
AN OS/360 BDAM USERS GUIDE

Wayne E Fisher
IBM Corporation
Education Center
3424 Wilshire Blvd
Los Angeles, Calif 90005

This paper is not intended to replace the IBM publications
pertaining to BDAM. Rather it is intended to supplement,
clarify, and bring together the BDAMmaterial in the
.various IBM publications.

It is assumed that the reader is familiar with the
Assembly Language and the Supervisor and Data Management
macro instructions.

June 30, 1969

TABLE OF CONTENTS

Introduction 1

Track Format Review 1
Blocks Versus Records 2

Programming Considerations 3

Formatting the Data Set Space 3
Addressing Schemes 3

Keys 3
Direct Addressing 4
Indirect Addressing 6
Overflow Record Handling 7

Record Reference Methods 9

Referencing a Specific Record 9
Referencing a Record with a Specific Key 11
Extended Search Option 12

Dynamic Buffering 13

Programming Considerations 13
Advantages Versus Disadvantages 13
Obtaining Buffers 14
Releasing Buffers 14

Feedback 14

Requesting Feedback 15
Storing Feedback 15
Form of Feedback 15

Exclusive Control 17

CHECK Macro Versus WAIT Macro 18

Errors 18

Space Allocation 19

Fixed Format Records 20

Creating a Direct Data Set 20

Formatting the DASD Space 20
The WRITE Macro 20

Return Codes 21
Test Completion of WRITE Operation 21
DCB Considerations 22
DD statement Considerations 22

Processing Format F Without Keys 23

To Retrieve 24
To Update 24
To Make Additions 25
DCB Considerations 25
Examples 27

Processing Format F With Keys 28

To Retrieve a Specified Block 29
To Retrieve a Block With a Specified Key 30
To Update a Specified Block. 31
To Update a Block With a Specified Key 32
To Make Additions 33
DCB Considerations 34
Examples 35

INTRODUCTION

TRACK FORMAT REVIEW

Information is recorded on all direct access volumes in
a standard format. In addition to device-dependent data
(home address), each track contains a track descriptor record
(also called a "capacity record" or RO), and one or more data
records. User data is placed in the data records. The
system maintains the track descriptor record on each track.

There are only two possible data record formats
Count-Data and Count-Key-Data -- only one of which can be
used for a particular data set. The following illustrates
the two possible data record formats.

Icountl IDatal
Track Descriptor
Record (RO)

[c_oun~ I Data]
Track Descriptor
Record (RO)

Count-Data Format

I Count I IDatal [][J Icountl IData]
Data Record

(Rl)

Count-Key-Data

Icountl ~
Data Record

Format

I Data I
(Rl)

Data Record
(Rn)

Icount I EJ IDatal
Data Record (R2)

Figure 1. Data Record Formats on DASD Tracks

The Count area of each record contains eight bytes that
identify the location of the record in terms of the cylinder,
head, and record numbers; its key length (0 if no keys are
used); and its data length.

If records are written with keys, the Key area (1-255
bytes) contains a record key that identifies the following
Data area. This identifying information might be a part
number, account number, sequence number, etc. The hardware
is capable of searching the Key area of each record on each
track for a particular key. Once more, the keys do not have
to be in any particular sequence.

The Data area contains the user's data records. Its
length can be up to 32,760 bytes, but realistically is
determined by the particular device's track capacity. Each
Data area contains a block. Each block can consist of one
or more logical records.

1

BLOCKS VERSUS RECORDS

As previously stated, each Data area contains a block
which may consist of one or more logical records. However,
since a direct data set can only be processed by the basic
access technique, the user must perform any blocking or
deblocking if in fact there are more than one, logical record
per block. The reader should be aware that the term "block"
and "record" are used interchangeably in this publication
as well as the IBM SRL publications. They both refer to the
contents of the Data area on a direct access track.

2

PROGRAMMING CONSIDERATIONS

FORMATTING THE DATA SET SPACE

Before data records can be placed in a direct data set,
the DASD space allocated must be "formatted". Formatting
the data set is the process of initializing each track, one
after another in a sequential fashion. In fact, a sequential
access method (BSAM) is used to perform the formatting.

For fixed length records (RECFM=F), formatting is
essentially the process of creating "buckets" which act as
place holders for actual records to be added at a later time.

For variable length (RECFM=V) and undefined length
(RECFM=V) records, formatting is the process of initializing
the Track Descriptor Record (there is one on the front of
every track). Each will reflect the fact that there are
no records written on the track and that the entire track
space is available.

ADDRESSING SCHEMES

Each record in a data set is comprised of one or more
related data fields. One or more of these data fields may
serve as an identifier or key field which uniquely distin­
guishes that record from others in the same data set.
Typical keys are: names, part numbers, or chronologically
assigned 'serial numbers such as employee number, invoice
number, etc. The key is the means of selecting and retriev­
ing a desired record from the data set.

Every record in a directly organized data set also has
a unique address. This address identifies to the access
method the location within the data set where the record
should be found. The format of the record address will be
discussed later.

In a direct data set, there is a definite relationship
between the record key and the record address or location.
It is this relationship which allows you to directly retrieve
any record in the data set without a sequential or index
search. This relationship is completely determined by each
user -- it might be a direct or an indirect relationship.

3

Direct Addressing

It is entirely possible to have keys which identify the
location of the record in the data set. This is a direct
addressing scheme, thus obviating the need for a transfor­
mation or mathematical manipulation of the key. One of the
characteristics of a direct addressing scheme is that there
is a unique DASD address for each record key.

strict Relationship

The ideal situation would be to use the record's key
as its DASD address, that is, there is a strict relationship
between the record's key and its address in the data set.
An example of this type of direct addressing would be a data
set of personnel records where the four-digit employee num­
ber is the key and also serves as the location of the record,
i.e., the record for employee number 6545 would be the 6,545th
record within the data set.

Figure 2 illustrates a card record with a key of 6545
which serves as the address of the corresponding record in
the direct data set.

Key = 6545

Figure 2. Direct Addressing

This technique assumes that there is an addressable
location or "bucket" available for each employee number
regardless of whether or not there is an employee with that
number. For example, if we have employee numbers which
range from 0001 to 9999, then we must have 9,999 buckets
even though we may have only a couple hundred employees.

