource in a 
strictly FIFO manner, depending on position 
of their QEL's in the queue 

e. If and when requesting task is top QEL in 

PROGRAMHING/SYSTEl4S EDUCATION - SDD POUGHKEEPSIE 



note: 

queue, that task is allowed to continue or 
resume execution at instruction after EHQ 
macro and thus access the requested resource. 
If task's QEL is not top on queue, it is put in 
WAIT state 

f. Exception to e. above 

g. 

1) can issue ENQ for test purposes to see if 
requestor would get immediate us·e of the 
resource or to see if the task was already 
enqueued on Ule resourc~ (attempting to 
ENQ on a resource presently ENQ'd on results 
in ABEND of requestor) 

2) If two tasks requesting shared control of 
some resource are adjacent at top of queue, 
both tasks are allowed to resume executing 
together 

The system does not know and has no way of knowing 
what resource is represented by a given ~name, 
rname pair and thus the use of a resource is 
controlled by holding requestor in a \-JAIT 
state or allowing it to execute its own code 
to access the resource. 

The QEL's chained off a particular minor QCB are 
manipulated'as if they constituted several 
distinct lists 

1) the QELls with IFF' representing system wide 
resourceH are handled as one list 

2) the QEL's with like protect keys are handled 
as separate lists, a distinct list for each 
distinct protect key. Since such QEL's 
represent requests to use a resource known 
only to tasks in the region with that protect 
key, the QBLls with like protect keys are 
handled as seFarate FIFO lists 

, .. 

-
PROGRAHIUNG!SYSTE-1S Et)UCA'l'ION - SUD POUGHKEEPSIE 



"I Contents Supervisor 

Hef: HVT ~upervisor, s~ction 4, (Y28-6659) 
Handout S12 

A. 

B. 

Function Overview 

1. Searches for modules requested to lie Drought into 
main storage 

2. Loads and relocates ~,e module if necessary 

3. Builds control blocks describing" the module 

4. Passes control to the module or returns address of 
its entry point to requestor 

Hacros invoking Contents Supervisor via an SVC 

Ref: Supervisor and Data Nanagement Hacros (C28-6647) 

1. ATTACH - requests creation of a new task and 
specifies first program to be located and executed 
on behalf of the new task 

XVI 

XVI h'. 

XVI B. 

2. l..INK - requests that tile specified program be located and 
executed on behalf of requesting task before 

C. 

instruction after the LINK (in requesting program) 
is executed 

3. XCTL - requests the specified program be located and 
executed and its PRE replace requesting program's 
PRS in chain hung off requesting task's TCE 

4. uOAD - requests the specified program be located or 
loaded and its entry point address Le returned to 
requestor but the requested program is not to be 
executed automatically by Contents Supervisor 

Search for the module 

1. Requestor's region 

a. !·lodules loaded into a requestors region constitute 

I'· 

PROGRAMMING/SYSTEi1S EDUCATION - SDD POUGHKEEPSIE 

XVI C. 



b. 

c. 

the region's job pack area 

Bach module is represented by a CDE (Contents Directory 
Entry) containing name of module, etc. 

eVE's queued together, origin of jobpack queue is a 
pointer in jobstc£ TCll 

d. Contents supervisor searches this queue first for 
the requested module 

1} If it is found in the region 

a) Check if module available - it must be 

( 1 ) reentrant, or 

(2) reusable and not in use, or 

(3) nonreusable and unused 

b) if unavailable - defer request - chain 
requestors SVRB (for Contents Supervisor 
rtn) off llli presently controlling the 
Module (or last RB of a chain of such 
deferred requestors) 

c) If module available - increment use/ 
responsiblility count in CDE by 1 

d) Build and en4ueue a PRE for the module, 
PRB inserted on requestors TCB queue of 
RB's after the SVRB for contents supervisor 
(that is, the PR13 is the 2nd RB in that 
tasks lID queue) PSW in PRB built to 
point to entry point of module 

e) Contents superv rtns exit (SVC 3) thus deleting 
the SVllli and making new PRE the top Rll on the 
task's queue 

2) If module not found in requestor's region 

2. <.;ontents Supervisor Checks for lJrivate libraries 

a. If DCB operand of .iacro specifies a VCB address, 
th.e data set so specified is searchell 

I' . 

1) if module is located 

PROGRA'1Jo.lING/SYSTEl"~S EDUCATION - SDD POUGI~KEEPSIE 
~ 



note: 

a) space for a CDE is obtained and 
partially filled in 

b) program FETCH invoked to load and 
relocate the program 

(1) issues GETHAIH for area the size 
of program being loaded 

(2) as program loaded, builds extent 
list (XL) indicating load point 
and size of ~ach segment of the 
module 

For block loaded modules (the usual case) only one 
entry is made in the XL but for the scatter loaded 
modules a different entry would be made for each 
CSECT indicating its load point (e.g., address of 
first byte of the CSECT) and size 

(3) returns to caller the entry point 
address of the module 

c) if LINK, l\TTACH or XC'l'L beir,g processed, 
since module is noVi available, a PRB is 
built and enqueued after SVRB for contents 
supervisor rtn, PSW built to point to 
modules entry point, usc/responsibility 
count incremented by 1, contents super­
visor rtns exit (SVC3) 

d) if LOAD request being processed, LLE built 
(Load List ~lernent) containing pointer to 
CDE and ptr to next LLE, entry point of 
LOAD'u module returned to caller, no FRS 
built 

2) if module not located on this data set, search 
link pack area 

b. If Dcn operano to macro is not coded or coded as 0 
check for JOBLIB or STEPLIB DCB (address of DCB in 
Tcn if such a data set was specified) 

1) if DCB provided - search data set as above 

2) if DCB not provided - search link pack area 

PROGRAl1HING/SYSTEI1S EUUCATION - SDD POUGliKE};;PSIE 



D. 

note: The Tcn contains a 1 word pointer to a i)CB for the 
JOBLIB OR S~EPLIL data set (initiator creates 
and OPEN's this DeB) but for any jobstep task 
(and thus for any of its suotasks) only one such DeB 
is provided - ST~PLIB data set, if provided; JOBLIB 
data set, if provided and STEPLIB is not. 

3. Contents Supervisor searches Link Pack Area 

4. 

5. 

a. All modules loaded in LPA at NIP tim~ are avail~ble 
to all tasks in the system 

b. Each module represented by a"CDE, all chained together 
origin of queue is in eVT (LPACQ pointer) 

c. LPA queue of CDE's searched for required module 

1) if found, its available (all nodules in LPA 
are reentrant and thus available for use), PRB 
constructed, and enqueued after Contents 
Super's SVRB off requesting task, PSW built 
to point to modules entry point, use/responsibility 
count incremented by 1 and contents supervisor 
rtns exit (SVC 3) 

d. If not found in ~PA 

Contents Supervisor Searches LINKLIB 
processing as for search of private libraries 

If module not yet located, requestor ABEND'a 

Alias Processing XVI .LJ. 

1. A module can have up to 16 alias, each is a different 
entry in the directory of the PDS that contains the 
true name of the module. j\.lias names are distinguished 
from true names by a bit setting in the PDS directory 
entry and the true name is in the user data portion of 
the alias entry if module is reusable or reentrant 

2. If the name specified in a macro is found in a library 
(as opposed to the JPA or i..PA) and it is an Alias, 
Contents Supervisor rtns get the true name of the module 
from the ALias directory entry and re-search the jobpack 
area for the module under the true name 

" \ .. 
3. Two types of processing can occur depending on 

whether or not the module is already in main storage 

PROGRAHMlrJG/SYSTl::LS LPUCATION - SuD POUGlIKl:EPSIE 



E. 

a. If the module is in main storage 

1) a major COE exists for it, containing true 
name 

2) possibly, minor COE(s) exist for it - for 
other alias 

3) minor COE built, containing Alias name 
specified in the request and the address of 
associated entry point - either prime entry 
point or alternate entry point - if it has the 
same name as the Alias 

4) the field in the COE used to point to the XL 
in a major CDE, is set to point to the major 
COE 

note: If a nonserially reusable program is requested by an 
Alias, a major COE is built, containing the Alias 
name and no minor COE is built. This is because 
when the program terminates, the program and its 
control blocks will be freed immediately since the 
program cannot be used again in its present 
(executed) state 

note: 

b. If the module is not in main storage 

1 ) two CDB's built, one major and one minor 

2) each CDE contains corresponding name of module 
prime name in major, alias name in minor COE 

3) corresponding entry point(s) inserted in each 
COE 

4) minor CDE points to major frow field usually 
used (in a major CDE) to point to XL for the 
module 

5) XL constructed as module is loaded (by FETCH) 
and is chained out of the major COE 

A bit is set in first byte of COE to indicate whether 
it is a major or minor COE and therefore, now the 
"XL/HA.J" field i!;'being used 

Special Processing for XVI E. 

PROGRAMMING/SYSTE!'-1S BDUCA'l'ION - SDD POUGHKEBPSIE 

I' 
" 

f 

! i 
I; 



1. LOAD macro 

note: 

a. Load list for the requesting task is 'searched before 
the jobpack queue is searched 

1) ~OAD list consists of LLE (Load List Elements) 
constructed as result of previous LOAD's of 
loodules, origin of list is in requesting tasks TCB 

2) LLE contains 

a) pointer to next LLE on queue 
. 

b) pointer to CDE for the LOAD'd module 

c) responsibility count 

b. If module is located - already LOAD'd 

1) responsibility count (in LLE) and use/ 
responsiDility (in CDE) are incremented by 1 

2) address of module returned to requestor 

c. If module is not located on load list or jobpack 
queue 

1) LLE, CDE and XL created and module loaded 

2) responsibility count (in LLE) and use/ 
responsibility count (in CDE) set to 1 

3) address of module returned to requestor 

d. If module is located when jobpack queue searched 

1) LLE built and added to load list of requesting 
task 

2) responsibility count (in LLE) set to 1, 
use/responsibility count (in CDE) incremented by 
1 

The CDE thus located is already on jobpack queue 
and remains t.here, LLE points to the CDE. Thus 
that CDE is on bottl the load list of the request­
ing task and on <:he jobpack queu€: for the region 

PROGRAHMING/SYSTEHS EDUCATION - SDD POUGHKEEPSIE 



.. 
L 

2. XCTL macro 

a. Informs system that issuing program is transferring 
control to module specified in macro and 
is not to receive control back from the specified module 

h. Issuer's PRB is deleted 

1 ) 

2) 

3) 

XCTL rtns are SVC and operate under SVRB 

They reverse the issuer's PRB and their 
own SVRil on TCD queue of RB's (now issuer's 
RB is top on queu~) .' 
Issue ~VC 3 - which causes issuers PRE to be 
deleted and appropriate responsibility, use/ 
responsibility counts to be decremented, 
if zero, space to be freed, etc. 

c. After SVC 3, SVRB for XCTL rtns is top RB on 
queue, XCTL searches for requested module and 
either locates it or loads it and builds 
appropriate control blocks for it 

d. XCTL rtns build PRB for new module and enqueue 
below SVRB on requesting TCB's HE queue 

e. XCTL rtns issue SVc 3 thereby, deleting their 
own SVRB 

3. IDENTIFY macro 

a. Informs contents super of a dynamically added entry 
point to a mOQule presently in storage. Nevl 
entry point and name exist only while that copy 
of program is in storage 

b. Must specify 

1) Name to be associated with new entry point 

2) Main storage address of the new entry point 

c. IDENTIFY rtns 

1) Build a new minor CDE for new entry entry point 
\ .. 

2) Search existing load list and jobpack queue 
to determine if specified addr~sti falls in 

PROGRAl1MI~IG/SYSTEHS EDUCATION - SDJ..) POUGIIKI:EPSIE 



F. 

l" 

t t . 

a mo~ule loaded for th~ requesting program or 
in the requesting program itself 

3) If invalid address - return code to requestor 
indicates new entry point was not established 

4) If address valid - build a minor CDE for new 
entry point and insert the address, insert 
pointer in minor CDB to major CDE for module 
in which new entry point is located 

5) Exit to dispatcher 

Use/responsibility and responsibility Counters 

1. Where maintained 

a. In LLE - responsibility count 

b. In CDE - use/responsibility count 

2~ When incremented or decremented 

a. 

b. 

c. 

d. 

LINK,AT'fACH,XCTL increment count in CDE by 1 

LOAD increments counts in LLE and CDE by 1 

DELETE decrements counts in LLE and CDE by 1 

SVC 3 routines (exit) decrenent count in CDE by 1 

XVI F. 

e. XCTL decrements count in CDB of the issuer of XCTL 
by 1 

\ .. 

PROGIW-lMIHG/SYSTEHS EDUCATION - SDD POUGlIKEEPSI:C 



XVII Main Storage Supervisor 

~ Ref: MVT Supervisor, Section 5, 
Ha.ndout S14 

XVII 

A. 

B. 

(Y28-6 659) 

Function Overview 

1. l<esponds to requests for use of main storage space 
or to ,reI inquish u.se of such space' 

2. Request issued by GET~·.iAIN/FREENAIN macros 

3. Request may be for.space in a region or for a region 
or for space in SQS 

4. GETI.fAIN/FREEHAIN rtns are SVC rtns 

Space in a region 

1. The region itself 

a. When region obtained for a jobstep task, a PQE 
(partition queue element) is built for the region 

'XVII A. 

XVII B. 

b. A dummy PQE is constructed and 3rc1 and 4th _lOrds 
used to point to first and last PQE's for a job­
step task (can havE~ several "regions" by Rollout 
facility in which case a new PQE is built as each 
new region assigned to requestor). If only region 
for the task, Doth pointers in D-PQE point to the 
single POE describing the region 

c. Pointer inserted in jobstep 'l'CB (propogated to 
all subtask TCB's in that region) to beginning 
of D-PQE, thus the address is 8 bytes before the 
pointers to the PQE(s) for the region 

d. PQE contains 

1) pointer to FBQE at highest address in the 
region 

2) pointer to FBQE at lowest address in the 
region , .. 

