Systems Reference Library

IBM System/360
Operating System
COBOL (E) Programmer's Guide

This reference publication describes how to
compile, linkage edit, and execute a COBOL
(E-Level Subset) program. It also describes the
output of compilation and execution, how to make
optimal use of the compiler and a load module, and
compiler and load module restrictions.

The corequisite to this publication is IBM
System/360 Operating System: COBOL Lanquage, Form
C28-6516.

Other publications related to this one are:
IBM System/360 Principles of Operation, Form
A22-6821.
IBM System/360 Operating System: Control
Program Services, Form C28-6541.
IBM System/360 Operating System: Job Control
Language, Form C28-6539.
IBM System/360 Operating System: Utilities,
Form C28-6586.

IBM System/360 Operating System: Linkage
Editor, Form C28-6538.

IBM Systemv360 Operating System: Control
Program Messages and Completion Codes, Form
C28-6608.

For a list of other associated System/360
publications, see the IBM System/360 Bibliography,
Form A22-6822.

File Number S360-24
Form C24-5029-2

I =]
: N

The purpose of the Programmer's Guide is to
enable programmers to compile, linkage
edit, and execute COBOL (E-Level Subset)
programs under control of IBM System/360
Operating System. The COBOL (E-Level
Subset) language is described in the

publication IBM System/360 Operating
System: COBOL lLanguage, Form C28-6516,
which is a corequisite to this publication.

The Programmer's Guide is organized to
fulfill its purpose at three levels:

1. Programmers who wish to use the
cataloged procedures as provided by IBM
need read only the Introduction and
Job-Control Lanquage sections to
understand the job-control statements,
and the Job Processing section to use
cataloged procedures for compiling,
linkage editing, and executing COBOL
programs. The Programming
considerations and System Output
sections are recommended for
programmers who want to use the COBOL
language more effectively.

Third Edition, February 1967

This edition, Form C24-5029-2 is a major revision
of Form C24-5029-1, which it obsoletes. Changes
to this publication are indicated by a vertical
line at the left of the text and portions of the
fiqures affected. Significant changes and
additions to the specifications contained in this
publication will be reported in subsequent
revisions or Technical Newsletters.

Changes are indicated by a vertical line to the
left of affected text and to the left of affected
parts of figures. A dot (e) next to a figure
title or page number indicates that the entire
figure or page should be reviewed.

2. Programmers who are also concerned with
creating and retrieving data sets,
optimizing the use of I/0 devices, or
temporarily modifying IBM-supplied
cataloged procedures should read the
entire Programmer's Guide.

3. Programmers concerned with making
extensive use of the operating system
facilities, such as writing their own
cataloged procedures, should also read
the entire Programmer’s Guide in
conjunction with the publications
listed on the front cover of this
publication.

In addition to providing reference
information on compiling, linkage editing,
and executing programs, this publication
contains appendices that:

1. Give several examples of processing.
2. CcContain detailed descriptions of the

diagnostic messages produced during
compilation and load module execution.

Specifications contained herein are subject to change from time

to time.
or Technical Newsletters.

Requests for copies of IBM publications should be made to

your IBM representative or to the IBM branch office serving

your locality.

Any such change will be reported in subsequent revisions

A form is provided at the back of this publication for readers'

comments.

If the form has been removed, comments may be addressed to

IBM Corporation, Publications, Dept. D39, 1271 Avenue of the Americas

New York, N.Y. 10020

© Internaticnal Business Machines Corporation 1966

INTRODUCTION ¢ ¢ o o o o o o o « o o
Job and Job Step Relationship.
Data SetS. ¢« ¢ « o« o ¢ o o o o o o o o
COBOL Processing « « « « o « o o o o »
JOB-CONTROL LANGUAGE . + « o o o o o« «
Coding Job-Control Statements.
Job Statement. o . . .
Exec Statement « « ¢« ¢ ¢ ¢ o & o o o .
Data Definition (DD) Statement
Delimiter Statement. . « « « « « « « .
JOB PROCESSING « « o o o o o s s o o o
Using Cataloged Procedures . . . « o+
Linkage Editor Processing.
Load Module Execution. . « . «
CREATING DATA SETS « « o s o o o o o «
Data Set Name. . . o ¢« ¢ ¢ o o o o o &
Specifying I/O Devices « . « « « « + &
Specifying Volumes . « .« « « « « & .« &

Specifying Space on Direct-Access
VOlUMES « o o o o o o o o o s a o o

Label Information. « « . .« . .
Disposition of a Data Set. « « « « o«

Writing a Unit Record Data Set on the
Printer « o o ¢ o o o o o o o o o o @

DCB Parameter. o« o« « o « o o ¢ o o o =

Allocating Space for Indexed
Sequential Data Sets. . . . « .« o o .

DCB for Creating Indexed Sequential
Data SetsS « o o o ¢ ¢« ¢« o o ¢ o o o o

Accessing Indexed Sequential Data Sets

DCB For Creating Direct or Relative
Organization Data Set . « « . « « . .

Accessing Direct or Relative
Organization Data Sets. « o« ¢ « « «

N o o»;

10
10
12
14
18
24
25
25
30
34
37
37
40
40

41
43

43

43
43

47

47

48

49

50

CATALOGED PROCEDURES ; « « «
Compile. « « « « o . « e e .
Linkage Edit and Execute . . .
Compile, linkage Edit
User Cataloged Procedures. . .

Overriding Cataloged Procedures

PROGRAMMING CONSIDERATIONS . .

Conserving Storage . « o e o

Basic Principles of Effective COBOL

and Execute

o

CONTENTS

Coding. « « « + .+ & # « e s s e s s

General Programming Sﬁggestions
|

Data FOIMS « « « « « § « o & &
|

Examples Showing Effect of Data
Declarations. . . .

]
Relationals. i « ¢ e .
ArithmeticS. « « o« ¢ 4 & o o« &
General Techniques fo‘ Coding.
Arithmetic Suggestions
General Information—-#ile Handl
I/0 Programming Consi#erations

Debugging Technigues

|
|
¢ e e s .

ing

USE OF SOURCE PROGRAM‘LIBRARY FACILITY

COBOL Source Program Library

\
Example of Cataloging |Source
Statements to a Librﬁry « o .

Copy (Data Division) SRR
|
INCLUDE (Procedure Division. .

Updating an Existing Member of
User-Created Library.

SYSTEM OUTPUT. . . .

Compiler Output. . .
Linkage Editor Output.

