
Systems Reference Library

IBM Operating System/360

Concepts and Facilities

This publication describes the basic
concepts of Operating System/360 and guides
the programmer in the use of its various
facilities.

Operating System/360 is a comprehensive
set of language translators and service
programs, operating under the supervisory
control and coordination of an integrated
control program. It is designed for use
with Groups 30, 40, 50, 60, 62, 70, and 92
of Computing System/360. It assists the
programmer by extending the performance and
application of the computing system.

File Numbel: 8360-36
Form C28-6535-0

PREFACE

This publication introduces and interre­
lates all Operating System/360 control pro­
gram facilities. It shows how these facil­
ities work with the language translators
and service programs, so the programmer can
better learn to use the system. It also
directs the programmer to related Operating
System/360 publications for specific
details.

Many combinations of programming facili­
ties are possible with Operating
System/360. The programmer will work with
a particular set of these facilities,
depending on the language he uses (FORTRAN,
COBOL, Report Program Generator, Assembler,
or New Programming Language), and the modu­
lar programs chosen when his operating
system is generated. Although all the
control program facilities are described
herein, all of them may not be included in
every installation.

The publication is divided into two
parts, an introduction and survey, and a
detailed description. The first part con­
tains a general description of subjects of
interest to all users. The second part,
meant for programmers, is a more thorough
discussion of the same topics.

Even though many details are expressed
in assembler language terminology, this
publication is addressed to every program­
mer who will use System/360, and familiari­
ty ~ith the assembler language is not a
requirement.

PREREQUISITE PUBLICATION: IBM Operating
System/360: Introduction. This publication
describes the general organization, func­
tion, and application of the operating
system. It also describes the other relat­
ed Operating System/360 publications.

This publication was prepared for production using an IBM computer to update
the text and to control the page and line format. Page impressions for
photo-offset printing were obtained from an IBM 1403 Printer using a special
print chain.

Copies of this and other IBM publications can be cbtained through IBM Branch
Offices.

A form for readers' comments appears at the back of this publication. It may
be mailed directly to IEM. Address any additional comments concerning this
publication to the IBM Corporation, programming Systems publications, Department
D58, PO Box 390, Poughkeepsie, N. Y. 12602

©1965 by International Business Machines Corporation

PART I: INTRODUCTION AND SURVEY ••

SECTION 1: INTRODUCTION.

Elements of the Ope:r:ating System

Benefits to the Programmer
!

SECTION 2: SURVEY

Data Management •
Identifying and Locating Data
Organizing Data ••••
Storing and Retrieving Data • • • •
Device Independence • • • • •

Program Design and Preparation
programs and Subprograms •
Combining Subprograms

Job Management •••••
Job Control •••••
The Input Job Stream •
Job Scheduler ••••••••

Sequential Scheduling System
Priority Scheduling Systems

Task Management •

PART II: DETAILED DESCRIPTION

SECTION 3: DATA MANAGEMENT

Data Set Identification and Extent
Control ••••••• • • • •

Direct-Access Volume Identification
and the Volume Table of Contents

Magnetic Tape Volumes •••••••
Cataloging and Library Management

Control Volumes • • • • • • •
Generation Data Groups •••••

Password Protection of Data Sets • •
Editing of Space, Indexes, and
Catalogs ••••

Data Access Methods •
The Access Methods • •

Queued Sequential Access Method
(QSAM) • • • • • • • • • •

Basic Sequential Access Method
(BSAM) • • • • • • • • • • • • •

Basic Partitioned Access Method
(BPAM) • • • • • • • • • • • • •

Indexed Sequential Access Methods
- Basic and Queued (BISAM and
QISAM) • • • • • • • • • • • • •

Basic Direct~Access Method (BDAM)
Queued Telecommunications Access

Method (QTAM) •••••••••
Basic Telecommunica.tions Access

Method (BTAM) •••••••••

7

8

8

8

10

10
10
11
11
12

13
13
13

15
15
15
16
16
17

18

21

22

22

22
22
23
24
24
25

25

25
26

26

26

26

26
27

27

29

CONTENTS

Blocking and Buffering Facilities 29
Block Formats • • • • • 29
Buffering Facilities •••••• 30
Buffer Pools •••••••••• 30
Buffer Assignment Techniques and
Transmittal Modes 30

The Data Control Block 33
OPEN and CLOSE Macro-Instructions 33
Data Access Routines • • • • •• 34

SECTION 4: PROGRAM DESIGN AND
PREPARATION ••• •

Program Segmentation

Program Structures
Simple Structures ••••

Deferred Exits
Planned OVerlay Structures
Dynamic Serial Structures

Link Macro-Instruction
Transfer Control (XCTL)
Macro-Instruction

LOAD Macro-Instruction
Planned Overlay versus Dynamic
Structures • • • • • • • •

Dynamic Parallel Structures • • • •

Program Design Facilities • • • •
Reusability ••••• • • • •
Design of Reenterable Programs
Checkpoint and Restart • •
Timer •• • • • •

Debugging Facilities
Assembler Language Program

Debugging: Test Translator
Test Output •••••

SECTION 5: JOB MANAGEMENT

Control Statement Capabilities
Scheduling Controls

Job Priority
Dependencies
Maximum Execution Time
Non-Setup Jobs ••••
Job Log • • • • •

Program Source Selection •
Data Set Identification And
Disposition • • • • • • • • •

SYSIN and the DD * Statement
Concatenated Data Sets
Generation Data Groups
Dummy Data Sets • • • •
Data Set Disposition • • • •

Input/Output Device Allocation
Deferred Mounting of Tapes

Direct-Access Storage Space
Allocation ••••• • • • • •

39

39

39
40
41
42
43
43

44
45

46
46

47
47
48
49
49

50

50
51

52

52
53
53
53
53
53
54
54

54
55
55
55
55
56
56
58

58

11 S

Cataloged pr9cedures • • • • • • •• 58
Job Scheduler and Master Scheduler
Functions • • • • • • • • • • • 58

Job Scheduler •••• 59
Reader/Interpreter ••••••• 59
Initiator/Terminator • • • • 59
Output Writers 60

Master Scheduler • • • • • 61

SECTION 6: TASK MANAGEMENT

Single-Task Operations
Actual Flow of Control

Multitask Operation •••
Task Creation -- ATTACH
Resource Allocation

Tasks As Users of Resources •
passing Resources to Subtasks

Event Synchronization •••••
WAIT and POST Macro-Instructions
Enqueue (ENQ) and Dequeue (DEQ)
Macro-Instructions

Task Priorities
Task Termination • • •

Main Storage Allocation •
Main Storage Allocation in a
Multitask Environment

Storage Protection And Protection
Boundaries ••••••••••••

63

63
64

64
65
66
67
68
68
68

70
71
72

74

75

75

Passing And Sharing Of Main Storage
Areas • • • • • • • • • • • •

Task Priorities And Roll-Out •

APPENDIX: SYSTEM CONVENTIONS

Names ••

Subprogram Linkage

Program sharing • •

Intertask communication •

Use of WAIT • • • •

Operator messages •

Control Section size

Character set considerations
Source Language Debugging and
Maintenance

Volume Labels

Track Address Independence

GLOSSARY

INDEX ••

75
76

77

77

78

78

78

78

'78

78

78

79

79

79

80

87

$

FIGURES

Figure 1.
Figure 2.

Figure 3.

Figure 4.
Figure 5.
Figure 6.

Figure 7.
Figure 8.
Figure 9.

Figure 10.

~"igure 11.
Figure 12.

Figure 13.
Figure 14.
Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.

Figure 2 7.

Figure 28.

Figure 29.

Operating System/360 . • •
Subprograms Existing at
Different Levels of Control

Subprograms Existing at the
Same and Different Levels
of Control • • • • • •
Program Preparation. •
The Input Job Stream • • •
Sequential Scheduling
System • • • • • • • •
Priority Scheduling System
Task Representation. • • •
Switching Control Among
Tasks •••••••••••
Volume Initialization and
the Volume Table of Contents

Catalog Search Procedure •
The Queued
Telecommunications Access
Method • • • • • • • • • •
Components of a Message ••
Dynamic Buffering •••••
Simple Buffering - Move
Mode • • • • • • • • • • •
Simple Buffering - Locate
Mode • • • • • • • •
Exchange Buffering -
Substitute Mode ••••••
Data Control Block Being
Filled in. • • • • . • •
Actual Program Flow That
Starts on Input/Output • .
Execution of a Load Module
Within a Task •••.• ~ •
Subprogram Within a Program
Deferred Exit to Subroutine
Overlay Tree Structure
The LINK Operation .
Nested Subprograms • •
Use of XCTL Macro­
Instructions • . • •
Uses of LOAD Macro­
Instructions • • .. .
Immediate Requirement for
Subprogram . • . • . • •
Delays Expected in Higher
Level Subprograms ...•.

8

13

14
14
15

16
17
18

19

23
24

28
29
31

32

32

33

34

35

40
40
42
42
44
45

45

46

46

47

Figure 30.

Figure 31.
Figure 32.

Figure 33.

Figure 34.

Figure 35.
Figure 36.
Figure 37.

Figure 38.

Figure 39.

Figure 40.

Figure 41.
Figure 42.
Figure 43.
Figure 44.

Figure 45.

Figure 46.

Figure 47.

Figure 48.

TABLES

Table 1.
Table 2.

Table 3.

ILLUSTRATIONS

Delays Expected in Sub-
program • •• .•••.
No Delays Expected. . . .
A Reenterable Program that
Requests Its Own Temporary
Storage ••
Chain of Symbolic
References ...•..
Typical Input/Output
Devices • • • • • • • • •
Multijob Initiation •
Actual Flow of Control. •
Job Step-Task Relation-
ship.
Situation Immediately After
Initial Program Loading •
Situation With Reader,
Writer, Initiator, and
One Job Step. • • • • • •
Situation After Initiating
Three Concurrent Jobs • •
Resource Queues • • • • •
Intertask Synchronization
Situation After READ •••
Situation After Execution
of WAIT • • • . • • • • •
Situation at Completion
of Input/Output Operation

Abnormal Termination of a
Task. • • • . • • • • • •
Abnormal Termination of a
Subtask • • • • • • • • •
Deferred Exit at Abnormal
End of Task • • • • • • •

Access Method Summary
Names of Installation
Devices. ••.••
Specifications That
Achieve Input/Output
Overlap • • • • • • •

47
47

49

54

56
60
64

65

66

66

66
68
69
69

70

70

73

73

74

37

58

59

PART I: INTRODUCTION AND SURVEY

This part contains a concise description
of the significant features of the operat­
ing system. It is intended to serve as an
introduction to the concepts, facilities,
and terminology described in greater detail
in Part II and in other Operating
System/360 Publications.

Since the Survey is self-contained, how­
ever, it should also prove useful to anyone
wanting a general familiarity with the
system.

7

SECTION 1: INTRODUCTION

Operating System/360 has been designed
to shorten the period between the time a
problem is submitted for solution and the
time results are received 7 to increase the
volume of work that can be handled over a
given period of time7 and to assist those
concerned with the system: installation
managers, operators, and above all, pro­
grammers. The operating system consists of
a number of processing programs and a
control program (Figure 1).

Operating System/360

Control Program

Data
Management

Function

Job
Management

Function

Task
Management

Function

Processing Programs

Language
Translators

• New
Programming
Language

• FORTRAN
• COBOL
• Assembler
• Report

Program
Generator

• Telecommuni-
cations
Program
Generator

• System
Generator

• Test Translator

Service
Programs

• Linkage
Editor

• Sort/Merge
• Utilities

User-Written

Problem Programs

Figure 1. Operating System/360

8

ELEMENTS OF THE OPERATING SYSTEM

The processing programs consist of lan­
guage translators, service programs, and
user-written problem programs. The pro­
grammer uses them to define the work that
the computing system is to perform and to
simplify program preparation.

The control program supervises the exe­
cution of the processing programs7 controls
the location, storage, and retrieval of
data 7 and schedules jobs for continuous
processing.

S~stem users may also include their own
serv1ce programs or language translators.
The programmer can then use these programs
as he would use IBM-written programs.

BENEFITS TO THE PROGRAMMER

The programmer can take advantage of a
unified system that allows him:

• To write programs that are independent
of input/output requirements or charac­
teristics of the operating environment.
Such requirements can be specified when
the jobs are set up, without modifying
the programs.

• To place information (programs or col­
lections of data) in the system's
library without specifying or keeping
track of the identification of the
auxiliary storage volume used7 and then
to obtain access to the information by
merely providing a symbolic reference
to it. The system automatically
locates the information, issues
instructions to the operator to place
the information on-line, and provides
the descriptive material that is subse­
quently used to retrieve the informa­
tion properly.

• To store frequently used series of
statements that specify job require­
ments as ncataloged procedures,n and to
easily call them for use.

• To receive the results of a computer
run soon after submitting a job because
of a nonstop operation that does not
require jobs to be delayed until a
batch is accumulated.

• To design efficient programs that make
balanced use of system resources in
an easy and direct way. Programs may

be divided into simple subprograms that
are executed concurrEmtly under manage­
ment of the control program; there is
no need to rely on a complex, intricate
design to achieve thE~ same effect.

• To divide a problem into a set of
subprograms, and codE~ each in the lan­
guage best suited to it.

• To divide a large program into smaller
sections that can be overlayed after
they have been executed, to conserve
main storage space.

• To easily test and modify programs and
data.

• To choose between immediately executing
compiled or assembled programs (or
parts of programs) or storing them on
auxiliary devices for later use with
other compiler or assembler outputs.
The system can locatE~ such routines if
given only their names, and can pass
control to them in several different
ways.

• To use the
piling it,
chooses to
program.

same program without recom­
even if the installation
add features to the control

The various facilities provided by proc­
essing programs and the control program are
described under four topics:

• Information to be processed is organ­
ized and stored in a particular way
related to its use. It may be named
and may be easily retrieved. These
operations are described. under Data
Management. ----

• The user's programs are prepared under
certain constraints, such as available
storage space and the characteristics
of the problem to be solved. The
programmer should take full advantage
of available programming aids (such as
inclusion of existing subroutines) •
System features in this area are des­
cribed under Program Design and Prepar­
ation.

• Processes can be specified as sequences
of steps. These steps are then sche­
duled to maintain a continuous flow;
this is described under Job Management.

• Elements of work can be performed indi­
vidually or concurrently. This is des­
cribed under Task Management.

Section 1: Introduction 9

SECTION 2: SURVEY

DATA MANAGEMENT

The manner in which data is transferred
between main storage and external devices
is of paramount importance in most data­
processing installations. Earlier systems
provided a number of facilities that
together were named an input/output control
system (IOCS). Most of these systems were
limited to tape and unit record equipment.
They consisted primarily of routines that
managed buffers and hardware interfaces,
and controlled access to labeled tapes.
Other versions, usually independent,
included facilities for reading and writing
on direct-access devices, and still others
controlled telecommunications activities.
Facilities to build and retrieve from pro­
gram libraries were at times also
available, but were usually not incorporat­
ed into the input/output control systems.

The data management facilities of Oper­
ating System/360 handle all of these func­
tions, and do it in a consistent manner.
Data from a direct-access device, a remote
terminal, or a tape; data organized sequen­
tially, or like a library; all may be
requested by the programmer in essentially
the same way.

In addition, data management provides:

• Allocation of space on direct-access
devices. Flexibility and efficiency of
these devices is improved through bet­
ter use of available space.

• Automatic location of data sets* by
name alone.

• Freedom to defer specifications such as
buffer size, blocking factors, device
identification, and device type until
the job is submitted for processing.
This permits the creation of programs
that are in many ways independent of
their operating environments.

• Protection of data sets. This
includes:

1. Protection of data sets that share
a common device. An accidental
attempt to write outside of speci­
fied boundaries is detected and
prevented.

2. Protection against unauthorized

*Collections of data, described by control
information stored within the system, are
called "data sets" as opposed to the more
common term "file."

10

access to security files
(containing, for example, payroll
information) by use of
npasswords.n

3. Protection against concurrent
updates of the same record, in
multiprogrammed systems.

The following paragraphs describe the
means of identifying, locating, organizing,
storing, and retrieving data in general
terms. Data management is discussed in
greater detail in Section 3.

IDENTIFYING AND LOCATING DATA

Whenever a programmer indicates that a
new data set is to be created and placed on
auxiliary storage, he (or the control
program) must give the data set a name.
The name is used when the data is to be
retrieved.

In some cases, the name assigned to a
data set must be qualified to avoid ambi­
guity. For example, the qualified names
COLOR. CHERRY and TREE.CHERRY describe two
qifferent data sets having the simple name
CHERRY.

A standard unit of auxiliary storage is
called a volume. A volume may be, for
example, any of the following:

• A reel of tape
• A disk pack
• A data cell
• A drum
• The part of an IBM 2302 Disk Storage

device served by one access mechanism
(the device would have either two or

four volumes in all)

A direct-access volume (everyone of the
above except the tape reel) has a volume
~abel in a standard location. The label
specifies the location of a volume table of
contents. Each data set stored on the
volume has its name, location,
organization, and other control information
stored in the table of contents. (Similar
information is stored in labels of data
sets stored on tape.) Thus, if the name of
a data set and the volume on which it is
stored is made known to the control
program, a complete description of the data
set, including its location on the volume,
can be retrieved. Following this, the data
itself can be retrieved, or new data can be
added to the data set.

However, keeping track of the volume on
which a particular data set resides is a
burden, and often a source of error. A
provision for catalogin9 data sets allows
the system to do this for the user.

A cataloged data SE~t can be located by
the control program, if given only its
name. The catalog consists of a series of
indexes stored on direct-access devices.
Each qualif ier of a delta set name corres­
ponds to one of the indE~xes in the series.
For example, the data set TREE.FRUIT.APPLE
is found by searching cl master index to
obtain the location of the index named
TREE. The TREE index is searched to find
the location of the index named FRUIT.
Lastly, this index is searched for APPLE to
find the identification of the volume con­
taining the required dat:a set.

By use of the catalog, collections of
data sets that are related by a common
external name and the time sequence in
which they were cataloged (i.e., their
generation) can be identified, and are
called generation data groups. Thus
LAB. PAYROLL (0) refers to the most recent
data set of the group, LAB. PAYROLL (-1)
refers to the second mo~~t recent data set,
and so on. In applications which, for
example, regularly use t.he two most recent
generations of a group to produce a new
generation, the same collection of data set
names can be repeatedly used with no
requirement to know or keep track of the
serial numbers of the volumes used.

ORGANIZING DATA

Operating System/360 data sets can be
organized in five ways. They are:

• Sequential. This is the familiar tape­
like structure, in which physical
records are placed in sequence. Thus,
given one record, the "next" record is
uniquely determined. The sequential
organization is used for all magnetic
tapes, and may be selected for direct­
access devices. Punched tape, punched
cards, and printed output are
considered to be sequentially
organized.

• Indexed Seguentia:~. Records are
arranged in logical sequence (according
to a key which is part of every record)
on the tracks of a direct-access
device. In addition, a separate index
or set of indexes maintained by the
system gives the location of certain
principal records. This permits direct
as well as sequential access to any
record.

• Direct. This organization is available

for data sets on direct-access volumes.
The records within the data set may be
organized in any manner chosen by the
programmer. All space allocated to the
data set is available for data records
(i.e., no space is required for
indexes) • Records are stored and
retrieved directly, with addressing
specified by the programmer.

• Partitioned. This structure has char­
acteristics of both the sequential and
indexed sequential organizations.
Independent groups of sequentially
organized data, each called a member,
are in direct-access storage. Each
member has a simple name stored in a
directory that is part of the data set
and contains the location of that
member's starting point. An example of
partitioned data set use is the storage
of programs; as a result, partitioned
data sets are often referred to as
libraries.

• Telecommunications. This organization
deals exclusively with data going to or
coming from remote on-line terminals.
Such data ~essages) may be processed
directly from main storage or from
queues in direct-access storage.

STORING AND RETRIEVING DATA

Data management includes facilities that
simplify storing and retrieving data:

• Input-output device control - The con­
trol program generates, schedules, and
executes the instructions that transfer
data to or from a particular device.
Transient device errors and errors
resulting from local recording surface
defects are corrected automatically.

• Buffering To achieve input-out put-
process overlap in data organizations
with sequential characteristics, the
control program anticipates input
transfer requests, and defers output
requests.

• Blocking - The control program permits
the user to request and store logical
records, which it automatically groups
into long physical blocks as part of
its buffering activity. This blocking
of records permits more data to be
stored within a given area, and hence
permits faster data transmission. For
example: on an IBM 2400 Series Magnetic
Tape Unit, an SO-character card image
record occupies 0.1 inch; the inter­
block gap occupies 0.6 inch. Effective
transfer rates are therefore only one­
seventh of potential rates if such
records were written individually.
Similar considerations apply to direct­
access devices. The access routines

Section 2: Survey 11

for these facilities are called by
simple input/output macro-instructions
or statements in each program's source
coding. Two categories of access
language are provided to satisfy speci­
fic user requirements.

The queued access language is designed
to furnish a full range of buffering and
blocking facilities with maximum program­
ming simplicity. It applies only to organ­
izations with sequential characteristics.
The macro-instructions GET and PUT are used
for retrieval and storage of logical
records.

The basic access language furnishes
device control without automatic buffering
and blocking. Input/output operations are
scheduled at the time they are requested.
Characteristically, the macro-instructions
READ and WRITE retrieve and store entire
physical blocks of data.

This more primitive language may be used
to give the programmer more direct control
over functions such as seeking, back­
spacing tape, etc., that depend on
particular input/output devices. It also
may serve as the base for any special
buffering or blocking methods constructed
by the user.

Each combination of data organization
and access language is defined as an access
method. There are eight access methods in
the operating system. For convenience
their names are shortened to the initial
letters of the language category and the
organization used, followed by AM for
access method, as shown:

i-r----------------------T------------------, I Organization I Language Category I
I ~-------~--------~
I I Queued I Basic I
~----------------------+---------+--------~
I Sequential I QSAM I BSAM I
I I I I
I Indexed Sequential I QISAM I BISAM I
I I I I
I Direct I I BDAM I
I I l'll I
I Parti tioned I I BPAM I
I I I I
I Telecommunication I QTAM I BTAM I L ______________________ ~ ________ L_ _______ J

In addition to these methods, an elemen­
tary access method called execute channel
program (EXCP) is also provided. The pro­
grammer who uses this method must establish
his own techniques for organizing, storing,
and retrieving data. Its primary advantage
is the complete flexibility it allows the

12

programmer in using computing system facil­
ities directly.

DEVICE INDEPENDENCE

An important feature of data management
is that much of the detailed information
needed to store and retrieve data, such as
device type and identification, buffer han­
dling techniques, and format of output
records, need not be supplied until a job
is ready to be executed. This device
independence permits changes to be made in
those details without requiring changes in
the affected programs. Therefore, a pro­
gram may be designed and debugged without
any knowledge of the input/output devices
that will be used when it is executed.
Device independence allows the following:

• A user may prepare a program that may
be executed without change at different
installations with different
input/output configurations.

• An installation may take advantage of
new devices without reprogramming, or
recompilation.

• To optimize performance, a user may
experiment with different combinations
and types of input/output units and
buffers.

• A programmer may prepare a report for
printing by using conventional control
characters rather than system macro­
instructions to describe his format.
He need not know whether the output
will be placed in auxiliary storage for
later printing, or whether it will be
printed directly.

Device independence is a feature of both
categories of access language. The degree
of device independence attained is to some
extent determined by the programmer. Many
useful device-dependent features are
available as part of special macro­
instructions, and attaining device
independence requires some selectivity in
their use. As an example, assume that a
programmer selects the queued sequential
access method (QS~ and restricts his use
of macro-instructions to certain ones that
affect data transmission rather than device
control (specifically, GET, PUT, PUTX,
TRUNC, and RELSE). Because he did this,
any of these devices could be used without
requiring program modification:

IBM 2400
IBM 7340
IBM 2311
IBM 2302
IBM 2321
IBM 7320
IBM 2301

Magnetic Tape Units
Hypertape Drive
Disk Storage Drive
Disk Storage
Data Cell Drive
Drum Storage
Drum Storage
Card Readers, Punches, Printers

Macro-instructions are available in the
basic direct-access method (BD~ that
affect device control as well ,as data
transmission, and yet are device indepen­
dent. For example, a NOTE macro­
instruction may appear in a series of READ
(or WRITE) macro-instructions. If a POINT

macro-instruction is subsequently issued,
the volume will be repositioned to read at
the NOTE location regardless of whether,
for example, a direct seek or a tape
backspace is required.

PROGRAM DESIGN AND PREPARATION

Operating System/360 allows the
programmer great flexibility in the design
and preparation of programs. He may design
his programs in segments that overlay each
other, or as subprograms that may be indi­
vidually coded, stored, and linked in var­
ious ways before and during execution. He
specifies his requirements for necessary
facilities by use of control statements and
by including macro-instructions in his
assembler language coding; many of the
facilities can also be used in programs
coded in FORTRAN, COBOL, and the New Pro­
gramming Language.

The process by which programs are pre­
pared for execution in Operating System/360
differs from previous methods in three
ways:

• Greater emphasis is placed on program
modularity, and the ability to link
programs together in a variety of ways.

• All executable programs are placed in
libraries where they are immediately
available.

• All programs are capable of being load­
ed and executed anywhere in main stor­
age. Their locations in storage are
determined at the time they are loaded.

PROGRAMS AND SUBPROGRAMS

A hierarchy of programs is recognized,
based on the way one program is associated
with another. If progr~n A calls program
B, and expects control to be returned, B is
called a SUbprogram of A, and is said to be
at a lower level of control.

In Figure 2, C and D are subprograms of B,
which in turn is a SUbprogram of A. A is
at the highest control level; B is at a
higher control level than C or D; C and D
are at the same control level.

In a slightly different sense (having
nothing to do with control levels), program
is used to describe a set of interrelated
programs. Thus, in the illustration,
A,B,C, and D together form a program. From
that point of view, each is a SUbprogram of
the whole.

Now suppose that program A calls upon
program B in such a way that it does not
expect a return from B (for example A
represents an initialization procedure; B
represents the main process). A and Bare
said to be at the same control level.

c

A B

D

Figure 2. Subprograms Existing at Differ­
ent Levels of Control

In Figure 3, A and B are at the same
control level; similarly C and D are at the
same control level, which is lower. C and
D are each said to be subprograms of B.
(Note that although B expects a return of
control, it does not receive it from the
same program to which it relinquished con­
trol.)

COMBINING SUBPROGRAMS

Subprograms may be combined in several
different ways and at several different
times. The earliest time is when a set of
source language statements (called a source
module) is prepared for input to a language
translator (Figure 4). Such source modules
may be placed in libraries (partitioned
data sets) and modified there by a utility
program, rather than by manipulating card
decks. Input to the language translators
can be from libraries, from card decks, and
from other sources in combination. The
output of the language translator, called
an object module, is in machine language,
but is not yet executable. It may still
contain unresolved symbols (i.e., referen­
ces to symbolic addresses that did not
appear in the source module) •

Section 2: Survey 13

Figure 3. Subprograms Existing at the Same
and Different Levels of Control

All executable code is prepared by the
linkage editor, one of the service programs
of the operating system. The output code
produced by the linkage editor is called a
load module. The input to the linkage
editor may be any number of object modules,
previously prepared load modules, and con­
trol statements. This permits previously
completed programs to be included as sub­
programs of new, more complex programs. It
also permits changes to be made in pre­
viously prepared load modules, obviating
the need for recompiling the entire
program. Specifically, the control state­
ments can direct that various sections of
an old load module be deleted, or replaced

o
Q

Source
Module

Figure 4. Program Preparation

14

(

Q

Object
Module

by code contained in newly prepared object
modules. The units of deletion and

:replacement are control sections. (A con­
'trol section is a sequence of code that
'is independent of the location of other
similar sequences. Thus, a single address
constant, a value used when loading a base
register, can never be used to address
locations within two different control sec­
tions.) In addition, the control state­
ments for the linkage editor can direct
that the resulting load module be segmented
for overlaying, a technique that allows the
entire load module to be executed, even
though it is too large to fit into availa­
ble main storage at one time. This subject
is discussed thoroughly in the publication
IBM Operating System/360: Linkage Editor.

Finally, subprograms may be combined at
the time jobs are submitted and executed.
This may be done by specifying in job
control statements the sequence of subpro­
grams to be executed, a procedure further
defined in wJob Management- later in this
:survey, and Section 5. Subprograms may
also be requested dynamically at the time a
load module is being executed. In this
case, the subprogram requested is always
itself a load module. The control program
finds the subprogram in the indicated
library, allocates main storage, loads the
program, and when appropriate, passes con­
trol to it. This feature greatly simpli-
fies the planning needed when complex pro­
cedures are programmed.

Load
Module

Control
Program

Main
Storage

JOB MANAGEMENT

Job management improves processing effi­
ciency by:

• Using the computing system to perform
routine job handling activities in a
rapid, precise manner.

• Eliminating nonessential operator deci­
sions with their attendant delays and
possible human errors.

• Allowing the programmer to defer speci­
fication of input/output facilities
until after his program is compiled.
This improves program flexibility and
eliminates the need for recompilation
if the situation changes.

JOB CONTROL

Jobs are controlled by the programmer
through a job control language, and by the
operator through system communication. The
job control language is a formalized method
of requesting, in advance of job
processing, functions previously performed
by the operator. The programmer can define
his requirements in a precise manner, when
the job is set up. System communication
enables the operating system to respond to
operator commands, and to request that the
operator perform actions such as mounting
volumes; it also permits the program to
communicate with the operator.

