File No. S360-20
Form C28-6550-2 1]+

BM Systems Reference Library

IBM VSystem/ZBU Operating System

System Programmer’'s Guide

This publication describes:

* How to maintain the data set cataloging facility of
the Operating System and the volume-takle-of-
contents (VTOC) of a direct-access volume.

e How to modify or extend capabilities of the Operat-
ing System in the areas of Jjob and job-step
accounting, processing of magnetic tape lakels, and
SVC routines.

* How to implement the data set protection feature of
the Operating System.

¢ How to write a shift initiator program for use when
the multiprogramming with a fixed numpber of tasks
(MFT) option 1is incorporated in the Operating
System.

¢ How to use the EXCP (Execute a Channel Program) and
XDAP (Execute a Direct-Access Program) macro-
instructions, the Resident Access-Method and BLDL
Takle options, and the tracing routine.

Also included are descriptions of system macro-
instructions used in modifying the control program.

|

PREFACE

This publication consists of self-
contained chapters, each of which provides
information on how to modify or extend the
capabilities of the iIBM System/360
Operating System control program. Although
the information in one chapter is sometimes
related to information in another, all
chapters have been written as separate and
complete wunits. Each chapter contains its
own introductory section and list of pre-
requisite publications. This organization
has been used to reduce cross-referencing
and to facilitate the addition of new
chapters.

Third Edition (March 1967)

This publication is a revision of Forms C28-6550-0 and (C28-6550-1 and
obsoletes the previous editions. This publication retains the content
of the previous editions, as amended by Technical Newsletters WN28-2145,
N28-2157, N28-2162, N28-2183, N28-2188, and N28-2207, with the following
exceptions:

The format and field description of the Data Set Control Blocks, the
Data Extent Block, and the Job File Control Block are deleted.

The chapter Cataloged Procedures is deleted.

Additions and changes to existing material that are effective as of
this edition, are indicated by a vertical bar in the left margin.

Specifications contained herein are subject to change from time to
time. Any such change will be reported in subsequent revisions or
Technical Newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and 1line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

A form for readexs' comments appears at the back of this publication.
It may be mailed directly to IBM. Address any additional comments
concerning this publication to the IBM Corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

© International Business Machines Corporation 1966, 1967

CONTENTS

MAINTAINING THE CATALOG AND THE VOLUME TABLE OF CONTENTS.

Maintaining the Catalog and the Volume Table of Contents.

How to Read a Block From the Catalog .

How
How
How
How
How
How
How
How
How
How
How

Appendix A:

Appendix B:

ADDING SVC

Specifying the Name of an Index Level or Data

Specifying the Name of a Generation
Specifying a Name Using an Alias.
Specifying by TTR . . .

to
to
to
to
to
to
to
to
to
to
to

Build an Index. . .

Build a Generation Index.

Delete an Index . .
Assign an Alias . .
Delete an Alias . .

Connect Control Volumes

-

Disconnect Control Volumes.

Catalog a Data Set.

* s o o & & o

Remove Data Set References From

Recatalog a Data Set.

Read a Data Set Control Block
contentsS. « « ¢« « ¢ « o o
How to Delete a Data Set .
How to Rename a Data Set .

Control Entries
Pointer Entries
The Volume Control Block Contents

Writing SVC Routines. . . .
Characteristics of SVC Routlnes
Programming Conventions for SVC Routines. . . .

-

Catalog Block Entries.

Device Code Designations .

Data Set. .

* o e s o 8 &
o s o o o e @

Catalog

e o . .
e e e e

ROUTINES TO THE CONTROL PROGRAM. . .

Inserting SVC Routines Into the Control Progra.. . . .
Specifying SVC Routines

Inserting SVC Routines During the System Generation

Set .

« s 8 e e
.

From the Volume Table

- . - .

ADDING AN ACCOUNTING ROUTINE TO THE CONTROL PROGRAM. .

Writing an Accounting Routine .

¢ o * e

Inserting an Accounting Routine Into the Contrcl Program. . .
Inserting an Accounting Routine Before System Generation.
Inserting an Accounting Routine After System Generation

NONSTANDARD LABEL PROCESSING ROUTINES;

DUAL-DENSITY TAPE DEVICE EDITOR

" Section 1:
Input Header Label Routines .
Input Trailer Label Routine .
Output Header Label Routines.
Output Trailer Label Routines

Writing Nonstandard Label

Programming Conventions
Program Functions . . .

Explanations of Logic Blocks.

VOLUME LABEL AND
ROUTINES. . . .

Processing Routines . .

s s s s o

Inserting Nonstandard Label Koutines Into

the

Control

Program

L Y Y

Process

Section 2: Volume Label and Dual-Density Tape Device Editor

ROULINES v & o ¢ v ¢ o o o o o o o o o o

Programming Conventions . « . « « ¢ o « & &

Entry Conditions and General Logic Flow of the Editor Routines

Entry Conditions « « « « . . .
General I1ogic FPIlOW . ¢ o « & o o o o o &

Logic Block Explanations. . . « . « « . . .

Inserting Your Label Editor Routines Into the Control Program

Appendix: IECDSECT,IEFJFCBN, and IEFUCBOB Macro-Instructions

IECDSECT Macro-Instruction
Control Statements Required
IECDSECT Macro-Definition

IEFUCBOB Macro-Instruction . .
Control Statements Required
IEFUCBOB Macro-Definition .

IEFJFCBN Macro-Instruction . .
Control Statements Required
IEFJFCBN Macro-Definition .

s 8 & 8 & s o

EXECUTE CBANNEL PROGRAM (EXCP) MACRO-INSTRUCTION. .

Execute Channel Program (EXCP) Macro-Instruction. . . .

Use of EXCP in System and Proklem Programs.
System Use Of EXCP . . ¢« & & = « « « o«
Programmer Use Of EXCP .« ¢« o« o o o o« =+ &

EXCP Requirements
Channel PrograM. . « « o« « « « =«
Data and Command Chaining . .
Ccontrol Blocks « ¢« ¢« ¢« ¢ .+ &
Input/Output Block (IOB). . .

Event Control Block (ECB) . .

Data Control Block (DCB). « . . « .

Data Extent Block (DEB) . . . « . .

.
.
.

@ o o & e o o o

Channel Program Execution
Initiation of Channel Program.
Completion of Channel Program.

Device End EXrOors . . « « « = o o« s @
Interruption Handling and Error Recovery
Error Recovery Procedures for Related

AppendageS. « « + ¢ « o o o « e = . e e
Defining Appendag€S. . « « « « « « o« &
Entering Appendages Into SVC Library .
Characteristics of Appendages.

Start Input/Output (SIO) Appendage.
Program Controlled Interruption (PCI
End-of-Extent Appendage
Channel End Appendage . . . « « « .« .
Abnormal End Appendage. <« . .

@ N’ s ¢ s &

EXCP Programming Specifications
Macro-Instructions

.
.
.
.
.
* s & s

. o o - - -
- . - - . .
. - e - - -

Procedures.

¢ s & o

Channel Programs.

Appendage .

DCB -- Define Data Control Block for EXCP
OPEN -- Initialize Data Control Block «
EXCP -- Execute Chamnel Program
EOV -- End of Volume. . . . « "« . . e e e e e .
CLOSE -- Restore Data Control Block - .

Control Block Fields . « « « & o « « o«
Input/Output Block Fields
Event Control Block Fields.

¢« & & o 0

Data Extent Block Fields. . o« « o« «

Appendix: Restore Macro-Instruction. . . .
RESTORE Macro-Instruction
control Statements Required
RESTORE Macro-Definition.

EXECUTE DIRECT ACCESS PROGRAM (XDAP) MACRO-INSTRUCTION

L)

Execute Direct Access Program (XDAP) Macro-Instruction. .

Requirements for Execution of Direct-Access

XDAP Programming Specifications

Macro-Instructions « o
DCB -- Define Data Control Block. . .
OPEN -- Iqltlallze Data Control Block
XDAP -- Execute Direct-Access Program
EOV -- End of Volume.
CLOSE -- Restore Data Control Block .

The XDAP Control Block .« « « ¢« & « « o«
Event Control Block (ECB)
Input/Output Block (IOB).
Direct-Access Channel Program

XDAP Options. . «. . .« o « « « . . .« .
Conversion of Relative Track Address to
Appendages « ¢ ¢ o o o o 4 o o e e e o
L- and E- Forms of XDAP Macro-Instructio

Appendix: CVT Macro-Instruction.
Format of the CVT Macro-Instruction .
control Statements Required
CVT Macro-Definition.

HOW TO USE THE TRACING ROUTINE

HOW TO USE THE TRACING ROUTINE
Table Entry Formats . « . .« « « « .« .
Location of the Table

IMPLEMENTING DATA SET PROTECTION

Implementing Data Set Protection.

Password Data Set Characteristics and Record Format

Protecting the Password Data Set. . . « . .
Creating Protected Data Sets.

Protection Feature Operating Characteristic
Termination of Processing
Volume Switching. . . « « ¢ « « « . .
Data Set Concatention . « « « « « o &
SCRATCH and RENAME Functions.
Counter Maintenance . . . « +« « « « .

THE RESIDENT BLDL TABLE AND RESIDENT

The Resident BLDL Table and Resident Access Method Options.

The Resident BLDL Table Option.
Selecting Entries for the Resident BLDL
Table Size. . .« . ¢ ¢« ¢« ¢ ¢ o« ¢ « o« .
Frequency of Use. . .« .« . « &« « « .« .

The Resident Access Method Option

Program

Actual

Ne «

Se o o

ACCESS

Table:

-

‘METHOD

s

OPTIONS.

.100
.100
.100
.100
.100
.101
.101
.102
.102
.103
.103

.103
.103
.104
.104

.105
.105
.105
.105
.108
.109
.109
.109
.111
.112
112
.113
.113
.113
.113
.114
114
114
114
.115
.116
.116
-117
.117
.117

.117

Considerations fOL USE . v ¢ o o « o = « o o o o o o o « s « « « 2117

Creating Procedure Library Lists. . . .« « ¢ « ¢« ¢ ¢ ¢« o « o« &« « « « .118
EXamPle. ¢ o o« & o o o o o a o a o o o s o o s o o« o« o« « o« o « o« o118

Appendix A: Resident Access Method Option - Standard List IEAIGGOO .120
CONSTRUCTING A DUMMY WAITR ROUTINE. « « ¢ « o o o« o o o s o o o« o121
Constructing a Dummy WAITR Routine. . . ¢ ¢ &+ ¢ ¢ o ¢ o o o « « » o« 2122

Functions of the Dummy WAITR Routine. . . . ¢ « v ¢ & & o o« « o« » « <122
A Coding EXAMPle . o « o o « o« o = o s o o a o o« o o o o s o « o <122

Job Control Language Statements . . o ¢ ¢ ¢ ¢ o ¢« ¢ ¢ o o « o« o « « 2123
Programming ConsiderationsS. .« « ¢ « o ¢ &+ o &« o o o « 2 o « o « « « 124

SYSTEM MACRO-INSTRUCTIONS. .+ 2 o o o « o o o o o s o o o o o o o o 4125

Locate Device Characteristics (DEVTYPE) Macro-Instruction126
Device Characteristics Information. « « « « o o ¢ « « « o « « «126
Output for Each Device TYPE « « « + o « « s « o« o o« o s o « « 4128
Exceptional ReEtUIrNS . « « o o « o « o « o s o o o s o o o « o« <129

How to Read a Job File Control BlocKk. .« ¢« ¢ «o o o = o « o« « = o« « « <130
OPEN -- Prepare the Data Control Block for Processing (S) . . .130

RDJFCB -- Read a Job File Control Block (S) «131

ILLUSTRATIONS

Figure 1. Status of Control Information and Pointers.
Figure 2. Format of Combined Work and Control

Figure 3. General Flow
After Receiving Control
Figure 4. General Flow
After Receiving Control
Figure 5. General Flow
After Receiving Control

Figure 6. Editor Routine Entry Conditions . .
Figure 7. General Flow of an Editor Routine

of a
From
of a
From
of a
From

Nonstandard Label
the OPEN Routine.
Nonstandard ILabel
the CLOSE Routine
Nonstandard Label
the EOV Routine .

Control From the OPEN Routine. . « « « « o o &«

Figure 8. General Flow of an Editor Routine

Control From the End-of-Volume Routine
Figure 9. Data Control Block Format for EXCP (After OPEN) . .
Figure 10. Input/Output Block Format
Figure 11. Event Control Block After Posting of Completion Code.
Figure 12. Event Control Block After Posting of Completion Code.

Figure 13.

The XDAP Channel Programs.

Block Area. . .
Processing Routine

FIGURES

Processing Routine

Processing Routine

Table 1. Programming Conventions foxr SVC Routines. .

-

After Receiving

After Receiving

. - e« e .

47
48

49

TABLES

MAINTAINING THE CATALOG AND THE VOLUNME TABLE OF CONTENTS

This chapter provides detailed informa-
tion on how to maintain and modify the
catalog and volume table of contents.

Before reading this chapter, you should
be familiar with the information contained
in the prerequisite publications 1listed
below.

Documentation of the internal 1lcgic of
the routines used to maintain and modify
the catalog and volume table of contents
can ke obtained through your IBM Branch
Office.

PREREQUISITE PUBLICATIONS

The IBM System/360 Operating System:
Assembler Language publication (Form
C28-6514) contains the information neces-
sary to code programs in the assemkler
language.

The IBM System/360 Operating Systermr:
Data Management publication (Form C28-6537)
contains a general description of the
structure of catalog indexes, as well as a
brief discussion of the volume takle of
contents (VTOC).

The IBM System/360 Operating System:
control Program Services puklication (Form
C28-6541) contains an explanation of the
notation conventions used to descrike the
macro-instructions contained in this chap-
ter.

The IBM System/360 Operating System:
System Control Blocks publication (Form
C28-6628) contains format and field de-
scriptions of the system control klocks
referred to in this chapter.

RECOMMENDED PUBLICATIONS

The IBM System/360 Operating System:
Utilities publication (Form C28-6586) de-
scribes how to maintain and wodify the
catalog and the volume table of contents
through the use of utility pregrams.

Maintaining the Catalog and the Volume Table of Contents

MAINTAINING THE CATALOG AND THE VOLUME TABLE OF CONTENTS

This chapter describes how to maintain and modify the catalog and the
volume table of contents through the use of macro-instructions. Most of
the maintenance and modification functions can also be performed wusing
utility statements. The wutility statements are described in the
publication IBM System/360 Operating System: Utilities.

The functions you can perform wusing the macro-instructions are
descriked in text, and the formats of the macro-instructions are
tabulated on a fold-out sheet at the kack of this chapter. The chart on
the fold-out sheet associates the function descriked in text with the
macro-instructions needed to perform the function. You should keep the
fold-out sheet open when reading the text.

The functions that are descriked in text are as follows:

How to read a block from the catalog.

How to kuild an index.

How to build a generation index.

How to delete an index.

How to assign an alias.

How to delete an alias.

How to connect control volumes.

How to disconnect control volumwes.

How to catalog a data set.

How to remove data set references from the catalog.
How to recatalog a data set.

How to read a data set control klock from the volume table of
contents.

How to delete a data set.

How to rename a data set.

Accompanying the function descriptions in text are coding examples
and programming notes; exceptional-return condition codes for the
macro-instructions are tabulated on the kack of the fold-out sheet.

HOW TO READ A BLOCK FRONM THi CATALOG

To read either an index block or a block indicating the volumes on
which a data set is stored (volume-list block), you use the LOCATE and
CAMLST macro-instructions. There are two ways to specify the block that
you want read into main storage: by using the name of the index level or
data set, or by using the block's location relative to the beginning of
the catalog (TTR).

Specifying the Name of an Index Level or Data Set

If you specify an index level name, the first block of +the named
index 1is read into main storage, and an exceptional return code is set.
Index klock formats are contained in Appendix A of this chapter.

If you specify a data set name, a 256-kyte volume-list block is read
into main storage. The block contains up to 20 volume pointers, each of
which points to a volume on which part of the data set is stored. The
first two bytes of the block contain the number of volume pointers for
the data set. Each volume pointer is a 12-byte field that contains a
4-byte device code, a 6-byte volume serial numker, and a 2-byte data set
sequence number. (Device codes are contained in Appendix B of this
chapter.)

10

If the named data set is stored on more than 20 volumes, bytes
253-255 of the block contain the relative track address of the next
block of volume pointers. Byte 256 contains a kinary zero.

Example: In the following example, the list of volumes that contain
data set A.B is read into main storage. The search for the volume-list
block starts on the system residence volune.

e e e e e s e o . S S . S e S . e S e e . e e e o e e S — -

T T Ll
| Name | Operation| Operand H
e e e e 1
	LOCATE	INDAB READ VOLUME-LIST BLOCK FOR
	Check Exceptional Returns CATALOGED DATA SET A.B INTO	
INDAB	CAMLST	NAME,AB,,LOCAREA MAIN STORAGE AREA NAMED
AB	DC	CL44'A.B* LOCAREA. LOCAREA ALSO
LOCAREA	DS	oD CONTAINS 3-BYTE TTR AND
	DS	265C 6-BYTE SERIAL NUMBER
L B e e e e e e e e e e e e e e o e e et . e J

The LOCATE macro-instruction points to the CAMLST macro-instruction.
NAME, the first operand of CAMLST, specifies that the system is to
search the catalog for a volume-list klock by using the name of a data
set. AB, the second operand, specifies the main storage location of a
4i-pyte area into which you have placed the fully qualified name of a
data set. LOCAREA, the fourth operand, specifies a 265-byte area you
have reserved in main storage.

After execution of these macro-instructions, the 265-byte area
contains: the 256-byte volume-list klock for data set A.B, the 3-byte
relative track address (TTR) of the block following the one read into
main storage, and the 6-byte serial number of the volume on which the
block was found.

Specifying the Name of a Generation Data Set

You specify the name of a generation data set by using the fully
qualified generation index name and the relative generation number of
the data set. The value of a relative generation number reflects the
position of a data set in a generation data group. The following values
can be used:

e Zexro - specifies the latest data set cataloged in a generation data
group.

* Negative number - specifies a data set cataloged before the latest
data set.

o Positive number - specifies a data set not yet cataloged in the
generation data group.

.

When you use =zero or a negative number as the relative generation
number, a volume-list block is read into main storage and the relative
generation number is replaced by the absolute generation name.

When you use a positive number as the relative generation numker, an
absolute generation name is created and replaces the relative generation
number. A volume-list block is not read, since none exists for these
data sets.

Example: In the following example, the list of volumes that contain

generation data set A.PAY(-3) is read into main storage. The search for
the volume-1list block starts on the system residence volume.

Maintaining the Catalog and the Volume Table of Contents 11

ettt T B Sttt —== - - ===
| Name | Operation] Operand |
pomm—m o s et e
| | LOCATE | INDGX READ VOLUME-LIST BLOCK FOR |
| | Check Exceptional Returns DATA SET A.PAY(-3) INTO |
| INDGX | CAMLST | NAME,APAY,,LOCAREA MAIN STORAGE AREA NAMED {
| APAY | DC | CLU4"A.PAY(-3)" LOCAREA. LOCAREA ALSO CON- |
| LOCAREA | DS | 0D TAINS 3-BYTE TTR AND i
| | Ds | 265C 6-BYTE SERIAL NUMBER |
I I —_—d —_ _—— 4

The LOCATE macro-instruction points to the CAMLST macro-instruction.
NAME, the first operand of CAMLIST, specifies that the system is to
search the catalog for a volume-list block by using the name of a data
set. APAY, the second operand, specifies the main storage location of a
4u-byte area into which you have placed the name of the generation index
and the relative generation number of a data set in the generation data
group. LOCAREA, the fourth cperand, specifies a 265-byte area you have
reserved in main storage.

After execution of these macro-instructions, the 265-byte area
contains: the 256-byte volure-list Lklock for generation data set
A.PAY(-3), the 3-byte relative track address (TTR) of +the klock
following the cne read into mwain stcrage, and the 6-byte serial number
of the volume on which the block was found. 1In addition, the system
will have replaced the relative generation number that you specified in
your U4-byte area with the data set's aksolute generation name.

Specifying a Name Using an Alias

For each of the preceding functions, you can specify an alias as the
first name in the gualified name of an index level, data set, or
generation data set. Each function is performed exactly as previously
described, with one exception: the alias name specified is replaced Ly
the true name.

Specifying by TTR

You can read any block in the catalog by specifying, in the form TTR,
the identification of the Fklock and its 1location relative to the
beginning cf the catalog. TT is the numker o©f tracks defining the
position, relative to the beginning of the catalog, of the track on
which the block to be read resides; R is the identification of the block
on that track. (Formats of each type of catalog block are contained in
Appendix A cf this chapter.)

Example: In the following example, the block at the location indicated
by TTR is read into main stcrage. The specified klock is in the catalog
on the system residence volume.

fo———————— T———= s it - - 1
| Name | Operation| Operand |
R e LS
	LOCATE	BLK READ A BLOCK INTO MAIN
	Check Exceptional Returns STORAGE AREA NAMED LOCAREA	
BLK	CAMLST	BLOCK,TTR,,LOCAREA
TTR	pc	H'5* RELATIVE TRACK 5
	DC	x"03" BLOCK 3 ON TRACK
LOCRREA	DS	0D LOCAREA ALSO CONTAINS 3-BYTE
	Ds	265C TTR AND 6-BYTE SERIAL NO.
B . A1 ———— ——— o 2 i s 3		

The LOCATE macro-instruction points to the CAMLST macro-instruction.
BLOCK, the first operand of CAMLST, specifies that the system is to
search the catalog for the block indicated ky TTR, the second operand.
LOCAREA, the fourth operand, specifies a 265-byte area you have reserved
in main storage.

After execution of these macro-instructicns, the 265-byte area
contains: the 256-byte index klock, the 3-byte relative track address
(TTR) of the Dblock following the one read intc main storage, and the
6-byte serial number of the volume on which the klock was found.

HOW TO BUILD AN INDEX

To kuild a new index structure and add it to the catalog, you must
create each level of the index separately. You create each level of the
index ky using the INDEX and CAMLST macro-instructions.

These twO macro-instructions can also ke used tc add index levels to

existing index structures.

Example: 1In the following example, index structure A.B.C 1is built on
the control volume whose serial number is 000045,

e T Ty T T T T T T T T T T T S T T S T T S S T S e e s e 1
| Name | Operation| Operand |
e ooz e e 1
	INDEX	INDEXA BUIID INDEX A
	Check Exceptional Returns	
	INDEX	INDEXB BUILD INDEX STRUCTURE A.B
	Check Exceptional Returns	
	INDEX	INDEXC BUILD INDEX STRUCTURE A.B.C
	Check Exceptional Returns	
INDEXA	CAMLST	BLDX,ALEVEL,VCILNUM
INDEXB	CAMLST	BLDX,BLEVEL,VOLNUM
INDEXC	CAMLST	BLDX,CLEVEL,VCLNUM
VOLNUM	DC	CLe'000045" VOLUME SERIAL NUMBER
ALEVEL	DC	CL2'A" INDEX STRUCTURE NAMES
BLEVEL	DC	CL4'A.B® FOLLOWED BY BLANKS
CLEVEL	DC	CL6'A.B.C" WHICH DELIMIT FIELDS
L R —— A - e e e 1

Each INDEX macro-instruction pocints to an associated CAMLST macro-
instruction. BIDX, the first operand of CAMLST, specifies that an index
level be built. The second cperand specifies the main storage location
of an area into which you have placed the fully gqualified name cf an
index level. The third operand specifies the main storage 1location of
an area into which you have placed the 6-byte serial number of the
volume on which the index level is tc ke Lbuilt.

HOW TO BUILD A GENERATION INDEX

You build a generation index by using the INDEX and CAMLST macro-
instructions. All higher levels of the index must exist. If the higher
levels of the index are not in the catalog, you must build them. How to
build an index has been explained previously. In the following example,
the generation index D is built on the control volume whose serial
number is 000045. The higher level indexes A.B.C already exist. When
the number of generation data sets in the generation index D exceeds
four, the oldest data set in the group is uncataloged and scratched.

Maintaining the Catalog and the Volure Takle of Contents 13

r T T 1
| Name | Operation| Operand |
e S S 1
i | INDEX | GENINDX BUILD GENERATION |
	Check Exceptional Returns INDEX	
GENINDX	CAMLST	BLDG,DLEVEL,VCLNUM,,DELETE, ,U
DLEVEL	DC	CL8*A.B.C.D' BLANK DELIMITER
VoLNUM	DC	CL6'000045"
L Lo e e e e e e e e e e e e o e e e e e e e e e e . e e i e e s e 0 e e . e o e 4

The INDEX macro-instruction points to the CAMLST macro-instruction.
BLDG, the first operand of CAMLST, specifies that a generation index be
built. DLEVEL, the second operand, specifies the main storage location
of an area into which you have placed the fully qualified name of a
generation index. VOLNUM, the third operand, specifies the main storage
location of an area into which you have placed the 6-kyte serial number
of the volume on which the generation index is to be built. DELETE, the
fifth operand, specifies that all data sets dropped from the generation
data group are to be deleted. The final operand, 4, specifies the
number of data sets that are to be maintained in the generation data
group.

Note: A model DSCB for the generation data set must be placed on the
control wvolume containing the index prior to creation of the data set.
The system will take information from the model DSCB when you create a
data set for the group. A model DSCB is created ky specifying, in a DD
statement: the name of the data set; zero space allocation, i.e.,
SPACE=(TRK, (0)) ; and appropriate DCB=parameters.

HOW TO DELETE AN INDEX

You can delete any number of index levels from an existing index
structure. Each level of the index is deleted separately. You delete
each level of +the index by wusing the INDEX and CAMLST macro-
instructions.

If an index level either has an alias, or has other index levels or
data sets cataloged under it, it cannot be deleted.

Example: In the following example, index level C is deleted from index
structure A.B.C. The search for the index level starts on the system
residence volume.

S 2 e e ;!
| Name | Operation| Operand |
pmmmmm - S s 1
i | INDEX | DELETL DELETE INDEX LEVEL C FROM|
	Check Exceptional Returns INDEX STRUCTURE A.B.C	
DELETE	CAMLST	DLTX,LEVELC
LEVELC	DC	CL6"A.B.C" ONE BLANK FOR DELIMITER
Lo S, 4

The INDEX macro-instruction points to the CAMLST macro-instruction.
DLTX, the first operand of CAMLST, specifies that an index level be
deleted. LEVELC, the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the index structure whose lowest level is to be deleted.

HOW TO ASSIGN AN ALIAS
You assign an alias to an index level by using the INDEX and CAMLST

macro-instructions. An alias can ke assigneda only to a high level
index; e.g., index A of index structure A.B.C can have an alias, but

ia

index B cannot. Assigning an alias to a high level index effectively
provides aliases for all data sets cataloged under that index.

Example: 1In the following example, index level A is assigned an alias

of X. The search for the index level starts on the system residence
volume.

[T B i b § B B 1
| Name | Operation| Operand |
F-- 1 e vt

| | INDEX } ALIAS BUILD AN ALIAS FOR A HIGH]|
| | Check Exceptional Returns LEVEL INDEX |
| ALIAS | CAMLST | BLDA,DSNAME, ,DSALIAS

| DSNAME | DC |] CL8'A" MUST BE 8-BYTE FIELDS |
| DSALIAS | DC | cL8*'x!' |
b e 1o __ e e 4

The INDEX macro-instruction points to the CAMLST wmwacrc-instruction.
BLDA, the first operand of CAMLST, specifies that an alias be built.
DSNAME, the second operand, specifies the main storage 1location of an
8-byte area into which you have placed the name of the high level index
to be assigned an alias. DSALIAS, the fourth operand, specifies the
main storage 1location of an 8-byte area into which you have placed the
alias to be assigned.

HOW TO DELETE AN ALIAS

You delete an alias previously assigned to a high level index &Ly
using the INDEX and CAMLST macro-instructions.

Example: In the following example, alias X, previously assigned as an
alias for index level A, is deleted. The search for the alias starts on
the system residence volume.

[m=——————= T——=—T--— T e e 1
| Name | Operation| Operand]
R oo em 1 e 1
	INDEX	DELALIAS DELETE AN ALIAS FOR A
	Check Exceptional Returns HIGH LEVEL INDEX	
DELALIAS	CAMLST	DLTA,ALIAS
ALIAS	DC	CL8'X" MUST BE 8-BYTE FIELD
L 1 e 4

The INDEX macro-instruction points tc the CAMLST macro-instruction.
DLTA, the first operand of CAMLST, specifies that an alias ke deleted.
ALIAS, the second operand, specifies the main storage 1location of an
8-byte area into which you have placed the alias to be deleted.

HOW TO CONNECT CONTROL VOLUMES

You connect two control volumes by wusing the INDEX and CAMLST
macro-instructions. If a control vclume 1is to ke connected to the
system residence volume, you need supply only the serial number of the
volume to be connected and the name of a high 1level index associated
with the volume to be connected.

If a control volume is to be connected to a contrcl volume other than
the system residence volume, you must supply the serial numbers of both
volumes and the name of a high level index associated with the volume to
be connected.

The result of connecting control volumes is that the volume serial
number of the control volume connected and the name of a high level

Maintaining the Catalog and the Volume Table of Contents 15

index are entered into the volume index of the volume to which it was
connected. This entry is called a ccntrol volume pointer. A control
volume pointed to by a control volume cannot, in turn, point to another
control volume.

Example: In the following example, the contrcl volume whose serial
number is 001555 is connected to the control volume numbered 000155.
The name of the high level index is HIGHINDX.

r R | - N e 1
| Name | Operation| Operand |
I —— e
	INDEX	CONNECT CONNECT TWO CON-
	Check Exceptional Returns TROL VOLUMES WHOSE	
CONNECT	CAMLST	LNKX, INDXNAME,OLDCVCL,NEWCVOL SERIAL NUMBERS ARE
INDXNAME	DC	CL8'HIGHINDX" 000155 AND 001555.
OLDCVOL	DC	CL6'000155" 1
NEWCVOL	DC	CL6"001555"
L 1o B 3

The INDEX macro-instruction points to the CAMIST macro-instruction.
LNKX, the first operand of CAMLST, specifies that control volumes be
connected. INDXNAME, the second operand, specifies the main storage
location of an 8-byte area into which you have placed the name of the
high 1level index of the volume to be connected. OLDCVOL, the third
operand, specifies the main storage location of a 6-byte area into which
you have placed the serial number of the volume +to which you are
connecting. NEWCVOL, the fcurth operand, specifies the main storage
location of a 6-byte area into which you have placed the serial nunker
of the volume to be connected.

HOW TO DISCONNECT CONTROL VOLUMES

You disconnect two control vclumes by using the INDEX and CAMLST
macro-instructions. If a control vclume is to ke disconnected from the
system residence volume, you need supply only the name of the high level
index associated with the volure to ke disccnnected.

If a control volume is to be disconnected from a control vclume other
than the system residence volume, you must supply, in addition to the
name of the high level index, the serial number of the control volume
from which you want to disconnect.

The result of disconnecting control volumes 1is that the control
volume pointer is removed from the volume index of the volume from which
you are disconnecting.

Example: In the following example, the control volume that contains the
high level index HIGHINDX is disconnected from the system residence
volume.

[~ e s I
| Name | Operation| Operand |
pommm - fommmmmome fommmmm oo e
| | INDEX | DISCNECT DISCONNECT TWO CONTROL |
i | Check Exceptional Returns VOLUMES |
| DISCNECT| CAMLST | DRPX, INDXNAME |
| INDXNAME| DC | CL8'HIGHINDX" MUST BE 8-BYTE FIELD |
b Lo L J

The INDEX macro-instruction pcints to the CAMLST macro-instruction.
DRPX, the first operand of CAMLST, specifies that control volumes be
disconnected. INDEXNAME, the second cperand, specifies the main storage

16

location of an 8-byte area into which you have placed the name of the
high level index of the control volume to ke disconnected.

HOW TO CATALOG A DATA SET

You catalcg a data set by wusing the CATALOG and CAMLST macro-
instructions. All indekx 1levels required to catalog the data set must
exist in the catalog, or an exceptional return code is set.

You must build a complete volume list in main storage. This volume
list consists of volume pointers for all volumres on which the data set
is stored. The first two bytes of +the 1list indicate the numker of
volume pointers that follow. Each 12-byte volume pointer consists of a
4-byte device code, a 6-byte volume serial number, and a 2-byte data set
sequence number. The sequence number is always zero for direct-access
volumes. (Device codes are contained in Appendix B of this chapter.)

Example: In the following example, the data set named A.B.C is
cataloged under an existing index structure A.B. The data set is stored
on twc volumes.

[~———————- 3 1 B -= - -
| Name | Operation| Operand |
I prmmmmmmm e pommmmmmee e
| | CATALOG | ADDABC CATALOG DATA SET A.B.C. THE |
Check Exceptional Returns INDEX STRUCTURE A.B. EXISTS

| | P

ADDABC	CAMLST	CAT,DSNAME, ,VOLUMES
DSNAME	DC	CL6'A.B.C" ONE BLANK FOR DELIMITER
VOLUMES	DC	H*2' TWO VOLUMES
	DC	X'30002001" 2311 DISK STORAGE
	DC	CL6'000014" VOLUME SERIAL NUMBER
	DC	H'O* : DATA SET SEQUENCE NUMBER
	DC	X'30002001" 2311 DISK STORAGE
	DC] CL6'000015" VOLUME SERIAL NUMBER	
	DC	H'O' SEQUENCE NUMEER
lmm e I N S, J

The CATALOG macro-instruction points to the CAMLST macro-instruction.
CAT, the first operand of CAMLST, specifies that a data set ©Le
cataloged. DSNAME, the second operand, specifies the main storage
location of an area into which you have placed the fully qualified name
of the data set to ke cataloged. VOLUMES, the fourth operand, specifies
the main storage location of the volume list you have built.

