
Systems Reference Library

IBM System/360 Operating System

Data Management

This publication contains information
concerning the data management facilities
of the IBM System/360 Operating system. It
provides programmers coding in the assem­
bler language with the information neces­
sary to deSign programs using these facili­
ties.

This publication describes the catalog­
ing, space allocation, and data access
features of the operating system. Informa­
tion is also included on record and label
formats and data organizations.

File No. S360-30
Form C28-6537-1 OS

PREFACE

glossary of IBM System/360 Operatinq
tem: Concepts and Facilities,
C28-6535.

Sys­
Form

This publication, primarily directed to
applications programmers coding in the
assembler language, is a guide to the data
management facilities of the System/360
Operating System. Because it provides
detailed information on the facilities
available and how they are used, program­
mers coding in a language other than the
assembler language will also find this
publication useful.

,This is one of a group of publications
that describe the organization, functions,
and applications of the System/360 Operat­
ing System. Detailed information on and
coding specifications for the macro­
instructions and the control statements
described herein may be found in the
publications IBM System/360 Operating Sys­
tem: control Program Services, Form
C28-6541 and IBM System/360 Operating Sys­
tem: Job control Language, Form C28-6539,
respectively.

It is suggested that the reader be
familiar with the information contained in
the prerequisite publications listed below,
as well as with the functional and opera­
tional characteristics of direct-access
devices as described in the recommended
publication.

PREREQUISITE PUBLICATIONS

IBM System/360 Operating System: Intro­
duction, Form C28-6534

IBM System/360 Operating System: Con­
cepts and Facilities, Form C28-6535

RECOMMENDED PUBLICATION

Terms
defined

used
either

in this
in the

MAJOR REVISION (April, 1966)

publication
text or in

are
the

IBM 2841
A24-3254

This edition, Form C28-6537-1, obsoletes Form C28-6537-0. significant
changes have been made throughout the manual, and this new edition
should be reviewed in its entirety.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

copies of this and other IBM publications can be obtained through IBN
Branch Offices.

A form for readers' comments appears at the back of this publication.
It may be mailed directly to IBM. Address any additional comments
concerning this publication to the IBM Corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

©by International Business Machines Corporation, 1965, 1966

Storage Control Unit, Form

INTRODUCTION • •

Data Set Control

Data Access. • •

DATA SET CONTROL FACILITIES.

Data Sets
Data Set Names.

Data Set Cataloging •••
The Catalog • • • •

7

7

7

9

9
9

• • •• 9

Control Volumes. • •••
9
9

Structure of Catalog Indexes • 10
Volume Indexes • • • • • 10

Cataloging Data Sets. • • • • •
Generation Data Groups. • • • •

Relative Generation Numbers. • •
Absolute Generation Names. •

Cataloging Generation Data Groups •

• 10
• 10
• 12
• 12
• 12

Data Set Security Protection • ..

Data Set Storage and Volumes • •
Data Storage on Direct-Access

Volumes. • '. • '. • • • ..
Volume Initialization. • •
Storing a Data Set • • • •
Direct-Access Volume Options •

Data Storage on Magnetic Tape
Volumes. • • .. • • • • .•

Volume Labeling • • • • •
Magnetic Tape Labels •
Magnetic Tape Volume
Organization. • • • •

Direct-Access Labels •

Data Set Record Formats.
Blocks ••••••••••
Logical Records
Record Blocking •
Record Formats.

Fixed-Length (Format F) ...
Variable-Length (Format V)
Undefined (Format U) •

Control Character • •

• 13

• • 13

• • 13
• • 14
• • 14

15

• 15
• • 15
• • 16

17
• • 18

• 19
• 20

• • 20
• • 20

• 20
• • 20

• 21
• • 21
• • 21

Data Set Organizations • • • 22
Sequential Organization • • 22

Space Allocation for Sequential
Data Sets • • • • • • • • 22

Partitioned Organization ••••••• 22
Directory. • • '. •• '. • • • • 23
Space Allocation for Partitioned
Data Sets • • • • • • • • • • • • 23

Indexed Sequential Organization • 23
Indexes. • • • • • • • • • 24
Master Index • • • • • • 24
Insertion of Records • • • 25
Overflow Area. • • • • • • 25

CONTENTS

Space Allocation for Indexed
Sequential Data Sets. . 25

Direct Organization • • • • • • • 26
Insertion of Blocks. • • • • • • • 26

Telecommunications Organization • • • 27

Data Set Definition. • • • • • • 27
Data Control Block. • 27

Job File Control Block • • • 28
Data Set Label • • • • • • 28
DCB -- Define Data Control Block • 29
DD Statement/DCB
Macro-Instruction Relationship. • 30

DATA ACCESS METHODS. • • • 31

Macro-Instruction Languages. • • • 31
L~nguage for Queued Access. • • 31
Language for Basic Access • • 31

Data Event Control Block (DECB) •• 32

Classification of Access Methods.
Execute Channel Program (EXCP)
Accessing Procedure. .. • • • .•

OPEN and CLOSE Macro-Instructions •
Use of OPEN and CLOSE.

• 32

• 32
• 33
• 33

Buffers and Buffer Pools • • • 35
Assembly Time Buffer Pool

Construction • •• • • • '. • • • • • 35
BUILD -- Bui ld a Buffer Pool • 35

Object Time Buffer Pool
Construction • • • • • • • •• • 35

GETPOOL -- Get a Buffer Pool • 35
FREEPOOL -- Free a Buffer Pool • • 36

Access Methods for Sequential Data
Sets. • • • •

Data Format-Device Type
Relationships. • • • •

Card Readers and Punches •
Printers • • • • • '. •
Paper Tape Reader. '. • • •
Magnetic Tape. • • '. • •
Direct-Access Devices. • •

Chained Scheduling. • • • • •

• 36

• 36
• 36
• 36
· 36
• 36
• 36
• 37

Queued Sequential Access Method. • 37
Record Formats. • '. • • • • • • • 37
Buffering Considerations. • • •• 37

Buffer Pool Construction • • 37
Buffer Assignment Procedures • 38

Buffering Techniques. • • 38
Simple Buffering • • • • 38
Exchange Buffering • • 38

Macro-Instructions. • • • • 39
GET -- Get a Logical Record. • 39
RELSE -- Release an Input Buffer • 40
PUT -- Put a Logical Record. • • • 40
PUTX -- Put From Existing Data
Set • • • • • • • .. • • • • • • • 40

TRUNC -- Truncate an Output
Buffer. • • • • • • • • • • • • • 41

FEOV -- Force End of Volume. • • • 41
CNTRL -- Control a Printer or
Stacker • • • • • • • • • • 41

PRTOV -- Test for Printer
Overflow. • • • • • 42

Error Conditions. • • • • 42
Input Operations • • • • • •• 42
output Operations. • • • • •• 42

Error Conditions: Internal Details •• 42
Input Operations • • • • • •• 42
Output Operations. • • • • •• 42
Error Analysis Routine

(Synchronous Error Exit). • • 42
Programming Notes • • • • • • • 43

Direct-Access Volume Options • • • 43
Update-in-P lace. • • • • • • • • • 43
Concatenated Data Sets • • • • • • 43
Read Backwa rds • • . • • • • • • • 44
Blocking of Variable-Length
Records • • • • • • • • • •• 44

Basic sequential Access Method •
Record Formats ••••••••
Buffering Considerations. • •

Buffer Pool Construction •
Buffer Assignment Procedures •
GETBUF -- Get a Buffer From a
Pool. •• • • • • • •

FREEBUF -- Return a Buffer to a
Pool. • • • • • • • •

Macro-Instructions ••••
READ -- Read a Block • • •
WRITE -- Write a Block
CHECK -- Wait for and Test
Completion of Read or Write

• 44
• 44

• • 45
• 45

• • 45

• 45

• • 45
• • 45
• • 45

• 46

Operation • • • • • • • • • • • • 46
FEOV -- Force End of Volume. • • • 47
CNTRL -- Control On-Line

Input/Output Devices. • •
PRTOV -- Test for Printer

Overflow. • • • • • • • •
NOTE -- Provide Position

• 47

• • 47

Feedback. • • • • • • • • • • 47
POINT -- Point to Block. • • • 47
BSP -- Backspace One Block • • 48

Error Conditions. • • • • • 48
Programming Notes • • • • • 48

Direct-Access Volume Options • • • 48
Update-in-Place. • • • • • • • • • 48
Read Backwards and Concatenated

Data Sets . .. • • • •
Device Considerations.
Device Independence. •

• 49
• • 49

• 49

Basic Partitioned Access Method. 49
Record Formats and Buffering
Considerations • • • • • • • • • 49

Macro-instructions. • • • • • • 49
FIND -- Position to Member of
Partitioned Data Set. • • • • 49

BLDL -- Build List • • • • • 51
STOW -- Manipulate Partitioned
Data Set Directory. • • • • 51

Programming Note. • • • • • 51
Creating a Partitioned Data Set • • • 51

Concatenation of Partitioned Data
Sets • • • • .• • • • • • • • •

Basic Partitioned Access Method
Compatibility_ • • • • • • • •

Queued Indexed Sequential Access

• 52

• 52

Method. • • • • • • • • '. • • 53
Record Formats. • • • • • • 53

Format F, Unblocked. • • 53
Format F, Blocked. • • • • • • 54
Forma t V, Unbloc ked. • • 54
Format V, Blocked. • • • • • • 54
Overflow Records • • • • 55
Delete Codes • • • _ • • 55

Buffering Considerations. • 56
Buffer Pool Construction • 56
Buffer Assignment Procedures • 56

Macro-Instructions. • • • • • • • 56
PUT -- Put a Logical Record. • 56
GET -- Get a Logical Record.. 56
RELSE -- Release an Input Buffer • 57
SETL -- Set Lower Limit of Scan. • 57
ESETL -- End of Scan • • • • • • • 57
PUTX -- Return a Logical Record. • 57

Exceptional Conditions,. • • • • • • • 58
Creating An Indexed Sequential Data
Set. • • • • • • • • • • • • •

Programming Notes ,. • • • • • •
Direct-Access Volume Option.
Blocking of Variable-Length

Records • • • • • • • • • •

• 59
• 60
• 60

• 60

Basic Indexed Sequential
Record Formats,. • • •

Access Method • 60

Buffering Considerations. • • •
Buffer Pool Construction • •
Buffer Assignment Procedures
FREEDBUF -- Free a Dynamically
Obtained Buffer • • • • • •

Macro-Instructions. • • • • • •
READ -- Retrieve a Logical
Record. • • • • • • • •

WRITE -- Write a Logical Record.
Exceptional Conditions. • • • • • •
Reorganizing an Indexed Sequential

• 60
• 60
• 60
• 61

• 61
• 61

• 61
• 62
• 62

Data Set • • • • • • • • •
Programming Notes ••• • • • •

Overflow Records • • • • • •
Direct-Access Volume Option.

• 63
· 63

• • • 63

Basic Direct Access Method •
Record Formats,. •• • • •
Buffering Considerations.

Buffer Pool Construction
Buffer ASSignment Procedures • •

Macro-Instructions. • • • •
READ -- Read a Block • • • •
WRITE -- write a Block •••
RELEX -- Release Exclusive

· 63

• 63
• 64
• 64
• 64
· 64
· 64
• 64
• 65

Control • • • • • • • • • • . 66
Exceptional Conditions. • • 66
Exclusive Control • • • • • • 67
Extended Search Option,. • . 67
Creating Direct Data Sets • . 67

Format F Blocks With Keys. • • 67
Format F Blocks Without Keys • • • 68
Formats V and U Blocks • • • • • . 68

Programming Notes • •• • • • • . 68

Split cylinder Mode. • • • • • 68
Direct-Access Volume Options • 68

INDEX. • • • • • • • •. • • • • 69

ILLUSTRATIONS

FIGURES

Figure 1. Format of the Catalog ••••• 11
Figure 2. The catalog on Two Volumes •• 11
Figure 3. Organization of Standard

Tape Labels • • • • • • •
Figure 4. Standard Label Formats for

Magnetic Tape • • • • • • • • •
Figure 5. Direct-Access Labeling • •
Figure 6. Blocked Logical Records ••
Figure 7. Format F Records
Figure 8. Format V Records •••••
Figure 9. Format U Records •••••
Figure 10. A Sequentially Organized

Data Set. • • • • • • • • • •
Figure 11. A Partitioned Data Set

with Four Members •• • • • •
Figure 12. Index Structure for an

Indexed Sequential Data Set •

TABLES

• • 16

• • 18
• • 19
• • 20

• 21
• • 21
• • 21

• .. 22

• • 23

• • 24

Table 1. Data Access Methods. • • • 32
Table 2. Data Set Uses Specified in

OPEN Macro-Instruction. • • • • 34
Table 3. Valid Combinations of Modes

and Buffering Techniques. • • • • • • • 40
Table 4. Basic Sequential Access

Method Device Considerations. • • • • • 50
Table 5. Exceptional Conditions With

the Queued Indexed Sequential Access
Method. • • • • • • • • • • • • • • • • 58

Figure 13. Addition of Records to a
1-Cylinder, 3-Track Indexed
Sequential Data Set • • • • • • '.

Figure 14. Addition of Blocks to a
Direct Data Set • • • • • • • • •

Figure 15. Flow of Information To and
From Data Control Block • • • • •

Figure 16. Unblocked Fixed-Length
Records • • • • • • • • • • • • •

Figure 17. Blocked Fixed-Length
Records • • • •• • • • •

Figure 18. Key and Data Areas (Format
F). • • • • • • • • • • • • • . • • •

Figure 19. Unblocked Variable-Length
Records • • • • • • • • '. • • • •

Figure 20. Blocked Variable-Length
Records • • • • • •

Figure 21. Key and Data Area (Format
V).. ••• • • • • • • •

Figure 22. Overflow Records.

25

27

28

• 53

• 54

• 54

• 55

• 55

• 55
• 55

The data management function of the
System/360 Operating System assists pro­
grammers in achieving maximum efficiency in
manag~ng the mass of data and the many
programs that are processed in an installa­
tion. To attain this objective, data man­
agement facilities have been designed that
provide systematic and effective means of
classifying, identifying, storing, catalog­
ing, and retrieving all data (including
loadable programs) processed by the operat­
ing system.

The facilities provided can be grouped
into two major categories: data set control
and data access.

DATA SET CONTROL

The System/360 Operating System provides
a comprehensive group of facilities that
feature automatic and efficient control of
many data processing operations previously
performed by programming personnel as cler­
ical tasks. A number of these control
facilities are described in the following
paragraphs.

Data set location control, supported by
an extensive cataloging system, enables
programmers to retrieve data and programs
by symbolic name alone, without specifying
volume serial number. In freeing computing
personnel from the necessity of maintaining
involved volume serial number inventory
lists of data and programs stored within
the system, the catalog reduces manual
intervention and its concomitant -- human
'error.

The data sets stored within the catalog­
ing system can be classified according to
installation needs. For example, a sales
department can classify the data it uses by
geographic area, by individual salesman, or
by any other logical plan.

Another major facility of the cataloging
system enables programmers to classify suc­
cessive generations (updates) of related
data. These generations can be given simi­
lar names and subsequently be referred to
relative to the current generation. The
system automatically maintains a list of
the most recent generations that have been
produced.

Control of confidential data is a recur­
ring managerial problem that is solved by

INTRODUCTION

the data set security facility of the
System/360 Operating System. Using this
facility, a programmer can prevent unautho­
rized access to payroll data sets, sales
forecast data sets, and all other data sets
requiring special security attention. A
security protected data set is made avail­
able for processing only when the correct
password is furnished.

In addition to control of data set
location and security, control of direct­
access storage space allocation is provided
by the system. This control facility frees
programmers from the details involved in
allocating direct-access storage space to a
data set. The programmer need specify only
the amount of space required, and
optionally the storage device required, and
space is allocated accordingly.

The system, as well as providing a wide
range of control facilities, permits the
programmer to organize data sets and indi­
vidual records in a variety of standard
formats that can be selected to meet spe­
cific data processing needs.

DATA ACCESS

The data access facilities provided by
the operating system are a major expansion
of the input/output control systems (IOCS)
of previous operating systems.

Input/output routines are provided to
efficiently schedule and control the trans­
fer of data "between main storage and
input/output devices. Routines are avail­
able to perform the following functions:

• Read data.

• write data.

• Block and deblock records.

• Overlap reading/writing and processing
operations.

• Read and verify volume and data set
labels.

• Write data set labels.

• Automatically position and reposition
volumes.

• Detect error conditions and correct
them when possible.

Introduction 7

• Provide exits to user-written error and
label routines.

Flexibility has been a major design
principle in the system's data access
facilities. The programmer and the instal­
lation can select from among eight methods
of data access to obtain a group of facili­
ties tailored to their processing require­
ments. Each access method supplies a com­
prehensive group of macro-instructions that
permit the programmer to specify
input/output requests with a minimum of
effort; the programmer need not be con­
cerned with learning the individual access
characteristics of the many input/output
devices supported by the system.

In brief, the data management facilities
provided by the system/360 Operating System
offer a number of advantages:

8

• Permit the programmer to store, modify,
and refer to programs and data using
the storage facilities of the system.

• Free the programmer from concern with
specific input/output device configu­
rations.

• Permit the programmer to defer such
specifications as device type, block
length, and buffer size until a program
is submitted for execution.

• Permit the free interchange of programs
and data among installations.

• Save the time and expense involved in
writing routines similar to those pro­
vided.

• Allow programmers to concentrate their
programming efforts on processing the
records read and written by the data
management function.

• Provide standardized methods for hand­
ling a wide range of input/output and
related operations.

• Provide an input/output system that
handles messages received from or sent
to remote terminals.

• Provide the flexibility for including
new or improved devices as they become
available.

This section describes the data set
control facilities of the System/360 Oper­
ating System. Data set identification,
cataloging, security, storage space alloca­
tion, and data definition procedures are
described. Information is also provided on
label and record formats, and data set
organizations.

DATA SETS

A data set is a named, organized collec­
tion of one or more records that are
logically related. Information in data
sets is not restricted to a specific type,
purpose, or storage medium. A data set may
be, for example, a source program, a
library of macro-instructions, or a file of
data records processed by a problem pro­
gram.

DATA SET NAMES

The name of a data set identifies a
group of records as a data set. All data
sets recognized by name alone (i.e., refer­
able without volume identification) and all
data sets residing on a given volume must
be distinguished from one another by unique
names. To assist in this, the system
provides a means of qualifying data set
names.

A data set name is one simple name or a
series of simple names joined together so
that each represents a level of qualifica­
tion. For example, the data set name
DEPT999~SMITH.DATA3 is composed of three
simple names that are delimited to indicate
a hierarchy of categories. Starting from
the left, each simple name is a category
within which the next simple name is a
unique subcategory.

Every simple name consists of one to
eight alphameric characters, the first of
which must be alphabetic. The special
character period (•) separates simple
names from each other. Including all sim­
ple names and periods, the length of a data
set name must not exceed 44 characters.
Thus, a maximum of 22 qualification levels
is possible for a data set name.

To specify the use of a particular data
set by a problem program, the programmer

DATA SET CONTROL FACILITIES

denotes the data set name and other perti­
nent information (e .• g., volume serial
number) in a control statement called the
data definition (DO) statement. (A com­
plete description of the DD statement for­
mat can be found in the publication IBM
System/360 Operating System: Job Control
Language.

To permit different data sets to be
processed without program reassembly, the
programmer does not refer to the data set
in problem programs by its name, but refers
to a data control block associated with the
name of the DD statement. The programmer
reserves space for a data control block at
assembly time by issuing a DCB macro­
instruction. The DD statement is supplied
in the job stream at execution time.

DATA SET CATALOGING

Keeping track of the volume on which a
particular data set resides is a burden,
and often a source of error. The
cataloging facility of the System/360 Oper­
ating System remedies this situation. It
allows the programmer to refer to data sets
without specifying their physical loca­
tions. When a data set is cataloged, the
serial number of its volume is associated
in the catalog with the name of the data
set.

THE CATALOG

The catalog of data sets is itself a
data set residing on one or more direct­
access volumes. It is organized into
indexes that connect data set names to
corresponding volume serial numbers (and to
data set sequence numbers for magnetic tape
volumes). Any data set residing on a
direct-access or a magnetic tape volume can
be cataloged.

Control Volumes

Although the complete catalog usually
exists on the system residence volume, the
programmer can request that parts of the
catalog be placed on other volumes. Any
volume, including the system residence vol-

Data Set Control Facilities 9

ume, that contains part of the catalog is
called a control volume. An installation
can construct control volumes for catalog­
ing specific types of functionally related
data sets, such as scientific or commer­
cial.

In general, control volumes are remov­
able so that complete data separation may
be achieved. For example, a collection of
data sets might be cataloged on a removable
control volume apart from the system resi­
dence volume and separate from the rest of
the catalog. This volume and its related
data sets could then be moved freely from
one installation to another, as long as all
highest level names on the control volume
are entered in the catalog of the system
residence volume at each installation. For
any given data set, only one level of
control volume other than the system resi­
dence volume is permitted.

Structure of catalog Indexes

As previously described, a data set name
consists of one or more simple names. For
every distinct level of qualification in
the name of a cataloged data set, the
catalog includes a group of one or more
blocks called an index. catalog indexes
are created and modified, as required, by a
utility program. (Refer to the publication
IBM system/360 Operating System: utilities,
Form C28-6586.)

The hierarchy of index levels is deter­
mined by the order of categories in the
data set name. The logical records in any
index are entries of the simple names and
corresponding physical locations of all
subordinate indexes or data sets. Every
control volume contains a master index
called the volume index, which has a record
of the first simple name of each data set
cataloged on that control volume. The
lowest level index for a data set name
contains the volume information needed to
locate the data set itself.

Volume Indexes

A catalog search always starts in a
volume index. If a specific control volume
on which to begin the search has not been
specified, searches of the catalog start
with a scan of the volume index on the
system residence volume and may continue to
the volume index of other control volumes
until the lowest level index for the
desired data set is found.

Figure
structure.

10

1 represents a logical catalog
Every cataloged data set is

cataloged under a specific hierarchy of
indexes. The name of the data set speci­
fies the indexes under which it is cata­
loged. The cataloged data set with the
name E.A.P in Figure 1 indicates that the
data set having the simple name P is
cataloged under index A which, in turn, is
subordinate to index E.

Figure 2 is an extension of Figure 1
showing two index hierarchies distributed
between the system residence volume and
another control volume. Note that index E,
which is a highest level index on the
control volume, has an entry in the volume
index of both the system residence volume
and the other control volume.

CATALOGING DATA SETS

A data set can be cataloged only if the
index structure that determines its name
exists in the catalog. For example, if a
data set named A.B.C is to be cataloged,
the volume index on the system residence
volume must have an entry for an index A.
The index A must have an entry directed to
an index called B. When data set A.B.C is
cataloged, C is entered into index B with
an indication of the volume location of the
data set.

cataloging a data set with only one
simple name is permissible and may be
desirable if only a few data sets are to be
so cataloged. These data sets can be
rapidly retrieved, but retrieval time for
data sets with qualified names is increased
proportionally.

To catalog a data set, the programmer
specifies CATLG in the DISP parameter of
the DD statement. To remove references to
a data set from the catalog, the programmer
specifies UNCATLG in the DISP parameter. A
data set can be deleted as well as have its
catalog references erased, if the program­
mer specifies DELETE in the DISP parameter.
Cataloging, uncataloging, or deletion of a
data set can also be accomplished through
the use of the utility program referred to
in the section, "Structure of Catalog
Indexes."

GENERATION DATA GROUPS

certain data sets that are periodically
updated may be chronologically related to
each other. For example, similar payroll
data sets may be created every week.
Cataloging such data sets with unique data
set names would be as inconvenient as

Index
B

Figure 1.

Index B

Figure 2.

Volume
Index

Format of the catalog

System Residence Volume

Volume Table of Contents

Volume Table of Contents

~ __ 7

Index
E A

The Catalog on Two Volumes

Control Volume

Volume Table of Contents

Data set Control Facilities 11

giving them all the same name and account­
ing for volume identification. For this
reason, the system provides an option with
the cataloging facility that assigns num­
bers to individual data sets in a chrono­
logical collection, thereby allowing the
programmer to catalog the entire collection
under a single name. The programmer can
distinguish among successive data sets in
the collection without assigning a new name
to each data set. Since each data set is
normally created by updating the data set
created on the previous run, the update is
called a generation, and the number asso­
ciated with it is called a generation
number.

A generation data group is a collection
of related cataloged data sets that can be
referred to by a common name in a DD
statement. The programmer can refer to a
particular generation by specifying, with
the common name of the group, either the
relative generation number or the genera­
tion name of the data set. As explained in
the following paragraphs, the relative gen­
eration number of a data set will vary in
time, but its generation name is always the
same.

Relative Generation Numbers

At any given time, the relative genera­
tion number of the most recently cataloged
data set in any generation data group is
zero. The relative generation numbers of
previously cataloged data sets in the group
are negative integers, indicating recency
relative to that of the latest cataloged
generation. New data sets for the group
are created by the use of positive integers
as relative generation numbers. For exam­
ple, when payroll data sets compose a
generation data group named PAYROLL, the
programmer can refer to the most recent
generation as PAYROLL(O) and to immediately
preceding generations as PAYROLL(-l),
PAYROLL(-2), etc. A new generation would
then be referred to as PAYROLL(+l). After
this new generation is cataloged, it auto­
matically becomes PAYROLLCO), and the old
PAYROLL(O) is referred to as PAYROLL(-l).
Thus, adding a generation changes the rela­
tive generation numbers of all the data
sets in the group.