THE INPUT JOB STREAM

Job control statements come into the
system in a sequence called the input job
stream (Figure 5). Of these statements,
the essential three are the job (JO~,
execute (EXEC), and data definition (DD)
statements.

A JOB statement signifies the beginning
of each job. A job may consist of several
interdependent job steps, such as a compi­
lation, linkage edit, and execution. For
each job step, an EXEC statement and neces­
sary DD statements are included in the
input job stream. In the EXEC statement,
'the programmer names the first program
(load module) to be used in the job step.
(Other load modules may be dynamically
called by the first, but these are not
named in the EXEC statement.) In DD state­
ments, he describes data sets to be used in
·the job step.

liB JOB

IISTEP 1 EXEC PGM=ONE
IIDDNAME DD DSNAME=

Job A ,-------,
I I
I I
I I
L _____ J

Job B r ------1
I I
I I
I Step 1 I
I I
I I
I I
I I

-----------------1 L - - -- ---1
I I

IISTEP2 EXEC PGM=TWO
IIDDNAME DD DSNAME=

I I
I I
I Step 2 I
I I
I I

------------------1 r------l
IISTEP3 EXEC PGM=THREE I I
IIDDNAME DD DSNAME= I Step 3 I

I I
I I ________________ --1 L ---- __ --1

Job C r -----~
I Input I

Job Control Statements Job Stream

Figure 5. The Input Job Stream

Job steps can be related to each other
as follows:

• One job step may pass intermediate
results recorded on an external storage
volume to a later job step.

• Whether or not a job step is executed
may depend on results of preceding
steps.

All the steps that follow one JOB state­
ment belong to the same job. There is no
relationship between job steps that are not
part of the same job.

A data set, such as source coding for a
compilation, may be put in the input job
stream immediately following the DD state­
ment identifying it and before subsequent
control statements. Alternatively, the
data set named in the DD statement may be
on an input/output device which is indepen­
dent of the input job stream.

The flexibility of the job control lan­
guage allows the programmer to specify his
requirements for a large variety of facili­
ties when he prepares his control state­
ments. He may specify job priority, set-up
information, buffering and blocking
methods, space requirements, etc. In most
installations, many job step sequences will

Section 2: Survey 15

be used repeatedly with little or no
change. To simplify job requests and
reduce mistakes, whole control statement
sequences (including DD statements) may be
stored in the library as cataloged proce­
dures. Each cataloged procedure may be
initiated by a single EXEC statement in the
input job stream. Further, individual
statements in a cataloged procedure can be
temporarily overridden by like-named con­
trol statements in the input job stream.

JOB SCHEDULER

The input job stream is read and ana­
lyzed by the job scheduler, part of the
control program. The job scheduler allo­
cates the input/output units needed and
then requests the supervisor program to
initiate the execution of the programs
specified in the control statements.

By selecting optional scheduler
features, the user can tailor job manage­
ment capabilities to his requirements.

The schedulers are discussed on two
general levels in the following paragraphs:
the simple sequential scheduling and the
more powerful priority scheduling systems.

Sequential Scheduling System

The sequential scheduling system is
shown in Figure 6. This consists of a
reader/interpreter, an initiator, and a
master scheduler. The reader/interpreter
reads in job control statements for a
single job step. The initiator then allo­
cates the required input/output devices,
potifies the operator of volumes to be
~ounted, and when all required volumes are
mounted, requests the supervisor to execute
the named program.

The master scheduler program carries out
operator commands that control or inquire
about system functions. It also relays
messages to the operator, such as the
volume mounting instructions. The variety
of commands available depends on the con­
trol program configuration, as is discussed
in IBM Operating System/360: Operating
Considerations. Operator commands, which
normally are entered via console
input/output devices, may also be put in
the input job stream as a type of control
statement.

, An optional feature is automatic volume
recognition (AVR). This feature lets the
operator mount labeled input tape on any
available unit before receiving a message
telling him to do so. The initiator recog­
nizes the volumes by their labels, and
later assigns these premounted units to the

INPUT JOB
STREAM AND
COMMANDS MASTER

SCHEDULER

COMMANDS

OTHER

Figure 6. Sequential Scheduling System

16

MESSAGES

INITIATOR JOB
STEP

job steps calling for the corresponding
volumes.

Priority Scheduling SystE~ms

In priority scheduling systems (Figure
7), jobs are not executed as soon as they
are encountered in an input job stream.
In$tead, a summary of the control informa­
tion associated with each job is placed on
a direct-access device from which it may
later be selected. The set of summary
information is called the input work queue.
More than one input job stream can feed
this queue.

Use of the input work queue permits
greater flexibility in the sequence in
which jobs are selected for execution. The
system can react to job priorities and to
delays caused by the mounting and demount­
ing of input/output volumes. The
initiator/terminator can look ahead to
future job steps (within the same job) and
issue volume-mounting instructions to the
operator to mount volumes for them in
advance.

Jobs that can be run without having the
operator mount or dismount volumes are
designated as non-setup.. An optional non­
setup padding feature lets the
initiator/terminator iqnore the usual

priorities whenever a job step is delayed
waiting for volumes to be mounted. It uses
such a delay to select a step from a
non-setup job in the input work queue, and
run it.

Similarly, instead of user programs
printing or punching output data directly,
designated output (system output data) can
be stored at high speed on a direct-access
device for later transcription. To provide
for the later transcription, a summary of
control information for each job's system
output data (such as location boundaries
and device type) is also placed on a
direct-access device. The set of summary
information is called the output work
queue. Using the output work queue, system
output data is selected for printing or
punching, in priority sequence, by compo­
nents of the job scheduler called system
output writers.

Other job management options available
are:

• Job Account Log. A log of all jobs can
be kept by the job scheduler. For each
job, the log shows job name, assigned
account number, and the time used for
execution of each job step. Also
recorded on the log may be information
from user-written routines and operator
commands •

• Multijob Initiation. This feature
allows several different jobs to be

INPUT JOB
STREAM AND
COMMANDS MASTER

SCHEDULER

OTHER

COMMANDS

READER -
INTERPRETER

OUTPUT
WRITER

Figure 7. Priority Scheduling System

MESSAGES

INITIATOR-
14----------i TERMINATOR 14----1

JOB
STEP

Section 2: Survey 17

processed concurrently. Each job
selected is initiated one step at a
time, sequentially, just as in systems
without the multijob initiation
feature. On completion of any job, the
highest priority job in the input work
queue is selected and initiated •

• Remote Stacked Job processing. Job
control information may be submitted to
the system from remote on-line termi­
nals. All job management functions
specified by the job control language
are available to remote locations.
This "remote batch" feature provides a
practical and convenient method for
many users to share the power of a
large centralized computing system.

TASK MANAGEMENT

Control Program functions are performed
for units of work known as tasks. (The
performance of a task is requested by a job
step.) The difference between a task and a
program must be clearly understood. A
program is a sequence of instructions. A
tas~ is the work to be done by the execu­
tion of a program. In a multiprogramming
environment, the task competes with other
tasks for control of the central processing
unit and other system resources.

In the past this distinction between
program and task was unnecessary because at
anyone time a program was used for only
one task. Now, with multiprogramming and
the possibility of shared code, the dis­
tinction is necessary because the same
program may be in use by many different
tasks. Consider, for instance, a discus­
sion of priorities: associating priority
with a program would be confusing because
the same program may be serving many tasks,
each with a different priority. It is the
task that has a priority, not the program.
Multiprogramming in Operating System/360 is
task management rather than program manage­
ment.

As a reminder of the distinction between
a task and the associated program, a con­
venient representation is often used
(Figure 8) •

The lower box represents the program
instructions; the upper box represents the
task control block (TC~, a consolidation
of all control information related to the
task.

An operating system in which one task is
performed at a time needs relatively simple
controls. Each task uses the resources it
needs, when it needs them. But a system
that handles a number of tasks concurrently

18

needs a way of identifying them, assigning
priorities to them, and allocating resour­
ces to them based on these priorities.

..-------Represents Task Control Block

TCB

Program

Figure 8. Task Representation

The resources that must be allocated to
tasks include input/output channels, con­
trol units and devices, main and auxiliary
storage space, library programs, the
operator's console, and most important, the
central processing unit.

Tasks may be created in only two ways:
either they exist from the time the system
is initialized (prepared to handle the
installation's work flow) or they are
created dynamically by the macro­
instruction ATTACH. ATTACH indicates that
a new task is to be attached to the queue
of tasks that already exist in the system.

In all multi task configurations,
regardless of the manner in which tasks are
created, existing tasks are arranged in a
task queue according to priority. If a
task can make immediate use of the central
processing unit, it is in a ready
condition; if the task is waiting for the
completion of some event, such as an
input/output operation, it is in a wait
condition The purpose of the multitask
operation is to keep the central processing
unit busy; when a task being performed
enters a wait condition, another task is
allowed to be performed. Control is always
given to the highest priority task in the
ready condition. How this is applied is
illustrated in Figure 9. In the figure, an
asterisk indicates the active task.

Three tasks are shown on the task queue:
A, B, and C (each represented by their task
control blocks). They are arranged in
priority sequence, from high to low: 14, 5,
3. At time 1, A is in a wait condition
(depicted by Vi) ; B is in a ready condition
(depicted by R). Control is therefore

given to task B. At time 2, the program
being executed under task B indicates that
it has reached a point where it must wait
for some asynchronous event; hence control
is given to task C. At time 3, an inter­
ruption indicates that the event B was

waiting for has occurred; control is
returned to B. At time 4, task B has been
completed and control returned to task C.
Task C is unaffected by its interruption
and later resumption.

[J [] [0
Time 1 W *R R
Time 2 W W *R
Time 3 W *R R
Time 4 W *R
* Tasks in control of central processing unit

Figure 9. Switching Control Among Tasks

Whenever control is switched from one
task to another, the contents of registers
and the program status word for the task
relinquishing control are stored in its
task control block. When. the task is again

to be "dispatched," the task control block
contains all the information necessary to
restore the machine to its status at the
time control was relinquished. (As used
throughout this manual, "task control
block" refers not only to the fixed-sized
block which also goes by that name, but
also to a number of other areas containing
task control information that are adjuncts
of that block) •

Multitask operation is a very powerful
facility. It permits fast turn-around in
batched job operations by allowing concur­
rent operation of input readers, output
writers, and userls programs. It provides
a means for handling a wide variety of
telecommunications activities, which are
characterized by many tasks, most of them
in wait conditions. It also permits com­
plex problems to be programmed in segments
that concurrently share system resources
and hence optimize the use of those resour­
ces. With some versions of the job schedu­
ler, it permits job steps from several
different jobs to be established as concur­
rent tasks.

Section 2: Survey 19

PART II: DETAILED DESCRIPTION

Operating system facilities are des­
cribed in greater detail in this part of
the publication. Since most experienced
programmers have some familiarity with
assembly-level language, the use of operat­
ing system facilities is described in terms
of the assembler language.

21

SECTION 3: DATA MANAGEMENT

A data set is a named collection of data
whose extent (physical boundaries) is known
to the system. The name, extent, and other
descriptive data having to do with format
and organization method, is contained in a
data set label recorded in most cases with
the data itself. Optionally, the name and
properties of a data set may be entered in
the input job stream. It is the informa­
tion identifying the data organization that
distinguishes a Rdata set" from a "file,"
as used in other systems. The word "file"
is generally not used in the Operating
System/360 publications, to avoid possible
ambiguity with the auxiliary storage devi­
ces on which the data sets appear. This
section describes the operating system's
data management facilities in two parts.
The first includes the identification of
data sets, and control of their physical
location. The second includes the func­
tions concerned with data organization and
its storage and retrieval. A more complete
description of these facilities is con­
tained in the publications IBM Operating
System/360: Data Management, and IBM Oper­
ating System/360: Telecommunications.

DATA SET IDENTIFICATION AND EXTENT CONTROL

All Operating System/360 configurations
use direct-access devices to store execut­
able programs, including control programs.
Direct-access storage is also used for data
and for temporary working storage. One
direct-access storage volume may be used
for many different data sets, and space on
it may be reallocated and reused. A volume
table of contents ~OC) is used to account
for each data set and available space on
the volume.

DIRECT-ACCESS VOLUME IDENTIFICATION AND THE
VOLUME TABLE OF CONTENTS

Each direct-access volume is identified
by a volume label, stored in a standard
location. This label contains a volume
serial number and gives the location of the
volume table of contents. The table of
contents, in turn, contains the data set
labels that describe each data set stored
on that volume. The special form of data
set label used for direct-access devices is
called a data set control block (DSCB). If
the control program is given the volume

22

serial number and the data set name, it can
retrieve information from the data set
control block, which permits subsequent
access to the data set itself.

Each direct-access volume is initialized
by a utility program before being used on
the system. The initialization program
generates the proper volume label and con­
structs the table of contents.

Figure 10 illustrates the contents of a
direct-access volume after initialization.
The volume label is at a fixed location,
starting in track zero of cylinder zero.

: The user may specify up to seven additional
labels for further identification. These
will be located following the standard

. volume label.

The volume table of contents contains
space for a series of data set control
blocks, one for each data set to be written
on the volume. Control blocks are also
included to account for the space allocated
to the table of contents itself, and to
account for any space not yet allocated.
At the time of initialization, all remain­
ing space on the volume is available for
allocation.

When a data set is to be created in
direct-access storage, the steps are:

1. The volume specifications and data set
name are given in a DD statement
associated with the job step in which
the writing operation will take place.

2. Allocation of space is requested, also
by means of the DD statement.

3. When the job step is initiated, the
system allocates space and creates a
data set control block.

4. The OPEN and CLOSE functions, per­
formed when the job step is being
executed, complete the data set con­
trol block to reflect the charac­
teristics and extent actually written.

MAGNETIC TAPE VOLUMES

The system controls magnetic tape
volumes and identifies data sets residing
on tape in a slightly different way from
that used for direct-access volumes. This
is due to several factors:

• Tape is serial, and data set labels on
tape immediately precede and follow the

Cylinder 0

Track 0
------i.-l Volume Label

Additional)
Labels

(Optional)

~

VTOC
DSCB

Space Accounting
DSCB

=
Space for
Additional
DSCB'S

Figure 10. Volume Initialization and the Volume Table of Contents

data they describe. Tape data set
labels are therefore not quickly acces­
sible.

• Space allocation procedures are not
necessary, since da1:a sets on tape
follow one another sequentially. New
data sets may be added beyond any
others already there, and overflow from
one volume always goes to the beginning
of the next.

• Location on a tape volume, once the
volume is identified, is given by a
sequence number.

• The existence of magnetic tape librar­
ies using different labeling procedures
is recognized and provided for. Some
tape reels may be unlabeled.

The standard label procedure calls for a
volume label, data set labels for each data
set, and additional optional labels. Data
set labels on tape are in two parts: data
set header labels that precede the data,
and data set trailer labels that follow it.
The data set location on the tape (called a
data set sequence number) is part of the
data set label, but since it is not quickly
accessible it is used only for checking
purposes. For purposes of tape
positioning, the data set sequence number
must be either stated in a DD statement, or
stored in the catalog.

Use of non-standard tape labels is
facilitated by a provision for executing
special installation label-checking rou­
tines. Since the iden"ti ty of unlabeled
tapes cannot be verified by the operating
system, the operator must ensure that unla-

beled tapes are correctly mounted, and that
the number of reels in the data set is
stated in the DD control statement describ­
ing the data set. Data set label informa­
tion describing unlabeled tapes may be
provided in a DD statement.

CATALOGING AND LIBRARY MANAGEMENT

To retrieve a data set, the system needs
the data set name, the volume serial
number, the device type, and in some
instances, the data set sequence number.
Specifying these can sometimes be inconven­
ient for the programmer. The catalog per­
mits storage and retrieval of a data set
based on name alone. The items mentioned
previously are stored in the system
catalog. This is a series of indexes, each
corresponding to a qualification level of
the d~ta set name. The number of levels is
determined by the user.

A data set name consists of a simple
name preceded by qualifiers (index names)
separated by periods. Each component of
the full name can be up to 8 characters
long; the entire name, including periods,
can be up to 44 characters long. Each
component name starts with an alphabetic
character, and may contain any letter or
number. Indexes, linked together in a
hierarchy specified by the user, contain
pointers to subordinate indexes, to
volumes, or to both.

Data Management 23

Find: Data S~t TREE. FRUIT. APPLE

d V I 'ystem Resi ence o ume

Search -----
Catalog (Directory) TREE (Index)

~* FRUIT

@
TREE *Y

~ -

Starts

FRUIT (Index)

*
APPLE 326) -...,.

./

Volume 326

VTOC (Index)

~r Volume 1326 1* * Label

(DSCB) _ TREE. FRUIT. APPLE *
~-- -

*
Data Set: TREE. FRUIT. APPLE

I I

Figure 11. Catalog Search Procedure

The automatic cata'log search procedure
is illustrated in Figure 11. The search
starts in a volume designated when the
system is generated, which contains the
highest level index. The highest order
qualifier is sought, which provides the
location of the index for that qualifier.
The search continues for the next level
qualifier, and for its index. When a
volume number is found, the catalog search
is completed. If the required volume is
not already mounted, a mounting message
will be issued.

If the data set is on a direct-access
device, the search for the data set loca­
tion resumes with the volume label of the
indicated volume, continues to its volume
table of contents, and from there to the
data set's starting location. All volume
tables of contents are designed so that an
"in channel" search can be used, i.e., a
single search request allows the channel
program to continue through the necessary
series of seeks and reads until the named
data set is located, without intermediate
interruptions of other processing that may
be in progress.

The index design is left to the user, so
that logical divisions between index levels
can be arranged to meet installation needs.

24

A horizontal index structure with many
different names and few index levels will
require fewer seeks than will a vertical
index structure with many levels and few

· names in each level. The vertical struc-
· ture is likely to give less conflict

between duplicate names. The system will
· not accept two identical names in the same
index. Attempts to catalog identical fully
qualified names will be rejected.

Control Volumes

A control volume contains all or part of
the catalog. The operating system resides
in a control volume, generally referred to
as the system residence volume. Additional
control volumes are established upon speci­
fication of the user. The use of separate
control volumes permits data sets that are
functionally related to be cataloged separ­
ately from other parts of the catalog, and
separately from the system residence
volume. Advantages are:

• Control volumes can be moved from one
processing system to another.

• Storage requirements in the system
residence volume can be reduced by
placing seldom used indexes on a con­
trol volume.

• Both the catalog and data can be stored
in such a fashion that they can be
removed entirely from the system.

From the user's viewpoint, access to
cataloged data sets using control volumes
is the same as if separate volumes were not
involved.

Generation Data Groups

Some data sets are periodically updated,
or are logically part of a group of data
sets, each of which is created at a differ­
ent time. For example, a payroll
·year-to-date- file is updated each pay
period, and a new generation of the file is

· produced. Each generation is itself a data
set. A special catalog facility maintains
the identity of each generation and allows
the same external name to be used at each
updating. A collection of data sets of
this kind is called a generation data
group.

The external data set name for all data
sets within a generation data group for a

· payroll might be named A.YTDPAY. Each data
set is also automatically assigned a simple
name in the form of a generation and
version number, e.g., G0032VOO, which rep-

resents generation 32, version zero. The
next data set name which will be automat­
ically assigned is G0033VOO. The external
name qualifies the generation and version
number. This automatic naming permits the
user to refer to generations by either an
absolute name, e.g., A.Y'TDPAY.G0032VOO; or
by a relative name. An example of the
relative notation is A.YTDPAY(O); this
refers to the latest cataloged version.
A .. YTDPAY (+1) identifies a. new data set to
be added to the group, and A.YTDPAY(-1)
identifies the next to the latest genera­
tion.

When the index for the generation data
group is established, the programmer speci­
fies how many generations he wants saved.
If he wants a "grandfather, father, son"
series maintained, he specifies three gen­
erations. As a new generation is
cataloged, the oldest generation is either
automatically destroyed, or it is merely
deleted from the catalog.

Alternatively, the user may specify that
all old generations of a full generation
data group series be deleted from the
catalog when the succeeding generation is
added, so that the new ,entry effectively
becomes the newest and only member of the
series. This facility is useful in appli­
cations where several data sets are accumu­
lated for a fixed period of time, then the
entire set is processed and a new series
started.

When. the generation data group index is
established, a model da1ta set label is
built for it. This model is used for each
succeeding generation, to supply uniform
attributes.

PASSWORD PROTECTION OF DA~[,A SETS

Most computer users have data sets that
contain sensitive information, and want to
restrict access to them. Examples of such
records are payroll inforI~tion, corporate
financial records, and the like. To safe­
guard such data, the system allows any data
set to be flagged as "protected." This
protection flag is tested by the control
program as part of the OPEN macro­
instruction routine. If the protection
flag is on, a special handling procedure
requires that a correct ~lssword be entered
from the console. The password is appended
to the data set name, which then serves as
an argument for a search of a password data
set. If a matching namE~-plus-password is
found, the OPEN routine is permitted to
continue. Reference to a flagged data set
is not allowed by the system until the
password is verified.

The password data set has its own
~ecurity flag and master password; thus it
1S secure against access except by the
system supervisor program, when searching
for a match, and by programmers knowing the
master password. The password data set
could be changed periodically to alter
passwords for added security.

EDITING OF SPACE, INDEXES, AND CATALOGS

Operating System/360 users maintain data
sets and the catalog by means of utility
programs and system subroutines. These
programs and subroutines can reorganize or
edit volumes, data sets, and indexes.

Data sets may be deleted, or transferred
from one volume to another, and fragmented
volumes may be reorganized to consolidate
available space. Data set names may be
changed. New members may be added to a
partitioned data set. Data sets may be
cataloged or removed from the catalog;
generation data groups may be established.
Indexes of the catalog may be created or
deleted, and the catalog may be
reorganized. New control volumes may be
established.

DATA ACCESS METHODS

System facilities are provided for
retrieving and storing data once the data
set has been located and is ready to be
used in processing. When preparing a pro­
gram, its designer must consider:

• The way data is arranged within the
data set.

• The selection, where applicable, of one
of the two categories of language
statements, queued or basic, that indi­
cate ~mong other things) whether input
requirements may be anticipated, and
output requirements deferred; or wheth­
er input and output are to be initiated
as an immediate consequence of a lan­
guage statement.

The combination of these two factors
defines the access method. Each of the
eight access methods has its features, from
which the programmer can select those suit­
ed to the application.

The presentation of the data access
methods is divided into two parts: a des­
cription of access methods and a descrip­
tion of blocking and buffering facilities.

Data Management 25

THE ACCESS METHODS

The first of the access methods to be
described is the queued sequential access
method (QSAM), the most widely used method
in older input/output control systems.

Queued Sequential Access Method (QSAM)

The organization may be characterized as
"tape-like," even when storage is on a
direct-access device.

Logical records are retrieved by use of
the GET macro-instruction, which supplies
one logical data record (or a pointer to
its starting location) to the program. The
access method anticipates the need for
records based on their sequential order,
and normally will have the desired record
in storage, ready for use, before the GET
is issued. Logical records are designated
for output by use of the PUT macro­
instruction. The program normally can
continue as if the data record were written
immediately, although the access method's
routines actually may perform blocking with
other logical records, and the actual writ­
ing is performed after the output buffer
has been filled. Since both GET and PUT
rely on use of buffers supplied automat­
ically, there may be a delay if computation
gets ahead of the actual data transfer
operations. This kind of delay is called
an implied wait; its frequency of occur­
rence depends on many factors, including
relative input/output and processing
speeds, and total load on the input/output
channels.

Basic Sequential Access Method (BSAffl

Data is sequentially organized. Physi­
cal blocks of data are dealt with rather
than logical records. Input operations are
initiated only when called for by a READ
macro-instruction. The program may contin­
ue following a READ, before the data called
for is retrieved. The user must specify
when the data is required by using the
CHECK macro-instruction, which in turn
calls upon the wait function. Program
execution is suspended at a CHECK until the
retrieval is completed. In addition, a
validity check of the retrieved record is
made. Similarly, an output operation is
initiated for each WRITE. The program may
continue immediately following the WRITE,
before the output operation is completed.
To ensure that it was completed, the pro­
grammer must again use the CHECK macro­
instruction.

26

Basic Partitioned Access Method (BPAM)

This method is designed for efficient
storage and retrieval of sequences of data
(members) belonging to a data set stored on

a direct-access device. Each member has a
simple name. Included in the data set is a
directory that relates the member name with
the track address where the sequence
starts. The FIND macro-instruction
searches the directory for a simple name
and prepares for gaining access to the
associated member. Once a member is found
it may be retrieved using successive READ
macro-instructions; new members are written
using successive WRITE's, followed by a
STOW macro-instruction that updates the
directory. Members may be added to a
partitioned data set as long as there is
space in the volume, and in the directory.
CHECK is used to synchronize the program
with the completion of each data transmis­
sion operation.

Indexed Sequential Access Methods - Basic
and Queued (EISAM and QISAffl

Because of their complementary use of
the indexed sequential data organization,
BISAM and QISAM are discussed together.

With the indexed sequential
organization, data records on direct-access
storage devices are arranged in logical
sequence on a data key. The data key will
normally be a control field which is an
intrinsic part of the information in the
record (e.g., a part number); it may,
however, be some arbitrary identifier asso­
ciated with the record, such as a record
serial number. When a record is stored,
the data key is placed in a hardware­
defined key field associated with the
record. (If records are blocked, then the
highest data key in the block is placed in
the key field.)

The data set also contains indexes
relating the data keys of records to physi­
cal addresses. For the data set as a
whole, there is a cylinder index that
indicates the address of the cylinder on
which a record with a given data key can be
found. On each cylinder there is a track
index that indicates the address of the
track on which a record with a given data
key can be found. On an optional basis,
the cylinder index may be indexed by a
higher level index.

To create the data set initially, QISAM
is used in the "load mode." In this mode,
successive PUT macro-instructions place the

records
sequence)
indexes.

(which must be in data key
into the data set and create the

To retrieve records in sequential fash­
ion, QISAM is used in the "scan mode.- In
this mode, successivE~ GET macro­
instructions retrieve logical records
sequentially. A SETL (set lower limit)
macro-instruction may specify the data key
of the first record to bf:'! retrieved with a
subsequent GET. If the GET macro­
instruction is used without a prior SETL,
retrieval starts at the beginning of the
data set.

While in the scan mode~ the PUTX macro­
instruction may be used following a GET to
return an updated or replacement record to
the data set, or to mask out an old record.

Selective reading is p,:!rformed by BISAM,
using the READ macro-instruction, and
specifying the key of the logical record to
be retrieved. In this case, the entire
physical block containing the logical
record is read into storage, and the
address of the specified logical record
within that block is returned to the user's
program. An indexed sf::'!quential data set
can be updated in place, or new records
inserted, by using BISAM and the WRITE
macro-instruction. An important point is
that BISAM is the only one of the basic
access methods that can deal with logical
records rather than blocks.

In the event that an intended insertion
cannot fit in the available space on a
track, one or more records on the track are
automatically moved to an overflow area
that may be on the same cylinder, on the
same volume, or on a different volume.
OVerflow records are indicated in the
appropriate indexes.

The fact that some records are stored in
overflow areas, physically out of sequence,
does not change the ability of QISAM to
read the data set in logical sequence as
previously described.

A data control block for an indexed
sequential data set can be opened for both
QISAM and BISAM at the same time.

When using the READ or WRITE of BISAM,
WAIT must be used to synchroni2e the pro­
gram with the completion of the
input/output transfer. Synchronization
with QISAM is automatic.

In multitask environments, two or more
concurrent tasks can refer to the same data
set, or even the same logical record. In
this environment, if the ·tasks use the same
data control block, each program should
request exclusive control of records while

they are being updated. In that way,
records being updated by one task are not
destroyed by the concurrent updating by
another task.

Basic Direct-Access Method (BDAM)

This access method allows records within
a data set to be organized on direct-access
volumes in any manner chosen by the pro­
grammer. When a request to store or
retrieve a record is made, an address
either relative to the beginning of the
data set or an actual address (i.e.,
device, cylinder, track, record position)
must be furnished. This address can be
specified as being the address of the
desired record or as a starting point
within the data set, where the search for
the record begins. When a record search is
specified, the programmer must also furnish
the data key (e.g., part number, customer
name) that is associated with the desired
record.

When adding a new record to the data
set, the address is used by the access
method as a starting point at which to
begin a search for available space. Thus
the programmer doesn't have to keep track
of available space within the data set.
The extent of the search for available
space (or record) can be controlled by the
programmer.

The READ and WRITE macro-instructions
are used to request data transfer. To
determine if a request has been completed,
the programmer must use the WAIT macro­
instruction. When the WAIT has been
satisfied (a record has been read or
written), the status of the completion
(e.g., no error, record not found) will
also be available. There can be any number
of READ or WRITE requests in effect at any
one time.

Exclusive control of input records is
available, as with BISAM.

Queued Telecommunications Access Method
(QTAM)

Telecommunications devices have some
characteristics that are significantly dif­
ferent from local input/output devices.
For example:

• Remote terminals are not under positive
control of the central processing unit,
particularly when the data source is a
keyboard. These factors complicate

Data Management 27

Monitoring of
Telecommunications

Control C!f GET/PUT
Record transmittal

QTAM
Input --z--- Input

Enqueuer

I
I
I
I
I
I

I
QTAM I ...-z--- Output I Dequeuer

I
Output

I
I

I

QTAM
Input

Dequeuer

Input
Queue

QTAM
Output

Enqueuer

Output
Queue

User
Program

--
--
--
GET
--
--
--

User
Program

--
--
--
PUT
--
--
--

Figure 12. The Queued Telecommunications Access Method

error recovery procedures, and cause an
unpredictable speed and sequence of
input data.

