File No. S360-31
| order No. GY28-6714-1

Program Logic

IBM System/360 Operating System
Loader

Program Logic Manual

This publication describes the internal logic of the
IBM System/360 Operating System Loader. The Loader
functions as a processing program to combine and link
input object and load modules in main storage and to
pass control directly to the loaded program for its
execution. This publication identifies areas of the
program that perform specific functions and relates
those areas to the program listing.

This publication is intended for persons involved in
program maintenance, or system programmers who are
altering the program design; it is not needed for
normal use or operation of the program described.

The information on the Time Sharing Option (TSO) in this
manual should be used for planning purposes only until such

time as the option is available.

Second Edition (December, 1970)

This is a major revision of, and makes obsolete, Order No. GY28-6714-0
and Technical Newsletters GY28-2401 and GY28-6405. It contains
information concerning a new Compiler/Loader interface, the new SYSTERM
data set, and new Loader options. All changes to the text, and small
changes to illustrations, are indicated by a vertical line to the left
of the change; changed or added illustrations are denoted by the symbol
e to the left of the caption.

This edition corresponds to Release 20 of the IBM System/360 Operating
Systen. i

Changes are periodically made to the specifications herein; any such
changes will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Corporation, Programming Publications, 1271 Avenue of the Americas,
New York, New York 10020,

© Copyright International Business Machines Corporation 1969, 1970

SUMMARY OF AMENDMENTS -- RELEASE 20

Description

A new interface is defined between the Loader and
a compiler which allows an internal data area to

be used as input to the Loader. An open library

data set can also be passed to the Loader.

New main storage requirements for the Loader
are given.

The Loader can be used with the Time Sharing
Option (TSO).

The SYSTERM data set is added to the Loader
data sets.

The name of the diagnostic output data set is
changed from SYSPRINT to SYSLOUT.

The name of the Load module processor is changed
from IEWLOAD to IEWLODE.

The Loader can now identify the loaded program to
the control program.

Two new options, TERM/NOTERM and NAME=, may be
specified when using the Loader.

The Loader processing portion can be invoked
through a new entry point, IEWLOAD.

An exception is added to the statement that the
CESD contains only one entry for each uniquely
named text location.

Pages

9,10,12,14
16-19,22-24,
28-29,32,34-35,
4o,42,43,78-80,
85,86,157-161

9

9-10,17,18,40
10,18,43,78,81,
82,85-89
10,15,18,19,27,
43,78,81,84,
85-86,88

77-79,81,84
85,86

10,17,18,34,40,
42,43,82,84,
85-86,162-163

15,18,19,78,85,
86,88-89

18,43,77

24,32,73

This publication provides information
describing the internal organization and
logic of the Loader. It is part of an
integrated library of IBM System/360
Operating System Program Logic Manuals.
Other publications whose contents are
required for an understanding of the Loader
are:

IBM System/360 Operating System:

Introduction to Control Program Logic,
Program Logic Manual, Order No.
GY28-6605

Concepts and Facilities, Order No.

GC28-6535

Linkage Editor and Loader, Order No.

GC28-6538

Assembler Language, Order No. GC28-651u

The reader should also refer to the
co-requisite publications:

IBM System/360 Operating System:

Storage Estimates, Order No. GC28-6551

System Control Blocks, Order No.
GC28-6628

This publication has eight sections:

Section 1: Introduction. This section
describes the Loader as a whole, including
its relationship to the operating system.
The major divisions of the program and the
relationship between them are also
described in this section.

Section 2: Method of Operation. This
section provides: (a) an overview of, and
an introduction to, the logic of the
Loader, and (b) detailed descriptions of
specific operations. Included are text and
operation diagrams. The latter emphasize
the flow of data within the Loader. The
text and diagrams are correlated through a
system of references. These references are
of two levels. That is, the operation
diagram for a function has an alphameric
identification; within the diagram,
specific points of reference have
alphabetic labels. The text which
describes the same function refers to the
operation diagram as a whole and to the

PREFACE

specific labeled references where
appropriate. For example, the discussion
of initialization refers to operation
Diagram Bl. Within the discussion,
reference (B) refers to point (B) in
Diagram Bl. Also included in Section 2 are
examples of the internal tables at
strategic points in Loader processing.

Both the diagrams and the table
illustrations are designed as aids to quick
recall.

Section 3: Program Organization. This
section describes the organization of the
Loader. Program components (modules,
control sections, and routines) are
described both in terms of their operation
and their relation to other components.
Flowcharts are included at the end of this
section.

Section 4: Microfiche Directory. This
section directs the reader to named areas

of code in the program listing, which is
contained on microfiche cards.
Section 5: Data Area Layouts. This

section illustrates the layouts of tables
and control blocks used by the Loader.
These layouts may not be essential for an
understanding of the basic logic of the
program, but are essential for analysis of
storage dumps.

Section 6: Diagnostic Aids. This section
includes the general register contents at
entry to program components, definitions of
the internal error codes, and a list of
serviceability aids available with the
Loader.

Section 7: Appendix. This section
includes input conventions, record formats,
an Error Message/Issuer Cross-Reference
Table and a description of the
Compiler/Loader interface for passed data
sets.

Section 8: Dictionary of Abbreviations and
Acronyms. This section lists the
expansions of abbreviations and acronyms
used in the manual.

If more detailed information is
required, the reader should see the
comments and coding in the Loader program
listing.

SECTION 1:
PUYPOSE o« e « o o o o o o o
Functions . . « ¢ o« o & o &
Main Storage Requirements
Environment « « « o o o

Operational Considerations

SECTION 2:
Steps of the Loader Operation . « « «

Initialization (IEWLIOCA) .« « «

Input Control and Buffer Allocation

INTRODUCTION o o« o « o o

Physical Characteristics . .

Input Module Structure . . .
External Symbol Dictionary
Relocation Dictiomnary (RLD) . .

Interrelationship of Control

Dictionaries « o« o o« o o o o o o &

Loader OptiONS « « o « o o ¢ o o o o

~e & o & o
tnNe & s & o
® & o & 2 & o

General Theory Of Operation

METHOD OF OPERATION . . .

Initialization (Diagram Bl) . o

Input Control and Buffer Allocatlon
(Diagram Cl) o ¢ o o o o o o o o &

Primary Input Processing (Diagrams
D1,
Secondary Input Processing

(Diagram E1) ¢ « o« o « o o &
Final Processing . « « « « =«
Identifying Loaded Program?
End of Loading « « ¢ o o o

D2) e e e e e o e e e o o o o

Analyzing Control Information
Initializing Main Storage . .
Readying Data SetS o« « o o o ¢ o «

® » e s o o o o o

Buffer Management (IEWBUFFR) « « .
Buffer Deallocation

Buffer Allocation . . N e o o
Reading Object Module Input from an
External Device . . .

Reading Internal Object Module Input
Reading Load Module Input « o« o o«

Primary Input Processing« .« .

External Symbol Dictionary (ESD)
Processing (IEWLESD) « o « « o
Preliminary ESD Processing
CESD SearchinNg « o« o « o @
No-Match Processing . . .
Match Processing « « « o @
Text Record Processing . « .« .
Processing Object Module Text
(IEWLTXT) e e o o o o . . o
Processing Preloaded Text (IEWLMOD)
Processing Load Module Text (LMTXT)
Relocation Dictionary (RLD)
Processing (IEWLRLD) . « o o « o o &
Relocating Address Constants
(IEWLERTN) &« ¢ ¢ o o o o o o« o o o @
End Processing « « « o o o o o o o «
END Card Processing « « « o
End-of-Module Processing . .

e & o o
® 6 s o o o
DR S}
* 0 s o 0

Secondary Input Processing (IEWACALL)

Resolving ERs from the Link Pack Area
Resolving ERs from the SYSLIB Data

Set . 2 o 4 e e e s 6 e e o o e o =

e o & o o o o

CONTENTS

Final Processing for the Loaded Program

Assigning Addresses for Common Area
(COMMON) ¢ ¢« « o o o s o s o o o @
Assigning Addresses for External
DSECT Displacements (PSEUDOR) . .
Issuing Unresolved ER Messages . .
Checking the Loaded Program's Entry
Point . + ¢ o & o o . o e

Identifying Loaded Program1 e e e e
End of Loading « « « « o o o o & o «
Loader Processing Termination . .
Loader Control Termination . « «

SECTION 3: ORGANIZATION OF THE LOADE
Loader/Scheduler Interface
Loader Control Portion - IEWLCTRL
(Chart 100) . & &« o o o o o o &«
Initial, I/0, Control, and Allocation
Processing « « « o« o o« o o o o o o
Loader Processing Control -
IEWLIOCA (Charts 200-201) . . .
Buffer Allocation Routine -
IEWBUFFR (Chart 203)
Storage Allocation Routine -
GETCORE &« o o o o o o o o o &
Return Storage Routine - FREECORE

S

R

Object Module Buffer Prime Routine
- IEWPRIME (Chart 204) « ¢« ¢« ¢ o o &
Read Routine - IEWLREAD (Chart 203)
Print Routine - IEWLPRNT (Chart

207) L] . . Ll L] e - . L] . L] . . L] .
SYSTERM Routlne - IEWTERM (Chart

208) @ @ o e e e @ e ¢ e o e o e o &

SYNAD Exit Routine - SYNAD

Input Module Processing <« « . o .

Object Module Processor - IEWLRELO
(Chart 300) + o« o« o . « o
ESD Processor - IEWLESD (Charts
301_30'4) . - . . - - - . -
RLD Processor - IEWLRLD (Chart 305)
End Processor - IEWLEND (Chart 307)
Translation Routine - TRANSID

(Chart 309) .+ & ¢ o« o o o « o & .
Table Allocation Routine - ALLOCATE
MOD Processor - IEWLMOD (Chart 310)
Address Constant Relocation

Routine - IEWLERTN (Chart 306) . . .
Map Routine - IEWLMAP (Chart 308) .
Conversion Routine - IEWLCNVT . . .
Load Module Processor - IEWLODE
(Charts 400-403) . & o o o o o o .
Load Module Text Processor - LMTXT
(Charts 401-403) e e e @ e e e e e o

Secondary Input and Final Processing . .

Automatic Library Call Processor -
IEWACALL (Charts 500-504)

Error Processing « « o« o o o o « o o

Error Log Routine - IEWERROR

(Chart 505) . L L] - L] - . .
Diagnostic Dictionary Processing
Routine - IEWBTMAP (Chart 506) . . o

Identifying Loaded Program . « « « « « =«

77

77

77

77

78
78

78
78

78
78
79
79
79
79
79
80
80
80
80
80
81

81
81

81

81

82
82

Identification Routine - IEWLIDEN SECTION 7: APPENDIX ¢ o o o ¢ « o « « o145

(Charts 600-601) « « « o ¢« o « « « o 82 Input Conventions . . « ¢« ¢« ¢ &« o « o 2147

Routine Control - Level Tables « « « « « 84 Input RecOord FOXmatsS « « « « o« o« o « o« <148
Compiler/Loader Interface for Passed

CHARTS ¢ « o o o o « o ¢« « ¢ ¢« o o o« o o 91 Data SetS « o ¢ o « o « o e o o o o 157

Internal SYSLIN Control Block . . .158

SECTION 4: MICROFICHE DIRECTORY « « « o127 Open SYSLIB DCB 4« « « o o o « o« « o158

IDENTIFY Macro Instruction -
SECTION 5: DATA AREA LAYOUTS . « . . 129 Identifying Loaded Program (MVT Only) .162

SECTION 6: DIAGNOSTIC AIDS . . « « . 141 SECTION 8: DICTIONARY OF
Exrror Code Definitions o« « o« o o o « o o143 ABBREVIATIONS AND ACRONYMS16U4
SerViceability Aids e o o e o o e« e o olU4y

INDEX o o o o s o o o o o o o o o o o o165

FIGURES

Figure 1. An Example of Loader
Structure and Storage Map « « ¢ « ¢ o
Figure 2. Loader Control Logic Flow
Figure 3, Object Module and Load
Module Structure N B
Figure 4, Example of an Input Module
Figure 5. Load Module Allocation . .
Figure 6. Freed Areas From
Buffer-DECB Allocation « « « « o o« o o
Figure 7. Allocation for Object
Module Input e o ¢ e o e a4 o s o o o
Figure 8. Tables Used in the CESD
Search e e e e e o e e o e & e o o o
Figure 9. Storage Allocation . « «

Figure 10. Translation Control Table
and Translation Table « « « ¢ « o o o
Figure 11. Overall Relationship of

Tables e e e o ¢ ¢ 4 s e s s s e s o
Figure 12. Loading the Text from a
Load Module Record « o .

Figure 13. BLDL List and Address LlSt
Figure 14, ESD and RLD Processing . .
Figure 15. Pseudo Register Processing
Figure 16. Loader Organization . . .
Figure 17. Address List e o o o o o
Figure 18, BLDL List . . o o o
Figure 19. CESD Control Table

(CMTYPCHN) L] L] . . L] L] L] Ll - L] L L] .
Figure 20. CESD Entry o« . «
Figure 21. Condensed Symbol Table

Entry @ ¢ e @ o o & e o e e o & & e o

Figure 22. Contents Directory Entry
(CDE) e @ o 4 o a e & e e e e o @ o o
Figure 23, Data Event Control Block

(DECB) L] . L - . e . L] L] L] L] o - L] L]
Figure 24. Extent Chain Entry . « . .
TABLES

Table 1. Loader Options . . « e
Table 2. Object and Load Module

Processing Differences o« o« « o « « o« o
Table 3. ESD Entry Types and
Fllnctions e & e e e e e o e e e e o e
Table 4. No-Match Processing
Required for Input Entry TYPES « « o« o
Table 5. Symbol Resolution « « « « o

14

ILLUSTRATIONS

Figure 25. IDENTIFY Parameter List . .134
Figure 26. IEWLDCOM DSECT -

Communication Area . . « « o« « « « o . 135
Figure 27. IEWLDDEF CSECT e o . .138
Figure 28. INITMAIN DSECT Deflnltlon .139
Figure 29. RLD Table Entry <140
Figure 30. Translation Control Table .140
Figure 31. Translation Table140
Figure 32. SYM Input Record (Card

Image) - Ignored by the Loader1u48
Figure 33. ESD Input Record (Card

Image) e o o o o o o o o s o e e o o S1uB
Figure 34. Text Input Record (cCard

Image) e o o o o o o ® s e o s o e o 2149
Figure 35. RLD Input Record (Card

Image) e o o o o o o o o o s s o e« & &150
Figure 36. END Input Record - Type 1

(Card Image) e o e o o o s o = o & o <151
Figure 37. END Input Record - Type-2

(Card Image) e o e o o o o o e o o o o151
Figure 38. SYM Record (Load Module) -
Ignored by the Loader « . . .152
Figure 39. CESD Record - (Load

Module) . o o o ¢ o o o o o o o o o o o152
Figure 40. Scatter/Translation Record

- Ignored by the Loader153
Figure 41. Control Record - (Load

Module) .« . ¢ ¢ o o o o o o o o o o » o154
Figure 42, Relocation Dictionary

Record - (Load Module) e o o o o o o o155
Figure U43. Control and Relocation .
Dictionary Record - (Load Module) . . .156
Figure 44, DCB List o « &« &« « o o « « 157
Figure 45. 1Internal Data Area in
Fixed-length Record Format . . « « . « .159
Figure 46. Internal Data Area in
Variable-length Record Format160
Figure 47, MOD Record (Card Image) . .161
Table 6. Relocation of Address

constants . ¢ ¢ ¢ 2 o e o o . e « o« o 38

Table 7. Table Construction and Usage 129
Table 8. Register Contents at Entry

to Routines (Part 1 of 2) 1041
Table 9, Internal Error-Code

Definitions . . ¢ o & & ¢ ¢ &« o & & o 2143
Table 10. Module Map Format Example . .143
Table 11. Error Message/Issuer
Cross-Reference Table (Part 1 of 2) . .145

CHARTS

Chart 001. Sample Flowchart « « « « &
Chart 100. Loader Control Portion
(IEWLCTRL) « o ¢« o ¢ o ¢ o o o o o o o
Chart 200, 1Initialization, I/0,
Control, Allocation Processing
(IEWLIOCA) (Part 1 of 2) . .
Chart 201. Initialization, I/0,
Control, Allocation Processing
(IEWLIOCA) (Part 2 O0f 2) v« o« e ¢ o o @
Chart 202. DCB Exit Routine (OPENEXIT
Chart 203. Buffer Allocation Routine
(IEWBUFFR) .
Chart 204.
Routine (IEWPRIME) o« @« o« o o o

Object Module Buffer Prime

.« e

_Chart 205. _Read Routine (IEWLREAD) . .

Chart 206. Library Open Routine
(IEWOPNLB) . L] L] L] . . . L] L] . . o L] -
Chart 207. Print Routine (IEWLPRNT),

Write Routine (WIWRITE), Check Routine
(WTCHECK) e e o ¢ e« o o @
SYSTERM Routine

(IEWTERM)

Chart 208.

Chart 300. Object Module Processor
(IEWLRELO) ¢ ¢ ¢ ¢ ¢ s o o o o o o o @
Chart 301. ESD Processing Routine
(IEWLESD) (Part 1 of #) e e e e e e o
Chart 302. ESD Processing Routine
(IEWLESD) (Part 2 of U4) o« ¢ o o« o« o &
Chart 303. ESD Processing Routine
(IEWLESD) (Part 3 of W) e e e e e o o
Chart 304. ESD Processing Routine
(IEWLESD) (Part 4 Oof U4) ¢ « o o « o @
Chart 305. RLD Processing Routine

(IEWLRLD) e o @ o ¢ e e e o o @ e o o
Chart 306. Address Constant
Relocation Routine (IEWLERTN) . o« « &

DIAGRAMS

Diagram AOQ.
Diagram Al.

Overall Loader Operation
System Generation « « «
Diagram A2, Loader Invocation . . « .
Diagram Bl, Loader/Scheduler
Interface and Initialization « o o e
Diagram Cl. Primary Input Control and
Buffer Allocation + « o « ¢ o o o o &
Diagram Dl. Object Module Processing
Diagram D2. Load Module Processing .
Diagram D3. ESD Record Processing
(Generalized) e @ e @ e o e o o e e

« 94
95

« 96

. 97

«100
.101

«102
103
104
<105
.106
<107

.108

. 47

.« 51

« 55

98 _3) 4 e e e

Chart 307. End Processing Routine
(IEWLEND) ¢ ¢ ¢ o o o o o s o o o o «
Chart 308. Map Routine (IEWLMAP) . .
Chart 309. Translation Routine
(TRANSID) e o o o o o o s o s a o o o
Chart 310. MOD Processing Routine

(IEWLMOD) ¢ ¢ ¢ o o o o o o o o = o &«
Chart 400. Load Module Processing
Routine (IEWLODE) . « o o o o o o « &
Chart 401. Load Module Text
Processing Routine (LMTXT) (Part 1
3) ¢ . . .
Chart 402.
Processing

Load Module Text
Routine (LMTXT) (Part 2

8- & —e e -@_- e e o -@e 4 ¢ ¢ & o

Chart udé.

Load Module Text

Processing Routine (LMTXT) (Part 3 of

3) L] - - L] e - L] L] - - . . .
Chart 500. Secocondary Input Processing
Routine (IEWACALL) (Part 1 of 5) . . .
Chart 501. Secondary Input Processing
Routine (IEWACALL) (Part 2 of 5) . . .
Chart 502. Secondary Input Processing
Routine (IEWACALL) (Part 3 of 5) . . .
Chart 503. Secondary Input Processing

Routine (IEWACALL) (Part 4 of 5 . . .

Chart 504. Secondary Input Processing
Routine (IEWACALL) (Part 5 of 5) . . .
Chart 505. Error Log Routine
(IEWERROR), Format Routine (RRSETUP) .
Chart 506. Diagnostic Dictionary

Processing Routine (IEWBTMAP)
Chart 600. Identification Routine
(IEWLIDEN), Extent List Entry Routine
(IDENTER) c o e s o o o o s e o e o o
Chart 601. Condensed Symbol Table
Routine (IDMINI) . ¢ o o o o o o o« o &

Diagram D4. Example of Input ESD
Processing (IEWLESD) « o o .
Diagram D5. Example of Input
Processing (IEWLESD) .« . .
Diagram D6. Example of ESD ID
Translation . . . o ¢ & o & ¢ « o o &
Diagram D7. Object Module Text
Processing « « « o o 2 s o o a o & « »
Diagram D8. Load Module Text
Processing « « o o« o« o « o o o o o o @
Diagram D9. RLD Record Processing . .
Diagram El. Secondary Input Processing

ESD

.109
.110

.111
.112

.113

.114

~115

<116
.117
.118
.119
.120
121
.122

.123

.124

125

. 69
71

This section provides a general description
of the Loader. Included are the purpose
and functions of the program, its physical
and environmental characteristics, and
operational considerations necessary for
its use. Also discussed in this section is
a generalized theory of loading.

PURPOSE

The purpose of the Loader is to combine
input object and load modules into an
executable program in main storage. In
this, the Loader performs the basic
functions of the linkage editor and program
fetch to obtain high-performance loading.
(The Loader can be used only when special
linkage editor processing, such as
overlaying modules, is not required.)

Use of the Loader can provide advantages
of increased system throughput and
conservation of auxiliary storage space.
System throughput can be increased through:

1. Elimination of scheduler overhead
since loading and execution occur in a
single job step.

2. Elimination of linkage editor I/0 for
intermediate and final output.

3. Elimination of certain linkage editor
functions such as: control statement
processing and overlay structuring.

4. Reduction of time required to read
input through improved buffering
techniques.

5. Reduction of time required for library
search through use of link pack
resident modules,

6. Elimination of time required to read
input from an external device through
use of an internal input data area
prepared by a compiler.

Auxiliary storage space is conserved
through:

1. Deferring inclusion of processor
library routines until load time, thus
reducing space required for the
program. (This applies to a
production environment where jobs are
selected from a job library.)

SECTION 1: INTRODUCTION

2. Eliminating space needed for the
linkage editor intermediate and output
data sets.

FUNCTIONS

The Loader performs the basic logical
functions of the linkage editor and of
program fetch. Like the linkage editor,
the Loader combines and links the input
modules. In addition, the Loader assigns
actual machine addresses to the resulting
program and then passes control directly to
the program for execution. In this, the
Loader functions as does program fetch.

As part of the link-loading procedure,
the Loader also automatically deletes
duplicate copies of a module and can
include modules from a system library.

MAIN STORAGE REQUIREMENTS

Loader operation requires about 21K bytes
of main storage.* (This amount does not
include the storage for the loaded program
and the condensed symbol table.) The
storage for Loader operation includes that
for Loader code (about 14K bytes), for the
data management access methods (about UK
bytes), and for Loader buffers and tables
(about 3K bytes). Part of the Loader
storage may be allocated from system
storage if the access methods are resident
and if the Loader code is resident in the
link pack area. Figure 1 shows an example
of Loader structure in main storage.

ENVIRONMENT

The Loader can be used with the PCP, MFT,
and MVT options of the control program.

The Loader can also be invoked under the
Time Sharing Option (TSO) of the System/360

1The actual amount required depends on the
type of input (e.g., input produced by the
PL/I compiler requires a minimum of 10K
bytes for Loader tables).

Section 1: Introduction 9

High

Loader Con- {
trol GETMAIN

Register save area for LOAD of Loader (72 bytes)

LOADER (Processing)

i l
TABLES (Dynamic)
Loader

Processor <
GETMAIN

Loaded Program

T

Descriptive information about loaded program

Address

Freed after pro-
gram execution

N

L Freed before pro-

gram execution

J

_——————Z
Freed after pro-
gram-execution

J

LOADER (CONTROL)

OPERATING SYSTEM

CONTROL PROGRAM

Low
Address 7

Figure 1.

| operating System. It can be used in one of

three ways:

1. As a job step, when the Loader is
specified on an EXEC job control
statement in the input stream.

2. As a subprogram, via the execution of
a LOAD macro instruction, a LINK macro
instruction, or an XCTL macro
instruction.

3. As a subtask, in multitasking systemns,
via execution of an ATTACH macro
instruction.

Loader operation requires access to a
primary input source, the SYSLIN data set.

An Example of Loader Structure and Storage Map

defined only as a partitioned data set.
SYSLIB may also be concatenated; however,
SYSLIB input consists of object modules
only or load modules only.

When the 1link pack area is available,
the Loader can include in the loaded
program resident modules listed in the
contents directory entry queue.

The Loader uses the SYSLOUT data set for
both diagnostic messages and module maps
and the SYSTERM data set for diagnostic
messages only. These data sets may be used
in conjunction or separately.

PHYSICAL CHARACTERISTICS

Input may be from a card reader, magnetic
tape, a direct access device, or it may be
a concatenation of data sets from different
types of devices. Input may also be an
internal input data area prepared by a
compiler.

An automatic search of a system library
can occur to complete the input. This

requires use of the SYSLIB data set. It is

10

The Loader consists of a control portion
and a processing portion. The control
portion handles linkages to and from the
processing portion, which performs the
actual program loading, and to and from the
loaded program for its execution. The
relationship between the portions of the
Loader is illustrated in Figure 2.

e Figure

2.

IEWLDRGO (ALIAS LOADER)

Control Portion of Loader

LOAD EP = IEWLOADR

CALL IEWLOADR —

PCP, MFT ENVIRONMENT

IEWLOADR

Processing Portion
of Loader

Y

DELETE EP = [EWLOADR

R #0 - entry point

(Performs program loading)

RETURN

LOADED PROGRAM

CALL

FREEMAIN Loaded Program

RETURN To Caller

IEWLDRGO (ALIAS LOADER)

Control Portion of Loader

LOAD EP = [EWLOAD

CALL IEWLOAD —

MVT ENVIRONMENT

RETURN

IEWLOADR

Processing Portion
of Loader

DELETE EP = IEWLOAD

ATTACH

R*1 - program name

(Performs program loading)

RETURN

LOADED PROGRAM

WAIT
DETACH

RETURN To Caller

Loader Control Logic Flow

RETURN

Section 1:

Introduction

11

The Loader consists of two loads: the
first is module IEWLCTRL, the control
portion; and the other comprises control
sections IEWLDDEF, IEWLIOCA, IEWLRELO,
IEWLLIBR, and IEWLIDEN which together
perform program loading. Because of the
interrelationships among module functions,
the Loader is not a candidate for overlay
structuring.

OPERATIONAL CONSIDERATIONS

Loader operation is dependent on the type
of input received and on user options that
may be specified.

The input to the Loader may be load
modules produced by the linkage editor
and/or object modules produced by the
following language processors: ALGOL,
COBOL, FORTRAN, PL/I, the report program
generator, and the assembler.! Input may be
from an external device or it may be one or
more internal object modules, that is, a
data area which resides in main storage and
consists of contiguous object module
records. If input is an internal data
area, the object module records containing
the instructions and data of the program
(text) can be omitted from the data area
itself and replaced by passing a pointer to
the text. The Loader then performs its
usual functions of relocation and linkage
on the text without having to read or move
it.

If the Loader is processing an internal
data area, input from an external device
cannot be concatenated to it.

1If the input consists only of load
modules, the user must specify the loaded
program's entry point.

Linkage Editor Input
Object Module

ESD

Linkage

T Editor

RLD

END

Figure 3.

12

INPUT MODULE STRUCTURE

Object modules and load modules have
basically the same logical structure (see
Figure 3). Each consists of:

e Control dictionaries, containing the
information necessary to resolve
symbolic cross references between
control sections of different modules.

e Text, containing the instructions and

data of the program. If an internal

object module is being processed, text
prepared by a compiler may be omitted
and replaced by a pointer to its
location.

s End-of-module indication (END statement
in object modules; EOM indicator in
load modules).

The instructions and data of any module
may contain symbolic references to specific
areas of code. The symbols may be defined
and referred to in the same module, or may
be defined in one module and referred to in
another. Thus, symbolic references are
either internal or external with respect to
the module in which they occur. A symbol
which refers to external code is called an
external reference (ER). External and
internal references are made through
address constants.

The Loader performs its function of
changing all address constants to actual
machine addresses by manipulating the input
modules' control dictionaries.

Object modules usually contain two
control dictionaries: an external symbol
dictionary (ESD) and a relocaticn
dictionary (RLD). An RLD is not present if
the module contains no relocatable address
constants.

Linkage Editor Output

Load Module
\\\\\\\\\\\ CESD
Control
TXT
EOM/RLD

Object Module and Load Module Structure

Load modules are a composite of object
modules, and, therefore, contain a
composite ESD (CESD). Load modules contain
RLDs also, unless there are no relocatable
address constants. General descriptions of
the control dictionaries follow., For
detailed descriptions, see "Section 7:
Appendix."

External Symbol Dictionary (ESD)

The external symbol dictionary contains
entries for all external symbols defined or
referred to within a module. Each entry
indicates the symbol and its type and gives
its position, if any, within the module.
For example, there is an ESD entry for each
control section, entry point, common area,
and external dummy section. (An external
dummy section defines a displacement within
an area, obtained during execution of the
input program via a GETMAIN macro
instruction. External DSECTs are also
referred to as pseudo registers.)

Relocation Dictionary (RLD)

The relocation dictionary contains at least
one entry for every relocatable address
constant (thus, for every external and
internal reference) in a module. An RLD
entry identifies an address constant by
indicating both its location within a
control section and the external symbol (in
the ESD) whose value determines the value
of the address constant.

INTERRELATIONSHIP OF CONTROL DICTIONARIES

The control dictionaries and associated
text are related through a system of

numbers known as ESD identifiers (ESD IDs).
An ESD ID is assigned to each external
symbol according to its sequential
appearance in an object module. The
external symbol dictionary entries, as
created by a compiler or assembler, have
the same sequential order, so the ESD ID
gives the dictionary entry number of an
external symbol.® (The linkage editor
renumbers the ESD IDs to maintain the
ordered relationship when combining modules
into a load module.)

Although the ESD IDs do not appear in
the ESD entries, they are used in label
definitions, text items, and RLD entries to
refer to the symbols in the ESD.

In the RLD entries, the ESD IDs are used
to show two relationships between the RLD
and ESD entries, as follows:

1. The RLD relocation pointer (R poinier)
indicates the ESD ID for the symbol
referred to by the address constant.

2. The RLD position pointer (P pointer)
gives the ESD ID for the CSECT in
which the address constant occurs.

Figure 4 illustrates the two cases of
RLD pointers. The text of CSECT A contains
two address constants, X and Y. X refers
to a symbol within CSECT A. Therefore,
both pointers of its associated RLD entry
give the ESD ID of CSECT A. The value
field of ¥, however, refers to a symbol in
a different control section, CSECT C.
Thus, the R pointer of the entry for Y
gives the ESD ID for CSECT C, the external
reference; the P pointer gives the ESD ID
for CSECT A.

iIn an object module, an ESD item with
type=LD can not have associated text or
dependent address constants (see "ESD
Processing”) and so is excluded from the
numbering system.

Section 1: Introduction 13

ESD
Symbol Type Origin Length
CSECT A sD 000 500 ﬁ
(_> CSECT C ER 000 0
{/“>‘ CSECT B SD 500 1000
l 000 1
| !
N y
l X A (A)
| 300
| v| A©
I TEXT ITEM OF CSECT A
l 400
| 500 3
I ?
T
|
N
TEXT ITEM OF CSECT B
RLD
R P Flag Address
1 1 F 300
\ 2 1 F 400
o
1
. J\ _

Note: The module above includes an external symbol dictionary, text, and a relocation dictionary. The entry in the ESD for CSECT C results

from the reference to CSECT C in the text of CSECT A. This reference is at location 400, (CSECT B has no relocatable address constants.)

Figure 4. Example of an Input Module

LOADER OPTIONS

User options may be specified by parameters
listed on the EXEC job control statementl
or may be passed internally by a program
requesting the Loader via LINK, LOAD,
ATTACH, or XCTL macro instruction.2 If the
options are not user-specified, the
defaults chosen through system generation
are used.

1see the publication IBM System/360
Operating System: Job Control Language
Reference, Order No. GC28-6704.

2See the publication IBM System/360
Operating System: Supervisor and Data
Management Mac¢ro Instructions, Order No.
GC28-6647.

14

If the options are passed internally,
the user can also provide alternates for
the standard ddnames and for the standard
SYSLIN and SYSLIB DCBs.

Table 1 describes the Loader options.
The parameters used are listed with the
associated options. For some options,
there are different parameters to specify
either the choice or the refusal of the
option., For example, NOCALL signifies that
the library call option (CALL) is not to be
used. (In this case, the third possible
parameter has been retained for
compatibility with the linkage editor
option NCAL.) Table 1 also indicates the
default options.

**The Loader default is NOTERM.

R

|
***The Loader assigns the name **GO if none was specified. |
1

e Table 1. Loader Options

r—- T ittt ittt R | ===
l 1 | SYSGEN |
| Parameters| Options | Defaults |
---------- g et P Bttt
|RES/NORES | The Loader searches the Link Pack Area queue for resident | REs |
| | modules after primary input is complete, but before the |]
[| SYSLIB data set is opened. | |
t -4 1 -
|MAP/NOMAP | The Loader produces a list of external names and their actual| NOMAP |
| | storage addresses. } |
e pa— $- - 1 4
CALL/	The Loader performs an automatic search of the SYSLIB data	CALL
NOCALL/	set for unresolved external names.	
NCAL		
} t - e :		
LET/NOLET	The Loader passes control to the loaded program despite the	NOLET
	occurrence of a severity 2 error condition during loading.	
e Ty PO O e		
SIZE=	Specifies the maximum amount of dynamic storage to be	SIZE=100K
	obtained for loader processing.	
poom oo - T T fommmoooooo e .		
EP=	Specifies an external name to be used as the entry point of	No SYSGEN
	the loaded program.	default*
b e e oo 1		
PRINT/	The Loader attempts to open the SYSLOUT data set for	PRINT
NOPRINT	diagnostic output.	
o oo T e 1		
TERM/	Error messages are directed to the SYSTERM data set as well	No SYSGEN
NOTERM	as the SYSLOUT data set.	default**
__________ B S ———— - SRS		
NAME=	Specifies the name to be used as the name of the loaded	No SYSGEN
	program.	default***

......... I - L S

*The Loader assigns an entry point to the loaded program if none was specified.

GENERAL THEORY OF OPERATION

In processing the input modules, the Loader
assigns main storage addresses to the
control sections to be included in the
loaded program and resolves external
references in the CSECTs.

Since each input module has an origin
that was assigned independently by a
language translator, the order of the

addresses in the input is unpredictable.
(Two input modules, for example, may have
the same origin.) The Loader assigns an
address to the first control section and
then assigns storage addresses, relative to
this origin, to all other CSECTs.

Since cross references between CSECTs in
different modules are symbolic, they are
resolved (translated into machine
addresses) relative to the main storage
addresses assigned to the loaded program.

Section 1: Introduction 15

SECTION 2: METHOD OF_ OPERATION

This section describes the logic of the
Loader. It contains an introduction which
emphasizes the flow of primary data and
control information through tables and
buffers. This section also contains
detailed functional descriptions of the
Loader.

The logic introduction refers to the
operation diagrams associated with a
particular function. The detailed
functional descriptions refer, through
lettered references e.g., (A) to a portion
of a diagram, to the corresponding steps of
a function as shown in the operation
diagrams. (The diagrams follow the text of
this section.)

At the end of this section are
illustrations of the internal Loader tables
at strategic points in processing (Figures
14 and 15). These illustrations stress the
changes to data as opposed to the diagrams,
which stress movement of data. Used
together, the two sets of figures offer
quick recall.

STEPS OF THE LOADER OPERATION

The Loader control portion, which acts as
an interface with the supervisor, loads the
processing portion of the Loader and passes
to it the parameter list received through
the scheduler. The system interface is
shown in Diagrams Al-A2. The Loader then
performs loading through the following
basic functions:

e Initijialization

e Input control and buffer allocation

e Primary input processing

e Secondary input processing

e Final processing

e End of loading
After the processing portion has completed
these functions, the Loader control portion
passes control to the loaded program for
execution.

The overall flow of data and control

during loading is shown in Diagram AO.

16

Initialization (Diagram B1)

When the Loader begins processing, it
performs initialization in preparation for
all subsequent processing. The operations
included in initial processing are:

* Analyzing control information

. Initializihg main storage

e Initializing DCBs and opening data sets

Input Control and Buffer Allocation

The Loader reads input and allocates
buffers as required for the current input
module., Object modules from SYSLIN
(primary input data set) and from SYSLIB
(secondary input data set) are read into
the object module buffers. (However, if
input is an internal data area, buffers are
not allocated and the data area itself is
considered one buffer.) Contrcl
information from load modules (including
ESD and RLD records) are read into the RLD
buffer. Text from load modules is read
directly into the loaded program's storage
area.

Primary Input Processing (Diagrams D1, D2)

The Loader performs the following
processing for all SYSLIN modules. (All
overlay and scatter control statements from
load modules and SYM records are ignored.)

External Symbol Dictionary Processing
(Diagrams D3-D5)

The ESD records from object modules and
CESD records from load modules describe
symbols that have been defined for extermnal
use. The Loader makes entries for the
symbols in the CESD and also makes entries
in the translation table to allow the
translation of the input ESD IDs to CESD
addresses. The Loader calculates main
storage addresses and stores them in the
CESD entries.

Text Record Processing (Diagrams D7, D8)

For object modules, the Loader translates
the ID of a text record to the proper CESD
entry address. The CESD entry contains the
storage address assigned to the CSECT.
When the Loader finds the address for the
text, it moves the text from the object
module's buffer to the loaded program's
storage. For load modules, the Loader
translates the IDs of all CSECTs in a text
record and thus finds their assigned main
storage addresses. Then the Loader reads
the record directly into the loaded
program's storage area. When a CSECT read
into main storage is to be deleted, the
Loader adjusts the location of following
CSECTs.

Relocation Dictionary Processing (Diagram
D9)

The Loader builds its RLD table from
information contained in the RLD records.
The Loader processes the RLD records of
object modules from the object module
buffer and those of load modules from the
RLD buffer. The Loader uses the relocation
and position (R and P) pointers to
determine the addresses of the adcons and
uses the flag field to determine the method
of address constant relocation required.

Address_Constant Relocation Processing

When external references in the CESD are
resolved, the Loader uses the RLD table
entries chained to the CESD entry to
relocate the related address constants in
the loaded text.

Secondary Input Processing (Diagram E1)

If there are unresolved external references
after all SYSLIN input has been processed,
the Loader tries to resolve them from
system library routines. If RES is
specified, the Loader first tries to
resolve the references from link pack area
routines. When this is possible, the
Loader uses the addresses of the referenced
routines in the 1link pack area to resolve
the adcons used to symbolically refer to
them. Finally, the Loader opens the SYSLIB
data set, if necessary. The Loader then
loads any library modules that can be used
to resolve ERs in the loaded program. The
modules are located via the BLDL and FIND
macro instructions. The Loader processes
the modules, depending on whether they are
object or load modules, in the same manner
as it processes primary input.

|

Final Processing

After processing all the input for the
loaded program, the Loader performs the
following: assigns addresses for the
common areas and for displacements in the
external dummy section, issues messages for
unresolved ERs, and determines the address
of the loaded program's entry point.

Identifying Loaded Programl

If program loading is successful, the
Loader issues an IDENTIFY macro instruction
to pass the name of the program to be
executed to the control program. At this
time, a condensed symbol table may also be
constructed for use during the program's
execution by the test facilities available
under the Time Sharing Option of the
System/360 Operating System.

End of Loading

Before ending Loader processing, the Loader
performs the following: writes out the
diagnostic message dictionary and any
remaining diagnostic messages, closes data
set DCBs, sets up return information, and
frees storage not required for the loaded
program.

INITIALIZATION (IEWLIOCA)

When the Loader begins processing, it
analyzes control information, performs
initialization of main storage and of data
sets, and allocates initial buffers for the
data sets. See Diagram Bl.

ANALYZING CONTROL INFORMATION

Loader operation depends on the control
information consisting of the options,
ddnames of the data sets, and the data
control block addresses to be included in
Loader processing. The Loader uses the
information passed by the user or the
defaults assigned by the system generator.
(The defaults are contained in a control
section assembled at system generation
time. This CSECT is IEWLDDEF.)

1This processing is performed only when the
Loader is used with the MVT option of the
control program.

Section 2: Method of Operation 17

(A) To analyze the control information,
the Loader obtains a temporary work area,
INITMAIN. (See Section 5 for the contents
of INITMAIN.) The Loader saves in the
temporary work area the default ddnames and
option indicators. An EXTRACT macro
instruction is then issued to determine
whether the Loader is currently operating
under the Time Sharing Option, and an
indicator is set in INITMAIN. If the
processing portion of the lLoader was
invoked through the entry point IEWLOAD,
another indicator is set to show that
identification of the loaded program is
desired. The Loader then scans the user's
options and resets the default indicators
in INITMAIN, when necessary.

If the SIZE option is specified, the
associated user's value replaces the
default value. However, if the option is
incorrectly specified, the default value is
used.

If the EP option is specified, the
associated entry point name is saved in
INITMAIN. There is no default entry point
specified by the system generator.

If the NAME option is specified, the
associated program name is saved in
INITMAIN. Otherwise, the default name **GO
is used.

The Loader then checks for
user-specified ddnames to ke used in
specifying data sets. If present, these
ddnames also replace the default names.

Finally, a check is made for the
addresses of alternates for the data
control blocks. A SYSLIN control block is
accepted if it describes an internal data
area. The address of this control block is
saved and an indicator for an internal
SYSLIN data area is set in INITMAIN. (The
SYSLIN control block, which is not a data
control block, is described in "Internal
SYSLIN Control Block" under "Compiler/
Loader Interface for Passed Data Sets" in
Section 7.) An alternate SYSLIB DCB is
accepted if it describes a data set which
has been opened. The address of this DCB
is also saved and an indicator for an open
library data set is set in INITMAIN.

INITIALIZING MAIN STORAGE

(B) The Loader obtains from the supervisor
the storage required to process the input
via the GETMAIN macro instruction. The
request is conditional and variable., The
maximum amount requested is that specified
by the SIZE option; the minimum is 2K
bytes. If the supervisor does not return

18

storage, the Loader then issues an
unconditional GETMAIN request for the
minimum. If 2K bytes of storage is still
unavailable, a system ABEND occurs.

If the supervisor returns main storage
space, the Loader establishes its permanent
communication area. (The communication
area is described in Section 5.) The
Loader then moves the information stored in
INITMAIN to the communication area.

Save areas for use during loading are
allocated and chained backward and forward.
Finally, the INITMAIN area is returned to
the system via a FREEMAIN macro
instruction. The area is then available
for data management functions required for
loading.

READYING DATA SETS

(C) The Loader performs initialization
requisite to use of its data sets. If the
TERM option has been specified, space is
reserved for a SYSTERM DCB, two DECBs, and
two buffers. Unless an internal SYSLIN
data set has been passed to the Loader, a
SYSLIN DCB must be prepared and opened.
Similarly, unless the NOPRINT option has
been specified, a SYSLOUT DCB must be
prepared and opened.

DCBs for the data sets are constructed
using a model DCB contained in the Loader.
The ddnames and basic attributes are placed
into the constructed DCBs before the data
sets are opened.

During opening, other data set
attributes are checked. These include
record format, record and block sizes, and
the number of buffers to be allocated for
the data set. If record and block sizes
are not defined, the Loader uses the
following defaults:

* For SYSLIN, both values are set to 80.
e For SYSLOUT, both values are normally

set to 121. However, if the Loader is
operating in time-sharing mode, the
record length of the SYSLOUT data set
is set to 81 so output can be easily
directed to a terminal.

Since the Loader allocates buffers for
its data sets, it does not require the
buffer allocation supplied by the Open
routine. The Loader indicates this by
setting the DCBBUFNO field in the DCB to
zero., The value that was found in the
DCBBUFNC field is stored in DCBNCP.

The Loader determines whether the data
sets opened successfully. If SYSLOUT is
open, the Loader allocates the number of
buffers and DECBs specified in the DCBNCP
field in the DCB, and sets a flag
indicating that the SYSLOUT data set is
useable., The diagnostic output page
heading is set up and printed. The Loader
then constructs in the SYSLOUT buffer a
list of the options used, the amount of
main storage received for Loader
processing, and the entry point and program
names if specified. After printing this
list, the Loader prints out any invalid
options received and any errors encountered
during the open procedure. Finally, if the
MAP option was chosen, the MAP heading is
constructed and printed.

If the opening of SYSLOUT was not
successful, the MAP option indicator is set
off and the storage allocated for the data
set's DCB is released.

Next, the Loader determines whether the
SYSLIN data set opened successfully. If an
error occurred during opening of SYSLIN,
loading is terminated. If SYSLIN opened
properly, the Loader sets the "unlike
attributes" indicator in the DCB to signify
that SYSLIN may be a concatenation of data
sets with unlike record formats. The
buffers for the first input module are then
allocated as described under "Buffer
Allocation."