PROGRk'1JllInG/SYSTEIlS L:DUCAl'ION - SUD P0UGliKEEPSIE 



e. 

note: 

f. 

g. 

3) pointers (2) to next and previous PQE's 
for the jobstep task (if there are no others, 
it is O's) 

4) region size 

5) region address (first byte of region) 

Space in a region is either allocated for use 
(from jobstep tasks point of view, the protect 
key of allocated space is that of the task) or 
unallocated - protect key of 0 

Exception space in SP252 of jobpack area is 
allocated but has protect key of 0 

Space allocated for use may, in fact, be unused. 
Used space is allocated space, the address of which, 
has been returned to a requestor in response to a 
GET~~IN. Space is allocated (i.e. protect key set 
to that of task) in minimum of 2K blocks. 

Unallocated space in a region is described by 
FBQE's (Free Block Queue Elements) which reside 
in the low order three words of the space they 
describe and contain 

1) pointe-r to next higher FHQ}:; (if highest, 
address of PQE for region) 

2) pointer to next lower 1"13Q£ (if lowest, address 
of PQE) 

3) count of numLer of bytes in the area this 
FBQE is describing - count includes the FBQE itself 

note: PQI:; points to higlleGt and lowest FbQE'S in the 
region 

2. Jobpack area and its subpool numbers 

a. t-1odules loaded into the region constitute the 
regions' jobpack area 

b. Space in which ~uch modules reside is allocated 
from either enc of the region as follows 

1) reentrant mocl.ules from .un",KLIJJ or SVCLIB -

PROGRMmIHG/SYSTU-1S iiUUCA'l'ION - SUD POUGHKEEPSIE 



c. 

note: 

2) 

high end of region, suLpool 252, prot key 
of 0 

everything else - low end of region, 
subpool 251, prot key of the task 

The subpool numbers' associated \vi th the space 
in the jobpack area are sir.lply signals to the 
GETHAIN routines as to wuere to sUI?f-ly the 
space from and whether or not to chan,ge its 
protect key 

Program FETCH issues GETHAHV for space in 
jobpack area, into which to load modules are read. 

3. Subpools 

nef: Supervisor and va ta Hanager,lent Services, 
Section I, Uain Storage Hanagement, 
(C28-6646 ) 

a. A subpool is one or more 2K blocks of storage 
such blocks are not necessarily contiguous 

b. GETMAI£~ requests for space in a region are 
satisfied from subpool space, such requests 
must be satisfiable with contiguous bytes of 
storage or they are not satisfied 

c. A number is associated with a subpool of space 
for convenience in controlling and manipulating 
it 

d. Space is allocated to a suLpeol (i.e., protect 
key is changed to thut of requesting task except 
as noted above) and all or part of the 
allocation is supplied to satisfy a user request 
Such space S0 supplied is considered used or in use 
and cannot be supplied for another request unless 
it has been Fru.:rutAIN'd (returned to the subpool) 
in the meantime 

e. User can request space from subpools 0-127 

f. System Task subpool numbers 

Ref: dVT superv':L'sor, section 5, (Y 28-6 659) 

1} Subpool 251 - Space in PIP region, protection 

PROGRM-ll'1ING/SYSTEHS ~,DUCATION - SUD POUGhKEEPSIE 



( 

2) 

key of the task, low end of region, contains 
modules ~ in Subpool 252 

Subpool 252 - Space in PIP region, protection 
key of 0, high 0nd of the region, contains re­
entrant moaules from LIrlKLIB or SVCLIB 

3) Subpools 253, 254, 255, Space in SQA 

a) 253 - space will be freed when associated 
task terminates 

b) 254 - space will be freed when joLstep 
task associated with the request terminates 

c) 255 - space will not be freed at task 
termination but must be explicitely 
FR'ulAIH'd 

d) Subpool 255 - number used by supervisor 
programs (i.e. Initiator getting first 
save area) to request space in PIP region 
from subl,ool 0 

g. AQE - Allocated Queue Element 

1) Built Ly GETl'iAIN rtns for each request for tipace 
from subpools 253 and 254, describes space 
allocated in SQA 

2) Hequests for space from subpools 253 and 254 are 
incremented by 8 bytes, and hQE built in first 8 
bytes of the area so allocate~ 

3) AQE' s chained out of 'rCB on which termination the 
space (in SQA) will be freed. The 'l'CD an AQE is 
chained out of may not be the TCD of the requesting 
task nor the TCB for wnich the request is made 
(e.g., CDE's built as result of any task in Ule 
region requesting a @odule, are all chained out 
of jobstep tusk) 

4) \vhen tl!e task, from which TeB the AUE was chained 
terminates, the space described by the AQE will 

be freed 

5)' AQE con ta inlS· 

a) pointer to next AQE 

PROGRAMM1.NG/SYSTEHS EDUCATION - SUD POUGIil~EEPSIE 



b) leng~~ (in by teo) of the area the AQE 
descri0es - including the AQE itself 

4. Subpools are descriLed and managed by 3 control blocks 
SPQE, DQE and PUE 

a. SPQR - Subpool Queue Element - chained out of a 
'reB, that task "owns" or II shares It the subpool 

b. SPQE contains 

1) Bit settings indicating owned/shared status 
of subpool 

2) pointer to next SPQE on chain for that task 
to SPQE chained off the task that owns the 
subpool (if this task is sharing it) 

3) subpool number 

or 

4) pointer to first (or only) DQE for the subpool 
(O's if no space allocated to the subpool) 

c. DOE - Descriptor Queue Element - chained out of SPQB 
for the subpool whose space it describes, a DQE is 

de 

a constructed whenever space is allocated to the 
subpool (in mUltiples of 2K blocks) 

DOE contains 

1 ) address of higl!est addressed PQE in that 
block of space 

2) pointer to next DOE if there is one 
(O's if not) 

3) block address (one or more 2K blocks 
allocated at same time to the suLpool) 

4) size of block (~n bytes) 

e. FOE - Free Queue Element - resides in low order two 
words of space it descriLes, used to describe allocated 
~ut unused space in a particular Llock of space 
allocated to ~·~ubvool. Such a block is described by 
a single DQE 

f. FOE contains 

PROGRAM1-Urm/SYSTEI1S' EDUCATIOlJ - SDu POUGHKEEPSIE 



1) pointer to next lower FQE in the block, O's 
if lowest 

2) byte count of the unused space, including 
the FOE itself 

g. Handling of space in a subpool 

1) space used from top down in the space allocated 
to a subpcol 

2) space supplied to user as result of GETNAIN 
must be contiguous. ~f sufficient space"not 
available in present allocation(s) to the subpool 
more 2K block's are allocated to it (the protect 
keys set to that of the task) and a DQE i::; built 
for such an allocation and space is supplied to 
requestor from it 

3) FOE's describe only the space associated with the 
DOE out of which the FQE's are chained. Even if 
two separate allocations to a subpool are coin­
cidentally contiguous, DQE'sfor the two 
allocations do not reflect this nor do the FQE's 
in the two allocations 

4) if GETNAIn's are issued for space so that all 
space in an allocation is supplied for use, the 
FQE's are de::;troyed (space tiley occupied is 
supplied to requestor) and pointer to high FQE 
in DQE is zeroed out. This is also true of 
FBQE's if all the space in a region is allocated 
to sub!?ools. In this case tl.epointers in the 
PQE to the FllQE's arc zeroed out. 

5) the FQE, by its location in storage with protect 
key of the task, can be destroyed by the use if 
he modifies addresses pa::;sed to him· by GETNAIl~ 
routines. This causes the GETi1AIN routines much 
grief and should only be done at programmers 
own risk 

h. Subpools provide a convenient techllique for allocating 
transferring and sharing space between the tasks of a 
region. They also provide an efficient method of 
ol)taining and f,J;eeing space without undue fragmentation 
(e.g., if a program is~ues many GETHAIH's for various 
sized areas of storage, some small, some large, it would 

PROGRAlvl.HIIJG/SYSTI.:I1S EDUCATIOl~ - SDl) POUGIIKEEPSlr: 



5. 

note: 

L 

be best to request all small areas from one subpool and 
the requests for the large areas from another to avoid 
space fragmentation that would result if all requests were 
made from a single subpool) 

Owned/Shared Subpools 

a. When ATTACII a subtask, mother task can specify that 
certain suLpools be given to or shared with the daughter' 
task 

b. Operands are GSPV or GSPL and SllSPV or SHSPL 

c. Giving a subpool to a daughter task 

1) If suLpool exists for motller 

a) SPQE aequeued from mother's TCB and queued 
off daughter TCB 

b) daughter task can use subpool space as it 
pleases 

Control blocks describing space allocated to the 
subpool and its use, are left as they were when 
subpool given to daughter. They are not reset to 
indicate all suLpeol space is available 

2) If subpool does not exist for mother 

a) SPQE created and chained off daughter task 

b) no space (2K blocks) is allocated to the 
subpool, therefore not DQE is built and 
DQE Pointer in SPQE is zeroed out 

d. Sharing a suLpool with a daughter task 

1) If subpool exists for mother 

a) SPQE duplicated and chained off,daughter 
'l'CD 

b) bits set in new SPQE indicating it is not 
owned by daughter but is shared with it 
by its mother (this prevents daughter from 
freeing the subpool) 

\ ' . 

c) bits set in mother tasks' ~PQE indicating 

PROGRAMHING!SYSTEHS l.:lJUCATIOl1 - SDD POUGHKi.~LPSIL 



d) 

suLpool is shareu with another task 

field in daughter task's 5PQE normally 
pointing to DQL is set to point to SPQL 
chained off owning task's .. TCB 

2) If subpool does not exist for mother 

a) two SPQE's built 

b) one chained off mother TCB bits set 
indica ting ovrnership of subpool 

c) other chained off daughter TCB, bits 
set indicating subpool is shared with 
aaughter by mother; DQB field set to point 
to owning tasks SPQE 

d) No DOE built and no space allocated to the 
subpool 

e. A task can share a subpool that it owns Witll any or 
all of its daughters 

f. A task \v11ose mother is sharing a subpool with it can­
not give that subI~ol to one of its daughters. It 
can however share the subpool with its daughters 

g. If a subpooi is shared bebleen two tasks nei tIler may 
free the entire subpool while the other task is 
still in existance. The daughter can never free it, 
the mother can only free it after the daughter terminates 

h. If a task gives away a subpool, it can issue a Gr:THAIi~ 
specifying the same subpool number and. a distinct subpool 
(with the same number) will be createc..i. This is true 
for any two tasks in a region - if they are not sharing 
a subpool but each issues a GE'l'NAIN specifying the same 
subpool number, two distinct suLpools, \vi th the 
same number will be created anu. space in each managed 
separately 

i.. Subpool 0 is shared between all tasks in a region. The 
System Task Control Task of the job's Initiator owns 
subpool 0 and thus the SPQE's chained off all TCD's in 
the region have bits set inaicating they do not own 
the suLpeol and "DQE pointer" field in the SPQE's point 
instead to the ~PQE for suLpool and chained off STCT Tell. 

PROGRAM.HING/SYSTID1S EDUCATION - SDD POUGIlhLEPSIE 



c. 

D. 

Space in SQA and Dynamic urea XVII C. 

1 • DOE for SOA 

a.. Space constituting SQA is described by a DOE as if it 
were a single subrJool 

b. FQE's in SQA space describe free space in SQA and 
highest FQE pointed to from DOE 

2. POE for Dynamic Area 

a. Entire dynamic area (regardless of regions in 
it) described by a PQE 

b. FBOE's built in available dynamic area space, 
highest and lowe5t FBQE's pointed to from the PQE 

c. Other POE fields contain Leginning address of 
dynamic area and its total size 

d. POE addressed from 3rd and 4tlt words of a D-PQE 

3. GOVRFLB 

a. A control block contained inline in resident 
GETHAIU code in Hucleus 

u. Governing Free List Block (?) contains 

1) address of first byte above SQA 

2) pointer to 0Qi':; for SQA 

3) pointer to D-PQE for PQE for dynrunic area 

4) amount of lID space available after NIP 

5) amount of H1 space available after HIP 

6) address of queue of VQB's (Vary Queue Elements) 
used when area of main storage varied offline 
by HP65 NCH routines 

\' . 
c. GOVRFLB is pointed to from secondary CVT, which 

is pointed to from primary CVT 

Rollout/Rollin * 

PROG!WlMING/SYSTE1-1S EDUCATIOlJ - SDD POUGlIKEBPSIE 

XVII D. 



Hef: HVT Supervisor, Section 5, Allocating a Borrowed 
region thru Hollout, (Y28-6659) 

1. Overview 

a. Facility that allowb a problem program task to 
dynamically expand the main storage allocated 
to it as a region by using additional dynamic 
space or rolling out the contents of another tasks 
region and using that space 

. b. Contents of region being rolled out. is written 
onto SYS1.ROLLOUT data set . 