• In some applications, messages of
unpredictable length must be handled.

• The number of remote terminals may be
very large relative to the number of
local input/output units, such as tapes
and disks.

Although the control of communications
devices is considerably different from the
control of local input/output equipment,
the transmittal of data records between
buffers and the user's program is much the
same in both cases. This similarity allows
the programmer to design processing pro­
grams for QTAM in much the same way as he
would for QSAM, despite differences between
telecommunications and local input/output
devices.

The result of this, as illustrated in
Figure 12, is that the programmer using GET
and PUT does not deal at all with remote
terminals: he deals instead with locally
available queues of data records from which
he may receive input, and to which he may
add output.

28

Both input and output records are placed
on queues specified by the programmer. The
determination of which queue a record
should be placed on may be influenced, for
example, by the priority of the message,
the receiving or transmitting terminal, and
the identification of the processing rou­
tine. The sequence of records in each
queue is based on their time of entry into
the queue; the earliest record on an input
(or "processing") queue is provided when
data is requested from the queue by a GET.
Similarly, messages are selected for trans­
mission from output (or "destination")
queues in the same sequence they were
placed on the queue by a PUT.

In addition to buffer controls, many
other message-related functions can be per­
formed automatically by the QTAM programs,
according to the programmer's
specification. These functions are summar­
ized as follows:

• Terminals sharing the same transmission
line are addressed and polled, to per­
mit contention for line use on a con­
trolled basis.

• Message headers are analyzed to deter-

mine where messages are to be routed.
Routing of an incoming message may be
to another terminal, or to a group of
terminals. Some may be routed to a
processing queue, from which they will
be moved with a subsequent GET.

• Automatic functions are available, such
as queueing, checking the sequence num­
ber of incoming messages, assigning a
transmission sequence number to outgo­
ing messages, validating source and
destination codes, logging, translating
between external transmission code and
internal processor code, checking for
transmission errors and taking correc­
tive action, and placing the date and
time of day in messages for control
purposes.

A telecommunications language, based on
the operating system assembler, allows a
programmer to specify these functions in
convenient problem-oriented terms.

Basic Telecommunications Access Method
(BTAM)

The same polling and line control fUnc­
tions of QTAM are provided in BTAM. The
READ and WRITE macro-ins·tructions are used
to request data transmission; the WAIT
macro-instruction is used to synchronize
program execution with data transmission.

BLOCKING AND BUFFERING FACILITIES

Because of the similarity in block for­
mats and buffering facilities in many of
the access methods, these topics are des­
cribed separately rather than being repeat­
ed in the discussion of each access method.
To assist the reader furt,her, a summary of
the access methods is pr'esented in a fold­
out chart (Table 1) that may be kept open.
The chart associates the features discussed
with the access methods in which they are
used.

Block Formats

Data blocks (i.e., physical records with
hardware-defined boundaries) that are
stored on external storage devices may have
any of three different formats: fixed (~,
variable W), or unspecified (U). In all
cases, a maximum length must be specified
in advance. The size of blocks with the F
format is normally equal to the maximum
length; the size of blocks with the V

format is unpredictable but is specified in
a count field at the beginning of each
block; the size of blocks with the U format
is also unpredictable, but there is no
corresponding count field.

Format F and V data blocks may contain
blocked logical records. If so, the logi­
cal records in the F format are all of a
fixed Size, and normally, the same number
of records appears in each block. The
logical records in the V format may be of
different sizes; each must be preceded by a
length field specifying the record size.
Normally, a V format block contains the
largest number of records that can fit
within the specified maximum size.

Blocks that are shorter than the maximum
may be deliberately created. Such blocks
will be properly handled when subsequently
read.

Data formats used in the telecommunica­
tions access methods are necessarily dif­
ferent from those described thus far. A
message is that unit of text that is
terminated by a special Rend-of-message n
text character or set of characters
(depicted by nEOMn in Figure 13). A block
is a portion of a message terminated by a
special nend-of-blockn text character or
set of characters (depicted by nEOB n in
Figure 13). An e~ception is the last block
of a message which need not have the
end-of-block characters. A segment is that
portion of a message contained in a buffer,
the size of which is specified by the user.
As shown in Figure 13, a message is divided
into segments without reference to the
length of its blocks.

Records for BTAM consist of blocks;
records for QTAM can be either messages,
blocks, or segments.

~
- Message

Segment I Segment I
(1) (2)

Segment I Segment
(3) (4)

:;~i~:ting -1 ! I [I ! I
I Block (1) 1 Block (2)

EOB

1 Block (3) 1
EOB EOM

Figure 13. Components of a Message

Data Management 29

Buffering Facilities

A buffer, as described in this manual,
is the area of main storage used for data
that is being transmitted between main
storage and an external medium. When using
the basic access methods, individual buf­
fers need not be identified to the control
program before a READ or WRITE macro­
instruction is issued; when using the
queued access method, more buffer space is
generally required, and it is required in
advance of the GET and PUT to permit
automatic overlap of reading, writing, and
processing. As a result of these differen­
ces, the buffer facilities available for
the basic access methods are relatively
simple; those available for the queued
access methods, are more numerous and flex­
ible.

Three aspects of buffering facilities
are discussed in the following paragraphs:

• Buffer pools the means by which
storage may be set aside and initial­
ized for use as buffers.

• Buffer assignment techniques - the sel­
ection of particular buffers from the
pool.

• Transmittal modes - the manner in which
a buffer routine and the using program
-transmit n the buffer contents to each
other.

Buffer Pools

A buffer pool is assigned to specific
data control blocks (DCB's). A data con­
trol block is a region in storage used for
communication between the user's program,
the control program, and the access rou­
tines. (The method of creating the data
control block and its role in the system
are described later. For now, it is suffi­
cient to point out that the only way to
obtain access to a data set is by reference
to a data control block.)

Before space in a buffer pool is used
for buffers, information describing the
size and number of buffers is stored in the
pool area. This is called constructing the
buffer pool. The programmer may assign and
construct buffer pools in three different
ways. The first method is to define a
buffer area when the program is assembled.
The structure is created when the program
is executed, using the BUILD macro­
instruction. This method allows the buffer
pool to be assigned to more than one data
control block, and thus be available for
processing more than one data set at a
time.

30

The second method is to use the GETPOOL
macro-instruction which obtains main
storage space dynamically, and performs the
functions of BUILD.

The third method is to let the system
perform both the buffer area allocation and
buffer structuring automatically, as part
of the OPEN operation.

A special macro-instruction (BUFFER) is
available for use with QTAM to do much the
same thing as GETPOOL. However, the struc­
ture of the buffer pool obtained by BUFFER
is tailored for the unique requirements of
QTAM. The size of each buffer, specified
by the user, determines the size of a
nmessage segment. n

Buffer Assignment Techniques and
Transmittal Modes

The assignment techniques and transmit­
tal modes are discussed as they pertain to
basic or queued access methods.

BASIC ACCESS METHODS: In all basic access
methods, buffers are controlled by the
programmer. He may obtain and return
pooled buffer space using the GETBUF and
FREEBUF macro-instructions; or he may use
storage areas that are not in any pool.
The only requirement (normally) is that he
specify the buffer to be used as part of
each READ or WRITE macro-instruction.

Since he controls the buffer, input
buffers are available as work areas after
completion of the READ operation; output
buffers are available as work areas prior
to the execution of the WRITE operation.

Some access methods permit multiple READ
requests to be queued. In such cases, each
request may be assigned a buffer dynamical­
ly, just before the transfer of data
begins. To conserve main storage, this
option should be used whenever multiple
READ requests are common and the processing
time for each record is short.

For example, it may be sufficient to use
a buffer pool containing only 4 buffers,
even though 15 READ requests are normally
on the queue ~igure 14). At a typical
pOint, 1 buffer (A) may be available in the
buffer.pool, 2 may be in use as work areas
(C and D) , and only 1 -- not 15 -- would be

assigned to the queue for the input opera­
tion in process (B). Buffers obtained
dynamically, after their use as work areas,
may be returned to the pool with either a
WRITE or a free dynamic buffer (FREEDBUF)
macro-instruction.

QUEUED ACCESS METHODS: With the queued
access methods, all control over buffers is
made automatic, to ensurE~ overlap between
input, output, and processing.

There are two closely related aspects of
queued access buffer management that need
to be taken into account to make most
effective use of buffers. Both relate to
how frequently data must be moved after its
initial entry or creation in main storage.
For example, input data records may be:

2

3

4

15

• Moved from the buffer to a user work
area.

• Worked on while still in the buffer
area.

Queue of I Buffer
READ Requests I Pool

~,
I

,I
~ A

I I \
I \ ~ \ B wai I \

I \
\

I ~~ c
• J
• I •
• 1 D ~

I
I
I

Figure 14. Dynamic Buffering

Or, if the input records are also to be
used as output, possibly after some modi­
fication, they may be:

• Moved from the input: buffer to a work
area, and from the work area to the
output buffer.

• Worked on while sti.ll in the input
buffer and then moved to the output
buffer.

.. Worked on while sti.ll in the input
buffer and then be the output from that
same buffer.

The two aspects of buffer management
that affect the movement of data within
main storage are transm~ttal modes and
buffer techniques.

Transmittal modes
by which input data in

refer to the options
a buffer is made

available to the user program; or by which
output data created by the user program can
be placed in a buffer for output.

To accomplish these functions, three
transmittal modes are defined~:

• Move Mode The GET jand PUT macro-
instructions transfer data from an
input buffer to a work area, and from a
work area to an output buffer.

• Locate Mode - GET and PUT do not move
data, but provide a pointer to a record
location in a buffer.

• Substitute Mode - Similar to the locate
mode, except that the programmer must
provide a storage area equal in size to
the buffer that is being pointed to.
The storage area is exchanged for a
buffer segment. The buffer and work
area, in effect, change roles.

Buffer techniques refer to the various
ways in which the control program can
allocate buffers from the pool for use in
input/output operations. Depending on the
access method, a number of automatic
buffering techniques are available, as
shown in Table 1.

Simple buffering,
technique, uses one
each data set, each
maximum length block.

the most flexible
or more buffers for
long enough for a

Exchange buffering, is used with two
data control blocks, one associated with an
input data set, the other with an output
data set. Control is by buffer segment,
with each segment holding a logical record.
Data need not be moved in storage; instead
the control of each buffer segment may be
treated, in turn, as an input area, work
area, and output area. Data chaining is
used to allow noncontiguous segments to be
treated as blocks. Buffer segments are
fixed in length, so that any record length
changes must stay within the preplanned
length.

Chained segment buffering accomodates
messages of variable sizes. Since a mes­
sage will normally not fit into a single
segment, segments are assigned dynamically,
during data transfer. Address chaining
techniques are used to relate physically
separated 'segments. In this way, the
amount of main storage in use for buffers
is controlled by the system, and buffer
space is used effectively for all transmis­
sion, rather than being allocated on a
fixed basis to lines or terminals not in
operation at the moment.

As described in the detailed publica­
tions, only certain combinations of trans­
mittal modes and buffering techniques are
used. Here, illustrations will be given of

Data Management 31

Input Buffers OutPl-'t Buffers

B

Figure 15. Simple Buffering - Move Mode

only the most common combinations, where
input and output data sets are controlled
as follows:

INPUT
simple, move
simple, locate
exchange, substitute

OUTPUT
simple, move
simple, move
exchange, sUbstitute

SIMPLE BUFFERING, MOVE MODE: Simple buf­
fering for an input data set with three
logical records in one block is illustrated
in Figure 15. Data is moved to a work area
large enough for one logical record. Each
logical record, after processing, is moved
to an output buffer, and a new (updated)
data set is written. Overlapping of input
and output operations is achieved by having
two buffer areas for each data set, as
illustrated. Simultaneously: 1) input buf­
fer A is filled. 2) logical records are
moved from input buffer B to the work area,
and then to output buffer A. 3) the
contents of output buffer B are being
written out. The roles of input buffers A
and B are alternated; the roles of output
buffers are alternated also.

This type of simple buffering is the
most flexible kind of processing, but is
not always the fastest, because two moves
are required. Movement of data from an
input buffer to the work area is requested
by the move mode GET, and to the output
buffer by the move mode PUT.

SIMPLE BUFFER-LOCATE MODE INPUT, MOVE MODE
OUTPUT: In applications where processing
does not increase the length of a logical
record, it is practical to process data
while it is still in an input buffer. In
this case, the locate mode of GET is used,
and time is saved because only one move is

32

A

needed. The PUT or PUTX macro-instructions
are used to move logical records from the
input buffer directly to the output buffer.
Insertion and deletion of records are
allowed. This technique is illustrated in
Figure 16.

Input Buffers Output Buffers

,I .--In-put-~: I ~ Output :>
._p_u_~_~_ro:_~_~_x_._ I
GET (Locate)

Figure 16. Simple Buffering - Locate Mode

EXCHANGE BUFFERING-SUBSTITUTE MODE: This
method is especially applicable for fixed
length records where insertions and dele­
tions are expected. Exchange buffering
with the substitute mode is illustrated in
Figure 17. The illustration shows the
status of 12 buffer segments (corresponding
to 4 blocks of 3 logical records each) and
an original work area after 100 cycles of
operation. By now the physical location of
the buffer segments (labeled A-L) is total­
ly unrelated to the records (101-108) they
contain. A set of tables (at the bottom of
the figur~ indicates the current usage of

THE SEGMENt'S.

In the example, E, D, and I are in use
for input (the only input so far has been
record 108); and G, A, and C containing
records 101-103 are in use for output.
Record 104, in area H has been processed;

Record Storage Area

~ _'OP"' :>
Original
Work Area

1M

'\

:~
GET (Subs)

M ¢ L D 106 F

I 107 K
PUT (Subs)

Current Process "-Input Input Work Area
Block List Pointer

104 H

J
B

Process
Output
List

Output ~
----'----V

.... 101

102

103

Current
Output
Block

G
A

C

Figure 17. Exchange Buffering - Substitute Mode

record 105 in area L is being processed,
and will be placed (lo9ically, but not
physically moved) by the PUT substitute
mode in the output buffer.. The PUT exchan­
ges pOinters Land J. Following that, the
next GET will exchange pointers J and F.

THE DATA CONTROL BLOCK

The data control block and the procedure
by which it is initialized provide the key
to the system's data handling flexibility.
It is by means of the ini"tialization proce­
dure caused by the OPEN macro-instruction
that many of the specifications needed for
input/output operations, in particular
those dealing with device identification
and buffer sizes, can be made when the job
is to be executed rathe:r- than at the time
the program is written.

OPEN AND CLOSE MACRO-INSTRUCTIONS

Each data set to be di:rectly referred to
by a problem program is associated with a
data control block that must be initial;ized
(opened) before any data transfer takes
place and suitably modified (closed) after
all data transfer is completed. Under
certain circumstances the same opened data
control block may be used to control access

to a number of different data sets1 and a
data set may be referred to through several
concurrently open data control blocks.
Nevertheless, when there is no ambiguity,
it is often convenient to talk of opening
and cloSing a data set (rather than the
associated control block). Data access
statements in a program, such as GET and
PUT, also logically refer to a data set
even though their actual reference is also
to the control block.

Some data sets are opened automatically
by the control program, and may be indi­
rectly referred to or used in a problem
program without additional opening or clos­
ing. One example is the catalog data set.

The OPEN routine, at the time of its
execution, has three primary functions:

• It completes the data control block.
• It ensures that all needed access rou­

tines are loaded, and necessary address
relations completed.

• It initializes data sets by reading or
writing labels, and performs other
related housekeeping operations.

The data control block is created when
the program is compiled, even though all of
its fields may not be filled in at that
time.

Information from two additional sources
is used by the OPEN routines. These sour­
ces and the fill-in sequence of the control

Data Management 33

block are illustrated in Figure 18. The
first is the source program itself. Any
parameter stated in the source program DCB
macro-instruction (which contains only
nonexecutable data) is used. In general,
only those DCB macro-instruction parameters
should be stated in the source program that
are needed to ensure correct program opera­
tion. Other parameters should be omitted,
to allow for filling in from one or the
other of the two remaining sources when the
job is to be executed. In the
illustration, A is filled first when the
program is compiled.

DeB Macro DD Statement Data Set Label

A e D

o

DeB Area

A

DeB Fill-In at OPEN

Figure 18. Data Control Block Being Filled
In

The second source of data control block
fields is the DD statement from either the
input job stream or from a cataloged proce­
dure called upon by an EXEC statement in
the input job stream.

In the illustration, Band C are stated
in the DD statement but only B is used,
since the third field, the intended desti­
nation for C, is already filled with A.

The third source is a data set label.
Label fields are used to fill in any fields
still blank after the first two sources
have been used. For data sets being read,
the actua~ data set label information is
used. For data sets being created, a
nmodel" can be designated. The model can
be the label of some data set already in
the library, or it can be a different DD
statement in the same job step. In the
example, the second field is filled from
the data set label.

34

This procedure permits full flexibility
to change data control block fields at job
time, without requiring that all DCB macro­
instruction parameters be restated each
time a job is run. These macro-instruction
parameters and possible sources for each
are given in the publication, IBM Operating
System/360: Control Program Services.

Each data set's data control block
should be closed after use. The CLOSE
macro-instruction restores a data control
block to its original condition, so that it
may be reused in the same program for a
different data set. The closing operation
also writes the trailer label on tape, or
completes the data set control block for
direct-access storage. In the event any
data control block is still open when the
task is terminated, the system performs the
CLOSE functions automatically.

DATA ACCESS ROUTINES

After all data control block fields have
been filled in, the next step is to ensure
that all access method routines are loaded
and ready for use, and that all channel
command word (CC~ lists and buffer areas
are ready, if the access method requires
them.

The selection and loading of the access
method routines is made according to data
control block fields that tell the data
organization, buffering technique, access
language features to be used, input/output
unit characteristics, and other factors.
The identification of all needed access
routines is relayed to the supervisor,
which allocates main storage space and
loads them into main storage. They remain
there until the CLOSE routine signals that
they are no longer in use by that data
control block. Access routines are written
so that the same copy may be shared by all
programs in the system that need them.
Sharing may be between two data sets within
one program, between two independent tasks,
and between the user's programs and the
control programs.

The access routines are treated as if
they were a part of the user's program, and
are entered directly rather than through a
supervisor call interruption. The routines
block and deblock records, control buffers,
and communicate with the input/output
supervisor when a request for data input or
output is needed. The input/output super­
visor, part of the supervisor nucleus,
performs all actual device control. It
accepts all input/output requests, queues
them if necessary, and issues them whenever
a path to the desired input/output unit is

available. It also e:nsures that all
input/output requests are '~ithin the extent
allocated to a data set, posts the comple­
tion of each input/output operation, and
performs standard input/output error recov­
ery procedures where possible.

All communication between access method
routines and the input/output supervisor is
by means of a standard interface, using the
execute channel program (EXCP) system
macro-instruction.

The EXCP macro-instruction will usually
not be used directly by programmers, but
will be used indirectly through the access
method routines. Those programmers who
want more control over input/output opera­
tions, or who develop their own access
methods, may use EXCP. One of the parame­
ters that must be passed to . the
input/output supervisor by the EXCP is a
pointer to a list of channel command words,
in the user's program area, that are to be
used in the input/output operation.

One of the functions of OPEN is to
prepare and place into proper format the
lists of CCW's to be used by the access
routines. These lists, the access routine,
and any buffer areas that are automatically

Problem Program I Pool I I
./ Data Control BI~Ck __ --.... I

/,,/// 1 1.- - -- :

CDDCBL~:------ 11 11 .. _____ ~ I
-- ~ I

obtained by OPEN are included in the prob­
lem program main storage area (not within
-the problem program itself) •

Figure 19 illustrates the relationships
between the user-written program that con...:.
·tains DCB, OPEN, and GET statements, and
·the other programs and data areas that are
part of the data accessing operation. The
actions depicted are as follows:

1. The expansion of the DCB macro­
instruction creates a skeleton data
control block.

2. OPEN routines, part of the control
program, complete the data control
block, load the access and buffer
control routines, and prepare buffer
areas and CCW lists.

3. GET refers to the data control block,
which routes control directly to an
access routine.

4. The access routine handles deblocking,
and returns control directly to the
problem program. It may also request
an input operation by EXCP.

5. The input/output supervisor performs
the operation, or queues it if the
channels are busy.

®OPEN ____ -r ________ ~----------s~v~c~:(O~P-EN~)------~~
OPEN

Routines

®GET

cp
Access Routines

Buffer Controls
Block - Deblock

etc _

0

I
I
I
I
I
I
I
I ~

r-_____________ s_VC_rl(E_XC_P~) ______ ~v/ 1 I

Figure 19. Actual Program Flow That Starts on Input/Output

I/O
Supervisor Start

I/O

Data Management 35

Table 1. Access Method Summary

r------------------T--------------------------------T-----------"r-----------;..-----------------------T-----------T-------------------,
I Organization I Sequential IPartitioned I Indexed Sequential I Direct I Telecommunications I
t-----------------t---------------------T----------t----------- t----------------------T-----------t-----------t----------T--------~
I I I I I QISAMI I I I I I
I I I I t-----------T-----------~ I I I I
I Access Method I QSAM I BSAM I BPAM I LOAD I SCAN I BISAM I BDAM I QTAM I BTAM I
t------------------t---------------------t----------+----------- t-----------t---- -------t-----------t----------t----------t--------~
I Primary Macro- I GET, PUT I READ I READ, WRITE I PUT I SETL, GET, I READ I READ I GET I READ I
I Instructions IPUTX I WRITE I FIND, STOW I I PUT X I WRITE I WRITE IPUT I WRITE I
I I I I I I I I I I I
t------------------t---------------------t----------t----------- t-----------t-----------t-----------t----------t----------t---------~
I Synchronization I Automatic I CHECK I CHECK I I I I I I I
lof program with I I I I I I I I I I
I input/output I I I I Automatic I Automatic I WAIT I WAIT I Automatic I WAIT I
I device I I I I I I I I I I
t-----------------t---------------------t----------t------------l-----------t-----------t-----------t-----------t----------t----------f
IRecord type ILogical F,V I Block IBlock (Part I I I I IMessage, IBlock U I
I transmitted I Block U IF,V,U lof a member) 1 Logical F,VILogical F,VILogical F,VIBlock F,V,UISegment, I I
I I I IF, V, U II I I lor Block U I I
t------------------t---------------------t----------t----------- t-----------t-----------t-----------t-----------t----------t----------f
I Buffer creation I BUILD I BUILD I BUILD I BUILD I BUILD I BUILD I BUILD I BUFFER I BUILD I
I and IGETPOOL IGETPOOL IGETPOOL IGETPOOL IGETPOOL IGETPOOL I GET POOL I IGETPOOL I
I construction I Automatic I Automatic I Automatic I Automatic I Automatic I Automatic I Automatic I I Automatic I
t-----------------t---------------------t----------t----------- ... -----------+-----------t-----------... -----------t---------t----------f
I I Automatic: IGETBUF IGETBUF I Automatic: "I Automatic: IGETBUF IGETBUF 1 Automatic; IGETBUF I
I Buffer I Simple IFREEBUF IFREEBUF I Simple I Simple IFREEBUF IFREEBUF 1 Chained IFREEBUF I
I Technique I Exchange I I I I I Dynamic I Dynamic I Segment I Dynamic I
I I I I I I IFREEDBUF IFREEDBUF I IFREEDBUF I
t------------------t---------------------t----------t---------- - t-----------t-----------t-----------t-----------t---------t---------f
I Transmi ttal modes I Move I I I Move I Move I I I Move I I
I (work area/buffer) ILocate I I 1 Locate 1 Locate I I I I I
I I Substi tute I I I I I I I I I L __________________ .1. _____________________ .1. _________ .1. ___________ L ___________ .1. ___________ .1. ___________ .1. ___________ .1. __________ .1. ________ J

Data Management 37

Operating System/360 provides a number
of facilities to the programmer for his
assistance in planning and coding a
p:t'o<,fram. This section describes the
var10US techniques that the programmer may
use in constructing his program, and spe­
cial features he may request in his coding
by means of assembler language macro­
instructions. (Some of 'the features are
also available to use:rs of compiler
languages.) Also described is the flow of
control at the time these macro­
instructions are executed.

PROGRAM SEGMENTATION

Techniques for designing large programs
as smaller, more easily managed subprograms
have been used for many years. There are
many advantages in doing this. For
instance: large programming jobs can be
assigned to several diffe:rent programmers;
common subroutines can he reused; program
testing and maintenance a:re simplified; and
each subprogram can be written in ,the
source language that is most appropriate.
Operating System/360 adds a new dimension
to the flexibility availal?le in program
design. Now subprograms may be combined at
four distinct times during the cycle from
program statement to complete job
execution:

• Compilation or Assembly Time. Sub;r:ou­
tines and separately written sohrce
decks may be combined as the input to a
single compilation or assembly.

• Linkage Editing Time. Separately com­
piled object modules and load modules
can be included as the input to a
single linkage editor run, to produce a
single composite load module for execu­
tion. If overlay techniques are used,
the entire load module need not be
contained in available main storage.

• Job Entry Time. Load modules that
correspond to phases of a multiphase
procedure can be specified in EXEC
statements as individual job steps.
Interconnection and interstep dependen­
cies are handled by the job scheduler.
By segmenting a procedure in this way,
the greatest economy is obtained in the
allocation of space on direct-access
devices. Only the space required for
one step of the procedure need be
assigned at one time.

• Task Performance Time. The load module
named in an EXEC statement, or in

SECTION 4: PROGRAM DESIGN AND PREPARATION

general, the first load module used in
the performance of any task, may inter­
connect with other load modules named
during the time the task is performed.
Modules are placed wherever storage is
available, relocated, (i.e., initial­
ized to execute from a chosen location)
and interconnected dynamically. Over­
lay of entire load modules may take
place, and individual load modules may
sometimes be shared between different
tasks in a multitask operating environ­
ment.

The same sequence of instructions, in the
appropriate one of its three forms of
source, object, or load module, can be used
with little or no change at any of the
specified times as a subprogram of a larger
sequence of instructions.

PROGRAM STRUCTURES

When a new task is created, the control
program is given the name of the first load
module to be executed. The named load
module may (but needn't) be loaded into
main storage in one operation; and it may
(but needn't) be interconnected with other
load modules in the course of the task's
performance. Depending on the programmer's
choice, the code executed on behalf of a
task -- in this context, a program can
be categorized as one (or a combination) of
the following program structures:

1. Simple Structure. A single load
module contains all of the user code
required for task performance and is
loaded into main storage as an entity.
It is immaterial whether the load
module may itself have been derived
from other load modules as a result of
the linkage editor run, or whether
other load modules may be employed as
a result of requests for supervisor
services.

2. Planned Overlay Structure. In this
case, the required code is processed
by the linkage editor into a single
load module, just as with programs
having simple structures. The only
difference is that all sections of the
load module are not loaded at the same
time. Instead, segments of the pro­
gram are identified which need not be
in main storage at the same time. The
same area of main storage is used and
reused by different program segments.

Program Design and Preparation 39

3. Dynamic Serial Structure. More than
one load module is called upon during
the course of program execution. All
linkages follow standard linkage con­
ventions, with the control program
acting as an intermediary in setting
up subprogram entry and return. Pro­
gram execution is serial, which is the
same as in types 1. and 2.

4. Dynamic Parallel Structure. More than
one load module is called upon during
the course of program execution, and
the supervisor is an intermediary just
as in type 3. In this case, however,
the execution of two or more subpro­
grams is allowed to proceed in paral­
lel. To accomplish this, each asyn­
chronously operating subprogram is
established as a task and follows
normal task rules.

Most programmers preparing programs to
run under Operating System/360 will not be
concerned with all of the variations possi­
ble in program segmentation and program
flow. The operating system is designed to
handle programs that use few or many of the
variations, either in a single-task or a
multi task environment. The following para­
graphs discuss more fully the program
design approaches available to the program­
mer.

SIMPLE STRUCTURES

Figure 20 ,illustrates a simple program
structure. A task has been attached with
the specification that the first load
module to be executed is SIMPLE. The
supervisor finds SIMPLE, allocates space
for it, and then loads the entire load
module prior to execution. The name SIMPLE
designates not only the entire set of code
contained in the load module, but also the
particular entry point to be used.

SIMPLE

---.... SIMPLE SAVE

_-----+-RETURN

Figure 20. Execution of a Load
Within a Task

40

Module

The same load module may be associated
with a number of different program names,
each of which can correspond to a different
entry point. At linkage editing time, a
primary program name and up to five aliases
may be specified. All names and the cor­
responding entry points are contained in
the directory of the library in which the
load module is stored. In addition, a load
module can dynamically specify additional
names and entry points. These are not
retained when the space used by the load
module is released.

In the example, when SIMPLE completes
its execution, it notifies the supervisor
by the system macro-instruction RETURN. At
the same time, it places in a standard
register a return code, by which it reports

using conventions established by the
user -- how it was completed: -normally,­
-type X condition encountered-, -type Y
condition encountered,n and so on. The
supervisor, recognizing that SIMPLE is the
only load module required by the task, will
then terminate the task.

SIMPLE is written so that it could also
be used as a subprogram of a larger
program, either one formed by the linkage
editor with SIMPLE as an input, or in a
dynamic structure. It begins with a SAVE
macro-instruction that expands to an
instruction sequence that saves designated
registers. The RETURN macro-instruction,
in addition to setting the return code
register, restores the saved registers. If
there had been a higher level program,
control would then have been passed back to
it.

