
Systems Reference Library

IBM System/3S0 Ope"rating System

Linkage Editor

This publication provides programmers
and systems analysts with the information
necessary to make effective use of the
linkage editor of IBM System/360 Operating
System. Included are descriptions of the
functions performed automatically by the
linkage editor as well as those performed
in responpe to control statements prepared
by the programmer."

The linkage editor combines and edits
modules to produce a single module that can
be loaded by the control program. The
linkage editor operates as a processing
program rather than as a part of the
control program.

File No. S360-31
Form C28-6538-3 OS

PREFACE

This publication provides programmers
and systems analysts with information on
the operation and use of the linkage editor
of IBM System/360 Operating System. It is
part of an integrated library of IBM
System/360 Operating System publications.
Other publications that are required for an
understanding of linkage editor processing
are:

IBM System/360 Operating System: Intro-
duction, Form C28-6534

IBM System/360 Operating system: Con­
cepts and Facilities, Form C28-6535

The processing information required to
perform the linking functions of the link­
age editor is contained in the sections of
this publication titled "Object and Load
Modules," "Input Sources, Intermediate and
output storage," "Linking Input Modules,"
"Error Diagnostics and Processing Options,"
and "Diagnostic output and Special Process­
ing."

The program modification functions are
discussed in the sections titled "Editing
Object and Load Modules," "Designing An
Overlay Program," and "Specifying Addition­
al Processing."

Third Edition (October 1966)

This is a reprint of C28-6538-2 incorporating changes issued in Techni­
cal Newsletter N28-2130, dated June 1, 1966.

Significant changes or additions to the specifications contained in this
publication will be reported in subsequent revisions or 'Technical
Newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
IBM Corporation, Programming Systems Publications, Department D58,
PO Box 390, Poughkeepsie, N. Y. 12602

INTRODUCTION 7

Functions of the Linkage Editor. 7
Modul e Linkage. • • • • • • • • • •• 7
Additional Input Sources. • • • • •• 7
Programs in an Overlay Structure. •• 7
Program Modification. • • • • • • •• 9
Options and Error Messages. 9

PREPARING FOR LINKAGE EDITOR
PROCESS ING. • • • • • •

Object and Load Modules.
Object Modules ••••

External Symbol Dictionary
Relocation Dictionary.
Text • • • • • • • • • • •

Load Modules. • • • • • • • •
Module Contents ••
Module Attributes.

• 10

• • 10
• 10

• • 10
• 11
• 11

• • 11
• • • 11

• • • • 12
Separating Load Modules in One Job
Step • • • • • • • • • • • • • • • • 12

Input Sources, Intermediate and Output
storage • • • • • • • • • 12

• • 13
• 13

• • 14

Input Sources • • • • • •
Primary Input Data Set
Additional Data Sets •

Intermediate Storage. • •
Output Storage ••••••

Output Module Library.

• • • • 14
• 14
• 14

Diagnostic output Data Set • • • • 14

Designing an Overlay Program • 15
Overlay Tree Structure. • • • 15

Single Region Design • • • • • 15
Multiple Region Design 16

Overlay Characteristics • • 17
segment Table. • • • • • • 17
Entry Table. • • • • • 18

Overlay Communication • • ••• • 18
Communication Between Exclusive

Segments. • • • • • • • • • • 18
CALL Macro-Instruction • • • • • • 19
Branch Instruction (Assembler

Language Only). • • • • • 19
Segment Load (SEGLD)
Macro-Instruction • • • 20

segment Wait (SEGWT)
Macro-Instruction • • • • 20

Editing Object and Load Modules. •
Module Editing •••
Reserving Storage • • • • • •

Error Diagnostics and Processing

21
21

• 21

Options • • • • • • • • • • • • • • • • 22
Diagnostic Output Options • • • 22

LIST Option. • • • • • • • • • 22
MAP and Cross-Reference Table

(XREF) Options. • • • • • • 23
Special Processing options. • • • • • 23

CONTENTS

LET and Exclusive Call (XCAL)
Options • • • • • • • • • • • . • 23

No Automatic Library Call (NCAL)
Option. • • • • • • • • • • • • . 2'3

SPECIFYING LINKAGE EDITOR PROCESSING • • 24

Linking Input Modules. • • • • • • • •
Job Execution • • • • • • • • • • •

Member Name. • • • • • • • • • •
Linkage Editor Completion Code •

Cataloged Procedure • • • • • • • •
Module Attributes • • • • • • • • •

Scatter Load (SCTR) and Overlay
(OVLY) Attributes • • • • • • •

Reenterable (RENT) and Serially
Reusable (REUS) Attributes.

Not Editable (NE) Attribute.
Only Loadable (OL) Attribute • •
Downward Compatible (DC)
Attribute • • • • • • • •

TEST Attribute (Assembler
Language Only) •••••.

Incompatible Attributes ••

Specifying Additional Processing •
Linkage Editor Control Statements •

General Statement Format • • • •
General Placement Information. •

Multiple Load Module Processing
NAME Statement • • . . • .

• 24
• 24
• 24
· 24
· 25
• 25

• 25

· 25
· 26
• 26

• 26

• 26
• 26

• 26
• 27
• 27
• 27
• 27
• 28
• 28 The Load Module Entry Point

ENTRY Statement. • • •
Load Module Alias Names

ALIAS Statement. • •

• • • • 28

Additional Data Sources •
INCLUDE Statement. •
LIBRARY Statement •• ".
Including Library Modules. •
Including Sequential Data Sets •
The Restricted No-Call Function.
The Never-Call Function. • •

Structuring an Overlay Module •
OVERLAY Statement. • • • •
Segment Origin • • • • • . •
Region Origin. • • • • • • •
Positioning Control Sections
INSERT Statement • • •

Editing Modules • • • • •
Editing Conventions. •
CHANGE Statement • •
REPLACE Statement. • •
Changing an External Symbol.
Replacing Control sections •
Automatic Replacement of Control
Sections. • • • • • • • •

Deleting a Control section or
External Symbol • • • • •

" Multiple Editing Functions •
Providing System Status Index

Information. • • • • • • • •
SETSSI Statement • •

• 29
• 29
• 29
• 30
• 30
• 31
• 31
• 31
• 32
• 32
• 32
• 33
• 33
• 33
• 33
• 34
• 34
• 35
• 35
• 35
• 36

• 36

• 36
• 36

• 37
• 37

Diagnostic Output and Special
Processing. . • • • • • • • •

Diagnostic output Options •
Module Map • • • •• '. •
Cross-Reference Table. •
Disposition Data •

Diagnostic Messages •

APPENDIX A: EXAMPLES OF LINKAGE

37
• • • 37

• 38
• • • 38

• • 39
• • 40

EDITOR PROCESSING • • • • • • • • 43

Example 1: Card Sequences for Linkage
Editor Processing • • • • • • 43

Example 2: Combining Two Object
Modules • • • • •• • • • • • • • • 43

Example 3: Combining Load Modules • ••• 44

Example 4: Combining and Editing
Object Modules. • • • • • •

Example 5: Including Modules From Many

• 45

Additional Input Sources,. • • 45

Example 6: Combining Modules and
Standard Routines • • • • • •• • _ 46

Example 7: Editing by Automatic
Replacement • • • • • • • • • • • 46

Example 8: Processing Overlay Programs
(With Only Primary Input) •• • • 47

Example 9: Processing An Overlay
Program From Libraries •• _ •••••• 47

Example 10: Processing An Overlay
Program Using The Insert Control
Statement • • • • • • • • • • • •

APPENDIX B: SUMMARY OF LINKAGE EDITOR

• 47

CONTROL STATEMENTS. • •••• 49

APPENDIX C: INVOCATION OF THE LINKAGE
EDITOR. • 52

APPENDIX C.l: LINKAGE EDITOR PROGRAMS. 52
capacities _ • • • • • 52
Intermediate Data Set. • • • • • • 52

APPENDIX D: LINKAGE EDITOR MESSAGE
DIRECTORY • • • 53

GLOSSARY • 61

INDEX •• • 63

IGURES

igure 1. Linkage Editor Processing -
Module Linkage. • • • • • . • • • • •• 8
igure 2. Linkage Editor Processing -
~dditional Data Sources • • • • • • •• 8
igure 3. Linkage Editor Processing ~
Module Editing. • • • • • • • • • . 9
igure 4. The Modules and Control
Sections of a Program • • . • • • • • • 10
igure 5. An Object Module. • • . • •• 10
igure 6. A Load Module Produced by
the Linkage Editor. • • • • • • • • • • 11
igure 7. Linkage Editor Input
Sources and Output Storage. • • • • • • 12
igure 8. Module Dependency. • • 16
igure 9. Single Region Overlay Tree
Structure • • • • . • • • • • • • . • • 16
igure 10. Modules Used by Several
Paths • . • • • • • . • • • • • • • • • 17
igure 11. Multiple Region Overlay
rree Structure. • • • • • •• • • • 1 7
igure 12. Load Module containing
8verlay Characteristics •••••••• 17
igure 13. Branching Instructions . • • 20
igure 14. Processing After a SEGLD
Macro-Instruction . • • • • .. • • 20
igure 15. Processing After a SEGWT
Macro-Instruction • • • • •• • 21
igure 16. Common Areas Before
Processing. .. • • • • • • • • • • 22
igure 17. Automatic Promotion of
Common Areas During Processing ••••• 22

~ble 1. Capacities of Linkage Editor
?rograms. 52

ILLUSTRA'r.IONS

Figure 18. Incompatible Module
Attributes. • • • • • • • • • •

Figure 19. Processing of Additional
• • 26

Data Sources. • • • • • • • • • • • • • 29
Figure 20. Single Region overlay Tree
Structure • • • • • • • • • • • • • • • 33

Figure 21. Multiple Region Overlay
Tree Structure. • • • • • _ • • •

Figure 22. Repositioned Control
• 33

• • • 34 Sections in Overlay Structure • •
Figure 23. Module Map. • • • • • •
Figure 24. Cross-Reference Table
Figure 25. Diagnostic Messages • •
Figure 26. The Linkage Editor Step of

• • '. 38
39

• • • 41

an Edit and Execute Procedure ••
Figure 27. The Linkage Editor Step of

a Compile. Edit. and Execute
Procedure • • • • • • • • • • • •

Figure 28. Module Linkage
Figure 29. Combining Input From

• 43

• 44
• • 44

Libraries • • • • • • • • • _ • • • • • 44
Figure 30. Editing Modules • 45
Figure 31. Collecting Library Modules •• 45
Figure 32. Automatic Library CALL. • • • 46
Figure 33. Editing by Automatic

Replacement • • • • • • • • • •
Figure 34. Processing an Overlay

Program • • • • • _ • • • • • • •
Figure 35. Processing an Overlay

Program From Libraries. • • • •
Figure 36. Processing an Overlay

• • 46

• 47

48

Program With Insert Statement • • • • • 48

The linkage editor is one of the pro­
cessing programs of IBM System/360 Operat­
~ng System. It is a service program used
to prepare loadable programs from the out­
put of language translators, such as FOR­
TRAN, COBOL, Report Program Generator,
Assembler Language, or Programming
Language/I. Linkage editor processing is
the necessary step that follows source
program assembly or compilation.

Two levels of the linkage editor program
are available: level E, which is designed
to process programs on all systems, and
level F, which is designed to operate in
44K or more of main storage. A compat­
ibility option is provided to ensure that
programs processed by the level F linkage
editor can be reprocessed by the level E
linkage editor.

FUNCTIONS OF THE LINKAGE EDITOR

The basic function of the linkage editor
is the linking of separately assembled or
compiled modules of a program into one load
module. The load module is in a format
suitable for loading and execution by the
control program of the operating system.

Although this linking or combining of
modules is its primary function, the link­
age editor also:

1.

2.

3.

Incorporates modules from data sets
other than its primary input, either
automatically or upon request.

Constructs an overlay program for
loading by the control program.

Aids program modification by replac­
ing, deleting, and rearrarig~ng control
sections as directed by linkage editor
control statements.

4. Reserves storage for the common con­
trol sections generated by the Assem­
bler and FORTRAN Languages and static
external areas generated by Program­
ming Language/I.

5. Provides processing options and logs
diagnostic error messages.

The linkage editor functions are briefly
described in the following paragraphs.

INTRODUCTION

MODULE LINKAGE

Processing by the linkage editor makes
it possible for the programmer to divide
his program into several modules, each
containing one or more control sections.
The modules can be separately assembled or
compiled. The linkage editor combines
these modules into one output module
(Figure 1), called a load module, with
contiguous storage addresses. The output
module is placed in a library (partitioned
data set).

The linkage ed~tor can also process its
input to form more than one load module
within a single job step. Each load module
is placed in the library under a unique
name.

ADDITIONAL INPUT SOURCES

standard subroutines from a library can
be included in the output module, thus
reducing the work in coding programs. The
programmer can specify that a subroutine be
included at a particular time during the
processing of his program by using a link­
age editor control statement. When the
linkage editor processes a program contain~
ing this statement, the module containing
the subroutine is retrieved from the indi­
cated input source and made an integral
part of the output load module (Figure 2).

Symbols that are undefined after all
input modules have been processed cause the
automatic library call mechanism to search
for modules that will resolve the referen­
ces. When a module of that name is found,
the module that has that name is processed
by the linkage editor and becomes part of
the output module (Figure 2).

PROGRAMS IN AN OVERLAY STRUCTURE

To minimize main storage requirements,
the programmer can organize his program
into an overlay structure by dividing it
into segments according to the functional
relationships of control sections. Two or
more segments that need not be in main
storage at the same time can be assigned
the same relative storage addresses, and
can be loaded at different times.

Introduction 7

Figure 1.

Figure 2.

8

Linkage Editor Processing - Module Linkage

Library A

"- "-
Object
Modules

D & E

Call Library

"- "-
Load

Modules

A
B
C

"

Requested by the programmer in a
linkage editor control statement.

A
B
C
D
E
F

Called automatically when references were
unresolved at the end of input processing.
(Could have been requested by a linkage editor control statement~

Linkage Editor processing - Additional Data Sources

The programmer uses linkage editor con­
trol statements to specify the relationship
of segments within the overlay structure.
The segments of the load module are placed
in a library so that the control program
can load them separately when the program
is executed.

PROGRAM MODIFICATION

Program modification is facilitated by
the editing functions of the linkage edi­
tor. When the functions of a program are
to be changed, the programmer can modify
and recompile affected control sections
instead of recompiling the entire source
program (Figure 3).

Control sections can be replaced, delet­
ed, or moved as directed by linkage editor
control statements, or can be automatically
replaced by the linkage editor. External
symbols can also be changed or deleted as
directed by linkage editor control state­
ments.

The linkage editor processes common con­
trol sections generated by the FORTRAN and
Assembler Language translators. The static
external storage areas generated by PLiI

Library

'- '-
" Load Module D

Control Section 1
Control Section 2

" Control Section 3

compiler are processed in the same way.
The common areas are collected by the
linkage editor and a reserved main storage
area is provided within the output module.

OPTIONS AND ERROR MESSAGES

The linkage editor can produce a module
map or cross-reference table that shows the
arrangement of control sections in the
output module and indicates how they commu­
nicate with one another. A list of the
linkage editor control statements that were
processed can also be furnished. In addi­
tion, special processing options that
negate automatic library call or the effect
of minor errors can be specified by the
programmer.

Throughout processing by the linkage
editor, errors and possible error condi­
tions are logged. Serious errors cause the
linkage editor to mark the output module
ftnot executable. ft

Additional diagnostic data is automat­
ically logged by the linkage editor. The
data indicates the disposition of the load
modulp. in the output module library.

Load Module

Control Section 1
Control Section 2
Control Section 3A

Control Section 3A in the object module replaces control section 3 in the load module D by programmer request.
Control Section 2 in the object module replaces control section 2 in the load module D automatically.

Figure 3. Linkage Editor Processing - Module Editing

Introduction 9

PREPARING FOR LINKAGE EDITOR PROCESSING

It is necessary for the programmer to be
familiar with the data sources and destina­
tions used by the linkage editor, no matter
what category of processing he is using
(module linking, overlay structuring,
module editing, or any combination of
these). Diagnostic and special processing
options are also available to him.

Once the programmer thoroughly under­
stands the linkage editor functions, the
section of this publication titled
"Specifying Linkage Editor Processing" may
be used for information needed to perform
these functions.

OBJECT AND LOAD MODULES

Every problem program is designed to
fulfill a particular purpose. To achieve
that purpose, the program can generally be
divided into logical units that perform
specific functions. A logical unit of
coding that performs a function, or several
related functions, is a module. Ordinari­
ly, separate functions should be programmed
into separate modules.

A module is composed of one or more
control sections. A control section is a
unit of coding (instructions and data) that
is, in itself, an entity. All elements of
a control section are loaded and executed
in a constant relationship to one another.
A control section is, therefore, the small­
est separately relocatable unit of a pro­
gram (Figure 4).

PROBLEM PROGRAM
r~------------------~A~------------------~\

Program Functions

Module A

" "\.

1
i"r- __ _

2

3

T
Module B

I"\. "\.

4
1"1- __ _

5

r----

6

"--~
Note: 1 through 9 are Control Sections.

Module C

" "\.

7

r- - --

8

1-- - -

9

Figure 4. The Modules and Control Sections
of a Program

10

A module can be separately assembled or
compiled by a language translator. During
processing by the language translator, ref­
erences between control sections within the
module are resolved.

OBJECT MODULES

An object module, the output of a lan­
guage translator, consists of control dic­
tionaries and text <instructions and data).
The control dictionaries contain the infor­
mation necessary to resolve cross­
references between control sections and
modules. Figure 5 illustrates the contents
of an object module. Test symbol
dictionary items (an Assembler Language
function) to be used by the test translator
must be the first items in the object
module when testing is specified.

The programmer can specify in an END
statement the symbolic address of the
instruction with which execution of the
module is to begin. As a result, the
language translator produces an end state­
ment that marks the end of the object
module.

~ '" External Symbol Dictionary

Text

"" ~ Relocation Dictionary

END

Figure 5. An Object Module

External Symbol Dictionary

The external symbol dictionary (ESD)
contains the external symbols that are
defined or referred to in the module. An
external symbol dictionary entry identifies
a symbol and its position within the
module. Each entry in the external symbol
dictionary is classified as one of the
following:

1. external name - is a name that can be
referred to by any control section or
separately assembled or compiled
module. It has a defined value within
the module.

a. control section name is the
symbolic name of a control sec­
tion. The external symbol dic­
tionary entry specifies the name,
the assembled origin, and the
length of a control section. The
defined value of the symbol is the
address of the first byte of the
control section.

b. entry name - is a name within a
control section. The external
symbol dictionary entry specifies
the assembled address of the name
and identifies the control section
to which it belongs.

c. blank or named common area - is a
control section used to reserve a
main storage area (containing no
data or instructions) for control
sections provided by other
modules. The reserved storage
areas can also be used as communi­
cation centers within a program.
The external symbol dictionary
entry specifies the name and
length of the common area. If it
is a blank common area, the name
field contains blanks.

d. private code - is an unnamed con­
trol section. The external symbol
dictionary entry Specifies the
assembled address and assigned
length of the control section.
The name field contains blanks.
Since it has no name, it cannot be
referred to by other control sec­
tions.

2. external reference - is a symbol that
is defined as an external name in
another separately assembled or com­
piled module but is referred to in the
module being processed. The external
symbol dictionary entry specifies the
name.

Note: In the Assembler Language, a control
section name is defined by a CSECT or START
statement; an entry name is specified by an
ENTRY statement; a common area is specified
by a COM statement; and an external ref­
erence is specified by an EXTRN statement
or a V-type address constant.

Relocation Dictionary

The relocation dictionary (RLD) contains
information about address constants in the
module. Each relocation dictionary entry

identifies an address ~onstant by indicat­
ing its location within a module and the
symbol in the external symbol dictionary
whose value is used to determine the value
of the address constant.

The text (TXT) contains the instructions
and data of the module. Instructions and
data, as well as their address in the
module, form a text item. The text item
also indicates the external symbol dic­
tionary entry that defines the control
section containing the text.

LOAD MODULES

A load module, the output of the linkage
editor, has the same logical structure as
an object module. However, an object
module is in relocatable format, while a
load module is in relocatable and execut­
able format.

Module Contents

A load module is composed of all the
edited modules that were the input to the
linkage editor. It contains a composite
external symbol dictionary and a composite
relocation dictionary in addition to the
text items (Figure 6). If the load module
is to be tested, it may also contain the
testing symbol tables used by the test
translator.

INPUT OUTPUT

~
Object Load Module
Module Module ESD

ESD

-----m TXT TXT -----.. TXT

RLD RLD

RLD

Figure 6. A Load Module Produced by the
Linkage Editor

In processing object and load modules,
the linkage editor resolves all references
between control sections as if they had

Preparing for Linkage Editor Processing 11

been assembled as one module. Object
modules produced by several different lan­
guage processors can be used to form one
load module under the rules specified by
each processor.

The output module produced by the link­
age editor contains all the information
necessary to load and relocate the module
in main storage. It contains information
necessary to compute the relocated value of
location-dependent address constants. When
the load module is placed in the output
module library, the name of the module (its
member name) and control information des­
cribing its attributes are placed in the
library directory. The module attributes
are used by the control program when the
program is loaded for execution. Object
modules are assumed to have no attributes.

Module Attributes

Some attributes of a load module can be
specified by the programmer; others are
specified by the linkage editor as a result
of information gathered during processing.
In the following list, those attributes
marked with an asterisk cannot be specified
directly by the programmer.

12

• Reenterable: A reenterable module can
be used by. more than one task at the
same time; i.e., a task may begin
executing a reenterable module before a
previous task' has finished executing
it. A reenterable module is not modi­
fied during execution.

• Serially Reusable: A serially reusable
module can be executed by only one task
at a time. It is self-initializing,
since all instructions and data altered
during execution are restored before or
during execution by another task.

• *Block Format: A module in block format
is suitable only for block loading.
The control program can load the module
only into a contiguous main storage
area large enough to contain the com­
plete module.

• Scatter Format: An output module pro­
duced by the linkage editor in scatter
format is suitable for either block or
scatter loading. A module in scatter
format can take better advantage of
available main storage since the con­
trol sections within it can be loaded
into noncontiguous areas.

• Not Editable: A module that is not
editable has no external symbol dic­
tionary and cannot be reprocessed by
the linkage editor.

• Only Loadable: A module that is only
loadable can be brought into 'main stor­
age only by the LOAD macro-instruction.

• Downward Compatible: A module that is
downward compatible can be reprocessed
by either the level E or the level F
linkage editor. The downward compat­
ible option is assumed by the level E
linkage editor.

• Overlay: A module that has the overlay
attribute specified is placed in over­
lay structure as directed by linkage
editor OVERLAY statements. It is suit­
able only for block loading and is
neither reenterable nor serially reus­
able.

• Test: This attribute applies only to
Assembler Language programs. When a
program that is to be tested is being
processed, the test symbol dictionary
for the test translator is placed in
the output module.

• *Not executable: The linkage editor
indicates this attribute only if, dur­
ing processing, errors were found that
would prevent the output module from
being executed successfully. The con­
trol program will not load a "not
executable" module. (The module can,
however, be modified during a later
linkage editor execution.)

Note: The "not editable" and "only
loadable" attributes are intended primarily
for use by the control program. Use of
these attributes by the problem program can
degrade the usability of the module.

SEPARATING LOAD MODULES IN ONE JOB STEP

It is possible to create more than one
load module in a single job step (a process
called multiple load module processing).
The linkcge editor NAME statement can be
used as a delimiter for the input to each
load module. Each load module that is
formed has a unique name and is placed in
the library as a separate member.

INPUT SOURCES, INTERMEDIATE AND OUTPUT
STORAGE

The linkage editor can receive its input
from several sources that can be processed
sequentially, as follows:

• The primary input, which must be con­
tained in a sequential data set that

~orm C28-6538-1,-2, Page Revised by TNL N28-2130, 6/1/66

can contain only object modules and
linkage editor control statements.

• Additional input, which is contained in
sequential or partitioned data sets. A
partitioned data set (library) can con­
tain either object modules and control
statements, or load modules. (It can­
not contain both.)

The level E linkage editor always buf­
fers intermediate data on a direct-access
levice. The level F linkage editor places
intermediate data on a direct-access device
only when all the input data cannot be held
in the available main storage.

Output of the linkage editor is of two
types:

• A load module, which is produced by the
linkage editor and placed in a parti­
tioned data set as a named member. Up
to five other names (aliases) can be
attributed to the module.

• Diagnostic output, which is listed on a
printer or placed in a sequential data
set.

