
Systems Reference Library

IBM System/3S0 Operating System

Job Control Language

File No. S360-48
Form C28-6539-4 OS

This publication describes the facilities of the Job
Control Language, and illustrates how to use these
facilities in various applications. Information coded
by programmers on job control statements is used by the
System/360 Operating System to initiate and control the
processing of jobs. Information on MVT contained
herein is for planning purposes.

Fifth Edition (March 1967)

This publication is a major revision of Form C28-6539-3 and obsoletes it
and prior editions. Significant changes have been made throughout; this
edition should be reviewed in its entirety.

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for phot%ffset printing were obtained from an IBM 1403
Printer using a special chain,.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

A form for reader1s comments appears at the back of this publication.
It may be mailed directly to IBM. Address any additional comments
concerning this publication to the IBM corporation, Programming Systems
Publications, Department 058" PO Box 390, Poughkeepsie, N. Y. 12602.

C International Business Machines Corporation 1966, 1967

The purpose of this publication is to
explain how to use the Job Control Language
to initiate and control the processing of
jobs. To fulfill this purpose, the publi­
cation is divided into two sections:
·Section 1: Job Control Statements· and
"Section 2: A Guide to Using the Job
Control Language."

Section 1 describes the language speci­
fications and facilities in detail. It
contains a chapter on each of the job
control statements. and individual topics
on the control statement parameters. This
section need only be read by those who
desire a thorough knowledge of the Job
Control Language and its facilities.

Section 2 defines and illustrates the
control statement and parameter require­
ments for applications of the language.
Chapters and topics are organized by appli­
cation. If you are responsible for coding
job control statements. you should be fa­
miliar with the text and examples in Sec­
tion 2. You need not concern yourself with
section L, unless you want more information
on a particular statement or parameter.

Before proceeding to either section. you
should read the introduction to familiarize
yourself with job management in the operat­
ing system and the terminology used in this
book. The appendixes contain information
gathered from other publications to mini­
mize cross-referencing. and foldout
diagrams of control statements and paramet­
ers,. The list of examples" located at the
front of the book, facilitates quick ref­
erencing of sample control statements in
Section 2.

PREFACE

Before you read this publication. you
should understand the concepts and termi­
nology introduced in the prerequisite pub­
lications listed below. In addition" the
text refers to several other publications
for detailed discussions beyond the scope
of this book.

PREREQUISITE PUBLICATIONS

IBM System/360 Operating System: Intro­
duction, Form C28-6534

IBM System/360 Operating System: Con­
cepts and Facilities, Form C28-6535

"Section 2: Data Management Services" of
the publication IBM System/360 Operating
System: Supervisor and Data Management
Services, Form C28-6646

PUBLICATIONS TO WHICH THE TEXT REFERS

IBM System/360 Operating System: System
Programmer's Guide, Form C28-6550

IBM System/360 Operating System: utili-
ties" Form C28-6586

IBM System/360 Operating system:
Operator's Guide, Form C28-6540

IBM System/360 Operating System: Super-
visor and Data Management Macro-
Instructions. Form C28-6647

IBM System/360 Operating System: Storage
Estimates~ Form C28-6551

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

J

j
j
j
j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j
j

j
j
j

j
j

j
j
j

INTRODUCTION • •
Components of Job Management

9
• 10

SECTION 1: JOB CONTROL STATEMENTS ••• 11
Summary of the Control

Statements •••••••••••• 11
Fields in the Control Statements .• 11
Parameters in the Operand Field. • 12
Backward References. • • 12

Job Statement. • • • • • • • • • • 13
Identifying the Job (jobname) ••• 13
Supplying Job Accounting
Inf orma tion • • • .• • • • 13

Identifying the Programmer • • • • 13
Displaying All Control

Statements (MSGLEVEL) • • • • • • 14
Specifying Conditions for Job

Termination (COND) •••••••• 14
Assigning Job Priority (PRTY) • 14
Requesting a Message Class

(MSGCLASS) • • • • • • • • • 14
Specifying Main Storage

Requirements for a Job
(REGION) • • • • 15

EXEC Statement • • • • • • 16
Identifying the Step (stepname) •• 16
Identifying the Program (PGM) or
Procedure (PROC) ••••••••• 16

Specifying Conditions for
Bypassing the Job Step (COND) • .• 17

Passing Information to the
Processing Program (PARM) • • • • 18

Specifying Job Step Accounting
Information (ACCT). • • 18

Setting Job Step Time Limits
(TIME) • • • • • • • • • 19

Specifying Main Storage
Requirements for a Job
Step (REGION) • • • • 19

DD Statement • • • • • • • 20
Identifying tbe DD Statement

(ddname). • • • • • • • •• • 20
Defining Data in an Input Stream

(DD * or DD DATA) • • • • • • • • 21
Bypassing I/O Operations on the

Data Set (DUMMY). • • • • •• 21
Postponing the Definition of a

Data Set (DDNAME) • • • • • • 21
Routing a Data Set Through the
output Stream (SYSOUT). • •• 22

Identifying the Data Set
(DSNAME). • • • • • • • 22

Requesting a Unit (UNIT) 23
Specifying Volume Information

(VOLUME). • • • • • • • • • • • • 25
Describing the Attributes of the

Data Set (DCB) •••••••••• 28
Describing the Data Set Label

(LABEL) • • • • • • • • • • • • • 29

CONTENTS

Specifying Data Set Status and
Disposition (DISP) •••••••• 31

Allocating Direct-Access Space
(SPACE, SPLIT and SUBALLOC) • • • 33

optimizing Channel Usage (SEP
and AFF). • • • • 36

The Command Statement. • • • • • • 37
Summary of Available Commands. • • 37

The Delimiter Statement. • • • 37

The Null Statement • • • 37

SECTION 2: A GUIDE TO USING THE JOB
CONTROL LANGUAGE. • • • 39

Coding Special Characters. • 39
Spacing Control Statement Fields • 40
continuing Control Statements. • • 40

Defining' a Job • • • • • • • • • • • • • 42
Coding Required Information. • • • 42
Coding Optional Information.. 42
Defining Job Boundaries. • • 43

Defining a Job Step. • • • • •
Identifying a Program. •
Identifying a Cataloged

• • 44
• • 44

Procedure • • • • • • • • • • 44
Coding Optional Information. • • .• 45
Defining Job Step Boundaries • • • 47

Creating New Output Data Sets. • • • • • 48
Creating Unit Record Data Sets • • 48
Creating Data Sets on Magnetic

Tape. • • • • • • • • • • • • • • 48
Creating Sequential (BSAM or

QSAM) Data Sets on
Direct-Access Devices • •• • 49

Creating Direct (BDAM) Data Sets • 51
Creating Partitioned (BPAM) Data
Sets. • • • • • • • • • • • • • • 51

Creating Indexed Sequential
(BISAM and QISAM) Data Sets • 51

Creating Data Sets in the Output
Stream. • • • • • • • • • • • 51

Retrieving Existing Data Sets. • • • 53
Retrieving Cataloged Data Sets • • 53
Retrieving Noncataloged (Kept)

Data Sets • • • • • • • • •
Retrieving Passed Data Sets. •
Extending Data Sets With
Additional Output • • • •

Retrieving Data Through an Input

• 53
54

55

Stream. • • • • • • • • • • • • • 55

Additional DD Statement Facilities •
Concatenating Data Sets. • • •
Using a Private Library •••
Defining Data Sets Used for

ABEND Dumps • • • • • • • • •

• • 57
• • 57

• 57

• • 58

Bypassing I/O Operations on a
Data Set. • • • • • • • • • • 59

creating and Retrieving
Generation Data Sets. • • 60

Optimizing Channel Usage •• • 61

Using Cataloged Procedures • • • • • • • 62
Establishing Cataloged
Procedures. • • • • • • • • • 62

Overriding EXEC Statements in
cataloged Procedures. • • • • 62

Overriding and Adding DD
Statements. • • • • • • • • • •• 63

Using the DDNAME Parameter • • 64

APPENDIX A: UNIT TYPES. • • • • • • • • 67

APPENDIX B: DCB SUBPARAMETERS • • • • • 68
Glossary of DCB Subparameters. 68

APPENDIX C: SUMMARY OF SCHEDULERS. • •• 71

APPENDIX D: CREATING AND RETRIEVING
INDEXED SEQUENTIAL DATA SETS. • • • •• 73

Creating an ISAM Data Set. • • • • 73
Retrieving An ISAM Data Set. • • • 75

APPENDIX E: CONTROL STATEMENT FOLDOUT
CHARTS. • • • • 77

INDEX. • • • 83

EXAMPLES

Example 1. Creating a Data Set on
the Printer • • . . • . • . • • 48

Example 2. Creating a Data Set on a
Card Punch. • • • • • • • • • 48

Example 3. Creating a Temporary Data
Set on Labeled Tape • • • • • • • • • • 49

Example 4. Creating a Temporary Data
Set on Unlabeled Tape • • • • • • • • • 49

Example 5. creating and Cataloging a
Tape Data Set • • • • • • • • • • • • • 49

Example 6. Creating a Temporary Data
Set on Unlabeled Tape., Using
VOLUME=REF. • • • • _ • • • _ • • • • . 49

Example 7. Creating and Keeping a
Data Set Second in Sequence on a
Labeled Tape. • • • • • • • • • • • • • 49

Example 8. Creating a Temporary Data
Set Having an Incomplete Data Control
Block • • • • • _ • _ • • • • • • • • • 49

Example 9. Creating a Temporary Data
Set on Disk • • • • • • • • • • • • • • 50

Example 10. Creating a Temporary Disk
Data Set That Shares Cylinder Space
With the Preceding Data Set • • • • • • 50

Example 11. Creating a Temporary Dru~
Data Set, With Space Allocation in
Blocks. • • • • • • • • • . • • • • • • 50

Example 12. Creating a Temporary Disk
Data Set# Using Suballocation
Technique • • • _ • • • • • • • • • • • 50

Example 13. Creating and Keeping a
Data Set on a Private Disk Pack • • • • 50

Example 14. Creating and Cataloging a
Disk Data Set, Using VOLUME=REF... 50

Example 15. Creating and Cataloging a
Parti tioned Data Set" Using
VOLUME=REF. • • • • • • • • • • • 51

Example 16. Creating a SYSOUT Data
Set (Sequential Scheduler). • • • 52

Example 17. Creating a SYSOUT Data
Set (priority Scheduler). • • • • • 52

Example 18. Retrieving and
Uncataloging a Data Set • • • •• • 53

Example 19. Retrieving a Disk Data
Set" Which Can Be Shared by Another
Job • • • • • • • • • • • • _ • • • • • 53

Example 20. Retrieving a Noncataloged
Data Set" Which Can Be Shared by
Another Job • • • • • • • • • • • • • • 54

FIGURES

Figure 1. Control Statement Fields •• 11
Figure 2. Data Set Information
Sources • • • • •• •• • • • • • • 20

Figure 3. Defining Job Boundaries ••• 43
Figure 4. Defining Job Step
Boundaries. • • •• •• • • • • • • 47

Example 21. Retrieving and Deleting a
Noncataloged Data Set • • • • • • • • • 54

Example 22. Retrieving an Indexed
Sequential Data Set on Three Disks ••• 54

Example 23. Retrieving a Passed Data
Set • • • • • • • • • • • • • • 55

Example 24. Extending and
Recataloging a Data Set • • • • • • 55

Example 25. Extending and Keeping a
Noncataloged Data Set ••••••• 55

Example 26. Extending and Passing a
Passed Data Set • • • • • • 55

Example 27. Retrieving a Data set
Through the Input Stream. • • • • • • • 56

Example 28. Retrieving a Data Set
That Contains Control Statements
Through the Input Stream. • • • • • 56

Example 29. Concatenating Data Sets • • 57
Example 30. Retrieving a Cataloged
Private Library • • • • • • • • • • 58

Example 31. Using SYSABEND DD
Statements. • • • • . • • 59

Example 32. Bypassing I/O Operations
on a Data Set • • • • • • • • • • • • • 59

Example 33. Retrieving and Creating
Generation Data Sets. • • • • • • • 60

Example 34. Requesting Channel
Separation and Affinity • • • • • • • • 61

Example 35. Modifying a Cataloged
Procedure -- The Procedure. • • _ • • • 63

Example 36. Modifying a Cataloged
Procedure -- The Input Stream • • • • _ 64

Example 37. Modifying a Cataloged
Procedure -- The Result • . • • • • 64

Example 38. Using the DDNAME
Parameter in a Cataloged Procedure --
The Procedure • • • • • • • • • • • • _ 65

Example 39. Using the DDNAME
Parameter in a Cataloged Procedure --
The Input Stream. • • • . • •• • • 65

Example 40. Using the DDNAME
Para~eter in an Input Stream -- The
Procedure • • • • • • • • • • • • • 65

Example 41. Using the DDNAME
Parameter in an Input Stream -- The
Input Stream. • • • • • • • • • • • • • 66

Example 42. Creating an Indexed
'Sequential Data Set • _ • • 74

Example 43. Retrieving an ISAM Data
Set • • • • • • • • • • • • • • • • • • 75

TABLES

Table 1. Direct-Access Volume States • 26
Table 2. Character Sets. • • • • . • • 39
Table 3. Valid DCB Subparameters • • • 70
Table 4. Components of Job

Management. . • • • • • • • • • • • • _ 71
Table 5. Comparison of Job

Management Features • • • • • • • • • • 71
Table 6. Area Arrangement for ISAM
Data Sets • • • • • • • • • • • • • • _ 75

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

J

j
j
j
j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j
j

j
j
j

j
j

j
j
j

Communication with the scheduling
components of an operating system is
achieved with control cards submitted to
the system by a programmer or operator.
Control cards provide the operating system
user with a means of influencing the sched­
uling of work, the allocation of system
resources, and system performance, in addi­
tion to transmitting control information.
A medium that is this flexible can itself
be considered a high-level programming lan­
guage. Job scheduling within the
System/360 Operating System (hereinafter
called the operating system or the system)
is controlled by such a medium. the Job
Control Language; information coded in the
Job Control Language is submitted to the
operating system at the time a processing
program is executed. Because the informa­
tion can be submitted on devices other than
a card reader~ the elements of the language
are called "control statements" instead of
cont rol cards.

Through the Job Control Language. you
can provide job and program information,
data characteristics, and device require­
ments at the time a program is executed
rather than when you assembled or compiled
it. other facilities of the language allow
you to:

• Copy existing data set names, control
statements, and control blocks with a
backward-reference facility to reduce
recoding.

• Retrieve data sets by name using the
system catalog" eliminating the neces­
sity of identifying the unit type and
volume serial numbers.

• Optimize use of channels, units,
volumes, and direct-access space.

• Pass data sets used by more than one
step from one step to another. to
reduce mounting and retrieval time.

• Share data sets between two or more job
steps operating independently in mul­
tiprogramming environments.

The flexibility of the Job Control Lan­
guage is characterized by its large number
of optional facilities. Most applications
require only a limited number of these
facilities. Applications that require a
heavy use of the job control language or
those that are performed on a regular basis
can be considerably simplified through the
use of cataloged procedures. A cataloged

INTRODUCTION

procedure is a set of precoded control
statements that can ce retrieved by a
simple name on one control statement. Any
statement in the set can be temporarily
modified by other control statements sub­
mitted at the time the procedure is used.

This manual includes several operating
systeffi terms, some of which are defined
rigorously in prerequisite publications.
They are listed and defined here for your
convenience.

Processing Program: Any program capable of
operating in the problem program mode.
This includes IBM-distributed langu~ge
processors, application programs. serV1ce
and utility programs, and user-written pro­
grams.

Jo~: A total processing application com­
prlsing one or more related processing
programs, such as a weekly payroll, a day's
business transactions, or the reduction of
a collection of test data.

Job Step: That unit of work associated
with one processing program or one cata­
loged procedure, and related data. A cata­
loged procedure can comprise many procedure
steps.

Input Stream: The sequence of control
statements and data submitted to the oper­
ating system on an input unit especially
activated for this purpose by the operator.

Output Stream: Diagnostic messages and
other output data issued by the operating
system or the processing program on output
units especially activated for this purpose
by the operator.

Cataloged: The quality attributed to a
data set whose name and location are stored
in the system catalog.

Tabulated: The quality attributed to a
direct-access data set whose name is stored
in the table of contents of the volume on
which it resides.

Name: A 1- to 8-character
that identifies a data
statement, a program, or a
dure. The first character
be alphabetic.

alphameric term
set. a control
cataloged proce­
of the name must

Qualified Name: A control statement
that comprises one or more names.
qualifying the name that follows
Levels of qualification are separated

term
each
it.

by

Introduction 9

periods. For example,
stepname.procstepname represents
dure step name qualified by
name.

Components of Job Management

the term
a proce­

a job step

Control statements are processed by a
group of operating system routines known
collectively as job management. Job man­
agement routines interpret control state­
ments and commands" control the f low of
jobs, and issue messages to both the opera­
tor and the programmer. Job management
comprises two major components: a job
scheduler and a master scheduler.

The job scheduler is a set of routines
that read input streams, analyze control
statements, allocate input/output re­
sources, issue diagnostic messages to the
programmer. and schedule job flow through
the system.

The master scheduler is a set of rou­
tines that accepts operator commands and
acts as the operator's agent within the
system. It relays system messages to him.
performs system functions at his request~

10

and responds to_his inquir~es regarding the
status of a job or of the system. The
master scheduler also relays all communi­
cation between a processing prog.ram and the
operator.

The specific facilities available
through the job scheduler and master
scheduler depend on the scheduling level
your installation selects during system
generation. schedulers are available at
two levels -- the sequential scheduler and
the more powerful priority scheduler.

Sequential schedulers process job steps
one at a time in the order of their
appearance in the input stream. Operating
systems with a primary control program
(PCP) and those that provide multiprogram­
ming with a fixed number of tasks (MFT) use
sequential schedulers.

priority schedulers process complete
jobs according to their relative priority,
and can accept input data from more than
one input stream.. Systems that provide
multiprogramming with a variable number of
tasks (MVT) use priority schedulers.
Appendix C lists the components of job
management (Table 4) and summarizes the
principal features of each scheduler (Table
5).

Communication between the operating sys­
tem user and the job scheduler is effected
t.hrough six job control statements
(hereinafter ccilled control statements):

1. Job St.:.at".ement
2. Execute Stdtement
39 D<1t: a Definition Statement
4. command s tel toement
5.. Dt.:'] iroiter: Statement
6. I'm 1 1 St.atem€!nt

PaLametf'rs c'oupd on these control state­
ment:::: did t.he j<..o'b scheduler in regulating
t:lH~~ f'xecut_ion of jobs and job steps.,
retrl.eving and disposing of data" allocat­
i119 input/Olltr-,ut resources, and communi­
c.ltingt1lith tJle operator.

The js)b_ sti~o~"em~nt (hereinafter called
the JOB st:at.emellt) marks the beginning of a
job and, whE~n jobs are stacked in the input
stream r rnarkfi the end of the control state­
men~5 for the preceding job. It may con­
tain accounting information for use by your
installation's accounting routines, give
condl t.ions for early termination of the
jab, and regulate the display of job
scheduler messages. With priority schedul­
ers, you can use additional parameters to
assign job priority, to request a specific
class for job scheduler messages, and to
specify thf~ amount of main storage to be
alloc~ted to the job.

The execute stat.ement (or EXEC
statement) marks the beginning of a job
step and identifies the program to be
eXt'.!cut.ed or t.he cataloged procedure to be
used. It may also provide job step
accounting information, give conditions for

SECTION 1: JOB CONTROL STATEMENTS

bypassing the job stE:p., and pass control
inforrration to a processl.ng program. With
priority schedulers# additional parameters
allow you to assign a time limit for the
execution of the job step and to specify
the a«ount of main storage to be allocated.

The data definition statement (or DD
statement) describes a data set and
requests the allocation of input/output
resources. DD statement parameters iden­
tify the data set. give volume and unit
information and disposition# and describe
the data SE:t's labels and physical attzi­
butes.

The command statement is used by the
operator to enter coromands through the
input stream. Commands can activate or
deactivate system input. and output units,
request printouts and displays, and perform
a number of other operator functions.

The delimiter statement and the null
statement are markers in an input stream.
The delimiter statement is used when data
is included in the input stream, to separ­
ate the data from subsequent control state­
ments. The null statement can be used to
mark the end of the control statements for
certain jobs.

Fields in the Control Statements

Control statements contain two identify­
ing characters (// or /*) and four fields
(the name, operation, operand, and comments
fields). In some of the statements, one or
more of the fields are omitted. Figure 1
shows the fields in each statement.

The name field identifies the control
statement so that other statements or sys-

r-----------------------T---------------y---,
I I Columns I I
I Statement I 1 and 2 I Fields I
~-----------------------+---------------+---~
I Job I // I name JOB operand1 comments 1 I
I Execute I // I name1 EXEC operand comments1 I
I Dat.a Definition I / / I name1. DD operand comments1 I
I Command I // I operation (command) operand comments1 I
I Delimiter I /* I I
I Null I // I I
~-- .. _______________________ .L _______________ ~ ___ ~

I 10ptional I L ___ J

FiguI:e 1. Control Statement Fields

Section 1: Job Control Statements 11

tem control blocks can refer to it. It can
range from one to eight characters in
length, and can contain any alphameric
characters. However. the first character
of the name must be alphabetic, and must
begin in column 3.

The operation field specifies the type
of control statement" or, in the case of
the command statement. the command. It can
contain only one of a set of prescribed
operations or commands. The operation
field has no column requirements, but must
be preceded and followed by at least one
blank.

The operand field contains parameters
separated by commas. Parameters are com­
posites of prescribed words (keywords) and
variables for which information must be
substituted. The operand field has no
fixed length or column requirements" but
must be preceded and followed by at least
one blank.

The comments field can contain any
information deemed helpful by the person
who codes the control statement. It has no
fixed length or column requirements, but
must be separated from the operand field by
at least one blank.

Identifying characters and fields are
contained in columns 1 through 71 of the
control statement. If the total number of
characters exceeds 71. the excess charac­
ters can be coded on one or more succeeding
statements.

Reference:

• Information on which characters can be
coded on control statements and rules
for continuing control statements are
contained in the introduction to Sec­
tion 2 of this publication.

Parameters in the Operand Field

The operand field is made up of two
types of parameters: one type is charac­
terized by its position in the operand
field in relation to other parameters (a
positional parameter); the other type is
positionally independent with respect to
others of its type. and is characterized by
a keyword followed by an equal sign and
variable information (a keyword parameter).
Both positional parameters and the variable

12

information in keyword parameters can
assume the form of a list of several items
(subparameters) of information.

Positional parameters must be coded
first in the operand field in a specific
order. The absence of a positional parame­
ter is indicated by a comma coded in its
place. However, if the absent positional
parameter is the last one, or if all later
positional parameters are also absent, you
need not code replacing commas. If all
pOSitional varameters are absent from the
operand. you need not code any replacing
commas.

Keyword parameters can be coded anywhere
ih the operand field with respect to each
other. Because of this positional indepen­
de'nce" you need not indicate the absence of
a keyword parameter.

A positional parameter or the variable
information in a keyword parameter some­
times assumes the form of a list of sub­
parameters. Such a list may be composed of
both positional and keyword subparameters
that follow the same rules and restrictions
as positional and keyword parameters. You
must enclose a subparameter list in paren­
theses, unless the list reduces to a single
subparameter.

Backward References

Many control statement parameters permit
you to use a backward-reference facility to
fill in information. This facility permits
you to copy previously coded information or
refer to DD statements that appear earlier
in the job. Most backward references are
of the form *.stepname.ddname. where the
term "stepname" identifies an earlier job
step and "ddname" identifies the DO state­
ment to which you are referring. The named
OD statement must be contained in the named
job step. If the DO statement appears in
the same job step as the reference, you can
eliminate the term stepname., i. e. "
*.ddname.

If the DD statement that is the subject
of the reference occurs in a cataloged
procedure" you must give both the name of
the job step that calls the procedure
and the name of the procedure step that
contains the DO statement, i.e.,
*.stepname.procstepname.ddname.

JOB STATEMENT

The JOB statement precedes all other
statements in the job. It must contain a
valid job name in its name field and the
word JOB in its operation field. All
parameters in its operand field are option­
al, although your installation can estab­
lish that the account number and the
programmer's name be mandatory. To follow
the flow of parameters in the JOB state­
ment, turn to Appendix E and fold out Chart
1 while reading this chapter.

Identifying the Job (jobname)

The jobname identifies the job to the
job scheduler. It must satisfy the posi­
tional, length, and content requirements
for a name field. No two jobs being
handled by a priority scheduler should have
the same jobname.

Command statements use certain keywords
that you should not use as jobnames:

CLOCK Q
JOBNAMES T

A

If you find it necessary to use one of
these terms as a jobname, you should inform
the operator to enclose it ln apostrophes
if he uses it in a command statement. For
example, if you have assigned the jobname
CLOCK to a job and the operator wishes to
display the status of the job, he must
issue a command stating DISPLAY 'CLOCK'.
If the apostrophes were omitted, he would
get the usual time-of-day display resulting
from a DISPLAY CLOCK command.