HOW TO REMOVE DATA SET REFERENCES FROM THE CATALOG

You remove data set references from the catalog by using the CATALOG
and CAMLST macro-instructions.

Example: In the following example, references to data set A.B.C are
removed from the catalog.

r [0 it To—=== S e S e 1
| Name | Operation| Operand |
pmmmm - e e ey o 1
	CATALOG	REMOVE REMOVE REFERENCES TO DATA
	Check Exceptional Returns SET A.B.C FROM THE CATALOG	
REMOVE	CAMLST	UNCAT,DSNAME
DSNAME	DC	CL6'A.B.C" ONE BLANK FOR DELIMITER
b o R Lo _ ——— S J

The CATALOG macro-instruction points to the CAMLST macro-instruction.
UNCAT, the first cperand of CAMLST, specifies that references to a data

Maintaining the Catalog and the Volure Table of Contents 17

set be removed from the catalog. DSNAME, the second operand, specifies
the main storage 1location of an area into which you have placed the
fully qualified name of the data set whose references are to be removed.

HOW TC RECATALOG A DATA SET

You recatalog a cataloged data set by using the CATALOG and CAMLST
macro-instructions. Recataloging 1is usually performed when new volume
pointers must be added to the volume list of a data set.

You must build a complete volume list in main storage. This volume
list consists of volume pointers for all volumes on which the data set
is stored. The first two bytes of +the 1list indicate the number of
volume pointers that follow. Each 12-byte volume pointer consists of a
4-byte device code, a 6-byte volume serial number, and a 2-kyte data set
sequence number. The sequence number is always zero for direct-access
volumes. (Device codes are contained in Appendix B of this chapter.)

Example: In the following example, the data set named A.B.C is
recataloged. A new volume pointer is added to the wvolume 1l1list, which
previously contained only two volume pointers.

r= -= B it === 1
| Name] Operat10n| Operand |
pmmmmmmme 1 R B e e
	CATALOG	RECATLG RECATALOG DATA SET A.B.C,
	Check Exceptional Returns ADDING A NEW VOLUME	
	POINTER TO THE VOLUME	
RECATLG	CAMLST	RECAT,DSNAME,,VOLUMES LIST.
DSNAME	DC	cLé'a.B.C" ONE BLANK FOR DELIMITER
VOLUMES	DC	H*'3" THREF VOLUMES
	DC	X'30002001" 2311 DISK STORAGE
	DC	CL6'000014" VOIUME SERIAL NUMBER
	DC	E'O" SEQUENCE NUMBER
	DC	X'30002001" 2311 DISK STORAGE
	bDC	CL6'000015" VOLUME SERIAL NUMBER
	DC	H'O" SEQUENCE NUMBER
	DC	X*30002001" 2311 DISK STORAGE
	bc	CL6'000016" VOLUME SERIAL NUMBER [
	DC	H'O' SECUENCE NUMBER

1 J

__________ i o e 2 e e e . e e e e e e

The CATALOG macro-instruction points to the CAMLST macro-instruction.
RECAT, the first operand of CAMLST, specifies that a data set be
recataloged. DSNAME, the second operand, specifies the wain storage
location of an area into which you have placed the fully qualified name
of the data set to be recataloged. VOLUMES, the fourth operand,
specifies the main storage location of the volume list you have built.

HOW TO READ A DATA SET CONTROL BLOCK FROM THE VOLUME TABLE OF CONTENTS

You can read a data set control block (DSCB) into main storage Ly
using the OBTAIN and CAMLST macro-instructions. There are two ways to
specify the DSCB that you want read: by using the name of the data set
associated with the DSCB, or by using the aksolute track address of the
LSCB.

When you specify the name of the data set, a format 1 DSCB is read
into main storage. To read a DSCB other than a format 1 DLSCB, you must
specify an absolute track address. (DSCB formats and fleld descrlptlons
are contained in the System Control Block publication).

18

When a data set name is specified, the 96-byte data portion of the
format 1 DSCB, and the absolute track address of the DSCB are read into
main storage. When the absolute track address cf a DSCB is specified,
the 4U-byte key portion and the 96-kyte data portion of the DSCB are
read into main storage.

Example: 1In the following example, the format 1 DSCE for data set A.B.C
is read into main storage. The serial number of the volume containing
the DSCB is 770655.

r———- T == T T T T T T T T T T S e 1
| Name | Operation| Operand |
fm i - e
| | OBTAIN | DSCBABC READ DSCB FOR DATA |
| | Check Exceptional Returns SET A.B.C INTO MAIN]
DSCBABC	CAMLST	SEARCH,DSABC,VOLNUM,WORKAREA STORAGE AREA NAMED
DSABC	DC	CL44*A.B.C' WORKAREA. 96-BYTE
VOLNUM	DC	CL6'770655" DATA PORTION IS
WORKAREA	Ds	oD ’ READ. THE REST OF
	DS	350C THE AREA IS USED BY
		THE OBTAIN ROUTINE
G i i 1

The OBTAIN macro-instruction points to the CAMLST macro-instruction.
SEARCH, the first operand of CAMLST, specifies that a DSCB be read into
main storage. DSABC, the second operard, specifies the wain storage
location of a UlL-byte area into which you have placed the fully
gualified name of the data set whose associated DSCB 1is to be read.
VOLNUM, the +third operand, specifies the main storage location of a
6~byte area into which you have placed the serial number of the voclume
containing the required DSCB. WORKAREA, the fourth operand, specifies
the main storage location of a 350-byte work area that is to contain the
DSCB.

After execution of these macro-instructions, the first 96 bytes of
the work area contain the data portion of the format 1 DSCB; the next
five bytes contain the absolute track address of the DSCB. The OBTAIN
routine uses the rest of the area as a york area.

HOW TO DELETE A DATA SET

You delete a data set stored on direct-access volumes by using the
SCRATCH and CAMLST macro-instructions. This causes all data set control
blocks (DSCB) for the data set to be deleted, and all space occupied Ly
the data set to be made available for reallocation. If the data set to
be deleted is sharing a split cylinder, the space will not be made
available for reallocation until all data sets con the split cylinder are-
deleted.

A data set cannot be deleted if the expiration date in the format 1
DSCB has not passed, unless you choose to ignore the expiration date.
You can ignore the expiration date Ly using the OVRD option in the
CAMLST macro-instruction.

If a data set to be deleted is stcred on more than one volume, either
a device must be available on which to mount the vclumes, or at least
one volume must be mounted. In addition, all other required volumes
nust ke serially mountable. Certain volumes, such as the system
residence voclume, must always ke mounted.

When deleting a data set, you must kuild a complete volume list in
main storage. This volume list consists of volume pointers for all
volumes on which the dJdata set is stored. The first two bytes of the
list indicate the number of volume pointers that follow. Each 12-byte

Maintaining the Catalog and the Volume Table of Ccntents 19

volume pointer consists of a 4-kyte device code, a 6-byte volume serial
number, and a 2-byte data set sequence number. The sequence nunrker is
always zero for direct-access volures. (Device codes are contained in
Appendix B of this chapter.)

Volumes are processed in the order that they appear in the volume
list. Those volumes that are pointed to at the keginning of the 1list
are processed first. If a volume is not mounted, a wressage is issued to
the operator requesting him to mount the volume. You can indicate the
I/0 device on which unmounted voclumes are to be mounted by loading
register 0 with the address of the UCB associated with the device to ke
used. When the volume is mounted, prccessing continues. If you do not
load register 0 with a UCB address, its contents must ke zero.

If the operator cannot mount the requested volume, he issues a reply
indicating that he cannot fulfill the request. A condition code is then
set in the last byte of the volume pointer fcr the unavailakle volure,
and the next volume indicated in the volume 1list 1is processed or
requested.

Example: In the following example, data set A.B.C is deleted from two
volumes. The expiration date in the format 1 DSCB is ignored.

[et st et TSI T s 1
| Name | Operatlonl Operand |
pmmmm oo e iy
	SR	0,0 SET REG 0 TO ZERO
	SCRATCH	DELABC DELETEZ DATA SET
	Check Excepticnal Returns A.B.C. FROM TWO	
DELABC	CAMLST	SCRATCH,DSABC, ,VOLIST,,OVRD VOLUMES, IGNORING
DSABC	bDC	CL4a4*A.B.C' THE EXPIRATICN
VOLIST	DC	B2 CATE IN THE DSCB.
i	DC	X'30002001° 2311 DISK STORAGE]
	bC	CL6"000017" VOLUME SERIAL NO.
	bC	H'O' SEQUENCE NUMEER
	DC	X'30002001" 2311 DISK STORAGE
	bC	CL6'000018" VOLUME SERIAL NO.
I | DC | H'O' SEQUENCE NUMBER |
[i O J

The SCRATCH macro-instructicn points to the CAMLST macro-instruction.
SCRATCH, the first operand of CANMLST, specifies that a data set Le
deleted. DSABC, the second operand, srecifies the main storage location
of a Uh-pyte area into which you have placed the fully qualified name of
the data set to be deleted. VOLIST, the fourth operand, specifies the
main storage location of the volune 1list you have built. OVRD, the
sixth operand, specifies that the expiration date ke ignored in the DSCB
of the data set to be deleted.

HOW TO RENAME A DATA SET

You rename a data set stored on direct-access volumes by using the
RENAME and CAMLST macro-instructions. This causes the data set name in
all format 1 data set control blocks (DSCB) for the data set to ke
replaced by the new name that yocu suprply.

If a data set to be renamed is stored on more than one volume, either
a device must be available on which to mount the volumes, or at least
one volume must Lke mounted. In addition, all other required volumes
rmust be serially mountakble. Certain volumes, such as the system
residence volume, must always be mounted.

When renaming a data set, you must build a complete volume list in
main storage. This volume list consists of volume pointers for all

20

volumes on which the data set is stored. The first two bytes of the
list indicate the number of volume pointers that follow. Each 12-byte
volume pointer consists of a U-byte device code, a 6-byte volume serial
number, and a 2-byte data set sequence number. The sequence number is
always zero for direct-access volumes. (Device codes are contained in
Appendix B of this chapter.)

Volumes are processed in the ordexr they appear in the volume 1list.
Those volumes that are pointed +to at the beginning of the list are
processed first. If a volume is not mounted, a message is issued to the
operator requesting him to mount the volume. You can indicate the 1I/0
device on which unmounted volumes are to be mounted by loading register
0 with the address of the UCB associated with the device to be wused.
When the volume is mounted, processing continues. If you do not load
register 0 with a UCB address, its ccntents must ke zero.

If the operator cannot mount the requested volume, he issues a reply
indicating that he cannot fulfill the request. A condition code is then
set in the last byte of the volume pointer for the unavailakle volume,
and the next volume indicated in the volume 1list is processed or
requested.

Example: In the following example, data set A.B.C is renamed D.E.F.
The data set extends across two volumes.

r————=———- e 1

| Name | Operation| Operand |

p—- oo mmmmm oo - G —

| | SR | 0,0 SET REG 0 TO ZERO]

| | RENAME | DSABC CHANGE DATA SET |

| | Check Exceptional Returns NAME A.E.C. TO |

| DSABC | CAMLST | RENAME,OLDNAME,NEWNAME, VOLIST D.E.F |

OLDNAME | DC | CLu4'a.B.C! |

NEWNAME | DC | CL44'D.E.F® |

| VOLIST | DC | BH'2' TWO VOLUMES |

| | DC | X*30002001" 2311 DISK STORAGE|

| pC | CL6'000017" VOLUME SERIAL NO. |

| DC | H'O" SEQUENCE NUMBER |

| DC | X*30002001" 2311 DISK STORAGE |

| DC] CL6'000018" VOLUME SERIAL NO. |

i | .DC | H'O' SEQUENCE NUMBER |

L -l - e e e e e e e e e e o e e o o e o o o o e o J

The RENAME macro-instruction points to the CAMLST macro-instruction.
RENAME, the first operand of CAMLST, specifies that a data set be
renamed. OLDNAME, the second operand, specifies the main storage
location of a M#u-byte area into which you have placed the fully
qualified name of the data set to ke renamed. NEWNAME, the third
operand, specifies the main storage 1locaticn of a U4U-byte area into
which you have placed the new name of the data set. VOLIST, the fourth
operand, specifies the main storage location of the volume list you have
built.

Maintaining the Catalog and the Volume Takle of Contents 21

Macro-Instructions Required to Maintain and Modify the Catalog and VTOC

Note:

The superscript numbers refer to the enumerated list of explanations for the operands.

T T T
| | Macro-Instructions Required to Perform Function |
| Function F T . +
| | Name | Operation | Operands 1
L 1 1 1 4
1 T 1 T T
| Read a bleck from the ! [symboll 1 LOCATE { list-addrx? |
| catalog -~ by name | [1list-namel | CAMLST | NAME,dsname-relexp®, [cvol-relexp7i,area-relexp? i
L 1 1 L S 1
r T T T 1
| Read a block from the | [symbol] | LOCATE | list-addrx?t. |
| catalog - by location | [list-name] | CAMLST j BLOCK,ttr-relexp?, (cvol-relexp?],area-relexp?® |
} ! 1 1 +
1 T T 1]

| Build an index | [symboll} | INDEX | list-addrx? |
| | [list-name] | CAMLST | BLDX,name-relexp?, {cvol-relexp7] |
L] 1 i +
T T } }

| Build a geheration | [symboll] | INDEX | 1list-addrx? |
| index ’ | {list-name] | CAMLST | BLDG,name-relexp?, [cvol-relexp?],, (DELETE25], [EMPTY26],number-absexpl? |
[N i iR 1 4
1 4 1 T T T
| Assign an alias | [symboll | INDEX | 1list-addrx? |
| | [1list-namel | CAMLST | BLDA,index name-relexpS, [cvol-relexp?]l,alias name-relexpi® |
t 1 1 KN iR
T T T T T
[Delete an index | [symboll | INDEX | list-addrx? |
| | [list-name]) | CAMLST | DLTX,name-relexp?2, {cvol-relexp?] |
L. 1 1 1 1
¥ T T T T
| Delete an alias | [symboll | INDEX | 1list-addrx?* |
| | [list-name] | CAMLST | DLTA,index name-relexpS, [cvol-relexp?] |
I8 [l] L .I.
U T T T

| Connect control | [symbo1l] | INDEX | 1list-addrx?® |
| volumes | {list-namel | CAMLST | LNKX,index name-relexpS, [cvol-relexp?]l,new cvol-relexpi? |
[N 1 L] R 5 1
L} T T T T
| Disconnect control | [symboli] i INDEX i list-addrx?* |
| volumes | {list-namel | CAMLST | DRPX,index name-relexpS, [cvol-addrx7] |
L] d o+ +
L} T T 1

| Catalog a data set | [symbol] { CATALOG | 1list-addrx?® |
| | [1list-name] | CAMLST | CAT,name-relexp?, [cvol-relexp?],vol list-relexpt? |
[N 1 1 [] 1
T T v T T
| Remove data set refer- | [symbol] | CATALOG | 1list-addrx? |
| ences from the catalog | [list-namel | CAMLST | UNCAT,name-relexp2, [cvol-relexp?] |
L 1 1 4 L
1 { T T T
| Recatalog a data set | [symbol] I CATALOG | 1list-addrx? |
| | [list-name] | CAMLST | RECAT,name-relexp?, [cvol-relexp7],vol list-relexp?3 |
L 1 1 4 1
i T T 1 T
| Read a DSCB from the | [symbol] | OBTAIN | 1list-addrx?® |
| VTOC - by name | [list-namel | CAMLST | SEARCH,dsname-relexp®,vol-relexp®,wk area-relexpl* |
% 1 L 1 |
I T 1 T 1
i Read a DSCB from the | {symboll | OBTAIN | list-addrx? |
| VTOC - by location | [list-namel | CAMLST | SEEK,cchhr-relexp*“,vol-relexp®,wk area-relexpl“ |
L [1 NR 4
1] T T T 1
| Delete a data set i [symbol] | SCRATCH | list-addrx? |
| | [list-name] | CAMLST | SCRATCH,dsname-relexp®,,vol list-relexp®3,, [OVRD18] |
L 1 1 iy _l
r T T T

| Change the data set | [symboll | RENAME | list-addrx? |
| name in a DSCB | [list-namel | CAMLST | RENAME,dsname-relexp®,new name-relexpil,vol list-relexpl?3 [
E L 41 L 1
L T
| |
L 1

1

2

list-addrx
points to the
list-name) set up
instruction.

list (labe
CAMLST mac

parameter
by the

specifies the main storage location of
fully gualified name of a data set or in
level. The name cannot exceed 44 characte
If the name is less than 44 characters,
must be followed by a blank. The name must
defined by a C-type Define Constant (

instruction.

ttr-relexp
specifies the main storage location of
3-byte relative track address (TTR). T
address indicates the position, relative

the beginning of the catalog data set, of
track containing the block (TT), and the bl
identification on that track (R).

cchhr-relexp

specifies the main storage location of

5-byte absolute track address (CCHHR) o
DSCB.

index name-relexp
specifies the main storage location of

name of a high level index. The area t
contains the name must be eight bytes 1c
The name must be defined by a C-type Def
Constant (DC) instruction.

dsname-relexp
specifies the main storage location of a ft
qualified data set name. The area t
contains the name must be 44 bytes long.
name must be dJdefined by a C-type Def
Constant (DC) instruction.

cvol-relexp
specifies the main storage location o
6-byte volume serial number for the volum
be processed. If this parameter is not sp
fied, the system residence volume is p:
essed.

vol-relexp
specifies the main storage location of
6-byte serial number of the volume on W
the required DSCB is stored.

area-relexp
specifies the main storage 1location o
265-byte work area that you must define.
work area must begin on a double-word bou
ry. The first 256 bytes of the work area:
contain the block "that is read from
catalog, and the last nine bytes of the -
area will contain the relative track adi
and block identification (in the form TTR
the block following the one read into
storage and the serial number of the volum
which the block was found.

Maintaining

iintain and Modify the Catalog and VTOC

Macro-Instructions Reguired to Perform Function

rs refer to the enumerated list of explanations for the operands.

T
|
1
1 T T
Name | Operation | Operands l
1 1 }
T 1
[symboll | LOCATE 1 1list-addrx? . !
{ilist-name] i CAMLST i NAME,dsname-relexp®, icvol-relexp?],area-relexp® i
1 L }
[symbol] | LOCATE | list-addrx?, i
{list-namel | CAMLST | BLOCK,ttr-relexp3, (cvol-relexp?],area-relexp?® 1
1 [+
T]
[symbol] | INDEX | list-addrx?
[list-namel | CAMLST | BLDX,name-relexp?, [cvol-relexp7] l
1 1 +
1 B 1
{symbol] INDEX | list-addrx?
{list-namel] } CAMLST | BLDG,name—relexpz,[cvol-relexp7],,[DELETE15],[EMPTYiGJ,number-absexp17 1
1 1 }
T T
[symboll | INDEX | 1list-addrx?)
[list-namel | CAMLST | BLDA,index name-relexpS, [cvol-relexp?],alias name-relexpi® !
iR K8 +
T T
{symboll | INDEX | list-addrx®
[list-name] | CAMLST | DLTX,name-relexp?, [cvol-relexp?] 1
] L1
T T
{symbol] I INDEX | list-addrx?*
[list-namel | CAMLST | DLTA,index name-relexpS, [cvol-relexp?] i
1 1
T T
[symboll | INDEX | 1list-addrx? |
[list-name] | CAMLST | LNKX,index name-relexpS, [cvol-relexp’],new cvol-relexpi? l
31 1 ; P +
T T A
[symboi] | INDEX | list-addrx? |
[list-namel | CAMLST | DRPX,index name-relexpS, [cvol-addrx?] 1
. ol
1 1
[symbol] { CATALOG | list-addrx? . i
{list-namel i CAMLST | CAT,name-relexp?, {cvol-relexp7],vol list-relexpt? 1
1 (] 4
L] T .
[symboll | CATALOG | list-addrx?® |
[list-namel | CAMLST | UNCAT,name-relexp?,(cvol-relexp?] i
L <
T T
[symboll | CATALOG | 1list-addrx? i |
“{Iist-namel —~--| ~CAMLST |~ RECAT,name-relexp?, [cvol-relexp?},vol list-relexp®3 l
1 1 +
T T
[symbol] | OBTAIN | 1list-addrx?®]
[list-namel | CAMLST | SEARCH,dsname-relexp®,vol-relexp®,wk area-relexpi® 1
L 1 4
1))
[symboll | OBTAIN | list-addrx? : |
[1list-name] | CAMLST | SEEK,cchhr-relexp%,vol-relexp®,wk area-relexpil® !
1 4 4
T T N
[symboll | SCRATCH | 1list-addrx? i
[list-namel | CAMLST | SCRATCH,dsname-relexp®,,vol list-relexp3,, [OVRD18] }
1 1] i
T T
[symbol] | RENAME | list-addrx? . |
[list-namel | CAMLST | RENAME,dsname-relexp®,new name-relexpli,vol list-relexpl? 1
4 L +
|
1

1 list-addrx
points to the parameter list (labeled
list-name) set up by the CAMLST macro-
instruction.

e e

specifies the main storage 1location of the
fully qualified name of a data set or index
level. The name cannot exceed 44 characters.
If the name is less than 44 characters, it
must be followed by a blank. The name must be
defined by a C-type Define Constant (DC)
instruction.

3 ttr-relexp
specifies the main storage location of a
3-byte relative track address (TTR). This
address indicates the position, relative to
the beginning of the catalog data set, of the
track containing the block (TT), and the block
identification on that track (R).

&

cchhr-relexp
specifies the main storage location of the
S5-byte absolute track address (CCHHR) of a
DSCB.

5 index name-relexp
specifies the main storage 1location of the
name of a high 1level index. The area that
contains the name must be eight bytes long.
The name must be defined by a C-type Define
Constant (DC) instruction.

6 dsname-relexp

specifies the main storage location of a fully
qualified data set name. The area that
contains the name must be 44 bytes long. The
name must be defined by a C-type Define
Constant (DC) instruction.

7 cvol-relexp
specifies the main storage location of a
6-byte volume serial number for the volume to
be processed. If this parameter is not speci-
fied, the system residence volume is proc-
essed.

8 vol-relexp
specifies the main storage 1location of the
6-byte serial number of the volume on which
the required DSCB is stored.

9 area-relexp

specifies the main storage location of a
265-byte work area that you must define. The
work area must begin on a double-word bounda-
ry. The first 256 bytes of the work area will
contain the block that is read from the
catalog, and the last nine bytes of the work
area will contain the relative track address
and block identification (in the form TTR) of
the block following the one read into main
storage and the serial number of the volume on
which the block was found.

10

12

13

is

16

18

alias name-relexp
specifies the main storage location of the
name that is to be used as an alias for a high
level index. The area that contains the name
must be eight bytes long. The name must be
defined by a C-type Define Constant (DC)

instruction.

new name-relexp
specifies the main storage location of a fully
qualified data set name that is to be used to
rename a data set. The area that contains the
name must be U4 bytes long. The name must be
defined by a C-type Define Constant (DC)
instruction.

new cvol-relexp
specifies the main storage 1location of the
6-byte volume serial number of the control
volume that is to be connected to another
control volume.

vol list-relexp
specifies the main storage location of an area
that contains a volume list. The area must
begin on a half-word boundary.

wk area-relexp
specifies the main storage 1location of a
350-byte work area that you must define. The
work area must begin on a double-word bounda-
ry.
If a data set name was specified, the first 96
bytes contain the data portion of a format 1
DSCB, and the next five bytes contain the
absolute track address of the DSCB. The rest
of the area is used as a work area by the
OBTAIN routine.
If an absolute track address was specified,
the first 140 bytes contain the key portion
and data portion of the DSCB. The rest of the
area is used as a work area by the OBTAIN
routine.

DELETE
specifies that all data sets dropped from a
generation data group are to be deleted, i.e.,
the space allocated to the data sets is to be
made available for reallocation.

EMPTY

specifies that references to all data sets in
a generation data group cataloged in the
generation index are to be removed from the
index when the number of entries specified is
exceeded.

number-absexp
specifies the number of data sets to be
inciluded in a generation data group. This
numper must be specified, and cannot exceed
255.

OVRD
specifies that the expiration date in the DSCB
should be ignored.

Maintaining the Catalog and the Volume Table of Contents 23

EXCEPTIONAL RETURN CONDITION CODES

Ccontrol is always returned to the instruction that follows the LOCATE, INDEX, CATALOG, OBTAIN, SCRATCH, or RENAME macro-instruction.
been performed successfully, contains a condition code that indicates

The condition codes for the macro-instructions are as follows:

LOCATE Macro-Instruction

register 15 contains zeros.

[e e . e o i e . . . s T i o S oo S — T S — —_" o~ ——— —— — T——— — — (1 {3t S S S, S . ot . B, '

Code

Interpretation

12

16

20

24

Either the required control volume was not
mounted or the specified volume does not
contain a catalog data set (SYSCTLG). The
volume serial number of the required vol-
ume is contained in bytes 260-265 of the
work area.

One of the names of the qualified name was
not found. Register 0 contains the number
of the last valid name in the qualified
name. For example, if the qualified name
A.B.C.D were specified, but name C did not
exist at the level specified, register 0
would contain the binary code 2. The work
area contains the first index block of the
last wvalid index name, the serial number
of the volume containing the index (in
bytes 260-265), and the relative track
address (in bytes 257-25%) of the next
index block.

Either "an index, an alias, or a control
volume pointer was found when the list of
qualified names was exhausted.

A data set resides at some level of index
other than the lowest index 1level speci-
fied. Register 0 contains the number of
simple names referred to before the data
set was found. For example, if the quali-
fied name A.B.C.D were specified, and a
data set were found cataloged at A.B.C,
register 0 would contain the binary code
3.

A syntax error exists in the name (e.g.,
nine characters, a double delimiter, blank
name field, etc.).

A permanent I/O error was found when
processing the catalog.

If the LOCATE macro-instruction fails to perfozm

its function for any of the

reasons indicated

above, register 0 contains the number of indexes
searched before the failure was encountered.

b e o it e et e S e S e M A o . S e S P . Mo o M v S s S it P M it S it S s S i S S St S e S b "o e, e s sk s

OBTAIN Macro-Instruction

[- . e e e e s e e

Code

Interpretation

12

The required volume was not mounted.

The DSCB was not found in the VTOC of the
specified volume.

A permanent I/70 error was found when
processing the specified volume.

e e e i — i S it s o

24

Otherwise,register 15

INDEX Macro-Instruction

= o e — - S i e S i A i S S} T S — e S e - S S s M b S S . Sl e S et e, e e

Code

Interpretation

12

20

24
28

Either the required control volume was not
mounted, or the specified volume does not
contain a catalog data set (SYSCTLG).

The existing catalog structure is incon-
sistent with the operation performed.
Because the INDEX macro-instruction uses
the search routine of the LOCATE macro-
instruction, register 1 contains the
condition code that would be given by the
LOCATE macro-instruction, and register 0
contains the number of index levels
referred to during the search.

An attempt was made to delete an index or
generation index that has an alias or has
indexes or data sets cataloged under it.
The index is unchanged.

The qualified name specified when building
an index or generation index implies an
index structure that does not exist; the
high level index, specified when connect-
ing control volumes, does not exist.

Space 1is not available on the specified
control volume.

Not used with the INDEX macro-instruction.

A permanent I/O error was found when

processing the catalog.

b s e it o et e i . o " . S T T e BoDiA S S S S e i S s S S . s ot s e s

SCRATCH Macro-Instruction

e e e

Code

Interpretation

No volumes containing any part of the data
set were mounted, nor was a UCB address
contained in register 0.

An unusual condition was encountered on
one or more volumes.

After the SCRATCH macro-instruction is executed,
the last byte of each 12-byte volume pointer in

the volume

list indicates the following condi-

tions in binary code:

The DSCB for the data set has been deleted
from the VIOC on the volume pointed to.

The VTOC of this volume does not contain

The DSCB was not deleted because either
the OVRD option was not specified or the
retention cycle has not expired.

error was found when

A device for mounting this volume was

Code Interpretation
0
1
the DSCB to be deleted.
3
i A permanent I/0
processing this volume.
5
unavailable.
6

The operator was unable to mount this

volume.

b e S s —— — —— T T— — —— —— ——— — — — WA — —— — — — —— — —— " 7. o, s g, s

If the function has

the reason for the failure.

v 1
t CATALOG Macro-Instruction i
[N 4
T

i Code Interpretation i
| I
| 4 Either the required control volume was not |
| mounted, or the specified volume does not |
| contain a catalog data set (SYSCTLG). |
| |
| 8 The existing catalog structure is incon- |
i sistent with the operation performed. |
| Because the INDEX macro-instruction uses |
| the search routine of the LOCATE macro- |
| instruction, register 1 contains the |
| condition code that would be given by the |
| LOCATE macro-instruction, and register 0 |
| contains the number of index levels |
] referred to during the search. |
| : |
| 12 Not used with the CATALOG macro- |
| instruction. |
| |
| 16 The index structure necessary to catalog |
1 the data set does not exist. i
I I
| 20 Space is not available on the specified |
| control volume. |
| |
| 24 An attempt was made to catalog an |
| improperly named generation data set. |
| |
| 28 A permanent I/0 error was found when |
| processing the catalog. 1
L]
r X 1
| RENAME Macro-Instruction |
[l]
r 1
| Code Interpretation |
1 |
| 4 No volumes containing any part of the data |
| set were mounted, nor was a UCB address |
| contained in register 0. |
| |
| 8 An unusual condition was encountered on |
] one or more volumes. |
| |
| After the RENAME macro-instruction is executed, |
| the 1last byte of each 12-byte volume pointer in |
| the volume list indicates the following condi- |
| tions in binary code: |
| |
| Code Interpretation |
| |
| 0 The DSCB for the data set has been renamed

| in the VTOC on the volume pointed to. |
| |
| 1 The VTOC of this volume does not contain |
| the DSCB to be renamed. |
| |
| 3 A DSCB containing the new name already |
] exists in the VTOC of this volune. |
| |
| 4 A permanent I/0O error was found when |
| processing this volume. |
| [
] 5 A device for mounting this volume was |
[unavailable. I
| i
| 6 The operator was unable to mount this |
| volume. |
O J

APPENDIX A: CATALOG BLOCK ENTRIES

This section describes the contents of all catalog entries.

Ccontrol Entries

A volume index control entry is always the first entry in a volume
index. The volume index contrecl entry is 22 Lkytes 1long and contains
eight fields.

Field 1: Name Field (8 bytes) -- contains only a binary one to ensure
that this entry is the first entry in the first block of the index.

Field 2: Last Block Address (3 bytes) -- contains the relative track
address of the last block in the volume index. The address is in the
form TTR.

Field 3: Half-word Count (1 byte) -- contains a kinary five to inaicate
that five half words follow.

Field 4: Catalog Upper Limit (3 bytes) -- contains the relative track
address of the last block in the catalog data set. The address is in
the form TTR.

Field 5: Zero Field (1 byte) -- contains kinary zeros.
Field 6: First Available Block Address (3 Dbytes) -- contains the

relative track address c¢f +the unused klock in the catalog that is
closest to the beginning of the catalog data set.

Field 7: Zero Field (1 byte) -- contains binary zerocs.

Field 8: Unused Bytes in Last Block (2 bytes) -- contains the binary
count of the number of unused bytes in the last block of the volume
index.

An index control entry is the £first entry in all indexes except
volume indexes. The index control entry is 18 Lkytes long and contains
six fields.

Field 1: Name Field (8 bytes) -- contains only a kinary one to ensure
that this entry, Dbecause it has the lowest binary name value, is the
first entry in the first blcck of the index.

Field 2: 1ILast Block Address (3 bytes) -- contains the relative track
address of the last block assigned tc the index. The address is in the
form TTR.

Field 3: Half-word Count (1 Dbyte) -- contains & binary three to
indicate that three half words follcw.

Field 4: Index Lower Linit (3 bytes) -- contains the relative track
address of the block in which this entry appears. The address is in the
form TTR.

Field 5: Number of Aliases (1 byte) -- contains the binary ccunt of the
number of aliases assigned tc the index. If the index is mnot a high
level index, this field is zero.

Field 6: Unused Bytes in Last Block (2 Lkytes) -- contains the Linary

count of the number of unused bytes remaining in the last klock of the
index.

Maintaining the Catalog and the Volume Table of Contents 25

An index link entry is the last entry in all index blocks. The entry
is 12 bytes long and contains three fields.

Field 1: Name Field (8 bytes) -- contains only the hexadecimal number
FF to ensure that this entry, because it has the highest binary name
value, will appear as the last entry in any index klock.

Field 2: Link Address (3 bytes) -- contains the relative track address
of the next block of the same index, if there is a next Lklock in the
index. Otherwise, the field contains binary zeros.

Field 3: Half-word Count (1 byte) -- contains a kinary zerc to indicate
that no additional fields follow.

Pointer Entries

An index pointer entry can appear in all indexes except generation
indexes. The entry is 12 bytes long and contains three fields.

