
Systems Reference Library

OS Assembler. Language

OS Release 21

This publication contains specifications
for the IBM 8ystem/360 Operating 8ystem
Assembler Language {Levels E and F}.

The assembler language is a-symbolic
programming language used to write programs
for the IBM System/360. The language pro­
vides a convenient means for representing
the machine instructions and related data
necessary to program the IBM System/360.
The IBM System/360 Operating System Assem­
bIer Program processes the language and
provides auxiliary functions useful in the
preparation and documentation of a program,
and includes facilities for processing the
assembler macro language.

Part I of this publication describes the
assembler language.

Part II of this publication describes an
extension of the assembler language -- the
macro language used to define macro
instructions.

File No. 8360-21(08)
Order No. GC28-6514-11 OS

PREFACE

This publication is a reference manual
for the programmer using the assembler
language and its features.

Part I of this publication presents
information common to all parts of the
language followed by specific information
concerning the symbolic machine instruction
codes and the assembler program functions
provided for the programmer's use. Part II
contains a description of the macro lan­
guage and procedures for its use.

Appendixes A through J follow Part II.
Appendixes A through F are associated with
Parts I and II and present such items as a
summary chart for constants, instruction
listings, character set representations,
and other aids to programming. Appendix G
contains macro language summary charts, and
Appendix H is a sample program. Appendix I
,is a features comparison cha.rt of
System/360 assemblers. Appendix j includes
samples of macro definitions.

Knowledge of IBl'1 system7360 machine
operations, particularly storage address­
ing, data formats, and machine instruction
formats and functions, is prerequisite to
using this publication, as is experience
with programming concepts and techniques or
completion of basic courses of instruction
In these areas. IBM System/360 machine

Twelfth Edition (April, 1976)

operations are discussed in the publication
IBM System/360 Principles of Operation,
Order No. GA22-682l. The IBM System/370
machine operations are discussed in the
publication IBM System/370 Principles of
Operation, Order No. GA22-7000. Information
on program assembling, linkage editing,
executing, interpreting listings, and
assembler programming considerations is
provided in OS Assembler (F) Programmer's
Guide, Order No. GC26-3756.

The following publications are referred to
in this publication:

OS Introduction, Order No. GC28-6534

Os Utilities, Order No. GC28-6586

OS Loader and Linkage Editor,
Order No. GC28-6538

Os Supervisor Services and Macro
Instructions, Order No. GC28-6646

OS pata'Management Macro Instructions,
Order No. GC26-3794

OS Data Management Services Guide,
Order No. GC26-3746

This is a major revision of, and obsoletes, GC-28-6S14-1O. This edition applies to release
21 of IBM System/360 Operating System and to subsequent releases.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality. .

Address comments concerning the contents of this publication to IBM Nordic Laboratory,
Product Communications, Box 962, S-181 09 Lidingo 9, Sweden. Comments become the
property of IBM.

@Copyright International Business Machines Corporation 1966,1968,1969,1970,1972,
1974,1976

ii

PART 1 -- THE ASSEMBLER LANGUAGE

SECTION 1: INTRODUCTION ••
Compatibi1i ty. • • • • • •

The Assembler Language • • • •
Machine Operation Codes.
Assembler Operation Codes ••
Macro Instructions •

The Assembler Program.
Basic Functions.

Programmer Aids.

Operating System Relationships •

SECTION 2: GENERAL INFORMATION. .

3
3

3
3
3
3

4
4

4

5

7

Asseri01er Language Coding Conventions. • 7
Coding Form. • • • • • 7
Continuation Lines • • • • • 7
Statement Boundaries • 8
Statement Format • • • • • •• 8
Identification-Sequence Field. • • 9
Summary of Statement Format. 9
Character Set. • • • • • • 10

Assembler Language Structure • • •

Terms and Expressions.
Terms • • • • • • • • • • •

Symbols. • • • • • •••
Self-Defining Terms. • • • •
Location Counter Reference •
Literals . • • • • • • • . .
Symbol Length Attribute
Reference • • • • • • •

Terms in Parentheses.
Expressions • • • • • • • •

Evaluation of Expressions. •
Absolute and Relocatable
Expressions • • • • • • • •

SECTION 3: ADDRESSING -- PROGRAM

• 10

• 10
· 10
.10
• 12
• 14
• 14

• 15
• 16

• • 16
• 16

• 17

SECTIONING AND LINKING. • • • •• .19

Addressing. • • • • • • • • .19
Addresses -- Explicit and Implied •• 19
Base Register Instructions. • • .19

USING -- Use Base Address
Register. • • • • • • • •

DROP -- Drop Base Register •
Programming with the USING
Instruction. • • •

Relative Addressing • • • •

Program Sectioning and Linking •
Control Sections ••••••

Control Section Location
Assignment. • • • • • •

First Control Section • • •
START -- start Assembly.

• • 19
• 20

• 21
• • 21

• • 22
• 22

• 22
• 23

• • 23

iii

CONTENTS

CSECT -- Identify Control
Section • • • • • • • • • • • • • 23

Unnamed Control Section. • • • • • 24
DSECT -- Identify Dummy Section. • 24

External Dummy Sections(Assembler F). 25
DXD -- Define External Dummy
Section. • • • • • • • • • • • • • • 25

CXD - Cumulative Length External
Dummy Section. • • • • • • • •• 25

COM -- Define Blank Common Control
Section. • • • • • • • • • • •• 26

Symbolic Linkages • • • • • • • 26
ENTRY -- Identify Entry-Point

Symbol • • • • • • • • • • • • 27
EXTRN -- Identify External Symbol • • 27

Addressing External Control
Sections. • • • • • • • • • • 28

SECTION 4: MACHINE-INSTRUCTIONS.

Machine-Instruction Statements • •
Instruction Alignment and
Checking. • • • ••••••

Operand Fields and Subfields. • •
Lengths -- Explicit and Implied

Machine-Instruction Mnemonic Codes •
Machine-Instruction Examples. • •

RR Format. • • •• • • • •
RX Format.
RS Format. • • • •
SI Format.
SS Format.

Extended Mnemonic Codes.

SECTION 5: ASSEMBLER INSTRUCTION
STATEMENTS. • • • • • • • • •

Symbol Definition Instruction.
EQU -- EQUATE SYMBOL. • • • •

• 29

29

• 29
29

• 30

31
31
31
32
32
32
32

32

35

35
• 35

Operation Code Definition Instruction. . 36
OPSYN -- EQUATE OPERATION CODE . . . 36

Data Definition Instructions • • • • • • 36
DC -- DEFINE CONSTANT • • • • • • • • 36

Operand Subfie1d 1: Duplication
Factor. • • • • • • • • • •• 38

Operand Subfie1d 2: Type. •• 38
Operand Subfield 3: Modifiers. 38
Operand Subfie1d 4: Constant. 41

DS -- Define Storage. • • • • • • • • 48
Special Uses of the Duplication
Factor. • • • • • • • • • • 50

ccw -- Define Channel C?mmand Word. • 50

Listing Control Instructions • •
TITLE Identify Assembly Output
EJECT Start New Page
SPACE Space Listing •••••••
PRINT Print O~tional Data.

51
51

• 52
• 52
• 52

Program Control Instructions •..••• 53
ICTL -- Input Format Control.. .53
ISEQ -- Input Sequence Checking .•. 54
PUNCH -- Punch a Card ...••••. 54
REPRO -- Reproduce Following Card .. 55
ORG -- Set Location Counter ••... 55
LTORG -- Begin Literal Pool ...•• 55

Special Addressing Consideration .56
Duplicate Literals ••.•..•. 56

CNOP -- Conditional No Operation .•• 56
COpy -- Copy Predefined Source

Coding • • • • • • • 57
END -- End Assembly. . . .58

PART 2 -- THE MACRO LANGUAGE

SECTION 6: INTRODUCTION TO THE MACRO
LANGUAGE. • • • • • . • • • • • .61

The Macro Instruction Statement. .61

The Macro Definition

The Macro Library •.

.61

· .61

System & Programmer Macro Definitions .• 62

System Macro Instructions. • . . .62

Varying-the Generated Statements .62

Variable Symbols . • • . . • • . .62
Types of Variable Symbols. . .62
Assigning Values to Variable

Symbols • • . • • . . . • • • . .63
Global SET Symbols • . . .63

Organization of this Part of the
Publication. ••. 63

SECTION 7: HOW TO PREPARE MACRO
DEFINITIONS • ...• .65

MACRO -- Macro Definition Header .••• 65

MEND -- Macro Definition Trailer · .65

Macro Instruction Prototype. · .65
Statement Format • · .66

Model Statements . • • • • • .66

Symbolic Parameters. . .67
Concatenating Symbolic

Parameters with Other
Characters or Other Symbolic
Parameters. •

Comments Statements.

COpy Statements •••

SECTION 8: HOW TO WRITE MACRO
INSTRUCTIONS .••

.68
• .69

.69

· .71

Macro Instruction Operands 71

Statement Format . · .72

Omitted Operands • · .72

Operand Sublists · .72

iv

Inner Macro Instructions . • 73

Levels of Macro Instructions 74

SECTION 9: HOW TO WRITE CONDITIONAL
ASSEMBLY INSTRUCTIONS . • . • •. • . . 75

SET Symbols ••••.•.•••
Defining SET Symbols . •
Using Variable Symbols • .

· . 75
75
75

Attributes • • • • . • . • • . 76
Type Attribute (T'). . . •• 77
Length (L'), Scaling (S'), and
Integer (I') Attributes. . 78

Count Attribute (K') • . . . 78
Number Attribute (N') .•..•.. 79
Assigning Attributes to Symbols •. 79

Sequence Symbols • . • • . · 80

LCLA,LCLB,LCLC -- Define SET Symbols . . 81

SETA -- Set Arithmetic . •.
Evaluation of Arithmetic
Expressions • • •

Using SETA Symbols •

SETC -- Set Character ..

· 81

· 82
· 82

• • 83
Type Attribute . .
Character Expression
Substring Notation .
Using SETC Symbols .

• • • • • • 83
83

• • 84
• • • 85

SETB -- Set Binary • • . •
Evaluation of Logical
Expressions • • . •

Using SETB Symbols •

. . • . 86

..... 87
· . 87

AIF Conditional Branch. 88

AGO Unconditional Branch. 89

ACTR -- Conditional Assembly Loop
Counter • . • • • • • . • • • • • 89

ANOP -- Assembly No Operation. . • 90

Conditional Assembly Elements. • • -. 90

SECTION 10: EXTENDED FEATURES OF THE
MACRO LANGUAGE ...••••.• 93

MEXIT Macro Definition Exit 93

MNOTE Request for Error Message 93

Global and Local Variable Symbols •••• 94
Defining Local and Global SET

Symbols . • . • . • • . . • . • • 95
Using Global and Local SET

Symbols . • . • • . •. ..• 95
Subscripted SET Symbols. .. . 97

SYSTEM VARIABLE SYMBOLS. . • • •. • 98
&SYSNDX -- Macro Instruction

Index • . • • • • • • • • . . . • 98

&SYSECT -- Current Control
Section • . . • • . . .• . 99

&SYSLIST -- Macro Instruction
Operand. • . •. • •.•. 100

Keyword Macro Definitions And
Instructions ••...•..•.... 100

Keyword Prototype. .• . •• 101
Keyword Macro Instruction •••. 101

Mixed-Mode Macro Definitions and
Instructions. • • . •• .103

Mixed-Mode Prototype •.•••. 103
Mixed-Mode Macro Instruction .• 103

Macro Definition Compatibility .•••. 104

APPENDIXES

APPENDIX A: CHARACTER CODES. . • .107

APPENDIX B: HEXADECIMAL-DECIMAL
NUMBER CONVERSION TABLE ••...... 113

v

APPENDIX C: MACHINE-INSTRUCTION FORMAT.119

APPENDIX D: MACHINE-INSTRUCTION
MNEMONIC OPERATION CODES. • . . •• 121

APPENDIX E: ASSEMBLER INSTRUCTIONS .•• 131

APPENDIX F: SUMMARY OF CONSTANTS •••• 135

APPENDIX G: MACRO LANGUAGE SUMMARY ... 137

APPENDIX H: SAMPLE PROGRAM ••••••. 141

APPENDIX I: ASSEMBLER LANGUAGES--
FEATURES COMPARISON CHART. • •• .145

APPENDIX J: SAMPLE MACRO DEFINITIONS •. 149

INDEX. . .151

ILLUSTRATIONS

Figures

Figure 2-1.
Figure 2-2:
Figure 2-3.

Figure 3-1.

Figure 4-1.
Figure 5-1.

Tables

Table 4-1.

Coding Form • • • . .. 7
Punched Card Form . . • • • 8
Assembler Language
Structure--Machine and
Assembler Instructions ... 11
Multiple Base Register
Assignment ••••••..• 21
Extended Mnemonic Codes •• 33
Type Codes for Constants •. 38

Address Specification
Details •.•.•...•• 30

vi

Figure 5-2.

Figure 5-3.

Figure 5-4.

Figure 5-5.

Figure 5-6.

Table 4-2.

Bit-Length Specification
(Single Constant) . . · · · 39
Bit-Length Specification
(Multiple Cons tan ts) . · · · 40
Bit-Length Specification
(Multiple Operands) · · · 40
Floating-Point External
Formats · · · 45
CNOP Alignment. . . · · · 57

Details of Length Specifi­
cations in SS Instructions. 31

USE OF DSECT SYMBOLS IN APCONS

The use of DSECT symbols as absolute
expressions in adcons has been rewritten
for clarification.

HEXADECIMAL CONSTANTS AND SYNTAX RULES

Clarification of the syntax restriction
on the number of hexadecimal digits allow­
able per explicit hexadecimal constant
specification has been added.

MACHINE-INSTRUCTION ON MNEMONIC
OPERATION CODES

Erroneous instruction names, condition
code settings, and operand formats contained
in Appendix D have been corrected.

CHARACTER CODE GRAPHICS

The EBCDIC printer graphics for the IBM
System/360 8-bit code have been added to
Appendix A.

yii

&SYSLIST

SUMMARY OF AMENDMENTS

FOR GC28-65l4-B

OS RELEASE 21

An explanation of &SYSLIST(O) has been
added for completeness.

COMMENTS ON ASSEMBLER INSTRUCTIONS

A note has been added explaining why
certain assembler instrudtions (e.g.,LTORG)
are not flagged when an "operand" is
present.

POSITIONAL PARAMETERS

A note has been added explaining that
positional parameters cannot be changed
to keywords by substitution.

MACRO SEQUENCE SYMBOLS

An explanatory note has been added dis­
tinguishing the "name field" of a macro
from the name field parameter.

TITLE CHANGES

Cross-references to OS publications
have been changed to reflect their new
titles.

PART I -- THE ASSEMBLER LANGUAGE

SECTION 1: INTRODUCTION

SECTION 2: GENERAL INFORMATION

SECTION 3: ADDRESSING AND PROGRAM SECTIONING AND LINKING

SECTION 4: MACHINE INSTRUCTIONS

SECTION 5: ASSEMBLER INSTRUCTIONS

computer programs may be expressed in
machine language, i.e., language directly
interpreted by the computer, or in a sym­
bolic language, which is much more meaning­
ful to the programmer. The symbolic lan­
guage, however" must be translated into
machine language before the computer can
execute the program. This function is
accomplished by a processing program.

Of the various symbolic programming lan­
guages, assembler languages are closest to
machine language in form and content. The
assembler language discussed in this manual
is a symbolic programming language for the
IBM System/360. It enables the programmer
to use 'all IBM System/360 machine fUnc­
tions, as if he were coding in Systeml360
machine language.

The assembler program that processes the
language translates symbolic instructions
into machine-language instructions, assigns
storage locations" and performs auxiliary
functions necessary to produce an executa­
ble machine-'language program.

Compatibility

System/360 Operating System assemblers
process source programs written in the
Basic Programming Support/360 basic assem­
bler language, the IBM 7090/7094 Support
Package for IBM System/360 assembler lan­
guage, the Basic Programming Support Ass­
embler (8K Tape) language, the Basic Oper­
ating System Assembler (8K Disk) language,
and the Disk and Tape Systems Assembler
language, with the following exceptions:

1. The XFR assembler instruction is con­
sidered an invalid mnemonic operation
code by Operating System/360 assem­
blers.

2. The assignment, size, and ordering of
literal pools may differ among the
assemblers.

Differences in the macro language for
System/360 assemblers are described in Sec­
tion 10 of this publication,.

SECTION 1: INTRODUCTION

THE ASSEMBLER LANGUAGE

The basis of the assembler language is a
collection of mnemonic symbols which rep­
resent:

1. System/360 machine-language operation
codes.

2. Operations (auxiliary functions) to be
performed by the assembler program.

The language is augmented by other sym­
bols, supplied by the programmer, and used
to represent storage addresses or data.
Symbols are easier to remember and code
than their machine-language equivalents.
Use of symbols greatly reduces programming
effort and error.

The programmer may also create a type of
instruction called a macro instruction. A
mnemonic symbol, supplied by the program­
mer, serves as the operation code of the
instruction.

Machine Operation Codes

The assembler language provides mnemonic
machine-instruction operation codes for all
machine instructions in the IBM Systeml360
Universal Instruction Set and extended mne­
monic operation codes for the conditional
branch instruction.

Assembler Operation Codes

The assembler language also contains
mnemonic assembler-instruction operation
codes, used to specify auxiliary functions
to be performed by the assembler. These
are instructions to the assembler program
itself and, with a few exceptions, result
in the generation of no machine-language
code by the asserr~ler program.

Macro Instructions

The assembler language enables the pro-
grammer to define and use macro
instructions.

Section 1: Introduction 3

Macro instructions are represented by an
operation code which stands for a sequence
of machine and/or assembler instructions.
Macro instructions used in preparing an
assembler language source program fall into
two categories: system macro instructions.,
provided by IBM, which relate the object
program to components of the operating
system; and macro -instructions created by
the programmer specifically for use in the
program at hand" or for incorporation in a
library" available for future use.

Programmer-created macro instructions
are used to simplify the writing of a
program and to ensure that a standard
sequence of instructions is used to
accomplish a desired function. For
instance, the logic of a program may
require the same instruction sequence to be
exequted again and again. Rather than code
this entire sequence each time it is need­
ed" the programmer creates a macro
instruction to represent the sequence and
then" each time the sequenc'e is needed, the
programmer simply codes the macro
instruction statement. During assembly,
the sequence of instructions represented by
the macro instruction is inserted in the
object program.

Part II of this publication discusses
the language and procedures for defining
and using macro instructions.

THE ASSEMBLER PROGRAM

The assembler program, also referred to
as the "assembler," processes the source
statements written in the assembler
language.

Basic Functions

Processing involves the translation of
source statements into machine language,
the assignment of storage locations to
instructions and other elements 'of the
program, and the performance of the auxil­
iary assembler functions designated by the
programmer. The output of the assembler
program is the object program, a machine­
language translation of the source program.
The assembler furnishes a printed listing
of the source statements and object program
statements and additional information
useful to the programmer in analyzing his
program., such as error indications. The
object program is in the format required by
the linkage editor component of Operating
System/360. (See the linkage editor publi­
cation.)

4

The amount of main storage allocated to
the assembler for use during processing
determines the maximum number of certain
language elements that may be present in
the source program.

PROGRAMMER AIDS

The assembler provides auxiliary func­
tions that assist the programmer in check­
ing and documenting programs, in controll­
ing address assignment" in segmenting a
program, in data and symbol definition, in
generating macro 'instructions, and in con­
trolling the assembler itself. Mnemonic
operation codes for these functions are
provided in the language.

variety in Data Representation: Decimal,
binary, hexadecimal, or character represen­
tation of machine-language binary values
may be employed by the programmer in writ­
ing source statements. The programmer se­
lects the representation best suited to his
purpose.

Base Register Address Calculation: As dis­
cussed in IBM System/360: Principles of
Operation, the System/360 addressing scheme
requires the designation of a base register
(containing a base address value> and a
displacement value in specifying a storage
location. The assembler assumes the cleri­
cal burden of calculating storage addresses
in these terms for the symbolic addresses
used by the programmer. The programmer
retains control of base register usage and
the values entered therein.

Relocatability: The object programs pro­
duced by the assembler are in a format
enabling relocation from the originally
assigned storage area to any other suitable
area.

Sectioning and Linking: The assembler lan­
guage and program provide facilities for
partitioning an assembly into one or more
parts called control sections. Control
sections may be added or deleted when
loading the object program. Because con­
trol sections do. not have to be loaded
contiguously in storage, a sectioned pro­
gram may be loaded and executed even though
a continuous block of storage-large enough
to accommodate the entire program may not
be available.

The
defined
another,

assembler allows symbols to be
in one assembly and referred to in
thus effecting a link between

separately assembled programs. This per­
mits reference to data and transfer of
control between programs. A discussion of
sectioning and linking is contained in
section 3 under the heading, "Program Sec­
tioning and Linking."

Program Listings: A listing of the source
program statements and the resulting object
program statements may be produced by the
assembler for each source program it assem­
bles. The programmer can partly control
the form and content of the listing.

Error Indications: As a source
assembled, it is analyzed for
potential errors in the use of
bIer language. Detected errors
cated in the program listing.

program is
actual or
the assem­
are indi-

OPERATING SYSTEM RELATIONSHIPS

The assembler is a component of the IBM
System/360 Operating system and, as such,
functions under control of the operating
system. The operating system provides the
assembler with input/output, library, and
other services needed in assembling a
source program. In a like manner, the
object program produced by the assembler
will normally operate under control of the
operating system and depend on it for
input/output and other services. In writ­
ing the source program, the programmer must
include statements requesting the desired
functions from the operating system. These
statements are discussed in the control
program services publication. The
OS Introduction publication provides further
information on operating system relationships.
Input/output considerations are discussed in
the data management publication.

Section 1: Introduction 5

This section presents information about
assembler language coding conventions and
assembler source statement structure
addressing.

ASSEMBLER LANGUAGE CODING CONVENTIONS

This subsection discusses the general
coding conventions associated with use of
the assembler language.

Coding Form

A source program is a sequence of source
statements that are punched into cards. The
standard card form, IBM 6509 (shown in Figure
2-2), can be used for punching source state­
ments. These statements may be written on
the standard coding form, .'GX28-6509 (shown
in Figure 2-l), provided by IBM. One line
of coding on the form is punched into one
card. The vertical columns on the form
correspond to card columns. Space is provided

SECTION 2: GENERAL INFORMATION

is not part of a statement and is discussed
following the subsection "Statement
Format."

The entries (i.e., coding) composing a
statement occupy columns 1-11 of a line
.and, if needed, columns 16-71 of one or two
successive continuation lines.

continuation Lines

When it is necessary to continue a
statement on another line, the following
rules apply.

1. Write the statement up through column 71.
2. Enter a continuation character (not blank

and not part of the coding) in column 72
of the line.

3. Continue the statement in column 16 of the
.nextline, leaving columns 1 through 15
blank. .

4. If the statement is not finished before
column 71 of tHe second line, enter a
continuation character in column 72, and
continue in column 16 of the following line.
The statement has to be finished before
column 71 of the third line, because the
maximum number of continuation lines is two.

on the form for program identification and 5.
instructions to keypunch operators. .

The body of the form (Figure 2-·1) is
composed of two fields: the statement
field, columns 1-11, and the
identification-sequence field, columns
73-80. The identification-sequence field

IBM SYBIBm!360 ABBBmblBr Codin; Form

Figure 2-1. Coding Form

6. Macro instruction can be coded on as many
lines as are needed.

These rules assume that normal source
statement boundaries are used (see"State­
ment Boundaries" below).

Section 2: General Information 7

Statement Boundaries

Source statements are normally contained
in columns 1-71 of statement lines and
columns 16-11 of any continuation lines.
Therefore, columns 1, 11" and 16 are
referred to as the "begin," "end," and
"continue" columns, respectively. (This
convention can be altered by use of the
Input Format Control (ICTL) assembler
ins~ruction discussed later in this publi­
cat1on. The continuation character if
used, always immediately follows the ~end"
column.

Statement Format

Statements may consist of one to four
entries in the statement field. They are,
from left to right: a name entry, an
opera tion entry" an operand entry, and a
comments entry. These entries must be
separated by one or more blanks, and must
be written in the order stated.

The coding form (Figure 2-1) is ruled to
provide an 8-character name field, a
5-character operation field, and a
56-character operand and/or comments field.

If desired, the programmer can disregard
these . boundaries and write the name,
operat1on, operand, and comment entries in
other positions, subject to the following
rules:

1. Th~ entries must not extend beyond
statement boundaries within a line
(either the conventional boundaries
if no ICTL statement is given or as
designated by the programmer ~ia the
ICTL instruction) •

2. The entries must be in proper
sequence, as stated previously.

3. The entries must be separated by one
or more blanks.

4. If used, a name entry must be written
starting in the begin column.

/ NAM' OPERi',oN .1 I ~ OPERlND

I
AND I COMM~NTS I 1

NAME OPERATION OPERAND COMMENTS

5. The name and operation entries must be
completed in the first line of the
statement, including at least one
blank following the operation entry.

A description of the name, operation,
operand, and comments entries follows:

Name Entry: The name entry is a symbol
created by the programmer to identify a
statement. A name entry is usually option­
al. The symbol must consist of eight
characters or less, and be entered with the
first character appearing in the begin
column. The first character must be
alphabetic. If the begin column is blank,
the assembler program assumes no name has
been entered. No blanks can appear in
the symbol.

Operation Entry: The operation entry is
the mnemonic operation code specifying the
machine operation, assembler, or macro­
instruction operation desired. An
operation entry is mandatory and cannot
appear in a continuation line. It must
start at least one position to the right of
the begin column. Valid mnemonic operation
codes for machine and assembler operations
are contained in Appendixes D and E of this
publication. Valid operation codes consist
of five characters' or fewer for machine or
assembler-instruction operation codes, and
eight characters or fewer for macro­
instruction operation codes. No blanks can
appear within the operation entry.

Operand Entries: Operand entries identify
and descr1be data to be acted upon by the
instruction, by indicating such things as
storage locations, masks, storage-area
lengths, or types of data.

Depending on the needs of the instruc­
tion, one or more or no operands can be
written. Operands are required for all
machine instructions, but many assembler
instructions require no operand.

Operands must be separated by commas,
and no blanks can intervene between oper­
ands and the commas that separate them.

~ ,,~OPERANO COMMENTS IIFlTlflUnOlSENUo:f

OOOOOOOO~!.~~~~~OOOOOOOOOOOOOOOOOOOOOIO~03000000000000OOOOOOOOOOOOOOOO~O~
123456 18 9

1

1011121314151611181S202122232425262128293DJI323334

1
3<3631383!1;" 14142434445 641484'505152~3545556S1S85U 6162636465'66768651071121314157611787930

111111111111111,111

2222222221222'222222222222

3333333333333333333333-3333 3 3 3 3 3 3 3 333

4444444441444444444444444441 IBM SYSTEM/360 l4 44444 4 4 4 44 4 4 4 4 4 44 44444444

555555555555555555555555551 STANDARD ASSEMBLER CARD 1515555555555555555555555555

66666566.6666'6666666666666666666666666

717177171177 717 7 7 717 7 77 7 7 7 7 7 7 7 77 7 7 7 7 7 7 77 7 7 77 7 7177177777 7 7 77 7 7 7 7,717 717 77 77 7777 7 77 7 !
88S6U8'88888-88888888'8888888

999 9 ~ 9 9 9 ! ,9 9 9 9 9 ~ 9 9 9 9 ~ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 S 9 9 9 9 9 9 9 9 E9 9 9 9 9 9 9 9 9 9 999 9 ~19 9 9 9 919 9 9 9 9 9 9 9 9 9 9 9 9
'" 1234 J 6.11.!:!·2tltI213141516111819lU2122232425262123293D31~23J~4;l5:':'~;3113!140414~43444~~G1:4849~OI515l53S45~ls6S7S8596~6162S364IiSII;S6168691ii?llnh~;4151e111B;!1 ~

Figure 2-2. Punched Card Form

8

The first blank normally indicates the end
of the operand field.

The operands cannot contain embedded
blanks, except as follows:

If character representation is
used to specify a constant, a
literal, or immediate data in an
operand, the character string ca~
contain blanks, e. g., C' A D'.

comment Entries: Comments are descriptive
items of information about the program that
are shown on the program listing. All 256
valid characters (see Character Set in this
section), including blanks can be used in
writing a comment. The entry can follow
the operand entry and must be separated
from it by a blank; each line of comment
entries cannot extend beyond the end
column (column 71).

An entire statement field can be used
for a comment by placing an asterisk in tne
begin column. Extensive comment entries
can be written by using a series of lines
with an asterisk in the begin column of
each line or by using continuation lines.
Comment entries cannot fall between a
statement and its continuation line.

In statements where an optional operand
entry is omitted but a comment entry is
desired, the absence of the operand entry
must be indicated by a comma preceded and
followed by one or more blanks, as follows:
r-------T----------T----------------------,
I Name IOperation IOperand 1
~-------+----------+----------------------~
1 1 END 1 . COMMENT I L--_____ ..L __________ ,.L _______________________ J

For instructions that cannot contain an
operand entry, this comma is not needed.

Note: Macro prototype statements without
operands will not tolerate comments, even
if a comma is coded as shown above.

For information on rules for the operand
field of different assembler instructions,
refer to the table in Appendix E.

statement Example: The following example
illustrates the use of name, operation,
operand, and comment entries. A compare
instruction has been named by the symbol
COMPi the operation entry (CR) is the
mnemonic operation code for a register-to­
register compare operation, and the two
operarids (5,6) designate the two general
registers whose contents are to be

compared. The comment entry reminds the
programmer that he is comparing "new sum"
to "old" with this instruction.

r------T-----------T----------------------,
I Name I Operation 1 Operand 1
~------+-----------+----------------------~
ICOMP \CR 15,6 NEW SUM TO OLD I L ______ ~ ___________ ..L ______________________ J

Identification-Sequence Field

The identification-sequence field of the
coding form (columns 13-80) is used to
enter program identification and/or state­
ment sequence characters. The entry is
optional. If the field, or a portion of
it, is used for program identification, the"
identification is punched in the source
cards and reproduced in the printed listing
of the source program.

To aid in keeping source statements in
order, the programmer can number the cards
in this field. These characters are
punched into their respective cards, and
during assembly the programmer may request
the assembler to verify this sequence by
use of the Input Sequence Checking (ISEQ)
assembler instruction. This instruction is
discussed in Section 5, under "Program
Control Instructions.

Summary of Statement Format

The entries in a statement must always
be separated by at least one blank and must
be in the following order: name, operation"
operand(s), comment(s).

Every statement requires an operation
entry. Name and comment entries are
optional. Operand entries are required for
all machine instructions and most assembler
instructions.

The name and operation entries must be
completed in the first statement line,
including at least one blank following the
operation entry.

The name and operation entries must not
contain blanks. Operand entries must not
have blanks preceding or following the
commas that separate them.

Section 2: General Information 9

A name entry must always start in the
begin column.

If the column after the end column is
blank, the next line must start a new
statement. If the column after the end
column is not blank, the following line
is treated as a continuation line.

All entries must be contained within the
designated begin, end, and continue column
boundaries .•

Character Set

Source statements are written using
following characters:

Letters A through Z, and $, #, Q)

Digits o through 9

Special
Characters + - , = . * () • / , blank

the

These characters are represented by the
card-punch combinations and internal bit
configurations listed in Appendix A. In
addition, any of the 256 punch combinations
may be designated anywhere that characters
may appear between paired apostrophes, in
con~ents, and in macro instruction oper­
ands.

ASSEMBLER LANGUAGE STRUCTURE

The basic structure of the language can
be stated as follows.

A source statement is composed of:

• A name entry (usually optional).

• An operation entry (required) •

• An operand entry (usually required).

10

• Comments. entry (optional).

A name entry is:

• A symbol.

An operation entry is:

• A mnemonic operation code
a machine, assembler,
instruction ..

representing
or macro-

An operand entry is:

• One or more operands composed of one or
more expressions, which, in turn, are
composed of a term or an arithmetic
combination of terms.

Operands of machine instructions
generally represent such things as storage
locations, general registers, immediate
data, or constant values. Operands of
assembler instructions provide the informa­
tion needed by the assembler program to
perform the deSignated operation.

Figure 2-3 depicts this structure.
Terms shown in Figure 2-3 are classed as
absolute or relocatable. Terms are abso­
lute or relocatable, depending on the
effect of program relocation upon them.
Program relocation is the loading of the
object program into storage locations other
than those originally assigned by the
assembler. A term is absolute if its value
does not change upon relocation. A term is
relocatable if its value changes upon relo­
cation.

The following subsection -Terms and
Expressions" discusses these items as out­
lined in Figure 2-3.

TERMS AND EXPRESSIONS

TERMS

Every term represents a value. This
value may be assigned by the assembler
(symbols, symbol length attribute, location
counter reference) or may be inherent in
the term itself (self-defining term,
literal).

An arithmetic combination of terms is
reduced to a single value by the assembler.

The following material discusses each
type of term and the rules for its use.

Symbols

A symbol is a character or combination of
characters used to represent locations or
arbitrary values. Symbols, through their
use in name fields and in operands, provide
the programmer with an efficient way to
name and reference a program element.
There are three types of symbols:

1.
2.
3.

Ordinary symbols.
Variable symbols.
Sequence symbols'.

Ordinary symbols, created by the pro­
grammer for use as a name entry and/or an
operand, must conform to these rules:

1. The symbol must not consist of more
than eight characters. The first
character must be a letter. The other

Name Entry

Is a Symbol
which is an

Machine
Instruction

,..-----.......,1

r

1

or

I

cp
Operation Entry

I
Is a Mnemonic
Operation Code

I
I 1 I

Assembler Macro
Instruction or Instruction

2.

3.

1

A Symbol
e.g., BETA
(AT or RT)

A Self­
defining
Term (AT)

A Location
Counter Refer­
ence i.e., *
(RT)

A Literal
e.g.,= F 112591

(RT)

I
Decimal
e.g.,15

I
which may be
anyone of
the following

I
1

Hexadecimal
e.g.:X IC4 1

Binary
e.g.,B l l0l'

1

Character
e.g .,C'AB9'

characters may be letters, digits,
a combination of the two.

or

No special characters may be included
in a symbol.

No blanks are allowed in a symbol.

Exp or

Operand Entry

I
One or more
Operands that
are composed
of an

I
I

Exp(Exp)

Exp = Expression

or

1

Symbol Length
Attribute Refer­
ence e.g.,

....--..1.1_----. 2

L ISymbol (AT) __

Other Symbol.
Attribute
References (AT)

AT = Absolute Term

RT= Relocatable Term

I

Exp(Exp, Exp)

1 May be generated by combination of variable symbols and assembler language characters. (Conditional assembly only)

2 Conditional assembly only.

Figure 2-3. Assembler Language structure -- Machine and Assembler Instructions

Section 2: General Information 11

In the following sections, the term
symbol refers to ordinary symbol.

The following are valid symbols:

READER
A23456
X4F2

LOOP2
N
S4

OlB4
$Al
#56

The following symbols are invalid" for
the reasons noted:

256B

RECORDAREA2
BCD*34

IN AREA

(first character is not
alphabetic)

(more than eight characters)
(contains a special character

- *)
(contains a blank)

Variable symbols must begin with an
ampersand (&) followed by one to seven
letters and/or numbers, the first of which
must be a letter. Variable symbols are
used within the source program or macro
definition to allow different values to be
assigned to one symbol. A complete dis­
cussion of variable symbols appears in
Section 6.

Sequence symbols consist of a period (.)
followed by one to seven letters and/or
numbers, the first of which must be a let­
ter. Sequence symbols are used to indicate
the position of statements within the
source program or macro definition. Through
their use the programmer can vary the
sequence in which statements are processed
by the assembler program. (See the complete
discussion in Section 6.)

NOTE: Sequence symbols and variable symbols
are used only for the macro language and
conditional assembly. Programmers who do
not use these features need not be concerned
with these symbols.

9EFINING SYMBOLS: The assembler assigns a
'falue to each symbol appearing as a name
entry in a source statement. The values
assigned to symbols naming storage areas,
instructions, constants" and control sec­
tions are the addresses of the leftmost
bytes of the storage fields containing the
named items. Since the addresses of these
items may change upon program relocation,
the symbols ~aming them are considered
relocatable terms.

A symbol used as a name entry in the
Equate Symbol (EQU) assembler instruction
is assigned the value designated in the
operand entry of the instruction. Since
the operand entry may represent a relocata­
ble value or an absolute (i .-e. ,
nonchanging) value, the symbol is consid­
ered a relocatable term or an absolute
term, depending upon the value it is equat­
ed to.

12

The value of a symbol may not be nega­
tive and may not exceed 224-1.

A symbol is said to be defined when it
appears as the name of a source statement.
(A special case of symbol definition is
discussee in Section 3, under "Program
sectioning and Linking.")

Symbol definition also involves the
assignment of a length attribute to the
symbol. (The assembler maintains an inter­
nal table - the symbol table - in which the
values and attributes of symbols are kept.
When the assembler encounters a symbol in
an operand, it refers to the table for the
values associated with the symbol.) The
length attribute of a symbol is the length,
in bytes" of the storage field whose
address is represented by the symbol. For
example" a symbol naming an instruction
that occupies four bytes of storage has a
length attribute of 4. Note that there are
exceptions to this rule; for example, in
the case where a symbol has been defined by
an equate to location counter value (EQU *)
or to a self-defining term, the length
attribute of the symbol is 1. These and
other exceptions are noted under the
instructions involved. The length at tr i­
bute is never affected by a duplication
factor.

PREVIOUSLY DEFINED SYMBOLS: Some instruc­
tions require that a symbol appearing in
the operand entry be previously defined.
This simply means that the symbol, before
its use in an operand, must have appeared
as a name entry in a prior statement.

GENERAL RESTRICTIONS ON SYMBOLS: A symbol
may be defined only once in an assembly.
That is, each symbol used as the name of a
statement must be unique within that assem­
bly. However, a symbol may be used in the
name field more than once as a control
section name (i.e., defined in the START,
CSECT" or DSECT assembler statements des­
.:::ribed in Section 3) because the coding of
a control section may be suspended and then
resumed at any subsequent point. The CSECT
or DSECT statement that resumes the section
must be named by the same symbol that
initially named the section; thus, the
symbol that names the section must be
repeated. Such usage is not considered to
be duplicatio~ of a symbol definition.

self-Defining Terms

A self-defining term is one whose value
is inherent in the term. It is not
assigned a value by the assembler. For
example, the decimal self-defining term -
15 - represents a value of 15. The length
attribute of a self-defining term is always
1.

There are four types of self-defining
terms: decimal, hexadecimal, binary, and
character. Use of these terms is spoken of
as decimal, hexadecimal, binary, or charac­
ter representation of the machine-language
binary value or bit configuration they
represent.

Self-defining terms are classed as abso­
lute terms, since the values they represent
do not change upon program relocation.

USING SELF-DEFINING TERMS: Self-defining
terms are the means of specifying machine
values or bit configurations without equat­
ing the values to symbols and using the
symbols.

self-defining terms may be used to spec­
ify such program elements as immediate
data, masks, registers, addresses, and
address increments. The type of term se­
lected (decimal, hexadecimal, binary, or
character) will depend on what is being
specified.

The use of a self-defining term is quite
distinct from the use of data constants or
literals. When a self-defining term is
used in a machine-instruction statement,
its value is assembled into the instruc­
tion. When a data constant is referred to
or a literal is specified in the operand of
an instruction, its address is assembled
into the instruction. Self-defining terms
are always right-justified; truncation or
padding with zeros if necessary occurs on
the left.

Decimal Self-Defining Term: A decimal
self-defin~ng term is simply an unsigned
decimal number written as a sequence of
decimal digits. High-order zeros may be
used (e.g., 007). Limitations on the value
of the term depend on its use. For exam­
ple, a decimal term that designates a
general register should have a value
between 0 and 15; one that represents an
address should not exceed the size of
storage. In any case, a decimal term may
not consist of more than eight digits, or
exceed 16,777,215 (22~-1). A decimal self­
defining term is assembled as its binary
equivalent. Some examples of decimal self­
defining terms are: 8, 147, 4092, and
00021.

Hexadecimal Self-defining Term: A hexa­
decimal self-defining term consists of one
to six hexadecimal digits enclosed by
apostrophes and preceded by the letter X:
X' C49' •

Each hexadecimal digit is assembled as
its four-bit binary equivalent. Thus, a
hexadecimal term used to represent an

eight-bit mask would consist of- two hexa-
decimal digits. The maximum value of a
hexadecimal term is X' FFFFFF'.

The hexadecimal digits and their bit
patterns are as follows:

0- 0000 4- 0100 8- 1000 C- 1100
1- 0001 5- 0101 9- 1001 D- 1101
2- 0010 6- 0110 A- 1010 E- 1110
3- 0011 7- 0111 B- 1011 F- 1111

A table for converting from hexadecimal
representation to decimal representation is
provided in Appendix B.

Binary Self-Defining Term: A binary self­
defining term is written as an unsigned
sequence of ls and Os enclosed in
apostrophes and preceded by the letter B,
as follows: B'10001101'. This term would
appear in storage as shown, occupying one
byte. A binary term may have up to 24 bits
represented.

Binary representation is used primarily
in designating bit patterns of masks or in
logical operations.

The following example illustrates a
binary term used as a mask in a Test Under
Mask (TM) instruction. The contents of
GAMMA are to be tested, bit by bit, against
the pattern of bits represented by the
binary term.

r-------T-----------T---------------------,
I Name IOperation I Operand I
~-------+-----------+---------------------~
IALPHA ITM IGAMMA,B'10101101' I L _______ ~ ___________ ~ _____________________ J

Character Self-Defining Term: A character
self-defining term consists of one to three
characters enclosed by apostrophes. It
must be preceded by the letter C. All
letters, decimal digits, and special char­
acters may be used in a character term. In
addition" any of the remainder of the 256
punch combinations may be designated in a
character self-defining'term. Examples of
character self-defining terms are as fol­
lows:

C'/'
C' ABC'

C' , (blank)
C'13'

Because of the use of apostrophes in the
assembler language and ampersands in the
macro language as syntactic characters, the
following rule must be observed when using
these characters in a character term.

For each apostrophe or ampersand desired
in a character self-defining term, two
apostrophes or ampersands must be written.
For example, the character value A'# would

Section 2: General Information 13

be written as rA'f#', while an apostrophe
followed by a blank and another single
apostrophe would be written as , •• ,.,

Each character in the character sequence
is assembled as its eight-bit code equiva­
lent (see Appendix A). The two apostrophes
or ampersands that must be used to rep­
resent an apostrophe or ampersand within
the character sequence are assembled as an
apostrophe or ampersand.

Location Counter Reference

The Location Counter: A location counter
is used to assign storage addresses to
program statements. It is the assembler's
equivalent of the instruction counter in
the computer. As each machine instruction
or data area is assembled, the location
counter is first adjusted to the proper
boundary for the item, if adjustment is
necessary, and then incremented by the
length of the assembled item. Thus, it
always points to the next available loca­
tion. If the statement is named by a
symbol, the value attribute of the symbol
is the value of the location counter after
boundary adjustment, but before addition of
the length.

The assembler maintains a location
counter for each control section of the
program and manipulates each location
counter as previously described. Source
statements for each .section are assigned
addresses from the location counter for
that section. The location counter for
each successively declared control section
assigns locations in'consecutively higher
areas of storage. Thus, if a program has
multiple control sections, all statements
identified as belonging to the first con­
trol section will be assigned from the
location counter for section 1, the state­
ment$ for the second contrcl section will
be assigned from the location counter for
section 2, etc. This procedure is followed
whether the statements from different con­
trol sections are interspersed or written
in control section sequence.

The location counter setting can be
controlled by using the START and ORG
assembler instructions, which are described
in sections 3 and 5. The counter affected
by either of these assembler instructions
is the counter for the control section in
which they appear. The maximum value for
the location counter is 22~-1.

The programmer may refer to the current
value of the location counter at any place
in a program by using an asterisk as a term

14

in an operand. The asterisk represents the
location of the first byte of currently
available storage (i.e., after any required
boundary adjustment). Using an asterisk as
the operand in a machine-instruction state­
ment is the Same as placing a symbol in the
name field of the statement and then using
that symbol as an operand of the statement.
Because a location counter is maintained
for each control section, a location count­
er reference designates the location count­
er for the section in which the reference
appears.

A reference to the location counter may
be made in a literal address constant
(i.e., the asterisk may be used in an
address constant specified in literal
form). The address of the instruction
containing the literal is used for the
value of the location counter. A location
counter reference may not be used in a
statement which requires the use of a
predefined symbol, with the exception of
the EQU and ORG assembler instructions.

Literals

A literal term is one of three basic
ways to introduce data into a program. It
is simply a constant preceded by an equal
sign (=).

A literal represents data rather than a
reference to data. The appearance of a
literal in a statement directs the assem­
bler program to assemble the data specified
by the literal, store this data in a
"literal pool," and place the address ~f
the storage field containing the data 1n
the operand field of the assembled state­
ment.

Literals provide a means of entering
constants (such as numbers for calculation,
addresses., indexing factors, or words or
phrases for printing out a message) into a
program by specifying the constant in the
operand of the instruction in which it is
used. This is in contrast to using the DC
assembler instruction to enter the data
into the program and then using the name of
the DC instruction in the operand. Only
one literal is allowed in a machine­
instruction statement.

A li~eral term cannot be combined with
any other terms.

A literal cannot be used as the receiv­
ing field of an instruction that modifies
storage.

A literal cannot be specified in a shift
instruction or an I/O instruction (HIO, HDV,
TIO, SIO, SIOF).

When a literal is contained in an in­
struction, it cannot specify an explicit
base register or an explicit index register.

A literal canno~ be specified in an ad­
dress constant (see Section 5, DC--Define
Constant) •

The instruction coded below shows one
use of a literal.

r-------T-----------T---------------------,
I Name I Operation I Operand I
.-------+-----------+---------------------~
\GAMMA I L 110 ,=F' 274' I l _______ ~ ___________ ~ _____________________ J

The statement GAMMA is a load instruc­
tion using a literal as the second operand.
When assembled, the second operand of the
instruction will be the address at which
the value F'274' is stored.

NOTE: If a literal operand is a self­
defining term (X,C,B, or de.cimal) and the
equal sign (=) is omitted, the statement
may assemble without error (See "Using
Self-Defining Terms") .

In general, literals can be used wherev­
er a storage address is permitted as an op­
erand. They cannot, however, be used in
any assembler instruction that requires the
use of a previously defined symbol. Liter­
als are ·considered relocatable, because the
address of the literal, rather than the
literal itself, will be assembled in the
statement that employs a literal. The
assembler generates the literals, collects
them, and places them in a specific area of
storage, as explained in the subsection
"The Literal Pool." A literal is not to be
confused with the immediate data in an SI
instruction. Immediate data is assembled
into the instruction.

Literal Format: The assembler requires a
description of the type of literal being
specified as well as the literal itself.
This descriptive information assists the
assembler in assembling the literal cor­
rectly. The descriptive portion of the
literal must indicate the format of the
constant. It may also specify the length
of the constant.

The method of describing and specifying
a constant as a literal is nearly identical
to the method of specifying it in the
operand of a DC assembler instruction. The
major difference is that the literal must
start with an equal sign (=), which indi­
cates to the assembler that a literal
follows. The reader is referred to the
discussion of the DC assembler instruction
operand format (Section 5) for the means of
specifying a literal. The type of literal
designated in an instruction is not checked
for correspondence with the operation code
of the instruction.

Some examples of literals are:

=A(BETA)
=F'1234'

address constant literal.
a fixed-point number with
a length of four bytes.

=C'ABC' a character literal.

The Literal Pool: The literals processed
by the assembler are collected and placed
in a special area called the literal pool,
and the location of the literal" rather
than· the lite~al itself, is assembled in
the statement employing a literal. The
positioning of the literal pool may be
controlled by the prograwner, if he so
desires. Unless otherwise specified, the
literal pool is placed at the end of the
first control section.

The programmer may also specify that
multiple literal pools be created. Howev­
er, the sequence in which literals are
ordered within the pool is controlled· by
the assembler. Further information on
positioning the literal pool(s) is in Sec­
tion 5 under "LTORG--Begin Literal Pool."

Symbol Length Attribute Reference

The length attribute of a symbol ma~ be
used as a term. Reference to the attrlbute
is made by coding L' followed by the
symbol, as in:

L'BETA
The length attribute of BETA will be

substituted for the term. The use of the
length attribute of a symbol defined with
a DC or DS with explicit length given by
an expression is invalid. The following
example illustrates the use of L'symbol
in moving a character constant into either
the high-order or low-order end of a
storage field.

For ease in following the example,
length attributes of Al and B2 are
tioned. However, keep in mind that
L'symbol term makes coding such as
possible in situations where lengths
unknown.

the
men­
the

this
are

r-------T-----------V---------------------,
IName I Operation I Operand I
.-------+-----------+---------------------~
I Al I DS . I C L8 I
IB2 IDC ICL2 I AB' \
IHIORD IMVC IA1(L'B2),B2 \
I LOORD I~NC IA1+L'Al-L'B2(L'B2), B2 1 l _______ ~ ___________ ~ _____________________ J

Al names a storage field eight bytes in
length and is assigned a length attribute
of 8. B2 names a character constant two
bytes in length and is assigned a length
attribute of 2. The statement named HIORD
moves the contents of B2 into the leftmost
two bytes of Al. The term L'B2 in paren-

Section 2: General Information 15

theses provides the length specification
required by the instruction. When the
instruction is assembled, the length is
placed in the proper field of the machine
instruction.

The statement named LOORD moves the
contents of B2 into the rightmost two bytes
of Al. The combination of terms
Al+L'Al-L'B2 results in the addition of the
length of Al to the beginning address of
Al, and the subtraction of the length of B2
from this value. The result is the address
'of the seventh byte in field Al. The
constant represented by B2 is moved into Al
starting at this address. L'B2 in
parentheses provides length specification
as in BIORD.

Note: As previously stated, the lengthl
attribute of * is equal to the length ofl
the instruction in which it appears, except:
in an EQU to *, in which case the length
attribute is 1.

Terms in Parentheses

Terms in parentheses are reduced to a
single value; thus, the terms in parenthe­
ses, in effect, become a single term.

Arithmetically combined terms, enclosed
in parentheses, may be used in combination
with terms outside the parentheses, as
follows:

14+BETA-CGAMMA-LAMBDA)

When the assembler program encounters
terms in parentheses in combination with
other terms, it first reduces the combina­
tion of terms inside the, parentheses to a
single value which may be absolute or
relocatable, depending on the combination
of terms. This value then is used in
reducing the rest of the combination to
another single value.

Terms in parentheses may be included
within a set of terms in parentheses:

A+B-(C+D-(E+F)+10)

The innermost set of terms in parenthe­
ses is evaluated first. Five levels of
parentheses are allowed; a level of paren­
theses is a left parenthesis and its cor­
responding right parenthesis. Parentheses
which occur as part of an operand format do
not count in this limit. ~~ arithmetic
combination of terms is evaluated as de~
scribed in the next section "Expressions."

16

EXPRESSIONS

This subsection discusses the expres­
sions used in coding operand entries for
source statements. Two types of expres­
sions, absolute and relocatable, are pre­
sent~d along with the rules for determining
these attributes of an expression.

As shown in Figure 2-3, an expression is
composed of a single term or an arithmetic
combination of terms. The following are
examples of valid expressions:

* BETA*10
AREA1+X'2D' B'101'

C'ABC' *+32
N-25
FIELD+332
FIELD
(EXIT-ENTRY+l)+GO

29
L'FIELD
LAMBDA+GAMMA
TEN/TWO

=F'1234'
ALPHA-BETA/(10+AREA*L'FIELD)-100

The rules --for c.oding expressions are:

1. An expression cannot start with an
arithmetic operator, (+-/*). There­
fore, the expression -A+BETA is inval­
id. However, the expression O-A+BETA
is valid.

2. An expression cannot contain two
terms or two operators in succession.

3. An expression ca~mot consist of more
than 16 terms.

4. An expression cannot have more than
five levels of parentheses.

5. A multiterm expression cannot con­
tain a literal.

Evaluation of Expressions

A single--term expression, e.g.,
BETA, *, L'SYMBOL, takes on the value
the term involved.

29,
of

A multiterm expression, e.g., BETA+lO,
ENTRY-EXIT, 25*10+A/B, is reduced to a
single value, as follows:

1. Each term is evaluated.

2. Every expression is computed to 32
bits, and then truncated to the right­
most 24 bits.

3. Arithmetic operations are performed from
left to right except that multiplication
and division are done before addition
and subtraction, e.g., A+B*C is evaluatec
as A+(B*C) , not (A+B)*C. The computed
result is the value of the expression.

4. Division always yields an integer
result; any fractional portion of the
result is dropped. E.g., 1/2*10
yields a zero result, whereas 10*1/2
yields 5.

5. Division by zero is permitted and
yields a zero result.

Parenthesized multiterm subexpressions
are processed before the rest of the terms
in the expression, e.g., in the expression
A+BETA*(CON-IO), the term CON-IO is
evaluated first and the resulting value is
used in computing the final value of the
expression.

Negative values are carried in twos
complement form. Final values of ex­
pressions are the rightmost 24 bits of
the results. Intermediate results have
a range of -2 31 through 231_1. However,
the value of an expression before trunca­
tion must be in the range -2 24 through
2 24_1 or the results will be meaningless.
A negative result is considered to be a
3-byte positive value.
NOTE: In A-type address constants, the
full 32-bit final expression result is
truncated on the left to fit the specified
or implied length of the constant.

Absolute and Relocatable Expressions

An expression is called absolute if its
value is unaffected by program relocation.

An expression is called relocatable if
~ts value depends upon program relocation.

The two types of expressions, absolute
and relocatable, take on these charac­
teristics from the term or terms composing.
them.

Absolute Expression: An absolute expres­
sion can be an absolute term or any arith­
metic combination of absolute terms. An
absolute term can be a non-relocatable
symbol, any of the self-defining terms, or
the length attribute reference. As indi­
cated in Figure 2-3, all arithmetic opera­
tions are permitted between absolute terms.

An expression is absolute, even though
it may contain relocatable terms (RT)-­
alone or in combination with absolute terms
(AT)--under the following conditions.

1. There must be an even number of relo­
eatable terms in the expression.

~. rhe relocatable terms must be paired.
Each pair of terms must have the same
relocatability, i.e., they appear in
the same control section in this
assembly (see Program Sectioning and
Linking, Section 3). Each pair must

consist of terms with opposite signs.
The paired terms do not have to be
contiguous, e.g., RT+AT-RT.

3. No relocatable term can enter into a
multiply or divide operation. Thus,
RT-RT*10 is invalid. However,
(RT-RT)*10 is valid.

The pairing of relocatable terms (with
opposite signs and the same relocat­
ability) cancels the effect of reloca­
tion since both symbols would be relocated
by the same amount. Therefore the value
represented by the paired terms remains
constant, regardless of program relocation.
For example, in the absolute expression
A-Y+X, A is an absolute term, and X and Y
are relocatable terms with the same re­
locatability. If A equals 50, Y equals
25, and X equals 10, the value of the
expression would be 35. If X and Yare
relocated by a factor of 100 their values
would then be 125 and 110. Howeve'r i the
expression would still evaluate as 35
(50-125+110=35) .

An absolute expression reduces to a
single absolute value.

The following examples illustrate abso­
lute expressions. A is an absolute term; X
and Yare relocatable terms with the same
relocatability.

A-Y+X
A
A*A
X-Y+A
*-Y (a reference to the location counter

must be pairea with another relocata­
hIe term from the same control sec­
tion, i.e., with the same relocatabil­
ity)

RelocatableExpressions: A relocatable
expression is one whose value changes by
n if the program in which it appears is
relocated n bytes away from its originally
assigned area of storage. All relocatable
expressions must have a positive value.

A relocatable expression can be a relo­
eatable term. A relocatable expression can
contain relocatable terms -- alone or in
combination with absolute terms under
the following conditions:

1. There must be an odd number of reloca­
table terms.

2. All the relocatable terms but one must
be paired. Pairing is described in
Absolute Expression.

3. The unpaired term must not be directly
preceded by a minus sign.

4. No relocatable term can enter intQ a
mUltiply or divide operation.

section 2: General Information 17

A relocatable expression reduces to a
single relocatable value. This value is
the value of the odd relocatable term,
adjusted by the values represented by the
absolute terms and/or paired relocatable
terms associated with it. The relocatabil­
ity attribute is that of the odd relocata­
ble term.

For example, in the expression W-X+W-l0,
Wand X are relocatable terms with the same
relocatability attribute. If initially W
equals 10 and X equals 5, the value of the
expression is 5. However, upon relocation
~his value will change. If a relocation
factor of 100 is applied, the value of the
expression is 105. Note that the value of
the paired terms, w-X, remains constant at
5 regardless of relocation. Thus, the new

18

value of the expression, 105, is the result
of the value of the odd term (W) adjusted
by the values of W-X and 10.

The following examples illustrate relo­
eatable expressions. A is an absolute
te~, Wand X are relocatable terms with
the same relocatability attribute, Y is a
relocatable term with a different relocat­
ability attribute.

Y-32*A W-X+*
W-X+Y
* (reference to

location counter>

=F'1234' (literal)
A*A+W-W+Y
W-X+W
Y

SECTION 3:

ADDRESSING

The IBM Systeml360 addressing technique
requires the use of a base register~ which
contains the base address, and a displace­
ment, which is added to the contents of the
base register. The programmer may specify
a symbolic address and request the assem­
bler to determine its storage address com­
posed of a base register and a displace­
ment. The programmer way rely on the
assembler to perform this service for him
by indicating which general registers are
available for assignment and what values
the assembler may assume each contains.
The programmer may use as many or as few
registers for this purpose as he desires.
The only requirement is that, at the point
of reference, a register containing an
address from the same control section is
available, and that this address is less
than or equal to the address of the item to
which the reference is being made. The
difference ,between the two addresses may
not exceed 4095 bytes.

ADDRESSES -- EXPLICIT ANp IMPLIED

An address is composed of a displacement
plus the contents of a base register. (In
the case of RX instructions, the contents
of an index register are also used to
derive the address in the machine.)

The programmer writes an explicit
address by specifying the displacement and
the base register number,. In deSignating
explicit addresses a base register may not
be combined with a relocatable symbol.

He writes an implied address by speci­
fying an absolute or relocatable address.
The assembler has the facility to select a
base register and compute a displacement,
thereby generating an explicit address from
an implied address, provided that it has
been informed (1) what base registers are
available to it and (2) what each contains.
,The programmer conveys this information to
the assembler through the USING and DROP
assembler instructions.

ADDRESSING -- PROGRAM SECTIONING AND LINKING

BASE REGISTER INSTRUCTIONS

The USING and DROP assembler instruc­
tions enable programmers to use expressions
representing implied addresses as operands
of machine-instruction statements, leaving
the assignment of base registers and the
calculation of displacements to the assem­
bler.

In order to use symbols in the operand
field of machine-instruction statements,
the programmer must (1) indicate to the
assembler, by means of a USING statement,
that one or more general registers are
available for use as base registers, (2)
specify, by means of the USING statement,
what value each base register contains, and
(3) load each base register with the value
he has specified for it.

Having the assembler determine base reg­
isters and displacements relieves the pro­
grammer of separating each address into a
displacement value and a base address
value. This featUre of the assembler will
eliminate a likely source of programming
errors, thus reducing the time required to
check out programs. To take advantage of
this feature, the programmer uses the USING
and DROP instructions described in this
subsection. The principal discussion of
this feature follows the description of
both instructions.

