
IBM Y20-0013-0

SALES and SYSTEMS GUIDE

Operating System/360 BTAM User's Guide

Terminal--'Dependent Modifications

Preliminary Edition

This publication contains detailed information on the structure and operation
of the Basic Telecommunicatiolils Access Method (BTAM) program support. It
is designed to aid programmers who need to make terminal-dependent modifi­
cations to BTAM. An example is included showing the modifications necessary
for an IBM 2740 terminal.

This manual is being released at the present level (corresponding to the BTAM
level described inC28-6553-0) to benefit those who need early information on
BTAM operation and mod ification. It does not replace IBM Operating Sys­
tem/360, Telecommunications: Prel iminary Specifications (C28-6553), nor
will it replacE~ the yet to be released Telecommunications Program Logic
Manual, both of which are to be referred to for final information on BTAM
support.

RESTRICTED DISTRIBUTION

CONTENTS

Introduction. • • • •
BTAM Operation •••.

System Generation
Assembly.
Execution.

Open.
Read •

Preparation .
Macro Definitions. . • • •
Program Modules .
Device-Dependent Modules. •

Probable Modifications. • • . .
BUilding a Device I/O Module.

Line Control Procedure
Specification . • • . • • .

Construction of Device I/O Module
from Line Control Procedure.

Coding Changes. . • • • . • • • • • .
Device Type Analysis . . • • .
lOB Size Table. • . •
Module ID Table . • •
Terminal Code Table .
Modification Procedure .

Possible Modifications . • . •
BTAM Listing Description .

Section A: Macro Instruction
Expansions .

READ •.
WRITE .•••
OPEN.

1
3
5
5
5
6
6

9
9
9

10
11
11

11

13
20
20
21
21
21
21
23
23

23
23
25
26

CLOSE
DFTRMLST •
DCB
RESETPL •
CHGNTRY.

Section B: Program Modules.
B TAM Open Module 1 .
BTAM Open Module 2 •
Read -Write •
Channel End Appendage.

Section C: Device I/O Modules •
Appendix A: Operating System/360

Control Block Linkages. ••
Appendix B: Data Control Block - DCB
Appendix C: Data Extent Block - DEB.
Appendix D: Input/Output Block - lOB'.
Appendix E: Event Control Block - E CB
Appendix F: Data Event Control

Block - DECB • •• •
Appendix G: Unit Control Block - UCB .
Appendix H: UCB Device Codes. •
Appendix I: BTAM Open Pointers

and Tables. •• • •
Appendix J: BTAM Read-Write

Pointers and Tables • •
Appendix K: ABEND, Return, and

Completion Codes • •
Appendix L: BTAM Modification for

IBM 2740 Terminal.
Bibliography. •• • • •

This publication is intended for use by ruM personnel and may not be made available

to others without the approval of local ruM managenlent.

Address comments concerning the contents of this publication to
IBM, Technical Publications Department, 112 East Post Road, White Plains, N. Y. 10601

@ International Business Machines Corporation, 1966

27
28
28
29
30
31
31
35
39
47
52

56
57
60
63
66

67
68
69

71

72

73

73
86

INTRODUCTION

Support for telecommunication systems is provided in the form of access methods
under the Data Management portion of Operating System/360 Control Programs.
Access methods are provided at both the basic (READ/WRITE) level and the queued
(GET/PUT) level and are termed the Basic Telecommunications Access Method (BTAM)
and the Queued Telecommunications Access Method (QTAM) respectively (see IBM
Operating System/3 60, Telecommunications: Preliminary Specifications, C28 =6553).

Terminal devices and telecommunications system control methods that are currently
supported by QTAM and BTAM are listed in C28-6553 and in the Programming Section
of the IBM Data Processing Sales Manual. There are, however, individual systems
that will require modification of BTAM or QTAM because of a particular terminal
device or method of operation. Candidates for this classification include Request for
Price Quotation (RPQ) terminals, newly developed IBM terminals, non-IBM terminals,
and those that are now considered insufficiently numerous to warrant official support.
It is with these systems that this publication is concerned.

This manual is concerned only with BTAM. A later manual will contain comparable
material on QTAM. It was decided' to have two separate manuals in order to make the
information available as it is developed and because of the prerequisite nature of
BTAM relative to QTAM.

This manual is intended to be a modification guide. It is realized, however, that
general procedures cannot be devised to handle all modifications that will become
necessary. The intention :is to provide the user with sufficient knowledge of the subject
so that he can relate his system to the available programs and devise the necessary
modifications. In large part, the value of this manual is in the education it provides
on the contents and operation of BTAM. For those sections where a definite modifi­
cation is needed, however, specific instructions are given.

To make use of this manual the user is expected to be thoroughly familiar with the
requirements of the unsupported terminal device. These include such things as the
line control procedure, transmission code, message formats, and hardware support.
The user must also know the IBM System/360 Assembler Language. QTAM and
BTAM consist of macro instructions and routines that make exclusive use of the
assembler language, and.it is with this language that modifications are to be made.

This manual consists of the following seven sections:

1. BTAM Operation - deseribes the operation of BTAM and its parts.

2. Preparation - describes the materials needed to modify BTAM.

3. Probable Modifications - details the new coding and revisions to the original
that are most likely to be needed.

4. Possible Modifications .- describes the areas most likely affected.

1

5. BTAM Listing Description - details the macro instructions and modules that make
up the BTAM program.

6. Appendices - contain detailed information on control blocks, tables, and linkages.
Appendix L shows the development of modifications for the IBM 2740 Communication
Terminal*.

7. Bibliography

Emphasized again is the fact that this is a modification guide, not a stand-alone
publication. The reader is assumed to be familiar with all the SRL manuals listed
in the Bibliography.

*This does not constitute the official 2740 terminal support.

2

BTAM OPERATION

The Basic Telecommunications Access Method (BTAM) provides for reading from and
writing to terminal devices attached to communications lines. Processing programs
making use of BTAM may consider communications lines to be input/output devices
that will be polled or addressed by the execution of READ or WRITE macro instructions.

BTAM relieves the user of the details of communication line control by providing a
number of macro instructions to be used within his program. For instance, to receive
a message from a terminal a READ macro can be written in the user program. This
macro instruction will be expanded by the OS/360 assembler into a sequence of coding
that will provide a linkage to the appropriate BTAM routine. Execution of this coding
and the BTAM routine will establish contact with the terminal and take the message,
if any, into a buffer area. Other BTAM macro instructions and their functions are
listed below (see C28-655~~ and a later section of this manual for more detail):

WRITE - contacts a terminal and sends a message to it from an output
buffer area.

DCB - creates and initializes a data control block for a communications
line group data set. This is the only data set essential to BTAM.

OPEN - prepares communications line groups defined by DCB for use.

WArT - relinquishes control of the CPU to the OS/360 supervisor until
a specifie event, such as an I/O operation, has been completed.

CLOSE - removes communications line group data sets from use.

DFTRMLST - creates lists of terminal addresses that will define the order
in which the terminals will be polled or addressed.

CHGNTRY - allows deactivating or reactivating a terminal in a polling/addressing
list without redefining the list.

RESETPL - interrupts a polling sequence, or an ENABLE that has not
completed (dial-up).

Figure 1 illustrates the aspects of a BTAM Read operation. From top to bottom
these are:

System Generation

Assembly

Execution - Open

Execution - Read

3

Q)

~
§
:g
'"' Q)
i:I
Q)

c.';)

S
.2l
tI.l
:>.

00

(a)

(b)

Assembled

System
Generation

rr='U:;;CB=:=:='S====;~-L--____J

M UCBl JL

Assembly

-----------------------B-TAM Open IGGI\193M / I I
I I I (c)

!I

Provide Save Area

I I I
I I I
I I I
I I I
I I I
I I

) I I
/ ,

/ Device I/O Module IGGI\19XX

;t. /' Used by R/W
R/W Routine IGGI\19MA /' Routine to Build

/
/

/ Channel Program

/

BTAM Routine. and
Macro Expansions

OCB

)
I
I

]1 '7~~~==:r= -~m~~ I
I
I
I
I

Analyze Return
Code.

WAIT Wait for EeB
Andyze Return
Codes

Figure 1. BT AM Read Operation

4

Start I
I
I

___ .J

Channel End Interrupt --')

Not all BTAM macros needed for a Re~d operation are illustrated in Figure 1. Macros
such as DCB, DFTRMLST, and CLOSE are necessary and would appear somewhere in
the user program. They are excluded only to simplify the diagram. A BTAM Write
operation could be illustrated in a similar diagram.

SYSTEM GENERATION

This aspect of BTAM operation is shown for background purposes and does not intend
to describe the complete system generation procedure. It does show the necessity of
describing pertinent details of the communication system hardware by use of system
generation statements that result in the forming of unit control blocks (UCB -
Appendix G). The UCB's so created will subsequently be used by the BTAM Open
routine to determine the types of terminal devices involved.

Also as a result of system generation the BTAM routines and macro definitions are
included in the system library.

ASSEMBLY

All BTAM macros are represented by macro definitions in the system library. This
is true for all BTAM macros, whether they are purely BTAM macros (for example,
DFTRMLST, CHGNTRY) or specialized parts of system macros used by BTAM (for
example, READ, WRITE).

When the assembler language problem program that will be using BTAM is assembled,
each macro instruction imbedded in the program is replaced by its appropriate macro
expansion. The expansion may consist of assembler instruction statements (for
example, DC, DS), symbolic machine instruction statements (executable machine
instructions), or both.

EXECUTION

A BTAM Read operation, during execution of a user program, is shown in Figure 1
to consist of those functions performed during Open and those functions performed
during Read.

Opening of the data set (the communications line group) is usually performed early in
the user program. In any case, it is necessary that it be performed before that data
set is referenced by a READ or WRITE macro instruction. Closing of the data set
(CLOSE macro) is not shown in Figure 1. This macro would normally be placed at
a point in the user prograln where it would be executed when no more references are
to be made to the data set.

Defining the data control block (DCB - Appendix B) with the DCB macro and the
terminal list with the DFTRMLST macro is normally done in the definition section
of the program (along with DC and DS statements) and, of course, does not result in
the generation of executable machine instructions.

5

Open

Opening, or making ready for use, the communications line group data set consists of
sequentially proceeding through:

1. OPEN macro expansion coding

2. System Open Routine

3. BTAM Open Routine (Module 1)

4. BTAM Open Routine (Module 2)

The OPEN macro expansion coding is that system OPEN macro coding that is appropriatE
for a BTAM data set (communications line group). Execution of this expansion coding
provides for identifying the specified DCB and issuing a supervisor call (SVC) for the
system open routine. Parameters such as INPUT, OUTPUT, and INOUT are ignored
by BTAM. (BTAM always OPENs for both input and output.)

The system open routine partially initializes the specified DCB and requests that
BTAM Open Module 1 (IGG0193M) be brought into core storage and executed, via an
XCTL macro instruction. (BTAM coding consists of a number of modules, or control
sections, that are loaded and executed as separate but related units.) The two BTAM
Open Modules are executed serially in the supervisor transient area. They are re­
entrant and operate interrupt-enabled in supervisor mode.

BTAM Open Module 1 reserves storage for and initializes data extent blocks
(DEB - Appendix C) and input/output control blocks (lOB - Appendix D). Information
found in the UCB's created by system generation is used for this purpose. BTAM
Open Module 2 (IGG0193Q) is loaded and given control via an XCTL macro instruction.
This module loads (via the LOAD macro) into core storage the remaining BTAM
modules needed. These include the Read-Write routine (IGG019MA), the Channel End
Appendage (IGG019MB), and the Device I/O Modules (IGG019xx - where xx represents
the code assigned to each module) for the particular terminal device involved. All of
these modules are only loadable and cannot be transferred to via an XCTL macro. A
directory of I/O modules is created within a section of the Read-Write module and,
depending on the particular terminals, SAD and ENABLE commands are issued to the
communications lines via the Input/Output Supervisor (lOS). To complete the Open
process, control is now passed from lOS to the last load module of System Open and
then to the user program at the point immediately following the OPEN macro expansion.
The communication lines are now ready for operation.

Read

One READ macro expansion is shown in the user program in Figure 1. This is
representative of operating a single co:mnlUnication line in the system. Many lines
may be operated concurrently by issuing READs (or WRITEs) for each line before
"waiting" for the completion of one or more.

6

At the point in the user program where a Read operation is desired the user must do
the following in sequence:

1. Specify in Register 13 the address of a save area for storing the general register
values when control is passed to the Read-Write routine.

2. Issue a READ macro instruction.

3. Analyze the codes returned by BTAM in Register 15, indicating whether the
operation was initiated successfully (see Appendix K).

4. Issue a WAIT macro instruction at the point beyond which execution is to proceed
only after the Read operation is complete.

5. Analyze the completion code in the event control block to determine whether the
operation was completed successfully.

The expansion of a READ macro by the assembler results in initializing a data event
control block (DECB - Appendix F) with the parameters specified with the READ
macro. The DECB is generated or updated by the macro expansion and contains within
it an event control block (ECB - Appendix E).

The DECB is the only direct communications link between the access method (BTAM)
and the user program. The ECB within it is the entity upon which a WAIT is made
(that is, a WAIT macro parameter) and in which completion is posted by the supervisor
when the Read operation is completed.

The prime purpose of the Read-Write routine is to construct the channel program for
the particular type of Read or Write desired, (that is, read initial, read repeat, etc.),
making use of the device-dependent information contained in the appropriate device
I/O module. Each device I/O module contains, along with special characters and a
table of offsets, a number of model channel programs - one for each type of operation
(Figures 12-14). Each model channel program consists of a number of model channel
command words (CCW's) .- there being a model CCW for every actual CCW in the
channel program to be built.

Just as the DECB is considered the link between the user program and BTAM, the lOB
can be considered the link between BTAM and the Input/Output Supervisor (lOS). The
channel program built by the Read-Write routine in the lOB field reserved for it has
its starting address indicated to lOS in a field in the lOB.

Once the channel program has been built and passed to lOS for execution, control will
be returned to the user program, with return codes in Register 15 to indicate whether
the initiation of the Read was successful (see Appendix K). The user program may then
proceed with its execution up to a point in the program where a WAIT is specified for
completion of the Read operation.

7

Execution of the channel program proceeds concurrently with the execution of the user
program until a Channel End condition occurs, whereupon lOS regains control and
enters the Channel End Appendage. This condition may have been caused by either
completion of the Read operation or the need to update and restart the channel program,
as would be the case for polling the next terminal in the terminal list after a negative
polling response.

If the Read operation is completed, the Supervisor will post completion in the E CB
specified by the READ macro. The WAIT macro referencing this ECB will then be
satisfied, allowing the user program to continue its execution. At this point the
user program should analyze the completion code returned by lOS in the ECB (see
Appendix E). Further action in the user program should be based on the results of
this analysis.

This completes the entire Read operation, after which the user program may continue
with processing or handling of the message obtained from the terminal.

8

PREPARATION

This section describes the preparation and physical materials needed to modify BTAM.

Modifications to BTAM for operation of an unsupported terminal are considered as
either probable modifications that are most likely needed for any unsupported terminal,
or possible modifications that mayor may not be needed for a particular unsupported
termina1. Both situations are treated in succeeding sections.

Assuming at this point that the reader knows the operation of the unsupported terminal,
OS/360 Assembler Language, and the general operation of the BTAM program, we are
ready to proceed with the actual modifications. BTAM consists of a number of modules
of OS/360 Assembler Language coding in the form of macro definitions, program
routines and tables, and device-dependent modules for each terminal device. (BTAM
modules are sections of coding modified by the Linkage Editor so that they can be
brought in and executed as separate units.) In general, a source deck and listing of
each module are needed and can be obtained from the OS/360 System Library.

MACRO DEFINITIONS

Macros such as DCB, OPEN, CLOSE, READ, and WRITE are actually system macros,
some of which result in specialized expansions when specified for BTAM. Other
BTAM macros such as DFTRMLST and RESETPL are exclusively for BTAM. Only
those macros involved in the modification need be requested, since their functions
are described in this doculnent and their definitions contain a large amount of coding
that is not useful for the problem at hand. BTAM and system macros of interest are
DCB, OPEN, CLOSE, DFTRMLST, READ, WRITE, RESETPL, CHGNTRY, and
WAIT.