All data sets processed by the linkage
editor must be defined in data definition
statements as specified in the publication
IBM System/360 Operating System: Job Con­
trol Language, Form C28-6539. The data
definition name (ddname) for each linkage
editor data set is indicated in the follow­
ing paragraphs.

INPUT SOURCES

The modules that are to be processed by
the linkage editor are contained in the
following data sets:

1.

2.

Primary
input) •

input data set <principal

Call library (for automatic library
call).

3. Additional data sets <additions to
either the primary input or the call
library) •

The primary input data set is required
for all linkage editor job steps. The call
library must be defined only if the auto­
matic library call function is to be used.
Additional sequential data sets or parti-

tioned data sets are defined only
required by the programmer (Figure 7).

Input Sources

NOTE: A number of data sets can be contained
on a single direct-access device.

SYSLMOD

SYSUTl

as

Figure 7. Linkage Editor Input Sources and
Output Storage

For input sources the record format
(RECFM), block size (BLKSIZE), and, if
required, tape recording technique (TRTCH)
and density (DEN) fields of the data con­
trol block must ·be made available to the
linkage editor. If this information does
not exist in the data set control block or
tape header label, or if no labels are
used, the programmer must specify it on the
DD statement def~ning the sequential data
set.

Note: RECFM must be specified as F, FS"
FB, or FBS for object modules and U for
load modules. The logical record length
for object modules must be 80 bytes. The
block size for data sets containing object
module(s) must be as follows:

• For the level E linkage editor when
RECFM is specified as F, FS, FB, or
FBS, 80 bytes (one logical record per
block).

• For the level F linkage editor when
RECFM is specified as F or FB, a block
size that does not exceed the capacity
of the linkage editor being used; this
capacity is the maximum blocking factor
for input, as described in Appendix
C.l. The size of blocks within the
data set can vary, provided that the
size does not exceed the linkage
editor's capacity.

preparing for Linkage Editor processing 13

• For the level F linkage editor when
RECFM is specified as FS or FBS, a
block size that does not exceed the
capacity of the linkage editor being
used.

A RECFM specification of FS or FBS must
)e used with caution. All blocks in the
lata set containing object modules must be
:he same size. This size must be equal to
:he specified block size. A truncated
)lock can occur only as the last block in
:he data set.

If the DCBBLKSI field of the data con­
:rol block contains zero when RECFM is
;pecified as FS or FBS, the level F linkage
~ditor terminates execution.

Primary Input Data Set

The primary input data set can contain
only object modules and linkage editor
control statements. The modules and con­
trol statements are processed sequentially
and their order determines the basic order
of linkage editor processing during a given
execution. However., the order of the con­
trol sections after processing does not
necessarily reflect the order in which they
appeared in the input. Primary input proc­
essing stops when the end of the data set
is reached. Input processing will contin­
ue, however, if the automatic library call
mechanism is to process other data sets.

The primary input data set can be a
sequential data set or a concatenation of
sequential data sets. A library member can
be specified on a DD statement so that it

13. 1

Form C28-6538-1,-2, Page Revised by TNL N28-2130, 6/1/66

can be processed as a sequential data set.
For details refer to the publication IBM
System/3600perating System: Job control
Language. The primary input data set must
be specified by the ddname SYSLIN.

Additional Data Sets

Modules can be included in the input to
the linkage editor from data sets called by
the automatic library call mechanism or
from other data sets specified by the
programmer.

AUTOMATIC CALL LIBRARY: The call library
is used by the automatic library call
mechanism in the final step of input pro­
cessing. If the automatic library call
function is to be used, the call library
must be contained on a direct-access
device, and defined accordingly. It must
be a partitioned data set and its ddname
must be SYSLIB.

If the call library is an object module
library, it can contain only object modules
and control statements. If it is a load
module library, it can contain only load
modules.

Modules from libraries other than the
call library can be processed by the auto­
matic library call mechanism as directed by
the LIBRARY statement.

INCLUDED DATA SETS: The primary input data
set and the call library can contain con­
trol statements that request the linkage
editor to use additional data sets as
input. This input can be from sequential
data sets, object module libraries, or load
module libraries. Each additional data set
must be defined in a data definition state­
ment~

Sequential data sets or members of par­
titioned data sets are included by the
linkage editor when an INCLUDE statement is
processed.

CAUTION: When concatenated data sets are
included, they must be on the same device
type. Each data set must contain records
of the same format, record size, block
size, tape recording technique, and den­
sity.

INTERMEDIATE STORAGE

Intermediate data that cannot be con­
tained in main storage during processing is
buffered by the linkage editor to the
buffer data set. The ddname of the buffer

14

data set is SYSUT1 and the data set is on a
direct-access device. This data set must
always be defined with a DD statement,
whether the linkage editor places data on
it or not.

OUTPUT STORAGE

The output of the linkage editor is
stored as follows:

• The principal output
editor is stored in the
library.

of the linkage
output module

• Erro~ messages, module disposition
data, and optional diagnostic output
are stored in the diagnostic output
data set.

Output Module Library

The load module produced by the linkage
editor is always placed in a library as a
named member. The output module library
can contain many load modules.

T~e data set name of the library in
which the output module is to be stored
must be specified by the programmer in a
data definition statement,. The member name
of the output module can be specified in
the same data definition statement,. If the
member name is omitted from a data defini­
tion statement, it must be specified in a
NAME statement.

The output module can be assigned alias­
es if the programmer wants the module
identified by more than one name or entered
at different points when the program is
executed. Each name in a load module
library must be unique,.

The output modules produced in a multi­
ple load module' processing job step are
stored in the same library.

The output module's library member name
and aliases will appear as separate entries
with the module attributes in the directory
of the library. The ddname of the output
module library is SYSLMOD.

Diagnostic Output Data Set

The diagnostic output data set is pro­
duced du~ing linkage editor processing. It
is a collection of diagnostic and error

messages generated by the linkage editor,
as well as any, diagnostic options requested
by the programmer. The diagnostic output
data set, given the ddname SYSPRINT, is
defined as any data set that can be pro­
cessed sequentially.

DESIGNING AN OVERLAY PROGRAM

overlay is a programming technique that
minimizes the main storage requirements of
a program. To use overlay, the programmer
should be familiar with two related tech­
niques:

1. Organization of the program as an
overlay structure.

2. Communication with the control program
during execution.

OVERLAY TREE STRUCTURE

In order to place a program in an
overlay structure, the programmer should be
familiar with the following terms:

• A seqment is the smallest functional
unit (one or more control sections)
that can be loaded as one logical
entity during execution of the program.
The root segment (first segment)
remains in main storage throughout exe­
cution.

• A path consists of a segment and all
segments in the same region between it
and the root segment. The root segment
is a part of every path in every
region. When a segment is in main
storage, all segments in its path are
also in main storage.

• A region is a contiguous area of main
storage within which segments can be
loaded independently of paths in other
regions. An overlay program can be
designed in single or multiple regions.

• A tree is the graphic representation
that shows how segments can use main
storage at different times. It does
not imply the order of execution
although the root segment is the first
to receive control.

The design of an overlay program
requires the organization of the control
sections of the program in an overlay tree
structure. The tree structure is developed
considering:

1. The amount of available main storage.

2. The frequency of use of each control
section.

3. The dependencies between control sec­
tions.

4. The manner in which control should
pass within a path, from one path to
another, and from one region to anoth­
er.

When the programmer has determined the
overlay tree structure for a program, he
prepares OVERLAY statements that will seg­
ment the program in that manner. The use
of these control statements is described in
"structuring an Overlay Module."

Single Region Design

To begin constructing an overlay tree,
the programmer should select those modules
that will receive control at the beginning
of execution plus those that should always
remain in main storage; these will form the
root segment. The rest of the tree can be
developed by determining the dependency of
the remaining segments and how they can use
the same main storage locations at differ­
ent times during execution.

Module dependency is determined by the
requirements of a control section or module
for a given routine in another control
section. A module is dependent upon a
control section to which it branches or
whose data it must process. That is, the
required control section must be in main
storage before execution can continue
beyond a given point in the program. Fig­
ure 8 illustrates how modules depend on
each other, and the paths that result from
these dependencies.

The module containing control sections A
and B can be used to form the root segment.

The module containing control sections C
and D can use the same main storage as the
module containing control sections J and K.
Segments that use the same main storage
area can overlay each other during execu­
tion.

The module containing control section E
can use the same main storage as the module
containing control sections F and G. The
module containing control section H can use
the same main storage as the module con­
taining control section I. The module
containing control section L can use the
same main storage as the module containing
control sections M and N.

Preparing for Linkage Editor Processing 15

Path 1 Path 2 Path 3 Path 4 Path 5

A A A A A

C C

D D

M

G N

Note: A through N are Control Sections.

Figure 8. Module Dependency

The resulting overlay tree structure is
shown in Figure 9. The longest path in
this structure is formed by segments 1, 2,
4, and 5, since, when they are in main
storage, the program requires 21,000 bytes.
Thus, the minimum main storage requirement
for the program is 21,000 bytes. If the
program were not put in an overlay struc­
ture, it would require 46,000 bytes. The
linkage editor will assign the relocatable
origin of the root segment (the origin of
the program) at O. The relative origin of
each segment will be determined by 0 plus
the length of all segments in the path.
For example, the origin of segments 3 and 4
is equal to 0 + 5,000 (the length of
segment 2) + 6,000 (the length of the root
segment).

When a segment is in main storage, all
segments in its path are in main storage.
segments in its path are in main storage.
(Each time a segment is loaded, all seg­
ments in its path are also loaded if they
are not already in main storage.) In
Figure 9, when segment 4 is in main stor­
age, segments 2 and 1 are also in main
storage. That does not imply that segment
5 or 6 is in main storage since neither
segment is in the path of segment 4.

The position of the segments in an
overlay tree structure does not necessarily
imply the order in which the segments are
executed. A segment can be loaded and
overlaid as many times as required by the
logic of the program. If a segment is
modified during execution, that modifica­
tion remains only until the segment is
overlaid. However, a segment cannot be
overlaid by itself.

16

Segments that can be in main
simultaneously are considered to be
sive. Segments in the same region
in the same path are considered
exclusive segments; they cannot be
storage simultaneously.

Root
Segment

1(6000)

A

Segment Segment
2~(50:::.::0~0 __ --L-___ --;7 (6000)

C

Segment
3(5000)

Segment K
D 4(3000) Segment Segment

,-----'----, F 8(3000) 9 (8000)
Segment Segment ,-----'----,

5(7000) G 6(3000) L M

H

L
Longest Path (1,2,4,5) = 21,000 bytes

Figure 9. Single Region
Structure

N

Overlay

storage
inclu-

but not
to be

in main

Tree

Segments upon which two or more exclu~
sive segments are dependent are called
common segments. A segment common to two
other segments is part of the path of each
segment. In Figure 9, segment 1 is common
to segments 8 and 9, but not to segment 2.

Multiple Region Design

In an overlay structure with more than
one region, a segment has access to seg­
ments that are not in its path. Multiple­
region structure can also be used to
increase segment loading efficiency,
because processlng can continue in one
region while the next path to be executed
is being loaded into another region.

Figure 10 shows an example in which
several control sections are used by most
of the modules of the program. Control
sections C, D, and G, which can overlay
each other, depend on control section J as
well as on control sections E and H.
Placing the required control sections J, E,
and H in the root segment would make the
main storage requirement larger than neces­
sary since control section J can overlay
control sections E and H. If these control
sections are placed in a different overlay
region, they can be in main storage when
needed, regardless of which path is being
executed in the first region.

Figure 11 shows these control sections
in a two-region structure. As shown, seg­
ment 2 can use segment 5 or segment 8
depending on the logic of the program.
Those segments are also available to seg­
ment 4. Segment 8 is available for use by
segment 3. Thus, either path in region 2
can be in main storage regardless of the
path being executed in region 1. Segments
in region 2 can cause segments in region 1
to be loaded without being overlaid them­
selves.

A A A A A

B B B

Note: A through I are Control Sections

Figure 10. Modules Used by Several Paths

The relative origin of a second region
is determined by the length of the longest
path in the first region, which in Figure
11 is formed by segments 1 and 4. Segment
5, therefore, begins at 0 + 10,000 bytes.
The relative origin of a third region would
be determined by the length of the longest
path in the first region plus the longest
path in the second region.

The main storage required for the pro­
gram is determined by adding the lengths of
the longest path in each region. In Figure
11, the minimum main storage required for
regions 1 and 2 is 15,000 bytes.

OVERLAY CHARACTERISTICS

During execution of an overlay program,
the control program uses tables that were
generated by the linkage editor and incor­
porated into the text (Figure 12). Since
these tables are an integral part of the
program, their size must be considered when
planning the use of available main storage.

In addition to the storage area required
by the program and the tables, the size of

an area containing additional information
used by the control program should also be
considered. The formula is as follows:

Length in bytes = 4n+8

where n is the number of segments in the
overlay program.

REGION 1 Root
10 ,000 Bytes Segment (4000)

1
A

Segment Segment
2 (4000) 4 (6000)

Segment
C 3 (3000) D

G

~mN2--Seg~t --seg~t[--
5,000 Bytes 5 (3000) E 8 (4000)

H J
Segment I Segment F

6 (l000) 7 (2000)

Figure 11. Multiple Region Overlay Tree
Structure

I"''I-------_'''----lt. ~ ESD

~, ""'t--------I
', ____ ..2E~TA~

,
"r- - -

" ,

, ,

't- - - -

TXT

ENTAB

TXT

--

- --

r------------
" ENTAB

f- ---- - ------

"'~----------TX-T----------~
" RLD ,,--_-----I
Figure 12. Load Module Containing Overlay

Characteristics

Segment Table

There is only one segment table (SEGTAB)
in an overlay program. The segment table
is used to keep track of: (1) the relation­
ship of the segments in the program; (2)
which segments are in main storage or being
loaded; and (3) other necessary control
information.

Preparing for Linkage Editor Processing 17

The SEGTAB is the first control section
in the root segment. For that reason, its
size must be considered when the size of
the root segment is being determined. The
formula is as follows:

Length in bytes = 4n+24

where n is the number of segments in the
overlay program.

Entry Table

There can be an entry table (ENTAB) in
each segment of the program. The control
program uses the entry table to determine
the segment to be loaded when a branch
instruction or macro-instruction refers to
a segment not in the path.

An entry table may be produced as the
last control section of a segment. An
ENTAB entry is created for a symbol to
which control is to be passed. The symbol
is defined in a segment not in the path.
In the Assembler Language, the symbol must
be referred to by a 4-byte v-type address
constant. An ENTAB entry is not produced
for any symbol represented in an entry
table closer to the root segment (higher in
the path) or for a symbol defined in the
path. Branches to a symbol in the path do
not go through the control program since no
overlay is necessary. An ENTAB entry is
not created in the requesting segment for a
symbol defined in an exclusive segment.

The size of the entry table must be
taken into account when calculating the
length of any segment that contains ref­
erences as described above. The formula is
as follows:

Length in bytes = 12(n+l)

where n is the number of ENTAB entries. If
n=O, no ENTAB is created.

OVERLAY COMMUNICATION

The programmer must be aware of how his
program can communicate with the control
program during execution. There are four
ways in which he can have his program
request the use of the overlay facilities.

1. By a CALL macro-instruction, which
causes a segment to be loaded and
control to be passed to a symbol
defined in that segment.

2. By a branch instruction, which causes
a segment to be loaded and control to

18

be passed to a symbol defined in that
segment.

3. By a segment load (SEGLD) macro­
instruction, which requests loading of
a segment. Processing continues in
the requesting segment while the
requested segment is being loaded.

4. By a segment load and wait (SEGWT)
macro-instruction, which requests
loading of a segment. Processing con­
tinues in the requesting segment only
after the requested segment is in main
storage.

Communication Between Exclusive Segments

A reference between exclusive segments
(exclusive reference) is made when the
external symbol is:

1. Defined in the requested segment, and

2. Referred to by a 4-byte v-type address
constant in the requesting segment.

The exclusive re~erence is valid only if
the external symbol is referred to in an
ENTAB entry created by a V-type address
constant in a segment common to both seg­
ments.

If a common segment does not contain an
ENTAB entry that refers to the external
symbol, the exclusive reference is invalid.

When the program is processed by the
linkage editor, an invalid exclusive ref­
erence is not resolved in an ENTAB entry
but to the relative address of the symbol
referred to. When the program is executed,
the requested segment is not loaded and
control is passed to an erroneous location.
This error can be avoided by forcing an
ENTAB entry in the common segment, i.e.
placing in it a v-type address constant
referring to the external symbol.

If the XCAL option is specified, the
linkage editor does not consider a valid
exclusive call as an error. Although an
invalid exclusive call is always an error,
the LET option will permit the module to be
marked executable. (See nSpecial Process­
ing OFtions. n)

A valid exclusive reference is used to
pass control to an exclusive segment by
means of a branch instruction or a CALL
macro-instruction. The reference will
cause the requesting segment, and possibly
other segments in its path, to be logically
overlaid.

An exclusive reference should not be
used in a SEGLD or SEGWT macro-instruction.
since both imply that processing is to
continue in the requesting segment, an
exclusive reference will generally lead to
erroneous results when the program is exe­
cuted.

CALL Macro-Instruction

The CALL macro-instruction refers to an
external name in the segment to which
control is to be passed. The requested
segment and any segments in its path are
loaded if they are not part of the path
already in main storage. After the segment
is loaded, control is passed to the
requested segment at the location specified
by the external name.

INCLUSIVE CALLS: A CALL between inclusive
segments is always valid. A return can be
made by means of the RETURN macro­
instruction.

For a detailed discussion of the CALL
and RETURN macro-instruction formats and
operands refer to the publication IBM
System/36Q Operating System: Control
Program Services, C28-6541.

EXCLUSIVE CALL: A call between exclusive
segments is described in the section
"Communication Between Exclusive Segments."
Because the segment issuing an exclusive
call is overlaid, a return from the
requested segment can be made only by
another exclusive call or branch.

CAUTION: The external name specified in
the CALL macro-instruction must be referred
to by a 4-byte V-type address constant.
The high-order byte is reserved for use by
the control program, and must not be
altered during execution of the problem
program.

Unless the LET or XCAL option is speci­
fied, a module that contains an exclusive
call is marked "not executable," even
though the call is valid.

If a call between exclusive segments
does not conform to the necessary condi­
tions for exclusive references, no ENTAB
entry is created in the requesting segment.
If the LET option has been specified, an
invalid call or branch will cause unpredic­
table results when the program is executed.
Since no ENTAB entry exists, control is
passed directly to the relative address
specified, even though the requested seg­
ment may not be in main storage.

Branch Instruction (Assembler Language
Only)

Any of the branching conventions shown
in Figure 13 can be used in place of the
CALL macro-instruction to request loading
and branching to a segment. .

R15

Rn

is the register into which is loaded a
4-byte V-type address constant that is
an entry name or control section name
defined in the requested segment. It
must be the standard entry point reg­
ister, register 15.

is any other register (usually reg­
ister 14).

As a result of using any of the branch
instructions listed in Figure 13, the
requested segment and any segments in its
path are loaded if they are not part of the
path already in main storage. control is
then passed to the requested segment at the
location specified by the address constant
V(name) •

Note: In using the format (D2 (X2 ,B2 »,
either the base register or index register
can be loaded with the address constant.
The remaining two fields must be zero.

In using the format (D 2 (B 2 » the base
register must be loaded with the address
constant, and the displacement must be
zero.

Examples 5, 6, and 7 in Figure 13 are
unconditional branches. Branches on other
conditions are also allowed.

INCLUSIVE BRANCHES: A branch instruction
between inclusive segments is always valid.

A return may be made
address stored in Rn
instruction.

by means of the
by the BAL or BALR

EXCLUSIVE BRANCH: A branch to an exclusive
segment is described in the section
"Communication Between Exclusive Segments."
Because the segment issuing an exclusive
branch is overlaid, a return can be made
only by another exclusive branch.

CAUTION: The address constant placed in
register 15 must be a 4-byte V-type address
constant. The high-order byte is reserved
for use by the control program, and must
not be altered during execution of the
program.

Preparing for Linkage Editor Processing 19

r---T---------T-----------T---------------,
I I Name I Operation I Operand I

~---+---------+-----------+---------------~
I 1 I anyname I L I R15,=V(name) I
I I I BALR I Rn ,R15 I
~---+---------+-----------+---------------~
I 2 I anyname I L I R1S,ADCON I
I I I BALR I Rn ,R15 I
I I I I I
I I I I I
I I I I I
I I ADCON I DC I V(name) I

~---+---------+-----------+---------------~
I 3 I I L I R1S,=V(name) I
I I I BAL I Rn,O (0,R1S) I
~---+---------+-----------+---------------~
I 4 I anyname I L I R1S,=V(name) I
I I I BAL I Rn ,0(R1S) I
~---+---------+-----------+---------------~
I 5 I I L I R15,=V(name) I
I I I BCR I 15,R15 I

~---+---------+-----------+---------------~
I 6 I anyname I L I R15,=V(name) I
I I I Be I 15,0(0,R15) I

~---+---------+-----------+---------------~
I 7 I anyname I L I R15,=V(name) I
I I I BC I 15,0(R15) I l ___ ~ _________ ~ __________ _L _______________ J

Figure 13. Branching Instructions

Segment Load (SEGLD) Macro-Instruction

The SEGLD macro-instruction is used to
provide overlap between segment loading and
processing within the requesting segment.

As a result of using the SEGLD macro­
instructions listed in Figure 14, the
loading of the requested segment and any
segment in its path is initiated if they
are not part of the path already in main
storage. Processing resumes at the next
sequential instruction while the segment or
segments are being loaded.

In examples 1 and 2 in Figure 14,
control is passed to the requested segment
by the CALL macro-instruction or a branch
instruction.

In example 3, the SEGWT macro­
instruction ensures that the data in the
control section specified by the external
symbol is in main storage before processing
of that data begins.

CAUTIONS: An exclusive reference should
not be used in a SEGLD macro-instruction.

The external name specified in the SEGLD
macro-instruction must be referred to by a
four-byte V-byte address constant. The
high-order byte is reserved for use by the
control program, and must not be altered
during execution of the problem program.

20

r---T---------T-----------T---------------,
I I Name I Operation I Operand- I

~---+---------+-----------+---------------~
I 1 I anyname I SEGLD I external name I
I I I I I
I I I I I
I I I I I
I I I CALL I external name I
.---+---------+-----------+---------------~
I 2 I I SEGLD I external name I
I I I I I
I I I I I
I I I I I
I I I branch I I
~---+---------+-----------+---------------~
I 3 I I SEGLD I external name I
I I I I I
I I I I I
I I I I I
I I I SEGWT I external name I
I I I L I Rn,=A(name) I
~---~---------~-----------~--------------~
I external name is the name of a control I
I section or an entry name in the I
I requested segment. I
I I
I Rn is any register (usually register I
I 14). I l ___ J

Figure 14. Processing After a SEGLD Macro­
Instruction

Note: Some subsets of the control program
do not have the capability of processing
the SEGLD macro-instruction. In those
subsets, the macro-instruction is treated
as a NOP (no operation) and the segment is
loaded when a SEGWT or branch is executed.
If the rules of overlay are followed,
correct execution occurs.

Segment Wait (SEGWT) Macro-Instruction

The SEGWT macro-instruction is used to
stop processing in the requesting segment
until the requested segment is in main
storage.

As a result, the SEGWT macro-instruction
in Figure 15 ensures that no further proc­
essing will take place until the requested
segment and all segments in its path are
loaded if not already in main storage.
Control is returned to the next sequential
instruction in the requesting segment.

In example 1, the SEGLD macro-
instruction causes overlap between
processing and segment loading.

In example 2, no overlap is provided.
The SEGWT macro-instruction initiates load­
ing. Processing is stopped until the
requested segment is in main storage.

r---T---------T-----------T---------------,
I I Name I Operation I Operand I
~---+---------+-----------+---------------~

1 anyname SEGLD external name

SEGWT
L

branch

external name
Rn,ADCON

AD CON DC A(name)
~---+---------+-----------+---------------~
I 2 I I SEGWT I external name I
I I I L I Rn,=A(name) I
~---~---------~----------~---------------~
I external name is the name of a control I
I section or an entry name in the I
I requested segment. I
I I
I Rn is any register (usually register I
I 14). I L ___ J

Figure 15. Processing After a SEGWT Macro­
Instruction

Note: If the contents of a main storage
location in the requested segment are to be
processed, the entry name of the location
must be referred to by an A-type address
constant.

CAUTIONS: An exclusive reference must not
be used in a SEGWT macro-instruction.