1) must be large enough to contain all of 
dynamic space after IPL 

2) is formatted at IPL time, region contents 
are not written onto first available space 
but ~a location on the data set determined 
by the addres~ of the region 

2. When and how invoked 

a. Problem program issues unconditional GETMAIl~ 

b. There is insufficient space in region to satisfy 
request 

c. RORI has been included in system 

d. Requestor can (by JCL operand) cause a rollout 

e. RORI routines invoked from GET!1AIN module 

1) RORI Tcn (permanent systerr,) made ready 

2) Requestors TCD set non dispatchable 

3) Requestors resume PSW decremented by 2 (to 
point to GE'rMAIN SVC again) 

4) Task switch indicated so RORI task will be 
next task dispatched 

5)· GETHAIN exits to dispatcher 

3. RORI criterion rtn receives control first and 

PROGRAMHING/SYSTEl-iS riDUCATION - SDD POUGHKEEPSIE 



a. Determines if current request is for RO, Rl or 
restart of a deferred request, passes control to 
appropriate routines in each case 

b. Determines if another jobstep has caused a rollout 
still in effect - if so, enters a (optional) user 
appendage to determine 

1) if concurrent rollouts should be allowed 
(IBM routines do not allow it) 

2) if no user's appendage supplied or appendage 
decides against concurr.ent rollouts - defer 
request 

a) lQE representing request put on a queue 
of deferred requests 

b) request is serviced when a region eligible 
to satisfy the request becomes available 

note: If user appendage alloVls concurrent rollouts (two 
distinct tasks each vdth a rollQut in effect at. some 
time) if is responsible for preventing interlock 
that could result (e.g. two tasks in system, each 
issues request for more space than is available in 
entire dynamic area - each waits on the other - bot!! 
requests must be deferred as there is not 
enough space to satisfy either request) 

4. Search for space to allocate 

a. RORI routines check dynamic area for an area of 
contiguous space large enough to satisfy request 

1} if found - PQE for space is built and 
chained of f HOIU TCB, FBQE buil t in the 
space allocated (allocation performed by 
GETRBGIOH routines so appropriate control 
blocks are updated) 

a) PQI:; removec1 from RORI TCB and enqueued 
off requestors own PQE, sets TCB ptr 
field in new PQE to 0 to indicate at 
Rollin time that the space should be 
freed ra tIler than restored as another 
tasks region 

b) Rollout count (in nucleus?) incremented 

PROGRAIllUNG/SYSTENS BDUCATION - SDD PUUGHKEEPSIE 



note: 

L 

by 1 

c) sets "borrowed" flag in new PQE 

d) Sets bit in requestors TCB indicating Rollout 
in. effect 

e) Makes requestors task dispatchable (when 
next dispatcheci., GE'J.'i'lAli.~ svc will be re­
issued but now space is available to satisfy 
the request) 

f) exits 

2) if space not found in dynamic area - search 
for a jobstep to rollout, it must meet these 
requirements 

a) has not itself, caused a rollout still in 
effect 

b) it is eligible to be rolled out (JCL 
operand) 

c) its region is large enough to satisfy 
requestors GETHAIN 

3) Finding a jobstep to check for availability 
is performed as follows 

a) requestor's tCB checked to see if it 
has a rollout currently in effect 
if so checks for sufficient space in 
previously borrowed region(s) to 
satisfy current request 

This seems a duplication of effort as the Gr::TllAI~~ 
rtns should already have checked the borrowed 
regions before scheduling the iWRI task 

b) if space not found, search TCB queue 
from requestor down, each ~'CB passed to 
a routine to test the tasks 

(1) if no suitable task of lower priority 
is found, enters an (optional) user 
appendage which determines whether 
or not TCn's of priority higher than 
requestor should be tested 

PROG.RAMMI~G/SYSTEl·lS EDUCATlo!~ - SDD POUGlll,LEPSIE 



note: 

(2) if higher priority tasKS should be 
tested, TCB queue is reprocessed from 
top down 

(3) if no user appendage is supplied for 
this condition or no.task is suitable 
to be rolled out, request is deferred 
see 3.b.2) above 

4) A jobstep found by search above, is eligible to 
be rolled out if: ' 

Nested rollouts (a task, witt, a rollout in effe9t, 
cannot be rolled out) are never permitted, no user 
appendage can contravene this. The reason is because 
of the wa.:r the region i:; \';ritten on the SYS1.HOLLOUT 
data set - to a location determined by an algorithm 
that causes each region to be written to a location 
on the data set corresponding to that region's 
location in the dynamic area. If a task, with a 
rollout in effect, were rolled out, both regions 
belonging to that task would Le mapped to their 
corresponding locations on the data set; the 
borrowed region overlaying the original contents 
of the region, written to the data set when earlier 
rollout occurred 

5) . 

a) selected joLstep has not, itself, caused 
a_rollout still in effect 

b) selected jobstep indicated on JCL that it 
can be rolled out 

c) selected jobstep is not ENQ'd on a 
resource 

d) selected jODstep's region is large enough 
to satisfy GETI1AIH rc~quest 

e) selected jobstep's region h~s not already 
been rolleti out and loaned to another task 

f) jobstep meets additional tests performed 
by an (optional) user appendage 

If a jobstep suitable to ~e rolled out cannot 
be found all -(optional) user appendage is entered 
it can 

PROGRAMMING/SYSTEHS EDUCATION - SDD POUGHKI:.EPSIE 



a) cause rC4uest to be deferred as described in 
3.a.2} above 

b) abnormally terminate a joLstep task - the 
re4uestor or another task in the system 

5. Allocation of another rey ion 

a.AlI tasks in region to be rolled out are set 
non-dispatchable 

b. All I/O requests are quiesc~d 

1) queued requ·csts are purged (RQE's freed) 
but pointers to lOB's are kept to allow 
requests to be reinstated 

2) active (~tarted) I/O requests are allowed 
to complete 

c. Operator replies to tasks in region are deferred 
(saved in temporary buffers) 

d. Contents of region are writtcn out to SYS1.KOLLOUT 

1) channel programs set up 

2) TTR calculated \vllere Hri ting ".;ill begin on 
data set 

3) If an I/O error occurs, partially rolled out 
region is restarted and sedrch for eligible 
jobste~ to Le rolled out is resumed 

4) if no error, operator message written stating 
job causiny rollout and job rolled out 

e. Region is allocated to requestor, RORI routine 

1) sets flags in owning tasks PQE indicating 
region rolled out and is in use by a borrower 

2) builds a ne~ PQE for the rolled out region and 
chains it off requestors TCB, sets up pointers 
and bits as follows , .. 
a) TCB pointer field in PQE points to owners TCB 

PROGR.J.\.lli.1L"JG/SYSTEMS l.;DUCATION - SDD POUGHKEEPSIE 



b) Lits set to indicate reuion is Lorrow~d 

3) Sets all protect keys in borrowed region to 0 

4) constructs FBQ~ in low end of region, describing 
all of region as free 

5) "rollou ts "invoked" count (in nuc leus?) 
incremented by 1 

6) RORI rtns exit, setting reques~ing task 
c4ispatchable 

6.. Rollin 

a. Wilen FREELlAIN rtns invol:ed to free space ana these 
rtns detect that an entire region has been freed, 
they invoke the RORI task to perform Rollin 

b. FF:EEl'lAIN rtns 

1) check each PQE chained off TCB of task issuing 
FREEUAIN to SOG if any such regions are borrowed 
(bit~ in PQE indicate this) and if all space in the 
region is not allocated to a subpool 

2) releases such a region from borrowing task ~y 
dequeueing and freeing PQE 

3) Invoke RORI to 

a) check if region was allocated from free space 
(if so, TCB pointer in PQE is 0), if so, 
free the space 

b) if region borrowed, its original contents 
rolled in if owning jobstep has no borrO\ved 
regions still rolled out 

4) Rollin performed as follo\".1s 

a) protect keys of region changed to that of 
owning task 

b) contents of region read into region space 
frOTa SYS 1 • i{OLJDUT aa ta set 

\ .. 
c) writes mc:.:;sage to greater describing job 

rolled in 

PROGRAl1.r-QNG/SYSTJ:.:HS EDUCATIOLI - SDD POUGlll(LEPSIE 



d) If I/O error - ABEND jobstep that was 
partially rolled in 

e) resets rollout flags in owners PQB 

f) resets protect key of free blocks in region 
to 0 

g) restores deferred I/O requests 

h) restarts deferred., operator replys 

i) makesdispatchable the tasks in the rolled 
in region 

5) Deferred rollout requests are restarted 

a) rollout counts decreraepted by 1 

b) clear rollout flag in borrowers TeB 

c) moves IQE: for deferred request to ROIU 
TeB, making RORI TeB ready 

d) clears non dispatchability in re~uestors 
TCB 

e) exits to dispatcher 

\ .. 

PROGRAHHIHG/SYS'l'u·lS -LuUCAl'ION - SDV PUUGHK.t.:.:EPSIL 



Timer Supervisor * 
Ref: Job Hanagement, Part 3, Attaching tlle Jobstep, 

Terminating the Jobstep (Y28-6660) 

A. 

NVT Supervisor, Section 6, Section 9, 
Dispatching, ·han<1ling job and step 
timing, Section 3, Services indirectly 
rela ted to the TeE (\~AIT and POST rtns) 
Section 9, Dispatching, Section 13 
Flowcharts of THlE, STUlLR, Timer SLIH, etc. 
(Y28-6659) 

Supervisor and Data L\lanagement Services, Section I, 
Program l'1anagement Services; Timing Services 
(C28-6646) 

Function Overview 

1. Allows setting of time intervals (by macros) 
and cancelling of same 

2. Provides date and time of day when requested 

3. Allows scheduling of interrupts at specific 
times of day 

4. Is entered from SVC FLIH, SVC SLIH or Timer 
SLIH 

a. TIME macro - requests date and time of day, 
is a type I SVC 

b. 'l'TIBER macro - requests time remaining in a 
previously set interval or to cancel that 
interval, is a type I SVC 

XVIII 

XVIII A. 

c. STD1BR macro - requests a time interval ue 
established and requesting task be interrupted 
when interval expires, is type II SVC 

d. Timer Si...IH receives control from External 
FLIH detects a timer interrupt, 'rimer SLIH 
in turn passes control to routines of 
Timer Supervisor to handle the interrupt 

, .. 

PROGRAMMING/SYSTBl·IS EDllCATION - SDD POUGHl~EEPSIL 



B. 

note: 

C. 

The Interval Timer XVIII B. 

1. Is a hardware feature 

2. 0 Values are placed in it (by softwarertns) and 
they are decremented, when the value in the 
timer becomes negative - the interval has 
expired and an external interrupt is generated 

3. The Timer is initialized and checked if working 
at.IPL time 

aD a 6 hour value placed in the timer and 
decrenenting begins 

b. a 6 hour value placed in a software 
location called the six hour pseudo 
clock (SHPC), it is not decreIl1ented but 
each time a new value is placed in the 
timer, that same value is placed. in the 
SHPC 

c. Another software location, the twenty-four 
hour pseudo clock (T4PC) is initialized 
to O. :t:;very 6 hours after initialization, 
a 6 hour value is added to tne value in the 
T4PC, except when the value in it is 18 
hours, .in that case it is re-set to zero 
and the date is changed 

Precautions are taken at initialization time that 
this happens at midnight after IPL 

d. The date, specified in operator's SET command 
is placed in the CVT, is updated at midnight 

e. Tue time specified in operator I s SE'l' commanci, 
is placed in a third software location called 
the Local Time pseudo clock (LTPC) and is 
not changed unless the operator executes a 
SET command with the "CLOCK" operand 

The Timer queue 

1. Is ~ software feature 
\ .. 

XVIII C. 

2. Consists of 'l'irLler Uueue hleraents ('I'Q1::) representing 
requested intervals of time 

--
PROGRAMHING/SYSTEi."lS I:..DLJCA'i.'IUN - SDU PUUGH:,LL:PSIl:. 



L 

L 

3. Is r,lanipulated by S'..L'IMER routines and Timer SLIH 

4. TQE contains 

a. Bit settings indicating 

1) Typ.e of 'l'QE (supervisor or problera 
program, whether TQE is on or off <{ueue) 

2) 'l'ype of interval request 

a) TASK - interval decremented only 
while associated task is active 

b) REAL - interval decremented 
continuously 

c) WAI'I' - task put in HAlT condition 
for duration of interval 

b. Address of requesting task 

c. Link fields to preceeding and following TQE's 

d. Time of expiration ('l'OX) - if '1'Q1:.: is on the 
queue, or time remaining in interval - if 
TQE is off the queue 

e. 

f. 

Save area for time remaining when 'l'QE converted 
from TA~K to filiAL (joLstep timing) 

Address of save area to be used by problem program 

g. Address of user asynchronous tlluer completion 
routine (if specified in macro) 

h. Extra space needed when TQE converted to IQE and 
IRB for scheduling the asynchronous rtn 

5. Types of TQB's 

a. Supervisor TQE 

1) Indicated by bits in TQB 

2) Contains an interval of 6 hours (in which 
case its called a "6 hour TQE") or an 
interval which will generate an int.errupt 
at midnight after IPL (in which case its 

PROGRAi1l-lING/SYSTEl-1S EDUCATIOl'.J - SDD POUGHKEEPSIE 



L 

called the "midnight element") 

3) rfhese elements are always on the queue, 
when tlwi are associated with an interrupt 
the interrupt is handled and thE: elements 
are reposit~oned un the queue 

4) Thus, if no other timer interrupts occur_ 
(due to tasks issuing STHlER macro) there 
will be an interrupt every 6 hours ana at 
midnight 

5) 6 hour interrupt 

a) Detected as such by combination of 
-supervisor bit in TQE and 6 hour value in 
TOX field 

b) Processed as follows 

(1) 6 hours subtracted from all other 
TQE's in queue 

(2) T4PC updated as described above 

(3) 6 hour value placed in TQE and 
it is repositioned on the 
queue 

6) M~dnight interrupt 

a) Detected by combination of supervisor 
bit in TQE and value of 18 already in 
'1'4 PC 

b) Processed as follows 

b. r;:>ask TQE's 

(1) Date in CVT updated 

(2) T4PC set to 0 

(3) 24 hour value placeu in 
TQE and it is repositioned 
on the queue 

1) Indicated by bits in TQE 

PROGRAMlUNG/SYSTEHS i:.;DUCA'I'ION - SDD POUGHKELPSIJ;; 



D. 

note: 

2) Contains interval specified in task's 
STIMER macro 

3) Contains indicators as to how interval 
is to Le de~remented (WAIT, TASK, IlliAL) 

4) Task TQE's placed on the queue and removed 
from thu queue according to type of 
TQE (TASK/HEAL) and vJhether or not 
task is active 

5) TOX value is recalculated every time a 
TQE is reenqueued'so it reflects true 
time rernaining in the requested interval 

6. TQE's on timer queue are arranged in ascending order 
of Time of Expiration (TOX) or length of time left in 
the requested interval 

7. Whenever a 'l'imer interrupt occurs, the first or top 
TQE is the one associated with the expired interval 

STIl>'lER routines XVIII D. 