PROGRAM MODULES

Name Module Identification

BTAM Open Routine (Load 1) IGG0193M

BTAM Open Routine (Load 2) IGG0193N

BTAM Read-Write Routine IGG019MA

BTAM Channel End Appendage IGG019MB

BTAM Close Routine* IGG0203M

*Not available at this writing.

9

DEVICE-DEPENDENT. MODULES

Only the modules for the terminal devices of interest are needed; however, they
should all be requested because they are small and can be used for ideas for
constructing new modules. Other modules will be included as they are completed.

Name Module Identification

IBM 1050, Device I/O Module IGG019MD (Figure 12)

AT&T 83B3 Device I/O Module IGG019ML (Figure 13)

WU 115A Device I/O Module IGG019MN (Figure 14)

Each of these materials is described in detail in the section entitled "BTAM Listing
Description (BLD)" • The BLD explains the functions and operation of all BTAM
modules and gives cross-references to the listing as well as references to the control
block fields affected.

At this point it would be advisable to read the introduction to the BLD and briefly run
through its contents. Subsequent sections will reference parts in the BLD while
discus sing modifications.

10

PROBABLE MODIFICATIONS

Modifications necessary for BTAM to support any terminal device not currently
supported will be discussed here. (Modifications not necessary for every unsupported
terminal will be treated in a subsequent section entitled "Possible Modifications".)
The discussion to follow is written for any terminal device in general, using the IBM
1050 terminal as an example. Appendix L shows the procedure for modifying BTAM
to handle a specific version of the IBM 2740 terminal. The necessary modifications
involve:

1. Device I/O Modules (see BLD, Section C)

2. Device Type Analysis section of Open Module 1 (see BLD, Section B)

Development of a new Device I/O Module will require writing out a detailed line control
procedure for the terminal to be supported. These line control procedures will be
expanded into model channel programs, which will be collected into a Device I/O Module.

Modification for the Device Type Analysis section will involve slight program logic
changes and an additional entry to each of two tables.

BUILDING A DEVICE I/O MODULE

Line Control Procedure Specification

At this point the user must concern himself with the details of operating his terminals.
After making a thorough study of the desired operating procedure, he will know whether
there will be polling, addressing, multisegment messages, error retransmissions, or
inquiry replies. Each operation requires a certain sequence of characters transmitted
on the line to effect the necessary control. A common way to illustrate this is to draw
a chart as shown in Figure 2, identifying the sequences that perform certain operations
as Read Initial, Read Repeat, Write Initial, etc.

While preparing such a chart it should be possible to write a narrative of each operation
in terms of reading and writing characters onto the lines (from a CPU point of view),
such as is shown below for an IBM 1050 terminal.

1. Read Initial (Polling) .- This operation establishes contact with a terminal and
allows it to send a message to the CPU. In detail, it does the following:

a. Write EOT control character ®
b. Write terminal and component select (polling) characters

c. Read response to poll

d. Read message into a buffer

11

Reading a Multisegment Message from a Terminal (polling)

CPU I @A7 I © B7
I No I

Terminal I I
I Response I

Read lniti al Read

Initial

I(~)
L I

R'
@Text! ® C'

Read Initial with
Polling Restart

Read
Repeat

Read
Continue

Writing a Multisegment Message to a Terminal (Addressing)

CPU :@ Ai No @Bi

Terminal I Response I
Power ,

Write Initial Write
Initial

@Texti® \ lTexti ® \
C ,

®'

Write Initial Write

Continue

Figure 2. Examples of ffiM 1050 line control

Write

Continue

Read

Continue

:@

The read operation is terminated on receipt of the EOB-LRC check sequence in the
message and control is returned to the BTAM user program. The program can
examine the CSW field of the lOB and decide whether to perform a read continue or
a read repeat operation.

2. Read Continue - This operation returns a positive answer @ to the LRC check
and reads the next record.

a. Write@

b. Read message into new buffer

3. Read Repeat - This operation returns a negative answer to the LRC check, telling
the terminal to resend the last record.

a. Write@

b. Read message into same buffer

12

4. Write Initial (Addressing) - This operation establishes contact with a terminal
(or group of terminals) and sends out a message.

a. Write EOT control character @
b. Write terminal and component select (addressing) characters

c. Read response to addressing

d. Write message from buffer

e. Read answer to LRC check

f. Write a @ character to end the operation (only if write with reset is specified)

5. Write Continue - Write another record and read answer.

a. Write message

b. Read answer to LRC

c. Write a @ to end the operation (only if write with reset is specified)

When writing to a terminal, the message in core storage should have the appropriate
line control characters such as ® (EOA), CR/LF, and ® (EOB) included in their
proper places. These characters will also be embedded in messages received from
a terminal, and should be allowed for.

Other special control characters such as @' (0, and0 for the 1050 are stored
in a table in the Device I/O Module; polling and addressing codes are defined in
terminal lists within the user program by the DFTRMLST macro.

Write out the line control procedure for the unsupported terminal in the same form
as the IBM 1050 example above. Appendix L shows the same procedure followed for
the IBM 2740 terminal.

Construction of Device I/O Module from Line Control Procedure

The remaining steps to building a Device I/O Module consist of the following:

1. Set up a table of special characters for line control

2. Write out detailed command sequences

3. Build model CCW's from line control commands and character table

4. Form the model channel programs and character table into a Device I/O Module
preceded by an offset table

13

Each step will be explained in the above order. Completion of these steps will result
in a Device I/O Module that may be assembled and incorporated in the system library
as a module of BTAM.

1. Set up a table of special characters for line control. All of the line control
characters or character sequences that are needed for operation of the unsupported
terminal device are to be defined in a table, each one immediately preceded by its
length. They may be listed in any order in the table. Figure 3 shows such tables
for the IBM 1050 and AT&T 83B3 line control characters. Tables of code struc­
tures (S/360 internal byte representations for 1030, 1050, 1060, 1070, 83B2/83B3,
115A, World Trade, and 1WX systems) may be found in the SRL publication
IBM System/360 Component Description, IBM 2702 Transmission Control (A22-6846).

Name Operation Operand Remarks Value

TABLE1 DC X'Ol' LENGTH = 1

DC X'lF' CIRCLE C o

(1050) DC X'Ol' LENGTH = 1

DC X'76' CIRCLE Y 1

DC X'Ol' LENGTH = 1

DC X'40' CIRCLE N 2

TABLE2 DC X'30' LENGTH = 3

DC X'lB' FIGS o

(83B3) DC X'05' H EOT

DC X'lF' LTRS

DC X'Ol' LENGTH = 1

DC X'lF' LTRS 2

Figure 3. Line control characters

For later use when constructing model CCW's, "value" codes are to be developed
from the table of line control characters just written. There will be one value
code for each control character or character sequence, and it will be used to
locate the particular entry in the table. The values are calculated as D;l , where

14

D is the offset in bytes of the first character of the sequence from the start of the
table. For example, the three-character sequence FIGS H LTRS in the 83B3 table
of Figure 3 has a value of 0, and the one-character sequence LTRS has a value of
2. Write the values for the control character sequence in the table alongside the
table entries for later reference. Be sure that each value is an integral number,
that is, that each sequence offset (D) is odd. Pad the table with zeros if necessary.

2. Write out detailed comm.and sequences. Now express the line control procedure
as a sequence of channel commands. It will help to study the CCW sequences in
Figure 4 for an IBM 1050 terminal. Be sure to understand the reason for each
item specified (refer to the BTAM program logic manual). Be sure to specify
the following items:

a. Command Code - the actual operation to be performed, for example, read,
write, prepare

b. Address - the location into/from which characters are read/written

c. Flag - data chain, command chain, suppress incorrect length indicator, skip,
program-controlled interrupt (as needed)

d. TP Op Type - poll-restart is used with the read response command of Read
Initial if the next terminal on the line is to be polled after a
negative poll (see BLD, Section M. 2. O. 0)

- multiaddressing is used with the read response command of
Write Initial if more than one component or terminal is to be
addressed (see BLD, Section M. 3. O. 0)

- normal (all other operations)

e. Count - the number of characters involved in the read/write

3. Build model CCW's frOIn the verbal command sequences just written and the
character table. Figure 5 shows the fields of a model CCW. There is to be one
model CCW constructed for each actual CCW from the previous section. A more
detailed format description of a model CCW can be found in Figure 11 in the BLD
s~ction on Device I/O Modules.

a. Put the command code in the first byte:
01 = Write
02 = Read
03 = Prepare

b. Set needed flags in bits 8-12 - data chain, command chain, suppress length
indication, skip, program-controlled interrupt

15

Operation Address Flag TP Op Count

Read Initial write@ Table CC, SLI 0 1
Write poll chars. List CC, SLI 0 2
Read response Area CD Poll- restart 2
Read data Area+2 SLI 0 Length-2

Write Initial write@
Write addr.

Table CC, SLI 0 1

chars. List CC, SLI 0 2
Read response'* RESPN Multiaddr. 1
Write data Area CC, SLI 0 Length
Read answer RESPN+l 0 1

(with reset) Write@ Table SLI 0 1

Read Continue write0 Table CC, SLI 0 1
Read data Area SLI 0 Length

Write Continue Write data Area CC, SLI 0 Length

Read '@er RESPN+l 0 1
(with reset) Write C . Table SLI 0 1

i7~-.

Read Repeat write~ Table CC, SLI 0 1
Read da a Area SLI 0 Length

*If multiaddressing is not desired, set CC flag on and TP Op Type to Zero

Figure 4. mM 1050 line control command sequences

16

Command Code Flags TP OP Code Address & Count

Figure 5. Model CCW fields

16

c. Insert TP Op Type in the third byte:
00 = Normal no':"'restart
04 = Poll-restart
08 = Multiaddressing

d. Set subroutine index in bits 24-26. This is an index that will be used to identify
the read-write subroutine that is appropriate for building the actual CCW from
the current model CCW.

Index Subroutine PUrpose

o RTNE1 Read to } {from}
Write from a storage area (buffer) to

a communications line

1 RTNE2 Write characters from{ a pOdllding 0 } list
t 1

0 an a resslng
o a Ine

2 RTNE3 { addreSSing} 0 Read LRC response Into RESPN area

3 RTNE4 Write special characters

e. Set immediate count in bits 27-30. The meaning of the immediate count field
is dependent on the read-write subroutine specified in the subroutine index
field.

Subroutine Command Sequence Immediate Count Value

RTNE1 Write data 0 - length will be gotten from DECB

RTNE2

RTNE3

RTNE4

Read response One character longer than a negative

Read data
response
o - handled by routine

Number of polling/addressing characters

1 - if addressing response
5 - if LRC answer

Character table index "value" from step 1

f. Last CCW bit 31 - 1 in last model CCW of model channel programs, 0 in all
others.

Upon completion of steps a to f, a sequence of model CCW's will have been
specified in hexadecimal notation as shown in Figure 6.

17

Model CCW Content

1. Write; CC, SLI; no op; RTNE4, @,
not last

2. Write; CC, SLI; no op; RTNE2,
2 char, not last

3. Read; CD; poll-restart; RTNE1,
2 char, not last

4. Read; SLI; no op; RTNE1, no count
needed, last

Hexadecimal Specification

01600060

01600024

02800404

02200001

Figure 6. Example of IBM 1050 Read Initial model CCW sequence

Actual coding in assembler language of the hexadecimal model CCW sequence
should be as shown in Figure 7 to allow for comments.

Example: 1050 Read Initial

Name Operation Operand Remarks

RDINIT1 DC X'01' WRITE CIRCLE C

DC X'60' CC, SLI

DC X'OO' TP NO-OP

DC X'60' CIRCLE C

RDINIT2 DC X'01' WRITE POLL CHARS

RDINIT4 DC X'02' READ DATA

DC X'20' SLI

DC X'OO' TP NO-OP

DC X'01' LAST

Figure 7. Coding on IBM 1050 Read Initial model CCW sequence

18

4. Form the model channel programs and character table into a Device I/O Module
preceded by an offset table. The offset table is twelve bytes long and contains
information needed to compute the addresses of the module's segments. Place the
model channel programs in the desired order, followed by the special character
table prepared in item 1 ,above. Determine the offsets (bytes, in hexadecim,al) of
the starting locations of each model channel program, relative to the first byte of
the first model channel program. (See Figures 12-14 of the BLD section on Device
I/O Modules.) Construct the offset table as shown in Figure 8, where the hexa­
decimal number in each DC instruction is the offset of the model channel program
named in the comments field. Place FF in all unused offsets to indicate invalid
specification.

DC X'xx'
DC X'yy'
DC X'ww'
DC X'ss'
DC X'tt'
DC X'uu'
DC X'vv'
DC X'pp'
DC X'FF'
DC X'FF'
DC X'FF'
DC X'cc'

Figure 8. Coding an offset table

Write Space
Read Initial
Write Initial
Read Continue
Write Continue
Read Conversational
Write Conversational
Read Repeat
Reserved
Reserved
Reserved
Special Character Table

All components of the Device I/O Module have now been written. Assign the module a
unique symbolic identificat:ion. (Currently assigned identifications range from
IGG019MD to IGG019MR - see Figure 9.)

Stack the card deck as shown below and the Device I/O Module is complete.

_L END
L

(Special Character Table

,
(Model Channel Program n

~

"
{ Model Channel Program 1

_II

,
L Offset Table -,

(IGG019Mx CSECT

" I_II

System Control Cards

-
1-11

19

CODING CHANGES

Once all of the Device I/O Modules have been acquired for the terminals to be supported
(those already supported plus new ones to be included), all that remains is to set up
the tables and instructions that will inform BTAM and lOS of the presence and use of
the new modules.

Remember that at system generation time a unit control block was constructed for each
communication line. One word at relative location 16 in the UCB was filled with infor­
mation on the physical and logical makeup of the terminals on the line. This word, the
"device type word", is fully described,in "UCB Device Codes" in Appendix H. During
execution of the Device Type Analysis section of BTAM Open Module 1, five of its
fields are examined and the code that was previously assigned to the terminal device
and its options is chosen from the Terminal Code Table. This device code is used in
deterrriining the size of the lOB and in selecting the 'proper Device I/O Module.

The following paragraphs will discuss the section of coding that analyzes the device
type word and the tables of lOB sizes and module identifications. Following this, a
procedure will be detailed that shows how to write the device analysis and define the
tables needed to support any group of terminal types.

D~vice Type Analysis

Analysis of the device word involves the testing of five of its fields and selecting a code
from the Terminal Code Table. If any of the tests should fail or discover that an
unsupported or illegal terminal has been specified, the task will be terminated through
an abnormal end exit (SVC 13). An error code will be returned in Register 1 (see
Appendix K). The following list describes the contents of each field (see Appendix H
for details).

1. Device Class

2. Control Unit Type

3. Adapter Type

4. Model Type

5. Optional Features

- This byte must contain the hexadecimal value 40, which
indicates a communications device.

- These four bits must be the hexadecimal numbers 1 or 2,
representing the currently supported 2702 and 2701 control
units respectively.

- These four bits identify the terminal adapter type assigned
at system generation time.

- These four bits identify the model within its adapter class,
Jor example, tests 3 and 4 identify the specific terminal
in use.

- These four bits further describe the selected ternlinal
according to its optional features.

20

lOB Size Table

The Input/Output Block (lOB) provides the interface between BTAM and the I/O
Supervisor (lOS). The Basic lOB, an area with a fixed size of 40 bytes, contains
flags, pointers, addresses, and sense and status information (see Appendix D).
Appended to this is an area of variable size in which the I/O channel programs are
constructed. The size of this channel program area depends on the terminal and
options selected. Its size in doublewords is the maximum number of channel command
words in anyone operation. For example, the longest operation for the regular 1050,
write initial with reset, contains six CCW's; therefore, the size of the regular 1050
lOB channel program area is six doublewords or 48 bytes.

The channel program area sizes for each device are collected in a table in BTAM
Open Module 1, starting at location SZTABLE (BLD, Section J. 9. 2. 0). The device
code generated by the device analysis section of Open Module 1 is used as an index on
this list.