4

The use of direct address using a strict relationship
is usually limited to data sets with small numerical keys.
Additionally, in all direct addressing schemes the data
records must be fixed length without track overflow.

Cross-Reference Table

There is no unique and simple way of transforming a
long key to a shorter unique address. One technique of
handling records with a cumbersome key is to build a cross­
reference table (index). When a record is written in the
data set, you note the physical location and store this,
along with its key, in the table. Finding the address of
a particular key is achieved by programming a table lookup
of the cross-reference table.

Figure 3 illustrates a card record with a key of SMITH
which serves as the argument in a programmed table lookup
of a cross-reference table. When the argument is found in
the table, the corresponding value (623'in this example)
will be the address of SMITH's record in the direct data set.

Key = SMITH ___ ,

\
Record #623

/{ SMITH J
-e=---'\ '

\

Cross-Reference)
Table

I

SMITH 623

Figure 3. Direct Addressing Using a Cross-Reference Table

5

This technique of direct addressing allows space to be
allocated on the basis of the number of records in the data
set rather than on the range of keys. New records can be
added sequentially to the end of the data set space and their
location noted and placed in the cross-reference table.

The obvious disadvantages are that cross-referencing
requires the user to maintain the table, and core storage
and processing time is required to search and update the
table.

Indirect Addressing

A more common technique for organizing the data set
involves the use of indirect addressing. In indirect
addressing, the address of each record in the data set is
determined by a mathematical manipulation of the key. This
manipulation of the key is referred to as randomizing.
There are many different techniques of transforming a record
key (external identification) into the corresponding record
address (internal location). No attempt is made here to
describe or explain the various algorithms that might be
appropriate for your data set.

Figure 4 illustrates a record with a key of A360 which,
when run through a randomizing algorithm, yields the address
(127 in this example) of the record in the direct data set.

Key = A360

\

\
i
\

A360
Randomizing

Scheme

127

Figure 4. Indirect Addressing

6

Record #127

/~ A360]

)
I

Overflow Record Handling

Characteristic of most randomizing schemes is the
synonym problem -- the transformation of two or more unique
keys into the same DASD address. The record that is written
where it belongs is called the home record. The second and
subsequent records with keys which convert to the same
address are called overflow records. A procedure must be
provided for storing elsewhere those overflow records whose
keys convert to an address that is already occupied. There
are many different techniques used to handle overflow records.
No attempt will be made here to examine them. Rather, we
shall discuss the method provided by BDAM called progressive
overflow.

Progressive overflow assumes that the entire data set
space is not 100% used, that is, there are buckets that are
not yet filled and that the overflow record may be stored
in one of them. The search for an empty bucket starts at
the address produced by the randomizing scheme and continues
through consecutive addresses.

Before
Adding F

Add F

After
Adding F

Add K

After
Adding K

U ~ U ~ LI
1 2 3 4 5

~'.

U ~ U l<fl U
1 2 3 4 5

'--_I ~ U~ L:J
1 2 3 4 5

u~u
1 2 3 4 5

1 2 3 4 5

Figure 5. Overflow Record Handling

7

I---=-J I~
6 7

L:J I~
6 7

I~U
6 7

6 7

6 7

Figure 5 illustrates a data set containing seven buckets
presently having three records. Let's suppose we add a
record with a key of F and that our randomizing scheme assigns
F to bucket 4. Since bucket 4 is already occupied, a search
is made for an empty bucket. Bucket 5 is empty and F is
placed in it. Next we add a record with a key of K and once
again let's suppose our randomizing scheme assigns K to
bucket 4. When we attempt to put K in bucket 4, we find it
is occupied so we attempt to put it in bucket 5. But bucket
5 is also occupied so we attempt to put it in bucket 6. This
process continues until an empty bucket is found, which in
this example is bucket 7.

In searching for an empty bucket in which to store an
overflow record, how does the system know when it encounters
an empty bucket? How far will the system search for an empty
bucket? Once an overflow record is stored in the data set,
how does the system ever retrieve it? ,The answers to these
questions will hopefully become answered at a later time.
For now, the handling of overflow records by the system
requires that the data set be recorded in the Count-Key-Data
format and that empty buckets be system dummy records. How
far the system will search is a function of the optional
"extended search" feature. Both system dummy records and
the extended search feature will be explained later.

8

RECORD REFERENCE METHODS

The READ and WRITE macros are used to retrieve and
store individual records (i.e., blocks). Which particular
record retrieved or stored is a function of the OPTCD and
KEYLEN parameters in the DCB and the "type", "block address",
and "key address" parameters in the READ or WRITE macro
instructions. Basically, the access method searches either
for a record which occupies a specific "bucket" or a record
with- a specific key.

Referencing a Specific Record

Retrieving or storing a specific record is requested
by specifying a DI "type" parameter in the READ/WRITE macro.
Which 'particular record retrieved/stored is determined by
the "block address" parameter in the READ/WRITE macro. The
"block address" parameter contains the core storage address
of the record address (left-most byte) of the particular
record. This is illustrated in the following figure.

READ DECB,DI,MYDCB,WORK,80,O,ADDE

MYDCB DCB DS~~~~
ADOR OS I !ddres~~
WORK OS SOC ~

;
.. / ...

.'

/

" 1-.-_.-_·­
~ record I

Figure 6. Referencing a Specific Record

9

It is immaterial to the access method whether the
data is recorded in the Count-Key-Data format or the Count­
Data format. In fact, the "key address" parameter in the
READ/WRITE macro is ignored by the access method.

The contents and length of the record address will
vary depe~ding upon the record referencing method you elect
to use. There are three methods available: actual addresses,
relative block addresses, and relative track addresses.
You must notify BDAM of your selection by specifying an A,
R, or no R or A in the OPTCD parameter of the DCB. This is
how the access method determines how to use the contents of
the main storage pointed to by the "block address" parameter.
Following is an explanation of the three record referencing
methods.

Actual Address

You specify the actual address in the standard eight­
byte form -- MBBCCHHR. See the IBM SRL for the specific
DASD. you are using for the meaning of MBBCCHHR. Remember,
the use of an actual address may force you to indicate that
the data set is unrn~vable (DSORG=DAU).