Load Module Output

Contents

Program

53
53
53
53
54
54

57

- 57

58
58

61

65
66
67
67
67
72
74
76
79

79

79
79

80

80
82
82
89
91

3

APPENDIX A. EXAMPLES OF JOB PROCESSING . 95 APPENDIX C. OVERLAY STRUCTURES109
Default Options. . . . « . . . « .« . .« . 95 Considerations for Overlay109

Example 1. Compile, Linkage Edit, and Linkage Edit Without Overlay109
EXECULEe ¢« o« o o ¢ o o o« ¢ o « « o « « » 95
Overlay Processing « « « « ¢ « « « « « 2110
Example 2. Scratching a Data Set 99
APPENDIX D. COBOL SYNTAX FORMATS112
Example 3. Cataloging a Procedure. . . . 99
APPENDIX E. SUBROUTINES USED BY COBOL. .118
APPENDIX B. ASSEMBLER LANGUAGE .
SUBPROGRAMS &+« « « « « & s o o o o » « 4102 APPENDIX F. SYSTEM/360 DIAGNOSTICS . . .124

Called and Calling ProgramS. . « « . « 102 System Diagnostic Messages . « 124
Linkage Conventions. « « . .102 Compiler Diagnostic Messages1204
Lowest Level Subprogram.104 Load Module Execution Diagnostic

MESSAgeS. « « o« 5 o o o o o o o « o o 145
Accessing Information not Directly

Available at the COBOL Language Level .105 Debug Packet Error Messages. 146

INDEXe « ¢ « ¢ o 2 o o o o o o « « o » <1487

4 IBM S/360 OS COBOL (E) Programmer's Guide

The IBM System/360 Operating System
(referred to here as the operating system)
consists of a control program and
processing programs. The control program
supervises execution of all processing
programs, such as the COBOL-E compiler, and
all problem programs, such as a COBOL
problem program. Therefore, to execute a
COBOL program, the programmer must first
communicate with the operating system.
medium of communication between the

- programmer and the operating system is the
job-control language.

The

Job-control language statements define
units of work to the operating system. Two
units of work are recognized: the job and
the job step. The statements that define
these units of work are the JOB and the
EXEC (execute) statements. Another
important statement is the DD (data
definition) statement, which gives the
operating system information about data
used in jobs and job steps. The flow of
control statements and any data placed in
the flow of control statements is called
the input stream.

Note: Throughout this publication
certain arbitrary options are given in
illustrative examples. Some of the options
used are a function of system generation;
therefore, these examples may not be valid
for all systems.

JOB AND JOB STEP RELATIONSHIP

When a programmer is given a problem, he
analyzes that problem and defines a precise
problem-solving procedure; that is, he
writes a program or a series of programs.
Executing a main program (and its
subprograms) is a job step to the operating
system. A job consists of executing one or
moxe job steps.

At its simplest, a job consists of one
job step. For example, executing a payroll
program is a job step.

In another sense, a job consists of
several interdependent job steps, such as a
compilation, linkage edit, and execution.
Job steps can be related to each other as
follows.

1. One job. step may pass intermediate
results recorded on an external storage
volume to a later job step.

INTRODUCTION

2. Whether or not a job step is executed
may depend on results of preceding
steps.

In the series of job steps (compilation,

linkage edit, and execution), each step can

be a separate job with one job step in each
job. However, designating several related
job steps as one job is more efficient:
processing time is decreased because only
one job is defined, ahd interdependence of
job steps may be stated. (Interdependence
of jobs cannot be stated.) Each step may
be defined as a job step within one job
that encompasses all processing.

JOB: Compile, linkage edit, and execute
JOB STEP 1: Compile COBOL program
JOB STEP 2: Linkage edit compiled

program

Execute linkage edited

program

JOB STEP 3:

Figure 1 illustrates these three job
steps.

The important aspect of jobs and job
steps is that they are defined by the
programmer. He defines a job to the
operating system by using a JOB statement;
he defines a job step| by the EXEC
statement.

DATA SETS

In Figure 1, one collection of input data
(source program) and one collection of
output data (compiled : program) are used in
job step 1. In the operating system, a
collection of data that can be named by the
programmer is called g data set. A data
set is defined to the operating system by a
DD statement. '

A data set resides !on a volume(s), which
is a unit of external 'storage that is
accessible to an input/output device. (For
example, a volume may be a reel of tape or
a disk pack.) '

Introduction 5

Source
Input

Job Step 1
Compile

Y

Job Step 2
Linkage Edit

Linkage
Edited

[Program

Job Step 3
Execute

l

Output

/—

Figure 1. Job Example with Three Job Steps

Several I/0 devices grouped together and
given a single name when the system is
generated constitute a device class. For
example, a device class can consist of all
the tape devices in the installation,
another can consist of the printer, a
direct-access device, and a tape device.

The name of a data set and information
identifying the volume(s) on which the data
set resides may be placed in an index to
help the control program find the data set.
This index, which is part of an index
structure called the catalog, resides on a
direct-access volume. Any data set whose
name and volume identification are placed
in this index is called a cataloged data
set. Wheén a data set is cataloged, the
information needed to access the data set
is its name, and disposition. Other
information associated with the data set,
such as device type, the position of the
data set on the volume, and the format of
records in the data set, is available to
the control program.

6 IBM S/360 OS COBOL(E) Programmer's Guide

Furthermore, a hierarchy of indexes may
be devised to classify data sets and make
names for data sets unique. For example,
an installation may divide its cataloged
data sets into four goups: SCIENCE,
ENGRNG, ACCNTS, and INVNTRY. In turn,
of these groups may be subdivided. For
example, the ACCNTS group may be subdivided
into RECEIVE and PAYABLE; PAYABLE may
contain volume identification for the data
sets PAYROLL and OVERHEAD. To find the
data set PAYROLL, the programmer specifies
all indexes beginning with the largest
group, ACCNTS; then the next largest group,
PAYABLE; finally, the data set PAYROLL.

The complete identification needed to f£ind
that data set PAYROLL is
ACCNTS.PAYABLE.PAYROLL.

each

Data set names are of two
classes: wunqualified and qualified. An
unqualified name is a data set name or an
index name that is not preceded by an index
name. A gualified name is a data set name
or index name preceded by index names
representing index levels; for example, in
the preceding text, the qualified name of
the data set PAYROLL is
ACCNTS.PAYABLE. PAYROLL.

Data set identification may also be
based upon the time of generation. In the
operating system, a collection of
successive, historically related data sets
is a generation data group. Each of the
data sets is a generation data set. A
generation number is attached to the data
group name to refer to a particular
generation. The most recent generation is
0; the generation previous to 0 is -1; the
generation previous to -1 is -2; etc. An
index describing a generation data group
must exist in the catalog.