Module ID Table

During execution of BTAM Open Module 2, the needed Device I/O Modules are loaded
into core storage. All of the modules are labeled IGG019xx, where xx represents two
unique identifying characters. These characters are collected into a table in BTAM
Open Module 2 (CHNIDTBL - BLD, Section K. 7.7.0), and are used to access the
desired module, being indexed by the device code.

Terminal Code Table

ThIs table contains the hexadecimal integer codes assigned to every terminal/option
combination. The device analysis section of BTAM Open Module 1 examines the unit
control block for a line and decides which code is required. This code is stored in
the data control block and is used to index the lOB Size Table and the Module ID Table
later in the Open process.

Modification Procedure

By now a Device I/O Module is available or has been written for every terminal device
to be supported. Set down a list of each terminal to be included in the system in some
order, say, by terminal number, grouped by adapter type as shown in Figure 9.

1. List all terminal/option combinations. It would be wise to now include those
contemplated, but not yet supported, to make future modifications more orderly
(column 1 of Figure 9).

2. Examine every Device I/O"Module and determine the number of model CCW's in
the longest channel program of each one. Multiply these numbers by 8 and enter
the answers beside the corresponding terminals (column 2).

21

3. All of the modules are labeled IGG019xx. List the last two characters of each ID
beside the corresponding terminals (column 3).

4. Assign a hexadecimal integer between 00 and FF to each terminal/option combina­
tion (column 4). This code will be used as the terminal ID until the proper Device
I/O Module is loaded by Open Module 2 at execution time.

5. List the adapter type and model codes for each unit (columns 5 and 6 respectively).
These codes are arbitrarily chosen and assigned at system generation time. Refer
to Appendix H for currently supported code assignments.

6. To construct the lOB Size Table in Open Module 1 (BLD, Section J. 9. 2.0), repeat
column 2 as a series of DC HLI 'no' statements, in the same order, where no is
a decimal number from column 2. Label the first one SZTABLE.

7. To construct the Module ID Table in Open Module 2 (BLD, Section K. 7.7. 0), repeat
column 3 as a series of DC C'xx' statements, in the same order, where xx is a
two-character sequence from column 3. Insert a halfword zero for blanks. Follow
each entry with a DC XL4' 0' statement. These areas will later be loaded with the
disk addresses and lengths of the module. Label the first entry CHNIDTBL.

8. To construct the Terminal Code Table in Open Module 1 (BLD, Section J. 9.3. 0),
set down the entries of column 4 as a series of DC X'no' statements. Assign a
label to the first entry for each adapter class.'

9. Code a sequence of assembler language instructions that will make all five device
type and option tests on the device word field of a DCB and access the proper entry
in the table built by step 8.

Step 9 is a highly individualized sequence of coding; therefore, no general procedure
can be specified for its writing. Refer to the original program (BLD, Section J. 4. O. 0)
and to the sample shown in Appendix L :for hints and techniques.

EXAMPLE: (Original BTAM support)

Column 1 2 3

1050R 48 MD
1050AP 32 ME
1050A 48 MF
1050AA 56 MG
1050AC 64 MH
1060R 48 MI
1030R 40 MJ
1030AP 16 MK
83B3R 48 ML
83B3TT 24 MM
115AR 40 MN
115ATT 72 MO
1WXA 80 MP
1WXAA 88 MQ
1WXAC 16 MR

R - regular
AP - auto poll
AA - auto answer

4 5

00 1,3
01 1,3
02 1,3
03 1,3
04 1,3
05 1
06 2
07
08 4
09 4
OA 4
OB 4
OC
OD
OE

AC - auto call
A - both AA and AC

6

1
1

2

1

TT - terminal-to-terminal

Figure 9. Example of list of BTAM-supported terminals

22

POSSIBLE MODIFICATIONS

At a later date this section will discuss some possible modifications - those that do
not apply to all terminals.

BTAM LISTING DESCRIPTION (BLD)

This portion of the manual provides a detailed description of the BTAM programs to
allow easy reference to their parts. The three sections of the BTAM Listing Description
(BLD) cover BTAM's macro instructions, program modules, and device I/O modules.

Section A provides information on the system and special purpose macro instructions
used by BTAM - purpose, format, parameters, and function. In the format section,
items within brackets are optional; braces indicate that one of the enclosed items is
to be chosen.

Section B contains a functional listing of the BTAM routines. It is a running narrative
designed to be used with an assembly listing. The functional listing follows the program
listing exactly, not necessarily the logic flow through the program. Each functional
step has been assigned an index code that should not change appreciably with minor
program changes. Where possible, the functions are keyed to symbolic locations in
the program. As the program stabilizes toward official release time, more symbolic
names may be included to facilitate working with the listings. Each step is also
referenced to the control block field it affects. This allows the reader to quickly scan
the BLD and find where a certain field was filled in and relate it to the program listing.

Section C contains a description and examples of the BTAM Device I/O Modules, which
are device-dependent models of I/O channel programs.

SECTION A: MACRO INSTRUCTION EXPANSIONS

READ Macro Instruction

PurPose:

The READ macro instruction causes contact to be established or maintained with a
terminal, and a message segment to be received by the CPU. The parameters of the
macro specify the operation type, terminal, and read-in area.

Format:

Name Operation

[name] READ

Operands

~i~} {area} {length} {termlist} decbname'lg ,dcbname, 's', IS' , 'Sf ,

23

name - assigned to first location of expanded coding
decbname - symbolic address of DECB for this operation; also the ECB in which

completion is to be posted
type - choice of Type codes set in DECB

Tl (Read initial) 1
TT (Read continue) 3
TV (Read conversational) 5
TP (Read repeat) 7

dcbname - symbolic address of data control block for the line
area

IS'

length

- symbolic address of input area
- BTAM will provide buffer
- number of bytes in input area

'S' - buffer length specified in DCB
termlist - symbolic address of next polling list entry

IS' - will rep oIl last terminal that sent message. This should only be used
with wraparound polling lists.

rln - relative line number within line group
MF=L - creates parameter list, does not execute
MF=E - updates and uses previously defined parameter list, executes
MF blank - creates parameter list and executes
Note: Register form can be used with the MF blank forms for all macro parameters
except decbname and type, and with MF=E for all but type.

Example: READ (1), TI, DCBNAME, (3), 100, (12), (13), MF=E where before execution
the desired DECB address is put in Register 1, read-in area address is put in
Register 3, terminal list address in Register 12, and relative line number on
Register 13.

Function:

Assembly time. The MF=L form of the instruction generates a data event control
block which provides communication with lOS at execution time. The coding generated
inline is a series of assembler define constant (DC) instructions, which become the
DECB (Appendix F). Figure 10 shows the block's format and placement of the macro
operands. The parameter decbname is assigned to the first location of the block. The
DECSDECB field is reserved for lOS use as the ECB in which completion of the oper­
ation will be posted. If the read operation type were specified with reset (TxR)* or
inhibit (TxH), bit 0 or bit 1, respectively, of DECTYPE +1 will be set to one. The
DECIOBPT field will be filled in during execution. DECRESPN is not used for reading.
The MF blank form generates the same DECB as above, and adds instructions to
branch-and-link to the BTAM Read-Write routine. The MF=E form does not generate
a DECB. However, if any parameters are included in the macro statement, load and
store instructions will be generated to update those parameters in a previously defined
DECB. This form also produces the branch-and-link instructions.

*x=l, T, V, or P

24

Execution time. The MF=L form produced no executable instructions. The MF blank
form will transfer control and pass its parameters in the DECB. The MF=E form will
update some parameters in a DECB (defined in a previous READ macro of the MF=L
form) and transfer control. If'S' options were specified, appropriate BTAM routines
will provide the parameters when needed.

o DECSDECB DECTYPE DECLNGTH

type code length

8 DECDCBAD DECAREA

dcbname-addr area-addr

16 DECIOBPT DECPOLAD

termlist-addr

24 DECOFSET DESCRESPN

rln

Figure 10. Line DECB

WRITE Macro Instruction

Purpose:

The WRITE macro instruction causes contact to be established or maintained with a
terminal, and a message segment to be sent from the CPU to the terminal. The
parameters of the macro specify the operation, type, terminal, and output buffer.

Format:

Name Operation Operands

decbname, {t~}, dcbname, area, length, termlist, [name] WRITE

rln [MF= {i}]
name - assigned to the first location of expanded coding
decbname - address of data event control block for this WRITE

type - TI (Write initial)
TT (Write continue)
TV (Write conversational)
TB (break - write SPACE signal)

25

Type codes set in DECB
2
4
6
o

dcbname
area
length
termlist
rln
MF=L
MF=E
MF blank

Function:

- address of data control block for line specified
- address of output area, or of first buffer of a chain (dynamic buffering)
- length of output area
- address of next addressing list entry
- relative line number within line group
- creates parameter list, does not execute
- updates and uses previously defined parameter list, executes
- creates parameter list and executes

The WRITE macro operates in the same fashion as READ. It produces a DECB that is
identical except for the type code. If the write operation type were specified with reset
(TxR)* bit 0 of DECTYPE +1 will be set to 1. During Write operations, responses to
addressing will be stored in the first byte of the halfword DECRESPN field; answers to
LRC checks will be placed in the second byte.

OPEN Macro Instruction

Purpose:

The OP EN macro instruction causes communication line groups to be prepared for
use. Its parameters are the addresses of DCB's to be opened and codes indicating
file type and disposition.

Format:

Name

[name]

name
dcb1,··· ,

dcbn

'MF=L

MF=(E,

Operation Operands

OPEN (deb! •• deb2 •••• , debn ,) [, MF = {(~, listname)}]

- assigned to first location of expanded coding or the list itself

- addresses of all DCB's to be OPENed by this statement; may be in
symbolic or register form, for example, DCB1 or (DCBREG), where
the user has previously loaded DCBREG with the DCB's address

- The generated coding creates a parameter list as specified, but does,
not execute the OPEN. The name in the name field of the OPEN is
assigned to the parameter list.

listname) - The generated instructions will execute the OPEN for all
parameters in the list specified by listname.

MF blank - The OPEN will be executed, using the parameters specified in the macro
instruction.

*x = I, T, or V

26

Function:

Assembly. The MF=L form of the macro expansion creates a list of DCB addresses
and option codes for System Open use. The parameter name is assigned to this list.
The MF blank form generates the list and a supervisor call (SVC) instruction for
System Open. The MF=(E, listname) form produces instructions to reference and
modify an existing list and issue an SVC.

Execution. The MF=L form created no executable instructions. The other two forms
transfer control to Systerrl Open through the SVC instruction. When the System Open
routine finishes, control is passed to the BTAM Open Modules (described later in the
BLD), which allocate storage for and/or initialize the various control blocks and load
the BTAM routines and appendages.

CLOSE Macro Instruction

Purpose:

The CLOSE macro instruction causes communications line groups to be removed from
use. Its parameters are the addresses of the DCB's to be closed.

Format:

Name

[name]

name
dcb1···dcbn

MF=L
MF=(E,

listname)
MF blank

Function:

Operation Operands

CLOSE (debl, , deb2, , ... "debn) [{:~:~E, listname) }]

- assigned to first location of expanded coding or the list itself if MF=L
- addresses of DCB's to be released (Note double commas - no options

specified)
- creates parameter list called name, no execution

- executes for parameter list at location listname
- creates parameter list and executes

Assembly time. The MF=L form creates a list of DCB addresses. The MF blank form
generates the list and a supervisor call (SVC) to System Close. The MF=(E, listname)
generates the SVC and instructions to pass listname as a parameter to System Close.

Execution time. The MF==L form created no executable instructions. The other two
transfer control of the System Close routine. System Close will complete its work
and pass control to the BTAM Close Module (to be described later).

27

DFTRMLST Macro Instruction

Purpose:

The DFTRMLST macro instruction creates a terminal list in the user program.

Format:

Name Operation

entry DFTRMLST

Operands

lOPENLST I
WRAPLST

' (comPl' comP2"'" comPn)

DIALST, {nodig , dialdigs, (comPl' comP2"'" compn)}
0, (comPl' comP2"'" comPn)

IDLST, {nodig , dialdigs, nochar, termid}
0, nochar, termid

entry - symbolic name assigned to the list
OPENLST - indicates open list structure
WRAPLST - indicates wraparound list structure
DIALST - indicates dial or answer list where terminal ID need not be verified.

IDLST

nodig

dialdigs
nochar
termid

Function:

(0 indicates answer list.)
- indicates dial or answer list where terminal ID must be verified, as

TWX. (0 indicates answer list.)
- polling/addressing characters (hexadecimal) in the terminal code's

internal S/360 byte representation, for example, E215 (AO for 1050)
- number of dial digits (hexadecimal), for example, B. (0 indicates

answering list.)
- the dial digits, for example, 12173523818
- number of terminal ID characters (hexadecimal), for example, C
- terminal ID, for example, CHICAGO=CHI0

Assembly - creates within the user program the desired terminal list (see C28-6553
for the format of the created list)

Execution - no executable instructions

DCB Macro Instruction

Purpose:

The DCB macro instruction allocates storage within the user program for a data
control block, describing the data set to the operating system.

28

Format:

Name Operation Operands

dcbname DCB keyword parameters

dcbname - symbolic name assigned to data control block
keyword parameters - up to 52 parameters that define all aspects of a data set.

(These are explained in C28-6553 and C28-6541.)

Function:

Assembly - allocates storage and initializes values for those parameters the user has
specified. Note: Some parameters have "assumed" values, that is, a
certain value will be supplied by the macro expansion unless overridden.

Execution - no executable instructions

RESETPL Macro Instruction

Purpose:

The RESETPL macro instruction interrupts polling on a direct connection line following
a Read Initial macro instruction or cancels an ENABLE command issued to a switched
connection line as the result of a READ or WRITE operation with an "answer" type list.

Format:

Operation

RESETPL

decbname
X
POLLING

Operands

1
decbname t [lpOLLING t]
(X) ~' ANSRING ~

- name of the DECB in operation
- register containing the address of the DECB involved
- indicates only the channel commands for the direct connection case

need be included.
ANSRING - indicates only the channel commands for the switched connection

case need be included.
(If neither POLLING nor ANSRING is specified, both will be provided for.)

Function:

Assembly - generates executable inline machine instructions.

29

Execution - Direct connection line. If a polling operation is currently in progress,
and if it elicits a negative response, the pollin~ list pOinter will be
incremented in the lOB (lOB POLPT), polling will be terminated, and
the operation posted complete. If the polling operation elicits a
positive response or a timeout, the polling list pointer will not be
incremented, and the operation will proceed to its normal conclusion
(normal conclusion for a timeout is to post it complete with error).
If an operation other than polling is currently in progress (message
reception, message transmission, addressing) it will proceed
unaffected.
Switched connection line. If an ENABLE command is outstanding (a
terminal has not dialed the computer since the ENABLE command was
issued) a HALT I/O instruction will be issued to the enabled line. If
the ENABLE command has completed (a call has been received from
the terminal), the operation will proceed to its normal completion. A
poll in progress will not be interrupted.

CHGNTRY Macro Instruction

Purpose:

The CHGNTRY macro instruction deletes or reactivates a terminal entry in a polling
or addressing list without redefining the list, by manipulating the skip bit in the control
byte of the entry.

Format:

Operation Operands

CHGNTRY

J
entry, I

(1")

r - general register
entry - address of the beginning of the terminal list
type - list structure: OPENLST, WRAPLST, DIALST, IDLST
1istntry - relative position of entry to be changed in the list
numchars - number of polling/addressing characters in each entry
SKIP - indicates to turn on the skip bit in the entry
ACTIV A TE- indicates to turn off the skip bit

Function:

Assembly - generates executable machine instructions

Execution - terminal list skip bits are set on or off

30

SECTION B: PROGRAM MODULES

MODULE NAME BTAM OPEN (MODULE 1)

MODULE IDENTIFICATION IGG0193M

FIELD
LOCATION BLDINDEX FUNCT!ON PERFORMED AFFECTED

J.O.O.O. DCB Dummy Section (Appendix B) located
at

J.0.1.0. lOB Du:rp.my Section (Appendix D) rear
of

J.0.2.0. DEB Dummy Section (Appendix C) module

J.1.0.0. Create ~nd Initialize DEB (Partial)

DDBLKLP J.1.1.0. Determine the size of the DEB from
the numper of UCB addresses in the
task I/O table (TIOT) (Appendix I).
There is one UCB (Appendix G) for
each extent (communication line).

