II.

ITI.

IV.

SYSTEM /360 0. S. LOGIC
TASK MANAGEMENT
Course Outline
Intreduction
A. What 1s a Task

B. Where Do They Come From
C. Task States

Task Related Routilnes
A, Task Switching Routine
B. Dispatcher

Interrupt Handling

A. What 1s an Interrupt
B. 8VC Interrupt Handling

1. PFirst Level Interrupt Handler
2. Second Level Interrupt Handler

3. Transient Area Handler
C. Exiting Procedures

1. Type I Exit Routine

2. Exit Routilne
D. Program Interrupt Handling

1. First Level Interrupt Handler
2. Program Interrupt Element (PIE)

3. Exit Routine
External Interrupts

I/0 Interrupts

Machline Check Interrupts

o Res By

Task Supervisor

A. Attaching a Subtask
B. Detaching a Subtask
C. Task Termination

Contents Supervisor
A. Searchling for Modules

B. Releasing Modules
C. OSpecial Functions

(V VI. Main Storage Supervisor

A. Allocating of Main Storage
B. Freelng of Main Storage

(\ (\ = Establiched ing
cvT | < FSHT | svseen
N
AN et At
\ RAMS
T B : T el touder
TASK | P XSNT Voveeen Sol -
DISPATCHER i N,}ﬁ/ 2 /Y
nn B & /
XNT | svseen
= !
oo | SYSGEN
B!
ROLLOUT/
moLLin | SYSGEN
‘»-:1/;,\,(,4/
=,
oy SOHE] shsaen
NUCL.EUS CRATION
- =T
REGIONS MASTER | |
7 SCHEDULER

eor

\

c;: (porrguT)

ATTACH

o

Task Swiresing KouTInNe

(, T.S. Routhine
vvoked mort
Vian owvce
for Vs
INterrupl
£
Mo chawge NEW = | |
Yo NEW . @ N.R.TRE (@ 15 w nEW)
(ReweN) @87“@"3) C ' |
710
Soavch Scarch 7¢8
Queue Queue
SfacTivg aj) siart g
CUuRlenT ot NEW

NEW =
@ NUR. Tcﬁ

NR, — ‘ﬂeuﬂq veacied

P.R. = prtViously
p weacljed

CONTROL BLOCK DATA

TCB Pointer Block

POINTED TO BY:
CVTTCBP (CVT +0) .
GENERAL FUNCTION:

Used by task dispatcher to determine if a task switch is required and if so,
which task should get control

GENERAL CONTENTS:
New and old TCB pointers
New = old task switch not required
New = old and new = 0 switch to new required

New = old and new = 0 dispatcher determines which task to get control
based on priority.

New can be set by any of the supervisory routines associated with task switching
(wait, post, ENQ/DEQ, manual purge)

DISPATAHER

C
MO gk
swt'k-hmcs
New ask
NEW = 8 \puat'® qets :
contvo!
qus
Searel i
C ueue o
slarhieg ot
: ' CURRENT
m‘: wes gwe 7 |
Com !
NO
dwoateh
duwf;\% I P {“U""’ Chu
| %ﬁk’ (‘ WLl ; Cél[A)’Mi
g-mfﬁv
L'.

p

‘00 IV

z2007AZ0dNG JAH JO AOTA TOXIUOD [YVI0A0

e
s e
[
svC Progrom Check Externol 10 Machine Check
Interruption Inlyﬁm intervuptian Interruption Inl¢r7ﬁen
SVC FLIM | [Progrom Check FLIM | { Extecnol FLIN 1 vorm
4 1 1 ¥ ¢+ ¢ ¢ 4 .
[sVCSUR | User - Written Profogue Console . SERO SER1 Rouring
To Dispatcher if Error - Hondling Routine Switch upervisor Routine
Needed SVC [Routine Routine
Routine is not
in Moin Storage Woit Woir
SVC Routines State Stote
Type Type | Trpe | Type | , 4
1 2 3 4
xCL) = To Dispotcher if SVC S
ABTERM Routine lssues on ABTERM ABTERM AMERM
Routine Routing Routine Routine
9 "
Type 1 Exiv [Exit Routing
Routine] - ..
The Exit Routine is a Type |
Tronsient SVC Routine thot Docs not Poss
Interrupted Area Refresh Contre! 1o the Type 1 Exit
Routine Routine Routine. 1t is Shown Seporately
for [Htustrotive Purporzs. .
Dispatcher
i -
Routine Represanted by
Highest - Priority "Ready®™ TCB
Type | SVC Routines Type 2 SVC Routines Type 3 SVC Routines Retrieval of Library Routines
sVC From Dispotehsr
CrAP Atrtoch STAE Service Routine 1/0O Errcs
::'T;ACT g;:;" W10, WTOR, Needed Routine
FREEMAIN Detoch vt Transient |Ngeded s Link, Lood,
GETMAIN ENQ . Arca Fetch Exit Effector, - Overloy XCT.L: ond Synch
POSY Exit Effector, Stoge 1 - Routine Stoge 3 Supervisor Routinz
TIME Identify ! Type 4 SVC Routines 1 Segment of Other 4
TTIMER Link, Lood, XCTL ond ABDUMP Overloy Routina
WAIT Synch ABEND Progrom Needed
Overloy Superviser Checkpoint Needed y g >
Spie Comm . Touk Router Progrom Fetch Routine Progrem Fetch Routine] Link
STIMER Log ond Writelog Post ¥ Libvory,
Restort ; ? o svc Job
1/O Supervisor — Vibrary [1,/0 Supervitor :brdy
-) The Overloy Supervisor ond 1he Link, Pti‘m"
Llood, XCTL ond Synch Routine ore Library
N— Borh Type 2 SVC Poutines __)

SVYC ROUTINE TYPE VERSUS ROUTINE CHARACTERISTICS

ROUTINE TYPE CHARACTERISTICS
TYPE 1 SERTALLY REUSABLE OR REENTRANT, NON-
INTERRUPTABLE
TYPE 2 REENTRANT, INTERRUPTABLE
TYPE 3 REENTRANT, INTERRUPTABLE, SINGLE ROUTINE

LESS THAN OR EQUAL TO 1024 BYTES.

TYPE 4 REENTRANT, INTERRUPTABLE, n ROUTINES LESS
THAN OR EOUAL TO 1024 BYTES. ENTERED BY
XCTL MACRO.

SVC_TABLES

PCP/MFT without extended SVC table option

SVC# Prefix
Table = = p=====-=-- 2l-=—mmm—— +=3--
*> ; ’//v Address ESA
~L
1 f
T T
I W AV e
0-0 JESA| Type 3&4

4[-\\\¢-Generat

PCP/MFT with extended SVC table option

Type 1l&2

e name and fetch

SVC# Prefix == 8- A= m— 2]lm—-—m -+=-3-4 .
Table 0-0] Address ESA | Type 1l&2
\-D /d.-, L
1 I\ Foonl0sdmmgokoom11ook 3o
T T TT [R | Length|ESA| Type 3&4 (lst m
L ; L
\\ ~~— Fetch
with RSVC option
\\Lr——B—ﬂ————ﬁ——Zl ————— T
X'FF Address ESA
:Ir’ -
MVT
SVC# S S ¥ T— -
X'00 Address Type 1
'\\\\\\\\“‘“*-ﬂ> X'BOq . Address Type 2 and
4 A resident 3&4
It T ey nea— 18-—--
11/ Length | T T R Transient
A R type 3&4

\\\‘—ﬂ> Fetch

TSI e Do e i oS &t T

cC | ‘e
STATUS SAVING BY THE SVC INTERRURLTION HANDLERS

SVC First-Level ! SVC Second-Level

Machine Action Interruption Handler Interruption Handler

e == T ca e e e T & TPt i 73 oot 3

General Reglsters

posaruse- Qa0 v

Caller's
Register
Contents

Intarruption

TCB _ SVRB. CaIIervs“RB

Current PSW

Lower Main Storée
(SVC Register Save
Area, IEASCSAV) P

27 Note: The caller's register
contentis and SVC old PSW
are moved by the SVC

Second-Level Interruption

Handler to the appropriate
RBs. |

; EZEE> Information Flow

Lower G o
Main Storage
(Lecation 20)

(s)ease WBISURI) JAS US2419Y
(LAM) Sisanbal palisilesun ajnpayss
UL 7S 912307

f1eSSa3an usaym GHAS 818349

JAS 10 adfl auiielaq

103591031 10 SHILLS 9ARS

dOSTAAdAS JAS
Q)

CONTROL BLOCK DATA

SVRB - Supervisor Request Block

L POINTED TO BY:

TCBRBP (TCB + Q) active or top RB
GENERAL FUNCTION:

Maintains information concerning the use of a Type II, III or IV SVC routine
GENERAL CONTENTS:

See PRB
LAYOUT CAN BE FOUND IN:

PCP & MFT - SCB

MVT - SCB

MVTS

¢

Evgquene

SVR® on.

Kequest
uene

Place
SVR®
wat stale

Deferreat

Set SVRQ's J
RPSW

é'SPﬂkhcr>

Queue g
SVRB ow L9
TRA'S user

® store w.c.

Reques+ Tegtact

Ploce o mes
/N SVRB's
Psw

SVRS nust
wa 4’4\
module

1S laded

Establish
Yhotl ™S
IS busy

®

Sa

w.e. - wart count

& w.e. = X ‘FP’

T.A.H.

Indicate
a “‘ask
Switch

branch

&=

gb

Teavsient Area Fekeh |
Lrom TAH ma-b\'sga‘\d&f
C

Gets TTR
Kom svre
Reods SVQ.

Tesloves wic w.c. = wait cou\\t
for SVRE's
v ysere

SVRB'S %_ qQueue
‘l'?\e Same.,
Sve outive

Deaueues
SVkB's own

Fequehleue

Places
e tself
Wart Slade

<é\s§xf\c\wr>

fe

User Queve |
Transient Areo TA Fetch
Fetch SVRB CB 1

Used for
transient

orea fetch
task to .
load TAB 1

Secondary CVT+C

Request Queve
SvRe Transient Area Control Tebls /(TACT) ‘
Addr of Request Queue
Transient Areo Block 1 (TAB 1)
No. of TACT Entries
Addr Addr / Addr of . ﬂ
: Flag of of User TR 1
£ SVRB %) T N TAB 1 Queve 1
T It NS Addr Addr
1 - N ’/ |, . Flog of of User
SVC Library

Transient Area TA Fetch
Fetch SVRB TCB 2

Used for U

transient Transient Area Block 2 (TAB 2)
orea fetch

task to
loaod TAB 2

|_ ¢ SVRB

User Queve 2

Legend:

— = Painter)

=) = Infarmation Flow

NOTES: 1. User queue 1 contains SVRBs whose SVC routine is in TAB 1,
or was overloid in TAB |,

User queua 2 contains SVRBs whose SVC routine is in TAB 2, 3
or was overloid in TAB 2.

2. The requast queue contains SVRBs awaiting on ovailoble TAB.

The Transient Area Queues

Q/

C ¢

REGISTER POINTERS ON ENTERING AN SYC ROUTINE

REGISTER MEANING
3 Communication Vector Table (CVT) Pointer
4 Task Control Block (TCB) Pointer
5 Supervisor Request Block (SVRB) Pginter for

Types 2, 3 and 4. Last Active Request Block
for Type 1 Routines

14 Contains return address

0,115 Used for passing information between routines.
Not restored.

Ji

(1)

(2)

(3)

(\
ASPECTS FOR CONSIDERATION
IN WRITING SYC ROUTINES

Use proper control section name

16CANN CSECT Type 1 and 2
or |
16C00NNN CSECT Type 3
or
IGCssnnn . CSECT | Type 4

Use proper return or exit ~

BR 14 All types if register 14 has been saved

XCTL IGCssnn?{ - All but last load module of Type 4 routines
SVC 3 Calls EXIT routine. Types 2, 3 and last load module
of Type 4.

Do not modify instructions or data in the routine itself. Instead, use
register storage and/or GETMAIN macro. |

proagam chedk wubiue

AGTELN
Gub @roggam wiketupt

ta;
Goce hondle g

(Groa PICRY G
e

¢ e

Supeevigor
Rocessing

fx

Uzee's
Roudwve,

|

€t
“Roudine
(sva =)

, /o

C & PICA
Nl &
7/ B
| pom. Lt code
erPsw
R T Sve 3 Constersts of
’Ras /'\ ?0\&‘}’“\\@ \:‘Paese W&S,
RS eowive| Pﬂ“‘-\H&O. wk’ﬁw?@\fpﬂmg
R T PIT ogts Conivol,
C R | feom p/P |
IcH |
i¢1£§*§‘ T Touhne, |zt dype E
C

/16

CONTROL BLOCK DATA

PIE - Program Interruption Element

L POINTED TO BY:
TCBPIE (TCB + 4)
GENERAL FUNCTION:

Provide user control of program interruptions - constructed by use
of SPIE MACRO

GENERAL CONTENTS:
PTR to users PICA address
Old PSW save area
Register save area
LAYOUT CAN BE FOUND IN:

PCPS

(MVTS

(A

CONTROL BLOCK DATA

PICA - Program Interruption Control Area

POINTED TO BY:

PIEPICA (PIE + 0)
GENERAL FUNCTION:

Provide mask and entry point of user's error routine.
GENERAL CONTENTS:

Program mask to be used in PSW

Pointer to user's interruption exit routine

Mask for program interruption types to be handled by user
LAYOUT CAN BE FOUND IN:

MVTS

1>

r

ATTACH PROCESSING

SVRB

o)
Originating
Task
TCBRBP
PRB
Program
Issuing
ATTACH
Via Q
—_ Dispc?cherl
r : —i ATTACH
' |
L
T Nevw Task j
——{ TcBOTC I
r_ TCBRBP _1
el
I
r3)
I
L -

I

|

|

c

ll
=3
svkRs |
LINK |
|

|
|
J
|
=

to New

I
L Prog ram |

ATTACH
Removes Its
RB, Makes It
Info a Link
~And Queues It
Onto the New

vV TCB

CONTROL BLOCK DATA

TCB - Task Control Block |

POINTED TO BY:
CVTHEAD (CVT + A0j - Highest priority TCB
GENERAL FUNCTION:
Defines a task to the system
GENERAL CONTENTS:
Information and pointers associated with the task in progress,
LAYOUT CAN BE FbUND IN:
SCB

MVTS

0l

CNT
¢ T T T NEW TCB Next lower priority TCB
owD JSTCB Job step TCB
NTC Necxt (sister) TCB
OTC Originating (mother) TCB
TC8 D LTC Last (daughter) TCB
() > TCB
) Tcal A TCB C
Teg A C TC8 8 _
JsTtce| A TCB| AB [— ‘_,'IQ_B_E
NTc| 4 B.| Tstecel A TCB[AE
ote| 4 A NTc| @ | Istce|l A TCB| ¢
LTel & oTe[d iNiT NTc| ¢ JsTCe| MA . '
LYC dE oTc| *8 NTC| ¢ IsTCca[*A
, WYC| @ oT¢| A NTC| 2D
N LTC| M ovcl *A
wTel @

1,2,3,4 indicates order in which subtasks creaﬁ:ed

—>= indicates present pointer _

~ -~ indicates previous pointer which has been removed
"~ by later action '

MVT TCB PRIORITY QUEUE

NORMAL Tagk Teeminnmon

Shre
redurw code
mTei
Free /&
{ brasach Yo
FRECHAINY
'ﬁ‘?@\‘e\éw
‘ Qany
e TQE's
ﬂ&ENP
QAOSE
| Yhem

free g:fst
FAN,
\F‘Es Nagk

Iy

release, i
LoRD ed PR
o Eomﬁcx‘
necol e

(odica¥e
Ltask
Switch

whuwo o @xit _!?w%.we

| $iee Yhe
TPh

wrhode s
Sehectuling €)5
r

XY ,

5~
e

Teh Som

TGS C%ueue

| Set
bids

SMES _land wsed

nocmal eowp\e{w&*
NOR d|se:a‘:'thob;l;'/'y ~

PosT €C8 |

wiusw eudde

/64

Request
Block SPQE | _
the 252 DQE
Program
T\ [
'é'ask | Contents
B?:;':‘) Directory
Entry for
Program A

' @ Example of the Modification of the Content Directory During a Task

Request
Block
Program 252
SPQE DQE
3
Task Content
Request Control D?rr:actgrs;
Block [*7 Block Entry for
for Program B
Program ,
B Contents
Directory
Entry
Program A

@ Example of the Modification of the Content Directory During a Task

Requkest
.| Bloc
for SPQE DQE{DQE
252
Program
C ’\
Contents
SPQE |,IpqE Directory
3 Entry for
Task ‘t Program C
Request |« Control
for = DQE
251
Program ;____/
c Contents
Directory
Contents Entry for
Directory L/— Program B
Entry for
Program A

"

@ Example for the Modification of the Content Directory During a Task

CONTROL BLOCK DATA

CDE - Contents Directory Element

POINTED TO BY:

RBCDE (RB +D)
GENERAL FUNCTION:

Defines existance of a non-SVC module in core.
GENERAL CONTENTS

Attributes of the module, name of module, number of current users,
entry point, pointer to extent list.

CDE's are chained together through CDCHAIN (DCE +0). Each search may be
concerned with 2 CDE chains - link pack area and the job pack area for the region,
The link pack area chain is pointed to by CVTQLPAQ (CVT +BC). The job pack
area chain is pointed to by the job step TCB at TCBJPQ (TCB +2C).

LAYOUT CAN BE FOUND IN:

MVTS

CONTROL BLOCK DATA

PRB - Program Request Block

POINTED TO BY:
TCBRBP (TCB + 0) active or TOP RB
GENERAL FUNCTION:

Maintains information concerning a non-supervisory routine required for this
execution of the module,

GENERAL CONTENTS:
Differs by OS configuration:
PCP & MFT - contains all information for this execution of the module,
e.g., module name, attributes, size, resume address if

interrupted, etc.

MVT - Contains only the dynamic information for this use of
the module

RB's for a task are chained together through the link field
(XRBLNK or RBLINK) at RB+1C. The last RB in the chain points back to the
controlling TCB, .
LAYOUT CAN BE FOUND IN:
PCP & MFT SCB
MVT - MVTS

SCB

11

CONTROL BLOCK DATA

LLE - Load List Element

POINTED TO BY:

TCBLLS (TCB + 24) beginning of chain,
GENERAL FUNCTION:

Maintain count of number of outstanding load's of a module.
GENERAL CONTENTS:

Pointer to next LLE in chain pointer to CDE for the model,
Use count.,

LAYOUT CAN BE FOUND IN:

MVTS

CONTROL BLOCK DATA

XL - Block Extent List

POINTED TO BY:
CDXLMJP (CDE + 14)
GENERAL FUNCTION:

Provide contents supervision with information regarding a particular block of
a module plus note lists for overlay structured modules,

GENERAL CONTENTS:

Location of block.

Size of block. |

TTR of each overlay segment,
LAYOUT CAN BE FOUND IN:

MVTS

C

CONTROL BLOCK DATA
GOVRFLB
POINTED TO BY:
Location GOVRFLB in module IEAQGM resident nucleus,
GENERAL FUNCTION: |
Origin list for main storage queues.
GENERAL CONTENTS:
PTR to beginning of dynamic area,
PTR to DQE describing SQA.
PTR to PQE describing unassigned main storage.
LAYOUT CAN BE FOUND IN:

MVTS

Ho

CONTROL BLOCK DATA

DPQE - Dummy Partition Queue Element

POINTED TO BY:
GOVRFLB + 8 free core'- TCBPQE (TCB + 98) allocated region.
GENERAL FUNCTION: |
Pointers to beginning and end of PQE chain,
GENERAL CONTENTS:

Pointer to first PQE in chain pointer to last PQE in chain, In order to locate
DPQE, add 8 to the value located in GOVRFLB or TCB,

LAYOUT CAN BE FOUND IN:

MVTS

CONTROL BLOCK DATA

‘ PQE - Partition Queue Element

POINTED TO BY:
DPQE points to beginning and end of chain,
GENERAL FUNCTION:
Used to define a region,
GENERAL CONTENTS:
Backward and forward PQE pointers
Pointers to firs;c and last FBQE's
Pointer to job step TCB owning the region
Size of the region
Core address of the region
L LAYOUT CAN BE FOUND IN:

MVTS

CONTROL BLOCK DATA

FBQE - Free Block Queue Element

POINTED TO BY:
PQEFFBQE (PQE + 0) first PQEBFBQE (PQE + 4) last,
GENERAL FUNCTION:
Define free block (multiple of 2K) of core within an allocated region.
GENERAL CONTENTS:
Forward and backward FBQE pointers,
Size of free block.
LAYOUT CAN BE FOUND IN:

MVTS

CQCINQ N

C Pusqe, uvused modules
EXamive previcusly bovrwed
veqon’ (RO /RI)
Schadule RO/RT
Jocate
ey SGGCC via
| Feqs
| decsement bsu c; / %'.L
FQT . 'jga'
C Retwo e Rebuew
Fé Qe
| build RS
Quhchaﬁhi
R
Retusw
‘{

2sa

C C

CORE STORAGE ORGANIZATION

WITHIN A
PROCESSING PROGRAM REGION

S— ——— NN

KEY OF ZERO 2K FETCH WORK AREA

KEY OF REGION | REG SAVE & PARM INFO

, REENTRANT MODULES

KEY OF ZERO SVCLIB & LINKLIB

KEY OF ZERO FREE CORE >~ ONE REGION

NON REENTRANT MODULES
KEY OF REGION OR

JOBLIB MODULES

o A S . = ~. . 1

Regquest
Block
for
Program
A

SPQE
25%

Tosk
Control
Block

DQE

N

Example of Main Storage Allocation @

Request
Block
for

Program
A

SPQE

254

SPOE

Tosk
Control
Block

Example of Main Storage Allocation

DQE

DQE

0O 0 ©0 0 T
Subpool 252

R T — —_—— —

o "% "% %

> Region
L’ ~~
- —~
6~ "% "0 T
RGN
1 2 2 v
lo By T N
sw-l© ° ©
gool Subpool 252
o Yo %%
R
—— ——— — 4 — —
o (o] (o} .’6
J’ 1 > Region
r(~”
CRRCERC I
6 "ot T
1 1 1 -/

Request
Block
for SPQE
Progrom 252
A
Tosk
Request Control
Block [Block
for
Program|
B

DQE

SPQE

DQE

DQE

Example of Maln Storage Allocation

Request
Block
for

Program
A

SPQE
252

Reques!
Block [
for

Task
Control
Block

Program
[~

.

DQE |~ DQE
o e — e ——]
5~ Y "6 fo
FL "E
’1/
SPQE oaE i
3
N —_ — e —]
SPQE R
e DQE
o s s Tl T
Subpool 251

C

T T T N
SSub-o o] [o]
pool Subpool 252
3 —
o o to
| Subpool
252
s e
(o] [o] (o] (o]
Y VSR S—— S
R EEC
L > Reg
[t ~
L e —— — — = ——
2 R R
B Yoo T
1 1 1 =
5 T0 L) To 7
Sub-
pool Subpool 252
3
L O e — e ——
56— % "o o
Subpool
252
L — +

Example of Main Storage Allocation

L

1

@

-

CONTROL BLOCK DATA

SPQE - Subpool Queue Element

POINTED TO BY:
TCBMSS (TCB + 18) beginning of chain
GENERAL FUNCTION:
Define existence and identity of a subpool
GENERAL CONTENTS:
Pointer to next SPQE in chain
Status of subpool, e.g., owned, shared or both identity - subpool number
Pointer to first DQE, or to owning SPQE
One SPQE will exist for each subpool in a region.
May have multiple subpoo-ls 1-127 within a region, each one owned by a different task
LAYOUT CAN BE FOUND IN:

MVTS

CONTROL BLOCK DATA

L DQE - Descriptor Queue Element

POINTED TO BY:

DQEPTR (SPQE + 5) Beginning of chain.
GENERAL FUNCTION:

Defines a block (multiple of 2K) allocated for a subpool.
GENERAL CONTENTS:

Pointer to first FQE in the block,

Pointer to next.DQE for same subpool.

Address of the block,

Size of the block,

LAYOUT CAN BE ¥FOUND IN:

E MVTS

59

CONTROL BLOCK DATA

FQE - Free Queue Elemen_t

POINTED TO BY:

FQEPTR (DQE + 0) MVT (BBX + 0) MFT
GENERAL FUNCTION:

Defines contiguous free core.
GENERAL CONTENTS:

Pointer to next FQ};:.

Number of bytes of.free core defined _by this FQE,

LAYOUT CAN BE FOUND'IN:

MVTS

30

Logic

Tentative Calendar

Day 1

Introduction to Operating Systems
Development and Purposes
0S/360 Concepts and Terminology

Assignment: Read = MVT Control Program Logic Summary (Y28-6658)
MVT Job Management PLM (Y28-6660)
Introduction and Part I

Day 2

Interrupts and Tasks
Interrupts
TCB and RB's
Task Switching Routines

. .Dispatcher

System Initialization Overview

IPL Procedure
LOAD button
NIP
Master Scheduler Initialization

Part 2, Part 3, Part 6 = Work Queues and

‘ Assignment: Read - MVT Job Managenent (Y28-6€60)
I/0 Device Allocation

vay 3

Job Management Overview
The Work Queue
SYS1.SYSJOBQE
QCR's
Logical Tracks
Enqueueing work
Degueueing wvork

Process Input
Definition of Input

PROGRAMMING/SYSTEMS EDUCATION -~ S$DD POUGHKLEPSIE

*Ordinary" Reader Interpreter

Assignment: Read - MVT Job Managecment (¥28-6660)
Part 3, Part 4, Part 5

Day 4

Process Input (continued)
ASB Reader
RJE Reader

Initiate, Terminate work
Initiator

Assignment: Read - MVT Job l!lanagement (¥28-6660)
Part 5, Part 6

Day 5

Initiate, Terminate Work
Terminator

Process Output

Command Processing
where commands may appear
Communication Task
Command Scheduling
Command 71ypes

3\ Assignment: Read = MVT Supervisor (Y28-6659)

Section 1, 2, 9

vay 6

Task Management Overview
Types of Interrupts and Handling of euach
SVC Interrupts
Program Check Interrupts
External Interrupts
I/0 Interrupts
Machine Checks Interrupts

Assignment: Read = MVT Supervisor (Y28-6659)
Sections 3, 4 o

Day 7

Task Supervisor

PROGRAMMING/SYSTEMS LDUCATION - SDD POUGHKEEPSIL

Task Creation (ATTACH)
Task Termination (DLTACH)
Serializing use of a resource (ENQ, DEQ)

Contents Supervisor
L - Macros
Search for lodule
Alias Processing
Special Processing
Use/Responsiblility counts

Assignment: Read = MVT Supervisor (¥28-6659)
Sections 5, 10

Day 8

Main Storage Supervisor
Space in a region
Space in SQA and bLynamic Area
Rollout/Rollin

Trace Table
Size and usefulness
Entrys
Trace Table Control

Termination Routines

/ Assignment: Read - I/O Supervisor (Y28-6616)
, Introduction and Part I
(.' ' I/0 Support (¥28-6609), Introducticn, opening
a data set, closing a data set

Day 9

Data iManagement Overview

Volumes and Data Sets
DA volumes
Tape volumes

Preparation for I/0
Data set description
Access llethods
Control Blocks "
Opening a data set
end appendages
EXCP Supervisor
Validity check

‘ PROGRAMMING/SYSTL.S LDUCATIOW - SDD POUGHKLEPSIL

Schedule I/0 Request

Assignment: Read - I/O Supervisor (Y28-6616)

_ . Section II, III

L"Dax 10

I/0 Interrupt liandler
Locate reqguestor

Error Routines
Restart channel

E : PROGRAMMING/SYSTEMS LDUCATION - SDD POUGHKEEPSIE

II

Logic

General Outline

Preface
A. Check roster
B. Badges
C. .Description of Course
D. Intent (objectives) of Course
E. Prerequisites
Introduction to Operating Systems
A. Development and purpose of operating system
| 1. History : '
2. Increase thruput

3. Decrease turnaround tine

"B. 0S/360 Concepts and Terminoloqgy

1. Resources

2, Effective use of resources, by computer program
3. Control Program Concept

4, Functions of Control Program

5. Processing Programs

6. 0S/360 resource management routines

7. User interface witii 0S/360 .-

8. Job and Step Concepts

PROGRAMMING/SYSTLinS LDUCATION = SDD POUGHKLEPSIE

I A.
I B.

I C.

I E.

II

II A.

II B.

9. Configurations of 0S/360
10. Tasks, Jobstep and Sub
L 11. Task states
12. Tasks, permanent system
13. Tasks, TCB queue
iu._ CPU - Main storage - I/0 Subsystem
15, Instruction cycling
III Interrupts and Tasks . III
A, Interrupts - - III A.
1. Relation of interrupt to active task
2. llardware action
3. Software action
B. TCB and RB's III B.
1. Use of TCB and RB in interrupt processing

2. Creation and contents of TCB and RB's

—C. Task Switching Routines III C.
1. Function
2. When used
3. Use of NEW/CURRENT pointers and TCB gueue

D. Dispatcher l I1I v.
1. Function
2. When entered
3. Use of NEW/CURRENT pointer and TCB queue

v System Initialization Overview ¥ v

PROGRAMIMING/SYSTEMS LDUCATIOWN - SDD POUGHKLLPSIL

VI

A, Initial Program- Load IV A,
B. Nucleus Initialization . IV B8,
C. Master Scheduler Initialization _ v C.
IPL Procedure * | \'
A. LOAD button o V A,
1. Hardware action
Z. Bootstrap record
3. IPL CSECT - Software Processing
4. Software Processing
B. Nucleus Initialization Program ~ V B.
1. Building and initializing tables
2. Initializing, thé nucleus
3. Loading the link pack area
4, Setting up Final :.lain Storage Divisions
Master Scheduler Initialization vV C.
1. Console Initialization
2. SET command
3. Lxecution of AUTO Commands
4. Volume Initialization
S. Log Initialization
6. SMF Initialization
Job iianagement Overview : . VI
A, the work queues - VI A.
3. Process input VI B.
C. Initiate, Terminate work (tasks) VI C.

PROGRAMMING/SYSTENS EDUCATION - SDD POUGHKEEPSIL

VIII

IX

co

D.

The
A,
B.
C.

D.

E.

F.

Process output

Process commands

Work Queue (SYS1,.SYSJOBLQL)

SYS1.5YSJOBQE

Queue Control Records

Logical tracks
Space managemnent on
Enqueueing work

Dequeueing work

Process Input

A, vefinition of Input
B. *Ordinary"

1. Function

2, Control blocks

3. Control of the
C. ASB Reader

1. Function

2. Control of ASB
D. RJLE Reader

1. RJE Overview

2. Function

3. Control of RJE
Initiate, Terminate Work
A, Initiator

SYS1.SYSJOBQE

Reader/Interpreter

it builds

Reader Interpreter

Reader

Reader

PROGRAMMING/SYSTELINS EDUCATION -

SDD POUGHKLEPSIE

VI b,
VI L.
VII
VII A,
VII B.
VII C.
VII D,
VII L.
VII.F.
VIII
VIII A,

VIII 3.

VIII C.

VIII D.

IX

IX A.

XI

™~

C.

XII

1.

Function

2. Device Allocation
3. Create jobstep task
B. Terminator
1. Function
C. Control of Initiator/Terminator
1. Started by Operator Command
2. Region size
3. Initialization
4. Stopping an Initiator/Terminator
Process Output (Output Writgr)
A. Function
B, Control of Writers

Command Processing

A,

B.

C.

Where commands may appear

1.

2.

.Console

Input stream

Communication Task

Command Scheduling

Cormand Types

1.

2.

Task Creating

Existing Task

System Restart = .-

A,

B.

llow indicate IPL is for restart

Inspection of SYS1.SYSJOBQE data set

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

IX B.

IX C.

XI B.
XI C.

XI D.

XII

XI1II A.

XII B.

adll

/ﬂl’\><
. -
R B

C.
Task
A,
B,
C.
D.
E,
F,
G.
He.
I.

Je

Processing of entries still on the gueue

Management Overview

Tasks (review)

Interrupts (review)

Types of Interrupts and handling of each

Task Supervisor

Contents Supervisor

Main Storage Supervisor

Timer Supervisor *

Overlay Supervisor *

Trace Table =

Termination Routines

Types of Interrupts and Handling of Each

A.

SVC 'Interrupts

1.
2.
3.
4,

5.

SVC types
SVC FLIH
SVC SLIH
SVC Transient Areas

SVC Exits

Program Check Interrupts

1.
2.
3.

4,

SPIE facility -
P.C. FLIH
User Prog. Check routine exit

Abnormal Termination Ly PC FLIH

PROGRAMMING/SYSTE!S EDUCATIOW - SDD POUGHKLEPSIE

XII C.

XIII
XIII
XIII
XIII
XIII
XIII
XIII
XIII
XIII
XIII
XIII

XIV

A,

XIV A.

XIV B,

E.

izxternal Interrupts

1. External FLIH

I/0 Interrupts

1. 1/0 FLIH

Machine Check Interrupts

1. Recovery options

2. SERO
3. SER1
u ° MC H

Asynchronous Exit Routines *
1. Definition of
2. How specify such a routine

3. Scheduling of Asynchronous returns and control
blocks involved

4, Exit froh asynchronous routines
Lxit procedures (review, for the most part)

1. = From type 1 SVC routine

2. From user program check handling routine
3. From routine controlled by a SVRB

4, From routine controlled Ly a PRB

5. From routine controlied by an IRB or SIRB
6. Common processing

Task Switching Routines (review)
1. When entered and why

2. If NEW=CURRENT

PROGRAMMING/SYSTEMS 1DUCATION - SDD POUGHKLEPSIE

XIV C.

XIV D,

alIVvV L,

XIV F.

XIV H,.

3. If WEWACURRLNT, WEW#0

b, If NEW#CDRRLENT, NLW=0

I. vispatcher (review) XIV I.
1. When entered and why and how
2. Use of LEW/CURRENT pointers
3. Search of TCB queue
Task Supervisor Xv
A, Function Overview _ ‘ XV A,
B, Task Creation (ATTACH) | . ' XV B.
1. ATTACH macro
2, ATTACH routines
C. Task Termination (DETACH) XV C;
1. When needed
2, Freeing TCB space
3. Notifying other tasks
D. Serializing use of a resource (ENQ,DEQ) XV D.
1. Purpose
2, liow request is issued and handled
Contents Supervisor . XVI
A. Function Overview XVI A.
B. iiacros XVI B.

1. ATTACH

2, LINK
3. ZCTL
4, LOAD

PROGRAMIMING/SYSTL:S LDUCATION = SDO POUGHKLEPSIL

D.

k.

v‘ I lain
A,

B.

Search for module ‘ ‘ XVI C.