The external name specified in the SEGWT
macro-instruction must be referred to by- a
four-byte v-type address constant. The
high-order byte is reserved for use by the
control program, and must not be altered
during execution of the problem program.

EDITING OBJECT AND LOAD MODULES

The linkage editor performs editing
functions either automatically, or as
directed by linkage editor control state­
ments. It also reserves storage for common
control sections -and static external stor­
age areas.

MODULE EDITING

The editing functions of the linkage
editor facilitate program modification by

making changes on a control section basis.
Thus, changes to a program do not require
the recompilation of the entire source
program. Changes can be made to external
symbols within a module. External symbols
and control sections can be deleted or
replaced; control sections can be reposi­
tioned during the structuring of an overlay
program.

The editing functions performed on
object or load modules can be requested by
the programmer by means of the CHANGE and
REPLACE statements. Replacement of control
sections can also be accomplished automat­
ically.

When a load module in an overlay struc­
ture is being processed, the overlay char­
acteristics of the module are automatically
removed. The programmer can respecify the
original overlay structure or place the
program in another structure by means of
the OVERLAY and INSERT control statements.

If the module is not to be placed ip an
overlay structure, performance of the load
module can be improved by removing any
SEGLD or SEGWT macro-instructions. If the
module is to be placed in a new overlay
structure, care should be taken to ensure
that any new location of a macro­
instruction will not cause an exclusive
reference.

Changes to a module can be accomplished
by compiling the affected control sections.
The modified control sections can then be
made a part of the module as specified in
the section "Automatic Replacement of
Control Sections."

RESERVING STORAGE

In FORTRAN, the Assembler Language, and
PL/I the programmer can create control
sections that reserve main storage areas
containing no data or instructions.
Referred to as "common" or "static exter­
nal," these control sections are produced
in the object modules by the language
translators. These common areas are used
either as communication regions for differ­
ent parts of a program or to reserve main
storage areas for control sections that may
be provided by other modules. These common
areas are either named or blank (Unnamed).

During processing, the linkage editor
collects common areas. Thus, if more than
one blank common area is found in the
input, the largest blank common area is
contained in the output module. If two or
mo£e common areas have the same name, the

Preparing for Linkage Editor Processing 21

largest common area having that name is
used to form the output module. All ref­
erences in the output module to a blank
common area refer to the one area retained.
All references to a named common area refer
to the largest of those identically named,
which was the only one retained.

If the linkage editor finds a control
section with the same name as a previously
defined common area (or the reverse), the
control section and common area are col­
lected. Thus, the data and instructions in
the control section are placed in the main
storage locations reserved by the named
cornmon area. If the control section is
smaller than the named common area, the
rest of the area remains reserved in the
output module. If the control section is
larger than the named common area, it is
collected and regarded as the largest of
the common areas processed. When a control
section is placed in a named common area,
that area logically becomes a named control
section. All subsequent control sections
with the same name are deleted.

When modules containing common areas are
to be placed in an overlay structure, the
common control sections are collected.
However, the linkage editor npromotesn the
common area automatically; that is, places
it in the common segment of the paths
containing references to it so that it is
in main storage when needed. The position
of the promoted common area in relation to
other control sections within the common
segment is generally unpredictable.

In Figure 16, the design of the overlay
structure to be processed indicates that
se~aents 3 and 4 contain blank common
areas. Segments 6, 7, and 8 contain common
areas with the same name.

Segment
2

C

....
Seg ment

3
D

E

-
Common

-

Segment

4

Root
Segment

I

A
I-

B

Common

-
F
-

Segment
5

Segment G Segme nt

6 8
Segment

H 7 K J Common

- - l-

I J Common M
~ I-
J L
Common ~ommon

Figure 16. Common Areas Before Processing

During processing by the linkage editor,
the blank COM~on areas are collected and

22

promoted to segment 2 (first common segment
in the paths), as shown in Figure 17. The
identically named common areas are collect­
ed and promoted to segment 5.

iegment
3

Segment
2

C

D

Common Segment
4

Root
Segment

I

A

Segment

6

H

Segment

5

J Common

G Segment
8

Segment
7 K M

Figure 11. Automatic Promotion of Common
Areas During Processing

ERROR DIAGNOSTICS AND PROCESSING OPTIONS

Error diagnostic options providing a
number of aids are available to assist the
programmer in testing the problem program.

Special processing options are available
to inform the linkage editor that it is to
give special consideration to error condi­
tions or to negate the use of the automatic
library call mechanism.

DIAGNOSTIC OUTPUT OPTIONS

The programmer can request that the
linkage editor produce a list of all pro­
cessed control statements and a module map
or a cross-reference table to help him in
testing his prog-ram. Additional informa­
tion on the disposition of the output
module is automatically provided.

LIST Option

When the LIST option is specified, all
control statement.s processed by the linkage
editor are listed in card-image format on
the diagnostic output data set.

MAP and Cross-Reference Table (XREF)
Options

When the MAP option is specified, the
linkage editor produces a map of the output
module. If the output module is not in an
overlay structure, the module map lists the
control sections in ascendinq order accord­
ing to their assigned origins. Under each
control section is a list of all entry
names defined in the control section.

If the output module is in an overlay
structure, the control sections are grouped
by segment. Within each segment; the con­
trol sections are listed in ascending order
according to their assigned origins. The
number of the segment in which they appear
is also listed.

When the XREF option is specified, the
linkage editor produces a cross-reference
table of the output module. The cross­
reference table includes a module map and a
list of all address constants that refer to
other control sections.

since the cross-reference table contains
a module map, both XREF and MAP cannot be
specified for one linkage editor run.

SPECIAL PROCESSING OPTIONS

The special processing options allow the
programmer to indicate that the linkage
editor is to give special consideration to
certain error conditions or negate the
automatic library call mechanism.

LET and Exclusive Call (XCAL) Options

When the LET option is specified, the
linkage editor marks the output module as
executable even though a severity 2 error
condition was found during processing. See
the section "Diagnostic Messages" for a
definition of error types and severity
codes.

When the XCAL option is specified, the
linkage editor marks the output module as
executable even though valid exclusive
references between segments have been made.
However, other errors may cause the module
to be marked "not executable."

LET includes XCAL, so only one of the
options needs to be specified to permit
exclusive branches.

No Automatic Library Call (NCAL) Option

When the NCAL option is specified, the
linkage editor automatic library call
mechanism does not call library members to
resolve external references within the
linkage editor input. The output module is
marked executable even though unresolved
external references have been recognized.

The LIBRARY statement can be used to
negate the automatic library call for
selected external references when the NCAL
option is not specified.

Preparing for Linkage Editor Processing 23

SPECIFYING LINKAGE EDITOR PROCESSING

A "cataloged procedure" can be defined
by the programmer after the system is
generated. It will provide all the infor­
mation necessary for him to load and exe­
cute his program. However, if a cataloged
procedure 1S not provided, or if the pro­
grammer wishes to override any part of a
cataloged procedure, he must provide job
control statements that describe the jobs
to be performed by the control program.
Refer to the publication IBM System/360
Operating System: System Programmer's
Guide, Form C28-6550 for details.

Linkage editor control statements can be
used by the programmer to specify addition­
al input sources, editing functions to be
performed, or construction of an overlay
program'.

LINKING INPUT MODULES

An execution of the linkage editor
requires that the appropriate job control
statements and modules to be linked be
placed in the primary input data set
(SYSLIN).

JOB EXECUTION

Job control statements describe to the
control program jobs to be performed by the
system. A job can consist of the execution
of one program or of a series of job steps
(execution of a number of programs). The
job and job steps are described in job
control statements placed in the order in
which they are to be performed.

Every job is indicated by a JOB state­
ment preceding the definitions of the steps
within the job. The execution of a job
step is described by an execute (EXEC)
statement and one or more data definition
(DD) statements. The EXEC statement indi­
cates what program is to be executed. The
DD statements describe the data sources and
destinations of the program. The sequence
of statements for one job step is:

ddname
ddname
ddname

24

JOB
EXEC
DD
DD
DD
etc.

program name
dsname
dsname
dsname

The sequence of job control statements
for a three-step job may be:

JOB
EXEC compiler program name

ddname DD dsname
ddname DD dsname
ddname DD dsname

EXEC linkage editor program name
SYSLIN DD dsname primary input
SYSLIB DD dsname call library
SYSUT1 DD dsname buffer data set
SYSLMOD DD dsname output library
SYSPRINT DD dsname diagnostic output
ddname DD dsname additional library
ddname DD dsname additional library

EXEC problem program
ddname DD dsname
ddname DD dsname

Member Name

The name of the output module must be
unique in the output library. It can be
specified in the SYSLMOD DD statement. If
the member is to replace an identically
named member in the library, the subparam­
eter OLD can be specified in the disposi­
tion field (DISP) of the SYSLMOD DD state­
ment.

The subparameters NEW or MOD indicate
that no member of the same name exists in
the library. If either NEW or MOD is
specified, the member is added to the
library. These subparameters need not be
specified.

If the member name field of the SYSLMOD
DD statement is omitted, the member name
for the output module can be specified in a
NAME statement. If the member is to
replace an identically named member in the
library, the replace function can be speci­
fied in the NAME statement.

Linkage Editor Completion Code

The linkage editor passes a completion
code to the control program upon completion
of the job step. The control program
compares the completion code with the
values specified in the COND field of (1)
the JOB control statement that was speci­
fied for this job step, and (2) the EXEC

statement specified in any succeeding job
step.. The results of the comparisons are
used to determine subsequent action.

The completion codes, in decimal, are as
follows:

00 Normal conclusion.

04 Warning messages have been listed, exe­
cution should be successful.

08 Error messages have been listed, execu­
tion may fail.

12 Severe errors have occurred, execution
is impossible.

16 Terminal errors have occurred, the
processor has terminated.

Refer to the publication IBM System/360
Operating System: Job Control Language for
details on the COND field of the JOB and
EXEC statements.

CATALOGED PROCEDURE

To facilitate the operation of the sys­
tem, the control program enables the pro­
grammer to store job control statements
under a unique name so that they can be
recalled at any time to define a job.
Thus, the series of job control statements
shown could be retained by the control
program. To request this procedure, the
programmer places in the primary input data
set an EXEC statement indicating the name
of the series desired.

The formats and parameters of job con­
trol statements and the method of setting
up or overriding a cataloged procedure in
the system is presented in the publication
IBM System/360 Operating System: System
Programmer' s Guide,.

MODULE ATTRIBUTES

Unless specific module attributes are
indicated by the programmer, the output
module will neither be tested nor will it
be in an overlay structure. It will be in
block format, not reenterable" and not
serially reusable. To specify particular
attributes, the programmer must place the
desired attribute symbols in the parameter
field of the EXEC statement that defines
linkage editor processing.

Although there are eight module attri­
butes, several are mutually exclusive. The

attributes, and those with which they are
incompatible, are described below.

Note: The "not editable" and "only
loadable" attributes are intended primarily
for use by the control program. Use of
these attributes by the problem programmer
can diminish the usability of the module.

Scatter Load (SCTR) and Overlay (OVLY)
Attributes

When the SCTR attribute is specified,
the linkage editor produces a load module
in a format suitable for scatter or block
loading,.

When the OVLY attribute is specified,
the load module is in an overlay structure
that is suitable only for block loading,.
If OVLY is specified and no OVERLAY state­
ments are found in the linkage editor
input, the overlay attribute is negated.
The condition is considered a recoverable
error; i. e,., if the LET option is speci­
fied, the module will be marked executable.

Only one of these attributes can be
specified for one linkage editor job. If
neither is specified, the load module will
be in block format.

Note: Where the scatter load feature is
not available in the control program, pro­
grams with the SCTR attribute are block
loaded.

Reenterable (RENT) and Serially Reusable
(REUS) Attributes

When the RENT attribute is specified,
the linkage editor marks the output module
as reenterable. However, if any load
modules that are not reenterable become a
part of the input to the linkage editor,
the RENT attribute is negated.

When the REUS attribute is specified,
the linkage editor marks the output module
as serially reusable. If any load modules
that are neither reenterable nor serially
reusable become part of the input to the
linkage edi tor" the REUS attribute is
negated,.

Only one of these two attributes can be
specified for a linkage editor job. If
OVLY or TEST is specified, neither RENT nor
REUS can be specified. If neither RENT nor
REUS is specified, the output module will
be not reenterable and not serially re­
usable.

Specifying Linkage Editor Processing 25

Not Editable (NE) Attribute

When the NE attribute is specified, the
resulting load module has no external sym­
bol dictionary. The load module cannot be
reprocessed by the linkage editor. The
load module produced requires less direct­
access storage.

If a map or
requested the
negated.

cross-reference table is
nnot editablen attribute is

Only Loadable (OL) Attribute

When the OL attribute is specified, the
module can be brought into main storage
only by the LOAD macro-instruction. The
nonly loadablen module must be entered by
means of a branch instruction or a CALL
macro-instruction. If an attempt is made
to enter the module via a LINK, XCTL, or
ATTACH macro-instruction, the program
making the attempt is terminated abnormally
by the control program.

Note: Some subsets of the control program
use a smaller control table when the load
module is loaded for execution. This redu­
ces the overall main storage requirements
of the module.

Downward Compatible (DC) Attribute

The DC attribute ensures that the load
module processed by the level F linkage
editor can be reprocessed by either the
level E or the level F linkage editor. If
the E level linkage editor is requested to
process a load module that does not have
this attribute, the request will be treated
as an error.

The E level linkage editor automatically
assigns the DC attribute to all load
modules it produces.

Note: The level F linkage editor program
is designed to process in main storage
environments where the space available to
the linkage editor is 44K or more. The
level E linkage editor is designed to
process programs in all environments.

TEST Attribute (Assembler Language Only)

When the
the linkage

26

TEST attribute is specified,
editor accepts the testing

symbol tables for the test translator with­
in the input modules. The tables are
placed as part of the output module. The
module is marked as being nunder test. n

When TEST is not specified, symbol
tables are ignored and not placed in the
output module.

When TEST is specified, neither RENT nor
REUS can be specified.

Incompatible Attributes

When mutually exclusive attributes are
specified for a load module, the linkage
editor ignores the less significant attri­
butes. Figure 18 illustrates the signifi­
cance of the incompatible attributes.

r---,
I Attributes Specified I
~-------------T---------------------------~
I Accepted I Ignored (X) I
~-------------+------T------T-----T-------~
I I SCTR I REUS I RENT I NE I
I OVL Y I X I X I X I I
I TEST I I X I X I X I
I RENT I I X I I I L _____________ ~ ______ ~ ______ ~ _____ ~ _______ J

Figure 18. Incompatible Module Attributes

SPECIFYING ADDITIONAL PROCESSING

The programmer can specify linkage edi­
tor functions, in additi'on to those it
performs automatically, by means of linkage
editor control statements. These functions
permit specification of:

• Multiple load modules processed in a
single job step.

• The load module entry point.

• Aliases for the output module name.

• Additional input sources.

• An overlay program.

• Editing functions to be performed on
input modules.

• Maintenance information
su~plied load modules.

for IBM-

The following conventions are used in
this publication to illustrate the format
and coding of control statements:

• Upper-case letters (coded value),
numbers, and punctuation marks must be
coded by the programmer exactly as
shown. Exceptions to this convention
are brackets, [] , and braces, {} •
These are never coded.

• Lower-case letters and words represent
variables for which the programmer must
substitute specific information or
specific values.

• Items or groups of items within brack­
ets are optional. They may be omitted
at the programmer's discretion.

• Braces group related items, such as
several alternative items. One item
within the braces must be selected.

• Stacked items, enclosed in either
brackets or braces, represent alterna­
tive items. No more than one of the
stacked items should be coded by the
programmer.

LINKAGE EDITOR CONTROL STATEMENTS

General format and placement information
for the linkage editor control statements
is contained in the following paragraphs.
For examples of the use of the control
statements, refer to Appendix A; for a
summary of their functions and formats,
refer to Appendix B.

General Statement Format

All linkage editor control statements
have the following format:

r---------T-------------------------------,
I Operation I Operand I
~---------+-------------------------------~
I VERB la,b(c),(d),(VALUE) I L _________ i _______________________________ J

As used in this publication:

a is an unsubscripted symbol.
b is a subscripted symbol.
c is a subscript symbol.
d is a parenthesized symbol.
(VALUE) is a coded value.
a, b(c), (d), and (VALUE) are operands.

The operation field must contain the
name of the operation to be performed. The
operand field must contain one or more
symbols, subscripted symbols, or parenthe­
sized symbols. Operands in the operand
field must be separated by commas. Two or

more symbols within parentheses must be
separated by corrmas. A coded value must be
written exactly as shown.

If the operand field is blank, the
linkage editor will not process the control
statement.

No symbols are allowed preceding the
operation field, which must begin to the
right of column 1. The operation field
must be separated from the operand field by
at least one blank position.

The control statement can be continued
on as many cards as necessary by placing a
nonblank character in column 72 of the
card. Continuation must begin in column 16
of the next card. A symbol cannot be
split; that is, it cannot begin on one card
and be continued on the next.

General Placement Information

Linkage editor control statements are
placed before, between, or after modules.
They can be grouped, but they cannot be
placed within a module. However, specific
placement restrictions may be imposed by
the nature of the functions being requested
by the control statement. Any placement
restrictions are noted in the discussions
of linkage editor functions.

MULTIPLE LOAD MODULE PROCESSING

The linkage editor can produce more than
one load module in a single job step. A
NA~£ statement in the input stream is used
as a delimiter for input to a load module.
If additional input modules follow the NAME
statement in the input stream, they are
used in the formation of the next load
module.

The module name field of the SYSLMOD DD
statement should be omitted when a NAME
statement is used to specify the name of
the first (or only) load module. However,
if the SYSLMOD statement does specify a
member name, the name must be identical to
that specified in the first NAME statement
or an ALIAS statement for the first output
module produced. In either case, the NAME
statement is regarded as the last item to
be processed for the preceding load module.

When processing multiple load modules in
a single job step, the options and attri­
butes specified in the EXEC statement for
that job step apply to each load module
created.

Specifying Linkage Editor Processing 27

If the linkage editor terminates during
processing of any of the output modules,
neither that module nor any of the modules
yet to be processed in the job step is
processed or placed in the library.

NAME Statement

The NAME statement specifies the name of
the load module created from the preceding
input modules.

It can also indicate that the load
module replaces an identically named module
in the library.

r---------T-------------------------------,
I Operation I Operand I
~---------+---------~---------------------~
I NAME I membername [(R)] I L _________ ~ _______________________________ J

member name
is the name to be assigned to the load
module that is created from the
preceding input.

(R)

indicates that this load module re­
places an identically named module in
the library. If the module is not a
replacement, the parenthesized coded
value, (R), should be omitted.

PLACEMENT: The NAME statement is placed at
the end of the last input module that is
made a part of the output module. Any
ALIAS statement used must precede the NAME
statement.

CAUTION: A NAME statement found in a data
set other than the primary input data set
is invalid. It is ignored by the linkage
editor.

THE LOAD MODULE ENTRY POINT

The linkage editor selects the entry
point of a load module as follows:

28

• The programmer codes a language trans­
lator END statement as the last state­
ment in the input to the assembler or
compiler program. This END statement
mayor may not specify an entry point
in its operand.

• From each input module, the assembler
or compiler program produces one object

module. At
module, the
statement.
cates an
programmer's
entry point.

the end of this object
program places an END

This END statement indi­
entry point if the
END statement specified an

• From one or more object modules, the
linkage editor produces a load module.
Besides the one or more assembler- or
compiler-produced END statements in the
object modules, the input to the link­
age editor can contain a linkage editor
ENTRY statement. (For assembler­
produced modules, the ENTRY statement
can. specify only the name of a named
control section or an entry point
specified by an assembler ENTRY state­
ment.) From this input, the linkage
editor selects the entry point for the
load module as follows:

1. From the first linkage editor
ENTRY statement in the input.

2. If no linkage editor ENTRY state­
ment is in the input, from the
first assembler- or compiler­
produced END statement that
specifies an entry point.

3. If no linkage editor ENTRY state­
ment or no assembler- or compiler­
produced END statement specifies
an entry point, the first byte of
the first control section of the
load module is used as the entry
point.

When a load module is reprocessed by the
linkage editor, its assembler- or compiler­
produced END statement is not present.
Therefore, if the first byte of the first
control section of the load module is not a
suitable entry point, the module's entry
point must be specified in one of two ways:

• Through a linkage editor ENTRY
statement.

• Through the language translator END
statement of another module, which is
being processed for the first time.
This object module must be the first
module to be processed by the linkage
editor.

For a load module that was originally
written in assembler language, the entry
point so specified can be the same as the
one originally indicated by the module'S
END statement only if the operand of the
assembler END statement was declared as the
name of a named control sectibn or a3 an
entry point specified by an assembler ENTRY
statement. When the entry point is being
specified through the END statement of
another module., it must also be dec.i.ared in

an assembler EXTRN statement in the assem­
bly that produced the module.

In general, an entry point should be
specified by a language translator END
statement or a linkage editor ENTRY state­
ment, because it is not always possible to
predict which control section will be first
in the output module.

In an overlay program, the
instruction to be executed must be in
root segment.

ENTRY statement

first
the

The ENTRY statement specifies the first
instruction to be executed.

r---------T-------------------------------,
IOperationlOperand I
~---------+-------------------------------~
I ENTRY lexternalname I L _________ ~ _______________________________ J

external name
is defined as a control section name
or an entry name in a linkage editor
input module. It must be the name of
an instruction, not of data. In an
overlay program, the external name
must be defined as the name of an
instruction in the root segment.

PLACEMENT: An ENTRY statement can be
object placed before, between, or after

modules or other control statements.

EXAMPLE: ENTRY GO

GO
is defined as the external name of the
first instruction to be executed when
the module is loaded by the control
program.

As a result, the address of the instruc­
tion indicated by the symbolic name GO is
specified by the linkage editor as the
starting point of the program when it is
called by its module name for execution.
The control program will pass control to
the instruction specified.

Specifying Linkage Editor Processing 28. 1

~OAD MODULE ALIAS NAMES

An output module can be referred to by
Ip to five aliases specified by the ALIAS
>tatement. The aliases exist in addition
:0 the name of the output module specified
Ln the SYSLMOD data definition statement or
:he NAME statement. A module referred to
)y an alias will begin execution at the
~xternal name specified by the alias. If
:he name specified by the ALIAS statement
loes not exist within the module, the
lddress of the main entry point will be
lssigned to the alias.

~LIAS Statement

The ALIAS statement specifies alterna­
tive names for the output library member,
lnd can also specify alternative points of
~ntry for execution.

r---------T-------------------------------,
I Operation I Operand I
~---------+-------------------------------~
I ALIAS ~externalname} I
I n symbol I L _________ ~ _______________________________ J

~xternal name
is defined as a control section name
or entry name in the output module.
Up to five alias names can be speci­
fied on one or separate statements.
The names exist in addition to the
name of the module specified in the
data definition statement for the
library member. The alias, which is
an external name in the output module,
allows the load module to be called by
other modules that refer to that name'
for execution or for linkage editor
processing. When the module is called
for execution, execution will begin at
the external name referred to.

Any additional external name specified
in the ALIAS statement must be preced­
ed by a comma.

In an overla~ program, the external
name specified 'by the ALIAS statement
must be in the root segment.

symbol
specifies a name that is not an exter­
nal name within the output module.
The entry point used when the module
is called for execution is that of the
main entry point.

Any additional symbol specified in the
ALIAS statement must be preceded by a
comma.

PLACEMENT: An ALIAS statement can be
placed before, between, or after object
modules or other control statements. It
must precede a NAME statement used to
specify the member name.

ADDITIONAL DATA SOURCES

The linkage editor can accept input from
sources other than the primary input
source. Additional input sources can be
specified by means of the INCLUDE statement
or automatic library call. The automatic
library call mechanism can be directed to
data sets other than that specified in the
SYSLIB DD statement by means of the LIBRARY
statement, used to designate specific
external references to be resolved. All
ddnames specified in INCLUDE or LIBRARY
statements must be defined in DD state­
ments.

The record format (RECFM), block size
(BLKSIZE), and, if required, tape recording
technique (TRTCH) and density (DEN) fields
of the data control block must be made
available to the linkage editor. If this
information does not exist in the data set
control block or tape header label, or if
no labels are used, the programmer must
specify it on the DD statement defining the
data set.

The INCLUDE statement causes the linkage
editor to process the module or modules
indicated. The next primary input item is
then processed. If the included data set
also uses an INCLUDE statement, that state­
ment is processed as the last item in the
included data set (Figure 19).