USING -- Use Base Address Register

The USING instruction indicates that one
or more general registers are available for
use as base registers. This instruction
also states the base address values that
the assenbler may assume will be in the
registers at object time. Note that a
USING instruction does not load the reg­
isters specified. It is the programmer's
responsibility to see that the specified
base address values are placed into the
registers. Suggested loading methods are
described in the SUbsection "programming
with the USING Instruction." A reference
to any name in a control section cannot
occur in a machine instruction or an S-type
address constant before the USING statement
that makes that name addressable. The
format of the USING instruction statement is:

Section 3: Addressing -- Program Sectioning and Linking 19

r-------T-----------T---------------------,
I Name ,Operation ,Operand I
~1r--~-+-----------+---------------------i
, se 'USING ,From 2-17 expressions I
I quence , ,of the form v rl ,

symbol ' ,
" Ir2,r3" ••• ,r16 ,

or J I blank t I L _______ L ___________ L _____________________ ,

Operand v must be an absolute or reloca­
table expression. It may be a negative
number whose absolute value does not exceed
22~. No literals are permitted. Operand v
specifies a value that the assembler can
use as a base address. The other operands
must be absolute expressions. The operand
rl specifies the general register that can
be assumed to contain the base address
represented by operand v. Operands r2, r3,
r4# • specify registers that can be
assumed to contain v+4096, v+8192, v+12288,

., respectively. The values of the
operands rl, r2, r3, ••. , r16 must be
between 0 and 15. For example, the state­
ment':

r-------T-----------T---------------------,
I Name I Operation ,Operand I
~-------+-----------+---------------------~
, I USING 1*,12,13 , L _______ ~ ___________ ~ _____________________ J

tells the assembler it may assume that the
current value of the location counter will
be in general register 12 at object time~
and that the current value of the location
counter" incremented by 4096, will be in
general register 13 at object time.

If the programmer changes the value in a
base register currently being used, and
wishes the assembler to compute displace­
ment from this value, the assembler must be
told the new value by means of another
USING statement. In the following sequence
the assembler first assumes that the value
of ALPHA is in register 9. The second
statement then causes the assembler to
assume that ALPHA+l000 is the value in
register 9.

r------T-----------T----------------------,
I Name ,Operation I operand I
~------+-----------+----------------------~
, I USING 'ALPHA, 9 I
I I ., I
, I . I I
, 'USING ,ALPHA+l000, 9 I L ______ ~ ___________ ~ ______________________ J

If the programmer has to refer to the
first 4096 bytes of storage, he can use
general register 0 as a base register sub­
ject to the following conditions:

1.

20

The value of operand v must be either
absolute or relocatable zero or simply
relocatable, and

2. register 0 must be specified as operand
rl.

The assembler assumes that register 0
contains zero. Therefore, regardless of
the value of operand v, it calculates dis­
placements as if operand v were absolute
or relocatable zero. The assembler also
assumes that subsequent registers specified
in the same USING statement contain 4096,
8192, etc.

NOTE: If register 0 is used as a base
register, the program is not relocatable,
despite the fact that operand v may be

.relocatable. The program can be made re­
locatable by:

1. Replacing register 0 in the USING
statement.

2. Loading the new register with a re­
locatable value.

3. Reassembling the program.

DROP -- Drop Base Register

The DROP instruction specifies a pre­
viously available register that may no
longer be used as a base register. The
format of the DROP instruction statement is
as follows:

r-------T-----------T---------------------,
I Name ,Operation I Operand ,
~-------+-----------+---------------------~ I A se- 'DROP 'Up to 16 absolute ,
, que~c~ , 'expressions of the ,
I sym 0 , If orm rl, r2 , I

or 6 I blank , I r 3, ••• , rl I L! ______ ~ ___________ ~ _____________________ J

The expressions indicate general reg­
isters previously named in a USING state­
ment that are now unavailable for base
addressing. The following statement, for
example, prevents the assembler from using
registers 7 and 11:

r------T-----------T----------------------,
'Name ,Operation ,Operand I
~-----+-----------+----------------------~
I , DROP 17 , 11 I L ______ ~ ___________ ~ ______________________ J

It is not necessary to use a DROP
statement when the base address being used
is changed by a USING statement; nor are
DROP statements needed at the end of the
source program.

A register made unavailable by a DROP
instruction can be made available again by
a subsequent USING instruction.

PROGRAMMING WITH THE USING INSTRUCTION

The USING (and DROP) instructions may be
used anywhere in a program, as often as
needed, to indicate the general registers
that are available for use as base reg­
isters and the base address values the
assembler may assume each contains at ex­
ecution time. Whenever an address is spec­
ified in a machine-instruction statement.,
the assembler determines whether there is
an available register containing a suitable
base address. A register is considered
available for a relocatable address if it
was specified in a USING instruction to
have a relocatable value. A register with
an absolute value is available only for
absolute addresses. In either case, the
base address is considered suitable only if
it is less than or equal to the address of
the item to which the reference is made.
The difference between the two addresses
may not exceed 4095 bytes. In calculating
the base register to be used# the assembler
will always use the available register
giving the smallest displacement. If there
are two registers with the same value, the
highest numbered register will be chosen.

r-------T-----------T---------------------,
I Name I Operation 1 Operand I
~-------+-----------+---------------------~
IBEGIN IBALR 12,0 I
I I US ING 1 * , 2 I
I FIRST I • I I
I 1 • I I
1 I • 1 I
I LAST I· I I
I lEND I BEGIN I L _______ i ___________ i _____________________ J

In the preceding sequence, the BALR
instruction loads register 2 with the
address of the first storage location
immediately following. In this case, it is
the address of the instruction named FIRST.
The USING instruction indicates to the
assembler that register 2 contains this

location. When employing this method, the
USING instruction must immediately follow
the BALR instruction. No other USING or
load instructions are required if the loca­
tion named LAST is within 4095 bytes of
FIRST.

In Figure 3-1# the BALR and LM instruc­
tions load registers 2-5. The USING
instruction indicates to the assembler that
these registers are available as base reg­
isters for addressing a maximum of 16,384
consecutive bytes of storage, beginning
with the location named HERE. The number
of addressable bytes may be increased or
decreased by altering the number of reg­
isters designated by the USING and LM
instructions and the number of address
constants specified in the DC instruction.

RELATIVE ADDRESSING

Relative addressing is the technique of
addressing instructions and data areas by
designating their location in relation to
the location counter or to some symbolic
location. This type of addressing is
always in bytes, never in bits, words, or
instructions. Thus, the expression *+4
specifies an address that is four bytes
greater than the current value of the
location counter. In the sequence of
instructions shown in the following exam­
ple, the location of the CR machine
instruction can be expressed in two ways,
ALPHA+2 or BETA-4, because all of the
mnemonics in the example are for 2-byte
instructions in the RR format.

r-------T-----------T---------------------,
IName IOperation I Operand I
~-------+-----------+---------------------~
IALPHA ILR 13,4 I
I ICR 14 ,6 I
I I BCR 11 , 14 I
I BETA I~B 12,3 I L _______ i ___________ i _____________________ J

r----------T-----------T----------------------~---,
I Name I Opera tion I Operand I
~----------+-----------+--~
I BEGIN IBALR 12,0 I
I I USING IHERE,2,3.,4,,5 I
I HERE I LM 13,5, BASEADDR I
I IB I FIRST I
IBASEADDR IDC IA(HERE+4096,HERE+8192,HERE+12288) I
I FIRST I. I I
I I . I I
I I . I I
I LAST I. I I
I lEND I BEGIN I L __________ i ___________ i __ J

Figure 3-1. Multiple Base Register Assignment

Section 3: Addressing -- Program Sectioning and Linking 21

PROGRAM SECTIONING AND LINKING

It is often convenient, or necessary, to
write a large program in sections. The
sections may be assembled separately, then
combined into one object program. The
assembler provides facilities for creating
multisectioned programs and symbolically
linking separately assembled programs or
program sections.

Sectioning a program is optional, and
many programs can best be written without
sectioning them. The programmer writing an
unsectioned program need not concern him­
self with the subsequent discussion of
program sections, which are called control
sections. He need not employ the CSECT
instruction, which is used to identify the
control sections of a multisection program.
Similarly, he need not concern himself with
the discussion of symbolic linkages if his
program neither requires a linkage to nor
receives a linkage from another program.
He may, however, wish to identify the
program and/or specify a tentative starting
location for it, both of which may be done
by using the START instruction. He may
also want to employ the dummy section
feature obtained by using the DSECT
instruction.
Note: Program sectioning and linking is
closely related to the specification of
base registers for each control section.
Sectioning and linking examples are provid­
ed under' the heading "Addressing External
Control Sections."

CONTROL SECTIONS

The concept of program sectioning is a
consideration at coding time, assembly
tillie, and load time. To the programmer, a
program is a logical unit. He may want to
divide it into sections called control
sections; if so, he writes it in such a way
that control passes properly from one sec­
tion to another regardless of the relative
physical position of the sections in stor-
age. A control section is a block of
coding that can be relocated, independently
of other coding, at load time without
altering or impairing the operating logic
of the program. It is normally identified
by the CSECT instruction. However, if it
is desired to specify a tentative starting
location, the START instruction may be used
to identify the first control section.

To the assembler, there is no such thing
as a program; instead, there is an assero­
bly, which consists of one or more control
sections. (However, the terms assembly and

22

program are often used interchangeably.>
An unsectioned program is treated as a
single control section. To the linkage
editor, there are no programs, only control
sections that must be fashioned into a load
module.

The output from the assembl~r is called
an obje~t module. It contains data re­
quired for linkage editor processing. The
external symbol dictionary, which is part
of the object module, contains information
the linkage editor needs in order to com­
plete cross-referencing between control
sections as it combines them into an object
program. The linkage editor can take
control sections. from various assemblies
and combine them properly with the help of
the corresponding control dictionaries.
Successful combination of separately
assembled control sections depends on the
techniques used to provide symbolic
linkages between the control sections.

Whether the programmer writes an unsec­
tioned program, a multisection program, or
part of a multisection program, he still
knows what eventually will be entered into
storage because he has described storage
symbolically. He may not know where each
section appears in storag.e, but he does
know what storage contains. There is no
constant relationship between control sec­
tions. Thus, knowing the location of one
control section does not make another con­
trol section addressable by relative
addressing techniques.

The programmer must be aware that there
is a limit to external symbol dictionary
entries. The total number of control
sections, dummy sections, unique symbols
in EXTRN and WXTRN statements, V-type
address constants, and external dummy
sections m~st not exceed 255. Certain con­
stants may cause a symbol to be counted
twice: e.g., external symbols in V-type
address constants (unless they are expli­
citly defined in an EXTRN or WXTRN state­
ment), and external dummy sections
implicitly defined by Q-type address
constants and corresponding DSECT state­
ments. EXTRN and WXTRN statements are
described in this section; V-type and
Q-type constants in Section 5 under
"Operand Subfield 4: Constant."

Control Section Location Assignment

Control sections can be intermixed
because the assembler provides a location
counter for each control section. Loca­
tions are assigned to control sections as

if the sections are placed in storage
consecutively, in the same order as they
first occur in the program. Each control
section subsequent to the first begins at
the next available double-word boundary.

FIRST CONTROL SECTION

The first control section of a program
has the following special prcperties:

1. Its initial location counter value may
be specified as an absolute value, if
the START instruction is used.

2. It contains the literals of the program,
unless their positioning has been altered
by LTORG statE?ments.

START -- start Assembly

The START instruction may be used to
give a name to the first (or only) control
section of a program. It may also be used
to specify an initial location counter
value for the first control section of the
program. The format of the START instruc­
tion statement is as follows:

r----------T-----------T------------------,
I Name I Operation I Operand I
~----------+-----------+--------------~---~
I Any I START IA self-defining I
I symbol 1 Iterm, or blank I
lor blank 1 I I ~-_________ L ___________ i __________________ J

If a symbol names the START instruction,
the symbol is established as the name of
the control section. If not, the control
section is considered to be unnamed. All
subsequent statements are assembled as part
of that control section. This continues
until a CSECT instruction identifying a
different control section or a DSECT
instruction is encountered. A CSECT
instruction named by the same symbol that
names a START instruction is considered to
identify the continuation of the control
section first identified by the START.
Similarly, an unnamed CSECT that occurs in
a program initiated by an unnamed START is
considered to identify the continuation of
the unnamed control section.

The symbol in the name field is a valid
relocatable symbol whose value represents
the address of the first byte of the
control section. It has a length attribute
of 1.

The assembler uses the self-defining
term specified by the operand as the ini­
tial location counter value of the program.
This value should be divisible by eight.
For example, either of the following state­
ments could be used to assign the name
PROG2 to the first control section and to
indicate an initial assembly location coun­
ter value of 2040. If the operand is omit­
ted, the assembler sets the initial location
counter value of the program at zero. The
location counter is set at the next double­
word boundary when the value of the START
operand is not divisible by eight.

r-------T-----------T---------------------,
·1 Name I Operation I Operand I
~-------+-----------+---------------------~
IPROG2 1 START 12040 I
IPROG2 ISTART IX'7F8' 1 L _______ ~ ___________ ~ _____________________ J

Note:The START instruction must not be
preceded by any code that will cause an
Urinamedc:control section to be Bssembled.
(See "Unnamed First Control SectiOn"
below.)

CSECT -- Identify Control Section

The CSECT instruction identifies the
beginning or the continuation of a control
section. The format of the CSECT instruc­
tion statement is as follows:

r----------T-----------T------------------,
I Name I Operation I Operand I
~----------+-----------+------------------~
I Any ICSECT INot used; should I
I symbol 1 Ibe blank I
lor blank I I ~ l __________ ~ ___________ l ____ ~ _____________ J

If a symbol names the CSECT instruction,
the symbol is established as the name of
the control section; otherwise the section
is considered to be unnamed. All state­
ments following the CSECT are assembled as
part of that control section until a state­
ment identifying a different control sec­
tion is encountered (i.e., another CSECT or
a DSECT instruction).

The symbol in the name field is a valid
relocatable symbol whose value represents
the address of the first byte of the
control section. It has a length attribute
of 1.

Several CSECT statements with the same
name may appear within a program. The
first is considered to identify the begin­
ning of the control section; the rest
identify the resumption of the section.

Section 3: Addressing -- Program Sectioning and Linking 23

Thus, statements from different control
sections may be interspersed. They are
properly assembled (assigned contiguous
storage locations) as long as the state­
ments from the various control sections are
identified by the appropriate CSECT
instructions.

Unnamed First Control Section

All machine instructions and many assem­
bler instructions have to belong to a con­
trol section. If such an instruction pre­
cedes the first CSECT instruction, the
assembler will consider it to belong to an
unnamed control section (also referred to
as private code), which will be the first
(or only) control section in the module.

The following instructions will not
cause this to happen, since they do not
have to belong to a control section:

Common Control Sections
Dummy Control Sections
Macro Definitions
Conditional Assembly Instructions
Comments
COpy (depends on the copied code)
DXD
EJECT
ENTRY
EXTRN
ICTL
ISEQ
OPSYN
PRINT
PUNCH
REPRO
SPACE
TITLE
WXTRN

No other assembler or machine instructions
can precede a START instruction, since START,
if used, must initiate the first control
section in the program.

An involuntary unnamed control section
at the beginning can cause trouble if
literals are used. Then the programmer must
be aware of the fact, that unless he codes
an LTORG statement in each control section
where he uses literals, literals will be
assembled in the first control section,
which will in this case be the involuntary
section. If that control section does not
establish addressability (through USING),
an addressability error will be the result.
Therefore statements like EQU should not
be placed before the first CSECT or the
.START instruction.

Resumption of an unnamed control section
at later points can be accomplished through
unnamed CSECT statements. A program can
contain only one unnamed control section.

24

Of course, it is possible to write a pro­
gram that does not contain CSECT or START
statements. It will then be assembled as
one .unnamed control section.

DSECT -- Identify Dummy section

A dummy section represent.s a control
section that is assembled but is not part
of the object program. A dummy section is
a convenient means of describing the layout
of an area of storage without actually
reserving the storage. (It is assumed that
the storage is reserved either by some
other part of this assembly or else by
another assembly.) The DSECT instruction
identifies the beginning or resumption of a
dummy section. More than one dUITlmy section
may be defined per assembly, but each must
be named. The format of the DSEC'I' instruc­
tion statement is as follows:

arne Operation

vari- DSECT
able symbol
or ordinary
symbol

Operand

Not used; shoul
be blank

The symbol in the name field is a valid
relocatable symbol whose value represents
the first byte of the section. It has a
length attribute of 1.

Program statements belonging to dummy
sections may be interspersed throughout the
program or may be written as a unit. In
either case, the appropriate DSECT instruc­
tion should precede each set of statements.
When multiple DSECT instructions with the
same name are encountered, the first is
considered to initiate the dummy section
and the rest to continue it. All assembler
language instructions may occur within
dummy sections.

Symbols that name statements in a dummy
section may be used in USING instructions.
Therefore, they may be used in program
elements (e.g., machine-instructions and
data definitions) that specify storage
addresses. An example illustrating the use
of a dummy section appears subsequently
under "Addressing Dummy, sections."
Note: Symbols that name statements in a
dummy section may be used in A-type address
constants only when they are paired with
another symbol from the same dummy section
in an absolute expression'-- (See "Absolute
and Relocatable Expressions", Section 2).
For example, if X and B name statements in
the same dummy section, C DC A(B-X) would
be valid, but C DC A(X) would be invalid-­
yielding a relocatability error.

DUMMY SECTION LOCATION ASSIGNMENT: A loca­
tion counter is used to determine the
relative locations of named program ele­
ments in a durnrry section. The location
counter is always set to zero at the
beginning of the dummy section, and the
location values assigned to symbols that
name statements in the dummy section are
relative to the initial statement in the
section.

ADDRESSING DUMMY SECTIONS: The programmer
may wish to describe the format of an area
whose storage location will not be deter­
mined until the program is executed. He
can describe the format of the area in a
dummy section, and he can use symbols
defined in the dummy section as the oper­
ands of machine instructions. To effect
references to the storage area, he does the
following:

1. Provides a USING statement specifying
both a general register that the
asserr~ler can assign to the machine­
instructions as a base register and a
value from the dummy section that the
assembler may assume the register con­
tains.

2. Ensures that the same register is
loaded with the actual address of the
storage area.

The values assigned to symbols defined
in a dummy section are relative to the
initial statement of the section. Thus,
all machine-instructions which refer to
names defined in the dummy section will, at
execution time, refer to storage locations
relative to the address loaded into the
register.

An example is shown in the following
COding. Assume that two independent assem­
blies (assembly 1 and assembly 2) have been
loaded and are to be executed as a single
overall program. Assembly 1 is an input
routine that places a record in a specified
area of storage, places the address of the
input area containing the record in general
register 3, and branches to assembly 2.
Assembly 2 processes the record. The cod­
ing shown in the example is from assembly
2.

The input area is described in assembly
2 by the DSECT control section named INAR­
EA. Portions of the input area (i.e.,
record) that the programmer wishes to work
with are named in the DSECT control section
as shown. The assembler instruction USING
INAREA,3 designates general register 3 as
the base register to be used in addressing
the DSECT control section, and that general
register 3 is assumed to contain the
address of INAREA.

Assembly 1, during execution, loads the
actual beginning address of the input area
in general register 3. Because the symbols
used in the DSECT section are defined
relative to the initial statement in the
section, the address values they represent,
will, at the time of program execution, be
the actual storage locations of the input
area.

r---------T-----------T-------------------,
IName I Operation I Operand I
~---------+-----------+-------------------i
ASMBLY2 ICSECT I
BEGIN IBALR 12,0

ATYPE

WORKA
IWORKB
I
I
IINAREA
IINCODE
IINPUTA
IINPUTB
I

IUSING 1*,2
I I
I I
IUSING IINAREA,3
ICLI IINCODE,C'A'
IBE IATYPE
I I
I I
IMVC WORKA,INPUTA
IMVC WORKB,INPUTB
I
I
IDS
IDS
I
I
IDSECT
IDS
IDS
IDS
I •

CL20
CL1S

CL1
CL20
CL1S

I lEND L _________ ~ ___________ ~ __________________ _

The programmer must ensure that a section
of code in his program is pctually described
by the dummy section whic~ references it.
Consider the following example, which
illustrates how a dummy section should not
be addressed:

arne Operation

EST CSECT

ALF
ULL

REA
ALF
ULL

CNOP
DS
DS

END

DSECT
DS
DS

Operand

2,4
CL2
F

CL2
F

Section 3: Addressing -- Program Sectioning and Linking 25

Note that in the dummy section AREA, two
bytes are skipped between HALF and FULL in
order to align FULL on a fullword boundary.
In the control section TEST, however, the
CNOP instruction causes two bytes to be
skipped. Thus FULL is properly aligned with­
out skipping any bytes between HALF and
FULL.

When the programmer addresses the dummy
section, the location of FULL (relative to
the location of HALF) will not be the same
as the location of FULL in the control
section.

~: To correct this example change the
CNOP instruction to CNOP 0,4.

EXTERNAL DUMMY SECTIONS (ASSEMBLER F ONLY)

External dummy sections facilitate com­
munication between programs by allowing the
programmer to define work areas in several
different programs and then at execution to
combine them into one block of storage
accessible to each program. Several dif­
ferent programs may be assembled together,
each with one or more external dummy sec­
tions and after the linkage editor process­
es these programs, the programmer can allo­
cate storage for the dummy sections in one
block. External dummy sections are defined
through the use of the DXD instruction or a
DSECT in combination with a Q-type DC in­
struction. In order to allocate the cor­
rect amount of storage when the program is
executed, the programmer must use the CXD
instruction, described below, within one
of the programs.

DXD -- DEFINE EXTERNAL DUMMY SECTION

The DXD instruction (also referred to
as a Pseudo Register) defines an external
dummy sectioniwhen the assembler encoun­
ters a DXD instruction, it computes the
amount of storage required and the align­
ment and passes this information to the
linkage editor which will compute the total
length of the external dun~y sections. The
format for the DXD instruction is:

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
IA symbollDXD IDuplication factor, I
I I I type, length, constant I L ________ ~ _________ ~ ______________________ J

The symbol in the name field is a symbol
that usually appears as a Q-type constant
in the operand field of a DC statement
later in the program. It has a length
attribute of 1. The operand form and
alignment are the same as that described
for the DS instruction. If more than one
external dummy section with the same name
is encountered by the linkage editor, it

26

uses the largest section in computing total
length; if two or more identically named
external dummy sections have different
boundary alignments, the linkage editor
uses the most restrictive alignment in
computing total length. An.external dummy
section is generated by a Q-type address
constant which references a DSECT name.

CXD - CUMULATIVE LENGTH EXTERNAL DUMMY
SECTION

The CXD instruction allocates a four-byte
full-word aligned area in storage which will
contain the sum of the lengths of all ex­
ternal dummy sections when the program is
executed. This sum is supplied by the link­
age editor. The instruction format is:

r-----------------T---------T-------------,
I Name I Operation I Operand I
~-----------------+---------+-------------~
I Any symbol or I CXD I Must be blank I
I blank l , . t ~_________________ _ ______________________ t

The CXD instruction may appear anywhere
within a program, or if several programs
are being combined, it m~y appear in each
program. The symbol 1n the name field
has a length attribute of 4.

The following example shows how external
dummy sections may be used.

ROUTINE A
r-----------T--------------T--------------,
I Name I Operation I Operand I
~-----------+--------------+--------------~
I ALPHA I DXD 12DL8 I
I BETA I DXD 14FL4 I
IOMEGA ICXD I I
t I . I I
I I . I I
I I DC I Q (ALPHA) I
I IDC IQ(BETA) I
I I . I I
I I • I I L ___________ i ______________ ~ ______________ J

ROUTINE B
r-----------T--------------T--------------,
I Name I Operation I Operand I
~-----------+--------------+--------------~
I GAMMA I DXD I 5D I
I DELTA I DXD 110F I
I I . I I
I I . I I
I I DC I Q (GAMMA) I
I IDC IQ(DELTA) I
I I . I I
I I . I I L ___________ ~ ______________ ~ ______________ J

ROUTINE C
r-----------T--------------T--------------,
IName I Operation I Operand I
~-----------+--------------+--------------~
I EPSILON IDXD 14H I
I I . I I
I I . I I
I IDC IQ(EPSILON) I
I I · I I
I I • 1 I L ___________ ~ ______________ ~ ______________ J

Each of the three routines is requesting an
amount of work area. Routine A wants 2
double words and 4 full words. Routine B
wants 5 double words and 10 full words.
Routine C wants 4 half words. At the time
these routines are brought into storage the
sum of the individual lengths will be
placed in the ,location of the CXD
instruction labeled OMEGA. Routine A can
then allocate the amount of storage that is
specified in the CXD location.

COM -- DEFINE BLANK COMMON CONTROL SECTION

The COM assembler instruction identifies
and reserves a common area of storage that
may be referred to by independent assem­
blies that have been linked and loaded for
execution as one overall program.

Appearances of a COM statement after the
initial one indicate the resumption of the
blank common control section.

When several assemblies are loaded, each
designating a common control section, the
amount of storage reserved is equal to the
longest common control section. The format
is:
r----------~----------l--------------------~
I Name :operation I Operand I
t----------T----------t--------------------J
I A se- I COM I Blank I
I quence I I I
I symbol or I I I,
I blank I I I
~---------l----------l-------_____________ J

The common area may be broken up into
subfields through use of the DS and DC
assembler instructions. Names of subfields
are defined relative to the beginning of
the common section, as in the DSECT control
section.

It is necessary to establish address­
ability relative to a named statement with­
in COM since the COM statement itself can­
not have a name. In the following example,
addressability to the common area of stor­
age is established relative to the named
statement XYZ.

1--------,-----------,--------------------
1 1 • 1
1 Name 1 Operatl.on 1 Operand
1 1 1 I ________ L ___________ ~ ___________________ _

XYZ
PDQ

L
USING
MVC

COM
DS
DS

l,=A(XYZ)
XYZ,l
PDQ(l6),=4C'ABCD'

l6F
16C

No instructions ,or constants appearing
in a common control section are assembled.
Data can only be placed in a common control
section through execution of the program.
A blank common control section may include
any assembler language instructions.

If the assignment of common storage is
done in the same manner by each independent
assembly, reference to a location in common
by any assembiy results in the same loca­
tion being referenced. When the blank
common control section is assembled, the
initial value of the location counter is
set to zero.

SYMBOLIC LINKAGES

Symbols may be defined in one module
and referred to in another, thus effecting
symbolic linkages between independently
assembled program sections. The linkages
can be effected only if the assembler is
able to provide information about the
linkage symbols to the linkage editor,
which resolves these linkage references at
load time. The assembler places the c
necessary information in the external
symbol dictionary on the basis of the
linkage symbols identified by e.g., the
ENTRY and EXTRN instructions. Note that
these symbolic linkages are described as
linkages between independent modules;
more specifically, they are linkages
between independently assembled control
sections.

In the module where the linkage symbol
is defined (i.e., used as a name), it must
also be identified to the assembler by
means of the ENTRY assembler instruction
unless the symbol is the name of a CSECT
or START statement. It is identified as
a symbol that names an entry point, which
means that another module may use that
symbol 'in order to effect a branch op­
eration or a data reference. The assembler

Section 3: Addressing -- Program Sectioning and Linking 27

places this information in the control
dictionary.

Similarly, the module that uses a sym­
bol defined in some other module must
identify it by the EXTRN or WXTRN assembler
instruction. It is identified as an
externally defined symbol (i.e., defined in
another module) that is used to effect
linkage to the point of definition. The
assembler places this information in the
external symbol dictionary.

Another way to obtain symbolic linkages,
is by using the v-type address constant.
The sUbsection "Data Definition
Instructions" in Section 5 contains the
details pertinent to writing a V-type
address constant. It is sufficient here to
note that this constant may be considered
an indirect linkage point. It is created
from an externally defined symbol, but that
symbol does not have to be identified by an
EXTRN or WXTRN statement. The V-type
address constant may be used for external
branch references (i.e., for effecting
branches to other programs). It may not be
used for external data references (i.e.,
for referring to data in other programs).

ENTRY -- IDENTIFY ENTRY-POINT SYMBOL

The ENTRY instruction identifies linkage
symbols that are defined in one source
module and referenced by other modules.

r-------T-----------T---------------------,
'Name ,Operation I Operand ,
~-------+-----------+---------------------1
I A se- I ENTRY lOne or more reloca- ,
'quence I I table symbols" ,
'symbol I Iseparated by I
lor I I commas, that also ,
Iblank , lappear as state- ,
" ,ment names I L _______ i _____ ~ _____ i _____________________ J

A source module may contain a maximum of
100 ENTRY symbols. ENTRY symbols which are
not defined (not appearing as statement
names), although invalid, will also count
towards this maximum of 100 ENTRY symbols.

The symbols in the ENTRY operand field
may be used as operands by other programs.
An ENTRY statement operand may not contain
a symbol defined in a dummy section or in
a blank common control section. The fol­
lowing example identifies the statements
named SINE and COSINE as entry points to
the program.

28

r-------T---~-------T---------------------
I Name I Operation I Operand 1
.-------+-----------+---------------------~
I I ENTRY I SINE, COSINE I L-------i---________ i _____________________ J

Note: Labels of START and CSECT statements
are-automatically treated as entry-points
to a module. Thus they need not be ident­
ified by ENTRY statements.

EXTRN -- IDENTIFY EXTERNAL SYMBOL

The EXTRN instruction identifies linkage
symbols used by one source module but identi­
fied in another module. Each external symbol
must be identified. This includes symbols
that refer to control section names. The
format of the EXTRN statement is:

--------r----------~·-----------------------I I I .

\ Name \Operation I.Operand
I I I
--------~----------4·----------------______ _ I I '

A se- : EXTRN : One or more relocatable
quence: : symbols, separated by
symbol I I commas
or \ :
blank : :

I I -------------------_._----------------------

The symbols in the operand field may not
appear as the name of statements in the
module where the EXTRN statement is. The
length attribute of an external symbol
is 1.

The following example identifies three
external symbols. They are used as operands
in the module where they appear, but they
are defined in some other module.

r-------T-----------T---------------------,
I Name I Operation I Operand I
~-------+-----------+---------------------~
, , EXTRN , RATEBL, PAYCALC I
I I EXTRN I W ITHCALC , L _______ i ___________ i _____________________ J

An example that employs the EXTRN
instruction appears subsequently under
"Addressing External Control Sections."

Note 1: A V-type address constant does
not have to be identified by an EXTRN state­
ment.

Note 2: When external symbols are used in
an expression they may not be paired. Each
external symbol must be considered as having
a unique relocatability attribute.

Addressing External Control Sections

A common way for a program to link to an
external control section is to:

1. Create a V-type address constant with
the name of the external symbol.

2. Load the constant into a general reg­
ister and branch to the control sec­
tion via. the register.

For example, to link to the control
section named SINE, the following coding
might be used:

r----------T-------~---T------------------,
I Name I Operation I Operand I
~----------+-----------+------------------~
IMAINPROG ICSECT I
I BEGIN IBALR 12 ,0
I I USING 1*,2
I I I
I I I
I IL I3,VCON
I I BALR 11,3
, I I
I I I
IVCON IDC IV(SINE)
I lEND I BEGIN L __________ ~ ___________ ~ _________________ _

An external symbol naming data may be
referred to as follows:

1. Identify the external symbol with the
EXTRN instruction, and create an
address constant from the symbol.

2. Load the constant into a general reg­
ister, and use the register for base
addressing.

The total number of control sections,
dummy sections, external symbols and exter­
nal dummy sections must not exceed 255.
Certain constants may cause a symbol to be
counted twice: external symbols in V-type
address constants <unless they are expli­
citly defined in an EXTRN or WXTRN state­
ment), and external dummy sections im-'
plicitly defined by Q-type address constants
and corresponding DSECT statements. (EXTRN
and WXTRN statements are discussed in this
section; V-type constants in Section 5
under the DC assembler instruction.)

WXTRN -- IDENTIFY WEAK EXTERNAL SYMBOL·

The WXTRN statement has the same format as
the EXTRN statement. It is used to identify
weak external references. The only differ­
ence between a weak (WXTRN) and a strong
(EXTRN or V-type constant) external refer­
ence is that the automatic library call
mechanism of the linkage editor or loader
is not effective for symbols that are identi­
fied in WXTRN statements.

The automatic library call mechanism
searches the call library for any unresolved
external references. If it finds any of
these references, it includes the module
where the reference occurs in the load
module produced by the linkage editor or
loader. Refer to OS Loader and Linkage
Editor for a full description of the
automatic library call mechanism.

The format of the WXTRN instruction is:

For example, to add to register 3 the ,--------,,----------,'-----------------------
, , '0 d contents of a data area named RATETBL, which ,Name , Operatl.on, peran

is in another control section, the following : ________ L _________ l ______________________ _
coding might be used: 'I I

l A se- l WXTRN lOne or more relocatable

r----------T-----------T------------------,
I Name I Operation I Operand I
~----------+-----------+------------------~
MAINPROG CSECT I
BEGIN BALR 12,0

RATEADDR

USING 1*,2

EXTRN

L
USING
A

I
I
IRATETBL
I
I
14 ,RATEADDR
IRATETBL,4
13 ,RATETBL
I
I

DC I A (RATETBL)
END I BEGIN

L __________ ~ _______ ~---~------------------j

: quence : lsymbols, separated by
~ symbol l lcommas
, or I ,

: blank l l
, I ,

,--,

Note: If a V-type address constant is
identified by a WXTRN instruction, the
automatic library call mechanism is
suppressed for it.

Section 3: Addressing -- Program Sectioning and Linking 28.1

This sectien discusses the ceding ef the
machine-instructiens represented in the
assembler language. The reader is reminded
that the functiens ef each machine­
instructien are discussed in the principles
ef eperatien manual (see Preface).

MACHINE-INSTRUCTION STATEMENTS

Machine-instructiens may be represented
symbolically as ass~mbler language
statements. The symbelic fermat ef each
varies accerding to' the actual machine­
instructien fermat, ef which there are
five: RR, RX, RS, SI, and SSe Within each
basic fermat, further variatiens are
pessible.

The symbolic fermat ef a machine­
instructien is similar to', but dees net
duplicate, its actual fermat. Appendix C
illustrates machine fermat fer the five
classes ef instructiens. A mnemenic epera­
tien cede is written in the eperatien
field, and ene er mere eperands are written
in the eperand field. Cemments may be
appended to' a machine-instructien statement
as previeusly explained in sectien 1.

Any machine-instructien statement may be
named by a symbel, which ether assembler
statements can use as an eperand. The
value attribute ef the symbel is the
address ef the leftmest byte assigned to'
the assembled instructien. The length
attribute ef the symbel depends en the
basic instructien fermat, as fellows:

Basic Fermat
RR
RX
RS
S
SI
SS

Length Attribute
2
4
4
4
4
6

Instructien Alignment and Checking

All machine-instructiens are aligned
autematically by the assembler en half-werd
beundaries. If any statement that causes
infermatien to' be assembled requires align­
ment, the bytes skipped are filled with
hexadecimal zerO's. All expressiens that
specify sterage addresses are checked to'
ensure that they refer to' apprepriate
beundaries fer the instructiens in which

SECTION 4: MACHINE-INSTRUCTIONS

they are used. Register numbers are alsO'
checked to' make sure that they specify the
preper registers, as fellews:

1. Fleating-point instructiens must spec­
ify fleating-peint registers 0, 2, 4,
er 6.

2. Deuble-shift, full-werd multiply, and
divide instructiens must specify an
even-numbered general register in the
first eperand.

OPERAND FIELDS AND SUBFIELDS

Seme symbolic eperands are written as a
single field, and ether eperands are writ­
ten as a field fellewed by ene er twO'
subfields. Fer example, addresses censist
ef the centents ef a base register and a
displacement. An eperand that specifies a
base and displacement is written as a
displacement field fellewed by a base reg­
ister subfield, as fellews: 40(5). In the
RX fermat, beth an index register subfield
and a base register subfield are written as
fellews: 40(3,5). In the SS fermat, beth a
length subfield and a base register sub­
field are written as fellews: 40(21,5).

Appendix C shews twO' types ef addressing
fermats fer RX, RS, SI, and SS instruc­
tiens. In each case, the first type shews
the method ef specifying an address expli­
citly, as a base register and displacement.
The secend type indicates hew to' specify an
implied address as an expressien.

Fer example, a lead multiple instructien
(RS fermat) may have either ef the fellew­
ing symbelic eperands:

R1,R3,D2(B2)
RL,R3,S2

explicit address
implied address

Whereas D2 and B2 must be represented by
abselute expressiens, S2 may be represented
either by a relecatable er an abselute
expressien.

In erder to' use implied addresses, the
fellewing rules must be ebserved:

1. The base register assembler instruc­
tiens (USING and DROP) must be used.

2. An explicit base register designatien
must net accempany the implied
address.

Sectien 4: Machine Instructiens 29

For example, assume that FIELD is a
relocatable symbol, which has been assigned
a value of 7400. Assume also that the
assembler has been notified (by a USING
instruction) that general register 12 cur­
rently contains a relocatable value of 4096
and is available as a base register. The
following example shows a machine­
instruction statement as it would be
written in assembler language and as it
would be assembled. Note that the value of
02 is the difference between 7400 and 4096
and that X2 is assembled as zero" since it
was omitted. The assembled instruction is
presented in hexadecimal:

Assembler statement:

ST 4,FIELD

Assembled instruction:

Op.code R1
SO 4

X2 B2
o C

02
CE8

An address may be specified explicitly
as a base register and displacement (and
index register for RX instructions) by the
formats shown in the first column of Table
4-1. The address may be specified as an
implied address by the formats shown in the
second column. Observe that the two stor­
age addresses required by the SS instruc­
tions are presented separately; an implied
address may be used for one, while an
explicit address is used for the other.

Table 4-1. Address Specification Details
r------T----------~-----T-----------------,
I Type IExplicit Address I Implied Address I
~------+----------------+-----------------~ I RX 102{X2,B2) I S2(X2) , I
I 102(,B2) I S2 I
I RS 102(B2) I S2 I
I SI 101 (B1) I Sl I
I SS ID1(Ll,Bl) I SleLl) I
I ID1(L,B1) 1 Sl(L) 1
I ID2(L2,B2) I S2(L2) I L ______ ~ ________________ ~ _________________ J

A comma must separate operands. Paren­
theses must enclose a subfield or sub­
fields, and a comma must separate two
subfields within parentheses. When paren­
theses are used to enclose one subfield,
and the subfield is omitted, the parenthe­
ses must be omitted. In the case of two
subfields that are separated by a comma and
enclosed by parentheses, the following
rules apply:

1.

30

If both subfields are omitted, the
separating comma and the parentheses
must also be omitted.

L
L

2,48 (4, S)
2,FIELD (implied address)

2. If the first subfield in the sequence
is omitted, the comma that separates
it from the second subfield is writ­
ten. The parentheses must also be
written.

MVC 32(16,S)IFIELD2
MVC 32{,S),FIEL02 (implied length)

3. If the second subfield in the sequence
is omitted, the comma that separates
it from the first subfield must be
omitted. The parentheses must be
written.

MVC 32(16,S),FIELD2
MVC FIELD1(16),FIELD2 (implied

address)

Fields and subfields in a symbolic oper­
and may be represented either by absolute
or by relocatable expressions, depending on
what the field requires. (An expression
has been defined as consisting of one term
or a series of arithmetically combined
terms.) Refer to Appendix C for a detailed
description of field requirements.

Note: Blanks may not appear in an operand
unless provided by ~ character self­
defining term or a character literal.
Thus, blanks may not intervene between
fields and the comma separators, between
parentheses and fields, etc.

LENGTHS -- EXPLICIT AND IMPLIED

The length
be explicit or
the programmer
the operand.
the length
following:

field in SS instructions can
implied. To imply a length,
omits a length field from

The omission indicates that
field is either of the

1. The length attribute of the expression
specifying the displacement, if an
explicit base and displacement have
been written.

2. The length attribute of the expression
specifying the effective address, if
the base and displacement have been
implied.

In either case, the length attribute for
an expression is the length of the leftmost
term in the expression. The value of L'.
is the length of the instruction in all
non-literal machine instruction operands
and in the CCW assembler instruction. In
all other uses its value will be 1.

By contrast, an explicit length is writ­
ten by the programmer in the operand as an
absolute expression. The explicit length
overrides any implied length.

Whether the length is explicit or
implied, it is always an effective length.
The value inserted into the length field of
the assembled instruction is one less than
the effective length in the rna chine­
instruction statement.

Note: If a
desired" the
or one.

length field of zero is
length may be stated as zero

To summarize. the length required in an
SS instruction may be specified explicitly
by the formats shown in the first column of
Table 4-2 or may be implied by the formats
shown in the second column. Observe that
the two lengths required in one of the SS
instruction formats are presented separate­
ly. An implied length may be used for one,
while an explicit length is used for the
other.

Table 4-2. Details of Length Specification
in SS Instructions

r-----------------T-----------------------,
I Explicit Length I Implied Length I
~----------------~+-----------------------~ I 01 (L1" Bl) I D1 (, B1) I
I Sl (Ll) I Sl I
I 01(L,Bl) I 01(,Bl) I
I Sl (L) I Sl I
I D2(L2"B2) I D2(,B2) I
1 S2(L2) I S2 I L _________________ ~ _______________________ J

MACHINE-INSTRUCTION MNEMONIC CODES

The mnemonic operation codes (shown in
Appendix D) are designed to be easily
remembered codes that indicate the func­
tions of the instructions. The normal
format of the code is .shown below; the
items in brackets are not necessarily pre­
sent in all codes:

Verb[Modifier] [Data Type] [Machine Format]

The verb, which is usually one or two
characters" specifies the function. For
example. A represents Add " and MV rep­
resents Move. The function may be further
defined by a modifier. For example, the
modifier L indicates a logical function" as
in AL for Add Logical.

Mnemonic codes for functions involving
data usually indicate the data types by
letters that correspond to those for the

data types in the DC assembler instruction
(see Section 5). Furthermore, letters U
and W have been added to indicate short and
long" unnormalized floating-point opera-'
tions, respectively. For example, AE indi­
cates Add Normalized Short, whereas AU
indicates Add Unnormalized Short. Where
applicable, full-word fixed-point data is
implied if the data type is omitted.

The letters R and I are added to the
codes to indicate, respectively" RR and SI
machine instruction formats. Thus, AER
indicates Add Normalized Short in the RR
format. Functions involving character and
decimal data types imply the SS format.

MACHINE-INSTRUCTION EXAMPLES

The examples that follow are grouped
according to machine-instruction format.
They illustrate the various symbolic oper­
and formats. All symbols employed in the
examples must be assumed to be defined
elsewhere in the same assembly. All sym­
bols that specify register numbers and
lengths must be assumed to be equated
elsewhere to absolute values.

Implied addressing, control section
addressing, and the function of the USING
assembler instruction are not considered
here. For discussion of these considera­
tions and for examples of coding sequences
that illustrate them, the reader is
referred to section 3 i' nprogram sectioning
and Linking" and nBase Register Instruc­
tions."

RR Format

r--------T-----------T--------------------,
I Name I Operation IOperand I
~--------+-----------+--------------------~
I ALP HAl ILR ,1,,2 I
IALPHA2 ILR I REG1.,REG2 I
I BETA ISPM 115 I
IGAMMAl ISVC 1250 I
I GAMMA2 I SVC I TEN I L ________ ~ __________ ~ ____________________ J

The operands of ALPHAl, BETA, and GAMMAl
are decimal self-defining values, which are
categorized as absolute expressions. The
operands of ALPHA2 and GAMMA2 are symbols
that are equated elsewhere to absolute
values.

Section 4: Machine Instructions 31

RX Format

r---------T-----------T-------------------,
I Name I Operation I Operand I
I I I I
~---------+-----------+-------------------~
I ALP HAl IL 11.,39(4,10) I
I ALPHA2 ILl REG1, 39 (4., TEN) I
IBETAl IL 12,ZETA(4) I
IBETA2 IL I REG 2, ZETA (REG4) I
IGAMMAl IL 12,ZETA I
IGAMMA2 IL' IREG2,ZETA I
I GAMMA3 I L 12, =F' 1000' I
I LAMBDAl 1 L 13, 20 (, 5) I L _________ ~ ___________ ~ ___________________ J

Both ALPHA instructions specify explicit
addresses; REGl and TEN are absolute sym­
bols. Both BETA instructions specify
implied addresses., and both use index reg­
isters. Indexing is omitted from the GAMMA
instructions. GAMMAl and GAMMA 2 specify
implied addresses. The second operand of
GAMMA 3 is a literal. LAMBDAl specifies no
indexing.

RS Format

r--------T-----------T--------------------,
1 Name I Operation I Operand I
~--------+-----------+--~-----------------~
I ALPHAl I BXH 11 ,,2,20 (14) I
IALPHA2 IBXH IREG1,REG2,20CREGD) I
I ALPHA3 I BXH I REG1" REG2, ZETA I
IALPHA4 ISLL IREG2,15 I
IALPHA5 ISLL IREG2,0(15) I L ________ ~ ___________ ~ ____________________ J

Whereas ALPHA 1 and ALPHA2 specify ex­
plicit addresses, ALPHA3 specifies an
implied address. ALPHA4 is a shift
instruction shifting the contents of REG2
left 15 bit positions. ALPHA5 is a shift
instruction shifting the contents of REG2
left by the value contained in general
register 15.

SI Format

r--------T----------~T--------------------,
I Name I Operation I Operand I
~--------+-----------+--------------------~
I ALP HAl I CLI I 40 (9) , X' ,40 ' I
IALPHA2 ICLI 140(REG9),TEN I
I BETAl I CLI I ZETA" TEN I
IBETA2 ICLI IZETA,C'A' !
--

The ALPHA instructions specify explicit
addresses, whereas the BETA instructions
specify implied addresses.

32

S Format

r----------------------I ----.--------------.
I Name ! Operation I' Operand I r-------,-------------r------------------,
I GAMMAl I SIO I 40 (9) I
I GAMMA2 I SIO I 0 (9) I I I I I
I GAMMA3 I SIO I 40 (O) I

I GAMMA4 I SIO I ZETA I
I I I I ""------- ... --------.-----~------~-------.. -...

The GAMMAl, GAMMA2 and GAMMA3 instructions
specify explicit addresses. The GAMMA4 in­
struction specifies an implied address. The
GAMMA2 instruction specifies a displacement
of zero. The GAMMA3 instruction does not
specify a base register.

SS Format

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
I ALP HAl lAP 140(9,S),30C6,7) I
IALPHA2 lAP 140CNINE,REGS),30CL6,7) I
IALPHA3 lAP IFIELD2,FIELDl I
IALPHA4 lAP IFIELD2(9),FIELD1(6) I
I BETA lAP IFIELD2(9),FIELDl I
I GAMMAl I MVC I 40 (9 , S), 30 (7) I
I GAMMA 2 IMVC 140(NINE,REGS),DEC(7) I
I GAMMA3 I MVC I FIELD2 , FIELDl I
I GAMMA 4 IMVC IFIELD2(9),FIELDl I L---_____ ~ _________ ~ ______________________ J

ALP HAl , ALPHA2, GAMMA1, and GAMMA2 spec­
ify explicit lengths and addresses. ALPHA3
and GAMMA3 specify both implied length and
implied addresses. ALPHA4 and GAMMA4 spec­
ify explicit length and implied addresses.
BETA specifies an explicit length for
FIELD2 and an implied length for FIELD1;
both addresses are implied.

EXTENDED MNEMONIC CODES

For the convenience of the programmer,
the assenbler provides extended mnemonic
codes., which allow conditional branches to
be specified mnemonically as well as
through the use of the BC machine­
instruction. These extended mnemonic codes
specify both the machine branch instruction
and the condition on which the branch is to
occur. The codes are not part of the
universal set of machine-instructions, but
are translated by the assembler into the
corresponding operation and condition
combinations.

The allowable extended mnemonic codes
and their operand formats are shown in
Figure 4-1, together with their machine­
instruction equivalents. Unless otherwise
noted, all extended mnemonics shown are for
instructions in the RX format. Note that
the only difference between the operand
fields of the extended mnemonics and those
of their machine-instruction equivalents is
the absence of the R1 field and the comma
that separates it from the rest of the
operand field. The extended mnemonic list,
like the machine-instruction list, shows
explicit address formats only. Each
address can also be specified as an implied
address.

Section 4: Machine Instructions 32.1

r---,
Extended Code Meaning Machine-Instruction

B D2 (X2, B2)
BR R2
NOP D2 (X2, B2)
NOPR R2

Used After

BH D2(X2,B2)
BL D2(X2,B2)
BE D2(X2,B2)
BNH D2(X2,B2)
BNL 02 (X2" B2)
BNE D2(X2,B2)

Used After

BO D2(X2,B2)
BP 02(X2,B2)
BM 02(X2,B2)
BZ 02(X2,B2)
BNP 02(X2,B2)
BNM D2(X2,B2)
BNZ D2(X2,B2)

Used After

Branch Unconditional
Branch Unconditional (RR
No Operation
No Operation (RR format)

Compare Instructions

Branch on High
Branch on Low
Branch on Equal
Branch on Not High
Branch on Not Low
Branch on Not Equal

Arithmetic Instructions

Branch on Overflow
Branch on Plus
Branch on Minus
Branch on Zero
Branch on Not Plus
Branch on Not Minus
Branch on Not Zero

Test Under Mask Instructions

format)
BC 15,02(X2,B2)
BCR 15,R2
BC O,02(X2,B2)
BCR O,R2

BC 2,02(X2,B2)
BC 4,02(X2,B2)
BC 8,02(X2,B2)
BC 13,02(X2,B2)
BC 11,D2(X2,B2)
BC 1,02(X2,B2)

BC 1,02 (X2" B2)
BC 2,02 (X2" B2)
BC 4,02(X2,B2)
BC 8,02 (X2" B2)
BC 13,02(X2,B2)
BC 11,02 (X2" B2)
BC 7,02(X2,B2)

BO 02(X2,B2) Branch if Ones BC 1,02(X2,B2)
BM 02(X2~B2) Branch if Mixed BC 4,02(X2,B2)

IBZ 02(X2,B2) Branch if Zeros BC 8,02(X2,B2)
IBNO 02(X2,B2) Branch if Not Ones BC 14,D2(X2,B2) L ___ J

Figure 4-1. Extended Mnemonic Codes

In the following examples, which illus­
trate the use of extended mnemonics, it is
to be assumed that the symbol GO is defined
elsewhere in the program.

r------T-----------T----------------------,
1 Name 1 Operation I Operand I
~------+-----------+----------------------~
1 I B 1 40 (3., 6) 1
1 IB 140(,6) 1
1 1 BL 1 GO (3) 1
1 IBL IGO 1
1 IBR 14 1 l ______ ~ ___________ ~ ______________________ J

The first two instructions specify an
unconditional branch to an explicit
address. The address in the first case is
the sum of the contents of base register 6,
the contents of index register 3, and the
displacement 40; the address in the second
instruction is not indexed. The third
instruction specifies a branch on low to
the address implied by GO as indexed by the
contents of index register 3; the fourth
instruction does not specify an index reg­
ister. The last instruction is an uncondi­
tional branch to the address contained in
register 4.

Section 4: Machine Instructions 33

Just as machine' instructions are used to
request the computer to perform a sequence
of operations during program execution
time, so assembler instructions are
requests to the assembler to perform cer­
tain operations during the assembly.
Assembler-instruction statements, in
contrast to machine-instruction statements,
do not usually cause machine~instructions
to be included in the assembled program.
Some, such- as DS and DC, generate no
instructions but do cause storage areas to
be set aside for constants and other data.
Others, such as EQU and SPACE, are effec­
tive only at assembly time; they generate
nothing in the assembled program and have
no effect on the location counter.

The following is a list of assembler
instructions.

Symbol Definition Instruction
EQU - Equate Symbol

o eration Code Definition Instruction
OPSYN - Equate Operat10n Code Assembler F

only)

Data Definition Instructions
DC - Define Constant
DS Define Storage
CCW Define Channel Command Word

* Program Sectioning and Linking Instruc­
tions
START - Start Assembly
CSECT - Identify Control-Section
CXD - Cumulative Length of External

Dummy Section (Assembler F only)
DSECT - Identify Dummy Section
DXD -IDefine External Dummy Section

(Assembler F only)
ENTRY - Identify Entry-Point Symbol
EXTRN - Identify External Symbol
WXTRN - Identify Weak External Symbol

(Assembler F only)
COM - Identify Blank Common Control

Section

* Base Register Instructions
USING - Use Base Address Register
DROP - Drop Base Address Register
Listing Control Instructions
TITLE - Identify Assembly Output
EJECT - Start New Page
SPACE - Space Listing
PRINT - Print Optional Data

Program Control Instructions
ICTL - Input Format Control
ISEQ - Input Sequence Checking

* Discussed in Section 3.

SECTION 5: ASSEMBLER INSTRUCTION STATEMENTS

PUNCH - Punch a card
REPRO - Reproduce Following Card
ORG - Set Location Counter
LTORG - Begin Literal Pool
CNOP - Conditional No Operation
COP.Y - Copy Predefined Source Coding
END - End Assembly

SYMBOL DEFINITION INSTRUCTION

EQU -- EQUATE SyMBOL

The EQU
symbol by
value, and
expression
mat of the
follows:

instruction is ~sed to define a
assigning to it the length,

relocatability attributes of an
in the operand field. The for­

EQU instruction statement is as

r--------,------T------, I Name I Operation I Operand I
~--------r------+-----~i
I A variable I EQU I An . I
I symbol or I I express10n I
I ordinary I I I
Lsymbol ____ J ______ 1 ______ J

The expression in the operand field can
be absolute or relocatable. Any symbols
appearing in the expression must be pre­
viously defined.

The symbol in the name field is given
the same length, value, and relocatibility
attributes as the expression in the operand
field. The length attribute of the symbol
is that of the leftmost (or only) term of
the expression. In the case of EQU to * or
to a self-defining term, the length attri­
bute is 1. The value attribute of the
symbol is the value of the ~xpression-.

The EQU instruction is used to equate
symbols to register numbers, immediate
data, or other arbitrary values. The
following examples illustrate how this can
be done:

r------T-----------T----------------------,
I Name I Operation I Operand I
~------+-----------+----------------------~
IREG2 IEQU 12 (general register) 1
ITEST IEQU IX'3F' (immediate data) 1 L ______ ~ ___________ ~ ______________________ J

To reduce programming time, the program­
mer can equate symbols to frequently used
expressions and then use the symbols as
operands in place of the expressions.
Thus, in the statement:

Section 5: Assembler Instruction Statements 35

r---·----T-----------T---------------------,
I Name I Operation I Operand I
~-------+-----------+---------------------~
I I I I
I F·IELD I EQU I ALPHA-BETA+GAMMA I L _______ ~ ___________ ~ _____________________ J

FIELD is defined as ALPHA-BETA+GAMMA and
may be used in place of it. Note, however,
that ALPHA, BETA, and GAMMA must all be
previously defined. If the final result of
the expression is negative, it is treated
as if it were positive, i.e., the low-order
24 bits of the 2's complement is used.

The assembler assigns a length attribute
of I in an EQU to * statement.

OPERATION CODE DEFINITION INSTRUCTION

OPSYN -- EQUATE OPERATION CODE (ASSEMBLER F
ONLY)

The OPSYN instruction is used to define
a machine mnemonic or extended mnemonic
operation code as equivalent to another
operation code. It is also used to prevent
the assembler from recognizing an operation
coqe. The OPSYN instruction has two for­
mats:
,-----.-----...,.-----------,
I Name I Operation I Operand I r----,------r----------;
I Any I OPSYN , A machine instruc- I
lordinary I I tion mnemonic code,1
I symbol,. , , an. extended mnem- I

I
,except ani ,I on1C code, or an ,
assembler I , operation code de- I

'operation, I fined ~y a pre~iousf
~o~_~~_~ ___ ~~~Y~~~~ct~~J

In this format, the OPSYN instruction
assigns all the properties of the opera­
tion code in the operand field to the
symbol in the name field. The symbol in
the name field can be a previously defined
machine or extended mnemonic operation
code. In this case, the latest definition
takes precedence.
r-------,------r-----'
I Name , Operation I Operand I
r-------~------~------i
, A machine or I OPSYN I Blank I
, extended mnem- I I
Ionic operation I I I
~ode ______ ~ ______ L ______ ~

In this, format, the OPSYN instruc±ion
prevents the assembler from recognizing
,the operation code in the name field.

Only ICTL and OPSYN instructions may precede
an OPSYN instruction.

36

Additional information on use of the OPSYN
instruction is contained in OS Assembler (F)
Programmer's Guide.

DATA DEFINITION INSTRUCTIONS

There are three data definition instruc­
tion statements: Define constant (DC),
Define storage (OS), and Define Channel
Command Word (CCW).

These statements are used to enter
data constants into storage, to define
and reserve areas of storage, and to
specify the contents of channel command
words. The statements can be named by
symbols so that other program statements
can refer to the generated fields. The
DC instruction is presented first and
discussed in'more detail than the DS
instruction because the DS instruction
is written in the same format as the
DC instruction and can specify some or
all of the information that the DC in­
struction provides. Only the function
and treatment of the statements vary.

DC -- DEFINE CONSTANT

The DC instruction is used to provide
-oonstant data in storage. It cafl specify
one constant or a series of constants.
A variety of constants can be specified:
fixed-point, floating-point, decimal,
hexadecimal, character, and storage
addresses. (Data constants are generally
called constants unless they are created
from storage addresses, in which case

.they are called address constants.)
The format of the DC instruction state­
ment is as follows:

r----------T-----------T------------------,
I Name I Operation , Operand ,
~----------+-----------+------------------~
I Any sym- I DC ,One or more I
r bol or I loperands in ,
I blank, ,the format ,
I I /described I
~. , , below, each ,
I , ,separated by ,
I , la comma , L _____ ~ ____ ~ ___________ ~ __________________ J

Each operand consists of four subfields:
the first three describe the constant, and
the fourth subfield provides the nominal
value(s) for the constant(s). The first
and third subfields can be omitted, but the
second and fourth must be specified. Note
that nominal value(s) for more than one
constant can be specified in the fourth
subfield for most types of constants. Each
constant so specified must be of the same
type; the descriptive subfields that precede
the nominal value apply to all of them.
No blanks can occur within any of the sub­
fields (unless provided as characters in a
character constant or a character self­
defining term), nor can they occur between
the subfields of an operand. Similarly,
blanks cannot occur between operands and
the commas that separate them when multiple
operands are being specified.

The subfields of each DC operand are
written in the following sequence:

1
Dupli­
cation
Factor

2
Type

3 4
Modifiers Nominal Value(s)

Although the constants specified within
one operand must have the same character­
istics, each operand can specify a different
type of constant. For example, in a DC
instruction with three operands, the first
operand might specify four decimal con­
stants, the second a floating-point con­
stant, and the third a character constant.

The symbol that names the DC instruction
is the name of the constant (or first
constant if the instruction specifies more
than one). Relative addressing (e.g.,
SYMBOL+2) can be used to address the var­
ious constants if more than one has been
specified, because the number of bytes
allocated to each constant can be deter­
mined.

The value attribute of the symbol naming
the DC instruction is the address of the
leftmost byte (after alignment) of the
first, or only" constant. The length
attribute depends on two things: the type
of constant being defined and the presence
of a length specification. Implied lengths
are assumed for the various constant types
in the absence of a length specification.
If more than one constant is defined, the
length attribute is the length in bytes
(specified or implied) of the first con­
stant.

Boundary alignment also varies according
to the type of constant being specified and
the presence of a length specification.