1. Requestors region

2. Private library

3. Link pack area

4, LINKLIB

Alias Processing XVI D.
Special Processing , - XVI L.
1. Loab

2, XCTL

3. IDENTIFY

Use~responsibility counts XVI F.
1. Where maintained

2. When incremented and decremented

Storage Supervisor XV1I
Funcfion Overview XVII A.
Space in a region : XVII B.
1. The region itéelf LD=PQLC, PQE, FBQE

2, Jobpack area and its subpool numbers

3. Subpools

by, SPQE's, LQE's, FQE's

S. Owned/shared subpools

Space in SQA and Dynamic Area - XVII C. .
1. DQE for SQA, FQE's in SQA

2. PQE for Dynamic Area, FBQL's in dynamic area

1

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGIIKEEPSIE

XVIII

3. GOVRFLLD
Rollout/Rollin * XVII u.
1. uverview
2. When and how invoked
3. RORI Criteria Routine
4. Search for space to allocate
5. Allocation of another region
6. Rollin
Timer Supervisor * . XVIII
A. Function Overview XVIII A.
B. The Interval Timer XVIII B.
1. Hardware feature
2., Values in it decremented
3. Initialized at IPL time
C. .The ‘fimer Queue XVIII C.
1. Software feature
2. Consists of TQE's
3. Routines that handle the gqueue
4, TQE contents
5. Types of TQE's
6. Arrangement of TQE's in (ueue
7. Timer interrupt and the gueue)
D. STIMER routines ‘XVIII Ue

1. Respond to STINER macro

2. Build and position TQs in the queue

PROGRAMMING/SYSTE!NS EDUCATION - SOD POUGHKELPSIL

3. Enqueue returns

Timer Interrupts XVIII L.
1. Occur when interval timer becomes negative |
2. External FLIH

3. Timer SLII

Task Timing XVIII F.
1. Options

2. STIMER return

3. WAIT option

4, REAL option

S. TASK option

Jobstep timing XVIII G,

1. What can be specified

L 2 TIME on JOB and LXEC cards

3. TIME on JOB card only

4, TIME on LEXEC card only

5. TIME not specified on either

6. Initiator issues STIMER for jobstep timing

7. TQE and how manipulated

TIME macro routines XVIII H.
1. Function

2. Date from CVT
3. Time of day

4, Elapsed time

PROGRAMMING/SYSTEMS LDUCATION - SDD POUGLKELPSIE

XIX

XXII

I. TTIMER macro routines
1. Determine time remaining in an interval
2. Cancel an interval
3. Calculation of remaining time

4, Cancelling on interval

Topic beleted

Trace Table *

A.

B,

D.

Purpose

Size and usefulness

1. Sysgen option

2. Wrap-around use

3. VT environment

Entrys

1; When made

2.. Information in an entry

Trace Table Control

Termination Routines

A.

B,

Data
A,
B.

C.

Function Overview

Entered from Exit Routinés (SVC 3)

Jormal Termination processing

Abnormal Termination processing
Management Overview , -
Volumes and Data sets

Preparation for I/0

Initiating I/0

PROGRAMMING/SYSTENS LDUCATION - SOD POUGHKELPSIE

AVIII I.

XIX

&

m u.
XX1I
XXI A.

XXI B.

XXI D.
XXII
XXII A,
XXII B;

XXITI C.

‘-’ D.

E.

XXIII

EXCP Supervisor
I/0 Interrupt Supervisor
Volumes and Data Sets
A, Direct Access Volumes
1. Volume label
2. VTOC
3. DSCB's
B. Tape Volumes
1. Volume label
2. Data set header labels

3. Data set trailer lapels

XXIV Preparation for I/O

VoL A.
N

B.

C.

bata set description

1. . DCB

2. JFCB

3. pData set label (LSCB if on DA)

Access ilethods

1. Function and types

2, Selection of access methods and loading

Control Blocks

1. DCB -
2. I0B
3. DECB
4. LECB

PRCGRAMMING/SYSTEES LDUCATION - SDD POUGHKLEPSIE

XXII v.
XXII E.
XLIIX

YXIITI A.

XXIITI 8.

XXIV

XXIV A.

«LIV B,

XX1IV C.

XXV

5.
6.

7.

DLB

TIOT

Channel Programs

D. OPEN'ing a data set

1.
2.
3.

4.

Merge DSCB Into JFCB
Merge: JFCB into DCB
Load access method executors

Turn on "open" but in the DCB

E. End Appendages

1.
2.
3.

Function and Purpose

SIO (start I1I/0)

PCI (Program Controlled Interrupt)
End of Extent

Channel End

Abnormal End

EXCP Supervisor

A, Function Overview

B. Validity check on Control Blocks

C. Schedule I/0 request

1.
2,
3.

4.

Obtain RQE and fill it in
Unit checked for availability
Logical channel located

SIO nmodule

ZZVI I/0 Interrupt Handler

C

A. Function Overview

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKLLPSIL

AXIV L.

XKIV L.

XXV
XXV A.
XXV B,

X4V C.

XAVI

XXVI A,

B. Locate Requestor _ XAVI o,
‘ C. Error Routines XXVI C.

D. Restart Channel JXVI D.

‘ PROGRAMMING/SYSTLIMS LEDUCATION - SDD POUGHLKLELPSIE

0S/360 Logic
. Detail Outline

I Preface I
A. Check Roster I A,
B. Badges A i B,
C. Course _ IC.
1. hours - start, stop
2, length of course
3. no machine problems
4. heavy reading assignments
5. (no grades)
D. Intent of Course I D,
1. Show the parts of 0S/360 and their interaction
‘ 2.

Concepts developea to a detailed level but will not
"bit bash"

3. Describe 0S/360 but will not justify it nor rationalize
it
Prerequisites IELE,
1. BPT/GPT/SPT or 6 montns programming experience
2, 05/360 User
3. Knowledge of BAL

PROGRAMMING/SYSTLCMS LEDUCATION - SLD POUGHKEEPSIE

II Introduction to Operating Systems . II
L A, Development-: and purpose of operating systems ¥ II A,
Ref: Introduction, Part 1 (C28-6534)
1. History
a. Computers as machines to solve problems
b. Fast and accurate

Ce. Still, not used to capacity nor maximum
efficiency

1) CPU waiting much of the time

2) - Human played too large a roll in coﬁputer
work

a) had to program everything he wanted done
b) operator setup time was too long

c) human slowness and inaccuracy limited
machine's usefulness

‘ o ~d. much of work done by humans could be done by
computer programs

1) Space allocation on auxiliary storage devices
2) Main storage location assignments

3) Translation of instructions from programming
~ to machine language

e, Such programs could be shared by all users of an
installation

1) Functional modularity developed in programs

2) Need for and provisions to link from one
module to another were developed

PROGRAMMING/SYSTLEMS LDUCATIOMN - SDD POUGHKEEPSIE

f. CPU could "work on" several programs in main
storage at once ("simultaneously")

L 2. Increase Thruput

a. Amount of work performed by a conputer in a given
time span is increased (thruput)

1) prewritten, commonly used programs increase
the speed of execution of a module

2) execution of several programs "simultaneously"
increases the amount of work performed in a
unit of time

3. Decrease Turnaround time

Q. A given program executes faster under newer
computers

1) prewritten, commonly used programs increase
speed of execution of a module

Z) execution of several programs "simultaneously"
increases the amount of work performed in a
unit of time
1{ < B 0S/360 Concepts and Terminology II B.

1. Resources

a. As computers increased in complexity and flexibility,
they came to be seen as collections of resources

1) humans
2) programs‘(in main storage)
3) data

4) CPU time
5) Main storage space o
6) I/0 channel time

7) Direct access storage spvace

‘ PROGRAMMING/SYSTEMS LDUCATIOINN - SDD POUGHKLEPSIL

8) I/0 devices
9) the CPU

To effectively and completely use the resources, computer
programs were written

a. to allocate a particular resource to a program
b. to monitor the use and function of the resource
C. to provide other functions and services neceded oy

most or all users of the computer

The programs that allocate and monitor a resource and
service requests are lnown collectively as the control

program
Ref: Handout S1, V25-6156

a. Since the control program is a program and programs
are resources, the control program controls and monitors
itself

b. This concept is essential to an operating system - it

interacts with itself; it is a resource to ke allocated
yet it does the allocating

C. This "self-monitoring" is accomwvlished via the hardware/
software interrupt scheme.

The Control Program has three main functions

a. to accept and schedule work to be done (Job .igmt.)

b, to supervise each unit of work as it is done (Task
Mgmt.)

C., to act as a- "cushion" between programs and different

types of I/0 cevices, data formats, storage mediums,
etc. (Data ignt.)

Programs, IBM or user written, that provide functions
other than the control program are called processing
programs

a. Language Translators (Assembler, Compilers)

b. Service programs (Link Luitor, Loader)

PROGRAMMING/SYSTEMS EDUCATION = SDD POUGHKELPSIL

Ce.

d.

Utilities

User programs

The resources of 0S/360 and their managers are

a.
b.
Ce

d.

Humans = Master Scheduler

Programs (in lFMain Storage) - Contenté Supervisor
Data = Data ilgmt. (access methods)

CPU Time - Timer Supervisor

Main Storage - llain Storage Supervisor

I/0 Channel Time - I/0O Supervisor

Direct Access Storage Space - DADSM Returns

I/0 Devices - Initiator and I/0 Supervisor

CPU - Disbatcher

Interface with 0S5/360

JCL = language by which user specifies

1) work he wants computer to do

2) sequence in wuich he wants it done

3) conditions under which he wants it done or
skipped

4) data sets and devices his program will need

Linkage conventions

1) preserving registers
2) providing another save area
3) chaining the two areas)

Tnese interfaces are necessarily well defined
and, in the case of JCL, rigidly enforced; it is
by these conventions tihiat the user

PROGRAMMING/SYSTENMS EDUCATION — SDD POUGHKLEPSIE

1) informs the system what he wants done and how

2) allows the system to schedule, monitor and
execute lhis program the same way it does all
otliers

d. Without adherence to standard conventions tue
concept of a flexible, generalized group of
programs (the operating system) servicing varied
user requests (e.g., doing wcrk) would degenerate
into the original state of computers = each use,
each job, each application would have to be
individually and seguentially set up and
customized,

Job and Step Concepts
a. A JOB has been variously defined as
1) unit of work to a computing center

2) everything in input stream from one "//JOB"
card to ti.e next (or to end of file)

b. A step has been variously defined as
1) unit of work to a computer
2) everything in input stream from one "//EXEC"

card to the next (or to next "//JOB" card
or to end of file)

Ce Both words are "input stream" oriented and are
therefore, external and artificial in an attempt
to understand 0S/360 internals but a job must
consist of one or more step

Configurations of 05/360

Ref: Storage Estimates for Main Storage Layouts of
PCP, MFT, VT systems (C28-6551)

ae. The concept of a control program and its functions
require that a portion of that program be in main
storage at all tiries, this is called . the nucleus

be Various configurations of 0S/360 differ in the
number of destinct programs that can be in execution

PROGRAMMING/SYSTLIS LDUCATION - SDD POUGHKLEPSIE

at the same time and in the way main storage is
assigned and utilized

C. PCP - Primary Control Program

1)
2)

3)

Nucleus in low core

Optional reentrant, often used routines albove
it

rest of main storage available for the one
program that can be executing at any tine

d. MFT - Multiprogramming with a Fixed Number of
Tasks

1)
2)

3)

4)

Nucleus in low core

System Queue Area (SQA) - protected area
for control blocks - above nucleus

Optional, reentrant, often used programs
above SQa

Rest of main storage divided into sections
called Partitions

a) number cf partitions and size of each
determined when system initialized

b) several programs can be executing
in each partition (can Have
idle partitions though)

e, MVT - Multiprogramming with a Variable Nunier of
Tasks

1)
2)
3)

4)

5)

ilucleus in low core
System Queue Area above nucleus

Link Pack Area (LPA) - often used, reentrant
code, not optional - in high core. odules
in LPA " can be usea by any and all programs
in the system

llaster Scheduler Region just below LPA

Rest of main storage availakle for allocation

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKLEPSIE

6)

7)
8)

as regions = when region is requested for a new
program, reqgion i5 allocated from wherever
sufficient space is available (contiguous space)

Regions are of varying size and as many can be
in existence as dynamic area size will allow

One "main program" in each region (Jobste]: task)

Any number of "sub programs" (subtasks) in the
region, only limit is size of region.

10. Tasks, Jobstep and Sub

a. Tasks

Ref:

1)

note:

2)
3)
4)

Handout S8
a request for the execution of some code

Deliberate generality in the word "some",
the program specified in the LEXEC card or
in ATTACH macro is not, by a long shot,
all the code that will be executed as that
task. Also, "request" means just that,
system may not execute thc specified code,
if various conditions prevent it '

that to which resources are allocated
competitor for system resources (or for CPU)

that which ABEND's

b. Every step of a JOB becomes a jobstep task
when (and if) that step is executed

Ce. Tasks in 0S/360 configurations

1)
2)

3)

PCP - one task in the system at any time

MFT - caan nhave more than one task pner partition
(can have idle partion though),

MVT - one jolistep task per region (no such
thing as an idle region, unused dynanic
space is available or unused), any nun.er
of subtasks per region

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIL

d. Proérams (taskhs) can issue ATTACH macro to create
other tasks (suwntasks)

1) only tasks with protect key of 0 (generally
system tasks) can create joustep tasks

2) user ATTACH's create sulLtasks

e. Every task is represented to the operating system
by a Task Control Block (TCB) - a collection
pointers and indicators used to keep track of
various resources allocated to that task and to
conyrol and monitor the task

f. Jobstep and Subtask TCB's are identical in size
and format, the fields which distinguisi. the two
types of tasks arc

Ref: MVT Supervisor, Section 12, TCB format (Y28-6659)

1) JSTCB - pointer to the jobstep task in the
region, when a TCB contains its own address in
this field, it is the jobstep task in the region

2) OTCB - originating a mother task - points
to the TCB of the task that created this one.
Even jobstep tasks were created by another
task (an initiator)

3) NTCB = next or sister task - points to next
older task among several tasks with a common
mother. Lach sister points to the next older
sister, the oldest contains zeroes in this
field.

4) LTCB - last or daughter task - points to
most recently created (youngest) subtask of
this one. Lvery mother task points only
to its youngest daughter, the daughters are
chained amongst themselves (NTCB pointer)
and all point to the common mother task
(OTCB field)

5) These pointers are used to maintain the subtask
queue or "family relationships" between the
tasks in a region

11. Tasks States

PROGRAMMING/SYSTLEMS LDUCATION - SDD POUGHKEEPSIL

Ref: llandout 52

a. A task can be in one of several states during its
life in the system

1) active - the CPU is executing the code of the
task

note: There can be only one active task in a uniprocessing
system.

2) ready - capable of using the CPU but doesn't have

it

3) wait - not capable of using the CPU even if it
had it

4) dormant - thru executing; system is performing
housekeeping for the task hefore destroying the
TCB

note: A task "exists" as long as its TCB does

b. A task moves from one state to another by various
interrupts occuring

1) active to ready - interrupt occurs, some other
task receives control (displaced)

2) ready to active - LPSW executed by dispatcher
causes task to become active (dispatched)

3) active to wait -~ WAIT SVC issued by active task

4) wait to ready - system or another task POST's
the event complete that the task was WAITing on

5) active to dormant ~ task executes final BR 14
thereby signalling its termination (via SVC 3
instruction at address in reg 14)
12. Tasks, Permanent Systen
Ref: MVT Supervisor, Section 12, after TCB format (Y28-6659)
a. The routines in the nucleus execute as tasks -~ the

control program 1s a resource ana must be monitored
and controllea, the means of monitoring and con-

PROGRAMMING/SYSTENS EDUCATION - SDD POUGEKEEPEIE

13.

b,

trolling any task is its TCB

Certain 1TCB's are assemuled into the Nucleus and

thus these tasks are "created" by loading the Hucleus.
These tasks are permanent (their TCB's are never
freed) and are system tasks (prot. kev 0)

1) one TCB for each SVC transient area (loads
the SVC return into the associated area)

2) System Error TCB (loads and executes I/0
error recovery routines)

3) Rollout/Rollin TCB ‘(optional - performs
Rollout/Rollin processing)

4) Communications TCB (handles I/0 from any
system consoles) :

5) Master Scheduler TCB (responds to operator
commands, creates system tasks)

These tasks are usually in the WAIT state, until
they are made active by a request for the function
they provide

~

Tasks, TCB queue

a,

Every TCB in tlhe system is on a master queue of
TCB's, regardless of whether the task is for a
system program, is a jobstep or subtask

The TCB's are enqueued in descending priority;
within a group of equal priority tasks, enqueueing
is FIFO

The origin of the queue is in tue CVT

1) loc. 10 contains tiie address of the CVT

2) CVTHLCAD contains address of first TCB on the

queue
3) the permanent system tashs are tihe first TCB's
on tlhie queue in tlhie order indicated under topic

12. b.

The queuing field by which the TCB's are enqueued
is distinct from the "family" queue developed

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

14,

for the various tasks in a region in MVT

task changes its priority, it is moved to

the corresponding position on the queue

an interrupt is handled and a task is to

be dispatched, the dispatcher uses this queue to

Principles of Operation, "System Structure" (A22-6821)

locate the highest priority ready task and dispatches

Main Storage - I/O Subsystem

Basic concept of a computing system has three parts

‘which must be treated separately

CPU - Control Processing Unit

e, 1f a

f. When
it

CcpPU -

Ref:

a.

b.
1)
2)
3)
4)
5)

¢. Main
1)
2)

d.

contains registers

fetches each instruction to be executed
analyses each instruction

executes that instruction

fields interrupts

storage

contains instructions to be executed

contains data the instructions reference

I/0 Subsystem - Channels, Control Units, devices

1)

2)

Channels are limited CPU's
a) have limited instruction set

b) can access main storage independently of
and simultaneously with the CPU

c) once started by CPU, can function
independently of the CPU

Generate interrupts

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

15.

e,

3) Transmit data from secondary to main storage
and vice versa

It is the interaction of these 3 parts which
allows multitasking and gives the operating system
its speed, flexibility and power

Instruction cycling

Q.

d.

the execution of instructions is accomplished
by the CPU fetching instructions, one at a time,
from main storage, analyzing them and then per-
forming the operations indicated

the execution of instructions is done in a cycle

1) I-Time - interpret time in which the CPU
analyzes the instruction for proper format
operand addresses, etc,

2) E-Time - execution time in which the
operation is performed

3) pause in which an interrupt may occur, during
I-Time and E-time, the CPU is not interruptable

It must be emphasized that main storage is just the
repository for instructions - control program, the
nucleus, problem programs, in short the operating
system resides in main storage

The CPU takes one instruction at a time, sequentially
and executes it, thus is the "computing" of a computer
accomplished.

PROGRAMMING/SYSTE!MS LDUCATION - SDD POUGHKEEPSIL

III Interrupts and Tasks III
A. Interrupts . III A,

L 1. Relation of Interrupt to active task - interrupt
may not be related to the active task, it may be
an I/O interrupt that another, waiting, task has
initiated

2. hHardware action

¥ ¥ In all cases when an interrupt occurs the
hardware

1) stores the current PSW in the fixed
location appropriate to the interrupt
type

2) loads the PSW, corresponding to the
interrupt type, from the appropriate
fixed location

b. The code pointed to by the new PSW handles
the interrupt

3. Software action
Ref: MVT Supervisor, Section 2 (Y28-6659)
L ' a. The routine given control as a result of the
new PSW being loaded (known as First wuevel

Interrupt Handler -~ FLIH) preserves the status
of the interrupted task by

1) storing the registers in a save area (a
private save area or in the interrupted
tasks TCB)

2) moving the stored "old PSW" to a safe place
(request block chained off interrupted tasks
TCB)

b. This routine then analyses the interrupt to try
to handle it .

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKELPSIL

C

B.

C, Processing varies for tle various types of

interrupts
TCB and RB's
1. Use of in interrupt processing
a, In most cases, the registers in use at time of
interrupt are eventually stored in the TCB of
the interrupted task
b. When this is done varies with the type of
interrupt
Ce. The dispatcher expects the registers to pbe there
the next time that task is dispatched
d. Request blocks chained off TCB represent levels
of self-generated, interrupted program control in
task
e. Request Llocks used to keep track of module(s)
at various stages of execution on belialf of
the task
£. LEach request block has space for resume PSW for
the module the request block represents
nofe: RB's, not TCB's, are associated with the execution

III B.

that

of modules of code. A task is just the request for

the execution of some code.

g. When dispatcher next disvatches a task, it expects
to get the resume PSW from the RB pointed to from
the TCB

h. kB's associated with a task are chained to each
other by a link field

i. bue to type of interrupt, and linkage conventions
to program to receive control, some RB's have a
register save area (SVRB, IRB)

2. Creation and contents of 7TCB and RB's

Ref: VT Supervisor, Section 12, TCB and RB's
Section 3 Task Creation (Y48-6659)

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

a. TCB created as result of ATTACH SVC

b. ATTACH routines

1)

2)
3)

note:

4)

5)

6)

7)

note:

determines type of task to be created

a) jobstep = requestors prot-key (in old PSW)
is 0

b) subtask - requestors prot key is not 0
obtains space in SQA for TCB

initializes the TCB

a) PRTY
b) TIOT
c) space mgmt in region

d) JOBLIB/STEPLIB wCB address
e) family TCB pointers

£) registers with parameters needed by first
module to be executed on behalf of new task

g) pointer to RB for first module of the task

This RB is the SVRB created as result of
requestors ATTACH SVC and has been degueued
from requestors TCB and engueued off new TCB

engueue TCB on main TCB queué according to
priority

enqueue on subtask gqueue in proper relationship

determine whether mother or daughter has higher
priority, set NEW pointer to point to that
task

exit to dispatcher who diépatches either mother
or daughter

At this point in course, this discussion of RB
and contents supervision is deliberately vague,
to explain it in detail at this point would be

PROGRAMMING/SYSTEMS LDUCATION - SDD POUGHKEEPSIE

confusing
The RB thus chained off new TCB contains a PSW
pointing to first module to be executed on behalf
of new task (it is the Contents Supervision Searcin
routine, which searches for needed module)
There are 4 types of RB's in 0S/360 14VT

Ref: [IVT Supervisor, Section 12, PRE, SVRB, IRB,
SIRB and associated sections of text (Y28-6659)

1) PRB - for problem programs, contains
a) resume PSW

b) pointer to control block describing the
module

c) wait count field

d) link fielad

2) SVRB - for certain SVC routines, contains

a) resume PSW

b) indicator of which SVC is being executed

c) register save area

d) wait count field

e) extended save area (misnomer, is used as
parameter area lbetween loads of the SVC
routine) -

f) link field

3) IRB - Interrupt Request Block for asynchronous
routine, contains
a) address of a save area the asynciironous return
can use

b) wait count field .-

c) resume PSW

PROGRAMMING/SYSTLNMS ©DUCATION - SDD POUGHKLEPSIE

d)

e)

4) SIRB - System Interrupt Request Block for I/O

register save area

link field

error recovery routines

a)
b)
c)
d)

e)

name of error routine
wait count field
resume PSW

register save area

link field

Task Switching routines

Ref:

1.

MVT Supervisor, Section 3 "Services Internal to
the Supervisor" Y28-6659)

Function - to indicate, not effect, a task switch

next time the dispatcher is invoked to dispatcihh a task

When entered

the

a. RB wait count in a tasks top RB is cleared to U

b. TCB non-dispatciability flag(s) cleared

Use of WEW/CURRENT pointers and main YTCB gueue

a. NEW/CURRLNT pointers are a double word of pointers

used to determine next task to ke dispatched

b. First word of CVT points to nNEW/CURRENT pointers

C. Task Switch routines passed address of newly
readied task (suiject task)

d. If NEW=CURRENT -

1) compare subject to NEW

III C,

2) if subject priority high, set LEW to subject 1CB

3) if subject priority low, no change

PROGRAMMING/SYSTEMS LDUCATION - SDD POUGHKELPSIE

4. WAIT
WAIT

.

D. Disptacher

4) . if subject priority equal to LEW
a) search 1CB qucue from NEW OOWN

b) if subject TCB not found, set HEW
to subject 'iCB

c) if subject TCB found, no change
If NEWACURRENT, NEW#0

(Task switch already indicated but dispatcher not
invoked yet)

invoked yet, proceed as in d.)
If NEWACURRENT, o~iW=0

(TCB queue search indicated but dispatcher not
1) compare subject priority to CURRENT

2) if subject priority high, set NEW to sﬁbject 1C3
3) if subject priority low, no changé
4) if subject priority equal to CURRENT

a) search TCB queue from CURRENT down

b) if subject 1C3 not found, set WkW to subject
TCB

c) if subject TCB8 found, no change
l
routines are only ones to set JEW field to 0,
igs a type I SVC
|

if it exits before awaited event($) completed,
i

1) set WEW to 0

2) invoke dispatcher [

this is one of the few situations in which a type I
SVC does not return directly to the requesting
program by a LPSW.

I1I D.

PROGRAMMING/SYSTulS LnLDUCATION - SDD POUGHKEEPSIE

Ref:

1.

MVT

Supervisor, Section 9, "Dispatching"

(Y28-66§9)

Function

a.

b.

d.
When
a.

b.

Selects and makes active the next task to be
dispatched

Completes scheduling of user asynchronous exit
returns (stage 3 exit effector)

Handles task and jobstep timing

Handles time slicing

entered

Generally, after an interrupt has been processed

Entered by a branch; dispatcher is a resident,
non-SVC routine in the nucleus

Use of NEW/CURRENT pointers

a.

If WEW=CURRENT

1) no tasks switch indicated

2) restores registers from TCB indicated

3) loads PSW from RB pointed to from that TCB
If HEW#CURRENT, NiW#0

1) task switch indicated, NEW points to next task
to be dispatched

2) makes NEW/CURRENT pointers equal to task being
dispatched

3) restores registers from NEW TCB
4) loads PSW from RB pointed to from NEW TCB
If NEWACURRENT, NEW=Q

1) task queue search indicatéd, CURRENT task in
WAIT state

PROGRAMMING/SYSTLIIS LDUCATION - SDD POUGHKEEPSIL

2) " search TCB gueue from CURRENT TCB down, for
a ready task

a) wait count field in top RB is 0
b) no "non-dispétchability' flags in TCB are on

note: when such a task is found, by the organization of the
queue, it is highest priority ready task

3) makes NEW/CURRENT pointers equal to TCB being
dispatcnea

4) registers loaded from that iCB

5) PSW loaded from RB pointed to from that TCB

6) if end of TCB Queue reached and no ready task
is found
a) a special pseudo-task is "dispatched"

b) RB is part of TCB (first word of TCB
contains the address of TCB)

c) the PSW loaded puts system in an enabled
WAIT state

PROGRAMMING/SYSTEMS LDUCATION - SDD POUGHKLEPSIL

IV

C

System Initialization Overview *
A, Initial program load
1. IPL is a hardware/software process by which the
operating system is activated and initialized.
It consists of
a, Setting dials on system control panel to
address the I/O device containing the IP.L
text, the SY¥S1.uLUCLEUS data set, etc.
b. Pushing the LOAD button on tiie control panel
2. This causes hard wired circuitry to perform the
loading of the IPL program which in turn loads the
nucleus

B. Nucleus Initialization

1. The IPL program eventually loads the nucleus
initialization program which

a. builds and initializes various tables anda work
areas in the nucleus

b. establishes communication with the operator

C. performs special processing on the basis of
operator instructions

d. establishes boundaries of
1) SQA
2) Master Scheduler Region
3) LPA
4) dynamic area

2. Control is then passed to the liaster Scheduler
Initialization Routine of the Master Scheduler

PROGRAMMING/SYSTL!S LDUCATION - SLD POUGHKLEPSIE

Iv

Iv A,

cC. Master Scheduler Initialization

1.

This routine formats various control blocks used
by the master scheduler and

Q.

b,

PROGRAMMING/SYSTEMS I'DUCATION - SLD POUGHKELPSILE

displays automatic commands

waits for SET command

initializes work queues if requested to
schedules execution of auto commands

enters wait state

C

IPL Procedure Vi

Ref:

A,

IPL/NIP PLM- (Y28=60b1)

IPL Appendix

IPL CSECT ifrom programming library)
liandout S7

LOAD button i . V A,

1.

Hardware Action
a. hardware circuitry is set up to

1) seek to cyl v, track v of device audressed
by console dials

oy read 24 bytes (3 doukble words) into location
0 of main storage

b. These 24 bytes consist of:

1) APSW - unused in IPL of 0S/360 but is used
in IPL of other systems (DOS, TOS, etc.)

<) Two CCW's - used to cause reading of IPL
bootstrap record

C. Hardware circuitry causes "execution" of first
CCW which krings IPL bootstrap record into main
storage at an address greater than size of IPL
CSkCT

d. Second CCW 1is usually a TIC to IPL bootstrap
record but may be installation modifiec to
something else

Bootstrap record

a. Is then "executed" Ly circuitry

b. It usually consists of a series of CCW's

c. Wnen "executed" bootstrap causes .IPL CSECT to
be brought into location v - the location of the

PROGRAMMIWNG/SYSTEMS LUUCATION - SDD POUGLKEEPSIE

bootstrap record was high enough so as not to be
overlayed by IPL CSECT

d. Last instruction of bootstrap is a simulated LPSW
which causes first doubleword of IPL CSECT (which
is a PSW) to be loaded by the CPU and true
instruction cycling begins

3. IPL CSECT
a., - Is first true software in IPL Procedure

b, Operator can cause loading of an alternate nucleus
or limit storage size by doing an instruction stop
at location 80 and inserting appropriate indicators
at locations 8 and 9

C. Thus instruction cycling will stop after first
instruction of IPL CSECT (which is a BALR 15,0
to establish addressability) allowing insertion
of the indicators

note: IPL CSECT uses DC's to construct the PSW at loc, O,
and zero out main storage to location 80 , with the
exception of the program check new PSW which is con-
structed at its required fixed location, first executable
instruction is the BALR at loc., 80

by Software Processing
a. IPL CSECT
1) clears req's 0-14 (15 used as base regqg.)

2) inserts address of a program check handling
routine in reg. 10

note: IPL CSECT has used DC's to construct the P/C new PSW at
appropriate location in low core. It needs that PSW
as it clears main storage to 0's Ly doing a STM until
it gets a program check

- 3) checks loc. 8 for alternate nucleus indicator
a) if 0 - IEANUCO1 is fetched
b) if non 0 - append byte 8 to standard

name IEANUCO to form name of nucleus
to be loaded

PROGRAMMING/SYSTLMS rLDUCATION - SDD POUGHKEEPSIL

note: Can have 9 uifferent nucleuil (IEANUCO01-0Y), all must
be members of PDS SYS1,.,.4UCLEUS on pack from whiclh
system was IPL'd.

4) checks core size limit indicator
5) clears main storage to u's
a) uses STM rather than VI, LVC as register

to storage is faster than storage to
storage instruction

b) starts from end of IPL CSECT

c) continues until a program check occurs
or until limit indicated by loc ¥ is
reached

6) sets all protect keys to 0

7) searches for nucleus
a) appends character at loc 8 to IEANUCU if
loc 8 is non «ero
L) if loc v is v, searches for IEANUCO1
c) reads label of systen residence device

(device you IPL'd from)
d) locates VTOC of residence device

e) searclies VTOC for SYS1..UCLLEUS data set

£) reads scatter/translation record for
selected nucleus into main storage above
IPL CSECT
o) builds tables used in loading ana relocating

the nucleus

a) size table - determines size of every
CSECT in nucleus, uses-CSLCT origin
relative to origin of load module; obtainead
from scatter table \(part of scatter/translation
record) :

note: liucleus 1is set up to Le scatter loaded - cach CSLCT can

PROGRAMMILIG/SYSTEMS LOUCATION - SOD POUGHKELPSIL

note:

be loaded into main storage in distinct locations from
other CSECT's in the load module, thie module does not
have to occupy contiquous bytes of storage as a bLlock
Toaded module does.

b) address table - for each CSECT an entry
is constructed indicating where that
CSECT will be in main storage. Uses
info. in size talble and previous entry in
address table to arrive at value for each
CSECT '

It is assumed the first two CSECT's of the nucleus will

be NIP and I/0 Interruption handler. I/O Interruption
handler is only CSECT that must reside at a fixed address
in main storage - at location 0 - wecause it contains pre-
assembled old and new PSW's that must occupy fixed
positions in main storage

c) relocation factor table -~ for each CSLCT,
IPL program calculates relation factor
to ke used in resolving addresses in each
CSECT. When inucleus link edited, relative
origins were determined and the address con-
stants in each CSECT were filled in using that
relative address. fT{ilus it is necessary to
arrive at a true relocation factor vasea
on difference between relative and actual
origin.

9) IPL program now relocates its unexecuted code
and the tables just built into high core (no
higher than 252K though) so nucleus can Le
loaded into location 0 and zeroes out the area
it is vacating

10) Wucleus CSECT's are loaded

a) first CSECT is iIP and is loaded into
storage just below relocated IPL code

b) second CSECT is I/0O interrupt handler
and must be loaded into location 0,
tables have been built so this liappens

c) other CSECT's loaded as encountered in
load module

11) Passes control to JIP program, passing in general

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKLEPSIE

B.

registers

- a) size of main storage
b) address of system residence device
c) address of size table and address table,

and number of entries per table
d) address of next double word above nucleus
e) IPL branches to loc 16C, which is a LPSW

from 170, the PSW at 170 contains address
of first instruction of WIP

Nucleus Initialization Program V B.

1.

Builds and initializes tables

a, Ccvy
1) CVT is preassembled in I/0 Interrupt Handler
2) NIP puts address of CVT in location 10

3) As other control blocks and tables built,
their addresses are put in CVT

4) Highest main storage address put in CVT

b. Trace Table initialization - optional

1) retrieves and rounds to 8-word boundaries the
entries in the 3-word control area for the trace
table

2) address of the 3-word area inserted in

loc 84 (L4 hex)

C. Determines size of LCS (2361 core storage)

d. Determines console readiness
1) console initialization routine locates console
a) sysgen supplied addresses of primary

and alternate consoles (e.g. 009)

b) seaches UCB table for UCD with

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHLEEPSIL

note:

note:

2)-

that address

checks console readiness

a) if not ready, tries alternate console(s),
if they are not ready - WAIT state, 2£'07'
error code, and must re-IPL, can't just
ready the console

L) if ready, continues processing

Bit settings in UCB indicate whether device is ready or not,
but all UCB's are assembled at sys gen time as online and
ready, therefore a TIO is done to verify the consoles readiness

e. Initializing Ready DA = UCB's (Dumb .IP)

1)
2)
3)

“)

2]

Cnecks, via a w10 instruction, only the vi4 UCB's
All UCB's generated as online and ready
If device ready, JIP uoes the following

aj vol. serial of volume mounted read into
UCB

) TTR of volume VIOC placed in UCB (its
in vol. label,

Bsuilds table of ready DA duevices for later
reference

Smart LIP continues process
a) checks only non-bDA cevice UCB's

b) if not ready sets bits in UCB to so indicate

f. Initializing the System rResidence UCB

1)

A“IP checks UCB's for one with device address
equal to the device you IPL'd from

Could have tried to IPL from a device not specified at sysgen

2)

3)

If found, UCB marked so volume mounted on it is
permanently residence

If not found, operator message issued to mount

PROGRAMIMIIIG/SYSTLMS EDUCATION - SDD POUGHKLEPSIE

- SYSRES on a logically (on line) connected device
and system goes into wait state and must be re-IPL'd

g. Setting up LEB's
1) Built at hi end of nucleus because multi-extent
SVCLIB or nulti-extent or multi-volume LILKLIG
requires DEB's that vary in size and will alter
size of nucleus

2) WIP builds and initializes uULB for SVCLIB

. 3) DEB for LOGRLC 1is assembled in llucleus so wIP
just initializes it . .

