
File No. S360-20
Order No. GC28-6534-3 OS

Systems Reference Library

IBM System/360 Operating System

Introduction

OS Release 21

This publication describes operating systems in
general and introduces the IBM System/360
operating System. The publication is intended for
anyone interested in the System/360 operating
System, whether or not he is familiar with other
operating systems. It describes the purpose,
design objectives, organization, function, and
application of the system/360 Operating System,
and how it was influenced by previous systems; it
also describes System/360 compatibility with
System/370.

The operating system consists of programming
aids and a control program that schedules and
supervises the processing of data. The system is
designed for a broad range of applications,
including teleprocessing and mUltiprocessing. It
helps a system/360 data processing installation
increase productivity by using its resources more
effect ively.

Page of GC28-6534-3, Revised Ja.nuary 15. 1972. By TNL: GN28-2512

Fourth Edition (June, 1971)

This revision obsolet~es GC28-6534-2, Technical Newsletters
GN28-2450 and GN28-2458, and replaces IBM System/360
Operati~System: Concepts and Fa~ilities, GC28-6535. It
describes only the MET and MVT configurations of the control
program. Changes to the text and small changes to
illustrations are indicated by a vertical line to the left of
the change. This publication contains a means of referencing
other publications by the use of superscript notation.
superscripts refer to the numbered publications listed in
Part 3, Bibliography.

This edition, with Technical Newsletter GN28-2512,
corresponds to Release 21" of IBM System/360 Operating
system, and to all subsequent release until other,,?,ise
indicated in new edit:ions or Technical Newsletters. Changes
are continually made to the specifications herein; before
using this publication in connection with the operation of
IBM systems, consult the latest IBM System/360 and
IBM System/370 SRL NElwsletter, Order No. GN20-0360,
for the editions that are applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems
Publications, DepartD~nt D58, PO Box 390, Poughkeepsie, N. Y.
12602. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1964,1966,1969,1971

Page of GC28-6534-3, Revised January 15, 1972, By TNL: GN28-2512

This publication introduces you to the IBM
system/360 Operating system, whether or not
you are familiar with other operating
systems.

Part 1 gives background information to
help the newcomer understand operating
systems in general. The first section
describes the purpose of an operating
system and the resources it requires. The
second section describes the evolution of
operating systems and why they evolved as
they did.

Part 2 describes the System/360
Operating System. It discusses:

• The design objectives of the operating
system and how they were achieved.

• The organization and function of the
operating system.

• The two configurations of the control
program.

Preface

• The major functions of the operating
system: task management, job
management, and information management.

• Program development and management
aids.

• Advanced types of data processing
(multiprocessing and teleprocessing)
and the facilities that the operating
system provides for them.

Part 3 contains a numbered bibliography.
Superscripted items in text refer to these
numbered publications. Further information
about those superscripted items may be
found in the corresponding publications.

For definition of terms used, see the
IBM Data Processing Glossary, GC20-1699.

For more information on the System/360
Operating system, refer to the publications
described in the IBM System/360:
Bibliography, GA22-6822. The IBM
System/360 Operating system: Master Index,
GC28-6644, contains a reading plan for
System Reference Library publications.

Preface 3

PART 1: OPERATING SYSTEMS •

INTRODUCTION • • •
Hardware Resources
Information Resources
Human Resources
The Effective Use of
Performance

Throughput • •
Response Time
Availability

Facility • • • •

Resources.

9

• • 11
• • 12
• • 13
• • 13
• • 13
• • 14

14
• • 14
• • 14
• • 14

THE EVOLUTION OF OPERATING SYSTEMS • • • 15
The First Stage: Component Development 15

programming Aids • • • • • • • 15
Translator Programs • • • • • • 15
Input/Output Control Systems •• 17
Other Programming Aids • • 18

Program and Data sharing • • 18
Subroutine Sharing • • • • 18
Sharing of Generalized Programs •• 18
Formal Sharing • • • • • • 18

Growth in Applications • • • 19
The Second Stage: Integration and
Automatic Operation • • • • • • • 19

The Miscast Role of the Operator • • • 19
System Integration of First-stage
Components • • • • • • • • •
A Typical Operating System •

A New Control Language For the

· • 21
• • 21

Programmer and Operator • • 22
Batched Job Processing • • • • • 22
A Common Job Input Device • • 22
Common Utility I/O Devices • • • 23
A Common Job Output Device • • • 23
Additional I/O Devices • • 23
Automatic step-to-Step Transition • 24
The System Library • • • • • • • • • 24
Operating System Subsystems • • 24
The Control Program • • • • • • • • 25
An Example: The IBM 7090/7094
(IBSYS) System • •• • • • •

Benefits for Long-Running Jobs • •
Operating System Applications

Online Direct Access Systems • •
Airline Reservation Systems

The Problem of Coping With the
Work Load •• • • • • • •
The solution: The Concurrent

• • 25
• • 26

27
• • 27
• • 28

• • 28

Processing of Transactions • • • • • 29
Concurrent Work Techniques And Other
Applications • • • • • • • • • • • • • 29

The Third Stage: A Union Of Techniques 29

PART 2: THE IBM SYSTEM/360 OPERATING
SYSTEM •

A GENERAL PURPOSE SYSTEM •
Investing Resources
Modular Construction • • •
Defining and Generating the System •

31

• • 33
• • 33
• • 34

34

Contents

Tailoring the System to Individual and
Daily Needs • • • • • • • . • • • . 34
Selecting Default Options • • • • • • • 35
Selecting Options When the Control
Program is Initialized
Sharing Data Sets • • • •
Cataloging Procedures • • • •
Controlling System Operation •
Controlling the Use of the System

35
· 35

• • • 35
35
36

GROWTH WITHOUT DISRUPTION
Growth in the Past • •
Evolutionary Growth at
Evolutionary Growth in

• • • • 37
• • • • 37

an Installation • 37
Improving the

System • • • • • • • •
Growth In Performance
Growth in Application • • • •
Technological Growth

Other Growth Factors •
Compatibility
Device Independence
Multiple Task Management
standards •••• • •

37
38
38
38
39
39
39
39
39

THE GENERAL ORGANIZATION AND FUNCTION
OF OPERATING SYSTEM/360 41
Supervisor state Programs . • 41
Service Requests • • • • • 41
Automatic Interruptions • • • • . • 41
The Effect of an Interruption • • • • • 41
Privileged Instructions 42
The Basis of Control • • • • • • • 42
Problem State Programs . • • • 42
The master and Job Schedulers 43
IBM-Supplied Processing Programs • 43

Language Translators 43
Assemblers • • • • 44
FORTRAN Compilers . • . • 45
COBOL Compilers . 46
ALGOL Compiler •• 47
PL/I Compiler • • • • 47
Report Program Generator • 47

Service Programs. • ••• 47
Linkage Editors • • •. • 47
Loader. • • • • • • • • • 47
Sort/Merge Program 47
Utili ty Programs • • • • • 48
Emulator Programs •••• 48
Graphic Programming Services •• 48
Progr am Products • • • • • 48

Control Program Configurations 50
MFT Control Program • • • •• 51
MVT Control Program 53

Major Functions • • • • • 54

TASK MANAGEMENT
Resource Sharing • • • • • •
Program Sharing
Data Sharing • •
Resource Management

• • 55
55

• 55
• • 56

57
Advantages of Multiple-Task Management • 58

Contents 5

Page of GC28-6534-3, Revised January 15, 1972, By TNL: GN28-2512

Concurrent Tasks Within Job st.eps (MVT
and MFT With Subtasking) • • • 58

JOB MANAGEMENT • • • • • •
Non-Stop Job Processing
Multiple-Job Processing
Concurrent Job Support Tasks •
The MFT and MVT Job and Master
Schedulers • •
Job Priorities • •• •

• • 61
61

• • 62
• • 63

64
• • 65

INFORMATION MANAGEMENT • • • • 67
The Centralization and Growth o:f
Information • • • • • • • • • • • • 67
Problem of Growth and Centralization • • 67
Opportunities of Growth and
Centralization • • • • • • • • • • • 67
Requirements for a Unified Information
Management System • • 67
Data Organization • • • • • e • • • • • 68
Library Ref€~rence System • • • • • • • • 69
Methods of Storin9 and Retrieving Data • 72
Defining Dat:a, Access Methods, and
Devices • • 73

PROGRAM DEVELOPMENT AND MANAGEMENT • 75
A Unified Program Development System • • 75

Modular Construction • • • . • • • 75
Organized Progra.m Libraries • • 77
Dynamic Program Loading . • 78
Checkpoint./Restart Facility •• 78

A Means of FtecoveI:y • • 79

MULTIPROCESSING
CPU-to-CPU Communication •
Advantages of Mult~iprocessing

6

Increased Availability • • • •
Increased Production Capacity

• • 81
• • 81
• • 81
• • 81
• • 81

More Efficient Use of Resources ••• 81
Data Sharing • • • • • • 81

Operating System support of
Multiprocessing • • • • • • • • 82

Multiprocessing With Shared Direct
Access Storage Devices • • • • • • • • 82
MVT With Model 65 Multiprocessing 82

Operating Modes •••••• • • • • 92

TELEPROCESSING • • • • • 85
General Types of Applications • • • 85

Data Collection • • • • • 85
Message switching • • 85
Remote Job Processing 85
Time Sharing • • • • • • • • • • 85
Online Problem Solving • • m • • • • • 86
Inquiry and Transaction Processing • • 86

Message Control and Message Processing
Programs • • • • • • • • • • 0 • • • • • 87

Message Control Programs • • • •• 87
Queued Telecommunications Access
Method • • • • • • • • • 0 • • • • • 87
Telecommunications Access Method
Basic Telecommunications Access

88

Method • • • • • • • • • .. • • • • • 89
Message Processing Programs •• 89

Specific Teleprocessing Applications
Provi ded by IBM •• • • • • .. • • 89

90 Remote Job Entry • • • • • .. • •
Conversational Remote Job Entry
Time Sharing Option

• • • 91
• • 91

Working at the Terminal • • • 92
System Control • • • • • .. •

Graphic Job Processing • • ..
System/360-1130 Data Transmission for

92
93

FORTRAN • • • • • • • • • 95

PART 3: BIBLIOGRAPHY 97

INDEX • • 99

Figure 19. The Running Time of a
Computing System When Processing a Few
Long Jobs •••• • • • • • • • 27
Figure 20. Sequential, Offline
Application •• .. • • •• • • 27
Figure 21. Online Direct Access
Applications •.••••••.•• 28
Figure 22. Comparison Between the
Processing of Transactions Singly and
Concurrently 29
Figure 23. Investing Resources to
Increase Productivity •• • •• • • • • 33
Figure 24. Constructing Your Operating
system 34
Figure 25. Disruptive Growth 37
Figure 26. Evolutionary Growth by
Incremental steps • • •• • 37
Figure 27. Optimizing Specific
Characteristics: size vs. Speed • 38
Figure 28.. Raising the Initial
Productive Capacity of the System
Through Design Improvements • 38
Figure 29. Extending the Production
capacity and Application of the System 38
Figure 30. Operating system/360
supervisor and Problem State Programs • 41
Figure 31. Language Translators
Provided by IBM •• • • • • • • 44
Figure 32. Macro Instruction
Expansion • • • • • • • • • • 45
Figure 33. IBM 2250 Display Unit
Model 3 ••••••••.••••• • 46
Figure 34. IBM 2260 Display Station,
With and Without Alphameric Keyboard • 49
Figure 35. Systern/360 Software
Systems For Various Systern/360 and
System/370 Configurations • • • • 50
Figure 36. Compatibility of MFT and
MVT Control Program Configurations •• 51
Figure 37. Concurrent Processing of
Job steps and Job Support Tasks by an
MFT Control Program • • .• • • • • • 52
Figure 38. General Organization of
Main Storage For the MFT Control
Program Configuration • • • • • • 52
Figure 39. Concurrent Processing, by
an MVT Control Program, of Job Steps,
Job Support Tasks, and Tasks Within
Job steps ••••• • • • • • • • • • • 53

Figure 40. General Organization of
Main Storage From the MVT Control
Program Configuration • .. • • • •
Figure 41. A Single Task System
Figure 42. A Multiple-Task system
Figure 43. Unshared Information

53
• • • 55

• • 56

Resources • • • • • • • • • • • • • • • 56
Figure 44. Program Sharing • 56
Figure 45. Data Sharing • 56
Figure 46. Job Definitions •••• 61
Figure 47.. Sequential and Concurrent
Job Processing ••••••••
Figure 48. Offline Peripheral

• 62

Opera tions ••••••••• • • 63
Figure 49. The MFT and MVT Job Master
Schedulers • • • • • • • •
Figure 50. Data Organization
Figure 51. Data Record Formats
Figure 52. Spanned Variable-Length

• 65
• • 68
• • 68

Records •• • • • • • • • • • • • • • • 69
Figure 53. Simplified Diagram of
Catalog System for Locating a Volume • 71
Figure 54. Simplified Diagram of
Catalog System For Locating Data Sets
Within a Direct Access Volume 72
Figure 55. Program Design 76
Figure 56. Program Module Libraries • 77
Figure 57.. Relocatability •• 78
Figure 58. Multiprocessing With Shared
Direct Access Storage Devices • • ••• 83
Figure 59. A Symmetrical
Configuration of the Model 65
Multiprocessing System • • • • • 83
Figure 60. Two CPUs in Multisystem
Mode, Balancing the Execution of Four
Tasks • • .. • • • • • • • • • • •
Figure 61. Simplified Diagram of
Message Control Using the Queued
Telecommunication Access Method
Figure 62. IBM 2780 Data Transmission

• 83

• 88

Terminal • • • • • • • • .. • • • • • • • 90
Figure 63. A DESCRIBE DATA Display
For the Graphic Job Processor 93
Figure 64. Using a Graphic Display
Program on a 2250 • • .. • • • • • • • • 94
Figure 65. A Typical Optical Design
Application Display • • 95

Contents/Illustrations 7

IBM system/360 Model 65

8

PART 1: OPERATING SYSTEMS

This part gives background information on
operating systems in general, describing
their purpose and how they evolved. If you
are already familiar with operating
systems, go to Part 2: The IBM System/360
Operating System.

Part 1: Operating Systems 9

When computers were introduced several
years ago, they were usually put to work on
jobs that had required a g:.,,:e~t deal of
routine human activity. Basic accounting,
record keeping, and problem solving were a
few of these early applications (Figure 1).
By and large, the automatic processing of
such jobs proved the speed, economy, and
reliability of electronic data processing.

Later, computers entered a more
challenging phase of development in which
the industry began to devise system
applications -- applications that go far
beyond the mere mechanization of manual
operations. Management information

Before

-1r -1r -1r -1r

4f4f4f4f~
Mt Mt Mt Mt 4JI

Bookkeeping System - Pencil and Paper

~~~~81 
~~~~w 

Accounting with Key"Driven Machines

~~~~~ 
Scientific Problem Solving with Desk Calculator 

~~~~cP 
Punched Card Accounting

Introduction

systems, process control systems, medical
diagnosis systems, com~uter-assisted
instruction <CAl) systems, and information
retrieval systems are a few recent examples
(Figure 2).

Today, as a result of this rapid
progress, most data processing
installations are facing an increase in the
number of conventional applications as well
as an increase in the scope and complexity
of large-scale system applications. To
cope with these problems, a data processing
system must efficiently apply all of its
resources: hardware resources, information
resources, and human resources (Figure 3).

After

Figure 1. Mechanizing Routine Human Activities

Introduction 11

Medical
Diagnosis

C,:>mputer-Assisted
Instruction

Information
Retrieval

Figure 2. System Applications

Programs

Human

Major Resources

CPU Time
Main Storage

Space

im~~ I/O l? Channel Time

Data
Processing

Work

Work Results

I/O Devices

Figure 3. Resources Required toO Process
Data Automatically

12

Hardware Resources

To process data efficiently, the physical,
or "hardware, II components of a computing
system must be available when they are
needed. The hardware resources at a data
processing installation are:

• Time on the central processing unit.
• Main storage space.
• Input/output devices.
• Input/output channel time.
• Direct access storage space.

The major hardware resource is the time
available for doing work on the central
processing unit (the CPU). The work the
CPU performs is to operate on, or process,
data. These operations usually consist of
the basic arithmetic operations (addition,
subtraction, multiplication, and division),
transferring data from one storage location
to another, converting data from one form
to another, and performing simple tests or
comparisons to choose between alternative
operating sequences.

Individually, these basic operations do
not seem very impressive, but the CPU
performs them with great speed and
reliability, and i·t can be programmed to
perform long, complex sequences of
operations without human intervention.

To perform long sequences of operations
without human intervention, the CPU must
have a resource for storing information in
a readily accessible form. Therefore, the
CPU has a main storage from which it can
quickly obtain information and return
results.

Also, there mus·t be some way to quickly
enter information into main storage. And,
because the capacity of main storage is
limited, there must be a way to record
either for later processing or for use
outside the system -- the results that the
CPU places in main storage. Therefore, two
additional resources are required to
process data automatically: one or more
input/output devices for reading and
recording information and time on one or
more channels for transmitting the
information to and from main s1:orage.

Devices that feed inf ormation into main
storage (via a channel) or record
information taken out of main storage (via
a channel) are referred to collectively as
input/output devices. However 6 they are
also storage devices because they store
information, whether it be in the form of
printed characters on paper, holes in
punched cards, or magnetized spots on tape,
drums, and disks. Direct access devices,
such as magnetic drum or disk units, are

usually called storage devices because they
are mainly used for storing information.
Other devices such as magnetic tape units,
card readers, and printers are called
input/output devices, because they are used
primarily for entering information into the
system and for recording output from the
system. Therefore, I/O devices and direct
access storage space are considered
separate and distinct resources because
their primary roles differ.

Information Resources

There are two kinds of information
resources at an installation: the data
that the CPU processes and the sequences of
instructions, called programs, that direct
the CPU to perform operations in a
particular sequence.

Human Resources

Even more important than hardware and
information resources are the human
resources at an installation. These
consist of the time and talent of the
individuals who staff the installa.tion and
use the system. Although job
responsibilities vary among installations,
there are usually three groups of people
under the direction of the installation
manager:

• system programmers who plan, generate,
maintain, extend, and control the
system with the aim of improving the
productivity of the installation.

• Applications programmers -- the main
users of the computing system -- who
plan new jobs (applications) for the
system and develop the procedures and
programs needed to perform them.

• Operations personnel, who receive jobs
from the programmers, schedule the
order in which jobs are presented to
the system, and direct the operation of
the system.

To a great extent, the success of a data
processing installation depends upon how
well these human resources are applied.

The Effective Use of Resources

The resources of a data processing
installation represent a considerable
investment; it is important, therefore, to
use them efficiently,. To do this, it is
necessary to keep each resource busy doing

the kind of work it is best suited for.
Hardware and information resources must be
readily available so the CPU can be kept
busy with the tedious work of processing
data. Human resources must be relieved or
tasks that the computing system can
perform, and dedicated to more creative
work: planning new applications,
formulating solutions to problems, reacting
to changing conditions and unexpected
events, and managing the installation.

The productivity of a data processing
installation depends on how well its
hardware, information, and human resources
are selected and employed to do the work at
hand. A modern computing system can
perform billions of basic operations in a
few minutes, and with far greater
reliability than a human being. But man
must plan all of the work the computing
system performs and in doing so must
account for every contingency that might
arise. In short, a computing system only
follows orders. Lacking a program, the
system is useless.

But, with a program, a computing system
can do much more than process input data to
produce output data. By using the few
instructions of a computing system in
different combinations and sequences, a
programmer can create a program that will
direct it to do many things that were once
done only by human beings. These include
translating languages, managing resources,
retrieving information, scheduling and
supervising work and operating and
controlling mechanical devices.

A program, or set of programs, that
directs a computing system to perform such
operations is called an operating system.
An operating system is really an advanced
system application of a computing system in
the form of organized collections of
programs and data. Like other system
applications it is designed to handle
complex activities, but it differs in the
kind of activity it supports. Most system
applications support specialized activities
outside of the data processing
installation, such as banking, process
control, or missile design. An operating
system is designed to support the
activities of the data processing
installation itself. In short, an
operating system is an application of a
computing system, in the form of program
and data resources, that is specifically
designed for use in creating and
controlling the performance of other
applications. Its prime objective is to
improve the performance of a data
processing system and increase facility -­
the ease with which the system can be used.

Introduction 13

Performanc:e

The overall performance of a data
processing system is determined by a
combination of three factors. They are
!JlrQ.:gghput, .response time, and .5lvailabili"!y
(Figure 4).

[Prod::':] _ .. £-
t---- ---L

~

Figure 4. Productivity Factors

THROUGHPUT

Throughput is the total volume of work
performed by the system over a given period
of time. This is an important factor at
any installation; however, it is especially
important at a high-volume production
installation in which large batches of work
are performed in accordance with a flexible
time table. This type of operation is
typical of many accounting and record
keeping applications.

RESPONSE TIME

Response time (sometimes called turnaround
time) is the interval between the time a
user (or a process-controlling device)
submits an item of work to the system for
processing and the time he receives
results. Response time is especially
important where many different people share
the use of the system and the overall
progress of their work depends on their
receiving prompt results from the system.
E'er example, response time is important in
a design activity in which a series of
calculations is required to complete each
design and the designers cannot continue
their work until they receive the re sul ts
of previous calculations. For such
activities a decrease in response time
increases the pace of the activity and
improves human productiVity, since less
time is spent in idly waiting for results.

14

AVAILABILITY

Availability is the degree to which a
system is ready when needed to process
data. The availability of a system is
especially important at an installation
where a prolonged period during which the
system is not available might result in a
complete shutdown of the total enterprise.

A high level of availability can often
be achieved by including additional
hardware resources, such as multiple
input/output channels and devices, as well
as multiple central processing units. Then
if one unit fails it can be in~ediately
replaced by another, thus helping to ensure
continued operation of the system as a
whole. A system using multiple units of
hardware resources, including two central
processing units, is described later in the
section titled "Multiprocessing."

Facility

Facility is a measure of how easy it is for
people to use a data processing system.
Facility is achieved in a system mainly by
providing the users at an installation with
a combination of programming aids,
services, and precoded routines that can be
employed using appropriate language
statements. The general idea is to
simplify and speed the job of defining,
programming, and scheduling work for the
system, thereby making more efficient use
of the human resources at an installation.

Facility can also be increased by
improving the response time of the system
and the degree of interaction between the
system and the people who use it. An
example of this is a computer assisted
instruction (CAl) application in which a
dialogue or conv2rsation takes place
between a student and the system. In such
an application, the student learns from his
mistakes as he makes them, thereby speeding
up the learning process. A similar
approach can be used to improve and speed
up problem solving and programming
processes as well~

Although operating systems differ in the
way they achieve their objectives, they
have many commOL characteristics. In fact,
modern operating systems use many concepts
and techniques developed in the past.
Therefore, the next section traces the
evolution of operating systems. This will
prepare you for "Part 2: The IBM
system/360 operating System" and help you
to understand how and why the system came
to be what it is and how it differs from
earlier operating systems.

The Evolution of Operating Systems

Modern operating systems, as typified by
the System/360 Operating System, evolved in
three stages. The first stage began during
the early days of electronic data
processing, when the major components of an
operating system were developed. During
the second stage, these components were
integrated to form systems and the name
"operating system" came into use. The
third stage was a union of known techniques
with new ideas, aimed at the development of
a general purpose system that could improve
the productivity of a data processing
installation.

The First Stage: Component
Development

The first stage began mainly because of
language differences between computers and
the people who used them. The computer
could not understand human languages, and
programmers found the precise, restrictive,
numerical language of a computer hard to
read and write. Futhermore, it was
difficult to change a complex program
written in "machine language" and each
change often triggered a chain of errors.

The language problem was a serious
obstacle to the efficient use of human
resources. For a time it threatened to
limit the growth of electronic data
processing. Although a computer could
process data rapidly, it had to be fed vast
amounts of instructions and data, all in
its detailed, cumbersome, numerical
language. This required a large staff of
programmers who spent their time, not in
creative work, but in the tedious
translation of applications and problem
solutions into machine language.

For example, if a mathematician had a
problem to solve -- such as computing a set
of trajectories for an artillery shell -­
he would usually do it in three steps (top
of Figure 5). First, he would analyze the
problem and formulate a procedure to solve
it. The mathe~atician had neither the time
nor inclinati~n to code his procedure in
machine language. Accordingly, he would
turn over his procedure and data to
programmers. The procedure might be in the
form of a flowchart, a mathematical
formula, or a series of general
instructions; in any event, the procedure
was not in a form that was understandable
to the computing system.

Therefore, during the second step, it
was up to the programmers to translate the
procedure into the detailed numerical
language of the computing system.
Depending on the complexity of the pronlem,
the translation step could take days,
weeks, or even months to complete and check
out.

The third step consisted of executing
the program on the computing system to
process the data and produce results.
After all of the time and effort devoted to
translation, the execution step was often
completed in a few minutes. The same
general three-step process was followed in
developing a business application -- again,
far too much time and effort was expended
in translating procedures into a form
acceptable to the computing system.

Largely as a result of this language
problem, two important, interrelated
movements began in the data processing
industry. One was the development of a set
of programming aids that could be used to
assist programmers in doing their work.
The other was the sharing of program and
data resources among the people who used
computing systems. These two movements
helped correct the imbalance of preparation
time and execution time.

PROGRAMMING AIDS

The development of programming aids was
begun by system programmers who saw that
too much time was being spent catering to
the needs of the computing system. Since
many routine operations were involved in
preparing programs and data for the
computing system, why not, they reasoned,
use some of the speed and resources of the
computing system to do the work?
Therefore, the programming aids they
developed took the form of programs that
could be executed on the computing system.
The most important of these were translator
programs and input/output control systems.

Translator Programs

Translator programs were designed to
translate programs written in a language
that human beings could understand into the
numerical language of the computing system
(a, Figure 6). A number of "machine
oriented" assembler languages were the
first to appear (b, Figure 6). These were

The Evolution of Operating Systems 15

soon followed by such "human-o.riented II
languages as FORTR.AN (c, Figur i;! 6) and
COBOL (d, F i9ure 6). Programml:rs could now
write their instructions to the computing
wy.tem in language that were akin to
mathematics (FORTRAN) or the language of
business (COBOL). With the development of
FORTRAN, the mathematician (bo1:tom of
Figure 5) now had a reasonable choice. He
could define his procedure in mathematical
notation (for example, A= Y(~}3') and let a
professional programmer conver1: it into a
FORTRAN language source prograr~. Or, he
could define the procedure directly in
FORTRAN (A=X/ (Y*Z**3» with li1:tle or no
help from thE! programmer. The source
program could then be quickly translated

into a machine language object program and
executed by the computing system.

Thus programmers were no longer slaves
to the needs of the computing system. They
could devote more of their time and effort
to creative work. The translators not only
speeded up the programming process but
reduced programming errors, made it much
easier to correct errors, produced better
documentation of programs, reduced training
time, and made life easier for anyone who
wanted to use a computing sysbem. The
translation process was shortened, the
burden of translation was shif·ted from the
programmer to the computing system, and a
balance between the two was achieved.

Before Language Translators

Problem
and
Data

Field Artillery
Trajectory

Problem
and
Data

,
Rocket

Trajectory

Analysis
and

Proc!KIure
Formulation

Translation

~====illl
__ __ Machine

~. L,"," ...

~ II ... ;;;

Pro,"""". ~.

~====illl

E.Kecution

Data •••••••••••••••••••••••••••••

Mathematician
or

mystems Analyst)

Analysis
and

Procedure
Formulation

..
It Data

Mathematician
•

Programmers

After Language Translators

Source
Program

Translation

Language
Translator

Computing System

Machine
Language
Program

Computing System

Execution

- .. ~~~
Computing System

Figure 5. Problem Solving Befo:['e and After the Development of Language Translator
Programs

16

Results ...

Results ..

a. Machine Language

00035 4754 00 2 00000
00036 4734 00 1 00000
00037 0560 00 2 00000
00040 0500 00 1 00000
00041 0040 00 0 01002
00042 0131 00 0 00000
00043 0601 00 1 00000
00044 2 00001 1 00040
00045 4600 00 2 00000 --

b. Assembler Language

LOADX1 PXD 0,2
PDX 0,1

LOADQ LDQ 0,2
LOADAC CLA 0,1

TLQ *+2
XCA

STOREA STO 0,1
TIX LOADAC,l,l

STOREQ STQ 0,2

c. FORTRAN Language

16 READ(5,20)A,B,C
20 FORMAT(3E10.3)

IF(A)30,40,30
30 D"B*B-4.*A*C

IF(D)50,60,70
50 XR1=-B/(2.*A)

XR2--B/(2.*A)
XIl=(SQRT(-D))/(2.*A)

d. COBOL

:IF DE,M,A,ND IS GREATER THAN STOCK-ON-HAND,

~

\

(

-,---,-,1 , , , ,A,~~ ,D,EMA,N,D, ,T,O, ,BAC,K.-O,RD,ER,S", , , ' , , , , , " ''-_L'--L-LL_'-_LLL(

: MOV,E, ,BAC,K,-,O,R,D,E,R,E,D ,TO ACT,I,O,N -C,ODE;, "

, , , ;O,T.f!E,R~.IS,E", , , , , , , , , , , , , , ' , , , , , , , , , , , , , , , ,

SUBTRACT DEMA,ND F,R,OM STOC,I\-ON -HAND 'LLLL'--'-'--'-'--'-'-'---'--'--LJ

MOVE O,R,DER-FILLED TO ACTION-CODE.