1 • Respond to S'l'IilL:R macro 

2. Build and position the TQE on timer queue 

a. Indicate type of recluest - REAL, TASK, WAI'l' 

b. Calculate time of expiration depending on how 
the interval is specified in STUillR macro 

1) interval: TOX = 
(SHPC - Timer) + interval requested 

SHPC = current value of SHPC 
Timer = current value in interval timer 

The TOX may appear wrong but reillember, it is 
recalculated at various times during the interval 
it represents 

2) Time of day: Interval= 
(Time of Expiration) - (Current time of day) 
Current:. tiILle of day = 
(LTPC + T4PC + SHPC) - Timer 
L'£PC = local time pseudo clock, is time 
specified by operator in set COrl1lilanti 

PROGR.AM1\HNG/SYSTEtlS EDUCATIUN - SDD POUGITKLI.:PSIL 



'r4PC = current value in twenty four hour 
pseudo clock 
SHPC ; current value in six hour pseuao 
clock 
'rimer = current value in interval timer 
The interval so calculated is then used 
to calculate a TOX as above 

3. When enqueued on the timer queue, the enqueue rtns 

a. Compare interval in subject TQE to current 
value in timer 

b. If TQE interval less than value in timer - update 
the timer 

1) new interval is developea: 

new interval = SHPC + (,rQE interval - 'l'imer) 

2) new interval put in SHPC 

3) old 'rQE interval put, unc.nanged, ~n the 
timer 

4) new interval put in TQL, replacing previous 
interval 

5) TOE en~ueued at top of timer queue 

c. If 'rQE interval greater than or equal to value in timer 

1) new interval developed 

new interval = SHPC + (TQE - Timer) 

2) new interval put in 'l'QE, replacing 
previous interval 

3) TQE enqueued on timer queue according to 
new interval as TOX 

Timer Interrupts (Timer SLIH) XVIII L. 

1. 

2. 

Occur when value in interval timer becomes 
negative , .. 
Timer SLIH rtns receive control from external 
FLIH 

PROGRAMHIl-JG/SYSTENS BDUCATION - S])D POUGHKc.:LPSIE 



F. 

3. Timer SLIlI proceeds as follows 

a. Dcqueues top '.i'QE from timer queue 

b. Determines type of TQE 

1) HAlT (S'l'HlER issued with WAIT option) 

a) POST the ECB in TQE 

b) Branch to rtn to develop new interval 
to Le put in timer (see 3)b) below) 

2) Supervisor TQE processed as in C. 5. a. 5) and 6) 
above 

3) '1' ask TQE 

a) If timer completion rtn specified by user 
(in ST Il"lER macro) 

(1) rebuild TQE into IQE, IRE 

(2) invoke stage 2 exit effector 
to schedule the asynchronous routin8 

b) If no timer completion rtn specified, 
or on return from stage 2 Exit Effector, 
proceed as follows 

(1) new interval = 
(TOX from new top TQE) - (previous SHPC) 

(2) ne\v interval is placed in interval 
timer 

(3) TOX from nevi top TQE is placed, 
unchanged in SHPC 

c. Returns to caller (external FLIII, which branches 
to Dispatcher) 

Task Timing 

1. A task issues S'l'HlER macro, specifying VIAIT, 
REAL or TASK option 

2. STHlER routines , .. 

PROGRl\1>1L"1ING/SYSTEl~S EDUCATION - SDD POUGIiKI.;EPSIE 

XVIII F. 



note: 

a. Build a TQE, put pointer in it to requesting 
tasks TCD 

b • Put pointer in the TeD to the 'J.'QE 

. c. ,l;nqueue"the TQE on the timer queue, interval 
calculated by Enqueue routine as in D.3. 
above 

3.' If WAIT option specified 

a. Task will be put in WAI,T condition by S'fIl'l.l;;R 
rtns 

b. TQE put on timer queue and "decrements 
continuously" 

"decrements continuously" is a confusing phrase -
it seems to imply the TOX in TQE is being decremented 

I while in the 'l'QI:::. Such is not the case - there is 
only one interval timer and thus only one. interval is 
decremented. But the decrementing of the timer will 
have an effect on th other TQE's on .the queue, as if 
those intervals were being decremented, since "'hen an 
interval expirtls, the TOX originally calculated for 
it is subtracted from the TOX in the next TQE on the 
queue and the result is the new interval placed in the 
timer. Thus the expiration of one interval causes that 
interval to·be deducted from the next, and. that second 
interval, when it expires wi;Ll be deducted from the 
third, etc., etc. 

c. When associated TQE is top in queue and a timer 
interrupt occurs 

1) Top TQL tiequeued 

2) Associated task POST'd out of WAIT state, 
ECB is in TQE itself 

3) l~ext TQL: used to develop a ne~J interval 
to be put in the Timer, as in E.3.v.3) 
above 

4. If HEAL option specified 
\ . " 

a. TQE put on timer queue and will "decrement 
continuously" 

PROGRAr·UlING/SYSTEMS EDUCATIOH - SJ.)V POUGIIKEEPSII: 



L 

note: 

b. 

c. 

Task will compete with other tasks for CPU 
and obler resources 

\~llen timer interrupt occurs and tllis TQE is 
top on timex queue 

1) TOE uequeu(;!d from timer queue 

2) If a user timer completion routine was specified, 
TQE rebuilt into IQE and IRB, stage 2 exit 
effector invoked to schedule the asynchronous 
routine 

3) On return from stage 2 exit effector, next 
TQB on queue used to develop a new interval to 
be placed in interval timer as in E.3.b.3), 
above 

5. If TASK option specified 

a. TQE put on queue and will decrement only while 
associated task is active 

b. Hhen task enters SVC HAlT state (e.g., issues SVC 
1) the WAIT routines 

1) Dequeue the TQE from timer yueue (and if it 
w~s the top TUB, use next TQB to develop 
new interval and put it in timer as in E.3.b.3) 
above 

2) Dequeue rtns also calculate "time remaining" 
in the original interval and replace TOX in 
'l'QE with tl.at value 

remaining tir,1e = old 'l'OX - (SHPC - tiwer) 
old TOX = interval from dequeuea TQB 

There are times when a task is put in HAlT condition 
by system routines, not by issuing SVC 1 but using 
a branch entry to the WAIT routines in the nucleus. 
In these situations the; system routines are performing 
a service for the task (e.g., locating an available 
transient area block and loading it) and thus tile 
tasks TQE is not delj,ueued for, although the tasks code 
is'l~t being exJbuted, system routines are executing on 
its behalf and blllS it is "using" the CPU 

PROGRANHJ:UG/SYS'l'Bl-lS L;J..)UCA'l'IOLJ - SDD POUGHKBLPSIE 



c. 

d. 

When task POS1" d whether POST clears WAIT count 
in tasks top RB or not, the POST rtns do nothin~ 
to (direc~ly) cause resumption of task timIng 

When dis~atc:her is to perform a task s\litch 
and this task is the "new" task to be dispatched 
dispatcher routines process as follows 

1) Check if "old" (displaced) task was being 
timed ~ checks its TCB for,a pointer to a 
TOE 

a) if no 'l'Ql:: - c'ontinue 

b) if there was a TQE 

(1) dequeue it, only if it is TASK 
typel 

(2) put in it (in TOX field) absolute 
time remaining in its interval 

(3) if dequeued TQE was top on queue, 
use next TQE to develop a new 
interval and put it in interval timer 
as in E.3.b.3), above 

2) CHeck if "new" task has a TQE chained out of 
its TCB 

a) if no TQE - continue 

b) if a TUB is there 

(1) 

(2) 

(3) 

check if it is already on tiQcr 
yueue, if it is - no further processing; 
if not, then 

compute new interval as in D.3., 
above 

if new interval is smaller than 
value currently in timer, replace' 
it with new interval 

in any case, enqueue "new" task 
TOE at appropriate position on 
timer queue 

PROGRAlvlH!NG/SYSTLMS ~DUCATIOH - SDD POUGllK=:r.;PSIE 



L 

G. 

e. 

3) lJispa tch the HEW 'l'ASK 

When timer Interrupt occurs and that 'l'U1,; is 
top on queue 

1) TQE dequeued from queue 

2) If a user timer completion rtn was specified, 
it is scheduled as for a illiAL timer expiration 

3) In any case, next TQEused'to develop a new 
interval to be placed in interval timer as in 
E.3.b.3), above 

Jobstep Timing XVIII G. 

1. Allows user to specify TINE values on JOB and/or 
EXEC cards 

2. If Tum operand used on both cards 

3. 

4. 

5. 

a. Lachjobstep allowed to execute (De active task, 
use CPU) for tir.le specifi.ed on EXEC card as long 
as total amount of time used by U:.e steps of the 
job will not exceed JOB card tirue limit 

b. If allowing a jobstep to execute for Lillie 'l'IHE 
value will exceed JOB ~IME licit, jobstep is 
allowed to execute for an interval equal to 
difference bet\'leen JOB 'l'UlE and EXBC TIl-IE 

If TlPIE only on JOB card - first jobstep given JOB TI~lli 
limit, it any time rerilains, 2nd jobstep allowed to 
execute for balance of the interval, etc., etc. 

If TIME only on EX~C card - each jobstep allowed to 
execute for time interval specified 

If TIME specified on neither card - Reader/Interpreter 
has inserted installation defined default values 

note1 : Jobstep t~1ing is a sys gen option, if not selected 
at that time the routines to affect it are not 
included in the system and thus it cannot be 
implemented, TU1l: operands are ignored 

note2: Joostep time liI.l~ts apply to the associated jobstep 
task or any of its subtasks - that is, if any task in 
the jObstep region is active, the time interval is 

PROGRANMI·NG/SYSTEl1S EDuCATION - SDD POUGHKEEPSIE 



--L 

6. 

being decremented' 

Initiator of a jODstep calculates time interval for 
that jobstep and, on return from A'l'TACH that created 
the jobstep task, iGsues STI~ER macro, TASK option, 
specify ing the interval. 'l'hus tile 1'Q1.; created is 
chained out of the initiators TCB 

7. ~he TOE is manipulated by various systeffi routines 

a. WAIT routines 

1) ~ihen entered via svc, issued by any task 
in the job~jtep's region, IvAIT routines 
check all tasks in the "family tree ll 

a) If all tasks are in SVC WAIT condition, 
TQE chained off initiator's TCB is 
located and 

(1) de(lUeued and remaining time in 
interval saved, as in F.5.b.2) 
above 

(2) converted to a REAL TQE 

(3) 30 minute interval put in it 

(4) re-enqueueu as a 3.0 minute "WAIT state 
time out" TQE 

1» If any task in the jot-step tasks "family 
tree" is not in SVC WAIT condition, no 
change to TQE chained out of initiator's 
TCE 

2) If a timer interrupt occurs and top TQE on ~ueue 
has following attributes 

a) RLAL type TUE 

b) chained out of Initiator's TCB 

c) exit routine specified 

that 'l'QE represents a 30 minute WAIT state 
time @ut and the associated jobstep task and 
all subtasks must be ABEND'd. Processing is 
as follows: 

PROGRNlM,lNG/SYSTENS l;;UUCATIO~~ - SDD POUGli.KEI.::PSII.; 



note: 

d) lill'.L'J.:RH routines branched to 

(1) schedule task for abnormal termination 
by pointing PSW to an SVC 13 instruct­
ion in CVT 

(2) set up ABEND code indicating 30 minute . 
\vAI'r time limit was exceeded 

e) ABEND. (SVC 13) rtns will POST the Initiator's 
A'r'.L'ACH ECB thus signalling the· termination 
routines Ulat the task has terminated, error 
code indicates its abnormal 

f) On return from AB'.L'ER.i\1, timer rtns 

(1) dequeue top TQE 

(2) convert it back to TASK type 

(3) time remaining in jobstep's time 
interval is calculated and placed 
in TQE, as in F.5.b.2), above 

Since task is being terminated because it exceeded 
30 minute HAlT limit, there may still be time left 
in its THill interval and it may be used by succeeding 
jobstep of the job 

b. POST routines 

1) Entered to indicate completion of an event, 
if wait count in associated RB is not 0 after 
POST is complete - return to caller. But if 
associated lilies wait count is 0 - proceed as 
follows 

a) Cneck if initiator, associated with 
task being POSTed has a TQE ch~ined out 
of it, if nut - return to caller, if 
yes 

(1) if 'l'QE is TASK type - some task on 
the "family tree" was not in SVC 
WAIT and is presently being timed, 
no further processing is necessary 

(2) if TQE is REAL - it is a 30 minute 
\~AIT timer - it is 

PROGIW1MItJG/SYST£l>1S l:.UUCATION - SUD POuGHKEEPSIE 



note: 

(a) dequeued 

(b) converted to TASK type 

(c) "time remaining in interval" 
(which was saved when it was 
converted to a r~AL WAIT state 
timer) is put back in the 
"int~rval" field of TQE 

(d) TQE not reenqueued yet, when it 
is,. new interval will be calculated 

c. Dispatcher routines 

1) Perform jobstep timing if 

a) task 3witch necessary 

b) jobstep timing selected at ays gen time 

2) Perform as follows 

a) removes froIu timer queue tIle 'l'QI..; (if 
one exists and is TASK type) associated 
with the inItIator of the liold" task. 
'Wvllen dequeued the time remaining in its 
~lterval is saved in TQE 

The "old" task's initiator is located via the "old" tasks 
"family tree" 

b) if de queued TQE was top on queue, new 
interval is developed and placed in 
interval timer as in E.3.b.3), above 

c) locates TQE (if one exists) associated 
with initiator of "new" task and if it 
is TASK type - enqueues the TQE, enqueue 
rtns 

(1) develop new interval as in D.3., 
above 

(2) if new interval is smaller than that 
\.. presently in the timer, it updates 

timer with new value 

PROGRAHHItjG/SYSTEL\lS EDUCATION - SDD POUGHKEEPSIE 

I 
I 
i 
I 

I 
I 

I 
I 



note: 

L 

d) 

(3) enqueues the TOE in timer yueue 

If TQE located in c) above is REAL, 
it indicates all tasks in the "family 
tree"were WAI'l'ing and a 30 minute WAI'l' 
timer had been set up. JODstep timing 
can now be resumed since the dispatcher 
is going to dispatch one of the tasks in 
the tree . . 