4) both data sets must be on SYSRES pack

5) DSCB's read into storage, appropriate information
moved into DEB's

2. Initializing the Nucleus
a. Timer - Optional
1) sets timer to v hours

2) loads a value (varies with model) into reqg. 1
and does a one instruction sCT loop

3) checks timer, if decremented, resets
to 6 hours and continues

4) if timer hasn't been decremented, issues message
timer not working and continues
be Defines Control Program Areas
1) constructs SQA in temporary location above

nucleus (to allow
expansion of nucleus by UEB's yet to be
constructed)

<) iiaster Scheduler temporarily defined as all
main storage from SQA to WIP

3) builds in SQA

a) dummy PQE for laster Scheduler region

PROGRAMMING/SYSTEMS LDUCATION = SDD POUGHKLEPSIE

note:

note:

b)
c)
d)
e)

£)

i)

i)

.j)
k)

PQL for rlaster Scheduler region

dummy PQE to be used for iil0 free area
PQ: for iU free area, initialized later
DQE for SQA

FQE for free space in‘SQA

FBQE describing liaster Scheduler region
(in :IS region)

a PQE for H1 free space

PQE for IS region in H1, will be
initialized only if H1 LPA Is specified
space is freed if L1 LPA is not built
FBQE aescribing H1 space

initial SVRB space is allocated at high

end of SQA, address stored in transient
handler routine

when SVC interrupt occurs that requires an SVRBE, space
for one is already available, it is constructed into
the SVRB needed for that SVC request and a GLETMAIN
issued to obtain space for the next one. This is done
so the GLTMAIN (an SVC) will not have to be issued while
processing another SVC

Ce Initialize SVC Table

area

1) SVC table contains entry for every SVC numver,
is 255 entries long

2) HIP recognizes type III and IV routines and
issues BLDL for that routine name (IGCOnnnn)
against SYS1.SVCLI&

3) stores TrR of routine in SVC table entry

“) if oLDL can't find an entry, console message
is issued to that effect but does not halt
processing

It is this table that ILHIOSUP utility modifies when it
is executed, usually wecause of moving or modifying the

PROGRAMIMING/SYSTLI1S LDUCATION = SDD POUGHKLEPSIE

SYS1.SVCLIis data sct.
d. Building LINKLIB uLB

1) LINKLIB need not be on sys residence device,
thus WIP handles construction of its control
blocks separately from SVCLIB and LOGRLC,
LINKLIB must Le cataloged where ever it is

2) If not on residence volume determined oy
check of catalog) wwIP determines if volume
lholding LINKLIB is mounted

a) if it is, initializes the DEB
L) if it isn't, issue mount messacge,
walit for interrupt when device becowmes
ready
3) if on residence volume, initialize uLB
4) UCB representing device containing uoIWKLIB

is marked permanently resident

note: Since the SVCLIB anu LIUKLIB data sets may be nmulti-
extent and LINKLIB3 mav ke multi-volume and since tile
size of a DEB depends on the number of extents in the
associated data set, space allocations for
these blocks cannot be anticipated, thus they must be
built at high end of wucleus to allow them to e what-
ever size is necessary. 7o have pre-allocated space,
embedded in the nucleus, would not have allowed them to Le
dynamic in size.

e. Initializing the S5¥S1.DUMP data set

1) used to contain a dump if system failure
occurs

2) WIP checks catalog for data set
a) if cataloged, checks if volume is mounted
verifies Jata set existence anu or-tionally
formats the space
L) if not cataloged requests cperator to reply

with address of device to Le used or to
suppress the function

PROGRAMMING/SYSTEMS oDUCATION - SDD POUGIIKEEPSIC

é) if tape - WIP verifies a non-lalelled
tape is mounted and unit is ready

d) WIP initializes the control Llocks necessary
for use of data set -
ECB, LCB, LuB anu IOL and places addresses
in CVT

£. User options (optional)
1) if requested at sysgen time, JIP indicates model

number of CPU then requests operator to "SPECIFY
SYSTEM PARAMETERS" such as (selected operands)

\

a) additional resident modules in LPA (RAM=)
note: If delete RAM, usually have to increase .1S

region to contain certain access nethods

(e.g. BSAM) needed by system routines (e.gq.

log routines)

b) names in BLDL list (BLDL=)

c) additional resident SVC rtns (SVC=)

d) specify larger System Queue Space (SQS=)

e) minimum region for initiation (MIN=)

£) master scheduler region (HMPS=)

g. Locating SYS1.PARMLIB

1) Contains lists used in determining
a) modules from LINKLIB to e loaded into uLPA
D) modules from SVCLIB to ie loaded into LPA
c) modules whose names are to be in BLDL list

2) nIP checks catalog for PARIMLIB
a) if catalogea, verifies.volume nmounted
L) if not cataloged, assumes its on SYSRES

and verifies its existence and stores
track acdaress of data set for later use

PROGRAMMING/SYSTLHMS :(DUCATION - SDD POUGHKEEPSIE

- C) if PARMLIB not available, messages in-
dicating resident options cannot be ful-
filled are issued

note: Certain modules must be in LPA, this list is
not in FARMLIZ (just in case PARILIS not avail-
able) but is in iiucleus. <“hus those modules
can always be loaded into LPA

h. Building list of data sets to be concatenated to
LINKLIB

1) list of data sets obtained from PARHHLIB
2) WIP tries to LOCATE each data set

3) Chiecks UCB's to verify necessary volumes
are mounted

L) builds a bkB for each data set
5) this construction expands .lucleus, pointer
updated to new end of wucleus each time a
new VLB is built
i, Initialization of recovery tlanagement Routines (SER)
1) checks sysgen specified option
2) loads specified SER module (SERO, SiR1)
a) SERO - not entirely resident UIIP
loads resident portion, locates §& sets
up pointer to remaining part

) SER1 ~ resident, 1JIP loads it

Je SQA 1is relocated to just above nucleus, which has
reached its final size

ke Time slicing initialized (optional)
1) time interval converted to times units
2) done for eacli time slice group
3) if cancelled oy operator, skipped

1. Initializing Rollout data set (optional)

PROGRAMMING/SYSTLMS LDUCATION - SDD POUGHKELPSIL

1) S5YS1.ROLLOUT must be cataloged, «IP checks
catalog for it, if not available, operator
informeu and «.IP bypasses further rollout
processing

2) If availaoie, .IP cliecks if it is large
enough to nold all of dynamic main storage,
if not, scratcii and try to reallocate

3, if big enough, 4IP formats the data set to
allow writing of main storage to pre-
determined locations on data set. rach
location of main storage mapped to a specific
location on SYS1.ROLLOUT, algorithm used
to format the data set

Initialization of MCH and ¢CH \optional, available only

for ilod 65 and 85

1) Pointers used by machine Check handlers are
initialized
Z) Writes conies of all refreshable nucleus

modules onto $YS1.ASRLIB - if ASRLIB can't
be located, [ICH cancelled

3) JWducleus kefresh Table (HRT) built at sysgen
time, used to locate refreshable nucleus
modules

Resetting fiain Storage poundaries
1) ixpanding 5QA if reguested

2) HIP then relocates itself to 2k Llock

just above $QA and reestaiblishes addressawility

3) BLDL list built above relocated .iIP, optional
names being added, then moved to nhighest core
address. BLDL issued and if requested, a list
of modules is written on console

Pack area LOAD'a with

LINKLIB and SVCLIB modules required Ly control program

(list internal in ilIP)

User specified reentrant modules from LINKLID

PROGRAMIING/SYSTLS LDUCATION - SDD POUGHKRELPSIE

Resident SVC routine, WIP modifies SVC table
entries (for type III and IV modules to indicate
they are now resident and inserts main storage
address of module in the SVC table.

4, Setting up Final liain Storage bivisions
a. wIP sets lMaster Scheduler region to 10K unless
operator specified another size and sufficient
. storage is available :
1) Master Scheduler is just below LPA
2) Control blocks built describing the region
and chained out of :.iS TCB
b. bynamic area set up as all storage between SQA and
master Scheduler Region
1) Control vlocks (D=PQE, PQE, FBQE) built to describe
dynamic area
c. ivIP then LINK's to rlaster Scheduler Initialization
Rtn
C. Master Scheduler Initialization (IELVIPL) vV C.
Ref: Job :ilanagement, Part 1, (¥28-6660)

#iVT Supervisor, Section /, (Y28-6659)
IEEVIPL listing (from sys gen)

Console Initialization

a.

b,

Performed by LINK'ing to console initialization rtn
of communication task, by master scheduler
initialization routine

Consists of placing address of master control ULCB
in the Unit Control .lodule (UCM) = primary control
table for console communications, is non-executawvle,
contains ECB's used in console communications

IlVT Supervisor, Section 12, UCM Format (Y28=6659)

ECB's constructed in UCH, used in indicating
messages to be written, etc.

On return, master scheauler IPL rtn (IKLVIFL)
writes "RUADY" on console and displays wvossicle

PROGRAMIMING/SYSTLIS L.DUCATIOIl - SDD POUGLKLEPSIE

note:

AUTO commands

e. WAIT's for SET command, specifying an LCB in UCM

SET command

a. when issued, master scheduler IPL rtn moves master
TIOT, assembled in the routine, to SQA

b. Locates PROCLIB ana JORBQL data sets

1)

2)
3)

4)
5)
6)

SET command might specify units the data sets
are on

if not, catalog is checked for them

if not cataloged, units specified at sys gen
are tried

if not there, sys residence volume is checked
if not found there, messages to the operator

when located, PROCLIB is cataloged on volune it
is on

c. Pointers to UCB's for PROCLIB and JOBQL are put in the
master TIOT

no DCB's, DEB'c, etc., are built for PROCLIB nor JOBQE
by these routines. RDR tasks use PROCLIB so they
contain necessary control blocks and OPEN the data set
JOBQE is handled entirely by Queue !lanagermcnt routines
via XDAP and control blocks required for /ADAP are in
Queue lManagement Routines.

d. Log Initialization (optional)

1)

2)

3)

4)

If included in system, master scheduler IPL
routine XCTL's to log initialization routine

System log consists of two data sets - SYS1.SYSVLOGX
or SYS1.SYSVLOGY - so one can receive messages
while other is being dumped to an output device

WTL macro and LOG command cause information to
be placed in a log data set

Initialization Routine

PROGRAMMING/SYSTL!IS LDUCATION =~ SDD POUGLKEEPSIL

a) locates data sets, they must be cataloged

b) sets up log control areas and ouffers
c) creates DCB's for log data sets
d) ATTACIl's log writer routine to create and

initialize control blocks for the data sets

e) WAIT's on log LCD in rlaster Scheduler Resident
data area

£) ECE posted when log data set full and activates
the writer rtn to write the data set on to an
outoput device

e. If requested in SkT command, ilaster Scheduler IPL
routine ATTACH's a task to initialize the $YS1.SYSJOBQL
data set. This task runs in its own region, Haster '
Scheduler WAIT's on its completion

Volume Initialization

ae rlaster Scheduler IPL routine ATTAChH's a task to verify
- mounting of volumes that must be permanently resident

b. The task accesses SYS1.PARMLIE for member PRESRIES and
searches UCB's for volumes indicated in PRESRLS and

marks each UCB that holds such a volume permanently
resident

C. Informs operator of status and volume serial
numbbers of all permanently resident and reservea.

Execution of AUTO Commands

a. On completion of volume initialization, AUTO commands
selected by operator are displayed on console and

b, Execution of same is scheduled by invoking SVC 34
routines for each command {(if SMF is to ke initialized,
execution of commands pends until after SHMF is initialized)

SMF Initialization (optional)

de On return from log initialization, system management
facilities are initialized. If included in the system

PROGRAMMING/SYSTEMS LDUCATION - SDD POUGLKEEPSIL

SMF Overview

Ref:

1)°

2)

3)

b)

<)

Planning for SMF, (C28-6712)

Routines of control program to
a) provide historyv of each jobL as it is processed
b) monitors jobs at various noints in nrocessing

Control program calls on SAF to collect data

a) IPL
D) reader/interpreter
c) init/term

Can link to user exits to do additional monitoring
or processing

Information is collected and written onto SMF
data sets - SYS1.MANX and SYS1.1MAJY, such information
on .

a) machine configuration, I/U devices, storage
size at IPL time and when VARY commands oring
a device online or offline

b) Job and Jobstep information = accounting
information, start time, CPU tine tactual CPU
use time) SYSIJ, SYSOUT usage, .i0w terminated
recorded at Job and Jobstep 4YWermination

c) Counts of references to user data sets

Q) counts of .k blocks assigned to and released
by a task

User Lxits from

aj rReader/Interpreter - before eacih JCu statement
is interpreted

D) Init/%erm - wlien job is selected for initiation
c) Init/Terin - when step is selected for
initiation

PROGRAMMING/SYSTEMS LDUCATION - SDD POUGHKLEEPSIE

d) Init/Term - when step and/or job is terminated

. e) Timer SLIH - if CPU or WAIT time limits are
‘ exceeded for a job or step
C. SMF 1lnitialization routines are oCTL'd to by laster

Scheduler IPL Rtn and they

1) add assembled DD names SiFMANX and SMFMANY into
rlaster Scheduler TIOT

2) obtain System sanagement Control Area (SMCA) space
in SQA, place pointer to SHMCA in (VT

3) OPENIl PARMLIB and read member containing GHF
parameters check them for validity, recuests
parameters from operator if any are incorrect,
parameters stored in SHCA

4) SHMF data sets allocated (e.g., devices allocateuw)
and onened, control blocks (JFCB's) for SYS1..ANX
and SYS1.IIANY are written into S5YS1,SYSJOBQE

v) UCB's containing SMF data sets are marked
permanently resident

' 6) on return from the allocation rtns, Initialization
\ rtn issues ATTACH to create SMF task and pass control
- to SHMF Writer routine who kranches to SHF timer
‘ routine
7) Wnich sets 10 wminute timer and returns
note: 10 minute timer because at least every 10 minutes GilF

rtns accumulate amount of time CPU was 1in wAIl state

8) On return, SiHF writer formats and writes SMF
IPL record and XCTL's to .laster Scihieduler WAIT
routine, riaster Scheduler Initialization is
complete

[PROGRAMMIWNG/SYSTEMS LOUCATIOin — SDD POUGEKLEEPSIE

Job Management Overview VI

Ref:

C .

Handouts S19, V25-6156

The Work Queues VI A.

1.

2.

One data set - SYS1.SYSJOBQE, undefined DSORG

Entries in this data set represent work to be
done by operating system

a. Jobs to be executed by the system - input

b. SPOOL'd SYSOUT data sets and system messages
to be printed by system writers - output

SYS1.SYSJOBQE subdivided into total of 76 subgqueues

a. 15 input queues corresponding to the 15 input
classes (CLASS operand on JOB card classes A-=0)

b. 36 output queues corresponding to the 36 output
classes (S5YSOUT= or HMSGCLASS on JOB card, A-=i%
0-9)

C. RJE queue = contains job definitions transmitted
to central computer across telecommunications lines

de. ASB queue = contains condensed JCL images of Job
definition, for faster interpretation later

e. Hold queue - contains job entries (input) for jobs not
to be executed until operator releases them (TYPRYN=
HOLD or operator command)
£. 21 unused queues
g. One master gueue indicating unused space in S¥S1.SYSJOBQE
Physically, the first part of JOBQE contains Queue Control
Records (QCR's) one for each queue, used to enqueue an entry

on that queue and to dequeue it when system 1is ready to
perform the work the entry represents and describes

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKLEPSIE

5. Rest of space of data set is divided into logical tracks

a. LTH - Logical Track Leader, serves as address and chain
field for the series of records called a logical track

b. logical track - an installation defined number of 176
byte records, for efficient usage of JOBQE space, should
have some relationship to physical track

B, Process Input : VI B.
1. One function of Job Management is to process input,

a. read an "input stream" - collection of JCL,
procedure references, data and commands

b. convert JCL, proc-references to control blocks,
place them on a queue

C. generate messages about the JCL

d. SPOOL (Simultaneous Peripheral Operation On Line)
data onto DA space to be able to process JCL
following it

2. There are several ways 0S/360 MVT has of "reading an
input stream"

a. "ordinary" Reader/Interpreter = task that reads
and interprets (scans for errors, converts to control
blocks) the input stream in one task

b. ASB (Automatic SYSIN Batching) Reader - reads and
interprets as distinct tasks

C. RJE (Remote Job Entry) Reader - handles job stream
input submitted from remote work station to central
computer across telecommunication lines

d. Restart Reader - used to prepare jobs for restart
that have abnormally terminated but are eligible
for automatic step restart

C. Initiate/Terminate Work VI C.

1. The function of removing enqueued input work from the
input queue and performing the necessary set-up and
scheduling of the work and performing hcusekeeping
when the job is finished is the function of the

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

Initiator/Terminator

2. Selects a job and a step of that job to pe executed

3. Allocates I/0 devices to the task

g, Obtains a region for the task

5. Creates the task

6. Establishes time limits for the step if requested to
(TIME operands or JOB and EXEC cards)

7. Terminates the task (normally or abnormally) when necessary,
frees region and devices '

8. Selects next step or job to be processed

D. Process Output VI D.

1. System programs generate messages about a job
as they process it, the program may generate data
on a SYSOUT data set

2. Both these types of data are temporarily placed on
DA space while job is being processed

3. It is a function of Job Mgmt to write these data
from where there are (DA space) to where operator/
system programmer/problem programmer want them

4. This function is performed by the system output
writers

5. They operate as separate tasks, in their own regions, are
an advantage as these are only programs lhandling above
data and thus avoid contention for devices where data is
being written - usually unit record devices

6. Also, allow program that creates data or, to which messages
apply, to execute and be terminated before SPOOL'd data is
handled thus speeding thruput

E. Process Commands VI E,

1.

Commands start, alter, stop system tasks, cause services
to be performed, display certain actions, make system
information known

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

Usually entered thru system console, but can appear
in job stream

They areé a communication from operator/programmer to
system, are accepted by the communications task

Service, requested by command is analyzed and
Master Scheduler sees to it the service is performed

Can create a new task to perform service, either in’
MS region or a new one in its own region

Can set bits, POST ECB's so existing tasks can
perform requested service

PROGRAMMING/SYSTEMS LDUCATIOM - SDD POUGHKEEPSIE

I The Work (ueues VII

(Ref: Job Management, Part 6, The Work Queues,
Part 1, Initializing the Queue vata Set (Y28-6660)

A. SYS1.SYSJOBQE VII A.
1. Space allocated to the data set at sysgen time
2, Subdivided into total of 76'queues
a. 15 Input gqueues
b. 36 Output queﬁes
C. Master (free) queue
d. RJE queue
e, ASB queue

f. HOLD queue

g 21 unused queues
B. Space at physical beginning of the data set contains VII B.
Queue Control Records (QCR's) one for each of the
‘ 76 queues, each QCR contains

1. A "top pointer", pointing to the next work, in that
queue, to Le perfcrmed (type of work - job or output -
depends on type of Queue the QCR represents)

note: "Top pointer" is used to select next work (job to be
executed or output to be written) to be performed.
Points to oldest, highest priority work on that queue

2, Fields corresponding to priorities 0-14, pointing to
work at each priority in that gqueue (class); work of
equal priority in a class is enqueued in FIFO order

note: These fields are used only for adding new work to a
queue, not for dequeueing and performing the work

PROGRAMMING/SYSTEMS EDUCATION -~ SDD POUGHKLEPSIE

Pointer to an ECB in main storage, LCB built by
routines (initiators, writers) that perform the work
that the queue entrys represent. When no work is

on the gueue, the routine WAIT's on the ECB, when
work enqueued, the Queue Management rtns POST the
ECB, thus informing the routine of work to be done

Rest of data set space is formatted into logical Tracks

1.

Logical Track Header (LTH), used to chain several
logical tracks together when such space is needed
to contain control blocks describing the work

logical track - installation defined number of
176~-byte records (specified at sysgen time, can

be modified at IPL). Should be set up to maximize
use of space on a physical track (no track overflow
is allowed on JOBQEL)

Space rlanagement on SYS1.SYSJOBQE

1.

Allocation of space in the data set is done by
Queue flanagement routines whici: assign and free
space and read and write the records on it

Space allocated to
a. Reader (and Interpreter) which create control
blocks that describe work and contain messages

about a job

b. Initiator/Terminators which generate messages
(allocation, deallocation, etc.)

VII C.

VII D.

Space is allocated in logical tracks, such space cannot

be shared between work entries

One logical track allocated at a time, when more
space needed, another logical track is allocated
from master (free) queue, from wherever there

is a free logical track

The various logical tracks allocated to a work entry
are organized and chained by the wLTi's as follows

a. For control blocks descriking input (job's)

1) all LTH's, other than first, contain pointer

to the first

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIL

notel:

notez2:

2) Lach LTH gets a pointer to the next LTH when
- and if another logical track is allocated (e.g.
first LTH points to 2nd, 2nd points to 3rd
etc., etc.)

b. For control blocks describing output (SYSOUT
data sets, messages, etc.)

1) all LTH's other than first, contain pointer to
the first

2) Each LTH receives a pointer to the next wLTH
allocated when and if one is allocated

C. A pointer in one of the 176-byte records in the
input entry points to the first LTH allocated
for output control blocks

Until job termination, the various LTi's for input and
output control blocks (and a distinct logical track is

used for each distinct output class - SYSOUT= or .SGCLASS=
used by the job) are treated as a logical group and the
pointer in the appropriate input QCR priority field

points to the last LTH allocated for input control

blocks

At job termination time, the logical tracks containing
input control blocks are freed and the logical tracks
containing control blocks describing that job's output
(SYSOUT data sets, messages, etc.) are split up and yueued
off the appropriate output QCR's according to the job's
priority

since the smallest unit of space that can be queued off

a QCR is a logical track, the control blocks describing
messages and/or data sets in different output classes

must be on distinct logical tracks so the logical

tracks can be separated and each queued on the appropriate
output class QCR

the control blocks representing a job's output to a
particular class are enqueued at job termination time

(as opposed to each step's output being engueued at step
termination time) because the writers handle the work as
a unit and thus print all of job's output together rather
than the output of each step interspersed with output

of other step of other jobs

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

(I

Engueueing work

Ref:

1.

VII L.

Job Management, Part 6, tlie Work Queues, (¥Y28-6660)

The top pointer in the QCR points to the last LTH which

was allocated

to the job to contain input control blocks.

That (last) LTH points to the first LTH allocated to the
job and all other LTH's for input control blocks are hung
off that (first) LTH

The top pointer points to the highest priority, oldest
enqueued Jjob on that queue, that is, the next job that
should be initiated

Each priority

pointer in a QCR points to the last LTH

allocated to a job for input records. 'The job it
points to is the most recently enqueued job at that

priority

If there are several jobs engueued on a QCR at the same

priority, the

job's LTH's are chained by putting, in the
g

last LTH for input for each job, a pointer to the last

LTH for input

for the next newest job at that priority.

That is, if there are three priority 4 jobs in a queue,
the top pointer points to the oldest job, that (oldest)

job points to
last (newest)
to the newest

When a job is
corresponding

the next oldest and that job points to the
job. Tne Prty 4 pointer in the QCR points
priority 4 job.

addea to the gueue, the priority pointer,
to tne new job's priority, is set to point

to the new job's LTH (last LTH for input records). If
there were other jobs at that priotiry, the last LTH
of the job that was previously the last job engueued
(and is now next-to-the-last), is set to point to the
last LTH of the newly engueued job

Dequeueing Work

1.

2.

The initiator

VII F.

follows the top pointer to the job

that is next to be enqueued from a gqueue

In that job's

last LTH - the LTH the top pointer

points to - is a pointer to the next job that should
be initiated from the yueue

The pointer to this job is moved to the top pointer

in the QCR

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

It should be stressed that, thougih the above discussions
tend to imply that readers, writers, or initiators enygueue
or dequeue work, allocate or free logical tracks, these
routines really indicate what they want done to Queue
Management Routines and these routines (and only these)

‘ actually manipulate the queues.

note:

PROGRAMMING/SYSTEMS EDUCATION = SDD POUGHKEEPSIE

.."TII Process Input : VIII

A, Definition of Input VIII A.
1. JCL records
2. Procedure library references
3. Operator commands
4, Data

B. "Ordinary" Reader/Interbreter VIII B.
1. Function

Ref: Job Management, Part 2, Part 6 - the
Interpreter Rtn (Y28-6660)

a,. Read records
b. Scan for errors

Ce Accumulate complete JCL statement (continuation

cards)
(de. Construct control blocks from JCL statements
e. Cause control olocks to be writtenh on

SYS1.SYSJOBQE data set, enqueued off appropriate
input class QCR and at appropriate priority in
that QCR

£. SPOOL input stream data to temporary VDA space,
construct control blocks pointing to such data

g. Intercept input stream commands and validate
and schedule execution of them if they are valid

note: when reading and interpreting functions performed in the
same task, the interpreter performs the reading function,
not vice versal

2. Control blocks built

PROGRAMMING/SYSTEMS LDUCATION - SLD POUGHKEEPSIE

Ref: Job llanagement, Appendix A (Y28-6660), Handout
S3, sS4, S13

a. JCT - Job Control Table - built by R/I
1) From information on JOB card

2) Contains, also, pointers to other control
blocks built for job

a) first SCT

b) PDQ

c) first SMB

d) job ACT

e) first SCD

£) last DSB

g) VUSENQ table (TTR)

3) Is not completed until next JOB card (or LOF)
is encountered (needs count of steps in job)

4) Job is not enqueued (& therefore not capable of
initiation) until JCT is written out

. SCT - Step Control Table - built by R/I

1) From information on EXEC card
2) Contains pointers to other control blocks
a) next SCT
b) first SIOT
c) first SMB for next step
d) last SMB for this step
e) ACT for this step
£) VOLT

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKLEEPSIE

3)

SI0T
1)
2)

3)

4)

JFCB

1)
2)

‘g) first DSB in message class

h) SIOT of data set referenced by PGM=%,
stepname.ddname operand

SCT for first step of a job is chained out of
JCT, each successive SCT is chained out of
preceding SCT for that job

- step I/0 Table, built by R/I

from device information on each DD card

contains

a) ODNAME

b) pointer to next SIOT

c) peinter to JFCB

d) number of units requested
e) volume count

£) SYSOUT class (if its a SYSQUT Data set)
g) pointer to next DSB

SIOT written in Input Logical Track space; used
for device allocation purposes

SIOT chained out of SCT for step the DD card
is associated with, other SIOT's for this step
chained out of this one and each other

- Job File Control Block = built by R/I

from data set information on each DD card
Contains

a) data set name

b) label type

c) volume seguence number

d) data set creation, expiration dates

PROGRAMMING/SYSTEMS LDUCATION - SDD POUGHKEEPSIE

3)

k)

5)

e) DCB information coded on DD card
£) volume serial number(s)
q) space request

If it is a multi-volume data set, JFCB can hold

first 5 volume serial numbers, if more are specified,

a JFCBX is used to contain up to 15 more volume
serial numbers, JFCBX chained out of JFCB

Is built in input logical track space for named
data sets, is built in output logical track space
for SYSOUT data sets and is chained off a DSB

in such space

In the output logical track space, the DS3's
and JFCB's for the SYSOUT data sets of the
same class are chained together

DSB - Data Set Block - space reserved by R/I, filled in
by Terminator

1)
2)

3)

)

5)

Built for SYSOUT data sets, at termination time

Contains

a) pointer to next DSB
L) DD name

c) pointer to JFCB

d) UCB address of unit allocated to data set
e) name of program to process data set
Space reserved for DSB in output logical track

space, is filled in by terminator providing add-
ress of JFCB for the SYSOUT data set

Is chained off SIOT (which is in input logical track

space) built for SYSOUT data set

Other DSB's for SYSOUT data sets of same class
as this are chained off this one in same logical
track's allocated for output for this class

SMB - System iessage Block - built by R/I or I/T as

PROGRAMMING/SYSTEMS EDUCATION = SOD POUGHKEEPSIE

needed

1) . Built to contain messages generated about the job
as it is processed by Reader/Interpreter (JCL images,
JCL messages) and Initiator/ierminator (allocation/
deallocation messages)

2) JCL images placed two to a SMB

3) a110cation/deéllocation messages packed in

4) Resides in output logical track space

5) Chained off JCT, other SMB's chained off this and
each other

ge ACT - Accounting Control Table - built by KR/IX

1) Built to contain accounting information on
JOB or EXEC card

2) Chained off JCT or SCT depending on source of
information

h, PDQ Directory Block/PDQ Block - Passed Data Queue -
built by R/I

1) Built when data sets are PASS'd

2) Built in pairs, eacn pair contains information
about three PASS'd data sets

3) Directory Block contains
a) max of 3 data set names
b) pointer to corresponding entry (for each data

set) in PLQ Block

4) As many pairs as needed are built and are chained
off JCT

5) PDQ Block contains, for each of the 3 data sets
a) address of JFCB for data set
b) adaress of SIOT for data set

c) address of UCB for data set

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

i, SCD System Output Class Directory = built by Interpreter
1) Built for SYSOUT classes used

2)" Contains an entry for each distinct output class
used by job (MSGCLASS, SYSOUT)

3) One or two (max.) SCD's built for a job
chained off JCT

4) SCD entries used at step termination to create the
DSB's for each SYSOUT data set

Je DSENQ - data set engueue table - built by R/I
1) Built for each job, chained off JCT

2) Contains all non-temporary data set names used
by any step of the job

3) Initiator LNQ's on this list of names before
ATTACHing the first step of the JOB
4) ENQ specifies "share" or "exclusive" control

depending on DISP parameter on DD card
DISP=SHR - share
DISP=0OLD,NEW,PASS - exclusive

K. VOLT = Volume Table - built by R/I

1) built for each step of a jobL, chained off each SCT
2) Contains volume serial numbers needed for that step
3) Used during device allocation for each step, used

to obtain volume information

Control of Reader/Interpreter

Ref: Job llanagement, Part 6, Interpreter Rtn (Y28-6660)
Operator Guide, Chapter 3, Operator Commands (C28-6540)

a. Started by operator command, Reader/Interpreter is a system
task executing in its own region = 48K min.

b. Master Scheduler (really, System Task Control Routine)
ATTACH's the Reader task, first rtn to receive control
is Interpreter Reader Control Rtn which obtains space for
and build

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

note:

1) NEL - Interpreter Lntrance list - used in
communications between various routines of
R/T, contains

a) pointer to option list
b) ECB, POST'd when STOP RDR command issued
c) address of input stream if it is to bLe processed

by special access method

Under normal conditions input stream is processed
using QSAM but when it can't be so processed (when
starting a system task and JCL is constructed in core, oOr
ASB reader reads from JOBQE and can't use (QSAM but
must interface with Queue iigmt, etc.) this word points
to input stream
d) optional pointer to QMPA (Queue .1anager
Parameter Area). If there, control blocks
built will be added to queue entry associated
with QMPA. If empty, each job is enyqueued
as a separate entry
e) console identifier indicating to which consocle
messages should be routed
2) Option list - indicates processing options (SMF
function, track stacking, queue full condition etc.)
and default values for omitted JCL operands (PRTY,
REGION, TIME, jobname to start with, etc.)
3) Exit list - address of exit routines (accounting
routines, input access method, queue manager rtn.,
SMF JCL validation rtn, etc.
C. Interpreter Initialization rtn LINK'd to and
1) Stores initializing options (from start command)
2) GETMAIN's for Interpreter Work area (IWA) -

2048 bytes, used to build job description
tables before they are written to JOBQE

3) GETMAIN's for wpocal Work Area (LWA) - used
by JCL statement processocrs to do their work

4) Generates unique name base (used to generate

PROGRAMMING/SYSTEMS LOUCATION - SDD POUGHKEEPSIE

unique name for SYSOUT data sets)

5) OPEN's Input Stream (QSAM)

6) OPEN's PROCLIB (BPAM)
d. interpreter Control Routine receives control

1) Reads input records

2) Determines type of record

3) Processes commands and data records

4) Passes JCL to JCL scan routine

5) Locates procecdures and reads records from them
€. Scan routine

1) converts JCL to internal text

2) accumulates complete JCL statement

3) passes statement to appropriate JCL processors

£f. JCL Processors

1)

build appropriate tables and control blocks for the
job and write them (via Queue ilanagement Rtns) on
logical tracks allocated for the job

2) create SMB's and write them, obtain space for
DSB's

3) If a JCL error is detected
a) job engueued on HOLD queue
b) internal CANCEL command executed to

flush job thru systen
g. Reader/Interpreter Termination

1) End of file on input stream

2) I/0 error

3) Operator command

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

C. ASB Reader VIII C.

‘. Ref: MVT Job ilanagement, Part 2, UJsing the ASB
Routine as a Reader (Y¥28-6660)

1. Function
a. Reads JCL records
b. Compress JCL statements

Ce Writes compressed statement on JOBQE in
176-byte records allocated to ASB queue

d. SPOOL's Input stream data and DA space,
generates replacement DD card referencing
the SPOOL'd data set

e, locates TTR of cataloged procedures, generates special
record identifying and pointing to the procedure
£. passes unrecognizable JCL statements to command
processor
ge. Initiates interpretation of compressed JCL when
1) nunber of jobs specified in ASB procedure has
‘ been read and placed in ASB gueue
2) input stream exhausted
3) number of tracks in JOBQE allocated to ASB
queue exhausted (number is in ASB procedure)
4) STOP command issued for ASB Reader
5) at least one job placed on ASB queue and can't

allocate more DA space on which to SPOOL input
stream data

2. Control of ASB Reader
Ref: Job ilanagement, Part 2, Processing Input, (Y28-6660)
a. Started by operator command (START RDRA) executes
in own region - 16K minimum - ATTACI{'s Interpreter

when needed, interpreter cexecutes in its own region
(48K) and when finishes, region is freed

‘ PROGRAMMING/SYSTEILS EDUCATION - SDD POUGHKEEPSIE

b, System Task Control Rtn ATTACI's the ASB
Initialization rtn which

1) ° GETMAIN's space for an ASB Work Area (ASBWA) of
3200 bytes and initializes it, it contains

a) LCB to communicate between ASB Reader and
Interpreter

b) LCB to STOP ASB Reader

c) Address input stream

d) Processing options - number of jobs to process
before ATTACH'ing Interpreter, number of JOBQE
tracks to use, etc.

e) QMPA for accessing JOBQE

f) DCB's for ASB data sets

g) work area

2) ATTACH's Interpreter Region Regulator Rtn (in LPA)
which is used to ATTACH Interpreter and communicate
between routines of ASB Reader/Interpreter. Tiuis

time it just performs initialization

3) On return, Initialization rtn XCTL's to input
stream processor

Ce. Input Stream Processor
1) reads input records
2) compresses JCL and writes compressed statement
on space allocated to ASB Queue in JOBQE data
set
3) SPOOL's input stream data and generates DD card refer-

encing SPOOL'd data

4) for PROCLIB references, locates procedure, generates
special statement containing TTR of the procedure

5) passes commands and unrecognizable JCL to command
processor (by an XCTL)

PROGRAMMING/SYSTLEMS LEDUCATION - SDD POUGHKEEPSIE

Ge

6)

7)

8)

when necessary, ASB Reader invokes Interpreter
Kegion Regulator Rtn to ATTACIH the Interpreter

Region Regulator ENQ's an ASB Interpreter (only

1 can execute at a time because it accesses

ASB queue - a serially reusable resource, also it
economizes on region space being used)

Region Regulator obtains region for Interpreter and
ATTACH's it

Interpreter Control Rtn receives control and

1)

2)

3)

constructs NEL, indicating special access method
for reading JCL and procedures (special access
method rtns are CSECT's in Interpreter Control Kktn)
Option list and exit list also constructed

ATTACH's Interpreter and WAIT's its completion

Interpreter Initialization Rtn receives control to
Initialize interpreter as in VIII 8. 3. c. above, then
LINK's to Interpreter Control Rtn

Interpreter Control Rtn

1)

2)

3)

Reads records - LINK'ing to special access methods
of the ASB Queue Reader - to read and expand the
compressed JCL statements in the Special Access
Method Work Area (SAMWA)

When ASB Queue reader encounters special PROCLIB
reference = it causes Interpreter to LINK to
ASB FIND rtn to locate the procedure for processing

Interpreter interprets JCL as normal, building

and engucueing appropriate control klocks on
JOBQE space allocated to the interpreter, chaining
each job entry off corresponding input QCR

On completion of Interpreting the JCL in the ASB Queue,
Interpreter returns to Interpreter Control Rtn of ASB
Reader task

1)

If no I/0 errors nor queue full conditions, ASB
Reader is reactivated to process more JCL
(Interpreter region is freed)

PROGRAMMING/SYSTEMS EDUCATION = SDD POUGIHKEEPSIE

C

D. RJE Reader

Ref:

LIS

2) If I/0 error - try to recover, if cannot, ATTACH
Interpreter to handle what is in ASB qgueue, then

terminate
3) If "queue full"
a) recompress and reengueue (on ASB gueue) JCL

for job being processed by interpreter

b) enter timed WAIT to allow jobs to terminate
and thus free queue space

c) restart interpreter

ASB Reader Termination

1) end of file (input)
2) I/0 error
3) STCP command

VIII b.