INPUT CONTROL_AND BUFFER ALLOCATION

To read input, the Loader determines
whether the current input consists of
object or load modules and whether it
resides on an external device or in main
storage. This is indicated by indicators
(CMFLAG3) in the communication area as well
as the record format of the DCB. (The
format is undefined (U} for load modules,
fixed (F) for either object modules on an
external device or internal object modules,
and variable (V) for internal object
modules.) If the input data set resides on
an external device, buffers are allocated
and primed. If the input data set is an
internal data area consisting of internal
object modules, no allocation or priming of
buffers occurs and the data area itself is
considered one buffer. In any case, the
records are read and processed until the
end of the current data set is recognized,
either through the end-of-concatenation or
end-of-file condition for a data set
residing on an external device or through
the end-of-buffer condition for an internal

data area.l (No check for the END card or
EOM indication is made during the reading
procedure; the end condition is only
recognized when the record is processed.)
When the end of the current input is
reached, the Loader checks for additional
SYSLIN input2

Another data set in SYSLIN is indicated
unless both the end-of-file and end-of-
concatenation switches are on. When the
Loader opens a new data set in SYSLIN
input, the Loader determines the new
attributes. This is accomplished by the
same procedures used during Loader
initialization for the first input data
set.

BUFFER MANAGEMENT (IEWBUFFR)

In general, the Loader allocates storage
individually for DECBs and buffers. Thus,
for a single data set, buffer allocation
actually consists of several separate
allocations. These allocations are made
from contiguous storage whenever feasible.
B1ll allocations are made from the highest
available address in Loader processing
storage. When no longer needed, allocated
space is made available for subsequent
modules.

Buffer Deallocation

If both the current input and the previous
input consist of load modules, the Loader
uses the same buffer and DECBs. This is
possible since the buffer-DECB requirement
for load modules is constant. Figure 5
illustrates the buffer and DECBs required
for reading load modules. If either the
current or the previous data set consists
of object modules, the Loader frees
(deallocates) the storage used for the
previous buffer-DECB allocation,

A pointer to the first freed area is
maintained at CMFRECOR. (See Figure 6.)
The first four bytes of each freed area are

1End-of-buffer signifies both end-of-file
and end-of-concatenation for an internal
data area.

2The end-of-concatenation switch is set
during the data set opening if another
data set is concatenated to the current
one. If there is no other SYSLIN input,
the end-of-concatenation and end-of-file
switches are both set on. They are tested
at the end of each module.

Section 2: Method of Operation 19

CMRDCBPT

Input DCB

Note: CMRDCBPT, CMRDECPT, and CMGETREC are
pointers in the communications area (IEWLDCOM).

Figure 5. Load Module Allocation

2304

2001

1240

1000

Low Address

Figure 6.

20

Control and RLD record DECB

CMGETREC

256

+ — —— DECDCBAD

DECAREA @ o o

DECDECPT~

Text record DECB

Control and RLD 256
record buffer bytes

t~ — —~ DECDCBAD

DECDECPT

Communications Area (IEWLDCOM)

CMFRECOR
Freed Area 1
—
Freed Area 2
240 |

)

(¢

Loader Processing Storage

Freed Areas From Buffer-DECB Allocation

High Address

Note:
304 is the size of
Area 1.
240 is the size of
Area 2.

used to store a pointer to the next freed
area in the chain. The second four bytes
give the size of the current area. (The
size is always rounded to doubleword
value.) See Figure 6 for an illustration
of freed area chaining.

Before chaining an area deallocated from
a DECB or buffer, the Loader checks the
area's location against the pointers of the
other areas in the chain for contiguity.
Contiguous freed areas are combined under a
single pointer. For example, in Figure 6,
Freed Area 1 could consist of areas from
three separate deallocations: one for each
DECB and one for the buffer.

Buffer Allocation

After freeing any previously used buffers,
the Loader allocates DECBs and buffers for
the current input module. For object
module input, a DECB is allocated, cleared,
and the address of the DCB is stored in it;
then, the related buffer is allocated and
its address stored in the DECB. (The size
of the buffer is obtained from DECBBLKSI,
the number from DCBNCP where the value from
DCBBUFNO was stored.) The allocation
procedure is repeated until the specified
number of buffers has been allocated.
However, after the first time, each DECB is
chained to the one before., The last DECB
is chained to the first. (See Figure 7 for
an illustration of an allocation for object
module input.) The Loader also sets a
pointer to the DECB chain in the communi-
cation area at CMRDECPT, sets the I/0 flags
to indicate object module input, and saves
the buffer size in the communication area
for the later deallocation.

For load module input, the Loader
allocates the required two DECBs, clears
them, chains them together, and stores the
address of the DCB in them. The required
buffer, called the RLD buffer, is then
allocated and its address stored in the
first DECB. The Loader stores a pointer to
this buffer in the communication area at
CMGETREC, and a pointer to the first DECB
in CMRDECPT. (No buffer is allocated for
load module text which is read directly
into the loaded program's storage area.)
The RLD buffer size is stored in the DECB,
and finally the I/0 flags are set to
indicate load module input.

In allocating buffers and DECBs for load
or object module input, the Loader attempts
to reuse any storage freed from previous
allocations. The Loader examines each
entry in the freed area chain to determine

whether the related storage is sufficient
for the current DECB or buffer.

If the area is too small, the next entry
is tested. If the size of an area equals
the required size (rounded to doubleword
value), the Loader unchains the area and
constructs the buffer or DECB. If the
freed area is greater than the required
area, the chain pointer for that area is
updated to show the size and location of
the remainder.

If no area in the chain is adequate for
the current buffer or DECB, the Loader
makes the allocation from its processing
storage not previously allocated (prime
storage). If this allocation requires an
area so large that it would overlap the
loaded program's area, the loading process
is terminated with a message printed to
indicate that available storage was
exceeded.

READING OBJECT MODULE INPUT FROM AN
EXTERNAL DEVICE

Because of the fixed format of object
module records, the Loader can initiate the
reading of physical sequential blocks
before they are actually needed for
processing. To accomplish this, the Loader
primes the buffers after allocating them
for object modules. Priming consists of
initiating READ macro instructions for all
buffers except one. When the Loader
requires the first record for processing, a
READ macro instruction is issued for the
unfilled buffer and a CHECK macro .
instruction is issued for the first buffer
primed.

At the beginning of processing for a
module, the DECB pointer (CMRDECPT)
specifies the DECB associated with the
first primed buffer. (See Figure 7.) The
pointer to the current logical record also
specifies the beginning of that buffer. As
each record is processed, the Loader
updates the logical record pointer to the
next record. When all records in the
buffer have been processed, the Loader
updates the DECB pointer to the one for the
next filled buffer, and issues a READ macro
instruction for the completed buffer. The
procedure is repeated until the end of the
module is recognized.

Section 2: Method of Operation 21

CMRDCBPT CMRDECPT

CMGETREC

DECB 1 Buffer 1

Record 1

320 7

———TT T -~ - — —+ — DECDCBAD /

Record 2

DECAREA-==""] [Record 3

N
—
P

Record 4
DECDECPT eoor

-~

DECB 2 Buffer 2

-~
Z.

Record 1

Input DCB

| 320 .

I

|- —DECDCBAD K4 etc.

DECAREA =-=-- L~

e ———— e —
/

DECDECPT y

DECB 3 Buffer 3

| 320 ad T

~~—~-DECDCBAD 4

J 320

DECAREA-==-=1-7

bytes

DECDECPT l

Note: CMRDCBPT, CMRDECPT, and CMGETREC are
located in IEWLDCOM. CMRDECPT points to
the DECB/buffer being processed. CMGETREC
points to the logical record being processed.

Figure 7.

READING INTERNAL OBJECT MODULE INPUT

For internal object modules prepared by a
compiler, record format may be fixed or
variable. After initialization of the data
area containing the internal object module
records, the pointer to the current logical
record points to the beginning of the data
area. As each new logical record is
requested, the Loader updates the pointer
to the next record in the data area, using
the DCBRECFM field in the SYSLIN control
block to determine whether fixed or
variable length records are keing
processed. The end of the module is
recognized when the length of the processed
records equals the length specified in the
DCBBLKSI field. At this time, the
end-of-file and end-of-concatenation
switches are set on.

22

~¢——80 bytes—¥p~

Aliocation for Object Module Input

READING LOAD MODULE INPUT

For load modules, the record format is
undefined, but the order in which record
types may be processed is limited. For
example, control records are required
before the related text record can be read.
All non-text records of load modules are
read into the same buffer. This buffer,
the RLD buffer, has the same length as the
maximum length of non-text records
processed by the Loader (256 bytes).

The Loader reads text records directly
into the loaded program's assigned area;
therefore, there is a DECB for reading text
although no buffer is required. The Loader
determines the address to receive the text
during load module processing. At the time
that a text record is read, the following
record is also read, since that record is
always non-text.

PRIMARY INPUT_PROCESSING

After determining the current record type,
the Loader performs one of the following
types of processing for the primary input
(object and/or load modules from the SYSLIN
data set):

e External symbol dictionary (ESD)
processing

e Text record processing
e Relocation dictionary (RLD) processing
» Address constant relocation processing

¢ End processing (including end-of-module
+ and END card)

e MOD record processing

If an invalid record type is encountered, a
diagnostic message is issued. In addition,
if an internal input data area is being
processed, the end-of-concatenation and
end-of-file switches are set on so that no
further input will be processed.

Table 2 shows the differences in
processing for object and load modules.
Input module processing for object and load
modules is shown in Diagrams D1 and D2,
respectively. :

Load module record types include
composite ESD, control, RLD, control/RLD,
text, SYM, and scatter/translation. When
the Loader recognizes a SYM or
scatter/translation record, it simply
ignores that record and requests another
control record. Descriptions of those load
module records processed by the Loader
follow. (For detailed descriptions, see
the record formats given in Section 7.)

e CESD: These records each contain no
more than 15 ESD entries.? The first
eight bytes give the following control
information for the entries in that
record: (1) the ESD ID of the first
entry, and (2) the number of bytes
occupied by the entries.

e Control: These records give control
information about the module text on
the following text record. Included
are the related ESD IDs and the lengths
of each control section in the
following text record, and an
indication of EOM, when pertinent. The
control records also contain a channel
command word (CCW) with the linkage
editor-assigned relative address and
total length of the text record. The
Loader uses this information to read
the text.

1The Loader can accept a maximum of 1024
ESD entries per input module.

e Table 2. Object and Load Module Processing Differences
[rmm— = B [it e A 1
|Type of | | !
| Processing]| Object Module | Load Module |
—————————— TS T s
ESD	1. Input is an ESD record.	1. Input is a CESD record.
	2. The Loader performs preliminary	2 The Loader performs preliminary
	processing for NULL, PC, and LD] processing for sD, LR, PC, and	
	entries.	NULL entries,
e o e oo e		
Text	The Loader processes text from the	The Loader reads text directly into
	object module buffer one ID at a time.	loaded program's storage area after
		processing the entire ID/length list.
poom e fommmmm - L --- -1		
RLD	No Difference	
b e .		
Relocation	No Difference	
b 1 ——— __.._...l		
r T T		
End	The Loader processes the END state-	The Loader performs end-of-module
	ment for each CSECT, and performs	processing.
	end-of-module processing.	
-- oo		
MOD	The Loader determines the origin of	Not Processed
tinternal	the compiler-loaded text for the	
object	module and equates this address with	
modules	what would normally be the Loader-]	
only)	assigned address.	
L L 1 d

Section 2: Method of Operation 23

e Text: These records contain the
control sections with the instructions
and data of the module. A text record
can contain a maximum of 60 control
sections.

e RLD: These records contain the RLD
entries used to relocate address
constants in the preceding text. When
the text contains a large number of
relocatable symbols, the related RLD
entries may require several records.

e Control/RLD: These records combine a
control and an RLD record into one
physical block. They contain RLD
entries related to a previous text
record and the control information for
the following text record.

The object module records, ESD, RLD,
TXT, and END, contain information similar
to that described previously. In addition,
an internal object module can contain the
MOD record. This record contains control
information about the text of the module,
which has already been loaded by a compiler
or other text-generating processor. This
information includes the main storage
address of the text, the address of the
byte following the estimated or actual end
of the text, and optional extent
information. If a MOD record appears as
the first record of an internal object
module, all succeeding text records are
ignored until an END statement has been
processed.

EXTERNAL SYMBOL DICTIONARY (ESD) PROCESSING
(IEWLESD)

The Loader processes the input modules'
external symbol dictionary (ESD) records to
resolve the symbols used in internal and
external addressing. Resolution insures
that each named location in the text for
the loaded program has a unique symbol,?

To resolve symbols, the Loader builds
its composite ESD (CESD) from individual

iNames for areas of private code or for
external dummy section displacements need
not be unique since they are treated
specially. These are defined by PC and PR
entries, respectively.

24

ESDs and CESDs in the input. The Loader's
CESD entries are created as required during
processing of the input entries., See
Section 5 for a detailed description of
CESD entries.

Because of ESD processing, the Loader's
CESD contains only one entry for each
uniquely named text location, regardless of
the number of input ESD entries containing
the symbol for that location.2? For a single
module, the Loader records multiple ESD
entries for a symbol in the translation
table.?® Each entry in the translation table
corresponds to one input ESD entry for a
symbol and contains a pointer to the CESD
entry for the symbol.

A translation table entry has the same
position in the table as the identifying
number (ESD ID) of the associated ESD
entry. For example, if an input ESD entry
has an ESD ID of three, its corresponding
entry is the third one in the translation
table. Using this relationship, the Loader
converts input ESD IDs via the translation
table into the appropriate CESD address.

The Loader's ESD processing depends on
the function of each input entry. The
function of an entry is identified by the
type indication in the entry. Table 3
gives the function specified by each type
indication. The table also indicates
whether a particular type can occur in
object and/or load module external symbol
dictionaries.

When the Loader creates a CESD entry, it
chains it to others with the same type
indication. Then, in processing each new
input entry, the Loader determines by
searching the chains whether a CESD entry
with the associated symbol already exists.
(The Loader only searches those chains for
types that could be related to the current
input entry's type.) In certain cases,
special preliminary processing is performed
to delay or to bypass the CESD search.

ESD processing is shown in Diagrams
D3-D5.

2The only exception involves control
sections with identical names. In this
case, two entries are kept in the CESD,
one of which is flagged "delete."

3The Loader clears the translation table
after processing each module.

Table 3. ESD Entry Types and Functions

[Fr——TTT oo To oo oo e L S B St 1
| Type | Function | Occurrence | comments]
L —t _ }-—- _— S
fSD (Section Definition) |Defines the beginning of |Object & Load| 1
l |a named CSECT. | | |
b - -1 - S DT ——— -
|PC (Private Code) |Defines the beginning of |Object & Load| |
| |an unnamed CSECT. | l |
% ¢ 1 — -
PC (Private Code)	Defines the beginning of	Load only] The delete indication	
marked “delete"	an unnamed CSECT not to		means that the
	be included in the]	associated text and RLDs	
	loaded program. For		are to be deleted.
	example, a SEGTAB		
	created by the linkage	i	
]	editor.		
I R I T fommm oo 1			
1LD (Label Definition)	Defines a label by	Object only	The defined label cannot
]giving its location		be referenced directly	
	relative to the		since the LD entry has
	beginning of the CSECT		no ESD ID. The Loader
	containing the label.		changes the type to LR
]	in the CESD entrye.	
T B e T 1			
LR (Label Reference)	Defines a label by	Load only	An LR entry contains an
lgiving its location		ESD ID and can,	
	relative to the]	therefore, be referenced	
	beginning of the CSECT		by an RLD entry.
1	containing the label.		
e + 1 — — -			
ER (External Reference)	Refers to a symbol not	Object & Load	
	defined in the same I]		
	module containing the i		
	reference.		
% - 4 } 1 —			
CM (Common)	Defines a common area	Object & Load	The area may be named or
	whose main storage		unnamed. An unnamed area]
	address is assigned]	is called "blank	
	during loading.		common. "
e } v 1 -			
PR (Pseudo Register)	Defines a displacement	Object & Load	The external DSECT
	within an external dummy]	defines the area	
	section.		obtained by the loaded
]	program via a GETMAIN	
			macro instruction.
F B T T —— .			
NULL	Indicates that the entry	Object § Load	Only one entry for NULL
	is to be ignored.		is made in the Loader's
] CESD.	
e 1 t-—-- — -—			
WX (Weak External	Defines an external	Object & Load]The lLoader processes a	
Reference)	reference that is not toj	WX entry as an ER entry	
	be resolved by automatic]]with a "weak call" flag.		
]	library call.] }		
—_t L 41]			

Preliminary ESD Processing

When the Loader processes load modules, it
does not necessarily receive CESD entries
in the same order as the linkage editor
assigned the relative addresses.
Therefore, no entries for symbols that
define module text locations are processed

until all entries for the module have been
received.

The Loader delays the processing by
placing on a temporary chain the CESD
entries it constructs for the SD, LR, and
PC (not marked "delete") entries. Before
chaining an entry, the Loader places the ID
and the segment number in the CESD entry.

Section 2: Method of Operation 25

The entries are chained in the order of
their linkage editor-assigned addresses.

Besides the preliminary processing for
load module location definitions, the
Loader also determines whether an input
entry type is NULL, PC, LD, LR, or WX.
These entries, in both object and load
modules, are handled as follows:

NULL
The Loader does not perform a CESD
search for NULL entries since these
entries have no effect on ESD
resolution. When the first NULL entry
for a module is recognized, a CESD
entry is created. This CESD entry is
cleared and marked "delete". (See the
CESD entry description in Section 5.)
The Loader places a pointer to the
entry in the communication area
(CMNULCHN) and makes a translation
table entry. See "Making a
Translation Table Entry." For all
following NULL entries, processing
consists only of making a translation
table entry which refers to the CESD
entry pointed to by CMNULCHN.

PC
The Loader does not perform a CESD
search for PC entries since it treats
them as unique. For each PC entry,
the Loader creates a CESD entry.
Processing continues as described
under "No-Match Processing" for SD
entries.

PC "delete"
The Loader treats PC entries that are
marked "delete" as NULLs.

LD and LR
LD and LR entries depend on their
related section definitions (SDs).
Therefore, before performing the CESD
search, the Loader inserts the CESD
entry address for the SD in the 1D or
LR entry. The address is obtained by
translating the SD ID contained in the
LD or LR.

If an object module is the input, it
is possible (through physical
rearrangement of an object deck) to
receive an LD before the related SD.
The SD's CESD entry address cannot be
placed in the LD until the SD's entry
is created. Whenever this occurs, the
ID is placed on a temporary LD chain.
At the end of each input ESD record,
the temporary LD chain is processed to
determine whether a required SD has
been received. When the SD associated
with an LD has been received, its CESD
entry address is placed into the LD.
The Loader then searches the CESD for
a matching symbol.

26

WX
The Loader treats WX entries as ER
entries that are marked "weak call.™
The "weak-call" flag like the
"never-call" flag specifies those
external references that are not to be
resolved by automatic library call.
However, the following difference
arises in match processing. If a WX
entry matches an ER entry in the CESD,
the "weak-call" flag is set off. 1If
an ER entry with a "never-call" flag
matches an ER entry in the CESD, the
flag is left on.

CESD_Searching

In general, an input ESD entry requires
resolution processing. The Loader does
this by searching the CESD for a matching
symbol. To direct the search, the Loader
uses two tables. These are:

e HIERTBLE, which specifies which CESD
chains are to be searched for a
particular entry type, and the order in
which the chains are to be searched.

e CMTYPCHN, which contains the address of
the first entry in each CESD chain.

Figure 8 shows the relationship between the
two tables.

The Loader determines the type of an
input ESD entry and begins to search the
first chain specified by HIERTBLE. (If the
type is LD, the Loader performs the search
as if it were an LR.) The symbol from the
input entry is compared to the symbol in
each chained entry. If no matching symbol
is found and end-of-chain is recognized,
the next chain specified by HIERTBLE is
searched.?* If no matching symbol is found
in any of the appropriate chains, a CESD
entry for the symbol is created and
chained. A translation table entry is also
made, if appropriate. See "No-Match
Processing." If a matching symbol is
found, symbol resolution occurs. See
"Match Processing."

iwhenever a new entry on a chain is
examined, a pointer to that entry is
stored in the communication area
(CMPREVPT). Should the next entry on the
chain be a match, the pointer at CMPREVPT
is used to update the chain.

HIERTBLE

CMTYPCHN

Input ESD
Entry Type ﬁ pC CMTYPCHN.

CM 5 2 0 3

PR 6 -0 -0 -

NULL | - - - -

~

Order of Type Chain »
Search

Figure 8. Tables Used in the CESD Search

No-Match Processing

When a symbol is received for the first
time, the Loader performs processing that
depends on the type of the input entry for
the symbol. This always includes the
construction of the CESD entry, which
differs by entry type. Except for LD
entries, no-match processing also includes
construction of a translation table entry.

If the user specified the MAP option,
the Loader formats a map entry for each
symbol (except ERs). See Section 5 for an
example of map output. The Loader prints
the map entries on the SYSIOUT data set.

Table 4 summarizes the processing
performed for each input entry type.

MAKING A CESD_ENTRY: For each input entry
type, the Loader makes a CESD entry. A WX
entry type is treated as an ER input entry
type with a "weak-call" flag. The Loader
first obtains the storage required for the
entry (20 bytes). Whenever possible, the
Loader uses storage previously allocated
for CESD entries which were later freed.
(A CESD entry can be freed as a result of
preliminary ESD or resolution processing.)
The Loader chains freed entries together.
A pointer to the chain resides in the
communication area at CMESDCHN; the pointer
is updated as the freed entries are used.

rSD 0 5 SD LD ER LR PC CcM PR NULL
Chain Chain Chain Chain Chain Chain Chain Chain
Address | Address | Address | Address | Address | Address | Address | Address
b - 0 1 2 3 4 5 6 7
ER 0 2 3 5
Notes:
LR 2 3 0 5

The HIERTBLE entries identify by number the CMTYPCHN entries.
E.g., zero (0) in the HIERTBLE refers to the SD chain address in

When more than one type chain can be searched for a symbol,
the order is specified by HIERTBLE. E.g., if an input ESD entry
is an SD, the HIERTBLE entry specifies that the ER, SD, CM, and
LR chains are to be searched in that order.

If there are no freed CESD entries, the
Loader allocates storage for the entry from
the highest available processing storage.
(See Figure 9.) If the space required for
the entry would exceed available storage,
the loading process is terminated with an
error message. The Loader makes this
determination by comparing the pointer for
the beginning of the Loader's tables
(CMLOWTBL) to the pointer for the highest
address used for the loaded program's text
(CMLSTTXT) .

Table U4. No-Match Processing Required for
Input Entry Types
[T T Suitte B B 1
| |Translation| |
|Input Entry| CESD | Table | Map]
| Type | Entry| Entry | Entry |
——————————— T B
! SD x| X | X |
pomm oo f------ 1- i e
| b | x| [X |
G - e 1
| IR 1 x| X | X |
T e S S 1
| ER x| X | |
pomom oo $--me-- mmmmmmm - 4
| CMx | x| X [X |
pommmm - i | e 4
| PR X] X | X |
S S T B — O 4
|*Since CM and PR entries are assigned |
| addresses during final processing, they |
| are also mapped at that time.
b 1

Section 2: Method of Operation 27

CMLOWTBL —»

CMNXTTXT —

Low Address
(CMBEGAD)

Note: CMBEGADR
CMHITBL
CMLOWTBL
CMLSTTXT

i

Communications area

High Address
(CMHITBL)

(@4

(IEWLDCOM)
Save areas 2
Input DCB

Output DCB

DECBs and buffers for output

Initial DECBs and buffers for input

Additional buffers and DECBs for input and

!

Direction of table and buffer allocations

_//\
—”/\

Direction of program growth

i

Text already loaded for the current module

CMMODLNG (no "'no- length'" CSECTs)

Text already in main storage for the program being loaded

Return parameter list area

= Beginning address of Loader processing storage

= End address of Loader processing storage

= Lowest address allocated for buffers and tables

= Highest address already used for the loaded program's text

CMMODLNG = Length of text already loaded for the current module, not including "no - length'* CSECTs

CMNXTTXT

Figure 9.

After obtaining storage for the CESD

= Lowest address used for the current module

Storage Allocation

entry, the Loader stores descriptive
information in the entry. The information
stored depends on the input entry type.
Handling of the various entry types is
described below:

SD
The Loader moves the symbol from the
input entry to the CESD entry. The
Loader then assigns an address to the
defined CSECT by adding the length of

28

all previously defined CSECTs for this
module to the Loader-assigned address
of the first CSECT in the module. (In
the communication area, the length of
all previously defined CSECTs is found
at location CMMODLNG; the
Loader-assigned address of the first
CSECT, if the CSECTs are being passed
through text records, is found at
location CMNXTTXT; and the
Loader-assigned address of the first
CSECT, if the CSECTs are being pointed

to by MOD records, is found at
location CMCOREl.) For CSECTs pointed
to by MOD records,the resulting
address is stored in the CESD entry
for the SD as the Loader-assigned
address of the CSECT. For CSECTs
passed through text records, however,
the resulting address is compared to
the beginning address of the Loader
tables (CMLOWTBL). If there is no
more unused storage, the loading
process is terminated with an error
message. Otherwise, the resulting
address is stored in CESD entry for
the SD as the Loader-assigned address
of the CSECT.

Next, the Loader clears the CESD flag
field, except for the entry's type
indication, and computes the
relocation constant. The relocation
constant is computed by subtracting
the input address (specified by the
input SD entry) from the
Loader-assigned address. The Loader
stores the relocation constant in the
CESD entrye.

If the option to specify the entry
point name for the loaded program was
used, the Loader determines whether
the SD with that name has already been
received. If not, the Loader compares
that name to the symbol for the
currently defined CSECT (the symbol in
the CESD entry). If the names are the
same, the Loader-assigned address is
stored as the entry point address in
CMEPADDR.

For an SD entry, the Loader determines
whether the CSECT length specified in
the input entry equals 0. If so, the
Loader sets the "no length" indicators
in the communication area and in the
CESD entry itself. If the length is
positive, it is added to CMMODLNG to
calculate the next CSECT address. If
the MAP indicator is on, a MAP entry
is made for the SD.

Finally, the Loader puts the CESD
entry on the SD chain pointed to in
the CMTYPCHN table. Chaining consists
of storing the pointer to the last SD
entry (found in CMTYPCHN) in the
current CESD entry's chain pointer.
Then the address of this entry becomes
the current pointer in CMTYPCHN.

After chaining the entry, a
translation table entry is made.

LD or LR

The Loader processes input LD entries
in the same manner as input LR
entries. The name from the input
entry is moved tc the CESD entry.
Then the Loader-assigned address for

CM

PR

ER

the defined label is determined by
adding the relocation constant (found
in the CESD entry for the related SD)
to the input address of the LD or LR
entry. If the instructions and data
for the module have been passed
through text records and if the
Loader-assigned address exceeds
available storage, the loading process
is terminated with an error message.
Otherwise, the address is stored in
the CESD entry.

The Loader sets the type indication in
the CESD entry to LR. Finally, the
relocation constant is computed. This
value equals the Loader-assigned
address minus the input relative
address. The relocation constant also
is stored in the CESD. If the related
SD entry was marked "delete", the
Loader makes an ER entry instead of an
LR and sets the "delink" flag in the
entry to signify that all adcons
referring to it should be adjusted.

To make a CM entry, the Loader uses
two separately obtained 20-byte areas.
The first area obtained is used as an
extension to the CM entry. 1In this
portion, the Loader stores the length
and the address assigned to the commwcn
area in the input. Then the Loader
obtains the second 20-byte area and
stores in it the name for the common
area and the entry's type indication.
(This area is the one pointed to by
the translation table and the CM
chain.) The Loader clears three bytes
in the entry to be used as a pointer
to related ERs and sets a pointer in
it to the extended portion of the CM
entry. Finally, a translation table
entry is made.

For a PR entry, the Loader moves the
information describing the external
DSECT from the input entry to the CESD
entry. The 3-byte field to be used as
a pointer to the related RLDs is
cleared, and the entry is chained to
the other PR entries., (PRs are
chained according to their order in
the input.) For a DSECT displacement
definition, a translation table entry
is also required.

For an ER entry, the Loader moves the
name and type from the input entry to
the CESD entry. If the input ER entry
is marked "never call," the Loader
sets the "never-call" indication in
the CESD entry. If the input ER entry
is marked "weak call," the Loader
similarly sets the "weak-call"

Section 2: Method of Operation 29

indication. Then the Loader chains
the ER entry to the other ERs and
makes a translation table entry.

MAKING A TRANSLATION TABLE ENTRY: The
Loader uses the translation control table
to direct building of the translation
table.® The translation control table
consists of 32 fullword entries beginning
at location CMTRCTRL in the communication
area. Each entry is a pointer to a
possible 32-entry extent to be allocated
for the translation table. The Loader
allocates the extents as required,
depending on the number of incoming ESD
entries.

The entries of one extent correspond to
consecutive ESD IDs in a single module.
For example, the entries of the first
extent correspond to ESD IDs from 1 to 31;
those of the second extent correspond to

iFor each input module, the Loader
reinitializes the translation table.

CMTRCTRL

IDs 32 to 63, etc. (The first extent
contains only 31 translation table entries
since the initial 4 bytes are used for
indexing purposes.) Thus, the position
designated for creation of a particular
translation table entry depends on the ESD
ID of the associated input entry.

Figure 10 is an illustration of the
translation control table and the
translation table.

To make a translation table entry, the
Loader first determines whether the input
ID is valid. (Diagram D6, reference (A4),)
If an ID is not valid, an error message is
printed and loading continues with the next
input ESD entry. An ID is not valid if it
is less than 1 or greater than 1023.

If an ID is valid, the Loader then
determines by examining the translation
control table whether the extent for this
ID has been allocated. If not, the Loader
allocates an area for 32 4-byte entries and

TRANSLATION CONTROL TABLE

Figure 10.

30

{C

18]
L C
)

Extent # 1

Y

32

33

34

35

1)

63

Extent # 2

TRANSLATION
TABLE EXTENTS

Translation Control Table and Translation Table

stores the beginning address of the area in
the translation control table entry for
this extent. The area is allocated from
the highest available storage. If not
enough Loader processing storage remains to
make the allocation, loading is terminated
with an error message.

After the extent allocation has
occurred, the Loader clears the extent.
Then the Loader calculates the entry
address in the extent for this ID. The
address of the CESD entry related to the
input entry ID is stored in the translation
table entry.

If the CESD entry is an ER, the Loader
sets the high-order bit of the first byte
to 1. (This indicates absolute
relocation.)

Figure 11 shows the overall relationship
of tables used in ESD processing.

Match Processing

If the Loader finds a match for an input
symbol during the CESD search, the Loader
performs symbol resolution. Through

Translation Control Table
(CMTRCTRL)

/

CESD Control Table

the Loader insures that each
within the text of the

has a unique symbol.1 Also,
to a named location are set
Loader-assigned main storage

resolution,
named location
loaded program
all references
to the correct
address.

If two named locations have the same
symbol, only one of them can be retained
for the loaded program. The Loader
determines which is retained on the basis
of ESD entry type. The general rules used
in symbol resolution follow.

If the entry already in the CESD has
type:

SD, it is always retained.

LR, it is always retained.

CM, it is retained except when the input
type is SD.

ER, it is always changed to the input
type.

1This does not refer to PC and PR names,
which need not be unique.

(CMTYPCHN)
SD LD ER LR PC CM PR NULL
chain | chain=0 cha/in chain =0 | chain=0|chain =0 | chain [chain=0
0 0 \
1 64 CESD entry for last CESD entry for last
2 . —— =< SD received unresolved ER received
: : : I | SDl —I |] ER I | CESD entry for last
32 . PR received
:) of [e] ,]
X . SD CESD entry ER CESD entry
: | T BT =L 3)
Extent 1 . -~ ~~ //l RLD entr
. 95 t~——e
63 Extent 3
Extent 2 RLD entry RLD entry
Three Extents of the CESD entry for first
Translation Table PR received
Ll e[]
RLD entry
RLD entry
Figure 11. Overall Relationship of Tables

Section 2: Method of Operation 31

If two entries have matching symbols and
have types that indicate they should be
retained, the Loader retains the first
entry received.

Table 5 gives a summary of symbol

*Match results in an error.
**¥Match results in an error if the SD for

the LD/LR is not marked

"delete. "

resolution.

Table 5. Symbol Resolution

. B et 1
| Input Type | CESD Type | Result |
F + + 1
| SsD | ER | SD I
	SD	SD
	cM [SD	
	LR	LR
t t } '		
cM I cM	cM]	
[ER	cM [
	SD	D
! ! LR I		
L - 1	4	
v T T a		
LD/LR] ER	LR	
	LR	LR
	SD	S l
1 cM	CM** I	
e -~ t 1		
ER	SD	SD
1 ER	ER	
	LR	LR
	CM	CM
L 1 1		
I		
L

INPUT ENTRY TYPE IS SD:

CESD

CESD

32

type is ER

The Loader changes the ER entry in the
CESD to an SD entry. The entry is
made as described under "No-Match
Processing" for an SD entry. This
includes: chaining the entry to other
SDs, updating the cumulative length of
the loaded program, determining
whether this is the loaded program's
entry point name, mapping the entry,
and making a translation table entry.
If RLDs were chained to the ER entry,
they are relocated as described under
"Relocation Processing." Also, the
Loader takes the entry off the ER
chain using the pointer to the
previous entry on the chain
(CMPREVPT). If there are no previous
entries, the Loader sets the ER entry
in the type chain table (CMTYPCHN) to

type is SD

If the orignial SD is not flagged
"delete," the Loader obtains space for
another CESD entry and moves the name
and Loader-assigned address of the

original entry into the new one. The

CESD

CESD

relocation constant is then computed
by substracting the input address from
the Loader-assigned address. A
"delete" indicator is set to show that
text and RLDs related to the current
input SD should be deleted. If the
text for the CSECT has been pointed to
by a MOD record rather than passed
through text records, the text cannot
be deleted and, thus, the cumulative
module length (CMMODLNG) is updated to
include this CSECT. Finally, the
entry is chained to existing SD
entries and a translation table entry
is made. If the original SD is
flagged "delete," the original entry
is used.

type is CM

The Loader changes the existing CM
entry to an SD. Since the extended
portion of the CM entry is no longer
needed, the Loader chains it to the
freed CESD entries (pointed to by
CMESDCHN). First, however, the Loader
obtains from the extended portion the
length of the common area. For the SD
entry, the Loader retains the greater
between this length and the one
specified in the input SD. To change
the CM entry to an SD, the Loader
performs the same processing described
above for the SD-ER match.

type is LR

The Loader sets the "delete"
in the CESD entry so the text
associated with the input SD will not
be loaded. The relocation constant is
updated to reflect the difference
between the relative address in the
input entry and the Loader-assigned
address in the CESD entry. The Loader
makes a translation table entry
referring to the existing LR entry in
the CESD.

indicator

INPUT _ENTRY TYPE IS CM:

CESD type is CM

CESD

The Loader determines the greater
between the length in the extended
portion of the CESD entry and the
length specified in the input CM. The
greater length is retained in the CESD
entry. The Loader stores the new
input address in the extended portion
of the CM entry. Also, a translation
table entry is made.

type is ER

To change an ER entry to a CM, the
Loader obtains a 20-byte area for the
extended portion and chains it to the
existing entry. The Loader stores the
type, address, and length from the
input entry in the extended portion of
the CESD entry. The CM type

indication is set, and the entry is
unchained from the ERs. The Loader
chains the entry to the other CMs and
makes a translation takle entry.

CESD type is SD
The relocation factor in the CESD
entry is updated to reflect the CM
relative address, and a translation
table entry is made.

CESD type is LR
The Loader issues an error message for
matching symbols with conflicting
types. Nevertheless, the relocation
constant is updated and a translation
table entry is made.

INPUT_ENTRY TYPE IS LD OR_LR: With one
exception, LD and LR entries are processed
in the same way. The difference is that
since an LD entry has no ESD ID, the Loader
does not make a translation table entry for
an LD.

CESD type is ER
The Loader changes the ER entry to an
LR. The Loader assigns a main storage
address for the symbol by adding the
relocation constant from the related
SD entry to the relative address in
the input LR. Next, the Loader
calculates the relocation constant by
subtracting the input address from the
Loader-assigned address. Both the
relocation constant and the
Loader-assigned address are stored in
the LR entry in the CESD. Any RLDs
that were chained to the ER entry are
relocated. The Loader checks the LR
name for the user-specified entry
point and makes a MAP entry if mapping
is required. Then, the Loader takes
the CESD entry off the ER chain and
chains it to the LR chain. If the
input entry was an LD, no translation
table entry is made. Otherwise, the
Loader makes a translation table
entry.

CESD type is LR
If the SD entry pointed to by the LR
is not marked "delete", the Loader
issues an error message for matching
symbols with conflicting types. 1In
any case, the Loader updates the
relocation constant in the existing
CESD entry. The Loader makes a
translation table entry referring to
the IR in the CESD if the input entry
was an LR from a load module. If not,
a translation table entry is not
required.

CESD type is SD
Processing is the same as that
described above for an LD/LR-LR match.

CESD type is CM
The Loader saves the input address in
the extended portion of the CM entry.
The Loader makes a translation table
entry only if the input entry was an
LR from a load module. If the SD
pointed to by the LR entry is not
marked "delete, " the Loader issues an
error message for matching symbols
with conflicting types.

INPUT_ENTRY TYPE IS ER: Whenever the
Loader makes a translation table entry for
an input ER, it sets an indicator for later
use. (The indicator signifies during RLD
processing that the Loader-assigned address
is to be used for relocation of any RLDs
with this ID.)

CESD type is SD
The Loader makes a translation table
entry referring to the SD entry.

CESD type is ER
If the input ER is marked "never
call," the Loader sets the
"never-call" indicator in the CESD
entry also. If the "delink" indicator
is on, the Loader sets the indicator
off. In any case, a translation table
entry is made referring to the ER
entry in the CESD. If either ER is
marked "weak call," the "weak-call"
flag is set off. If both ERs are
marked "weak call," the flag is left
on.

CESD type is LR
The Loader makes a translation table
entry referring to the LR entry.

CESD type is CM
The Loader sets the input address in
the extended portion of the CM entry
to zero, and makes a translation table
entry referring to the CM entry.

INPUT ENTRY TYPE IS PR: A PR entry can

only be matched to another PR entry. When
two of these definitions of external DSECT
displacements have matching symbols, the
Loader sets the existing CESD entry to
specify the greater of the two given
displacement lengths. The Loader also
determines the most restrictive boundary
alignment specified in the two PR entries.
(For example, doubleword alignment is more
restrictive than fullword.) The PR entry
in the CESD is changed, if necessary, to
specify this alignment.

Section 2: Method of Operation 33

TEXT RECORD PROCESSING

Text record processing consists of loading
those CSECTs required for the loaded
program into their assigned locations. The
Loader determines whether a CSECT is to be
retained or deleted by examining the CESD
entry for that CSECT's ID. The translation
table is used to obtain the CESD entry.

The way the Loader processes text
records depends on whether the current
input is an object or a load module. If
the input is an object module, the Loader
reads all the records for the module,
including text, into main storage buffer
areas and then processes each record in
turn. For load modules, the Loader uses
the information in the text control records
to process the text before reading it into
its assigned storage.

Processing Object Module Text (IEWLTXT)

When a text record is recognized during
processing of an object module, the ID
contained in the record is translated into
a CESD entry address. The Loader
translates the ID by first insuring that
the ID is valid and then using the
translation control table to obtain the
corresponding translation table entry.

The translation procedure is the same
used prior to allocating a translation
table extent. (See "Making a Translation
Table Entry.")

In processing text, the Loader considers
an ID invalid if no translation table entry
exists for it. Thus, an ID between the
allowable limits of 1 and 1023 is invalid
if it was not received during ESD
processing. For any invalid ID, the Loader
issues an error message and then tries to
process the next record.

(A) If a translation table entry does
exist for an ID, the entry contains the
address of the CESD entry for the related
text. The Loader determines whether the
CESD entry is marked "delete." 1If it is,
the Loader skips the text record and tries
to process the next record.

(B) If the CESD entry is not marked
"delete, " the Loader sets an indicator to
show that some text has been received for
this module. If the "no length" indicator
in the CESD entry has been set on, an
indicator is set in the communication area
to show that text has been received for a
"no length" CSECT. The Loader then

34

calculates the address for this text in the
loaded program's main storage area. The
address equals the displacement of the text
from the beginning of the input added to
the relocation constant contained in the
CESD entry.

(C) Next, the Loader checks whether the
text would exceed available storage by
adding the length of the text to the
assigned main storage address. The
resulting end address for the text is
compared to the beginning address of the
Loader's tables (CMLOWTBL). If the text
would overlap the tables, loading is
abnormally terminated.

If there is sufficient unused storage
for the text, the loader moves the text
from the buffer area to the assigned
address in the loaded program's area.
Finally, the Loader updates the pointer to
the highest address used for the loaded
program's text (CMLSTTXT).

Object module text processing is shown
in Diagram D7.

Processing Preloaded Text (IEWLMOD)

If a SYSLIN data area consisting of
internal object modules is passed to the
Loader, one MOD record may be substituted
for all text records within a module. Upon
encountering a MOD record, the Loader
checks that an internal object module is
being processed, that no ESD records have
been received for the module, and that some
control information is contained in the MOD
record. If any of these conditions is not
met, the record is ignored. Otherwise,
indicators are set to show that a MOD
record and text have been received for the
module. If the origin of the first CSECT
is specified, it is saved in the
communication area at location CMCORE1l.
Similarly, the address of the byte
following the estimated or actual end of
the text is saved at location CMCORE2.

Extent information, used by the
identification routine (IEWLIDEN), is saved
in chained entries pointed to by location
CMXLCHN in the communication area. These
entries contain the address and length of
the extent and a pointer to the next entry
in the chain. The number of extents is
saved at location CMNUMXS in the
communication area. Later, the
identification routine uses these entries
to build a parameter list for the IDENTIFY
macro instruction.

/
{
4

Finally, the address of the first extent
is saved as the default entry point of the
program if the entry point has not
previously been defined.

Processing Load Module Text (LMTXT)

The Loader uses the text control (or
control/RLD) record to process load module
text. The control record contains an
ID/length list with an entry for each CSECT
in the following text record. By
processing the IDs consecutively, the
Loader determines which CSECTs from the
record are to be retained as part of the
loaded program.

Load module text processing is shown in
Diagram DS8.

PROCESSING THE ID/LENGTH LIST: (A) The
Loader obtains each ID in turn from the
list and attempts to translate each one via
the translation control and translation
tables to a CESD entry address. If the
Loader determines during translation that
an ID is invalid, the Loader skips over the

record. If there are more records in the
module, the Loader continues processing the
module.

If the translation of the ID is
successful, the Loader checks for the
"delete" flag in the CESD entry (obtained
by the translation). If the entry is
marked "delete," the Loader adds the length
from the ID/length list entry to the sum of
the lengths of any immediately preceding
CSECTs to be deleted.

The accumulated sum is used to truncate
the text record when CSECTs at the end of
the record are to be deleted. Therefore,
only the sum of those consecutive CSECTs to
be deleted at the end of the record is
used. To accomplish this, the Loader
reinitializes the sum of these lengths to
zero whenever a following CSECT is to be
retained. (CSECTs to be deleted can be
scattered throughout a text record.)

If the CESD entry for a text ID is not
marked "delete," the Loader determines
whether the current CSECT is the first one
to be retained from the text record. If it
is, the Loader saves the relative
relocation constant from the related CESD

entry. (After completely processing the
ID/length list, the Loader uses this
relocation constant to calculate the proper
main storage address for reading the text
record.) After saving the relocation
constant, the Loader sets an indicator to
show that at least one CSECT from this
record is to be retained and that its
relocation constant has been saved. (Only
one relocation constant per control record
is used since the text record is read in as
a whole,)

Each time the Loader recognizes a CSECT
to be retained, it updates the pointer to
the last address used for text (CMLSTTXT)
by adding the length of the CSECT to the
previous value of CMLSTTXT.

READING THE _TEXT: (B) After processing all
IDs in the ID/length list, the Loader
prepares to read the text into the assigned
storage. The Loader:

e Adds the relocation constant and
beginning delete length to the CCW
address from the text control record to
obtain the Loader-assigned address of
the text. (See Figure 12.)

e Subtracts the sum of the lengths of
consecutive deleted CSECTs at the end
of the text record from the text length
in the control record to obtain the
actual read count.

e Adds the read count to the Loader-
assigned address to determine whether
sufficient unused storage remains for
the text. If not, an error message is
issued and loading is terminated.

e Determines whether the text record is
the last record in the module by
examining the control record's type.

If the record is not the last, the
Loader determines whether any CSECTs from
the record are to be deleted. If not, the
text record and the following control
record are read. (The control record is
read into the RLD buffer.)

If the text record is the last in the
module or if any CSECTs from the record are
to be deleted, the Loader reads in only the
text record. If an end-of-file occurs, the
Loader terminates module-text processing
and issues an error message; then the
Loader goes to process end-of-module.

Section 2: Method of Operation 35

High Address

CSECT CSECT CSECT
A B C
L L
- - Input Text Record
CSECT C
CSECT B
Loader - Assigned CSECT A!
Address of —p
CSECTC CSECT B
CSECT A
Low Address
Loaded Program Text Storage
Note:

CSECT A' and CSECT B' are to be deleted.
The text read address is, therefore, the Loader - assigned address of CSECT C.