Supplying Job Accounting Information

For job accounting purposes, the JOB
statement can be used to supply information
to your installation's accounting proce­
dures. To supply job accounting informa­
tion, code the positional parameter

r---,
I (acct#,additional accounting information) I L ___ J

first in the operand field. Replace the
term "acct#" with the account number to
which you want the job charged; replace the
teim "additional accounting information"
with other items required by your
installation's accounting routines. As a
system generation option with sequential
schedulers, the account number can be esta­
blished as a required subparameter. With

priority schedulers, the requirement can be
established with a cataloged procedure for
the input reader. Otherwise, the account
number is considered optional.

Nctes:

• Subparameters of additional accounting
information must be separated by com­
rras.

• The total number of characters in the
account number and additional account­
ing information cannot exceed 142.

• If the list contains only an account
number, you need not code the parenthe­
ses.

• If the list does not contain an account
number, you must indicate its absence
by coding a comma preceding the addi­
tional accounting information.

• If the account number or any subpararr­
eter of additional accounting informa­
tion contains any special character
(except hyphens), you must enclose the
number or subparameter in apostrophes
(5-8 punch). The apostrophes are not
passed as part of the information.

Reference:

• Tc write an accounting routine that
processes job accounting informaticn,
see the section "Adding an Accounting
Routine to the Control Program" of the
publication IBM System/360 Operating
Systerr: System Programmer's Guide.

Identifying the Programmer

The person responsible for a job codes
his name or identification in the JOB
statement, following the job accounting
information. This positional parameter is
also passed to your installation's rou­
tines. As a system generation option with
sequential schedulers, the programmer's
name can be established as a required
parameter. With priority schedulers, the
requirement can be established with a cata­
loged procedure for the input reader. Oth­
erwise, this parameter is considered
optional.

Notes:

• The number of characters in the name
cannot exceed 20.

• If the name contains special characters
other than p~riods, it must be enclosed
in apostrophes. If the special charac­
ters include apostrophes, each must be

Section 1: Job Control Statements 13

Form C28-6539-4, Page Revised by TNL N28-2226, 4/10/67

shown as two consecutive apostrophes,
e. g., 'T. 0' 'NEILL' •

• If the job accounting information is
not coded, you must indicate its
absence by coding a comma preceding the
programmer's name.

• If neither job accounting information
nor programmer's name is present, you
need not code commas to indicate their
absence.

Reference:

• To write a routine that
programmer's name, see
"Adding an Accounting
Control Program" of the
system/360 Operating
Programmer's Guide.

processes the
the section

Routine to the
publication IBM
System: System

Displaying All Control Statements (MSGLEVEL)

As part of the output for every job, the
job scheduler displays the JOB statement,
incorrect control statements, and associat­
ed diagnostic messages. In addition to
this usual output, you can request a dis­
play of all the control statements in the
job. To receive this additional output,
code the keyword parameter

r---,
I MSGLEVEL=l I l ___ J

in the operand field of the JOB statement.

If you omit the MSGLEVEL parameter, or
code MSGLEVEL=O, only the JOB statement,
incorrect control statements, and associat­
ed diagnostic messages are displayed.

Note:

• If an error occurs on a control state­
ment that is continued onto one or more
cards, only one of the continuation
cards is printed with the diagnostics.

Specifying Conditions for Job Termination
(COND)

To eliminate unnecessary use of comput­
ing time, you might want to base the
continuation of a job on the successful
completion of one or more of its job steps.
At the completion of each job step, the
processing program passes a number to the
job scheduler as a return code. The COND
parameter provides you with the means to
test each return code as many as eight
times. If anyone of the tests is satis-

14

fied, subsequent steps are bypassed and the
job is terminated.

To specify conditions for job termina­
tion, code the keyword parameter

r---,
ICOND~«code,operator), .• , (code,eperator»I l ___ J

in the operand field of the JOB statewent.
Replace the terms "code" with any decimal
number from 0 through through 4095.
Replace the terms "operator" with one of
the following:

GT
GE
EQ
LT
LE
NE

(greater than)
(greater than or equal to)
(equal to)
(less than)
(less than or equal to)
(not equal to)

If you coded
would read "If
to a return
return cede, I
bypassed." In
ues as long as
through 60.

COND=«50,GE),(60,LT», it
50 is greater than or equal
code, or 60 is less than a
want the remaining job steps
other words, the job contin­
return codes range from 51

If you omit the COND parameter, no
return code tests are perforwed.

Note:

• If you want to make only one return
code test, you need not code the outer
parentheses, e.g., COND=(8,EQ).

Assigning Job Priority (PRTY)
(Prierity Schedulers Only)

To assign a priority other than the
default job priority (as established in the
input reader procedure), you must code the
keyword pararreter

r---,
I PRTY=n I l ___ J

in the operand field of the JOB statement.
Replace the letter On" with a decimal
number from 0 through 14 (the highest
priority number is 14).

If you omit the
default jeb priority
job.

PRTY parameter, the
is assigned to the

Requesting a Message Class (MSGCLASS)
(Priority Schedulers Only)

With the quantity and diversity of data
in the output stream, your installation may
want to separate different types of output

data into different classes. Each class is
directed to an output writer associated
with a specific output unit.. The MSGCLASS
parameter allows you to route all messages
issued by the job scheduler to an output
class other than the normal message class,
A. TO choose such a class., code the
keyword parameter

r---l
I MSGCLASS=x I L ___ J

in the operand field of the JOB statement.
Replace the letter ftxft with an alphabetic
(A-Z) or numeric (0-9) character. An out­
put writer., which is assigned to process
this class" will transfer this data to a
specific device.

If you omit the MSGCLASS parameter, or
code MSGCLASS=A" job scheduler messages are
routed to the standard output class, A.

Reference:

• For a more detailed discussion of out­
put classes., see the publication IBM
System/360 Operating System: Operator's
Guide.

specifying Main Storage Requirements for a
Job (REGION)
(Priority Schedulers Only)

For jobs that require an unusual amount
of main storage., the JOB statement provides
you with the REGION parameter. Through

this parameter, you can specify the maximum
amount of main storage to be allocated to
the job. This figure must take into
account the system components required by
your installation.

To specify a region size, code the
keyword parameter

r---,
I REGION=nnnnnK I L ___ J

in the operand field of the JOB statement.
Replace the term ftnnnnnft with the number of
1024-byte areas you want allocated to the
job, e.g., REGION=51K. This number can
range from one to five digits.

If you omit the REGION parameter, the
default region size (as established in the
input reader procedure) is assumed.

Note:

• If you want to specify different region
sizes for each step in the job, you
can# instead, code the REGION parameter
in the EXEC statement associated with
each step, as described in the next
chapter.

Reference:

• The storage requirements you must con­
sider when specifying a region size are
outlined in the publication IBM;
System/360 Operating System: storage'
Estimates.

Section 1: Job Control Statements 15

EXEC STATEMENT

The EXEC statement is the first state­
ment in each job step and procedure step.
It must contain the word EXEC in its
operation field. It is fo11owed in the
input stream by DO statements and data that
pertain to the step.

The principal function of the EXEC
statement is to identify the program to be
executed or the cataloged procedure to be
used. All other parameters in the operand
field are optional. To follow the flow of
parameters in the EXEC statement., turn to
Appendix E and fold out Chart 1 while
reading this chapter.

Identifying the Step (stepname)

The stepname identifies a job step with­
in a job. It must satisfy the positional,
length, and content requirements for a name
field. You must specify a stepname if
later control statements refer to the step,
or if the step is going to be part of a
cataloged procedure. Each stepname in a
job or procedure must be unique.

Identifying the Program (PGM) or Procedure
(PROC)

Processing programs are members of spe­
cial partitioned data sets called librar­
ies. Programs can reside in three types of
libraries:

1. Temporary libraries
2. The system library
3. private libraries

The EXEC statement identifies the program
to be executed with the PGM parameter. The
way yo~ code the PGM parameter depends upon
which type of library the program resides
in. If the job step uses a cataloged
procedure, the EXEC statement identifies it
with the PROC parameter" in place of the
PGM parameter.

1. Temporary libraries are temporary par­
titioned data sets created to store a
program until it is used in a later
job step of the same job. This type
of library is particularly useful for
storing the program output of a link­
age editor run until it is executed by
a later job step. To execute a pro­
gram from a temporary library. code

16

r------------------------------------,
I PGM=*.stepname.ddname I L ____________________________________ J

in the first positions of the EXEC
statement's operand field. Replace
the terms "stepname" and "ddname" with
the names of the job step and the nn
statement, respectively. where the
temporary library is created.

• If the temporary library is crea­
ted in a cataloged procedure step"
you must include the procedure
step name. i.e., PGM=*.stepname.
procstepname.ddname.

2. The system library is a partitioned
data set named SYS1.LINKLIB that
stores frequently used programs. To
execute a program that resides in the
system library. code

r------------------------------------,
I PGM=progname I L ____________________________________ J

in the first positions of the operand
field. Replace the term "progname"
with the member name or alias asso­
ciated with the program.

3. Private libraries are partitioned data
sets that store groups of programs not
used sufficiently to warrant their
inclusion in the system library. Pri­
vate libraries are made available to a
job with a special DO statement. To
execute a program that resides in a
private library. code

r------------------------------------,
I PGM=progname I L ____________________ ~ _______________ J

in the first positions of the operand
field. Replace the term "progname"
with the member name or alias asso­
ciated with the program.

Reference:

• To make a private library avail­
able to a job, see the chapter
titled "Additional DO Statement
Facilities" in Section 2 of this
publication.

• Programs residing in the system library
or private libraries can also be exe­
cuted by coding PGM=*.stepname.ddname,
provided the named DO statement defines
the program as a member of such a
library.

Instead of executing a particular program,
a job step may use a cataloged procedure.
A cataloged procedure can contain cont.rol
statements for several steps., each of which
executes a particular program. Cataloged
procedures are members of a library named
SYS1.PROCLIB. To request a cataloged pro­
cedure, code

r---,
I procedure name I L ___ J

first in the EXEC statement's operand
field. Replace the term "procedure name"
with the member name associated with the
cataloged procedure.

Notes:

• If you wish to note that you are
executing a cataloged procedure, you
can obtain the same result by coding
PROC=procedure name, instead of just
the procedure name.

• Subsequent parameters in the operand
field can be used to override EXEC
statement parameters in the cataloged
procedure. Such parameters reflect a
reference to cataloged procedure steps
in their keywords.

Reference:

• For detailed .. information on using and
modifying cataloged procedures. see the
chapter "Using Cataloged Procedures" in
Section 2 of this publication.

Specifying Conditions for Bypassing the Job
step (CONO)

The execution of certain job steps is
often based on the success or failure of
preceding steps. The CONO parameter pro­
vides you with the means to make as many as
eight tests on return codes issued by
preceding job steps or cataloged procedure
steps. If anyone of the tests is satis­
fied, the job step is bypassed.

To specify conditions for bypassing a
job step, code the keyword parameter

r---l
ICONO=«code,operator~stepname)~ ••• , I
I (code" operator, stepname» I L ___ J

in the operand field of the EXEC statement.
Replace the term "code" with any decimal
number from 0 through 4095. Replace the
term "operator" with one of tbe following:

GT (greater than)
GE (greater than or equal to)
EQ (equal to)
LT (less than)
LE (less than or equal to)
NE (not equal to)

Replace the term "stepname" with the name
of the preceding job step that issues the
return code to be tested.

If you coded CONO=«20~GT,STEP1)~
(60,EQ,STEP2», it would read "If 20 is
greater than the return code issued by
STEP1, or if STEP2 issues a return code of
60, I want this job step bypassed."

If you omit the CONO parameter, no
return code tests are made.

Notes:

• If you want only one test made. you
need not code the outer parentheses,
e.g., CONO=(12,EQ,STEPX).

• If you want each return code test made
on all preceding steps, you need not
code the .terms "stepname", e.g.,
CONO=«20,GT),(60,EQ».

• If the step issuing the return code is
part of a cataloged procedure. you must
include the procedure step name, i. e. "
CONO=«code,operator,stepname.procstep­
name), •••)

• When the job step uses a cataloged
procedure" you can establish return
code tests for a procedure step by
including, as part of the keyword CONO,
the procedure step name, e.g.,
CONO.procstepname. This specification
overrides the CONO parameter in the
named procedure step, if one is pre­
sent. You can code as many parameters
of this form as there are steps in the
cataloged procedure.

• To establish one set of return code
tests for all the steps in a procedure,
code the CONO parameter without a pro­
cedure step name. This specification
replaces all CONO parameters in the
procedure, if any are present.

Section 1: Job Control Statements 17

Passing Information to the Processing
Program (PARM)

For proces~ing programs that require
control information at the time they are
executed, the EXEC statement provides the
PARM parameter. To pass information to the
program" code the keyword parameter

r---l
I PARM=value I L ___ J

in the operand field. Replace the term
"value" with up to 40 characters of data.

If you omit the PARM parameter" no
control information is passed to the proc­
essing program.

Notes:

• If the value contains special charac­
ters" the information must be enclosed
in single apostrophes (5-8 punches) .,
e.g." PARM=' CONTROL INFORMATION'. (The
enclosing apostrophes are not consid­
ered part of the information.) If the
special characters include apostrophes,
each must be shown as two consecu­
tive apostrophes, e.g., PARM='CONTROL
INFORM' 'N'.

• If the only special character in the
value is the comma" the job scheduler
will accept the value enclosed in
parentheses instead of apostrophes,
e.g., PARM=(123,456,789).

• When the job step uses a cataloged
procedure, you can pass information to
a step in the procedure by including.,
as part of the keyword PARM, the
procedure step name~ i.e.,
PARM.procstepname. This specification
overrides the PARM parameter in the
named procedure step, if one is pre­
sent. You can code as many parameters
of this form as there are steps in the
cataloged procedure.

• To pass information to the first step
in a cataloged procedure and nullify
all other PARM parameters in the proce­
dure" code the PARM keyword without a
procedure step name.

Reference:

18

• The exact location and format of con­
trol information passed to a processing
program are described under the topic
titled "Program Management" in section
1 of the publication IBM System/360
Operating System: Supervisor and Data
Management Services.

Specifying Job Step Accounting Information
(ACCT)

When executing a multistep job" or a job
that uses cataloged procedures~ you might
want to charge individual job steps to
separate accounting areas. To specify
items of accounting information pertaining
to a job step, code the keyword parameter

r---,
I ACCT=(accounting information) I L ___ J

in the operand field of the EXEC statement.
Replace the term "accounting information"
with one or more subparameters separated by
commas. The items of information are made
available to your installation'S job step
accounting routines.

Notes:

• The total number of characters of
accounting information, plus the commas
that separate the subparameters, cannot
exceed 142.

• If the list contains only one subparam­
eter of information, you need not
enclose it in parentheses* e.g ••
ACCT=12345.

• If any subparameter of information con­
tains special characters (except
hyphens), you must enclose the subpar­
ameter in apostrophes (5-8 punches).
The apostrophes are not considered part
of the information.

• When the job step uses a cataloged
procedure, you can furnish accounting
information pertaining to a single pro­
cedure step by including. as part of
the keyword ACCT, the procedure step
name. e.g., ACCT.procstepname. This
specification overrides the ACCT param­
eter in the named procedure step, if
one is present. You can code as many
parameters of this form as there are
steps in the cataloged procedure.

• To furnish accounting information per­
taining to all steps in a procedure~
code the ACCT parameter without a pro­
cedure step name. This specification
overrides all ACCT parameters in the
procedure, if any are present.

Reference:

• To write a job step accounting routine
that uses this accounting information,
see the section "Adding an Accounting
Routine to the Control Program" of the
publication IBM System/360 Operating
System: System Programmer" s Guide .•

Setting Job Step Time Limits (TIME)
(Priority Schedulers Only)

To limit the computing time used by a
single job step or cataloged procedure
step, you might want to assign a maximum
time for its completion. Such an assign­
ment is useful in a multiprogramming envi­
ronment where more than one job has access
to the computing system.

To assign a time limit to a job step,
code the keyword parameter

r---,
I TIME=(minutes,seconds) I L ___ J

in the operand field of the EXEC statement.
Replace the terms "minutes" and "seconds"
with the maximum number of minutes and
seconds allotted for execution of the job
step. The number of minutes cannot exceed
1439; the number of seconds cannot exceed
59. If the job step is not completed in
this time, the entire job is terminated.

If you omit the TIME parameter, the
default job step time limit (as established
in the cataloged procedure for the input
reader) is assumed. If the job step execu­
tion time may exceed 1439 minutes (24
hours), code TIME=1440 to eliminate job
step timing.

Notes:

• If the time limit is given in minutes
only, you need not code the parenthe­
ses, e.g., TIME=5.

• If the time limit is given in seconds
only, you must code a comma to indicate
the absence of minutes, e.g.,
TIME=(,45).

• When the job step uses a cataloged
procedure, you can set a time limit for
a single procedure step by including#
as part of the keyword TIME, the
procedure step name, i.e., TIME.proc­
stepname. This specification overrides
the TIME parameter in the named proce­
dure step, if one is present. You can
code as many paramters of this form as
there are steps in the cataloged proce­
dure.

• To set a time limit for an entire
procedure, code the TIME parameter
~ithout a procedure step name. This
specification overrides all TIME param­
eters in the procedure, if any are
present.

Specifying Main Storaqe Requirements
for a Job Step (REGION)
(Priority Schedulers Only)

For job steps that require an unusual
amount of main storage, the EXEC statement
provides you with the REGION parameter.
Through this parameter you can specify the
maximum amount of main storage to be allo­
cated to the associated job step. This
size must take into account the system
components required by your installation.

To specify a region size,
keywcrd pararreter

code the

r---,
I REGION=nnnnnK I l ___ J

in the operand field of the EXEC statement.
Replace the term "nnnnn" ~ith the number of
l024-byte areas you want allocated to the
job step, e.g., REGION=51K. This number
can range from one to five digits.

If you omit the REGION parameter, the
default region size (as established in the
cataloged procedure for the input reader)
is assurred.

Notes:

• If you have specified a REGION param­
eter in the JOB statement, REGION
parameters in the job's EXEC statements
are ignored.

• When the job step uses a cataloged
procedure, you can request a region
size for a single procedure step by
including, as part of the REGION param­
eter, the procedure step name, i.e.,
REGION.procstepname. This specifi­
cation overrides the REGION parameter
in the named procedure step, if one is
present. You can code as many
parameters of this form as there are
steps in the cataloged procedure.

• To request a single region size for an
entire cataloged procedure, code the
REGION parameter without a procedure
step narre. This specification over­
rides all REGION parameters in the
procedure, if any are present.

Reference:

• The storage requirements you must con­
sider when specifying a region size are
outlined in the publication lIM
Systerr/360 Operating System: Storage
Estirrates.

section 1: Job Control Statements 19

Form C28-6539-4, Page Revised by TNL N28-2226, 4/10/67

DD STATfMENT

Data sets used by processing programs
must be represented by DD statements in the
input stream. The DD statements pertaining
to a particular job step follow the EXEC
statement associated with the step. A DD
statement must contain the term DD in its

l

operation field. Although all paraweters
in the DD statement's operand field are
optional, a blank operand field is invalid.

The DD statement is the final source of
information that is needed to retrieve and
store data. Figure 2 illustrates the
sources of information and the means by
which each source refers to the next.

An input/output macro-instruction, coded
as part of the processing program, issues
an input or output request (OPEN, CLOSE,
GET, PUT, READ, WRITE). This request uses
a dcbname to refer to a data control block
created earlier by a DCB macro-instruction.
The data contrel block contains information
about a data set that is gathered from
several sources, one of which is a DD
statement whose ddname matches the rldname
given in the data control block. The DD
statement, the final source of information,
is associated with a specific data set. It
refers to the data set with a data set
name.

Because of the DD statement's position
in this sequence of information sources,
you can specify such characteristics as
buffer size, record length, and device type
at the time the job step is executed,
rather than when you code the processing
program.

y\
/.A ~ __________

To follow the flow of paraweters in the
DD staterrent, turn to Appendix E and fold
out Chart 2 while reading this chapter.
Individual parameters are shown in detail
in a series of figures on Chart 3 of
Appendix E.

Identifying the DD Statement (ddname)

The ddname identifies the DD statement
so that subsequent control statements and
the data control block can refer to it. It
must satisfy the position, length, and
content requirements for a name field.
Each ddname within a job step should be
unique. If duplicate ddnames exist, all
references are directed to the first such
DD statement in the job step, and the
second is ignored.

Note:

• omit the ddname if the data set is
concatenated with the data set defined
by the preceding DD statement, or the
DD statement is one of a group of DD
statements that define an indexed
sequential data set.

If the jeb step uses a cataloged proce­
dure, the ddname ITust be qualified by the
procedure step name, i.e., procstepname.
ddname. The ddname can identify either 'a
DD statement in the procedure, whose
parameters you want to override, or a new
DD statement you want to add to the proce­
dure. In both cases, the modification is
valid only for the duration of the job
step; it does not change the procedure
permanently.

Creates
A Data
Control
Block I

~DC8 _

I /

((~ --.. ~ {;""'O-M-ac-ro---/--'"

\ \ / /

Processing
Program

Execution

/

, '
, '> r-----....L.(....,

v _L DCB Macro
/.,-----/--'-71

Processing
Program

Assembly

I--____ ...Yv
I----__ V

Figure 2. Data Set Information Sources

20

Form C28-6539-4, Page Revised by TNL N28-2226, 4/10/67

References:

• For more information on how to code the
ddname when creating indexed sequential
data sets, see Appendix D of this
publication.

• Instructions for concatenating data
sets and modifying cataloged procedures
are contained in the chapters
"Additional DD Statement Facilities"
and "Using Cataloged Procedures" in
Section 2 cf this publication.

Defining Data in an Input Stream (DD * or
DD DATA)

One of the ways a data set can be
introduced to the system is by its inclu­
sion in an input stream in the form of
80-byte records. A data set in an input
stream is bounded by a DD statement that
marks its beginning and a delimiter state­
ment that marks its end.

To mark the beginning of the data set,
code an asterisk (*) in the operand field
of the DD statement that precedes it. If
the data contains job control statements
(statements with // in columns 1 and 2), as
would be the case if the data set were a
procedure being cataloged, code the word
DATA in the operand field instead of the *.
In both cases, do not code any other
parameters.

To mark the end of the data set, insert
a delimiter statement (/* in columns 1 and
2) after the last data card.

Notes:

• When using a sequential scheduler, you
can include only one data set in the
input stream for each job step or
procedure step. This data set wust be
defined by the last DD statement in the
step. With systems providing mUltipro­
gramming with a fixed number of tasks,
the processing program that uses data
in the input stream wust be in the
lowest priority partition.

• When using a priority scheduler, you
can include more than one data set in
the input stream. If you leave out the
DD * statement for the first such data
set, the system assigns the name SYSIN
to it. The delimiter statement is not
required following data sets preceded
by DD *.

• Data sets in an input stream cannot
contain statements having the charac­
ters /* in coluwns 1 and 2.

Bypassing I/O Operations on the Data Set
(DUMMY)

The DUMMY parameter, a DD statement
positional parameter, offers you the facil­
ity to bypass I/O operations, space alloca­
tion, and disposition of data sets referred
to by the basic or queued sequential access
methods. This facility can be used to
suppress the writing of certain cutput data
sets, such as assembler listings, and to
update new waster files with a dummy detail
file. Bypassing operations on noncritical
data sets also results in a saving of time
when you are testing a program. To use
this facility, code the word DUMMY as the
first parameter in the operand field.

An attempt to read a "dummy" data set in
your processing program will result in an
irrmediate end-of-data-set exit. If you
attempt tc write on a dummy data set, the
write request is recognized, but no data is
transrritted. In addition, no device allo­
caticn, external storage allocation, or

I
data set disposition takes place. Another
way of establishing a dumrny data set is by
assigning it the name NULLFILE.

Pcstponing the Definition of a Data Set
(DDNAME)

A DD statement in a cataloged procedure
and, in certain cases, in an input stream,
need not contain descriptive paraweters.
Instead, it can point to a sUbsequent DD
statement that contains a complete descrip­
tion of a data set. The original data set
does not assuwe real characteristics until
the DD statement that contains the complete
description is encountered. To postpcne
the definition of a data set in this
manner, code

r---,
I DDNAME=ddname I l ___ J

in the operand field of the DD statement.
Replace the term "ddname" with the name of
the DD statement that contains cowplete
information. This feature is particularly
useful when a cataloged procedure uses data
in an input stream.

Reference:

• For more information and examples of
usage cf the DDNAME paraweter, see the
chapter "Using Cataloged Procedures" in
Section 2 of this publication.

Section 1: Job Control Statements 21

Form C28-6539-4, Page Revised by TNL N28-2226, 4/10/67

Routing a Data set Through the Output
stream (SYSOUT)

output data sets can be routed through
the system output stream and handled much
the same as system messages. When using a
sequential scheduler, you can route a data
set through the output stream by coding the
keyword parameter

r---,
I SYSOUT=A I l ___ J

in the operand field of the DD statement.
Your processing program writes the data set
on the system output device. A unit record
or labeled tape device becomes the system
output device when the operator activates
it as such with a START WTR command. With
systems providing multiprogramming with a
fixed number of tasks, the processing pro­
gram that writes the data must be in the
lowest priority partition.