- -
Figure 6. Programming Languages

Input/Output Control systems

In addition to the language translators,
other important programming aids, called
input/output control systems, were
developed. These systems were designed to
improve the way computing systems performed
I/O operations. In the early computing
systems, the relatively slow I/O operations
and the much faster data processing
operations of the CPU could not be
performed at the same time (Figure 7).
Therefore, the CPU was idle much of the
time waiting for the completion of data
transfers between I/O devices and main
storage. To reduce this idle time,
computing systems were soon developed that
could perform input, output and data
processing operations all at the same time
(Figure 8). This represented a significant
improvement in the performance of computing
systems. However, to take advantage of the
improvement the programmer had to make sure
that the I/O operations were synchronized
with the processing of data; otherwise, the

CPU might attempt to process input data
before it arrived in main storage or
destroy output data before it was
transferred to an output device.
Therefore, input/output control systems
were developed to automatically synchronize
I/O operations with data processing.

Input

CPU
Processing

Output

2 3

Figure 7. sequential Input, Processing,
and Output

Input

CPU
Processing

Output

2 3 4 5 6 7

Figure 8. Concurrent Input, Processing,
and Output

An input/output control system consisted
of an interrelated group of programs that
was loaded into main storage along with the
processing programs. using such a system,
a programmer merely had to issue a "READ"
instruction to obtain the next block of
data from an input device or a "WRITE"
instruction to send a block of data to an
output device. The input/output control
system-picked up and interpreted the
instruction and then initiated and
controlled the necessary transfer of data
to or from main storage. In the meantime,
the CPU could continue processing data.

If each block of input data contained
more than one record the programmer merely
issued a "GET" instruction to get the next
record in sequence. The input/output
control system automatically controlled the
transfer and storage of data blocks and
parcelled out records one at a time fram
the blocks as they were requested by the
processing program (Figure 9). Similarly,
to transfer an output record, the
programmer merely issued a "PUT"
instruction. The input/output control
system then picked up and consolidated
records into a block before transferring
the block to an output device.

The Evolution of Operating Systems 17

Main Storage

Processing Program

PUT

Input Buffers Output Buffers

Input/Output Control System
'---"-------------"--

Figure 9. Data Retreival and Recording
Using an Input/Output Control
System

Input/output control systems assisted
programmers in other significant: ways. For
example, if an error was detected during an
input/output operation, the system
automaticall:i retried the operation and
attempted to recover from the "error
condition. It also checked labels at the
beginning of magnetic tape reels to ensure,
among other things, that the correct reel
was mounted on the right tape unit.
Input/output control systems, as a whole,
represented an important step in the
evolution of operaiting systems.

Other Programming Aids
\.,"

In addition 1to language translators and
input/output control systems, a variety of
other programming aids began to evolve.
These includ4ed programs for generating
reports" loading other programs into main
storage, com~ining several programs into a
single program, and recording the contents
of main storage in a readable fc)rm.

PROGRAM AND lDATA SHARING

The other rna jor movement that IE~d to the
development of operating systems started

18

with the realization that a great many of
the program and data resources at an
installation could be shared by different
users of the computing system, thereby
avoiding a great deal of programming and
data-gathering duplication. A program used
in one job could often be used with little
change in another job. Also, the same set
of data that was processed during one job
could often be processed in a different way
during another job. Program and data
sharing began as an informal cooperative
venture among users within an installation
but it soon involved a great many users at
different installations. In fact, users of
medium and large scale IBM computing
systems formed an organization,
appropriately called SHARE, to promote the
sharing of program and data resources.

Subroutine Sharing.

Program sharing took many different forms.
One was the sharing of subroutines -­
relatively short sequences of instructions
that could be incorporated into a program
to perform specific functions, such as
finding the square root of a number. This
type of sharing was often used in
conjunction with language translators.
Some translators had access to a magnetic
tape library of subroutines and
incorporated them into a program when
instructed to do so by the programmer.

~harinq of Generalized Programs

Another form of sharing was the use of
generalized programs for performing common
data processing tasks. Typical of these
were the generalized sort/merge programs.
At many business installations it was found
that a large percentage of computing system
time was spent in sorting and merging data
records into a prescribed sequence.

Rather than design a new program each
time a different set of records had to be
sorted or merged, many installations
reduced the programming effort by using a
single general purpose sort/merge program
that could be easily modified to process
different types of records in different
formats and sequences.

Among other shared generalized programs
were utility programs, used to perform
everyday tasks such as transcribing data
from one storage or I/O device to arlother.

Formal Sharing

As time went by, program and data sharing
techniques matured and the sharing became
more formalized. For example, many of the
generalized programs were refined and
improved so that they automatically
modified themselves in accordance with

specifications supplied by the programmer.
These specifications often developed into
formal language statements that a
programmer could use to communicate
precisely his special data processing needs
to the generalized program. At most
installations the operations staff
maintained# on magnetic tape or in the form
of punched cards, a central library of
programs and programming aids that could be
shared among the members of the
installation.

GROWTH IN APPLICATIONS

Largely because of the development of
programming aids and the formal sharing of
program and data resources, the number of
data processing applications grew at a
surprising rate throughout the industry.
The language barrier between the
programmers and the computing system,
although not eliminated, had at least been
breached. Many installations that had
specialized in long-running or often-run
jobs could now afford to program small
one-shot jobs. Many of the jobs were
developed by engineers and others who were
not professional programmers. Using the
mathematical language of FOR'I'RAN they could
now do their data processing work with
little or no help from a professional
programmer. The professional programmer
could devote much more of his time and
ingenuity in devising new applications and
posing new problems for solution.

As a result, the number of data
processing jobs at many installations
increased faster than the computing system
and its operator could handle them.

Second Stage: Integration and
Automatic Operation

The second stage, like the first, began as
a result of basic differences between human
and hardware resources. In the first
stage, they were language differences
between computing systems and the people
who programmed them. In the second stage,
they were differences in speed,
reliability, and reaction time between
computing systems and the people who
operated them.

THE MISCAST ROLE OF THE OPERATOR

As the volume of data processing jobs
increased throughout the industry, the
differences between the operator and the
computing system became more and more
apparent and significant. Because of these
differences# a computing system spent a

large part of its time idly waiting while
an operator peformed routine tasks or
momentarily pondered what to do next. The
problem lay in the sim~le fact that the
operator was too much involved in the
mechanics of data processing. In this
role, he could not match the data
processing speed and reliability of a
computing system no matter how swiftly and
surely he did his work. An operator often
spent more time preparing (setting up) a
computing system for a job than the system
spent in performing it (Figure 10). Some
computing systems, in fact, spent more than
half of the work day idly waiting for the
operator to do such things as mount
magnetic tape reels, place punched cards in
a card reader, or mani~ulate manual
controls. Wasted time, due to operator
intervention, was especially severe at
installations where many small jobs were
performed (FigurellA). The steadily
increasing speed of computing systems could
not compensate for such wasted time because
as jobs were processed faster, operator
"set-up" time between jobs remained the
same. Therefore, an even larger percentage
of computing system time was wasted waiting
for the operator (Figure llB).

Operator Time

Read Instructions
Mount Tape Reels
Set Console Switches
Load First Program and Start

Normal Stop?
Remove Tape Reels
What Job Next?
Setup Job
Load and Start

Computing System Time

Time

Figure 10. Idle Computing System Time
Betwee n Jobs

The Evolution of Operating Systems 19

A Many Small Jobs B
Operator Time ComplJting System Time

50% Running Time

Time

Figure 11. Idle Time When Processing Many Small Jobs

20

Operator Time

Many Small Jobs

Time

Computing System Time

Time Saved
25%

66-2/3% Idle Time I
--=-3-1/3% Running Time _ --± _

It isn't surprising then, that the
emphasis during the second stage in the
evolution of operating systems was on
applying the fast hardware resources of
computing system to reduce the data
processing activities of the operator.
ultimate oojective was the non-stop
processing of jobs (Figure 12).

Operator Time Start Computing System Time

Initial Setup o

Figure 12. The Ultimate Objective:
Non-stop processing of Jobs

SYSTEM INTEGRATION OF FIRST-STAGE
COMPONENTS

the

The

During the second stage many of the
programming tools and generalized programs
that were developed during the first stage
were brought together and placed under the
direction of a central control program to
form a single integrated system (Figure
13). The original reason for doing this
was to improve and, to a large extent,
mechanize the operation of the computing
system. Hence the name, "operating
system. II

The operating systems that were
developed during the second stage had a lot
of common characteristics. Many of their
features have survived the test of time
and, with refinements, improvements, and
extensions, still exist in present day

systems. Therefore, it might be helpful at
this point to briefly describe a typical
operating system, concentrating on those
characteristics that were first introduced
during the second stage and are now more or
less common to all systems. This
description can then serve as background
for understanding the third stage of
development, as typified by the System/360
Operating System.

Figure 13. System Integration of First
Stage Components

A TYPICAL OPERATING SYSTEM

When operating systems were first
introduced, their major, and sometimes
only, purpose was to control the
performance of a continuous series of
independent jobs with as little operator
intervention as possible. This was largely
accomplished by designing a control program
that assumed many of the functions
previously performed by the operator. By
reducing the degree of human participation
in the mechanics of job processing, the
control program helped "to ensure that jobs
were processed faster and more efficiently,
and were less subject to human error. It
also provided the operator with more time
to plan and direct the overall operation of
the system.

In various operating systems, the
control program was called the system
monitor, the executive program, the master
program, or some such name. Whatever the
name, each had the same basic goal, that
is, the non-stop processing of jobs.

The Evolution of Operating Systems 21

A New Contl:"ol Language For the Programmer
and Operator

To reach it:s goal, the control program had
to relieve the operator of his miscast role
as a middleman between the programmer and
the computE~r system. Therefore, a control
language was established which a progranuner
could use t:o bypass the operator and
communicatE~ directly to the control program
a precise definit:ion of the lNork (jobs and
job steps) he wanted perform<=d. Thi s
language c{)nsistE~d of several formal iQQ
control statement:s that could be recorded
on punched cards and later r(=ad,
interpreted, and acted upon by the control
program. One statement, usually called the
JOB statememt, was used to identify and
mark the beginning of a job. Another
statement, usually called the EXECUTE
statement, was used to mark 1:he beginning
of a job st~ep (or n job segment" as it was
sometimes called) and identify by name a
specific program that was to be executed to
perform thE~ job step. In most systems each
job could consist~ of one or more such steps
(Figure 14).

Step 3 (EXECUTE OBJECT

Stop 2 LECUTE LOAD -----,

Figure 14. JOB and EXECUTE Control
statements

Although the JOB and EXECt~E statements
(or their equivalents) were by far the most
important and often-used control
statements, most control programs were
designed to read, interpret, and react to a
number of other statements. A few of these
were provided for use by the plrogrammer.
Although the exact number and. type differed
depending on the specific control program,
they were generally used in an auxiliary
capacity for such things as instructing the
control program to relay a me·ssage to the
operator.

However" most of the control statements
were designed for use by the operator in
communicating information to the control
program and direc·ting its overall

22

operation. These usually included several
statem~nts that the operator could use to
alert the control program to any changes he
wished to make in the status or assignment
of I/O devices. Thus, the operator was
provided with a formal language, in the
form of control statements. With it, he
could exercise general control over the
system, without necessarily intervening in
its automatic operation.

Batched Job Process~

In order to reduce computing system idle
time, the control program automatically
controlled the transition from one job or
job step to another. To do this, it had to
have a backlog of jobs available and
awaiting processing. Therefore, as job
definitions, in the form of punched cards,
were received from the programmers, they
were placed one behind another to form a
batch, or "stack, n of job definitions
(Figure 15). The job oatch was then placed
on a computing system input device
specifically assigned for that purpose.
Because the job definitions were arranged
in a continuous series on a common job
input device, as soon as one job or jon
step was completed, the control program
could read and initiate the next job. Thus
a continuous stream of jobs could be read
and processed with a minimum of operator
intervention. This technique is referred
to as either batched job or ~)tacked job
processing.

JOB 1

Figure 15. A Batch of Job DE~finitions

A Common Job Input Device

At some installations., the unit assigned to
read the job input stream was a card
reader. However, at many installations,
especially large ones, each new batch of
job definitions was transcribed onto
magnetic tape before being read and
processed by the control program (a, Figure
16). The transcription was usually done on

a small auxiliary computing system, such as
an IBM 1401 Data Processing System. The
reason for transcribing job batches in this
way was to avoid continually tieing up the
larger and more expensive main computing
system while relatively slow card reading
operations were being performed.

Online

Central
Data Processor

Control Program
Translator Subsystems
Other Subsystems

(CPU and Main Storage)

Additional
I/O Units

Figure 16. Job Processing at a Typical
Operating system Installation

Common Utility I/O Devices

With some systems, advantages were gained
by assigning other I/O units to perform
specific roles for a series of job steps.
For example, several units were often
assigned as utility units that could be
used for the temporary storage of
intermediate data during the course of a
job step (b, Figure 16). Since the data
they contained at the end of a job step was
no longer required, the same units could be
used by the next job step without the
operator having to change tape reels.

A Common Job Output Device

Just as an input device was assigned and
used as a common job input file, most
systems used one or two output devices as
common job output files for recording
output data.

In some systems, a printer or card punch
was used for this purpose. However, in
most large-system installations each batch
of output data from a series of jobs was
recorded on magnetic tape in order to avoid
the relatively slow printing and card
punching operations. The output data was
then transcribed into printed or punched
card form by a small auxiliary computing
system (c, Figure 16). This was usually
the same auxiliary system that was used to
transcribe the input job batches from card
to tape. In some installations, a single
magnetic tape unit was used to record job
output data that was to be printed as well
as data to be punched on cards. The
auxiliary computing system separated and
directed the two types of data to the
proper device during the output operation.
Usually the punched card output consisted
of object programs produced by language
translators. The printed output usually
consisted of messages from the operating
system, sour~c program listings, storage
dumps, and other types of data from
specific applications.

Although the offline handling of job
input and output increased the rate at
which a batch of jobs could be processed,
it had its drawbacks. Because a batch of
jobs had to be scheduled three times in
succession in the overall process of
handling jobs, the programmers at many
installations found they had to wait a
considerable period of time after
submitting a job before they received any
results. Nevertheless, sharing a common
output unit for a series of jObS made it
unnecessary for the operator to remove an
output tape reel or a deck of cards at the
conclusion of each job or job step.

Additional I/O Devices

By assigning I/O units to perform specfic
functions and by sharing their use for a
series of jobs, many relatively small jobs
could be performed without any operator
intervention at all. However, operator
setup time was not eliminated entirely.
Many large job steps required additional
I/O units. These had to be set up by the
operator before processing of a job step
could begin. However, most control
programs kept up-to-date records of the
exact status of all I/O units. Whenever an

The Evolution of Operating Systems 23

additional tape unit or other device was
required to perform a job step, it was
assigned f.I:om a pool of available units and
the operator was given instructions as ·to
which tape reel t~o mount on which unit. He
no longer had to ponder what to do next.

Automatic step-to-step Transition

Whenever the cont.rol program encountered an
EXECUTE statement. while procE~ssing a series
of jobs, it. loaded into main storage the
program named in the statement. The
control program then relinquished cont.:ol
of the CPU to the program. l~fter the
program was executed to complete the job
step, control of the CPU was returned to
the control program. A program that was
thus loaded and executed to perform a job
step, could be anyone of seve.ral
frequently-used processing pl:ograms that
were includ.ed as an integral part of the
operating system. These pr09r.ams were
stored and maintained in auxiliary storage;
(storage other than main stol~age) usually
on one or more magnetic tape devices. As a
group, they were usually refer:red to as the
system library (Fligure 16).

The System Library

The programs contained in thE! system
library included the control program
itself, as well as a number of programming
aids and generalized programs -- much like
those developed during the first stage in
the evolution of operating s}'stems. Many,
in fact, were versions of these same
programs, modified to execute under the
direction of a control program,. AI though
the number and variety of programs
contained in the system library varied from
one system to another, they usually
included at least one language translator
program, an input/output cont.rol program
(or system), and a program th.at could be
used in loading other programs into main
storage. Many systems contain«:d a much
wider selection of general purpose programs
that could be used by a progr·ammer in
performing one job step or a series of :job
steps. These included generalized
sort/merge programs, utility programs,
report program generators, and several
different types of language translators.
Many of these were designed, furnished, and
maintained by the manufacturer of the
computing system. However, some users
often designed frequently-used programs of
their own and incorporated them into the
system libr.ary as a permanent part of their
operating system.

Operating System .subsystem~

In order to locate a program specified on
an EXECUTE card, ·the control program

24

maintained a record of the name location of
each program stored in the system library.
Some of the programs in the system library,
such as the language translators, were in
effect subsystems of the operating system
because they contained a control program
(or monitor) of their own which could read,
interpret and react to one or more control
language statements. The programmer used
these statements to define more precisely
the job he wanted performed by the
SUbsystem. Such statements were placed
behind the EXECUTE statement containing the
name of the subsystem (Figure 17). After
the main control program loaded a subsystem
into main storage and relinquished CPU
control, the subsystem could read its
control statements from the common job
input device, interpret them, and then
perform the job step in accordance with
specifications.

The specifications differed depending on
the subsystem. For a generalized sort/
merge program, for example, they included
such things as a description of the records
to be sorted. For a language translator
subsystem, they included such things as
whether or not the programmer wanted a
printed listing of his source program or
whether or not he wanted his program loaded
into main storage and executE~d after being
translated. For an Input/Output Control
System, they included a description of the
input/output data and the way it should be
processed.

DATA
(Source Program)

FORTRAN Translator
Control Cards

Execute FORTRAN

Job FORTRAN No, 5

Figure 17. A Single-Step Job Containing
Subsystem Control Cards and
Data

In some operating systems, a programmer
could place input data that was to be
processed by a subsystem at the end of a
job step definition (following the
subsystem control statements, as shown in
Figure 17). This data could then be read
and processed by the subsystem as it was
required. The data could be any of several

types depending on which subsystem was to
process it. For example, it could be in
the form of source language statements to
be translated by a language translatQr
subsystem, or machine language instructions
to be loaded into main storage by a loader
subsystem and then executed, or data
records to be sorted by a sort/merge
program.

Two important advantages were gained by
placing data to be processed by a subsystem
in the job input stream. First, it
eliminated the need for an additional I/O
device to read the data. Second, it
reduced, or eliminated job step setup time
by making it unnecessary for the operator
to mount a separate tape reel or load a
separate card deck containing the data.

The Control Program

The control program of most early operating
systems consisted of two parts: the
nucleus or basic monitor, and the
transitional monitor.

THE NUCLEUS: The nucleus was so called
because it always remained in main storage
while a series of jobs were processed. It
provided common facilities for
intercommunication and control among the
operator, the control program, and each of
the subsystems operating under the control
program. It contained information such as
the exact status of each I/O device and the
time of day. It also contained a number of
frequently-used service or utility routines
that were required by the control program,
but could also be shared and used by
subsystems. Typically, these consisted of
small routines for loading programs from
the system library into main storage,
converting data from one form to another,
writing messages to the operator, or
initiating a main storage dump.

More importantly however, the nucleus
contained supervisory routines that were
needed to coordinate and control I/O
operations. In some systems a complete
input/output control system was included in
the nucleus. It remained there for
immediate use by any program that needed
it.

In other systems, to conserve main
storage space, only parts of the I/O
control system were included in the
nucleus. These were key parts that were
needed to ensure centralized control of all
I/O transfers and to prevent interference
among the control program and its
subsystems. In some systems, standard
error recovery routines were included as

well. However, other parts of the
input/output control system were loaded
into main storage only when they were
needed in performing a specific job step.

THE TRANSITIONAL MONITOR: The other major
part of the control program was sometimes
called the transitional program or monitor.
Unlike the nuc leus, it occupied main
storage only during the interval between
one job or job step and another. Its main
function was to read, interpret, and react
to control statements (JOB and EXECUTE
statements) from the programmer and the
operator. In doing so, it automatically
controlled the transition from one job step
to another (by loading and transferring CPU
control to the subsystem or program named
on an EXECUTE card). Once the transition
to a new step was completed, the main
storage space occupied by the transitional
part of the control program was available
for use in performing the job step. After
the job step was completed, the
transitional monitor was loaded into main
storage again to perform its function of
init~ating the next job step.

An Example: The IBM 7090/7094 (IBSYS)
system

The operating system designed for the IBM
7090/7094 Data Processing system was one of
the most widely and heavily used of the
early operating systems (Figure 18). It
was typical of other operating systems of
the time in that it employed components
that were largely developed during the
first stage in the evolution of operating
systems. For example, it used the FORTRAN
II Processor (a language translator) which
was developed by IBM customers before the
operating system came into existence.

The IBM 7090/7094 Operating System was
unusual, however, in that is contained what
amounted to an operating system within an
operating system. This was the IBJOB
Processor subsystem, shown in Figure 18,
that contained its own control program, or
"monitor" as it was then called. The IBJOB
Processor subsystem could be used to
compile, assemble, load, and execute
programs written in FORTRAN IV and COBOL
language. It could also be used to
assemble, load, and execute programs
written in an assembler language, or to
load and execute previously assembled
object programs. It also provided
facilities for combining program segments
written in different languages with
previously assembled segments to form a
single executable object program. Many of
the innovations and techniques that were
first used in the IBM 7090/7094 Operating
System were later used in designing other
operating systems.

The Evolution of Operating Systems 25

System
Monitor [~m-am

Translator
Processor

Geneilalized
Sorting
System

<Control Program)
FORTRAN~
Processor ~

Input/Output
Control
System

t
$EXECUTE CT $EXECUTE SORT

I I
$EXECUTE 9PAC $EXECUTE DK90UT

[~G IBJOB Processor Subsystem

I
$EXECUTE IBJOB

IBJOB

+
$EXECUTE FORTRAN
or $EXECY,TE IBSFAP .
$EXECUTE RESTART

Restart]
Program

$EXECtTE IOCS

I
$EXECUTE?

Installation
Programs

Monitor

~ ~
ORTRANIV COBOL
ompiler Compiler [~

Macro
Assembly
Program

~
Relocatable

IBJOB Subroutines

" Loader ~ Including
IOCS

Figure 18. IBM 7090/7094 IBSYS Operating System

BENEFITS FOR LONG-RUNNING JOBS

The second stage extended the application
of medium and large scale data processing
systems by makin9 it more profitable to use
them in designinq and executing series of
small progl~ams.

When large long-running programs (Figure
19) were executecL under the direction of
the operating system, the benefits were
less. simply because there were fewer
transitions and t~herefore fewer operator
interventions to be eliminated. However,
·these largE! programs often required a great
many man hours to design, test, and
maintain,. Therefore, to speed up the
development. process, the work of designing,
testing, and maintaining them was often
divided among several programmers. The
language t:ranslat.ors and program loaders in
some systems had special provisions that
allowed different. parts of the same program
to be designed, t.ested, and maintained
independently and later combined to form a

26

single program. In some sys1tems, different
parts of the same program could be written
in different languages. Accordingly, the
process of translating, testing and
maintaining large programs in pieces often
required the initiation and performance of
a relatively large number of small jobs and
job steps, like those shown earlier in
Figure 11. Thus, the benefits to be
derived from the automatic t:cansition
between jobs and job steps were not
necessarily limited to the design and
execution of small programs.

In any event, the running time of a
typical medium or large scale computing
system was improved by using an operating
system. Moreover, the productivity of many
programmers was improved because they were
provided with a variety of centralized
programming aids and precoded routines that
they could employ singly or in combination
without a great deal of difficulty. As a
result, the amount of work that could be
performed at many installations was
significantly increased.

Few Long Jobs

Operator Time

Time

Computing System Time

10% Idle Time
90% Running Time

Figure 19. The Running Time of a Computing
System When Processing a Few
Long Jobs

OPERATING SYSTEM APPLICATIONS

The operating systems that were developed
during the second stage were primarily
designed for problem solvers -- engineers,
scientists, and mathematicians. Most of
these early operating systems were
sequential. offline applications (Figure
20) '. They controlled the performance of
work in a sequential order. one job or job
step at a time, and with rare exceptions
had no direct communication with the source
or destination of the data that was
processed. They were usually tape-oriented
systems, relying on magnetic tape for
auxiliary storage and fast I/O. Typically,
they ha.ndled two kinds of jobs:

• Relatively small jobs. performed only
once to solve a problem or to process a
program being developed, tested. or
maintained.

• :Large. long-runni ng jobs, perf ormed
periodically for commercial purposes.
such as payroll accounting and record
keeping.

Although some of the more recent systems
used direct access storage devices for the
system library and for temporary
intermediate storage, few took advantage of
the ability of these devices to store and
access data quickly. Master data (data
such as inventory records, personnel
records, and payroll information, which
represented the current business status of
the organization) was maintained in a
prescribed sequential order. Transaction
data (such as debits. credits, and changes
in personnel and payroll information, which
represented the activities of the
organization since the last update of the
master file) was batched and presorted in
the same prescribed order before it was
processed. Therefore, the second stage
operating systems were limited to
applications in which it was not necessary
to respond immediately to requests for
processing and continuously update the
master file.

In the meantime, however, a number of
online, direct access systems were being
developed independently of operating
systems. In these applications, immediate
response to requests for processing was of
extreme importance.

Batches of
Transaction
Records Input

Units

Batches of Output
Data Items

Figure 20. sequential, Offline Application

Online Direct Access Systems

During the 1950's and early 1960's, a
number of online direct access systems were
developed independently of the second stage
systems that caroe to be known as operating
systems. Whereas operating systems were
originally developed for problem solvers -­
the scientific and engineering community of
users -- online systems were developed for

The Evolution of Operating Systems 27

specializE~d commercial acti vi ties that
demandedimmediette response to transactions
(Figure 21).

Bank Teller Reservations Clerk

Data
Processor

Master]-
Data
Files

Figure 21.. onli.ne Direct Access
Applications

Salesman

In an online, direct access application,
the system communicates d.irE~ctly with the
source and destination of the data it
processes.. The data can be sent to or
received from local I/O devices or devices
at remote locations (by way of
telecommunication lines).. ']~herefore,
transaction data can be processed as it is
received. Also, the master files can be
interrogated to produce up-t:o-date output
information (reports, statistics, invoices,
etc.) as :requir€!d.

The records of the master files mayor
may not be arranged in a prE~scribed
sequence. If they are arranged in a
prescribed sequence, they may occasionally
be processed sequentially (to prepare a
summary re~port, for example), but usually
they are interrogated in a random
(non-sequential) order as they are received
at the installation.. Therefore, direct
access storage devices are c~l:most always
used to st.ore the master files in an
online, direct access application ..

28

AIRLINE RESERVATION SYSTEMS

Online direct access system applications
were typified by the early airline
reservation systems, in which master files,
containing seat inventory records for
hundreds of aircraft flights, were stored
in direct access storage. By entering
pertinent data into the system, ticket
agents at widely separated locations could
check the availability of space on a
particular flight, sell and cancel
reservations, and handle similar
transactions, all within a few seconds.

However, there were some difficult
problems in developing a system for this
kind of application. The system had to
respond quickly to each transaction and
complete it within seconds. It was not
possible to accumulate transaction data,
sort it into batches, and then process each
batch to interrogate or update the master
file. Furthermore, the system had to keep
the master file continuously up-to-date. A
ticket agent and his customer would not
tolerate long delays in awaiting
confirmation on the availability of space
on a particular flight. Moreover, if the
master file was not kept up--to-date the
agent might sell space already sold by
another agent at a different location.

Solving these problems was a formidable
undertaking, primarily because of the
dynamic nature of an online application.

The Problem of Coping With the Work Loaq

A transaction usually required several
references to the master file. In
addition, different types of transactions
(inquiries, sales, cancellations, etc.)
required different programs to process
them. All of these programs could not be
in main storage at the same time.
Therefore many of the programs had to be
stored in direct access storage and brought
into main storage each time they were
needed to process a transaction. All of
this took time. Much time was spent, not
in processing transactions, but in locating
and gaining access to data and programs in
direct access s·torage. Meanwhile, dozens
of other requests to process transactions
might have been received.

To add to the problem, transactions
occurred unpredictably. There were peak
periods of activity, such as on weekends or
during morning and evening rush hours, when
hundreds or thousands of transactions would
have to be processed within minutes. Even
a sudden change in the weather could effect

a sharp increase or decrease in the
frequency of the transactions. If the
transactions were processed one at a time
in the order they were received, it would
be impossible to keep up with all of them,
especially during periods of peak activity.
To do so would require communication lines
and computing systems that were much faster
then those available at the time.
Therefore, some means had to be found to
handle transactions more quickly. This
could only be done by using the hardware
and information resources of the
installation more effectively.
Accordingly, a special purpose control
program was designed for the application.

The Solution: The Concurrent Processing of
Transactions

The special purpose control program treated
each transaction as a separate and distinct
work unit and when necessary handled more
than one transaction at a time. To do
this, the control program had to keep track
of hardware and information resources and
allocate them as they were required to
process each transaction. If the
processing of one transaction was
temporarily held up to gain access to a
program or data in direct access storage,
then resources were allocated to start
processing a new transaction or to continue
processing a transaction that had been
started earlier. Thus, several
transactions could be processed
concurrently to keep pace with new
transactions and respond to them within a
reasonable period of time.

Each independent transaction required
only a fraction of the available resources
of the system. Therefore, by processing
more than one transaction at a time, by
keeping account of their status, and by
allocating resources dynamically (as they
were required) the control program could
keep up with a heavy, fluctuating work
load.