Some constant types are only aligned to a
byte boundary, but the DS instruction can
be used to force any type of word boundary
alignment for them. This is explained
under nDS -- Define Storage. n other con­
stants are aligned at various word boundar­
ies (half, full, or double) in the absence
of a length specification. If length is
specified, no boundary alignment occurs for
such constants.

Bytes that must be skipped in order to
align the field at the proper boundary are
not considered to be part of the constant.
In other words, the location counter is
incremented to reflect the proper boundary
(if any incrementing is necessary) before
the address value is established. Thus,
the symbol naming the constant will not
receive a value attribute that is the
location of a skipped byte.

Any bytes skipped in aligning statements
that do not cause information to be assem­
bled are not zeroed. Bytes skipped to
align a DC statement are zeroed; bytes
skipped to align a DS statement are not
zeroed.

Appendix F summarizes, in chart form,
the information concerning constants that
is presented in this section.

LITERAL DEFINITIONS: The reader is remind­
ed that the discussion of literals as
machine-instruction operands (in Section 2)
referred him to the description of the DC
operand for the method of writing a literal
operand. All subsequent operand specifi­
cations are applicable to writing literals,
the only differences being:

1. The literal is preceded by an equal
sign.

2. Multiple operands may not be speci­
fied.

3. Unsigned decimal self-defining terms
must be used to express the duplica­
tion factor and length modifier
values.

4. The duplication factor may not be
zero.

5. S-type address constants may not be
specified.

6. Signed or unsigned decimal self­
defining terms must be used to express
scale and exponent modifiers.

7. Q-type address constants may not be
specified in literals.

Examples of
the balance
discussion.

literals appear throughout
of the DC instruction

Section 5: Assembler Instruction Statements 37

Code Type of Constant Machine Format

C Character a-bit code for each character
X
B

Hexadecimal
Binary

4-bit code for each hexadecimal digit
binary format

F
H
E

Fixed-point
Fixed-point
Floating-point

Signed, fixed-point binary format; normally a full word
Signed, fixed-point binary format; normally a half word
Short floating-point format; normally a full word

D
L

Floating-point
Floating-point

Long floating-point format; normally a double word
Extended floating-point format; normally two double words
(Assembler F only)

P Decimal Packed decimal format
Z Decimal Zoned decimal format
A
y

Address
Address

Value of address; normally a full word
Value of address; normally a half word

S Address Base register and displacement value; a half word
V Address Space reserved for external symbol addresses; each address

normally a full word
Q Address Space reserved for dummy section offset

(Assembler F only)

Figure 5-1. Type Codes for Constants

Operand Subfield 1: Duplication Factor

The duplication factor may be omitted.
If specified, it causes the constant(s) to
be generated the number of times indicated
by the factor. The factor may be specified
either by an unsigned decimal self-defining
term or by a positive absolute expression
that is enclosed by parentheses. The
duplication factor is applied after the
constant is assembled. All symbols in the
expression must be previously defined.

Note that a duplication factor of zero
is permitted except in a literal and
achieves the same result as it would in a
DS instruction. A DC instruction with a
zero duplication factor will not produce
control dictionary entries. See "Forcing
Alignment" under "DS -- Define Storage."

Note: If duplication is specified for an
address constant containing a location
counter reference, the value of the loca­
tion counter used in each duplication is
incremented by the length of the operand.

38

Operand Subfield 2: Type

The type sUbfield defines the type of
constant being specified. From the type
specification, the assembler determines how
it is to interpret the constant and trans­
late it into the appropriate machine for­
mat. The type is specified by a single­
letter code as shown in Figure 5-1.

Further information about these
constants is provided in the discussion of
the constants themselves under "Operand
Subfield 4: Constant."

Operand Subfield 3: Modifiers

Modifiers describe the length in bytes
desired for a constant (in contrast to an
implied length), and the scaling and expo­
nent for the constant. If multiple modifi­
ers are written, they must appear in this
sequence: length, scale, exponent. Each is
written and used as described in the fol­
lowing text.

LENGTH MODIFIER: This is written as Ln,
where n is either an unsigned decimal self­
defining term or a positive absolute ex­
pression enclosed by parentheses. Any
symbols in the expression must be previously
defined. The value of n represents the
number of bytes of storage that are assem­
bled for the constant. The maximum value
permitted for the length modifiers supplied
for the various types of constants is sum­
marized in Appendix F. This table also
indicates the implied length for each type
of constant; the implied length is used
unless a length modifier is present. A
length modifier may be specified for any
type of constant. However, no boundary
alignment will be provided when a length
modifier is given.

Use of a length modifier may cause
truncation. For example,

DC C'ABCDXYZ'

will generate a 7-byte constant, whereas

DC CL6' ABCDXYZ'

will generate a 6-byte constant and cause
Z to be lost. Truncation of C, X, B, Z,
A, Y, and P constants is not flagged as
an error. However, F, H, E, D, and L
constants will be flagged if significant
bits are lost. Finally, each type of
constant has an imposed or natural length
modifier range limit. Appendix F shows
which constants can be flagged for trunca­
tion of significant digits. It also shows
the allowable length modifier range for
each constant.

Bit-Length Specification: The length of a
constant, in bits, is specified by L.n,
where n is specified as stated above and
represents the number of bits in storage
into which the constant is to be assembled.
The value of n may exceed eight and is
interpreted to mean an integral number of
bytes plus so many bits. For example, L.20
is interpreted as a length of two bytes
plus four bits.

Assembly of the first or only constant
with bit-length specification starts on a
byte boundary. The constant is placed in
the high or low order end of the field
depending on the type of constant being
specified. The constant is padded or trun-

cated to fit the field. If the assembled
length does not leave the location counter
set at a byte boundary, and another bit
length constant does not immediately follow
in the same statement, the remainder of the
last byte used is filled with zeros. This
leaves the location counter set at the next
byte boundary. Figure 5-2 shows a fixed­
point constant with a specified bit-length
of 13, as coded, and as it would appear in
storage. Note that the constant has been
padded on the left to bring it to its
designated l3-bit length.

As coded:

r--------r-----------,--------------------,
: Name I Operation : Operand : I _________ L ________________________________ ~

I BLCON I DC : FL . 13 ' 579 ' : L ________ L ___________ ~ ____________________ J

In storage:

byte byte byte

J:ddin4
0001001000011000
~

579 fill

Figure 5-2. Bit-Length Specification
(Single Constant)

The implied length of BLCON is two
bytes. A reference to BLCON would cause
the entire two bytes to be referenced.

When bit-length specification is used
in association with mUltiple constants
(see Operand Subfield 4: Constant
following), each succeeding constant in
the list is assembled starting at the
next available bit. Figure 5-3 illustrates
this.

As coded:

,-------,------------,--------------------,
I I I I

i Name : Operation I Operand I L ________ ~ ___________ ~ _____________________ J

I : I I

I BLMCON: DC : FL. 10 ' 161 , 21 , 57 ' :
: I I I

~-------~------------~--------------------~

Section 5: Assembler Instruction Statements 39

In storage:

byte byte byte byte byte

padding lpaddinJ paddibg

~lOlOOO l~lblOloooohllOOlOO
~'---v----'~~

161 21 57 fill

Figure 5-3. Bit-Length Specification
(Multiple Constants)

The symbol used as a name entry in a DC
assembler instruction takes on the length
attribute of the first constant in the
list; therefore the implied length of
BLMCON in Figure 5-3 is two bytes.

If duplication is specified, filling
occurs once at the end of the field occu­
pied by the duplicated constant(s}.

Wh~n bit-length specification is used in
association with multiple operands, assem­
bly of the constant(s) in each succeeding
operand starts at the next available b~t.
Figure 5-4 illustrates this.

As coded:

,--------,-------,----------------------------,
, , , I

: l Oper- : :
:~ID~----l_g1i:Q!L Ql?~;rgn~L---------------- --:

I , I
:BLMOCON I DC I FL. 7' 9' ,CL .10' AB' ,XL .14' C4 "

I I I 1-_______ , _______ '-______ ----_______________ --1

In storage:

byte byte byte byte byte

padding r paddini

o;olOOll~OOOOOlll~l 0001000

~~f 2'4 ~ill
A plus
first two
bits of B

Figure 5-4. Bit-Length Specification
(Multiple Operands)

In Figure 5-4, three different types of
constants have been specified, one to an
operand. Note that the character constant
'AB' which normally would occupy 16 bits is
truncated on the right to fit the 10-bit
field designated. Note that filling 09curs
only at the end of the field occupied by
all the constants.

40

Scale Modifier: This modifier is written
as Sn, where n is either a decimal value or
an absolute expression enclosed by paren­
theses. All symbols in the expression must
be previously defined. The decimal self­
defining term or the parenthesized expres­
sion may be preceded by a sign; if none
is present, a plus sign is assumed. The
maximum values for scale modifiers are
summarized in Appendix F.

A scale modifier may be used with fixed­
point (F, H) and floating-point (E,D,L)
constants only. It is used to specify the
amount of internal scaling that is desired,
as follows:

Scale Modifier for Fixed-Point Constants:
the scale modifier specifies the power of
two by which the constant must be /
multiplied after it has been converted to
its binary representation. Just as multi­
plication of a decimal number by a power
of 10 causes the decimal point to move,
multiplication of a binary number by a
power of two causes the binary point to
move. This multiplication has the effect
of moving the binary point away from its
assumed position .in the binary field; the
assumed position being to the right of the
rightmost position.

Thus, the scale modifier indicates
either of the following: (I) the number of
binary positions to be occupied by the
fractional portion of the binary number,
or (2) the number of binary positions to
be deleted from the integral portion of
the binary number. A positive scale of x
shifts the integral portion of the number
x binary positi9ns to the l~ft, ther7b¥
reserv1ng" the r1ghtmost x b1nary pos1t10ns
for the fractional portion. A negative
scale shifts the integral portion of the
number right, thereby deleting rightmost
integral positions. If a scale modifier
does not accompany a fixed-point constant
containing a fractional part, the fraction­
al part is lost.

In all cases where positions are lost
because of scaling (or the lack of
scaling>, rounding occurs in the leftmost
bit of the lost portion. The rounding is
reflected in the rightmost position saved.

Scale Modifier for Floating-Point Con­
stants: Only a positive scale modifier may
be used with a floating-point constant. It
indicates the number of hexadecimal posi­
tions that the fraction is to be shifted to
the right. Note that this shift amount is
in terms of hexadecimal positions, each of
which is four binary positions. (A posi­
tive scaling actually indicates that the
point is to be moved to the left. However,
a floating-point constant is always con­
verted to a fraction, which is hexadeci-

mally normalized. The point is assumed to
be at the left of the leftmost position in
the field. Since the point cannot be moved
left, the fraction is shifted right.)

Thus, scaling that is specified for a
floating-point constant provides an assem­
bled fraction that is unnormalized, i.e.,
contains hexadecimal zeros in the leftmost
positions of the fraction. When the frac­
tion is shifted, the exponent is adjusted
accordingly to retain the correct magni­
tude. When hexadecimal positions are lost,
rounding occurs in the leftmost hexadecimal.
position of the lost portion. The rounding
is reflected in the rightmost hexadecimal
position saved.

EXPONENT MODIFIER: This modifier is writ­
ten as En, where n is either a decimal
self-defining term or an absolute expres­
s·ion enclosed by parentheses. Any symbols
in the expression must be previously
defined. The decimal value or the paren­
thesized expression may be preceded by a
sign; if none is present, a plus sign is
assumed.

An exponent modifier may be used with
fixed-point (F, H) and floating-point
(E,D,L) constants only. The modifier
denotes the power of 10 by which the
constant is to be multiplied before its
conversion to the proper internal format.

This modifier is not to be confused with
the exponent of the constant itself, which
is specified as part of the constant and is
explained under "Operand Subfield 4:' Con­
stant." The exponent modif~er affects each
constant in the operand, whereas the expo-
nent written as part of the constant only
pertains to that constant. Thus, a con­
stant may be specified with an exponent of
+2, and an exponent modifier of +5 may
precede the constant. In effect, the con­
stant has an exponent of +7.

The range for the exponent modifier is
-85 through +75. However, if there is an
exponent in the constant itself (see "Float­
ing-Point Constants -- E, Dj and L" under
"Operand Subfield 4: Constant") the sum of
that exponent and the exponent modifier
must be within the range -85 - +75. Thus,
an exponent modifier of -40 together with
an exponent of -47 would not be permitted.

One further limitation is that the value
specified must be contained in the
implied length of the constant. Refer
to "Floating Point Arithmetic" in
IBM System/360 Principles of Operation.

Operand Subfield 4: Constant

This subfield supplies the· constant (or
constants) described by the subfields that
precede it. A data constant (any type
except A, Y, S, Q and V) is enclosed by
apostrophes. An address constant (type A,
Y, S, Q, or V) is enclosed by parenth~ses.
To specify two or more constants in the
subfield, the constants must be separated
by commas and the entire sequence of con­
stants must be enclosed by the appropriate
delimiters (i.e., apostrophes or
parentheses). Thus~ the format for speci­
fying the constant(s) is one of the follow­
ing:

Single
Constant
• constant'
(constant)

Multiple
Constants·
·constant, ••• ,constant'
(constant, ••• ,constant)

• Not permitted for character, hexadecimal,
and binary constants.

All constant types except character (C),
hexadecimal (X), binary (B), packed decimal
(P), and zoned decimal (Z), are aligned on
the proper boundary, as shown in Appendix
F, unless a length modifier is specified.
In the presence of a length modifier, no
boundary alignment is performed. If an
operand specifies more than one constant,
any necessary alignment applies to the
first constant only. Thus, for an operand
that provides five full-word constants, the
first would be aligned on a full-word
boundary, and the rest would automatically
fallon full-word boundaries.

The total storage requirement of an
operand is the product of the length times
the number of constants in the operand
times the duplication factor (if present)
plus any bytes skipped for boundary align­
ment of the first constant. If more than
one operand is present, the storage
requirement is derived by summing the
requirements for each operand.

Section 5: Assembler Instruction Statements 41

If an address constant contains a loca­
tion counter reference, the location count­
er value that is used is the storage
address of the first byte the constant will
occupy. Thus, if several address constants
in the same instruction refer to the loca­
tion counter, the value of the location
counter varies from constant to constant.
Similarly, if a single constant is speci­
fied Cand it is a location counter
reference) with a duplication factor, the
constant is duplicated with a varying loca­
tion counter value.

The following text describes each of the
constant types and provides examples.

Character Constant -- C: Any of the valid
256 punch combinations can be designated in
a character constant. Only one character
constant can be specified per operand.
Since multiple constants within an operand
are separated by commas, an attempt to
specify two character constants results
in interpreting the comma separating them
as a character.

Special consideration must be given to
representing apostrophes and ampersands as
characters. Each single apostrophe or
ampersand desired as a character in the
constant must be represented by a pair of
apostrophes or ampersands. Only one apos­
trophe or ampersand appears in storage.

The maximum length qf a character con­
stant is 256 bytes. No boundary alignment
is performed. Each character is translated
into one byte. Double apostrophes or dou­
ble ampersands coun'tas one character. If
no length modifier is given, the size in
bytes of the character constant is equal to
the number of characters in the constant.
If a length modifier is provided, the
result varies as follows:

1. If the number of characters in the
constant exceeds the specified length,
as many rightmost bytes and/or bits as
nec'essary are dropped.

2. If the number of characters is less
than the specified length" the excess
rightmost bytes and/o~ bits are filled
with blanks.

In the following example, the length
attribute of FIELD is 12:

r-------T-----------T---------------------,
I Name I Operation I Operand I
~-------+-----------+---------------------~
IFIELD IDC IC'TOTAL IS 110' I L _______ ~ ___________ ~ _____________________ J

42

However" in this next example" the
length attribute is 15, and three blanks
appear in storage to the right of the zero:

r-------T-----------T---------------------,
I Name IOperation IOperand I
~-------+-----------+---------------------i
I FIELD IDC ICL1S'TOTAL IS 110' I L _______ ~ ___________ ~ _____________________ J

In the next example, the length attri­
bute of FIELD is 12, although 13 characters
appear in the operand. The two ampersands
count as only one byte.

r-------T-----------T---------------------,
I Name IOperation I Operand I
~-------+-----------+---------------------i
I FIELD IDC IC'TOTAL IS &&10' I

'" , L _______ ~ ___________ ~ _____________________ J

Note that in the next example, a length
of four has been specified, but there are
five characters in the constant.

r-------T-----------T---------------------,
IName ,Operation I Operand I
~-------+-----------+---------------------~
I FIELD IDC 13CL4'ABCDE' I L _______ ~ ___________ ~ _____________________ J

The generated constant would be:

ABCDABCDABCD

On the other hand, if the length had
been specified as six instead of four, the
generated constant would have been:

ABCDE ABCDE ABCDE

Note that the same constant could be
specified as a literal.

r-------T-~---------T---------------------,
I Name IOperation I Operand I
t-------+-----------+---------------------~
I IMVC ,AREA(12),=3CL4'ABCDE', L _______ ~ ___________ ~ _____________________ J

Hexadecimal Constant -- X: A hexadecimal
constant consists of one or more of the
hexadecimal digits, which are 0-9 and A-F.
Only one hexadecimal constant can be speci­
fied per operand. The maximum length of a
hexadecimal constant is 256 bytes or 512
hexadecimal digits when specified using an
explicit length attribute (for example,
HEX DC XL256'FF'). However, due to the
assembler's syntax restriction allowing
only two continuation lines per input state­
ment, the maximum length of an implicitly
specified hexadecimal operand (X'FFFFFF',
etc.) is 176 digits when normal statement
boundaries are used.

Constants that contain an even number of
hexadecimal digits are translated as one
byte per pair of digits. If an odd number

of digits is specified" the leftmost byte
has the leftmost four bits filled with a
hexadecimal zero" while the rightmost four
bits contain the odd (first) digit. No
boundary alignment is performed.

If no length modifier is given, the
implied'length of the constant is half the
humber of hexadecimal digits in the con­
stant (assuming that a hexadecimal zero is
added to an odd number of digits). If a
length modifier is given, the constant is
handled as follows:

1. If the number of hexadecimal digit
pairs exceeds the specified length,
the necessary leftmost bits (and/or
bytes) are dropped.

2. If the number of hexadecimal digit
pairs is less than the specified
length, the necessary bits (and/or
bytes) are added to the left and
filled with hexadecimal zeros.

An eight-digit hexadecimal constant pro­
vides a convenient way to set the bit
pattern of a full binary word. The con­
stant in the following example would set
the first and third bytes of a word to lis:

r------T-----------T----------------------,
I Name IOperation I Operand I
~------+-----------+----------------------~
I IDS 10F I
ITEST IDC IX'FFOOFFOO' I L ______ L ___________ ~ ______________________ J

The DS instruction sets the location
counter to a full word-boundary. (See
DS--Define Symbol.)

The next example uses a hexadecimal
constant as a literal and inserts lis into
bits 24 through 31 of register 5.

r------T-----------T----------------------,
I Name IOperation I Operand I
~------+-----------+----------------------~
I IIC 15 ,=X'FF' I L ______ L ___________ L ______________________ J

In the following example, the digit A
is dropped, because five hexadecimal
digits are specified for a length of two
bytes:

r----------T-----------T------------------,
I Name I Opera tion I Operand I
~----------+-----------+------------------~
IALPHACON IDC 13XL2'A6F4E' I
I I I I L-_________ L ___________ ~ _________________ J

The resulting constant is 6F4E, which
occupies the specified two bytes. It is
duplicated three times, as requested by
the duplication factor. If it had merely
been specified as X'A6F4E', the resulting
constant would have a hexadecimal zero in
the leftmost position.

OA6F4EOA6F4EOA6F4E

Binary Constant -- B: A binary constant is
written using fs and O~ enclosed in apos­
trophes. Only one binary constant can be
specified in an operand. Duplication and
length can be specified. The maximum
length of a binary constant is 256 bytes.

The implied length of a binary constant
is the number of bytes occupied by the
constant including any padding necessary.
Padding or truncation takes place on the
left. The padding bit used is a o.

The following example shows the coding
used to designate a binary constant. BCON
would have a length attribute of 1.

r--------y-----------T--------------------,
IName I Operation I Operand I
~--------+-----------+--------------------~
I BCON IDC I B'11011101' I
IBTRUNC IDC IBL1'100100011' I
I BPAD IDC IBL1'101' I L ________ ~ __________ L ____________________ J

BTRUNC would assemble with the leftmost
bit truncated, as follows:

00100011

BPAD would assemble with five zeros as
padding, as follows:

00000101

Fixed-Point Constants -- F and H: A fixed­
point constant is written as a decimal
number, which can be followed by a decimal
exponent if desired. The number can be an
integer"a fraction, or a mixed number
(i. e." one with integral and fractional
portions). The format of the constant is
as follows:

1. The number is written as a signed or
unsigned decimal value. The decimal
point can be placed before, within, or
after the number. If it is omitted,
the number is assumed to be an integer.
A positive sign is assumed if an un­
signed number is specified. Unless a
sca~e modifier accompanies a mixed
number or fraction, the fractional
portion is lost, as explained under
~ubfield 3: Modifiers.

Section 5: Assembler Instruction Statements 43

2. The exponent is optional. If speci­
fied, it is written immediately after
the number as En, where n is an
optionally signed decimal self­
defining term specifying the exponent
of the factor 10. The exponent may be
in the range -85 to +75. If an
unsigned exponent is specified, a plus
sign is assumed. The exponent causes
the value of the constant to be
adjusted by the power of 10 that it
specifies before the constant is con­
verted to its binary form. The expo­
nent may exceed the permissible range
for exponents, provided that the sum
of the exponent and the exponent'modi­
fier does not exceed that range.

The number is converted to a binary
number, and scaling is performed if speci­
fied. The binary number is then rounded
and assembled into the proper field,
according to the specified or implied
length. The resulting number will not
differ from the exact value by more than
one in the last place. If the value of the
number exceeds the length specified or
impli~d" the sign is lost, the necessary
leftmost bits are truncated to the length
of the field, and the value is then assem­
bled into the whole field. Any duplication
factor that is present is applied after the
constant is assembled. A negative number
is carried in 2's complement form.

An implied length of four bytes is
assumed for a full-word (F) and two bytes
for a half-word (H), and the constant is
aligned to the proper full-word or half­
word if a length is not specified.
However" any length up to and including
eight bytes can be specified for either
type of constant by a length modifier, in
which case no boundary alignment occurs.

Maximum and m1n1mum values, exclusive of
scaling, for fixed-point constants are:

Length Max Min
8 263-1 -2 63

4 2 3 1.-1 -2 3 1.
2 21. 5-1 -21.5
1 27_1 -27

.4 2
3 -1 _2 3

.2 21 -1 _21

.1 0 -1

A field of three full-words is generated
from the statement shown below. The loca­
tion attribute of CONWRD is the address of
the leftmost byte of the first word, and
the length attribute is 4, the implied
length for a full-word fixed~point con-

4,4

stant. The expression CONWRD+4 could be
used to address the second constant (second
word) in the field.

r--------T-----------T--------------------,
I Name I Operation I Operand I
.--------t-----------t--------------------i
ICONWRD IDC 13F'658474' I L ________ ~ ___________ ~ ____________________ J

The next statement caus~s the generation
of a two-byte field containing a negative
constant. Notice that scaling has been
specified in order to reserve six bits for
the fractional portion of the constant.

r---------T~----------T-------------------,
I Name I Operation I Operand I
.---------t-----------t-------------------i
I HALFCON I DC I HS 6 ' - 2 5 • 46 • I L-________ ~ _________ ~_~ ___________________ J

The next constant (3.50) is multiplied
by 10 to the power -2 before being con­
verted to its binary format. The scale
modifier rese·rves 12 bits for the
fractional portion.

r---------T-----------T-------------------,
I Name I Operation I Operand I
.--------~t-----------t-------------------i
I FULLCON IDC IHS12'3.50E-2' I L _________ ~ ___________ ~ ___________________ J

The same constant could be specified as
a literal:

r------T-----------T----------------------,
I Name I Operation I Operand I
.------t-----------t----------------------~
I lAB 17 #=HS12'3.50E-2' I L ______ ~ ___________ ~ ______________________ J

The final example specifies three con­
stants. Notice that the scale modifier
requests four bits for the fractional por­
tion of each constant. The four bits are
provided whether or not the fraction
exists.

r----------T-----------T------------------,
I Name I Operation I Operand I
.----------t-~---------t------------------i
ITHREECON IDC IFS4'10,25.3,100' I L __________ ~ ___________ ~ __________________ J

Floating-Point Constants -.- E, D, and L: A
floating-point constant is written as a
decimal number. As an option a decimal
exponent may follow. The number may be an
integer, a fraction, or a mixed number
(i.e., one with integral and fractional
portions). The format of the constant is
as follows:

SHORT FLOATING POINT NUMBER (E)

o 7 8

LONG FLOATING POINT NUMBER (D)

I S I C::~!C- I
TERISTIC

o 78

7 8

31

56-BIT FRACTION

HIGH ORDER HALF OF
112 BIT FRACTION

LOW ORDER HALF OF
112 BIT FRACTION

Figure 5-5. Floating-Point External Formats

1. The number is written as a signed or
unsigned decimal value. The decimal
point can be placed before, within, or
after the number. If it is omitted,
the number is assumed to be an integer.
A positive sign is assumed if an un­
signed number is specified.

2. The exponent is optional. If speci­
fied, it is written immediately after
the number as En, where n is an
optionally signed decimal value speci­
fying the exponent of the factor 10.
If an unsigned- exponent is specified,
a plus sign is assumed. The range of
the' exponent is explained under
"Exponent Modifier ll above.

The external format for a floating-point
number has two parts: the portion contain­
ing the exponent, which is sometimes called
the characteristic, followed by the portion
containing the fraction., which is sometimes
called the mantissa. Therefore, the number
specified as a floating-point constant must
be converted to a fraction before it can be
translated into the proper format. Figure
5-5 shows the external format of the three
types of floating-point constants.

The type L constant resembles two
contiguous type D constants. In the type
L constant the sign of the second double
word is the same as the sign of the first.
The characteristic of the second double
word is equal to the characteristic of the

63

63

63

first minus 14, modulo 128. For informa­
tion on use of the type L constant see the
OS Assembler (F) Programmer's Guide.

For example, the constant 27.35E2 repre­
sents the number 27.35 times 10 to the 2nd.
Represented as a fraction, it would be
.2735 times 10 to the 4th, the exponent
having been modified to reflect the shift­
ing of the decimal point. The exponent may
also be affected by the presence of an
exponent modifier, as explained under
"Operand Subfield 3: Modifiers.1I Thus, the
exponent is also altered before being
translated into machine format.

In machine format a floating-point number
also has two parts, the signed exponent and
signed fraction. The quantity expressed by
this number is the product of the fraction
dnd the number 16 raised to the power of
the exponent.

The exponent is translated into its binary
equivalent in exeess 64 binary notation and
the fraction is converted to a binary num­
ber. Scaling is performed if specified;
if not, the fraction is normalized (leading
hexadecimal zeros are removed). Rounding of
the fraction is then performed according to
the specified' or implied length, and the
number is stored in the proper field. The
resulting number will not differ from the
exact value by more than one in the last
place. within the portion of the floating­
point field allocated to the fraction, the
hexadecimal point is assumed to be to the
left of the leftmost hexadecimal digit, and
the fraction occupies the leftmost portion
of the field. Negative fractions are
carried in true representation, not in the
twos complement form.

Section 5: Assembler Instruction Statements 45

An implied length of four bytes is
assumed for a short (E) constant and eight
bytes for a long (D) constant. An implied
length of 16 bytes is assumed for an
extended (L) constant. The constant is
aligned at the proper word (E) or double
word (D and L) boundary if a length is
not specified. However, any length up
to and including eight bytes (E and D) or
16 bytes (L) can be specified by a length
modifier. In this case, no boundary
alignment occurs.

Any of the following statements could be
used to specify 46.415 as a positive,
full-word, floating-point constant; the
last is a machine-instruction statement
with a literal operand. Note that the last
two constants contain an exponent modifier.

r------T-----------T----------------------
'Name ,Operation I Operand 1
~------+-----------+----------------------~
, IDC IE'46.41S' I
, I DC 'E' 46415E-3' I
I IDC IE'+464.1SE-l' ,
I IDC IE'+.46415E+2' ,
, IDC. IEE2'.4641S' ,
I IAE 16,=EE2'.4641S' I L------L-__________ ~ ______________________ J

The following would each be generated as
double-word floating-point constants.

r-------T-----------T---------------------,
I Name I Operation I Operand ,
~-------+-----------+---------------------~
'FLOAT IDC IDE+4'+46,-3.729,+473' I L--_____ L ___________ L _____________________ J

Decimal Constants -- P and Z: A decimal
constant is written as a signed or unsigned
decimal v~lue. If the sign is omitted, a
plus sign is assumed. The decimal point
may be written wherever desired or may be
omitted. Scaling and exponent modifiers
may not be specified for decimal constants.
The maximum length of a decimal constant is
16 bytes. No word boundary alignment is
perf orrr,ed .

The placement of a decimal point in the
definition does not affect the assembly of
the constant in any way, because, unlike
fixed-point and floating-point constants, a
decimal constant is not converted to its
binary equivalent. The fact that a decimal
constant is an integer, a fraction, or a
mixed number is not pertinent to its gener­
ation. Furtherntore, the decimal point is
not assembled into the constant. The pro­
grammer may determine proper decimal point
alignment either by defining his data so
that the point is aligned or by selecting
machine-instructions that will operate on
the data properly (i.e., shift it for
purposes of alignment).

46

If zoned decimal format is specified
(Z), each decimal digit is translated into
one byte. The translation is done accord­
ing to the character set shown in Appendix
A. The rightmost byte contains the sign as
well as the rightmost digit. For packed
decimal format (P), each pair of decimal
digits is translated into one byte. The
rightmost diqit and the sign are translated
into the rightmost byte. The bit configu­
ration for the digits is identical to the
configurations for the hexadecimal digits
0-9 as shown in Section 3 under
"Hexadecimal Self-Defining Value." For
both packed and. zoned decimals, a plus sign
is translated into the hexadecimal digit C,
and a minus sign into the digit D.
The packed decimal constants (P-type)
are used for processing by the decimal
instruction set.

If an even number of packed decimal
digits is specified, one digit will be left
unpaired because the rightmost digit is
paired with the sign. Therefore~ in the
leftmost byte, the leftmost four. bits will
be set to zeros and the rightmost four bits
will contain the odd (first) digit.

If no length modifier is given, the
implied length for either constant is the
number of bytes the constant occupies
(taking into account the format, sign, and
possible addition of zero bits for packed
decimals). If a length modifier is given,
the constant is handled as follows:

1. If the constant requires fewer bytes
than the length specifies, the neces­
sary number of bytes is added to the
left. For zoned decimal format, the
decimal digit zero is placed in each
added byte. For packed decimals, the
bits of each added byte are set to
zero.

2. If the constant requires more bytes
than the length specifies~ the neces­
sary number of leftmost digits or
pairs of digits is dropped, depending
on which format is specified.

Examples of decimal constant definitions
follow.
r------T-----------T----------------------,
I Name I Operation I Operand I
~------+-----------+-----~----------------i
, IDC IP'+1.2S' I
I IDC IZ'-543' I
I IDC IZ'79.68' I
I IDC IPL3'79.68' I L ______ ~ ___________ L ____ ~ ____________ ~ ____ J

The following statement specifies both
packed and zoned decimal constants. The
length modifier applies to each constant in
the first operand (i.e., to each packed
decimal constant). Note that a literal
could not specify both operands.

r----------T----------~T------------------,
I Name I Operation I Operand I
~----------+-----------+------------------~
I DECIMALS IDC IPL8'+25.8,-3874, I
I I 1+2.3',Z'+80,-3.72' I L __________ ~ ___________ L __________________ J

The last example illustrates the use of
a packed decimal literal.

r------T-----------T----------------------,
IName I Operation I Operand I
~------+-----------+----------------------~
I IUNPK IOUTAREA,=PL2' +25' I L-_____ ~ ___________ ~ ______________________ J

Address Constants: An address constant is
a storage address that is translated into a
constant. Address constants can be used
for initializing base registers to facili­
tate the addressing of storage. Further­
more (they provide a means of communicating
between control sections of a multisection
program. However, storage addressing and
control section communication are also
dependent on the use of the USING assembler
instruction and the loading of registers.
Coding examples that illustrate these con­
siderations are provided in Section 3 using
"Programming with the USING Instruction."

An address constant, unlike_other types
of constants, is enclosed in parentheses.
If two or more address constants are speci­
fied in an operand, they are separated by
commas, and the entire sequence is enclosed
by parentheses. There are five types of
address constants: A, Y, S, Q and V. A
relocatable address constant may not be
specified with bit lengths.

Complex Relocatable Expressions: A complex
relocatable expression can only be used to
specify an A-type or Y-type address con-.·
stant. These expressions contain two or
more unpaired relocatable terms and/or
negative relocatable terms in addition to
any absolute or paired relocatable terms
that may be present. A complex relocatable
expression might consist of externa.l sym­
bols and designate an address in an inde­
pendent assembly that is to be linked and
loaded with· the assembly containing the
address constant.

A-Type Address constant: This constant is
specified as an absolute, relocatable, or
complex relocatable expression. (Remember
that an expression may be single term or
multiterm.> The value of the expression is
calculated to 32 bits as explained in
Section 2 with one exception: the maximum

value of the expression may be 231-1. The
value is then truncated on the left, if
necessary, to· the specified or implied
length of the field and assembled into the
rightmost bits of the field. The implied
len.gth of an A-type constant is four bytes,
and alignment is to a full-word boundary
un~ess a length is specified, in which case
no alignment will occur. The length that
may be specified depends on the type of
expression used for the constant; a length
of .1 to 4 bytes may be used for an
absolute expression, while a length of only
3 or 4 may be used for a relocatable or
complex relocatable expression.

In the following examples, the field
generated from the statement named ACON
contains four constants, each of which
occupies four bytes. Note that there is a
location counter reference in one. The
value of the location counter will be the
address of the first byte allocated to the
fourth constant. The second statement
shows the same set of constants specified
as literals <i.e., address constant
literals> •

1-----'-------1---------------------------,.----·1
1 I Oper- 1 I
1 I I 1 1 Name 1 a tion 1 Operand I
L----J-------L--------------------------~----l 1 I 1
1 ACONI DC IA(108,LOP,END-STRT,*+4096) : 1 1 I 1
I 1 LM I 4,7,=A(108,LOP,END-STRT,*'+4096) 1
I- ---.~-------I--------------------------_____ .I

Note: When the location counter reference
occurs in a literal, as in the LM instruc­
tion above, the value of the location
counter is the address of the first byte of
the instruction.

Y-Type Address constant: A Y-type address
constant has much in common with the A-type
constant. It too is specified as an abso­
lute, relocatable, or complex relocatable
expression. The value of the expression is
also calculated to 32 bits as explained in
Section 2. However, the maximum value of
the expression may be only 215-1. The
value is then truncated, if necessary, to
the specified or implied length of the
field and assembled into the right-most
bits of the field. The implied length of a
Y-type constant is two bytes, and alignment
is to a half-word boundary unless a length
is specified, in which case no alignment
will occur. The maximum length of a Y-type
address constant is two bytes. If length
specification is used, a length of two
bytes may be designated for a relocatable
or complex expression and .1 to 2 bytes for
an absolute expression.

Section 5: Assembler Instruction Statements 47

Warning: Specification of relocatable Y­
type address constants should be avoided in
programs destined to be executed on
machines having more than 32,767 bytes of
storage capacity. In any case y-type re­
locatable address constants should not be
used in programs to be executed under
Operating System/360 control.

S-Type Address Constant: The S-type
address constant is used to store an
address in base-displacement form.

The constant may be specified in two
ways:

1. As an absolute or relocatable expres­
sion, e.g., S(BETA).

2. As two absolute expressions, the first
of which represents the displacement
value and the second, the base reg­
ister, e.g., S(400(13».

The address value represented by the
e~pression in (1) will be converted by
the assembler into the proper base register
and displacement value. An S-type constant
is assembled as a half word and aligned on
a half-word boundary. The leftmost four
bits of the assembled constant represents
the base register designation, the remain­
ing 12 bits the displacement value.

If length specification is used, only
two bytes may be specified. S-type address
constants may not be specified as literals.

Q-Type Address Constant (Assembler F only):
This constant is used to reserve storage
for the offset of an external dummy
section. This offset is added to the
address of the block of storage allocated
to external dUmmy sections to access the
desired section. The constant is specified
as a relocatable symbol which has been
previously defined in a DXD or DSECT state­
ment. The implied length of a Q-type
address constant is four bytes and boundary
alignment is to a full word: a length of
1-4 bytes may be specified. No bit length
specification is permitted in a Q-type
constant. In the following example the
constant VALUE has been previously defined
in a DXD or DSECT statement. To access
VALUE the value of A is added to the base
address of the block of storage allocated
for external dummy sections. Q-type ad­
dress constants may not be specified in
literals.

r--------T-----------T--------------------,
I Name I Operation I Operand I
~--------+-----------+--------------------i
IA IDC IQ(VALUE) I L ________ ~ ___________ ~ ____________________ J

48

V-Type Address Constant: This constant is
used to reserve storage for the address of
an external symbol that is used for effect­
ing branches to other programs. The con­
stant may not be used for external data
references within an overlay program. The
constant is specified as one relocatahle
symbol, which need not be identified by an
EXTRN statement. Whatever symbol is used is
assumed to be an external symbol by virtue
of the fact that it is supplied in a V-type
address constant.

To suppress the automatic library call
mechanism of the linkage editor for a
constant identified in a V-type address con­
stant, the programmer can identify it in a
WXTRN statement (Assembler F only).

Note that specifying a symbol as the
operand of a V-type constant does not
constitute a definition of the symbol for
this assembly. The implied length of a
V-type address constant is four bytes, and
boundary alignment is to a full word. A
length modifier may be used to specify a
length of either three or four bytes, in
which case no such boundary alignment
occurs. In the following example, 12 bytes
will be reserved, because there are three
symbols. The value of each assembled con­
stant will be zero until the program is
loaded. It must be emphasized that a V­
type address constant of length less than 4
can and will be processed by the Assembler
but cannot be handled by the Linkage Editor.

r--------T-----~-----T--------------------,
1 Name 1 Operation 1 Operand 1
~--------+-----------+--------------------~
IVCONST IDC I V(SORT, MERGE, CALC) 1 L ________ ~ ___________ ~ ____________________ J

DS -- DEFINE STORAGE

The DS instruction is used to reserve
areas of storage and to assign names to
those areas. The use of this instruction
is the preferred way of symbolically defin­
ing storage for work areas, input/output
areas, etc. The size of a storage area
that can be reserved by using the .DS
instruction is limited only by the maximum
value of the location counter.

r----------T-----------T------------------,
I Name . 1 Operation 1 operand 1
~----------+-----------+------------------~
1 Any sym- I DS lOne or more op- 1
I bol or 1 I erands, separated 1
I blank I I by corrunas,writ- 1
I I Iten in the for- 1
I 1 Imat described in 1
I 1 Ithe following I
1 1 I text 1 L __________ .l. ___________ .l. __________________ ·J

The format of the DS operand is identi­
cal to that of the DC operand; exactly the
same subfields are employed and are written
in exactly the same sequence as they are in
the DC operand. Although the formats are
identical, there are two differences in the
specification of subfields. They are:

1. The specification of data (subfield 4)
is optional in a DS operand, but it is
mandatory in a DC operand. If the
constant is specified, it must be
valid.

2. The maximum length that may be speci­
fied for character (C) and hexadecimal
(X) field types is 65~535 bytes rather
than 256 bytes.

If a DS operand specifies a constant in
subfield 4, and no length is specified in
subfield 3, the assembler determines the
length of the data and reserves the
appropriate amount of storage. It does not
assemble the constant. The ability to
specify data and have the assembler calcu­
late the storage area that would be
required for such data is a convenience to
the programmer. If he knows the general
format of the data that will be placed in
the storage area during program execution,
all he needs to do is show it as the fourth
subfield in a DS operand. The assembler
then determines the correct amount of stor­
age to be reserved, thus relieving the
programmer of length considerations.

If the DS instruction is named by a
symbol, its value attribute is the location
of the leftmost byte of the reserved a~ea.
The length attribute of the symbol is the
length (implied or explicit) of the type of
data specified. Should the DS have a
series of operands, the length attribute
for the symbol is developed from the first
item in the first operand. Any positioning
required for aligning the storage area to
the proper type of boundary is done before
the address value is determined. Bytes
skipped for alignment are not set to zero.

Each field type (e.g., hexadecimal,
character, floating-point) is associated
with certain characteristics (these are
summarized in Appendix F). The associated
characteristics will determine which field­
type code the programmer selects for the DS
operand and what other information he adds,
notably a length specification or a
duplication factor. For example, the E
floating-point field and the F fixed-point
field both have an implied length of four
bytes. The leftmost byte is aligned to a
full-word boundary. Thus, either code
could be specified if it were desired to
reserve four bytes of storage aligned to a
full-word boundary. To obtain a length of
eight bytes, one could specify either the E
or F field type with a length modifier of
eight. However, a duplication factor would
have to be used to reserve a larger area,
because the maximum length specification
for either type is eight bytes. Note also
t:hat specifying length would cancel any
special boundary alignment.

In contrast, packed and zoned decimal (P
and Z), character (C), hexadecimal (X), and
binary (B) fields have an implied length of
one byte. Any of these codes, if used,
would have to be accompanied by a length
modifier, unless just one byte is to be
reserved. Although no alignment occurs,
the use of C and X field types permits
greater latitude in length specifications,
the maximum for either type being 65,535
bytes. (Note that this differs from the
maximum for these types in a DC instruc­
tion.) Unless a field of one byte is
desired, either the length must be speci­
fied for the C, X, P, Z, or B field types,
or else the data must be specified (as the
fourth subfield), so that the assembler can
calculate the length.

To define four lO-byte fields and one
lOO-byte field, the respective DS state­
ments might be as follows:

Section 5: Assembler Instruction Statements 49

r------T-----------T----------~-----------,
I Name I Operation I Operand ,
~------+-----------+----------------------~
'FIELD IDS 14CL10 I
'AREA I DS I CL100 I l ______ ~ ___________ ~ ______________________ J

Although FIELD might have been specified
as one 40-byte field, the preceding defini­
tion has the advantage of providing FIELD
with a length attribute of 10. This would
be pertinent when using FIELD as an 88
m~chine-instruction operand.

Additional examples of DS statements are
shown below:

r-----T---------T-------------------------,
'Name ,OperationlOperand I
~-----+---------+-------------------------~
lONE IDS ICLSO(one SO-byte field, I
I I I length attribute of SO I
I TWO IDS 180C(80 one-byte fields, I I' , length attribute of one I
I THREE I DS I 6F (six full words" length I
'I , attribute of four) I
IFOUR IDS ID(one double word" length I
'I I attribute of eight) ,
I FIVE IDS , 4H (four half-words" , I' , length attribute of ,
I I I two) , l _____ ~ _________ ~ _________________________ J

Note: A DS statement causes the storage
area to be reserved but not set to zeros.
No assumption should be made as to the
contents of the reserved area.

Special Uses of the Duplication Factor

FORCING ALIGNMENT: The location counter
can be forced to a double-word, full-word,
or half-word boundary by using the
appropriate field type (e.g., D~ F, or H)
with a duplication factor of zero. This
method may be used to obtain boundary
alignment that otherwise would not be pro­
vided. For example, the following state~
ments would set the location counter to the
next double-word boundary and then reserve
storage space for a 12S-byte field (whose
leftmost byte would be on a double-word
boundary).

r-----T-----------T-----------------------,
IName IOperation I Operand I
~-----+---------~-+-----------------------~
'IDS IOD ,
I AREA I DS I CL128 I l _____ ~ ___________ ~ _______________________ J

50

DEFINING FIELDS OF AN AREA: A DS instruc­
tion with a duplication factor of zero can
be used to assign a name to an area of
storage without actually reserving the
area. Additional DS and/or DC instructions
may then be used to reserve the area and
assign names to fields within the area (and
generate constants if DC is used).

For example, assume that SO-character
records are to be read into an area for
processing and that each record has the
following format:

Positions 5-10
Positions 11-30
Positions 31-36
Positions 47-54
Positions 55-62

Payroll Number
Employee Name
Date
Gross Wages
Withholding Tax

The following example illustrates how DS
instructions might be used to assign a name
to the record area, then define the fields
of the area and allocate the storage for
them. Note that the first statement names
the entire area by defining the symbol
RDAREAi the statement gives RDAREA a length
attribute of SO bytes, but does not reserve
any storage. Similarly" the fifth state­
ment names a six-byte area by defining the
symbol DATE; the three subsequent state­
ments actually define the fields of DATE
and allocate storage for them. The second"
ninth, and last statements are used for
spacing purposes and, therefore" are not
named.

r-------T-----------T---------------------,
I Name I Operation I Operand I
~-------+-----------+---------------------~
IRDAREA DS IOCL80 I
I DS ICL4 I
IPAYNO DS ICL6 I
,NAME DS ICL20 I
I DATE DS I 0 CL61
I DAY DS ICL2 I
I MONTH DS ICL2 I
I YEAR DS ICL2 I
I DS ICL10 I
I GROSS DS I CL8 ,
IFEDTAX DS ICL8 I
I DS ICL18 I l _______ ~ ___________ ~ _____________________ J

CCW -- DEFINE CHANNEL COMMAND WORD

The CCW instruction provides a conven­
ient way to define and generate an eight­
byte channel command word aligned at a
double-word boundary. CCW will cause any
bytes skipped to be zeroed. The internal
machine format of a channel command word is
shown in Table 5-1.

Table 5-1. Channel Command Word
r-----T-------T---------------------------,
IByte I Bits I Usage I
~-----+-~-----+---------------------------~
11 I 0-7 I Command code I
12-4 I 8-31 I Data address I
15 I 32-36 I Flags I
I I 37-39 I Must be zero I
16 I 40-47 I Set to zero I
17-8 I 48-63 I Count I L _____ ~ _______ ~ ___________________________ J

The format
statement is:

of the CCW instruction

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
IAny sym-lcCW IFour operands, I
Ibol or I Iseparated by commas, I
Iblank I Ispecifying the con- I
I I Itents of the channel I
I I I command word in I
I I Ithe format I
I I Idescribed in the I
I I Ifollowing text I L ________ ~ _________ ~ ______________________ J

All four operands must appear. They are
written, from left to right, as follows:

1. An absolute expression that specifies
the command code. This expression's
value is right-justified in byte 1.

2. An expression specifying the data
address. This ~alue is treated as a
3-byte A-type constant. The value of
this expression is in bytes 2-4.

3. An absolute expression that specifies
the flags for bits 32-36 and zeros for
bits 37-39. The value of this expres­
sion is right-justified in byte 5.
(Byte 6 is set to zero.)

4. An absolute expression that specifies
the count. The value of this expres­
sion is right-justified in bytes 7-S.

The following is an example of a CCW
statement:

r-----T-----------T-----------------------,
IName IOperation I Operand I
~-----+-----------+-----------------------~
I ICCW 12,READAREA,X'4S',SO I L _____ ~ ___________ ~ _______________________ J

Note that the form of the third operand
sets bits 37-39 to zero, as required. The
bit pattern of this operand is as follows:

32-35
0100

36-39
1000

If there is a symbol in the name field
of the CCW instruction, it is assigned the
address value of the leftmost byte of the
channel command word. The length attribute
of the symbol is S.

LISTING CONTROL INSTRUCTIONS

The listing control instructions are
used to identify an assembly listing and
assembly output cards, to provide blank
lines in an assembly listing, and to desig­
nate how much detail is to be included in
an assembly listing. In no case are
instructions or constants generated in the
object program. Listing control statements
with the exception of PRINT are not printed
in the listing.

NOTE: TITLE, SPACE, and EJECT statements
will not appear in the source listing
unless the statement is continued onto
another card. Then the first card of the
statement is printed. However, any of
these three types of statements, if
generated as macro instruction expansion,
will never be listed regardless of
continuation.

TITLE -- IDENTIFY ASSEMBLY OUTPUT

The TITLE instruction enables the pro­
grammer to identify the assembly listing
and assembly output cards. The format of
the TITLE instruction statement is as fol­
lows: ---------r----------r---------------------, r Name : Operation I Operand :
~---------~----------t---------------------,
I Special I TITLE I A sequence of char- I
I sequenc~1 I acters, enclosed in :
I or vari- I I apostrophes I
I able sym-I II I
I I I
I bol or t I I
I blank I I I ~ ________ ~~ __________ L _____________________ ~

The name field may contain a special
symbol of from one to four alphabetic or
numeric characters in any combination. The
contents of the name field are punched into
columns 73-76 of all the output cards for
the program except those produced by the
PUNCH and REPRO assembler instructions.
Only the first TITLE statement in a program
may have a special symbol or a variable sym­
bol in the name field. The name field of
all subsequent TITLE statements must contain
either a sequence symbol or a blank.

Section 5: Assembler Instruction Statements 51

The operand field may contain up to 100
characters enclosed in apostrophes. Spe­
cial consideration must be given to rep­
resenting apostrophes and ampersands as
characters. Each single apostrophe or
ampersand desired as a character in the
constant must be represented by a pair of
apostrophes or ampersands. Only one apos­
trophe or ampersand appears in storage.
The contents of the operand field are
printed at the top of each page of the
assembly listing.

A program may contain more than one
TITLE statement. Each TITLE statement pro­
vides the heading for pages in the assembly
listing that follow it, until another TITLE
statement is encountered. Each TITLE
statement causes the listing to be advanced
to a new page (before the heading is
printed).

For example, if the following statement
i,s the first TITLE statement to appear in a
program:

'r------T-----------T----------------------,
I Name IOperation I Operand I
~------+-----------+----------------------~
IPGM1 I TITLE I 'FIRST HEADING' I L ______ ~ ___________ ~ ______________________ J

then PGM1 is punched into all of the output
cards (columns 73-76) and this heading
appears at the top of each subsequent page:
PGMI FIRST HEADING.

If the following statement occurs later
in the same program:

r------T-----------T----------------------,
I Name IOperation I Operand I
~------+-----------+---------~------------~
I I TITLE I' A NEW HEADING' I L ______ ~ ___________ ~ _____ ~ ________________ J

then, PGM1 is still punched into the output
cards, but each following page begins with
the heading: PGMl A NEW HEADING.

Note: The sequence number of the cards in
the output deck is contained in columns
77-80.

EJECT -- START NEW PAGE

The EJECT instruction causes the next
line of the listing to appear at the top of
a new page. This instruction provides a
convenient way to separate routines in the
program listing. The format of the EJECT
instruction statement is as follows:

52

.---------r----------r--------------------,
I Name I Operation I Operand I L _________ L_. _________ + ____________________ -I
: A se- I EJECT I Not used; should be I
I .quence I : blank :
I symbol I I (I
I or blank I I I L ________ J ___________ ~ ____________________ ~

If the line before the EJECT statement
appears at the bottom of a page, the EJECT
statement has no effect. Two EJECT state­
ments may be used in succession to obtain a
blank page. A TITLE instruction followed
immediately ,by an EJECT instruction will
produce a page with nothing but the operand
entry (if any) of the TITLE instruction.
Text following the EJECT instruction will
begin at the top of the next page.

SPACE -- SPACE LISTING

The SPACE instruction is used to insert
one or more blank lines in the listing.
The format of the SPACE instruction state­
ment is as follows:

r---------r----------T--------------------,
I Name I Operation I Operand I
L _________ ~----------+--------------------~
: A se- : SPACE : A decimal value I
I quence I I or blank I I symbol I I I
I or blank I I I ~ _________ L __________ ~ ____________________ ~

A decimal value is used to specify the
number of blank lines to be inserted in the
assembly listing. A blank operand causes
one blank line to be inserted. If this
value exceeds the number of lines remaining
on the listing page, the statement will
have the same effect as an EJECT statement.

PRINT -- PRINT OPTIONAL DATA

The PRINT instruction is used to control
printing of the assembly listing. The
format of the PRINT instruction statement
is:

r---------r----------T--------------------,
I Name I Operation I Operand I

:~-~~=----~;;~;;-----t-;~~-~~-~~~~~--------I
I quence : I operands I

I symbol I I :
I or blank I I I L _________ ~ __________ l ______ ~ _____________ ~

The one to three operands may include an
operand from each of the following groups
in any sequence:

1. ON - A listing is printed.

OFF - No listing is printed.

2. GEN

NOGEN

3. DATA

- All statements generated by
macro-instructions are print­
ed.

- Statements generated by macro­
instructions are not printed
with the exception of MNOTE
which will print regardless of
NOGEN. However, the macro­
instruction itself will appear
in the listing.

- Constants are printed out in
full in the listing.

NODATA - Only the leftmost eight bytes
are printed on the listing.

A program may contain any number of
PRINT statements. A PRINT statement con­
trols the printing of the assembly listing
until another PRINT statement is encoun­
tered. Each option remains in effect
until the corresponding opposite option is
specified.

Until the first PRINT statement (if any)
is encountered, the following is assumed:

r------T-----------T----------------------,
I Name I Operation I Operand I
~------+-----------+----------------------~
I I PRINT ION" NODATA., GEN I L ___ ~ __ ~ ___________ ~ ______________________ J

For example, if the s~atement:

r------T-----------T----------------------,
I Name IOperation I Operand I
~------+-----------+----------------------~
I IDC IXL256'OO' I L ______ ~ ___________ ~ ______________________ J

appears in a
are assembled.

program, 256 bytes of zeros
If the statement:

r------T-----------T----------------------,
I Name I Operation I Operand I
~------+-----------+----------------------~
I I PRINT I DATA I L ______ ~ ___________ ~ ______________________ J

is the last PRINT statement to appear
before the DC statement, all 256 bytes of
zeros are printed in the assembly listing.
However, if:

r------T-----------T----------------------,
IName I Operation I Operand I
~------+-----------+----------------------~
I I PRINT I NODATA I L ______ ~ ___________ ~ ______________________ J

is the last PRINT statement to appear
before the DC statement~ only eight bytes
of zeros are printed in the assembly list­
ing.

Whenever an operand is omitted, it is
assumed to be unchanged and continues
according to its last specification.

The hierarchy of print control state-
ments is:

1. ON and OFF

2. GEN and NOGEN

3. DATA and NODATA

Thus with the following statement nothing
would be printed.

r------T-----------T----------------------,
I Name I Operation I Operand I
~------+-----------+----------------------~
I I PRINT IOFF, DATA, GEN I L ______ ~ ___________ ~ ______________________ J

PROGRAM CONTROL INSTRUCTIONS

The program control instructions are
used to specify the end of an assembly, to
set the location counter to a value or word
boundary, to insert previously written cod­
ing in the program, to specify the place­
ment of literals in storage, to check the
sequence of input cards, to indicate state­
ment format, and to punch a card. Except
for the CNOP and COpy instructions, none of
these assembler instructions generate
instructions or constants in the object
program.

ICTL -- INPUT FORMAT CONTROL

The ICTL instruction allows the program­
mer to alter the normal format of his
source program statements. The ICTL state­
ment must precede all other statements in
the source program and may be used only
once. The format of the ICTL instruction
statement is as follows:

Section 5: Assembler Instruction Statements 53

r-------T-----------T---------------------,
I Name I Operation I Operand 1
~-------+-----------+-------~-----~-------~ 1 Blank IICTL Il~3.dec~mal self-de- I
1 1 If~n~ng values of the 1
L _______ ~ ___________ ~!Q~_~~!~£ ___________ J

Operand b specifies the begin column of
the source statement. It must always be
specified, and must be within 1-40, inclu­
sive. Operand e specifies the end column
of the source statement. The end column,
when specified, must be within 41-80, in­
clusi"ve; when not specified, it is assumed
to be 71. The end column must not be less
than the begin column +5. The column after
the end column is used to indicate whether
the next card is a continuation card.
Operand c specifies the continue column of
the source statement. The continue column,
when specified, must be within 2-40 and
must be greater than b. If the continue
column is not specified, or if column 80 is
specified as the end column, the assembler
assumes that there are no continuation
cards, and all statements are contained on
a single card. The operand forms b"c and
h, are invalid.

If no ICTL statement is used in the
source program, the assembler assumes that
1# 71, and 16 are the begin, end, and
continue columns, respectively.

The next example designates the begin
column as column 25. Since the end column
is not specified, it is assumed to be
column 11. No continuation cards are rec­
ognized because the continue column is not
specified.

r------T-----------T----------------------,
I Name I Operation 1 Operand I
~------+-----------+----------------------~
1 1 ICTL 125 I L ______ ~ ___________ ~ ______________________ J

ISEQ -- INPUT SEQUENCE CHECKING

The ISEQ instruction is used to
check the sequence of input cards. (A
sequence error is considered serious, but
the assembly is not terminated.) The
format of the ISEQ instruction statement
is as follows:
r-----T----------T------------------------,
IName IOperation IOperand I
~-----+----------+-------7----------------~ IBlanklISEQ ITwO dec~mal self-de- I
I I Ifining values of the I
L _____ ~ __________ ~fQ~_!L~l_Q~_e!~~~ __ ~ ___ J

54

The operands 1 and r, respectively,
specify the leftmost and rightmost columns
of the field in the input cards to be
checked. Operand r must be equal to or
greater than operand 1. Columns to be
checked must not he between the begin and
end columns.

Sequence checking begins with the first
card following the ISEQ statement. Compar­
ison of adjacent cards makes use of the
eight-bit internal collating sequence.
(See Appendix A.) Each card checked must
be higher than the preceding card.

An ISEQ statement with a blank operand
terminates the operation. (Note that this
ISEQ statement is also sequence checked.)
Checking may be resumed with another ISEQ
statement.

Sequence checking is only performed on
statements contained in the source program.
Statements inserted by the COpy assembler­
instruction or generated by a macro­
instruction are not checked for sequence.
Also macro-definitions in a macro library
are not checked.

PUNCH -- PUNCH A CARD

The PUNCH assembler-instruction causes
the data in the operand to be punched into
a card. One PUNCH statement produces one
punched card. As many PUNCH statements may
be used as are necessary. The format is:

r-------T-----------T---------------------,
1 Name IOperation IOperand I
.-------+---~-------+---------------------~
1 A se- 1 PUNCH 11 to 80 characters I
1 quence I I enclosed in apos- I
1 symbol I I trophes I

I ~Iank I 1 " , L _______ 1 _________________________________ J

Using character representation, the
operand is written as a string of up to 80
characters enclosed in apostrophes. All
characters, including blank, are valid.
The position immediately to the right of
the left apostrophe is regarded as column
one of the card to be punched. Substitu­
tion is performed for variable symbols in
the operand. Special consideration must be
given to representing apostrophes and
ampersands as characters. Each apostrophe
or ampersand desired as a character in the
constant must be represented by a pair of
apostrophes or ampersands. Only one apos­
trophe or ampersand appears in storage.

PUNCH statements may occur anywhere
within a program, except before macro defi­
nitions. They may occur within a macro
definition but not between the end of a

macro definition and the beginning of the
next macro definition. If a PUNCH state­
ment occurs before the first control sec­
tion, the resultant card will precede all
other cards in the object program card
deck; otherwise the card will be punched in
place. No sequence number or identifi­
cation is punched in the card.