Relative generation numbers are depen­
dent upon the physical position of the
generation name in the index. If a name is
dropped from the index, the contents of the
index are shifted. Therefore, if a data
set from the generation data group is
removed from the catalog, its relative
generation number is automatically asso­
ciated with the location of the immediately
preceding generation.

12

Absolute Generation Names

To each data set in a generation data
group, the system assigns an absolute gen­
eration name of the form GxxxxVyy, where
xxxx is an unsigned 4-digit decimal genera­
tion number and yy is an unsigned 2-digit
decimal version number. Appending the gen­
eration name to the name of the generation
data group provides a unique name for the
data set. For example, if 0001 is the
generation number initially specified for
generation data group A.PAYROLL, the pro­
grammer can refer to the first generation
as A.PAYROLL.G0001VOO and to subsequent
generations as A.PAYROLL.G0002VOO,
A.PAYROLL.G0003VOO, etc.

When a data set is created by the system
as a new generation, the system develops
its generation and version numbers by
adding the positive relative generation
number specified in the DD statement to the
previous generation number and setting the
version number to 'zero. Thus, if the
present generation is· G1384V03 and the
incrementing factor specified is the rela­
tive generation number (+2), the new gener­
ation is G1386VOO. The system does not
automatically create nonzero version num­
bers. If the programmer wishes to replace
an existing generation and, optionally, to
change the version number, he must specify
CATLG in the DISP parameter of the DD
statement for the new data set. The system
automatically changes the catalog entry for
the named generation. Thus, if a new data
set that replaces the generation named
G1386VOO is to be cataloged, it may be
named G1386V01. G1386VOl replaces G1386VOO
in the generation data group index when the
system changes the catalog entry. The data
set that was replaced is not scratched
automatically.

By specifying the name of the generation
data group without any generation number,
e.g., A.PAYROLL, the programmer can refer
to a 'concatenation' of all the existing
generations. This allows all the genera­
tions currently cataloged to be retrieved
as a Single data set starting with the most
recent generation and ending with the
oldest.

CATALOGING GENERATION DATA GROUPS

In the catalog structure, a generation
data group is represented by a lowest level
index that contains an entry for each
generation within the group. To build an
index for a generation data group, the
programmer specifies, for" a model genera­
tion, several parameters in the BLDG state-

ment, a utility program control statement.
(For a description of the BLDG statement,
refer to the publication IBM System/360
Operating System: utilities.)

One of these parameters specifies the
number of generations the system is to
maintain. For example, if PAYROLL(-2),
PAYROLL(-l), and PAYROLL(O) are to be main­
tained, the programmer specifies three
entries. When the specified number of
entries fills the index and another genera­
tion is to be cataloged, the oldest genera­
tion is usually droppe~ from the generation
data group index to allow space for the
newest.

As an alternative, the programmer may
specify a parameter that causes all the old
generations to be dropped so that the
newest data set effectively begins another
generation data group. For example, PAY­
ROLL generations accumulated IlIlonday through
Friday might be dropped the following Mon­
day. The index of this generation data
group is large enough for only five
entries, and an attempt to catalog a sixth
entry causes the index to be emptied. The
sixth entry becomes the first entry of the
new generation data group.

If there are exceptions to such a weekly
schedule, such as holidays when no PAYROLL
generation is created, the correct entries
in the index are not filled unless
appropriate "makeup" generations are cata­
loged. On Monday following a week with a
holiday, the programmer could create a
dummy generation to make up for the absent
generation before cataloging Monday's gen­
eration. To create and catalog this extra
generation, the programmer could specify
the generation name GOOOOVOO in the DD
statement and then execute a job step to
fill the index with this entry.

Another parameter in the BLDG statement
may be used to indicate that data sets
residing on direct-access volumes are to be
scratched when their entries are removed
from the catalog.

DATA SET SECURITY PROTECTION

The data set security facility provides
protection of data sets residing on stand­
ard labeled tapes or direct-access volumes
from unauthorized use by problem programs.
A protected data set cannot be made avail­
able to a problem program until a password
associated with the data set is entered
into the system. If the correct password
is issued, the problem program can either
read, write, or read and/or write the
protected data set. Each protected data

set has at least one entry in a cataloged
data set named PASSWORD that the programmer
creates on the system residence volume.
Each entry consists of a 52-byte key (a
44-byte data set name field and an 8-byte
password field) followed by an 80-byte
record. If the name of the data set is
less than 44 bytes, it must be left­
justified in its field, with blanks filling
all unused positions. The first two bytes
of the 80-byte record contain a binary
counter, which will be incremented by one
every time the data set is successfully
opened. The third byte of the 80-byte
record is a mode field, which indicates
that the problem program can either read,
write, or read and/or write the data set.
The remaining 77 bytes can be used at the
discretion of the installation.

The PASSWORD data set itself can be
protected when its own name is associated
with a password (called the master
password) in one of its records. This data
set is created and maintained by the
programmer.

When a problem program attempts to proc­
ess a protected data set, the operator
receives a console message requesting the
password of the data set. If the operator
issues the correct password (he is glven
two tries), the problem program is permit­
ted to access the data set; otherwise, the
program terminates abnormally, and the
operator is so informed.

DATA SET STORAGE AND VOLUMES

System/360 provides an unprecedented
variety of devices for collecting, storing,
and distributing data. Despite this vari­
ety, the storage units have many common
characteristics. For convenience, there­
fore, the generic term volume is used to
refer to such diverse storage media as tape
reels, disk packs, data cells, and drums.

Data sets are identified to the operat­
ing system by volume serial numbers. These
numbers must be supplied to the system
unless the data set is cataloged or passed
or unless the data set is a new output data
set.

DATA STORAGE ON DIRECT-ACCESS VOLUMES

Direct-access volumes play a major role
in the System/360 Operating System. These
volumes are used to store not only the
operating system itself, but also all load
modules processed by the linkage editor.
In addition, direct-access volumes are used

Data Set Control Facilities 13

by many installations as the chief storage
media for the vast number of data sets
processed each day. The following sections
describe the facilities for storage space
allocation on direct-access volumes.

Volume Initialization

Before a direct-access volume can be
used for data storage, it must be initial­
ized by a volume initialization utility
program. This program writes standard home
address and track descriptor records,
checks for bad tracks, automatically
assigns alternate tracks (if necessary),
and initializes the remainder of each track
to binary zeros. It also writes the ini­
tial volume label, provides space for addi­
tional volume labels, and writes the volume
table of contents (VTOC), which is dis­
cussed in the following section. This
utility program and the procedure for exe­
cuting it are described in the publication
IBM System/360 Operating System: Utilities.

VOLUME TABLE OF CONTENTS: The volume table
of contents (VTOC) describes the contents
of a direct-access volume. It is a data
set that is composed of a series of data
set control blocks (DSCB), each of which is
composed of one or more control blocks.
The VTOC can contain the following data set
control blocks:

• A DSCB for each data set on that
volume.

• A DSCB that indicates the space allo­
cated to the VTOC itself.

• A DSCB for all tracks on the volume
that are available for allocation.

The DSCB for each data set contains the
name, description, and location on the
volume of the data set; its size depends on
the organization and number of noncontigu­
ous areas of the data set.

Storing a Data Set

When a data set is to be stored on a
direct-access volume, the programmer must
supply the operating system with control
information designating the amount of space
to be allocated to the data set. This
information is specified by using either
the SPACE, SPLIT, or SUBALLOC parameter of
the DD statement for that data set. The
amount of space can be specified in terms

14

of blocks., tracks, or cylinders. Space can
be allocated in a device-independent manner
if the request is in terms of blocks. If
the request is in terms of tracks or
cylinders, the programmer must be aware of
such device considerations as cylinder
capacity.

ALLOCATION BY BLOCKS: When the amount of
space required is expressed in terms of
blocks, the programmer specifies the num­
ber, average block length, and key length
of the blocks within the data set. From
this information, the operating system cal­
culates and allocates the number of tracks
required. Space is always allocated in
whole track units. The programmer may also
request that the space allocated for a
specified number of blocks begin and end on
cylinder boundaries (ROUND subparameter of
the SPACE parameter).

ALLOCATION BY TRACKS OR CYLINDERS: When
the amount of space required is expressed
in terms of tracks or cylinders, the pro­
grammer must also specify a device type in
the UNIT parameter of the DD statement.

SPLIT CYLINDER: The SPLIT parameter of the
DD statement permits the programmer to
request that cylinder space be allocated so
that portions of two or more data sets use
tracks within each cylinder. For example,
three cylinders might be allocated for two
data sets, one data set to occupy the first
two tracks of each cylinder, and the other
to occupy the remaining tracks. This allo­
cation of split cylinders reduces access
time in specialized applications.

Method of Allocation: The operating system
checks the VTOC to determine available
areas and then allocates space in accor­
dance with the following general rules
(unless the programmer has specified
otherwise) :

1. If the volume on which the data set is
to be stored contains more than one
available area, space is allocated
from the smallest available area large
enough to satisfy the request.

2. If the volume on which the data set is
to be stored contains no single avail­
able area large enough to satisfy the
allocation request, space is allocated
from more than one area. The largest
available areas are used.

3. If the five largest available areas do
not satisfy the allocation request,
the selected volume is not used; allo­
cation is made from another volume
assigned to the data set. The pro­
grammer norrrally need not be concerned
that noncontiguous areas on a volume

are allocated to a data set. The
operating system automatically handles
these discontinuities in data storage
and retrieval operations.

ALLOCATION BY ABSOLUTE ADDRESS: The ABSTR
subparameter of the SPACE parameter allows
the programmer to request that the space to
be allocated begin at a specified track
address. This subparameter must be used if
the volume from which space is to be
allocated was initialized by an IBM
System/360 Basic Operating system utility
program or if any space on the volume was
allocated or scratched by the basic operat­
ing system. It should also be used if the
data set for which space is to be allocated
contains location-dependent information in
the form of absolute track addresses.

OTHER SPACE ALLOCATION OPTIONS: The DD
statement provides the programmer with much
flexibility in specifying space require­
ments. He can specify that space is to be
contiguous (CONTIG subparameter) and he can
suballocate space that already is assigned
(SUBALLOC parameter). The programmer can
also reserve either the largest single
block of available space on a volume (MXIG
subparameter) or up to five of the largest
blocks (ALX subparameter).

Direct-Access Volume Options

The following sections describe two
direct-access volume options.

TRACK OVERFLOW: If the record overflow
feature is included in the computing sys­
tem, the programmer can minimize unused
track space on volumes by specifying the
track overflow option in the DCB macro­
instruction or DD statement for a given
data set. When this option is used, a
record that does not fit on a track is
partially written on that track and
continued on the next track. If this
option is not used, records are not split
between tracks.

WRITE VALIDITY CHECK: If the programmer
specifies the write validity check option
in either the DCB macro-instruction or the
DD statement, the system reads each record
back (without data transfer) and, by test­
ing for a data check condition from the I/O
device, verifies that each record trans­
ferred from main to direct-access storage
was written correctly. This verification
requires an additional revolution for each
record that is written. Standard recovery
procedures are initiated if an error is
detected.

DATA STORAGE ON MAGNETIC TAPE VOLUMES

Because of the serial nature of magnetic
tape devices, the operating system does not
provide space allocation facilities com­
parable to those for direct-access volumes.
When a new data set is to be placed on a
magnetic tape volume, the programmer should
specify the data set sequence number. For
a data set with standard labels or no
labels, the operating system positions the
volume so that the data set can be read or
written. If the data set has nonstandard
labels, the installation must provide
volume-positioning in its nonstandard label
processing routines. All data sets stored
on a given magnetic tape volume must be
recorded in the same density.

When a data set is to be stored on an
unlabeled tape volume and the programmer
has not specified a volume serial number,
the system assigns a serial number to that
volume and to any additional volumes
required for the data set. The first such
volume is assigned the serial number
LGL001; the second, LGL002, etc.

If the programmer has specified volume
serial numbers for the unlabeled volumes on
which a data set is to be stored, but
additional volumes are found to be
required, the system assigns volume serial
numbers in the same way. If, for example,
the programmer has specified volume serial
numbers for two volumes, but a third volume
is required, it is assigned LGL003 as its
serial number; if still a fourth volume is
required, it is assigned LGL004; etc.

Volume serial numbers assigned by the
system are of little concern to the pro­
grammer, unless data sets residing on such
volumes are cataloged or passed. In this
event, it is possible for data sets resid­
ing on different volumes to be cataloged or
passed under identical volume serial num­
bers. Later retrieval of such data sets
could result in unpredictable errors. For
this reason, if a data set to be stored on
an unlabeled tape volume(s) is to be cata­
loged or passed, the programmer should
specify the volume serial number(s) of the
volume(s) required.

VOLUME LABELING

Various groups of labels are used in
secondary storage of the System/360 Operat­
ing System to identify magnetic tape and
direct-access volumes as well as the data
sets they contain. Magnetic tape volumes
can have standard or nonstandard labels, or

Data Set Control Facilities 15

they can be unlabeled. Direct-access
volumes are supported with standard labels
only. Standard label support includes the
following label groups:

• A volume label group.

• A data set label group for each data
set.

• Optional user label groups, i.e., user
header and/or trailer labels for each
data set, for physical sequential data
set organizations.

specific information on the contents and
formats of the System/360 Operating System
standard labels is contained in the publi­
cation IBM System/360 Operating System:
Control Program Services.

Magnetic Tape Labels

The type(s) of label processing to be
supported by an installation is selected
during the system generation process.
Thereafter, the programmer specifies, in
the DD statement, the type of label proc­
essing he is going to use for a tape data
set. If he does not specify a type of
label processing, standard label processing
is assumed by the system.

STANDARD TAPE LABELS: Standard tape labels
are 80-character records. All labels are
recorded in the Extended Binary Coded Deci­
mal Interchange Code (EBCDIC), with the
exception of 7-track tape labels, which are
recorded in Binary Coded Decimal (BCD).
The density of a tape label is the same as
that of the data on the tape, which was
specified in the DD statement or the DCB
macro-instruction.

The organization of standard tape labels
for a single tape volume and one data set
is illustrated in Figure 3.

Volume Label Group: The volume label group
consists of an initial volume label, which
is created by a utility program, and a
maximum of seven additional volume labels.
These additional labels are processed by
means of an installation routine that is
incorporated into the system.

In the System/360 Operating System, a
volume label identifies a volume and its
owner. Although primarily intended to ver­
ify that the correct volume is mounted,
volume labels also permit volume protection
by preventing use of the volume by unautho­
rized programs.

16

A tape using standard tape labels is
identified as such by the operating system
when it reads the initial record and deter­
mines that it is an initial volume label by
finding that the first four characters of
the record are VOLl (volume label 1).

Initial Volume Label

t
I

Additional
Volume

Labels
I
t

HDR 1

HDR 2

User Header Labels

Tape Mark

----.::a oc s D ta BI k

Tape Mark

EOVl or EOFl

EOV2 or EOF2
User Trailer Labels

Tape Mark

Tape Mark

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

~

1
2

3
4
5
6
7
8

Volume Label Group

Data Set Header
Label Group

User Header Label Group

} Data Set

Data Set Trailer
Label Group

User Trailer Label Group

} ~~ End of } End of
Data

Figure 3. Organization of Standard Tape
Labels

Data Set Header Label Group: The data set
header label group consists of two data set
header labels: HDRl and HDR2. HDRl con­
tains operating system data and device­
dependent information; HDR2 contains data
set characteristics. (Additional data set
header labels are not supported.) These
labels are created by the operating system
in accordance with a fixed format when the
data set is recorded on tape. They can
then be used to locate the data set, to
verify references to the data set, and to
protect it from unauthorized use.

User Header Label Group: Optionally, a
maximum of eight user header labels can
appear on tape immediately following the
data set header labels. The operating
system writes these labels as directed by
the problem program recording the tape.
The first four characters of the user
header label must be UHL1, ••• ,UHL8; the
remaining 76 characters can be specified by

the user. When the tape is read, the
operating system makes the user header
labels available to the problem program.

Data Set Trailer Label Group: The data set
trailer label group consists of two trailer
labels: EOVl or EOFl and EOV2 or EOF2.
These labels are identical to the data set
header labels except that:

• The label identifier EOVl or EOFl
replaces HDR1, and the label identifier
EOV2 or EOF2 replaces HDR2.

• The first label (EOVl or EOF1) contains
a block count field that indicates the
number of blocks of the data set
recorded on the tape. It is used for
checking purposes. This field contains
zeros in the HDRl label.

These labels duplicate the data set
header labels to facilitate backward read­
ing of the tape. Location, verification,
and protection of the data sets can also be
achieved with data set trailer labels.

User Trailer Label Group: A maximum of
eight user trailer labels can immediately
follow the data set trailer labels. These
labels are recorded (and processed) as
explained in the preceding text for user
header labels, except that the first four
characters must be UTL1, ••• ,UTL8.

NONSTANDARD TAPE LABELS: When nonstandard
labels are used for magnetic tape, nonstan­
dard label processing routines are supplied
by the installation and incorporated in the
operating system at system generation time.
Detailed information about writing nonstan­
dard label processing routines is contained
in the publication IBM System/360 Operating
System: System programmer's Guide, Form
C28-6550.

The number and contents of nonstandard
labels can be specif ied by the user., except
that the initial record cannot be a stand­
ard tape volume label; i.e., the first four
characters of this record cannot be VOLle
When these first four characters are not
VOL1, the operating system transfers con­
trol to the nonstandard label processing
routines. These routines provide volume
positioning that is compatible with the
positioning techniques used by the system's
standard label processing routines. The
operating system assumes that a tape using
nonstandard labels is properly positioned
upon completion of a nonstandard label
processing routine.

Magnetic Tape Volume Organization

If a data set on magnetic tape is to be
processed by an IBM data access method, the
data set must be preceded and followed by a
tape mark, with one exception: the first
data set on an unlabeled tape volume is not
preceded by a tape mark. (Note that if a
tape mark should precede the first data set
on an unlabeled tape volume, the data set
sequence number of that first data set is
two.) Tape marks may not exist within a
data set.

When an access method is used to create
a tape data set with standard labels or no
labels, all tape marks are automatically
written by the system. If standard label
processing is being used, one tape mark
follows each trailer label group, with one
exception: two tape marks are written after
the last trailer label group on a volume
when it indicates end of data set (EOF).
If an unlabeled volume is being used, an
additional tape mark is written after the
tape mark that follows the last data set on
the volume.

When an access method is used to create
a tape data set with nonstandard labels,
neither of the delimiting tape marks is
written by the system. If an access method
is to be used to retrieve the data set,
these tape marks should be written by the
appropriate installation nonstandard label
processing routine. The system does not
require that one or more tape marks be
written after nonstandard trailer labels,
since installation nonstandard label proc­
essing routines must handle the positioning
of tape volumes.

Figure 4 illustrates the organization of
standard labels and data on magnetic tape
for the following tape organizations.

Single Data Set/Single Volume: Volume
labels are followed by data set header
labels and optional user header labels.
The data set is preceded and followed by a
tape mark. The data set trailer labels
(EOF) appear after the tape mark following
the data set and are followed by the
optional user trailer labels. Two tape
marks are the last elements of this tape
organization.

Single Data Set/Multiple Volumes: This
class of tape organization is an expansion
of the previous class. More than one
volume is necessary to contain the data
set. The last volume is organized the same
as the single data set/single volume class.
All other volumes are also organized in
this way with the exception of their data
set trailer label groups. The EOV trailer
group appears in place of the EOF trailer

Data Set Control Facilities 17

jo:::;>llet°
ta

Se!/Mul';ple VOlum\,~ l_~l::;I---II ________ ---J~)

~ . ::: . . First par; of

l
Data Set

(Volume 1 of 2)

(Volume 2 of 2)

..5 c;: '" :::; 0.:

0 0 0 :r:
> :r: :r: ;:) la,! po,~ a

)
;:;: N :::; ~ ~ u...

f Data Set I- 0 0 I-
UJ UJ ;:)

~ \

fQJJl.~ ~ UITJJ
me Da", Selo/Slogle VOlumrn:r:;",

ru UlLl
~

Set

~

~
~eD

j

(
j

)

\

ata et u tip e S s/M I I Volumes

c
~ '" :::; ...J 0.: 0.:

0 0 0 :r:
> :r: :r: ;:)

c c;: N ...J 0.: ...J

0 0 0 :r:
> :r: :r: ;:)

c
'" ...J c;: 0.: :::;

0 0 0 :r:
> :r: :r: ;:)

1

i I~H D"7 ;:) I- A

~
Set

\

(

.5
:r: ~
;:) I-

I c
...J

~ :r:
;:) I-

I
Last

Da

(

Pc
ta
B

\
rt of
Set

I

~N

~
u... u... :::;
00 l-I- UJ UJ ;:)

~ N

~
u... u... :::;
00 l-I-
UJ UJ ;:)

~ N :::;
~

u... u...
00 l-I- UJ UJ ;:)

J
c

~c;:
N ::i) ...J 0.: I- 0 :r:

) ;:) I-~ :r: ;:)

) jt-,
..5 ~c;: ~ :::;

) I- I-~ 0 :r:
;:) :r: ;:)

)

~ ~
continuatio~ o \Data Set B

c
~c;: ~ :::;

)
...J I- I-~ 0 :r:
;:) :r: ;:)

~
Set

2
I

fQJJta

UlL ~
(Volume 1 of 3)

! I~H D;'" ;:) I- B

\
Set

\

(Volume 2 of 3)

(Volume 3 of 3)

~ I~H ~'" ;:) I- C

\
Set

\

~u...
1- 0

UJ

:;
~ 0 I-

UJ

:;
~ 0 I-

UJ

~ u...
1- 0

UJ

N
u... :::;

8 I-
;:)

\

~ :::;
0 l-
UJ ;:)

I

'" > ::::i
0 l-
UJ ;:)

N
u... :::;
0 I-
UJ ;:)

(

Figure 4. Standard Label Formats for Magnetic Tape

set. The EOV trailer group is followed by
one tape mark. The data set and user
labels are repeated on each volume, but the
volume labels differ on each tape.

Multiple Data Sets/Single Volume: Thevol­
ume begins with a volume label group. Each
data set starts with a data set header
label group, followed by the optional user
header label group, and a tape mark. The
data set then appears, followed by a tape
mark, an end-of-file trailer label group, a
user trailer label group, and another tape
mark. The last data set on the volume
differs only in that the user trailer
labels are followed by two tape marks.

Multiple Data Sets/Multiple Volumes: This
class of tape organization is similar to
the previous one. However, more than one

18

volume is required because of the amount of
information. The end-of-volume trailer
labels are identical to those of the single
data set/multiple volumes tape organiza­
tion •.

Direct-Access Labels

Only standard label formats are used on
direct-access volumes. Volume, data set,
and optional user labels are used (see
Figure 5). In the case of direct-access
volumes, the data set label group is the
data set control block (DSCB).

VOLUME LABEL GROUP:
immediately follows

The volume label group
the initial program

Initial Volume Label -

Cylinder

---~
Additional

Volume Labels

~ Track 0 r----l

L VTOC DSCB I--

Space Accounting t---
DSCB

DSCB #1

DSCB #2

~- -
Data Set
Control Blocks

VTOC

~
All Remaining
Tracks on Volume

Figure 5. Direct-Access Labeling

loading (IPL) records on track 0 (of
cylinder 0) of the volume. It consists of
the initial volume label plus a maximum of
seven additional volume labels. These
additional labels are processed by means of
an installation routine that is incorporat­
ed into the system.

DATA SET CONTROL BLOCK (DSCB): The system
automatically constructs a DSCB when space
is requested for a data set on a direct­
access volume. Each data set on a direct­
access volume has a corresponding data set
control block to describe its
characteristics.

USER LABEL GROUP: If ~he LABEL parameter
of the DD statement indicates that user
labels. are to be used, and if the program­
mer has requested space allocation in terms
of cylinders by using CYL, SPLIT, or ROUND,
the data set is automatically allocated one
additional track for user labels. Other­
wise, the first track allocated for the

--- Blank Storage
Area for Data Sets

data set is reserved for user labels. The
current minimum track size supports a maxi­
mum of eight 80-character user labels
(including both user header and trailer
labels). Consequently, a program that
creates more than eight user labels becomes
device-dependent among direct-access devi­
ces. If device independence is not
desired, the program may create up to eight
user header labels and eight user trailer
labels, not to exceed one track.

DATA SET RECORD FORMATS

Data processing operations are concerned
with individual data records within a data
set. All records of a data set must have
the same format. The formats of these
records is the subject of the following
discussion.

Data Set Control Facilities 19

BLOCKS

The data between interrecord gaps is
called a block; each block can consist of
one or more logical records.

LOGICAL RECORDS

A data set is composed of a collection
of logical records that usually have some
relation to one another. The logical
record is usually the basic unit of infor­
mation for a data processing program. A
logical record might be, for example, eith­
er a single character, all information
resulting from a given business transac­
tion, or parameters from a given point in
an experiment. Much data processing con­
sists of reading, processing, and writing
individual logical records.

RECORD BLOCKING

Blocking of records, shown in Figure 6,
is the process of grouping a number of
logical records before writing them on a
volume. Blocking improves effective data
rate and conserves storage space on the
volume by reducing the number of interre­
cord gaps in the data set. In many cases,
blocking also increases processing effi­
ciency by reducing the number of
input/output operations required to process
a data set.

