

I

I

BASIC Reference Handbook

© 1970 by The Service Bureau Corporation. All rights reserved
Printed in the United States of America

CONTENTS

Preface ... v

Introduction ... 1

SECTION I - CALL/360: BASIC PROGRAM STRUCTURE 3
CALL/360: BASIC Statements 3
CALL/360 System Commands 3
CALL/360: BASIC Programs .. 4
Conventions of Statement Specifications '. 4
CALL/360: BASIC Character Set -... 5

SECTION II - ELEMENTS OF CALL/360:BASIC STATEMENTS 7
Short-Form Data. .. 7
wng-Form Data .. 8
Numeric Constants 8
Internal Constants 9
Literal Constants .. 9
Variable Names ... 10
Matrix Operations 12
Intrinsic Functions 13
User Functions ... 13
CALL/360: BASIC Operators. .. 14
Expressions. ., 14

SECTION III - INPUT AND OUTPUT. .. 17
Program Input. .. 17
Terminal Input/Output. .. 18
Data File Input/Output. .. 19
Data File Storage .. 20

SECTION IV - CALL/360: BASIC STATEMENTS. 23
Introduction ... 23
General Considerations. .. 23
Program Assignment. .. 25

LET ... 26
Program Remarks and Miscellaneous Control Statements. 28

REMARK ... 29
ST()I>. .. 30
END ... 30

Control Statements 31
GOTO (Simple) 33
GOTO (Computed) 33
FOR ... 34
NEXT ... 35
IF ... 36

Program and Terminal Input Statements 37
DATA ... 39
READ ... 40
RESTORE ... 41
INPUT ... 41

iii

Terminal Output .. 43
PRINT .. 44
PRINT USING 47
Image ... 48
PAUSE ... 49

Array Declaration and Matrix Operations 51
DIM ... 56
Matrix Addition 57
Matrix CON Function 58
MAT GET ... 59
Matrix IDN Function 60
Matrix Inversion .. 61
Matrix Multiplication 62
Matrix Multiplication (Scalar) 64
MAT PRINT ... 65
MAT PUT ... 65
MAT READ ... 66
Matrix Subtraction 67
Matrix Transposition 68
Matrix ZER Function 69

Subroutines and User Functions 70
DEF , 71
GOSUB ... 72
RETURN ... 73

Data File Input/Output 74
OPEN ... 76
PUT .. 76
GE'T ... 77
RESET .. 79
CLOSE ... 79

Appendix A: Program Limits 81

Appendix B: Diagnostic Error Messages .. 83

Index. .. 92

iv

PREFACE

This publication describes the SBC CALL/360: BASIC programming language. It is a
reference document, primarily intended for experienced BASIC users seeking specific
information.

This manual describes features inherent to the SBC CALL/360: BASIC language only, and
includes topics such as program structure, program statements, program limits and error
messages. It does not describe system features which are common to all SBC CALL/360
languages. The reader is referred to the Command Language Reference Manual (form no.
65-2403) for a description of topics such as system commands, system messages, correction
procedures and so forth.

Additional information about CALL/360: BASIC may be found in the following
publications:

• CALL/360;'BASIC Introduction (form no. 65-2204-1)
• CALL/360:BASIC Terminals Reference Manual (form no. 65-2210)
• CALL/360:BASIC Reference Card (form no. 65-2394-1)

A Reader's Comment Form IS included at the end of this publication, and comments
regarding the manual are welcomed.

v

I NTRODUCTI ON

This manual describes SBC CALL/360: BASIC, a powerful problem-solving language based
upon the original language developed at Dartmouth College, Hanover, New Hampshire.

The manual is divided into four sections:

• Section I, CALL/360:BASIC Program Structure, describes the BASIC character
set and the composition of a BASIC program.

• Section II,Elements ofCALL/360:BASIC Statements, describes the components
of the BASIC language and the data structure involved in the process.

• Section III, Input and Output, deals with the methods by which the user may
enter and manipulate data in a BASIC program.

• Section IV, CALL/360:BASIC Statements, describes each statement of the SBC
CALL/360: BASIC language. The BASIC statements are organized functionally
with each statement assigned to one of eight functional blocks. A general
example at the beginning of each functional block illustrates a program using
each of the BASIC statements described within that particular block. Each
description of a program statement includes the general form of the statement,
the effect of the statement and at least one example of its use.

Two appendices are also included. Appendix A deals with program limits. Appendix B
lists the three types of CALL/360: BASIC diagnostic error messages: compilation error
messages resulting from errors detected by the BASIC language processor during program
compilation; execution error messages resulting from errors detected during program
execution which are severe enough to terminate further execution; exception error mes­
sages warning the user of an error condition which is not severe enough to interfere with
program execution.

System messages, resulting from a system command, may be found in the Command
Language Reference Manual. A system message may be either an indication of an error
condition or a normal response to a particular command.

1

SECTION

CALL/360:BASIC PROGRAM STRUCTURE

The SBC CALL/360: BASIC language is composed of a set of statements and a set of
commands. BASIC statements are used to create program solutions. Commands are used
to direct the system in performing tasks such as providing program listings, modifying
programs under construction or in library storage, and in general are used to communicate
with the system.

CALL/360:BASIC STATEMENTS

A BASIC statement defines the type of operation performed and the kinds of data manipu­
lated by the program. Two types of statements are provided: executable and nonexecutable.
An executable statement specifies a program action (e.g., LET X = 5); a nonexecutable
statement provides information necessary for program execution (e.g., DATA 1, 2, 5, 6E-7).

Every BASIC statement must be prefaced by a line number. The line number associated
with each statement identifies the line and also determines its placement in the user's work
area. A line number may consist of one through five digits, and always begins at the left­
most carrier position. It cannot contain embedded blanks or nonnumeric characters.

A statement line is composed of a single CALL/360: BASIC statement prefaced by a line
number. For example:

10 LET X = 2~:Y+7~:Z t \ }
Line BASIC

Number Statement

CALLl360 SYSTEM COMMANDS

The system commands used with CALL/360: BASIC are common to all CALL/360
languages and are described in detail in the Command Language Reference Manual.

A system command always begins at the leftmost carrier position and a command line is
composed of a single system command (in some cases followed by information supplied
by the user). For example:

NAME INTEREST
"--v--'~

System Information supplied
Command by the user

3

CALL/360:BASIC PROGRAMS

A CALL/360: BASIC program is a group of statement lines arranged according to the
following general rules:

1. A statement line may occupy no more than one print line.

2. A print line may contain only one statement.

3. Program statements are executed in the sequence in which they are numbered,
and may be entered in any order.

4. Executable and nonexecutable statements may be intermixed. Transfer of
control to a nonexecutable statement causes control to pass to the next
executable statement. '

5. The first reference to an array establishes a declaration for the array (e.g.,
LET A(I,J) = Cl).

6. An END statement must have the highest line number in the source program.

CONVENTIONS OF STATEMENT SPECIFICATIONS

The following conventions are used in this manual to describe the formats of CALL/360:
BASIC statements:

1. Uppercase letters, digits and special characters must appear exactly as shown.

2. Information in lowercase letters must be supplied by the user.

3. Information contained within brackets [] represents an option that may be
omitted by the user.

4. An ellipsis (a series of three periods) indicates that a variable number of items
may be included in a list. A list whose length is variable is specified by the
format xl' x2 ' x3 ' ••• , xn. This format indicates that x may be repeated from
1 to n times.

5. The appearance of one or more items in sequence indicates that the items, or
their replacements, should also appear in the specified order.

6. A vertical bar (I) indicates that a choice must be made between the item to the
left of the bar and the item to the right of the bar.

4

CALL/360:BASIC CHARACTER SET

A CALL/360: BASIC program is written using the following character set:

Letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ@#$

Digits: 2 345 678 9 0

Special characters: Single quote v Asterisk (Multiplication)

" Double quote Right oblique (slash) (Division)
< Less than t Up arrow (Exponentiation)
:5 Less than or equal to (Left parenthesis

= Equal to) Right parenthesis
~ Greater than or equal to Exclamation mark
> Greater than Comma

Not equal to Period
& Ampersand Semicolon
+ Plus Colon

Minus Blank

Any valid terminal character not listed is a non-BASIC character and may be used only
where specifically noted. .

5

SECTION II

ELEMENTS OF CALL/360:BASIC STATEMENTS

All arithmetic computations in CALL/360: BASIC are performed as floating-point
numbers. A floating-point number is a machine approximation of the value of the real
number.

A BASIC program may be compiled and executed using either short-form arithmetic or
long-form arithmetic; the mode is specified via the ENTER command. The system com­
mand ENTER BASIC specifies short-form floating-point computations, while ENTER
BASICL specifies that all computations be performed in long-form floating-point arith­
metic. The long-form computations are more accurate, but also require more machine
time to compute. If the ENTER command is not typed, BASIC short-form is automatically
assigned by default.

SHORT· FORM DATA

An integer format (I format) is used to print integer values. Up to eight decimal digits may
be printed for integers whose absolute value is less than 16777216. For example:

17
203167
5
9993456

Decimal numbers are printed in either fixed-point form (F format) or exponential form
(E format). The F format is used to specify decimal numbers of up to six digits. The F
format specification has a sign and a decimal point. If no sign is used, the number is
positive. For example:

1.2076
+783347.
-.003424

The E format is used for numbers whose magnitude is less than 10-1 or greater than 107
•

The number is of the form:

[sign] d.dddddE±ee

The sign is optional. If omitted, the number is positive. The d signifies a digit, and the E
specifies the exponent followed by an optionally signed exponent, ee.

7

If the exponential notation (E format) is used, the value of the constant is equal to the
number on the left of the E multiplied by 10 raised to the power of the number .
following the E.

Examples of the data formats:

E Format F Format I Format Eguivalent Number

-1.70834E+02 -170.834 -170 -170.834
5.43311E-05 +.000054 +0 + .000054311
2.17787E+00 +2.17787 +2 +2.17787
-6.72136E-02 -.067214 +0 -.0672136
9.68E-07 .000000 +0 + .000000968

LONG-FORM DATA

An I format is used to print an integer value up to 15 digits whose absolute value is less
than 1015

, using either the PRINT or the PRINT USING statement.

Decimal numbers written in F format are used to print decimal values of up to 15 digits
with a decimal point. The F format in long-form data (BASICL) may only be printed
with the PRINT USING statement.

Exponential numbers written in E format are used to print a value with a sign, a decimal
point, ten decimal digits, the letter E, and a signed characteristic (exponent).

NUMERIC CONSTANTS

A numeric constant is a string of characters whose value is a decimal number. The
defined value cannot be changed throughout program execution. The two general forms
of a numeric constant are

[+1-] d ... [.] [d ...] [E [+1-] d ...]
[+1-] [d ...] [.] d ... [E[+I-] d ...]

where d is a digit.

Any of the above formats (e.g., E format, F format, etc.}.may be used to write numeric
constants in a program statement. If the exponential notation (E format) is used, the
value of the constant is equal. to the number to the left of the E multiplied by 10 to the
power of the number to the right of the E.

The magnitude of a numeric constant must be less than lE+75 and greater than lE-78.
If long-form arithmetic is specified, up to 15 significant digits are retained after conver­
sion. If short-form arithmetic is specified, six significant digits are retained after

8

conversion. If the number of digits written exceeds machine usable values, the system
will discard the remaining digits.

Storage is allocated for a numerical constant every time the constant appears in a source
program (see note below). For example, if the constant 1.5 appears three times in a
source program, three separate storage areas are allocated.

NOTE: Separate storage allocation does not pertain to integers which have ten addresses
reserved for storage (0 - 9). If the same integer appears more than once in a source
program, that particular address is merely referenced again.

INTERNAL CONSTANTS

Three internal constants are provided in CALL/360: BASIC. They represent pi, e, and the
positive square root of 2. The names of the internal constants may be used in calculations
where the values of the constants are needed. They are called &PI, &E and &SQR2. The
values inserted by the system are:

Name Short-form value

&PI 3.141593

&E 2.718282

&SQR2 1.414214

For example:

LITERAL CONSTANTS

10 LET X = &PlxY/2
20 LET R = &E+4XZt3
30 LET Y = &SQR2 XCt4

Long-form value

3.141592653589793
2.718281828459045

1.414213562373095

A literal constant is a character string enclosed by a pair of single or double quotation
marks .. The two general forms of a literal constant are:

"[c ...]"
'[c ...]'

where c is any character.

A single quote may appear in a character string bounded by double quotes, and a double
quote may appear in a character string bounded by single quotes. However, when a
boundary character appears in the character string, it must be represented as two
consecutive boundary characters.

9

The following examples illustrate how character strings may be represented as literal
strings:

Character String

ABCD

ABC'D

ABC"D

Literal String

"ABCD" or 'ABCD'

"ABC'D" or 'ABC' 'D'

"ABC" "D" or 'ABC"D'

A literal constant containing less than 18 characters is padded with blanks on the right.
A literal constant containing more than 18 characters is truncated on the right. A
literal constant containing no characters is interpreted as 18 blank characters.

VARIABLE NAMES

Simple Variables

Simple Numeric
Variable

Simple Alphameric
Variable

Array Variables

A variable name is represented by a letter (a character from the extended alphabet), a
letter followed by a digit, or a letter followed by the character $. A variable name
represents a data item. The data value of any variable may be set or modified by the
CALL/360:BASIC statements. There are two types of variables in CALL/360:BASIC:
simple and array.

A simple numeric variable is named by a letter (a character from the extended alphabet)
or a letter followed by a digit. Examples are:

A, B1, @, #4, $9

A simple numeric variable can be assigned only a numeric value. The initial value of all
simple numeric variables is zero.

A simple alphameric variable is named by a letter (a character from the extended alphabet)
followed by the character $. Examples are:

A$, B$, X$

A simple alphameric variable can only be assigned a literal containing a maximum of 18
characters. The initial value of all simple alphameric variables is 18 blank characters.

An array is an ordered set of data members. Arrays in BASIC may be either one­
dimensional or two-dimensional. An array member is referenced by the subscripted
array name. A subscript is an expression evaluated in floating-point arithmetic and then
truncated to an integer. (For instance, 3.61727E+00 would be truncated to the integer
value of 3.) Subscripts of an array variable must be enclosed in parentheses. If two
subscripts are used, they must be separated by a comma. The number of subscripts used
to reference an array member must equal the number of dimensions specified for the array.
The maximum value of the subscript must be within the bounds defined for the array.

10

The general form of an array variable is:

a(xl [, x2])

where a is an array name, and x is an expression.

Numeric Array Names A numeric array variable is named by a letter (a character from the extended alphabet).

Alphameric Array
Names

Array Declarations

As many as 29 numeric arrays may be specified in a CALL/360: BASIC program.