Primary Input
Data Set

Sequential
Data Set

Library
Member

~ --- ---1 ~------ --- ---
e d --- ---I~CLUDE ~ .nd ---

~~~ ~ ~~~}LU:: p,oo.".d ~~~ --- t --- ---
end ~end end 

Figure 19. Processing of Additional Data 
Sources 

The automatic library call process is 
used to resolve external references that 
were not resolved during primary input 

Specifying Linkage Editor Processing 29 



processing. An automatic library call can 
resolve an external reference when the 
following conditions exist. The external 
reference must be: 

• A member name or an alias of 
in a partitioned data set, and 

• Defined as an external name 
external symbol dictionary 
module with that name. 

a module 

in the 
of the 

If an external reference is resolved by 
automatic library call, the entire member 
is processed as input to the linkage edi­
tor. 

Unresolved external references found in 
modules from additional data sources are 
processed by the automatic library call 
mechanism. 

Note: Modules contained in data sets 
called automatically because of unresolved 
external references in segments of an over­
lay program are placed in the root segment, 
not in the segment that called them. To 
place the control sections of a module in a 
different overlay segment, the programmer 
must use the INSERT statement. 

The LIBRARY statement is not needed if 
all references can be resolved from the 
call library defined in the SYSLIB DD 
statement. 

INCLUDE Statement 

The INCLUDE statement indicates addi­
tional input sources. 

r---------T-------------------------------, 
I Operation I Operand I 
~---------+-------------------------------i 
I INCLUDE Iddname[(membername)] I l _________ ~ _______________________________ J 

ddname 
is the name of a DD statement that 
defines a library containing either 
object modules and control statements 
or load modules; or a sequential data 
set containing object modules and con­
trol statements. 

Any additional ddname must be preceded 
by a comma. 

member name 
is the name of a member of the 
library. 

Any additional member 
preceded by a comma. 

name must be 

The operand field must contain one or 
more ddnames separated by commas. If the 

30 

ddname specifies a library, it must be 
followed by one or more subscript symbols 
separated by corr~as. Each subscript symbol 
must be either a member name or an alias 
name in the specified library. If the 
ddname specifies a sequential data set, it 
must not be subscripted. 

PLACEMENT: An INCLUDE statement can be 
placed before, between, or after object 
modules or other control statements. 

LIBRARY Statement 

The LIBRARY statement can be used to 
specify: 

• Additional call libraries. 

• Restricted no-call: External references 
not to be resolved by the automatic 
library call mechanism during the cur­
rent linkage editor job step. 

• Never-call: External references not to 
be resolved by the automatic library 
call mechanism during any linkage edi­
tor job step. 

r---------T-------------------------------, 
I Operation I Operand I 
~---------+-------------------------------i 
I LIBRARY Iddname(membername) I 
I I [*](externalreference) I l _________ ~ _______________________________ J 

ddname 
is the name of a DD statement that 
defines a library. 

Any additional ddname must be preceded 
by a comma. 

member name 

* 

is the name of a member of the 
library. 

Any additional member name within the 
subscript must be preceded by a comma. 

is a coded value used to indicate the 
never-call function. 

external reference 
is an external reference that may be 
unresolved after primary input pro­
cessing. The external reference is 
not to be resolved. 

Any additional external 
within the subscript must be 
by a comma. 

reference 
preceded 

If additional libraries are to be used 
to resolve external references by automatic 



library call" the operand field must con­
tain one or more subscripted symbols sepa­
rated by commas. Each subscript may con­
tain one or more symbols separated by 
commas. Each symbol must be a member name 
or an alias name in the data set specified 
by the ddname. 

If the restricted no-call function is 
being specified, the operand field must 
contain only parenthesized symbols sepa­
rated by commas. 

If the never-call function is being 
specified, the subscript expression must be 
preceded by an asterisk. 

Combinations of LIBRARY statement func­
tions can be written in the same LIBRARY 
statement. 

PLACEMENT: A LIBRARY statement 
placed before, between, or after 
modules or other control statements .• 

can be 
object 

CAUTION: If the unresolved external symbol 
is not a member name in the library speci­
fied., the external reference will remain 
unresolved unless defined in another input 
module .• 

If the unresolved external symbol is a 
member name or an alias in the library 
specified., but is not an external name in 
that member, the member is processed but 
the external reference will remain unre­
solved unless defined in another input 
module. 

If the NCAL option is specified, the 
LIBRARY statement cannot be used to specify 
additional call libraries. 

Including Library Modules 

Object modules and control statements, 
or load modules, contained in libraries can 
be included in the output module by means 
of the INCLUDE statement or the automatic 
library call process. If the INCLUDE 
statement is used" they are included 
immediately; if the automatic library call 
process is used, they are included by the 
automatic library call mechanism at the end 
of primary input processing. The LIBRARY 
statement can be used to direct automatic 
library call to a library other than that 
specified in the SYSLIB DD statement for 
resolution of specific external references. 

CAUTION: The downward compatible option 
must be specified when load modules pro­
duced by the level F linkage editor are to 
be processed later by the level E linkage 
editor. If load modules produced by the 

level F linkage editor (88K version) and 
placed in IBM 2301 Drum Storage are to be 
processed later by any other linkage edi­
tor, the downward compatible option must 
also be specified. 

EXAMPLE: INCLUDE LIBA(ADD,SUB,MULT) 

LIBA 
is the ddname of a DD statement that 
defines a load module library contain­
ing load modules named ADD, SUB, and 
MULT. 

As a result, the three load modules are 
included in the processing of the load 
module that is the output of the linkage 
editor .• 

EXAMPLE: LIBRARY LIBA(ROUT1,ROUT2) 

LIBA 
is the ddname of a DD statement that 
defines a library containing the 
object modules named ROUT1 and ROUT2. 

As a result, any unresolved external 
reference to either ROUT1 or ROUT2 causes 
the automatic library call mechanism to 
search for the member by that name in the 
indicated library. If there is no unre­
solved external reference to the name spec­
ified, the member is not called at the end 
of primary input processing. 

Including Sequential Data Sets 

Sequential data sets containing object 
modules and control statements can be spec­
ified by the INCLUDE statement for inclu­
sion immediately. The record format 
(RECFM), block size (BLKSIZE), and., if 
required, tape recording technique (TRTCH) 
fields of the data control block must be 
made available to the linkage editor. If 
this information does not exist in the data 
set control block or tape header label, or 
if no labels are used., the programmer must 
specify it on the DD statement defining the 
sequential data set. 

EXAMPLE: INCLUDE MOD1,MOD2,MOD3 

MOD1,MOD2,MOD3 
are the ddnames of DD statements that 
define sequential data sets containing 
object modules that are to be included 
in the linkage editor input .• 

As a result, all object modules and 
control statements in the specified data 
sets are processed by the linkage editor. 
They will become part of the load module 
placed in the output module library. 

Specifying Linkage Editor Processing 31 





The Restricted No-Call Function 

The programmer can 
statement to specify 
erences in the output 
there is to be no search 
linkage editor job step. 

use the LIBRARY 
those external ref­

module for which 
during the current 

31. 1 



EXAMPLE: LIBRARY (SINE, TAN, COTAN) 

SINE,TAN,COTAN 
are external references in the output 
module. 

As a result, if SINE, TAN, or COTAN is 
unresolved after primary input processing, 
no automatic library call is made since the 
ddname is omitted. 

The Never-Call Function 

The never-call function specifies those 
external references that are not to be 
resolved by automatic library call during 
this or any subsequent linkage editor run. 
The never-call function is specified by an 
asterisk in the ddname position of the 
LIBRARY statement. 

The never-call function is negated when 
a module containing the external name 
referred to is part of the input to the 
linkage editor. 

Example: LIBRARY *<SINE) 

* specifies the never-call function. 

SINE 
is an external reference in the output 
module. 

As a result, if SINE is unresolved after 
input processing, no automatic library call 
is made. During later linkage editor runs, 
SINE will not be resolved by automatic 
library call. 

STRUCTURING AN OVERLAY MODULE 

Once the programmer has designed an 
overlay tree structure for a module, he 
must place the module in that structure by 
indicating to the linkage editor the rela­
tive positions of the segments and the 
regions in the tree structure, and the 
control sections within the segments. 
Positioning is accomplished as follows: 

32 

• Segments. Segments are pOSitioned by 
OVERLAY statements. Since segments are 
not named, the programmer must identify 
a segment by giving its origin a sym­
bolic name and specifying that name in 
the OVERLAY statement. Each OVERLAY 
statement signifies the start of a new 
segment. The first time a symbolic 
name is used, a node point is created 
at the end of the previous segment. 

That node point is logically assigned a 
position one greater than the last item 
in the preceding segment. Subsequent 
use of the same name indicates that the 
next segment is to have its origin at 
that node point. 

• Regions. Regions are positioned by 
OVERLAY statements. The programmer 
indicates the origin of a region by 
specifying the origin of the first 
segment of the region and the coded 
value (REGION). 

• Control sections. Control sections are 
positioned in the segment specified by 
the OVERLAY statement that they follow 
in the input sequence. Control sec­
tions that precede the first OVERLAY 
statement or that are called automat­
ically are positioned in the root seg­
ment. They can be repositioned by 
means of the INSERT statement. Common 
control sections are automatically 
repositioned as described in nReserving 
Storage." 

The input sequence of control statements 
and modules should reflect the order of the 
segments in the overlay tree structure from 
top to bottom, left to right, and region by 
region. The same symbolic name cannot be 
used to begin a new segment at the same 
node point once processing at a point 
higher in the tree structure has resumed. 

OVERLAY Statement 

The OVERLAY statement indicates either: 

1. The beginning of an overlay segment, 
or 

2. The beginning of an overlay region. 

r---------T-------------------------------, 
\Operation\Operand I 
~---------+-------------------------------~ 
IOVERLAY \symbol[(REGION)] \ L _________ ~ _______________________________ J 

symbol 
is the symbolic origin of a segment. 
The symbol is not related to external 
symbols in a module • 

(REGION) 
specifies the origin of a new region. 

The operand field contains only the 
symbol when the origin of a segment is 
being specified. The operand must contain 
the symbol followed by the coded value 
(REGION) when the origin of a new region is 
being specified. 



PLACEMENT: The OVERLAY statement must pre­
cede the first module of the next segment, 
the INCLUDE statement specifying the first 
module of the segment, or the INSERT state­
ment specifying the control sections to be 
positioned in that segment. 

Note: An efficient method of specifying an 
overlay structure is to group all of the 
OVERLAY statements with the appropriate 
INCLUDE and INSERT statements and then 
place the complete package either before or 
after the modules that form the program. 

CAUTION: No OVERLAY statement should pre­
cede the root segment. 

Segment origin 

The symbolic origin of every segment, 
other than the root segment, must be speci­
fied by the programmer in an OVERLAY state­
ment, as described in the following exam­
ple. 

EXAMPLE: The input sequence listed in 
Figure 20 will produce the overlay struc­
ture shown. The modules are named for 
purposes of illustration. 

Module A 
Module B 
OVERLAY ALPHA 
Module C 
Module D 
OVERLAY BETA 
Module E 
OVERLAY BETA 
Module F Modules 

C&D 

Modules 
A&B 

I 
# ALPHA 

Modules 
J&K 

Module G 
OVERLAY GAMMA 
Module H 
OVERLAY GAMMA ~ ~ 
INCLUDE MODI Module 
OVERLAY ALPHA E 
Module J I 
Module K 
OVERLAY DELTA 
Module L 
OVERLAY DELTA 
Module M 
Module N 

# Node Point 

Modules Module 

Module 
H 

F&G L 

I I 
#GAMMAI 

Module 
I 

Figure 20. Single Region 
Structure 

Region Origin 

Modules 
M&N 

I 

Overlay Tree 

The symbolic origin of each region, 
other than region 1, must be specified by 
the programmer in an OVERLAY statement. 
The origin of the region will be the origin 
of any segment in the region specified by 
the same symbolic name. 

EXAMPLE: The input sequence listed in 
Figure 21 will produce the overlay struc­
ture shown. The modules are named for 
purposes of illustration. 

Module A 
Module B 
OVERLAY ALPHA 
Module C 
OVERLAY ALPHA 
Module D 
OVERLAY BETA 
Module E 
OVERLAY BETA 
Module F 
OVERLAY ALPHA 
Module G 
OVERLAY GAMMA (REGION) 
INCLUDE MODH,MODI 
OVERLAY GAMMA 
Module J 
OVERLAY DELTA 
Module K 
OVERLAY DELTA 
Module L 
Module M 
OVERLAY GAMMA 
Module N 

REGION 1 

I 
Modules 

A&B 

I IALPHA I 
Module Module 

C D 
Module 

G 

I 
I I BETA I 

Module Module 
E F 
I I 

-RE-G~N2 - -lGAMMA - T -
Modules Module Module 

H&I J N 

Module 
K 

I 

I 
DELTAI 

Modules 
L&M 

I 

Figure 21. Multiple Region Overlay Tree 
Structure 

Positioning Control Sections 

A control section can be repositioned by 
moving it from its position in the input 
sequence to a specific segment by one of 
two methods: 

1. The use of the INSERT statement, or 
2. Automatic promotion of common areas. 

A control section to be repositioned can 
appear in any module in the input sequence. 
The INSERT statement takes precedence. 
Care should be taken in applying the rules 
for exclusive references if any will result 
from the move. 

INSERT Statement 

The INSERT statement positions control 
sections in overlay segments. 

r--------~-------------------------------, 
I Operation I Operand I 
~---------+-------------------------------~ 
I INSERT Icontrolsectionname I L _________ ~ _______________________________ J 

control section name 
is the name of the control section to 
be repositioned. 

Specifying Linkage Editor Processing 33 



Any additional control section name 
must be preceded by a comma. 

The operand must contain one or more 
control section names separated by commas. 

If the symbol specified in the operand 
field of the INSERT statement is not pre­
sently in the external symbol dictionary, 
it is entered as an external reference. If 
the reference has not been resolved at the 
end of primary input processing, the auto­
matic library call mechanism attempts to 
resolve it. 

PLACEMENT: The INSERT statement must be 
placed in the input sequence following the 
OVERLAY statement that specifies the origin 
of the segment in which the control section 
is to be positioned. If the control sec­
tion is to be positioned in the root 
segment, the INSERT statement must be 
placed before the first OVERLAY statement. 

CAUTION: A control section can appear only 
once within a load module. 

Control sections that are positioned in 
a segment must contain all address con­
stants used during execution unless: 

1. The A-type address constants are 
located in a segment in the path. 

2. The V-type address constants used to 
pass control to another segment are 
located in the path. If an exclusive 
reference is made, the V-type address 
constant must be in a common segment. 

3. The V-type address constants used with 
the SEGLD and SEGWT macro-instructions 
are located in the segment. 

EXAMPLE: The input sequences listed in 
Figure 22 will produce the overlay struc­
ture shown. The modules are named for 
purposes of illustration. 

EDITING MODULES 

The editing functions of the linkage 
editor facilitate program modification; 
they make it possible to modify a program 
by changing a control section within it, 
rather than by recompiling the entire 
source program. The following editing 
functions can be performed by the linkage 
editor: 

34 

• External symbols can be changed within 
a module by means of the CHANGE state­
ment • 

• Control sections within a module can be 
replaced either automatically or by 
means of the REPLACE statement. 

Module A (CS1, C52, CS3) 
OVERLAY ALPHA 
Module B (CS4, C55, CS6) 
OVERLAY BETA 
INSERT CS2 
OVERLAY BETA 
INSERT CS7 
OVERLAY ALPHA 
Module C (CS7, C58) 
OVERLAY ALPHA 
INCLUDE MODD 

CS 2 

C5 

CS 3 

ALPHA 

CS 4 CS 8 C59 

CS 5 CS 10 

CS 6 CS 11 

BETA 
CS 7 

The same overlay structure could be achieved by either of the following 
input sequences: 

Input Sequence 

Module A (C51,CS2,CS3) 
Module B (CS4,C55,CS6) 
Module C(CS7,C58) 
INCLUDE MODD 
OVERLAY ALPHA 
INSERT CS4,CS5,C56 
OVERLAY BETA 
INSERT C52 
OVERLAY BETA 
INSERT CS7 
OVERLAY ALPHA 
INSERT CS8 
OVERLAY ALPHA 
INSERT CS9,CSlO,CS11 

Input Sequence 

INSERT CS1 ,CS3 
OVERLAY ALPHA 
INSERT CS4,CS5,CS6 
OVERLAY BETA 
INSERT CS2 
OVERLAY BETA 
INSERT CS7 
OVERLAY ALPHA 
INSERT C58 
OVERLAY ALPHA 
INCLUDE MODD 
Module A (CS1, C52, CS3) 
Module B (CS4, C55, CS6) 
Module C (CS7, CS8) 

Figure 22. Repositioned Control Sections 
in Overlay Structure 

• Control sections or external symbols 
can be deleted from a module by means 
of the REPLACE control statement. 

Note: Certain external symbols (entry 
names and external references) can be 
changed by the REPLACE statement; in such 
cases its operand field is the same as that 
of the CHANGE statement. 

Editing Conventions 

In requesting linkage editor editing 
functions, certain conventions should be 
followed to ensure that the specified 
change or deletion is processed correctly. 

1. External references from other modules 
to a changed external name must be 
changed by a separate control state­
ment. (External references and 
address constants within the same 
input module automatically refer to 
the new symbol.) 

2. An external symbol will be deleted 
only if no address constant refers to 
it from within the same input module. 



If an address constant does refer to 
it from within the same input module, 
the symbol will be changed to an 
external reference. If the external 
reference is unresolved at the end of 
primary input processing, the automat­
ic library call mechanism will attempt 
to resolve it. 

3. External references from other modules 
to a deleted external symbol will 
cause the output module to be marked 
"not executable" unless one of the 
following occurs: 

a. The LET or NCAL option is speci­
fied. 

b. The restricted no-call or never­
call function is specified for the 
unresolved external reference. 

c. The external symbol is defined in 
another module processed in that 
linkage editor execution. 

4. When an INCLUDE statement follows a 
CHANGE or REPLACE statement, it must 
specify only one module. 

5. (Applicable only to Assembler Language 
programming.) When control sections 
that were or are part of a separately 
assembled module are to be replaced, 
A-type address constants that refer to 
a deleted symbol will be incorrectly 
resolved unless the entry name is in 
the same position relative to the 
origin of the replaced control section 
and the new control section.. If all 
control sections of a separately 
assembled module are replaced, no 
restrictions apply. 

6. Two identical external symbols should 
not appear as both subscript and sub­
scripted symbols in one linkage editor 
run unless the statements that specify 
the symbols apply to different input 
modules. 

7. Each time the linkage editor' repro­
cesses a load module, the module's 
entry point should be specified in one 
of two ways: 

• Through a linkage 
statement. 

editor ENTRY 

• If the first object module is being 
processed for the first time, 
through its language translator END 
statement. 

The entry point of any module that may 
be reprocessed should be an external 
name within the module, so that the 
entry point can be specified in ~ 
linkage editor ENTRY statement or in 
the language translator END statement 

of another module. (For assembler 
language programming, if the entry 
point is specified in an assembler END 
statement and the entry point is not 
in the same object module, the entry 
point symbol must be declared in an 
assembler EXTRN statement in the 
assembly that produced the module.) 

CHANGE Statement 

The CHANGE statement changes a control 
section name, an entry name, or an external 
reference. 

r--------T-------------------------------, 
IOperationlOperand I 
~---------+-------------------------------~ 
I CHANGE I externalsymbol(newexternal I 
I I symbol) I L _________ i _______________________________ J 

external symbol 
is a control section name, entry name, 
or external reference that is to be 
changed. 

Any additional subscripted external 
symbol must be preceded by a comma. 

new external symbol 
is the name to which the subscripted 
symbol is to be changed,. 

PLACEMENT: The CHANGE control statement 
must be placed immediately before either 
the module containing the external symbol 
to be changed or the INCLUDE control state­
ment specifying the module. 

REPLACE statement 

The REPLACE statement performs one of 
the following: 

1. Deletes a control section" an entry 
name, or external reference. 

2. Deletes a control section to be 
replaced by another. 

3. Changes an entry name or an external 
reference. 

r---------r-------------------------------~ 
I Operation I Operand I 
r---------+-------------------------------~ 
I REPLACE lexternalsymbol[(newexternal I 
I I symbol> ] I l _________ i _______________________________ J 

Specifying Linkage Editor Processing 35 





external symbol 
is the name of a control .section, an 
entry name, or an external reference 
to be replaced. If the external sym­
bol is not followed by a subscript, 
the linkage editor deletes the control 
section, entry name, or external 
reference. 

new external symbol 
is the name that is to replace the 
subscriptea symbol. 

Any additional external symbol must be 
preceded by a corr~a. 

PLACEMENT: The REPLACE statement must 
immediately precede either the ~odule con­
taining the control section or external 
symbol to be deleted or the INCLUDE state­
ment specifying the module. 

Changing an External Symbol 

Names of external symbols 
can be changed by means 
control statement. 

in 
of 

a module 
the CHANGE 

Specifying Linkage Editor Processing 35.1 



EXAMPLE: CHANGE ROUTINE1(CSECT1),BEGIN 
(REPEAT) 

ROUTlNEl 

BEGIN 

is a control section name that is to 
be changed. 

is an external reference to a control 
section that has been replaced by 
another named REPEAT. 

As a result, the name of the control 
section is changed to CSECT1. The external 
reference BEGIN is changed to REPEAT. 

Replacing Control sections 

The REPLACE statement can be used to 
replace a control section with a control 
section of another module. In replacing a 
control section, the linkage editor first 
deletes the specified control section from 
the input module, and then prepares that 
module to receive the new control section. 
References to the old control section 
become unresolved external references 
unless the same entry names appear in the 
new control section or in some other con­
trol section in the linkage editor input. 

EXAMPLE: REPLACE ROUTINE1(CSECT1), 
ROUTINE 2 (CSECT2) 

ROUTlNEl and ROUTINE2 
are names of control sections in the 
module following the control state­
ment. 

CSECTl and CSECT2 
are names of control sections in other 
modules that are input to the linkage 
editor. 

As a result, the control sections 
ROUTlNEl and ROUTINE2 are removed from the 
module and replaced by CSECTl and CSECT2, 
respectively. Any address constants within 
the module that refer to ROUTINEl or 
ROUTlNE2 now refer to CSECTl or CSECT2. 

Automatic Replacement of Control sections 

To replace a control section automat­
ically, the programmer places the module 
containing the new control section, or an 
INCLUDE control statement specifying the 
module containing the new control section, 
in the primary input so that it is proc­
essed ahead of the control section to be 
replaced. Both control sections must be 
identically named. 

The 
trol 

36 

first of the identically named con­
sections processed by the linkage 

editor is made a part of the output module. 
All subsequent identically named control 
sections are deleted from their modules. 