For example, a data group named YTDPAY
might be used for a payroll application.
The generations for the generation data
group YTDPAY are;

YTDPAY (0)
YTDPAY (-1)
YTDPAY (-2)

When a new generation is being created, it
is called generation (+n), where n is an
integer greater than 0. For example, after
a job step has created YTDPAY(+1), the
operating system changes its name to
YTDPAY(0). The data set that was YTDPAY(O0)
at the beginning of the job step becomes
YTDPAY(-1), etc.

COBOL_PROCESSING

In the operating system, a source program
is called a source module; a compiled
source module is an obiject module {(object
program)., The object module cannot be
executed until it is placed in a format
suitable for loading and all references to
subprograms are resolved. This is done by
an IBM-supplied program, the linkage
editor.

The executable output of the linkage
editor is a load module. However, the
input to the linkage editor may be either
object modules or load modules. Linkage
editor execution can be expanded
further: several object modules and/or
load modules may be combined to form one
load module. The linkage editor inserts
the requested subroutines into the load
module. For example, if the compiled
object module TEST calls subroutines ALPHA
and BETA, the linkage editor combines the
object module TEST and the previously
linkage edited load modules ALPHA and BETA
into one load module. This process is
illustrated in Figure 2.

s

Alpha
Test
Beta
Linkage
Editor
Test
Figure 2. Linkage Editor Execution

A program written iin COBOL may call
subprograms written in the assembler
language as long as the assembler
subprogram uses the liinkage conventions
shown in Appendix B: | Assembler Language
Subprograms. The linkage editor resolves
the references between assembler and COBOL
modules.

After an object module is processed by
the linkage editor, the resulting load
module may be executed. Therefore, to
compile, linkage edit;, and execute a COBOL
program, three or more job steps are
necessary:

1. Compile the COBOL source module and any
COBOL subprograms; not compiled
previously to produce one or more
object modules. Note that each COBOL
compilation requires a job step.

2. Linkage edit the kesulting object
module(s) and any modules needed to

resolve external references to form a
load module.

|
3. Execute the load module.

Flgure 3 111ustratés the problem program
processing; COBOL subprograms and assembler
subprograms (load modules) are used to
resolve external references.

Each compilation, the linkage editor
execution, and the 1oad module execution
may be defined as separate jobs, but
combining the separate jobs into one job is
more efficient. i

Introduction 7

yd

(COBOL Subprogra

L /
(cosoL _
Subprogram Main Program

! !

Job Step 1A, 1B Jab Step 1C
Compile Compile Main
Subprograms Program

yd
[Object Module

!

Job Step 2

Object
Modules

Assembler
Subprogram

yd
[Assembler

Subprogram

Y

Job Step 1D, 1€
Assemble

Subprograms

Obiject
Modules

Linkage Editor

Load
Module

Y

Job Step 3
Execute Load
Module

!

Output
f

ya

[Input

Input

Figure 3. COBOL Processing Example

Data Set Considerations

A data set is defined as a collection of
data. The COBOL compiler, linkage editor,
and load modules process two types of data
sets: sequential data sets and partitioned
data sets.

A sequential data set is organized in
the same way as a data set that resides on
a tape volume, but a sequential data set
may reside on any type of volume.

8 IBM S/360 OS COBOL(E) Programmer's Guide

OQutput

A partitioned data set (PDS) is composed
of named, independent groups of sequential
data, and resides on a direct access
volume. A directory index resides in the
PDS, and directs the operating system to
any group of sequential data. Each group
of sequential data is called a member.
Partitioned data sets are used for storage
of any type of sequentially organized data.
In particular, they are used for storage of
source and load modules (each module is a
member). In fact, a load module can be
executed only if it is a member of a
partitioned data set. A PDS of load

modules is created by either the linkage
editor or a utility program.

Load modules originally written in COBOL
can access only sequential data sets.

Cataloged Procedures

An installation may have certain procedures
to follow in its daily processing. To
reduce the possibility of error in the
daily reproduction of job-control
statements for a job, a cataloged procedure
may be written. A cataloged procedure is a
set of EXEC and DD statements placed in a
PDS accessed by the operating system. (The
JOB statement cannot be cataloged.) A
cataloged procedure consists of a procedure
step or a series of procedure steps that is
defined by EXEC statements. A procedure
step in a cataloged procedure is equivalent
to a job step in a job. For a job step,
data sets must be defined by DD statements.
Because DD statements can be included in
cataloged procedures, a minimum of DD
statement information must be supplied by
the programmer.

An EXEC statement in the input stream
may invoke a cataloged procedure.
Therefore, the definition of job step is
extended: executing a load module or
invoking a cataloged procedure is a job

step to the operatingisystem.

To simplify the steps involved in
compiling and linkage editing, three
COBOL-E cataloged procedures are supplied
by IBM. These three cataloged procedures
and their uses are:

COBEC compile
COBELG 1linkage edit and execute
COBECLG compile, 11nkage edit, and execute

Any cataloged procedure may be
temporarily modified by EXEC and DD
statements in the 1nput stream; this
temporary modlflcatlon is called

overriding.
The DD statement fpr overriding a DD

name in a catalog procedure must have a
DSNAME.

Introduction 9

JOB-CONTROL LANGUAGE

The COBOL programmer uses the job-control
statements shown in Table 1 to compile,
linkage edit, and execute programs.

Table 1. Job-Control Statements

.
| STATEMENT | FUNCTION
1 1

r 1 -

| JOB |Indicates the beginning of a

| |new job and describes that job.
1

+
|EXEC |Indicates
|describes
| indicates
| procedure

| executed.
1

a job step and

that job step;

the cataloged

or load module to be

+
|Describes data sets, and

| controls device and volume
|assignment.

@)
o

delimiter|Separates data sets in the
| input stream from control
| statements, it appears after
|each data set in the input
| stream i.e., after a COBOL
| source program.
L

[e e . o e . e e i . st . et s s

e e el S VU PRI * —

CODING JOB-CONTROL_ STATEMENTS

Job-control statements are identified by
the initial characters // or /% in card
columns 1 and 2, and may contain four
fields: name, operation, operand, and
comment (Figure 4).

NAME FIELD

The name contains between one and eight
alphameric characters, the first of which
must be alphabetic. The name begins in
card column 3, and is followed by one or
more blanks to separate it from the
operation field. The name is used:

1. To identify the control statement to
the operating system.

2. To enable other control statements in
the job to refer to information
contained in the named statement.

3. To relate DD statements to I/0
statements in the load module.

OPERATION FIELD

The operation field contains one of the
following operation codes:

JOB
EXEC
DD

or, if the statement is a delimiter
statement, the operation field is blank.

The operation code is preceded and followed

by one or more blanks.