A numeric array may have one or two dimensions. Numeric arrays may contain only
numeric values. The initial value of each numeric array member is zero. Examples are:

ICIO~12),JCI),ACZ),LC8,14)

An alphameric array is named by a letter (a character from the extended alphabet),
followed by the character $. Alphameric arrays have one dimension. They contain only
members whose value is a character string containing 18 characters. The initial value of
each alphameric array member is 18 blank characters. Examples are:

I$(lO),J$CI)~L$C8)

An array declaration states that an array with a specified name and dimensions should be
allocated to a user program. Arrays may be defined explicitly in a DIM (dimension)
statement or implicitly through usage.

An array is implicitly declared by the first reference to one of its members if the specified
array has not been previously defined by a DIM statement. The array is declared to have
one dimension (10) when a member is referenced by an array variable with one subscript.
The array is declared to have two dimensions (10, 10) when a member is referenced by an
array variable with two subscripts.

Array dimensioning and referencing always start at one. A one-dimensional array is a one­
column list containing the number of rows given by the subscript. For example, A(10)
defines a one-dimensional array having one column and ten rows.

For a two-dimensional array, the first subscript defines the number of rows and the second
subscript defines the number of columns. For example, A(4, 6) defines a two-dimensional
array having four rows and six columns, or 24 members. The members of such an array
are shown below:

(4,6)

row 1 (1, 1) (1,2) (1,3) (1,4) (1,5) (1,6)

row 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6)

row 3 (3, 1) (3,2) (3,3) (3,4) (3,5) (3,6)

row 4 (4, 1) (4,2) (4,3) (4,4) (4,5) (4,6)

col. 1 col. 2 col. 3 col. 4 col. 5 col. 6

11

Array values are stored in the system by column order. That is, the value for the first row,
first column is stored fust, the value for the second row, fust column is stored next, and
so forth. For example, elements of a 2 by 2 array would be stored in the following order:

MATRIX OPERATIONS

1, I
2,1
1,2
2,2

A BASIC matrix is a two-dimensi()nal numeric array. The limits of a matrix must be
defined by a DIM statement before the matrix is used in any MAT operations. A matrix
may then be redimensioned by appending two subscripts (enclosed in parentheses and
separated by a comma) to the following matrix statements:

Matrix CON function
Matrix IDN function
Matrix ZER function
MAT GET
MAT READ

Redimensioning, however, must not increase the limits of the array originally declared in
the DIM statement. For example:

120 DIM A(20~40)
130 DIM B(15~100)

250 MAT READ A(10~40)
260 MAT READ B(1~15)

Matrix A was originally a 20 by 40 matrix. Line 250 redefmes the limits to 10 by 40.
Similarly, matrix B is redefined from a 15 by 100 matrix to a 1 by 15 matrix. Refer to
Section IV: A"ay Declarations and Matrix Operations for a further description and
examples of matrix operations.

12

INTRINSIC FUNCTIONS

An intrinsic function is one whose meaning is predefined by the BASIC language processor.
These functions are provided to facilitate the writing of CALL/360: BASIC. The available
functions may be used very much as a variable would be used. For example:

USER FUNCTIONS

10 LET A = SIN(23)
20 LET Z = LOG(X) + LOG(Y)

The intrinsic functions provided are:

SIN(x)
COS(x)
TAN(x)
CaI'(x)
SEC(x)
CSC(x)
ASN(x)
ACS(x)
ATN(x)
HSN(x)
HCS(x)
HTN(x)
DEG(x)
RAD(x)
EXP(x)
ABS(x)
LOG(x)
LTW(x)
LGT(x)
SQR(x)
RND(x)

INT(x)
SGN(x)

Sine of x radians
Cosine of x radians
Tangent of x radians
Cotangent of x radians
Secant of x radians
Cosecant of x radians
Angle (in radians) whose sine is x
Angle (in radians) whose cosine is x
Angle (in radians) whose tangent is x
Hyperbolic sine of x radians
Hyperbolic cosine of x radians
Hyperbolic tangent of x radians
Convert x from radians to degrees
Convert x from degrees to radians
Natural exponent of x (e to the power x)
Absolute value of x (Ixl)
Logarithm of x to the base e (In x)
Logarithm of x to the base 2
Logarithm of x to the base 10
Positive square root of x
A random number between 0 and 1 (x is a meaningless
but necessary entry)

Integral part of x
Sign of x, defined as:

ifx<O, SGN(x) =-1
if x = 0, S()N(x) = 0
if X>O, SGN(x) = + 1

A user function is one whose meaning is defined by the user via the DEF statement. The
user function is named by the characters FN followed by a letter. For example, FNA(x)
could be defined as:

10 DEF FNA(X) = 2+3xX-5 Xxt2

FNA(x) can then be used in the same manner as an intrinsic function.

13

CALL/360:BASIC OPERATORS

Unary Operators

The unary operators are:

+ The value of
The negative value of

Arithmetic Operators

The arithmetic operators are:

+ Addition
Subtraction

* Multiplication
Division

l' or ** Exponentiation

Relational Operators

EXPRESSIONS

The relational operators are:

< Less than
<= or ~ Less than or equal

> Greater than
>= or ~ Greater than or equal

Equal
<> or #; Not equal

An expression is a combination of identifiers (e.g., A, B, C) and arithmetic operators
(e.g., +, -, *) which represents a decimal number. An expression is evaluated by per­
forming the indicated operations as shown below. When not defined, operations are
performed from left to right in the expression. The rules are:

1. Operations within parentheses are performed before operations not within
parentheses.

2. Operations on the same level are performed in the order in which they appear
from left to right in the expression.

14

3. Operations are performed in sequence from highest level to lowest level. The
levels of operation are:

a. Operations within parentheses
b. l' or ** (exponentiation)
c. * or /
d. + or-

4. Alphameric variables or literals are not allowed.

5. Numeric constants may be used.

For example, in the expression X = A+B*CjD+E-F1'2, the order of operation is:

1. F1'2
2. B*C
3. Result of No.2 divided by D
4. A plus the result of No. 3
5. E plus the result of No.4
6. Result of No.5 minus result of No.1

If the expression were changed to X=(A+B)*C/D+E-F1'2, the order of operation would be:

1. A+B
2. F1'2
3. Result of No.1 times C
4. Result of No.3 divided by D
5. E plus the result of No.4
6. Result of No.5 minus result of No.2

Examples of expressions are:

Al
-6.4
SIN(R)
X+Y-Z
X3/(-6)
-(X-X1'2/2+X1'(Y*Z))

This last expression corresponds to the algebraic expression:

x 2 yz
-(x-T+ X)

Expressions resulting in an imaginary or mathematically undefined value are not evaluated.
The system generates an appropriate error message and terminates execution. If the value
of an expression falls outside the limits of machine representable values, the system con­
tinues program execution after taking the specified action. Refer to Appendix B for a list
of diagnostic error messages.

15

PROGRAM INPUT

SECTION III

I Np:UT AND OUTPUT

To solve pro1?lems with the BASIC language, it is often necessary to enter and manipulate
large groups of data. There are three methods of entering data into a BASIC program:

1. Program input
2. Terminal input/output
3. Data me input/output

The statements associated with each of the three methods are described in detail in
Section IV; a summary of each method is presented here.

The program input statements are READ, DATA and RESTORE. The use of these
statements causes data to be compiled into the program. The data may be stored with
the program if the program is saved. A brief description of the program input statements
follows.

The DATA statement is used to create tables of data values in the program. For example:

10 DATA 100.7~-23.2,438.8,201.3~816.9~537.8

The values listed after the DATA statement can then be accessed by use of a READ
statement in the same program. For example:

10 DATA 100.7~-23.2~438.8~201.3~816.9~537.8
20 READ X
30 READ Y,A
40 RESTORE
50 READ Z

Line 20 causes the first value in the DATA list (100.7) to be stored in the variable x.
Line 30 assigns the second value in the list (-23.2) to the variable Y, and the third value
(438.8) to A. The RESTORE statement in line 40 sets the list pointer back to the
beginning of the data list. Line SO, therefore, assigns the first variable in the list (100.7)
to the variable Z.

DATA statements may appear anywhere in the program. Each time a READ statement is
executed, the next sequentially available data value will be assigned to the variable(s)
following the READ statement. This continues until all of the data values are ·exhausted
or until a RESTORE statement is executed.

17

TERMINAL INPUT/OUTPUT

Terminal Input

Terminal Output

The INPUT statement is provided for terminal input. The use of this statement permits
data to be entered from the terminal during program execution. For example:

10 INPUT H,W,L

When the line shown above is executed, a question mark (?) is printed at the terminal and
the system pauses to allow the values for H, Wand L to be entered from the terminal.
After the user strikes the carrier return, program execution resumes, using the data values
entered for the variables H, Wand L.

Terminal output consists of various forms of the PRINT statement. The designation of
which form to use depends upon the type of printing format tlesired. The terminal
output statements are PRINT, PRINT USING and MAT PRINT.

The PRINT statement may be used to form blank, partial or complete print lines at the
terminal. The example shown below illustrates one use of the PRINT statement in a
program listing.

10 INPUT H,W"L
20 PRINT 'THE VALUES OF H, WAND L ARE'
30 PRINT
40 PRINT H,W,L
50 END
RUN

09:03

? 10,20,30

05/04/70 MONDAY

THE VALUES OF H, WAND L ARE

10 20

TIME 0 SEeS.

30

SJ2

Line 20 causes the information enclosed within the quotes to be printed at the terminal.
Line 30 specifies a blank line to be inserted between the information print line and the
printed values. Line 40 causes the input values for H, Wand L to be printed.

The PRINT USING statement specifies data output using an Image statement to establish
the printing format. The following illustrates the same example with the PRINT USING
statement replacing the PRINT statement.

18

10 INPUT H,W,L
20 PRINT USIt~G 30, H,W,L
30 :THE VALUE FOR H IS ##,THE VALUE FOR W IS ##, THE VALUE FOR L IS ##
40 END
RUN

09:07 05/04/70 MONDAY SJ2

? 10,20,30
THE VALUE FOR H IS 10,THE VALUE FOR W IS 20, THE VALUE FOR L IS 30

TIME 0 SEes.

Line 20, the PRINT USING statement, specifies the values to be printed in line 30, the
Image statement. The colon (:) in line 30 defines it as an Image statement line.

The third type of terminal output, the MAT PRINT statement, is used to print the values
of a matrix without the need to specify each element of the matrix. Consider a three-by­
three matrix A with the following values:

A(1 ,1) = 11
A(2,1) = 21
A(3,1) = 31

A(1 ,2) = 12
A(2,2) = 22
A(3,2) = 32

A(1 ,3) = 13
A(2,3) = 23
A(3,3) = 33

The MAT PRINT statement could be used to print the matrix with the following
statement:

50 MAT PRINT A

This would cause the values stored in A to be printed in row and column order:

11
21
31

DATA FILE INPUT/OUTPUT

12
22
32

13
23
33

A collection of data items treated as a unit is called a data file. Data files may be created
and accessed with the following BASIC statements and system commands:

The GET statement
The PUT statement
The OPEN statement
The CLOSE statement
The RESET statement
The FILE command

The PUT statement is used to write data from a program into a data file, and the GET
statement is used to transmit data from a file and read it back into the program. ·The OPEN
statement is used to activate a data file preparatory to data transmission. The OPEN state­
ment associates a data file reference number with a named data file; the named data file is
referen~ed by this number in the subsequent GET, PUT, RESET and CLOSE statements.

19

For example:

FILE BFILE
READY

10 OPEN 21, 'AFILE', INPUT
12 OPEN 22, 'B FI LE' , OUTPUT

30 GET 21: V,D,T,X,S,F

40 PUT 22: D,T,F

50 CLOSE 21,22

The FILE command creates a catalog entry. named BFILE. The system places the fIle in
the user's library and allocates storage for the data fIle on disk. AFILE is already in the
user's library and contains data entered from some previous program; therefore, it is not
necessary to initiate AFILE with the FILE command. If attempted, the message AFILE
ALREADY EXISTS is printed at the terminal.

Line 10 opens AFILE as input and assigns it to 21. Line 12 opens BFILE as output and
assigns it to 22. When a data file is OPENed, it is referred to as an active file.

Line 30 accesses AFILE and reads the data values assigned to the variables V, D, T, X, S
and F) respectively. Line 40 accesses BFILE and writes an output record consisting of the
three values for D, T and F. The CLOSE statement shown in line 50 causes data files 21
and 22 to be deactivated. The CLOSE is normally used only after all desired input and
output have been performed on a data fIle. After a file is CLOSEd, it cannot be referenced
again until it is reopened.

If a fIle is CLOSEd, then reopened, the fIle pointer is reset to the first record in the fIle.
A file should be left open until all necessary transmission is completed between· the pro­
gram and the fIle. The RESET statement is provided to reset the fIle pointer to the first
record in the file. A maximum of four (4) files may be active at anyone time (Le.,
OPENed but not yet CLOSEd).

DATA FILE STORAGE

A data file is a disk file composed of storage units. Each storage unit consists of 3440
bytes (of which 3333 bytes are available to the user). A maximum of 250 storage units
may be allocated for a single data file.

The FILE command is the method by which the user names the data ftIe and allocates
storage for that particular ftIe. For example:

FILE AFILE,,20

The system responds by creating a data file named AFILE and reserving 20 units of
storage for subsequent data entries. The user has the option of omitting the storage units
specification in the FILE command. If storage units are not specified, the system then
assumes 50 storage units by default.

20

If data file storage is exhausted during program construction, the system will prompt the
user to increase his file size with the following message (provided that less than 250
storage units were specified originally):

specified
filename EXCEEDED ORIGINAL ALLOCATION OF storage ENTER NEW MAXIMUM -­

units

The user would then enter a maximum three-digit number (~250) to increase his file size
accordingly.

The user may compute the number of storage units required for a particular BASIC pro­
gram and thereby determine his estimated file size. Data items are stored sequentially in
each data file. The storage requirements for data items are:

1. 18 bytes for alphameric items
2. 4 bytes for short-form data items
3. 8 bytes for long-form data items

Each file can contain a combination of alphameric data items, short-form data items and
long-form data items. Simple numeric data is written into a file as floating-point values
with each value allocated four bytes of file storage for BASIC short-form, and eight bytes
of storage for BASIC long-form. Alphameric variables are written into a file as character­
string values with each value allocated 18 bytes of storage. Floating-point values and
character-string values are retained in the file as separate data groupings. Consider the
following example written in BASIC short-form:

30 PUT 10: A"B

50 PUT 10: C

80 PUT 10: A$
90 PUT 10: D

The values for the simple numeric variables A, B, C and D are converted to floating-point
values, each requiring four bytes of storage. The alphameric variable A$ is converted to a
character-string value requiring 18 bytes of storage. Since the variables are written into
the file sequentially, three data groupings would be allocated. The formats are:

14 bytes I Floa~g-I 4 4 4

3 A B C pomt

I ChM;cter-1
1 18

18 A$ stnng 20 bytes

1 1 4

6 bytes Floating-
point 1 D

The first byte in each data group is reserved for the data type; the second byte indicates
the number of data elements comprised in the data group, and the remaining bytes are
reserved for the actual data.