(See example 7 in Appendix A.> 

External references to identically named 
control sections are resolved with respect 
to the first such control section processed 
by the linkage editor. 

Note: By concatenating the output of a 
language translator and the prlmary input 
data set, modified control sections auto­
matically replace control sections in the 
original object module. 

CAUTION: When identically named control 
sections appear in modules being placed in 
exclusive overlay segments, the second con­
trol section encountered is deleted from 
its module. Resolution of external ref­
erences may cause invalid exclusive ref­
erences. Invalid exclusive references 
cause the linkage editor to mark the output 
module nnot executablen unless the LET 
option is specified. 

Deleting a Control section or External 
Symbol 

The REPLACE statement can be used to 
delete a control section, entry name, or 
external reference in a module, as shown in 
the following example. 

EXAMPLE: REPLACE ROUTINEl 

ROUTINE! 
is the name of a control section in 
the module following the control 
statement. 

As a result, the control section 
ROUTINEl is deleted from the input module. 
If no address constants refer to it from 
other control sections in the module, the 
control section name is also deleted. If 
address constants refer to the control 
section name, the name is retained as an 
external reference. Any external referen­
ces to ROUTINEl from other modules are 
unresolved. 

CAUTION: Unresolved external references 
are not deleted from the output module even 
though a deleted control section contains 
the only reference to a symbol. 

Multiple Editing Functions 

A REPLACE statement can specify more 
than one function, as shown in the follow­
ing example. 



EXAMPLE: 

REPLACE ROUTINE1(CSECT1),BEGIN,REPEAT 

ROUTINE1 

BEGIN 

is a control section in the module 
following this control statement, and 
is to be replaced by control section 
CSECT1. 

is an entry name referred to only in 
ROUTINE1. 

REPEAT 
is an entry name in another control 
section in the module following this 
control statement. There are no 
address constants that ~efer to it 
within the module. 

As a result, the control section 
ROUTINE1 is deleted from the module, which 
is then prepared to receive the new control 
section CSECT1 when it is processed in the 
input. BEGIN and REPEAT are deleted from 
the module. 

PROVIDING SYSTEM STATUS INDEX INFORMATION 

The following information is intended 
for systems personnel responsible for main­
taining IBM-supplied load modules. It is 
not applicable to non-IBM load modules. 

Four bytes in the library directory 
entry for IBM-supplied load modules are 
used to store system status index informa­
tion. This information, which is used for 
maintenance of the modules, is placed in 
the directory entries by m~ans of the 
SETSSI . statement. For details on the use 
of the SETSSI statement, refer to the 
publication IBM System/360 Operating Sys­
tem: Maintenance, Form C27-6918. 

SETSSI Statement. 

The SETSSI statement specifies hexadeci­
mal information to be placed in the system 
status index of the output module library 
directory entry. 

r---------T-------------------------------, 
I Operation I Operand I 
~---------+-------------------------------~ 
ISETSSI Ixxxxxxxx I L _________ ~ ______________________________ J 

xxxxxxxx 
represents eight characters of hexa­
decimal (0-9 and A-F) information that 
is placed in the 4-byte system status 
index of the output module library 
directory entry. 

PLACEMENT: The SETSSI statement 
placed before, between, or after 
modules or other control statements. 

CAUTION: A SETSSI statement must 
vided whenever an IBM-supplied load 
is processed by the linkage editor. 
statement is omitted, no system 
index information will be present. 

can be 
object 

be pro­
module 
If the 
status 

DIAGNOSTIC OUTPUT AND SPECIAL PROCESSING 

Diagnostic output and special processing 
options can be chosen to negate the effect 
of error conditions, or produce a module 
map, cross-reference table, or a listing of 
the control statements processed. 

Two special processing options can be 
chosen in a single execution: LET or XCAL, 
and NCAL. Also, two diagnostic options can 
be chosen: ~~ or XREF, and LIST. The 
option symbols are placed in the parameter 
(PARM) field of the EXEC statement that 
defines the linkage editor execution. 

During a linkage editor execution, mes­
sages are generated to describe: 

1. The options and attributes specified 
for the load module. 

2. The disposition of the load module in 
the library. 

EXAMPLE: 

//STEPA EXEC PGM=IEWL,PARM='OVLY,TEST, 
XREF,XCAL' 

As a result, the output module is in an 
overlay structure and valid exclusive 
branches are not regarded as errors. The 
testing symbol tables are placed in the 
output module for use by the test transla­
tor, and a cross-reference table is pro­
duced on the diagnostic output data set. 

DIAGNOSTIC OUTPUT OPTIONS 

In addition to diagnostic error and 
dispositional messages, the linkage editor 
will provide either a map or cross-

Specifying Linkage Editor Processing 37 



reference table to show the structure of 
the load module produced. 

Module Map 

The module map shows all control 
sections in the output module and all entry 
names in each control section. The control 
sections are arranged in ascending order 
according to their assigned origins. All 
entry names are listed below the control 
section in which they are defined. 

If the module is in an overlay struc­
ture, the control sections are arranged by 
segment. The segments are listed as they 
appear in the overlay structure, top to 
bottom, left to right, and region by 
region. 

Named common areas are listed as control 
sections. The following are identified by 
a dollar sign: 

• Blank common area. 
• Private code (unnamed control section). 
• segment table entries. 
• Entry table entries. 

Each control section that is included 
from a library during automatic library 
call is indicated by an asterisk. At the 
end of the module map is the relative 
address of the instruction with which pro­
cessing of the module begins. It is fol­
lowed by the total length of the module in 
bytes. In the case of an overlay load 
module, the length is that of the longest 
path. The addresses shown in the module 
map are those assigned by the linkage 
editor prior to loading for execution. 

EXAMPLE: Figure 23 shows a module map 
provided by the linkage editor. The output 
module is in overlay structure and contains 
eight segments. In the example, segments 
3-7 are omitted. There are five control 
sections shown: $SEGTAB, BASIC, $ENTAB, 
AAAAAAAA, and GGGGGGGG. 

The origin, length, and segment number 
of each control section are listed under 
the control section heading. Also provided 
is a listing of entry names within each 
control section. The entry point (the 
origin of BASIC,38) and total length of the 
output module (641 bytes) are listed at the 
end of the wap. 

Cross-Reference Table 

The cross-reference table consists of a 
module, map and a list of cross-references 
for each control section. Each address 
constant that refers to a symbol defined in 
another control section is listed with its 
assigned location, the symbol referred to, 
and the name of the control section in 
which the symbol is defined. For overlay 
programs, this information is provided for 
each segment. In addition, the number of 
the segment in which the symbol is defined 
is provided. 

If a symbol is unresolved after process­
ing by the linkage editor, it is identified 
by $UNRESOLVED in the list. However, if an 
unresolved symbol is marked by the never­
call function, it is identified by 
$NEVER-CALL. 

EXAMPLE: Figure 24 shows a cross-reference 
table provided by the l'inkage edi tor. 
Except for the cross-references, the infor-

r---------------------------------------------------------------------------------------, 
CONTROL SECTION ENTRY 

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAllllE LOCATION 

$SEGTAB 00 38 1 
BASIC 38 281 1 

RETURNl 106 RETURN 2 10E RETURN3 116 
RETURNS 126 RETURN 6 12E BASEDUMP 136 

$ENTAB 2CO 60 1 

AAAAAAAA 320 109 2 
ARE TURN 376 

~----------------------------------------~-----------------------------------------~----~ 
I Segments 3-7 not shown I 
~---------------------------------------------------------------------------------------~ 
I GGGGGGGG 320 109 8 I 
I GRETURN 376 I 
I ENTRY ADDRESS 38 I 
ITOTAL LENGTH 641 I L _______________________________________________________________________________________ J 

Figure 23. Module Map 

38 



r---------------------------------------------------------------------------------------, 
CONTROL SECTION ENTRY 

NAME 

$SEGTAB 
BASIC 

$ENTAB 

ORIGIN LENGTH SEG. NO. NAME 

00 
38 

2CO 

38 
281 

60 

1 
1 

1 

RETURNl 
RETURNS 

LOCATION NAME 

106 RETURN 2 
126 RETURN 6 

LOCATION NAME 

10E RETURN 3 
12E BASEDUMP 

LOCATION 

116 
136 

LOCATION 
184 
19C 

REFERS TO SYMBOL 
AAAAAAAA 
GGGGGGGG 

IN CONTROL SECTION 
AAAAAAAA 
GGGGGGGG 

SEG. NO. 
2 
8 

CONTROL SECTION ENTRY 

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME LOCATION 

320 109 2 
ARE TURN 376 

~---------------------------------------------------------------------------------------~ 
I Segments 3-1 not shown I 
~---------------------------------------------------------------------------------------~ 

CONTROL SECTION ENTRY 

NAME ORIGIN LENGTH SEG.NO. NAME LOCATION NAME LOCATION NAME LOCATION 

GGGGGGGG 320 109 8 
GRETURN 376 

LOCATION REFERS TO SYMBOL IN CONTROL SECTION SEG. NO. 

38C BASEDUMP BASIC 1 
ENTRY ADDRESS 38 

ITOTAL LENGTH 641 L _______________________________________________________________________________________ J 

Figure 24. Cross-Reference Table 

mation provided is identical to that pro­
vided by the module map (see Figure 23). 

In Figure 24, location 19C refers to 
symbol GGGGGGGG in control section 
GGGGGGGG, located in segment eight. The 
remaining cross-references are identified 
in like manner. 

Disposition Data 

Information indicating the options and 
attributes specified is printed for each 
load module prbduced. Invalid options or 
attributes are replaced by ftINVALIDft in the 
printout. Messages are generated to inform 
the programmer that incompatible attributes 
have been specified. 

There are, in addition, nine disposition 
messages used to indicate conditions of the 
load module in the output module library 
(see Figure 25). These messages are: 

• (member name) NOW ADDED TO DATA SET. 

• (member name) NOW REPLACED IN DATA SET. 

• (member naroe) DOES NOT EXIST BUT HAS 
BEEN ADDED TO THE DATA SET the 
replacement function is specified; how­
ever, the member does not exist in the 
data set. 

• (alias name) IS AN ALIAS FOR THIS 
MEMBER. 

• MODULE HAS BECOME NOT EXECUTABLE. 

• MODULE HAS BECOME REUSABLE. 

• MODULE HAS BECOME NOT REUSABLE. 

• MODULE HAS BECOME NOT EXECUTABLE AND 
REUSABLE. 

• MODULE HAS BECOME NOT EXECUTABLE AND 
NOT REUSABLE. 

Specifying Linkage Editor Processing 39 



DIAGNOSTIC MESSAGES 

Certain conditions that are present when 
a module is being processed can cause an 
error or warning message to be printed. An 
error or warning message consists of mes­
sage code and message text. 

The message code is used to provide the 
programmer with the following information: 

• The system component in which the error 
was noted (positions 1-3). lEW 'indi­
cates a linkage editor message. 

• The error message number (positions 
4-6). 

• The severity of the error (position 7). 

Four types of severity codes (1-4) are 
generated, according to the magnitude of 
the error: 

Type 1: Indicates a condition that may 
cause an error during execution of the 
output module. A module map or cross­
reference table is produced if specified 
by the programmer. The output module is 
marked executable. 

Type 2: Indicates an error that could make 
execution of the output module 
impossible. Processing continues. When 
possible, a module map or a cross­
reference table is produced if specified 
by the programmer. The output module is 
marked "not executable" unless the LET 
option has been specified. 

Type 3: Indicates an error that will make 
execution of the output module 
impossible. Processing continues. When 
possible, a module map or cross­
reference table is produced if specified 
by the programmer. The output module is 
marked "not executable." 

Type 4: Indicates an error condition from 
which no recovery is possible. Process­
ing terminates. The only output is 
diagnostic messages. 

Note: A severity code of zero (IEWOOOO) is 
generated for each control statement 
printed as a result of the LIST option. 

40 

Severity zero does not indicate an error or 
warning condition. 

The highest severity code encountered 
during processing is multiplied by 4 to 
create a return code that is placed into 
register 15 at the end of processing. The 
control program compares the return code 
with the values specified in the COND field 
of (1) the JOB control statement that was 
specified for this job step, and/or (2) the 
EXEC statement specified in any succeeding 
job step. The results of the comparisons 
are used to determine subsequent action. 
For details, refer to the publication IBM 
System/360 Operating System: Job control 
Language. 

The message text contains combinations 
of the following: 

• The message classification 
error or warning~. 

• Cause of the error. 

(either 

• Identification 
number (when in 
input item to 
applies. 

of the symbol, segment 
overlay), member, or 

which 'the message 

• Instructions to the programmer. 

• Actions taken by the linkage editor. 

If an error is encountered during pro­
cessing, the message code for that error is 
printed with the applicable symbol, sym­
bols, or record in error. After processing 
has been completed, the diagnostic message 
associated with that message code is print­
ed. 

EXAMPLE: Figure 25 shows message codes 
printed during processing; and correspond­
ing diagnostic messages printed after pro­
cessing is complete. 

The information printed during process­
ing consists of options specified (tof 
line), control statements used (IEWOOOO), 
message codes (IEW0201 and IEW0461), and 
disposition messages (****BBBBBBBB). 

The information printed after processing 
is complete consists of the actual error o~ 
warning messages. If XREF or MAP is speci­
fied, the cross-reference table or module 
map follows the error messages. 



r---------------------------------------------------------------------------------------, 
I LINKAGE EDITOR OPTIONS SPECIFIED LET,NCAL,XREF,OVLY,LIST 
IIEWOOOO NAME BBBBBBBB 
IIEW0201 
IIEW0461 CCCCCCCC 
IIEW0461 BASEDUMP 
I****BBBBBBBB NOW ADDED TO DATA SET 
I DIAGNOSTIC MESSAGE DIRECTORY 
I 
I 
I IEW0201 WARNING - OVERLAY STRUCTURE CONTAINS ONLY ONE SEGMENT -- OVERLAY OPTION 
I CANCELED. 
I IEW0461 WARNING - SYMBOL PRINTED IS AN UNRESOLVED EXTERNAL REFERENCE, NCAL WAS 
I SPECIFIED. L _______________________________________________________________________________________ J 

Figure 25. Diagnostic Messages 

Specifying Linkage Editor processing 41 





APPENDIX A: EXAMPLES OF LINKAGE EDITOR PROCESSING 

In each of the examples in this appen­
dix, the following assumptions are made: 

1. Optional output (LIST, MAP/XREF) is 
placed 1n the diagnostic output data 
set if specified by the programmer. 

2. Error messages also appear in the 
diagnostic output data set. 

3. The buffer data set is used, as 
defined by the programmer, for any 
intermediate storage required. 

4. Automatic library call is not needed 
unless explicitly covered in the exam­
ple (Examples 6 and 7). This assump­
tion merely simplifies the illustra­
tions; automatic library call using 
the call library could be a part of 
any example in this appendix. 

The actual sequence of control sections 
(i.e., the allocation of contiguous storage 
locations) may be quite different. This is 
of no consequence to the programmer since 
the control sections are logically connect­
ed as required during linkage editor pro­
cessing, and the load module is a complete 
program. 

In the case of programs in an overlay 
structure, as shown in Examples 8, 9, and 
10, the control sections are not necessari­
ly placed in the output module library in 
the same sequence as they appear in the 
input. 

/' 

EXAMPLE 1: CARD SEQUENCES FOR LINKAGE 
EDITOR PROCESSING 

Figure 26 is a card sequence illustrat­
ing the job control statements necessary in 
the input stream to perform an edit and 
execute procedure. 

Figure 27 illustrates a linkage editor 
step of a procedure for a compile, edit, 
and execute job. The linkage editor job 
step processes the input passed to it by an 
assembler or compiler step within the same 
job. In the linkage editor procedure, 
SYSLIN defines the input data set passed 
from an assembler or compiler procedure, 
SYSUTl defines a buffer data set, SYSPRINT 
defines a data set in which messages are 
placed, and SYSLMOD defines an output 
module library. The partitioned data set 
named GOSET will be allocated a directory 
quantity of one 256-byte record. 

For detailed information on the uses of 
the various subparameters, refer to the 
publication IBM System/360 Operating Sys­
tem: Job Control Language. 

EXAMPLE 2: COMBINING TWO OBJECT MODULES 

This example is 
28. The primary 

/ 

illustrated in Figure 
input data set contains 

I DD cards required for program execution 

IIIGO EXl!:C PGM= •• LKED.SYSLMOD 

II· 

/ / 
I object deck(s) and linkage editor control statements 

IIISYSLIN DD • 
III SPACE=(1024,(200,20» 

IIISYSUTI DD UNIT=(SYSDA,SEP=(SYSLMOD» , C 

I II UNIT=SYSDA,DISP=(NEW,PASS) r-V IIISYSLMOD DD DSNAME=&GOSET(GO) ,SPACE=(l024, (50,20,1», C 

IIISYSPRINT DD SYSOUT=A 
/IILKED EXEC PGM=IEWL, PARM- I XREF ,LIST ,LET ,NCAL I 

-
IIEDITGOI JOB 1, SMITH ,MSGLEVEL=l r--

_V 
t--

-
f--

-
r--

f--

-

Figure 26. The Linkage Editor Step of an Edit and Execute Procedure 

Appendix A: Examples of Linkage Editor Processing 43 



11* 
/ 7 

I DD cards for proqram execution 
IIIEXC EXEC PGM=*.LKED.SYSLMOD 

IIISYSPRINT DD SYSOUT-A 

III SPACE-(1024. (50.20)) 
IIISYSUTI DD UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD)), C 

III SPACE=(1024,(50,20,1)),DISP-(NEW,PASS) 
IIISYSLMOD DD DSNAME-&EXECSET(INDEX),UNIT=SYSDA, .C 

/IISYSLIN DD DSNAME=&LOADSET,DISP-OLD 
IIILKED EXEC PGM=IEWL,PARM=(XREF,LET,LIST,NCAL) 

11* 
/ / l-

I source program deck f-V !IISYSIN DD * 
III SPACE= (80. (200.50)) • DISP- (MOD.PASS) l-

IIISYSPUNCH DD DSNAME-&LOADSET,UNIT=SYSSQ, C I-

/ / l-

I DD cards for language translator r-
IIIASM EXEC PGM=IETASM i-

IIIINDEX JOB 1,MSGLEVEL=1 -
r-

I-
r-

f-V 
r-

l-
i-

r-V 
I-

Figure 27. The Linkage Editor step of a Compile, Edit, and Execute Procedure 

two object modules. The overall operation 
is a simple object module combination; no 
control statements are required. Each 
module has four control sections. The end 
of each module is specified by an END 
statement, which can indicate where execu­
tion of the load module would begin. 

The primary input data set is the only 
input source. It is processed in sequence 
from CSl to the END Y statement. The 
linkage editor combines the two object 
modules into one load module and places 
that module in the output module library. 

The load module in the output module 
library can be loaded and executed by the 
control program. To initiate execution of 
that load module, the programmer places job 
control statements in the primary input 
data set. When the load module receives 
control, the execution will begin at loca­
tion X. 

OJ 
c: 

-Ei 
Q) 

g 
c': 

Primary Input Data Set 
CSl 
CS2 Module 
CS3 One 
CS4 
END X 
CS5 
CS6 Module 
CS7 Two 
CS8 
END Y 

Figure 28. Module Linkage 

44 

Output Module 
Library 

CSl 
CS2 
CS3 
CS4 
CS5 
CS6 
CS7 
CS8 
entry point X 

EXAMPLE 3: COMBINING LOAD MODULES 

In Figure 29, the INCLUDE statements in 
the primary input data set direct the 
linkage editor to select members of addi­
tional libraries that are defined for the 
job step. These members (all load modules) 
are the input to be combined. 

L1BX 
BOOK6 BOOK2 BOOK3 Output Module 
CSl CS7 CS13 Library 
CS2 CS8 CS14 CSl 
CS3 CS9 CS15 CS2 
CS4 CS10 CS16 CS3 
CS5 CSll CS17 CS4 
CS6 CS12 CS5 

CS6 
CS7 
CS8 

Primary Inout Data Set CS9 

II 
INCLUDE L1BX (BOOK6) CS10 
INCLUDE L1BX (BOOK2) 

>-
CSll 

INCLUDE L1BX (BOOK3) Linkage CS12 
INCLUDE L1BY (BOOK4) Editor CS13 
INCLUDE L1BY (BOOK5) CS14 
INCLUDE L1BY (BOOK1) CS15 
ENTRY CSl CS16 

CS17 
CS18 

L1BY CS19 
BOOKl BOOK4 BOOK5 CS20 
CS23 CS18 CS20 CS21 

CS19 CS21 CS22 
CS22 CS23 

entry oointCSl 

Figure 29. Combining Input From Libraries 

The primary input data set is processed 
sequentially from INCLUDE LIBX(BOOK6) to 



ENTRY CS1. The load modules are retrieved 
and processed in the order specified by the 
INCLUDE statements. 

The control sections of the input 
modules are placed in the output module 
library, with main storage addresses 
assigned beginning at zero. CS1, the entry 
point of the output module, denotes the 
first instruction to be executed when the 
module is loaded and given control. CS1 is 
used because it was specified on an ENTRY 
statement in the primary data set. 

EXAMPLE 4: COMBINING AND EDITING OBJECT 
MODULES 

The primary input data set (Figure 30) 
contains three object modules. Each object 
module ends with an END statement. Control 
statements are placed between the object 
modules to specify how the modules are to 
be edited. 

0) 
c 
.~ 

<ll 
U 
o 

ci: 

Primary Input Data 5et 

C51 
C52 Module 
C53 one 
END X 
ENTRY 5TART 
REPLACE C55 (C53) 
C54 K Unkog. r C55 Module Editor 
C56 two 
C57 
END Y 
CHANGE 5YM1(5YM2) 
REPLACE C510 
C58 
C59 Module 
C510 three 
END Z 

Figure 30. Editing Modules 

Primary Input Data 5et LlBB 
BOOKI 
C57 

Output Module 
Library 

C51 
(52 
C53 
C54 
C56 
C57 
C58 
C59 
entry point 5T ART 

j 
INCLUDE LlBA(BOOK2) 

g> C55 Modu Ie 
"iii C56 two 

C58 Module 

j ~~P~A~E C53 
INCLUDE LlBA(BOOKl) 

BOOK1 
C51 
C52 Module 
C53 three 
END Z 

LlBA 
BOOK2 

C54 
END X 

INCLUDE LlBB(BOOK1) 

C59 four 
C510 

Module 
one 

Figure 31. Collecting Library Modules 

The primary input data set is processed 
sequentially from CS1 to the END Z state­
ment. CS5 is replaced by CS3 as requested 
by the first REPLACE statement. The con­
trol section CS5 is deleted from the pro­
gram. All references in module 2 to the 
symbol CS5 are resolved by the symbol CS3. 
In the example, all references to entry 
names in CS5 are resolved with entry names 
in CS3. The external symbol SYM1 is 
changed to SYM2 as requested by the CHANGE 
statement, if SYM1 appears in CS8, CS9, or 
CS10. Control section CS10 is deleted from 
the program as requested by the second 
REPLACE control statement. In the example, 
all external references to CS10 are assumed 
to be resolved. 

The control sections of the input 
modules, except for CS5 and CS10, are 
placed in the output library with main 
storage addresses assigned beginning at 
zero. START, the entry point of the output 
module, denotes the first instruction to be 
executed when the module is loaded and 
given control. 

EXAMPLE 5: INCLUDING MODULES FROM MANY 
ADDITIONAL INPUT SOURCES 

The primary input data set for this 
example, shown in Figure 31, contains one 
object module and three control statements. 
It is processed sequentially from INCLUDE 
LIBA(BOOK2) to INCLUDE LIBA(BOOK1). LIBA 
is the ddname of an object module library. 
The first module processed is contained in 
BOOK2, and the linkage editor is directed 
to that module by the first INCLUDE state­
ment in the primary input data set. When 
BOOK 2 has been processed, the linkage edi­
tor returns to the primary input data set 
for the next input item. This is the 

Output Module 
Library 

C54 
(55 
(56 
C51 
(52 

}-------+-i(57 

(58 
(59 
(510 
entry point X 

Appendix A: Examples of Linkage Editor Processing 45 



second module processed. It contains CS5, 
CS6" and the END Y statement. The REPLACE 
statement following the second module 
applies to the module indicated by the 
second INCLUDE statement. This module, 
BOOK1, is in LIBA. It is the third module 
processed. During its processing, control 
section CS3 is deleted. The INCLUDE state­
ment in BOOKl of LIBA is processed immedi­
ately. The statement directs the linkage 
editor to LIBB(BOOK1) for the fourth input 
module. 

The control sections of the input 
modules, except for CS3, are placed in the 
output library with main storage addresses 
assigned beginning at zero. X, the entry 
point of the output module, denotes the 
first instruction to be executed when the 
module is loaded and given control. X is 
used because it was the symbol specified in 
the first END statement in the input, and 
no ENTRY statement appeared in the input. 

EXAMPLE 6: COMBINING MODULES AND STANDARD 
ROUTINES 

This example is illustrated in Figure 
32. The primary input data set contains 
one object module and four control state­
ments. It is processed sequentially from 
CSl to ENTRY START. The first input pro­
cessed is the object module in the primary 
input data set. The REPLACE statement, 
which is next, applies to the module in 
BOOKl of LIBRYX, as indicated in the 