Relative Block Address

You specify the relative location of the record (block)
within the data set as a three-byte binary number. This
type of reference can be used only with format F records.
The access method converts this relative block number into
a two-byte binary relative track number and a one-byte
binary actual record number. Allocation of noncontiguous
tracks does not affect the number.

Relative Track Address

You specify the relative track as a two-byte binary
number and the actual record number within that track as a
one-byte binary number. The access method computes the
actual track location taking into consideration non-contig­
uous tracks.

Relative Address· Limit

When relative addressing is used, the size of the data
set is limited to 65,536 tracks. With relative track
addressing, you provide a two-byte binary relative track
number (0 through 65535). With relative block addressing,
you provide a three-byte binary relative block number -­
this limits the number of blocks to 16,777,216. However,
the access method converts the three-byte relative block
address into a two-byte relative track address truncating
any high-order bits.

10

Retrieving a Record with a Specific Key

Retrieving or storing a record with a specific key is
requested by specifying a DK "type" parameter in the READ/
WRITE macro .. The record must be recorded in the Count-Key­
Data format as the search is made on the Key area of the
DASD track~ The user must provide the key of the desired
record. This is done by specifying in the "key address"
parameter of the READ/WRITE macro the core storage location
containing the key. The length of the key is determined
by the KEYLEN parameter in the DCB.

Since the records and their associated keys may be
stored in a random sequence in the direct data set, the
user must specify where the search is to begin. This is
done by placing in the "block address" parameter the core
storage address (left-most byte) which contains the record
address. The contents and length of the record address
will vary depending upon the record referencing method you
elect to use; i.e., relative block addresses· or relative
track addresses. Whichever method you use must be indi­
cated in the OPTCD parameter of the DCB. The contents of
the relative block. and relative track address is explained
above.

If relative block addressing is used, the access method
converts your relative vlock address to a relative track
address. The search always starts at the beginning of the
track and continues to the end of the track. If the search
is to continue beyond one track, the extended search option
nust be requested.

Figure 7 illustrates the retrieval of a record with a
key of 'SMITH' using relative block addressing. The record
address specifies the 13th block; however, the access method
starts the search at the beginning of that track.

11

READ DECB,DK,DCB,WORK,80,KEY,ADDR

DCB DCB· DSO~~~TCD~:~-:~~
{ /

KEY DC C ' SMITH~_ ... - .---,/
~

ADDR DC XL3'OOOOOD'

WORK DS aoc

Figure 7. Referencing a Record with a Specific Key

Extended Search Option

The extended search option is available if the data set
contains records using the Count-Key-Data format and relative
addressing with keys is used. To· request extended search,
the user must specify OPTCD=E in'the DCB. Use of this fea­
ture also requires the specification of the LIMCT parameter
in the DCB in order to place an upper limit as to how far
to search. The same value should be specified for reading
and writing as was used when adding records.

When the extended search option is selected and rela­
tive track addressing is used, the LIMCT value specified
is the number of complete tracks, including the first, to
be searched. The search always starts at the beginning of
the track (the "one-byte actual record number within the
track" portion of the address is ignored).

When the extended search option is selected and rela­
tive block addressing is used, the LIMCT value specified

12

is the number of blocks to be searched. However, the system
first converts this value into an integral number of tracks
which contain the specified number of blocks, then proceeds
in the manner outlined above for relative track addressing \
It is pO~5ible, therefore, that the number of blocks actuall~
searched may exceed the value specified in the LIMCT parameter.

DYNAMIC BUFFERING

Dynamic buffering is the automatic buffering facilities
provided by the control program for the BDAM access method.
The control program will construct and manage a buffer pool
for each DCB requesting dynamic buffering.

Programming Considerations

MACRF Parameter

The handling of dynamic buffering for BDAM is done by
module IGGOI9LE. This module is brought into core storage
at OPEN time only if S has been specified in the MACRF .
parameter of the DCB. Thus, it is the user's responsibility
to request dynamic buffering in the DCB if dynamic buffering
is later requested in a READ macro somewhere within the
problem program.

BUFL Parameter

The length of a buffer must also be specified by the
user if the dynamic buffering feature is to be invoked.
This is done by the BUFL parameter in the DCB. The value
provided must be maximum BLKSIZE plus KEYLEN if '8' is
specified for the key address parameter of a READ macro.

BUFNO Parameter

The BUFNO parameter in the DCB determines the size of
the buffer pool. The number of buffers, by default, is
two. The user may override this value by coding the BUFNO
parameter. The number of buffers required is a function
of the number of. READ macros executed without corresponding
WRITE or FREEDBUF macros.

Advantages Versus Disadvantages

The advantage of dynamic buffering is that relatively.
few buffers are needed since the READ requests waiting in
the queue do not monopolize buffers. This is because buffers
are taken from a buffer pool and assigned just before data
transfer begins.

13

The dynamic buffer module does require core storage
(about 460 bytes) as well as CPU time to execute.

Whether or not you use dynamic buffering is a function
of the application program processing. In general, if you
are doing a serial-type processing (one transaction at a
time) you probably will not use the dynamic buffer feature.
If your processing is such that you have multiple outstand­
ing I/O requests, you'll probably want to use the dynamic
buffer feature to allow the system to manage buffers from
a buffer pool.

Obtaining Buffers

As each request to read data is about to be executed,
the system checks to see if a request for a dynamic buffer
has been specified. If so, the dynamic buffer module
ascertains if a buffer is available. I~ it is, the buffer
is assigned and the read is executed. If no buffer is
available, the request is queued. When a buffer becomes
available it is allocated to the request at the top of the
queue.

Releasing Buffers

It is the user's responsibility to release any dynamic
buffers obtained upon completion of its use. Buffers may
be released in one of two ways: either explicitly by using
the FREEDBUF macro, or implicitly by issuing a WRITE macro
that specifies dynamic buffering.

To effect the release, you must specify the address
of the DECB that was used when the dynamic buffer was
obtained, as well as the address of the DCB associated with
the direct data set.

FEEDBACK

When relative addressing is used, the BDAM routines
must convert this relative address into an actual device
address. This conversion does take CPU time, particularly
if the data set has multiple extents which mayor may not
be contiguous. The user can request that the system feed
back to him the actual address for subsequent use. For
example, if one is to update a record, he could request
that the actual address be returned after reading the block
so that he could give the system the actual address to
perform the write operation. This would save the relative­
to-actual conversion process prior to initiating the write
operation. If he were only retrieving records, there would
be no point in asking for feedback.