RJE SRL (C30-2006)
RJE PLM (Y30-2005)

RJE Overview

de

b.

Serves as a sophisticated Input/Output program

Receives job definition across telecommunication
lines from remote work stations

Writes job control statements on RJE queue

Interprets JCL statements, engueues on appropriate
input gueue

Allows OS to initiate and execute jobs

On termination, sends job output back to remote
work station

Function of RJE Reader

a.

b.

Reads records from RJE gueue

Separates RJE control statements from 0S JCL

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKLEPSIL

Ce. Lets RJE Interpreter handle RJE control
statements

d. ATTACH's 0S Interpreter to process 0S JCL

1) Interpreter builds usual control Lklocks

2) Enqueues job entries on appropriate input
queues

3) Uses special access methods to "obtain" each

JCL statement - they are already in core
Control of RJE Reader '
a. Operates as a Subtask of RJE Collector/Emitter
b. RJE started by operator command

c. Termination is by operator stopping RJL or no
remote terminal sending input to central computer

PROGRAMMING/SYSTEMNMS EDUCATION - SDD POUGHKLEPSIE

-

IX Initiate/Terminate work (Jobstep Tasks) 1L

' Ref:

A.

note:

MVT Job kManagement, Part 3, (Y28-6660)

Initiator

IX A,
1. Function
a. Job selection, jobstep selection
1) Uses queue managenent routines to read a
QCR (corresponding to an input class the
Initiator is servicing) into storage ’
a) dequeue highest priority, longest
enqueued job
b) update QCR and rewrite it
Queue Management rtns LNQ's on the input yueues
while doing this so no other initiator can (try
to) access the queues while this one is checking and
modifying them
c) READ JOB's JCT into main storage (Initiator's

2)

3)

4)

Ref:

region)

Job Selection rtn checks job failed but in JCT,
if on it processes job in "flush mode", message
written on console, Queue .i.anagement moves output
portion of the job queue entry to output work
queue frees input gqueue space

If job failed but not on, Queue Management rtns
read first SCT (pointed to from JCT) into storage

CSCB built when a job is dequeued for initiation,
added to chain of CSCB's out of ilaster Scheduler
Resident Data Area contains

Job sanagement, Appendix A, CSCB Format (Y28-6660)

a) address of initiator's TCB

PROGRAMMING/SYSTEIMS EDUCATION - SDD POUGHKEEPSIE

C

b) name of the job
c) pointer to JCT for the Jjob being processed

5) SCD read into main storage and information in it is
used to build a QMPA which is used when initiator
or terminator generates messages to be added to the
job's message class - SMB's containing messages
are added to output logical tracks via gueue
management rtns .

6) Job selection rtns read DSENQ Table into storage
and construct ENQ parameter list for non-temporary
data sets used by the job

a) ENQ not issued yet, parameter list just built

b) each data set is ENQ'd on for exclusive or
shared control depending on DISP operand on
DD Card

(1) ODISP=OLD,NEW,MOD - exclusive
(2) DISP=SHR - shared

c) LENQ issued at beginning of jok and lasts duration
of job because

(1) increases thruput by avoiding having to issue
"ENQ at beginning of each step and possible
waiting to get access to the required data
sets

(2) if one step of a job does some modification
of a data set and successive steps perform
nmore changes - the data set must not be used
or modified by other jobs in the Interval
between steps of tuis job

d) LHQ issued from LPA just before obtaining I/0 Device
allocation region (first step of the job only), thus
any wait for data sets does not tie up a region

b. Region Management
Ref: Job Management, Part 3, Region llanagement (Y28-6660)

(X
1) Performed Ly initiator modules

PROGRAMMING/SYSTENS EDUCATION - SDD POUGHKLLPSIE

C

note1l:

note2:

2) Several factors are involved in deciding if a new
region is needed and how big it should be

a) user specified minimum initiator region size,
specified at sysgen time, is placed in BAMINPAR
field of master scheduler resident area

b) wIP - calculated minimum jobstep region size -
calculated on basis of whether or not IEFSD061
module of Initiator (job selection, termination,
region size determination functions) is in LPA

(1) 4if IEFSD0G1 in LPA, minimum jobstep region
is difference between BAMINPAR and size of
IEFSD061 (ca. 40K), difference stored in
BAMIPAR2 field of llaster Scheduler Resident
Data Area

(2) if IEFSD061 not in LPA, minimum jobstep
region is equal to BAMINPAR and BAMIPARZ
is left as initialized (e.g., zeroes)

c) User specified region on JOB or EXEC card

3) There are 3 times in processing a job when initiator
may (or does) free present region and get another

a) When initiator is WAIT'ing for work and is POST'd
that work is available, a minimum initiator region
(BAMINPAR) is obtained, it is in this region that
the QCR(s) are read in and a job is selected to Le
initiated (this region is referred to as job
selection region)

b) Wnen a job has been selected, Initiator frees
present region (job selection region) and gets a
new region in which to perform I/0 Device allocation.
The size of this region is the greater of

(1) SCT specified REGION (from EXEC or JOB card)
(2) Minimum Initiator Region (BAMINPAR)
I/0 Device Allocation Region cannot be less than 52K
If is after the job selection region has been freed and
before.I/0 bevice Allocation Region has been obtained

for first step of a job that the ENQ on the non-temporary
data sets is issued

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKELEPSIE

c) When jobstep is to be ATTACHL'd a new region is
obtained only if the present one (I/0 Device
Allocation Region) is larger than necessary
L and if IEFSDO061 is in LPA. The region obLtained
is the larger of:

(1) minimum jobstep region (BAMIPAR2)
(2) SCT specified region (EXEC or JOB card)

4) When initiating a system task (e.g., interpreter,
writer, initiator, ctc.) if the region specified for
that task (on procedure JCL) is smaller than the size
needed to terminate a task, the smaller region is
allocated and when the task is terminated, a larger
region is obtained in which to perform the termination
functions

5) Just before getting the I/0 Device Allocation Region,
Initiator routines in LPA

a) CHAP Initiator's priority to a level similar to
that of the job being processed, this is done
for all steps of a job

b) issue LNQ on non-temporary data sets, if it
is first step of a job

. note: This is done so competition for I/O devices and, later, the
L jobstep region will be done at job's priority instead of
the initiator's
2. Allocation of I/O Devices - assigning devices to data sets

Ref: MVT Job lManagement, Part 6, I/O Device Allocation (Y28-6660)

a, Allocation Interface routine entered after the allocation
region is obtained, routines

1) Obtain space for step parameter list (specified in
LXEC card)
2) If track stacking specified - initialize the stack,

(via Stack Initialization rtns)
3) Build allocation parameter list
. .

4) LINK to I/0 device allocation rtn

(‘ PROGRAMMING/SYSTENS EDUCATION - SDD POUGEKEEPSIL

b. I/0 Device Allocation Routines
1) ENQ's on all UCB's

‘ 2) Obtain an SMB, for messages to Le generated (allocation
messages). Llore SMB's obtained as needed.

3) Write jobnaﬁe on console (if DISPLAY JOBNAMES command
has been issued)

4) Examine COND operand specified on step being processed.
If comparison to completion codes in previous SCT's
indicates this step should not be run, it is processed
in flush made and return cocde to allocation interface rtn
indicates step is not to be executed ’

a) all data sets, except SYSIN and OLD SYSOUT data
sets, are trecated as DUMMY data sets - no units
assigned

b) TIOT constructed but only entrys are for SYSI.
and OLD SYSOUT data sets

note: This is done because SYSIN and OLD SYSOUT data sets have already
been allocated devices (SYSIi; when data SPOOL'd by R/I; OLD
SYSOUT when created by nrevious steps) '

5) If step is to be run, information is gathered from various
‘ . sources and I/O allocation routine

a) builds tables, fills them in with information from
s10T, JFCB, SCD, PDQ, etc.

b) as allocations performed, f£ills in information in
these control blocks (e.g., unit allocated to SYSOUT
data sets, newly PASS'd data sets information put in
PDQ, etc.)

c) If DD card specifies a dedicated data set, dedication
determination rtns entered

note: Dedicated data sets are allocated in initiator's cataloged
procedure when initiator is started; they are available for
use by any jobstep the initiator is servicing; reyuest is
by DSN = & specifying the name of the dedicated data set

6) Dedication Routines

-

i; PROGRAMMING/SYSTENMS EDUCATION - SDD POUGLIKELEPSIL

-

a) check for correct JCL operands
‘ (1) BLSORG not ISAM

(2) DSN matches ddname on onc of initiator's
dedicated data sets

(3) SPACE parameter specifies average blocks
and does not exceed space allocated to deaicated
data set when initiator started
b) if reference is wvalid, routines

(1) force "no checkpoint" indicators in SCT

(2) force DISP=(OLD,KEEP) to avoid deletion of
data set

(3) copy unit and volume info akout data set
into SIOT and JFCB created from the step's
DD card referencing the dedicated data set

(4) updates VOLT and PDQ (so dedicated data sets
can be passed to successive steps)

c) If reference not valid, control returned to process
the DD card (SIOT, JFCB) as a request for a temporary
j‘ . data set (as "&" in front of data set name indicates)

'7) If COND operands allow step to be executed, tables are
built that will be used in allocation processing

a) AVT - Allocate Volume Table
2 (1) one entry for each DD card (i.e., data set)

(2) when unit assigned, UCB address placed in AVT
entry corresponding to the data set

(3) used to create TIOT, later
b) AWT - Allocate Work Table
(1) one entry for each data set to ke allocated a unit

(2) contains bit settings indicating all units avail-
able for allocation to that data set

‘ PROGRAMMING/SYSTEI1S EDUCATICGIN — SDD POUGHKEEPSIE

(3) when a unit becomes ineligible for a data set,
corresponding bit in that data sets entry is
turned off

(-r c) ACB - Allocation Control Block - keep track of all
other tables

8) Attempt is made to equalize channel usage

Ref: Job :.lanagement, Part 6, I/0 Dkvice Allocation,
Channel Load Assignments (Y¥28-6650)

a) a channel is a discrete.path from a device to the
CPU OR main storage; each subchannel in a multi
plexor channel is treated as a separate path (channel)

b) Channel Load Table (CLT) built by allocation rtns
(1) each entry in CLT represents a logical channel and

shows number of data sets being accessed thru that
logical channel

notel: This count is obtained from user count field in the associated
UCBs
notel: A "logical channel" for allocation purposes, is the collection

of devices accessible thru or by a discrete physical path or
channel., This should not be confused with the logical channel
. concept developed in I/O Supervisor PLM. Though the same
L .phrase 1is used, the meanings are distinct

c) CLT entrys point to collections of UCB addresses in
the Scheduler Lookup Table (SLT). The group of UCBs
indicated by a CLT entry defines the devices accessibple
thru the corresponding logical channel (i.e., the
logical channel represented by the CLT entry)

a) CLT entry also contains a count of data sets being
accessed thru that logical channel (obtained from
user count fields in corresponding UCB's)

e) allocation rtns search SLT for UCB passed to it
(by otner allocation rtns) and a mask is
constructed with bits indicating logical cnannels
the UCB is associated witih. This mask is used with
channel load information in CLT entry to equalize
channel usage

note: A device can "belong to" several logical channels and a

‘ PROGRAMMING/SYSTEMS LDUCATION - SDD POUGHKEEPSIE

physical channel (or subchannel) can be "in" only one

logical channel according to this def'n of "logical channel".

Such is not the case in the I/0O Supervisor's definition of
L "logical channel"

9) Demand Allocation routines - allocate to data sets
for which no choice of units is possible

a) volume serial number specified is permanently
resident or a reserved volume - such volumes
cannot be dismounted and therefore the unit they
are mounted on is the only unit that can pe
allocated to the data set

b) specific unit is reyuestea (e.g., UNIT = 282 or
URIT=SYSCP where SYSCP list has only one entry)

c) device range reduction performed - bit settings
in AWT entrys set off corresponding to ineligible
devices for a data set

(1) off line units
(2) primary console

(3) units holding reserved and private volumes are
ineligible unless DD card specifies correct
VOL=SER=

L g (4) wunits holding system residence devices unavail-
' able for allocation for private volume
requests unless correct volume serial
specified

(5) already allocated units are ineligible except
for DA Devices specifying shared requests etc.

10) Automatic Volume Recognition (AVR) Rtns
: entered if included in system. Allow mounting of
volumes before needed or requested by system (when
device comes READY, AVR puts vol serial number in

UCB)

a) AVR allocates to data sets specifying volume serial
numbers

b) . UCB's scanngd for vol serial numbers requestea

by data sets that are as yet unallocated

‘ PROGRAMMING/SYSTEIS EDUCATIOWN =~ SDD POUGHKELPSIE

c) next AVR allocates on-line devices with no
volumes mounted (issues MNOUNT messages)

‘ d) finally AVR Allocates units holding unneeded
volumes (DISHOUNT & riOUNT messages issued)

e) if not enough online devices available -
allocation recovery messages issued, AVR
WAIT's on operator response

f) if required units can't be allocated, step
texrminated (e.g., 4 tapes reqguested and only
3 are generated in the system)

g) AVR rtns branch to Decision Allocation
routines

11) Decision Allocation Routines entered to allocate
data sets still not allocated; entered from Demand
Allocation if AVR not in the system

a) allocates devices to as yet unallocated
data sets requiring private volumes or
specifying volume serial numbkers

b) allocates devices to PASS'd data sets (volume

containing PASS'd data set could have been
dismounted)
'\L , c) allocates devices to data sets for which

eligible units are reduced to point where
no choice exists

d) attempts to satisfy channel and unit
separation reguests

e) units violating separation reguests are
made ineligible by turning off corresponding
bit in AWT mask field corresponding to the
data set

£) devices allocated based on "restrictiveness"
of request

PASS'd
Channel Sep
Unit Affini\ty
Chan Affinity

- N &S

‘ PROGRAMMING/SYSTEMS EDUCATIONN - SDD POUGLEKLEPSIE

thus a data set that was PASS'd and reyuesting
channel separation 1s a more restrive request
(6 therefore allocated first) than one that
was PASS'd and requesting channel affinity

12) TIOT constructed
a) one entry for each DD card
b) for data sets requiring space on puilic
volume and for which there is a choice of
units, 7TIOT entry contains UCB aadresses
of the units
c) DADSK. rtns invoked to assign space for
NEW data sets
d) if space is to be allocated to a data set
for which there is a choice of units, DADSM
works thru the list of units (if it needs
to) to find one with sufficient available
space to allocate
e) if space cannot be allocated - step terminated
£) if space allocated =- TIOT compressed by
replacing list of units with the unit that
was allocated
13) Allocation messages constructed in SMB's and SMB's

written to JOBQL

14) Allocation routines DEQ on UCB's and return to
Allocation Interface

note: Public volume - one the system can allccate to a

temporary

data set when a nonspecific volume request

is made and PRIVATE not coded -in VOL operand

C. On return,

allocation interface checks return code

1) if non zero - step cannot be run - EXEC COND
codes satisfied or devices could not be allocated -
alternate step delete routine entered

a) = dummy TCB created and passed to regular
termination routines
note: This is done to provide interface with termination

C

PROGRAMMING/SYSTEMS LEDUCATION - SDD POUGHKLEPSIE

routines who "terminate" the step even though it was
never run

b) SYSIN data sets deleted
c) execute accounting rtn
d) check JOB card COND codes (if met, rest of

job bypassed - JCT job failed but turned on
and rest of jobL processed in "flush mode"

e) initiators priority CHAP'd back up to original
value
£) next step selected - this is done in same

region that the terminator routines worked
in, that is the jobstep region - the step

selection routines are in ILEFSD061 as are

termination rtns

2) If zero, allocation interface prepares to ATTACH
jobstep task

d. Flush mode processing
1) performed for
a) jobs with JCL error (JCL job failed Lit is on)

b) jobs cancelled by operator (even those cancelled
while still encueued)

c) jobs whose COND operands (in JOB or EXEC cards)
are satisfied

d) jobs with unrecoverable errors encountered by
interpreter or initiator

2) processing

a) I/0 allocaticn region obtained for each
remaining step of the job

b) no device allocation performed though, data sets,
except SYSIN, treated as DUMIY

c) TIOT built Lut only entries are for SYSIWN data
sets and old SYSOUT data sets

PROGRAMMING/SYSTE!S EDUCATION - SDD POUGHKEEPSIL

d) Device allocation rtns return non-zero return
; code to I1/0 interface rtn

e) I/0 interface rtn invokes alternate step termination
routine i

Ref: Job ilanagenent, Part 3, ‘Yerminating the Job
Step (Y28-6660)

3. Creating Jobstep task
Ref: Job Management, Part 3, Attaching-the Jobgtep (Y28-6660)
a. Allocation Interface routines
1) Determine priority at which task is to be ATTACHL'd

Ref: Operators Guide, Chapter 3, uperator Commands,
START (C28-6540)
Job Management, Part 3, Attaching the Jobstep (Y28-6660)
Supervisor and Data lanagement Services, Section I,
Task Creation (C28-6646)

a) limit priority - specified in START INIT command, is
maximum priority the initiator can assign to a task
it initiates. This is the initiator's own
limit priority.

c - b) force priority - specified in START INIT command,
associated with a jobclass. All jobs from that
class are ATTACH'd at the force priority, regard-
less of the JOB/LXEC card prioritys, but not higher
than the limit priority

c) DPRTY operand on EXEC card = converted to dispatching
priority (internal value) for the step

d) PRTY operand on JOB card - converted to limit priority
(internal value) for the step

note: DPRTY operand can have two values: DPRTY=(V1, V2),
internal priority calculated as follows: (V1 x 16) + V2;
the pair (V1, V2) can range from (0,0) to (15,15); PRTY
operand is a single value: PRTY=n, 05n<13,

internal priority calculated as follows: (n x 16) + 11
e) Task priority determined as follows
(1) . force priority used if specified and if

L -

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

2)

3)
4)

' 5)

6)
7)

it is less than or egual to limit priority
if force greater than limit, limit value
is used

(2) if no force priority specified, and VPRTY
is specified, the smaller of the two .
values: DPRTY and initiator's limit N
priority is used

(3) if no force priority nor DPRTY specified,
and a PRTY is specified, the smaller of the
two values : PRTY and initiator's limit
priority is 'used

(4) if no force, limit, DPRTY nor PRTY values
specified, the reader interpreter has inserted
a default priority in JCT for job and thnat value
is used

TIOT structured into 176 byte records and written onto
JOBQE data set; this is done in case system fails and
jobr can be restarted - the TIOT has thus been
preserved

JCT and SCT rewritten into JOBQE - having been modified
by initiation processing

if first step of job and JOBLIB or STEPLIB, data sets
specified - space for DCB's obtained and opened

determines if allowing step to use amount of time
specified (on EXLC card) would cause it to exceed
JOB time limit (JOB card), sets up timer parameter
specifying smaller of: differcnce between
remaining job time and requested step time, and
requested step time

builds ATTACH paramecter list

passes control to routine in LPA to

a) purge track stack

b) recreates TIOT in SQA

c) CHAP's initiators priority to value similar
" to that at which task will be ATTACH'd

(jobstep priority could be higher than
present priority of initiator (if force

‘ _ PROGRAMMING/SYSTLLIS LDUCATION - SDD POUGLKLEEPSIL

present priority of initiator (if force
priority is used, DPRTY on EXEC card, etc.)

[d) ATTACIl's the jobstep

e) if necessary, re-CHAP's initiators priority to
previous level

note: initiator has performed I/0 device allocation at a
priority similar to the job's JOB card priority
which may be lower than the priority assigned to
this jobstep task

£) issues gTIMER for value-arrived at by
calculatlons above

qg) issues WAIT on cancel or ATTACH kCB's
3. Terminator ' IX B.

Ref: Job llanagement, Part 3, Terminating Jobsteps,
(¥28-6660), Handout S19

1. Function

ae. Lntered whenever a step terminates normally or abnormally

b. Creates interface with termination routines to
L 1) Dispose of data sets used by task
'2) execute accounting routine
3) Check JOB COND operand

4) Release I/0 devices allocated to task

5) CHAP's initiator's priority back to
original level

C. Step abnormally terminated when
1) Jobstep reguests abnormal termination
2) Supervisor apnormally terminates it because

of an error

v

3) Job's CANCEL'ed

‘ : PROGRAMMING/SYST rMS EDUC.ATION - SDD POUGIIKCLEPSIE

C

Control of Initiator/Terminator

Ref:

" 4)

When

1)

2)
3)
4)

Steps time interval expires

a job terminates

Queue lianagement rtns read DSENQ into storage,
build and issue DEQ move on non-temporary data
sets ‘ '

Deletes jobs input queue entry

Deletes jobs CSCEB from queue and frees its space
Enqueues job's logical tracks containing control
blocks describing job's SYSOUT data sets and

messages on appropriate output QCR's, at job's
priority

Job Management, Part 3, Initializing the
Initiator (Y28-6660)

Operator's Guide, Chap. 3, Operator Commands
(C28=-6540)

Started by operator command, executes in own
region of 52K minimum

In response to START command, iiaster Scheduler
obtains 52K region and ATTACH's the System Task
Control Task in that region

System Task Control rtns ATTACH the initiator
first rtn to receive control is Initiator
Initialization rtn which

task,

Q.

Performs syntax check on START command parameters

1)

2)

if no parameters coded, check PARM Field of
initiator cataloged procedure

if an error in parameters - Initiator is
terminated (by System Task Control rtn)
if no errors - continue

Space for Linkage Control Table (LCT), two register

save

areas and QMPA's for message class and

input queues is obtained

Address of track stack parameter list is put in

PROGRAMMING/SYSTE!IS LDUCATION - SDD POUGHKLEPSIE

-

IX C.

QMPA's

d. Buffer number put in track stack paramcter area

‘., e, LCT initialized with
1) QMPA pointer
2) UCB list pointer
3) start parameter list (SPL)
4) return address (to System Task Control Rtn)

f. Force and limit priorities are put in LCT
Ref: Job rlanagement, Part 3, Attaching the Jobstep (Y¥28-6660)
Operator Guide, Chapter 3, Operator Commands, START,
(C28-6540)
e Obtains space for ECB list, one ECB for each job
class the initiator is to service, ECB's initialized
with complete bit "on"

h. Scans list of Group Control Blocks (GCB) for one
corresponding to this initiators procedure name

1) if one exists, increases count in it by 1
L ' 2) if none exists, create it and puts it in GCB gqueue
note: GCB's used by MODIFY command routines
i, Passes control to job selection routine which

1) reads QCR for each input queue that this initiator
is to service (QCR read via Queue rlanagement Rtns)

2) examines "top pointer", if it points to work - begin
initiating the job

3) if no work, turn off "complete bit" in ECB corresponding
to that class and check other QCR's

Jo If no queues the initiator is to service have work, frees
the region and retreats to LPA and from there
issues "WAITING FOR WORK" message and enters WAIT
state, waiting on the LCB's for the input gueues

‘) PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKLEPSIE

C

C

note:

4.

Last word in each QCR (which the Initiator is to service)
points to on LCB associlated with the first initiator
started to service that class. If there are several
initiators servicing the same class, the corresponding
ECB's, in the lists ouilt for each initiators, are
chained together. When work is enqueued on that QCR,

all the ECB's are POST'd and various initiators scramble
for the work

Stopping on Initiator/Terminator

a.

b.

Operator command

Permanent I/U error

PROGRAMIIING/SYSTEMS LDUCATION - SDD POUGHKLEPSIL

J—

—

C

Process Output (Cutput Writers)

Ref:

A,

Job Management, Part 4, (Y28-6660)

Function

1.

2.

Access SYS1,.,SYSJOBQE to find control blocks
indicating data to be written

Uses DSB's and JFCB's crcated by Reader/Interpreter
and Terminator describing SYSOUT data sets

Also uses SMB's containing JCL images and system
messages

Activated when an ECB is posted by a terminator when it
engueues output work on a class the writer is
servicing

If separator pages are to be written, rtn to
create them is invoked

Dequeues on entry, determines if it is a SMBL or DSB

a. If SMB - passes control to SMB processor which

extracts and writes message

b. If DSB - passes control to standard writer rtn
or user's program

Ref: Job Management, Appendix A. CSCB format (Y¥28-6G60)
1) Obtains space and formats a CSC3 used wlicn
operator CANCEL's 00L to cause WTR to stop
processing which ever data set it is now
processing but thie WIR task is not terminated

2) ATTACH's either standard writer routine or
user program

3) WAIT's subtask completion

Writer aynamically initializes itself to handle various
input data sets

PROGRAI‘NI_N_G/SYSTEMS EDUCATION - SDD POUGHKLEPSIE

8. When a data set is processed, writer enters rtn to
scratch the data set
9. When a job's output has heen processed, writer enters
rtn to free the logical tracks the queue entry
occupied
10. When there is no more work to be done writer enters WAIT
state, waiting on ECB list for classes it services
Control of Output Writers ,] X
Ref: Job Management, Part 4 (Y28-6660)
Operator Guide, Chapter 3, Operator Commands
(C28-6540)
1. Started by operator command on up to 8 output classes
2. Executes in own region of each 20K
3. Entered from System Task Control Rtns at Writer

Initialization Routine which

a, Sets up output DCB

b, Determines if it is to use Standard QSAbi, or
special access method, uses special access
method when
1) output device is printer or punch
2) data set uses machine control characters
3) PCI is not used

4) 4 or more buffers used for output

C. Appropriate control blocks are set up if Special
Access Method is to be used

d. Validates START command operands and PARM field on
EXLC statement of WTR cataloged procedure

e. Builds a set of ECB's to be used when waiting
for work, one E(B for each class the writer is to
service; uCB's initialized with "complete bit"
on

PROGRAMMING/SYSTEMS LEDUCATION - SoOD POUGHKEEPSIL

f. Sets up special communications ECB, used to
communicate bLetween various routines of the
writer and Letwecen writer and user routines
specified to handle a particular data set

g. Passes control to main logic routine to
1) Process a command (e.g., l1ODIFY)
2) Process an output queue entry
3) llandle a permanenet I/0 error (frees workareas,

and returns to system ,task control rtn (i.e.,
the writer dies))

4, Stopping a writer
a. By operator command (STOP WTR)

k. Permanent I/u error

PROGRAMMING/SYSTLEIMS LDUCATION - SDD POUGHKLEPSIE

XI Command Processing X1
E A, Where commands may appear X1 A.

1. Console - operator presses "REQUEST" on console
keyboard generating I/O Interrupt

2. Input stream - Reader Interpreter or ASB reader
inmediately pass control to command processing
routines to schedule execution of the command

B. Communication £I B.

Ref: MVT Supervisor, Section 7, (Y28-6659)
llandout S19

1. Activated by I/0 Interrupt from operator's console
2. I/0 Interrupt Handler, determining the interrupt
came from console, passes control to resident
attention routine which POST's the communication task
3. Wihen activated, the comnunication task issues SVC 72
which gives control to a router module which determines
the service to be performed and passes control to
appropriate process riodules
a. External interruption (from INTERRUPT button on
control panel, indicates main console is down
L : and searches for alternate console, if can't
find one - 0OS dies
b. I/0 from 1052 keywvoard console
C. Input from unit record devices
d. Output to unit record devices
4, Appropriate processor module accepts input from console
places it in a buffer and issues SVC 34 to pass control
to command scheduling routines

C. Command Scheduling (SVC 34) XI C.

PROGRAMMING/SYSTEMS xDUCATION - SDD POUGHKLEPSIE

Ref:

1.

2.
3.

note:

Job Management, Part 5 (Y28-6660)

Determines where command comes from (console or
interpreter (JCL))

Translates lower case LBCDIC to upper case

Pagsses control to router module to scan buffer for
command verb and:

A.

b.

d.

Search verb table

Determine if command source has authority to issue
the command

If authorized - passes control to routine addressed
by verb takle entry

If not authorized - passes control to message routine
to say so

Command Scheduling handles commands in various ways

a.

Create CSCB - task creating commands, put CSCB
on a chain (origin in iaster Scheduler Resident
Data Area) marks it pending and POST's Master
Scheduler who scans chain for pending CSCB's and
ATTACH's appropriate task to execute the command

Two types of task creating commands - those that

execute in MS region and those that execute in their
own region

Update existing CSCB and POST's existing task to
perform action indicated by settings in CSCB

Build a Command Input Buffer (CIB) cliain it off
START parameter list (SPL) and notify existing
task to check the CIB and take action accordingly
SPuL chained out of CSCB, SPL points to CIB

Store command in system table and notify existing
task which inspects bits in the takles during an
operating cycle and begins or ceases to perform
the function (e.g. DISPLAY JOBNAMLS)

- L 1

Pass control to a routine of command sclhieduling
routines and specifying action required via parameter
in registers

PROGRAMMING/SYSTLMS LEDUCATION - SDD POUGHKEEPSIE

C

D.

Command Types

1.

f.

When parameters won't fit in registers, build a
parameter list and proceed as in e. above

Tagsk creating commands

a.

Ref:

d.

Generally these are the commands which involve
performance of a continuing system function

(Initiation) or access a serially reuseable resource
(the work queues)

A CS8CB constructed, master scheduler P0ST'd to
create appropriate task

START commands cause [Plaster Scheduler to ATTACII
system control routine in its own region (size

specified at sysgen time - default of 44K or user value)

Job lManagement, Appendix A, CSCB format (Y28-6660)
System Task Control Routine (L-Shaped Program)
1) Performs syntax check on command

2) Builds JCL statements from PROCLIBE member
specified in command (e.g. S RDR, RDR is a
cataloged procedure), and operator command
operands, and generates a JOB card, these
JCL images are stored in main storage; CSCB
set up to point to the JOB image

3) XCTL's to Interpreter Control rtn to build
NLEL for interpreter (Indicating special access
method since JCL is in storage)

4) LINK's to Interpreter to interpret the JCL
statements and build appropriate control
tables but not to write them on SYS1.SYSJOBQE

5) Interpreter Control, on return from LINK, passes
control to allocation interface rtn of initiator

to allocate devices to data sets needed by the
task being started

6) Allocation‘'Interface XCTL's to ATTACHOR rtn
of System Task Control Rtn (in LPA) to ATTACH
the system task in the same region occupied

PROGRAMMING/SYSTEMS LDUCATION - SDD POUGIKEEPSIE

LI D,

by System Task Control Rtns
7) When the system task terminates, it passes
control to ATTACHOR which brings in Termination
rtns to perform termination functions as for
any task
2. Existing task commands

a. Involve notifying existing system task of a sexrvice or
function to be performed

b. Notification by one of methods listed in 4. b.,
Cey d., €y fo" above

-

PROGRAMMING/SYSTEMS LI'DUCATION - SDD POUGHKLEPSIE

XII System Restart * XII

‘ Ref: Job llanagement, Part 1, System Restart (Y28-6660)

A, To indicate that IPL is for system restart, XII A,
" omit "F" operand to Q= keyword to SET command

B. Inspection of SYS1.SYSJOBQE XII B.
1. Wnen Master Scheduler IPL rtn ATTACH's queue
initialization routines, these routines do not
format queue but inspect it to prepare for
restart

2. Possible gqueue entries

a. Incomplete input entry
1) exist if system halted during input stream
processing

2) entries purged, gqueue space freed

b. Incomplete output entry

1) exist and represent system output for jobs
that have not yet been processed

*‘ 2) if job has not been enqueued, free queue
' space reserved for output entry - it doesn't
yet represent any output

3) if job engueued, leave gueue space as 1is,
job will need it when it (job) is processed

C. Incomplete ASB entry .
1) exist if system halted during ASB task
2) queue space freed

d. Incomplete RJE entry

1) exist if system halted while job entry was

PROGRAMMING/SYSTLMS LDUCATION - SDD POUGHKLEPSIE

being transmitted to control system
2) gueue space freed
e. Enqueued input, output, hold, ASB and RJL entries
1) may exist |

2) remain in gueue, processed normally when
system restarted

£. Dequeued input queue entry“

1) exist for jobs selected for initiation Lut not
completely processed

2) if job can be restarted, it is; if not
input queue space freed, output queue entrys
engqueued to be processed

ge. Dequeued output gueue entry

1) exist for partially completed system output
processing
2) queue entry modified so unprocessed data will

be processed
h. Dequeued héld gqueue entry

1) exist if system halted while altering status
of a job (cancelling it, relcasing it, etc.)