REPRO -- REPRODUCE FOLLOWING CARD

The REPRO assembler-instruction causes
data on the followinq statement line to be
punched into a card. The data is not
processed; it is punched in a card, and no
substitution is performed for variable sym­
bols. No sequence number or identification
is punched on the card. One REPRO instruc­
tion produces one punched card. The REPRO
instruction may not appear before a macro
definition. REPRO statements that occur
before all statements composing the first
or only control section will punch cards
which precede all other cards of the object
deck. The format is:

r--------,-----------,--------------------,-
I Name I Operation , Operand I

~--------~-----------;--------------------J
, A se- I REPRO , Blank :
I quence I' I
: symbol I I I
I or blank I' I _____________________ J ____________________ J

The line to be
any combination
terse Characters
in column 1 and
80 of the line.
corresponds to
punched.

reproduced may contain
of up to 80 valid charac­
may be entered starting
continuing through column

Column 1 of the line
column- 1 of the card to be

ORG -- SET LOCATION COUNTER

The ORG instruction is used to alter the
setting of the location counter for the
current control section. The format of the
ORG instruction statement is:
r-------T-----------T---------------------,
I Name I Operation I Operand I
~~se~--+-----------+---------------------~
I IORG IA relocatable ex- I
I quebnce

l
I ,pression or blank ,

I sym 0 I I I
t ~Iank I: I L _______ L ___________ L ____________________ J

Any symbols in the expression must have
been previously defined. The unpaired
relocatable symbol must be defined in the
same control section in which the ORG
statement appears.

The location counter is set to the value
of the expression in the operand. If the
operand is omitted, the location counter is
set to the next available (unused) location
for that control section.

An ORG statement cannot be used to
specify a location below the beginning of
the control section in which it appears.
The following is invalid if it appears less
than 500 bytes from the beginning of the
current control section.

r------T-----------T----------------------,
IName I Operation ,Operand 1
~------+-----------+----------------------~
I I I I
1 IORG 1*-500 I L ______ ~ ___________ ~ ______________________ J

If it is desired to reset the location
counter to the next available byte in the
current control section, the following
statement would be used:

r------T-----------T----------------------,
IName I operation I Operand ,
.------+-----------+----------------------~
, ,ORG, , L ______ ~ ___________ ~ ______________________ J

If previous ORG statements have reduced
the location counter for the purpose of
redefining a portion of the current control
section, an ORG statement with an omitted
operand can then be used to terminate the
effects of such statements and restore the
location counter to its highest setting:
Note: Through use of the ORG statement two
instructions may be given the same location
counter values. In such a case the second
instruction will not always eliminate the
effects of the first instruction. Consider
the following example:

ADDR

B

DC A(LOC)
ORG oJc-4
DC C"BETA'

In this example the value of B (BETA) will
be destroyed by the relocation of ADDR
during linkage editing.

LTORG -- BEGIN LITERAL POOL

The LTORG instruction causes all liter­
als since the previous LTORG (or start of
the program) to be assembled at appropriate
boundaries starting at the first double­
word boundary following the LTORG
statement. If no literals follow the LTORG
statement, alignment of the next instruc­
tion (which is not a LTORG instruction)
will occur. Bytes skipped are not zeroed.
The format of the LTORG instruction state­
ment is:

Section 5: Assembler Instruction Statements 55

r--------T-----------T--------------------,
I Name I Operation I Operand I
~--------+-----------+--------------------~
I Symbol I LTORG I Not used I
lor I I I
I blank I I I L ________ ~ ___________ ~ ____________________ J

The symbol represents the address of the
first byte of the literal pool. It has a
length attribute of 1.

The literal pool is organized into four
segments within which the literals are
stored in order of appearance, dependent on
the divisibility properties of their object
lengths (dup factor times total explicit
or implied length). The first segment
contains all literals whose object length
is a multiple of eight. Those remaining
literals with lengths divisible by four
are stored in the second segment. The
third segment holds the remaining even~
length literals. Any literals left over
have odd lengths and are stored in the
fourth segment.

Since each literal pool begins at a
double-word boundary, this guarantees that
all segment one literals are double-word,
segment two full-word, and segment three
half-word aligned, with no space wasted
except, possibly, at the pool origin.

Literals from the following statement
are in the pool, in the segments indicated
by the circled numbers, where ® means
multiple of eight, etc.,

MVC A(12) ,=3F'I' @
SH 3,=H'2' ®(?)
LM O,3,=2F'I,2'
IC 2,=XLI'I' G)
AD 2,=D'2' ®

Special Addressing Consideration

Any literals used after the last LTORG
statement 1n a program are placed at the
end of the first control section. If there
are no LTORG statements in a program, all
literals used in the program are placed at
the end of the first control section. In
these circumstances the programmer must
ensure that the first control section is
always addressable. This means that the
base address register for the first control
section should not be changed through usage
in subsequent control sections. If the
programmer does not wish to reserve a
register for this purpose, he may place a
LTORG stat.ement at the end of each control
section thereby ensuring that all literals
appearing in that section are addressable.

56

Duplicate Literals

If duplicate literals occur within the
range controlled by one LTORG statement,
only one literal is stored. Literals are
considered duplicates only if their speci­
fications are identical. A literal will be
stored, even if it appears to duplicate
another literal, if it is an A-type address
constant containing any reference to the
location counter.

The following examples illustrate how
the assembler stores pairs of literals, if
the placement of each pair is controlled by
the same LTORG statement.

X'FO'

ClOt

XL3'O'

HL3'O'

A (*+ 4)

A(*+4)

X'FFFF'

X'FFFF'

Both are stored

Both are stored

Both are stored

Identical; the first is stored

CNOP -- CONDITIONAL NO OPERATION

The CNOP instruction allows the program­
mer to align an instruction at a specific
half-word boundary. If any bytes must be
skipped in order to align the instruction
properly, the assembler ensures an unbroken
instruction flow by generating no-operation
instructions. This facility is useful in
creating calling sequences consisting of a
linkage to a subroutine followed by parame­
ters such as channel command words <CCW).

The CNOP instruction ensures the align­
ment of the location counter setting to a
half-word, word, or double-word boundary.
If the location counter is already properly
aligned, the CNOP instruction has no
effect. If the specified alignment
requires the location counter to be incre­
mented, one to three no-operation instruc­
tions are generated, each of which uses two
bytes.

The format of the CNOP instruction
statement is as follows:

r-------T-----------T---------------------,
IName I Operation I Operand I
~-------+-----------+---------------------~
IA se- ICNOP ITwo absolute I
,quence I lexpressions of I
I symbol lithe form b,w I

I ~Iank I . I I L _______ L ___________ l _____________________ l

r---,
1 Double Word I
~---T---~
1 Word I Word I
~---------------------T---------------------t---------------------T---------------------~
1 Half Word I Half Word I Half Word 1 Half word I
~----------T----------t----------T----------t----------T----------t----------T----------i
1 Byte I Byte 1 Byte I Byte I Byte 1 Byte 1 Byte 1 Byte 1
~----------~----------~----------~----------~----------~---------~----------~----------~
10,4 2,4 0,4 2,4 1
10,8 2,8 4,8 6,8 , L ___ J

Figure 5-6. CNOP Alignment

Any sywhols used in the expressions in
the operand field must have been previously
defined.

Operand b specifies at which byte in a
word or double word the location counter is
to beset; b can be 0, 2, 4, or 6. Operand
w specifies whether byte b is in a word
(w=4) or double word (w=8). The following
pairs of band ware valid:

b,w Specifies

0,4
2,4
0,8
2,8
4,8

6,8

Beginning of a word
Middle of a word
Beginning of a double word
Second half word of a double word
Middle (third half word) of a dou­
ble word
Fourth half word of a double word

Figure 5-6 shows the position in a
double word that each of these pairs speci­
fies. Note that both 0,4 and 2,4 specify
two locations in a double word.

Assume
currently
rYe Then
sequence:

that the location counter is
aligned at a double-word bounda­
the CNOP instruction in this

r------T-----------T----------------------,
IName ,Operation I Operand ,
~------t-----------t----------------------~
I I CNOP I ° , 8 I
1 I BALR , 2 , 14 1 L ______ ~ ___________ ~ ______________________ J

has no effect; it is merely printed in the
assembly listing. However, this sequence:

r------T-----------T----------------------,
1 Name I Operation I Operand I
~------+-----------t----------------------i
1 , CNOP I 6 , 8 ,
I I BALR , 2 , 14 I L ______ ~ ___________ ~ ______________________ J

causes three branch-on-conditions
(no-operations) to be generated, thus
aligning the BALR instruction at the last
half-word in a double word as follows:

r------T-----------T----------------------,
I Name I Operation I Operand I
~------t-----------t----------------------~
I IBCR 10 ,0 I
1 I BCR 10, ° I
I IBCR 10,0 I
I I BALR I 2 , 14 I L ______ ~ ___________ ~ ______________________ J

~fter the BALR instruction is generated,
the location counter is at a double-word
boundary, thereby ensuring an unbroken
instruction flow.

COpy -- COpy PREDEFINED SOURCE CODING

The COpy instruction obtains source­
language coding from a library and includes
it in the program currently being
assembled. The format of the COpy instruc­
tion statement is as follows:

r-------T-----------T---------------------,
I Name IOperation I Operand I
~-------t-----------t---------------------~
I Blank ICOPY lOne symbol I L _______ ~ ___________ ~ _____________________ J

The operand is a symbol that identifies
a partitioned data set member to be copied
from either the system macro library or a
user library concatenated to it. Insert­
ing code in the library to be copied later
is performed by the IEBUPDAT or IEBUPDTE
routines, details of which are covered in
the OS utilities.

The assembler inserts the requested cod­
ing immediately after the COpy statement

Section 5: Assembler Instruction Statements 57

is encountered. The requested coding may
not contain any COPY, END, ICTL, ISEQ,
MACRO, or MEND statements.

If identical COpy statements are encoun­
tered, the coding the¥ request is brought
into the program each t1me. All statements
included in the program via COpy are proc­
essed using the standard format regardless
of any ICTL instructions in the program.
(For a further discussion of COpy see
Section 7.>

END -- END ASSEMBLY

The END instruction terminates the
assembly of a program. It may also desig­
nate a point in the program or in a
separately assembled program to which con­
trol may be transferred after the program
is loaded. The END instruction must always
be the last statement in the source pro­
gram. A literal may not be used. If an
external symbol is used in the expression,
the value of the expression must be O.

The format of the END instruction state­
ment is as follows:

r-------T-----------T---------------------,
I Name I Operation I Operand I
~-------+-----------+---------------------~
IBlank lEND IA relocatable ex- I
I I Ipression or blank I L _______ i ___________ ~ _____________________ J

58

The operand specifies the point t? whi~h
control may be tran~fer~ed when load1ng. 1S
complete. This p01nt 1S usually the f1rst
machine-instruction in the program, as
shown in the following sequence.

r-------T-----------T---------------------,
IName IOperation I Operand I
.-------+-----------+---------------------~
I NAME ICSECT I I
I AREA IDS 15 0F I

. I BEG IN I BALR I 2 , 0 I
I I USING 1* ,2 I
I I . I I
I I . I I
I I . I I
I lEND I BEGIN I L _______ ~ ___________ ~ _____________________ J

NOTE: Editing errors in system macro
definitions (macro definitions included
in a macro library) are discovered when
the macro definitions are read from the
macro library. This occurs after the END
statement has been read. They will there­
fore be flagged after the END statement.
If the programmer does not know which of
his system macros caused an error, it is
necessary to punch all system macro defi­
nitions used in the program, including
inner macro definitions, and insert them
in the source program as programmer macro
definitions, since programmer macro defini­
tions are flagged in-line. To aid in
debugging it is advisable to test all macro
definitions as programmer macro definitions
before incorporating them in the library as
system macro definitions.

PART II -- THE MACRO LANGUAGE

SECTION 6: INTRODUCTION TO THE MACRO LANGUAGE

SECTION 1: HOW TO PREPARE MACRO DEFINITIONS

SECTION 8: HOW TO WRITE MACRO INSTRUCTIONS

SECTION 9: HOW TO WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS

SECTION 10: EXTENDED FEATURES OF THE MACRO LANGUAGE

The Operating System/360 macro language
is an extension of the Operating System/360
assembler language. It provides a conven­
ient way to generate a desired sequence of
assembler language statements many times in
one or more programs. The macro-definition
is written only once, and a single state­
ment, a macro 'instruction statement" is
written each time a programmer wants to
generate the desired sequence of state­
ments.

This facility simplifies the coding of
programs, reduces the chance of programming
errors, and ensures that standard sequences
of statements, are used to accomplish
desired functions.

An additional facility, called condi­
tional assembly, allows one to code state­
ments which mayor may not be assembled,
depending upon conditions evaluated at
assembly time. These conditions are usual­
ly tests of values, which may be defined,
set, changed, and tested during assembly.
The conditional assembly facility may be
used without using macro instruction state­
ments.

THE MACRO INSTRUCTION STATEMENT

A macro instruction statement (hereafter
called a macro instruction) is a source
program statement. The assembler generates
a sequence of assembler language statements
for each occurrence of the same macro
instruction. The generated statements are
then processed like any other assembler
language statement.

Macro instructions can be tested by
placing them before the assembly cards of a
test program.

Three types of macro instructions may be
written. They are pOSitional, keyword, and
mixed-mode macro instructions. Positional
macroinstructions permit the programmer to
write the operands of a macro instruction
in a fixed order. Keyword macro
instructions permit the programmer to write
the operands of a macro instruction in a
variable order. Mixed-mode macro
instructions permit the programmer to use
the features of both positional and keyword
macro instructions in the same macro
instruction.

SECTION 6: INTRODUCTION TO THE MACRO LANGUAGE

THE MACRO DEFINITION

A macro definition is a set of
statements that provides the assembler
with: (1) the mnemonic operation code and
the format of the macro' instruction, and
(2) the sequence of statements the assem­
bler generates when the macroinstruction
appears in the source program.

Every macro definition consists of a
macro definition header statement, a macro
instruction prototype statement, one or
more model statements, COpy statements,
MEXIT" MNOTE, or conditional ass embly
instructions, and a macro definition trail­
er statement.

The macro definition header and trailer
statements indicate to the a,ssembler the
beginning and end of a macro definition.

The macro instruction prototype state­
ment specifies the mnemonic operation code
and the type of the macro instruction.

The model statements are used by the
assembler to generate the assembler lan­
guage statements that replace each occur­
rence of the macro instruction.

The COpy statements may be used to copy
model statements, MEXIT, MNOTE or condi­
tional assembly instructions from a system
library into 'a macro definition.

The MEXIT instruction can be used to
terminate processing of a macro definition.

The MNOTE instruction can be used to
generate an error message when the rules
for writing a particular macro instruction
are violated.

The conditional assembly instructions
may be used to vary the sequence of state­
ments generated for each occurrence of a
macro instruction. Conditional assembly
instructions may also be used outside
macro definitions, i.e., among the assem­
bler language statements in the program.

THE MACRO LIBRARY

The same macro definition may be made
available to more than one source program
by placing the macro definition in the
macro library. The macro library is a

Section 6: Introduction to the Macro Language 61

collection of macro definitions that can be
used by all the assembler language programs
in an installation. Once a macro
definition has been placed in the macro
library it may be used by writing its
corresponding macro' instruction ~n a source
program. Macro definitions must be in the
system macro library under the same name as
the prototype. The procedure for placing
macro definitions in the macro library is
described in the utilities publication.

SYSTEM AND PROGRAMMER MACRO DEFINITIONS

,A macro definition included in a source
deck is called a programmer macro defini­
tion. One residinq in a macro library is
called a system mac;::ro definition. There
is no difference in function~ If a pro-

'gramrner macro is included in a macro
library it becomes a system macro defini­
tion, and if a system macro definition is
punched and included in a source deck it
pecomes a programmer macro definition.

System and programmer macros will be
expanded the same, but syntax errors are
handled differently. In programmer macros,
error messages are attached to the state­
ments in error. In system macros, however,
error messages cannot be associated with
the statement in error because these macros
are located and edited after the entire
source deck has been read. Therefore, the
error messages are associated with the END
statement.

Because of the difficulty of finding
syntax errors in system macros, a macro
definition should be run and "debugged" as
a programmer macro before it is placed in a
macro library.

SYSTEM MACRO INSTRUCTIONS

The macro instructions that correspond
to macro definitions prepared by IBM are
called system macro instructions. System
macro instructions are described in OS
Supervisor Services and Macro InstruCtions,
and OS Data Management Macro Instructions.

62

VARYING THE GENERATED STATEMENTS

Each time a macro instruction appears in
the source program it is replaced by the
same sequence of assembler language
statements. Conditional assembly instruc­
tions, however, may be used to vary the
number and format of the generated state­
ments.

VARIABLE SYMBOLS

A variable symbol is, a type of symbol
that is assigned different values by either
the programmer or the assembler. When the
assembler uses a macro definition to deter­
mine what statements are to replace a
macro instruction, variable symbols in the
model statements are replaced with the
values assigned to them. By changing the
values assigned to variable symbols the
programmer can vary parts of the generated
statements.

A variable symbol is written as an
ampersand followed by from one through
seven letters and/or digits, the first of
which must be a letter. Elsewhere, two
ampersands must be used to represent an
ampersand.

Types of Variable Symbols

There are three types of variable sym­
bols: symbolic parameters, system variable
symbols, and SET symbols. The SET symbols
are further broken down into SETA symbols,
SETB symbols, and SETC symbols. The three
types of variable symbols differ in the way
they are assigned values.

Assigning Values to Variable Symbols

Symbolic parameters are assigned values
by the programmer each time he writes a
macro instruction.

System variable symbols are assigned
values by the assembler each time it proc­
esses a macro instruction.

SET symbols are assigned values by the
programmer by means of conditional assembly
instructions.

Global SET Symbols

The values assigned to SET syrr.bols in
one macro definition may be used to vary
the statements that appear in other macro
definitions. All SET symbols used for this
purpose must be defined by the programmer
as global SET symbols. All other SET
symbols (i.e., those which may be used to
vary statements that appear in the same
macro definition) must be defined by the
programmer as local SET symbols. Local SET
symbols and the other variable symbols
(that is, symbolic paranleters and system
variable symbols) are local variable
symbols. Global SET symbols are global
variable symbols.

ORGANIZATION OF THIS PART OF THE
PUBLICATION

Sections 7 and 8 describe the basic
rules for preparing macro definitions and
for writing macro instructions.

section 9 describes the rules for writ­
ing conditional assembly instructions.

section 10 describes additional features
of the macro language, including rules for
defining global SET symbols, preparing key­
word and mixed-mode macro definitions, and
writing .keyword and mixed-roode macro
instructions.

Appendix G contains a reference summary
of the entire macro language.

Examples of the features of the language
appear throughout the remainder of the
publication. These examples illustrate the
use of particular features. However, they
are not meant to show the full versatility
of these features.

Section 6: Introduction to the Macro Language 63

A macro definition consists of:

1. A macro definition header statement.

2. A macro instruction prototype state­
ment-.

3. 7.ero or more model statements, COpy
statements, MEXIT, MNOTE, or
conditional assembly instructions.

4. A macro definition trailer statement.

Except for MEXIT, MNOTE, and conditional
assembly instructions, this section of the
publication describes all of the statements
that may be used to prepare macro definitions.
Conditional assembly instructions are
described in Section 9. MEXIT and MNOTE
instructions are described in Section 10.

Macro definitions appearing in a source
program must appear before all PUNCH and
REPRO statements and all statements which
pertain to the first control section.
Specifically, only the listing control
instructions (EJ.ECT, PRINT, SPACE, and
TITLE), OPSYN, ICTL, and ISEQ instructions,
and comments statements can occur before
the macro definitions. All but the ICTL
and OPSYN instruction can appear between
macro definitions if there is more than
one definition in the source program.
Conditional assembly, substitution, and
sequence symbols cannot be used in front of
or between macro definitions.

A macro-definition cannot appear within
a macro definition and the maximum number
of continuation cards for a macro definition
statement is two.

MACRO -- LII"JACRO DEFINITION HEADER

The macro definition header statement
indicates the beginning of a macro
definition. It must be the first statement
in every macro definition. The format of
this statement is:

r-------T-----------T---------------------,
I Name I Operation I Operand I
~-------+-----------+---------------------~
IBlank I MACRO I Blank I L _______ ~ ___________ ~ _____________________ J

MEND -- MACRO DEFINITION TRAILER

The macro definition trailer statement
indicates the end of a macro definition.
It can appear only once within a macro

SECTION 7: HOW TO PRFPARE MACRO DEFINITIONS

definition and must be the last statement
in every macro ·definition. The format of
this statement is:

r-------T-----------T---------------------,
IName I Operation I Operand I
~-------+-----------+---------------------~
I A se- I MEND I Blank I
I quence I I ,
I symbol I I I
, or

blank I I I L _______ L ___________ L ____________________ ~

MACRO INSTRUCTION PROTOTYPE

The macro instruction prototype state­
ment (hereafter called the prototype
statement) specifies the mnemonic operation
code and the format of all macro
instructions that refer to the macro
definition. It must be the second state­
ment of every macro definition. The format
of this statement is:

r------------T----------T-----------------,
IName IOperation IOperand I
~------------+----------+-----------------~
IA symbolic IA symbol lOne or more sym- I
I parameter I Ibolic parameters I
lor blank I I separated by com-I
I I Imas, or blank I L ____________ ~ __________ .L: _________________ J

The symbolic parameters are used in the
macro definition to represent the name
field and operands of the corresponding
macro instruction. A description of
symbolic parameters appears under "Symbolic
Parameters" in this section.

The name field of the
ment may be blank, or
symbolic parameter.

prototype state­
it may contain a

The symbol in the operation field is the
mnemonic operation code that must appear in
all macro·instructions that refer to this
macro definition. The mnemonic operation
code must not be the same as the mnemonic
operation code of another macro definition
in the source program or o£ a machine or
assembler instruction as listed in Appendix
G.

The operand field may contain 0 to 200
symbolic parameters separated by commas.
If there are no symbolic parameters, com­
ments may not appear.

Section 7: How to Prepare Macro Definitions 65

The following is an example of a
prototype statement.

r-------T-----------T---------------------,
I Name I Operation I Operand I
~-------+-----------+---------------------~
I &NAlI.LE I NOVE I &TO, &FROM I L-______ ~ ___________ ~ _____________________ J

Statement Format

The prototype statement may be written
in a format different· from that used for
assembler language statements. The normal
format is described in Part I of this pub­
lication. The alternate format described
here allows the programmer to write an
operand on each line, and allows the inter­
spersing of operands and comments in the
statement.

In the alternate format, as in the
normal format, the nam~ and operation
fields must appear on the first line of the
statement, and at least one blank must
follow the operation field on that line.
Both types of statement formats may be used
in the same prototype statement.

The rules for using the alternate state­
ment format are:

1. If an operand is followed by a corruna
and a blank, and the column after the
end column contains a nonblank charac­
ter, the operand field may be contin­
ued on the next line 5tarting in the
continue column. More than one oper­
and may appear on the same line.

2. comments may appear after the blank
that indicates the end of an operand,
up to and including the end column.

3. If the next line starts after the
continue column, the information
entered on the next line is considered
comments, and the operand field is
considered terminated. Any subsequent
con'tinuation lines are considered com­
ments.

The following examples illustrate: (1)
the normal statement format, (2) the alter­
nate statement format, and (3) a combina­
tion of both statement formats.

66

r--------T-----T------~-----------------T-'
IName IOper-IOperand Comments I I
I lationl I I
.--------+-----+------------------------+-~
I NAME 1 IOPl IOPERAND1,OPERAND2,OPERANIXI
I I ID3 THIS IS THE NORMAL IXI
I I I STATEMENT FORMAT I I
.--------+-----+------------------------+-f
I NAME 2 IOP2 IOPERAND1, THIS IS THE ALIXI
I I IOPERAND2,OPERAND3 TERNAIXI
I I I TE STATEMENT FORMAT I I
.--------+-----+--~---------------------+-~
I NAME 3 IOP3 IOPERAND1, THIS IS A COMBIXI
I I I OPERAND2,OPERAND3, OPERANI XI
I I ID4,OPERAND5 INATION OF IXI
I I I BOTH STATEMENT FORMATS I I L ________ ~ _____ ~ ________________________ ~_J

MODEL STATEMENTS

Model statements are the macro definition
statements from which the desired sequences
of assembler language .statements are
generated. Zero or more model statements
may follow the prototype statement. A
model statement consists of one to four
fields. They are,from left to right, the
name, operation, operand, and comments
fields.

The fields in the model statement must
correspond to the fields in the generated
statement. It is not possible to generate
blanks to separate statement fields.

Model statement fields must follow the
rules for paired apostrophes, ampersands,
and blanks as macro instruction operands
(see "Macro Instruction Operands" in
Section 8) ~

Though model statements must follow the
normal continuation card conventions,
statements generated from model statements
may have more than two continuation lines.
Substituted statements may not have blanks
.in any field except between paired apostro­
phes. They may not have leading blanks in
the name field.

Name Field

The name field may be blank or it may
contain an ordinary symbol, a variable
symbol, or a sequence symbol. It may also
contain an ordinary symbol concatenated
with a variable symbol or a variable sym­
bol concatenated with one or more other
variable symbols.

Variable symbols may not appear in the
name field of ACTR, COPY, END, ICTL, ISEQ,
or OPSYN statements. The characters * and
.* may not be substituted for a variable
symbol.

Operation Field

The operation field may contain a
machine instruction, an assembler instruc-

tion listed in Section 5 (except END, ICTL,
ISEQ, OPSYN, or PRINT), a macro instruction,
or variable symbol. It may also contain an
ordinary symbol concatenated with a variable
symbol or a variable symbol concatenated
with one or more other variable symbols.

Variable symbols may not be used to
generate

• Macro Instructions

• Macro prototypes

• The following instructions:

ACTR
AGO
AIF
ANOP
COpy
CSECT
DSECT
END

GBLA
GBLB
GBLC
ICTL
ISEQ
LCLA
LCLB
LCLC
MACRO
MEND

MEXIT
MNOTE
OPSYN
PRINT
REPRO
SETA
SETB
SETC
START

Variable symbols may also be used outside
of macro definitions to generate mnemonic
operation codes with the preceding
restrictions.

The use of COpy instructions is de­
scribed under "COpy Statements".

Variable symbols in the line following
a REPRO instruction, will not be replaced
by their values.

Operand Field

The operand field may contain ordinary
symbols or variable symbols. However,
variable symbols may not be used in the
operand field of COpy, ICTL, ISEQ,or OPSYN
instructions.

. Comments Field

The comments field may contain any
combination of characters. No sUbstitution
is performed for variable symbols appearing
in the comments field. Only genera~ed
statements will be printed in the listing.

SYMBOLIC PARAMETERS

A symbolic parameter is a type of varia­
ble symbol that is assigned values by· the
programmer when he writes a macro
instruction. The programmer may vary
statements that are generated for each
occurrence of a macro instruction by vary­
ing the values assigned to symbolic pCl.ram­
eters.

A symbolic parameter consists of an
ampersand followed by from one through
seven letters and/or digits, the first of
which must be a letter. Elsewhere, two
ampersands must be used to represent an
ampersand.

The programmer should
the first four characters
parameter.

not use &SYS as
of a symbolic

The following are valid symbolic param­
eters:

& READER
&A23456
&X4F2

& LOOP2
&N
&$4

The following are invalid symbolic
rameters:

CARDAREA (first character is not an
ampersand)

&256B (first character after
ampersand is not a
letter)

&AREA2456 (more than seven characters
after the ampersand)

&BCD%34 (contains a special charac-
ter other than initial
ampersand)

&IN AREA (contains a special charac­
ter, i.e., blank, other
than initial ampersand)

pa-

Any symbolic parameters in a model
statement must appear ~n the prototype
statement of the macro definition.

The following is an example of a macro
definition. Note that the sym~olic
parameters in the model statements appear
in the prototype statement.

r-------T-----------T------------,
IName I Operation \ Operand I
~-------+-----------+------------~

Header I I~~CRO I I
Prototype I &NAME I I'-10VE I &TO, &FROf'JI I
Model I&NAME 1ST I 2, SAVE I
Model I IL 12,&F~OM I
Model liST 12,&TO I
Model I IL 12,SAVE I
Trai ler I I MEND I I L _______ ~ ___________ ~ ____________ J

Symbolic parameters in model statements
are replaced by the characters of the
macro instruction that correspond to the
symbolic parameters.

In the following example the characters
HERE, FIELDA, and FIELDB of the MOVE macro
instruction correspond to the symbolic
parameters &NAME, &TO, and &FF.ON, respec­
tively, of the MOVE prototype statement.

Section 7: How to Prepare Macro Definitions 67

r------T-----------T----------------------,
I Name IOperation I Operand I
~------+-----------+----------------------~
tHERE I MOVE IFIELDA,FIELDB I
L------~ ___________ ~ _____________ ~ ________ J

Any occurrence of the symbolic parame­
ters & NAME , &TO, and &FROM in a model
statement will be replaced by the charac­
ters HERE, FIELDA, and FIELDB, respective­
ly. If the preceding macro instruction were
used in a source program, the following
assembler language statements would be gen­
erated:

r------T-----------T----------------------,
I Name I Operation IOperand I
.------+-----------+----------------------~
I HERE 1ST 12,SAVE I
I IL 12,FIELDB I
I I ST 12, FIELDA I
I I L 12 , SAVE I L--____ ~ ___________ ~ ______________________ J

The example below illustrates another
use of the MOVE macro instruction using
operands different from those in the
preceding example.

r-------T-----------T------------,
I Name I Operation I Operand I
~-------+-----------+------------~

Macro I LABEL I MOVE IIN,OUT I
~-------+-----------+------------~

Generated I LABEL 1ST 12,SAVE I
Generated I IL 12,OUT I
Generatedl 1ST 12,IN I
Generated I IL 12,SAVE I L _______ ~ ___________ ~ ____________ J

If a symbolic parameter appears in the
comments field of a model statement, it is
not replaced by the corresponding charac­
ters of the macro instruction.

concatenating Symbolic Parameters with
Other Characters or-Other Symbolic
Parameters

If a symbolic parameter in a model
statement is immediately preceded or fol­
lowed by other characters or another sym­
bolic parameter, the characters that cor­
respond to the symbolic parameter are com­
bined in the generated statement with the
other characters or the characters that
correspond to the other symbolic parameter.
This process is called concatenation.

68

The macro ·definition, macro instruction,
and generated statements in the following
example illustrate these rules.

r-----T---------T----------------,
IName I Operation I Operand I
~-----+---------+--------~-------~

Header I I MACRO I I
Prototypel&NAMEIMOVE I&TY,&P,&TO,&FROMI
Model I&NAMEIST&TY 12,SAVEAREA I
Model I IL&TY 12,&P&FROM I
Model I IST&TY 12,&P&TO I
Model I IL&TY 12,SAVEAREA I
Trailer I I MEND I I

~-----+---------+----------------~
Macro IHERE IMOVE ID,FIELD,A,B I

~-----+---------+----------------~
GeneratedlHERE ISTD 12,SAVEAREA I
Generated I ILD 12,FIELDB I
Generated I ISTD 12,FIELDA I
Generate~1 ILD 12,SAVEAREA I L _____ ~ _________ L ________________ J

The symbolic parameter &TY is used in
each of the four model statements to vary
the mnemonic operation code of each of t~e
generated statements. The character D ~n
the macro instruction corresponds to sym­
bolic parameter &TY. Since &TY is preceded
by other characters (i.e., ST and L) in the
model statements, the character that cor­
responds to &TY (i.e., D) is concatenated
with the other characters to form the
operation fields of the generated state­
ments.

The symbolic parameters &P, &TO, and
&FROM are used in two of the model state­
ments to vary part of the operand fields of
the corresponding generated statements.
The characters FIELD, A, and B correspond
to the symbolic parameters &P, &TO, and
&FROM, respectively. Since &P is followed
by &FROM in the second model statement, the
characters that correspond to them (i.e.,
FIELD and B) are concatenated to form part
of the operand field of the second generat­
ed statement. Similarly, FIELD and A are
concatenated to form part of the operand
field of the third generated statement.

If the programmer wishes to concat~n~te
a symbolic parameter with a letter, .d~g~t,
left parenthesis, or period follow~ng the
symbolic parameter he must i~ediately ~ol­
low the symbolic parameter w~th a per~od.

A period is o.ptional if the symbolic param­
eter is to be concatenated with another

symbolic parameter, or a special character
other than a left parenthesis or another
period that follows it.

If a symbolic parameter is immediately
followed by a period, then the symbolic
parameter and the period are replaced by
the characters that correspond to the sym­
bolic para.meter. A period that immediately
follows a symbolic parameter does not
appear in the generated statement.

The following macro definition, macro­
instruction, and generated statements
illustrate these rules.

Header
Prototype
Model
Model
Model
Model
Trailer

Macro

Generated
Generated
Generated
Generated

r-----T---------T---------------,
IName 10perationiOperand I
~-----+---------+---------------~
I I MACRO I 1
I & NAME 1 MOVE \&P,&S,&Rl,&R2 \
I&NAME\ST \&Rl,&S.(&R2) 1
\ IL I&Rl,&P.B 1
liST I&Rl,&P.A 1
1 IL I&Rl,&S.(&R2) 1
1 1 MEND I 1
.-----+---------+---------------~
IHERE IMOVE IFIELD,SAVE,2,4 1
~-----+---------+---------------~
1 HERE 1 ST 12, SAVE (4) 1
IlL 12 , FIELDB I
I \ S T 1 2 , F IELDA I
IlL 12, SAVE (4) I L _____ i-________ ~ _______________ J

The symbolic parameter &P is used in the
second and third model statements to vary
part of the operand field of each of the
corresponding generated statements. The
characters FIELD of the macroinstruction
correspond to &P. Since tP is to be
concatenated with a letter (i.e., B and A)
in each of the statements, a period immedi­
ately follows &P in each of the model
statements. The period does not appear in
the generated statements.

Similarly, symbolic parameter &S is used
in the first and fourth model statements to
vary the operand fields of the correspond­
ing generated statements. &S is followed
by a period in each of the model state­
ments, because it is to be concatenated
with a left parenthesis. The period does
not appear in the generated statements.

COMMENTS STATEMENTS

A model statement may be a comments
statement. A comments statement consists
of an asterisk in the begin column, fol­
lowed by comments. The comments statement
is used by the assembler to generate an
assembler language comments statement, just
as other model statements are used by the
assembler to generate assembler language
statements. No variable symbol substitu­
tion is performed.

The programmer may also write comments
statements in a macro-definition which are
not to be generated. These statements must
have a period in the begin column, immedi­
ately followed by an asterisk and the
comments.

The first statement in the following
example will be used by the assembler to
generate a comments statement; the second
statement will not.

r---,
I Name 10peration 10perand I
~------------------~----------------------~
1* THIS STATEMENT WILL BE GENERATED 1
1.* THIS ONE WILL NOT BE GENERATED 1 L ___ J

NOTE: To get a truly representative sampl­
ing of the various language components used
effectively in writing macro instructions
the programmer may list all or selected
macro instructions from the SYSI.GENLIB or
the SYSI.MACLIB by using the IEBPTPCH sys-
tem utility covered in the OS utilities'
manual.

COpy STATEMENTS

COpy statements may be used to copy
model statements and ~~XIT, MNOTE, and
conditional assembly instructions into a
macro-definition, just as they may be used
outside rracro definitions to copy source
statements into an assembler language pro­
gram.

Section 7: How to Prepare Macro Definitions 69

The format of this statement is:

r-------T-----------T---------------------,
I Name I operation I Operand I
.-------+-----------+---------------------~ I Blank I COpy I A symbol I L _______ ~ ___________ ~ _____________________ J

The operand is a symbol that identifies
a partitioned data set member to be copied
from either the system macro library or a
user library concatenated to it. The sym­
bol must not· be the same as the operation
mnemonic of a definition in the macro
library. Any statement that may be used
in a macro definition may be part of the
copied coding, except. MACRO, MEND, COPY,
and prototype statements.

70

When considering statement positions
within a program the code included by a
COpy instruction statement should be con­
sidered rather than the COpy itself. For
example if a COpy statement in a macro­
definition brings in global and local
definition statements, it may appear
immediately after the prototype statement.
However, since global definition statements
must corne before local definition state­
ments, if global and local definition
statements are also specified explicitly in
the macro definition which contains the
COPY, the COpy must occur between the
explicit global definition statements and
the explicit local definition statements.

The format of a macro instruction is:

r----------T-----------T------------------,
\ Name \ Operation \ Operand \
~----------+-----------+------------------~
\Any sym- I Mnemonic 10-200 operands, 1
Ibol or I operation Iseparated by 1
1 blank 1 code 1 commas. I L __________ ~ ___________ ~ __________________ J

The name field of the macro instruction
may contain a symbol. The symbol will not
be defined unless a symbolic parameter
appears in the name field of the prototype
and the same parameter appears in the name
field of a generated model statement.

The operation field contains the mnemon­
ic operation code of the macrc instruction.
The mnemonic operation code must be the
same as the mnemonic operation code of a
macro definition in the source program or
in the macro library.

The macro definition with the same mne­
monic operation code is used by the assem­
bler to process the macro instruction. If
a macro definition in the source program
and one in the macro library have the same
mnemonic operation code, the macro
definition in the source program is used.

The placement and order
in the macro instruction is
the placement and order
param~ters in the operand
prototype statement.

MACRO INSTRUCTION OPERANDS

of the operands
determined by

of the symbolic
field of the

Any combination of up to 255 characters
may be used as a macro instruction operand
provided that the following rules
concerning apostrophes, parentheses, equal
signs, ampersands, commas, and blanks are
observed.

Paired Apostrophes: An operand may contain
one or more quoted strings. A quoted
string is any sequence of characters that
begins and ends with an apostrophe and
contains an even number of apostrophes.

The first quoted string starts with the
first apostrophe in the operand. Subse­
quent quoted strings start with the first
apostrophe after the apostrophe that ends
the previous quoted string.

SECTION 8: HOW TO WRITE ~~CRO-INSTRUCTIONS

A quoted string ends with the first
even-numbered apostrophe that is not
immediately followed by another apostrophe.

The first and last apostrophes of a
quoted string are called paired apostroph­
es. The following example contains two
quoted strings. The first and fourth and
the fifth and sixth apostrophes are each
paired apostrophes.

'A"B'C'O'

An apostrophe not within a quoted
string, immediately followed by a letter,
and immediately preceded by the letter L
(when L is preceded by any special charac­
ter other than an ampersand), is not con­
sidered in determining paired apostrophes.
For instance, in the following example, the
apostrophe is not considered.

L'SYMBOL
'AL'SYMBOL' is an invalid operand.

Paired Parentheses: There must be an equal
number of left and right parentheses. The
nth left parenthesis must appear to the
left of the nth right parenthesis.

Paired parentheses are a left parenthe­
sis and a following right parenthesis with­
out any other parentheses intervening. If
there is more than one pair, each addition­
al pair is determined by removing any pairs
already recognized and reapplying the above
rule for paired parentheses. For instance,
in the following example the first and
fourth, the second and third, and the fifth
and sixth parentheses are each paired pa~
rentheses.

(A(B)C)O(E)

A parenthesis that appears between
paired apostrophes is not considered in
determining paired parentheses. For
instance, in the following example the
middle parenthesis is not considered.

(.) ,)
Equal Siqns: An equal sign can only occur
as the first character in an operand or
between paired apostrophes or paired pa­
rentheses. The following examples illus­
trate these rules.

=F' 32'
'C=D'
E(F=G)

Section 8: How to write Macro-Instructions 71

Ampersands: Except as noted under "Inner
Macro Instructions," each sequence of con-.
secutive ampersands must be an even number
of ampersands. The following example
illustrates this rule.

&&123&&&&

Commas: A comma indicates the end of an
operand, unless it is placed between paired
apostrophes or paired parentheses. The
following example illustrates this rule.

(A,B)C','

Blanks: Except as noted under "statement
Format," a blank indicates the end of the
operand field" unless it is placed between
paired apostrophes. The following example
illustrates this rule.

., ABC'

The following are valid macro-
instruction operands:
SYMBOL A+2
123 (TO(8),FROM)
X'189A' 0(2,3)
* =F'4096'
L'NAME AB&&9
'TEN = 10' 'PARENTHESIS IS)'
"QUOTE IS'" ., COMMA IS

The following are invalid macro­
instruction operands:
W'NAME (odd number of apostrophes)
5A)B (number of left parentheses

does not equal number of
right parentheses)

(15 B) (blank not placed between
paired apostrophes)

'ONE' IS '1' (blank not placed between
paired apostrophes)

STATEMENT FORMAT

Macro instructions may be written using
the same alternate format that can be used
to write prototype statements. If this
format is used, a blank does not always
indicate the end of the operand field. The
alternate format is described in Section 7,
under the subsection "Macro Instruction
Prototype." Unlike prototype statements,
macro instructions can have omitted operands,
and they can have consecutive commas or a
comma at the end of the operand list.

OMITTED OPERANDS

If an operand that appears in the proto­
type statement is omitted from the macro
instruction, then the comma that would have

72

separated it from the next operand must be
present. If the last operand(s) is omitted
from a macro instruction, then the comma(s)
separating the last operand(s) from the
next previous operand may be omitted.

The following example shows a macro·
instruction preceded by its corresponding
prototype statement. The macro instruction
operands that correspond to the third and
sixth operands of the prototype statement
are omitted in this example.

r------T-----------T----------------------,
I Name I Operation I Operand I
.------+-----------+----------~-----------i
I I EXAMPLE I &A" &B, &C, &D, &E, &F I
I I EXAMPLE 117,*+4"AREA,FIELD(6) I l ______ ~ ___________ ~ ______________________ J

If the symbolic parameter that
corresponds to an omitted operand is used
in a model statement, a null character
value replaces the symbolic parameter in
the generated statement" i. e. , in effect
the symbolic parameter is removed. For
example, the first statement below is a
model statement that contains the symbolic
parameter &C. If the operand that corres­
ponds to &C was omitted from the macro
instruction, the second statement below
would be generated from the model
statement.

r------T-----------T----------------------,
I Name I Operation I Operand I
.------+-----------+----------------------i
I IMVC ITHERE&C.25,THIS I
I IMVC ITHERE25,THIS I l ______ ~ ___________ ~ ______________________ J

OPERAND SUBLISTS

A sublist may occur as the operand of a
macro instruction.

Sublists provide the programmer with a
convenient way to refer to a collection of
macro instruction operands as a single
operand, or a single operand in a collec­
tion of operands.

A sublist consists of one or more oper­
ands separated by commas and enclosed in
paired parentheses. The entire sublist,
including the parentheses, is considered to
be one macro instruction operand.

If a macro instruction is written in the
alternate statement format', each operand of
the sublist may be written on a separate
line; the macro instruction may be written
on as many lines as necessary.

If tPl is a symbolic parameter in a
prototype statement, and the corresponding
operand of a macro-instruction is a sub­
list, then tPl(n) may be used in a model
statement to refer to the nth operand of
the sublist, where n may have a value
greater than or equal to 1. n may be
specified as a decimal integer or any
arithmetic expression allowed in a SETA
instruction. (The SETA instruction is des­
cribed in section 9.) If the nth operand
is omitted, then tPl(n) would refer to a
null character value.

If the sublist notation is used but the
operand is not a sublist, then tPl(l)
refers to the operand and tPl(2)~
tPl(3), ••• refer to a null character value.
If an operand has the form (), it is
treated as a character string and not as a
sublist. -

For example, consider the following
macro-definition, macro-instruction, and
genera.ted statements.

r------T---------T---------------,
I Name IOperationlOperand I
~------+---------+---------------~

Header I I MACRO I I
Prototype I I ADD ItNUM,®,tAREAI
Model I I L I tREG, &NUM(l) I
Model I I A I ®, tNUM(2) I
Model I I A I ®, &NUM(3) I
Model liST ItREG,&AREA I
Trailer I I MEND I I

~------+---------+---------------~
Macro I I ADD I (A, B, C), 6, SUM I
Generated I lL 16 ,A I
Generated I IA 16,B I
Generated I I·A 16,C I
Generated1 1ST 16~SUM I L ______ i _________ i _______________ J

The operand of the macro instruction
that corresponds to symbolic parameter tNUM
1S a sublist. One of the operands in the
sublist is referred to in the operand field
of three of the model statements. For
example, tNUM(l) refers to the first oper­
and in the sublist corresponding to symbol­
ic parameter tNUM. The first operand of
the sublist is A. Therefore, A replaces
tNUM(l) to form part of the generated
statement.

Note: When referring to an operand in a
sublist, the left parenthesis of the sub­
list notation must immediately follow the
last character of the symbolic parameter,
e.g., &NUM(l). A period should not be
placed between the left parenthesis and the
last character of the symbolic parameter.

A period may be used between these two
characters only when the programmer wants
to concatenate the left parenthesis with
the characters that the symbolic parameter

represents. The following example shows
what would be generated if a period
appeared between the left parenthesis and
the last character of the symbolic parame­
ter in the first model statement of the
above example.

r----T---------T-----------------,
INamelOperationlOperand I
~----+---------+-----------------~

Prototype I I ADD ItNUM,tREG,tAREA I
Model I IL I®,tNUM.(l) I

~----+---------+-----------------~
Macro I I ADD I (A,B,C),6,SUM I

~----+---------+-----------------~
Generated I IL 16~(A,B,C) (1) I L ____ i _________ L _________________ J

The symbolic parameter tNUM is used in
the operand field of the model statement.
The characters (A,B,C) of the macro­
instruction correspond to tNUM. Since tNUM
is immediately followed by a period, tNUM
and the period are replaced by (A,B,C).
The period does not appear in the generated
statement. The resulting generated
statement is an invalid assembler language
statement.

INNER MACRO INSTRUCTIONS

A macro-instruction may be used as a
model statement in a macro definition.
Macro instructions used as model statements
are called inner macro instructions.

A macro instruction that is not used as
a model statement is referred to as an
outer macro instruction.

The rule for inner macro instruction
parameters is the same as that for outer
macro instructions. Any symbolic param­
eters used in an inner macro instruction
are replaced by the corresponding characters
of the outer macro instruction. An operand
of an outer macro instruction sublist cannot
be passed as a sublist to an inner macro
instruction.

The macro definition corresponding to an
inner macro instruction is used to generate
the statements that replace the inner
macro instruction.

The ADD macro instruction of the pre­
vious example is used as an inner macro
instruction in the following example.

The inner macro instruction contains two
symbolic parameters, ts and tT. The
characters (X,Y,Z) and J of the macro
instruction correspond to &S and &T,
respectively. Therefore, these characters
replace the symbolic paramet.ers in the
operand field of the inner macro
instruction.

Section 8: How to Write Macro Instructions 73

The assembler then uses the macro
definition that corresponds to the inner
macro instruction to generate statements to
replace the inner macro instruction. The
fourth through seventh generated statements
have been generated for the inner macro
instruction.

r----T---------T-----------------,
I NamelOperationl Operand I
~----+---------+-----------------~

Header I I MACRO I I
Prototype I I COMP I &Rl, &R2, &S, &T, &U I
Model I ISR I&Rl,&R2 I
Model I I C I &Rl, &T I
Model I IBNE I&U I
Inner I I ADD I &S, 12, &T I
Model I &U IA I &Rl,&T I
Trailer I I MEND I I

~----+---------+-----------------~
Macro IK ICOMP 110,11, (X, Y, Z),J ,KI

~----+---------+-----------------~
Generated I ISR 110,11 I
Generated I IC 110,J I
Generated I IBNE IK I
Generated I IL 112,x I
Generated I IA 112,y I
Generated I fA 112,Z I
Generated I 1ST 112,J I
GeneratedlK IA 110,J I L ____ ~ _________ ~ _________________ J

74

Further relevant limitations and differen­
ces between inner and outer macro instruct­
ions will be covered under the pertinent
sections on sequence symbols, attributes,
etc.

Note: An ampersand that is part of a
symbolic parameter is not considered in
determining whether a macro instruction
operand contains an even number of consecu­
tive ampersands.

LEVELS OF MACRO INSTRUCTIONS

A macro·definition that corresponds to
an outer macro 'instruction may ccntain any
number cf inner macro instructicns. The
cuter macrO' instruction is called a first
level macrO' instruction. Each cf the inner
macro instructions is called a seccnd level
macro instructicn.

The macro definition that corresponds to
a second level macro instructicn may ccn-
tain any . number of inner macrO'
instructions. These macro instructicns are
called third level macro instructions., etc.

The number of levels of macro
instructions that may be used depends upon
the complexity of the macro ·definition and
the amount of storage available.

SECTION 9:

The conditional assembly instructions
allow the programmer to: (1) define and
assign values to SET symbols that can be
used to vary parts of generated statements,
and (2) vary the sequence of generated
statements. Thus, the programmer can use
these instructions to generate many
different sequences of statements from the
same macro-definition.

There are 13 conditional assembly
insttuctions, lQ of which are described in
this section. The other three conditional
assembly instructions -- GBLA, GBLB, and
GBLC are described in Section 10. The
instructions described in this section are:

LCLA
LCLB
LCLC

SETA
SETB
SETC

AIF
AGO
ACTR

ANOP

The primary use of the conditional
assembly instructions is in macro­
definitions. However, all of them may be
used in an assembler language source
program.

Where the use of an instruction outside
macro-definitions differs from its use
within macro-definitions~ the difference is
described in the subsequent text.

The LCLA, LCLB,
may be used to define
values to SET symbols.

and LCLC instructions
and assign initial

The SETA, SETB, and SETC instructions
may be used to assign arithmetic, binary,
and character values., respectively, to SET
symbols. The SETB instruction is described
after the SETA and SETC instructions,
because the operand field of the SETB
instruction is a combination of the operand
fields of the SETA and SETC instructions.

The AIF, AGO, and ANOP instructions may
be used in conjunction with sequence sym­
bols to vary the sequence in which state­
ments are processed by the assembler. The
programmer can test attributes assigned by
the assembler to symbols or macro­
instruction operands to determine which
statements are to be processed. The ACTR
instruction may be used to vary the maximum
number of AIF and AGO branches.

Examples illustrating the use of
conditional assembly instruction are
included' throughout this section. A chart
summarizing the elements that can be used
in each instruction appears at the end of
this section.

HOW TO WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS

SET SYMBOLS

SET symbols are one type of variable
symbol. The symbolic parameters discussed
in section 7 are another type of variable
symbol. SET symbols differ from symbolic
parameters in three ways: (1) where they
can be used in an assembler language source
program, (2) how they are assigned values,
and (3) whether or not the values assigned
t.o them can be changed.

Symbolic parameters can only be used in
macro-definitions, whereas SET symbols can
be used inside and outside macro­
definitions.

Symbolic parameters are assigned values
when the programmer writes a macro­
instruction, whereas SET symbols are
assigned values when the programmer writes
SETA, SETB, and SETC conditional assembly
instructions.

Each symbolic parameter is assigned a
single value for one use of a macro­
definition, whereas the values assigned to
each SETA, SETB, and SETC symbol can change
during one use of a macro-definition.

Defining SET Symbols

SET symbols must be defined by the
programmer before they are used. When a
SET symbol is defined it is assigned an
initial value. SET symbols may be assigned
new values by means of the SETA, SETB, and
SETC instructions. A SET symbol is defined
when it appears in the operand field of an
LCLA, LCLB, or LCLC instruction.

Using Variable Symbols

The SETA, SETB, and SETC instructions
may be used to change the values assigned
to SETA, SETB, and SETC symbols,
respectively. When a SET symbol appears in
the name, operation, or operand field of a
model statement, the current value of the
SET symbol (i.e., the last value assigned
to it) replaces the SET symbol in the
statement.

For example, if &A is a symbolic parame­
ter, and the corresponding characters of

Section 9: How to write Conditional Assembly Instructions 75

the macro-instruction are the symbol HERE,
then HERE replaces each occurrence of &A in
the macro-definition. However, if &A is a
SET symbol, the value assigned to &A can be
changed, and a different value can replace
each occurrence of &A in the macro­
definition.

The same variable symbol may not be used
as a symbolic parameter and as a SET symbol
in the same macro-definition.

The following illustrates this rule.

r-------T-----------T---------------------,
I Name ,Operation I Operand ,
~-------+-----------+---------------------~
I&NAME I MOVE I&TO,&FROM , L _______ ~ ___________ ~ _____________________ J

If the statement above is a prototype
statement, then &NAME, &TO, and &FROM may
not be used as SET symbols in the macro­
definition.

The same variable symbol may not be used
as two different types of SET symbols in
the same macro-definition. Similarly, the
same variable symbol may not be used as two
different types of SET symbols outside
macro-definitions.

For example, if &A is a SETA symbol in a
macro-definition, it cannot be used as a
SETC symbol in that definition. Similarly,
if &A is a SETA symbol outside macro­
definitions, it cannot be used as a SETC
symbol outside macro-definitions.

The same variable symbol may be used in
two or more macro-definitions and outside
macro-definitions. If such is the case,
the variable symbol will be considered a
different variable symbol each time it is
used.

For example, if &A is a variable symbol
(either SET symbol or symbolic parameter)
in one macro-definition, it can be used as
a variable symbol (either SET symbol or
symbolic parameter) in another definition.
Similarly, if &A is a variable symbol (SET
symbol or symbolic parameter) in a macro­
definition, it can be used as a SET symbol
outside macro-definitions.

All variable symbols may be concatenated
with other characters in the same way tha.t
symbolic parameters may be concatenated
with other characters. The rules for
concatenating symbolic parameters with
other characters are in Section 7 under the
subsection "Symbolic Parameters."

Variable symbols in macro-instructions
are replaced by the values assigned to
them, immediately prior to the start of
processing the definition. If a SET symbol

76

is used in the operand field of a macro­
instruction, and the value assigned to the
SET symbol is equivalent to the sublist
notation, the operand is not considered a
sublist.

ATTRIBUTES

The assembler assigns attributes to
macro-instruction operands and to symbols
in the program. Tbese attributes may be
referred to only in 'conditional assembly
instructions or expressions.

There are six kinds of attributes. They
are: type, length, scaling, integer,
count, and number. Each kind of attribute
is discussed in the paragraphs that follow.

If an outer macro-instruction operand is
a symbol before substitution, then the
attributes of the operand are the same as
the corresponding attributes of the symbol.
The symbol must appear in the name field of
an assembler language statement or in the
operand field of an EXTRN statement in the
program. The statement must be outside
macro-definitions and must not contain any
variable symbols.

If an inner macro-instruction operand is
a symbolic parameter, then the attributes
of the operand are the same as the attri­
butes of the corresponding outer ~acro
instruction operand. A symbol appearing as'
an inner macro instruction operand is not
aSSigned the same attributes as the same
symbol appearing as an outer macro instruc­
tion operand.

If a macro-instruction operand is a
sublist, the programmer may refer to the
attributes of either the sublist or each
operand in the sublist. The type, length,
scaling, and integer attributes of a
sublist are the same as the corresponding
attributes of the first operand. in the
sublist.

All the attributes of macro-instruction
operands may be referred to in conditional
assembly instructions within macro-
definitions. However" only the type,
length, scaling, and integer attributes of
symbols may' be referred to in conditional
assembly instructions outside macro­
definitions. Symbols appearing in the name
field of generated statements are not
assigned attributes.

Each attribute has a notation associated
with it. The notations are:

Attribute
Type
Length
Scaling
Integer
Count
Number

Notation
T'
L'
S'
II
K'
N'

The progranuner may refer t.o an attribute
in the following ways:

1. In a statement that is outside macro
definitions, he way write the notation
for the attribute immediately followed
by a symbol. (e.g., T'NAME refers to
the type attribute of the symbol
NAME.)

2. In a statement that is in a macro­
definition, he may write the notation
for the attribute immediately followed
by a symbolic parameter. (e.g.,
L'&NAME refers to the length attribute
of the characters in the macro­
instruction that correspond to
symbolic parameter &NAME: L'&NAME(2)
refers to the length attribute of the
second operand in the sublist that
corresponds to symbolic parameter
&NAME.) .

~ Attribute (T')

The type attribute
instruction operand, or
letter.

of a macro
a symbol is a

The following letters are used for
symbols that name DC and DS statements and
for outer macro instruction operands that
are symbols that name DC or DS statements.

A A-type address constant,
implied length, aligned, (also in
CXD statement)

B Binary constant.
C Character constant.
D Long floating-point constant,

implied length, aligned.
E Short floating-point constant,

implied length, aligned.
F Full-word fixed-point constant,

implied length, aligned.

G

H

K

Fixed-point constant, explicit
length.
Half-word fi~ed-point constant,
implied length, aligned.
,Floating-point constant,
explicit length.

r, Extended floating-point constant,
implied length, aligned
Packed decimal constant. p

Q Q-type address constant, implied
length, aligned.

R A-, S-, Q-, V-, or y-type address
constant, explicit length.

S

v

x
Y

Z

S-type address constant,
implied length, aligned.
V-type address constant,
implied length, aligned.
Hexadecimal constant.
Y-type address constant,
implied length, aligned.
Zoned decimal constant.

The following letters are used for sym­
bols (and outer macro instruction operands
that are symbols) that name statements
other than DC or DS statements, or that
appear in the operand field of an EXTRN
statement.

I Machine instruction
J Control section name
M Macro instruction
T EXTRN symbol
W CCW instruction
$ WXTRN symbol

The following letters are used for
and outer macro instruction operands

N Self-defining term
o Omitted operand

inner
only .•

The following letter is used for inner
and outer macro instruction operands that
cannot be assigned any of the above let-
ters. This includes inner macro
instruction operands that are symbols.

Section 9: How to Write Conditional Assembly Instructions 77

This letter is also assigned to symbols
that name EQU and LTORG statements, to any
symbols occurring more than once in the
name field of source statements, and to all
symbols naming statements with expressions
as modifiers.

U Undefined

The attributes of A, B, C and Dare
undefined in the following example:

r--------T-----------T--------------------,
I Name I Opera tion I Operand I
~--------+-----------+------------~~------i
IA IDC I 3FL(AA-BB) '75' I
IB IDC I (AA-BB)F'lS' I
I C I DC I &X' I' I
I D I DC I FL (3-2) , 1 ' I l ________ ~ ___________ ~ ____________________ J

The programmer may refer to a type
attribute in the operand field of a SETC
instruction, or in character relations in
the operand fields of SETB or AIF
instruct'ions.

Length (LI), Scaling (SI), and Integer (I')
Attributes

The length, scaling, and integer attri­
butes of macro instruction operands, and
symbols are numeric values.

The length attribute of a symbol (or of
a macro instruction operand that is a
symbol) is as described in Part I of this
publication. The use of the length attribute
of a symbol defined with a DC or DS with
explicit length given by an expression is
invalid. Reference to the length attribute
of a variable symbol is illegal except for
symbolic parameters in SETA, SETB and AIF
statements. If the basic L' attribute is
desired, it may be obtained as follows:

78

&A
&B

SETC
SETC
MVC

'Z'
'L" I

&A. (&B&A) ,X

After generation, this would result in

MVC Z(L'Z),X

Conditional assembly instructions must
not refer to the lenqth attributes of
symbols or macro instruction operands whose
type attributes are the letters M, N, 0, T,
U, W, or $.

Scaling and integer attributes are pro­
vided for symbols that name fixed-point,
floating-point, and decimal fields.

Fixed and Floating Point: The scaling
attribute of a fixed-point or floating­
point number is the value given by the
scale modifier. The integer attribute is a
function of the scale and length attributes
of the number.

Decimal: The scaling attribute of a
decimal number is the number of decimal
digits to the right of the decimal point.
The integer attribute of a decimal number
is the number of decimal digits to the left
of the assumed decimal point after the
number is assembled.

Scaling and integer attributes are
available for symbols and macro instruction
operands only if their type attributes are
H,F, and G, (fixed point); D,E,L, and K
(floating point); or P and Z (decimal).