14

..

Reguesting F~~dback

Feedback is requested by appending an F to the "type"
parameter in the READ/WRITE macro, i.e., READ DECB,DKF,
It will become apparent to the reader that use of the feed­
back option is practical only when using relative addressing
with keys.

Storing Feedback

Since the system returns back to the user the actual
address, it must have someplace in which to place the
information. The system uses the area of main storage
specified by the "block address" parameter of the READ/
WRITE macro instruction for this purpose.

Form of Feedback

The format of the actual address ieturned to the user
by the feedback option is a function of the OPTCD parameter
in the associated DCB -- it is in one of two forms. If F
is specified in the DCB OPTCD parameter, the device address
returned is of the same form presented to the control pro­
gram. That is, if relative block addressing (OPTCD=RF) is
specified, then the true relative block address is returned.
In the case of searching for a particular record using a key,
the original relative block address would specify where the
search started; however, the true relative block address
returned as feedback would indicate where the particular
record really is. If relative track addressing (OPTCD=F)
is specified,· the true relative track and actual record
number within that track is returned.

If F is not specified in the DCB OPTCD parameter,
feedback is in the form of the actual device address of the
block. The user should be aware that the actual device
address is an eight-byte address (MBBCCHHR). Thus, it is
the user's responsibility to allocate an area large enough
to hold the feedback. For example:

READ
MYDCB DCB
RELBLK OS

DS
AREA DS

DECB,DKF,MYDCB,AREA,80,KEY,RELBLK+l
OPTCD=R, ...
IF Holds ReI Blk & 1st 3 bytes Feedbk
SC Holds last 5 bytes of Feedback
CL80

Let's suppose that we are using relative block address­
ing and that a DKF type READ macro is issued but that the
OPTCD parameter does not specify feedback. The relative
block address requires only three bytes, but the feedback
requires eight bytes. The feedback will overlay the o~iginal

15

three-byte relative block address and the adjacent five
bytes. Thus, it is the programmer's responsibility to
reserve these five bytes., Figure a summarizes the form of
feedback based on the form presented and whether or not
the OPTCD parameter specifies F for feedback.

, .~ If !-:~~~_~~~~_-ReqUe~~=~. in I/OM~cro :\ I Feedb~~~~~=.~at l
Type of Information !B~k Addr i DCB OPTCD
Reference Supplied iF~eld. j·-------·--r-- -----...;

'Min Lgth! ~F =F
I

Relative Block 3-byte Binary I 8-byte i8-byte
Address ReI Blk No. 3 bytes Actual iActual
wlo Key , Address:Address

•• _ .. _- ___ 4 _____ ·, _,. _____ ._ ... ~._ .. • ••• _ •• __ ... - _~ _. __ , • -:~ t-- _ ;-_ _ _.-!....- -_. - -- ... - .. -.ol

Relative Block
Address
with Key

3-byte Binary
ReI Blk No.
and Key

3 bytes
i 3-byte ,
:True ReI
'Blk No.

.. .. •. _ .. ___ __ .•• __ __ -_4' .••• --__ . _._. '--"- •• -' -,"" " .. -- _ - ... ----... ---.. - ... -~~---------------

Relative Track
Address
wlo Key

TTR, where
TT=Rel Trk No. ·3 bytes
R=Actual Rcd Id

- '--"-'- ----- .-. ., _ .. _-" ... " ..•.... -_ -'-'- --.-~.~--.--.---- ..
Relative Track TT, where
Address TT=Rel Trk No. 2 bytes
with Key

a-byte
Actual
Address

3-byte
True
TTR

.... -------.-.--.-.... ----.---... ---.. -.-.--.-------~---------l
Actual Device
Address

MBBCCHHR
a bytes

Figure 8. Feedback Format Summary

16

'/
8-byte
Actual
Address

EXCLUSIVE CONTROL

The exclusive control feature, when requested by the
program, prevents the inadvertent processing of the same
record by two or more competing tasks within the sam~
job step. Exclusive control is effective only if all
tasks referencing the same data set do so through the
same DCB, and if all tasks request exclusive control.

The control program implements this feature by main­
taining a "read-exclusive list." If the block requested
is already in the list, the system places that task in
the wait state until the block becomes available.

Requesting Exclusive Control of a Block

If the exclusive control facilities are going to be
used, the user must specify an X in the MACRF parameter
of the DCB. This will request the loading of the exclu­
sive control module (IGG019LG) at open time.

Exclusive control is applied to blocks that are
read (and mayor may not be subsequently written) by
appending an X to the DI or DK "type" parameter (i.e.,
DIX or DKX) of the READ macro instruction.

The user should be aware that reading with exclusive
control includes feedback. The format of the feedback
information is a function of whether or not F has been
specified in the OPTCD parameter of the appropriate DCB.

Releasing Blocks Under Exclusive Control

Blocks that have been read under exclusive control
must be released from exclusive control. This can be
done either by use of a WRITE macro that specifies exclu­
sive control or by use of the RELEX macro instruction.

Release By Writing

To release a block that has been previously read
under exclusive control, the user must append an X to
the DI or DK "type" parameter of the WRITE macro. If
the 'system finds an outstanding request for the block
being released, it is now honored.

Release By RELEX'Ma6ro

The RELEX macro may be given to release a block
that was read under exclusive control. If the system
finds an outstanding request for the block being released,
it is now honored.

17

CHECK MACRO VERSUS WAIT MACRO

When using a basic method to process a data set, it
is the user's responsibility to ensure that the I/O oper­
ation has completed before processing of the data can
commence. This synchronization of I/O with processing
can be accomplished using either the CHECK macro or the
WAIT macro.

The WAIT macro instruction causes the program to be
placed in the wait condition, if necessary, until the
associated I/O operation is completed. The user's pro­
gram must now test the results of the I/O operation for
any error conditions.