INCLUDE statement. CS2 replaces CS4. For 
the purpose of this example, it is assumed 
that all references to CS4 and entry names 
within CS4 are resolved, except for a 
reference to MATH. After processing module 
two, the linkage editor INCLUDE statement 
directs the linkage editor to BOOK2 in 
LIBRYX. Module three is processed from 
that member and the linkage editor returns 
to the primary input data set to process 
the ENTRY statement. Primary input pro­
cessing is complete at this point, however, 
an unresolved external reference to MATH 
still remains. The automatic library call 
mechanism, therefore, searches the call 
library for a module that will resolve the 
reference. If MATH exists (as assumed 
here) as a member in the call library, the 
linkage editor processes MATH as the fourth 
input module. 

All control sections of the input 
modules, except CS4, are placed in the 
output library with main storage addresses 
assigned beginning at zero. START, the 
entry point of the output module, denotes 
the first instruction to be executed when 
the module is loaded and control is passed 
to it. START is used because it was 

46 

indicated in the ENTRY statement that over­
rides all END statements in the input. 
Entry points for input load modules arE 
ignored. 

Primary Input Data 5et 

(51 
(all Library 

(52 Module one 
MATH 

ENDW (510 

REPLA(E (54((52) (511 Module Output Module 

IN(LUDE LlBRYX(BOOK1) (512 four Library 

IN(LUDE LlBRYX(BOOK2) entry point B (51 
(52 ENTRY 5TART ~ 
C53 
(55 ~li"k,ge)- (56 

Editor (57 
(58 

/ (59 
C510 

LlBRYX C511 
BOOKI BOOK2 (512 
(53 (58 Module entry point 5TART 
(54 (59 three 
(55 Module END Y 
(56 two 
(57 
END X 

Figure 32. Automatic Library CALL 

EXAMPLE 7: EDITING BY AUTOMATIC REPLACEMEN~ 

The primary input data set for this 
example, shown in Figure 33, contains one 
control statement and a module consisting 
of only one control section. The LIBRARY 
statement indicates that a reference to CSl 
can be resolved with the load module in CSl 
of LIBA, and not with a library member in 
the call library. The control section CS5 
contains at least one external reference to 
the symbol CS1. 

(51 
(51 
(52 
(53 
(54 

LISA 

(55 (auto replaced) 
(56 
(57 
entry point X 

Primary Input 
Data 5et 

LIBRARY LlBA {(51) 
(55 (replacement) 
ENTRY (53 

Output Module Librar 

(55 (replacement) 
(51 
C52 
(53 
(54 
C56 
(57 
entry point (53 

Figure 33. Editing by Automatic Replace­
ment 



Automatic library call retrieves the 
load module, and the linkage editor com­
bines it with the control section in the 
primary input. Since there are two control 
sections named CS5 in the linkage editor 
input, automatic replacement accepts the 
first CS5 and deletes the second. 

The control sections in 
except the second control 
CS5, are placed in the 
library. 

the input, 
section named 

output module 

EXAMPLE 8: PROCESSING OVERLAY PROGRAMS 
(WITH ONLY PRIMARY INPUT) 

As illustrated in Figure 34, the primary 
input data set for this example consists of 
six object modules separated by OVERLAY 
statements. The organization of the pri­
mary input data set reflects the overlay 
tree structure. The primary input data set 
is processed sequentially from the ENTRY 
statement to the END F statement. 

0> 
C 
.~ 

1lJ 

e 
a.. 

Primary Input Data Set 

ENTRY START 
CSI 
CS2 
CS3 
END A 
OVERLAY Al 
CS4 
CS5 
END B 
OVERLAY A2 
CS6 
CS7 
CS8 
END C 
OVERLAY A2 
CS9 
CS10 
END D 
OVERLAY A2 
CSll 
END E 
OVERLAY Al 
CS12 
CS13 
END F 

CS 6 
CS 7 
CS 8 

CS 4 
CS5 

A2 
CS 9 
CS 10 

Linkage 
Editor 

CS I 
CS 2 
CS 3 

Al 

CS 12 
CS 13 

CS II 

Output Module 
Library 

CSI 
CS2 
CS3 
CS4 
CS5 
CS6 
CS7 
CS8 
CS9 
CSIO 
illl 
CSI2 
CSI3 
entry point START 

Figure 34. Processing an Overlay Program 

The control sections of the input 
modules are placed in the output library. 
Ai is a symbolic origin whose numeric value 
is the length of module one. A2 is a 
symbolic origin whose numeric value is the 
sum of the lengths of modules one and two. 
START, the entry point of the output 
module, denotes the first instruction to be 
executed when the root segment is loaded 
for execution. When the program is given 
control, the root segment is the first 
segment loaded by the control program. 
Other segments are loaded by the control 
program when requested by the segment being 
executed. 

EXAMPLE 9: PROCESSING AN OVERLAY PROGRAM 
FROM LIBRARIES 

The primary input data set for this 
example, shown in Figure 35, contains a 
series of control statements and one 
module. The primary input data set is 
processed sequentially from ENTRY START to 
INCLUDE LIBACBOOK2). The INCLUDE state­
ments in the prima-ry input data set direct 
the linkage editor to libraries that con­
tain the majority of the control sections 
of the program. The control statements in 
the primary input data set are organized to 
reflect the overlay tree structure shown. 

This example differs from the previous 
one in that the control sections of the 
program are not included in the primary 
input data set. They are represented in 
the primary input by INCLUDE statements. 
When the control sections are to be pro­
cessed, these statements direct the linkage 
editor to the library members that contain 
the control sections. 

EXAMPLE 10: PROCESSING AN OVERLAY PROGRAM 
USING THE INSERT CONTROL STATEMENT 

This example is illustrated in Figure 
36. The prlmary input data set consists of 
linkage editor to BOOKl and BOOK2 in LIBA. 
The control statements in BOOKl are orga­
nized to reflect the overlay tree structure 
shown. The order in which the library 
items a-re processed does not matter, nor 
does the INCLUDE statement indicate any 
order. No matter what the order of pro­
ceSSing, the control sections in BOOK2 are 
arranged in the output module in the order 
indicated by the control statements in 
BOOK1. The output module is exactly the 
same as the output modules produced in 
Examples 8 and 9. 

Appendix A: Examples of Linkage Editor Processing 47 



LlBA 

BOOKI BOOK2 

CS9 Module CS12 Module 
CS10 four CS13 six 
END E END F 

Primary Input Dato Set 

ENTRY START 
INCLUDE LlBB(BOOK1) 
OVERLAY Al 
INCLUDE LlBB(BOOK2) 
OVERLAY A2 
INCLUDE LlBA(BOOK3) 
OVERLAY A2 
INCLUDE LlBA(BOOKl) 
OVERLAY A2 
CSll 
END D Module five 
OVERLAY Al 
INCLUDE LlBA(BOOK2) 

LlBB 
BOOKI BOOK2 

BOOK3 

CS6 Module 
CS7 three 
CS8 
END_G 

CS 6 
CS 7 
CS 8 

Output Module 
Library 

CSI 
CS2 
CS3 
CS4 
CS5 
CS6 
CS7 
CS8 
CS9 
CS10 
Cill 
CS12 
CS13 

CS 1 
CS 2 
CS3 

CSI Module 
CS2 one 
CS3 

CS4 Module 
CS5 two 
END B entry point START 

END A 

Figure 35. Processing an Overlay Program From Libraries 

LlBA 

BOOKI BOOK2 
INSERT CS1,CS2,CS3 CSI 
OVERLAY Al CS2 
INSERT CS4,CS5 CS3 
OVERLAY A2 CS4 
INSERT CS6,CS7,CS8 CS5 
OVERLAY A2 CS6 
INSERT CS9,CSlO CS7 
OVERLAY A2 CS8 
INSERT CSll CS9 
OVERLAY Al CS10 
INSERT CS12,CS13 CSll 
ENTRY START CS12 

CS13 
END X 

Primary Input Dato set~ 
I INCLUDE LlBA(BOOK1,BOOK2) I .. 

CS 6 
CS 7 
CS 8 

CS 4 
CS 5 

A2 

CS 9 
CS 10 

Output Module 
Library 

CSI 
CS2 
CS3 
CS4 )-----... rn 
CS6 
CS7 
CS8 
CS9 
CS10 
.c.lli 
CS12 
CS13 

CS 1 
CS 2 
CS 3 

Al 

entry point START 

Figure 36. Processing an Overlay Program With Insert statement 

48 

CS 12 
CS 13 

CS 12 
CS 13 



APPENDIX B: 

r---------T-------------------------------, 
I ALIAS lexternalname I L _________ ~ _______________________________ J 

Function: To provide up to five entry 
points in addition to the one attributed to 
the module name. Execution of the module 
will begin at the alias entry point 
referred to. 

Placement: Before, between, or after 
object modules or other control statements. 

Caution: In an overlay program, the first 
instruction to be executed must be in the 
root segment. 

r---------T-------------------------------, 
I ALIAS I symbol I L _________ ~ _______________________________ J 

Function: To specify a name that is not an 
external name within the output module. 
The relative address referred tOI when the 
module is called for execution is that of 
the main entry point. 

Placement: Before, between, or after 
object modules or other control statements. 

r---------T-------------------------------, 
I CHANGE loldcontrolsectionname I 
I 1 (newcontrolsectionname) 1 L _________ ~ _______________________________ J 

Function: To change the name of a control 
section. 

Placement: Immediately before the module 
or INCLUDE statement specifying the module 
that contains the control section. 

caution: External 
modules to the old 
will not be changed. 

references from other 
control section name 

r---------T-------------------------------, 
I CHANGE 1 o ldent ryname (newentry I 
I . I name) ·1 L _________ ~ _______________________________ J 

Function: To change an entry name. 

Placement: Immediately before the module 
or INCLUDE statement that specifies the 
module containing the entry name. 

caution: 
modules to 
changed. 

External 
the old 

references from other 
entry name are not 

SUMMARY OF LINKAGE EDITOR CONTROL STATEMENTS 

r---------T-------------------------------, 
1 CHANGE loldexternalreference(new I 
I I externalreference) I L ________ ~ _______________________________ J 

Function: To change an external reference 
to a name defined in another module. 

Placement: Immediately before the module 
or the INCLUDE statement specifying the 
module that contains the external ref­
erence. 

r--------~-------------------------------, 
I ENTRY 1 externalname I L _________ ~ _______________________________ J 

Function: To specify the name of the first 
instruction to be executed when the module 
is referred to by its module name. 

Placement: Between linkage editor input 
object modules or control statements. 

caution: In an overlay program, the first 
instruction to be executed must be in the 
root segment. 

r---------T-------------------------------, 
IINCLUDE Iddname I L _________ ~ _______________________________ J 

Function: To specify the data definition 
name of a sequential data set containing an 
object module or modules to be included in 
the output module. 

Placement: Between linkage editor input 
object modules and control statements, at 
the point at which the module is to be 
included. 

Caution: Data sets are not necessarily 
processed in the order in which they appear 
in the INCLUDE statement. 

r---------T-------------------------------, 
IINCLUDE I ddname (membername) 1 L _________ ~ _______________________________ J 

Function: To specify a module tpat is a 
named member of a partitioned data set and 
is to be included as part of the output 
module. 

Placement: Between linkage editor input 
object modules and control statements, at 
tbe point at which the module is to be 
included. 

Appendix B: Summary of Linkage Editor Control statements 49 



caution: The modules are not necessarily 
processed in the order in which they appear 
in the INCLUDE statement. 

r--------~------------------------~------, 
I INSERT Icontrolsectionname I L _________ ~ _______________________________ J 

Function: To reposition a control section 
from its position in the input sequence to 
a segment in an overlay program. 

Placement: In the input sequence that will 
become the segment into which the control 
section is to be placed. 

r---------T-------------------------------, 
ILIBRARY Iddname(membername) I L _________ ~ _______________________________ J 

Function: To specify to the automatic 
library call a library containing modules 
that will resolve external references found 
in the program. 

Placement: Between linkage editor input 
object modules and control statements. 

Caution: Members called by automatic 
library call will be placed 1n the root 
segment of an overlay program, unless they 
are placed elsewhere by the INSERT state­
ment. 

r---------T-------------------------------, 
I LIBRARY I (externalreference) I L _________ ~ _______________________________ J 

Function: To specify to the automatic 
library call those external references that 
are not to be resolved by the automatic 
library call mechanism during the current 
linkage editor run. 

Placement: Between linkage editor input 
object modules and control statements. 

r---------T-------------------------------, 
I LIBRARY 1* (externalreference) I L _________ ~ _______________________________ J 

Function: To specify to automatic libary 
call those external references that are not 
to be resolved by the automatic libary call 
mechanism during any linkage editor run. 

Placement: Between linkage editor input 
object modules and control statements. 

r---------T-------------------------------, 
I NAME I symbol I L _________ ~ _______________________________ J 

Function: To specify the name of the load 
module that was just created, and to serve 
as a delimiter for input to the load 
module. 

50 

Placement: At the end of the input used to 
form a load module. 

r--------~-------------------------------, 
I NAME Isymbol(R) I L-________ ~ _______________________________ J 

Function: To 
module that 
load module 
library and to 
load module. 

specify the name of a load 
replaces an identically named 

previously placed in the 
serve as a delimiter to the 

Placement: At the end of the input used to 
form a load module. 

r---------T-------------------------------, 
I OVERLAY I symbol I L _________ ~ _______________________________ J 

Function: To specify the symbolic origin 
of an overlay segment. 

Placement: Immediately before either the 
first module of a new segment or an INCLUDE 
statement specifying the first module, or 
before an INSERT statement that specifies 
control sections to be placed in the seg­
ment. 

r---------T-------------------------------, 
I OVERLAY I symbol (REGION) I L _________ ~ _______________________________ J 

Function: To specify the symbolic origin 
of a new region. 

Placement: The OVERLAY statement must pre­
cede the first module of the next segment, 
the INCLUDE statement specifying the first 
module of the segment, or the INSERT state­
ment specifying the control sections to be 
positioned in that segment. 

r---------T-------------------------------, 
I REPLACE loldcontrolsectionname(new I 
I I controlsectionname) I L ________ ~ _______________________________ J 

Function: To replace one control section 
with another. 

Placement: Immediately before either the 
module that contains the control section to 
be replaced or the INCLUDE statement speci­
fying the module. 

Caution: When control sections that were 
or are part of a separately assembled 
module are to be replaced, A-type address 
constants that refer to a deleted symbol 
will be incorrectly resolved unless the 
entry name is in the same position relative 
to the origin of the replaced control 
section and the new control section. 



r---------T-------------------------------, 
I REPLACE Icontrolsectionname I L _________ ~ _______________________________ J 

Function: To delete a control section from 
its module. 

Placement: Immediately before either the 
module that contains the control section to 
be deleted or the INCLUDE statement speci­
fying the module. 

caution: The control section is deleted, 
but the control section name will be 
changed to an external reference if there 
are any references to it from other control 
sections in the same input module. Auto­
matic library call will attempt to resolve 
the external reference. 

External references from other modules 
to a deleted control section cause automat­
ic library call to attempt to resolve them 
if they have not been resolved by other 
input modules. 

Unresolved external references are not 
deleted from the output module even though 
a deleted control section contains the only 
reference to a symbol. 

r---------T-------------------------------, 
I REPLACE lentryname I L _________ ~ _______________________________ J 

Function: 
module. 

To delete an entry name from a 

Placement: Immediately before either the 
module that contains the entry name or the 
INCLUDE statement specifying the module. 

Caution: The entry name will be changed to 
an external reference if there are any 
references to it within the same input 
module. 

External references from other modules 
to a deleted entry name will cause automat­
ic library call to attempt to 'resolve them 
if they have not been resolved by other 
input modules. 

r---------T-------------------------------, 
I REPLACE lexternalreference I L _________ ~ _______________________________ J 

Function: To delete an external reference 
for which no RLD entry exists. 

Placement: Immediately before either the 
module that contains the external reference 
to be deleted or the INCLUDE statement 
specifying the module. 

r---------T-------------------------------, 
ISETSSI Ixxxxxxxx I L _________ ~ _______________________________ J 

Function: To store system status index 
information (hexadecimal) in a library 
directory entry for an output module. 

Placement: Before, between, or after 
object modules or other control statements. 

Appendix B: Summary of Linkage Editor Control Statements 51 



APPENDIX C: INVOCATION OF THE LINKAGE EDITOR 

The linkage editor can be invoked by a 
problem program at execution time through 
the use of the ATTACH or LINK macro­
instruction. 

The problem program 
following information 
editor: 

must supply the 
to the linkage 

• The options and attributes for the load 
module. 

• The ddnames of the data sets to be used 
during processing by the linkage edi­
tor. 

r--------T---------T----------------------, 
I Name I Operation I Operand I 

~--------+---------+----------------------~ 
I [symbol] I LINK I EP=linkeditname, I 
I 'I ATTACH I PARAM=(optionlist I 
I I I [,ddnamelist]),VL=l I L ________ ~ _________ ~ ______________________ J 

EP 
specifies the symbolic name of the 
linkage editor. The entry point at 
which execution is to begin is' deter­
mined by the control program (from the 
library directory entry). 

PARAM 
specifies, as a sublist, address par­
ameters to be passed from the problem 
program to the linkage editor. The 
first full-word in the address param­
eter list contains the address of the 
option and attribute list for the load 
module. The second full-word contains 
the address of the ddname list. If 
standard ddnames are to be used, this 
list may be omitted. 

option list 

52 

specifies the address 'of a variable 
length list containing the options and 
attributes. This address must be 
written even though no list is provid­
ed. 

The option list 
half-word boundary. 
order bytes contain 

must begin on a 
The two high­
a count of the 

number of bytes in the remainder of 
the list. If no options or attributes 
are specified, the count must be zero. 
The option list is free form with each 
field separated by a comma. No blanks 
or zeros should appear in the list. 

ddname list 

VL 

specifies the address of a variable 
length list containing alternative 
ddnames for the data sets used during 
linkage editor processing. If stand­
ard ddnames are used, this operand may 
be omitted. 

The ddname list must begin on a 
half-word boundary. The two high­
order bytes contain a count of the 
number of bytes in the remainder of 
the list. Each name of less than 
eight bytes must be left justified and 
padded with blanks. If an alternate 
ddname is omitted from the list, the 
standard name will be assumed. If the 
name is omitted within the list, the 
a-byte entry must contain binary 
zeros. Names can be omitted from the 
end by merely shortening the list. 

The sequence of the a-byte entries 
in the ddname list is as follows: 

Entry Alternate Name For: 

1 syslin 
2 member name 
3 syslmod 
4 syslib 
5 not applicable 
6 sysprint 
7 not applicable 
a sysutl 

specifies that the sign bit is to be 
set to 1 in the last full-word of the 
address parameter list. 

When the linkage editor completes pro­
cessing, a condition code is returned in 
register 15. See "Linkage Editor 
Completion Code." 



Two design levels of the linkage editor 
program are available: level E and level F. 
Both levels can operate as part of any 
System/360 Operating System; for a particu­
lar system, the linkage editor program is 
selected during system generation. The 
following discussion contrasts the two 
levels. 

Level E: This level is intended for a 32K1 
computing system; however, it can be exe­
cuted in a larger main storage. 

• Program sizes. Two level E programs 
are available: 15K and 18K. These 
sizes represent the minimum amounts of 
main storage that must be available for 
each of the programs .• 

• Capacities. When the main storage 
available to either of these programs 
is increased, the program has increased 
capacities for external symbol dic­
tionary entries, intermediate text 
records, relocation dictionary records., 
and segments per program. The overlay 
regions per program, blocking factor 
for input object modules, and inter­
mediate and output text record lengths 
remain constant. 

In comparison: for a given amount of avai­
lable main storage., the 15K program has 
bigger capacities, but the 18K program is 
faster. 

Level F: This level is intended for a 64K, 
128K, or larger computing system. 

• Program sizes. Two level F programs 
are available: 44K and 88K. These 
sizes represent the minimum amounts of 
main storage that must be available for 
each of the programs. 

• Capacities. The 44K and 88K programs 
have fixed capacities for external sym­
bol dictionary entries, intermediate 
text records, relocation dictionary 
records., segments per program. overlay 
regions per program, and blocking fac­
tor for input object modules.. However, 
as the amount of available storage 
increases, the size of intermediate and 
output text records may increase up to 
18,432 bytes maximum, depending on the 
direct-access devices being used. 

1.1K=1,024 bytes 

APPENDIX C.l: LINKAGE EDITOR PROGRAMS 

In comparison: the 88K program has greater 
capacities than the 44K program. In com­
parison to the level E programs., the level 
F programs have more speed and generally 
greater capacities; therefore, when 44K or 
more of main storage is available to the 
linkage editor, a level F program should be 
used. 

Capacities 

The capacities of the four linkage edi­
tor programs are shown in Table 1. For the 
level E programs, the capacities are given 
first for the program in the minimum amount 
of available main storage and then for the 
program in a larger amount that reflects a 
typical machine size. 

For the composite external symbol dic­
tionary, the number of entries permitted 
for a particular program can be computed by 
subtracting, from the maximum number given 
in Table 1, one entry for each of the 
following: 

• A data definition name (ddname) speci­
fied in LIBRARY statements. 

• A data definition name (ddname) speci­
fied in INCLUDE statements. 

• An ALIAS statement .• 

• A symbol in REPLACE or CHANGE state­
ments that are in the largest group of 
such statements preceding a single 
object module in the input to the 
linkage editor. 

• The segment table (SEGTAB) in an over­
lay program. 

• An entry table (ENTAB) in an overlay 
program. 

To compute the number of intermediate 
text records that will be produced during 
processing of a particular program., add one 
record for each group of x bytes within 
each control section., where x is the block 
size for the intermediate or buffer data 
set. For the level E programs, x is 1,024; 
for the level F programs, x is 2,048 
m~n~mum and 18, 432 maximum., depending on 
the amount of main storage available to the 
linkage editor and the devices allocated 

Appendix C .• l: Linkage Editor Programs 52.1 



Table 1. Capacities of Linkage Editor Programs 
r---------------------------------------T---------------T---------------T-------T-------, 
I 1 I I 44K I 88KI 
1 Linkage Editor Program I 15K E Level I 18K E Level IF LevellF Levell 
~---------------------------------------+-------T------+-------T-------+-----·--+-----~ 
1 Main storage Allocated 1 1 I 1 I I I 
I to Program (in Bytes) 1 15K I 18K I 18K I 20K I 44K I 88KI 
~---------------------------------------+-------+-------+-------+------+-------+-------i 
1 Maximum number of entries 1 119 I 229 I 75 I 140 I 349 I 9991 
I in composite external symbol I I I I I I I 
I dictionary (ESD) I I I I I I I 
~---------------------------------------+-------+------+-------+-------+-------+-------~ 
I Maximum number of intermediate I 67 I 147 I 35 I 83 I 213 I 5011 
I text records I I I I I I I 
~---------------------------------------+-------+-------+-------+-------+-------+-------~ 
I Maximum number of relocation I 63 I 143 I 31 I 79 I 147 I 357 1 
I dictionary (RLD) records I I I I I I I 
~---------------------------------------+-------+-------+------+-------+-------+-------1 
I Maximum number of segments 1 33 I 38 I 32 I 34 1 63 I 255 1 
I per program I I I I I I I 
~---------------------------------------+-------+-------+-------+-------+-------+-------i 
1 Maximum number of overlay regions I 4 1 4 I 4 I 4 I 4 I 41 
1 per program I I I I I I I 
~---------------------------------------+-------+-------+-------+-------+-------+-------~ 
1 Maximum blocking factor for I 1 I 1 I 1 I 1 I 5 I 401 