This increased the rate at which the
computing system could process transactions
without extending response time beyond a
reasonable limit. This is shown in Figure
22, which compares the serial processing of
transactions with the concurrent processing
of the same transactions. Note that it
takes more time (a fraction of a second or
so) to process transaction A concurrently
with Band C then to process A alone.
However, when A, Band C are processed
concurrently, the time required to respond
to Band C is greatly reduced and the three
transactions are completed in less time.
In many online direct access applications

it is not unusual for 20 or more
transactions to be processed concurrently.

Transaction A
CPU Time

File Access Time

Transaction B
CPU Time

File Access Time

Transaction C
CPU Time

File Access Time

-
-----------t~ Time

Transaction A Processed Alone

CPU __ ~! Control Flow ~\ ~

, " I ,,\) \ , I
I I I , I
:"""'JT1....,.j:: '::"'~,:·"'::':','.:/~ ~I (" .! I\~ ~ ('L-I

~ ... , +"'c::::::::l ~',
I \ I) I \
~J ~ '-[-=:y

----------~. Tin,e
Transaction A Processed Concurrently

with Transactions Band C

Figure 22. Comparison Between the
Processing of Transactions
Singly and Concurrently

CONCURRENT WORK TECHNIQUES AND OTHER
APPLICATIONS

The technique of performing transactions
concurrently made the differences between
success and failure in online system
applications. It increased the
productivity of a commercial installatron
by making more effective use of its
hardware and information resources in
processing transactions. The processing pf
a transaction really re:presented a data'
processing task, that is, a definite unit
of work performed by the CPU. If
techniques could be developed for
processing more than one transaction for
online direct access a:p:plications, why
could not similar techniques be used to
perform transaction tasks, on other kinds
of tasks, for other applications such as
operating systems? If so, the productivity
of many installations could be further
increased. This possibility led to the
third stage in the evolution of operating
systems.

The Third Stage: A Union of
Techniques

The third and current stage in the
evolu-tion of operating systems began with
the realization that many of the techniques
developed in the second stage could be
improved and incorporated into a general
purpose operating system. These techniques
included the methods of designing programs,
managing jobs, and managing data that had
been developed for the early operating
systems, and facilities for the concurrent
performance of data processing tasks that
had been developed for online direct access
systems.

'Ihe Evolution of Operating Systems 29

As a result of this union of techniques,
the range of application and t:he overall
productivit.y of operating systems was
substantially increased. Opel:ating systems
could now be designed to serve a variety of
advanced s:{stem applications as well as
traditional accounting, record keeping and
problem solving applications.

One of ic.he most important objectives in
designing such an operating system was the
concurrent perfo:rmance of data processing

·30

tasks. But two other objectives were of
equal importance:

• To design a general purpose system that
would satisfy the needs of a variety of
users.

• To provide each user with a system
tailored to his needs and capable of
growth in performance, facility, and
application without disruption.

These objectives led to the development of
the IBM System/360 Operating System.

PART 2: THE IBM SYSTEM/360
OPERATING SYSTEM

This part describes the IBM System/360
Operating System: its design objectives,
organization and function, control program
configurations, task management, information
management, program development and
management, multiprocessing, and
teleprocessing.

Part 2: The IBM System/360 operating System 31

One of the most challenging objectives in
designing the System/360 Operating System
was to produce a general purpose system
that could satisfy the data processing
needs of the majority of users at medium
and large scale System/360 installations.
In the. past, discrete systems had been
designed to meet the needs of the "Typical
User." But experience had shown that there
was no such thing as a typical user. Data
processing needs differed greatly from one
installation to another, and between
individual users within an installation.

Any attempt to satisfy such diverse
needs with a single system would have been
wasteful of resources. Many installations
would end up paying a penalty, in storage
space and other resources, for facilities
they did not need, while other
installations would suffer from a lack of
needed facilities.

Therefore, instead of designing one or
more discrete systems, IBM decided to allow
each customer to generate the kind of
operating system he required.

The first step in generating a system
that satisfies the data processing needs of
an installation is to determine exactly
what those needs are. To do this a study
is usually conducted to answer such
questions as: What is the total volume of
data processing work that must be done?
What types of work must be perfoImed? What
is the relative priority of the different
types of work? What kind of assistance
does each member of the installation need
to do his job?

After determining needs, the next step
is to select the computing system
(hardware) combination and operating system
(software) combination that will best
satisfy those needs. In selecting the
appropriate hardware/software combination
the main objective is to improve the
productivity of the total installation.

Productivity depends on the performance
and facility (ease of use and operation) of
the total hardware/software system. These
factors, combined with the skill of its
members, determine whether an installation
has the capability to do the work that must
be done.

A General Purpose System

Investing Resources

The performance and facility, and
therefore, the productivity of a total
system depends on the hardware, software,
and human resources invested in the system.
In general, the greater the investment in
resources the greater is the performance
and facility of the system (Figure 23).
However, performance involves other
interrelated factors: throughput, response
time (called turnaround time in batch job
processing), and availability. For a given
investment of resources, one factor can be
improved only at the expense of others. At
some installations, response time and
availability are of prime importance; at
others, throughput is of greater
importance.

Therefore, the main objective in
planning and selecting a system should be
to invest resources in a way that properly
balances these factors and gives the kind
of performance and facility that the
installation requires.

Resource
Investments

Human
Resources

I .
Hardware Software
Resources Resources

Productivity Gain

t t t __ -------- p

r
o
d
u
c
t
i
v
i
t
Y

1------1--- -
Fifth
Investment

Fourth
Investment

Third
Investment

Second
Investment

Initial
Investment

--
--
--

--

Throughput I I
Turnaround i~iF!Li~:1;,i;iUi:::>i";Ei;:1
Availability

Facility

Figure 23. Investing Resources to Increase
Productivity

A General Purpose System 33

Modular Construction

In order to allow each installation to
select the resources it requires, the
operating system was designed using a
method called modular construction. The
total system consists of a large number of
parts, or modules, in the form of organized
collections of instructions and data
(Figure 24). These modules can be
assembled and linked together in many
combinations to form unique operating
systems and can be replaced independently
of one another. The really distinguishing
characteristic of a module is the fact that
it can be replaced independently of other
modules. Some of the modules are required
in every operating system; others are
either optional or alternative. (An
installation must select a module from a
group of alternative modules but need not
select a module from a group of optional
modules.)

Replaceable Parts Produced by IBM

Alternative Required Optional

6] [I~~~[] ._
or or or

rl D~~~]=] •••
~ D~~~j] _._

or ~'

D ~ _':r- ""'tem/lGO - f+_

~------.. -----.. --
Your Operating System

~

I - 11-
cc· II •• _II-

I
r=~ __ J.

Figure 24. Constructing Your Operating
Syst~em

34

The operating system is not assembled
before delivery,. Instead, IBl-'l makes
available to its customers all of the
required, optional, and alternative modules
it produces. From them, each customer
selects and constructs the kind of
operating system he requires. To meet the
needs of a great many installations, IBM
has made available many more facilities
than anyone installation would require.
An installation should select only those
facilities it really needs; the selection
of unnecessary facilities can result in a
costly waste of storage space, CPU time and
other resources.

Defining and Generating ,the System

Once a hardware/software combination has
been selected, the next step is to define
the combination so that it can be generated
automatically. The customer does this with
an IBM-supplied system generation language
with which he defines the optional and
alternative components to be included in
his system. 12 Using this def:inition and a
program library of modules supplied by IBM,
another IBM system/360 Operating system can
automatically retrieve, assemble and link
together all of the parts required for the
specified system. If the installation does
not already have an operating system, IBM
supplies a pregenerated syst:em. Although
IBM tries to anticipate the needs of its
customers, inevitably there are some parts
of an operating system that a customer,
because of his special needs, may wish to
design and supply himself. These may be in
the form of either replacements or
additions to the system. Such replacements
and additions can be integrated into the
system when the system is generated. Some
can even be incorporated into the system
after it is generated. In some cases IBM
has anticipated the need for specialized
additions and e.xtensions to the operating
system by supplying programming aids such
as system utility programs, which the
system programming staff can use for this
purpose. 15

Tailoring the System to Individual
and Daily Needs

selecting and generating an operating
system for an installation is just the
first phase of a continual process of
tailoring the system to changing needs.
Such tailoring is made possible because of
the flexibility inherent in the design of
the system. However, this flexibility is
not provided to allow every user complete
freedom to use the system as he chooses.
The installation staff must narrow the

choices that can be made by individual
users so that the system does not seem
overwhelming to those who use it.
Flexibility is provided to allow the
systems programming and operations staff to
react to changing needs and to exercise
control over the use and operation of the
system. By so doing they can help to
ensure that the hardware and software
resources of the system are used
efficiently, promote the sharing of data
and program resources, avoid duplication of
effort and help to simplify the use of the
operating system. The system programming
and operations staff can do this by:

• selecting default options when the
system is generated.

• selecting options at the beginning of a
work period (at initialization).

• Sharing data.

• Storing standard procedures and
cataloging them for fast retrieval.

• Controlling the system during
operation.

Selecting Default Options

Each processing program provides a number
of optional services or features that a
programmer can choose prior to using the
program. However, when the operating
system is generated, the installation staff
can specify which options are to be used by
default if the programmer does not make a
positive choice. For example, at the
option of the programmer a language
translator mayor may not provide a source
program listing. At system generation, the
installation staff can decide whether or
not the listing will be supplied when no
choice is made by the programmer. By
specifying default options that will best
serve the needs of the installation, the
systems programming and operations staff
can control and standardize the use of
processing programs and limit the number of
choices that have to be made.

Selecting Options When the Control
Program is Initialized

When the operator initializes the control
program at the beginning of a work period,
he can elect that certain routines,
including parts of the control program
itself, remain in main storage throughout
the work period. By making such choices,
based on the type of work that will be
performed during the work period., he can
increase the performance of the system.

Sharing Data Sets

A system programmer can define and create
data sets that can be used, without further
definition, by several programmers. This
not only saves storage space but saves time
in updating duplicate data, and avoids
duplication of effort on the part of the
programmers.

Cataloging Procedures

When similar jobs are to be performed by
several programmers, the system programmer
can catalog and store in direct access
storage a standard job definition that can
later be retrieved and used by each
programmer without completely redefining
the job. This not only reduces duplication
of effort but also helps to standardize the
use of the system.

Controlling System Operation

Once the control program is initialized and
the system is in operation, the operator
can dynamically alter and adjust its .
operation, based on the flow and type of
work and the availability of resources.
For example, with certain configurations ot
the control program he can control the
number and type of jobs that are performed
concurrently, cancel jobs, and change the
priority of jobs. In short, the operations
staff has a great deal of high-level
control over the operating characteristics
of the system. This control can be used to
achieve a high degree of productivity.
However, to take full advantage of it
requires an operations planning activity
that analyzes and monitors work
requirements and:

• Determines which operations-related
options are to be selected when the
system is generated.

• Plans which options are to be selected
each time the control program is
initialized.

• Plans the order in which the work is to
be entered into the system.

• Plans the overall operation of the
system.

• Establishes standard procedures to be
followed by the operator when
particular contingencies arise.

• Monitors and reviews the operation of
the system to ensure that the resources
of the system are being used most
effectively.

A General Purpose System 35

Controllinlg' the Use of the 8ystern

If a system is to achieve the production it
is capable of, rE~asonable control must also
be exercisE~d over its use. ~~his is
important t.o the success of any
high-production installation.. It is doubly
important a.t inst~allations where
information and hardware resources can be
concurrently shared by more 1:han one user,
and where t.he operations sta j:f has a great
deal of flexibility in adjus1:ing the
operation of the system to the workload.
At such installations, one user, in the
course of pursuing his own interests, can
adversely affect the interes1:s of other
users. For example, one user may assign
priority to a job that does not require it,
and unduly delay the completion of jobs
that do. Another user may request more
storage spalce than his job requires, and
perhaps prE~vent other jobs from being
performed concurrently with his job. To
prevent individual users from unnecessarily
diminishinq overall productivity, an
installation can:

36

• Price the use of resources in a way
that promotes maximum sharing of
resources.

• Establish rules and regulations on the
use of the system" for example, rules
for assigning priority to jobs or jobs
to specific classes.

• Establish standard ways of using the
system, appropriate to the types of
applications at the installation.

• Check job control statements to ensure
that installation rules and conventions
are followed.

Effective control over the use and
operation of the system/360 Operating
System is particularly important because it
provides an opportunity to greatly improve
performance through efficient sharing of
resources.

From its very beginning, the electronic
data processing industry has been marked by
extraordinary growth. One aspect of this
growth has been an ever increasing number
of possible data processing applications.
The number and scope of possible
applications have grown so rapidly that
indiviBual data processing installations
have been unable to keep pace in
implementing them. Growth at a data
processing installation has often been an
expensive and painful experience.
Therefore, the second major objective in
designing the Systern/360 Operating System
was to provide easy installation with the
ability to grow without disruption.

Growth in the Past

To date, growth at many data processing
installations has been disruptive. If a
significant advance in technology or an
increase in the number and scope of data
processing jobs forced a user to expand the
production capacity of his installation, he
often had but one choice. That was to
replace his old system, or a large part of
it, with a new one. Usually, this required
that he re-program and modify many of his
applications. Sometimes it even required
that he reformat all or most of his data.
In addition, it required some retraining of
the programming and operations staff.
Considering the great investment in
program, data, and human resources at a
typical installation, this kind of
disruptive growth proved to be far too
expensive. In fact, it sometimes took
years for an installation to fully recover.
To reduce the number of such painful
experiences, many installations either
delayed expansion or expanded to a capacity
that was far beyond their immediate needs.
As a result their growth pattern was
somewhat like that shown in Figure 25:
either far too much capacity or not enough.

Evolutionary Growth at an
Installation
To avoid disruptive growth patterns, the
operating system was designed using modular
construction (described in the previous
section). Modular construction allows a
customer to generate a system from a
combination of required, optional, and
alternative modules and to replace or add
modules when necessary. It is basically
the same method that is used to construct a
systern/360 Computing ~stem or system/370
Computing System from a wide selection of

Growth Without Disruption

central processing units, storage devices,
and I/O units. By selecting an appropriate
combination of operating system and
computing system options, a user can arrive
at a software/hardware system whose
performance matches the workload (number
and scope of applications) at his
particular installation. As the workload
increases, performance and facility
(productive capacity) can also be increased
by adding or replacing computing system
resources, selecting other operating system
options, and using the operating system in
different ways. This can be done in small
incremental steps in order to keep pace
with a steady increase in workload (Figure
26). Thus, periods of extreme underloading
or overloading of a system can be avoided.

r

Productive - r'7'""""7'""""7'""""~~7'""""7'""""7'"""""7":':'7""-­
Capacity

Over Capacity D
Under Capacity •

-------...,.,~ Time

Figure 25. Disruptive Growth

1
Reserve Capacity D

-------~.~ Time

Figure 26. ~volutionary 'Growth by
Incremental steps

Evolutionary Growth in Improving
the System
Modular construction not only makes it
possible for an operating system to grow in
small evolutionary steps, it also makes it
possible for IBM to continue to improve the
performance and extend the growth of the

Growth Without Disruption 37

system and pass on the benefit:s to
individual installations. IBM can do this
by replacing' one module of the system with
a new module that performs the same
function more effi.ciently" or by adding new
optional modules that an installation can
select in order to advance to new
applications or to increase overall
productivit~y. Another way is to provide
new modules that perform the same basic
function but~ have different performance
characte.rist~ics. An example of this would
be two alteI:nativE! modules (Figure 27) that
perform the same basic function but differ
in that one (A) is small but slow and the
other (B) is fast but large. Another
example would be t:wo program translators,
one of which translates programs quickly
while the ot:her produces highly efficien·t
object progl:ams. The former could be used
for compiling short-running one-shot
programs, while the latter could be used
for long-running or frequently run
programs. One or the other or both might
be used at a particular installation. In
such ways, t:he modular construction of the
operating system E~nables IBM to make
evolutionary improvements in th.e design of
the system. This has a number of important
advantages.

Figure 27. Optimizing Specific
Characteristics: Size
vs. speed

GROWTH IN PERFORMANCE

Modular construction makes it. possible to
continually upgrade the overall performance
and facility of the system as a whole. In
fact, since the operating system was first
introduced, it has gone through a

38

succession of refinements and improvements
that have significantly improved its
performance and made it easier to use.
This has had the general effect of raising
the initial productive capacity of the
system (Figure 28).

I
Upgraded
Productive
Capacity

--",.,...... ,.....-

.,..",."....-""'-" ..

--
.-_ - Applications

(Number and Scope)

Original
Productive
Capacity

Additional Capacity iii

--------... Time

Figure 28. Raising the Initial Productive
Capacity of the System Through
Design Improvements

GROWTH IN APPLICATION

Modular construction has also made it
possible for IBM to extend the productive
capacity of the system (as shown in Figure
29), thereby, increasing the number and
scope of possible new applica·tions. In
fact, the system has already been extended
to encompass new system applications that
use such techniques as multiprogramming and
multiprocessing.

r--+­-.r.r-",..
I-r - -'~..---

Future ._-'_._...1 _---
Productive ___ .-I ~~-
Capacity _~-r--_---

Yesterday

_----~ Possible

Today

Future Applications
(Number and Scope)

Tomorrow

'-------...... Time

Figure 29. Extending the Production
Capacity and Application of the
system

TECHNOLOGICAL GROWTH

Because of their modular construction, both
the operating system and the computing
system can benefit from future developments
and improvements in data processing

technology. By taking advantage of new
data processing techniques and equipment.
IBM" through evoluti onary change, can
improve the performance and application of
the operating system. Over a period of
time it can even change the basic design
characteristics of the system, often in
ways not even contemplated by the original
designers.

Other Growth Factors

Growth without disruption is not achieved
through modular construction alone,.
however '. There are a number of other
factors in the design of the operating
system that make it possible for an
installation to avoid the growth problems
that have plagued the data processing
industry in the past.

COMPATIBILITY

To ensure a smooth transition from one
configuration to another., the operating
system was designed with compatibility as a
primary goal. Operating system processing
programs (such as language translators and
utility programs etc.) that are provided
by IBM can be used with any operating
system configuration. Also, jobs and
programs designed to run under control of
one configuration can run under control of
a larger configuration.

For example, System/360 is program
compatible with System/370 except for
Models 20, 44, and 67. Programs used for
System/360 can fUnction on system/370,
except those programs which:

• Use System/360 model dependent
features.

• Use PSW bit 12 -- the ASCII bit.
• Use machine-dependent data.
• Use low-address main storage for

special purposes.
• Depend on devices or facilities not

available in System/370.
• Deliberately cause program exceptions.
• Are time dependent.

DEVICE INDEPENDENCE

Using the operating system, programs can be
written in such a way that they are not
directly tied to a particular I/O unit.
This is an important factor in achieving
growth without disruption. By keeping the
programs independent of the devices, it is
possible to add new I/O equipment without
affecting existing programs that might use

them. Also, IBM can extend or modify the
operating system to handle new types of
devices and make them available for
immediate use with existing programs.

(

MULTIPLE TASK MANAGEMENT

Another factor that promotes growth without
I disruption is the ability of the control

program to control the performance of more
than one data processing task at a time.

A task is simply work to be
accomplished. In system/360, the work to
be accomplished is the processing of data
by the CPU. To perform a data processing
task. the CPU carries out (executes) a
series of instructions that is variously
called a program, subprogram, routine or
subroutine. In short, a data processing
task is the work performed by the CPU while
executing a program or part of a program.
It is an independent unit of work that can
compete for the resources of the system.

Because of this ability, the hardware
resources of the computing system can be
expanded and used efficiently without
reprogramming simply by increasing the
number of tasks that are performed
concurrently. For example, if more main
storage space is added to a system, it can
be readily used by increasing the number of
jobs that are performed concurrently. In
such multiple-task configurations, the
basic mechanism for allocating and managing
the concurrent use of resources already
exists. Therefore, the system need not be
redesigned or modified each time additional
resources are added.

STANDARDS

Another, perhaps not so obvious, way in
which the design of the operating system
helps to ensure growth without disruption
is by establishing standards that can be
passed on to and used by customers. These
standards ensure coordinated operation of
the system. They include:

• Standard data formats.
• Standard data labels.
• Standard ways of linking programs.
• Standard ways of communicating from one

program or routine to another.

By adopting such standards a customer
can help to ensure that his data. programs,
and methods are compatible with one another
and with those of present and future
versions of the operating system.

Growth Without Disruption 39

The General Organization and Function of Operating
System/360

The system/360 Operating System consists of
an organized collection of programs that
communicate with one another in standard
ways. The system is formed of two basic
classes of programs: programs that are
executed when the CPU is in the supervisor
state (when I/O and other certain key
instructions can be executed) and programs
that are executed when the CPU is in the
problem state.

Supervisor State Programs

The supervisor state programs are called,
as a group, the system supervisor or
supervisor. The supervisor is the service
and control center of the operating system
(Figure 30). Its primary function is to
perform a variety of services requested by
the problem state programs, such as
allocating storage space, performing I/O
operations, loading programs into main
storage" and initiating the execution of
programs. To perform its function, the
supervisor always receives control of the
CPU following an interruption of a problem
state program. An interruption may result
from a specific service request from a
problem state program or it may be an
automatic interruption initiated by the
computing system.

Service Requests

A service is requested by a problem state
program through the execution of a
supervisor call (SVC) instruction. This
results in an interruption of the
requesting program and a transfer of
control to the supervisor. Usually the
request is accompanied by information that
the supervisor requires to perform the
service. For example, a request to load a
program into main storage would be
accompanied by the name of the program to
be loaded.

Automatic Interruptions

An automatic interruption does not
represent a specific request by a problem
state program. Rather, it is initiated by
the computing system. An automatic
interruption results when a significant or
unusual event occurs within the computing
system, such as the completion of an I/O
operation or the detection of an error.
The computing system continuously monitors
its own operation so that when an event

that requires action by the supervisor
occurs, the current program is interrupted
and CPU control is passed to the
supervisor.. The interruption network that
is built into the computing system relieves
the problem state program or the supervisor
from continually checking to determine if a
significant event has occurred or from
wasting time in idly waiting for an event
to occur.

Operator
Job Output

Problem
State

Computing
System
Resources

Figure 30. Operating system/360 supervisor
and Problem state Programs

The Effect of an Interruption

An interruption to a problem state program
has the effect of placing the CPU in the
supervisor state, transferring control of
the CPU to the supervisor, and passing on
to the supervisor information (in the form
of a program status word) indicating the
cause of the interruption and the status of
the program when it was interrupted. Once
the supervisor receives control, it can
perform tests to determine exactly what
event caused the interruption and then take
appropriate action. When the supervisor
has completed its action, it can return

The General Organization and Function of Operating System/360 41

control to ,a previously inter~lpted
program, using the program's status word.

An interruption of a problem state
program may be caused by an event that is
entirely unrelated to the program. For
example, an interruption may result from
the completion of an I/O ope:ration for
another program. In basic versions of the
operating system., the supervis(:>r always
returns control of the CPU to the same
problem state program that was being
executed when the interruption occurred.
In versions of the operating system that
are designed to control the perfo.rmance of
more than one data processing task at a
time., the supervisor may return control to
the same or to a different problem state
program. 8

Privileged Instructions

When the supervisor receives control of the
CPU as a result of an interruption, it can
have the CPU execute certain key
instructions, such as I/O and :storage
protection instructions. ThE!se can be
executed only whe·n the supervisor is in
control, and are, therefore, called
privileged instructions. If p:rivileged
instructions were executed as part of a
problem state program, they could interfere
with the executiclD of anothel~ problem state
program or with the execution of the
supervisor itself. For this r,eason, these
instructions cause an error condition when
an attempt is made to executE~ them in a
problem state program.

The Basis of Control

The interruption network and the privileged
instructions constitute the basic mechanism
that enable!s the supervi sor to service
requests by the problem state programs and
maintain dl'namic control ove]::- the
performance~ of work by the computing
system. In the course of executing problem
state programs, control of the CPU is
continuall}' passed back and forth between
the programs and the supervisor as the
supervisor answers requests for services
and responds to E~vents detected by the
computing system •.

During t~he int:ervals when it is in
control of the CPU, the supervisor
maintains complet:e control over the
allocation and use of the resources of the
hardware/softwarE~ system. To do this, the
supervisor keeps a running account of all
the programs, dat:a and computing system
resources in the system, and their exact
status. It: also keeps a running account of
its oWn continually changing status. It
can thereby maint:ain continuous control

42

over the activities of the system and
prevent one program from interfering with
another. By maintaining up-to-date records
of everything that happens, t.he supervisor
can coordinate its supervision of the
system even though it receivE~s control of
the CPU intermittently. The interruption
network ensures that the supervisor
receives control when necessary and the use
of the privileged instructions enables it
to prevent interprogram intel~ference.

Key parts of the supervisor always

I reside in protected main storage
(optionally protected for MF'r). 8 Some of
these, such as the supervisor routines that
ini~~ate and control I/O operations, reside
permanently in mai n storage primarily to
ensure continuous and coordinated control
over the operation of the system. Other
parts of the supervisor, such as the
supervisor routines that control the
allocation of main storage space, reside
permanently in wain storage because they
are used frequently. supervisor routines
that are less frequently used, and whose
immediate presence in main storage is not
vital to the eff:icient operation of the
system, are usually brought into main
storage from a direct access storage device
only when they are required to perform
specific functions.

The supervisor plays a central and
indispensable role as part of the operating
system. Therefore, it is more fully
described in the sections "Task Management"
and "Information Management."

Problem State Programs

The problem state programs that are
serviced by the supervisor can be
classified as either IBM programs or user
(application) programs. Opejrationally, the
IBM and user programs bear the same
relationship to one another and to the
supervisor. They adhere to established
linkage conventions and data formats, and
communicate with the supervisor in the same
way. All of the services provided by the
supervisor are equally available to them.
As a group, the only real difference
between the IBM-designed problem state
programs and the user-designed programs is
that the IBM programs are no:rmally designed
for general use (in preparing other
programs), while the user programs usually
are not. In general, the IBM programs are
designed to assist:

• Applications programmmers in devising
and programn:i ng new applications.

• system programmers in generating and
maintaining the system and in extending
and controlling its use.

Page of GC28-6534-3, Revised January 15, 1972, By TNL: GN28-2512

• The operations staff in scheduling work
and operating the system.

User-designed programs are usually
intended for specific applications, such as
a payroll application, and are normally
prepared and scheduled for execution using
the IBM-supplied programs.

The IBM-supplied problem state programs
provide the means by which programmers can
use the supervisor's services. 9 In
addition, they assist the programmers by
performing anyone of a combination of
three main functions: translating
language, supplying preceded instruction
sequences, and performing specific
services. They perform these functions in
response to sequences of coded language
statements that are written by the
programmer. Each program responds to its
own combination of statements which
together form a language. Using these
statements in various combinations and
forms, a programmer can communicate his
data processing requirements, including
requests for services performed by the
supervisor.

IBM-supplied programs differ from one
another in the type of assistance each
provides. Some programs assist the user
chiefly by performing specific services.
For example, the linkage editor program is
used chiefly to integrate indIvidually
translated parts or sections of a program.
Most of the programs, however, assist the
programmer through a combination of
translating, providing precoded routines,
and performing specific services. A major
function of a FORTRAN compiler, for
example, is to translate from a notation
that is similar to mathematical notation to
a form of machine language notation.
However, it also provides precoded
mathematical subroutines and performs
specific services, such as converting data
from one form to another. Two of the
problem state programs supplied by IBM -­
the master scheduler and the job scheduler
-- are, like the supervisor, required parts
of the system. The others, except for a
few system utility programs, are optional.
However, the linkage editor and one or more
other IBM-supplied programs would normally
be included in any system.

The Master and Job Schedulers

The master and job schedulers, together
with the supervisor, make up the control
program, which to a large extent determines
the basic nature of each operating system
configuration. The master scheduler
controls the overall operation of the
computing system-operating system
combination. The job scheduler enters work

(job) definitions into the computing
system, schedules, and then initiates the
performance of work under control of the
supervisor. In operation, the two differ
slightly from other problem state programs
in that they can read data from and write
data into storage areas that are assigned
for use by the supervisor. Because they
use the same storage area, the job and
master schedulers can quickly pass
information to the supervisor concerning
the work it is to supervise. In
conjunction with the supervisor, the job
and master schedulers perform a vital role
in scheduling and supervising the
performance of work by the computing
system. Therefore, they are more fully
described in the section "Job Management."

IBM-Supplied Processing Programs

The problem state programs that are
provided with the operating system (other
than the master and job schedulers> are
generally called processing programs to
distinguish them from the more special
purpose programs provided by the users of
the system. Any of the processing programs
can be selected and used with any operating
system configuration.

A wide selection of IBM-supplied
processing programs is available for
inclusion in the operating system. These
may be supplemented in the future by others
supplied by users of the system or by IBM.
The processing programs are designed to
reduce the time, training, expense, and
manpower required to design and code
efficient problem-state programs. A
programmer, or group of programmers, may
use them singly or in combination to
process a particular job. They are
generally classified as either language
translators or service programs although
some may both translate and perform
specific services, and often supply
precoded routines as well.

The language translators and service
programs described below are designed for
use in combination with one another and
with other parts of the operating system.
Therefore, the role of each as part of the
overall system is described in other
sections of the book. In particular, the
role of the language translators and the
linkage editor is more fully described in
the section "Program Development and
Management."