During later text processing, the Loader moves CSECT C to its proper location
over CSECT A' and CSECT B',

Figure 12. Loading the Text from a Load Module Record

CHECKING CSECT STORAGE ADDRESSES: If
CSECTs to be deleted were scattered among
the CSECTs to be retained, the Loader
deletes these scattered CSECTs after the
text has been read into main storage.

The Loader insures that each CSECT is in
the location determined during ESD
processing. To do this, the Loader again
translates each ID in the ID/length list to
obtain the related CESD entry.

If a CESD entry for an ID is marked
"delete," the Loader continues translating
successive IDs until one is not marked
"delete." The Loader determines whether
the related CSECT is in the correct place
by comparing the read address to the
Loader-assigned address found in the CESD
entry. If the text is correctly placed,
the Loader continues to translate IDs.

If a CSECT is in the wrong place, the
CSECT is moved to the Loader-assigned
address. Before checking the next ID in
the ID/length list, the read address is
updated by the length of the current CSECT
to get the read address of the next CSECT.
When all CSECTs are in the correct
location, the Loader continues processing
the module with the next record.

If no CSECTs that were read into main
storage are to be deleted, the Loader
determines whether a control record was
read at the same time as the text record.
If so, the Loader continues processing the
module with that control record.
Otherwise, the end of the module has been

36

reached, and the Loader goes to
end-of-module processing.

RELOCATION DICTIONARY (RLD) PROCESSING
(IEWLRLD)

Processing of relocation dictionary records
consists of building the Loader's RLD table
from information in the input RLD records.
RLD record processing is the same for
object and load module input. (Relocation
of adcons is performed as the RLD is
encountered unless the referenced CSECT is
not in main storage.)

RLD record processing is shown in
Diagram D9.

To build the RLD table, the Loader tests
the R and P pointers of the entries in an
RLD record for validity.® These pointers
consist of ESD IDs describing an address
constant. The P pointer gives the ESD ID
of the control section containing the
address constant; the R pointer gives the
ESD ID of the symbol referred to by the
address constant.

Since the pointers are IDs, they are
valid if translation yields the address to
a CESD entry for the ID. If an invalid ID
is received, the Loader issues an error
message and continues RLD record processing

1RLD entries for adcons referring to a
cumulative pseudo register are only tested
for a valid P pointer, because the R
pointer is always zero (CXD type RLD).

with the next entry having different R and
P pointers.

The Loader first translates the P
pointer. If the CESD entry for that ID is
marked "delete," the loader skips all RLD
entries with the same R and P pointers. If
the CESD entry is not marked "delete," the
Loader checks the validity of the R
pointer, unless the RLD entry is for a
cumulative pseudo register (CXD type).

(A) After insuring that the RLD pointers
are valid, the Loader makes an RLD table
entry for the input entry. (The Loader
uses the storage from a freed RLD entry if
possible. Otherwise, storage for the entry
is obtained from the highest available
storage.)

The Loader stores in the RLD table entry
the Loader-assigned address of the address
constant. The address is obtained by
adding the relocation constant from the
CESD entry identified by the P pointer, to
the value found in the address field of the
input RLD entry. (If the RLD is for a
cumulative external DSECT displacement, it
is chained from location CMCXDPT in the
Loader communication area; the next RLD
entry is then processed.) The Loader moves
the flag field from the input entry to the
RLD table. If the translation table entry
indicates that an ER entry is referenced by
the R pointer, the Loader sets an indicator
in the RLD table for absolute relocation.

After completing the RLD table entry,
the Loader determines whether relocation is
possible by determining the type of the
CESD entry. Processing for the CESD entry
types is as follows:

sp, PC, LR
The Loader clears the chain field of
the RLD table entry and relocates the
address constant. (See "Relocating
Address Constants.")

CM, ER created from LR
The Loader delinks the RLD entry.
That is, it subtracts the input
address of the CM or ER from the value
in the address constant. The RLD
entry is then chained to the CM or ER
entry for later relocation after the
Loader-assigned address is defined.

PR, ER
The RLD table entry is chained to the
related CESD entry when the address
for the CESD symbol is assigned. (See
"Match Processing.")

(B) After processing an RLD entry, the
Loader continues processing the entries in
the RLD record until the end of the record
is reached. If the R and P pointers for

the next entry are the same as for the
current entry, the Loader does not recheck
them for validity. Instead, the RLD table
entry is made directly. If the pointers
for the next entry are different, the
Loader performs the validity check.

RELOCATING ADDRESS CONSTANTS (IEWLERTN)

Address constant relocation is the
replacement of an address constant in the
text of the loaded program with the actual
main storage address. The Loader relocates
adcons as it encounters their RLD entries,
whenever possible.

The Loader processes three types of
relocatable address constants:

1. A-type constants, used to reference a
location in the samwe CSECT as the
constant.

2. V-type constants, used to reference a
location in a different CSECT.

3. O-type constants, used to reference a
displacement in an external dummy
section,

In general, the main storage address
equivalent of an address constant is
calculated by combining either the relative
or the absolute relocation constant with
the input value of the address constant.?®
The relative relocation constant is the
difference between the Loader-assigned
address and the input address of the
referenced location. The absolute
relocation constant is simply the
Loader-assigned main storage address of the
referenced location. Table 6 relates the
types of relocation constants and of
address constants to the types of
relocation.

When the Loader resolves a CESD entry
(e«g., a CESD ER matched with an SD), it
relocates all address constants referring
to the name. These are pointed to by RLD
table entries chained from the CESD entry.
The Loader processes each RLD entry in the
following way.

First, the Loader insures that the
address constant is not an invalid 2-byte
adcon. (2-byte adcons can only be used to
define external DSECT displacements.) If
the adcon is invalid the Loader issues an
error message and continues loading the

1iThe Loader does not compute the absolute
addresses for PRs or CMs until all the
text has been loaded.

Section 2: Method of Operation 37

Table 6. Relocation of Address Constants

“““““ T T T |
|Type of |Relocation Constant |Type of Address | |
|Relocation|Usage |Constant | Comments |
bt 1 -—4 1
	Absolute relocation	V(symbol)	Displacements are not valid in
Absolute	constant replaces	where symbol is not	V-type address constants.
Relocation	adcon value la PR in CESD		
—— 1 S|

|Relative relocation |A(symbol)

|Addition or subtraction is

|constant is added to|where symbol is not |specified by indicators in RLD |

|or subtracted from

Relative |adcon value |

lan ER or PR in CESD |flag field. Also see comment below|

| for Delinking.

Relocationjp-————mm—emmem—— 4
|Absolute relocation [A(symbol)

|constant is added to|where symbol is ER

or subtracted from
|adcon value |

|in CESD

Pseudo |Pseudo register
Register]displacement

+
|0 (symbol)

|where symbol is PR

|Addition or subtraction is
|specified by indicators in RLD
|flag field.

|Input address of CM lA(symbol)

|or LR/LD CESD entry |where symbol is CM
|or ER created from

Delinking |is subtracted from
|value |LR/LD

| |
| |

_—d 1

|The relocation of address
|constants pointing to CM CESD
|entries is a combination of

|1) delinking and subsequent

|2) relative relocation with the

| absolute relocation constant.
L

Absolute relocation constant
Relative relocation constant

Note:

|
|
|
|
|
|
|
|
|
P—
|
|
|Relocat10n|constant is moved 1n|1n CESD
t
|
|
|
|
|
|
t
|
|
L

Loader-assigned Address
Loader-assigned Address minus the Input Address

[T R TSRS SRR U D RS Sep—

program. Otherwise, the Loader moves the
adcon from the text to a work area where it
determines the type of relocation required.

If the RLD entry indicates absolute
relocation, the Loader places the absolute
relocation constant at the text address.
The RLD entry is placed on the chain of
freed RLD table entries (CMRLDCHN), and the
next entry on the chain is processed. When
the end of the RLD chain has been reached,
the Loader continues its processing.

If the RLD entry indicates relative
relocation, the Loader also determines the
type of relocation constant required. If
the location referenced by the adcon is an
external reference, the Loader uses the
absolute relocation constant. Otherwise,
the Loader uses the relative relocation
constant. The Loader tests the RLD entry
to determine whether the relocation
constant should be added to or subtracted
from the input value of the address
constant, After calculating the adcon
value, the Loader moves it back to the
text. Finally, the Loader frees the RLD
entry and continues resolution.

If the RLD entry indicates delinking for
a CM entry or for an LR entry converted to
an ER, the Loader subtracts the input
address of common or of the LR from the

38

value of the adcon. The result is a
reference to a displacement in the common
area or input module. When these entries
are resolved (i.e., CM address assigned or
ER matched), absolute or relative
relocation occurs.

If the RLD entry indicates a PR

reference, the Loader performs absolute
relocation as described above.

END PROCESSING

End processing includes END card processing
for object module CSECTs and end-of-module
processing for object and load modules.

END Card Processing

The Loader processes object module END
cards for the length of the CSECT and for
loaded program entry point definition.
(Also, when an END card is recognized, the
Loader issues messages for any remaining LD
entries for which no SD entry has been
received.) In setting the length of the
current CSECT, the Loader determines

whether the CSECT is a "no-length" CSECT.
If it is, the Loader uses the larger of the
END card length and the length specified by
the CESD SD entry as the CSECT length.1 If
the END card of a "no-length" CSECT does
not specify a length and text has been
received for the CSECT, the Loader issues
an error message. (In this case, the
length of the text is used.)

The Loader determines whether the loaded
program's entry point name or address has
already been received. If it has, the
Loader does not process the END card for
entry point. If not, the Loader examines
the END card for an ID to be used for the
entry point. If an ID is present, the
Loader sets the entry point address to the
address specified by the END card or to 0
if the END card specifies no address. The
Loader translates the ID to a CESD entry
address and saves the CESD address in
location CMEPCESD. (If there is no CESD
entry for the ID, an invalid ID message is
issued.) The Loader creates an RLD entry
for the entry point (at CMEPNAME). This
entry is not treated as a regular RLD.

If the END card does not specify an ID
but does give a symbolic name to be used as
the entry point, the Loader saves the name
at location CMEPNAME. If there is an SD or
LR entry in the CESD with that name, the
Loader uses the address specified as the
program entry point address.

End-of-Module Processing

At end-of-module for a load or object
module, the Loader initializes for
processing the next input module. If text
has been passed through text records, the
Loader updates the text pointers, CMLSTTXT
and CMNXTTXT, by the module length or, if
no length was given, to the address of the
last text received (rounded to doubleword
value.) Then, the Loader determines
whether the available storage has been
exceeded. If so, an error message is
issued and loading is terminated.
Otherwise, the Loader clears the
translation table and the module length
counter (CMMODLNG). All flags except the
END and LIB flags are set off. The Loader
either begins processing another module
from SYSLIN or, if end-of-file on SYSLIN is
recognized, goes to process any secondary
input.

1A "no-length" CSECT's SD can be matched by
a CM entry, which defines an area larger
than the CSECT.

SECONDARY INPUT PROCESSING (IEWACALL)

After the Loader has processed all primary
input, it attempts to resolve remaining ERs
in the CESD if CALL was specified. 1If
there are no remaining ERs, the Loader
performs final processing for the loaded
program. (See "Final Processing for the
Loaded Program.")

The Loader can resolve ERs from the 1link
pack area and/or the SYSLIB data set. If
the link pack area is available for
resolution, and the RES option is
specified, the Loader searches the contents
directory entry queue for the ERs before
attemptimg to resolve them from SYSLIB.?2

Secondary input processing is shown in
Diagram El.

RESOLVING ERS FROM THE LINK PACK AREA

Before resolving ERs from the link pack
area, the Loader obtains the address of the
contents directory entry (CDE) queue from
the communication vector table (CVTQLPAQ).
Then, for each ER which is not marked
"never call" or "weak call," the Loader
searches the CDE queue for an entry with
the same name.

(A) In searching the CDE queue, the
Loader compares only the first half of the
names in the ER and in the CDE. If the
first halves match, the second halves are
compared. If a comparison is unequal, the
Loader continues searching the CDE queue
for the name until the end of the queue is
reached. Then the Loader searches for the
next ER which is not marked "never call" or
"weak call."

If the Loader finds a matching name for
an ER in a CDE, it puts the entry point in
the CESD entry and changes the entry's type
to SD. The Loader then takes the entry off
the ER chain, puts it on the SD chain, and
makes a map entry for the SD if MAP is
specifieds Finally, the Loader relocates
all RLD table entries which are chained to
the CESD entry.

If there are still unresolved ERs after
the CDE has been searched, the Loader
performs library call processing.
Otherwise, the Loader performs final
processing for the loaded program. (See
"Final Processing for the Loaded Program.")

2The Loader determines whether the system
is MVT by checking for X'10' in location
CVTDCB in the communication vector table.

Section 2: Method of Operation 39

RESOLVING ERS FROM THE SYSLIB DATA SET

Before resolving ERs from the SYSLIB data
set, the Loader checks whether an open
SYSLIB data set has been passed. (The
fourth entry in the DCB list, which is
passed to the Loader as a parameter, can
point to an open SYSLIB DCB.) If an open
SYSLIB DCB has been passed to the Loader,
the exit addresses in the passed SYSLIB DCB
are saved in the communication area and
replaced by the Loader's own exit routine
addresses. If a SYSLIB DCB has not been
passed, a SYSLIB DCB is initialized and
opened.®

(B) Otherwise, the Loader constructs two
lists used for BLDL information in the
available storage, which is defined by the
CMNXTTXT and CMLOWTBL pointers. The two
lists are the BLDL list and an address
list. The Loader uses the address list to
store pointers to the ER entries in the
CESD for which it constructs BLDL entries.
The entries in the two lists have a
one-to-one correspondence relative to the
ER entries. Figure 13 shows this
relationship.

Before constructing the lists, the
Loader determines the maximum number of
entries possible by dividing the amount of
available storage by the number of bytes
required for an entry in the two lists
(BLDL list entry size=16, address list
entry size=4). Then, for each ER which is
not marked "never call" or "weak call," the
Loader makes an entry in the BLDL list
including the name specified by the ER and
the address of the ER.

After building the BLDL l1list, the Loader
constructs the address list by moving the
pointers to the ERs from the BLDL list.
This preserves the pointers, which are
overlaid in the BLDL 1list during BLDL
operation.

Finally, the Loader issues the BLDL
macro instruction. If an I/O error occurs
during execution of the BLDL, the Loader
logs the error and performs final
processing for the loaded program.

(C) Otherwise, the Loader moves the
relative track addresses (TTRs) returned in

11f the Loader has opened a SYSLIN data
set, the Loader closes it before opening
SYSLIB and reuses the DCB for SYSLIB.

40

the BLDL list to the associated CESD
entries. Each CESD entry for which a TTR
was returned is marked to indicate that it
contains an auxiliary storage address.

The Loader issues a FIND macro
instruction for each ER entry marked "TTR
received." The Loader processes each
module located in the same way as it
processes primary input modules.

Since SYSLIB contains only locad modules
or only object modules, processing for each
module located is the same. If SYSLIB
contains object modules, the Loader first
primes the buffers and then performs object
module processing. If SYSLIB contains lcad

modules, the Loader performs load module
processing. See "Primary Input
Processing."

The Loader resolves as many ERs from
SYSLIB as possible. Then the Loader
performs final processing for the loaded
program. (If during processing of one of
these modules a program size error occurs,
the loading procedure is terminated with an
error message.)

FINAL PROCESSING_FOR_THE LOADED_PROGRAM

After all possible ERs have been resolved,
the Loader performs the following for the
loaded program:

e Assigns addresses for common areas.

e Assigns addresses for displacements in
the external DSECT (pseudo registers).

¢ Issues messages for all unresolved ERs.

e Finds the address of the program's
entry point.

¢ Builds a condensed symbol table if the
Loader is operating in time-sharing
mode. 2

e Tdentifies the loaded program to the
system. 2

e Writes out the diagnostic message
dictionarye.

2This processing is performed only when the
Loader is used with the MVT option of the
control programe.

ERNAMET1

T ERNAME2 i ERNAME]
ERNAME2
0 ERNAME3
ERNAME3

T

CESD entry

for ERNAME1 + CESD entry
for ERNAME1

CESD entry CESD entry

for ERNAME2 for ERNAME2
CESD entry

CESD entry for ERNAME3

for ERNAME3

or Address List

BLDL List

e BLDL List and Address List before BLDL
macro instruction is issued.

e After execution of the BLDL, the BLDL List
contains TTRs for library - resolved ERs.

Figure 13. BLDL List and Address List

ASSIGNING ADDRESSES FOR COMMON AREAS
(COMMON)

The Loader assigns addresses for the loaded
program's common areas by processing
entries on the CESD CM chain.

For each CM entry, the Loader assigns
the next available storage address above
the text of the loaded program. (The
highest text address before the allocation
of a common area is saved in the
communication area at CMTOPCOD. This
allows the Loader to continue using work
space which may be overlapped with common
areas.) The address contained in CMNXTTXT
rounded to doubleword value is the address
used. The Loader insures that there is
enough available storage for the common
area and then updates the pointer to
available storage by adding the length from
the current common entry to the CMNXTTXT
value. (If there is not enough storage,
error message is issued and loading is
terminated.) Next, the common area is
mapped, if the MAP option was chosen.
Finally, the Loader relocates the address
constants referring to the current "common"
definition. (The adcons are relocated
through processing the RLDs chained from
the current CESD CM entry.)

an

After all the CM entries in the CESD
have been processed, the Loader assigns
addresses for external DSECT displacements.

ASSIGNING ADDRESSES FOR EXTERNAL DSECT
DISPLACEMENTS (PSEUDOR)

The Loader assigns contiguous storage for
displacements in the loaded program's
external DSECT by processing the CESD PR
chain. (The storage for all DSECTs is
obtained via one GETMAIN macro instruction,
and the individual DSECTs are displacements
within the area.)

For each entry on the chain, the Loader
subtracts the alignment factor from hex
"FFFF". The Loader adds the difference to
the location counter for the PRs to obtain
the assigned address of the current
external DSECT. (The location counter = 0
at the beginning of PR processing.) After
calculating the current address, the Loader
updates the location counter by adding the
length of the displacement specified in the
CESD PR. Then the Loader maps the DSECT
displacement and relocates all address
constants referring to it. These are
indicated by RLD table entries chained to
the PR entry.

After processing all the PR entries, the
Loader stores the value contained in the
location counter (the cumulative length of
all DSECTs) in all locations in the loaded
program requesting it. These locations are
chained from CMCXDPT in the cormunication
area.1 (If NCAL was specified, there is no
CXD chain pointer in CMCXDPT.)

1See IBM System/360 Operating System:
Assembler Language, Order No. GC28-6514,
for the use of external DSECTs and the CXD
statement.

Section 2: Method of Operation 41

ISSUING UNRESOLVED ER MESSAGES

For all ERs remaining in the CESD which are
not marked "weak call," the Loader issues
either error or warning messages. If NCAL
is specified or if an ER is marked "never
call," the Loader issues a warning message.
Otherwise, an error message is issued. An
error message is also issued if no text was
loaded for the program.

CHECKING THE LOADED PROGRAM'S ENTRY POINT

After the loaded program has been
processed, the Loader checks to determine
whether the entry point name and address
have been received. This is determined by
testing the program flag field (CMPRMFLG).
Processing for the possible conditions is
as follows:

e Entry point name and address both
received. No further entry point
processing is required.

e Entry point name only received, If the
entry point name was specified by the
EP=parameter but no address for the
name was ever received, the Loader
issues an error message. Then if text
for the SYSLIN data set was pointed to
by MOD records instead of being passed
through text records, the address of
the first byte of the first extent
described on a MOD record is assigned
as the entry point. Otherwise, the
Loader assigns the address of the first
byte of Loader-constructed text (found
in CMBEGADR) as the entry point.

e Entry point address only received. If
the entry point address was received
(CMEPADDR), the Loader determines
whether the referenced symbol is an ER.
If so, the Loader assigns the first
byte of text as the entry point.

e Neither entry point nor address
received. The Loader issues an error
message and uses the first byte of text
as the entry point.

After determining the entry point for
the loaded program, the Loader calculates
the program's total length. The length
equals the difference between the address
of the next available storage (CMNXTTXT)
and the address of the first byte of text
(CMBEGADR) added to the lengths of any
extents that may be passed through MOD
records. The Loader then prints out the
entry point address and the total length of
the loaded program.

42

IDENTIFYING LOADED PROGRAM1

If program loading is successful, the
Loader prepares to identify the program to
the control system. A parameter list is
constructed to pass the program name, entry
point address, and extent list information
to the IDENTIFY macro instruction. (The
extent list defines the storage that the
loaded program occupies.) If storage is
not available for this parameter list, an
error message is issued and Loader
processing is terminated.

The Loader initializes the parameter
list with the program name, entry point
address, and length and address of the
Loader-constructed program (as the first
extent). This information is found in the
communication area. If the Loader is
operating in time-sharing mode, it attempts
to build a condensed symbol table for use
during the program's execution. An entry
is made in the table for each control
section and common area in the program.
This table becomes the second extent of the
program and its address and length are
placed in the extent list. If there is not
enough storage for the entire table, it is
not built and the second extent of the
program is assigned a length of zero. The
extent list is then completed with the
extent information which was passed on MOD
records and saved in the communication
area.

Finally, the IDENTIFY macro instruction
is issued. If identification processing is
not successful, an error message is issued
and Loader processing is terminated.
Otherwise, a flag indicating that the
program has been identified is set in the
communication areae.

END_OF LOADING

After all processing for the loaded program
is complete, the Loader processing portion
performs termination processing and then
passes control to the Loader control
portion. The control portion then attempts
to execute the loaded program.

1This processing is performed only when the
Loader is used with the MVT option of the
control program.

LOADER PROCESSING TERMINATION

If the SYSLOUT and/or SYSTERM data set was
opened, the Loader prints a diagnostic
dictionary describing the errors
encountered during loading. (As errors
occur, the Loader sets a flag indicating
the type of the error in the bit map field
(CMBITMAP) in the communication area.) The
Loader determines the highest error
severity indicated and returns it to the
caller at termination.

Next the Loader insures that all
diagnostic data has been written to SYSLOUT
and then closes both the output and the
current input data sets.?

The Loader then sets up the return
parameter list. If the processing portion
of the Loader was invoked through the entry
point IEWLOAD, the name of the identified
program is placed in this parameter 1list.
Otherwise, the list contains the main
storage address and size of the loaded
program.

Finally, the Loader issues a FREEMAIN
macro instruction for all its processing

1The current input data set is SYSLIB
unless no library searching was done. The
Loader closes SYSLIN when it opens SYSLIB.

However, if a SYSLIB DCB marked open was
passed to the Loader, SYSLIB is not
closed.

storage not assigned to the loaded program
or the condensed symbol table. (If the
completion code for loading is greater than
4, the storage occupied by the loaded
program is also released including
preloaded text passed through MOD records.
If the loaded program was identified, the
storage it occupied is released through the
execution of the LOAD and DELETE macro
instructions.) The Loader then returns
control to the control portion.

LOADER CONTROL TERMINATION

Before attempting to execute the loaded
program, the Loader control portion issues
a DELETE macro instruction for the
processing portion. Then, if the condition
code for loading is not greater than 4, the
Loader control portion passes the user's
parameter list to the loaded program for
its execution.

After the program's execution, the
Loader control portion returns to the
scheduler. If the loaded program is
invoked through the execution of a branch
and link instruction (MFT/PCP) rather than
through the execution of an ATTACH macro
instruction (MVT), the storage occupied by
the loaded program (including preloaded
text, if any) is freed by the Loader
control portion before return is made to
the scheduler.

Section 2: Method of Operation 43

LEGEND FOR DIAGRAMS

Primary flow

—» Data Movement

Created in This
Operation or Routine

$-Subsidiary Processing ;
Secondary Flow

~— — — — — — — PData Reference

Previously Existing or
Defined in Program

uy

POUIBW :Z UOTIDOLS

uot3zexado Jo

Sh

GRS "'fv@é s / O 53
i 7 x
lff; o e ¢ S ; A A IEWLDCOM
g ¥ *7» ? N OPTIONIS LIST - Communication Area
e ; & t ?"g& 5 ST e ; < _ Data Control Blocks
S s e DDNAMES Control Information % ¢ _ __ Initial Input Buffers |
B and Work Area for
iy > Initialization Additional Buffers
it and Loader Tables
5 5 : : % Loaded Program
1 § ; A S 5 §§’2" %
o Aol oM B . &Y 4
BT S R Ed) Feainnd
#
z R71
g LOADER IEWLOADR, IEWLOAD
\
CSECT IEWLIOCA
& XCTL LOAD/CALL a
8 CSECT Y — — — — —
o) IEWLCTRL CSECT IEWLRELO
= ATTACH NOTE 1
o
<
o] —
— J—— e s —— — s
CSECT IEWLLIBR
CSECT IEWLIDEN
CSECT IEWLDDEF
& N~ N
Z IEWLOADR Note 1. Module IEWLOADR is deleted after its execution SYSLIN
9 \—_/ and before the loaded program is given control,
2 IEWLDRGO Note 2. Load module text is read directly into the loaded \mB/
< program area.
)
X w Note 3. A hex '80' in the high-order byte of a fullword _—/
3 signifies that it is the last field in the parameter

list.

QY wexberq «

uoTjexado Is9proT TIRISA0

®* Diagram Al., System Generation

Object Module IEWLDDEF

Alternate ddname for

— SYSLOUT
Execution of the LOADER Alternate ddname for
macro instruction results SYSLIN

Assembler

~ P

~—_

in the expansion of
object module IEWLDDEF f

A
Iternate ddname for Linkage Editor

which contains the SYSLIB IEWLOADR
SYSGEN defaults for the ~ 7
Loader Default SIZE value T

~ P

~— . —

< 1EWLDRGO_

SYST.LINKLIB

[~ ~

~—_— e —

\/iWLDBC// . '
JEWLDREL _
SYS1.LD547 < IEWLDLB
~ -

- - —

JEwwpioY

—_—

; e
JEWLDRGO_ MOVE/COPY

be

» Diagram A2.

Loader Invocation

SYSLIN DD
LDGO EXEC

or

through issuing a LOAD,
XCTL, LINK, or ATTACH

SYSLIB DD I

Scheduler

R#1

macro instruction referring
to IEWLDRGO (program
name) or to LOADER (alias).
Parameters are passed via
list addressed by Reg # 1

-
|

_ |EWLOADR _A

—_——

EWLDRGO _

Parameter list

MODULE IEWLCTRL

Entry point IEWLDRGO

—

SYS 1. LINKLIB

The user may invoke the Loader to load a program
but not pass control to it. In this case, the user
issues a LOAD and a CALL macro instruction
referring to IEWLOADR (for loading without
identification) or to IEWLOAD (for loading with
identification). Entry point IEWLOAD may only
be used when the MVT option of the control
program is in operation.

Length of
options
+ Ddnames
options for
Loader and
loaded program
A DeBs

MAIN STORAGE

Section 2:

Method

to
LOADER
CONTROL

of Operation

47

* Diagram Bl. Loaders/Scheduler Interface and Initialization

length USER OPTIONS
of options W
USER DDNAMES {
PARAMETER
LIST
00
R#1] —
|__—
USER DCBs
Builds INITMAIN from
control information analyzed
LOADER 1 \
q Fro scheduler CSECT Save area See Note 2
IEWLCTRL
Ent i
. A Ddnames ntry point name
| |LoAD/cALL DCB addresses
- IEWLOADR, eniry point- GETMAIN Parameter flags
[EWLIOCA, alias-IEWLOAD (4K bytes) Storage
CSECT .. .
— Minimum storage Maximum storage
— _IE_VEEF__] request size request size
[EwLOADR IEWLIOCA N
CSECT GETMAIN list Conversion area
IEWLIOCA
SYST.LINKLIB T T T Option translation [Rejected options
CSECT table buffer
IEWLRELO
CSECT _ Loader Processing Storage
IEWLLIBR 1. Establishes
IEWLCTRL changes the length -— IEWLDCOM
of the option list received from CSECT
the scheduler to the length of IEWLIDEN B 2. All?cates and Loader Communication Area |«
the Loader options only. chains save
GETMAIN areas —
(Note 1) 3. Issues a
FREEMAIN for R #11 L — Save Area 1
d the INITMAIN [— Save Area 2
| oree | Save Area 3
S N
-T -
Constructs DCBs for data allocates
. #
Note 1: IEWLIOCA issues a GETMAIN for the size range sots (Note 3) and_output buffers _R =13 — Save Area 8
specified by the SIZE = parameter (stored in INITRMAX) C Save Area 9
and the value specified by the INITRMIN field. SYSTERM DCB, DECBs
’
Note 2: The size and address of the Loader processing area OPEN for OPENLIST and Buffers
are inserted by the GETMAIN SVC handler. SYSLIN DCB
Note 3: A DCB is constructed for the output data set if SYSLOUT DCB
the PRINT option was chosen. A DCB is also cons-
ff
tructed for the input data set if a SYSLIN control SYSLOUT Buffers
block , which describes an intemal data area,was Primary Input Processing J- Prime Storage I
not passed. A DCB, two DECBs, and two buffers are Low AddressT 9 T

provided for the terminal data set if the TERM
option was chosen.

Section 2: Method of Operation 49

Diagram Cl.

Primary Input Control and Buffer Allocation

IEWLDCOM
allocate buffers |]

IEWBUFFR and DECBs ~ ~

Buffer alloca- as indicated DECB 1
IEWLIOCA indicate unlike [tion routine by DCB

attributes in ' BUFFER 1 Object Module
input DCB P .
from initiali- P See Figure 7 DECB 2 ™ IEWPRIME rocessing
zation or for object)
primary input module BUFFER 2 <€ | Prime buffers
processing allocation B L
DECB N
// BUFFER N (not primed)
e ~L ~ Input Data Set
Ve T g
// Loader Processing Storage
R710 highest ilabl
ighest available
storage \
. IEWLDCOM
| allocate 2 DECBs and
Block size 1 256-byte buffer |\ =y = IEWLIOCA Lot Mool
a ule
EEE: ; Processing
Record format

Number of buffers

DCB flags

See Figure 7 for

T
load module allocation | RLD buffer (256 bytes)
¥

Loader Processing Storage

Section 2:

Method

of Operation

51

e Diagram Dl. Object Module Processing

Input may
either be from
an external
device
or Input Data Set
from an internal SYSLIN >i
data area whose control
block is passed to the RECORD 1
Loader in the DCB list. RECORD 2
SYSLIN control block RECORD 3
NN
record \ Object Module
being \ \. Buffers or Internal
processed \ \S\YSLIN data area
CMGETREC \ N
AN
AN

determines record type

lEWERROR]—VRETURN
IEWLEND h RETURN

IEWLRELO

OBJECT
CARD

IEWLREAD

reads input

IEWLESD

IEWLTXT

IEWLMOD

IEWLRLD

IEWLEND

Section 2:

ESD processing;

TXT processing ;

MOD processing;

RLD processing ;

END processing;

Method

of Operation

53

Diagram D2. Load Module Processing

CMGETREC
ID
Input record
l (not text)
Input Data Set I\ RLD Buffer
~— If first

~—

time, set "CESD

IEWLOAD Yes received" flag

END OF
MODULE

CESD
RECORD

Preliminary ESD
processing

IEWLESD

"CESD
RECEIVED"
FLAG ON

Yes set flag off

B.IESD processi
IEWLESD

IEWLREAD
reads input Finich
inis
proces-
sing
module
or return

IEWLE ND:» Return

Text Processing;
LMTXT

Section 2: Method of Operation 55

e Diagram D3. ESD Record Processing (Generalized)

R#6 'Ist 1D
in data
Object Module Buffer or RLD Buffer
ESD/CESD data Ri7| ltength
of data
#
; T R78 I
NAME X ADDR ADDR
3
Input
Information moved
depends on entry type
CMTYPCHN

L—

§ .

»{ Module Map

®

Non-resolution.
@ Make CESD entry .

Do any preliminary
processing needed.
Search CESD.

e CESD ENTRY ' ! !
v N 0 |Name § EAddr
from IEWLODE
or IEWLRELO
@ Move input
information

IEWLERTN
Process RLD
chain

make translation

table entry } CESD entry

Translation Table extent

Note: ESD processing differs according to entry type

and whether resolution is possible. For detailed information,

refer to "External Symbol Dictionary Processing". The following
diagrams give some examples of processing for different conditions.

®

MAP ENTRY
NEEDED

SYSLOUT data set

IEWLMAP
make map
entry

<«—ESDID

) After processing all input
entries in data, return

Section 2: Method of

chain entry

Operation 57

Diagram D4. Example of Input ESD Processing (IEWLESD)

Input ESD entry; ESD ID =3

Input The input address is
CSECTA] SD address Length | eed to caleulate the CMTYPCHN
Loader-assigned address
and the relative relocation. 5

w N - O

N

Translation Table Extent

NOMATCH —
Makes a CESD entry,

Uses entry's
type and name to

chains it and makes
a translation table 0
entry for it.

CESDSRCH search type chains

SD

MATCHED
Changes the existing

‘\(\wm—lo
T

Loader- relative
CSECTA|SD|assigned [eloca-
ion
address
constant
CESD entry
0

/

H

T 7

Translation Table Extent

ER to SD, rechains
the entry and makes
a translation table
entry for the input

1o

chain

CSECTA

SD

relati
Loader- [f€@Ive
reloca-

assigned |1
address [constant

entry referring to the
existing entry

hi | s sing f i . . .
This example shows processing for an input SD entry when a match exists (resolution processing)

Existing CESD entry

no match exists in the CESD (non resolution processing)

Section 2: Method

of Operation

59

Diagram D5. Example of Input ESD Processing (IEW

Input ESD entry ESD ID = 2 CMTYPCHN

NAME | ER 0 0

sD LD ER

LESD)

, Note 1.

Translation
Table Extent

Uses entry's
type and name
to search type chains

NOMATCH

CESDSRCH make CESD

entry, chain
entry, and 0 NAME

make transla-

tion table CESD entry for

eniry
CMTYPCHN

. .

MATCHED —
make translation Go to process
table entry to 3

SD LD ER LR/CM

0 0 existing CESD next ESD entry
1 entry
0 NAME | CM 2 /

This example shows processing for an input ER entry when @ no match in the CESD exists (non-resolut

@ a match exists (resolution processing)

ER

ion processing)

Section 2:

The high bit of
the first byte is
set on to show
CESD entry is
for ER.

Go to process

ER 0 »
next ESD

enfry

Method

of Operation

61

Diagram Deo.

Input CESD Entry

NAME | LR \ ESD ID

A Note 1

Note 1: Input LR entry contains
the ESD ID for CSECT

containing NAME,

Note 2: Only for object module
input, the input LD is
placed on temporary
chain.

Example of ESD ID Translation

This example shows preliminary processing of an input LR. Translation insures
the input ID is valid and obtains the CESD address of the related SD.

TRANSLAT TRANSID =)
Translates 1D LR Ten"y
via tables for SD

A
CMTRCTRL
—_— _._.._I/ L] L] L]
/ LOAD CHAIN
/ (CMTYPCHN+32)
/ Note 2
0 /
! /
2
3 CESD entry
-~ -~
Translation Table Extent
Section 2: Method

of Operation

63

Diagram D7.

Object Module Text Processing

Object Module Buffer

Text Record

ESD ID of text

Displacement
in input

Length of # ?———————-——
| e |7

R#8

R#5

RF6|
~

Input

P Address

IEWLTXT

from IEWLRELO

CMLOWTBL
Table area
CESD entry
!
relocation
flag constant l
v |
\ }

IEWERROR

CESD
ENTRY
"DELETE"

No

record

Calculate the main
storage address
for the text

Return, to
read the next

TEXT
OVERLAP
TABLES

Table and Buffer Area

for text

Text already loaded

Loaded Program's Storage Area

Move text to assigned
address; Update storage
pointer if neede:

> Return

IEWERROR
to end loading

Section 2: Method

of Cperation

65

e Diagram D8. Load Module Text Processing

Table and Buffer Area

o RLD Buffer
Length of
1D/Tength list
CMGETREC
1D/ length list | Control record Text record
Read Address

Text control or control/RLD record

Input Data Set
Input cMLowTBL T

I Table Area
\

\
Loaded Program's Storage Area

If required,
move CSECTs to
correct addresses,

Process entire
1D/length

list to determine
which CSECTs are
for loaded program

Calculate

Yes read address
ANY TEXT TO G
KEEP

TEXT
OVERLAP
TABLE

No
. END OF Return

MODULE

from

IEWLODE

> [EWLEND

. DIEWERROR
to end loading

| Text record to
_ Lbe skipped

Read text record, unless the record is

to be skipped; read the following control
record also, unless the text record is the
last or CSECTs are to be deleted.

Note 1:

Note 2: See Figure 12,

Section 2: Method of Operation 67

e Diagram D9. RLD Record Processing

Reg 7 Reg 8

Length of RLDs J

~¢—— One entry —3

R|P | flag TAdcon R|P| flag % } NAME | SD relocation
RLD data in input buffer CESD entry 1
Note 1
.
k \f {Nore 3
P-pointer NAME 2| TYPE E:;qun
1
ESD ID f CESD entry
CESD entry 2
R-pointer
Esg o rc ESD entry 2 (for address constant)
A mi Chain RLD
_ T ay entry to
. CESD entr:
EWLRLD build 4
|EWLRLD TRANSID — ! v1ids 4 for adcon
an RLD entry} No
. Translate : RLQ Adcon in RELOCATE -
R pointer and C‘ha'“ flags loaded program h NOW
P pointer to field
CESD addresses
Check R # 7 for Note 2
remaining entries.
Process all RLD data.
2 Return to IEWLERTN—
JEWLODE or Y Relocates address
IEWLRELO consfant

Note 1: The input buffer is the RLD buffer (load module) or an object module buffer.
Note 2: The Loader calculates the adcon address using the P-pointer CESD entry's relocation constant and thefAdcon and flags from the
input RLD entry. The flags are inserted in the new RLD entry unless the input RLD is for a CXD PR.

Note 3: If the type in the CESD entry for the address constant is PC, SD, or LR relocation is performed. If the type is CM, PR, or ER, the

RLD entry is chained to the CESD entry.

Section 2: Method of Operation

69

O
o
m

e Diagram El. Secondary Input Processing

1
| |
| l
[| M . .
t Ent ove entry point address if names match
|) e | e -
:7 t _ —l ————— (Compare names)— — — — —— — — -

Contents Directory Entry Queue

Try to find current
ER name in a CDE

(A)

IEWACALL

Yes

Try to resolve
each ER from the

USE LINK
PACK AREA

type| NAME | sD | Address

.. y h - f. Id . ."v
from IEWLIOCA chain e Link Pack Area Auto Call
CEfSD Processing
entry
Final Processing
Final Processing
N _ | Module Map

A A
Address List< [R5 146 —“YMove each SYSLOUT data set) .
Al l} 2 * 3 l TTR returned Indicate TTR Conh(g)e processing
- NAME6 to the proper . from O for
Builds BLPL and CESD entr received each library module
Address Lists (Note 1) NAME5 Y X Processmodule; Finl
type Address {EWLRELO or inal
zmz Ei C chq’;n NAME4 | ER | Cob) IEWLODE Processing
CESD entry
NAME2 TTR FIND
NAME1 TTR
BLDL List
move TTR

Library Data Set . N Member

NAME4

Library Data Set DCB

Section 2: Method of Operation 71

INPUT
MODULE A
1 AnN sb| o 1000
s ER 0
cp 2 | SUE 0
3] LynN sD | 1000 750
4| pat IR | 1070 3
5| cmi cM| 1750 250
o] ANN
700 DC A (PAT + 80)
800 DC A (CMI + 4)
1000 | LYNN
1070 | PAT
1080 DC V (SUE) II‘
R P Flag Address
4 1 oc| 700
RLD 5 1 oc| 800
2 3 1c| 1oso
MODULE B
1] sue so| o 550
2| Lynn SD| 550 450
ESD
3| pat R | 620 2
4| cmi cMm| 1000 100
0| sue
300 DC A (CMI + 4)
400 DC A (PAT + 80)
550 LynN T
620 | PAT
630
R P Flag Address
4 1 oc| 300
RLD 3 1 oc| 400
1 2 1c| 630

TRANSLATION CONTROL TABLE

0 0 0

|

o A W N

TRANSLATION TABLE
EXTENT

0
50000
49910

49900
498E0
498D0

NOTE 1. All adresses are

given in Hex.

24000

24700

24800

25000

25070

25080

INTERNAL TABLES (TIME 1%)

CESD Control Table (CMTYPCHN)

| —* 0 \ / 0 / 0 0
SD LD ER LR PC (CM PR NULL
j CESD entry
/ CESD entry 49800 | 0 | cm1 |cm
(B0]
49900 LYNN | SD| 25000 |\-1000 —7 7
24000 -
CESD entry (extended porti
Y CESD entry 498C0 | 0 1750 250
24000
50000 0 ANN | SD| 24000 |[\- ©
24000
RLD Table entry
49888 0 0C | 24800
(25070
498E0 0 PAT LR | 25070 | \~1070
24000
CESD entry
49910 0 SUE ER r 0
Text for Module A
ANN — RLD Table entry
250C0 0 1C | 25080

bC A (PAT + 80)
4

DC A (CM1 +4)

DC V (SUE)

.

_Relative relocation

(using relative relocation factor)

[<€—Delinking

* Time 1 - AIl ESD, TXT, and RLD records for
Module A have been read;
END card has not been processed.

TRANSLATION CONTROL TABLE

I

0 0 0

° |

*Time 2 - All ESD, TXT and RLD records for
module A have been read;
END card for module B has not

TRANSLATION TABLE
EXTENT

0 0
49910

498A8

498E0
498D0
0

O A w N

been processed

498A8

49910

50000

49900

INTERNAL TABLES (TIME 2*)

CESD Control Table (CMTYPCHN)

|~ 0 0 \ 0 \ 0 0
SD LD ER LR PC M PR NULL
CESD entry CESD entry CESD entry
25000 25070
SD
NN [" 550 (— 25) 0 CMI |CM
L |PYNN et | 25000 (2 IABO 498E0 | 0 PAT | LR| 25070 |7 620 498D0 I
CESD entry T v RLD Table entry CESD entry (extended portion)
25750
/ SUE SD| 25750 (— O) \ 49880 I 0C | 24800 CM| 1000 100
20 498C0
CESD entry \ 47 RLD Table entry
25000
/ LYNN |SD| 25000 (-]OOO) \ 498B8 0 0C | 25A50
24000
CESD entry \
(24000)
0 | ANN [sD| 24000 | \- 0 \
24000
Text for Module A and Module B
24000 | ANN \
24700 DC A (PAT+80) 250C0 \
oo | ocA e \
2500 - — — — — — — — — —]
LYNN \ /.Absolute relocation
/\/
25070 | PAT -
—
A \
25080 DC V (SUE) 25750
250C0 |*PAT+80 \
25750 @E* T T T \ Relative relocation
4 N (relative relocation constant)
[~ ~ . e
25A50 DC A (CMI +4) Delinking - -
250C0 -
25B50 DC A (PAT +80) @4_

TRANSLATION CONTROL TABLE

0 0 0 0

498A8
TRANSLATION TABLE
EXTENT

0 0 49910
1 0
2 0
3 0

50000

. 49900

INTERNAL TABLES (TIME 3*)

CESD CONTROL TABLE (CMTYPCHN)

(

* Time 3 - End of loading - before tables are freed.

e Figure 14.

| 0 0 \ 0 \ 0 0
SD LD ER LR “ CMQ NULL
CESD entry CESD entry CESD entry
D 25000
LynN P as000 | =550, 0 |PAT |LR| 25070 | 24A50 0 | CcMI|{CM| 25cA0 | 25CA0
L delete 24AB0
CESD entry
- SUE |SD| 25750 | 25750
Text for loaded modules A & B
CESD entry
24000 | ANN
LYNN [sD| 25000 24000 Relative relocation
/ (relative relocation
24700 DC A (PAT + 80) [250C0 constant)
CESD entry 25CA4
24800 DC A (CMI +4)
0 ANN [SD| 24000 24000 25000 b— — — —]
LYNN
25070 | PAT
25080 DC V (SUE) 25750
25750 f— — — — —]
SUE
25CA4
25A50 DC A (CMI +4)
25B50 DC A (PAT + 80) 250C0
25CA0— — — — — — — — —
CM1
25F00
ESD and RLD Processing
Section 2: Method of Operation 73

Translation Control Table

‘ 0 0 0

T

INPUT
Module A

0| JOE SD| O 200

1 PR2 PR 0 |03 4
ESD

2| PR3 PR|{ 4 |01 4

0] JOE

o scamn [T
100 DC Q (PR3)

200
2 1 24| 100
RLD 1 1 24 50
0 1 3C| 150
Module B
SAM SD| 0 400
PRI PR 0 07 4
ESD
PR2 PR| 8 |07 4
PR3 PR| C |03
0| SAM
wo| ocarm [5]
350 DC Q (PR3)
400
2 1 24| 200
RLD 3 1 24| 300
4 1 24| 350

Note 1
Boundary
alignment for PR's:
'07' =double word

'03' =word
'01" =half word
Note 2

All addresses
given in hex

w N

Translation Table Extent

0

40000

30000

30050

30100

30150

30200

40000

INTERNAL TABLES (TIME 1%)

CESD Control Table (CMTYPCHN)

Translation Control Table

2l

\ 0 0 0

> o oo oo / 0
SD LD ER IR PC CM PR NULL
CESD entry CESD entry
30000-0
0 JOE ([SD| 30000 230000 3992C| 0 PR3 | PR / 01} 4
RLD Table entry
3991C 0 24| 30100
CESD entry
39940 N PR2 |PR / 03| 4
RLD Table entry
Text for Module A 39924 0 24| 30050
JOE
CMCXDPT (in IEWLDCOM)
RLD Table entry
39914 0 0C| 30150
CXD E) * Time 1 - All ESD, TXT, and RLD records for

Module A have been read - END card
has not been processed

Translation Table Extent

0 0
1 39900
2 0

* Time 2 - All ESD, TXT, and RLD reccrds
for Modules A and B have been
read; END card for Module B
has not been processed.