The CHECK macro performs the same function as the
WAIT macro but in addition will test the I/O operation
for errors and exceptional conditions .. If the operation
did not complete successfully, control is given to the
user's SYNAD routine specified in the SYNAD parameter of
the DCB. See the Supervisor and Data Management Services
SRL for an explanation of SYNAD routines. If the SYNAD
parameter was not specified, the task is abnormally ter­
minated.

If the CHECK macro is used, the user must have spec­
ified C in, the MACRF parameter and also specified the
address of the user's synchronous error recovery routine
in the SYNAD parameter of the DCB. The CHECK module
(IGG019LI) will not be loaded into core storage if the C
is not present in the MACRF parameter at OPEN time.

If the WAIT macro is used, the MACRF parameter must
not contain a C and the SYNAD parameter is ignored. Each
I/O request obtains an lOB from the lOB pool. If MACRF
contains a C and the CHECK is used, the CHECK Module
returns this lOB to the lOB pool; however, if a WAIT macro
is used the lOB is not released. Thus, the user should be
consistent -- either use the CHECK or the WAIT macro, but
not both.

ERRORS

The access method notifies the user of any errors
which occur as the result of a READ or WRITE macro by estab­
lishing exception codes. These exception codes are returned
by the access method after the corresponding WAIT or CHECK
macro instruction is issued. The exception codes are
placed in the second and third bytes of the DECB used for
reading or writing. See Table 11 in the Supervisor and
Data Management Macro Instructions SRL for a description
of the exception codes.

18

SPACE ALLOCATION

Space for a direct data set must be allocated using
either the SPACE or SUSALLOC parameter in the DD statement.
The SPLIT parameter cannot be used. If you request space
in units of blocks, and the blocks have keys, you must
also give the key length in the KEYLEN subparameter of
the DCB parameter in the DD statement.

When using relative addressing, the number of tracks
in the data set cannot exceed 65,536.

When creating a multi-volume direct data set, space
allocation is accomplished by use of primary and secondary
allocation. Neither of these can exceed the capacity of
one volume. Primary allocation is allocated only on the
first volume; all other space is allocated using the
secondary allocation parameter regardless of the number
of volumes used.

Once a direct data set has been created, it cannot
be expanded without re-creating the data set.

19

FIXED FORMAT RECORDS

CREATING A DIRECT DATA SET

Formatting theDASD Space

Formatting a fixed length record data set is essentially
the process of writing "dummy" and/or actual data records
onto each track in order to create gaps on the track. A record,
dummy or actual, must be written for each record the user
eventually expects to have in the data set. For example, if
the user is creating a direct data set for a possible 10,000
records (or addresses), he must issue 10,000 writes.

The tracks can be formatted in either Count-Key-Data or
Count-Data format. The format selected is determined by
whether or not the user wants keys associated with his data
records. The KEYLEN parameter in the DeB identifies to the
access method which format is desired.

Formatting a direct data set is almost identical to
creating a sequential data set, and in fact, a sequential
access method (BSAM) is used to perform this function. The
contents of the "dummy" record written is the only thing
unique about formatting a direct data set versus creating a
sequential data set.

There are two kinds ·of "dummy" records: system and user.
A system dummy record is constructed by the control program.
It is defined as a record whose first byte of the key is all
one bits and the first byte of the data area has a value
indicating the position of the dummy'record within the track.
A user dummy record is defined and known only by the user.
Normally theuser'places some information in the record which
identifies to him the record as a dummy record. It is impor­
tant that the programmer recognize the distinction between
these two types of dummy records when additions to the data
set is discussed later on.

The WRITE Macro

Type Parameter

The SD type WRITE macro must be used to request the
control program to add a system dummy record to the data
set.

The SF type WRITE macro must be used to add a user
dummy record or an actual data record to the data set.

Area Address Parameter

This parameter specifies the address of the main

20

storage area containing the block to be written. If keys
are used, the key must immediately precede the data; thus
the area address specified would contain the main storage
address of the key.

If system dummy records are being written, the area
must be large enough to hold the key plus one byte. The
control program will construct a system dummy record in
this area.

Length Parameter

This parameter may be omitted.

Next Address Parameter

This parameter should be omitted as it is used only
with the SFR type WRITE macro.

Return Codes

Execution of the WRITE macro will set a return code
in register 15 upon returning control to the user's
program. The user should examine it prior to executing
the CHECK macro or any other instruction which uses
register 15.

A return code of X'OO' indicates that the record
will be written and that there is more space left on the
track.

A return code of X'04' indicates that the record
will be written but there is no more space left on the
track. The control program will then write a capacity
record.

A return code of X'08' indicates that the record
will be written; however, there is no more space left on
the track and there are no more tracks left in the space
allocated. The next record will require secondary space
allocation.

Test Completion of WRITE Operation

Each WRITE operation must be tested for completion
using a CHECK macro instruction. At the completion of
the write operation, control is returned to the user
program if no exceptional conditions were encountered.
If the execution of the write operation encountered a
permanent error condition, control is passed to the user's
SYNAD routine. If control is returned from the SYNAD
routine, or if there is no SYNAD routine, your task will
be abnormally terminated.

21

DCB Considerations

1) DSORG = PS or PSU.
2) DEVD = DA (default value if omitted).
3) KEYLEN must be specified if keys are used. This will

cause the tracks to be formatted in the Count-Key-Data
format.

4) MACRF= WL must be specified.
5) RECFM is required.
6) LRECL should be omitted.
7) BLKSIZE is required.

DD Statement Considerations

1) DCB must specify DSORG=DA.
2) SPLIT cannot be used.
3) SPACE: If you request space in units Qf blocks, and the

blocks have keys, you must give the key length in the DCB
parameter, i.e., KEYLEN=n. If your program is using
relative addressing, the total amount of space allocated
should not exceed 65,536 tracks. For best performance
you should specify the CONTIG sUbparameter, especially
if the extended search option will be used.

4) DISP=(NEW, •.•) unless the data set was previously
allocated.

22

PROCESSING FORMAT F WITHOUT KEYS

A "Format F without Keys" data set is a direct data set
that is.recorded on the DASD in the Count-Data format. When
it was created, the following was specified in the DCB:
RECFM=F or FT, KEYLEN=O, and BLKSIZE=data field length.

Figure 9 illustrates the structure of a block on a
track. CCHHR gives the physical position of the block on
the device, key field length is zero, and data field length
contains BLKSIZE.