LANGUAGE TRANSLATORS

The language translators enable a
programmer to define a problem solution or
an application in a language that can te

The General Organization and Function of Operating System/360 43

Page of GC2:B-6534-3, Revised ,January 15, 1972, By TNL: GN28-2512

more readily learned and more E!asily used
than the machine language of -the computing
system. Th4ey relieve the programmer from
much of detailed work and drud<Jery involved
in programming, and thereby reduce the time
required to produce an error-free program.
IBM provides translators for si.x languages.
These may b4e used to define a problem
solution or application:

• In a form of mathematical notation
(FORTRAN and ALGOL).

• In a concise form of the English
languag4~ (COBOL).

• In a ne~il7 programming language (PL/I)
having features of both FORTRAN and
COBOL as well as new features.

• In a flE~xible and versati le! symbolic
languag~~ (assembler language).

• In a tabular form (Report Program
Generator) •

• In a combination of any of the above
forms.

For the assembler, FORTRAN and COBOL
languages more than one translator is
provided (Figure 31). The letters E, F, G,
or H in the figure indicate the minimum
amount of main storage space that must be
available in order to use a translator
under opera 1:ing system control. For
example, the assembler language! translator
F requires a computing system 1Iirith 65,536
or more bytE~s of main storage,. If more
than the minimum main storage space is
available, a translator can generally use
the additional space to advantage.
Trans lators of a qiven type may differ in
performance characteristics, in. the
facilities i:hey offer the prcq:rammer, or
both.

Yes = 1111
No= 0

Assembler

FORTRAN

COBOL

PL/I

R.P.G.

ALGOL

Translaton

E = 32,768 bytes

F = 65,536 bytes"

G = 131,072 bytes

H = 262,144 bytes

Figure 31. Language Translators Provided
by IB"~

Using a particular language, a
programmer can aVCilil himself of services

44

provided by the supervisor. However, the
full range of services is not available
with every language. For example, when
using the assembler language, a programmer
can program the concurrent performance of
multiple data processing tasks; but the
same ability is not available when using
FORTRAN. '!his is due in part to the fact
that the FORTRAN language evolved before
the operating system came into being.

The language translators (and the
service programs) are basically no
different from other problem state
programs. Therefore, the full range of
supervisor services are available for their
use in translating (or servicing) other
programs. Each of the language translators
produces object programs (or object
modules) in a standard format. With
certain exceptions and restrictions, this
enables the linkage editor to combine
portions of a program written in one
language with portions written in another
language to form a single program that is
ready to be loaded into main storage and
executed. Some of the language translators
have program testing facilities that can be
used to dynamically test a program, or part
of a program, in accordance with
specifications expressed in the source
language. The general characteristic s of
each language translator are briefly
described below. A complete description
can be found in the manuals that are
provided for each language. (Refer to the
IBM System/360 Bibliography, GA22-6822.)

Assemblers

Either an E or F assembler, or both, can be
included in an operating syst,em for
assembling object programs from source
programs written in the assembler language.
The major difference between -the E and F
assemblers is in performance. The F
assembler is faster, but requires more main
storage space than the E version. The
assembler language is an extremely
versatile language that can be us ed to
program any type of application. All of
the services provided by the control
programs are available when usinq it.

Of the several languages available with
the operating system, the assembler
language is the one closest to the machine
language of the computing system. Each
assembler language statement represents
either a single machine instruction or a
request to the assembler to perform a
specific service.

The assembler language can be extended
by using the assembler to define for a
particular service both a sequence of
assembler language statements and a
corresponding language statement called a

macro instruction (Figure 32). Once
defined, the macro instruction alone can be
used to request the service; the macro
instruction calls for the execution of the
sequence to perform the specific function.
This represents an important feature of the
assembler that is used extensively.

Source
Language

Statements

Assembler

(M.~o
Instruction Fetch

Object
Language

Statements

Figure 32. Macro Instruction Expansion

If a macro instruction is to be used
frequently, then the instruction sequence
it calls can be stored in a macro library
associated with the assembler.

The assembler language has been extended
by IBM to enable programmers to more easily
communicate service requests to the
supervisor and to communicate with
input/output access method routines.
comprehensive sets of macro instructions
are provided for use in the management of
data and the sequential or concurrent
performance of tasks. The assembler
language has also been extended to include
macro instructions that, in combination,
represent a highly specialized language.
sets of macro instructions are p~ovided for
designing teleprocessing control programs,
for designing programs that display
information on a graphic display device,
and for generating the operating system
itself. Users of the operating system can
employ the assembler to create new macro
instructions and add them to the complement
provided by IBM. In addition, they can,
like IBM, use the assembler to create
special-purpose languages. These can be
designed to meet the specific needs of
specialists or professionals within a
business or scientific activity. For

example, a special-purpose language could
be designed for use by civil engineers. 1

FORTRAN Compilers

Any combination of three compilers (E, G,
and H) can be included in the operating
system for compiling object programs from
source programs written in the FORTRAN
Language. The FORTRAN language is a widely
used language, developed and refined over a
period of years through the combined
efforts of IBM, its customers, and the
American Standards Association. It closely
resembles the language of mathematics, and
enables engineers and scientists to define
problem solutions in a familiar easy-to-use
notation.

The language of the FORTRAN G and H
compilers is an extended version of the
FORTRAN language as defined by the American
Standards Association. The language of the
E compiler is an extended version of the
Basic FORTRAN Language, also defined by the
American Standards Association.

A library of often-used subprograms is
provided with each compiler. A program
user can specify these subprograms, thereby
causing them to be incorporated as part of
the program. If both a G and H compiler
are included. in the system, the two can
share a single library of subprograms. The
E compiler uses a separate, somewhat
smaller library of subprograms. The
libraries contain subprograms for
perforroing common mathematical
calculations.

As an optional feature, the libraries
can also contain subprograms that can be
used to transmit data to and receive data
from an IBM 1130 computing system at a
remote location. This is described more
fully in the section "Teleprocessing."

The FORTRAN libraries can also (as an
optional feature) contain a number of
graphic display subprograms. Using them, a
FORTRAN programmer can create programs that
display graphic information on one or more
IBM 2250 Display Units (Figure 33), an I/O
device containing a TV-like display screen
and a keyboard. The displays consist of
charts, graphs, drawings, and other figures
that can be formed from a combination of
dots, lines and characters. By using the
display subprograms, two-way communication
can be established between a
FORTRAN-compiled program and an operator at
the 2250 Display Unit.

The G Compiler is faster than either the
E or H compiler. On the other hand, the H
compiler normally produces more efficient
object code. Therefore, the G compiler may
be more useful for compiling short,

The General Organization and Function of Operating System/360 45

Page of GC28-653 LI-3, Revised January 15, 1972, By TNL: GN28-2512

Figure 33. IBM 2250 Display Thlit Model 3

inf.requently run programs. AI-though the E
compiler is slower and produceB less
efficient obj ect code than the other s, it
requires less main storage space.

COBOL Compilers

A COBOL E compiler and an American National
Standard COBOL compiler (formerly USAS
COBOL) can be included in the operating
system for compiling object programs from
source programs written in the COBOL
Language.

COBOL is a language based on a
well-defined restricted form of English.
It provides a convenient method of
des igning programs for commercial data
processing applications. COBOL was
developed as a cooperative effort by a
number of computer manufacture:J:-s and user s.
The USA standard of the language is

46

American National Standard COBOL,
X3.23-1968, as approved by the ~erican
National Standards Institute. American
National Standard COBOL is a compatible
subset of CODASYL COBOL, which is the
complete definition of the language, as
approved by CODASYL (the Conference on Data
Systems Language).

An IBM American National Standard COBOL
compiler -- which is compatible with the
highest level of the USA standard, and
which contains a number of IBM extensions
to that standard -- can be included in the
operating system for compiling object
programs from source programs written in
the COBOL language. IBM American National
Standard COBOL contains many new features
not found in previous implementations of

I COBOL. The COBOL E compiler also can b~
included in the operating system.

Page of GC28-6534-3, Revised January 15, 1972, By TNL: GN28-2512

I A library of subprograms is provided
with each COBOL compiler. The library for
IBM American National Standard COBOL can
contain graphic display subprograms like
those provided for the FORTRAN compilers.

ALGOL Compiler

An ALGOL F compiler can be included in the
operating system for compiling object
programs from source programs written in
the ALGOL language. The ALGOL language is
an international algorithmic language used
mainly in programming the solution to
scientific and technical problems. It is
more widely used in Europe than in the
United states, and is not as widely used as
either FORTRAN or COBOL.

PL/I Compiler

A PL/I F compiler can be included in the
operating system for compiling object
programs from source programs written in
Prograroming Language I (PL/I). This
language incorporates some of the best
features of other high level languages as
well as a great many new features.

PL/I takes advantage of recent
developments in computing system and
programming technology. It provides the
programmer with an "application-oriented"
language for efficiently programming either
scientific or commercial applications. It
is particularly useful for the increasing
number of applications that can best be
programmed using a combination of
scientific and commercial techniques.
These include many of the new systems
applications, such as management
information systems and command and control
systems. The modern features of PL/I
enable it to be used for many programming
applications for which other compiler
languages either cannot be used or can be
used only with difficulty.

A library of subprograms is provided
with the PL/I compiler. The library can
contain graphic display subprograms like
those provided for the FORTRAN compilers.

Report Program Generator

The Report Program Generator (RPG) provides
the programmer with an efficient,
easy-to-use facility for generating object
programs that are used to produce reports
from existing sets of data. The reports
may range from a simple listing of
information from a punched card deck to a
precisely arranged and edited tabulation of
calculated data from several input sources.
Several reports can be created concurrently
from a single set of data.

SERVICE PROGRAMS

Service programs assist a programmer by
providing routines for performing
frequently used operaticns such as editing,
linking, and otherwise manipulating
programs and data. The service programs
consist of linkage editors, a loader, a
sort/merge program, a set of utility
programs, emulator programs, and a set of
graphic programming services.

Linkage Editors

An E and an F linkage editor are provided
for combining program segments that were
individually compiled or assembled. The
linkage editor forms a single program that
is ready to be loaded (by program fetch)
into rrain storage and executed. The
linkage editor enables changes to be made
in a program without recompiling (or
reassembling) the complete program; only
those sections that are changed need to be
recompiled. It also permits division of a
program that is too large for the space
available in main storage, so that executed
segments of the program can be overlaid by
segments yet to be executed.

The F linkage editcr requires more
storage space but is faster than the E
linkage editor. It can also handle a more
complex overlay structure of program
segments. Otherwise, the two are much the
same.

The loader combines the basic editing
functions of the linkage editor and the
loading function of program fetch in one
job step. It loads object modules produced
by language translators and load modules
produced by linkage editor into main
storage for execution. It is designed for
high performance loading of modules that do
not require the special facilities of the
linkage editor and program fetch. The
loader does not produce load modules for
program libraries.

Sort/Merge Program

The sort/merge program is a generalized
program that can be used to sort or merge
fixed- or variable-length records in
ascending or descending order. The sorting
and merging can be performed using magnetic
tape and direct access storage devices for
input, output, and intermediate storage.
The program takes full advantage of the I/O
resources that are allocated to it by the
control program. The sort/merge program
can be used independently of other
programs, or it may be used directly by

I
programs compiled by the American National
Standard COBOL and PL/I compilers.

The General organization and Function of Operating System/360 47

Page of GC28-6534-3, Revised January 15, 1972, By TNL: GN28-2512

Utility Programs

'rhe utility programs provided with the
opera ting system,. are divided into three
subsets:

• Data SE~t utility programs.
• system utilit~y programs.
• Independent utility programs.

Data Set Ut.ility Programs: These programs
are used chiefly by the prog rammer and
operator to:

• TransfE~r, copy, or merge sets of data
from one storage medium or I/O device
onto another (sometimes in the process,
editing the data or changing its
format).

• Edit, rearrange, and update programs
and dat;a.

• ComparE~, print, or punch data.
• Create an input stream.

System Utility Programs: ThE~ system
utility programs are used chiefly by the
system programmel~ to:

• Change or ext:end the indexing struc ture
of the system library catalog.

• Print an inventory of the data and
programs that: are cataloged in the
system ll.brary.

Independent; Utility Programs: The
independent; utility programs are used with
the operating system, but are not an
integral part of the system. They are used
chiefly by the system programmer to prepare
direct aCCE~SS storage devices for use under
operating system control.

Emulator Programl:~

An integrat;ed emulator program, used in
conjunction with a compatibility feature,
allows object programs written for one
system to be executed on another system
with littlE! or no reprogramming. The
compatibility feature consists of hardware
and microprogranuned routines that aid
emulation. The E~mulator program is
executed as a problem program under the
operating system control program.

48

Refer to the IBM System/360
Bibliography, GC28-6822, for the order
number of the publication describing your
integrated emulator.

Graphic Programming services

A number of services are provided with the
operating system for designing and
executing programs that communicate with a
user at an IBM 2250 Display Unit (Figure
33), or an IBM 2260 Display Station
(Figure 34). With these services a program
can retrieve information from storage,
display the information on the face of a
TV-like screen, check the information for
accuracy, modify it at the display screen,
and return it to storage.

The· graphic programming services
include:

• An extensive set of graphic design
macro instructions.

• Processing routines.
• Data manipulation aids.
• I/O interruption analysis and control

routines.
• Error recovery and diagnostic routines.

These services can be used to simplify the
JOD of designing advanced applications in
the fields of science, engineering, and
business.

Program Products

IBM Program Products provide the user with
specialized task-oriented functions.
Program Products are designed to operate
with other IBM programs.

Some typical IBM Program Products would
include:

• Language processors
• Sorts
• Conversion aid programs
• General purpose utilities
• Industry application programs
• General application programs

Program Products are available from IBM for
a license fee.

Figure 34. IBM 2260 Display stati.on, With and Wit.ho\iit Alphameric Keyboard

The General Organization and Function of Operating System/360 49

Page of GC28-653L~-3, Revised January 15, 1972, By TNL: GN28-2512

CONTROL PROGRAM CONFIGURATIONS

An IBM Syst.em/360 Operating System consists
of a control proqram (a supervisor, master
scheduler, and job scheduler) together with
a number of optional processing programs
such as thE! language translators, utility
programs, aLnd sort/merge programs described
in the previous section. The processing
programs are designed to help the user
program solutions to problems and design
new applications., They do this by giving
the progr~lmer a combination of programming
aids II services, and precoded routines that
he can use with appropriate language
statements., Al though the control program
also assists the user, its primary
functions are to efficiently schedule,
initiate, and supervise the work performed
by the computing system.

There are two configurations of the
control program:

Storage
Size

I

K (2048K)

J (1024K)

I (512K)

H (256K)

Model

25 30 40 44

256K and above supporU MVT,
MFT, DOS, TOS, and BOS

50 67

• The multiprogramming with a fixed
number of tasks (MFT) configuration •

• The multiprograreming with a variatle
number of tasks (MVT) configuration.

Each configuration is designed to be used
with a particular range of computing system
models and main storage sizes. Figure 35
shows the control program configurations
that can be used with various CPU models
and main storage sizes. For comparison,
the figure includes the othe:r Systern/360
software systems: Basic Programming
Support (BPS), Basic Operating System
(BOS), Tape Operating system (TOS), and
Disk operatin9 system (DOS). The storage
sizes do not 1nclude IBM 2361 Core Storage,
which can add up to 8,192K bytes to the
main storage capacity of a Model 50, 65, or
75 in blocks of l,024K or 2,048K.

75 135 145

128K and above supporU
MFT, BOS, TOS, and DOS

H-D (240K)

G (128K)

FED (112K)

F+E (96K)

F (64K)

ED (48K)

E (32K)

D (16K)
8Kand above supports
BPS and BOS

64K and above supports
BPS, BOS, TOS, and DOS

16K and above supports
BPS, BOS, TOS, and DOS

System/360 System/370

1. BPS does not support Mod 65 and above.

2. MFT & MVT control programs only.

3. MVT control program only.

(8K) 4. Storage for System/370 Mod 195 is JI.

Figure 35. SystE~rn/360 Software Systems For Various System/360 and Systern/370
Configurations

50

All of the IBM-supplied processing
programs described in the previous section
can be executed under the direction and
control of any of the two operating system
control program configurations. In
addition, any problem state program
produced using the processing programs are
compatible with any of the two
configurations. Furthermore, any jobs or
data that can be processed by one
configuration can be processed by another,
provided the required hardware and software
resources are available (Figure 36).
Although many of their elements are
identical and their general organizations
and functions are the same, the significant
differences between one operating system
control program configuration and another
has to do with the way each operates
internally. The main difference is the
number and types of data processing tasks
they can perform at one time. The MVT
configuration can control the concurrent
performance of a greater number and variety
of tasks. It can thereby keep more of the
total software/hardware system in
productive operation more of the time and
significantly increase the volume of work
performed by the system over a given period
of time.

Job
Definitions

MFT
Control
Program
Configuration

IBM or User
Processsing
Programs Data

MVT
Control
Program
Configuration

M FT Results MVT Results

Figure 36. Compatibility of MFT and MVT
Control Program Configurations

I
MFT CONTROL PROGRAM

The MFT control program configuration can
control the performance of more than one
task at a time. As its name implies,
however, it can control a fixed number of
tasks concurrently. An MFT control program
can read a continuous stream of job or job
steps in sequential order. However, it can
read jobs from up to three such streams
concurrently. Moreover, it can dynamically
schedule and initiate the performance of
each job based on an assigned priority and
class. (To balance the operation of the
computing system, jobs can be classed
according to the resources they use; for
example, whether they are primarily
dependent on I/O or CPU time.) Once
initiated by the control program, up to 15
job steps, representing the steps of 15
different jobs, can be performed
concurre ntly.

The control program can also
concurrently record up to 36 streams of job
output data. The reading of job
definitions from three input streams, the
performance of 15 steps of different jobs,
and the recording of 36 job output data
streams can all be performed concurrently
(Figure 37), provided the total does not
exceed 52, and enough computing system
resources are available. Although there is
a limit to the number of concurrent data
processing tasks an MFT control program can
handle, from a practical viewpoint, the
real limitation would more than likely be
the availability of resources to perform
the tasks. Moreover, there is an optional
feature of the MFT control program that
permits each job step to create an
unlimited number of additional tasks. This
feature is called "MFT with subtasking."
Tasks created by a job step are called
subtasks and are performed concurrently
with each other and with other tasks in the
system. Subtasks are dependent on the job
step task and must be completed before the
end of the job step.

The General Organization and Function of Operating System/360 51

The MFT Control Program

Reads and Interprets
Jobs from 1 to 3

and
Concurrently

Performs from
1 to 15 Jobs

and
Concurrently Records Job Output

on 1 to 36 Devices Input Streams

,
~-~~ ~~~

JOB
Output
Stream 1

Figure 37. Concurrent processing of Job Steps and Job Support Tasks by an MFT Control
Program

In an MF~r configuration, a:ceas of main
storage are rese~7ed for the control
program, and optionally, for the loader and
user-written routines that can be used
concurrently by the control program and by
any tasks that are being performed. The
remainder 0:1: main storage is divided into
partitions I(FigurE~ 38). The size of each
partition is set by the operator, and its
priority is determined by its position
relative to other partitions. Thus,
partition PO is reserved for the highest
priority jobs., and Pn the lowest. Once
defined" a main st:orage partition may be
assigned by the operator for use in
performing from one to three classes of
jobs out of a maximum of 15 iob classes.
When a job is init:iated., it is dynamically
allocated a particular parti tioD of main
storage space depending onth(~ class
assigned to the partition and the specific
class Cand priority within the class) of
the job. Ot:her partitions may be assigned
by the operator f()r use in reading and
interpretin~J input: streams of job
definitions and f()r recording streams of
job output (lata. When the control program
is initiali~~ed at the beginning of a work

52

period, the operator can include additional
input/output access method routines by
loading a secondary nucleus containing
those routines. If included, these
routines can be USE!d in performing a single
job step, or more t:han one job step
concurrently. In an MFT cont:rol program
configuration, pr~rram resources (in the
form of access method routines) and data
resources, as well as the hardware
resources of the computing system, can be
shared among concurrent jobs.

MFT ~~~~_p_art_it_io_n_n~~]I~~p_a_rt_it_io_n_2~ __ pa_rt_i"t_io_n_1 __ ~_p_ar_ti_ti_on_o __ ~
Low Storage Address High Storage Address

Basic Fixed Area tim
Dynamic Area D

Figure 38. Genera 1 Organization of Main
Storage For the MFT Control
Program Configuration

The MVT Control Program

Reads and Interprets
Jobs from any Number
of I nput Streams

and
Concurrently

Performs from 1 to 15 Jobs
and any Number of Tasks
Within a Job Step

and
Concurrently

Records Job Output
on any Number of Devices

Note: n = any Number

Figure 39. Concurrent Processing, by an MVT Control Program, of Job Steps, Job Support
Tasks, and Tasks Within Job steps

MVT CONTRCL PROGRAM

The MVT control program configuration reads
one or more continuous streams of jobs, and
schedules the jobs in order of priority.
With this configuration, up to 15
independent jobs can be performed
concurrently. The job steps within a
single job are necessarily performed in
sequential order because one step may
depend on the completion of another.
However, within a job step, any number and
type of data processing tasks can be
initiated (Figure 39). These tasks are
performed concurrently with one another,
with tasks initiated by other jobs, and
with tasks initiated by the control program
and by the operator. Operator initiated
tasks include job-support tasks for reading
any number of job input streams and for
recording any number of streams of job
output data. The number of concurrent data
processing tasks an MVT configuration can
handle is limited solely by the
availability of the resources that would be
required to perform them.

In an MVT configuration in addition
to areas of main storage reserved for the
exclusive use of the control program -- an
area of main storage (called the link pack

area) is reserved for program routines that
can be used concurrently by the control
program and by any jobs that are being
performed (Figure 40). These include
access method routines as well as other
routines designed by IBM or by a user of
the system. The remaining storage serves
as a pool of storage from which the
control program assigns a subpool (or region
as it is usually called) to each job step
as it is initiated. Once a job step, or a
task within a job step, is initiated, it
can draw upon and release storage space
within its assigned region. Upon
completion of a job step, the region is
returned to the pool where it is available
for assignment to other job steps.

MVT

Low Storage Address

'Master Link
SCheduler Pa(:k
,~e9ion' Area

High Storage Address

Basic Fixed Area D
Dynamic Area D

Figure 40. General Organization of Main
Storage From the MVT Control
Program Configuration

The General Organization and Function of Operating system/360 53

Page of GC28'-6534-3, Revised January 15, 1972, By TNL: GN28-2512

In this configuration, program and data
resources, as well as the hardware
resources of the computing systE~m, can be
shared among concurrently performed jobs,
tasks within a job step, and control
program tasks. 7

The remainde:c of this book discusses the
major functions that can be performed using
the operatinq- system, briefly describing
the purpose of each functi on, how it is

54

performed, and the major objectives it
helps to achieve. Unless otherwise noted,
the discussion applies to both control
program confi9urat~ions. The major
functions are discussed in the following
topics:

• Task management.
• Job management:.
• Information management.
• Program development and management.
• Multiprocessing.
• Teleprocessing.

The characteristic of the System/360
Operating System that sets it apart from
previous general purpose operating systems
is its ability to schedule and supervise
the performance of more than one data
processing task at a time. It does this
through efficient management of system
resources.

Resource Sharing

A program is only one of several resources
that are needed to perform a data
processing task. I/O devices or direct
access storage space is required for
entering or storing input data and for
recording or storing output data. Time is
required on I/O channels for transmitting
information to and from main storage and
for starting and controlling I/O
operations. Main storage space is required
for storing a series of instructions and
the data processed when the instructions
are executed. Finally, CPU time is
required to execute the instructions and
thereby do the work of processing the data.

At most data processing installations,
data processing tasks are performed one at
a time; that is, a new task is not begun
until the current task is completed. The
average data processing task requires, at
any given moment, only a fraction of the
total available resources of the system
(Figure 41). Therefore, many parts of the
system are often idle for significant
periods of time. For example, many tasks,
such as data conversion tasks, require only
a fraction of the storage space and I/O
devices available in the system, and only
intermittent use of the CPU for short
periods of time.

However" at MFT and MVT installations,
the available resources of the system are
dynamically allocated and shared among
several tasks being performed concurrently.
As a result, more of the total computing
system is kept in productive operation more
of the time (Figure 42). The sharing is
not limited to the hardware of the
computing system. It includes the sharing
of program and data resources as well.

Task Management

Input/Output and
Direct Access Storage

o

o
(

Main Storage

Central Processing Unit

Figure 41. A Single Task System

Program Sharing

Input/Output and
Direct Access Storage

o

o
Productive = fillI
Idle = 0

At most data processing installations, only
one program at a time is executed to
perform one task and produce one set of
results, as shown in Figure 43. At such an
installation there is always a one-for-one
correspondence between a program (a series
of instructions) and a task (the execution
of these instructions by the CPU), and no
distinction between them is necessary.

At MFT and MVT installations, however,
such a distinction is necessary because a
single program can be executed to perform
several tasks concurrently and produce
several independent sets of results (Figure
46). For example, the CPU can begin to
execute a program to process one set of
data, and then following an interruption.,
execute the same program to process another
set of data. Thus, several data processing
tasks can be performed concurrently using a
single program. Such a program must be
reenterable; that is, the program must be

Task Management 55

designed so. that it is not changed in any
way when the CPU executes it. In other
words, the execution of one i.nstruction in
the program must not change any other
ins'truction in the program.

Input/Output and
Direct Access Storage Main Storage

Central Processing Unit

Input/Output and
Direct Access Storage

o
Productive =

Idle

Figure 42. A Multiple-Task System

Single
Task

CPU -}-and other
Resources_

Task
Results

Figure 43. Unshared Information Resources

With an M~FT or MVT control p.rogram
configuratio1n, any reenterable program can
be loaded into mai.n storage when the
operating sy'stem is initialized at the
beginning of a work period, and can remain
there indefinitely. This avoids continual
reloading of frequently used programs.
other reenterable programs can be brought
into main storage when required by a
specific job step.. These programs are
loaded into the job step's partition or
region of main storage; each can be used

56

concurrently by all tasks that belong to
the job step, but not by tasks that belong
to other job steps. The con~~rrent use of
a reenterable program saves main storage,
because each task does not rE~quire its own
copy of the program. Once loaded, a
reenterable program is available for use by
concurrent tasks for as long as it remains
intact within the job step's region or
partition.

Data

Task 1

CPU J= ~~~~I!S
and other
Resources Task 2

Results
'-----

Task 2

Data

Figure 44. Program Sharing

Data Sharing

MFT and MVT control programs permit the
concurrent sharing of data, as well as
programs, when performing mul,tiple tasks.
Several programs using a common set of
input data can be executed to perform
different tasks and produce several
independent sets of results, as illustrated
in Figure 45. For example, two different
programs can be executed concurrently to
produce two different summary reports
derived from the same basic s,et of data.
To do this, the data set must not be
subject to change in any way when the tasks
ar e performed.

Program

Task 1

Task 2

Program

CPU
and other
Resources

Task 1
Results

1---'- ~:~~I~
'-------'

Figure 45. Data Sharing

Resource Management

Although the master and job schedulers
initiate the performance of tasks, the
tasks are actually performed under control

land direction of the supervisor. The
supervisor of an MFT or MVT control program
manages the concurrent performance of tasks
by keeping a running account of all the
tasks that are initiated and by scheduling
the order in which they are to be
performed, based on their relative
priorities. It also keeps a running
account of all the available resources of
the system and allocates the resources as
they are required to perform specific
tasks.

Some resources, such as reenterable
programs in main storage, are always
available for immediate allocation to a
task. Other resources of the system, such
as the CPU, can be allocated to only one
task at a time. If a particular resource
required for a task is not immediately
available, the task is temporarily
suspended. The task is then, in effect,
placed on a waiting list or queue. At any
time, several tasks may be waiting in a
queue for such a resource. Usually, tasks
in a resource queue are arranged in a
priority sequence. However, other
sequences are sometimes used to ensure more
efficient use of particular resources (I/O
channel time, for example). The resource
queues, in effect, serve as work reservoirs
that absorb fluctuations in demands for
resources. They thereby help to ensure
that a ready backlog of work is at hand to
keep the resources as busy as possible.
Whenever practical, the allocation of a
resource is deferred until it is actually
needed to perform a task, and the resource
is released for reallocation as soon as the
need has been satisfied. In other words,
the resources are usually allocated
dynamically, and are not tied up unless
they are being used. Thus, within a
relatively short period of time, a
particular resource may be used over and
over again in performing many different
tasks.

More precise means of manag~ng resources
in an MFT or an MVT control program
environment exist for the user. Both the
Time Slicing feature and the System
Management Facilities <SMF) feature allow
system resources to be shared more equally
among tasks.

The Time Slicing feature can be used to
prevent any task in a group from
monopolizing the CPU and thereby delaying
the assignment of CPU control to other
tasks in the group. The supervisor does
this by allocating a uniform interval of

CPU time (a time slice) to a task within
the group whenever it is assigned control
of the CPU. If the task is still active
when the interval ends, then the supervisor
assigns control to another task.

At an MVT installation, all of the tasks
having a predetermined priority are
allocated time intervals when CPU control
is assigned. At an MFT installation, all
of the tasks to be performed using anyone
of a predetermined group of consecutive
main storage partitions are allocated a
time interval. (If the MFT control program
includes the subtasking option, time
intervals are allocated to tasks whose
priorities fall within a certain range; the
range corresponds to a predetermined group
of consecutive main storage partitions, but
the priority of any task can vary and thus
be independent of the partition where the
task is performed.) The time slicing
feature is especially useful for graphic
display and teleprocessing applications.
It can help to ensure a uniform time
response to a number of users who are
located at local or remote terminals and
are sharing the hardware and information
resources of an installation.