OPERAND FIELD

The operand field contains the parameters
that provide required and optional
information to the operating system.
parameters are separated by commas.

The
The

i FORMAT IAPPLICABLE CONTROL STATEMENTS]
i//Name Operation Operand [Comment] IJOB,EXEC,DD }
l// Operation Operand [Comment] IEXEC,DD }
i/* [Comment] idelimiter i

Figure 4. Job-Control Statement Formats

10

IBM S/360 OS COBOL(E) Programmer's Guide

operand field is ended by placing one or
more blanks after the last parameter.
There are two types of parameters,
positional and keyword.

Positional Parameters: Positional
parameters are placed first in the operand
field and must appear in the specified
order. If a positional parameter is
omitted and other positional parameters
follow, the omission must be indicated by a
comma.

Keyword Parameters: A keyword parameter
may be placed anywhere in the operand field
following the positional parameters. A
keyword parameter consists of a keyword,
followed by an equal sign, followed by a
single value or a list of subparameters.
If there is a list of subparameters, the
list must be enclosed in parentheses or
apostrophes, and the subparameters in the
list must be separated by commas. Xeyword
parameters are not order dependent; that
is, they may appear in any order.

Subparameters: Subparameters are either
positional or keyword. Positional and
keyword subparameters are noted in the
definition of control statements.
Positional subparameters appear first in
the parameter and must appear in the
specified order. If a positiomnal
subparameter is omitted and other
positional subparameters follow, the
omission must be indicated by a comma.

COMMENTS

Comments must be separated from the last
parameter (or the * in a delimiter
statement) by one or more blanks and may
appear in the remaining columns up to and
including column 71.

CONTINUING CONTROL STATEMENTS

A control statement can be written in card
columns 1 through 71. If a control
statement exceeds 71 columns, it may be
continued onto the next card. If a
statement is continued, it must be
interrupted after the comma that follows
the last parameter or subparameter on the
card, and a nonblank character must be
placed in column 72. The continuation card
must contain // in columns 1 and 2, columns
3 through 15 must be blank, and the
continued portion of the statement must
begin in column 16. Comments are continued
by placing a nonblank character in column
72; the continued portion of the comment

begins in any column after column 16.
There is no limit to the number of
continuation cards used for a single
control statement.

Note: Excessive chntinuation cards

should be avoided, whenever possible, to
reduce processing time for the control
program. |

NOTATION FOR DEFINING CONTROL STATEMENTS

The notation used to define control
statements in this publication is described
in the following paragraphs.

1. The set of symbols listed below are
used to define control statements, but
are never written in an actual

statement.
a. hyphen
b. or

c. underscore
d. Dbraces

e. brackets

f. ellipsis

g. superscript

B s) = |
LR]

|
j

The special uses of tﬁese symbols are
explained in paragraphs 4-10.

2. Uppercase letters| and words, numbers,
and the set of symbols listed below are
written in an actual control statement
exactly as shown in the statement
definition. (Any exceptions to this
rule are noted in the definition of a
control statement.)

a. apostrophe

* =

b. asterisk

Cc. comma | .
d. equal sign =
e. parentheses ()
f. period .
g. slash /

3. Lowercase letters, words, and symbols
- appearing in a control statement
definition represent variables for
which specific information is
substituted in the actual statement.
I
Example: If name appears in a
statement definition, a specific value
(e.g., ALPHA) is substituted for the
variable in the actual statement.

|
4. Hyphens join 1owchase letters, words,
and symbols to form a single variable.

Example: If member-name appears in a
statement definition, a specific value
(e.g., BETA) is substituted for the
variable in the actual statement.

|
Job~Control Language 11

12

Stacked items or items separated from
each other by the "or" symbol represent
alternatives. Only one such
alternative should be selected.

Example: The two representations

A
{B and A|B|C
C

have the same meaning and indicate that
either A or B or C should be selected.

An underscore indicates a default
option. If an underscored alternative
is selected, it need not be written in
the actual statement.

Example: The two representations

A
{§ and A|B|C
C

have the same meaning and indicate that
either A or B or C should be selected;
however, if B is selected, it need not
be written, because it is the default
option.

Braces group related items, such as
alternatives.

Example: ALPHA=({A|B|C},D)

indicates that a choice should be made
among the items enclosed within the
braces. If A is selected, the result
is ALPHA=(A,D). If C is selected, the
result can be either ALPHA=(,D) or
ALPHA=(C,D).

Brackets also group related items;
however, everything within the brackets
is optional and may be omitted.
Example: ALPHA=([A|B|C1,D)

indicates that a choice can be made
among: the items enclosed within the
brackets, or that the items within the
brackets cah be omitted. If B is
selected, the result is ALPHA=(B,D).
If no choice is made, the result is
ALPHA=(,D).

IBM S/360 OS COBOL(E) Programmer's Guide

9.

10.

11.

An ellipsis indicates that the
preceding item or group of items can be
repeated more than once in succession.

Example: ALPHA[,BETAl...

indicates that ALPHA can appear alone
or can be followed by ,BETA repeated
optionally any number of times in
succession.

A superscript refers to a prose
description in a footnote.

Example: NEW3
OLD

MOD

indicates that additional information
concerning the grouped items is
contained in footnote number 1.

Blanks are used to improve the
readability of control statement
definitions. Unless otherwise noted,
blanks have no meaning in a statement
definition.

JOB STATEMENT

The JOB statement (Figure 5) is the first
statement in the sequence of control

statements that describe a job.

The JOB

statement contains the following

information:
1. Job name.
2. Accounting information relative to the

job.
Programmer's name.

Whether the job-control statements are
printed for the programmer.

Conditions for terminating the
execution of the job.

Examples of the JOB statement are shqwn in
Figure 6.

T
0PERATION|OPERAND

Positional Parameters

T

|

_||:

{
//jobname|JOB |[([account—number][accountlng—lnformatlon])1|2 3]

|

|

|

|

|

|

|

|

| [,programmer—-namel4 S 6
|
|

Keyword Parameters

| /MSGLEVEL=0
| \MSGLEVEL=1

i
| [COND=((code, operator) [, (code,operator)l...7) 8]
i |

I
I
|
|
|
|
|
|
|
F |
|+ If the information specified ("account-number" and/or "accounting-information")

| contains blanks, parentheses, or equal signs, the information must be delimited by
| apostrophes instead of parentheses.

|2 If only "account-number" is specified, the delimiting parentheses may be omitted.
|® The maximum number of characters allowed between the delimiting! parentheses or

| apostrophes is 144.

|4 If "programmer-name" contains commas, parentheses, apostrophes,'or blanks, it must be
| enclosed within apostrophes.

|5 When an apostrophe is contained within "programmer-name", the apostrophe must be

| shown as two consecutive apostrophes.

| The maximum number of characters allowed for "programmer—-name" is 20.

|7 The maximum number of repetitions allowed is 7.

|8 If only one test is specified, the outer pair of parentheses may be omitted.