RECORD FORMATS

Logical records may be in one of three
formats: fixed-length (format F), variable­
length (format V), or undefined (format u).

The prime consideration in the selection
of a record format is the nature of the
data set itself. The programmer knows the
type of input his program will receive and
the type of output it will produce. His

~ Inter - logical logical logical Inter -
Record Record Record Record Record

Gap E F G Gap

Block

Figure 6. Blocked Logical Records

20

selection of a record format is based on
this knowledge, as well as an understanding
of the type of input/output devices that
are to handle the data set and of the
access method used to read or write the
data set.

The record format of a data set is
placed into the data control block
according to specifications in either the
DCB macro-instruction, the DD statement, or
the data set label.

Fixed-Length (Format F)

Format F records are fixed-length
records. The number of logical records
within a block (blocking factor) is normal­
ly constant for every block in the data set
unless the data set contains truncated
blocks (short blocks).

In unblocked format F, the
record constitutes the block.

logical

The system performs physical length
checking on blocked format F records, auto­
matically making allowance for truncated
blocks. Because the channel and interrupt
system can be used to accomrrlodate length
checking, and the blocking/deblocking is
based on a constant record length, format F
records can be processed faster than format
v.

A sequential data set is said to have
records in standard F format if all the
records in the data set are in F format, if
each track except the last is filled to
capacity, and if no blocks besides the last
are truncated. Standard F data sets can be
read from direct-access devices more effi­
ciently than data sets with truncated
blocks, because the system can predict the
location of each block to be read.

Format F records are shown in Figure 7.
The optional control character (C), used
for stacker selection and carriage control,
may be included in each logical record to
be printed or punched.

Logical Logical Logical Inter -) Record Record Record Record
H I J Gap

Block

Logica I Record

c Data

Blocked Records

Logica I Logica I Logica I
Record Record Record

-------- Fixed Length ----- --- --

Unblocked Records

Logica I Record

---- ---- Fixed Length -- -- ----

Figure 7. Format F Records

Variable-Length (Format V)

Format V provides both for variable­
length records, each of which describes its
own length, and for variable length blocks
of such records, each of which includes a
block length. The system performs length
checking of the block and makes use of the
record length information in deblocking and
blocking. Format V records are shown in
Figure 8. The first four bytes of the
logical record contain control information:
'II' represents the length of the logical
record and 'bb' represents the two bytes
reserved for system use. These bytes must
be provided by the user when he is creating
the record. The optional control character
(C) may be specified as the fifth byte of
each logical record.

B locked Records
- - - - - - - LL - - -- -- - --

Logical
Record

.............

Logical
Record

~
~

Logical Record ~

I n I bb I c I Data I

Logical
Record

I----ll-----~
~ I Unblocked Records ~

LL bb I Logical Record I
- - - - - - - LL - - - -

Figure 8. Format V Records

In format V, ILL' represents the block
length and 'bb l represents the two bytes
reserved for system use. With the
exception of the basic sequential and the
basic direct access methods, these charac­
ters are automatically provided when the

data set is written. Both input and output
buffer areas must be large enough to accom­
modate the additional four bytes.

In unblocked format V, one logical
record and the block control information
constitute the block.

The initial eight bytes (nine if the
optional control character is specified) of
the block are not printed or punched. The
use of these eight bytes for any purpose
other than that specified in this section
may cause unpredictable results.

Undefined (F'ormat u)

Format U is provided to permit the
processing of any blocks that do not con­
form to the F or V formats. Format U
records are shown in Figure 9. The option­
al control character (C) may be used in
each logical record.

since each block is treated as a logical
record (unblocked), any deblocking must be
accomplished by the user's program. The
system does not perform length checking on
format u records. For this reason, a
program can be designed to read less data
into main storage than is actually con­
tained in a block.

Logica I Record

c Data

Fonna t U Record

Logica I Record

Figure 9. Format U Records

CONTROL CHARACTER

The programmer may optionally specify,
in the DD statement or the DCB macro­
instruction, that a control character is
part of each logical record in a data set.
This character specifies carriage control
when the data set is printed or stacker
selection when the data set is punched.
The character itself is never printed or
punched but is a part of the record in
storage. Buffer areas must be large enough
to accommodate this character (byte). If
the immediate destination of the record is

Data set Control Facilities 21

a device that does not recognize this
control character, e.g., disk, the system
assumes that the control character is the
first byte of the data.

If the destination of a record is a
printer or a
specified that
is to be used
byte is simply
the data.

punch and the user has not
the first byte of the data
as a control character, this
treated as the first byte of

DATA SET ORGANIZATIONS

Data set organization refers to the
physical arrangement of data set records.
To give the programmer maximum flexibility
and efficiency in reading and writing data
sets, the operating system provides five
types of data set organization:

1. Sequential.
2. Partitioned.
3. Indexed sequential.
4. Direct.
5. Telecommunications.

Only sequential organization can be used
for data sets on magnetic tape volumes,
unit record equipment, and paper tape.

The most desirable data organization for
a given data set depends on how the data
set is to be used. The organization
determines, to a great extent, the access
methods that can be used with the data set.
The programmer specifies the organization
of a data set in the DCB macro-instruction.
The data set organizations are described in
the following sections.

SEQUENTIAL ORGANIZATION

A sequential data set is one whose
records are organized solely on the basis
of their successive physical positions in
the data set. As indicated in Figure 10,
the records exist sequentially within the
volume space allocated to the data set and

Record Record Record Record

1 2 3 4

Figure 10. A Sequentially Organized Data Set

22

are read or written in the same order in
which they appear. For example, the fourth
record of the data set in Figure 10 normal­
ly is read only after the first three
records have been read. If the data set is
stored on more than one volume, each volume
must be of the same device type. Automatic
volume switching is provided by the system.
Individual records cannot be deleted or
inserted unless the entire data set is
rewritten. This organization is generally
used for a data set most of whose records
are processed each time the data set is
used.

Space Allocation for Sequential Data Sets

The programmer must request space for
sequentially organized data sets that are
to be written on direct-access volumes. If
the programmer is uncertain of the amount
of space required by a particular data set,
he can ensure sufficient space by speci­
fying the secondary quantity subparameter
of the SPACE parameter of the DD statement.
This subparameter indicates an amount of
space to be allocated if the original space
allocated to the data set is exhausted and
more data is to be writtep. This addition­
al space is allocated as required from the
volume(s) assigned to the data set. The
programmer can also release any space that
he does not use by specifying the RLSE
subpararneter in the SPACE parameter.

PARTITIONED ORGANIZATION

A partitioned data set is one that is
divided (partitioned) into sequentially
organized members made up of one or more
records. All members have identical pro­
perties, such as record formats, block
length, options selected, etc. Each member
of a partitioned data set has a unique
simple name that does not exceed eight
characters in length. Records of any given
member are retrieved or stored successively
according to physical sequence.

The main advantage of a partitioned data
set is that it gives the programmer the

Record Record Record Record
5 6 7 8

ability to retrieve individual members,
once a single data control block is opened.
For example, a library of subroutines might
be a partitioned data set whose members are
the subroutines; within each subroutine,
records are sequentially organized. Indi­
vidual members may be added or deleted as
required. A partitioned data set must
reside on one direct-access volume.

Directory

Each member of a partitioned data set is
associated with an entry in a series of
records at the beginning of the data set
called a directory. As indicated in Figure
11, the directory contains the name, and
corresponding position within the data set,
of every existing member. Optionally, the
programmer can place up to 62 characters of
additional information into an entry.
Directory entries are maintained in order
of collating sequence of member names.

To provide location independence, the
system records the track address of a
member as a relative track within the data
set rather than as an absolute track
address. This allows an entire data set to
be moved without a change in relative track
addresses. The first track of a data set
is relative track 0, the second is relative
track 1, etc. Thus, the data set can be
considered as one continuous set of data
tracks regardless of how the space has
actually been allocated.

Directory Entry for
Member A

Entry for
Member B

Entry for
Member C

Space Allocation for Partitioned Data Sets

When the programmer requests the amount
of space to be allocated to a partitioned
data set, he also specifies the amount of
space required for the directory. If the
storage space specified by the programmer
for the members is filled, additional space
for new members is dynamically allocated by
specifying the secondary quantity subparam­
eter of the SPACE parameter of the DD
statement. The programmer can release any
space that he does not use by specifying
the RLSE subparameter. If the space for
the directory is filled, however, no new
members can be added to this data set.
Once allocated, space for the directory
cannot be expanded. The data area occupied
by deleted or replaced members of a parti­
tioned data set is not reusable until a
COpy PDS statement is executed to copy the
remaining members of the data set onto the
same or a different volume. The COpy PDS
statement, a utility program control state­
ment, is described in the publication IBM
systern/360 Operating System: utilities. ---

INDEXED SEQUENTIAL ORGANIZATION

An indexed sequential data set is one
whose records are organized on the basis of
a collating sequence determined by keys
that precede each block of data. The key
for each block of data is 1-255 bytes in
length and is identical to the key of the

Entry for
Member K

Space from
Deleted Member

Available Area

Figure 11. A Partitioned Data Set With Four Members

Data Set Control Facilities 23

last record in that block. An indexed
sequential data set exists in space allo­
cated on direct-access volumes as prime
areas, overflow areas, and indexes.

Indexed sequential organization gives
the programmer much flexibility in the
operations he can perform on a data set.
He has the ability to:

• Read or write (in a manner similar to
that for sequential organization) logi­
cal records whose keys are in ascending
collating sequence.

• Read or write individual logical
records whose keys are in any order.
Reading records in this manner is some­
what slower per record than reading
according to a collating sequence,
because a search for pointers in index­
es is required for the retrieval of
each record.

• Add logical records with new keys. The
system locates the proper position in
the data set for the new record and
makes all necessary adjustments to the
indexes.

Indexes

The ability to read and write records
from anywhere in a data· set with indexed
sequential organization is provided by

Area

Track 5
~~~r---~----~------~ 

Track 4 
~~--~~--~----~----~ 

Track 3 
~~~~~~~~----~--~ 

Track 2

Track 1

Track
Index

~--~~~~--~~--~r-~

Master Index

Cylinder 2

indexes that are part of the data set.
There are two types of indexes: a cylinder
index for the whole data set and a track
index for each cylinder. An entry in a
cylinder or track index contains the iden­
tification of a specific cylinder or track
and the highest key that is on that cylin­
der or track. The system locates a given
record by its key after a search of a
cylinder index and a tra~k index within
that cylinder.

Master Index

If a data set occupies many cylinders, a
serial search of the cylinder index for a
key is inefficient. The programmer can
cause a master index to be created that
indexes the cylinder index, as shown in
Figure 12. A master index will be con­
structed only if the cylinder index occu­
pies more than one track. The programmer
specifies in fields of the data control
block that, if the size of a cylinder index
exceeds a certain number of tracks, a
master index should be created. Each entry
in the master index points to a track of
the cylinder index. If the size of the
master index exceeds the number of tracks
specified in the data control block, the
master index is automatically indexed by a
higher level master index. Three such
higher level master indexes can be con­
structed.

T
Prime
Data
Area

Cylinder 3 Cylinder N

Figure 12. Index Structure for an Indexed Sequential Data Set

24

Insertion of Records

A new record added to an indexed sequen­
tial data set is placed into a location on
a track determined by the value of its key
field. If records were inserted in precise
physical sequence, insertion would require
shifting all records of the data set with
keys higher than that of the one inserted.
However, because an overflow area exists,
indexed sequential data organization allows
a record to be" inserted into its proper
position with only the records on the track
in which the insertion is made being shift­
ed.

Overflow Area

In addition to the prime area, whose
tracks initially receive records of an
indexed sequential data set, there is an
overflow area for records forced off their
original tracks by the insertion of new
records. When a record is to be inserted,
the records already on the track that are
to follow the new record are written back
on the track after the new record. If the
addition of records results in insufficient
track space for all the records to be
written onto the track, the records that do
not fit are written onto an overflow track.
Track index entries are adjusted to indi­
cate records on an overflow track. Figure
13 illustrates this adjustment for addition
of records to an indexed sequential data
set whose keys are in a numerical collating
sequence.

When this data set is created, its
records are placed on the prime tracks in
the storage area allocated tp the data set.
If a record, e.g., record 7, is to be
inserted into the data set, the indexes
indicate that record 7 belongs on prime
track 1. Record 7 is written immediately
following record 5, and records 8 and 10
are retained on prime track 1. Since
record 11 no longer fits on this track, it
is written on an overflow track and the
proper track index is adjusted to show that
the highest key on prime track 1 is 10 and
that overflow records exist. When records
17 through 22 are added, prime track 2
receives- records 17 to 21, but record 22
does not fit and is written following
record 11 on the overflow track. When
record 9 is inserted, record 10 is shifted
to the overflow track after record 22.
Note that records 10 and lion the overflow
track are chained together to show their
logical sequence and to indicate that they
belong on the same prime track.

Initial Format of Data Set

Prime
Track 1 2 3 4 5 8 10 11

Prime
Track 2 12 13 16

Overflow
Track 1

Format of Data Set after Insertion of Record 7

Prime II Track 1 2 3 4 5 8 10

Prime
Track 2 12 13 16

Overflow
11 Track 1

Format of Data Set After Insertion of Records 17 -22 and Record 9

Prime

I I 2 3 I 4 Track 1 I 5 I 7 I 8 III
I I I .. Prime

Track 2 12 13 16

I
,. Overflow

Track 1 11 10

Figure 13. Addition of Records
1-Cylinder, 3-Track
Sequential Data Set

to a
Indexed

Two types of overflow areas may be
requested by the programmer. He can
request a cylinder overflow area that pro­
vides a certain number of tracks on each
cylinder to hold the overflow of that
cylinder. He can also request an indepen­
dent overflow area that provides a certain
number of tracks independent of the rest of
the data set, perhaps even on a different
volume.

The programmer may mark records for
deletion. If a marked record is forced off
its original track by the insertion of a
new record, then this record is not written
in an overflow area and is thereby deleted
from the data set.

Space Allocation for Indexed Seguential
Data Sets

Only the ABSTR or the CYL subparameter
of the SPACE parameter of the DD statement
can be used when allocating space for an

Data Set Control Facilities 25

indexed sequential data set. All requests
must be for an integral number of cylin­
ders.

The storage area allocated to an indexed
sequential data set must be sufficient to
include all space required for prime,
index, and overflow purposes. The proce­
dures to be followed in allocating this
space differ, depending upon the
programmer's index location requirements,
and his need for an independent overflow
area:

• Space for the prime area can be allo­
cated on more than one volume, but each
volume must be of the same device type.

• Space for a separate index area can be
allocated on a volume and device type
different from that of the prime area,
if the prime area is on an IBM 2321
Data Cell Drive.

• Space for an independent overflow area
can be allocated on a separate volume
of the same device type as that of the
prime area.

Basically, there are four space alloca­
tion techniques, each causing the index
area to be allocated differently~ Note
that for those techniques requiring more
than one DD statement, only the first
statement may contain a symbol in its name
field. The programmer must indicate the
type of area for which space is to be
allocated by specifying either (INDEX),
(PRIME), or (OVFLOW) as the element portion
of the DSNAME parameter of the DD state­
ment. If no element name is provided,
(PRIME) is assumed. If a DD statement
specifying (INDEX) is used, it must precede
a DD statement specifying (PRIME). If a DD
statement specifying (OVFLOW) is used, it
must follow a DD statement specifying
(PRIME).

One technique for allocating space is to
prepare a separate DD statement for each
type of area required. If in addition to
the prime area, for example, the programmer
requires a separate index area and an
independent overflow area, three DD state­
ments should be prepared.

If the programmer does not require a
separate index area, he can cause the index
area to be embedded within, or placed at
the end of, the prime area, or to be placed
at the end of an independent overflow area
using one of the following three techniques
for allocating space:

26

• To develop an index area embedded with­
in the prime area (in order to reduce
access arm movement during the process-

ing of the data set), the programmer
should prepare a DD statement for the
prime area. In the directory quantity
subparameter of the SPACE parameter of
this statement, the programmer should
specify how much of the prime area is
to be used for index purposes. An
additional DD statement requesting a
separate index area should not be pre­
pared. The programmer may, however,
use a DD statement requesting space for
an independent overflow area.

• To develop an index area at the end of
the prime area, the programmer should
prepare a DD statement requesting prime
area space that does not contain an
embedded index area. The space
requested for the prime area must be
large enough to include an index area.
Additional DD statements requesting
space for a separate index area and for
an independent overflow area should not
be used.

• To develop an index area as part of an
independent overflow area, the program­
mer should prepare two DD statements:
one to allocate space for a prime area
that does not contain an embedded index
area, and one to allocate space for an
independent overflow area. The space
requested for the overflow area must be
large enough to include an index area.
An additional DD statement requesting a
separate index area should not be pre­
pared.

DIRECT ORGANIZATION

A direct data set is one whose blocks
are organized on a direct-access volume in
any manner chosen by the programmer. If
the data set is to be stored on more than
one volume, each volume must be of the same
device type. When a request to store or
retrieve a block is made, either an address
relative to the beginning of the data set
or an actual address (i.e., device, cylin­
der, track, block position) must be fur­
nished. This address can be specified as
being the address of the desired block or
as a starting point within the data set
where the search for the block is to begin.
When a block search is specified, the
programmer must also furnish the data key
(e.g., part number, customer name) that is
associated with the desired block.

Insertion of Blocks

With direct organization, the programmer
can indicate, without specifying a particu-

lar block position, a track on which a
bleck is to be written. The block is
simply written into the first available
space on the track. Figure 14 illustrates
a data set with format V or U blocks that
have been distributed over allocated tracks
according to an "item number" recorded in a
key field with each block. If items 10,
21, and 50 are to be inserted into this
data set and the track selection algorithm
indicates that they belong on relative
tracks 0, 1, and 2, respectively, these
blocks are placed on the proper tracks
after the existing blocks.

TELECOMMUNICATIONS ORGANIZATION

A description of the facilities for
telecommunications is given in the publica­
tion IBM System/360 Operating System: Tele­
communications, Form C28-6553.

DATA SET DEFINITION

Before a data set can be made available
to a problem program, the system requires
that descriptive information defining the
data set be placed into a data control
block. Sources of information for the data
control block are the DCB macro­
instruction, the DD statement, and,

Relative
Track 0

Relative.
Track 1

Relative
Track 2

Item Item Item
20 38 39

Item
41

Data Set after Insertion of Blocks

Item
20

Item
38

Item
39

optionally, a data set label. The system
stores information from the DD statement in
a control block called the job file control
block (JFCB). The JFCB is placed in a job
queue on a direct-access volume when the
job associated with it is scheduled for
execution. The following sections discuss
the data control block and the procedures
followed by the programmer to define data
sets.

DATA CONTROL BLOCK

A data control block is a group of
contiguous fields in the user's assembled
program that provide information about a
data set to the system for scheduling and
executing input/output operation~, The
fields describe the characteristics of a
data set (e.g., data 'set organization) and
its processing requirements (e.g., number
of buffers required for input/output
operations). By issuing a DCB macro­
instruction, the programmer requests that a
data control block be constructed at
assembly time. Subsequently, several sour­
ces can be used to enter information into
the data control block fields. The process
of filling in the data control block is
completed at execution time.

This information may come from the DCB
macro-instruction itself, from the JFCB, or
from the data set label. Only unspecified

Figure 14. Addition of Blocks to a Direct Data Set

Data Set Control Facilities 27

fields can be filled from each source. For
example, if a field is specified in both
the DD statement and the data set label,
only the information for that field which
is supplied by the DD statement is used for
the data control block; the corresponding
information in the data set label is
ignored. However, the programmer can write
routines that modify any data control block
field. In Figure 15, lines 1 to 4 indicate
the sequence in which the sources of infor­
mation for the data control block are used.
Solid lines indicate required sources, and
dotted lines indicate optional sources.

The above transfer of information is
·part of a procedure called opening a data
control block. Opening a data control
block for a data set makes that data set
available to a problem program. Closing
the data control block disconnects that
data set from the problem program. (Two
macro-instructions, OPEN and CLOSE, are
provided to perform these operations.)
Thus, a completed data control block may
exist only during program execution.

There is usually a one-to-one correspon­
dence between data sets and opened data
control blocks. Normally, one data control
block should be opened for one particular
data set. However, concurrently opening
more than one data control block for the
processing of the same data set is not
prohibited for direct-access operations.
(It is prohibited for tape operations.)

Caution: If the programmer opens more than
one data control block for the same data
set, he must be aware of the implications
of this procedure and exercise caution with
respect to such items as multivolume data
sets, secondary allocation, volume posi­
tioning and the dependence of certain
macro-instructions upon positl..oning, and
label processing.

Existing
Data Set
Label --0--

Data
Control
Block

Job File

---0---

6

Job File Control Block

At the time a data control block is
opened, information is transferred into the
JFCB. The portion of this transfer of
information that pertains to completing the
data control block is illustrated by line 2
in Figure 15. After the data control block
has been completed, further modification of
the JFCB is possible as illustrated by
lines 4 and 5 in Figure 15. Once the JFCB
has been modified, it remains so until it
is no longer needed by the system.

Data Set Label

A data set label can be generated in
secondary storage when a data set is creat­
ed. The source of information for a data
set label is the updated JFCB, as indicated
by line 6 of Figure 15.

Data set labels facilitate subsequent
references to a data set. Any charac­
teristics of a data set defined in a data
set label need not be redefined in a DCB
macro-instruction or in a DD statement.

CO~~LETING THE DATA CONTROL BLOCK, JFCB,
AND DATA SET LABEL: Figure 15 illustrates,
by lines 1 through 6, the steps that the
system takes to fill fields of the data
control block, the JFCB, and the data set
label. The following paragraphs describe
each of these steps in sequence.

Line 1 indicates that the data control
block is initially created by the DCB
macro-instruction; this normally occurs at
assembly time. Prior to issuing the OPEN
macro-instruction, the data control block
can be moved, copied, or modified by the
problem program.

Programmer's
Modification
Routine
(DCB Exit Routine)

New
Data Set
Label

Figure 15. Flow of Information To and From Data Control Block

28

Line 2 indicates that, for direct-access
devices and labeled tape input, an existing
data set label is read by the OPEN routines
and used to fill empt.y fields in the JFCB.
The data set label contains fields describ­
ing data attributes, e.g., block size and
record format. (This step does not occur
for unit record devices, unlabeled tape, or
tape out put.)

The JFCB has, in addition to data attri­
bute fields, fields that contain informa­
tion related to processing, e.g., number of
buffers to be used and error options that
were chosen. Line 3 indicates that, at
this point, the JFCB is used to fill any
empty fields in the data control block.
Both data attribute fields and processing­
related fields can be filled.

Line 4 indicates that the problem
program's data control block exit routine,
if present, is entered. This routine can
either fill any data control block fields
that are still empty or modify other fields
in the data control block. It then issues
a RETURN macro-instruction to return to an
OPEN routine.

Line 5 indicates that after the OPEN
routines prepare the problem program to
access the data set, any empty fields in
the JFCB are filled from the data control
block. Both data attribute fields and
processing-related fields can be filled.

Line 6 indicates that for output on
direct-access volumes, the JFCB is used to
fill any empty fields in the data set
label, and for output on labeled tape
volumes. the JFCB is used to construct a
new data set label. Only data attribute
fields are used.

When the data control block is closed,
all information that entered it from either
the JFCB or the data set label is removed.
The JFCB is not returned to its original
condition.

DCB -- Define Data Control Block

The DCB macro-instruction reserves space
for a data control block at assembly time
and causes specified fields describing data
set characteristics and processing
requirements to be placed into that data
control block. The number of fields that
can be specified in this macro-instruction
depends upon the organization of the asso­
ciated data set. The fields that may be
specified which are common to all data set
organizations (except telecommunications)
provide the following types of information:

• Symbolic name of the DD statement that
identifies the data set.

• Data set organization.

• Record format.

• Principal macro-instructions to be used
for input/output operations on the data
set.

• Options to be selected.

• Number and size of buffers.

Particular organizations may require
such supplementary specifications as:

• Tape density (sequential organization).

• Number of tracks in cylinder overflow
area (indexed sequential organization).

• Address of area containing terminal
address (telecommunications
organization) •

• Number of tracks or
searched for a
organization) •

blocks
block

to be
(direct

regarding
processing

can specify

In addition to information
data set characteristics and
requirements, the programmer
certain addresses in the
instruction. These addresses

DCB macro­
identify:

• The location of a routine that performs
end-of-data set procedures.

• The location of a routine that
supplements the system's error recovery
routine.

• The location of an exit list.

The following sections briefly describe
the items listed above.

END-OF-DATA SET ROUTINE: For data sets
that are read sequentially, the programmer
must write an end-of-data set routine that
performs any desired final processing.

SYNCHRONOUS ERROR EXIT ROUTINE: This rou­
tine supplements the system's error recov­
ery routine. To analyze exceptional condi­
tions and uncorrectable errors, the pro­
grammer may write a routine that is entered
if an input/output operation ends abnormal­
ly.

EXIT LIST: The exit list can contain the
addresses of routines that process user

Data Set Control Facilities 29

labels, the address of a routine that
modifies the data control block, and
checkpoint information. Complete details
on exit lists are in the publication IBM
System/360 Operating System: Control Pro­
gram Services. The following sections des­
cribe the three types of entries in the
exit list.