(1) TOE dequeued 
-

(2) converted to TASK type 

(3) time remaining in the interval 
(saved when tQE converted to a 

WAIT timer) is replaced in interval 
field in TQB, enqueue rtns develop 
a ne"Vl interval as in D. 3., above 
and TQE enqueued on timer queue 

It seems the POST routines should have done tnis 
conversion but the dispatcher does check for it and 
converts the TOE if necessary 

d. 

e. "new" task is dispatched 

Timer SLIH 

1) If timer interrupt occurs and top TQE is 

-

a) TASK type 

b) associated with an initiator 

c) user exit specified 

the jobstep has exceeded its time limit 
and must be terminated, processing is as 
follows 

d) TUB dequeued and convert to an IOE and 
IRB, and initialized 

e) Stage 2 exit affector invoked to 
s.c.:::.hedule user (ini tia tor's) timer com­
pletion rtn 

f) on return from stage 2 exit effector, 

PROGRANMING/SYSTE}1S hDUCA'l'ION - SOD POUG1!KEEPSlr: 



note: 

H. 

I. 

next TOE on queue used to develop a 
new interval and place it in timer as 
in E.3.L.3), above 

g) . Initiator's "timer completion rtn" 
just POST's the CANCEL ECB which 
invokes terminator to, terminate the 
jobstep task and all subtasks in the 
region 

Since the task is being terminated because it ran out 
of CPU time, there is no "time-remaining" to be 
calculated and possibly used for the next jobstep, 
that's why the TQE is not saved as it was in 30 minute 
HAlT state time out situation 

TD1E macro routines XVIII H. 

1. Determine current date and time of day, return 
them to requestor in registers 

2. uate obtained from CVT 

3. Time of day is calculated by determining elapsed 
time 

elapsed time ~ (SHPC + T4PC) - timer 
SHPC = 6 hour pseudo clock 
T4PC = twenty-four hour pseudo clock 
~'imer = value currently in interval tiInes 

4. Elapsed time is addeu to LTPC to arrive at time of day 
LTPC = Local ~~ne Pseudo Clock - value specified Ly 

operator in SET Command 

TTIMER macro routines 

1. Provide time remaining in a previously 
established interval for requesting task, or 

2e Cancel a previously requested interval for the 
requesting task 

3. Remaining time ca'lculated 

remaining time = TOX - (SHPC - ti@er) 
TOX = time of expiration in the TQE Chained out of 

requesting tasks TCB 
SHPC = current value in SHPC 

PROGRAMHIUG/SYSTEMS ~DUCATION - SDD POUGHKEEPSIE 

XVIII I. 



note: 

Timer = current value in interval timer 

4. A time interval is cancelled by 

a. dequeueing from the timer queue the 'l.'QE chained 
out of requesting tasks TCB 

b. zeroing out the field in the TCB that pointed 
to the 'l'QE 

c. freeing the TQE 

A given task can have only one TQEassociated with its 
TCB. If a second STH-lEl{ is ""'"ISsued Lefore a previous 
interval expires, the new iriterval replaces the older one 
and the 'rQE is repositioned on the queue. 

\ .. 

PROGRAM1lING/SYSTENS I.:DUCATION - SDU POUGIIKEr:;PSIE 



Topic lJeleted 

I' . 

i . 

PROGRAHHING/SYSTENS EDUCATIOH - SDD POUGHKEEPSIE 

XIX 

. , 



y" Trace Table 

~ Ref: 

A. 

B •. 

c. 

MVT Supervisor, Section 12, 'rrace Table 
Progrrunmers Guide to Debugging, Section 2, (C28-6670) 

Purpose 

1. Debugging aid, contains entrys describing various 
interrupts and system information at time of 
interrupt 

Size and usefulness 

1. ~umber of 8-word entrys in the table is specifie~ 
at sys gen time (table is in nucleus) 

2. Table space used in v,rap-around manner, when last 
entry filled, firs~ entry overlayed when it is 
necessary to make another entry 

3. This use of the table makes its usefulness in an 
HVT environment open to debate - if the table is 
small a particular entry, containing information 
about an abnormally terminating task, may be 
overlayed by newer entries (caused by that task 
or other tasks in the system) before the trace 
table can be dumped 

Bntrys 

1. When made 

a. When an SVC, I/O, External or Program Interrupt 
occurs 

b. When SIO instruction executed 

c. When Dispatcher entered 

2. Information in an entry 

a. SIO instruction 

1) condition code 
\ .. 

PROGR.Al>1MING/SYSTl:hS EDUCATION - SDn POUGHKEEPSIE 

xx 

xx A. 

. XX B. 

xx c. 



2) identifier (5th hex dig. in first woru of 
entry is (I) 

3) device address 

4) CAW 

5) CSW 

6) reg 1 

7) TCB pointer 

8) Timer 

b. External, SVC, Program Interrupts 

c. 

PSd stored result of inter.-rupt 1 } 

2) Identifi~r in 5th hex digit of PSE 

a) J.:;xternal - 1 

0) svc - 2 

c) Program - 3 

3) Reg 15, 0 and 1 

4) Tcn address 

5) Timer 

I/O Interrupt 

1 ) PSW stored as result of interrupt 

2) Identifier - 5th hex digit of PSW 

3) CSW 

4) Reg 1 

5) 'fCB address (of '.rCB that requel::ited 
that has completed) 

6) Timer \. -

is 5 

I/O 

PROGRAHHING/SYSTENS EDUCATION - SDD POUGt~KEr;PSIE 



u. 

d. Dispatcher 

1 ) new PS\v 

2) Identifier, 5th hex digit of new PSW is D 

3) reg ISO , 1, 1 5 

4) new TCB address 

5) Timer 

Trace Table Control 

1. Location 54 (hex) contains address of 3-word trace 
table control area 

2. Control Area Contains 

a. address of last used entry 

b. address of beginning of table 

c. address of end of table 

" . 

PROGRAHHIl~G/SYSTE~'1S EDUCATION - SDD POUGHKELPSIE 

XX l.). 

1 

i 
i 
1 
l 

j 
l 
! 
j 
1 
I 
I 
1 
1 

I 
I 

I 
i 



)("~ 'l'ermination routines - resident, non-SVC type, Lranch entry XXI 

l, Hef: MV'l' Supervisor" Section 10, (Y28-6659) 

B. 

c. 

note: 

Function Overview 

1. Pree resources and control Llocks associated with 
terminating task 

2. Optionally, inform an ancester task of the termination 
of this task 

3. Optionally, schedule execution of an ET~R rtn 

Bntered from r:xit rtns (SVC 3) when the} detect the last 
RB on a Tasks queue of HB's. SVC 3 rtns have already 

1. Hoved requestors ('I'erminating tasks) registers from 
lEASCSAV to requestors TCB 

2. Removed TCB FROM IImain" or dispatcher TCB queue 

3. Set "normal completion" flag in TCB (prevents its 
being re-dispa. tched) 

iJormal Termination Processing 

1 • 

2. 

3. 

Check for incomplete or un-jJl::TACh'd suLtasks of 
the terminating task - if there are any such 
suLtasks, terminating task is ABENU'd 

'this ABEND will eventually cause the subtask to be 
i\BLND I d but tha t is handled by the ;1.Bl:.:~D rtns 

If no subtasks, store completion code of terminating 
task in its TCB 

Check for and free a PIE 

Purge TQE associateu with terminating task from timer 
queue 

XXII\.. 

XXI b. 

X"{I C. 

5. Check for resources the task is still ENQ'd on - if there 
are any, ABEND the task 

\ .. 

PH.OGRAl'UUHG/SYSTEl-·~S :LDUCA'l'ION - sulJ POUGEKEEPSIl:: 



6. Purges any outstanding "WTOR" buffers 

7. Closes all OPEN data sets 

a. TeB points to DEB queue there is a Ul:;B for 
every OPEN data set associated with the task 

L. DEB points to associated vCB, CLOSE macro 
issued for that DeB 

c. DEB points to next DEB 

d. if errors occur in closing procedure - ABEND 
task 

8. Contents Directory rtns invokea to free or reschedule 
the program last executeu for terminating task 

9. Releases programs LOAD'd but not DEL~TE'd 

a. Check if there are outstanding requests for the 
program 

1) subtract LLE responsibility count from 
CDB use/responsibility count, if result 
greater than 0 - there arc outstanding 
requests and space is not freeu 

2) if no outstanding requests - LLE's, are 
freed .. 

10. Issues PREENAIH for unshdred subpools and SPQE's, DQE's 

11. If a jobstep task is terminating - free jobpack area 

12. Schedule execution of E~XR if one was specified when 
terminating task was j\'l'TACH'd 

13. 

14. 

note: 

a. Pass control to Stage 2 Exit Effector to place 
IQE (chaineo out of terminating task) on AEQJ 

Deferred rollout requests for terminating task are 
purged from rollout queue 

TCB dequeued from dispatcher queue and "normal completion" 
and "non-dispatchible:',. flags set in TCB 

It appears this is a duplicate effort as the SVC3 

PROGlWliU;~G/SYS'l'E;·lS E.lJUCATION - SDl.) POUGHKEEPSIE 



rtns have already dcqueuecl the 'l'CE and set "normal 
completion "flags \,lhen they detected on enu-of-task 
condition 

15. If·an ~CB was specified when the terminating task was 
ATTACH'd, the EC13 is now POS'l"d with tasks cornpletioncodc, 
ECD is pointed to by a field in terminating tasks TCE 

note: If a jobstep task is terminating, this POST notifies 
Init/Terminator rtns which perform jObstep task 
termination functions 

note: 

o. 

16. If neither an ETXR rtn nor an ~C5 was specified when 
the termina ting task was A'l"fACh' d, the 'fCD is dequeued 
from its subtask queues and its space freed 

17. Termination routines indicate the need for a task switch 

Nanual (HVT Supervisor) indicates i~.t:W is ::;et to 0 but 
this could cause proLlems. The "POST'ing" of the ~CB 
on the completion of a joLstep tasks would have made 
READY the initiator and the POST rtns would have set 
NEW to point to the initiator's TCE, setting NEW to 0 
would destroy this and (apparently) the Initiator 
would not be dispatched except by chance at a later 
time. The Initiator was not dispatched after tbe POST 
rtns completed as they were entered via a branch not via an 
SVC and they returned to caller ratll.er than take ty!?e I 
SVC exit to the dispatcher 

1 a. i~eturn is to exit rtns (SVC 3) which free last nB and 
branch to transient area refresh routines 

Abnormal Termination Processing XXI 0. 

1. Performs three functions for abnormal termination 

a. ABTERH routine, ,,;hich schedules a task for abnormal 
termination, is a resident, non interruptible 
non SVC rtn 

b. ABEND routine - frees resources from terminating 
task and its incomplete suLtasks and if it is a 
jobstep task, frees all resources belonging to 
all tasks in thq .. region 

c. ABDUHP routines - provides a dumlJ of the storage 
and control blocks associated vdth tIle terminating 
task and control Llocks associated with the 

PROGIWUU1~G/SYSTEHS EJJUCA1'IOi:J - SuD POUGHKEEPSIE 



terminating tasks direct descendants and ancestors 

2 • ABTER."1 R tn 

a. Kefreshes CVT addre~s at loc 10 (l~x) in case it has 
been overlayed by routines in error ' 

b. Checks address of 'l'CB passed to id3TERN and determines 
if task should be scheduled for abnormal termination 
(it could already'be scheduled for te;rminatioll, normal 
or abnormal) antI checks if its sul.ltasks should be set 
non-dispatchible 

1) if task already terminating normally, returns to 
caller (of ABTI.:RH) 

2) if task already scheduled for abnormal termination 

a) set l:>uLtasks non dispatcllible 

b) checks whether it is a jobstep task, and 
whether or not initiator is the caller 
(of AB'rEHr.1) 

c. If jobstep task and not already in process of 
abnormal termination 

1) makes tash. ciispatchible, and sets HEW pointer 
to point to it 

2) set up parameters for use by ABEND 

3) set PSW in top lill of tasks queue to point 
to SVC 13 instruction in CVT 

4) makes tasks subtasks non disptachible 

5) returns to address set up by caller (usually 
dispatcher) 

d. If jobstep task is already being aonorrnally 
terminated ana initiator has not invoked ABTEffil 

1 ) inaica tes an error in hl:sl:.a~J.) rtn and is 
a system error unless re-entry occurs because 
of error in Al:SIJUt'lP OPEN or CLOSE rtn , ' , 

2) if system error, invoke damage assessment 
rtn (DAR) 

PROGRAHMII~G/SYSTEHS i::DUCl\TION - SOD POUGIIKBEPSIE 



L 

2) if it did not - continue 

b. Clears non-dispatchiLiility flags in tasks (set by 
ABDUHP) 

c. Determines if serious error has occurred (system 
task is terminating ) and passes control to DAR 
rtns if it hati 

d. Determines if entry to ABEND is a re-entry 

e. Purges deferred rollout reqqests for abending 
job 

f. Sets all subta~ks of ABEND'ing task non dispatchable 

g. Checks FQE' s in suuj)ools of the task - if they are 
invol ved, issuing F'lillEiLADJ' s to free the suLpools 
could cause a recursive ABEND and be a system error 

h. PIE's, RQE's, WTOR buffers, IOBls for aben~iny task 
are purged and elements freed 

i. Closes all data sets still OPBH vlhose uEB' 5 are 
chained out of ABENU'ing TeB 

j • 

k. 