L

(4]

o NOo

b s oo e W s . i — — — ————— o r—— ———— —— S s, — oo, ot woe]

Figure 5. JOB Statement

accounting routines. | These routines are
written by the 1nsta11at10n and inserted in
the operating system when it is generated.
The format of the accountlng information is
specified by the installation.

Example 1

//PROGRAM JOB (215,819,46W),'E.COBOL', 1
COND=(7,LT) , MSGLEVEL=1

N
N

Example 2

Programmer's Name
//PROG2 JOB 1087F-21,COND=(7,LT))

e
U S S S ———

The “programmer-nameﬁ is the second
positional parameter.
Figure 6. Sample JOB Statements i

Control Statement Meésaqes
NAME FIELD |

The MSGLEVEL parameter indicates the type
The "jobname" must always be specified; it of control statement messages the
identifies the job to the operating system. programmer wishes to receive from the

control program.

MSGLEVEL=0
OPERAND FIELD

indicates that only control statement

errors and diagnostic messages are written

Account Number and Accounting Information for the programmer.
MSGLEVEL~=1
The first positional parameter can contain i
the installation account number and any indicates that all control statements, as
parameters passed to the installation well as control statement errors and

Job~-Control Language 13

diagnostic messages, are written for the
programmer.

Conditions for Terminating a Job

At the completion of a job step that uses
the COBOL compiler or the linkage editor, a
code is issued indicating the outcome of
the job step. Instructions in a COBOL load
module cannot generate the code. The
generated code is tested against the
conditions stated in control statements.
The error codes generated by the COBOL
compiler or linkage editox are:

0 - No errors or warnings detected.
Possible

4 - Level W (warning) diagnostic.
errors were detected.

8 - Level C (conditional) diagnostic.
Errors were detected.

12 - Level E (error) diagnostic. Serious

errors were detected.

For a description of these codes, refer to
Source-Module Error Warning Diagnostics.

The COND parameter specifies conditiomns
under which a job is terminated. Up to
eight different tests, each consisting of a
code and an operator, may be specified to
the right of the equal sign. The code may
be any number between 0 and 4095. The
operator indicates the mathematical
relationship between the code placed in the
JOB statement and the codes issued by
completed job steps. If the relationship
is true, the job is terminated. The six
operators and their meanings are:

14 IBM S/360 OS COBOL(E) Programmer's Guide

Operator Meaning
GT greater than
GE greater than or equal to
EQ equal to
NE not equal to
LT less than
LE less than or equal to

For example, if a code 8 is returned by
the compiler and the JOB statement
contains:

COND=(7,LT)
the job is terminated.
If more than one condition is indicated
in the COND parameter and any of the

conditions are satisfied, the job is
terminated.

EXEC STATEMENT

The EXEC statement (Figure 7) indicates the
beginning of a job step and describes that
job step. The statement contains the
following information.

1. Name of the cataloged procedure or load
module to be executed.

2. Compiler and/or linkage editor options
passed to the job step.

3. Accounting information relative to this
job step.

4. cConditions for bypassing the execution
of the subsequent job step.

r - 1
| Example 1 |
| |
|// EXEC PGM=IEHPROGM,ACCT=(896,427),COND=(7,LT)
| |
| Example 2 |
| |
| i//sTEPU EXEC cCOBECLG, 1]
|77 PARM.COB="'DECK, LINECNT=64 , MAPS, LIST', 2]
|77 PARM.LKED=XREF, 3]
|77 COND.LKED=(7,GT, STEP4.COB) , 4]
|77 COND.GO=((7,GT,STEP4.LKED), (7,GT,STEP4L.COB)), S|
(V4 ACCT=1081A |
L 1

] L
| NAME | OPERATION |OPERAND i
k + + -- 1
} | | Positional Parameter |
] |
|7/ [stepnamel® |EXEC | (PROC=cataloged-procedure-name :
			cataloged-procedure-name
	PGM=program-name		
			PGM=%, stepname.ddname
{ }	PGM=%.stepname.procstep.ddname		
		Keyword Parameters !	
	I		
		[{PARM }]	
			\PARM. procstep?[=(optionl,optionl...)3 4 S
l		JACCT ;	
			\ACCT . procstep?(=(accounting-information)3 6 7
I I			
		JCOND {	
		[YcOND.procstep2 =((code,operatorl(,stepnamel. procstepll)	
l 1	[/(code,operator([,stepname{.procstepll)l...8)?]		
L (1			
r			
+ "stepname" is required when information from this control statement is referenced in}			
a later job step.			
2 If this format is selected, it may be repeated in the EXEC statement once for each			
step in the cataloged procedure.			
2 If the information specified contains blanks, parentheses, or equal signs, it must			
be delimited by apostrophes instead of parentheses.			
* If only one option is specified, and it does not contain any blanks, parentheses, orj			
equal signs, the delimiting parentheses may be omitted.			
® The maximum number of characters allowed between the delimiting apostrophes or			
parentheses is U40.			
¢ If "accounting-information" does not contain commas, blanks, parentheses, or equal			
signs, the delimiting parentheses may be omitted.			
7 The maximum number of characters allowed between the delimiting apostrophes or			
parentheses is 144.			
8 The maximum number of repetitions allowed is 7.			
® If only one test is specified, the outer pair of parentheses may be omitted.			
L —]

Figure 7. EXEC Statement ;

Figure 8. Sample EXEC Statements

Jol

y-Control Language 15

Example 1 of Figure 8 shows the EXEC
statement used to execute a program.
Example 2 in Figure 8 shows an EXEC
statement that invokes a cataloged
procedure.

NAME FIELD

The "stepname" is the name of the job step.

OPERAND FIELD

Positional Parameter

The options in the positional parameter of
an EXEC statement specify either the name
of the cataloged procedure or program to be
executed.

Each program (load module) to be
executed must be a member of a PDS.

Specifving a Cataloged Procedure:

PROC=cataloged-procedure-name
cataloged-procedure-name

indicate that a cataloged procedure is
invoked. The "cataloged procedure name" is
the unqualified name of the cataloged
procedure. For example,

PROC=COBEC
indicates that the cataloged procedure

COBEC is to be executed.