SIMPLE itself may be a composite of
several load modules that have been com­
bined into a single load module by the
linkage editor, as shown in Figure 21.
This does not change the fact that SIMPLE
is a program with a simple structure (since
it is, at execution time, a single load
module, all of which is in main storage) •

SIMPLE User's Program Area

--t--... SAVE SUBPROG SAVE

CALL SU'PROG /

RETURN
+--1- RETURN

Figure 21. Subprogram Within a Program

In the figure, two subprograms are
shown, the first calling upon the second
named SUBPROG. By definition the calling
subprogram is at a higher control level
than the called sUbprogram. In this exam­
ple, the supervisor is not involved in the
subroutine linkage. The reference between
CALL SUBPROG and the address SUBPROG is
resolved as part of the linkage editor
process. The RETURN in SUBPROG restores
the registers and branches to the higher
control level. The supervisor is not
called. Internal linkages of this sort are
more efficient in terms of execution speed
than are linkages where the supervisor is
involved.

Within the logical flow of a simple­
structured load module, other load modules
may actually be called upon indirectly as
supervisor services. This can take place
indirectly as a result of a request for
supervisory service, or in a slightly dif­
ferent way, as with the input/output and
buffer control routines described in Sec­
tion 3. In the latter case, the OPEN
function incorporates additional load
modules as if they were logically part of
the same simple logical flow of the single
load module. Linkage to such added load
modules is made via the data control block.
The routines are thus used directly, with­
out any supervisor ac·tion, except when a
hardware input/output operation is actually
required.

Note that the sequences of code, lines
and arrows in this and other figures in
this section denote logical flow, not
actual flow. That is, hardware interrup­
tions may cause an actual flow quite dif­
ferent from the flow that the programmer
plans. Actual flow, described later in
"Task Management,· Sect:ion 6, is not a
matter of concern to the programmer when he
designs his program.

Deferred Exits

Figure 21 showed how a. subroutine may be
entered at a predictable point in the
logical flow of a load module. There are
some situations where the exit point may
not be known in advance, but depends on an
interruption whose time of occurrence is
unpredictable. Such subroutines may nev­
ertheless be included by the linkage editor
in a load module. Included also must be
system macro-instructions that the program­
mer uses to describe the conditions for
entry into the subroutines, as well as
their entry points.

Four conditions
achieve a deferred
logical flow:

may be specified to
exit from the main

1. Completion of a timing interval.
2. Program error interruptions.
3. Unusual end of task.
4. End of subtask.

Completion of a timing interval by use
of the STIMER macro-instruction, the proc­
essing time used by anyone task (which may
be significantly less than total elapsed
time) may be measured. For example, the
programmer may request notification after
one second of task time. such an interval
may be set up just prior to entering a
possibly endless loop in a program under
test. As a parameter of the macro­
instruction, the programmer specifies the
entry point in the current load module to
be entered after the specified time
expires. Thus, if the program overstays
its alloted time in the loop, control is
passed to a routine that can take
corrective "action. If an exit is made from
the loop before the time interval expires,
the TTIMER macro-instruction may be used to
cancel the interruption request. A further
discussion of the interval timer functions
appears later in this section.

Program error exits are requested by the
set program interrupt exit (SPIE) macro­
instruction. The programmer may specify
the types of program interruptions his
subroutine will handle, and the types the
supervisor is to handle. The programmer
most likely will want to handle conditions
such as overflow and underflow from
arithmetic operations, and let the supervi­
sor take normal action for the others, such
as execution of a privileged instruction
and violation of storage protection.

An abnormal end of task exit is set up
by the specify task abnormal exit (STAE)
macro-instruction. This exit is taken if
the task is abnormally terminated internal­
ly or externally. An internal termination
is one resulting from the execution of the
abnormal end of task (ABEND) macro­
instruction. This may be issued by the
user's program after the determination is
made that an uncorrectable error has
occurred. An external termination is one
initiated by the supervisor program, for
example, in the event of storage protection
violation or the expiration of the speci­
fied time for the job step.

End of subtask. In multitask
operations, the completion of any subtask
can cause an entry into a specified point
in the program of the higher level task.

An example of a deferred exit is shown
in Figure 22. In this case, a subroutine
named FIXUP is to be entered in case of
floating-point overflow. The SPIE macro­
instruction specifies the exit condition,
namely, floating-point overflow. At the

Program Design and Preparation 41

User's Program Area Supervisor Area

SIMPLE

ENTRY SAVE
SPIE •••

Interruption
Handler

FP

RETURN

RETURN
Interruption

Handler

Figure 22. Deferred Exit to Subroutine

floating-point instruction ftFP,· an
overflow occurs, causing a program inter­
ruption. The supervisor handles the inter­
ruption as specified by SPIE, routing con­
trol to FIXUP.

PLANNED OVERLAY STRUCTURES

Some tasks may require programs that are
too large to be placed in main storage all
at one time. In these cases, the simple
program approach described above is not
adequate, and the programmer should consid­
er designing the program using a planned
overlay structure. Programs that can be
logically divided into major sections are
well suited for planned overlay execution.

A planned overlay structure is a single
load module, created by the linkage editor
program in response to overlay control
statements. Unlike simple structures, how­
ever, it is not loaded into main storage
all at once.

The logical segments of a planned over­
lay program are loaded into main storage as
required, each occupying an area which may
at some time be used by a different
segment. The relationship of program seg­
ments must be planned in advance by the
programmer. The type of flow can be illus­
trated best by the tree structure shown in
Figure 23.

Each branch (A, B, and C) of the tree
structure represents a segment. The verti­
cal length of each branch represents the
amount of main storage used by the segment.

The root segment (A in Figure 23)
tains the entry point of the overlay

42

con­
pro-

,gram and tables (inserted by the linkage
editor) needed to control the overlay exe­
cution. The root segment remains in main
storage at all times during program execu­
tion.

Program segments Band C occupy the same
,area of main storage, but at different
'times during the course of program execu­
,tion. Such segments overlay each other,
;and are called exclusive segments.

j Entry Point ~

A

Figure 23. Overlay Tree Structure

During the execution of an overlay pro­
gram, overlaid segments are destroyed rath­
er than being saved on secondary storage
and then restored. When a previously over­
laid segment is needed again, a fresh copy
:is loaded. For this reason, any data area
used for communication by two or more
exclusive segments must be included as part
of a higher segment that remains in storage
'with either of the exclusive segments.

Two segments that may be in main storage
at the same time, such as A and B, or A and
C in the example, are called inclusive

segments, and are in the same path. A path
consists of a given segment, the root
segment, and all interm,ediate segments, as
represented in the tree structure.

Upward calls (toward ·the root segments)·
are always to segments already in main
storage. Such calls a:re always direct,
just as if they were contained in a simple
load module. Since this type of control
flow is most efficient, ·the designer of the
overlay structure should attempt to capi­
talize on it.

Downward calls are always indirect, but
will only require the assistance of the
overlay supervisor (a part of the control
program) if the entry points referred to
had not been used since the segment was
loaded. If the called segment is already
in storage, no segment loading is required.

The flow of control between exclusive
segments, and downward calls to segments
not in main storage are also indirect.
'l~hey always require the assistance of the
overlay supervisor, which loads a fresh
copy of the required segment before com­
pleting the branch.

Many requirements to load segments will
impair the efficiency of program execution.
Two additional features are available to
m1n1mize this loss of efficiency. The
first is a structure variation in which two
or more different paths can be in storage
at the same time. Each different path
occupies a different storage area; each
such storage area is called a region. One
region might contain the main program and
the other might have a number of subrou­
tines used by several different paths in
the first region. The second feature,
useful in multitask opera.tions, allows seg­
ment loading to proceed in parallel with
other processing, so tha,t program load time
may be overlapped. This feature is con­
trolled by the segmen1t load (SEGLD) and
segment wait (SEGWT) system macro­
instructions.

DYNAMIC SERIAL STRUCTURES

For many applications, a simple program
structure is inadequate, even in a planned
overlay form. For example, a large number
of subroutines may be called on, but their
selection and sequence of execution depend
on examination of each data record or
transaction to be processed. The large
number of subroutines makes it impractical
to have all of them in main storage at
once. Furthermore, the effectively random
sequence of use makes a planned overlay
operation uneconomical, difficult, or

impossible. For applications of this gen­
eral nature, the operating system provides
a means for calling subprograms
dynamically, during the performance of a
task. This capability is possible because:

• Program retrieval by name is a normal
supervisor service.

• Main storage space is allocated dynami­
cally by the supervisor.

• The task concept treats programs as
resources.

• Standard subroutine linkage conventions
permit any load module to be executed
as a subroutine.

Four different forms of dynamic program
construction are provided by the operating
system. They are referred to here by their
system macro-instructions, even though the
same linkages may be provided by a
compiler. The four forms of dynamic lin­
kage are: LINK, XCTL (transfer control) ,
LOAD, and ATTACH.

The first three, which provide sequen­
tial program execution, are discussed
below. The fourth provides parallel
(asynchronous) program execution and 1S
described in "Dynamic Parallel Structures."

Link Macro-Instruction

LINK is used to pass control from one
load module to another in much the same way
as CALL is used to pass control to a
subprogram within a single load module. Of
the two load modules involved, the first is
at a higher control level than the second.
The operation of LINK is illustrated in
Figure 24. Three different load modules
are shown: their names are "DYNAMIC", PIA,"
and "B." Each linkage involves supervisor
action.

The program DYNAMIC is the only one of
the three named at the time the task was
created. It could, for example, have been
named in the EXEC statement of a job step.
The supervisor finds DYNAMIC, allocates
space, and fetches it just as with a simple
program structure. DYNAMIC is the highest
level load module used for the task. Exe­
cution of DYNAMIC proceeds until the macro­
instruction "LINK API is reached. One of
the machine instructions generated by LINK
A is a supervisor call (SVC); the
subprogram name "An is a parameter in the
linkage. The supervisor proceeds to find,
allocate space for, and fetch subprogram A.
The linkage to A is effected, and program
execution takes place serially. Subprogram
A is at a lower control level than DYNAMIC.
All RETURN macro-instructions cause control

Program Design and Preparation 43

to be passed to the load module at the next
higher control level. Hence, a RETURN from
A, via the supervisor, will go to DYNAMIC
at the instruction following LINK A, and
the storage area used by A may be made
available for reuse. Later, when LINK B is
encountered, the same procedure is followed
as with A. If no other storage is availa­
ble, subprogram A may be overlaid by B.
(Since DYNAMIC is to be returned to, that
is, since it is at a higher level of
control than either A or B, it is not
subject to overlay by either of those
programs) • When DYNAMIC's RETURN is
reached, the supervisor recognizes that
there is no higher level of control, and
causes the task to be terminated.

DYNAMIC A

SAVE SAVE

LlNKA
* RETURN

LlNKB B

SAVE

*

RETURN RETURN

* Supervisory Action

Figure 24. The LINK Operation

All parameters used by subprograms A or
B are explicitly passed as part of a
standard linkage procedure. This is neces­
sary because the load modules A, B, and
DYNAMIC have been processed by the linkage
editor independently; no external symbol
resolution has taken place between them.

The LINK procedure is speeded up consid­
erably if a copy of the program is
"available" in main storage when the LINK
is issued. A program may already be in
main storage because it was used earlier,
or because it was fetched in anticipation
of the current need with a LOAD macro­
instruction. A copy of a program that has
already been used is "available" for reuse
under certain constraints, discussed in
nprogram Design Facilities."

A LINK macro-instruction may be imbedded
within a linked program, so that nesting
takes place. Figure 25 illustrates how

44

programs may be nested, using three levels
'of control. The only limit on the number
'of control levels is the availability of
main storage.

In this example, program B is used
twice, once at the third control level and
once at the second level. If B is still in
main storage and navailable" when called
'for the second time, the same copy of B
will be used rather than a new copy (which
'would require additional loading) •

Transfer Control (XCTL) Macro-Instruction

XCTL is used to pass the logical flow of
control dynamically to load modules
corresponding to successive phases of a
serial program. Its operation is similar
to that of LINK in these ways:

of

• The flow of control passes
sequentially; that is, the two load
modules involved do not operate concur-
rently.

• Standard linkage conventions are
observed, and all parameters are passed
explicitly.

• Acting as the intermediary, the super-
visor finds the program, allocates
space, and fetches it.

Operation of XCTL is different from that
LINK in several important respects:

• The program receiving control is con­
sidered to be at the same control level
as that transferring control.

• The transferring program is considered
to have been completed, and its storage
area may be made available for reuse,
even by the program receiving control.

• Work or storage areas in the transfer­
ring program may not be used by the
program receiving control, since they
may have been overlaid.

• XCTL is used instead of RETURN. Conse­
quently, any needed register and indi­
cator restoration must be done at this
time.

An illustration of the XCTL relationship
is shown in Figure 26.

DYNAMIC, the highest, or first control
level program, links to subprogram A. A in
turn transfers control to B. A is consid­
ered to be completed, and is replaced by B
at the second control level. B may overlay
A if there is not enough storage space for
both. Although work areas in DYNAMIC could
be passed to A, and A could pass the same
work area to B, A cannot pass work areas to
B contained in A. When B, at the second
level, issues its RETURN, control is passed

to the next higher level of control
(DYNAMIC). When DYNAMIC issUes its RETURN,
the supervisor recognizes that there is no
higher level of control, and the task is
terminated.

LOAD Macro-Instruction

The LOAD macro-instruction was designed
primarily for those situations in which
tasks must make frequent dynamic use of the
same load module; and the load module has
the characteristics alluded to earlier
which make it available for reuse. A
typical situation is shown in Figure 27
(a), in which load module B is required
several times during the execution of
DYNAMIC. Since LINK alone is used to
indicate the need for B, the main storage
occupied by B may be released after each
execution of B. This may require repeated
fetches of B at each successive LINK.

DYNAMIC A

SAVE .. SAVE
* *

LlNKA LINKS

* *
LINKS RETURN

* S .. RETURN * SAVE

RETURN

* Supervisory Action

Figure 25. Nested Subprograms

DYNAMIC A

---r---. SAVE SAVE

* *
LINK A XCTL S

-----+-- RETURN

* Supervisory Action

Figure 26. Use of XCTL Macro-Instruction

LOAD, however, specifies to the control
program that the named load module is to be
fetched and then retained in storage until
either a DELETE macro-instruction is
issued, or the task is complete. LOAD
itself does not cause control to be passed
to B; it merely causes B to be loaded.

Figure 27 (b) shows how LOAD may be
used. Here the programmer is assured that
the same copy of B can be used each time
LINK B is executed, with no unnecessary
program fetches.

Figure 27 (c) shows a more efficient use
of LOAD, which takes advantage of the fact
that LOAD returns B's entry point address
to DYNAMIC. This allows direct linkages,
using BRANCH-type instructions, and avoids
any supervisor intervention other than in
the, execution of LOAD and DELETE.

SAVE

RETURN

SAVE

RETURN

Program Design and Preparation 45

DYNAMIC DYNAMIC DYNAMIC

SAVE SAVE SAVE

LlNKB LOAD B
LOAD B BRANCH B
LlNKB

LlNKB

LlNKB BRANCH B

LlNKB
LlNKB BRANCH B

DELETE B DELETE B

RETURN

(a) RETURN RETURN

(b) (c)

Figure 27. Uses of LOAD Macro-Instructions

Planned Overlay versus Dynamic Structures

The control program facilities for
planned overlay structures and dynamic
fetching of load modules are both designed
to meet the need for executing programs
larger than the storage areas available.
They each have their advantages. Planned
overlay structures can be more efficient in
terms of execution speeds, because the
linkage editor procedure permits direct
references by one segment to values whose
locations are identified by external sym­
bols in another segment. There is no need
to collect such values in a consolidated
parameter list, as required for supervisor­
assisted linkages. Furthermore, when using
a planned overlay, supervisory assistance
is needed to locate a single load module in
the library. When using a dynamic
structure, many load modules need to be
located in order to execute an equivalent
program. Also, a planned overlay optimizes
the use of main storage.

These advantages tend to diminish as
user's problems get more and more complex,
particularly when the logical selection of
subprograms depends on the data being proc­
essed. In this situation, the use of
dynamically constructed programs is usually
a better solution than planned overlay
programs. Furthermore, load modules
fetched dynamically may be reused by other
tasks; segments fetched using the planned
overlay structure cannot be reused.
Although both approaches are solutions to
the same problem, there is no prohibition
against using combinations of the two. A
load module, linked to dynamically, may
itself operate in the overlay mode. The

46

LINK macro-instruction may be used within a
planned overlay program. The usual consid­
erations apply regarding the possible over­
lay that can take place when XCTL is used,
in which the load module releasing control
is subject to overlay.

DYNAMIC PARALLEL STRUCTURES

The ATTACH macro-instruction creates a
new task that can proceed in parallel with
other tasks, according to the resources it
needs and the condition of other tasks in
the system. In many ways, the ATTACH
function is similar to LIN~. The main
difference is that LINK is a request for
serial execution, where ATTACH is for par­
allel execution. Since ATTACH creates a
task that can have resources allocated to
it, the execution of ATTACH is more costly
in supervisor time than is LINK. In some
circumstances the use of ATTACH within a
problem program can be extremely helpful;
in others, it is unnecessarily wasteful.
The following four examples will serve to
clarify this point, and illustrate the
program flow that takes place when ATTACH
is used. In all four examples, two load
modules are involved, A and B. During the
execution of A, the need for execution of B
is detected at point (D); at (R) the
completion of B is required.

Example 1 (Figure 28). Detection and
requirement for completion occur together.
LINK should be used, since there is no
chance for parallel execution.

(D) (R)
I

I I
I I
I I

II
I I

II
I I

A

LlNKB

Indicates Program Execution

I I _rr-------...,
II
I I
I I
I I
I I
I I

u-
Figure 28. Immediate Requirement for

program
Sub-

Example 2 (Figure 29). Detection occurs
before requirement for completion. Fur­
thermore, an appreciable delay in the exe­
cution of A is expectE~d before B is
required to be completed. B consists
entirely of calculations with no inherent
delays. A should attach B with a lower
priority than itself. Otherwise, B would
be executed in its entirety before A could
regain control, and there would be no
parallel execution.

A

(D) ATTACH B

WAIT 1/0
I
I

I I
I I

(Rll:j

B

I

I

LJ
(1/ 0 Completed)

(B Already Completed)

Figure 29. Delays Expected in Higher Level
Subprograms

Example 3 (Figure 30). Detection occurs
before requirement, as in Example 2. In
this case, A expects no inherent delays,
but B does. A should ATTACH B, giving B
higher priority. Execution of A proceeds
during the delays in B.

A

(D)
q
I I
I I

~ ~
I
I

~
I

(R) W~IT B ~

B

.. ~ WAITI/O U
I I
I I
I I

U(t~Pletodl
(B Already Completed)

Figure 30. Delays Expec·ted in Subprogram

Example 4 (Figure 31). Detection again
occurs before requirement for completion;
in this case there are no significant
delays expected in either A or B. LINK
should be used, at any convenient point
between (~ and ~). No advantage would be
gained by using ATTACH.

A (Olr=l
(R l ~ LINKS ~=Iu..--I ----L-III
Figure 31. No Delays Expected

The general rule is simply that ATTACH
should be used only when· a significant
amount of overlap between the two ta~iks can
be achieved.

Further discussion of the role of the
ATTACH macro-instruction, the use of prior­
ities, and the system's control of t~sks is
described in Section 6, -Task Management."

PROGRAM DESIGN FACILITIES

Before coding, the programmer should be
familiar with the techniques involved in
producing reusable programs and the special
facilities that he may request. The fol­
lowing paragraphs describe these facilities
and some recommended techniques in using
them.

REUSABILITY

All load modules in the library are
placed in one of three categories, as
specified by the programmer at the time of
linkage editing. The three categories are:
not reusable, serially reusable, and reen­
terable.

Not reusable. Programs in this category
are fetched directly from the library when

program Design and Preparation 47

each is requested for use. These programs
alter themselves during execution, and will
not execute correctly if entered again.

Serially reusable. A load module of
this type is designed to be self­
initializing, so that any portion modified
in the course of execution is restored
before it is reused. The same copy of the
load module may, therefore, be used
repeatedly during performance of a task.
In addition, a serially reusable load
module may be shared between different
tasks, provided that both tasks were creat­
ed from the same job step. A further
condition for use of the load module by
more than one task is that it not be in use
by one task at the time it is called for by
another. If it is, a new copy will be
fet.ched. If the programmer wants to avoid
the automatic fetching of a second copy of
the module in these circumstances, he may
do so by use of the enqueue (ENQ) and
dequeue (DEQ) macro-instructions. These
enable several tasks to place themselves in
a queue, waiting for the load module to
become available. The operation of these
macro-instruction is explained in Section 6
under "Event Synchronization."

Reenterable. Such a program is designed
so that it does not in any way modify
itself during execution. It is
"read-only-. Reenterable load modules
fetched from the system's link library
(defined fUrther in Section 5, nJob

Management") are loaded in storage areas
protected with the same storage key that is
used for the supervisor program. Since
only the control program operates with a
matching PSW protection key, such programs
are protected against accidental modifica­
tion from any other user programs. Since a
reenterable load module is never modified
during its execution, it can be loaded
once, and used freely by any task in the
system at any time. Specifically, it can
be used concurrently by two or more tasks
in multitask operations. One task may use
it, and before the module execution is
completed, an interruption may give control
to a second task which in turn may reenter
the module. This in no way interferes with
the first task resuming its execution of
the module at a later time.

In a multitask environment, simultaneous
use of a load module is considered to be
normal operation. Such use is an important
factor in minimizing main storage space
requirements and program reloading time.
Many of the control program routines are
written in reenterable form, so that they
can be shared between tasks, and reused
within a single task. (The data storage
and retrieval routines that are requested
during execution of the OPEN macro­
instruction are examples of supervisor-

48

provided reenterable programs.) A load
module of this category can be executed
correctly even though the protection key in
the program status word during task exe­
cution is different from the supervisor
storage key. This is possible because the
protection key comparison must be satisfied
only when the contents of the addressed
storage area are to be altered. The
contents of storage areas containing reen­
terable programs are not altered in any way
during execution.

If a reenterable load module is not
fetched from the link library, but rather
from a private library or the job library,
it is made available only to tasks origi­
nating from the same job step.

DESIGN OF REENTERABLE PROGRAMS

A reenterable program is designed to use
the general purpose and floating point
registers for addressability and variables
where practical, and to use temporary stor­
age areas that nbelong n to the task, and
are protected with the task's storage pro­
tection key. Temporary or working storage
areas of this sort can be provided to the
reenterable program by the calling program,
which uses a linkage parameter as a pointer
to the area. Temporary storage areas can
also be obtained dynamically by the reen­
terable program itself, using the GETMAIN
macro-instruction. This macro-instruction
is a request to the supervisor to allocate
additional main storage to the task, and to
point out the location of the area to the
requesting program. Note that the storage
area obtained is assigned to the task, and
not to the program that requested the
space. The space may be subsequently
returned to the supervisor's control by a
FREEMAIN macro-instruction, or by task com­
pletion.

If a reenterable program is interrupted
for any reason, the register contents and
program status word (PS~ are saved by the
supervisor in an area associated with the
interrupted task, and restored later when
program execution is to continue for that
task. No matter what use is then made of
the reenterable module, the interrupted
task can resume its use of the module at a
later time. The supervisor merely keeps
the task's working storage area intact, and
when required, restores the contents of the
saved registers and the program status
word. The reenterable load module is not
affected, and is unaware of which task is
using it at any instant. Each task will
have its own temporary storage area for use
by the reenterable module.

Shared use of a reenterable program is
illustrated in Figure 32. In this example,
the shared program is READER, and the tasks
(READ 1 and READ 2) are part of the job
scheduler function, simultaneously reading
two input job streams.

I Task
READ 1

Task
-

READ 2 READER (Program)

SAVE
--
--
GETMAIN'::::
--
--
RETURN

v

Buffer and
Work Area
for Task

READ 1

Buffer and
Work Area
for Task

* Supervisory Action READ 2

Figure 32. A Reenterable
Requests Its
Storage

CHECKPOINT AND RESTART

program that
Own Temporary

Checkpoint is a facility of the control
program that can be used (with the CHKPT
macro-instruction) to permit temporary
removal of a job, or to minimize lost time
due to machine failure or external error.
When the CHKPT macro-ins1:ruction is execut­
ed, the control program saves all the main
storage areas and control information need­
ed to restart from the checkpoint.

After execution of CHKPT, control is
returned to the user's program. processing
continues as if the checkpoint function had
not been performed. The checkpoint output
may be printed by a debugging facility
called the test translator as a debugging
aid.

Restart is the procedure used to restore
and run a previously checkpointed job step.
At restart, the control program retrieves
the checkpoint control information, ensures
that volumes are correctly mounted, and
repositions tapes. All programs and data
are restored to the locations occupied at
checkpoint time, and the job step
continues. Depending on the exact condi-

tions, restart may be initiated by macro­
instructions or operator command.

When the restart is executed, control is
normally given to the standard restart
location, which is the instruction
immediately following the CHKPT macro­
instruction. The programmer can specify
his own restart location when additional
action is required to make the program
restartable.

The checkpoint/restart facility does not
automatically copy any data sets. The
programmer should locate checkpoints at
those points in his program where restarts
are easiest.

TIMER

The interval timer is optional on some
models of System/360, standard on others.
It is used by the operating system for
control program functions, and may also be
used by user-written programs by means of
three different supervisor macro­
instructions.

The control program makes use of the
timer in two ways: to ensure that the
maximum time for the job step, specified in
the EXEC statement, is not exceeded; and to
make job step time available for accounting
purposes.

A user-written program can use the
interval timer feature through three dif­
ferent macro-instructions. The first
facility provides access to a simulated
real-time clock maintained by the supervi­
sor. The clock (or pseudo-clock, as it is
sometimes calle~ is set by the console
operator after he loads and prepares the
operating system to process the
installation's work flow (initializes the
system), and is updated periodically as
long as the system is not in the stopped
state. The clock can provide both time of
day and calendar date. The TIME macro­
instruction is used to query the supervisor
at any time during program execution; the
response is time and date.

The second facility is the ability to
request that the supervisor communicate
with a problem program after a stated
period of time. The set timer (STIMER)
macro-instruction is used for this purpose.
Intervals requested are either real time
(actual elapsed time) or task time. Task

time is accrued only while a task is using
the central processing unit. It does not
include time in a wait condition.

Program Design and Preparation 49

Using STlMER, the programmer may request
that the task be placed in a wait condition
until a real-time interval is completed.
He may also request that the task be
allowed to continue but that at the end of
either a real-time or task time interval,
control be given to the sUbroutine
designated in the STIMER macro-instruction.
In some cases, the programmer may want to
find out how much time remains in a
requested but incomplete interval, or to
reset a previous interval. These functions
are provided by the third facility, the
test timer (TTIMER) macro-instruction.

Some of the possible applications for
these facilities are:

• Time and date -stamping- of messages,
data sets, and printouts. The telecom­
munications package (QT~ uses the
timer in this way.

• Restarting a task after a predetermined
time. Telecommunications line polling
can be done on a periodic basis, rather
than continuously, during low traffic
hours.

• Program execution analysiS and program
debugging. Phases of a long program
can be timed individually under a var­
iety of conditions. In program debug­
ging, the timer can be used to limit
the amount of time spent in executing
each section of a program, thus allow­
ing a single test run to continue in
spite of loops or other time-consuming
action that might occur unexpectedly.

DEBUGGING FACILITIES

Even though the cost of program debug­
ging may be significant, the cost of an
undetected program error can be far
greater. The goal of the operating system
testing facilities is to minimize the time
and cost of program testing. The primary
emphasis is placed on source language
debugging facilities provided by the oper­
ating system languages and compilers. Com­
piler source language debugging statements
and facilities are described in the indivi­
dual language publications. The debugging
facilities provided for users of the assem­
bler language are explained in the follow­
ing paragraphs.

ASSEMBLER LANGUAGE PROGRAM DEBUGGING:
TEST TRANSLATOR

The test translator combines a series of
source language macro-instructions, some

50

control of program execution time, and
post-execution editing to give programmers
a wide range of test capabilities. The
primary control over test translator opera­
tion is by means of a series of system
macro-instructions that are assembled and
linkage edited with the program being test­
ed.

The general procedure is to produce
object modules without mixing test instruc­
tions with user's program instructions.
All test instructions are placed in a
separate control section. The advantage of
this approach is that the test instructions
can be deleted after correct program opera­
tion is achieved, or they can Qe changed
without requiring reassembly of the parts
of the program being tested. (Deletion and
replacement of control sections is a normal
function of the linkage editor.) In addi­
tion to saving time, the risk of introduc­
ing new errors by manipulating the original
source module for reassembly is minimized.
One obvious way of doing this is for the
programmer to place his test instructions

'in one source module and his program
instructions in another, and assemble them
separately.

When preparing a program, the programmer
will often find it convenient to mix pro­
gram and test instructions in the source
module. The assembler will separate them
for him and produce an object module con­
taining the test instructions as a separate
control section. If, subsequently, a dif­
ferent set of test instructions is
required, they can be assembled indepen­
dently of the user's program instructions,
and combined by the linkage editor with the
previous assembly, where they will replace
,the earlier version of the test instruc­
tions. The test instruction control sec­
tion is generated as nonexecutable data,
and controls the test translator during
execution of the program. The assembler
also produces a symbol table that is later
used to prepare the test data output in the
proper format.