2) entries re-enqueued in hold yueue
i. Dequeued ASB queue entries
1) exist for jobs processed by ASB input stream
processor and are partially processed by inter-
preter
2) entries re-enqueued in ASB queue

je Dequeued RJE gueue entries

1) exist for ﬁobs being processed by RJL reader
(RJE Collector/Emitter accepts jobs and puts
JCL images in RJLE queue, RJE reader removes
the entry and reads and interprets the JCL)

PROGRAMMNING/SYSTEMS LDUCATION - SDD POUGHKLEEPSIE

or processed by RJE reader
2) entries are re-enqueued on RJE queue
L C. Processing of entries in queue XII C.
1. Tables constructed

a. To keep track of each logical track in JOBQE as
it is processed (Table A)

b. To point to first entry in each queue (Table B)

C. To find control blocks representing system output
in gqueue entries with system output (Table C)

d. Jobnames Table - names of jobs in incomplete input
qgueue entries and dequeued input queue entries,
used to inform operator of jobs that cannot be
restarted

e. Purge Queue =~ pointing to dequeued input, output,
hold, ASB and RJE queue entries; used during later
processing of each case

2. All entries in Table A corresponding to unused tracks are
set to 0 as are entries corresponding to tracks assigned to
' enqueued input, output, hold, ASB and RJL entries. (These
queue entires remain as is, therefore Takle A entries
‘ : corresponding to their qgueue space are "processed" by
doing nothing)
3. A Purge gqueue constructed pointing to each
a. dequeued input entry
b. dequeued hold gueue entry

© Ce dequeued ASB and RJE entries

d. dequeued output entry

4, Jobnames table built, contain jobname from each
a, incomplete input yueue entry
b. dequeued input ¢ueue entry

5. Control blocks used to connect input queue entries

‘ ' PROGRAMMING/SYSTE!IS LDUCATION - SDD POUGHKLELPSIL

with corresponding system output are read into storage
and checked for accuracy, updated if necessary

‘., 6, Queue space corresponding to incomplete queue entries
~— is freed

7. Operator informed of jobnames for incomplete input
entries (can't be restarted)

8. Processing of remaining queue entries

a. Dequeued output entry. - queue records read,
examined, updated to indicate whether or not
corresponding SPOOL'd system data set exists
and entry 1is re-—-engueued

b. Dequeued input entry

1) if processing after step selection but
before execution - can't be restarted
(TIOT lost) output queue entry enqueued,
input queue entry deleted

2) if processing stopped while a step was in
execution, check if RESTART requested 1if yes
initiate restart, if no - enqueue jcb's
output queue entry delete input queue entry

‘ . _ 3) if processing stopped during termination
of a step other than last - termination
completed, re-engueue input entry

4) if processing stopped during termination
of last step, complete termination, delete
input queue entry

C. Dequeued RJE queue entry

1) reengqueued on RJE queue

2) LTH of RJE queue entry modified if input
queuc entry had not been enqueued

d. Dequeued ASB gue¢ue entries - re-enqueued on ASB
queue (regular input queue entry for this ASB entry
is-in-complete (else this ASB queue entry wouldn't
exist)) and has been freed

e, Dequeued hold gqueue - re-engueued on hold queue

‘v PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

10.

List of ready UCB's built and LSCB's searched for
data set names corresponding to system generated
temporary names

a. Output data set - increment user count field -
in UCB by 1

b, Input data set - uses jobnames table to see if
it corresponds to job that cannot be restarted,
if it does, data set is scratched

This terminates the system restart work, queue initialization

region is freed and control returned to master scheduler
initialization IPL rtn (to execute AUTO Commands)

PROGRAMMiNG/SYSTEMS LDUCATION - SDD POUGHKELPSIL

XIII Task Management Overview XIIIX
. Ref: Handout S20, V25-6156
% L Tasks (review) | XIII A.
1. pefinition ' :
a. Request for execution of some code
b. Thing to which resources are allocated
c. Competitor for system resources
d. Thing which ABEND's
e. Represented to system by a TCB
2. Types of Tasks
a. Permanent system tasks
b. Jobstep tasks :}
not mutually exclusive
C. Sub tasks
d. Creation of each
L 3. Task States
a. Active
b. Ready
C. Wait
a,. Dormant
4, Task gqueues
a. Main (Dispatcher) queue = origin in CVT

b. Subtask (family relationships) queue origin
in jobstep task for the region

PROGRAMMING/SYSTE!IS EDUCATION - SDD POUGHKEEPSIE

Interrupts (review) XIII B.
Ref: Handout S9
1. 0S/360 is interrupt driven - active task remains active
until an interrupt occurs that causes it to cease being ’
the active task
2. Interrupt is an electric pulse
3. Originally fielded by haraware

a. CPU circuitry determines type of interrupt

b. Stores current PSW (in CPU) in appropriate fixed
location in main storage

C. Makes appropriate new PSW active

d. This new PSW points to code which analyzes and
handles the interrupt

Five types of Interrupts, each handled differently XIII C.
1. SVC - U4 types of SVC routines

2. Program Check - dependas on state of task (problem program
or supervisor) and whether SPIE macro has been issued

3. External - "INTERRUPT" key on control panel or timer
interrupt

4, I/0 - "first time" switch is checked or set and control
Ipassed to I/O Interrupt Handler

5. Machine Check - control passed to SERO, SER1, or :CH
routines or system put in WAIT state

Task Supervisor XIII D.

1. Creates, monitors and destroys tasks, serializes use
of resources when requested to do so

2. Performs ATTACH function
a. Obtains space for and initializes TCB

b. Enqueues TCB on appropriate queues

PROGRAMM ENG/SYSTErIS EDUCATIONI - SDD POUGHKLEPSIE

H.

4,

Performs DLTACH function (when needed)
a,. Frees control blocks chained out of TCB
b. Dequeues TCB and frees its space

Serializes use of a resource - LENQ, DEQ macros

Contents Supervisor

3.

Searches for requested programs

Builds or updates control blocks describing such
programs

Invokes program FETCH to load and relocate the
program

Constructs RB and inserts PSW pointing to entry
point of the program, enqueues RB off requesting task

Storage Supervisor

Handles all requests for main storage space,
from dynamic area or within a region, or in SQS

Searches control blocks representing available space,
tries (in most cases) to allocate space from highest
possible address

Builds and enqueues control blocks describing space
s0 allocated

Timer Supervisor *

Overlay Supérvisor *

Handles requests for establishing a timer interval
or expiration of such an interval

Builds TQE, inserts it on timer queue

Manipulates queue as necessary when task gets or
loses control of the CPU

Gives control to user timer routines when time
interval expires

PROGRAMMING/SYSTENS EDUCATION - SDOD POUGHKLLPSIE

XIII L.

AXIII F.

xIII G,

XIIXI h.

3.

Dynamically loads segments of a planned overlay
program when needed

Modifies tables to indicate which segments are
now in core and where they are

Passes control to segment loaded

Trace Table *

1.
2.

3.

Debugging aid

Contains entries describing interrupts and initiation
of 1/0 '

XIII I.

An entry made for all interrupts (except machine check),
execution of SIO Instruction and execution of dispatcher

kEach entry 8 words long, containing

a. PSW At time entry is made

b. Reg's, usually 0, 1, and 15, when entry is made
C. Address of TCB causing entry

d. Timer at time of entry

Size of table determines usefulness of table

Table used in cyclic fashion; when full, next entry
overlays first entry in the table and space is reused

Table controlled by a 3 word control area addressed
from location 54 (8U4fs4) , 3 words are

a. Current entry
b. Beginning of table

C. End of table

Termination routines

1.

2.

Entered when SVC 3 instruction executed

Not to be confused with terminator routines of
Initiator/Terminator

PROGRAMMING/SYSTEMS LEDUCATION - SDD POUGHKEEPSIE

XIITI J.

(\

belete control blocks representing programs or execution
of programs

Decrement use/responsibility counts and when
zero, delete the programs (if not in LPA), or mark them
for deletion

When realize they have been entered from last
program of a task, perform task termination
functions

a, Inform appropriate ancestor task of termination

of this task and do not destroy terminating task's
TCB ‘

b. or, delete terminating task and do not notify
any other task

PROGRAMMING/SYSTENS LDUCATION - SDD POUGHKEEPSIE

C

XIV Types of Interrupts and Handling of each XIv
Ref: MVT Supervisor, Section 2, SVC Interrupt Handling
(Y28-6659)
Handout S9
A. SVC Interrupts XIV A,
1. SVC types
a. Type 1 - resiaent in nucleus, runs disabled,,
no size lindt
b. Type 2 - resident in nucleus, runs enabled (at
least part of the time), no size limit
C. Type 3 - not resident (may be in LPA), runs enabled,
less than 1024 bytes, if not in LPA executes in
SVC transient area
d. Type 4 - not resident (may be in LPA), runs enabled,

larger than 1024 bytes, structured into 1024 byte
XCTL segments, if not in LPA executes in SVC

transient area

e. Types 2, 3 and 4 execute unaer a SVRB, type one

does not

SVC FLIH

a. When an SVC interrupt occurs, new PSW points
to SVC first level interrupt handler which

1) saves registers in IEASCSAV in nucleus
(private save area used only by SVC FLIH)

2) checks 5VC table to see if
a valid SVC number (if not

3) determines SVC type
a) If type 1 - branch to

reg., 14 to address of
routine

PROGRAMMING/SYSTEMS LDUCATION - SDD

request specifies
- ABEND)

it, setting
Type 1 exit

POUGHKELPSIL

>

note:

b.

note:

No SVRB built, OuLD PSW not moved nor are registers

If type 2, 3, or 4 pass control to SuIH (Second
Level Interrupt liandler) having loaded reqg. 14
with appropriate return address - the SVC 3 instr-
uction in the CVT

SLIHB

‘Initializes SVRB (Supervisor Request Block), contains:
1) size and type of RB

2) queue field

3) resume PSW (constructed, originally, by SLIH)

4) register save area

SLIH has a pocinter to space already allocated in
which to build SVRB, when this SVRE is initialized and
enqgueued it gets space for next one. This is done

to avoid issuing GLIMAIN SVC while processing

an outstanding SVC and thus cause another SVC interrupt
which would destroy first requestors PSW and

registers

Enqueues SVRB off requestor's TCB - makes it the
RB the TCB points to, the "current" RB

Moves PSW from low core location to the RB following
this (new) SVRB on tasks chain of RB's

Moves registers from IEASCSAV to register save area
in this SVRB

Locates appropriate SVC routine

1) if type 2 - its in nucleus, locate address and
branch to it.

2) if type 3 or 4 and in iLPa - locate address
and branch to it.

3) if type 3 or 4 and not in uPA - invoke SVC
transient area handling rtns to bring module
into a transient area

PROGRAMMING/SYSTLMS EDUCATION - SDD POUGHUKLLPSIE

4,

note:

SvC

Transient Areas

1024 byte buffers in nucleus, minimum of one pair,
can request more pairs at sysgen time

Usefulness of more tiian 3 pair doubtful, processing
to utillize the transient areas is sufficiently
involved so system cannot use more than 3 pair efficiently

Transient area handling routines invoked to

t

1) see if required SVC already in an area
2) locate on "available" transient area
3) load required SVC routine into it and set up

requesting task to execute it
Transient Area Handler

1) determines if required SVC Rtn is already
in a transient area

a) searches I'ransient Area Control Tabkle (TACT)
which contains the following for each
transient area

(1) address of associated transient area

(2) address of user queue (of SVRB's
representing tasks sharing a block
not necessarily all executing same
SVC rtn)

(3) TTR of SVC rtn (or XCIL segment of a
SVC Rtn) presently in the associated block

(4) addr of TCB which loads SVC rtns into
associated block

(5) The TACT contains one request gueue pointer -
not one for each transient area - for
requests that must wait for an availalble
area

b) search is done by comparing TTR of requested
SVC rowtine (in SVRB) to TTR of SVC routine
in a block (in TACT entry corresjyonding to
that block). If compares are equal, tLe

PROGRAMMING/SYSTLMS LDUCATION - SDD POUGHKEEPSIE

required SVC has been located.
2) if Rtn is in a Transient block

a) enquecues new SVRB to user gueue
for the block :

note: The SVRB is now on the gqueue of RB's chained out of
requestor's TCB and on the "user yueue" associated
with a SVC Transient area - each SVRB has two
queueing fields

b) request for execution of SVC Rtn that.the SVRB
represents is satisfied on a task priority basis

c) Trans Area Handler sets up a branch
instructiocn to point to beginning of the
block, loads the registers and branches
to the bLlock to begin execution

3) If routine is not in a Transient block

a) Transient Area Handler checks for a block that
can be overlaid by requestor (a block can be
overlaid if new requestor has priority dgreater
than any tasks now using the block or if
all users of the block are not "ready")

notes A user is not ready if one or more non dispatchability bits
are on it that users TCB. A block might also be free -
the routine in it is not being executed by any task

bL) If no area found that can be overlaid, SVRB's
wait count made non-zero and it is enqueued on
a request gueue out of TACT, PSW in SVRB is set
to point to an entry point in Trans Area Handler
so when SVRB made ready and task dispatched,
routines executed are same as for a new SVC
reguest (e.g., search for a Llock, etc.)

c) If an area is found that can be overlaid, Trans
Area ilandler

(1) locates all SVRB's on user yueue with a
TTR equal to TTR in TACT entry for the
assoc1ated block

note: For given Trans block, the user gueue can contain SVRB's
for several different SVC rtns; the only SVRB's that

PROGRAMMING/SYSTEMS LDUCATION - SDD POUGHKEEPSIE

should Le put in a WAIT state at this point in time are
those SVRB's representing the SVC rtn now in the block

(2) moves present WAIT count in those SVRB's
to the wait count save area in the SVRB
and replaces it with X'FF'

note: This is another reason for processing only tiie SVRB's
associated with the routine in the block. If other
SVRB's have already been processed as in (2), their
wait counts are X'I'F', if that value was moved to the
wait count save area it would overlay the valid wait
count in that area. If tl.e block is not in use, there
will be no SVRB's on its user queue and (1) and (2)
will not be performed

(3) stores in new SVRB a PSW pointing to
the transient area block (to be used
py aispatcher when requesting task 1is
eventually dispatched)

(4) sets up registers as needeu by SVC
rtn being located and puts them in
reguestors TCB

(5) puts this new SVRB in wait state
pending loading of the routine

(6) cnyueues SVRB on user gqueue for the block

(7) address of next entry in TACT saved in
Trans Area llandler code - used as
starting point of search for a block
when next SVC reyuest or for an XCTL
request issued by a type 4 SVC rtn

note: The different modules of a type 4 SVC can execute in
different transient area blocks

(8) makes task that will load the SVC rtn
(a permanent system task) ready and
indicates a task switcn to dispatcher;
address of this task is in TACT entry
corresponding to the block

(9) Trans Area Handler branches to dispatcher
which dispatches tne Transient Area Fetch
routine under control of the TCB corres-
ponding to the block

PROGRAMMING/SYSTEriS LDUCATION - SDD POUGIKLEEPSIE

note:

note:

d.

There is one copy of the fetch routine, each transient
area TCB points to a SVRB which contains a PSW pointing
to the fetch routine. The routine is in the nucleus
and reentrant

Transient Area Fetch Routine

1) Uses TTR of SVC Rtn and its length (in SVRB for

the SVC being loaded, put there from SVC table
when SVRB initialized) to load the routine
and relocate it

2) If I/0 errors occur, reguesting task ABEND'd

3) If no errors, locates all SVRB's (in the transient
areas' user queue) requesting module just loaded
and resets wait count to the value in the SVRB's
wait count save area

4) dequeues and makes ready all SVRB's on reguest
gueue

There is one request gueue, SVRB's put on it (in
wait condition) when their priorities do not allow
them to get a block when their SVC request was
originally issued

5) Transient Area Fetch puts itself in wait
condition and branches to dispatcher

6) Lventually the task issuing the SVC request that
started all this will be dispatched thus executing
the loaded SVC rtn. In the meantime of course
another task of higher priority than this reguestor
could cause overlaying of the block just loaded
before the routine just loaded could be executed

Transient Area XCTL Routine

1) Entered when XCTL issued by one segment of a type 4
SVC to pass control to next segment

2) dequeues SVRB for that SVC rtn from user queue for
the block and proceeds as follows:

a) searches SVRB's chained off permanent TA
fetch tasks for name of requested segment.
The name will Le found in the SVRB if it
has been loaded into a transient area and

PROGRAMMING[SYSTLMS EDUCATION - SDD POUGIIKEEPSIL

is still there.

(1) if requested segment found, reyuestor's
SVIB updated with data from TACT (c.qg.
TTR of segment, length of routine,
‘L, address of transient area it is in, etc.)

(2) if requested segment not found, proceed
as follows

b) search for an "available™ transient area as
described above in handling a new
SVC request

c) if no area is available, defer the reguest

d) if an area is available, invoke corresponding
transient area fetch task to load routine.
Set resume PSW in the fetch task's RB to
appropriate entry point:

(1) to perform a BLDL on segment name
(2) to bypass the BLDL, if XCTL used DI operand
f. Transient Area Refresh Routine

Ref: MVT Supervisor, Section 9, Trans. Area Refresn
Routine (Y28-6659)

‘ 1) Entered when an SVC routine terminates with an
SVC 3 instruction (types 2, 3, and 4)

2) Determines is an SVC rtn was overlaid in a
Trans area and thus needs refreshing

3) Scans user gqueues for all Trans area blocks
for SVR3's with TTR's in SVREG different from
TTR of rtn in the block - this means the SVRB's
SVC rtn had been overlaid and must be reloaded
(the resume PSW in the SVRB points to the next
instruction in the SVC rtn to be executed and
thus when' reloaded, the task can be redispatched
and execution of the SVC rtn will resume)

b) The SVC rtn to be reloaded into the block is determined
by the highlest priority, "ready" SVRB on the
user queue for'a block. A user SVRE is ready if
it is top RB on its TCB queue and TCB has no

¢ PROGRAMMING/SYSTLI{S EDUCATION - SDD POUGHKELPSIE

£)

non-disptachable bits set

5) Refresh routine puts all user SVRB's in wait
condition moves wait count to save area, replace
it with 'FF' and makes Fetch TCB associated
with the block ready

' 6) When dispatched the Fetch task loads the
required module and proceeds as in 'c.'

7) If all user SVRB's in queue for block just
loaded are WAIT'ing, refresh routine removes
all SVRB's from request (wait) queue, clears
wait count to 0, invokes- task switching rtns
for each associated task to sce if it is of
higher priority than current taskh

8) When finished with this processing, branches
to dispatcher

5. SVC Exits
a. Type 1 SVC exit
Ref: MVT Supervisor, Section 9 (Y¥28-6659)

1) Taken by type 1 SVC's when requesting routine
is not in a WAIT state

" 2) Registers are restored from IEASCSAV

3) PSW loaded from low core location where it
was stored when interrupt occurred

4) Dispatcher is not invoked
5) WAIT SVC rtns are type 1, if wait count in
current RB is non-zero by the time the WAIT

rtn f£inish processing

a) Requesting rtn cannot be resumed
(its still WAIT'ing)

b) PSW loved into current RB of requesting
task

c) Registers moved into requesting TCB

. .

d) NEW TCB Pointer set to zero

-

PROGRAMMING/SYSTEMS LDUCATION - SDD POUGHKEEPSIE

e) Dispatcher invoked
(b. All other SVC exits
1) Moves registers from exiting SVR3 to TCB

2) Stores reg's 0, 1, 15 in TCB as exiting SVC
left them (parameters to requesting program, etc.)

3) Dequeues SVRB from task's RB Queue

4) If exiting SVC is type 3 or 4, removes SVRB
from user queue associated with a transient
area

5) checks for EOT - if so, branches to LEOT rtns

6) checks if next RB (now, the top RB) is WAIT'ing
if no, insures that a task switch is indicated

7) Frees the SVRB
8) Branches to transient area refresh routine
B, Program Check Interrupts XIV B,

Ref: Supervisor and Data management Services, Section I,
, Program :ilanagement Services (C28-6646)
L Supervisor and bata Managenent lfacros, Section II,
SPIE Macro (C28-6647)
HMVT Supervisor, Section 2, Program Interruptions,
(Y28-6659)
Handout S9

1. SPIL Facility
a, Allows user programs to indicate a routine to
receive control in event of certain program checks,

also specified by user

b. User codes SPIE macro indicating the routine to be
given control and for which program checks

Ce SPILE SVC creates a

1) ‘PIE - Program‘Interrupt Llement - constructed
only on first issuance of SPIE macro in a
task, address put in TCB of task, PIE contains

<‘ PROGRAMMING,/SYSTEMS EDUCATION - SDD POUGHKELPSIE

When

be

a) address of current PICA

b) save area for P/C old PSW

c) register save area for reg's 14-2
2) PICA - Prograh Interrupt Control Area -

constructed for each SPIL issued in a task
contains

a) mask field used in task's PSW (to allow
program cihecks normally masked off if
user rtn is to handle such interrupts)

b) address of user rtn

c) mask field indicating which program checks
the user routine is to handle

When a program check occurs tliat the user rtn is to
handle

1) High order bit of PIE set to 1

2) P/C o0ld PSW moved into save area in PIE

3) Registers 14-2 moved into reg save area in PIE
g) Problem program registers restored and control

passed to user rcutine
program check occurs, PC FLIH receives control and
Saves registers in private save area
Checks state of offending task
1) if supervisor state ABEND
2) if problem program state

Checks if SPIL has been issued (presence of
PIE pointer in TCB)

1) if not - ABEND

2)- if so - cheék

PROGRAMMING/SYSTEMS EDUCATIO!l - SDD POUGHKLLPSIE

Ref:

h.

i,

If alrcady in SPIL routine (high order bit of
PIL sot to 1?)

1) if set to 1 - ABEND
2) if set to 0 -

Checks if user has indicated he can handle the program
check that has occurred (mask field in PICa)

1) if user cannot handle it - ABEND
2) if user can handle it - -

PSW moved from low core, where it was saved
as result of interrupt, to save area in PIE

Registers 14-2 moved from private save area to
save area in PIE

Registers restored from private save area

Reg 14 set to point to an SVC3 instruction located
just before entry point of PC FLIH

PSW modified to point to user routine and is loaded
thus passing control to user rtn

User rtn can modify PC old PSW at will but only
changes to right half of it will have any effect

User rtn should terminate with a BR 14 for two reasons
1) exit rtns set high order DbLit of PIE back to 0

2) cause right half of PC old PSW be made right
half of tasks resume PSW

User Program Check Routine Exit

MVT Supervisor, Section 9, Return from User Program
Check Routine (Y28-6659)

QAe

SVC 3 instruction, executed as result of BR 14,

causes updated PSW to be stored and SVC new PSW

made current
. [L

First function of sSVC 3 rtn (regardless of lLow

entered, they have no way of knowing yet) is

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIL

note:

to compare instruction address in stored SVC old PSW to
entry point of PC FLIH

1) if equal, SVC 3 rtns were entered from
user PC rtn and SVC rtns perform special
processing

2) if unequal - SVC 3 rtns were entered fron

a routine other than a user PC rtn and do
not perform special processing

C. Special processing when SVC 3 rtns entered from
user PC rtn .

1) set high order bit of PIE to O
2) form composite PSW from

a) left half of PSW stored as result of
SVC 3 interrupt

b) right half of PSW in PIE (possibly
modified by user rtn)

3) move this composite PSW into the current
RB chained off the task that issued SVC3
(SVC3 rtns are type 1 so there is no SVRDB
for them)

This composite PSW is formed so user can modify
instruction address portion but cannot change
protection key or supervisor/problem state bit
of PSW

4) move registers from SVC FLIH private save area
to TCB then overlay registers 14-2 in TCB with
corresponding data in PIE

Abnormal Termination by Prog. Check FLIH

Ref: MVT Supervisor, Section 10, Abnormal Termination
(ABTERM Prologue), (Y28-6659)

a. PC FLIH Runs uninterruptable, cannot issue
SVC13 (or anyother SVC for that matter)

b. Must cause the offending task to
issue its own SVC 13

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGEKLLPSIE

note:

C. Does this by entering ABTERM Prologue which

1)

2)

3)

4)

5)

6)

7)

8)

Refreshes loc 16 hex to point to CVT (just
in case it was overlaid by the error)

Obtains address of TCB to be terminated from
CURRENT TCB Pointer

Saves the offending PSW in OPSW field (resume
PSW field) of the current RB of the task

Moves registers .from PC save area in low core
to register save area in TCB to Le terminated

Sets up completion code, it will be stored in
the TCB by ABTERM rtns (passed in a register)

Sets up return address to be used by ABTERM
(return is to the dispatcher)

Turn on the dump flag (passed in completion
code register) to request a dump

Branches to the ABTERM routines

ABTERM rtns is a disabled, serially reusable, non-SVC
program resident in the nucleus

d. ABTERM rtn -

1)
2)

3)

4)

5)

6)

Refreshes CVT address (againl!)

Saves right half of resume PSW (in current RB
of task being terminated) in RBABOPSW
field of the RB

Stores completion code and dump flags in TCB

Modifies resume PSW to point to an SVC 13 instr-
uction in the CVT

Sets non-dispatchable any incomplete subtasks
of the task being terminated

Returns to address specified by caller - in this
case the dispatcher who dispatches the task to be
terminated. The first instruction executed on
behalf of this task is the SVC 13

PROGRAMMfNC/SYSTEMS EDUCATION - SDD POUGHKLCEPSIE

C. Lxternal Interrupts XIV C.
Ref: MVT Supervisor, Section 2, kxternal Interruption,
(Y28~6659)
Handout S9
1. External FLIH

a. Receives control when external new PSW made
current by interrupt circuitry

b. Saves registers in CURRENT TCB
c. 'Ssaves PSW in current RB chained off that TCB
d. Determines cause of interrupt

1) "INTERRUPT" key pressed on control panel

a) means master console is inoperative

b) resident external routine given control
c) it searches for an alternate console(s)
d) if one found messages issued to request

designation of a new master console by
operator command (such a command can be
issued from any alternate console)

e) if one not found, 0OS dies
2) Timer interval expired
a) Timer SLIH given control
b) checks TQE that has expired, takes action
according to macroc operands indicated in
the TQE '

(1) terminates task

(2) clears wait count

(3) reconstructs TQE into IRB, IQE, invokes
Stage 2 exit affector to schedule user

vexit routine

c) Lxits to FLIH

PROGRAMMING/SYSTE}MS EDUCATION - SDD POUGHUKLEPSIE

-

e. Branches to dispatcher

D. I/0 Interrupts XIV D.
L Ref: MVT Supervisor, Section 2, I/0 Interruptions
: , (Y28-6659) ' .
Handout S9

Te I/0 FLIH

a. Receives control when I/0 new PSW made active
by circuitry

b. Checks switch to see if another I/O Interrupt
was being handled when this one was allowed

1) If bit off (no other I/0 Interrupt being
handled)

a) saves registers in CURRENT TCB
b) saves PSW in current RB of that TCB
c) passes control to I/O0 Interrupt handler

2) If bit on (another I/0 interrupt was being
handled)

a) registers nor PSW saved
L b) passes control to I/0 Interrupt Handler

note: I/0 Interrupt landler is reusable, when "first"
entered, CURKENT tash's registers and PSW saved
and interrupt handled; while still in control, I/O
Interrupt Handler enables I/0 Interrupts (to handle
stacked interrupts) and if there are stacked interrupts
(stacking done in hardware) processes them, When there
are no more I/0 Interrupts to handle, the "first time
switch" is set off and exits to Dispatcher, next I/0
Interrupt causes switch to be checked and registers
and PSW of them CURRENT task are saved.

On processing stacked interrupts, registers and
PSW are not saved as they are not the registers
nor PSW of the task that was CURRENT when original
I/0 Interrupt ‘occurred yet I/0 Interrupt Ilandler
is executing under that TCB. Thus if it saved

¢ PROGRAMMING/SYSTE}NS EDUCATION - SDD POUGHKEEPSIL

registers and PSW on recycle for a stacked interrupt
it would destroy the registers and PSW of the task
that will eventually be redispatched

Machine Check Interrupts : XIV E.

Ref:

MVT Supervisor, Section 2, Machine Interruption,
(Y28-6659)
llandout S9

Machine Cneck PSW points to recovery routines
selected at sys gen time :

SERO (System Environment Recording)

a, Least complex of the options, is not entirely
resident, MC new PSW points to a resident
routine that loads the rest of the module into
storage

b, Operates without 0S/360 facilities and is non
reusable

Ce. Is given control as result of a machine check or
a channel check (in latter case, I/0 Interrupt
Handler loads the MC new PSW

d. Functions as follows
1) Halts I/O on all devices
2) Reads first 1024 bytes of non-resident

module into storage, if can't do this in
10 retrys - ring bell and WAIT

3) Non-resident module loads rest of itself into
storage
4) Determines whether machine check or channel

check has occurred -{loc 5C is initially X'FF',
a machine check overlays this, channel check
does not)

5) Checks registers for valid parity

6) Checks busy bit in UCB to see how many UCB's
were busy when check occurred

7) Collects information to be written to

PROGRAMﬁiNG/SYSTEMS'EDUCATION - SDD POUGHKEEPSIL

SYS1.LOGREC, and writes it

8) If more checks occur while error data is
being accumulated (3 of them) error message
is printed and SERO stops

9) In any case, SLERO tries to write a message
to console indicating extent and outcome
of its data accumulation

10) Loads a waiting PSW
3. SER1

a. More complex than SER0O, collects and writes error
data, tries to associate error with a task and
terminate that task. Is resident and is serially
reusable

b. Uses 0S/360 facilities

C. Receives control as result of machine check or channel
check causing machine check new PSW to be loaded

d. Collects data and writes it to S¥S1.LOGREC using
EXCP unless control program was damaged in which
case it uses its own I/0 routines

e. Tries to associate the error with a task and if
it can, invokes ABTERM to terminate that task so
system can resume execution

note: no task from master scueduler up (on main TCB queue)
.will be ABEND'd this way. If error is associated
with one of these tasks, system put in WAIT state.

f. If successive machine checks occurred during data
collection or error could not be associated with a
task or the control program was damaged by an error
or the error record could not be written, a WAIT
PSW is loaded

4, MCH (valid option only for Model Mod 65 MP or Mod 85)
ae Most sophisticated error recovery routine, is

partially resident, other modules on SVCLIB,
attempts to recover from a machine check

PROGRAMMING/SYSTEIIS EDUCATION - SDD POUGHKEEPSIE

-

b. Given control as result of machine check interrupt
causing machine check new PSW to be loaded

Ce Tries to retry the instruction being executed when
failure occurred

d. If instruction retry not possible, tries to repair
program damage:

1) Defective storage protect feature = repaired
by SSK (set storage key) instruction

2) Defective storage location - repaired by
relcading (refreshing) module at that location
(checks nucleus refresh table - NRT - and tries
to refresh module from copy on SYS1.ASRLIB)

e. If program repair is possible, MCH retries interrupted
instruction

1) if retry successful, !ICH has corrected the error

2) if retry or repair unsuccessful, MCH can continue
partial system operation or put CPU in WAIT state

£f. Partial system operation attempted if a problem program
task was interrupted and damage not too extensive,
abnormally terminates jobster task and tries to continue

ge. CPU put in wait state if system task was interrupted
or damage. extensive

h. In M65MP - Storage Reconfiguration rtn schedules
task for selective ABEND and logically removes failing
storage from system. System operation resumed

Asynchronous Exit Routines * XIV F.

Ref: MVT Supervisor, Section 3, Scheduling a User Exit
Routine (¥29-6659)

1. Definition - routines, usually user written, to be given
control when certain events occur that cannot be
anticipated by the system nor sysnchronized with other system
processing

2. How specify

N N
a. ATTACH macro, ETXR operand - routine of parent

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKLEPSIE

-t

note:

b.

task to be given control when the ATTACI'd task
terminates

STIMER macro, user routine - routine of the requesting
task to be given control when specified time interval
expires '

Scheduling of Asynchronous Routines

a.

ATTACH, ETXR rtn
1) ATTACH SVC rtns detect_ETXR operand
25 Branch to Stage 1 Exit.Effector to
a) obtéin space for an IQE (Interrupt Queue Element)

b) obtain space for an IRB (Interrupt Request Block)
if one does not already exist for the routine

Mother task could ATTACH several daughters, specifying
same LTXR rtn for each. In each ATTACH, a new IQE would
be built but the same IRB would be used for all requests.
The IQE is associated with the request, the IRB is
associated with the routine

c) Initialize IRB, includes address of exit
routine

d) Take type 1 exit to caller (i.e. the
ATTACIH routines)

3) On return ATTACH rtns initialize IQE and
chain it of newvly created TCB, IQE points
to IRB at this time

§) When this (new) task terminates, termination
routines detect the IQE pointer in the TCB
being terminated and link to Stage 2 Exit
effector to

a) enqueue the IQE on the AEQJ (Asynchronous
Exit Queue)

b) set "stage 3" switch and return to caller
5)° When dispat¢her next entered, it checks

"stage 3" switch and finding it set, enters
Stage 3 Exit Effector to

PROGRAMMEIIG/SYSTEMS EDUCATION -~ SDD POUGHKEEPSIE

note:

4.

Exit

Ref:

a) scan AEQJ for IQL's
b) checks IRB's chained off IQE's

(1) if IRB is already queued off a
task - chain IQL off the IRB to
indicate reuse of the routine the
IRB represents

(2) if IRB not gqueued off a TCB,
enqueue it off the TCB pointed
to by the IQE and initialize it

(a) set up PSW to point to entry
point of user rtn

(b) move registers now in the TCB
to the IRB register save area

(c) set up registers in TCB for
entry to user rtn

c) Stage 3 Exit LEffector returns to the
dispatcher after all IQE's are processed

At this time the IRB engueued off a TCB (the

task that issued the ATTACH specifying the ETXR
rtn) has at least one IQE (representing at least
one request for the associated rtn) chained off
it. If several ATTACH's were issued specifying
this rtn as an LTXR rtn, and those subtasks have
terminated while the rtn was executing for the
first such subtask's termination, the IQE's re-
presenting the otiicr requests are chained off ‘the
first IQE hung out of the IRB

MVT Supervisor, Section 9, (Y28-6659)
When user £TXP rtn terminates with a BR 14

(and therefore an SVC 3 instruction), the
termination rtns

1) Dequeue the IQE pointed to from the IRB
. ...