The programmer may refer to the length,
scaling, and integer attributes in the
operand field of a SETA instruction, or in
arithmetic relations in the operand fields
of SETB or AIF instructions.

count Attribute (K')

The programmer may refer to
attribute of macro instruction
only.

the count
operands

The value of the count attribute is
equal to the number of characters in the
macro instruction operand. It includes
all characters in the operand, but does
not include the delimiting commas. The
count attribute of an omitted operand is
zero. These rules are illustrated by the
following examples:

Operand

ALPHA
(JUNE,JULY,AUGUST)
2(10,12)
A(2)
'A' 'B' , ,
, ,

Count Attribute

5
18

8
4
6
3
2

If a macro instruction operand contains
variable symbols, the characters that
replace the variable symbols, rather than
the variable symbols, are us~d to determine
the count attribute.

The programmer may refer to the count
attribute in the operand field of a SETA
instruction, or in arithmetic relations in
the operand fields of SETB and AIF instruc­
tions that are part of a macro-definition.

Number Attribute (N I)

T~e programmer may refer to the number
attribute of macro-instruction operands
only.

The number attribute is a value equal to
the number of operands in an operand sub­
list. The number of operands in an operand
sublist is equal to one plus the number of
commas that indicate the end of an operand
in the sublist.

The following examples
rule.

illustrate this

(A,B,C,D,E)
(A"C,D,E)
(A, B., C, D)
(,B,C,D,E)
(A,B,C,D,)
(A,B,C,D,,)

5 operands
5 operands
4 operands
5 operands
5 operands
6 operands

If the macro-instruction operand is not
a sublist, the number attribute is one. If
the macro instruction operand is omitted,
the nunlb2r attribute is zero.

The programmer may refer to the number
attribute in the operand field of a SETA
instruction, or in arithmetic relations in
the operand fields of SETB and AIF instruc­
tions that are part of a macro definition.

Assigning Attributes to Symbols

The integer attribute is computed from
the length and scaling attributes.

Fixed Point: The integer attribute
fixed-point number is equal to eight
the length attribute of the number
the scaling attribute minus one;
II=8*L'-SI-l.

of a
times
minus
i. e. ,

Each of the following statements defines
a fixed~point field. The length attribute
of HALFCON is 2, the scaling attribute is
6, and the integer attribute is 9. The
length attribute of ONECON is 4, the scal­
ing attribute is 8, and the integer attri­
bute is 23.

r---------T-----------T-------------------,
I Name I Operation I Operand I
~---------+-----------+-------------------~
I HALFCON I DC I HS 6 ' - 2 5 • 93 ' I
IONECON IDC IFS8'100.3E-2' I L-________ ~ ___________ ~ ___________________ J

section 9: How to Write Conditional Assembly Instructions 79

,Floating Point: The integer attribute of a
Type D or E floating-point number is equal
to two times the difference between the
l~ngth attribute of the number and one
m~nus the scaling attribute; i.e., I'=2*
(Lf_l)-Sf.

Because of its low order characteristic,
the integer attribute of a Type L constant
with a length greater than 8 bytes is two
less than the value indicated in the formula
above. The integer attribute of a Type L
constant with a length of 8 bytes or less
is the same as the value indicated in the
formula above.

Each of the following statements defines
a floating-point field. The length attri­
bute of SHORT is 4, the scaling attribute
is 2, and the integer attribute is 4. The
length attribute of LONG is 8, the scaling
attribute is 5, and the integer attribute
is 9.

r-------T-----------T---------------------,
I Name IOperation I Operand I
~-------+-----------+---------------------~
I SHORT IDC IES2'46.415' I
I LONG IDC IDS5'-3.729' I L _______ i ___________ i _____________________ J

Decimal: The int~ger attribute of a packed
decimal number ~s equal to two times the
length attribute of the number minus the
scaling attribute minus one; i.e.,
I'=2*L'-S'-1. The integer attribute of a
zoned decimal number is equal to the d~f­
ference between the length attribute and
the scaling attribute; i.e~, I'=L'-S'.

Each of the following statements defines
a decimal field. The length attribute of
FIRST is 2, the scaling attribute is 2, and
the integer attribute is 1. The length
attribute of SECOND is 3, the scaling
attribute is 0, and the integer attribute
is 3. The length attribute of THIRD is 4,
the scaling attririute is 2, and the integer
attri.bute is 2. The length attrjbute of
FOURTH is 3, the scaling attribute is 2,
and the integer attribute is 3.

r--------T-----------T--------------------,
I Name I Operation I Operand I
~--------+-----------+--------------------~
I FIRST IDC IP'+1.25' I
ISECOND IDC IZ'-543' I
I THIRD I DC I Z' 79.68' I
I FOURTH IDC IP'79.68' I L------__ ~ ___________ i ____________________ J

80

SEQUENCE SYMBOLS

The name field of a statement may con­
tain a sequence symbol. Sequence symbols
provide the programmer with the ability to
vary the sequence in which statements are
processed by the assembler~

A sequence symbol is used in the operand
field of an AIF or AGO statement to refer
to the statement named by the sequence
symbol.

A sequence symbol is considered to be
local to a macro definition.

A sequence symbol may be used in the
name field of any statement that does not
contain a symbol or SET symbol except a
prototype statement, a MACRO, LCLA, LCLB,
LCLC, GBLA, GBLB., GBLC, ACTR, ICTL, ISEQ,
or COpy instruction.

A sequence symbol consists of a period
followed by one through seven letters
and/or digits, the first of which must be a
letter.

The following are valid sequence
bols:

• READER .A23456
• LOOP2 .X4F2
.N • S4

The following are invalid sequence
bols:

CARDAREA (first character is not
a period)

.246B (first character after
period is not a letter>

.AREA2456 (more than seven characters
after period)

.BCD%84 (contains a special character
other than initial period)

.IN AREA (contains a special
character, i.e., blank,
other than initial period)

sym-

sym-

If a sequence symbol a.ppears in the name
field of a macro-instruction, and the cor­
responding prototype statement contains a
symbolic parameter in the name field, the
sequence symbol does not replace the sym­
bolic parameter wherever it is used in the
macro-definition.

The following example illustrates this
rule.

r-------T-----------T-------------------,
IName I Operation I Operand I
~-------+-----------+-------------------~
I ,MACRO, ,

1 I&NAME I MOVE I&TO,&FROM I
2 I &NAlviE ,ST 12, SAVEAREA ,

, , L I 2 , & FROM 1
liST 12 , &TO 1
1 IL 12,SAVEAREA 1
1 1 MEND 1 I
~-------+-----------+-------------------~

3 I.SYM I MOVE IFIELDA,FIELDB 1
~-------+-----------+-------------------~

4 liST 12,SAVEAREA I
I I L I 2, FIELDB I
liST 12,FIELDA I
1 IL 12,SAVEAREA I
L _______ ~ ___________ ~ _____ ~-------------J

The symbolic parameter &NAME is used in
the name field of the prototype statement
(statement 1) and the first model statement
(statement 2). In the macro-instruction
(statement 3) a sequence symbol (.SYM)
corresponds to the symbolic parameter
&NAME. &NAME is not replaced by .SYM, and,
therefore, the generated statement
(statement 4) does not contain an entry in
the name field.

LCLA, LCLB, LCLC -- DEFINE LOCAL SET SYMBOLS

The format of these instructions is:

r-------T-----------T---------------------,
'Name I Operation I Operand I
~-------+-----------+---------------------~
I Blank I LCLA, lOne or more variable I
I ILCLB, or I symbols, that are I
I ILCLC Ito be used as SET I
I I I symbols, separated I
I I Iby commas I L _______ ~~ __________ ~ _____________________ J

The LCLA, LCLB, and LCLC instructions
are used to define and assign initial
values to SETA, SETB, and SETC symbols,
respectively. The SETA, SETB, and SETC
symbols are assigned the initial values of
0, 0, and null character value, respective­
ly.

The programmer should not define any SET
symbol whose first four characters are
&SYS.

All LCLA, LCLB, or LCLC instructions in
a macro definition must appear immediately
after the prototype statement and GBLA,
GBLB or GBLC instructions. All LCLA, LCLB,
or LCLC instructions outside macro
definitions must appear after all macro
definitions in the source program, after
all GBLA, GBLB, and GBLC instructions
outside macro definitions, before all
conditional assembly instructions, and
PUNCH and REPRO statements outside macro
definitions, and before the first con-
trol section of the program.

SETA -- SET ARITHMETIC

The SETA instruction may be used to
assign an arithmetic value to a SETA sym­
bol. The format of this instruction is:

r--------T-----------T--------------------,
I Name IOperation IOperand I
~--------+-----------+--------------------~
IA SETA ISETA IAn arithmetic I
I symbol I I expression I L ________ ~ ___________ ~ ____________________ J

The expression in the operand field is
evaluated as a signed 32-bit arithmetic
value which is assigned to the SETA symbol
in the name field. The minimum and maximum
allowable values of the expression are -2 31

and +2 31 -1, respectively.

The expression may consist of one term
or an arithmetic combination of terms. The
terms that may be used alone or in combina­
tion with each other are self-defining
terms, variable symbols, and the length,
scaling, integer, count, and number attri­
butes. Self-defining terms are described
in Part I of this publication.

Note: A SETC variable symbol may appear in
a SETA expression only if the value of the
SETC variable is one to eight decimal
digits. The decimal digits will be con­
verted to a positive arithmetic value.

The arithmetic operators that may be
used to combine the terms of an expression
are + (addition), - (subtraction),
* (multiplication), and / (division).

An expression may not contain two terms
or two operators in succession, nor may it
begin with an operator.

The following are valid operand fieldS
of SETA instructions:

Section 9: How to Write Conditional Assembly Instructions 81

&AREA+X' 20'
&BETA*10
L'&HERE+32

I'&N/2S
&EXIT-S'&ENTRY+1
29

The following are invalid operand fields
of SETA instructions:

&AREAX'C'
&FIELD+­
-&OELTA*2
*+32

NAME/1S

(two terms in succession)
(two operators in succession)
(begins with an operator)
(begins with an operator;

two operators in succession)
(NAME is not a valid term)

Evaluation of Arithmetic Expressions

The procedure used to evaluate the
arithmetic expression in the operand field
of a SETA instruction is the same as that
used to evaluate arithmetic expressions in
assembler language statements. The only
difference between the two types of arith­
metic expressions is the terms that are
allowed in each expression.

The following evaluation procedure is
used:

1. Each term is given its numerical
value.

2. The arithmetic operations are per­
formed moving from left to right.
However, multiplication and/or divi­
sion are performed before addition and
subtraction.

3. The computed
assigned to
name field.

result is the value
the SETA symbol in the

The arithmetic expression in the operand
field of a SETA instruction may contain one
or more sequences of arithmetically com­
bined terms that are enclosed in parenthe­
ses. A sequence of parenthesized terms may
appear within another parenthesized
sequence. Only five levels of parentheses
are allowed and an expression may not
consist of more than 16 terms. Parentheses
required for sublist notation, substring
notation, and subscript notation count
toward this limit.

The following are examples
instruction operand fields that
parenthesized sequences of terms.

of SETA
contain

(L'&HERE+32)*29
&AREA+X'2D'/(&EXIT-S'&ENTRY+1)
&BETA*10*(I'&N/2S/(&EXIT-S'&ENTRY+1»

82

The parenthesized portion or portions of
an arithmetic expression are evaluated
before the rest of the terms in the expres­
sion are evaluated. If a sequence of
parenthesized terms appears within another
parenthesized sequence, the innermost
sequence is evaluated first.

Using SETA Symbols

The arithmetic value assigned to a SETA
symbol is substituted for the SETA symbol
when it is used in an arithmetic expres­
sion. If the SETA symbol is not used in an
arithmetic expression, the arithmetic value
is converted to an unsigned integer, with
leading zeros removed. If the value is
zero, it is converted to a single zero.

The following example illustrates this
rule:

r-------T-----------T-------------------,
,Name ,Operation ,Operand 1
~-------+-----------+-------------------~

MACRO
& NAME MOVE &TO,&FROM

LCLA &A,&B,&C,&D
1 &A SETA 10
2 &B SETA 12
3 &C SETA &A-&B
4 &D SETA &A+&C

& NAME ST 2,SAVEAREA
5 L 2,&FROM&C
6 ST 2.&TO&D

L 2~SAVEAREA
MEND

~-------+-----------+-------------------~
,HERE 1 MOVE IFIELDA,FIELDB ,
~-------+-----------+-------------------~
1 HERE 1ST 12" SAVEAREA 1
1 ILl 2'11 FIELDB2 1
liST ,2,FIELDA8 I
, IL 12.SAVEAREA , L _______ i ___________ i ___________________ J

Statements 1 and 2 assign to the SETA
symbols &A and &B the arithmetic values +10
and +12, respectively. Therefore, state­
ment 3 assigns the SETA symbol &C the
arithmetic value -2. When &C is used in
statement 5, the arithmetic value -2 is
converted to the unsigned integer 2. When
&C is used in statement 4, however, the
arithmetic value -2 is used. Therefore, &D
is assigned the arithmetic value +8. When
&0 is used in statement 6, the arithmetic
value +8 is converted to the unsigned
integer 8.

The following example shows
value assigned to a SETA symbol
changed in a macro definition.

how the
may be

r-------T-----------T-------------------,
I Name I Operation I Operand I
~-------+-----------+-------------------~
I I MACRO I I
I&NAME I MOVE I&TO,&FROM I
I I LCLA I &A I

1 I&A I SETA IS I
I&NAME 1ST 12.SAVEAREA I

2 I I L 12, &FROM&A I
3 I&A I SETA 18 I
4 liST 12,&TO&A I

I IL 12.,SAVEAREA I
I I MEND I I
~-------+-----------+------~------------~
I HERE I MOVE IFIELDA,FIELDB I
~-------+-----------+-------------------~
I HERE 1ST 12,SAVEAREA I
I I L I 2. FIELDBS I
liST 12.FIELDA8 I
I IL 12,SAVEAREA I L _______ ~ ___________ ~ ___________________ J

Statement 1 assigns the arithmetic value
+S to SETA symbol &A. In statement 2, &A
is converted to the unsigned integer S.
Statement 3 assigns the arithmetic value +8
to &A. In statement 4, therefore, &A is
converted to the unsigned integer 8,
instead of 5.

A SETA symbol may be used with a symbol­
ic parameter to refer to an operand in an
operand sublist. If a SETA symbol is used
for this purpose it must have been assigned
a positive value.

Any expression that may be used in the
operand field of a SETA instruction may be
used to refer to an operand in an operand
sublist.

Sublists are described in Section 8
under "Operand Sublists."

The following macro definition may be
used to add the last operand in an operand
sublist to the first operand in an operand
sublist and store the result at the first
operand. A sample macro-instruction and
gener~ted statements follow the macro
definition.

r------T-----------T--------------------,
I Name I Operation I Operand ,
~------+-----------+--------------------~
I I MACRO I ,

1 I IADDX I&NUMBER,® ,
I I LCLA I &LAST I

2 I&LAST ISETA IN'&NUMBER I
I I L I ®, & NUMBER (1) I

3 I I A I ®, &NUMBER (&LAST) I
I I ST I ®, &NUMBER(l) I
I I MEND I I
~------+-~---------+--------------------~

4 I IADDX I (A,B,C,D,E),3 I
~------+-----------+--------------------~
I IL 13,A ,
I IA 13,E I
I ~ST 13,A I L ______ ~ ___________ ~ ____________________ J

&NUMBER is the first symbolic parameter
in the operand field of the prototype
statement (statement 1). The corresponding
characters, (A,B,C,D,E), of the macro­
instruction (statement 4) are a sublist.
Statement 2 assigns to &LAST the arithmetic
value +S, which is equal to the number of
operands in the sublist. Therefore, in
statement 3, &NUMBER(&LAST) is replaced by
the fifth operand of the sublist.

SETC -- SE:T CHARACTER

The SETC instruction is used to assign a
character value to a SETC symbol. The
format of this instruction is:

r---------T-----------T-------------------,
I Name I Operation I Operand I
~---------+-----------+-------------------~
IA SETC ISETC lOne operand, of I
I symbol I Ithe form described I
I I I below I L _________ ~ ___________ ~ ___________________ J

The operand field may consist of the
type attribute, a character expression, a
substring notation, or a concatenation of
substring notations and character
expressions. A SETA symbol may appear in
the operand of a SETC statement. The
result is t.he character representation of
the decimal value, unsigned, with leading
zeros removed. If the value is zero, one
decimal zero is used.

Type Attribute

The character value assigned to a SETC
symbol may be a type attribute. If the
type attribute is used, it must appear
alone in the operand field. The following
example assigns to the SETC symbol &TYPE
the letter that is the type attribute of
the macro instruction operand that corre­
sponds to the symbolic para~eter &ABC.

r-------T-----------T---------------------,
'Name I Operation I Operand ,
~-------+-----------+---------------------~
I&TYPE ISETC IT'&ABC I L _______ ~ ___________ ~ _____________________ J

Character Expression

A character expression consists of any
combination of (up to 255) characters
enclosed in apostrophes.

The first eight characters in a charac­
ter value enclosed in apostrophes in the
operand field are assigned to the SETC
symbol in the name field. The maximum size
character value that can be assigned to a
SETC symbol is eight characters.

Evaluation of Character Expressions: The
following statement assigns the character
value AB%4 to the SETC symbol &ALPHA:

section 9: How to Write Conditional Assembly Instructions 83

r--------T-----------T--------------------,
I Name I Operation I Operand I
~--------+-----------+--------------------~
I &ALPHA I SETC I ' AB%4 ' I L ________ ~ ___________ ~ ____________________ j

More than one character expression may
be concatenated into a single character
expression by placing a period between the
terminating apostrophe of one character
expression and the opening apostrophe of
the next character expression. For exam­
ple, either of the following statements may
pe used to assign the character value
~BCDEF to the SETC symbol &BETA.

r-------T-----------T---------------------,
I Name I Operation I operand I
~-------+-----------+---------------------~
I &BETA I SETC I' ABCDEF' I
I&BETA ISETC I'ABC'.'DEF' I L _______ ~ ___________ ~ _____________________ J

Two apostrophes must be used to rep­
resent an apostrophe that is part of a
character expression.

The following statement assigns the
character value L'SYMBOL to the SETC symbol
&LENG'J.'H.

r---------T-----------T-------------------,
I Name I Operation I Operand I
~---------+-----------+-------------------~
I&LENGTH ISETC I'L"SYMBOL' I L _________ ~ ___________ ~ ___________________ J

Variable symbols may be concatenated
with other characters in the operand field
of a SETC instruction according to the
general rules for concatenating symbolic
parameters with other characters (see Sec­
tion 7).

If &ALPHA has been assigned the charac­
ter value AB%4, the following statement may
be used to assign the character value
AB%4RST to the variable symbol &GA¥~.

r--------T-----------T--------------------,
I Name I Operation I Operand I
~--------+-----------+--------------------~
I & GAMMA. I SETC I ' &ALPHA. RST' I l ________ ~ ___________ ~ ____________________ J

Two ampersands must be used to represent
an ampersand that is not part of a variable
symbol. Both ampersands become part of the
character value assigned to the SETC sym­
bol. They are not replaced by a single
ampersand.

The following statement
character value HALF&& to the
&AND.

assigns the
SETC symbol

r-------T-----------T---------------------,
IName I Operation I Operand I
~-------+-----------+---------------------.~
I&AND ISETC I'HALF&&' I L _______ ~ ___________ ~ ___________ ~ _________ J

84

Substring Notation

The character value assigned to a SETC
symbol may be a substring character value.
Substring character values permit the pro­
grammer to assign part of a character value
to a SETC symbol.

If the programmer wants to assign part
of a character value to a SETC symbol, he
must indicate to the assembler in the
operand field of a SETC instruction: (1)
the character value itself, and (2) the
part of the character value he wants' to
assign to the SETC symbol. The combination
of (1) and (2) in the operand field of a
SETC instruction is called a substring
notation. The character value that is
assigned to the SETC symbol in the name
field is called a substring character
value.

Substring notation consists of a charac­
ter expression, immediately followed by two
arithmetic expressions that are separated
from each other by a comma and are enclosed
in parentheses. Each arithmetic expression
may be any expression that is allowed in
the operand field of a SETA instruction.

The first expression indicates the first
character in the character expression that
is to be assigned to the SETC symbol in the
name field. The second expression indi­
cates the number of consecutive characters
in the character expression (starting with
the character indicated by the first
expression) that are to be assigned to the
SETC symbol. If a substring asks for more
characters than are in the character string
only the characters in the string will be
assigned.

The maximum size substring character
value that can be assigned to a SETC symbol
is eight characters. The maximum size
character expression the substring charac­
ter value can be chosen from is 255 charac­
ters. If a value greater than 8 is speci­
fied, the leftmost 8 characters will be
used.

The following are valid substring nota­
tions:

'&ALPHA' (2,5)
'AB%4'(&AREA+2,1)
, &ALPHA. RST' (6, &A)
'ABC&G~l~~' (&A,&AREA+2)

The following
notations:

, &BETA' (4,6)

are invalid substring

(blanks between character value
and arithmetic expressions)

'L"SYMBOL' (142-&XYZ)
(only one arithmetic expression)

'AB%4&ALPHA' (8 &FIELD*2)
(arithmetic expressions

not separated by a comma)
'BETA'4,6

(arithmetic expressions
not enclosed in parentheses)

Using SETC Symbols

The character value assigned to a SETC
symbol is substituted for the SETC symbol
when it is used in the name, operation, or
operand field of a statement.

For example, consider the following
macro-definition, macro instruction, and
generated statements.

r---------T----~------T-----------------,
I Name I Operation I Operand I
~---------+-----------+-----------------~
I I MACRO I I
I &NAME I MOVE I &TO, &FROM I
I I LCLC I&PREFIX I

1 I &PREFIX I SETC I 'FIELD' I
I &NAME 1ST 12, SAVEAREA I

2 I IL 12,&PREFIX&FROM I
3 I 1ST 12, &PREFIX&TO I

I IL 12,SAVEAREA I
I I MEND I I
~---------+-----------+-----------------~
I HERE I MOVE IA,B I
~---------+-----------+-----------------~
I HERE 1ST 12, SAVEAREA I
I I L 12, FIELDB I
I I ST I 2, FIELDA I
I I L I 2, SAVEAREA I l _________ ~ ___________ ~ _________________ J

statement 1 assigns the character value
FIELD to the SETC symbol &PREFIX. In
statements 2 and 3, &PREFIX is replaced by
FIELD.

The following example shows how the
value assigned to a SETC symbol may be
changed in a macro definition.

r---------T-----------T-----------------,
IName I Operation I Operand I
~---------+-----------+-----------------~
I I MACRO I I
I &NAt-1E I MOVE I &TO, & FROM I
I I LCLC I&PREFIX I

1 I&PREFIX ISETC I 'FIELD' I
I&NA~ili 1ST 12,SAVEAREA I

2 I I L 12, &PREFIX&FROM I
3 I&PREFIX ISETC I 'AREA' I
4 I 1ST 12, &PREFIX&TO I

I I L 12,SAVEAREA I
I I MEND I I
~---------+-----------+-----------------~
1 HERE I MOVE IA,B I
~---------+-----------+-----------------~
I HERE: 1ST 12,SAVEAREA I
1 ILl 2, FIELDB I
I 1ST 12,AREAA I
I I L 12,SAVEAREA I l _________ ~ ___________ ~ _________________ J

Statement 1 assigns the character value
FIELD to the SETC symbol &PREFIX. There­
fore, &PREFIX is replaced by FIELD in
statement 2. Statement 3 assigns the char­
acter value AREA to &PREFIX. Therefore,
&PREFIX is replaced by AREA, instead of
FIELD, in statement 4.

The following example illustrates the
use of a substring notation as the operand
field of a SETC instruction.

r---------T-----------T-----------------,
IName 1 Operation I Operand I
~---------+-----------+-----------------~
I I MACRO I I
I &NAME I MOVE I &TO, &FROM I
I I LCLC I&PREFIX I

1 I&PREFIX ISETC I'&TO' (1,5) I
I &NANE 1ST 12, SAVEAREA I

2 I I L I 2, &PREFIX&FROM I
I I ST I 2 , & TO I
I I L I 2 , SAVEAREA I
I I MEND I I
~---------+-----------+-----------------~
I HERE I MOVE IFIELDA,B I
~---------+-----------+-----------------~
I HERE 1ST 12,SAVEAREA I
I IL 12,FIELDB I
I 1ST 12,FIELDA I
I IL 12,SAVEAREA I
l---------~ ___________ L _________________ J

Statement 1 assigns the substring char­
acter value FIELD (the first five charac­
ters corresponding to symbolic parameter
&TO) to the SETC symbol &PREFIX. There­
fore, FIELD replaces &PREFIX in statement
2.

Note: It is not possible, by specifying
a string of values separated by commas
as the operand of a SETC instruction and
then using the SETC symbol as an operand
in the macro call, to pass a string of
values as parameters in a macro instruc­
tion. If you attempt to do this, the
operand of the SETC instruction will be
passed to the macro instruction as one
parameter, not as a list of parameters.
If the SETC operand is a sublist, it
will also be passed to the macro
instruction as one parameter.

Concatentating Substring Notations and
Character Expressions: Substring notations
may be concatenated with character expres­
sions in the operand field of a SETC

Section 9: How to Write Conditional Assembly Instructions 85

instruction. If a substring notation fol­
lows a character expression, the two may be
concatenated by placing a period between
the terminating apostrophe of the character
expression and the opening apostrophe of
the substring notation.

For example., if &ALPHA has
the character value AB%4,
been assigned the character
then the following statement
the character value AB%4BCD.

been assigned
and &BETA has

value ABCDEF,
assigns &GAMMA

r--------T----------T---------------------,
I Name IOperation IOperand I
~--------+----------+---------------------~
I&GAMMA ISETC ,'&ALPHA'.'&BETA'(2,3) , L ________ ~ __________ ~ _________________ --__ J

If a substring notation precedes a char­
acter expression or another substring nota­
tion, the two may be concatenated by writ­
ing the opening apostrophe of the second
item immediately after the closing paren­
thesis of the substring notation.

The programmer may optionally place a
period between the closing parenthesis of a
substring notation and the opening apos­
trophe of the next item in the operand
field.

If &ALPHA has been assigned the charac­
ter value AB%4, and &ABC has been assigned
the character value 5RS, either of the
following statements may be used to assign
&WORD the character value AB%45RS.

r------T---------T------------------------,
I Name ,OperationlOperand I
~------+---------+------------------------~
I &WORD I SETC I' &ALPHA' (1,4) '&ABC' I
I&WORD ISETC 1'&ALPHA'(l,4)'&ABC'(l,3)I L ______ ~ _________ ~ ________________________ J

If a SETC symbol is used in the operand
field of a SETA instruction, the character
value assigned to the SETC symbol must be
one to eight decimal digits.

If a SETA symbol is used in the operand
field of a SETC statement, the arithmetic
value is converted to an unsigned integer
with leading zeros removed. If the value
is zero, it is converted to a single zero.

SETB -- SET BINARY

The SETB instruction may be used to
assign the binary value 0 or 1 to a SETB·
symbol. The format of this instruction is:

86

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
IA SETB ISETB IA 0 or a 1 enclosed orl
I symbol I Inot enclosed in paren-I
I I Itheses, or a logical I
I I lexpression enclosed I
I I lin parentheses I L ________ ~ ________ ~ ______________________ J

The operand field may contain a 0 or a 1
or a logical expression enclosed in paren­
theses. A logical expression is evaluated
to determine if it is true or false; the
SETB symbol in the name field is then
assigned the binary value 1 or 0 corres­
ponding to true or false, respectively.

A logical expression consists of one
term or a logical combination of terms.
The terms that may be used alone or in
combination with each other are arithmetic
relations, character relations, and SETB
symbols. The logical operators used to
combine the terms of an expression are &~D,
OR, and Nor.

An expre~sion may not contain two terms
in succeSS1on. A logical expression may
contain two operators in succession only if
the first operator is either AND or OR and
the second operator is NOT. A logical
expression may begin with the operator NOT.
It may not begin with the operators AND or

. OR.

An arithmetic relation consists of two
arithmetic expressions connected by a rela­
tional operator. A character relation con­
sists of two character values connected by
a relational operator. The relational
operators are EQ (equal), NE (not equal),
LT (less than), GT (greater than)., LE (less
than or equal)., and GE (grea ter than or
equal) •

Any expression that may be used in the
operand field of a SETA instruction, may be
used as an arithmetic expression in the
operand field of a SETB instruction. Any­
thing that may be used in the operand field
of a SETC instruction may be used as a
character value in the operand field of a
SETB instruction. This includes substring
and type attribute notations. The maximum
size of the character values that can be
compared is 255 characters. If the two
character values are of unequal size, then
the smaller one will always compare less
than the larger one.

The relationa.l and logical operators
must be immediately preceded and followed
by at least one blank or other special
character. Each relation mayor may not be
enclosed in parentheses. If a relation is
not enclosed in parentheses, it must be

separated from the logical operators by at
least one blank or other special character.

The following are valid operand fields
of SETB instructions:

1
(&AREA+2 GT 29)
('AB%4' EQ '&ALPHA')
(T'&ABC NE T'&XYZ)
(T' & P12 EQ 'F')
(&AREA+2 GT 29 OR &B)
(NOT &B AND &AREA+X'2D' GT 29)
(, &C ' EQ' MB')
(0)

The following are invalid operand fields
of SETB instructions:

&B (not enclosed in parentheses)

(T'&P12 EQ 'F' &B)
(two terms in succession)

('AB%4' EQ 'ALPHA' NOT &B)
(the NOT operator must be

preceded by AND or OR)
(AND T'&P12 EQ 'F')

(expression begins with AND)

Evaluation of Logical Expressions

The following procedure is used to
evaluate a logical express10n in the oper­
and field of a SETB instruction:

1. Each term (i.e., arithmetic relation.
character relation, or SETB symbol) is
evaluated and given its logical value
(true or false).

2. The logical operations are performed
moving from left to right. However,
NOTs are performed before ANDS, and
ANDs are performed before ORs.

3. The computed
assigned to the
name field.

result
SETB

is the
symbol

value
in the

The logical expression in the operand
field of a SETB instruction may contain one
or more sequences of logically combined
terms that are enclosed in parentheses. A
sequence of parenthesized terms may appear
within another parenthesized sequence.

The following are examples of SETB
instruction operand fields that contain
parenthesized sequences of terms .•

(NOT (&B AND &AREA+X'20' GT 29»
(&B AND (T'&P12 EQ 'F' OR &B»

The parenthesized portion or portions of
a logical expression are evaluated before
the rest of the terms in the expression are
evaluated. If a sequence of parenthesized
terms appears within another parenthesized
sequence, the innermost sequence is evalu­
ated first. Five levels of parentheses are
permissible.

Using SETB Symbols

The logical value assigned to a SETB
~ymb~l is used for the SETB symbol appear-
1ng 1n the operand field of an AIF instruc­
tion or another SETB instruction.

If a SETB symbol is used in the operand
field of a SETA instruction, or in arith­
metic relations in the operand fields of
AIF and SETB instructions, the binary
values 1 (true) and 0 (false) are converted
to the arithmetic values +1 and +0, respec­
tively.

If a SETB symbol is used in the operand
field of a SETC instruction, in character
relations in the operand fields of AIF and
SETB instructions, or in any other state­
ment, the binary values 1 (true) and 0
(false). are converted to the character
values 1 and O. respectively.

The following example illustrates these
rules. It is assumed that L'&TO EQ 4 is
true, and S'&TO EQ 0 is false.

r-------T-----------T-------------------,
I Name I Operation I Operand I
~-------+-----------+-------------------~
I lv'il\CRO
I &NAME MOVE
I LCLA
I LCLB
I LCLC

1 I&Bl SETB
2 'I &B2 SETB
3 1,&Al SETA
4 I&Cl SETC

I ST
I L
I ST
I L
I MEND

&TO,&FROM
&Al
&Bl,&B2
&Cl
(L'&TO EQ 4)
(S'&TO EQ 0)
&Bl
'&B2'
2,SAVEAREA
2.&FROM&Al
2 .. &TO&Cl
2"SAVEAREA

~-------+-----------+------,-------------~
I HERE IMOVE IFIELOA,FIELOB I
~-------+-----------+-------------------i
I HERE 1ST 12.SAVEAREA I
I I L I 2., FIELDBl I
I I ST I 2" FIELOAO I
I I L I 2" SAVEAREA I L _______ i ___________ i ___________________ J

section 9: How to Write Conditional Assembly Instructions 87

Because the operand field of statement 1
is true, &Bl is assigned the binary value
1. Therefore, the arithmetic value +1 is
substituted for SBl in. statement 3.
Because the operand field of statement 2 is
false, SB2 is assigned the binary value o.
Therefore, the character value 0 is substi­
tuted for SB2 in statement 4.

AIF -- CONDITIONAL BRANCH

The AIF instruction is used to condi­
tionally alter the sequence in which source
program statements or macro-definition
statements are processed by the assembler.
The assembler assigns a maximum count of
4096 AIF and AGO branches that may be
executed in the source program or in a
macro-definition. When a macro-definition
calls an inner macro-definition, the cur­
rent value of the count is saved and a new
count of 4096 is set up for the inner
macro-definition. When processing in the
inner definition is completed and a return
is made to the higher definition, the saved
count is restored. The format of this
instruction is:

r---------T---------T---------------------,
I Name I Operation I Operand I
~---------+---------+---------------------~
IA se- IAIF IA logical expression I
I quence I I enclosed in paren- I
I symbol or I I theses" immediately I
I blank I I followed by a I
I I Isequence symbol I L _________ ~ _________ ~ _________ ~-----------J

Any logical expression that may be used
in the operand field of a SETB instruction
may be used in the operand field of an AIF
instruction. The sequence symbol in the
operand field must immediately follow the
closing parenthesis of the logical expres­
sion.

The logical expression in the operand
field is evaluated to determine if it is
true or false. If the expression is true"
the statement named by the sequence symbol
in the operand field is the next statement
processed by the assembler. If the expres­
sion is false, the next sequential state­
ment is processed by the assembler.

The statement named
symbol may precede or
instruction.

by the sequence
follow the AIF

If an AIF instruction is in a macro­
definition" then the sequence symbol in the
operand field must appear in the name field
of a statement in the definition. If an

88

AIF instruction appears outside macro­
definitions, then the sequence symbol in
the operand field must appear in the name
field of a statement outside macro­
definitions.

The following are valid operand fields
of AIF instructions:

(&AREA+X'2D' GT 29).READER
(T'&Pl2 E.Q 'F').THERE
("FIELD3' EQ ") .N03

The following are invalid operand fields
of AIF instructions:

(T'SABC NE T' SXYZ)
.X4F2
(T'&ABC NE T'SXYZ)

(no sequence symbol)
(no logical expression)

.X4F2
(blanks between logical

expression.and se­
quence symbol)

The following macro-definition may be
used to generate the statements needed to
move a full-word fixed-point number from
one storage area to another. The
statements will be generated only if the
type attribute of both storage areas is the
letter F.

r-----r---------T----------------------,
IName IOperationlOperand I
~-----+---------+----------------------~
I I MACRO I I
I&N I MOVE IST,SF I

1 I IAIF I (T' ST NE T' &F) • END I
2 I IAIF I(T'ST NE 'F').END I
3 ISN 1ST 12,SAVEAREA I

I IL 12, SF I
liST 12,ST I
I I L I 2, SAVEAREA I

4 I.END IMEND I I L _____ ~ _________ ~ ______________________ J

The logical expression in the operand
field of statement 1 has the value true if
the type attributes of the two macro­
instruction operands are not equal. If the
type attributes are equal, the expression
has the logical value false.

Therefore, if the type attributes are
not equal" statement 4 (the statement named
by the sequence symbol .END) is the next
statement processed by the assembler. If
the type attributes are equal" statement 2
(the next sequential statement) is
processed.

The logical expression in the operand
field of statement 2 has the value true if
the type attribute of the first macro­
instruction operand is not the letter F.
If the type attribute is the letter F, the
expression has the logical value false.

Therefore, if the type attribute is not
the letter F, statement 4 (the statement
named by the sequence symbol .END) is the
next statement processed by the assembler.
If the type attribute is the letter F,
statement 3 (the next sequential statement)
is processed.

AGO -- UNCONDITIONAL BRANCH

The AGO instruction is used to
unconditionally alter the sequence in which
source program or macro-definition state­
ments are processed by the assembler. The
assembler assigns a maximum count of 4096
AIF and AGO branches that may be executed
in the source program or in a macro­
definition. When a macro-definition calls
an inner macro-definition, the current
value of the count is saved and a new count
of 4096 is set up for the inner macro­
definition. When processing in the inner
definition is completed and a return is
made to the higher definition, the saved
count is restored. The format of this
instruction is:

r----------T---------T--------------------,
I Name I Operation I Operand I
~----------+---------+--------------------~
IA sequencelAGO IA sequence symbol I
I symbol or I I I
I blank I I I l __________ ~ _________ ~ ____________________ J

The statement named by the sequence
symbol in the operand field is the next
statement processed by the assembler.

The statement named
symbol may precede or
instruction.

by the sequence
follow the AGO

If an AGO instruction is part of a
macro-definition, then the sequence symbol
in the operand field must appear in the
name field of a statement that is in that
definition. If an AGO instruction appears
outside macro-definitions, then the
sequenc: symbol in the operand field must
appear 1.n the name field of a, statement
outside macro-definitions.

The following example illustrates the
use of the AGO instruction.

r------T---------T----------------------,
IName I Operation I Operand I
.------+---------+----------------------~
I I MACRO I I
I&NAME IMOVE I&T,&F I

1 I IAIF I(T'&T EQ 'F').FIRST I
2 I I AGO I • END I
3 I.FIRSTIAIF I(T~&T NE T'&F).END I

I&NAME 1ST 12,SAVEAREA I
I I L 12, &F I
liST 12,&T I
I IL 12,SAVEAREA I

4 I.END I MEND I I l ______ ~ _________ ~ ______________________ J

Statement 1 is used to determine if the
type attribute of the first macro­
instruction operand is the letter F. If
the type attribute is the letter F,
statement 3 is the next statement processed
by the assembler. If the type attribute is
not the letter F, statement 2 is the next
statement processed by the assembler.

Statement 2 is used to indicate to the
assembler that the next statement to be
processed is statement 4 (the statement
named by sequence symbol .END).

ACTR -- CONDITIONAL ASSEMBLY LOOP COUNTER

The ACTR instruction is used to assign a
maximum count (different from the standard
count of 4096) to the number of AGO and AIF
branches executed within a macro-definition
or within the source program. The format
of this instruction is as follows:

r-------------T---------T-----------------,
I Name I Operation I Operand I
.-------------+---------+-----------------~
I Blank I ACTR I Any valid SETA I
I I I expression I l _____________ ~ _________ ~ _________________ J

This statement, which can only occur
immediately after the global and local
declarations, causes a counter to be set to
the value in the operand field. The coun­
ter is checked for zero or a negative
value; if it is not zero or negative, it is
decremented by one each time an AGO or AIF
branch is executed. If the count is zero
before decrementing, the assembler will
take one of two actions:

1. If processing is being performed
inside a macro definition, the entire
nest of macro definitions will be
terminated and the next. source state­
ment will be processed.

2. If the source program i~ being proc­
essed, an END card will be generated.

Section 9: How to Write Conditional Assembly Instructions 89

An ACTR instruction in a macro­
definition affects only that definition; it
has no effect on the number of AIF and AGO
branches that may be executed in macro­
definitions called.

ANOP -- ASSEMBLY NO OPERATION

The ANOP instruction facilitates
conditional and unconditional branching to
statements named by symbols or variable
symbols.

The format of this instruction is:

r--------T-----------T--------------------,
1 Name IOperation 1 Operand 1
~--------+-----------+--------------------~
1 A se- I ANOP I Blank I
Iquence I I I
,symbol I I I L ________ ~ ___________ ~ ____________________ J

If the programmer wants to use an AIF or
AGO instruction to branch to another state­
ment., he must place a sequence symbol in
the name field of the statement to which he
wants to branch. However, if the program­
mer has already entered a symbol or varia­
ble symbol in the name field of that
statement, he cannot place a sequence sym­
bol in the name field. Instead, the pro­
grammer must place an ANOP instruction
before the statement and then branch to the
ANOP instruction. This has the same effect
as branching to the statement immediately
after the ANOP instruction.

The following example illustrates the
use of the ANOP instruction.

r-------T----------T--------------------,
I Name IOperation IOperand I
~-------+----------+--------------------~
I I MACRO I I
I&NAME IMOVE I&T,&F I
I I LCLC I &TYPE I

1 I IAIF I (T'&T EQ 'F').FTYPE I
2 I &TYPE I SETC I 'E' I
3 I.FTYPE IANOP I I
4 I&NAME IST&TYPE 12,SAVEAREA I

I 1 L&TYPE 12, &F I
I IST&TYPE 12,&T I
I IL&TYPE 12,SAVEAREA I
I I MEND I I L _______ ~ __________ ~ ____________________ J

90

Statement 1 is used to determine if the
type attribute of the first macro­
instruction operand is the letter F. If
the type attribute is not the letter F,
statement 2 is the next statement processed
by the assembler. If the type attribute is
the letter F, statement 4 should be
processed next. However, since there is a
variable symbol (&NAME) in the name field
of statement 4, the required sequence sym­
bol (.FTYPE) cannot be placed in the name
field. Therefore, an ANOP instruction
(statement 3) must be placed before state­
ment 4.

Then, if the type attribute of the fir.st
operand is the letter F, the next statement
processed by the assembler is the statement
named by sequence symbol .FTYPE. The value
of &TYPE retains its initial null character
value because the SETC instruction is not
processed. Since .FTYPE names an ANOP
instruction, the next statement processed
by the assembler is statement 4, the state­
ment following the ANOP instruction.

CONDITIONAL ASSEMBLY ELEMENTS

The following chart summarizes the ele­
ments that can be used in each conditional
assembly instruction. Each row in this
chart indicates which· elements can be used
in a single conditional assembly instruc­
tion. Each column is used to indicate the
conditional assembly instructions in which
a particular element can be used.

The intersection of a column and a row
indicates whether an element can be used in
an instruction, and if so, in what fields
of the instruction the element can be used.
For example, the intersection of the first
row and the first column of the chart
indicates that symbolic parameters can be
used in the operand field of SETA instruc­
tions.

r---------------------------T-----------------------------T------,
I Variable Symbols I I I
I--------~------------------I Attributes I I
I I SET Symbols I I I
I r--------------------t-----------------------------+------~
I S. P. I SETA I SETB I SETC IT' I L' IS' I III I K I I N I I S. S. I

r-------t------T------T------T------t----T----T----T----T----T----+------~
I I I I I I I I I I I I I
I SETA I 0 I N, 0 I 0 I 0 3 I I 0 I 0 I 0 I 0 I 0 I I
I I I I I I I I I I I I I
~-------+------t------t------+------+----t----+----+----t----t----+------~
I I I I I I I I I I I I I
I SETB I 0 I 0 I N,O I 0 I 0 1 I 0 2 I 0 2 I 0 2 I 0 2 I 0 2 I I
I I I I I I I I I I I I I
~-------t------+------t------t------+----t----+----+----t----t----t------~
I I I I I I I I I I I I I
I SETC I 0 I 0 I 0 I N,O I 0 I I I I I I I
I I I I I I I I I I I I I
~-------t------t------t------+------+----+----+----t----t----t----t------~
I I I I I I I I I I I I I
I AIF I 0 I 0 I 0 I 0 I 0 1 I 0 2 I 0 2 I 0 2 I 0 2 I 0 2 I N,O I
I I I I I I I I I I I I I
~-------+------t------+------+------t----+----t----+----+----t----t------~
I I I I I I I I I I I I I
I AGO I I I I I I I I I I IN" 0 I
I I I I I I I I I I I I I
~-------t------+------+------+------+----+----t----+----+----t----+------~
I I I I I I I I I I I I I
I ANOP I I I I I I I I I I I N I
~-------+------+------t------t------+----+----t----+----+----t----+------~
I ACTR I 0 I 0 I 0 I 0 3 I I 0 I 0 I 0 I 0 I 0 I I L _______ ~ ______ ~ ______ ~ ______ ~ ______ ~ ____ L ____ ~ ____ L ____ ~ ____ ~ ____ ~ ______ J

I 1 Only in character relations I
I 2 Only in arithmetic relations I
I 3 Only if one to eight decimal digits I
I I
I Abbreviations I
I I
I N is Name L' is Length Attribute K' is count Attribute I
lOis Operand S' is Scaling Attribute N' is Number Attribute I
I S.P. is Symbolic I' is Integer Attribute S.S. is Sequence Symbol I
I Parameter I L __ J

Section 9: How to Write Conditional Assembly Instructions 91

SECTION 10: EXTENDED FEATURES OF THE MACRO LANGUAGE

The extended features of the macro lan­
guage allow the programmer to:

1. Terminate processing of a macro
definition.

2. Generate error messages.

3. Define global SET symbols.

4. Define subscripted SET symbols.

5. Use system variable symbols.

6. Prepare keyword and mixed-mode macro
definitions and write keyword and
mixed-mode macro instructions.

1. Use other System/360 macro
definitions.

MEXIT -- MACRO DEFINITION EXIT

The MEXIT instruction is used to indi­
cate to the assembler that it should termi­
nate processing of a macro-definition. The
format of this instruction is:

r------------T-----------~---------------,
I Name I Operation I Operand I
~------------+-----------+----------------~
IA sequence IMEXIT I Blank I
Isymbol or I I I
I blank I I I L ____________ ~ ___________ ~ ________________ J

The MEXIT instruction may only be used
in a macro-definition.

If the assembler processes an MEXIT
instruction that is in a macro-definition
corresponding to an outer macro­
instruction, the next statement processed
by the assembler is the next statement
outside macro-definitions.

If the assembler processes an MEXIT
instruction that is in a macro-definition
corresponding to a second or third level
macro-instruction, the next statement proc­
essed by the assembler is the next state­
ment after the second or ~hird level macro­
instruction in the macro definition,
respectively.

MEXIT should not be confused with MEND.
MEND indicates the end of a macro-

definition. MEND
statement of every
including those that
MEXIT instructions.

must be the last
macro-definition,

contain one or more

The following example illustrates the
use of the MEXIT instruction.

r------~-----------T-------------------,
IName I Operation I Operand I
~-------+-----------+-------------------~
I IMAC~ I I
I&NAME I MOVE I&T,&F I

1 I IAIF ICT'&T EQ 'F').OK I
2 I IMEXIT I I
3 I. OK I ANOP I I

I&N~ffi 1ST 12,SAVEAREA I
I I L 12, &F I
liST 12,&T I
I IL 12,SAVEAREA I
I I MEND I I L-______ ~ ___________ ~ ___________________ J

Statement 1 is used to determine if the
type attribute of the first macro­
instruction operand is the letter F. If
the type attribute is the letter F, the
assembler processes the remainder of the
macro-definition starting with statement 3.
If the type attribute is not the letter F,
the next statement processed by the
assembler is statement 2. Statement 2
indicates to the assembler that it is to
terminate processing of the macro­
definition.

MNOTE -- REQUEST FOR ERROR MESSAGE

The MNOTE instruction may be used to
request the assembler to genezate an error
message. The format of this instruction
is:

r----------T---------T--------------------,
I Name I Operation I Operand I
~---~------+---------+--------------------~
IA sequence I MNOTE I A severity code, I
I symbol , I Ifollowed by I
Ivariable I la comma, followed I
I symbol or I I by any combination I
Iblank I lof characters en- I
I I I closed in apostro- I
I I Iphes I L __________ ~ _________ ~ ____________________ J

Section 10: Extended Features of the Macro Language 93

The operand of the MNOTE instruction may
also be written using one of the following
forms:

r------------~----------------------------,
I Operand I
~---~ I severity-code, 'message' I
I " message' I
I 'message' I L ___ J

The MNOTE instruction may only be used
in a macro-definition. variable symbols
may be used to generate the MNOTE mnemonic
operation . code" the severity code, and the
message.

The severity code may be a decimal
integer from 0 through 255 or an asterisk.
If it 1S omitted, 1 is assumed. The
severity code indicates the severity of the
error, a higher severity code indicating a
more serious error.

When MNOTE *
the operand field
comment.

occurs, the statement in
will be printed as a

Two apostrophes must be used to
represent an apostrophe enclosed in apos­
trophes in the operand field of an MNOTE
instruction. One apostrophe will be listed
for each pair of apostrophes in the operand
field. If any variable symbols are used in
the operand field of an MNOTE instruction,
they will be replaced by the values
assigned to them. Two ampersands must be
used to represent an ampersand that is not
part of a variable symbol in the operand
field of an MNOTE statement. One ampersand
will be listed for each pair of ampersands
in the operand field.

The following example illustrates the
use of the MNOTE instruction.

1
2
3

4

r-----T---------T------~---------------,
IName IOperationlOperand I
~-----+---------+----------------------~

MACRO
&NAME MOVE

MNOTE
AIF
AIF

&NAME ST

• Ml

L
ST
L
MEXIT

&T,&F
*,'MOVE MACRO GEN'
(T'&T NE T'&F).M1
(T'&T NE 'F').M2
2,SAVEAREA
2,&F
2,&T
2,SAVEAREA

'TYPE NOT SAME'

5 l.lvl2
I

MNOTE
MEXIT
MNOTE
MEND

'TYPE NOT F'
L _____ ~ _________ ~ ______________________ J

94

Statement 1 is used to determine if the
type attributes of both macro-instruction
operands are the same. If they are, state­
ment 2 is the next statement processed by
the assembler. If they are not, statement
4 is the next statement processed by the
assembler. Statement 4 causes an error
message indicating the type attributes are
not the same to be printed in the source
program listing.

Statement 2 is used to determine if the
type attribute of the first macro­
instruction operand is the letter F. If
the type attribute is the letter F,
statement 3 is the next statement processed
by the assembler. If the attribute is not
the letter F, statement 5 is the next
statement processed by the assembler.
Statement 5 causes an error message indi­
cating the type attribute is not F to be
printed in the source program listing.

GLOBAL AND LOCAL VARIABLE SYMBOLS

The
boIs:

following are local variable sym-

1. Symbolic parameters.

2. Local SET symbols.

3. System variable symbols .•

Global SET symbols are the only global
variable symbols.

The GBLA, GBLB, and GBLC instructions
define global SET symbols, just as the
LeLA., LCLB, and LCLC instructions define
the SET symbols described in Section 9.
Hereinafter, SET symbols defined by LCLA,
LCLB, and LCLC instructions will be called
local SET symbols.

Global SET symbols communicate values
between statements in one or more macro­
definitions and statements outside macro­
definitions. However, local SET symbols
communicate values between statements in
the same macro~definition, or between
statements outside macro-definitions.

If a local SET symbol is defined in two
or more macro-definitions, or in a macro­
definition and outside macro-definitions,
the SET symbol is considered to be a
different SET symbol in each case.
However, a global SET symbol is the same
SET symbol each place it is defined.

A SET symbol must be defined as a global
SET symbol in each macro-definition in
which it is to be used as a global SET
symbol. A SET symbol must be defined as a

global SET
definitions"
global SET
definitions.

symbol
if it is

symbol

outside macro­
to be used as a
outside macro-

If the same SET symbol is defined as a
global SET symbol in one or more places,
and as a local SET symbol elsewhere, it is
considered the same symbol wherever it is
defined as a global SET symbol, and a
different symbol wherever it is defined as
a local SET symbol.

Defining Local and Global SET Symbols

Local SET symbols are defined when they
appear in the operand field of an LCLA,
LCLB, or LCLC instruction. These
instructions are discussed in Section 9
under "Defining SET Symbols."

Global SET symbols are defined when they
appear in the operand field of a GBLA,
GBLB, or GBLC instruction. The format of
these instructions is:

r------T---------T------------------------,
I Name IOperationlOperand I
~------+---------+------------------------~
IBlank IGBLA, lOne or more variable I
I IGBLB, or Isymbols that are to be I
I IGBLC lused as SET symbols, I
I I Iseparated by commas I L ______ ~ _________ ~ ________________________ J

The GBLA" GBLB, and GBLC instructions
define global SETA, SETB, and SETC symbols,
respectively, and assign the same initial
values as the corresponding types of local
SET symbols. However, a global SET symbol
is assigned an initial value by only the
first GBLA, GBLB, orGBLC instruction proc­
essed in which the symbol appears. Subse­
quent GBLA, GBLB, or GBLC instructions
processed by the assembler do not affect
the value assigned to the SET sYIDbol.

The programmer should not define any
global SET symbols whose first four charac­
ters are tSYS.

If a GBLA, GBLB, or GBLC instruction is
part of a macro-definition, it must immedi­
ately follow the prototype statement, or
another GBLA, GBLB, or GBLC instruction.
GBLA, GBLB, and GBLC instructions outside
macro-definitions must appear after all
macro-definitions in the source program,
before all conditional assembly instruc­
tions and PUNCH and REPRO statements out~
side macro-definitions, and before the
first control section of the program.

All GBLA, GBLB, and GBLC instructions in
a macro-definition must appear before all
LCLA" LCLB, and LCLC instructions in that

macro-definition. All GBLA, GBLB, and GBLC
instructions outside macro-definitions must
appear before all LeLA, LCLB, and LCLC
instructions outside macro-definitions.

Using Global and Local SET Symbols

The following examples illustrate the
use of global and local SET symbols. Each
example consists of two parts. The first
part is an assembler language source pro­
gram. The second part shows the statements
that would be generated by the assembler
after it processed the statements in the
source program.

Example 1: This example illustrates how
the same SET symbol can be used to communi­
cate (1) values between statements in the
same macro-definition, and (2) different
values between statements outside macro­
definitions.

r-------T-----------T-------------------,
IName I Operation I Operand I
~-------+-----------+-------------------~

MACRO I
tNAME LOADA I

1 LCLA &A
2 &NAME LR 15,&A
3 &A SETA &A+l

MEND

4 LCLA tA
FIRST LOADA

5 LR 15~&A
LOADA

6 LR 15, &A
END FIRST

~-------+-----------+------------------~~
IFIRST ILR 115,0 1
I ILR 115,0 1
1 ILR 115,0 I
1 ILR 115,0 I
I I END I FIRST I L _______ ~ ___________ ~ _______________ ~ ___ J

tA is defined as a local SETA symbol in
a macro definition (statement 1) and
outside macro definitions (statement 4).
&A is used twice within the macro
definition (statements 2 and 3) and twice
outside macro definitions (statements 5 and
6) •

Since &A is a local SETA symbol in the
macro definition and outside macro
definitions, it is one SETA symbol in the
macro definition, and another SETA symbol
outside macro definitions. Therefore,
statement 3 (which is in the
macro definition) does not affect the value
used for &A in statements 5 and 6 (which
are outside macro definitions). Moreover,
the use of LOADA between statements 5 and 6
will alter &A from its previous value as a
local symbol within that macro definition
since the first act of the maoro definition
is to LeLA &A to zero.

Section 10: Extended Features of the Macro Language 95

Example 2: This example illustrates how a
SET symbol can be used to communicate
values between statements that are part of
a macro-definition and statements outside
macro-definitions.

r-------T-----------T-------------------,
I Name I Operation ,Operand I
~-------+-----------+-------------------~

I MACRO
&NAME I LOADA

1 IGBLA &A
2 &NAME ILR 15,&A
3 &A I SETA &A+l

I MEND
I

4 IGBLA &A
FIRST I LOADA

5 I LR 15,&A
I LOADA

6 I LR 15,&A
lEND FIRST

~-------+-----------+-------------------~
I FIRST ILR 115,0 I
I ILR 115,1 I
I ILR 115,1 I
I ILR 115,2 I
I I END I FIRST I L _______ ~ ___________ ~ ___________________ J

&A is defined as a global SETA symbol in
a macro-definition (statement 1) and out­
side macro-definitions (statement 4). &A
is used twice within the macro-definition
(statements 2 and 3) and twice outside
macro-definitions (statements 5 and 6).

Since &A is a global SETA symbol in the
macro-definition and outside macro­
definitions, it is the same SETA symbol in
both cases. Therefore, statement 3 (which
is in the macro-definition) affects the
value used for &A in statements 5 and 6
(which are outside macro-definitions).

Example 3: This example illustrates how
the same SET symbol can be used to
communicate: (1) values between statements
in one macro-definition, and (2) different
values between statements in a different
macro-definition.

&A is defined as a local SETA symbol in
two different macro-definitions (statements
1 and 4). &A is used twice within each
macro-definition (statements 2, 3, 5, and
6),

Since &A is a local SETA symbol in each
macro-definition, it is one SETA symbol in
one' macro-definition, and another SETA sym­
bol in the other macro-definition. There­
fore, statement 3 (which is in one
macro-definition) does not affect the value
used for &A in statement 5 (which is in the
other macro-definition). Similarly, state­
ment 6 does not affect the value used for
&A in statement 2.

96

r-------T-----------T-------------------,
I Name I Operation I Operand I
.-------+-----------+-------------------~

MACRO
&NAME LOADA

1 LCLA &A
2 &NAME LR 15,&A
3 &A SETA &A+l

MEND

4
5
6

MACRO
LOADB
LCLA
LR

&A SETA
MEND

FIRST LOADA
LOADB
LOADA
LOADB

&A
15,&A
&A+l

END FIRST
~-------+-----------+-------------------~
IFIRST ILR 115,0 I
I ILR 115,0 I
I ILR 115,0 I
I ILR 115,0 I
I lEND I FIRST I L-______ ~ ___________ ~ ___________________ J

Example 4: This example illustrates how a
SET symbol can be used to communicate
values between statements that are part of
two different macro-definitions.

r-------T-----------T-------------------,
I Name IOperation I Operand I
.-------+-----------+-------------------~

I MACRO
&NAtlJE I LOADA

1 GBLA &A
2 &NA~ffi LR 15,&A
3 &A SETA &A+l

MEND

4
5
6

MACRO
LOADB
GBLA
LR

&A SETA
MEND

FIRST LOADA
LOADB
LOADA
LOADB

&A
15,&A
&A+l

END FIRST
.-------+-----------+-------------------~
I FIRST ILR 115,0 I
I ILR 115,1 I
I I LR 115,2 I
I I LR 115,3 I
I lEND I FIRST I L _______ ~ ___________ ~ ___________________ J

&A is defined as a global SETA symbol in
two different macro-definitions (statements
1 and 4). &A is used twice within each
macro-definition (statements 2, 3, 5 and
6).

Since &A is a global SETA symbol in each
macro-definition, it is the same SETA sym­
bol in each macro-definition. Therefore,
statement 3 (which is in one
macro-definition) affects the value used
for &A in statement 5 (which is in the
other macro-definition). Similarly, state­
ment 6 affects the value used for &A in
statement 2.

Example 5: This example illustrates how
the same SET symbol can be used to communi­
cate: (1) values between statements in two
different macro-definitions, and (2) dif­
ferent values between statements outside
macro-definitions.

r-------T-----------T-------------------,
1 Name 1 Operation 1 Operand 1
~-------+-----------+-------------------~

MACRO
&NAME LOADA

1 GBLA &A
2 &NAME LR 15,&A
3 &A SETA &A+l

MEND

MACRO
LOADB

4 GBLA &A
5 LR 15,&A
6 &A SETA &A+l

MEND

7 LCLA &A
FIRST LOADA

LOADB
'S LR 15,&A

LOAnA
LOADB

9 LR 15,&A
END FIRST

~-------+-----------+-------------------~
1 FIRST ILR 115,0 I
I ILR 115,1 I
1 1 LR 115,0 1
1 ILR 115,2 I
1 ILR 115 ,3 1
1 ILR 115,0 I
I lEND I FIRST I L _______ ~ ___________ ~ ___________________ J

&A is defined as a global SETA symbol in
two different macro-definitions (statements
1 and 4), but it is defined as a local SETA
symbol outside macro-definitions (statement
7). &A is used twice within each macro­
definition and twice outside macro­
definitions (statements 2, 3, 5, 6, 8 and
9),

Since &A is a global SETA symbol in each
macro-definition, it is the same SETA
symbol in each macro-definition. However,
since &A is a local SETA symbol outside
macro-definitions, it is a different SETA
symbol outside macro-definitions.