The SMF feature provides data collection
routines and exit linkages for the user.
Through SMF data collection routines, this
option can be used as a system resource
distribution and evaluation tool. By
providing your own exit routines at the
appropriate locations, this option can be
used in a monitoring capacity. Since the
data collection and exit facilities are
independent of one another once SMF is
included in the system at system generation
time, they may be used in combination or
separately.

SMF data collection routines gather job
and direct access and volume information;
this information is used to make a variety
of analyses. Output created by the SMF
routines can also be used to create and
maintain inventories on direct access and
tape devices; establishing a data base
(recorded data in a permanent format)
against which to make an analysis. SMF
routines can be used to determine each job
step's use of the CPU, I/O devices, and
storage. They can be used to determine
data set activity for each problem program
and also to acquire volume usage
information for direct access devices.

SMF is not, however, confined to
after-the-fact analysis. This option also
allows the user to write exit routines;
these routines can monitor a job or job
step at various points during its
processing cycle, that is, from control
statement analysis to termination of the
job. (All linkages for these exits are

Task Management 57

supplied when the option is included in the
system at system <generation time.)
Therefore" by adding installation routines
at the appropriate exits, standards of
efficient r49source management _.-
identif ication., priority, resource
allocation" and m3.ximum execution time
can be enfo:r:ced in the system.

Advantages of Multiple-Task
Manageme!nt

The ability of MFr and MVT supervisors to
dynamically allocate resources and manage
the performance of several tasks has a
numbe:r of advantaqes over more conventional
methods of data processing:

• It incrE:!ases the efficiency of the
system. Resources that might otherwise
be idle when one task is performed can
be used to perform other tasks.

• It enables thE~ system to g:r'ow without
disruptions. The addition of more
storage space and other resources can
be readily accommodated and used
efficiently without reprogramming
merely by increasing the number of
jobs, 0]: other tasks, to be performed.

• It improves the flexibility of the
system. The system can readily adj ust
to varying demands for resources and
changes in thE~ workload. This is
particuJ.arly significant for
teleprocessing applications, such as
the airline reservation application,
where the workload varies dynamicall:y
in unpre!dictable ways.

• It improves the rate at which the
system can respond to work requests.
Several tasks can progress in parallel
instead of being performed in
consecut.ive ol:der. 'Ibis too is
important in teleprocessing
applicat.ions, where a system normally
must respond t~o each work request
within a. short~ period of time.

Concurrent Tasks Within Job Steps
(MVT and MFT With Subtaesking)

At an MVT installation, the same task
management facilities that initiate and
control the concurrent performance of jobs
and job support tasks are direc·tly
available for use by a customer. The
facilities are also available a:t an MFT
installation when the subtasking option is
selected at systerrl generation.

58

Previous control programs, other than
the MFT and MVT control prograrrs of the
operating system, have provided means for
concurrently performing data processing
tasks. But these were special purpose
control programs, such as the! airline
reservation system application discussed
earlier. In these applications, many of
the advantages offered by a multiple task
system, such as fast handling- of the
workload, were essential to the
application. Therefore, they justified the
high cost of a special purpose control
program.

An MVT configuration of the operating
system, or the MFT-with-subtasking
configuration, is a true general-purpose
task management system. It is not
restricted to performing specific types of
tasks, a group of related tasks, or a fixed
number of concurrent tasks, but can, in
fact, be used to perform concurrently any
number or types of related or unrelated
tasks within the limits of available system
resources and the user's ingenuity.

The same multiple task management
facilities that are used by the control
program can also be used by a customer in
designing processing programs that can be
executed to concurrently perform tasks
within a job step. Therefore, the
advantage of a multiple task system,
heretofore limited to a few specialized
applications, can be realized in a wide
range of applications. The general purpose
task management facilities of the control
program can, in fact, be used in
innumerable ways by both IBM and its
customers to increase the productivity and
utility of system/360 and to broaden or
extend its application.

At an installation of either MVT or MFT
with subtasking, once a job step is
initiated by the control prog:cam, it may,
in turn, initiate the performance of other
tasks, which compete for and share the
resources of the system with one another
and with the steps of other jobs. In fact,
a complete and complex hierarchy of tasks
can be dynamically initiated and terminated
in the process of performing a single job
step.

The programmer is provided with a
complete set of general purpose task
management language statements. With these
he can program dynamic control over the
concurrent performance of the tasks of a
job step. He can, for example, initiate
the performance of new tasks as the
workload increases and terminate the tasks

I as the work is completed freeing those

resources. He can also synchronize the
performance of one task with that of
another or with I/O operation; for example,
he can indicate that further performance of
one task should await the completion of one
or more other tasks or other occurrences
such as the end of the time interval.

The programmer can also establish a
system of relative priorities among the
tasks of a job step. If necessary, he can
specify changes in priority based on events
that occur as the tasks are being
performed. For example, he may raise the
priority of a task if it still is not
completed after a specific period of time.

The programmer can also establish new
resources and, with the help of the control
program, control their use in performing
concurrent tasks. A new resource may be a
self-initializing program that can be used
serially:, but not concurrently, in
performing different tasks, or it may be a
table of data that can be used either
serially, or concurrently, depending upon
whether or not the table can be modified
while it is being used to perform a task.
The programmer is given the means to ensure
that a resource is used serially if it is
subject to change and concurrently if it is
not.

Main storage may be shared or passed
Qetween tasks in an MVT environment by
using a subpool -- a 2K block of main
storage allocated for a task under the
label called a sub pool number. Subpools
can be shared by other tasks, or they can
be passed from the task that created them
to another task. 8

Normally" main storage space requested
by a job step program is allocated from a

partition or region of main storage that is
assigned to the job step when it is
initiated. However, an optional feature of
the MVT supervisor allows the temporary
assignment of an additional region (or
regions) of main storage to a job step that
has outgrown its previously assigned
region. When additional space is requested
during a job step, the supervisor attempts
to satisfy the request from an unassigned
portion of the dynamic area of main
storage. If space is not available, then
the contents of a region assigned to
another job step are transferred to direct
access storage (rolled out), and the
vacated region is assigned to the step that
requires additional space. When the region
is no longer needed, its original contents
are restored (rolled in) and the delayed
step is allowed to continue.

The user indicates which steps can be
rolled out and which cannot. However, the
relative priority of the steps determines
the order in which they are rolled out and
whether or not a particular step will be
rolled out.

The multiple-task management facilities
described in this section provide the basic
tools required for many applications that
are beyond the capability of a single-task
system. These include many
telecommunication applications that would
otherwise be impractical without a
specially designed control program. The
same facilities can also be used for more
conventional applications. They enable the
programmer to design highly efficient
production programs that, when executed,
result in a high degree of resource sharing
among concurrent tasks.

Task Management 59

At a System/360 Operating System
installation, the actual work of processing
data is performed by the computing system
under control and direction of the
supervisor. However, before any work can
be performed by the system, it must be
scheduled and initiated by either the
master scheduler or the job scheduler. The
master scheduler is used by the operator to
schedule and initiate the work performed by
the job scheduler. The job scheduler, is
used to read, interpret, schedule,
initiate, record output for, and terminate
the steps of a series of jobs that are
defined and submitted for processing by the
programming staff.

In all configurations of the operating
system, the job scheduler is designed to
process a continuous series of jobs without
unnecessary delays between one job or job
step and another. In the MFT and MVT
configurations of the operating system, the
supervisor is capable of directing and
controlling the performance of more than
one data processing task at a time. The
master and job schedulers for these
configurations are designed to take
advantage of this capability, and by so
doing increase the performance of the
system as a whole. This is accomplished in
two major ways: by scheduling and
initiating the performance of more than one
job at a time, and by performing job
support tasks concurrently with the jobs.

Non-Stop Job Processing

A job is the major unit of work performed
by the operating system. Each job is
defined by a series of job control language
sta tements coded by a prog rammer (see
Figure 46). The job definition is provided
by a JOB statement containing information
concerning the job, such as it~ name and
priority."

Each job consists of one or more steps.
These are defined by the programmer and
arranged in the order in which they are to
be performed. A job step is defined by an
EXEC statement containing information such
as the name of a program to be executed to
perform the job step and (for MVT) the
amount of main storage space required to
execute the program. The specified program
may be a problem state program supplied by
IBM, such as a language translator, or it
may be a problem state program created by
the user of the system, such as a payroll
program.

Job Management

IBM 2361 Core Storage, if included in a
system, is allocated to a job step in the
same way as processor main storage. A
programmer can request that either
processor storage or 2361 storage, or both,
be allocated for a specific job step.

Individual job definitions can be placed
one behind another to form a continuous
series or stream of job definitions. These
can then be read by the job scheduler and
processed without stopping the computing
system between jobs or job steps. If
operator actions are required for one job,
such as mounting tape reels, these can be
performed while the resources of the system
are being used to process other jobs.

Figure 46. Job Definitions

Any set of data that is processed during
a job step must be identified and defined
within the definition of the job step using
a DD (data definition) statement. 3 A
programmer may place input data to be
processed during a job step within the job
step definition and define the data as
being part of the common input stream.
Similiarly, output data produced during a
job step can be defined as being part of a
common job output stream. It can then be
printed or recorded on a commonly shared
output device. As a result of defining
data sets in this way, no operator setup
delays are incurred within a job step.
Also, any I/O devices that would otherwise
have been required for the job step are
available for other purposes.

Job Management 61

Page of GC28-6534-3, Revised January 15, 1972, By TNL: GN28-2512

If a series of job step definitions are
to be used repeatedly with little or no
change, a programmer can store and catalog
them in a gocedure library maintained in
direct access storage by the control
program. Thereafter, using sinqle job and
job step statements in an input stream, he
can direct the job scheduler to pick up the
job step definitions from the procedure
library. If necessary, the same job
statement can override specifications in
the job step definitions picked up from the
procedure library. Using this feature, a
system programmer can predefine standard
types of jobs that are commonly performed
at an installation. 6 ,7

By doing this, the system programmer can
eliminate the need for applications
prograrr~ers to redefine standard jobs each
time they are performed. He can also help
to ensure that the system is used
efficiently and consistently.

The ability to process a continuous
series of jobs and job steps with little or
no operator intervention is an important
characteristic of all configura1:ions of the
control program. By reducing the degree of
human participation in the mechanics of
data processing, the operating system
ensures that jobs are processed faster and
are less subject to human error.. As a
result, the total volume of work performed
by the system can be increased.

Multiple-doh Pro,cessing

Normally, the steps of a data processing
job are logically related to one another to
produce a specific end result. In most
cases, the steps of a job must be performed
in a particular sequence since output
produced by .one sbep often serves as input
to a succeeding step. For example, a
typical job may consist of the following
three steps:

• Translating a source program into an
object program.

• Linkage 'editing the object program to
produce a program suitable for loading
into main storage.

• Loading and executing the p1:-ogram.

Each of these steps is a necessary part
of the complete job. They cannot be
performed in any o·ther sequence. Because
the steps wiithin a single job may be
dependent upon one another, they are always
performed in a sequential order. steps of
different jobs are not dependent: upon one
another, theJrefore, they can be performed
concurrently. In most computi:n9 systems,

62

jobs and job steps are performed one at a
time in a fixed sequential order as shown
in part A of Figure 47. No ma.tter how
small the job or how large the system all
of the resources of the system are tied up
until the step is completed.

With an MFT or MVT control program,
these same jobs can be r;erformed either
sequentially (as shown in part A of Figure
47) or, if enough resources are available,
concurrently as shown in part B of Figure
47. In the latter instance, anyone job
rna y take lenger to perf orm becaus e it may
be temporarily delayed from ti.me to time
awaiting a resource currently being used to
perform other jobs. However, because the
resources are shared among several jobs,
the rate at which the jobs as a whole are
performed is significantly increased,
resulting in a greater total t.hroughput.

Each job step is actually a task that
can be performed concurrently with other
tasks, including steps of other jobs, under
management of the control program. The
control program (both MFT and MVT) can
initiate and supervise the concurrent
perforrrance of up to 15 steps of different
jobs.

Job 1 Job 2 Job 3
r--___ A .. ,.-----A-----.. ,-----" .. r--

Step 1 IStep2! Step3ISteplIStftI)2<~·.~
-------i .. ~ Time

Step 1

Job 1

"
Step 2

Job 2
A

A. Sequential Job Processing .

..
Step 3 I

Job 5
,----"---
[Step 1 Step 2

Job4

r-------------A-------" I

[',:fj~~,t~:i·:b'~1 Step 1 Step 2 ! Step 3 Step 4 ~
Job 6

,.---A--

_ I Step 1 ~
-------i .. ~ Time

B. Concurrent Job Processing

Figure 47. sequential and Concurrent Job
Processing

A set of data in direct access storage
can be shared concurrently among several
jObs provided it is not changed in any way
by the jobs that are sharing it. When the
control program encounters a job that will
change a data set, it prevents possible
conflicts in the use of data set by
delaying initiation of the job until all
previous jobs that use the data set are
completed. Similarly, if a jab that

changes a data set is being performed, any
succeeding jobs that use the data set are
not initiated until the current job is
completed. The control program can also
delay the initiation and progress of low
priority jobs in favor of higher priority
jobs.. In all other respects, jobs are
performed independently of one another and
the control program recognizes no direct
relationship between one job and another.

Multiple-job processing is particularly
suited to data processing installations
with a high volume of work and a large
nUmber of resources. It enables a large
system to perform small jobs as well as
large jobs efficiently, and to run jobs
with complementary resource requirements
concurrently" thereby increasing
throughput. It also allows a gradual,
systematic expansion of hardware resources
without reprogramming. With multiple-job
processing, an installation can achieve a
high degree of productivity by optimizing
the system for particular classes of work
and controlling the mixture and load of
work.

Concurrent Job Support Tasks

Job definitions., and any input data that
accomparties them in an input stream, are
usually submitted for processing in the
form of punched cards. Also, much of the
job output data normally ends up in printed
or punched card form. In many
installations (particularly large ones),
the relatively slow printing and punched
card operations are performed by a small
offline computer that specializes in data
transcription. Although this can improve
job processing efficiency by not tying up
the main computing system with low speed
I/O operations, it can significantly
increase job turnaround time. Typically,
at such an installation (Figure 48) the
following steps are performed when
processing jobs:

1. The jobs, in punched card form, are
normally arranged in priority order.

2. After enough jobs have been
accumulated to form a batch, they are
transcribed to magnetic tape.

3. The batch of jobs on the tape is
manually scheduled and then processed
on the central computing system.

4. After a batch of output data has been
recorded on a tape by the central
computing system, it is manually
scheduled and then converted to
printed or punched card form or a
combination of the two.

5. The printed and punched card output is
manually sorted into various classes
and distributed to the individuals
that submitted the jobs.

Job
Processing
Waiting
Line

Figure 48. Offline Peripheral Operations

Each of these steps involves
considerable human activity and attendant
delays. To avoid confusion and
inefficiency, the total process requires
tight supervisory control and coordination.
In such a process, priority jobs can be
accommodated only with difficulty or loss
of efficiency. As a result, turnaround
time at such an installation is measured in
hours and days.

To avoid such problems at MFT or MVT
installations, operations such as reading
job and data cards and printing job output
data, are performed by the control program
as separate tasks, concurrently with other
work. As a result, jobs can be processed
automatically, from beginning to end, on
the central computing system. Thus, the
delays and human activities involved in
using offline systems are avoided and
turnaround time is reduced significantly.

Job Management 63

At MFT a.nd MVT installations the control
program can read job definitions and data
from one o:r more job input streams and
record job output data on one or more
output dev:ices, while initiating and
controlling the performance of one or more
jobs. As job definitions are read and
interpreted, they are placed in an input
work queue located in direct a.ccess
storage. .Also, as the jobs are being
performed, output data from the jobs is
placed in an output work queue. The input
and output work queues are roughly
equivalent to the waiting lines for job
processing and output conversion shown in
Figure 48. However, the input and output
work queues are automatically maintained in
direct access storage by the control
program and are an integral part of the
system. Thus, one job need not await the
completion of a long series of preceding
jobs,. As soon as one job is placed in an
input work queue, it can be initiated by
the control program. As soon as the job is
completed, any output data it placed in the
output work queue can be recorded.
Therefore, turnaround time can be reduced
from days or hours to minutes ..

The MFTI and MVT Job and Master
ScheduleJ~s

The job and master schedulers control the
concurrent processing of job and job
support tasks. The MFT and MVT job
schedulers are divided into three major
parts: the reader /i nterpret.er,
initiator/terminator, and the output writer
(Figure 49). However, each pa.rt can be
executed concurrently with and
independently of the othersa

The reader/interpreter program reads
jobs and job step definitions from an input
stream, analyzes the defini t:ions, and
places them in t.he input work queue.

The initiator'/terminator program selects
a job from the input work queue and
initiates the job and each of its steps.
Once a job step is initiated, it is
performed as a separate task under the
control and direction of the supervisor.
While each job step task is being
performed, output data may be generated and
placed in the output work queue in direct
access storage. The initiator/terminator
terminates the ~iob and each of its steps as
they are complet.ed, and ini tiates a new job
step.

The out. put writer program reads data
from the output work queue and records it
on an output device such as a printer or
card punch.

64

The reader/interpreter, the
initiator/terminator, and the output writer
programs are all executed independently of
one another to perf orm separ'ate and
distinct tasks. Therefore, at anyone
time, anyone or all may be active and each
can be started or stopped independently of
the others.

The master scheduler serves as a two-way
communications link between the operator
and the system by way of the operator's
console. It is used to relay messages from
the system to the operator, to execute
commands, and to respond to replies from
the operator. The operator is provided
with a full set of commands which he can
use to start and stop job scheduling tasks,
log operational information, monitor and
control the progess of work performed by
the system, and restart the system after a
shutdown.

Operation of the system can be planned
in advance and operator commands placed in
a job input stream. From there they are
relayed to the master scheduler for
execution as they are encountered by the
reader/interpreter. Since the operator can
also enter commands by way of the
operator's console, he can dynamically
control the operation of the system to
react to conditions that develop while it
is opera ting •

By issuing commands to the master
scheduler, the operator can start or stop
reader/interpreter tasks,
initiator/terminator tasks, and output
writer tasks, based on the type of work to
be performed and the availability of
resources to perform it. At the beginning
of a work period, an operator may start one
or more reader/interpreter tasks. Then,
after a number of job definitions have been
placed in the input work queue, he can
start one or more initiator/terminator
tasks. At any point, he can stop any of
the reader/interpreter tasks thereby
releasing their assigned I/O and main
storage resources for allocation to job
step tasks. Then or later, the operator
may start one or more output writer tasks
to record the output data sets produced
when the job steps are performed.

Any reader/interpreter and output writer
tasks that are to be performed at an
installation are defined in much the same
way as a single step job is defined. These
definitions are cataloged in a procedure
library where they are available for use in
initiating a reader/interpreter or output
writer by operator command. Any number of
task definitions can be cataloged. Each
can define a reader/interpreter or output
writer task having a unique set of
characteristics. For example, the

Master
Scheduler
Task

Data

Messages

\
\

\
\
\
t\
I \

/ ,
./

Job Step
Task(s)

Work Queues

Data

Data Definitions

Card
Punch Units

and/or

Printers

Job Scheduler ~

Figure 49. The MFT and MVT Job Master Schedulers

reader/interpreter task definitions can
specify different devices and different
data set options., as well as different
default options to be used when
interpreting job or job step definitions.

Many of these specifications can be
overridden and respecified when the
operator starts the task. Thus, the
installation staff is provided with a great
deal of flexibility in defining the
characteristics of the reader/interpreter
and output writer task to be performed.
FOr example, special tasks that satisfy the
unique requirements of a particular
department or a particular class of jobs
can be defined.

At MFT and MVT installations, up to 15
initiator/terminator tasks can be started
to control the initiation and termination
of up to 15 concurrent jobs. At an MVT
installation" any number of
reader/interpreter and output writer tasks
can be started provided enough resources
are available. At an MFT installation, the
number of concurrent reader/interpreter
tasks is limited to three, and the number
of output writer tasks is limited to 36.

Job Priorities

So far as job management is concerned, the
main difference between an MFT and MVT
control program has to do with the way in
which priority is assigned and main storage
space is allocated.

At an MFT or MVT installation, each job
that is submitted for processing can be
assigned a specific priority relative to

I other jobs. 4 It can also be assigned to any
one of several classes of jobs. When the
job definitions are read by the
reader/interpreter they are placed in the
input work queue in accordance with their
assigned class and priority. A separate
input queue is maintained for each class
assigned to the jobs. Within each input
queue, the job definitions are arranged in
the order of their priority. Output data
produced during a job step can be assigned
by the programmer to anyone of up to 36
different data output classes defined at
the installation. When an output writer
task is started it can be assigned to
process from one to eight different classes
of output. A particular output class may
represent such things as the priority of

Job Management 65

the da'ta. ~the type of device 1:.hat may be
used to record i"t, or the location or
department to which it is to be sent.

In an M:E'T ins"tallation, any main storage
space not Jreserved for use by the control
program is logically divided as specified
by the ope:rator into partitions of various
sizes. Each partition is assigned by the
operator for use in performin9 either a
reader/interpreter or output writer task or
a particular class of jobs. The priority
of a job sitep task is determined by the
partition ito which it is assi9ned. Each
partition is assigned by the operator to
one, two, or three classes of jobs.
Whenever a new job is i ni ti a tE~d it is
directed to (or is allocated) a partition
that was assigned to its job class. The
operator can change the job class or
classes to which a partition is assigned,
and thereby control the mixtw~e of jobs.
In addition" since each parti·tion is
assigned a specific priority, he can also
control th4E! priority assigned to each class
of jobs. 6

66

In an MVT installation, any main storage
space not reserved for the control program
serves as a pool of storage from which a
region is dynamically allocated by the
control program to each job step or job
support task as it is initiated. The size
of the region to be allocated to each job
step is specified by the programmer in the
job or job step definition. The priority
of a job is also specified by the
programmer. When an initiator/terminator
task is started by the operator, it can be
assigned to initiate jobs from one through
eight input work queues. By classifying
jobs and assigning initiator/terminators to
initiate specific classes of jobs, it is
possible to control the mixture of
concurrent jobs; thus, jobs with
complementary resource requirements can be
performed concurrently. For example, one
initiator/terminator can be assigned to a
class of jobs requiring a great deal of CPU
time and little I/O while another
initiator/terminator is assigned to a class
requiring little CPU time and a great deal

lofI/0.7

Except for human resources, recorded
information is the single most valuable
resource of an installation. Information
serves as a rational basis for controlling
the activities of an enterprise and for
making decisions upon which its success
depends.' In many enterprises, more money
is spent in gathering and storing
information than in processing it. Yet,
most are barely beginning to tap the
potential uses of the information resources
in which they have so heavily invested.

The Centralization and Growth of
Information

Over the last few years, most of the basic
accounting, record keeping, and problem
solving activities of the typical large
enterprise have been computerized. As a
result, much of the basic information of
the enterprise has accumulated at one or
more central data processing installations.
Along the way" a great deal of information
that was once recorded on punched cards and
paper was transcribed in a more condensed
form on magnetic tapes, disks, and drums.
Although the space required to store
existing information has been reduced, the
amount of information continues to increase
at an explosive rate that threatens to
overwhelm those who strive to manage and
use it effectively.

Problem of Growth and
Centralization
The lack of an effective system fo~
managing the mass of information at an
installation often causes a great deal of
duplication. It isn't unusual, for
example, for several nearly identical sets
of information to be independently created,
stored, and maintained. This causes severe
problems in keeping the information
up-to-date and in controlling its use.
Without effective control over the use of
information" users tend to gather and
maintain their own information and avoid
consolidating and sharing it in cooperative
ventures. As new information accumulates,
much of the obsolete information remains
and the operations staff finds it hard to
cope with the mass of information with
which they are entrusted.

Because there is no visible evidence of
magnetically recorded information, the
operations staff is usually forced to

Information Management

maintain elaborate records on paper in
order to classify" catalog, and locate
information, control its use and
disposition, 'and find and assign space for
storing it. Such eff orts are subject to
human errors, changes in personnel, and
other problems that often arise in human
activities.

Opportunities of Growth and
Centralization

Although the growth and centralization of
information at data processing
installations creates management prob~~s,
it also creates opportunities. When data
is centralized, all of the important
records on which the day-to-day activities
of an enterprise depend can be combined .
into a single mass of information. Using
mathematical and programming techniques it
is possible to derive from this mass new
forms of information such as reports and
statistics for management information
systems. In other words, the same
information that is required for
traditional accounting and problem solving
activities can often be used as an
information base for newer and more
imaginative ways of running a business or
scientific enterprise.

Requirements for a Unified
Information Management System

To solve the problems that result from the
growth and centralization of data at an
installation and take advantage of the
opportunities it provides requires a
unified information management system.
Because requirements differ widely from one
installation to another or from one
application to another, IBM does not
provide a single system that will solve the
information management problems of every
installation. It does, however, make it
possible for any installation to develop an
organized and efficient information
management system to meet its own
particular needs. It does this by
providing:

• A consistent way of organizing data.

• A built-in library reference system for
use in locating data.

• A combination of methods for storing
and retrieving data.'

Information Management 67

Data Set
______________ -JA~ ____________ _

Block 2 Block n
,-________ .-J

A
'-_______ .. ____ ,,-______ A ______

Record 1 Record 2 Record n Record 1 Record 2 .-j Record n Record 1 Record 2 Record n

~ ,.--A---,. ~ ~,.--A---,. 4' ~ ~,......A-.. ~
,. '. '.' I, ..•.. >.:.:1- - - - [.· •..• · .. · ••. \ ..• ··//.1--- -~:< ~·'~I~~ ::"<::: ___ _

Tape Reel
Volume

Disk Pack
Volume

Other
Volumes

Figure 50. Data Organization

Data Orgclnization

A basic requirement of a unified
information manaqement system is that the
data be organized in a consi st.ent manner.
Otherwise, the data cannot be easily shared
by a community of users, nor can the
activities of processing programs be
coordinated with those of the control
programs. In many respects -the control
program USE~S traditional methods of
organizing data. The smallest. division of
information that is normally of concern to
the control program is a record (Figure
50). A record is formed of one or more
fields recorded in an unbroken series, and
usually represent.s an organi:~ed body of
related dat:a, such as all of the basic
accounting inforlMtion concerning a single
sales transaction. A field usually
represents a single item of information,
such as an account number, the name of a
person, or the ca.lculated interest on a
loan. In any eVE~nt, such data fields are
not singled out or recognized by the
control program.

The operating system can store and
retrieve records that are all the same
length or that differ in length (Figure
51). If the records are of differing
lengths, a field at the beginning of each

I record must indicate how long the record
is, and a field preceding the first record
of each block must indicate the length of
the complete block. These two fields,
indicating the record and block lengths,
are used by access method routines in
extracting records from a block. If the
lengths of the records of a block are not
defined, the complete block can still be
stored or retrieved by the control program.
However, any consolidation o:r extraction of
records must necessarily be done by the
user program that processes the records.

Fixed Length

Variable Length

Unspecified Length
One record or several reco:r:ds grouped

together in an unbroken series form a
block. A block of data in auxiliary
storage is separated from another block by
a gap in the data, and is transferred to or
from main storagE~ as a unit. Records may
be grouped together to form a block because
they represent a logical entity.. Or they
may simply be grouped together to avoid
wasting auxiliary storage space or to
reduce the nurnbel: of se para te data
transfers between main and auxiliary
storage.

---------- ---,

68

I _. __________ ---1

Figure 51. Data Recqrd Formats

In the case of variable-length records,
a single record can be divided into
segments, with each segment contained in a
separate block (Figure 52). A record can

Record 1 Record 2 Record 3 Record 4
~,~ ________ ~A~ ________ ~,,~ ____________ ~A~ _____ _

------..\~

V
Block 1

Segment 2 Segment 1

~~

Figure 52. Spanned Variable-Length Records

thus be longer than a block, and may in
fact span several blocks. As a resul t,
block length can be defined in such a way
as to optimize the use of auxiliary
storage, without regard to record length.
No special progra~ng is necessary to make
use of spanned records, but programs can be
written to process either complete records
or record segments. Each segment contains
a field that defines it length and its
relative position within the record. The
field indicates whether the segment is the
first segment, the last segment, or a
middle segment, or whether the segment is a
record complete in itself.

One or several related blocks of data
separated by gaps form a data set or, as it
is often called~ a data file. Each set of
data represents an organized body of
related information, such as all of the
information concerning a series or group of
sales transactions. Data sets are usually
independent of one another, both logically
and physically. They may, for example, be
stored in different auxiliary storage
volumes.

A volume is a section or unit of
auxiliary storage space that is serviced by
a single read/write mechanism whose
operation is entirely independent of any
other read/write mechanism. In an
operating system installation, a volume may
be:

• A reel of tape.
• A disk pack..
• A data cell.
• A drum.
• A section of an IBM 2302 Disk Storage

(Model 3 or 4) serviced by a single
read/write mechanism.

They are called volumes because, like
collections of books, they store related
sets of information (data sets).
Sometimes, like books, they can be moved
from place to place (disk pack and tape
reel volumes, for example). Often the
volume containing a particular set of data

Segment n

~

'-----y---'
Block 3 Block n+ 1

is located by searching through a series of
indexes, in much the same way as a book in
a library is found. Also, each direct
access volume contains a table of contents
defining sets of data contained in the
volume and tells where they are located.