Standard User Label Exit Routines: With
sequential organizations, the programmer
may write routines for user labels that:

• Verify user header labels (UHL1-S).
• Verify user trailer labels (UTL1-S).
• Create user header labels (UHL1-S).
• create user trailer labels (UTL1-S).

After verification or creation of any
user label, the routine returns control to
the system (by means of a RETURN
macro-instruction) with an indication of
whether another user label is to be read or
written.

If the programmer does not wish to
verify all existing user labels, automatic
repositioning takes place.

Data Control Block Exit Routine: To change
fields in the data control block after it
has been filled, or to add optional infor­
mation, the programmer writes a routine
(see Figure 15) that is entered when the
data control block is opened. Among the
fields that may be modified by such a
routine are those for buffering technique,

30

block length, and addresses of user exit
routines. The programmer also might use a
data control block exit routine to deter­
mine data set characteristics by examining
fields filled by data set labels. The data
control block exit routine must return
control to OPEN (by means of a RETURN
macro-instruction). To assist the program­
mer in modifying a data control block, the
system provides a DCBD macro-instruction,
which is described in the publication IBM
System/360 Operating System: Control prQ=
gram Services.

Address of Checkpoint Data Control Block:
If an automatic checkpoint is to be taken
during end-of-volume processing, the pro­
grammer specifies the address of the data
control block for a checkpoint data set.

DD statement/DCB Macro-Instruction
Relationship

For ease and flexibility in filling data
control block fields, the programmer should
use the DCB macro-instruction to specify
information that remains constant for all
data sets, using a given data control
block, that are to be processed by the
associated program. Since a different DD
statement can be inserted each time the
data set is processed, the programmer
should place into the DD statement the
information about the data set that may
vary each time the program is used.

Corresponding to the wide range of sys­
tem facilities available for control of
data is an equally wide range of facili.ties
for access to that data. The variety of
techniques for gaining access to a data set
is derived from two variables: data set
organization and macro-instruction lan­
guage. Data set organizations have been
discussed previously; the macro-instruction
languages are discussed in this section.

MACRO-INSTRUCTION LANGUAGES

The programmer requests input/output
operations on data sets through macro­
instructions that are divided into two
categories or languages: the language for
basic access and the language for queued
access. Each language is identified
accordiDg to its treatment of anticipatory
buffering and input/output synchronization
with processing. The combination of a
language (and an associated set of facili­
ties for the storage and retrieval of a
data set) and a given data set organization
is called an access method. In choosing an
access method for a data set, therefore,
the programmer must consider not only its
organization, but also the macro­
instruction language capabilities. The in­
line code generated by the macro­
instructions for both languages is
optionally reenterable, depending only upon
the form in which parameters are expressed.
A discussion of each language and its
characteristics follows.

LANGUAGE E'OR QUEUED ACCESS

The language for queued access provides
the GET and PUT macro-instructions for
transmission of data between main and sec­
ondary storage. These macro-instructions
cause automatic blocking and deblocking of
the logical records they store and
retrieve. Anticipatory buffering and syn­
chronization of input and output with CPU
processing are two distinctive automatic
features of the queued language.

System-controlled anticipatory buffering
permits the programmer to use as many input
or output buffers as he needs without
issuing multiple GET or PUT macro-

DATA ACCESS METHODS

instructions to fill or empty buffers. The
system automatically sets up the requested
number of buffers, and provides overlap of
input/output operations with CPU processing
by automatically filling or emptying
buffers at the earliest possible times.
Therefore, ffiore than one input block nor­
mally is in main storage at the same time
to prevent input/output operations from
delaying record processing.

With automatic synchronization of input
and output with processing, the programmer
need not test for completjon of
input/output operations, input/output
errors, or exceptional conditions. After a
GET or PUT macro-instruction is issued, the
system does not return control to the
problem program until an input area is
filled, or an output area is available.
Exits to error correction and end-of-volume
or end-of-data set procedures are automat­
ically taken when the corresponding condi­
tion occurs.

LANGUAGE FOR BASIC ACCESS

The language for basic access provides
the READ and WRITE macro-instructions for
transmission of data between main and sec­
ondary storage. Although anticipatory buf­
fering and input/output synchronization
with processing are not provided automat­
ically by the system, the programmer can
perform and control these functions.

Buffers may be allocated by either the
system or the programmer. Each buffer is
filled or emptied when a READ or WRITE
macro-instruction is addressed to it.

Because the macro-instructions that
request data transmission only initiate
input/output operations, the programmer
cannot assume, after issuing a READ or
WRITE macro-instruction, that the opera­
tions are completed or that appropriate
exits are taken. To test for completion of
input/output operations and for errors and
exceptional conditions, the programmer
interrogates, either directly or through a
macro-instruction, the fields of a main
storage area called a data event control
block.

Data Access Methods 31

Data Event Control Block (DECB)

A data event control block (DECB) is a
main storage area, reserved by either the
programmer or the system, that relates an
input/output operation to a specific READ
or WRITE macro-instruction. Each READ or
WRITE macro-instruction requires one data
event control block that contains control
information and pointers to status indica­
tors. The programmer waits for completion
of the input or output operation and tests
for successful completion by issuing
appropriate macro-instructions. After the
input/output operation requested by a READ
or WRITE macro-instruction is completed, a
subsequent READ or WRITE macro-instruction
may use the same data event control block.

Fields of the data event control block
may be defined as parameters of the corres­
ponding READ or WRITE macro-instruction and
stored by the system, or may be filled in
directly by the programmer. Once a param­
eter is placed into the data event control
block, it need not be redefined by subse­
quent READ or WRITE macro-instructions
unless its value is to be changed.

CLASSIFICATION OF ACCESS METHODS

As previously stated, an access method
results from the integration of a language
and an associated set of facilities for
storing and retrieving a data set of a
given organization. Access methods can be
identified primarily by the data set orga­
nizations to which they apply. For exam­
ple, a combination of sequential organiza­
tion with either language is termed a
sequential access method (SAM). A particu­
lar access method, however, requires furth­
er qualification as either queued or basic.
Thus, the access method that uses the
macro-instructions for queued access for
operations on sequentially organized data
is called the queued sequential access
method (QSAM).

Table 1 identifies each available data
access method as a combination of a lan­
guage and a data set organization.

Various access methods may, in many
cases, be used with the same data sets.
For example, a given data set might be
defined to have a partitioned organization
for one purpose, and a sequential organiza­
tion for another, and thus might be
retrieved or stored by QSAM, BSAM or BPAM.

32

Table 1. Data Access Methods
r---------------------T-------------------,
I I Macro-Instruction I
I Data Set I Language I
I Organization ~---------T---------~
I I Basic I Queued I
~---------------------+---------+---------~
I Sequential I BSAM I QSAM I
I Partitioned I BPAM I I
IIndexed sequential I BISAM I QISAM I
I Direct I BDAM I I
I Telecommunications1 I BTAM I QTAM I
~---------------------~---------~---------~
11 QTAM and BTAM are described in thel
Ipublication IBM System/360 Operating sys-I
Item: Telecommunications. I l ___ J

EXECUTE CHANNEL PROGRAM (EXCP) ACCESSING
PROCEDURE

The system provides for scheduling and
queuing of input/output requests, efficient
use of channels and devices, data protec­
tion, interruption procedures, and error
recognition and retry. Through the EXCP
(execute channel program) macro-instruc­
tion, the programmer can utilize these
system functions to control directly an
input/ou"ti'ut device for access of any data
set organization, without using a specific
access method or language for access.

When using EXCP, the programmer provides
a channel program, which is a list of
channel command words appropriate to the
desired device and operation. The program­
mer also provides an input/output control
block (lOB) that is used with the channel
program to maintain status information
regarding completion of the operation. If
an input/output error results from an EXCP
macro-instruction, use of the system's
standard error recovery procedures depends
on the complexity of the channel program.

The EXCP macro-instruction gives the
prograffimer more freedom in controlling
devices than do the access methods, yet
retains many of the advantages of working
with the operating system. To use EXCP
successfully, however, the programmer needs
detailed knowledge of device control, sys­
tem functions, and control block structure.
For example, a programmer using a direct­
access device with EXCP must be familiar
with the techniques and control blocks
required for control of secondary storage;
control of magnetic tape with EXCP requires
an understanding of how volume switching is
initiated.

Any device controlled with EXCP must be
supported by corresponding device-dependent
programs and input/output error routines in

the system. For devices not supported by
the system, the installation must supply
appropriate programs to be included in the
operating system when it is generated.
Further details about EXCP are in the
publication IBM System/360 Operating
System: System Programmer's Guide, Form
C28-6550.

OPEN AND CLOSE MACRO-INSTRUCTIONS

Before applying an access method to a
data set, the programmer must request that
a data control block be completed as a
logical connection between the data set and
the problem program. The programmer issues
an OPEN macro-instruction that completes
the data control block fields, establishes
address relationships and linkages to
access routines, issues mounting messages
to the operator, verifies or creates data
set labels, interrogates tape volume
labels, positions volumes to the first
record to be processed, allocates buffer
pools as required, and begins filling buf­
fers for data sets to be read using the
queued sequential access method.

To accomplish these functions, the rou­
tine that is executed as a result of the
OPEN macro-instruction requires access to
information that the programmer supplies in
a DD statement. As previously described,
this information is stored in a JFCB. The
execution of the OPEN macro-instruction
causes the system to read the appropriate
JFCB from a job queue into main storage for
processing by the OPEN routine. The JFCB
is then returned to the job queue for
subsequent use by other system functions.

After input/output operations on a data
set have terminated, the programmer logi­
cally disconnects the data set from the
problem program by issuing a CLOSE macro­
instruction. This macro-instruction closes
the data control block, handles volume
dispositions, creates data set labels,
ensures the writing of queued output buf­
fers, and relinquishes main and secondary
storage. After a data control block has
been closed, it may be used for another
data set.

For a data set that is to be processed
by the basic sequential access method, the
system provides a variation of the CLOSE
macro-instruction, CLOSE (TYPE=T). In exe­
cuting this macro-instruction for data sets
on magnetic tape or direct-access volumes,
the system processes labels and repositions
vol urnes as required., but does not logically
disconnect the data set from the problem
program. As a result, the processing of a
data set for which a CLOSE (TYPE=T) macro­
instruction has been issued can be

continued at a later stage in the problem
program without the programmer having to
reissue an OPEN macro-instruction. If a
data set is to be processed more than once
by a problem program, the programmer can
improve performance by issuing the CLOSE
(TYPE=T) macro-instruction.

For a data set to be processed, the
programmer must issue an OPEN macro­
instruction to initialize the associated
data control block. If the programmer does
not close a data control block with a CLOSE
macro-instruction, the system automatically
closes it when the task terminates if the
data control block is available to the
system at this time. If it is not, the
task is abnormally terminated.

An OPEN or a CLOSE macro-instruction may
be addressed to more than one data control
block. Opening or closing several data
control blocks is faster than issuing a
separate OPEN or CLOSE macro-instruction
for each data control block, but the latter
technique uses less main storage space than
the former. The amount of main storage
space required for the OPEN and CLOSE
routines is directly proportional to the
number of data control blocks being
processed; a portion of this space is used
only when the OPEN or CLOSE routines are in
operation and is released before control is
returned to the problem program.

Use of OPEN and CLOSE

The programmer specifies, in the OPEN
macro-instruction, the intended use of a
data set. The functions of the OPEN and
CLOSE routines vary according to the use of
the data set by the problem program.

Table 2 summarizes, for each applicable
access method, every data set use (mode)
that may be specified in the OPEN macro­
instruction, and the representation of each
use as a parameter value. The modes are
ignored for the queued indexed sequential
and the basic indexed sequential access
methods.

The programmer also specifies, as a
parameter value, volume pOSitioning for
end-of-volume conditions in the OPEN macro­
instruction, volume positioning for end-of­
data set conditions in the CLOSE macro­
instruction, and data set repositioning in
the CLOSE (TYPE=T) macro-instruction.

For each access method, positioning is
specified as either of the following:

• LEAVE - leave the volume positioned at
the logical end of the portion of the
data set just read or written on that

Data Access Methods 33

volume. (The logical end is either the
end or the beginning of this data set
portion, depending on whether forward
or backward reading is used for an
input data set.)

• REREAD reposition the volume at the
logical beginning of the portion of the
data set just read or written on that
volume.

Either option
point outside of

causes pOSitioning to a
the data (and label)

portion of the data set, with one
exception: repositioning for CLOSE (TYPE=T)
is to a point within the data portion.

Volume disposition specified in the OPEN
or CLOSE macro-instructions can be overrid­
den by the system depending upon the
availability of devices at a particular
time. However, the problem programmer need
not be concerned when this situation aris­
es, because the system automatically
requests the mounting and dismounting of
the appropriate volumes.

Table 2. Data Set Uses Specified in OPEN Macro-Instruction
r---------T---,
I OPEN I I
I Parameter I Data Set Use I
I Value1 I I
~---------~---~
IQueued Sequential Access Method (QSAM) I
~---------T---~
I INPUT IData set is read forward sequentially. Labels are processed as input. I
I OUTPUT IData set is written sequentially. Labels are processed as output. I
IRDBACK IData set on magnetic tape is read backwards sequentially. Labels arel
I Iprocessed as input. I
IUPDAT IData set on direct-access volume is read sequentially and can be updated-in-I
I Iplace by output requests that write back to the data set the last record I
I Iread. Labels are processed as input. I
~---------~---~
IBasic Sequential Access Method (BSAM) I
~---------T---~
I INPUT IData set is read sequentially either forward or backward (depending on READ
I Imacro-instruction operand). Labels are processed as input.
I OUTPUT Data set is written sequentially. Labels are processed as output.
IRDBACK Data set on magnetic tape is read sequentially either forward or backward
I (depending on READ macro-instruction operand). Labels are processed as
I input.
IUPDAT Data set on direct-access volume is read sequentially and can be updated-in-
I place by output requests that write back to the data set the last record
I read. Labels are processed as input.
IINOUT Data set on magnetic tape or direct-access volume is read sequentially.
I Labels are normally processed as input. If records have been written to the
I data set, subsequent labels are processed as output. The volume is
I repositioned, and the data control block remains open so that the data set
I can be processed again as output.
IOUTIN Data set is written sequentially on magnetic tape or direct-access volume.
I Labels are processed as output. The volume is repositioned, and the data
I control block remains open so that the data set can be processed again as
I input.
~---------~---~
I Basic Direct Access Method (BDAM) I
~---------T---~
I INPUT IData set on direct-access volume is read. I
I OUTPUT I Data set is written on direct-access volume. OUTPUT is treated as if UPDATI
I Iwere specified. I
IUPDAT IData set on direct-access volume is read or written. Blocks can bel
I lupdated-in-place or added to the data set. I
~---------~---~
I Basic Partitioned Access Method (BPAM) I
~---------T---~
I INPUT IData set on direct-access volume is read sequentially. I
1 OUTPUT IMembers of data set are written sequentially on direct-access volume. I
~---------~---~
11If a parameter value is not specified, INPUT is assumed. I l ___ J

34

BUFFERS AND BUFFER POOLS

A buffer is a main storage area used for
intermediate storage of input/output data.
Usually its size corresponds to the size of
the blocks in a data set using the buffer.
The part of a buffer which contains a
logical record is called a buffer segment.
A buffer pool is a group of buffers
connected so that a data set associated
with the pool can be used with any of the
available buffers.

The programmer can construct a buffer
pool using either of the two techniques
discussed in the following text. These
techniques are common to all access methods
and must be used prior to opening the data
control block of the data set (or during
the optional data control block exit
routine). However, each access method pro­
vides additional facilities for automatic
buffer pool construction when a data con­
trol block is opened if neither technique
is used. (These facilities and the proce­
dures for obtaining individual buffers from
a pool are discussed in detail under
"Buffering Considerations" in the sections
of this publication describing the indivi­
dual access methods.)

ASSEMBLY TIME BUFFER POOL CONSTRUCTION

When the programmer knows at assembly
time both the number and size of the
buffers he wants to associate with a given
data set or data sets, he can reserve an
area of appropriate size to be subsequently
used as a buffer pool. During execution of
a problem program, he can structure this
area into a buffer pool by issuing a BUILD
macro-instruction. Any type of area, from
a storage area defined by the programmer
prior to execution time to an area contain­
ing coding that is no longer required, can
be structured into a buffer pool.

BUILD -- Build a Buffer Pool

The BUILD macro-instruction structures a
main storage area reserved by the program­
mer into a buffer pool.

The address of a main storage area to be
used as a buffer pool is specified in the
BUILD macro-instruction. This address must
also appear in the data control block
associated with each data set that will use
the pool. The number of buffers to be
contained in the pool and the byte length
of each buffer must also be specified in
the BUILD macro-instruction.

When the data control block of the data
set using the pool is closed, the pool area
can be reused as required. The programmer,
however, will frequently find it useful to
restructure this area (by issuing another
BUILD macro-instruction) into a new buffer
pool to be assigned to another data set.

The area reserved for use as a buffer
pool can be assigned to two or more data
sets that are able to use buffers of the
same length. If this is done, the area
should be large enough to accommodate the
total number of buffers that will be
required at anyone time during program
execution. For example, if two data sets
to be processed simultaneously require five
buffers each, the size of the area speci­
fied should be ten buffer lengths.

OBJECT TIME BUFFER POOL CONSTRUCTION

When a programmer does not
reserve a specific area for use as
pool, he can request the system to
and structure an appropriate area
storage by issuing a GETPOOL
instruction.

GETPOOL -- Get a Buffer Pool

want to
a buffer

obtain
in main
macro-

The GETPOOL macro-instruction structures
a main storage area obtained by the system
into a buffer pool, and assigns that area
to a data control block associated with a
specific data set.

The address of the data control block,
the number of buffers required in the pool,
and the byte length of each buffer in the
pool must be specified in the GETPOOL
macro-instruction.

In many applications, single- or double­
word alignment of a block within a buffer
is important. The progra~~er can specify
(in the DCB macro-instruction) that the
buffers are to start either on a double­
word or on a full-word boundary that is not
also a double-word boundary. If double­
word alignment is specified for format V
logical records, the fifth byte of the
first logical record of each block is
aligned on a double-word boundary. The
alignment of subsequent logical records in
each block depends upon the lengths of the
preceding records of that block. If
double-word alignment is required for the
first byte of the first logical record in a
block, full-word buffer alignment should be
specified.

Data Access Methods 35

When the buffer pool is no longer
required, the area obtained with the GET­
POOL macro-instruction should be returned
to the system by issuing a FREEPOOL macro­
instruction.

FREEPOOL -- Free a Buffer Pool

The FREE POOL macro-instruction
a buffer pool, previously
automatically or by a GETPOOL
instruction, to main storage.

returns
obtained

macro-

The address of the data control block
associated with the data set that used the
pool must be specified in the FREEPOOL
macro-instruction.

ACCESS METHODS FOR SEQUENTIAL DATA SETS

Two access methods, the queued
sequential and the basic sequential, are
provided to enable the programmer to store
and retrieve the records of a sequential
data set. Both access methods can be used
when data is processed on unit record
equipment, paper tape readers, magnetic
tapes, and direct-access devices. These
access methods are particularly valuable in
such applications as copying data sets from
one volume to another, updating payroll or
inventory data sets, and merging two or
more sequential data sets.

DATA FORMAT-DEVICE TYPE RELATIONSHIPS

The following text discusses data format
considerations that apply to specific
input/output device types supported by the
queued sequential and basic sequential
access methods. Included are descriptions
of acceptable data formats for each of the
devices supported.

Card Readers and Punches

Readers and punches transfer data of any
record format (F, V, or U). When format V
records are punched, the initial control
bytes in the buffer are ignored, and not
punched,. The control character C, if spec­
ified, is used for stacker selection only;
it is not punched.

When the system transfers data from main
storage to be punched, each card punched
corresponds to one logical record; for this
reason, if the programmer plans to have

36

cards punched, he should restrict the maxi­
mum size of his records to 80 or 160 data
bytes, depending upon whether the mode is
EBCDIC or column binary, respectively.

When the queued sequential access method
is used, punch error correction on the IBM
2540 Card Read Punch is automatically per­
formed only for data sets with three or
more buffers.

Printers

The printer accepts data of any record
format (F, V, or U). When format V records
are printed, the initial control bytes in
the buffer are ignored, and not printed.
The control character C, if specified, is
used for carriage control only; it is not
printed.

Each line of print corresponds to one
logical record in storage; hence, if a data
set is to be printed, the length of its
records should not exceed one line of
print.

The system does not automatically per­
form initial pOSitioning of the printer
carriage.

Paper Tape Reader

The paper tape reader reads format U and
format F records. Each format U record on
paper tape is followed by an end-of-record
character. This character is not required
for format F records. Data read from paper
tape is optionally converted into the
System/360 internal representation of any
of six standard paper tape codes.

Magnetic Tape

All record formats (F, V, and U) are
acceptable to magnetic tape; all control
bytes are transIfli tted.. 7-track tapes not
using the data conversion feature do not
handle format V. (It is recommended that
all blocks be at least 16 bytes in length.)

Direct-Access Devices

All record formats (F, V, and U) are
acceptable to direct-access devices; all
control bytes are transmitted.

All direct-access devices have the same
track format. Each track consists of con­
trol information, a capacity record (R o)'

and the records (R~ Rn). Additional
track format information follows:

1. Record Ro. The capacity record is
formatted according to a system stan­
dard. Only the basic sequential
access method can be used to rewrite
the data portion of this record.

2. Record R~. This record is either the
first complete data record on a given
track, or the overflow portion of a
record from a preceding track (if the
track overflow option is in effect).
It has a record number of 1 in the
count field.

3. other Data Records. The record number
in the count field can extend sequen­
tially from 2 to a maximum of 255.

Both the queued and basic sequential
access methods can be used to store and
retrieve the data records of a direct­
access volume. Normally, as many records
are stored on a track as is physically
possible. A data set can be retrieved in
its entirety even if the tracks on which
the data set resides do not each contain a
full complement of records.

CHAINED SCHEDULING

Both the queued sequential and basic
sequential access methods permit the
programmer to accelerate the input/output
operations required for a data set through
the use of a technique known as chained
scheduling. This technique, specified in
the DCB macro-instruction, bypasses the
normal input/output scheduling routines of
the system to dynamically chain several
input/output operations together. A series
of separate read operations, for example,
functioning under chained scheduling, is
issued to the computing system as one
continuous read operation using the PCI
flag in command words for synchronization.

Chained scheduling increases input/
output performance by reducing both CPU
time and channel start and stop time
required to transfer records between main
and secondary storage. It also can sharply
reduce the effects of rotational delay
since several successive blocks, indepen­
dently called for, can be retrieved in a
single rotation. The use of chained sched­
uling, however, restricts the programmer in
his choice of buffering techniques. In
addition, each data set for which chained
scheduling is specified must be assigned at
least two, and preferably three" buffers.

Chained scheduling is most valuable for
programs that are input/output limited. If

the programmer specifies chained scheduling
for a data set, the input/output operations
of the data set may intermittently monopo­
lize available time on a channel. For this
reason, if more than one data set is to be
processed, the programmer should assign
each data set to a separate channel, if
possible.

QUEUED SEQUENTIAL ACCESS METHOD

The queued sequential access method per­
mits the programmer to store and retrieve
the records of a sequential data set with­
out coding blocking/deblocking and buffer­
ing routines. The programmer can, there­
fore, concentrate all his efforts on pro­
cessing the data he reads and writes.
Another major feature of this access method
is that it provides two buffering tech­
niques, allowing the programmer to choose
the one most suited to his application.

The macro-instructions of the queued
sequential ac~ess method are, for the most
part, device-independent, permitting the
programmer to write programs that can be
executed using a number of different
input/output devices.

RECORD FORMATS

The queued sequential access method sup­
ports five block configurations:

1. Format U.
2. Format F, Unblocked.
3. Format F, Blocked.
4. Format V, Unblocked.
5. Format V, Blocked.

BUFFERING CONSIDERATIONS

The following section discusses the buf­
fering facilities available with the queued
sequential access method. Descriptions of
buff'er pool construction and buffer assign­
ment procedures are included.

Buffer Pool Construction

The system automatically assigns a buf­
fer pool to a data control block when it is
opened, if the programmer has not assigned
such a pool prior to the conclusion of the
optional data control block exit routine.
The programmer must return this pool area

Data Access Methods 37

to main storage when it is no longer
required by issuing a FREEPOOL macro­
instruction (refer to the section "Buffers
and Buffer Pools").

When the programmer requires buffers for
specialized applications, he should use
either the GETPOOL or the BUILD macro­
instruction (refer to the section "Buffers
and Buffer Pools").

Buffer Assignment Procedures

After the buffer pool has been
constructed, the programmer requests input
or output of data records. The system
automatically blocks and deblocks data
records, obtains and controls buffers, and
reads and writes data records, as required.
If a buffer pool constructed by the BUILD
macro-instruction is used by more than one
data set, individual buff.ers from the pool
are automatically assigned to the appropri­
ate data control block according to the
programmer's specifications.

Buffers are returned to the pool area by
the system when the programmer closes the
data control block of the data set using
the pool.

BUFFERING TECHNIQUES

The term buffering technique refers to
the manner in which buffers are assigned
to, and used with, input and output data
sets. Two buffering techniques are provid­
ed: simple and exchange. Each is described
in detail in the following text. Correct
choice of these techniques contributes to
the efficiency of the problem program.

Simple Buffering

In simple buffering, a data set is
associated with a specific group of- buf­
fers. A data set always uses buffers
obtained from the pool aSSigned to its data
control block at the time it is opened.
Logical records can be treated in any of
the following ways:

38

• Moved between a buffer and an indepen­
dent work area.