When you use a priority scheduler, such
operations are not performed during execu­
tion of the job step. Instead, the proc­
essing program writes the data set on an
intermediate direct-access device. Later
the data set is routed through an output
stream to a system output device. To
schedule such an operation, code the key­
word parameter

r---,
I SYSOUT=x I l ___ J

in the operand field. Replace the letter
"x" with an alphabetic (A-Z) or numeric
(0-9) character. The letter represents one
of the system output classes. output writ­
ers route data from the output classes to
system output devices. The DD statement
for this data set can also include a unit
specification describing the interrrediate
direct-access device, and an estimate of
the space required. If you oroit these
parameters, the job scheduler provides
default values as the job is read and
interpreted.

When using a priority scheduler, you
have two additional options with the SYSOUT
parameter. If you have a special program
to handle output operations, code

r---,
I SYSOUT=(x,progname) I l ___ J

Replace the term "progname" with the member
name associated with your prograrn. The
program must reside in the system library.
If you want the data set printed or punched
on a specific type of output form, code

22

r---,
I SYSOUT=(x"forrr#) I l __________________________________ -------J

Replace the term "form#" with the 4-digit
ferm number to be used. This form number
is used to instruct the operator in a
message issued at the time the data set is
to be printed.

• If you wish to specify both an output
program and a form number, code
SYSOUT=(x,progname,form#}.

Identifying the Data Set (DSNAME)

Data sets used by a processing program
are identified with the DSNAME parameter.
You need not code this parameter if the
data set is temporary; the system automat­
ically assigns a name if the DSNAME param­
eter is ornitted. You can specify this
parameter in one of three ways:

1. By giving the name by which a data set
is or will be cataloged or tabulated.

2. By referring to an earlier DD state­
rr.ent that gives its cataloged or tab­
ulated name.

3. By giving a temporary name, if it is a
terr.perary data set.

Te supplerrent this discussion of the DSNAME
parameter pictorially, turn to Appendix E
and fold cut Chart 3.

1. Data sets that will be identified in
later jobs by name, or that were
assigned a name in an earlier job are
referred to by a cataloged or tabu­
lated name. To name. or retrieve a
data set of this type, code the key­
word parameter

r------------------------------------,
I DSNAME=dsname I l ____________________________________ J

in the operand field of the DD state­
ment. Replace the term "dsname" with
the data set's cataloged or tabulated
name. If the catalog roakes use of
index levels, you must give a fully
qualified name, e.g., A.B.LINKFILE.

Notes:

• The data set is assigned a dummy
status if you code
DSNAME=NULLFILE.

• If the DD statement refers to a
particular generation of a genera­
tion data group, you must code the

generation number in parentheses,
i.e., DSNAME=dsname(number). A
generation number can be 0 or a
signed integer.

• If the DD statement refers to a
member of a partitioned data set,
you must code the member name in
parentheses after dsname, i.e.,
DSNAME=dsname(membername).

• If the DD statement is one of a
group of DD statements required to
define an indexed sequential data
set# you must code one of the
terms INDEX" PRIME, or OVFLOW in
parentheses after dsname, i.e.,
DSNAME=dsname(PRIME). These terms
identify the DD statements within
the group.

Reference:

• For additional information on gen­
eration data groups" see the chap­
ter "Additional DD Statement
Facilities" in Section 2 of this
publication. For instructions on
creating and retrieving indexed
sequential data sets., see Appendix
D.

2. The name of a data set that is used
several times in a job, whether speci­
fied in a DSNAME parameter or assigned
by the system, can be copied after its
first use with a simple reference to
the DD statement that first identifies
it. This allows you to change a name
easily and eliminates your having to
assign names to temporary data sets.
To obtain the data set name from an
earlier DD statement" code the keyword
parameter

r------------------------------------l
I DSNAME=*.stepname.ddname I L ____________________________________ J

in the operand field of the DD state­
ment. Replace the terms "stepname"
and "ddname" with the job step name
and DD statement name" respecti vely,
where the data set was first defined.

• If the earlier DD statement is con­
tained in a cataloged procedure
step, you must include the procedure
step name, i.e., DSNAME=*.stepname.
procstepname.ddname.

3. A data set that exists only within the
boundaries of a job can be assigned
any temporary name. To assign a tem­
porary name, code the keyword param­
eter

r------------------------------------,
I DSNAME=&name I L ____________________________________ J

Replace the term "name" with any 1- to
a-character name not used by another
temporary data set in the job.. The
system replaces the &name with a name
of the form name. jobname. (Thus., a
DSNAME parameter specifying &WORK1 in
a job named PAYROLL would result in a
data set name of WORK1.PAYROLL.) You
can retrieve this data set later in
the job by coding DSNAME=&name in a DD
statement, using the same name, or
DSNAME=*.stepname.ddname.

Notes:

• If the DD statement refers to a
reember of a temporary partitioned
data set, you must code the mem­
bername in parentheses, i.e.,
DSNAME=&name(membername).

• If the DD statement is one of a
group of DD statements required to
define an indexed sequential data
set, you must code one of the
terms INDEX, PRIME, or OVFLOW in
parentheses after &name, i.e.,
DSNAME=&name'(PRIME) • These terms
identify the DD statements within
the group.

• DD statements defining temporary
data sets should either use this
form of the DSNAME parameter or
have DSNAME omitted altogether.
Temporary data sets should not be
assigned a permanent name, i.e.,
DSNAME=dsname.

Requesting a Unit (UNIT)

The UNIT parameter of the DD statement
allows you to specify information about the
input or output unites) used by a data set.
Unit information is not required if the
data set:

• Is cataloged.

• Is passed from a previous step.

• Shares space or cylinders with an ear­
lier data set, i.e., SUBALLOC or SPLIT
is specified.

• Is assigned volumes used by an earlier
data set in the same job# i.e.,
VOLUME=REF is specified.

In these cases, unit information is taken
from other parameters and sources. You can

Section 1: Job Control Statements 23

specify unit information in one of two
ways:

1. By indicating a specific unit or group
of units.

2. By requesting the same unit or units
used by another data set in the same
job step.

other options of the UNIT parameter allow
you to specify the number of units you
need, defer mounting of volumes until the
data set is opened, and request that the
data set not be retrieved or stored with
access mechanisms used by certain other
data sets. To supplement this discussion
of the UNIT parameter pictorially. turn to
Appendix E and fold out Chart 3.

1. A specific unit or group of units can
be identified by (a) its address, (b)
its type number, or (c) its group
name.

24

(a) To identify a unit by its address"
code the keyword parameter

r--------------------------------l
I UNIT=address I L ________________________________ J

in the operand field of the DD
statement. Replace the word
"address" with the 3-byte address
of the unit, as set by the opera­
tor on the LOAD-UNIT switches of
the console. e.g., UNIT=180 for
channell" control unit 8, unit o.

(b) Unit type numbers correspond to
model numbers of input/output
devices configured into your sys­
tem. Type numbers are provided by
the system automatically. Unit
type numbers provide you with a
certain degree of device indepen­
dence in that your request may be
filled by any of a number of
devices of the same type. To
identify a unit by its type num­
ber, code the keyword parameter

r--------------------------------,
I UNIT=type I L ________________________________ J

in the operand field. Replace the
word "type" with a valid unit type
nwnber, e.g. " UNIT=2400-2. Unit
type numbers for all units are
listed in Appendix A.

(c) Unit groups are established by
your installation at system gener­
ation. They allow you to desig­
nate names for individual units or

collections of units, and to clas­
sify collections of magnetic tape
and direct-access units under the
same name. To identify a group of
units, code the keyword parameter

r--------------------------------,
I UNIT=group I L ________________________________ J

in the operand field. Replace the
word "group" with a valid unit
group name, e.g., UNIT=TAPE.

• When you are using a priority
scheduler" you should not use the
unit address technique of iden­
tification unless absolutely nec­
essary. This technique limits
uni t assignment and IClay result in
delay of the job if the unit is
being used by another job.

If a data set exceeds more than one
volume, you can assign each volume to
a separate unit. This eliminates your
having to wait for demounting and
mounting operations and allows you to
process a data set that is split
between two or more direct-access
volumes. Code the number of units you
desire after the unit type or group
name, e.g.# UNIT=(2400,3). If only
one unit is required" you need not
code the number. (If you code 0" the
system assumes 1.)

If the data set is cataloged or the DD
statement implies the number of
volumes required, you can have the
volumes mounted in parallel by coding
"P" instead of a number. The system
assigns one unit of the specified type
for each volume on which the data set
resides.

In certain instances, you may find it
unneccessary or undesirable to have
all data sets in place before their
use in a job step. To defer the
mounting of volumes until a data set
is actually opened, code the word
DEFER following the number of units!,
e.g., UNIT=(TAPE,2.,DEFER). If the
data set requires only one unit,
insert an extra comma to indicate the
absence of the number of units, e.g.,
UNIT= (TAPE, " DEFER) •

• You cannot defer the mounting of a
direct-access volume that is to

Form C28-6539-4, Page Revised by TNL N28-2226, 4/10/67

2.

contain a new data set. DD state­
ments required by operating syste~
utility programs are an exception
to this note, in that they require
the specification of DEFER.

To optimize the flow of input and
output data in a job step, you rright
want to assign separate access mechan­
isms to direct-access data sets. To
request a separate access mechanism,
code the keyword subparameter
SEP=(ddname, ... ,ddname) in the last
positions of the UNIT paraITeter.
Replace the terms "ddname" with the
nameS of other DD statements in the
job step, e.g., UNIT=(,P,SEP=(INPUT1,
INPUT2». The system will attempt to
process this data set with different
access mechanisms than the ones used
to process the data sets defined by
the named DD statements.

Notes:

• When you use a sequential schedul­
er, the operating system ignores a
SEP request if it conflicts with
another request, or if sufficient
access mechanisms are not avail­
able.

• When you use a priority scheduler,
the operator is notified if the
request cannot be satisfied. He
must decide whether to continue
the job or to withdraw separation
requests.

• Unit separation requests are
ignored when the automatic volume
recognition feature is used.

• If the list of ddnames includes
only one ddname, you need not code
the inner parentheses, e.g.,
UNIT=(190,SEP=INPUT).

To conserve the number of units used
in a job step, you can request that a
data set be assigned the same unites)
as assigned to an earlier data set in
the same step. This technique, known
as unit affinity, indicates that you
want certain data sets and their asso­
ciated volumes to use a single unit in
sequential order. (Thus, deferred
mounting is implied for data sets
requesting unit affinity.) To request
unit affinity, code the keyword param­
eter

r------------------------------------,
I UNIT=AFF=ddname I L ____________________________________ J

in the operand
term "ddname"

field.
with the

Replace the
name of an

earlier DD statement in the job step.
This data set will te assigned the
same unit or units as the data set
defined by the named DD' statement.

• Unit affinity requests are ignored
when the automatic volurre recogni­
tion feature is used.

Specifying Volume Information (VOLUME)

Information about the volume or volumes
on which an input data set resides, or on
which an output data set will reside is
given in the VOLUME parameter. Volumes can
be used most efficiently if you are famil­
iar with the states a volume can assume.
Volurre states involve two criteria: the
type of data set you are defining and the
manner in which you request a volume.

Data sets can be classified as one of
two types -- temporary or nontemporary. A
temporary data set exists only for the
duration of the job that creates it. A
nontemporary data set can exist after the
jct is corrpleted. You indicate that a data
set is terrporary by coding:

• DSNAME=&narre.
• No DSNAME parameter.
• DISP=(NEW,DELETE), either explicitly or

implied, e.g., DISP=(,DELETE).
• DSNAME=reference, referring to a DD

statement that defines a temporary data
set.

All other data sets are considered nontem­
porary. If you attempt to keep or catalog
a passed data set that was declared tem­
porary, the system changes the disposition
to PASS unless DEFER was specified in the
UNIT pararreter. Such a data set is deleted
at the end of the job.

The manner in which you request a volume
can be considered specific or nonspecific.
A specific reference is implied whenever
you request a volume with a specific serial
number. Anyone of the following condi­
tions denotes a specific volume reference:

• The data set is cataloged or passed
from an earlier job step.

• VOLUME=SER is coded in the DD state­
ment.

• VOIUME=REF is coded in the DD state­
ment, referring to an earlier specific
voluITe reference.

All other types of volume references are
nonspecific. (Nonspecific references can
be made only for new data sets, in which
case the system assigns a suitable volume.)

Section 1: Job Control Statements 25

Form C28-6539-4, Page Revised by TNL N28-2226, 4/10/67

The state of a volume determines when
the volume will be demounted and what kinds
of data sets can be assigned to it. The
system determines the precise state of a
volume by combining two characteristics,
the "mountability" of the volume, and its
availability for allocation. Some volumes
are assigned a permanent state at system
generation; others can assume different
states, through MOUNT commands and VOLUME
parameters in DD statements. The remainder
of this discussion on volume states is
divided into two parts, the first dealing
with direct-access volumes and the second
with magnetic tape volumes.

Direct-Access Volumes: Direct-access vol­
umes differ from tape volumes in that they
can be shared by two or more data sets
processed concurrently by more than one
job. Because of this difference, direct­
access volumes can assume different volume
states than tape volumes. The volume state
is determined by one characteristic from
each of the following groups:

Mount
Characteristics

Permanently Resident
Reserved
Removable

Allocation
Characteristics

Public
Private
Storage

All combinations of characteristics are
valid except removable/storage. Table 1
explains how direct-access volumes are
assigned their mount and allocation charac­
teristics. Actions 4 through 8 are induced
by control statements in the input streaw.

Permanently resident volumes are always
mounted. The permanently resident char­
acteristic applies automatically to:

• All physically nondemountable volumes,
such as 2301 Drum storage.

• The volume from which the system is
loaded (the IPL volume).

Table 1. Direct-Access Volume States

• The volume containing the system data
sets SYS1.LINKLIB, SYS1.PROCLIB, and
SYS1.SYSJOBQE.

• Volumes used by the systew for SYSIN
and SYSOUT. (Priority schedulers only.)

Any other direct-access volume can be
designated as permanetly resident in a
sfecial rrerrcer of SYS1.PROCLIB named
PRESRES. The reserved characteristic
applies to volumes that remain mounted
until the operator issues an UNLOAD com­
mand. They can ce reserved cy either a
MOUNT cowroand referring to the unit on
which they are mounted, or an entry in
PRESRES. The removable characteristic
afplies tc all volumes that are neither
permanently resident nor reserved. Remov­
acle volurres do not have an allocation
characteristic when they are not mounted.
A reserved volume becomes rerrovacle after
an UNLOAD command is issued for the unit on
which it resides.

The allocation characteristics -- pub­
lic, private, and storage -- deal with a
volume's availability tc be assigned by the
system to temporary data sets, and, if the
volume is removable, when it is to be
demounted. A public volume is used primar­
ily for terrporary data sets and, if it is
permanently resident, for frequently used
data sets. It must be requested by a
specific volume reference if a data set is
tc be kept or cataloged on it. If a public
volume is removable, it is demounted only
when it's unit is required by another
volume. You can change a reroovable/public
vclume to private cy specifying
VOIUME=PRIVATE. A private volume must be
requEsted by a specific volume reference,
and, therefore, cannot contain temporary
data sets having nonspecific volume
requests. If it is reserved, it remains
mounted until the operator issues an UNLOAD
ccmmand for the unit on which it resides.
If it is removable, it will be demounted
after it is used unless you specifically
requested that it be retained

r------------------------T--,
I I Allocation Characteristic I
I Mount Characteristic ~--------------------T--------------------T--------------------1
I I Public I Private I Storage I
~------------------------+--------------------+--------------------+--------------------~
I Permanently resident I 1 PRESRES entry I l PRESRES entry I 1 PRES RES entry I
~------------------------+--------------------+--------------------+--------------------~
I I ~ PRESRES entry I 2 PRESRES entry I ~ PRESRES entry I
I Reserved I -or- I -cr- I -or- I
I I MOUNT command I MOUNT command . I MOUNT command I
~------------------------+--------------------+------------------~-+~-------------------~
I I 1 VOLUME=PRIVATE I ~ VOLUME=PRIVATE I 2 Invalid state I
I Removable I not specified in I specified in I I
I I the DD statement I the DD statement I I L ________________________ ~ ____________________ ~ ____________________ ~ ____________________ J

26

Form C28-6539-4, Page Revised by TNL N28-2226, 4/10/67

(VOLUME=RETAIN) or passed (DISP=PASS).
Once a removable volume has been made
private, it will ultimately be demounted.
To use it as a public volume, you must have
it remounted. A storage volume is always
permanently resident or reserved; it is
effectively an extension of main storage.
Its principal use is to keep or catalog a
data set having a non-specific volume ref­
erence.

Magnetic Tape Volumes: The volume state of
a reel of magnetic tape is also determined
by a combination of mount and allocation
characteristics:

Mount
Characteristics

Reserved
Removable

Allocation
Characteristics

Private
Scratch

The reserved/scratch combination is not a
valid volume state. Reserved tape volumes
assurre their state when the operator issues
a MOUNT command for the unit on which they
reside. They remain mounted until the
operator issues a corresponding UNLOAD com­
mand. Reserved tapes must be requested by
a specific volume reference.

A removable tape volume is assigned
private characteristic when one of
following occurs:

the
the

Section 1: Job Control Statements 26A

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

J

j
j
j
j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j
j

j
j
j

j
j

j
j
j

• It is requested with a specific volume
reference" except when OS NAME refers to
a passed data set.

• It is requested for allocation to a
nontemporary data set.

• The VOLUME parameter requests a private
volume.

A removable/private volume is demounted
after its last use in the job step, unless
you request that it be retained.

All other tape volumes are assigned the
removable/scratch state. They remain
mounted until their unit is required by
another volume.

Volume Parameter Facilities: The facili­
ties of the VOLUME parameter allow you to:

• Request private volumes (PRIVATE).
• Request that private volumes remain

mounted until the end of job (RETAIN).
• Select volumes when the data set

resides on more than one (seq#).
• Request more than One nonspecific vol­

ume (volcount).
• Identify specific volumes (SER and

REF).

These facilities are all optional. You can
omit the VOLUME parameter when defining a
new data set, in which case the system
assigns a suitable public or scratch vol­
ume. To supplement this discussion of the
VOLUME parameter pictorially" turn to
Appendix E and fold out Chart 3.

To request that the data set be read
from or written on a private volume, code

r---l
I VOLUME=PRIVATE I L ___ J

in the operand field of the OD statement.
Later data sets having nonspecific volume
requests will not be assigned to this
volume. In addition" the volume will be
demounted after its last use in the job­
step.

Notes:

• If you specify VOLUME=PRIVATE, but do
not request a specific volume, the
system requests the mounting of a vol­
ume and assigns it the private char­
acteristic.

• If you specify VOLUME=PRIVATK, and
request a permanently resident volume,
the data set is assigned to the volume.
but the volume retains its public
state,.

If you have requested a private volume.
you may want the volume to remain mcunted
after its last use in the job step. To
bypass the demounting operation, code

r---1
I VOLUME=(PRIVATE,RETAIN) I L ___ J

The volume remains mounted until after it
is used in a subsequent step" or the end
job. whichever occurs first.

Notes:

• If the data set resides on more than
one volume, and the volumes are mounted
in sequential order" only the last
volume is retained.

• Tape volumes that are retained are
rewound at the end of the step" and are
not repositioned when they are used
again.

• If the system finds it necessary to
remove a retained volume, it ensures
through messages to the operator that
the volume is remounted before its next
use.

When you are reading or writing a multi­
volume cataloged data set" a facility of
the VOLUME parameter allows you to begin
processing with a selected volume. Code

r---1
I VOLUME= (, " seq#) I L ___ J

in the operand field. Replace the term
·seq#n with a 1- to 4-digit volume sequence
number. All volumes whose sequence numbers
precede this number are omitted from proc­
essing.

• You can also include the parameters
PRIVATE and RETAIN with the sequence
number, e.g., VOLUME=(PRIVATE,.3) or
VOLUME=(PRIVATE,RETAIN,3).

When you are creating a data set that
exceeds one volume" you must either iden­
tify the volumes specifically or give a
volume count, in which case suitable vol­
umes are assigned. To make a nonspecific
request" code

r---,
I VOLUME= ('I' " volcount) I L ___ J

Replace the term ·volct" with the number of
volumes the data set requires.

Section 1: Job Control Statements 27

• You can also include the parameters
PRIVATE and RETAIN with the volume
count, e. g. " VOLUME= (PRIVATE" , " 4) or
VOLUME=(PRIVATE,RETAIN" ,4).

To make a specific
can either identify
serial numbers or use
used by an earlier
Code

volume request" you
the volumes by their
the same volume(s)
data set in the job.

r---,
I VOLUME=SER= (ser#, ••• " ser#) I L ___ J

to identify the volumes by serial numbers.
Replace the terms "ser#" with the 1- to
6-character volume serial numbers associat­
ed with the volumes. This form of the
VOLUME parameter must be used when retriev­
ing noncataloged data sets.

Notes:

• If only one volume is involved. you
need not code the parentheses, i.e.,
VOLUME=SER=ser#.

• When you use a sequential scheduler,
the volume containing the input stream
has the serial SYSIN. This serial must
not be used for other volumes. With a
priority scheduler" other serials can
be used for volumes containing input
streams.

• Each volume in your installation should
have a different serial number.

• Labeled tape reels contain the volume
serial number in their labels. How­
ever, all tape reels should be made
easily identifiable. such as having the
serial number posted on the reel.

• You can also include the parameters
PRIVATE and RETAIN when you use SER,
i.e., VOLUME=(PRIVATE,SER=(ser#s» or
VOLUME=(PRIVATE,RETAIN,SER=(ser#s».

The alternative means of making a specific
volume request is by using the same volumes
as assigned to an earlier data set. If the
data set is cataloged or passed, you refer
to it by coding

r---l
I VOLUME=REF=dsname I L ___ J

Replace the term "dsname" with the data
set's cataloged name. If it is not cata­
loged or passed" you can refer to the DD
statement that defined it by coding

28

r---1
I VOLUME=REF=*.stepname.ddname I L ___ J

Replace
with the
statement
defined.

Notes:

the terms "stepname" and "ddname"
name of the job step and DD

where the earlier data set is

• If the earlier data set is part of the
same job step, you need not code the
stepname i.e., VOLUME=REF=*.ddname.

• If the earlier data set is part of a
cataloged procedure. you must include
the procedure step name" i.e.,
VOLUME=REF=*.stepname.procstepname.
ddname.

• If the earlier data set resides on more
than one tape volume, only the last
volume is assigned when VOLUME=REF is
specified.

Describing the Attributes of the Data set
(DCB)

Specifying data set attributes at pro­
gram execution time represents one of the
DD statement's primary advantages. Through
the use of the DCB parameter" you can
specify data set label information, buffer
requirements, and other pertinent informa­
tion at the time a processing program is
executed rather than when it is compiled.

A data control block associated with
each data set is originally constructed in
the processing program by a DCB macro­
instruction. Here you can specify
descriptive information that is not subject
to change. When the processing program is
executed, the remaining DCB information is
supplied by the data set label (provided
the data set already exists) and the DD
statement. The DCB parameter must be coded
in the DD statement unless the data control
block is completed by the processing pro~
gram, default options assumed in the OPEN
macro-instruction, or the data set label.

To save time in coding the DCB paramet­
er. you may be able to copy the data set
label information associated with a Similar
data set. To copy the data set label
information associated with a cataloged
direct~access data set. 'code the keyword
parameter

r----------------------------------~------l
I DCB=dsname I L _______________________ ~ _________________ J

Form C28-6539-4, Page Revised by TNL N28-2226, 4/10/67

in the operand field of the DD statement.
Replace the word "dsname" with the data
set's cataloged name. The volume that
contains this data set must be wounted
before the execution of the job step con­
taining the copy request. A permanently
resident volume is the most likely place
from which to copy such information, in
that it is always mounted.

If such a data set does not exist, you
still might be able to copy the DCB param­
eter of an earlier DD statement in the job.
To refer to this DD statement, code the
keyword parameter

r---,
I DCB=*.stepname.ddnaree I l ___ J

in the operand field. Replace the terms
"stepname" and "ddname" with the job step
name and DD statement name, respectively.

Notes:

• If the earlier DD statement is con­
tained in the same job step, you need
not code the stepname, i.e.,
DCB=*.ddname.

• If the earlier DD statement is con­
tained in a cataloged procedure step,
you must include the procedure step
name, i.e., DCB=*.stepname.procstep­
name.ddname.

If you wish to modify the information
that is copied from another data set label
or DCB parameter, code

r---,
I DCB=(reference,list of attributes> I
l __ ---------------------------------------J
Replace the term "reference" with dsname or
*.stepname.ddname. The attributes in the
list override the corresponding copied
attributes. Data set attributes are coded
in the form of keyword subparameters sepa­
rated by commas, e.g., BLKSIZE=810 for a
block size of 810 bytes. These subparamet­
ers correspond to operands in the DCB
macro-instruction and are coded using the
same keywords and values. A glossary of
valid DCB subparameters is given in Appen­
dix B of this publication.

If you cannot copy another data set
label or DCB parameter, you must supply all
DCB attributes that are not specified in
the processing program (either directly or
by default> or data set label. Code the
keyword parameter

r---,
I DCB=(list of attributes) I
l __________ ----------_____________________ J

in the operand. Again, the attributes are
coded as keyword subparameters separated by
commas, e.g., DCB= (RECFM=FB,·LRECL=80, •••).