.' ... -. ~-.... -.... , _ .. ,_ .. '--1
Data Field

I
I

I

j
I

L _____ ,. _. ," __ . __ ._

Figure 9. Structure of a Count-Data Block

All I/O operations specify a specific block (i.e., record).
The access method searches the Block ID portion of the Count
Field using a "search identifier equal" CC.W conunand code.

L OCA~ '!!J
The Dr type READ/WRITE}macros must be used to retrieve

and store a specific block~in a specified address. The block
retrieved or stored is pointed to by the block address param­
eter. How BDAM interprets the contents of the block address
par ameter (i. e., is ita three-byte rela ti ve b l'ock addres s ,
or an eight-byte actual address, or a two-byte relative track
and one-byte actual record number address) is a function of
the OPTCD parameter in the DCB.

23

To Retrieve

Type Parameter

The DI type READ macro is used to retrieve a specified
block. MACRF in the DCB must contain at least RI.

Area Address Parameter

This parameter specifies the main storage address into
which the block of data is to be placed. Dynamic buffering
is specified by coding'S' instead of an address; in this
case, the address of the main storage area acquired by the
system is placed in the DECB specified by the decb name
parameter. If'S' is specified, then S must also be specified
in the MACRF parameter of the DCB.

Length Parameter

This parameter specifies the number of data bytes to be
read. If'S' is coded, the number will be taken from the
BLKSIZE parameter of the DCB. If a value is specified and
it differs from the size of the block read, the "record length
check" exception code bit is set on.

Key Address Parameter

This parameter should specify zero. It is completely
ignored by the access method.

Block Address Parameter

This parameter specifies the address of the main storage
area containing the left-most byte of the relative block,
relative track, or actual address of the block to be retrieved.
The type of address is determined by the OPTCD parameter in
the associated DCB. The device address of the block will be
placed in this main storage area by the control program if
feedback is requested, i.e., you have specified a DIF type
READ macro.

To Update

Type Parameter

The DI type WRITE macro is used to update a specified
block. MACRF in the DCB must contain at least WI.

Area Address Parameter

This parameter specifies the main storage area containing

24

the block. 's' may be coded if'S' was coded in the area
address of the associated READ macro, in which case the
area address in the READ DECB must be moved to the area
address of the WRITE DECB. Or, the DECB used in the READ
macro can be used as the DECB for the WRITE macro by using
the execute form of the READ and/or WRITE macro. 'S' will
release the dynamic buffer.

Length Parameter

This parameter specifies the number of data bytes to
be written. If'S' is coded, the number will be taken
from the BLKSIZE parameter in the DCB.

Key Address Parameter

This parameter should specify zero. It is completely
ignored by the access method.

Block Address Parameter

This parameter specifies the address of the main stor­
age area containing the left-most byte of the relative
block, relative track, or actual address of the block to
be written. The type of address is determined by the OPTCD
parameter in the DCB.

To Make Additions

Additions per se are not possible, rather additions
are simply an update of a user-provided dummy record. It
is important that the user recognize the the DA type WRITE
macro applies only to data sets with keys which contain
system dummy records.

DCB Considerations

1) DSORG must specify DA or DAU. If relative addressing
is used, DA should be specified. If actual addressing
is used, DAU should be specified.

2) MACRF must be specified. All parameter values are valid
except a K and A. If S is specified, the BUFL parameter
must also be coded. .

3) OPTCD should be specified unless the OPTCD field in the
DSCB is satisfactory, i.e., beware the the OPTCD field
in the data set's DSCB is merged into the user's DCB at
OPEN time if the OPTCD parameter is omitted in the DCB
macro.

4) SYNAD is required if C is specified in the MACRF parameter.
5) BUFL is required if MACRF specifies S (dynamic buffering) .

The length specified must be equal to BLKSIZE value.

25

6) BUFNO should be considered if you have requested dynamic
buffering. By default you get two buffers. The number
requested should be equal to the number of records you
wish to have in core storage at the same time.

7) BLKSIZE and RECFM should be omitted as they are available
in the data set's DSCB.and will be merged into the DCB
at OPEN time.

26

Examples

Following are a series of examples illustrating the use
of different combinations of READ/WRITE macro instruction.:
parameters. Relative track addressing is used. All the
examples use a Format F data set without keys (RECFM=F,
BLKSIZE=80,KEYLEN=O) and are based on the following defini­
tions of symbols within the same problem program:

//BDAM DD DSNAME=BDAMFWOK,DISP=OLD

DCB DCB DSORG=OA,MACRF=(RIS,WI),DDNAME=BDAM, C
BUFL=80,OPTCO=W

AREA DS 80C
RELTRK DS IH CONTAINS REL TRK NUMBER

DS lC CONTAINS ACTUAL REC NO. WITHIN TRK

Note: Relative track addressing is speci~ied by not coding
an A or R in OPTCD. No other options were desired; however,
the OPTCD parameter could not have been left blank because
at OPEN time it would have been filledln from the OSCB and
it may not have contained the proper bit setting to give me
relative track addressing.

Example 1; READ DECB,DI,DCB,AREA,'S',O,RELTRK

The data portion of the record, pointed to by the RELTRK
parameter, is read into core storage starting at location
AREA. The length of the block to be read is obtained from
DCBBLKSI.

Example 2: READ DECB,DI,DCB,AREA, 'S1,KEY,RELTRK

The results are the same as example I -- the contents
of the key address parameter is ignored.

Example 3: READ DECB,DI,DCB,'S','S',O,RELTRK

A dynamic buffer is obtained and the data portion of the
record, pointed to by the RELTRK parameter, is placed into
it. The core storage address of the block is placed in
DECB+12.

Example 4: WRITE DECB,DI,DCB,AREA, 'S',O,RELTRK

The contents of AREA is written onto the data portion
of the record pointed to by the RELTRK parameter. The length
of the block to be written is taken from DCBBLKSI.

Example 5: WRITE DECB,DI,DCB,'S','S',O,RELTRK

The contents of core pointed to by DECB+12 is written
onto the DASD track record pointed to by the RELTRK parameter.
The dynamic buffer is also freed.