• Processed within a buffer.

• Moved from an input buffer to an output
buffer.

The programmer, therefore, can insert
new records or delete old records, as
required, when creating a new data set from
an existing data set.

Simple buffering is the most widely
applicable of the two techniques provided.
The system places no restrictions on the
record formats or macro-instructions that
can be used with this teChnique.

REQUESTING SIMPLE BUFFERING: By any of the
methods described previously, the buffer
pools are created and associated with data
control blocks. The programmer must indi­
cate in the data control blocks of the data
sets that simple buffering is to be used.

Exchange Buffering

Exchange buffering combines the record
insertion/deletion features of simple buf­
fering with certain device features asso­
ciated with data chaining ("scatter read"
and "gather write"). The system implements
"scatter read" by issuing separate chained
channel command words for each logical
record in a block, reading these records
into separate main storage locations
(buffer segments or work areas). "Gather
write" is implemented similarly. The sys-
tem issues separate chained channel command
words to write logical records from separ­
ate main storage locations into one block
on a volume.

With exchange buffering, logical records
can be handled in any of the following
ways:

• Processed within an input buffer seg­
ment.

• Moved from an input buffer segment to a
work area.

• Moved from an input buffer segment to
an output buffer segment.

• Moved from a work area to an output
buffer segment.

• Included in a scatter read.

• Included in a gather write.

Exchange buffering can be requested only
for programs that are to process either
unblocked records or blocked format F
records. When blocked -records are proc­
essed, the implementation of exchange buf­
fering is totally dependent upon data
chaining. The ability to chain data is
related to a combination of such factors as
the speed of the central processing unit,
the input/output device selected, and the

type of input/output channel involved. If
the programmer has requested exchange buf­
fering, and data chaining cannot be effect­
ed, simple buffering is substituted auto­
matically. If simple buffering is substi­
tuted, alignment is guaranteed only if
logical records are multiples of double
words.

For a data set using exchange buffering
and blocked format F records, the system
segments the buffers so that each segment
is of the same length and has the same word
boundary alignment. (The programmer must
ensure that buffers are large enough for
boundary alignment of segments.) When the
programmer creates a buffer pool whose
individual buffers are each larger than the
blocks of the data set, each buffer segment
will be larger than the record it contains.
By constructing such a buffer pool, the
programmer can increase the length of each
record within its buffer segment as the
need arises. This technique is especially
useful when the GET and PUT macro­
instructions are used in substitute mode.

Exchange buffering is useful and
efficient in applications that involve
either merging two or more data sets, or
updating one data set by inserting or
deleting logical records.

REQUESTING EXCHANGE BUFFERING: Using any
of the methods described previously, the
programmer creates and associates a buffer
pool with both the input and output data
sets.

caution: Exchange buffering cannot be
requested for data of blocked format F
records when the programmer has specified
the track overflow option.

~~eRO-INSTRUCTIONS

The following macro-instructions are
provided by the queued sequential access
method for input/output operations.

GET -- Get a Logical Record

The GET macro-instruction obtains a log­
ical re.cord from an input data set in
either of three modes of operation: move,
locate, or substitute. In the move mode,
GET moves the logical r·ecord, from an input
buffer into a work area specified by the
programmer. The record may be processed or
extended in the work area. Move mode GET
can be used only with simple buffering.

In the locate mode, GET does not move
the logical record from the input buffer,
but places into a standard register the
address of the buffer segment in which the
programmer may process that record. The
programmer may not extend record size.

In the substitute mode, GET interchanges
the addresses of the programmer's work area
and the buffer segment containing the logi­
cal record, so that the buffer segment's
address is placed in a standard register
and the work area becomes a segment of the
input buffer. Substitute mode GET can be
specified only if exchange buffering is
specified. If exchange buffering cannot be
perforroed because data chaining cannot be
effected, substitute mode GET works identi­
cally to move mode GET with simple buffer­
ing.

The programmer may specify only one of
these modes of operation as a parameter of
the DeB macro-instruction associated with
the input data set. Table 3 indicates the
valid combinations of modes of GET with
each buffering technique.

GET cperates in a strictly sequential
and device-independent manner. As
required, GET schedules the filling of
input buffers, deblocks records, and
directs input error recovery procedures.
After GET has retrieved all records to be
processed and has discovered that no data
remains, the system automatically checks
labels and passes control to the
programmer's end-of-data set exit specifi€d
in the data control block. GET also tests
for an end-of-volume condition and ini­
tiates automatic volume switching if an
input data set or a concatenation of input
data sets extends across several volumes.
Finally, GET automatically resolves data
set discontinuities within the same volume.

The following operands must be specified
by the programmer in the GET macro­
instruction:

1. The address of the data control block
associated with the input data set.

2. The address of the programmer's work
area for input logical records if the
mode of operation is move or
substitute.

Note 1: Optionally, GET may read backwards
from magnetic tape.

Note 2: Only move mode
for the paper tape reader
is specified.

GET is supported
when conversion

Data Access Methods 39

RELSE -- Release an Input Buffer

The RELSE macro-instruction causes the
GET macro-instruction to ignore the remain­
ing logical records in an input buffer and
to obtain logical records from the next
buffer. When the prograITmer does not
require the remaining contents of an input
buffer that GET is deblocking, he may issue
the RELSE macro-instruction to release the
buffer so that the next logical record is
retrieved from another block. When used in
conjunction with move mode GET, RELSE caus­
es the input buffer to be scheduled for
refilling immediately. When us'ed with
locate mode GET, RELSE prevents refilling
of the buffer until a subsequent GET is
issued. RELSE does not affect buffers
containing unblocked records.

The address of the data control block
associated with the input data set must be
specified in the RELSE macro-instruction.

PUT -- Put a Logical Record

The PUT macro-instruction places a logi­
cal record into an output data set in
either of three modes of operation: move,
locate, or substitute. In the move mode,
PUT moves the logical record from a work
area specified by the programmer into an
output buffer. In the locate mode, PUT
does not move the logical record into the
output buffer, but places into a standard
register the address of the buffer segment
into which the programmer may move that
record. Locate mode PUT can be used only
with simple buffering (Table 3).

In the substitute mode, PUT interchanges
the addresses of the work area containing
the logical record and a free buffer seg­
ment. The buffer segment's address is
placed into a standard register and the
work area effectively becomes a segment of
the output buffer. Substitute mode PUT can
be specified only if exchange buffering is
specified. If exchange buffering cannot be
performed because data chaining cannot be
effected, sUbstitute mode PUT works identi-

cally to move mode PUT with simple buffer­
ing.

The programmer specifies only one of
these modes of operation as a parameter of
the DCB macro-instruction associated with
the output data set. Table 3 indicates the
valid corrbinations of modes of PUT with
each buffering technique.

Like the GET macro-instruction, PUT
operates in a strictly sequential and
device-independent manner. As required,
PUT blocks records, schedules the emptying
of output buffers, and handles output error
correction procedures. PUT also resolves
discontinuities of available space, tests
for an end-of-volume condition, and ini­
tiates automatic volume switching and label
creation.

The following operands must be specified
in the PUT macro-instruction:

1. The address of the data control block
of the output data set.

2. The address of the programmer's work
area for output logical records if the
mode of operation is move or substi­
tute.

Note: If PUT is directed to a card punch
or printer, the system automatically
adjusts the blocking factor of format F or
V blocks to 1. This allows the programmer
to specify a record length and a buffer
length that provide __ an optimum blocking
factor for possible intermediate tape or
direct-access devices.

PUTX -- Put From Existing Data Set

The PUTX macro-instruction is used to
update an input data set in place or to
create an output data set based on an input
data set. PUTX updates, replaces, or
inserts records read from existing data
sets but does not add or create records
from other sources. According to one of
two uses, update or output, and depending
on the buffering technique, PUTX causes a

Table 3. Valid Combinations of Modes and Buffering Techniques
r--------------------------T------------------------T-----------------------------------,
I Simple Buffering Only I Both Simple and I Exchange Buffering Only I
I I Exchange Buffering I I
~--------------------------+------------------------+-----------------------------------~
I GET move I GET locate I GET substitute I
I PUT locate I PUT move I PUT substitute I
I PUTX update I PUTX output I I
~--~-----------------------~------------------------~-----------------------------------~
I Note: Exchange buffering does not permit format V blocked records; format V records I
I cannot be used at all with substitute mode. I l ___ L _____________ J

40

block or a logical record to be either
written directly from the input buffer into
which it was read or transferred from an
input buffer to an output buffer. PUTX
must be preceded by a GET macro-instruction
in the locate mode that refers to the same
input data control block as the PUTX.
Table 3 indicates the valid combinations of
uses of PUTX with each buffering technique.

When the use is update, PUTX places
records back into an input data set. Each
PUTX flags the entire input buffer contain­
ing the segment addressed by the preceding
GET macro-instruction to be written back to
the same location in secondary storage from
which it was read. The block is written
when the first GET is given for the next
buffer. PUTX for update use applies only
to data sets on direct-access volumes and
may be ,used only with simple buffering.

When the use is output, PUTX places
records into an output data set and is
applicable to any buffering technique.
With simple buffering, PUTX moves a logical
record from an input buffer segment to an
available output buffer segment. New
records can be added to the output buffer
by PUT macro-instructions. PUTX, like PUT,
schedules the buffer to be written when it
is filled.

With exchange buffering, PUTX utilizes
data chaining to schedule a gather write of
logical records from areas some of which
were previously input buffer segments.
correspondingly, buffer segments that were
previously used by an output data set are
scheduled for a scatter read.

The addresses of the data control blocks
of the output and the input data sets
(output use), or associated with the data
set updated-in-place (update use), must be
specified in the PUTX macro-instruction.

TRUNC -- Truncate an Output Buffer

The TRUNC macro-instruction causes the
PUT macro-instruction to regard an output
buffer as full, and subsequently to place
logical records into the next buffer. When
the programmer does not need the remaining
portion of an output buffer that PUT is
blocking, he may issue the TRUNC macro­
instruction to truncate the buffer so that
the next logical record is placed into
another block. Thus, just as input buffers
may be released, output buffers may be
truncated for writing short blocks.

The address of the data control block of
the output data set must be specified in
the TRUNC macro-instruction.

The CLOSE macro-instruction effectively
truncates the last block of a data set.

As noted in the section "Fixed-Length
(Format F)," data sets with truncated
blocks are not read from direct-access
devices as efficiently as standard F data
sets.

Note: When the TRUNC macro-instruction is
used with locate mode PUT, the system
assumes that a record was placed in the
buffer segment pointed to by the previous
PUT.

FEOV -- Force End of Volume

The FEOV macro-instruction causes the
system to assume an end-of-volume condition
for either an input or an output data set,
thereby causing immediate automatic volume
switching. When volumes are switched, FEOV
creates output labels as required and veri­
fies labels on new input volumes.

The address of the data control block of
the input or output data set must be
specified in the FEOV macro-instruction.

Note: when the FEOV macro-instruction is
used with locate wode PUT, the system
assumes that a record was placed in the
buffer segment pointed to by the previous
PUT.

CNTRL -- Control a Printer or Stacker

The CNTRL macro-instruction provides
either of two device-dependent control
functions: on-line card reader stacker
selection or on-line printer carriage con­
trol. If directed to a card reader, CNTRL
must follow every GET macro-instruction
directed to that card reader for the same
data set.

The following operands must be specified
in the CNTRL macro-instruction:

1. The address of the data control block
of the input or output data set.

2. The action to be taken (either stacker
selection, line spacing, or channel
skipping) •

3. A number indicating either the stack­
er, amount of lines, or the printer
carriage tape channel.

Note: If CNTRL is directed to a card
reader, only one input buffer may be used,
and the preceding GET macro-instruction
must be in move mode. As soon as CNTRL is

Data Access Methods 41

issued, the buffer is scheduled for refill­
ing.

PRTOV -- Test for Printer Overflow

The PRTOV macro-instruction tests over­
flow indicators for on-line printer channel
overflow. If an overflow indicator is on,
PRTOV causes either an automatic skip to a
new page or a transfer of control to an
optionally specified logical point in the
problem program.

The following operands must be specified
in the PRTOV macro-instruction:

. 1. The address of the data control block
of the output data set.

2. The printer channel to be tested for
overflow (either 9 or 12).

3. The address of a routine may optional­
ly be specified for transfer of con­
trol on condition of overflow; if this
is not specified, a printer overflow
condition causes automatic skipping to
channel one.

ERROR CONDITIONS

If data transmission to or from an
input/output device is not successful the
first time it is attempted, standard error
recovery routines, provided by the operat­
ing system, attempt to clear the failure
and allow the program to continue uninter­
rupted. An uncorrectable error usually
terminates the problem program, but the
programmer can specify, in the DCB macro­
instruction, other actions to be taken in
case of an uncorrectable error. These
actions differ for input and output
operations, and are described, by type, in
the following text. The programmer cannot
attempt to reread or rewrite the record in
error, since automatic retry is handled by
the system.

Input Operations

For uncorrectable errors that occur in
filling an input buffer, the programmer can
direct the system to:

42

• Deblock the buffer as though its
records had been read correctly.

• Ignore the buffer, and read and deblock
the next block.

• Terminate the task.

Output Operations

For uncorrectable errors that occur in
transferring data from an output buffer to
secondary storage, the programmer can
direct the system to:

• Accept the record in error (applies
only to printer).

• Terminate the task.

ERROR CONDITIONS: INTERNAL DETAILS

The following more detailed discussion
is provided for programmers who code their
own error analysis routines. The address
of this routine must be specified in the
DCB macro-instruction.

Input Operations

When an uncorrectable error occurs after
a GET macro-instruction has been issued to
transfer data to an input buffer, the
system ceases to schedule additional buf­
fers to be filled. It continues, however,
to deblock the records of those buffers
already filled. When the buffer in which
the error occurred is to be deblocked,
control is passed to the programmer's error
analysis routine.

Output Operations

When an uncorrectable error occurs in
transferring data from an output buffer,
the system ceases to schedule additional
buffers for writing. It continues, howev­
er, to block the programmer's data until
all output buffers except one are filled.
When the system attempts to fill the buffer
in which the error occurred, control is
passed to the programmer's error analysis
routine.

Error Analysis Routine (Synchronous Error
Exit)

Error codes, whose addresses are placed
by the system into standard registers, can
be examined by the programmer to determine
the type of error that has occurred, and
the location of the buffer containing the
record in error. After the programmer has
completed his error analysiS and process­
ing, he can return control to the system,

whereupon the standard error option the
programmer has specified in the DCB macro­
instruction is executed.

As an alternative, the data set may be
closed in the error analysis ~outine, in
which case the programmer must not return
control to the system.

PROGRAMMING NOTES

The following section describes
additional program.i11ing factors, not specif­
ically related to anyone macro­
instruction, that the programmer should
consider before coding a program.

Direct-Access Volume Options

Both the track overflow and the write
validity check options, described previous­
ly, are available to the programmer.

The keys in the records on direct-access
volumes cannot be processed using the
queued sequential access method.

Update-in-Place

The following rules apply to a data set
to be updated-in-place:

1. Only simple buffering can be used.

2. Chained scheduling is not available.

3. Macro-instruction usage is limited to
the GET (locate), RELSE, and PUTX
(update) macro-instructions.

4. When a PUTX (update) macro-instruction
is issued for an individual record
within a block, the complete block (as
it exists in secondary storage) is
scheduled to be overwritten. The
block is overwritten after the pro­
grammer has completed the input proc­
essing of all records in the block.

5. Neither alteration of block length,
insertion of new blocks, nor deletion
of existing blocks is possible.

Concatenated Data Sets

Two or more sequentially organized data
sets can be concatenated, i.e., automat­
ically retrieved by the system and proc-

essed successively as a single data set.
The following considerations apply to con­
catenation of sequential data sets:

1. Concatenation applies only to data
sets opened for INPUT.

2. A maximum of 255 data sets can be
concatenated.

3. Only one data control block is asso­
ciated with all the data sets concate­
nated. The programmer enters DD
statements for these data sets in the
order in which they are to be
retrieved. If data sets with unlike
characteristics {e.g., block length,
record format, etc.}, are to be con­
catenated, the data control block must
contain an indication of this.

4. When the data sets to be concatenated
have unlike characteristics, the pro­
gramnier must reissue any input
requests that have not been completed
at the time the system determines that
the data set currently being processed
does not contain any more blocks.
such a data set is automatically
closed, and the next data set to be
processed is opened. The programmer
should supply an entry in the exit
list for his data control block exit
rou·tine, so that control may be passed
to it during the opening process.
From this routine, the programmer must
be able to determine the status of all
outstanding input requests; any
requests not yet completed must be
reissued after the opening process is
completed, i.e., they cannot be reis­
sued in the programmer's data control
block exit routine. When using the
queued sequential access method, the
programmer must reissue the last GET
issued before the new data set was
opened. When using the basic sequen­
tial access method, each CHECK macro­
instruction should be immediately
followed by a test of a program switch
whose value indicates whether or not
to reissue the associated READ macro­
instruction and all other READ macro­
instructions that were subsequently
issued. The program switch should be
set to the "on" status in the data
control block exit routine and set
"off" whenever the test determines an
"on" condition.

5. When the data sets to be concatenated
have identical characteristics, i.e.,
both data and device characteristics,
the system performs the concatenating
function without performing the
closing and opening processes des­
cribed in item 4. Therefore, the data
control block exit is not taken and

Data Access Methods 43

the programmer is not aware of when
the concatenation process takes place.

6. The programmer's end-oE-data set rou­
tine is not entered until the last
data set has been retrieved.

7. Volume switching is automatically per­
formed as for a single data set on
multiple volumes.

8. When two data sets on the same volume
are to be consecutively concatenated,
the disposition option of the OPEN
macro-instruction should be LEAVE or
REREAD.

9. User label exit routines are executed
for each data set, if requested.

For detailed concatenation procedures,
see IBM System/360 Operating System: Job
Control Language.

Read Backwards

Data sets on magnetic tape that can be
read backwards are supported by the
System/360 Operating System. The following
considerations apply to such data sets:

1. Simple buffering must be used.

2. Format V records cannot be read back­
wards.

3. Word boundary alignment of the first
data byte of each block is ensured
only if the length of each block of
the data set is a multiple of a single
or double word.

4. In reading backwards, logical records
are presented in the same manner as in
forward reading, but in reverse
sequence.

Blocking of Variable-Length Records

When a PUT (locate mode) is used to
block variable-length records, the system
maintains a maximum logical record length
in the data control block. When the space
r~maining in an outrut buffer is less than
this maximum logical record length, the
records in the buffer are transferred as a
block to secondary storage and the system
begins filling another buffer. To ensure
that each block contains the maximum number
of records it can accommodate, the program­
mer can replace the maximum logical record
length maintained in the data control block
with the actual length of each logical

44

record about to be transferred to an output
buffer.

BASIC SEQUENTIAL ACCESS METHOD

The basic sequential access method pro­
vides the programmer with an efficient and
flexible means for storing and retrieving
the blocks of a sequentially organized data
set. The macro-instructions of this access
method can be used in a device-dependent
manner, supplying the programmer with a set
of facilities similar to the true function­
al nature of the input/output devices sup­
ported. Certain macro-instructions (NOTE,
POINT, and CONTROL) permit him to gain
access to data in other than a strictly
sequential order. By somewhat limiting the
use of these macro-instructions, however,
the prograrr@er can code programs that are
completely device-independent. Whether
using these macro-instructions in a device­
dependent or device-independent manner, the
programmer does not require a detailed
knowledge of the input/output devices
themselves.

A major feature of the basic sequential
access method is that it permits the pro­
grammer to transfer data from an
input/output device directly to a specific
area of main storage or, conversely, to
transfer data from a specific area in main
storage to an input/output device, without
first moving it to or from a buffer. This
feature is particularly useful if, owing to
the large size of the records to be proc­
essed, no main storage space is available
for buffers.

Because of the additional modes of the
OPEN macro-instruction provided for the
basic sequential access method, it is
effective in applications where records are
to be alternately read and written, in
rapid succession, from and to a data set
used as a temporary extension of main
storage.

The basic sequential access method can
also be used to store and retrieve blocks
directly, in any sequence, from a direct­
access or a magnetic tape device. This
capability, however, is less flexible than
the basic indexed sequential or the basic
direct access methods, which are more
specialized for direct-access devices.

RECORD FORMATS

The basic sequential access method sup­
ports five block configurations:

(

1. Forrr,at u.
2. Format F, Unblocked.
3. Format F, Blocked.
4. Format V, Unblocked.
5. Format V, Blocked.

All blocks are treated as the object of
an input or an output request. Although
the basic sequential access method does not
provide either automatic buffering of
blocks or blocking/deblocking of records,
the resources of the system permit the
programmer to code these routines, if
required, with a minimum of effort. Trun­
cated format F blocks can be detected by
the system and an indication of such blocks
is provided for the programmer's error
analysis routine, without using the
system's error recovery procedures.

For format V blocks in the basic sequen­
tial access method, the first eight bytes
of a block (four containing block control
information and four containing record con­
trol information) must be provided by the
programmer.

BUFFERING CONSIDERATIONS

The term buffering is used in a differ­
ent context in the basic sequential access
method than it is in the queued sequential
access method. In the basic sequential
access method, a buffer is a work area
rather than an intermediate storage area.
The programmer may use the buffering macro­
instructions provided by the system to
create and assign work areas (buffers) to
the problem program, rather than to reserve
and identify specific work areas within the
program.

Buffer Pool Construction

If the programmer has not assigned a
buffer pool to a data set prior to the
conclusion of the optional data control
block exit routine, and a buffer pool is
required, the system assigns a pool
automatically when the data control block
is opened. The programmer must return the
pool to main storage when it is no longer
required by issuing a FREEPOOL macro­
instruction (refer to section "Buffers and
Buffer Pools").

When the programmer requires buffers for
specialized applications, he should use
either the GETPOOL or the BUILD macro­
instruction <refer to the section "Buffers
and Buffer Pools").

Buffer Assignment Procedures

To obtain a buffer from a pool
constructed by means of any of the above
three techniques, the programmer issues a
GETBUF macro-instruction.

When the buffer is no longer required,
the programmer must return the buffer to
its pool by issuing a FREEBUF macro­
instruction.

GETBUF -- Get a Buffer From a Pool

The GETBUF macro-instruction causes a
buffer to be obtained from a pool
associated with a specific data set.

The address of the data control block of
the dat.a set requiring the buffer, and a
register into which the system is to place
the address of the buffer obtained must be
specified in the GETBUF macro-instruction.

FREEBUF -- Return a Buffer to a. Pool

The FREEBUF macro-instruction causes a
buffer to be returned to the pool from
which it was obtained.

The address of the data control block of
the data set using the buffer pool, and the
register containing the address of the
buffer to be returned to the pool must be
specified in ~he FREEBUF macro-instruction.

The programmer need not return buffers
to a buffer pool in the order in which they
were obtained.

MACRO-INSTRUCTIONS

The following macro-instructions are
provided by the basic sequential access
method for input/output operations.

READ -- Read a Block

The READ macro-instruction requests that
a block be transmitted from an input data
set to a main storage area specified by the
programmer. As previously explained, the
fields in the data event control block are
specified as parameters of READ (but may be
subsequently replaced by parameters of
other READ macro-instructions addressed to
the same data event control block). READ
operates in a strictly sequential and
device-independent manner. To allow over-

Data Access Methods 45

lap of the input operation with processing,
READ does not wait for completion of the
input operation, but returns control to the
problem program. If the input data set is
defined with key fields, READ transmits the
key, immediately followed by the block,
into the area. READ also automatically
resolves extent discontinuities.

The following two operands must be spec­
ified in the READ macro-instruction:

1. The address of the data event control
block referred to by the READ macro­
instruction.

2. The type of input operation (either
forward or backward reading).

The following operands are required in
READ macro-instructions that initially
place the corresponding fields into a data
event control block. In subsequent READ
macro-instructions using the same data
event control block, they may optionally be
specified to override the previously
specified values. If an operand is omit­
ted, the system as~umes its value is
already in the data event control block.

3. The address of a data control block of
an input data set.

4. The address of an input area.

5. For format U records, the number of
bytes to be transmitted.

WRITE -- write a Block

The WRITE macro-instruction requests
that a block be transmitted from a main
storage area specified by the programmer to
an output data set. Normally, the fields
in the data event control block are ini­
tially parameters of WRITE (but may be
subsequently replaced by parameters of
other WRITE macro-instructions addressed to
the same data event control block). Like
the READ macro":instruction, WRITE operates
in a strictly sequential and device­
independent manner. To allow overlap of
the output operation with processing, HRITE
does not wait for completion of the output
operation, but returns control to the
problem program. If the key length of an
output data set is specified in the data
control block, WRITE transmits the key,
immediately followed by the data, from the
area. WRITE also automatically resolves
extent discontinuities.

The following two operands must be spec­
ified in the WRITE macro-instruction:

46

1. The address of the data event control
block of the WRITE macro-instruction.

2. The type of output operation.

The following operands are required in
WRITE macro-instructions that initially
place the corresponding fields into a data
event control block. In subsequent WRITE
macro-instructions using the same data
event control block, they may optionally be
specified to override the previously speci­
fied values. If an operand is omitted, the
system assumes its value is already in the
data event control block.

3. The address of a data control block of
an output data set.

4. The address of an output area.

5. For format U records, the number of
bytes to be transmitted. This over­
riding length should not exceed the
length specified in the data control
block.