Therefore, statement 3 (which is in one
macro-definition) affects the value used
for &A in statement 5 (which is in the
other macro-definition), but it does not
affect the value used for &A in statements
8 and 9 (which are outside
macro-definitions). Similarly, statement 6
affects the value used for &A in statement
2, but it does not affect the value used
for &A in statements 8 and 9.

Subscripted SET Symbols

Both global and local SET symbols may be
defined as subscripted SET symbols. The
local SET symbols defined in section 9 were
all nonsubscripted SET symbols.

Subscripted SET symbols provide the pro­
grammer with a convenient way to use one
SET symbol plus a subscript to refer to
many arithmetic, binary, or character
values.

A subscripted SET symbol consists of a
SET symbol immediately followed by a sub­
script that is enclosed in parentheses.
The subscript may be any arithmetic expres­
sion that is allowed in the operand field
of a SETA statement. The subscript may not
be 0 or negative.

The following are valid subscripted SET
symbols.

&READER(17)
&A23456(&S4)
&X4F2(25+&A2)

The following are invalid subscripted
SET symbols.

&X4F2
(25)
&X4F2 (25)

(no subscript)
(no SET symbol)
(subscript does not

immediately follow
SET symbol)

Defining Subscripted SET Symbols: If the
programmer wants to use a subscripted SET
symbol, he must write in a GBLA, GBLB,
GBLC, LCLA, LCLB, or LCLC instruction, a
SET symbol immediately followed by a deci­
mal integer enclosed ,in parentheses. The
decimal integer, called a dimension, indi­
cates the number of SET variables associat­
ed with the SET symbol. Every variable
associated with a SET symbol is aSSigned an

Section 10: Extended Features of the Macro Language 97

initial value that is the same as the
initial value assigned to the corresponding
type of nonsubscripted SET symbol.

If a subscripted SET symbol is defined
as global, the same dimension must be used
witn the SET symbol each time it is defined
as global.

The maximum dimension that can be used
with a SETA, SETB, or SETC symbol is 2500.

A subscripted SET symbol may be used
Jnly if the declaration was subscripted; a
nonsubscripted SET symbol may be used only
if the declaration had no subscript.

The following statements define the
global SET symbols &SBOX, &WBOX, and &PSW,
and the local SET symbol &TSW. &SBOX has
50 arithmetic variables associated with it,
&WBOX has 20 character variables, &PSW and
&TSw each have 230 binary variables.

r------T-----------T----------------------,
I Name IOperation I Operand I
~------+-----------+----------------------~
I IGBLA I&SBOX(50) I
I I GBLC I &WBOX (20) I
I IGBLB I&PSW(230) I
I I LCLB I&TSW(230) I L ______ ~ ___________ ~ ______________________ J

Using Subscripted SET Symbols: After" the
programmer has associated a number of SET
variables with a SET symbol, he may assign
values to each of the variables and use
them in other statements.

If the statements in the previous exam­
ple were part of a macro-definition, (and
&A was defined as a SETA symbol in the same
definition), the following statements could
be part of the same macro-definition.

r----------T----------T---------------~-,
I Name IOperation IOperand I
~----------+----------+-----~-----------~

1 I &A I SETA I 5 I
2 I&PSW(&A) ISETB 1(6 LT 2) I
31&TSW(9) ISETB I (&PSW(&A» I
4 I IA 12,=F'&SBOX(45)' I
5 I I CLI I AREA,C' &WBOX (17) , I L __________ ~ __________ ~ _________________ J

Statement 1 assigns the arithmetic value
5 to the nonsubscripted SETA symbol &A.
Statements 2 and 3 then assign the binary
value 0 to subscriptedsETB symbols &PSW(5)
and &TSW(9), respectively. Statements 4
and 5 generate statements that add the
value assigned to &SBOX(45) to general
register 2, and compare the value assigned
to &WBOX(17) to the value stored at AREA,
respectively.

98

SYSTEM VARIABLE SYMBOLS

System variable symbols are local vari­
able sy~bols that are assigned values auto­
matically by the assembler. There are
three system variable symbols: &SYSNDX,
&SYSECT, and &SYSLIST. System variable
symbols may be used in the name, operation
and operand fields of statements in macro­
definitions., but not in statements outside
macro-definitions. They may not be defined
as symbolic parameters or SET symbols, nor
may they be assigned values by SETA, SETB,
and SETC instructions .•

&SYSNDX -- Macro Instruction Index

The system variable symbol &SYSNDX may
be concatenated with other characters to
create unique names for statements
generated from the same model statement.

&SYSNDX is assigned the four-digit num­
ber 0001 for the first macro-instruction
processed by the assembler, and it is
incremented by one for each subsequent
inner and outer macro instruction proc­
essed.

If &SYSNDX is used in a model statement,
SETC or MNOTE instruction, or a character
relation in a SETB or AIF instruction, the
value substituted for &SYSNDX is the four­
digit number of the macro-instruction being
processed, including leading zeros.

If &SYSNDX appears in arithmetic
expressions (e.g., in the operand field of
a SETA instruction). the value used for
&SYSNDX is an arithmetic value.

Throughout one use of a macro­
definition, the value of &SYSNDX may be
considered a constant, independent of any
inner macro-instruction in that definition.

The example in the next column
illustrates these rules. It is assumed
that the first macro-instruction processed,
OUTERl, is the 106th macro-instruction
processed by the assembler.

Statement 7 is the 106th macro­
instruction processed. Therefore, &SYSNDX
is assigned the number 0106 for that macro­
instruction. The number 0106 is
substituted for&SYSNDX when it is used in
statements 4 and 6. Statement 4 is used to
assign the character value 0106 to the SETC
symbol &NDXNUM. Statement 6 is used to
create the unique name B0106.

1

2
3

4

5
6

r----------T-----------T----------------,
I Name I Operation I Operand I
~----------+-----------+----------------~

I MACRO I
IINNERl I
IGBLC I&NDXNUM

A&SYSNDX ISR 12,5

&NAME

&NDXNUM
& NAME

ICR 12 ,5
IBE IB&NDXNUM
IB A&SYSNDX
I MEND
I
I MACRO
IOUTERl
IGBLC
ISETC
ISR
IAR

&NDXNUM
• &SYSNDX'
2.,4
2,6

IINNERl
B&SYSNDX IS 2,=F'1000'

I MEND
~----------+-----------+----------------~

7 I ALPHA IOUTERl I I
8 I BETA IOUTERl I I

~----------+~----~-~---+----------------~
ALPHA SR 2,4

A0107

B0106
BETA

A0109

AR 2,6
SR 2,5
CR 2,5
BE B0106
B A0107
S 2,=F'1000'
SR 2,4
AR 2,6
SR 2,5
CR 2,5
BE B0108
B A0109

B0108 S ~,=F'lOOO' L __________ ~ ___________ L-_______________ J

Statement 5 is the 107th macro­
instruction processed. Therefore, &SYSNDX
is assigned the number 0107 for that macro­
instruction. The number 0107 is
substitQted for &SYSNDX when it is used in
statements 1 and 3. The number 0106 is
substituted for the global SETC symbol
&NDXNUM in statement 2.

Statement 8 is the 108th macro­
instruction processed. Therefore, each
occurrence of &SYSNDX is replaced by the
number 0108. For' exampl~, statement 6 is
used to create the unique name B0108.

When statement 5 is used to process the
lOath macro-instruction, statement 5
becomes the 109th macro-instruction proc­
essed. Therefore, each occurrence of
&SYSNDX is replaced by the number 0109.
For example, statement 1 is used to create
the unique name A0109.

&SYSECT -- Current control Section

The system variable symbol &SYSECT may
be used to represent the name of the
control section in which a macro­
instruction appears. For each inner and
outer macro-instruction processed by the
assembler, &SYSECT is assigned a value that
is the name of the control section in which
the macro-instruction appears.

When &SYSECT is used in a macro­
definition" the value substituted for
&SYSECT is the name of the last CSECT,
DSECT, or START statement that occurs
before the macro-instruction. If no named
CSECT, DSECT, or START statements occur
before a macro-instruction, &SYSECT is
assigned a null character value for that
macro- instruction .•

CSECT or DSECT statements processed in a
macro-definition affect the value for
&SYSECT for any subsequent inner macro­
instructions in that definition, and for
any other outer and inner macro­
instructions.

Throughout the use of a macro­
definition, the value of &SYSECT may be
consid~red a constant, independent of any
CSECT or DSECT statements or inner macro­
instructions in that definition.

The
rules.

next example illustrates these

Statement 8 is the last CSECT, DSECT, or
START statement processed before statement
9 is processed. Therefore, &SYSECT is
assigned the value MAINPROG for macro­
instruction OUTERl in statement 9.
MAINPROG is substituted for &SYSECT when it
appears in statement 6.

statement 3 is the last CSECf, DSECT, or
START statement processed before statement
4 is processed. Therefore, &SYSECT is
assigned the value CSOUTl for macro­
instruction INNER in statement 4. CSOUTl
is substituted for &SYSECT when it appears
in statement 2.

.Statement 1 is used to generate a CSECT
statement for statement 4. This is tne
last CSECT, DSECT, or START statement that
appears before statement 5. Therefore,
&SYSECT is assigned the value INA for
macro-instruction INNER in statement 5.
INA is substituted for &SYSECT when it
appears in statement 2.

Section 10: Extended Features of the Macro Language 99

r----------T-----------T---------------,
I Name I Operation I Operand I
~----------+-----------+---------------~

I MACRO
I INNER &INCSECT

1 & INC SECT ICSECT
2 IDC A(&SYSECT)

I MEND
I
MACRO
OUTERl

3 CSOUTl CSECT
DS 100C

4 INNER INA
5 INNER INB
6 DC A (&SYSECT)

MEND

MACRO
OUTER2

1 DC A(&SYSECT)
MEND

~----------+-----------+---------------~
8 I MAINPROG I CS ECT I I

I IDS 1200C I
9 I IOUTERl I I

10 I IOUTER2 I I
~----------+-----------+---------------~
I MAINPROG I CS ECT I I
I IDS 1200C I
I CSOUTl I CSECT I I
I IDS 1100C I
I INA ICSECT I I
I I DC I A (CSOUT1) I
IINB ICSECT I I
I IDC IA(INA) I
I IDC I A (MAINPROG) I
I IDC IA(INB) I L __________ ~ ___________ ~ _______________ J

Statement 1 is used to generate a CSECT
statement for statement 5. This is the
last CSECT, DSECT, or START statement that
appears before statement 10. Therefore,
&SYSECT is assigned the value INB for
macro instruction OUTER2 in statement 10.
INB is substituted for &SYSECT when it
appears in statement 1.

&SYSLIST -- Macro Instruction Operand

The system variable symbol &SYSLIST
provides the programmer with an alternative
to syniliolic paramete~s for referring to
positional macro instruction operands.

&SYSLIST allows the programmer to
refer to positional macro instruction
operands for which no corresponding
symbolic parameter is specified in the
macro instruction prototype statement.

&SYSLIST and symbolic parameters may be
used in the same macro definition.

100

&SYSLIST(n) may be used to refer to the
nth positional macro instruction operand.
In addition, if the nth operand is a
sublist, then &SYSLIST (n,m) may be used
to refer to the mth operand in the sublist,
where nand m may be any arithmetic
expressions allowed in the operand field
of a SETA statement. m may be equal to or
greater than 1 and n has a range of 1 to
200.

If the value of subscript n is zero, then
&SYSLIST(n) is assigned the value specified
in the name field of the macro instruction,
except when it is a sequence symbol.

If the name field of the macro
instruction is blank, then &SYSLIST(O)
refers to a null character value.

The type, length, scaling, integer, and
count attributes of &SYSLIST(n) and
&SYSLIST(n,m) and the number attributes of
&SYSLIST(n) and &SYSLIST may be used in
conditional assembly instructions.
N'&SYSLIST may be used to refer to the tot­
al number of positional operands in a macro­
instruction statement. . N"SYSLIST(n) may
be used to refer to the number of operands
in a sublist. If the nth operand is
omitted, N' is zero; if the nth operand is
not a sublist, N' is one.

The following procedure is used to
evaluate N'&SYSLIST:

1. A sublist is considered to be one opera~d.

2. The count includes operands specifically
omitt~d (by means of commas).

Examples:

Macro Instruction

MAC Kl=DS
MAC ,Kl=DC
MAC FULL"F, ('1','2'),Kl=DC
MAC ,
MAC

N'&SYSLIST

o
1
4
2
o

Attributes are discussed in Section 1
under "Attributes."

KEYWORD ~ACRO DEFINITIONS AND INSTRUCTIONS

Keyword macro definitions provide the
programmer with an alternate way of prepar­
ing macro ·definitions.

A keyword macro· definition
programmer to reduce the number
in each macro instruction that
to the definition, and to write
ands in any order.

enables a
of operands
corresponds
the oper-

The macro instructions that correspond
to the macro definitions described in Sec­
tion 7 (hereinafter called positional
macro instructions and positional macro
definitions, respectively) require the
operands to be written in the same order as
the corresponding symbolic parameters in
the operand field of the prototype state­
ment.

In a keyword macro definition, the pro­
grammer can assign standard values to any
symbolic parameters that appear in the

Section 10: Extended Features of the Macro Language 100.1

operand field of the prototype statement.
The standard value assigned to a symbolic
parameter is substituted for the symbolic
parameter, if the programmer does not write
anything in the operand field of the macro
instruction to correspond to the symbolic
parameter.

When a keyword macro· instruction is
written., the programmer need only write one
operand for each symbolic parameter whose
value he wants to change.

Keyword macro· definitions are prepared
the same way as positional macro
definitions" except that the prototype
statement is written differently. The
rules for preparing positional macro­
definitions are in Section 7.

Keyword Prototype

~he format of this statement is:

r------------T-----------T----------------, I Name I Operation I Operand I
~------------+-----------+----------------~
IA symbolic IA symbol lOne or more I
I parameter I loperands of the I
lor blank I Iform described I
I I I below, separated I
I I Iby commas I L ____________ ~ ___________ ~ ________________ J

Each operand must consist of a symbolic
parameter, immediately followed by an equal
sign and optionally followed by a standard
value. This value must not include a
keyword ..

A standard value that is
operand must immediately follow
sign.

part of an
the equal

Anything that may be used as an operand
in a macro instruction except variable
symbols, may be used as a standard value in
a keyword prototype statement. The rules
for forming valid macro instruction oper­
ands are detailed in section 8.

The following are valid keyword proto­
type operands.

&READER=
&LOOP2=SYMBOL
&S,4==F' 4096'

The following are invalid keyword proto­
type operands.

CARDAREA
&TYPE
&TWO =123

&AREA= X'189A'

(no symbolic parameter)
(no equal sign)
(equal sign does not

immediately follow
symbolic parameter)

(standard value does
not immediately follow
equal sign)

The following keyword prototype state­
ment contains a symbolic parameter in the
name field, and four operands in the oper­
and field. The first two operands contain
standard values. The mnemonic operation
code is MOVE.

r------T-----------T----------------------,
I Name I Operation I Operand I
~------+-----------+----------------------~
I&N I MOVE I&R=2,&A=S,&T=,&F= I L-_____ ~ ___________ ~ ______________________ J

Keyword Macro Instruction

After a programmer has prepared a
word macro definition he may use
writing a keyword macro instruction.

The format
instruction is:

of a keyword

key­
it by

macro

r---------T---------T---------------------,
I Name I Operation I Operand I
~---------+---------+---------------------~
IA symbol, I Mnemonic IZero or more operands I
Isequence loperationlof the form described I
I symbol, I code I below, separated by I
lor blank I I commas I L-________ ~ _________ ~ _____________________ J

Each operand consists of a keyword
immediately followed by an equal sign and
an optional value which may not include a
keyword. Anything that may be used as an
operand in a pOSitional macro instruction
may be used as a value in a keyword
macro-instruction. The rules for forming
valid pOSitional macro instruction operands
are detailed in section 8.

A keyword consists of one through seven
letters and digits, the first of which must
be a letter.

The keyword part of each keyword macro
instruction operand must correspond to one
of the symbolic parameters that appears in
the operand field of the keyword prototype
statement. A keyword corresponds to a
symbolic parameter if the characters of the
keyword are identical to the characters of
the symbolic parameter that follow the
ampersand.

The following are valid keyword macro
instruction operands.

LOOP2=SYMBOL
S4==F" 4096"
TO=

Section 10: Extended Features of the Macro Language 101

The following are invalid keyword macro­
instruction operands.

iX4F2=0(2,,3) (keyword does not begin
with a letter)

CARDAREA=A+2 (keyword is more than
seven characters)

=(TO(S)" (FROM» (no keyword)

The operands in a keyword macro­
instruction may be written.in any order.
If an operand appeared 1n a keyword
prototype statement" a corresponding oper­
and d?es not ~ave to appear in the keyword
macrO-1nstruct1on. If an operand is omit­
ted" the comma that would have separated it
from the next operand need not be written.

The following rules are used to replace
the symbolic parameters in the statements
of a keyword macro-definition.

1. If a symbolic parameter appears in the
name field of the prototype statement,
and the name field of the macro­
instruction contains a symbol the
symbolic parameter is replaced. by the
symbol. If the name field of the
macro-instruction is blank or contains
a sequence symbol" the symbolic
parameter is replaced by a null char­
acter value.

2. If a symbolic parameter appears in the
operand field of the prototype state­
ment, and the macro-instruction con­
tains a keyword that corresponds to
the symbolic parameter, the value
assigned to the keyword replaces the
symbolic parameter.

3. If a symbolic parameter was assigned a
standard value by a prototype state­
ment, and the macro-instruction does
not contain a keyword that corresponds
to the symbolic parameter" the stand­
ard value assigned to the symbolic
parameter replaces the symbolic param­
eter •. Otherwise, the s~bolic param­
eter 1S replaced by a null character
value.

Note 1: If a standard value is a self­
defining term the type attribute assigned
to the standard value is the letter N. If
a standard value is omitted the type
attribute assigned to the standard value is
the letter o. All other standard values
are assigned the type attribute U.

Note 2: Positional parameters cannot be
changed to keywords by substitution. That
is, in the following example, the expression
A=FB, statement 2, will be treated as a
positional operand consisting of a character
string in the generation of the MAC macro·
it will not be treated as a keyword A with
the value FB.

102

1- --
1 Name : Operation : Operand:
l- ---- -1- -- - --- -,-- ----;

1 I : GBLC I &VALUE I

2 : &VALUE, SETC : 'A=FB' :
3 I 1 MAC 1 & VALUE I , _____ L ________ , ____ - __ I

The following keyword macro-definition"
keyword macro-instruction, and generated
statements illustrate these rules.

r-----T----------T---------------~------
IName IOperation IOperand 1
~-----+----------+----------------------~
I I MACRO I I

1 liN IMOVE liR=2,iA=S,iT=,iF= I
2 liN 1ST liR,iA I
3 I I L I iR, iF I
4 I I ST I iR, iT I
5 I I L I iR, &A I

I I MEND I I
~-----+----------+----------------------~

6 IHERE IMOVE IT=FA,F=FB,A=THERE I
~-----+----------+------------~---------~
IHERE 1ST 12,THERE I
I IL 12~FB I
I 1ST 12 ,FA I
I I L 12, THERE I L _____ ~ __________ ~ ______________________ J

statement 1 assigns the standard values
2 and S to the symbolic parameters iR and
,SA, respectively. Statement 6 assigns the
values FA, FB, and THERE to the keywords T,
F" and A, respectively. The symbol HERE is
used in the name field of statement 6.

Since a symbolic parameter (&N) appears
in the name field of the prototype state­
ment (statement 1), and the corresponding
characters (HERE) of the macro-instruction
(statement 6) are a symbol, &N is replaced
by HERE in statement 2.

since &T appears in the operand field,
of statement 1, and statement 6 contains
the keyword (T) that corresponds to &T, the
value assigned to T (FA) replaces &T in
statement 4. Similarly, FB and THERE
replace SF and &A in statement 3 and in
statements 2 and 5, respectively. Note
that the value assigned to &A in atatement
6 is used instead of the value assigned to
&A in statement 1.

Since iR appears in the operand field of
statement 1, and statement 6 does not
contain a corresponding keyword, the value
assigned to &R (2), replaces &R in state­
ments 2, 3" 4, and 5.

Operand Sublists: The value assigned to a
keyword "and the standard value assigned to

a symbolic parameter may be an operand
sublist. Anything that may be used as an
operand sublist in a positional macro­
instruction may be used as a value in a
keyword macro-instruction and as a standard
value in a keyword prototype statement.
The rules for forming valid operand
sublists are detailed in Section 8 under
"Operand Sublists."

Keyword Inner Macro Instructions: Keyword
and positional inner macro instructions may
be used as model statements in either
keyword or positional macro definitions.

MIXED-MODE MACRO DEFINITIONS AND
INSTRUCTIONS

Mixed-mode macro· definitions allow the
programmer to use the features of keyword
and positional macro· definitions in the
same macro definition.

Mixed-mode macro definitions are pre­
pared the same way as positional macro·
definitions, except that the prototype
statement is written differently. If &SYS­
LIST is used, it refers only to the posi­
tional operands in the macro instruction.
Subscripting past the last positional
parameter will yield an empty string and
a type attribute of "0". The rules for
preparing positional macro definitions
are in Section 7.

Mixed-Mode Prototype

The format of this statement is:

r-----------T-----------T-----------------,
I Name I Operation I Operand I
~-----------+-----------+-----------------~
IA symbolic IA symbol lOne or more oper~1
I parameter I lands of the form I
lor blank I Idescribed below, I
I I Iseparated by' I
I I I commas I L--_________ ~ ___________ ~ _________________ J

The operands must be· valid operands of
pOSitional and keyword prototype
statements. All the pOSitional operands
must precede the first keyword operand.
The rules for forming pOSitional operands
are discussed in Section 7" under
"Macro-Instruction Prototype." The rules
for forming keyword operands are discussed
above under "Keyword Prototype."

The following sample mixed-mode
prototype statement contains three posi­
tional operands and two keyword operands.

r-------T---------T-----------------------,
I Name I Operation I Operand I
~-------+---------+-----------------------~
I &N I MOVE I &TY, &P" &R, &TO=, &F= I L-______ ~ _________ ~ _______________________ J

Mixed-Mode Macro-Instruction

The format of a
instruction is:

mixed-mode macro-

r---------T---------T---------------------,
I Name I Operation I Operand I
~---------+---------+---------------------~
IA symbol, I Mnemonic IZero or more operands I
Isequence loperationlof the form described I
I symbol, I·code I below, separated by I
lor blank I I commas I L _________ ~ _________ ~ _____________________ J

The operand field consists of two parts.
The first part corresponds to the
positional prototype operands. This part
of the operand field is written in the same
way that the operand field of a positional
macro-instruction is written. The rules
for writing positional macro-instructions
are in Section 8.

The second part of the operand field
corresponds to the keyword prototype oper­
ands. This part of the operand field is
written in the same way that the operand
field of a keyword macro-instruction is
written. The rules for writing keyword
macro-instructions are described above
under "Keyword Macro-Instruction."

The following mixed-mode macro-
definition, mixed-mode macro-instruction,
and generated statements illustrate these
facilities.

r------T---------T----------------------,
IName 10perationi Operand I
~------+---------+----------------------~
I I MACRO I I

1 I &N I MOVE I &TY., &P, &R, &TO=, &F= I
I&N IST&TY I &R,SAVE I
I IL&TY I &R,&P&F I
I I ST&TY I &R, &P&TO I
I IL&TY I &R, SAVE I
~------+---------+----------------------~

2 IHERE IMOVE I H,,2,F=FB,TO=FA I
.------+---------+----------------------~
I HERE ISTH I 2,SAVE I
I ILH I 2,FB I
I ISTH I 2,FA I
I ILH 1 2,SAVE I L ______ ~ _________ ~ ______________________ J

The prototype statement (sta.tement 1)
contains three pOSitional operands (&TY,&P,
and &R) and two keyword operands (&TO and

Section 10: Extended Features of the Macro Language 103

&F). In the macro instruction (statement
2) the positional operands are written in
the same order as the positional operands
in the prototype statement (the second
operand is omitted). The keyword operands
are written in an order that is different
from the order of keyword operands in the
prototype statement.

Mixed-mode inner macro instructions may
be used as model statements in mixed-mode,
keyword, and positional macro-definitions.
Keyword and positional inner macro­
instructions may be used as model
statements in mixed-mode macro definitions.

104

MACRO DEFINITION COMPATIBILITY

Macro definitions prepared for use with
the other System/360 asseroblers having
macro language facilities may be used with
the Operating System/360 assembler provided
that all SET symbols are defined in an
appropriate LCLB., GBLA, GBLB, or GBLC
statement. The AIFB and AGOB instructions
will be processed by the Operating
System/360 assembler the same way that the
AIF and AGO instructions are processed.
AIFB and AGOB instructions will cause the
count set up by the ACTR instructions to be
decremented in exactly the same way as the
AGO and AIF instructions.

APPENDIXES

APPENDIX A: CHARACTER CODES

APPENDIX B: HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE

APPENDIX C: MACHINE-INSTRUCTION FORMAT

APPENDIX D: MACHINE-INSTRUCTION MNEMONIC OPERATION CODES

APPENDIX E: ASSEMBLER INSTRUCTIONS

APPENDIX F: SUMMARY OF CONSTANTS

APPENDIX G: MACRO LANGUAGE SUMMARY

APPENDIX H: SAMPLE PROGRAM

APPENDIX I: ASSEMBLER LANGUAGES--FEATURES COMPARISON CHART

APPENDIX J: SAMPLE MACRO DEFINITIONS

APPENDIX A: CHARACTER CODES

r------------T-----------------T---------T---------T-----------------,
I System/360 I Charact~r Set I I I EBCDIC I
I 8-bit I Punch I I Hexa- I Printer I
I Code I Combination I Decimal I Decimal I Graphics I
.--------~---+-----------------+---------+---------+-----------------i

00000000 12,0,9,8,1 0 00
00000001 12,9,1 1 01
00000010 i2,9,2 2 02
00000011 12,9,3 3 03
00000100 12,9,4 4 04
00000101 12,9,5 5 05
00000110 12,9,6 6 06
00000111 12,9,7 7 07
00001000 12,9,8 8 08
00001001 12,9,8,1 9 09
00001010 12,9,8,2 10 OA
00001011 12,9,8,3 11 OB
00001100 12,9,8,4 12 OC
00001101 12,9,8,5 13 00
00001110 12,9,8,6 14 OE
00001111 12,9,8,7 15 OF
00010000 12,11,9,8,1 16 10
00010001 11,9,1 17 11
00010010 11,9,2 18 12
00010011 11,9,3 19 13
00010100 11,9,4 20 14
00019101 11,9,5 21 15
00010110 11,9,6 22 16
00010111 11,9,1 23 iJ
00011000 11,9,8 24 18
00011001 11,9,8,1 25 19
00011010 11,9,8,2 26 lA
00011011 11,9,8,3 27 IB
00011100 11,9,8,4 28 lC
00011101 11,9,8,5 29 10
00011110 11,9,8,6 30 lE
00011111 11,9,8,7 31 IF
00100000 11,0,9,8,1 32 20
00100001 0,9,1 33 21
00100010 0,9,2 34 22
00100011 0,9,3 35 23
00100100 0,9,4 36 24
00100101 0,9,5 37 25
00100110 0,9,6 38 26
00100111 0,9,7 39 21
00101000 0,9,8 40 28
00101001 0,9,8,1 41 29
00101010 0,9,8,2 42 2A
00101011 0,9,8,3 43 2B
00101100 0,9,8,4 44 2C
00101101 0,9,8,5 45 20
00101110 0,9,8,6 46 2E
00101111 0,9,8,7 47 2F
00110000 12,11,0,9,8,1 48 30
00110001 9,1 49 31
00110010 9,2 50 32

------------~-----------------~---------~---------~-----------------

Appendix A: Character Codes 107

r------------T-----------------T---------T---------T------------------,
I Systern/36 0 , Character Set , I I EBCDIC I
I 8-bit I Punch I I Hexa- I Printer I
, Code ,Combination I Decimal I Decimal I Graphics I
~-------------+-------------..:---+----------+---------+-----------------~

00110011 9,3 51 I 33
00110100 9,4 52 , 34
00110101 9,5 53 I 35
00110110 9,6 54 -I 36
00110111 9,1 55 I 31
00111000 9,8 56 I 38
00~11001 9,8~1 51 1 39
00111010 9,8,2 58 I 3A
00111011 9,8,3 59 I 3B
00111100 9,8,-4 60 i 3C
00111101 9,8,5 61 I 3D
00111110 9,8,6 62 I 3E
00111111 9,8,1 63 3F
01000000 64 40
01000001 12,0,9,1 65 41
01000010 12,0,9,2 66 42
01000011 12,0,9,3 61 43
01000100 12,0,9,4 68 44
01000101 12,0,9,5 69 45
01000110 12,0,9,6 10 46
01000111 12,0,9,1 11 47
01001000 12,0,9,8 12 48
01001001 12,8,t" 13 49
01001010 12,8,2 14 4A
01001011 12,8,3 75 4B_
01001100 12,8,4 16 4C
01001101 12,8,5 71 40
01001110 12,8,6 18 4E
01001111 12,8,1 19 4F
01010000 12 80 5-0
01010001 12,11,9,1 81 51
01010010 12,11,9,2 82 52
01010011 12,11,9,3 83 53
01010100 12,11,9,4 84 54
01010101 12,11,9,5 85 55
01010110 12,11,9,6 86 56
01010111 12,11,9,7 81 57
01011000 12,11,9,8 88 58
01011001 11,8,1 89 59
01011010 11,8,2 90 5A
01011011 11,8,3 91 5B
01011100 11,8,4 92 5C
01011101 11,8,5 93 5D
01011110 11,8,6 94 5E
01011111 11,8,1 95 SF
01100000 11 96 60
01100001 0,1 91 61
01100010 11,0,9,2 98 62
0'1100011 11,0,9,3 99 63
01100100 11,0,9,4 100 64
01100101 11,0,9,5 101 65
01100110 11,0,9,6 102 66
01100111 11,0,9,1 103 67
01101000 11,0,9,8 104 68
01101001 0,8,1 105 69
01101010 12,11 106 6A

(blank)

~ (cent sign)
• (period)
<
(

+
I (logical OR) ,

$
•

~ (logical NOT)
- (hyphen)
/

01101011 0,8,,3 107 6B , (comma) I
------------~-----------------~--_______ ~ _________ ~ _________________ J

108

r------------T-----------------T---------T---------T-----------------,
I System/360 I Character Set I I I EBCDIC I
i a-bit I Punch I I Hexa- I Printer I
I Code I Combination I Decimal I Decimal I Graphics I
~------------+-----------------+---------+---------+-----------------~
I 011011QO 0,8,4 108 6C I
I 01101101 0,8,5 109 60 (underscore)
I 01101110 0.8,6 110 6E

01101111 0,8,1 111 6F
01110000 12,11,0 112 70
01110001 12,11,0,9,1 113 71
01110010 12,11,0,9,2 114 72
01110011 12,11,0,9,3 115 73
01110100 12,11,0,9,4 116 74
01110101 12,ll~0,9,5 117 75
01110110 12,11,OJ9,6 118 76
01110111 12,11,0,9,1 119 71
01111000 12,11,0,9,8 120 78
01111001 8,1 121 79
01111010 8,2 122 7A
01111011 8,3 123 7B
01111100 8,4 124 7C
01111101 8,5 125 7D
01111110 8,6 126 7E
01111111 8,7 127 7F
10000000 12,0,8,1 128 80
10000001 12,0,1 129 81
10000010 12,0,2 130 82
10000011 12,0,3 131 83
10000100 12,0,4 132 84
10000101 12,0,5 133 85
10000110 12,0,6 134 86
10000111 12,0,7 135 87
10001000 12,0,8 136 88
10001001 12,0,9 137 89
10001010 12,0,8,2 138 8A
10001011 12,0,8,3 139 8B
10001100 12,0,8,4 140 8C
10001101 12,0,8,5 141 80
10001110 12,0,8,6 142 8E
10001111 12,0,8,7 143 8F
10010000 12,11,8,1 144 90
10010001 12,11,1 145 91
10010010 12,11,2 146 92
10010011 12,11,3 147 93
10010100 12,11,4 148 94
10010101 12,11,5 149 95
10010110 12,11,6 150 96
10010111 12,11,1 151 97
10011000 12,11,8 152 98
10011001 12,11,9 153 99
10011010 12,11,8,2 154 9A
10011011 12~11,8,3 155 9B
10Dl1100 12,11,8,4 156 9C
10011101 12,11,8,5 157 90
10011110 12,11,8,6 158 9E
10011111 12,11,8,7 159 9F
10100000 11,0,8,1 160 AO
10100001 11,0,1 161 Al

>
?

• a
• (apostrophe)
=
1/

a
b
c
d
e
f
g
h
i

j
k
1
m
n
o
p
q
r

10100010 11,0,2 162 A2 s
10100011 11,0,3 163 A3 t

I 10100100 11,0,4 164 A4 u L ____________ ~ _________________ ~ _________ ~ _________ ~ _________________ J

Appendix A: Character Codes 109

r------------T-----------------T---------T---------T-----------------, I System/360 I Character Set I I I EBCDIC I
I a-bit I Punch I I Hexa~ I Printer I
I Code I Combination I Decimal I Decimal I Graphics I
~------------+-----------------+---------+---------+-----------------~

10100101 11,0,5 165 A5 v
10100110 11,0,6 166 A6 w
1010011i 11,0,7 167 A7 x
10101000 11,0,8 168 A8 Y
10101001 11,0,9 169 A9 z
10101010 11~O,8,2 170 AA
10101011 11,0,8,3 171 AB
10101100 11,0,8,4 172 AC
10101101 11,0,8,5 173 AD
10101110 11,0,8,6 174 AE
10101111 11,0,8,7 175 AF
10110000 12,11,0,8,1 176 BO
10110001 12,11~0,1 177 B1
10110010 12,11,0,2 178 B2
10110011 12,11~0,3 179 B3
10110100 12,11,0,4 180 B4
10110101 12,11,0,5 181 B5
10110110 12,11,0,6 182 B6
10110111 12,11,0,7 183 B7
10111000 12,11~0,8 184 B8
10111001 12,11,0,9 185 B9
10111010 12,11,0,8,2 186 BA
10111011 12,11,0,8,3 187 BB
10111100 12~11,O.8,4 188 BC
10111101 12,11,0,8,5 189 BD
10111110 12,11,0,8,6 190 BE
10111111 12,11~O,8,7 191 BF
11000000 12,0 192 CO
il00000l 12,1 193 Cl A
11000010 12,2 194 C2 B
11000011 12,3 195 C3 C
11000100 12,4 196 C4 D
11000101 12,5 197 C5 E
11000110 12,6 198 C6 F
11000111 12,7 199 C7 G
11001000 12,8 200 C8 H
11001001 12,9 201 C9 I
11001010 12,0,9,8,2 202 CA
110010~1 12,0,9,8,3 203 CB
11001100 12,0,9.8,4 204 CC
11001101 12,0,9.8,5 205 CD
11001110 12,0,9,8,6 206 CE
11001111 12,0,9,~,7 207 CF
11010000 11,0 208 DO
11010001 11,1 209 01 J
11010010 11,2 210 D2 K
11010011 11,3 211 03 L
11010100 11,4 212 D4 M
11010101 11,5 213 05 N
11010110 11,6 214 D6 0
11010111 11,7 215 07 P
11011000 11,8 216 08 Q
11011001 11,9 217 09 R
11011010 12,11,9,8,2 218 OA
11011011 12,11,9,8,3 219 DB
11011100 12,11,9,8,4 220 DC
11011101 12,11,9,8,5 221 DO

- ___________ ~ _______________ ~-~---------~---------~---______________ J

110

r------------T----------------~---------T---------T-----------------, I System/360 I Character Set I I I EBCDIC I
I 8-bi t I Punch I I Hexa- I Printer I
I Code I combination I Decimal I Decimal I Graphics I
~------------+-----------------+---------+---------+-----------------~ I 11011110 12,11,9,8,6 222 DE·
I 11011111 12,11,9,8,1 223 DF
I 11100000 0,8,2 224 EO
I 11100001 11,0,9,1 225 El

11100010 0,2 226 E2 S
11100011 0,3 227 E3 ~
11100100 0,4 228 E4 U
11100101 0,5 229 E5 V
11100110 0,6 230 E6 W
11100111 0,1 231 E1 X
11101000 0,8 232 E8 Y
11101001 0,9 233 E9 Z
11101010 11,0,9,8,2 234 EA
11101011 11,0,9,8,3 235 EB
11101100 11,0,9~8,4 236 EC
11101101 11,0,9,8,5 231 ED
11101110 11,0~9,8,6 238 EE
11101111 11,0,9,8,1 239 EF
11110000 0 240 FO 0
11110001 1 241 Fl 1
11110010 2 242 F2 2
11110011 3 243 F3 3
11110100 4 244 F4 4
11110101 5 245 F5 5
11110110 6 246 F6 6
11110111 1 241 F1 7
1~111000 8 248 F8 8
11111001 9 249 F9 9
11111010 12,11,0,9,8.2 250 FA
11111011 12,11,0,9,8,3 251 FB
11111100 12,11,0,9,8,4 252 FC
11111101 12,11,0,9,8,5 253 FD
11111110 12,11,0,9,8,6 254 FE

I 11111111 12,11.0,9,8~1 255 FF L ____________ ~ _________________ ~ _________ ~ _________ ~ _________________ J

Special Graphic Charac.ters

¢ Cent Sign * Asterisk > Greater-than Sign
Period, Decimal Point) Right Parenthesis ? Question Mark

< Less-than Sign ; Semicolon : Colon
(Left Parenthesis -, Logical NOT , Number Sign

+ Plus Sign - Minus Sign, Hyphen @ At Sign
I Vertical Bar, Logical OR / Slash , Prime, Apostrophe
& Ampersand , Comma = Equal Sign
! Exclamation Point % Percent " Quotation Mark
S Qollar Sign - Underscore

Bit Pattern Hole Pattern
Examples Type Bit Positions

J 01 234567 Zone Punches Digit Punches

PF Control Character 00000100 12 -9 - 4

% Special Graphic OJ 10 lJoo 0-8-4

R Upper Case JJ 01 1001 JJ1 9

a Lower Case 10000001 12 -0 - I
Control Character, 00 JJ 0000 12-JJ-0 -9 - 8:" I

I
function not yet I
assigned I

Appendix A: Character Codes III

APPENDIX B: HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE

The table in this appendix provides for direct conversion of decimal and hexadecimal
numbers in these ranges:

r--------------T---------------l
I Hexadecimal I Decimal I
~--------------+---------------~
I 000 to FFF I 0000 to 4095 I l ______________ ~ ______________ J

Decimal numbers (0000-4095) are given within the 5-part table. The first two characters
(high-order) of hexadecimal numbers (OOO-FFF) are given in the lefthand column of the
table; the third character (x) is arranged across the top of each part of the table.

To find the decimal equivalent of the hexadecimal number OC9, look for OC in the left
column, and across that row under the column for x = 9. The decimal number is 0201.

To convert from decimal to hexadecimal, look up the decimal number within the table
and read the hexadecimal number by a combination of the hex characters in the left
column, and the value for x at the top of the column containing the decimal number. For
example, the decimal number 123 has the hexadecimal equivalent of 07B: the decimal
number 1478 has the hexadecimal equivalent of 5C6.

For numbers outside the range of the table" add the following values to the table

r--------------T-----------,
I Hexadecimal I Decimal I
.--------------+-----------~

1000 4096
2000 8192
3000 12288
4000 16384
5000 20~80
6000 24576
7000 28672
8000 32768
9000 36864
AOOO 40960
BOOO 45056
COOO 49152
0000 53248
EOOO 57344
FOOO 61440 ______________ ~ ___________ J

Appendix B: Hexadecimal-Decimal Number Conversion Table 113

x ~ 0 1 2 3 4 5 6 7 8 9 A B C D E F

OOx 0000 0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014 001~
01x 0016 0017 0018 0019 0020 0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 0031
02x 0032 0033 0034 0035 0036 0037 0038 0039 0040 0041 0042 0043 0044 00115 00116 00117
03x 0048 0049 0050 0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 0061 0062 0063

04x 0064 0065 0066 0067 0068 0069 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079
05x 0080 0081 0082 0083 0084 0085 0086 0087 0088 0089 0090 0091 0092 0093 00911 0099
06x 0096 0097 0098 0099 0100 0101 0102 0103 0104 0105 0106 0107 010.8 0109 0110 0111
07x 0112 0113 0114 0115 0116 0117 0118 On9 0120 0121 0122 0123 0124 0125 0126 0121

08x 0128 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0140 0141 0142 0143
09x 0144 0145 01116 0147 01118 01119 0150 0151 0152 0153 0154 0155 0156 0157 0158 015)
OAx 0160 0161 0162 0163 01611 0165 0166 0167 0168 0169 0170 0171 0172 01'73 0174 0175
OBx 0176 0177 0178 0179 0180 0181 0182 0183 0184 0185 0186 01'87 0188 0189 0190 0191

OCx 0192 0193 0194 0195 0196 0197 0198 0199 0200 0201 0202 0203 02011 0205 0206 0207
ODx 0208 0209 0210 0211 0212 0213 02111 0215 0216 0217 0218 0219 0220 0221 0222 0223
OEx 022" 0225 0226 0227 0228 0229 0230 0231 0232 0233 023" 0235 0236 0237 0238 0239
OFx 0240 0241 02112 0243 0244 0245 02116 02.., 02118 02119 0250 0251 0252 0253 0254 0255

lOx 0256 0257 0258 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271
llx 0272 0273 0274 0275 0276 0277 0278 0279 0280 0281 0282 0283 0284 0285 0286 0287
12x 0288 0289 0290 0291 0292 0293 02911 0295 0296 0297 0298 0299 0300 0301 0302 0303
13x 0304 0305 0306 0307 0308 0309 0310 0311 0312 0313 03111 0315 0316 0317 0318 0319

14x 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0330 0331 0332 0333 03311 0335
lSx 0336 0337 0338 0339 03110 03111 0342 03113 031111 03115 03116 03117 0348 0349 0350 0351
16x 0352 0353 03511 0355 0356 0357 0358 0359 0360 0361 0362 0363 0364 0365 0366 0367
17x 0368 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0379 0380 0381 0382 0383

18x 03811 0385 0386 0387 0388 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399
ax 01100 01101 0402 01103 0404 0405 0406 0407 0408 0409 0410 0411 0412 0413 011111 0415
lAx 01116 0417 01118 041!l 0420 01121 0422 0"23 0424 0425 0"26 0427 0428 0429 0430 0431
lBx 01132 0433 0434 0435 0436 01137 0438 0439 01140 0441 0442 0443 0444 0445 0446 0"47

lCx 01148 0449 0450 0451 0452 0453 0"54 0"55 01156 0457 0458 0"59 0460 0461 0462 0463
lDx 0464 01165 0466 0467 01168 0469 0470 0471 1)1172 01173 0474 01175 0476 0477 01178 0479
lEx 0480 01181 01182 0483 01184 01685 0486 01187 01688 01189 0490 0491 0492 0493 0494 04!15
lFx 01196 0497 0498 0499 0500 0501 0502 0503 05011 0505 0506 0507 0508 0509 0510 0511

20x 0512 0513 05111 0515 0516 0517 0518 0519 0520 0521 0522 0523 05211 0525 0526 0527
21x 0528 0529 0530 0531 0532 0533 05311 0535 0536 0537 0538 0539 0540 0541 0542 05113
22x 0544 0545 0546 05'47 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 05~8 0559
23x 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575

2 .. x 0576 0577 0578 0579 0580 0581 0582 0583 05114 0585 0586 0587 0588 0589 0590 0591
25x 0592 0593 05911 0595 0596 0597 0598 0599 0600 0601 0602 0603 060. 0605 0606 0607
26x 0608 0609 0610 0611 0612 0613 06111 0615 0616 0617 0618 0619 0620 0621 0622 0623
27x 062" 0625 0626 0627 0628 0629 0630 0631 0632 0633 063. 0635 0636 0637 0638 0639

28x 06110 06111 06"2 0643 06U 06115 0646 06167 0648 06119 0650 0651 0652 0653 065_ 0&55
29x 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2Ax 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 068_ 0685 0686 0687
2Bx 0688 0689 0690 0691 0692 0693 06911 0695 0696 0697 0698 0699 0700 0701 0702 0703

2Cx 070" 0705 0706 0707 0708 0709 0710 0711 0712 0713 07111 0715 0716 0717 0718 0719
2Dx 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 07311 0735
2Ex 0736 0737 0738 0739 0740 07., 07"2 07113 07411 07.5 07"6 0747 0748 0749 0750 0751
2Px 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

30x 0768 0769 0770 0771 0772 0773 077. 0775 0776 0777 0778 0779 0780 0781 0782 0783
31x 07811 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32x 0800 0801 0802 0803 080. 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33x 0816 0817 0818 0819 0820 0821 0822 0823 082" 0825 0826 0827 0828 0829 0830 0831

3.x .0832 0833 083 .. 0835 0836 0837 0838 0839 08110 08'" 0842 08113 0844 0845 0846 0847
35x 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36x 086. 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37x 0880 0881 0882 0883 088. 0885 0886 0887 0888 0889 0890 0891 0892 0893 08911 0895

38x 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39x 0912 0913 09111 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3Ax 0928 0929 ·0930 0931 0932 0933 093. 0935 0936 0937 0938 0939 09110 09'" 09112 0943
3Bx 09416 0945 0946 09"7 0948 09119 0950 0951 0952 0953 095. 0955 0956 0957 0958 0959

3Cx 0960 0961 09'2 0963 096. 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3Dx 0976 0977 0978 0979 0980 0981 0982 0983 098. 0985 0986 0987 0988 0989 0990 0991
3Ex 0992 0993 09911 0995 0996 0997 0998 0999 1000 1001 1002 1003 10011 1005 1006 1007
3Fx 1008 1009 1010 1011 1012 1013 10111 1015 1016 1017 101. 1019 1020 1021 1022 1023

114

x - 0 1 2 3 II 5 6 7 8 9 A B C D E F

'OX 102' 1025 1026 1027 1028 1029 1030 1031 1032 1033 1031t 1035 1036 1037 1038 1039
Il1x 10.0 10 .. , 10'2 lOU 10U 10'5 10,.6 101t7 10118 10119 1050 1051 1052 1053 lOS. 1055
'2x 1056 1057 1058 1059 1060 1061 1062 1063 10611 1065 1066 1067 1068 1069 1070 1071
'3x 1072 1073 10n 1075 1076 1077 1078 1079 1080 1081 1082 1083 1 OBIt 10115 10116 1087

.... x 1088 1089 1090 1091 1092 1093 109 .. 1095 1096 1097 1098 1099 1100 1101 1102 1103
"5x 1101t 1105 1106 1107 1108 1109 1110 1111 1112 1113 11111 1115 1116 1117 1118 1119
116x 1120 1121 1122 1123 11211 1125 1126 1127 1128 1129 1130 1131 1132 1133 113" 1135
Ux 1136 1137 1138 1139 " .. 0

, .. , ""2 Hit] 111t. 11lt5 11116 11117 11111 11119 1150 1151

Ux 1152 1153 115. 1155 1156 1157 1158 1159 1160 1161 1162 1163 116/1 1165 1166 1167
Ux 1168 1169 1170 1171 1172 1173 1171t 1175 1176 1177 1178 1179 1180 1181 1182 1183
Ux 118. 1185 1186 1187 1188 1189 1190 1191 1192 1193 119,. 1195 1196 1197 1198 1199
'8x 1200 1201 1202 1203 120" 1205 1206 1207 1208 1209 1210 1211 1212 1213 121/1 1215

"Cx 1216 1217 1218 1219 1220 1221 1222 122) 122' 1225 1226 1227 1228 1229 1230 1231
'Dx 1232 1233 123. 1235 1236 1237 1238 1239 12 .. 0 12/11 12'2 12lt3 12 12"5 12"6 121t7
,ax 12U 12U 1250 1251 1252 1253 125 .. 1255 1256 1257 1258 1259 1260 1261 1262 1263
,rx 126 .. 1265 1266 1267 1268 1269 1270 1271 1272 127.3 127. 1275 1276 1277 1278 1279

SOx 1280 1281 1282 1283 12 BIt 1285 1286 1287 1288 1289 1290 1291 1292 1293 ,29" 1295
51x 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
52x 1312 1313 13116 1315 1316 1317 1318 1319 1320 1321 1322 1323 132" 1325 1326 1327
53. 1328 1329 1330 1331 1332 1333 133 .. 1335 1336 1337 1338 1339 13"0 13 .. , 13 .. 2 131t3

5'. 134. 13.5 1346 13117 13 ... 13119 1350 1351 1352 1353 135" 1355 1356 1357 1358 1359
55. 1360 1361 1362 1363 13616 1365 1366 1367 1368 1369 1370 1371 137~ 1373 137" 1375
56. 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57. 1392 1393 139. 1395 1396 1397 1398 1399 , .. 00 1401 '''02 11603 '''0'' '''05 '''06 '''07

58x 1It08 '''09 ''''0 1 .. 11 11612 1413 14111 1'15 1416 1417 1ft 18 1ft 19 1It20 '''21 '''22 11123
59. 1It2" 1425 1426 lU7 '''28 11129 11630 lUl 1'-32 1'-33 1U' lU5 lU6 l1t37 l1tl8 '''39
SAx 1UO lUl 1U2 , 3 1ft..- 111'5 14'" 1It1t7 111111 , 9 11150 11651 1ft 52 1453 1/15" 1455
58. 1 ItS 6 1457 11158 ,..59 11160 111" '''2 '''3 1116" 1465 '''66 11167 11168 '''69 lUO 1ft71

sc. U72 "73 11174 , .. 75 1416 1477 1418 1It79 lUO , .. 8, 1It82 11113 lU .. 11185 1/186 1/187
SD. ,..88 1U9 , .. 90 lUl 1492 1493 1494 1495 11196 1497 1498 11199 1500 1501 1502 1503
sax 150' 1505 1506 1507 1508 1509 1510 1511 1512 1513 1511t 1515 1516 1517 1518 1519
sr. 1520 1521 1522 1523 152" 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

60x 1536 1537 1538 1539 15 .. 0 15'" 15"2 15"3 1511" 15115 15116 15"7 1'5118 15"9 1550 l~Sl

61x 1552 1553 155" 1555 1556 1557 1558 1559 1560 1561 1562 1563 156" 1565 1566 1567
62x 1568 1569 1570 1571 1572 1573 157" 1575 1576 1577 1578 1579 1580 1581 1582 1583
63x 158" 1585 1586 1587 1588 1589 1590 1591 1592 1593 159" 1595 1596 1597 1598 1599

6"x 1600 1601 1602 1603 160" 1605 1606 1607 1608 1609 1610 1611 1612 1613 161" 1615
65x 1616 1617 1618 1619 1620 1621 1622 1623 162" 1625 1626 1627 1628 1629 1630 1631
66x 1632 1633 16311 1635 1636 1637 1638 1639 1640

'''' 1 16"2 1643 1611" 16"5 1646 1647
67x 16118 1649 1650 1651 1652 1653 165" 1655 1656 1657 1658 1659 1660 1661 1662 1663

68x 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 167" 1675 1676 1677 1678 1679
69x 1680 1681 1682 1683 168" 1685 1686 1687 1688 1689 1690 1691 1692 1693 169" 1695
6Ax 1696 1697 1698 1699 1700 1701 1702 1703 170" 1705 1706 1707 1708 1709 1710 1711
68x 1712 1713 171ft 1715 1716 1717 1718 1719 1720 1721 1722 1723 172" 1725 1726 1727

6Cx 1728 1729 1730 17'31 1732 1733 173" 1735 1736 1737 1738 1739 17110 17'" 1742 17113
6Dx 17"4 17"5 17"6 17"7 17"8 17"9 1750 1751 1752 1753 175" 1755 1756 1757 1758 1759
6Bx 1760 1761 1762 1763 176" 1765 1766 1767 1768 '1769 1770 1771 1772 1773 1774 1775
6Fx 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

70x 1792 1793 179" 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
71x 1808 1809 1810 1811 1812 1813 181" 1815 1816 1817 1818 1819 1820 1821 1822 a23
7h 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 183" 1835 1836 1837 1838 1839
73x 18/f0 18'" 18"2 18/f3 18"" 18"5 1846 18"7 18"8 1849 1850 1851 1852 1853 1854 11155

74x 1856 1857 1858 1859 1860 1861 1862 1863 186" 1865 1866 1867 1868 1869 1870 1871
75x 1872 1873 187" 1875 1876 1877 1878 1879 1880 1881 1882 1883 188" 1885 18t16 1887
76x 1888 1889 1890 1891 1892 1893 189" 1895 1896 1897 1898 1899 1900 1901 1902 1903
77x 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 19111 1915 1916 1917 1918 1919

71x 1920 1921 1922 1923 192" 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79x 1936 1937 1938 1939 19"0 ,9", 19112 1943 19411 1945 1946 19"7 19"8 19"9 1950 1951
7Ax 1952 1953 195" 1955 1956 1957 1958 1959 1960 1961 1962 1963 19'" 1965 1966 1967
78x 1968 1969 1970 1971 1972 1973 197" 1975 1976 1977 1978 1979 1980 1981 1982 1983

7Cx 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 199" 1995 1996 1997 1998 1999
7Dx 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 20'" 2015
7BX 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7Fx 2032 2033 203" 2035 2036 2037 2038 2039 20 .. 0 2041 2042 20U 20 20'5 20/16 20 .. 7

Appendix B: Hexadecimal-Decimal Number Conversion Table 115

x •
i) 1 2 3 .. 5 6 7 8 9 A 8 C D E F

80x 20'1 2049 2050 2051 2052 2053 205ft 2055 2056 2057 2058 2059 2060 2061 2062 2063
81x 206ft 2065 2066 2067 2068 2069 2070 2071 2072 2073 20711 2075 2076 2077 2078 2079
82x 2080 208' 2082 2083 208' 2085 2086 2087 2088 2089 2090 209' 2092 2093 209 .. 2095
83K 2096 2097 2098 2099 2100 2101 2102 2103 210ft 2105 2106 2107 2108 2109 2110 2111

8'x 2112 2113 211 .. 2115 2116 2117 2118 2119 2120 2121 2122 2123 212" 2125 2126 2127
85x 2128 2129 2130 2131 2132 2133 213" 2135 2136 2137 2138 2139 21160 21111 21112 2,..3
86K 2111 .. 21'5 21166 2U7 2148 21119 2150 2151 2152 2153 21516 2155 2156 2157 2158 . 2159
17x 2160 2161 2162 2163 21616 2165 2166 2167 2168 2169 2170 2171 2172 2173 21716 2175

88x 2176 2177 2178 2179 2180 2181 2182 2183 21816 2185 2186 2187 2188 2189 2190 2",
89x 2192 2193 2"16 2195 2196 2"7 2198 2199 2200 2201 2202 2203 22016 2205 2206 2207
8Ax 2208 2209 2210 2211 2212 2213 22,.. 2215 2216 2217 2218 2219 2220 2221 2222 2223
88x 22216 2225 2226 2227 2228 2229 2230 2231 2232 2233 223ft 2235 2236 2237 2238 2239

8Cx 22160' 22'.1 22162 22U 22 22.5 2246 22'1 22168 22.., 22$0 2251 2252 2253 22516 2255
8Dx 2256 2257 2258 2259 2260 2261 2262 2263 22616 2265 2266 2267 2268 2269 2270 2271
8Ex 2272 2273 22711 2275 2276 2277 2278 2279 2280 2281 2282 2283 22816 2285 2286 2287
Il'x 2218 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

90x 230ft 2305 2306 2307 2308 2309 2310 2311 2312 2313 23116 2315 2316 2317 2318 2319
91x 2320 2321 2322 2323 23211 2325 2326 2327 2328 2329 2330 2331 2332 2333 23311 2335
92x 2336 2337 2338 2339 2340 23.., 2342 23U 23"" 23165 23166 23167 2348 23169 2350 2351
93x 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 23'" 2365 2366 2361

"x 2368 2369 2370 2371 2372 2373 23711 2375 2376 2377 2378 2379 2380 2381 2382 2383
95x 23811 2385 2386 2387 2388 2389 2390 2391 2392 2393 23916 2395 2396 2397 2398 2399
96x 2..00 2401 2 .. 02 2 .. 03 2160 .. · 21605 2 .. 06 21107 21108 2".09 2 .. ,0 2.." 21112 2 .. 13 2 .. 116 2415
97x 2 .. ,6 2 .. 17 2418 2"" 2"20 2"21 2"22 21623 2162" 2'25 21126 21627 2"28 2'29 2"30 2Ul

tlx 2U2 21133 2 .. 3ft 2U5 2U6 2U7 2438 2U9 2 0 216161 2 2 2 .. 163 216'" 2U5 2''''6 2,
99x 2UI 2 9 21650 2 .. 51 2ft52 2453 2 .. 5 .. 21655 2"56 21657 2"58 2 .. 59 2460 21661 21662 2 .. 63
9Ax 2UII 2"5 2 .. 66 2U7 21668 2 .. 69 2..,0 2Ul 2U2 2'13 2ft716 2..,5 2U6 2477 2"78 2't79
lax 2UO 21681 2482 21183 2 .. 8 .. 2485 2 .. 86 2 ... 7 2488 2489 21190 21691 21692 2 .. 93 2"''' 21695

9Cx 2U6 21697 2 .. 98 21199 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
tDx 2512 2513 25116 2515 2516 2517 2518 2519 2520 2521 2522 2523 25216 2525 2526 2527
9.x 2528 2529 2530 2531 2532 2533 253 .. 2535 2536 2537 2538 2539 25160 25.., 25162 25 .. 3
tl'x 25U 25'5 25U 25U 25"1 25.., 2550 2551 2552 2553 2554 2555 2556 2557 2551 2559

AOx 2560 2561 2562 2563 25" 2565 2566 2567 2561 2569 2570 2571 2572 2573 257 .. 2575
Alx 2576 2577 2578 2579 2580 2581 2582 2.583 25816 2585 2586 2587 2588 2589 2590 2591
A2x 2592 2593 25916· 2595 2596 2597 2598 2599 2600 2601 2602 2603 260" 2605 2606 2607
A3x 2608 2609 2610 2611 2612 2613 26,.. 2615 2616 2617 2618 2619 2620 2621 2622 2623

A .. x 262" 2625 2626 2627 . 2628 2629 2630 2631 2632 2633 26316 2635 2636 2637 2638 2639
A5x 26110 26111 2"2 26163 26U 2"5 26"6 2647 26168 26169 2650 2651 2652 2653 2654 2655
A6x 2656 2657 2658 2659 2660 2661 2662 2663 266 .. 2665 2666 26.67 2668 2669 2670 2671
A7x 2672 2673 26716 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687

A8x 2688 2689 2690 2691 2692 2693 26911 2695 2696 2697 2698 2699 2780 2701 2702 2703
A9x 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 27116 2715 2716 2717 2718 2719
AAx 2720 2721 2722 2723 27216 2725 2726 2127 2728 2729 2730 2731' 2732 2733 2734 2735
ASx 2736 2737 2738 2739 2740 27.., 27"2 27163 27416 2745 27166 2747 2748 27169 2750 2751