J.1.2.0. Obtain core storage for the DEB via
the GETMAIN macro. DEB

CLEARL
EXMODIFY J.1.2.1. Clear the DEB to zero.

J.1.3.0. Fill in the DEB field (NMEXT) with DEBNMEXT
the number of extents for this DEB.

J.1.4. O. Fill in the DEB field (TCBAD) with DEBTCBAD
the addr'ess of the task control block
(TCB) for the current task.

INITDEB1 J.1.5.0. Fill in the DEB field (APPAD) with DEBAPPAD
the address of the DEB. This is
actually the address of the first
byte of the appendage table attached
to the front of the DEB.

J.1.6.0. Fill in the DEB field (EXSCL) with 02 DEBEXSCL
to indica;te that this DEB is for non-
direct access devices.

J.1.7.0. Fill in the DEB field (DEBAD) with DEBDEBAD
the address of the first DEB in the
chain of DEBs.

31

LOCATION BLDINDEX

J. 2. O. O.

J.2.1.0.

J.2.1.1.

J. 2. 2. O.

J. 3. O. O.

J.3.1.0.

J.3.2. O.

J. 3.3. O.

J.3.4. O.

DEBMOVEl J. 3. 5. O.

J. 3.6. O.

FUNCTION PERFORMED

Initialize DCB (Partial)

Fill in the TCB field (DEB) with the
address of the start of the basic
section of the DEB. This is actually
the address of the DEB field (NMSUB).

Fill in the DCB field (DEBAD) with
this same address.

Fill in the DCB field (IFLGS) with
OC to indicate that the Input/Output
Supervisor (lOS) error routine is
not to be used.

Create and Initialize DEB (Partial)

Fill in the DEB field (DCBAD) with
the address of the DCB.

Fill in the DEB field (DEBID) with
hexadecimal F to identify this block
as a DEB to lOS.

Zero out the DEB field (PROTG) that
will later contain the protection tag
for this task.

Fill in the DEB field (LNGTH) with
the length in doublewords of the DEB.

Fill in the DEB field (UCBAD) with
a table of addresses of the UCB's.
There is one UCB for each com­
munication line. One fullword is
used for each address.

Fill in each DEB appendage table
field (EOEA, SIOA, PCIA, CEA,
XCEA) initially with the "normal
return" address for lOS, which
would cause immediate returns
from all appendage exits. When
the appendages are actually loaded
their addresses will replace the
normal return address.

32

FIELD
AFFECTED

TCBDEB

DCBDEBAD

DCBIFLGS

DEBDCBAD

DEBDEBID

DEBPROTG

DEBLNGTH

DEBUCBAD

DEBEOEA
DEBSIOA
DEBPCIA
DEBCEA
DEBXCEA

LOCATION BLDINDEX

J.4.0.0.

DEVTYANL J.4.1.0.

J.4.2.0.

J.4.3.0.

IOBSTI J.5.0.0.

J.5.1.0.

J.6.0.0.

J.6.1.0.

FUNCTION PERFORMED

Device Type Analysis

Test for device class 40 (tele­
communications) in byte 18 of
the UCB (only one UCB will be
analyzed since all UCB's of a
given communication line group
are the same). If the device class
is not 40" exit via SVC 13 as an ab­
normal end of task with error code
00090000 in Register 1.

Test for control unit types 1 or 2
(2701/2702) in the last four bits of
byte 19 of the UCB.

If types 1 (2702) or 2 (2701) are not
found, exit via SVC 13 as an abnormal
end of task with error code 00091000
in Register 1.

Determine the device type code from
the adapter code, model code, and
optional features specified in bytes
16-19 of the UCB. If any invalid
codes are detected, exit via SVC 13
with Register 1 error codes as
follows:

00092000- adapter code invalid
00093000 - device code invalid
00094000 - option code invalid

Initialize DCB (Partial)

Determine the size of an lOB using
the device type code to index the
size table and store the number in
the DCB field (EIOBX).

Create an~ Initialize lOB (Partial)

Determine the amount of core
storage needed for all lOB's, one
lOB per extent (line).

33

FIELD
AFFECTED

DCBEIOBX

FIELD
LOCATION BLDINDEX FUNCTION PERFORMED AFFECTED

J.6.2.0. Obtain the core storage needed via lOB
the GETMAIN macro.

J.7.0.0. Initialize DCB (Partial)

J.7.1.0. Fill in the DCB field (IOBAD) DCBIOBAD
with the address of the first
lOB less the length of an lOB.

J.7.2.0. Fill in the DCB field (DEVTP) DCBDEVTP
with the device type code deter-
mined in section J. 4.3. O.

J.8.0.0. Create and Initialize lOB (Partial)

STARTLP J.8.1.0. Clear enough core storage for one
lOB.

J.8.2.0. Fill in byte 4 (5th byte) of the lOB 10BCSW
field (CSW) with OF to indicate
channel program not busy.

J.8.3.0. Set bits 0, 1, 6 in the lOB field IOBFLAG1
(FLAG1) on to indicate command
chaining, data chaining, and not-
FIFO I/O requests.

J.8.4. O. Fill in the lOB field (START) with 10BSTART
the address of the first CCW of the
channel program located at the end
of the lOB.

J.8. 5. O. Fill in the lOB field (UCBX) with 10BUCBX
the relative line number to be used
as an index to the UCB addresses
in the DEB.

J. 8. 6. O. Fill in the lOB field (DCBPT) with IOBDCBPT
the address of the associated DCB.

J. 8. 7. O. Fill in the lOB field (WGHT) with 10BWGHT
00 to indicate there is no channel
loading factor specified for this lOB.

J.8.8.0. Repeat from section J. 8. O. O. for all
lOBs. There will be one lOB per
extent (line).

34

LOCATION BLDINDEX FUNCTION PERFORMED

J.9.0.0. Determine other line groups to
be opened

RELOOP J.9.1..0. Repeat from section J. 1. O. o. for
all communication line group data
sets. The existence of these data
sets is determined from the "where
to go" table (WTG).

XCTLRTNE J.9.1.1. When all data sets have been proc-
essed by this module, transfer
control to BTAM Open Module 2
(IGGOI93Q) via the XCTL macro
instruction.

SZTABLE J.9.2.0. A table of channel program sizes.

CDIBMI J.9.3.0. A table of terminal/option device
codes.

MODULE NAME BTAM OPEN (MODULE 2)

MODULE IDENTIFICATION IGG0193Q

LOCATION BLDINDEX

K.O.O.O.

K. 0.1. O.

K. O. 2. O.

K.1. O. O.

SADSTART K.1.1. O.

ENABCTL K. 1. 2. O.

FUNCTION PERFORMED

DCB Dummy Section (Appendix B)

lOB Dummy Section (Appendix D)

DEB Dummy Section (Appendix C)

Initialize Communication Line lOB's

Examin~ the control unit code in the
UCB device type word. If a 2702 is
specified, skip to SADRTNE (K.1. 3. 0.).
If 2701, skip to ENABCTL (K.1. 2. 0.).
If neither, exit via SVC 13 as an ab­
normal end of task with error code
00095000 in Register 1.

If either auto-call or auto-answer is
specified as an optional feature, skip
to VDTBLST (K. 2. O. O.).

35

FIELD
AFFECTED

FIELD
AFFECTED

located
at
rear
of
module 2

FIELD
LOCATION BLDINDEX FUNCTION PERFORMED AFFECTED

K.1. 2.I. Set ENABLE command in the IOBCPA
channel program area, lOB field
(CPA), and skip to EXCPSAD
(K.1. 3. 3.).

SADRTNE K.1. 3. O. Get the number of extents (lOB's)
from DEB field (NMEXT) and
determine SAD type needed.

SADLP K.1. 3.I. Insert the SAD code in the lOB IOBCPA
field (CPA). If either auto-call or
auto-answer is specified, skip to
EXCPSAD (K.I. 3. 3.).

K.1. 3. 2. Insert the ENABLE command in the IOBCPA+8
second CCW field of the lOB channel
program area.

EXCPSAD K.1. 3. 3. Fill in the lOB field (ECBPT) with IOBECBPT
the address of the ECB (Appendix E)
associated with the SAD/ENABLE
I/O reques.t about to be issued.

K.1.4. O. Issue I/O request with the EXCP
macro.

K.1. 5. O. Check for errors in the channel
program execution of SAD/ENABLE
and retry up to two times if necessary.

SADLPCHK K.1. 6. O. Repeat from section K. 1. 3. 1. for all
communication lines (lOB's).

VDTBLST K.2.0.0. Load Read-Write Module IGG019MA

K.2.1.0. Supply ID and relative track and record
address (TTR) of Read-Write module
to the LOADROUT routine (K. 7. O. o.).

K. 2. 2. O. Supply address of DEB field (SUBID) DEBSUBID
to the LOAD ROUT routine.

K.2.3.0. Load the Read-Write module via the
LOADROUT routine (K. 7. O. o.).

36

LOCATION BLDINDEX

K.2.4.0.

K.3. O. O.

RWVD1 K. 3.1. O.

K.3.2.0.

K.4.0.0.

K.4.1.0.

K.4.2.0

K. 4. 3. O.

K. 5. O. O.

K. 5.1. 0

K. 5. 2. O.

FUNCT10N PERFORMED

Fill in the DCB field (READ) with
the address of the Read-Write
module.

Load DE)vice J/O Module IGG019xx

Supply the ID and TTR of the desired
device IVO module, as found by in­
dexing CHNIDTBL with the contents of
the DEB field (DEVTP), to the LOAD­
ROUT routine (K. 7. O. O.).

Load the desired device I/O module
via the LOAD ROUT routine, if it is
not already in core storage
(K. 7. O. 0.).

Build Device I/O Directory

Fill in the first byte of the device
I/O directory entry with the contents
of the DCB field (DEVTP). The
device 1/0 directory is located within
the Read-Write routine, 12 bytes from
the beginning (Appendix J).

Fill in the last 3 bytes of the device
I/O directory entry with the address
of the Device I/O Module.

Change the DCB field (DEVTP) to
contain the offset of this device I/O
directory entry from the start of the
directory.

Load Channel End Appendage IGG019MB

Supply the ID of the channel end
appendage module to the LOADROUT
routine (K. 7. O. O.).

Load the channel end appendage via
the LOADROUT routine (K. 7. O. O.).

37

FIELD
AFFECTED

DCBREAD

DCBDEVTP

FIELD
LOCATION BLDINDEX FUNCTION PERFORMED AFFECTED

K.5.3.0. Fill in the DEB field (CEA) with DEBCEA
the address of the channel end
appendage.

K. 6. O. O. Terminating Procedure

RELOOP K. 6.1. O. Exam.ine the WTG table for any
other line group DCB entries that
will need Open Module 2. Repeat
from section K. 1. O. O. for additional
line group entries.

K. 6.2. O. Fill in the DEB field (NMSUB) with DEBNMSUB
the count of the number of subroutines
loaded by Open Module 2.

LOADROUT K.7.0.0. Loading Routine

K. 7.1. O. Use the ID supplied by the requesting
routine to calculate the address of the
module to be loaded.

K.7.2.0. Load the desired module into the
calculated address via the SVC
LOAD macro.

K.7.3.0. Return the address of the loaded
module to the requesting routine.

K.7.4.0. Fill in the DEB field (SUBID) with DEBSUBID
the ID of the loaded module (last
two characters of the module iden-
tification label).

K. 7. 5. O. Advance by two bytes the pointer
(RUCB) to the DEB field (SUBID).

K. 7.6. O. Increment the count of subroutines
loaded in Open Module 2.

K. 7. 6.1. Return to calling routine.

CHNIDTBL K.7.7.0. A table of BTAM module iden-
tifiers.

38

MODULE NAME READ-WRITE

MODULE IDENTIFICATION IGG019MA

LOCATION BLD UIDEX

L. O. O. O.

L. 0.1. O.

L. 0.2. O.

IODIRECT L. 0.8. O.

L.1. O. O.

L. 1. 1. O.

L.l. 2. O.

L.1.3.0.

L.1. 4. O.

L.1. 5. O.

FUNCTION PERFORMED

DECB Dummy Section (Appendix F)

lOB Dummy Section (Appendix D)

DCB Dummy Section (Appendix B)

Device l/O Directory

Initialization

Determine the address of the lOB for
the line about to be read or written,
from the appropriate entry in the DCB
field (IOBAD).

Test byte 4 (5th byte) of the lOB
field (CSW) for channel program
busy. If busy, set busy code OC in
Register 15 in the register save area
and skip to section L. 7.2. O.

Use DCB field (DEVTP) to identify
the needed device I/O directory
entry (see Appendix J).

From the device I/O directory entry
and the contents of the DECB field
(TYPE) obtain the offset of the
needed model channel program in
the device I/O module and test the
offset for validity (Appendix J).

If invalid, set return code 08 in
Register 15 and skip to section
L. 7.2. O.

Use the offset to calculate the
address of the needed model
channel program within the
device t/O module (figures 12-14).
Retain this address in VECTOREG.

39

FIELD
AFFECTED

Register 15

Register 15

VECTOREG

FIELD
LOCATION BLDINDEX FUNCTION PERFORMED AFFECTED

L.2.0. O. Linkages

L. 2.1. O. Fill in the DECB field (IOBPT) with DECIOBPT
the address of the lOB.

L. 2.2. O. Fill in the lOB field (START) with lOBS TART
the address of the area in which the
channel program is to be built. This
area is actually the lOB field (CPA).

L. 2.3. O. Fill in the lOB field (ECBPT) with IOBECBPT
the address of the ECB for this
operation.

L.2.4. O. Clear the register (ACCUMREG) ACCUMREG
that will later be used for addressing
terminal list entries.

L.3. O. O. Core Storage Data Address Speci-
fication

L.3.1.0. Test first byte of the DECB field
(TYPE) for an'S' type address
specification. Skip to L. 4. O. O.
if an'S' type address is not specified.

L. 3. 2. O. Get a buffer via the GETBUF macro if DECAREA
an'S' type address is specified and
fill in the DECB field (AREA) with its
address.

L.4. O. O. Length Specification

Al L. 4.1. O. Test first byte of DECB field (TYPE)
for an'S' type length specification.
Skip to section L. 5. O. O. if an'S' type
length is not specified.

L.4.2.0. Fill in the DECB field (LNGTH) with DEBLNGTH
the length specified in the DCB field
(BUFL).

L. 5. O. O. Buffering Type Specification

L. 5.1. O. Test the DCB field (BFTEK) for the
type of buffering to be used.

40

FIELD
LOCATION BLDINDEX FUNQTION PERFORMED AFFECTED

If dynamic buffering is specified
skip to A3 (L. 7.5. O.).

L. 5 .. 2. O. Set the adjustment in AJUSTREG AJUSTREG
initially to zero. The adjustment
will be used for dynamically building
the channel program.

L.6.0.0. Build Channel Program

L. 6.1. O. Zero out bits 36-39 of the lOB IOBCSW
field (CSW) to indicate channel
program busy.

A5 L. 6.2. O. Fill in; bytes 4 and 5 of the next
CCW with bytes 1 and 2 of the next
modeliCCW. These bytes are the
flags and "TP Op Type" bytes re-
spectively (see Figure 11).

L. 6.3. O. Clear to zero the DECB field DECRESPN
(RESPN).

L.6.4.0. From byte 3 of the model CCW WORKREGI
derive the index of the appropriate WORKREG2
Read-Write subroutine (in
WORK~EGl) and the 4-bit immediate
count field (in WORKREG2).

L. 6. 5. O. Branch-and-link to the indicated sub- LINKREG
routine (RTNEl, RTNE2, RTNE3,
or RTNE4) after providing the
return point (L. 6. 6. 0.) in register -----r LEA VE}- LINKREG.