CHECK -- Wait for and Test Completion of
Read or Write Operation

The CHECK macro-instruction must be used
to wait for the completion of an
input/output operation requested by a READ
or WRITE macro-instruction. It is also
used to test the data event control block
for errors and exceptional conditions. As
required, CHECK passes control to the
appropriate exits that are specified by the
programmer in the data control block for
error analysis and end-of-data set, and
initiates automatic end-of-volume proce­
dures. The programmer must issue a CHECK
macro-instruction to test the input/output
operation associated with the data event
control block before modifying or reusing
it. Similarly, a problem program must
check an input/output operation for comple­
tion before altering the input or output
area in main storage.

The address of the data event control
block of a preceding READ or WRITE macro­
instruction must be specified in the CHECK
macro-instruction.

Note: A WAIT macro-instruction can be
issued prior to the CHECK macro­
instruction. The WAIT macro-instruction
synchronizes input/output operations with
processing but does not check the data
event control block for errors or
exceptional conditions or initiate volume
switching. Such a WAIT macro-instruction
may be issued for multiple event control (.
blocks.

Successive CHECK macro-instructions that
test input/output operations on the same
data set should be issued in the same order
as the associated READ or WRITE macro­
instruction for the data set. (This is not
true of WAIT.)

FEOV -- Force End of Volume

The FEOV macro-instruction causes the
system to assume an end-of-volume condition
for either an input or an output data set,
thereby causing immediate automatic volume
switching. When volumes are switched, FEOV
creates output labels as required, and
verifies lab~ls on new input volumes.

The address of the data control block of
the data set must be specified in the FEOV
macro-instruction.

Note: Before issuing an FEOV macro­
instruction for an output data set, the
programmer should test all write operations
for completion.

CNTRL -- Control On-Line Input/Output
Devices

The CNTRL macro-instruction provides one
of three device-dependent on-line control
functions: card reader stacker selection,
printer carriage control, or magnetic tape
repositioning.

The following operands must be specified
in the CNTRL macro-instruction:

1. The address of the data control block
of the data set.

2. The action to be taken (either stacker
selection, line spacing, channel
skipping, tape block forward spacing,
tape block backspacing, forward spac­
ing over a tape mark and back to 'the
end of the preceding record, or back­
spacing over a tape mark and forward
to the following record).

3. A number indicating
amount of lines, printer
count of records.

the stacker,
channel, or

PRTOV -- Test for Printer Overflow

The PRTOV macro-instruction tests over­
flow indicators for on-line printer channel

overflow. If an overflow indicator is on,
PRTOV causes either an automatic skip to a
new page or a transfer of control to an
optionally specified logical point in the
problem program.

The following operands must be specified
in the PRTOV macro-instruction:

1. The address of the data control block
of the output data set.

2. The printer carriage tape channel to
be tested for overflow (either 9 or
12) •

3. The address of a routine may optional­
ly be specified for transfer of con­
trol on condition of overflow; if this
is not specified, a printer-:-verflow
condition causes automatic skipping to
channel one.

NOTE -- Provide Position Feedback

The NOTE macro-instruction places into a
standard register the position on a volume
of the last block read from or written into
a data set. This feedback identifies the
block for subsequent repositioning of that
volume.

The identification that NOTE provides is
a block count for magnetic tape; for
direct-access volumes, it is_ the track
number relative to the beginning of the
data set portion on the volume, and the
record number within the track.

The address of the data control block of
the data set must be specified in the NOTE
macro-instruction.

Notes: The following items should be con­
sidered when using the NOTE macro­
instruction:

1. Before issuing a NOTE macro-

2.

instruction, the programmer should
test the last input/output operation
for completion.

NOTE is normally
information for a
macro-instruction.

used to provide
subsequent POINT

POINT -- Point to Block

The POINT macro-instruction causes repo­
sitioning of a magnetic tape or direct-

Data Access Methods 47

access volume to a specified block within a
data set on that volume. A subsequent READ
macro-instruction starts to read sequential
input with the specified block. Thus,
POINT permits reading of the data set from
any specified position. A subsequent WRITE
macro-instruction starts to write
sequential output at the block that has
been pointed to.

The following operands must be specified
in the POINT macro-instruction:

1. The address of the data control block
of the data set.

2. The address of a main storage area
containing an identification of a
block within the data set (block count
for magnetic tape; relative track and
record number within the track for
direct-access volumes).

BSP -- Backspace One Block

The BSP macro-instruction causes the
repositioning of a magnetic tape or direct­
access volume backwards one data block on
the current volume, thus permitting the
rereading or rewriting of a block.

The address of the data control block of
the data set must be specified in the BSP
macro-instruction.

Notes: The
considered
instruction:

following
when using

items
the

should be
BSP macro-

1. For direct-access volumes, when a
WRITE macro-instruction follows a BSP,
the remainder of the contents of the
track on which the block is written is
destroyed. For magnetic tape, when a
WRITE macro-instruction follows a BSP,
any information immediately following
the block may be destroyed.

2. BSP cannot be used for a data set on a
direct-access volume if the track
overflow option was used in writing
the data set.

3. It is recommended that BSP be used
only when it is not possible or not
practical to use other macro­
instructions for repOSitioning
purposes.

4. All READ and WRITE operations must be
checked for completion before BSP is
issued.

48

ERROR CONDITIONS

If the programmer's error analysis rou-
tine has been entered as a result of an
uncorrectable error in data transmission,
the programmer cannot attempt to retry the
operation in error since automatic retry is
handled by the system.

The programmer can examine error code
information (supplied in standard
registers) and the block in error to deter­
mine the type of error that has occurred.
After error analysis and processing is
complete, the programmer can return control
to the system, whereupon processing resumes
with the next block of data. Alternative­
ly, the data set in which the error
occurred may be closed, in which case
return to the system is not permitted~ In
general, this alternative is recommended
for tape and direct-access output.

PROGRAMMING NOTES

The following section describes addi­
tional programming factors, not specif~

ically related to anyone macro­
instruction, that the programmer should
take into account before coding a program.

Direct-Access Volume Options

Both the track overflow and write
validity check options, described previous­
ly, are available to the programmer.

Update-in-Place

A data set on a direct-access volume may
be updated-in-place; i.e., records may be
read from the data set, processed, and
written back to the same positions from
which they were read, without destroying
the remaining records on a track. The
following rules apply to a data set to be
updated-in-place:

• Chained scheduling is not available.

• Macro-instruction usage is limited to
the READ, WRITE, CHECK, NOTE, and POINT
macro-instructions.

• READ and POINT macro-instructions may
be issued in any order, as described
previously. Because a WRITE macro-

~

instruction must be preceded by a READ
macro-instruction, new records cannot
be added to a data set.

• Neither alteration of record length,
insertion of new records, nor deletion
of old records is permitted.

Read Backwards and Concatenated Data Sets

Considerations that apply to reading a
data set backwards from magnetic tape and
to concatenation of sequential data sets
are listed in the section "Programming
Notes" under "Queued Sequential Access
Method. "

Device Considerations

Table 4 lists the macro-instructions of
the basic sequential access method that can
be used for specific input/output devices.
The permissible modes of the OPEN macro­
instruction are listed in parentheses for
each device. An X indicates a valid
operation; an E indicates that for a parti­
cular row, only one of the columns marked
with an E may be selected; an asterisk (*)
indicates that CNTRL (tape), NOTE, POINT,
and BSP are permitted for data in the
system input stream CSYSIN) and in the
SYSOUT data set but are ignored; and a
double asterisk C**) indicates that PRTOV
may be specified but is ignored.

Device Independence

Table 4 can be used as a guide in coding
device-independent programs. To achieve
device independence., the programmer should
select.those macro-instructions and OPEN
modes that are compatible for two or more
devices.

For example, to code a program that is
device-independent across magnetic tape and
direct-access devices, the programmer can
use the READ, WRITE, CHECK, and either the
BSP or the NOTE and POINT macro­
instructions with the INPUT, OUTPUT, .INOUT,
or OUTIN modes of the OPEN macro­
instruction. Once coded, the program can
be executed using either magnetic tape or a
direct-access device. Similarly, by
selection of appropriate macro-instructions
and OPEN modes, device compatibility among
reader, printer, punch, tape, and direct­
access devices may be achieved.

BASIC PARTITIONED ACCESS METHOD

The basic partitioned access method
provides for the storage and retrieval of
data associated with a partitioned data
set. It allows the programmer to select
named members and to eventually read or
write the records within those members.
Except that the basic partitioned access
method is restricted to direct-access devi­
ces, its primary characteristics are ident­
ical to those of the basic sequential
access method. These characteristics
include buffer pool construction, buffer
assignment procedures, and macro­
instructions for direct-access devices.

Additional macro-instructions are
provided with this access method to permit
the programmer to use the directory of the
partitioned data set in locating a member
for processing, to change the contents of
the directory, and to add, replace, delete,
or rename members.

RECORD FORMATS AND BUFFERING CONSIDERATIONS

The record formats for a partitioned
data set follow the same rules as either
the queued or the basic sequential access
method, with the exception that standard F
format records may not be used. For furth­
er information on the compatibility between
the basic partitioned access method and the
queued or basic sequential access methods,
refer to the section "Basic Partitioned
Access Method eompatibility."

Refer to the section "Buffering
Considerations" for the basic sequential
access method for the discussion of buffer
pool construction and buffer assignment
procedures.

MACRO-INSTRUCTIONS

The following macro-instructions for
operations on a partitioned data set direc­
tory are provided by the basic partitioned
access method.

FIND -- Position to Member of Partitioned
Data Set

The FIND macro-instruction causes the
address of the first block of a specified
partitioned data set member to be deter­
mined so that a subsequent READ macro­
instruction causes sequential input of
blocks to begin with the member specified.

Data Access Methods 49

Table 4. Basic Sequential Access Method Device Considerations
r--------~-----------------T--1 I I Macro-Instructions I

I ~---------T---------T---------T---------T---------T----------~
I I READ I WRITE I I I NOTE I I
I Device and I and I and I CNTRL I PRTOV I and I BSP I
I Mode of OPEN I CHECK I CHECK I I I POINT I I
~--------------------------t---------t---------t---------t---------t---------t----------~
I Pa per Tape Rea der I X I I I I I I
I (INPUT) I I I I I I I
~--------------------------t---------+---------t---------t---------t---------t----------~
I 1442 Card Read Punch1 I X I I X I I * I I
I (INPUT) I I I I I I I
~--------------------------t---------t---------t---------t---------t---------t----------~
I 2501. 2520, and 2540 I I I I I I I
I Card Readers (INPUT or I X I I X I I * I I
I INOOT) I I I I I I I
~--------------------------t---------+---------t---------t---------t---------t----------~
I 1442 Card Read Punch2 , I I X I I I I I
I 2520 and 2540 Card I I I I I I I
I Punches (OUTPUT I I I I I I I
I or OUT IN) I I I I I I I
~--------------------------t---------t---------t---------+---------+---------+----------i
I 1442 Card Read Punch 3 , I X I X I I I I I
I (INOUT) I I I I I I I
~--------------------------+---------+---------+---------t---------+---------+----------i
I Printer (OUTPUT I I X I X I X I I I
I or OUT IN) I I I I I I I
~--------------------------t---------t---------+---------+---------t---------t----------i
I Magnetic Tape I X I I E* I I E* I E* I
I (INPUT or RDBACK) I I I I I I I
~--------------------------+---------+---------+---------+---------t---------+----------~
I Magnetic Tape I I X I E* I ** I E* I E* I
I (0 OTP UT) I I I I I I I
~--------------------------t---------+---------+---------+---------+---------t----------i
I Magnetic Tape I X I X I E* I I E* I E* I
I (INOUT or OUTIN) I I I I I I I
~--------------------------+---------+---------+---------+---------+---------+----------i
I Direct Access I X I I I I E I E I
I (INPUT) I I I I I I I
~--------------------------+---------+---------+---------+---------+---------+----------i
I Direct Access I I X I I ** I E I E I
I (OUTPUT) I I I I I I I
~--------------------------+---------+---------+---------+---------+---------+----------i
, Direct Access I X I X I I I E I E I
I (INOUT or OUTIN) I I I I I ., I
~--------------------------+---------+---------+---------+---------+---------+----------~
I Direct Access I X I X I I I X I I
I (UPDAT) I I I I I I I
~--------------------------~---------~---------~---------~---------~---------~----------i
11TO achieve card reader independence, CNTRL macro-instructions, if used, must be issued I
I alternately with READ macro-instructions~ I
12 The program is card punch type dependent if machine code control characters are used. I
I~The program is 1442 device dependent if WRITE is used. I L ___ J

50

in

1.

2.

3.

The following operands must be specified
the FIND macro-instruction:

The name of the data control block of
the input data set.

The address of an area containing
either the name of the member, or the
address of an entry for that member in
a main storage list constructed by the
programmer with a BLDL macro­
instruction.

An indication of the
information contained in
parameter.

type of
the area

BLDL -- Build List

The BLDL macro-instruction causes member
addresses and optional information from a
data set directory to be placed into a
specified list constructed by the program­
mer in main storage. The format of this
list must be similar to that of the direc­
tory and must include the names of any
members for which BLDL is to provide con­
trol information. Names must be placed
into the list by the programmer in the same
order in which they appear in the direc­
tory.

Access time for retrieval of members is
reduced if a FIND macro-instruction is
directed to an entry in a main storage list
rather than to the directory. For this
reason, the programmer may wish to con­
struct such a list with BLDL for members
frequently used during a program. A subse­
quent FIND macro-instruction for a member
does not search the directory for a parti­
cular entry but simply refers to the list
entry specified by the programmer.

The following operands must be specified
in the BLDL macro-instruction:

1. The address of the data control block
of an input data set.

2. The address of the main storage list
to be built,.

Note: It is only by use of BLDL that the
programmer can retrieve optional informa­
tion from the data set directory.

STOW -- Manipulate Partitioned Data Set
Directory

The STOW macro-instruction causes the
name of a member to be entered into or
deleted from the data set directory with an

indication of whether that member is an
addition, a replacement, the same member
with a new name, or a deletion. The
physical position of the entry in the
directory is determined 'by the name of the
member.

The STOW macro-instruction permits more
than one name to be entered into the
directory for a given member. All names
other than the first are called aliases.
When a member is deleted or replaced, only
the directory entry that is referred to is
affected. Therefore, to produce consistent
results, each alias for a given member must
be deleted or replaced when that member is
deleted or replaced.

The following operands must be specified
in the STOW macro-instruction:

1. The address of the data control block
of the output data set.

2. The address of an area containing the
name of a member and, optionally,
additional information for a directory
entry.

3. An indication of the type of action to
be taken on the member.

Note: It is only by use of STOW that the
programmer can store optional information
in the directory of a partitioned data set.

PROGRAMMING NOTE

Before issuing a FIND, BLDL or STOW
macro-instruction, the programmer must test
all preceding input/output operations for
completion with CHECK macro-instructions.

CREATING A PARTITIONED DATA SET

A partitioned data set is useful for
maintaining related groups of problem pro­
grams., often-used subroutines, and librar­
ies of user-written macro-instruction defi­
nitions. The programmer creates a parti­
tioned data set according to the following
procedure:

1. Defines the data
macro-instruction
mente

set
and

using
the

the DCB
DO state-

a. Device must be direct access.

b. Data organization field of the DCB
macro-instruction must indicate
partitioned organization.

Data Access Methods 51

c. Directory quantity subparameter
must be specified in the SPACE
parameter of the DD statement.

2. Issues the OPEN macro-instruction
(output mode) to open the data control
block of the data set to be created.

3. Uses the WRITE macro-instruction to
place blocks on the direct-access vol­
ume.

4.

5.

6.

When all
stitute a
issues a
enter the
relative
data into

Continues

the blocks that are to con­
member have been written,

STOW macro-instruction to
name of the member, its

address, and optional user
the directory.

to use the WRITE and STOW
macro-instructions until all the mem-
bers of the data set have been writ-
ten, and their names have been entered
into the directory.

Issues the CLOSE macro-instruction to
close the data control block of the
data set.

CONCATENATION OF PARTITIONED DATA SETS

Two or more partitioned data sets having
identical characteristics can be concate­
nated for input processing as a single data
set. The directories of the individual
data sets of the concatenation are logical­
ly linked together and searched by the
system (after FIND macro-instructions are
issued) in the order in which the data sets
are concatenated. If two members of dif­
ferent data sets have the same name, a FIND
macro-instruction determines the address of
the member whose name appears in the first
directory searched. The programmer can use
the BLDL macro-instruction and examine the
list to identify the data set with which
the member is associated.

The following considerations apply to
concatenation of partitioned data sets:

1. Concatenation applies only to data
sets opened for INPUT.

2. A maximum of 16 data sets can be
concatenated.

3.

4.

52

All volumes containing the
to be concatenated must
before program execution.

data sets
be mounted

Only one data control block is asso­
ciated with all the data sets concate­
nated. The programmer enters DD
statements for these data sets in the

order in
retrieved.

which they are to be

5. The end-of-data set routine is entered
normally, i. e. I' when a block is
requested and there are no more blocks
in the member to be retrieved. The
programmer may then choose either to
process another member of the concate­
nated partitioned data sets or to
issue a CLOSE macro-instruction.

BASIC PARTITIONED ACCESS METHOD
COMPATIBILITY

The operating system provides limited
compatibility between the basic partitioned
access method and the sequential access
methods. This compatibility enables the
programmer to create., replace, or retrieve
an individual member of a partitioned data
set using the macro-instructions of either
the queued or basic sequential access meth­
od. Use of the queued sequential access
method in this manner is the only way
blocking and deblocking of records is auto­
matically provided in a partitioned organi­
zation. The factors governing these opera­
tions are outlined in the following text.

To create or replace a member of a
partitioned data set using the sequential
access methods, the programmer codes an
OPEN macro-instruction (output mode) for
the data control block of the data set to
be processed, a series of PUT (or WRITE)
macro-instructions" and a CLOSE macro­
instruction. The data organization field
of the DCB macro-instruction coded for this
program should indicate sequential.

To create a new member of an existing
partitioned data set, the programmer
prepares a DD statement specifying, in the
DSNAME parameter, the name of the data set
and the name of the new member, and speci­
fying MOD in the DISP parameter. When the
data control block of this data set is
closed, the name of the new member is
automatically entered into the appropriate
partitioned data set directory. An entry
that has been automatically entered into a
directory differs in no way from an entry
that has been entered by the STOW macro­
instruction, except that no optional user
information may be included.

In a manner similar to that described in
the preceding paragraph, the programmer can
create a new partitioned data set with the
data to be written as its first member.
The programmer simply prepares a DD
statement specifying, in the DSNAME param­
eter# the name of the data set and the name
of the member of the new partitioned data
set, specifying NEW in the DISP parameter,

and requesting the allocation of space for
both the new data set and its directory.
The data set and its directory are automat­
ically created during execution of the
program.

To replace ~ member of an existing
partitioned data set, the programmer pre­
pares a DD statement specifying the name of
the member of the existing partitioned data
set that is to be replaced, and specifying
OLD in the DISP parameter. If the named
member does not exist in the data set, the
OLD specification is treated as if MOD had
been specified .•

To retrieve a member of an existing
partitioned data set using the sequential
access methods, the programmer issues an
OPEN macro-instruction (input mode) for the
data control block of the data set to be
retrieved, a series of GET (or READ) macro­
instructions, and a CLOSE macro­
instruction. The data organization field
of the DCB macro-instruction coded for this
program should indicate sequential. The
programmer prepares a DD statement
specifying the name of the member to be
retrieved, and specifying OLD in the DISP
parameter. When the program is executed.,
the appropriate directory is searched and
the address of the required member is
automatically determined. The system, in
effect" has issued a FIND macro­
instruction.

Note: If the programmer does not specify a
member name in the DD statement with the
creation and retrieval operations
described, the program is executed as for a
sequential data set rather than as for a
partitioned data set. Retrieval begins
with the first block of the directory and
terminates at the first partition encoun­
tered.

QUEUED INDEXED SEQUENTIAL ACCESS METHOD

The queued indexed sequential access
method is provided to enable the programmer

Count Key

to sequentially store and retrieve the
records of an indexed sequential data set.
In addition, this access method is the sole
means of creating an indexed sequential
data set.

The macro-instructions of the queued
indexed sequential access method, although
similar in syntax and structure to those of
the queued sequential access method, differ
in function. These macro-instructions are
completely direct-access device oriented,
and automatically handle the intricate pro­
cedures involved in managing the index
structure of the data set. Furthermore,
most index searching is done by channel
command sequences, without CPU interven­
tion. The macro-instructions also provide
automatic buffering and blocking/deblocking
procedures, as required.

RECORD FORMATS

The queued indexed sequential access
method supports four block configurations:

1. Format F., Unblocked.
2. Format F, Blocked.
3. Format V, Unblocked.
4. Format V., Blocked.

The formats of records as they appear on
direct-access devices are shown in the
following sections. Each block is recorded
on a direct-access device with a count
field, a key field, and a data field,.

The key field is used by the system to
locate a requested logical record. +he
data field contains the logical records.

Format F, Unblocked

Fixed-length unblocked records appear on
direct-access devices as shown in Figure
16.

Data

Relative Key
Position 'I 0

R ~ 1, KL,RL Key of Logical
Record

Relative Key
Position = 0

Count

R ~ 1, KL, RL-KL

Figure 16. Unblocked Fixed-Length Records

.--One Logical Record --+

Data

One Logical
Record

Data Access Methods 53

Count

Relative Key
Position ~ 0

R ~ I, KL, B x RL

Figure 17. Blocked Fixed-Length Records

R

RL

KL

is the sequence number of the record
on the track (R=O is not used).

is the length of the logical record
including its key.

is the key length. This length must
remain constant for the data set.

Format F, Blocked

Fixed-length~ blocked records appear on
direct-access devices as shown in Figure
17.

R

RL

B

KL

is the sequence number of the record
on the track (R=O is not used).

is the logical record length.

is the number of logical records
appearing in a block and is a constant
for a data set.

is the key length. This length must
remain constant for the data set.

More specifically, the key and the data
areas may be pictorially represented as
shown in Figure 18.

Key Area

Key 3

Data Area

I ! Key 1 ! I ! Key 2 ! I ! ~ey 3

Logica I Record 1 Logica I Record 2 Logica I Record 3

Figure 18. Key and Data Areas (Format F)

Keys 1, 2, and 3, respectively, are the
keys of logical records 1, 2, and 3 and are
physically embedded in the records. The
position of the key in each logical record

54

Data

B Logical Records
with Their Keys

of the data set must be available to the
system from either the DeB macro­
instruction, the DD statement, or the data
set label. The contents of the key field
on the direct-access volume is used by the
systen: for locating the block containing a
requested logical record.

Format V" Unblocked

Variable-length unblocked records appear
on direct-access devices as shown in Figure
19.

R

BL

KL

is the sequence number of the record
on the track (R=O is not used).

is block length and includes the four
bytes (LLbb) for the block length
field.

is the key length.

Format V, Blocked

Variable-length blocked records appear
on direct-access devices as shown in Figure
20.

R

KL

BL

V

is the sequence number of the record
on the track (R=O is not used).

is the key length,.

is block length and includes the four
bytes (LLbb) for the block length
field.

is the number of logical records that
fit within the maximum block size
specified for the data set. In
general, V varies from block to block.

Count Key

Relative Key R .2 1, KL,BL Key of
Position Z 4 Logical Record

Figure 19. Unblocked Variable-Length Records

Count

Relative Key R Z I,KL,BL
Position Z 4

Figure 20. Blocked Variable-Length Records

More specifically, the key and data
areas may be pictorially presented as shown
in Figure 21.,

Key 1 and key 2 are respectively the
keys of logical records 1 and 2. The
contents of the key field is used by the
system to locate the block containing a
requested logical record.

Overflow Records

The preceding figures are for prime
(rather than overflow) dat,a records only.
Data records in an overflow area are organ­
ized somewhat differently, as shown in
Figure 22. They are never blocked, even
though the prime data records are blocked.
In addition, they contain a link field
which links to the next record in the
overflow chain. The link field is 10 bytes
in length.

Key Area

Key 2 LLbb

..
Figure 21. Key and Data Area (Format V)

Data

LLbb Key

It Logical Record ..

Data

V Logical Records
with Their Keys

Delete Codes

To mark a logical record for deletion,
the user sets the "delete code" byte to all
ones prior to issuing an output request for
the logical record. For fixed-length for­
mats, the delete code byte is the first
byte of the logical record. For the
variable-length formats, it is the fifth
byte; that is, the first byte after the
record'control field.

The logical record is written in the
prime or in the overflow area with its
delete code. Physical deletion is per­
formed if this record is forced off its
prime data track by the insertion of a new
record or if the data set is reorganized.
The deleted record may be replaced by a
record with an equal key with no error
indication. Whether a record has been
physically deleted or not, a GET macro-

Data Area

Key Key
1 2

Data ~ 'C Data ~

Fixed - Length Records

R,? 1, KL, RL + 10

Count

RZ 1, KL,BL+ 10

Count

Figure 22. Overflow Records

Key of Logica I
Record

Key

Variable - Length Records

Key of Logica I
Record

Key

Link
Field

Logical Record

Data

Logical Record

Data Access Methods 55

instruction does not produce a record
marked for deletion.

CAUTION: If the delete option is selected
and the possibility exists that the first
valid data byte of a logical record is all
ones, e.g., a negative fixed-point number,
the programmer should offset the beginning
of his data from the delete code byte.