21

The first data group contains the numeric variables A, Band C converted to floating-point
values, and is 14 bytes long. The second data group contains the alphameric variable A$
converted to a character-string value, and is 20 bytes long. The third data group contains
the floating-point value for D and is 6 bytes long. Thus, the total file for this program
takes up 40 bytes of storage and consumes much less than one storage unit (one storage
unit = 3440 bytes).

22

INTRODUCTION

SECTION IV

CALL/360:BASIC STATEMENTS

This section contains a description of each statement of the SBC CALLj360: BASIC
language. The statements are presented in a functional order with each BASIC statement
assigned to one of eight major functional blocks. The reader is introduced to each func­
tional block with a summary and general example showing the use of the statements
described within that particular block. The general form, general effect and at least one
example of usage are provided for each statement.

An alphabetical listing of the BASIC statements contained in this section, together with
their functional assignment and page number reference, can be found in Table 1 of this
section.

GENERAL CONSIDERATIONS

Each BASIC statement is preceded by a line number which specifies the order in which
the program statements are to be executed. Statements may be entered in any order.
The system sorts the program statements into ascending line number sequence before
commencing program execution. For example:

Program listing before compilation

90 END
10 INPUT A,B,C
30 PRINT D
20 LET D = A+B+C
RUN

Program listing after compilation
10 INPUT A, B, C
20 LET D = A+B+C
30 PRINT D
90 END

Where applicable, various system commands are illustrated in program examples in this
section. Refer to the Command Language Reference Manual for a complete listing and
description of the system commands.

23

Table 1. Alphabetical Listing of BASIC Statements

BASIC Statement Functional Assignment Page No.

CLOSE Data file I/O

DATA Program and terminal input

DEF Subroutines and user functions

DIM Array declarations and matrix operations

END Program remarks and miscellaneous control
statements

FOR Control statements

GET Data file I/O

GOSUB Subroutines and user functions

GOTO (computed) Control statements

GO TO (simple) Control statements

IF Control statements

Image Terminal output

INPUT Program and terminal input

LET Program assignment 2S'
Matrix Addition Array declarations and matrix operations

Matrix CON Function Array declarations and matrix operations

MAT GET Array declarations and matrix operations

Matrix IDN Function Array declarations and matrix operations

Matrix INV Function Array declarations and matrix operations

Matrix Multiplication Array declarations and matrix operations

Matrix Multiplication (scalar) Array declarations and matrix operations

MAT PRINT Array declarations and matrix operations

MAT PUT Array declarations and matrix operations

MAT READ Array declarations and matrix operations

Matrix Subtraction Array declarations and matrix operations
Matrix TRN Function Array declarations and matrix operations

Matrix ZER Function Array declarations and matrix operations

NEXT Control statements

OPEN Data file I/O

PAUSE Terminal output

PRINT Terminal output

PRINT USING Terminal output

PUT Data file I/O

READ Program and terminal input

REM Program remarks and miscellaneous control
statements

RESET Data file I/O

RESTORE Program and terminal input

RETURN Subroutines and user functions

STOP Program remarks and miscellaneous control
statements

24

PROGRAM ASSIGNMENT

• LET

Statement Effect Usage

LET Causes a value to be assigned to one or LET A,XCY+4)=345
more variables specified in the LET
statement line.

25

General Example

LET

General Form

Effect

10 LET Al = 100
20 LET A2 = 90
30 LET A3 = 80
40 LET A4 = 70
50 A5 = 90
60 LET A = CAl+A2+A3+A4+A5)/5
70 PRINT A
80 END

This example computes the average of five data values. Lines 10 through 50 assign data
values for variables Al through AS. Line 60 computes the average of the five data
values and assigns the average to the variable A. Line 70 requests printing of the value
ofA.

where v is a variable and x is an expression, an alphameric variable or a literal constant.
LET is an optional entry and if omitted will be assigned by default.

The LET statement assigns the value of x to each of the variables VI' V 2 ~ V 3' •.• , V n.

That is, the variables to the left of the equal sign assume the value of x to the right.

The following syntax rules apply:

1. If x is an expression, all variables to the left of the equal sign must be numeric.

2. If x is an alphameric variable (A$) or a literal constant ('ONE'), all variables to
the left of the equal sign must be alphameric.

The subscripts of the replaced variables are computed before the evaluation of x.
Therefore, the value of x that replaces the value of the variables does not become
effective for computation until execution is begun for the next sequential statement.

The LET statement may be used to implicitly declare a one- or two-dimensional numeric
array provided that the referenced array subscript does not exceed ten members. If, for
example, a LET statement referenced an array having a dimension containing more than
ten members, such as:

10 FOR I = 1 TO 15
20 FOR J = 1 TO 10
30 Cl = Cl + 1
40 ACI,J) = Cl
50 NEXT J
60 NEXT I

90 END

26

Examples

the following error message would be printed out at the terminal at execution time:

LINE 40: SUBSCRIPT OUT OF BOUNDS

The DIM statement (see page 56) may be used to declare an array having more than ten
members in anyone dimension.

Subscript checking for a two-dimensional array is not performed on individual subscripts,
but rather the two subscripts are reduced to one subscript which is then checked to assure
that it is within the bounds of the array. Thus, anyone of the subscripts could be zero,
negative or greater than the stated dimensions as long as the end result lies within the
bounds of the array.

1. 10 LET X(Y+3), Z, Y, X(42) = 100.0967
20 LET A, 8, C, D, E, F = 0.0
30 LET D$, T$, p$ = BS

2. 20 LET Al = Z(3)/Y(A+4)
30 Xl = 49+Z(4)
40 LET A = 5
50 LET G$ = N$

27

PROGRAM REMARKS AND MISCELLANEOUS CONTROL STATEMENTS

• REMARK

• STOP

• END

Statement Effect Usage

REMARK Enables user to add comments to a REM: SOLVE FOR X
program without affecting execution.

STOP Terminates program execution. STOP

END Specifies completion of a source program. END
END must be assigned the highest line
number in the program.

28

General Example

REMARK

General Form

Effect

Example

10 REMARK: M EQUALS MASS IN GRAMS
20 REMARK: V EQUALS VELOCI TY IN CM/SEC.
30 REM: T EQUALS KINETIC ENERGY
40 LET M = 20.2
50 LET V = 10
60 LET T = .5::W:Vt2
70 PRINT T
80 END

The REMARK statement in this kinetic energy example establishes definitions for the
variables M, V and T. It is permissibl~ to truncate the REMARK statement as shown in
line 30.

The END statement must be the last physical statement in any program listing. A STOP
statement introduced anywhere in the program would have terminated program execution
at that point.

The answer to T is 1010.

REMARK: [c]

where c is a character string.

The REMARK statement is used to add comments to a program listing. It does not affect
program execution.

If a GOTO, GOSUB or THEN statement references the line number of a REMARK
statement, the next executable statement following the REMARK statement will be
executed.

100 REMARK: M EQUALS MASS IN GRAMS
110 REMARK: V EQUALS VELOCITY IN CM/SEC.
120 REM: T EQUALS KINETIC ENERGY

29

STOP

General Form

Effect

Example

END

General Form

Effect

Example

STOP [c]

where c is a character string.

This statement causes program execution to terminate.

The character string c may be entered as a comment; it is ignored during compilation
and execution.

30 STOP

END[c ...]

where c is any character.

This statement causes program compilation and execution to terminate. It must be the
last physical statement in the program.

The character string c may be entered as a comment; it is ignored during compilation and
execution.

99 END

30

CONTROL STATEMENTS

• GOTO (Simple)

• GOTO (Computed)

• FOR

• NEXT

• IF

Statement Effect Usage

Simple GOTO Unconditionally transfers control to an GOTO 50
executable program statement.

Computed GOTO Transfers control to a program statement(s) GOTO 10,20 ON A/3
depending upon the integer value specified
in the GOTO statement line.

FOR Initiates a loop. FOR I = 1 TO 10

NEXT Terminates a loop. NEXT I

IF Tests for two conditions of a given value. IF I = 10 THEN 80
If the test is satisfied, control branches to
a program statement; otherwise it falls
through to the next executable statement.

31

General Example 010 FOR J = 5 TO 25 STEP 5
020 GOTO 30,50,80,80,70 ON J/5
030 PRINT 'YOU NOW HAVE A NICKLE'
040 GOTO 80
050 PRINT 'YOU NOW HAVE A DIME'
060 GOTO 80
070 PRINT 'YOU NOW HAVE A QUARTER'
080 NEXT J
090 IF J = 25 THEN 110
100 PRINT 'SOMETHING WENT WRONG'
110 END
RUN

11:51 05/04/70 MONDAY SJ2

YOU NOW HAVE A NICKLE
YOU NOW HAVE A DIME
YOU NOW HAVE A QUARTER

TIME o SEes.

Line 10 illustrates a counting statement in which the variable J is incremented five
positions from 5 to 25.

Line 20 is a switching statement which transfers control to line 30 when the value for J
is 5 (first step), to line 50 when J is 10 (second step), to line 80 when J is 15 and 20
(third and fourth steps) and finally to line 70 when J is 25 (fifth step).

Lines 40 and 60 transfer control past the PRINT statements to line 80, where control is
returned to the FOR loop.

Line 90 terminates program execution if the value for J is 25. Line 100 is included for
error detection only, and will print if the value for J was other than 25 when the loop
was terminated.

32

GOTO (Simple)

General Form

Effect

Examples

GOTO (Computed)

General Form

Effect

Example

GOTOn

where n is a line number.

The simple or unconditional GOTO statement causes control to be transferred to the line
numbered n.

1. 80 GOTO 230

2. 10 LET X = 5
20 PRINT X
30 GOTO 10
40 END
RUN

5
5

BREAK TIME

11:52 05/04/70 MONDAY SJ2

1 SEeS.

Example 2 illustrates the improper use of a simple GOTO statement in a program. During
program execution, line 30 repeatedly returns control to line 10, resulting in an infmite
loop. The program will remain in the loop until the user strikes the ATTN (BREAK) key.
Inserting an IF statement in the loop is a means of branching out of the loop and executing
the program successfully.

GOTOn l ,n2 ,n3 ,··· ,nn ONx

where n is a line number and x is an expression.

The computed or conditional GO TO statement causes control to be transferred to the
statement numbered n

l
, n

2
, n3 , ••• , nn (line number) depending on whether the

truncated integer value of x is 1,2,3, ... ,n respectively. If the truncated integer value
of x is less than I or greater than n, control passes to the next sequential statement.

40 GOTO 34/60/1/34/10/45 ON 3-4/x-z

In this example, when 3-4/X-Z equals 1 or 4, control is transferred to line 34. If
3-4/X-Z equals 2, control is transferred to line 60.

33

FOR

General Form

Effect

Example

FOR v = Xl TO x2 [STEP x3]

where v is a simple numeric variable and X is an expression.

The FOR v statement initiates repeated looping through the statements that physically
follow, up to and including a corresponding NEXT v statement. The FOR statement is
always used in conjunction with the NEXT statement, and the range of a FOR is that
set of statements, up to and including the corresponding NEXT, that will be executed
repeatedly.

The statements within the range of the FOR and NEXT loop are executed repeatedly
with v equal to Xl , then with v equal to Xl +x3 ' then with v equal to xI '+2x3, and so
forth, until the value of v reaches the limit specified by x2 • When the STEP option is
omitted the value of x3 is assumed to be + 1.

Before execution of the loop begins, the simple numeric variable v is set to Xl ' and the
value.s of x2 and x3 are computed and stored throughout the life of the loop. The v is
tested against x2 before each execution of the loop. The nature of the test depends
upon the value of the STEP function x3. For example:

• If x3 is positive, the loop is terminated if v> x2 ; if not, control passes to the
first statement within the loop.

• If X3 is negative, the loop is terminated if v < x2 ;. if not, control passes to the
frrst statement within the loop.

The index of a FOR statement 'is the simple numeric variable v. The index is available for
computation throughout the range of the FOR, either as an ordinary variable or as the
variable in a subscript. Upon exiting from the FOR the index v is available for
computation and is equal to the last value it attained.

FOR loops may contain up to 14 other FOR loops nested within the outer loop for a
total of 15 allowable loops in a program. In all cases the inner loop is executed before
the outer loop. The numeric variable v must be a different name for each of the nested
FOR loops. Unnested or multiple loops contained in a program may use the same
variable name.

10 A = 0
20 FOR I = 1 TO 10
30 A(I) = I
40 NEXT I
50 PRINT A(I)
60 END
RUN

15:37

10

TIME 0 SEes.

05/11/70 MONDAY SJ2

34

NEXT

General Form

Effect

Examples

In this example the series of statements computes and prints the final value for the
array A(I).

Line 10 sets A to zero. Line 20 initiates a FOR/NEXT loop. The loop variable is I with
an initial value of 1. I is incremented by 1 and has a terminal value of 10.

line 30 sets the array A(I) equal to I. The first time through the loop I is 1 and A(I) is
calculated; the next time, I is 2 and A(2) is calculated, and so forth.

line 40 transfers control back to the FOR statement for the incrementing and testing of
I. I is increased by 1 and tested against 10; if I is greater than 10, control passes to line
50; otherwise, control passes to line 30. Line 50 requests printing of the output value for
A(I).

NEXT v

where v is a simple numeric variable.

This statement terminates the range of a FOR v loop. The variable name appearing in the
NEXT statement must be the same as that appearing in the corresponding FOR v state­
ment. During loop execution the NEXT statement returns control to the beginning of the
loop (the corresponding FOR statement). Control transfers to the statement following
the NEXT at the completion of loop execution.

[

FOR

NEXT I

= 1 TO 10

[

FOR J =

NEXT J

1 TO 10

Multiple Loops

FOR I = 1 TO 10

[

FOR JJ= 1 TO 10

NEXT

NEXT I

Nested Loops

FOR X = 1 TO 10

FOR Y = 1 TO 10
NEXT X

NEXT Y

Incorrect Nesting

In the multiple loop example, the loop on I is repeated ten times, followed by ten
repetitions of the loop on J.

In the nested loop example, the J loop is repeated ten times for each of the ten different
values of I for a total of 100 J-Ioop executions.

In the incorrect nesting example, a diagnostic error message is printed when the system
attempts to compile the program.

35

IF

General Forms

Effect

Example

IF Xl b. x2 THEN n

IF Xl b. x2 GOTO n

where X is an expression, an alphameric variable or a literal constant, b. is a relational
operator and n is a line number.

If xl is related to ~ as specified by the relational operator, the IF statement is true and
control passes to the statement numbered n. Otherwise, the IF condition is false and
control passes to the next sequential statement.

If Xl is an expression, then ~ must be an expression. If xl is an alphameric variable or
a literal constant, then ~ must be an alphameric variable or a literal constant.