Field 1: Name Field (8 bytes) -- contains the name of the index being
pointed to ky field 2.

Field 2: Index Address (3 bytes) -- contains the relative track address
of the first block of the index named in field 1. The address is in the
form TTR.

Field 3: Half-word Count (1 byte) -- contains a binary zero to indicate
that no additional fields follow.

A data set pointer entry can appear in any index. It contains the
simple name of a data set anu from one to five 12-byte fields that each
identify a volume on which the named data set resides. If the data set
resides on more than five volumes, a volume control block must be used
to point to the volumes. The volume control klock is identified by a
volume control klock pointer entry, not a data set pointer entry.

The data set pointer entry varies in 1length. The 1length is
determined by the formula (14+12r), where m is the numker of volumes
containing the data set. The variable m can be from 1 through 5. The
Gata set pointer entry can appear in any index, and it ccntains five
fields.

Field 1: Name Field (8 bytes) -- contains the simple name of the data
set whose vclumes are identified in field 5.

Field 2: Address Field (3 bytes) -- contains a binary zero.

Field _3: Half-word Count (1 byte) -- contains the binary count of the

numter of half words that follow. The nunber is found by the formula
(ém+1), where m is the numker of volumes on which the data set resides.
The variakle m can be from 1 thrcugh 5.

Field 4: Volume Count (2 bytes) =-- contains the binary count of the
nurpber of volumes identifiea in field 5 of this entry.

Field 5: Volume Entries (12 to 60 bytes) -- contains from one to five
12-byte entries, each cf which identifies a volume on which the data set
resides. Fach entry contains a U-byte device code, a 6-byte volume
serial numrber, and a 2-ctyte data set sequence number. The data set
sequence nurber is zero for direct-access vclumes.

A volume control block pointer entry can appear in any index. It can
identify up to 20 volumes. The entry is 14 bytes long and contains four
fields.

26

Field 1: Name Field (8 bytes) -- contains the last name of the
qualified name of the data set identified by this entry. The data set
resides on the volumes whose serial numkers are given in the volume
control block pointed to by field 2.

Field 2: Address Field (3 bytes) -- contains the relative track address
of the volume control block identifying the volumes containing the data
set named in field 1. The address is in the form TITR.

Field 3: Half-word Count (1 byte) -- contains a kinary one to indicate
that one half word follows.

Field 4: Zexo Field (2 bytes) -- contains binary zeros.

A control volume pointer entry can appear only in volume indexes. It
is 18 bytes long and contains four fields.

Field 1: ©Name Field (8 bytes) =-- contains a high level index name that
appears in the volume index of the ccntrol volume identified in field u4.
Field 2: Address Field (3 bytes) -- contains kinary zeros.

Field 3: Half-word Count (1 Dbyte) -- contains a binary three to

indicate that three half words follcw.

Field 4: Control Volume Serial Number (6 bytes) =-- contains the serial
number of the control volume whose volume index contains an entry
identifying the high level index name in field 1.

An alias entry can appear in volume indexes only. An alias entry is
20 bytes long and contains four fields.

Field 1: Name Field (8 bytes) -- contains the alias of the high level
index identified in field 2.

Field 2: Address Field (3 bytes) -- contains the relative track address
of the first block of the index named in field 4. The address is in the
form TTR.

Field 3: Half-word Count (1 byte) -- contains a binary four to indicate
that four half words follow.

Field 4: True Name Field (8 bytes) -- contains the name of the index
whose alias appears in field 1. The address of the index is in field 2.

A generation index pointer entry can appear in all indexes except
generation indexes. The entry is 16 Lkytes long and contains six fields.

Field 1: Name Field (8 ‘bytes) -- contains the name of the generation
index whose address is contained in field 2.

Field 2: Address Field (3 bytes) -- contains the relative track address
of the generation index named in field 1. The address is in the form
TTR.

Field 3: Half-word Count (1 byte) -- contains a binary two to indicate
that two half wcrds follow.

Field 4: Flags (1 byte) -- contains flags that govern the uncataloging
of data sets as specified by the DELETE and EMPTY options of the INDEX
macro-instruction. The opticns and their hexadecimal codes are as
follows:

Maintaining the Catalog and the Volume Takle of Contents 27

EMPTY=01 DELETE=02 EMPTY and DELETE=03

Field 5: Maximur Generations Allowed (1 byte) -- contains the Lbinary
count of the maximum number of generations allowed in the index at ome
time as specified in the INDEX macro-instruction.

Field 6: Current Generation Count (2 bytes) -- contains the binary
count of the number of generations cataloged in the index.

The Volume Control Block Contents

A volume control block is composed of one or more volume-list blocks.
Each volume-list block contains an 8-kyte key and a 256-byte data
portion. The data portion of the volume-1list block can identify up to
20 volumes on which a data set is recorded. The format of the volume
list klock is as follows:

Field 1: Number of volumes (2 Lkytes) -- the first volume-list block
contains the binary count of volumes on which the data set is stored;
the value of this field is reduced by 20 for each suksequent volume-list
block. If a data set is on 61 volumes, for example, it has four
volume-l1list blocks. The first field of each block contains 61,41,21,
and 1, respectively.

Field 2: Volume Identification (12 to 240 bytes) -- contains from 1 to
20 12-byte entries, each of which identifies a volume on which the data
set resides. Each entry contains a U4-byte device code, a 6-kyte volume
serial number, and a 2-byte cata set sequence number. The data set
sequence number is zero for direct-access volumes.

Field 3: Zero Field (10 bytes) -- contains binary zeros.

Field 4: Chain Address (3 bytes) -- contains the relative track address
of the next klock of this volume contrcl block, if additicnal klocks
exist. The address is in the form TTR. If this is the 1last Dblock of
the volume control block, the field contains a binary zero. If this
field is not =zero, this Llock must contain twenty 12-byte fields
identifying volumes of the data set.

Field 5: Zero Fiela (1 byte) -- contains kinary zeros.

28

APPENDIX B: DEVICE CODE DESIGNATIONS

Device Features

IBM 2400 Series Magnetic
Tape Units

IBM 2400 Series Magnetic

Tape Units 7-track Compatibility
IBM 2400 Series Magnetic 7-track Compatibility
Tape Units Data Conversion

IBM 2400 Series Magnetic

Tape Units Phase Encoding
IBM 2400 Series Magnetic Phase Encoding
Tape Units with Dual Density

IBM 2311 Disk Storage Drive
IBM 2301 Drum Storage
IBM 2302 Disk Storage
IBM 2303 Drum Storage

IBM 2314 Direct Access
Storage Facility

Maintaining the Catalog and the Volume Takle of Contents

Device Code
Designation
(In Hexadecimal)

30008001

30808001

30Cc08001

34008001

34208001
30002001
30402002
30002004

30002003

30C02008

29

ADDING SVC ROUTINES TO THE CONTROL_ PROGRAM

This chapter provides detailed
information on how to write an SVC routine
and insert it into the control program
portion of the System/360 Operating System.

Before reading this chapter, you should
be familiar with the information contained
in the prerequisite publications 1listed
below.

Documentation of the internal 1logic of
the supervisor and its relationship to the
remainder of the control program can be
obtained through your IBM Branch Office.

PREREQUISITE PUBLICATIONS

The IBM System/360 Operating System:
Assembler Language publication (Form
C28-6514) contains the information neces-
sary to code programs in the assemkler
language.

The IBM System/360 Operating System:
Control Program Services publication (Form
C28-6541) describes the system macro-
instructions that can be used in programs
coded in the assembler language.

Adding SVC Routines to the Control Program

31

WRITING SVC ROUTINES

Because your SVC routine will be a part cf the control program, you
must follow the same programming conventions used in SVC rcutines
supplied with System/360 Operating System.

Four types of SVC routines are supplied with System/360 Operating
System, and the programming conventicns for each type differ. The
general characteristics of the four types are described in the following
text, and the programming conventions for all types are shown in tabular
form.

Characteristics of SVC Routines

All SVC routines operate in the supervisor state. You should keep
the following characteristics in mind when deciding what type of SVC
routine to write: :

e ILocation of the routine - Your SVC routine can ke either in main
storage at all times as part of the resident control program, or on
a direct-access device as part of the SVC library. Type 1 and 2 SVC
routines are part of the resident contrcl program, and types 3 and 4
are in the SVC library.

e Size of the routine - Tyres 1, 2, and 4 SVC routines are not limited
in size. However, you nust divide a type 4 SVC routine into 1load
modules of 1024 Dbytes or less. The size of a type 3 SVC routine
must not exceed 1024 bytes.

e Design of the routine - Type 1 SVC routines must be reenterable or
serially reusakle; all other types must be reenterable.

e Interruption of +the routine - When your SVC routine receives
control, the CPU is masked for all maskable interruptions kut the
machine check interruption. All type 1 SVC routines must execute in
this masked state. If you want to allow interruptions to occur
during the execution o¢f a type 2, 3, or 4 SVC routine, you must
change the appropriate nasks. If you expect that a type 2, 3, or 4
SVC routine will run for an extended period of time, it is
recommended that you allow interruptions +to Le processed where
possible.

Programming Conventions for SVC Routines

The programming conventions for the four types of SVC routines are
summarized in Table 1. Details about many of the conventions are in the
reference notes that follow the takle. The notes are referred to by the
numbers in the last column of the takle. If a reference note for a
convention does not pertain to all types of SVC routines, an asterisk
indicates the types to which the note refers.

32

Table 1. Programming

Conventions for SVC Routines

r ———rm———- —————- To———-- T T———————= T 1
			Reference		
conventions	Type 1	Type 2	Type 3	Type &	Code
————————————————————— R I S					
Part of resident	Yes	Yes	No	No	
control programw					
-——- - fommm o $o—- fommmm e fommmmm et i					
Size of routine	Any	Any	£ 1024	Each	
			kytes	load	
				wodule	
I				< 1024	
		I	bytes		
pmmmmmmmmm s $-—--- ——oms T e fommm - 1					
Reenterable routine	Optional,	Yes	Yes	Yes	1
	but must		I		
	be serially]				
	reusakle]		
- -~ T fommmm e e 1
|May allow inter- | No | Yes | Yes | Yes | 2 |
| ruptions | | [[| |
f=mmmm et ———mdeeee e Ao Ao e {

|Entry point

|Must be the first byte of the routine|
|or load module, and must be on a |
|double-word koundary |

|
|
I
T o 1
| Number of routine | Numbers assigned to your SVC routines| |
| |should be in descending order from | i
| | 255 through 200 | |
T — t S P S e 1
|Name of routine | IGCnnn | IGCnnn |IGCO0ONnn |IGCssnnn| 3 |
L e et e i e o o o e < e e e 9 e e e o . P . 4 —_——l | I, .l
v T
| Register contents at |Registers 3, 4, 5, and 14 contain | 4 |
|entry time | communication pointers; registers 0, | |
| }1, and 15 are parameter registers | i
— - R S T q-——————- Frmmmmm e 1
|May contain reloca- | Yes | Yes | No* | No* i 5 |
|table data | | | | | |
¢ - v I $-— -4- ——4-- i
Can supervisor re-	Not	Yes*	Yes*	Yes¥*	6
quest block (SVRB) be	applicakle				
extended					
pmmm oo e frmmm e o v fromomme- fmmmmmm - 4					
May issue WAIT macro-	No	Yes*	Yes*	Yes*	7
instruction					
e ——— 1 . S fommmmmmm pommm s o 1					
jMay issue XCTIL macro-	No	No	No	Yes*	8
instruction					
b === e e $ommmmm o s 1					
May pass control to	None	Any	Any	Any i	
what other types of					
SVC routines					
t o o N doemom oo d e frmmm e 1					
Type of linkage with	Not	Issue supervisor call			
other SVC routines	applicakle	(SVC) instruction			
e T —— e					
Exit from SVC Routine	Branch using return register 14				
L 1					
F — ~—1 ——mmmy — -4 -4					
Method of abnormal	Use resi-	Use ABEND	9 {		
termination	dent abnor-	macro-instruction or			
1	mal terri-	resident abnormal			
	nation rou-	termination routine			
[|tine | | |
b N —— R i 4

w
w

Adding SVC Routines to the Control Program

Reference SV Routine

Code Types
1 all
2 all
3 all
y all

34

Reference Notes

If your SVC rcutine is to Lke reenterable, you
cannot use macro-instructions whose expansions
store informaticn into an in-line parameter list.

You should write SVC routines so that program
interruptions cannot occur. If a program inter-
ruption does cccuxr during execution of an SVC
routine, the routine loses control and the task
that called the routine terminates.

If a program interruption occurs and you are
modifying a serially reusakle SVC routine, a
system queue, control blocks, etc., the modifica-
tion will never complete; the next time the
partially modified code is used, the results will
be unpredictatkle.

You must use the following conventions when
naming SVC routines:

o Types 1 and 2 must ke named IGCnnn; nnn is
the decimal nurber of the SVC routine. You
rust specify this name in an ENTRY, CSECT, or
START instruction.

e Type 3 must ke named IGCOOnnn; nnn is the
signed decimal nurber of the SVC routine.
This name must ke the name of a member of a
partitioned data set.

» Type U4 must be named IGCssnnn; nnn is the
signed decimal number of the SVC routine, and
ss is the number of the load nrodule minus
cne, e€e.g9., Ss 1is 01 for the second load
module of the routine. This name must ke the
name of a member of a partitioned data set.

Before your SVC routine receives control, the
contents of all registers are saved. For type 4
routines, this applies only to the first 1load
module of the routine.

In general, the location of the register save
area is unknown to the routine that is called.
When your SVC routine receives control, the
status of the registers is as fcllows:

e Register 0 and 1 contain the same information
as when the SVC routine was called.

e Register 2 contains unpredictable informa-
tion.

* Register 3 contains the starting address of
the communication vector table.

e Register 4 contains the address cf the task
ccntrol Eklock (TCB) of the task that called
the SVC routine.

Reference

SVC Routine

Code

Types

Reference Notes

e Register 5 contains the address of the super-
visor request klock (SVRB), if a type 2, 3,
or 4 SVC routine is in control. If a type 1
SVC routine is in control, register 5 con-
tains the address of the last active request
klock.

e Register 6 through 12 contain unpredictable
information.

e Register 13 contains the same information as
when the SVC routine was called.

e Register 14 contains the return address.

e Register 15 contains the same information as
when the SVC routine was called.

You must use registers 0, 1, and 15 if you want
to pass information to the calling program. The
contents of registers 2 through 14 are restored
when control is returned to the calling prograr.

Because relccatakle address constants are not
relocated when a type 3 o¢r 4 SVC routine is
loadea into main stcrage, you cannot use them in
coding these routines; ncr can you use macro-
instructions whose expansions contain relocatakle
address constants. Types 1 ana 2 are not
affected by this restriction since they are part
of the resident control program.

You can extend the SVRB, in 8-byte increments,
from 96 bytes up to 144 bytes. The extended area
is availakle as a work area during execution of
your routine only if you specify the extension
during the system generation process. When your
SVC routine receives control, register 5 contains
the address of the SVRB to which the extended
save area is arpended.

You cannot issue the WAIT macro-instruction
unless you have changed the system mask to allow
I/0 and external interruptions. If you have
allowed these interruptions, you can issue WAIT
macro-instructions that await either single or
multiple events. The event control klock (ECB)
for single-event waits or the ECB list and ECBs
for multiple-event waits must be in dynamic main
storage.

When you issue an XCTL macro-instruction in a
routine under control of a type 4 SVRB, the new
load module is brought into a transient area.

The contents of registers 2 through 13 are
unchanged when control 1is passed +to the load
module; register 15 contains the entry point of
the called load module.

Adding SVC Routines to the Control Program 35

Reference

SVC Routine

36

Code

9

Types
all

Reference Notes

Type 1 SVC routines must use the resident abnor-
mal termination routine to terminate any task.
The entry point to the abnormal termination
routine is in the communication vector table
(cvt) . The symbolic name of the entry point is
CVTBTERM.

Type 2, 3, and 4 SVC routines must use the ABEND
macro-instruction to terminate the current task,
and must use the resident aknormal termination
routine to terminate a task other than the
current task.

Before the resident abnormal termination routine
is entered, the CPU must be masked for all
maskable interruptions but the machine check
interruption, and registers 0, 1, and 14 must
contain the following:

¢ Register 0 contains the address of the TCB of
the task to be terminated.

®» Register 1 contains the following informa-
tion:

Bit 0 is a 1 if you want a dump taken.

Bit 1 is a 1 if ycu want to terminate a job
step.

Bits 2-7 are zero.
Bits 8-19 contain the error code.
Bits 20-31 are zero.

e Register 14 contains the return address. The
resident aknormal termination routine exits
by branching to the address contained in

register 14.

The contents of register 15 are destroyed by the
abnormal termination routine.

INSERTING SVC ROQUTINES INTO THE CONTROL PROGRAM

You insert SVC routines into the control program during the system
generation process.

Before your SVC routine can be inserted into the control program, the
routine must be a member of a cataloged partitioned data set. You must
name this data set SY¥Sl.name.

The following text gives a description of the information you must
supply during the system generation process. You will find a descrip-
tion of the macro-instructions required during the system generation
process in the publication IBM System/360 Operating System: System
Generation, Form C28-6554.

Specifying SVC Routines

You use the SVCTABLE macro-instruction to specify the SVC number, the
type of SVC routine, and, for type 2, 3, or 4 routines, the number of
double words in the extended save area.

Inserting SVC Routines During the System Generation Process

To insert a type 1 or 2 SVC routine into the resident control
program, you use the RESMODS macro-instruction. You must specify the
name of the partitioned data set and the names of the merkbers to ke
inserted into the control program. Each mewmker can contain more than
one SVC routine.

To insert a type 3 or 4 SVC routine into the SVC library, you use the
SVCLIB macro-instruction. You must specify the name of the partitioned
data set and the names of members to be included in the SVC litrary.
The member names must conform to the conventions for naming type 3 and 4
routines, i.e., IGCOOnnn and IGCssnnn.

Adding SVC Routines to the Control Program 37

ADDING AN ACCOUNTING ROUTINE TO THE CONTRCI PROGRAM

This chapter provides detailed informa-
tion on how to write an accounting rcutine
and insert it into the control program
portion of Systemn/360 Operating System.

Before reading this section, you should
be familiar with the information contained
in the prerequisite publications 1listed
below.

Documentation of the internal 1lcgic of

the scheduler can be obtained through your
IBM Branch OCffice.

PREREQUISITE PUBLICATIONS

The IBM System/360 Operating System:
Assemkler Language publication (Form
C28-6514) contains the information neces-
sary to code programs in the assemkler
language.

The IBM System/360 Operating System:
Control Program Services puklication (Forrm
C28-6541) descrikes the system macro-
instructions that can be used in programs
coded in the assembler language.

Adding an Accounting Routine to the Control Program

39

WRITING AN ACCOUNTING ROUTINE

The conventions +that you must follow when writing an accounting
routine and the accounting informaticn that is supplied by the operating
system are described in the following text.

Entry to the Accounting Routine: Your accounting routine receives
control during Jjob and step termination. The entry point of your
accounting routine must be named IEFACTRT. You can specify this name in
either a CSECT staterent or an ENTRY statement.

The first sequence of instructions in your routine nmust save the
contents of registers 0 through 1u4. You can use the SAVE macro-
instruction to perform this function; register 13 contains the address
of a register save area.

Input to the 2ccounting Routine: Register 1 contains the starting
address of a 1list of pointers to accounting information. Each pointer
is on a full-word boundary. The items in the list and the order in
which they appear are as follows:

1. U-byte pointer to the 8-byte jok name area.

2. U4-byte pointer to the 8-byte step nawme area. The pointer to the
step name is zero when the job is terminated.

3. U4-byte pointer to the 20-byte programmer's name area.

4. L-byte pointer to the job running time.® The job running time is
contained in the first three Lkytes of a U-kyte area. The last byte
contains the number of jcb accounting data fielas.

5. U4-byte pointer to the job accounting data fields. If the JOB
statement did not contain accounting information this pointer
indicates a four-byte field whose last byte is zeroed. These data
fields contain the accounting information that was specified in the
JOB statement. The first bLyte of each data field contains the
number of bytes of data that follow. All Jjcb accounting data
fields are contiguous in main storage. The last data field is
followed by a byte of zeros.

6. U-byte pointer to the stepr running time.? The step running time is
contained in the first three bytes of a 4-byte area. The last byte
contains the number of step accounting data fields. The pointer to
the step running time is zero when the job is terminated.

7. U-byte pointer to the step accounting data fields. These fields
contain the accounting information that was specified in the EXEC
statement. The first byte of each data field contains the number
of bytes of data that follow. All step accounting data fields are
contiguous in main storage. The last data field is followed by a
byte of =zeros. If the EXEC statement did not contain an
ACCT=parameter, the pointer indicates a one-byte field of =zeros.
The pointer to the step accounting data fields is zeroc when the jok
is terminated.

1Job running time and step running time are not supplied unless you have
selected multiprogramming with a variakle nurker of tasks and interval
timing. However, if only timing is selected, you can use the timer
macro-instructicns in your accounting routine. An explanation of these
features is contained in the publication IBM System/360 Operating
System: Storage Estimates, Form C28-6551.

40

Output from the Accounting Routine: You can write output in two ways:
by issuing console messages or by using the standard syster output.

1. Console messages -- You can use Write to Operator (WTO) or Write to
Operator with Reply (WTOR) macro-instructions.

2. System output -- You must assemble the following calling segquence
into your routine. The contents of register 12 must be the same as
when your accounting routine was entered, and register 13 must
contain the address of an area cf 64 full words.

[T ToTTT T B 1 et 1
| Name | Operation| Operand i
I v TR e —— e e i
| | MvcC | 36(4,12),MSGADDR MOVE MESSAGE ADDRESS AND |
| | MvC | 42(2,12),MSGLEN LENGTH TO SYSTEM TABLE. i
	L	REG1l5,VCONYS BRANCH AND LINK TO MESSAGE
	BALR	REG14,REG15 ROUTINE
I .		
[-	
MSGADDR	DC	A(MSG)
MSG	pC	C'text of message’
MSGLEN	DC	H'two character length cf message'
VCcoNYs	DC	V(IEFYS) [
b i S 8 1
Exit from the Accounting Routine: You can use the RETURN rmacro-

instruction to restore the contents cf registers and return control to
the operating system.

INSERTING AN ACCOUNTING ROUTINE INTC THE CCNTRCI PROGRAM

You can insert your accounting routine into the contrcl prograr
either before or after the system generation process. In either case,
you must specify that you have an accounting routine. This 1s done
during the system generaticn prccess ky using the ACCTRTN option in the
SCHEDULR macro-instruction.

Inserting an Accounting Routine Befcre System Generation

To insert your accounting rcutine kefore system generation, you 1link
edit it into the module library (SYS1.MODLIB) to replace the existing
nodule nawred IEFACTRT. Detailed information akout wusing the 1linkage
editor is contained in the puklication IBM System/360 Operating System:
Linkage Editor, Form C28-6538.

Inserting an Accounting Routine After System Generation

To insert your accounting routine after system generation, you 1link
edit your routine into the IEFSTERM and IEFJTERM modules of the 18K
scheduler; the IEFSTERM and IEFCNTRL nodules of the 44K scheduler; and
the IEFCNTRL module of the 100K scheduler. You will be replacing the
existing control section IEFACTRT in these rmwodules. The scheduler
modules are in the linkage likrary (SYS1.LINKLIB). The linkage editor
control statements you must use to insert your accounting routine in the
step and job termination modules of each scheduler follow.

18K Scheduler

Step Termination Job Termination
ALIAS GO, IEFYN ALIAS IEFZA,IEFW23SD
ENTRY IEFSD011 ENTRY IEFZA
NAME IEFSTERM(R) NAME IEFJTEKM(R)

Adding an Acccunting Routine to the Control Program 41

44K Scheduler

100K

Step Termination Jok Termination
ALIAS GO, IEFYN, IEFSD009 ALIAS 1IEFKA,IEFMC,IEFSD00S,
ENTRY IEFSDO11 IEFZA, IEFSDDHD
NAME IEFSTERM(R) ENTRY IEFKA

NAME IEFCNTRL(R)

Scheduler

Step and Job Termination
ALIAS GO,IEFKA,IEFYN
ENTRY IEFSDO11
NAME IEFCNTRL(R)

The following sequence of job contrcl language and linkage editor
statements shows insertion of your acccunting routine into the 18K
scheduler modules. Card input is assumed.

//jokname JoOB (parameters)

//stepname EXEC PGM=IEWL, (parameters)
//SYSPRINT DD SYSOUT=A

//SYSUTL DD UNIT=SYSDA, SPACE=(parameters)
//SYSLMOD DD DSNAME=SYS1.LINKLIB,DISP=0OLD
//SYSLIN DD *

(accounting routine okject deck)

INCLUDE SYSLMOD (IEFSTERM)
ALIAS GO, IEFYN
ENTRY IEFSDO11
NAME IEFSTERM(R)
(accounting routine object deck)

INCLUDE SYSLMOD(IEFJTERM)
ALIAS IEFZA,IEFW23SD
ENTRY IEFZA
NAME IEFJTERM(R)

This same statement sequence, with substitution of proper paraneters,
can be used with the 44K scheduler. The 100K scheduler requires only
the one set of linkage editor statements and one cbject deck.

42

NONSTANDARD ILABEL PROCESSING ROUTINES;
VOLUME LABEL AND DUAL-DENSITY TAPE DEVICE
EDITOR ROUTINES

Section 1 of this chapter explains how
to write routines to process nonstandard
lakels on magnetic tape, and how to add
them to the control program.

Section 2 of this chapter explains how
to write tape volume label and dual-density
tape device editor routines and insert them
in the control program in place c¢f IBM
supplied editor routines.

Before reading this chapter, you should
be familiar with the information contained
in the prerequisite publications 1listed
below. Documentation of the internal logic
of the standard lakel processing routines
can be obtained through your IBM Branch
Office.

Prerequisite Publications

The IBM System/360 Operating System:
Assemkbler Language publication (Form
C28-6514) contains the information neces-
sary to code programs in the assenkler
language. '

The IBM System/360 Operating System:
Control Progran Services publication (Form
C28-6541) describes the macro-instructions
that are used to request services from the
control program.

The IBM System/360 Operating System:
System cControl Block publication (Form
C28-6628) contains format illustraticns and
field descriptions of the system control
blocks referred to in this chapter. This
puklication also describes the format and
fields of standard magnetic tape lakels.

The IBM System/360 Operating Systen:
Data Management publication (Fcrm C28-6537)
discusses magnetic tape lakeling.

Label Processing Routines

43

SECTION 1: WRITING NONSTANDARD LABEL PROCESSING ROUTINES

For magnetic tape volumes with nonstandard lakels (i.e., input or
output header or trailer lakels that do not ccnform to the standard
label format), you must write your own lakel processing routines. You
must also perform such functions as volume identification and volume
positioning.

The appropriate nonstandard lakel processing routine is selected,
brought into main storage, and executed when the data control block 1is
either opened or closed, or when an end-cf-volume or end-of-data set
condition occurs. When a nonstandard 1lakel processing routine has
completed, it must return control to the OPEN, CLOSE, or EOV routine,
which then continues its normal processing. The following paragraphs
explain this flow of control between the control program and each type
of nonstandard label processing routine. Information on tape position-
ing and volume identification is also provided.

Input Header Lakel Routines

An input header label routine 1is brought intc main storage when
either the OPEN or EOV routine is executed. Your routine is entered
after the control program has determined that a tape does not have
standard labels. When your routine receives control, the tape will have
been positioned at the interrecord gap preceding the nonstandard label.

If your routine determines that the wrong volume is mounted, you must
place a 1 in the high-order bit position of the SRTEDMCT field of the
unit control block (UCB), and return control to the control programn.
The control program then issues a message to the operator requesting
that the correct volume be mcunted. When the new volume 1is mounted,
your routine is entered again after the contrcl program has checked the
initial 1label.

Before returning contrcl to the control pregram, you should, for
forward read operations, position the tape at the interrecord gap that
precedes the initial record of the data set; for backward read
operations, the tape should be positioned after the last record of the
data set.

Input Trailer Label Routine

An input trailer label routine is krought into main storage when the
EOV routine is executed. Your routine is entered when a tape mark is
encountered. When your routine receives control, the tape will have
been positioned, for forward read operations, immediately after the tape
mark at the end of the data set; for backward read operations,
immediately before the tape mark at the beginning of the data set.

You need not reposition the tape before returning control to the
control program.

Output Header Label Routines

An output header 1label routine 1is brought into main storage when
either the OPEN or EOV routine is executed. Your routine is entered
after the control program has determined that a tape does not have
standard labels. When your routine receives control, the tape will have
been positioned at the interrecord gap preceding the nonstandard 1label.

If your routine determines that the wrong volume is mounted, you must
place a 1 in the high-order bit position of the SRTEDMCT field of the
unit control block (UCB), and return control to the control prcgram.
The control program issues a message to the operator requesting that the
correct volume be mounted. When the new volume is mounted, your routine

4y

is entered again after the control program has checked the initial label
and positioned the tape.

You need not reposition the tape kefore returning control to the
control program.

Output Trailer Label Routines

An output trailer label routine is brought into main storage when
either the EOV or CLOSE routine is executed. When your routine receives
control, the tape will have Dbeen positioned at the interrecord gap
following the last data set record that was written. After you have
written the tape mark and label, you need not reposition the tape before
returning control to the control program.

The output trailer 1lakel routine is also krought into main storage

when input data sets are closed. This allows ycu to position the tapes
if necessary.

Programming Conventjions

This section describes the conventions to be followed when writing
your raoutines.

e Size of the routine - Nonstandard label processing routines are not
limited in size. However, 1if the size of such a routine exceeds
1024 bytes, you must divide the routine into load modules, each of
which 1is 1024 bytes or less. To pass contrcl between load modules,
you must use the XCTL macro-instruction.

e Design of the routine - Nonstandard lakel processing routines must
be reenterable. Relocatable address constants cannot be used in
coding these routines or in coding any channel command words (CCW)
to Dbe used in the routine; nor can macro-instructions be used whose
expansions contain relocatable address constants.

® Register usage - The contents of registers 2 through 14 must pe
saved when your routine receives control from the control program.
The contents of these registers must ke restored before your routine
returns control.

e Entry Point of the routine - The entry point of the routine must be
the first byte of the 1load module, and must be on a double-word
boundary.

e Exit from the routine - The XCTL macro-instruction (E-form) must be
used to exit from your routine and return control to a specific
centrol program module. These mcdules differ depending both upon
the control program routine from which control was received, and the
type of label processing being performed.

Module names are shown kelow for each control program routine and
for each type of label processing routine.

Lakel Processing Routine control Program Routine Module Name
Input Header OPEN IGG0190B
EOV IGG0O550D
Input Trailer EOV IGG0550B
Output Header OPEN IGGO190R
EOV IGG0550H
Output Trailer EOV IGGG550F
CLOSE IGG0200B

Label Processing Routines u5

* Work areas - The GETMAIN macro-instruction must be used to obtain
main storage for all of your work areas, including those areas used
to read in or create a label. The FREEMAIN macro-instruction must
be used to release this main storage.

Prcgram Functions

In processing nonstandard labels, you must perform many of the
functions thdt the control program performs 1in processing standard
labels. All I/0 operations, as, for example, those required to read
labels, to write labels, and to position volumes, must be performed by
using the execute channel program (EXCP) macro-instruction. The use of
EXCP normally reduires that you build several control blocks in your
work area. However, you can save much coding effort by wusing existing
control blocks built by the control program.

When your routine receives control from the OPEN or CLOSE routine,
the status of control information and pointers is as shown in Figure 1.

When your routine receives control from the EOV routine, register 2
contains the address of a DCB, and register 4 contains the address of a
combined work and control block area. The format of this area is shown
in Figure 2.

46

e e e . . e . . e e e S A . e el S, S, S s . S e S e S . . B . o S M B S G, S . i T M. i it S T, i S, S T— _— . e i, W, " o oo o)

- = - = -7

Reg &
s Data
Control
Block

T T Data
Control
Block

Data
Control
Block

Data
Control
Block

Reg 6 Work
and
Control
Block

Area

Work

]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
I
|
[
|
|
|
|
|
|
|
|
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-'
|
|
|
|
|
|
|
|
|
|
|
|
|

Control
Block
Area

o

Work
and
Control
Block
Area

Work
and
Control
Block
Area

Register 5 contains the starting address of a list of DCB addresses.
Each DCB specified in the OPEN or CLOSE macro-instruction has a
4-byte entry in the list. The DCBs to which the entries point are
in the problem progranm.

For each DCB specified in the OPEN or CLOSE macro-instruction, a
combined work and control block area is built. Register 6 contains
the starting address of a tabkle that contains an address for each
work and control block area. The addresses of the areas are
contained in the low-crder three kytes of 8-byte entries. The 1list
of 8-byte entries begins 32 bytes from the starting address of the
table. The format of the combined work and control block area is
shown in Figure 2.

| I e o e 2 e o et e e i e e e e e e e o e e 4

Figure 1. Status of Control Information and Pointers

Label Processing Routines 47

Work Area
(100 bytes)

Job File Control Block (JFCB)
(176 bytes)

Event Control Block (ECB) - 4 bytes

Input Output Block (1OB)
(40 bytes)

Data Extent Block (DEB)
(44 bytes)

Abbreviated DCB - (4 bytes)

Channel Command Words (CCW)
(96 bytes)

[o — e . — — T — " A — i — —— T — —— —— — T i S— ——— —— —— —— — —— — — — — — —— ——— —— {——{—— — T— — {—— o p— T S S S, gt 1

Each of the fields within the work and control block area can be
addressed by your nonstandard label processing routines. The
IECDSECT macro-instruction defines the symbolic names of all these
fields. (The macro-definition and how to add it to the macro-
library are in the Appendix of this chapter.) Code this macro-
instruction (with a null operand field and immediately preceded by a
DSECT statement) in the 1list of constants for each of your
nonstandard 1label processing routines. Using the starting address
of the work area as a base, you are able to address any field
symbolically.