27

PROCESSING FORMAT F WITH KEYS

that
When
DCB:
data

A "Format F with Keys" data set is a direct data set
is recorded on the DASD in the Count-Key-Data format.
it was created, the following was specified in the
RECFM=F or-FT, KEYLEN=key field length, and BLKSIZE=
field length.

Figure 10 illustrates the structure of a block on a
track. CCHHR gives the physical position of the block on
the device, key field length contains KEYLEN, and data
field length contains BLKSIZE.

i ----------

Count Field

: ~i~~·~--··~~-TKey I Data
: iField :Field

(CCHHR) . Length! Length·

r--i
I '
i Key
jField

..... _ -.-...... -........ ~ ..
I

. ---' -_.- ---,

Data Field

-------.---_ -

Figure 10. Structure of a Count-Key-Data Block.

Two types of I/O operations can be requested: DI or
DK. The DI type READ/WRITE macros must be used to retrieve
and/or store a specific block located in an address spec­
ified by the block address parameter. The access method
searches the Block ID portion of the Count Field on the
track using a "record identification equal" CCW command
code.

The DK type READ/WRITE macros must be used to retrieve
and/or store a block with a key as specified by the key
address parameter. The block address parameter must still
specify the address of where the search is to start. The
access method searches the Key Field on the track' using a
"key equal" CCW command code.

28

To· Retrieve a Specified Block

Type Parameter

The 01 type READ macro must be used to retrieve a
specific block located in a specified address. The block
retrieved is pointed to by the block address parameter.
Retrieval of the associated key from the track is
optional. MACRF in the DCB must contain at least RI.
Extended search, if requested, is ignored.

Area Address Parameter

This parameter specifies the main storage address into
which the block of data is to be placed. Dynamic buffering
is requested by coding '5' instead of an address; in this
case, the address of the main storage area acquired by the
system is placed in the DECB specified by the decb name
parameter. If '5' is specified,S must .also be specified
in the MACRF parameter of the DCB.

Length Parameter

This parameter specifies the number of data bytes to
be read. If '5' is coded, the number will be taken from
the BLKSIZE parameter in the DCB. If a value is specified
and it differs from the size of the block read, the "record
length check" exception code bit is set on; however, the
block is read into core ·storage. If the value specified is
less than block size, only the amount of data specified is
read into core storage.

Key Address Parameter

If this parameter specifies an address, the key of the
specified block is placed into this main storage address.
To suppress the retrieval of the key, code a zero in this
parameter. If '5' was specified in the corresponding area
address parameter, then '5' may be specified in this para­
meter in which case the key and data are read sequentially
into the dynamic buffer; the address of the key will be
placed in the DECB at the completion of the read operation.

Block Address Parameter

This parameter specifies the main storage address
containing the left-most byte of the relative block, relative
track, or actual address of the block to be retrieved. The
type of address is determined by the OPTCD parameter in the
DCB. The device address of the block will be placed in this
area by the control program if feedback is requested, i.e.,
you have specified a DIF type READ macro.

29

To Retrieve a Block with a Specified Key

Type Parameter

The DK type READ macro is used to retrieve a block
with a specified key. The search for the block starts at
the beginning of the track pointed to by the block address
parameter and uses the key provided at the key address
parameter as a search argument. The number of tracks
searched is determined by the LIMCT parameter in the DCB;
however, one full track is always searched regardless of
whether or not the extended search option is specified.
Only the data is retrieved. The MACRF parameter in the
DCB must contain at least RK.

Area Address Parameter

This parameter specifies the addr~ss of the area
into which the block is to be placed. Dynamic buffering
is requested by coding '5' instead of an address; in this
case, the address of the main storage area acquired by
the system is placed in the DECB specified by the decb
name parameter. If '5' is specified,S must also be spec­
ified in the MACRF parameter of the DCB.

Length Parameter

This parameter specifies the number of data bytes to
be read. If '5' is coded, the number will be taken from
the BLKSIZE parameter of the DCB. If a value is specified
and it differs from the size of the block read, the "record
length check" exception code bit is set on.

Key Address Parameter

This parameter must specify the main storage address
containing the key of the desired block.

Block Address Parameter

This parameter specifies the address of the main
storage area containing the left-most byte of the relative
block, relative track, or actual address of where the
search for the block to be retrieved starts. The type
of address is determined by the OPTCD parameter in the
DCB. If it is a relative block address, the system con­
verts it to a relative track address. Thus, when relative
addressing is specified, the search always starts at the
beginning of the indicated track. The device address of
the block will be placed in this area by the control pro­
gram if feedback is requested, i.e., you have specified
a DKF type READ macro.

30

To Update a Specified Block

Type Parameter

The DI type WRITE macro must be used to update a
specified block. Updating of the associated key is
optional. MACRF in the DCB must contain at least WI.

Area Address Parameter

This parameter specifies the address of the main
storage area containing the block. 's' may be coded if
's' was coded in the area address of the associated READ
macro, in which case the area address in the READ DECB
(DECB+l2) must be moved to the area address of the WRITE
DECB. Or, the DECB used in the READ macro can be used
as the DECB for the WRITE macro by using the execute form
of the WRITE macro. 's' will release the dynamic' buffer.

Length Parameter

This.parameter specifies the number of data bytes
to be written. If'S' is coded, the number will be taken
from the BLKSIZE parameter in the DCB.

Key Address Parameter

This parameter specifies the address of the main
storage area containing the key of the block to be written.
To suppress the writing of the key, specify zero. 's' may
be coded instead of an address only if the block is con­
tained in an area processed by dynamic buffering, i.e.,
's' was coded in the key address of ' the associated READ
macro.

Block Address Parameter

Th~s parameter specifies the address of the main
storage area containing the left-most byte of the relative
block, relative track, or actual address of the block to
be written. The type of address is determined by the
OPTCD parameter in the DCB. .

31

To Update a Block with a Specified Key

Type Parameter

The DK type WRITE macro must be used to write a
block using the key provided at the key address parameter
as a search argument. The search for the block starts
at the address provided at the block address parameter.
Only the data is written. The number of tracks searched
is determined by the LIMCT parameter in the DCB. MACRF
in the DCB must contain at least WK.