INTERNAL TABLES (TIME 2*)

CESD Control Table (CMTYPCHN)

0 0 0 0 0

[

SD LD ER LR PC CM
CESD entry
30200
39900 SAM | SD | 30200 -0
/ 30200
CESD entry
30000
40000| © JOE |sD | 30000 -0
=30000

Text for Module A and Module 2

30000 | JOE
30050| DC Q (PR2) E
30100| DC Q (PR3)
30150] CxD IIl

30200| sAM

30400] DC Q (PR1) lI‘
30500 DC Q (PR2)
30550 DC Q (PR3)
30600

PR

Translation Control Table

o4

0
NULL
CESD entry
398EC 0 PRI PR / 07 4
gRLD Table entry
398E4 0 24| 30400
CESD entry
3992C K PR3 | PR / 03 4
RLD Table entry
398DC / 24| 30550
RLD Table entry
3991C 0 24| 30100
CESD entry
39940 \ PR2 PR / 07| 4
RLD Table entry
398D4 / 24 | 30500
RLD Table entry
39924 0 24 | 30050
CMCXDPT
RLD Table entry
39914 0 3C| 30150

Translation Table extent

30000

30050

30100

30150

30200

30400

30500

30550

30600

INTERNAL TABLES (TIME 3*)

CESD Control Table (CMTYPCHN)

|_» 0 0 0 0 0 / 0
SD LD ER LR PC CM [PR NULL
CESD entry CESD entry
39900 / SAM | SD| 30200 30200 398EC PRI PR 0 |07
CESD entry CESD entry
40000 0 JOE |SD| 30000 30000 3992C \' PR3 PR}] 4 |03
CESD entry
39940 | ™ PR2 | PR| 8 |07
Text for loaded Modules A and B
JOE
CMCXDPT
SAM
DC Q (PR1) E *Time 3 ~ End of loading - before tables are freed
Figure 15. Pseudo Register Processing

Section 2:

Method

of Operation

75

The following text and the flowcharts in
this section describe the Loader interface
and the routines that accomplish the
functions of the Loader. The organization
of this section corresponds to the
organization of the Loader; descriptions of
all routines which constitute a phase of
the Loader are grouped together. For each
routine the symbolic name is given to
facilitate use of program listings (See
"Section 4: Microfiche directory") and the
descriptive name is given to facilitate
reference to the "Method of Operation"
(Section 2).

Figure 16 shows the organization of the
Loader. The flow of control through the
first four levels of the processing portion
of the Loader (module IEWLOADR) is listed
in the control level tables included at the
end of this section.

LOADER/SCHEDULER INTERFACE

Loader Control Portion - IEWLCTRL (Chart
100)

Entrance: IEWLCTRL is entered from the
scheduler when the Loader is invoked.

Operation: IEWLCTRL loads the processing
portion of the Loader (IEWLOADR) and passes
control to it. After loading is complete,
IEWLCTRL deletes IEWLOADR and passes
control to the loaded program for its
execution.

Routines Called: When the PCP or MFT
option of the control program is being
used, IEWLCTRL calls IEWLOADR at entry
point IEWLIOCA; when the MVT option of the
control program is being used, IEWLCTRL
calls IEWLOADR at entry point IEWLOAD.
IEWLCTRL invokes the loaded program as
follows. For PCP or MFT, the program is
called at the established entry point. For
MVT, the program is attached by its
established program name.

Exit: IEWLCTRL returns to the scheduler.

SECTION 3: ORGANIZATION OF THE LOADER

INITIAL, I/0, CONTROL, AND ALLOCATION
PROCESSING

Loader Processing Control - IEWLIOCA
(Charts 200-201)

Entrance: This routine can be entered at
entry point IEWLOAD, for loading with
identification (MVT only), or at entry
point IEWLIOCA, for loading without
identification. It is entered from
IEWLCTRL or it can be called directly by
the user.

Operation: IEWLIOCA analyzes the options
passed by the calling program and prints a
list of options. IEWLIOCA also obtains the
Loader processing storage, initializes the
communication area, opens data sets,
allocates buffers, and handles 1/0.

IEWLIOCA calls the
following routines: the buffer allocation
routine (IEWBUFFR), the buffer prime
routine (IEWPRIME), the object module
processor (IEWLRELO), the load module
processor (IEWLODE), the automatic library
call processor (IEWACALL), and the
identification routine (IEWLIDEN).

Routines Called:

Exit: When loading is completed, IEWLIOCA
returns control to the Loader control
module (IEWLCTRL).

Buffer Allocation Routine - IEWBUFFR (Chart
203)

Entrance: IEWBUFFR is entered from
IEWLIOCA when a new input module is to be

read.

Operation: For object and load modules,
IEWBUFFR allocates and deallocates buffers
and DECBs from the Loader's processing
storage.

Routines Called: IEWBUFFR calls the
routine to free areas from deallocated
buffers and DECBs (FREECORE) and the
routine to allocate Loader processing
storage for buffers and DECBs (GETCORE).

Exit: When allocation is completed,
IEWBUFFR returns control to the I/0,
control, and allocation processor
(IEWLIOCA).

Section 3: Organization of the Loader 77

Storage Allocation Routine - GETCORE

Entrance: GETCORE is entered from IEWBUFFR
when storage is needed for a DECB-buffer
allocation.

Operation: GETCORE allocates storage from
a list of areas freed from previous
allocations or from storage not previously
used for allocations.

Routine Called: None

Exit: After making the allocation, GETCORE
returns to the buffer management routine
(IEWBUFFR).

Return Storage Routine - FREECORE

Entrance: FREECORE is entered from
IEWBUFFR when storage is no longer needed
for a DECB-buffer allocation.

Operation: FREECORE returns storage to a
free list pointed to by 'CMFRECOR.' The
freed area is blocked with other freed
areas whenever possible.

Routine Called: None

Exit: After chaining the freed area,
FREECORE returns to the buffer management
routine (IEWBUFFR).

Object Module Buffer Prime Routine -
IEWPRIME (Chart 204)

Entrance: IEWPRIME is entered from
IEWLIOCA before an object module is loaded.

Operation: IEWPRIME reads records into all
buffers but one to expedite record
processing.

Routine Called: None

Exit: After priming the buffers, IEWPRIME
returns control to the 1/0, control, and
allocation processor (IEWLIOCA).

Read Routine - IEWLREAD (Chart 205)

Entrance: IEWLREAD is entered from the
object module processor (IEWLRELO)or the
load module processor (IEWLODE) when a
record is required for processing.

78

| Operation: To read external object
modules IEWLREAD uses the DCB information
and the DECB to direct reading of fixed
records into the buffers, IEWLREAD also
deblocks the physical records and returns
the address of the next record to be
processed. Similarly, IEWLREAD deblocks an
internal data area and returns the address
of the next record to be processed. To
read load modules, IEWLREAD uses the
parameter information to direct reading of
different type records.

Routines Called: IEWLREAD calls the
generalized read and check routines (RDREAD
and RDCHECK, respectively.)

Exit: After the required records are read,
IEWLREAD returns to the caller.

Print Routine - IEWLPRNT (Chart 207)

Entrance: IEWLPRNT is entered whenever

| output to the SYSLOUT data set is to be

processed.

Operation: IEWLPRNT inserts the ASA
carriage control character before printing
the output. The proper code is obtained
from the *PRTCNTRL' table via an index
found in 'CMPRTCTL'. This index is reset
to space 1 unless changed before the next
print.

Routines Called: IEWLPRNT calls the
generalized write and check routines
(WIWRITE and WTCHECK, respectively).

Exit: After printing the output,
returns to the caller.

TIEWLPRNT

SYSTERM Routine - IEWTERM (Chart_208)

Entrance: IEWTERM is entered whenever
output to the SYSTERM data set is to be
processed.

Operation: IEWTERM initializes the SYSTERM
DCB, opens the SYSTERM data set, and prints
the output.

Routines Called: IEWTERM calls the
generalized write and check routines
(WIWRITE and WTCHECK, respectively).

Exit: After printing the output, IEWTERM

returns to the caller.

SYNAD Exit Routine - SYNAD

Entrance: SYNAD is entered from the
supervisor when an I/0O error occurs.

Operation: SYNAD determines the access
method used at the time of the 1I/0 error,
and prints and accepts the error.

Routine Called: None

Exit: SYNAD returns to the supervisor.

INPUT MODULE_PROCESSING

Object Module Processor - IEWLRELO (Chart

Routines Called: IEWLESD calls the
following routines:

e The allocation routine (ALLOCATE) to
allocate storage for a CESD entry.

e The translation routine (TRANSID) to
build the translation table and to
translate an ESD ID into a CESD entry
address.

e The adcon routine (IEWLERTN).

e The map routine (IEWLMAP) to create a
map printout.

Exit: IEWLESD returns to the object module

or load module processor when the ESD/CESD
record has been processed.

RLD Processor - IEWLRLD (Chart 305)

300)

Entrance: IEWLRELO is entered from the
input/output - control processor (IEWLIOCA)
or from the automatic library call
processor (IEWACALL) when object module
input is to be processed.

Operation: IEWLRELO requests records to be
read, determines the record type, and
passes control to the appropriate
Processor.

Routines Called: IEWLRELO calls the read
and deblock routine (IEWLREAD) and the
following processors:

ESD Processor (IEWLESD)
TXT Processor (IEWLTXT)
RLD Processor (IEWLRLD)
END Processor (IEWLEND)
MOD Processor (IEWLMOD)

Exit: IEWLRELO returns to the input/output
- control processor (IEWLIOCA) or to the
automatic library call processor (IEWACALL)
when end of module is recognized.

ESD Processor - IEWLESD (Charts 301-304)

Entrance: IEWLESD is entered from the
object module processor (IEWLRELO) when an
ESD record is recognized, or from the load
module processor (IEWLODE) when a CESD
record is recognized.

Operation: IEWLESD combines ESDs in the
Loader input into a composite ESD.
Matching input symbols are resolved. A
translation table is produced to allow
input ESD IDs to be translated into CESD
entry addresses.

Entrance: IEWLRLD is entered from the
object module processor (IEWLRELO) or from
the load module processor (IEWLODE) when an
RLD record is recognized.

Operation: IEWLRLD builds the RLD table
using the input RLDs. If relocation is not
possible, the RLDs are chained from the R
pointer of the CESD entry.

Routines Called: IEWLRLD calls the
following routines:

e The translation routine (TRANSID) to
translate an ESD ID to the CESD entry
address.

e The allocation routine (ALLOCATE) to
allocate storage for an RLD entry.

¢ The relocation routine (IEWLERTN) to
relocate an RLD or to delink an adcon.

Exit: IEWLRLD returns to the object module

processor (IEWLRELO) or to the load module
processor (IEWLODE).

End Processor_-_IEWLEND (Chart 307)

Entrance: IEWLEND is entered from the
object module processor (IEWLRFLO) when an
END statement is recognized or from the
load module processor (IEWLODE) when
end-of-module is detected.

Operation: IEWLEND processes object module
END cards for entry point and CSECT length.
IEWLEND also processes entry point
information for the loaded program if a
symbolic entry point is indicated. At
end-of-module, IEWLEND resets storage
pointers and clears the translation table.

Section 3: Organization of the Loader 79

Routine Called: IEWLEND calls the
translation routine (TRANSID) to translate
an ID to a CESD entry address.

Exit: When end processing is complete,
IEWLEND returns control to the object
module or load module processor.

Translation Routine - TRANSID (Chart 309)

Exit: TIEWLMOD returns to the object module
processor (IEWLRELO).

Address Constant Relocation Routine -
IEWLERTN (Chart 306)

Entrance: IEWLERTN is entered from

Entrance: TRANSID is entered from IEWLESD
when a translation table entry is required
or from IEWLRLD, IEWLTXT, or LMTXT when
translation of an ID is required.

Operation: TRANSID translates the ESD ID
to a corresponding entry address in the
translation table through the translation
control table.

Routine Called: TRANSID calls the ALLOCATE
routine when a new extent is required for
the translation table.

Exit: TRANSID returns to the caller after
translation is terminated.

Table Allocation Routine - ALLOCATE

Entrance: ALLOCATE is entered, from
IEWLESD when a CESD entry is required, from
IEWLRLD when an RLD entry is required, from
TRANSID when a translation table extent is
required, or from IEWLMOD when storage is
required for saving extent information.

Operation: ALLOCATE allocates the required
amount of storage for the caller.

Routine Called: None

Exit: After the allocation, ALLOCATE

returns to the caller.

MOD Processor - IEWLMOD (Chart 310)

Entrance: IEWLMOD is entered from the
object module processor (IEWLRELO) when a
MOD record is recognized.

Operation: IEWLMOD processes object module
MOD cards for text origin, length, and
extent information. If no entry point has
been defined, IEWLMOD stores the first
extent address for use as a default entry
point.

Routine Called: The allocation routine
(ALLOCATE) to allocate storage for saving
extent information.

80

TIEWLESD, IEWACALL, or IEWLRLD when address
constant (external reference) resolution is
required.

Operation: IEWLERTN relocates all address
constants pointed to by an RLD chain after
determining the type of relocation
required.

Routine Called: None

Exit: After the resolution, IEWLERTN

returns to the caller.

Map Routine - IEWLMAP (Chart 308)

Entrance: IEWLMAP is entered from IEWLESD
or from IEWACALL when a main storage
address is to be mapped.

_____ IEWLMAP formats the proper map
entry and causes it to be printed.

Routine Called: IEWLMAP calls the print
routine IEWLPRNT and the binary-hex
conversion routine IEWLCNVT.

Exit: After printing the map entry,
IEWLMAP returns to the caller.

Conversion Routine - IEWLCNVT

Entrance: IEWLCNVT is entered from
IEWACALL or IEWLMAP when binary-hex
conversion is required.

Operation: IEWLCNVT converts a binary
quantity to print characters.

Routine Called: None

After converting the quantity
IEWLCNVT returns to the caller.

Exit:
received,

| Load Module Processor - IEWLODE_(Charts
400-4503)

Entrance: IEWLODE is entered from the
input/output-control processor (IEWLIOCA)
when load module input is indicated.

Operation: IEWLODE makes read requests for
record types (control and/or text) as
needed. IEWLODE then determines the
particular record type (TXT, CESD,
scatter/translation, SYM, text control,
control/RLD) and goes to the appropriate
processor or requests another record to be
read (e.g., scatter/translation records are
ignored).

Routines Called: IEWLODE calls the
following routines:

¢ The read routine (IEWLREAD) to read
records.

¢ The ESD processor (IEWLESD) to process
CESD records.

e The end processor (IEWLEND) to process
end-of-module.

e The translation routine (TRANSID) to
translate text IDs to the proper CESD
addresses.

e The map processor (IEWLMAP) to create a
map printout.

e The RLD processor (IEWLRLD) to process
an RLD record.

e The load module text processor (LMTXT)
to read text.

Exit: When end-of-module has been
processed, IEWLODE returns to the
input/output - control processor
(IEWLIOCA).

Load Module Text Processor - IMTXT (Charts
401-403)

Entrance: LMTXT is entered from the load
module processor when a text control record
is recognized.

Operation: LMTXT processes the ID/length
list of the text control record to
determine which CSECTs are to be retained.
CSECTs to be retained are then read into
the loaded program's area. If necessary,
they are moved to their Loader-assigned
addresses.

Routines Called: LMTXT calls the
translation routine (TRANSID) to translate
the input IDs to the proper CESD entry

| SYSLOUT and/or SYSTERM data set.

addresses. The read routine (IEWLREAD) is
called to read the text into storage,

Exit: LIMTXT returns to the load module

processor after processing all IDs and
reading all text to be kept.

SECONDARY INPUT AND FINAL PROCESSING

Automatic Library Call Processor - IEWACALL
(Charts 500-504)

_____ IEWACALL is entered from the
control processor (IEWLIOCA) after all
SYSLIN input has been processed.

______ IEWACALL first scans the CESD
for unresolved ERs at the end of primary
input. If CALL is specified, IEWACALL
tries to resolve these ERs from SYSLIB
and/or the link pack area. After
attempting to resolve the ERs, IEWACALL
assigns addresses to the common areas and
relocates related address constants.
Displacements are assigned to the loaded
program's external DSECT. Finally, the
entry point of the loaded program is
determined.

Routines_Called: IEWACALL calls the
following routines:

e Library open routine (IEWOPNLB) to open
the SYSLIB data set.

s RID relocation routine (IEWLRLD).

» Object module buffer prime routine
(IEWPRIME).

® Object module processor (IEWLRELO).
o Load module processor (IEWLODE).
¢ Map processor (IEWLMAP).

Exit: IEWACALL returns control to the
control processor (IEWLIOCA).

ERROR PROCESSING

Error Log Routine - IEWERROR (Chart 505)

Entrance: IEWERROR is entered whenever an

error occurs during loading.

Operation: IEWERROR sets bit-map
indicators for errors encountered, and
formats and prints error messages on the
It also

Section 3: Organization of the Loader 81

determines the severity of the error and
terminates loading if a severity code 4 is
recognized.

Routines Called: IEWERROR calls IEWLPRNT
and/or IEWTERM to print a message.

Exits: IEWERROR returns to the highest
level caller if a severity code 4 error
occurs. Otherwise, it returns to the
caller.

Diagnostic Dictionary Processing Routine -
IEWBTMAP (Chart 506)

Entrance: IEWBTMAP is entered after final
processing for the loaded program is
completed,

Operation: IEWBTMAP selects the diagnostic
messages to be printed by indexing into the
message table.

Routines Called: IEWBTMAP calls IEWLPRNT
and/or IEWTERM whenever the bit map
indicates an error message.

Exit: After processing the bit map,
IEWBTMAP returns to IEWLIOCA.

82

IDENTIFYING LOADED PROGRAM

Identification Routine - IEWLIDEN (Charts

600-601)

Entrance: IEWLIDEN is entered after final
processing for the loaded program is
completed if the processing portion of the
Loader (IEWLOADR) was invoked at the entry
point IEWLOAD.

Operation: IEWLIDEN creates an extent list
and invokes the IDENTIFY macro instruction
to identify the loaded program to the
control program. A condensed symbol table
is also constructed if enough space is
available.

Routines Called: IEWLIDEN calls the extent
list entry routine (IDENTER) and the
condensed symbol table routine (IDMINI).

After identifying the loaded
IEWLIDEN returns to IEWLIOCA.

Exit:
program,

Load Module

. Load Module
IEWLDRGO (Alias LOADER) IEWLOADR (Alias IEWLOAD)

IEWLCTRL IEWLIOCA IEWLIDEN

IEWLIOCA IEWLIDEN
> Initialization, » Identification
(Input C?nfrol, of Loaded
,;«Ilocat.lon program
Loaded rocessing
Program
} IEWLLIBR
(Built by IEWACALL
IEWLOADR)
Secondary
Input and Final
Processing
¥ IEWLLIBR Yy IEWLRELO
|IEWLODE IEWLRELO
< J —
Load Module Object Module
Processing Processing
IEWLIOCA
IEWLREAD
”| Input Reading [
. A
IEWLLIBR IEWLRELO IEWLRELO Y IEWLRELO IEWLRELO
LMTXT IEWLRLD IEWLESD IEWLTXT IEWLMOD
#°°d Module RLD Record |« A >| ESD Record Object Module MOD Record
ext) Processing Processing Text Processing Processing
Processing

Note : The CSECT containing the code of a function is noted outside
the functional block.

e Figure 16. Loader Organization

Section 3: Organization of the Loader 83

ROUTINE_CONTROL - LEVEL_TABLES

The following tables follow control flow in the Loader (processing portion)
through four levels. The routine descriptions are listed alphabetically within a

level.

Module: IEWLOADR-Level 1

T T
| Routine | Purpose

Called Routines

S —
|

Calling Conditions

S SO -
IEWLIOCA|Initialization, primary input
|control, and allocation processing

IEWLPE&T
IEWBUFFR
IEWPRIME
IEWLRELO
IEWLODE

IEWACALL
IEWLIDEN

I
|
|
|
|
|
|
|
|
!
|
|
|
I
!
| IEWBTMAP

o e e e e e e e e

[o e e e e e e e e e v e e .

b -

84

|Called if SYSLOUT data
|set is open

|If more data exists on

| SYSLIN

|If SYSLIN input is an
|object module

|If SYSLIN input is an
|object module

|If SYSLIN input is a load
|module

|When all SYSLIN input is
|processed, unless SYSLIN
|did not open

|If the loaded program is
|to be identified to the
|control program

|
.|
I
|
|
|
|
|
|
|
|
|
|
|
I
|
I
|
|
4

IEWLOADR-Level 2

- - T T -1
|Routine | Purpose |Called Routines)| Calling Conditions |
e P e 1 - e ——mmmomme
| IEWACALL|Secondary input and final | IEWOPNLB |If ERs cannot be resolved |
| | processing | |from primary input or the |
| | | |LPA |
| | | COMMON |Always |
| | | IEWLMAP |If an ER is resolved |
| | | IEWLERTN |If an ER is resolved |
| | | IEWERROR |If an error occurs |
| | | IEWPRIME |If SYSLIB input is object |
| | | |modules |
| | | IEWLRELO |If SYSLIB input is object |
| | | |modules |
| | | IEWLODE |If SYSLIB input is load |
| | | |modules |
¢ t e .
| IEWBTMAP | Processing of error-bit map and | IEWLPRNT If SYSLOUT is open and | |
| |printing of diagnostic dictionary | messages are required |
| | IEWTERM |If the TERM option is |
| | | |specified and messages are]|
| | | |required |
e e 1 + -
| IEWBUFFR|Buf fer Management | FREECORE |If previous or current |
| |] | (not the first) allocation]|
| | | |is for object module |
| | | GETCORE |If no previously allocated|]
| | | |area is large enough for |
| |] |current request |
—————————————— + 1 i
| IEWLIDEN|Identification of the loaded pro- | IDENTER |Always, unless extents |
|gram to the control program | |will overlap Loader work |
| | | |space |
| | | IDMINI |Always, unless extents |
| | | |will overlap Loader work |
| | | | space |
| | | IEWERROR |If an error occurs |
F ¥ -- oo I :
| IEWLODE |Process a load module | IEWLREAD |Always |
| | | IEWLEND |If end-of-module is |
| | | |indicated |
| | | IEWLESD |If CESD record is received|
| | | IEWLRLD |If RLD record is received |
| | | LMTXT |I€£ TXT record is read in |
- o oo oo I :
| IEWLPRNT | Print output to SYSLOUT data set | RDCHECK |If DECB was previously |
| | | |written |
| | | WITWRITE |Always |
| | | WTCHECK |Always |
. e L e :
| IEWLRELO|Process an object module | IEWLREAD |Always |
| | | IEWLEND |If END card received |
| | | IEWLESD |If ESD card received |
| | | IEWLRLD |If RLD card received |
] | | IEWLTXT |If TXT card received |
| | | IEWLMOD |If MOD card received |
—— e e S
| IEWPRIME|Read records into all but one T RDREAD |Always 1
| |buffer before IEWLRELO receives | | |
| |control | | |
L i 4 —_— 4 - -

Section 3: Organization of the Loader 85

IEWLOADR - Level 3 (Part 1 of 2)

-------- B Dttt 1
|Rout1ne | Purpose |called Rout1nes| Calling Conditions |
b— + 1 —4—- i
| COMMON |Assign addresses to common areas | PSEUDOR |Always |
] | | IEWLMAP |Always, unless no CM |
			entries were received
		IEWLERTN	Always, unless no CM
			entries were received
; : —m—mmee- P E fmmmmmm oo 1			
FREECORE	Chain deallocated area to free list	none]]	
[N 1 1			
r T 5 "			
GETCORE	Allocate prime core for allocation	IEWERROR	If table overflow occurs
	request		
t — 1 1 {			
IDENTER	Create entry in extent list	none	
-------------- --- e G			
IDMINI	Create a condensed symbol table	none	
L 1 1 4			
v T T T -'"'			
IEWERROR	Handle error messages, severity	IEWLPRNT	If SYSLOUT data set is
	code 4 errors		open
		IEWTERM	If the TERM option is
			specified]
p-----—=- T 1 —4-- -			
IEWLCNVT	Convert binary quantity to hex	none]	
-- T			
IEWLEND	Process END card, reinitialize for	TRANSID	If END card specifies
	next module		entry point address
		IEWERROR	If error occurs in end
			card processing
t + S T TR 1			
IIEWLERTNIRelocate all adcons indicated by	IEWERROR	Invalid 2-byte adcon	
	RLD chain		
------- t--—- - - - ---1 U Sttt ittt			
IEWLESD	Create CESD from input ESD/CESD	LOADPROC	If input is a load module
		CESDSRCH	Input entry is not NULL or
!	l	BC , !	
		TRANSLAT	If NULL entry is made
]		CESDENT	If PC or LR entry is
			required I
		ENTER	If PC entry is required
		CHECKEP	If PC entry is required
		MATERSD2]If PC entry is required
		TRANSID	If LD/LR is received
———————— T e -1			
IEWLMAP	Create Map entry for referenced	IEWLPRNT	Always
	location in loaded program	IEWLCNVT	Always
L + 1 1 4			
r 1 T + {			
IEWLMOD	Process MOD card, store text	ALLOCATE	If extent information is
	origin, length, and extent		passed on MOD card
	information		
--- et i			
IEWLODE	Process a load module	IEWLREAD	Always
		IEWLEND	If end-of-module is
			indicated
		IEWLESD	If ESD record is read in
		IEWLRLD	If RLD record is read in
		LMTXT	If TXT record is read in
———————— O e			
IEWLPRNT	Print output to SYSLOUT data set	RDCHECK	If DECB was previously
			written
		WIWRITE	always
I	WICHECK	Always i	
——— e			
IEWLREAD	Handle request for data] RDREAD	Always	
		RDCHECK	Always
L L e e e e e e e e e e e e e e e e e e A e e e 4

86

IEWLOADR - Level 3 (Part 2 of 2)

r—=-—---- B - T N - |
|Routine | Purpose |Called Routines| Calling Conditions |
--- e
| IEWLRELO|Process an object module | IEWLREAD |Always |
] | | IEWLEND |If END card is received |
		IEWLESD	If ESD card is received
		IEWLRLD	If RLD card is received
		IEWLTXT	If TXT card is received
! oo 1 — -			
IEWLRLD	Relocate adcons indicated by RLD	TRANSID	Always
	entries received or chain RLDs off	ALLOCATE]If no free RLD entry is	
	CESD entry for R pointer		available
] IEWLERTN	If relocation is possible	
		Jor if delinking required	
% e e T :			
IEWLTXT	Move object module text to correct	TRANSID	Always
	space	RELOREAD	Always
		IEWERROR	If invalid ID received
t { - 1 1 {			
IEWOPNLB	Open SYSLIB; close SYSLIN	IEWBUFFR	Unless SYSLIB was not
I			opened
pommmmmm— 1 - s —4-—-			
LEWPRIME	Read records into all but one	RDREAD	Always
	buffer before IEWLRELO receives		
	control		
T e e S e :			
IEWTERM	Print output to SYSTERM data set	WTWRITE	Always
i	WTCHECK	Always	
———————— TP S			
LMTXT	Read load module text into main	TRANSID	Always
	storage	IEWLREAD	Unless record is to be
			skipped I
		IEWERROR	If text record not
			received
		PROCEOM	Always i
} e o B 1			
RDCHECK	Check DECB] none		
F ¢ - 1 1 -			
RDREAD	Read input using DECB information	none	
------------------------------------ R B e			
WICHECK	Check DECB	none]
b t 1 1 {			
WIWRITE	Write output using DECB information	none	
b R 1 _——— e~ J

Section 3: Organization of the Loader 87

IEWLOADR - Level 4 (Part 1 of 2)

| S A T T T -

|area is large enough for |

T

|Routine | Purpose |Called Routines| Calling Conditions |
L 1 4 4

r T T T ——{
| ALLOCATE|Allocate table extent | IEWERROR |Table overflow |
.................... S R
| CESDENT |Get CESD entry from free entry list| ALLOCATE |No free entries on list |
| |or prime storage | |
-------------------------- - e
| CESDSRCH| Search CESD for input name MATCHED |If name is found

| | NOMATCH |If name is not found |
------------- T e
| CHECKEP |Check CESD entry for specified none | |
| |entry point] |
p--—-- t--- T S S e 1
| ENTER |Enter information in CESD entry for IEWERROR |If program is too large |
| |PC or SD | |
-------- frommmeme -—— - e it
| IEWBUFFR|Buffer management FREECORE |If previous or current |
| | | (not the first) allocation]
] |request is for object |
I |module |
| GETCORE |If no previously allocated|
|

|

|current request |
4

|code U4 errors

I
|
[I
|

|next module

|
I
i

|
|
|
!
IR
v
I
|

I S,

| |location in loaded program
1

|
4
|
|
+
|
|
4
|
|
4
|
|
|
|
|
I
|
%
|
|
|
|
4
|
4
IEWLEND |Process END card, reinitialize for |
|
|
[
4
|
|
4
|
|
|
|
|
|
|
|
|
|
4
|
|
1
T
|
!
|
|
+
!
I
L

T
IEWERROR|Handles error messages, severity TEWLPRNT |If SYSLOUT data set is |
|open |
IEWTERM |If the TERM option is |
| specified |
_ —4-- |
| IEWLCNVT|Convert binary quantity to hex none | |
__ 4
TRANSID |If END card specifies |
|entry point address |
IEWERROR |If error occurs in END |
|card processing |
T L S P .
IEWLERTN|Relocate all adcons indicated by IEWERROR |Invalid 2-byte adcon |
i |
| IEWLESD |Create CESD from input ESD/CESD LOADPROC |If input is a load module |
CESDSRCH |Input entry is not NULL or|
| PC |
TRANSLAT |]If NULL entry is made |
CESDENT |If PC or LR entry is |
|required |
ENTER |If PC entry is required |
CHECKEP |If PC entry is required |
MATERSD2 |If PC entry is required |
TRANSID |If LD/LR is received |
___ 1 - —_——
T
| IEWLMAP |Create Map entry for referenced IEWLPRNT |Always |
IEWLCVNT |Always |
1
25 T ——‘i
] IEWLPRNT|Print output to SYSLOUT data set RDCHECK |1f DECB was previously |
|written |
WRWRITE |Always |
WTCHECK |Always |
__________________________ - 1 -
T
RDREAD |Always |
RDCHECK |Always |
L e 4

88

IEWLOADR - Level 4 (Part 2 of 2)
[i H T . T . T -
|Routine | Purpose |Called Routines| Calling Conditions |
R —— oo -- -——+4 o i
| IEWLRLD |Relocate adcons indicated by RLD | TRANSID |Always |
| |entries received or chain RLDs off | ALLOCATE |If no free RLD entry is]
	CESD entry for R pointer]	lavailable	
		IEWLERTN	If relocation is possible
			or if delinking is
			required]
b t -~ S S e 1			
] IEWLTXT	Move object module text to correct	TRANSID	Always
	spaces	RELOREAD	Always
		IEWERROR	If invalid ID is received
L il 4			
r T T +			
IEWTERM	Print output to SYSTERM data set	WIWRITE	Always I
		WTCHECK	Always
t 4 -- 1 1 -			
LMTXT	Read load module text into main	TRANSID	Always
	storage	IEWLREAD	Unless record is to be
I I		skipped	
		IEWERROR	If text record not
			received
]	PROCEOM	Always	
e 1 1 —			
LOADPROC	Pre11m1nary processing for load	CESDENT	If entry type is PC,SD,LR
	module CESD		
——————— + 1 1 -			
MATERSD2	Test length and request map entry	CHAINING	Always
--- e			
PROCEOM	Go to process end-of-module	IEWLEND	Always
1 i			
T T = T T ‘l			
PSEUDOR	A551gn displacements to pseudo	IEWLPRNT	If displacement is
	registers	jassigned	
		FINISHUP	Always
		IEWLMAP	If displacement is
			assigned
		IEWLERTN	If displacement is
			assigned
e e e T i			
RDCHECK	Check DECB] none		
b f-— : , ———1 1 1			
RDREAD	Read input using DECB information	none	
-------- P —— T B			
RELOREAD	Go to IEWLREAD for more input	IEWLREAD	Always
4 —_ 1 1 - __<			
T T T			
TRANSID	Translate input ESD ID to CESD	ALLOCATE	If new extent is required
	address	IEWERROR	If table overflow or
			invalid ID occurs
———————— T T ——			
TRANSLAT	Make a translation table entry	TRANSID	Unless LD entry
¥ 1 —4—- -			
WICHECK]Check DECB	none		
--- T			
WIWRITE	Write output using DECB information] none		
L i L 1 - -1
Section 3: Organization of the Loader 89

Flowchart

CHARTS

FRERRRLRERR KRR
PROCESSING
BLOCK

X
EX RN

FEREERER KRR R Rk ®

¥ *.
. DECISION o
. BLOCK ..

* *

ok ROk ko dkok Rk

* *
:TERMINAL BLOCK :
AkkkkRkRR R Rk Rk

*RDLHRER KK
PREPARATION#
* OR *
* MODIFICATION *
* BLOCK *

*kkkkkokkkk R

LR R R R L S e T 2
* INPUT/OUTPUT *
BLOCK

EEEA RS E LS T2 L]

SRR KF] kkkkkkkkkk
* *

* SUBROUTINE *
* BLOCK *

* *
ko koo ko kR Aok ok

ARk kG Rk Rk ok Rk k

* * ¥
* *PREDEFINED * *
* % PROCESS * #
* * * *

* * * *
*kkkkkkkkrkhk Rk

ON-PAGE
CONNECTOR

OFF-PAGE
CONNECTOR

*kkkk
*002%
* Al*

FRAKCH KRR ®
* *

: USER ENTRY :
Fhk Rk kR Rk kR RRkk

* ok ok
* *
~>% D3 *
* *
*hkk

kKo T2k ok ok ko kkok
* *

: USER EXIT :(
Fhkkkkkkkkkkkkk

Aok k2% Kk ok kKokk ok

*
:VARIABLE RETURN:(
L

S ad
*001**
* C3*% BLOCK C3 IS ENTERED FROM TdIS CHART AND
** ok * FROM AT LEAST ONE OTHER CHART,
>k
FRKKRCTHHRRRAER KK THE TERMINAL BLOCK 1S USED TO SHOW USER

ENTIRY AND EX1T PO1NIS WHEN 1HE PROGRAM
BEING FLOWCHA RTFD IS AVAILAB E 10 AN Iuv
CUSTOMER. IT IS USED AS Al BXIT
CONNECTCR WHEN THE LOCATION BEING BRANLH 20
IS NOT ON ANY SPECIFIC CHAxI, AS IN
MULTIPLE USE SUBROUTINE.

XXX R
TR

TO
FRRR R AR RRR AR K

*kkk
* *
* D3 *->
* *
ek Rk
N
D3~ T+,
o* *.
o* *,
——, P S
*, L
* *

TOo
Kok Rk E 3R Rk kok

SUBNM 003 Al TH:E INSTRUCTION AT SYMBOLIC LOCFTION GOUTO
--------------- CALLS A SUBROUTINLE NAMED SUBNM.,
* * LOGIC OF SUBNM IS SHOWN ON CHARI 003
* : STARTING AT BLOCK Al.
Fhokdokokokoh kKRR KRk
P S
o ¥,
F3 *.
. *, *EEE
¥ *, * *
e | % JE———_>% C3 ¥
. ox * *
*, o F Rk
*, %
* ON-PAGE EXIT CONNECTOR --

CONTROL_TRANSFERS 10
BLOCK C3 ON THIS CHART.

DZHNNOTO WEZHE

LINE JUNCTION

v
*RK ARk R Rk kR k
* *

*
EER R S LS e Y

b

*002% OFF-PAGE CONNECIOR_ =--

* Al* CONTROL TRANSFERS 10
*** BLOCK Al ON CHART 002.

Charts

91

® Chart 100. Loader Control Portion (IEWLCTRL)

FROM
SCHEDULER

*kkRADkkkkk Rk k
* *

: IEWLCTRL :
Fkkkkokkkk kR kk

'
FAB2 Ak kKK
'MAIN FOR*

AREA AND¥*
ATTACH
*‘ PARAMETER **
kR kR Rk ok

*GET)
**SAVE

c2' Tk,
* *
T

FA kR AC IRk Rk kR kkk
. * LOADER *

+¥ IS MV *
*.‘ OPERATING .

: * PROCESSING _ *
>*PORTION NAME IS*
* TEWLOAD *

*, ¥ Rk kR ok Rk Rk ok ok Rk k

v

ok koK k

DER *

SSING *
NAME IS*

LOADR *

kkkkkkkkkkkkkkkkx

<

s

*RE2 kA ko kokk
* *
* LOAD *
* PROCESSING *
* PORTION *

kkkkkkkkkkk

¥ PRMSETUP
* F Ak Rk 3 kk kR kR R
* SET PARAMETER *
*COUNT = LENGTH *
%
* PARAMETERS *
* *

. ¥ dok ok ok ok ok ok ok Rk ok ok ko k

« LIST .

PROCESS V

Aok kG Ak ok ok kkkok Kk
200A3%
............... *

* *
: LOAD PROGRAM :
Aok ko Kok ROk KOk kKK kK

v

kR 2Rk kk Rk ok

* *
* DELETE *
* PROCESSING *
* PORTION *

* *

Fokokokokok ok R Kk

o ¥
J2 *.
ok *, Rk
«%¥ LOADING_ *. NO *
*. SUCCESSFUL o *-——=>%* D4 *
* X * *
*, o ¥ Xk x
*, L *
* YES

kKRR KKk kK Rk Kok
* *
SET UP LOADED *
PROGRAM'S *
PARAMETERS *
*

okok ok ok ok ok ok ok ok Rk ok R

XY

92

OF LOADER *om

*hokk

%

EXECUTE .

ay" T, HEALKEEREKE
o ¥ Is * * *
+« ¥*PROCESSING *, NO * ATTACH *
,PORTION NAME . #-=wec—-—- >%* LOADED *
.}EWLOADR.* ‘* PROGRAM *
T AR
* YES
s s
EEBUREERKEE FABSFF KKK
* * * WAIT FOR *
* EXECUTE * * TERMINATION *
* LOADED * * OF PROBLEM *
** PROGRAM * ** PROGRAM *
* *
ARk AR ERAR AR
4 s
*kCU*kkkkk ¥ *KkCH*kkkkk*k
* * * *
* FREEMAIN * * DETACH
* LOADED * * PROBLEM *
*EROGRAM AREA** * PROGRAM *
*kkkkkkkkkk *kkkkkkkkk¥
ok
* *
* DU x>
* ¥ €
EE L]
CTRLRTRN
FEDUREREERR
* FREEMAIN *
SAVE ARFA AND
* ATTACH *

* PARAMETER *
* ST *
Fkok ko Rk Aok K

FkkkpUkkkkkkk¥k
* *
* RETURN *
* *

kkkkkxkkkkkkkkk

dkkkRPURkkERRRFRE
* *

*SAVE LENGTH OF *

---->*PARAMETERS FORr *

:LOADED PROGRAM :
R L

Chart 200.

FROM_IEWLCTRL
OR IEWLOAD

LELE I NES LT LT
IEWLOADR ==
ENTRY POINT

C
kkkkkkkkkkkkkkk

*
*

N

ANALYZE
CONTROL
INFORMATION

v
FkkkRkCl Rk kk kR kK
* MOVE SYSGEN *
* OPTIONS AND *
* DDNAMES TO *
* INITMAIN *
* *
* *

kkkkkkokkokkkkokokk

J
*%D1 kkkk Rk

* *
* EXTRACT TSO *
** FLAGS t‘

* *
kR kR kk Rk k&

v
o ¥
E1 *.
* *

¥

*

*. PASSED *-*

‘"1s Tso *
i, OPERATING I#--—-—-

Initialization, I/0,

dkkokok Ak kkkkkok ok ok ok
* SHOW *
:IDENTIFICAT%ON :
:PROGRAM WANTED :
Fok ok ok kR ok ok kKo ok

ok kok Rk Bk ok Rk kR ok kkk
* *

* SET SYSLOUT *
*RECORD SIZE TO *<
* 81 *
*

*
e e ok sk ok ok ok ok okok ok ok Kok ok

FROM
IEWLCTRL

Ak ok A 3K KK KKK K KK
* TEWLOADR =--

*
R S * ENTRY POINT :

*
Rk kkkkkkkkokkkkok

*kokk
* *
* B3 *——
* *
*kkk
oK.
B3 *,
¥ *.
YES .* IS TSO *,
* OPERATING *.*
*, .