Figure 2. Format of Combined Work and Control Block Area

48

General Logic Flow of a Nonstandard ILabel Processing Routine: The
general flowcharts in Figures 3, 4, and 5 show the logic that you could
use in your routines. Each block in the flowcharts is numbered, and the
number corresponds to an item in the list of explanations of the blocks.

Entry from M °
Control Program

(2)
Obtain Set Bit ©
Main in UCB
Storage to 0

3 (10
Save @ Determine)

Registers Type OF, 1/0
Operation

(13
Set Up

(14

Process

Label

Correct
Volume

(19)

Set Bit
in UCB
to 1

(20)
Restore
Registers

Adjust ®
for Next
DCB

(2n

Release
Main
Storage

(22)
Return to
Control Program

Figure 3. General Flow of a Nonstandard Label Processing Routine After
Receiving Control From the OPEN Routine

Label Processing Routines 49

Entry from m
Control Program

)

Obtain
Main
Storage

@)
Save
Registers

(20)
Restore
Registers

(21

Release
Main
Storage

(1) (12)

Positioning

@®)

Adjust
for Next
DCB

Data Set Required

(13) (13)
Set Up Set Up
CCW ccwW
(16) (18)
Create Position
Label Tape
18
Write a8
Label

Figure Uu4. General Flow of a Nonstandard Label Processing Routine After

Receiving Control From the CLOSE Routine

50

m

Entry from
Control Program

(20)
Obtdin @ Restore
Main Registers
Storage
) (21)
Save Release
Registers Main
Storage
| 9 - 22
Set Bit @ Return to 22
in UCB Control Program
to 0
| (10)
Determine
Type of /O
Operation
(13)
Set Up
ccw

(14)

(16)
Yes Process
Label

Correct
Volume

(19
Set Bit
in UCB
to 1

Figure 5. General Flow of a Nonstaydard Label Processing Routine After
Receiving Control From the EOV Routine

Label Processing Routines 51

Explanations of Logic Blocks

1.

11.

52

The entry is in the form of an XCTL macro-instruction issued by the
control program.

Use the GETMAIN macro-instruction to obtain main storage.
Use the store multiple instruction (STM).

To 1locate the address of the data control block (DCB), use the
contents of register 5. To determine if the DCB is open, test bit
3 of the DCBOFLGS field of the DCB; if this bit is zero, the DCB
has not been opened. (The symbolic names of all fi¢lds in the LCB
are defined by the DCBD macro-instruction.)

To determine if a tape data set 1is being processed, test the
UCB3TAPE field of the unit control block (UCB); this bit is one for
a tape data set. The symbolic names of all fields in the UCB are
defined by the IEFUCBOB macro-instruction. (The macro-definition
and how to add it to the macro-library are in the Appendix of this
chapter.) The address of the UCB is contained in the DXDEBUCB
field of the data extent block (DEB) as defined by the IECDSECT
macro-instruction. (The macro-definition and how to add it to the
macro-library are in the Appendix of this chapter.)

To determine if nonstandard labels have been specified, test the
JFCBLTYP field of the job file control block (JFCB); this field
contains a hexadecimal 04 when nonstandard 1labels have been
specified.

The final DCB entry in the list of DCB addresses contains a one in
its high-order bit position.

Add 4 to the contents of register 5; add 8 to the contents of
register 6.

Set the high-order bit to zero in the SRTEDMCT field of the UCB.

To determine the type of 1I/0 operation specified in the OPEN
macro-instruction, check the bit configuration of the high-order
kyte of the DCB entry in the 1list of DCB addresses. The bit
configuration for each type of I/0 operation is shown below. (The
high-order four bits correspond to the disposition of the data set;
the low-order four bits correspond to the I/O operation itself.
For example, the bit configuration x0110000 indicates a data set
opened for input whose disposition is LEAVE.)

Bits 0 1 2 3 4 5 6 1
x 0 0 1 x x x x REREAD
x 0 1 1 x x X X LEAVE
x 0 0 0 x x X X Neither REREAD nor LEAVE
X x x x 0 0 0 o0 INPUT
X X x x 1 1 1 1 OUTPUT
X X X x 0 0 1 1 INOUT
X X x x 0 1 1 1 OUTIN
Xx X x x 0 0 0 1 RDBACK
Xx X x x 0 1 0 o0 UPDAT

To determine the mode of the data set, test the high-order bit of
the DCBOFLGS field of the DCB. If this bit is one, the data-set
mode 1is output; if this bit is zero, the data-set mode is input.
(The symbolic names of all fields in the DCB are defined by the
DCBD macro-instruction.)

12. You may want to position the tape if you have closed an input data
set before all data has been read.

13. Move your CCW into the channel program area of the control
program's work area. (The symkolic name of the first entry in the
channel program area is DXCCW.)

14. 1Issue an EXCP macro-instruction specifying the address of the
control program's IOB. (The sywkolic name of the IOB is DXIOB.)

15. Techniques wused +to check for correct volume will differ depending
on the label formats used in the installation.

16. TLabel processing routines will differ by label format.
17. If a write operation is required, this block can be used.

18. 1Issue an EXCP macro-instruction specifying the address of the
control program's IOB. (The symbolic name of the IOB is DXIOB.)

19. Set the high-order bit to 1 in the SRTEDMCT field of the UCB.
20. Use the load multiple instructicn (LM).

21. Use the FREEMAIN macro-instruction to free the work area cbtained
in step 2.

22. Use the XCTL macro-instruction, specifying the appropriate operand.

The following coding sequence illustrates an exit from your routine
during OPEN or CLOSE operations.

1 MVC 0(8,6),MODNAME

2 1A 15,DXCCW12

XCTL EPLOC=(6),DCB=06,SF=(E, (15))
MODNAME DC C'IGGxxXxxX"'

1 The name of the module you are transferring tc is moved to the first
8 bytes of the tabkle pointed to by register 6 (see Figure 1).

2 DXCCW1l2 addresses an eight-byte field that may be used for the remote
supervisor parameter list required by the E-form of the XCTL
macro-instruction.

The following coding sequence illustrates an exit from your routine
during end-of-volume operations.

MVC DXCCW12+16(8), MODNAME
LA 15,DXCCW12+8
1A 0,DXCCW12+16
XCTL EPLOC=(0),DCB=0,SF=(E, (15))
MODNAME DC C'IGGxxxxx'

The IECDSECT macro-instruction, discussed in the appendix to this
chapter, defines the name DXCCW1l2. The DCB= parameter of the XCTL
macro-instructicn must be coded DCB=0 in this application.

INSERTING NONSTANDARD IABEL ROUTINES INTO THE CONTROL PROGRAM

Nonstandard label processing routines must be included in the control
program as part of the SVC library (5S¥YS1.SVCLIB), since they are load
modules of type U4 SVC routines. You insert nonstandard label processing
routines into the control program during the system generation process.

Label Processing Routines 53

Before your nonstandard lakel routine can be inserted into the
control program, each load module of the routine must be a member of a
cataloged partitioned data set. You must name this data set SYSl.name.

To insert your nonstandard lakel routine load modules into the SVC
library, you wuse the SVCLIB macro-instruction. Using this macro-
instruction, you must specify the name of the partitioned data set and
the names of members to be included in the SVC 1library. Member names
for the first load module of each type of label processing routine are
shown below. (Member names for additional load modules must begin with
the letters NSL or IGC.) The format of the SVCLIB macro-instruction is
contained in the publication IBM System/360 Operating System: System
Generation, Form C28-6554.

Nonstandard Label

Processing Routine Control Program Routine Member Name
Input header OPEN NSLOHDRI
EQOV NSLEHDRI
Output header OPEN NSLOHDRO
EQV NSLEHDRO
Input trailer EQV NSLETRLI
Output trailer EOV NSLETRLO
CLOSE NSLCTRLO

54

SECTION 2: VOLUME LABEL AND DUAL-DENSITY TAPE DEVICE EDITOR ROUTINES

When writing data sets on magnetic tape (OUTPUT or OUTIN specified in
the OPEN macro-instruction) conflicts may ke detected between:

1. The label type specified by the program and the label type on the
currently mounted volume.

2. The recording density specified Ly the program, and the density at
which a dual-density tape device is set to record.

These volume label and density conflicts are detected by the OPEN or
EOV control program routines during label verification procedures. IBM
supplies editor routines that function when these conflicts are
detected, resolving the conflicts by requesting dismounting of the
currently mounted tape volume and the mounting of a new tape volume
whose label and/or density conform to the program specifications. The
editor routines you write replace the IBM supplied routines, and can be
designed to resolve the 1label and density conflicts without operator
intervention (i.e., tape handling).

Your editor routines can resolve lakel and density conflicts by
writing lakels, "cancelling labels," and by performing write operations
to set the desired density on a dual-density tape device. Or, your
editor routines can reset system control klocks (in effect, change the
program specifications) to agree with the label type and/or density of
the currently mounted volune. Or, your installation may desire a
combination of these actions, including dismounting under certain
conditions. All these possible actions may ke included in your editor
routines.

You may replace the standard IBM editor routine associated with the
OPEN routine; the standard IBM editor routine asscciated with the EOV
routine, or both.

The balance of this section provides you with the information
necessary to write editor routines; programming conventions, entry
conditions, a suggested logic for your OPEN and/or EOV editor routines,
and how to insert your routines in the control program.

PROGRAMMING CONVENTIONS

Your editor ©routines must conform to the same general programming
conventions as the nonstandard label processing routines discussed in
Section I of this chapter (see Section I - Programming Conventions) in
so far as size, design, register usage, entry points, and wcrk areas are
concerned.

You must name the first (or only) module of your routines as follows:

OMODVOL1 -- the editor routine associated with OPEN
ENODVOL1l -- the editor routine associated with EOV

If your editor routines consist of more than cne load module, namres
for the additional modules must begin with the prefix OMODVOL for the
OPEN routine, EMODVOL for the EOV routine. Transfer between the modules
must ke by name.

As discussed in Section I of this chapter, you must wuse EXCP
prograrming to perform the needed input/output operations.

Label Processing Routines 55

ENTRY CONDITIONS AND GENERAL LOGIC FLOW OF THE EDITOR ROUTINES

Figure 6 -- Editor Routine Entry Conditions -- and the logic
flowcharts (Figures 7 and 8) with their accompanying text present the
basic information necessary to design and write your editor routines.
The logic charts depict a suggested logic -- oriented towards resclving
label and density conflicts by altering the characteristics of the
mounted volume.

ENTRY CONDITIONS

Figure 6 presents the four conditions under which the control gprogram
OPEN or EOV routines transfer control to your editor routines, and the
general action the editor routine takes to permit processing on the
current volume to continue. The first two conditions arise only when
the tape volume is mounted on a dual-density tape device.

Entry from the EOV routines occurs when a volume switching operation
is necessary and any condition noted in Figure 6 is present.

56

b ek et T TS TS T s T e e e 1
| | |Transfer|

|
| Program | Mounted Volume |Occurs | |
|Specification|Characteristicsjon a |Possible Editor Routine Action |
———————— T I ——
DC* |Overwrite the standard label]
|lwith a standard 1lakel. The|

|first write from loadpoint sets|

| the recording density on a|
|]dual-density device. (See Fig-|

|ure 7 or 8 -- Dblocks 15b, 16}

|]and explanation). |
———————— o e
DC* |Write a tapemark tc set den-|
|sity. The program specifica-|

|tion NSL will cause control tojf

|kte given to your nonstandard]

|label routines after return toj|

|OPEN or EOV. (See Figure 7 -]

|blocks 15, 15b, 16. If your|
|installation supports protec-|

|tion and retention data check-|

|ing NSL volumes, see klock 6).]
-------- T
LC |Write a standard volume label.|

| (See Figure 7 - blocks 15, 15a, |

|16. If your installation sup-}|

|ports protection and retention|

jdate checking on NSL volumes, |

|see block 6). |
———————— T
LC |Overwrite standard lakel with a|
|taremark, i.e. "cancel." (See]

|Figure 7 - blocks 15, 15a, 16).|
|Depending on whether NL or NSL|

|]is specified by the program, |

|JOPEN or EOV will either posi-|

|tion tape (NL) or transfer con-|

|trol to your nonstandard 1label|
|routines (NSL) when control isj|

| returned to them. |

|]SL - 800 or
|1600 BPI
|density

|NSL2 - 800 or
|1600BPI
|density

e e e e e e

[NL or NSL

i
I
|
]
]
]
I
|
]
]
I
|
'———————————+———————T———————-——-—_—-_’_—_—-_—_—
!
1
I
]
]
i
i
1
1
]
]
]
!
b e e e e e e e e

|
SL - standard volume label |
NSL - ncnstandard volume label |
NL - no volume label |
DC - density check |
LC - label check |
CD - conflicting density. The volume has Lkeen previously written}|
on, or in a, recording density other than that specified by the]
program. The recording density on a dual-density device is set|

by sensing the density of the mounted volume. |

I

1Dual- Den81ty devices only. |

2If NL 1is specified, no density check is performed. For NL volumes, |
tape is positionea at load point and recording density is set by the}|
first write command. |
3If the volume is mounted on a dual—density device a density condition|
may also exist. If will be corrected by the write operation. |
|

Note: The OPEN and EOV routines position the tape at load point keforej
transferring control to the editor routines. |
_____________________________________ o o e o o e o e e e . e . e e e . e o e e e o e 2 e]

Flgure 6. Editor Routine Entry Conditions

I
|
|
I
|
I
I
|
I
I
|
!
|
|
|
I
|
|
|
I

Label Processing Routines 57

GENERAL LOGIC FLOW

Figures 7 and 8 depict a suggested logic you can use to develop your
editor routines. Note that Figure 8 (the EOV editor routine) does nct
contain logic Dblocks corresponding to blocks 5, 18, and 19 in Figure 7
(the OPEN editor routine). These blocks represent functions that you
must program when receiving control fror the OPEN routine. You must
test all the DCBs defined by the OPEN macro-instruction before returning
control to the OPEN routine. When receiving control from the EOV
routine, you only have to process one DCB.

Note: If your installation does not support protection and retention
data checking on nonstandard label volumes and does not desire to
maintain retention date checking on standard lakel volumes, you need nct
implement the functions of logic blocks 6 through 13 in Figures 7 and 8.

58

(M

Obtain
Main
Storage

Entry From
Control Program

&

)

Save l
Registers

’ “

Establish
Addressibility
of Control
Information

Is
Proc Req'd
on This

DCB

Protection
and Retention Date
Checking

Is
Data Set
Security

Protected

Write Message
to the
Operator

I

Figure 7.

General Flow of
From the OPEN Routine

] 4
Rewind
Volume
O——
(15b)
(15a)
T - (15) Get Label Type
est Bits 1-2 Label or From
in Density Check? JFCBLTYP
JFCBMASK+5 Density! Field
(1¢)
Write a
Standard
Volume Label
; ® or Tapemark
as
Retention
Date 3
Expired
P (17)
(10 Zero UCB
Vol Ser No. and
Write Message Set Mount
to the Switch "ON"
Operator
O——
(20)
Restore
Registers
21
Release
Bivr;:: and Increment Main
Corrent the Pointer to Storage
Volume the Next DCB
Return to
L
Issue
Mount
Message

an Editor Routine After Receiving Control

Label Processing Routines 59

1
Entry From U
Control Program

Obtain
Main
Storage

Save
Registers

Establish
Addressibility
of Control
Information

Protection
and Retention Date
Checking

Is
Data Set

Security
Protected

G

@)

(©)

4

Has
Retention
Date Expired

%__

(150)

Test Bits 1-2

in
JFCBMASK+5

Label

} (14)

Rewind
Volume

Write a
Standard

(15b)

Field.

Get Label Type
From
JFCBLTYP

Volume Label
or Tapemark

(10)

Write Message
to the
Operator

Write Message
to the
rator

Figure 8.

60

This
Tape

(12)

Rewind and
Unload Current
Volume

Issue
Mount
Message

(13)

General Flow of an Editor Routine
From the End-of-Volume Routine

(17)

Zero UCB Vol
Ser No. and Set
Mount Switch
TON"

Restore
Registers
Inserf X'03'
inReg 8

Release
Main
Storage

After

(22)

Return to
Control Program

Receiving

Control

LOGIC BLOCK EXPLANATIONS

1.

Your exception 7routine receives contrcl via an XCTL macro-
instruction issued by the OPEN or EOV routines of the control
program.,

Use the GETMAIN macro-instruction. The main storage you obtain
must contain all your work areas, including those used to reaé in a
label cor write a lakel.

Use the store multiple instruction (STM).

Figure 1 in Section I of this chapter prcvides the information you
need to establish addressakility of the DCB address list and work
and control Lklock area for each DCB defined by the OPEN macro-
instruction.

When you receive control from the EOV routine, general register 2
contains the address of the DCB for the gata set and general
register 4 contains the address of the work and control block area
associated with the DCB.

The IECDSECT macro-instruction shown in the Appendix of this
chapter symbolically defines the fields of the wocrk and control
btlock area (see Figure 2 in Section I).

You will also need to address the unit control block (UCB) for the
device on which the tape volume is mounted. The address of the UCB
may be obtained from the DXDEBUCB field of the data extent block
defined by the IECDSECT macro-instruction. The IEFUCBOB macro-
instruction (see Appendix) defines the fields of the wunit control
block.

Bit configurations in the byte addressed by JFCBMASK+5 incicate
whether lakel checks or density checks have cccurred, and, in tne
case of a 1label check, the condition that caused the check. At
this point, you test bits 0 and 3. If eit“sr cit is set to 1,
processing is required.

The field JFCBMASK is defined by the IECDSECT macro-instruction.
Bit settings in the byte at JFCBMASK+5 are defined as:

Bits Setting Meaning
0 1 Lakbel check has occurred.
1 1 Standard label (SL) specified; no labels
nonstandard lakel on mounted volume.
2 1 No lakel (NL) or nonstandard label (NSL) speci-
fied; standard label on mounted volume.
3 1 Density check has occurred.
4-7 - Reserved for future use.

If your installation supports a protection and retention date
scheme 1involving nonstandard lakels, and/or you want to maintain
retention date and protection checking on standard labels, you must
incorporate code in your editcr routines tc check for protecticn
and retention date expiraticn.

If checking is desired, vyou must, at this point, read the first
record and determine the label type.

To perform the I/0 operation, move ycur CCWs intc the channel
program field of +the work and contrcl klock area. The symbolic
name for the first entry in this field is DXCCW. Then 1issue an
EXCP macro-—-instruction specifying the address of the control

Label Processing Routines 61

10.

11.

12.

13.

14,

15.

15a.

i5b.

16.

62

programs input/output block (IOB). The symoolic name for the IOB
is DXIOB. These fields (DXCCW, DXIOB) are defined by the IECDSECT
macro-instruction. Note: There are twelve CCW locations in the
DXCCW field. Do not place a CCW at the locaticn defined by DXCCW7
in your editor routine for OPEN. Do not place a CCW in 1locations
DXCCW1l or DXCCW1l2 in your editor routine for EOV.

To check the retention date and/or protection fields in a standard
label you must read the data set header 1 record into a workarea.
The format of the nonstandard label defined by your installation
determines how you access the protection and retention date fields
in the nonstandard label. Step 6 provides directions for handling
the I/0 operation.

Write a message to the operator to inform him that the volume is
protected and to determine if it is to be used.

See step 7 akove.

Write a message to the operator to inform him that the expiration
date fcor the mounted volume has not elapsed and to determine if it
is to ke used.

If the volume is to be used, continue processing to resolve label
or density conditions.

Rewind and unload the currently mounted volume. Step 6 provides
directions for handling the I/0 coperation.

Write a message to the operator requesting dismounting of the
current volume and mounting of a new volume. The device mname (in
EBCDIC) may be obtained from the UCBNAME field of the unit control
block.

Step 6 provides directions for handling the I/0 operation.

Test bit 3 of the byte at JFCBNMASK+5. If set to one, control was
received as a result of a density check.

Test Lkit O of the byte at JFCBMASK+5. If set to one, control was
received as the result of a label check.

If control was received as the result of a label check, test kits 1
and 2 of the byte at JFCBMASK+5. See step 5.

If control is received as the result of a density check, use the
JFCBLTYP field in the job file control block (JFCB) tc ascertain
the type of label specified in the program. A hexadecimal 04
indicates a nonstandard label (NSL) has been specified, a hexadeci-
mal 02 indicates that a standard lakel has keen specified.

When correcting a density check or label check condition, and a
nonstandard label (NSL) or no 1label (NL) 1is specified by the
program, you must write some kind of record on the tape that will
be interpreted by the OPEN or EOV routines as a nonstandard label
or no label, i.e., it does not contain VOL1 in the first four bytes
of the record. The easiest way to do this is to write a tapemark.
Upon return to OPEN or EOV and re-verification of the 1label, the
specification for 1lakel type and density will have been met, the
OPEN or EOV will transfer control to your nonstandard 1label
routines if NSL is specified or position the tape for writing if NL
has been specified.

The System Control Block publication contains the format and field
descriptions for standard tape volume lakels. You must supply

information for the label identifier (VOLLABI), the label sequence
number (VOLNO), and the volume serial number (VOLSERNQO) fields, and
record the balance of the label as blanks.

You enter VOL in the label identifier field, a 1 in the 1label
sequence number field, and a six character serial number in the
volume serial number field. Note: To ensure that two or more tape
volumes carrying the same serial numkber are not produced, write to
the operator at this point for assignment of a serial number.

Data set header labels 1 and 2 are constructed by the OPEN oxr EOV
routines after control is returned to them.

Note: If you desire, at this point, you may change the control
block settings to conform to the characteristics of the tape volume
mounted, i.e., reset the label type field in the JFCB to conform
with the type of 1label on the volume mounted, and change the
density field imn the DCB to the density of the tape mounted.

17. The symbolic name for the volume serial number field 1in the wunit
control block is SRTEVOLI. The "mount switch" is the high order
bit of the field named SRTEDMCT in the unit control block. These
fields are defined by the IEFUCBOB macro-instruction. Exclusive
OR(XC) the SRTEVOLI field with itself. OR(OI) the SRTEDMCT field
with X'80°"'.

18. When receiving control from the OPEN routine, you must process the
entire DCB list. The last entry in the list can be recognized by a
"1" in bit 0 of the first byte in the entry.

19. You increment the pointer to the DCB address list by four bytes.
You must also increment the pointer to the work and control klock
area for each DCB. You increment this pointer by 8 bytes.

20. Use the load multiple instruction (LM). Note: When preparing to
return to EOV you must insert a hexadecimal 03 in Register 8.

21. Use the FREEMAIN macro-instruction.

22. Return control to the OPEN or EOV routines via an XCTL macro-
instruction, specifying the module to be given control as follows:

Return From To Module
OMODVOL1 IGG0190A (OPEN)
EMODVOL1 1GG0550P (EOV)

Note: OPEN and EOV will rewind the volume upon receiving control from
CMCODVOL1 or EMODVOL1.

Return is via the XCTL macro-instruction (E-form). See Section 1 --
Explanation of Logic Blocks -- item 22.

INSERTING YOUR LABEL EDITOR ROUTINES INTO THE CONTROL PROGRAM

You insert your editor routines into the control program after system
generation by making a linkage editor run against the system 1likbrary
named SYS1.SVCLIB. You will be replacing the IBM supplied eaitor
routines OMODVOL1l and/or EMODVOL1l with your routines.

Label Processing Routines 63

The setup for making the linkage editor run is shown below.

//jobname JOB (parameters)

//stepname EXEC PGM=IEWL, (parameters)
//SYSPRINT LD SYSOUT=A

//8YSUT1 DD UNIT=SYSDA, SPACE=(parameters)
//SYSLMOD DD DSNAME=SYS1.SVCLIB,DISP=0LD
//SYSLIN DD *

(object deck for OPEN)

ENTRY OMODVOL1
NAME OMODVOL1 (R)

(object deck for EOV)

ENTRY EMODVOL1
NAME EMODVOL1 (R)
/*

Caution: You should not attempt to insert routines into the SVC library
when you are running in a multi-tasking environment. Also, 1if wyour
label editor routines (for OPEN or EOV) consist of more than one module
you must have requested space for the SVC library directory entries for
the additional modules at the time the system was generated.

64

APPENDIX: IECDSECT,IEFJFCBN, AND IEFUCBOB MACRO-INSTRUCTICNS

If you want to use the I1ECDSECT,IEFJFCBN and IEFUCBOB macro-
instructions, you must either add these macro-definitions +to the
macro-library (SYS1.MACLIB) or place them in a separate partitioned data
set and concatenate this data set to the macro-library. This section
contains the following:

¢ The formats of the macro-instructions.

e The Job Control and Utility statements needed to add the macro-
definition to the library.

e The macro-definition to be added to the litrary.

IECDSECT MACRO-INSTRUCTION

This mwacro-instruction defines the syrbolic names of all fields in
the work area used by the OPEN, CLOSE, TCLOSE, and EOV routines. Code
this macro-instruction with klank name and operand fields, and precede
it with a DSECT statement. Note: The IEFJFCBN macro-instruction is used
in the assembly of IECDSECT. The macro-definition for IEFJFCBN nust be
present in the macro-library (SYS1.MACLIB) for successful definition of
all fields in the work area.

e e e e e — 1
| //jobname JOB {parameters} |
| //stepname EXEC PGM=IEBUPDAT, PARM=NEW |
| 7//SYSPRINT DD SYSOUT=A |
| //SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=0OLD |
| 7/SYSIN DD DATA |
| .7 ADD IECDSECT,00,0,1 I
I - I
| . I
| . I
| IECDSECT Macro-Definition |
| . I
| . |
| . |
4 ENDUP |
| 7% |
b ——— - e 1

IECDSECT Macro-Definition

MACRO

IECDSECT

SPACE 1
* THIS MACRO IS USED TO DEFINE THE WORK AREA
* FOR ALL MODULES OF OPEN,CLOSE,TCLOSE
* AND END OF VOLUME FOR O/S 360

SPACE 1
* THIS MACRO DEFINES A WORK AREA WITH THE
* FOLLOWING FORMAT

SPACE 1
* 1.LABELS AND DSCB

Label Processing Routines 65

* X X K x

*

*OH K K oK W N ¥ % ¥

*

%
¥k *
* ok k
* %k

* ¥ ¥ *

*

DXLBL
VOLLABI
VOLNO
VOLSERNO
VOLSEC

VOLVTOC

VOLOWNER

FL1LABI
FL1NO
FL1ID
FL1FILSR
FL1VOLSQ
FL1FILSQ
FL1GNO
FL1VNG
FL1CREDT
FL1EXPDT
FL1FSEC
FL1BLKCT
FL1SYSCD
FL1RES

FL1RES1

*

FL2RECFM
FL2BLKL
FL2LRECL

66

SPACE

SPACE

SPACE

SPACE
DS
DS

, DS

DS
DS
Ds
DS
DS
DS
Ds
Ds
Ds
SPACE

SPACE
ORG
Ds

DS

Ds

DS

Ds

DS

DS

DS
DS’
Ds

DC

Ds

DS

DS

DS

Ds
SPACE

SPACE
ORG
Ds

DS
Ds

1
2

1

1
0CL80
CL3
CL1
CL6
CL1
0CL10
CL5
CL5
CL10
CL10
CL10
CL29
1

1
DXLBL
cL3
cL1
CL17
CLé6
CL4
CLY
CLY4
CL2
CL6
CL6
c'o®
CLé6
cL13
ocL7
CL1
cL6

FL1ID
CL1
CL5
CL5

LABELS
VOILUME LABEL
FILE LABEL 1
FILE LABEL 2
DSCB
FORMAT 1
FORMAT 3 KEY
FORMAT 3 DATA
CORE ADDRESS OF NEXT DSCB
MESSAGE AREA .ccseesvcesaceses 100
2.JFCB ceeveecccnsscncasccacsccons 176
BUECB tecencvaccosnacnsnenncacaaanss U
U.TOB ceecrenoceccsscsscancnasasas UO
5.DEB cceceencsnecsanncansseaccnaas Ul
6.DCB cccevsacscsncssoncsconssssecae U
TeCCW S eenencnccsasscscncessscasce 96

TOTAL *** 46U

VOLUME LABEL

FILE

FILE

LABEL IDENTIFIER
VOILUME LABEL NUMBER

RESERVED
RESERVED
RESERVED
OWNER NAME AND ADDRESS CODE
RESERVED
LABEL 1

LABEL IDENTIFIER

FILE LABEL NUMBER

FILE IDENTIFIER

FILE SERIAL NUMBER
VOLUME SEQUENCE NUMBER
FILE SEGUENCE NUMBER
GENERATION NUMBER
VERSION NUMBER OF GENERATION
CREATION DATE
EXPIRATION DATE

FILE SECURITY INDICATOR
BLOCK COUNT

SYSTEM CODE

RESERVED FOR FUTURE USE

LABEL 2

RECORD FORMAT
BLOCK LENGTH
BLOCKING FACTOR/RECORD LENGTH

BYTES
BYTES
BYTES
BYTES
BYTES
BYTES
BYTES

BYTES

FL2DEN
FL2FILP
FL2JSID
FL2JOBD
FL2JSSP
FL2STEPD
FL2TRTCH
FL2CNTRL
FL2RES

*

DXDSCB

DSCFMTID
DSCFILSR
DSCVOLSR
DSCCREDT
DSCEXPDT
DSCNOEXT
DSCBLDBL

DSCSYSCD

DSCFILTY
DSCRECFM
DSCOPTCD
DSCBLKL
DSCLRECL
DSCKEYL
DSCRKP
DSCDSIND
DSCSCALO
DSCLSTAR
DSCTRBAL
DSCEXTYP
DSCEXTSQ
DSCLOWLM
DSCUPPLM
DSCEXT1
DSCEXT2
DSCNEXT
DSCCORE
DSCBEND

*

DXDSCB3K
DSCBF3C
DSCBEXSK
DSCBEXTY
DSCBEXSQ
DSCBLLMT
DSCBULMT
DSCBEX2
DSCBEX3
DSCBEXU

*
DSCBFMID

DSCBEXSD
DSCBEX5

DS
DS
DS
Ds
DC
DS

Ds
DS
SPACE

SPACE
ORG
DS
DC
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
D3
DS
|af]
DS
DS
DS
Ds
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
EQU
SPACE

SPACE
ORG
DS

DC

DS
Ds
DS
DS
DS
DS
DS
SPACE

SPACE
ORG
DC

DS

DS

CL1
CL1
oCcL17
CL8
c'/'
CL8
CL2
CL1
CL43

DXLBL
0CL96
c'1
CL6
CL2
CL3
CL3
CL1
CL1
CL1
CL13
CL7
CL2
Cc1l
CL1
CL2
CL2
CcLl1
CL2
ci1
CL4
CL5
CL2
CL1
CLl1
CLu
CL4
CL10
CL10
CL5
CL4
*

1

1
DXDSCB
ocL40

DATA

DATA

X'03030303"

ocLu4o0
CL1
CL1
CLu
CL4
CL10
CL10
CL10
1

1
DXDSCB
c'3"
0CL90
CL10

DATA

DENSITY

FILE POSITION

JOB/STEP IDENTIFICATION
JOB IDENTIFICATION

SIASH

STEP IDENTIFICATION

TAPE RECORDING TECHNICUE
CARRIAGE CONTROL CHARACTER
RESERVED FOR FUTURE USE

SET CONTROL BLOCK

FILE SERIAI NUNMBER’

CREATION DATE IN DISCONTINUOUS BIN
EXPIRATION DATE IN DISCONTINUOUS BIN

SYSTEM CODE

FILE TYPE .
RECORD FORMAT
OPTION CODE

BLOCK LENGTH
RECORD LENGTH

KEY LENGTH

KEY LOCATION

EXTENT TYPE INDICATOR
EXTENT SEQUENCE NUMBER

POINTER TC NEXT RECORD
CORE ADDRESS OF NEXT DSCB RECORD

SET CONTROL BLOCK -FORMAT 3-

EXTENT TYPE INDICATOR
EXTENT SEQUENCE NUMBER
CCHH LOWER LIMIT

CCHH UPPER LIMIT
ADDITIONAL EXTENT
ADDITIONAL EXTENT
ADDITIONAL EXTENT

SET CONTROL BLOCK -FORMAT 3-
FORMAT ID

ADDITIONAL EXTENTS
ADDITIONAL EXTENT

Label Processing Routines

KEY PORTION

RECORD PORTICN

67

DSCBEX®6
DSCBEX7
DSCBEXS8
DSCBEX9
DSCBEXA
DSCBEXB
DSCBEXC
DSCBEXD
DSCBNEXT

*

REPLYLTH
REPLYADR
REPLYECB
MSGLSTSZ
MESSAGEA
REPLY

%*

*

*

MSERL
MINSTL
MONL
MVCLL

* MTXTL

* MSGLTH
*

MSG1OSUP
MSGSER

MSGSERLO
MSGINSTR
MSGACTN
MSGUN
MSGVOLSR
MSGTEXT

*

DXJBF

*

DXECB

*

DXIOB

IOBFLAG1
IOBFLAG2
IOBSENSE
TOBSENSO
TOBSENS1
IOBECBPT

68

DS CL10 ADDITIONAL EXTENT

Ds CL10 ADDITIONAL EXTENT

DS CL10 ADDITIONAL EXTENT

DS CL10 ADDITIONAL EXTENT

DS CL10 ADDITIONAL EXTENT

DS CL10 ADDITIONAL EXTENT

DS CL10 ADDITIONAL EXTENT

DS CL10 ADDITIONAL EXTENT

DS CL5 CCHHR OF NEXT FORMAT 3 DSCB

SPACE 1)
MESSAGE AREA

SPACE 1

ORG DXDSCB

DS CL1

DS CL3

DS CL4

DS CLu4

DS CL60

DS CL10

ORG MESSAGEA

DEFINITION OF LENGTH OF MESSAGE COMPONENTS

EQU 3 MESSAGE SERIAL NUMBER LENGTH
EQU 6 . MSG INSTRUCTION LTH INC MSG SER
EQU 3 MESSAGE UNIT NAME LENGTH

ECU 6 MESSAGE VOLUME SERIAL LENGTH

LENGTH MAY BE DEFINED BY EACH MODULE TO FIT REQUIREMENT
LENGTH OF FULL MSG DEFINED BY EACH MODULE
MESSAGE FORMAT IS 'IEC000A M 000,00000 (TEXT) '

DC CL3*IEC' I/0 SUPPORT MESSAGE IDENTITY

DS 0CL3 MESSAGE SERIAL NUMBER

ORG MSGSER+MSERL-1

DS CL1 VOLUME SERIAL LO ORDER BYTE

ORG MSGSER

DC CL6'000A M'" MESSAGE INSTRUCTION INCL MSGSER
ORG MSGINSTR+MINSTL-1

DS CLl MESSAGE ACTION REQD BY OPERATOR
DC c*

DC CL3'000" UNIT NAME THAT MSG REFERS TO

DC c',!