The load module to be tested is prepared
by the linkage editor from its components
(object modules or other load modules) •

The TEST option is specified for the lin­
kage editor run in which the test control
section appears as input. The TEST option
specification is, furthermore, placed with
Uhe load module on the library.

When a program to be tested executes the
TEST OPEN macrO-instruction, supervisor
call instructions are inserted by the test
translator at locations where testing is to
be performed. As a result, the supervisor
routes control to the routine that performs
the requested test service. No special
-test" register is used. The supervisor

call linkage does not affect the contents
of any register, and test operation places
no limitations on the use of registers by
the programmer. After the test function is
performed, control is returned to the orig­
inal program. Although part of the user's
code is displaced with the inserted super­
visor calls, the test translator ensures
that the logical flow in the user's program
is unaffected by the displacement. The
inserted supervisor calls can be removed by
the TEST CLOSE macro-instruction. TEST
OPEN and TEST CLOSE can be issued any
number of times during the execution of a
load module.

Two kinds of test stat.ements are provid­
ed, action and control. Action statements
permit the user to display program values,
changed values, register contents, status
words, system tables, program maps, and
comments. In addition, program execution
may be monitored to record the detection of
changes in program fl()w (branch instruc­
tions, subroutine calls, supervisor
requests, or referrals t() program areas) •

The control statements allow the pro­
grammer to route control to specified test
requests, depending on arithmetic or logi­
cal relationships between program values,
flags, and special test counters. They
also allow him to modify the contents of
the load module. In this fashion, when an
error is discovered, the program is allowed
to continue testing and seek additional
errors.

TEST OUTPUT

Test data produced during the execution
of a load module is placed on external
storage for later editing. The test output
editor routine is executed after the actual
test run. The formats indicated in the
symbol table produced by the assembler are
used, unless test macro-instructions have
specified an overriding format.

The time used for processing test output
is minimized, since:

• Limits stated by the installation or
programmer on the quantity of test
output and the number of test ma~ro­
instructions encountered prevent
runaway test execution.

• Test output may be designated, at the
programmer's option, according to any
of eight priority categories. These
categories allow selective editing and
output of test results.

• Test output editing is separate from
test program execution. Output may be
saved by the programmer until the time
when editing and printing are conven­
ient.

The test translator is described in
greater detail in the publication IBM Oper­
ating System/360: Control Program Services.

Program Design and preparation 51

SECTION 5: JOB MANAGEMENT

Job management fUnctions of the control
program include handling system job flow
and all operator communications. All work
to be done by the operating system is
described in a standardized format and fed
into the system via one or more input
units. Job descriptions are in the form of
control statements, whose functions are
described in this chapter, and whose
detailed formats are given in the publica­
tion IBM Operating System/360: Job Control
Language. The input unit (or units) used
to read control statements is normally
designated by operator command. The flow
of control statements optionally combined
with data, coming from anyone input unit,
is called an input job stream. The system
may have many concurrently active input job
streams.

The job flow is handled by a group of
programs, collectively termed the job
scheduler. Operator communication func­
tions are handled by a program called the
master scheduler. A wide variety of job
management functions are available, from
which the user can select those most
appropriate for his applications and work­
load. Details of master scheduler func­
tions are described in the publication IBM
Operating System/360: Operating Considera­
tions.

CONTROL STATEMENT CAPABILITIES

Control statements are designed to allow
the programmer and the operator to describe
clearly and concisely each job to be per­
formed by the system. In addition, control
statements allow many job accounting,
input/output device allocation, and work
scheduling functions to be performed by the
system rather than by the operator. A job
is considered to be any unit of work that
can be run independently of other units.
The time required for its execution may be
anywhere from a few seconds to many hours.

Each job is described by a series of
control statements written by a programmer
and introduced into the system in the input
job stream. Control statements are iden­
tified by the symbols // in the first two
positions of each 80-byte logical record.
Since control statements may be continued
from one record to the next, there is no
fixed limit on their length. Their format
is similar to that used in the assembler
language , with a name field for statement

'\

52

identification, an operation field, and an
operand field for statement parameters.
The format for operands resembles that used
for macro-instructions. Because the exact
format of control statements is given in
the publication IBM Operating System/360:
Job Control Language, no attempt will be
made here to give complete statements in
examples. Only the portions needed to
illustrate each point are shown.

The control statements required to spec­
ify a job are:

• The JOB Statement. This statement
gives the job a name. The programmer
may optionally state job accounting
information, his own name, and other
information applicable to all steps of
the job. Each JOB statement marks the
beginning of a job, and at the same
time marks the end of the preceding
job. An example of a JOB statement is:
//PAYROLL JOB

• The Execute (EXEC) Statement. This
statement is used to name the first
load module to be used to perform one
step of the job. It may also be used
to name cataloged procedures. If a job
consists of more than one job step, an
EXEC statement is used to signify the
start of each step and the end of the
preceding step. This statement need be
named only if it is referred to by some
other control statement. The EXEC
statement is used to state conditions
that ~pply within the job step; for
example; maximum execution time for all
of the load modules used in the job
step. Each job step results in the
execution of at least one task. An
example of an EXEC statement is:
// EXEC PGM=SUMPAIRS

• The Data Definition eDD) Statement.
Several such statements may follow the
EXEC statement; each is used to define
a data set used or created during
execution of a job step. The DD state­
ment provides the symbolic link between
the reference compiled into a program
and the actual name and location of the
data set to be used in this execution
of the program. The program reference,
part of the data control block macro­
instruction (DCB), is a symbolic
-ddname,- which is identical to the
name field of a DD statement. One of
the operands of the DD statement
(DSNAME= •••) names the actual data set
to be used. An example of a DD
statement is:
//DDNAMEl DD DSNAME=COLOR.CRIMSON

Assume that control statements are to be
written for a jobtha1t uses only a single
program (load module) named SUMPAIRS. This
program uses the symbolic names IN1 and IN2
for its input data sets, and OUT for its
single output data set. The actual input
data sets are named LIB. ADDENDS and
LIB. AUGENDS; the output data set is to be
cataloged under the name LIB. SUMS. The
programmer chooses to name this job SIMPLE.
The following control s'tatements are used:

//SIMPLE
//
//IN1
//IN2
//OUT

JOB
EXEC
DD
DD
DD

PGM=SUMPAIRS
DSNAME=LIB.ADDENDS
DSNAME=LIB.AUGENDS
DSNAME=LIB.SUMS

Coding within each statement is free
form; i.e., fields are recognized by the
presence of one or more blanks or by other
designated separators, rather than by the
columns in which they are placed. The //,
however, as well as characters that indi­
cate that a statement is continued on a
succeeding card, are column dependent. The
three DD statements in the above example
could be in any sequence.

Not shown in the example is that jobs
may contain many steps, in which case the
EXEC statement for each succeeding step is
placed immediately behind the last state­
ment or the data of the preceding step.
Also, jobs may use many control parameters
not shown in the example. The choice of
parameters is based on the control program
options selected by the user, and on the
job execution conditions that the program­
mer wishes to state. In the discussion
that follows, the parameters, options, and
execution conditions are introduced under
the following categories:

• Scheduling controls
• Program source selection
• Data set identification and disposition
• Input/output device allocation
• Direct-access storage space allocation
• Cataloged procedures

SCHEDULING CONTROLS

Job scheduling deals with functions con­
cerning if, when, and how long jobs are to
be run. These and other uses of the job
control language are discussed in the fol­
lowing paragraphs.

Job Priority

If the system has an input work queu~,
the priority determines the sequence 1n
which queued jobs will be selected for
initiation as tasks. The priority is then
applied to tasks and, in multi task opera­
tions, is used to resolve contention
between tasks for system resources. The
priority is also applied to a task's print
or punch output, and determines the
sequence of output writer operations where
there is a backlog.

Prior to the selection of a job from the
input work queue, its priority can be
changed by operator command.

Dependencies

A programmer may request that the return
code set in the return code register at the
completion of the job step be tested. The
action to be taken as a result of the code
value is stated in a condition parameter
that is optional for each JOB, EXEC, and DD
statement. If the stated condition is met,
then the job will be terminated, an entire
step skipped, or a DD statement ignored.
This facility can be used to terminate
automatically a compile-link-execute
sequence if errors found by the compiler
are such that execution of the following
steps could not produce useful results. It
can also be used to select one of several
data sets for use as test data, depending
on the outcome of previous steps. It is
further used to execute a job step contain­
ing a user diagnostic program when a
preceding job step is terminated with other
than a specified return code.

Maximum Execution Time

A maximum execution time can be speci­
fied for each job step. This allows the
programmer to guard against endless
looping. If a maximum time limit is not
stated by the programmer in the EXEC state­
ment, an installation-specified standard
maximum time limit is used.

Non-Setup Jobs

Jobs that can be executed without having
any special input/output setups can be
designated as "non-setup" in the JOB con­
trol statement. A compilation using resi-

Job Management 53

dent direct-access storage for work areas
and the input job stream for source state­
ments is a typical non-setup job. In some
of the job schedulers, non-setup jobs are
used as fillers to make use of time other­
wise spent waiting for operator action.

Job Log

A log of all jobs can be maintained by
the job scheduler. Information from the
JOB and EXEC statements is used for iden­
tification; interval timer facilities pro­
vide a measure of the time used by a job
step; additional information can be placed
on the log by an installation-written
accounting routine, an operator command
from the console, or a problem program
using a write-to-log (WTL) macro­
instruction. The log data set can be
printed at specified times, or upon
operator command. It will be printed auto­
matically when the log area is full.

PROGRAM SOURCE SELECTION

Link library is the term used to refer
to a particular partitioned data set con­
taining load modules. In the absence of
contrary specifications, load modules
referred to in EXEC statements, as well as
in the ATTACH, LINK, XCTL, and LOAD macro­
instructions, are retrieved from this
library.

In some jobs, a programmer may want to
have programs taken from different parti­
tioned data sets that he names, rather than
from the link library. This might be the

Compiled with object module Created with data set

DCB

dcbname

GET

Compiled with object module

Data Set Label

ddname dsname

DD

Control statement as
interpreted at job time

Figure 33. Chain of Symbolic References

54

case for programs that are still being
tested, and not yet available in the link
library. A procedure is provided to state,
in one or more DD statements placed immedi­
ately after the JOB statement, the iden­
tification of the preferred libraries. The
ordered set of preferred libraries is
called the job library.

In calling for a program, the programmer
may specify the data control block of any
library he wishes to be used. If he makes
no such specification, the job library is
searched. If the program is not found in
the job library, the link library will be
searched.

mATA SET IDENTIFICATION AND DISPOSITION

The DD statement identifies each data
set to be used in a job step. One of the
most important functions of this statement
is to complete the symbolic chain through
which a program retrieves or stores data.
This chain of indirect symbolic references
gives the user flexibility by allowing him
to define characteristics such as buffer
sizes and techniques, blocking factors, and
device identification at job entry time,
rather than in his program. It also pro­
vides a way for a single program to be
used, independently and Simultaneously, by
two or more different tasks. Without sym­
bolic references, it would be difficult or
impossible for the same utility program,
for example, to be in shared use, printing
two completely different data sets from two
tapes simultaneously.

The chain of symbolic references is
illustrated in Figure 33.

The first reference is the GET dcbname,
where data input is requested. The second
is in the DCB statement of the program,
where the ddname is referenced. The third
is the DO statement, \t1here the ddname is
related to the data set name to be used
during the current execution of the
program. The paragraphs that follow out­
line in brief some of thE~ ways of identify­
ing and controlling data sets by parameters
in the DO statement.

SYSIN and the DO * Statement

Original input data (e.g., keypunched
cards) may be presented to the system in an
input job stream, together with the control
statements. This minimi:~es operator setups
of input/output devices. such data immedi­
ately follows a DO asterisk (DO *) state­
ment. An example of this statement is:

//SYSIN DD *
(data)
(data)

An internal unique data set name is gener­
ated by the job scheduler for this data,
but the data set is no·t cataloged. The
generated name is used only for the dura­
tion of the job.

Depending on the configuration, input
presented in this way is available to the
user's program either directly from the
card reader (or other input job stream
devic~ or from a direct-access device onto
which the job scheduler places the data
prior to job execution.

In the preceding example, convention was
followed in assigning SYSIN as the ddname.
The actual ddname chosen is immaterial, so
long as the name in the input job stream
matches the name used in the program.
Furthermore, the selection of a ddname -­
specifically, SYSIN -- in no way constrains
the program to receive its input from the
input job stream. The actual source of
data is not specified until the SYSIN DD
statement is entered in the input job
stream.

That statement may specify a different
data source. For example, if the program­
mer wants to use a previously transcribed
and cataloged dat.a set named
HAROLD.TESTPROG, the following statement
could be used instead of the DD asterisk
statement:

//SYSIN DD DSNAME=HAROLD.TESTPROG

No change in his program is necessary.

Concatenated Data Sets

When an application uses a sequence of
two or more data sets as input, the control
statements permit the programmer to conca­
tenate (logically connect) the data sets
for the duration of the job step. For
example, five data sets, one produced on
each day of a week, might be used as input
to a single sort.

Each data set is described by a separate
DD statement, but only the first DD state­
ment is named; it is implied that each
member of the group shares this common
ddname. Each data set is used automat­
ically, in the same sequence as the DD
statements, whenever the ddname is used.

Generation Data Groups

The programmer can identify data sets
belonging to generation data groups, in
which the names are identical except for
generation number. Data sets of this type
of group are deSignated by either relative
notation, or by the full name including
generation number.

Dummy Data Sets

A general purpose program may require
that one of its input requirements, or a
regularly scheduled report, be ignored.
Also, during early phases of a program
debugging, it may be desirable to test only
program flow, rather than full processing
of data from data sets. These techniques
are possible with sequential data organiza­
tions by use of the DUMMY parameter of a DD
statement. Data sets so identified are not
assigned to input/output units, the OPEN
procedure is simplified, and any attempt
within the program to store in or retrieve
from the dummy data set results in an
end-of-data condition on input and is
treated as a -no operation- on output.

For example, in the first run of a tape
file maintenance program, the master file
may not yet exist. A dummy master file
could be specified as input; the transac­
tion file by itself becomes the first
actual master file.

Job Management 55

Data Set Disposition

For each data set used, the programmer
has a variety of options for the action to
be taken by the system at the end of the
~ob step. He may specify that a data set
1S to be treated as system output and
printed or punched, using the output writer
feature of the job scheduler; or cataloged
in the library; retained but not cataloged;
deleted at the completion of the job step;
or treated as a temporary data set. A
temporary data set is handled as if it were
cataloged during the remainder of the job's
execution, but is automatically deleted at
the end of the job. A temporary data set
is, in effect, passed to succeeding steps.
This type of data set is often used for
temporary storage of a compiler's output
that serves as the input to the linkage
editor in a later job step.

The programmer may. also designate
volumes that are to rema1n mounted through­
out an entire job; he may also designate
whether or not the system is allowed to use
a direct-access volume for storage of other
data sets. These latter features ensure
that a volume intended for repeated use
over a span of several job steps is not
dismounted and remounted unnecessarily, and
that volumes are not used for data sets
that have not been specifically designated
to reside there.

If no disposition instructions are given
in the DD statement, a normal procedure is
followed. Data sets created during a job
step are deleted at the end of the step;

Selector
Channel

1

Selector
Channel

2

Figure 34.

56

Direct
Access
Control

Tape
Control

Tape
Control

Typical Input/Output Devices

data sets that were already in existence
are retained.

INPUT/OUTPUT DEVICE ALLOCATION

Allocation of input/output devices is
done by the job scheduler before job step
initiation, according to a number of dif­
ferent considerations. One of these is the
allocation requests included in each DD
statement; others are the devices available
and the system generation parameters. In
general, it is not necessary to specify
allocation of specific devices. The job
scheduler will make reasonable assignments.
There are applications, however, where the
performance of a job depends very much on
the device types and channels used for
certain data sets. To handle this, the
system accepts allocation requests and
requirements in a variety of forms. Even

;so, the programmer gains flexibility and
-improved overall performance if he states
his requests in a general way, rather than
being specific.

Individual input/output devices and
arbitrary groups of input/output devices
can be given permanent symbolic names for
allocation purposes. The symbolic name
:requested in the DD statement should be the
least restrictive one appropriate to the
situation. For example, the group of
input/output devices in Figure 34 illus­
trates two IBM 2311 Disk Storage Drives and
eight tape drives (four of the tapes are
IBM 2400 Tape Drives, Model 1, and four are
IBM 2400 Tape Drives, Model 2) •

Table 2. Names of Installation Devices
r----------T--------·---T-------------T------------------~--------------------,
I I 2311 Disk I 2311 Disk I Channell tapes I Channel 2 Tapes I
I I I ~----------~---------+----------T----------i
I Name I Storage D:ri ve I Storage Drive I Mod 1 I Mod 2 I Mod 1 I Mod 2 I
I I I r-----r-----+_----T----+----T-----+----T-----i
I I #1 1 #2 1 11 1 #2 1.1 1'2 1 11 1 12 1.1 1 #2 I
~-----------+----------.----+-------------+.----+-----+-----+---+_---+-----+----+-----i
I SEQUEN 1 x 1 x 1 x 1 x 1 x 1 x I x 1 x I x I x 1
1 TAPE 1 I 1 x 1 x I x 1 x 1 x 1 x I x I x 1
1 DIRECT 1 x 1 xliii 1 1 1 1 1
~------------+--------------+--------------+----+-----+-----+----+----+-----+----+-----i
I CH 1 TAPEX I I I x I x I x I x I I I I I
1 CH2TAPEX I 1 I 1 I I 1 x I x I x I x I
~------------+----------,---+--------------+----+-----+-----+----+_---+-----+----+-----i
I CH 1 MOD 2 I I I I I x I x I I I I 1
I CH2MOD2 1 1 I 1 1 I 1 I 1 x 1 x 1
1 MOD2TAPE 1 1 1 I 1 x I x 1 I 1 x I x I
~--------------+--------------+--------------+.----+-----+_----+----+----+-----+----+-----i
1 CH 1 TAPE 1 1 1 1 x 1 I 1 1 1 1 1 1
1 CH1TAPE3 1 1 1 1 I x I 1 I 1 1 I
1 CH2TAPE 1 1 1 1 1 I I I x I 1 I I L _____________ ~ ______________ ~ ______________ ~ ____ ~ _____ ~ _____ ~ ____ ~ ___ ~ _____ ~ ____ ~ _____ J

Table 3. Specifications That Achieve Input/OUtput Overlap
r-----------------T----------------T----------------T----------------T------------------,
I I I I I I
1 I Case 1 I Case 2 I Case 3 I Case 4 I
~------------------+----------------+----------------+----------------+------------------i
IData Set 1 I CH1TAPE1 1 CH1MOD2 I CH1TAPEX I TAPE I
~-----------------+----------------+_---------------+----------------+------------------i
1 Data Set 2 1 CH2TAPE1 1 CH2MOD2 1 CH2TAPEX 1 CHAN=SEP I L _________________ ~ _______________ ~ ________________ ~ _______________ ~ __________________ J

Table 2 illustrates some names that
might be used, and the units included under
each name.

Specific allocation could be requested
~Y us~ng the name CH1TAPE3, but the system
1S g1ven more flexibility if a less res­
trictive name such as CH1TAPEX or MOD2TAPE
is used instead. The use of restrictive
requests may result in a job being held up
if the specific un~t is not available.

To obtain input/output overlap between
two data sets on tape, any of the combina­
tions of statements in Table 3 could be
used in order of increasing generality.

Case 4 is the least restrictive of the
cases, and illustrates the way to request
channel separation between two data sets,
i.e., a different channel for each of the
data sets. An extension of channel separa­
tion is the facility for channel affinity.
If data 'sets A and B are to be assigned
separate channels, then an affinity of data
set C for A means that C and B should be
given different channels. It does not
necessarily mean that A and C share the
same channel.

Volume affinity may be requested .between
two data sets that are t:o be placed on the

same volume. This would be desirable with
data sets on direct-access storage where
their use is related, and the programmer
wants to minimize disk pack mounting and
demounting. This would also be desirable
for two data sets that are created serially
which the programmer wants on the same tape
reel.

For large multivolume data sets on mag­
netic tape, where reels must be dismounted
and mounted during a job step, spare or
alternating drives can be requested to
minimize operator setting up time, if extra
tape drives are available. This is done by
requesting that two tape drives be assigned
to a single data set. In the case of
output data sets, mounting a ·scratch" reel
on one or more drives allows a drive to be
assigned dynamically to anyone of several
output data sets, whichever reaches the end
of volume first. A ·pool· designation is
used for such cases.

If an allocation request states the name
of a nonexistent device, or a device
declared by the operator to be unavailable,
the associated job will be terminated.
Requests for affinity or separation will
only be followed if there are enough
input/output devices in the system. If
there are not enough, as when a tape drive

Job Management 57

has been removed for maintenance, the sys­
tem ignores the affinity and separation
requests, and runs the job using other
units.

Deferred Mounting of Tapes

Normal operation of the job schedulers
requires that the correct volumes be mount­
ed on all input/output devices used by a
job step before the step is initiated.
This ensures that work will not be started,
partially completed, and then forced to
wait for operator action. Half-completed
tasks, in a multitasking operation, tie up
the system facilities and prevent other
tasks from proceeding. In some cases,
however, this precaution may be unnecessary
or even undesirable. Some applications, by
their design, allow sufficient mounting
time during execution of an early phase to
ensure that data sets needed on tape during
a later phase, will be mounted in time.
Other applications use a single unit,
sequentially, for more than one data set.
In such cases, the programmer may want to
use the deferred mounting option, where a
job step is allowed to proceed without
first having all data sets in place.

DIRECT-ACCESS STORAGE SPACE ALLOCATION

The DD statement for data sets to be
written out on direct-access storage con­
tains requests for the needed space. Nor­
mally the amount of space to be initially
allocated is specified, as well as the
increments of space to be allocated auto­
matically as needed. A request may be for
space on a -private- volume, which means
that no subsequent request for space will
be allocated from that volume unless the
volume is specifically designated. This
allows direct-access volumes to be reserved
for the exclusive use of, for instance, a
programmer or an organizational department.
Alternatively, the request may be non­
specific, which means that the request will
be filled from available space on any
volume other than previously designated
private volumes.

Space may be requested in terms of
tracks or cylinders; or it may be requested
in terms of blocks (i.e., physical
records) • In the latter case, the system
will compute the number of tracks or
cylinders required. The program, in this
instance, is independent of the charac­
teristics of the direct-access unit that is
used. To make most efficient use of avail­
able space, the logically contiguous tracks

58

or cylinders will not always be physically
contiguous. Physically contiguous space
will be allocated, if requested.

A series of DD statements may be used to
request a split cylinder. This feature
allocates space that is to be shared among
each of the data sets involved. Each data
set represented by one of the DD statements
is given a specified percentage of the
tracks on each of the allocated cylinders.
The split-cylinder technique allows concur­
rent use of two or more data sets on the
same volume without excessive access arm
movement.

CATALOGED PROCEDURES

Frequently used control statement
sequences may be prepared once and then
cataloged in the system library. These
control statement sequences, called catal­
oged procedures, can be reused upon demand.

Typical sequences of job steps and out­
put requirements that might be predefined
are:

Compile - Linkage edit - Execute - Print
Edit input data - Sort - Update master

file - Print exceptions.

Control statement sequences that are to be
cataloged are presented in the input work
stream in the usual way. A JOB statement
parameter indicates that the sequence is to
be cataloged rather than executed. The
sequence may contain one or many job steps.
Once cataloged, a procedure is called from
the library by an EXEC statement that names
the procedure to be executed, rather than
naming a program. The entire cataloged
procedure is then substituted in place of
the EXEC statement that named it.

Temporary changes can be made to cata­
loged procedures, for the current job only,
by statements in the input job stream whose
names match those of cataloged procedure
statements. Input job stream statements
override cataloged statements, but do not
change what is cataloged.

JOB SCHEDULER AND MASTER SCHEDULER
FUNCTIONS

Job management contains four major fUnc­
tional areas. Each area includes a number
of selectable options. The four functional
areas are:

• Job scheduler: reader/interpreter

• Job scheduler: ini tia'tor/terminator
• Job scheduler: output writer
• Master scheduler

JOB SCHEDULER

Reader/Interpreter

Each reader/interpreter of a job schedu­
ler is responsible for reading one input
job stream, scanning the input data to
identify control statements, interpreting
and analyzing the control statements, and
preparing the necessary control tables that
describe each. job to the system. For
systems with an input work queue, the
reader/interpreter ensures that the control
information is placed in the queue in
priority sequence, and that the data fol­
lowing a DD * statement is stored separate­
lyon a direct-access device as a temporary
data set.

Multiple reader/interpreter tasks may be
functioning at the same time, each one
transcribing control statements and data to
direct-access storage concurrently with
other task operations. All use the same
input work queue. Since the subprograms of
the reader/interpreters are reenterable,
the same copy may be used by all concur­
rently performing reader/interpreter tasks.

Some systems have the ability to do
remote stacked job processing, in which job
control information is sUbmitted from
remote on-line terminals. A
reader/interpreter task is attached to han­
dle the job control statements forwarded
through the queued telecommunications
access method. The control information is
placed in the input work queue and handled
in the same manner as locally submitted
jobs. Output data sets from remote jobs
are handled by an output writer task as
described later, except that the system
also provides for routing the output data
to specified terminals. This is described
in detail in the publication IBM Operating
System/360: Telecommunications.

Initiator/Terminator

The initiator of the job scheduler is
responsible for selecting jobs to be exe­
cuted and performing necessary preparatory
work. The selection is made directly from
an input job stream, or from an input work
queue, depending on the configuration. For
each step of a selected job, the initiator
ensures that all necessary input/output

devices are allocated, that direct-access
storage space is allocated as required, and
that the operator has mounted any necessary
tape and direct access volumes. It finally
requests that the supervisor give control
to the program named in the job step.

At job step completion, the terminator
of the job scheduler is responsible for
removing the work description from control
program tables, freeing input/output devi­
ces, and disposing of data sets according
to instructions in the DD statements.

As part of the input/output device allo­
cation function, the initiator/terminator
is responsible for issuing operator messa­
ges calling for volume mounting, and ensur­
ing that the mounted volumes actually match
allocation requests in the control state­
ments. The following paragraphs present
the three features that are optionally
supplied to help minimize system time loss
due to operator setup.

• projected Mount. The operator is given
volume mounting messages a number of
job steps in advance of that being
initiated. Operator setup time can be
overlapped with the execution of the
previous job step.

• Automatic Volume Recognition. With
this feature, the operator may premount
labeled nine-track tape reels on any
available unit; the job scheduler will
record in a table the identification of
each volume and the unit used. When a
particular tape reel is needed for job
step set-up, the table will be
searched. If the needed reel is found
to be already mounted, the usual proce­
dUre of issuing a mounting message will
be bypassed. This feature is particu­
larly advantageous in production
installations where work schedules usu­
ally are set in advance and follow a
repeated pattern. In this situation,
the operator usually knows in advance
which tape reels are to be used and the
sequence in which they will be
required. Automatic volume recognition
is also desirable with those configu­
rations which perform jobs in the same
sequence in which they appear in the
input job stream.

• Non-Setup Padding. Jobs not requiring
any operator setup action can be iden­
tified in the JOB statement. When any
job step requiring setup is delayed
because operator action is not
complete, the initiator/terminator can
scan the input work queue, find the
highest priority non-setup job, and
immediately initiate its first step.
On completion of that step, the
initiator/terminator checks to see if
operator action is complete. If so,
the job step requiring setup is ini-

Job Management 59

tiated; if not, the next step of the
non-setup job is initiated and run and
the procedure is repeated.

A more advanced version of the
initiator/terminator is optional for larger
systems where it is practical to have more
than one job from the input work queue
under way at one time. This capability is
called multijob initiation. When the sys­
tem is generated, the user specifies the
maximum number of different jobs that the
initiator is to have under way simultane­
ously.

Each selected job is run sequentially
(one step at a time) just as with single
job initiators. However, additional jobs
are selected from the queue and initiated
as long as:

• The number of jobs specified by the
user is not exceeded.

• Enough input/output devices are avail­
able to satisfy allocation requests.

• Enough main storage is available for
all current requirements and for the
initiator program itself.

• Jobs are in the input work queue ready
for execution.

• The initiator has not been detached by
the operator.

Job Selection

Job
High
Priority

Job

I > Job Job 1 Job 2

Input Job Job

Stream
Job

Job

Input
Work

Queue

Low
Priority

Job 1
Step A

Figure 35. Multijob Initiation

60

Job 2
Step A

Figure 35 illustrates the selection of
three jobs from the input work queue and
the initiation of one step from each as a
task. The allocation method used by the
multijob initiator ensures that each job
selected will have input/output devices
allocated to it before any jobs selected
later are assigned their devices.

Multijob initiation may be used to
advantage to initiate jobs in an applica­
tion where a series of "batch-type" jobs
are to run simultaneously with an indepen­
dent job requiring input from remote termi­
nals. Typically, such telecommunications
jobs have frequent periods of inactiVity
due either to periods of low traffic or to
delays for direct-access seeks. During
such delays, locally available jobs can be
executed. (Because multijob initiation is
a more generalized way to optimize device
allocation, the non-setup padding facility
may not be combined with it.)