Library Reference System

In a medium or large scale data processing
organization, keeping track of data can be
a formidable undertaking. This is true in
organizations that attempt to take full
advantage of the benefits offered by direct
access storage devices.

At anyone time a great many data sets
or files may exist within the organization.
The bulk of these are usually stored on
magnetic tape or in direct access storage.
Usually each programmer must keep track of
the tape and direct access storage volumes
on which his data sets are stored. For
direct access storage volumes, he must also
keep track of exactly where on a volume his
data sets are located.

Furthermore, the operations staff at an
installation must assign space for storing
data sets. They may assign removable tape
and disk pack volumes to programmers and,
in the cas,e of direct access storage
volumes, they may also assign specific
areas of storage on particular volumes. In
any event, the operations staff must
maintain up-to-date records on the
assignment of space for storing data and
must systematically control its use and
disposition.

Over a period of time, as new data sets
are created and old data sets are
abandoned, the problem of managing the data
mass becomes more severe. This happens not
only because of an increased number of data
sets (both current and obsolete) but also
because human beings become too much
involved in the mechanics of managing data
and more subject to error. As a result,

Information Management 69

data sets may be destroyed at times because
of mixups i.n space assignments, and
programmers may abandon installation
procedure::;, maint.ain their own private
library of removable volumes, .and avoid
sharing storage space and data with one
another.

Another proble!m facing many
installatiClns is the problem of using
direct acc€!ss storage efficiently. After a
time, available space on shared direct
access storage volumes tends to become
fragmented, and a great deal of space is
wasted. Y€!t any attempt on the part of the
operations staff to reorganize and
consolidatE! the (lata sets on the vol urnes
can be a difficult undertaking involving
many individual users.

Because of such problems, the operating
system cont:ains 2l built-in library
reference system that is used to classify
and locate data sets and allocate space for
storing thE~m. In many ways it resembles
library re1:erence systems that. are used to
locate information in book libraries. In
the operating system, the cont.rol program
assumes the role of the librarian. Given
the name of a dat.a set, it can identify the
volume cont,aining the data set. and then
locate its position within the volume
provided, of course, the data set has been
stored and cataloged within the library
reference system ..

To do this, the control prClgram searches
through a ~::atalog conSisting of a hierarchy
of indexes maintained in direct access
storage (Figure 53).:1.3 The cat:alog not only
serves to direct the control program to the
volume containing the data set:, it also
serves to classify the data SE!t. A·t any
given time there may be a great many data
sets stored in auxiliary storage.
Therefore, the system must ensure that no
two data sets ha've the same name. This is
accomplished by adopting a met:hod of
class ifying and cataloging data sets that
is similar to the Dewey decimal
class ifica'tion method used to classify and
catalog books in a library. Instead of
numbers, alphameric names of up to eight
characters are used to identify a set of
data. with this method, a data set name
may be ref·erred to as:

DESIGN. ELECTRO. ROBERTS

where ROBERTS is the basic name of a data
set that is classified under the name
ELECTRO that, in turn, is classified under
the name DESIGN. The major class name and
each subclass name of a data set
corresponds to an index in the catalog. By
searching through the corresponding major
class index and each corresponding subclass
index, in turn, the control p:['ogram can

70

identify the serial number of the volume in
which a data set is stored and, if
necessary, instruct the operator to mou~t
the volume on an appropriate device.

Once the control program identifies the
volume in which a data set is stored, it
can locate the position of the data set
within the volume. At the beginning of
each direct access volume in the system is
a volume label that directs the control
program to a table of contents (Figure 53).
The table of contents contains the name,
description, and location of each data set
stored within the volume. By reading and
searching through the table of contents,
the control program can find the location
of a data set.

The table of contents of a volume also
contains a record of each unused area in
the volume. The record contains the
location of each area and its size.
Therefore, by searching through the table
of contents, the control program can
automatically find and allocate unused
space on the volume f or the 'temporary or
long term storage of data se'ts.

A tape volume does not contain a table

I of contents. However, each data set is
assigned a sequence number when it is
created. Using this sequence number, the
control program can locate a particular
data set on the tape and advance the tape
to the beginning of that data set.

No distinction is made within the
library reference system as to the type of
data contained in a volume. Data is stored
in the same way whether it is a set of job
control statements, a source program, an
object program, or a set of data blocks to
be processed by an object program. The
only distinction among the different types
of data is in the nature of the data itself
and the way in which it is used.

Most of the data sets that make up the
operating system and that are used by the
operating system in performing its work are
cataloged within the library reference
system. Once the operating system is
generated, a system programmer can extend
the catalog using system utility programs
specifically provided for that purpose.
For example, he can construct a catalog
consisting of several levels of indexes,
and when more data sets are created, he can
extend the catalog to reflect this growth.
The catalog structure for a particular
operating system may be represented in the
form of a chart, as shown in Figures 53 and
54. The data sets that are cataloged can
be classified in many different ways -- for
example, to reflect the organizational
structure of an engineering department that
uses the system.

Figure 53.

~~
See Figure 56

To Other Indexes

Generation Data Groups

simplified Diagram of Catalog System for Locating a Volume

Information Management 71

Although the highest level index of the
catalog is always stored on the direct
access volume containing the operating
system control program, branches of the
catalog can be stored on other direct
access volumes, including removable
volumes. For example, the index named
DESIGN in Figure 53, as well as any
subclass indexes, could be stored on a
removable disk pack that is assigned for
exclusive use by 1:he design dl~partment.

In addition to cataloging single data
sets in the library reference system,
several successive generations (updates) of
a data set (called a generation data group)
can be cataloged. 3 This method can be used
to catalog a data set, such as a
year-to-date earnings data set, that is
updated weekly by a payroll program. Each
generation of the data set ma~i have the
same name and be identified rl~lative to the
current genE~ration of the data set. With
this method of cataloging,thl~ system can
automatically keep track of the generations
that have bE~en created., and delete obsolete
generations as new ones are created.

A special type of direct access data
set, called a partitioned data set can also
be cataloged (Figure 54).3..0 This type of
data set is used primarily to store
programs, and is 1:herefore often referred
to as a proqram library. It has its own
index, called a directory, which is used to
locate one or more sequential blocks of
data (called members) that are stored in
separate partitiOllli of the data set.. The
major use of partitioned data sets is
descr ibed in the section ti tl(~d "Program
Development and Management. II

The library reference system for
locating (and assigning space for) data
sets makes it possible for programmers to
efficiently share the use of direct access
storage devices with a minimwn of
interferencE~. To help ensure efficient
sharing., thE~ system programmer is provided
with a comprehensive set of system utility
programs wi1:.h which he can control the
classification of data and the use of
direct access stOl::age. 'Ibese programs can
be used to create., rename, or delete
indexes and data sets; to reorganize and
rearrange a library of data set.s; and to
conduct sur,reys of the organization and
contents of direct: access stoJcage. 3..5

Methods of: Storing and Retrieving
Data

There are tvlO rna jor types of au.xiliary
storage devices commonly used in computing
systems: sE~quential access devices and
direct access devices. A device is

72

classified as one or the other depending on
the way it stores or retrieves blocks of
data.

Volume 5 of
Previous Figure

V"'um' Tool. of Conte"" ~

Data Set

Design. Electro. Roberts
Data Set

A Partitioned Data Set = tIIi
Figure 54. Simplified Diagram of Catalog

system For Locating Data sets
Within a Direct Access Volume

Because a sequential access device, such
as a magnetic tape unit, stores or
retr ieves a particular data block in a
series, it must scan through all
intervening data blocks. This is both
time-consuming and wasteful of resources.
Therefore, sequential access devices are
seldom used when it is necessary to
retrieve or store particular blocks of data
in a non-sequential order. However, they
can be used with a great deal of efficiency
when storing or retrieving a succession of
data blocks in a fixed sequence.

A direct access device can retrieve a
particular block of a data set more
directly. Therefore, it can be used in
applications where it is necessary to
retrieve or update particular data blocks
in a non-sequential order. A direct access
device can also store and retrieve a
continuous series of data blocks, often at
a faster rate than a sequential access
device. Therefore, a direct access device
is frequently used for both direct and
sequential processing of data blocks.

To help an installation use these
devices effectively, the operating system

provides five basic methods for storing and
retrieving data: 1o

• The Basic Sequential Access Method
(BSAM), which stores or retrieves data
blocks in a continuous sequence using
either a sequential or direct access
device.

• The Basic Direct Access Method (BDAM),
which directly retrieves or updates
particular blocks of a data set on a
direct access device.

• The Basic Indexed sequential Access
Method (BISAM), which directly
retrieves or updates particular blocks
of a data set on a direct access
device, using an index to automatically
locate the data set. The index is
stored in direct access storage along
with the data set. other forms of the
BISAM method can be used to store or
retrieve blocks of the same data set in
a continuous sequence. This method is
used only with direct access devices,
and takes advantage of both their
sequential and direct access
characteristics.

• The Basic Partitioned Access Method
(BPAM), which is usually used to store
or retrieve programs. It is described
in the next section "Program
Development and Management."

• The Basic Telecommunications Access
Method (BTAM), which is used only in
teleprocessing applications. This
access method is described in the
section "Teleprocessing."

The proper method to use in processing
data depends on the nature and organization
of the data and the nature of the
application. For example, the indexed
sequential method could be used effectively
with data that must be updated and
interrogated quickly, and periodically
processed in a sequential order (to prepare
a summary report, for example).

More than one method can be used to
process the same data set, provided the
organization of the data meets the basic
requirements for each of the methods used.
For example" the sequential access method
could be used to transcribe a data set that
is usually processed using the direct or
indexed sequential access method.

In addition to the basic access methods,
the operating system provides extended
versions of the sequential access method,
the sequential form of the indexed
sequential access method, and the
telecommunications access method. These
are:

• The Queued sequential Access Method
(QSAM) '.

• The Queued Indexed Sequential Access
Method (QISAM).

• The Queued Telecommunications Access
Method (QTAM).

• The Telecommunications Access Method
(TCAM) •

QTAM and TCAM are discussed in the section
"Teleprocessing. "

When QSAM or QISAM is used, the system
takes advantage of the fact that they store
and retrieve blocks and records of a data
set in a known sequential order. It does
this by forming in main storage a waiting
line, or queue, of input data blocks that
are awaiting processing. For output data,
it forms a queue of data blocks that have
been processed and are awaiting transfer to
auxiliary storage or an output device. The
queues enable the CPU to process one data
block while other blocks are being
transferred in or out of main storage.

Data records from a block in an input
queue are parcelled out, one at a time, as
they are requested by the program that
processes the data. If an input queue is
empty when a record is requested by a
program, then the control program
automatically holds up further execution of
the program until the next data block is
received.

When a request is made by a processing
program to store a record, the record is
consolidated in an output queue with the
other records of the block. If the output
queue is full when the request is made, the
control program automatically holds up
further processing of records until a block
in the output queue has been transferred.

Each basic or queued access method has a
number of optional or alternative
variations, .such as different ways of
transmitting data records to or from a
processing program. The options and
alternatives differ with each method. g ·,1o

Defining Data, Access Methods, and
Devices

In order to use an access method to create
a new data set, the control program must
have three types of information. First, it
must have information about the data set,
such as the lengths of the records and
blocks that it will contain. It must also
have information on the access method that
will be used to create the data set,
including a definition of all the selected
optional and alternative variations of the

Information Management 73

method, such as the size and organization
of the output queue. Then it must know the
type or class of I/O or storage devices on
which the data set will be recordedD

When using the assembler language, the
programmer can define this information
within his program at the time he designs
it" or he can define it in a data
definition (DD) statement of a job step
definition :just prior to submi t.ting his job
for processing. (As previously described,
each job step definition must contain a
data definit.ion statement for each data set
that is used or created during the defined
job step.) There are a number of reasons
why the proqrammer may want to defer
defining information until he submits his
job.

First, by withholding information on the
characteris1:.ics of the data set. and the
method to bE~ used to create it, he can
change characteristics and access methods
each time the proqram is execut.ed. He can
do this merE~ly by changing specifications
on the data definition statement before
submitting 1:.he job f or processing, without
changing or reassembling the program.
Thus, a proqram that is used to create a
data set can be independent of the method
used to create it., and the acc€!ss method
can be varied from time to time depending
on circumstances. For example, the size of
the output queue used to create a data set
can be chanqed depending on how much main
storage space is a.vailable when the program
is executed ..

Deferrinq the definition of the device
on which a newly created data set is to be
stored or recorded offers a number of
important advantaqes. Each time the
program is E~xecuted, the data set that is
created can be stored or recorded on a
different t~{pe or class of device. For
example, bejEore submitting his job the
programmer can indicate on the DD statement
whether he ,~ants the data set printed on an
online prin1:.er or recorded on magnetic
tape, on a particular di rect access vol ume
or device, or anywhere in direct access
storage. This ensures that the program is
independent of any particular t.ype of
device.

Thus, if a particular type of device is
not available when needed, anot~her type may
be selected.. Also, new types of devices
may be added to the system without
necessarily changing or reassembling the
programs. pevice independencg makes it
possible to run the programs on different
computing systems having different
complements of I/O and direct a.ccess
storage devices.

74

When the programmer uses the assembler
language to design a program, he mU3t
include in the program any information that
is needed to apply an access method. When
he uses a high-level language, such as
FORTRAN, to design a program, the
translator provides information and places
it in the program. However, the high-level
language translator normally 11'1ithholds
certain information in order to ensure a
degree of device independence and
flexibility in the use of the program. The
withheld information is supplied in the
data definition statement of the job step
and can be redefined by the programmer.

A data set and the access method
employed to create or use it can have a
great many variations. Defining and cuding
their characteristics can be a rather
lengthy and painstaking process.
Therefore, the control program contains
facilities that can be used to avoid
repetitive definitions and coding each time
a data set is created or used.

One is a facility for cataloging job
step and data definitions. If a series of
job step and data definitions are used
repeatedly by programmers, they can be
stored and cataloged in a procedure library
maintained in direct access s"torage by the
control program. Thereafter, a programmer
can, using a single job and job step
statement in an input stream, direct the
job scheduler to pick up the job step and
data definitions from the procedure
library. If necessary he can, in the same
statement, temporarily override
specifications in the job step and data
definitions picked up from the procedure
library. Thus a programmer need only
define and code changes to a data
definition that are required for his
particular job.

To further reduce repetition in defining
data sets, the control program stor~s a
description of each data set contained
within the system. 11 When a new data set is
created, its description is stored on the
same volume that contains the data set. If
it is a magnetic tape volume, the
description is stored in a da"ta set label
that precedes the data set. If it is a
direct access volume, the description is
stored in the table of contents of the
volume. In either case, once a data set is
created it can be used and processed by
different programs without being described
again each time it is used.

Program Development and Management

Today, most data processing installations
have two outstanding problems.. The first
concerns a shortage of programming talent
and a continual increase in the number and
scope of new data processing applications.
The second problem concerns the effect of
machine malfunctions on a system. Because
of the"se problems., many data processing
installations find it difficult to cope
efficiently with the work at hand. As a
result" the overall productivity of an
installation often suffers, and the
introduction of important new applications
is sometimes postponed indefinately.
Consequently, various processing programs
and recovery routines have been developed
to cope with these problems.

A Unified Program Development
System

To help combat such problems, the operating
system provides a variety of facilities in
the form of processing programs that are
designed to reduce the time, expense, and
manpower required to program new
applications.. For the most part" these
facilities consist of the language
translators and service programs, which
were described briefly in a previous
section. Although each of these is
important in its own right, they are really
designed to be used together. When
combined with the facilities of the control
program, they serve as a unified system for
developing and managing the use of
programs. The overall objective of such a
system is to reduce the total time and
effort required to program and maintain an
application from the time it is conceived
until it becomes obsolete.

A particular application may be a short
one-shot affair such as computing the
interest on a loan, or a large complex,
long-running application that requires most
of the resources of an installation.
Therefore, the operating system is designed
to assist groups of programmers working
cooperatively on a single project or
application., as well as individual
programmers working independently on many
different applications.

The operating system provides such
assistance in four ways. First, it
provides a method for designing and
constructing programs and subprograms in
the form of replaceable parts, or modules.
This method, called modular construction,
is the same basic method that is used to

construct the operating system. second, it
provides means for storing programs and
parts of programs in organized libraries in
direct access storage where they are
immediately available for automatic
retrieval, yet are still subject to
modification. Third, it provides means for
dynamically loading programs and
subprograms into main storage as they are
required to perform tasks. Fourth, the
Checkpoint/Restart facility provides the
programmer with the means to prevent a
complete restart of a program in case of an
error.

MODULAR CONSTRUCTION

Although a programmer can write a program
and have it translated and executed without
a hitch, this is an exception, rather than
the rule. Most programs are tested,
modified, and recompiled several times
before they are put to use in performing
useful work. It may take months to
completely develop and check out a program.
Even then, it may go through an
evolutionary process of improvement,
extension, and updating that can, and often
does, last until it is nearly obsolete.

Therefore, the language translators and
the linkage editor are designed so that
they can be used in combination to
construct programs and subprograms in the
form of modules that are logically
interconnected but can be modified
separately. This makes it unnecessary for
a programmer to retranslate and test his
complete program each time a part of it is
modified.. Only those parts (or modules)
that are affected by a modification need be
retransla ted.

This method of construction also allows
the work involved in developing a program
to be divided up among several programmers
(Figure 55). Many programs are much too
large and complex for a single individual
to design alone in a reasonable period of
time. This is especially true of the
large, complex programs that are usually
required for advanced system applications.

A program module represents a complete
program or part of a program that can be
modified or replaced without affecting
other programs. It may range in size from
a single instruction to a large program
that requires all of the available space in
main storage.

Program Development and Management 75

There are three types of program
modules: source modules, object, modules,
and load modules. Each of these! represents
a different stage in the development of a
program.

A source module is the input to a
language translator for a particular
translation. It is actually a sequence of
language sta't:ements which the programmer
has decided t:o consider as a rf~placeable

entity.

An object modul~ is the output of a
language translator for a particular
translation. It contains a program or part
of a program in thE~ form of machine
language instructions.

A load module is produced by the linkage
editor. It can be produced from one or
more object modules or a combination of
object modulE!s and other load modules.

A source module can contain references
to instructions and data in other modules.
It can also contain instructions and data
that are refE~rred t:o by other modules. Yet
each source module can be translated
individually, and not combined with other
modules 'until somet:ime later. Therefore,
as a part of the tI~anslati on pl:"ocess, each
translator prepares a record of all
references to or from other modules. This
record is represent:ed by the interlocking
arrows in Figrure 55. It is appended to the
object module~ produced by the t:ranslator
and is used later by the linkage editor to
consolidate t.he module with other modules ..

To produce~ a load module, the linkage
editor resolv'es all cross-references among
the input modules from which the load
module is to be formed. It dOE!s this by
replacing each refe'rence with t:he address
of the item referred to. The linkage
editor also produces and appends to the
load module a consolidated record of all
cross-references. These include
cross-references that have already been
resol ved as w'ell as unresolved references
to modules that have yet to be incorporated
into the load module. Because a load
module contains this record, the linkage
editor can be used to combine it with
Object modules or other load modules, and

I
to delete or replace previously
consolidated modules. 5

After all cross-references have been
resolved, a load module can be loaded
anywhere in main storage by the~ control
program. The final assignment of storage
addresses is completed as part 0:E the
loading process.

76

Lead Programmer

~r===ll
~

Problem

Translation
and
Linkage
Editing

Composite Load Module

Figure 55. Program Design

There are several reasons why a
programmer may want to divide and subdivide
a program into modular parts:

• He may, sooner or later want to replace
one part with another part. This may
be done because the original part
contained an error, or had to be
updated or improved.

• He may want to develop and test
different parts of his pr09ram at
different times and gradually build a
complete program.

• He may want to divide up the workload,
that is, assign responsibility for
developing and maintaining different
parts of a program to different
programmers.

• He may want to use different language
translators to design different parts
of his program. For example, he may
want to use the FORTRAN language to
design a part of his program that
requires the use of mathematical

techniques, and the assembler language
to design parts that require either a
great deal of flexibility or services
of the supervisor that are not
available through the FORTRAN language.

A programmer should evaluate these
considerations in deciding whether to
divide his program into modules. As a
general rule he should divide his program
along functional lines into self-contained
modules to reduce the number of
cross-references between one module and
another.

ORGANIZED PROGRAM LIBRARIES

In the operating system, programs or parts
of programs are usually stored in program
libraries maintained in direct access
storage.. These libraries include programs
that make up the operating system, as well
as programs created by the user of the
system ..

A program library is actually a special
type of data set called a partitioned data
set that is stored in direct access storage
and can be cataloged like any other data
set. A partitioned data set, as its name
implies, is divided into independent
partitions.. Each partition contains a
program, or part of a program, in the form
of one or more sequential data blocks.
Each program library contains a built-in
directory (or index) that the control
program can use to locate by name a
particular program or part of a program
stored in the library.

The control program provides an access
method, called the partitioned access
method" that the programmer can use to
create program libraries for storing and
retrieving programs. However, most
applications programmers use libraries that
have already been created by a system
programmer or by the control program ..

Using direct access storage for programs
libraries has a number of distinct

Source Module
Library

Language
Translator

Object Module
Library

Figure 56.. Program Module Libraries

advantages. Once a program module is
entered into the system, it can be stored,
translated, tested, modified, retranslated,
and combined with other modules, without
storing it on punched cards. Thus,
programmers need not maintain large, bulky
card files and can avoid relatively slow
card reading and punching operations ..
Another advantage is that programs can be
loaded directly into main storage without
searching through a long series of programs
on magnetic tapes.

In developing and maintaining programs,
three libraries are generally used: a
source module library, an object module
library, and a load module library (Figure
56). These can be used by individual
programmers or shared by several
programmers working on the same or
different projects.

The source module library is used to
store source modules while they are being
translated and tested.. There they are
available for updating or correction, if
necessary, prior to retranslation.. IBM
provides a comprehensive set of utility
programs specifically designed for this
purpose.

As each source module is translated, the
resulting object module is stored in an
object module library where it is available
for processing, or consolidation with other
modules, by the linkage editor. The load
modules produced by the linkage editor are
placed in a load module library.. There
they are available for loading into main
storage and execution under direction of
the control program, or for further editing
and modification by the linkage editor ..
Once a load module is tested and fully
perfected, a programmer can delete from the
library system any source and object
modules that were used in developing it ..
The load module can be further modified,
extended, and updated, however, since a
composite record is maintained within the
module of all cross-references among the
modules from which it is formed ..

Linkage
Editor

Load Module
Library

Main
Storage

Program Development and Management 77

In other operating systems, large or
complex programs are often stored and
maintained in auxiliary storage in two
forms. In one form, final main storage
addresses within the programs have been
assigned. Therefore, the programs are
ready to be loaded into main storage and
executed. By the sane token, the programs
cannot be modified, short of complete
retranslation, except by resorting to a
makeshift technique called "patching."
Patching is generally avoided at well-run
installations because it leaves no visible
record of a modification. Therefore, the
same programs are stored and maintained in
auxiliary storage in a different form. In
this form, final main storage addresses
within the p:rogram are not yet resolved;
the various parts of the program are still
subject to modification without resorting
to either pa~tching or complete
retranslation. In the systern/3E>O Operating
System, a single composi te load module is
both subject to modification and ready to
be loaded in1to rna.in storage and executed.
Therefore, oll1ly the load module form of a
program need be stored and maintained in
auxiliary storage.

DYNAMIC PROGHAM LOADING

Once a load module is perfected and stored
in a program libra:ry, it is ready to be
dynamically loaded anywhere in main storage
by the control pro:;Jram, and then executed.
This characb:!ristic::: of a load module is
commonly refc:!rred to as reloca tabili ty
(Figure 57).:L A load module may be a
complete proqram or a part of one or more
larger programs. 'rhis is true regardless
of whether i1: was originally formed from a
single objec1: module or a combination of
modules.

Main Storage

Load Module
Library

r--l
I I

_---"'1 I
_--- I I _-- L __ J

.... -
r---,

------- __ ... I I
--.... ~ I

I I L __ .J

Figure 57. nelocatability

There are a number of reasons why a
programmer may divide and store his program
as separate load modules:

78

• He may want to share parts of his
program with other progranlmers.

• He may anticipate that a particular
part of his program will be deleted or
replaced in the future.

• He rna.y want to have major parts of his
program executed as separate job steps,
in which case data generated during one
step may be passed to a succeeding
step.

• He may want to load a particular part
of his program into main storage only
when a certain event OCCUZ'S, such as
the expiration of a time period or, in
a teleprocessing aFplication, the
arrival of a message from a remote
location.

• He may want to load different parts of
his program into main storage at
different tines in order to conserve
storage space. In such an instance,
parts of a program that are yet to be
executed can be brought into main
storage to replace parts that have
already been executed.

• If he is using an MVT operating system,
he may want to have different parts of
a program executed concurrently as
separate and distinct tasks.

The job scheduler and the problem-state
programs whose execution it initiates are
separate and distinct programs. However,
they and their subprograms must adhere to
standard linkage conventions so that
control can be passed between them in a
consistent manner. As a result, any
programs and subprograms that are stored in
the load module libraries can be shared and
used for different applications. These
include programs and subprograms of the
operating system itself as well as those
designed by a user.~

The degree of program sharing depends
largely on the installation and how well
the use of the system is controlled and
coordinated. The sharing might be limited
to a few programmers or applications or it
might extend to all of the programmers at
an installation.

CHECKPOINT/RESTART FACILITY

When an error is detected within the
computing system an interruption normally
occurs, and CPU control is transferred to
an error recovery routine, which attempts
to repeat the operation that was being
performed when the error was detected. If
the error does not recur, it is assumed
that the error is not permanent, and CPU

control is returned to the production
program at the point at which it was
interrupted. Thus, if it is possible to
recover from the error, no time is wasted
in the middle of a production run in
correcting the fault that caused the error.

In some cases however, it is not
possible to continue the production run at
the point at which it is interrupted by an
error. The error may have been caused by a
permanent failure or it may have altered or
destroy~d data or instructions that are
required to continue with the production
run. To avoid restarting the production
run from the very beginning when such
situations arise, an optional
Checkpoint/Restart facility is provided
with the operating system. Using this
facility it is possible to design
production programs, particularly long
ones, with convenient rerun points
(checkpoints). A programmer initiates a
checkpoint by requesting the supervisor,
via an SVC instruction, to record in
auxiliary storage a checkpoint data set
containing all of the information necessary
to restart the production program from the
point at which the checkpoint is taken.
Then" no matter where processing is
interrupted during the production run, it
can be restarted at the last checkpoint
using the checkpoint data set to
reconstitute main storage, load registers,
position tapes, etc.

This technique can also save time when a
program is interrupted by operator
intervention for another of higher priority
or for any other reason. At the option of
the operator, a restart can be either
automatic or deferred. If automatic, the
production program is restarted immediately
at the last checkpoint. If deferred, the
production program is resubmitted sometime
later for processing, and is restarted then
at the last checkpoint.

Using the Checkpoint/Restart facility,
it is also possible to restart
predesignated job steps in the event a job
step is interrupted and cannot continue.
Like a checkpoint restart of a production
program" a step restart can be automatic or
deferred at the option of the operator.
The EXECUTE statement of the job step
definition indicates whether a job step is

I subject to restarting • .2

A Means of Recovery

A failure of the system, whether during the
development of new programs or while
processing MFT or MVT jobs, can result in a
loss of productivity and diminish the
effectiveness of the system. To protect
against, or at least to diminish the
effects of, a failure, reliability,
availability, and serviceability (RAS)
facilities interact with the control
program. RAS facilities attempt to retry
or repair machine malfunctions that result
in system failure. One means available for
RAS implementation is the Recovery
Management support (RMS) for both
System/360 and System/370. 6,7

Recovery management routines fall into
two distinct categories: Those that record
the environment at the time of the machine
malfunction; and those that exist to bypass
various I/O errors. Recovery management
routines of the first class include:

• System Environment Recording (SER)
routines provide the user with the
environment of the CPU and the channel
at the time of the failure.

• Machine Check Handler (MCH) routines,
according to the CPU model, analyze,
record, retry, and if possible isolate
the machine malfunction.

• Channel Check Handler (CCH) analyzes
channel errors for device-dependent
error routines, and constructs a
permanent record -- the channel inboard
error record -- for the I/O supervisor.

• Error Recovery Procedures (ERPs)
analyze intermittent and unrecoverable
errors, detect I/O errors, and attempt
their retry.

Recovery management routines of the second
class include:

• Alternate Path Retry (APR) allows an
I/O operation that has failed on one
channel to be retried on another
alternate channel.

• Dynamic Device Reconfiguration (DDR)
allows the operator to move a movable
volume -- tape drive or disk -- at
system or operator request, to another
device.

Program Development and Management 79

Multiprocessing is a technique whereby the
work of processing data is shared among two
or more interconnected central processing
units (or computing systems). A
combination of a main computing system that
specializes in the processing of jobs, and
a separate offline "satellite" computer
that specializes in transcribing input and
output data for the same jobs might be
considered a multiprocessing system since
the combination contains two central
processing units that indirectly
communicate with one another. However, in
this kind of multiple CPU installation, the
communication between one CPU and another
is achieved wholly through operator
intervention. In the case of the offline
satellite example, the communication
consists of the operator removing a tape
reel from a tape unit connected to one
computer and mounting it on a tape unit
connected to the other computer.
Therefore, such a combination is not
usually considered a true multiprocessing
system.