Specifving a Program in a Library:

PGM=program-name

indicates that a program is executed. The
"program—name" is an unqualified member
name of a load module in the sytem library
(SYS1.LINKLIB) or private library. For
example,

PGM=IEWL

indicates that the load module IEWL is
executed. (A load module in a private PDS
is executed by joining the private library
with the system library through the use of
a JOBLIB DD statement. See the following
discussion concerning JOBLIB.)

Specifying a Program Described in a
Previous Job Step:

16 IBM S/360 OS COBOL(E) Programmer's Guide

PGM=%,stepname.ddname

indicates that a program is executed, but
the program is taken from a data set
specified in a DD statement of a previous
job step. The * indicates the current job;
"stepname" is the name of a previous step
within the current job; and "ddname" is the
name of a DD statement within that previous
job step. (The "stepname" cannot refer to
a job step in another job.) For example,
in the statements,

//LXIX JOB ,JOHNSMITH,COND=(7,LT)

//STEPY4 EXEC PGM=IEWL
//SYSLMOD DD DSNAME=OBJECT (TEST1)

//STEPS5 EXEC PGM=+%.STEPU4.SYSLMOD

statement STEP5 indicates that the name of
the program is taken from the DD statement
SYSLMOD in job step STEP4. Consequently,
the load module TEST1 in the PDS OBJECT is
executed.

Specifying a Program Described in a
Cataloged Procedure:

PGM=%,stepname. procstep. ddname

indicates that a program is executed, but
the program is taken from the data set
specified in a DD statement of a previously
executed cataloged procedure. The *
indicates the current job; "stepname" is
the name of the job step that invoked the
cataloged procedure; "procstep" is the name
of a step within the procedure; "ddname" is
the name of a DD statement within the
procedure step. (The "stepname" cannot
refer to a job step in another job.) For

example, consider a cataloged procedure
PROGL1.
//COMPIL EXEC PGM=IEPCBLO0O

//5YSUT1 DD
//SYSPUNCH DD

UNIT=TAPE
DSNAME=LINKINP

EXEC PGM=IEWL
DSNAME=RESULT (ANS)

//LKED
//SYSLMOD DD

Furthermore, assume the following
statements are placed in the input stream.

//GO JOB ,SMITH,COND=(7,1T)
//81 EXEC PROC=PROG1
//52 EXEC PGM=%.S1.LKED.SYSLMOD

The statement S2 in the input stream
indicates that the name of the program is
taken from the DD statement SYSLMOD in the
procedure step LKED in the procedure PROG1L
which was invoked by the EXEC statement Si1.
Consequently, the load module ANS in the
PDS RESULT is executed.

Keyword Parameters

The keyword parameters may refer to a
program, to an entire cataloged procedure,
or to a step within a cataloged procedure.

If the parameter refers to a program, to
the first step in a cataloged procedure
(only with the PARM parameter), or to an
entire cataloged procedure, the keyword is
written followed by an equal sign and the
list of subparameters. (In example 1,
Figure 8, the parameter ACCT applies to the
entire procedure.) When overriding
parameters in a cataloged procedure step,
the keyword is written, a period is placed
after the keyword, and the stepname follows
immediately. (In example 2, Figure 8, the
cataloged procedure COBECLG is invoked.

Two sets of PARM options apply to two

different procedure st
the procedure step COE
the procedure step LKE
about overriding catal
given in the section,

eps; one applies to
and the other to

D.) More information

oged procedures is

Job Processing.

Options for the Compil

er and Linkage

Editor: The PARM para
options to the compile
(PARM has no meaning t

PARM

passes options to the
editor when either is
parameter in the EXEC
first step in the cata
cancels all other para
the cataloged procedur

PARM.procstep

passes options to a co
editor step within the
procedure step.
procedure step is dele
parameter that is pass
step is inserted.

A maximum of 40 cha
written between the pa
apostrophes that enclo
options.

The format for comp
linkage options most a
COBOL programmer is sh

meter is used to pass
r or linkage editor.
o COBOL load module.)

compiler or linkage
invoked by the PGM
statement or to the
loged procedure and
meters specified in
e.

mpiler or linkage
named cataloged

Any PARM parameter in the

ted, and the PARM
ed to the procedure

racters may be
rentheses or
se the list of

iler options and
pplicable to the
own in Figure 9.

Detailed information concerning compiler

and linkage editor options is given in the

section, Job Processing.
|

1 1
|Compiler: i |
| 3 !
| [PARM , DECK , FLAGE |
| PARM.procstep(=([LINECNT=nnl [, BUFSIZE=nn] | ,NODECK| |, FLAGW |
| | |
| (LIST DMAP (PMAP MAPS ;,DISPCK JREGED ()% |
| ,NOLIST| |, NODMAP| | ,NOPMAP| | , NOMAPS| | ,NODISPCK ,ﬁNVED |
[' ! |
| | I
| Linkage Editor [
| |
| |
| [PARM |
| PARM. procstep(=([XREF]}[,LET][,LIST]1)2 |
(% i 4
) 3 1
|1 The subparameters (options) are keyword subparameters. |
| I - —_— 4
Figure 9. Compiler and Linkage Editor Options

Job-Control Language 17

Condition for Bypassing a Job Step: This
COND parameter (unlike the one in the JOB
statement) determines if the job step

defined by the EXEC statement is bypassed.

COND

states conditions for bypassing the
execution of a program or an entire
cataloged procedure. If the EXEC statement
invokes a cataloged procedure, the COND
parameter replaces all COND parameters in
each step of the procedure.

COND.procstep

states conditions for bypassing the
execution of a specific cataloged procedure
step "procstep". The specified COND
parameter replaces all COND parameters in
the procedure step.

The subparameters for the COND parameter
are of the form:

(code,operator [, stepnamel)

The subparameters "code" and "operator"
are the same as the code and operator
described for the COND parameter in the JOB
statement. The subparameter "stepname"
identifies the previous job step that
issued the code. For example, the COND
paranmeter

COND= ((5, LT, COBE), (5,LT, LKED))

Indicates that the step in which the COND
parameter appears is bypassed if 5 is less
than the code returned by either of the
steps COBE or LKED.

If a step in a cataloged procedure
issued the code, "stepname" must qualify
the name of the procedure step; that is,

(code, operator[,stepname.procstepl)

If "stepname®" is not given, "code" is
compared to all codes issued by previous
job steps. Again, only compiler or linkage
editor execution steps issue the code.

18 IBM S/360 OS COBOL(E) Programmer's Guide

Accounting Information: The ACCT parameter
specifies accounting information for a job
step within a job.

ACCT

is used to pass accounting information to
the installation accounting routines for
this job step.

ACCT.procstep

is used to pass accounting information for
a step within a cataloged procedure.