ACx 2752 2753 275 .. 2755 2756 2757 2758 2759 2760 2761 2762 2763 276!' -'765 2766 2767
ADx 2768 2769 2770 2771 2772 2773 277 .. 2775 2776 2777 2778 2779 2780 2781 2782 21f13
AEx 2784 2785 2786 2761 2788 2789 2790 2791 2792 2793 27916 2795 2796 2797 2798 2799
Arx 2800 2801 2802 2803 2804 -2805 2806 2807 2808 2809 2810 2811 2812 2813 28116 2815

80x 2816 281
'

2818 2819 2820 2821 2822 2823 282" 2825 2826 2827 2828 2829 2830 2831
81x 2832 2833 28316 2835 2836 2837 2838 2839 2840 2841 2842 2843 28164 2845 2846 2847
82x 2848 28169 2850 2851 2852 2853 2854 2855 2856 28$7 2858 2859 2860 2861 2862 2863
83x 28" 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2£i79

8"x 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
85x .2896 2897 2898 2899 2900 2901 2902 2903 29016 2905 2906 2907 2908 2909 2910 2911
86x 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B7x 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 29160 29111 2942 29113

B8x 29 29165 29166 29 .. 7 2948 29119 2950 2951 2952 2953 295" 2955 2956 2957 2958 2959
B9x 2960 2961 2962 2963 29616 2965 2966 2967 2968 2969 2970 2971 2972 2973 29711 2975
BAx 2976 2971 2978 2979 2980 2981 2982 2983 29816 2985 2986 2987 2988 2989 2990 2991
B8x 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007

&ex 3008 3009 3010 3011 3012 3013 30111 3015 3016 3017 3018 3019 3020 3021 302~. 3023
BDx 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 30316 3035 3036 3037 3038 3039.
BEx 3040 3041 3042 30163 30'" 30165 3046 30167 3048 30119 3050 3051 3052 3053 3054 3055
Bl'x 3056 3057 3058 3059 3060 3061 306~ 306'3 3064 3065 3066 3067 3068 3069 3070 3071

116

x • 0 1 2 3 4 5 6 7 8 9 A B C D E F

COx 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 juo:;) 3086 3087
C1x 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2x 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3x 312Q 3121 31~2 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135

Clfx 3136 3137 3138 3139 31 .. 0 3,.. 1 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5x ·1152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C6x 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7'x 3184 3185 3186 3117 3188 3189 3190 319·1 3192 3193 3194 3195 3196 3197 3198 3199

C8x 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C9x 3216 3217 3218 3219 3220 3221 3222 3223 322 .. 3225 3226 3227 3228 3229 3230 3231
CAx 3232 3233 3234 3235 3236 3237 3238 3239 3240 32_' 32112 3243 324. 32.45 3246 32167
CBx 3248 32169 3250 3251 3252 3253 325 .. 3255 3256 3257 3258 3259 3260 3261 3262 3263

CCx 32616 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CDx 3280 3281 3282 3283 3284 3285 3286 3281 3288 3289 3290 3291 3292 3293 3294 3295
CEx 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CPx 3312 3313 33116 3315 3316 3317 3318 3319 3320 3321 3322 3323 33216 3325 3326 3327

DOx 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 33160 33161 3342 33163
D1x 3316 .. 33 .. 5 33 .. 6 33'" 3348 3349 3350 3351 3352 3353 335 .. 3355 3356 3357 3358 3359
D2x 3360 3361 3362 3363 336ft 3365 3366 3367 3368 3369 3370 3371 3372 3373 33716 3375
D3x 3376 3371 3378 3379 3380 3381 3382 3383 338 .. 3385 3386 3387 3388 3389 3390 3391

D4x 3392 3393 339 .. 3395 3396 3391 3398 3399 31600 3401 3 .. 02 3 .. 03 340 .. 3405 3406 31607
D5x 3 .. 08 3 .. 09 3 .. ,0 3 .. 11 3 .. ,2 3 .. ,3 3 .. ,.. 3 .. ,5 3 .. ,6 3417 3 .. ,8 3419 3"20 3"21 3 .. 22 3"23
D6x 3 .. 24 3"25 3426 31121 3428 31129 3UO 3431 3432 3433 3U4 3435 3U6 3437 3438 3439
D7x 3 0 3 , 34"2 3 .. 113 3444 3445 3446 3 7 3 ... 8 3449 3450 31151 31152 34·53 3454 3455

D8x 3 .. 56 3 .. 51 3458 3459 3460 3 .. 61 3462 3463 3464 3465 3466 3461 3468 3469 3470 3 .. 71
D9x 31112 3 .. 73 3"'4 3415 31116 3 .. 71 3478 31119 3480 3481 3482 3483 3484 3485 3486 3481
DAx 3 .. 88 3U9 3490 3 .. 91 3_92 3 .. 93 3"''' 31195 3496 3491 3498 3499 3500 3501 3502 3503
DBx 3504 3505 3506 3501 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519

DCx 3520 3521 3522 3523 35211 3525 3526 3521 3528 3529 3530 3531 3532 3533 35311 3535
DDx 3536 3531 3538 3539 35160 35111 35112 35113 35164 3545 3546 35'" 35U 3549 3550 3551
DEx 3552 3553 35511 3555 3556 3551 3558 3559 3560 3561 3562 3563 3564 3565 3566 3561
DPx 3568 3569 3510 3511 3572 3573 35711 3575 3516 3577 357. 3579 3580 3581 3562 3583

EOx 3'584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3591 3598 3599
Elx 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2x 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3x 3632 3633 3634 3635 3636 3631 3638 3639 3640 3641 36"2 3643 36114 3645 3646 3647

E4x 36118 3649 3650 3651 3652 3653 3654 3655 3656 3651 3658 3659 3660 3661 3662 3663
E5x 366 .. 3665 3666 3667 3668 3669 3670 3611 3612 3613 3614 3615 3676 3677 3678 3679
E6x 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
Elx 3696 1691 3698 3699 3100 3701 3102 3103 3104 3105 3106 3701 3708 370Q 1710 3711

E8x 3112 3713 3714 3715 3716 3117 3718 3119 3720 3721 3722 3723 3724 3725 J1~iJ 3727
E9x 3728 3729 3130 3731 3132 3733 3734 3735 3736 3137 3738 3739 3740 3741 3742 3743
£Ax 314 .. 3745 3146 37167 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBx 3160 3161 3762 3163 3764 3765 3766 3167 3168 3769 3770 3771 3772 3773 3774 3775

ECx 3776 3777 3778 3179 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
£Ox 3192 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3b07
EEx 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EFx 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3b39

FOx 3UO 3841 3842 3843 3844 3845 3846 3841 3848 3849 3850 3851 3852 3853 3854 3855
Flx 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3b71
F2x 3812 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 38t!6 3tHI7
F3x 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903

Fllx 3904 3905 3906 3901 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5x 3820 3921 3922 3923 3924 3925 3926 3~27 3928 3929 3930 3931 3932 3933 3934 3935
F6x 3936 3931 3938 3939 3940 3941 39"2 3943 39 39 .. 5 3946 39 .. , 39 .. 8 3949 3950 3951
Flx 3952 3953 3954 3955 3956 3951 3958 395·9 3960 3961 3962 3963 3964 3965 3966 3961

F&x 3968 3969 3970 3911 3912 3913 39711 3915 3916 3911 3978 3919 3980 3981 39&2 3983
. F9x 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3991 3998 3999

FAx _000 4001 4002 .. 003 .. 0011 4005 4006 4007 4008 .. 009 4010 4011 4012 4013 4014 4015
FBx 4016 4017 4018 16019 4020 .. 021 16022 11023 160216 11025 16026 16027 4028 11029 1I0lO 11031

FCx 11032 4033 403 .. 16035 4036 4037 .. 038 16039 11040 16041 160162 4043 4044 40 .. 5 4046 4047
FDx 4048 .. 0169 .. 050 .. 051 4052 .. 053 4054 4055 .. 056 .. 057 4058 .. 059 4060 4061 4062 4063
FEx .. 064 .. 065 4066 .. 061 .. 068 4069 4070 .. 071 .. 012 4013 160716 16075 4016 4071 16078 4079
FFx 4080 4081 .. 082 11083 40816 4085 4086 16087 4088 11089 11090 .. 091 16092 4093 40916 4095

Appendix B: Hexadecimal-Decimal Number Conversion Table 117

APPENDIX C: MACHINE-INSTRUCTION FORMAT

ASSEMBLER OPERAND
BASIC MACHINE FORMAT FIELD FORMAT APPLICABLE INSTRUCTIONS

8 4 4 Rl,R2 All RR instructions
Operation except BCR,SPM,

Code Rl R2 and SVC

RR

8 4 4 Ml,R2 BCR
Operation

Code Ml R2

8 4 Rl SPM
Operation

Code Rl

8 8
Operation I SVC

Code I (See Notes 1,6,8,
and 9)

8 4 4- 4 12 Rl,D2(X2,B2)
RX Operation Rl,D~ (,B2)

Code Rl X2 B2 D2 Rl,S2(X2)
All RX instructions

Rl,S2 except BC

8 4 4 4 12 Ml,D2(X2,B2)
Operation Ml,D2 (,B2)

Code Ml X2 B2 D2 Ml,S2(X2) BC
Ml,S2

(See Notes 1,6,8,
and 9)

8 4 4 4 12
Operation Rl,R3,D2(B2) BXH,BXLE,LM,STM,LCL,STCL

Code Rl rn B2 D2 Rl,R3,S2

RS

8 4 4 4 12
Operation Rl,D2(B2) All shift instructions

Code Rl B2 D2 Rl,S2

8 4 4 4 12 Rl,M3,D2(B2) ICM, STCM,CLM
Operation Rl,M3,S2

Code Rl M3- B2 D2 (See Notes 1-3,7,
8,and 9)

Appendix C: Machine-Instruction Format 119

BASIC MACHINE FORMAT ASSEMBLER OPERAND APPLICABLE INSTRUCTIONS
FIELD FORMAT

8 8 4 12 All SI instructions
Operation Dl(Bl) ,12 except those listed

Code 12 Bl Dl Sl,12 for other SI formats

SI

8 4 12
Operation Dl(Bl) LPSW,SSM,TIO,TCH,TS

Code Bl Dl Sl (See Notes 2,3,6,
7,8 and 10)

16 4 12 SCK,STCK,STIPD,SI0F,STIDC,
S

Two-byte Dl (Bl) SI0,H10,HDV
Operation Sl SCKC,STCKC,SPT,STPT,PTLB,
code Bl Dl (See Notes 2, RRB

3,and 7)

8 4 4 4 12 4 12 Dl(Ll,Bl) ,D2(L2,B2) PACK,UNPK,MVO,AP,
Operatior Sl(Ll),S2(L2) CP,DP,MP,SP,ZAP
Code L] L2 Bl Dl B2 D2

SS

8 8 4 12 4 12 Dl(L,Bl) ,D2(B2) NC,OC,XC,CLC,MVC,MVN,
Operation MVZ,TR,TRT,ED,EDMK
Code L Bl Dl B2 D2 Sl (L) ,S2

8 4 4 4 12 4 12 Dl(Ll,Bl) ,D2(B2) ,I3 SRP
Operation Sl(Ll) ,S2, 13
Code Ll 13 Bl Dl B2 D2 Sl,S2,I3

(See Notes 2,3,5,6,
7 and 10)

Notes for Appendix C:

1. Rl, R2, and R3 are absolute expressions that specify general or floating-point reg­
isters. The general register numbers are 0 through 15; floating-point register num­
bers are 0, 2, 4, and 6.

2. Dl and D2 are absolute expressions that specify displacements. A value of 0 - 4095
may be specified.

3. Bl and B2 are absolute expressions that specify base registers. Register numbers are
o - 15.

4. X2 is an absolute expression that specifies an index register. Register numbers are
o - 15.

5. L, Ll, and L2 are absolute expressions that specify field lengths. An L expression
can specify a value of 1 - 256. Ll and L2 expressions can specify a value of 1 - 16.
In all cases, the assembled value will be one less than the specified value.

6. I, 12, and 13 are absolute expressions that provide immediate data. The value of I
and 12 may be 0 - 255. The value of 13 may be 0 - 9.

7. Sl and S2 are absolute or relocatable expressions that specify an address.

8. RR, RS, and SI instruction fields that are blank under BASIC MACHINE FORMAT are not
examined during instruction execution. The fields are not written in the symbolic
operand, but are assembled as binary zeros.

9. Ml and M3 specify a 4-bit mask.

10. In IBM System/370 the SIO, HIO, HDV and SlOF operation codes occupy one byte and the
low order bit of the second byte. In all other systems the HIO and SIO operation
codes occupy only the first byte of the instruction.

120

APPENDIX D: MACHINE INSTRUCTION MNEMONIC OPERATION CODES

This appendix contains two tables of the mnemonic operation codes for all machine
instructions that can be represented in assembler language, including extended
mnemonic operation codes.

The first table is in alphabetic order by instruction. The second table is in numeric
order by' operation code.

In the first table is indicated: both the mnemonic and machine operation codes,
explicit and implicit operand formats, program interruptions possible, and condition
code set.

The column headings in the first table and the information each column provides follow:

Instruction: This column contains the name of the instruction associated with the
mnemonic operation code.

Mnemonic Operation Code: This column contains the mnemonic operation code for the machine
instruction. This is written in the operation field when coding the instruction.

Machine Operation Code: This column contains the hexadecimal equivalent of the actual
machine operation code. The operation code will appear in this form in most storage
dumps and when displayed on the system control panel. For extended mnemonics, this
column also contains the mnemonic code of the instruction from which the extended
mnemonic is derived.

Operand Format: This column shows the symbolic format of the operand field in both
explicit and implicit form. For both forms, R1, R2, and R3 indicate general registers
in operands one, two, and three respectively. X2 indicates a general register used as
an index register in the second operand. Instructions which require an index register
~2) but are not to be indexed are shown with a 0 replacing X2. L, Ll, and L2 indicate
lengths for either operand, operand one, or operand two respectively. Ml and ~3 indicate
a 4-bit mask in operand one and three, respectively. 1, 12, and 13 indicate immediate
da ta eight bits long (1 and 12) or four bits long (13) •

For the explicit format, 01 and 02 indicate a displacement and B1 and B2 indicate a
base register for operands one and two.

FOr the implicit format, 01, Bl, and 02, B2 are replaced by S1 and S2 which indicate
a storage address in operands one and two.

Type of Instruction: This column gives the basic machine format of the instruction ~,
RX, SI, or SS). If an instruction is included in a special feature or is an extended
mnemonic, this is also indicated.

Program Interruptions Possible: This column indicates the possible program interruptions
for this instruction. The abbreviations used are: A - Addressing, S - Specification,
OV - OVerflow, P - Protection, Op - Operation (if feature is not installed), and Other
- other interruptions which are listed. The type of overflow is indicated by: D -
Decimal, E - Exponent, or F - Fixed Point.

Condition Code Set: The condition codes set as a resUlt of this instruction are indicated
in this column. (See legend following the table.)

Appendix D: Machine Instruction Mnemonic Operation Codes 121

Instruction Mnemonic Machine Operand Forinat
Operation Operation

Code Code Explicit Implicit

Add A SA Rl, 02(X2, B2) or Rl, 02(, B2) Rl, S2(X2) or Rl, S2
Add AR IA Rl,R2
Add Decimal AP FA 01 (L I, Bl), 02(L2, B2) SI (Ll), S2(L2)or SI, S2
Add Ha Ifword AH 4A Rl,02(X2,B2)or Rl,02(,B2) Rl,S2(X2)or Rl,S2
Add Logical AL 5E R 1, 02(X2, B2)or R 1,02(, B2) Rl, S2(X2)or Rl, S2

Add Logical ALR 1 E' Rl,R2

Add Normalized, Extended AXR 36 Rl,R2

Add Normal ized, Long AD 6A R 1, D2(X2, B2)or R 1, D2(, B2) Rl, S2(X2)or Rl, S2
Add Normalized, Long AOR 2A Rl,R2
Add Normolized, Short AE 7A R 1, D2(X2, B2)or R 1,02(, B2) Rl,52(X2)or Rl,S2
Add Normalized, Short AER 3A Rl,R2

Add Unnormal ized, Long AW 6E R I, D2(X2, B2)or R 1,02(, B2) Rl, 52(X2)or Rl, 52
Add Unnormol ized, Long AWR 2E Rl,R2
Add Unnormol ized, 5hort AU 7E R 1, D2(X2, B2)or R 1, 02(, B2) Rl, S2(X2)or Rl, S2
Add Unnormalized, 5hort AUR 3E Rl,R2
And Logical N 54 R I, 02(X2, B2)or R 1,02(, B2) Rl, 52(X2)or Rl, 52

And Logical NC D4 01 (L, Bl), 02(B2) 51(L),52 or 51, S2
And Logical NR 14 Rl,R2
And Logical Immediate NI 94 Dl(Bl),12 S1,I2

Branch and Link BAL 45 Rl,02(X2,B2)or Rl,02(,B2) Rl,52(X2)or Rl,52
Branch and Link BAlR 05 Rl,R2

Branch on Condition BC 47 Ml,02(X2,B2)or Ml,02(,B2) Ml ,52(X2)or Ml,52
Branch on Condition BCR 07 Ml,R2
Branch on Count BCT 46 Rl,02(X2,B2)or Rl,02(,B2) Rl,52(X2)or Rl,52
Branch on Count BCTR 06 Rl,R2
Branch on Equal BE 47(BC 8) 02(X2, B2) or 02(, B2) 52(X2) or 52

Branch on High BH 47(BC 2) 02(X2, B2) or D2(, B2) 52(X2) or 52

Branch in Index High BXH 86 ' Rl, R3, D2(B2) Rl, R3,52
Branch on Index Low or Equal BXlE 87 Rl, R3, 02(B2) Rl, R3,52
Branch on Low Bl 47(BC 4) 02(X2, B2) or 02(, B2) 52(X2) or 52

Branch if Mixed BM 47(BC 4) D2(X2,B2)or 02(,B2) 52(X2) or 52

Branch on Minus BM 47(BC 4) D2(X2, B2) or 02(, B2) 52(X2) or 52

Branch on Not Equal BNE 47(BC 7) 02(X2, B2) or 02(, B2) 52(X2) or 52

Branch on Not High BNH 47(BC 13) D2(X2, B2) or 02(, B2) 52(X2) or 52

Branch on Not low BNl 47(BC 11) 02(X2, B2) or 02(, B2) 52(X2) or 52

Branch on Not Minus BNM 47(BC 11) 02(X2, B2) or D2(, B2) 52(X2) or 52

Branch on Not Ones BNO 47(BC 14) 02(X2, B2) or 02(, B2) 52(X2) or 52

Branch on Not Plus BNP 47(BC 13) D2(X2,B2)or 02(,B2) 52(X2) or 52

Branch on Not Zeros BNZ 47(BC 7) 02(X2,B2)or 02(,B2) 52(X2) or 52

Branch if Ones BO 47(BC 1) 02(X2,B2)or 02(,B2) 52(X2) or 52

Branch on Overflow BO 47(BC 1) D2(X2,B2)or 02(,B2) 52(X2) or 52

Branch on Plus BP 47(BC 2) 02(X2,B2)or 02(,B2) 52(X2) or 52

Branch if Zeros BZ 47(BC 8) 02(X2, B2) or 02(, B2) 52(X2) or 52

Branch on Zero BZ 47(BC 8) 02(X2, B2) or 02(, B2) 52(X2) or 52

Branch Unconditional B 47(BC 15) D2(X2, B2) or 02(, B2) 52(X2) or 52
Branch Unconditional BR 07(BCR 15) R2

Compare Algebraic C 59 R I, D2(X2, B2)or R I, D2(, B2) Rl,52(X2 or Rl,52
Compare Algebraic CR 19 Rl,R2
Compare Decimal CP F9 D 1 (l I, B 1), D2 (l2, B2) 51 (Ll), 52(l2)or 51,52
Compare Halfword CH 49 Rl, D2(X2, B2)or Rl, D2(, B2) R 1, 52(X2) or Rl, 52
Compore Logical CL 55 R I, D2(X2, B2)or Rl, D2(, B2) R I, S2(X2)or Rl, S2

Compore logical ClC D5 Dl (L, Bl), D2(B2) S 1 (L), 52 or 51, S2

122

Type of
Program Interruption

Instruction Possible Condition Code Set
Instruction A S Ov P Op Other 00 01 10 11

Add RX x x F Sum=O Sum < 0 Sum >0 Overflow
Add RR F Sum=O Sum < 0 Sum >0 Overflow
Add Decimal SS,Decimol x D x x Data Sum=O Sum<O Sum>O Overflow
Add Ha I fword RX x x F Sum=O Sum <0 Sum >0 Overflow
Add Logical RX x x Sum=O@ Sum 0(8) Sum= o(i) Sum 0 CD
Add Logical RR Sum=O@ Sum= 0(8) Sum= oci) Sum 0 (i)

Add Normalized, Extended RR,Floating Pt. x E x B,C R L M

Add Normalized, Long RX,Floating Pt. x x E x 8,C R L M
Add Normal ized, Long RR,Floating Pt. x E x B,C R L M
Add Normalized, Short RX,Floating Pt. x x E x 8,C R L M
Add Normalized, Short RR, Floating Pt. x E x B,C R L M

Add Unnormalized, Long RX, Floating Pt. x x E x C R L M
Add Unnormalized, Long RR,Floating Pt. x E x C R L M
Add UI~normalized, Short RX, Floating Pt. x x E x C R L M
Add Unnormaliled, Short RR,Floating Pt. x E x C R L M
And Logical RX x x J K

And Logical SS x x J K
And Logical RR J K
And Logical Immediate SI x x J K

Branch and link RX N N N N
Branch and link RR N N N N

Branch on Condition RX N N N N
Branch on Condition RR N N N N
Branch on Count RX N N N N
Branch on Count RR N N N N
Branch on Equal RX,Ext.Mnemonic N N N N

Branch on High RX, Ext.Mnemonic N N N N

Branch on Index High RS N N N N
Branch on Index Low or Equal RS N N N N
Branch on Low RX, Ext.Mnemonic N N N N

Branch if Mixed RX' Ext .Mnemonic N N N N

Branch on Minus RX, Ext .Mnemonic N N N N

Branch on Not Equal RX, Ext.Mnemonic N N N N

Branch on Not High RX, Ext . Mnemonic N N N N

Branch on Not Low RX' Ext.Mnemonic N N N N

Branch on Not Minus RX, Ext.Mnemonic N N N N

Branch on Not Ones RX, Ext.Mnemonic N N N N

Branch on Not Plus RX' Ext • Mnemonic N N N N

Branch on Not Zeros RX, Ext.Mnemonic N N N N

Branch if Ones RX' Ext .Mnemonic N N N N

Branch on Overflow RX, Ext .Mnemonic N N N N

Branch on Plus RX, Ext.Mnemonic N N N N

Branch if Zeros RX, Ext .Mnemonic N N N N

Branch on Zero RX, Ext. Mnemoni c N N N N

Branch Unconditional RX, Ext.Mnemonic N N N N
Branch Unconditional RR, Ext • Mnemonic N N N N

Compare Algebraic RX x x Z AA 8B
Compare Algebraic RR Z AA 8B
Compare Decimal SS, Decimal x x Data Z AA 88
Compare Halfword RX x x Z AA 88
Compare Logical RX x x Z AA 88

Compare Logical SS x x Z AA 88

Appendix D: Machine Instruction Mnemonic Operation Codes 123

Mnemonic
Instruction Operation

Code

Compare Logical CLR

Compare Logi ca I CLM
Characters under
Mask

Compare Logical Immediate CLI

Compare Logical Lang CLCL

Compare, Long CD
Compare, Long CDR

Compare, Short CE
Compare, Short CER
Convert to Binary CVB
Convert to Decimal CVD
Divide D
Divide DR
Divide Decimal DP
Divide, Long OD
Divide, Long DDR

Divide, Short DE
Divide, Short OER
Edit EO
Edit and Mark EDMK

Exclusive Or X

Exclusive Or XC
Exclusive Or XR
ExclusivE' Or Immediate XI
Execute EX
Halve, Long HOR

Halve, Short HER
Halt Oevice HOV

Halt I/O HIO
Insert Character IC

Insert Characters ICM
under Mask
I nsert Storage Key ISK
Load L

Load LR
Load Address LA
Load and Test LTR
Load and Test, Long LTOR
Load and Test, Short LTER

Load Complement LCR
Load Complement, Long LCOR
Load Complement, Short LCER

Load Con tro I LCn

Load Ha I fword LH
Load, Long LO

Load, Long LOR
Load Multiple LM
Load Negative LNR
Load Negative, Long LNOR
Load Negative, Short LNER

Load Positive LPR
Load Positive, Long LPOR
Load Positive, Short LPER
Load PSW LPSW

Load Reol Address LRA
Load Rounded, Extended LROR
to Long
Load Rounded, Long to LRER

Short
Load, Short LE
Load, Short LER
Monitor Call MC
Move Characters MVC
Move Immediate MVI

124

Machine
Operation

Code

15

BD

95

OF

69
29

79
39
4F
4E
5D
10
FO
60
2D

70
3D
OE
OF

57

D7
17
97
44
24

34
9E01 1

9EOOI

43

BF

09
58

18
41
12
22
32

13
23
33

B7
48
68

28
98
II
21
31

10
20
30
82

Bl
25

35

78
38
AF
02
92

Operand Format

Explicit Implicit

RI,R2

Rl, M3, D2(B2) RI,M3, S2

D1(BI),12 SI,I2

Rl,R2

R I, 02(X2, B2)or R I, D2(, B2) RI' S2(X2)or RI, S2
RI,R2

R I, 02(X2, B2)or R 1,02(, B2) RI, S2(X2)or RI, S2
RI,R2
R I, 02(X2, B2)or R 1,02(, B2) RI, S2(X2)or RI, S2
R I, D2(X2, B2)or R 1,02(, B2) RI, S2(X2)or RI, S2
R I, 02(X2, B2) or RI, D2(, B2) RI, S2(X2) or RI,S2 .
Rl,R2
OI,(L I,Bl), D2(L2,B2) SI (Ll), S2(L2)or SI, S2
R I, D2(X2, B2), or RI, D2(, B2) RI,S2(X2) or RI,S2
RI,R2

RI, 02(X2, B2)or RI, D2(, B2) RI,S2(X2) or RI,S2
RI,R2
01 (L, Bl), 02(B2) SI(L),S2 or SI,S2
01 (L, BI), D2(B2) SI(L), S2 or SI,S2

RI, 02(X2, B2) or RI, 02(,B2) RI,S2(X2) or RI,S2

01 (L, BI), 02(B2) SI(L),S2 or SI,S2
RI,R2
01(B1),12 51,12
RI, D2(X2, B2) or RI, 02(, B2) RI,S2(X2) RI,S2
RI,R2

RI,R2
Ol,Bl 51

01(BI)
R I, 02(X2, B2) or Rl, 02(, B2) RI, S2(X2) or RI,S2

Rl,M3,D2(B2) Rl,M3, S2

Rl,R2
Rl, 02(X2, B2) or Rl, D2(, B2) RI,S2(X2) or RI ,S2

Rl,R2
R I, 02(X2, B2) Or Rl, 02(, B2) RI,S2(X2) or Rl,S2
RI,R2
RI,R2
RI,R2

Rl,R2
RI,R2
RI,R2

Rl, R3, 02(B2) RI,R3,S2
R I, 02(X2, B2) or RI, 02(, B2) Rl,S2(X2) or Rl,S2
RI, 02(X2, B2) or RI, 02(,B2) R 1, S2(X2) or RI,S2

RI,R2
RI,R3,02(B2) RI,R3, S2
RI,R2
R.1 ,R2
RI,R2

Rl,R2
RI,R2
Rl,R2
OI(B1) SI

Rl,02(X2,B2) or Rl,D2(,B2) Rl ,S2(X2) or Rl, S2
Rl, R2

Rl, R2

R I, 02(X2, B2) or RI, 02(, B2) RI, S2(X2) or RI,S2
RI,R2
Dl(Bl),12 SI,I2
01 (L, Bl), 02(B2) SI(L), S2 or SI,S2
0I(BI), 12 SI,I2

I See Note 1 at end of
this appendix

Type of Program Interruptions
Instruction Instruction Possible Condition Code Set

A S lOll P Op Other ()() 01 10 11
Compare Logical RR x Z AA BB
Compare Logical RS x x x XX yy ZZ
Characters under
Mask

Compare Logical Immediate SI x Z AA BB
Compare Logical Long RR x x x x Z AA BB
Compare, Long RX,Floating Pt. x x x Z AA BB
Compare, Long RR, Floating Pt. x x x Z AA BB

Compare, Short RX, Floating Pt. x x x Z AA BB
Compare, Short RR, Floating Pt. x x Z AA BB
Convert to Binary RX x x Data,F N N N N
Convert to Dec imal RX x x x N N N N
Divide RX x x F N N N N
Divide RR x F N N N N
Divide Decimal SS, Decimal x x x x 0, Data N N N N
Divide, Long RX,Floating Pt. x x E x B,E N N N N
Divide, Long RR, Floating Pt. x E x B,E N N N N

Divide, Short RX, Floating Pt. x x E x B,E N N N N
Divide, Short RR, Floating Pt. x E x B,E N N N N
Edit SS, Decimal x x x Data S T U
Edit and Mark SS, Decimal x x x Data S T U

Exclusive Or RX x x J K

Exclusive Or SS x x J K
Excl usive Or RR J K
Exclusive Or Immediate SI x x J K
Execute RX x x G (May be set by this instruction)
Halve, Long RR, Floating Pt. x x N N N N

Halve, Short RR, Floating Pt. x x N N N N
Halt Device S A AAM CC AAL
Halt I/O S A DO CC GG KK
Insert Character RX x N N N N
Insert Characters under RS x x x UU TT SS
Mask
I nsert Storage Key RR x x ¥ A N N N N
Load RX x x N N N N

Load RR N N N N
Load Address RX N N N N
Load and Test RR J L M
Load and Test, Long RR, Floating Pt. x x R L M
Load and Test, Short RR, Floating Pt. x x R L M

Load Complement RR F P L M 0
Load Complement, Long RR, Floating Pt. x x R L M
Load Complement, 9lort RR, Floating Pt. x x R L M
Load Control RS x x x x A N N N N
Load Halfword RX x x N N N N
Load, Long RX, Floating Pt. x x x N N N N

Load, Long RR, Floating Pt. x x N N N N
Load Multiple RS x x N N N N
Load Negative RR J L
Load Negative, Long RR, Floating Pt. x x R L
Load Negative, Short RR, Floating Pt. x x R L

Load Posi tive RR F J M 0
Load Positive, Long RR, Floating Pt. x x R L M
Load Posi tive, Short RR, Floating Pt. x x R L M
Load PSN SI x x A QQ QQ QQ QQ

Load Real Address RX x x x A AAV AAU AAP AAO
Load Rounded, Extended

to Long
RR, Floating Pt. x E x N N N N

Load Rounded, Long to
Short

RR, Floating Pt. x E x N N N N

Load, 9lort RX, Floati ng Pt. x x x N N N N
Load, Short RR, Floating Pt. x x N N N N
Monitor Call SI x x GA N N N N
Move Characters SS x x N N N N
Move Immediate SI x x N N N N

Appendix D: Machine Instruction Mnemonic Operation Codes 125

Mnemonic
Instruction Operation

Code

Move long MVCl
Move Numerics MVN
Move with Offset MVO

Move Zones MVZ
Multiply M
Multiply MR
Multiply Decimal MP
Multiply Extended MXR
Multiply Halfword MH

Multiply, long MD
Multiply, long MDR
Multiply, long to
Extended

MXD

Multiply, long to MXDR
Extended
Multiply, Short ME
Multiply, Short MER
No Operation NOP
No Operation NOPR
Or logical 0
Or logical OC
Or logical OR
Or logical Immediate 01
Pack PACK

Purge Translation lookaside PTLB
Buffer
Read Di rect RDD
Reset Reference Bit RRB
Set Clock SCK
Set Clock Comparator SCKC
Set CPU Timer SPT

Set Program Mask SPM
Set Storage Key SSK
Set System Mask SSM
Shift and Round Decimal SRP
Shift left Double Algebraic SlDA

Shift left Double logical SLDl
Shift left SingJe Algebraic SlA
Shift left Single logical SLl
Shift Right Double Algebraic SRDA
Shift Right Double Logical SRDl

Shift Right Single Algebraic SRA
Sh ift Right Single logica I SRl

Start I/O SIO
Start I/O Fast Release SIOF

Store ST
Store Channel ID STiDC
Store Character STC

Store Characters under STCM
Mask
Store Clock STCK
Store Clock Comparator STCKC
Store Control STCTL

Store CPU ID STIDP
Store CPU Timer STPT
Store Halfword STH
Store Long STD
Store Multiple STM
Store Short STE

Store Then AND System Mask STNSM
Store Then OR System Mask STOSM
Subtract S

Subtract SR
Subtract Decimal SP
Subtract Halfword SH
Subtract logical Sl
Subtract logical SlR

126

Machine
Operation

Code

OE
01
FI

03
5C
1C
FC
26
4C

6C
2C
67

27

7C
3C

47(BC 0)
07(BC 0)
56
D6
16
96
F2

B20D

85
B213
B204
B206
B208

04
08
80
FO
8F

80
8B
89
8E
8C

8A
88

9COO~
9C01

50
B203
42

BE

B205
B207
B6

B202
B209
40
60
90
70

AC
AO
5B

lB
FB
4B
SF
IF

Operand Format

Explicit Implicit

RI,R2
01 (l, BI),02(B2) SI (l), S2 or SI,52
01 (l I, B I), D2(l2, 82) S1(Ll),S2(L2) or SI,S2

D I (l, Bl), D2(B2) S1(l),S2 or S I, S2
RI,D2(X2,B2)or RI,02(,B2) R1, S2(X2) or R1,S2
R1,R2
D 1(Ll, B 1), D2(L2, B2) S1(Ll),S2(l2) or Sl,S2
R1,R2
R1, D2(X2, B2) or R1, D2 (, B2) R1, S2(X2) or R 1, S2

R1, D2(X2, B2) or Rl, D2(, B2) Rl, S2(X2) or R1, S2
RI,R2
R1, D2(X2, B2) or R1, D2(, B2) Rl, S2(X2) or R1,S2

R1,R2

R1, D2(X2, B2) or Rl, D2(, B2) Rl} S2(X2) or R1, S2
Rl,R2
D2(X2, B2) or D2(, B2) S2(X2) or S2
R2
RI, D2(X2, B2) or Rl, D2(, B2) RI, S2(X2) or RI, S2
D1(l,B1),D2(B2) SI (l), S2 or S I, S2
Rl,R2
DI(B1),12 SI,12
DI (l I, BI), D2(l2,B2) S1(Ll),S2(l2) or SI,S2

- -
DI(BI),12 SI,12
DI (B 1) Sl
D1(BI) SI
D I (B 1) SI
DI (B1) SI

RI
Rl,R2
D 1(B 1) SI
D I (l I, B I), D2 (B2), 13 Sl(Ll),S2,13 or SI,S2,13
RI, D2(B2) Rl,S2

RI, D2(B2) RI,S2
RI, D2(B2) Rl,S2
RI,D2(B2) RI,S2
RI, D2(B2) RI,S2
RI, D2(B2) RI,S2

RI, D2(B2) RI,S2
RI, D2(B2) RI,S2

DI (B 1) SI
D 1(B 1) SI

R1, D2(X2, B2) or R1, D2 (, B2) R1, S2(X2) or R1,S2
D I (B1) 51
R1, D2(X2, B2) or R1, D2 (, B2) RI, D2(X2) or R1,S2

R1,M3,D2(B2) R1,M3,S2

D 1 (B 1) 51
D I (B 1) 51
R1,R3,D2(B2) RI,R3,S2

D I (B 1) SI
DI(B1) SI
RI,D2(X2,B2)or R1,D2(,B2) RI,S2(X2) or R1, 52
R1, D2(X2, B2) R1, S2(X2) or RI, S2
R1,R2,D2(B2) RI,R2,S2
R 1, D2(X2, B2) or R1, D2 (, B2) RI, S2(X2) or R1, S2

D 1(B 1),12 Sl,12
D 1(B 1),12 Sl,12
RI, D2(X2) or RI, D2(X2, B2) R1,S2(X2) or RI, 52

R1,R2
D 1 (ll , B 1), D2 (l2 , B 2) S1(Ll),S2(l2)or Sl,S2
R1,D2(X2,B2)or RI,D2(,B2) RI,S2(X2) or RI, S2
R1 ,D2(X2, B2)or RI, D2(, B2) RI,S2(X2) or RI, 52
RI,R2

1 See Note 2 at end of
this appendix

Type of
Program Interruptions

Condition Code Set Instruction Possible
Instruction A S Ov P Op Other 00 01 10 11

Move Long RR x x x x AAA AAB AAC AAD
Move Numerics SS x x N N N N
Move with Offset SS x x N N N N

Move Zones SS x x N N N N
Multiply RX x x N N N N
Multiply RR x N N N N
Multiply Decimal SS, Del:imal x x x x Doto N N N N
Multiply Extended RR,Floating Pt. x E x B N N N N
Multiply Halfword RX x x N N N N

Multiply, Long RX, Floating Pt. x x E x B N N N N
Multiply, Long RR,Floating Pt. x E x B N N N N
Multiply, Long! RX,Floating Pt. x x E x x B N N N N
Extended
Multiply, Long! RR, Floating Pt. x E x B N N N N
Extended
Multiply, Short RX,Floating Pt. x x E x B N N N N
Multiply, Short RR, Floating Pt. x E x B N N N N
No Operation RX, Ext. Mnemonic N N N N
No Operation RR, Ext. Mnemonic N N N N
Or Logical RX x x J K
Or Logical SS x x J K
Or Logical RR J K
Or Logical Immediate SI x x J K
Pack SS x x N N N N

Purge Translation Lookaside S x A N N N N
Buffer
Read Direct SI x x x A N N N N
Reset Reference Bit S x A AAQ AAR AAS AAT
Set Clock S x x x x A AAE AAF AAG
Set Clock Comparator S x x x x A N N N N
Set CPU Timer S x x x x A N N N N

Set Program Mask RR RR RR RR RR
Set Storage Key RR x x x A N N N N
Set System Mask SI x A N N N N
Shift Left Double Algebraic RS x F J L M 0
Sh ift and Round Dec ima I SS x D x x Data J L M 0

Sh ift Left Double Logical RS x N N N N
Sh ift Left Single Algebraic RS F J L M 0
Sh ift Left Single Logical RS N N N N
Shift Right Double Algebraic RS x J L M
Shift Right Double Logical RS x N N N N

Shift Right Single Algebraic RS J L M
Sh ift Right Single Logical RS N N N N

Start I/O S A MM CC EE KK
.Start I/O Fast Release S A MM CC EE KK

Store RX x x x N N N N
Store Channel ID S x A AAH CC AAI KK
Store Character RX x x N N N N

Store Characters under RS x x x N N N N
Mask
Store Clock S x x x AAJ AAK AAN AAG
Store Clock Comporator S x x x x A N N N N
Store Control RS x x x x A N N N N

Store CPU 10 S x x x x A N N N N
Store CPU Timer S x x x x' A N N N N
Store Ha If word RX x x x N N N N
Store Long RX,Flooting Pt. x x x x N N N N
Store Multiple RS x x x N N N N
Store Short RX,Floating Pt. x x x x N N N N

Store Then AND System Mask SI x x x A N N N N
Store Then OR System Mask SI x x x A N N N N
Subtract RX x x F V X Y 0

Subtroct RR F V X Y 0
Subtract Decimal SS,Decimal x D x x 0010 V X Y 0
Subtract Halfword RX x x F V X Y 0
Subtract Logical RX x x W,H V,I W,I
Subtract Logical RR W,H V,I W,I

Appendix D: Machine-Instruction Mnemonic Operation Codes 127

Mnemonic Machine Operand Format
Instruction Operation Operation

Code Code Explicit Implicit

Subtract Normalized •. SXR 37 R1.R2
Extended
Subtract Normalized, Long SO 6B Rl,02(X2,B2)or Rl,02(,B2) Rl,S2(X2) or Rl, S2
Subtract Normalized, Long SOR 2B Rl,R2
Subtract Normalized, Short SE 7B Rl,02(X2,B2)or Rl,02(,B2) Rl,S2(X2) or Rl, S2
Subtroct Normalized, Short SER 3B Rl,R2
Subtract Unnormalized, Long SW 6F Rl,02(X2,B2)or Rl,02(,B2) Rl,S2(X2) or RI,S2

Subtract Unnormalized, Long SWR 2F Rl,R2
Subtract Unnormalized, Short SU 7F Rl,02(X2,B2)or Rl,02(,B2) Rl,S2(X2) or Rl, S2
Subtract Unnormalized, Short SUR 3F Rl,R2
Supervisor Call SVC OA I
Test and Set TS 93 01(81) SI

T est Channel TCH 9F 01(Bl) SI
Test I/O TIO 90 01(81) SI
T est Under Mask TM 91 01(81),12 SI,12
Translate TR DC o 1(L, B 1),02(82) S1(L),S2 or SI, S2
Translate and Test TRT DO 01 (L, B 1),02(82) SI(L),S2 or SI, S2

Unpack UNPK F3 01(Ll,B 1), 02(L2,B2) SI (LI). S2(L2) or SI, S2
Write Direct WRO 84 01(81),12 SI,12
Zero and Add Decimal ZAP Fa 01 (L I,Bl), 02(L2,B2) S1(L1), S2(L2) or SI,S2

128

Type of
Program Interruptions
Possible Condition Code Set

Instruction Instruction

Subtract Normalized, RR,Flooting Pt.
Extended
Subtract Normalized, Long RX,Flooting Pt.
Subtract Normalized, Long RR,Flooting Pt.
Subtract Normalized, Short RX,Flooting Pt.
Subtract Normalized, Short RR, Floating Pt.
Subtract Unnormalized, Long RX,Flooting Pt.

Subtract Unnormalized, Long RR,Flooting Pt.
Subtract Unnorma I ized, Short RX,Flooting Pt.
S.ubtract Unnormalized, Short RR,Flooting Pt.
Supervisor Call RR
Test and Set SI

T est Channel SI
Test I/O SI
T est Under Mask SI
Translate SS
Translate and Test SS

Unpack SS
Write Direct SI
Zero and Add Decimal SS,Oecimal

Program Interruptions Possible

Under Ov: D = Decimal
E = Exponent
F = Fixed Point

Under Other:
A Privileged Operation
B Exponent Underflow
C Significance
D Decimal Divide
E Floating Point Divide
F Fixed Point Divide
G Execute
GA Monitoring

Condition Code Set

H No Carry
I Carry
J Result = 0
K Result is Not Equal to Zero
L Result is Less Than Zero
M Result is Greater Than Zero
N Not Changed
o Overflow
P Result Exponent Underflows
Q Result Exponent Overflows
R Result Fraction = 0
S Result Field Equals Zero
T Result Field is Less Than Zero
U Result Field is Greater Than Zero
V Difference = 0
W Difference is Not Equal to Zero
X Difference is Less Than Zero
Y Difference is Greater Than Zero
Z First Operand Equals Second Operand

A S

x

x x
x

x x
x

x x

x
x x

x

x

x
x
x

x
x
x

AA First Operand is Less Than Second Operand

pv

E

E
E
E
E
E

E
E
E

0

BB First Operand is Greater Than Second Operand
CC CSW Stored
DD Channel and Subchannel not Working
EE Channel or Subchannel Busy
FF Channel Operating in Burst Mode
GG Burst Operation Terminated

P lOp
x

x
x
x
x
x

x
x
x

x

x

x
x

x x

Appendix D:

Other 00

B,C R

B,C R
B,C R
B,C R
B,C R
C R

C R
C R
C R

N
SS

A JJ
A LL

UU
N
PP

N
A N
Data J

01

L

L
L
L
L
L

L
L
L
N
TT

II
CC
VV
N
NN

N
N
L

HH
II
JJ
KK
LL
MM

NN

00
PP
QQ

RR
SS
TT
UU
VV
WW
XX
yy
ZZ
AM
AAB
MC
MO
ME
AAF
MG
AAH
AAI
AAJ
MK
ML
AAM
MN
MO
MP
MQ
MR
MS
MT
MU
MV

10 11

M

M Q
M Q
M Q
M Q
M Q

M Q
M Q
M Q
N N

FF HH
EE KK

WW
N N
00

N N
N N
M 0

Channel Not Operational
Interruption Pending in Channel
Channel Available
Not Operational
Available
I/O Operation Initiated and Channel Proceeding With
its Execution
Nonzero Function Byte Found Before the First Operand
Field is Exhausted
Last Function Byte is Nonzero
All Function Bytes Are Zero
Set According to Bits 34 and 35 of the New PSW Loaded
Set According to Bits 2 and 3 of the Register Specified by RI
Leftmost Bit of Byte Specified = 0
Leftmost Bit of Byte Specified = 1
Selected Bits Are All Zeros; Mask is All Zeros
Selected Bits Are Mixed (;o:eros and ones)
Selected Bits Are All Ones
Selected bytes are equal, or mask is zero
Selected field of first operand is low
Selected field of first operand is high
First-operand and second-operand counts are equal
First operand count is lower
First operand count is higher
No moVement because of destructive overlap
Clock value set·
Clock value secure
Clock not operational
Channel 10 correctly stored
Channel activity prohibited during 10
Clack value is valid
Clock value not necessari Iy valid
Channel working with another device
Subchannel busy or interruption pending
Clock in error state
Segment- or Page-Table Length Violation
Page-Table Entry Invalid (I-Bit One)
Reference Bit Zero, Change Bit Zero
Reference Bit Zero, Change Bit One
Reference Bit One, Change Bit Zero
Reference Bit One, Change Bit One
Segment Table Entry Invalid (I-Bit One)
Translation Available

Machine-Instruction Mnemonic Operation Codes 129

RR Format

Operation

Code

00
01
02
03
04
05
06
07
08
09
OA
OB
OC

OE
OF

10
11
12
13
14
15
16
17
18
19
lA
IB
lC
ID
IE
IF

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37
38

130

Name

Set Program Mask
Branch and Link
Branch on Count
Branch on Condition
Set Storage Key
Insert Storage Key
Supervisor Call

Move Long
Compare Logical Long

Load Positive
Load Negative
Load and Test
Load Complement
AND
Compare Logical
OR
Exclusive OR
Load
Compare
Add
Subtract
Multiply
Divide
Add Logical
Subtract Logical

Load Positive (Long)
Load Negative (Long)
Load and Test (Long)
Load Complement (Long)
Halve (Long)
Load Rounded (Extended to Long)
Multiply (Extended)
Multiply (Long to Extended)
Load (Long)
Compare (Long)
Add Normalized (Long)
Subtract Normalized
Multiply (Long)
Divide (Long)
Add Unnormalized (Long)
Subtract Unnormalized (Long)

Load Positive (Short)
Load Negative (Short)
Load and Test (Short)
Load Complement (Short)
Halve (Short)
Load Rounded (Long or Short)
Add Normalized (Extended)
Subtract Normalized (Extended)
Load (Short)

Mnemonic

SPM
BALR
BCTR
BCR
SSK
ISK
SVC

MVCL
CLCL

LPR
LNR
LTR
LCR
NR
CLR
OR
XR
LR
CR
AR
SR
MR
DR
ALR
SLR

LPDR
LNDR
LTDR
LCDR
HDR
LRDR
MXR
MXDR
LDR
CDR
ADR
SDR
HDR
DDR
AWR
SWR

LPER
LNER
LTER
LCER
HER
LRER
AXR
SXR
LER

Remarks

RR Format

Operation

Code

39
3A
3B
3C
3D
3E
3F

RX Format

40
41
42
43
44
45
46
47
48
49
4A
4B
4C

4E
4F

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

Name

Compare (Short)
Add Normalized (Short)
Subtract Normalized (Short)
Multiply (Short)
Divide (Short)
Add Unnormalized (Short)
Subtract Unnormalized (Short)

Store Halfword
Load Address
Store Character
Insert Character
Execute
Branch and Link
Branch on Count
Branch on Condition
Load Halfword
Compare Halfword
Add Halfword
Subtract Halfword
Multiply Halfword

Convert to Decimal
Convert to Binary

Store

AND
Compare Logical
OR
Exclusive OR
Load
Compare
Add
Subtract
Multiply
Divide
Add Logical
Subtract Logical

Store (Long)

Multiply (Long to Extended)
Load (Long)
Compare (Long)
Add Normalized (Long)
Subtract Normalized (Long)
Multiply (Long)
Divide (Long)
Add Unnormalized (Long)
Subtract Unnormalized (Long)

r.1nemonic

CER
AER
SER
MER
DER
AUR
SUR

STH
LA
STC
IC
EX
BAL
BCT
BC
LH
CH
AH
SH
MH

CVD
CVB

ST

N
CL
o
X
L
C
A
S
M
D
AL
SL

STD

MXD
LD
CD
AD
SD
MD
DD
AW
SW

Remarks

Appendix D: Machine-Instruction Mnemonic Operation Codes 130.1

RX Format

Operation

Code

70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

Name

Store (Short)

Load (Short)
Compare (Short)
Add Normalized (Short)
Subtract Normalized (Short)
Multiply (Short)
Divide (Short)
Add Unnormalized (Short)
Subtract Unnormalized (Short)

RS,SI, and S Format

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

AO
Al
A2
A3
A4
A5
A6

130.2

Set System Mask

Load PSW
Diagnose
Write Direct
Read Direct
Branch on Index High
Branch on Index Low or Equal
Shift Right Single Logical
Shift Left Single Logical
Shift Right Single
Shift Left Single
Shift Right Double Logical
Shift Left Double Logical
Shift Right Double
Shift Left Double

Store Multiple
Test under Mask
Move (Immediate)
Test and Set
AND (Immeqiate)
Compare Logical (Immediate)
OR (Immediate)
Exclusive OR (Immediate)
Load Multiple

Start I/O, Start I/O Fast Release
Test I/O
Halt I/O, Halt Device
Test Channel

Mnemonic

STE

LE
CE
AE
SE
ME
DE
AU
SU

SSM

LPSW

WRD
RDD
BXH
BXLE
SRL
SLL
SRA
SLA
SRDL
SLDL
SRDA
SLDA

STM
TM
MVI
TS
NI
CLI
OI
XI
LM

SIO,SIOF
TIO
HIO,HDV
TCH

Remarks

See Note 2

See Note 1

RS,SI, and S Format

Operation Name Mnemonic Remarks

Code

A7
A8
A9
AA
AB
AC Store Then AND System Mask STNSM
AD Store Then OR System Mask STOSM
AE
AF Monitor Call MC

BO
Bl Load Real Address LRA
B2 (First byte of two-byte operation codes)
B3
B4
B5
B6 Store Control STCTL
B7 Load Control LCTL
B8
B9
BA
BB
BC
BD Compare Logical Characters under Mask CLM
BE Store Characters under Mask STCM
BF Insert Characters under Mask ICM

SS Format

CO
Cl
C2
C3
C4
C5
C6
C7
C8
C9
CA
CB
CC
CD
CE
CF

DO
01 Move Numerics MVN
02 Move (Characters) MVC
D3 Move Zones MVZ
D4 AND (Characters) NC
D5 Compare Logical (Characters) CLC
D6 OR (Characters) OC
D7 Exclusive OR (Characters) XC
08
09
DA
DB
DC Translate TR

Appendix D: Machine-Instruction Mnemonic Operation Codes 130.3

SS Format

Operation Name Hnemonic Remarks

Code

DO Translate and Test TRT
DE Edit ED
OF Edit and Mark EDMK

EO
El
E2
E3
E4
ES
E6
E7
W8
E9
EA
EB
EC
ED
EE
EF

FO Shift and Round Decimal SRP
Fl Move with Offset MVO
F2 Pack PACK
F3 Unpack UNPK
F4
FS
F6
F7
F8 Zero and Add Decimal ZAP
F9 Compare Decimal CP
FA Add Decimal AP
FB Subtract Decimal SP
FC Multiply Decimal MP
FD Divide Decimal DP
FE
FF

NOTES

1. Under the System/370 architecture, the machine operations for Halt Device and Halt
I/O are as follows:

11001 1110 XXXX XXXoJ Halt I/O HIO

~OOI 1110 XXXX XXXII Halt Device HDV

(X denotes an iqnored bit position)

130.4

2. Under the Systemv370 architecture, the machine operations for Start 1/0 and Start
I/O Fast Release are as follows:

1001 1100 XXXX XXXO Start I/O SIO

1001 1100 XXXX XXX1 Start I/O Fast Release SIOF

(X denotes an ignored bit position)

Operation
Code Name Mnemonic

B202 Store CPU 1D STIDP
B203 Store Channel ID STIDC
B204 Set Clock SCK
B205 Store Clock STCK
B206 Set Clock Comparator SCKC
B207 Store Clock Comparator STCKC
B208 Set CPU 'I'imer SPT
8209 Store CPU Timer STPT
B20D Purge Translation

Lookaside Buffer PI'LB
B213 Reset Reference Bit RRB

Appendix D: Machine-Instruction Mnemonic Operation Codes 130.5

APPENDIX E: ASSEMBLER INSTRUCTIONS

r---------T--------------------------------T--,
I Operation I Name Entry I Operand Entry I
~---------+--------------------------------+--~
I ACTR IMust not be present IAn arithmetic SETA expression I
~---------+--------------------------------+--i
I AGO IA sequence symbol or not presentlA sequence symbol I
~---------+--------------------------------+--i
IAIF IA sequence symbol or not presentlA logical expression enclosed in parenthe-I
I I Ises, immediately followed by a sequence I
I I I symbol I
~---------+--------------------------------+--~
IANOP IA sequence symbol IWill be taken as a remark I
~---------+--------------------------------+--i
ICCW IAny symbol or not present IFour operands. separated by commas I
~---------+--------------------------------+--i
ICNOP IA sequence symbol or not presentlTwo absolute expressions, separated by al
I I I comma I
~--~-----+--------------------------------+--i
ICOM IA sequence symbol or not presentlWill be taken as a remark I
~---------+--------------------------------+--i
I COpy I Must not be present I A symbol I
~---------+-------------------~------------+--~
ICSECT IAny symbol or not present IWill be taken as a remark I
~---------+--------------------------------+------------~-------------------------------i
I CXD * I Any symbol or not present I Will be taken as a remark I
~--------+--------------------------------+--~
IDC IAny symbol or not present lOne or more operands. separated by commas I
~---------+----------------~---------------+--i
I DROP IA sequence symbol or not presentlOne to sixteen absolute expressions, sepa-I
I I I rated by commas I
~---------+--------------------------------+--i
IDS IAny symbol or not present lOne or more operands, separated by commas I
~---------+--------------------------------+--~
I DSECT t A variable symbol or an IWill be taken as a remark I
I I ordinary symbol I I
~---------+--------------------------------+--i
IDXD IA symbol lone or more operands, separated by commas I
.---------+--~-----------------------------+--i I EJECT IA sequence symbol or not presentlWill be taken as a remark I
~---------+--------------------------------+-----------------------------------~--------i
lEND IA sequence symbol IA relocatable expression I
I lor not present lor not present I
~---------+----------------~-----~---------+--i I ENTRY IA sequence symbol or not present lOne or more relocatable symbols, separated I
I I Iby commas I
.---------+--------------------------------+-------------~------------------------------~
IEQU I A variable symbol or an IAn absolute or relocatable expression I
I I ordinary symbol I I
.---------+--------------------------------+--~
I EXTRN I A sequence symbol or not present lOne or more relocatable symbols, separated I
I I Iby commas I
~---------+--------------------------------+--i
IGBLA IMust not be present lOne or more variable symbols that are to bel
I I lused as SET symbols, separated by commas 2 I
t---------+--------------------------------+--i
IGBLB IMust not be present lOne or more variable symbols that are to bel
I I lused as SET symbols. separated by commas 2 I
~--------+--------------------------------+--i
IGBLC IMust not be present lOne or more variable symbols that are to bel
I I lused as SET symbols, separat-ed by commas 2 I
t---------+--------------------------------+--i
I ICTL IMust not be present lOne to three decimal values, separated byl
I I I commas I
~---------4--------------------------------4------------________________________________ ~
1* Assembler F only I
I I L __ ...J

Appendix E: Assembler Instructions 131

r-------r-----------------------~-----------------------------,
I Operation I I I

I Entry I Name Entry I Operand Entry 1 L __ ~ ____ L _______________________ ~ _____________________________ J

I I . I I
. L !.S!!9 ____ L ~~s~ _~o! _b.= _p!,~~eE-~ _________ 1 _~.? _d:<:i.,!ll~l: !i!l.?!s-, _ ~epc:r~~e..? _ ~_ ~ :~~~ ~

I LCLA I Must not be present lOne or more variable symbols that are to I

:: : be used as SET symbols, separated by I L _______ L _______________________ ~_~~~~ _______________________ ~

: LCLB : Must not be present : One or more variable symbols that are to :
1 I I be used as SET symbols, separated by I
I I , commas 2 I --,
: LCLC : Must not be present : One or more variable symbols separated 1
L _______ L _______________________ 1. _ b"y _ c::o~a_s ~ ______________________ I

I LTORG I Any symbol or not present I Will be taken as a remark I L _______ L _______________________ ~ _________ ~ ___ ~ _______________ J

I MACRO 1 'Must not be present I Will be taken as a remark I
~-------~-----------------------~---------~--------------------1
1 MEND 1 IA sequence symbol or not present' Will be take!l as a remark I
--------------------------------T-----------------------------~ L r:!E_X!T~ ___ ~ ~ _ s_es~e~£e_ ~y~~l_ <?r_ ~o_t _~r~~e!l! .! _ ~i].!. .!>~ _t~~e.E _ ~ _ c:. .:~~=~ __________ -'
1 MNOTE1: A sequence symbol, a variable : A severity code, followed by a comma, :

I symbol or not present 1 followed by any combination of characters,
_______ L ____ ~ __________________ -{ _ !n~!.o~~d_!~ ~~o~!r_o£I:.e~ ____________ ~

OPSYN* : An ordinary symbol I A machine instruction mnemonic code, an
I I extended mnemonic code, or an operation 1

I code defined by a previous OPSYN instruc-I
I I tion I
r-----------------------,---------------~-------------I
I A machine or extended mnemonic I Blank I
1 operation code I I

r-------r-----------------------,-----------------------------~
I ORG I A sequence symbol or not present I A relocatable expression or not present I r-------r-----------------------1-----------------------------. I PRINT I A sequence symbol or not present lOne to three operands I

j" PUNCH - - -'-A- ;eq~~~e- ;imb~l~; ;;;t-p~;;nt 1-On~-t-o - ;ighty - ch;;a~te~; ~~;i~;ed -in - - - -:
I I.. I apostrophes L _______ L _____ ~ _________________ ! _____________________________ J

I REPRO I A sequence symbol or not present I Will be taken as a remark I

L-------~-----------------------+--------------------- ________ J
I SETA I A SETA symbol I An arithmetic expression I
~-------r---~-------------------T-----------------------------~
I SETB I A SETB symbol I A 0 or a1, or logical expression I

I I I enclosed in parentheses I

~-------r-----------------------~--------------------- --------~ I SETC I A SETC symbol I A type attribute,. ,a character expression, I
I a substring notation, or a concatenation I

I of character expressions and substring I
I I I notations I
~-------~----------------~------~-----------------------------~
I SPACE I A sequence symbol or not present I A decimal self-defining term or not I
I I I pre sen t . I

r-------r-----------------------~-----------------------------~
I START I Any symbol or not present I A self-defining term or not present I r-------r-----------------------r-----------------------------, I TITLE3 I A special symbol (0 to 4 char- lOne to 100 characters, enclosed in I

I I acters), a sequence symbol, a apostrophes I
I I variable symbol, or not I
I I present I I
r-------r-----------------------,-----------------------------~
I USING I A sequence symbol or not present I An absolute or relocatable expression I
I I I followed by 1 to 16 absolute expres- I
I I I sions, separated by commas I L ______ ~L _______________________ ~ _____________________________ ~

I, I I

l WXTRN I A sequence symbol or not present lOne or more relocatable symbols, sepa- :
I :. : rated by commas .: L ___ . ______ _

I I
I 1May only be used as part of a macro-definition. I

: 2SET symbols may be defined as subscripted SET symbols. :

II 3See Sectl.·on 5 for h d .. f h ' t e escrl.ptl.on 0 t e name entry.