10 A = 20
20 B = 60

50 I F A~t3 = B THEN 100
60 y = 4

100 y = 8

In this example lines 10 and 20 provide initial values for the variables A and B. Line 50
evaluates the expression A *3-= B. Assuming that the initial values of A and B are unaltered,
the expression is true (A *3 = 60 = B) and control passes to line 100. If the evaluation of
A*3 = B was false, control would have passed to line 60, where Y would be assigned the
value of 4.

36

PROGRAM AND TERMINAL INPUT STATEMENTS

• DATA

• READ

• RESTORE

• INPUT

Statement Effect Usage

DATA Creates a table of data values in a program. DATA 13, 4.6, .066

READ Fetches values from a data table and assigns READ A, B, C
them to variabl es.

RESTORE Resets the data table pointer to the first RESTORE
data value.

INPUT Permits keyboard entry of data during INPUT X, Y, Z
program execution.

37

General Example 010 DATA 1000,2000,3000
020 RESTORE
030 INPUT R
040 IF R = 10 THEN 130
050 READ P
060 FOR T = 30 TO 180 STEP 30
070.LET I = PKR/I00 KT/360
080 LET A = P+I
090 PRINT "TIME=";T, "AMOUNT =";A
100 NEXT T
110 IF P ~ 3000 GOTO 20
120 IF T = 180 GOTO 50
130 END
RUN

This example illustrates the use of program and terminal input statements in solving a
simple interest problem.

Line 10 constructs a data table consisting of three principal amounts.

Line 20 resets the data pointer to the beginning of the data table after three consecutive
READ cycles.

Line 30 requests a keyboard entry for the variable R.

Line 40 permits the operator to terminate program execution. If the INPUT value for
R is ten percent, control passes to the END statement.

Line 50 instructs the system to read the data table.

Line 60 establishes a FOR/NEXT loop by incrementing the time period from 30 to 180
days in 30-day STEPs.

Line 70 computes the simple interest I for each value of P at each time-period step
(I =PRT).

Line 80 computes the amount for each time period (amount equals principal plus
interest).

Line 110 transfers control back to the RESTORE statement after all data values have
been read for the input variable R.

At the completion of the FOR/NEXT loop, line 120 returns control to the READ
statement where the second and third data values are read.

The following results would be printed if a five percent rate was entered in response
to the?:

38

DATA

General Form

Effect

Example

? 5

}
TIME= 30 AMOUNT = 1004.17
TIME= 60 At-10UNT = 1008.33
TIME= 90 AMOUNT = 1012.5 First data value
TIME= 120 AMOUNT = 1016.67
TIME= 150 AMOUNT = 1020.83
TIME= 180 AMOUNT = 1025
TIME= 30 AMOUNT = 2008.33

}
TIME= 60 A~10UNT = 2016.67
TIME= 90 AMOUNT = 2025 Second data value
TIME= 120 AMOUNT = 2033.33
TIME= 150 AMOUNT = 2041.67
TIME= 180 AMOUNT = 2050
TIME= 30 AMOUNT = 3012.5

}
TIME= 60 AMOUNT = 3025
TIME= 90 AMOUNT = 3037.5 Third data value
TIME= 120 AMOUNT = 3050
TIME= 150 AMOUNT = 3062.5
TIME= 180 A~-10UNT = 3075

When output printing is completed the system prints another? and a new rate may be
entered.

where c is a numeric or literal constan,t.

The DATA statement instructs the system to construct a data table containing the values
(Le., c1 ' ~ , ••. , cn) appearing in the DATA statement line. The data values are entered
in the data table in the same order in which they originally appeared in the DATA state­
ment(s). The number of values per DATA statement line is restricted only by the space
of the line.

The data table is read when the system encounters a READ statement.

10 DATA 10,,15,,17
20 DATA 34E-51,,532,3.021
30 DATA 'JOHNSON',,'SMITH','BROWN'

Lines 10 through 30 establish a data table containing the values specified in the three
DATA statement lines. The data values are entered in the data table in the same order
as they appear in the three DATA statements (refer to the READ statement for an
illustration of the data table).

39

READ

General Form

Effect

Example

where v is a variable.

The READ statement instructs the system to read the data table beginning with variable
v 1 through v n'

The data table is a one~olumn table containing data values entered by way of a DATA
statement. When a READ statement is encountered in the program it instructs the system
to read the data values sequentially. The read position is advanced one data item for each
value read. Numeric variables must correspond to numeric data and alphameric variables
must correspond to literal data.

Program execution is terminated if a READ statement is executed when insufficient data
remains in the data table.

10
20

60
70
80

DATA 10,15,17
DATA 'ONE','TWO' ,'THREE','FOUR'

READ A,B
READ C,D$
READ E$,F$,G$

First READ Statement {

Second READ statement{

Third READ Statement {

Data Table

10
15
17
ONE
TWO
THREE
FOUR

'---____ --J

Lines 10 and 20 establish values for the data table. Line 60 instructs the system to read
the fust two data values (l0 and 15). Lines 70 and 80 read the remaining data values.
Note that the alphameric variables (e.g., D$) correspond with the literals (e.g., ONE)
contained in the data table.

40

RESTORE

General Form

Effect

Example

INPUT

General Form

Effect

RESTORE [c]

where c is a character string.

This statement causes the next READ statement to begin reading at the frrst DATA
element in the program. The character string c may be entered as a comment; it is
ignored during compilation and execution.

100 DATA 20,40,60,80
110 DATA 70,90

140 READ A,B,C
150 RESTORE
160 READ D,E

The DATA statements referenced in lines 100 and 110 establish six data values in the
data table. When line 140 is executed, the values 20, 40 and 60 are read into variables
A, Band C, respectively, and the data pointer is positioned to read the value 80 at its
next request for data.

When the RESTORE statement at line 150 is executed, the pointer is repositioned to the
beginning of the data table at value 20. Thus, at line 160 the values 20 and 40 are read
into variables D and E respectively.

where v is a variable.

When the INPUT statement is encountered by an executing program, a question mark is
printed at the terminal. Data in the form of numeric and/or literal constants may then be
entered from the terminal.

The variables specified assume the values of the data in order of entry; the number of
items entered must equal the number of variables in the INPUT statement list. Numeric
constants must be entered for numeric variables; literal constants must be entered for
alphameric variables.

41

Examples

If a literal data entry is not empty or does not contain a comma, the entry need not be
bounded by quotation marks; leading blanks are ignored, but embedded blanks are
significant.

1. 10 INPUT X,YCX),ZCR+3),C1

90 END
RUN

15:35 05/04/70 MONDAY SJ2

?20,15,4, .35

10 INPUT A$,R

90 END
RUN

? YES,20

15:40 05/04/70 MONDAY SJ2

2. 10 REM: INTEREST = PRINCIPAL" RATE .. TIME
20 INPUT P,R,T
30 I = P~R/100~T/360
40 A = P + I
50 PRINT 'INTEREST IS $'jI, 'AMOUNT IS $'jA
60 END
RUN

15:48

? 1000,7.5,90
INTEREST IS $ 18.75

TIME 0 SECS.

05/11/70 MONDAY SJ2

AMOUNT IS $ 1018.75

Line 10 of Example 2 defines the simple interest equation used in this series of program
statements. Line 20, the INPUT statement, requests values for the three variables P, R
and T. Line 30 establishes the simple interest equation and line 40 computes the
amount A. Line 50 requests printing of the output values for I and A.

In response to the?, the values for the principal, rate and time are entered from the
terminal. .

42

TERMINAL OUTPUT

• PR I NT

• PRINT USING

• I MAGE

• PAUSE

Statement Effect Usage

PRINT Causes output printing according to the PRINT 'VALUE - , V ,
format specified in the PR I NT line.

PRINT USING Specifies output printing using an Image PRINT USING 80, A
statement to establish the printing format.

Image Establishes printing format for the PR I NT :THIS YR TOTAL IS ##
USING statement.

PAUSE Causes program execution to halt, allow- PAUSE
ing one line of comments to be entered
from the keyboard.

43

General Example

PRINT

General Form

Effect

10 DATA 1000,2000,3000
20 RESTORE
30 INPUT R
35 PAUSE
40 IF R = 10 THEN 140
50 READ P
60 FOR T = 30 TO 180 STEP 30
70 LET I = pXR/I00 x T/360
80 LET A = P T I
90 PRINT USING 100,T,A
100 :NUMBER OF DAYS IS ###, TOTAL AMOUNT IS $####.#¥
110 NEXT T
120 IF P ~ 3000 GOTO 20
130 IF T = 180 GOTO 50
140 END
RUN

This is the same example shown on page 38 except that a PRINT USING statement
replaces the PRINT statement and a PAUSE statement has been introduced at line 35.

Line 35 causes program execution to pause, permitting a message to be entered from
the keyboard. Since the PAUSE statement appears after the INPUT statement, the
system will frrst ask for input and then print the following message:

? 5
PAUSE AT LINE 35

YOU MAY NOW ENTER ONE LINE OF DATA. THIS DATA WILL NOT BE EXECUTED.

Line 90 specifies the values to be printed in line 100, the Image statement. The Image
statement establishes the printing format as follows:

NUMBER OF DAYS IS 30, TOTAL AMOUNT IS $1004.17

Compare this format with the PRINT statement in the original example on page 38:

TIME = 30 AMOUNT = 1004.17

where f is an expression, an alphameric variable, a literal constant or null, and t is a
comma or a semicolon.

This statement causes the progr.am to convert each print field f to a specified output
format, print the converted field, and position the carrier according to the terminator
character.

Each print line is divided into zones. Two types of print zones are provided: full and
packed. A full print zone consists of 18 characters. The type of print zone assigned

44

is specified by the terminator character t. A full print zone is controlled by commas, and
a packed print zone is controlled by semicolons. A full and a packed print zone may be
combined in one PRINT statement.

If the print field f is an expression, the size of a packed zone is shown below:

Print Field Length Packed Zone Length

1-4 characters 6 characters
5-7 characters 9 characters
8-10 characters 12 characters

11-13 characters 15 characters
14-16 characters 18 characters

If the print field is an alphameric variable, the size of a packed print zone is 18 characters
minus the number of trailing blanks.

If the print field is a literal constant, the size of a packed print zone equals the size of the
converted field.

The f field is printed at the terminal as follows:

1. If the print field is an alphameric variable or a literal constant

a. and t is a comma with at least 18 spaces remaining on the print line,
printing starts at the current carrier position. If the end of the print line
is encountered before the print field is exhausted, printing of remaining
characters starts on the next print line.

b. and t is a comma with less than 18 spaces remaining on the print line,
printing starts at the beginning of the next print line. If the end of the
print line is encountered before the field is exhausted, printing of
remaining characters starts on the next line.

c. and t is a semicolon, printing starts at the current carrier pOSition. If the
end of the print line is encountered before the field is exhausted, printing
of remaining characters starts on the next line.

2. If the print field is an expression, printing starts at the current carrier position
unless the print line does not contain sufficient space to accommodate the value,
in which case printing starts at the beginning of the next line.

After the converted print field has been printed, the carrier is positioned as specified by
the terminator character.

1. If the print field is an expression or an alphameric variable

a. and t is a comma, the carrier is moved past any remaining spaces in the
full print zone; if the end of the print line is encountered, the carrier is
moved to the begmning of the next print line.

b. and t is a semicolon, the carrier is moved past any remaining spaces in the
packed print zone; if the end of the print line is encountere~ the carrier
is moved to the beginning of the next print line.

c. and t is omitted following the last print field in the statement, the carrier
is moved to the beginning of the next print line.

45

Examples 1.

2.

2. If the print field is a literal constant

a. and t is a comma, the carrier is moved past any remaining spaces in the
full print zone; if the end of the print line is encountered,the carrier is
moved to the beginning of the next print line.

b. and t is a semicolon, the carrier is not moved unless the end of the print
line is encountered, in which case the carrier is moved to the beginning
of the next print line.

c. and t is omitted following the last print field in the statement, the carrier
is moved to the beginning of the next print line.

3. If the print field is null

a. and t is a comma, the carrier is moved 18 spaces; if the end of the print
line is encountered, the carrier is moved to the beginning of the next print
line.

b. and t is a semicolon, the carrier is moved three spaces; if the end of the
print line is encountered, the carrier is moved to the beginning of the next
print line.

50 PRINT "X= II. 5, -6. 78; (XI 2+4:~z) I

60 PRINT Y$

100 LET Al = 100
110 LET A2 = 90
120 LET A3 = 80
130 LET A4 = 70
140 LET A = CA1+A2+A3+A4)/4
150 PRINT "AVERAGE ="/A
160 END
RUN

In Example 2, the comma in the PRINT line specifies two full print zones, each 18
characters long. The printed result appears as follows:

AVERAGE =

First Print zone
(18 Spaces)

Second Print Zone
(18 spaces)

If the PRINT line specified a packed print zone (by use of the semicolon)

150 PRINT "AVERAGE =;A

two packed print zones would then be allocated. The size of the first print zone would
be identical to the literal defined in the first print field ("AVERAGE ="). Six spaces
would be allocated for the second print zone because the character range of the second
print field (A) is one to three digits;

, AVERAGE =,,85 .tt

First Print Second
Zone Print

Zone

46

PRINT USING

General Form

Effect

where n is the line number of an Image statement and f is an expression, an alphameric
variable or a literal constant.

The PRINT USING statement forms one or more print lines according to the format
specifications of the Image statement and prints the lines at the terminal. The actual
line printing format for each print field f is established by the Image statement referenced
in line number n.

If the number of print fields (f 1 ' f2' ... , fn) contained in the PRINT USING statement
exceeds the number of format specifications contained in the Image statement, the
carrier returns at the end of the Image statement and the same format specifications are
reused for the remaining print fields. This procedure is repeated until the values for all
of the print fields are printed.

If the number of print fields in the PRINT USING statement is less than the number of
format specifications in the Image statement, the print line is terminated at the first
unused format specification.

Each print field is converted to output format as follows:

1. The meaning of an alphameric variable or a literal constant is extracted from the
specified string and edited into the print line, replacing all of the elements in the
conversion specification (including sign, #, decimal point and !). If the edited
string is shorter than the conversion specification, blank padding occurs to the
right. If the edited string is longer than the conversion specification, truncation
occurs to the right. A null string results in blank padding of the entire
conversion specification.

2. An expression is converted in accordance with its conversion specification:

a. If the conversion specification contains a plus sign and the expression value
is positive, a plus sign is edited into the print line.

b. If the conversion specification contains a plus sign and the expression value
is negative, a minus sign is edited into the print line.

c. If the conversion specification contains a minus sign and the expression
value is positive, a blank is edited into the pri~t line.

d. If the conversion specification contains a minus sign and the expression
value is negative, a minus sign is edited into the print line.

e. If the conversion specification does not contain a sign and the expression
value is negative, a minus sign is edited into the print line in front of the
first printed digit, and the length of the conversion specification is
reduced by one.

f. The expression value is converted according to the type of its conversion
specification:

(1) I format: the value of the expression is converted to an integer,
truncating any fraction.