OUtput Writers

During program execution, output data
sets with a "system output" disposition may
be stored on a direct-access storage device
at high speed. Later, an output writer of

Job 3

Job 3
Step A

the job scheduler can transcribe the data
to a system output unit, normally a printer
or punch. Whenever this is done, control
information regarding the output data sets
is stored in an output work queue. An
output data set can be retained indefinite­
ly and still be prociessed by an output
writer. Each system output device in oper­
ation is controlled by an output writer
task; each device can be started or stopped
independently by the operator.

Groups of output devices can be logical­
ly grouped together as a class to handle
work of similar nature. For example, a
single printer might be designated as a
class to handle all high-priority, low­
volume printed output, and two printers
might be designated fo:r all high-volume
printing.

The DD statement allows output data sets
to be directed to a class of devices, and
allows the specification of a form number
or card electro number code. This number
is given to the operator before printing or
punching starts so that 'the forms in the
output unit can be prope:rly set up.

Output data destined for an output
writer mayor may not be referred to by the
ddname ·SYSOUT.- However, SYSOUT must be
specified on the DD statement as the dispo­
sition of the data set. It is this speci­
fication that places i::t reference to the
data on the output work queue. The queue
is maintained in priori,ty sequence, allow­
ing the output writers to select data sets
on a priority basis.

In systems with input and output work
queues on direct-access devices, the output
writer is the final linllt in a chain of
control routines designed to ensure fast
turn-around time. Turn-around time, in
this case, is considered to be the time
from entry of the work statement in the
computer until a usable output is obtained.
Fast turn-around is achieved largely
because of two factors: data at two inter­
mediate stages of the work flow is accessi­
ble as soon as it is prepared, without any
requirement for hatching; and at each such
stage, priorities are used to place impor­
tant work ahead of less important work that
may have been previously prepared. The two
intermediate stages are: when the job has
just been entered in the input work queue ,
and when the job is completed with referen­
ces to output data in the output work
queue.

Output Work
Queue

(1)
(2)
(3) A

Input Work
Queue

A
BCDEFG

Input Job
Stream

ABC---Z
BCD---Z
H$J---Z

(4) ABC
(5) (A) $BC

$DEFGH
DEFGHJ

JKL---Z
KLM---Z

Line (1) illustrates jobs A through Z in
the input job stream (perhaps a card
reader) before any jobs have been entered
in the input work queue.

Line (2) shows job A in the input work
queue. The jobs that follow are still
being read in. As soon as job A is entered
in the queue, execution begins. There is
no need to wait for jobs B through Z to

\:nter the work queue.

; Line (3) shows the situation when A has
completed execution with its output
referred to on the output queue. By this
time, jobs B through G have been entered in
the input queue. Since A's output is ready
to be printed or punched, the output writer
begins. There is no wait for the output
that will be produced by the jobs that
follow. Shown also on this line is a
high-priority job (represented by the dol­
lar sign). It is still in the input stream
(card reader) and has not yet"been recog­

nized by the system.

Line (4) shows the situation when ($)
has entered the input queue. Jobs A
through C have been completed; job A's
output is still being printed. Job ($) is
the next job selected by the job scheduler
because of its priority, even though it
entered the input work queue later than
jobs D through H.

Line (~ shows the situation at the
completion of job ($). By now the output
of job A has been completed. The output of
job ($) will be the ~ext set of data to be
printed by the output writer, because of
its priority, even though jobs Band C
entered the input work queue first.

MASTER SCHEDULER

All systems have a master scheduler
whose functions are to handle messages from
the system to the operator, replies from
the operator, and commands frOm the opera­
tor to the system.

Messages to the operator are initiated
by use of the write-to-operator ~TO) or
write-to-operator-with-reply (WTOR) macro­
instructions. The WTO macro-instruction is
used to supply information to the operator
(or programmer) ; WTOR is normally used to
request information from the operator.

The operator can issue various commands:

• Job action commands cause a change in

Job Management 61

62

the status of a job. For example,
cancelling or suspending a job, or
modifying its priority.

• System action commands cause changes in
the actions taken by the three job
scheduler functions. These commands
may inform the system of a new device
to be used in the input job stream, or
of a device that is no longer available
for allocation.

• Information requests allow him to
inquire about the status of the system
or of certain jobs.

• Information entries allow him to pro­
vide the system with current date and
time, to enter information in the sys­
tem log, and to reply to system or
program requests for information (as a
consequence of the WTOR
macro-instruction) •

Operator commands normally are entered into
the system from a device such as a console
typewriter, but can also be placed as
separate statements in an input job stream.

-All work submitted for processing must
be formalized as a task (or part of a task)
before it will be performed. A program is
treated by the Operating System as data
until the time that it is named as an
element of a task. This is true regardless
of the particular control program features
that are selected.

There are, however, significant differ­
ences in the features available. Although
the requirement that all work be performed
under task control has no exception, the
manner of controlling 1tasks is subject to
considerable variation. The most Signifi­
cant choice among the options available is
the choice between single-task and multi­
task control.

No more than one task can exist in the
single-task environment. On the other
hand, several tasks may coexist in the
multi task environment and compete for
available resources on a priority basis.

Since both environments have to do with
task control, a program that is written for
the single-task environment and follows
normal systems conventions will work equal­
ly well in the latter environment.

SINGLE-TASK OPERATIONS

In a single-task environment, the job
scheduler operates as a 1:ask which uses a
task control block that entered the system
when the system was initialized. Each job
step is executed as part of this task.

The task so defined is the only task
that will exist in the system and so can
have all available resources. Its program
can have a Simple, oVE~rlay, or dynamic
serial structure - one 0]: more load modules
may be required.

The control program must first fetch the
load module named in the EXEC statement.
To do so it:

1. Finds the program, using the program
name.

2. Allocates main storage space according
to the program size and loading attri­
butes stated in the library directory
entry for the load module. (The load­
ing attribute is specified by the
programmer as input to the linkage
editor run that produces the load

SECTION 6: TASK MANAGEMENT

module. It is discussed further
below.)

3. Loads the program into main storage,
relocating it as part of the process.
This function is performed by program
fetch.

Three loading attributes may be named in
a linkage editor run. For convenience, all
three are discussed below, although the
third option, scatter loading, is never
available for single-task operations:

1. If block loading is specified, the
entire load module is placed in a
contiguous main storage area.

2. If overlay loading is specified, suf­
ficient contiguous main storage is
reserved to contain the longest path
in the planned overlay program. How­
ever, only the root segment is ini­
tially fetched.

3. If scatter-loading is specified, the
control program loads the entire load
module, but not necessarily in con­
tiguous main storage locations. This
has no effect on program execution.
The scatter-loading capability allows
load modules to be split according to
control section boundaries. Even with
the scatter-loading attribute, a load
module will be block-loaded in the
following instances:

• The control program does not have
scatter-loading capability.

• There is a single main storage
area large enough to contain the
entire load module.

In no case will a single control
section be split.

Once the load module (or root segment,
in the case of overlay) is available in
main storage, control is passed to the
entry point associated with the module
name. Logical flow of control thereafter
is as explained in "Program Design and
Preparation." If the load module fetched
is the first subprogram of a serial dynamic
program, then the subsequent load modules
required are fetched in the same way as the
first, with one exception: if the needed
module is reusable and a copy is aI-ready in
main storage, that copy will be used for
the new requirement.

Control program routines are handled in
much the sam~ way as user routines.

Some of the control program routines are
resident in main storage at all times. The

Section 6: Task Management 63

first-level interruption handlers are exam­
ples. Other control program functions are
called into main storage upon demand; these
are termed transient control program rou­
tines. An example is the routine associat­
ed with the OPEN macro-instruction. When a
control program transient routine has com­
pleted its function, it remains in storage
until the storage space is required for
some other use.

If a transient routine is in storage,
and is called, the control program will use
it directly without going through the find­
allocate-fetch process, since such
transient routines are reenterable.

When a task is completed (normally or
abnor~lly), control is returned to the
superv1sor. The supervisor, recognizing
the end condition, reports back to the job
scheduler that the job step is complete.

ACTUAL FLOW OF CONTROL

The single-task control program provides
for normal interruption handling, and hence
provides for overlapped operation between a
task and other asynchronous operations sup­
ported by the hardware, such as
input/output and interval timer operations.
The programmer is not concerned with the
actual flow of control as a result of
interruption handling, other than as a way
to better understand the environment in
which his program will be executed.

This actual flow of control is illus­
trated in Figure 36. Control passes to the
supervisor by any interruption allowed by
the hardware design, and is returned by the
load program status word (LPS~
instruction.

Interruptions may be caused by a super­
visor call instruction in the user's pro­
gram. Such instructions are requests for
some form of supervisory service, such as
starting an input/output operation, which
usually requires the execution of one or
more privileged instructions. No matter
what source language is originally used,
the only way of obtaining such services
while the task is being performed is by use
of supervisor calls.

All other interruptions take place unex­
pectedly as far as the user's program is
concerned. Although program and machine
interruptions may be caused by the execu­
tion of an instruction in the user's pro­
gram, the programmer cannot normally pre­
dict when such an interruption will occur.
Input/output and external interruptions are
entirely asynchronous with the execution of

64

the user's programs. As a consequence,
'Control will pass back and forth between
the user program and the control program at
all interruptions. This actual flow of
.control is something that is entirely tran­
'sparent to the user's program; that is, the

. jprogram is unaware of the actions taken.·

User's Program Area Supervisor Area

SIMPLE

SAVE

RETURN

Figure 36. Actual Flow of Control

MULTITASK OPERATION

All task management functions described
for single-task operations apply equally
well for multitask operations. Each job
step is executed as a task. The manner in
which this takes place, which has been
touched on in its various aspects in
preceding sections, is illustrated in Fig­
ure 37. Named load modules are either
reused (if they are in storage and
reusable) or new copies are fetched.

: Interruptions are transparent to the user
programs. As a result, programs following
system conventions that are written for a
single-task environment work equally well
in multiple-task environments. However,
considerably more is required of task man­
agement when many tasks compete in request­
ing system facilities. The manner in which
these requests are handled is described in
the following paragraphs.

The goal of the control program is to
effectively isolate each job step from the
others, and at the same time allow tasks to
share system facilities where it is advan-

·tageous to do so.

Whether or not individual programs use
'multitask facilities, such as certain
macro-instructions which create new tasks
or which synchronize multiple tasks, the

: installation can benefit in a number of
. ways from having a multitaskcontrol pro­
gram. One of these benefits is concurrent

'operation of input readers and output writ­
:ers which improves turn-around time for all
'jobs, and allows special handling of high

r--'
--f I

L _ + ___ T~k ___ l

I I
I Program I
I SIMPLE I
I (Load I
I Module) I
I I L ______ ..J

I //DDNAMEl DD DSNAME=A I
I //DDNAME2 DD DSNAME= B I
I //DDNAME3 DD DSNAME=C I

Data Sets

1.~~J L ____________ --~

r-----~~~--- ----,
: //STEPl EXEC PGM=SIMPLE L:

-------12. =-~ J
3.[~J

Figure 37. Job Step-Task Relationship

priority jobs. Another is that multijob
initiation by the job scheduler is made
possible, which allows two or more jobs to
be under way at the same time.

A more direct benefit of multitask oper­
ation is simplified program design. Indi­
vidual programs (or subprograms of complex
programs) need not be as carefully planned
to balance processing time with
input/output time to gain efficient opera­
tion. An individual program may be rather
inefficient if run alone, but in a multi­
task operation its waiting time can be used
effectively to process other tasks. This
is particularly important in programs which
spend a relatively high proportion of time
in seeking records in direct-access
storage; for example, inventory programs in
which transaction or inquiry records are
received by the computer directly from
remote terminals. The inventory may be,
for example, of parts a'vailable, savings
deposits balances, or airline seats availa­
ble. Since a rapid response (updating
master files or replying to the remote
terminal) is required, mas·ter files must be
on direct-access devices. Each incoming
message must be processed by a program
which in turn depends on direct-access
storage retrieval. In sllch applications,
each message can be processed by a separate
task, many messages can be processed con­
currently, and the seeks can be effectively
overlapped.

TASK CREATION -- ATTACH

Tasks are created as a result of three
different actions. These are:

• The operator performing the initial
program loading operation, or using
commands that start components of the
job scheduler.

• The EXEC job control statement defining
a job step, which in turn becomes a
task to be executed.

• The ATTACH macro-instruction within a
user's program calling for creation of
a subtask. (Like a subprogram, a sub­
task generally notifies the higher­
level task that created it of its
completion.)

The mechanism used in all of these
situations except initial program loading
is the ATTACH macro-instruction. The only
difference is whether the ATTACH is issued
by the control program or by a user-written
program. (There are one or two other
special cases in which the control program
may issue the ATTACH as an indirect result
of a service request, but these cases are
of less importance in program design. They
are in the QTAM access method and the SEGLD
macro-instruction.)

Figure 38 shows the most elementary
situation that could exist after initial
program loading, and before any input
readers have been started by the operator.
This assumes that the user has chosen to
have all input readers started and stopped
under operator command. The master schedu­
ler task exists in the system at all times.

Figure 39 shows the situation after the
operator has started one input reader, the
initiator, and one output writer, and after
the first job step has been initiated.
F'our of the five tasks are performing job
management functions. The dotted lines
show subtask relationships.

Section 6: Task Management 65

Control Program Tasks

TCB

Master
Scheduler

Processing Program Tasks

(None)

Figure 38. Situation Immediately
Initial Program Loading

After

The control program, in controlling the
sharing of facilities between tasks, does
not differentiate between control program
:tasks and processing program tasks as such.
It exercises control on the basis of task
priority and storage protection key, and

: allocates system resources among all tasks
. according to the general rules described in
the following paragraphs.

RESOURCE ALLOCATION

Figure 40 shows the situation that
exists after three jobs have been initiated
to run simultaneously. The task created by
job 1 , step 1 (A) is shown with two
subtasks that it has attached (B1 and B2).
One of these subtasks has attached its own
subtask (C).

Many system resources are demanded by
competing tasks. Even in a single-task
control program, some resource allocation
is necessary. In a multitask control pro­
gram, many system facilities are treated as
resources subject to control and
allocation.

In situations where there are conflict­
ing demands, the control program resolves

TCB

Master
Scheduler

Control Program Tasks

------- --
TCB

Reader

Process i ng Program Tasks

Writer Initiator

Figure 39. Situation With Reader, Writer, Initiator, and One Job Step

Control Program Tasks

TCB

Job 1
Step 1

A

Job 1
Step 1

C

User Program Tasks

TCB

TCB

Job 2
Step 1

Job 1
Step 1

B2

Figure 40. Situation After Initiating Three Concurrent Jobs

66

TCB

Job 3
Step 1

the conflicts, allocates resources, and
gets work accomplished.

Tasks As Users of Resources

Resources are assigned to tasks. As a
result, the control program can keep track
of all allocations, and ensure that resour­
ces are freed, when appropriate, upon task
completion. Releasing resources, especial­
ly upon abnormal end-of-task conditions, is
essential for nonstop system operation.

Some of the system's resources may be
allocated immediately, but in other cases,
a task may be forced to wait until the
current user of the resource frees it. In
cases where several tasks are waiting 'for
the same resource, queueing takes place.
(The queue is made up of control blocks
that directly or indirectly point back to
the requesting tasks.) When the resource
becomes available, it is given to the
ranking member of the queue, whose rank was
determined by task priority, sequence of
entry into the queue, the specific reque$t,
or some combination.

Each system resource is controlled by a
different part of the control program,
these parts being collectively termed
resource managers. Figure 41 illustrates
the logical relationship that exists
between tasks in the system and the
resource managers that manage queues.

The queue concerned with the central
processing unit is composed of task control
blocks, and is called the task queue. The
central processing unit time "manager" is a
part of the supervisor called the task
dispatcher. When the taf3k dispatcher is
given control, it issuef3 the load program
status word (LPSW) instru(~ion that passes
control to the task of highest priority
ready to use the central processing unit.

The task queue consists of all task
control blocks 1n the system, ordered by
priority. Each task control block is con­
sidered to be in either the ready or wait
condition. A "ready task" can make immedi­
ate use of central processing unit; a
"waiting task" cannot. If a task is wait­
ing, it means that some ev~nt must be
completed before the task will again be
ready to use the control processing unit,
for example, the completion of an
input/output operation.

Tasks are placed in the wait condition
whenever they cannot proceed further. The
need to wait is stated explicitly by means

of the WAIT macro-instruction, or implicit­
ly as a condition of system macro­
instructions. A typical implied wait is
that included in the GET macro-instruction.
GET requests that the next sequential input
record be made available to the program.
If the next record is already in a buffer
area of main storage, the record is
supplied immediately, and the control pro­
gram is not involved; no WAIT takes place.
If, however, the record is not yet in main
storage , a WAIT is issued automatically,
and the task is delayed until the record is
read and can be supplied.

Figure 41 shows four tasks in sequence
by priority. Task A is waiting for two
events, tasks Band C are waiting for one
each, and task D is not waiting. In this
illustration, D is the only one ready;
therefore, it is the active task using the
central processing unit. Each time an
awaited event takes place, the completion
is "posted" in a designated communication
area, called an event control block (ECB).
The WAIT, POST, and event control block
relationship is discussed in more detail
under "Event Synchronization."

The wait condition applies to tasks in
the task queue, and does not mean that the
central processing unit itself has been
placed in a hardware waiting state. Howev­
er, all the tasks in the system must be in
a wait condition before the supervisor
places the central processing unit in a
wait condition.

One action is common to the management
of all resources -- when use of a resource
is completed, that fact is signalled by an
interruption. The interruption causes con­
trol to be seized from the currently active
task, and routed to the appropriate
resource manager. The resource manager may
now reallocate the resource and place a
waiting task in the ready state if all of
its requirements are met. In the example
(Figure 41), task A becomes ready after
both of its resource requests are
completed. At that time it displaces D as
the active task, and continues from the
instruction following the WAIT. When no
higher priority tasks are ready, D resumes
execution where it had been interrupted
unaware that its operation had not been
continuous.

Resource queue elements are created only
by active tasks. Similarly, tas~ control
blocks representing subtasks are created
only by active tasks as a result of the
ATTACH macro-instruction. Tasks can wait
for the completion of subtasks, just as
they wait for completion of other events.

Section 6: Task Management 67

Task Queues

Queued Tasks:
D C B

PR = 3 PR = 4 PR = 10

W(I) W(I)

Queued Resource Requests: C

Queued Resource Requests: B

Figure 41. Resource Queues

Passing Resources to Subtasks

When subtasks are attached within a job
step, they share some of the system re­
sources assigned to the attaching task.
The resources that are passed or shared,
are:

• Storage protection keys.
• Main storage areas.
• Serially reusable programs, if not

already in use.
• Reenterable programs.
• Data sets, and the devices on which

they reside ..

Data sets to be used for a job step are
initially presented to the job scheduler by
DD statements. When the job scheduler
creates a task for the job step, all such
data sets are available to all load modules
operating under the task. They may OPEN
and CLOSE, store and retrieve, with no
restriction other than heeding data set
boundaries.

When a task attaches a subtask, it may
pass the location of any data control block
to the subtask. USing this, the subtask
has equal access to the data set. When a
job step is terminated, all data sets are
automatically closed. However, when a sub­
task that has been given the location of an
open data control block is closed, no such
automatic closing of data sets takes place.

68

A Manager of
PR = 12 CPU Time

W (2)

A Manager of
Resource Alpha

A Manager of
Resource Beta

EVENT SYNCHRONIZATION

WAIT and POST Macro-Instructions

Event synchronization is the delaying of
task execution until some specified event
occurs. The synchronization has two
aspects:

• The requirement for synchronization is
stated explicitly by the WAIT macro­
instruction, or is implied by use of
certain other macro-instructions.

• After the event has occurred, notice to
the requesting task is given so it can
proceed past the WAIT point.

The notification required is performed
by the POST macro-instruction. When the
event is known to the control program (for
example, the completion of a read
operation), the control program issues the
POST. If the event is known only to the
user's program, the user's program must
issue it.

As an example, the function of both
tasks A and B in Figure 42 is to compute
some value, display it, and then proceed;
the display of task A must precede that of
B. Task A displays first, then issues the
POST; task B waits for A, then displays its
result.

(Calculate)
DISPLAY

POST 9-----, (Calculate)
WAIT

DISPLAY

Figure 42. Intertask Synchronization.

A task may make several different
requests and then wait for any number of
them. For example, a task may specify by
READ, WRITE, and ATTACH macro-instructions
that three asynchronous functions are to be
performed. However, as soon as two of them
have been completed, it is to be placed in
the ready condition. When each of these
requests is made initially to the control
program, the location of a one-word event
control block (ECB) is also stated. The
event control. block provides the basic
communication between the task issuing both
the original requests and the subsequent
wait, and the posting agency (in this case,
the control program). When the WAIT macro­
instruction is issued, the parameters
supply the addresses of the event control
blocks corresponding to the requested ser­
vices. Also supplied is a wait count that
specifies how many of the services (events)
are required before the task is ready to
continue.

When an event occurs, the following
takes place:

• A ncomplete flag" in the appropriate
event control block is set by the POST
macro-instruction.

• A wait count test is made to see if the
number of complete flags satisfies the
wait condition, and hence if the task
is ready.

• A "post coden specified in the POST
macro-instruction is also placed in the
event control block.. The post code
gives additional information regarding
the manner in which the completion
occurred.

After the task has again been. given
control, the programmer can determine what
events did occur, and in what manner. He
does this (with instructions following the
WAIT macro-instruction) by testing each
event control block.

Many requests for services may result in
waits that are of no concern to the pro­
grammer -- for example, GETMAIN, GET, and
PUT. In these cases, event control blocks
and wait specifications al~e handled entire­
ly by the supervisor or by accessing rou­
tines.

The programmer is responsible for clear­
ing event control blocks before each use.
It is imperative that the event to which an
event control block pertains has occurred
before it is reused.

Programmers intending to make use of the
event synchronization facilities will find
the following example helpful.

A READ macro-instruction within program
SYNCH is followed by a wait for the comple­
tion of the input event. Figure 43 shows
the situation immediately after the READ.
The event control block required for the
operation is located in a main storage area
belonging to the task. Its address,
nECBA n, was specified in the READ (1). The
appropriate resource manager, the
input/output supervisor, has queued the
READ request and has placed the address
ECBA in the queue element (2).

TCBA SYNCH

READ·· ·ECBA· ..

ECBA 1 _____ --'

Input/Output
Supervisor

.
ECBA

Figure 43. Situation After READ

Figure 44 shows the situation at the
time the WAIT macro-instruction is
executed. In this example, the READ opera­
tion has not yet been concluded. The WAIT
macro-instruction's parameters point to the
event control block location, and state
that only one event is needed to satisfy
the WAIT. The supervisor, as a result of
the WAIT macro-instruction, performs these
actions:

• ~laces the task control block address,
nTCBA n, in the event control block (1),
and sets a single bit indicator (the
"wait bit·) in the event control block
to 1, meaning that a task is waiting
for the event to take place •

• Sets a 1 in the wait count indicator in
the task control block to show the
number of events being awaited (2).

• Flags the task control block as being
in the wait condition; therefore, its
task is no longer eligible to use the
central processing unit.

Section 6: Task Management 69

• Passes control to the
ready task on the queue.

(Waiting)

TCBA
SYNCH

READ, ,ECBA, • ,

WAIT I, ECBA

next ranking

Input/Output
Supervisor

Queue Element

EJ
Figure 44. Situation After Execution of

WAIT

Figure 45 shows the situation at the
time the input/output operation is complet­
ed, when the input/output supervisor per­
forms the POST function. The following
then takes place:

• The event control block is located from
the address ECBA in the queue element
in the input/output supervisor queue
(1), and another bit, "the complete
bit," of the event control block is set
to 1.

• The wait bit in the event control block

ECBA

SYNCH

READ'" ECBA

WAIT I, ECBA

'0 ,]
3: Q)

0..
5
u

Queue Element

is tested to see if a task is waiting.
In this case, it is, so the task
control block wait count is decremented
by 1 (2).

• The post code specified in the POST
macro-instruction replaces the address
of TCBA in the event control block •

• The wait count in the task control
block is now 0, so the task is placed
in the ready condition, eligible to
compete on a priority basis for central
processing unit time. As soon as there
are no higher priority ready tasks,
execution continues.

In the preceding example, the program
reached the WAIT macro-instruction before
the requested input/output operation was
completed. If the input/output operation
had been completed first, the complete bit
and post code would have been set, and the
program would have proceeded without any
supervisor call interruption.

Enqueue (ENQ) and Dequeue (DEQ)
Macro-Instructions

The form of event synchronization des­
cribed, which employs the wait and post
functions, is used in the management of
resources by the supervisor. When a task
requests a system resource, a control block
associated with the task is placed on the
appropriate resource queue; the task may
have to wait until the resource is availa­
ble. When it is available, the supervisor
notifies the task by posting.

Another form of event synchronization is
possible, which allows "cooperating" tasks

I nterrupti on

Figure 45. Situation at Completion of Input/Output Operation

70

to share certain resources defined by the
user in much the same way. The resources
that can be controlled in this way are
called n serially reusablE!.·

The idea of serial reusability (brought
out in the discussion of serially reusable
programs), may be applied to a large varie­
ty of facilities. Thei.r common charac­
teristic is that each may be used by all
tasks that are associated with the same job
step, but only one task may use them at one
time. For example, the facility may be a
table that has an entry with the value of
100. One task is to increment the value by
10, a second by 20. If the two tasks have
concurrent access to the table, the first
task may store 110, and t,he second task may
store 120. The correct end value should,
however, be 130.

If the programmer wants to control
access to such a facility, he may create a
queue of all tasks requiring access, and
limit access to one task at a time. Speci­
fically, in the case of serially reusable
programs, he may want to queue tasks
requiring such a program, instead of allow­
ing the control program to fetch copies of
it if the one in main storage is in use.

Queueing capabilities are available in
the form of the two :macro-instructions
enqueue (ENQ) and dequeue (DEQ). When
ENQueue is used, a task will wait if the
facility is in use; when DEQueue is used
(after the task comple·tes its use of the
facility), it will notify the first waiting
task so that the facili·ty can again be
used.

The enqueue macro-instruction (ENQ) pro­
vides the means by which concurrently oper­
ating tasks can be preven'ted from interfer­
ing with each other while using common
data, or competing for a :Eacili ty that can
not be shared. The natu:t'e of the facility
is known only to the tasks that require it,
and is of no concern 1to the operating
system. All that the operating system
needs is a queue control block that is
provided by the programmer. When
specified, ENQ causes a request to be
placed in a queue associated with the queue
control block. A check is then made to see
if the nbusy indicatorn in the queue con­
trol block is on. If it is on, the
serially reusable facility cannot yet be
used, and the task issuing the ENQ is
placed in the wait condition until its turn
comes.

If the busy indicator is not on, the
task issuing the enqueue is free to use the
facility and will proceed to do so. Its
queue element becomes first in the queue,
the busy indicator is turned on (to block

later requests), and control is returned to
the task.

When the task has finished with the
facility, it must make it available to any
other tasks that may be waiting for it.
The dequeue (DEQ) macro-instruction is pro­
vided for this purpose. It causes the
task's queue element to be removed, and the
first of any pending queue elements to be
activated; the busy indicator is set
appropriately and the next pending request
is satisfied by posting the appropriate
waiting task.

TASK PRIORITIES

In a multi task operation, competing
requests for service or resources must be
resolved. For example: two or more job
requests (i.e., sets of job control state­
ments not yet acted upon) are available on
the input work queue; two or more requests
for use of a channel and control unit to
gain access to an input/output device
appear on the corresponding resource queue;
two or more tasks in the ready state appear
on the task queue, etc. In all of these
situations the control program must decide
what is to be done first. In some cases,
choices are made by considering hardware
optimization, for example, servicing
requests for access to a disk in a fashion
that minimizes disk seeking time. In most
cases, however, the system relies upon a
priority number provided by the user.

The user can best decide the priority
criteria. He may combine in his selection
such factors as the identification of the
job requestor, response time requirements
in teleprocessing applications, the amount
of time already allocated to a task, or the
length of the time that a job has been in
the system without being processed.

The result of such considerations is a
priority number ranging from 0 to 14 in
order of increasing importance.

Initial priorities are specified on job
statements and affect the sequence in which
jobs are selected for execution. The oper­
ator is free to modify such priorities up
to the time that the job is actually
selected.

Further changes to priorities may be
made dynamically by the change priority
(CHAP) macro-instruction, which allows a

program to modify the priority of either
the active task or of any of its subtasks.
Controls are available to prevent unauthor­
ized modification. The controls operate in
the following way.

Section 6: Task Management 71

When the job scheduler initiates a job
step, the current priority of the job
(which may have been set by the operator)
is used to establish a dispatching priority
and a limit priority. The dispatching
priority is used by the resource managers,
where applicable, to resolve contention for
a resource. The limit priority, on the
other hand, serves only to control dynamic
priority assignments.

Each task is free (by use of CHAP) to
change its dispatching priority to any
point in the range between zero and its
limit. Furthermore, when a task attaches a
subtask, it is free to set the subtask's
dispatching and limit priorities at any
point in the range between zero and the
limit of the attacher. However, the
subtask's dispatching priority ~ be high­
er than that of the attacher (although not
higher than its own limit). For example,
if task A, with limit and dispatching
priorities both equal to 10, wants to
attach subtask B with a higher relative
dispatching priority than itself, it may
proceed as follows:

1. Task A uses CHAP to lower its own
dispatching priority to 7.

2. Task A attaches B with limit and
dispatching priorities both equal to
8.

Lastly, a task may change the dispatch­
ing priority of any of its subtasks, so
long as it does not exceed the higher level
task's limit. Care should be exercised,
for if the new dispatching priority is
higher than the subtask's limit priority,
the subtask's limit will be changed accord­
ingly. For example, suppose A has a limit
priority of 10, and attaches a subtask B
with a limit priority equal to 8. A CHAP
macro-instruction may be issued under task
A which specifies that B's dispatching
priority should be 9. Since 9 is less than
A's limit, the request is valid. Since 9
is greater than B's limit, the limit prior­
ity of B will be changed to 9 as well as
the dispatching priority.