If both the JOB and EXEC statements
contain accounting information, the
installation accounting routines decide how
the accounting information shall be used
for the job step.

DATA DEFINITION (DD) STATEMENT

The DD statement (Figure 10) describes data
sets. The DD statement can contain the
following information:

1. Name of the data set to be processed.

2. Type and number of I/O devices for the
data set.

3. Volume(s) on which the data set
resides.

4. Amount and type of space allocated on a
direct-access volume.

5. Label information for the data set.

6. Disposition of the data set before and
after execution of the job step.

7. Allocation of data sets with regard to
channel optimization.

:

T
OPERATION|OPERAND?
n

— e . e o e S, St . i S e . o, e, . i e e, . s, e S, sy

//{

[}
v}

ddname 2
procstep.ddname
JOBLIB?3

e e e e e

| [SEP=(subparameter-list)]
L

}
|Positional Parameter
[[DUMMY]
ATA
|Keyword ParametersS €
[DDNAME=ddname]
dsname h
dsname (element)
*. ddname
DSNAME={ *.stepname.ddname ?
*.stepname.procstep.ddnanme|
&Ename ‘
&name(element))

|
|
|
|
I
|
|
I
|
|
| [UNIT=(subparameter-1list)]

I

| (bCB=(subparameter-1list)17

|

| [(VOLUME= (subparameter-1ist)]
|

|| SPACE= (subparameter-1ist)

|| SPLIT=(subparametexr-1list)

|| SUBALLOC= (subparameter-1list)
|

| (LABEL= (subparameter-1ist)}

|

I

|

DISP=(subparameter-list)
SYSOUT=A

[y

O n

All parameters are optional to allow a programmer flexibility in
statement; however, a DD statement with a blank operand field is
The name field must be blank when concatenating data sets.

The JOBLIB statement precedes any EXEC statements in the job.

Se

concerning JOBLIB under Name Field in this section.

meaningless.

the use of the DD

e the discussion

b e =t i, e e e . s o i . S . G S — ———— — ——————_ —— —— ——— ———— ——— — —— —f— — — —— a— t— — —— — —— — i w— o]

% If the positional parameter is specified, keyword parameters cannot be specified.
5 If "subparameter-list" consists of only one subparameter and no leading comma
| (indicating the omission of a positional subparameter) is required, the delimiting
| parentheses may be omitted.
|¢ If "subparameter-list" is omitted, the entire parameter must be omitted.
|7 BAll subparameters in the DCB parameter are keyword subparameters.,
L
Figure 10. Data Definition Statement
NAME FIELD definitions in the!| DD statement. The
ddname must be the same as the external
name in the SELECT... ASSIGN clause in
ddname a COBOL program.
is used:
3. To identify this DD statement to other
.1. To identify data sets defined by this control statements|in the input stream.
DD statement to the compiler or linkage
editor. The "ddname" format is given in Job
Processing.
2, To relate files defined by a programmer
in his source module to data set procstep.ddname
Job-Control Language 19

is used to override DD statements in
cataloged procedures. The step in the
cataloged procedure is identified by
"procstep". The "ddname" identifies
either:

1. A DD statement in the cataloged
procedure that is to be modified by the
DD statement in the input stream, or

2. A DD statement that is to be added to
the DD statement in the procedure step.

JOBLIB

is used to concatenate data sets with the
operating system library; that is, the
operating system library and the data sets
specified in the JOBLIB DD statement are
temporarily combined to form one library.
The JOBLIB statement must immediately
follow a JOB statement and the
concatenation is in effect only for the
duration of the job. However, if job steps
other than the first job step are to use
the data set specified in the JOBLIB DD
statement, the DISP parameter must be
specified with PASS as the second
subparameter. (See the following text
concerning the DISP parameter.) Only one
JOBLIB statement may be specified for a
job.

The "PGM=program name" parameter in the
EXEC statement refers to a load module in
the system library. However, if this
parameter refers to a load module in a
private library, a JOBLIB statement
identifying the PDS in which the module
resides must be specified for the job. The
JOBLIB statement concatenates the private
library with the system library.

The library indicated in the JOBLIB
statement is searched for a module before
the system library is searched.

A JOBLIB statement does not have to be
entered for load modules created in this
job, or for permanent members of the system
library.

20 IBM S/360 OS COBOL(E) Programmer's Guide

If the name field is omitted, the data
set defined by the DD statement is
concatenated with the data set defined in
the preéceding DD statement. In effect,
these two data sets are combined into one
data set. (Data sets may also be
concatenated with the data set specified in
the JOBLIB DD statement. Therefore,
several data sets can be concatenated with
the system library.)

OPERAND FIELD

For purposes of discussion, parameters for
the DD statement are divided into six
classes. Parameters are used to:

e Specify unit record data sets.

e Retrieve a previously created and
cataloged data set.

e Retrieve a data set created in a
previous job step in the current job
and passed to the current job step.

e Retrieve a data set created but not
cataloged in a previous job.

s Create data sets that reside on
magnetic tape or direct access volumes.

e Optimize I/O operations.

The following text describes the DD
statement parameters that apply to
processing unit record data sets and
retrieving data sets created in previous
job steps or data sets created and
cataloged in previous jobs (Figure 11).
The method of retrieving uncataloged data
sets created in previous jobs is also
discussed in this section. Parameters
shown in Figure 10 and not mentioned in
this section are used to create data sets
and optimize I/0O operations in job steps.

{

*
DATA

1
DUMMY

DDNAME=ddname

dsname

dsname(element)

* ,ddname

*,stepname.ddname
*,stepname. procstep.ddname
&Ename

&name (element)

DSNAME=

)

UNIT=(namel, {in|P}2])3

DCB=(subparameter-list) €

SYSOUT=A
, DELETE “
OLD ,KEEP
Dlsp=({§§g} , PASS)s
MOD ,CATLG
,UNCATLG

LABEL= (subparameter-1list) ¢

Volume= (subparameter-list) ¢

i

FON

If either of these three parameters is selected, it must be the
selected.

If neither "n"™ nor "P" is specified, 1 is assumed.

If only "name" is specified, the delimiting parentheses may be o
The assumption for the second sub parameter is discussed in Spec

pnly parameter

mitted.
ifying the

Disposition of a Data Set in this section.

- ¢]

o o o e e e e L e e e e e e e R iy

The subparameters are positional.
See the section, Creating Data Sets.