References:

• DCB wacro-instructions and operands are
described in detail in the publication
IBM System/360 Operating System: Super­
visor and Data Management Macro­
Instructions.

• DCB macro-instructions and operands
associated with the graphic access
methods are described in the publica­
tions IBM System/360 Operating System:
Graphic Programming Services for the
IBM 2250 Display Unit, Form C27-6909,
and Graphic Programming Services for
IBM 2260 Display Station (Local
Attachment), Form C27-6912.

Describing the Lata Set Label (LABEL)

Data sets residing on magnetic tape
volumes usually have data set labels.
Direct-access volumes and volumes mounted
through the automatic volume recognition
feature must have labels conforming to
standard label specifications. The LABEL
parameter indicates the label type, the
data set's relative position on tape, its
retention period, and whether a password is
required to read or write on it. To
supplement this discussion of the LABEL
parameter pictorially, turn to Appendix E
and fold out Chart 3.

Magnetic tape volumes can contain volume
labels and data set header and trailer
labels that do not conform to the system
standard label specifications. To create
or retrieve a data set residing on such a
tape volume, you must include the LABEL
parameter. To specify the label type, code

r---,
I LABEL=(,type) I l ___ J

in the operand field.
"type" with:

Replace the word

SL if the data set has standard
labels.

NL - if the data set has no labels.
NSL - if the data set has nonstandard

labels.
SUI - if the data set has both standard

and user labels.
BLP - to bypass label processing.

'If you specify SUL, SL, cr omit the
label type (in which case standard labels
are assumed), the operating system will

Section 1: Job Control Statements 29

Form C28-6539-4, Page Revised by TNL N28-2226, 4/10/67

ensure that the correct volumes are mount­
ed. If yOU specify NSL, your installation
must have incorporated label processing
routines into the operating system. If you
specify NL, the data set roust have no
labels.

The feature that allows you to bypass
label processing is a systero generation
option <OPTIONS=BYLABEL}. If this option
was not requested at system generation and
you have coded BLP, the system assumes NL.

Note:

• When BLP is specified, you should
ensure that the operator mounts the
correct tape volume before processing
it.

If the data set is not first in sequence
on the reel, the LABEL parameter serves to
position the tape properly through a data
set sequence number. Code

r---,
I LABEL=seq# I L ___ J

in the operand field. Replace the term
"seq#" with the 1- to 4-digit sequence
number assigned to the data set when it was
created.

The sequence number describes the data
set's position with respect to other data
sets on the volume or group of volumes.

Notes:

• If you are retrieving a data set that
resides on an unlabeled tape voluroe,
you must give its sequence number with
respect to other data sets on that
single volume, beginning with 1.

• If 0 appears as the data set sequence
number, the system assumes 1.

Both magnetic tape and
data sets can be assigned

direct-access
a retention

30

period and password protection when they
are created. If you wish the data set to
remain intact for some period of· tiroe, you
can specify either the length of tirre in
days or the exact date you want it to
expire. Otherwise, a retention period of
zero days is assumed. After expiration,
the data set can be deleted, or opened for
any type of output. To specify a retention
period, code

r---,
I LABEL=RETPD=nnnn I L ___ J

in the operand field. Replace the terro
"nnnn" with the number of days you want the
data retained. To specify, instead, an
expiration date, code

r---,
I LABEL=EXPDT=yyddd I L ___ J

in the operand field. Replace the term
"yyddd" with the 2-digit year number and
3-digit day number after which the data set
can be considered expired.

If you wish the data set to be accessi­
ble only through the use of a password,
code

r---------------------------~-------------,
I LABEL=("PASSWORD) I L ___ J

in the operand field. The operating systerr
assigns the data set security protection.
To retrieve it, the operator must respond
to a message by issuing the correct pass­
word.

Note:

• Subparameters in the LABEL parameter
can be coded in various corr.binations.
The terms seq#, type, and PASSWORD are
all positional subparameters.

Form C28-6539-4, Page Revised by TNL N28-2226, 4/10/67

Specifying Data Set Status and Disposition
(DISP)

The DISP parameter describes the status
of a data set and indicates what is to be
done with it after £t is processed. You
can omit this parameter if a data set is
created and deleted during a single job
step.

The first term in the DISP parameter
reflects the data set's status with respect
to the job step. If the data set existed
before the job step, it can be used either
as an input data set to be read or as a
partially completed output data set. To
specify the status of an existing data set
used as input to a processing program, code

r---,
I DISP=OLD I l ___ J

in the operand field of the DD statement.
If the data set resides on a direct-access
volume and is part of a job whose opera­
tions do not prevent simultaneous use of
the data set by another job, code

r---,
I DISP=SHR I l ___ J

in the operand field. This parameter has
meaning only in a multiprogramming environ­
ment for existing data sets. If SHR is not
coded in a mUltiprogramming environment,
the data set is considered unusable by
concurrently operating jobs. If SHR is
coded in other than a multiprogramming
environment, the system assumes the data
set's status is OLD.

If a data set is sequentially organized,
and is used for additional output by the
processing program, code

r---,
I DISP=MOD I l ___ J

in the operand field. When the data set is
opened, the read/write mechanism is auto­
matically positioned after the last record
in the data set. If no volume information
is available for the data set, the system
assumes it does not yet exist and changes
the MOD specification to NEW. (Volume
information is considered available if it
is coded in the DD statement, passed with
the data set from a previous ~tep, or
contained in the catalog.)

A data set created in a job step is used
by the processing program for output data.
You can indicate a new status by coding

r---,
I DISP=NEW I l ___ J

in the operand field, by coding DISP=MOD
and including parameters usually required
by new data sets, or by omitting a status
specification altogether.

The second term in the DISP parameter
tells how you want the data set handled by
the job scheduler at the end of the job
step that processes the data set. If the

I
job scheduler can determine that the data
set was not opened, the requested disposi­
tion is not performed.

Notes:
• If the jot step is bypassed because of

an error that occurs before the step is
executed (e.g., an incorrect control
statement is read, the system is net
able to allocate units, etc.), request­
ed dispositions are not performed.
Subsequent job steps are also bypassed.

• If the job step is bypassed because of
a return code test, requested disposi­
tions are performed only for data sets
that have been passed from a previous
step.

• If the job step is bypassed because of
an error that occurs during execution
of the step (e.g., an incorrect volume
label is encountered), requested dispo­
sitions are performed.

If you want the data set to assume the sa~e
status it had before the job step, you need
not code a disposition. Existing data sets
(OLD, MOD, and SHR) will continue to exist
and newly created data sets (NEW) will te
deleted. Special dispositions allow you
to:

1. Uncatalog a data set.
2. catalog a data set.
3. Delete an existing data set.
4. Keep a data set.
5. Pass a data set to a later job step.

These dispositions are discussed in the
following numbered paragraphs.

1. To uncatalog an input data set, code
the keyword parameter

r------------------------------------,
I DISP=(OLD,UNCATLG) I l ____________________________________ J

in the operand field. The catalog
entry that points to the data set is
removed fro~ the index structure. If
the data set resides on a direct­
access volume, it remains tabulated in
the volume table of contents.

section 1: Job Control Statements 31

2. To catalog a data set, code

r------------------------------------,
I DISP=(status,CATLG) I l ____________________________________ J

in the operand field. The term
"status" reflects the data set's
status, as discussed in earlier para­
graphs. When you request cataloging,
an index entry pointing to the data
set is placed in the system catalog.
The index structure requirea to catal­
og the data set must be defined before
the cataloging operation can take
place. DD statements in subsequent
jobs can then refer to this data set
simply by giving its cataloged name.

Notes:

• A cataloged data set whose status
is MOD might be expanded to addi­
tional volumes during the job
step. To update the catalog to
reflect these additional volumes,
code DISP=(MOD,CATLG).

• If the status of the data set is
NEW, and you want to catalog it,
you can omit the term NEW. How­
ever, you must indicate its
absence with a comma, e.g.,
DISP=(,CATLG).

3. If you have no further need for a data
set after its use and want to release
its space, code

r------------------------------------,
I DISP=(status,DELETE) I l ____________________________________ J

in the operand field. The data set is
automatically uncataloged if you have
used the catalog to locate it. In
addition, the system removes the vol­
ume table of contents entry associated
with the data set, if it resides on a
direct-access device.

Notes:

• If the status of the data set is
N~ and you want to delete it
after its use, i.e., the data set
is temporary, you can omit the
DISP parameter altogether.

• If you specify DISP=(SHR,DELETE),
the system assumes OLD instead of
SHR.

4. For data sets that are used in a later
job but are not of sufficient impor­
tance to warrant their being cata­
loged, code

32

r------------------------------------,
I DISP=(status,KEEP) I l _________________________ ~ __________ J

in the operand field. The data set is
kept intact until a DELETE request is
encountered. If the volume containing
the data set is demounted, the system
advises the operator of the data set's
KEEP disposition. If the data set
resides on a direct-access volume, it
remains tabulated in the volume table
of contents.

Note:

• If the status of a data set is NEW
and you want to keep it until a
later time, you can omit the term
NEW. However, you must indicate
its absence with a corrma, e.g.,
DISP=(,KEEP) •

5. When a data set is used by twe or mere
job steps in the same job, you can
eliminate retrieval and dis~osal oper­
aticns by passing it from step to
step. Each step can use the data set
one time. You do not indicate the
final disposition of the data set
until its last use in the job. To
pass a data set to a succeeding step,
code

r------------------------------------,
I DISP=(status,PASS) I L ____________________________________ J

in the operand field. Subsequent DD
statements referring to the passed
data set must identify it with the
DSNAME parameter, must provide either
no unit information, Or unit informa­
tion consistent with that in the orig­
inal data set, and must issue another
disposition. Between steps, the vol­
ume that contains the passed data set
remains mounted; thus, you need not
code RETAIN in the VOLUME parameter of
a DD statement that specifies a dispo­
sition of PASS.

Notes:

• If the status of a data set is NEW
and you want to pass it, you can
omit the term NEW. However, you
rnust indicate its absence with a
corrma, e.g., DISP=(,PASS).

• If the system finds it necessary
to remove the volume centaining a
passed data set, it ensures
through messages to the operator
that the volume is remounted
tefore its next use.

Allocating Direct-Access Space (SPACE
SPLIT and SUBALLOC)

When writing a new data set on a direct­
access volume, you allocate space on the
volume with a DD statement parameter. You
can allocate direct-access space:

1. By requesting the quantity of space
and letting the system assign specific
tracks.

2. By requesting specific tracks.
3. By splitting cylinders with other data

sets.
4. By suballocating space from an earlier

data set.

To supplement this discussion of space
allocation pictorially, turn to Appendix E
and fold out Chart 3.

1. The most frequently used technique of
space allocation requires that you
specify the amount of space you desire
and let the system assign specific
tracks. This technique is recommended
for allocating direct-access space
when the job is operating in a
multiprogramming environment. Other
options permit you to request the
manner in which the space is to be
arranged, to release unused space. and
to request that the space begin and
end on cylinder boundaries.

The quantity of space you desire can
be given in units of tracks., cylin­
ders~ or blocks. whichever is most
convenient. In the latter case the
system will compute the number of
tracks or cylinders required. To
allocate space using this technique,
code the keyword parameter

r------------------------------------1 I SPACE=(units,quantity) I L ____________________________________ J

in the operand field.
term "units" with:

Replace the

TRK - If you want space in tracks.
CYL - If you want space in cylinders.
average block length in bytes If

you want space in terms of
blocks.

Replace the term "quantity" with the
amount of space you desire in the
units you have chosen, e.g ••
SPACE= (TRK" 200) for 200 tracks.
SPACE= (CYL, 10) for 10 cylinders" and
SPACE=(400,100) for 100 blocks with an
average length of 400 bytes.

Notes:

• For most efficient performance"
request space in units of cylin­
ders (CYL).

• The average record length cannot
exceed 65,535 bytes.

• If you request space in units of
blocks, and the blocks have keys,
you must give the key length 1n
the DCB parameter, i.e., KEYLEN=n.

If the possibility exists that the
data set might at some time exceed the
amount of space you requested; you can
ensure that extra space will 'be made
available by denoting an incremental
quantity. Code

r------------------------------------,
I SPACE= (units" (quantity, increment» I L ____________________________________ J

in the operand field. Replace the
term "increment" with a decimal num­
ber. Each time the data set exhausts
its space, additional space will be
allocated on the same volume in the
amount of the increment. For example,
if you coded SPACE=(TRK,(200,10», the
data set would be initially allocated
200 tracks. If it later exceeded 200
tracks" 10 additional tracks would be
made available. This incrementing by
10 tracks would take place each time
(up to a maximum of 15 times) the data
set exhausted its total space.

If the data set for which you are
allocating space has a partitioned
organization (i.e., a BPAM data set),
you must indicate the size of its
directory in the SPACE parameter.
Code

r------------------------------------,
I SPACE= (units" (quantity, " directory» I L ____________________________________ J

in the operand field. Replace the
term "directory" with the number of
256-byte blocks in the directory.

• If you wish to give an incremental
quantity, code SPACE=(units.
(quantity,increment,directory».

If the data set has an indexed sequen­
tial organization (i.e., a BISAM or
QISAM data set) " you must indicate the
size of its index in the SPACE param­
eter. Code

Section 1: Job Control Statements 33

34

r------------------------------------,
1 SPACE= (units" (quantity. " index)) I L ____________________________________ J

in the operand field.
term "index" with the
~ndex~ in cyl~nders.

Replace the
size of the

Notes:

• If you wish to give an incremental
quantity. code SPACE=(units.
(quanti t y., increment, index)) •

• The operating system differenti­
ates between the terms "directory"
and "index" by examining the DCB
parameter. The DCB parameter for
an indexed sequential data set
must contain one of the attributes
DSORG=IS or DSORG=ISU.

For simplicity, the terms
and

be
the

n (quantity" increment" directory) n

"(quantity,increment~index)n will
represented by "(quantities)" in
remainder of this discussion.

An optional facility of the SPACE
parameter allows you to release unused
space when you are finished writing
the data set. To use this facility,
code

r------------------------------------,
1 SPACE=(units" (quantities) "RLSE) I L ____________________________________ J

in the operand field. All unused
space is released to the system when
the data set is closed.

• RLSE is a positional subparameter.
Thus, its absence must be indicat­
ed by a comma if subsequent sub­
parameters are coded.

When you request space using this
technique, the operating system
attempts to allocate space in contigu­
ous tracks or cylinders. If contigu­
ous space is not available, the system
satisfies the request with up to five
noncontiguous blocks of storage. You
can override these system actions by
coding one of three subparameters:

(a) CONTIG (contiguous)
(b) MXIG (maximum contiguous)
(c) ALX (all extents)

The subparameter you choose must fol­
low either RLSE or the comma showing
the absence of RLSE.

a. To ensure that space is allocated
in contiguous tracks or cylinders"
code

r--------------------------------,
1 SPACE= (units, (quantities) " 1
1 RLSE, CONTIG) 1 L ________________________________ J

in the operand field. The
allocates space in one
space, with no intervening
or cylinders.

system
area of
tracks

h. If the data set is likely to
exceed the amount of space you
requested. you can request a lar­
ger amount of space by coding

r--------------------------------l
ISPACE=(units,(quantities). 1
I RLSE" MXIG) 1 L ________________________________ J

in the operand field. The system
allocates the largest area of con­
tiguous auxiliary storage that is
at least as large as the quantity
you requested.

c. If you desire an unusually large
amount of space, code

r--------------------------------,
ISPACE=(units. (quantities)., ,I
1 RLSE.ALX)! L ________________________________ J

in the operand field. The system
allocates five areas of contiguous
storage. each at least as large as
the quantity you requested. If
this request cannot be fully
satisfied, the system allocates as
many blocks as are, available.

If you allocate space in units of
blocks, you can further request that
the space be rounded to an integral
number of cylinders to increase per­
formance. Code

r------------------------------------, I SPACE=(units, (quantities) ", ~ROUND) I L ____________________________________ J

in the operand field. The system
computes the number of tracks or cyl­
inders required to hold the blocks.
and ensures that the space begins on
the first track of a cylinder and ends
on the last track of a cylinder.

li2tt!
• The commas may be replaced by

RLSE, and CONTIG, MXIG, or ALX" as
you desire.

Form C28-6539-4, Page Revised by TNL N28-2226, 4/10/67

2. A data set can be placed in a specific
position on a direct-access volume by
requesting space in terms of a quanti­
ty and a track number. This alloca­
tion technique is recorr.mended only for
location-deoendent data sets. To
allocate t~acks beginning at a speci­
fic address, code the keyword param­
eter

r------------------------------------,
I SPACE=(ABSTR, (quantity,address» I L ____________________________________ J

in the operand field of the DD state­
ment. Replace the term "quantity"
with the nu~ber of tracks you desire,
and "address" with the relative track
address of the beginning track. (The
relative track address of the first
track on the volume is o. This track
cannot be allocated.) If tracks you
request have been allocated to another
data set, the job is terminated.

Note:

• If the new data set is parti­
tioned, you must indicate its
directory size in the SPACE param­
eter by coding SPACE=(ABSTR,
(quantity,address,directory». Re­
place the term "directory" with
the number of 256-byte blocks in
the directory.

3. When a job step involves one or more
data sets having corresponding
records, you can minimize access arrr.
movement by defining split cylinders.
In the split-cylinder mode each data
set is given a percentage of the
tracks on every cylinder allocated.

To split cylinders among two or more
data sets, you must arrange the asso­
ciated DD statements in sequence in
the input stream. The first DD state­
ment in the sequence specifies the
portion of the space required by the
first data set and the total amount of
space required for all data sets.
Each succeeding DD statement requests
a portion of the total space.

To request the total amount of space
in units of cylinders, code the key­
word parameter

r------------------------------------,
I SPLIT=(n,CYL,quantity) I L ____________________________________ J

in the operand field of the first DD
statement in the sequence. Replace
the letter "n" with the nu~ber of
tracks per cylinder you wish allocated
to the first data set. Replace the

terrr "quantity" with the total number
of cylinders to be allocated for all
the data sets. Each succeeding DD
statement in the grour must contain
the pararr.eter SPLIT=n, where n is the
number of tracks per cylinder to be
allotted to the associated data set.

To request the total amount of space
in units of blocks, code the keywcrd
pararreter

r------------------------------------,
I SPLIT=(%,blksize,quantity) I L ____________________________________ J

in the operand field of the first DD
statement in the sequence. Replace
the character "%" with the percentage
of tracks per cylinder you wish allo­
cated to the first data set. Replace
the ter~s "blksize" and "quantity"
with the average length of the blocks
in the data sets and the total number
of blocks, respectively. The system
computes the total number of cylinders
from these figures. Each succeeding
CD statement in the group must contain
the parameter SPLIT=% in the operand
field, where % is the percentage of
tracks per cylinder to be allotted to
the associated data set.

Notes:

• The SPLIT parameter cannot be used
to allocate space for direct
(BDAM) data sets or data sets
residing on drum storage volumes.

• The average block length cannot
exceed 65,535 bytes.

• If space is requested in units of
blccks, and the blocks have keys,
you must give the key length in
the DCB parameter, i.e., KEYLEN=n.

As in the SPACE parameter, you can
ensure that increments of extra space
will be automatically allocated by
coding

r------------------------------------,
I SPIIT=(n,CYL, (quantity,increment» I L ____________________________________ J

for increments in cylinders, or

r------------------------------------,
ISPLIT=(%,blksize, I
I (quantity,increment»I l ____________________________________ J

for increments in blocks. If any of
the data sets in the grcup exceeds its
allotted space, additional space is

Section 1: Job Control Statements 35

Form C28-6539-4, Page Revised by TNL N28-2226~ 4/10/67

allocated in the amount of the incre­
ment. (If space is requested in
blocks, the system increases the
increment to an integral number of
cylinders.) The additional space
applies only to the data set that
exhausted its allotted space, and is
not split with the other data sets in
the group.

4. The fourth method of obtaining direct­
access space is through the technique
of suballocation. Suballocation
allows you to place a number of data
sets in contiguous order on a direct­
access device. To use this technique,
you simply request part of the space
assigned to an earlier data set. Code

36

r------------------------------------,
ISUBALLOC=(units, (quantities), I
I stepname.ddname) I L ____________________________________ J

in the operand field of the DD
statement. Replace the term "units"
as in the SPACE parameter:

TRK - for a space request in tracks.
CYL - for a space request in cylin­

ders.
average block length in bytes - for a

space request in blocks.

The terffi "(quantities)" represents
"(quantity,increment,directory)." The
incremental quantity is optional and
the number of directory blocks is
required only when the DD statement
defines a partitioned data set. If
you indicate an incremental quantity,
increments of space are allocated from
available space on the volume, not
from the space in the original data
set. Replace the terms "stepname" and
"ddname" with the names of the job
step and the DD statement where an
earlier data set is defined; the sys­
tem suballocates the amount of space
you request from this earlier data
set.

Notes:

• Space obtained through suballoca­
tion must be contiguous, and can­
not be further suballocated.

• The original data set must be used
only for suballocation. Suballo­
cated space is removed froIT the
front of it.

• If the suballocation
refers to a DD statement

request
in the

same job step, you need not code
the job step name, i.e., code the
stepname, i.e., SUBALLOC=(units,
(quantities),ddname).

• If the suballocation request
refers to a DD statement in a
cataloged procedure, you must
include the name of the procedure
step in which it appears, i.e.,
SUBALLOC=(units, (quantities),step­
naroe.procstepname.ddname).

Optimizing Channel Usage (SEP and AFF)

A job step that requires several input
and output operations rright be performed
rrore efficiently by balancing the channel
requirements of its data sets. To obtain
optimum channel usage, you can request that
a data set be assigned a separate channel
from the ones assigned to earlier data
sets. A later DD statement can express the
same separation requirements by requesting
affinity.

To request channel separation from as
many as eight other data sets in the job
step, code the keyword parameter

r---,
I SEP=(ddname, ... ,ddname) I L ___ J

in the operand field of the DD statement.
Replace the terms "ddname" with the names
of up to eight earlier DD statements in the
job step.

To extend the channel separation facili­
ty, you can request affinity with an ear­
lier data set that requested channel separ­
ation by coding the keyword parameter

r---,
I AFF=ddname I L ___ J

in the operand field of a later DD state­
ment. Replace the term "ddname" with the
name of the earlier DD staterr.ent. The data
set that requests affinity is also sepa­
rated channelwise from those identified in
the SEP parameter of the earlier statement.
This feature eliminates your having to
write identical SEP parameters more than
once.

Note:

• Channel separation and affinity
requests are ignored if the automatic
volume recognition feature is used.

THE COMMAND STATEMENT

Command statements are inserted in the
input stream by the operator. They must
appear immediately before a JOB statement.
an EXEC statement, a null statement, or
another command statement, and cannot be
interspersed with data in the input stream.
With a sequential scheduler, all coromands
except SET, START" and UNLOAD are accepted
as they are issued. If you use a priority
scheduler, all commands are accepted when
issued.

The command statement contains identify­
ing characters (//) in columns 1 and 2, a
blank name field, a command, and. in most
cases, an operand field. The operand field
specifies the job name. unit name, or other
information being considered.

• A command statement cannot be contin­
ued, it must be coded on one card or
card image.

Summary of Available Commands

Different sets of commands are available
at the three system levels. With systems
having a primary control program, the fol­
lowing commands can be used in the input
stream:

DISPLAY
MOUNT
SET
START

STOP
UNLOAD
VARY

With systems that provide multiprogramming
with a fixed number of tasks, you can use
the SHIFT command in addition to the above
commands.

With systems that provide multiprogramming
with a variable number of tasks (a priority
scheduler), the set of valid commands com­
prises:

DISPLAY
HALT
HOLD
LOG
MODIFY
MOUNT
RELEASE

RESET
SET
START
STOP
UNLOAD
VARY
WRITELOG

A complete discussion of commands and oper­
ands is presented in the publication IBM
System/360 Operating System: operato~
Guide.

THE DELIMITER STATEMENT

The delimiter statement marks the end of
a data set in the input stream. Code the
identifying characters /* in columns 1 and
2, with other fields blank. You can code
comments at your discretion •

• When using a priority scheduler, you
need not mark the end of a data set in
the input stream that is defined by a
DD * statement.

THE NULL STATEMENT

The null statement is used to mark the
end of certain jobs in an input stream. If
the last DD statement in a job defines data
in an input stream, the null statement
should be used to mark the end of the job
so that the card reader is effectively
closed. code the identifying characters //
in columns 1 and 2. and leave all remaining
columns blank.

Section 1: Job Control Statements 37

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

J

j
j
j
j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j
j

j
j
j

j
j

j
j
j

SECTION 2: A GUIDE TO USING THE JOB CONTROL LANGUAGE

The Job Control Language is a comprehensive medium for controlling
the performance of many different types of jobs. Because of its power
and flexibility, it appears somewhat complex in its entirety. However,
most individual applications use only subsets of the language. Succeed­
ing chapters in Section 2 define and illustrate control statement and
parameter requirements for selected applications of the language.

Job control statements are initially processed by a job scheduler
component, the interpreter. Thus, the statements must conform to
certain coding conventions. These conventions comprise (1) the use of
special characters I (2) the spacing of fields, and (3) rules for
continuing statements onto additional cards or card images.