Also, if
relative key
marked for
one with an
code will
the key.

records are blocked and if
position is zero, a record
deletion cannot be replaced by

equal key, because the delete
have overlaid the first byte of

BUFFERING CONSIDERATIONS

The following section discusses the buf­
fering facilities available with the queued
indexed sequential access method. Descrip­
tions of buffer pool construction and buf­
fer assignment procedures are included.

Buffer Pool Construction

A buffer pool is automatically con­
structed for a data control block when it
is opened if the programmer has not provid­
ed one prior to the conclusion of the
optional data control block exit routine.
The progra~~er must return this pool area
to main storage when it is no longer
required by issuing a FREEPOOL macro­
instruction <refer to the section "Buffers
and Buffer Pools").

When the programmer requires buffers for
specialized applications, he should use
either the BUILD or the GETPOOL macro­
instruction <refer to the section "Buffers
and Buffer Pools").

Buffer Assignment Procedures

After the buffer pool has been
constructed, the programmer requests input
or output of data records. The system
automatically blocks and deblocks data
records, obtains and controls buffers, and
reads and writes data records, as required.
It should be noted that only simple buffer­
ing may be used. If a buffer pool con­
structed by the BUILD macro-instruction is
used by more than one data set, individual
buffers from the pool are automatically
assigned to the appropriate data control
block according to the programmer's speci­
fications.

56

MACRO-INSTRUCTIONS

The following macro-instructions are
provided by the queued indexed sequential
access method for input/output operations.

PUT -- Put a Logical Record

This macro-instruction is used only for
creation of an indexed sequential data set.

The PUT macro-instruction causes a logi­
cal record to be placed into an output data
set in either of two modes of operation:
move or locate. In the move mode, PUT
moves the logical record from an input
buffer or work area into an output buffer
segment. In the locate mode, PUT does not
move the logical record into the output
buffer, but places into a standard register
the address of the buffer segment into
which the programmer may move that record.
The programmer specifies only one of these
modes of operation as a parameter of the
DeB macro-instruction associated with the
output data set.

PUT stores logical records sequentially
by keys. As required, PUT schedules the
writing of output buffers, blocks records,
creates all necessary indexes, and directs
output error recovery procedures.

The following operands must be specified
in the PUT macro-instruction:

1. The address of the data control block
of the output data set.

2. The address of the output work area
when in the move mode.

GET -- Get a Logical Record

The GET macro-instruction causes a logi­
cal record to be obtained from an input
data set in either of two modes of opera­
tion: move or locate. In the move mode,
GET moves the logical record from an input
buffer into a specified work area. In the
locate mode, GET leaves the logical record
in the input buffer and places into a
standard register the address of the buffer
segment in which the programmer may process
that record. The programmer specifies only
one of these modes of operation as a
parameter of the DCB macro-instruction
associated with the input data set.

GET retrieves logical records sequen­
tially by keys. As required, GET schedules
the filling of input buffers, deblocks
records, and directs input error recovery

(

procedures. After GET has successively
retrieved all records to be processed, the
system automatically passes control to the
programmers's end-of-data set exit speci­
fied in the data control block.

For unblocked records, the programmer
may specify in the DeB macro-instruction
that device key fields are to be retrieved
followed by the logical record. In the
locate mode, GET places into a standard
register the address of the record key. In
the move mode, GET moves the key followed
by the data of a logical record into the
work area. For blocked records, a logical
record is never retrieved with the key
preceding the data, since key information
lS always embedded within each record.
(See Figures 18 and 21.)

The following operands must be specified
in the GET macro-instruction:

1. The address of the data control block
of the input data set.

2. The address of the input work area
when in the move mode.

RELSE -- Release an Input Buffer

The RELSE macro-instruction causes the
GET macro-instruction to ignore the remain­
ing logical records in an input buffer, and
to obtain logical records from the next
buffer. RELSE also causes the input buffer
to become available for immediate refill­
ing. When used with locate mode GET to
refer to a data control block opened in
UPDAT mode, RELSE prevents refilling of the
buffer until its contents have been writ­
ten, if PUTX was used. RELSE does not
affect buffers containing unblocked
records.

The address of the data control block of
the input data set must be specified in the
RELSE macro-instruction.

SETL -- set Lower Limit of Scan

The SETL macro~instruction causes
indexed sequential reference to an input
data set to begin at any point in a data
set ,with a record having a specified key or
at a specified device address, and to
continue sequentially by keys. SETL may
also cause reference to begin at a speci­
fied key class. A key class is a group of
keys sharing a common prefix of arbitrary
length. The name of the class is specified
by giving the prefix, followed by zeros, to
the total key length. For example, a SETL
with key class PEOOO (in a data set con-

sisting of the English dictionary) would
cause sequential search to begin with PEA
and continue to the end of the data set.
Optionally, SETL also initiates retrieval
of data area without keys. The SETL macro­
instruction need not be used to initiate
sequential reference. If a GET is issued
and the data set is not already being
sequentially referred to, sequential
reference will be initiated at the begin­
ning of the data set. For the unblocked
formats, keys are read.

The following operands must be specified
in the SETL macro~instruction:

1. The address of the data control block
of the input data set.

2. The type of starting point for indexed
sequential reference to the data set
(either key, key class, device
address, or beginning of data set).

3. Optionally, retrieval of data area
without keys.

4. The address of an area containing
either a key# generic key (key class),
or device address.

ESETL -- End of Scan

The ESETL macro-instruction, by termi­
nating anticipatory buffering, causes ter­
mination of indexed sequential reference to
an input data set at any specified point in
the data set.

The address of the data control block of
the input data set must be specified in the
ESETL macro-instruction.

Note: Reaching end of data set also termi­
nates sequential reference.

PUTX -- Return a Logical Record

The PUTX macro-instruction causes a data
set to be updated-in-place by writing back
into the data set the same block that was
previously read into a buffer. PUTX must
be preceded by a GET macro~instruction that
is in the locate mode. If PUTX is issued
to any logical record or records in an
input buffer, the entire buffer is written
back directly to the data set after input
processing of all the records in the buffer
is completed. The programmer can mark a
logical record for deletion by setting its
delete code byte to all ones prior to

Data Access Methods 57

issuing a PUTX macro-instruction for the
logical record.

by providing his own exceptional condition
routine and specifying its address in the
DCB macro-instruction of each data set to
be processed. Failure to provide this
routine results in termination of the job
step when an exceptional condition occurs.

The address of the data control block
associated with the input/output data set
must be specified in the PUTX macro­
instruction.

EXCEPTIONAL CONDITIONS

The programmer can test for exceptional
conditions and take appropriate action only

Table 5 describes, by macro-instruction~
exceptional conditions that can occur with
the queued indexed sequential access
method. The exception codes that result
from these conditions are described in the
publication IBM System/360 Operating Sys­
tem: Control Program Services.

Table 5. Exceptional Conditions With the Queued Indexed Sequential Access Method
r-----------------T---------------T---,
I Macro-Instruction I Condition I Explanation I
~-----------------+---------------+---~

GET Uncorrectable System's standard error recovery procedures encoun-I
Error (Input) tered an uncorrectable error in transferring block I

from secondary storage to the input buffer. System
passes control to programmer's routine when GET is
issued for the first logical record in the buffer
containing block in error. The address of this
buffer is placed into a standard register so that
programmer can process the records in the buffer.

Uncorrect.able
Error (Update)

Unreachable
Block (Input)

System's standard error recovery procedures encoun­
tered an uncorrectable error in transferring a block
updated-in-place (PUTX macro-instruction was used)
from a buffer to secondary storage. System passes
control to the programmer's routine when GET is next
issued for the buffer containing the block that could
not be written. The address of this buffer is placed
into a standard register so that programmer can
process its records. The system suspends buffer
scheduling until a subsequent GET is issued.

System's standard error recovery procedures encoun­
tered an uncorrectable error in searching an index,
or the track containing the block sought; the next
block of records cannot be located. When GET is
issued for the first record of the block that could
not be found, the system pas s,es control to the
programmer's routine. The programmer may decide to
end sequential processing or terminate the job.

Unreachable System's standard error recovery procedures encoun­
Block (Update) ttered an uncorrectable error in searching an index on

Ithe track containing the block to be updated. When a
IGET is issued for the first record in the buffer
Icontaining the block that could not be written, the
I system passes control to the programmer's routine.
I

SETL Lower Key LimitlKey or key class that programmer specified as
I' Not Found I parameter of SETL is not found in the data set. L _________________ ~ _______________ ~ ___ J

(Continued)

58

Table 5. Exceptional Conditions With the Queued Indexed Sequential Access Method (Cont.)
r-----------------T---------------T---, I Macro-Instruction I Condition I Explanation I
~-----------------+---------------+---~

PUT

Invalid RequestlEither the programmer issued a SETL macro-instruction I
Ifor a data set already being sequentially referred tol
Iby the same processing program, or the buffer cannot I
Icontain the key and the data, or the type specifiedl
in SETL has not been requested by the programmer inl
the data control block. I

I
Lower Device Device address that programmer specified in 'lower'l

Address Limit parameter of SETL is outside the space allocated to I
Invalid the data set.. I

I
Space Not

Found
Space allocated to the data set filled; no space tol
add records. The system passes control to thel
programmer's routine when such a PUT is received. Inl
the locate mode, a buffer segment address is not I
provided by the system; in the move mode, the system
does not move any data.

Duplicate Key Key of record to be transferred from main to secon­
dary storage duplicates the key of a record previous­
ly addressed by PUT. The system does not transfer
the record to secondary storage but passes control to
the programmer's routine.

Sequence Check Numerical value of the key of the record to be
transferred from main to secondary storage is less
than that of the key of the record previously
addressed by PUT. The system does not transfer the
record to secondary storage but passes control to the
programmer's routine.

Uncorrectable System's standard error recovery procedures encoun-
Error <Output) tered an uncorrectable error in transferring informa­

tion to secondary storage. The system passes control
to the programmer's routine when the next PUT is
issued. If a data block could -not be written, the
address of the buffer containing the block in error
is placed into a standard register. If the error is
anything other than failure to write a data block,
zero is placed into the standard register. After
appropriate analysis, the programmer should close the
data set or end the job. Subsequent PUT macro­
instructions cause immediate reentry to the
programmer's routine, since any attempt to continue

I loading the data set produces unpredictable results. L _________________ ~ _______________ ~ ___ J

CREATING AN INDEXED SEQUENTIAL DATA SET

The programmer must follow the steps
outlined below to create an indexed
sequential data set:

1. Define the data set
macro-instruction and
mente

using the DCB
the DD state-

a. Device must be direct access.

b. Data organization field of the DCB
macro-instruction must indicate
indexed sequential (IS).

2.

c. Macro-instruction reference field
of the DCB macro-instruction must
indicate only the PUT macro­
instruction.

Issue the OPEN macro-instruction to
open the data control block of the
data set to be created.

3. Use the PUT macro-instruction to place
all records or blocks of records that
are to constitute the data set on the
direct-access volume.

4. Issue the CLOSE macro-instruction to

Data Access Methods 59

close the data control block of the
data set.

The records that constitute a newly
created indexed sequential data set must be
presented in ascending order by key. The
programmer can merge two or more input data
sets into an indexed sequential data set;
for added flexibility, the system permits
these data sets to be retrieved by any
access method using any buffering technique
provided by that access method. Once an
indexed sequential data set has been
created, its characteristics cannot be
changed.

Note: PUT is the only macro-instruction
that can be directed to an indexed sequen­
tial data set that is being created.

PROGRAMMING NOTES

The
tional
ically
tion,
before

following section describes addi­
programming factors, not specif­

related to anyone macro-instruc­
that the programmer should consider
using this access method.

Direct-Access Volume Option

The write validity check option.,
cribed previously, is available to
programmer.

Blocking of Variable-Length Records

des­
the

When a PUT (locate mode) is used to
block variable-length records, the system
maintains a maximum record length in the
data control block. When the space remain­
ing in an output buffer is less than this
maximum record length, the records in the
buffer are transferred as a block to secon­
dary storage and the system begins filling
another buffer. To ensure that each block
contains the maximum number of records it
can accommodate, the programmer can replace
the maximum record length maintained in the
data control block with the actual length
of each record about to be transferred to
an output buffer.

BASIC INDEXED SEQUENTIAL ACCESS METHOD

The basic indexed sequential access
method provides for direct storage and
retrieval of the records of an indexed
sequential data set.

60

The macro-instructions of this access
method permit the direct retrieval of any
logical record by its key, the direct
update-in-place of any logical record, and
the direct insertion of new logical records
into an indexed sequential data set.

As an additional feature, the system
provides, for this access method, a special
buffering facility called the dynamic buf­
fer option. This option enables the pro­
grammer to request system buffer manage­
ment, and thus frees him of the
responsibility for coding intricate buffer
manipulation procedures. Furthermore, when
the programmer specifies this option, the
system defers buffer assignment until the
actual data transfer is about to begin.

RECORD FORMATS

The basic indexed sequential access
method supports four block configurations:

1. Format F, Unblocked.
2. Format F, Blocked.
3. Format V, Unblocked.
4. Format V, Blocked

For a discussion of record formats and
other considerations refer to "Record
Formats" in the section describing the
queued indexed sequential access method.

BUFFERING CONSIDERATIONS

The following section discusses the buf­
fering facilities available with the basic
indexed sequential access method. Included
are descriptions of buffer pool construc­
tion and buffer assignment procedures.

Buffer Pool Construction

The dynamic buffer option, enabling the
programmer to request system buffer manage­
ment, can be specified in the DCB macro­
instruction. If this option is specified,
the system obtains a buffer pool when the
data control block of the data set to be
processed is opened. This pool is
automatically released when the data con­
trol block is closed.

Alternatively, the programmer can obtain
a buffer pool by issuing either the BUILD
or the GETPOOL macro-instruction (refer to
the section "Buffers and Buffer Pools").

Buffer Assignment Procedures

To obtain a buffer from or to return a
buffer to a pool constructed by either the
BUILD or the GETPOOL macro-instruction, the
programmer issues either a GETBUF or a
FREEBUF macro-instruction, respectively.
(See the section RBuffer Assignment
Procedures R for the basic sequential access
method.)

If the programmer has requested the
dynamic buffer option, he obtains a buffer
by requesting one in the READ macro­
instruction. If the record for which the
buffer is obtained is updated-in-place, the
buffer is automatically returned to the
pool when the programmer issues a WRITE
macro-instruction with the appropriate
parameter. If the record is not updated­
in-place, the programmer must release each
buffer that is no longer required by
issuing the FREEDBUF (free dynamic buffer)
macro-instruction.

FREEDBUF -- Free a Dynamically Obtained
Buffer

The FREEDBUF macro-instruction causes a
buffer that was dynamically obtained by the
system to be returned to the pool from
which it was obtained.

The following operands must be specified
in the FREEDBUF macro-instruction:

1. The address of the data event control
block associated with the READ macro­
instruction that caused the buffer to
be obtained.

2. A type parameter specifying the access
method that is being used.

3. The address of the data control block
of the data set.

MACRO-INSTRUCTIONS

The following macro-instructions are
provided by the basic indexed sequential
access method for input/output operations.

READ -- Retrieve a Logical Record

The READ macro-instruction causes the
block containing a logical record with a
specified key to be transmitted from an
input data set to a main storage area.
This area is either specified by the pro-

grammer or set up dynamically by the system
at the programmer's request. Normally, the
fields in the data event control block are
specified as parameters of the READ macro­
instruction (but may be subsequently
replaced by parameters of other READ macro­
instructions addressed to the same data
event control block).

READ places into a standard register the
address of the requested logical record.
To allow overlap of the input operation
with processing, READ does not wait for
input completion but returns control to the
problem program. The programmer issues a
WAIT macro-instruction, following one or
more READ requests, to delay processing
until input operations are complete, after
which the programmer may test the data
event control block for errors and
exceptional conditions.

A variation of the READ macro­
instruction is provided for situations in
which the programmer knows that the record
being read will be returned to the data
set. This variation, read for update,
causes the physical location of the record
just read to be retained by the system
until a corresponding WRITE macro­
instruction (referring to the same data
event control block) is issued. Use of
this technique increases performance rate
by eliminating the need for the index
search normally performed by the system
when executing a WRITE macro-instruction.
Additions to the data set are suspended
until a WRITE macro-instruction has been
received for each outstanding record read
for update.

The following two operands must be
specified in the READ macro-instruction:

1. The address of the data event control
block (DECB) associated with the READ
macro-instruction.

2. The type of input operation (normal
reading; optionally, it can be read
for update).

The following operands are required in
READ macro-instructions that place the cor­
responding fields into a data event control
block. In subsequent READ macro­
instructions, they may optionally be
specified to override the previously speci­
fied values. If an operand is omitted, the
system assumes its value is already in the
data event control block.

3. The address of the data control block
of an input data set.

4. Either the address of an input area or
an indication that the system is to
obtain this area.

Data Access Methods 61

5. Either the number of bytes to be
transmitted or an indication that the
record length in the data control
block is to be used. An overriding
length must not exceed the length
specified in the data control block of
the input data set.

6. The address of an area containing the
key of the record to be read.

Note: A buffer area must be large enough
to accommodate the block containing the
logical record.

WRITE -- Write a Logical Record

The WRITE macro-instruction requests
that a logical record or a block be trans­
mitted from a main storage area to an
existing data set. WRITE may be used to
update or replace existing records or to
add new records.

Prior to issuing WRITE for updating or
replacing a logical record within a block
of such records, the programmer must issue
a READ macro-instruction for that record.
When replacing an unblocked record, the
programmer need not issue a corresponding
READ and must not attempt to replace the
record with one of greater length. When
adding a record, the programmer must be
certain that the key of the new record is
either unique or equal to the key of a
record with an active delete code.

Normally, the fields in the data event
control block are specified as parameters
of WRITE (but may be subsequently replaced
by parameters of other WRITE macro­
instructions addressed to the same data
event control block).

WRITE stores records by keys. To allow
overlap of the output operation with
processing, WRITE does not wait for output
completion but returns control to the prob­
lem program. The programmer issues a WAIT
macro-instruction to delay processing until
output operations are complete. The pro­
grammer may then tes.t the data event con­
trol block for errors and exceptional con­
ditions.

The fd1lowing two operands must be spec­
ified in the WRITE macro-instruction:

1. The address of the data event control
block (DECB) associated with the WRITE
macro-instruction.

2. The type of output operation (either
replacement of existing records or
addition of new records).

62

The ~ollowing operands are required in
WRITE macro-instructions that place the
corresponding fields into a data event
control block. In subsequent WRITE macro­
instructions, they may optionally be
specified to override the previously speci­
fied values. If an operand is omitted, the
system assumes ltS value is already in the
data event control block.

3. The address of the data control block
of an output data set.

4. The address of an output area. If the
output area is one that was obtained
dynamically by the system in a pre­
vious READ macro-instruction, an indi­
cator placed in this parameter causes
the area to be returned to the pool
after the WRITE completes. The cor­
responding field in the DECB must
contain the address of the area.

5. Either the number of bytes to be
transmitted or an indication that the
record length in the data control
block is to be used. An overriding
length must not exceed the length
specified in the data control block of
the output data set.

6. The address of an area containing the
key of the record to be written~

Notes: Since the basic indexed sequential
access method has no facilities for crea­
tion of indexes, the WRITE macro­
instruction cannot be used to place records
into new output data sets but must be used
with existing data sets. The queued
indexed sequential access method macro­
instruction PUT places records into new
indexed sequential data sets.

A programmer can mark a logical record
for deletion by setting its delete code
byte to all ones prior to issuing the WRITE
macro-instruction for the block containing
the logical record.

EXCEPTIONAL CONDITIONS

When an exceptional condition that
cannot be corrected by the system standard
error recovery procedures results from a
read or write operation, the system sets an
exception code in the data event control
block. The programmer is responsible for
examining the data event control block for
exceptional conditions, and taking
appropriate action, if required. The for­
mat of the exception code and the excep­
tional conditions that can result from a
read or write operation are described in
the publication IBM System/360 Operating
System: Control Program Services.

REORGANIZING AN INDEXED SEQUENTIAL DATA SET

As new records are added to an indexed
sequential data set, overflow chains may be
created. The access time for retrieving
records in an overflow area is greater than
that required for retrieving other records.
Therefore, when many overflow records
develop, input/output performance is shar­
ply reduced. For this reason, the program­
mer should reorganize indexed sequential
data sets as soon as the need becomes
evident. The system maintains a set of
statistics to assist the programmer in
determining when reorganization is
required.

These statistics are maintained as
fields of the data control block, and can
be tested by the programmer when he proc­
esses an indexed sequential data set. The
field containing the number of tracks
remaining in the independent overflow area
assigned to the data set is automatically
maintained. Two additional fields are
maintained only at the request of the
programmer. One contains the number of
cylinder overflow areas that are full; the
other indicates the number of times in a
single processing of a data set using the
basic indexed sequential access method that
the programmer has gained access to an
overflow record that is not the first in a
chain of such records.

Reorganization is accomplished by creat­
ing a new version of the indexed sequential
data set, using the existing data set as
input for the data set to be created 'refer
to the section "Creating an Indexed Sequen­
tial Data Set").

PROGRAMMING NOTES

The following section describes addi­
tional programming factors, not specif­
ically related to anyone macro­
instruction, that the programmer should
consider before using this access method.

Overflow Records

When the system transfers a logical
record to main storage from an overflow
area, it places an indication of this
transferral in the exception field of the
data event control block associated with
the READ macro-instruction. The programmer
can test, after each WAIT macro-instruction
that he issues for a read request, to
determine if an overflow record has been
read.

Direct-Access Volume Option

The write validity check
described previously, is available
programmer.

BASIC DIRECT ACCESS METHOD

option,
to the

The basic direct access method is the
most flexible of those access methods that
are provided specifically for use with
direct-access devices. Using this access
method, the programmer can directly store
and retrieve a block by specifying either
its actual device address, its relative
position within a data set <relativ~ block
number), or the relative track within a
data set at which the system is to begin a
search. The system uses one of these
specifications to locate the track contain­
ing a desired block. (Relative block num­
bers and relative track numbers are auto­
matically converted into actual track
addresses.)

After locating the proper track, the
system must be directed to a particular
block on the track. To indicate which
block on the track is to be retrieved or
stored, the programmer specifies either a
block identification <actual position of
the block on the track) or a block key.

The macro-instructions of this access
method allow the programmer to easily per­
form such input/output operations as read­
ing, writing, updating, and replacing the
blocks of the data set.

As an additional feature, the system
provides, for this access method, a special
buffering facility called the dynamic buf­
fer option. This option enables the pro­
grammer to request system buffer manage­
ment, and thus frees him of the
responsibility for coding intricate buffer
manipulation procedures. Furthermore, when
the programmer specifies this option, the
system defers buffer assignment until the
actual data transfer is about to begin.

In a multi-tasking environment,
input/output operations of two or more
independent tasks, as well as those of any
one task" may be directed to the same data
set. For this reason, it is possible that
an input/output operation may affect the
results of another input/output operation.
For example, two tasks might simultaneously
update the same block so that updating done
by one task is destroyed by the other task.
To prevent such occurrences, a special
safety feature called exclusive control is

Data Access Methods 63

provided. Exclusive control
requested by the programmer as a
of the READ macro-instruction.

can be
parameter

The extended search option enables the
programmer to request that the system
extend its search for a record, or for
space in which to add a record" beyond the
relative track or relative record address
specified in a READ or WRITE macro­
instruction.

RECORD FORMATS

The basic direct access method supports
five block configurations:

1. Format U.
2. Format F, Unblocked.
3. Format F, Blocked.
4. Format V, Unblocked.
5. Format V, Blocked.

All blocks are treated as the object of
an input or an output request. Although
the basic direct access method does not
provide blocking/deblocking of records, the
resources of the system permit the
programmer to code these routines, if
required, with a minimum of effort.

For format V blocks in the basic direct
access method" the first eight bytes of a
block (four containing block control infor­
mation and four containing record control
information) must be provided by the pro­
grammer,.

BUFFERING CONSIDERATIONS

The following section discusses the buf­
fering facilities available with the basic
direct access method. Included are des­
criptions of buffer pool construction and
buffer assignment procedures.

Buffer Pool Construction

~he dynamic buffer option, enabling the
programmer to request system buffer manage­
ment, can be spectfied in the DCB macro­
instruction. If this option is specified,
the system obtains a buffer ·pool when the
data control block of the data set to be
processed is opened. This pool is
automatically released when the data con­
trol block is closed.

64

Alternatively, the programmer can obtain
a buffer pool by issuing either the BUILD
or the GETPOOL macro-instruction (refer to
the section "Buffers and Buffer Pools").

Buffer Assignment Procedures

To obtain a buffer from or to return a
buffer to a pool constructed by either the
BUILD or the GETPOOL macro-instruction, the
programmer issues either a GETBUF or a
FREEBUF macro-instruction, respectively.
(See the section "Buffer Assignment
Procedures" for the basic sequential access
method.)

If the programmer has requested the
dynamic buffer option, he obtains a buffer
by requesting one in the appropriate param­
eter of the READ macro-instruction. If the
block for which the buffer is obtained is
updated-in-place, the buffer is auto­
matically returned to the pool when the
programmer issues a WRITE macro-instruction
with the appropriate parameter. If the
block is not updated-in-place, the program­
mer must release each buffer that is no
longer required by issuing the FREEDBUF
(free dynamic buffer) macro-instruction.
(Refer to the section "Buffer Assignment
Procedures" for the basic indexed sequen­
tial access method.)