DC CL6'000000' VOLUME SERIAL THAT MSG REFERS TO
DC c',!

DS 0CL38

SPACE 1

JOB FILE CONTROL BLOCK
SPACE 1
ORG DSCBEND
DS 0CL176

IEFJFCBN
SPACE 1
EVENT CONTROL BLOCK
SPACE 1
DS oCL4
DC X*'00000000"
SPACE 1
INPUT/0OUTPUT BLOCK
SPACE 1
DS 0CL32
DC X'00"
DC X'00°"
DS OH
DS CiLi
DS CLl SENSE BYTE 1
DS X1l

IOBCSW
IOBCOMAD
IOBSTATO
IOBSTAT1
IOBCNT
IOBSIOCC
IOBSTART
IOBWGHT
IOBDCBPT

TOBINCAN
ICBERRCT
DXDAADDR

*

DYYYY
DXDEB
DXDEBDEB
DXDEBOFL
DXDEBIRB
DXDEBSYS
DXDEBUSR
DXDEBECB
DXDEBID
DXDEBDCB
DXDCBAD
DXDEBAPP
DXDEBMOD
DXDEBUCA
DXDEBBIN
DXDEBSCC
DXDEBSHH
DXDEBECC
DXDEBERH
DXDEBNTR

*

DXXXX
DXDCB
DXDBDEB

*

DXCCW
DXCCW1
DXCCW2
DXCCW3
DXCCWu
DXCCW5
DXCCW6
DXCCW7
DXCCW8
DXCCW9
DXCCW10
DXCCW11l
DXCCW12

DSECTSIZ

DC
DS
DC
DC
DC
DC
Ds
DC
DS
DC
DS
Ds
DC
Ds
DS
SPACE

SPACE
DS
EQU
DC
DS
DC
DC
DC
DC
DS
DC
EQU
DS
DS
DS
DS
DS
DS
DS
DS
DS
SPACE

SPACE
DS
EQU
DC
SPACE

SPACE
CNOP
DS

Ds

DS

DS

DS

Ds

DS

DS

DS

DS

DS

DS

DS
SPACE
EQU
MEND

AL3 (DXECB)
0D
X*00000000"
X'00°

X'00"

KEY,0000,COMMAND ADDRESS
STATUS BYTE O

STATUS BYTE 1

COUNT

AL3 (DXCCW)

XL1

AL3 (DXDCB)

XL1

XL3

X'0000"

XL2

D DIRECT ACCESS ADDRESS
1

(MBBCCHHR)

DATA EXTENT BLOCK
1
OCLu44
DYYYY-4
X'00C00000"
0CL1
X'00000000"
X*'00000000"
X*00000000"
X'00000000"
ocL1
ALU4 (DXDCB)
DXDEBDCB
CL4
0ocL1

o]

H
H
H
H
H
H
1

DATA CONTROL BLOCK
1
OF
DXXXX-u4
A (DXDEB)
1

POINTER TO RELATIVE BEGINNING OF DCB

CHANNEL CONTROL WORDS

O Wk
Q-
= oo
O

(=)}

FPUOUDUODUOUODUODUODODOUOOU

6u CORE AREA REQUIRED FOR THIS MACRO

Label Processing Routines

69

IEFUCBOB MACRO-INSTRUCTION
This macro-instruction defines the symkolic names of all fields in

the unit control klock (UCB). Code this macro-instruction with blank
name and operand fields, and precede it with a DSECT statement.

[T e T T e e e e e e e 1
| 7/jobname JOB {rarameters} |
| //stepname EXEC PGM=IEBUPDAT, PARM=NEW |
| //SYSPRINT DD SYSOUT=A |
] //8YSUT2 DD DSNAME=SYS1.MACLIB,DISP=0OLD]
| //SYSIN DD DATA |
4 ADD IEFUCBOB, 00,0,1 |
] . |
| . |
| . |
| IEFUCBOB Macro-Definition |
| . |
i . |
| . |
| .7 ENDUP I
| /* |
e e e e e e e e e e e e o e e e e e e e 1

IEFUCBOB Macro-Definition

MACRO
IEFUCBOB
UGCBOB EQU * UNIT CONTROL BLOCKS
DS oF
SRTEJBNR DS X1l JOB INTERNAL NUMBER
SRTECHAN DS XLl ALLOC.CHANNEL MASK
UCBID DS XL1 UCB IDENTIFICATION
SRTESTAT DS XL1 STATUS BITS
SRTEONLI EQU 128 ONLINE
SRTECHGS EQU 6L CHANGE ONLINE/OFFLINE
SRTERESV EQU 32 RESERVED DEVICE
SRTEUNLD EQU 16 UNLOAD THIS DEVICE
SRTEALOC EQU 8 BIT 4 ALLOCATED
SRTEPRES EQU 4 BIT 5 PERMANENTLY RESIDENT
SRTESYSR EQU 2 BIT 6 SYSRES
* OR PRIMARY CONSOLE
SRTEDADI ECU 1 BIT 7 DADSM INTERLOCK
* OR TAPE CONTAINS
* STANDARD LABFLS, OR
* ALTERNATE CONSOLE
ucBCcHA DS XL1 FLAG1 AND CHANNEL ALDRESS
UCBUA DS X1l UNIT ADDRESS3
UCBFL2 DS XL1 FLAG2
UCBDTI DS X1l DEVICE TABLE
UCBETI DS XLl ERROR TABLE
UCBSTI DS XL1 STATUS TABLE
UCBLCI DS X1l LOGICAL CHANNEL TABLE
UCBATI DS XL1 ATTENTION TABLE
UCBWGT Ds XL1 WEIGHT

70

UCBNAME
UCBTYP
UCBTBYT1
UCB1FEAQ
UCB1FEAl1
UCB1FEA2
UCB1FEA3
UCB1FEAU
UCB1FEAS
UCBL1FEA6
UCB1FEA7
UCBTBYT2
UCBTBYT3
UCB3TAPE
UCB3COMM
UCB3DACC
UCB3DISP
UCB3UREC
UCB3CHAR
UCBTBYTU
UCBLTS
UCBSNS
SRTEVOLI
SRTESTAB
SRTEBSVL
SRTEBVSC
SRTEBALB
SRTEBPRV
SRTEBPUB
SRTEBV({S
E 3

SRTEBJLB
SRTEBNUL
SRTEDMCT
SRTEFSCT
SRTEFSEQ
UCBSQC

UCBSKA

SRTEUSER
SRTEECBA
DATACELL
DCELJ BNR
DCELUSER
DCELSTAB
DCELSTAT
DCELVOLI
DCELVTOC
DCELECBA

IEFJFCBN MACRO-INSTRUCTION

This macro-instruction defines the symkolic names of
control block (JFCB).

the Jjcb

DS
DS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
ECU
EQU
EQU
EQU
EQU
EQU
DS

DS

DS

DS

EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
DS
DS
DS
DS
DS
DS
DS
EQU #
DS
DS
DS

DS
DS
DS
MEND

file

CL3

XL4
UCBTYP
128

64

32

16

8

u

2

1
UCBTYP+1
UCBTYP+2
128

ol

32

16

8

mn
UCBTYP+3
XL2

XL6

CL6

XLl

128

6l

32

16

XL1

X11
CL6
XL3
XL3

UNIT NAME IN 3 EBCDIC CHARACTERS

DEVICE TYPE

BYTE 1 OF UCBTYPE-MODEL

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT
BIT
BIT
BIT
BIT
BIT

~N~NoouveswNhkR O

VFEFWRNEP O

OF
OF
OF
OF
OF
OF
OF
OF

OF
OF
OF
OF
OF
OF

OPTION
OPTION
OPTIOHW
OPTION
OPTION
OPTION
OPTION
OPTION

CLASS
CLASS
CLASS
CLASS
CLASS
CLASS

BYTE 4 OF UCBTY

LAST 12%

SENSE INFORMATION
VOIUME SERIAL

STATUS B
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

STATUS B
STATUS A

nNMEWNOROo

6
7

F

IELD

FIELD

F

IELD

FIELD

F

IELL

FIELD

F

IELD

FIELD
BYTE 2 OF UCBTYPE-OPTIONS
BYTE 3 OF UCBTYPE-CLASS

PE

TAPE
COMMUNIC.
DIRECT AC
DISPLAY
UNIT REC.
CHAR.READ
-DEVICE

SHARED VOLUME

VOLUME SECURITY
ADDIT.VOL.LABEL PROC
PRIVATE
PUBLIC
VOLUME TO BE QUIESCE
TO MOUNT ANOTRER
JOBLIB VOLUME
CONTROL VOLUME

DATA MANAGEMENT COUNT
FILE SEQ. COUNT
FILE SEQ. NUMBER
SEEK QUEUE CONTROL WORD
MBBCCHHR FOR LAST SEEK
CURRENT NUMBER OF USERS
DA ECB ADDRESS
9 OF THESE BLOCKS WILL BE PKESENT
JOB INTERNAL
CURRENT NUMBER OF USERS

VOLUME SERIAL

VTOC ADDRES

S

DA ECB ADDRESS

all fields in
Code this macro-instruction with
blank name and operand fields, and precede it with a DSECT statement.

——————————— e |
Operation | Operand |
______ _ e
IFFJFCBN | |

___________ 8 PSR |

Label Processing Routines 71

Control Statements Required

IEFJFCBN Macro-Definition

MACRO

IEFJFCBN
INFMJFCB EQU *
JFCBDSNM DS CLu4y
JFCBELNM DS CL8
JFCBISDM DS CL1
*
JFCBSYSC DS CL13
JFCBLTYP DS CLl1
*

DS CLl
JFCBFLSQG DS CL2
JFCBVLSQ DS CL2
JFCBMASK DS CL8
JFCBCRDT DS CL3
JFCBXPDT DS CL3
JFCBIND1 DS CL1

JFCBRLSE EQU 64
;FCBLOCT EQU 16
ZFCBNEWV EQU &
;FCBPMEM EQU 1
;FCBIND2 DS cL1
JFCBSTAT EQU 64
*

JFCBSCTY EQU 16
*

JFCBUFNO DS 0ALl
JFCBUFRQ DS ALl
JFCBFTEK DS 0BL1
JFCBFALN DS BL1
JFCBUFL DS AL2
JFCEROPT DS BL1
JFCTRTCH DS 0BL1
JFCKEYLE DS 0ALl
JFCMODE DS 0BL1
JFCCODE DS 0BL1
JFCSTACK DS 0BL1
JFCPRTSP DS BL1

72

S
| /7/jobname JOB (parameters)

| 7//stepname EXEC PGM=IEBUPDAT, PARM=NEW

| //SYSPRINT DD SYSOUT=A

| 7/SYSuUT2 DD DSNAME=SYS1.MACLIB,DISP=0OLD
| 7/7/SYSIN DD DATA

| o/ ADD IEFJFCBN,00,0,1

| .

= .

i IEFJFCBN macro-definition

| .

| .

I .

./ ENDUP

| /*

L

DATA SET NAME
ELEMENT NAME OR VERSICN
TASK SCHEDULER - DATA
MANAGEMENT INTERFACE BYTE
SYSTEM CODE
LABEL TYPE AND USER'S-LABEL
INDICATOR
NOT USED
FILE SEQUENCE NUMBER
VOLUME SEQUENCE NUMBER
DATA MANAGEMENT MASK
DATA SET CREATION DATE
DATA SET EXPIRATION DATE
INDICATOR BYTE 1
BITS 0 AND 1 - EXTERNAL
STORAGE RELEASE INDICATOR
BITS 2 AND 3 - DATA SET
HAS BEEN LOCATED
BITS 4 AND 5 - NEW VOLUME
ADDED TO DATA SET
BITS 6 AND 7 - DATA SET IS
A MEMBER OF A PODS OR GDG
INDICATOR BYTE 2
BITS 0 AND 1 - DATA SET
STATUS (NEW, OLD, OR MOD)
BITS 2 AND 3 - DATA SET
SECURITY INDICATOR

e e e e e — — — s e s o e . e e

JFCDEN
JFCLIMCT
JFCDSORG
JFCRECFM
JFCOPTCD
JFCBLKSI
JFCLRECL
JFCNCP
JFCNTM
JFCRKP
JFCCYLOF
JFCDBUFN
JFCINTVL
JFCCPRI
JFCSOWA
JFCBNTCS
JEFCBNVOL
*

JFCBVOLS
*
JFCBEXTL
*
*

JFCBEXAD
*

JFCBPQTY
*

JFCBCTRI
*
*
*

JFCBSQTY
*

JFCBIND3
JFCBCNTG
*

JFCBMXIG
*

JFCBALXI
*
JFCBRNDC
*
JFCBDQTY
*
JFCBSPNM
*

*
JFCBABST
*
JFCBSBIM
*

*
JFCBDRLH
JFCBVLCT
JFCBSPTN
*

*

*
JFCBLGTH
JFCBEND

DS BL1

DS AL3
DS BL2
DS BL1
DS BL1
DS AL2
DS AL2
DS ALl
DS ALl
DS AL2
DS AL1
DS ALl
DS ALl
DS BL1
DS AL2
DS CcL1
DS cLl
DS CL30
DS cL1
DS CL3
DS CL3
DS cIl
DS cL3
DS cL1
EQU 64
EQU 16
EQU 4
EQU 1
DS CL3
DS CL3
DS CL2
DS CL3
DS CL3
DS CcL1
DS cLl
EQU 176
EQU *
MEND

NUMBER OF OVERFLOW TRACKS
NUMBER OF VOLUME SERIAL
NUMBERS
VOLUME SERIAL NUMBERS (THE
FIRST FIVE)
LENGTH OF BLOCK OF EXTRA
VOLUME SERIAL NUMBERS
(BEYCND FIVE)
TRACK ADDRESS OF BLOCK OF
EXTRA VOLUME SERIAL NUMBERS
PRIMARY QUANTITY OF D.A.
STORAGE REQUIRED
INDICATES WHETHER CYLINDERS
TRACKS, OR RECORDS ARE
PSECIFIED IN JFCBPQTY AND
JFCBSQTY
SECONDARY QUANTITY OF D.A.
STORAGE REQUIRED
INDICATOR BYTE 3
BITS 0 AND 1 - CONTIGUOUS
STORAGE INDICATOR
BITS 2 AND 3 - MAXIMUM
AVAILABLE EXTENT INDICATOR
BITS 4 AND 5 - ALL EXTENTS
INDICATOR
BITS 6 AND 7 = ROUND
CYLINDER INDICATOR
QUANTITY OF D.A. STORAGE
REQUIRED FOR A DIRECTORY
CORE ADDRESS OF THE JFCB
WITH WHICH CYLINDERS ARE
SPLIT
REILATIVE ADDRESS OF FIRST
TRACK TO BE ALLOCATED
CORE ADDRESS OF THE JFCB
FROM WHICH SPACE IS TO BE
SUBALLOCATED
AVERAGE DATA RECORD LENGTH
VOLUME COUNT
NUMBER OF TRACKS PER
CYLINDER TO BE USED BY THIS
DATA SET WHEN SPLIT
CYLINDERS IS INDICATED

LENGTH CF JFCE

Label Processing Routines 73

EXECUTE CHANNEL PROGRAM (EXCP) MACRO-INSTRUCTION

This chapter contains a general
description of the function and application
of the Execute Channel Program (EXCP)
macro-instruction, accompanied by descrip-
tions of specific control blocks and macro-
instructions used with EXCP. Factors that
affect the operation of EXCP, such as
device variations and program modification,
are also discussed.

The EXCP macro-instruction provides you
with a device-dependent means of performing
the I/0 operations. Before reading this
chapter, you should be familiar with system
functions and with the structure of control
blocks, as well as with the operaticnal
characteristics of the I/0 devices required
by your channel programs. Operaticnal
characteristics of specific I/0 devices are
contained in IBM System Reference Library
publications for each device.

Documentation of the internal 1logic of

the input/output supervisor can be obtained
through your IBNM Branch Office.

PREREQUISITE PUBLICATIONS

The IBM System/360 Operating System:
Data Management publication (Form C28-6537)
explains the standard procedures for I/0
processing under the operating system.

The IBM System/360 Operating System:
Assemkler Language publication (Form
C28-6514) contains the information neces-
sary to code programs in the assembler
language.

The IBM System/360 Operating System:
Control Program Services publication (Form
C28-6541) describes the system macro-
instructions that can be used in programs
coded in the assembler language.

The IBM Systen/360 Operating System:
System Control Block publication (Form
C28-6628) contains format and £field de-
scriptions of the system control klocks
referred to in this chapter.

Tu

EXECUTE CHANNEL PROGRAM (EXCP) MACRO-INSTRUCTION

Execute Channel Program (EXCP) is a macro-instruction of System/360
Operating System that causes a supervisor-call interruption to pass
control +to the input/output supervisor. EXCP also provides the
input/output supervisor with control information regarding a channel
program to be executed. When the IBM standard data access methods are
being used, the access method routines are responsible for issuing EXCP.
If you are not using the standard access methods, you may issue EXCP
directly. Direct use of EXCP provides you with device dependence in
organizing data and contrclling I/0O devices.

You issue EXCP primarily for I/O programming situations to which the
standard access methods do not apply. When you are writing your own
data access methods, you mnmust include EXCP for I/O operations. EXCP
must also be used for processing of nonstandard lakels, including the
reading and writing of labels and the positicning of magnetic tape
volumes.

To issue EXCP, you must provide a channel program (a list of channel
command words) and several control klocks in your program area. The
input/output supervisor then schedules I/0 requests for the device you
have specified, executes the specified I/0 commands, handles I/0
interruptions, directs error recovery procedures, and posts the results
of the I/0 requests.

USE OF EXCP IN SYSTEM AND PROBLEM PROGRAMS

This section briefly explains the procedures performed by the system
and the programmer when the EXCP macro-instruction is issued by the
routines of the standard data access methods. The additional procedures
that you must perform when issuing the EXCP macro-instruction yourself
are then described by direct comparison.

SYSTEM USE OF EXCP

When using a standard data access method to perform I/0 operations,
the programmer 1is relieved of coding channel rprograms, and of
constructing the control klocks necessary for the execution of channel
programs. To permit I/O operations to be handled by an access method,

the programmer need only issue the fcllowing macro-instructions:

¢ A DCB macro-instruction that produces a data control block (DCB) for
the data set to be retrieved or stored.

¢ An OPEN macro-instruction that initializes the data control klock
and produces a data extent klock (DEB) for the data set.

e A macro-instruction (e.g. GET, WRITE) that requests I/0 operations.

Access method routines will then:

1. Create a channel program that contains channel commands for the I/0
operations on the appropriate device.

2. Construct an input/output block (IOB) that contains information
akbout the channel program.

3. Construct an event control block (ECB) that is later supplied with
a completion code each time the channel program terminates.

Execute Channel Program (EXCP) Macro-Instruction 75

4. 1Issue an EXCP macrc-instruction to pass the address of the IOB to
the routines that initiate and supervise the I/0 operations.

The input/output supervisor will then:
5. Schedule the I/0 request.

6. Issue a start input/output (SIO) instruction to activate the I/0
device.

7. Process I/0 interruptions and schedule error recovery procedures,
when necessary.

8. Place a completion <code in the event control block after the
channel program has been executed.

The programmer is not concerned with these procedures = and does not
know the status o¢f I/0 operations until they are completed. Device-
dependent operations are limited to those provided by the macro-
instructions of the particular access method selected.

PROGRAMMER USE OF EXCP

If you wish to issue the EXCP macro-instruction directly, you must
perform the procedures that the access methods perform, as summarized in
items 1 through 4 of the preceding discussion. You must, in addition to
constructing and opening the data control klock with the DCB and OPEN
macro-instructions, construct a channel prograr, an input/output klock,
and an event control block before you can issue the EXCP macro-
instruction. The input/output supervisor always handles items 5 through
8.

After issuing the EXCP wmacro-instruction, you should issue a WAIT
macro-instruction specifying the event control block to determine
whether the channel program has terminated. If volume switching is
necessary, you must issue an EOV macrc-instruction. When processing of
the data set has been completed, you must issue a CLOSE macro-
instruction to restore the data control block.

EXCP_REQUIREMENTS

This section describes the channel program that you must provide in
order to issue the EXCP macro-instruction. The control blocks that you
must either construct directly, or cause to be constructed by use of
macro-instructions, are also descriked.

CHANNEL PROGRAM

The channel program supplied bLy you and executed through EXCP is
composed of channel command words (CCWs) on double-word koundaries.
FEach channel command word specifies a cormand tc be executea and, for
commands initiating data transfer, the area tc or from whicn the data is
to be transferred. Channel command word formats used with specific I/O
devices can be found in IBM Systems Reference Library publications for
each device. All channel command words described in these publications
can be used, with the exception of REWIND and UNLOAD (RWU).

Data and Command Chaining

Chaining is the successive loading of channel command words into a
channel from contiguous doupie-word locaticns in main storage. Data
chaining occurs when a new channel command word loaded into the channel

76

defines a new storage area for the original I/0O cperation. Command
chaining occurs when the new channel comrand word specifies a new I/0
operation. For detailed information akout chaining, refer to the 1BM
System/360: Principles of Operation puklication (Form A22-6821).

To specify either data chaining or command chaining, you must set
approrriate pits in the channel command word, and indicate the type of
chaining in the input/output klock. Both data and command chaining
should not ke specified in the same channel comwand word; if they are,
data chaining takes precedence.

When a channel program includes a list of channel command words that
chain data for reading operations, no channel command word may alter the
contents of another channel command word in the same 1list. (If such
alteration were allowed, specifications could ke placed into a channel
command word without being checked for validity. If the specifications
were incorrect, the error could not ke detected until the chain was
completed. Data could be read into incorrect locations and the system
could not correct the error.)

CONTROL BLOCKS

When wusing the EXCP macro-instruction, you must be familiar with the
function and structure of an input/output block (IOB), an event control
block (ECB), a data control klock (DCB), and a data extent block (DEB).
Brief descriptions of these control blocks follow. Their fields are
illustrated in the section "EXCP Programming Specifications."

Input/Output Block (IOB)

The input/output block is used for cormunication between the problem
program and the system. It provides the addresses of other control
blocks, and maintains information akcut the channel program, such as the
type o¢f chaining and the progress of I/O operations. You rust define
the input/output block and specify its address as the only parameter of
the EXCP macro-instruction.

Event Control Block (ECB)

The event control block provides you with a completion code that
describes whether the channel program was completed with or without
error. A WAIT macro-instruction for synchronizing I/0 operations with
the problem program must be directed to the event control block. You
must define the event control bklock and specify its address in the
input/ocutput block.

Data Ccntrol Block (DCB)

The data control block provides the system with information about the
characteristics and processing requirements of a data set to be read or
written by the channel program. A data control klcck must be produced
py @ DCB macro-instruction that includes parameters for EXCP. You
specify the address of the data control block in the input/output Llock.

Data Extent Block (DEB)

The data extent block ccntains one or more extent entries for the
associated data set, as well as other control information. An extent
defines all or part of the physical koundaries cn an I/0O device occupied
by, or reserved for, a particular data set. Each extent entry contains
the address of a unit control block (UCB), which provides information
about the +type and 1location of an I/0O device. More than one extent
entry can contain the same UCB address. (Unit control klocks are set up
at system generation time and need not concern you.) For all 1I/O

Execute Channel Program (EXCP) Macro-Instruction 77

devices supported by the operating system, the data extent block is
produced during execution of the OPEN macro-instruction for the data
control block. The system places the address of the data extent block
into the data control block.

CHANNEL PROGRAM EXECUTION

This section explains how the system uses your channel program and
control blocks after the EXCP macro-instruction has been issued.

INITIATION OF CHANNEL PROGRAM

By issuing the EXCP macro-instruction, you request the execution of
the channel program specified in the input/output block. The
input/output supervisor checks the request for validity by ensuring that
the required control blocks contain the correct information. If they do
not, abnormal termination procedures are initiated. A program check
occurs if the control blocks are not on correct boundaries.

The input/output supervisor obtains the address of the data control
block from the input/output block and the address of the data extent
block from +the data control block. From the data extent block, the
system obtains the address of the wunit control block (UCB) for the
desired 1I/0 device. To protect and facilitate reference to the
addresses of the IOB, DEB, and UCB, the input/output supervisor places
these addresses, along with other information about the channel program,
into an area called a request element. The request element is used Ly
the input/output supervisor for forming queues to keep track of 1I/0
requests. A channel program's request element is "availalkle" if the
information it contains is no longer to ke wused Ly the input/output
supervisor and if it 1is ready to receive information about another
request., When a request element is "made available", it is removed from
all request queues and placed on a queue of available request elements.
You are not concerned with the contents of the request element unless
you have provided appendage routines, as explained in the section
"Appendages."

After completing the request element for the channel program, the
input/output supervisor determines whether a channel and the requested
I1I/0 device are ready for the channel program. If they are not ready,
the request element is placed into the appropriate queue, and control is
returned to the problem program. The channel program is subsequently
executed when the channel and device are ready.

To initiate execution of the channel program, the system obtains its
address from the input/output block, places this address into the
channel address word (CAW), and 1issues a start input/output (SIO)
instruction.

Before issuing the SIO imnstruction for direct-access devices, the
system issues the initial seek, which 1is overlapped with other
operations. You specify the seek address in the input/output block.
When the seek has completed, the system constructs a command chain to
reissue the seek, set the file mask specified in the data extent block,
and pass control to your channel program. (When wusing the operating
system, you cannot issue the initial seek c¢r set +the file mask
yourself.)

Before issuing SIO for magnetic tape devices, the system constructs a
command chain to set the mode specified in the data extent block and
pass control to your channel prograr. (When using the operating system,
you cannot set the mode yourself.)

78

COMPLETION OF CHANNEL PROGRAM

The system considers the channel program completed when it receives
an indication of a channel end conditien. When channel end occurs, the
request element for +the channel progran is made available, and a
completion code is placed into the event contrcl block. The completion
code indicates whether errors are associated with channel end. If
device end occurs simultaneously with channel end, errors associated
with device end (i.e., unit exception or unit check) are alsoc accounted
for.

Device End Errors

If device end occurs after channel end and an error 1is associated
with device end, the completion code in the event control klock does not
indicate the error. However, the status of the unit and channel is
saved in the unit control block (UCB) fcr the device, and the UCB is
marked as intercepted. The input/output block for the next request
directed to the I/O device is also rarked as intercepted. The error is
assumed to be permanent, and the completion code in the event control
block for the intercepted request indicates interception. The IFLGS
field of the data control block is also flagged to indicate a permanent
error. It should be noted that wihen a Write Tepe Mark or Erase Long Garp
CCW is the 1last (or only) CCW in your channel program, the I/0
Supervisor will not attempt recovery procedures for Device End errors.
In these circumstances, cormmand chaining a NOPCCW to your Write Tape
Mark or Erase Long Gap CCW ensures initiation of device end error
recovery procedures.

To be prepared for device end errors, you should ke familiar with
device characteristics that can cause such errors. After one of your
channel programs has terminated, you should not release Luffer space
until you have determined that your next request for the device has not
been interceptea. You may reissue an intercepted request.

INTERRUPTION HANDLING AND ERROR RECCVERY PROCEDURES

An I/0 interruption allows the CPU to respond toc signals from an I/0
device which indicate either termination cf a phase cf I/0 operations or
external action on the device. A complete explanation of I/0 interrup-
tions is contained in the IBM Systen/360: Principles of Operation
publication. For descriptions of dinterruptions by specific devices,
refer to IBM Systens Reference Library puklications for each device.

It error conditions &are associated with an interruption, the
input/output supervisor schedules the appropriate device-dependent error
routine. The channel is then restarted with another request that is not
related? to the channel program in error. If the error recovery
procedures fail +to correct the error, the system places ones in the
first two bit positions of the IFLGS field of the data control Llock.
You are informed of the errcr by an error code that the system places
into the event control klock.

Error Recovery Procedures for Related Channel Prograns

Related channel programs are requests that are associated with a
particular data control block and data extent kLlock in the same job
step. They must ke executed in a definite crder, i.e., the order in
which the requests are received Ly the input/output supervisor. A
channel program is not started until all previous requests for related

1Related channel programs are discussed in the next section.

Execute Channel Program (EXCP) Macro-Instruction 79

channel programs have been completed. You specify, in the input/output
block, whether the channel prograr is related tc others.

If a permanent error occurs in a channel program that is related to
other requests, the request elements for all the related channel
programs are removed from their queue and made availakle. This process
is called purging. The addresses of the input/output klocks for the
related channel programs are chained together, with the address of the
first input/output block in the chain placed into the "User Purge IOB
Address" field of the data extent block. The address of the second
input/output block 1is placed into the "Restart Address” field of the
first input/output block, and so on. The last input/output block in the
chain is indicated by all ones in its Restart Address field. The chain
defines the order in which the request elements for the related channel
programs are removed from the request queue.

For all requests that are related to the channel program in error,
the system places completion codes into the event control blocks. The
IFLGS field of the data control block is also flagged. Any requests for
a data control block with error flags are rpcsted complete without

execution. If you wish to reissue requests that are related tc the
channel program in errcr, you rust reset the first two bits of the IFLGS
field of the data control block to zeros. You then issue a RESTORE

macro-instruction, specifying, as the only parameter, the address of the
"User Purge IOB Address" field of the data extent block. This causes

execution of all the related channel programs. (The RESTORE macro-
definition and how to add it to the macro-library are in the Appendix of
this chapter.) Alternatively, if you wish toc restart only particular

channel programs rather than all of them, you may reissue the EXCP
macro-instruction for each channel program desired.

APPENDAGES

This section discusses the appendages that you may optionally code
when using the EXCP macro-instruction. Before a programmer-written
appendage can be executed, it must be included in the SVC library.
These procedures are explained first; descriptions of the routines
themselves and of their coding specifications follow.

DEFINING APPENDAGES

An appendage must ke defined in a DD statement as a memker of a S¥Si
partitioned data set. The full member narme of an appendage 1is eight
bytes in 1length, but the first six bytes are required by IBM standards
to be the characters IGG019. The last two characters must be provided
by you as an identification; they may range in collating sequence from
WA to Z9.

ENTERING APPENDAGES INTO SVC LIBRARY

The SVC library is a partitioned data set named SYS1.SVCLIB. You can
insert an appendage into the SVC library during the system generation
process. In either case, the routine must ke a member of a cataloged
partitioned data set whose name begins with SY¥YS1.

To enter a routine into the SVC library during system generation, you
use the SVCLIB macro-instruction. The format of this macro-instruction
is given in the publication IBM Systen/360 Operating System: Systemnm
Generation, Form C28-6554.

80

CHARACTERISTICS OF APPENDAGES

An appendage is a programmer-written routine that provides additioconal
control over I/O operations during channel program execution. By
providing appendages, you can examine the status of 1/0 operations and
determine the actions to be taken for various conditions. An appendage
may receive control before a start input/output (SIO) instruction is
issued, or when one of the following cccurs:

Program controlled interruption.
End of extent.

Channel end.

Aknormal end.

Appendages are executed in supervisor state. However, you must not
issue, in an appendage, any SVC instructions or instructions that change
the status of the computing or operating system (e.g., WTO, LPSW, SSM,
etc.). Since appendages are disabled for all types of interruptions
except machine checks, you also must not enter loops that test for
completion of I/O operations. An appendage must not alter storage used
by either the supervisor or the input/output supervisor.