Releases partially loaded modules (maybe I/O error 
in loading caused ABEND) 

Open SYSABLNO or SYSUDU~W data set depending on ~D 
cards for step and dump option flags in RI3 

1. If I/O error in OPEN'ing d~~p data set - exit to 
dispatcher, ABTEnH will be re-entered 

m. If no error - continue - take the dump and CLOSL 
data sets 

n. Remove SVRB's for transient SVC's from requestor's 
RB Queue and from transient area user queue 

o. Purge all other as's on tasks queue 

p. Purge contents tiirectory and load list 

q. FREE.;1AIN dynamict1.lly acquired main storage 

r. Release TCB unless it is a subtask of ano~ler 
task that is not Leing terminated and that 

PROGRM!HIlJG/SYSTlli1S EDUCATION - SDD POUGHi<EEPSIE 



L 

other task specified L'rXH or ECB operand when 
it A'l'TACH' d tbe task. tha t is aLending 

s. set NEW pointer to 0, exit to dispatcher 

4. ADDUl-lP rou tines 

a. Set all tasks (ancestors and descendants) of atend.ing 
task non-dispatchible (except requesting task) 

b.Formats and dumps storage and control blocks as 
requested (sarae routines invoked by Si~AP) 

, .. 

PROGRAHt-lING/SYSTEl·~S EDUCATION - SDD POUGHKEI::PSIE 



I Data Uanagement Overview 

l,. Ref: Handout S21, V26-6156 

A. . Volumes ~nd Data Sets 

B. 

1. Volume - collection of one or more data sets on 
a recording medium, is usually but not necessarily 
demountable 

2. Uata set - collection of related fecords, or, 
collection of data 

3. System keeps track of ant: recognizes different 
volumes anti uata sets Ly labels written at 
specified locations on the volume or with 
respect to the data set 

4. Volume and data set labels for direct access and 
tape volumes have different sets of restrictions 

Preparation for I/O 

1. Before I/O can be performed various control blocks 
and modules must be created or modified or loaded 

·2. Access methods - modules to perform device dep~ndent 
processing, thus .relieving the problem programmer 

, from it 

3. Control blocks must be built or modified Defore I/O 
performed. Some are built by the programmer, o~1er 

XXII 

XXII A.' 

XXII B. 

by access method routines still others by OPEN routines 

c. 

L 

4. OPEN routines complete or build all control Llocks and 
LOAD modules necessary to perform I/O, OPEU'ing a data 
set logically connects the da ta set to the s},"stem 

Initiating I/O 

1. Problem program uses macros to perform linkage to 
access method routines (BALR) which perform final 
modification on control blocks and issue SVC to 
initiate I/O 

, .. 

PROGRAi\1MING/SYSTlli·1S EDUCATION - SDD POUGHKEEPSIE 

XXII C. 



L 
D. 

E. 

2. Access methods do not perform standard entry and exit 
linkages and are thus only loadable (LOAD) 

3. Access metilod routines operate as closed subroutines 
of the user program 

EXCP Supervisor 

1. Access method routines issue EXCP macro 
which e~pands into anSVC 0 

2. SVC Interrupt handlers pass control to I/O 
Supervisor EXCP Handler 

3. These routines verify the request and schedule the 
I/O requested 

4. 

Hhen 
FLIU 
and 

1 • 

After either queueing or starting the I/O, EXCP 
Handler takes a type 1 exit to calling routine 

an J:/O Interrupt occurs, I/O ne\-.' PSvi points to I/O 
which preserves the status of the interrupted task 

passes control to the I/O Interrupt Handler 

I/O interrupt analyzed and catastrophic errors 
handled by error handling rtns 

XXII D. 

XXII E. 

2. Task requesting I/O is POST'd (via branch entry to POST) 
and allowed to analyze the completed event when it (the 
task) is next disvatched 

3. Channel, freed by completion of I/O, is restarted b~i I/O 
Interrupt Handler 

4. All stacked interrupts are handled before exit to 
dispatcher 

, .. 

PROGRAMlH~G/SYSTI:l-1S l:OUCATION - SDD POUGHKEEPSIE 



'" 'II 

L 
VolWlles and Data Sets XXIII 

Hef: Supervisor and Lldta J'lanugemerlt Services, 
Section II, Part I; Appendix A (C2B~b646) 

A. Direct Access Volumes 

1. Volume lubel 

a. i·lust be on cyl 0, trk 0 of the volume, 
contains 

1) volume serial number 

2) bits indicating volume type, owner 
protection, etc. 

3) pointer to VTOC data set 

b. \'Jhen a device comes READY, AVR rtns move 
volume serial numLer and V'I'OC address into 
UCB 

XXIII A. 

note: Bvery DASD volume hus a 24-Lyte IPL recor6 at 
beginning of track 0, cyl 0 (for non-IPL volumes, 
this IPL record just puts the system in a HAlT 
state); volume label follows this 24~byte record. 
If volume is' an IPL pack, IPL bootstrap. record and 

·IPL CSECT follow the volume label. 

2. VTOC 

a. Data set containing Data Set Control Blocks 
(OSeE's) which descriLe 

1) the VTOC data set itself 

2) every data set on the volume, data sets 
on more than 3 extents require a second 
DSCB to contain addresses of the extents. 
Indexed Sequential da ta sets require tvlO 
DSCB's to describe the various types of 
space (Index, Prime, Overflow) allocated 
to it , .. 

PROGlW·UUHG/SYSTEHS ElJUCATIOl~ - SOl) POUGl-IKEEPSIE 



L 
3) free space on the volume - when an area, 

adjacent to an area already free, is 
freed, the areas are mergeu and 1 useD 
built to describe the entire area 

b. Location and size of VToe determineG by user 
when volume is initializea 

3. DSCD's 

Ref: System Control Blocks '(Y28-G628) 

a. Are labels for the data sets they describe 

b. Contain 

1) data set name 

2) data set organization 

3) record format 

4) block size 

5) logical record size 

6) pOinter to data set on volume 

7) numLer of extents and address 
of eaen 

Tape Volumes 

Ref: Tape Labels (C28-6680) 

1. Volume label 

a.Optional, not required by 0S/360 

b. If used, must be first record after load 
point 

c. Contains 

1) volume"serial number 

2) ovmer, pro tee tion bi t~ 

.-
PROGRAl1MING!SYSTmlS EDUCA'rrOl-J - SOD POUGHKEl:PSIE 

XXIII u o 



2. Data set header labels 

a. Optional under OS/3eO 

b. If used, must preceed data records 

c. Header labels 

1) standard 

a) two SO-byte recorLis, ·first 4 
characters in each must be 
lIDR1 and HDR~' respectively 

b) contain 

( 1 ) data set name 

(2) data set organization 

(3) record fonaat 

(4) block size 

(5) logical record size 

2) User 

a). up to 8 80-byte records following 
stan~ard labels (if standard labels 
are used) 

b) must begin with characters UHL1-UIil.b 

c) can contain any information user 
wishes 

d) are written and read bj user supplied 
routines 

3. Trailer Labels 

a. Standard 

1) two aO-byte records following last data 
record" begin with EOFl and EOF2 respectively 

\ .. 
2) contain same information as header labels 

plus a count of number of physical ulocks 

PROGRAHHIfJG/SYSTBilS bj)UCATIOH - SDD POUGHKEEPSIE 



b. User 

in tlle data set (useci for error checking 
when data sut reprocessed) 

1) up to tl 8 a-Lyte records prece(!ding standar.d 
labels (if standard labels are u~ed) 

2) must begin with characters 1J~rL1-UTLd 

3) can contain any information the user 
choses, are written" and read by user 
routines 

" . 

-' 

PROGRANHING/SYSTENS EDUCATION - SDD POUGlIKI.:I:PSIE 



Preparation for I/O 

Ref: System Control Blocks (Y28-bG28) 

h.. 

I/O SUpervisor, Section V (Y28-6616) 

Data Set Description 

1 • DCB - Data Control Block 

a. Created by user, using a macro, is 
therefore in the user n10dule,· will be the 
major control bloc~ when I/O actually per­
formed 

b. partially filled in by macro expansion from 
n~cro operands, necessary operands are 

1) HACRF 

2) DDNANl:.. 

3) DSORG - necessary for proper eX1Jansion 
of macro even though the information is 
availab~e from the data set label 

4) EODAD - for input files 

c. Completed by OPI:.H rtns from information in uata 
set label ana on u0 card 

2. JFCB 

Ref: System Control i3locks (Y28-6628) 

a. Crea ted by i{eadcr/Interpreter from data set 
information on JD card 

b. Contains 

1) data set name 

2) volume serial number 

3) DCB information specified on DD card 
\ .. 

PROGlW.ijHING/SYSTEi\~S EDUCA'rION- SuD POUGHKEBPSIE 

XXIV 

XXIV A. 



is. 

4) space allocation information (for ~EW 
da ta st.: ts ) 

c. Is reau into main storZlge, from its loc(j.ticn on 
SYS 1 • SYSJOLlQE, wIlen corresponding uCh is OPEij' d 

3. Data Set Label (DSeB if on DA) 

Ref: System Control Blocks (Y2~-6628) 
Tape Labels (C28-G680) 

a. Skeleton useB created by DADS£-. routines when space 
allocated to data set at initiation time, filled in 
a t OPEN time; crea ted by OPEN/CLOSE rtns when da. ta 
set opened on tape 

b. Exist5 in VTOC of volume that contains the data 
set or is the lleac.ier .uabels if on tape 

c. Contains 

1) data set name 

2) Deb information 

a) DSORG 

b) iU::CFN 

c) LRECL 

d) BLKSIZE, etc. 

3) location of data set, if on vA 

hccess Netl,ods 

Ref: Sequential Access ~ethods (Y28-6604) 
Basic Jirect Access dethods (Y28-6617) 
Indexed Sequential Access Hethod (Y28-6618) 

1. Function and types 

a. To perform device dependent processing requirea. 
for 'various aat£l 'S-et organizations and meaiums 
of storage 

b. Helievc prograuuncr of detailed, device dependent 

PHOGRA1'1NING/SYS'l'.l: .. :~S cl.>lJCATION - SDD PO{jGHI~LEPSIE 

X.XIV .d. 



processing 

c. Are LOAD'd by OPEN rtns, address of required 
modules are put in corresponding DCB's 

d. Invoked by branch entry (most access method 
modules are LOAD'aLle only) and return to 
caller 

e. Construct and modify various control, blocks 
and CCW's that will be used in performing, 
monitoring and analyzing I/O 

• 
f. Issue EXCP macro, which generates an SVC 0 

which passes control to I/O EXCP handler 
to schedule I/O 

g. There are 3 types or levels of access methods 

1) Queued level (GET/PUT macros) 

a) anticipates request for next record 

b) de-blocks and blocks records 

c) automatically allocates (min of 2) 
buffers 

d) primes buffers at OPEN time 

e) constructs and checks all control Llocks 
(except DCB) necessary for I/O 

f) issues svc to schedule I/O 

2) Dasic level (ReAD/WRITE/CHECK macros) 

a) negation of a) - d) above 

b) constructs all control blocks-
(except VCB and DECB) needed for 
I/O 

c) issues SVC to schedule I/O 

3) EXCP leve],. _ (Execute Channel Program) 

a) constructs no control blocks 

PROGRAl\U1ING/SYSTENS --LDUCATION - SDD POUGIlKEEPSIB 



C. 

b) issues 't::JVC to schedule I/O 

2. Selection and LOAD'ing 

a. User spec ifies in UCB what macros (!lACRF) he 
intends to use and the organiza tion of the data 
set (DSORG) 

b. OPEN rtns check these t\vO operands and on basis 
of them and OPLlJ option {n ... PU'l', OUTPliT, UPDAT, etc.} 
decides which access method modules to. LOL1.D 

c. Nodules are LOAD'd, adqress of module put in 
appropriate DCB 

Control Blocks 

Ref: System Control Blocks (Y28-6628) 
I/O Supervisor, Section V, (Y28-6G16), 
Handout S22 

1 • DCB 

2. 

a. User created and partially filled, completed 
by OPEN rtns 

h. Used by access met~lod rtns to contain device 
and data set information as I/O is performed 

:tOB - I/O Block 

a. Created. by access method rtns at OPEN time 

b. Contains 

1) Eels address 

2) Space for CSH stored when an I/U event 
completes 

3) ADdress of channel prograIil 

4) DCll address 

5) Full, a-byte seek address 

c. One J;Oh created f0t.. each channel program the 
user requests in DCBoperand (NCP). 

PROGRANNING/SYSTEHS !:;uUCATION - SUD POUGIlKLEPSIL 

XXIV C. 