--[RETURN~ L. 6. G. O. Fill in pytes 6 and 7 of the CCW with IOBCPA
the count (or length) returned from
the subroutine in WORKREG2.

L. 6. ~r. O. Fill in bytes 1, 2, and 3 of the CCW IOBCPA
with th~ address of the area to be
read into or written from as re-
turned from the subroutine in WORK-
REGl.

41

LOCATION

A9

AS
....-{LEAVE}-

BLDINDEX

L.6.S.0.

L. 6.9.0.

L.6.9.1.

L.6.9.2.

L.6.9.3.

L. 6. 9.4.

L. 6. 9. 5.

L.6.9.6.

L.6.9.7.

L.7.0.0.

L. 7.1. O •

FUNCTION PERFORMED

Fill in byte 0 of the CCW with the
command code specified in byte 0
of the model CCW.

Test for an inhibit specification in
both the DECB field (TYPE) and in
byte 3 of the model CCW. Fill in
byte 0 of the CCW with the inhibit
command code if specified in both
places.

Test for the last model CCW in the
model channel program. If the
present model CCW is not the last,
start construction of the next CCW
at section L. 6.2. O. If the present
model CCW is the last, continue.

Test for a dynamic buffering specifi­
cation in the DCB field (BFTEK). If
dynamic buffering is specified skip to
A7 (L.7.4.0.).

Test for a reset specification in the
DECB field (TYPE).

If there is no reset specified skip to
L. 7.1. O.

Set the CC (chain command) and SLI
(suppress length indication) flags in
byte 4 of the CCW.

FIELD
AFFECTED

IOBCPA

IOBCPA

IOBCPA

Fill in byte 5 of the CCW with a "Reset" IOBCPA
TP Op Type code.

Construct a disable CCW as the last
CCW of the channel program.

Program Linkage

Pass control to the Input/Output
Supervisor (lOS) via an EXCP SV CO.

42

IOBCPA

LOCATION BLDINDEX

--{RETURN~ L.7.2.0.

L.7.3.0.

A7 L.7.4:.0.

A3 L.7.5.0.

L.S.O.O.O.

L. S. 1. O. O.

RTNE1 L.S.1.l.l.

L.S.!,10 2.

L.S.1.1.3.

L.S.1.1.4.

RTNE1A L.S.l. 2.1.

L.S.1.2.2.

L. S. 2. O. O.

FUNCTION PERFORMED

Restor,e registers of user routine
that were saved in the user-speci­
fied save area.

Pass control to the user routine via
RETRNREG (Register 14).

Skip toi AS (L. 7. 1. O.). (The dynamic
buffering option is not yet supported.)

Set the; adjustment in AJUS TREG
to 16. Branch to A5 (L. 6. 2. O.).

Subroutines

Subroutine 1 - Data Address Deter­
mination

FIELD
AFFECTED

RETRNREG

AJUSTREG

Increment the address specified in WORKREG1
the DECB field (AREA) by the current
adjustnient value in AJUSTREG and
retain the result in WORKREGl.

Test the count specified in WORKREG2
for zero. If the count is zero skip to
RTNE1A.

Increment the current adjustment
value by the specified count.

Return to L. 6. 6. O. via LINKREG.

Decrement the length value taken
from the DECB field (LNGTH) by the
current adjustment value in AJUST­
REG and retain the result in WORK­
REG2.

Return to L. 6. 6. O. via LINKREG.

Subroutine 2 - Terminal List Manip­
ulation

43

AJUSTREG

WORKREG2

LOCATION

RTNE2

RTNE2A

RTNE2E

BLD INDEX FUNCTION PERFORMED

L.S.2.1.1.

L.S.2.1.2.

L.S.2.1.3.

L.S.2.1.4.

L. S. 2. 1. 5.

L. S. 2. 2. 1.

L.S.2.2.2.

L.S.2.3.1.

L. S. 2.3.2.

Test for Write Initial command
code in byte 1 of the D ECB field
(TYPE). If Write Initial is not
specified skip to L. S. 2.1. 3.

Change the base address of the
lOB so that the lOB field (POLPT)
actually becomes the lOB field
(ADRPT) and points to the addressing
list entry.

Test the first byte of the DECB field
(TYPE) for an'S' type terminal list
specification. If an'S' specification
is not made skip to RTNE2A (L.S. 2.
2.1.).

Test for all zeros in the lOB field
(POLPT). If all zeros skip to
RTNE2A, since this is an initial
entry in the terminal list.

Fill in the DECB field (POLAD) with
the address of the current terminal
list found in the lOB field (POLPT).

Calculate the address of the current
entry in the terminal list from the
current contents of ACCUMREG and
the contents of the DECB field
(POLAD).

Test the count found in WORKREG2
for zero. If the count is zero skip
to RTNE2B (L. S. 2. S.l.).

Test for the skip bit on in the cur­
rent entry of the terminal list. If
the skip bit is not on, skip to
RTNE2D (L. S. 2. 7.1.).

Test for the end of list bit on in the
current entry of the terminal list.
If the current entry is not the end
of the list skip to RTNE2G
(L. S. 2.4.1.).

44

FIELD
AFFECTED

IOBPOLPT

DECPOLAD

FIELD
LOCATION BLD INDEX FUNCTION PERFORMED AFFECTED

L.8.2.3.3. Set LINKREG (Register 14) LINKREG
to return. control to the
user routine (L. 7.2. o.)
rather than the Read-Write
routine ('L. 6. 6. 0.).

L. 8.2.3.4. Test for the format bit on in the cur-
rent entry of the terminal list. If
the formflt bit is on skip to RTNE2C
(a wraparound terminal list if indi-
cated). If the format bit is not on
skip to RTNE2F.

RTNE2G L. 8. 2.4. l. Test for the format bit on in the cur-
rent entry of the terminal list. If the
format bit is on skip to RTNE2C (a
wraparound terminal list is indicated).

L.8.2.4.2. Increment the address of the current WORKREGI
terminal list entry in WORKREG 1 to
the address of the next entry.

L.8.2.4.3. Skip to RTNE2F.

RTNE2C L. 8.2. 5.l. Calculate the address of the start of WORKREGI
the terminal list from the value given
at the end of the terminal list and re-
tain the result in WORKREGl.

RTNE2F L. 8.2. 6.l. Test LINKREG for the type of return -
to the user routine (L. 7.2. O.) or to the
Read-Write routine (L. 6. 6. 0.). If the
latter is specified, return to RTNE2E
(L. 8.2.3.1.).

L. 8.2.6.2. Set return code 04 in Register 15 to Register 15
indicate a skip and end of list (EOL)
condition,.

L.8.2.6.3. Set byte 4 of the lOB field (CSW) to IOBCSW
indicate channel program not busy.

RTNE2D L.8. 2. 7.l. Update the lOB field (POLPT) to the IOBPOLPT
current entry of the terminal list
and. retain the address in WORKREG2. WORKREG2

45

FIELD
LOCATION BLDINDEX FUNCTION PERFORMED AFFECTED

L.8.2.7.2. Restore the base address of the lOB.

L.8.2.7.3. Return via LINKREG.

RTNE2B L.8.2.8.L Obtain count value from current WORKREG2
terminal list (DIALST) entry and
retain in WORKREG2.

L.8.2.8.2. Increment the address of the cur- WORKREGl
rent terminal list entry in WORK-
REGl past the count field to the dial
digits.

L.8.2.8.3. Update ACCUMREG to reference the ACCUMREG
component address portion of the
current terminal list entry.

L.8.2.8.4. Return to RTNE2D.

L.8.3.0.0. Subroutine 3 - ResQonse Field Main- WORKREG2
tenance

RTNE3 L.8.3.LL Separate out the immediate count WORKREG2
portion of byte 3 of the model CCW
and retain its value in WORKREG2.

L.8.3.L2. Calculate the address of the proper WORKREGl
byte within the DECB field index
(byte 3) of the model CCW and the ad-
dress of the first byte of the DECB
field (RESPN). Retain the address
in WORKREGl.

L.8.3.L3. Test for a response field index of
zero. If the response field index is
not zero return via LINKREG (LRC
Response).

L.8.3.L4. Test for the end of list bit on in the
current entry of the terminal list. If
the end of list bit is not on skip to
L.8.3.L6.

L.8.3.L5. Set the CC flag on in the CCW and IOBCPA
return via LINKRE G.

46

LOCATION BLD INDEX FUNCTION PERFORMED

L.8.3.1:6. Test for the skip bit on in the next
entry of the terminal list. If the
skip bit is not on return via LINK-
REG.

L.8.3.1.7. Test for the EOL bit on in the next
entry of the terminal list. If the
EOL bit is not on skip to L. 8. 3.1. 6.
If the EOL bit is on skip to L. 8. 3. 1. 5.

L. 8. 4. O. O. Subroutine 4 - Special Characters

RTNE4 L.8.4.1.1. Calculate the address of the desired
special character(s) from the EOT
table index found in byte 3 of the
model CCW. Retain the address
in WORKREG1.

L.8.4.1.2. Obtain the count of special characters
from the EOT table entry specified
and retain it in WORKREG2.

L.8.4.1.3. Return via LINKREG.

MODULE NAME CHANNEL END APPE.NDAGE

MODULE IDENTIFICATION IGG019MB

LOCATION BLDINDEX

M.O.O.O.

M.l. O. O.

M.l.l. O.

M.l. 2. O.

FUNCTION PERFORMED

lOB Dummy Section (Appendix D)

Determine Operation Type

Save registers as obtained from lOS.
lOS will have the return address for
channel end appendages in LNKRG2.

Calculate the address of the current
(trap) CCW from the addres s of the
next CCW to be executed, whose ad­
dress is contained in bytes 1-3 of the
lOB field (CSW) (see Figure 19 in
Appendix D).

47

FIELD
AFFECTED

WORKREG1

WORKREG2

FIELD
AFFECTED

LOCATION BLDINDEX

M.1.3.0.

OPTBASE M.1.4.0.

TPPOLL01 M.2.0.0.

M. 2.1. O.

M.2.2.0.

M.2.3.0.

M.2.3.1.

FUNCTION PERFORMED

Test the TP Op Type byte from the
current CCW for validity.

If the TP Op Type is invalid (>18)
skip to M. 5.1. O.

Test the TP Op Type byte from the
current CCW for code value. If the
TP Op Type byte is 0 (no-op) skip to
TPABNORM (M. 5.0. 0.). If the TP
Op Type byte is 4 (poll-restart) skip
to TPPOLL01 (M. 2. 0.0.). If the TP
Op Type byte is 8 (multiaddressing)
skip to TPADDR01 (M. 3. O. 0.). If the
TP Op Type byte is OC, 10, 14, 18
(all not yet supported) skip to
TPABNORM (M.5.1.0.).

Polling - Restart

Calculate the address of the control
byte of the current entry of the terminal
(polling) list from the current entry ad­
dress (bytes 1-3 of the second CCW)
and the count field (bytes 6-7 of the
second CCW). Retain the address in
WKREG2.

Test for a wrong length record flag
(bit 41) on in the lOB field (CSW).
If the wrong length record flag is not
on skip to TPABNORM (M. 5.1. 0.).

Test the control byte of the current
entry of the terminal list.

Test for EOL and format bits on in
the current entry. Skip to TPPOLL03
(M. 2.4.1.) if neither bit is on.

48

FIELD
AFFECTED

WKREG2

LOCA TION BLD INDEX

M.2".3.2.

TPPOLL02 M.2.4.0.

TPPOLL03 M.2.4.1.

M.2.5.0.

M.2.5.1.

M.2.6.0.

M.2.7.0.

M.2.7.1.

M.2.7.,2.

FUNCTION PERFORMED

Test for the format bit on. If the
format bit is not on (then only the
EOL bit must be on) skip to TPABNORM
(M.5.1.0.).

This is the end of a wraparound list.
CalcuJate the address of the first
polling character at the start of the
list from: the two bytes at the end of
the list and the contents of WKREG2.

Increment the address in WKREG2 to
become the address of the next entry
to be polled and fill in the lOB field
(POLPT)' with this value.

Test for the EOL hit on in the trap
entry of the terminal list. If the
EOL bit is on skip to TPABNORM
(M. 5. 1. 0 .) .

Test for end-of-list flag (bit 7) on in
lOB fiel~ (FLAG2). This bit is set by
the RESETPL macro. If on, skip to
RESETFLG (M. 4.5.0.).

Calculate the address of the control
byte of the next entry in the terminal
list from the count in the second CCW
and the contents of WKREG2.
Retain the address in WKREG2.

Te st the control byte of the next entry
of the terminal list.

Test for the skip bit on in the entry of
the terniinallist. If the skip bit is not
on skip to TPPOLLIO (M.2.8.0.).

Test for the format bit on in this entry
of the terminal list. If the format bit
is not on skip to TPPOLL03. If the
format bit is on skip to TPPOLL02
(M.2.4.0.).

49

FIELD
AFFECTED

WKREG2
IOBPOLPT

WKREG2

LOCATION

TPPOLL10

TPADDR01

TPADDR02

BLD INDEX FUNCTION PERFORMED

M. 2. 8. O. Calculate the address of the first
character of this entry in the terminal
list from the count value of the next
entry and the contents of WKREG2.
Retain the result in WKREG2.

M.2.9.0.

M.3.0.0.

M. 3.1. O.

M.3.2.0.

M.3.2.1.

M.3.2.2.

M.3.3.0.

M.3.3.1.

M.3.4.0.

M.3.5.0.

Skip to TPEXIT (M. 4. O. o.).

Multiaddressing

Calculate the address of the control byte
of the current entry in the terminal (ad­
dressing) list from the current entry
address (bytes 1-3 of the second CCW)
and the count field (bytes 6-7 of the
second CCW). Retain the address in
WKREG2.

Test CSW

Test for unit exception bit (bit 39) on
in the lOB field (CSW). If the unit
exception bit is on (1050 terminal) skip
to TPABNORM (M. 5.1. 0.). (This was
a negative response.)

Test for wrong length record bit (bit 41)
on in the lOB field (CSW). If the wrong
length record bit is not on skip to
TPABNORM (M. 5.1. 0.).

Test Terminal List Entry

Test EOL bit in the control byte of the
current terminal list entry. If the EOL
bit is on an error has occurred. Skip
to TPABNORM (M. 5.1. 0.).

Calculate the address of the next entry
in the terminal list and retain this
address in WKREG2.

Calculate the address of the control byte
of the next entry in the terminal list and
retain this address in WKREG3.

50

FIELD
AFFECTED

WKREG2

WKREG2

WKREG2

WKREG3

LOCATION

TPADDR03

TPADDR04

TPADDR05

TPADDROB

BLD INDEX FUNCTION PERFORMED
FIELD
AFFECTED

M.3.B.O.

M.3.B.L

M.3.B.2.

M.3.7.0.

M.3.8.0.

M.3.9.0.

M. 3. 9.1.

M.3.9.2.

M.3.9.3.

M.3.9.4.

M.3.9.l5.

Test the cor-trol byte of the next entry
of the terminal list.

Test for the skip bit on in this entry of
the terminal list. If the skip 'bit is not
on skip to TPADDR03 (M. 3. 9. 0.).

Test for the EOL bit on in this entry
of the terminal list. If the EOL bit is
on skip to TPABNORM (M. 5. L O.).

Increment the address in WKREG2 to
become the address of the control byte
of this entry.

Skip to TPADDR02 (M. 3. 4. O.).

Test for t~e EOL bit on in this terminal
list entry. If the EOL bit is on skip to
TPADDR05 (M. 3. 9.4.).

WKREG2

Calculate the address of the control byte WKREG3
of the next entry in the terminal list from
the address in WKREG3 and the count
field of the second CCW in the lOB field
(CPA). Retain this address in WKREG3.

Test for the skip bit on in this terminal
list entry. If the skip bit is not on skip
to TPADDROB (M. 3. 9.5.).

Test for the EO L bit on in this entry of
the terminal list. If the EO L bit is on
skip to TPADDR05 (M. 3.9.4.). If the
EOL bit is not on skip to TPADDR04
(M. 3. 9. L).