*

*

*, . *
* NO

F kR CI Rk kR R IR KKK
* *

* SET SYSLOUT *
*RECORD_SIZE TO *
* 121 *

* *
kkkkkkkkkkkk kR R Rk

*k kAR E2 Kk kkokkkkkk

* *
SET_TSO FLAG IN
>* INITMAIN :

* *
*kkkkkkkkkkkkkkkFk

MNPRMSCN
FREKRF 2Rk ok kkhkokk
* *

*
-->: SCAN OPTIONS

XXX

*
E s

*, YES
, PASSED .
* *

EE R R e i L LS SR 2]
* *

MOVE DDNAMES TO
—»>: INITMAIN :

* *
*kkkkkkkkkkkkkkkk

ko Rk kkkokkkkk
* *
* MOVE B *
~->* ADDRESSES TO *
: INITMAIN :

dkkkkkkkkkkkkkkkk

<

INITIALIZE
V MAIN STORAGE
*kkkk

R kkkRrkkkk

MNMAINOK v
HkkkH K] *Fkk K kokokkk

* ESTABLISH AND *
* INITIALIZE *
* COMMUNICATION #*
* AREA *

*
dkkkkdkkkkokkkkkkokk
kkkk

* *

~>% B3 *

*

kk

>

MNALOCSV J
FREERDIRER kKRR
*

* ALLOCATE AND

: CHAIN SAVE

EE R

AKEAS
*
ok ok ok kR Kok Rk kK

*RE3kkkkk Kk
* *

* FREEMAIN -- *
* TEMPORARY *
* STORAGE *

* *
LEE L E L L L]

INITIALL
DATA SET

¥,
F3 *.
*

o ¥ TERM

. OPTION o ¥

, PASSED .
*, *

*

*

o
+'NO

Control, Allocation Processing (IEWLIOCA)

7E
S
*kk Rk LRk kR kR k%
* ALLOCATE *
YES * SYSTERM DCE, *
-------- >* DECB'S, AND *
* BUFFERS M
*
dokk ok ok kkkok k¥ Kk ok kkkk

*

G3

. *,

«* SYSLIN *o
*.CONTROL BLOCK. *
*.*PASSED *.‘

Tk, %
+' NO
ARARR AR RR R AR
* *
* INITIALIZE *
* SYSLIN DCB *
* *
* *
FAR KRR KRR AR R
o ¥,
J3 *,
¥ *,
¥ PRINT *,
, SPECIFIED .#
. o
*. L *
*
YES
T
* K3 *->
* *
*rxx
ARAARRIER AR AR R
* *

INITIALIZE *
SYSLOUT DCB :

%% w

*
kkkkkkkkkkokk Rk kk ok

kR R RGURKRF kK ¥ kk kK
* *

YES

* INDICATE *
~>% INTERNAL DATA *--
* AREA *

*
kok ok ok ok Kk Kok Kok Kk

NO
4
*kkkk
£201%
* C1#*
* X
*
.
R4 *
.* WA .
.+ SYSLIN *. YES
S > CONTROL BLOCK. *————
#. PASSED _.*
* - -*'
1 NO
*kkk¥
*201#
* A2%

(Part 1 of 2)

*

G5 s,
L *.
%" PRINT %, YES
—->%. SPECIFIED .*--Z
*, Lk
*, ¥
*, ¥
* NO EETTY
* *
* K3%
* *
* %k Kk * kKK
*201%
* C2%
* *

dokk ok kK S Rokok ok k ok kk ko
*

AKE SYSLOUT *

* M,
———->*ONLY DCB TO BE *
* OPENED :

*
dokkkokkkkR kR kkkkk

Charts 93

Chart 201. Initialization, I/0O, Control, Allocation Processing (IEWLIOCA) (Part 2 of 2)
*kkokk
*201%
* A2*
* ¥
*
/
*k kN2 kkkkkkkkkkkk
* OPEN DATA *
SETS
*kkkkkrkkkkkkkkkk
/
o ¥ MNALOCPR PRINTOPT
B2 *, *EXEEkPIkkrkrkkERE *kkkkBUkERkkE X k¥ #t#*tBS**tt*ttttt
. s YES *IEWBUFFR 203A1* *IEWLPRNT 207A2* *IEWLPRNT 207&2*
, SYSLOUT : ———————— > BUFFER -- DECB * ———————— >¥ PRINT LOADER * -------- >* PRINT OPTIONS *
P . E o ¥ :ALLOCATION FOR : ADING * : SPECIFIED :
*201% £, % kkkkRkkk Rk R kR Rk kkkkkkkk kR kR kR kK EE s L e
* Cl* * NO
* ¥ *kkk
* *201%
* C2 *->
* *
*kk¥
MNMAPHDG . *.
ERCLkkkkkk kR RREE ****tcz*****t#t** Cc5 *,
* . *,
* OPEN SYSLIN * * ALLOCATE _ONE * o ¥ MAP *,
DATA SET = -=-—-e-ee >: BUFFER FOR : —--*.‘ SPECIFIED ‘.*
* k. LE
*kkkkkkkkkkkkkkkk *kkrkkkkkkkkkkkkk o« o ¥
* YES
<
*,
D2 *, SRRk RDY kR kKRR KKKk FdkokkkD SRk Rk Kk ok kkkk
<% IS *, *IEWERROR 505A3* *IEWLPRNT 207A2*
YES .* SYSLIN AN *, NO = .*¥ IS = %, NO = #-ee——eme————oe—eek | e m e
r———%¢ INTERNAL DATA, ¥==——=wu== IEW1024 -- * PRINT MAP ‘
*, AREA . ¥ . * FAULTY DDNAME * * HEADING *
, ok t. o * * * *
*, ¥ * REkE Rk kkkk kR kR Rk kK kkkkkkkkkkkkkkkk¥k
* YES
*kk¥ * %k kk *kk¥k
* * * * * *
* E3 %> —>* J2 * * ES #——.
* * * * * *
EEE 2 EEZ LS kKK
MNALOCRD MNB1TMAP
****tE}****t*tt*t *EkRFES Rk Rk Fkkk kK
IEWBUFFR 203A1 *ILWBTMAP 50uA1*
BUFFER -- DEC * -—>* DIAGNOSTIC *
*ALLOCATION FOR * * DIRECTORY *
* SYSLIN * * PROCESSOR *
kkkkkkkkkkkkkkkkk *kkkkkkkkkkkkkkk¥k
MNOBJIMOD oF, MNLNOPRNT s
kK RFRRKk R R KKK F3 *, HkkkEFUR kR R kR Rk KRKFo Rk kR kk kR Rk Kk
IEWPRIME 204A3 IS *IEWLODL UOOAl*
--------------- NO .* INPUT A *, YES Fomm e * CLOSE DATA *
* OBJECT MODULE *< ———————— *, LOAD o e >* LOAD MODCLE * SETS
. MODULE ., # * PROCESSOR *
*INITIALIZATION * * *
Fkkkkkkkkkkkkkkokk *, ¥ kkkkkkkkkkkkkkkkk Fkkkkkkkkkkkdkkkk
----------- >
¥k kkkkkk *EGOHRERRERE
300A1% *FREEMAIN —--%
* * STORAGE NOT *
* O MODULE * NEEDED B! *
* PROCESSOR * LO. D *
* * * PROGRAM *
kkkFkkk Rk Rk kokokkkk kkkkkkkF k¥
<- ——
s J
MNEOCRET . *. ¥
H2" T #. FERREN
*t** . RS *,
* NO .* END OF *o o ¥ *, NO
* E3 *<————* SYSLIN o ¥ *, CONDITIOV . e
* *, oF* *.CODE > o ¥
**#* *, S *, =, *
*o *, ¥
* YES * YLS
*k k¥
* J2 *->
*kkk
J
kR kTR kkkokkkkokk FRkkkTokkk kRN RkRRK
IEWACALL 500a1% * *
#o——— oo # FREE LOADED *
SECONDAR¥ INPUT : PROGKAM AREA ;
PRO ESSOR p * *
t#********* Frkkkkkkkkkkkkkhk
o]
\'
. ¥, ok,
K2 *. K3 o i LR R T T LY v
ok *, *LEWLIDEN bOOAl* *kk kKO kkkkkkkkk
.*_ LOAD *, YES * 1s *. YES ~ #-————-—eeem—— * *
#, INVOKED BY +%--c—-eeoe >*, EXECUTION o%-—c-c—ec-- >*IDENTIFY LOADED* ------ * RETURN *
. W o* *, SCREDULED. * ROG * *
. *, . ¥ FEEXRRKERRKRXRF
*, % *, . * Fkokokkkokk ok kok ok ko kk
* * NO
* Kk k ok ko
94 | s | s
->% E5 * ->* E5 *
* *
*kkk *kkk

e Chart 202.

EXPRINT
R KRKB R KK KKKk
* FORCE RECORD *
: LENGTH=81 OR *

121, FIXED *<om
FORMAT, AND ASA
* PRINT CONTROL *
Fkkok R ok Rk Kok Kok R kKK
A
EXLRECL o ¥
Ak Rk LRk kok Rk Rk Rk E2 *,
* * o * *,
FORCE LENGTH_TO NO .* RECORD *.
* 80 FOR * *<-

SYSLIN *<--
: OR SYSLIB :
Ik kk Rk KRR KRR RRK

. NGTH .
.%PECIFIEQ.

“x"yES
>l
o ¥,

F2"

*kk KPRk kR kkkk .
* * * .
* * NO . * BUFNO *,
* FORCE BUFNO=2 *<--co-ooo *, GREATER o *
* * *, THAN 1 .*
* * . . *
kR Rk kR R RR R *, L%

* YES

________________________ >
EXNCP

\
PER R e R P S
* *
FORCE NUMEBER OF
C L *
:PROGRAMS=BUFNO ;
Rk Rk Rk ko k Kk

o ¥ *.
. BLKSLIZE *,

* *

« ¥
* YES

\
EXTRNRCK . *.
J2

*okkokok J] Hokkok ok ok ok kokk *,
* *

.* IS .
*ROUND BLOCK T0 * NO +* BLOCK AN *,
* *

* NEXT HIGHFR #<e-e-ee-- + INTEGRAL OF .#%--—
* INTEGRAL : *, LREC o ¥
* . .
Fok kR ok Rk KRk Kk *, L
*R kR
* *
* Rl *->
* *
*k k¥
v
*REFRK] Rk kF Rk Rk k%
:IEWERROR 505A3:

* - *_— —_—

DCB Exit Routine (OPENEXIT)

HRREAZ KRR AR
* *
* OPENEXIT *
* *
ARERRER R KRR KR
o,
B3 «
*.
YES . *,
------ *. SYSLOUT *.*
R a
*, ¥
* NO
v
¥
c3 *,
o ¥ *,
o ¥ *. YES
*. SYSTERM oK
*. o *
*, Lk
*, L%
1 NO
EXLIN ¥,
D3 *,
E *,
¥ Is *, YES
*. FORMAT o Hmmmm e
*. UNDEFINED. *
*. 3
O
* NO

EEEETeRi T T R L T Y
* *

. SPECIFIED .*---
* *

_____ >*

*FORCE FORMAT 10%
* FIXED *

* *
LR e R Y

Rk Aok 3k Rk Rk
* *
* FOxCE bLKSIZE *
>* 10 KRLCGRD *
* LENGTH *
Fok ok ok ok Rk ROk Rk
*k kK
* *
* J3 *->
* *
* ok A
£ XZERQ
FREARJIRKRER KRR K
* *
* LixU oUFNG 1IN =
TH= JCL *
A * *

* *
AR KRR R KRR KRR KX

v
Fkkok K 3Rk Rk KK

1EW1072
:INVALID BLKSIZE:
FARERRRRRRRR KRR kR

*
- * R LURN *
* *

EE e T

>
*

. *.
¥ 1s *. YES
*. FORMAT ¥

*, VARIABLE . *

*, . ¥
* .
* NO
EXIWFIX

KEKKKCUKRKRR KR KK KK
*FORCE FXD FM1, *
ASA PRINT CTRL,

--->*REC_LENGTH=81, *
* BUFNO=2 *

* BLKSIZE=B1 *
hkkkkkk ko kR Rk kK

EXUNDEF
*ERRRDU KR KRR KKK KK
*

*FORCE
* CH.
: PROGRAM3=2

Fhkkk Rk Rk kk Rk kR kK

NUMBER OF*
ANNEL *
*

*kkk

* *
—>% J3 #*

* *

PET Y

SRRk K PU Kok ok ok ok
:IEWLRROR
IEW1043 -- *

ERROR *
* (PERMANENT) *
FRkkk Rk kR ARk kKR E

AAXRGUR Rk Rk F R kRN
* *
* RETURN *
* *

LR e e L

. ¥,

cs' T
.*" BLKSIZE *. NO
>%. SPECIFLED . *---
*, " BY USER
S
* YES *k kK
* *
* J3%
* *
* ok ok k
Lk,
D5
*

B *.
«* SAME AS #*, YES
.‘RECORD SIZE‘.---

Charts

95

e Chart 203.

Buffer Allocation Routine (IEWBUFFR)

FROM
IEWLIOCA
AEERRL AR ERE RS
* IEWBUFFR *
T
oE, R LE.
Bl . *, kdkkkkBIkkkkFkkkkk .
«*¥ ANY ¥, ‘PICK Up POINTER* +*% PREV_ *,
. FOR « NO «* PREVIOUS *. YES THE READ « *ALLOCATION *. YES
, SYSLOUT e >., ALLOCATION .*-cewe—-— >* DECB CHAIN * ———————— >*, FOR LOAD P ettt
. . . . * (CMRDECPT) * *, MODULE .*
*, Lx *. o * *. ¥
* P P *, o *
* YES * NO * NO
DEALLOCATE
PREVIOUS
BUFFERS
DEALFIXD AND DECB'S
ClsdH*%%¥
US DECB
CHAIN TO FREE
* DECB'S AND *
* BUFFERS *
P —
>
ALOCFIXD CHKFORMT . *.
KEDIREH KRR I
* ALLOCATE * . % THIS #.
* * NO . *ALLOCATION *,
>*BUFS, BUFSIZE= +< . FOR LOAD «#Kmmmmmmm-
LKSIZE, NO. W *. MODULE .+
Kok ok kk ARk K Cx, %
* YES
X, ALOCUNDF v
HEARKEDR AR AR E3 FHELE KRR
* * * * *
* STORE POINTER * YES . "OR *, * ALLOCATE *
* TO DECB CHAIN #<-—eeeemm * SYSLOUT ok * RLD BUFFEB *
: IN CMWDECPT ‘. *.* *AND 2 DECB'S *
. . * *
kkkkkokkkokokkkkkkk*k *, % kkkkkkkkkkk
* NO
A
AR IR RER R AR AARAETUR KA A
MOVE 'DCBBLKSI' * STORE POINTER *
TO * TQ RLDBUF I *

96

kR T2H kR kK kKKK

* RETURN

*kkkkkokkkkkokkkk

* COMMUNICATION *
AREA (CMBLKSIZ)

*****#******i#***

FIXDIND

Ak R KRGk dokkokk
*FOR_NEXT TIME, *

1 CAT! *
*
*
*
*

F D
Fokok ok kK okok ok kK kok

kR kR Hkokk kR Rk KKk
*

*
RESET I/0 FLAGS
:FOR THIS MODULE*
*

* *
kkkkkkkkokkokkkkkk

*kkKk T3k

e kok ok ok ok ok ok
* *

STORE DECB

:AREA (CMRDECPT):
Aok ok ok bRk ok ok Rk

B N
* COMMUNICATION *
:AREA (CMGETREC):

kkokkkkhkkkkkkkkkk

<

REUSE BUFFER
AND DECB‘S

Lk THIS #.
. *ALLOCATION *,

R _LOAI

*, MODULE
*,

*,

o ¥
* NO

YES

e

DEALLOCATE

IO

Us

BQFFER AND

DECB'
**Cs*t##i#t

FREE RLD
* BUFFER AND 2

ok ok Kok ok okok Kok K

)

*

*
*

UNDFINSH

FRRERGLk KRk Rk kR Kk
*FOR_NEXT TIME, *

INDICAT:. *
*
*
*
*

UND! NED
ok k Rk kR Rk Rk KKk

v
eokok ok ok U ok ok ok Kok kK kK
* *

RESET I/0 FLAGS
:FOR THIS MODULE:

* *
ok ok ok ok ok ok ok ok ok kok koK

* CHAIN PTR IN *
* COMMUNICATION #<emmmm e e

Chart 204.

Object Module Buffer Prime Routine (IEWPRIME)

FROM IEWLIOCA
OR IEWACALL

*kk kAR KRk kIR
* *
: IEWPRIME :

*kkkkkkRkkkkk ok

*RRBIRkRERKRERKEE
* READ ALL *
BU.
* FEXCEPT ONE ¥
Hokkok Rk Rk kR Rk R

*kkkRCIRE KRR KR KRR
* SET INPUT *
*LOGICAL RECORD *
* POINTER T *
:BUFFER NOT READ:

*kkkkkkRR Rk R RRR®

FHRRRDIRR KRR RKEE
* *
* SET LENGTH OF *
* DATA = *
:BUFFER NOT READ:
e e e L L

*RRREIRRRRF KRR
* *
* RETURN *
* *

TR ER L L ey

Charts

97

e Chart 205.

FROM DATA
MANAGEMENT

LA EENEEEEEL LS

* *

* EODAD *

* *
FhokkkRkkokkkkkkk

v
REkEEBLARRR Rk Rk k®
* S%TWBIT IN *

-OF-CONC *
FRREERRRRRK KK KKK,

EARCL
*
* RETURN *
* *
kkkkkkkkkkkkkk¥k

v
*kkkkkk
*

*hA
* *

* E1 *——

* *

kR
*xEERE]R kR Rk RR R
* *
USE_COUNT FIELD
TO DEBLOCK NEXT
* RECORD *

*
EKEREERRKKRARE K

*hkk
* *

* F1 *->
* *
EEET]

o

¥ *.
*. VARIABLE . *————o
. FORMAT .

*

“+"yYES

v
Aok kR LRk Rk ok ok
* *
*SET POINTER TO *
* RECORD *

* *
*kkkkkkkkkkkkkkkk

dkk ok JL Rk ok ko kok kK
* SET FLAGS IN *
IEWLDCOM *
INDICATING *
END-O! LE & :
*

*
—>*
*

* END-OF-CONC
LEL RS R L ST e T 1Y

Hokkk kK] ok ko ook ko
* *
* SET INTERNAL *
*DATA AREA FLAG *-
* OFF *

* *
Kok ok ok kR kR kR kR kK

98

Read Routine (IEWLREAD)

FROM IEWLRELO

OR IEWLODE
HERRAZ Rk KRRk AE
* *
: IEWLREAD :
*kkkkkkkkkkkkk¥k
o ¥, RDINCORE .« *.
*B3 . B4 *,
. o . YES .+" FIRST “*. 8O
- *, INTERNAL e ¥ >*, RECORD o« Fmm
*.DATA AREA. * . .
*. o ¥ *, ¥
, W% o
* NO * YES
*kkRKCUFR*E Rk kR XX
* *
PICK UP ADDRESS
:FROM DUMMY DCB :
* *
ok kok Rk Kok k Rk ok ok
*k ¥k
v * *
oFo * Gl *
D3 *, * *
. *, FhkE
NO . * FOR *. YE
----------------- %, LOAD MODULE +*-—cmemmommmo
*, Wk
*, ¥
*, %
*
. ¥ RDTXT RDUNDEFN_ . *.
E2 *, ok kokE 3 kokkkokokokkokok E4 .
o ¥ . * * «* TEST *.
o ¥ NEW *, NO * STORE LENGTH * + .* REGISTER *, -
*, BLOCK Ko * AND ADDRESS *<-—-w-—=- FOR_RECORD . *----

, NEEDED .
* *

Tl xt
* YES
Fok ok 2 Ak kKo Ak k K

BUFFER *
LR E R SRS E RS L]

: INTO DECB

ok ko ok ok ok ok ko ok ok ok

B e e L

* READ A TEXT *
RECORD .

ok kK ok ok ok ok kK ok Kk k

R KGR Rk kR Rk AR RGIRRFE Rk F kK
¥ CHECK NEXT * * CHECK FOR *
BUFFER FOR COMPLET LON
* COMPLETION *
Fhk kR Rok R kR Rk ok ok ok Rk kR ok kR Rk ok
P S——
v
ARk RH2kkkk ok k ok Rk
* * FREKHIRFRRR R A
TORE NEW * * *
—=>*RECORD ADDRESS * * RETURN *
INTO IEWLDCOM * * *
* Fok ok ok ok kR R

A ok ok ok ok ok Rk kR ok Rk

FRERJ2Rk kR Rk kKK

*
RETURN :
kkkkkkkkkkkkkkk

—>*

*<ee .
* TXT ONLY "#. "IYPE .+

* *

0
RLD OWNLY

LER YRR SR EL LY

* READ INTO RLD *
BUFFER .

dok ok ok ok ok kok kR kR kK

*RAGURFF Rk kR Rk kkk

* CHECK FOR *
COMPLETION

kkkkkokkkkkkkkkkk¥

Hkokok Lok kR kb ok ok
* *

* RETURN *
* *
KRk ARk Rk R KRR F

Fhkk R TURFR KRR F KKK
* *

* INDICATE 'NO *
: DATA'

* *
Fkkkkkokkkk Rk Rk kkk

AR KK YRR KRR RER
*

* RETURN *{mem
* *

Kakk kR Rk kR kR R kE

TXI/RLD :

* RN
VARIABLE . *---
#. FORMAT _.*

Chl L
* NO *%

kkkkRCSFRkkkkkkFk
* USE RECORD

* LENGTH TO

* DEBLOCK NEXT
* RECORD

* kKR

* ook kR Rk Rk ok kA K
kK

* *

->% F1 *

* *
* kK

* kR RESkR Rk Rk R RN
* STORE LENGTH *
* AND ADDRESS *
* INTO DECB TO ¥
READ TEXT :

*

Fohkkckkkkkk Rk ko *

A ARFS Rk kk ok kR dk

* READ THE TEXT *
RECORD .

Fkkkkkkkkokkkokk kK

v
FHRGERR Rk Rk Rk Kk k%%

* READ THE RLD *
RECORD .

Fokkok ok kR ok ok kkk ok ko

v
*kRH Ok kkkkkFF R kR
* CHECK THE *
TEXT READ

ok ok ok kR R kok sk ok ok ok

. ¥,
J5 *.

YES .

+ END-OF- *.
_____ + CONCATENATLON. *

*

PR
* NO

FHRKSFFkkkk kR KRk

* CHECK_THE RLD *
READ

FkkkkkkRkRRkRR Rk

Chart 206.

FROM
IEWACALL
RN P T

*
: IEWOPNLB :
dokok ok ok Aok R Rk k ok ok

o ¥,

. ¥ A *,
+* SYSLIN *,
*, CONTROL BLOCK, *————
SSED * Al

*. .

. .

*, %
* NO

*RACLkkkkkkkkkkkk
* CLOSE SYSLIN #
DATA SET

ok ko kok ok ok ok ok ok

Ak kDL Rk AR R kR E
* *
* MOVE INTO DCB *

DSORG=PO * e

*
DDNAME = syéLIa;
kkkkkkkkkokkkokkk k¥

kR EL Rk dkok Rk Rk

* OPEN SYSLIB *
DATA SET -

FkkkkkkkRkkkokkkkk

. *,
o * OPEN *, NO
*.*SUCCESSFUL *.*___

* *

¥, ok
* YES

ok k ok k G Kk ko kK ok
*

* SET ' LIBRARY
* 0 4

: INDICATION
Aok ok Kk KKk Rk ok ok

EX XX 2

J
ok ok kK ko ok ok ok ok
* BUFFER *
; ALLOCATION *
*

Aok ok ok kR KRRk Rk Rk

EEEE RV ET LTS

*
* RETURN *
* *
Frk kR Rk Rk Rk

.+ was *
————>*] SYSLIB DCB .*
. PASSED _.

¥,
B2 *.
* *,

Rk kDK kR kkkkk
* *
* ALLOCATE DCB_ *

_____ :AND INITIALIZE :

* *
Ak ok ok Rk K ok ok ok Rk ok ok

Library Open Routine (IEWOPNLB)

*EAARPIRRE R RN KK
SAVE SYSLIB *

* EXIT ROUTINE #*
>*ADDRESSES FROM *
* PASSED DCB *

*
Ak Rkkkkkkk kR Rk k

Rk RBUF kR R KR RkE
* *
INSERT LOADER'S

ROUTINE *
: ADDRESSES :

kkkkkkkkkkkrkkkkk

Charts

99

e Chart 207.

AEEED2EEEE AR
* *
: IEWLPRNT :
AR
o ¥,
AHHAHBLA AR AR AR R B2" s,
*DECREMENT LINE *
* COUNT BY * YES . S .
REQUESTED SPACE#<——e—————¥, SYSLOUT o*
* COUNT * PEN
P I “x, %
y
c1® k., N S T
* *, * *
o ¥ LINE *. NO *PUT EJECT INTO #
, COUNT o Koo > 1ST CHARACTER *
.EOSITIVE‘. OF BUFFER :
A Ly
YES
PRNOEJCT / v
FARFADL F Rk khk Rk EAREAD2ARRRAARRRE
* PUT CONTROL * * *
* INTO 1ST * * PICK UP BASE *
* CHARACTER OF # * LINE COUNT *
: BUFFER : : :
FAAAAAAA AR AR FR R Rk
<
U
EREEREL R
* *
*STORE NEW LINE *
* COUNT *
* *
FEEEEARARR AR
/
faadad Rt
* RESET CONTROL *
* CHARAC 'ER TO *
YSPACE 1'
R R Rk
y
G1" "%, ARERAGAR KRR AR
o ., T A4t
.* AT END *. YES

, OF BLOCK o
* *

****#Hlt ****t#tt

‘SET POINTER TO '
*NEXT gECORD IN *

*
kkkkkkkkkkkkkRkkk

<

-
>* WRITE THIS
* BLOCK

Fkkkkkkkkkkkokokkkk

Print Routine (IEWLPRNT),

Write

HhAABI R kKRR KK

*

>: RETURN :
kR R kR Rk RkhhRkE

#*#**G3i*tti##tt*
PICK up POINTER*

t--———-——)t TO NEXT DEC

*
#*a*#ttt****t*t*#

Routine (WTWRITE),

FROM IEWLPRNT
OR IEWTERM

*kkkAYkkkERkkkk

*
: WIWRITE :
Fkdk Rk Rk kkkk

FHARABUR KRR KRR K
* *
*SET WRITE FLAG *
* IN DECB *

* *
kkkkkkhkkkkkRkrkk

/
R RCUkkkkkkkkokkkdk

* WRITE THIS *
BLOCK

*kkkkkkkkkkkkkkkd

+kKDlY
*

* RETURN *
* *
kkEkkkkkkkkk Rk

s
Kkkkkkk
*

R RGU R KRk Rk
WT X AS

¥ -
>* *
;CHECK THIS DECB:

ER R e e

Check Routine (WTCHECK)

FROM IEWLPRNT
OR IEWTERM

FEAKASHFERE AR KES
*

: WTCHECK :
Ekk kKRR R

o ¥,
BS *,

%" NEED "%, NO
*., CHECKING l¥---

. .

*, ¥
*, ok
* YbS

4
*RFCSFRRERkFhERR Kk
CHECK DECB

*kkrhkkkkkkk Rk hkE

\
**%*¥%D5*
*

*TURN OFF WRITE *
: FLAG IN DECB :

s
*kEERRER
*

* *
Fhkkkkrkkkkrkkokkk

<

v
**E*ES5H
*
* RETURN *
* *
Fhkkkkk kR kR

kkkkkkE
*

t***#GS**#***##**

SET POINTER TO *
>*FIRST RECORD IN*

#ok ok Rk ok ok ok ok ok Kok

PRNOWRTE v
*kkkkkkk

BU
FkEKERERRREF R R R R K

/

dkkk KL kkkkokkdkok*
* *
* RETURN *
* *

*kkkkkkkkkkkokkk

100

e Chart 208. SYSTERM Routine (IEWTERM)

FROM IEWERROR
OR IEWBTMAP

LRI SEE LIS T
*

: IEWTERM :
LR Lt L L Lt

v
*kkkkB] *kkkkkkkkk
* *

*GET BUFFER AND *
: DCB POINTERS :

* *
Fxkhkbhkhkkhkkkrkk

N
Fk kR C2k kR Rk *RACI Rk Rk kR KRk clh T, * Rk ARCHR R KRRk Rk
. * * ¥ *, * *
*INITIALIZE DCB * * OPEN SYSTERM * o ¥ OPEN *. * SET TERM *
, ~=> -~ DSORG=PS, *- > DATA SET - -->%, SUCCESSFUL . -=>% INDICATOR OFF *
MACRF=W * * *.‘ *,& : :
B T E T Rk Rk kok kR Rk Rk R R T P T T
* YES
Ak RRD] Rk kR Rk kR Rk *EkRkDY Rk Rk F Rk E
* * * * FRARDS R RkRRR KA
PICK UP POINTER *INITIALIZE AND * *
* TO CURRENT *< * CHAIN DECB'S * * RETURN *
BUFFER AND DECB * * * *
* * * * REkk Rk Rk Rk Rk
T T PR T Y FrkRk Rk kKRR ARk E -

t*t**El*y******##
:WTWRITE 207Au:
* WRITE THIS *
* BLOCK *

* *
kkkkkkkkkER kRN Rk

LR NE LS LSS]
*

*
PICK UP POINTER¥
: TO NEXT DECB :

* *
EhkkkkkkkkkkRRkkk®

4
HEFRKGLARRIRERERE
:WTCHECK 207A5:

* *
:CHECK THIS DECB:
LR e e e L

v
*hkk k] kkkokkkokkkk

* BU R *
L e R

v

Rk k] Rk Rk kR
*
* RETURN *
* *
Rk ER R KRR

Charts 101

e Chart 300.

FROM IEWLIOCA
OR IEWACALL

*hkk D] dokokkkkkokk
*
* IEWLRELO :
*
dokok ok ok ok KRk ok Kk kKK

*
ok k

RELOREAD
FAEEKBLRRRR KR RA KK
A3*

— *
; GET A RECORD :

Hkkkkkkkkkkkkkkk*

Object Module Processor (IEWLRELO)

FAERBO ARk Rk Kk
* *
* RETURN *
* *

ok Kk ok kKRR kA %

A}

y YES YES
c1’ Tk, c2" k., c3 *, HRk A CL Rk Rk kK FAERKRCO KRR R KR R A Kk
* *, ok *, o * * *IEWLLNJ 307A1* *thERROR DObA}*
D-O0! «*¥ WAS END *. NO * DUMMY *, WO = Keo——e—ooo——oooo
, CONCATENATION, ¥=——eewwew >, CARD o F e Sk, DATA SET . >* END-CF-MOUDULE
, RECEIVED . *. o ¥ * PROCLSSING
*, ot *, o *. o *
*, . *, ¥ . o ¥ kkkokokkkkokkkkk kkk*k *****************
* o * *
REL010 .*. o ¥,
p2" . AR EAD IR ARk R K FAAR KDY AR KRR K
¥ *o * * *IEWLRROR 503A3*
* RECORD AN *, NO o ¥ *, YES * END- Ov-FILE, * ——————————————
. OBJECT . ———————— >*, INTERNAL Koo >* END-OF= =~ *ee——eo >* IEW1141 -- *——-
*, CARD o ¥ *,.DATA AREA. * * CONCATENATION * * RECORD NOT *
*, o ¥ *, o ¥ * OBJECT CARD
*, . ok TR -+~ S PRSI v
* YES * NO ko kk
* * ok kK
* Bl % * *
* * ¥ Bl *<—
T
EEE L] YES
J* J* IEWLTXT o* TXT10 Lk
E1’ “*. B2 #, FERRRE SRk hhhh kR E4 T*, E5 *.
* o ¥ *, *TRANSID 309A1%* * *, ¥ *,
. .+° WAS MOD “#. NO #Z——-------IlloC £SD FOR *. YES T TeXT *,
*. EN CARD D S, >*TRANSLATE EXT *——-m >, B R >*. MARKED L*
,RECEIVED . ID TO CESD = * *, DEFINED .#* *, DLLETE .*
*, o ¥ POINTER * *, o F . ¥
.. e SO N et *, o F .ok
* YES * NO * NO
kKK
l ST ‘L
_>% Bl *
* * e
T * *
* Bl * v
ztt**Fz******z*** * * HEAAKES Rk d kAR
IE 5 1 **** Ak * *
. *—~ * * TEXT *
*. R Yeeo>3 B1 4 oGy *
* RLD PROCESSOR * A ***** : INDICATOK :
S FAA AR
v
FHAEAKGE R KRR AR KK FHAFRGY RF R A A G5 .
*IEWLESD 301A1‘ * SET TEXT * *,
+* ESD ¥, YES = = Fe----ocoocoooooo *RECEIVED FOR NO* YES . NO *
*, > -— * LENG1H CSECT *<-—-——eee *, LLNGTH E
: ESD PROCESSOR : A : INDICATOR : *.* CSECT *.*
ARk Rk R KRRk AR R A A . L
* NO
>
o ¥
FEAAFH2R AR R AR K HAAR KLUk Rk 45 "%,
I“WLEND 307A1 * * ¥ *,

.¥ END *¥, YES = = *¥-------m—eooooo *MOVE TEXT FROM * YES .* ENO *,
*, > - *BUFFER TO MAIN *(———————— *, STOKAGE FOR . *
i . : END PROCESSOR * : STORAGE * *.* TEXT ¥
. . . .

., L FA AR R kR Rk Ty *, L
I NO * NO

.*0 ¥,
J1° T x. AREERT 2R AR Ju . v
* * *IEWLMOD 310A2* L *, FRART SR KRR AR K
--------------- NO .* HIGH *, *
>* < *, TEXT ADDR .* * ERROR EX1T *
* MOD PROCESSOR * *, PASSED .* * *
* * *. ¥ AR AR
T .ok TO IEWERROR
****** * YES (IrW11su)
* Bl *
* *
*kkk
FEAKKRDFF AR AR AR R ERG R R
IEWERROR 505A3 Ak ****
_______________ * * *UPDATE HIGHEST * *
IEW1152 *-———)* Bl * * TEXT ADDRESS *--——)* Bl *
. . *INVALID OBJECT * * *
*. ¥ * P * Ferxs
L FERAE AR R R TR AR
*

102

Chart 301. ESD Processing Routine (IEWLESD) (Part 1 of 4)
FROM
IEWLRELO ESDSTART
OR IEWLODE R RkRA kR kR kR kK kR kAR E KRR KRR
LRI SNE RS IS * * * * kk k%
* * * SAVE CURRENT * * SET 'ESD'S * * *
* IEWLESD | >* ESD ID ¥——————_->% RECEIVED' *¥emeo>* C1 #
* * * INDICATOR * * *
kkkk Rk kkkkkkkkk * * * * *ERk
Fkkkkkkkkkkkkkkkk *kkkkkhkkkkkkkkkkk
¥
B - *kkkRBIh kR ER Rk *
ESD *, *
* TYP PC *. YES *SAVE ESD ENTRY *
--* NOT DELETL, P S, >* ON LOAD CHAIN *————we——
l +.3D, L.+ * * 1%
*kkkk . * * EEE L L
*301% *, ¥ kkkkkkkkkkkRokkkkk *302%
* Cl* *kkE * * FS5%
* * * * A *kok ok * ¥
* * D1 * *301%
* * * C3 #*--4 PKELIMINARY
EXT TS * * PROCESSING FOR
[o] kK LOAD MODULE
o ¥ LOADPROC .« *. Ee
C *, *, c3 *,
«*IS LOAD*, o ¥ . .* ANY *, EXREKCURERRER R KR
«* MODULE *, YES .*¥ END OF *, YES «*ENTRIES ON *. NO
, BEIN B >, CESD oK >*, LOAD oK >* RETURN *
*, PROCESSED. * *, o ¥ *, CHAIN .* *
*, ¥ *, . ¥ * * *¥kkkkkkkkkokkkk
*, .k *, ¥ *, ¥
* NO * * YES
dok ok ok
* *
* D1 t >| PRELIMINARY
* PROCESSING FOR LR
ornet OBJECT MODULE * *
ESD10 ¥, * F1 *
D1 . *kkk kDD kKR kK okkk * *
ok *, * * LTS * Ak
+* IS ESD *, YES *SET TO ER WITH * * *
. TYPE WX . -—>:WEAK CALL FLAG :-- : E1 :

*, . * * *k

*, ¥ kR k kR kR kk KRR Rk
* NO
EEE LY *k ¥k
* * *302%
* E1 *-> * C5*<-~
* *
* KK 1 YES
ESD12 o ¥ ESD15 - ¥, LO.
1 *, E2 *,

*k

AD20
*Rh kK3 Rk RRRRR KKK
* *

*,
.* 1S ESD *, *MAKE NULL CESD *
. TYPE NULL .# > ENTRY [
*, ¥ R.
*, ok . . * * * kK ok ok
« o ¥ k., ¥ Fkkokkkkkkkkkkkkkk *302%
* NO * C5%
*kkk A * x
* *
* F1 *->l
*
YES
ESD20 -, LOAD10 %,
1 *. F2 *, FRRERF IRk KRRk Rk
* *, Lk *. * *
«* IS ESD *, YES ¥ IS PC *. NO * MAKE PC_ENTRY *
. TYPE PC oo >k, MARKED e H o > IN CESD Fomm oo
, o *. DELETE .* * *
*, 3 . Lk * * * ok kK k
*, ¥ *, . * kkkkkkkkkkkkkkkkE *304 %
* NO * bUx*
*kkk * %
301 *
* G2 ¥——
* *
kkk
ESD35 ok, R ESDUO e,
Gl *, Fkk kARG R Rk kR koK G3 *, Gl *,
J¥ *. *T 9A1* .* CnSD_ *.
.* IS ESD *,. YES *— .+ ENTRY FOR *.
#¥, TYPE_LR OR .#-cc——oeee >* TRANSLAT LD .
*, LD ¥ D TO CESD PTR * *. % *, CREATED .#*
*, R * *, . ¥ *, o *
. o o ¥ Fhkkkkk kR kR Rk kR Xk *, ¥ . o ¥
* NO * YES * NO
CESDSRCH ESDS0

Fk Kk k] Rk Rk Rk kR Kk
*

**

v
R T L b bt
MAKF LD ENIKY *
IN CESD ALD *

*kkkkHIk kR Rk k kK k
* *

* SAVE SD CESD *

* *

* SEARCH CESD *<---
* *

*

*

*
ok ok Rk ok ok ko kR

J
g1’ Tx.
¥ MATCH *, NO
*. FOUND L #-—-oee
Tk, e *EEEE

*ooux *302%

* YES * Al*x NO-MATCH
*** PROCLSSING

v

*kokkEk MAT

30% PROLLSSIN&

* ¥

*

*

*
* ENTRY ADDKLSS # * CHAIN IO LD *
* * : CHAIN *
*

* *
dkkkkkkkkkkkk kK ok dok kkk Rk Rk Rk R kK

Charts

103

Chart 302. ESD Processing Routine (IEWLESD)
Lo
*302%
* Al*
* %
NO-MATCH
PROCESSING
NOMATCH ¥,
a1 s, TR VEE R PR TS
* *
«%¥ IS ESD *, YES * MAKE SD ENTRY *
, TYPE SD et > IN CESD ¥ e
*, o * ¥
*, ok * * Rk
*, ¥ B T T T *304%
* NO * BU4*
* ¥
1 .
o ke
B1 *, *REEFB2RE Rk kR R k*
* *, *
.+ 1Is ESD *. YES * MAKE PR_ENTRY *
*.' TYPE PR o Ko >: IN CESD *
Sx, L * *
*, L% FEEERRE KRR RRRRRE
I NO
NOMATCM ¥,
c1” T, EEREEC2ER KK KR RRE FRAERCIh R F KRR KKK
o ¥ *. * MAKE CM * * MAKE CM ENTRY *
«* IS ESD *. YES *EXTENDED ENTRY * *IN CESD, ENTER *
*, TYPE CM o F =% AND ENTER * —>* DRESS OF *
*. . * :EXTENDED ENTRY :

: LENGTH _AND ¥
Aok kokok Rk Rk Rk Rk

kkkkkkkkkkkkkkkkx

NOMATLD o ¥, NOMATER
D1~ T #, kAR D 2 Kok Kk ko ko
. *, * *
.* IS ESD *. NO * MAKE ER_ENTRY *
*, TYPE LR OR «¥—————e—e >¥ IN CESD *
. LD . ESD TYPE * *
*, o ¥ IS ER * *
*, . B e T 1
* YES
NOMATLD1
FEREKEL kK khk kR d R
* *
* MAKE LR ENTRY *
* IN CESD *
* * .
dokok ok Kok ok Ak
o ¥,
Fl *, dkokok R F 2 Ak Kk kb ok
* *

*,
o * SD *. YES
*, MARKED o ¥
. DELETE .
*

*CHANGE LR TYPE *
—->¥ TO ER *

*, . * *
*, % kk Rk k Rk Rk kR Rk
* NO
<
< ¥,
GL™ #. HREERGR KRRk KRk
N . *IEWLMAP 308a2%
.* IS MAP *. YES EoommmmmooolooC *
., SPECIFIED .%-———————v >* *
. *.* :FORMAT MAP LINE*
A e e T
* NO

104

(Part 2 of 4)

*k KKk
*302%
* Clx

CHAINING

HRERKCUKF KKk FKkkk
* *

* CHAIN CESD *
——): ENTRY BY TYPE ;-—

* *
*khkkkkkkkhkkkkkk

Hok ok K E [k ok ok kK ko
* SET INDICATOR *
* TO USE LOADER *
* ADDRESS FOR
* RELOCATION *
dokkokok Rk ok Rk kR Rk
EEE T
*
->* F5 #*
* *
*kkk

NEXT20

kkkRkFURF Rk kR hokk
*

*GO TO_NEXT ESD *
* ITEM *<

* *
dokckkkokokk kR kok Rk Rk

*kokkk
*301%
* Cl*

* ASSIGNEDO *<

TRA

>

L b
*302%
* C5%

NSLAT . *.
*CS *

. *,
o ¥ Is *

*, INPUT ESD
., TYPE LD .

*, Lk
* NO

okkk

*302%

* D5 *->

* 4

*Hkk

ARk kDS Rk kK kR Rk

* *

* MAKE ENTRY IN *
* TRANSLATION *
* TABLE *

Fhkkkkkkok Rk kR kR Rk

* any x,
. ENTRIES ON _.
*. LD CHAIN .+

*kkkk
301 *, ¥
* G2¥ * NO
*
*
LD20 .
H5 *,
YES .* END OF *,
——————— CFS *
*kk kK Tk, L
301% ¥, .
* C3% * NO
* ¥

RS EREE T EE TN
* *
* RETURN *
* *

*k ok ok KRk ok Rk

Chart 303. ESD Processing Routine (IEWLESD)
* ok ok kK
*303%
* Al¥
* ¥
MATCH
PROCESSING
MATCHED _ . *. R MATSDER _ . *.
a1’ s, a2" a3z’ s,
. ¥ *, * *, * *,

.+ 1S CESD “*. YES IS ESD *. NO IS ESD *.
#. TYPE SD . k-mmmemee T R R >«i, TPEER I+
*. .x

*, ¥ * o ¥ *, . ¥
*, ¥ *, Lk *, Lk

+ N0 +"YES «'YES
* ok ¥k
l *302+
~->% D5 *
ok ok ok
JE N
B2 "+, B3 s,
L% MOD %,
.+ CARD _ '*. NO ' 1s sp k.
*! RECEIVED FOR [#----—oo— >, MARKED .
LE A +. DELETE .+
'*. Lx Txo ok
*"YES +'NO
kKR KC2kkkkkkkkk*k kR CIhkkkkkkkkk
* * * *
+ ADD CSECT * *MAKE DUPLICATE *
* LENGTH TO *————v * SD ENTRY IN *
* MODULE LENGTH * * CESD x
Fkkkkkkokokkkkkkkkk Aok ok ok ok ok kok kdkok ko k kK
v
MATCHPR . *. MATPRPRL
D1 *, ERRREDRR AR R KA kAR RD IR ARk Rk
L *. + USE LONGER _ * * *
.+ IS CESD *. YES *LENGTH AND MOST* * MARK NEW SD *
%1 TYPE PR +#---momme >* " RESTRICTIVE *——— * DELETE *
*, . * BOUNDARY ~ * l *
*, o ¥ * * * -+
*, % dkkkkkkkkkkkkkkkk ok ok Kok kok ok Kok Rk ok ok ok ok K
* NO *kk Kk
l +302+
* D5*
* ¥
MATCHCM . %, MATCMER . *. MATCMCM .*.
E1T #. E2" . LB e
L* *. . *. . .

.* IS CESD *. YES .+ IS ESD *. NO " 1s gsp T
#. TYPE OM .#--ommeem >*. TYPE ER + sk—omm—mee >*. TYPE CM .%
. ox . J . .x
*, . ¥ *, o ¥ *, o ¥
*, % *, % *, %

+"NO + YES +"YES

*kkREF2R R Rk R kkk Rk
* *

* SET DELINK *
: VALUE TO ZERO :

* *
b kokok ok ok ok Rk kA okk kK
* ok ok ok

*302%
* D5*

g

ok kkFIhkkkkkkkkk

USE_LONGER
LENGTH

R ERT
* K kKK

Ak ok ok ok ok ok ok ok ok ok ok ok ok

LR EIeRE S E L LS L L]
* *
* SET DELINK *
*VALUE TO INPUT *
: CM ADDRESS :

*kkkkkkkkkkkkkkkFk

(Part 3 of 4)

MATSDCM . ¥, MAT
Al *,
*,
NO IS ESD *, NO
———————— >*. TYPE CM 4 ¥o——e——me>
. .* ESD IYPE
* o ¥ 1S LD/LR
. o ¥
*"YES
Frkk
* *
* By *->
* *
Fk ok .
UPDATERC
H KRR BU K Kok ok kok ok ok k

* *

UPDATE RELATIVE

* RELOCATION *<
CONSTANT

* *

Aok ko ok Rk Rk kok Rk ok k

*k kok ok
*302+
* D5*
* k¥
*
* kA k
*302%
* Clx
* ok
¥,
E4 *o
NO IS _EsSD *, NO
———————— >* TYPE SD o ¥
. «* ESD TYPE
*, o ¥ 1S LD/LR
*. %
* YES

FA kK PLR KRR Rk K

USE_LONGER
LENGIH

* R K * R
* KRR K

kR ok kokdok Rk Kok k kR ok

\
t****gu*

* FREE EXTENDED *
* RY FOR CI :

* *
sk sk ok ok ok skok ok ok ok

**
*304+
* AD%

¥

Ju
o F .
«* IS ESD *.

*.