1 input object modules I I I I 1 1 1 
1 (i.e., number of 80-column card I I I I I I 1 
I images per physical record) I I I I I I I 
~----------------------T----------------+-------+-------+-------+-------+-------+-------~ 
I IOn IBM 2311 Diskl 1024 I 1024 I 1024 1 1024 I 3072~ I 3072~ I 
1 Output Text Record IStorage Drive I 1 1 I I I I 
I Length (in Bytes) ~----------------+-------+-------+-------+------+-------+-------~ 
1 IOn IBM 2301/23031 1024 I 1024 I 1024 I 1024 I 6144~ 118432~ I 
I IDrum storage 1 1 I I I I I 
~----------------------~---------------~-------~-------~-------~------~-------~-------~ 
I ~When downward compatibility has been specified" this value is 1024. I l _______________________________________________________________________________________ J 

for the intermediate and output data sets. 
In determining the number of records, add 
one record for a remainder of less than x 
bytes. 

The number of text records that can be 
handled by a linkage editor program is less 
than the maximums given in Table 1 if the 
text of one or more control sections is not 
in order by address in the input to the 
linkage editor. 

To compute the number of relocation 
dictionary records in a particular program, 
add one record for each group of y reloca­
table address constants within each control 
section, where y is 30 for the level E 
programs, 147 for the 44K level F program, 
and 357 for the 88K level F program. In 
determining the number of records" add one 
record for a remainder of less than y 
address constants. 

52.2 

Intermediate Data Set 

The intermediate" or buffer, data set 
(SYSUT1) is used by the linkage editor to 
hold intermediate data records during pro­
cessing of a problem program. The level E 
linkage editor programs always place inter­
mediate data in this data set. The level F 
linkage editor programs place intermediate 
data in this data set only when all the 
input data cannot be held in available main 
storage.. (However. whether this data set 
will or will not be used during a level F 
linkage editor execution, it must always be 
defined. ) 

The following direct-access devices, if 
supported by the system, can be used for 
this data set: 

IBM 2311 Disk Storage Drive 
IBM 2301 Drum Storage Drive 
IBM 2303 Drum Storage Drive 



This appendix, message appendixes in 
other publications, and the publication IBM 
System/360 Operating System: control Pro­
gram Messages and Completion Codes, Form 
C28-6608, are designed so that the user can 
select the messages applicable to his 
installation and incorporate them in a 
binder. 

Severity codes used in linkage editor 
diagnostic messages appear as the final 
position of the message code and are 
defined as follows: 

r--------T--------------------------------, 
I Severity I I 
I Code I Meaning I 
~--------+--------------------------------~ 
I 1 I Indicates a condition that mayl 
I Icause an error during execution I 
I lof the output module. A module I 
I Imap or cross-reference table isl 
I Iproduced if specified by thel 
I I programmer. The ' output module I 
I lis marked executable. I 
~--------+--------------------------------~ 
I 2 I Indicates an error that could I 
I Imake execution of the output I 
I Imodule impossible. Processing I 
I I continues. When possible, al 
I Imodule map or a cross-reference I 
I Itable is produced if specifiedl 
I Iby the programmer. The output I 
I I module is marked "not I 
I I executable" unless the LET I 
I loption has been specified. I 
~--------+--------------------------------~ 
I 3 I Indicates an error that willi 
I Imake execution of the output I 
I I module impossible. Processing I 
I I continues. When possible, al 
I I module map or cross-reference I 
I I table is produced if specified I 
I Iby the programmer. The output I 
I I module is marked "not executa-I 
I Ible." I 
~--------+--------------------------------~ 
I 4 I Indicates an error condition I 
I Ifrom which no recovery is possi-I 
I Ible. Processing terminates. I 
I IThe only output is diagnostic I 
I Imessages. I 
~--------i--------------------------------~ 
I I 
I Note: A severity code of zero (IEWOOOO) I 
lis generated for each control statement I 
Iprinted as a result of the LIST option. I 
ISeverity code zero does not indicate ani 
I error or warning condition. I 
I I L _________________________________________ J 

APPENDIX D: LINKAGE EDITOR MESSAGE DIRECTORY 

IEW0012 ERROR-INPUT CONTAINS INVALID TWO­
BYTE RELOCATABLE ADDRESS CONSTANT, 
CONSTANT HAS NOT BEEN RELOCATED. 

Explanation: A relocatable A-type 
or v-type address constant of less 
than three bytes has been found in 
the input. 

System Action: The constant is not 
relocated. 

User Response: Delete or correct 
the invalid address constant. 

IEW0022 ERROR - INPUT CONTAINS INVALID V­
TYPE ADDRESS CONSTANT, CONSTANT HAS 
NOT BEEN RELOCATED. 

Explanation: 
constant of 
has been 
structure. 

A 
less 

found 

v-type address 
than four bytes 

in the overlay 

System action: The constant is not 
relocated. 

User Response: Delete or correct 
the invalid v-type address con­
stant. 

IEW0033 ERROR INVALID ENTRY POINT FROM 
END CARD, NO ENTRY POINT ASSIGNED. 

Explanation: The entry point for 
the program was specified as a 
relative address in an END card. 
The entry point that was specified 
appeared to be valid when the END 
card was processed, however, the 
entry point was found to be invalid 
when the entry point of the load 
module was being determined. 

System Action: No entry point is 
assigned. 

User Response: Remove invalid entry 
point specification from the input. 
Specify a valid entry point. 

IEW0043 ERROR - INPUT CONTAINS INVALID 
EXTERNAL SYMBOL ID. 

Explanation: An ESD card is proba­
bly mispunched. 

System Action: The invalid item is 
ignored. 

Appendix D. Linkage Editor Message Directory 53 



IEW0053 ERROR ENTRY STATEMENT SYMBOL 
PRINTED IS INVALID (NOT AN EXTERNAL 
NAME), NO ENTRY POINT ASSIGNED. 

Explanation: The symbolic entry 
point specified in an ENTRY state­
ment is not a control section or 
entry name. 

System Action: No entry point is 
assigned. 

User Response: Remove the invalid 
entry point specification from the 
input. Specify a valid entry 
point. 

IEW0063 ERROR - END CARD SYMBOL PRINTED IS 
INVALID (NOT AN EXTERNAL NAME), NO 
ENTRY POINT ASSIGNED. 

Explanation: The symbolic entry 
point specified in an END statement 
is not a control section or entry 
name. 

System Action: No entry point is 
assigned. 

User Response: Remove the invalid 
entry point specification from the 
input. Specify a valid entry 
point. 

IEW0073 ERROR ENTRY STATEMENT SYMBOL 
PRINTED IS NOT IN ROOT SEGMENT OF 
OVERLAY STRUCTURE, NO ENTRY POINT 
ASSIGNED. 

Explanation: The entry point speci­
fied by the programmer is in a 
segment other than the root seg­
ment. Either, (1) the module con­
taining the entry point was placed 
in a segment other than the root 
segment by means of the INSERT 
statement, or (2) the entry point 
is incorrectly specified on the 
ENTRY statement. 

System Action: No entry point is 
assigned. 

User Response: Specify an entry 
point in the root segment. 

IEW0083 ERROR - END CARD SYMBOL PRINTED IS 
NOT IN ROOT SEGMENT OF OVERLAY 
STRUCTURE, NO ENTRY POINT ASSIGNED. 

54 

Explanation: The entry point is in 
a segment other than the root seg­
ment Either, (1) the INSERT state­
ment was used to place the control 
section containing the entry point 

in another segment, or (2) th~ 

symbol specified on the END state­
ment is incorrect. 

System Action: No entry point i~ 
assigned. 

User Response: Specify an entr~ 
point in the root segment. 

IEW0093 ERROR END CARD 
ADDRESS PRINTED IS 
SEGMENT OF OVERLAY 
ENTRY POINT ASSIGNED. 

ENTRY POIN~ 

NOT IN ROO~ 

STRUCTURE, N( 

Explanation: The entry point is il 
a segment other than the root seg­
ment. Either, (1) the INSER~ 
statement was used to place thE 
control section containing thE 
entry point in another segment, 0] 
(2) the address specified on thE 
END statement is incorrect. 

System Action: No entry point i~ 
assigned. 

User Response: Specify an entr~ 
point in the root segment. 

IEW0102 ERROR - INVALID ENTRY POINT ON ENI 
CARD, ENTRY POINT IGNORED. 

Explanation: A possible entry point 
for the program was specified as a 
relative address in an END card. 
When the END card was processed, 
the control section identificatior 
of the specified entry point wa~ 
found to be invalid. 

System Action: The entry point iE 
ignored. The first valid entrl 
point encountered is used; if therE 
is none, no entry point iE 
assigned. 

User Response: Remove invalid entr} 
point specification from the input. 
Specify a valid entry point. 

IEW0113 ERROR OUTPUT MODULE CONTAINS NC 
CONTROL SECTIONS IN ROOT SEGMENT OE 
OVERLAY STRUCTURE, NO ENTRY POIN1 
ASSIGNED. 

Explanation: There are no control 
sections in the root segment. (1) 
All control sections originally ir. 
the root segment have been deleted, 
or (2) there were no control sec­
tions originally in the root seg­
ment, or (3) an OVERLAY statement 
preceded the input. 



System Action: No entry point is 
assigned. 

User Response: Place at least one 
control section in the root seg­
ment. Specify a valid entry point. 

IEW0123 ERROR - NO ESD ENTRIES, EXECUTION 
IMPOSSIBLE. 

Explanation: There are no external 
symbol dictionary entries. There 
are no control sections in the 
output. 

IEW0132 ERROR - SYMBOL PRINTED IS AN UNRE­
SOLVED EXTERNAL REFERENCE. 

Explanation: An external reference 
is unresolved at the end of input 
processing. None of the following 
is specified: restricted no-call, 
never-call, or NCAL. 

System Action: The module is marked 
-not executable- unless LET is 
specified. 

User Response: Either, (1) specify 
the proper library or module to 
resolve the external reference, or 
(2) specify NCAL, never-call or 
restricted no-call. 

IEW0143 ERROR - NO TEXT. 

Explanation: No text remains in the 
output module. Either, (1) all the 
control sections originally in the 
input are deleted, or (2) there are 
no control sections that originally 
contained text. 

IEW0152 ERROR - INVALID OVERLAY STRUCTURE, 
NO CALLS OR BRANCHES MADE FROM ROOT 
SEGMENT. 

Explanation: 
branches from 
segment lower 
ture. Other 
loaded. 

There are no calls or 
the root segment to a 
in the tree struc-

segments cannot be 

System Action: The module is marked 
-not executable- unless LET is 
specified. 

IEW0161 WARNING - EXCLUSIVE CALL FROM SEG­
MENT NUMBER PRINTED TO SYMBOL 
PRINTED -- XCAL WAS SPECIFIED. 

Explanation: There is 
exclusive reference; 

a valid 
the XCAL 

option is specified for this job 
step. 

IEW0172 ERROR - EXCLUSIVE CALL FROM SEGMENT 
NUMBER PRINTED TO SYMBOL PRINTED. 

Explanation: A valid reference is 
made from a segment to an exclusive 
segment; XCAL is not specified. 

System Action: The module is marked 
-not executable- unless the LET 
option is specified. 

User Response: Either, (1) rear­
range the overlay structure to 
place both segments in the same 
path, or (2) specify XCAL. 

IEW0182 ERROR - INVALID EXCLUSIVE CALL FROM 
SEGMENT NUMBER PRINTED TO SYMBOL 
PRINTED. 

Explanation: There is an invalid 
exclusive reference from a segment 
to a symbol in an exclusive seg­
ment. 

System Action: The module is marked 
-not executa bIen unless the LET 
option is specified. 

User Response: Either, (1) place 
the segments in the same path, or 
(2) place a v-type address constant 
in a common segment. 

IEW0193 ERROR MAIN STORAGE REQUIREMENTS 
FOR OUTPUT LOAD MODULE NOT FEASI­
BLE. 

Explanation: Address assignment 
limits have been exceeded. The 
maximum number allowed by the 
address field of ESD items is 
22't-1. 

System Action: Processing continues 
if possible. The module is marked 
-not executable. n 

IEW0201 WARNING OVERLAY STRUCTURE CON-
TAINS ONLY ONE SEGMENT OVERLAY 
OPTION CANCELLED. 

Explanation: There are no OVERLAY 
statements in the input. 

System Action: The overlay option 
is canceled. 

User Response: Either, (1) place 
overlay statements in the input, or 

Appendix D. Linkage Editor Message Directory 55 



(2) remove the overlay option 
specification. 

IEW0212 ERROR - EXPECTED CONTINUATION CARD 
NOT FOUND. 

Explanation: A linkage editor con­
trol statement specifying a con­
tinuation (nonblank in column 72) 
is not followed by a continuation 
card. 

System Action: The card is not 
processed as a continuation, but as 
normal input. 

IEW0222 ERROR CARD PRINTED CONTAINS 
INVALID INPUT FROM OBJECT MODULE. 

Explanation: A 
may have been 
object module. 

control 
placed 

statement 
within an 

System Action: The questionable 
record is ignored and processing 
continues. 

IEW0232 ERROR INPUT FROM LOAD MODULE IS 
INVALID. 

System Action: The questionable 
record is ignored and processing 
continues. 

IEW0241 WARNING EXTERNAL SYMBOL PRINTED 
IS DOUBLY DEFINED ESD TYPE DEFI-
NITIONS CONFLICT •. 

Explanation: Two identical external 
names have been found in the input, 
at least one of which is not a 
control section name. References 
to the name are resolved with re­
spect to the first occurrence of 
the name. If the second occurrence 
is a control section name, the 
control section is deleted. 

IEW0254 ERROR - TABLE OVERFLOW -- TOO MANY 
EXTERNAL SYMBOLS IN ESD. 

56 

Explanation: There are too many 
external symbols or control state­
ment operands in the problem pro­
gram. 

User Response: Either, (1) combine 
control sections, or (2) delete 
unneeded EXTRN and ENTRY state­
ments. If this is not sufficient, 
process in a larger main storage 
environment. 

IEW0264 ERROR - TABLE OVERFLOW INPU 
MODULE CONTAINS TOO MANY EXTERNA 
SYMBOLS IN ESD. 

Explanation: Either, (1) an inpu 
module contains too many externa 
symbols in the ESD, or (2) an ES 
card is mispunched. 

User Response: Process the proble 
program in a larger main storag 
environment. 

IEW0272 ERROR LOAD MODULE FROM LIBRAR 
SPECIFIED UNACCEPTABLE TO LEVEL E 

Explanation: The downward compat 
ible attribute was not specifie 
when the load module was created b 
the level F linkage editor. 

System Action: The load module i: 
not accepted as input. 

User Response: Reprocess using thl 
level F linkage editor. Specif. 
the downward compatible attribute 

IEW0284 ERROR 
OPENED. 

DDNAME PRINTED CANNOT B: 

Explanation: The specified data sei 
cannot be opened. The DD statemen­
defining the data set is missing. 

IEW0294 ERROR - DDNAME PRINTED HAD SYNCHRO­
NOUS ERROR. 

Explanation: The error is mosi 
likely a hardware error. 

IEW0302 ERROR - INVALID STATEMENT SCAI 
TERMINATED. 

Explanation: There is an error on 
linkage editor control statement. 

System Action: The statement i~ 
accepted as input up to the poin1 
of the error. 

User Response: Correct the error j 

if necessary, and reprocess. 

IEWO 314 ERROR - MAXIMUM NUMBER OF REGION~ 
(four) EXCEEDED. 

Explanation: There are five or morE 
regions specified in this overla) 
structure. 

User Response: Reduce the number oj 



of the data control block for 
the data set. 

System Action: Processing was ter­
minated. The data definition name 
in the name field of the DD state­
ment for the input data set was 
printed after the message code. 

User Response: For a format of FB, 
check the maximum blocking factor 
for input to the linkage editor 
programs in Appendix C.l. If a 
larger linkage editor program can 
handle the block size, use the 
larger program, if possible. 
Alternatively, recreate the data 
set, using a smaller block size; 
then execute the linkage editor 
again. 

For a format of FBS, specify the 
correct block size. 

If the proper block size was speci­
fied, have the computing system 
checked. 

IEW0302 ERROR INVALID STATEMENT -- SCAN 
TERl1 INA TED. 

Explanation: There is an error on a 
linkage editor control statement. 

System Action: The statement is 
accepted as input up to, the point 
of the error. 

\ 1$;', t...') 

User Response: Correct the error, 
if necessary, and reprocess. 

IEW0314 ERROR MAXIMUM NUMBER OF REGIONS 
(four) EXCEEDED. 

Explanation: There are five or more 
regions specified in this overlay 
structure. 

User Response: Reduce the number of 

Appendix D. Linkage Editor Message Directory 56.1 





regions in the overlay structure to 
four. 

IEW0324 ERROR - MAXIMUM NUMBER OF SEGMENTS 
EXCEEDED. 

User Response: Reduce the number of 
segments in the overlay structure 
to a number that is compatible with 
the system configuration. For 
details, refer to the publication 
IBM System/360 Operating System: 
storage Estimates, Form C28-6551. 

IEW0332 ERROR - MAXIMUM NUMBER OF ALIASES 
(five) EXCEEDED, EXCESS IGNORED. 

User Response: Reprocess the module 
under a different name with addi­
tional aliases. 

IEW0342 ERROR - LIBRARY SPECIFIED DOES NOT 
CONTAIN MODULE. 

Explanation: Either, (1) the wrong 
library or module was specified by 
an INCLUDE statement or a SYSLIB DD 
statement, or (2) the automatic 
library call mechanism cannot find 
a library member of the same name 
as an unmarked external reference; 
i.e., an external reference that is 
not marked by the restricted no­
call function or the never-call 
function. 

User Response: Specify, (1) the 
proper library or module, (2) the 
restricted no-call or never-call 
function for the applicable symbol, 
(3) the NCAL option for the linkage 
editor job step, or (4) delete the 
external reference. 

IEW0354 ERROR - TABLE OVERFLOW -- TOO MANY 
CALLS BETWEEN CONTROL SECTIONS. 

Explanation: There are too many 
V-type address constants referring 
to external symbols in a program 
that is being structured in 
overlay. The table recording these 
V-type address constants has over­
flowed. 

User Response: Either, (1) assemble 
the coding of two or more control 
sections into one control section, 
or (2) remove any unnecessary V-
type address constants that refer 
to external symbols. If this is 
not sufficient, process in a larger 
main storage environment. 

IEW0364 ERROR TABLE OVERFLOW INPUT 
MANY TEXT EXCEEDED MAXIMUM OR TOO 

CHANGES OF ORIGIN IN INPUT. 

User Response: (1) Avoid unneces­
sary re-orlg1ns, (2) combine small 
control sections, or (3) in the 
case of too much text, process in a 
larger main storage environment. 

IEW0374 ERROR - TABLE OVERFLOW INPUT 
CONTAINS TOO MANY RELOCATABLE 
ADDRESS CONSTANTS OR TOO MANY CON­
TROL SECTIONS CONTAINING SUCH CON­
STANTS. 

Explanation: (1) There are too many 
control sections with relocation 
dictionaries, or (2) there are too 
many relocatable address constants. 

User Response: Either, (1) assemble 
the coding of two or more control 
sections into one control section, 
or (2) remove any unnecessary relo­
catable address constants. If this 
is not sufficient, process in a 
larger main storage environment. 

IEW0382 ERROR - TEXT RECORD ID IS INVALID, 
CARD IGNORED. 

Explanation: The ID of the text 
record refers to an invalid exter­
nal symbol dictionary entry; i.e., 
it does not refer to a section 
definition entry or a private code 
entry. The input deck may be out 
of order or incomplete. 

IEW0394 ERROR 
LIBRARY 

MEMBER NOT STORED IN 
-- PERMANENT DEVICE ERROR. 

Explanation: This is either a hard­
ware error or no space is allocated 
for the library directory. 

IEW0404 ERROR 
LIBRARY 
TORY. 

MEMBER NOT STORED IN 
NO SPACE LEFT IN DIREC-

system Action: The member is not 
stored in the specified library. 

User Response: (1) Reprocess, plac­
ing the output module in a new 
library. When the original library 
is used as input, concatenate the 
new one with it, or (2) use a 
utility program to copy the libra­
ry, allowing for more directory 
entries. Edit the member into the 
new library. 

Appendix D. Linkage Editor Message Directory 57 



IEW0412 ERROR - ALIAS NOT STORED IN LIBRARY 
-- NO SPACE LEFT IN DIRECTORY. 

System Action: The ALIAS is not 
stored in the specified library; 
however, the member can be referred 
to by the member name. 

User Response: (1) Reprocess, plac­
ing the output module in a new 
library. When the original library 
is used as input, concatenate the 
new one with it, or (2) use a 
utility program to copy the entire 
library (except the member whose 
alias was not stored), and allow 
for more directory entries. Edit 
the member into the new library. 

IEW0421 WARNING - IDENTICAL NAME IN DIREC­
TORY, WILL TRY TO STORE UNDER 
• TEMPNAME' • 

Explanation: The output module name 
has been used previously in the 
library. The replace function is 
not specified. 

User Response: Either, (1) repro­
cess, using a different name in the 
SYSLMOD DD statement or NAME state­
ment, or (2) reprocess, and specify 
the replacement function for the 
name originally specified in the 
SYSLMOD DD statement or the NAME 
statement. 

IEW0432 ERROR - LIBRARY NAME PRINTED CANNOT 
BE OPENED, DD CARD MAY BE MISSING. 

Explanation: The DD statement that 
defines the library is probably 
miSSing. This message also results 
when a sequential data set 
(encountered in the processing of 
an INCLUDE statement) cannot be 
opened. 

System Action: Processing continues 
without input from the specified 
library. 

IEW0444 ERROR - TABLE OVERFLOW -- TOO MANY 
DOWNWARD CALLS. 

58 

Explanation: There are too many 
v-type address constants that refer 
to segments lower in the tree 
structure. 

User Response: Either, (1) use an 
overlay structure with fewer seg­
ments, or (2) remove unnecessary 
references. 

IEW0454 ERROR - TABLE OVERFLOW SEGMENT 
CONTAINS TOO MANY DOWNWARD CALLS. 

Explanation: One segment in the 
overlay structure contains too many 
V-type address constants that refer 
to segments lower in the tree 
structure. 

User Response: (1) Incorporate some 
of the called control sections in 
the requesting segment, (2) divide 
the requesting segment into two or 
more segments, or (3) remove all 
unnecessary references from the 
requesting segment. 

IEW0461 WARNING SYMBOL PRINTED IS AN 
UNRESOLVED EXTERNAL REFERENCE, NCAL 
WAS SPECIFIED. 

Explanation: The NCAL option, res­
tricted no-call, or never-call 
function was specified for the 
external reference. 

System Action: The automatic libra­
ry call mechanism does not attempt 
to resolve the external reference. 

IEW0472 ERROR - INVALID ALIAS ENTRY POINT 
IN OVERLAY STRUCTURE. 

Explanation: 
entry point 
segment. 

The specified 
is not in the 

alias 
root 

System Action: The entry point for 
the member name is used. 

User Response: Respecify the alias, 
entry point, or overlay structure. 

IEW0484 ERROR - TABLE OVERFLOW -- TOO MANY 
EXTERNAL SYMBOLS AFFECTED BY 
REPLACEMENT. 

Explanation: There are too many 
deletions or replacements. 

User Response: Replace or delete 
limited numbers of control sections 
in successive edits. 

IEW0492 ERROR - NAME CARD FOUND IN LIBRARY, 
CARD IGNORED. 

Explanation: A NAME card can be 
placed only in the primary input. 

User Response: 
statement from 

Remove the NAME 
the library or 



sequential data set. Reprocess if 
the load module is incorrect. 

IEW0502 ERROR - ALIAS NOT STORED IN LIBRARY 
-- PER~_NENT DEVICE ERROR. 

Explanation: The alias could not be 
stored in the library directory 
beca us·e of a hardware error. 

System Action: The load module has 
already been stored. 

User Response: Execution of the 
module is possible using the member 
name or aliases already stored. 

IEW05l2 ERROR INCLUDE STATEMENT SYNTAX 
CONFLICTS WITH RECORD FORMAT OF 
SPECIFIED DATA SET -- DDNAME PRINT­
ED. 

Explanation: The INCLUDE statement 
syntax conflicts with the charac­
teristics of the data set specified 
on the DD statement. 

System Action: The specified module 
is ignored. 

User Response: Use proper syntax on 
the INCLUDE statement. 

IEW0522 ERROR - SPECIFIED DATA SET 
HAS UNACCEPTABLE RECORD FORMAT 
DDNAtilE PRINTED. 

E~planation: The record format of 
the specified data set is not type 
V or F and cannot be processed by 
the linkage editor. 

System Action: The data set is not 
processed. 

IEW0532 ERROR BLOCKSIZE OF LIBRARY DATA 
SET EXCEEDED PillXIMUM DDNAME 
PRINTED. 

Explanation: The blocksize of the 
specified library data set cannot 
be handle4 by the iinkage editor. 

IEW0543 ERROR - IDENTICAL NAME IN DIRECTORY 

Explanation: The member name or 
alias already exists in the direc­
tory. In the case of a member, an 
attempt was made to store under 
TEMPNAME; however, TEMPNAME was 
also found in the directory. 

System Action: The output module is 

not stored under this member name 
or alias nall1e. 

IEW0551 WArtNING - INVALID OPTION 
TERED, OPTION PRINTED 
IGNORED. 

ENCOUN­
OPTION 

Explanation: The option specified 
could not be recognized by the 
linkage editor. 

System Action: The option was 
ignored and processing was contin­
ued. The option was printed after 
the message code. 

User Response: If the linkage 
editor's action was not satisfacto­
ry, correct the option in either 
the PARM parameter of the EXEC 
statement or the PARAM operand of 
the LINK or ATTACH macro­
instruction that invoked the link­
age editor. Then execute the link­
age editor step again. 

IEW0564 ERROR - UNRECOGNIZABLE DEVICE CODE 
FOR SPECIFIED DATA SET. 

Explanation: The UNIT parameter of 
a DD statement specified a device 
that is not acceptable to the link­
age editor. The name field of the 
DD statement contained SYSUTl or 
SYSLMOD. 

System Action: 
terminated. 

Processing was 