47

Example

I mage

General Form

Effect

(2) F format: the value of the expression is converted to a fixed-point
number, rounding the fraction or extending it with zeros in
accordance with the conyersion specification.

(3) E format: the value of the expression is converted to a floating-point
number with one decimal digit to the left of the decimal point, round­
ing the fraction or extending it with zeros in accordance with the
conversion specification.

3. If the length of the resultant field is less than or equal to the length of the con­
version speciftcation, the resultant field is edited, right-justified, into the print
line. If the length of the resultant field is greater than the length of the conver­
sion specification, asterisks are edited into the print line instead of the resultant
field.

10 A = 342.7
20 B = 42.0399
30 PR~NT USING 40,A,B
40 : RATE OF LOSS ***## EQUALS ####.## POUNDS

Results --. RATE OF LOSS 342 EQUALS 42.04 POUNDS

t ,
Value for A Value for B

Line 30 specifies the values to be printed in line 40, the Image statement. The Image
statement establishes the format of the print line. Lines 10 and 20 establish the values
342.7 and 42.0399 for the variables A and B respectively.

: [cI SI C2 S2 C,3 s3· •• cnsn]

where c is a character string and s is a conversion specification.

This statement specifies a format picture for a single PRINT USING line. The character
string c can contain any character other than #, or it can be null. The conversion specifi­
cation s can specify I, F or E format, or it can be null. A colon immediately following
the line number identifies the Image statement.

The conversion specifications for the various formats are as follows:

1. I format consists of an optional sign followed by one or more # characters. For
example, ## is an I-format specification.

2. F format consists of an optional sign followed by the optional occurrence of one
or more # characters, a decimal point, and the optional occurrence of one or
more # characters. There must be at least one # character in the specification.
For example, +#.##### is an F-format specification.

48

Example

PAUSE

General Form

Effect

3. E format consists of an optional sign followed by one or more # characters, a
decimal point, the optional occurrence of one or more # characters, and four!
characters. For example, #.##!!!! is an E-format specification.

10 A = 10.25
20 B = 20.25 - A
30 C = A + B1'2
40 PRINT USING 50 / C
50 :THE VALUE FOR C IS ######
60 PRINT USING 70 / C
70 :THE VALUE FOR C IS ~###.####
80 PRINT USING 90 / C
90 :THE VALUE FOR C IS ####.####!!!!
100 END
RUN

16:10

THE VALUE FOR C IS
THE VALUE FOR C IS
THE VALUE FOR C IS

TIME 0 SECS.

05/11/70 MONDAY

110
110.2500

1.1025E+02

SJ2

This example illustrates the use of the three format specifications for the Image statement.
The PRINT USING statements in lines 40, 60 and 80 request printing of the value for C.

The Image statement in line 50 specifies that the value of C be shown as an integer (I for­
mat). In line 70, the value for C is converted to a fixed-point number (F format), and in
line 90 the value for C is shown in exponential form (E format).

PAUSE [c]

where c is a character string.

The PAUSE statement causes program execution to halt and the following message to be
printed at the terminal:

PAUSE AT LINE n

where n is the line number of the PAUSE statement.

Program execution may be resumed by striking the carrier return or by entering a
character string followed by a carrier return. The character string c is entered as a
comment; it is ignored during compilation and execution.

49

Example 100 P = 1000.00
110 R = 5/100
120 N = 4
130 L = 2
140 I = P:~ (C l+R/N) t L-l)
150 PAUSE
160 PRINT USING 170,1
170 :COMPOUND INTEREST = $######.##
180 END
RUN

16: 17 05/11/70 MONDAY SJ2

PAUSE AT LINE 150
COMP RATE = PRINC XC(l+YRLY (NT RATE/INT PERIODS PER YR)t# OF PERIODS $ HELD-1
COMPOUND INTEREST = $ 25.16

TIME 0 SECS.

The PAUSE statement in the compound interest example is used to define the compound
interest equation. If the PAUSE statement was introduced after the PRINT USING
statement, the system would have printed the result before halting program execution.

50

ARRAY DECLARATIONS AND MATRIX OPERATIONS

• DIM

• MAT GET

• MAT PRINT

• MAT PUT

• MAT READ

• Arithmetic Operations

• Functional Operations

Statement Effect Usage

DIM Defines and allocates storage for a one- or DIM A(4,4), B(15)
two-dimensional array. A matrix must be
declared by a DIM statement prior to usage.

Matrix Addition Replaces the elements of m1 with the sum MAT A = B + C
of the elements of m 2 and m3 .

Matrix CON Function Causes elements of the specified matrix to MAT A = CON
assume values of all ones.

MAT GET Reads matrix values from a file. MAT GET 10: A

Matrix I DN Function Causes the specified matrix to assume the MAT A = IDN
form of an identity matrix.

Matrix INV Function Replaces each element of m1 with the MAT fA = INV B
inverse of m2 •

--

51

~-----------------~-----------~-------------

Matrix Multiplicat10n Replaces each element of m1 with the sum
of the products of m2 and m3 •

Matrix Multiplication
(Scalar)

MAT PRINT

MAT PUT

Multiplies each element of m2 by a given
value and places the product in m1.

Causes output printing of the matrix ele­
ments according to the format specified in
the MAT PRINT line.

Writes matrix values into a file.

MAT PRINT A, B, C

MAT PUT 20: C

MAT READ Places numeric data originally created by a MAT READ A, B, C
DATA statement into the specified matrices.

Matrix Subtraction Replaces each element of m1 with the dif­
ference of the corresponding elements of
m2 and·m3 •

Matrix TRN Function Replaces each element of m1 with the
transpose values of m2 •

Matrix ZE R Function Replaces all elements of the specified
matrix with zeros.

General Examples 1. 10 DIM S(5,1),T(7,1),R(5,1)
20 DATA 5,15,35,65,95
30 DATA 1,3,5,7,11
40 MAT READ 5, T(5,1)
50 MAT R = ZER
60 MAT R = S+T
70 MAT PRINT R
80 MAT R = S-T
90 MAT PRINT R
100 MAT R = (5)~R
110 MAT PRINT R
120 END
RUN

MAT E = F - G

MAT X = TRNCY)

MAT C = ZER

This example illustrates the use of the DIM statement and six matrix operations in one
program listing. The matrix operations are MAT READ, Ma~rix ZER Function, Matrix
Addition, Matrix Subtraction, Matrix Multiplication (scalar) and MAT PRINT.

Line 10, the DIM statement, allocates storage for three separate arrays S, T and R.
Although the referenced arrays are declared to have two dimensions, each is essentially
a one-dimensional numeric array because the column subscript is 1 (e.g., S(5,1)).

Lines 20 and 30 construct a data table consisting of ten data values.

52

Line 40 specifies that the data values
defined in lines 20 and 30 be read into
matrices Sand T. Note that matrix T
is redimensioned to a 5 by I matrix.

Line 50 causes all elements of matrix R
(the result table) to assume the value of
zero (0).

Line 60 adds the corresponding elements
of matrices Sand T and places the
result in matrix R.

Line 80 subtracts the corresponding
elements of matrices Sand T and places
the result in matrix R.

Line 100 multiplies each element of
matrix R by 5 and places the result in
matrix R.

Thus, the printed results would be as follows:

6
18

S(I,I)

S(2,1)

S(3,1)

S(4,1)

S(5,1)

R(1,I)

R(2,1)

R(3,1)

R(4,I)

R(1,I)

R(2,1)

R(3,1)

R(4,1)

R(5,I)

R(I,I)

R(2,1)

R(3,1)

R(4,1)

R(5,1)

R(1,I)

R(2,1)

R(3,1)

R(4,1)

R(5,1)

40 ~ Result of line 70: MAT PRINT R
72

106

53

S(5,1)

5

15

35

65

95

R(5,1)

0

0

0

0

0

R(5,1)

6

18

40

72

106

R(5,l)

4

12

30

58

84

R(5,1)

20

60

150

290

420

T(I,I)

T(2,1)

T(3,1)

T(4,1)

T(5,1)

R=S+T

R=S-T

R=R *S

T(5,1)

1

3

5

7

11

4
12
30 ~ Result of line 90: MAT PRINT R
58
84

20
60

150 (Result of line 110: MAT PRINT R
290
420

2. 10 DIM A(4.,4).,s(4.,1).,C(4.,1).,B(4.4).,D(4.,4)
20 DATA 1., -2., 3.,,4
30 DATA 3,-1,2.,5
40 DATA 2,4,-5,1
50 DATA 4,2,-1,3
60 DATA 4.5.,9.5.,15,12
70 MAT READ A.,C
80 MAT B = INV(A)
90 MAT 5 = B::C
100 MAT PRINT 5
110 MAT 0 = B:~A
120 MAT PRINT 0
130 MAT B = ION
140 MAT PRINT B
150 END
RUN

This second example of matrix operations illustrates the use of matrix statements in
. solving problems in matrix analysis. Four equations are given containing the four
unknowns x, y, z and t for which solution values must be determined. The equations
are

x - 2y + 3z + 4t = 4.5

3x - y + 2z + 5t = 9.5

2x + 4y - 5z + t = 15

4x + 2y - z + 3t = 12

Line 10, the DIM statement, declares the five arrays A, S, C, Band D. C and S are
vectors.

Lines 20 through 50 construct a data table containing the data values assigned to the
left-hand side of the equations, and line 60 constructs a data table containing the result
values assigned to the right-hand side of the equations.

Line 70 reads the data values assigned to the left-hand side of the equations into matrix A
and the values assigned to the right-hand side into vector C.

Lines 80 and 90 compute the values for the unknowns x, y, z and t. Line 80 causes
matrix B to be replaced by the inverse of matrix A. Line 90 computes the products of
matrix B and the right-hand-side vector C, and places the sum of the resultant products
into the solution vector S. :Vector S now contains the values for the unknowns x, y, t

54

and z. The computations performed by these two matrix operations may be represented
by the equation:

Solution = (~) = A-I

Line 110 checks the validity of the solution by mUltiplying the originalleft-hand-side
matrix A by its calculated inverse matrix B and placing the sum of the products into
matrix D. If matrix D assumes the values of an identity matrix (consisting of values close
to one in the diagonal and zeros or small numbers in the remaining elements), the solution
is valid. Line 120 requests printing of the elements of matrix D.

Line 130 causes matrix B to assume the form of an identity matrix and line 140 requests
printing of the identity matrix. These two matrix operations (lines 130 and 140) are
incorporated in the program only to illustrate the use of the Matrix IDN Function.

Thus, the printed output would be as follows:

Result ofline 100: MAT PRINT S

-.500018~ Value for x

2.00002

-.999968

3.

Value for y

Value for z

Value for t

Result of line 120: MAT PRINT D

.999995 2.86102E-06

2.86102E-06

3.814 70E -06

1.78814E-07

.999999

-1.90735E-06

-2.38419E-07

1

Result of line 140 : MAT PRINT B

o

o

o

o

1

o

o

-4.76837E-06

1.90735E-06

1.

-2.98023E-07

o

o

1

o

-9.89437E-06

9.53674E-06

1.04904E-05

1.

o

o

o

1

The solution may also be checked by inserting the values found for x, y, z and t into all
of the equations. The following program computes the value of the expression
4x + 2y - z + 3t. The value computed should be 12, which corresponds to the fourth
equation.

55

DIM

General Form

Effect

20 X = -.500018
30 Y = 2.00002
40 Z = -.999968
50 T = 3.
60 A = 4::X+2:: Y -z+3:Q
70 PRINT ' RES UL T VALUE IS' ; A
80 END
RUN

16:49 05/07/70 THURSDAY SJ2

RESULT VALUE IS 11.9999

TIME 0 SEes.

where a is an array name and d is an unsigned integer.

The DIM statement explicitly defines one or more arrays and causes allocation of storage
space for the named arrays with their specified dimensions. An array is declared to have
one dimension (e.g., (10)) when the member is referenced by an array variable with one
subscript, and two dimensions (e.g., (10,10)) when the member is referenced by an array
variable with two subscripts.

Any number of DIM statements may appear in a program; however, a specific array name
can only appear in a single DIM statement.

In matrix operations, a DIM statement must have first defmed the matrix prior to its usage.
Once a matrix has been defined by the DIM statement, the matrix may be redimensioned
by appending two subscripts (enclosed in parentheses and separated by a comma) within
the matrix statement. If redimensioning exceeds the number of matrix elements
originally declared in the DIM statement, program execution is terminated and an error
message printed.

A BASIC program written in short-form arithmetic may have up to 29 numeric arrays
(A through Z plus @, # and $) defmed in a source program, provided that the sum of the
array elements does not exceed 7167 numeric values. For example, DIM A(5, 1433)
defines a matrix composed of 7165 elements and is perfectly legal provided that matrix A
is the only array defmed in the program. If, however, matrix A was defmed as a 5 by 1792
table resulting in a total of 7168 elements, execution would be terminated and the
following error message would be printed at the terminal:

56

Example

Matrix Addition

General Form

Effect

Example

line number: TOO MANY ARRAY ELEMENTS
COMPILATION TERMINATED

Alphameric variables are converted to character string values and take up four and one-half
times more array storage than simple numeric values. Thus, the limits for a BASIC pro­
gram defining alphameric arrays exclusively (e.g., A$(10)) is 1592 elements. For example,
DIM A$(1592) defines a one-dimensioilal array containing 1592 character string values
and is legal provided that no other arrays are defined in the program. If alphameric arrays
and simple numeric arrays are combined in one BASIC program, the user may compute
the array limits by using the ratio of 4~: 1. Additional information regarding array limits
may be found in Appendix A.

10 DIM A(10)~B(2~3)~C(10~50)

40 DIM 0(9)

In line 10,

List A is allocated space for 10 elements, A(1) ... A(10).
Table B is allocated space for 6 elements, B(1 ,1) ... B(2,3).
Table C is allocated space for 500 elements, C(1,1) ... C(10,50).

In line 40, list D is allocated space for 9 elements, D(I) ... D(9).

where m is a matrix.

This statement causes each element of the matrix m t to be replaced by the sum of the
corresponding elements of m2 andm3 • If the matrices are not conformable, program
execution is terminated and an error message is printed at the terminal.

10 DIM A(10~10),B(10110)~C(10/10)
20 MAT A = B + C
30 FOR I = 1 TO 10
40 FOR J = 1 TO 10
50 LET A(IIJ) = B(I~J) + C(I~J)
60 NEXT J
70 NEXT I

90 END

Lines 30 through 60 produce results identical to those of line 20.

57

Matrix CON Function

General Form

Effect

Examples

where m is a matrix and d is an expression which is used for redimensioning the matrix.

This statement causes all elements of the specified matrix to assume the value of one (1).