2) Check if that IQE points to another IQE
(representing a second request for the

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIL

same rtn)

a) if no other IQE pointed to - free

the one IQE, dequeue and free the IRB (moving

registers in IRB to TCB)

b) if it does point to another IQE,
free first IQE, re-set IRB to
point to next IQE, reset PSW in
IRB to point to entry point of
user LTXR rtn, re-set registers
for user rtn in TCB '

STIMER, user routine

1)

2)

3)

4)

STIMER SVC Rtns build TQE, put timer
value in it

Engueue TQL in timer gueue at position
corresponding to the timer interval

When time interval expires, TQL recon-
structed into IRB and IQE

Stage 2 Exit affector invoked, processing
continue as in 4. a. above

G. Exiting Procedures (Review, for the most part)

Ref: MVT Supervisor, Section 9 (Y28-6659)
Handout S11

1. Exit from a type 1 SVC

ao

Usual exit

1)

2)

3)

Restore registers (L instr) from SVC
FLIH private save area

Load PSW (LPSW) from SVC old PSW location
Requesting task thus "dispatched" by the

SVC rtn itself, without using dispatcher
rtns -

Special exit

1)

Taken by WAIT - routines (type 1 SVC) when

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

XIV G,

2.

note:

3.

requesting task's wait count not zero when
WAIT SVC rtns have finished processing
(would be ridiculous to take usual type 1
exit - that would cause a waiting task to
be dispatched) :

2) Move PSW to current RB for requesting

task

3) Move registers from SVC FLIH save area to
TCB

4) Set NEW pointer to O

5) Branch to dispatcher

Exit from User Program Check Routine

a. Exit routines. (SVC 3 routines, type 1 SVC)
entered by SVC 3 instruction placed just before entry
point of Prog. Check FLIH

b. Exit routines compare address in PSW stored as
result of SVC 3 interrupt to entry point of PC
FLIH - egual compare indicates how they were
entered and causes special processing

C. High order bit of PIE set to O

d. Registers in SVC FLIH save area (put there
as result of SVC 3 interrupt) moved to TCB
of task that issued SVC 3

e, Composite PSW built, in current RB for that
TCB, from

1) Left half of PSW in SVC o0ld PSW -~ stored
as result of SVC 3 interrupt

2) Right half of PSW in PIE - user modified
This allows user to modify instruction address
in PSW but not the storage protect key nor
supervisor mode bit

f. Branch to the diépatcher

Exit from a routine controlled by an SVRB

PROGRAMMING/SYSTEMS ﬁDUCATION - SDD POUGHKEEPSIE

a. Exit routines entered by SVC 3 instruction
(SVC 3 in CVT)

b. Exit routines determine that an SVRB is current
RB for requesting task

Ce. Subroutines invoked to
1) Move registers 2-14 from SVRB to TCB
2) Set up registers 0, 1, and 15 in TCB as
terminating routine indicates (parameters.

to caller)

3) If terminating SVC is transient, SVRB dequeued
from transient area gueue

d. Return to exit common processing (6. below)
Exit from routine controlled by a PRB
ae Exit routines entered by SVC 3 instruction in CVT

b. Exit routines determine PRB is current RB on requesting
TCB

Ce Subroutines invoked to

1) llove fegisters from SVC FLIH save area to re-
qguesting tasks TCB

2) Check if this RB is last on TCB queue
a) if so - branch to end of task routines
b) if not

3) Branch to contents directory rtn to

a) Locate terminating programs' CDE
and reduce the use/responsibility
count by one

b) If program is serially reusable and there
is at least one outstanding request for it
(use/resp count not yet 0, also PGMQ field
of PRB for terminating program points to next
requestor)

PROGRAMMING/SYSTEMS_tDUCATION -~ SDD POUGHKLEPSIE

(1)

(2)

(3)

(4)

(5)

Addr. in CDE updated to point to next
PRB (from PGMQ field of terminating
PRB)

This next PRB 's wait count cleared to 0

Sets PSW in new PRB to point to entry
point of requested program

Branch to task switching routines (new
RB's task may exceed others in prty)

Task switching rtns return to exit
routines which perform common processing
(6. helow)

c) If there are no outstanding reguests for
terminating program

(1)
(2)
(3)

(4)
(5)

(6)

Non-functional flag set in CDE for
programn

Program attributes checked and processed
accordingly

If in LPA - no processing, return to
exit common processing

If not in LPA and either reusable or re-
entrant set purge flag in CDE, which
will be tested by GETMAIN when space needed

If neither reusable nor reentrant -
storage used by program freed as are
its control blocks (CDE, XL)

Return to exit routine common processing

Exit from program controlled by IRB or SIRB

a. Exit routines entered from SVC 3 in CVT

b. Exit routines determine IRB or SIRB is
current RB on requesting TCB

Ce. Subroutines invoked to
. ..
1) For SIRB - immediate return to caller, no
processing

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

Task

Ref:

Exit

Ae

2) For IRB -~ checks use count in IRB for zeroc -
if not zero parent task has requested multiple
use of the exiting routine

3) Degueues top IQE from IRB and frees it

4) Resets IRB (PSW) for reexecution of user
rtn
5) If use count 0 - deqgueue IRB, move registers

in it to TCB and free IRB
6) Branch to transient area refresh routines

common processing

Routines of Exit SVC entered after special pro-
cessing for different RB's has bcen performed

Check if exiting rtn is under control of last
RB on its TCB gqueue - if yes TCB is dequeued and
"normal termination" flag is set in it

If not last RB, check is made to see if next RB

is in Wait state, if it is - test NEW/CURRENT pointers
to see 1f task switch has been indicated, if not,

sets NEW to 0; if already has been indicated, no
change

Dequeues terminating program's Rb and frees the
RB if it can (cannot free SIRB)

Branches to transicent area refresh routine - which
processes as described in XII A. 4, £f.

Switching Routines (Review) | XIV H,

MVT

When

Supervisor, Section 3, Services Internal
to the Supervisor (¥28-6659)

entered and why

if NEW=CURRENT

if NEW#CURRENT, NEW#Q.

if NEW#CURRENT, NEW=0

PROGRAMM&NG/SYSTEMS-EDUCATION - SDD POUGHKEEPSILE

Dispatcher (Review)

Ref:
1.
2.
3.

MVT Supervisor, Section 9, bispatching (Y28-6659)

When entered and how
Use of NEW/CURRENT pointer

Search of TCB queue

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

XIV I,

Task
Ref:

A.

Supervisor

MVT

Supervisor, Section 3 (Y28-6659)

Function Overview

1.
2.
3.

Task

Creaies tasks as résult of ATTACH macro
Detaches and deletes tasks on request (DETACH)
Serializes use of_resources ENQ/DEQ
Creation (ATTACH)

Handout S15
ATTACH macro expands into an SVC call
ATTACH SVC routines

a. Obtain space for TCB (also IQE and IRB if
necessary)

b. Initialize TCB with
1) Priorities (limit and dispatching)
2) Subpool pointers and subpools

3) TIOT Pointer (from parent TCB - including
initiator)

4) IQE pointer (if ETXR specified)
5) ILCB address (if ECB specified)
6) Subtask pointers
7) Save area address
C. Determine if new task is jobstep or not by

PSW protect Key of requestor (requestors PSW
is in SVC old PSW)

PROGRAMMING/SYSTENS LEDUCATION ~ SoD POUGHKLEPSIE

XV

L

Task

1) If protect key is 0 - new task is jobstep

2) If protect key is non-0 - new task is
subtask

d. llew ICB enqueued on 1CB queue (dispatcher gueue)
according to dispatching priority

e. Registers in SVRB for ATTACH routines moved into
requestors TCB, reg 1 set to point to new TCB,
RB pointer set of next RB on requestors gqueue

£. SVRB for ATTACH routines is now chained off new TCB,
module name specified in ATTACH put in SVRB

ge PSW in SVRB set to point to Contents Supervisor
rtns to locate requested module

h. NEW TCB pointer set to higher priority task of
the requestor or its new subtask

i. Dispatcher branched to
Termination (DETACH) XV C.
When needed

a, When ATTACH That caused subtask creation specifiea
either or both of ECB, ETXR operands

' b. TCB's for subtasks so created will not be deleted

unless specifically OETACH'Ad
Freeing TCB

a, All other control blocks associated with the
subtask were rcmoved and/or freed when suktask
invoked exit routines (SVC 3) and it was determined
that a task (rather than a program) was terminating

TCB is not freed automatically if ECB and/or LTXR operands
coded in ATTACH as these operands indicate parent task
wants to be notified of subtasks completion and do some
checking on its completion

ae. If subtask ATTACHI'd with neither LECB nor LTXR
operands its termination will cause its TCB to
be freed and parent will not be notified of
subtask's completion (normal or abnormal)

PROGRAMMING/SYSTEMS LDUCATION - SDD POUGHKEEPSIE

C

C

b. If DETACH issued for a subtask that is incom-
plete, it is abnormally terminated
Ce. If a DETACH is issued for a TCB not on requestor's
subtask queue, requestor is ABLND'd
D. Serializing Use of a Resource (ENQ/DEQ) XV D.
1. Purpose
a. To allow programs to request use of a serially
reusable resource
b. To make their reguest and eventual use of that
resource known to other regquestors
C. And thus prevent two requestors from using
the same resource simultaneously
d. Requires that a common name be assigned to the
resource and known and used by all requestors
note: the specification of the name and consistant use of

2.

note:

it is a matter of programmer communication. The ENQ/
DEQ routines do not know what resource a name represents
nor do they prevent use of that resource if a programmer
fails to use an ENQ.

How request is issued and handled

a.

ENQ macro specifies resource name (Qname and
Rname) and exclusive or shared control of
resource, also whetihier it is a system wide
or region wide resource

Might request exclusive control of a data set

if your task is going to modify it. When your
program gets the resource, you are the only task
using it. Request shared control of the data set
if you are not going to modify it but want the
fact that you are using it known so no other task
(requesting exclusive control) can change it while
you are using it

LNQ generates SVC, ENQ routines construct control
blocks

1) new gname and rname

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKLEPSIE

2)

3)

a)

b)

c)

major QCB (Queue Control Blcok) built
for gname

minor QCB built for rname

QEL (Queue Element) built to represent
requesting task, chained out of minor
QCB

(1) i1f it's a region wide resource
(known only to tasks in requestor's
region), region protects key is
put in QEL

(2) if its a system wide resource
{known to all tasks in the system)
a '"FF' is put in the QEL in place of
protect key

gname already used by this requestor or another
requestor, but new rname

a)

b)

c)

no major QCB built, one already exists

minor QCB built for new rname, gqueued
off other minor (QCB already gqueued off
major (CB

QEL built representing requestor as abocve
chained off newly built minor QCB

Previously used gname and rname

a)

b)

no major or minor QCB's built, they
already exist

QEL built to represent requestor,
chained off other QEL's off minor QCB

QEL's represent tasks requesting use of the
resource named by ¢name, rname combination

Tasks represented by QEL's for a particular
resource are allgwed to use the resource in a
strictly FIFO manner, depending on position
of their QELL's in the queue

If and when requesting task is top QEL in

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

note:

gueue, that task is allowed to continue or
resume execution at instruction after ENQ
macro and thus access the requested resource.
If task's QEL is not top on gueue, it is put in
WAIT state

Exception to e. above

1) can issue LENQ for test purposes to see if
reguestor would get immediate use of the
resource or to see if the task was already
enqueued on the resource (attempting to
ENQ on a resource presently ENQ'd on results
in ABEND of reqguestor)

2) If two tasks requesting shared control of
some resource are adjacent at top of queue,
both tasks are allowed to resume executing
together

The system does not know and has no way of knowing
what resource is represented by a given yname,
rname pair and thus the use of a resource is
controlled by holding requestor in a WAIT

state or allowing it to execute its own code

to access the resource.

The QEL's chained off a particular minor QCB are
manipulated ‘as if they constituted several
distinct lists

1) the QEL's with 'FF' representing system wide
resourcesi are handled as one list

2) the QEL's with like protect keys are handled
as separate lists, a distinct list for each
distinct protect key. Since such QEL's
represent reqguests to use a resource known
only to tasks in the region with that protect
key, the QiL's with like protect keys are
handled as serarate FIFO lists

PROGRAMMING/SYSTENS EDUCATION - SDD POUGHKELPSIE

"I Contents Supervisor XVI

Ref: MVT Supervisor, Section 4, (Y28-6659)
‘ Handout S12

A. Function Overview ’ XVI A,

1. Searches for modules reguested to be orought into
main storage

2, Loads and relocates tlie nmodule if necessary

3. Builds control blocks describing'the module

4. Passes control to the module or returns address of
its entry point to requestor

B. Macros invoking Contents Supervisor via an SVC XVI B.

Ref: Supervisor and Data Management iacros (C28-6647)
1. ATTACH - requests creation of a new task and

specifies first program to be located and executed
on bhehalf of the new task

2. LINK - requests that the specified progfam be located and
executed on behalf of requesting task before
instruction after the LINK (in requesting program)

‘ is executed

3. XCTL - requests the specified program be located and
executed and its PRB replace requesting program's
PRB in chain hung off requesting task's TCB

4, uOAD - requests the specified program be located or
loaded and its entry point address bLe returned to
requestor but the requested program is not to be
executed automatically by Contents Supervisor

C. Search for the module . XVI C.
1. Requestor's region
a. tiodules loaded into a requestors region constitute

T

PROGRAMMING/SYSTES EDUCATION - SDD POUGHKELPSIE

the region's job pack area

b. Each module is represented by a CDE (Contents Directory
Entry) containing name of module, etc,

c. CDE's queued together, origin of jobpack gqueue is a
pointer in jobstep TCB

d. Contents supervisor searches tihis queue first for
the requested module

1) If it is found in the region

a) Check if module available - it must be
(1) reéntrant, or
(2) reusable and not in use, or
(3) nonreusakble and unused

b) if unavailable - defer request - chain
regquestors SVRB (for Contents Supervisor
rtn) off RB presently controlling the

Module (or last RB of a chain of such
deferred reqgquestors)

c) If module available - increment use/
responsiblility count in CDE by 1

d) Build and enyueue a PRB for the module,
PRB inserted on requestors TCB queue of
RB's after the SVRB for contents supervisor
{(that is, the PRB is the 2nd RB in that
tasks KB queue) PSW in PRB built to
point to entry point of module

e) Contents superv rtns exit (SVC 3) thus deleting
the SVRB and making new PRB the top RB on the
task's qucue

2) If module not found in requestor's region

2, Contents Supervisor Checks for private libraries

a. If DCB operand of .lacro specifies a DCB address,
the data set so specified is searched

1) if module is located

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGLKELPSIE

note:

a)

b)

space for a CDE is obtained and
partially filled in

program FLETCH invoked to load and
relocate the program

(1) issues GETHMAIN for area the size
of program being loaded

(2) as program loaded, builds extent
list (XL) indicating load point
and size of each segment of the
module

For block loaded modules (the usual case) only one
entry is made in the XL but for the scatter loaded
modules a different entry would be made for each
CSECT indicating its load point (e.g., address of
first byte of the CSECT) and size

2)

c)

d)

(3) returns to caller the entry point
address of the module

if LINK, ATTACI or XCTL being processed,
since module is now available, a PRB is
built and engueued after SVRB for contents
supervisor rtn, PSW built to point to
modules entry point, use/responsibility
count incremented by 1, contents super-
visor rtns exit (SVC3)

if LOAD request being processed, LLE built
(Load List Llement) containing pointer to
CDE and ptr to next LLE, entry point of
LOAD'd module returned to caller, no PR3
built

if module not located on this data set, search
link pack area

If DCB operana to macro is not coded or coded as 0
check for JOBLIB or STEPLIB DCB (address of DCB in
TCB if such a data set was specified)

1)

2).

if DCB provided - search data set as above

if DCB not provided - search link pack area

PROGRAMMING/SYSTEIIS EDUCATION - SDD POUGIKLLIPSIE

note:

4,

5.

The TCB contains a 1 word pointer to a DCB for the
JOBLIB OR STEPLIL data set (initiator creates

and OPEN's tnis DCB) but for any jobstep task

(and thus for any of its suptasks) only one such DCB
is provided =~ STEPLIB data set, if provided; JOBLIB
data set, if provided and STEPLIB is not.

Contents Supervisor searches Link Pack Area

a.

b.

d.

All modules loaded in LPA at WIP time are available
to all tasks in the system

Bach module represented by a' CDE, all chained together
origin of queue is in CVT (LPACQ pointer)

LPA queue of CDE's searched for required module

1) if found, its available (all modules in LPA
are reentrant and thus available for use), PRB
constructed, and enqueued after Contents
Super's SVRB off requesting task, PSW Luilt
to point to modules entry point, use/responsibility
count incremented by 1 and contents supervisor
rtns exit (SVC 3)

If not found in LiPA

Contents Supervisor Searches LINKLIB
processing as for search of private libraries

If module not yet located, requestor ABEND'd

Alias Processing XVI b.

1.

A module can have up to 16 alias, each is a different
entry in the directory of the PDS that contains the
true name of the module. Alias names are distinguished
from true names by a kit setting in the PDS directory
entry and the true name is in the uscr data portion of
the alias entry if module is reusable or reentrant

If the name specified in a macro is found in a library
(as opposed to the JPA or LPA) and it is an Alias,
Contents Supervisor rtns get the truc name of the module
from the ALias directory entry and re-search the jobpack
area for the module under the true name

Two types of processing can occur depending on
whether or not the module is alreacdy in main storage

PROGRAMMING/SYSTENS =DUCATION - SDD POUGHKLELPSIE

a, If the module is in main storage

note:

note:

E. Special Processing for

1) a major CDE exists for it, containing true
name

2) possibly, minor CDE(s) exist for it - for
other alias

3) minor CDE built, containing Alias name
specified in the request and thé address of
associated entry point - either prime entry
point or alternate entry point - if it has the
same name as the Alias

4) the field in the CDE used to point to the XL
in a major CDE, is set to point to the major
CDE

If a nonserially reusable program is requested by an
Alias, a major CDE is built, containing the Alias
name and no minor CDE is built. This is because
when the program terminates, the program and its
control blocks will be freed immediately since the
program cannot be used again in its present
(executed) state

b. If the module is not in main storage

1) two CDE's built, one major and one minor

2) each CDE contains correspronding name of module
prime name in major, alias name in minor CDE

3) corresponding entry point(s) inserted in each
CDE

§) minor CDE points to major from field usually
used (in a major CDE) to point to XL for the
module

5) XL constructed as module is loaded (by FETCH)
and is chained out of the major CDE

A bit is set in first byte of CDE to indicate whether

it is a major or minor CDE and therefore, now the
"XL/MAJ" field i8 being used

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKELEPSIE

XVI k.

1. LOAD macro

a. Load list for the requesting task is 'searched before
the jobpack gqueue is searched

1) LOAD list consists of LLE (Load List Elements)
constructed as result of previous LOAD's of
modules, origin of list is in requesting tasks TCB

2) LLE contains
a) pointer to next LLE on gueue
b) pointer to CDE for the LOAD'd module °
c) responsibility count

b, If module is located - already LOAD'd

1) responsibility count (in LLE) and use/
responsipility (in CDE) are incremented by 1

2) address of module returned to requestor

c. If module is not located on load list or jobpack
queue

1) LLE, CDE and XL created and module loaded

2) responsibility count (in LLE) and use/
responsibility count (in CDE) set to 1
3) address of module returned tc requestor
d. If module is located when jobpack qgueue searched

1) LLE built and added to load list of requesting
task

2) responsibility count (in LLE) set to 1,
use/responsibility count (in CDi) incremented by
1

note: The CDE thus located is already on jobpack queue
and remains there, LLE points to the CDE. Thus
that CDE is on boti the load list of the request-
ing task and on the jobpack queue for the region

PROGRAMMING/SYSTEMS LDUCATIGN - SDD POUGHLKEEPSIE

2.

XCTL macro

a. Informs system that issuing program is transferring
control to module specified in macro and
is not to receive control back from the specified module

b. Issuer's PRB is deleted

1) XCTL rtns are SVC and operate under SVRB

2) They reverse the issuer's PRB and their
own SVR3 on TCB queue of RB's (now issuer's
RB is top on gueue)

3) Issue SVC 3 - which causes issuers PRB to be
deleted and appropriate responsibility, use/
responsibility counts to be decremented,
if zero, space to be freed, etc.

C. After SVC 3, SVRB for XCTL rtns is top RB on
gueue, XCTL searches for reguested module and
either locates it or loads it and builds
appropriate control blocks for it

d. XCTL rtns build PRB for new module and engueue
below SVRB on requesting TCB's RB gueue

e. XCTL rtns issue SVC 3 thereby, deleting their
own SVRB

IDENTIFY macro
a. Informs contents super of a dynamically added entry
point to a mouule presently in storage. New
entry point and name exist only while that copy
of program is in storage
b. Must specify
1) Name to be associated with new entry point
2) Main storage address of the new entry point
Ce IDENTIFY rtns

1) Build a new minor CDL for new entry entry point

2) . Search exiséing load list ancd jobpack queue
to determine if specified address falls in

PROGRAMMING/SYSTEMS LDUCATION = SDD POUGHKLEEPSIE

a module loaded for the requesting program or
in the requesting program itself

3) If invalid address = return code to requestor
indicates new entry point was not established

4) If address valid - build a minor CDE for new
entry point and insert tiie address, insert
pointer in minor CDL to major CDE for module
in which new entry point is located

5) Exit to dispatcher I

F. Use/responsibility and ;esponsibility Counters XVI F.
T Where maintained
a. In LLE - responsibility count
b. In CDE - use/responsibility count
2. When incremented or decremented
a, LIWK,ATTACH,XCTL increment count in CDE by 1
b. LOAD increments counts in LLE and CDE by 1
. Co DELETE decrements counts in LLE and CDE by 1

d. SVC 3 routines (exit) decrement count in CDE by 1

e, XCTL decrements count in CDL of the issuer of XCTL

~-

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIL

¥VII Main Storage Supervisor XVII

r
‘hr Ref: MVT Supervisor, Section 5, (Y28-6659)
.+ Handout S14 ‘

A. Function Overview XVII A.

1. Responds to requests for use of main storage space
or to .relinguislh use of such space '

2. Request issued by GETHAIN/FREEMAIN macros

3. Request may be for space in a region or for a region
or for space in SQS

4, GETMAIN/FREEMAIN rtns are SVC rtns
B, Space in a region _ XVII B.
1. The region itself

a. When region obtained for a jobstep task, a PQE
(partition queue element) is built for the region

b. A dummy PQE is constructed and 3rd and 4th words
used tc point to first and last PQE's for a job-
step task (can have several "regions" by Rollout
‘;, facility in which case a new PQE is built as each
new region assigned to requestor). If only region
for the task, both pointers in D-PQE point to the
single PQE describing the region

C. Pointer inserted in jobstep TCB (propogated to
all subtask TCB's in that region) to beginning
of D-PQE, thus the address is 8 bytes before the
pointers to the PQE(s) for the region

d. PQE contains

1) pointer to FBQL at highest address in the
region

2) pointer to FBQE at lowest address in the
region

(X

PROGRAMMING/SYSTLIIS LDUCATION - SLD POUGHKEEPSIE

3) pointers (2) to next and previous PQE's
for the jobstep task (if there are no others,
it is 0's)

4) region size
5) region address (first byte of region)
e, Space in a region is either allocated for use

(from jobstep tasks point of view, the protect
key of allocated space is that of the task) or
unallocated - protect key of 0

note: Exception space in SP252 of jobpack area is
allocated but has protect key of 0

f. Space allocated for use may, in fact, be unused.
Used space is allocated space, the address of which,
has been returned to a requestor in response to a
GETMAIN. Space is allocated (i.e. protect key set
to that of task) in minimum of 2K blocks.

g. Unallocated space in a region is described by
FBQE's (Free Block Queue Elements) which reside
in the low order three words of the space they
describe and contain

1) pointer to next higher FBQE (if highest,
address of PQL for region)

2) pointer to next lower FBQL (if lowest, address
of PQE)
3) count of number of bytes in the area this

FBQE is describing - count includes the FBQL itself

note: PQE points to highest and lowest FbQE's in the
region
2. Jobpack area and its sukpool numbers

a, Modules loaded into the region constitute the
regions' jobpack area

b. Space in which such modules reside is allocated
from either ena of tiie region as follows

1) reentrant moaules from LIWKLIB or SVCLIL -

PROGRAMMiNG/SYSTL.’MS LDUCATION - SDD POUGHREEPSIE

note:

high end of region, subpool 252, prot key
of 0

2) everything else - low end of region,
subpool 251, prot key of the task

The subpool numbers associated with the space
in the jobpack area are simply signals to the
GETMAIN routines as to wuere to supply the
space from and whether or not to change its
protect key

Program FETCH issues GETMAIN for space in
jobpack area, into which to load modules are read.

3. Subpools

Ref:

£.

Supervisor and Data Management Services,
Section I, liain Storage lanagement,
(C28-6646)

A subpool is one or more 2K blocks of storage
such blocks are not necessarily contiguous

GETMAIN requests for space in a region are
satisfied from subpool space, such reguests
must be satisfiable with contiguous bytes of
storage or they are not satisfied

A number is associated with a subpool of space

for convenience in controlling and manipulating
it

Space is allocated to a subpcol (i.e., protect

key is changed to that of requesting task except

as noted above) and all or part of the

allocation is supplied to satisfy a user request
Such space sc¢ supplied is considered used or in use
and cannot be supplied for ancther request unless
it has been FRELINMAIN'a (returned to the subpool)

in the meantime

User can request space from subpools 0-127
System Task subpool numvers
Ref: VT SuperViSor, section 5, (Y28—6659)

1) Subpool 251 - Space in P/P region, protection

PROGRAMMING/SYSTEMS w1DUCATIONWN - SDD POUGHKLELEFSIL

2)

3)

key of the task, low end of region, contains
modules not in Subpool 252

Subpool 252 - Space in P/P region, protection
key of 0, high end of the region, contains re=-
entrant modules from LINKLIB or SVCLIB

Subpools 253, 254, 255, Space in SQA

a) 253 - space will be freed when associated
task terminates .

b) 254 - space will be freed when jobstep
task associated with tlie reguest terminates

c) 255 -~ space will not be freed at task
termination but must be explicitely
FREMAIN'd

d) Subpool 255 = number used by supervisor
programs (li.e. Initiator getting first
save area) to request space in P/P region
from subj.ool 0

g. AQE - Allocated Queue Llement

1)

2)

3)

4)

3) -

Built by GETMAIN rtns for each request for space
from subpools 253 and 254, describes space
allocated in SQA

Requests for space from subpools 253 and 254 are
incremented by 8 bytes, and AQE built in first 8
bytes of the area so allocatea

AQE's chained out of TCB on which termination the
space (in S5QA) will bLe freed. The TCB an AQE is
chained out of may not be the TCB of the requesting
task nor the TCB for wnich the request is made
(e.g., CDE's built as result of any task in the
region requesting a module, are all chained out

of jobkstep task)

wWhen the task, from which TCB the AQE was chained
terminates, the space described by the AQE will
be freed

AQE contains

a) pointer to next AQL

PROGRAMMING/SYSTEMS EDUCATION - 5D POUGHLKEEPSIL

b) lengtli (in bytes) of the area the AQE
describes = including the AQE itself

Subpools are described and managed by 3 control blocks

SPQE,

-

b.

DQLE and QL

SPQE = Subpool Queue Element - chained out of a
TCB, that task "owns" or "shares" the subpool

SPQE contains

1) Bit settings indicating owned/shared status
of subpool

2) poeinter to next SPQE on chain for that task or
to SPQE chained off the task that owns the
subpool (if this task is sharing it)

3) subpool number

4) pointer to first (or only) DQE for the subpool
(0's if no space allocated to the subpool)

DQE - Descriptor Queue Element = chained out of SPQE
for the subpool whose space it describes, a DQE is

a constructed whenever space is allocated to the
subpool (in multiples of 2K blocks)

DQE contains

1) address of higliest addressed I'QE in that
block of sp.ace

2) pointer to necxt DQE if there is one
(0's if not) ’

3) block address (one or more 2K blocks
allocated at same time to the subpool)

4) size of block (%in bytes)

FQE - Free Queue Llement - resides in low order two
words of space it describes, used to describe allocated
but unused space in a particular Llock of space
allocated to a' subpool. Such a block is described by

a single DQE

FQE contains

PROGRAMMING/SYSTEHS.LDUCATION - SDv POUGHKLLPSIL

1) pointer to next lower FQE in the block, 0's
if lowest

2) byte count of the unused space, including
the FQE itself

g; Handling of spacé in a subpool

1) space used from top down in the space allocated
to a subpcol .

2) space supplied to user as result of GETHMAIN
must be contiguous. TIf sufficient space not
available in present allocation(s) to the subpool
more 2K block's are allocated to it (the protect
keys set to that of the task) and a DQE is built
for such an allocation and space is supplied tc
requestor from it

3) FQE's describe only the space associated with the
DQE out of which the FQE's are chained. Even if
two separate allocations to a subpool are coin-
cidentally contiguous, DQL's for the two
allocations do not reflect this nor do the FQE's
in the two allocations

4) if GETMAIil's are issued for space sc that all
space in an allocation is supplied for use, the
FQE's are destroyed (space they occupied is
supplied to requestor) and pointer to high FQL
in DQE is zeroed out. This is also true of
FBQE's if all the space in a regiocn is allocated
to subpools. In this case thLe pointers in the
PQE to the FBQLE's arc zeroed out.

5) the FQE, by its location in storage with protect
key of the task, can be destroyed by the use if
he modifies addresses passed to him by GETMAIN
routines. This causes the GETMAIN routines much
grief and should only be done at programmers
own risk

h, Subpools provide a convenient technique for allocating
transferring and sharing space between the tasks of a
region. They also provide an efficient method of
obtaining and freeing space without undue fragmentation
(e.g., if a program issues many GETMAIN's for various
sized areas of storage, some small, some large, it would

PROGRAMMING/SYSTEMS LDUCATIOLI - S5DD POUGIIKEEPSIL

be best to request all small areas from one subpool and
the requests for the large areas from another to avoid
space fragmentation that would result if all requests were
made from a single subpool)

5. Owned/Shared Subpools

a. When ATTACH a subtask, mother task can specify that
certain subpools be given to or shared with the daughter
task

b. Operands are GSPV or GSPL and SHSPV or SHSPL

C. Giving a subpool to a daughter task

1) If subpool exists for mother

a) SPQE dequeued from mother's TCB and gueued
off daughter TCB

b) daughter task can use subpool space as it
pleases
note: Control blocks describing space allocated to the

subpool and its use, are left as they were when
subpool given to daughter. They are not reset to
indicate all subpool space is available
2) If subpool does not exist for mother
a) SPQL created and chained off daughter task
b) no space (2K blocks) 1is allocated to the
subpool, therefore not DQE is built anc
DQE Pointer in SPQL is zeroea out
d. Sharing a subpool with a daughter task

1) If subpool exists for mother

a) SPQL duplicated and chained off daughter
TCB

b) bits set in new SPQL indicating it is not
owned by daughter but is shared with it
by its mother (this prevents daughter from
freeing‘the subpool)

c) bits set in mother tasks' SPQE indicating

PROGRAMMING/SYSTEMS LDUCATION - SDD POUGHKLLPSIL

is

subpool is shared with another task

d) field in daughter task's SPQL normally
pointing to DQL is set to point to SPQL
chained off owning task's TCB

2) If subpool does not exist for mother
a) two SPQE's built

b) one chained off mother TCB bits set
indicating ownership of subpool

c) other chained off daughter ¥CB, bits
set indicating sukpool is shared with
daughter by mother; DQL field set to point
to owning tasks SPQE

d) No DQE built and no space allocated to the
subpool

A task can share a subpool that it owns with any or
all of its daughters

A task whose mother is sharing a subpool with it can-
not give that subpool to one of its daughters. It
can however share the subpool with its daughters

If a subpool is shared between two tasks neither may

free the entire subpool while the other task is

still in existance. The daughter can never free it,

the mother can only free it after the daughter terminates

If a task gives away a subpool, it can issue a GLTMAIL
specifying the same subpool number anda a distinct subpool
(with the same number) will be created. This is true

for any two tasks in a region - if they are not sharing

a subpool but each issues a GETMAIN specifying the same
subpool number, two distinct subpools, with the

same number will be created and space in each managed
separately

Subpool 0 is shared between all tasks in a region. The
System Task Control Task of the job's Initiator owns
subpool 0 and thus tlie SPQE's chained off all TCB's in
the region have Bits set inaicating they do not own

the sulpool and "DQE pointer" field in the SPQL's point
instead to the SPQE for subpool and chained off SUTCT TCB.

-

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKLEPSIE

c. Space in SQA and Dynamic area XVII C.

L 1. DQE for SQA

a. Space constituting SQA is described by a DQE as if it
were a single subpool

b. FQE's in SQA space describe free space in SQA and
highest FQE pointed to from DQE

2. PQE for Dynamic Area

a. Entire dynamic area (regardless of regions in
it) described by a PQE

b. FBQE's built in available dynamic area space,
highest and lowest FBQE's pointed to from the PQE

Ce. Other PQE fields contain Leginning address of
dynamic area and its total size

d. PQE addressed from 3rd and 4tli words of a D-PQE
3. GOVRFLB

a, A control block contained inline in resident
GETMAIN code in Wucleus

b, Governing Free List Block (?) contains
1) address of first byte above SQA
2) pointer to oQi for SQA

3) pointer to D-PQE for PQE for dynamic area

4) amount of 110 space available after NIP
5) amount of H1 space available after NIP
6) address of queue of VQE's (Vary Queue Llements)

used when area of main storage varied offline
by MP65 MCH routines

. ..
C. GOVRFLB is pointed to from secondary CVT, which
is pointed to from primary CVT

D. Rollout/Rollin * XVII D.

C ‘

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKLLPSIE

Ref: MVT Supervisor, Section 5, Allocating a Borrowed
region thru Rollout, (Y28-6659)

‘ 1. Ooverview

a. rFacility that allows a problem proygram task to
dynamically expand the main storage allocated
to it as a region by using additional dynamic
space or rolling out the contents of another tasks
region and using that space

b. Contents of region beinyg rolled out is written
onto SYS1.ROLLOUT data set

1) must be large enough to contain all of
dynamic space after IPL

2) is formatted at IPL time, region contents
are not written onto first available space
but to a location on the data set determined
by the address of the region

2. When and how invoked

a. Problem program issues unconditional GETMAIN
b. There is insufficient space in region to satisfy
request
| - Ce RORI has beén included in system
d. Requestor can (by JCL operand) cause a rollout

e. RORI routines invoked from GETMAIN module
1) RORI TCB (permanent system) made ready
2) Requestors TCB set non dispatchable

3) Requestors resume PSW decremented by 2 (to
peint to GETMAIN SVC again)

4) Task switch indicated so RORI task will be
next task dispatched

5) - GETMAIN exits to dispatcher

3. RORI criterion rtn receives control first and

‘ PROGRAMMfNG/SYSTEMS LDUCATION - SOD POUGHKELEPSIE

C

note:

b.