3. eBen - Data ~vent Control Dlock 

a. (.;rea ted in Rl;;AU/\vRITE macro expansion 

l>. Contains poiHters and indicators kept elsewhere 
by GET/PUT rtns 

c. contains the .I;;CB u:;;ed to P0ST completion of I/U 
event 

4. I.:;Cn - Event Control tilock 

a. Crea ted by GET/PU'l' rtns or by llliAD/~'lIUTE macros 

L. Used to WAIT and PuST completion of I/O events 

5. DEB - Data £xtent rilock 

note: 

a. Created by OPEN rtns, destroyed by CLOSE, exists 
only when a data set is OPEN 

b. Chained out of t,l'CB as well of associated vca, 
all DEB's for d tasks I/O are chcl.ined together 
(so at termination time, system rtns can C .... OSE 
any data sets not yet CLOSE'd) 

c. Contains 

1) TCB address 

2) DCB address 

3) priority of associated task 

4) address of appendage vector table 

5) address of UCb of device allocated to data set 

6) Leginning and enoing addresses of each extent 
of the data set 

7) last 2 characters of names of access metl~ds 
~OAD'd for this data set 

All access methods are named IGG019 , the last 
two characters are all thClt are needed to idelltify 
an access method. The identifiers are kept here 
so C'L05E can is!::)uc" ULLL.:TI..:' s for the routines 

PROGIW·li-lIllG/SYSTLbS EDUCATlm1 - SUD POUGllKEEPSIL 



·L 

D. 

note: 

6. TIOT - Task I/O Table 

a. Created by Initiator device allocation rtns 

Contains an entry for each DD card provided 
for tLe jODstep, ea~h entry contains 

1) DDNAlill of the carci 

2) address of JFCJ fer the card (TT~ address) 

3) address of Deb allocated for the 6ata set 
describeti on the card 

c. Chained out of TCB, accessed by OPBN rtns to 
loca te JFCB and tnru the UCB, the Vl'OC and thus 
the label (DSCE) of the data set Leing OPE~~'d 

7. Channel Program 

a. Not really a control block but very important in 
I/O 

b. Created by access method routines at UPEN time 

c. Hodified and scheduled for execution by acces~ 
method rtns at Rr.;i~D, HRITE, GbT or PUri' tir,le 

OPEN'ing the ud ta Set 

Ref: I/O Support, Upening a DCB (Y2e-G609) 

1. ~erge USCB or label into JFCB 

a. OPEN rtns when invoked by OPEN SVC, loca te tI!e 
DCB Leing OPEN'd and obtain DDlJAl·rr:; from it 

b. Search 'l'IOT for entry correslJonaing to the 
DDNAl'lL and e>:tract JE'CB address and DCB address 

XXIV u. 

c. Using JFCB address, it is read into main storage ana 
data set name is extracted 

d. Using DCB address and its pointer to volume's VTOC, 
VTOC is searched for data !:iet named in JFCB 

If it is' a tape data s'e"t, JD card specifies a data set 
sequence number and the tape is positioned to that data 
set and header labels are read 

P1{OGRM1NIltG/SYSTE~~S i:.~VCATIOl~ - SDD POUGHKl.EPSII.:.: 



',l,. note: 

note: 

,2. 

note: 

3. 

note: 

4. 

e. useD or label i~ read into main storage 

If user label handling routines or uClj exits are provided 
for this, they are givGn control after OPEN rtns read 
the .labels into storage 

f. A zero-merge is performed from the J.JSCB or label, 
into the JFCD 

A zero-merge involves r:loving onl,X information not specifieu. 
in the block acceptiHg the merge (in this case; the JFCD) 
from the other block (in this case, the USCD or label.) 

llerge JFCB into JCE 

a. Hext, the "completea li JFCB is zero~merged into the 
DCB 

b. iJext, the JCD operand - EXLS'f is checked for and if 
coded, the list is scanned for a code 5 entry and 
if present, the indicated routine is given control 

OPEN rtns use SYNell to give control to the routine and 
thus it execu tes under its own PH.B 

Access Method routines are LOAD'd 

a. On basis of USOHG anl! 1·1ACRF operands in the vCl:) 
and OPEN options, d,ccess method executors are 
loaded and given control 

b. TIle executors build and initialize (as mucI! as 
they can) the lOB, DEB, ECB and cl!dnnel prograrn 

If Basic Access :lethods are used, channel program and lOB 
cannot be completed until .L<.LAD or vIRI'l'E instructions 
executed, also LCE is built by HEAD/WHITE macro expansion, 
not by executors 

c. '.i'he executors i..OAD the necessury access method 
routines - determined by bit settings in liCB, set 
by user options specified in DCB macro or on 
DD card (e.g., lJuffering teclmiyut;s, modes of data 
processing (YSAM) etc.) 

UPEN rtns finally turn"'on the OPEn Lit in tile wCB and 
terminate 

PHOGIW1J'UN'G/SYS1't.i'lS EDUCATION - SOD POUGHKEEPSIL 



note: 

E. 

The CLOSE routines must restore the DCB to the state it 
was in before OP}:;N, to do this a mask is Luilt at OPEN 
time indicating which fields were modified by OPEN, the 
mask is kept in the Dl::B. The DDNMlE field is overlayed 
by OPEN and must be restored, an offset into the TIO'l' 
(to the entry corresl'ollding to the DDNAl·1E which the DCB had 
in it) is stored in the DCB and is used by CLOSE to 
restore the DDHMlli field 

End Appe;''ldages XXIV E. 

Ref: I/O Supervisor, Section I, Start I/O Subroutine 
(Y28-6616) 

1. Function/Purpose 

a. Given control at various points in I/O 
operations to allow extra processing or 
error checking 

2. SIO (Start I/O) 

3. 

a. Given control just before "SIO" instruction 
executed 

b. Usually does last minute modification of next 
channel program to be executed on basis of 
completion of previous channel program 

PCI (Program controlled Interrupt) 

Hef: I/O Supervisor, (Y28-6 616) 

a. When channel fetches a CCW with PCI bit on, 
channel generates a PCI Interrupt (an I/O interrupt) 

b. I/O Interrupt handler gives control to PCI 
appendage addressed from appendage Vector Table in 
DEB of associated data set 

c. PCI interruJ?t allows appendage to notify the 
requesting program (usually by s~tting bits 
in a field or POST'ing an ECB) that a particular 
ccw in the Channel program has been fetched 
and tllUS previous ccw's have completed. 

4. End of. Extent \ .. 
Ref: I/O Supervisor, (Y28-6616) 

PROGRA.~~ING/SYSTE}iS EDUCATION - SDD POUGlIKELPSIb 



a. Entered when seek address in IUB is not 
Hi thin one of tlle extents of the da ta set 
as indicated in the DEB 

b. E'or input operations - ABEND 

c. For output - appenddge checks if seconaary space 
allocations have Leen requested and if so, if the 
da ta set has used tne!i1 all. If no mo+e space can 
be alloca ted - Jilll:.:NlJ 

u. If more space is to be" alloca·ted, invoke .JJA0S~'. 
rtns to do so, modify JJEB to reflect ne\-J extent 
of data set, modify ccw to indicate an address 
in the new extent and reissue the CCW 

5. Channel End 

Ref: I/O Supervisor, (Y28-6616) 

6. 

a. Entered when channel end, unit exception with or 
without channel end, or channel end with wrong 
length record occurs 

b. Performs checking to determine if hardware or 
software errors have occurred 

Abnormal End 

Ref: I/O Supervisor, (Y28-6616) 

a. Entered when abnormal conditions occur -
uni t check, program check - CC\v, p;::otection check 
chaining checks, etc. 

lJ. Set appropriate indicators, if Lardware error, 
invoke recovery routines, if softy/are errors, 
indicate it to requesting program 

PROGRA.t·1NI&G/SYST.E.dS EUUCATION - SDD POUGl!l~LLPSIE 



L 

EXCP Supervisor 

Ref: I/O Supervisor, . Section 2, (Y28-6616) 
Handout S16, S17, S18, S21 

A. 

B. 

c. 

note: 

Function Overview 

1. Receives control as result of EXCP SVC 0 

2. Performs validity check on, the I/O request 

3. Attempts to schedule t.l.Le I/O request 

4. If it cannot be perforraed immediately, queues 
the request 

5. In either case, takes Type 1 exit to requestor 

Validity Check 

1. EXCP handler checkr3 boundary alignn,ent of control 
blocks passed to it, EXCP passes address of lOB 
from that can get to DCB and EeE and to 'l'CB 

2. If addresses are invalid (wrong alignment) or if 
DEB not in protected core - ABEND 

3. If all okay, try to schedule the I/O request 

Scheduling the I/O Request 

1. EXCP handler attempts to get a free RQE (Request 
Queue Element) 

a. All RQE' s are in a table - I<.equest Element 
'l'able - in the nucleus. Each RQE in an HVT 
system is 16 bytes long and the num0er of RQE's 
is determined at system generation 

This table is also known as the 16 * table. In l"lF'l' 
each RQB is 12 bytes long and the table is known as 
12* table 

b. RQe's contain a ,g.ueueing field use to chain free 

PROGRA!J!.J1ING/SYSTEHS EDUCATION - SDD POUGHKEEPSIE 

xxv 

. . 
XXV A. 

XXV 3. 

xxv C. 



note: 

c. 

d. 

e. 

RQE's or ROB's enqueued for I/O on a particular 
channel 

CVT contains address of ROE free list - a one word 
field pointing to the first free element in the 
table or, if t!!ere are no free elements, X'FFFP' 

If no HQE is available, requestors resume PS\'1 is 
backed off by 2, task set non-dispatchible and 
switch set in code so when an RQE is freed, all 
tasks waiting for an RQE will be cleareCi and 
eventually dispatched - re-issuing the SVC 0 

If there is just one RQE left, ·EXCP Supervisor 
checks if current request is for SVCLIB. If 
not, then it is processed as if no RQE is avail­
able. If current request is for SVCLIB, the last 
RQE is used. This is done because I/O Error 
Recovery routines are on SVCLIB and I/O Supervisor 
doesn't want to be in a situation where it needs to 
load such a recovery routine and lack the RQE needed 
to perform the loading. 

If an RQE is available, it is filled in with 
information aLout current I/O request 

1) UCB address (from DEB) 

2) lOB address (parameter to EXCP) 

3) priority of requesting task (from TCB, 
pointed to from DEB) 

4) DEB address (lOB points to DCB, DCB 
points to DEB) 

5) protection key of requesting task (from TCB) 

6) TCB address (from DEB) 

f. From this point on, all information needed to 
schedule and perform and POST the I/O event, 
is in, or can be located from pointers in, the 
ROE 

2. Unit checked for availability 
a. If ROE filled lin, next check unit for availability 

b. Check bits in UCB - unit not available if bits 

PROGIWll:J,ING/SYSTEl1S EDUCATION - SDD POUGHKEEPSIE 



note: 

c. 

note: 

d. 

indicate 

1 ) control unit busy 

2) device busy 

3) device not ready 

4) seek in progress 

5) error routine in control 

If unit not available, queue the RQB for later. 
processing 

See discussion of LCHWDts, below, for the queue origin. 

If unit available, locate a path to it 

3. A Logical Channel is located 

a. A logical channel is the collection of hardware 
paths to a device from the CPU 

This logical channel concept is distinctly different 
from the logical channel concept developed in the Job 
Hanagement PLM (Y28-6660) when discussing I/O device 
allocation (by the Initiator) and equalizing channel 
usage 

1) 

2) 

3) 

4) 

5) 

a logical channel may contain (involve) 
several hardware channels 

a device is associated with one and only 
one logical channel 

at sys gen tiJile the various logical channels 
are groupe<1 and a routine to searc:l each 
logical channel for an available hardware path 
to the associated device is generated and the 
address of this module (called the Test Channel 
Module) is inserted in a table 

The table, containing one entry for each lo¥ical 
channel in the system, is called the Logica 
Channel Word Table (LCHWD table) and each entry 
in it is called LCHWD 

Each entry is two words long and contains 

PROGRAHMING/SYST};l'lS I;:DUCA'l'ION - SDD POUGHKEEPSIE 



L 
note: 

a) queueing field (two halfwords) for RQE's 
representing I/O requests on the devices 
associated with the logical cllannel 

It is here that the HQE is queued for a request when 
the device is unavailable 

b) the address of the test channel module for 
the corresponding logical channel 

b. The UCB for the device' associated with I/O request 
contains an index factor which is added t,o the 
address of the LCHWD table to locate the appropriate 
LCHWD and thus the appropriate test channel module 

c. The test channel module is given control to search 
for an available hardware path to the required 
device 

1) if no path available - queue RQE off LCIMD 
and return to requestor 

2) if a path is available - locate the SIO 
module 

4. SIO module 

a. Each device 'type on the system rey:uires device 
dependent commands to be set up for it and 
executed before the user channel program(s) 
can be executed 

b. At sys gen time a module to do this is created for 
each type of device and address of module is 
inserted in the :Jevice Table (DEVTAD) 

1) each UCB set up with an index factor into 
DEVT~~ to locate the appropriate entry 

2) VEVTAB entrys are 6 bytes long and contain 

a) address of enqueue module - to enqueue 
an H.QE to the LCHWD queue according to 
priority or FIFO options selected for 
each d~vice at system generation 

b) SIO Module Address 

PROGRAHMING!SYSTEHS EDUCATION - SDD POUGIlKLEPSIE 



c) Address of Trap Code module - to analyze 
various bit settings in stored CSW's 
to determine what conditions mean for 
associated device (e.g., unit check 
means different things for card reader 
than for a DA device) 

c. SIO Module for the device "associated with I/O 
request is located and given control 

d. It constructs device dependent CCW's but does not 
execute them - such conm1ands as 

e. 

1) set file mask 

2) stand alone seek 

3) tape positioning commands 

4) write tape mark, etc. 