Set the command chain flag in the
second caw in the channel program
area in the lOB field (CPA).

Fill in the lOB field (ADRPT) with the
contents of WKREG2 so that it contains
the address of the next entry in the
terminal list to be addressed.

51

IOBCPA

IOBADRPT

LOCATION

TPEXIT

RESETFLG

TPABNORM

BLD INDEX FUNCTION PERFORMED

M. 4. O. O.

M.4.1.0.

M.4.2.0.

M.4.3.0.

M.4.4.0.

M.4.5.0.

M.5.0.0.

M.5.1.0.

M.5.2.0.

Exit to lOS (EXCP return)

Fill in the lOB field (START) with the
address of the second CCW in the
channel program area in the lOB
field (CPA).

Update the data address of the second
CCW to contain the address of the next
terminal to be addressed (contents of
WKREG2).

Restore registers for return to lOS.

Return to lOS at: the contents of
LNKRG2 + 8.

Turn off bit 7 of lOB field (flag 2).

Exit to lOS (no-op return)

Restore registers for return to lOS.

Return to lOS at: the contents of
LNKRG2 + O.

SECTION C: DEVICE I/O MODULES

FIELD
AFFECTED

lOBS TART

WKREG2

IOBFLAG2

Device I/O Modules are quantities of device-dependent information located in protected
core storage. There will be one module for each terminal/option combination (device
type) supported.

Each module consists of three basic parts:

1. Offset table
2. Model channel programs
3.. Control character list

The offset table of a module contains values that are used by the Read-Write routine
to index the model channel programs in that module. Each offset value points to the
beginning of a model channel program for a particular I/O operation such as read
initial, read repeat, etc.

52

The model channel prograln section is made up of sequences of model CCW's (channel
command words), each sequence specifying a particular I/O operation. Each model
CCW corresponds to an actual CCW that will be needed in the channel program and
contains the information necessary for its construction (see Figure 11). The control
characters section consists of a series of fields containing the count or number of
characters that make up the field, followed by the actual control character or sequence
of characters for the particular device associated with this module.

Device I/O Modules for IBM 1050, AT&T 83B3, and WU115A devices are shown in
Figures 12, 13, and 14 respectively.

Byte 2 Byte 0
Command Code

Byte 1
Flags TP Op Type

Byte 3
Address & Count

o 7 8 9 10 11 15 16 23 24 26 27
Bits 0-7 Command Code Bits 16-23 TP Op Code
(Hexadecimal) Bits 8-15 Flags (Hexadecimal)

SENSE 04 BIT 8 CD POLLING RESTART 04
WRITE 01 9 CC ADDRESSING RESTART 08
AUTOWRAP 05 10 SLI NO RESTART 00
DIAL 29 11 SKIP
BREAK OD 12 PCI
POLL 09 13-15 ZEROS
READ 02
PREPARE 06
INHIBIT OA
SEARCH OE Bits 24-31 Address & Count
SADZER 13
SADONE 17

Bit 24 25 26 27 28 29 30 31

SAD'IWO IB Subroutine 1 0 0 0 Binary Count Last
SADTHREE IF CCW
ENABLE 27 Subroutine 2 0 0 1 Binary Count Flag
DISABLE 2F
I/O NO OP 03
TIC 08

Response Immed.

l Subroutine 3 0 1 0 Field
Index Count

Subroutine 4 0 1 1 Index to EOT Table

Figure 11. Model CCW

53

IGG019MD FF 00 10 28
30 FF FF 3e
FF FF FF 44

+12 Write; ee, SLI; no-op; RTNE4, (e) ,not last ecw
Write; ee, SLI; no-op; RTNE2, 2 char, not last
Read; eD; poll-restart; RTNE1, 2 char, not last
Read; SLI; no-op, RTNE1, no count needed, last

+28 Write; ee, SLI; no-op; RTNE4, (e), not last
Write; ee, SLI; no-op; RTNE2, 2 char, not last
Read;; multiaddr; RTNE3, 1 char, not last
Write; ee,SLI; no-op; RTNE1, no count, not last
Read; SLI; no-op; RTNE3, 1 char, last
Write; SLI; no-op; (e)

+52 Write; ee, SLI; no-op; RTNE4, (Y) , not last
Read; SLI; no-op; RTNE1, no count, last

+60 Write; ee, SLI; no-op; RTNE1, no count, not last
Read;; no-op; RTNE3, I char, last
Write; SLI; no-op; (e)

+72 Write; ee, SLI; no-op; RTNE4, eN), not last
Read; SLI; no-op; RTNE1, no count, last

+78 1 © 1 CX)
1 ®

Figure 12. Device I/O Module for mM 1050

IGG019ML FF 0 10 FF
FF FF FF FF
FF FF FF 28

}

!
OFFSET

TABLE

READ

INITIAL

WRITE

INITIAL

}

READ

CONTINUE

}

WRITE

CONTINUE

}
}

READ

REPEAT.

CONTROL

CHARACTERS

} OFFSET

TABLE

+12 Write; ee, SLI; no-op; RTNE4, FIGS H LTRS, not last

} Write; ee, SLI; no-op; RTNE2, 2 char, not last READ

Read; eD,poll-restart; RTNE1, 2 char, not last INITIAL

Read; SLI; no-op; RTNE1, no count, last
Write; ee, SLI; no-op; RTNE4, FIGS H LTRS, not last
Write; ee, SLI; no-op; RTNE2, 2 char, not last
Write; ee, SLI; no-op; RTNE4, LTRS, not last

+28

~ WRITE

Read;; multiaddr; RTNE3, 1 char, not last
Write; SLI; no-op; RTNE1, no count, last
Write; SLI; no-op; FIGS H LTRS ~

INITIAL

3 FIGS H LTRS
1 LTRS

+52 } CONTROL

CHARACTERS

Figure 13. Device I/O Module for AT&T 83B3

54

MODEL

CHANNEL

PROGRAMS

MODEL

CHANNEL

PROGRAMS

IGG019MN FF 00 10 FF
FF FF FF FF
FF FF FF 24 ~ OFFSET

TABLE

+12 Write; ee, SLI; no-op; RTNE4, FIGS H LTRS, not last
Write; ee, SLI; no-op; RTNE2, 2 char, not last
Read; CD; poll-restart; RTNE1, 2 char, not last
Read; SLI; no-op; RTNE1, no count, last ! READ

INITIAL

MODEL

+28 Write; ee, SLI; no-op; RTNE4, FIGS H LTRS, not last CHANNEL

Write; ee, SLI; no-op; RTNE2, 2 char, not last PROGRAMS

Read;; multiaddr; RTNE3, addr, 1 char, not last WRITE

Write; SLI; no-op; RTNE1, no count, last
INITIAL

Write; SLI; no-op; FIGS H LTRS

+48 3 FIGS H LTRS CONTROL

CHARACTERS

Figure 14. Device I/O Module for WU 11SA

55

APPENDIX A: OPERATING SYSTEM/360 CONTROL BLOCK LINKAGES

Operating System/360 provides interfaces among programs by means of control blocks
and tables. These blocks have standardized formats and contain numerous fields of
information to be used and referenced by the program. Some of these fields are
pointers to other blocks. Figure 15 shows the various blocks and their linkages of
importance to BTAM.

Core Storage

Location 16

Next DEB

in Task

Figure 15. OS/360 control block linkages

56

Event Control
Block

APPENDIX B: DATA CONTROL BLOCK (DCB)

The data control block (DeB) provides information about its associated data set (in
this case a communications line group). Each such data set will have a DCB.
Expansion of the DCB macro instruction at assembly time reserves storage for the
block and initializes the DCB with parameters from the macro defining the data set
name, its organization, the macros used for input/output, and the exit list address.

Other parameters can be defined by the DD cards in the job stream, or dynamically
by the program modules at any time before the DCB's data set is "opened". (There
must be one DD card for each DCB in the program.)

Figure 16 shows a diagranl. of the DCB and Table 1 details the contents and possible
sources of each field.

o

4

8

12

16

20 DCBBUFNODC~BUFCB
24 DCBBUFL I DCBDSORG

28 DCBDEVTP DC~IOBAD
32 DCBBFTEK

36 DCBEIOBXDCBEXLST

40 DCBDDNAM

44
~----------~--------~--------------------~

48 DCBOFLGS I DCBIFLG I DCBMACR

40 DCBTIOT I DCBMACRF

44 DCBIFLGS I
DCBDEBAD

48 DCBOFLGS I
DCBREAD
DC BWRITE

Figure 16. Data Control Block

57

T
Device
Dependent
Interfaces

Common
Interface

1
T

Foundation
before OPEN

~

--.-
Foundation
after OPEN

1

Table 1. Data Control Block Fields

Section

Device Dependent

Interfaces

Common

Interface

Foundation

before Open

Relative Location Length Name

Source* ll-IADCB+ (Bytes) DCB+

o 20

A, J, L 20 BUFNO

D 20 4 BUFCB

A, J, L 24 2 BUFL

J 26 2 DSORG

F, G 28 DEVTP

F 28 4 10BAD

A, L, J 32 BFTEK

F 36 1 EIOBX

36 4 EXLST

40 8 DDNAM

D 48 OFLGS

58

Contents

Unknown

Number of buffers to be obtained by

Open (0-255)

Address of buffer control block

Buffer length: the length of buffers to be

obtained by Open for a buffer pool, and/or

the length to be used if the length param­

eter of a READ or WRITE macro is coded

as'S' (0-32764)

Data set organization: a communications

line group specification of CX sets on bit 3.

Index to device I/O directory

lOB address: the address of the first lOB
(the lOB for line 1) minus the length of an

lOB (DCBEIOBX). The lOB address for any

line associated with this DCB is equal to
DCBIOBAD plus the product of the line
number times DCBEIOBX.

Buffering technique: Bit 4 - dynamic
Buffer alignment: Bit 6 - doubleword

boundaries

Extended lOB index: size of lOB's associ­

ated with this DCB

Exit list: the address of a user-provided list

which may contain an entry (control code

and address) for a DCB exit

Data set name as used in data definition

statement. Used by Open to locate job file

control block OFCB) address.

Flags used by Open

Bit 2 - EOVC: End of Volume sets this bit

when it caiIs CLOSE for

concatenation of data sets

with unlike attributes.

Bit 3 - OPEN: This bit set on when an
OPEN has been successfully

completed.

Table .1. (cont'd)

Relative Location Length Name

Section Source lliADCB+ (Bytes) DCB+ Contents

Bit 4 - CONC: This bit is set on by a prob-

lem program to indicate a
concatenation of unlike

attributes.

Bit 6 - LOCK: This bit is set on by an I/O

support function if the DCB

is to be processed by that

function.

D, F 49 IFLG Used by lOS in communicating error con-

ditions and in determining error procedures:

OOxxxxxx Not in error procedure

01xxxxxx Error correction in process

11xxxxxx Permanent error condition

xx10xxxx Channel 9 printer carriage

xx01xxxx Channel 12 printer carriage

xxxxOOxx Always use lOS error routine

xxxx01xx Test lOS mask (lMSK) for

error procedure

xxxx11xx **N ever use lOS error routine

xxxxxx11 Always use user error routine

xxxxxx01 Test user mask (UMSK) for

error procedure

xxxxxxOO **N ever use user error routine

**BT AM Open always sets these two

50 2 MACR Macro instruction reference: specifies the

major macros and various options associ-

ated with them. Used by Open to determine

access method. Used by the access method

executors in conjunction with other param-
eters to determine which load modules are

required.

Bit 2 - READ f
Bit 10 - WRITE

BTAM

Foundation
after Open D 40 2 TIOT Point to DDNAME in Task I/O Table

D 42 2 MACRF Same as MACR
F 44 1 IFLGS Same as IFLG
F 44 4 DEBAD Address of the associated DEB
D 48 1 OFLGS Same as OFLGS above
G 48 4 READ Address of Read-Write module
G 48 4 WRITE

*Source Codes

A Dynamic - any time before Open DCB exit G Open Module 2

D lOS H Channel End Appendage

E Read-Write J Macro expansion in user program

F Open Module L DD statement in job stream

59

APPENDIX C: DATA EXTENT BLOCK (DEB)

One data extent block (DEB) is created in protected core by Open Module 1 for each
line group (data set). It contains tables of addresses of (1) the lOS appendages, (2)
the unit control blocks for each line, and (3) other control blocks. There is also a
list of the identifications of all BTAM modules needed to support the devices in this
line group. Figure 17 is a diagram of the DEB, and Table 2 details the contents of
each field, giving source codes where known.

-36 DEBEOEA

-32 DEBSIOA

-28 DEBPCIA

-24 DEBCEA

-20 DEBXCEA
-16
-12
- 8 DEBDCBMK

- 4 DEBLNGTH

o DEBNMSUB

4 DEBAMLNG

8 DEBOFLGS

12 DEBOPATB

16 DEBNMEXT

20 DEBPRIOR

DEBPROTG
24 DEBDEBID

28 DEBEXSCL

32 DEBUCBAD

I'Ll I DE BSUBID

T
Figure 17. Data Extent Block

DEBTCBAD

DEBDEBAD

DEBIRBAD

DEBSYSPG

DEBUSRPG

DEBECBAD

DEBDCBAD

DEBAPPAD

.L.,.

I
T

60

T
Appendage

Table

Prefix

Basic
DEB

Device
Dependent

SUbrtutine
ID

+

Table 2. BTAM DEB Fields

Section Source

Appendage F

Table

F

F

G

F

Prefix D

F

Basic G

F

F

Relative

Location
IECTDEB+

-36

-32

-28

24

20

- 8

- 4

o

1

4

5
8

9

12

13

16

17

20

21

*Not supported by BTAM at present

Size in

Bytes

4

4

4

4

4

4

3

1

3

3

3

3

1

3

Name
DEB+

EOEA

SIOA

PCIA

CEA

XCEA

DCBMK

INGTH

NMSUB

TCBAD

AMLNG

DEBAD

OFLGS

IRBAD

OPATB

SYSPG

NMEXT

USRPG

PRIOR

ECBAD

61

Contents

Address of end of extent appendage branched to

by 10S*

Address of start I/O appendage branched to by 10S*

Address of program controlled interrupt appendage

branched to by 10S*

Address of channel end appendage branched to

by 10S*

Address of exceptional channel end appendage

branched to by 10S*

DCB modification mask used by I/O support

Length of DEB in doublewords

Number of subroutines LOADed by Open Module 2

TCB address of this DEB

Number of bytes in access method section
Address of next DEB in the same task
Data set status flag:

Bit 0 release unused external storage
1 end of volume or end of flag

2 •.. 7 reserved

IRB address for error exit

Indicates file type:

Bits 0 1 2 3 4 5 6 7

0001XXXX

0011XXXX

OOXXOOOO

o OXX 1 1

00XX0011

OOXXOlll

OOXXOOO

00XX0100

System purge chain Check

Reread

LEAVE
INPUT

OUTPUT

INOUT

OUTrn

RDBACK

UPDAT

IDLE

Number of extents constructed (number of lines),

specified in DSCB's

User purge chain

Dispatching priority field from TCB, used by lOS

for channel queuing of lOB's

lOS internal ECB address

Table 2. (cont'd)

Relative

Location Size in Name

Section Source IECTDEB+ Bytes DEB + Contents

D 24 1/2 PROTG Protection tag assigned to this task

F 24 1/2 1/2 DEBID Hexadecimal "F" identifies this block as a DEB

F 25 3 DCBAD Corresponding DCB address of this DEB

F 28 EXSCL Extent scale: = two for communication devices
indicating four bytes per extent (used to determine
size of Device Dependent section)

F 29 3 APPAD Address of I/O appendage table ahead of DEB

Device
Dependent F 32 (a.) UCBAD Table of addresses of UCB's for each line

(a.) Size = NMEXT shifted left logical EXSCL
bits (in this case; four bytes/ extent)

(Extents)

Subroutine
ID G (b.) SUBID Two-character subroutine ID's - last two char

of eight-byte name
(b.) Size = 2 x NMSUB bytes

62

APPENDIX D: INPUT/OUTPUT BLOCK (lOB)

The input/output control block (lOB) provides communication between the user program
and lOS. It is the sole parameter of the lOS execute channel program (EXCP) instruc­
tion. One lOB is created for each communications line by Open Module 1.