Task priorities are used as criteria for
temporary suspension of low priority tasks,
called roll-out, in case sufficient main
storage space is not available. This is
described further under -Main Storage Allo­
cation. •

Job priorities (the original priorities
when tasks are initiated) are also used by
the job scheduler's output writers to esta­
blish the sequence of output printing,
punching, and similar functions specified
in the job control statements.

72

It is expected that most installations
will use only three levels of priority for
batch-processing jobs in the normal input
job stream. Normal work will automatically
be assigned a median priority (as selected
at system generation time). A higher num­
ber will be used for urgent jobs, and a
lower one for -fillers· or deferred work.

TASK TERMINATION

Normally, programs signal completion of
their execution by either RETURN or by
XCTL, as described earlier. In the case of

RETURN, one of the general registers
(called the return code regi'Ster) is used
to transmit a return code back to the
caller. If the program at the highest
control level within the task executes a
RETURN, the supervisor treats it as an
automatic end-of-task signal. The return
code at task termination may be inspected
by the attaching task. In particular, it
is used by the job scheduler to evaluate
the condition parameters in job control
statements.

In addition to the normal RETURN proce­
dure above, any program operating on behalf
of a task can execute an abnormal end
(ABEND) macro-instruction to discontinue

task execution. Two cases may exist,
depending on whether or not the terminating
task has created a subtask which is still
active. The situation with no subtask is
illustrated in Figure 46. At (1) task A is
attached by the job scheduler. At (2) an
unusual condition is recognized, and ABEND
is executed. The supervisor immediately
takes any special termination action
requested by the ABEND macro-instruction,
such as causing a dump, and passing a
completion code (a parameter of ABEND) to
the attaching task to be recorded with key
control areas in the supervisor. All re­
sources of the task are released, except
the task control block itself, and the
event control block of the attaching task
which is posted. At (3) the
initiator/terminator proceeds with any ter­
mination procedure necessary, such as dis­
position of data sets and release of
input/output resources. It then issues a
DETACH macro-instruction, which is a
request to the supervisor to eliminate the
task control block from the system.

TCB

T ask for Job Scheduler
Initiator/T erminator

ATTACH A

WAIT 1, ECB

ECB

* DETACH A --1---

* Supervisory Actnon

A

SAVE

ABEND

RETURN

• Dump
• Release Task A's

Resources
• POST ECB

Figure 46. Abnormal Termination of a Task

If a task encountering an unusual condi­
tion had created a subtask, and the subtask
had not yet finished normally, the supervi­
sor action would be slightly different.
This situation is illustrated in Figure 47.
At (1) in the execution of task A, subtask
B is created, but not completed. At (2) an
unusual condition in A results in the
execution of an ABEND macro-instruction.
The supervisor, prior to performing the
termination actions discussed in the
preceding example, causes an ABEND and
DETACH for task B, thereby eliminating all
traces of B from the system, including Bls
task control block. Then termination
action is taken for A. At (3), the
initiator/terminator executes DETACH A,
causing TCB A to be deleted.

TCB Initiator/
Terminator

ATTACH A

A

ECB
ATTACH B

Task termination is considered to be
normal only when all subtasks are complete,
and have been detached. Abnormal subtask
termination is possible, however, without.
causing termination of the attaching task.

Asynchronously entered or deferred sub­
routines were discussed in Section 4,
"program Design and Preparation." One of
the causes for a deferred entry is an
abnormal end of task. Figure 48 illus­
trates how a deferred entry is triggered in
B by an abnormal end in A. The conditions
are similar to those of the preceding
example, except that task B has earlier
executed a specify task abnormal exit
(STAE) macro-instruction, identifying a
subroutine TERM to be executed in the event
of any abnormal termination.

At (1), task A is attached by the
initiator/terminator. At (2) during the
execution of A, subtask B is created. At
(3) during the execution of B, the STAE

macro-instruction is encountered, which
places a flag in the task control block for
B, indicating that subroutine TERM is to be
entered, to perform some post-mortem
action, in the event that B terminates
abnormally. At (4), during the execution
of A and before the normal termination of
B, an ABEND is executed. The supervisor
recognizes the flag in task control block B
(5), and at the point (6) passes control to

TERM. The post-mortem routine continues to
completion, then returns to the supervisor
at (7). The supervisor terminates both B
and A, as in the previous example, and
posts completion of A so that the
initiator/terminator can execute a DETACH.

Supervisor
WAIT ECB

ABEND--+---< 2 * ABEND B
DETACH B
Terminate A
POST ECB DETACH A o

*
Delete TCB A

* Supervisory Action L...-___ -I

Figure 47. Abnormal Termination of a Subtask

Section 6: Task Management 73

TCB
Initiator/
Terminator

ATTACH B

ABEND ----t----t Suspend processing
in A and B; give
control to TERM
routine in B

STAE (TERM) Prepare Exit in
.------+---------TCBB

TERM

RETURN ----+--(

* Supervisory Action

Terminate B
DETACH B
Terminate A
POST ECB

Figure 48. Deferred Exit at Abnormal End of Task

MAIN STORAGE ALLOCATION

One of the important functions of the
supervisor is the control and allocation of
ma1n storage space. This is done dynami­
cally, when it is demanded by a task or the
control program itself. The basic alloca­
tion procedures, which apply in both single
and multitask environments, are discussed
in the following paragraphs. This is fol­
lowed by a discussion of the procedures for
multi task operation.

The only part of storage that is stati­
cally allocated is that used by the control
program on a resident basis. The size of
this area is set at the time of system
generation, and the control program nucleus
fills it at the time of initial program
loading. All other main storage areas are
allocated dynamically, that is, on request.
The basic request mechanisms have both been
mentioned previously. They are:

74

• Implicit. An implicit request is gen­
erated internally within the control
program, because of some other control
program service. An example of the
implicit request is LINK, in which the
supervisor finds a program, allocates
space, and fetches it.

• Explicit. The GETMAIN or GETPOOL
macro-instructions may be used in any
user program. These are requests for
assignment of additional main storage

areas, the locations of which are sup­
plied by the supervisor to the problem
program. The GETPOOL macro-instruction
is used in conjunction with the
system's data management facilities.

Procedures are also supplied for dynamic
release of main storage areas. The areas
may be released automatically when the task
is completed. They may also be released
during execution, either implicitly or
explicitly. Implicit release may take
place when a program is no longer in use,
as signaled by RETURN, XCTL, or DELETE.
Explicit release is requested by the FREEM­
AIN or FREEPOOL macro-instructions.

Explicit allocation by GETMAIN can be
for fixed or variable areas, and can be
conditional or unconditional:

• Fixed area. The amount of storage
requested is explicitly given.

• Variable area. A m1n1mum acceptable
amount of storage is specified, as well
as a larger amount preferred. If the
larger amount is not available, the
supervisor will respond to the request
with the largest available block not
less than the stated minimum.

• Conditional. Space is requested if
available, but the program can proceed
without it.

• Unconditional. The task cannot proceed
without the requested space.

'MAIN STORAGE ALLOCATION IN A MULTITASK
ENVIRONMENT

Since main storage is shared in a multi­
task environment, several factors should be
considered when reserving space. To allow
for effective use of space, the programmer
should generally not, during assembly or
compilation, reserve lar~Je blocks of main
storage that are infrequently' used. Such
blocks should be obtained and released
dynamically. Work areas for reenterable
programs must be obtained dynamically ~r
passed by the higher level program as
previously described) •

,
On the other hand, since 'each dynamic

request takes some supervisor time to make
and account for the allocation, requests
for dynamic allocation and release of stor­
age should generally not be repeatedly made
for very small areas.

A number of additional storage consider­
ations are:

• Storage protection between different
tasks.

• Storage protection boundaries.
• Need to pass or share storage areas

between related tasks.
• , potential for noncontiguous main stor­

age areas, and the possible use of
scatter loading.

• Task priorities, and the potential need
to clear storage areas so a high prior­
ity task can proceed.

These considerations form the basis for
the storage allocation methods used by the
multitask supervisor.

STORAGE PROTECTION AND PROTECTION
BOUNDARIES

System/360 protects blocks of 2048 (2K)
bytes of main storage. E:a.ch block can be
given "a storage key in the range of 0 to
15. The operating system's supervisor
areas are assigned key 01 the remaining
keys are assigned to tasks created by the
job scheduler. All of t.he tasks created
from the same job step are given the same
key.

Storage protection is a vital element in
multi task operations. Undebugged programs
may be tested at the same time production
work is being run. Production programs can
contain undetected errors that are not
exposed until some peculiar combination of
conditions is presented. The storage pro­
tection feature contains the effects of
such conditions as much as possible, speci-

fically within the boundaries of a single
job step. When the initiator/terminator
creates a task from a job step, it gives
the task a protection key· that it shares
with its subtasks. The protection key is
placed in the program status word when any
task from the job step is in control of the
central processing unit.

Storage areas allocated by the supervi­
sor conform to the 2K- byte boundaries of
the protection feature, on the basis of
subpools. Each job step in the system is
automatically assigned two logically dif­
ferent subpools, each consisting of one or
more storage blocks. The first of these
pools is used to store non-reusable and
serially- reusable programs from any
source, and reenterable programs from sour­
ces other than the link library. This pool
is considered to be unnumbered. The second
pool, numbered 00, is used for any task
work areas obtained by the supervisor, and
for filling unnumbered GETMAIN or GETPOOL
requests. Optionally, requests may supply
specific numbers, in which case numbered
subpools are established. Established sub~
pools may be added to, deleted from, or
entirely released.

The programmer, in requesting main stor­
age areas, normally will not be concerned
about the effect of the 2K-byte block size.
Each request is filled by the supervisor
from any available space within the set· of
2K-byte blocks assigned to the subpool, and
additional blocks are assigned only if a
large enough space does not exist.
Requests for space may be made in the form
of a list of independent requirements, so
that noncontiguous main storage areas can
be used to fill space requests. This
method is used, for example, when fetching
a load module with a scatter-load
attribute. '

PASSING AND SHARING OF MAIN STORAGE AREAS

When the h'ighest level task of a job
step (i.e., the task attached by the job
scheduler) is terminated, all storage pools
are released for reassignment. However,
when a task attaches a subtask, and makes
available to it storage areas (possibly
containing data that is being passed as
part of the linkag~, the release of those
storage areas after the subtask has ,been
terminated may not be desired. The higher
level task may still want them.

To provide for this alternative, pro­
grams may call for the creation of subpools
numbered 01 or greater. Each such subpool
may be made available to a subtask at the
time it is attached by passing or by

Section 6: Task Management 75

sharing. If a subpool created by a task is
passed to a subtask, termination of the
subtask will result in release of the
subpool. If the subpool is shared, termi­
nation of the subtask will not result in
the release of the subpool. In both cases,
tasks that "receive" subpools (by passing
or sharing) may add to them, delete from
them, or even release them, in the same way
as the originating task.

A subtask that "receives" a subpool may
in turn pass it or share it with its
subtasks. Whenever a subpool is passed,
the higher level task surrenders all claims
to it. Indeed, if the task then requests
additional storage blocks for the subpool,
a new subpool identified by the same sub­
pool number would be formed. Whenever a
subpool is shared, the higher level task
retains a claim to the subpool. All tasks
with claims to a subpool must be terminated
before the subpool is automatically
released.

A task may share a subpool with any
number of subtasks that it attaches~ but it
may not share and pass the same subpool, or
pass the same sub pool more than once.

Subpool 00 refers to the same set of
storage blocks for all tasks in a job step~
it therefore need not be passed or shared,
nor is it released until the job step is
complete.

TASK PRIORITIES AND ROLL-OUT

In multijob systems, the situation can
arise where two or more job steps are being
executed, and one of them makes an uncondi­
tional request for additional main storage
space, either directly or indirectly, but
no space is available for allocation. This
situation is handled automatically by the

76

control program in the following way.
First, the control program attempts to free
main storage space occupied by a program
that is in storage, but is neither in use
nor reserved by a task. Failing that, a
decision can be made to temporarily suspend
the execution of one or more tasks, and
remove information associated with them
from main storage by writing it on an area
of a direct-access device or on a magnetic
tape. It is written in a format suitable
for fast storage and retrieval. These
operations of storage and retrieval of task
information brought about by competing
demands for main storage space are termed
"roll-out" and "roll-in."

The decision to rollout a task or group
of tasks is made primarily on the basis of
task priority. A main storage demand by a
high priority task will cause as many lower
priority tasks to be rolled out as is
necessary to satisfy the demand. If the
lowest priority task in the system requires
additional space to continue, it is placed
in a wait state pending main storage
availability.

When roll-out takes place, it is on a
job step basis, that is, all tasks operat­
ing under a single job step are rolled out
as a group. Roll-in takes place automat­
ically, as soon as the original space is
available again. The rolled-out group is
brought back into storage exactly as it was
at roll-out time, and continues execution
from where it left off. All input/output
operations under way at the time of the
roll-out are completed before the roll-out
takes place, so that no data is lost.
During the time a task is rolled-out, its
input/output units are not altered, so that
repositioning information need not be
saved. A rolled-out task is not completely
removed from the system, since its task
control block remains in a wait status,
awaiting roll-in.

The material in this and other publica­
tions related tOo Operating System/360 des­
cribes the facilities offered by the
system. System conventions relate to the
use of those facilities. These
conventions:

• Provide standardized methods, particu­
larly for communication between rou­
tines within tasks and between tasks.

• Safeguard the user from using system
facilities in a way that would require
revision of his programs if the instal­
lation changes its computing or operat­
ing system configuration. They also
help minimize effects of IBM changes or
extensions of funct,ion to either the
computing or the operating system.

Operating System/360 does not insist
that the system conventions be followed,
although in some cases it may call the
attention of the user t,Q a violation of a
convention. It is recognized that in some
instances a deliberate violation of a con­
vention is justifiable.

The co:qventions, descr'ibed in the fol­
lowing paragraphs, have to do with: names,
subprogram linkages, programs that can be
shared, communication between tasks, wait
loops, operator messages, control section
size, source language debugging, character
sets, volume labels, and direct-access
storage addresses.

The standard format for names is one to
eight bytes, starting with an alphabetic
character, without embedded blanks. No
special characters are allowed within a
name. Some variation to this general rule
is allowed, according to the use that will
be made of the name. For example, COBOL
language allows for names written according
to different rules than those stated.

Names may be applied to many different
items within the operating system. Some
are of concern only to programmers, but
others are used by parts of the operating
system and are of wider interest. Names
need not be unique within the entire oper­
ating system. They must be unique,
however, in the area in which they are
used. It is important to understand these
contexts to avoid duplications that could
cause errors.

APPENDIX: SYSTEM CONVENTIONS

• System Components. These are arbitrary
groupings used for convenience in
ordering and distributing programs sup­
plied by IBM. System component names
will begin with some letter in the
range of "A" through "I." Letters "J"
through "Z" will not be used by IBM,
and are therefore available to users.

• Object Modules. Each object module
provided by IBM, if named, will have
the same three initial letters as the
system component of which it is a part.

• Load Modules. A load module (output
from the linkage editor) will have a
primary (program) name, and up to five
additional aliases, each of which is
associated with the name of an entry
point for the load module. Each load
module is stored as a member of a
partitioned data set, on a direct­
access storage unit. Load module names
must be unique within each partitioned
data set. Load module names need not
be the same as the names of the object
modules used to create them.

• Control Sections and External Symbols.
Within a load module there will be one
or more control sections that had been
defined as part of an object module.
IBM-written control sections and
external references between control
sections will use the same initial
three letters as that used in the
object module name.

• Data Sets. Every data set used by the
operating system will be named at the
time of use. The name will be declared
explicitly in most cases, but in some
instances may be generated internally.
Reference from the program is to a data
definition name in a DD control state­
ment, which in turn specifies the
actual data set name to be used.

Each data set name is made up of a
simple name which may be preceded by one or
more qualifiers, as was described in "Data
Management." Simple names that are quali­
fied need not be unique. Qualified names
of data sets that are cataloged, or that
are on the same volume must be unique.

All DD statement names used
control program or IBM-supplied
translator will start with the
letters SYS.

by the
language
initial

Appendix: System Conventions 77

SUBPROGRAM LINKAGE

A standard procedure for subprogram lin­
kage has been designed to give the greatest
possible flexibility of use consistent with
efficient program execution. For greatest
flexibility of interconnection, all load
modules in the system should use the stand­
ard linkage convention for intermodule lin­
kage. Each load module should start with
the SAVE macro and should terminate with
the RETURN or XCTL macro, or their equival­
ents.

Subroutine linkage conventions are dis­
cussed in the publication, IBM Operating
System/3 60: Control Program Services'.

PROGRAM SHARING

Sharable programs are either reenterable
or serially reusable. Where possible, sub­
programs should be written and designated
as one of these types. The advantage to be
gained increases as the number of uses of
the program increases.

INTERTASK COMMUNICATION

Definite rules are stated for the ATTACH
macro-instruction, telling what parameters
can be passed, and how. Techniques exist,
however, which a programmer could use to
bypass the supervisor's control and esta­
blish direct task-to-task intercommunica­
tion. It is strongly recommended that only
the standard methods be used, because a
nonstandard approach can cause system side
effects that may be hard to find and to
correct, particularly if there is any
change in the supervisor due to new equip­
ment, addition of selectable modules, or
program updating.

USE OF WAIT

The programmer should use the WAIT
macro-instruction in cases where event syn­
chronization is needed, rather than pro­
gramming a wait loop as has been common
practice. Wait loops waste central proc­
essing unit time, and prevent the supervi­
sor from allocating resources efficiently.

18

OPERATOR MESSAGES

A standard format and rules are provided
for messages to and from the console opera­
tor. All IBM-supplied system components
that produce operator messages will tag
each message with a code that will identify
the component. It is recommended that user
programs follow a similar identification
procedure.

CONTROL SECTION SIZE

Where practical to do so, the user
should divide programs into control sec­
tions that are 4096 bytes, or slightly
less. The reasons are:

• Addresses will be within the range
covered by the displacement part of
instructions using a single loading of
a single base register.

• The control program can scatter load
when appropriate.

• The supervisor can allocate main stor­
age space efficiently. Programs that
are at or under some multiple of 2048
bytes are most efficient, and those
just over are least efficient.

When considering control section size,
the user may consider the effect of program
maintenance and modification, which can
cause programs to change in size.

CHARAC~ER SET CONSIDERATIONS

System/360 permits ,relatively free asso­
ciation between the internal bit structure
of a byte and the graphic symbol represent­
ed. The TRANSLATE instruction simplifies
any translations that may be needed. Even
so, there are considerations that may
affect program design. Some of these are:

• The number of characters in the set of
each printer in the system, which is
generally device dependent.

• The use of dual graphics for a single
bit configuration. System/360 coding
separates the graphics of the former
-A" and "H- character sets used with
the 1403 and other IBM printers. It is
recommended that dual usage in instal­
lations be eliminated.

• The trend toward standardization of
codes under the auspices of the Ameri­
can Standards Association and the
International Standards Organization.
Widespread use of a standard code
structure might be reason for an
installation to change internal codes.

It is strongly recommended that user
programs be written so that they do not
depend on specific relations between bit
configurations and graphic symbols in cases
where there is a possibility of character
code change. Dependencies will be needed
in some cases, in spite of oareful program
design. such cases shoul.d be related to a
table, if possible, in a way that would
allow table replacement t.o handle any code
change. In any event, it. is recommended
that any character code-dependent sections
of coding be clearly identified in all
program documentation to help identify
places where reprogramming might be needed.

SOURCE LANGUAGE DEBUGGING AND MAINTENANCE

Good programming practice requires that
source language programs be maintained in
an up-to-date condition at all times.
Operating System/360 is designed to assist
the user to keep source programs current
and avoid the temptation to "patch" at the
object program level. The general approach
to program debugging is in.sertion of debug­
ging statements using the same language and
compiler facilities as the program being
tested. Changes for test purposes, and for
correction of errors, are made by recompil­
ing only the object module in which the
change is needed. The new or revised
object module is then recombined with other
modules using the linkage editor, to pro­
duce and store a load module for test.

VOLUME LABELS

The operating system provides a standard
label procedure for all magnetic tape
reels, disk packs, and data cells. With
tapes, however, there may be compatibility
considerations, and users may choose to
incorporate their own nonstandard tape­
label handling procedures, or not to check
tape labels. Details on system standards
in this area are described in IBM Operatinq
System/360: Data Manaqement.

.TRACK ADDRESS INDEPENDENCE

Space on direct-access storage units is
allocated dynamically on a track or
cylinder basis. To make the best use of
available space, access methods have provi­
sions to allocate physically separated
tracks; and, for purposes of data access,
to convert relative track addresses (that
relate to the boundary of the data set) to
actual track addresses. Therefore, for
purposes of space allocation, as well as
programming ease, programs should generally
be written to use relative track addresses
and remain independent of the actual
addresses.

Appendix: System Conventions 79

GLOSSARY

access method: Any of the data management
techniques available to the user for trans­
ferring data between main storage and an
input/output device.

address constant: A value, or an expres­
sion representing a value, used in the
calculation of storage addresses.

alias: An alternate name that may be used
to refer to a member of a partitioned data
set1 an alternate entry point at which
execution of a program can begin.

allocate: To grant a resource to, or
reserve it for, a job or task.

asynchronous: Without regular time rela­
tionship1 hence, as applied to program
execution, unexpected or unpredictable with
respect to instruction sequence.

attach (task): To create a task control
block and present it to the supervisor.

attribute: A characteristic1 e.g., attri­
butes of data include record length, record
format, data set name, associated device
type and volume identification, use, crea­
tion date, etc.

auxiliary storage: Data storage other than
main storage.

basic access method: Any access method in
which each input/output statement causes a
corresponding machine input/output opera­
tion to occur. (The primary macro­
instructions used are READ and WRITE.)

batch processing:
processing.)

block (records):

(See stacked job

1. To group records for the purpose of
conserving storage space or increasing the
efficiency of access or processing.
2. A physical record so constituted, or a
portion of a telecommunications message
defined to be a unit of data transmission.

block loading: The form of fetch
brings the control sections of a
module into contiguous positions of
storage.

that
load
main

buffer (program input/output): A portion
of main storage into which data is read, or
from which it is written.

catalog:
1. The collection of all data set indexes

80

, maintained by data management.
2. To include the volume identification of
a data set in the catalog.

cataloged data set: A data set that is
represented in an index or hierarchy of
indexes which provide the means for locat­
ing it.

cataloged procedure: A set of job control
statements that has been placed in a catal­
oged data set and can be retrieved by
naming it in an execute (EXEC) statement.

checkpoint:
1. A point at which information about the
status of a job step can be recorded so
that the job step can be restarted.
2. To record such information.

concatenated data set: A collection of
logically connected data sets.

control block: A storage area through
Which a particular type of information
required for control of the operating sys­
tem is communicated among its parts.

control dictionary: The external symbol
dictionary and relocation dictionary, col­
lectively, of an object or load module.

control program: A collective or general
term for all routines in the operating
system that contribute to the management of
resources, implement the data organization
or communications conventions of the oper­
ating system, or contain privileged opera­
tions.

control section: The smallest separately
relocatable unit of a program1 that portion
of text specified by the programmer to be
an entity, all elements of which are to be
loaded into contiguous main storage loca­
tions.

control volume: A volume that contains one
or more indexes of the catalog.

data control block: A control block
through which the information required by
access routines to store and retrieve data
is communicated to them.

data definition name (ddname): A name
appearing in the data control block of a
program which corresponds to the name field
of a data definition statement.

data definition (DO) statement: A job

control statement that describes a data set
associated with a particular job step.

data manaqement: A general term that col­
lectively describes those functions of the
control program that pro-vide access to data
sets, enforce data storage conventions, and
regulate the use of input/output devices.

data organization: A term that refers to
anyone of the data management conventions
for the arrangement of a data set.

data set: The major uni"t of data storage
and retrieval in the operating system,
consisting of a collection of data in one
of several prescribed arrangements and des­
cribed by control information that the
system has access to.

data set control block (DSCB)
label for a data set in
storage.

A data set
direct-access

data set label (DSL): A collection of
information that describes the attributes
of a data set, and that is normally stored
with the data set; a general term for data
set control blocks and tape data set
labels.

deferred entry: An entry into a subroutine
that occurs as a result of a deferred exit
from the program that passed control to it.

deferred exit: The passing of control to a
subroutine at a time determined by an
asynchronous event rather than at a predic­
table time.

device independence: The ability to
request input/output operations without
regard to the characteristics of the
input/output devices.

direct access: Retrieval or storage of
data by a reference to its location on a
volume, rather than rela1:.ive to the pre­
viously retrieved or stored data.

dispatching priority: A number assigned to
tasks, and used to determine precedence for
use of the central processing unit in a
multi task situation.

dump (main storage) :
1. To copy the contents of all or part of
main storage onto an output device, so that
it can be examined.
2. The data resulting from 1.
3. A routine that will accomplish 1.

entry point:
which control
program.

Any location in a program to
can be passed by another

event: An occurrence 01: significance to a

task; typically, the completion of an asyn­
chronous operation, such as input/output.

event control block (ECB): A control block
used to represent the status of an e~ent.

exchange buffering: A technique using data
chaining for eliminating the need to move
data ln main storage, in which control of
buffer segments and user program work areas
is passed between data management and the
user program according to the requirements
for work areas, input buffers, and output
buffers, on the basis of their
availability.

exclusive segments: Segments in the same
region of an overlay program, neither of
which is in the path of the other. They
cannot be in main storage simultaneously.

execute (EXEC) statement: A job control
statement that designates a job step by
identifying the load module to be fetched
and executed.

extent: The physical locations on
input/output devices occupied by or res­
erved for a particular data set.

external reference: A reference to a sym­
bol defined in another module.

external symbol: A control section name,
entry point name, or external reference; a
symbol contained in the external symbol
dictionary.

external symbol dictionary (ESD): Control
information associated with an object or
load module which identifies the external
symbols in the module.

fetch (program):
1. To obtain requested load modules and
load them into main storage, relocating
them as necessary.
2. A control routine that accomplishes 1.

F format:
which the
length.

A data
logical

set record
records are

format in
the same

generation data group: A collection of
successive, historically related data sets.

inclusive segments: Overlay segments in
the same region that can be in main storage
simultaneously.

index (data management)
1. A table in the catalog structure used
to locate data sets.
2. A table used to locate the records of
an indexed sequential data set.

initial program loading (IPU: As applied
to the operating system, the initialization

Glossary 81

procedure which loads the nucleus and
begins normal operations.

initiator/terminator: The job scheduler
function that selects jobs and job steps to
be executed, allocates input/output devices
for them, places them under task control,
and at completion of the job, supplies
control information for writing job output
on a system output unit.

input job stream: A sequence of job con­
trol statements entering the system, which
may also include input data.

input work queue: A queue of summary
information of job control statements main­
tained by the job scheduler, from which it
selects the jobs and job steps to be
processed.

installation: A general term for a parti­
cular computing system, in the context of
the overall function it serves. and the
individuals who manage· it, operate it,
apply it to problems, service·it, and use
the results it produces.

job: An externally specified unit of work
for the computing system from the stand­
point of installation accounting and oper­
ating system control. A job consists of
one or more job steps.

job control statement: Anyone of the
control statements in the input job stream
that identifies a job or defines its
requirements.

job library: A concatenation of user­
identified partitioned data sets used as
the primary source of load modules for a
given job.

job management: A general term that
collectively describes the functions of the
job scheduler and master scheduler.

iob scheduler: The control program fUnc­
tion that controls input job streams and
system output, obtains input/output re­
sources for jobs and job steps, attaches
tasks corresponding to job steps, and oth­
erwise regulates the use of the computing
system by jobs. (See reader/interpreter,
initiator/terminator, output writer.)

job (JOB) statement: The control statement
in the input job stream that identifies the
beginning of a series of job control state­
ments for single job.

job step: A unit of work for the computing
system from the standpoint of the user,
presented to the control program by job
control statements as a request for execu­
tion of an explicitly identified program
and a description of resources required by

82

it. A job step consists of the external
specifications for work that is to be done
as a task or set of tasks. Hence,- also
used to denote the set of all tasks which
have their origin in a job step specifi­
cation.

language translator: A general term for
any assembler, compiler, or other routine
:that accepts statements in one language and
produces equivalent statements in another
language.

·library:
1. In general, a collection of objects
(e.g. , data sets, volumes, card decks)

,associated with a particular use, and the
:location of which is identified in a direc­
:tory of some type. In this context, see
job library, link library, system library.
2. Any partitioned data set.

limit priority: A priority specification
associated with every task in a multitask
operation, representing the highest dis­
patching priority that the task may assign
to itself or to any of its subtasks.

link library: A generally accessible par­
·titioned data set which, unless otherwise
:specified, is used in fetching load modules
referred to in execute (EXEC) statements
:and in ATTACH, LINK, LOAD, and transfer
control (XCTL) macro-instructions.

linkage: The means by which communication
is effected between two routines or
modules.

linkage editor: A program that produces a
load module by transforming object modules
into a format that is acceptable to fetch,
combining separately produced object
modules and previously processed load
modules into a single load module, resolv­
'ing symbolic cross references among them,
·replacing, deleting, and adding control
sections automatically on request, and pro­
viding overlay facilities for modules
requesting them.