SIO Hodule then .branches to SIO Subroutines which 

1) enters SIO appendage 

2) issues SIO instruction indicating a CAW ~Lich 
indicates appropriate channel program 

3) branches to post SIO subroutine which 

a) checks condition code set by acceptance 
by channel of 510 instruction 

b) if code is 0 - all okay, address of RQE 
put in UCB and type 1 exit taken to 
requestor 

c) if code = 3 - device not available - error 
routine entered to analyze problem 

d) if code = 1 CSW Stored and it is examined 
for error conQitions 

(1) channel errors - SER or CCH rtns 
entered 

(2) busy - 510 retried or RQE re-enqueued 
\' " 

(3) channel end - immediate con~anu, I/O 

PROGRA1-1L'-IING/SYSTEl-IS EDUCATlOi.-J - SuD POUGl!KEEPSIE 



/1 

event complete 

(4) program or protection check - abnormal 
end appendage entered, if error not 
reset, I/O event complete with '41' 
code 

(S) unit check - sense command issued and 
abnormal end appendage 'entered, then 
error interface 

(6) attention - attention routine for 
device given control - VCB contains 
index factor into ATT~JTAB to locate 
appropriate attention rtn for the 
device 

f. Special processing in SIO module for DA devices 

1) stand alone seek (not chained to any other CCW's) 
CCW is constructed 

2) SIO Module checks a-byte seek address, specified 
in lOB, to the associated data set (these are 
described in the DEB) 

a) if not - end of extent appendage entered 

(1) Input - ABEND 

(2) Output - check if secondary space 
allocations were specified when data 
set created. If so and more 
allocations are available, DAD$l rtns 
invoked to allocate more space 

(a) other routines (EOV) are invoked to 
modify DEB to describe new extent, 

. , 

then seek Lew modified to point to first 
track of new extent and the seek is 
re-exectued. 

b) if seek address is witllin an extent of the 
data set - continue 

\ .. 
3) SIO subroutine entered to execute stand alone 

seek and set "seek in progress" flag in ueB 

4) module then enters a TIU loop until CSW stored 

PROGRAMMING/SYSTEHS EDUCATION - SDD POUGHKEl:.PSIE 



note: 

note: 

5) 

(channel end indicated) and checks bits thus 
set. (Do not have to enable interrupts to do a 
'rIO and th~lIallown tlle storing of the CSW) 

if seek WilS not completed immediately (arm 
movement necessary), RQE re-en~ueued off LCIMD 
queue and Type I exit is taken to requestor, request 
will be handled later by I/O Interrupt Handler 

RQE address is in ueB and it is also queued off LCI~lD 
in this situation 

6) If seek completed immediately, data transfer 
begun by entering SIO 1'1odule again to execute a 
triple of CCW's 

a) Seek - repeat of stand alone seek, to re-set head 
register in control unit which might have 
been modified by other seeks issued on same 
control unit but different devices while 
this seek was awaiting completion (only one seek 
that causes arm mov~~ent or head switching can 
be issued in a channel program) 

b) set file mask - file mask, obtained from 
DBB; determines what commands can be used 
in rest of channel program (only one set 
file masJ~ CCH can be used in any channel 
prQgram). File mask built by OPEN routines 

c) TIC to user channel program 

The restrictions noted above about seek and set file 
mask commands are to protect against accidental (or 
deliberate) access to data on a pack other than the 
data set which was OPEN'd. 

, .. 

PROGRN1MIHG/SYSTEHS EDUCATION - SDD POUGHKEEPSIE 



r I/O Interrupt Handler 

~ Ref: I/O Supervisor, Section II, 
Handout 516, 517, 518, S21< 

(Y2fJ-6616) 

A. Function Overview 

1. I/O FLIH receives control as result of an I/O 
interrupt, causing I/O new PSW to be loaded 

2.. Switch checked to determine if this interrupt 
interrupted I/O Interrupt: Handler or another 
program 

note: I/O Interrupt Handler is reusable and when once 
entered, with interrupts masked off, re-enables 
I/O interrupts at end of processing to handle 
stacked interrupts. If it was not executing 
while an interrupt occurred, the status of the 
interrupted task is preserved but the I/O interrupt 
handler operates under tha ttask 's TCB and on 
successive re-entry's from itself, will not cause 
status to be preserved as status (reg's and PSW) would 
be its own but they be overlaying reg's and PSW of the 
interrupted task 

3. If interrupted another program 

XAVI 

XXVI A. 

a. Save registers in tasks TCB, PSW in top lill of tasks 
RB queue 

b. Set switch to prevent such action on re-entry 
from I/O interrupt handler - continue 

4. If interrupted I/O interrupt Handler continue 

5. ~ocate requestor of completed I/O 

6. Perform some error checking on completion 

7. POST requesting task Wiel completion code 

8. Hestart hardware channel freed as result of I/O 
completion 

PHOGIWU'lIlJG/SYS'l'~hS EDUCATION - SJD POUGHKEEPSIE 



B. Locate Hequestor 

1. Using 3-digit channel, control unit and device 
address in stored I/U old PSW, Interrupt l~ndler 
indexes into DCB look up tdule to get address of 
UCB corresponding to the de,vice 

a. veB look up table built at sys gen time 

b. Contains entry for e~ery DCB in system 

2. From the UCB, get address of RQE representing 
I/O request and thus pointers to TCB', DCB, lOB 
of requestor 

3. Using statcis bits in CSW stored as result of I/U 
Interrupt, I/O Interrupt Handler does some error 
checking 

a. Channel data check, Channel control check, 
Interface Control Check 

1) put system in \\1AIT state or 

2) enter SBH or CCH rtns 

b. Control unit end - response to interrogation by 
restart routines, channel restart rtn given 
control 

c. PCI bit control passed to PCI appendage 

a. Channel End - completion of an I/O event 

1 ) CSW moved to lOB 

XXVI 13. 

2) Trap code moLiule entered (address is in Dl:;V'l'AB 
entry corresponding to device, index 
fac tor in UCB) 

3) Cnannel Bnd Appendage given control and it 
indicates further processing 

a) POST request complete and free RUB 

.1» free HQE,J:)Ut do not POST event 

c) reschedule request 

PROGRAl'lHING./SYSTBJ.'!S EDUCATION - SDD POUGliKEEPSIE 

I 
I 
I 
! 

I 
I , 
i 
! 



L 

l.. •. 

u) ignore intL'rrui,tion, pcnuing 
any'llclll-onuu!.;; user rtn 

c. lJev ice end - ei tJLer inaica tes cor.lf)letion 0 f 1/0 
event or device 11<..lS movcu from not ready to 
ready stu. te. \T dr ious ca ~;es dl,alyzec.i ami 1ld.nc.11eci 

f. j\ttcntion - a ttentioll rtn interface 9ntcrec..;. to 
pass control to attention rtnior d.evice 

g. Uni t Check - abnor'::lal end apT.en<.1age taken anu 
indicates further action 

1) continue nor@ai processing 

2) s}.ip further .. ;urk on this re'iue3t 

3) reschec.ule request 

4) enter 1bA error rtns 

h. unit exception awi incorrect lellgtll - ch<::.llnel 
end aiJpen(;.age ta}:en, OIl return, error ~-tns entered 
then aLnon-:lal end a[>pendage taken 

i. Progr:ulTI C!wct, prot.ection check an~ cLaininq Cllc:cl~ -
uLnurr.lal end appendage taken, on return, error rtns 
scLe<.luled 

j. ::.;tatus modifier, lmsy - control unit Lusy, lCD 
iocated Clnu busy Lit set in it 

:""'rror l!OU tines 

1 • Interfaces 

a. .:.;.;nteret. to prLpi.i.rL for e);ecution of var ious error 
routines and gem:.rc.l.11.i receive control Llucks \,ib~ 
indicators sr;ecifyinL{ continuc<...i. t?rocessing 

s.;. Lrror l(outine. Interface 

1) checks if IOi; inciica tes a FC:rI"anent error -
if no enters POST routine interface 

\ ' . 

2) ueterr.l.illBS if I.dd error rtns Clre to LX· us"::u 
(inc.iicator in JCil) 

-' 

PHOc.;lWll!IiJG/~YS'.L'E: is LuUC\T1UU - SDu POUGI:l\::'LN; IL 

MVI c. 



3) if IBM rtns are to Le used, invokes Stage 2 
Exit Lffector to chain a:3sociated HOE off 
AEOI~ and set stage 3 swi tch and thus schedule 
error rtll l1synchronously 

,c. SER/CCH Interface 

1) Entered v,rhen catostrophie errors detected 
(e.g., channel control check, interface 
control cllecK) 

2) Houtes control to SERO or SER1, CCll or riCH 
depending on sysgen options 

d. ABTEru1 routine interface 

1) Entered to abllormally terminate a task when 

2) 

a) invalid DLB or DCB's are found 

b) uCll addrcs~~ in DEB \Voule. ~live a specification 
error 

c) Protection key specified in DLli does not 
rna tcll tha t of 'l'CB 

d) Protection key in HQE is non-zero and is 
not same as key of lOB, DCB and lOB 

In each ca::;e, the I/O event is not POST'u complete 

e. POST routine interface 

1) Hot an error rtn it is entered to perforn the 
POST of an LCD 

2) Prepares 3 (J Lit cOHlpletion CGut,,; anG invoLe::; 
task supervisor POST rtns to perform the 
POST function 

3) If also entered \.11en a task is being aLnornally 
termina ted and RQE' s are being f,urged, in 'v;i!ich case 
the SVC Purge rtn (not to be confused \<.i tl. the I/O 
purge rtn) is NAIT' inq on comrJletion of tlw 
purge and the post interface is useri to POST 
that compJetion 

2. Lrror Routines 

PH.OGRANIIIllG/SYSTEl'l~ EDUCATIOlJ - SUD POUGIlI~LEPSII: 



note: 

note: 

u. Iill. rou tiIIC;; 

1} Lntere:Li [:rom Lrror 1, tIl Intcrf..J.cc, pu.~~,;(;:.; 

1.0t: to !Jt.dq2 2 exit Lffcctor to sci:C:llulc 
as'yncJ.l-On()U~ exccu tioL of ap~,rov:;:-ia te rtu 
lJy chaininq .{\JL off j:..E:QA af,U setting Staoe 3 
swi tcL. 

2} Lxit Lffector complct£~ n..J.me of reSuired crrot 
rtn Ly appc.nuing a 1-Lyte coue '(from 0ClJ) 
onto a stanuard name in ti.ie CiI1{L ct.air.eC- out 
of the Syst<..:Ill error 'rCB 

If the free 1 ist of r..Q:L' s is empty ti.lis is not done anu 
offending task is l"I.LElhJ 'u. '..i.'he loauing of the reyuirc~ 
error rtn reyuircs I/U and thus require;;; its O\':n ~{QL 

3) ';i'he Systt::l.l error rtn loads tlw rtn into tLc 
I/O transient area and executes it 

4) If necessary, the I/O Purge Htn is loade~ to 
purge all ~~Q.l.~' s for reI a teu reyuests (rela teu 
to the one in error) 

Related reyuests are distinct I/O rc~~(;sts issueu by t~e 
SaIlte task using the sal,W uCI3 and UL0 such thilt tIle first 
r.lust complete Lefore ble next can De startcu 

a) ~'earcllcs all .LJCIlIv!) queucs for .K(Jl';' S 

related to one in error and associated 
\-/i tL extcntG defined in the JLD 

L) the l~QI~ I S <ire returned to the free list 
anu tLe corresponcing LC,ij's POS'l"d. \,it{~ 

a "permanent error" coc..ie 

J • ~EIVCCi~ Eoutincs 

a. 

L. 

.;;ee :lClchinc ~1!C!ck Interrupt ~cction 

ceil CHannel ~ilCCk Landler 

1) forms a scrie~ of uyte" (..i0~criLing t~IC error 
to Le uscd Di' error rtns in an atte'i.!~t to retry 
the operation 

2) forma ts d record descr ii,ing cl,o;.lnnel envirOl'Ir,~llt_ 
when error occurred 

PH()l;HAlli'lING/SYS'l'L.1S L·uUCj:.l'I01~ - 5u!) POUGl!I~LLPSIL 



D. Restarts Channel 

1 • If no errors found or they are recoverable, I/O 
Interrupt Handler attempts to restart the 
hardware channel associa tea wi th COlllpleted I/O 
event 

2. First, interrupts are enabled and if any occur, 
I/O FI.IlI is entered and uy switch set on first 
entry, bypasses storing of registers and PSW 
and handles the interrupt. After all stacked 
interrupts are handled, channel ~estart continues 

3. Channel address is multiplied by 4 to index 
into the cilannel table to get address of Cili1nnel 
Search Hodule 

4. Channel search module 

a. Searches eaCH LCmm queue of each logical 
channel with which the physical channel is 
associated 

b. Searches first for "seekaLle" requests - requests 
that require a stand alone seek 

1) When a seekable request found, unit checked 
for availaLility. If not availaLle, next 
RQE checked. If available, test channel 
module entered to check if a path to the 
device is available, if not available next 
RQE checked. If available, SIO module 
entered to issue stand alone seek 

2) If RQE represents a request related to 
another re:yuest which has encountered a 
permanent error (code set in associated 
DCll), the channel restart module 

XXVI v. 

a) puts X I /t8 1 (purgecl re":1uest) in associ.:lted 
lOB, to be used to POST EeE later 

b) dequeues ~QE and returns it to free list 

c) invokes- POST rtns to post event complete 

c. \"'lhen all "seekaLle" re<juests that can Le, have been 
started, Channel Search modules search tne LCIIWIJ 

PROGRANHInC/SYS'l'EI1S EDUCATION - SDD POUGHKLEPSIE 



queues again for a start data transfer rcque.st, when 
found, S10 Nodule entered to execute tIle Triple 
of CC\} IS leac1intj to the users cllannel program 

d. When data transfer begun, interrupts enaLleti again 

e. If no interrupts occur, control returne6 to I/O 
FLIH to reset "first entry" switcll (so register 
and PSW will lJe saved tile next time on I/') 
Interrupt occurs} and exits to tlw dis!,atcher 

\ .. 

pnOGIW'lilI~JG/SYS7.c;1'~S EDUCATIOH - SOu P0uGI1EI.;EPSIL 