Coding Special Characters

Special characters are used in the Job Control Language to delimit
parameters and fields" and to perform other syntactical functions. Wi th
the exception of the cases listed below, variacle information in a
parameter must be coded in alphameric and national characters. Table 2
defines the alphameric, national, and special character sets.

Table 2. Character Sets
r-----------------------T--,
I Character set I Contents I
~-----------------------+-------------------------T--------------------~
I Alphameric I Alphabetic I A through Z I
I I Numeric I 0 through 9 I
~-----------------------+-------------------------+--------------------~
I I "At" sign I @ I
I National I Dollar sign I $ I
I I Pound sign I # I
~-----------------------+-------------------------+--------------------i

Comma
Period
Slash /

Special Apostrophe
Left parenthesis (
Right parenthesis)
Asterisk *
Ampersand &
Plus sign +
Hyphen
Equal sign =
Blank

-----------------------~-------------------------~--------------------

Four parameters are exempt from the special character rule:, that is,
they can contain special characters as well as alphameric and national
characters:

1. The accounting information in the JOB statement.
2. The programmer's name in the JOB statement.
3. The ACCT parameter in the EXEC statement.
4. The PARM parameter in the EXEC statement.

section 2: A Guide to Using the Job Control Language 39

Because these parameters are passed directly to installation routines or
processing programs" you can include as part of the information any of
the special characters. However, you must notify the interpreter of
this by enclosing the item that contains the special characters in
apostrophes (5-8 punch), e.g., PARM='123,456'. If one of the special
characters is an apostrophe, you must identify it by coding two
consecutive apostrophes (5-8 punches) in its place" e.g •• '0' 'NEILL'.

Notes:

• The programmer's name in the job statement can contain periods
without being enclosed in apostrophes, e.g., T.JONES .•

• The unit type number in the UNIT parameter of the DD statement can
contain a hyphen without being enclosed in apostrophes, e. g. "
UNIT=2400-2.

• The account number and items of accounting information in the JOB
statement and the ACCT parameter of the EXEC statement can contain
hyphens without being enclosed in apostrophes.

Spacing Control Statement Fields

Except for the identifying characters in columns 1 and 2, and the
name field beginning in column 3" control statement fields can be
written in free form" that is" they need not begin in a particular
column. The only requirement is that you separate the name, operation"
operand, and comments fields by at least one blank. Since a blank
serves as a field delimiter, the operand field must be coded continuous­
ly. that is, you can not code blanks between parameters.

Continuing Control Statements

Control statements are contained in columns 1 through 71 of cards or
card images. If the total length of a statement exceeds 71 columns" or
if you wish to place parameters on separate cards, you must follow the
operating system continuation conventions. To continue an operand
field:

1. Interrupt the field after a complete parameter" including the comma
that follows it, at or before column 71. (See note below.)

2. Follow the interrupted field with at least one blank. You may
leave blanks or write comments in the remaining space" through
column 71. (If the comma is coded in column 71, do not leave a
blank a~ter it.)

3. Code any nonblank character in column 72 .•

4. Code the identifying characters // in columns 1 and 2 of the
following card or card image.

5. Continue the interrupted operand beginning in column 16.
3 through 15 must be blank.>

(Columns

Note:

40

• The accounting information in the JOB statement, the ACCT parameter
in the EXEC statement" and the DCB parameter in the DD statement can
also be interrupted after a complete subparameter.

comments can be continued onto additional cards after the operand has
been completed. To continue a comments field:

1. Interrupt the comment at a convenient place.

2. Code a nonblank character in column 72 if the interruption occurs
before this column.

3. Code the identifying characters // in columns 1 and 2 of the
following card or card image.

4. Continue the comments fields beginning in any column after 15
(columns 3 through 15 must be blank).

section 2: A Guide to Using the Job Control Language 41

DEFINING A JOB

Information related to the performance of a job is presented to the
job scheduler in the JOB statement. Most of the information is
optional. JOB statements also serve to define the boundaries of a job.

Coding Required Information

To make a job acceptable to the scheduler, you must
identifying characters, a job name., and the operation "JOB" in
statement:

include
the JOB

r--,
I//PAYROLL JOB I L ____________________________ ~ ___ J

If your installation has established special accounting routines to
handle the charging of jobs, you may also be required to code an account
number and your name:

r--,
l//PAYROLL JOB 5048321,A.USER I L __ J

These items of information are passed directly to your installation's
accounting routines.

If the accounting routines require additional information., you can
add additional items of information to the account number:

r--,
I//PAYROLL JOB (5048321,013,14-01).A.USER I L __ J

The total number of characters in the account number and accounting
information, plus intervening commas, cannot exceed 142.

Coding Optional Information

The rema1n1ng information in the JOB statement is optional and may be
coded in any order and combination you choose. Some parameters apply
only to priority schedulers and are ignored by sequential schedulers.

If you wish to see a printout of all the job control statements in
the job, in addition to the normal printout, of incorrect statements and
associated diagnostic messages, code the MSGLEVEL parameter:

r--1
I//PAYROLL JOB 5048321,A'.USER,MSGLEVEL=L,... I L __ J

To test the return codes issued by each step in the job, code the
COND parameter:

r--,
I//PAYROLL JOB 504832L,A.USER,COND=«12,LE),(8,EQ»,... I L __ J

The system tests each step in the job using this criteria. If any test
is satisfied, the job is terminated. In this case, if 12 is less than

42

or equal to a return code, or if any return code is 8" the job is
terminated. In addition to the operators LE and EQ. you can use LT
(less than)~ NE (not equal to), GT (greater than). and GE (greater than
or equal to).

With a priority scheduler r, you assign job priority with the PRTY
parameter:

r--1
1/ /PAYROLL JOB S048321"A. USER, PRTY=14,,4O.. I L __ J

The scheduler arranges and selects jobs for execution according to their
priority numbers. In this case, the job PAYROLL is assigned top
priority. Priority numbers range from 0 to 14.

Messages issued by the job scheduler are directed to the standard
output class" A. If you are using a priority scheduler" you can direct
messages to a different class by coding the MSGCLASS parameter. Message
classes can be represented by any alphameric character:

r--1
I//PAYROLL JOB 5048321,A.USER,MSGCLASS=F,... I L __ J

If you wish to indicate the main storage requirements of a job
operating under a priority scheduler" code the REGION parameter:

r--,
I//PAYROLL JOB S048321,A.USER,REGION=51K,... I L __ J

REGION parameters can also be coded in EXEC statements. but are
superseded by a REGION parameter coded in the JOB statement.

Defining Job Boundaries

Jobs are ordinarily bounded by JOB statements. Each JOB statement
marks the beginning of one job and the end of the control statements for
the preceding job. Figure 3 shows a group of jobs and their boundaries.

Input
Stream ~

Ob _~
---~./'

EXEC & DD
~ ('-o-s -----, Statements ___________ ----- J B tatement

~
JOb --- (Null Statement

/' ./'
Input Stream Data

,---- (EXEC & DD
J<?b __________ ~ (J OB Statement Statements
~ ./----/~

r--- (~EC & DD
Statements

JOB Statement

Figure 3. Defining Job Boundaries

section 2: A Guide to Using the Job Control Language 43

DEFINING A JOB STEP

A job step is the unit of work associated with the execution of one
program or one cataloged procedure. The program or cataloged procedure.
is identified in the EXEC statement. The EXEC statement also provides
information related to the execution of a job step and serves to define
job step boundaries.

Identifying a Program

To execute a program, you must include identifying characters (//),
the operation "EXEC", and the PGM parameter in the EXEC statement. If
later control statements refer to the job step in any way_ you must also
code a job step name. A program that resides in a temporary library can
be identified by referring to the 00 statement that defines the
temporary library:

r--,
1//STEP2 EXEC PGM=*.STEP1.TEMPLIB I L __ J

Here, the system retrieves the program from the temporary library
defined in an earlier DO statement named TEMPLIB# which occurs in a job
step named STEP1.

If the program resides in the system library or a private library,
you identify it by its member name:

r--1
1//STEP3 EXEC PGM=CONVERT I L __ J

The system searches the appropriate library for the member named
CONVERT.

Identifying a Cataloged Procedure

Cataloged procedures reside as members in the system procedure
library, SYS1.PROCLIB. A cataloged procedure may compr1se any number of
EXEC statements and DD statements. You identify a cataloged procedure
by its 1- to 8-character name:

r--,
1//STEP4 EXEC ANALYSIS I L __ J

Here, the system searches the procedure library for the member named
ANALYSIS. If you wish to note the fact that ANALYSIS is a procedure"
code PROC= before the procedure name:

r--,
1//STEP4 EXEC PROC=ANALYSIS I L __ J

44

Coding Optional Information

Remaining parameters in the EXEC statement provide optional informa­
tion related to the execution of the job step. They can be coded in any
order and combination you choose.

If the valid execution of the job step depends on the results of earlier
steps, you can test the return codes issued by these steps:

r--1
1/ /STEP3 EXEC PGM=CONVERT. COND= ((4, EQ!. STEP1) • (8. EQ" STEP2)) , • • • I L __ J

Here~ the system tests the return codes issued by earlier steps named
STEPl and STEP2. If STEPl issues a return code of 4, or STEP2 issues an
8. STEP3 is bypassed. You can compose up to 8 different return code
tests.

If the EXEC statement calls a cataloged procedure., you can establish
return code tests for a procedure step by coding the COND parameter
followed by the name of the procedure step to which it applies:

r--,
1//STEP4 EXEC ANALYSIS,COND.REDUCE=(16.EQ,STEP4.LOOKUP).... I L-___ J

Here, the cataloged procedure step named REDUCE is bypassed if the
procedure step named LOOKUP issues a return code of 16. You can code as
many COND parameters of this type as there are steps in the procedure.

Special control information can be passed to a processing program
using the PARM parameter:

r--,
1//STEP3 EXEC PGM=CONVERT,PARM='3-14-67,3.1416',... I L __ J

The system picks up the information 3-14-67.3.1416 and passes it to the
processing program. Language processors require specific PARM informa­
tion, as outlined in the prograrr.mer's guide associated with each
processor.

If the EXEC statement calls a cataloged procedure, you can provide
control information to a procedure step by coding the PARM parameter
followed by the name of the procedure step to which it applies:

r--,
1//STEP4 EXEC ANALYSIS,PARM.REDUCE=10,... I L __ J

Since the information 10 contains no special characters, enclosing
apostrophes are omitted. You can code as many PARM parameters of this
type as there are steps in the procedure. If you wish to pass
information to the first procedure step and nullify all other PARM
parameters in the procedure, code the PARM parameter without a procedure
step name.

Accounting information pertinent to a job step or procedure step is
coded in the ACCT parameter.

r--,
1/ /STEP3 EXEC PGM=CONVERT.,ACCT=5052321,... I L __ J

section 2: A Guide to using the Job Control Language 45

The system passes the accounting information
installation's job step accounting routines.

5052321 to your

If the EXEC statement calls a cataloged procedure" you can provide
accounting information for a procedure step by coding the ACCT parameter
followed by the name of the procedure step to which it applies:

r--1
1//STEP4 EXEC ANALYSIS.ACCT.DISPLAY=(013,15-01),... I L ___________________________ -----______________________________________ J

You can code as many ACCT parameters of this type as there are steps in
the procedure.

When using a priority scheduler, you can establish a time limit for
the execution of a job step or procedure step with the TIME parameter:

r--1
1//STEP3 EXEC PGM=CONVERT,TIME=(l.30).... I L __ J

Here. the job step is automatically terminated if its execution time
exceeds one minute 30 seconds.

If the EXEC statement calls a cataloged procedure" you can time one
step of the procedure by coding the TIME parameter followed by the name
of the procedure step:

r--,
1/ /STEP4 EXEC ANALYSIS"TIME. LOOKUP= (,45) •••• I L __ J

The procedure step named LOOKUP is terminated if its execution time
exceeds 45 seconds. The comma preceding 45 indicates the omission of
minutes. You can code as many TIME parameters of this type as there are
steps in the procedure.

If you wish to indicate the main storage requirements of a job step
operating under a priority scheduler. code the REGION parameter:

r--,
1//STEP3 EXEC PGM=CONVERT#REGION=48K.... I L __ J

This parameter should be coded if the job step requires a region size
different from the default region size,. and REGION is not coded in the
JOB statement.

If the EXEC statement calls a cataloged procedure,. you can indicate
the region size for a procedure step by coding the REGION parameter
followed by the name of the procedure step to which it applies:

r--,
1//STEP4 EXEC ANALYSIS.REGION.LOOKUP=48K,... I L __ J

Here the procedure step LOOKUP is assigned a region size of (48 X 102~)
bytes. You can code as many REGION parameters of this type as there are
steps in the procedure.

46

Defining Job step Boundaries

Job step boundaries are ordinarily established by EXEC statements.
Each EXEC statement marks the beginning of a new job step and the
completion of control statements for the previous job step. The
completion of the last step in a job is marked with a JOB statement
associated with the succeeding job, or a null statement. Figure 4 shows
a group of job steps and their boundaries.

Input
Stream

~tat.m.""
Job ~ EXEC Statement

Steps

~
DD Statements

EXEC Statement
r---"-----,

~ JOB Statement

~ {oostatements
,..---"----,

Figure 4. Defining Job step Boundaries

Jobs

Null Statement

Section 2: A Guide to Using the Job Control Language 47

Form C28-6539-4, Page Revised by TNL N28-2214, 2/27/67

CREATING NEW OUTPUT DATA SETS

Output data sets in a job step that do not exist before the step is
executed are created by using subsets of the DD statement parameters.
The contents of each subset depend primarily on what type of device the
data set resides on.

Creating Unit Record Data Sets

Data sets whose destination is a printer or card punch are created
with the DD statement parameters UNIT and DCB.

UNIT: Required. Code unit information using the 3-digit address (e.g.,
UNIT=OOE), the type (e.g., UNIT=1403), or the system-generated group
name (e.g., UNIT=PRINTER).

DCB: Required only if the data control block is not completed in the
processing program. Valid DCB subparameters are listed in Appendix B.

Examples 1 and 2 illustrate valid DD statements for creating data
sets on the printer or card punch.

r--,
I//OUTPUT DD UNIT=1403 I L __ J

Example 1. Creating a Data Set on the Printer

r--,
I//OUTPUT DD UNIT=2520,DCB=(STACK=2,MODE=E) I L __ J

Example 2. Creating a Data Set on a Card Punch

Creating Data sets on Magnetic Tape

Tape data sets are created using combinations of the DD statement
parameters UNIT, LABEL, DSNAME, DCB, VOLUME, and DISP.

UNIT: Required, except when volumes are requested using VOLUME=REF.
You can assign a unit by specifying its address, type, or group name, or
by requesting unit affinity with an earlier data set. You can also
request multiple output units and defer volume mounting with this
parameter.

LABEL: Required when the tape does not have standard labels, and when
the data set does not reside first on the reel. It is also used to
assign a retention period and password protection.

DSNAME: Required for data sets that are to be cataloged or used by a
later job.

DCB: Required only when data control block information is not complete­
ly specified in the processing program. Usually, such attributes as the
logical record length (LRECL) and buffering technique (BFTEK) will have
been specified in the processing program. other attributes, such as the
maximum block size (BLKSIZE) and the tape recording technique (TRTCH),
are more appropriately specified in the DD statement. Valid DCB
subparameters are listed in Appendix B.

48

VOLUME: Optional, you can use this parameter to request specific
volumes. If you use VOLUME=REF" and want to save existing data sets on
the specified volume(s), you must indicate the data set sequence number
in the LABEL parameter.

DISP: Required for data sets that are to be cataloged, passed, or kept.

Examples 3 through 8 illustrate valid DD statements for creating data
sets on magnetic tape.

r--,
1//OUTPUT2 OD UNIT=2400-2 I L __ J

Example 3. creating a Temporary Data Set on Labeled Tape

r--,
1/ /OUTPUT2 OD UNIT=2400, LABEL= (, NL) I l __ J

Example 4. Creating a Temporary Data Set on Unlabeled Tape

r--,
1//OUTPUT2 OD UNIT=2400-2,DSNAME=A.B.C,DISP=(,CATLG), XI
1// LABEL=RETPD=0090 I l __ J

Example 5. Creating and Cataloging a Tape Data Set

r--------------------------·--,
1//OUTPUT2 DD DSNAME=&WORK~VOLUME=REF=*.STEP1.0UTPUT, XI
1// DISP= (, PASS) , LABEL= (, NL) I l __ J

Example 6. Creating a Temporary Data Set on Unlabeled Tape, Using
VOLUME=REF

r---,
I//OUTPUT DD DSNAME=ALPBA,UNIT=2400,DISP=(,KEEP),LABEL=2, xI
1// VOLUME=SER=T2 I l __ J

Example 7. Creating and Keeping a Data Set Second in Sequence on a
Labe+ed Tape

r--,
1//OUTPUT2 DD UNIT=2400-2,DCB=(TRTCH=C,LRECL=256,DEN=1} I l __ J

Example S. Creating a Temporary Data Set Having an Incomplete Data
Control Block

Creating Sequential (BSAM or QSAM) Data Sets on Direct-Access Devices

Sequential data sets are created using combinations of the DD
statement parameters UNIT, DSNAME, VOLUME, LABEL, DISP, DCB, and one c
the space allocation parameters SPACE, SPLIT, or SUBALLOC.

UNIT: Required, except when volumes are requested using VOLUME=REF ox
space is allocated using SPLIT or SUBALLOC. You can assign a unit by
specifying its address, type, or group name, or by requesting unit
affinity.

DSNAME: Required for all but temporary data sets.

section 2: A Guide to Using the Job Control Language 49

Form C28-6539-4, Page Revised by TNL N28-2214, 2/27/67

LABEL: Required if you want to assign a retention period or password
protection.

DCB: Required only when data control block information is not complete­
ly specified in the processing program. Usually, such attributes as the
logical record length (LRECL) and buffering technique (BFTEK) will have
been specified in the processing program. Other attributes, such as the
maximum block size (BLKSIZE) and the number of buffers (BUFNO) are more
appropriately specified in the DD statement. Valid DCB subparameters
are listed in Appendix B.

VOLUME:
volumes,
RETAIN.

Optional.
multiple

You can use
nonspecific

this parameter
volumes, and to

to request specific
specify PRIVATE and

DISP: Required for data sets that are to be cataloged, passed, or kept.

SPACE, SPLIT, SUBALLOC: One of these is required for all new direct­
access data sets.

Examples 9 through 14 illustrate valid DD statements for creating
sequential data sets on direct-access devices.

r--,
1//OUTPUT3 DD UNIT=2311,SPACE=(TRK,(10,2» I L __ J

Example 9. Creating a Temporary Data Set on Disk

r--,
1//OUTPUT3 DD DSNAME=tBUF,DISP=(,PASS),SPLIT=10 I L __ J

Example 10. Creating a Temporary Disk Data Set That Shares Cylinder
Space With the Preceding Data Set

r--,
1//OUTPUT3 DD UNIT=2301,DCB=(BLKSIZE=1026,RECFM=FB), XI
1// SPACE=(1026, (30,3)"CONTIG,ROUND) I L __ J

Example 11. Creating a Temporary Drum Data Set, With Space Allocation
in Blocks

r--,
1//OUTPUT3 DD SUBALLOC=(TRK,(5,1),STEP1.0UTPUT) I L __ J

Example 12. creating a Temporary Disk Data Set, Using Suballocation
Technique

r--,
1//OUTPUT3 DD DSNAME=ALPHA,UNIT=23Tl,DISP=(,KEEP), XI
1// SPACE=(1024,(200,10»,VOLUME=(PRIVATE,RETAIN,SER=D02) I L __ J

Example 13. Creating and Keeping a Data Set on a Private Disk Pack

r--,
1//OUTPUT3 DD DSNAME=X.Y.Z,VOLUME=REF=*.STEP1.0UTPUT,DISP=(,CATLG), XI
1// SPACE=(CYL,(2,1»,LABEL=EXPDT=67365 I L __ J

Example 14. Creating and Catalog~ - nlsk Data Set, Using VOLUME=REF

50

Form C28-6539-4, Page Revised by TNL N28-2226, 4/10/67

Creating Direct (BDAM) Data Sets

Direct (BDAM) data sets are created using the same sutset
statement parameters as sequential data sets, with the exception
SPLIT parameter. To distinguish a BDAM data set, you must code
parameter containing one of the attributes DSORG=DA or DSORG=DAU.
DCB subparameters for BDAM data sets are listed in Appendix B.

Creating Partitioned (BPAM) Data Sets

of DD
of the
a DCB
Valid

Partitioned (BPAM) data sets are created using the same subset of DD
statement parameters as sequential data sets, except that BPAM data sets
cannot occupy a split cylinder. To distinguish a BPAM data set, you
must code the number of directory blocks in the space allocaticn
parameter. Valid DCB subpararreters for BPA~ data sets are listed in
Appendix B.

Example 15 illustrates a DD statement for creating a BPAM data set
with a 12-block directory.

r--,
1//OUTPUT3 DD DSNAME=X.Y.Z,VOLUME=REF=*.STEP1.0UTPUT, XI
1// DISP=(,CATLG),SPACE=(CYl, (20,,12» I L __ J

Example 15. Creating and Cataloging a Partitioned Data Set, Using
VOLUME=REF

Creating Indexed Seguential (BISAM and QISAM) Data Sets

Indexed sequential (ISAM) data sets are created using combinations of
the DD statement parameters UNIT, DSNAME, VOLUME, LABEL, DISP, DCB, and
SPACE. ISAM data sets occupy three areas of space: an index area that
contains master and cylinder indexes: a prime area that contains the
data records and track indexes; and an optional overflow area to held
additional records when the prirre area is exhausted. Detailed
information on creating and retrieving indexed sequential data sets is
presented in Appendix D.

Creating Data Sets in the Output Stream

New data sets can be written on a systerr output device, much the sa~e
as messages. When using a sequential scheduler, you direct a data set
to the output stream with the SYSOUT and DCB parameters.

SYSOUT: Required. Specify the standard output class, A.

DCB: Required only if complete data control block information has nct
been specified in the processing prograrr.

Example 16 illustrates a DD staterrent fer routing a data set through
the output stream using a sequential scheduler.

Section 2: A Guide to Using the Job Control language 51

r--,
1//OUTPUT5 DD SYSOUT=A I L __ J

Example 16. Creating a SYSOUT Data Set (Sequential Scheduler)

when you are using a priority scheduler, data sets are not routed
directly to a system output device. They are stored by the processing
program on an intermediate direct-access device and later written on a
system output device. In adaitien tc the SYSOUT and DCB parameters, DD
statements defining a data set of this type can also contain UNIT and
SPACE parameters. All other paraweters must be absent.

SYSOUT: Required.
data set routed.
character.

Specify the output class through which you want the
Output classes are identified by a single alphameric

DCB: Required only if complete data control block information has net
been specified in the processing prograrr.. Data centrol block inforwa­
tion is used when the data set is written on an intermediate direct­
access volume and read by the eutput writer. However, the output
writer's own DCB attributes are used when the data set is written on the
system output device. Valid DCB parameters are listEd in Appendix B.

UNIT: Optional. Assign an intermediate direct-access device. A
default device is assigned if you omit this parameter.

SPACE: Optional. Estimate the amount of direct-access space required.
A default estimate is assumed if you omit this parameter.

Exawple 17 illustrates a DD statement for reuting a data set through
an output stream using a priority scheduler.

r--,
1//OUTPUT5 DD SYSOUT=F,UNIT=2311,SPACE=(TRK, (10,2» I L __ J

Example 17. Creating a SYSOUT Data Set (Priority Scheduler)

52

RETRIEVING EXISTING DATA SETS

Data sets that exist before the job step that uses them 'are retrieved
using subsets of the DD statement parameters. The contents of each
subset depend on the disposition assigned to the data set when it was
created. Existing data sets can be used for both input and output
purposes. In the 1atter case, the existing data set is extended with
additional output instead of being read as input.

Retrieving Cataloged Data Sets

Input data sets that were assigned a disposition of CATLG, or were
cataloged by the IEBPROGM utility program, are retrieved using the DD
statement parameters DSNAME, DISP, LABEL, and DCB. The device type,
volume serial number, and data set sequence number (if tape) are stored
in the catalog.

DSNAME: Required. Identify the data set by its cataloged name. If the
catalog contains more than one index level, the data set name must be
fully qualified.

DISP: Required. Give the data set's status, OLD or SHR, and indicate
how you want it treated after its use, unless you want it to remain
cataloged.

LABEL: Required only if the data set does not have a standard label.

DCB: Required only if complete data control block information is not
specified by the processing program and the data set label. To save
recoding time" you can copy DCB attributes from an existing DCB
parameter and modify them if necessary. Valid DCB subparameters are
listed in Appendix B.

Examples 18 and 19 illustrate valid DD statements for retrieving
cataloged data sets.

r--,
1//INPUT2 DD DSNAME=A.B.C,DISP=(OLD,UNCATLG) I L-__ ~ ______________ J

Example 18. Retrieving and Uncataloging a Data Set

r--,
1//INPUT2 DD DSNAME=X.Y.Z,DISP=SHR I L __ J

Example 19. Retrieving a Disk Data Set, Which Can Be Shared by Another
Job

Note: In addition to the disposition UNCATLG, you can pass a cataloged
data set to a later step (PASS), or delete it (DELETE).