User Response: Change the UNIT par­
ameter to indicate a device type 
acceptable to the linkage editor 
for the SYSUTl or SYSLMOD data set, 
and execute the linkage editor step 
again. Acceptable device types are 
indicated in Appendix C.l. 

IEW0574 ERROR - INPUT DATA SET BLOCKSIZE 
NO'l' SPECIFIED, DDNAME PRINTED. 

Explanation: The DCBBLKSI field in 
the data control block for the 
primary input data set (SYSLIN) 
specified a bloc~ size of zero~ 
The DCBRECFM field indicated a for­
mat of FS or FBS. 

System Action: Processing was ter­
minated. The data definition naroe 
in the name field of the DD state­
ment for the primary input data set 
was printed after the message code. 

User Response: Provide the correct 
block size, and execute the linkage 

Appendix D. Linkage Editor Message Directory 59 



editor step again. Maximum block­
ing factors for input are given in 
Appendix C.l. 

IEW0584 ERROR - INPUT DATA SET CONTAINS' 
INVALID FORMAT CODE, DDNAME PRINT­
ED. 

Explanation: The DCBRECFM field in 
the data control block for the 
SYSLIN data set specified a record 
format other than fixed (F, FB, FS, 
or FBS). 

System Action: Processing was ter­
minated. The data definition name 
in the name field of the DD state­
ment for the input data set was 
printed after the message code. 

User Response: Correct the DCBRECFM 
field, and execute the linkage edi­
tor step again. 

IEW0601 WARNING - INCOMPATIBLE OPTION 

60 

ENCOUNTERED -- OPTION IGNORED. 

Explanation: In the PARMparameter 
of the EXEC statement or PARAM 
operand of the LINK or ATTACH 
macro-instruction that invoked the 
linkage editor, two of the options 
conf licted. 

Syst:.em Action: The second of the 
conflicting options was ignored and 
was printed after the message code. 

User Response: If the linkage 
editor's action is not satisfacto­
ry, eliminate one of the conflict­
ing options and execute the linkage 
editor step again. 

IEW0614 ERROR - MORE THAN ONE NO LENGTH 
CSECT WITH TEXT ENCOUNTERED. 

Explanation: An object module con­
tained more than one type PC or SD 
control section that· had a length 
field containing zero in its exter­
nal symbol dictionary (ESD) entry. 
However" text (TXT) items associat­
ed with the control section were 
present in the module. Only one 
type PC or SD control section with 
an ESD length field of zero can 
appear in an object module. 

System Action: The module was not 
processed, and the linkage editor 
terminated processing. 

User 
module, 
module 
produced 
execute 
again. 

Response: Recompile the 
making sure the object 

contains the compiler-
END statement. Then 

the linkage editor step 

IEW0622 ERROR - INPUT DATA SET BLOCKSIZE 
NOT SPECIFIED, DDNAME PRINTED. 

Explanation: The DCBBLKSI field in 
the data control block for an input 
data set, other than the primary 
input data set (SYSLIN), specified 
a block size of zero. The DCBRECFM 
field in~icated a format of FS or 
FBS. 

System Action: The data set was not 
processed. The data definition 
name in the name field of the DD 
statement for the input data set 
was printed after the message code. 

User Response: Provide the correct 
block size, and execute the linkage 
editor to process the input data 
set. ·Maximum blocking factors for 
input are given in Appendix C.l. 



address constant: An expression represent­
ing a quantity that can be used as a 
storage address or in the calculation of a 
storage address. In the Assembler Lan­
guage, an address constant can be v-type 
(used for branching) or A-type (used for 
branching within a module or for retrieving 
data). 

common segment: A segment upon which two 
exclusive segments are dependent. 

control program: A collective or general 
term referring to all control routines of 
the operating system. 

control section: The smallest separately 
relocatable unit of a program: that group 
of coding specified by the programmer to be 
an entity, all elements of which are to be 
loaded into contiguous main storage 
addresses for execution. 

control statement: A statement in the 
external language of a routine that com­
municates directly with the routine for the 
purpose of controlling its processing. 

cataloged procedure: A series of job con­
trol statements that define a series of job 
steps; it is stored under a unique name, 
which can be referred to by the programmer. 

data definition statement: A job control 
statement that is used in a job step 
definition to establish a data set; it 
specifies the type of device on ·which the 
data set resides (or will reside, if the 
data set is to result from execution of the 
job step), and provides a name by which the 
control program can refer to the data set. 

data set: A named collection of data and 
program instructions contained on an exter­
nal storage device. 

entry name: A name within a control sec­
tion; that which is defined in the Assem­
bler Language by an ENTRY statement. 

exclusive reference: A reference between 
exclusive segments of an overlay program. 

exclusive segments: Segments in the same 
region of an overlay program neither of 
which is in the path of the other. They 
cannot be in main storage Simultaneously. 

external name: A name that can be referred 
to by any control section or separately 
assembled module; that which is defined in 
the Assembler Language by a CSECT, START, 
or ENTRY statement. 

GLOSSARY 

external reference: An external symbol 
that is defined in another module; that 
which is defined in the Assembler Language 
by an EXTRN statement or by a V-type 
address constant. 

external symbol: A control section name, 
entry name, or external reference; a symbol 
contained in the external symbol diction­
ary. 

inclusive segments: Overlay segments that 
can be in main storage simultaneously. 

1 
11 

I 
I 
I 

r---------, 
I 1 
I 1 
1 I 

21 31 
1 1 

r--------, 
I 1 
1 I 
I I 

41 51 
I I 

Inclusive Segments: 
1 and 2 

1, 3, and 4 
1, 3, and 5 

Exclusive Segments: 
2 and 3 
2 and 4 
2 and 5 
4 and 5 

job: One or more job steps; a proces$ that 
requires the execution of a program or a 
series of programs; a series of related 
processes or tasks. 

library: A partitioned data set (in this 
publication). Such a data set always con­
tains named members. 

load module: An executable module produced 
by the linkage editor; a module in a format 
suitable for loading into main storage by 
the control program for execution. 

module: One or more control sections pro­
cessed in one execution by a language 
translator or the linkage editor. 

multiple load module processing: A method 
of processing whereby two or more load 
modules can be produced in a single linkage 
editor job step. 

object module: A relocatable module pro­
duced by a language translator. 

overlay tree: A graphic representation 
showing the relationships of segments of an 

Glossary 61 



overlay program and how the segments are 
arranged to use the same main storage area 
at different times. 

path: A series of segments in an overlay 
tree that form the shortest distance in a 
region between a given segment and the root 
segment. 

program: A procedure, plan, method, or 
process: a plan of future procedure; a 
logically self-contained sequence of opera­
tions or instructions that, when followed 
in some predetermined order, will produce a 
specified result; a sequence of instruc­
tions to be performed by an electronic 
computer; one or more modules, in source 
language or relocatable object code, or one 
module in executable code, that are a 
logically self-contained process. 

reenterable: A reenterable module may be 
used by more than one task at the same 
time; i. e. , a task may begin __ executing a 
reenterable module before a previous task 
has finished executing it. A reenterable 
module is not modified during execution. 

region: 
within 

62 

A contiguous area of main storage 
which segments can be loaded inde-

pendently of paths in other regions. Only 
one path within a region can be in main 
storage at one time. 

relocation: The modification of address 
constants required to compensate for a 
change of origin of a module, program or 
control section. 

root segment: That segment of an overlay 
program that remains in main storage at all 
times during the execution of the overlay 
program; the first segment in an overlay 
program. 

segment: The smallest functional unit (one 
or more control sections) that can be 
loaded as one logical entity during execu­
tion of an overlay program. 

serially reusable: A serially reusable 
module may be executed by only one task at 
a time. All instructions and data altered 
during one execution are restored before 
execution by another task. 

symbol: Any collection of up to eight 
alphameric characters that begins with an 
alphabetic character. 



A-type address constant 
see constants 

Action in error condition 40,53 
Additional 

see call libraries, data sets, input 
sources, and processing 

Address 
assembled, of a control section 11 
relative 18,19 

as main entry point 49 
in END statement 53 
in module map 38 

symbolic, specification of 10 
Address constants 

see constants 
Alias names 

see name 
ALIAS statement 28,29,49 
Assembler 

see translators 
ATTACH macro-instruction 

restrictions 26 
use of 52 

Attributes, load module 
block format 12,25 
downward compatible (DC) 12,26 
incompatible 25,26,39 
not editable (NE) 12,25,26 
not executable 12 
only loadable (OL) 12,26 
overlay (OVLY) 12,25 
reenterable (RENT) 12,25 
scatter load (SCTR) 12,23 
serially reusable (REUS) 12,25,26 
specification of 25,26 
TEST 12,26 

Automatic library call 
see library call 

Blank common areas 
see common areas 

Block format 
see attributes and format 

Block loading 12,25 
Block size (BLKSIZE) 

object module 13 
specification of 13,14,29,31 

Branch instruction 
exclusive 19,23,37 
inclusive 19 . 
to only loadable module 26 
use of 19,20,26 

Call 
exclusive 18,19,23 
inclusive 19 

Call libraries, additional 13,14,29-42 
specification of 30 
with NCAL option 31 

CALL macro-instruction 19 
to only loadable module 26 
use in overlay 18 

with valid exclusive reference 18 
Cataloged procedures 

see procedure 
CHANGE statement 21,34,35 

example of 36 
Code 

executable 62 
private 11,38,57 
relocatable object 62 
source language 62 

Code 
completion 24 
condition 52 
message 40,53 
return 40 
severity 40,53 

Collection 
see common areas 

Common areas 
blank 11,21,22 
collection of 9,21,22 
length of 11 
named 11,21,22,38 
position of 22,32 
promotion of 22,33 
reserving storage for 7 
specification of 11 
use of 21 

Common segments 
see segments 

Compatible, downward 
attribute 26,56 
option 12 

Compiler 9 
COND parameter 

see JOB and EXEC statements 
Constants, address 

A-type 21,34,35,50,61 
definition of 61 
identification by 10,11 
in output module 12 
relocation dictionary (RLD) entry 11 
v-type 11,18,19,34,55,61 

Continuation of control statements 27 
Control block 

data control block (DCB) 29,31 
data set control block (DSCB) 13,29,31 

Control program 7,9 
Control section 

changing name of 34,35 
common 7,21,22,32 
definition of 10 
deletion 7,34-36 
dependency of 15,16 

see also entry table, segment table 
identically named 21 
length of 11,38 
name 11,19,34 
positioning 32,33 
replacement 7,34,35-36 

Control statement 
format of 27 

Index 63 



see statements by name 
Conventions 

branching 19 
editing 34 

Cross-reference table 
see module map 

CSECT 11,61 

Data definition statement 
see DD statement 

Data set 
additional input 7,9,13 
automatic call library 14 
buffer 14,24,43 
concatenation of 13,14 
defining 14 
diagnostic output 15,22,37,43 
included 14,29 
partitioned 30 
primary input 13-14,24,36 
sequential 13-14,31 

Data sources, additional 29 
see also input sources 

DD statement 24 
data definition name (DDNAME) 

14,15,30,31,32,52 
definition of data sets 13-14,29,31 
disposition parameter (DISP) 24 

OLD subparameter 24 
SYSLIB 14,29,30,31 
SYSLIN 43 
SYSLMOD 24,27,29 
SYSPRINT 15,22,37,43 

see also output 
Deletion 

see functions 
Dependency of segments 15,16,61 
Device, external storage 14,61 

direct-access 13,14 
Diagnostic output 

see output 
Dictionaries, control 10 

external symbol 10,11,12,26,30,34,55,61 
relocation 11 
test symbol 10,12 

Directory, library 12,14,37,43,51,52 
Disposition, module 9,14,22,37 

messages 39,40 
Disposition parameter (DISP) 

see DD statement 

Editing 
see functions 

END statement 
in source coding 10,28,44 
produced by language translator 

10,28,45,46 
ENTAB 

see entry table 
Entry name 

see name 
Entry point 19,26,28,29,52 
ENTRY statement 11,28,46,61 
Entry table (ENTAB) 18,19,38 
Error messages 

see output 
ESD 

see dictionaries 

64 

Exclusive 
see branch instruction, call, CALL 

macro-instruction, segments, 
references 

EXEC statement 24,25,27,37,40 
COND parameter 24,25 
parameter field 25 
options 37,52 
see also special processing options 

Executable 18,23,25,40,61 
not 12,19,23,35,36,39,40 

Execution 
load module 12,15,28,29,52,61 
job 24,61 

Externa.l name 
see name 

External references 
see references 

External storage, static 7,9,21 
External symbol 

see symbol 
External symbol dictionary 

see dictionaries 
EXTRN statement 11,61 

Format 
block 12,25 
card-image 22 
of control statements 27 
of load modules 7,61 
of records 13,14,29,31 
relocatable 11 
scatter 12,25 

FORTRAN 
see translators 

Functions, linkage editor 7 
deletion 34,36,51 

see also REPLACE statement 
editing 9,10,21,24,26,34,45,46,47 

conventions 34 
multiple 36 

Identical 
external symbols 35 
member names 27 

INCLUDE statement 14,29,30-31,33,35,36 
Inclusive 

see branch instruction, call, and 
segments 

Index, system status 37,51 
see also SETSSI statement and 

maintenance information 
Input modules 

see module 
Input sources 

additional 7,13,24,26-30 
delimiter of 12 
including modules from (example) 45 
primary 7,12,13,14,24,25 
specification of 7,13,24,26,29,30 

INSERT statement 33 
placement of 33,34 
use of 21,30,32 

Invocation of linkage editor 52 
Item, text 11 

Job 24,61 
Job control statements 24,25,61 



see also DO, JOB, EXEC statement 
JOB statement 24,25,40 

COND parameter 24,25 
Job step, linkage editor 

7,12,13,14,24,25,28,30-31,40,61 

Label, tape header 13,29,31 
Language processors 

see translators 
Language translator 

see translators 
LET option 

see options 
Library 7,9,12 

defined 7,61 
see also library call, LIBRARY 

statement, call libraries 
Library call, automatic 

including modules by 14 
specification of 14,30,31,32,50 
use of 7,13,29-42 
see also special processing options 

LIBRARY statement 29,30,31,50 
Linkage editor functions 

see functions 
Linkage editor input sources 

see input sources 
Linkage editor processing 

see processing 
Linkage, module 7 
LINK macro-instruction 26,52 
LIST option 

see options 
Load module processing, multiple 

see processing 
LOAD macro-instruction 12,26 

Macro-instruction 
see macro instruction by name 

Maintenance information 26,37 
see also SETSSI statement 

Map, module 
see module map 

MAP option 
see options 

Mechanism, automatic library call 
see library call 

Member name 
see name 

Message, error 
see output 

Module 10,16 
dependency 16 
editing 

see functions 
input 

additional 14 
following NAME statement 27 

linkage 
see linkage 

load 
as output module 7 
attributes 

see attributes 
definition of 61 
format of 1,11 

object 
alias names 29 

attributes 12 
block size 13 
combining (example) 44 
contents of 10 
definition of 10,61 
editing (example) 45 
END statements in 28 
entry points of 28 
in library 14 
in partitioned data sets 13 
in primary input data set 13 
in sequential data sets 13 
record format of 13 
replacing control sections in 36 
structure of 11,13 

output 
aliases for 14,26,29 
contents of 10,12 
creation of 7,36 
cross-reference table for 23,38 
disposition of 9,22 
entry point of 

see entry point 
including standard subroutines 1,31 
library 7,12,14,31,37 
map 23,38 
marking of 23,25,26,35,36,40 
member name 24 
order of control sections within 28 
reserved main storage area within 

9,21,22 
storage of 14,28 

overlay dependencies 15,16 
Module map 9,23,38,39 

see also options 
Multiple editing functions 

see functions 
Multiple load module processing 

see processing 
Multiple region overlay structure 17,33 

see also overlay 

Name 
alias 

invalid 58 
load module 26,28 
specification of 13,29 
use of 14 

entry 11,61 
external 19,20,28-31 

changing 34 
definition of 11,61 

member 
definition 12 
specification of 14,24,27,52 

NAME statement 
additional input modules following 27 
aliases with 29 
placement of 28,50 
restrictions 28 
specification of 28,58 
use of 12,24,27,50 
see also processing 

Named common areas 
see common areas 

Never-call function 
in cross-reference table 38 
negation of 32 

Index 65 



specification of 30,31,32,35 
use of 30,32 

No-call, restricted 
specification of 30,31,35 
use of 30,31 

No automatic library call (NCAL) option 
see options 

Node point 32 
Nonblank character 27 

OLD subparameter 
see DD statement 

Options 
compatibility 7 
diagnostic 10,15,22,23,37 
downward compatible (DC) 12 
in multiple load module processing 27 
LET 18,19,23,25,35-37,40 
LIST 22,37,40 
MAP 9,22,23,26,37-40,43 
NCAL 23,31,37 
printed 39,40 
special processing 9,10,22,23,37 
specification of 37 
with LINK or ATTACH 52 
XCAL 18,19,23,37 
XREF 23,37 

Origin 
of control section 11 

in module map 38 
of region 17,33 
of root segment 16 
of segment 32,33 
specified in OVERLAY statement 32 

Order 
in cross-reference table 23,38 
in module map 23,38 
in overlay tree structure 32 
input 13 
of execution 15 

in overlay 16 
Organization of overlay structure 15,47 
Output, diagnostic 9,10,13-15,22,37,40 

data set 14,15,22,37 
see also DD statement 

message directory 53-59 
messages, error 7,15,40,53-59 
see also module map, options 

Overflow, table 56-58 
Overlap 20 
Overlay 

66 

attribute 12,25 
characteristics 17 

entry table (ENTAB) 18 
removal of 21 
segment table (SEGTAB) 17 

communication 
between exclusive segments 18 

definition of 15 
fimitations 17-21 
path 15,17,34,38 
position of segments 16,32,33 
program design 15 
regions 15-17,32,33 
specifying 32,33 
statement 15,21,30,32,33,50 
structure 7,9,15,16,21,32-34 
tree 15,32,33 

OVLY attribute 
see attributes 

Parameter field of EXEC statement 
see EXEC statement 

Parameter list 52 
parenthesized symbol 

see symbols 
Partitioned data set 

see data sets 
Path 

address constants within 34 
definition of 15,62 
length of 16,17 
see also overlay 

Placing common areas 21,22 
PL/I 

see translators 
Point, entry 

see entry point 
Primary input 

see input sources 
Primary input data set 

see data sets 
Primary input processing 

see processing 
Procedure, cataloged 24,25,61 
Process, automatic library call 

see library call 
Processing 

in requesting segment 18,20 
of additional data sources 29 
primary input 13,14,30,31,34 
specifying additional 2,26 
specifying linkage editor 24 

Processing, linkage editor (examples) 
card sequence 43,44 
combining and editing object modules 44 
combining load modules 44 
combining modules and standard routines 

46 
comcining two object modules 44 
editing by automatic replacement 46 
inclUding modules from additional input 

sources 45 
processing an overlay program 47 

Processing, multiple load module 
12,14,26,27,61 

Processing options, special 
see special processing options 

Processors, language 
see translators 

Program 
definition of 62 
in overlay structure 7 
modification 9,21,34 

Programming Language/l 
see translators 

Promotion of corrmon areas 22,33 
see also common areas 

Record 
format (RECFM) 13,14,29,31 
size 14 

Reenterable load module 12,25,62 
see also attributes 

Reenterable (RENT) attribute 12,25 
References 



exclusive 18,19 
between exclusive segments 23 
invalid 36 

external 
between control sections 10,11 
changing 34,35 
definition of 11,61 
replacing 35 
specific 30-32 
resolution of 29,30,36,50 
to blank common areas 22 
to deleted control sections 36,51 
to deleted external symbols 35 
unresolved 35,36,51 
with never-call function 32,35 
with restricted no-call function 35 

Region 
definition of 15,62 
design, multiple 16 
design, single 15 
origin 17,32,33 

REGION, coded value 32 
Relocatable format 

see format 
Relocation dictionary 

see dictionaries 
REPLACE statement 34-37,50,51 

placement with INCLUDE statement 35 
specifying multiple editing functions 

36,37 
to change external symbols, entry names, 

or external references 34 
to delete control sections 34 
to delete external symbols 34 

Replacing 
control sections 21,28,36 
entry name 51 
see also REPLACE statement 

Report program generator 
see translators 

Requesting module editing 21 
see also functions 

Reserving storage 21,22 
resolution 

causing invalid exclusive reference 36 
of external references 31 
see also references 

Restricted no-call function 
see no-call 

Return code 40 
see also codes 

RETURN macro-instruction 19 
Reusable (REUS), serially 

see attributes 
RID 

see dictionaries 
Root segment 15,16,~8,28-30,32,49,50 

see segments 

Scatter format 
see format 

Scatter load (SCTR) attribute 
see attributes 

Segment load (SEGID) macro-instruction 
18,20 

Segment dependencies 15,16 
Segments 

address constants within 34 

branching to 16,18,19,61 
common 16,18,22,61 
definition of 15,62 
in a path 15 
inclusive 16 
length of 16,18 
modification of 16 
node point 32 
origin of 16,32,33 
overlaying of 16,19 
pcsitioninq of 32 
promotion of control sections 22,23 
root 15,16,18,28-30,32,49,50 

Segment table (SEGTAB) 17,18 
Segment wait (SEGWT) macro-instruction 

20,21,34 
Sequence, job control statements 24,43 
Sequential data set 

see data sets 
SETSSI statement 37, 51 
Severity code 

see codes 
Special processing options 23 

LET and exclusive call (XCAL) option 23 
no automatic library call option (NCAL) 

23 
specification of 37 
see also options 

Specification of 
additional call libraries 30,31 
additional data sources 29 
additional processing 26 
alternative entry points 29 
member name 14,24,27,52 
module attributes 25,26,37 
special processing 23,37 

Standard subroutines 7 
Static external storage areas 7,9,21 
Storage, reserving 

see reserving storage 
structuring an overlay module 

use of INSERT statement 33,34 
use of OVERLAY statement 32,33 
see also origin, overlay 

Symbol 62 
external 9,10,18,20,21,31,35,61 

changing 34,35 
deleting 34,35,36 
replacing 35 

parenthesized 27 
subscripted 27,35 
unsubscripted 27 

SYSLIB 14,29,30,31,52 
SYSLIN 14,24,43,52 
SYSLMOD 14,24,27,29,43,52 
SYSPRINT 15,24,43,52 
System status index 

see index 
SYSUT1 14,24,43,52 

Tape recording technique (TRTCH) 
13,14,29,31 

Test attribute 
see attributes 

Test symbol dictionary 
see dictionaries 

Text item 
see item 

Index 67 



Text, message 40 
Translators, language 

7,9,10,12,21,28,36,61 
assembler 12 

common control sections 9 
definition of control section in 11 
special considerations for 

18,19,26,35,61 
FORTRAN 

common control sections 9 
programming language/1 

static external storage areas 7,9,21 
Tree, overlay 

see overlay 

68 

Unresolved external references 
see references 

V-type address constant 
see constants 

XCAL option 
see options 

XCTL macro-instruction 26 
XREF option 

see options 





C28-6538-3 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y. 10601 
{USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[ International] 



READER'S COMMENTS 

Title: IBM System/360 Operating System 

Linkage Editor 

Is the material: 
Easy to Read? 
Well organized? 
Complete? 
Well illustrated? 
Accurate? 
Suitable for its intended audience? 

How did you use this publication? 
As an introduction to the subject 

Yes 

Other ________________________________ __ 

No 

Form C28-6538-3 

For additional knowledge 
fold 

Please check the items that describe your position: 
_ Customer personnel _Operator 
___ IBM personnel _ Programmer 
__ Manager _ Customer Engineer 

_ Sales Representative 
_ Systems Engineer 
_Trainee 

__ Systems Analyst _ Instructor Other _____________ _ 

Please check specific criticism(s), give page number(s),and explain below: 
___ Clarification on page (s) 
_ Addi tion on page ( s) 
__ Deletion on page (s) 
_ Error on page (s) 

Explanation: 

Name ________________________________ __ 

Address ______________________________ _ 

FOLD ON TWO LINES,STAPLE AND MAIL 
No Postage Necessary if Mailed in U.S.A. 

fold 



orm C28-6538-3 

staple 

fold 

r------------------------------------------------, 
I BUSINESS REPLY MAIL I 
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I l ________________________________________________ J 

POSTAGE WILL BE PAID BY 

IBM CORPORATION 
P.O. BOX 390 
POUGHKEEPSIE, N. Y. 12602 

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS 
DEPT. D58 

fold 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N. Y. 10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

stc 

r--------------------, 
I FIRST CLASS I 
I PERMIT NO. 81 I 
I I 
I POUGHKEEPSIE, N.Y. I l ____________________ J 

111111 

111111 

111111 

IIIII1 

IIIII1 

I 11111 

IIIIII 

j 