Area Address Parameter

This parameter specifies the address of the main
storage area containing the block. '5' may be coded if
'5' was coded in the area address of the associated READ
macro, in which case the area address ~n the READ DECB
must be moved to the area address of the WRITE DECB. Or,
the DECB used in the READ macro can be used as the DECB
for the WRITE macro by using the execute form for the
WRITE macro. '5' will release the dynamic buffer.

Length Parameter

This parameter specifies the number of data bytes
to be written. If '5' is coded, the number of bytes will
be obtained from the BLKSIZE parameter in the DCB.

Key Address Parameter

This parameter must specify the main storage address
containing the key of the block to be written. '5' may
be coded instead of an address only if the block was read
specifying dynamic buffering, i.e., '5' was coded in the
key address parameter of the associated READ macro.

Block Address Parameter

This parameter specifies the address of the main
storage area containing the left-most byte of the relative
block, relative track, or actual address of where the
search for the block to be written starts. The type of
address is determined by the OPTCD parameter in the DCB.

32

To Make Additions

Type Parameter

The DA type WRITE macro is used to "add" a new block
wherever there is space. The spac~ the system is looking
for is a system dummy record. Thus, it is important to
note that additions are really an update to a system dummy
record. The search always starts at the beginning of the
track pointed to by the block address parameter. The
number of tracks searched is determined by the LIMCT
parameter in the DCB. One full track is always searched
regardless of whether or not the extended search feature
(OPTCD=E) is specified. MACRF in the DCB must contain
at least WAK.

The user should be aware that the system will add
a record which contains the same key as an existing record.
To make sure that this doesn't happen, the user should
first issue a OK type READ macro and verify that the
"record not found" bit is set on in the exception code
field of the DECB.

Area Address Parameter

This parameter must contain the address-of the main
storage area containing the block to be written.

Length Parameter

This parameter specifies the number of data bytes
to be written. If '5' is coded, the number will be
obtained from the BLKSIZE parameter in the DCB.

Key Address Parameter

This parameter must contain the address of the main
storage area containing the· key of the block to be written.
The contents of this main storage area will be written in
the key portion of the data record. The first byte of
the key cannot contain hexadecimal 'FF'.

Block Address Parameter

This parameter must specify the address of the main
storage area containing the left-most byte of the relative
block, relative track, or actual device address of where
the search for a system dummy record starts. The type
of address is determined by the OPTCD parameter in the
DCB. If feedback is requested, the device address of the
block written will be placed in this main storage area by
the control program.

33

DCB Considerations

1) DSORG must specify DA or DAU.

2) MACRF must be specified.

3) OPTCD should be specified unless the OPTCD field in
the DSCB is satisfactory, i.e., beware that the OPTCD
field in the data set's DSCB is merged into the user's
DCB at OPEN time if the OPTCD parameter is omitted in
the DCB macro.

4) LIMCT is required if E is specified in the OPTCD
parameter.

5) SYNAD is required if C is specified in the MACRF
parameter.

6) BUFL is required if MACRF specifies' S (dynamic buffer­
ing). If'S' is specified for the key address para­
meter of a READ or WRITE macro instruction, the buffer

length must include the key length.

7) BUFNO should be considered if you have requested
dynamic buffering. By default you get two buffers.
The number requested should be equal to the number of
records you wish to have in core storage at the same
time.

8) The following DeB parameters should be omitted as they
are available in the data set's DSCB: BLKSIZE, KEYLEN,
and RECFM.

34

Examples

Following are a series of examples illustrating the
use of different combinations of READ macro instruction
parameters. All the examples use a Format F data set with
keys (BLKSIZE=80,KEYLEN=5,RECFM=F) and are based on the
following definitions of symbols within the same problem
program:

//BDAM DD DSNAME=TEST.BDAM,DISP=OLD

KEY
RELBLK
DCB

AREA

DS
DS
DCB

DS

CL5
IF
DSORG=DA,MACRF=RKISC,DDNAME=BDAM,
SYNAD=ERROR,OPTCD=RE,LIMCT=lO,BUFL=85
aoc

Example 1: READ DECB,DI,DCB,AREA,'S',O,RELBLK+l

C

Only the data portion of the data record was read into
core storage starting at location AREA. The length of the
block is obtained from DCBBLKSI.

Example 2: READ DECB,DI,DCB,AREA,'S',KEY,RELBLK+l

The key portion of the data record is placed into
core storage starting at location KEY, and the data portion
of the data record is placed in core starting at location
AREA. The length of the key and block is obtained from
DCBKEYLE and DCBBLKSI respectively.

Example 3: READ DECD,DI,DCB,AREA,'S','S',RELBLK+l

An invalid key address parameter is specified -- the
READ will terminate with a "PROT CHECK" error. No data is
read into core storage.

Example 4: READ DECB,DI,DCB,'S','S',O,RELBLK+l

A dynamic buffer is obtained and the data portion of
the data record is placed into it. The core storage .
address of the block (data portion) is placed in DECB+l2.

Example 5: READ DECB,DI,DCB,'S','S','S',RELBLK+l

A dynamic buffer, large enough for the key and data
portion of the data record, is obtained and the key and
data from the DASD track is placed into it. The core
address of the block is placed in DECB+l2 and the core
address of the key is placed in DECB+20.

35

Example 6: READDECB,DI,DCB,'S','S',KEY,RELBLK+I

A dynamic buffer is obtained and the data portion of
the data record is placed into it. The core storage 'address
of the block is placed in DECB+12. The key portion of the
data record is placed into core storage at location KEY.

Example 7: READ DECB,DI,DCB,AREA,40,KEY,RELBLK+I

The key and 40 characters of the data portion of the
data record was read into core storage starting at the
specified locations. However, ,the "record length check"
exception code bit was set on because the length specified
(40) was not equal to the data record length.

Example 8: READ DECB,DK,DCB,AREA,'S',KEY,RELBLK+I

The key provided at location KEY ~s used as a search
argument to search the key portion of the DASD tracks.
The search starts on the track specified by RELBLK+I.
(Note: the access method converts the relative block
number into a relative track number). The data portion
of the data record was read into core storage starting
at location AREA. The contents of KEY is unchanged.

Example 9: READ DECB,DK,DCB,'S','S',KEY,RELBLK+l

Same as Example 8 only a dynamic buffer is obtained
and the data is read into it. The core address of the
block is placed in DECB+12.

36

	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36