. ¥ MATLRER LY
*Jl *, J2 *.*

.*%¥ IS CESD #*, YES IS ESD *, NO
. TYPE LR o Fm e >, TYPE ER o ¥
*, o ¥ . o
*, K *, K
*, ok *, %

NO * YES
CESD TYPE
IS ER
*dokdok *kd Kk
*30U4% *302%
* ALl#* * D5*
* * * ¥
* *

>*.* TYPE SD

*, P

EP
* YES

Fokk kKUK kok ko kkokk
* *

* *
:MARK SD DELETH :

* *
Fokk ok ook kR ok kR KRRk K
sk
* *
->% B4 *
* *

*dk ok

ko k
* *
* A5 ke

* * l

Fdokk
SDLR ¥,
AS

kR ABS R kR kokkkkk
ILWERROR DObAJ

W1102
*SYMBOL MATCH —-#
* TYPE CONFLICT *
dokk kR KRR KRR kKKK

*.
SD *. YES

*. DELETE
*, *

*, .k
* NO

FokH AR T G ok ok ok ok ko ko
ILWLRROR 303A3

* TYPE COI

FkkokkGh Rk Rk Rk Kk kKK
* *

* SET DELINK *
*VALUE TO Lr/LD *
* INPUT ADDRESS :

Fokok ok ko kokk Kk Rk Rk

Fk ko
*302%
* D5*

SD_TYPE
*, IS LD/LR

*. NO
e

N
J5
R
Jx IS
TYPE CM

*

*, Lk
* YES *kkk

*

* Ab¥

*

*
* Kk k

v
FAREHKES KA AR A K&
WE 05A. 3*

* IEW - *
SYMBOL MATCH --%
* TYPE CONFLICT *
FokRk KAk kKRR KR KKK

RS

* *

—>% Bl *

* *
ok kK

Charts

105

Chart 304, ESD Processing Routine (IEWLESD)
EEREE AR
*304% *304%*
* Al* * A2%
* % * *
* *
l CESD TYPE
MATCHER o ¥o I ER MATERSD1
a1’ FETTTVEE ST e AR RRATRE AR AR
* “x * * *IEwLinN 306A1*
+* IS ESD . YES * MAKE SD _ENTRY * = #--—-eooooo———oo—
, TYPE SD K > IN CESD W *—e-e—ee—— >*RLD RELOCATION *
*, . PROCESSOR *
, L * *
*, W ¥ kR Rk Rk SRk Rk R Rk Rk
I NO
o ¥ MATERER o ¥
Bl *, B2 *, Kok ok ok kB3 kk kR kkkkk
. * *
. IS EsSD « YES IS CESD *. YES *SET DELINK OFF *
*, TYPE ER o Fom e >k, MARKED P >*AND CLLAR FIELD*
. . « DELINK % * *
*. ¥ . Lk * *
*, Lk *, ok kR kA ok kR Rk kKK
*" NO * NO
< ———
. *,
c2” Tk, HARRACT R AR AR
¥ . * *
«% IS ESD *o * SET WEAK CALL *
, MARKED WEAK . ->% FLAG_OFF IN *
*, L . * CESD :
. ok Fokok kR Rk Rk ok Kk
* YES
<
¥,
FRRAADIRAF AR
+*IS ESD *, * *
¥ ARKED *. YES * MARK ER ENTRY *
, NEVER P > IN CESD NEVER *
. CALL *.* * CALL *
%, % Aok Aok Ak KRk Rk Kk
* NO
FeTes EA
l 302+ *302%
—>* C5 * ->+7C5 «
v Rk P
MATERLR o ¥ MATERCH
*, 8****E2********** *kkkkEIkkkkkkkkkk
. . * MAK] M * MAKE CM ENTRY *
«* IS ESD .« NO *hXTENDED ENTRY * * 1IN CESD AND *
*, TYPE LD OR o *w————e—— * Al T Hom e >* ENTIER ADDRESS *
*. LR «% ESD TYPE * LENGTH AND * OF EYTENDED *
*. o ¥ IS CM * £
o o ****************# *****************
* YES
ENTERLR /
kR AFLFRhh kR
* MAKE LR ENTRY *
* IN CESD :
* *
AR ARk R
MATERLR2
FEEEE kAR

IEWLERTN 306A1

*KLD RELOCATION *
PROCESSOR *

Aok ok ok koK Rk ok ko kR Rk

dkk k] Rkkokkkkk Kk
IEWLMAP 308A2

“FORMAT MAP | *
ENTRY *

*hkkkkkhkkkkkrkkkkk

<

(Part

4 of u)

*****AU**********
*

*
*
*

TARE ENTRY OFF
ER CHATIH

* *
Fkkkk Rk Rk Rk kb k kkkk
*kkk

304

* BY >

* *

*kkk
MATERSDZB

oF
o * Is
« LENGTH ON
,ESD CARD .
*, ok
*

X

*

. ¥
* YES

MATERSD3

*****Cu* EEEEE ST

ATE

ACCUNULATIVE

X

*
*
*
ko ok ok ok Kok ok ok ok ok ok ok

kokkkk RO Kok kR AR KKk
*

SET 'NO LENGTH' *
1NDICATOKS *
*

* *
Fokkkkkkdkkkkkkkok¥

<

MATERSDU4
Rk DUF ko okkk Kk k
* IEWLMAP 308A2*

FORMAT MAP
NTRY

*
*kkkkkdkokkkkkkkkkk

*

* *

MATERSDS
*EERETLH
*
*TAKE ENTRY OFF *
* ER CHAIN *

I
4k ok ok ok k ok
*

* *
kkkkkkkkkkkkkkkkk

4
* kA kk
*302%
* Clyx

106

Chart 305.

FROM IEWLRELO
OR IEWLODE

EEE R WL EEL S S LS
*

*

* IEWLRLD *

* *
e L e]

*kk
* *
* Bl *->
* *

* ok
RLD10

. *,
o * ANY *, NO

*, RLD'S TO B Rttt >:

, PROCESS .
, o

*, ¥
* YES

. ¥
c1 *,
« *SPECIAL*.
«* RLD FOR *,

RLD19

HAKKBR KRR KK kK
RETURN :

#*tt**t*****w***

RLD Processing Routine (IEWLRLD)

LIS 'R Tk,
. POINTING TO .
. EK .

*

*, %
* NO

Ak ok ok AU ok ok ok ok % ok ok k k
* SET INDLICATOR *

RY
ADER- A SlGNhD*
ADDRESS *
ok ok ok b K ok ok ok ok ok ok ok ok ok

RLDUY o¥.
B3 *,
5 VRV E

o ¥ .
+« ¥POINTING TO*,
S| OR

RLD70 .

.*" IS 'R* "%, YES
. POINTING TO .
* ci e

, POINT . .
* o ¥ *, o ¥
¥, . * *.
NO * NO
* *
* *
* *
RLD30 o ¥, .*.
*kkk kD] kkkR KRk kkkk D2 . *.
TRANSID 309A1 * *, .* .
--------------- ok VALID *. .* IS 'R' *.
* TRANSLATE 'P' * -------- >%, 'P' POINTER o *—— *, POINTING TO .*
* PTR TO CESD * *, ¥ *, PR o ¥
* * *, ok *, o
ARk kR R ARk Rk *, L ¥ . ¥
] YES * YES
v
. ¥, RLD60 v
E1l *, R kRRE2Hkkkkkkk kK Kk kR IRk Rk k ok
¥ *, * *
o ¥ CSECT *. YES *UPDATE TO NEXT * * SET PR *
, MARKED o Fom e > ‘R' - 'p* *<mem * INDICATOR *
*, DELETE *.* : POINTER : I : :
T Hkk kR Rk kR kR kR Kk Rk Rk kR kR ok Rk Rk kK
* NO
ook
* *
->% Bl *
* * <=
*kk K
o ¥, RLD80
F1 *, *kkkkPIkkkkokkkkkk
. * * *
«* RLD FOR .*. YES *CHAIN RLD TABLE*
*, ACCUMULATIVE . *———. * ENTRY TO CESD *
*.§EGISTER o ¥ * ENTRY *
. o ¥
¥, % dkkokk kR Rk ok Kk ok
NO
PErTY * * Rk
* * * * * *
* Gl *-> * * * G3 *->
* * * *
ko Hkkok v
¥, RLD50 oE,
ERERAGLEKER AR ERK G2 *, G3 *,
TRANSID 309A1 *. . *.
--------------- o ¥ VALID *o NO . * *.
* TRANSLATE ‘R* * -------- >*, 'R' POINTER .*---J<———-% CONTINUATION .*
POINTER TO CESD . o * *. o *
* Al * * . ¥ * o ¥
T T LT P *, . *, .
ES * YES * YES
*hkE
* *
* H1 *->
>
ok v
RLD40 ¥, ALLOCATE
. FR AR H kR k Rk E *****53**********
. *, * *
N FREE *, NO * GET AN _RLD * *UPDATE TO NEXT *
*. RLD TABLE *--ceee—o >% TABLE ENTRY * FA FIELD
, NTRY . * *
* L * * * * *
¥, ok B T T E T L ko ok kR kK kk ok
* YES
<
RLD48 o ¥, ok
#*Jlt#t*#*# J2 *, J3 .
o * *, *
* MAKE TABLE * «* RLD FOR *. NO . MORE *,
* ENTRY FOR RLD *ecceeo—— >*,ACCUMULATIVE .*-——~ *. RLD'S TO o ¥
: : *,REGISTER .* +« PROCESS .*
Fdk Rk Rk Rk R A
* YES ** * YES
* * EEE L]
* A3 #* t *
* * —>% H1 *
*%
*hkE
RLD100
FERERKR Kk Rk Rk Rk
CHAIN RLD TABLE * Kk
TRY * * *
* ACCUMULATIVE ¥ >* G3 *
*REGISTER CHAIN * * *
* * Ak k

Hkkkkkkkkkkkkkkkk

A RRKEYF R AR R KKK

lEWLFRTN 305A1 ***t#*
>*RLD RELOCATION *—-——>* G3 *
PROCESSOK * **** *

*

ook ok ok kK ok ok kR Kok kK Ok

kAR RCU kK F ok dkok kKK
* *

* SET DELINK *
>: INDICATOR :

* *
Fokok ok oKk kR Rk Rk ok ok
A

YRS
" ’*.
3
L +BOLaTING 10%.
>k, HR FROM . *
* LR *

*okok ok T Uk ok ok ok ok ok ok ok
* *
>* RETURN *
* *
3 ok %k %k ok ok ok kok ok K ok ok k

A AKKRCS KKK R KRRk
lEWL RTN 300A1

>*KLD RELOCATION *
PROCESSOR *
*

Aok ok ok ok k kok ok Kok ok ok ok K

Charts

107

Chart 306. Address Constant

Relocation Routine

kAR ECIRR KRR Rk

+IEWERROR _505A3*
NO kE-——oooo-IoIC
-------- >¥_ IEW

(IEWLERTN)

* 111
*INVALID 2 BYTB :
***#*t*#*#**ttt*t

HRAEKEI kR Rk Rk Rk
* *

MOVE ADCON BACK
—=>% TO TEXT

FROM IEWLESD,
IEWLRLD
TEWACALL
OR IEWLODE
HRRAD] R R R R R Rk
* *
* IEWLERTN *
R R
.
* Bl #->
* *
EAE
ERRTN o *.
1 *,
*, EEAKBO KR KR ARERK
.+ END OF *, YES *
‘.. RLD CHAIN *.‘ ———————— >: RETURN *
.. 'y Sk ok ok ok ok ok
o o ¥
I NO
X, .
'Cl *, c2 *,
.*° ADCON _"#. YES .+ IS RLD %,
, LENGTH = oK >, FOR P .
B S ¥ . .
. . *, ¥
*, ¥ .ok
* NO * YES
<
ER10 v
FHRARDL KRR A KR F
*
* MOVE ADCON TO *
* WORK AREA *
* *
-
J
¥, ER60Q
E1l . FHEOEDE R G orRRE
o F *,
o ¥ Is *, YES *SUBTRACT DELINK*
. DELINKING . -> VALUE FR
, NEEDED . ADCON

*, ¥ FkkFkkkokokkkkkkkkk
I NO
o ¥,
*,
YES .*' IS RLD *.
—2 FOR PR o*
. .*
*,)
*, ok
I NO
L*, ERY40 .*.
L6 T *,
. RANCH . NO *" LOADER- *.
* TYPE RLD . %-—-—mome >*. ASSIGNED .*
. . *. ADDRESS .*
* o* . ox
* *, ¥
+'YES +'YEs
........... >
ER15
*kkkkH] kkkkkkkkk¥ kkkERH2 o kkkkhkkk®
* USE LOADER- * * USE LOADER- *
* _ASSIGNED * * ASSIGNED *
* ADDRESS AS * + ADDRESS AS *
+ ADCON VALUE * * RELOCATION ¥
*
Khkkkkkkkkkokkkkkkk *kkkkkkkkkkkkkkkk
*Ekkk
* *
* J4 *
* *
¥k

108

* *
ok kK ok Kk KRk Rk kR Rk

*ERFRGIF Rk KRR ERRKk

*
*
*
*
*
*

Fkkkkkkkkkkkkkk*k

o *,
*,
«* DOES *

RLD
INDICATE
.iUBTRACT

. .
*.

.

¥
* NO

Fokkdkok El koK ok kK kokkkk
* - *

* SET DELINK *
—>: INDICATOR OFF :

* *
Fkkkkkkkokkkk ok kkokk

kR kLR Rk xRk k
*

RETURN
okkk kR Rk kR kR k

*
* *

dokk Rk HU Ak k ok kok R kkk
* *
* COMPLEMENT *
———=>* RELOCATION *
: FACTOR :

okkkkokkkkkkkkkkkk

<

ERS0
FARAFTIRHF R AR ARR
* *

*ADD RELOCATION *

*FACTOR TO ADCON¥—---
* VALUE *

*
kkkkkkkkkkkkkkkkEk

*ARRKTUF kR R KRR RK

* *

MOVE ADCON BACK#

————D% TO TEXT
A

* *

1 EkkEFRRRE KRR KRR
Ak k
*

Ju *

*

* ok k

*

[. >*
* *

R20
FARERTSR R ARk kKRR
*

/ _* FREE_THE RLD
TABLE ENTRY

EE XX

*
Fkkkkokkkkkkkkkkkk

Hkk kKRS kR kR
* *

*UPDATE TO NEXT *
:RLD TABLE ENTRY:

* *
B L L T
*kkE

* *
—>% Bl *
* *

£k

Chart 307. End Processing Routine (IEWLEND)
FROM IEWLRELO
OR IEWLODE L*,
Ay T,
###*Al**#t***** o ¥
* * NO .* WAS *, YES
* IEWLEND * ——, TEXT .
* *.RECEIVED .*
dkkkkkkkkkkkkkk ok k¥ *, o ¥
* * *, .k
* B3 * EEITY *
* * * * A
kA * C4 *
* *
l END-OF-MODULE***
(OBJECT OR LOAD) NO
o ENDLNG . *,PROCESSING END10 e
B1® #. B3 "+, B .
. . ¥ . o ¥ *

.* AT END *, YES ¥ CSECT *, YES . * Is *,
#, OF MODULE .* >*, 'NO-LENGTH' e >*, LENGTH ON , *
*, o ¥ A . o ¥ *,END CARD .*
* o* *. o* . o*

*, ¥ *, « oF

* NO *"NO YES
dokkk
* *
* Cl4 *->
END CARD * *
PROCESSING *kokk
«*,FOR OBJ MODULE END19 v END13
1 * *ERERC2hkkkkhkkk¥ *EERRCI*REEXRRRXS kR KCUF R Rk kkkk k¥
N *, 'IENERROR 505A3* * UPDATE TEXT * * DATE TEXT *
o ¥ ANY *, YES = = #*-—----————emoo * POINTER * * POINTER BY *
*, ENTRIES ON . *-—ecc—w-- >‘ IEW1132 -- * * CUMULATIVE * * LARGER OF *
, LD CHAIN . * INVALID ID * * LENGTH * * CUMULATIVE *
. . * * *END CARD LENGTH#*
*, ¥ FkkkkkkkhkkkkkRkkk *kkkkEkkkkkk kR kkk kkkkkkkkkk K
" NO
l < T
ENDEPCHK . *. y
*kkkkDIkkk KRR KKK
! UEDATE TEXT %
*ADDRESS OR *, YES * OINTER TO *
Al . > * DOUBLEWORD *
* RECEIVED o ¥ : BOUNDARY :
*kkkkkhkkkkkkkk¥kk
t
v
ENDENTRY .*. ENDSYM ¥ END25 ¥
*. 2" "%, E3 Tx,
R . *, * *okkkE kR ok kkkkkk
. *, NO o F Is *. NO » ¥ SPACE *, YES * *
, ENTRY D ON e Fom e >, ENTRY o ¥FmmD> *, EXCEEDED Bttt >* FRROR EXIT *
*, END CARD *, SYMBOLIC .* *o . * *
*, * * o ¥ ok ok Kok k ok ok k ok ok k ok
*, « oF *, ¥ TO 1EWERROR
*° YES * YES * NO (IEW1194)
o ¥, ENDTRCLR
S FRERRFIRRRRF KRRk
o * *, * * *
. ¥ ENTRY *, YES * SAVE SYMBOLIC * * CLEAR *
*, ADDRESS ON . *——— * NAME * * TRANSLATION *
* END CARD .* * * TABLE *
*. o * * * *
*, ¥ kkkkkkkk kR R kk kR k¥ kkokkkkkkkkkkkkkkk
* NO
4 o ¥
kkxkGl* ****## G2 - * kKR KGIhkkkk kR Rk %
* . *, * *
ENTRY * o ¥ IS *, WO *INITIALIZE FOR *
* ADDRESS EQUAL * *, ENTRY POINT .*-—--> * NEXT MODULE *
* ZERO : *.SD OR LR .* ¥ *
. - *
ok Rk kkkkkk Rk ok kkx *, L% kkkkkkkkkkbkkkkkk
* YES
Km N
END100 v ENDEPADR
FkkkFHL kKRR kR k kR kk tt*#tﬂz**t#**it#* v
* * *kkkHIkkkkkk kXK
* SAVE ENTRY * * SAVE ENT * *
: POINT ADDRESS : : POINT ADDRLSQ *- : RETURN :
* * * *kkkkkhkkkkkkokkk
FRFEERREERERRRER KR **t#t*****‘#***#*
s
EE R E NSRS S EE L S FRAkF KTk Nk kkkkkk
* * *IEWLRLD 05A1*
*CREATE RLD FOR * = k——mmmmmmmmm
ENTRY POINT S —— # *
: : PROCESS RLD :

FHRkkk Rk ARk Rk kk kK

ENDADDR
RkkR K] kokkkokkkkkk
* *
* SAVE ENTRY * YES
POINT CESD e
ADDRESS

*
*
*
*

*
kkkk Rk kkkkkkok R Rk

*kkk

* kA K

FkkkkkkRk Rk dokkkkk

L.
K2 *,
X *
o* RS EP T, NO
SD BEEN . %———-co—o

D
“#,RECEIVED .*
*

*kkckkK IRk kkkkkkk

IFWERROR 505A3
>* 1EW1132 -- *
: INVALID ID :

>k ok ok ok ok ok ok Rk ok R kK

END12

FEEEKBS K

*IEWERROR

*
* SPEC
*kkkkkkk

kAR CS*
*

* UPDAT
*POINTER

IEW1082
LENGTH NOT

Rk KRk
505A3*

t
*

IFIED *
*kkkkkk kK

ok kkkkokk
*

E TEXT *
TO_LAST#*

: TEXT RECEIVED :

*kkokk Rk ok

EEEEE L LSS

Chart 308.

110

Map Routine (IEWLMAP)

FROM IEWLESD
OR IEWACALL

- *
A3 *,
FRREQ DR RRRRERK o *, FRERAURR R R kR AR
o * HMAP *. NO * *
: IEWLMAP : ———————— >*.‘ SPECIFIED *.* ———————— >: RELURN :
RERERRRRERERRER T, o ARERERERRFRRERR
*, L *
1 YES
“*,
E3 *, FREKRQUF R KRR ERRRF
. *, 207A2%
o 1s *, YES = #==-----oo-looll *
. KECORD FULL .- —-—>% *
*, . * PRINT LINE *
, o * *
P FAERRAAREREEFXRRER
* NO
<
H
* .‘. HERRRCU SRRk kF Fhkk
«* TEXT * * *
«* PASSED *. YES * SET PRELOADED *
*, THROUGH MOD o *——————em >*TEXT DESIGNATOR*
. RECORD . : :
.t, ,*‘ AERERKFEREXEF KR F K
* NO
* kK
* *
->% 13 *
* *
Rk
o*,
D3 *, EERREDY KRR Rk ok
¥ *, * *
o * FROM ¥, YES * MOVE IN AUTO *
*, AUTOMATIC , ¥———————— >*CALL DESIGNATOR¥*——————
*. CALL o ¥ * *
*, o * * *
*, AR RERE KRR R RS
* NO
*EEE
* *
* E3 *->
* *
ok
MAPNAME

/
ARAKEEIRERERERKEK
* *
* MOVE NAME AND *
:TYPE TO BUFFER :

* *
Hkkkkkkkkkhokkkkkk

MAPPC o ¥
F HERKKRPUR SRR KRk
* *

«* IS _TYPE YES * NMOVE IN *
*. PC >% $PRIVATE FOR *---

*. B * NAME *

* . ¥ * *

*, L * *kERhkkFRRERR R R Rk E

1 NO
MAPCM o ¥,

G3 *, *ERRFGUR R F R Rk kR Rk

. *, * *

.*+ IS TYPE #*. YES * MOVE I *

*, BLANK P S ># $BLANKCOM FOR *

* NAME *

, COMMON .
*, . * * *
£, % e T TR
* NO

< -

MAPADDR
*R 3Rk ok ko
* *

* CONVERT *
** ADDRESS **

* *
*kkEkkkkkkhk

LEE R ENEE LS T2 E L L]
*

*
MOVE_ADDRESS TO
: BUFFER :

* *
*kkkkkk kR krkkEkkk

FEAEEKIhhkkr Rk kd %
* FERFRUR AR EE

UPDATE BUFFER * *

POINTER : RETURN :

EE RS L e S S E 22)

XX

*
FhkkkkkR kR RRRR AR *

..
D5 *,
V¥ *,

o ¥ FROM *.
>*, SYSLIB o *
, o

*, . ¥
. 0%

* NO

FRRRREO Rk RFRRRKER
*

* MOVE IN LINK
* PACK AREA
* DESIGNAIOUR
*

PR E R T

e N

D
*

-

->* E3
*

*kkE

YES

LR RS
* *
* E3%
*EEF

Chart 309. Translation Routine (TRANSID)

FERRDL RRRRRRRRE

*
* TRANSID *
* *
EEZS TR EE S S L)

o ¥,
Bl *,
o* *,
o ¥ i *. YES
‘.*EQUALS ZERO*.*--

*

.
. . ¥

*, o *
* NO

EARRCLAR R bk hhkk
* CONVERT ID TO *
* TRANSLATION *
* CONTROL TABLE *
* ENTRY *

P T
o ¥, TRANSERR . *. TRBADID
D1 *, D2 *, *kkRkDIRkkkRkkkkk
o * *, o* *. *IEWERROR 505A3% AR R L E L LE R b
o ¥ WAS *, NO o ¥ ENTRY *, YES v vttt * * *
. CONVERSION ,——————=->%, EXPECTED o ¥om —-=>% IEW1132 -- Fomm e >* RETURY *
, POSSIBLE . *. o* A * INVALID ID * * *
*, ¥ *, o * . % * EE PR T LY
*, k¥ *, ¥ FRERRRRRE KRR KKK
* YES * NO
ESD PROCESSOR
WAS CALLER,
BLE
OVERFLOW
Aok ko E] ok dkok ok ok Rk
* CALCULATE THE * HRRAE2R Rk Rk Ak kR k
* TRANSLATION * * *
* CONTROL TABLE * * ERROR EXIT *
* ENTRY ADDRESS #* * *

Fhrkkkkkokok R kkok Xk

TO_IEWERROR

* *
Fkk Rk kR kR Rk KK

(IEW1204)
4
%o o ¥o
F1 *, F2 *,
. *, ok *,
+* EXTENT *, NO o ¥ ENTRY *. YES
*, ALLOCATED o *¥-=—=———- >%*, EXPECTED o Fom>
*, YET o * *, o E
*, ok *, ok
*, . *, Lk
* YES * NO
£SD PROCESSOR
WAS CALLER
CALCADDR

FERERGLRRA KRR Rk AR KGRk AR kR R

* CALCULATE THE * * *

* TRANSLATION * * ALLOCATE AND *

* TABLE ENTRY *<---——+—-% CLEAR NEEDED *

: ADDRESS : * EXTENT :

Rk R kR Rk R Rk Aok R Kk kR Kk

o *,
H1 *.
*

NO .*' ENTRY *.
[--—*., EXPECTED l+

* *

*
YES

*
.l.
Jl *,
¥ *.
¥ NTRY *. NO

ENT!
, HAVE CESD .#
‘.*ADDRESS*.‘

*, %

* YES

v
SR TR PR
* *
* RETURN *
* *
FakR Rk R R RNk

Charts 111

® Chart 310.

FROM IEWLRELO

Hokkok A dkkokkokkk ok

*

* IEWLMOD *
* *
Fhkkkkkk Rk kR Rk

*
.+ INTFRNAL ~*. NO
*!, DATA AREA [+

, o

£, . *
* YES

, MODULE .
* *

Q*.
¥ TEXT %,
,+ ¥ORIGIN AND"+. vES

. LENG' .
.fPECIFIEE.

MOD Processing Routine

—>*

e >

(IEWLMOD)

*kkkC kR Rk Rk kK

*
RETURN :
FhkkkkkkRk kR kR K

*kARRDIR kR Rk KRR KK
* ORIGIN AND *
* LENGTH IN *
* COMMUNICATION *
* RE. *
Aok kR kR Rk Rk Rk

* EXTENT
. INFORMATION ,---——w-

"%, SPECIFIED. *
* S

*, ¥
* YES

v
LRl Vi ubduhidubdud
* STORE EXTENT *
*INFORMATION IN *
* CHAIN OF *
: EXTENTS :
dkkkk Rk Rk Rk kok

v

*.
«* HAS _*,
« *ENTRY POINT*. YES

*, BEEN o ¥om e
, DEFINED .
*, ok
*, L *
* NO
o ¥,
ok koo] Kok Kok ok ok K H2 *,
* SAVE THIS * . *,
* EXTENT AS * YES .* IS THIS *. NO
* DEFAULT ENTRY *<-——————- *, FIRST PR SO
: POINT * *.*EXTENT *.*
kR k kKRR kR kk A
*kkk Tk Rk Rk k
*
* RETURN *
* *
kkkkkkkkkkkkk

112

#k kK E 3k kk ok k kK
* *

>* RETURN *
* *
kkkkkkkkkkkkkkx

kR Rkk kR k

* *
>* RETURN *
* *

Fkkrokk ok Rk kR kK

Chart 400.

FROM IEWLIOCA
OR IEWACALL

EEEENEEIEE LSS LSS
*

*

* IEWLODE *

* *
Khkkk Rk kkkk Rk kkF

Load Module Processing

Routine (IEWLODE)

—=>(<

RDCNTRL v
‘##**Bl#i******##

* INDICATE READ
:CONTROL RECORD *
*
t#t#tttt#t*t***
*kkk
*400%

* Cl *->
* *

* kK

v
Rokkk A CLRRRA KRR KR
‘IEWLREAD 205A3*

t
: READ ROUTINE :
Ik kR kR RE R R AR Rk

400
* DL +->
*
* kkk
IGN o ¥,
p1* .
. ENI *, YES
, OF MODULE «—=———
T, o
.k
NO

R

*
*
E *u
YES .* SYM OR " #.

;

———, SCTR/TRANS ¥
*. REC ¥
ET S
I NO
K.
o ¥ CESD *, YES
*o RECORD o K
. et
*, ¥
NO

FINCESD .
Gl

. *,
o ¥ TEST *, ON
. 'CESD_RCVD' .----e
* BIT *

.* RLD *. YES
%2 RECORD Sttt
‘. ®
*, Lk
NO

PROCTXT .
*Jl

o* ‘. YES
*. TEXT/CONTROL + ¥=———n
."RECORD _.
N
*" NO

okok ko K okok ok ok ko ok
IEWERROR 505A3

3 IRwiizs o TE
* INVALID INPUT *

R *
*kkkkkkkkkkkkkkkk

Hok ok
400
* D2*

PROCEOM
*EkERD2k KKK RR KK

IENLEND 307A1

-—->* END-OF-MODULE *
PROCESSOR #

**********#**#t**

ook kR PRk Rk kkk Rk
* *
* SET ‘CESD *
——->* RECEIVED' BIT *
* ON *

* *
Aok ok ok ok ok kR kR ok Rk Rk

*RRRRGR kKRR kR kK
* *
* SET ' CESD *
--->* RECEIVED' BIT *
* OFF *

* *
ko ok ok ko ok ok Kok kR ok

*kk kDI kk Rk kR k¥

*

>* RETURN *
* *
kk kKRR kR

FRERR TRk Rk kAR Rk
IEWLESD 301A1
>* PRELIMINARY *--—
IN CESD *
* PROCESSING
T IROEEE N

kARG R KRRk KKk

IEWLVSD 301A1

* FINIS *

* PROCESSING *
IUPUT S

PUT CESD
*t*t**t***tt**#*#

*
—-—-->% RLD RECORD *
* PROCESSOR :

*
LRSS SR R RS E L Y

.+ anso k.
>*. TEXT/CONTROL . *
¥, RECORD .*

. o*
+'yrs

* ok
L401
* A2*

%,

*
* IS TnlIs
LAST RFCURD

¥,
as’ T,
*,
*
-*u c*-
* ¥
« YES

v
EREEY

* ok kk

Charts

113

Chart 401.

kA
401
* AD¥

LMTXT
FRERKD 2R ARk E
* *

*GO TO START OF *
:ID/LENGTH LIST :

* *
*hkkEkkkhkkkkkkk kR

Load Module Text Processing Routine (LMTXT)

(Part 1 of 3)

<
PI1CK1D o ¥
2" s,
.+" AT END . YES
*. OF LIST o#-—m—oen
Sk, x5 *HkE K
P #4502+
* NO * Al*
* ¥
v
ERRARC2RFF AR
:TRRNSID 309Al:
* ROUTINE TO *
TRANSLATE ID TO
* CESD ADDRESS *
AEEE AR R R KK
v
p2" s,
. CESD . NO
*, ENTR o Fmm e
« EXISTS .#*
. * Freee
. o ¥ *402%
* YES * A2%
o
J, .
o ¥o DELETE
. EEEE Lokt LSS LTS EEEEESEELE L LS EE LY
* * * *
ENTRY *, YES * * * ADD LENGTH TO *
+. MARKED . ->*INDICATE DELETE*- ->% COMULATIVE *---
*, DELETE *.* : : * DELETE LENGTHn *
*
‘. o dokk kA Rk Rk Fkk Rk kR Rk kR kR Rk
I NO
o ¥
F2 . AR REIRRRR AR EEREEFUFREEFEREER
o ¥ *, *ADD CUMULATIVE * * *
¥ KEEP *, NO * DELETE LENGTH * * INDICATE TEXT *
*, TEXT BIT ON . *--eeee-- * TO RELOCATION *-——--e-- >* RECEIVED AND *
, o * CONSTANT FROM * EEP TEXT *
*. o * CE. TRY * *
*, ¥ Kk kkkkkkkErkkkkk *kkkkkkkkkkkokokkkk
* YES
<
NEXTID
EEEERGRFRRRRE AR REEFRGIRR R R AR EREERGUEREEEFREE
* * *UPDATE POINTER * * *
SET CUMULATIVE # * TO AVAILABLE * * GO TO NEXT
*DELETE LENGTH =#%-———-——— * STORAGE et T >* ENTRY ON LIST #*---
* 0 * * (CMLSTTXT) : *

* *
*EEEF kR R R R R R RS

114

EEE R S LSRR L L

* *
R R L R SIS L E L]

1A}

Chart 402. Load Module Text Processing Routine (LMTXT) (Part
P ot R
*402% *402%
* Al* * A2%
* * %
* *
FINIDL ¥, SKIPREC LASTXT ¥,
*, R .
* * o* *.
. ANY *, NO * MARK THIS * ¥ LAST *,
, TEXT TO o ¥ommm e > RECORD *SKIP' *--e—e—-- >%, RECORD IN .#*---
KEEP o* * * A *. MODULE .*
. .* * * *, o*
.« . B *, L
* YES * NO *REE
* *
* C3 %
* *
*hkk
RDSETUP IDDEL .*,
HEERRBLRRER R KRR 3 .
ADD CCW ADDR TO o* *.
*RELATIVE RELOC * AN *, YES
* CONSTANT PLUS * *, ID'S FOR « ¥-——3 INDICATE
val FROI * *. DELETE .* READ ONLY
* * *, ¥ TEXT
L S e e L P L) ¥, o*
* NO
kk kK
* *
* C3 *->
* *
*Ekk
J RDTAC \
FERRRCLRERE R R R RR ERREKCI Rk RREREREE
*SET READ COUNT * * *
#= CONTROL COUNT* * INDICATE READ *
* MINUS * * FOR TXT AND *
* CUMULATIVE * *CONTROL RECORDS*
* DELETE LENGTH * * *
FREERRRRERERRRRRE RARERRERRERRRE R RE
P —
7 LMRDTXT
**kkEED] ke kEk kR kE FEEREDIFEXEXXERRE
* * *IEWLREAD 205A3%
+ ADD COUNT TO +* Rt *
* ASSIGNED TEXT * * *
: ADDRESS * : READ RECORDS :
B T B T T
s
o ¥, o ¥, ¥,
E1l *. E3 *, Et *,
o* *, * *, *
¥ SPACE *, NO «* AT END *. YES «* END OF *,
*. EXCEEDED ¥ *. OF MODULE «*=e--—ee- >*. FILE ON 18 *
, o *, o ¥ . AD .
, o *, ¥ *, .
*, ¥ o« o ¥ *, ¥
* YES * NO * NO
1< -
ANYDEL ¥, ALLDEL
F3 %, AR RAFUR Rk
*EEXPL kkkk Rk k¥ k o * *
* ANY *, YES * TURN OFF *
* ERROR EXIT * *, TEXT TO e >* *DELETE" *
* * *, DELETE . * INDICATOR *
FEFEEEFEREREEEE . *
*, ¥ FERERRRERERRE R RR
TO_IEWERROR * NO
(IEW1194) 1
¥, < ¥,
G3 *, GU4 *.
¥ *, o ¥ *,
YES .* CONTROL *. o ¥ ALL *,
—————— *, RECORD IN .* *. TEXT TO ¥
*. N *, DELETE .*
*EREE *, ¥ *, o ¥
400% *. o * *, .*
* D1%* * NO * NO
*kkkk
*403%
* A3%
FREERHIRE AR KRR KR * *
:IEWLEND 307A1: *

* END-OF-MODULE *
* PROCESSOR :

*
*kEkkkER Rk kR Rk kEE

LR R I NKEE S S 222

*

* RETURN *
* *
RS L e P T

2 of 3)

*RRRKESKERFRERE KK

TURN r
YES * 'DELETE' AND *
-------- >* ‘KEEP It *
: INDICATORS :

FEKRKA AR R KR RE

*ERREPS R kKRR RERE

:IEWERROR

* ITEW1123 -- *
: INVALID INPUT :

EREERRR R R R RRRE

Charts

115

Chart 403. Load Module Text Processing Routine (LMTXT) (Part 3 of 3)

*kkkk

Ry P
* *

*GO TO START OF *
:ID/LENGTH LIST :

* *
kkkkkkkkkkrRkk kR
*kkk
* *
* B3 *->
* *
*kkk
GETID R
B3 *,
.+’ AT END *. YES
*, OF LIST &*c—ee——o
*, L
*. O *kkkk
*, L% *400*
* NO * Cl*

\!
XK RCIhkk Rk KKK

:TRANSID 309A1:

LR e

D3 *.

*.
CESD *. YES
TRY FOR o *———
ELETE *.*

. .

¥

*. EN
*. D

-‘-
E3° %
. *,
.+ TEXT IN _#. YESV
+. RIGHT PLACE . %---
*o o *]

*, ¥
* *

‘Yo

MOVELOOP _ V
*kkkkFIkkkkkkkkkk
* *

* MOVE TEXT_ TO
* ADDRESS GIVEN
: IN CESD

*

ko k ko kok ok kR ok Rk K

e w

GETNXT v
*REERGIRE R Rk kR ®
*

GO TO NEXT ID

A

*
*
*
*
*kkkkkkkkkkkkkkkk
Kk Kk
* *
->*% B3 *
* *

ok

116

Chart 500.

EETTINET T

*
* IEWACALL :
HEERERERRERRERE

FREREBL ARk Rk
* *

*SET INDICATION :

: FOR AUTOCALL

* *
kEEFERRRER R Rk R R Rk

PROCESS
o ¥, COMMON
c1 *
. CA] . YES
*, SPECIFIED . *—————— v
“x, * A
. o ¥ *502%
* NO * BU*
* %
17 .
PROCESS
o ¥o COMMON
D1 *.
. ANY .
*, ER'S TO . -
, PROCESS .
. o kA
. o ¥ *502%
* YES * BU*
* %
*
ATTEMPT TO
RESOLVE ER'S
IN LINK PACK
¥, AREA ¥,
El1 *, E2 *,
¥ *, ¥
¥ NORES *. NO
, SPECIFIED .—-——————)* ENTRIES ON
*. o ¥ QUEUE.
*, . .
*, ¥ *, .x
* YES *° NO
< I
A
OPNLIB J
FERRRFLERF R bR ks
IEWOPNLB 206A1
* SYSLIB OPEN *
* ROUTINE *

kkkkkkkkkkkkkkkok%x

PROCESS
*. COMMOR
G’ s,
. *.
.+ OPEN . NO
+. SUCCESSFUL . #-oecnmm
* o* ¥
%, L* P
P £502+
+"YES * B+
* %
*
'
*kk ekl kk kR kR kR k%
+COMPUTE SIZE OF*
+AVALLABLE AREA +
+'FOR BLDL *
+ BETWEEN TEXT #
+ AND TABLES _ +
kkkkkkkkkkkkkkk k%
(¢ BYTES FOR
v BLDL ENTRY
kEkk kR T] kkkokkkkk k¥ 4 BY TES FO h
+ DIVIDE AREA *+ ADDRESS LIST
$SIZE BY 20 FOR * ENTRY)
*MAXIMUM NO.
* BLDL ENYRIES. :
****‘************
v
* kKK
£501%
* A%
* k
*

Secondary Input Processing Routine

GETNAME ¥,
E3
«* ER *.
-* MARKED *,
———————— >*,NEVER CALL OR.*
A *.WERK CALL. *

*, %
* YES

(IEWACALL)

F kKD ok kk ok Rk
* *
* SEARCH CDE *

>:QUEUE FOR NAME :

* *
kkkkkkkkkkkkkkkkk

¥‘ ¥
NO
*kkk
* GU *->
* ok kk

(Part 1 of 5)

CDECOMP2 . *.
B5 *

*.
2ND *,
——>%. dALF OF ER .*
«MATCH CDE. *
. L
* .
* Yb3
AR RKCORR KRR R KK KK
* *
*PUT EP_ADDRESS *

INTO_CESD_ENTRY
* FOR ER *

*kkkkkkkkkkkkkkkk

Hkk kKD ok kK kK kKK
* *
*CHANGE ER TYPE *
* TO SD :

* *
Fhkkk R kR kR Rk R

.

v
*RkKAESH kR RE KRR
* *

*TAKE ENTRY OFF *
ER CHAIN, CHAIN
* T0 sb's *

EE AR R L L e SR S

CDECOMP1
EEEHKFS kR RRRR AR
IEWLMAP BOBAZ

: MAP PROCESSOR :
R e P

s
*ok ok ok kA%
306A1*

*RL] oN *
: PROCESSOR :

Fokkkkkkkkkk kR kR kR

kRKRGS
*IEWLERTWN

kKoK 3k ok kK k
* *

* *
dok kR Rk kR kR ok kK ok

CDEER < ¥
HU4

* *
L-——*MOVE TO NEXT ER*<-———
* *

CDEER1 «
Ju

YES

* .
+' AT END _ *.
OF ER CHAIN .*
* *

o * *.

o ¥ ANY *.
, UNRESOLVED .
*. ER'S . ¥

*kkkE

NO

R

* Rk k
* *
* GUx
* *

e

Charts

117

Chart 501.

NXTER 1 o %,
HEEEER] R AR R .
* * % BLDL _*.
* * YES .* ATTEMPTED *.
:MOVE TO NEXT ER:(———————— *, 'OR_THIS ¥
* * S .
FEERERRRRFREREREE *, ¥
NO
rer
* *
<—% A1 *
*
ren
MNCAL ¥
*,
*,
YES .‘ MARKED
---------------- *INEVER CALL OR.
.WEAK CAL&
k. %"
* NO
’
*REERC2H IR Rk Rk RE
*
* INDICATE BLDL *
* ATTEMPT FOR *
* THIS ER *
*kk¥k *
* * *kkkkrkrkrkkhkkkk
* E3 *
* *
ek
A
1 YES
p1° s, ..
o ¥ *, *.

o ¥ REA YES . IS *,
*, AVAILABLE o *<-——e—e—- *, FIRST ENTRY .*
*, FOR BLDL o ¥ IN BLDL .
“x, Ck, o
+*No *'NO

----------- >
TOOBIG COMPNAMEE2.'.‘
SRR FE] Rk Rk RkkRE . *COMPARE*.
* * .*+ NAME TO #*. HI
* ERROR EXIT * *, PREVIOQUS P it
* * *, NAME . A
dkokkkkkkkkkkkkk *, -
*, ¥
TO IEWERROR * LO
(IEW1194)
LI IR WL LS E S Y
* MOVE PREVIOUS *
NAME AND *
ADDRESS TO NEXT
+ HIGHER ENTRY
“*******‘**"*‘*
v
ERERRGRRRRRRRR R
* *
* GO TO NEXT _ *
* ENTRY ALREADY #*
* IN LIST :
ERERERRR R AR
v
i e
*,
NO .* AT *. YES
——-#. FIRST ENTRY o%--——-
. ALRERDY .
.. s
*
118

Secondary Input Processing Routine (IEWACALL) (Part 2 of 5)

AR
*501%
* A3#
* *
*
ATTEMPT
>] RESOLVE ER'S
YSLI. PROCESS
ENDCH ¥, ANYENT ¥, COMMON
A3 *, Al *,
* * * *,
NO .* AT END *, YES * ANY *, NO
——, OF ER CHAIN e ¥ >%, ENTRIES_IN . *---ce--
*o . *,BLDL LIST.*
*, ¥ *, o * *kk kA
o o ¥ *, ¥ *502%
* * YES * BUx*
* %
——————————— >
ADRLIST 4
FREEKBUFE KRR KRR KR
* MOVE TRY *
* ADDRESS FROM *
* BLDL LIST TO *
* ADDLESS LIST :
FRAkR R Rk kR ARk
v
cu® T,
o ¥ *,
NO .* ST
Slaeex, ADDRESS ¥
OVE] .
. ¥
*, ¥
* YES
DOBLDL
FRERRDUF KRR kRS
* *
*INITIALIZE FOR *
* BLDL REQUEST ;
kAR * *
* * T e
* E3 %
* *
*RkE
ENTER1 v
FRREKEI Rk kR Rk Rk RS UEE TP
* MOVE NAI * * *
ADDRESS OF CESD *
~->* ENTRY TO NEXT * * BLDL *
BLDL ENTRY . *‘
FRRERAERE AR R R A EERkREEEREE
FRERAFIRF kAR R F4 %, *RREAFSRRk RNk h k%
* «* 1/0 *IEWERROR 505A3*
INCREMENT COUNT# ¥ ERROR *, YE§ = = ¥-em—e—ee———coae
* OF ENTRIES * *, DURIN e ¥rmrm e >* IEW1053 -- *
y s BLD! . : PERMANENT I/0 :
P T LT N *kER AR ERR ARk RRE A
* NO
PROCESS
COMMON
Cmmmmmmm ot kA
*502%
ok, HAVETTR o ¥, * BUx*
G3 * *, * %
. *, * * *
«* COUNT = *, YES NO .* TdIS *.
*. MAXIMUM NO. o *-——- ~~~%*, BLDL ENTRY .*
*. ¥ *, FOUND .*
*, o . o ¥
*, o % *, ¥
l NO * YES
Py
* *
* Al * v
* * Fdkk LRk Rk
*Akk * *
* MOVE TTR FOR
*ENTRY TO CESD &%
ET TTR BIT ON
B L T
----------- >
NXTENT v
**ot#Jut T
*
* MOVE TO NEXT *
* BLDL ENTRY *
* *
* *
FEkkE ARk R Rk ARk
o ¥,
K4 *,
¥
.+ AT END *. NO
*, OF LISTsS o Ko
. e
*, L%
+' YES
LR EE L]
*502+
* AD*

Chart 502.
R
*502%
Mg v
«*
*
PROCESS MODULES
FROM SYSLIB
EERRKADK AR KRR A
* *
*GO TO START OF *
* ER CHAIN *
* *
EREEREERA R
ArE
* *
+ B2 +->
* *
oy
NEXT J*.
B2 %,
o* *,
«* AT END *, YES
, OF ER CHAIN .#
, o
., o*
P
1 NO
NEXT1 .*.
FRRARCL bR R Ak bk *,
* * . .
* MOVE TO NEXT #* NO .* TTR FOR *,
: ENTRY IN LIST :(———————— *, THIS ENTRY *.*
* * Sk, o
T R
+' YES
ek
* *
_>% B2 *
* *
Ak
DOFIND
FRAERD2RERE KRR KK
* *
* PICK UP TTR *
* ADDRESS, TURN *

PROCESS COMMON

ENTRILES

COMMON

HEERRBURRRE Rk kR Rk
* *
* TURN OFF *

* OFF INDICATOR +
Fkkkkkkkk kR kkkkkk

*RE2RRRREAK

* *
* FIND THIS *
* LIBRARY *
** MODULE *

*ok kAR kR kR k

v
#***iF2t #**#*tt#

*INITIALIZE FOR *
END-OF-FILE :

* *
LA AR EL EL S E L EE L]

. ¥

G2 *,
. ¥ *,
* LOAD *

*. MODULE o ¥
* *

*, o ¥

*, o x
* YES

A VAR R T L LT T
ILWLODE UOOAl

* LOAD MODULE *
* PROCESSOR :
*

LR R R L LS SR RS
* kK k

* *

->% B2 *

* *

Aok ok

HEFKRGIRRRKRE KKK ®
*IEWPRIML 204A3%
*

>* OBJECT MODULE *
* BUFFER PRIME *
* PROCESSOR *

ok kR kR Rk Rk Rk kk

ARk kok koo k Rk Rkok
IEWLRhLO 300A1

* CBJECT MODULE *

: PROCRESSOR :

e T T
LT

* *

—>% B2 *

* *

*okkk

>* AUTOCALL *e
* INDICATOR :

ok o ok ok ok ok ok ok ok ok ok K ok

Aok KR C Uk kok kK
*

*
* SET ‘COMMON

* ALLOCATED'

: INDICATOR

sk ko Rk ok kR ok

FEAREDYF KKk ko k kK

* ASSIGN NEXT *
* AVAILABLE *
* DOUBLEWOR *
* BOUNDARY AS *
* 'COMMON' ADDR *
LR TR LR E T LS

kr
KRR kR R Rk

X TR

*
*
*
: RLD CHAIN
*
*

kK kR Rk kR

v
FRERRGUR AR R AR Rk kR
*UPDATE POIWIbR *
* TO AVAILABLL *
* STORASGL, *
¥ (CMNATTKT) :
*

FoRR kKRR R Rk ok kKK Kk

FRRRRHU A R Rk
ILWLMAR 308«1

* MAP PROCHSHOK *
* *
R AR KRR KR KRRk

****kJﬂ* FRE A kKKK
IN 306A1*

A7100
CCESGOR
*
H kR kKR Rk KR kR Rk

FKA KR (R H AR EF kKA
*

*
* GO QU Hral ¥
* ENTKRY ON Cm *
* CHALU *
* *
*kkrkok¥kkh Rk k hoh k¥

* k¥ k

* *
->% (5 ¥
* *

* kK

Secondary Input Processing Routine (IEWACALL) (Part 3 of 5)

FkkkFBS kkkkkkkkk#
*

* SAVE TOP OF
——D% CODE IN
: CMTOPCO"

*kkkkkRkkkkkkhkkR

e

*kkkk
*503%
* A1k

FRERKPS KRRk Rk
*ILWERKOQ 505A3%

---->: LIW1194 -~

PROERAM 100 :
Rk KRR AR KR A kR

I L L T T T Y
*

*
* RETURN *
* *

HEFRAKKRREA KAk

Charts

119

Chart 503.