MACRO-INSTRUCTIONS

The following macro-instructions are
provided by the basic direct access method
for input/output operations.

READ -- Read a Block

The READ macro-instruction requests that
a block be transmitted from an input data
set to a main storage area. The input area
may be either specified by the programmer
or set up and released by the system as
required. Normally, the fields in the data
event control block are specified as param­
eters of the initial READ macro­
instruction, but may be replaced by
parameters of subsequent READ macro­
instructions addressed to the same data
event control block. To allow overlap of
the input operation with processing, READ
does not wait for input completion, but
returns control to the problem program.
The programmer issues a WAIT macro­
instruction, following one or more READ
macro-instructions, to delay processing
until input operations are completed.

The following two operands must be
specified in the READ macro-instruction:

1. The address of the data event control
block associated with the READ macro­
instruction.

2. The type of block reference for input.
This parameter indicates not only how
the block is to be found, but also
what portion of the block can be read
into the input area. The block
reference is specified as either block
identification or block key. If block
identification is specified, both the
block key and the data portion of the
block can be read (not necessarily
into contiguous areas). If block key
is specified, only the data portion of
a block can be read. Optionally,
exclusive control of input blocks or
feedback of relative block addresses
may be specified if these options are
included in the data control block of
the input data set.

The following parameters are required in
READ macro-instructions that initially
place the corresponding fields into a data
event control block. In subsequent READ
macro-instructions, the parameters may be
optionally specified to override the pre­
viously specified values. When a parameter
is omitted, the system assumes its value is
already in the data event control block.

3. The address of the data control block
of an input data set.

4. The address of an input area. If the
dynamic buffer option is included in
the data control block of the input
data set, an indication that the sys­
tem is to obtain the input area.
(When control is returned from READ,
the system leaves the address of the
input area it obtained in the corres­
ponding DECB field.)

5. Either the number of bytes to be
transmitted or an indication that the
block length provided by the data
control block is to be used. An
overriding length must not exceed the
length specified in the data control
block of the input data set.

6. If block reference is block key, the
address of a field containing the key
of the block to be read. If block
reference is block identification, the
address of a field into which the key
is to be read. If the system is to
obtain the input area, an indication
that block key (followed by data) is
to be read into this area. A value of
zero for this parameter indicates that
block keys are not to be read.

7. The address of the field containing
either an actual or a relative address
of an input block. If the feedback
option is used, the system places the
actual or relative address of the
input block into this field.

Notes: The following notes apply to READ:

1. When exclusive control is specified.,
feedback of the actual address of
blocks is automatically provided,
unless relative track or relative
block feedback is specified in the
data control block.

2. When the type of block reference is
block identification, the system does
not provide the extended search
option.

WRITE -- Write a Block

The WRITE macro-instruction requests
that a block be transmitted from a ma1n
storage area to an output data set. Nor­
mally., the fields in the data event control
block are specified ~s parameters of the
WRITE macro-instruction but may be replaced
by parameters of subsequent WRITE macro­
instructions addressed to the same data
event control block. To allow overlap of
the output operation with processing, WRITE
does not wait for completion of the
operat1on, but returns control to the prob­
lem program. The programmer issues a WAIT
macro-instruction to delay processing until
output operations are completed.

The following two operands must be spec­
ified in the WRITE macro-instruction:

1. The address of the data event control
block associated with the WRITE macro­
instruction.

2. The type of block reference for
output. This is specified as either
block identification, block key, or an
indication that new blocks are to be
added. This parameter indicates not
only how the system is to determine
where the block is to be stored, but
also how much of the block can be
written. If block identification is
specified, both block key and data can
be written. If block key is speci­
fied, only the data portion of a block
is written. If new undefined or
variable-l~ngth blocks are to be added
to an output data set, the count field
of each block (provided by the system
automatically) and the data portions
are written. Writing the key field is
optional, but if this option is

Data Access Methods 65

selected, all blocks must be written
with keys. If new fixed-length blocks
are added to an output data set, the
count field is not written; however,
the key field must be written.

The following parameters are required in
WRITE macro-instructions that initially
place the corresponding fields into a data
event control block. In subsequent WRITE
macro-instructions, the parameters may be
optionally specified to override previously
specified values. If a parameter is omit­
ted, the system assumes its value is
already in the data event control block.

3. The address of the data control block
of an output data set.

4. The address of an output area. If the
output area is one that was obtained
dynamically by the system in a pre­
vious READ macro-instruction, an indi­
cator placed in this parameter causes
the area to be returned to the pool
after the WRITE completes. The cor­
responding field in the DECB must
contain the address of the area.
Exclusive control of the updated block
in this area, if specified, is also
released at this time.

5. Either the number of bytes to be
transmitted or an indication that the
block length provided by the data
control block is to be used. This
overriding length must not exceed the
length specified in the data control
block of the output data set.

6. If block reference is block key, the
address of a field containing the key
of the block to be written. If block
reference is block identification or
if a block is to be added, the address
of a field that contains the key to be
written. A value of zero for this
parameter indicates that block keys
are not to be written.

7. The address of a field containing
either an actual or a relative address
of an output block. If the feedback
option is used, the system destroys
the value already in this field by
placing the actual or relative address
of the output block into this field.

Notes: The following notes apply to WRITE:

1. Exclusive control of blocks updated­
in-place, if specified, is released
after the output operation requested
by WRITE is completed.

2. The programmer can write blocks on a
track without knowing how much track
space is available by indicating in

66

the WRITE macro-instruction that new
blocks are to be added. The block
reference determines the track for the
new block. When block format is
specified in the data control block as
V or U, the system determines, from
the capacity record, whether the new
block will fit. If the block fits, it
is written following the last block
currently on the track, and the capac­
ity record is updated. For fixed­
length blocks (which must have keys if
the add feature is to be used), the
system searches the track for a dummy
block <indicated by all ones in the
first byte of its key) and replaces
the dummy block with the new block.
For all block formats, the system sets
an exception code when space for the
new block is not found.

3. In the WRITE macro-instruction, the
programmer must furnish keys of fixed­
length blocks to be added, so that the
dummy keys will be overwritten.

RELEX -- Release Exclusive Control

The RELEX macro-instruction causes an
input block to be released from exclusive
control, so that the block is available to
other tasks requesting it. RELEX does not
return control to the processing program
until this action is completed.

The following operands must be specified
in the RELEX macro-instruction:

1. The address of the data control block
of the input data set.

2. The type of input operation (must be
direct-access).

3. The address of a field containing
feedback of block address.

Note: Blocks that are updated-in-place
will be automatically released from
exclusive control by the WRITE macro­
instruction after the output operation is
completed.

EXCEPTIONAL CONDITIONS

When an exceptional condition that
cannot be corrected by the system standard
error recovery procedures results from a
read or write operation, the system sets an
exception code in the data event control
block. The programmer is responsible for
examining the data event control block for
exceptional conditions, and taking

appropriate remedial action, if required.
The format of the "exception code" and the
exceptional conditions that can result from
a read or write operation are described in
the publication IBM System/360 Operating
System: control Program Services.

EXCLUSIVE CONTROL

Exclusive control provides effective
protection for a block only when exclusive
control has been specified for all macro­
instructions directed to the data set for
updating operations.

When this condition has been met, the
system permits only one input operation
that specifies exclusive control to be
performed. on a given block at a given time.
Other requests to read that block are
de£erred until the block has been released
from exclusive control. For a block being
updated-in-place, the programmer can
release exclusive control by 1ssuing a
WRITE macro-instruction for that block. If
a block is read and not updated-in-place,
the programmer can use the RELEX macro­
instruction to release control.

Exclusive control, although an optional
feature, should be requested by programmers
updating records in a multi-tasking
environment. If only read operations are
to be performed, exclusive control need not
be requested. It should be noted that READ
requests, for which exclusive control has
not been specified, are not affected by the
exclusive control requests of other macro­
instructions. The programmer can therefore
read a block that is concurrently being
updated in exclusive status.

EXTENDED SEARCH OPTION

The extended search option enables the
programmer to request that the system
extend its search for a record, or for
space in which to add a record, beyond the
relative track or relative record address
specified in a READ or WRITE macro­
instruction.

To use the extended search option, the
programmer must indicate in the DCB macro­
instruction the number of tracks (including
the starting track) or records (including
the starting record) that are to be
searched. If this number is equal to or
greater than the number of tracks allocated
to the data set or the number of records
within the data set, the entire data set is
searched in the attempt to satisfy the

programmer's request. If a request cannot
be satisfied, the system sets an exception­
al condition code in the appropriate data
event control block. It should be noted
that if the system cannot satisfy a search
request after searching the highest rela­
tive track, it continues the search from
the first relative track.

This option cannot be used if the type
of record reference of the READ or WRITE
macro-instruction is record identification,
or if actual addressing of records is
indicated in the data control block.

CREATING DIRECT DATA SETS

To create a direct data set, the pro­
grammer must use the basic sequential
access method macro-instructions to set up
capacity records and track formats of the
direct-access volume assigned to the data
set and, optionally, to write the data set
blocks. Procedures for creating a direct
dataset differ according to block formats.

Format F Blocks With Keys

All tracks for a direct data set with
fixed-length keyed blocks must be filled
sequentially by either actual data set
blocks or "dummy" blocks of the same
length. The programmer issues the basic
sequential access method macro-instruction
WRITE to specify whether an actual or a
dummy block is to be written. The system
writes a dummy block with all ones in the
first byte of the key field to indicate to
the basic direct access method that a block
can be added in the space allocated to the
dummy block. (The programmer may not add
actual data set blocks with keys whose
first bytes are all ones.)

After the final block on a track is
written, the basic sequential access method
causes the capacity record to be written
and proceeds to the next track. When a
WRITE macro-instruction is issued after all
tracks initially allocated to the data set
are filled, the basic sequential access
method causes additional space to be
obtained and continues to fill tracks if
secondary allocation was specified.

The programmer can determine whether the
space initially allocated has been exhaust­
ed by checking the standard register that
provides this information. The basic
sequential access method also causes an
indication of whether or not a track is
full to be placed in the register unless

Data Access Methods 67

the track overflow option has been speci­
fied. This indication is useful, for exam­
ple" when the programmer needs to know
whether to complete a track with dummy
blocks.

Format F Blocks Without Keys

The procedure for creating a direct data
set with fixed-length blocks without keys
is identical to that described for keyed
blocks except that dummy blocks cannot be
written. The programmer must fill all
tracks for the data set with actua~ blocks
by issuing the basic sequential access
method macro-instruction WRITE.

Formats V and U Blocks

To create a direct data set with blocks
of variable or undefined length, the pro­
grammer may write any desired blocks on the
track by using the basic sequential access
method macro-instruction WRITE. He then
issues, for that track, a special form of
the WRITE macro-instruction that causes the
system to fill unused space with zeros and
write the capacity record. (Throughout the
remainder of this section, this form is
referred to as the WRITE (capacity record)
macro-instruction.) The next WRITE macro­
instruction issued writes blocks on the
following track.

When a WRITE macro-instruction is issued
for a block that cannot be accommodated on
the remaining track space, the block is not
written. The programmer can determine
whether the block was written by testing a
standard register containing this indica­
tion. The programmer can then issue the
WRITE (capacity record) macro-instruction,
and reissue the WRITE macro-instruction to
place the block on another track.

When a WRITE
instruction is
operation on a
cleared. When a
macro-instruction
tracks initially

68

(capacity record) macro­
issued as the first

track, the entire track is
WRITE (capacity record)
is issued after all

allocated to the data set

are filled, the basic sequential access
method causes additional space to be
obtained and continues to fill tracks if
secondary allocation was specified.

No~e: Since direct data sets are created
uSlng the macro-instructions of the basic
sequential access method, the programmer
can transfer direct data set blocks (in
physical sequential order) from secondary
to main storage, using the basic sequential
access method READ macro-instruction. If
the programmer uses this macro-instruction,
neither capacity records nor the count area
of the data blocks will be transferred; key
areas, if requested and present, will be.
All blocks, including dummy blocks, are
transferred.

When creating a direct data set, each
WRITE (capacity record) and WRITE macro­
instruction must be followed by a CHECK
macro- instruction.

PROGRAMMING NOTES

The following section describes
additional programming factors, not specif­
ically related to anyone macro­
instruction, that the programmer should
consider before using this access method.

Split Cylinder Mode

Split cylinder space allocation cannot
be used for a data set created for use with
the basic direct access method, i.e., the
data set cannot share cylinders with other
data sets using this allocation technique.

Direct-Access Volume Options

The track overflow and write validity
check options, described previously, are
available to the programmer. The track
overflow option, however, can be used only
with format F blocks.

Absolute generation names 12
Access methods

(see data access methods)
Aliases 51

Basic direct access method (BDAM) 32,63
buffer assignment procedures 64
buffer pool construction procedures 64
dynamic buffer option 64
exclusive control 67
extended search option 67
macro-instruction usage 64
OPEN modes (data set usage) 34

Basic indexed sequential access method
(BISAM) 32,60

buffer assignment procedures 61
buffer pool construction procedures 60
dynamic buffer option 60
macro-instruction usage 61

Basic partitioned access method (BPAM)
32,49

compatibility with sequential access
methods 52

creation of partitioned data set 51
macro-instruction usage 49
OPEN modes (data set usage) 34

Basic sequential access method (BSAM)
32,44

buffer assignment procedures 45
buffer pool construction procedures 45
data format--device type relationships

36
input/output devices--macro-instruction

relationships 49,50
macro-instruction usage 45
OPEN modes (data set usage) 34
read backwards considerations 49
update-in-place considerations 48
use in creating direct data set 67

Basic telecommunications access method
(BTAM) 32

BDAM
(see basic direct access method)

BISAM
(see basic indexed sequential access

method)
BLDG statement 12,13
BLDL macro-instruction 51
Block 20
BPAM

(see basic partitioned access method)
BSAM

(see basic sequential access method)
BSP macro-instruction 48
BTAM

(see basic telecommunications access
method)

Buffer assignment procedures
for BDAM 64
for BISAM 61
for BSAM 45

for QISAM 56
for QSAM 38
use of dynamic buffer option 61,64
use of FREEBUF 45
use of FREEDBUF 61
use of GETBUF 45

Buffering
anticipatory 31
dynamic buffer option 60,64
exchange 38
simple 38

Buffer pool construction procedures
assembly time 35
dynamic buffer option 60,64
for BDAM 64
for BISAM 60
for BSAM 45
for QISAM 56
for QSAM 37
object time 35
use of BUILD 35
use of FREEPOOL 36
use of GETPOOL 35

Buffer pools 35
Buffer segment 35
Buffers

assignment procedures,
(see buffer assignment procedures)

definition 35
BUILD macro-instruction 35,38,45,56,60,64

Capacity records 36,68
Card punches 36
Card readers 36
Catalog

control volumes 9
definition 9
generation data groups 10
indexes 10
procedure for cataloging data sets 10
procedure for cataloging generation data

groups 12
Catalog indexes

structure of 10
volume index 10

Cataloging procedures
data sets 10
generation data groups 12

Chained scheduling
use in BSAM 37
use in QSAM 37

CHECK macro-instruction
use in BPAM 51
use in BSAM 46
use in creating direct data sets 68

Checkpoint data control block 30
CLOSE macro-instruction

function 33
volume dispOSition options 33,34

CLOSE (TYPE=T)
macro-instruction 33

Index 69

CNTRL macro-instruction
use in BSAM 47
use in QSAM 41

Concatenated data sets
use in BPAM 52
use in BSAM 49
use in generation data groups 12
use in QSAM 43

Control character (C) 21
Control volumes 9

definition 10
use of 10

COpy PDS statement 23
Cylinder index 24

Da;ta access methods
basic direct (BDAM) 32,63
basic indexed sequential (BISAM) 32,60
basic partitioned (BPAM) 32,49
basic sequential (BSAM) 32,44
basic telecommunications (BTAM) 32
classification of 32
definition of 31
queued indexed sequential (QISAM) 32,53
queued sequential (QSAM) 32,37
queued telecommunications (QTAM) 32

Data contrpl block 9
checkpoint 30
definition of 27
exit routine 30
fill-in process 28
opening of 28

Data definition (DD) statement 9
relationship to DCB macro-instruction

30
use in data control block fill-in

process 28
use in data set definition procedure 27

Data event control block (DECB)
exception codes 62,66
function of 32
relationship to READ and WRITE 32

Data set control block (DSCB) 14,19
Data set definition procedures 27

use of data control block exit routine
30

use of DCB macro-instruction 29
use of DD statement 27
use of labels 28

Data set labels
for direct-access volumes (DSCB) 18
for magnetic tape volumes 16
sources of information for 28
use in data control block fill-in

process 27,28
Data set names

function of 9
relationship to catalog index levels 10
rules for 9

Data set organizations 22,32
direct 22,26
indexed sequential 22,23
partitioned 22
selection criteria 22
sequential 22
telecommunications 22,27

Data set security facility
function 13

70

master password
PASSWORD data set

Data sets

13
13

cataloging of 9,10
concatenation of 43,49,52
creation of direct 67
creation of indexed sequential
creation of partitioned 51
definition of 9
definition procedure 27
naming procedures 9
PASSWORD 13
security 13
storage 13
use (mode of OPEN) 34

Data storage procedures
direct-access volumes 13
magnetic tape volumes 15

DCB macro-instruction
function 29
relationship to DD statement 30
type of information in 29

59

use in data control block fill-in
process 28,29

use in data set definition procedure 27
DCBD macro-instruction 30
Delete code 55
Direct-access labels

data set label (data set control block)
19

user label group 19
volume label group 18

Direct-access storage space allocation
by absolute address 15
by blocks 14
by cylinders 14
by tracks 14
method of 14
of split cylinders 14
options 15

Direct-access volumes 36
data set storage procedures 14
initialization of 14
labels 18
space allocation procedures 14,15
volume table of contents (VTOC) 14

Direct data set
creation of 67
description 26

Directory of partitioned data set 23
Dynamic buffer option

use in BDAM 64
us e in BISAIVJ. 60

End-of-data set routine 29
Error analysis routine (synchronous error
exit) 29,42

Error conditions for BSAM 48
Error conditions for QSAM 42
ESETL macro-instruction 57
Exceptional conditions

in BDAM 66
in BISAM 62
in QISAM 58

EXCP macro-in$truction 32
Exchange buffering 38
Exclusive control 67
Execute channel program 32

Exit list 29
Exit routines

address of checkpoint data control
block 30

data control block 30
standard user label 30

Extended search option 67

FEOV macro-instruction
use in BSAM 47
use in QSAM 41

FIND macro-instruction 49
Fixed-length format (F) records 20,,53,54
FREEBUF macro-instruction 45,61,64
FREEDBUF macro-instruction

use in BDAM 64
use in BISAM 61

FREEPOOL macro-instruction 36,38,45,56

Generation data groups
cataloging of 12
concatenation of 12
definition of 12
generation names 12
generation numbers 12
index for 12

Generation names 12
Generation numbers 12
GET macro-instruction

use in language for queued access 31
use in QISAM 56
use in QSAM 39

GETBUF macro-instruction 45,61,64
GET POOL macro-instruction

35,38,45,56,60,64

Indexed sequential data set
creation of 59
cylinder index 24
description of 23
master index 24
overflow area 25
reorganization of 63
space allocation procedures for 25
track index 24

Indexes
catalog 10
cylinder 24
master 24
track 24
volume 10

Input/output block (lOB) 32
Input/output devices

card readers and punches 36
direct-access 36
magnetic tape 36
paper tape reader 36
printers 36

Job file control block (JFCB) 27,28,33

Key class 51
Keys 23,53,54,55

Labels 15
direct-access 18
magnetic tape 16

Language for basic access 31

Language for queued access 31
Locate mode

use in QISAM 56,60
use in QSAM 39,40

Logical records 20

Macro-definition library 51
Macro-instruction languages

for basic access 31
for queued access 31

Macro-instructions
BLDL 51
BSP 48
BUILD 35,38,45,56,60,64
CHECK 46
CLOSE 33
CLOSE (TYPE=T) 33
CNTRL 41,47
DCB 29
DCBD 30
ESETL 57
EXCP 32
FEOV 41,47
FIND 49
FREEBUF 45,61,64
FREEDBUF 61,64
FREEPOOL 36,38,45,56
GET 31,39,56
GETBUF 45,61,64
GET POOL 35,38,45,56,60,64
NOTE 47
OPEN 33
POINT 47
PRTOV 42,47
PUT 31,40,56
PUTX 40,51
READ 31,45,61,64
RELEX 66
RELSE 40,57
SETL 57
STOW 51
TRUNC 41
WAIT 46
WRITE 31,46,,62,65,68

Magnetic tape, unlabeled 15
Magnetic tape labels

data set header group 16
data set trailer group 17
nonstandard 17
organization of 17
standard 16
user header group 16
user label exit routine 30
user trailer group 17
volume label group 16

Magnetic tape volumes 36
data storage procedures 15
labels 16

Master index 24
Member 22
Move mode

use in QISAM 56
use in QSAM 39,40

Names
data set 9
generation data group 12

Index 71

Nonstandard tape labels
NOTE macro-instruction

OPEN macro-instruction
function 33

15,17
47

modes (data set usage) 34
volume disposition options 33,34

Overflow areas
cylinder 25
description of 25
independent 25

Overflow records
indication of in BISAM 63
indication of in QISAM 54
organization of 55

Paper tape reader 36
Partitioned data set

creation of 51
description 22
directory 23
member 22
space allocation procedures 23

PASSWORD data set 13
POINT macro-instruction 47
Printer 36
PRTOV macro-instruction

use in BSAM 47
use in QSAM 42

PUT macro-instruction
use in language for queued access 31
use in QISAM 56
use in QSAM 40

PUTX macro-instruction
use in QISAM 57
use in QSAM 40

Q.ISAM
(see queued indexed sequential access

method)
QSAM

(see queued sequential access method)
QTAM

(see queued telecommunications access
method)

Queued indexed sequential access method
(QISAM) 32,53

buffer assignment procedures 56
buffer pool construction procedures 56
macro-instruction usage 56

Queued sequential access method (QSAM)
32,37

buffer assignment procedures 38
buffering techniques 38
buffer pool construction procedures 31
data format--device type relationships

36
macro-instruction usage 39
OPEN modes (data set usage) 33,34
read backwards considerations 44
update-in-place considerations 43

Queued telecommunications access method
(QTAM) 32

72

Read backwards
BSAM considerations 49
QSAM considerations 44

READ macro-instruction
use in BDAM 64
use in BISAM 61
use in BSAM 45
use in language for basic access 31

Record blocking
definition of 20
variable-length records 21

Record formats 19,37,44,49,53,60,64
fixed-length (F) 20
selection criteria 20
undefined (U) 21
variable-length (V) 21

Reenterability 31
Relative generation numbers 12
RELEX macro-instruction 66
RELSE macro-instruction

use in QISAM 57
use in QSAM 40

Sequential data set
description 22
space allocation procedures for 22
use 22

SETL macro-instruction 57
simple buffering 38
Space allocation 14
Split cylinder option 14,68
STOW macro-instruction 51
Substitute mode 39,40
Synchronous error exit routine 29,42

Telecommunications data set 27
Track index 24
Track overflow option 15.,43,48,68
TRUNC macro-instruction 41

Undefined format (U) records 21
Unlabeled magnetic tape 15
Update-in-place considerations 43,48

Variable-length format (V) records
blocking of 21,44,60
description 21,54

Volume disposition options 33,34
Volume index 10
Volume initialization 14
Volume serial number 13,15
Volume table of contents (VTOC) 14
Volumes 13

direct-access 13
magnetic tape 15

WRITE macro-instruction
use in BDAM 65,68
use in BISAM 62
use in BSAM 46
use in language for basic access 31

Write validity check option
15,43,48,60,63,68

READER'S COMMENTS

Title: IBM System/360 Operating System

Data Management

Is the material:
Easy to Read?
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience?

How did you use this publication?
As an introduction to the subject

Yes

Other ________________________________ __

Please check the items that describe your position:

No

Form: C28-6537-1

For additional knowledge
fole

_ Customer personnel _ Operator
___ IBM personnel _ Programmer
___ Manager _Customer Engineer

_ Sales Representative
_Systems Engineer
_Trainee

___ Systems Analyst _ Instructor Other ______________ _

Please check specific criticism(s), give page number(s) ,and explain below:
___ Clarification on page (s)
__ Addi tion on page (s)
___ Deletion on page (s)
_ Error on page (s)

Explanation:

Name ________________________________ __

Address ______________________________ _

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

fole

Form C28-6531-1

staple

fold

fold

r--,
I BUSINESS REPLY MAIL I
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I L __ J

POSTAGE WILL BE PAID BY

IBM CORPORATION
P.O. BOX 390
POUGHKEEPSIE, N. Y. 12602

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS
DEPT. 058

~rnoo
<D

International Business Machines Corporation
Data Procsssing Division
112 East Past Road, White Plains, N. Y. 10601

st

r--------------------,
I FIRST CLASS I
I PERMIT NO. 81 I
I I
I POUGHKEEPSIE, N.Y. I L ____________________ J

1IIII1

II1II1

IIIIII

IIIII1

IIIII1

111111

IIII11

t"O
I'i
f-J.
:::J
rt
ro
0..
f-J.
::;l

c .
en .
~

n
I'V
00
I

0\
U'1
w
..J
I
~

sta