Retrieving Noncataloged (Kept) Data Sets

Input data sets that were assigned a disposition of KEEP are
retrieved by their tabulated name and location, using the DD statement
parameters DSNAME" UNIT, VOLUME, DISP, LABEL, and DCB.

DSNAME: Required. Identify the data set by the name assigned to it
when it was created.

section 2: A Guide to Using the Job Control Language 53

Form C28-6539-4, Page Revised by TNL N28-2214, 2/27/67

UNIT: Required, unless VOLUME=REF is used. Identify the unit by its
address, type, or group name. If the data set requires more than one
unit, give the number of units. You can also request deferred volume.
mounting and unit separation with this parameter.

VOLUME: Required.
or, if the data
VOLUME=REF. If you
you want a private
it, specify RETAIN.

Identify the volume or volumes with serial numbers
set was retrieved earlier in the same job, with
want the volume to be PRIVATE, specify PRIVATE. If
volume to remain mounted until a later job step uses

DISP: Required. Give the data set's status, OLD or SHR" and indicate
how you want it treated after its use.

LABEL: Required if the data set does not have a standard label. If the
data set resides with others on tape, you must give its sequence number.

DCB: Required for all indexed sequential data sets. Otherwise,
required only if complete data control block information is not supplied
by the processing program and the data set label. To save recoding
time, you can copy DCB attributes from an existing DeB parameter, and
modify them if necessary. Valid DCB subparameters are listed in
Appendix B.

Examples 20 through 22 illustrate valid DD statements for retrieving
noncataloged data sets.

r--,
1//INPUT3 DD DSNAME=ALPBA,UNIT=2311,DISP=SHR, XI
1// VOLUME=SER=(P12,P14) I '-' __ J

Example 20. Retrieving a Noncataloged Data Set, Which Can Be Shared by
Another Job

r--, :I 1//INPUT3 DD DSNAME=BETA,UNIT=2400"LABEL=(2,BLP), XI
1// DISP=(OLD,DELETE),VOLUME=(PRIVATE,RETAIN,SER=T3), XI
1// DCB=(*.STEP1.0UTPUT,DEN=2) I L __ ,.J

Example 21. Retrieving and Deleting a Noncataloged Data Set, With
Bypass Label Processing

r--,
I//INPUT DD DSNAME=MHB"DCB=DSORG=IS, UNIT= (2311,3) , XI
1// DISP= (OLD,KEEP) I, VOLUME=SER= (334,335,336) I L ___ J

Example 22. Retrieving an Indexed Sequential Data Set on Three Disks

Retrieving Passed Data Sets

Input data sets used in a previous job step and passed are retrieved
using the DD statement parameters DSNAME, DISP, and UNIT. The data
set's unit type, volume location, and label information remain available
to the system from the original DD statement.

DSNAME: Required. Identify the original data set by either its name or
the DD statement reference term *.stepname.ddname. If the original DD
statement occurs in a cataloged procedure, you must include the
procedure step name in the reference term.

54

DISP: Required. Identify the data set as OLD, and indicate how you
want it treated after its use.

UNIT: Required only if you want more than 1 unit allocated to the data
set.

Example 23 illustrates a valid DD statement for retrieving a passed
data set.

r--,
1//INPUT4 DD DSNAME=*.STEP1.OUTPUT,DISP=(OLD,DELETE) I L __ J

Example 23. Retrieving a Passed Data set

Extending Data Sets With Additional Output

A processing program can extend an existing data set by adding
records to it instead of reading it as input. Such a data set is
retrieved using the same subsets of DD statement parameters described
under the preceding three topics. depending on whether it was cataloged,
kept, or passed when created. In each case, however, the DISP parameter
must indicate a status of MOD. When MOD is specified, the system
positions the appropriate read/write head after the last record in the
data set. If you indicate a disposition of CATLG for an extended data
set that is already cataloged" the system updates the catalog to reflect
any new volumes caused by the extension.

Examples 24 through 26 illustrate valid DD st~tements for retrieving
data sets to be extended by the processing program.

r--,
1//INPUT5 DD DSNAME=A.B.C,DISP=(MOD,CATLG) I L __ J

Example 24. Extending and Recataloging a Data Set

r--1
1//INPUT5 DD DSNAME=ALPHA,UNIT=2311,VOLUME=SER=P12, XI
1// DISP=(MOD,KEEP) I L ___ ~ ______________ J

Example 25. Extending and Keeping a Noncataloged Data Set

r--1
1//INPUT5 DD DSNAME=*.STEP1.OUTPUT,DISP=(MOD,PASS) I L __ J

Example 26. Extending and Passing a Passed Data Set

Retrieving Data Through an Input Stream

Data sets in the form of decks of cards or groups of card images can
be introduced to the system through an input stream by interspersing
them with control statements. To define a data set in the input stream.
mark the beginning of the data set with a DD statement and the end with
a delimiter statement. The DD statement must contain one of the
parameters * or DATA. Use DATA if the data set contains job control
statements.

Section 2: A Guide to Using the Job Control Language 55

Examples 27 and 28 illustrate valid DD statements for defining a data
set in the input stream.

r--,.
1//INPUT6 DD * I L __ J

Example 27. Retrieving a Data Set Through the Input Stream

r-------------------------~--,
1//INPUT6 DD DATA I L __ J

Example 28. Retrieving a Data Set That Contains Control Statements
Through the Input Strearo

Notes:

When you use a sequential scheduler:

• The input stream must be on a card reader or magnetic tape.
• Each job step and procedure step can be associated with only one

data set in the input stream.
• The DD statement must be the last in the job step or procedure step.
• The records must be unblocked" and 80-characters in length.
• The characters in the records must be coded in BCD or EBCDIC.

When you use a priority scheduler:

56

• Each job step and procedure step can be associated with several data
sets in an input stream. All such data sets except the first in the
job must be preceded by DD * or DD DATA statements.

• The characters in the records must be coded in BCD or EBCDIC.

ADDITIONAL DO STATEMENT FACILITIES

Parameters and fields of the DO statement can be coded in special
ways to perform functions other than simply creating and retrieving data
sets. variations of the name field allow you to:

• concatenate two or more input data sets.
• Use a private library.
• Define data sets used for ABEND dumps.

The DUMMY parameter coded by itself or with other parameters can be
used to bypass input/output operations on data sets. The DSNAME
parameter, when coded in a special way" can be used in combination with
other OD statement parameters to create and retrieve generation data
groups. The AFF and SEP parameters allow you to make efficient use of
channels in certain situations.

Concatenating Data Sets

Several input data sets, each of which may reside on a different
volume, can be read as if they were a single data set through the
technique of concatenation. This technique makes it possible for a
processing program to get its input from several different types of
devices. Concatenated data sets are read in the order of appearance of
th~ir DD statements in the input stream.

To concatenate data sets, simply omit the ddnames from all DD
statements except the first in sequence. Example 29 illustrates a group
of 00 statements defining concatenated data sets, including a data set
in the input stream.

r--,
I//INPUT DD DSNAME=A.B.C,DISP=(OLD,DELETE) I
1// OD DSNAME=X.Y.Z,DISP=OLD,LABEL=(,NL) I
1// DO DSNAME=ALPHA,UNIT=2311,VOLUME=SER=P12, XI
1// DISP=(OLD,DELETE) I
1// DD * I
1 I
1 ---nata Cards--- I
1/* I L __ J

Example 29. Concatenating Data Sets

Using a Private Library

Processing programs that are used most frequently reside in the
system library, SYS1.LINKLIB. However, you may want to place a program
in a private library for one of several reasons:

• It is used infrequently.
• It is not completely checked out.
• It is used only by a limited number of people.
• You wish to transport it from one location to another.

To retrieve a program from a private library, you must first make the
library available to a job. The simplest way to do this is by placing a
special DD statement at the beginning of the job. When the operating

section 2: A Guide to Using the Job Control Language 57

Form C28-6539-4, Page Revised by TNL N28-2214, 2/27/67

system encounters this statement, it effectively concatenates the
private library with the system library, for the duration of the job.
As the job progresses, the system searches for each program, first in
the private library, and then in the system library.

The DD statement must contain the special ddname JOBLIB, and must
appear immediately after the JOB statement of the job to which it
pertains. The operand field, at minimum, must contain the DSNAME and
DISP parameters. The DISP parameter must be coded DISP=(OLD,PASS) or
DISP=(SHR,PASS), so that the library remains available throughout the
job. (The system assumes DISP=(OLD,PASS) if you code DISP=OLD.) Other
parameters should be coded according to requirements for retrieving data
sets, as discussed in an earlier chapter.

Example 30 illustrates a valid sequence of control statements for
making a private library available to a job.

r--,
I//PAYROLL JOB [JOB statement parameters] I
1//JOBLIB DD DSNAME=PRIVATE.LIB1,DISP=(OLD,PASS) I
1//STEP1 EXEC [EXEC statement parameters] I L __ J

Example 30. Retrieving a Cataloged Private Library

As with ordinary DD statements, you can arrange a sequence of JOBLIB
DD statements so that the private libraries they define are effectively
read as one. The libraries are searched in the order in which the DD
statements appear, with the system library searched last. To
concatenate private libraries, omit the ddname from all the DD state­
ments except the first. The first statement must specify a ddname of
JOBLIB. The entire group must appear immediately after the JOB
statement, and before the first EXEC statement.

Defining Data Sets Used for Abnormal Termination Dumps

Job steps subject to abnormal termination can take advantage of the
operating system abnormal termination dumping facilities. To avail a
job step of these facilities, you must include a special DD statement
defining a data set on which the dump can be written. This DD statement
must be identified by one of the special ddnames SYSABEND or SYSUDUMP,
and must include appropriate parameters for a basic sequential (BSAM)
data set. The processing program must not make a reference to such a
data set. If more than one special ddname is included in a job step,
all but the first DD statement are ignored.

The dump provided when the SYSABEND DD statement is used includes the
system nucleus, the problem program storage area, and a trace table, if
the trace table option was requested at system generation. The SYSUDUMP
DD statement provides only a dump of the problem program storage area.

If you choose to have the dump routed through the output stream and
written on a system output device, you must include the SYSOUT
parameter. If you are using a priority scheduler, you can also include
the UNIT and SPACE parameters to define the intermediate direct-access
device. Appropriate parameters for this type of output are discussed in
an earlier topic titled "Routing a Data Set through the Output Stream."

If you choose, instead, to store the dump and write it at a later
time, the SYSABEND DD statement must identify the data set, provide unit
and volume information, and give a dispOSition of KEEP or CATLG. If the
unit is direct-access, you must also include one of the space allocation
parameters. Example 31 illustrates a sample set of job steps that makes
use of the abnormal termination dumping facilities.

58

r--,
1//STEPl EXEC PGM=PROGRAMl
I//SYSABEND DD DSNAME=DUMP,UNIT=2311,DISP=(,KEEP), X
// VOLUME=SER=1234,SPACE=(TRK,(110,10»

Other DD statements

//STEP2 EXEC
//SYSABEND DD
//

PGM=PROGRAM2
DSNAME=*.STEP1.SYSABEND,DISP=(MOD,KEEP),
VOLUME=REF=*.STEP1.SYSABEND

Other DD Statements

//STEP3 EXEC
//SYSABEND DD
//

PGM=PHONY, CONn= ((5" LT, STEP1) , (5, LT, STEP2))
DSNAME=*.STEP1.SYSABEND,DISP=(OLD,DELETE),
VOLUME=REF=*.STEP1.SYSABEND

X

XI
I L __ J

Example 31. Using SYSABEND DO Staterrents

The SYSABEND DD statement in STEP2 takes advantage of the direct­
access space acquired in STEPl by indicating MOD. Note that the space
request in STEPl is large (110 tracks) so that the dumping operation is
not inhibited due to insufficient space.

The purpose of STEP3 is to delete the data set and free the space
acquired for dumping if all steps were executed successfully. Each step
that uses the dumping facility should issue a return code that indicates
its results. In Example 31, steps preceding STEP3 issue a return code
less than or equal to 5 if the step was completed successfully, and
greater than 5 if at least one task was terminated abnormally. Thus,
STEP3 is executed only if STEPl and STEP2 were successfully completed
(i.e., all return codes were less than 5).

The program named PHONY can be simply a load module in the system
library consisting of a single RETURN macro-instruction.

Bypassing I/O Operations on a Data Set

The DUMMY parameter" a DD statement positional parameter, offers you
the facility to bypass input/output operations, space allocation, and
disposition of data sets referred to by the basic or queued sequential
access methods. This facility can be used to suppress the writing of
certain output data sets, such as assembler listings, and to update new
master files with a dummy detail file. Bypassing operations on
noncritical data sets also results in a saving of time when you are
testing a program. To use this facility, code the word DUMMY first in
the operand field. Later you can remove this word and the DO statement
will assume its ordinary functions of allocation and disposition, and
I/O operations will be performed.

A read operation performed on a dummy data set results in an end of
data set exit. A write request is recognized r, but no data is
transferred. Example 32 illustrates the use of the DUMMY parameter to
establish a dummy data set.

r--~
1//OUTPUT3 DD DUMMY"DSNAME=X.Y.Z"DISP=(,CATLG)" XI
1// UNIT=2311" SPACE= (TRK. (10" 2}) I L __ J

Example 32. Bypassing I/O Operations on a Data Set

Section 2: A Guide to Using the Job Control Language 59

The data set defined in this example will not be cataloged after its
use or allocated a device or direct-access space until the word DUMMY is
removed.

Creating and Retrieving Generation Data sets

A cataloged data set that is periodically processed, such as a weekly
payroll, can be grouped with its earlier generations to form a named
generation group. It is convenient to form such a group in that each
member can be addressed by a simple generation number. The entire group
of data sets is associated with a generation group name. You identify
individual generations by coding the group name followed by a number
enclosed in parentheses, i.e., DSNAME=groupname(number). The current
generation~ that is~ the most up-to-date generation before the start of
a job, is addressed throughout the job by the group name followed by
(0). You address the generation immediately preceding the current one
by coding DSNAME=groupname(-l). and the generation immediately
succeeding the current one by coding DSNAME=groupname(+l). (New genera­
tions must always be assigned a disposition of CATLG.) Other past or
future generations can be addressed by decreasing or increasing the
generation number in increments of 1. You refer to a generation by the
same number throughout a job, even though one or more new generations
are created. Generation numbers are updated to their new values at the
end of the job.

Example 33 shows valid DD statements for retrieving the current
generation of a group named WEEKLY. PAYROLL, and creating a new genera­
tion.

r--,
I I
1/ /INPUT DD DSNAME=WEEKLY. PAYROLL (0) " DISP=OLD I
I I
I//OUTPUT DD DSNAME=WEEKLY.PAYROLL(+l),DISP=(,CATLG) I
I I L __ J

Example 33. Retrieving and Creating Generation Data Sets

Subsequent references to either of these data sets in the same job
must use the same generation numbers. If other generations are created
within the same job, they must be numbered (+2):, (+3), etc. At the end
of the job the data defined by INPUT becomes (-1) and the data set
defined by OUTPUT becomes (0), provided other new generations were not
created.

Notes:

• You can concatenate the entire group of data sets by specifying the
group name without a generation number, e.g., DSNAME=WEEKLY.PAYROLL.

• You cannot specify DISP=SHR when retrieving a generation data set.

Reference:

60

• For details on creating a generation data group, see the chapter
"Modifying System Control Data" of the publication IBM System/360
Operating System: Utilities.

Form C28-6539-4, Page Revised by TNL N28-2226, 4/10/67

Optimizing Channel Usage

Optimum channel usage can be obtained in sorre job steps by requesting
that certain data sets be assigned separate channels from others. This
facility should be used only when a significant saving of tiroe can te
realized by using separate channels. It considerably restricts device
allocation and may result in unnecessary dismounting of volurres.

The system treats channel separation and affinity requests on an "if
available" basis, that is, they will be recognized only if enough
channels are available. If one request cannot be satisfied, all such
requests in the step may be ignored. In addition, requests are ignored
if the automatic voluroe recognition feature is used. Example 34
illustrates a job step containing channel requests.

r--,
1//STEPl EXEC PGM=CONVERT I
1//INPUTl DD DSNAfvlE=A.B.C,DISP=OlD I
1//INPUT2 DD DSNA~E=X.Y.Z,DISP=OLD I
I//BUF DD UNIT=2400,SEP={INPUT1,INPUT2) I
I//OUTPUT DD DSNAME=ALPHA,UNIT=TAPE,DISP=(,KEEP),AFF=BUF I L __ J

Example 34. Requesting Channel Separation and Affinity

If enough channels are available, the temporary data sets defined by
the DD statements BUF and OUTPUT are assigned a channel other than the
ones used by data sets A.B.C and X.Y.Z. Note that the data sets defined
by BUF and OUTPUT mayor may not use the same channel.

Section 2: A Guide to Using the Jot Control Language 61

USING CATALOGED PROCEDURES

Applications that require many control statements and are used on a
regular basis can be considerably simplified through the USE of
cataloged procedures. A cataloged procedure is a set of job contrel
statements that has been placed in a partitioned data set known as the
procedure library. (The procedure library is a system data set named
SYS1.PROCLIB.) You retrieve a cataleged ~recedure from the library ty
using its member name in an EXEC statement in the input stream. Other
control statements in the input stream can be used to temporarily
override or add to the control staterrents in a procedure.

Establishing Cataloged Procedures

Cataloged procedures contain one or more EXEC statements, each
followed by associated DO statements. Each EXEC statement and its
associated DO statements represent a procedure step. EXEC statements
identify programs to be executed. Cataloged procedures cannot contain:

• EXEC statements referring to other cataloged procedures.

• JOB, command, delimiter, or null statements.

• DD statements with the ddname JOBLIB.

• DO statements with * or DATA COdEd in the operand field.

You add cataloged procedures to the procedure library by using the
IEBUPDTE utility program. You can also use this program to permanently
modify existing procedures. A description of this program and exarrples
of its use are contained in the publication IBM System/360 Operating
System: Utilities.

Overriding EXEC Statements in Cataloged Precedures

To override or add to the parameters on an EXEC stateITent in a
cataloged procedure, you must include the ~roeedure step name as part ef
the keywords on the EXEC statement that calls the procedure, i.e.,
TIME.procstepname. Each such keyword can a~pear as many times as there
are steps in the procedure. However, you must code all overriding
parameters for one procedure step before those of the next step.

If you wish to override all EXEC statement parameters in a cataloged
procedure with a single set of parameter values, code the overriding
keywords by themselves. Overriding ~arameters ef this type modify as
follows:

62

• PARM -- applies to the first step in the procedure and nullifies all
other PARM parameters.

• COND, ACCT -- apply to every step in the procedure.

• TIME, REGION -- override all TIME and REGION parameters and apply to
the entire procedure.

Form C28-6539-4, Page Revised by TNL N28-2226, 4/10/67

Overriding and Adding DD Statements

To override the DD statement parameters in a cataloged procedure, cr
to add data sets to the procedure, ycu roust include some DD statements
in the input stream. These DD statements must have a name field of the
form procstepname.ddname, e.g., STEP1.OUTPU~. The terms "procstepname"
and "ddname" identify the procedure step and DD statement that you are
overriding. If you are addiLg a data set to the procedure, the term
"ddname" must be different from other ddna~es in the procedure step.

There are a few rules you shculd keep in mind when overriding or
adding to a cataloged procedure step:

1. Overriding DD statements must be in the saroe order in the input
stream as the corresponding DD statements in the cataloged proce­
dure.

2. DD statements to be added must follcw overriding DD statements for
the step.

3. If you are using a sequential scheduler and one of the overriding
or additional DD statements has an * in its operand field, it rrust
be last.

To override a parameter in a procedure DD statement, either (1)
recode the entire parameter on the overriding statement, modifying it as
you wish, or (2) code a suitable replacement for the parameter, such as
SPLIT for SpACE. The DCB parameter is an exception to these rules; you
need only recode the DCB attributes you wish to modify. Parameters that
you do not wish to override need not be receded.

TO nullify a keyword pararreter, code the keyword followed by an equal
sign in the overriding DD statement, e.g., UNIT=. To nullify a DUMMY
parameter, code the DSNAME parameter in the overriding DD statement, but
do not use the data set name NULLFILE.

Example 35 shows an existing cataloged procedure named ANALYSIS.
This procedure is used and modified by the statements in Example 36 to
produce the temporary result as shown in Example 37.

r--,
I//LOOKUP EXEC PGM=SEARCH I
1//INl DD DSNAME=A.B.C,DISP=CLD I
1//OUTl DD UNIT=2311,SPACE=(TRK,(10,2»,DISP=(,PASS) I
I//REDUCE EXEC PGM=TRUNCATE I
1//IN2 DD DSNAME=*.LOOKUP.OU~l,DISP=(OlD,DEIETE) I
1//wORK DD UNIT=TAPE I
1//OUT2 DD UNIT=2311,SPACE=(TRK, (5,1»,DISP=(,PASS) I
I//DISPLAY EXEC PGM=PFINT I
1//IN3 DD DSNAME=*.REDUCE.OUT2,DISP=(OLD,DELETE) I
1//OUT3 DD SYSOUT=A I L __ J

Example 35. Modifying a Cataloged Procedure -- The Procedure

The procedure in Example 35 comprises three steps, each of which
receives input data from the catalog or the previous step, processes the
data, and places it in an output data set. The second step makes use of
a temporary work file on tape.

Section 2: A Guide to Using the Jot Control Language 63

r--,
1//STEP1 EXEC ANALYSIS I
1//LOOKUP.OUT1 DD UNIT=2400,DISP= I
I//REDUCE.WORK DD UNIT=180 I
I//REDUCE.XTRA DD UNIT=181 I
1//DISPLAY.IN3 DD DISP=(OLD,KEEP) I
l ____________________________________ -----------------_________________ J

Example 36. Modifying a Cataloged Procedure -- The Input Stream

The job step in Example 36 uses the ~rocedure and modifies it ty:

• Changing a disk to a tape and nullifying a disposition (implying a
disposition of DELETE).

• Specifying a specific unit for the work file.
• Adding an additional work file.
• Changing a disposition.

As a result of these modifications, the procedure temporarily appears
as shown in Example 37. As a result of the unit change in the DD
statement OUT1, the SPACE para~eter is ignored.

r--,
I//LOOKUP EXEC PGM=SEARCH I
1//IN1 DD DSNAME=A.B.C,DISP=CLD I
1//OUT1 DD UNIT=2400,SPACE=(TRK,(10,2» I
I//REDUCE EXEC PGM=TRUNCATE I
1//IN2 DD DSNAME=*.LOOKUP.OUT1,DISP=(OLD,PASS) I
I//WORK DD UNIT=180 I
I//XTRA DD UNIT=181 I
1//OUT2 DD UNIT=2311,SPACE=(TRK,(5,1»,DISP=(,PASS) I
I//DISPLAY EXEC PGM=PRINT I
1//IN3 DC DSNAME=*.REDUCE.OUT2,DISP=<OLD,KEEP) I
1//OUT3 DD SYSOUT=A I l ____________________________________ - _________________________________ J

Example 37. Modifying a Cataloged Procedure -- The Result

Using the DDNAME Parameter

The DDNAME parameter, used primarily in cataloged procedures and job
steps that call procedures, allows you to define a dummy data set that
can, at a later point in the same job step, assume real data set
characteristics. This facility is prirrarily used when a cataloged
procedure receives data from an input streaffi.

To use this facility, code DDNAME=ddname in the operand field of a DD
statement. This DD statement represents a data set whose definition is
postponed until a DD statement with a matching ddname in its name field
is encountered. At this point, all of the data set characteristics
defined in the matching statement are applied to the original statement.

There are a few rules you should keep in mind as you use the DDNAME
parameter:

1. You cannot make a backward reference (i.e., *.ddnarr-e) to a DD
statement whose ddnarre matches a previous DDNAME parameter. Also
you cannot place unnamed DD statements after such a statement
(i.e., concatenate).

64

2. You can make a backward reference to the original DO statement
containing the DDNAME parameter. If such a reference occurs before
a matching ddname is found, it refers to a dummy data set. You may
also place unnamed 00 staterrents after the original statement
containing the OONAME parameter.

3. You can use the DDNAME parameter up to five times in a job step and
up to five times in a cataloged procedure step; however, each use
must refer to a different ddname.

4. You cannot use the DDNAME parameter in a 00 statement that defines
a private library (i.e., a DO statement named JOBLIB).

Example 38 shows a cataloged procedure named PROCl that uses the
DDNAME facili ty,. This procedure is used and modified by the statements
in Example 39.

r--l
1//STEPl EXEC PGM=PROGRAMl I
1//ODl 00 OONAME=INPUT I
1//002 00 (00 statement parameters] I
1//D03 OD (00 statement parameters] 1
1//STEP2 EXEC PGM=PROGRAM2 I L _____________________________________ ~ ________________________________ J

Example 38. Using the OONAME parameter in a Cataloged Procedure -- The
Procedure

r--,
I 1
I I
I//STEPA EXEC PROCl I
1//STEP1.INPUT 00 * I
I I
I Data Cards I
1 1
I 1 L __ J

Example 39.. Using the ODNAME Parameter in a Cataloged Procedure -- The
Input Stream

The procedure data set defined by 001 assumes the characteristics of a
data set in the input stream when the matching ddname INPUT is
encountered.