Lt
*#503%

*
*

Al*
*

*
ASSIGN DISPLACEMENTS
FOR PSEUDO REGISTERS

PRCHAIN
Aok ok AL kok ko kokkokkk
* *

*SET CUMULATIVE *
*LENGTH OF PR'S *
* TO 0

*
kkkkkkokkkkkkkkkkk

4
ok kk Bl Rk kKR KK Kk
* *
*GO TO START OF *
* PR CHAIN :

* *
kkkkkkkkkokkkkkkkk
----------- >
J
PRC2 k.
c1” x.

Secondary Input Processing Routine

o ¥ *,
¥ ANY *.
.

*kkkkD] kkkkkkkkkk
* SUBTRACT PR *
* CALIGNMENT *
* FACTOR FROM *
* YFFFF' *
* *
* *

ok okok ok kokokok k ok kok ok

s
FkkkkEL Rk kR k kKRR k¥
* PR _ADDRESS = *
DIFFERENCE PLUS
* CUMULATIVE *
* NGTH

* *
*kkkkkkkkkkkkkkkk

Fkkk kP kkkk Rk Rk ok ok
* STORE PR *
* ADDRESS INTO *
* CESD, RESTORE *
* 4YPE *

kK kR ok kK ok ok kK kK

Fookok kG Kok koK ok Kok ok ok

:IEWLMAP 308A2%
_______________ *

* *
: MAP PROCESSOR *

*
kR ok kok ok kR kok ok

v
dok ok ok Aok sk ook kok ok Kok
:IEWLERTN 306A1:
*RLD RELOCATION *
: ROUTINE *
*

ok ok ok ok Kok ok ok Kok ok ok K

s
ook ok ok J] ok kkkok kK kk
*

*

* GO_TO NEXT
-—-* ENTRY ON PR

* CHAIN

* Xk

ok kR ok ok Rk kR kK ok K

120

>*, PR'S .
*. PROCESSED. *
*, o ¥

*.
T ANy *.
. ENTRIES ON .
*.CXD CHAIN. *

*, .k
* YES

Fkkkk IRk kkkkkkkk
*STORE TOTAL PR *
* LENGTH AT *
* REQUESTING *
: LOCATIONS :
Aok ok ok koK kR K Rk Kk Kk

NEXTCXD
FAdokk P 3 Aok kokokokok ok ok ok

* *
*GO TO_NEXT CXD *
——— ENTRY :

* *
ke ok Kok ok ok ok ok ok ok ok ok ok ok ok

NO
—ia>

(IEWACALL)

(Part 4 of 5)

FINAL CHECK FOK
UNRESOLVED ER'S

DEB2 L*.
*,
. ANY . NO
ER'S ON o #oc-me
CHAIN .
'I'yns
R
D4 .
o* .
. NCAL *. YES
*., SPECIFIED I#----
R 2
*, %
+*NO
v
LE.
Eb .

*, CALL o F
* *

*,
* ER *. YES
*, MARKED WHEAK . %---
*, CALL ¥

* *

*, L ¥
* NG

v
ok ok K G UK K ok ok o Kok koK
:1EWERROR 505A3:
* IEW1012 *
: UNRESOLVED ER :
ko o ok K ok kR kR ok ok

EREEE TS EEEEEEE LSS
* *

* GO TC NEXT Fx *

- ENTRY *
* *

* *
ok ok ok ok sk ok Kk ok ok

ko kok

*504%
* Al¥

D2
AR KD S K F A KKK KRk

IIEWERROR bObAB:
—==>*% 1EW1001 -~ *
A * WARNING I

*

ok kk ko ok ko Rk kK

e Chart 504, Secondary Input Processing Routine (IEWACALL) (Part 5 of 5)

FrkEE
*504%
* A1x
* *
*
FINAL CHECK FOR
ENTRY POINT (EP)
NOTXT ¥
Al *, *kxkkAD Rk kkkkkkokkk
o * *. *IEWERROR 505A3*
o* ANY #. NO #=——m—e—ooeolosT
. TEXT I > IEW1093 —
.BECEIVED‘. * TEXT RECEIVED :
N b
* YES
DEAY4 o ¥, USETXT
Bl . L VST e TS
. *. *IEWERROR 505A3*
.*_ EP %, NO = k———-——-—eolol_C

EP NAME
, AND/OR ADDR .
*. RECEIVED o ¥

"+ yES

. ¥ *.
¥ NAME *,
*. ONLY o *
.RECEIVED .
*, *
*,

*,
¥ Is *, YES
. ENTRY POINT .*
, AN ER .

RECEIVED *
t*#tt**#tttttt**#

USETXT1
ttt**c2*#tt*t****
T A3

* RECEIVED NOT *
MA D
t*#t##*tt***t**##

* Rk RN ERFRERER

*
----- >* RETURN *
* *

*kkkkkFhkkkkkkk

#tt**c}**********
$USE_FIRST BYTE :
——->* OF TE *
N SNTRY POTNT *

Fdokkk ook ok kKR kR ok kK ok

DEB3 /
kR kBl RRRR Rk RRkk
* *

*COMPUTE LENGTH *
* OF LOADED *
: PROGRAM :

Fkkkokkkokkkk kR kokkk

v
*t*ttFl******t%**
A D ANY LENGTHS
* PASSED IN MOD *
* RECORDS *

LR R R E L ES L LTS

*E Gl ARk KRR

* *
* CONVERT *
LENGTH TO HEX

* *
*kkk kR kkkRk

FARRKH] KRR ERRR AR
ILWLPRNT 207A2

* PRINT TOTAL *
* LENGTH *

dok ok ko ok ok ok ok koK ok ok

*% J] kkkkkkk
* *
* CONVERT *
* ENTRY POINT *
* TO HEX *

kkkkokkkkkkd

hidutohg S S L LS LSS0
207A2*

*

* ADDRESS *
* *
kR Ekkkkkkkkkkkkk

FRRRR Kk kE kKKK

*
* ________ >* RETURN *
* *

FA Rk kR Rk dok kR kK

Charts

121

e Chart 505.

122

Error Log Routine

tttt*cztt*tat*tt#
PICK up POINTER
* TO_SYSTERM

* BUFFER

*kkkkkkkkkkkkkkkk

kA RD2 R kAR
'RRSETUP SOSAS*

:FORMAT MESSAGE :
hkk AR RRkEE

FEREKEIRE R KRR RERR
IEWTERM 208&1

t
: PRINT MESSAGE :
e P e
*EEE
* *
~>% D3 *
* *
*kkk

RRRETURN
HEEKR Nk kok ok kkk
: RETURN
R ER Rk kR

(IEWERROR) ,

EEEE i LI LSS

* *
: IEWERROR :
RS AL RS RS 222 2 2]

vV
t*#1i53$ ttt**t#*

MAKE INDICATION*
*OF MESS
BI MAP

kkkFE kR kkRkkkkkkk

o* *.
¥ES . ** TERM %

. OPTION
.§PECIFIEE.

* NO

‘x

o* ANY .
+. PREVIOUS .*
*. MESSAGE . *

* ox
. *

+'No

<

*EkFRELRRRR KKK KK
IEWLPRNT 207A2

________ >' PURGE RTN FOR *
:PREV%OUS PRINT :

kR Rk kRR Rk Rk kK

RRMESSG
*AEkRFIkkkkkkhhkE
*

PICK UP POINTER¥
* TO_SYSLOUT *
BUFFER
krkkkkkbhkkk ok kk

ARRKRGI R RERR KK KR
RRSETUP SOSAS

t
:FORMAT MESSAGE :
dkkokkdokkkkkokkk Rk ®

RRPRNT
*kkkkIkkkkkkkkkk
IEWLPRNT 207A2

*
: PRINT MESSAGE :

T
——————————— >
o ¥,
J3 . ErkRETURRRER KRR
* SET *NO *
o EXECUTION *. NO * EXECUTION' *
.* -------- >* INDICATION IN *
x POSSIBLE o ¥ : COMMUNICATION :
* kkkkkkkkkkkk kR kkk
* YES
<
RRABORT ¥,
K3 *, ttt#*Ku*tttt*#***
‘ SET ABOR
NO . RR(*, YES DICATION IN *
----%*, SEVERITY 4 R >* COMMUNICATION *

**********#**t***

Format Routine (RRSETUP)

*kkRASkR kKK RKER
*

*
* RRSETUP *
* *

LR R L e L e

v
*ttttss***ttttt**

FORM_INDEX FROMS
iTRESsAGE
*SET POIgTER “ko t

*kkkkkkkkkkkRhhkk

\'4
**kRFRCORRhE kR REkE
*

* MOVE MESSAGE
:CODE TO BUFFER

XX R Y

*
*kkkkkkkkkkkkkkk¥k

Fkk R kDR Rk kR Rk E
S *

INTO BUFFER
HhkkKERRRRRRRRRAE

LR X2
z
)
o
o
S
HHZ
(=4
o
2
EX R X

LS L e
* *

* RETURN *
* *
Fkkkkkhkkkkk kR k

t*xs*t;tt*#
ETURN_TO

>* HIGHEST LEVEL :

*t#t**ttt#*t###

e Chart 506.

EEPTY VTR TS

*
: IEWBTMAP *
Rk Rk kR

kR EBLERRERRRREE
* *

* INITIALIZE *
:RETURN CODE = 0:

* *
EA R LR A R Ll el

[+ R
.x *,

¥ ANY *

*. BITS SET IN .

. MAP ¥

.« o ¥
* YES

4
*kkkRD] EHRR Rk ER KK
* SET =_0 *
*POSITION INDEX *
* TO MESSAGE *

ABLE *

* * T
EEARERR AR * *
* E2 *
e * *
* * e
* El *->
* *
ek \
BMCHKBIT_ _.*.
E1" C#, AREERE2 KRR
o ¥ *, *
o* *, NO *GO_TO_NEXT BIT #*
-t BIT SET ‘. ———————— >: IN BIT MAP e
‘. S * *
.k T
* YES
ERRRRFLRAE R AR AR
* *
* SAVE SEVERITY *
* CODE *
* *
* *
ARk E ARk
A
G1" 4. EREERGRRRRRRRE
* * *

. *.
o * TERM *, YES

PICK UP POINTER
*. OPTIO! . M *—
.iPECIFIEE.

-=->* TO_SYSTERI
: BUFFER

*, % R e T T
* NO
T
* H1 *->
*EEH
. ¥
H1 *,
o *, R
+* SYSLOUT #*. NO * *
*, OPEN e¥eeooD>® E2 %
. o¥ * *
*, o ¥ *Ekk
« o ¥
* YES

* CONSTRUCT
: INDICATED MSG ;
ER R Er L T i

/
*EEEKK] Rk e R RRkE
*IE A2# £kEk
*-- ~x * *
* #———_>% E2 *
* PRINT MESSAGE * *
* * *kkE

Fkkkkkkkkkokkkkrkk

*

Diagnostic Dictionary Processing Routine (IEWBTMAP)

*kkkREIkkkkkkkkokk E4 *,
* * *
* UPDATE INDEX # .*°_1AasT ¥, NO
>*% INTQ ERROR *=——————m >*. BIT ALREADY .*———
* TABLE * *, L*
* * *, o l
FhkkkkhkkrhkRkkkk —
* YES *EEE
kkkk *
* * * E1
* FU4 %-> *
* * *k k¥
EEE L]
BMRETURN
*kRkRFFUR R Rk Rk R kK
*
CHANGE SEVERITYY
:CONDITIéN CoDE ¥
kkkkkkkkkkkkkkrkk
*EEkFRGIRR R bR R ARk E FRRERGUFEREF R REER
*BMSETUP x * *

—>% CONSTRUCT *

* INDICATED MSG #
* IN BUFFER *
LRt et 3T

*kkkkHIRk kR kk kR *
208A1:
* *
: PRINT MESSAGE :
L s e P
EEE T
* *
—>% H1 *
*

*
*kkk

* SET REG 15 = *
:CONDITION CODE :

* *
kkkkkkkkkkkkkrkk®

v
EERR LRk Rk ok
* *
* RETURN *
* *
*kkkkkkkrkkkkkk

Charts

123

Chart 600.

e RRD] kkkk kKR K

*
: IEWLIDEN :
$okok ok ok bk ok ok ok okok K

kR kk Bk kb dok KRk ok
* *
* DETERMINE *
* NUMBER OF *
: EXTENTS :

ok ok ok ok ok ok ok ok kokok ok ok ok

v
*****Cl#****#*#t*
'ALLOCATE SPACE *

FOR IDENTIFY *
:PARAMETER LIST :

FAok ok Aok ok kkkkkkkkkk

v

p1” .
* *,
.+ EXTENTS ' *.
, OVERLAP LDR .
*HORKSPACE. *

*, -
*, L%
* NO
dokok ok ok B Kk bk ok ko ko

* MOVE_ PROGRAM *
*NAME AND ENTRY :
*

PO, TO
:PARAMETER LIST :
Fhkkk Rk Rk kR kR E

v
EERPL

INITIALIZE

* dokok Kok ok Kok
*
*
: EXTENT LIST
*
*

kKR

3k ok ok ok ok ok ok ok ok ok ok ok

/
kkk kR GL Rk Rk kK
IDENTER 600AQ

* ENTER LOADER- *
CONSTRUCTD PROG
AS FIR EXTENT#
t***#****t**t

Fkk AR KRR,
*IDMINI 601A 1

*BLD SYMBOL TBL *
* FOR TEST PKGS *
*FOLLOWING PROG #
EEE TR PR T

*kkkkRK] kkkkkkkkkk
CONSTRUCT DUMMY
* EXTENT *

*

* *
kkkkkkkkokkkkkkkokk

124

Identification Routine (IEWLIDEN),

Ak kR KD DRk R Kk Rk kok
*IE 5A3%

W119
*SPACE EXCEEDED *
t****************

b VAR R L L LT T
IDENTER 600Au
* ENTER ANY

* EXTENTS FROM *
* MOD RECORDS *
hkkokkkok kR Rk ko Rk
A

ddok ok ok J 2k Rk kkokkok ok &
IDENTER GOOAH

>* ENTER SYMBOL *
:TABLE AS SECOND:

*kkkkkkkkkkkokkkkk

—>%

Extent List Entry Routine (IDENTER)

Fok ok ok P Uk ko ok kok Kok
* *
* IDENTER *
* *

Fkkk Aok k Rk kkE kA k

v
Rk Aok Bk ok ok ko kK
* *

* STORE LENGTH *
*AND_ ADDRESS IN *
* EXTENT LIST *

Fkkok Rk dokkkkkkokkkkk

c4 *.*
¥ _LAST *. NO
*. EXTENT CHemmeme
. ¥
*, . ¥
¥, o F¥
* YES
ek kok kDU Kok kR kKK
EEEEVREEEELE LTS * *
* * SET INDICATOR *
RETURN * *FOR LAST ENTRY *
*kkkkkkkkkkkkkk * *
dokkokkkkkkkkkkkkkk
o ¥,
*#H3#****** -
* IDENTIF * WAS ¥,
* LOADED PROG * .* IDENTIFY *. YES
TO_CONTROL %= -->#%, SUCCESSFUL .
* ~ PROGRAM * *. L
* * *, ¥
*kkkkkkkkkk *

*
NO

*
*
.* * *,
«% DUPLICATE *.
, PROGRAM o
. NAME

*,

. ¥
*

%
+"No

B O L e L
IEWERROR 505A3

EW1224
:IDENTIFY FAILED;
ok kkkk Rk Rk kR kR

*tt**cs********t*

GO TO

* NEXT
-->*LNTRY IN EXTENT*

*********8*******

v
HkRRDOF KKK F AR,
*
* RETURN *
* *
Hookokok K koK koK koK ok ok ok

* Kk k5 kK kokk Kk ko
*

RETURN :
kkkkkkkkkkkkkk¥

—~D>%
*

FA kKK TS kkkkkkkokkk

IEWERROR 505A3
IEW1014 -- *
DUPLICATE *
* PROGRAM NAME *

kokkkkkkkkkkRkkkkk

FkkhK Sk F Rk kkkk
*
RETURN :
*kkkkkEkkkkkkkd

Chart 601,
*EkRAL KRRk kKRR
* *
* IDMINI *
* *

Rk E KRR R kR kKK

Condensed Symbol Table Routine (IDMINI)

o ¥
B1 *,
«*IS THIS*. LR AR YALEEE L EL Bl
o ¥ A *, NO * *
. TIME-SHARING . >* RETURN *
*, TASK ¥ * *
* ¥ R E RS
*, o %
* YES
J
FkkkRCLRkk kR ke kE
* *
:FIND CESD TYPES:
: SYMBOL TABLE :
Fhkkkkkkk R kR Rk kk
----------- >
ok kED] kkkk Rk kkkk
* PICK UP_CHAIN *
QOF CESD ENTRIES
FOR A TYPE FROM
* COMMUNICATION :
dkkkkk kR Rk kR Rk kR k
N
<
o ¥, o ¥
E1 *, *, dkkkk, Jkkkkkokkkokk
. «* ENTRY *. * *
. ND *, . * OVERLAPS *. NO * MOVD ENTRY TO *
ENTRIES IN .* >*, LOADER «¥————e——_>% SYYBOL TABLE *—e——ee—-
. CHA . *, WORKSPACE. * * *
. oF *, o * *
*, ¥ *, ¥ FAk Rk kKRR Rk Rk Rk
YES * YES

o* Tx.
YES .* ANOTHER *.
———%, CESD TYPE .*
, WANTED .

v
KRR RFGL ARk Rk kR kK
* SET INDICATOR *
* IN COMMUNI- *
*

TABLE BUILT *
FRERRRERRRR R R KR KK

J
FERRG2 R Rk kkkk*
* *
>* RETURN *
* *
EELEEELEEL SRR S

tgu*l***t****
* *

* GO TO NEXT *
>*INTRY IN SYMEOL#*
* TABLE *

*kkkkkkkkrkkkkkkk

Charts

P

1

25

SECTION 4: MICROFICHE DIRECTORY

The microfiche directory is designed to help you find named areas of code in the
program listing, which is contained on microfiche cards at your installation.
Microfiche cards are filed in alphameric order by object module name. If you wish
to locate a control section, entry point, table, or routine on microfiche, find
the name in column 1 and note the associated object module name. You can then

find the item on microfiche.

r T T T T T -1
| Name |Description |Object Module| CSECT |(Chart ID | Synopsis |
__ -
| ALLOCATE |Allocation | ITEWLDREL | IEWLRELO| -~ |Allocates storage for table |
| |Routine | | |entries |
i T e e S TS
| CMTRCTRL |Table | IEWLDREL | IEWLRELO| -~ |Pointers to translation table |
| | | | | |extents |
b -- et et SR oo oo m e
| CMTYPCHN |Table | IEWLDREL | IEWLRELO|-- |Pointers to CESD type chains |
J 1 1

___________ T _—_+—-_—_ L) T —-'I
| COMMON | Label | IEWLDLIB | IEWLLIBR| 402 |Assigns addresses to common |
---------------------- T e S
| DECB | DSECT | IEWLDIOC | IEWLIOCA|-- |Model DECB |
————————————— -—4- ¥ t + -
ERCODES	DSECT	IEWLDIOC	IEWLIOCA{--	Exror code definitions	
		IEWLDREL	IEWLRELO		
		LEWNLDLIB	IEWLLIBR]		
D S Sttt Bttt O 4					
FINISHUP	Label	IEWLDLIB	IEWLLIBR	-~	Prints finishing messages
_______ 4 ___+____ 4 1 L 4
H v T T 1

| IEWACALL |Entry Point |IEWLDLIB | IEWLLIBR|500-504 |Automatic library call |
| | | | | |processing |
e —— e t 1 }-- - -
| IEWBTMAP |Entry Point |IEWLDLIB | IEWLLIBR|506 |Diagnostic dictionary |
| | | ! | | processing |
pemememee ¥ t t ¥ o
| IEWBUFFR |Buffer alloc-|IEWLDIOC | IEWLIOCA|203 |Buffer and DECB allocation |
| |ation routine| i | |routine |
t ¥ -———1 - e P e {
| IEWERROR |Entry Point |IEWLDLIB | IEWLLIBR] 505 |Error log routine |
----------------------------------- . T
| IEWLCNVT |Entry Point |IEWLDREL { IEWLRELO| -- |Binary-Hex conversion routine |
e + -—4- : e e - -
| IEWLCTRL |Entry Point |IEWLDCTR | IEWLCTRL| 100 | Loader control module |
I e 3 | | | |
| | CSECT | ! | | |
it e e 3 - 1 — —mmm e 1
IEWLDCOM	DSECT	IEWLDIOC	IEWLIOCA}--	Communication area	
		IEWLDLIB	IEWLLIBR		
		LEWLDREL	IEWLRELO		
oo fomemm - e U oo .					
IEWLDDEF	CSECT	ITEWLDDEF	IEWLDDEF	--	SYSGEN option defaults
E— - ¥ + 1 1 - -					
IEWLEND	Entry Point	IEWLDREL] IEWLRELO	307	End processing	
--------- T T i o P TR					
IEWLERTN	Entry Point	IEWLDREL	IEWLRELO} 306	RLD. relocation routine	
—— T $-—- -} 1 ¥ ———- - -1					
IEWLESD	Entry Point	IEWLDREL	IEWLRELO]301-304	ESD record processing	
I A B T i T —— T, J
(Continued)

Section 4: Microfiche Directory 127

(Continued)

=" T R T—_—"T . T L T _—'-" I I |
| Name |Description |Object Module| CSECT |Chart ID | Synopsis |
—————————————————————— e e D T T T
|IEWLIDEN |Entry Point |IEWLDIDY] IEWLIDEN|600 |Identification routine
I e 1 1 | | |
| | CSECT I ! ! | |
B A B L S S L e 1
| IEWLIOCA |Entry Point |IEWLDIOC] IEWLIOCA|200-201 |Initialization, 1/C, control, |
N S .|]] |and allocation processing |
| | CSECT l I | | l
e oo e B oo 1
| IEWLLIBR |CSECT | TEWLDLIB | IEWLLIBR|-- |Automatic library call and |
| | | 1 | |load module processing
— T ot D TS 1
| IEWLMAP |Entry Point |IEWLDREL | IEWLRELO| 308 |Creates map printout |
————————— T S e Tt ot S Ft R
| IEWLMOD |Entry Point |IEWLDREL | IEWLRELO| 310 |MOD record processing |
: oo fmmmmm oo e e i
r T
| IEWLOAD |Entry Point |IEWLDIOC] IEWLIOCA|200 |Entry point for loading with |
| | | | | |identification |
S —— ommmmmmo e e e oo o 1
| IEWLODE |Entry Point |IEWLDLIB] IEWLLIBR|400-403 |Load module processing |
e T o fmmmmmmmmmoee e T 1
| IEWLPRNT |Entry Point |IEWLDIOC] IEWLIOCA| 207 |Print routine |
e — T + e i
| IEWLREAD |Entry Point |IEWLDIOC] IEWLIOCA|205 |Read routine |
————————— T e et ot T AT S|
|IEWLRELO |Entry Point |IEWLDREL | IEWLRELO| 300 |Object module processor |
1
——- b R P — . S T 1
| IEWLRELO |CSECT | ITEWLDREL | IEWLRELO|-- |Object module, ESD, RLD, and |
| | | I | |map processing I
— I T R et S o 1
| IEWLRLD |Entry Point |IEWLDREL | IEWLRELO| 305 |RLD record processing |
--------- T T e et Py S O
| IEWLTXT |Label | IEWLDREL | IEWLRELO| 300 |]Object module text processing |
——————— ¥ ———t- O B S
T T
| IEWOPNLB |Entry Point |IEWLDIOC | IEWLIOCA|206 |Opens SYSLIB data set
—— T
| IEWPRIME |Entry Point |IEWLDIOC | IEWLIOCA|] 204 |Object module buffer prime |
| | | 1 1 |routine |
e—— T vt ev— mmmmmmm- o= m 1
|IEWTERM |Entry Point |IEWLDIOC] IEWLIOCA]208 | SYSTERM routine I
L 4 ____+___ 1 . + ______________________________ {
r T T T
| INITMAIN |DSECT | IEWLDIOC] IEWLIOCA |-~ |Initial work area |
————————— B e It T It
| LMTXT |Label | IEWLDLIB JIEWLLIBR]401-403 |Load module text processing |
————————— T et T e T
|MODELDCB |Label | IEWLDIOC | IEWLIOCA|-- |[Model DCB for SYSLIN, SYSLIB |
--------- O e ety St TG
|OPENEXIT |Entry Point |IEWLDIOC | IEWLIOCA|202 |DCB exit routine |
_— 1 ———f—— K I S e i
T T
| PSEUDOR | Label |IEWLDLIB | IEWLLIBR|503 | Processes pseudo registers |
--------- T T e B T
| SYNAD |Entry Point |IEWLDIOC | IEWLIOCA |-~ | SYNAD routine |
e 8 ! I 3 —1 _
T T T
| TRANSID |Entry Point |IEWLDREL | IEWLRELO| 309 |Translates ESD ID to CESD
| l 1 i | |address |
S — A 1 § B T I —_ _—

128

SECTION 5: DATA AREA LAYOUTS

This section provides detailed layouts of internal data areas used during Loader
processing. The tables are described in alphabetic order.

Also included in this section is a summary of table use and construction (Table
7.

Table 7. Table Construction and Usage

[C-— - TT ST oo o oo ——————— oo R S 1 g 1
| Table | Built by | Used and/or Modified by |
1 4
-—= 1 N + B ittt 4
| Address list | IEWACALL | * |
—————————————————————————————— fommmmomm - + - -4
| BLDL list | IEWACALL | * |
_— - ———d e S 9
T
| CESD control table | TEWLESD | IEWACALL, IEWLESD |
| (CMTYPCHN) | | |
p—m e - e L e T .
| CESD table | TIEWLESD | IEWACALL, IEWLERTN, IEWLESD, |
| | | IEWLRLD, IEWLTXT, LMTXT [
prmmmm e fommm e o i
| Condensed symbol table | IEWLIDEN | TSO test facilities |
—— 1 1 ‘{
T T
| Extent chain) IEWLMOD | IEWLIDEN |
e - ettt 1
| IDENTIFY parameter list | IEWLIDEN | IDENTIFY macro instruction |
_______ —_ 3 1 __4|
1 1
| IEWLDCOM | IEWLIOCA | *x |
—————————————————————————————— B
| INITMAIN | JEWLIOCA | * |
——— e 1 1 ___l
T Kl
| RLD table 1 TEWLRLD | IEWACALL, IEWLERTN, IEWLRLD |
—————————————————————————————— v T e e
| Translation table | IEWLESD | IEWACALL, IEWLESD, IEWLRLD, |
| | | IEWLTXT, LMTXT, TRANSID |
S B B 4
| *Built and processed entirely within one routine. |
| ¥**Major communication area throughout Loader processing. |
b 1

Address List
Built by the Secondary Input Processor

Ay Ay A3 ? % An

CESD entry address (4 bytes each entry)

The entries in this list are in one-to-one
correspondence with the BLDL list entries.
The Loader stores the address from the BLDL
entry in the address list before issuing the
BLDL macro instruction

Figure 17. Address List

Section 5: Data Area layouts 129

BLDL List

Built by Secondary Input Processor

0-1

2-3 4-11 12-15

=T

Name field (8 bytes)

Length (2 bytes)
LL - length of each entry in the BLDL
list (16 bytes in the Loader)

Number (2 bytes)
FF - total number of entries in the BLDL list

Figure 18. BLDL List

CESD Control Table (CMTYPCHN)

Built by the ESD Processor

(entry FF)

- each entry

16 bytes

Not used by the Loader

CESD address/TTR

Originally contains the CESD address
of an ER. (4 bytes) If the name was
found in the SYSLIB directory, BLDL
replaces the CESD address with TTR.
(bytes 12-14)

TT - relative track number

R - block number on the track

L CESD type chain pointer (4 bytes each entry)
The pointers, PO-P7, are listed in the

following order by type : SD,
LD, ER, LR, PC, CM, PR,
NULL

Note : The CESD control table is defined in the communications
area (IEWLDCOM).

Figure 19. CESD Control Table (CMTYPCHN)

130

Y

CESD Table Entry
Built by the ESD processor

0-3

4-11 12 13-15 16-19

|—— Use depends on entry type

Flags/type field (I byte) FFFFF

Section definition (SD) - X0X00
Label definition (LD) = 0X000

Label reference (LR) - X0000
Private code (PC) - 00000
Common (CM) - 00000
Pseudo register (PR) - 00000

Namefield (8 bytes)
8 character symbolic name or blanks for blank common
and private code (unused for extended portion of CM entry)

— Chain address (4 bytes)

Pointer to next entry on CESD type chain; if end of chain, 0.
(unused for extended portion of CM entry)

Figure 20. CESD Entry

External reference (ER) = XXXXX

TTT;

000
001
010

(R
100
101
110

Type LD - ESD ID for SD; preliminary use only (bytes 18-19)

Type PR - boundary alignment (byte 16) and length (bytes 18-19)
Alignments
7 - doubleword
3 - fullword
1 - halfword
0 - byte

Types SD, PC, LR, CM - relative relocation constant
Type ER - O; if ER was created from an LR - input address
Type CM - address of extended portion of entry

L—— Address/displacement field (3 bytes)

Types SD, PC, LR, CM - Loader - assigned address

Types CM, PR, ER - address of RLD entry chain (0, if no RLDs)
Type PR - displacement within DSECT

Type LD - input address (preliminary use only)

Fy.5 are flags, Ty_3 indicate type

Fi="delete", F3-"no length"

Fp="'LD processed"’

Fi-"delete," Fy-"wedk call," F3-"BLDL tried,"
F4-""TTR found,'* F5='"never call"’

Fy="'delete"’

Section 5: Data Area Layouts 131

Condensed Symbol Table Entry

Built by the Identification Processor

0-7

8 =11

Address = Assigned address of this
symbol (3 bytes).

Type - (1 byte)
Section definition (SD) xxxxx 000
Common (CM) xxxxx 101

e Figure 21.

Symbol - The 8-character external name (8 bytes).

condensed Symbol Table Entry

Contents Directory Entry
(Only the fields used by the Loader are described.)

T = U] e RT =
Address of
entry point
of module
(3 bytes)

L— Name of module in the link pack area
(8 bytes)
“— Address of the next CDE in the queue
(3 bytes)
Figure 22. Contents Directory Entry (CDE)

132

Data Event Control Block

Built by I/O, Control, and Allocation Processor

-
%

Standard DECB

| Added by the

»1 Loader

0-3

4-5

6-7

8-11

12-15

16-19

20-23

Figure 23.

Extent Chain Entry

L—— DECSDECB (4 bytes)

event control block

Built by the MOD Processor

'—— DECDCBAD (4 bytes)

DECAREA (4 bytes)
address of the read/write
area for the data

DECDECPT (4 bytes)
address of next DECB (4 bytes)

DECIOBPT (4 bytes)
address of the 1/O block

address of the DCB for the read/write data set

DECLNGTH (2 bytes)
length of the data to read/write

DECTYPE (2 bytes)
type of the /O macro instruction and options

0-3 4-7 8-11
the MOD record (4 bytes).
Chain Address - Address of the next entry on the extent
chain; if end of chain, zero (4 bytes).
Figure 24. Extent Chain Entry

Address - Address of the extent derived from

Length - Length of the extent (4 bytes).

Data Event Control Block (DECB)

Section 5: Data Area Layouts 133

IDENTIFY Parameter List

Built by the Identification Processor

Address of entry point of program to be identified
Program name - the 8~character symbolic name
~
Length, in bytes, of extent list
Number of extents described in this list
Length of extent 1 (Loader-constructed program)
Length of extent 2 (Condensed symbol table)
~ : & > Extent
v : ~ (List
Length of extent n*
Address of extent 1 (Loader-constructed program)
Address of extent 2 (Condensed symbol table)
A ¢ ~
1' » "
Address of extent n
7
fo— 4 bytes -

*A hex '80' in the high-order byte signifies the last length.

e Figure 25. IDENTIFY Parameter List

134

IEWLDCOM DSECT - Communication Area

Hex Dec

0 0 CMXDBLWD

8 8 CMFSTSAV CMBEGADR

10 16 CMRDCBPT CMWDCBPT

18 24 CMTDCBPT CMRDECPT

20 32 CMWDECPT CMGETREC

28 40 CMPUTREC CMTRMREC

30 48 CMNXTTXT CMLSTTXT

38 56 CMLOWTBL CMHITBL

40 64 CMIOLST1 CMIOLST2

48 72 CMCORE1 CMCORE2

50 80 CMTOPCOD CMLIBEOD

58 88 CMLIBSYN CMLIBEXL

60 9% CMBLKSIZ CMMAXLNE CMMAPLIN CMWLRECL

68 104 CMMAXLST unused

70 12 CMMAINPT CMMAINSZ

78 120 CMPRNTDD

80 128 CMLINDD CMINITCM

(area to

88 136 CMLIBDD INITMAIN)
90 144 CMTERMDD

98 152 CMEPNAME

A0 160 CMPGMNM

A8 168 CMLINDCB CMLIBDCB

BO 176 CMPRMFLG] CMIOFLGS | CMFLAG3 IZMFlAGxi unused

38 184 CMXLCHN CMBITMAP

co 192 CMERLIST CMRLDCHN

c8 200 CMESDCHN CMEPADDR

4 CMTRCTRL =
DO 208 T o o~
[]
[]
150 336 CMBLDLPT CMCXDPT
158 344 CMFRECOR CMMODLNG
160 352 CMTEMPCH CMEPCESD
168 360 CMPREVPT CMLOADCH
170 368 CMSDCHN CMLDCHN T
178 376 CMERCHN CMLRCHN CMTYPCHN
(CESD type chain

180 384 CMPCCHN CMCMCHN pointers)
188 392 CMPRCHN CMNULCHN
190 400 CMCURRID CMLNECNT CMBLDLNO CMWTBFCT
198 408 CMNUMXS CMLIBFLG | CMRELFLG | CMSTATUS | CMPRTCTL cmomcri unused
Figure 26, IEWLDCOM DSECT - Communication Area

Section 5:

Data Area Layouts

135

Explanation of IEWLDCOM Entries

CMXDBLWD
(CMADSON)

CMFSTSAV
CMBEGADR
CMRDCBPT
CMWDCBPT
CMTDCEPT
CMRDECPT
CMWDECPT
CMGETREC
CMPUTREC
CMTRMREC
CMNXTTXT
___CMLSTTXT
CMLOWTBL
CMHITBL
CMIOLIST1
CMIOLIST2
CMCORE1
CMCORE2
CMTOPCOD
CMLIBEOD
CMLIBSYN
CMLIBEXL
CMBLKSIZ
CMMAXLNE
CMMAPLIN
CMWLRECL
CMMAXLST
CMMAINPT
CMMAINSZ
CMPRNTDD
CMLINDD
CMLIBDD
CMTERMDD
CMEPNAME
CMPGMNM
CMLINDCB
CMLIBDCB
CMPRMFLG

CMIOFLGS

CMFLAG3

136

Temporary doubleword for relocation alignment area

Pointer to first save area
Default entry point to module
Input DCB pointer

Output DCB pointer

SYSTERM DCB pointer

Input DECB pointer

Output DECB pointer

Input logical record pointer
Output logical record pointer
SYSTERM buffer pointer

Next address to be assigned to a CSECT

...-Highest text -address—assigned to current CSECT

Lowest address assigned for Loader tables

Highest storage address available to Loader

Open List (DCB pointer)

Open List (DCB pointer)

Corresponds to CMNXTTXT for preloaded text

Corresponds to CMLSTTXT for preloaded text

Highest text address before common allocated

EODAD error routine pointer for passed SYSLIB

SYNAD error routine pointer for passed SYSLIB

Exit list pointer for passed SYSLIB

Blocksize of current input object module

Maximum line-count (SYSLOUT)

Length of map line

SYSLOUT record size

Maximum length of invalid options list

Variable-conditional GETMAIN address

Variable-conditional GETMAIN size

Print ddname

Primary input ddname

Library ddname

SYSTERM ddname

Entry point name

Program name

Passed SYSLIN control block pointer

Passed SYSLIB DCB pointer

Parameter flags passed from parameter list

Bit 01 - CQORES - RES/MORES

Bit 02 - CQMAP - MAP/NOMAP

Bit O4 - CQPRINT - PRINT/NOPRINT

Bit 08 - CQLET - LET/NOLET

Bit 10 - CQCALL - CALL/NOCALL

Bit 20 - CQEPNAME - Entry point name defined

Bit 40 - CQEPADDR - Entry point address defined

Bit 80 - CQTERM - TERM/NOTERM

Input - Output flags

Bit 01 - CQEOCB - End of concatenation

Bit 02 - CQEOFB - End of file

Bit O4 - CQEOFSB - End of file significance

Bit 08 - CQRECFM - Input record format O-fixed
1-undefined

Bit 08 - CQUNDEF - CQRECFM separate name in allocation for undefined

Bit 10 - CQFIXED - Fixed record format

Bit 20 - CQIGNOR - Ignore control record on load module

Bit 40 - CQIOERR - An I/O error has occurred

Assorted flags

Bit 02 - CQTS - Time-sharing environment

Bit 04 - CQPGMNM - Program name passed

Bit 08 - CQPASLIN - SYSLIN control block passed

Bit 10 - CQPASLIB - SYSLIB DCB passed

Bit 20 - CQINCORE - Internal SYSLIN data area being processed

Bit 40 - CQIDEN - Entered at IEWLOAD (identification wanted)

CMFLAGU Assorted flags
Bit 01 - CQESDS - ESDs have been encountered
Bit 02 - CQMOD - MOD card has been encountered
Bit O4 - CQNOEX - Execution not scheduled
Bit 08 - CQMINI - Condensed Symbol Table built
Bit 10 - COMVT - MVT operating
Bit 20 - CQCOMMON - Common received
Bit 40 - CQTRMOPN - SYSTERM open
Bit 80 - CQIDONE - Identification accomplished
(A1l of the following entries are initialized to zero)

CMXLCHN Pointer to chain of extents

CMBITMAP Error bit map

CMERLIST Pointer to errors encountered during Open
CMRLDCHN Free RLD entry chain (8 bytes/entry)
CMESDCHN Free CESD chain entry chain

CMEPADDR Entry point address to loaded program
CMTRCTRL Translate Control Table

CMBLDLPT BLDL pointer

CMCXDPT Pointer to CXD addresses

CMFRECOR Free storage chain

CMMODLNG Length of module currently being processed
CMTEMPCHN Pointer to load chain entry to be freed
CMEPCESD CESD line address of the entry point name
CMPREVPT Previous element in a chain for insert-delete
CMLOADCH Temporary chain for ESDs in a load module
CMTYPCHN CESD type chain pointers in order of type number
CMSDCHN Section definition

CMLDCHN Label definition

CMERCHN External reference

CMLRCHN Label reference

CMPCCHN Private code

CMCMCHN common

CMPRCHN Pseudo register

CMNULCHN Null

CMCURRID ESDID counter

CMLNECNT Current line-count (SYSLOUT)

CMBLDLNO Number of BLDL entries

CMWTBFCT Horizontal byte count in print record
CMNUMXS Number of extents

CQOMAXEXT 32 - Maximum Translation Table extents
CQEXTSIZ 32 - Translation Table extent size (number of entries)
CMLIBFLG Autocall and load module processor flags

Bit 01 - CQKEEPS - Keep some text from this record
Bit 02 - CQDELETE - Delete some text from this record
Bit O4 - CQAUTOC - Autocall is in progress
Bit 08 - CQCESDR - CESD has been received for load module
Bit 10 - CQNOTXT - Text has been received
Bit 20 - CQLPASRH - LPA resolution possible
Bit 40 - CQFIRST - First record from load module was CESD
Bit 80 - CQMFTLPA - MFT Link Pack Area
CMRELFLG Relocation and object module processor flags
Bit 01 - CQESD - ESD routine called ID translation routine.
Bit 02 - CQNOLNG - Length not yet received for current module
Bit O4 - CQODELINK - Delinking is required
Bit 08 - CQLIB - Resolution from SYSLIB in process
Bit 10 - CQNOEND - End card has been received
Bit 20 - CQINPUT - Input has been received
Bit 40 - CQENTRY - RLD is for entry point
Bit 80 - CQNOLNTX - Text received for "no length" CSECT
CMSTATUS Loader status flag
Bit 01 - CQPRTOPN - Print DCB allocated
Bit 02 - CQLIBOPN - Library DCB open
Bit O4 - CQABORT - Abort loading
Bit 08 - CQREJOPT - Invalid options are to be printed
Bit 10 - CQOPNERR Errors were encountered during Open
Bit 20 - CQRETURN - Caller to error routine must regain control
Bit 40 - CQOMSGSAV - Request Open-exit to save error messages
Bit 80 - CQPRTDCB Print DCB is open

Section 5: Data Area Layouts

137

CMPRTCTL Index for printer carriage control

CMOPTECT Count of invalid options to be printed
CQINTSIZ Size of zero initialization area
CQCMSIZE Size of communication area

IEWLDDEF

IEWLDDEF is a static CSECT that defines default options and DDNAMES to be used
by the Loader. It is assembled at SYSGEN using values supplied by the LOADER
macro instruction.

During Loader execution, the default values are moved to dynamic storage
_(INITMAIN) where they are modified by the parameter-list-values passed internally.
The IEWLDDEF CSECT is descriked in Figure 27.

* Bits 01-10 correspond to CMPRMFLG flags. See Figure 26.

e Figure 27. IEWLDDEF CSECT

138

INITMAIN DSECT DEFINITION

76

88

9%

112

120

128

132

176

188

200

456

e Figure 28.

48

4C

50

58

60

68

70

78

88

8C

94

A0

A4

BO

BC

co

cs8

1C8

4 bytes

INITSAVE initial save area

- @ @]

INITMADR VC main storage address

INITMSIZ VC main storage size

INITPRNT DDNAME specified for diagnostic message data set

INITLIN DDNAME specified for primary input

INITLIB DDNAME specified for auto-call library

INITTERM DDNAME specified for SYSTERM data set

INITNAME specified name on Entry Point option

INITPGMN specified program name

INLINDCB passed SYSLIN control block pointer

INLIBDCB passed SYSLIB DCB pointer

INITPARM INFLAG3

INFLAG4

INITSPIE save area for PICA address

INITSCAN save area for SCAN pointer

J

INITDUM word used fo save register during size processing

INITREJL end of rejected options list

INITRMIN minimum request size for VC Getmain

INITRMAX maximum request size for VC Getmain

INITGTML VC Getmain list area

INITEXTR Extract list area

INITEXAD address of TSO field in TCB

INITDBLW doubleword used for converting parm size to binary

INITRTAB translate and test table for option scan

-\\"__________________________55*__________——___’/,//
—M

INITREJP rejected options buffer

W——”ﬂ

INITMAIN DSECT Definition

Section 5:

filled by
GETMAIN

initialized from
SYSGEN CSECT
(IEWLDDEF)

initialized
dynamically

Data Area Layouts

139

RLD Table Entry

0-3

Figure 29.

Translation Control Table

RLD Table Entry

Loader - assigned address of address constant in text (3 bytes)

Flagfield = FXXXLLST (1 byte)
FXXX ~ type of adcon

x000 - A-type adcon
x001 - V-type adcon
0010 - displacement pseudo register
0011 - accumulative pseudo register

Note: F=1 - use absolute relocation constant for relocation
LL - length of adcon

01 - two bytes
10 - three bytes
11 - four bytes

S - direction of relocation

0 - add the relocation constant

1 - subtract the relocation constant

T - not used by the Loader; input value is retained

Address of next entry on this RLD chain.
0 if end of chain. (4 bytes)

Translation Table Entry

0-3

4-7

31

Built by the ESD Processor

123-127

0 1-3

Note: This table is defined in the communications area (IEWLDCOM)
at location CMTRCTRL.