1. 20 MAT A = eON
30 MAT B = eON(J,K)

2. 10 DIM A(3,3)
20 DATA 20,3.4,69,7,10,678,3,.89,389
30 MAT READ A
40 MAT PRINT A
50 MAT A = eON
60 MAT PRINT A
70 END
RUN

16:58 05/07/70 THURSDAY

20 3.4 69

7 10 678

3 .89 389

1 1 1

1 1 1

1 1 1

TIME 0 SEes.

SJ2

Line 10 allocates storage for a 3 by 3 matrix A. Line 20 constructs a data table containing
nine data values. These data values are read into matrix A by line 30, the MAT READ
statement.

Line 50, the Matrix CON Function, replaces the current matrix values with all ones (1).
Both matrix values are shown in the printed output.

58

MAT GET

General Form

Effect

Examples

where u is an expression, m is a matrix, and d is an expression which is used for
redimensioning the matrix.

This statement is similar to the GET statement. It allows numeric data to be read into the
specified matrices without referencing each member individually. Elements are read by
rows from the data file specified by the value of u. The entry of u: is optional; if u:
is omitted it is assumed to be 1.

If a MAT GET statement is executed when the specified data file is not active or is assigned
as an output file, program execution is terminated.

If a MAT GET statement is executed which causes the data file to be exhausted before a
specified matrix is filled, program execution is terminated.

1. 20 MAT GET Fl: X, Y, Z

2. This example is an extension of Example 2 of the MAT PUT statement (page 66).

10 OPEN 10 I • I TEMF I LE t I INPUT
2J DIM A(2 / 4)
30 MAT GET 10: A(2 / 3)
40 MAT PRINT A
50 CLOSE 10
60 END
RUN

1

1.3

10:04

TIME 0 SECS.

05/08/70 FRIDAY

1.1

1.4

SJ2

1.2

1.5

Line 10 activates the fIle ITEMFILE as input and assigns it to file number 10. Line 20
declares a 2 by 4 matrix A, and line 30, the MAT GET statement, redimensions the
matrix and reads the matrix values originally PUT into the data me. Line 40 requests a
printed output for matrix A and line 50 deactivates the data fIle.

59

Matrix ION Function

General Form

Effect

Examples

where m is a matrix and d is an expression which is used for redimensioning the matrix.

The IDN Function causes the specified matrix m to assume the form of an identity matrix.
The IDN Function cannot be used to initialize an array which is not symmetrical. Any
attempt to initialize a nonsymmetrical array (Le., one with a different number of rows and
columns) with the ION Function terminates program execution and causes the following
error message to be printed at the terminal:

line number: MATRICES NOT CONFORMABLE

Redimensioning a matrix with the IDN Function is permitted. If redimensioning exceeds
the number of matrix elements declared in the DIM statement, program execution is
terminated and the following error message is printed at the terminal:

1.

2.

line number: INVALID MATRIX DECLARATION

20 MAT A = ION
30 MAT B = ION (4,4)

10 DIM A(4,,3)
20 DATA 2,,4,,6,,8,,10,,12,,14,16,18,,20,,22,24
30 MAT READ A
40 MAT PRINT A
50 MAT A = ION (3,,3)
60 MAT PRINT A
70 END
RUN

2

8

14

20

1

o

o

10 :17

TIME 0 SEes.

60

05/08/70

4

10

16

22

o

1

o

FRIDAY

6

12

18

24

o

o

1

SJ2

Line 10, the DIM statement, allocates storage space for a 4 by 3 matrix A. Line 20
constructs a data table containing 12 values. These values are read into matrix A by
line 30, the MAT READ statement. Line SO redimensions matrix A to a 3 by 3 matrix
and causes it to assume the form of an identity matrix.

Both the original and identity matrix values are shown in the printed output.

Matrix INV Function

General Form

Effect

Examples

where m is a matrix.

This statement causes the matrix m t to be replaced by the inverse of matrix ~. The
subscripts assigned to matrix m t and matrix ~ must be identical (e.g., A(3,3), B(3,3))
for execution to occur. If the subscripts are not identical (e.g., A(4,6), B(4,6)), execution
is terminated and the following error message is printed at the terminal:

line number: MATRICES NOT CONFORMABLE

Matrix m t cannot be assigned the same name as matrix m2 •

1. 20 MAT A = INV(B)

2. 10 DIM A(2~2)~B(2~2)
20 DATA 1,2~3,4,5,6,7,8
30 MAT READ A,B
40 MAT PRINT A
50 MAT A =INV(B)
60 MAT PRINT A
70 END
RUN

10:20 05/08/70 FRIDAY

1 2

3 4

-4 3

3.5 -2.5

TIME 0 SEes.

61

SJ2

Une 10, the DIM statement, allocates storage for matrix A and matrix B. Line 20
constructs a data table containing eight (8) values. Line 30 reads the data table values
into matrices A and B. Line 50 causes matrix A to be replaced by the inverse of matrix B.

The printed output displays both conditions of matrix A.

Matrix Multiplication

General Form

Effect

Examples

where-m is a matrix.

This statement causes matrix m l to be replaced by the sum of the products of matrices ~
and m3 . If the matrices are not conformable, program execution is termirtated and an
error message is printed at the terminal.

The rules of matrix multiplication are

mlij =m2jl *m3 il +m2j2 *m3i2 ... +m2jn *m3jn

where

i = row
j = column
n = number of columns in m2 and number of rows in m3 •

Matrix ml cannot be assigned the same name as matrices m2 and m3 .

1. 20 MAT Q = P~tR

2. 10 DIM A(4"1)"B(4,,4),,c(4,,1'
20 DATA 2,,4,,6,,8
30 DATA 1,,3,,5,,7,,9,,11,,13,,15,,17,,19,,21,,23,,25,,27,,29,31
35 MAT READ A"B
40 MAT PRINT A
50 MAT PRINT B
60 MAT C = B~CA
70 MAT PRINT C
80 END
RUN

62

10: 26 05/08/70 FRIDAY SJ2

2 A(l,l)

4 A(2,l)

6 A(3,l)

8 A(4,l)

1 B(l,l) 3 B(l,2) 5 S(1,3) 7 B(l,4)

9 B(2,l) 11 B(2,2) 13 B(2,3) 15 B(2,4)

17 B(3,l) 19 B(3,2) 21 S(3,3) 23 B(3,4)

25 B(4,l) 27 B(4,2) 29 B(4,3) 31 B(4,4)

100 e(l,l)

260 e(2,l)

420 e(3,1)

580 e(4,1)

TIME o SEes.

Line 10 allocates storage space for matrices A, Band C. Lines 20 and 30 construct a data
table containing 20 values. Line 35 reads the data values into matrices A and B, and lines
40 and 50 request printing of the two matrices.

Line 60 computes the products of matrices A and B and places the sum of the products
into matrix c. Line 70 requests printing of matrix C. The solution used to compute the
first value of 100 in matrix C is

B{l,l) *A{l,1)+B{l,2) * A(2,1)+B{l,3) *A(3,1)+B{l,4) *A(4,1)= 100
or

(1 * 2) + (3 * 4) + (5 * 6) + (7 * 8) = 100

63

Matrix Multiplication (Scalar)

General Form

Effect

Examples

where m is a matrix and x is an expression.

This statement causes each element of matrix m1 to be replaced by each corresponding
element of matrix m2 multiplied by the expression x. The expression x is evaluated
before any scalar multiplication. If the matrices are not conformable, program execution
is terminated.

1. 20 MAT A =CA(3,2))HD

2. 10 DIM A(2,2)
20 DATA 4,4,4,4
30 MAT READ A
40 MAT PRINT A
50 MAT A = (5)HA
60 MAT PRINT A
70 END
RUN

10:32

4 4

4 4

05/08/70 FRIDAY

20 20

20 20

TIME 0 SEes.

SJ2

Line 10 allocates storage for a 2 by 2 matrix. Line 20 constructs a data table containing
four values and line 30 reads the data values into matrix A. Line 50 multiplies each
element of matrix A by 5 and places the product back into matrix A.

Both conditions of matrix A are shown in the printed output.

64

MAT PRI NT

General Form

Effect

Example

MAT PUT

General Form

Effect

Examples

where m is a matrix and t is a comma or semicolon.

This statement causes each element of each specified matrix to be converted to a specified
output format and then printed. After the element has been printed, the carrier is
positioned as specified by the terminator character t.

The matrix is printed in order by rows. All of the elements of a row are printed with
single line spacing on as many print lines as are required. A blank print line is used to
separate rows. Printing of the frrst element of a row always starts at the beginning of a
new print line.

The rules for printing as described under the PRINT statement apply to the MAT PRINT
statement; however, literal strings are not allowed, and an omitted final terminator
character is treated as a comma.

Refer to other matrix operations in this section for additional examples of the MAT
PRINT statement.

where u is an expression and m is a matrix.

This statement causes the specified matrices to be written on an output data fIle without
referencing each member individually. Elements are written by row on the data fIle speci­
fied by the truncated integer value of u. If u: is omitted, the value 2 is assumed.

If a MAT PUT statement is executed when the specified data fIle is not active or is assigned
as an input fIle, program execution is terminated. If a MAT PUT statement is executed
which causes the size of the data fIle to be exceeded, program execution is terminated.

1. 20 MAT PUT Fl: X, Y, Z

65

MAT READ

General Form

Effect

Example

2. 10 OPEN 10, 'I TEMF I LE', OUTPUT
20 DIM A(2,4)
30 DATA 1.00,1.10,1.20,1.30,1.40,1.50,1.(0,1.70
40 MAT READ A
50 MAT PUT 10:A
60 CLOSE 10
70 END
RUN

09:56 05/08/70 FRIDAY SJ2

TIME 0 SECS.

Line 10 activates ITEMFILE as output and assigns it to file number 10. Line 20 allocates
storage for a 2 by 4 matrix A. Line 30 constructs a data table consisting of eight data
values; these values are read into matrix A by line 40.

Line 50, the MAT PUT statement, causes matrix A to be written onto the output file
ITEMFILE. Line 60 deactivates the data file. Refer to the MAT GET statement (page 59)
for a further illustration of this example.

where m is a matrix and d is an expression which is used for redimensioning the matrix.

This statement allows numeric data to be read into the specified matrices without
individually referencing each member. Elements are read by row from a table created by
the DATA statements. If the data table is exhausted before a specified matrix is filled,
program execution is terminated.

20 MAT READ A(4,3),B,C(4,5)

Refer to other matrix operations in this section for additional examples of the MAT READ
statement.

66

Matrix Subtraction

General Form

Effect

Examples

where m is a matrix.

This statement causes each element of matrix m1 to be replaced by the difference of the
corresponding elements of m2 and m3 • If the matrices are not conformable, program
execution is terminated.

1. 20 MAT D = A - B

2. 10 DIM A(I,3),B(I,3),C(I,3)
20 DATA 2.4,3.8,33,14,43,1.9
30 MAT READ A,B
40 MAT C = B - A
50 MAT PRINT B,A,C
60 END
RUN

10:42 05/08/70 FRIDAY

14 43

2.4 3.8

11.6 39.2

TIME 0 SECS.

SJ2

1.9 ..-Matrix B

33 .-- Matrix A

-31.1..-Matrix C

Line 10 allocates storage for the three matrices A, Band C. Line 20 constructs a data
table containing six data values, and line 30 reads the data values into matrices A and B.

Line 40 causes each element of matrix C (in this case, zeros) to be replaced by the
difference of the corresponding elements of matrices Band A. Line 50 requests
printing of the output values for all three matrices.

It would also have been permissible to subtract matrix A from matrix B and place the
output values into matrix A.

67

Matrix TRN Function

General Form

Effect

Examples

where m is a matrix.

This statement causes matrix m l to be replaced by the transpose of matrix ~. If the
matrices are not conformable, program execution is terminated.

Matrix ml cannot be the same as m2 •

1.

2.

20 MAT D = TRN(X)

10 DIM A(3,3),B(3,3)
20 DATA 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17/18
30 MAT READ A,B
40 MAT PRINT A,B
50 MAT A = TRN(B)
60 MAT PRINT A
70 END
RUN

1

4

7

10:48 05/08/70

2

5

8

10 11

13 14

16 17

10 13

11 14

12 15

TIME 0 SEes.

FRIDAY SJ2

3

} 6 Matrix A

9

12

} 15 MatrixB

18

16

} MatrixA 17

18

Line 10 allocates storage for matrices A and B. Line 20 constructs a data table containing
18 values and line 30 reads the values into matrices A and B. Line 50 causes each element
of matrix: A to be replaced by the transpose of matrix B.

68

For example:

A(1 ,1) = B(1,I), A(I,2) = B(2,1), A(1,3) = B(3,1), A(2,1) = B(1 ,2)

and so forth.

The values assigned to matrix. B and both conditions of matrix A are shown in the
printed output.

Matrix ZER Function

General Form

Effect

Examples

where m is a matrix and d is an expression which is used for redimensioning the matrix.

This statement causes all elements of the specified matrix to assume the value zero (0).

1.

2.

20 MAT A = ZER
30 MAT B = ZER(4,8)

10 DIM A(2,3)
20 DATA 13,3,1.8,481,38,.038
30 MAT READ A
40 MAT PRINT A
50 MAT A = ZER(2,2)
60 MAT PRINT A
70 END
RUN

13

481

10:52 05/08/70 FRIDAY

3

38

o 0

o 0

TIME 0 SEes.

SJ2

1.8

3.80000E-02

Line 10 allocates storage for a 2 by 3 matrix A. Line 20 constructs a data table containing
six data values, and line 30 reads the values into matrix A. Line 50 redimensions the
matrix and causes all elements to assume the value of zero. Both conditions of matrix A
are displayed in the printed output.

69

SUBROUTINES AND USER FUNCTIONS

• DEF

• GOSUB

• RET URN

Statement Effect Usage

DEF Defines an expression in a shorter form. DEF FNA(X) = 3 :~y l' 2

GOSUB Transfers control to a subroutine. GOSUB 180

RETURN Transfers control to the statement RETURN
immediately following GOSUB.

70

General Example

DEF

General Form

Effect

50 GaS UB 100
....--........... 60 DEF FNA(X)=2~:Xt2+14

70 IF FNA(X)=85 THEN 200--
80 GOTO 380 -----,

100 INPUT A$,A,B

'----190 RETURN
200 GaS U B 240 ~I----+-----'

380 END~_~----~

Line 50 transfers control to a subroutine beginning at line 100. Lines 100 through 190
comprise the subroutine referred to by the first GOSUB statement.

Line 190 returns control to line 60, the statement following GOSUB. Line 60 is a DEF
statement defining the user function FNA(X). If the function value is 85, control is
transferred to a second subroutine beginning at line 200; otherwise, control is passed to
the END statement.

DEF FNz(v) = x

where z is a letter, v is a simple numeric variable, and x is an expression.

The DEF statement may be used to define a mathematical equation (expression) in a
shorter form, insert new values into an existing expression, and/or alter an existing
expression.