: *AsSembler F only. I
I
I

I I L _____ ~ ________________________ -- _____________________________ ~

132

ASSEMBLER STATEMENTS

r---------------------------T------------------------------T-----------------------------,
I INSTRUCTION I NAME ENTRY I OPERAND ENTRY I
~---------------------------+-----------------------------+-----------------------------~
IModel Statements 3 ~ IAn ordinary symbol, variable IAny combination of char- I
I I symbol, sequence variable lacters (including variable I
I J symbol, a comoina tion of I symbols) I
I I variable symbols and other I I
I Icharacters that is equivalent I I
I I to a symbol, or not present I I
~---------------------------+-----------------------------+-----------------------------~
IPrototype Statement 1 IA symbolic parameter or IZero or more operands that I
I Inot present lare symbolic parameters, sep-I
I I larated by commas, followed byl
I I I zero or more operands I
I I I (separated by commas) of thel
I I I form symbolic p~rameter, I
I I lequal sign, optional stand.ardl
I I I value I
.---------------------------+-----------------------------+---------------------~-------~
I Macro-Instruction IAn ordinary symbol, a IZero or more positional I
IStatement1 Ivariable symbol, a sequence loperands separated by commas, I
I I symbol, a combination of Ifollowed by zero or. more I
I Ivariable symbols and other Ikeyword operands (separated I
I Icharacters that is equivalentlby commas) of the form I
I Ito a symbol,2 or not present ,keyword, equal Sign, value2 ,
.---------------------------+-----------------------------+---------------------------~-~
IAssembler Language IAn ordinary symbol, a var- IAny combination of characters I
IStatement3 ~ liable symbol, a sequence I (including variable symbols) I
I I symbol, a combination I ,
I lof variable symbols and , I
, lother characters that is I I
I I equivalent to a symbol, I I
I lor not present I I L ___________________________ ~ _____________________________ ~ _____________________________ J

1 May only be used as part of a macro definition.
2 Variable symbols appearing in a macro instruction are replaced by their values

before the macroinstruction is processed.
3 Variable symbols may be used to generate assembler language mnemonic operation

codes as listed in Section 5, except ACTR, COpy, END, ICTL, CSECT, DSECT, ISEQ,
PRINT, REPRO, and START. Variable symbols may not be used in the- ~ame and
operand entries of the following instructions: COPY, END, ICTL, ahd ISEQ.
Variable symbols may not be used in the name entry of the AcrR instruction.

~ No substitution for variables in the line following a REPRO statement is
performed.

5 When the name field of a macro instruction contains a sequence symbol,
the sequence symbol is not passed as a name field parameter. It only
has meaning as a possible branch target for conditional assembly. J

Appendix E: Assembler Instructions 133

APPENDIX F: SUMMARY OF CONSTANTS

r------T---------T--------T--------T--------------T---------T---------T--------T---------,
I I I 1 I I NUMBER I I I I
1 I I 1 LENGTH 1 I OF CON- I 1 1 TRUN- 1
1 I IMPLIED I 1 MODI- I I STANTS I RANGE I RANGE I CATION/ I
1 1 LENGTH 1 ALIGN- 1 FIER I SPECIFIED I PER I FOR EX- 1 FOR I PADDING 1
I TYPE I (BYTES) I MENT I RANGE I BY I OPERAND I PONENTS I SCALE I SIDE I

~------+---------+--------+--------+--------------+---------+--------~+--------+---------~
I C I as I byte 1.1 to 1 characters lone I I I right I
I I needed I I 256 (1) I I I I I ,
~------+---------+--------+--------+--------------+---------+---------+--------+---------1
I X I as I byte 1.1 to I hexadecimal lone' 1 ,left I
I I needed I I 256 (1) 1 digits I I I I I
~------+---------+--------+-------~+------~-------+---------+---------+--------+---------i
I· B I as I byte 1.1 to 1 binary lone I I 1 left I
I I needed I I 256 I digits I I I 1 I

~------+---------+--------+--------+--------------+---------+---------+--------+~--------i
I F I 4 1 word 1.1 to I decimal 1 multi- I -85 to I -187 tol left (4) I
I I 1 I 8 I digits I pIe I +75 I +346 I I

~------+---------+-------~+--------+--------------+---------+---------+--------+---------i
I H I 2 1 half 1.1 to 1 decimal I multi- I -85 to I -187 I left (4) 1
I I I word I 8 I digits I pIe I +75 I +346 I 1

~------+---------+--------+--------+--------------+---------+---------+--------+---------~
1 E I 4 1 word 1.1 to 1 decimal 1 multi- I -85 to I Irig~t (4)1
I I I I 8 I digits I pIe I +75 I 0-14 I I

.------+---------+--------+--------+--------------+---------+---------+--------+---------i
1 D I 8 I double I .1 to 1 decimal 1 multi- I -85 to 1 I right (4 >I
I I I word I 8 I digits 1 pIe I +15 1 0-14 I I

~------+---------+--------+--------+--------------+---------t---------+--------t---------~
I L (3) I 16 I double I .1 to I decimal I multi- I -85 to I 0-28 I right (4) I
I I I word I 16 I digits I pIe I +75 I I I
~------1_--------+_-------t_------_t_-----------.-_t_---------+--------4------~_t--------_1
I P I as 1 byte 1.1 to I decimal I mUlti- I I I left I
I I needed I I 16 1 digits 1 pIe I I I I

~------+---------+--------+--------+--------------+---------+---------+--------+---------i
I Z I as I byte 1.1 to I decimal 1 muIti- I I 1 left I
I 1 needed 1 1 16 I digits 1 pIe 1 1 1 I
~------+---------+--------+--------+--------------+---------+---------+--------+---------i
I A ,4 I word 1'.1 to I any I multi- 1 I I left 1
I I I I 4 (2) I expressio:n I pIe 1 . I I 1
~------+---------+--------+--------+--------------+-----~---+---------+--------+---------i
I Q (3) 1 4 I word 1 1-4 1 ~ymbol nam- 1 multJ.- 1 1 I left I
1 1 1 I 1 J.ng a OXO I pIe 1 1 I I
~------+---------+--------+--------+-QL-Q§~~!~---~+---------+---------+--------+---------i
I V 1 4 I word I 3 or I relocatable 1 muIti- I I I left I
I I I I 4 I symb~l 1 pIe I I I I
~------+---------+--------+--------+--------------+---------+---------+--------+---------i
lSI 2 I half I 2 only lone absolute 1 multi- I I I I
I I I word I I or relocatab-I pIe I I I I
I 1 I , I Ie expression, I I I I
I I I I I or two absol-I I I , ,
, I I , I ute express- I , I I I
I I I I I ions: I I , I I
I I I I I exp (exp) I I I 1 1
~------+---------+--------+--------+--------------+---------+---------+--------+---------i
I Y I 2 ,half 1.1 to I any I multi- I I ,left 1
1 1 1 word ,2 (2) ,expression I pIe, I , 1
.~-----L---------L--------L--------L--------------~---------~---------~-------~---------i ,(1) In a OS assembler instruction C and X type constants may have length specification I
I to 65535. I
I (2) Bit length specification permitted with absolute expressions only. Relocatable A- I
I type constants, 3 or 4 bytes only; relocatable Y-type constants, 2 bytes only. I
1 (3) Assembler F only. I
I (4) Errurs will be flagged if significant bits are truncated or if the value specified I
L ___ .:~~~~_~:_~~~:.~~~d_!:~_t~.:_~m.P.:~~_~e~~~_~!_~~_~~~t~~t-= ____________________ J

Appendix F: Summary of Constants 135

APPENDIX G: MACRO LANGUAGE SUMMARY

The four charts in this appendix summarize the macro language described in Part II of
this publication.

Chart 1 indicates which macro language elements may be used in the name and operand
entries of each statement.

Chart 2 is a summary of the expressions that may be used in macro-instruction
statements.

Chart 3 is a summary of the attributes that may be used in each expression.

Chart 4 is a summary of the variable symbols that may be used in each expression.

Variable Sy",bols

Global SET Symbols local SET Symbols System Variable Symbol.
Attributes

Symbolic
Statement Parameter SETA SETB SETC SETA SETB SETC &SYSNDX &SYSECT &SYSUST Type length Scaling Integer Count Number

MACRO

Protatype Name
Stat_t Operand

GaLA Opetand

Gala OperWld

Gale Operand

lelA Operand

lela Operand

lCle Opetand

Model Name Name Name Name Name Name Name Name Name Name
Statement Opetatian Opetatian Operation Operation Operation Operation Opetatian Opetatian Operation Opetatian

Opetand Opetand Operand Operand Operand Operand Operand Opetand Operand Opetand

SETA Name
OperWld3

Name
Ope,..,d3 Operan; Operand Operand9 OperWld Opetand9 Opetand Opetan; Opetand Operand Operand OperWld Operand

SETa
Operanl'

Nome Name
Opetan'/> Opetan'/> Operand" OperandS OperandS OperandS OperandS OperandS Opetanct6 OperWld Operand6 Operon./> OperWld Operand" Opetand6

SETC Name
Operand8

Name
Openand Operand7 OperWld8 Operand Operand7 Operand Operand Operand Operand Operand

AIF
Operanct6 Operand6 OperWld Operand6 Operand6 OperWld Operand6 Operand6 Operand" Opetand6 Operand" Opetand5 OperandS OperandS OperandS OperWldS

AGO

ACTR Opetan; Operand OperWld3 Operand2 OperWld OperWld3 Opetan; Opetand Operon; Opetand Opetand Operand Operand Operand

ANOP

MEXIT

MNOTE Opetand Operand Operand Operand Operand Operand Opetand Operand Operand Operand

MEND

Outer Name Name Name Name Name Name
Macro Opetand Operand Operand Operand Operand Opetand

Inner Name Name Name Nome Name Name Name Name Name Name
Macro Opetand Opetand Operand Operand Operand Operand Opetand Opetand Operand Operand

Assembler Name Name Name Name Name Name
language Operation Operation Operation Operation Operation Operation
Statement Opetand Operand Operand Operand Operand Operand

I. Variable symbols in macro-instructions are replaced by their values before processing.
2. Only if value is self-defining term.
3. Converted to arithmetic +1 or -to.
". Only in chatacler relations.
5. Only in arithmetic relations.
6. Only in arithmetic or character relations.
7. Converted to unsigned number.
8. Converted ta charocter I or O.
9. Only if one to eight decimal digits.

Chart 1. Macro Language Elements

Appendix G: Macro Language Summary

Sequence
Symbol

Name

Name
Operand

Name
Operand

Nome

Name

Name

Name

Name

Name

Name

137

Chart 2. Conditional Assembly Expressions
r-------------T-------------------------T---------------------------T-------------------,
I Expression I Arithmetic Expressions I Character Expressions ILogical Expressions I
.~-------------+-------------------------+---------------------------+-------------------~

May 1. Self-defining terms 1. Any combination of 11. SETB symbols
contain 2. Length, scaling, characters enclosed 12. Arithmetic re-

integer, count, and in apostrophes I lations~
number attributes 2. Any variable symbol 13. Character re-

3. SETA and SETB symbols enclosed in apostrophes I lations 2

4. SETC symbols whose I
value is 1-8 decimal 3. A concatenation of I
digits variable symbols and I

5. Symbolic parameters other characters I
if the corresponding enclosed in apostrophes
operand is a self-
defining term 4. A request for a type

6. &SYSLIST(n) if the attribute
corresponding operandi
is a self-defining I
term I

1. &SYSLIST(n,m) if the I
corresponding operandi
is a self-defining I
term I

8. &SYSNDX I
~----.---------+-------------------------+---------------------------+-------------------i
I Operators I +,-,*, and I I concatenation, with a lAND, OR, and NOT ,
I are , parentheses permitted I period (.) ,parentheses per- ,
I I ' I I mi tted I
~-------------+-------------------------+---------------------------+-------------------~ I Range I _23~ to +23~-1 I 0 through 255 characters 10 (false) or I
, of values I I 11 (true) 1
~-------------+-------------------------+---------------------------+-------------------~
I May be 1 1. SETA operands I 1. SETC operands 3 11. SETB operands I
I used in I 2. Arithmetic relations I 2. Character relations2 12. AIF operands I
I I 3. Subscripted SET I I I
I I symbols I , I
I , 4. &SYSLIST I I I
I I 5. Substring notation I I I
I I 6. Sublist notation I I I
~-------------~-------------------------~---------------------------~-----------~-------~
I ~ An arithmetic relation consists of two arithmetic expressions related by thel
I operators GT, LT, EQ, NE, GE, or LE. I
I 2 A character relation consists of two character expressions related by the operator I
I GT, LT, EQ, NE, GE, or LE. The type attribute notation and the substring notation I
I may also be used in character relations. The maximum size of the character I
I expressions that can be compared is 255 characters. If the two character I
I expressions are of unequal size, then the smaller one will always compare less thanl
I the larger. I
I 3 Maximum of eight characters will be assigned. I
L ___ --------------------------________ J

138

Chart 3. Attributes • r-----------T----------T----------------------T-------------------~---T-----------------,
I Attribute INotation IMay be used with: IMay be used only if IMay be used in I
I I I I type attribute is: I I
~-----------+----------+----------------------+-----------------------+-----------------~
I Type I T' ISymbols outside I (May always be used) 11. SETC operand I
I I lmacro definitions; I 1 fields I
I I Isymbolic parameters, 1 12. Character I
I 1 I&SYSLISTin), and I I relations I
I 1 I&SYSLIST(n,m) inside I I I
I I I macro 'definitions I I I
~-----------+----------+----------------------+-----------------------+-----------------~
I Length I L' I Symbols outside I Any letter except I Ari thmetic I
I I lmacro definitions; IM,N,O,T, and U I expressions I
I I Isymbolic parameters, I 1 I
I , I &SYSLIST(n), and 1 I I
I I I&SYSLIST(n,m) inside I I I
I I lmacro definitions I I I
.-----------+----------+-----------~----------+-----------------------+~----------------~
'Scaling I S' I'Symbols outside 1 H, F, G, D, E, L, K, P, I Arithmetic 1
I I lmacro definitions; I and Z I expressions I
t , I symbolic parameters, I I I
I I I &SYSLIST(n), and I 1 I
I I I&SYSLIST(n,m) inside I I I
I I I macro ,definitions , I I
.-----------+----------+----------------------+-----------------------+-----------------~
I Integer I I' ,Symbols outside , H,F,G,D,E,L,K,P, I Arithmetic I
I I ,macro"definitions;, and Z I expressions I
I I Isymbolic parameters, I I r
I , ,&SYSLIST(n), and , I ,
, I ,&SYSLIST(n,m) inside I I I
, , ,macro 'def ini tions I I I
.-----------+----------+-------~--------------+-----------------------+-----------------~
I Count I K' ISymbolic parameters IAny letter I Arithmetic I
, , ,corresponding to I I expressions ,
I I I macro instruction I I I
I I I operands, &SYSLIST , I I
I I I (n), and &SYSLIST (n, m) I I I
I I I inside macro II I
I I I defini tions I I I
.-----------+----------+----------------------+-----------------------+-----------------~
I Number I N' I Symbolic parameters, I Any letter I Arithmetic I
I I I&SYSLIST, and I I expressions I
I I I&SYSLIST(n) inside I I I
I I lmacro definitions I I I L ___________ ~ __________ ~ ______________________ ~ _______________________ L _________________ J

-NOTE: There are definite restrictions in the use of these attributes. Refer to text,
Section 9.

Appendix G: Macro Language Summary 139

Chart 4. Variable Symbols
r-----------~--T-------------T-----------------T--------------T-------------------------,
1 Variable IDefined by: I Initialized, IValue changed IMay be used in: I
1 symbol I lor set to: 1 by: I I
~--------------+-------------+-----------------+--------------+-------------------------~
Isymbolic1 I Prototype I corresponding I <Constant 11. Arithmetic expressions I
I parameter I statement I macro ·instructionlthroughout I if operand is self- I
I I I operand I def inition) I def ining term I
I I I I 12. Character expressions I
~--------------+-------------+-----------------+--------------+-------------------------~
I SETA I LCLA or GBLA 10 I SETA 11. Arithmetic expressions I
I 1 instruction I I instruction 12• Character expressions I
.--------------+-------------+-----------------+--------------+-------------------------~
ISETB ILCLB or GBLB 10 ISETB 11. Arithmetic expressions I
I .1 instruction I I instruction 12 • Character expressions I
I I I I 13 • Logical expressions 1
.--------------+-------------+-----------------+--------------+-------------------------~
ISETC ILCLC or GBLe INull character ISETC 11. Arithmetic expressions I
I 1 instruction Ivalue I instruction I if value is self- 1
I I I I I defining term I
1 I I I 12. Character expressions I
~--------------+-------------+-----------------+--------------+-------------------------~
I&SYSNDX1 IThe assemblerlMacro instruction I <Constant 11. Arithmetic expressions I
I I I index I throughout 12. Character expressions I
I 1 I I definition: I I
I I I lunique for I I
I I I leach macro- I I
·1 1 1 I instruction> I I
~--------------+-------------+----------.~------+--------------+-------------------------~
I&SYSECT1 IThe assemblerlcontrol section I(Constant ICharacter expressions I
I I lin which macro I throughout I I
1 I I instruction Idefinition; I I
I 1 I appears I set by CSECT, I I
1 1 I 1 DSECT, and I I
I I I I START) 1 I
~--------------+-------------+-----------------+--------------+-------------------------~
I&SYSLIST1 IThe assemblerlNot applicable INot applicablelN'&SYSLIST in arithmetic I
I 1 I 1 I expressions 1
.---~---------~+-------------+-----------------+--------------+-------------------------~
I&SYSLIST(n)1 IThe assemblerlCorresponding I <Constant 11. Arithmetic expressions I
I&SYSLIST(n,m)11 lmacro instructionlthroughout I if operand is self- 1
I I I operand I definition) 1 defining term I
I 1 I 1 12. Character expressions I
.--------------+-------------+-----------------+---------~----+------------·-------------i
I 1 May only be used in macro ·definitions. I L _________________________________ - ____________ --.----____ . _______________________________ J

140

APPENDIX H: SAMPLE PROGRAM

Given:

1. A TABLE with 15 entries, each 16 bytes long, having the following format:

r-----------------------T----------------T---------------T----------~--,
I NUMBER of items I SWITCHes I ADDRESS I NAME I L _______________________ ~ ________________ ~------------___ ~ _____________ J

3 bytes 1 byte 4 bytes 8 bytes

2. A LIST of items, each 16 bytes long, having the following format:

r------------T----------------T-----------------------T----------------,
I NAME I SWITCHes I NUMBER of items I ADDRESS I L ____________ i ________________ i _______________________ i ________________ J

8 bytes 1 byte 3 bytes 4 bytes

Find: Any of the items in the LIST which occur in the TABLE and put the SWITCHes,
NUMBER of items, and ADDRESS from that LIST entry into the corresponding TABLE
entry. If the LIST item does not occur in the TABLE, turn on the first bit in
the SWITCHes byte of the LIST entry.

The TABLE entries have been sorted by their NAME.

*
*
*

.*

.*

.*

.*

.*

.*

.*

.*

.*

TITLE
DATA PRINT

THIS IS THE MACRO DEFINITION

MACRO
MOVE nO,£.FROM

DEFINE SETC SYMBOL

LCLC

CHECK

AIf

CHECK

AIF
AIF
AIF
AIF
AGO

£.TYPE

NUMBER OF OPERANDS

(N'£.SYSLIST NE 2).ERRORl

TYPE ATTRIBUTES Of OPERANDS

(T'£.TO NE T'£.FROM).ERROR2
(T'tTO EQ 'C' OR T'&TO EQ 'G' OR T'&TO EQ 'K'J.TYPECGK
(T'£.TO EQ '0' OR T'£.TO EQ 'E' OR T'&TO EQ 'H').TYPEDEH
(T'tTO EQ 'F').MOVE
• ERROR';

.TYPEDEH ANOP

.*

.*

.*
&TYPE
.MOVE

*

.*

ASSIGN TYPE ATTRIBUTE TO SEtc SYMBOL

SHC T' £.TO
ANOP
NEXT TwO STATEMENTS GENERATED fOR MOVe MACRO
LUYPf 2, &FROM
ST&TYPE l,UO
MEXIT

.* CHECK LENGTH ATTRIBUTES OF OPERANDS

.*

.TYPECGK Alf (L'tTO NE L'&FROM OR L'&TO GT 256J.ERROR4
* NEXT STATEMENT GENERATED FOR MOVE MACRO

MVC &TO, tFROM
MEXIT

.*

.* ERROR MESSAGES fOR INVALID MOVE MACRO INSTRUCTIONS

*

SAMPLOO 1
SAMPL002
SAMPlOO';
SAMPL004
SAMPL005
SAMPL006
SAMPL007
SAMPl008
SAMPl009
SAMPlOlO
SAMPLOll
SAMPlOl2
SAMPLOl3
SAMPlOl4
SAMPlOl5
SAMPLOl6
SAMPLOl7
SAMPLOl8
SAMPLOl9
SAMPL020
SAMPL02l
SAMPL022
SAMPl023
SAMPL024
SAMPL025
SAMPl026
SAMPl027
SAMPl028
SAMPL029
SAMPL030
SAMPL03l
SAMPL032
SAMPL033
SAMPl034
SAMPL035
SAMPL036
SAMPL037
SAMPl038
SAMPL039
SAMPL040
SAMPL041
SAMPLO.2
SAMPLO.3

Appendix H: Sample Program 141

.ERROR1 MNOT~ 1,'IMPROPER NUMBER Of OPERANOS, NO STATEMENTS GENERATED'
MEXIT

.ERROR2 MNOTE 1,'OPERAND TYPES DIffERENT, NO STATEMENTS GENERATED'
MEXIT

.ERROR3 MNOTE 1,'IMPROPER OPERAND TYPES, NO STATEMENTS GENERATED'
MEXIT

.ERROR4 MNOTE 1,'IMPROPER OPERAND LENGTHS, NO STATEMENTS GENERATED'
MEND

* ..
* SAMPLR
BEGIN

MAIN ROUTINE

CSECT
SAVE (llt,12',,*
BALR R12,0 ESTABLISH ADDRES~AbILITY Of PROGRAM
USING *,R12 AND TELL THE ASS~MBLER WHAT BASE TO USE
ST 13,SAVEl3
LM R5,R7,=A(LISTAREA,16,LISTENDI LOAO LIST AREA PARAMeTERS

MORE

LISTlOOP

EXIT

*

USING LIST,R5 REGISTER 5 POINTS TO THE LIST
SAL Rl1t,SEARCH fIND LIST ENTRY IN TABLE
TM SWITCH,NONE CHECK TO SEE If NAME WAS fOUND
BO NOTTHERE BRANCH If NOT
USING TABLE,R1 REGISTER 1 NOW POINTS TO TABLE ENTRY
MOVE TSWITCH,LSWITCH MOVE FUNCTIONS
MOVE TNuMBcR,LNUMBER fROM LIST ENTRY
MOVE TADDRESS,LADDRESS TO TABLE ENTRY
DXLE k5,R6,MORE LOOP THROUGH THE LIST
CLC TESTTABL(240l,TABLAREA
BNE NOTRIGHT
CLC TESTLIST(96I,LISTAREA
BNE NOTRIGHT
WTO 'ASS~MBLER SAMPLE PROGRAM SUCCESSfUL'
L R13,SAVEl3
RETURN (14,12t,RC=0

NOTRIGHT WTO 'ASSEMBLER SAMPLE PROGRAM UNSUCCESSFUL'
EXIT B

NOTTHERE 01
B

SAVEl3 DC
SWITCH DC
NONE EQU

*

LSWITCH,NONE TURN ON SWITCH IN LIST ENTRY
LISTLOOP GO BACK AND LOOP
f'O'
X'OO'
X'SO'

* BINARY SEARCH ROUTINE

* SEARCH NI ShITCH,255-NONE TURN OFF NOT fOUND SWITCH
LM R1,R3,=F'12S,'t,12S' LOAD TABLE PARAMETERS
LA Rl,TABLAREA-16(Rll GET ADDRESS Of MIDDLE ENTRY

LOOP SRL R3,1 DIVIDE INCREMENT BY 2
CLC LNAME,TNAME COMPARE LIST ENTRY WITH TABLE
BH HIGHER BRANCH IF SHOULD BE HIGHER IN
BCR S,RI4 EXIT IF fOUND
SR Rl,R3 OTHERWISE IT IS LOWER IN THE

SO SUBTRACT INCREMENT
BCT R2,LOOP LOOP 4 TIMES
8 NOTFOUND ARGUMENT IS NOT IN THE TABLE

HIGHER AR R1,R3 ADO INCREMENT
BCT R2,LOOP LOOP 4 TIMES

NOTfOUND 01 SWITCH,NONE TURN ON NOT fOUND SWITCH
BR R14 EXIT

*
*
*

THIS IS THE TABLE

OS
TAI'LAREA DC

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

*

142

00
XLS'O',CLS'ALPHA'
XLS'O',CLS'BETA'
XLS'O',CLS'DELTA'
XLS'O',CLS'EPSILON'
XLS'O',CLS'ETA'
XLS'O',CLS'GAMMA'
XLS'O',CLS'ICTA'
XLS'O',CLS'KAPPA'
XLS'O',CLS'LAMBDA'
XLS'O',CLS'MU'
XLS'O',CLS'NU'
XLS'O',CLS'OMICRON'
XLS'O',CLS'PHI'
XLS'O',CLS'SIGMA'
XLS'O' ,CLS'ZETA'

ENTRY
TABLE

TABLE

SAMPL044
SAMPL045
SAMPL046
SAMPL047
SAMPL04S
SAMPL049
SAMPL050
SAMPL051
SAMPL052
SAMPL053
SAMPL054
SAMPL055
SAMPL056
SAMPL057
SAMPL058
SAMPL059
SAMPL060
SAMPL061
SAHPL06-Z
SAMPL063
SAMPL064
SAMPL065
SAMPL066
SAMPL067
SAMPL06S
SAMPL069
SAMPL070
SAMPL071
SAMPL072
SAMPL073
SAMPL074
SAMPL075
SAMPL076
SAMPL077
SAMPL07S
SAMPL079
SAMPLOSO
SAMPLOS1
SAMPLOS2
SAMPLOS3
SAMPLOS4
SAMPLOS5
SAMPLOS6
SAMPLOS7
SAMPLOSS
SAMPLOS9
SAMPL090
SAMPL091
SAMPL092
SAMPL093
SAMPl094

XSAMPl095
SAMPL096
SAMPL097
SAMPL09S
SAMPl099
SAMPllOO
SAMPLl01
SAMPll02
SAMPl103
SAMPlI04
SAMPLl05
SAMPl106
SAMPll07
SAMPllOS
SAMPl109
SAMPL110
SAMPL1l1
SAMPL112
SAMPLl13
SAMP1l14
SAMP1l15
SAMP1l16
SAMPl1l7
SAMP1l1S
SAMPll19
SAMP1l20
SAMPU21
SAMF_122

,.. THIS IS THE LIST SAMh123 ,.. SAMPL124
llSTAREA DC CLS'lAMBDA',X'OA',fl3'29',AIBEGINI SAMP1125

DC. C.lS'ZETA',X'05',Fl3'5',AIlOOPI SAMPllZ6
DC ClS'THETA',X'OZ',Fl3'45',AIBEGINI SAMP1l27
DC ClS'TAU',X'OO',Fl3'O',A(11 SAMP1l28
DC ClS'lIST',X'lF',Fl3'465',A(OI ~AMPLlZ9

lISTEND DC ClS'AlPHA',X'OO',Fl3'l',A(123) SA",Pl130 ,.. SAMP1l31 ,.. THIS IS THE CONTROL TABLE SAMP1132 ,.. SAMPL133
OS 00 SAMt>L 134

H:STTABl DC Fl3'l',X'OO',A(1231,ClS'AlPHA' SAMP1135
DC XlS'O',ClS'BETA' SAMP1l36
DC XlS'O',ClS'DElTA' SAMPLl37
DC Xl8'O',ClS'EPSIlON' SAMP1l38
DC XlS'O' ,Cl8'ETA' SAMP1l39
DC XlS'O',ClS'GAMMA' SAMP1l40
DC XlS'O',ClS'IOTA' SAMP1l41
DC XlS'O',ClS'KAPPA' SAMP1142
DC Fl3'Z9',X'OA',AIBEGINI,ClS'lAMBDA' SAMP1l43
DC XlS' 0' ,ClS 'MU' SAMP1l44
DC XlS'O',ClS'NU' SAMPL145
DC XlS'O',Cl8'uMICRON' SAMP1146
DC XlS'O' ,ClS'PHI' SAMP1l47
DC XlS'O',ClS'SIGMA' SAMP114S
DC Fl3'5',X'05',AllOOP),ClS'ZETA' SAMP1149 ,.. SAMP1l50 ,.. THIS IS THE CONTROL lIST SAMP1151 ,.. SAMPl152

TESTUST DC ClS'lAMBDA',X'OA',Fl~'Z9',A(BEGINI SAMP1153
DC ClS'ZETA',X'05',Fl3'5',AllOOPI SAMPLl54
DC ClS'THETA',X'SZ',Fl3'45',AIBEGINI SAMP1155
DC ClS'TAU',X'SO',Fl3'O',Alll SAMP1156
DC ClS'U SJI ,X'9F' ,fl3'465' ,A(01 SAMP1157
DC ClS'AlPHA',X'OO',Fl3'I',AI123l SAMP115S ,.. SAMP1159 ,.. THESE ARE THE SYMBOLIC R~GISTERS SAMP1160 ,.. SAMP1161

RO EQU 0 SAMPl162
Rl EQU 1 SAMPl163
R2 EQU 2 SAMP1164
R3 i:QU 3 SAMP1l65
R5 EQU 5 SAMP1166
R6 EQU 6 SAMP1161
R7 EQU 7 SAMP116S
RIZ EQU 12 SAMPl169
R13 EQU 13 SAMP1l70
R14 EQU 14 SAMPll71
1U5 EQU 15 SAMP1172 ,.. SAMPl113 ,.. THIS IS THE FORMAT DEFINITION OF lIST ENTRYS SAMPL174 ,.. SAMPl175
lIST DSECT SAMP1176
LNAME OS CL8 SAMPl177
lSWlTCH OS C SAMP1l78
LNUMBf:R OS Fl3 SAMP1179
LAODRESS OS F SAMPl1S0 ,.. SAMPl1S1 ,.. THIS IS THE FORMAT DEFINITION OF TABLE ENTRYS SAMPl1S2 ,.. SAMPl1S3
TABU: OSECT SAMP1184
J/'IjUMBER OS Fl3 SAHPI.,lS5
TSWlTCH OS C SAMPllS6
TAOORESS OS F SAMPl181
TNAME OS ClS SAMPL188

END BEGIN SAMPllS9

Appendix H: Sample Program 143

APPENDIX I: ASSEMBLER LANGUAGES--FEATURES COMPARISON CHART

Features not shown below are common to all a§emblers. In the chart:
Dash Not a II owed.
X = As defined in Operating System/360 Assembler Language N\anual.

Basic 7090/7094
Programming Support BPS 8K Tape,

DOS/TOS OS/36O Feature Support/36O: BOS 8K Disk
Basic

Package
Assemblers Assembler Assembler

Assembler
Assembler

No. of Continuation Cards/Statement 0 0 1 1 2
(exclusive of macro-instructions)

I nput Character Code EBCDIC BCD & EBCDIC EBCDIC EBCDIC EBCDIC

ELEMENTS:

Maximum Characters per symbol 6 6 8 8 8

Character self-defining terms 1 Char. only X X X X

Binary self-defining terms - - - - X X X

Length attribute reference - - - - X X X

Literals - - - - X X X

Extended mnemonics - - X X X X

Maximum Location Counter value 216_1 224_1 224_1 224_1 224_1

Multiple Control Sections per assembly - - - - X X X

EXPRESSIO NS:

Operators + -* + -*/ + -*/ + -*/ + -*/

Number of terms 3 16 3 16 16

Levels of parentheses - - - - 1 5 5

Comp lex re I ocatabi I i ty - - - - X X X

ASSEMBLER INSTRUCTIONS:

DC and DS

Expressions allowed as modifiers - - - - - - X X

Multiple operands - - - - - - X2 X

Multiple constants in an operand - - - - Except X X
Address
Consts.

Bit length specifications - - - - - - X2 X

Scale modifier - - - - X X X

Exponent Modifier - - - - X X X

DC types Except Except Except L X2 X
B, P, Z B, V, L
V, Y, S, L

DC duplication factor Except A X Except S X X

1 Assembler F only

2DOS 14K D Assembler only

Appendix I: Assembler Languages--Features Comparison Chart 145

Basic 7000/7004
Programming Support BPS 8K Tope, DO S/TOS OS/36O

Feature Support/360: Packoge 80S 8K Disk Assembler Assembler
Basic Assembler Assemblers
Assembler

DC duplication factor of zero - - - - Except S X X

DC length modifier Except X X X X
H, E, 0

OS types Only C, Only C,· Except L X2 X H, F, 0 H, F, 0

OS length modifer Only C Only C X X X

OS maximum length modifier 256 256 256 65,535 65,535

OS constant subfield permitted - - - - X X X

COpy - - - - - - X X

CSECT - - - - X X X

DSECT -- - - X X X

ISEQ - - - - X X X

LTORG - - - - X X X

PRINT - - - - X X X

TITLE X X X X

COM - - - - - - X X

ICTL 1 operand 1 operand X X X
(1 or 25
only)

USING 2 operands 2-17 operands 6 operonds X X
(operand 1 (operand 1
relocatable relocatable
only) only)

DROP 1 operand X 5 operands X X
only

CCW operand 2 X X X X
(relocatable
only)

ORG no blank no blank X X X
operand operand

ENTRY 1 operand 1 operand 1 operand X X
only only only

EXTRN 1 operand 1 operand 1 operand X X
only (max 14) only only

WXTRN - - -- -- X2 Xl

CNOP 2 decimal 2 decimal 2 decimal
digits digits diQits X X

PUNCH - - - - - - X X

REPRO - - - - X X X

Macro Instructions - - - - X X X

OPSYN - - - - - - - - Xl

EQU X X X X X

I Assembl er F on I y

2 DOS Assembler 14KD only

146

BPS 8K Tape, BOS 16K OS/360
Macro Faci I ity Features BOS 8K Disk Disk/Tape Assembler

Assemblers Assembler

Operand Sublists - - X X

Attributes of macro-instruction operands inside macro definitions and symbols used in - - X X
conditional assembly instructions outside macro definitions.

Subscripted SET symbols - - X X

Maximum number of operands 49 100
1

200

Conditional assembly instructions outside macro definitions - - X X

Maximum number of SET symbols

global SETA 16 * *

global SETB 1.28 * *

global SETC 16 * *

local SETA 16 * *

local SETB 128 * *

local SETC 0 * *

* The number of SET symbols permitted is variable, dependent upon available main storage.

Note: The maximum size of a character expression is 127 characters for the DOS/TOS1 Assembler D and
255 characters for the OS Assembler F.

1 200 for Assembler F

Appendix I: Assembler Lanquaqes--Features Comparison 147

The macro definitions in this appendix are
typical applications of the macro language
and conditional assembly. Another macro
definition is included in the sample pro­
gram as part of Appendix H.

MEMBER NAME SAVE

&NAME

&A
&NAME
&A

MACRO
SAVE
LCLA
lCLC
AIF
AIF

®,r.cnUE, & (D
&A, ttl,£.C
&E,tF,f..G,tH
I'I.REG' EO "1.El
1'&10' EQ "I.NULLIO
1'&10' EQ '*'I.SPECIO
IIK'&10+21/21*2+4
&A.I0.151
K'&IO

JRANCH AROUND 10

APPENDIX J! SAMPLE MACRO DEFINITIONS

Notice the use of the inner macro in­
struction (IHBERMAC) within SAVE for the
purpose of generating MNOTE statements.
Included with SAVE are some examples of the
statements generated from it.

AIF
SETA
8
SETA
DC All!£,,\ I lENGrH OF 10ENTIFI~R

00020000
00040000
00(60001)
00080000
00100001')
00120000
00140000
00160000
00180000
00200000
00220000
00240000
00260000
00280000
00300000
01)32000')
00340000
00360000
003t30000
00400000
00420000
00440000
00460000
004t10000
00500000
005.20000
00540000
00560000
00580000
00600000
00620000
00640000
00660000
00680000
00700000
00720000
00740000
00760000
Ou780000
00800000
00820000
OOfl40000
00860000
00~1:l000()

00900000
00920000
00940000
00960000
00980000
01000000
01020000
01040000
01000000
01060000
01100000
01120000
01140000
01160000
01180000
01200000
01220000
01240000
01260000
01280000
01300000
01320000
01340000
01360000
01380000
01400000
01420000
01440000

.CONTH AIF

.CONT AA AIF
I&A GT 321.SPLITUP
I&A GT 81.8RAKOW"l
'&10' II:B+l ,&AI
Cl&A'£.E'

&E SETC
DC
AGO

.BRAKDWN ANOP
.CONTA

&E SErC '£.10' I&B+l,81
elB'&E'

&8
&A

.SPLITUP
&E
&f
&G
&H

DC
SETA
SETA
AGO
ANOP
SETC
SErC
SErC
SHC
DC
SETA
serA
AGO

&6+8
I:A-8
.CO"lTAA

'£.ID'I&IHl,81
'&10'1£.8+9,81
'& I D' 1&8+ 1 7,8)
'tIO'I£.8+25,81
Cl32'£'E.&F.&G.£'H~

&S+32
£.A-32
.COtHS

.NULLID ANOP
&NAME OS OH

.CONTA
• SPEC 10
&E
U
.CONTO
&A

.LEAVE
&6
&NAME

AGO
AIF
SETC
SETA
AIF
SETA
AGO
ANOP

I'&NAME' EO "I.CSECTN
'&NAME'
1
1'&E'll,&AI EO '£.E'I.LEAVE
tA+l
.CONTO

SETA II&A+21/21*2+4
B £.8.10,151
DC All I &AI
DC CL£.A'tE'
AGO .CO"lTA

.CSEeTN AIF I'&SYSECT' EQ "1.E4
&E SETC '&SYSEC T'
U SETA 1

.E4

.eONTA

&A
.eONTD

.CONTE

AGO .CONTO
IHBERMAC 78,360
AIF IT'tREGll1 NE 'N'I.E3
AIF 1'&eOOE' EQ 'T'I.CONTe
AIF I'&COOE' HE "I.E2
SETA ®Ill*4+20
AIF I&A LE 7SI.CONTO
SETA &A-64
Alf IN'tREG HE 21.CONTE
STH tREGlll,®I2I,&A.1131

IN'® NE 11.E3
®lll,&A.113,01

IOENTIFIEK

10[NTlF IER

IDENTIFIER

BRANCH "ROUND 10

10ENTIFIER

eSECT NAME NUll

SAVE KEGISTERS

SAVE REGISTER

.CONTe

MEXIT
AIF
ST
MEXIT
Alf ItREGll) GE 14 OR ®lll lE 21.CONTF
ST~

SETA
Alf
STM
MEXIT

.CONTC Alf
ST
MEXIT

14,15,121131 SAVE REGISTEQ.S
®Ill*4+20
IN'® NE 21.CONTG
®ll),®I21,£.A.1131

IN'® NE ll.E3
®Il) ,£.A. 113,0)

SAVE REGISTERS

SAVE REGISTER

Appendix J: Sample Macro Definitions 149

.CONTF AIF IN'® NE 2).CONTH
STM 14.®Iz).12113) SAVE REGISTERS
MEXIT

.CONTH AIF (N'® NE U.E3
STM 14.®(1),12(13) SAVE REGISTERS
MEXIT

.El IHBERMAC 18.360 REG PARAM p.\ISSING
MEXIT

.E2 IHBERMAC 31.360.&CODE INVALID CODE SPECIFIED
MEXIT

.El IHBERMAC 36.360,® INVALID REGS. SPECIFIED
MEND

END OF DATA FOR SDSOR MEMBER

• • •
SAMPLE SAVE MACRO INSTRUCTIONS

C 14.12)
OH

FOGHORN SAVE
FOGHORN OS

STH 14.12.12(13) SAVE REGISTERS

•••••••••••

SAVE CREGI4.REG12)'T
OS OH

12.... IHB002 INVALID FIRST OPERAND SPECIFIED-IREG14.R

•••••••••••

(14.121. T •• SAVHACRO SAVE
SAYMACRO B

DC
DC

14(0.151 BRANCH AROUND 10
AllIU
Cl8'SAVMACRO' IDENTIFIER

STH 14.12.121131 SAVE REGISTERS

MEMBER NAME NOTE
MACRO

'NAME NOTE tOCB
AIF ('&UC8' EQ ").ERR

'NAME IHBINNRA tOCO
l 15,84(0,1)
8AlR 14,15
MEXIT

.ERR IHBERMAC 6
MEND

MEMBER NAME POINT
MACRO

'NAME POINT tDCB,&LOC
AIF ('tDCB' EQ ").ERRI
AIF ('&LOC' EQ ").ERR2

'NAME IHBINNRA &OCB,tLOC
l 15, 84 (0 , 1)
BAL 14,4(15,1)
MEXIT

.ERRI IHBERMAC 6
MEXIT

.ERR2 IH8ERMAC
MEND

MEMBER NAME CHECK
MACRO

'NAME CHECK tOECK
AIF ('tOECB' EQ ").E!

tNAME IHBINNRA tOECR
L 14.8(0.1)
l 15,52(0,14)
BALR 14,15
MexlT

.EI IHBERMAC 01,018
MEND

150

LOAD ~OTE RTN AODRESS
LINK TO NOTE ROUTINF.

LOAD POINT RTN ADDRESS
LINK TO POINT ROUTINE

PICK UP DCB ADDRESS
LUAD CHECK ROUT. ACOR.
LINK TO CHECK ROUTINE

01460000
01480000
01500000
01520000
01540000
01560000
01580000
01600000
0162000J
01640000
01660000
01680000

00020000
00040000
00060000
00080000
00100000
00120000
00140000
1)0160000
00180000

00020000
00040000
00060000
00080000
00100000
00120000
00140000
0016001)0
00180000
00200000
00220000
00240000

00020000
00040000
00060000
0{)080000
00100000
0012000,}
0014000J
00160000
00180000
00200000

INDEX

Indexes to systems reference library manuals are consolidated in the publication OS Master Index to Reference Manuals, Order No. GC28-6644.

For additional information about any subject below, refer to other publications listed for the same subject in the Master Index.

&SYS,restrictions on use 67,81,95
&SYSECT (see current control section name)
&SYSLIST (see macro instruction operand)
&SYSNDX (see macro instruction index)
7090/7094 Support Package Assembler 3,145

Absolute expressions 17,29
Absolute terms 10
ACTR instruction 89
Address constants 47-49

A-type 47
Complex relocatable expressions 47
Literals not allowed 15
Q-type 48
S-type 48
v-type 48
y-type 47

Address specification 30
Addressing

Dummy sections 25
Explicit 19
External control sections 28
Implied 19
Relative 21

AGO instruction 89
AIF instruction 88
Alignment,: boundary

CNOP instruction for 56
Machine instruction 29

Ampersands in
Character expressions 83
Macro instruction operands 71
MNOTE instruction 94
Symbolic parameters 67
Variable symbols 62,140

ANOP instruction 90
Apostrophes

Character expressions 84
Macro instruction operands 71
MNOTE instruction 94

Arithmetic expressions
Arithmetic relations 86
Evaluation procedure 82
Invalid examples 82
Operand sUblists 72
Operators allowed 81
Parenthesized terms

evaluation 82
examples 82

SETA instruction 81
SETB instruction 86
Substring notation 84
Terms allowed 81
Valid examples 81

Arithmetic relations 86
Arithmetic variable 98
Assembler instructions

Statement 35,133
Table 131

Assembler language
Basic Programming Support 9,145
Comparison chart 145
Macro language, relation to 61
Statement format 8,9
Structure 10,11

Assembler program
Basic functions 4
Output 22

Assembly, terminating an 58
Assembly no operation (see ANOP
instruction)

Attributes
How referred to 77
Inner macro instruction operands 76
Notations 76
Operand sUblists 76
Outer macro instruction operands 76
Summary chart 139
Symbols 76
Types 76
Use 76
(see also specific attributes)

Basic Programming Support Assembler
Base registers

Address calculation
DROP instructions
Loading 20

4,28,30
20

USING instructions 19
Begin column 8,53,54

Binary constant 43
Binary self-defining term
Binary variable 9a
Blanks

13

Logical expressions 86
Macro instruction operands

CCW instruction 50
Channel command word, defining
Character codes 107
Character constant 42
Character expressions

Ampersands 84
Apostrophes 84
Character relations
Examples 84
Periods 84
SETB instructions 86
SETC instructions 83

86

Character relations 86
Character self-defining term 13
Character set 15,107
Character variable 98
CNOP instruction 56
Coding form 7

71

51

3,145

Columns (begin, continue, end) 8,53,54
COM instruction 27
Commas, macro instruction operands
Comment Entry 9
Comment statements

Example 69
Model statements
Not generated 69

Comparison chart 145
Compatibility

69

Assembler language 3
Macro definitions 104

Complex relocatable expressions
Concatenation

Character expressions
Defined 68

83,85

72

47

Index 151

Examples 68
Substring notations 85

Conditional assembly elements, summary
charts of 90,138

Conditional assembly instructions
How to write 75
Summary 75

Continue column 8,53,54
Use 75
(see also specific instructions)

Conditional branch (see AIF instruction)
Conditional branch instruction 32

Operand format 33
Constants (see also specific types)

Defining (see DC instructions)
Summary 135

Continuation lines 7
Control dictionary 22
Control section location assignment 22
Control sections

Blank common 27
CSECT instruction 23
Defined 22
First control section, properties of 23
START instruction 23
Unnamed 24

COpy instruction 57
COpy statements in macro definitions

Format 70
Model statements, contrasted 70
Operand field 70
Use 69

Count attribute
Defined 79
Notation 79
Operand sublists 79
Use 78
Variable symbols 79

CSECT instruction
Length attribute 23
Symbols 23

Current control section name (&SYSECT)
Affected by CSECT,DSECT,START 99
Example 100
Use 99

CXD instruction 26

Data definition instructions 36
Channel command words 50
Constants 36
Storage 48

DC instruction 36

152

Constant operand subfield 41
Address constant (see Address

constants)
Binary constant 43
Character constant 42
Decimal constant 46
Fixed-point constant 43
Floating-point constant 44
Hexadecimal constant 42
Type codes for 38

Exponent modifier 41
Duplication factor operand subfield 38

Length modifier 39
Bit length specification 39

Modifiers operand subfield 38
Scale modifier 40
Type operand subfield 38

Decimal constants 46
Length, maximum 46
Length modifier 39
Packed 46
Zoned 46

Decimal field, integer attribute of 80
Decimal self-defining terms 12
Def~n~ng constants (see DC instruction)
Def~n~ng storage (see DC instruction

DS instruction) ,
Defining symbols 12
Dimension, subscripted SET symbols 97
Displacements 29
Double-shift instruction 29
DROP instruction 20,29
DS instruction 48-50

Defining areas 50
Forcing alignment 50

DSECT instruction 24
Dummy section location assignment 25
Duplication factor 38

Forcing alignment 50
DXD instruction 26

Effective address, length 30
EJECT instruction 52
End column 8,53,54
END instruction 58,66
ENTRY instruction 27,28
Entry point symbol, identification of 28
EQU instruction---35
Equal signs, as macro instruction operands

71
Error message (see MNOTE instruction)
Error messages after END statement 58
Explicit addressing 19,30

Length 30
Exponent modifiers 41
Expressions 16

Absolute 17
Evaluation 16
Relocatable 17
Summary chart 138

Extended mnemonic codes 32
Operand format 33

External control section, addressing of 28.1
External dummy sections 26
External symbol, identification 28
EXTRN instruction 27,28

First control section 23
Fixed-point constants 44

Format 43
Positioning 44
Scaling 44
Values, minimum and maximum 44

Fixed-point field, integer attribute of 78
Floating-point constant 44

Alignment 45

Format 45
Scale modifiers 45

Floating-point field, integer attribute
of 78

Format control, input 53

GBLA instruction 95
GBLB instruction 95
GBLC instruction 95
General register zero, base register

usage 20
Generated statements, examples of 68
Global SET symbols 63

Defining 95
Examples 96,97
Local SET symbols, compared 94
Use 94

Global variable symbols
Types 94
(see'also global SET symbols,
subscripted SET symbols)

Hexadecimal constants 42
Hexadecimal-decimal conversion chart

113-117 .
Hexadecimal self-defining terms 13

II (see integer attribute)
ICTL instruction 53,66
Identification-sequence field 9
Identifying assembly output 51
Identifying blank common control section

26
Identifying dummy section 24
Implied addressing 30

Length 31
Implied length specification 31
Inner macro instruction

Defined 73
Examples 74
Symbolic parameters 73

Instruction alignment 29
Integer attribute

Decimal fields 78,80
Defined 78,79
Examples 79,80
Fixed-point fields 78,79
Floating~point fields 78,80
How to compute 79
Restrictions on use 78
Symbols 78

ISEQ instruction 54,66

K' (see count attribute)
Keyword

Defined 100
Keyword macro definitions 101
Keyword macro instruction 101
Symbolic parameter and 101

Keyword, inner macro instructions used in
102

Keyword macro definition
Positional macro definitions, d 101 compare

Use 101
Keyword macro instruction

Example 101
Format 101
Operand sublists
Operands

102

Invalid examples 101
Valid examples 102

Keyword prototype statement
Example 101
Format 101
Operands

Invalid examples
Valid examples

standard values

101
101

101

L' (see length attribute)
LCLA instruction 81
LCLB instruction 81
LCLC instruction 81
Length attribute

Defined 15,78
Examples 78
Restrictions on use 76
Symbols 15,79

Length modifier 39
Bit-length specification 39
Length subfield 29

Lengths, explicit and implied 30
Library, copying coding from 57
Linkage symbols (see also ENTRY

instruction, EXTERNAL instruction)
Entry point symbol 28
External symbol 28
Linkage editor, and use of 27-28.1

Listing, spacing 52
Listing control instructions 51
Literal pools 14,55
Literals 14

Character 15
DC instruction, used in 15
Definitions 37
Duplicate 56
Format 15
Literal pool, beginning (LTORG) 55
Literal pools, multiple 15

Local SET symbols
Defining 95
Examples 95-97
Global SET symbols, compared 94

Local variable symbols
Types 94
(see also local SET symbols and
subscripted SET symbols)

Location counter
CSECT 22
Definition 14
DSECT 24
How to set

ORG 55
START 23

Use in address constants 42,47
Logical expressions

Index 153

AIF instructions 88
Arithmetic relations 86
Blanks 86
Character relations 86
Evaluation 87
Invalid Examples 87
Logical operators 86
Parenthesized terms

Evaluation 87
Examples 87

Relation operators 86
SETB instructions 86
Terms allowed 86
Valid examples 87

LTORG instruction 55
Machine-instruction examples and format

RR 29,31
RS 29,32
RX 29,32
S 29,32
SI 29,32
SS 29,3.2
Summary table 119

Machine-instruction mnemonic codes 31
Alphabetical listing 122
By duration code 129

Machine instructions 29
Alignment and checking 29
Literals, limits on 14
Mnemonic operation codes 31'
Operand fields and subfields 29
Symbolic operands 31

MACRO
Format 65
Use 65

Macro library defined 61
Macro definition

Compatibility 104
Defined 61
Error flagging 58
Example 67
Header 65
How to prepare 65
Keyword (see Keyword macro definition)
Mixed-mode (see Mixed-mode

macro definition)
Placement in source program 65
Trailer 65
Use 61

Macro definition exit (see MEXIT
instruction)

Macro definition header statement (see
MACRO)

Macro definition trailer statement (see
MEND)

Macro instruction
Defined 61
Example 67
Format 71
How to write 71
Levels 74-
Mnemonic operation code 71
Name field 71
Omitted operands 72

Examples 72

154

Operand field 71
Operand sUblists 72
Operands

Ampersands 72
Apostrophes 71
Blanks 72
Commas 72
Equal signs 71
Parentheses 71

Operation field 71
Statement format 72
Types 61

Macro instruction index (&SYSNDX)
Examples 99
Use 98

Macro instruction operand (&SYSLIST)
Attributes 100
Use 100

(see also symbolic parameters)
Macro instruction prototype statement (see

prototype statement)
Macro instruction statement (see macro

instruction)
Macro language

Comparison chart 147
Extended features 93
Relation to assembler language 61
Summary 91,137-140

MEND
Format 65
MEXIT instruction, contrasted 93
Use 65

MEXIT instruction
Example 93
Format 93
MEND, contrasted 93

Mixed-mode macro definitions
Positional macro definitions,
contrasted 103

Use 103
Mixed-mode macro instruction 103
Mixed-mode prototype statement 103
Mnemonic operation codes 29,31

Extended 32
Machine instruction
Macro instruction

94
MNOTE instruction

Ampersands
Apostrophes
Error message
Examples 94
Format 93
Severity code

94
94

Model statements
Comments field
Defined 66
Name field 66
Operand field
Operation field

94

67

67
66

N' (see Number attribute)
NamA entry 8

31
65

Number attribute
Defined 79
Examples 79

Operand sublist
Alternate statement format 72
Defined 72
Examples 73

Operands
Entries 8
Fields 29
Subfields 29,30
Symbolic 27,29,30

Operating system 5
Operation field 29
OPSYN instruction 35,36,66
ORG instruction 55
Outer macro instruction defined 73

Paired apostrophes
Paired parentheses
Parentheses

71
71

82 Arithmetic expressions
Logical expressions 87
Macro instruction operands
Operand fields and subfields
Paired 71

Period
Character expressions
Comments statements
Concatenation 68
Sequence symbols 80

84
69

71
29

Positional macro definition (see macro
definition)

positional macro instruction (see macro
definition and macro instruction)

Previously defined symbols 12
PRINT instruction 52,66
Program control instructions
Program listings 5
Program sectioning and linking
Prototype statement

Examples 66
Format 65

53

Keyword (see keyword prototype
statement)

22

Mixed-mode (see mixed-mode prototype
statement)

65 Name field
Operand field
Operation field
Statement format

Alternate

65
65

66
Normal 66

Symbolic parameters 65
Pseudo Register (see DXD instruction)
PUNCH instruction 54

Quotation marks (see Apostrophes)
Quoted string 71

Relational operators 86
Relative addressing 21
Relocatability 4,10,11

Attributes 17
Program, general register zero 20

Relocatable expressions 17,29
In USING instructions 20

Relocatable terms 10,11
Pairing of 17
In relocatable expressions 17

REPRO instruction 55
RR machine instruction

Format 31,119
Length attribute 29

RS machine instruction
Address specification 30
Format 32,119
Length attribute 29

RX machine instruction
Address specification 30
Format 32,119
Length attribute 29

S machine instruction
format 29,32,120

SI (see scaling attribute)
Sample program 141
Scale modifier

Fixed-point constants 43
Floating-point constants

Scaling attribute
Decimal fields
Defined 78
Examples 78

78

Fixed-point fields 78
Floating-point fields
Restrictions on use

78
78

Symbols 78
Self-defining terms 12

(see also specific terms)
Sequence checking 54
Sequence symbols

AGO instruction 89
AIF instruction 88
ANOP instruction
How to write 80
Invalid examples
Macro instruction
Valid examples 80

Set symbols
Assigning values
Defining 75

90

80
80

75

45

Symbolic parameters, contrasted
Use 75

75

(see also local SET symbols, global SET
symbols, and subscripted SET symbols)

SET variable 94
SETA instruction

Examples 81-83
Format 81
Operand field

81,82 Evaluation procedure
Operators allowed 81
Parenthesized terms 82
Terms allowed 81
Valid examples 82

Operand sublist 82
Examples 82

SETA symbol
Arithmetic relations
Assigning values to
Defining 75,82
Use 82

SETB instruction
Examples 86

82
82

Index 155

Format 86

86
Logical expressions 86

Arithmetic relations
Blanks 87
Character relations
Evaluation 87
Operato~s allowed
Terms allowed 86

86

Operand field 84
Invalid examples
Valid examples

SETB symbol
AIF instruction
Assigning values
Defining 75

87
75

86

87
87

SETA instructionsi use in
SETB instructions, use in
SETC instructions, use in

SETC instruction
Character expressions

Ampers ands 84·
Apostrophes 83,84
Periods 84

Concatenation

83

Character expressions
Substring notation 84

Examples 83,85
Format 83
Operand field 83
Substring notations

Arithmetic expressions
Character expressions
Invalid examples 85
Valid examples 85

Type attribute 83
Examples 83

SETC symbol
Assigning values
Defining 75,85

85

87
87
87

84

84
84

SETA instruction, use in 86
Sev~rity code in MNOTE instruction
SI machine instruction

Address specification
Format 32,119
Length attribute 29

SPACE instruction 51
SS machine-instruction

Address specification
Format 32,119
Length attribute
Length field 30

Standard value
Attributes 102

29

30

30

Keyword prototype statement
START instruction

Positioning 23
Unnamed control sections

Statements 8,9
Boundaries 8
Examples 9
Macro instruction
Prototype 65

71

101

24

93,94

Storage, defining (see DS instruction)
Sublist (~ee Operand sublist)
Subscripted SET symbols

Defining 97,98
Examples 97

Dimension 98

156

Invalid examples 97
Subscript 95
Use 98

Examples 98
Valid examples 97

Substring notation
Arithmetic expressions 84
Character expression 84
Invalid example 85
SETB instruction 86
SETC instruction 85
Valid examples 85

Symbol definition, EQU instruction for 12
Symbolic linkages 27
Symbolic operand formats 31
Symbolic parameters

Assigning values 67
Comments field 66
Concatenation 68
Defined 67
Examples, invalid and valid 68
Prototype statement 65
(see also variable symbols)

Symbols
Defining 12
Lenyth attributes 15,29
Length, maximum 12
Previously defined 12
Restrictions 12
Value attributes 29

System macro instructions defined 62
System variable symbols

Assigned values by assembler 98
Defined 98
(see also specific system variable
symbols)

T' (see type attribute)
Terms

Expressions composed of 10
In parentheses 16
Pairing of 16

TITLE instruction 51
Type attribute

Defined 77
Li.terals 77
Macro instruction operands 77
SETB instruction 86
SETC instruction 83
Symbols 77

Unconditional branch (see AGO instruction)
Unnamed control section 24
USING instruction 19

Variable symbols
Assigning values 63
Defined 62
Summary chart 140
Types 62
Use 62
(see also specific variable symbols)

V-type addr~ss constant 48
WXTRN instruction 28.1,48
XFR instruction 3

y-type address constant 47

GC28-6514-11

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

c
CIl

» en
~
3
0-
CD
~

r
Q)

::J
co
C
Q)
co
CD