Figure 30.

140

Translation Control Table

Address of extent allocated for the translation
table. Each entry is initialized to zero. (4 bytes)

Address of CESD entry
(3 bytes)

Flag
OXXXXXXX ~ CESD entry for ER;
X may be Oor 1 (1 byte)

Note: A translation table extent contains
32 of these entries. The Loader can allocate
a maximum of 32 extents. When allocated,
an extent is initialized to zero.

Figure 31. Translation Table

SECTION 6: DIAGNOSTIC.AIDS

This section contains information that may be useful in diagnosing difficulties
with the Loader program. Included are: register contents at entry to routines
(Table 8), and error code definitions (Table 9), an example of a module map (Table
10), and a list of serviceability aids available with the Loader.

Ui R ittt bt e e e
|Module Entry Point | Register Contents*

1 1

v T

| IEWLCTRL | #1 - address of parameter list
................... e - e e e e e e e e e e e e
| IEWLRELO]

| IEWLRELO | #11 - address of communication area

| |

| IEWLESD | #5 - ID of first ESD item other than LD

| | #7 - length of ESD information

| | #8 - address of ESD information

|] #11 - address of communication area

| |

| IEWLTXT | #5 - Text ID

| | #6 - displacement address of text

| | #7 - length of text

| | #8 - address of text in object module buffer
|] #11 - address of communication area

| |

| TEWLMOD | #7 - length of MOD information

| | #8 - address of MOD information

| | #11 - address of communication area

| |

| IEWLRLD | #7 - length of RLD information

| | #8 - address of RLD information

l | #11 - address of communication area

| |

| IEWLEND | #5 - ID of entry point (if present)

| | #6 - address of entry point (if present)

|] #8 - address of symbolic entry point name (if present)
| | #11 - address of communication area

| |

| TRANSID | #5 - ESD ID to be translated

| | #11 - address of communication area

| |

| IEWLERTN | #1 - starting address of RLD chain

| | #9 - CESD entry address to be used for relocation
| | #11 - address of communication area

| |

| IEWLMAP | #9 - address of CESD entry to be mapped

| | #11 - address of communication area

|]

| IEWLCNVT | #1 - binary quantity to be converted

| 1 #11 - address of communication area

t

|

*All entry points expect address of save area in #13 and a return address in #14.

e e e e - e —————————

Section 6: Diagnostic Aids

141

e Table 8. Register Contents at Entry to Routines (Part 2 of 2)

r 25 q
|Module Entry Point | Register Contents* |
—_— 1 —q
+
| ITEWLLIBR | |
| IEWLODE i #11 -~ address of communication area |
| | #15 - address of IEWLODE |
|] |
| IEWERROR] #0 - error message code |
|] #1 - pointer to qualifying information (if it exists) |
	#11 - address of communication area
	#15 - address of IEWERROR
IEWACALL] #11 - address of communication area]	
	#15 - address of IEWACALL
IEWBTMAP	#11 - address of communication area
] #15 - address of IEWBTMAP	
t -== -t -—	
TEWLIOCA	
IEWLIOCA 1 #1 - address of parameter list	
	#15 - entry point address
]	
IEWLOAD	#1 - address of parameter 1list
]] #15 - entry point address	
] OPENEXIT	#1 - address of DCB]
] #11 - address of communication area	
] #12 - base address of IEWLIOCA	
IEWBUFFR	#10 - address of DCB I
	#11 - address of communication area
]	#15 - entry point address
IEWLREAD] For Object and Load Modules	
] #11 - address of communication area	
]] #15 - entry point address	
	For Load Modules
	a. read control/RLD record
] #0 - zero	
	b. read text records
	#0 - length of text record
	#1 - address of text
]	c. read text and control/RLD]
]	#0 - compliment of length of text
] #1 - address of text	
IEWOPNLB	#11 - address of communication area
	#15 - entry point address
]	
IEWLPRNT	#11 - address of communication area
]	#15 - entry point address
[I	
IEWTERM] #11 - address of communication area]	
	#15 - entry point address
IEWPRIME	#10 - address of DCB
	#11 - address of communication area
] #15 - entry point address	
e o :	
IEWLIDEN I	
IEWLIDEN	#11 - address of communication area
]	#15 - entry point address
________________ i _— -	
A1l entry points expect address of save area in #13 and a return address in #14,	
e e e e e e e e e e e e e e o e e e e e e e e e e 1

142

ERROR _CODE_DEFINITIONS

Table 9 contains the Loader error codes listed in the order of their bit positions in the

error-bit map. (The codes are also listed in DSECT ERCODES in CSECTs IEWLIOCA, IEWLRELO,
IEWLLIBR, and IEWLIDEN.)
Table 9. Internal Error-Code Definitions

~ T T 1
| | | Error |
| code | Definition | Severity|
[N 4 1
r T T —'+
| ERRELO1 | Unresolved ER warning (NCAL specified) | 1 |
| ERENTR1 | No entry point received] 1]
| ERINPTS8 | Card received not an object card | 1 |
} 1 T S oo .
ERINPT10	END card missing	2
ERINPT2	Length not specified	2
ERRELO2	Unresolved ER error	2
ERINPTH4	Doubly defined ESD	2
ERINPTS5	Invalid 2-byte adcon	2
ERINPT7	Invalid ID received	2
ERINPTY9	Invalid object card received	2
ERINPT1	Input block size is invalid	2

---------- e - } i
| ERINPT3 | No text received | 3]
| ERENTR2 | Entry-point name received but not matched | 3 |
| ERIOUTH4 | Error on BLDL | 3 |
| ERINPT6 | Invalid record from load module] 3]

1]

-—- . 1 -
| ERIOUT3 | Unacceptable record format (variable on input) | 4 |
| ERIOUT1 | Ddname cannot be opened | 4]
ERIOUT2	Synchronous error	4
ERSIZE2	Program too large	4
ERSIZE3	Input ESD ID too large	4
ERIDEN1	Identification failed because of duplicate program name] 4	
ERIDEN2	Identification failed for any other reason	4
I T e T 1
Table 10. Module Map Format Example
Module Map Format
Map heading Name Type Addr Name Type Addr Name Type Addr Name Type Addr Name Type Addr
CSECTs, entry points| Main SD 9000 ENTRY LR 9050 ENTRY2 LR 9100 SUBI* SD A0O0 SUB2* SD Al00
Common entry § BLANKCOM CM A200
Pseudo Register PSEUDO REGISTERS
information

Name Origin Length Name Origin length Name Origin Length Name Origin Length Name Origin Length
IHEQINV 00 4 |HEQERR 4 4 |HEQTIC 8 4 |HEQLWF C 4 |HEQLWO 10 4
IHEQSLA 14 4

Length of loaded
program

Entry of loaded
program

Notes:

TOTAL LENGTH OF PSEUDO REGISTERS 18
TOTAL LENGTH 2000

ENTRY ADDRESS 9050

Name * denotes a module included from the SYSLIB data set.
Name ** denotes a module included from the link pack area.
Name *** denotes a module pointed to by a MOD record.
The map entries are made as addresses are assigned, so the

map reflects the order of ESD entries in the ESD.

Section 6:

Diagnostic Aids

143

SERVICEABILITY AIDS

Following are serviceability aids provided in the Loader.

144

The control section IEWLDDEF contains the SYSGEN default values. It is always
resident during loading in IEWLDCOM (load module IEWLOADR).

A storage dump will typically produce information on the nature of the error.
Register 11 will contain a pointer to IEWLDCOM and register 12 will contain
the base register associated with the CSECT in control.

All nine save areas are forward and backward chained. Lower level save areas
will be printed. A hex "FF" in word 4 of the save area indicates that the
routine represented by the save area has returned control.

Input/output control information is contained in the Loader communication
area. This information consists of the DECB address, the buffer locations,
the block size, the logical record length, the blocking factor, the number of
records left in the buffer, the address of the current record, and the
associated switches. See Section 5 for the IEWLDCOM layout.

Appropriate diagnostic messages are produced when an error has been detected.
The message has a specific number and, where appropriate, lists the data in
error. The message number and text are listed by IEWLLIBR at the end of
loading. (Section 7 contains a list of these messages.)

A module map (MAP) is provided to furnish information concerning the structure
and contents of the program. This section contains an example of a map
listing.

The Loader uses the SYNADAF to obtain information regarding permanent I/0
errors and lists the information on the SYSLOUT data set.

SECTION 7:

APPENDIX

This section contains:
which they originate,

detailed descriptions of input record formats.
same as for the Linkage Editor programs.) In addition, the compiler/Loader
interface is described for the processing of data sets passed to the Loader.

a list of Loader input conventions and restrictions,

Table 11 lists the Loader diagnostic messages.
severity code in the final position of the message code.
defined as follows:

Each message contains a

a list of error messages and the routines and CSECTs in
and
(The input record formats are the

These severity codes are

0 - indicates a condition that will not cause an error during execution of the
loaded program.
1 - indicates a condition that may cause an error during execution of the
loaded program.
2 - indicates an error that can make execution of the loaded program
impossible.
3 - indicates an error that will make execution of the loaded program
impossible.
4 - indicates an unrecoverable error. Such an error causes termination of
loading.
Table 11. Error Message/Issuer Cross-Reference Table (Part 1 of 2)
r -T T -
| Error | Error | Issuer |
| Message | Message - ———————— 4
| Number | Text | Routine |Cont.Sect. |
______________ — —_— 1 1 J
T T 1
| IEW1001 | Warning - Unresolved external reference because of | IEWACALL | IEWLLIBR |
| | user specification. 1 | |
- 4 1 e 1
| IEW1012 | Error - Unresolved external reference | IEWACALL | IEWLLIBR |
————————— e S S
| IEW1024 | Error - Ddname cannot be opened | IEWLIOCA | IEWLIOCA |
e ¥ 4 1
| IEW1034 | Error - Ddname had synchronous error | SYNAD | IEWLIOCA |
--------- T T S
| IEW1043 | Error - Unacceptable record format (variable input) | OPENEXIT | IEWLIOCA |
1 1 1
T T T - =
| IEW1053 | Error - I/0 error while searching library directory | IEWACALL | IEWLLIBR |
--------- - I T e
| IEW1072 | Error - Input BLKSIZE is invalid { OPENEXIT | IEWLIOCA |
i 1 4 4
! T 1 1
| IEW1082 | Error - Length invalid | IEWLEND | IEWLRELO |
pommmom - - foooocoee e 1
| IEW1093 | Error - No text received | IEWACALL | IEWLLIBR |
b } 1 4
r T - T) -
| IEW1102 | Error - Doubly defined ESDs have conflicting types | IEWLESD | IEWLRELO |
L 1
p------——4 O e i
| IEW1112 | Error - Invalid 2-byte adcon | IEWLRLD | IEWLRELO |
L 1 1 1 _
r 1 T 1
| IEW1123 | Error - Invalid record from load module | IEWLODE | IEWLLIBR |
| S i B i

Section 7:

Appendix

145

146

e Table 11l. Error Message/Issuer Cross-Reference Table (Part 2 of 2)
[T == T ——== i B ettt 1
Error	Error	Issuer	
Message	Message - ;		
Number	Text	Routine	[Cont.Sect.
[4 1			
t t - v .			
IEW1132	Error - Invalid ID received	IEWLRLD	IEWLRELO
		IEWLTXT	IEWLRELO
		IEWLEND	IEWLRELO
		TRANSID	IEWLRELO

11 | | IEWLODE | IEWLLIBR |
o= o= e e P —— 1
| IEW1l41 | Warning - Card received not an object record | IEWLRELO | IEWLRELO |
+ ¥ 1 S e .
| TEW1152 | Error - Invalid record from object module | IEWLRELO | IEWLRELO |
proemaee- $----- T T + 4 -
| TEW1161 | Warning - No entry point received | IEWACALL | IEWLLIBR |
t } - - B S e 1
| IEW1173 | Error - Entry point name received but not matched | IEWACALL | IEWLLIBR |
frommmome- e 1 t !

| | IEW1182 | Error - No END card received | IEWLRELO | IEWLRELO |
b + e e 1
IEW1194	Error - Available core exceeded	IEWBUFFR	IEWLIOCA
		IEWLESD	IEWLRELO
		IEWLEND	IEWLRELO
		IEWLTXT	IEWLRELO
		IEWACALL	IEWLLIBR
		IEWLODE	IEWLLIBR
		IEWLIDEN	IEWLIDEN
vt T e e B S ——— 1			
IEW1204	Error - Too many external names in input module	TRANSID	IEWLRELO
L ' ettty	R 1		
r T			
IEW1214	Error - Identification failed - duplicate program	IEWLIDEN	IEWLIDEN
	name found		
F $ T e e frmmmmmeeee e			
IEW1224	Error - Identification failed	IEWLIDEN	IEWLIDEN
I —— - 1 i —1

INPUT CONVENTIONS

Input modules (object or load) to be processed by the Loader must conform with a
number of input conventions.

All text records of a control section must follow the ESD record containing
the SD or PC entry that describes the control section.

The end of every input module must be marked by an end record (END in object
modules, EOM record in load modules.)

Any RLD item must be read after the ESD items to which it refers and after the
TXT item in which it is positioned.

(Applicable only to FORTRAN IV language processing.) Once a BLOCK DATA
subprogram has been received, any following named common referencing it must
not specify a longer length.

Since each control section is assigned an address as it is encountered in the
input stream, any control section appearing between the ESD for a 'no-length'
CSECT and the END card for that 'no-length' CSECT will have an erroneous
address assigned. (A "no-length' CSECT is a control section whose length is
defined on the END card.)

Each record of text and each LD or LR type ESD record must refer to an SD or
PC entry in the ESD.

The position pointers of every RLD record must point to an SD or PC entry in
the ESD.

No LD or LR may have the same name as an SD or CM.

The Loader accepts TXT records that are out of order within a control section.
TXT records are accepted even though they may overwrite previous text in the
same control section. The Loader does not eliminate any RLD records that
correspond to overwritten text.

During a single execution of the Loader, if two or more control sections
having the same name are read in, the first control section is accepted; the
subsequent control sections are deleted.

The Loader interprets common (CM) ESD items (blank or with the same name) as
reference to a single control section whose length is the maximum length
specified in the CM items of that name (or blank). No text may be contained
in a common control section.

(Applicable only to Assembler Language Programming.) When control sections
that were or are part of a separately assembled module are to be replaced,
A-type address constants that refer to a deleted symbol will be incorrectly
resolved unless the entry name is in the same position relative to the origin
of the replaced control section. If all control sections of a separately
assembled module are replaced, no restrictions apply.

The MOD record must physically precede all ESD records for an internal object
module and logically replace all text records. If a MOD record appears as the
first record of an internal object module, all succeeding text records are
ignored until an END statement has been processed. A MOD record is ignored if
it appears outside an internal object module, if it appears after other
records have been encountered for a module, or if its byte count is zero.

Section 7: Appendix

147

INPUT_RECORD_FORMATS

SYM Input Record (Card Image) ~ Ignored by the Loader

1 2-4 5-10 11,12 13-72 73-80
Not used
TESTRAN data
Number of bytes of TESTRAN data
— Blank
L SYM
12-9-2 (0000 0010)
Figure 32. SYM Input Record (Card Image) - Ignored by the Loader
ESD Input Record (Card Image)
1 2-4 5-10 11,12|13,14 115,16 17-72 73-80
L——— ESD Data -~ see below Not used
Blank if all ESD items are LD
ESD IDENTIFIER of first ESD item (other than LD)
Blank
Number of bytes of ESD data
Blank

Figure 33.

148

L—— ESD

L—— 12-9-2 (0000 0010)
ESD Input Record (cCard Image)

Text Input Record (Card Image)

Figure 34,

L—— 12-9-2 (0000 0010)

Text Input Record (Card Image)

Section 7:

1| 24 [5| 68 | 910 | 11,12] 13,14 | 15,16 17-72 73-80
Not used
Text data (machine language code)
ESD Identifier of SD for control section of this text
-Blank
Number of bytes of text data
Blank
b 2 bit address of first byte of text data
Blank.
X1

Appendix

149

RLD Input Record (Card Image)

1

2-4 5-10 11-12 13-16 17-72

73-80

L—— RLD data - see below

L——-ﬂﬂﬁ

Number of bytes of RLD data

Blank

RLD

12-9-2 (0000 0010)

RLD Data Item
1,2(3,4]5 | 6,7,8
L—— Assigned address of address constant
Flag field -- (TTTTLLSTn)
TTTT = type S = Direction of relocation
0000 = non-branch 0 = positive (+)
0001 = branch = negative (-)
0010 = pseudo register displacement value Tn = type of next RLD item
0011 = pseudo register cumulative length 0 = next RLD item has a different R or P
LL = length of address constant pointer; they are present in the next item.
01 = 2 bytes 1 = next RLD item has the same R and P pointers,
10 = 3 bytes hence they are omitted
11 = 4 bytes

Position pointer (P) - ESDID of SD for control section that contains the address constant

Relocation pointer (R) - ESDID of CESD entry for the symbol being referred to. Zero (00) if type = PR cumulative length

Figure 35. RLD Input Record (Card Image)

150

L Not used

END Input Record - Type 1 (Card Image)

Figure 36.

12-9-2 (0000 0010)

END Input Record - Type 2 (Card Image)

END Input Record - Type 1 (Card Image)

1 2-4 5 6-8 9-14 15,16 17-28 29-32 33-80
L— Not used
Control section length for control section whose length
was not specified in SD ESD item. Byte 29 is binary
zero rather than a blank if length is present.
Blank
ESDID of SD item for this control section that contains the address specified in bytes 6-8.
Blank
24 bit address of entry point (optional)
Blank
END

— END

L——— 12-9-2 (0000 0010)
Figure 37.

Blank

END Input Record - Type 2 (Card Image)

1 2-4 5-16 17-24 25-28 29-32 33-80
Not used
Control section length for control section whose length
was not specified in SD ESD item. Byte 29 is binary
zero if length is present,
Blank

'—— Symbolic entry point name (optional)

Ssection 7: Appendix 151

SYM Record = (Load Module)

0|1 2,3 4-243 <<

L—— SYM data and ESD data (ESD type SD, CM and PC items) - (maximum of 240 bytes)

Count - in bytes, of SYM and ESD data (2 bytes)

Subtype - specifies information for TESTRAN - (1 byte)
1000 0000 - this SYM record contains ESD items (SD, PC or CM) from
a load module that was not "under test". The test
option was not specified when it was link edited.
0000 0000 - this SYM record is not the above type.

Identification - specifies this is a SYM record -~ 0100 0000 (1 byte)
Figure 38. SYM Record (Load Module) - Ignored by the Loader

CESD Record - (Load Module)

0 1-3 4,5 6,7 8-247 j) up to 240 bytes of ESD data

ESD data - for detailed information see below.

Count ~ in bytes, of ESD data (2 bytes)

L—— ESDID of first ESD item (2 bytes)

Spare - 3 bytes of binary zeros

Identification == 0010 0000 -- (1 byte)

CESD Data (Load Module)

1-8 9 | 10-12 |13 14-16

L—— ID/length - length (3 bytes), when type is: SD, PC, CM or PR
ID (2 bytes), when type is LR
Zero (3 bytes), when type is ER, WX, or Null

Segment number ~ in which this symbol appears. Zero when type is ER, WX, or Null (1 byte).
Alignment if PR{07 - doubleword

03 - fullword
01 - halfword
00 - byte
Address - linkage editor-assigned address of this symbol. Zero when type is ER, WX, or Null (3 bytes) ,
Type - (1 byte) Section definition (SD) XXXXX000
Label reference (LR) XXXXX011
Private code (PC) XXXXX100

Private code marked delete
(ENTAB and SEGTAB control sections) ~ XXX1X100

Common (CM) XXXXX101
Null XXXXX111
External reference (ER) XXXXX010
Weak external reference (WX) XXXX1010
Pseudo register (PR) XXXXX110 X's may be 1 or 0

Symbol - The eight character external name - Zero when type is Null.
Blanks if blank common or PCs other than SEGTABs and ENTABs

Figure 39. CESD Record - (Load Module)

152

Scatter - Translation Record

0|1 2-3 4-1023 2? Up to and including 1020 bytes

\— Data - may contain translation table, translation table and scatter table, or scatter table only

Count - in bytes, of data field

Zero - one byte of binary zeros

Identification - identifies this as a scatter-translation record - bit configuration is: 0001 0000

)

L—— Padding (2 bytes) - if necessary, to force fullword boundary alignment of scatter table.

Translation Table

Pointer (2 bytes) - to the scatter table entry that contains the address of the control section
containing this CESD entry.
Number of translation table entries = number of CESD entries +1.
Pointer will be zero if its corresponding CESD entry is not SD, PC, CM or LR.

Zero - 2 bytes of binary zeros

T

Assigned address (4 bytes) - of a control section (SD, PC or CM)

Scatter Table

Zero - 4 bytes of binary zeros

Translation Table and Scatter Table

T] T2 T3 T T g T Tn P S] 52 53 S 2 2 Sn
Scatter data
Padding (2 bytes) if necessary to align scatter table to a fullword boundary.
Translation data
Figure 40. Scatter/Translation Record - Ignored by the Loader
Ssection 7: Appendix 153

Control Record - (Load Module)

0

1-3

4-5

67

8-15 22 Record Length 20 to 256 bytes

Figure u41.

154

Length of text record and/or length of control section - specifies the length of
the control section (in bytes) to which the text in the following
record belongs, or the number of bytes of a control section contained
in the following text record (2 bytes)

CESD entry number - specifies the composite external symbol dictionary entry that

T contains the control section name of the control section of which this text is a
part (2 bytes)

Channel Command Word (CCW) - that could be used to read the text record that follows. The data address field
contains the linkage editor assigned address of the first byte of text in the text record that follows. The
count field contains the length of the succeeding text record.

Count - contains two bytes of binary zeros.

Count - in bytes, of the control information (CESD 1D, length of control section) following the CCW field.

Spare - contains three bytes of binary zeros

Identification - specifies that this is:

o A control record - 0000 0001
© The control record that precedes the last text record of this overlay segment - 0000 0101 (EOS)

® The control record that precedes the last text record of the module - 0000 1101 (EOM)

(1 byte)

control Record - (Load Module)

Relocation Dictionary Record= (Load Module)

0 1-3 | 4,5 6,7 8-15 16-255 ?2 Record length can be between 24 and 256

l—— RLD data -~ see below

 — Spare - contains 8 bytes of binary zeros

L—— Count - contains two bytes of binary zeros

L Spare - contains three bytes of binary zeros

Identification - specifies that this is: (1 byte)
® A relocation dictionary record - 0000 0010
o The last record of this segment - 0000 0110
o The last record of the module - 0000 1110

RLD Data

L—— Count - in bytes of the relocation dictionary information following the spare 8 byte field (2 bytes)

R P | F A F A ;(F A R

I——- Address - linkage editor

assigned address of
the address constant

(3 bytes)

Flag - (1 byte) When byte format is xxxxLLST,

T specifies miscellaneous information as follows:
xxxx specifies the type of this RLD item (address constant).
0000 -~ non-branch type in assembler language, DC A (name)
0001 == branch type in assembler language, DC V (name)
0010 -~ pseudo register displacement value
0011 -~ pseudo register cumulative displacement value

LL specifies the length of the address constant.

01 -- two bytes

10 -- three bytes

11 -- four bytes

S specifies the direction of relocation.

0 -~ positive

1 -- negative

T specifies the type of the next following RLD item.

only the flag and address fields.

Position pointer - contains the entry number of the CESD entry that indicates
which control section holds the address constant (2 bytes).

Relocation pointer - contains the entry number of the CESD entry that indicates which symbol value
is to be used in the computation of the address constant's value (2 bytes).
0 if PR cumulative length or if ENTAB CSECT.

Figure 42, Relocation Dictionary Record - (Load Module)

1000 and 1001 -~ this address constant is not to be relocated because it refers to an unresolved symbol .

0 -- the following RLD item has a different relocation and/or position pointer.
1 -- the following RLD item has the same relocation and position pointers as this and therefore contains

Section 7: Appendix

155

Control and Relocation Dictionary Record - (Load Module)

0

1-3

4,5

6,7

8-15

00

Note:

L Address

“— Flag

L— Address (3 bytes)

L— Flag (1 byte)

L— Position pointer (2 bytes)

— Relocation pointer (2 bytes)

'— Channel Command Word (8 bytes)

— Count, in bytes, of RLD information (2 bytes)

— Count, in bytes, of control information following the last RLD address field.

* The control information contains the 1D and length of control sections in the
following text record (2 bytes).

— Spare (3 bytes)

L— identification (1 byte) - specifies that this record is:
e A control and RLD record - 00000011 - (it is followed by a text record)

e A control and RLD record that is followed by the last text record of a segment - 0000 0111 (EOS)
e A control and RLD record that is followed by the last text record of a module - 0000 1111 (EOM)

The record length varies from 20 to 260 bytes in the Loader.

Figure 43.

156

For detailed descriptions of the data fields see Relocation Dictionary Record, and Control Record.

Control and Relocation Dictionary Record - (Load Module)

L* Length of

‘control
section or
text record
(2 bytes)

L—"CESD entry number
(2 bytes)

COMPILER/LOADER INTERFACE FOR PASSED DATA SETS

DCB List

Pointed to by the fourth entry in the parameter list passed to the Loader

interface described here is used.

0-1 2-3 4-7 8-11

12-15

16-19

‘—Zero - 2 bytes of binary zeros,

e Figure 44, DCB List

L~ Number of entries following (2 bytes).

—Zero - 4 bytes of binary zeros.

l_ SYSLIB DCB - may

contain the address

of an open SYSLIB DCB

(4 bytes).,
Zero - 4 bytes of binary zeros.
L SYSLIN control block - may contain the address of a

SYSLIN control block which describes an internal
data area prepared by a compiler (4 bytes).

Section 7:

If the Loader is to process an internal SYSLIN data area (that is, a data area
residing in main storage and consisting of contiguous object module records
prepared by a compiler) and/or an open SYSLIB data set, the compiler/Loader

The description includes the format of the DCB
list, the control block or DCB parameters which must be specified for the data
area or data set, the format of an internal data area consisting of either fixed-
or variable-length records, and the format of the MOD record.

Appendix

157

Internal SYSLIN Control Block

The SYSLIN control block® used to describe an intermnal input data area should have
the following fields initialized:

DCBDEVT = 0, to describe an internal data area and to indicate that an
internal SYSLIN control block was passed.

DCBRELAD = starting address of the internal object module records.

DCBBLKSI = length of the entire internal data area.

DCBRECFM = FB, if the internal object module records are in fixed-length
format.
VB, if the internal object module records are in variable-length
format.

DCBLRECL = length of a logical record if the data set records are in

fixed-length format.

Open SYSLIB DCB

The open SYSLIB DCB2 passed to the Loader should have the following DCB fields
initialized:

DCBDSORG = PO

DCBMACRF = R

DCBNCP = 2

DCBRECFM = U, if the SYSLIB data set contains load modules.
F or FB, if the SYSLIB data set contains object modules. (In this
case, values for the fields DCBLRECL and DCBBLKSI should also be
specified.)

DCBBUFNO = 0

Exit routine addresses may be specified. Before reading SYSLIB, the Loader
overlays these addresses with the addresses of its own routines. The Loader also
restores these addresses before returning to the caller.

If an open SYSLIB DCB is passed to the Loader, SYSLIB is not closed by the
Loader.

- ——— ——— - ———— -

1The control block, has the format and content of a SYSLIN data control block, but
is not to be considered a data control block because there is no data management
activity in connection with this control block.

2A complete description of the content of a DCB is contained in the publication
IBM System/360 Operating System: System Control Blocks, Order No. GC28-6628.

158

Internal Data Area in Fixed-length Record Format

(Logical record length = 72)

ce e sc0 e

1-72 73-144 n-n+7l

L Nth record

of data area

Second record
of data area

First record

of data area

(This record

should begin

on a fullword
boundary. lfs address
should appear

in the passed

SYSLIN control block
field DCBRELAD.)

Figure 45. Internal Data Area in Fixed-length Record Format

Section 7: Appendix 159

Internal Data Area in Variable-length Record Format

No. of
bytes

e Figure Uu6.

160

Block
Descriptor Descriptor
Word Word

N

Descriptor

Word

"

4

2

2 L1

2

2 L2

L

First record

of data area

Binary zeros

Length (L1) of first
record of data area
plus descriptor
word (This field
must fall on a
fullword boundary.)

Internal Data Area

L— Second record

of data area

Binary zeros

Length (L2) of second
record of data area
plus descriptor

word (This field

must fall on the
fullword boundary
following the end

of the previous
record.,)

Descriptor
Word

"

esesse e

2

2 Ln

ss e ce o

in Variable-length Record Format

L nth record

of data area

Binary zeros

Length (Ln) of nth record
of data area plus
descriptor word (This
field must fall on the
fullword boundary
following the end of

the previous record.)

)

MOD Record (Card Image)

11-12

13-16

17-20 21-24

25-28

29-32

33-80

L MOD (3 bytes).
L-12-9-2 (0000 0010)

I

I—-Nof used.

*Number of bytes of text
(optional) (4 bytes),

*Address of text extent (optional)

(4 bytes).

‘— Address of byte following the estimated
or actual end of text for the last
control section in the module (4 bytes).

‘ | Main storage address of the first byte of text
for the first control section in the module.

This address should be on a doubleword boundary.
(The Loader assumes that each succeeding control
section within the module begins on the next
available doubleword boundary.) (4 bytes)

L Blank (4 bytes),

— Number of bytes of data to be processed in columns 17-32

(humber = 8 or 16) (2 bytes),

L-Blank (6 bytes).

(1 byte).

*Note: These two fields define storage that is fo be identified as part of the loaded program, They

are optional, but must occur on at least one of the MOD records in the internal data area if the

Loader is invoked via the entry points LOADER, IEWLDRGO, or IEWLOAD. Each occurrence of

these two fields defines a new extent of the program. The values must conform to the rules for
FREEMAIN parameters, that is, the address must begin on a doubleword boundary and the length

must be a multiple of 8.

Figure 47. MOD Record (Card Image)

Section 7:

Appendix

161

IDENTIFY MACRO INSTRUCTION - IDENTIFYING LOADED PROGRAM (MVT ONLY)

The IDENTIFY macro instruction, when invoked as described below, permits the
Loader to describe a program constructed in subpool 0 so that the program may
later be invoked by a macro instruction, such as LINK, XCTL, or ATTACH. The
IDENTIFY macro instruction creates a contents directory entry (CDE) and an extent
list for the program constructed. These system control blocks allow the MVT
Supervisor to identify the program.

Under MVT, the addresses and lengths of the program's extents, the entry point
address, and the program name must be passed to the IDENTIFY macro instruction.
(The format of the parameter list passed by the Loader to the IDENTIFY macro
instruction is shown in Figure 25.) The IDENTIFY macro instruction flags the CDE
that it creates to indicate that the program can be invoked by other macro
instructions as well as the LOAD macro instruction. Residence of the program in
subpool 0 and the absence of the program as a load module on an external device is
also indicated in the CDE. The IDENTIFY macro instruction places the CDE on the
user's Job Pack Area Control Queue; it also derives the extent list from the
parameter list passed to it and stores the extent list within the system queue
area.

When the form of the IDENTIFY macro instruction described below is specified,
all other operands are ignored. The format is:

r T T 1
| Name | Operation]| Operand |
t ¢ 1 ---4
| i | address of parameter list 1
| [symboll| IDENTIFY | MF=(E, |
| | | (1)]
L I . L 4
MF=

indicates the execute form of the macro instruction using a remote parameter
list. (The format of the parameter list passed by the Loader is shown in
Figure 25.) The address of the parameter list can be loaded into register 1,
in which case MF=(E, (1)) should be coded. If the address is not loaded into
register 1, it can be coded as an address that is valid in an RX-type
instruction, or as one of the registers 2-12 which were previously loaded
with the address. A register can be designated symbolically or with an
absolute expression, and is always coded within parentheses.

Programming Notes: Failure to meet any of the following requirements will cause
an exit with a return code to indicate the reason for unsuccessful completion.
The requirements are:

1. The extent list size must be a positive multiple of 8.
2. The addresses in the parameter list must be in subpool 0.

3. The program name should not duplicate a name already on the Link Pack Area
Control Queue or the user's Job Pack Area Control Queue.

4. The entry point must be within one of the extents.
5. The caller must be a non-supervisory routine.
6. The program must be run under MVT.

7. The extents must be in the user's region in subpool 0 and they must begin on
doubleword boundaries.

162

When the IDENTIFY macro instruction returns control, register 15 contains one
of the following hexadecimal codes:

Code

Meaning

00
ou

08
0c
14

18

ic

20

Successful completion.
Program name and address already exist.

Program name duplicates the name of a load module currently in main
storage; CDE was not created.

Entry point address is not within an eligible program or system is not
MVT; CDE was not created,

An IDENTIFY macro instruction was previously issued using the same program
name, but a different address; this request was ignored.

Parameter list address is not on a doubleword boundary, or the program
name specified is already on the Link Pack Area Control Queue or the
user's Job Pack Area Control Queue; CDE was not created.

Extent list length is negative, not a multiple of 8, or the extent
addresses are not on doubleword boundaries; CDE was not created.

Extents are not in subpool 0; CDE was not created.

Section 7: Appendix

163

SECTION 8:

DICTIONARY OF ABBREVIATIONS AND ACRONYMS

adcon
CESD
CSECT
DECB
DSECT

EOM

ESD ID

LD

LR

PC

PR

P pointer
RLD

R pointer
SD

TTR

WX

164

address constant

composite external symbol dictionary
control section

data event control block

dummy section

end of module

external symbol dictionary identification
label definition

label reference

private code

pseudo register

position pointer

relocation dictionary

relocation pointer

section definition

relative track and record address on a direct access device

weak external reference

(Where more than one page reference is given, the major reference appears first.)

A-type address constant
purpose of 37
abbreviations
dictionary of 164
address assignment
for common areas 41
for external DSECTs 41
in non-resolution 27-30
in resolution 31-33
address constants, relocation of
description of 37-38
introduction to 12
address constant relocation routine
(TEWLERTN)
flowchart of 108
synopsis of 80
address list for BLDL information
purpose of U40-41
routine that builds the lists 129
ALLOCATE (see table allocation routine)
allocation

of buffers and DECBs 19-21
of save areas 18
of table entries 27-28

automatic
deletion (for CESD type SD)
library calls 40
automatic library call processor (IEWACALL)
flowcharts of 117-121
synopsis of 81

32-33

BLDL list
format of 130
purpose of 40-41

BLDL macro instruction
issuance of 40

boundary alignment (for PR entries)
description of 41
introduction to 33

buffer
allocation of 19-21

buffer allocation routine (IEWBUFFR)
deallocation of buffers (IEWBUFFR) 77
flowchart of 96
synopsis of 77

buffer prime routine, object module

(see object module buffer prime routine)

CALL/NOCALL/NCAL option 15
CDE
format of 132
CESD entry 27-30
(see also composite external symbol
dictionary entry)

common (CM) area
address assignment of 41
definition of 25
processing a CM entry 29
common reference 25
communication area
format of 135-138
initialization of 18
composite external symbol dictionary entry
definition of 23
internal format 131
making an entry 27
processing of 26-33
record format of 152
concatenated data sets (on SYSLIN)
condensed symbol table (CST)
creation of 42
format of 132
purpose of 17
routine (IDMINI) flowchart 125
contents directory entry (CDE)
format of 132
control
and relocation dictionary record
format 156
dictionaries 12-13
information processing
record 23-24
record format 154
record processing 35
control level tables (routines)
control module (IEWLCTRL)
flowchart of 92
synopsis of 77
conversion routine (IEWLCNVT)
synopsis of 80
CR (see common reference)

10,19

17-18

84-89

data control block (DCB)
alternate for SYSLIB 18,158
data control block (DCB) for SYSLIN,
SYSTERM, and SYSLOUT data sets
construction of 18-19
data event control block
format of 133
DCB 1list
format of 157
deleting CSECTs
in ESD processing 32-35
in load module input 36
delinking 37-38
diagnostic
aids 141
register contents at entry to
routines 141-142
dictionary print routine (IEWBTMAP)
messages 145-146
flowchart of 123
synopsis of 82

(DECB)

Index 165

diagrams, operation 44-71
directory, microfiche 127-128

dummy DSECT, external (see external dummy

section)

END
processing 38-39
processor (IEWLEND)
flowchart of 109
synopsis of 79-80
record formats 151
entry point determination
checking of 42
default for preloaded text 35
in ESD processing 28-29
EOM (see EWD)
EP= (keyword) 15
ER (see external reference)
error
diagnostic dictionary printing
routine (TEWBTMAP)
flowchart of 123
synopsis of 82
internal code definitions 143
log routine (IEWERROR)
flowchart of 122
synopsis of 81-82
message-issuer cross reference
table 145-146
processing 81-82
ESD (see external symbol dictionary)
ESD ID
definition of 13
in END processing 39
in ESD processing 29-31
in RLD processing 36-37
in text processing 34-35
extent
chain entry format 133
processing 34
external dummy section (pseudo register)
address assignment 41
definition of 13
entry processing
displacement and boundary
alignment 33
illustration of 75
PR entry 29
external reference (ER)
definition of 25
entry processing
match processing 32,33
no-match processing 29-30
function of 25
unresolved ER messages 42
unresolved ER processing 39,40
external symbol dictionary (ESD)
definition of 13
entry types 25
identifier (see ESD 1ID)
processing
description of 24-33
introduction to 16
operation diagrams for 57-63
tables 73

166

processor (IEWLESD)
flowcharts of 103-106
synopsis of 79
record format 148
EXTRACT macro instruction
issuance of 18

final processing

description of 40-42

overview 17
FREECORE (see return storage routine)
functions of the Loader 9

general register contents 141-142
GETCORE (see storage allocation routine)

ID-length list 35
identification of loaded program
(see also program name)
purpose of 17
processing 42
processor (IEWLIDEN)
flowchart of 124
synopsis of 82
saving extent information for 34
IDENTIFY macro instruction
issuance of 17,42
parameter list
creation of 42
format of 134
IEWACALL (see automatic library call
processor)
IEWBTMAP (see diagnostic dictionary
printing routine)
IEWBUFFR (see buffer allocation routine)
IEWERROR (see error log routine)
IEWLCNVT (see conversion routine)
IEWLCTRL (see control module)
IEWLDCOM (communication area)
format of 135-138
initialization of 18
IEWIDDEF 12,17
IEWLEND (see END processor)
TEWLERTN (see address constant relocation
routine)
IEWLESD (see external symbol dictionary
processor)
IEWLIDEN (see identification of loaded
program processor)
JEWLIOCA
(see also initialization, I/O, control,
and allocation processor)
entry point for IEWLOADR 77
TEWLLIBR 12,83
IEWLMAP (see map routine)
IEWLMOD (see MOD record processor)
TIEWLOAD
entry point for loading with
identification 43,77
IEWLODE (see load module processor)
IEWLPRNT (see print routine)
IEWLREAD (see read routine)
IEWLRELO (see object module processor)

IFWLRLD (see relocation dictionary
processor)
TEWOPNLB (see library open routine)
TEWPRIME (see object module buffer prime
routine)
TEWTERM (see SYSTERM routine)
initialization, I/0, control, and
allocation processor (IEWLIOCR)
(see also allocation, initialization
processing, and I/0 control-allocation)
flowcharts of 93-94
synopsis of 77
initialization processing
description of 17-19
operation diagram of 49
INTTMAIN work area
format of 139
input
conventions 147
entry types 27
description of 23
introduction to 19
module processing routines
primary data set 10
record formats 148-156
secondary data set 10
secondary input processing
description of 39-u40
routines 81
internal input data area
(see also passed data sets)
concatenation restriction 12
definition of 12
format
fixed-length records 159
variable-length records 160
processing 16,18-19
reading of 22
SYSLIN control block for
internal object module
(see internal input data area)
I/0 control-allocation
description of 19

79-80

18,158

label
definition (LD) or reference (LR) 25
LD and LR processing
description of 29
introduction to 26
operation diagram 73
reference 25
when CESD type is CM 32-33
wvhen CESD type is SD 32
language translators 12
LD (see label definition)
LET/NOLET option 15
library calls 39-40

(see also automatic library call processor

and secondary input processing)
library open routine (IEWOPNLB)
flowchart of 99
LMTXT (see load module text processor)
load module
processing
description of 22-24
(see also reading load module text)
operation diagram of 67

processor (IEWLODE)
flowchart of 113
synopsis of 81
(RLD) buffer, use of 22
text processor (LMTXT)
flowcharts of 114-116
synopsis of 81
Loader
data sets 10
options 14,15
organization 83
structure 10-12
LR (see label reference)

main storage allocation 27-28
MAP/NOMAP option 15
map, module
format example of 143
MAP option
processing of 27
map routine (IEWLMAP)
flowchart of 110
synopsis of 80
match processing
microfiche directory
MOD record
contents of 24
input convention 147
processing 34-35
processor (IEWLMOD)
flowchart of 112
synopsis of 80
record format 161

31-33
127-128

NAME= (keyword) 15
(see also program name)
no-match processing
description of 27-31
tabulation of 27
null type of ESD entry 25

object and load module processing,
differences 23
object module
allocation for 22
control dictionaries in 12
text processing (operation diagram)
object module buffer prime routine
(IEWPRIMNE)
flowchart of 97
synopsis of 78
object module processor (IEWLRELO)
flowchart of 102
synopsis of 79
OPENEXIT routine
flowchart of 95
operation diagrams
options 14,15

4u4-71

Index

65

167

passed data sets
compiler/Loader interface 157-161
PC (see private code)
pointers, RLD (relocation dictionary
processing)
use of 36-37
PR (see pseudo register)
preloaded text (see MOD record)
print routine (IEWLPRNT)
flowchart of 100
synopsis of 78
PRINT/NOPRINT option 15
private code (PC) 25,26
processing control module
(see initialization, I/O0, control, and
allocation processor)
program name
{(see also identification of loaded
program)
passing to control program 18
specifying 15
pseudo register (PR)
address assignment 41
making a CESD entry for 29
meaning of 25
processing 75
use of in symbol resolution 33

O0-type address constants
purpose of 37
use of in pseudo register relocation

read routine (IEWLREAD)
flowchart of 98
synopsis of 78
reading
load module text 35
module input 21-22
readying data sets 18-19
register contents at entry to
routines 141-142
relative relocation constant
definition of 37
use of 38
relocating address constants 37-38
relocation constant
computing 29
relocation dictionary (RLD)
entries, use of 24
introduction to 13
processing
details of 36-37,73
introduction to 17
operation diagram 69
processor (IEWLRLD)
flowchart of 107
synopsis of 79
for load module 155,156
input record 150
table entry format 140
RES/NORES option 15
resolution, symbol 31-33
return storage routine (FREECORE)
synopsis of 78

168

RLD (see relocation dictionary)
RLD pointers
meaning of 13

scatter/translation record
format of 153
SD (see section definition)
secondary input processing
description of 39-40
routines 81
section definition (SD)
introduction to 25
processing an SD entry 28-29
symbol resolution for SD entry 32
serviceability aids 144
SIZE=(keyword) 15
storage allocation
for buffers and DECBs 19-21
for CESD entries 27
for save areas used during loading 18
storage allocation routine (GETCORE)
SYM record
format of input record 148
format of record in load module 152
treatment of 23
symbol resolution 31-33
SYNAD exit routine
synopsis of 79
SYSIIN control block
(see also passed data sets)
format 158
processing 18
use in reading internal input 22
SYSLIN data set
(see also internal input data area and
passed data sets)
definition of 10
initialization and input control
of 18-19
SYSLIB data set
alternate DCB for 18,158
characteristics of 10
open routine (IEWOPNLB) flowchart 99
opening 40
passing an open data set 18,40
resolving ERs from 40
SYSLOUT data set
initialization of 18-19
purpose of 10
SYSTERM data set
initialization of 18
purpose of 10
SYSTERM routine (IEWTERH)
flowchart of 101
synopsis of 78

table allocation routine (ALLOCATE)
synopsis of 80

tables
construction and usage 129
used in the CESD search 27

TERM/NOTERM option 15

text
input record format 149
loading 34-35
processing 23
record processing 34-35
TRANSID (see translation routine)
translation
of TDs in ¥D/length list 35
routine (TRANSID)
flowchart of 111
synopsis of 80
translation ccntrol table
format of 140

translation table
format of 140
making on entry in 30-31
relation to translation control
table 30

V-type address constants
purpose of 37

weak external reference (WX)
definition of 25
processing 26,27

Index

169

READER’S COMMENTS

TITLE /BM System/360 Operating System ORDER NO. GY28-6714-1
Loader
Program Logic Manual

Your comments assist us in improving the usefulness of our publications; they are an important part
of the input used in preparing updates to the publications. All comments and suggestions become
the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the IBM Branch Office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GYZ8=-b/1l4-1

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY . . .

IBM CORPORATION
1271 Avenue of the Americas
New York, New York 10020

Attention: PUBLICATIONS

B

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

fold
FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.
]
]
TR
]
]
R
]
L]
I
]
L]
|]
]
]
L]
fold

D R R I T T T T T T R

EREEEY

D S & LR

GY28-6714-1

TSIV

®

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