The identification of an appendage, which consists of the last two
characters of its 8-character name, wmust be specified in the DCB
macro-instruction, as described in the section "EXCP Programming
Specifications." When the OPEN macro-instruction for the data control
block is issued, any appendages specified in the DCB macro-instruction

are loaded into main storage. The appendages are 1linked to the
input/output supervisor when their addresses are placed into a table of
addresses called an appendage vector table. This table is always

constructed by the system when OPEN is issued; if an appendage is not
provided, the table contains the address of a return branch instruction
to the input/output supervisor. Using the appendage vector table, the
input/output supervisor branches and 1links to an appendage at the
appropriate time. The address of the starting location of the appendage
is placed into register 15.

Parameters are passed to appendages ky the input/output supervisor.
These parameters are contained in registers, and are as follows:

e Register 1 contains the address of the request element for the
channel program. The request element contains the following infor-
mation:

Bytes 1 and 2
are a field used by the system for linking the request element
into a queue.

Bytes 3 and 4
indicate the address of the unit ccntrol klock (UCB) for the
I/0 device.

Byte 5
indicates the identification of the task control block (TCB)
for the task. (In a multitasking environment, this field is
not used. It contains all zeros if the request element is not
availakle and all ones when the request element is available.)

Bytes 6, 7, and 8
indicate the address of the input/output block.

Byte 9
indicates the priority of the request.

Execute Channel Program (EXCP) Macro-Instruction 81

Bytes 10, 11, and 12
indicate the address of the data extent block.

The request element is normally 12 bytes in length; however, in
a multitasking environment, it includes U4 more bytes that
indicate the address of the TCB.

® Register 2 contains the address of the input/output block (IOB).
» Register 3 contains the address cf the data extent block (DEB).

®» Register U4 contains the address of the data control block (DCB).
* Register 7 contains the address of the unit control block (UCB).

The system places, into register 14, the address of the location in
the input/output supervisor to which control is to be returned after
execution of the aprendage. When passing contrcl from an appendage to
the system, you may use displacements to the return address in register
14 for optional return procedures. Some of these procedures differ in
their treatment of the request element associated with the channel
prograrm.

You may not change register 1 in an appendage. Register 9, if wused,
must ke set to binary zero before control is returned to the system.
All other registers, except those indicated in the descriptions of each
appendage, must be saved and restored if they are used.

The types of appendages are listed in the following paragraphs, with

explanations of when they are entered, how they return control to the
system, and which registers they may use without saving and restoring.

Start Input/Output (SIQO) Appendage

This appendage is entered before the input/output supervisor issues a
start input/output (SIO) instruction for an I/O operation.

If the return address in register 14 is used to return control to the
input/cutput supervisor, the I/0 operation is executed normally. You
may optionally bypass the SIO instruction and prevent execution of the
channel prograr by wusing the contents of register 14 plus 4 as the
return address. In this case, the <vhannel program 1is not posted
complete, but its request element is made available.

You may use registers 10 and 11 in a start input/output appendage
without saving and restoring their ccntents.

Program Controlled Interruption (PCI) Appendage

This appendage is entered when a program controlled interruption
occurs. At the time of the interruption, the contents of the channel
status word will not have been placed in the "channel status word" field
of the input/output block. The channel status word can be obtained from
location 64. You must use the return address in register 14 to allow
the system to proceed with normal interruption processing.

You may use registers 10 through 13 in a program controlled
interruption appendage withcut saving and restoring their contents.

End-of-Extent Appendage

This appendage is entered when the seek address specified in the
input/output block is outside the allocated extent limits indicated in
the data extent block.

82

If you use the return address in register 14 to return control to the
system, the abnormal end appendage is entered. An end-of-extent error
code is placed in the "ECB code" field of the input/output block for
subsequent posting in the event control block.

You may use the following optional return addresses:

e Contents of register 14 plus 4 - The channel program is posted
complete, and its request element is made available.

¢ Contents of register 14 plus 8 - The request is tried again.

You may use registers 10 through 12 in an end-of-extent appendage
without saving and restoring their contents.

Note: If an end-of-cylinder or file-protect condition occurs, the
input/output supervisor updates the seek address to the next higher
cylinder or track address, and re-executes the request. If the new seek
address is within the data set's extent, the request is executed; if the
new seek address is not within the data set's extent, the end-of-extent
appendage is entered.

If a file protect condition occurs and was caused by a full seek
(command code=07) imbedded within a channel program, the request is
flagged as a permanent error, and the abnormal end appendage is entered.

Channel End Appendage

This appendage is entered when a channel end, channel end with unit
exception, or channel end with wrong length record occur without any
other abnormal end conditions.

If you use the return address in register 14 to return control to the
system, the channel program is posted complete, and its request element
is made available. In the case of unit exception or wrong 1length
record, the error recovery procedure is performed before the channel
progran is posted complete.

You may use the fcllowing optional return addresses:

e Contents of register 14 rlus 4 - The channel program is not posted
complete, but its request element is made available.

e Contents of register 14 plus 8 - The channel program is not posted
complete, and its request element is placed back on the request
queue soO that the request can be retried. For correct re-execution
of the channel program, you must re-initialize the "Flags 1" and
"Flags 2" fields of the input/output tlock and set the "Error
Counts" field to zero.

¢ Contents of register 14 plus 12 - The channel program is not posted
complete, and 1its request element is not made available. (The
request element is assumed to be used in a subsequent asynchronous
exit routine.)

You may use registers 10 through 13 in a channel end appendage
without saving and restoring their ccntents.

Abnormal End Appendage

This appendage is entered when a unit check, channel chaining check,
program check, or protection check is detected with normal ending
conditions. 1In the case of error conditions that can be retried ky the
system's error routines, the appendage is entered a second time when the
input/output supervisor determrines that the errcr is permanent.

Execute Channel Program (EXCP) Macro-Instruction 83

To determine if an error 1is permanent, you should check the "ECB
code" field of the input/output block. To determine the type of error,
check the channel status word and the sense information. If you use the
return address in register 14 to return control to the system, the
channel program is posted complete, and its request element is made
availakle. You may use the following optional return addresses:

» Contents of register 14 plus 4 - The channel program is not posted
complete, but its request element is made available.

e Contents of register 14 plus 8 - The channel pregram is not posted
complete, and its request element 1s placed back on the request
queue so that the request can be retried. For correct re-execution
of the channel program, you rust re-initialize the "Flags 1" and
"Flags 2" fields of +the input/output block and set the "Exrror
Counts" field to zero.

e Contents of register 14 plus 12 - The channel program is not posted

complete, and its request element 1is not made available. (The
request element 1is assumed to be used in a subsequent asynchronous
exit.)

You may use registers 10 through 13 in an aknormal end appendage
without saving and restoring their contents.

EXCP PROGRAMMING SPECIFICATIONS

This section describes the parameters of the macro-instructions that
you must use with EXCP, and the fields of the required control blocks.

MACRO-INSTRUCTIONS

If you are using the EXCP macro-instruction you must also use DCB,
OPEN, CLOSE, and, 1in some cases, the EOV macro-instruction. The
parameters of these macro-instructions, and of the EXCP macro-
instruction itself, are listed and explained here. A diagram of the
data control Dblock 1is included with the description of the DCB
macro-instruction.

DCB -- Define Data Control Block for EXCP

The EXCP form of the DCB macro-instruction produces a data control
block that can be used with the EXCP macro-instruction. You must issue
a DCB macro-instruction for each data set +to be processed by your
channel programs. Notation conventions and format illustrations of the
DCB macro-instruction arxe given in the publication IBM _System/360
Operating System: Control Program Services, Form C28-6541. DCB parame-
ters that apply to EXCP may be divided into four categories, depending
on the following portions of the data control block that are generated
when they are specified:

e Foundation block. This portion is required and is always 12 bytes
in length. You must specify the two parameters in this category.

e EXCP interface. This portion 1is optional. If you specify any
parameter in this category, 20 bytes are generated.

¢ Foundation block extension and cormon_ interface. This portion is
optional and 1is always 20 bytes in length. If this portion is
generated, the device dependent portion is also generated.

¢ Device dependent. This portion is optional and is generated only if
the foundation block extension and common interface portion is

84

generated. Its size ranges from 4 +to 20 Dbytes, depending on
specifications in the DEVD parameter of this category. However, if
you do not specify the DEVD parameter (and the foundation extension
and common interface portion is generated), the maximum 20 Lytes for
this portion are generated.

Some of the procedures performed by the system when the data control
block 1is opened and closed (such as writing file marks for output data
sets on direct-access volumes) require information from optional data
control block fields. You should make sure that the data control klock
is large enough to provide all information necessary for the procedures
you want the system to handle.

Figure 9 shows the relative position of each portion of an opened
data control block. The fields corresronding to each parameter of the
DCB macro-instruction are also designated, with the exception of DDNAME,
which is not included in a data control block that has been opened. The
fields identified in parentheses represent system information that is
not associated with parameters of the DCB macro-instruction.

Sources of information for data control block fields other than the
DCB macro-instruction are data definiticn (DD) statements, data set
labels, and data control block modification routines. You may use any
of these sources to specify DCB parameters. However, if a portion of
the data control block is not generated by the DCB macro-instruction,
the system does not accept information intended for that portion from
any alternative source.

FOUNDATION BLOCK PARAMETERS:

DDNAME=symkol
specifies the name of the data definition (DD) statement that
describes the data set to be processed.

MACRF=(E)
specifies that the EXCP macrco-instruction is to be wused in
processing the data set.

EXCP INTERFACE PARAMETERS:

EOEA=symbol
specifies the 2-byte identification of an end-of-extent appendage
that you have entered into the SVC library.

PCIA=symbol
specifies the 2-byte identification of a program controlled
interruption (PCI) appendage that you have entered into the SVC
library.

SIOA=symbol
specifies the 2-byte identification of a start I/O (SIO) appendage
that you have entered into the SVC library.

CENDA=symbol
specifies the 2-byte identification of a channel end appendage that
you have entered into the SVC library.

XENDA=symbol
specifies the 2-byte identification of an aknormal end appendage
that you have entered into the SVC library.

Note: The full name of an appendage is eight bytes in length, but the
first six bytes are required by IBM standards to be the characters
IGG019. You provide the last two characters as the 2-byte identifi-
cation; they may range in ccllating sequence from WA to Z9.

Execute Channel Program (EXCP) Macro-Instruction 85

it 1 -
DCB | | .
Address | The device dependent portion of | .
| the data control block varies | .
+ 4 | in length and format according i .
| to specifications in the DSORG | .
| and DEVD parameters. Illustra- | Device
+ 8 | tions of this portion for each | Dependent
| device type are included in | .
| the descripticn of +the DEVD | s
+12 | parameter. . | .
| | .
| | .
+16 | | .
e e i
+20 | BUFNO | BUFCB | .
- e e i .
| | | Common
+24 | BUFL | DSORG | Interface
- —— L e 4 .
| | .
+28 | IOBAD | .
R —— e { -
| BFTEK, | | .
+32 | BFALN | EODAD | .
b-————————— e ————— { Foundation Block
] | | Extension
+36 | RECFM | EXLST i .
i [-
+40 | (TIOT) | MACRF | .
T T T o
4y | (IFLGS) | (DEB Address) | Foundation Block
pomm e . - _— .
| | | .
+48 | (OFLGS) | Reserved | .
l__ —_— L1 -— ——— .,l s e
| | .
+52 | Reserved | .
e — i -
I I .
+56 | Reserved | .
—— e 1 .
I | | .
+60 | EOEA | PCIA | EXCP Interface
b fommm oo 1 -
| [| .
+6u | SIOA | CENDA | .
g —mm—m—— e t——— e 1 .
[| | .
+68 | XENDA | Reserved | .
b 1 __ ¥

Figure 9. Data Control Block Format fcr EXCP (After OPEN)

FOUNDATION BLOCK EXTENSION AND COMMON INTERFACE PARAMETERS:

EXLST=relexp
specifies +the address of an exit list that you have written for
exceptional conditions. The format of this exit list is given in
Appendix D of the publication IBM System/360 Operating System:
Control Program Services.

86

EODAD=relexp
specifies the address of your end-of-data set routine. If this
routine 1is not available when it 1is required, the task is
abnormally terminated.

DSORG=code
specifies the data set organization as one of the following codes.
Each code indicates that the format of the device dependent portion
of the data control block is to ke similar to that generated for a
particular access method:

Code DCB Format for
PS QSAM or BSAM
PO BPAM
DA BDAM
Is QISAM or BISAM

Note: For direct-access devices, if you specify either PS or PO, you
must maintain the following fields of the device dependent portion of
the data control block so that the system can write a file mark for
output data sets:

e The track balance (TRBAL) field, which contains a 2-byte binary
nurber that indicates the remaining numker of kytes on the current
track.

e The full disk address (FDAD-MBBCCHHR) field, which indicates the
location of the current record.

IOBAD=relexp
specifies the address of an input/output block (IOB). If a pointer
to the current IOB is not required, you may use this field for any
purpose.

The following parameters are not used Ly the EXCP routines but
provide cataloging information about the data set. This information can
be used later by access method routines that read or update the data
set.

RECFM=code
specifies the record format of the data set. Record format codes
are given in the IBM System/360 Operating System: Control Program
Services publication.

BFTEK={S|E}
specifies the buffer technique as either simple or exchange.

BFALN={F|D}
specifies the word boundary alignment of each buffer as either full
word or double word.

BUFL=absexp
specifies the length in bytes of each kuffer; the maximum length is
32,767.

BUFNO=abs exp
specifies the number of buffers assigned to the associated data
set; the maximum numker is 255.

BUFCB=rel exp

specifies the address of a buffer pool control block, i.e., the
8-byte field preceding the kuffers in a buffer pool.

Execute Channel Program (EXCP) Macro-Instruction 87

DEVICE DEPENDENT PARAMETERS:

DEVD=code
specifies the device on which the data set may reside as one of the
following codes. The codes are listed in order of descending space
requirements for the data control block:

Code Device

DA Direct-access
TA Magnetic tage
PT Paper tape

PR Printex

PC Card punch

RD Card reader

Note: If you do not wish to select a specific device until job set up

time, you should specify the device type requiring the largest area.

The following diagrams illustrate the device dependent portion of the
data control block for each device type specified in the DEVD parameter,
and for each data set organization specified in the DSORG parameter.
Fields that correspond to device dependent parameters in addition to
DEVD are indicated by the parameter name. For special services, you may
have to maintain the fields shown in parentheses. The special services
are explained in the note that follows the diagram.

Device dependent portion of data control block when DEVD=DA and
DSORG=PS or PO:

DCB fm—————= o ——— o —— 1
Address + U4 |Reservd] |
e . |

| I

+ 8 | (FCAD - MBBCCHHR) |

I |

| fmmmmmm oo 1

+12 | | Reserved |
p-—————- e

+16 |KEYLEN |Reserva] (TRBAL) |
L [L K]

Note: For cutput data sets, the system uses the contents of the full
disk address (FDAD-MBBCCHHR) field plus cne to write a file mark when
the data control block is closed, provided the +track balance (TRBAL)
field indicates that space is availakle. Ycu must maintain the contents
of these two fields yourself if the system is tc write a file mark.

Device dependent portion of data control bklock when DEVD=DA and
DSORG=IS or DA:

DCB pm—e———o o —— 2

r
Address +16 |KEYLEN | Reserved |
| e B

Device dependent portion of data control block when DEVD=TA and
DSORG=PS:

DCB e 1
Address +12 | (BLKCT) |
f=—=———- B DIty B To———=- 1

+16 |TRTCH |Reservd|DEN |Resrvd|

L i i ____ i _____ J

88

Note: For output data sets, the system uses the contents of the block
count (BLKCT) field to write the block count in trailer labels when the
data control block is <closed, or when the EOV macro-instruction is
issued. You must maintain the contents of this field yourself if the
system is to write the correct klocck count.

Device dependent portion of data control block when DEVD=PT and
DSORG=PS:

DCB p—————= e e 1
Address +16 |CODE | Reserved |
L 1

Device dependent portion of data control block when DEVD=PR and
DSORG=PS:

DCB pm————— S .
Address +16 |PRTSP | Reserved |

L -_— —_d

Device dependent portion of data control block when DEVD=PC or RD and
DSORG=PS:

DCB r—= -7-- pea—

Address +16 |MODE,STACK | Reserved |
L _— i 4

The following parameters pertain to specific devices and may be
specified only when the DEVD parameter is specified.

KEYLEN=value
specifies, for direct-access devices, the length in bytes of the

The following parameters pertain to specific devices and may be
specified only when the DEVD parameter is specified.

KEYLEN=value
specifies, for direct-access devices, the length in bytes of the
key of a physical record, with a maximum value of 255. When a
klock 1is read or written, the number of bytes transmitted is the
key length plus the record length.

CODE=value
specifies, for paper tape, the code in which records are punched as
follows:

Value © Code

IBM BCD

Friden

Burroughs

National Cash Register

ASCII

Teletype

no conversion

(forrat F recoxds
only)

ZHYOWHEH

If this parameter is omitted, N is assumed.
DEN=value

specifies, for magnetic tape, the tape recording density in bits
per inch as follows:

Execute Channel Program (EXCP) Macro-Instruction 89

________________ ———— -1

r T
| | Density |
| Value S S 4
	Model	Model
	2400	2400
	7-track	9-track
i R e e e e e e e e e e e e e e s ||

I +-- + i
| 0 | 200 I - |
| 1 | 556 | - I
| 2 | 800 | 800 I
e ———————————— 1 - A J

If this parameter is omitted, the lowest density is assumed.

TRTCH=value
specifies, for 7-track magnetic tape, the tape recording technique
as follows:

Value Tape Recording Technigque
C Data conversion feature is available.
E Even parity is used. (If omitted, odd parity is
assumed.)
T BCDIC to EBCDIC translation is required.

MODE=value
specifies, for a card reader or punch, the mode of operation.
Either C (column binary mode) or E (EBCDIC ccde) may be specified.

STACK=value
specifies, for a card@ punch or card reader, the stacker bin to
receive cards as either 1 or 2.

PRTSP=value
specifies, for a printer, the line spacing as either 0, 1, 2, or 3.

OPEN —-- Initialize Data Control Block

The OPEN macro-instruction initializes one or more data control
blocks so that their associated data sets can be processed. You must
issue OPEN for all data control blocks that are tc be used by your
channel programs. Some of the procedures performed when OPEN is
executed are:

e Construction of data extent block (DEB).

o Transfer of information from DD statements and data set labels to
data control block.

e Verification or creation of standard labels.

e Tape positioning.

e Loading of programmer-written appendage routines.

The three parameters of the OPEN macro-instruction are:

dcb-addr
specifies the address of the data control kblock to be initialized.
(More than one data control block may be specified.)

Opt1
specifies the intended method of I/0O processing of the data set.
You may specify this parameter as either INPUT, RDBACK, or OUTPUT.
For each of these, label processing when OPEN is executed is as
follows:

90

INPUT - Header labels are verified.
RDBACK - Trailer labels are verified.
OUTPUT - Header labels are created.

If this parameter is omitted, INPUT is assumed.

opt> ,

specifies the volume disposition that is to ke provided when volume

switching occurs. The operand values and meanings are as follows:

REREAD Reposition the volume to process the data set again.

LEAVE No additional positioning is performed at end-of-volume
processing.

DISP The disposition indicated on the DD statement is tested
and appropriate positioning provided. This service is
assumed if this operand is omitted and volume position-
ing is applicakle. If there is no disposition specified
in the DD statement when this operand is specified,
LEAVE is assured.

EXCP —-- Execute Channel Program

The EXCP macro-instruction requests the initiation of the I/0
operations of a channel program. You must issue EXCP whenever you want
‘to execute one of your channel programs. The only parameter of the EXCP
macro-instruction is:

iob-addrx
specifies the address, or a register that ccntains the address of
the input/output block of the channel program to be executed.

EOV -- End of Volume

The EOV macro-instruction identifies end-of-volume and end-of-data
set conditions. For an end-of-volume condition, EOV causes switching of

volumes and verification or creation of standard lakels. For an
end-of-data set condition, EOV causes your end-of-data set routine to ke
entered. You issue EOV if switching of magnetic tape or direct-access

volumes is necessary, or if secondary allocation is to be perfcrmed for
a direct-access data set opened for output.

For magnetic tape, you must issue EOV when either a tape mark is read
or a reflective spot is written over. 1In these cases, Lbit settings in
the l-kyte OFLGS field of the data control block determine the action to
be taken when EOV is executed. Before issuing EOV for magnetic tape,
you must make sure that appropriate bits are set in OFLGS. Bit
positions 2,3,6, and 7 of OFLGS are used only ky the system; you are
concerned with bit positions 0,1,4, and 5. The use of these OFLGS bit
positions is as follows:

Bit O
indicates that a tape mark is to be written.
Bit 1
indicates that a backwards read was the last I/O operation.
Bit 4
indicates that data sets of unlike attributes are to be concatenat-
ed.
Bit 5

indicates that a tape mark has been read.

Execute Channel Prcgram (EXCP) Macro-Instruction 91

If Bits 0 and 5 of OFLGS are both off when EOV is executed, the tape
is spaced past a tape wmrark, and standard lakels, if present, are
verified on both the old and new volumes. The direction of spacing
depends on Bit 1. If Bit 1 is off, the tape is spaced forward; if Bit 1
is on, the tape is backspaced.

If Bit 0 1is on when EOV 1is executed, a tape rmark is written
immediately following the last data record of the data set, standard
labels, if specified, are created on the 0ld and the new volume.

When issuing EOV for sequentially organized output data sets on
direct-access volumes, you can determine whether additional space has
been obtained on the same or a different volume. You do this ky
checking the volume serial number in the unit control block (UCB) both
before and after issuing EOV.

The only parameter of the EOV macro-instruction is:
dcb-addrx
specifies the address of the data control block that is opened for

the data set. If this parameter is specified as (1), register 1
must contain this address.

CLOSE -- Restore Data Control Block

The CLOSE macro-instruction restores one or more data control blocks
so that processing of their associated data sets can be terminated. You
must -issue CLOSE for all data control plocks that were wused by your
channel prograns. Some of the procedures performed when CLOSE is
executed are:

¢ Release of data extent block (DEB).

e Removal of information transferred to data control block fields when
OPEN was executed.

e Verification oxr creation c¢f standard lakels.

¢ Volume disposition.
Release of programmer-written appendage routines.

The two parameters of the CLOSE macro-instruction are:

dcb-addr
specifies the address of the data control block to be restored.
More than one data control block may ke specified.

opt
specifies the type of volume dispositicon intended for the data set.
You may specify +this parameter as either LEAVE or REREAD. The
corresponding volume disposition when CLOSE is executed is as
follows:

LEAVE - Volumwe is positioned at logical end of data set.
REREAD - Volume is positioned at logical beginning of data set.

DISP - The disposition indicated on the DD statement is tested,
and appropriate positioning is provided. This service is
assumed if this operand is omitted and volume positioning
is applicable. 1If there is no disposition specified in
the DD statement when this cperand is specified, LEAVE is
assumed.

This parameter is ignored if specified for volumes other than
magnetic tape or direct-access.

92

Note: When CLOSE is issued for data sets on magnetic tape volumes,
labels are processed according to bit settings in the OFLGS field of the
data control block. Before issuing CLOSE for magnetic tape, you must
set the appropriate bits in OFLGS. The OFLGS bit positions that you are
concerned with are 1listed in the description of the EOV macro-
instruction.

CONTROL BLOCK FIELDS

The fields of the input/output block, event control block, and data
extent Dblock are illustrated and explained here; the data control block
fields have been described with the parameters of +the DCB macro-
instruction instruction in the section "EXCP Programming
Specifications."

Input/0Output Block Fields

The input/output block is not automatically constructed by a macro-
instruction; it must be defined as a series of constants and must be on
a full-word boundary. For nondirect-access devices, the input/output
block is 32 bytes in length. For direct-access devices, 8 additional
bytes must be provided. '

In Figure 10, the shaded areas indicate fields in which you must
specify information. The other fields are used ky the system and must
be defined as all zeros. You may not place information into these
fields, but you may examine them.

12 N
o //// Flags 1 52 Flags 2 First Two Sense B
Add ags ags irst Two Sense Bytes
+4 ECB Code ECB Address /
+8 Flags 3
Channel Status Word
+12 L All
: 7 Devices
+16 SIO Code Channel Program Address /
+20 Reserved .DCB Adﬁess
+24 Reposition Modifier Restart Address
+28 Block Co:J/nt Increment Error Counts
+32 Extent M Direct-
Access
+36 BBCCHIR Devices
Only

Figure 10. Input/Output Block Format

Flags 1 (1 byte)

specifies the type of channel program. You must set bit positions
0, 1, and 6. One bits in positions 0 and 1 indicate data chaining
and command chaining, respectively. (If koth data chaining and
command chaining are specified, the system does mnot use error
recovery routines except for the 2311, 2671, 1052, and 2150.) A
one bit in position 6 indicates that the channel program is not
related to any other channel prograr. Bit positions 2, 3, 4, 5,
and 7 are used only by the system.

Execute Channel Program (EXCP) Macro-Instruction 93

Flags 2 (1 Lkyte)
is used only by the systerm.

First Two Sense Bytes (2 bytes)
are placed into the input/output block by the system when a unit
check occurs.

ECB Code (1 byte)
indicates the first byte of the conpletion code for the channel
program. The system places this code in the high order byte of the
event control block when the channel program is posted complete.
The completion codes and their meanings are listed under "Event
Control Block Fields."

ECB Address (3 bytes)
specifies the address of the uU-byte event control block that you
have provided.

Flags 3 (1 byte)
is used only ky the system.

Channel Status Word (7 bytes)
indicates the 1low order seven bytes of the channel status word,
which are placed into this field each time a channel end occurs.

SIO Code (1 byte)
indicates, in the four low-order bits, the instruction 1length and
condition code for the SIO instruction that the system issues to
start the channel program.

Channel Program Address (3 bytes)
specifies the starting address of the channel program to ke
executed.

Reserved (1 byte)
is used only by the system.

DCB Address (3 kytes)
specifies the address of the data control block of the data set to
ke read or written by the channel program.

Reposition Modifier (1 Lyte)
is used by the system for volume repositioning in error recovery
procedures.

Restart Address (3 bytes)
is used by the system to indicate the starting address of a channel
program that performs special functions for error recovery
procedures. The system also uses this field in procedures for

making reguest elements availakle, as explained wunder Errorx
Recovery Procedures for Related Channel Prcgrams."

Block Count Increment (2 bytes)

specifies, for magnetic tape, the amount by which the block count
(BLKCT) field in the device dependent portion of the data control
block is to be incremented. You may alter these bytes at any time.
For forward operations, these Lytes should contain a binary
positive integer (usuwally + 1); for backward operations, they
should contain a binary negative integer. When these bytes are not
used, all zeros must be specified.

Error Counts (2 bytes)

indicates the number of retries attempted during error recovery
procedures.

o4

Extent M (1 byte)
specifies, for direct-access or telecommunications devices, which
extent entry in the data extent Lklock is associated with the
channel program. (0 indicates the first extent; 1 indicates the
second, etc.)

BBCCHHR (7 bytes)
specifies, for direct-access devices, the seek address for the
programmer's channel programn.

Event Control Block Fields

You must define an event control Lklock as a U-byte area on a
full-word Lroundary. When the channel program has been completed, the
input/output supervisor places a' completion ccde containing status
information into the event control block (Figure 11). Before examining
this information, you must test for the setting of the "Complete Bit."
If the complete bit is not on, and the problem program cannot perform
other useful operations, you should issue a WAIT macro-instruction that
specifies the event control Fklock. Under no circumstances may you
construct a program loop that tests for the complete bit.

r T T q
WAIT Complete Remainder of Completion Ccde
E 1Y
| Bit=0 | | |
| | Bit=1 |]
I N B 4
0 1 2 31

Figure 11. Event Control Block After Posting of Completion Code

WAIT Bit
A one bit in this position indicates that the WAIT macro-
instruction has Leen issued, but that the channel program has not
keen completed.

Comrplete Bit
A one kit in this position indicates that the channel program has
keen completed; if it has not been completed, a zero bit is in this
position.

Completion Code
This ccde, which includes the WAIT and Complete bits, may be one of
the following 4-byte hexadecimal expressions:

Code Interpretation
T7r000000 Channel program has terminated without error.
41000000 Channel program has terminated with permanent
erxor.
42000000 Channel program has terminated because a

direct-access extent address has been violated.

44000000 Channel program has been intercepted because of
permanent error associated with device end for
previous request. You may reissue the inter-
cepted request.

48000000 Request element for channel program has been
maue availakle after it has been purged.

4F000000 Error recovery zroutines have bLeen entered

because of direct-access error but are unakie
to read home address or record 0.

Execute Channel Program (EXCP) Macro-Instruction 95

Data Extent Block Fields

The data extent block is constructed by the system when an OPEN
macro-instruction is issued for the data control block. You may not
modify the fields of the data extent klock, but you may examine them.
The Data Extent Block format and field description is contained in the
System Control Block publication.

96

APPENDIX: RESTORE MACRO-INSTRUCTION

If you want to use the RESTORE macro-instruction, you must either add
the macro-definition to the macro-likrary (SYS1.MACLIB) or place it in a
separate partitioned data set and concatenate this data set to the
macro-library. This section contains the following:

* The format of the macro-instruction.

e The Jok Control and Utility statements needed to add the macro-
definition to the library.

¢ The macro-definition to be added to the library.

RESTORE Macro-Instruction

This macro-instruction is used to return purged request elements to
the request queuves. The format of this macro-instruction is as follows:

e K i 1
| Name | Operation | Operand |
i e oo 1
| | RESTORE | User Purge IOB Address |
| I, i - S J

The user purge IOB address is in the data extent klock (DEB).

Control Statements Required

r --= e e e e e e 1
| 7/jobname JOB {parameters} |
| //stepname EXEC PGM=IEBUPDAT, PARM=NEW |
| 7//SYSPRINT DD SYSOUT=Aa |
| 7//SYSUT2 DD DSNAME=SYS1.MACLIB,DISP=0LD |
| //SYSIN DD DATA |
| .7 ADD RESTORE,00,0,1 |
| . |
| . |
| . |
| RESTORE Macro-Definition |
| . |
| . |
| . |
| ./ ENDUP I
[7+ !
b e e 3

RESTORE Macro-Definition

MACRO
&§NAME RESTORE &LIST
AIF ('&§LIST' EQ "'").E1l

§NAME IHBINNRA &LIST LOAD REG 1
svC 17 ISSUE SVC FOR RESTORE
MEXIT

.El1 IHBERMAC 01,150 LIST ADDR MISSING

Execute Channel Program (EXCP) Macro-Instruction 97

EXECUTE DIRECT ACCESS PRCGRAM (XDAP) MACRO-INSTRUCTION

This chapter explains what the Execute
Direct-Access Program (XDAP) macro-
instruction does and how ycu can use it.
The control block generated when XDAP is
issued and the macro-instructions used with
XDAP are also discussed.

The XDAP macro-instructicn provides you
with a means of reading, verifying, or
updating blocks c¢n direct-access vclumes
without using an access method and without
writing your own channel program. Since
most of the specifications for XDAP are
similar to those for the Execute Channel
prograrm (FXCP) macro-instructicn, it is
recommended that you be fawmiliar with the
"EXCP Macro-Instruction" chapter of this
puklication, as well as with the
information contained in the required rpuk-
licaticn.

PREREQUISITE PUBLICATION

The IBM System/360 Operating System:
Data Managerent pukblication (Form C28-6537)
explains the standard procedures for 1I/0
processing under the operating system.

98

EXECUTE DIRECT ACCESS PROGRAM (XDAP) MACRO-INSTRUCTION

Execute Direct Access Program (XDAP) 1is a macro-instruction of
System/360 Operating System that you may use to read, verify, or update
a block on a direct-access volume. If you are not using the standard
IBM data access methods, you can, by issuing XDAP, generate the control
information and channel program necessary for reading or updating the
records of a data set.

You cannot use XDAP to ada klocks to a data set, but you can use it
to change the keys of existing blocks. Any block configuration and any
data set organization can be read or updated.

Although the use of XDAP requires much less main storage space than
do the standard access methods, it does not provide many of the contrcl
program services that are included in the access methods. For example,
when XDAP is 1issued, the system does not block or deblock records and
does not verify block length.

To issue XDAP, you must provide the actual device address of the
track containing +the block to be processed. Yocu must also provide
either the block identification or the key of the klock, and specify
which of these is to be used to locate the block. If a block is located
by identification, both +the key and data portions of the block may be
read or updated. If a block is located by key, only the data portion
can be processed.

REQUIREMENTS FOR EXECUTION OF DIRECT-ACCESS PROGRAM

Before issuing the XDAP macro-instruction, you mnust issue a DCB
macro-instruction, which produces a data control block (DCB) for the
data set to be 1read or wupdated. You must also issue an OPEN
macro-instruction, which initializes the data control block and produces
a data extent block (DEB).

When the XDAP macro-instruction is issued, another control kEklock,
containing both control information and executable code, is generated.
This control block may be logically divided into three sections:

¢ An event control block (ECB), which is supplied with a completion
code each time the direct access channel prcgram is terminated.

e An input/output block (IOB), which contains information akout the
direct access channel programn.

¢ A direct access channel program, which consists of three channel
command words (CCWs). The type cf channel program generated depends
on specifications in the parameters of the XDAP macro-instruction.