CPU-to-CPU Communication

In a true multiprocessing installation, one
CPU may communicate with another in a
combination of ways. At one extreme,
communication may be represented by a few
control signal lines that are used to
broadly synchronize the operation of one
CPU with that of another. Then again, the
communication may consist of sharing direct
access storage devices or main storage
units among two or more CPUs. Another form
of communication can be achieved by using a
channel-to-channel adapter. This device
enables blocks of data to be transferred
quickly from the main storage of one CPU to
that of another. Communication can also
consist of transferring data over
telecommunication lines from one CPU to
another at a remote location.

Advantages of Multiprocessing

There are a number of reasons why
multiprocessing might be employed at an
installation. Multiprocessing can increase
availability, increase production capacity
of a system, ensure more efficient use of
resources, and allow two or more CPUs to
share the same data.

Multiprocessing

INCREASED AVAILABILITY

Multiprocessing can help to ensure a high
level of availability for a system.
Availability is the degree to which a
sys·tem is ready when needed to fulfill its
role in an activity. An example of such an
activity is a missile launching, where the
unavailability of a computing system for
use in guiding the missile could delay
launching or cause it to fail. For such
applications, more than one CPU is employed
so that one can quickly replace another in
the event of a failure. Some other
applications in which availability is of
prime importance are: airline reservation
system applications, process control
applications, banking system applications,
and air or ground traffic control system
applications.

INCREASED PRODUCTION CAPACITY

Multiprocessing can also increase the
overall data processing capacity of a
system. This is especially important for
solving large scientific or engineering
problems in such fields as theoretical
physics or aircraft design. Problems such~
as these often require weeks or months of
computation before a solution is arrived
at. The increased data processing capacity
provided by multiple processing units can
drastically reduce the time required to
solve such problems.

MORE EFFICIENT USE OF RESOURCES

In systems that can perform multiple data
processing tasks concurrently,
multiprocessing can result in more
efficient use of hardware resources. By
pooling the resources of two computing
systems, it is so~times possible to
perform more work, such as job steps,
concurrently than when two separate and
distinct systems are employed. With
separate computing systems, a job or other
unit of work that is ready to be initiated
on one system may be delayed for the lack
of a resource that is available, but idle,
on the other system.

DATA SHARING

Multiprocessing can make it possible for
two or more central processing units to
share sets of data maintained in direct
access storage. This can help to ensure
more efficient and consistent processing of
the data. Moreover, by reducing or
eliminating redundant data, it can conserve

Multiprocessing 81

direct access storage space and reduce the
time and effort required to retrieve the
data and keE~p it up to date.

Operating System Support of
Multiprocessing
The IBM Operating system/360 supports two
general purpose multiprocessing
applications. OnE~ employs two to four
System/360 Computing systems that share
direct access storage deviceso The other
employs two computing systems that share
all of main storaqe and most I/O devices.

In additi.on to these two general purpose
applications, there are a number of special
purpose mult~iprocessing applications
supported by the operating system. These
involve the use of central processing units
a·t remote locations that communicate with
one another by way of telecommunication
lines, and are therefore described in the
next section "Tele~processing."

MULTIPROCESSING WITH SHARED DIRECT ACCESS
STORAGE DEVICES

As an optional feature, the operating
system supports a multiprocessing system
containing t.wo System/360 Computing Systems
(Figure 58) of the same or diff,erent models
that share a control unit and up to eight
direct access storage devices. Access to a
particular d.evice is gained through a
two-channel switch that enables the shared
control unit to be instantaneou:sly switched
between two channels. Each of ·the two
channels is connected to a different
computing system. The computi.ng systems
gain access to a particular device on a

I first come first served basis. Either of
the major configurations of the control
program (MFT' or MVT) can be used with
either of the two computing systems.

MVT WITH MODEL 65 MULTIPROCESSING

The operating system supports the Model 65
Multiprocessing System through ~ with
Model 65 multiprocessing, an extension of
MVT,. This system uses two identical Model
65 Processing Units (CPUs), called Model 65
Multiprocessors. The two CPUs share all of
main storage" which may range from a
minimum of 524,,288 bytes to a maximum of
2,091,152 bytes, and most I/O devices. 7

One configuration of the Mod~~l 65
Multiprocessing System is shown in Figure
59. In this configuration, the system is
physically symmetrical, excluding the 1052
Printer-Keyboards; that is, each CPU has
access to any I/O device in the system,
except the 1052 at·tached to the other
multiprocessor. This total device
accessibili ty is made possible i::hrough use
of program-c4ontrolled, two-channel (or

82

two-processor) switches on control units.
The 2816 switching unit and the 2844
Auxiliary Storage Control are also used to
achieve total device accessibility., in
cl~rtain instances.

In other configurations of the Model 65
Multiprocessing System, in addition to the
1052 Printer-Keywords, 1443, .2150, and 2501
unit record equipment and devices supported
for graphics and teleprocessing
applications can be accessed by only one
CPU.

Operating Modes

The model 65 Multiprocessing System can
operate in three modes: multisystem (MS),
partitioned (PTN), and 65 mode. MVT with
Model 65 multiprocessing supports
mUltisystem and partitioned modes only.

Multisystem Mode: When the Model 65
Multiprocessing System operates in
multisystem mode, both CPUs share all of
main storage as though it were a single
unit. They also share most I/O devices.

A single supervisor allocat:es resources
and apportions work between the two CPUs.
Because two CPUs share the workload, two
entirely different tasks (or two parts of
the same task) can be processed
simultaneously. Figure 60 shows how four
tasks can be handled by two CPUs in
multisystem mode.

The control program synchronizes the
operation of both CPUs through the Direct
Control Feature -- control lines over which
the CPUs can communicate -- and through us e
of a malfunction alert signal. Examples of
situations in which activity must be
synchronized are:

• One CPU is processing a task and a
higher-priority task is ready and
waiting to be processed.

• I/O activity cannot be ini.tiated by one
CPU; therefore, a check must be made to
see if the other CPU can initiate the
activity.

• An error condition exists in one cpu.

One requirement f or programming support
of the Model 65 Multiprocessing System is
Recovery Management support (RMS). The RMS
routines help reduce delays, loss of data,
and other effects caused by intermittent or
persistent hardware failufe. If a machine
error occurs, the RMS routines attempt to
recover from it by retrying the operation
that failed and attempt to repair any
program damage resulting from the error.
If the error is persistent, then the
recovery routi~es alert the operator and
provide information to help locate the
faulty component.

In most single-CPU systems, when a
failure occurs in an I/O device, that
device can be placed offline; that is, its
use as a system resource can be
discontinued. The system can continue to
operate. In the Model 65 Multiprocessing
System, any noncritical malfunctioning
component (one CPU, channels, areas of main
storage in multiples of 2048 bytes, and I/O
devices) can be placed offline. Thus, the
rest of the system can continue to
function. This assures a high degree of
availability •.

Partitioned Mode: When a CPU is operating
in partitioned mode, it must have its own
main storage, with a minimum of 512K bytes;
auxiliary storage; control units; and I/O
devices. In this mode, the CPU operates as
a separate and distinct system under MVT
with Model 65 multiprocessing.

65 Mode: As with partitioned mode, a CPU
operating in 65 mode must have its own main
storage, with a minimum of 256K bytes;
auxiliary storage; control units; and I/O
devices. In this mode, the CPU operates as
a separate and distinct system under the
MFT or MVT configuration of the control
program (excluding MVT with Model 65
multiprocessing).

I

Central
Processing
Unit

Main Storage
MFTorMVT
Control Program

Channels
Two Channel

Switch

Up to Eight Volumes

Central
Processing
Unit

Main Storage
MFTor MVT
Control Program

Channels

Figure 58. Multiprocessing With Shared
Direct Access Storage Devices

M65
Central
Processing
Unit A

CPU A
Channels

Main Storage
(MVT with Model 65
Multiprocessing
Control Program)

M65
Central
Processing
Unit B

CPU B
Channels

Figure 59. A Symmetrical Configuration of
the Model 65 Multiprocessing
System

Task 1

Task 2

Task 3

Task 4

---------... Time

CPU - A Performing Task •

CPU - B Performing Task EJ
Task Inactive 0

Figure 60. Two CPUs in Multisystem Mode,
Balancing the Execution of Four
Tasks

Multiprocessing 83

Teleprocessing refers to a large variety of
data processing applications in which data
is received from or sent to a central data
processing system over communication lines,
including ordinary telephone lines.
Usually the source or destination of the
data is remote from the central processing
system, although it can be in the same
building. In any event, the source or
destination points of the data are often
called terminals or (for some applications)
work stations.

A terminal, or work station, can have
one or a combination of I/O devices. A
large variety of such devices are available
for use at remote terminals. These include
special keyboards, TV-like graphic display
devices, printers, card read-punch units,
and telephones. In addition, a remote
terminal may be represented by another data
processing system, in which case the
application is not only a teleprocessing
application but a multiprocessing
application as well.

Teleprocessing applications range from
those in which data is received by a
central processing system and merely stored
for later processing, to large complex
system applications in which the hardware
and information resources of the central
system are shared among a great many users
at remote locations.

General Types of Applications

Several general types of teleprocessing
applications that are possible with the
operating system are briefly described
below. There are a number of variations
and combinations of these general
applications.

DAT A COLLECTION

Data collection is a teleprocessing
application in which data is received by a
central processing system from one or more
remote terminals and is stored for later
processing. Depending on the specific
application, the transfer of data may be
initiated either at the terminal or by the
central processing system.

An example of a data collection
application would be one in which data is
received intermittently during the day (as
it is generated) and is processed, when

Teleprocessing

convenient, during the second or third
shift, perhaps taking advantage of lower
data processing rates for the shift. This
could be an application in which production
workers, upon completion of their jobs,
transmit by means of special input devices
such data as their ID numbers, the number
of work units they completed, and other
pertinent data. The central system, after
all the data for the day has been collected
and stored, could then process it for
accounting and production control purposes.

In other applications, data may be
accumulated during the day and then placed
on an input device, such as a punched card
reader. The data could be collected by the
central computing system during off-peak
hours in order to take advantage of lower
communication line rates.

MESSAGE SWITCHING

Message switching is a type of
teleprocessing application in which a
message received by the central computing
system from one remote terminal is sent to
one or more other remote terminals.
Message switching can be used in a
nation-wide or world-wide telegraph system
or it can be used by a geographically
dispersed business or scientific enterprise
to provide instantaneous communication
within the enterprise.

REMOTE JOB PROCESSING

Remote job processing is a type of
application in which data processing jobs,
like those that are entered into the system
locally, are received from one or more
remote terminals and processed by the
operating system.

I Two applications of remote job
processing are provided as optional
features of the MFT and MVT configurations
of the operating system control program.
These are described later in this section
under "Remote Job Entry" and
"Conversational Remote Job Entry."

I TIME SHARING

Time sharing is a teleprocessing
application in which a number of users at
remote terminals can concurrently use a
central computing system. In this type of
application each user at a terminal has the

Teleprocessing 85

impression that he is the sole user of the
computing system. In reality, however, the
resources of the system are shared among
several users. When the use of the
computing system is momentarily not
required by one user, it is available to
satisfy the needs of others. Because of
its speed, the computing system can respond
to the needs of all the users within a few
seconds ..

Often, ilt1 this type of application, a
dialogue or conversation is carried on
between the user at a remote terminal and a
program within the central computing
system. Thl= program may be designed to
interrogate the user and immediately
respond to his replies or requests, or even
his mistakes.

General purpose time sharing is provided
as an optional feature of the MVT control
program. Ii: is described later in this
section undE~r the title "Time Sharing
Option .. "

ONLINE PROBl~EM SO]~ VING

Online pl~oblem solving is a. form of time
shar ing that: has a great many potenti al
applications in the fields of education,
engineering. and research. BE~cause the
system can respond quickly to the needs of
the user, it; can directly participate in,
and speed up, the problem solving process
as well as other similar procE~sses such as
program desi.gn and learning. Thus, if a
user, in the! course of designing a program,
makes a mist.ake, he may be imnediately
alerted by a program in the central
computing system t.o take corrective action.
Therefore, he need not wait until the
complete program is compiled and tested
before the mistake is detected. Similarly,
in a compute'r assisted instruction (CAl)
system - an import.ant variation of this
type of application - a student is
immediately informed of, and learns from q

his mistakes as he makes them.

A specific application of online problem
solving is provided as an optional feature
of the MFT and MVT configurations of the
control program. This application also has
certain features of a remote job processing
application,. It is described later in this
section under the heading "Graphic Job
processing."

86

INQUIRY AND TRANSACTION PROCESSING

Inquiry and transaction processing is a
teleprocessing application in which
inquiries and records of transactions are
received from a number of remote terminals
and are used to interrogate or update one
or more master files maintained by the
central computing system. With this
application, the system can directly
participate in and control various
commercial, scientific, and military
activities as they are being carried on.

One of the earliest examples of this
type of application is the airline
reservation system apFlication described
previously.. A similar aFplication is one
in which the system is used to service a
geographically dispersed banking activity.
In such an application, master files
containing account records for thousands of
depositors are stored in direct access
storage. By entering Fertinent data into
the system, tellers at remote locations can
use a special I/O device to check balances,
update passbook records, and handle similar
transactions within a matter of seconds.

Other examples of this type of
teleprocessing application are information
retrieval systems, management information
systems, and inventory control systems.

An intriguing variation of an inquiry
and transaction processing application is
one in which a telephone is used as the
sole means of input and output at a
terminal. Although the telephone is
normally used to communicate with people,
it can also be used to communicate with a
central computing system. A simple example
of this would be one in which a salesman
wished to check the delivery t:ime for a
particular product. He could do this, even
while in a customer's office, by first
dialing the central computing system, and
then entering (by dial or touch butt.ons) a
transaction code and the stock number of
the product. Af,ter interrogating the
master file to determine the delivery time
for the product, the computing system could
then, using an audio response device, such
as the IBM 7770 Audio Response Unit,
compose and return a verbal message to the
salesman informing him of the delivery time
for the item. The salesman could then
discuss~this with the customer and transmit
the order to the central system or make
other inquiries, again by way of the
telephone. Thus the services of a central
computing system can be as close as the
nearest telephone ..

Message Control and Message
Processing Programs

A teleprocessing program for most
applications is normally divided along
functional lines into two parts: a message

I control program and one or more application
programs (traditionally know as message
processing programs). Message is the
-traditional name for a unit of information
-that is transferred to or from a remote
terminal by way of telecommunications
lines. A message may consist of one or
more segments. A single-segment message is
usually composed of two parts: the message
header followed by the message text. The
~essage header contains control information
concerning the message, such as the source
or destination code of the message, the
message priority, and the type of message.
The message text consists of the actual
information that is routed to a user at a
terminal or to a program in the central
computing system that is to process it. In
general, the information in the message
header is used for control and routing
purposes by a message control program, and
-the information in the message text is
processed, if necessary, by an application
program.

MESSAGE CONTROL PROGRAMS

The main function of a message control
program is to control the transmission of
information between an application program
in the central computing system and I/O
devices at remote terminals. 'In this
respect it performs much the same function
as access method routines that are used to
control the transmission of information
between an ordinary processing program and
local I/O devices. For this reason,
routines that are provided by IBM for use
in creating a message control program are
also called access method routines. There
are three sets of such routines: the
queued telecommunication access method
(QTAM), the telecommunications access
method (TCAM), and the basic
telecommunication access-ffiethod (BTAM).
Although they are called access method
routines, they differ from other access
methods routines in a number of respects,
especially in the way in which they are
assembled to form a composite set of
routines for controlling the transmission
of I/O information. The access method
routines for an ordinary processing program
are assembled and linked together by data
management routines in the operating system
control program as they are requested
through the use of an OPEN macro
instruction. The routines that make up a

message control program on the other hand,
are assembled by an assembler language
translator as a separate program when the
message control program is created, in much
the same way as the operating system
control program is generated.

Queued Telecommunications Access Method

The queued telecommunications access method
(and the telecommunications access method,
described following this explanation) can
be used to create message control programs
for a variety of teleprocessing
applications ranging from message switching
or data collection to high volume inquiry
and transaction processing.

To design a message control program for
such applications can be a very difficult
and time consuming undertaking requiring a
specialized knowledge of teleprocessing
equipment and techniques. Therefore, to
simplify and speed the creation of a
message control program, IBM provides a
special message control language in the
form of assembler language macro
instructions. These macro instructions can
be used to select specific modules from a
comprehensive set of message control and
editing modules. These modules can be
adjusted to meet specific needs and then
linked together to form a complete message
control program. The macro instructions
relieve the programmer assigned to the
teleprocessing application of the detailed,
intricate, and specialized programming that
is usually required for such an
application. They are specifically
designed for easy use in describing the
communication line procedures, line
configurations, buffer lengths, polling
<terminal interrogation) procedures, and
types of message translation and editing
required for a particular application.
Using the message control macro
instructions a complete message control
program for a teleprocessing application
can be described and assembled in days
rather than months.

The message control program serves as an
intermediary between the I/O devices at
remote terminals and the application
programs that process messages (Figure 61).
It enables the terminals to be referred to
indirectly, in much the same way as local
I/O devices are referred to, using such
standard macro instructions as GET, PUT,
OPEN, and CLOSE. It automatically performs
detailed functions, such as sending or
receiving messages, allocating buff~rs,
translating message codes, formatting
messages, and checking for errors.

Teleprocessing 87

Incoming
Messages
from Remote
Locations

Outgoing
Messages
to Remote
Locations

Message Control Message Processing

Main Storage Ii11I
Direct Access Storage = D

Figure 61. Simplified Diagram of Message Control Using the Queued TelecOmlmlnication
Access Method

A messa<Je cont:rol program can be
executed as a separate task independently
of any application program. As input
messages are recEd ved, they are routed
(after translating, checking,. editing,
etc.) to one or more message queues in
main stora<.:re or direct access storage.
Application programs take them from there
as in ordinary processing. When a message
is to be semt to a terminal by an
application program, it is placed on an
output queue in direct access storage.
(The telecommunications access method
places messages on a destination queue in
either direct access storage or main
storage.) The message is then sent by the
message control program to its destination.
In the case! of message swi tclling and data
collection applications, a special purpose
application program may not be required:
the messagE! control program can route an
inbound message directly to an appropriate
output queue. A telecommunications job can
be entered into t~he system in the same way
as any other job. The job scheduler of the
operating system, therefore, can be used to
allocate any I/O device and direct access
storage space required for mE~ssage logs and
message que~ues. and to prepare and schedule
the job for procE!ssing. A mE~ssage control
program, and any application program
associated with i.t, can be entered into the
system as separat.e jobs; or t:hey can be
combined and ente~red as a single job.

With MF'I' and MVT operating system
configurations, more than one job can be
run concurrently. Therefore, other jobs
can share the physical resources of the

88

system with a teleprocessing job and
thereby improve efficiency, especially
during periods when message traffic is low.

Telecommunications Access Method

The telecommunications access method (TCAM)
is similar to QTAM, but offers a wider
range of device and program support. For
example, TCAM supports local terminals
connected directly to the computing system,
as well as remote terminals connected
through communication lines. For remote
terminals, TCAM supports both the
start-stop and binary synchronous methods
of data transmission; binary synchronous
support permits the use of faster terminals
than are available with QTAM~ In fact,
with TCAM, a terminal may be an independent
computing system -- another system/360 or
an IBM 1130.

The preceding discussion of QTAM applies
generally to TCAM. However, a TCAM
application program can use either GET and
PUT" or READ and WRITE macro instructions
to receive and send messages.

To take advantage of TCAM facilities,
QTAM application programs can easily be
converted to TCAM. TCAM facilities
include:

• Online testing of teleprocessing
terminals and control units.

• Input/output error recording.
• Program debugging aids.
• Network reconfiguration facilities.

The facilities for network
reconfiguration permit great flexibility in
controlling the telecommunications network.
The network can be modified by the systm
operator" by a user at a terminal, or by an
application program.

Basic Telecommunications Access Method

The basic telecommunications access method
(BTAM) is designed for limited applications
that do not require the extensive message
control facilities or QTAM or TCAM, or for
applications that require special
facilities not normally found in most
applications.

The BTAM facilities provide tools that
would be required to design and construct
almost any teleprocessing application.
These include facilities for creating
terminal lists and performing the following
operations:

• Polling terminals.

• Answering.

• Receiving messages.

• Allocating buffers dynamically.

• Addressing terminals.

• Dialing.

• Creating buffer chains.

• Changing the status of terminal lists.

When the basic telecommunications access
method is used, READ and WRITE macro
instructions" rather than GET and PUT, are
used by an application program to retrieve
and send input and output messages .•

MESSAGE PROCESSING PROGRAMS

A message processing program is an
application program that processes or
otherwise responds to messages received
from remote terminals. In designing the
progr am" all of the f aci li ti es of the
operating system are available including
the language translators, service programs,
and the data~ program, and task management
facilities of the system. The processing
of messages can be performed sequentially
as a series of single tasks or more than
one message can be processed concurrently.
In many applications, a message processing

program requires access to data or routines
stored in local direct access storage. In
such applications it is possible to process
several messages concurrently as separate
tasks. As the processing of one message is
delayed while access is being gained to
direct access storage, another message can
be processed. By processing several
messages concurrently, the total message
throughput of the system can be
significantly increased. Since many of the
messages in such applications require
identical processing, a single reenterable
program in main storage can be used to
perform each of several concurrent tasks,
and thereby save main storage space and
program loading time. The general purpose
task management facilities of the MVT
control program are particularly
appropriate to this type of application.
They allow the system to be used for many
high-message-volume applications that would
otherwise be impractical without a
specially designed control program.

Basically the same I/O macro
instructions (OPEN, CLOSE, GET, PUT, READ,
WRITE) are used in a message processing I program (when using QTAM, TCAM or BTAM) as
are used in other application programs.
Therefore, application programs can be
designed more or less independently of the
devices that are used to transmit data,
whether local or remote. The system can
make a gradual transition from processing
work entered locally, to processing work
received from remote locations, with a
minimum of disruption.

Specific Teleprocessing Applications
Provided by IBM

IBM has designed a number of specific
teleprocessing applications and has made
them available as optional features. These
are applications that are of interest to a
significant number of customers. To date,
they include the following:

• Remote job entry.

• Conversa tiona 1 remote job entry.

• Time sharing .•

• Graphic job processing.

• IBM System/360 - 1130 data transmission
for FORl'RAN.

Except for time sharing, these are
applications of the basic
telecommunications access method (BTAM).
Time sharing is an application of the
telecommunications access method (TCAM).

Teleprocessing 89

Figure 62. IBM 2780 Data Transmission rferminal

REMOTE JOB ENTRY

Remote job entry is an optional feature of
an MFT or MVT operating system. It is a
type of teleprocessing applica"tion in which
jobs (like those entered into "the system
locally) are received from one or more
remote locations. The jobs may be entered
via such input de:vices as punched card
readers and magnetic tape units. These may
be attached to any of the following work
stations:

• Another IBM System/360.

• An IBM 1130 Computing system.

• An IBM 2770 Data Communica"tion System.

• An IBM 2780 Data Transmission Terminal
(Figure 62).

Immediately or on command, output from a
job can either be directed to the terminal
from which the job originated, or
transmitted to one or more ot;her terminal s.

90

It can also be printed or otherwise
processed by the operating system, or
cataloged and stored (for later retrieval)
in the operating system library. Data that
is processed by the job can either be
entered along with the job itself or can be
retrieved from the system library. All of
the operating system facilities that are
available to the local programmer, such as
the language processors, the service
programs, and the data, job and task
management facilities, are also available
to the programmer at the remote location.
Anything a programmer can specify locally
he can specify at the remote location
because the operating system is
specifically designed for use at remote
locations as well as for local use. The
data cataloging and management facilities
of the system, for exam~le, enable
individual programmers to compile, store,
test,- update, recompile, load, and execute
programs within the confines of the
operating system without resorting to the
use of punched cards, or without specific
knowledge of the I/O configuration of the
system.

Jobs that are received from remote
locations are placed by the remote job
entry program into a job input queue in a
format acceptable to the job scheduler.
From there, the jobs are picked up and
initiated by the initiator/terminator of
the job scheduler in the same manner as for
local jobs. The remote job entry program
is executed by the central computing system
as a separate task, much like a combined
reader/interpreter and output writer.

CONVERSATIONAL REMOTE JOB ENTRY

Like remote job entry, conversational
remote job entry is an optional feature of
an MFT or MVT operating system. It enabl es
remote users to enter jobs for batch
processing, using terminals that resemble
ordinary office typewriters. Users enter
jobs conversationally, by carrying on a
dialog with the central computing system.

Remote job input consists of programs
and data that the user creates at a
keyboard terminal. Typed lines of program
source statements" data, and job control
statements are collected within the system;
there is thus no need for keypunching, and
there is no wait for operator handling or
card reading. Simple error correction
procedures enable the user to enter data
correctly and easily. Optional facilities
are available for checking the syntax of
FORTRAN and PL/ I statements as they are
entered" allowing errors to be corrected
before the statements are compiled.

Because data is transmitted directly
between the central processor and the
terminal, job turnaround time is greatly
reduced. To submit a job for execution,
the user just selects the program, data,
and job control statements that are to be
entered in the job stream. When the job is
completed" the user can examine the output
at any terminal.

Remotely submitted jobs are initiated,
executed, and terminated in the same manner
as jobs that are submitted locally. A
remote user thus has available the same
batch processing facilities that are
available to a local user. For example, a
remote user can enter data from a terminal
and have it stored at the central
installation for use at a later date.
Stored data can be retrieved easily for
online display and modification, and can be
used as job input to the operating system.
A user can update stored data by inserting,
replacing, deleting, or changing single
typed lines or groups of lines. stored
data can be shared by many users, but is
protected against unauthorized access or
mod if ication,.

In addition to facilities for job
preparation, job entry, retrieval of job
output, and manipulation of programs and
data, conversational remote job entry can
provide the terminal user with information
about the status of his data sets and the
status of jobs that he has submitted.
There is also a message facility for
two-way communication between terminal
users and the operator of the central
computing system.

TIME SHARING OPTION

Time sharing is an optional feature of the
operating system with MVT. The Time
Sharing Option (TSO> makes the facilities
of the operating system available to
programmers at remote terminals to develop,
test" and execute programs conveniently,
without the job turnaround delays typical
of batch processing. It gives those who
may not be programmers the use of data
entry, editing, and retrieval facilities.
It also allows the management of an
installation to dynamically control the use
of the system's resources from a
termina 1 • 1. ..

In general, a time-sharing system
differs from a batch processing system in
three ways:

1. A terminal user concurrently shares
the resources of a computing system
with other terminal users.

2. A terminal user can enter his problem
statements and other input into the
system as he develops them, and he
receives results quickly.

3. A terminal user is constantly aware of
the progress of his job. He is
prompted for information the system
needs to execute his job, he quickly
receives responses to his requests for
action, and he is notified immediately
of errors the system detects, so that
he can take corrective action at once.

TSO is not necessarily intended to be
used as a dedicated time-sharing system,
that is, a system on which only
time-sharing operations take place. Time
sharing, or foreground operations, can take
place concurrently with batch or background
operations.. If there are periods when TSO
is not needed in the system, time sharing
operations can be stopped, and the system
will then process background jobs in the
usual way with MVT and TCAM.

The Telecommunications Access Method, or
TCAM, handles all I/O between remote
terminals and jobs in the system. TCAM

Teleprocessing 91

distinguishes between time sharing
applications, with emphasis on quick
response lback to the calling terminal, and
other teleprocessing applications, where
emphasis may be on routing and formatting
of messag4es between one remote terminal and
others. Both types of applications can
operate simultaneously in the same system.

An important feature of TSO is the
dynamic allocation of data sets for time
sharing U:3ers,. Dynamic allocation allows
data sets to be created, deleted,
concatenated, or separated without
allocation at the beginning of the job
step. A llser can thus defer definition of
his data sets until he requires them.

Working a1:. the 'rerminal

A remote terminal has a keyboard for
entering input and a typewriter-like
printer or a display screen for output.
Devices that can be used as t:erminals
include:

• IBM 2741 Communication TE~rminal.
• IBM 1050 Data communicati.on System.
• IBM 2260 Display Station.
• IBM 2265 Display Station.
• AT&T ~reletypes Model 33 and 35 KSR.

During a typical session, the user
enters a series of commands t~o define and
perform his work. The commands provided
with the system handle data a.nd program
entry, program invocation in either the
foreground or the background, program
testing, data management, and session and
system control. IBM Program Products are
available to support problem solving, data
manipulation, and text formatting, to
provide tE~rmina l-oriented language
processors, and to make these processors
more convE~nient to use from t~he terminal.

Commands specifically tailored to an
installation's needs can be written and
added to t:he command language or used to
replace Il~-supplied commands. Any load
module can be established as a command and
executed simply by keying in the program
name at the terminal. Load modules not
defined as commands can be invoked in the
foreground with the CALL command.

The terminal user can also submit jobs
to the background job stream. Commands
similar to those used for the
Conversational Remote Job Ent,ry facility
are used t:o create job control language
describinCJ the :job, and to submit it to the
batch job stream. The user can request
notification of job completion at his
terminal, and can have job output directed
either to his terminal or to a device at
the comput:er sit:e.

92

system Control

Once an installation has generated a system
that includes TSO, time sharing operations
can be started and stoFped at any time by
the system console operator. The operator
can specify how many regions of main
storage are to be assigned to time sharing
users ..