Examples 40 and 41 illustrate another corrmon use of the DONAME
parameter. The cataloged procedure (PROC2) shown in Example 40 is
called and modified by the job step shown in Example 41.

r--1
1//STEPl EXEC PGM=PROGRAMl I
1//001 00 (DO statement parameters] I
.1//002 DO [00 statement parameters] 1
1//STEP2 EXEC PGM=PROGRAM2 I
I I
I I L __ J

Example 40. Using the OONAME Parameter in an Input Stream The
Procedure

Section 2: A Guide to Using the Job Control Language 65

r--1
I
I
I//STEPA
1//STEP1.DD1
1//STEP1.DD2
I
I
I//SKIP
I
I
I

EXEC
DO
OD

PROC2
DDNAME=SKIP
[OVerriding parameters]

DD *
Data Cards

L-__ _

Example 41. Using the ODNAME Parameter in an Input Stream -- The Input
Stream

According to the rules of overriding cataloged procedures, DD statements
in the input stream must appear in the same order as their counterparts
in the procedure~ and yet an overriding DD * statement must appear last.
The DDNAME parameter shown in Example 41 solves this problem by
postponing the data in the input stream until last while maintaining the
correct overriding order.

66

Form C28-6539-4, Page Revised by TNL N28-2226, 4/10/67

The UNIT parameter of the DD statement
can identify an input or output unit by its
actual address, its type number, or its
group name. Type numbers, auto~atically

Tape Units

Unit Type

2400 any 2400 Nine-Track Mag­
netic Tape Drive

2400-1 any 2400 Magnetic Tape
Drive with Seven-Track
Compatibility

2400-2 2400 Magnetic Tape Drive
with Seven-Track Corrpat­
ibility and Data Conver­
sion

2400-4,-5,-6 any 2400 Nine-Track Mag­
netic Tape Drive with a
density of 1600 bytes per
inch. Optional feature
allows for a density of
800 bytes per inch.
Model number denotes rate
of data transmission.

Direct Access Units

Unit Type

2301
2302
2303
2311

2314

Unit

2301 Drum Storage Unit
2302 Disk Storage Drive
2303 Drum Storage Unit
any 2311 Disk Storage
Drive
2314 storage Facility

APPENDIX A: UNIT TYPES

established at system generation, corres­
pond to units configured into your system.
Type numbers and corresponding units are
listed here for your convenience.

Unit Record Equipment

Unit Type

1052
1403

1442
1443
2501
2520
2540

2540-2

2671

Graphic Units

1053
2250

2250-2

2250-3

2260

2280
2282

Unit

1052 Printer-Keyboard
1403 Printer or 1404
Printer <continuous form
only)
1442 Card Read Punch
any 1443 Printer
2501 Card Reader
2520 Card Read Punch
2540 Card Read Punch
<read feed)
2540 Card Read Punch
(punch feed)
2671 Paper Tape Reader

1053 Printer
2250 Display Unit, Model
1
2250 Display Unit, Model
2
2250 Display Unit, Model
3
2260 Display Station
(local attachment)
2280 Film Recorder
2282 Film Recorder/Scan­
ner

Appendix A: Unit Types 67

APPENDIX B: DCB SUBPARAMETERS

The data control block associated with a
data set is filled by a number of sources,
one of which is the DD statement. The DCB
parameter supplies missing or overriding
attributes in the form of a list of subpar­
ameters. The glossary~ below lists the
keywords that you can code in the DCB
parameter, their definitions, and the CPRI
values they may assume.

Table 3 supplies valid keywords and
values that you can use with the indexecr CYLOFL
sequential, partitioned, direct, and
sequential access methods. Subparameters
that apply to the graphics access method
(GNCP,GDSORG) and the teleprocessing access
methods (BUFRQ,CPRI,INTVL,SOWA) do not DEN
appear in the table. Further information
on DCB subparameters appears in the publi­
cation IBM System/360 Operating Systero:
Supervisor and Data Management Macro­
Instructions.

Glossary of DCB Subparameters

BFALN

BFTEK

BLKSIZE

BUFL

BUFNO

BUFRQ

CODE

68

Fullword (F) or doubleword (D)
boundary alignment of each
buffer.

Type of buffering (simple or
exchange) to be supplied by the
control program (S or E).

Maximum block size in bytes (a
number).

Length, in bytes, of each buf­
fer to be obtained for a buffer
pool (a number).

Number of
assigned to
block.

buffers
the data

to be
control

Number of buffers to be read in
advance from the direct-access
device queue. (For use with
teleprocessing access methods.>

Paper tape code in which the
data is punched.

I - IBM BCD perforated tape and
transmission code (8
tracks)

F - Friden (7 tracks)

DSORG

EROPT

GDSORG

GNCP

B - Burroughs (7 tracks)
C - National Cash Register (8

tracks)
A - ASCII (8 tracks)
T - Teletype (5 tracks)
N - No conversion

Relative priority to be given
to sending and receiving opera­
tions. (For use with telepro­
cessing access methods.)

Number of tracks to be reserved
on each cylinder to hold
records that overflow from
other tracks on that cylinder.

Tape recording density.

0 - 200 bits/inch (7-track
only)

1 - 556 bits/inch (7-track
only)

2 - 800 bits/inch

For 7-track tapes, all informa­
tion on the reel must be writ­
ten in the same density (i.e.,
labels., data, tapemarks) • Do
not specify DEN for a SYSOUT
data set.

Organization of the data set.

PS - Physical sequential
PSU - Physical sequential un­

movable
PO - Partitioned organization
POU - Partitioned organization

unmovable·
IS - Indexed sequential
ISU - Indexed sequential unmov­

able
DA - Direct-access
DAU - Direct-access unmovable

option to be
error occurs.

ACC - Accept
SKP - Skip

executed if

ABE - Abnormal end of task

an

Organization of a graphic data
set. (For use with the gra­
phics access method.)

Maximum number of input/output
macro-instructions that will be
issued before a WAIT macro­
instruction. (For use with the
graphics access rr.ethcd.)

INTVL

KEYLEN

LIMCT

LRECL

MODE

NCP

NTM

OPTCD

Number of seconds of
intentional delay between pass­
es through a polling list.
(For use with teleprocessing
access methods.)

Length" in bytes. of a key (a
number).

Search limits~ in tracks or
blocks., if the extended search
option (OPTCD=E) is chosen (a
number).

Actual or maximum
bytes, of a logical
number) •

length, in
record (a

Mode of operation (column
binary or EBCDIC) for a card
reader or card punch. (C or
E.)

Maximum number of READ or wRITE
macro-instructions issued
before a CHECK macro-
instruction (number of channel
programs).

Number of tracks to be
contained in the master index
of an indexed sequential data
set; required when a master
index (OPTCD=M) is requested.
Through this master index
facility# extensive serial
search through a large cylinder
index can be avoided.

Optional services to be provid­
ed by the control program.

W - Perform a WRITE validity
check.

F - Feedback wil'l be requested
in READ or WRITE macro­
instructions in the
program.

E - Use extended search.

R - Relative block
are used.

addresses

A - Actual addresses are used.

C - Use chained
method.

scheduling

PRTSP

RECFM

RKP

SOWA

STACK

TRTCH

WC - Perform a WRITE validity
check and use chained
scheduling method.

M - Create master indexes as
required.

Y - Use cylinder overflow
areas.

I - Delete marked records when
new records are added to
the data set.

U - Universal character set.

Line spacing on a
1, 2. or 3).

printer (0,

Characteristics of the records
in a data set. These can be
used in combination, as
required.

U - Undefined-length records.

v - Variable-length records.

F - Fixed-length records.

B - Blocked records.

T - Track overflow used.

S - Standard blocks - no trun­
cated blocks or unfilled
tracks within the data set.

A - ASA control character.

M - Machine code control char­
acter.

Relative position of the first
byte of the record key within
each logical record (a number).

Size., in bytes, of the user­
provided work areas. (For use
with teleprocessing access
methods.)

Stacker bin on a card reader or
card punch (lor 2).

Tape recording technique for
seven-track tape. These values
can be used in combination.

C - Data conversion feature
E - Even parity
T - BCD to EBCDIC translation

Appendix B: DCB Subparameters 69

Table 3. Valid DCB Subparameters
r----------T------------T------------T------------T---------~--T------------T-----------,
I Keyword I BISAM I QISAM I BPAM I BDAM I BSAM I QSAM I
~----------+------------+------------+------------+------------+------------+-----------~
I BFALN= I F or D I F or D I F or D I F or D I F or D I· F or D I
~----------+------------+------------+------------+------------+------------+-----------~
I BFTEK= I I I I I I S or E I
~----------+------------+------------+------------+------------+------------+-----------~
I BLKSIZE= I I number I number I number I number I number I
I I I of bytes I of bytes I of bytes I of bytes I of bytes I
~---------+------------+------------+------------+------------+------------+-----------~
I BUFL= I I I number I number I number I r.umber I
I I I I of bytes I of bytes I of bytes I of bytes I
~----------+------------+------------+------------+------------+------------+-----------~
I BUFNO= I number I number I number I number I number I number I
I I of buffers I of buffers I of buffers I of buffers I of buffers I of buffers I
~----------+------------+------------+------------+------------+------------+-----------~
I CODE= I I I I I see I see I
I I I I I I glossary I glossary I
~----------+------------+------------+------------+------------+------------+-----------~
I CYLOFL= I I number I I I I I
I I I of tracks I I I I I
~----------+------------+------------+------------+------------+------------+-----------~
I DEN= I I I I I 0, 1, or 2 I 0, 1, or 2 I
I I I I I I (Tape) I (Tape) I

~----------+------------+------------+------------+------------+------------+-----------~
I DSORG= I IS or ISU I IS or ISU I I DA or DAU I PS or PSU I PS or PSU I
I I I I I I (Disk) I (Disk) I
~----------+------------+------------+------------+------------+------------+-----------i
I EROPT= I I I I I I ACCwSKP I
I I I I I I I or ABE I
~----------+------------+------------+------------+------------+------------+-----------~
I KEYLEN= I I number I nureber I number I number I I
I I I of bytes I of bytes I of bytes I of bytes I I

~----------+------------+------------+------------+------------+------------+-----------~
I LIMCT= I I I number of I I I I
I I I Itrks or blksl I I I
~----------+------------+------------+------------+------------+------------+-----------~
I LRECL= I I number I nUIIit:er I I number I number I
I I I of bytes I of bytes I I of bytes I of bytes I
~----------+------------+------------+------------+------------+------------+-----------~
I MODE= I I I I I e or E I e or E I
I I I I I I (Rdr/Punch) I (Rdr/Punch) I

~----------+------------+------------+------------+------------+------------+-----------~
I NCP= I number of I I number of I I number of I I
I I chan • 1 pgms. I I chan' 1 pgms. I I chan' 1 pgms. I I
~----------+------------+------------+------------+------------+------------+-----------~
I NTM= 1 I number of 1 1 1 I 1
I I 1 tracks I I I I I
~----------+------------+------------+------------+------------+------------+-----------~
I OPTeD= I I see I see I see I see I see 1
I I 1 glossary I glossary 1 glossary 1 glossary I glossary I
~----------+------------+------------+------------+------------+------------+-----------~
I PRTSP= I I I I I 0,1~2.or 3 I 0~1,2,or 31
I I I I I I (Printer) I (Printer) I

~----------+------------+------------+------------+------------+------------+-----------~
I RECFM= I I see I see I see I see I see I
I I I glossary I glossary I glossary I glossary I glossary I

~----------+------------+------------+------------+------------+------------+-----------~
I RKP= I I byte number I I I I I
~----------+------------+------------+------------+------------+------------+-----------~
I STACK= I I I I I 1 or 2 I 1 or 2 I
I I I I I I (Rdr/Punch) I (Rdr/Punch) I

~----------+------------+------------+------------+------------+------------+-----------~
I TRTCH= I I I I I e, E, or TIC, E, or TI
I I I I I I (Tape) I (Tape) I L-_________ ~ ____________ ~ ____________ ~ ____________ ~ ____________ ~ ____________ ~ ___________ J

70

The components and features available
through job management depend on the
scheduler your installation selects during
system generation. A sequential scheduler
is used with operating systems having a
primary control program (PCP) and systems
that provide multiprogramming with a fixed
number of tasks (MFT). A priority schedul-

Table 4. Components of Job Management

APPENDIX C: SUMMARY OF SCHEDULERS

~ is used with systems that provide mul­
tiprogramming with a variable number of
tasks (MVT).

Table 4 shews the job management compo­
nents available with each scheduler. Table
5 compares and contrasts the job management
features supported by the two schedulers.

r--T--1
I I Scheduler ,
I Components ~---------------------T----------------------~
I , Sequential I Priority I
~-----------------T------------------------+---------------------+----------------------~
I I Reader/Interpreter I 1 I 1 (o~ more) I
I ~------------------------+---------------------+----------------------~
I I Initiator I 1 ,1 (or more) I
I Job Scheduler ~------------------------+---------------------+----------------------~
, I Queue Manager' ,1 I
I ~------------------------+---------------------+----------------------~
I , System output Writer I I 1 (or more) I
~-----------------~------------------------+---------------------+----------------------~
I Master Scheduler I 1 I 1 I L __ ~ _____________________ ~ ______________________ J

Table 5. Comparison of Job Management Fea~ures
r-------------------T---,
I , Scheduler I
I Feature ~---------------------------------T----------~----------------------~
J ,Sequential, Priority I
~-------------------+---------------------------------+---------------------------------~
'Maximum Number of lOne. 'One for each reader/interpreter,. I
I Input Streams I I I
~-------------------+---------------------------------+---------------~-----------------~
IData Sets in the IThe processing program reads any lEach reader/interpreter, opera- I
I Input Stream I data present in the input stream. I ting as a separate task" places I
I 'You can have one such data set Ithe data on a direct-access de- ,
I Ifor each job step. Ivice for subsequent high-speed ,
'I Iretrieval by the processing pro- I
I I I gram. You can have more than one I
I I ,such data set for each job step. I
~-------------------+---------------------------------+---------------------------------~
IConsole Configura- IAlternate Console or Composite IAlternate Console, Composite Con-I
Ition Allowed I Console, but not both# can be Isole, or a combination of the I
I I specified. Itwo# can be specified. I
r-------------------+---------------------------------+---------------------------------~
IOperator Commands I CANCEL SET IAII commands valid with a sequen-I
IThat can be Entered I DISPLAY SHIFT1 Itial scheduler except REQ I
IThrough the Consolel MOUNT START land SHIFT plus the following: I
I I REPLY STOP I I
I I REQ UNLOAD I HALT RELEASE I
I , VARY I HOLD RESET I
'I I LOG WRITELOG I
" I MODIFY ,
I 11Systems with 1-1FT only. I I L ___________________ ~ _________________________________ ~ _________________________________ J

(Continued)

Appendix C: Summary of Schedulers 71

Table 5. Comparison of Job Management Features (Continued)
r-------------------T---1
I I Scheduler. I
I Feature ~---------------------------------T---------------------------------~
I I Sequential I Priority I
~-------------------+---------------------------------+---------------------------------~
IOperator Command IAII commands except SET, START IAII commands are accepted as they I
I Processing IRDR, and START WTR are accepted lare issued. I
I I as they are issued. SET" START I I
I IRDR" and START WTR are accepted I I
I Jbetween job steps and are issued I I
I I after first issuing a REQ I I
I I command. I I
~-------T-----------+---------------------------------~---------------------------------~

System
output

ITo the I All messages to the operator appear on the operator's console. I
I opera tor I I
~-----------+---------------------------------T---------------------------------i

To the
programmer
(Job
scheduler
messages)

Job scheduler messages are auto- An output writer., operating as a
matically routed to the stan- separate task~ processes job
dard output class. They are scheduler messages. You can use
issued between job steps and the MSGCLASS parameter of the JOB
appear on the device currently statement to control the output
associated with the standard out- class to which these messages are
put class. assigned:

• If you specify the standard
output class (A) or omit the
MSGCLASS parameter" job
scheduler messages are routed
to a device associated with
the standard ouput class.

• If you specify another class.
job scheduler messages are
routed to a device associated
with that class.

~-------+-----------+---------------------------------~---------------------------------~

Pro-
cessing

ITo the IThe WTO (write to operator) and the WTOR (write to operator with I
I operator I reply) macro-instructions can be used for processing program com- I
I Imunication with the operator. I
~-----------+---------------------------------T---------------------------------i

IYou can elect to have the proces- You can elect to have the proces-
Ising program write its own output sing program write its own output
I directly" or specify the SYSOUT directly., or specify the SYSOUT
Iparameter in the DO statement. parameter in the DO statement.
I
I
INote: The processing program
transfers SYSOUT data directly
onto a system output device.

Program To the
Output programmer

Notes: The processing program
places a data set to be processed
by SYSOUT routines on a direct­
access device. The DO statement
for this data set must contain
the SYSOUT parameter" and can
optionally contain UNIT and SPACE
parameters. (Default values for
UNIT and SPACE are aSSigned if
these parameters are absent,.)
System output writer programs
transfer the data from the
direct-access device to an

(SYSOUT
data sets)

output device associated with
the class named in the SYSOUT
parameter.

Data sets are made available for
SYSOUT processing at the end of
the job. and are selected for
processing according to the
priority of their jobs. L _______ ~ ___________ ~ _________________________________ ~ ________________________________ _

72

Form C28-6539-4, Page Revised by TNL N28-2214, 2/27/67

APPENDIX D: CREATING AND RETRIEVING INDEXED SEQUENTIAL DATA SETS

Indexed sequential (ISAM) data sets are
created and retrieved using special subsets
of DD statement parameters and subparamet­
ers. They can occupy up to three different
areas of space:

• Prime area -- This area contains data
records and related track indexes. It
exists for all ISAM data sets.

• Overflow area -- This area contains
overflow from the prime area when new
data records are added. It is option­
al.

• Index area -- This area contains master
and cylinder indexes associated with
the data set. It exists for any ISAM
data set that has a prime area occupy­
ing more than one cylinder.

ISAM data sets must reside on direct-access
volumes. Because an ISAM data set can be
associated with more than one type of uni t " it is not usually cataloged.

Creating an ISAM Data set

ISAM data sets are created with from one
to three DD statements. One of the state­
ments must define the prime area. DD
statements must define bhe areas in a
specific order:

1. Index area.
2. Prime area.
3. Overflow area.

This order must be maintained if one of the
statements is absent. The first or only DD
statement defining the data set can contain
a name field. Other statements must have a
blank name field.

The subset of DD statement parameters
used to create an ISAM data set excludes *,
DATA, DUMMY, DDNAME, SYSOUT, SUBALLOC, and
SPLIT. The remaining DD statement paramet­
ers DSNAME, UNIT, VOLUME, LABEL, DCB,
DISP, SPACE, and SEP and AFF are all
valid. However, you must follow certain
restrictions in using these parameters.

DSNAME: Required. In addition to giving
the data set name, the DSNAME parameter
identifies the area you are defining, i.e.,
DSNAME=name(INDEX}~ DSNAME=name(PRIME), and
DSNAME=name(OVFLOW).

Notes:

• If the data set is temporary, replace
name with 'name.

• If you are using only one DD statement
to define the entire data set, use
DSNAME=name (PRIME) or DSNAME=name.

UNIT: Required, unless VOLUME=REF is used.
The first subparameter identifies a direct­
access unit. If you include separate
statements for the prime and index areas,
you must request the same number of units
for the prime area as there are volumes.
You cannot specify DEFER on any of the
statements. Another way of requesting
units is by using the unit affinity subpa­
rameter, AFF.

Notes:

• DD statements for prime and overflow
areas must indicate the same type of
unit.

• The DO statement for the index area can
indicate a unit type different than the
others.

VOLUME: Optional. Can be used to request
private volumes (PRIVATE), retain private
volumes (RETAIN), or to make specific vol­
ume references (SER or REF).

LABEL: Optional. Can be used to indicate
the use of both standard and user labels

I
(SUL) and to specify a retention period

.
(RETPD or EXPDT) and password protection
(PASSWORD).

DCB: Required. Can be used to complete
the data control block if it has not been
completed by the processing program. You
must include in the list of attributes
OSORG=IS' or DSORG=ISU, even though this
attribute was provided in t.he processing
program. If more than one DD statement is
used to define the data set, the DCB
parameters in the statements must not con­
tain conflicting attributes.

DISP: Optional. Must be coded if you want
to keep the data set (KEEP), catalog it
(CATLG), or pass it to a later job step
(PASS). An ISAM data set can be cataloged
using CATLG only if all three areas are
defined by the same DD statement.

Appendix D: Creating and Retrieving Indexed Sequential Data Sets 73

• You can catalog ISAMdata sets defined
by more than one DD statement by using
the system utility program IEHPROGM,
provided all volumes reside on the same
type of unit. The utility program
IEHPROGM is described in the publica­
tion IBM system/360 Operating System:
Utilities.

SPACE: Required. You must request space
using either the recommended nonspecific
allocation technique or the more restricted
absolute track (ABSTR) technique. If more
than one 00 statement is used to define the
data set, all must request space using the
same technique.

If you use the nonspecific space alloca­
tion technique, space must be requested in
units of cylinders (CYL). The quantity of
space you request is assigned to the area
identified in the DSNAME parameter. If you
requested more than one unit, this quantity
of space is allocated on each volume used
by the data set. You cannot request
incremental space for ISAM data sets. If
you are using one DD statement to define
both the index and prime areas, you can
indicate the size of the index in the SPACE
parameter of the 00 statement that defines
the prime area. The subparameters RLSE,
MXIG,- ALX, and ROUND cannot be used. You
can, however, request contiguous space on
each of the volumes occupied by the data
set with the subparameter CONTIG. If
CONTIG is coded on one of the statements.,
it must be coded on all of them.

If you use the absolute track technique
of allocating space, the number of tracks
must be equivalent to an integral number of
cylinders. The address of the beginning
track must correspond with the first track
of a cylinder other than the first cylinder
on a volume. If you requested more than
one unit, space is allocated beginning at
the specified address and continuing
through the volume and onto the next volume
until the request has been satisfied. If
you are using one DD statement to define
both the index and prime areas, you can
indicate the size of the index (in tracks)

in the SPACE parameter of the DD statement
defining the prime area. This number must
also be equivalent to an integral number of
cylinders.

Notes:

• The first volume to be allocated for
the prime area of an ISAM data set
cannot be the volume from which the
system is loaded (the IPL volume).

• Space can be requested on more than one
volume only on the DD statement that
defines the prime area.

SEP and AFF: Optional. You can request
channel separation from earlier data sets
on any of the DD statements in the group.
If you wish to have areas of an ISAM data
set written using separate channels# you
must request units by their actual address,
e.g., UNIT=190.

Example 42 illustrates a valid set of DD
statements for creating an ISAM data set.
In this example" each area is defined by a
separate DD statement.

The manner in which the areas of an ISAM
data set are arranged is based primarily on
two criteria:

1. The number of DD statements used to
define the data set.

2. The types of DD statements used (as
reflected in the DSNAME parameter).

An additional criterion arises when you do
not include a DD statement for the index
area:

3. Is an index size coded in the SPACE
parameter of the DD statement defining
the prime area?

Table 6 illustrates the arrangements
resulting from various permutations of the
above criteria. In addition, it points out
restrictions on the number and type of
units that can be requested for each permu­
tation.

r---,
1//OUTPUT4 DD DSNAME=MHB(INDEX),UNIT=2301,DCB=DSORG=IS, XI
1// SPACE= (CYL, 10", CONTIG) ,DISP= (, KEEP) I
I I
1// DD DSNAME=MBB(PRIME),OCB=DSORG=IS,UNIT=(2311,2), XI
1// VOLUME=SER=(334,335) ,DISP=(,KEEP) , XI
1// SPACE=(CYL,25"CONTIG) I
I I
1// DD DSNAME=MHB(OVFLOW),DCB=DSORG=IS,UNIT=2311, XI
1// VOLUME=SER=336,SPACE=(CYL,25"CONTIG),DISP=(,KEEP) I
L-__ ----------------------------J
Example 42. Creating an Indexed Sequential Data Set

74

Table 6. Area Arrangement for ISAM Data Sets
r--T----------------------T---------------------,
I CRITERIA I I I
~---------------T---------------T----------i RESTRICTIONS ON I RESULTING I
11. Number of 12. Types of 13. Index I UNIT TYPES AND I ARRANGEMENT I
I DD I DD I size I NUMBER OF UNITS I OF AREAS I
I statements I statements I coded? I REQUESTED. I I
~---------------+---------------+----------+----------------------+---------------------~
I 3 I INDEX I I PRIME and OVFLOW I Separate index" I
I I PRIME I Imust specify the same I prime, and overflow I
I I OVFLOW I lunit type. lareas. I
~---------------+---------------+----------+----------------------+---------------------i
I 2 I INDEX I INone Iseparate index and I
I I PRIME I I Iprime areas. I
~---------------+---------------+----------+----------------------+---------------------i
I 2 I PRIME I No IBoth statements must IPrime area and over- I
I I OVFLOW I Ispecify the same type Iflow area with an I
I I I lof unit. I index at its end. I
~---------------+---------------+----------+----------------------+---------------------i
I 2 I PRIME I Yes IBoth statements must IPrime area with em- I
I I OVFLOW I Ispecify the same unit Ibedded index# and I
I I I Itype. The statement loverflow area. I
I I I I defining the prime I I
I I I larea cannot request I I
I I I I more than one unit. I I
~---------------+---------------+----------+----------------------+---------------------~
I 1 I PRIME I No INone IPrime area with index I
I I I I lat its end. Addi- I
I I I I I tional area, if any. 1
I I I I lused for overflow. I
~---------------+---------------+----------+----------------------+---------------------i
I 1 I PRIME 1 Yes ICannot request IPrime area with I
I I 1 Irrore than one unit. lembedded index area. 1 L _______________ i _______________ i __________ i ______________________ L _____________________ J

Retrieving An ISAM Data Set

ISAM data sets are retrieved with the DD
statement parameters DSNAME. UNIT, VOLUME,
DCB, and DISP. Channel separation requests
can be n,ade using the SEP and AFF parame­
ters. If all areas of the data set reside
on the same type of unit" you can retrieve
the entire data set with one DD statement.
If the index resides on a different type of
unit, you must use two DD statements.