This statement defines the evaluation of the user function FNz at the time of execution.
The function is evaluated by substituting a specified user expression for each occurrence
of the dummy variable v into the expression x, and then evaluating x.

The expression x specifies the computation to be performed in order to arrive at the
function value. A function may reference another function if it does not directly or
indirectly reference itself.

A DEF statement may appear anywhere in the program since it is executed only as a
result of a reference to the function which it defmes.

71

Example

GOSUB

General Form

Effect

Examples

70 DEF FNB(X)=5~Xt2+27
80 DEF FNA(X)=FNB(XJ+Xt3

~
140 LET R=FNA(Z)+23

Line 140 is equivalent to R = ((5*Zt2+27) + Zt3) + 23.

GOSUBn

where n is a line number.

The GOSUB statement is used to enter a subroutine in a program. This subroutine
capability is a convenient tool when a particular operation within a program is very
repetitive.

When the GOSUB statement is executed, control transfers to the line number indicated
byn.

When a RETURN statement is executed, control transfers to the statement immediately
following the last GOSUB executed. Exit from a subroutine must be made with the
RETURN statement.

1. 2.

50 GOSUB 10J 80 GOSUB 150
60 go
70
80
go

[: ~~TuJ
150

160 GOSUB
170

200 RETURN
250

300 RETURN

72

RETURN

General Form

Effect

Example

RETURN [c]

where c is a character string.

RETURN provides the means of exiting from a subroutine. RETURN transfers control
to the statement following the last GOSUB executed.

More than one GO SUB statement may be executed before a RETURN statement is
executed, but when a RETURN statement is executed there must be at least one active
GOSUB. The character string c may be entered as a comment; it is ignored during
compilation and execution.

(See GOSUB examples on facing page.)

73

DATA FILE INPUT/OUTPUT

• OPEN

• PUT

• GET

• RESET

• CLOSE

Statement Effect Usage

OPEN Activates a data file previously named by OPEN 10, 'AFILE'
the FI LE command.

PUT Writes data into a file. PUT 10: A, B, C

GET Reads data from a file. GET 10: A, B, C

RESET Restores file pointer to the first data item. RESET 10

CLOSE Deactivates a data fi Ie. CLOSE 10

74

General Example

Writing Data into a File

Reading Data from a File

Two program listings are illustrated in this example; the first program creates a data file
containing prices for various items and the second program uses this data file to perform
further computations to arrive at an average price per item.

FILE ITEMFILE
READY

10 OPEN 10, 'I TEMF I LE " OUTPUT
20 INPUT A$, A,B,C,D
30 PUT 10: A$,A,B,C,D
40 IF A$ ¢ 'BEARING' THEN 20
50 CLOSE 10
60 END
RUN

14: 30 05/11/70 MONDAY

? GASKET,l.10,l.15,l.20,l.40
? BUSHING,l.65,l.70,l.85,2.00
? BEARING,2.00,2.20,2.30,2.40

TIME 0 SECS.

SJ2

The FILE command allocates storage space for a file named ITEMFILE. Line 10 assigns
ITEMFILE to file number 10 and defines it as an output file. Line 20 requests input
values for the variables A$, A, B, C and D, and line 30 writes the data values into the file.

Line 40 tests the A$ value against BEARING, the final value. If the keyed value was not
BEARING, control returns to line 20 and a new set of values is requested. When BEARING
and its associated data values are keyed, the file is closed and the program ends.

10 OPEN 10, 'ITEMFILE', INPUT
20 GET 10: A$,A,B,C,D
30 LET Al = (A+B+C+D)/4
40 PRINT USING 50, A$,Al
50 :AVERAGE PRICE FOR A ######## IS $#.##
60 GOTO 20
70 CLOSE 10
80 END
RUN

14:34 05/11/70 MONDAY

AVERAGE PRICE FOR A GASKET
AVERAGE PRICE FOR A BUSHING
AVERAGE PRICE FOR A BEARING

LINE 20: END OF FILE

TIME 0 SECS.

IS $1.21
IS $1.80
IS $2.22

SJ2

Line 10 activates the file ITEMFILE, assigns it to fIle number 10 and defines it as an input
fIle. Line 20 reads the data values, and line 30 computes the average price for each item
read. Line 40 specifies the values to be printed in line 50, the Image statement. Line 60
returns control to line 20 where a new item is read and the average price is computed. The
loop is maintained until the file is exhausted and the END OF FILE message is printed.

75

OPEN

General Forms

Effect

Examples

PUT

General Form

Effect

OPEN u, f, INPUT
OPEN u, f, OUTPUT

where u is an expression and f is an alphameric variable or a literal constant.

This statement causes the data fIle named by f to be assigned to the file number specified
by u. It sets the status of the fue to active, resets th~ fue pointer to the beginning of the
data fue, and specifies the mode of data transfer (input or output).

If the truncated integer value ofu is less than 1 or greater than 255, program execution is
terminated.

If the fIle named by u or f in the OPEN statement is currently active, that me is closed
prior to opening the specified fue. If an attempt is made to open more than four concur­
rent data fIles, program execution is terminated. (See CLOSE.)

The name specified by f must correspond to a valid file name.

1. 100 OPEN Fl~'SYSIN'~ INPUT
100 OPEN l~ A$~ OUTPUT

2. 10 OPEN Fl~ A$~ INPUT

90 END

Line 10, the OPEN statement, activates the data fue A$, defines it as an input file and
assigns it to fIle number Fl.

PUT [u:] X 1 ,x2 ,x3 "" ,xn

where u is an expression and x is an expression, alphameric variable or literal constant.

The PUT· statement is used to write data onto a fue previously called out by an OPEN
statement, and it causes the next n values of x to be written out on the data fue specified
byu.

The fue specified by u in the PUT statement must be identical to the fue number specified
in the OPEN statement; otherwise, program execution is terminated when the system

76

Examples

GET

General Form

Effect

attempts to execute the PUT statement. The value assigned to u is truncated to an
integer- and may be a numeric constant, variable or an arithmetic expression.

The specification of u: may be omitted in the PUT statement only if the fIle specifIed
in the OPEN statement is assigned the integer of 2. A u value must be assigned in all
other cases.

The PUT statement may be used to write data onto an output me only. Any attempt to
PUT data onto an input file terminates program execution and causes an error message to
be printed at the terminal. Program execution is also terminated if a PUT statement
attempts to exceed the size of the data me.

1. 100 PUT Fl: Z3,FxA-7,A,C,W$
110 PUT 2: 'DATA','STAT','LOGl'

2. 100 OPEN 15, 'DATAl',OUTPUT
110 A = 3
120 B = 4
130 C = 5
140 PUT 15: A,B,C
150 CLOSE 15
160 END

Line 100 activates a file called DATAl, defInes it as an output file and assigns it to file
number 15.

Lines 110 through 130 assign data values to variables A, Band C.

Line 140 writes the values for A, B and C into file 15.

Line 150 deactivates me 15.

GET [u:] vt ' v2 ' v3 '· •• ,vn

where u is an expression and v is a variable.

The GET statement is used tc read data from an input file previously called out by an
OPEN statement. The variables v are set to the next n data values read from the file
specified by u.

The input file specified by u in the GET statement must be identical to the file number
assigned in the OPEN statement; otherwise, program execution is terminated and an

77

Examples

error message is printed at the terminal. The value assigned to u is truncated to an integer
and may be a numeric constant, variable or arithmetic expression.

The specification of u: may be omitted in the GET statement only if the file specified in
the OPEN statement is assigned the integer of 1. A u value must be assigned in all other
cases.

The variables v will be replaced by the input data in the order of specification. That is, the
first v will be set equal to the first input from the data file; the second v will be set equal
to the second data input; and so forth. This continues until all of the variables specified in
the data list have been filled.

If any variable v is a numeric variable, the corresponding data input item must also be
numeric; alphameric variables must correspond with literal data input.

The GET statement may be used to read data from an input file only. Any attempt to
read data from an output file terminates program execution and causes an error message
to be printed at the terminal. Program execution is also terminated if insufficient data
remains in the input file.

1. 100 GET A~B,C
110 GET Fl: D(I,J),A$

2. 100 OPEN 15, r DATAl r , INPUT
110 GET 15: A~B~C

140 PRINT A~B~C
150 CLOSE 15
160 END

This example accesses the same file illustrated in the PUT statement (see page 77).

Line 100 activates file DATAl, assigns it to file number 15 and defines it as an input file.

Line 110 reads the data values originally PUT into the file in the program listing shown in
the PUT statement example. If desired, these data values may be. used for further
computations in the current program.

Line 140 prints the data values. Line 150 deactivates file number 15.

78

RESET

General Form

Effect

Examples

CLOSE

General Form

Effect

where u is an expression.

This statement causes the data file specified by the value of u to be reset to the beginning
of the file. Any subsequent GET or PUT statement references the first item in the file.

If u is omitted, the value 1 is assumed.

If the specified data file is not active, the RESET command is ignored.

1. 100 RESET Fl, F2, F3
200 RESET 200

2. 100 OPEN 15~ 'DATAl', INPUT
110 GET 15: A,B,C

150 RESET 15

Line 110 reads the first three data items and assigns them to the variables A, Band C.
Line 1 SO restores the file pointer to the first data item A.

where u is a constant, variable or expression.

The CLOSE statement causes the data file specified by the file number u to be removed
from the list of active (Le., OPENed) data files and placed back into the user's library. If
the specified data file is not active, the system will ignore the CLOSE statement.

When the system encounters an END statement (signifying program termination), all cur­
rently active data files are closed automatically regardless of whether a CLOSE statement
is included in the program.

The entry of u may be a numeric constant, variable or arithmetic expression. The value
of u is truncated to an integer.

79

Examples 1. 100 CLOSE 10
200 CLOSE 12, 14, A1

2. 10 OPEN F1, A$, INPUT

90 CLOSE F1

Line 90 removes file number FI from working storage and places it back into the user's
library.

80

APPENDIX A: PROGRAM LIMITS

USER PROGRAM LI MITS

The limits of a user program are as follows:

Program Element

Statement lines
Characters (program size)

Number of Image statements

Number of FOR loops:
Program limit
Nest limit

Number of function references and GOSUBs per nest

Number of fues open at once
Number of storage units per fue
Number of bytes per storage unit

Array limits:

BASIC short-form:
Maximum numeric elements
Maximum alphameric elements

BASIC long-form:
Maximum numeric elements
Maximum alphameric elements

1 Limit is determined by whichever limit is reached rust.

Limit

800 1

29,176 1

25

80
15

4
250

3,440

7,167
1,592

3,583
1,592

2 Limit = x + 2y = 47 where x is the number of nested OOSUBs and y is the number of nested
functions.

81

INTRINSIC FUNCTION LIMITS

The following table gives the allowable limits for the arguments to the intrinsic functions.

Valid Arguments (Minimum < x < Maximum)

Function Short-Form Arithmetic Long-Form Arithmetic

Min. Value Max. Value Min. Value Max. Value

SIN(x) -PI * 21S PI * 218 -PI * 250 PI * 250

COS(x) -PI * 21S PI *218 ~PI * 250 PI * 250

TAN(x) -PI * 21S PI * 218 -PI * 250 PI * 250

COT(x) -PI * 21S PI * 218 -PI * 250 PI * 250

SEC(x) -PI * 21S PI * 218 -PI * 250 PI * 250

CSC(x) -PI * 218 PI * 218 -PI * 250 PI * 250

ASN(x) -1 1 -1 1

ACS(x) -1 1 -1 1

ATN(x) -IE75 lE75 -IE75 lE75

HSN(x) -174.673 174.673 -174.673 174.673
HCS(x) -174.673 174.673 -174.673 174.673

HTN(x) -IE75 lE75 -IE75 lE75

DEG(x) -IE75 lE75 -IE75 lE75
RAD(x) -IE75 lE75 -IE75 lE75
EXP(x) -180.218 174.673 -180.218 174.673
ABS(x) -IE75 lE75 -IE75 lE75

LOG(x) 0 lE75 0 lE75

LTW(x) 0 lE75 0 lE75
LGT(x) 0 lE75 0 lE75
SQR(x) 0 lE75 0 lE75

RND(x) -IE75 lE75 -IE75 lE75

INT(x) -IE75 lE75 -IE75 lE75
SGN(x) -IE75 lE75 -IE75 lE75

82

APPENDIX B: DIAGNOSTIC ERROR MESSAGES

COMPILATION ERROR MESSAGES

Compilation error messages are issued by the CALL/360: BASIC language processor while
the program is being translated or prepared for execution. A line number is printed
before any message pertaining to a particular line.

Compilation errors can be classified as syntax errors (errors in the construction of a
statement), program structure errors (errors in the ordering and relationship of statement
lines), or program limit errors. If any compilation error occurs the program is not exe­
cuted. The language processor generally continues to scan the rest of the program for
additional errors. If the error involves a program limit, compilation is usually terminated.
Only one error per statement is detected for a particular compilation.

The compilation error messages are listed alphabetically.

Message: END STATEMENT MISSING

Cause: The program does not contain an END statement.

Action: Compilation is terminated; execution is inhibited.

Message: EXPRESSION TOO COMPLEX

Cause: The line contains an expression requiring too much work space to compile or
too many temporary storage locations to compute.

Action: Compilation is continued; execution is inhibited.

Message: FOR/NEXT LOOP INCOMPLETE

Cause: The program contains at least one incomplete FOR loop.

Action: Compilation is terminated; execution is inhibited.

Message: FOR/NEXT NESTED INCORRECTLY

Cause: A NEXT ~tatement does not match the preceding FOR statement.

Action: Compilation is continued; execution is inhibited.

Message: FOR/NEXT NESTED TOO DEEPLY

Cause: The program contains more than 15 nested FOR loops.

Action: Compilation is terminated; execution is inhibited.

83

Message: FOR/NEXT OUT OF SEQUENCE

Cause: A NEXT statement appears at a point where no incomplete FOR loop exists.

Action: Compilation is continued; execution is inhibited.

Message: INVALID ARRAY DECLARATION

Cause: An array name appears in a DIM statement after the name has been implicitly
or explicitly declared.

Action: Compilation is continued; execution is inhibited.

Message: INVALID ARRAY REFERENCE

Cause: The line contains an array variable with a different number of subscripts than
the first reference to the array.

Action: Compilation is continued; execution is inhibited.

Message: INVALID LITERAL CONSTANT

Cause: The line contains a literal constant without a final boundary character.

Action: Compilation is continued; execution is inhibited.

Message: INVALID MATRIX OPERATION

Cause: Matrix inversion or transposition in place has been attempted, or matrix multi­
plication has been specified where the product matrix is the same as a
multiplier or multiplicand matrix.

Action: Compilation is continued; execution is inhibited.

Message: INVALID MATRIX REFERENCE

Cause: The line contains a matrix reference to an undefmed or a one-dimensional
array.

Action: Compilation is continued; execution is inhibited.