Each foreground main storage region
handles many active foreground jobs,
although only one job is actually in the
region at any moment in time. ,A foreground
job is assigned to a main storage region
and has access to the system's resources
for a short period of time called a time
slice. At the end of the job's time slice,
or if the job enters the wait state for
terminal I/O, the main storage image of the
job (that is, programs, work areas, and
associated control blocks> is stored on a
direct access device and another job is
brought into the same region of main
storage and given a time slice. The
process of copying job images back and
forth between main and auxiliary storage is
called swapping. Writing an image to
axuiliary storage is a swap out; reading
one into main storage is a swap in.

A time slice must be long enough to
perform a meaningful amount of processing,
but not so long that the time between
successive slices prevents quick response
to conversational users. A't the same time,
time slices cannot be so short and frequent
that system overhead for swapping and task
switching becomes excessive. Balancing
these factors depends on the number and
type of jobs the system is processing. A
solution for one job mix is not necessarily
suitable for another job mix. The TSO time
sharing algorithms -- the formulas used to
calculate the division of time among jobs
-- are based on several variables, most of
which can be specified by the installation
to tune the system for their particular
workload.

The management of an ins·tallation can
shift most of the responsibility for
controlling the time sharing system from
the operator at the system console to users
at remote terminals, called control
terminals. A control terminal user can
alter the system configuration to meet
changing work loads. For instance, he can
assign an extra region of main storage to
time sharing operations during peak
periods, and then release i-t to be used for
batch operations during slack periods.
Such changes require no shutdown of TSO and
are not noticed by the users of other
regions. Even the starting and stopping of
TSO operations is accomplished without
shutting down the system or affecting
background operations.

GRAPHIC JOB PROCESSING

Graphic job processing is an optional
feature of an MFT or MVT operating system.
The graphic job processor is a program that
enables users at remote IBM 2250 Display
Units (Figure 63) to quickly and
conveniently define and start jobs that are
processed by the operating system. The
display unit may be used to communicate
directly with the System/360, or
communicate with the system/360 by way of
an IBM 1130 Computing System.

A user of the graphic job processor need
not be familiar with the job control
language of the operating system. Instead
of a user defining a job in the form of job
control statements, information about the
job is elicited from him by means of a
series of displays on the screen of the
TV-like 2250 graphic display tube. A
sample of such a display is shown in Figure
64,. The user responds to the displays by
entering requested information and
selecting options using an alphameric
keyboard, a light pen, or both. The
graphic job processor then converts the
information about the job into job control
statements that are passed to the operating
system to initiate the job.

DESCRIBE DATA:

DATA NAME I~L~E~N~S~SA~V~E~ __________________ __

DATA REFERENCE IwO~U~T~P~UT~-~ ______ ~

INDICATE STATUS: CATALOGED OLD

MOD SHARE NEW

::::::ADDITIONAL INFORMATION WILL BE REQUESTED FOR OTHER THAN::::::
CATALOGED STATUS

OTHER

CHOOSE DISPOSITION: KEEP PASS DELETE

CATLG PRINT PUNCH

Figure 63. A DESCRIBE DATA Display For the
Graphic Job Processor

The graphic job processor enables the
user to:

• Identify himse If to the system (LOG
ON).

• Define a single job step (SPECIFY JOB
STEP).

• Identify data to be used in a job step
(DESCRIBE DATA).

• Start the processing of a job (BEGIN
JOB).

• Execute a cataloged procedure (BEGIN
PROCEDURE).

• Communicate with the system operator
(WRITE MESSAGE).

• Enter SO-character data records, actual
job control statements, and other
program control statements (ENTER
DATA) •

• Cancel a job currently being defined
(CANCEL JOB).

• Complete interaction with the 2250 and
prepare the 2250 for the next user (LOG
OFF) •

• Repeat previously completed operations
(RECALL).

• Name an 1130 program that is to be run
in conjunction with a program in the
IBM System/360 Computing System
(SPECIFY 1130 PROGRAM).

The last operation applies only when an
1130 Computing System is used.

A system/360 installation allows up to
15 users at separate display units to
process jobs independently of one another.

Teleprocessing 93

Figure 64. Using a Graphic Display Program on a 2250

94

Communication and control between each user
and the operating system is established and
maintained by the graphic job processor.
The processor responds to a user by
displaying messages on the 2250 screen. A
printed record of the job control
operations performed by a user at the
display unit can be provided upon request.

A job that is defined at a display unit
can be placed in a job input queue for
batch processing (independently of the
graphic job processor) using main storage
space and other resources not assigned to
the graphic job processor. This type of
job is often called a background job..
Alternatively, a foreground job can be
defined and executed immediately using main
storage and other resources assigned to the
graphic job processor.

A foreground job would normally result
in the execution of a graphic display
program that would interact with the user
at the display console, as shown in Figure
64. Thus, the graphic job processor can
enable engineers, designers, and other
non-programmers to execute and use graphic
display programs for a variety of graphic
display applications such as optical design
(Figure 65) auto design, and civil
engineering applications.

Figure 65,. A Typical Optical Design
Application Display

SYSTEM/360-1130 DATA TRANSMISSION FOR
FORTRAN

A set of optional subroutines, provided for
FORTRAN IV programmers, can be used to
transmit data between a program being
executed under control of the System/360
Operating System, and a program being
executed under control of the Disk Monitor
System of the IBM 1130 Computing System.
The same subroutines can also be called
using the assembler language.

The data transmission subroutines make
it possible for an 1130 program to use the
high speed computing ability and large
storage capacity of the System/360. Thus,
they can be used to increase the
flexibility and efficiency of an 1130
application.

Separate sets of transmission
subroutines are available for the
system/360 and the 1130. These routines
enable a programmer to transmit data from
one system to the other without a detailed
knowledge of telecommunications
programming.

The data transmission subroutines enable
a programmer using either system to:

• Initialize the communication lines.

• Transmit and receive data via the
lines.

• Test the status of a previously
requested transmit or receive
operation.

• Initiate routines in the other system.

• Terminate the communication link
between the System/360 and 1130 data
transmission programs.

In addition, System/360 transmission
subroutines enable the programmer to
terminate the execution of an 1130 mainline
program. Conversion subroutines are
included in each set to reconcile
differences in the FORTRAN data formats of
the system/360 and the 1130. These
subroutines can be called only by a
system/360 program. They perform the
following conversions:

• 1130 integer to System/360 integer, and
vice versa.

• 1130 standard-precision real numbers to
System/360 standard-length real
numbers, and vice versa.

• 1130 extended precision real number to
System/360 double-precision real
numbers and vice versa.

Teleprocessing 95

Page of GC28-6534-3, Revised January 15, 1972, By TNL: GN28-2512

PART 3: BIBLI(x;RAPHY

Part 3, the bibliography, contains the
titles of all the publications referenced
in this manual.

Part 3: Bibliography 97

Page of GC28·-6534-3, Revised January 15, 1972, By TNL: GN28-2512

I IBM System/360:

1. AssemblE~r Lanquage, GC28-6514

IBM System/360 Operating SysteI!!:

2. Advanced Checkpoint/Restart Planning
Guide, GC28-6708

3.} Job Control Language Reference,
4. GC28-6704

5. Linkage EditOlC and Loader" GC28- 6538

6. MFT Guide, GC:28-6939

7. MVT Guide, GC:28-6720

98

8. Principles of Operation, GA22-6821

9. Supervisor Services and Macro
Instructions, GC28-6646

10. Data Management Services, GC26-3746

11. System Control Blocks, GC28-6628

12. system Generation, GC28-7554

13. Data Management for System
Programmers, GC28-6550

14. TSO Planning Guide, GC28-6698

15. Utilities, GC28-6586

Page of GC28-6534-3, Revised January 15, 1972, By TNL: GN28-2512

Indexes to systems reference library
manuals are consolidated in the publication
IBM System/360 Operating system: systems
Reference Library Master Index, GC28-6644.
For additional information about any
subject listed below, refer to other
publications listed for the same subject in
the Master Index.

access methods
defining in a job 73-74
provided by IBM 72-73
using to create data sets 73

access method routines
in tr.lFT 52
in MVT 53

airline reservation systems 28
ALGOL language 47
ALGOL compiler 47
allocation 42
Alternate Path Retry (APR) 79
alternative modules 34
American National Standard COBOL 46-47,48
applications

growth in 19
of operating systems 27
online direct access 27-29
sequential, offline 27
systerr, 11

application program
description 42
message processing 87

applications programmer 13
APR (see Alternate Path Retry)
assembler 44
assembler language 44
audio response device 86
automatic interruption 41
automatic restart 79
automatic transition

benefits for long-running jobs 26
by the control program 24

auxiliary computing system 23
auxiliary storage 24
availability

as a performance factor 14
in System/360 33
with multiprocessing 81

background job
in teleprocessing 95
in time sharing 91

Basic Direct Access Method (EDAM) 73
basic fixed area

in MFT 52
in IvlV'I' 53

basic monitor 25
Basic FORTRAN Language 45
Basic Indexed sequential Access Method

(BISAM) 73

Index

Basic Operating System (BOS) 50
Basic Partitioned Access Method (BPAM) 73
Basic Programming Support (BPS) 50
Basic Sequential Access Method (BSAM) 73
Basic Telecommunications Access Method

(BTAM) 73,87,89
batched job processing

contrasted with tiroe sharing 91
description 22

BDAM (see Basic Direct Access Method)
BISAM (see Basic Indexed Sequential Access

Method)
block, data 68
BOS (see Basic Operating System)
BPAM (see Basic Partitioned Access Method)
BPS (see Basic Programming Support)
BSAM (see Basic Sequential Access Method)
BTAM (see Basic Telecommunications Access

Method)

CAl (see computer assisted instruction
system)

catalog' 69-70
cataloged procedures

defining 73-74
description 35
library of 62
overriding 62

cataloging 35,73-74
central processing unit (CPU)

as a hardware resource 12
communication with another CPU 81
main storage configurations 50

CCH (see Channel Check Handler)
channel 12
Channel Check Handler (CCH) 79
channel inboard error record, used with

CCH 79
channel-to-channel adapter 81
checkpoint 78-79
checkpoint restart 78-79
checkpoint/restart facility 78-79
class (see job class, output class)
COBOL compiler 46
COBOL language

features of 46
in IBM 7090/7094 Operating System 25

COBOL library 47
CODASYL 46
command language 92
communication line 85
compatibility

as a growth factor 39
of MFT, MVT 50

computer assisted instruction (CAl)
system 86

concurrent I/O 17
concurrent processing
of I/O 17
of jobs 62
of job steps 51-54

Index 99

Page of GC28:-6534-' 3, Revised .January 15, 1972, By TNL: GN28-2512

of job support tasks 51-54,61
of tasks 5:1-54

configurations
control program 50
CPU/main :storage 50

control prog:r-am
configura-tions 50
in early operating systems 21,25
in system library 24
initialization 35,103
MFT configuration of 51-52
MVT configuration of 53-54

controlterminal 92
control unit 82
controlling us e of the system 36
conversational remote job entry (CRJE)

compatibility with TSO 92
description 92

CPU (see central processing uni 1:)
CPU time (see also time sharing; time
slicing) 12

CRJE (see conversational remote job entry)

data
as an information resource J_3
block 68,,99
defining in a job 73-74
master 27
organization 6:8
record 6:3
storing and retrieving 72-73
transaction data 27

data collection
description 85
used by SMF rou·tines 57

data definition (DO) statement 61
data file (see also data set)

common 23
description 69

data management
(see information management)

data organiza.tion 68
data processing installation

job responsibilities within 13
productivity factors in 13,1.4

data processing resource
effective use of 13,35
hardware 12
human 13
information 13
investing 33
management. of '57
queue of 57
sharing of 18,55,56
supervisoJc control 42

data processing task (see task)
data set (seE~ also data fil e)

catalog 69
defined dynamica.lly 92
defining in a job 73-74
description 69
locating 72
partitioned 72,,77
sharing 35,63

data set utility programs 48
data sharing

among jobs 62

1.00

among programmers 35
among tasks 56
between CPUs 81
in early systems 18

DD (data definition) statement 61
DDR (see Dynamic Device Reconfiguration)
dedication 91
default options 35
deferred restart 79
defining and generating the system 34
destination code 88
determining requirements 33
development of operating systems

first stage: component
development 15-19

second stage: integration and automatic
operation 19- 29

third stage: a union of
techniques 29,30

device independence
by deferring selection 74
description 39

devices
defining in a job 73-74
direct access 72
job input 22
job output 23
sequential access 72
utility 23

direct access storage devices
in early operating systems 27
in online direct access applications 28
shared 83

direct access storage space
as a hardware resource 12

direct control feature 83
directory 70,77
Disk Operating System (DOS) 50
DOS (see Disk Operating System)
Dynamic allocation

in MFT 55
in MVT 55,66

dynamic area
in MFT 53
in MVT 54

dynamic data set definition 92
Dynamic Device Reconfiguration (DOR) 79

emulator, integrated 48
Error Recovery Procedures (ERPs) 79
ERPs (see Error Recovery Procedures)
establishing priorities 36
evolution of operating systems

first stage: component
development 15-19

second stage: integration and automatic
operation 19-29

third stage: a union of
techniques 29,30

execute (EXEC) control statement
in job definition 61
introduced 22

executive program (see control program)
exit routines, used by SMF routines 58
external storage (see auxiliary storage)

Page of GC28-6534-3, Revised January 15, 1972, By TNL: GN28-2512

facility 14,33
fetch (see program fetch)
file (see data file, data set)
foreground job

in teleprocessing 95
in time sharing 91

FORTRAN IV language
in IBM 7090/7094 Operating System 25

FORTRAN compiler 45
FORTRAN language

compilation of 45
IBM system/360 - 1130 data transmission
for 95

in early systems 16
FORTRAN library 45

general purpose system 33-36
generalized programs

sharing of 18
sort/merge 47

generalized sort/merge programs
as a subsystem 24
function of 47
in system library 24

generation data group 72
graphic display program 93-95
graphic job processing 93
graphic programming services 48

hardware resources 12
header (see message header)
nhuman-orientedn languages 16
human resources 13

I/O devices
common 23
defining 39,74
operator assignment of 22
pooling of 24

I/O operations 17
IBJOB Processor Subsystem 25
IBM System/360 - 1130 data transmission for

.r'ORTRAN 95
IBM System/360 Operating System

applications 19,27
compatioility 39
device independence 39
generation of 34
growth in performance 38
initialization of 35
main storage configurations 50
modular construction 34,37
multiple-task management 39
objectives of 30-40
organization of 41-53
standards 39
support of multiprocessing 82-84

, support of teleprocessing 85-95
IBM 1401 Data Processing System 23
IBM 2250 Display Unit

graphic job processing with 93-95
graphic services 48
use with FOR~~AN 45

IBM 2260 Display station 48,49

IBM 2361 Core Storage
description 50
allocation of 61

IBM 2780 Data Transmission Terminal 9~
IBM 7090/7094 (IBSYS) System 25,26
IBM 7770 Audio Response Unit 86
IBSYS (see IBM7090/7094 (IBSYS) Systew)
idle time

between jobs 19
due to I/O operations 17
reduction of 22
when processing many small

independent utility programs
information management 67-74
information resources 13
initialize (IPL) 35
initiation

of jobs 64

jobs
48

18

of job steps (MFT,MVT) 52-53,64-66
of tasks (MFT,MVT) 57,64-66
of tasks within a job step (MVT) 58

initiator/terminator
in MFT, MVT 64-65
in remote processing 91

input/output channel time 12
input/output control system (IOCS)

development of 17-18
included in nucleus 25
in system library 24
subsystem 24

input/output devices 12
input stream (see job input stream)
input work queue 64
inquiry and transaction processing 86
instructi on 13
interruption 41
interruption network 41
integrated emulator program 48
IOCS (see input/output control system)
IPL (see initialize)

jOb
background 91,95
batched 22
class 53
control statements 22
defining to the system 22,61
foreground 91,95
input device 22
input stream 22,61
management of 61-66
non-stop processing of 21
output stream 51,61
priority 51-52
scheduler 43,52,57
single-step 24
stacked 22

job batch
processing 22
remote entry 85,91
transcribing 23

job class
in MFT 50,52,65
in MVT 65-66

JOB control statement
introduced 22
in job definition 61

job control statements 22

Index 101

Page of GC28-6534-3, Revised ~January 15, 1972, By TNL: GN28-2512

job definit:ion (see also job) 61
job input device 22
job input stream

in batch procE~ssing 22
in ~1F'T, MVT 64
in non-stop processing 6.1

job management 61-66
job mix, controlling 67
job output devicE:! 23
job output stream 52,61
job priorit:y

in MFT 51- 52,65- 66
in MVT 53,65--66
specifying 59,61,65

job processing
concurrEmt 62
graphic 93-95
multiplE~ 62-63
non-stop 21,61,62

job queue I(see input work queue)
job scheduler

general function of 43,61
in ~WT 57 1,64-65
in MVT 57,,64- 65

job segment: (see job step)
job step

concurrE~nt processing of 52-54
in J.vlFT 52
in MVT 53
initiation of 52- 53, 62
introduc:ed 22
transition 2LJ,25

job step rE!start (see step restart)
job stream (see job input stream .. job
output stream)

job support~ tasks
concurrent processing of 52-54,61,63-64
in MFT 52
in MVT 53

job turnaround (see turnarowld time)

Language translators
development of 15,16
in system library 24
subsystem 24
supplied by IBM 43-47
terminal. oriented 92

large capac:ity st~orage (see IBM 2361 Core
Storage)

LCS (see IBM 2361. Core Storaqe)
Library

FORTRAN 45
load module 77
object module 77
procedure 62
program 72-70
reference system 69-72
source modul e 77

limit priority, defined 105
link pack area 53
linkage editor 43,47,76
load module 76
loader 47

Ma.chine Check Handler (MCH) 79
machine language 15,16

102

machine malfunction, with recovery
support 79

"machine oriented" languages 15
macro instruction 45
macro linrary 45
main storage

as a hardware resource 12
basic fixed area 51-53
configuration of 50
dynamic area 51-53
link pack area 53
master scheduler region 53
organization,-with MFT 51
organization, with MVT 53
partitions 52
shared 82

main storage partition 52
main storage region

description 53
specifying size of 66
temporary assignment of 59
time sharing 92

management
of an installation 13,33'-36
of information 67-74
of jobs 61-66
of programs 75-79
of resources 58
of tasks 55-60

master data 27
master data file

in operating systems 27
in online, direct access systems 28

master file (see master data file)
master program (see control program)
master scheduler

function of 43,61
in MFT 57,64-65
in MVT 57,64-65

master scheduler region (MVT) 54
MCR (see Machine Check Handler)
member 72
message

header 87
in teleprocessing 86,87
operator 25
text 89

message control programs 87
message header 87
message text 87
message processing programs 87-89
message queue 88
message swiching 85
MFT control program

compatability with MVT 50
CPU/main storage configurations 50
described 51-52
organization of main storage 52
with RMS 79

Model 65 Multiprocessing system 82-83
modular construction

for flexibility and growth 37
in program development "75-76
in "tailoring" a system 34

module
alternative 34
general description 34

Page of GC28-6534-3, Revised January 15, 1972, By TNL: GN28-2512

load 76
object 44,76
optional 34
program 75
required 34
source 76

monitor (see control program)
multiple-job processing 62
multiple-task management

advantages of 58
introduced 39

multiple-task system 56
multiprocessing

CPU/main storage configurations 50
detailed description 81-84
mode 81-82
in MFT 52,53
in ~lV'I' 53, 54
with shared direct access devices 82
with shared main storage 82-83

multisystem mode 82-83
MVT control program

compatibility with MFT 50
CPU/main storage configurations 50
described 53,54
organization of main storage 53
time sharing option (TSO) 91
with Model 65 Multiprocessing 82-83
with RMS 79

NIP (see nucleus initialization program)
non-stop job processing 21,61,62
nucleus

in early systems 25
secondary (MFT) 52

object module 44,76
object program 16,44
offline 64
online 27,28
online, direct access applications 27-29
online problem solving (see also time
sharing) 85

operating system
applications 27
benefits for long-running jobs 26
controlling operation of 35
controlling use of 36
evolution of 15-30
generation of 34
growth of 38
IBM 7090/7094 (IBSYS) 25,26
in the second stage 21
in the third stage 29,30
initialization (IPL) of 35
introduced 13
major functions of 51-95
modular construction 34,37,75-76
orderly growth 37
SUbsystems 24,25
typical example of 21

operations staff
as a human resource 13
in maintaining high productivity 35

operator
action with DDR routine 79
as a human resource 13

communication with control program 22
control during operation 35
initialization (IPL) 35
miscast role in early systerrs 19

operator message 25
optional modules 34
organization

of data 68
of IBM System/360 Operating

System 41-54
of main storage, with MFT 52
of main storage, with MVT 53

output class 64
output stream (see job output stream)
output work queue 64
output writer 64-65

PAM (see partitioned access method)
partition

of a data set 72,79
of main storage (MFT) 52

partitioned access method (PAM) 77
partitioned data set 72,77
pa~titioned data set member (see member)
partitioned mode 83
patching 78
PDS (see partitioned data set, program
library)

performance
factors 14,33
improvement through modular

construction 38
peripheral operations 63
PL/l compiler 47
PL/1 language 47
PL/1 library 47
priority

establishing 36
of jobs 52,53
of tasks (MFT, MVT) 57
specifying for jobs 59,61,66

privileged instruction 42
problem solving

after language translators 16
before language translators- 15

problem state 41
problem-state program 41,42
procedure library 62
processing program 43
productivity 14
program

application 42,98
design of 76
development 75-79
dynamic loading of 78
library (PDS) 72,77
management of 75-79
message processing 89
module 75
object 16,44
problem state 41,42
processing 43
reenterable 56
sharing of 18,35,55,56

program fetch 47
program library 72-78,109
program loader 25

Index 103

Page of GC28-6534-3, Revised January 15,. 1972, By 'INL: GN28-2512

program products 48
prograrr; status word (PSW) 41
programmer 13
programming aids

development of 15-18
in system library 24

programming language 6
programming language I (see PL/I)
Psw (see program status word)

QISAM (see Queued Indexed sequential Access
Ivlethod)

QSAM (see Queued Sequential Access Method)
QTAM (see >dueued Telecommunica1:ions Access

Nethod)
queue

input 6'LJ
message 88
of input data 73
of tasks 57
of output data 73
output work 64

Queued Indexed sequential Access Bethod
(QISAfJl) 73

Queued sequential Access Method (QSAM) 73
Queued 'l'elecornrnunications Access Method

(QTAlvl) 73,,87- 88

RAS (see Reliability, Availability,
Serviceability)

reader/interpreter
in t-'1FT, :MVT 64 -6 5
in remote processing 91

reenter able program 55
record 68
recovery management support (~1S)

description 79
routines used by ffi.iS

APR 79
CCH 79
DDR 79
ERPs 79
MCH 79
SER 79

used with ~...FT control program 79
used with multiprocessing 82
used with MV'I control prog'ram 79
types of R¥~ routines 79

reenterable code 55-56
region (see main storage region)
Reliability, Availability, Serviceability

(RAS).
description 79
machine malfunction 79
support of RMS 79
routines used by RAS
DDR 79
ERPs 79
MCH 79
SER 79
des'cription 57,92 SMF 57

relocatability 78
remote job 4:=ntry (RJE) 91

(see also conversational remote job
entry)

remote job 1;>rocessing (see remote job
entry)

104

report program generatcr (RPG)
features of 47
in system library 24

required modules 34
resource, data processing (see data
processing resource)

response time
as a performance factor 1.4,33
in online systems 29

restart
automatic 79
checkpoint 78,79
deferred 79
step 81

RJE (see remote job entry)
RMS (see recovery management support)
rollout/rollin 59
RPG (see report program generator)

"satellite" computer 81
secondary nucleus 53
secondary storage (see auxiliary storage)
segment, record 68
selecting options

at initialization 35
at system generation 34,35

sequential access application 27
sequential I/O 17
sequential processing

of I/O operations 17
sequential, offline applications 27
SER (see System Environment Recording)
service programs 47,48
service request (see supervisor call (SVC)
instruction) 25

SHARE, formation of 18
sharing

of data 18,35,56
of programs 18,35,55,56
of resources 55

single-task system 55
S~~ (see System Management Facilities)
sort/merge program 47
source module 75
source program 16
stacked job processing (see batched JOD

processing)
standards 39
step restart 81
storage protection - 42
storing and retrieving data 72-73
subpool (also see main storage region)

creation 59
passed to other tasks 59
shared by other tasks 59

subprogram
in COBOL 47
in FORTRAN 45
in PL/I 47

subsystems
introduced 24
IBJOB Processor subsystem 25

supervisor
function 41
in MFT, MVT 57-59

supervisor call (SVC) instruction 41

Page of GC28-6534-3, Revised January 15. 1972, By TNL: GN28-2512

supervisor state 41
supervisor state programs 41
supervisory routines

in nucleus 25
resident and non-resident 42

SVC (see. supervisor call instruction)
swap 92
system application 11
System Environment Recording (SER), used

with RMS 79
system generation 34
system generation language 34
system initialization (see initialize)
system library 24
System Management Facilities

description 57
data collection routines 57
exit routines 58
used with time slicing 57

system monitor (see control program)
system programmer 13
system supervisor (see supervisor)
system utility programs 48

tailoring the system 34
Tape Operating System (TOS) 49
tasks

concurrent processing of 51-54,58-59
definition 39
in online direct access systems 29
in MF'l' 51- 52
in MVT 53-54
in the operating system 41
multiple-task system 55
queue 57
single-task system 56

task management 55-59
TCAM (see Telecommunications Access Method)
Telecommunications Access Method (TCAM)

description 73,88-89
use in time sharing 89-91

teleprocessing
applications provided by IBM 89
data collection 85
general applications 85,86
inquiry and transaction processing 86

message 87-88
message switching 85
online problem solving 86
remote job processing 85
time shari ng 85

temporary intermediate storage 27
terminal (see also control terminal)
TESTRAN 45
throughput 14,33
time sharing 85-86,91
Time Sharing Option (TSO) 91-92
time slicing

description 57,92
used with SMF 57

TOS (see Tape Operating system)
transaction data

in operating systems 27
in online, direct access systems 28

transactions
concurrent processing of 29
response to 29

transitional monitor 25
translator programs 15,16
TSO (see Time Sharing Option)
turnaround time 14,33,64
two-channel switch 82

user-written programs 24
utility device 23
utility programs

functions of 48
in system library 24

volume
defini tion 69
label 70
table of contents (VTOC) 70

VTOC (see volume table of contents)

I work queue (see input work queue,
work queue)

work station (see terminal)
writer, output 64-65

output

Index 105

Technical Newsletter File No. S360-20

Base Publ. No. GC28-6534- 3

This Newsletter No. GN28-2512

Date: January 15, 1972

Previous Newsletter Nos.

IBM System/360 Operating System:
Introduction

© IBM Corp. 1964,1966,1969,1971

This Technical Newsletter, a part of release 21 of IBM System/360
Operating System, provides replacement pages for the subject
publication. These replacement pages remain in effect for
subsequent releases unless specifically altered. Pages to be
inserted and/or removed are:

Cover-3
5-6
43-50
53,54
61,62
97-126 (Part 3 deleted>

A change to the text or a small change to an illustration is
indicated by a vertical line to the left of the. change.

Summary of Amendments

This Technical Newsletter deletes COBOL F from the list of COBOL
compilers, and adds the System/370 Model 195 CPU to the list of
configurations.

Note: Please file this cover letter at the back of the manual to
provide a record of changes.

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602

None

PR INTED IN U. S. A.

o

0;

IBM System/360 Operating System
I ntroducti on

READER'S COMMENT FORM

Order No. GC28-6534-3

Please use this form to express your opinion of this publication. We are interested in your
comments about its technical accuracy, organization, and completeness. All suggestions
and comments become the property of IBM.

Please do not use this form to request technical information or additional copies of publications.
All such requests should be directed to your IBM representative or to the IBM Branch Office
serving your locality.

• Please indicate your occupation:

• How did you use this publication?

D Frequently for reference in my worke

D As an introduction to the subject.

D As a textbook in a course.

D For specific information on one or two subjects.

• Comments {Please include page numbers and give examples.}:

• Thank you for your comments. No postage necessary if mai led in the U. S.A.

GC28-6534-3

YOUR COMMENTS, PLEASE. " .

This manual is part of a library that serves as a reference source for systems analysts,
programmers and opera.tors of mM systems. Your answers to the questions on the back
of this form, tOI~ether with your comments, will help us produce better publications for
your use. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material. All comments and suggestions become the property of mM.

Note: Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your mM representative or to the mM branch office serving your locality.

Fold

I BUSINESS REPLY MAIL

~_O_PO_S_T_A_G_E_S_T.AMP NECESSARY IF MAILED IN THE UNITED STATES

Attention: Programming Systems Publications
Departmen1t DS8

Fold

POSTAGE WILL BE PAID BY •••

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

International Business Machines CorporBtilln
Data Processing Division
1133 Westchester Avenu'El, White Plains, New York 10604
[U.S.A. only]

~/;~

IBM World TraJ,e Corp'li~ation
821 UniteD. Nations Plaza., New York, New York 10017
[International]

Fold

FIRST CLAssQ
PERMIT NO. 81
POUGHKEEPSIE, N. Y •

=

-
= --
=
=
=

Fold

()

s.

~ o a...
c
&.
o
::J

c

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	GN28-2512
	replyA
	replyB