DSNAME: Required. Identify the data set
by its name. If it was passed from a
previous step,. identify it by a backward
reference or its temporary name. Do not
include the terms INDEX., PRIME, or OVFLOW.

UNIT: Required., unless the data set was
passed on one volume. Identify the unit
type. If the data set resides on more than
one volume and all units are the same type,
request the total number of units required

by all areas. If the index area resides on
a different type of unit. you must use two
OD statements, each indicating the number
of units of the specified type required.

VOLUME: Required, unless the data set was
passed on one volume. Identify the volumes
by their serial numbers (SER)# listed in
the same order as they were when the data
set was created.

DCB: Required, unless the data set was
passed. You can use this parameter to
complete the data control block if it was
not completed in the program. You must
include either DSORG=IS or OSORG=ISU.

DISP: Required. Identify the data set as
OLD or MOD and give its new disposition, if
you wish to change its disposition.

Example 43 shows how to retrieve the
ISAM data set created in Example 42.

r---,
I//INPUT DD DSNAME=MHB"DCB=DSORG=IS,UNIT=2301,OISP=OLD I
1// DD DSNAME=MHB,DCB=DSORG=IS,UNIT=(2311,,3) ,DISP=OID., XI
1// VOLUME=SER=(334,335,336) 1 L ___ J

Example 43. Retrieving an ISAM Data Set

Appendix D: Creating and Retrieving Indexed Sequential Data Sets 75

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

J

j
j
j
j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j
j

j
j
j

j
j

j
j
j

APPENDIX E: CONTROL STATEMENT FOLDOUT CHARTS

r---,
I I
I The JOB Statement ,
I I
~------------T-----T-------------------------------------T---T--------------------------~
I//Name IOper-IOperand I P/K I Comments I
I lationl I I I
~------------+-----+-------------------------------------+---+--------------------------~
I//jobname JOB I [([acct#][,acctg information])] I P ICan be made mandatory I
I I I I I
I I [programmer's name] 1 P I Can be made mandatory I
I I I I I
I 1 [MSGLEVEL=l] I K 1 1
I I I I I
I I [COND=«condition), •••)] 1 K lMaximum of 8 conditions I
I I I 1 I
I I [PRTY=n] I K IPriority scheduler only I
I I I I I
I I [MSGCLASS=x] I K IPriority scheduler only I
I I I I I
I I [REGION=nnnnnK) I K IPriority scheduler only I
~------------~-----~-------------------------------------~---~--------------------------~
I I
I The EXEC Statement I
I I
~-~----------T-----T-----~-------------------------------T---T--------------------------~
I//Name \Oper-IOperand IP/K\Comments I
I lationl I I I
~------------+-----+-------------------------------------+---+--------------------------~
//(stepnamel EXEC {PGM=prOgram name} I I I

PGM=*. stepname. ddname I P I I
[PROC=] procedure name I I I

I I I
rCOND=«condition)~ •••) 1 I K IMaximum of 8 conditions I
LCOND.procstepname=((condition)" ••• >J I I I

I I f
[
PARM=value 1 I K I I
PARM.procstepnaroe=valueJ I I I

I I I
I K I I
I I I
I \ I

rTIME=(minutes.seconds)] I K IPriority scheduler only I
LTIME.procstepname=(min,sec) I I I

I I \ I
I [REGION=nnnnnK] I K IPriority scheduler only I

REGION.procstepname=nnnnnK I I \
~------------~-----~-------------------------------------~---~--------------------------~

[
ACCT= (acctg information)]
ACCT.procstepname=(acctg info)

I Legend: I
I I
IP positional parameter. I
IK Keyword parameter. I
Ii} Choose one. I
I [] Optional: if more than one line is enclosed" choose one or none. I L ___ J

Appendix E: Control statement Foldout Charts 77

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

J

j
j
j
j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j
j

j
j
j

j
j

j
j
j

r---1
I I
I The DD statement I
I I
r----------------T------r--------------------------------T------------------------------~
1/ /Name IOper- I Operand I comments I
I lation I , ,
~----------------+------+--------------------------------+------------------------------~
//[ddname jl DD [DSNAME=identificationl ISee Chart 3 for subparameters

procstepname·1 ,
ddname [UNIT=(unit information)] 'See Chart 3 for subparameters

[VOLUME=(volume information)]

[

DCB= ([dsname] (',attributes] >]
DCB=([*.stepname.ddname]

(.attributes])

[LABEL=(label information)]

,
ISee Chart 3 for subparameters , , ,
I
I
Isee Chart 3 for subparameters
I

[DISP=([status][,disposition])] ,See Chart 3 for subparameters ,
[

SPACE= (direct-access space)] ,
SPLIT=(direct-access space) 'See Chart 3 for subparameters
SUBALLOC=(direct-access space) I ,

[
SEP=(ddnameS)] ,
AFF=ddname ,

~----------------+------+--------------------------------+------------------------------~
, I I{*} ITO define a data set in the I
I I I DATA ,input stream I
~----------------+------+--------------------------------+------------------------------~
I I I DUMMY"... I To bypass operations on a data I
I I I Iset I
~----------------+------+--------------------------------+------------------------------~
I I IDDNAME=ddname ITo postpone the definition of I
I I I I a data set I
~----------------+------+--------------------------------+------------------------------~
I I ISYSOUT=A,... ITO route a data set through I
I I I Ithe output stream (sequential I
I I I I scheduler) I
~----------------+------+--------------------------------+------------------------------~
I I I ["progname,fOrm#] ITO route a data set through I
I I I SYSOUT= (x , progname) '.. •• I the output stream (priority I
I I I "form# I scheduler) I
~----------------~------~--------------------------------~------------------------------~
I Legend: I
I I
If} Choose one. I
'[] Optional; if more than one line is enclosed" choose one or none. I l ___ J

Appendix E: Control statement Foldout Charts 79

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

J

j
j
j
j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j
j

j
j
j

j
j

j
j
j

Form C28-6539-4, Page Revised by TNL N28-2214, 2/27/67

r---T---,
I I I
I The DSNAME Parameter I The DISP Parameter I
I I I

!-~~~;~;;:--i-f-~~~:;;-~;;;;!~--J-----------!---~~;:---r---~[~~-]-[~~~;;-]-,-----------1
I I name(generation #) I I MOD ,CATLG I
I I &name(membername) I I ,UNCATLG I
I I &name(area name) I I I
I I *.stepname.ddname I I I
~-----------~-------------------------------L-----------~-------------------------------i
I' I

I The Unit Parameter I
I I
~-----------~--i
I UNIT= I ([addreSS] [, P] [, DEFER] [, SEP= (list of ddnames)]) I
I I type ,n I
I I group , I
~-----------L---i
I I
I The VOLUME Pararreter I
I I
~-----------T---i
I VOLUME= I ([PRIVATE] [,RETAIN] [,VOlSeq #] [,volccunt] [,SER=(list of serial #S)]) I
I I " ,REF=dsname I
I I , REF=*.stepname.ddname I
~-----------L---i
I I
I The LABEL Parameter I
I I
~-----------T---i
I LABEL= I ([data set seq#] [,SL][,PASSWORD][,] [EXPDT=YYddd]) I
I I , SUL RETPD=nnnn I
I I ,NSL I
I I ,NL I
I I ,BLP I
~-----------L---i
I I
I Space Allocation Parameters I
I I
~-----------T---i
I SPACE= I (ABSTR, (quantity,address [,directory]» I
~-----------+---i
I SPACE= I ({TRK }' (quantity [, increment] [, directory]) [,RLSE] ['CONTIG] [,ROUND]) I
I I CYL " index , , MXIG I
I I blocksize ,ALX I
I I , I

r--~~~I;:---r--~!:~c::~::::::::~~:::::::::~~~------~---------------------------------1
I I l(%,blOCkSiZe,(qUantity[,inCrement]»~ I
~-----------+--~----------------------------------i
I SUBALLOC=I ({TRK }' (quantity [,increroent] [directory]),stepname.ddname) I
I I CYL, I
I I blocksize I
~-----------L-----------------_---i
I Legend: I
I I
I{l Choose one. I
I [] Optional; if more than one line is enclcsed, choose one or none. I L ___ J

Appendix E: control Statement Foldout Charts 81

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

J

j
j
j
j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j
j

j
j
j

j
j

j
j
j

&name 23,25,73,81
* parameter in the DD statement 2i,55-56
/*.identifying characters 11,21,37
//,identifying characters 11,37,40,41,44

ABEND dumps 58-59
Absent parameters and subparameters 12
ABSTR subparameter in the SPACE parameter

35:,74,81
Account number in the JOB statement
13,40,42,77

Accounting information
in the EXEC statement 18,40,45-46,77
in the JOB statement 13,14,40,42.77

ACCT parameter in the EXEC statement
18,40,45-46,77

Address subparameter in the SPACE
parameter 35

Address, unit 24,81
AFF parameter in the DD statement 36,,61,79
AFF subparameter in the UNIT parameter

25,73,81
Affinity

channel 36,61,79
unit 25,81

Alphameric character set 39
ALX subparameter in the SPACE parameter

34,74,81
Apostrophes

inclusion in variables 39-40
use of as delimiters 13,14,18,40,45

Area arrangement for ISAM data sets 74-75
Areas of ISAM data sets 51,73
Attributes, DCB

glossary 68-69
how to code 28-29,48,49,50,68-70,73.79
values by access method 70

Backward references 12
BDAM data sets, creating 51
BISAM data sets

creating 51,73-74
retrieving 75

Blank. use of as field delimiter 12,40
Blocks, directory" in a BPAM data set

33,35,,36,51
Boundaries

job 43
job step 47

BPAM data sets" creating 51
BSAM data sets" creating 49
Bypassing I/O operations on a data set

21,59

cataloged data sets, retrieving
Cataloged procedures

establishing 62
executing 17" 4 4, 62
overriding 62-64
using the DDNAME parameter in

Channel affinity and separation
with ISAM data sets 74.,75

53

64-66
36,61

Character sets
alphameric 39
national 39
special 39
use of in control statements 39-40

Class
message 14-15,43,72
system output 22,51-52,72

Coding special characters 39-40
Comma

as a delimiter 12
as a replacement character 12
inclusion in variables 18

Command statement 11,12.13,37
Commands, operator

coded in the command statement 37
entered on the console 71

Comments field
continuation of 41
including on a control statement 11,12
restrictions on use of 40

Components of job management 10,,71
concatenation

of data sets 57
of private libraries 58

COND parameter
in the EXEC statement 17.45,77
in the JOB statement 14,42-43.77

Conditions
for job termination 14.42-43
for job step termination 17,45

CONTIG sutparameter in the SPACE parameter
34,81

with ISAM data sets 74
Continuation

of control statements 40
of the comments field 41

Conventions
coding 11-12,39-40
continuation 40-41

Creating new oQtput data sets 48-52
CYL subparameter

in the SPACE parameter 33,,74,,81
in the SPLIT parameter 35,81
in the SUBALLOC parameter 36,81

Cylinders
splitting among data sets 35

Data control block, filling with the DCB
parareeter 28-29,63,68-70

Data definition statement
(see DD statement)

DATA parameter in the DD statement
21,55-56,79

Data set name (see DSNAME)
Data set sequence number in the LABEL
parameter 30,49.54,81

Data sets in the input stream 21,55-56
DCB parameter in the DD statement

28-29,68-70,79
DD statement" the 11

additional facilities of 57-61

Index 83

as an information source 20
examples of 48-66,14,75
parameters in 79

Ddname in the DD statement 20-21,57-59,79
DDNAME parameter in the DD statement

21,64-66,79
DEFER suoparameter in the UNIT parameter

24-25_81
Deferred mounting of volumes (see DEFER)
DELETE subparameter in the DISP parameter

32,53,81
Delimiter statement 11,21,,37.,55
Directory quantity (see directory size)
Directory size subparameter

in the SPACE parameter 33,81
in the SUBALLOC parameter 36,81

DISP parameter in the DD statement
31-32,81

Disposition (see DISP)
DSNAME parameter in the DD statement

22-23,81
Dummy data sets (see DUMMY)
DUMMY parameter in the DD statement

21,59-60
Dumps, ABEND" defining data sets used for

58-59

Examples~ list of 8
EXEC statement, the 11

examples of 44-46
pararr.eters in 77
to define job step boundaries 47

Execute statement (see EXEC statement)
Execution

of a cataloged procedure 17,44,62
of a processing program 16,44

EXPDT subparameter'in the LABEL parameter
29- 30,50,81

Expiration date of a data set (see EXPDT)
Extending data sets with additional output

55

Facilities
additional" of the DD statement 57-61
of the DD statement 20
of the Job Control Language 9

Field
comments 11-12
name 11-12
operand 11-12
operation 11-12

Generation data groups 22-23.60
Generation data sets, creating and
retrieving 60

Generation number" relative 60
Graphic access method" DCB subparameters
with the 29,68

Group, generation data 22-23,60
Group, unit 24,81

Identifying the data set (see DSNAME)
Increment

in the SPACE parameter 33-34,81
in the SPLIT parameter 35-36,81
in the SUBALLOC parameter 36,81

Index area of an ISAM data set (INDEX)
51,73

84

Index quantity (see index size)
Index size subparameter in the SPACE
parameter 33-34

Indexed sequential data sets (see ISAM)
Input stream 9

data sets in the 21,55-56
Introduction 9
ISAM data sets

areas of 51,73-75
creating 51,73-74
retrieving 75
unit restrictions for 75

Job~ definition of a 9
Job management

comparison of features 71-72
components of 10,71
function of 10
scheduler levels 10~71

Job scheduler 10
JOB statement 11

examples of 42-43
parameters in the 77
to define job boundaries 43

Job statement (see JOB statement)
Job step, definition of a 9
JOBLIB DD statement 58

restrictions on using 62,65
Jobnalte in the JOB statement 13,77

KEEP subparameter in the DISP parameter
32,81

Kept data sets, retrieving 53-54
Keyword parameters

definition of 12
in the EXEC statement 77
in the JOB statement 77

Label, data set, to supply DCB information
28-29

LABEL parameter in the DD statement
29-30,73,81

Labels
nonstandard (NSL) 30,81
standard (SL) 30,81
standard and user (SUL) 30,81

Libraries, concatenating private 58
Library

private 16,44,57-58
procedure 17,62
system 16,44
temporary 16,44

Main storage requirements, specifying (see
REGION)

Management, job (see job management)
Master scheduler 10
Membername 23,81
Members of a library, identifying 23,81
Message class 14-15,43,72
MFT, systems with 10,37,71
MOD subparameter in the DISP parameter

31,55,81
Mounting

deferred 24-25
parallel 24

MSGCLASS parameter in the JOB statement
14-15.,43,77

MSGLEVEL parameter in the JOB statement
14,42

Multiprogramming
with a fixed number of tasks (see MFT)
with a variable number of tasks (see

MVT)
MVT, systems with 10,,37,71
MXIG subparameter iIi the SPACE parameter

34,74,81

Name, definition of a 9
Name field 11-12
National character set 39
New output data sets, creating 48-52
NEW subparameter in the DISP parameter

31-32,81
NL subparameter in the LABEL parameter

30,81
Nonspecific volume reference 25
Nontemporary data set 25
NSL sUbparameter in the LABEL parameter

30,81
Null statement 11,37,47

OLD subparameter in the DISP parameter
31-32,81

Operand field 11-12
Operation field 11-12
Operator commands

coded in the command statement 37
entered on the console 71

Operators, conditional 14~17
output, processing program 72

system 72
Output classes 72
Output data sets~ creating new 48-52
Output stream 9

routing data sets through the
22,51-52,72 .

Overflow area of an ISAM data set (OVFLOW)
51,73

Overriding cataloged procedures 62-64

Parallel mounting 24
Parameters

keyword 12,77
positional 12~77

Parentheses
inclusion in variables 39-40
to enclose a subparameter list 12

PARM parameter in the EXEC statement
18,45,77

Partitioned data sets, creating 51
PASS subparameter in the DISP parameter

31-32,53,81
PCP (see primary control program)
Permanently resident volume 26
PGM parameter in the EXEC statement
16,44,77

Positional parameters 12.77
Primary control program, systems with a
10,37,71

primary quantity (see quantity
subparameter)

Prime area of an ISAM data set (PRIME)
51,73

Priority, job (see PRTY)
Priority scheduler

compared to sequential scheduler 71-72
systems having a 10,71

Private libraries
concatenating 58
executing programs from 16,44
using 57-58

PRIVATE subparameter in the VOLUME
parameter 25-28,81

Private volumes
direct-access 26
magnetic tape 26-27

PROC parameter in the EXEC statement
17,44,77

Procedure, cataloged (see cataloged
procedUres)

Procedure name (see PROC)
Procedure step, definition of a 9
Processing program, definition of a 9
Processing program output 72
Program, processing (see processing

program)
Programmer's name parameter in the JOB

statement 13-14,42.77
PRTY parameter in the JOB statement
14,43,77

Public volumes
direct-access 26
magnetic tape 26-27

QISAM data sets (see ISAM data sets)
Qualified, definition of 9
Quantity

directory (see directory size)
index (see index size)
primary (see quantity subparameter)
secondary (see increment)

Quantity subparameter
in the SPACE parameter 33-35,74,81
in the SPLIT parameter 35-36,81
in the SUBALLOC parameter 36,81

REF subparameter in the VOLUME parameter
27-28,81

References, backward 12
REGION parameter

in the EXEC statement 19,46,77
in the JOB statement 15,43~77

Releasing unused space (see RLSE)
Reserved volumes 26
RETAIN subparameter in the VOLUME

parameter 27-28,32
Retention period (see RETPD)
RETPD subpararoeter in the LABEL parameter

29-30,81
Retrieving

cataloged data sets 53
noncataloged data sets 53-54
passed data sets 54-55

RLSE subparameter in the SPACE parameter
34,81

ROUND subparameter in the SPACE parameter
34.,81

Scheduler
job (see job scheduler)
master (see master scheduler)
priority (see priority scheduler)
sequential (see sequential scheduler)

Index 85

secondary quantity (see increment)
SEP parameter in the DD statement 36,61,79
SEP subparameter in the UNIT parameter

25,81
Separation

channel 36,61,79
unit 25,81

Sequence number
data set 29-30,81
volume 27,,81

Sequential scheduler
compared to a priority scheduler 71-72
systems having a 10,71

SER subparameter in the VOLUME parameter
27- 28,81

Serial number, volume (see SER)
SHR subparameter in the DISP parameter

31-32,60,81
SL subparameter in the LABEL parameter

30,81
SPACE parameter in the DD statement

33- 34,,81
Specific volume reference 25
Split cylinders (see SPLIT)
SPLIT parameter in the DD statement

35-36,81
States, volume 25-26
Status subparameter in the DISP parameter

31- 32,81
Stepname in the EXEC statement 16,44,77
Stream, input, data sets in the 21,55-56
Stream, output, routing data sets through
the 22,51-52

SUBALLOC parameter in the DD statement
36,81

Suballocation (see SUBALLOC)
Subparameters, definition of 12
SUL subparameter in the LABEL parameter

30,81
SYSABEND DD statement 58-59

SYSIN as a ddname 21,28
SYSOUT parameter in the DO statement

22,51-52,79

Tabulated, definition 9
Temporary

data sets 23,25
libraries 16,44
name 23

Time limits, job step (see TIME)
TIME parameter in the EXEC statement
19,46,77

TRK subparameter
in the SPACE parameter 33,81
in the SUBALLOC parameter 36,81

Type numbers, unit 67

UNCATLG subparameter jn the DISP parameter
31,81

Unit address 24,81
Unit affinity 25,81
Unit groups 24,81
UNIT parameter in the DD statement

23-25,81
Unit separation 25,81
Unit type numbers 67

Volume
permanently resident 26
private 26-27
public 26-27
reserved 26

Volume count subparameter in the VOLUME
parameter 27-28,81

VOLUME parameter in the DD statement
25-28,81

Volume sequence number sUbparameter in the
VOLUME parameter 27,81

Volume serial number (see SER)
Volume states -25-26

Technical Newsletter File Number 5360-48

Re: Form No. C28-6539-4

This Newsletter No. N28-2214

Date February 27, 1967

IBM SYSTEM/360 OPERATING SYSTEM
JOB CONTROL LANGUAGE

Previous Newsletter Nos.

This technical newsletter amends the publication, IBM
System/360 Operating System: Job Control Language, Form
C28-6539-4. Corrections and additions to the text are noted by
vertical bars at the left of the change.

Pages to Be
Inserted

19,20
29,30
47-50
53,54
57,58
67,68
73,74
81,82

Summary of Amendments

Pages to Be
Removed

19,20
29,30
47-50
53,54
57,58
67,68
73,74
81 ,82

Documentation of the SYSUDUMP DD statement, bypass label
processing, and the password protection feature. Additional unit
types are included in Appendix A.

Note: Please file this cover letter at the back of the publica­
tion. Cover letters provide a quick reference to changes and. a
means of checking receipt of all amendments.

International Business Machines Corp., Product Publications Dept., Poughkeepsie, N. Y.

PRINTED IN U. S.A.

None

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

J

j
j
j
j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j
j

j
j
j

j
j

j
j
j

Technical Newsletter File Number 8360-48

Re: Form No. C28-6539-4

This Newsletter No. N28- 2226

Dare April 10, 1967

Previous Newsletter Nos.

IBM SYSTE~J360 OPERATING SYSTEM
JOB CONTROL LANGUAGE

This technical newsletter amends the publication IBM System/360
Operating System: Job Control Language, Form C28-6539-4. The
attached pages replace pages in the publication. Corrections and
additions to the text are noted by vertical bars at the left of
the affected text.

Pages to be Pages to be
Inserted Removed

13,14 13,14
19-22 19-22
25~26,26A 25,26
29-32 29-32
35,36 35,36
51,52 51,52
61-64 61-64
67,68 67,68

Summary of Amendments

This technical newsletter includes descriptions of:

• Storage volumes, and the resulting volume states.

• The effect of using the data set name NULLFILE.

• Treatment of channel and unit separation and affinity requests
when the automatic volume recognition feature is used.

• New graphic uni.ts (Appendix A).

In addition, it clarifies or expands the descriptions of the
MSGLEVEL parameter, the operand field of the DD statement, the
SPLIT parameter~ and the data set sequence number subparameter in
the LABEL parameter.

Note: Please file this cover letter at the back of the publica­
tion. Cover letters provide a quick reference to changes, and a
means of checking receipt of all amendrrents.

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602

PRINTED IN U.S.A.

N28-2214

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

J

j
j
j
j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j
j

j
j
j

j
j

j
j
j

READER'S COMMENTS

Title: IBM System/360 Operating System
Job Control Language

Is the material:
Easy to Read?
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience?

How did you use this publication?
___ As an introduction to the subject

Yes

Other ________________________________ _

Please check the items that describe your position:

No

Form: C28-6539-4

For additional knowledge
fold

___ Customer personnel _Operator
_ IBM personnel _ Programmer

_ Sales Representative
_ Systems Engineer

_ Manager _Customer Engineer ___ 'l'rainee
_ Systems Analyst _ Instructor Other ____________ __

Please check specific criticism(s), give page number(s),and explain below:
_ Clarification on page (s)
_ Addition on page (s)

~ _ Deletion on page (s)
~ I - Error on page (s)
~I
t.!l Explanation:
~I
~I
!;I
U

1

I

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

fold

C28-6539-4

staple

fold

r--,
I BUSINESS REPLY MAIL I
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I L-__________________________ --------------_______ J

POSTAGE WILL BE PAID BY

IBM CORPORATION
P.O. BOX 390
POUGHKEEPSIE, N. Y. 12602

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS
DEPT. D58

fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.lOSOl
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

staple

r--------------------, I FIRST CLASS I
I PERMIT NO. 81 I
I I
I POUGHKEEPSIE, N.Y. I L __________ --______ --J

11III1

I I I I I I

111111

III1I1

1I1I1I

IIIII1

I I I I I I

~
11
l:'
rt' m
0.
....
l:'

c:::: · en · ~ ·
(J

'" 00
I

0'>
VI
W
\0
I

.r::

fold

fold

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

J

j
j
j
j
j
j
j
j
j
j
j
j
j
j

j
j
j
j
j
j
j

j
j
j

j
j

j
j
j

C28-6539-4

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.l060t
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[Interna tional]

CIl .
?='

()
tv
00 ,
0\
U1
W

'" ,
~

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	026A
	026B
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	N28-2214
	N28-2214_back
	N28-2226
	N28-2226_back
	replyA
	replyB
	xBackA
	xBackB