Message: INVALID NUMERIC CONSTANT

Cause: The line contains a numeric constant whose absolute value is greater than
lE+75 or less than lE-78, and/or the constant has an incorrect syntax.

Action: Compilation is continued; execution is inhibited.

Message: INVALID USER FUNCTION

Cause: A user function has been defmed more than once.

Action: Compilation is continued; execution is inhibited.

84

Message: OBJECT PROGRAM TOO LARGE

Cause: The object program exceeds the maximum storage space allowed.

Action: Compilation is terminated; execution is inhibited.

Message: STATEMENTS FOLLOWING END

Cause: The END statement appears before the fmal statement in the program after
the statements are sorted.

Action: Compilation is terminated; execution is inhibited.

Message: SYNTAX ERROR IN EXPRESSION

Cause: The line does not contain a valid expression where one is expected.

Action: Compilation is continued; execution is inhibited.

Message: SYNTAX ERROR IN STATEMENT

Cause: The line contains an error in the construction of the statement.

Action: Compilation is continued; execution is inhIbited.

Message: SYSTEM ERROR HAS OCCURRED

Cause: A language processor error has occurred during the compilation process.

Action: Compilation is terminated; execution is inhibited.

Message: TOO MANY ARRAY ELEMENTS

Cause: The space required for array storage exceeds the maximum allocation.

Action: Compilation is terminated; execution is inhibited.

Message: TOO MANY FOR/NEXT LOOPS

Cause: The program contains more than 80 FOR loops.

Action: Compilation is terminated; execution is inhibited.

Message: TOO MANY IMAGE STATEMENTS

Cause: PRINT USING statements reference more than 25 Image statements.

Action: Compilation is terminated; execution is inhibited.

Message: TOO MANY STATEMENT LINES

Cause: The program contains more than 800 statement lines.

Action: Compilation is terminated; execution is inhibited.

85

Message: TOO MANY UNDEFINED LINE NUMBERS

Cause: More than ten undefined line numbers have been referenced.

Action: Compilation is terminated; execution is inhibited.

Message: TOO MANY VARIABLES OR CONSTANTS

Cause: The space required to store the variables and constants exceeds the maximum
allocation.

Action: Compilation is terminated; execution is inhibited.

Message : VARIABLE LIST TOO LARGE

Cause: The line contains a mUltiple LET statement that has too many variables to the
left of the equal sign.

Action: Compilation is continued; execution is inhibited.

EXECUTION ERROR MESSAGES

When a program error is detected during program execution, a message is printed and
execution is terminated. All messages at run time are preceded by the line number of the
statement being executed at the time of error, with the exception of those errors where a
line number would be irrelevant.

Message: ATTEMPT TO WRITE TO INPUT ON LAST WRITE

Cause: An attempt was made to write to an input data fIle.

Message: *DIRECTORY IS NOT PRESENT

Cause: An attempt was made to open a data file from the *Directory when there is
no directory present.

Message: END OF DATA

Cause: A READ statement has been executed with insufficient data in the data table.

Message: . END OF FILE

Cause:

Message:

Cause:

A GET or MAT GET statement has been executed with insufficient data in
the input me.

ERROR IN ACS FUNCTION ... ARGUMENf TOO LARGE

The ACS function has been called using an argument whose magnitude is
greater than one (1).

86

Message: ERROR IN ASN FUNCTION ... ARGUMENT TOO LARGE

Cause: The ASN function has been called using an argument whose magnitude is
greater than one (1).

Message: ERROR IN COS FUNCTION ... ARGUMENT TOO LARGE

Cause: The COS function has been called using an argument whose short-form
magnitude is equal to or greater than PI *218 or whose long-form magnitude
is equal to or greater than PI*25o •

Message: ERROR IN COT FUNCTION ... ARGUMENT TOO LARGE

Cause: The COT function has been called using an argument whose short-form
magnitude is equal to or greater than PI *218 or whose long-form magnitude
is equal to or greater than PI*25o•

Message: ERROR IN COT FUNCTION ... INFINITE VALUE

Cause: The COT function has been called using an argument that causes the cotangent
to approach infinity.

Message: ERROR IN CSC FUNCTION ... ARGUMENT TOO LARGE

Cause: The esc function has been called using an argument whose short-form
magnitude is equal to or greater than PI *218 or whose long-form magnitude
is equal to or greater than PI *250 •

Message: ERROR IN CSC FUNCTION ... INFINITE VALUE

Cause: The CSC function has been called using an argument that causes the cosecant
to approach infinity.

Message: ERROR IN EXP FUNCTION ... ARGUMENT TOO LARGE

Cause: The EXP function has been called using an argument whose magnitude is
greater than 174.673.

Message: ERROR IN HCS FUNCTION ... ARGUMENT TOO LARGE

Cause: The HCS function has been called using an argument whose magnitude is
greater than 174.673.

Message: ERROR IN HSN FUNCTION ... ARGUMENT TOO LARGE

Cause: The HSN function has been called using an argument whose magnitude is
greater than 174.673.

87

Message: ERROR IN LGT FUNCTION ... ARGUMENT ZERO OR NEGATNE

Cause: The LGT function has been called using an argument whose value is equal to
or less than zero.

Message: ERROR IN LOG FUNCTION ... ARGUMENT ZERO OR NEGATIVE

Cause: The LOG function has been called using an argument whose value is equal to
or less than zero.

Message: ERROR IN LTW FUNCTION ... ARGUMENT ZERO OR NEGATIVE

Cause: The LTW function has been called using an argument whose value is equal to
or less than zero.

Message: ERROR IN SEC FUNCTION ... ARGUMENT TOO LARGE

Cause: The SEC function has been called using an argument whose short-form
magnitude is equal to or greater than PI*218 or whose long-form magnitude
is equal to or greater than PI*250

•

Message: ERROR IN SEC FUNCTION ... INFINITE VALUE

Cause: The SEC function has been called using an argument that causes the secant to
approach infmity.

Message: ERROR IN SIN FUNCTION ... ARGUMENT TOO LARGE

Cause: The SIN function has been called using an argument whose short-form
magnitude is equal to or greater than PI *218 or whose long-form magnitude
is equal to or greater than PI*250

•

Message: ERROR IN SQR FUNCTION ... NEGATIVE ARGUMENT

Cause: The SQR function has been called using an argument whose value is negative.

Message: ERROR IN TAN FUNCTION ... ARGUMENT TOO LARGE

Cause: The TAN function has been called using an argument whose short-form
magnitude is equal to or greater than PI *2 18 or whose long-form magnitude
is equal to or greater than PI*2S0

•

Message: ERROR IN TAN FUNCTION ,INFINITE VALUE

Cause: The TAN function has been called using an argument that causes the tangent
to approach infmity.

Message: EXPONENTIATION ERROR

Cause: xtY has been attempted with X = 0 and Y = o.

88

Message: FILE DOES NOT EXIST

Cause: An attempt has been made to open a nonexistent data fue.

Message: FILE IS CLOSED OR UNASSIGNED

Cause: A GET, MAT GET, PUT or MAT PUT operation has been attempted on an
inactive data fue.

Message: FILE IS FOR INPUT

Cause: A PUT or MAT PUT operation has been attempted on a data ftle opened as
an input fue.

Message: FILE IS FOR INPUT ONLY

Cause: An attempt has been made to open a shared data file as an output file.

Message: FILE IS FOR OUTPUT

Cause: A GET or MAT GET operation has been attempted on a data fue opened as
an output fue.

Message: FILE IS LOCKED

Cause: An attempt has been made to open a locked data me as an output file.

Message: FILE IS NOT A DATA FILE

Cause: An attempt was made to open a me that is a program fue rather than a data
me.

Message: FILE IS PROTECTED

Cause: An attempt has been made to open a shared data fue that is protected.

Message: INVALID LOGICAL FILE NUMBER

Cause: An attempt has been made to access a data fue whose reference number is less
than 1 or greater than 255.

Message: INVALID MATRIX DECLARATION

Cause: A matrix has been redimensioned outside the original bounds of the array.

Message: INVALID RECORD FORMAT

Cause: A record in the input data fue which is not a valid BASIC format has been
detected.

89

Message: INVALID VARIABLE ASSIGNMENT

Cause: A variable has been assigned a value whose data type is not valid for the
specified assignment.

Message: MATRICES NOT CONFORMABLE

Cause: A matrix operation has been attempted and the matrices are not conformable
with the specified operation.

Message: NEARLY SINGULAR MATRIX

Cause: Matrix inversion has been attempted and the matrix being inverted is singular
or nearly singular.

Message: OUTPUT FILE EXCEEDED

Cause: An attempt has been made to write to a data file when there is no space left
in the file.

Message: RETURN WITHOUT ACTIVE GOSUB

Cause: A RETURN statement has been executed with no active GOSUB.

Message: SUBSCRIPT OUT OF BOUNDS

Cause: The computed address of an array variable is not within the bounds of the
array.

Message: TOO MANY DATA FILES

Cause: An attempt has been made to open more than four data files at one time.

Message: TOO MANY NESTED FUNCTIONS OR SUBROUTINES

Cause: GOSUB statements or function references have been nested in excess of 47.
(Refer to Appendix A for GOSUB and function limits.)

Message: UNDEFINED IMAGE STATEMENT REFERENCED

Cause: A PRINT USING statement has referenced a nonexistent Image statement.

Message: UNDEFINED LINE NUMBER REFERENCED

Cause: A nonexistent line number has been referenced.

Message: UNDEFINED USER FUNCTION REFERENCED

Cause: A nonexistent user function has been referenced.

90

Message: UNRECOVERABLE I/O ERROR

Cause: An unrecoverable error has occurred during the reading or writing of a data
file.

Message: UNRECOVERABLE SYSTEM PROBLEM

Cause: An unrecoverable system problem occurred during the opening of a data file.

EXCEPTION ERROR MESSAGES

When an input or arithmetic exception is detected during program execution, a message is
printed, a specified action is invoked, and execution is continued. Where relevant, the
message is prefaced by the line number of the statement being executed at the time the
exception occurs.

Message: DIVISION BY ZERO

Cause: Division by zero has been attempted.

Action: The result of the operation causing the exception is set to the maximum
machine magnitude.

Message: INVALID INPUT DATA ... RETYPE IT

Cause: The user has provided input data which violates the format specified in the
INPUT statement.

Action: The data for all items in the INPUT statement list must be reentered.

Message: OVERFLOW

Cause: An arithmetic operation has exceeded the maximum machine value.

Action: The result of the operation causing the exception is set to the maximum
machine magnitude.

Message: UNDERFLOW

Cause: An arithmetic operation has exceeded the minimum machine value.

Action: The result of the operation causing the exception is set to zero.

91

Arithmetic statements. See LET and DEF statements.
Array declaration:

Explicit (with DIM), 11, 56
Implicit (with LET), 11,26

Array declaration and matrix operations, 51
Array limits, 56,81
Array names:

Alphameric, 11
Numeric, 11

Array storage, 12,56,81
Assignment statement. See Program assignment.

BASIC program, 4
BASIC statements:

CLOSE, 19, 79
DATA, 17,39
DEF, 13,71
DIM, 56
END, 30
FOR, 34
GET, 19,77
GOSUB, 72
GOTO (computed), 33
GOTO (simple), 33
IF, 36
Image, 18,48
INPUT, 18,41
LET, 26
Matrix addition, 57
Matrix CON function, 58
MAT GET, 59
Matrix IDN function, 60
Matrix INV function, 61
Matrix multiplication, 62

,Matrix multiplication (scalar), 64
MAT PRINT, 18,65
MAT PUT, 65
MAT READ, 66
Matrix subtraction, 67
Matrix TRN function, 68
Matrix ZER function, 69
NEXT, 35
OPEN, 19,1'6
PAUSE, 49
PRINT, 18,44
PRINT USING, 18,47
PUT, 19,76
READ, 17,40
REMARK,29
RESET, 19, 79
RESTORE, 17,41
RETURN, 73
STOP, 30

INDEX

Branch statements. See GOSUB, GOTO and IF statements.

93

Character set, 5
Character string. See Literal constants.
Constants:

Internal, 9
Numeric, 8
Storage allocation, 9

Control statements, 31
Conventions of statement specifications, 4

Data ftIe I/O, 19, 74
Data file storage:

Computing ftIe size, 21
Storage units, 20,81

Data table, 39, 40

Error messages:
Compilation, 83
Exception, 91
Execution, 86

Exponential form (E format), 7,48
Expressions, 14

Fixed-point form (F format), 7,48
Floating-point numbers, 7, 21
Full print zone, 45,46
Functions, intrinsic:

ABS(x), 13
ACS(x), 13
ASN(x), 13
ATN(x) , 13
COS(x), 13
COf(x) , 13
CSC(x), 13
DEG(x), 13
EXP(x) , 13
HCS(x), 13
HSN(x), 13
HTN(x) , 13
INT(x), 13
LGT(x), 13
LOG(x) , 13
LTW(x), 13
RAD(x) , 13
RND(x),13
SEC(x), 13
SGN(x), 13
SIN(x), 13
SQR(x), 13
TAN(x) , 13

Functions, user, 13

Integer format (I format), 7,47,48
Intrinsic function limits, 82

Line number, 3
Literal constants, 9
Long-form data, 8
Loop limits, 34,81
Loops. See FOR and NEXT statements.

Matrix operations, 12

Nested loops, 34, 35

Operators:
Arithmetic, 14
Relational, 14
Unary, 14

Output. See Terminal output.

Packed print zone, 45,46
Program and terminal input statements, 37
Program assignment, 25
Program input, 17

94

Program limits, 81
Program remarks and misc. control statements, 28

Short-form data, 7
Sorting BASIC statements, 23
Statement line, 3
Stopping a program. See STOP statement.
Subroutines and user functions, 70
System commands, CALL/360, 3

Terminal input, 18,41
Terminaloutput, 18,43
Terminator character (t), 45

Unconditional branch. See Simple GOTO statement.
User functions, 13, 71

Variables:
Alphameric, 10
Array, 10
Numeric, 10

READER'S COMMENT FORM

CALL/360: BASIC Reference Handbook 65-2211-1

Your comments, accompanied by answers to the following questions, help us produce better publications
for your use. If your answer to a question is "No" or requires qualification, please explain in the space
provided below. All comments and suggestions become the property of SBC.

Does this publication meet your needs?

Did you find the material:
Easy to read and understand?
Organized for convenient use?
Complete?
Arranged for convenient reference?
Written for your technical level?

What is your occupation?

How do you use this publication?
As an introduction to the subject?
For advanced knowledge of the subject?
For information about operating procedures?
As an instructor in a class?
As a reference manual?

Yes No No Opinion

o o o

Other __ ___

You may give specific page and line references with your comments when appropriate.

COMMENTS

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY ...

THE SERVICE BUREAU CORPORATION
Publications Department - 884
P. O. Box 5974
San Jose, California 95150

First Class
Permit No. 3373

San Jose, Calif.

fold

--.------------------~-------------------------------- ---

fold fold