:load: To fetch,
:module into main
executing it.

i.e.,
storage

to read a load
preparatory to

:load module: The output of the linkage
editor; a program in a format suitable for
;loading into main storage for execution.

:locate mode: A transmittal mode in which
ldata is pOinted to rather than moved.

'logical record: A record from the stand-
pOint of its content, function, and use
rather than its physical attributes; i.e.,
one that is defined in terms of the infor­
mation it contains.

macro-instruction: A general term used to
collectively describe a macro-instruction
statement, the corresponding macro­
instruction definition, the resulting
assembler language st,atements, and the
machine language instructions and other
data produced from the assembler language
statements; loosely, anyone of these rep­
resentations of a machine language instruc­
tion sequence.

main storage: All addressable storage from
which instructions can be executed or from
whioh data can be loaded directly into
registers.

master scheduler: The control program
function that responds to operator
commands, initiates actions requested
thereby, and ret urns r~:!!quested or required
information; thus, the overriding medium
for controlling the use of the computing
system.

module (programming): The input to, or
output from, a singlE~ execution of an
assembler, compiler, or linkage editor; a
source, object, or load module; hence, a
program unit that is discreet and identifi­
able with respect to compiling, combining
with other units, and loading.

move mode: A transmittal mode in which
data is moved between the buffer and the
user's work area.

multijob operation: A 'term that describes
concurrent execution of job steps from two
or more jobs.

multiprogramming: A general term that
expresses use of the computing system to
fulfill two or more different requirements
concurrently.

multitask operation: Multiprogramming;
called multitask operation to express par­
allel processing not only of many programs,
but also of a single reenterable program
used by many tasks.

~ A set of one or more characters that
identifies a statement, data set, module,
etc., and that is usually associated with
the location of that which it identifies.

nucleus: That portion of the control pro­
gram that must always be present in main
storage. Also, the main storage area used
by the nucleus and other transient control
program routines.

object module: The 01lltput of a single
execution of an assembler or compiler,
which constitutes input to linkage editor.
An object module consists of one or more
control sections in relocatable, though not

executable, form and an associated control
dictionary.

operator command: A statement to the con­
trol program, issued via a console device,
which causes the control program to provide
requested information, alter normal opera­
tions, initiate new operations, or termi­
nate existing operations.

output work queue: A queue of control
information describing system output data
sets, which specifies to an output writer
the location and dispoSition of system
output.

output writer: A job scheduler function
that transcribes specified output data sets
onto a system output unit, independently of
the program that produced such data sets.

overlay: To place a load module or a
segment of a load module into main storage
locations occupied by another load module
or segment.

overlay (load) module: A load module that
has been divided into overlay segments, and
has been provided by linkage editor with
information that enables overlay supervisor
to implement the desired loading of seg­
ments when requested.

overlay segment: (See segment.)

overlay supervisor: A control routine that
initiates and controls fetching of overlay
segments on the basis of information
recorded in the overlay module by linkage
editor.

parallel processing: Concurrent execution
of one or more programs.

path: A series of segments which, as
represented in an overlay tree, form the
shortest distance in a region between a
given segment and the root segment.

.... p~h~y...;s;;.;i=-c=-a;;;;.l~~r..;:e:;..;;c;..;o:;..;;r=-d;::;..;;..: A record from the st'and­
point of the manner or form in which it is
stored, retrieved, and moved; i.e., one
that is defined in terms of physical quali­
ties.

polling: A technique by which each of the
terminals sharing a communications line is
periodically interrogated to determine if
it reqUires servicing.

To note the occurrence of an event.

priority scheduling system: A form of job
scheduler which uses input and output work
queues to improve system performance.

private library
parti tioned (lata

(of a job step): Any
set which is neither the

Glossary 83

link library
library.

nor any part of the job

problem program: Any of the class of
routines that perform processing of the
type for which a computing system is
intended, and including routines that solve
problems, monitor and control industrial
processes, sort and merge records, perform
computations, process transactions against
stored records, etc.

processing program: A general term for any
program that is not a control program.

protection key: An indicator associated
with a task which appears in the program
status word whenever the task is in
control, and which must match the storage
keys of all storage blocks which it is to
use.

qualified name: A data set name that is
composed of multiple names separated by
periods (e.g., TREE.FRUIT.APPLE) •

qualifier: All component names in a quali­
fied name other than the rightmost (which
is called the simple name) •

queue control block (QCB): A control block
that is used to regulate the sequential use
of ,a programmer-defined facility among
requesting tasks.

queued access method: Any access method
that automatically synchronizes the trans­
fer of data between the program using the
access method and input/output devices,
thereby eliminating delays for input/output
operations. (The primary macro­
instructions used are GET and PUT.)

reader/interpreter: A job scheduler
function that services an input job stream.

ready condition: The condition of a task
that it is in contention for the central
processing unit, all other requirements for
its activation having been satisfied.

real time (interval timer): Actual time.

record: A general term for any unit of
data that is distinct from all others when
considered in a particular context.

reenterable: The attribute of a load
module that allows the same copy of the
load module to be used concurrently by two
or more tasks.

region: A contiguous area of main storage
within which segments can be loaded inde­
pendently of paths in other regions. Only
one path within a region can be in main
storage at one time.

84

relocation: The modification of
constants required to compensate
change of origin of a module or
section.

address
for a

control

~elocation dictionary: That part of an
Object or load module which identifies all
relocatable address constants in the
~odule.

resource: Any facility of the computing
system or operating system required by a
job or task and including main storage,
~nput/output devices, the central process­
~ng unit, data sets, and control and proc­
essing programs.

resource manager: A general term for any
control program function responsible for
the allocation of a resource.

restart: To reestablish the
job using the information
checkpoint.

status of a
recorded at a

return code: A value that is by system
convention placed in a designated register
:(the "return code register") at tl1e comple­
tion of a program. The value of the code,
which is established by user-convention,
~ay be used to influence the execution of
succeeding programs or, in the case of an
abnormal end of task, it may simply be
printed for programmer analySis.

return code register: A register identifi­
ed by system convention in which a user­
specified condition code is placed, at the
pompletion of a program.

reusable: The attribute of a routine that
the same copy of the routine can be used by
two or more tasks. (See reenterable,
serially reusable.)

roll in: To reinstate a task or a set of
tasks that had been rolled out.

rollout: To record on an auxiliary stor­
:age device the contents of main storage
tocations associated with a task so as to
:free main storage for allocation to a task
,of higher priority, and to do so at the
!discretion of the control program rather
than the task that is rolled out.

:root segment: That segment of an overlay
program that remains in main storage at all
'times during the execution of the overlay
program; the first segment in an overlay
'program.

scatter loading: The form of fetch that
may place the control sections of a load
module into non-contiguous positions of
main storage.

scheduler:
scheduler.)

(See master scheduler and job

secondary storage: Auxiliary storage.

seek: To position the access mechanism of
a direct-access device at a specified loca­
tion.

segment:
1. The smallest functional unit (one or
more control sections) that can be loaded
as one logical entity during execution of
an overlay program.
2. As applied to telecommunications, a
portion of a message that can be contained
in a buffer of specified size.

sequential scheduling system: A form of
the job scheduler which recognizes one job
step at a time in the sequence in which
each job appears in the input job stream.

serially reusable: The attribute of a
routine that when in main storage the same
copy of the routine can be used by another
task after the current use has been con­
cluded.

service program: Any of the class of
standard routines that assist in the use of
a computing system and in the successful
execution of problem programs, without con­
tributing directly to control of the system
or production of results, and including
utilities, simulators, 1:.est and debugging
routines, etc.

short block: A block of
which contains fewer logical
are standard for a block.

F format data
records than

simple buffering: A technique for con­
trolling buffers in such a way that the
buffers are assigned to a single data
control block and remain so assigned until
the data control block is closed.

simple name: The righ1:most component of a
qualified name (e.g., APPLE is the simple
name in TREE.FRUIT.APPL~ •

source module: A series of statements in
the symbolic language of an assembler or
compiler, which constitutes the entire
input to a single execution of the assem­
bler or compiler.

stacked job processing: A technique that
permits multiple job definitions to be
grouped (stacke~ for presentation to the
system, which automatically recognizes the
jobs, one after the other. More advanced
systems allow job definitions to be added
to the group (stack) at any time and from
any source, and also hOllor priorities.

storage block: A contiguous area of main
storage consisting of 2048 bytes to which a
storage key can be assigned.

storage key: An indicator associated with
a storage block or blocks, which requires
that tasks have a matching protection key
to use the blocks.

substitute mode: A transmittal mode used
with exchange buffering in which segments
are pointed to and exchanged with user work
areas.

subtask: A task that is created by another
task by means of the ATTACH macro­
instruction.

supervisor: As applied to Operating
System/360, a routine or routines executed
in response to a requirement for altering
or interrupting the flow of operations
through the central processing unit, or for
performance of input/output operations,
and, therefore, the medium through which
the use of resources is coordinated and the
flow of operations through the central
processing unit is maintained; hence, a
control routine that is executed in
supervisor state.

synchronous: Occurring concurrently, and
with a regular or predictable time rela­
tionship.

SYSIN: A name conventionally used as the
data definition name of a data set in the
input job stream.

SYSOUT: An indicator used in data defini­
tion statements to signify that a data set
is to be written on a system output unit.

system input unit: A device specified as a
source of an input job stream.

system library: The collection of all
cataloged data sets at an installation.

system macro-instruction: A pre-defined
macro-instruction that provides access to
operating system facilities.

system output unit: An output device
shared by all jobs, onto which specified
output data is transcribed.

system residence volume: The volume on
which the nucleus of the operating system
and the highest level index of the catalog
are located.

~ A unit of work for the central
processing unit from the standpoint of the
control program; therefore, the basic mul­
tiprogramming unit under the control pro­
gram.

Glossary 85

task control block (TCB): The consolida­
tion of control information related to a
task.

task dispatcher: The control program func­
tion that selects from the task queue the
task that is to have control of the central
processing unit, and gives control to the
task.

task manaqement: A general term that col­
lectively describes those functions of the
control program that regulate the use by
tasks of the central processing unit and
other resources (except for input/output
devices) •

task queue: A queue of all the task
control blocks present in the system at any
one time.

telecommunications: A general term
expressing data transmission between a com­
puting system and remotely located devices
via a unit that performs the necessary
format conversion and controls the rate of
transmission.

teleprocessinq: A term associated with IBM
telecommunications equipment and systems.

test translator: A facility that allows
various debugging procedures to be speci­
fied in assembler language programs.

text: The control sections of an object or
load module, collectively.

throughput: A measure of system

86

efficiency~ the rate at which work can be
handled by a computing system.

transmittal mode: The
contents of an input
lable to the program,
w~ich a program makes
output.

method by which the
buffer are made avai­

and the method by
records available for

turn-around time: The elapsed time between
submission of a job to a computing center
and the return of results.

U format: A
~locks are of
u;nknown length.

data set format
unspecified or

in which
otherwise

user: Anyone who requires the services of
a computing system.

V: format: A data set format in which
logical records are of varying length and
include a length indicator; and in which V
format logical records may be blocked, with
~ach block containing a block length indi­
qator.

volume: All that portion of a single unit
of storage media which is accessible to a
~ingle read/write mechanism.

volume table of contents WTOC):
associated with a direct-access
Which describes each data set
volume.

A table
volume,

on the

wait condition: As applied to tasks, the
condition of a task that it is dependent on
an event or events in order to enter the
i;eady condition.

Abnormal end of task (ABEND) macro-
instruction 41,73

Abnormal end of task exit 41
Access language categories 12
Access method

definition 80
description 12,26
direct 27
indexed sequential 26
parti tioned 26
sequential 26
summary (Table 1) 37
telecommunications 27

Action statements 51
Address constant 14,80
Affinity 57
Alias names 40,80
Allocation 18,66,80
Assembler language program debugging (test

translator) 50
ATTACH macro-instruction

definition 80
dynamic parallel structures 46
subtask creation 67
task creation 18,65

Attribute
data 80
loading 63

Automatic volume recognition (AVR) 16,59
Auxiliary storage

definition 80
locating data on 10

Basic access method 12,30,80
Basic direct access method (BDAM) 27
Basic indexed sequential access method

(BISAM) 26
Basic partitioned access method (BPAM) 26
Basic sequential access method (BSAM) 26
Basic telecommunications access method

(BTAM) 29
BDAM (basic direct access method) 27
BISAM (basic indexed sequential access

method) 26
Block

data 29
definition 80
formats 29
telecommunications 29

Block loading 63,80
Blocking

facilities 29
specification of 15

BPAM (basic partitioned access method) 26
BSAM (basic sequential access

method) 26
BTAM (basic telecommunications access

method) 29
Buffer

assignment techniques 30
definition 80
pools 30

transmittal modes 30
BUFFER macro-instruction 30
Buffer pools 30
Buffering

chained segment 31
exchange 31
facilities 30
simple 31
specification of 15

BUILD macro-instruction 30

CALL macro-instruction 41,43
Catalog

definition 80
editing 25
indexes 11,24
search procedure 24
structure 11

Cataloged data set 11,80
Cataloged procedures 16,58,80
Cataloging 11,23,80
Chained segment buffering 31
Change priority (CHAP) macro-instruction

71,72
Channel affinity 57
Channel separation 57
Character set conventions 78
CHECK macro-instruction

use in BPAM 26
use in BSAM 26

Checkpoint 49,80
Checkpoint (CHKPT) macro-instruction 49
CLOSE functions 22,34
CLOSE macro-instruction 22
Combining Subprograms 13,39
Concatenated data sets 55,80
Connected or concatenated data sets 55,80
Control block 18,22,80
Control dictionary 80
Control program 8,80
Control section

definition 14,80
naming conventions 77
size conventions 78

Control statement
capabilities 52
data definition (DO) 15,52,80
execute (EXEC) 15,52,81
job (JOB) 15,52,82
test translator 50

Control volume 24,80

Data
access methods 25
access routines 34
control block 30,33,80
identifying and locating 10
organizing 11
storing and retrieving 11,23

Data access methods
basic direct 27
basic indexed sequential 26

Index 87

basic partitioned 26
basic sequential 26
basic telecommunications 29
definition 12,80
queued indexed sequential 26
queued sequential 26
queued telecommunications 27
summary (Table 1) 37

Data accessing operation 35
Data access routines 34
Data control block

definition 30,80
fill-in 34
initialization 33

Data definition name (ddname) 52,80
Data definition (DD) statement 15,52,80
Data key 26,27
Data management

definition 81
detailed description 22
facilities provided 10,11
general description 10

Data organization 11,81
Data set

access methods 12,25,80
cataloged 11,23,24,80
connected or concatenated 55,80
control block 22,81
creation 23
definition 10,22,81
deletion 56
dummy 55
editing of 25
extent 22,81
header label (tape) 23
identification and disposition 54
identification and extent control 22
inclusion in input stream 16
label 22,81
name 10,23,77
partitioned 11
password protection of 10,25
security protection of 10
sequence number 23
sharing by subtasks 27
temporary 56
trailer label (tape) 23
updating of 25
use by concurrent tasks 27

Data set control block (DSCB) 22,81
Data set label (DSL) 22,81
DCB

data control block 30,33,80
macro-instruction 34

dcbname 55
ddname 52,80
DD * statement 55
Debugging facilities 50
Deferred exit

at abnormal end of task 73
definition 81
to subroutine 41

Deferred mounting 58
DELETE macro-instruction 45
Dependencies 53
Dequeue (DEQ) macro-instruction 48,70,71
DeSign of reenterable programs 48
DETACH macro-instruction 72,73

88

Device control 11
Device independence 12,81
Direct-access 81
Direct-access storage

creation of data set in 22
space allocation 58
track address independence 79

Direct access volume 10
identification and the VTOC 22
initialization of 22

Direct calls 43
Directory 26
Dispatching priority 72,81
Downward calls 43
DSCB (data set control block) 22,81
DSL (data set label) 22,81
Dummy data sets 55
pynamic parallel program structures 46
Dynamic serial program structures 43

End of block (EOB) 29
End of message (EOM) 29
Enqueue (ENQ) macro-instruction 48,70,71
Event

definition 81
posting 66
synchronization 68
system action at occurance of 69

Event control block (ECB) 67,69,81
Event synchronization 68,69
:Exchange buffering

definition 31,81
substitute mode 32

Exclusive segments 42,81
EXCP macro-instuction 12,35
,Execute channel program (EXCP) macro­

instruction 12,35
Execute (EXEC) statement 15,52,81
Explicit release of main storage space
Explicit request for main storage space

; Explicit wait 68
,Extent 22,81
External symbols

definition 81
naming conventions 77

External termination (of a taSk) 41

'Fetch procedure 63,81
,FIND macro-instruction 26
Fixed-length (F-format) blocks 29,81

;FREEBUF macro-instruction 30
'FREEDBUF macro-instruction 30
; FREEMAIN macro-instruction 48,74

FREEPOOL macro-instruction 74

GDG (generation data group) 24,55,81
Generation and version number 24

i Generation data group (GDG) 24,55,81
GET macro-instruction

implied wait 67
locate mode 31,32
move mode 31
scan mode 26
use in exchange buffering 33
use in QISAM 26
use in QSAM 26
use in QTAM 27,28
use in queued access language 12,31

74
74

GETBUF macro-instruction
GETMAIN macro-instruction
GETPOOL macro-instruction
GET/PUT language 12

30
48,14
30,74

Identifying and locating data 10
Implicit release of main storage space 74
Implicit request for main storage space 74
Implicit wait 67
Inclusive segments 42,8'1
Indexed sequential

access method 26
organization 11

Indexes
catalog 11,23
cylinder 26
definition 81
editing 25
track 26

Indirect calls 43
Initial program load (IPL) 65,81
Initiator 16
Initiator/terminator 17~59,82
Input job stream 15,61,82
Input/output device

allocation 16,56
control 11
names 56,51
pools 51

Input/output overlap 57~58,64
Input/output supervisor 35
Input work queue 17,60,B2
Internal termination (of a task) 41
Interval timer .41,49
IPL (initial program load) 65,81

job 15,52,82
Job account log 11
Job accounting 11
Job control language 15
Job (JOB) statement 15, ~)2, 82
Job library 48,54,82
Job log 54
Job management

detailed description 52
general description '15
options 11

Job priority 16,53
Job scheduler 16,53

description 82
functions 59

Job step 15,82

Labels
data set 22
data set header 23
data set trailer 23
non-standard tape 23
standard 23
volume 10,19

Language translators
definition 8,82
input to 14
output from 14

Library 11,84
Library management 24
Limit priority 12,82
Link library 48,54,82

LINK macro-instruction 43
Linkage editor 14,82
LOAD macro-instruction 45
Load mode 21
Load module

definition 14,82
execution within a task
fetching from library
naming conventions 11
simple structure 42
use by concurrent tasks

40
63

Loading attributes 63
Locate mode

definition 31,82
simple buffering 32

Logical records
definition 82
in data blocks 29
use by concurrent tasks

Magnetic tape volumes 22
Main storage

block loading into 63,80
definition 83
explicit release of
explicit request for
implicit release of
implicit request for
overlaying 42,43

74
74

74
74

48

26

passing and sharing of 75
scatter loading into 63,84
subpools 75

Main storage allocation 74
Master password 25
Master scheduler 16,52

definition 83
functions 61
in multi task operation 65

Members 11,26
Message

operator 16
remote 11,29

Model data set label 25
Move mode

definition 31,83
simple buffering 31

Multijob initiation 18,60
Multijob operation 60,16,83
Multiprogramming 18,83
Multitask operation 64

advantages of 19
definition 83
job priority in 18
main storage allocation 74

Names
alias 40,80
conventions 17
data set 10,22
qualified 23,84
simple 23,85

Nested subprograms 45
Non-reusable 41
Non-setup jobs 11,53
Non-setup padding 11,59
Non-standard tape labels 23
NOTE macro-instruction 13

Index 89

Object module
definition 13,83
naming conventions 77

OPEN functions 22,33
in simple structured programs
preparing CCW lists 35

OPEN macro-instruction 22
open functions 33
protection flag test 25

Operating system
benefits to the programmer 8
description 2,8
elements 8

Operator commands 15,62,83
Operator communications 15
Operator messages

conventions 78
in priority scheduling system
in sequential scheduling system

Organizing data 11
Output work queue 17,61,83
Output writers 17,60,83
Overlay 14,63,83
Overlay module 83
Overlay segment 42,85
Overlay structured program 42
Overlay supervisor 43,83
Overlay tree structure 42

Partitioned
access method 26
organization 11

Partitioned data set (PDS)
definition 11
directory 26
member 11

Passed subpools 75
Passing and sharing

of data sets 27

41

17
16

of main storage areas (subpools) 75
Passwords 25
Path 43,83
PDS (partitioned data set) 26
Planned overlay structures

description 39,42
versus dynamic structures 46

POINT macro-instruction 13
Polling 29,83
POST macro-instruction 68
Priorities

changes to 71
dispatching 72,81
limit 72,82
roll-out 72,76

Priority scheduling system 17,83
Private library 48,83
Private volume 58
Processing programs 8,84
Program

90

and SUbprogram 13
completion of 72
contrasted with task 18
conventions for sharing 78
debugging facilities 50
deferred exit from 41
design facilities 47
error exits from 41
interruption handling of 41

not reusable 47
reenterable 48,84
reusable 48,84
serially reusable 48,85

Program design and preparation
detailed description 39
general description 13

Program error exits 41
Program segmentation 39
Program segments 42,43
Program source selection 54
Program structures 39

dynamic parallel 46
dynamic serial 43
planned overlay 42
simple 40

Projected mount 59
Protection key 48,84
PUT macro-instruction

load mode 26
locate mode 31
move mode 31
use in exchange buffering 32
use in QISAM 26
use in QSAM 26
use in QTAM 27,28
use in queued access language 12,31
use in simple buffering 32

PUTX macro-instruction
use in QISAM 26
use in simple buffering 32

QISAM (queued indexed sequential access
method) 26

QSAM (queued sequential access method) 26
QTAM (queued telecommunications access

method) 27
Qualified name 10,23,84
Qualifier 11,84
Queue control block (QCB) 84
Queued access methods 12,31,84
Queued indexed sequential access method

(QISAM) 26
Queued sequential access method (QSAM) 26
Queued telecommunications access method

(QTAM) 27

Read only 48
READ macro-instruction

use in basic access language 12,30
use in BDAM 27
use in BISAM 26
use in BPAM 26
use in BSAM 26
use in BTAM 29

READ/WRITE language 12
Reader/interpreter 16,59,84
Ready condition 19,67,84
Real time 49,84
Reenterable programs

definition 84
design of 48
shared use of 49

Region 43,84
Relocation 39,84
RELSE macro-instruction 12
Remote stacked-job processing 18,59
Remote terminals 11,18

Resource allocati on,; 18,67
Resource managers 167,84
Resources

controlling access to 71
definition 84
passing to subtasks 68
serially-reusable 71
use by tasks 18,67

Restart 49,84
RETURN macro-instruction

in dynamic structured programs 44
in simple structured programs 40
task termination 72

Reusability 48,84
Roll-in 76,84
Roll-out 72,76,84
Root segment 42,63,84

SAVE macro-instruction 40
Scan mode 27
Scatter loading 63,84
Scheduling controls 53
Secondary storage 42,85
Segment

definition 85
overlay 42
program 41,42
telecommunications 2~J

Segment load (SEGLD) macro-instruction 43
Segment wait (SEGWT) macro-instruction 43
Separation 57
Sequential

access method 26
organization 11

Sequential scheduling system 16,85
Serially reusable

programs 48,85
resources 71

Service programs 8,85
Set lower limits (SETL) macro­
instruction 27

Set program interrupt exit (SPIE) macro-
instruction 41

Set timer (STIMER) macro-·instruction 41,49
Shared subpools 75
Simple buffering

definition 31,85
locate mode 32
move mode 32

Simple name 23,85
Simple program structures 39,40
Single-task operations 63,64
Source language debugging' conventions 79
Source module 13,85
Specify task abnormal exit (STAE) macro­
instruction 41

SPIE (set program interrupt exit) macro­
instruction 41

Split cylinder 58
STAE (specify task abnormal exit) macro-
instruction 41

Standard label 23
STIMER (set timer) macro-instruction 41,50
Storage key 48,85
Storage protection 48
Storing and retrieving data 11
STOW macro-instruction 26
Subpools 75

Subprogram
at different levels of control 13
at same and different levels of

control 14
combining 13
definition 13
delays expected in execution of 47
immediate requirement for 46
linkage conventions 78
nesting 45
no delay expected in 47
within a program 40

Subroutines 41
Substitute mode

definition 31,85
exchange buffering 32

Subtask
abnormal termination of 73
changing priority of 72
creation 65
definition 85
end of 41
sharing resources 68
sharing subpools 75

Supervisor 16,85
Supervisor call (Svq 43
SYSIN 55,85
SYSOUT 61,85
System conventions 77
System library 85
System output data 17,60
System output writers 17,60,83
System residence volume 24,85

Task control block (TCB) 18,67,86
Task dispatcher 67,86
Task management

definition 86
detailed description 63
general description 18

Task queue 18,67,68,86
Task time 49
Tasks

active 18,67
attaching a subtask 67
changing priority of 72
communication conventions 78
concurrent use of data set 27
concurrent use of reenterable load

module 48
creation (ATTACH) 18,39,46,65
definition 18,85
dispatching of 19
passing information between 76
preventing interference between 27
priorities 18,71,72,76
queueing of 18,67
ready condition 18,67,84
representation of 18
roll-out and roll-in of 76
switching control among 19
synchronization between 69
termination of 41,45
use of resources 18
waitcondition 18,67,86

TCB (task control bloc~ 18,67,86
Telecommunications

access method 27,29

Index 91

definition 86
organization 11

Telecommunications jobs 18,60,65
Teleprocessing 71,86
Temporary data set 56
TEST CLOSE macro-instruction 51
TEST OPEN macro-instruction 50
TEST option (test translator) 50
TEST output 51
Test timer (TTlMER) macro-
instruction 41,50

Test translator 50,51,86
Throughput 86
TI~~ macro-instruction 49
Timer 41,49
Track index 26
Transfer control (XCTL) macro-instruction

44,72
Transient control program routines 64
Transmittal modes 31,86
Tree structure 42
TRUNC macro-instruction 12
TTlMER (test timer) macro-
instruction 41,50

Turnaround time
definition 86
in multitask operation 18,64
with output writers 60

Unlabeled tapes 23
Unspecified-length (U-format)

blocks 29,86
Upward calls 43

Variable-length (V-format) blocks 29,86
Volume

92

control 24
definition 10,86
direct access 10,22

editing 25
examples of 10
labels 10,79
magnetic tape 22
mounting 15,16,17
private 58
system residence 24,85
table of contents 10,22,86

Volume table of contents (VTOC)

Wait condition 18,67,86
WAIT macro-instruction

conventions for 78

10,22,86

explicit or implicit statement of 67
use.in BDAM 27
use in BISAM 26
use in BTAM 29
use in event synchronization 68

WRITE macro-instrUction
use in basic access language 12,30
use in BDAM 27
use in BISAM 26
use in BPAM 26
use in BSAM 26
use in BTAM 29

Write-to-Iog (WT~ macro-instruction 54
Write-to-operator (WTO) macro­
instruction 61

Write-to-operator with reply (WTOR) macro­
instruction 61

WTL (write to log) macro­
instruction 54

WTO (write to operator) macro­
instruction 61

WTOR (write to operator with reply)
macro-instruction 61

XCTL (transfer control) macro­
instruction 44,72

READER'S COMMENTS

IBM Operating System/360

Ti tle: Concepts and Facilities

Is the material:
Easy to Read?
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience?

How did you use this publication?
As an introduction to the subject

Yes

Other ________________________________ __

Please check the items that describe your position:

Form: C28-6535-0

No

___ For additional knowledge
fold

_ Customer personnel _Operator
_ IBM personnel _ Programmer
_ Manager _Customer Engineer

_ Sales Representative
_ Systems Engineer
_Trainee

_ Systems Analyst _ Instructor Other ____________ __

Please check specific criticism(s), give page number(s) ,and explain below:
_ Clarification on page (s)
_ Addition on page (s)
_ Deletion on page (s)
_ Error on page (s)

Explanation:

Name ______________________________ ___

Address ____________________________ __

FOI.D ON TWO LINES, STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

fold

staple staple

fold fold
---------------------------------~---

fold

r--l I BUSINESS REPLY MAIL I
I NO POSTAGE STAMP NECESSARY IF M~ILED IN U. S. A. I L ________________________________ ~ _________________ J

POSTAGE NILL BE PAID BY

IBM CORPORATION
P. O. BOX 390
POUGHKEEPSIE, N. Y. 12602

ATTN: PROGRAMMIN~ SYSTEMS PUBLICATIONS
DEPT. 058

r---------------------l I FIRST CLASS I
I PERMIT NO. 81 I
I I
I I
I POUGHKEEPSIE, N. Y. I L _____________________ J

111111

111111

1\1111

111111

111111

111111

111111

111111

111111

111111

111111

fold

~ z
H
~

~ z

~
~
0 u

4/65:20~-~L·

staple staple

C28-6535-0

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

o
N
co
I

0'1
U1
LV
U1
I

o

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	37
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	89
	90
	91
	92
	replyA
	replyB
	xBack