Determines if current request is for RO, RI or
restart of a deferred request, passes control to
appropriate routines in each case

Determines i1f another jobstep has caused a rollout
still in effect - if so, enters a (optional) user
appendage to determine

1) if concurrent rollouts should be allowed
(IBM routines do not allow it)

2) if no user's appendage supplied or appendage
decides against concurrent rollouts - defer
request

a) IQE representing reguest put on a gueue
of deferred requests

b) request is serviced when a region eligible
to satisfy the request becomes available

If user appendage allows concurrent rollouts (two
distinct tasks each with a rollout in effect at some
time) if is responsible for preventing interlock
that could result (e.g. two tasks in system, each
issues request for more space than is available in
entire dynamic area - each waits on the other - both
requests must be deferred as there is not

enough space to satisfy either request)

4, Search for space to allocate

a,

RORI routines check dynamic area for an area of
contiguous space large enough to satisfy request

1) if found - PQE for space is built and
chained off RORI TCB, FBQE built in the
space allocated (allocation performed by
GETRLGION routines so appropriate control
blocks are updated)

a) PQE removea from RORI TCB and engueued
off requestors own PQE, sets TCB ptr
field in new PQL to 0 to indicate at
Rollin time that the space should be
freed ratlhier than restored as another
tasks region

b) Rollout count (in nucleus?) incremented

PROGRAIMMING/SYSTEMS LDUCATION - SDD POUGLIKELPSIE

by 1

c) sets "borrowed" flag in new PQE
‘ o d) Sets bit in requestors TCB indicating Rollout

in effect

e) Makes requestors task disratchable (when
next dispatched, GEUTHAIN SVC will be re-
issued but now space is available to satisfy
the request) ’

£) exits
2) if space not found in dynamic area - search

for a jobstep to rollout, it must meet these

requirements

a) has not itself, caused a rollout still ‘in
effect

b) it is eligible to be rolled out (JCL
operand)

c) its region is large enough to satisfy

requestors GETMAIN

3) Finding a jobstep to check for availability
is performed as follows

L a) requestor's tCB checked to see if it
has a rollout currently in effect

if so checks for sufficient space in
previously korrowed region{s) to
satisfy current request

note: This seems a duplication of effort as the GLETMNAIXN
rtns should already have checked the borrowed
regions before scheduling the RORI task

b) if space not found, search TCB queue
from reguestor down, each TCB passed to
a routine to test the tasks

(1) 1if no suitable task of lower priority
is found, enters an (optional) user
appendage which determines whether
or not TCB's of priority higher than
requestor should be tested

E PROGRAMMING/SYSTENS EDUCATION - SDD POUGHKLEEPSIL

note:

(2) if higher priority tasks should be
tested, TCB gueue is reprocessed from
top down

(3) if no user appendage is supplied for
- this condition or no task is suitable
to be rolled out, request is deferred
see 3.,b.2) above

b) A jobstep found by search above, is eligikle to
be rolled out if:

Nested rollouts {a task, with a rollout in effect,
cannot be rolleada out) are never permitted, no user
appendage can contravene this. The reason is because
of the way the region is written on the SYS1.ROLLOUT
data set - to a location determined by an algorithm
that causes each region to be written to a location
on the data set corresponding to that region's
location in the dynamic area. If a task, with a
rollout in effect, were rolled out, both regions
belonging to that task would be mapped to their
corresponding locations on the data set; the
borrcwed region overlaying the original contents

of the region, written to the data set when earlier
rollout occurred

a) selected jobstep has not, itself, caused
a.rollout still in effect

b) selected jobstep indicated on JCL that it
can be rolled out

c) selected jobstep is not ENQ'd on a
resource

d) selected jobstep's region is large enough

to satisfy GLTMAIN rcguest

e) selected jobstep's region has not already
been rollea out and loaned to another task

£) jobstep meets additional tests performed
by an (optional) user appendage

5). If a jobstqp suitable to e rolled out cannot
be found on (optional) user appendage 1is entered
it can

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

a) cause reguest to be deferred as described in
3.a.2) above

b) abnormally terminate a jobstep task - the
requestor or another task in the system

Allocation of another reygion

d.

b.

(=F8

All tasks in region to be rolled out are set
non-dispatchable

All I/0 requests are quiesced
1) queued requests are purged (RQE's freed)
but pointers to IOB's are kept to allow

requests to be reinstated

2) active (started) I/0 requests are allowed
to complete

Operator replies to tasks in region are deferred
(saved in temporary buffers)

Contents of region are written out to SY¥S1.xOLLOUT

1) channel programs set up

2) TTR calculated where writing will begin on
data set

3) If an I/0 error occurs, partially rolled out

region is restarted and search for eligible
jobstep to be rolled out is resumed

b) if no error, operator message written stating
job causing rollout and job rolled out

Region is allocated to requestor, RORI routine

1) sets flags in owning tasks PQE indicating
region rolled out and is in use by a borrower

2) builds a new PQE for the rolled out region and
chains it off requestors TCB, sets up pointers
and bits as follows

L

a) TCB pointer field in PQE points to owners TCB

PROGRAMMING/SYSTEMS LDUCATION - SDD POUGHKEEPSIE

3)
&)

5)

6)

6. Rollin

b) Lits sct to indicate reuion is borrowed
Sets all protect keys in borrowed region to O

constructs FuBQu in low end of region, describing
all of region as free

"rollouts invoked" count (in nucléus?) .
incremented by 1

RORI rtns exit, setting requesting task
Gispatchable '

a. When FRELIAIN rtns invoked to frce space and these
rtns detect that an entire region has been freed,
they invoke the RORI task to perform Rollin

b. FREEMAIN rtns

1)

2)

3)

4)

check each PQLE chained off TCB of task issuing
FREEMAIN to sec if any such regions are borrowcd
(bits in PQL indicate this) and if all space in the
region is not allocated to a subpool

releases such a region from borrowing task Ly
dequeueing and freeing PQE

Invoke RORI to

a) check if region was allocated from free space
(if so, TCB pointer in PQE is 0), if so,
free the space

b) if region borrowed, its original contents
rolled in if owning jobstep has no borrowed .
regions stili rolled out

Rollin performed as follows

a) protect keys of region changed to that of
owning task

b) contents of region read into region space
from SYS1.20LIOUT aata set

v
c) writes message to greater describing job
rolled in

PROGRAMMING/SYSTEMS LDUCATIONH - SDD POUGUKLLEPSIE

d)

If I/0 error - ABEND jobstep that was
partially rolled in

e) resets rollout flags in owners PQL

£) resets protect key of free blocks in region
to O

g) restores deferred I/O requests

h) restarts deferred operator replys

i) makes dispatchable the tasks in the rolled
in region

5) Deferred rollout requests are restarted

a) rollout counts decremented by 1

b) clear rollout flag in borrowers TCB

c) moves IQE for deferred request to RORI
TCB, making KORI TCB ready

da) clears non dispatchability in requestors
TCB

e) exits to dispatcher

PROGRAMM‘ING/SYSTDJS wLVUCATION - SDD POUGHKLLPSIL

YUIII Timer Supervisor * XVIII

Ref: Job Management, Part 3, Attaching tiie Jobstep,
Terminating the Jobstep (¥28-60660)
L MVT Supervisor, Section 6, Section 9,
- Dispatching, hanualing job and step

timing, Section 3, Services indirectly
related to the TCB (WAIT and POST rtns)
Section 9, Dispatching, Section 13
Flowcharts of TIhE, STIMLR, Timer SLIH, etc.
(Y28~6659)

Supervisor and Data ranagement Services, Section I,
Program Management Services, Timing Services -
(C28-66U6)

A, Function Overview XVIII A.

1. Allows setting of time intervals (by macros)
and cancelling of same

2. Provides date and time of day when reguested

3. Allows scheduling of interrupts at specific
times of day

4, Is entered from SVC FLIH, SVC SLIH or Timer
SLIH

- ae. TIME macro - requests date and time of day,
‘ is a type I SVC

b. TTIMER macro - requests time remaining in a
previously set interval or to cancel that
interval, is a type I SVC

Ce STIMLR macro - requests a time interval be
established and requesting task be interrupted
when interval expires, is type II SVC

d. Timer SLIH receives control from Lxternal
FLIH detects a timer interrupt, Timer SLIH
in turn passes control to routines of
Timer Supervisor to handle the interrupt

PROGRAMMING/SYSTLNMS EDUCATION - SDD POUGHRLEEPSIL

B. The Interval Timer XVIII b,
1. Is a hardware feature

2, .Values are placed in it (by software rtns) and
they are decremented, when the value in the
timer becomes negative - the interval has
expired and an external interrupt is generated

3. The Timer is initialized and checked if working
at IPL time

a. a 6 hour value placed in the timer and
decrementing begins

b. a 6 hour value placed in a software
location called the six hour pseudo
clock (SHPC), it is not decremented but
each time a new value is placed in the
timer, that same value is placeé in the
SHPC

C. Another software location, the twenty-four
hour pseudo clock (T4PC) is initialized
to 0. &kvery 6 hours after initialization,
a 6 hour value is added to the value in the
T4rC, except when the value in it is 18
hours, in that case it is re-set to zero
and the date is changed

note: Precautions are taken at initialization time that
this happens at midnight after IPL

d. The date, specified in operator's SET command
is placed in the CVT, is updated at midnight

e. Tne time specified in operator's SLET commana,
is placed in a third software location called
the Local Time pseudo clock (LTPC) and is
not changed unless the operator executes a
SET command with the "CLOCK" operand

Ce The Timer gueue - XVIII C.
1. Is a software feq;ure
2. Consists of Timer Queue Lklements (TQL) representing

requested intervals of time

~

PROGRAMMING/SYSTE:i1S EDUCATION = SDD POUGHKILLPSIL

3. Is manipulated by STIMER routines and Timer SLIH

4, TQE contains

a. Bit settings indicating
1) Type of YQL (supervisor or problen
prograim, whether TQE is on or off (ueue)
2) Type of interval request
aj) TASK - interval decremented only

while associated task is active

b) REAL - inter&al decremented
continuously

c) WAITl - task put in WAIT condition
for duration of interval

b. Address of requesting task

C. Link fields to preceeding and following TQE's

d. Time of expiration (10X) - if TQL is on the
queug, or time remaining in interval - if

TQE is off the gqueue

e. Save area for time remaining when TQE converted
from TASK to LLAL (jolstep timing)

£. Address of save area to be used by problem program

ge Address of user asynchronous timer completion
routine (if specified in macro)

h. Extra space needed when TQE converted to IQL and
IRB for scheduling the asynchronous rtn

5. Types of TQL's
a. Supervisor TQE
1) Indicated by bits in 7TQL
2) Contains an interval of 6 nours (in which
case its called a "6 hour TQE") or an

interval which will generate an interrupt
at midnight after IPL (in which case its

PROGRAMMING/SYSTEMS LDUCATION - SDD POUGHKLEPSIE

~

called the "midnight elcment")

3) These elemcnts are always on the queue,
when tliecy are associated with an interrupt
the interrupt is handled and the elements
are repositioned on the gqueue

g) Thus, if no other timer interrupts occur .
(due to tasks issuing STIMER macro) there
will be an interrupt every 6 hours anda at

midnight
5) 6 hour interrupt
a) vetected as such by combination of
-supervisor bit in TQE and 6 hour value in
TOX field
b) Processed as follows

(1) 6 hours subtracted from all other
TQE's in gueue

{2) THUPC updated as described above
(3) 6 hour value placed in TQE and
it is repositicned on the

gueue

6) Midnight interrupt

a) Detected by combination of supervisor
bit in TQE and value of 18 already in
T4pC

b) Processed as follows

(1) Date in CVT updated
(2) TUPC set to 0
(3) 24 hour value placeu in

TQE and it is repositicned
on the gueue

b. Task TQE's

1) Indicated by bits in TQE

PROGRAMMING/SYSTEMS LDUCATION - SDD POUGHKELPSIL

2) Contains interval specified in task's
STIMER macro

3) Contains indicators as to how interval
is to bLe decremented (WAIT, TASK, RLAL)

4) Task TQL's placed on the gueue and removed
from the queue according to type of
TQL (TASK/REAL) and whether or not
task is active

5) TOX value 1is recalculated every time a
TQLE is reengueued ‘'so it reflects true
time remaining in the requested interval

6. TQE's on timer gueue are arranged in ascending order
of Time of Expiration (TOX) or length of time left in
the requested interval

7. Whenever a Timer interrupt occurs, the first or top
TQE is the one associated with the expired interval

D. STIMER routines XVIII .
1. Respond to STI:HLR macro
2. Build and position the TQL on timer queue
a. Indicate type of request - REAL, TASK, WAIT

b. Calculate time of expiration depending on lLiow
the interval is specified in STINMER macro

1) interval: TOX =
(SHPC =~ Timer) + interval requested

SHPC = current value of SHPC
Timer = current value in interval timer

note: The TOX may appear wrong but remember, it is
recalculated at various times during the interval
it represents

2) Time of day: Intervals=
(Time of Lxpiration) - (Current time of day)
Current tiwe of day =
(LTPC + TUPC + SHPC) - Timer
LTPC = local time pseudo clock, is tine
specified by operator in set command

PROGRAMMING/SYSTEMNS LDUCATION - SDD POUGI'KLLPSIL

TUPC = current value in twenty four hour

pseudo clock

SHPC = current value in six hour pseuao

clock

Timer = current value in interval timer

The interval so calculated is then used

to calculate a TOX as above ,

3. When enqueucd on the timer qgueue, the engueue rtns

a. Compare interval in subject TQE to current
value in timer

b. If TQLE interval less than value in timer - update
the timer

1) new interval is developea:
new interval = SHPC + (TQE interval - Timer)
2) new intexrval put in SHPC

3) ola TQE interval put, unchanged, in the

timer
4) new interval put in TQL, replacing previous
interval
5) TQE encqueued at top of timer gueue
C. If TQE interval greater than or equal to value in timer
1) new interval developed

new interval = SHPC + (TQE - Timex)

2) new interval put in TQE, replacing
previous interval

3) TQE enqueued on timer queue according to
new interval as TOX

C. Timer Interrupts (Timer SLIH) XVIII E.
1, Occur wnen value in interval timer becomes
negative ‘.
2. Timer GLIH rtns receive control from external
FLIH

PROGRAMMIWNG/SYSTENMS LDUCATION - SDD POUGHKcLPSIE

3. Timer SLIH proceeds as follows
a. Degueues top TQE from timer queue
b. Determines type of TQE
1) WAIT (STIMER issued with WAIT option)
a) POST the ECB in TQE

b) Branch to rtn to develop new interval
to be put in timer (see 3)b) below)

2) Supervisor TQE processed as in C. 5. a. 5) and 6)
above .

3) Task TQE

a) If timer complection rtn specified by user
(in STIMCR macro)

(1) rebuild TQE into IQLE, IRB

(2) invoke stage 2 exit effector
to schedule the asyncnronous routinz

b) If no timer completion rtn specified,
or on return from stage 2 Exit Effector,
proceed as follows

(1) new interval =

(TOX from new top TQE) -~ (previous SHPC)
(2) new interval is placed in interval
timer

(3) TOX from new top TQL is placed,
unchanged in SHPC

C. Returns to caller (external FLIH, which branches
to Dispatcher)

F. Task Timing ' XVIII F.

1. A task issues STINER macro, specifying WAIT,
REAL or TASK option

2, STIMER routines

PROGRAMMING/SYSTEMS LEDUCATION - SDD POUGHKLEPSIE

a, Build a TQE, put pointer in it to requesting
tasks TCB

b. Put pointer in the TCB to the 71QL

Ce. Lnqueue the TQL on the timer quecue, interval
calculated by Engueue routine as in D.3.
above

3. If WAIT option specified

a. Task will be put in WAIT condition by STIMER

rtns
b. TQE put on timer queue and "decrements
continuously"”
note: "decrements continuously" is a confusing phrase -

it seems to imply the TOX in TQE is being decremented
‘ while in the TQL. Suci is not the case - there is
only one interval timer and thus only one interval is
decremented. But the decrementing of the tinier will
have an effect on th other TQLE's on the queue, as if
those intervals were being decremented, since when an
interval expires, the TOX originally calculated for
it is subtracted from the TOX in the next TQE on the
queue and the result is the new interval placed in the
timer. Thus ttie expiration of one interval causes that
interval to-be deducted from the next, ana that second
interval, when it expires will be deducted from the
third, etc., etc.

c. When associated TQE is top in queue and a timer
interrupt occurs

1) Top TQL degueued

2) Associated task POST'd out of WAIT state,
ECB is in TQE itself

3) Next TQL used to develop a new interval
to be put in the Timer, as in L,.,3.D.3)
above

4, If REAL option specified

. .
a. TQE put on timer queue and will "decrement
continuously"

PROGRAMI’XIEJG/SYSTEMS cDUCATION - SbLp POUGHKEEPSILC

b. Task will compete with otner tasks for CPU
and otner resources

Ce When timer interrupt occurs and this TQE is
top on timer gueue

1) TQE ucygueued from timer gueue

2) If a user timer completion routine was specified,
TQL rebuilt into IQE and IRB, stage 2 exit
effector invoked to schedule the asynchronous
routine s

3) On return from stage 2 exit effector, next
TQL on queue used to develop a new interval to
be placed in interval timer as in E.3.b.3),
above

5. If TASK option specified

a, TQE put on gueue and will decrement only while
associated task 1is active :

b. When task enters SVC WAIT state (e.g., issues SVC
1) the WAIT routines

1) Dequeue the TQE from timer queue (and if it
was the top TQL, use next TQL to develop
new interval and put it in timer as in E,3.b.3)
above

2) Dequeue rtns also calculate "time remaining"
in the original interval and replace TOX in
TQE with that value

remaining time = old T0OX - (SHPC - tiuer)
0ld TOX = interval from dequeuea TQL

note: There are times when a task is put in WAIT condition
by system routines, not by issuing SVC 1 but using
a branch entry to the WAIT routines in the nucleus.
In these situations the systeni routines are performing
a service for the task (e.g., locating an available
transient area block and loading it) and thus the
tasks TQE is not dequeued for, although the tasks code
is not being exdcuted, system routines are executing on
its behalf and tiwus it is "using" the CPU

PROGRAMMENG/SYSTLIS LoUCATION — SDD POUGHKLLPSIL

c. When task POST'd whether POST clears WAIT count
in tasks top RB or not, the POST rtns do nothing
to {(directly) cause resumption of task timing

d. When dispatcher is to perform a task switch
and this task is the "new" task to be dispatched
dispatcher routines process as follows

1) Check if "old" (displaced) task was being
timed = checks its TCB for a pointer to a

TQE
a) if no '"'Qk - continue
b) if there was a TQE

(1) dequeue it, only if it is TASK
typel

(2) put in it (in TOX field) absolute
time remaining in its interval

(3) if dequeued TQE was top on {ueue,
use next TQL to develop a new
interval and put it in interval timer
as in E.3.b.3), above

2) Check if "new" task has a TQE chained out of
its TCB

a) if no TQE - continue
b) if a TQLE is there
(1) check if it is already on timer
queue, if it is - no further processing;

if not, then

(2) compute new interval as in D.3.,
above '

(3) if new interval is smaller than
value currently in timer, replace
it with new interval

(4) in any case, enqueue "new" task

TQE at appropriate position on
timexr queue

PROGRAMMING/SYSTLMS EDUCATION - SDD POUGUKLEPSIE

‘ 3) Dispatch the HEW TASK

e, When timer Interrupt occurs and that ''QE is
top on queue

1) TQE dequeued from gueue

2) If a user timer completion rtn was specified,
it is scheduled as for a REAL timer expiration

3) In any case, next TQE used to develop a new
interval to be placed in interval timer as in
E.3.bl3)' above -

G. Jobstep Timing o XVIII G.

1. Allows user to specify TIME values on JOB and/or
EXEC cards

2, If TIME operand used on both cards

a. kLach jobstep allowed to execute (be active task,
use CPU) for time specified on LEXEC carc as long
as total amount of time used by tlhe steps of the
job will not exceed JOB card time limit

b. If allowing a jobstep to execute for rvXEC TIHE
value will exceed JOB %wIME limit, jobstep is
allowed to execute for an interval equal to
difference between JOB TIME and LEXeC TIHL

3. If TIML only on JOB card - first jobstep given JOB TIME
limit, it any time remains, 2nd jobstep allowed to
execute for balance of the interval, etc., etc.

4, If TIME only on EXiC card - each jokstep allowed to
execute for time interval specified

5. If TIME specified on neither card - Reader/Interpreter
has inserted installation defined default values

note1l: Jobstep timing is a sys gen option, if not selected
at that time the routines to affect it are not
included in the system and thus it cannot pe
implemented, TIML operands are ignored

note2: Jobstep time linits apply to the associated jobstep

task or any of its subtasks - that is, if any task in
the jobstep region is active, the time interval is

PROGRAMMING/SYSTEMS LEDUCATION - SDD POUGHKEEPSIE

being decremented

Initiator of a jobstep calculates time interval for
that jobstep and, on return from ATTACH that created
the jobstep task, issues STIMER macro, TASK option,
specifying the interval. Thus the TQL created is
chained out of the initiators TCB

The TQE is manipulated by various system routines

»

a. WAIT routines

1)

2)

Wwhen entered via SVC, issued by any task
in the jobstep's region, WAIT routines
check all tasks in the "family tree"

a) If all tasks are in SVC WAIT condition,
10 chained off initiator's TCB is
located and
(1) dequeued and remaining time in

interval saved, as in F.5.b.2)
above
(2) converted to a REAL TQE

(3) 30 minute interval put in it

(4) re—engueued as a 30 minute "WAIT state

time out" TQE

) If any task in the joistep tasks "family
tree" is not in SVC WAIT condition, no
change to TQE chained out of initiator's
TCB

If a timer interrupt occurs and top TQE on gueue

has following attributes

a) RLAL type TQE

b) chained out of Initiator's TCB

c) exit routine specified

that YQL represents a 30 minute WAIT state
time eut and the associated jobstep task and

all subtasks must be ABEND'd. Processing is
as follows:

PROGRAMMING/SYSTEMS LDUCATION - 5DD POUGHRLLPSIL

d) ABRTLRM routines branched to

(1) schedule task for abnormal termination
by pointing PSW to an SVC 13 instruct-
ion in CVT

(2) set up ABEND code indicating 30 minute
WAIT time limit was exceeded

e) ABEND (SVC 13) rtns will POST the Initiator's
ATTACH LCB thus signalling the termination
routines that the task has terminated, error
code indicates its abnormal

£) .On return from ABTLRM, timer rtns
(1) dequeue top TQE
(2) convert it back to TASK type

(3) time remaining in jobstep's time
interval 1is calculated and placed
in TQE, as in F.5.b.2), above

note: Since task is being terminated because it exceeded
30 minute WAIT limit, there may still be time left
in its TIME interval and it may be used by succeeding
jobstep of the job

b. POST routines

1) Intered to indicate completion of an event,
if wait count in asscciated RB is not 0 after
POST is complete - return to caller. But if
associated ®B's wait count is 0 - proceed as
follows

a) Check if initiator, associated with
task being POST'd has a TQE chained out
of it, if not - return to caller, if
yes

(1) if TQE is TASK tywe - some task on
the "family tree" was not in SVC
WAIT and is presently being timed,
no further processing is necessary

(2) if TQE is REAL - it is a 30 minute
WAIT timer - it is

PROGRAMMING/SYSTEMS LODUCATION - SDD POUGHKEEPSIE

C

note:

(a) degueued

(b) converted to TASK type

(c) "time remaining in interval"
(which was saved when it was
converted to a REAL WAIT state
timer) is put back in the
"interval" field of TQE

(d) TQE not reenqueued yet, when it
is, new interval will be calculated

C. Dispatcher routines

1) Perform jobstep timing if

a) task switch necessary

b) jobstep timing selected at sys gen time
2) Perform as follows

a) removes fromn timer gueue the TQL (if

one exists and is TASK type) associated
with the initiator of the "old" task.
when dequeued the time remaining in its
interval is saved in TQE

The "old" task's initiator is located via the "old" tasks
"family tree"

b) if dequeued TQE was top on queue, new
interval is developed and placed in
interval timer as in L.3.b.3), above

c) locates TQE (if one exists) associated
with initiator of "new" task and if it
is TASK type = engqueues the TQE, engquecue
rtns

(1) develop new interval as in D.3.,
above

(2) if new interval is smaller than that

v. presently in the timer, it updates
timer with new value

PROGRAMMING/SYSTEMNS EDUCATION - SDD POUGHKEEPSIE

note:

(3) enqueues the TQE in timer queue

d) If TQE located in c¢) above is REAL,
it indicates all tasks in the "family
tree" were WAITing and a 30 minute WAIT
timer had been set up. Jobstep timing
can now be resumed since the dispatcher
is going to dispatch one of the tasks in
the tree :

(1) TQE dequeued
(2) converted to TASK type

(3) time remaining in the interval
(saved when tQE converted to a
WAIT timer) is replaced in interval
field in TQL, enqueue rtns develop
a new interval as in D.3., above
and TQE enqueued on timer queue

It seems the POST routines should have done tnis
conversion but the dispatcher does check for it and
converts the TQE if necessary

e. new" task is dispatched
d. Timer SLIH
1) If timer interrupt occurs and top TQE is
a) TASK type
b) assocliated with an initiator
c) user exit specified
the jobstep has exceeded its time limit
and must be terminated, processing is as

follows

d) TQL degueued and convert to an IQE and
IRB, and initialized

e) Stage 2 exit affector invoked to
schedule user (initiator's) timer com-
pletion rtn

£) on return from stage 2 exit effector,

PROGRAMMfNG/SYSTEMS LDUCATION - SOD POUGLKEEPSIDE

note:

next TQE on queue used to develop a
new interval and place it in timer as
in E.3.L.3), above

g) Initiator's "timer completion rtn"
just POST's the.CANCEL LCB which
invokes terminator to terminate the
jobstep task and all subtasks in the
region

Since the task is being terminatec because it ran out
of CPU time, there is no "time-remaining" to be
calculated and possibly used for the next jobstep,
that's why the TQE is not saved as it was in 30 minute
WAIT state time out situation

TIME macro routines XVIII ii.

1. pDetermine current date and time of day, return
them to requestor in registers

2. Date obtained from CVT

3. Time of day is calculated by determining elapsed
time

elapsed tinie = (SHPC + T4PC) = timer
SHPC 6 hour pseudo clock

T4PC twenty-four hour pseudo clock
Timer = value currently in interval tines

4, Llapsed time is added to LTPC to arrive at tiine of day
LTPC = Local ‘Yime Pseudo Clock = value specified Ly
operator in SET Command

TTIMER macro routines XVIII I.

1. Provide time remaining in a previously
established interval for requesting task, orx

2. Cancel a previocusly requested interval for the
requesting task

3. Remaining time calculated
remaining time = TOX - (SHPC - timer)
TOX = time of expiration in the TQE chained out of

requesting tasks TCB
SHPC = current value in SHPC

PROGRAMMING/SYSTEMS uDUCATION - SDD POUGHKEEPSIE

Timer = current value in interval timer
4, A time interval is cancelled by

a. dequeueing from the timer gueue the TQE chained
out of requesting tasks TCB

b. zeroing out the field in the TCB that pointed
to the TQC .

c. freeing the TQE

note: A given task can have only one TQL associated with its
TCB. If a second STIMER is issued before a previous
interval expires, the new interval replaces the older one
and the TQE is repositioned on the gqueue. :

PROGRAMMING/SYSTEMS LDUCATION = 5DD POUGLKELPSIL

(X Topic beleted XIX

PROGRAMMING/SYSTENMS EDUCATION - SDD POUGHLKEEPSIE

Y

Trace Table

Ref:

A.

MVT Supervisor, Section 12, Trace Table
Programmers Guide to Debugging, Section 2, (C28-6670)

Purpose

Debugging aid, contains entrys describing various
interrupts and system information at time of
interrupt

and usefulness

Wumber of 8-word entrys in the table is specified
at sys gen time (table is in nucleus)

2. Table space used in wrap-around manner, when last
entry filled, first entry overlayed when it is
necessary to make anotner entry

3. This use of the table makes its usefulness in an
MVT environment open to debate - if the table is
small a particular entry, containing information
about an abnormally terminating task, may be
overlayed by newer entries (caused by that task
or other tasks in the system) hefore the trace
table can be dumped

Entrys

1. When made
A When an SVC, I/0, kxternal or Program Interrupt

occurs
b. When SIO instruction executed
c. When Dispatcher entered
2, Information in an entry

ae. SI0 instruction

1) condition code

‘-

PROGRAMMING/SYSTEi.S EDUCATION - SDD POUGHKELPSIL

XX

2)

3)
4)
5)
6)
7)

8)

identifier (5th hex dig. in first word of

entry is 0)
device address
CAW

CSW

reg 1

TCB pointer

Timer

b. External, SVC, Program Interrupts

1)
2)

3)
4)

5)

PSW stored result of interrupt
Identifier in 5th hex digit of PSE
5) Lxternal - 1

D) svVC - 2

c) Program - 3

Reg 15, 0 and 1

TCB address

Timer

C. I/0 Interrupt

1)
2)
3)
4)

5)

6) -

PSW stored as result of interrupt
Identifier = 5th hex digit of PSW is 5
CSW

Reg 1

TCB address (of YICB that requested I/0
that has completed)

Timer ‘-

PROGRAMIMING/SYSTEMS EDUCATION - SDD POUGEKEEPSIE

-

d. Dispatcher
1) new PSW

2) Identifier, 5th hex digit of new PSW is D

3) reg's 0 , 1, 15
4) new TCB address
5) Timer
Da Trace Table Control _ ' XX D.
1. Location 54 (hex) contains address of 3-word trace

table control area
2. Control Area Contains
a. address of last used entry
b. address of beginning of table

C. address of end of table

PROGRAMMING/SYSTEIS EDUCATION - SDD POUGHKELPSIE

¥vT Termination routines =~ resident, non-SVC type, bLranch entry XXI
‘ Ref: MVT Supervisor, Section 10, (¥Y28-6659)
A. - Function Overview : AXI A,

1. Free resources and control blocks associated with
terminating task

2. Optionally, inform an ancester task of theé termination
of this task

3. Optionally, schedule execution of an LETXR rtn

B. Entered from Lxit rtns (SVC 3) when they detect the last XXI Is,
RB on a Tasks gueue of RB's. SVC 3 rtns have already

1. lioved requestors (Terminating tasks) registers from
IEASCSAV to requestors TCB

2. Removed TCB FROM "main" or dispatcher TCB gqueue

3. Set "normal completion" flag in TCB (prevents its
being re-dispatched)

cC. Wormal Termination Processing X£LI C.
1. Check for incomplete or un-LLTACh'd sultasks of
- the terminating task - if there are any such

subtasks, terminating task is ABEND'd

note: This ABEND will eventually cause the subtask to be
ABLND'd but that is handled by the ABEND rtns

2. If no subtasks, store completion code of terminating
task in its TCB

3. Check for and free a Pl

4, Purge TQE associatea with terminating task from timer
queue

5. Check for resources the task is still LENQ'd on - if there
are any, ABEND the task

PROGRAMISNING/SYSTENS LDUCATION - SO POUGHKEEPSIL

‘-' 7.

10.
1.

12,

13.
14,

note:

Purges any outstanding "WTOR" buffers
Closes all OPEN data sets

a. TCB points to DLEB queue there is a vlB for
every OPEN data set associated with the task

bLe DEB points to associated DLCB, CLOSE macro
issued for that DCB

Ce DEB points to next DEB

d. if errors occur in closing procedure - ABEND
task ‘

Contents Directory rtns invokea to free or reschedule
the program last executeu for terminating task

Releases programs LOAD'd but not DELLTE'A

a. Check if there are outstanding requests for the
program :

1) subtract LLE responsibility count from
CDE use/responsibility count, if result
greater than 0 - there are outstanding
requests and space is not freeu

2) if no outstanding requests - LLE's, are
freed

Issues FREEMAIN for unshared subpools and SPQE's, DQE's
If a jobstep task is terminating - free jobpack area

Schedule execution of LIXR if one was specified when
terminating task was ATTACH'd

a, Pass control to Stage 2 Exit Effector to place
IQE (chainea out of terminating task) on AEQJ

Deferred rollout requests for terminating task are
purged from rollout queue

TCB dequeued from dispatcher queue and "normal comgletion®
and "non-dispatchible. flags set in TC3B

It appears this is a duplicate effort as the SVC3

PROGRAMIMIIG/SYSTENS LLUCATION - SDOD POUGHKELPSIL

rtns have already dequeued the 1TCB and set "normal
completion "flags when they detected on end-of-~task
condition

15. If an &CB was specified when the terminating task was
ATTACH'd, the ECB is now POST'd with tasks completion code,
IECB is pointed to by a field in terminating tashks TCB

note: - If a jobstep task is terminating, this POST notifies
Init/Texrminator rtns which perform jobstep task
termination functions

16, If neither an ETXR rtn nor an LCh was specified when
the terminating task was A1TTACh'd, the TCD is dequeued
from its subtask queues and its space freed

17. Termination routines indicate the need for a task switch

note: Manual (MMVT Supervisor) indicates N&W is set to 0 but
this could cause prolblems. The "POST'ing" of the LCB
on the completion of a jobstep tasks would have made
READY the initiator and the POST rtns would have set
NEW to point to the initiator's TCB, setting NEW to 0
would destroy this and (apparently) the Initiator
would not be dispatched except by chance at a later
time. The Initiator was not dispatched after the POST
rtns completed as they were entered via a brancli not via an
SVC and they returned to caller ratui.er than take tyme I
SVC exit to the dispatcher

18. Return is to exit rtns (SVC 3) which free last RB and
branch to transient area refresh routines

L. Abnormal Termination Processing XXI D.
1. Performs three functions for abnormal termination

a, ABTER! routine, which schedules a task for abnormal
termination, is a resident, non interruptible
non SVC rtn

b. ABEND routine - frees resources from terminating
task and its incomplete subtasks and if it is a
jobstep task, frees all resources belonglng to
all tasks in thg region

C, ABDUMP routines - provides a dump of the storage
and control blocks associated with tlie terminating
task and control Llocks associated with the

PROGRAMMING/SYSTLLIS EUUCATION - Svb POUGIIKEEPSIE

¢

terminating tasks direct descendants and ancestors

2. ABTERM Rtn

a.

L.

Refreshes CVT address at loc 10 (lhex) in case it has
been overlayed by routines in error .

Checks address of 1CB passed to ABTERM and determines
if task should be scheduled for abnormal termination
(it could already be scheduled for terminatioin, normal
or abnormal) and checks if its subtasks should be set
non-dispatchible

1) if task already terminating normally, returns to
caller (of ABTLRM) .