After this XDAP control block is constructed, the direct-access channel
program is executed. A block is located by either its actual address or
its key, and is either read or updated.

When the channel program has terminated, a completion code is placea
into the event control block. After issuing XDAP, you should therefore
issue a WAIT macro-instruction specifying the event control block to
determine whether +the direct-access program has terminated. If volume
switching is necessary, you must issue an EOV macro-instruction. When
processing of the data set has bkeen completed, you must issue a CLOSE
macro-instruction to restore the data control block.

Execute Direct Access Program (XDAP) Macro-Instruction 29

XDAP PROGRAMMING SPECIFICATICNS

MACRO-INSTRUCTIONS

When you are using the XDAP macro-instruction, you must also issue
DCB, OPEN, CLOSE, and, in some cases, the EOV macro-instruction. The
parameters of the XDAP macro-instruction are listed and described here.
For the other required macro-instructions, special requirements or
options are explained, but you should refer to the "EXCP
Macro-Instruction" section of this puklication for 1listings of their
parameters.

DCB -- Define Data Contrcl Block

The EXCP form of the DCB macro-instruction produces a data control
block that can be used with the XDAP macro-instruction. You must issue
a DCB macro-instruction for each data set to be read or updated by the
direct-access channel program. The "EXCP Macro-Instruction" section of
this publication contains a diagram of the data control block, as well
as a listing of the parameters of the DCB macro-instruction.

OPEN -- Tnitialize Data Control Block

The OPEN macro-instruction initializes one or more data control
blocks so that their associated data sets can be processed. You must
issue OPEN for all data control blocks that are to ke used by the direct
access program. Some of the procedures performed when OPEN is executed
are:

e Construction of data extent klock (DEB).

e Transfer of information from DD statements and data set labels to
data control block.

e Verification or creation of standard lakels.
¢ Loading of programmer-written aprendage routines.

The two parameters of the OPEN macro-instruction are the address(es)
of the data control block(s) to be initialized, and the intended method
of I/0 processing of the data set. The wmwethod of processing may be
specified as either INPUT or OUTPUT; however, if neither is specified,
INPUT is assumed.

XDAP -- Execute Direct-Access Prograrnm

The XDAP macro-instruction produces the XDAP control block (i.e., the
ECB, IOB, and channel program) and executes the direct-access channel
program. The format of the XDAP macroc-instruction is:

[~——=———T-- S - e 1
| Operation | Operand |
----------- T e e
| XDAP | ecb-symbol,type-{R|W|V}{I|K},dcb-addr,area-addr
| | (length-value, [(key-addr,keylength-value)],blkref-addr |
. S J
ecb-symbol
specifies the symbolic name to Le assigned to the XDAP control
klock.

type-{R|W|V}{I|K}
specifies the type of I/O operation intended for the data set and
the wethod by which blocks of the data set are to be located. The
codes and their meanings are as follows:

100

- Read a block.

Write a block.

- Verify contents of a block but do not transfer data.

- Locate a block by identification. (The key portion, if
present, and the data portion of the block are read or
written.)

K - Locate a klock by key. (Only the data portion of the

block is read or written.)

HS s
1

dcb-addr
specifies the address of the data control klock of the data set.

area-addr -
specifies the address of an input or output area for a block of the
data set.

length-value
specifies the number o©of bytes +to ke transferred to or from the
input or output area. If blocks are to be 1located by identifi-
cation and the data set contains keys, the value must include the
length of the key. The maximum number of bytes transferred is
32767.

key-adar
specifies, when blocks are to be located by key, the address of a
main storage field that contains the key of a block to be read or
cverwritten.

keylength-value
specifies, when bklocks are to be located by key, the length of the
key. The maximum length is 255 kytes.

blkref-addr

specifies the address of a main storage field containing the actual
device address of the track containing the tlock to be located.
When Lklocks are to be located by key, this field is seven bytes in
length; when blocks are to be located by identification, an eighth
byte indicating block identificaticn must Lte included in this
field. (The actual address of a block is in the form MBBCCHHR,
where M indicates which extent entry in the data extent klock is
associated with the direct-access program; BB indicates the kLin
number of direct-access volume; CC indicates the cylinder address;
HH indicates the actual track address; and R indicates the block
identification.)

EOV —-- End of Volume

The EOV macro-instruction identifies end-of-volume and end-of-data
set conditions. For an end-of-volume condition, EOV causes switching of
volumes and verification or creation of standard 1labels. For an
end-of-data set condition, EOV causes your end-cf-data set routine to ke
entered. When wusing XDAP, you issue EOV if switching of direct-access
volumes is necessary, or if secondary allocation is to be performed fox
a direct-access data set opened for cutput.

The only parameter of the EOV macro-instruction is the address of the
data control block cf the data set.

CLOSE —-- Restore Data Control Block

The CLOSE macro-instruction restores one or more data control klocks
so that processing of their associated data sets can be terminated. You
must issue CLOSE for all data sets that were used Ly the direct access
channel program. some of the prccedures rprerformed when CLOSE is
executed are:

Execute Direct Access Program (XDAP) Macro-Instruction 101

e Release of data extent block (DEB).

e Removal of information transferred to data control block fields when
OPEN was executed.

e Verification or creation of standard labels.

e Release of programmer-written appendage routines.

The only parameter of the CLOSE macrco-instruction is the address of
the data control block to be restored. (More than one data control
block may be specified.)

THE XDAP CONTROL BLOCK

The three portions of the control block generated during execution of
the XDAP macro-instruction are descriked here.

Event Control Block (ECB)

The event control block begins on a full word koundary and occupies
the first 4 Lytes of the XDAP control block. Each time the direct-
access channel program terminates, the input/output supervisor places a
completion code containing status information into the event control
block (Figure 12). Before examining this information, you must test for
the setting of the "Complete Bit" by issuing a WAIT macro-instruction
specifying the event control Lklock.

L —_—— A Lo —_— o o o o e i e e o e e e e 4

Figure 12. Event Control Block After Posting of Completion Code

WAIT Bit
A one bit 1in this position indicates +that the WAIT macro-
instruction has been issued, but that the direct-access channel
program has not been corpleted.

Corrplete Bit
A one bit in this position indicates that the channel program has
been completed; if it has not been completed, a zero kit is in this
position.

Completion Code
This code, which includes the WAIT and Complete bits, may be one of
the following 4-byte hexadecimal expressions:

Code Interpretation
7F000000 Direct-access program has terminated without
error.
41000000 Direct-~access program has terminated with

permanent error.

42000000 Direct-access program has terminated because a
direct-access extent address has been violated.

44000000 Channel program has been intercepted because of
perranent errcr associated with device ena for
previous request. You may reissue the inter-
certed request.

102

48000000 Request elerent for channel program has Dbeen
made availakle after it has been purged.

4F000000 Error reccvery routines have been entered
because of direct-access error but are unatle
to read home address or record 0.

Input/Output Block (IOB)

The input/output block is 40 bytes in length and immediately follows
the event control block. The section "EXCP Macro-Instruction" of this
publication contains a diagram of the input/output block. The only
fields with which the user of XDAP is concerned are the "First Two Sense
Bytes" and "Channel Status Word" fields. You may wish to examine these
fields when a unit check condition or an I/O interruption occurs.

Direct-Access Channel Program

The direct-access channel program is 24 bytes in length and inmedi-
ately follows the input/output Lklock. Depending on the type of I/0
operation specified in the XDAP macro-instruction, one of four channel
programs may be generated. The three channel cormand words for each of
the four possible channel programs are shcwn in Figure 13.

e T——=== e it 1
| Type of I/0 Operation | CCW | Command Code |
e s - 1
| Read by Identification | 1 | Search ID Eqgual |

| 2 | Transfer in Channel |
| Verify by Identification®| 3 | Read Key and Data |
- -- pmmon oo 1
| Read by Key | 1 | Search Key Equal |
i | 2 | Transfer in Channel |
| Verify by Key? | 3 | Read Data |
t -- 1 e 1
| 1 1 | Search ID Equal | |
| Write by Identification | 2 | Tramsfer in Channel |
| | 3 | Write Key and Data |
pommm o m o e T T o |
i | 1 | Search Key Equal |
| Write by Key | 2 | Transfer in Channel |
| | 3 | Write Data |
fmmm e R R — e ————————— e
| *For verifying operations, the third CCW is flagged to suppress the |
| transfer of information to main storage. |
L e 4

Figure 13. The XDAP Channel Programs

XDAP OPTIONS

CONVERSION OF RELATIVE TRACK ADDRESS TO ACTUAL ADDRESS

To issue XDAP, you must provide the actual device address of the
track containing the block to be processed. If you know only the
relative track address, you can convert it to the actual address Ly
using a resident system routine. The entry point to +this conversion
routine is lakeled IECPCNVT. The address of the entry point is in the
communication vector table (CVT). The address of the CVT is in location
16. (The CVT macro-instruction defines the symkolic names of all fields
in the CVT. The macro-definition and how to add it to the macro-library
are in the Appendix of this chapter.)

Execute Direct Access Program (XDAP) Macro-Instruction 103

The conversion routine does all its work in general registers. You
must load registers O, 1, 2, 14, and 15 with input to the routine.
Register usage is as follows: ‘

Register Use
0 Must be loaded with a H4-byte value of the form

TTRN, where TT 1is the number of the track
relative to the keginning of the data set, R is
the identification of the block on that track,
and N 1is the concatenation number of the data
set. (0 indicates the first or only data set
in the concatenation, 1 indicates the second,
etc.)

1 Must ke loaded with the address of the data
extent block (DEB) of the data set.

2 Must be 1loaded with the address of an 8-byte
area that is to receive the actual address of
the klock to bpe processed. The converted
address is of the form MBBCCHHR, where M
indicates which extent entry in the data extent
blecck 1is associated with the direct-access
program (0 indicates the first extent, 1 indi-
cates the second, etc.); BB indicates the bin
nunker of the direct-access volume; CC indi-
cates the cylinder address; hH indicates the
actual track address; and R indicates the block

identification.

3-8 Are not used by the conversion routine.

9-13 Are used by the conversion routine and are not
restored.

14 Must be 1loaded with the address to which

contrcl is tc ke returned after execution of
the conversion routine.

15 Is used by the conversion routine as a base
register and wmust ke lcaded with the address at
which the conversion routine 1is to receive
control.

APPENDAGES

For additional control over I/0 orerations, you may write appendages,
which must be entered into the SVC library. Descripticns of these
routines and their coding specifications are contained in the "EXCP
Macro-Instruction" section of this publication.

L- AND E- FORMS OF XDAP MACRO-INSTRUCTION

You may wuse the L- form of the XDAP nmacro-instruction for a
macro-expansion consisting of only a parameter list, or the E- form for
a macro—expansion consisting of only executable instructicns. The L-
and E- forms are described in Appendix B of the IBM Systen/360 Operating
System: Control Program Services, Form C28-6541.

Note: The BLKREF parameter is igncred ky the "L" form of +the XDAP
macro-instruction. The field may be supplied in the E-form of the
macro-instruction or moved into the IOB by you.

104

APPENDIX: CVT MACRO-INSTRUCTION

If you want to use the (VT macro-instruction, you must add the
macro-definition to the macro-library (SYS1.MACLIB). This secticn
contains the following:

e The format of the CVT macro-instruction.

e The Job Control and Utility statements needed to add the macro-
definition to the 1library.

e The macro-definition to be added to the library.

Format of the CVT Macro-Instruction

This macro-instruction defines the symbolic names of all fields in
the communication vector table (CVT). When coding this macro-
instruction, you must precede it with a DSECT statement. The format of
the macro-instruction is as follows:

r———=--= B S el T T T T TS s T T e s e 1
| Name | Operation | Operand |
p—m—- oo - e i
| I I YMS |
I | CvT | s¥s= INT |
| | I MIN l
I R e ————— e 4

You specify, in the operand field, the control program that you are
using.

VMS

designates multiprogramming with a variakle numker of tasks.
INT

designates multiprogramming with a fixed number of tasks.
MIN

designates the primary control program.

If the operand field is blank, it 1is assumed that you are using
multiprograrming with a variable nurnker of tasks.

Control Statements Required

[T T T T T T e e e e e e — -1
| //jobname JOB {parameters} |
| //stepname EXEC PGM=IEBUPDAT, PARM=NEW |
| //SYSPRINT DD SYSOUT=A |
| //SY¥SUT2 DD DSNAME=SYS1.MACLIB,DISP=0LD |
| //SYSIN DD DATA |
| «/ ADD cvT,00,0,1 |
| . I
| . |
| .]
| CVT Macro-Definiticn |
I . |
| . |
| |
I ENDUP |
| 7% |
L 1

CVT Macro-Definition

MACRO
ENAME CvT §SYS=VMS, §FETCH=, §SCHED=PSS, §OPTIONS=(QTAM, INTERVAL)

Execute Direct Access Program (XDAP) Macro-Instruction 105

LR B R 2R R R B B

CVTPTR

ENAME
CVITCBP
*

*

*
CVTOEFO0O0
*
CVTLINK
CVTJOR
CVTBUF
CVTXAPG
CVTOVLOO
*
CVTPCNVT
*

CVTPRLTV
*

CVTILK1
*
CVTILK2
CVTXTLER
*

CVTSYSAD
*
CVTBTERM
CVTDATE
CVTNMSLT
CVTZDTAB
CVTXITP
CVTXWTO
CVTOFNOO
CVTEXIT
CVTBRET
CVTSVDCB

CVTTPC

.NEXT1
CVTTPC
.NEXT2
CVTPBLDL
CVTSJIOQ
CVTCUCB

CVTQTEO00
CVTQTDOO

106

SPACE
EQU
SPACE
DS

DC

DC
DC

DC
DC
DC

DC
DC
DC

DC

DC

DC
DC
DC
DC
DC
DC
DC
svC
BCR
DC
AIF
DC
AGO
ANOP
DC
ANOP
DC
DC
DC
AIF
DC
DC
AGO

16

oF
V(IEATCBP)

V(IEAOEF00)

V(IEFLINK)
V(IEFJOB)
A(0)

V (IECXAPG)
V(IEAOVLOO)

V (IECPCNVT)
V(IECPRLTV)
V(IECILK1)

V(IECILK2)
V(IECXTLER)

A(0)

V(IEAQOABOO)
F'0"

V (IEEMSLT)
V(IECZDTAB)
V(IECXITP)
V(IECIWTST)
V(IEAQFNOQO)
3

15,14

V (IEASVDCB)

(*6OPTIONS(2) "

A(0)
.NEXT2

V(IEATPC)
V(IECPBLDL

V(IEESJQ)
V (IEECUCB)

(*EOPTIONS(2) "

A(0)
A(0)
- NEXTU

THIS IS A KEY WORD MACRO GENERATED SET OF

CODE. THE STANDARD FORMAT IS DEFINED AS-
SPACE
CVT SYS=VMS
SPACE

THE THREE POSSIBLE VALUES OF THE KEYWORD
SYS ARE-
VMS OPTION 4.MULTIPROGRAMMING
WITH VARIABLE NO.
OF TASKS
INT OPTION 2.MULTIPROGRAMMING
WITH FIXED NO. OF
TASKS
PRIMARY CONTROL
PROGRAM

MIN PCP

LOCATION OF THE CVT POINTER

ADDRESS OF A DOUBLE WORD, THE FIRST CON-
TAINING THE NEXT-TO-BE DISPATCHED TCB
ADDRESS, THE SECCND CCNTAINING THE LAST
(CURRENT) TCB ADDRESS.

ADDRESS OF ROUTINE TO SCHEDULE ASYNC.
EXITS.

ADDRESS OF THF LINK LIBRARY DCB.

JOB SCHEDULER OPEN'ED DCB ADDRESS.

IOS APPENDAGE TABLE ADDRESS.

ENTRY POINT ADDRESS OF THE SUPERVISOR'S
ADDRESS VALIDITY CHECKING ROUTINE.

ENTRY POINT ADDRESS OF THE ROUTINE WHICH
CONVERTS RELATIVE TRACK ADDR. TO ABSOLUTE
ENTRY POINT ADDRESS OF THE ROUTINE WHICH
CONVERTS ABSOLUTE TRACK ADDR. TO RELATIVE
ADDRESS OF THE CHANNEL AND CONTROL UNIT
PORTIONS OF THE TABLE LOOKUP.

ADDRESS OF TWO BYTE UCB POINTERS

ENTRY POINT OF THE XCTL ROUTINE FOR THE
ERROR TRANSIENT AREA.

SYSTEM RESIDENCE VOLUME ENTRY IN THE UCB
TABLE.

ENTRY POINT ADDRESS OF THE ABTERM ROUTINE
CURRENT DATE IN PACKED DECIMAL.

ADDRESS OF MASTER SCHEDULER LINKAGE TABLE
ADDR. OF I/O DEVICE CHARACTERISTIC TABLE.
ADDR. OF ERROR INTERPRETER ROUTINE.

ADDR OF CONSOLE OUTPUT ROUTINE

ENTRY POINT ADDRESS OF THE FINCH ROUTINE.
AN SVC EXIT INSTRUCTION.

A BCR 15,14 INSTRUCTION FOR DATA IMGMNT.
ADDRESS OF THE SVC LIBRARY DCB.

EQ 'INTERVAL').NEXT1

ADDR OF TIMER PSEUDO CLOCKS (SHPC FIRST)

BRANCH AND LINK ENTRY TO THE BLDL ROUTINE
POINTER TO SELECTED JOB QUEUE.

POINTER TO UCB FOR CURRENT CONSOLE.

EQ 'INTERVAL').NEXT3

.NEXT3
CVTQTEOO
CVTQTDOO
.NEXT4
CVTSTB
CVTDCB
CVTIOQET
CVTIXAVL

CVTINUCB
*

*
CVTFB0SV
CVTODS
CVTILCH
CVTIERIC

CVTMSER

.NEXT5
CVTMSER
.NEXT6
CVTOPTO1

CVTTRMTB

< NEXT7
CVTTRMTB
*

.NEXTS8
CVTHEAD
*

CVTMZ00
*

¥k THE FOLLOWING

CVTQOCR
*
CVTQMWR
*

'PPS' OR '&SCHED' EQ

ADDR OF TIMER ENQUEUE ROUTINE
ADDR OF TIMER DEQUEUE ROUTINE

ADDRESS OF I/0O DEVICE STATISTICS TABLE.
DCB ADDR.FOR LOGREC DATA SET USED BY SER.
ALDRESS OF 1I/0 CUEUE ELEMENT TABLE.
POINTER TO NEXT AVAILABLE 1/0 QUEUE ELMNT
LOWEST ADDRESS NOT IN THE NUCLEUS—-- AT

A 2K BOUNDARY IF PROTECTION---AT A DOUBLE
WORD BOUNDARY IF NO PROTECTION.

ADDRESS OF PROGRAM FETCH ROUTINE.

ENTRY POINT ADDRESS OF THE DISPATCHER.
ADDRESS OF THE LOGICAL CHANNEI TABLE.
ADDRESS OF THE ERROR LOGICAI CHAN.QUEUE.
'PSS') . NEXTS

BRANCH ENTRY POINT TO POST ROUTINE.
EQ 'QOTAM') .NEXT7

ADDR OF TERMINAL TABLE PRESENT IN SYSTENMS
WITH QTAM

ADDRESS OF THE FIRST (HIGHEST PRIORITY)
TCB IN THE READY QUEUE.

MACHINE SIZE (HIGHEST STORAGE ADDRESS FOR
THIS MACHINE).

*MIN').SKPEND
ENTRIES ARE FOR INTERMEDIATE SYSTEMS ***

UNUSED, FORMERLY CIRBLINKAGE

ENTRY POINT TO OPERATOR COMMUNICATIONS
QUEUE PURGING ROUTINE.

SYSOUT-CDA AREA ADDR USED BY THE NON-
RESIDENT QUEUE MGR

'INT') .SKPEND

¥¥¥ THE FOLLOWING ENTRIES ARE FOR VMS SYSTEMS ***

CVTPKTBL
CVTQCDSR
CVTQLPAQ
CVTQERA
CVTQPGTM
CVTQPIE
CVTQABL
CVTQSPET
CVTQABST

. SKPEND

ANOP

DC V(IEAQTEOQOO)
DC V(IEAQTDOO)
ANOP

DC V(IECSTB)
DC V (IFBDCB)
DC V(IECIOQET)
DC V(IECIXAVL)
DC A(0)

DC V (IEWFBOSV)
DC V (IEAODS)
DC V(IECILCH)
DC V (IECIERLC)
AIF ('&SCHED" EQ
DC A(0)

AGO +NEXT6
ANOP

DC V (IEEMSER)
ANOP

DC V(IEAOPTO1)
ATF ('EOPTIONS(1) "'
DC A(0)

AGO . NEXTS8
ANOP

DC V (IECTRMTB)
ANOP

DC V (IEAHEAD)
DC F'O"

AIF ('&SYS' EQ
DC A(0)

DC V (IEAQOCR)
DC V (IEFQMWR)
AIF (*&63SYS" EQ
DC V(IEAPKTBL)
DC V (IEAQCDSR)
DC V(IEAQLPAQ)
DC V (IEAQERA)
DC V(IEAQPGTM)
DC V(IEAQPIE)
DC V(IERQABL)
DC V(IEAQSPET)
svC 13

DC H'o'

ANOP

MEND

Execute Direct Access Program (XDAP) Macro-Instruction

PROTECT KEY TABLE ADDK

ADDR OF CONTENTS DIRECTORY SEARCH ROUTINE
ADDR. OF THE TOP C.D. ENTRY IN LPA CUEUE.
ENTRY POINT TO EOT ERASE PHASE.

ENTRY POINT TO EOT PURGE TIMER ELMNTS.RTN
ENTRY PT TG EOT PIERMVE RT.

ENTRY PT TO LOT CDABDEL RT.

ENTRY PT TO EOT SPEOT RT.

SVC TO AREND

FIIT CUT TO FULL WORD

107

HOW TO USE THE TRACING ROUTINE

This chapter describes the function of
the tracing routine, and provides a
detailed description of the information
made availakle ky the tracing routine.

Before reading this chapter, you should

be familiar with the information contained
in the prerequisite puklication.

PREREQUISITE PUBLICATION

The IBM System/360: Principles of Opera-
tion publication (Form A22-6821) ccntains
inforration about the SIO instruction and
the I/0 and SVC interruptions.

108

HOW TO USE THE TRACING ROUTINE

The tracing routine is an Operating System/360 optional feature which
you can use as a debugging and maintenance aid. The tracing routine
stores, in a table, information pertaining to the following conditions:

e SIO instruction execution.
e SVC interruption.
e I/0 interruption.

You can include the tracing routine and its takle in the control
program during the system generation process. This is done using the
TRACE option in the SUPRVSOR macro-instruction. The format of this
option requires you to supply the number of entries in the table. Each
table entry can contain information relating to one of the traced
conditions. When the last entry in the table is filled, the next entry
will overlay the first.

Takle Entry Formats

Table entry formats are as follows:

SIO Instruction

023 13 21 310 3110 3110 31

Device Channel Channel Status Word
Address Address Word (Meaningful only lwhen bits 2-3 = 01)

\ SI1O Condition Code

0

I/0 Interruption

0 13 1619 310 310 3l|0 31

1 0000 Channel Status Word

i
1/O Old PSW

SVC Interruption

0 13 16 19 310 310 31(0 31

Contents of Contents of
! 0001 Register O Register 1

—

~
SVC Old PSW
Location of the Takle

The addresses of the last entry made in the takle, the beginning of
the table, and the end of the table are contained in a 12-bkyte field.
The address of this field is contained in the full word starting at
location 20. The format of the field is as follows:

Hcow to Use the Tracing Routine 109

| [0 31
¥ + - —

] Address of the | Address of the | Address of the |
| |

l i 4

| Last Entry Table Beginning Table End

The tracing routine 1is bypassed during aknormal termination proce-
dures, except when incorporated in MFT or MVT configurations of the
operating system.

i10

IMPLEMENTING DATA_ SET PROTECTION

To wuse the data set protection feature
of the operating system, you nust create
and maintain a data set, named PASSWORD,
consisting of records that associate the
names of protected data sets with the
password designated for each data set.
This chapter provides the informaticn you
need to create the PASSWORD data set, and
describes operating characteristics of the
data set protection feature.

Recommended Publications

The IBM System/360 Operating System:
Data Management publication (Form C28-6537)
contains a general descriptiocn of the data
set protection feature.

The IBM System/360 Operating System:
Operator's Guide puklication (Foxrm
C28-6540) contains a description of the
operator messages and replies associated
with the data set protection feature.

The IBM System/360 Operating System: Job
Control Language publication (Form
C28-6539) contains a description of the
data definition (DD) statement parameter
used to indicate that a data set is to ke
placed under protection.

Documentation of the operating syster
routines supporting data set protection can
be obtained through your IBM Branch Office.

Irplementing Data Set Protection

111

IMPLEMENTING DATA SET PROTECTION

To prepare for use of the data set protection feature of the
operating system, you place a sequential data set, named PASSWORD, on
the system residence volume. This data set must contain one record for
each data set placed under protection. In turn, each record contains a
data set name, the password for that data set, a counter field, a
protection mwode indicator, and a field for recording any information you
desire to log. On the system residence volume, these records are
formatted as a "key area" (data set name and password) and a "data area"
(counter field, protection mode indicator, and logging field). The data
set is searched on the "key area."

You must write routines to create and maintain the PASSWORD data set.
These routines may be placed in your own likrary or the system's linkage
editor 1library (SYS1.LINKLIB). You may use a data management access
method or EXCP programming to handle the PASSWORD data set.

If a data set is to be placed wunder protection, it mast have a
protection indicator set in its lakel (DSCB or header 1 tape label).
This is done by the operating system when the data set is created. The
protection indicator is set in response to an entry in the LABEL=
parameter of the DD statement associated with the data set being placed
under protection. The Job Control Language publication describes the
entry Note: Data sets on magnetic tape are protected only when standard
labels are used.

The balance of this chapter discusses the PASSWORD data set charac-
teristics and record format, the creation of protected data sets, and
operating characteristics of the data set protection feature.

PASSWORD DATA SET CHARACTERISTICS AND RECORD FORMAT

The DPASSWORD data set mnust reside on the same volume as your
operating system. The space you allocate to the PASSWORD data set must
be contiguous, i.e., its DSCB must indicate only one extent. The amount
of space you allocate 1is dependent on the number of data sets your
installation desires to place under protection. The organization of the
PASSWORD data set is physical sequential, and the content is unblocked
format-F records, 132 bytes in length (key area plus data area). The
following illustration shows the password records as you would build
them in a 132 bLyte work area. Explanation of the fields follows the
illustration.

[¢————— 52 byte "key" 80 byte "data area"
’/3 bytes
M——— 44 bytes ————wa 8 e 77 bytes
bytes
fully qualified pass- logging field
data set name word (optional informa-
tion)

protection mode indi-
cator -] byte

binary counter - 2 bytes

The name of the protected data set being opened and the password
entered by the operator are matched against the 52-kyte "key area." The

112

data set name and the password must be left-justified in their areas and
any unused bytes filled with blanks (X'40'). The password assigned may
be from one to eight alphameric characters.

The operating system increments the binary counter by one each time
the data set is successfully opened (except for performance of SCRATCH
or RENAME functions on the data set). When you originate the password
record, the wvalue in the counter may ke set at zero (X'0000') or any
starting value your installation desires.

The protection mode indicator is set to indicate that the data set is
to be read-only, or that it may be read or written. You set the
indicator as follows:

e To zero (X'00') if the data set is to ke read-only.
e To one (X'01') if the data set may be read or written.

You may use the 77-byte logging field to record any information about

the data set under protection that your installation may desire, e.g.,
date of counter reset, previous password used with this data set, etc.

PROTECTING THE PASSWORD DATA SET

You protect the PASSWORD data set itself by creating a password
record for it when your program initially Lkuilds the data set.
Thereafter, the PASSWORD data set cannot be opened (except Ly the
operating system routines that scan the data set) unless the operator
enters the password.

CREATING PROTECTED DATA SETS

A data definition (DD) statement parameter (LABEL=) is wusea to
indicate that a data set is to be placed under protection. You may
create a data set, and set the proctection indicator in its 1label,
without entering a password record for it in the PASSWORD data set.
However, once the data set is closed, any subsequent opening results in
termination of the program attempting to open the data set, unless the
password record is available and the operator can honor the request for
the password. Operating procedures at your installaticn must ensure
that password records for all data sets currently under protection are
entered in the PASSWORD data set.

PROTECTION FEATURE OPERATING CHARACTERISTICS

This section provides informaticn concerning actions of the protec-
tion feature in relation to termination of processing, volume switching,
data set concatenation, SCRATCH and RENAME functions, and counter
maintenance.

Termination of Processing

Processing is terminated when:

1. The operator cannot supply the correct password for the protected
data set being opened.

2. A password record does not exist in the PASSWORD data set for the
protected data set being opened.

3. The protection mode indicator setting in the password record, and
the method of I/0 processing specified in the open rcutine do not

Implementing Data Set Protection 113

agree, e.dg., OUTPUT specified against a read-only protection mode
indicator setting.

4. There is a mismatch in cdata set names for a data set invclved in a
volume switching operation. This is discussed in the next section.

Volume Switching

The operating system end-of-volume routine does not request a
password for a data set involved in a volume switch. Continuity of
protection is handled in the following ways:

Input Data Sets - Tape and Direct-Access Devices

Processing continues if there is an equal comparison ketween the
data set name in the tape label cr DSCB on the volume switched to,
and the name of the data set opened with the password. An unequal
comparison terminates processing.

Output Data Sets - Tape Levices

The protection indicator in the tape label on the volume switched
to is testea:

1. If the protection indicator is set ON, an equal comparison
between the data set name in the label and the name of the data
set opened with the password allows processing to continue. An
unequal comparison results in a call for another volume.

2. 1If the protection indicator is OFF, processing continues, and a
new lakel is written with the protection indicator set ON.

3. If only a volume label exists on the volume switched to,
processing continues, and a new 1label 1is written with the
protection indicator set cn.

OQutput Data Sets - Direct-Access Devices

For existing data sets, an equal comparison between the data set
name in a DSCB on the volume switched to, and the name of the data
set opened with the password allows processing to continue. For new
output data sets, the mechanism wused to effect volume switching
ensures continuity of protection and the DSCB created on the new
volume will indicate protection.

Data Set Concatention

A password is requested for every protected data set that is involved
in a concatentation of data sets, regardless of whether the other data
sets involved are protected or not.

SCRATCH and RENAME Functions

An attempt to perform the SCRATCH or RENAME functions on a protected
data set results in a request for the password. The protection feature
issues an operator's message when a protected data set is the object of
these functions. The Operator's Guide publication discusses the mes-
sage.

Counter Maintenance

The operating system does not maintain the counter in the password
record and no overflow indication will ke given (overflow after 67,535
openings). You must provide a counter maintenance routine to check and,
if necessary, reset this counter.

114

THE RESIDENT BLDL TABLE AND RESIDENT ACCESS METHOD OPTIONS

This chapter discusses the resident BLDL
table and resident access method options
and provides guidelines for their use.

Prerequisite Puklications

The IBM Systen/360 Operating System:
Data Management publication (Form C28-6537)
contains a general discussion of the BLDL
routine.

The IBM System/360 Operating System:
System Generation publication (Forn
C28-6554) describes how you specify the
resident BLDL table and resident access
method option in the SUPRVSOR macro-
instruction at system generation time.

The IBM System/360: Operating System:
Utilities pukblication (Form C28-6586)
contains a description of the IEBUPDAT
utility which you use to construct lists of
load nmodule names in the procedure library
(SYS1.PROCLIB).

The IBM System/360 Operating System:
Storage Estimates publication (Form
C28-6551) provides storage requirement
information for the resident access method
option and resident BLDL table option.

The Resident BLDL Takle and Resident Access Method Options

115

THE RESIDENT BLDL TABLE AND RESIDENT ACCESS METHOD OPTIONS

These options, when included in an Operating System/360 configu-
ration, provide you with the capabilities of placing in the system
nucleus:

1. All, or any selection of linkage library directory entries (40
bytes per entry).

2, A selected group of access method routines.

Placement occurs during the initial program load (IPL) process. You
include either or Dboth of these options when the system is generated.
Parameters for specification of these options are provided in the system
generation SUPRVSOR macro-instruction. Operator communication with
these options may also be specified.

System issued ATTACH, LINK, LOAD, or XCTL macro-instructions request-
ing load modules in partitioned data sets require direct-access storage
device accesses to search the data set directory for the location of the
requested module (the BLDL table operation) and to fetch the mecdule.
The resident BLDL table option reduces the number of accesses required
during execution of these macro-instructions when a load module (whose
directory entry is resident) is requested from the linkage library. The
resident access method option eliminates such accesses during execution
of a system issued LOAD macro-instruction that requests any of the group
of resident access methcd routines.

You specify the linkage likrary directory entries and the access
method routines to be rmade resident through lists of linkage library or
access method 1load module names placed in the procedure 1libkrary
{SYS1.PROCLIB). A standard 1list and alternative lists may exist for
each option. IBM provides a standard 1list for the resident access
method option. The stanaard 1lists are processed without operator
intervention when the operator communication facility is not included
with the options. When the operator communication facility is included,
the operator must indicate the action to be taken. Selection of
alternative lists may not be made unless the operator cormunication
facility 1is included. The Operator's Guide publication describes the
messages and replies associated with the two options.