The basic lOB, 40 bytes in length, contains pointers to the channel program, the
event control block, and the terminal lists, and provides areas for storing flags,
sense bytes, the channel status word, and the start I/O condition code returned by
lOS. Appended to each basic lOB is a variable-length area where the channel programs
are constructed by the Read-Write routine.

Figure 18 is a diagram of the lOB and Figure 19 shows details of the channel status
word (CSW) field. Table:3 contains descriptions and sources of the contents of the
lOB fields.

o 10BFLAGl I IOBFLAG2 I 10BSENSE

4 10BECBPT

8 IOBFLAG3 I (see Figure 19)

12 10BCSW

10BSIOCC
16 10BSTART

10BWGHT
IOBDCBPT

20

24 10BRESTR

28 10BINCAM I IOBERRCT

10BUCBX
10BADRPT

32

36 10BPOLCT
10BPOLPT

40 10BCPA

44

48
,1"

T
Figure 18. Input/output control block

63

,l..

T

Basic
lOB

Channel
Program
Area

o 78 31
lOS Flags CCW ADDRESS

Device Channel I Status Status Count
32 39 40 47 48 63

From CAW 8-31 Address of Last CCW+8
32 Attention Bit
33 Status Modifier
34 Control Unit End

Device 35 Busy
Status 36 Channel End

37 Device End
38 Unit Check
39 Unit Exception

S
40 PCI

Channel 41 Incorrect Length
Status t 42-47

Count 48-63 Count difference between
number of characters sent
or received and length
specified.

Figure 19. Detail of lOB CSW field

Table 3. BTAM lOB Fields

Source

F

D

Relative

Location

o

Length

(Bytes)

Name

10B+

flAG 1

FLAG 2

Contents

Flags: Bit 0 Data chaining in channel program

1 Command chaining in channel program
2 Sense flag

! ~ Not used

5 lOB exception: used to flag an lOB in error

6 Unrelated: I/O requests need not be scheduled FIFO
7 Start/restart: lOS is to use channel program address

IOBSTART (0) or IOBRESTR (1)

Flags: Bit 0 Error flag

~} Intemal lOS Flags

7 RESETPL

64

Table 3. BTAM lOB Fields (cont'd)

Relative Length Name
Source Location (Bytes) 10B+ Contents

D 2 2 SENSE Two bytes of sense data stored here when an error occurs

All zeros: successful completion

Bit 0 Command reject

1 Intervention required

2 Parity error

3 Equipment check

4 Data check

50veITun

6 Receiving

7 Timeout

E, G 4 4 ECBPT Address of event control block (ECB) associated with this I/O

request

D 8 FLAG 3 lOS Flags

D 9 7 CSW The channel status word is stored here at channel end time

D 16 SIOCC The condition code from execution of start I/O is stored here

E, H 16 4 START Address of the first CCW at which to start I/O for normal conditions

20 WGHT Chapnel weight: user provides lOS with value of system loading

imposed by this I/O request - not used by BT AM

F 20 4 DCBPT Address of the DCB associated with this I/O request

F 24 4 RESTR Address of CCW at which to start I/O for restart operations
28 2 INCAM Block count increment amount
30 2 ERRCT ElTor counter: not used by BT AM

F 32 UCBX UCB index: line number - used as index to appropriate UCB
address in the DEB

H 32 4 ADRPT Pointer to addressing list
36 1 POLCT Poll count: the number of times polling has been consecutively

initiated for the same terminal

E, H 36 4 POIPT Poll pointer: address of currently active entry in polling list,

or the last entry (EOL bit on), or the first entry (EOL and format
bits on)

G, E 40 CPA Channel program areas (length depends on terminal and
options)

65

APPENDIX E: EVENT CONTROL BLOCK (ECB)

After initiating an I/O operation the task (user program) in control can continue
processing until it needs the results of that operation. At this point is issues a
WAIT instruction, which signals the supervisor that the task cannot proceed until
completion of a specified event, for example, the I/O operation. The WAIT specifies
an event control block (ECB), which is the first word of the data event control block
formed by expansion of a READ or WRITE macro instruction. Figure 20 shows the
ECB after the WAIT was issued. Bit 0 is the wait flag, and bit 1 is set on completion.
Bits 8-31 specify the address of the task control block.

o 1 8 31
1 o I TCB Address I

Figure 20. ECB after WAIT

The supervisor POSTs completion of the event by setting the wait flag off and the
completion flag on. It inserts a completion code in bits 2-31. Figure 21 shows this.

o 1 2 31
o 1 I Completion Code I

Completion codes: ECB contents in hexadecimal
7FOOOOOO-completed without error (normal)
41000000-permanent error
48000000-I/0 request purged or not started

Figure 21. ECB after POST

66

APPENDIX F: DATA EVENT CONTROL BLOCK (DECB)

The data event control block (DECB) is formed in the user program at assembly time
by expansion of a READ or WRITE macro instruction with parameter MF=L or blank.
It provides communication with the BTAM Read-Write module, specifying operation
type, line group, line, and terminal list. Also included are areas for the standard
ECB and responses to addressing and LRC checks. The format of the block is shown
in Figure 22 and the detailed contents of its fields are in Table 4.

o DECSDECB

4 DECTYPE I DECLNGTH

8 DECDCBAD

12 DECAREA

16 DECIOBPT

20 DE CPO LAD

24 DECOFSET I DECRESPN

Figure 22. Data event control block

Table 4. DECB Fields

Source

D

J

Location
IECTDECB+ Length

o 4

4 2

Name
DEC+

SDECB

TYPE

Contents

Event control block (ECB) for this I/O request (see Appendix E)

Operation type

1st byte: Bit 5 - Terminal1ist coded as'S')

2nd byte:

67

6 - Area coded as'S' ~ in any

7 - Length coded as'S') combination

Bits 5, 6, 7
Value Type Name Type ,Code Operation

0 Break TB Write
1 Initial TI Read

2 Initial TI Write
3 Continue TT Read

4 Continue TT Write

5 Conversation TV Read

6 Conversation TV Write

7 Repeat TP Read
Bit 0 - specifies Reset for type codes TIR, TTR,

TVR, TPR
1 - specifies Inhibit for type codes TIH, TTH,

TVH, TPH

Table 4. (cont'd)

Location Name
Source IECTDECB+ Length DEC+ Contents

], E 6 2 LNGTH Buffer length

] 8 4 DCBAD Address of associated DCB

], 1 12 4 AREA Buffer address

G 16 4 IOBPT Address of associated lOB

], E 20 4 POlAD Pointer to polling or addressing list

] 24 2 OFSET Relative line number

D 26 2 RESPN 1st byte: address responses

2nd byte: LRC responses

APPENDIX G: UNIT CONTROL BLOCK (UCB)

A unit control block (UCB) is built for each line at system generation time and used by
lOS during execution to determine physical locations. The only field requiring the
attention of the BTAM user is the device type word, which gives details of the terminals
on the line - control unit, adapter, model, and optional features. This word is fully
described in Appendix H. Figure 23 shows the format of the UCB and Table 5 details
its contents.

o

4

8

12

16

20

24

Internal Allocation
Job Number Channel Mask

Flags I Channel Unit Address
Address for SIO

Error Routine Statistical
Table Index Table Index

Weight Channel
Mask

Device Type

Last 12* Pointer

Figure 23. Unit Control block

68

UCB
ill

Status "A"

Device Table
Flags Index

Logical Channel Attention Table
Table Index Index

Unit Name

Sense

Information

Table 5. UCB Fields

Relative
Location

o
1
2
3
4

5
6

Size Name Contents

Internal job number

Allocation channel mask
UCB identification
Status "A" flags
5 flag bits, 3-bit channel address
Unit address for SIO
Flags: Bit 0 UCB busy - set. at SIO, reset at DE

1 UCB not ready - awaiting operator intervention
2 Post flag - waiting DE or error at DE will be passed at next SIO
3 UCB intercept

7
8

9

10

11

12

13

14
16
20
22

1

2

2 or 6

DEVTAB
ERRTAB

STATAB

LCHTAB

ANTAB

4 Control unit busy

5 Disk data transfer
6 Disk arm seeking

7 Status modifier

Index on device table (one entry/device type)

Index used to get error routine for this device

Indexes statistical information table

Indexes table of logical channel words (one per logical channel)

Indexes a table of attention routines to which lOS may pass control

Weight, used in computing ovelTun
Channel mask

Unit name: symbolic, used by allocator (in messages to operator, etc.)
Device type work (see Appendix H)

Last 12*: pointer to last or present active I/O request
Sense information

APPENDIX H: UCB DEVICE CODES

The device type word located at relative location 16 in the unit control block has the
format shown in Figure 24.

Model
Code

7 8
Optional
Features

Figure 24. UCB device code word

15 16 23 24

Device Class

69

Adapter
Type

27 28
Control

Unit

31

Interpretation of the contents of the fields is shown below.

lOS Flags

Device Class

Control Unit

Adapter Type

Model Code

Bit Meaning

0 Unassigned
1 Data chaining 1 = yes
2 Burst/byte 1 = burst
3 Overrullnable 1 = yes

Hexadecimal Value
16 Tape 80
17 Communications equipment 40
18 Direct access 20
19 Display 10
20 Unit record 08
21 Character reader 04
22 Spare 02
23 Spare 01

28-31 Hexadecimal value:
1 - 2702
2 - 2701
3 - 7770
4 - 7772

5l
. S not assigned
~

24-27 Hexadecimal value:
1 - IBM Terminal Adapter Type I
2 - IBM Terminal Adapter Type II
3 - IBM Telegraph Adapter
4 - Telegraph Adapter Type I
5 - Telegraph .Adapter Type II
6 - World Trade Telegraph Adapter
7 - Synchronous Adapter Type I
8 - IBM Terminal Adapter Type III

~} not assigned

4-7 Hexadecimal value: (see Table 6 below)

Table 6. Current BTAM-Supported Terminals

Adapter Model Code
Code 1 2 3

1 1050 1060 1070
2 1030
3 1050
4 83B3 115A
5 1WX

70

Optional Features

Bit IVleaning

8
9

Au tomatic Call
Automatic Poll

10 Terminal-to-Terminal Transmis sion
11 Automatic Answer

12·-15 Hexadecimal value:
o - SADZER
1 -SADONE
2 - SADTWO
3 -SADTHREE

APPENDIX I: BTAM OPEN POINTERS AND 'TABLES

Figure 25 is included for reference to show the path followed by BTAM to access
DCB's while a line group is being opened.

CommunIcations Vector Table (CVT)

Addr of TeB Double Word

+201 Addr of lOS Appendage Table

+84IAddrOf~,_:B_f_~_S_V_C_U_._b ________ ~
--~------­

V==1 Block (TCBI

+12 Address of TIOT

1

~l.rrIOTI
1

~'-:-A-:-dd~r-o~f U:-=-C~B~n--~
Figure 25. Open pointers and tables

Unit Control Blockt (UCB!)

Unit Control Blockn (UCBn)

:(1
+16 I Device Type r

71

APPENDIX J: BTAM READ-WRITE POINTERS AND TABLES

When a READ or WRITE command is issued, control is passed to the Read-Write
routine whose address is stored in the DCB specified in the macro. Using the device
type code in the DCB to index its Device I/O Directory, Read-Write accesses the proper
Device I/O Module. The operation type code in the DECB indexes the offset table in the
module to calculate the address of the desired model channel program. Read-Write
expands the model, using information in the DECB, and stores the complete channel
program in the lOB. Control is passed to lOS, which executes the channel program.
Figure 26 details the flow.

DeB

....... ---- --- . .-.-

DECB

t-----~''L_ - -

ADDR of lOB

lOB

ChaJDlel Program

Area

"-
\
\ ,

Figure 26. Read-Write pointers and tables

72

Read-Write Routine

Model ChaJDlel Program
/

,/

J

--r
Table of

Model
Channel
Programs

T
Device I/O

Special CHARS
...:....L-

APPENDIX K: ABEND, RETURN, AND COMPLETION CODES

If an error is discovered while the Open executor is processing the information found
in UCB's, an abnormal end-of-task exit (SVC 13) is taken. A code indicating the error
type is left in general register 1. The codes and their meanings follow:

(load 1)

(load 2)

00090000
00091000
00092000
00093000
00094000

00095000

Device class 40 (Telecommunications) not specified
2701 or 2702 not specified
Terminal adapter type incorrect
Device type incorrect for adapter
Special features incorrect for device

2701 or 2702 not specified

The Read-Write routine returns I/O start codes to the problem program via register 15.
The codes used there are:

00
04
08
OC

Normal
Skip and end-of-list both set in polling/addressing list
Invalid I/O command
Channel busy

I/O completion codes are returned in the event control block (see Appendix E for those
codes).

APPENDIX L: BTAM MODIFICATION FOR IBM 2740 TERMINAL

The following is an example of the use of the BTAM modification guide to provide
BTAM operation of an IBM 2740 terminal with VRC, LRC checking, station control
options. This is untested c:oding and is not official programming support for the 2740
terminal. It is included here only for educational purposes.

Building a 2740 Device I/O Module

With the options specified, the 2740 can operate in a multidrop leased/private line
environment and is a "regular" terminal in that dial-up and answering are not
implemented. The operations to be supported are polling and addressing (read and
write initial), read and write continue, and read repeat.

As discussed under "Building a Device I/O Module" in the section entitled "Probable
Modifications", the first step is to define the line control sequence needed to perform
the desired operation.

73

CPU

Terminal

Read

Initial

Reading a Multisegment Message from a 2740 Terminal

:0
I
I
I @

10
L I

I
Text ~ R ,

C

Read Initial with
Polling Restart

@Text 1 ®

Read Repeat

Writing a Multis(,~l1lent Message to a 2740 Terminal

:0
L ' ,

@ Text2® R ,
C

Read Continue

©

Read

Continue

:@0 A @Textl ® L I @Text 2 ®
L

:@0 B :@(0 CPU
R R

I I C C , , , ,
Terminal , G) 0' 0' 0'

Write Initial Write Continue Write Initial

We are now in a position to write a narrative for each operation as follows:

Read Initial 1. Write@character (@ indicates polling)
2. Write terminal ID character
3. Read response to polling
4. Read data

W rite Initial 1. Write @ ® characters (@ ® indicates addressing)
2. Write terminal ID character
3. Read response to addressing
4. Write data
5. Read answer to LRC

Read Continue 1. Write 0 positive resp onse
2. Read data

Write Continue 1. Write data
2. Read answer to LRC

Read Repeat 1. Write ® negative response
2. Read data

74

1. Set up a table of special characters for 2740 line control. The character table will
need ©, ~, ®, and ®. (@' ® will be in the messages.)