2) if task already scheduled for abnormal termination
a) set subtasks non dispatchible
b) checks whether it is a jobstep task, and

whether or not initiator is the caller
(of ABTLRH)

If jobstep task and not alreaay in process of
abnormal termination

1) makes task dispatchible, and sets WEW pointer
to point to it

2) set up parameters for use by ABEND

3) set PSW in top RB of tasks queue to point
to SVC 13 instruction in CVT

4) makes tasks subtasks non disptachible
5) returns to address set up by caller (usually
dispatcher)

If jobstep task is already being abnormally
terminated ana initiator has not invoked ABTER!M

1) indicates an crror in ABEND rtn and 1is
a system error unless re-entry occurs because
of error in ABVUIP OPLN or CLOSE rtn

2) if system error, invoke damage asscssment
rtn (DAR)

PROGRAMMILG/SYSTEMS EDUCATION - SDD POUGIIKELPSIE

2) if it did not =~ continue

Clears non-dispatchipility flags in tasks (set by
ABDUMP)

Determines if serious error has occurred (system
task is terminating) and passes control to DAR
rtns if it has

Determines if entry to ABEND is a re-entry

Purges deferred rollout requests for abending

job

Sets all subtasks of ABEND'ing task non dispatchable
Checks FQE's in subjools of the task = if they are
involved, issuing FRELIIAIN's to frec the subpools

could cause a recursive ABEND and e a system error

PIE's, RQE's, WIOR buffers, IQE's for abenuainy task
are purged and elements freed

Closes all data sets still OPEN whose DEB's are
chained out of ABERD'ing TCB

Releases partially loaded modules (maybe I/0 error
in loading caused ABEND)

Open SYSABLND or SYSUDUMP data set depending on wD
cards for step and dunp option flags in RB

If I/0 error in OPEN'ing dump data set - exit to
dispatcher, ABTERI will be re-entered

If no error - continue - take the durp and CLOSL
data sets

Remove SVRB's for transient SVC's from requestor's
RB Queue and from transient area user gueue

Purge all other R8's on tasks queue
Purge contents directory and load list
FREEAIN dynamically acquired main storage

Release TCB unless it is a subtask of another
task that is not being terminated and that

PROGRAMMING/SYSTEMS LEDUCATION - SDD POUGHKEEPSIE

other task specified LTXR or LCB operand when
it ATTACH'd thLe task that is abending

S Set NEW pointer to 0, exit to dispatcher

ABDUMP routines

a. Set all tasks (ancestors and descendants) of aktending
task non~-dispatchible (except requesting task)

b. Formats and dumps storage and control blocks as
requested (same routines invoked by SWAP)

PROGRAMMING/SYSTEIS LDUCATION - SDOD POUGHKELEFSIE

I Data llanagement Overview XXII

‘ Ref: Handout S21, V26=-6156

A, Volumes and Data Sets - : X4AII A.:
1. Volume - collection of one or more data sets on
a recording medium, is usually but not necessarily
demountalkle
2. pata set - collection of related records, or,

collection of data

3. Systen keeps track of and recognizes different
volumes anu data sets Ly lakels written at
specified locations on tlie volume or with
respect to the data set

4, Volume and data set labels for direct access and
tape volumes have different sets of restrictions

B. Preparation for I/0 XXITI B.

1. Before I/0 can be performed various control blocks
and modules must be crcecated or modified or loaded

2. Access methods - modules to perform device dependent

: processing, thus relieving the problem programmer
from it

3. Control blocks must be built or modified before I/O
performed. Some are built by the programmer, other
by access method routines still others by OPEN routines

4, OPEN routines complete or build all control blocks and
LOAD modules necessary tc perform I/0, OPEN'ing a data
set logically connects tihe data set to the system

C. Initiating I/0 ' XXII C.
1. Problem program uses macros to perform linkage to
access method routines (BALR) which perform final

modification on control blocks and issue SVC to
initiate I/0

PROGRAMMING/SYSTEMS LDUCATION -~ SDD POUGHKEEPSIE

2. Access methods do not perform standard entry and exit
linkages and are thus only loadable (LOAD)

3. Access method routines operate as closed subroutines
of the user program

EXCP Supervisor ' ' XXII D.

1. Access method routines issue EXCP macro
which expands into an SVC 0

2. SVC Interrupt handlers pass control to 1/0
Supervisor EXCP Handler

3. These routines verify the reguest and schedule the
I/0 requested

4, After either gqueueing or starting the I/0, EXCP
Handler takes a type 1 exit to calling routine

When an 1/0 Interrupt occurs, I/0 new PSW points to I/O XXII E.
FLIIl which preserves the status of the interrupted task
and passes control to the I/U Interrupt liandler

1. I/0 interrupt analyzed and catastropnic errors
handled by error handling rtns

2, Task requesting I/O is POST'd (via branch entry to POST)
and allowed to analyze the completed event when it (the
task) is next dispatched

3. Channel, freed by completion of I/0, is restarted by I/0
Interrupt Handler

4, All stacked interrupts are handled before exit to
dispatcher

PROGRAMMING/SYSTLMS LDUCATION - SDD POUGHKLEPSIL

voTI Volunies and Data Sets XXIIIX

‘;r Ref: Supervisor and uata ilanagement Services,
Section II, Part I; Appendix A (C28-=6646)

A, Direct Access Volumes AXIII A.
1. Volume label

a. Must be on ¢yl 0, trk 0 of the volune,

contains
1) volume serial number
2) bits indicating voclume type, owner

protection, etc.
3) pointer to VTOC data set

b. When a device comes READY, AVR rtns move
volume serial number and V20C address into
UcCB

note: Lvery UDASD volume has a 24-byte IPL recora at
beginning of track 0, cyl 0 (for non-IPL volumes,
this IPL record just puts the system in a WAIT
state); volume lalel follows this 24--byte record.
L If volume is an IPL pack, IPL bootstrap record and
IPL CSECT follow the volume label.

2. VTOC

a. Data set containing Data Set Control Blocks
(DSCB's) which describe

1) the VIT0OC data set itself

2) every data set on the volume, data sets
on more than 3 extents reguire a second
DSCB to contain addresses of the extents.
Indexed Sequential data sets require two
DSCB's to describe the various types of
space (Index, Prime, Overflow) allocated
to it

‘e

PROGRAMMING/SYSTELiIS EDUCATION - SvbL POUGHKEEPSIL

adjacent to an area already free, is
freed, the areas are mergeu and 1 DS5SCB
built to describe the entire area

‘. 3) free space on the volume - when an area,

b. Location and size of VIOC determined by user
when volume is initializea

3. DSCB's

Ref: ©System Control Blocks -(Y28-(628)

a. Are labels for the data sets they describe
b. Contain

1) data set name

2) data set organization

3) record format

4) " block size

5) logical record size
6) pointer to data set on volume
Y
7) nunber of extents and address
of eacn
B, Tape Volumes XXI1TI B.

Ref: Tape Labels (C28-6680)
1. Volume label

a. Optional, not required by 0S/360

b. If used, must be first record after 1load
point

C. Contains
1) volune' serial number
2) owner, protection bits

PROGRAMMING/SYSTEMS EDUCATION — SDD POUGHKELPSIE

2. Data set header labels

Q. Opticonal under 0S/360

b, If used, must preceed data records
C. Header labels
1) standard
a) two B80-byte records, first &

characters in each must be
lIIDR1 and lDRZ respectively

b) ‘contailn

(1) data set name

(2) data set organization

(3) record format

(4) Dblock size

(5) logical record size

2) User

a). up to 8 80-byte
standard lakels
are used)

records following
(if standard labels

b) must begin with characters UlL1-UliLb
c) can contain any information user
wishes
d) are written and read by user supplied
routines
3. Trailer Labels
a. Standard
1) two 80-byte records following last data

record,, begin with EOF1 and EOF2 respectively

2) contain same information as header labkels
plus a count of number of physical blocks

PROGRAIMING/SYSTEILIS EQUCATION — SDD POUGLKLEPSIL

in the data set (useu for error checking
when data sc¢t reprocessed)

b, User

1) up to 8 80-byte records prececding standard
labels (if standard labels are used)

2) must begin with characters UTL1-UTLSY

3) can contain any information the user
choses, are written'and read by user

routines

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKLLPSIE

" Preparation for I/0 XKIV

L Ref: System Control Blocks (Y28-6028)
I/0 Supervisor, Section V (Y23-6616)

£ Data Set Description XAIV A,
1, DCB - bata Control Block
a. Createa by user, using a macro, is
therefore in the user module,- will be the
major control block when I/0 actually per-

formed

b. Partially filled in by macro expansion from
macro operands, necessary operands are

1) MACRF

2) DDNAML

3) DSORG - necessary for proper expansion
of macro even though the information is
available from the data set label

4) EODAD - for input files

| - C. Completed by OPLN rtns from information in data
set label anda on vbL card

2. JFCB
RRef: System Control Blocks (Y28-6628)

Q. Created by keader/Interpreter from data set
information on WD card

b. Contains

1) data set name

2) volume serial number

3) DCB information specified on DD card
) .

PROGRAMMING/SYSTEMS EDUCATION - SDD PUUGHKELPSIE

4) space allocation information (for LW
data scts)

C. Is reau into main storage, from its locaticn on
SYS1.S8YSJOBQE, when corresponding LCL is OPLii'd

3. Data Set Label (LDSCB if on DA)

Ref: System Control Blocks (¥Y28-6628)
Tape Labels (C28-6680)

a. Skeleton DSCB created by DADSH routines when space
allocated to data set at initiation time, filled in
at OPEN time; created by OPLN/CLOSE rtns when data
set opened on tape

b. Lxists in VTOC of volume that contains the data
set or is the lieader w.abels if on tape

c. Contains
1) data set name
2) DCB information
a) DSORG
b) RLCFI

c) LRECL
d) BLKSIZYE, etc,
3) location of data set, if on VA
B. Access liethods XAIV 3.
Ref: Sequential Access iiethods (Y28-6604)
Basic virect aAccess rlethods (Y28-6617)
Indexed Sequential Access Method (Y28-6618)
1. Function and types
a. To perform device dependent processing requirea
for 'various aata %et organizations and mecaiums

of storage

b. Relieve programner of detailed, device dependent

PROGRAMMING/SYSTE:S cUUCATION -~ SDD POUGHKELEPSIE

processing

Are LOAD'd by OPEN rtns, address of required
modules are put in corresponding DCB's

Invoked by branch entry (most access method
modules are LOAD'able only) and return to
caller

Construct and modify various control blocks
and CCW's that will be used in performing,
monitoring and analyzing I/O

Issue EXCP macro, which generates an SVC 0
which passes control to I/0 EXCP handler
to schedule I/0

There are 3 types or levels of access methods

1) Queued level (GET/PUT macros)
a) anticipates reqguest for next record
b) de-blocks and blocks records
c) automatically allocates (min of 2)
buffers
d) primes buffers at OPEN time
e) constructs and checks all control blocks

{except DCB) necessary for I/0
£) issues SVC to schedule 1I/0

2) Basic level (RLAD/WRITL/CHECK macros)

a) negation of a) - d) above
b) constructs all control blocks
(except UCB and DECB) neeaed for
I1/0
c) issues SVC to schedule I/O
3) EXCP level, (Execute Channel Program)
a) constructs no control blocks

PROGRAM&ING/SYSTEMSNLDUCATION = SDD POUGIIKEEPSIL

b) issues sVC to schedule I/0

2, Selection and LOAD'ing

a.

Control

User

intends to use and tlie organization of the data

specifies in LCB what macros (liIACRF) he

set (DSORG)

OPLN rtns check thnese two operands and on basis
of them and OPLN coption (INPU1, OUTPUT, UPDAT,

decides which access method modules to. LOaD

Modules are LOAD'd, address of module put in
appropriate DCB) ’

Blocks

Ref: OSystem Control Blocks (Y28-6628)
I/0 Supervisor, Section V, (Y28-6616),
Handout 522

1. DCB

b.

User

created and partially filled, completed

by OPEN rtns

Used

by access metiod rtns to contain device

and data set information as I/0 is performed

2, I0B - I/0 Block

a.

b.

Created by access metliod rtns at OPLN tine

Contains

1)
2)

3)
4)

5)

ECB address

Space for C(SW stored when an I/0 event
completes

ADdress of channel programn
DCB address

Full, 8-byte seek address

One IUL created for each channel program the

user

requests in OCB operand (NCP).

PROGRAMMING/SYSTLENS LDUCATION - Svb POUGHKLLPGIL

etc,)

XXIV C.

note:

pECB = Data Lvent Control Block

a. Created in RLAD/WRITE macro expansion

b, Contains pointers and indicators kept elsewhere

by GET/PUT rtns

¢. Contains the LCB used to POST completion of I/v
event

~ LCB - Event Control Block

a. Created by GET/PUY rtns or by READ/WRITE macros

L. Used to WAIT and PUST completion of I/U events

DER -~ Data Lxtent Block

a. Created by OPEN rtns, destroyed by CLOSE, exists
only when a data set is OPLN

b. Chained out of ICB as well of associated vCB,
all DEB's for a tasks I/0 are chained together
(so at termination time, system rtns can CuLOSE
any data sets not yet CLOSE'Qd)

Ce Contains

1)

TCB address

2) DCE address

3) priority of associated tasx

4) address of appendage vector table

5) address of UCb of device allocated to data set

6) beginning and ending adcresses of each extent
of the data set

7) last 2 characters of names of access'methods
+LOAD'd for this data set

All access methods are named IGG019 s the last

two characters are all that are needed to identify
an access metnod. The identifiers are kept here
so CLOSE can issud DuLLLTL's for the routines

PROGRAMMING/SYSTtNS EDUCATION - SDD POUGLKEEPSIL

6. TIOT - Task I/0 Table
i a, Created by Initiator device allocation rtns

b. Contains an entry for each DD card provided
for the jobstep, each cntry contains

1) DDNAML of the card
2) address of JFC3 fcr the card (TTR address)

3) address of UCB allocated for the aata set
describeu on the card

C. Chained out of TCB, accessed by OPEN rtns to
locate JFCB and tnru the UCB, the VIUC and thus
the label (DSCB) of the data set Leing OPLI'd

7. Channel Program

a. Not really a control block but very important in
I/0

b, Created by access method routines at OPEN time

C. lodified and scheduled for execution Ly access

method rtns at REaD, WRITE, GLT or PUT tine
D. OPEN'ing the vata Set . XXIV ».
g Ref: I/0 Support, Opening a OCB (¥Y28-06609)
1. ilerge DSCB or label into JFCB

a. OPEN rtns when invoked by OPLN SVC, locate tle
DCB being OPEN'd and obtain DDUALL from it

b. Ssearclh 1IOT for entry corresponaing to the
DDNAML and extract JFCB address and UCEB aduadress

c. Using JFCB address, it is read into main storage ana
data set name is extracted

d. Using UCB aadress and its pointer to volume's VTOC,
VTOC is searched for data set named in JFCB

note: If it is a tape data set, 0D card specifies a data set

sequence number and tne tape is positioned to that data
set and header labels are read

‘ PROGRAMMIING/SYSTEMNS LDUCATION - SDD POUGHKLEPSIL

m‘ note:

note:

~N
[]

note:

note:

e. LUSCB or label is read into main storage

If user label handling routines or uCi exits are provided
for this, they are given control after OPEN rtns read
the labels into storage

£. A zero-merge is performed from the DLSCB or lakel,
into the JFCB

A zero-merge involves noving only information not specified

in the block accepting the merge (in this case, the JFCB)
from the other block (in this case, the LSCB or label)

llerge JFCB into uCB

a. liext, the "completea" JFCB is zero~merged into the
DCB

b. Wext, the uCB operand - LEXLST is checked for and i1f
coded, the list is scanned for a code 5 entry and
if present, the indicated routine is given control

OPEN rtns use SYNCIl to give control to the routine and
thus it executes under its own PRB

Access ilethod routines are LOAD'd

a. On basis of DSORG and HACRF operands in the uwC3

and OPEN options, access method executors are
loaded and given control

b. Tne executors buila and initialize (as mucu as
they can) the I0B, DtB, ECB and channel prcgran

If Basic Access :lethods are used, channel program and IOB
cannot be completed until rRLAD cr WRITE instructions
executed, also LCB is built by READ/WRITLE macro expansion,
not by executors

c. 'the executors LOAD the necessary access methiod
routines = determined by bit settings in LCB, set
by user options specified in DCI3 macro or on
DD card (e.g., buffering techniques, modes of data
processing (QSAM) etc.)

OPEN rtns finally turn''on the OPLM Lit in tne 0CB and
terminate

PROGRAMMING/SYSTkhiis EDUCATION - SDD POUGHKEEPSIL

note:

The CLOSE routines must restore the DCB to the state it
was in before OPEN, to do this a mask is Luilt at OPEN
time indicating which fields were modified by OPEN, the
mask is kept in the DLEB. The DDNAME field is overlayed
by OPEN and must be restored, an offset into the TIOT

(to the entry correspondlng to the DDNAME which the DCB had

in it) is stored in the LCB and is used by CLOSE to
restore the DDNAME field

End Appendages _ XXIV E.
Ref: I/0 Supervisor, Section I, Start I/0 Suﬁroutine
(Y28-6616)
1. Function/Purpose
a, Given control at various points in I/O

Ref:

4.

Ref:

operations to allow extra processing orx
error checking

SIO (Start I/O)

a, Given control just before "SIO" instruction
executed
b. Usually does last minute modification of next

channel program to be executed on basis of
completion of previous channel program

PCI (Program Controlled Interrupt)
I/0 Supervisor, (¥28-6616)

a, When channel fetches a CCW with PCI bit on,
channel generates a PCI Interrupt (an I/0 interrupt)

b, I/0 Interrupt handler gives control to PCI
appendage addressed from appendage Vector Table in
DEB of associated data set

cC. PCI interrupt allows appendage to notify the
requesting program (usuvally by setting bits
in a field or POST'ing an ECB) that a particular
CCW in the Channel program has been fetched
and thus previous CCW's have completed.

End of.LExtent ‘.

I/0 Supervisor, (Y28-6616)

PROGRAM@ING/SYSTEMS EDUCATION - SDD POUGIIKELPSIL

S,

Ref:

Ref:

kntered when seek address in Iul is not
within one of tlie extents of the data set
as indicated in the bLLEB

For input operations = ABLND

For output - appendage checks 1f seconaary space
allocations have been requested and if so, if the
data set has used tnea all. If no more space can
be allocated = ABEND

If more space is to be allocated, invoke vVADS:
rtns to do so, modify vUEB to reflect new extent
of data set, modify CCW to indicate an address
in the new extent and reissue the CCW

Channel End

I/0 Supervisor, (Y28-6616)

a.

b.

Lntered when channel end, unit exception with or
without channel end, or channel enéd with wrong
length record occurs

Performs checking to determine if hardware or
software errors have occurred

Abnormal End

I/0 Supervisor, (¥28-6616)

de

Entered when abnormal conditions occur -
unit check, program check -~ CCW, pirrotection check
chaining checks, etc.

Set appropriate indicators, if hLardware error,
invoke recovery routines, if software errors,
indicate it to requesting program

PROGRAMMING/SYSTE:IS LEDUCATION - SDD POUGIKLLPSIE

I T EXCP Supervisor XXV

Ref: 1I/0 Supervisor, Section 2, (Y28-6616)
Handout S16, S§17, S18, S21

A. Function Overview XXV A.
1. Receives control as result of EXCP SVC 0
2. Performs validity check on the I/O request

3. Attempts to schedule tlhe I/0 request

4, If it cannot be performed immediately, queues
the request
5. In either case, takes Type 1 exit to requestor
B. Validity Check XXV B.

1. EXCP handler checks boundary alignment of control
blocks passed to it, EXCP passes address of IOB
from that can get to DCB and ECB and to 71CB

2. If addresses are invalid (wrong alignment) or if
DEB not in protected core - ABEND

L 3. If all okay, try to schedule the I/0O request
C. Scheduling the I/O Request X4V C.

1. EXCP handler attempts to get a free RQE (Request
Queue LElement)

a. All RQE's are in a table - Request Element
Table = in the nucleus. Each RQE in an ilVT
system is 16 bytes long and the number of RQE's
is determined at system generation

note: This table is also known as the 16* table. In wWFT
each RQE is 12 bytes long and the table is known as
12* table

b. RQE's contain a gueueing field use to chain free

PROGRAMMING/SYSTEMS LDUCATION -~ SDD POUGHKEEPSIE

note:

Unit
ase

b.

RQE's or RQL's cngueued for I/0 on a particular
channel

CVT contains address of RQE free list = a one word
field pointing to the first free element in the
table or, if tliere are no free elements, X'FFFr'

If no RQLE is available, requestors resume PSW is
backed off by 2, task set non-dispatchible and
switch set in code so when an RQE is freed, all
tasks waiting for an RQE will be cleared and
eventually dispatched - re-issuing the SVC 0

If there is just one RQE left, EXCP Supervisor
checks if current request is for SVCLIB. 1If

not, then it is processed as if no RQE is avail-
able. If current request is for SVCLIB, the last
RQE is used. This is done because I/O Error
Recovery routines are on SVCLIB and I/0 Supervisor
doesn't want to be in a situation where it needs to
load such a recovery routine and lack the RQE needed
to perform the loading,

If an RQE is available, it is filled in with
information about current I/0 recuest

1) UCB address (from DEB)
2) IOB address (parameter to EXCP)

3) priority of requesting task (from TCB,
pointed to from DEB)

4) DEB address (IOB points to DCB, DCB3
points to DLB)

5) protection key of requesting task (from TCB)
6) TCB address (from DEB)

From this point on, all information needed to
schedule and perform and POST the I/0O event,

is in, ox can be located from pointers in, the

RQE

checked for availability
If RQE filled in, next check unit for availability

Check bits in UCB - unit not available if bits

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGHKEEPSIE

note:

note:

indicate

1) control unit busy

2) device busy
3) device not ready
4) seek in progress
5) error routine in control
C. If unit not available, gqueue the RQL for later.
processing
See discussion of LCHWD's, below, for the queue origin.
d. If unit available, locate a path to it
A Logical Channel is located

a, A logical channel is the collection of hardware
paths to a device from the CPU

This logical channel concept is distinctly different

from the logical channel concept developed in the Job
Management PLM (Y28-6660) when discussing I/0 device

allocation (by the Initiator) and equalizing channel

usage

1) a logical channel may contain (involve)
several hardware channels

2) a device is associated with one and only
one logical channel

3) at sys gen time the various logical channels
are grouped and a routine to searca each
logical channel for an available hardware path
to the associated device is generated and the
address of this module {(called the Test Channel
Module) is inserted in a table

4) The table, containing one entry for each logical
channel in the system, is called the Logica%
Channel Wogq Table (LCHWD table) and each entry
in it is called LCHWD

5) Lach entry is two words long and contains

PROGRAMMING/SYSTLMNE LEDUCATION -~ SDD POUGIIKEEPSIE

a) gqueueing field (two halfwords) for RQE's

‘ representing I/0 requests on the devices
associated with the logical cliannel

note: It is here that the KQE is gueued for a request when
the device is unavailable

b) the address of the test channel module for
the corresponding logical channel

b. The UCB for the device associated with I/0 request
contains an index factor which is added to the
address of the LCHWD table to locate the appropriate
LCHWD and thus the appropriate test channel module

Co, The test cliannel module is given control to search
for an available hardware path to the required
device

1) if no path available - queue RQE off LCHWD
and return to requestor

2) if a path is available - locate the SIO
rnodule

4, SI0 module

L a. Each device type on the system requires device
dependent commands to be set up for it and
executed before the user channel program(s)
can be executed

b. At sys gen time a module to do this is created for
each type of device and address of module is
inserted in the Device Table (DEVTAB)

1) each UCB set up with an index factor into
DEVTAB to locate the appropriate entry

2) DEVTAB entrys are 6 bytes long and contain

a) address of enqueue module - to engqueue
an RQE to the LCHWD gqueue according to
priority or FIFOQO options selected for
each device at systewm generation

b) SIO Module Address

C .

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGILIKLEPSIL

c) Address of Trap Code module - to analyze
various bit settings in stored CSW's
to determine what conditions mean for
associated device (e.g., unit check
means different things for card reader
than for a DA device)

C. SI0O Module for the device associated with I/0
request is located and given control

d. It constructs device dependent CCW's but does not

execute them - such commands as

1)
2)
3)

4)

set file mask
stand alone séek
tape positioning commands

write tape mark, etc.

€. SI0O Module then branches to SIO Subroutines which

1)
2)

3)

enters SIO appendage

issues SIO instruction indicating a CAW wiiich
indicates appropriate channel program

branches to post SIO subroutine which

a) checks condition code set Ly acceptance
by channel of SIO instruction

b) if code is 0 - all okay, address of RQE
put in UCB and type 1 exit taken to
requestor

c) if code = 3 - device not available - error
routine entered to analyze problem

d) if code = 1 CSW Stored and it is examnined
for error conaitions

(1) channel errors - SER or CCH rtns
entered

(2) bggy - SIO retried or RQE re-enqueued

(3) channel end - immediate commanu, I/O

PROGRAMMING/SYSTEMS EDUCATION - SDD POUGIKEEPSIE

event complete

(4) program or protection check =~ abnormal
end appendage entered, if error not
reset, I/0 event complete with ‘41!
code

(5) unit check - sense command issued and
abnormal end appendage entered, then
error interface

(6) attention - attention routine for
device given control - UCB contains
index factor into ATTUTAB to locate
appropriate attention rtn for the

device
£. Special processing in SIO module for DA devices
1) stand alone seek (not chained to any other CCW's)

CCW is constructed

2) SIO llodule checks 8-byte seek address, specified
in IOB, to the associated data set (these are
described in the DEB)

a) if not - end of extent appendage entered
(1) Input = ABEND

(2) Output - check if secondary space
allocations were specified when data
set created. If so and more
allocations are available, DADSI1 rtns
invoked to allocate more space

(a) other routines (EQOV) are invoked to
modify DLB to describe new extent,
then seek CCW modified to point to first
track of new extent and the seek is
re-exectued.

b) if seek address is within an extent of the
data set - continue

3) SI0 subroutine entered to execute stand alone
seek and set "seek in progress" flag in UCB

4) module then enters a TIO loop until CSW stored

-

PROGRAMMING/SYSTE!INS EDUCATION - SDD POUGHKRLELPSIE

(‘.\

note:

note:

5)

(chhannel end indicated) and checks bits thus
set. (Do not have to enable interrupts to do a
TIO and thus "allow" tle storing of the CSW)

if seek was not conpleted immediately {(arm

movement necessary), RQE re-enqucued off LCHWD .
queue and Type I exit is taken to requestor, request
will be handled later by I/0 Interrupt landler

>

RQE address 1is in UCB and it is also queued off LCHWD
in this situation '

6)

If seek completed immediately, data transfer
begun by entering SIO Module again to execute a
triple of CCW's

a) Seek - repeat of stand alone seek, to re-set head
register in control unit which mignht have
been modified Ly other seeks issued on same
control unit but different devices while i
this seek was awaiting completion (only one seek |
that causes arm movement or head switching can
be issued in a channel program)

b) set file mask - file mask, obtained from !
DLB, determines what commands can be used '
in rest of channel program (only one set i
file mask CCW can be used in any channel
programn). File mask built by OPEN routines

c) TIC to user channel program

The restrictions noted above about seek and set file
mask commands are to protect against accidental (or
deliberate) access to data on a pack other than the
data set which was OPEN‘'d.

PROGRAMMING/SYSTE!MS LDUCATION - SDD POUGHKEEPSIE

I I/0 Interrupt Handler AXVI

L Ref: 1I/0 Supervisor, Section II, (Y28-6616)
Handout 816, S17, 518, 821

A, Function Overview XAVI A.

1. I/O0 FLIH receives control as result of an I/O
interrupt, causing I/0 new PSW to be loaded

2,. Switch checked to determine if this interrupt
interrupted I/0 Interrupt lHandler or another
program ‘

note: I/0 Interrupt lHandler is reusable and when once
entered, with interrupts masked off, re-enables
I/0 interrupts at end of processing to handle
stacked interrupts. If it was not executing
while an interrupt occurred, the status of the
interrupted task is preserved but the I/O interrupt
handler operates undexr that task's TCB and on
successive re-entry's from itself, will not cause
status to be preserved as status (reg's and PSW) would
pe its own but they be overlaying reg's and PSW of the
interrupted task

3. If interrupted another program

a. Save registers in tasks TCB, PSW in top RB of tasks

KB gqueue
b. Set switch to prevent such action on re-entry
from I/0 interrupt handler - continue
4, If interrupted I/O interrupt llandler continue

5. Locate requestor of completed I/0

6. Perform some error checking on completion

7. POST requesting task with completion code

8. Restart hardware channel freed as result of I/0
completion

PROGRAMMING/SYSTEMS LDUCATION - SoD POUGIIKELEPSIE

B Locate Reguestor

L1.

Using 3-digit channel, control unit and device
address in stored I/0 o0ld PSW, Interrupt Handler
indexes into UCB look up table to get address of
UCB corresponding to the device

a. UCB look up table built at sys gen time
b. Contains entry for every UCB in system

From the UCB, get address of RQE representing
I/0 request and thus pointers to TCB, DCB, IOB
of requestor

Using status bits in CSW stored as result of I/0
Interrupt, I/0 Interrupt liandler does some error
checking

a, Channel data check, Channel control check,
Interface Control Check

1) put system in WAIT state or

2) enter SER or CCli rtns

b. Control unit end =~ response to interrogation by
restart routines, channel restart rtn given
control .

C. PCI bit - control passed to PCI appendage
a. Channel End - completion of an I/0 event
1) CSW moved to IOB
2) Trap code module entered (address is in DEVTAB
entry corresponding to device, index

factor in UCB)

3) Channel End Appendage given control and it
indicates further processing

a) POST recuest complete and free RQE
D) free RQL but do not POST event
c) reschedule reguest

PROGRAMMING/SYSTLMS LDUCATION - SDD POUGIIKLEPSIE

XaAVI B,

a) ignore interrajstion, pending
asynchronous uscr rtn

e, pevice end - either indicates completion of I/vu
event or device has moveu from not ready to
ready state. Various cases analyzed ana handlea

£. Attention - attention rtn interface enterea to
pass controi to attention rtn for device

g. Unit Check - abnormal end appendage taken and
indicates further action

1) continuc hormai processing
2) shin further vork on this rejuest
3) reschedule reqguest
4) enter Ibd error rtns
in, uUnit exception anda incorrcct lengtii — channel

cnhu appenaage taken, on return, error rtns entered
then abnormal end appendage taken

i. Program cneck, protection check aiwu cuaining checl: -
acnornal end anprendage taken, on return, error rtns
scueuuled

Je Status modifier, busy - control unit busy, LCBL

located ane kusy, Lit set in it

Co wrror Loutines KaVI C,
1. Interfaces
a. wntereu to preparc for cxecution of various crror

routines and generall, receive contrcl blocks with
indicators sjecifying continueu processing

Lo wrror iioutine Interface

1) checks if IOv inaicates a perisanent error -
if no enters POST routine interface
‘l.

2) uetermines if Iad error rtns are to be usceu
(indicator in oCB)

-

PROGRAILITHG /SYSWVLNS LUUCATION = 8D POUGLKLLPSIL

2,

3) if IBM rtns are to be used, invokes Stage 2
Exit Lffector to chain associated RQL off
AEQA and set stage 3 switch and thus schedule
error rtn asynchronously

C. SER/CCH Interface

1) ILnterea when catostrophie errors detected
(e.g., channcl control check, interface
control clieck) .

2) Routes control to SQRO or SLER1, CCIl or IiCH

depending on sysgen options)
d. ABTERM routine interface

1) Entered to abnormally terminate a task when
a) invalid DLB or UCB's are found
1) uCB address in DEB woulcd give a specification

error

c) Protection key specified in DL3 does not

match that of TCB

a) Protection key in KRQL is non-zero and is
not same as kecy of IOB, DCB and IOB

2) In each case, the I/0 event is not POST'd complete
e. POST routine interface
1) ilot an crror rtn it is entered to perform the

POST of an LCBE

2) Prepares 30 Lit completion ccde and invol.es
task supervisor PUST rtns to perform the
POST function

3) If also entered vihen a tash is beinyg abnormally
terminated and RQE's are lbeing rurged, in wiidich case
the SVC Purge rtn (not to Le confused vwitii the I/0
purge rtn) is WAIT'ing on completion of the
purge and the post interface is usea to POST
that completion '

Lrror Routines

PROGRAMIINIG/SYSTEMS. EDUCATION — SDLD POUGHKEEPSII

de

I8

1)

2)

routines

Lntercd from Lrror untn Intcerface, passcu

KGE to Ltage 2 exit Lffector to scliicdule
asyncl.ronous exccutiorn of apvropriate rtn

by chaining QL off LEQA and setting Stage 3
switcl '

Lxit Lffccior completes nane of required error
rtn by appenuing a 1-Lvte code (from LC3)

onto a standard name in tue sSIKL clhained out
of the system error TCB

note: If the freec list of INQL's 1s empty tiis is not donc anu
offending task is abliiv'a. <The loauing of the reyuircc
error rtn reguires I/0 and thus regulres its own RJQL
3) The systen error rtn loads the rtn into the
I/0 transicent arca and executes it
4) If necessary, the I/0 Purge rtn is loadeu to
purge all .Qk's for relatcu reyuests (related
to the one in error)
note: Related reyuests are udistinct I/0 rewucests issueuw by toc

sanie task using thc sawme ouCB and VL3 such that tie first
nmust complete before tae next can ve startecu

a) Searcics all LCHWD qgueues for rQL's
relatca to one in error and associated
witi, extents defined in the ol

L) the LQL's are returnced to the free list
anu ti.e corresponcing LCL's POST'c witn
a "permanent error" coue

J. CLER/CCHL Routincs

a.

b.

SER
CCii

1)

2)

- see llachinc cuceck Interrupt scction

cnannel check lLandler

forms a scries of bytes describilng tue error
to Le uscd by crror rtns in an attewmnt to retry
the operation

L
formats a rccord descriiing clhiannel envirowument
when ecrror occurrcd

PROUGRAIIMING/SYSTLS LDUCATIOH - SVD POUGLILLFSIU

Restarts Channel

1.

If no errors found or they are recoverable, I/0
Interrupt landler attempts to restart the
hardware channel associated with cowpleted I/0
event '

First, interrupts arc enabled and if any occur,
I/0 FLIIl is entered and by switch set on first
entry, bypasses storing of registers and PSW

and handles the interrupt. After all stacked
interrupts are handlcd, channel restart continues

Channel address is multiplied by 4 to index
into the channel table to get address of Channel
Search ilodule

Channel search module

a, Searches eacn LCHUWD queue of each logical
channel with which the physical channel is
associlated

b, Searches first for "seekalble" requests - reguests

that reguire a stand alcne scck

1) When a seekable request found, unit checked
for availability. If not available, next
RQE checked. If available, test channel
nodule entered to clieck if a path to the
device is available, if not available next
RQE checked., If available, SI0 module
entered to issue stand alone seek

2) If RQE represents a request related to
another reyuest which has encountered a
permanent error (code set in associated
DCB), the channel restart module

a) puts X'48' (purged reguest) in associated
I0B, to be used to POST ECB later

k) dequeues RQE and returns it to free list
c) invokes- POST rtns to post event complete
C, When all "seekalle" requests that can be, have bLeen

started, Channel Search nmodules search the LCHWD

PROGRAMMING/SYSTEIMS EDUCATION - SDD POUGHKLEPSIE

AXVI D,

queues again for a start data transfer request, when
found, SIO Module entered to execute the Triple
of CCW's leadinyg to tihe users channel program

d. When data transfer begun, interrupts enalled again

e. If no interrupts occur, control returnea to I/0
FLIK to reset "first entry" switcii (so register
and PSW will be saved tile next time on I/v
Interrupt occurs) and exits to the disvatcher

PROGRAMIING/SYSTuiS EDUCATION = SDD POUGHKLLPSIL