The balance of this chapter discusses the function of each option,
the creaticn of the procedure likrary lists, the use of the operator
communication facility, and, in Appendix A, lists the content of the
resident access method standard list.

THE RESIDENT BLDL TABLE OPTION

This option builds, in the system nucleus, a list of linkage library
directory entries for wuse by ATTACH, IINK, LOAD, or XCTL macro-
instructions requesting linkage library load modules. During execution
of the BLDL operation in the rmacro-instruction routines, the 1linkage
library directory is searched only when the directory entry for the
requested load module is not present in the resident BLDL table.

You list, in a member of SYS1.PROCLIB, the 1load module name of
linkage 1library load modules whose directory entries are to be made
resident. The memker name for the standard list is IEABLDOO. Creation
of procedure library lists is discussed later in this chapter. The next
section provides guidelines for choosing the content of the list.

Note: Directory entries in the resident takle are not updated as a
result of updating the load module in +the linkage library. The old

116

version of the 1load module is used until an IPL operation takes place
and the new directory entry for the module is made resident.

SELECTING ENTRIES FOR THE RESIDENT BLDL TABLE

Any load module in the linkage likrary may have its directory entry
placed in the resident BLDL takle. Other items you should consider are:

1. Table size {each entry requires 40 bytes of storage).

2. Frequency of use of the load module.
Table Size

The resident BIDL table is incorpcorated in the system nucleus. The

additional storage required is governed by the numker of table entries
and is acquired by reducing the amount of dynamic storage area
availakle, i.e., the system nucleus expands. Each installation wusing
the resident BLDL table option must determine the amount of storage it
can afford for the resident BLDL takle.

Frequency of Use

Short of placing the entire linkage library directory in the resident
BLDL table, you make the option effective ky selecting directory entries
representing the load modules which are called most frequently. Your
choice will depend on the system configuration and the operating
practices of your installation. You should give loada modules of the
scheduling components of the system, linkage editor, and language
processor (s) thorough consiageraticn.

THE RESIDENT ACCESS METHOD OFTION

This option places access mwethod load modules in the system nucleus
and creates a resident 1list of the 1lcaded modules. A LOAD macro-
instruction requesting any access method mcaule first scans the resident
list. If the module is listed, no fetch operation is required.

You list, in a member of SYS1.PROCLIB, the load module names of
access method load modules to ke made resident. The member name for thne
standard 1list is IEAIGGOO. A standard list of most frequently used
access method modules is supplied ky IBM, and is in SYS1.PROCLIB of the
starter system under the standard member name.

The creation of procedure likrary lists and the content of the IBM
supplied standard list is discussed later in this chapter. The next
section discusses some considerations pertaining to the use of the
access method option.

CONSIDERATIONS FOR USE

The storage space requirea for each access method module consists of
the Lkyte requirements of the module and its asscciated load request
block (LRB). The Storage Estimates publication provides storage
requirements for the resident access method option when used with the
standard procedure library list provided by IBM.

All access method modules placed in the system nucleus are "only

loadable". ATTACH, LINK, and XCTL macro-instructions cannot refer to
the resident modules.

The Resident BLDL Table and Resident Access Method Options 117

You may alter the standard access mwethod list (or create alternative
lists) to include access method modules supporting program controlled
interrupt scheduling (PCI), exchange buffering, track overflow, and the
UPDAT function of the OPEN macro-instruction.

To ke eligible for use with the resident access method option, access

method load modules must be reenterakle. The module name must be of the
form IGG019xx, where xx can be any two alphanureric characters.

CREATING PROCEDURE LIBRARY LISTS

You use the IEBUPDAT utility program to comstruct the required 1lists
of load module names in the procedure library. Standard rmember names
for these lists are:

IEABLDOO for the BLDL takle option
IEAIGGO0 for the access method option

These are the member names that the nucleus initialization program
will recognize at IPL time in the aksence of any other specification,
i.e., the operator communication facility was not incorporated.

Your input format (to IEBUPDAT) for the lists is the same for either
option, consisting of library identification followed by the load module
names. You use eighty character records with the initial or only record

containing the 1library identification. Continuation is indicated Ly
placing a comma after +the 1last name in a recora and a non-blank
character in column 72. Subsequent records must start in column 16.

The initial record format (with continuation) is:

1 72
SYS1.LINKLIB
[b...] SYS1.SVCLIB b...namel,nane2,name3,...X

Subsequent records do not contain the library name.
SYS1.LINKLIB indicates that linkage library load module names follow.

SYS1.SVCLIB indicates that SVC library module names follow. You 1ist
linkage~library 1load rodule names in the same order that they appear in
the linkage likrary directory.

You may construct alternative lists for either option and place them
in the procedure library. Member names for these alternate lists are of
the form:

IEABLDxx for the BLDL option
IEAIGGxx for the resident access method option
where xx can be any twc alphanumeric characters.

Use of the alternative lists is indicated by the operator at IPL time
and requires that +the cormunication facility be present. When the
operator communication facility is present, the operator must indicate
for either or both options that the standard list is to be used; that
alternative lists are to be used; or that, for this IPL, the option(s)
will not bt used. In the latter case, no resident BLDL table or access
method routines will be placed in the nucleus.

EXAMPLE
The following coding illustrates the format and content of a BLDL

option 1list that might be used to support the resident BLDL table
option. The operator, at IPL time, would have to indicate the member

118

name, IEABLDAE, to the system. The load module names listed are from
the Assembler (E), Linkage Editor, and scheduler components of the
operating system.

//BLDLIST EXEC PGM=IEBUPDAT,PARM=NEW

//SYSPRINT DD SYSOUT=A

//SYSUT2 DD DSNAME=SYS1.PROCLIB,DISP=0LD

//SYSIN DD *

./ ADD IEABLDAE, 00,0,1

Ve NUMBR 00000000,00000000,00000000,00000010

SYS1.LINKLIB GO, IEEGESTO,IEEGK1GM, IEEICIPE,IEEIC2NQ,IEEIC3JF,
IEEQOT00,IEFINTQS,IEFK1, IEFSD008,IEFW21SD, IEFXA,
IETASM, IETDI, IETE1l,IETE2, IETE2A, IETE3, IETE3A,IETEUM,
IETE4P, IETEUS, IETES, IETESA,IETESE, IETESP, IETINP, IETMAC,
IETPP,IETRTA, IETRTB, IET07,IET071,IET08, IET09,IETO09I,
IET10,IET10B,IET21A,IET218,IET21C,IET21D, IEWL, IEWSZOVR

-/ ENDUP

VA

Il

Note: The operator reply "L" may ke used in conjunction with a l1list
specification and causes the content of the list to be printed. You
should use this feature initially (especially with extensive lists) so
that format errors, e.g., a 9 character name, and incorrect name
specifications may be easily identified.

The Resident BLDL Takle and Resident Access Method Options 119

APPENDIX A:

RESIDENT ACCESS METHOD OPTION - STANDARD LIST IEAIGGOO

The content of the IBM supplied standard list for the resident access

method

first in

option is
sequence by frequency of use,
the list.

shown below.

The modules are listed in an ascending
i.e., the least frequently used module is

This arrangement ensures efficient scanning of the

resident list developed in storage.

Module Name

Access Method

IGGO019AV
IGG019AN
IGGO019AM
IGGO19AH

1IGGO019BE
IGGO19AG

IGG019CB
1G6G019CA
IGGO019AK
IGGO19AJ
IGGO19AI
IGGO19AC
IGGO19AB
1GG019AA
IGGO19AR
IGGO19AQ
IGGO19AL
IGGO019AD
IGG0198D
IGG019BC
IGGO19EB
IGG019BA
IGGO19CK
1GG019cyg

IGG019CI
IGGO19CH

IGG019CL
IGGO19CF

IGGO19CE

IGG019CD
I1GG019cCC

120

OSAM
QSAM
QSAM
QSAM

BSAM
QSAM

SAM

SAM

QSAM
QSAM
OSAM
QSAM
QSAM
QSAM
QOSAM
QSAM
QSAM
QSAM
BSAM
BSAM
BSAM
BSAM
SAM

SAM

SAM
SAM

SAM
SAM

SAM
SAM
SAM

(SB)
(SB)
(SB)
(SB)

(SB)

(SB)
(SB)
(SB)
(SB)
(SB)
(SB)
(SB)
(sB)
(SB)
(SB)

Functicn

PUT Locate for Dummy Data Set

Backward Move - Format F, FB, U Records
Backward Locate - Format F, FB, U Records
GET Move with CNTL - Format V Records (Card
Reader)

Magnetic Tape Forward Space or Backspace
GET Move with CNTL - Format V Records (Card
Reader)

Space or Skip Printer

Stacker Select (Card Reader)

PUT Move, Format F, FB, U Records

PUT Locate, Format V, VB Records

PUT Locate, Format ¥, FB, U Records

GET Move, Format F, FB, U Records

GET lLocate, Format V, VB Recoxds

GET Locate, Format F, FB, U Recorxds

PUT Synchronization Routine

GET Synchrconization Rcutine

PUT Move, Format V, VB Records

GET Move, Format V, VB Records

NOTE/POINT Tape

NOTE/POINT Disk

CHECK (all devices)

READ/WRITE (all devices)

SYSIN Delimiter Check (Appendage)

Read Length Check, Format V Records
(Appendage)

Length Check, Focrmat FB Records (Appendage)

End-of-kxtent Check (Data Extent Block)
(Appendage)

Printer Test Channels 9,12 (Appendage)

ASA Character to Comrmand Code

(Printer-Punch)

End-of-Block (Printer-Punch)

Schedules 1I/0 for Direct-Access Output
Schedules I/0 for Tape, Direct-Access
Input, Card Reader, Paper Tape Reader

SB=simple buffering
SAM=common sequential access methcd rcutines

CONSTRUCTING A DUMMY WAITR RCUTINE

This chapter discusses the preparation
of a dummy WAITR routine for wuse with
Option 2 (multiprogramming with a fixed
number of tasks) of Operating System/360.

Recommended Publications

The IBM System/360 Operating System:
Control Program Services publication (Form
Cc28-6541) describes the WAITR mwacro-
instruction.

The IBM System/360 Operating System:
Assembler Language publication (Form
C28-6514) describes the assembler language
used to code the dummy WAITR routine.

Constructing a Dummy WAITR Routine

121

CONSTRUCTING A DUMMY WAITR ROUTINE

The multiprogramming with a fixed number of tasks option (MFT) of
Operating System/360 requires programs scheduled into any higher
partitions to release the scheduler as soon after initiation as
possible. The mechanism for release is the WAITR macro-instruction
which causes the required scheduler shift to the next lower partition.
You may desire to run programs not originally designed for the MFT
environment, i.e., not containing the WAITR macro-instruction, in one of
the higher partitions. 1In this circumstance you must provide a routine
that will cause the required scheduler shift; invoke the program you
desire to execute; and pass parameters to the invoked program. Your
routine is executed as the first portion of any job with which it is
associated.

The balance of this chapter discusses the functions of a dummy WAITR
routine, provides a coding example, and discusses the job control
language statements and programming considerations pertinent to use of a
dummy WAITR routine.

FUNCTIONS OF THE DUMMY WAITR ROUTINE

When coding a dummy WAITR routine, your code must:
1. Issue a WAITR macro-instruction.
2. Dynamically invoke a specified program.

3. Restore the PARM= field of the EXEC statement that initiated
execution of the WAITR routine, deleting only the name of the
prograr to be invcked.

You use the WAITR instructicn t¢ 1initiate the desired scheduler
shift. You dynamically invoke the program to be executed, i.e.,
transfer control via the XCTL macro-instruction, since once +the WAITR
macro-instruction is issued, the scheduler 1is released. Your WAITR
routine identifies the program to be invoked by picking up its system
name from the PARM= field of the EXEC statement that initiated execution
of your WAITR routine.

Your WAITR routine must restore +the PARM= field so that any
parameter (s) present (other than the invoked program's name) may be
picked up by the invoked program.

The next section, "A Coding Example" illustrates Lbasic implementation
of these functions.

A CODING EXAMPLE

The following source statement sequence illustrates the implementa-
tion of the dummy WAITR routine functions described in the preceding
section. The statements are keyed to explanatory text by the circled
numbers.

DUMWAIT CSECT
SAVE (14,12)

BALR 2,0

USING *,2

ST 13,MYSAVE+4

LA 13, MYSAVE

L 3,0(1) ADDRESS OF PARM AREA TO GR3
LH 5,0(3) PARM AREA COUNT FIELD TO GR5

122

1 WAITR 1,ECB=XECB RELEASE SCHEDULER

LA 3,0(3)
LR 6,3
SCAN CLI 2(6),Cc'," SCAN FOR COMMA IN PARM FIELD
BE HIT BRANCH IF FOUND
LA 6,1(6) POINT TO NEXT CHARACTER
BCT 5, SCAN
LA 5,1(5)
HIT SR 6,3 GR6 NOW CONTAINS NO. OF BYTES SCANNED
BCTR 5,0 SUBTRACT 1 FROM COUNT FOR COMMA
LA 7,3(3,6) GR7 NOW POINTS AT REMAINING PARAMETERS
BCTR 6,0 SETUP GR6 FOR USE IN EX INST.
2 EX 6, MODNMOVE
STH 5,0(3) REMAINING COUNT TO PARM CCUNT FIELD
LTR 5,5 CHECK COUNT FOR ZERO
BZ XOouT IF ZEROQO, SKIP PARMOVE
BCTR 5,0 SETUP GR5 FOR USE IN EX INST.
3 EX 5, PARMOVE
XOouT L 13, MYSAVE+U
L 14,12(13)
L 1,24(13)
) XCTL (2,12) ,EPLOC=MODNAME
PARMOVE MVC 2(1,3),0(M
MODMOVE MVC MODNAME (1) ,2(3)
MYSAVE DS 18F
DS ()]
4 MODNAME DC cLg* '
S XECB DC X'40000000"
END
1 The dummy WAITR macro-instruction must be coded as shown here. The

event contrcl block must be specified as shown in statement 5, i.e.,
the complete bit is ON.

2 The subject instruction of this EX instructicn places the name of the
program to be invoked in the MODNAME field -- statement *“.

3 The subject instruction of this EX instruction effectively deletes
the invoked program name from the PARM= area by moving the remaining
parameters in the area to the high order end of the area.

4 This field must contain blanks.

5 Coding the event control block as shown here sets the "complete bit"
ON. The wait routine will then allow execution of the WAITR routine
and the invoked program.

To the bkasic implementation shown in this example, you may wish to
add diagnostic code to inform the operator that the PARM= field has been
omitted from the EXEC statement. A count value of zero in the PARM=
area count field indicates that no information has been placed in the
PARM= area.

JOB _CONTROL LANGUAGE STATEMENTS

You use the EXEC statement to initiate execution of the dummy WAITR
routine; to specify the name of the program to be invoked; and to
specify any parameters to be passed to the invoked program. A JOB
statement and any DD statements defining data sets used by the invoked
program must also be present 1in the input stream. A sample EXEC
statement follows. The dummy WAITR routine has been cataloged as
DUMWAIT.

Constructing a Dummy WAITR Routine 123

//MFTJOB JOB (any valid parameters)
/7 EXEC PGM=DUMWAIT,PARM='PROGX,COMPUTE,BINARY"

(required DD statements for PROGX)

The name of the program to be invoked by DUMWAIT must be the first
entry in the PARM= parameter list.

PROGRAMMING CONSIDERATIONS

A dummy WAITR routine itself does not require any special considera-
tions for use with MFT. MFT conventions that apply to the invoked
programs must be observed.

Note: Use of the dummy WAITR routine precludes the entering of input
aata via the jok stream.

124

SYSTEM MACRO-INSTRUCTIONS

This chapter contains the description
and formats of macro-instructions that
allow you either to modify control kLklocks
or to oktain information from control
blocks and system tables. Before reading
this chapter, you should be familiar with
the information contained in the prerequi-
site publications listed below.

Prerequisite Puklications

The IBM System/360 Operating System:
Control Program Services publication (Form
C28-6541) contains the notation conventions
used to describe the macro-instructions in
this chapter.

The IBM System/360 Operating System:
Assemkler Language publication (Form
C28-6514) contains the information neces-
sary to code programs in the assemkler
language.

The IBM System/360 Operating System:
System Control Block publication (Form
C28-6628) contains format and field de-
scriptions of +the system control klccks
referred to in this chapter.

System Macro-Instructions

125

LOCATE DEVICE CHARACTERISTICS (DEVTYPE) MACRO-INSTRUCTION

The DEVTYPE macro-instruction is used to request information relating
to the characteristics of an I/0 device, and to cause this information
to be placed into a specified area.

[m————————= B e B bttt 1
| Name | Operation| Operand |
fommm————— o e e e e 1
| (symboll | DEVTYPE | ddloc-addrx,area-addrx{,DEVTABI] |
| L O VO J

ddloc-addrx
specifies the address of a double word that contains the symbolic
name of the DD statement to which the device is assigned. The name
must be left justified in the double word, and must be fcllowed by
blanks if the name is less than eight characters. The double word
need not be on a double-wcrd koundary.

area-addrx
specifies the address of an area into which the device information
is to be placed. The area can ke either two full words or five
full words, depending on whether or not the DEVTAB c¢perand is
specified. The area must be cn a full word koundary.

DEVTAB
If DEVTAB is specified, and the device is a direct-access device,
five full words of information are placed into your area. if

DEVTAB is specified, and the device is not a direct-access device,
two full words of information are placed intc your area. If DEVTAB
is not specified, two full words of information are placed into
your area.

Note: Any reference to a dummy DD statement in the DEVTYPE

macro-instruction will cause invalid information to be placed in
the output area.

Device Characteristics Information

The following information is placed into your area:

Word 1 Device Code from the UCB in which:

Byte 1 bit 0 Unassigned
kit 1 Overrunable Device 1l = yes
kit 2 Burst/Byte Mode 1 = burst
bit 3 Data Chaining 1 = yes
bit 4-7 Model Code

Byte 2 Optional Features

Byte 3 Device Classes

Byte 4 Unit Type

Note: Bit settings for Byte 2 -- Optional Features are noted in the UCB

format and field description in the System Control Blocks publication.

word 2 Maximum klock size. For direct-access devices, this
value is the maximum size of an unkeyed block; for
magnetic o©r paper tape, this value is the maximum
block size allowed by the operating system. For all
other devices, this value is the maximum block size
accepted by the device.

126

If DEVTAB is specified,
following information:

Word 3 Bytes 1-2

Bytes 3-4
Word &4 Bytes 1-2

Byte 3

Byte &4

Woxd 5 Byte 1

Byte 2

Bytes 3-4

the next three full words contain the

The numker of physical cylinders on the
device.

The number of tracks per cylinder.
Maximur track length.

Block Overhead - +the number of bytes
required for gaps and check bits for each
keyed klock other than the last block on a
track.

Block Overhead - the nuwmber of bytes
required for gaps and check bits for a
keyed block that is the last block on a
track.

Block Overhead - the number of bytes to be

~subtracted if a klock is not keyed.

bits 0-6 Reserved

bit 7 If 1, a tolerance factor must ke
applied to all klocks except the
last block on the track.

Tolerance Factor - this factor is used to
calculate the effective length of a klock.
The calculation shculd be performed as
follows:

Step 1 - add the klock's key length to the
block's data length.

Step 2 - test kit 7 of byte 2 of word 5.
If bit 7 is 0, perform step 3. If bit 7
is 1, multiply the sum computed in step 1
by the tolerance factor. Shift the result
of the multiplication nine bits to the
right.

Step 3 - add the appropriate klock
overhead to the value oktained above.

System Macro-Instructions 127

Output for Each Device Type

Maximum
UCB Type Field Record Size DEVTAB
(Word 1 (Word 2 (Words 3, 4, and 5

In Hexadecimal) In Decimal) In Hexadecimal)

2540 Reader 10 00 08 01 80 Not Applicable
2540 Reader W/CI 10 01 08 01 80 Nect Applicable
2540 Punch 10 00 08 02 80 Not Applicable
2540 Punch W/CI 10 01 08 02 80 Not Applicable
1442 Reader-Punch 50 00 08 03 80 Not Applicable
1442 Reader-Punch W/CI 50 01 08 03 80v Not Applicable
1442 Serial Punch 51 80 08 03 80 Not Applicakle
1442 Serial Punch W/CI 51 01 08 03 80 Not Applicakble
2501 Reader 50 00 08 Ou 80 Not Applicable
2501 Reader W/CI 50 01 08 04 80 Not Applicable
2520 Reader Punch 50 00 08 05 80 Not Applicable
2520 Reader Punch W/CI 50 01 08 05 80 Not Applicakble
2520 B2-B3 11 00 08 05 80 Not Applicable
2520 B2-B3 W/CI 11 01 08 05 80 Not Applicable
1403 10 00 08 08 120% Not Applicable
1403 wW/UCs 10 80 08 08 120%* Not Applicable
1404 10 00 08 08 120%* Not Applicable
1443 10 00 08 0OA 120%* Not Applicable
2671 10 00 08 10 32767 Not Applicakle
\1052 10 00 08 20 130 Not Applicable
2150 10 006 08 21 130 Not Applicable
2400 (9-track) 30 00 80 01 32767 Not Applicable
2400 (9-track ;
' phase encoding) 34 00 80 01 32767 Not Applicakle
2400 (9-track

dual-density) 34 20 80 01 32767 Not Applicable
2400 (7-track) 30 80 80 01 32767 Not Applicakble
2400 (7-track and 30 cO 80 01 32767 Not Applicable

data conver-

sion)

128

2301
2302
2303
2311

2314

CI=Card Image Feature

30
30
30
30

30

40
00
00
00

co

UCS=Universal Character Set

20
20
20
20

20

02
ou
03
01

08

20483

498y

4892

3625

7294

000100C85003BA3535000200
0OFAUD2E1378511414010219
0050000A131C922626000200
00CBOOOAOE29511414010219

00Cc800141C7E922D2D010216

*Although certain models can have a larger line size, the minimum line

size is assumed.

Exceptional Returns

The following return codes are placed in register 15:

00 - request completed satisfactorily.

04 - ddname not found.

System Macro-Instructions 129

HOW TO READ A JCB FILE CONTROL BLOCK

To accomplish the functicns that are performed as a result of an OPEN
macro-instruction, the OPEN routine requires access to information that
you have supplied in a data definition (DD) statement. This information
is stored Ly the system in a job file control block (JFCB).

Usually, the programmer is not concerned with the JFCB itself. In
special applications, however, you may find it necessary to modify the
contents of a JFCB before issuing an OPEN macro-instruction. To assist
you, the system provides the RDJFCB macro-instruction. This macro-
instruction causes a specified JFCB to ke read into main storage from
the job gueue in which it has been stored. Format and field description
of the JFCB is contained in the System Control Block publication.

When subsequently issuing +the OPEN rmracro-instruction, you must
indicate, Dby specifying the TYPE=J option, that you have supplied a
modified JFCB to be used during the initialization process.

The JFCB is returned to the jok queue ky +the OPEN routine or the
OPENJ 1routine, if any of the modifications in the following list occur.
These modifications can occur only if the information is not originally
in the JFCB.

e Expiration date field and creation date field merged into the JFCB
from the DSCB.

¢ Secondary quantity field merged into the JFCB from the DSCB.
e DCB fields merged into the JFCB from the DSCB.

e DCB fields merged into the JFCB from the DCB.

e Volume serial number fields added to the JFCB.

s Data set sequence number field added to the JFCB.

» Number of volumes field added to the JFCB.

If you make these, or any other mcdifications, ana you want the JFCB
returned tc the job queue, you must set the high-order bit of field
JFCBMASK+4 to one. This field is in the JFCB. Setting the high-order
bit of field JFCBMASK+4 to zero does not necessarily suppress the return

of the JFCB to the job queue. If the OPEN or OPENJ routines have made
any of the above modifications, the JFCB is returned to the job gqueue.

OPEN -- Prepare the Data Control Block for Processing (S)

The OPEN macro-instruction initializes one or more data control
tlocks so that their associated data sets can be processed.

A full explanation of the operands of the OPEN macro-instruction,
except for the TYPE=J option, 1is contained in the publication IBM
System/360 Operating System: Control Program Services. The TYPE=J
option, because it is used in conjunction with wodifying a JFCB, should
be used only by the system programmer or only under his supervision.

—_— - e e e i e e 2 e e e O e — - 1

T
Operation| Operand |

+
OPEN | ({dcb-addr, [(opt,-codel,optz-codel)],}...) |
[, TYPE=J] _ |

TYPE=J :
specifies that, for each data control block referred to, the
programmer has supplied a job file control block (JFCB) to be wused
during initialization. A JFCB is an internal representation of
information in a DD contrcl statement.

During initialization of a data control klock, its associated JFCB
may ke modified with information from the data control block or an
existing data set label or with system control information.

The system always creates a jok file control Lklock for each DD
control statement. The job file control block is placed in a job
queue on direct-access storage. Its position, in relation to other
JFCBs created for the same job step, is noted in a main storage
takle.

When this operand is specified, the user must also supply a DD
control statement. However, the amount of information given in the
LD statement is at the programmer's discretion, because he can
ignore the system-created jok file control block. (See the
examples of the RDJFCB macro-instruction for a technique for
modification of a systen-created JFCB.)

Note: The DD statement must specify at least:
e Device allocation.
¢ A ddname corresponding to the associated data control block DCBDDNAM
field.

RDJFCB -- Read a Job File Control Block (S)

The RDJFCB macro-instruction causes a job file control block (JFCB)
to be read from the job queue into main storage for each data control
klock specified.

dcb, (opts ,0pts)
(same as dcb, opt,, and opt, operands in OPEN macro-instruction)

Although the opt; and opt, operands are not meaningful during the
execution of the RDJFCB macrc-instruction, these operands can
arpear in the L-form of either the RDJFCB or OPEN macro-instruction
to generate identical parameter 1lists, which can be referred to
with the E-form of either macro-instruction.

Ixamples: The macro-instruction in EX1 creates a parameter list for two
data control blocks: INVEN and MASTER. 1In creating the liist, both data
control blocks are assumed to be opened for input; opt, for both blocks
is assumed to ke DISP. The macro-instruction in EX2 reads the
system-created JFCBs for IKVEN and MASTER frcr the job queue into main
storage, thus making the JFCB's available to the problem program for
mocdification. The macro-instruction in EX3 modifies the parameter 1list
entry for the data contrcl block narmed INVEN and indicates, through the
TYPE=J operand, that the proklem is supplying the JFCB's for system use.

System Macro-Instructions 131

EX1 RDJFCB (INVEN, ,MASTER) ,MF=L

EX2 RDJFCB MF=(E, EX1)
EX3 OPEN (, (RDBACK, LEAVE)) ,TYPE=J,MF=(E,EX1)
Programming Notes: Any number o¢f data control block addresses and

asscciated options ray ke specified in the RDJFCB macro-instruction.
This facility makes it possikle to 1read job file control blccks in
parallel.

An exit list address must be prcvided in each data control block
specified Ly an RDJFCB macro-instruction. Each exit list must contain
an active entry that specifies the main storage address of the area into
which a JFCB is to be placed. A full discussion of the exit 1list and
its wuse 15 contained in Appendix D of the IBM System/360 Operating
System: Control Program Services puklication. The format of the Jjob
file cecntrel block exit list erntry is as follows:

fm—————
| Type of Exit
| List Entry
Job file
control klock

Hexadecimal Ccde
(high-order byte)

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-

Contents of Exit List Entry
(three low-order bytes) |
Address of a 176-kyte area to ke]
provided if the RDJFCB or OPEN |
(TYPE=J) macro-instruction is used.|
This area must begin on a full word]
toundary. |

07

P————— p——
L e

I
|
]
1
|
|
]
1
|
1
1
|
]
1
|
|
1
|
|
|
]
|
|
1
|
|
]
|
|
1
|
|
]
|
|
!
[

The main storage area into which the JFCB is read must ke at least
176 bytes 1long.

The data control block may be open or closed when this macro-
instruction is executed.

Cautions: The following errcrs cause the results indicated:

Exrror Result

A DD control statement has not been No action

provided.

A main storage aadress has not been Abnormal terminaticn of task
provided.

L- and E-Form Use: The L and E forms of this macro-instruction are

written as described in Appendix B of the IBM System/360 Operating
System: Control Program Services publication.

132

INDEX

Access method option Device code designations
alternative list 118 catalog and VTOC maintenance 29
eligible routines 118,120 DEVTYPE macro-instruction 127
function 117 DEVTYPE macro-instruction
operator communication 116,118 DEVTAB operand 126,127
procedure library list 118,119 format 126
standard list 120 : purpose 126
storage requirements 117 Dummy WAITR routine

Accounting routines example 122,123
entry to 40 EXEC statement PARM field 122,124
exit from 41 functions 122
input to 40 input data via job stream 124
insertion in control program 41
output from 41 Editor routines

dual-density contlict 55

BLDL table option entry conditions 56,57
alternative list 118 general logic flow 58
eligible entries 117 insertion in control program 63,64
entry size 117 module names 55
function 116 programming conventions 55
operator communication 116,118 volume label conflict 55
procedure library list 118,119 EXCP macro-instruction
standard list name 116 channel program 76
storage requirements 117 channel program completion 79

channel program device end errors 79

Catalog maintenance channel program initiation 78
alias entry 27 CLOSE with EXCP 84,92
CAMLIST macro-instruction control blocks 77

11,12,13,14,15,16,17,18 data control block format 86
CATALOG macro-instruction 17,18 DCB with EXCcp 77,84
control volume pointer entry 27 DEB with EXCP 77,96
data set cataloging 17 ECB with EXCP 77,95
data set deletion (direct-access EOV with EXCP 84,91
volumes) 19 IOB use with EXCP 77,93
data set pointer entry 26 OPEN with EXCP 84,90
data set renaming 20 programmer use 77
generation index build 13 system use 75

generation index pointer entry 27
index alias assignment 14

index alias deletion 15 IECDSECT macro-instruction
index build 13 format 65
index control entry 25 macro-definjition 65
index deletion 14 purpose 65
index link entry 26 use in editor routines 61
INDEX macro-instruction 13,14,15,16 use in nonstandard label routines 52
index pointer entry 26 IEFJFCBN macro-instruction
LOCATE macro-instruction 11,12 format 71
volume control block contents 28 macro-definition 73
volume control block pointer entry 26 purpose 71
volume index control entry 25 use in editor routines 61,63
Catalog and VTOC maintenance IEFUCBOB macro-instruction
device code designations 29 format 70
Control volumes macro-definition 70
connection 15 purpose 70
disconnection 16 use in editor routines 61,63

use in nonstandard label routines 52
Data set protection

concatenation 114 JFCB modification 130
counter maintenance 114

operating characteristics 113 Nonstandard label routines
SCRATCH and RENAME functions 114 control information 47
termination of processing 113 design U5

volume switching 114 entry point 45

Index 133

C28-6550-2

EXCP usage U6

exit from 45,53

input header 44

input trailer 44 .

insertion in control program 53,54
output header Uu4

output trailer 45

register usage 45,47

size U5

OPEN macro-instruction
use with RDJFCB 130
type=J operand 130

PASSWORD data set
binary counter 113
characteristics 112
creation 113
protection 113
protection mode indicators 113
record format 112

RDJFCB macro-instruction
DCB exit list address 132
error conditions and results 132
format 131

LBV

®

International Business Machines Carporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

L and E-form use 131
purpose 131

SVC routines
design 32
exit from 33
insertion in control program 37
interruption 32
location 32
naming 33
number assignment 33
programming conventions 33
size 32,33

Tracing routine
table entry formats 109
table location 109 5 132

VTOC maintenance
CAMLIST macro-instruction 19,20,21
OBTAIN macro-instruction 19
RENAME macro-instruction 21
SCRATCH macro-instruction 20

WAITR macro-instruction
use in MFT shift initiation 122,123

"¥°"S°"N UT peojutid

¢-0699-82D

G LINE

cuT |

READER'S COMMENTS

Title: IBM System/360 Operating System Form: C28-6550-2
System Programmer's Guide

Is the material: Yes No
Easy to Read? —_ —_
Well organized? — —_
Complete? - P
Well illustrated? _ _
Accurate? R —_—
Suitable for its intended audience? —_— —_
How did you use this publication?
_.As an introduction to the subject __ For additional knowledge
Other fold
Please check the items that describe your position:)
—— Customer personnel —Operator —__Sales Representative
—— IBM personnel — Programmer —-Systems Engineer
—— Manager ——Customer Engineer — Trainee
—— Systems Analyst —_Instructor Other

Please check specific criticism(s), give page number(s),and explain below:
—Clarification on page (s)
— Addition on page(s)
—— Deletion on page(s)
—— Error on page(s)

Explanation:

fold

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

C28-6550-2

staple staple
fold fold

r 1

| FIRST CLASS |

| PERMIT NO. 81 |

| |

| POUGHKEEPSIE, N.Y. |

L]

f 1
| BUSINESS REPLY MAIL |
| NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. |
L J

RRRRN
ARERE!

RN
IBM CORPORATION

P.O. BOX 390 L
POUGHKEEPSIE, N. Y. 12602

POSTAGE WILL BE PAID BY

L R
;-
ATTN: PROGRAMMING SYSTEMS PUBLICATIONS RERRN a
DEPT. D58 S
RRRRE o
=]
R
fold v fold
s
9]
)
©
|
o
w
|
=)
[
(N
BN
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only|
IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017 staple

[International]

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023a
	023b
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	replyA
	replyB