Value
TABLE DC X'Ol'

DC X'lF' © 0
DC X'02'
DC X'lF' ~ 1
DC X'37'
DC X'OO' (Padding)
DC X'Ol'
DC X'76' ® 3
DC X'Ol'
DC X'40' ® 4

2. Write out detailed 2740 command sequences.

Command Address Flags TP Op Type Count

Read
Initial: Write © Table CC, SLI 0 1

Write poll
char List CC, SLI 0 2
Read resp Area CD Poll-restart 2
Read data Area + 2 SLI 0 Length-2

Write
Initial: Write ©® Table CC, SLI 0 2

Write Addr
char List CC, SLI 0 2
Read resp RESPN CC 0 1
Write data Area CC, SLI 0 Length
Read answer RESPN+l 0 1

Read
Continue: Write® Table ec, SLI 0 1

Read data Area SLI 0 Length

Write
Continue: Write data Area SLI 0 Length

Read answer RESPN+l 0 1

Read
Repeat: Write® Table ec, SLI 0 1

Read data Area SLI 0 Length

75

3. Build model CC\V's for 2740 support.
We can now construct the model CCW's ------------- in hexadecimal

Read Initial:
Write; CC, SLI; normal;·RTNE4, @' not last CC\V
Write; CC, SLI; normal; RTNE2, 2 char, not last
Read; CD; poll-restart; RTNE1, 2 char, not last
Read; SLI; normal; RTNE1, no count needed, last

Write Initial:
Write; CC, SLI; normal; RTNE4, ©®, not last
Write; CC, SLI; normal; RTNE2, 2 char, not last
Read; CC, SLI; normal; RTNE3, addr, not ~ast
Write; CC, SLI; normal; RTNE1, no count needed,

not last
Read; SLI; normal; RTNE3, LRC, last

Read Gontinue:
Write; CC, SLI; normal; RTNE4, ®, not last
Read; SLI; normal; RTNE1, no count needed, last

Write Continue:
Write; CC, SLI; normal; RTNE1, no count needed,

not last
Read; SLI; normal; RTNE3, LRC, last

Read Repeat:
Write; CC, SLI; normal; RTNE4, ® ' not last
Read; SLI; normal; RTNE1, no count needed, last

01600060
01600024
02800404
02200001

01600062
01600024
02600042

01600000
0220004B

01600066
02200001

01600000
0220004B

01600068
02200001

Writing the 2740 model CCW's in assembler language and determining the "offset"
values of each model channel program:

offset (hexadecimal)
o RDINIT1

RDINIT2

76

DC X'Ol'
DC X'60'
DC X'OO'
DC X'60'

DC X'Ol'
DC X'60'
DC X'OO'
DC X'24'

RDINIT3 DC X'02'
DC X'80'
DC X'04'
DC X'04'

RDINIT4 DC X'02'
DC X'20'
DC X'OO'
DC X'Ol'

RITEINTI DC X'Ol'
DC X'60'
DC X'OO'
DC X'62'

RITEINT2 DC X'Ol'
DC X'60'
DC X'OO'
DC X'24'

RITEINT3 DC X'02'
DC X'60'
DC X'OO'
DC X'42'

RITEINT4 DC X'Ol'
DC X'60'
DC X'OO'
DC X'OO'

RITEINT5 DC X'02'
DC X'20'
DC X'OO'
DC X'4B'

24 RDCONTI DC X'Ol'
DC X'60'
DC X'OO'
DC X'66'

RDCONT2 DC X'02'
DC X'20'
DC X'OO'
DC X'Ol'

77

2C RITECNTI DC X'OI'
DC X'60'
DC X'OO'
DC X'OO'

RITECNT2 DC X'02'
DC X'20'
DC X'OO'
DC X'4B'

34 RDRPETEI DC X'OI'
DC X'60'
DC X'68'

RDRPETE2 DC X'02'
DC X'20'
DC X'OO'
DC X'Ol'

Now we can code the "offset" values in assembler language.

IGG019MZ CSECT
DC X'FF'
DC X'OO'
DC X'10'
DC X'24'
DC X'2C'
DC X'FF'
DC X'FF'
DC X'34'
DC X'FF'
DC X'FF'
DC X'FF'
DC X'3C'

Read Initial
Write Initial
Read Continue
Write Continue

Read Repeat

Special Characters

To form the Device I/O Module we now combine the three parts:

1. Offset table
2. Model channel programs
3. Character table

This is the Device I/O Module designed for the specified 2740 terminal support.

Device Type Analysis. With the Device I/O Module specified, it is now necessary to
run through the steps listed under "Coding Changes" in the section entitled "Probable
Modifications". Columns 1-6 in the table below will contain, reslJectively, all
terminal and option combinations (current BTAM support plus 2740), the sizes of lOB
channel program areas, the Device I/O Module ID characters, a hexadecimal integer,
the adapter code(s), and model code.

78

Column

1 2 3 4 5 6

1050 R 48 MD 00 1, 3 1
1050 AP 32 ME 01 1, 3 1
1050 A 48 MF 02 1, 3 1
1050 AA 56 MG 03 1, 3 1
1050 AC 64 MH 04 1, 3 1
1060 R 40 Ml 05 1 2
2740 R 40 MZ 06 1 4
1030 R 40 MJ, 07 2 1
1030 AP 16 MK 08 2 1
83B3 R 48 ML 09 4 1
83B3 TT 24 MM OA 4 1
115A R 40 MN OB 4 2
l15A TT 72 MO OC 4 2
'IWX A 80 MP OD 5 1
'IWX AA 88 MQ OE 5 1
'IWX AC 16 MR OF 5 1

R - regular AC - auto call
AP - auto poll A - both AA and AC
AA - auto answer TT - terminal-to-terminal

Now we can build the lOB channel program area size table (SZT~BLE) from the digits
in column 2. This table will be substituted for the present SZTABLE coding in BTAM
Open Module 1 (lGG0193M).

Name Operation Operand Remarks

SZTABLE DC HL1'48' 1050R
DC HL1'32' 1050AP
DC HL1'48' 1050A
DC HL1'56' 1050AA
DC HL1'64' 1050AC
DC HL1'40' 1060R
DC HL1'40' 2740R
DC HL1'40' 1030R
DC HL1'16' 1030AP
DC HL1'48' 83B3R
DC HL1'24' 83B3TT
DC HL1 '40' 115AR
DC HLl'72' 115ATT
DC HL1'80' 'IWXA
DC HL1'88' 'IWXAA
DC HL1'16' 'IWXAC

79

From the digits in column 3 we can build the Module ID table (CHNIDTBL). This table
will replace the CHNIDTBL coding in Open Module 2 (IGGOl93Q).

Name Operation Operand Remarks

CHNIDTBL DC C'MD' l050R
DC XL4'0' TTRL FIELD
DC C'ME' 1050AP
DC XL4'0'
DC C'MF' l050A
DC XL4'O'
DC C'MG' l050AA
DC XL4'0'
DC C'MH' l050AC
DC XL4'O'
DC C'MI' 1060R
DC XL4'0'
DC C'MZ' 2740R
DC XL4'0'
DC C'MJ' 1030R
DC XL4'0'
DC C'MK' l030AP
DC XL4'0'
DC C'ML' 83B3R
DC XL4'0'
DC C'MM' 83B3TT
DC XL4'0'
DC C'MN' l15AR
DC XL4'0'
DC C'MO' 1l5ATT
DC XL4'0'
DC C'MP' 'IWXA
DC XL4'0'
DC C'MQ' 'IWXAA
DC XL4'0'
DC C'MR' 'IWXAC
DC XL4'0'

From column 4 we can build the Terminal Code Table for Open Module 1.

Name Operation Operand Remarks

CDIBM1 DC X'OO' 1050R
DC X'Ol' l050AP
DC X'02' 1050A
DC X'03' l050AA
DC X'04' l050AC
DC X'05' 1060R
DC X'06' 2740R

80

Name Operation Operand Remarks

CDIBM2 DC X'07' 1030R
DC X'08' 1030AP

CDTEL1 DC X'09' 83B3R
DC X'OA' 83B3TT
DC X'OB' 115AR
DC X'OC' 115ATT

CDTEL2 DC X'OD' TWXA
DC X'OE' TWXAA
DC X'OF' TWXAC

Device Type Analysis Coding (step 9 of the i'Modification Procedure"). Possibly the
best way to modify this section of BTAM Open Module 1 is to rewrite it. Its purpose
is to check for the terminals supported by the system in use. For a particular system
with specific terminals there is no need to include tests for all terminal/option
combinations. Sections of coding can thereby be eliminated by a customized version
of the device type analysis.

The sample coding that follows represents an extreme case in that the 2740 is being
added to all of the current BTAM support - nothing is being deleted. The method used
to do the analysis here differs only slightly from that of the original coding, mostly
near the beginning. No superiority is claimed - it merely shows an alternate way to
test for invalid terminals and to perform tests 3 and 4. Narrative and coding will be
interspersed from here on.

The device type analysis begins at symbolic location DEVTYANL (BLD, Section J. 4. O. O.).
The three general registers to be used are cleared and the integer value 1 is loaded into
a fourth for use as a "bumper" later in the 'program. The address of the UCB device
word is computed and put in register DEVTYREG. Tests 1 and 2 are performed on the
device class and control unit type, which must be communications and 2701 or 2702,
respectively. Location ABENDT contains the supervisor call for abnormal end-of-task.

Name Operation

DEVTYANL SR
SR
SR
LA
L
AH
CLI
BNE
TM
BC

Operand

UNITYREG, UNITYREG
DEVCDREG,DEVCDREG
DEVSTREG,DEVSTREG
DEVBUMPR, 1(0, 0)
DEVTYREG,DEBUCBAD
DEVTYREG, SIXTEEN
2(DEVTYREG), X'40'
ABENDT
3(DEVTYREG), X'03'
9,ABENDT

81

Remarks

UCB ADDRESS
DEV TYPE WORK ADDR
DEVICE CLASS - MUST BE
40 = COMMUNICATIONS
CONTROL UNIT CODE MUST
BE 1 (2702) or 2 (2701)

Next the terminal adapter code is extracted, placed in UNITYREG, and checked to see
if it exceeds the highest adapter code supported, in this case 5. Subtracting 1 makes it
an index, and a left shift one position makes it usable on a table of halfwords.

Name Operation Operand Remarks

IC UNITYREG,3(DEVTYREG) GET FOURTH BYTE
SRL UNITYREG,4 ADAPTER CODE IN REG
CH UNITYREG, HIGHAD CHECk AGAINST HIGHEST
BH ABENDT SUPPORTED ADAPTER CODE
SH UNITYREG,HWCl MAKE INDEX ON HALFWORD
SLL UNITYREG,l BOUNDARY

The model code is now extracted, left in DEVCDREG, and tested to see if it exceeds
the highest model code within its adapter class. Subtracting 1 and left shifting 2 make
it a fullword index. The adapter index in UNITYREG is also shifted to full word.

Name Operation Operand Remarks

IC DEVCDREG, O(DEVTYREG) GET FIRST BYTE MODEL

CH

BH
SH
SLL
SLL

DEVCDREG, HIGHMOD
(UNITYREG)
ABENDT
DEVCDREG, HWCl
DEVCDREG,2
UNITYREG,l

CODE IN REG

CHECK IF MODEL CODE
GREA TER THAN SUPPORTED
MAKE INDEX ON FULLWORD
BOUNDARY
PUT ON FULLWORD BOUNDARY

The next instruction is a branch to location MODELRT indexed by UNITYREG (adapter
code), that is, to one of the five branch instructions at or following MODELRT. This
completes test 3 and the terminal has been specified as far as the adapter type.

Name Operation Operand

B MODELRT(UNITYREG)

The next branch (one of the five below) is indexed by DEVCDREG (model code) and will
be to a location within one of the lists for the adapter types.

Name Operation Operand

MODELRT B TYPE1(DEVCDREG)
B TYPE2(DEVCDREG)
B IBMTEL(DEVCDREG)
B TELTYPE1(DEVCDREG)
B TEL TYPE2(DEVCDREG)

82

The final branch will be to one of the terminal sections and marks the completion of
test 4 - the device type is known.

Name Operation Operand Remarks

TYPEl B Dl050
B Dl060
B ABENDT 1070 NOT ~1JPPORTED
B D2740

TYPE2 B Dl030

IBMTEL B D1050

TELTYPEl B D83B3
B Dll5A

TELTYPE2 B DTWX

The previous coding could have been condensed somewhat, considering that three of
the adapter types only go with one terminal type each. Thus the branch to TYPE2
could have been replaced with the one to D1030, effectively eliminating one indexed
branch instruction. However, the form shown is more easily expanded.

Before proceeding to the option tests, it would be appropriate to include the constants
used by the program so far. HIGHAD is the highest adapter code supported, currently 5.
The list starting at HIGHMOD contains the highest model codes for each adapter type.

Name Operation

SIXTEEN DC

HWCl DC

HIGHAD DC

HIGHMOD DC
DC
DC
DC
DC

Operand

H'l6'

H'l'

H'5'

H'4'
H'l'
H'l'
H'2'
H'l'

Remarks

HIGHEST ADAPTER CODE

IBMl - HIGHEST MODEL CODES
IBM2
IBMTEL
TELTYPEl
TELTYPE2

The next sections of coding make the terminal option tests. The general procedure
is to check for each option in the order listed earlier, and to generate an offset for
skipping down the terminal code table to pick up the proper code.

83

The terminal code byte is inserted into the last eight bits of register DEVCDREG. It
will be used later as an index on the lOB size table and on the I/O Module ID table.

Name Operation Operand Remarks

D1050 TM l(DEVTYREG), X'FO' ANY OPTIONS
BZ IBM1 NO-REGULAR
AR DEVSTREG,DEVBUMPR YES
TM l(DEVTYREG), X'40' AP OPTION
BO IBM1 YES
AR DEVSTREG,DEVBUMPR NO
TM l(DEVTYREG), X'90' A OPTION-BOTH AA AND AC
BO IBM1 YES
AR DEVSTREG,DEVBUMPR NO
TM l(DEVTYREG), X'lO' AA OPTION
BO IBM1 YES
AR DEVSTREG, DEVBUMPR NO
TM l(DEVTYREG), X'80' AC OPTION
BO IBM1 YES
B ABENDT NO-ANY OTHER IN ERROR

D2740 LA DEVSTREG, 1(0,0)

D1060 LA DEVSTREG, 5(0, DEVSTREG)
TM l(DEVTYREG), X'FO' ANY OPTIONS
BZ IBM1 NO
B ABENDT ANY = ERROR

IBM1 IC DEVCDREG, CDIBM1
(DEVSTREG)

B IOBST1

Dl15A LA DEVSTREG, 2(0, 0)

D83B3 TM l(DEVTYREG), X'FO' ANY OPTIONS
BZ TELTY1 NO
AR DEVSTREG,DEVBUMPR YES
TM l(DEVTYREG), X'20' TT OPTION
BO TELTY1 YES
B ABENDT ANY OTHERS IN ERROR

TELTY1 IC DEVCDREG, CDTEL1
(DEVSTREG)

B IOBST1

84

Name Operation Operand Remarks

D1030 TM l(DEVTYREG), X'FO' ANY OPTION
BZ IBM2 NO-REGULAR
AR DEVSTREG,DEVBUMPR YES
TM l(DEVTYREG), X'40' AP OPTION
BO IBM2 YES
B ABENDT NO-ANY OTHER IN ERROR

IBM2 IC DEVCDREG, CDIBM2
(DEVSTREG)

B IOBST1

DTWX TM l(DEVTYREG), X'90' A OPTION
BO TELTY2 YES
AR DEVSTREG,DEVBUMPR NO
TM l(DEVTYREG), X' 10' AA OPTION
BO TELTY2 YES
AR DEVSTREG,DEVBUMPR NO
TM l(DEVTYREG), X'80' AC OPTION
BO TELTY2 YES
B ABENDT NO-ANY OTHERS IN ERROR

TELTY2 IC DEVCDREG, CDTEL2
(DEVSTREG)

B IOBST1

The branch to symbolic location IOBST1 marks the return to the regular coding
following the device type analysis. Remember that the lOB Size Table, I/O Module
ID Table, and Terminal Code Tables replace those in the original BTAM Open Modules.

85

Y20-0013-0

BIBLIOGRAPHY

IBM OPERATING SYSTEM/360

!BM Operating System/360, Telecommunications: Preliminary Specifications,
Systems Reference Library (C28-6553).

!BM Operating System/360, Control Program Services, Systems Reference Library
(C28-6541).

IBM System/360 Operating System, Data Management, Systems Reference Library
(C28-6537).

!BM Operating System/360, Assembler Language, Systems Reference Library (C28-6514).

!BM Operating System/360, System Programmer's Guide, Systems Reference Library
(C28-6550) .

IBM SYSTEM/360

IBM System/360, Principles of Operations, Systems Reference Library (A22-6821).

IBM 2701 Data Adapter Unit, Principles of Operation, Systems Reference Library
(A22-6864).

!BM System/360 Component Description, IBM 2702 Transmission Control, Systems
Heference Library (A22-6846).

IBM Systerrl/360 Component Description, IBM 2703 Transmission Control, Systems
Heference Library (A22-2703).

IBM 2740 Communications Terminal, Systems Reference Library (A24-3403).

!BM 1050 Reference Digest, Systems Reference Library (A24-3020).

International Business Machines Corporation

Data. Processing Division

112 East Post Road, White Plains, New York 10601