Len o cve . s e et e . . i — — —— — — — —— ——— —— ——— — o—— S— — — 2. " 2 et s, S s bt . . s)

Figure 11. DD Statement Operands

r 1 Unit Record Parameters

| Example 1: Printer |

| |

|//SYSPRINT DD SYSOUT=A | The UNIT and SYSOUT parameters are used for
| | unit record data sets; the * or DATA

| Example 2: Card Punch | parameters designate that the data set for
| | this job step follows [in the input stream.
| //SYSPUNCH DD UNIT=SYSCP | Examples of DD statements for unit record
| | data sets are shown in Figure 12.

l Example 3: Card Reader |

| |

| 7/SYSIN DD #* |

L 4 Specifying LFata in the Input Stream
Figure 12. Unit Record Examples of DD *

Statements
indicates that a data
follows this DD statemn
stream. This paramete
a source deck or data
If the EXEC statement
invokes a cataloged pr
may be placed in the i

Job-

set immediately

ent in the input

r is used to specify
in the input stream.
for the job step
ocedure, a data set
nput stream for each

Control Language 21

procedure step. If the EXEC statement
specifies execution of a program, only one
data set may be placed in the input stream.
The DD * statement must be the last DD
statement for the procedure step or
program. The end of the data set must be
indicated by a delimiter statement. The
data cannot contain // in the first two
characters of the record.

DATA

also indicates data in the input stream.
The restrictions and use of the DATA
parameter are the same as the *, except
that // may appear in the first and second
positions in the record.

UNIT Parameter:

UNIT=(namel(, {n|P}])

specifies an input/output device, a type of
device, or class of devices for a data set.
When the system is generated, the "name" is
assigned by the operating system or the
installation. The programmer can use only
the assigned names in his DD statements.
For example,

UNIT=190, UNIT=2311, UNIT=TAPE

where 190 is a device address, 2311 is a
device type, and TAPE is a device class.

[n|P]

specifies the number of devices allocated
to the data set. If a number "n" is
specified, the operating system assigns
that number of devices to the data set.
Parallel, "P", is used with cataloged data
sets. The control program assigns as many
devices as there are volumes indicated in
the index and label fields of the cataloged
data set.

SYSOUT Parameter: A SYSOUT parameter may
be specified for printer data sets.

22 IBM S/360 OS COBOL(E) Programmer's Guide

SYSOUT=A

indicates the device class A for the data
set. The data set defined by the DD
statement that contains the SYSOUT
parameter is written on a device chosen by
the operator. No parameter other than the
DCB parameter has any meaning when the
SYSOUT parameter is used.

Retrieving Previously Created Data Sets

If a data set on a magnetic tape or a
direct-access volume is created and
cataloged in a previous job or job step,
all information for the data set such as
device, volume, space, etc., is stored in
the catalog and labels. This information
need not be repeated in other DD
statements. To retrieve the data set, the
name (DSNAME) and disposition (DISP) of the
data set must be specified.

If the data set was created in a
previous job step in the current job, the
information in the previous DD statement is
available to the control program, and is
accessible by referring to the previous DD
statement. To retrieve the data set, a
pointer to a data set created in a previous
job step is specified by the DSNAME
parameter. The disposition (DISP) of the
data set is also specified.

If the data set was created in a
previous job but not cataloged, information
concerning the data set, such as space,
record format, etc., is stored in the
labels. The volume and device information
is not stored. To retrieve the data set,
the name (DSNAME), disposition (DISP),
label (LABEL), volume (VOLUME), and device
(UNIT) must be specified. The VOLUME and
LABEL parameters are discussed in the
section, Creating Data Sets.

Examples of the use of DD statements to
retrieve previously created data sets are
shown in Figure 13.

Example 1: Retrieving a Cataloged Data Set

L pe——

i
|
| //CBLO1 DD DSNAME=EXP(WKLY) ,DISP=(OLD,PASS)
[
| Example 2: Retrieving a Data Set Created in a Previous Step
I
| //CBLO5 DD DSNAME=#*.STEP4.CBL01l,DISP=(MOD,KEEP)
|
| Example 3: Retrieving an Uncataloged Data Set Created in a Previous Job
| :
| 7//CBL09 DD DSNAME=DATA.SIM,DISP=0LD,UNIT=180,VOLUME=SER=%Z1
L |
|
Figure 13. Retrieving Previously Created Data Sets i

IDENTIFYING A CREATED DATA SET: The DSNAME
parameter indicates the name of a data set
or refers to a data set defined in the
current or a previous job step.

Specifving a Cataloged Data Set by Name:

DSNAME=dsname

the fully qualified name of the data set is
indicated by "dsname". If the data set was
previously created and cataloged, the
control program uses the catalog to f£ind
the data set and instructs the operator to
mount the required volumes.

Specifying a Generation Data Group or PDS:

DSNAME=dsname (element)

indicates either a generation data set
contained in a generation data group or a
member of a partitioned data set. ‘The name
of the generation data group or partitioned
data set is indicated by "dsname"; if
"element" is either 0 or a signed integer,
a generation data set is indicated. For
example,

DSNAME=ACCNT (-2)

indicates the thirdmost recent member of
the generation data group ACCNT. If
"element" is a name, a member of a
partitioned data set is indicated.

Referring to a Data Set in the Current Job
Step:

DSNAME=%* . ddname

indicates a data set that is defined
previously in a DD statement in this job
step. The * indicates the current job.

The name of the data set is copied from the
DSNAME parameter in the DD statement named
"ddname".

Referring to a Data Set in a Previous Job

Step: !
DSNAME=*.stepname.ddnéme

indicates a data set ﬁhat is defined in a
DD statement in a previous job step in this
job. The * indicates the current job, and
"stepname" is the name of a prev1ous job
step. The name of thé data set is copied
from the DSNAME parameter in the DD
statement named "ddname". For example, in

the control statement#:

//SAMPLE JOB |

//J0BLIB DD DSNAME=CALC,DISP=(OLD,PASS)
//51 EXEC PGM=INVNTRY |

//COBL0O1 DD DSNAME=OUT(+1)

//COBL02 DD DSNAME=CURNT,DISP=0OLD

/752 EXEC PGM=UPDATE |

//COBL0S5 DD DSNAME=+*. 31 COBLO1
//COBLO7 DD # ‘

|
|

The DD statement COBLdS in job step S2
indicates the data set (OUT) is defined in
the DD statement COBLU1 in job step S1.

.

Referring to a Data set in a Cataloged
Procedure:

DSNAME=*.stepname.pro#step.ddname

indicates a data set that is defined in a
cataloged procedure invoked by a previous
job step in this job. The * indicates the
current job; "stepnamé" is the name of a
previous job step; "procstep" is the name
of a step in the cataloged procedure; and
"ddname" is the name of the DD statement
defining the data set.

Assigning Names to Temporary Data Sets:

DSNAME=¢&name
assigns a name to a |[temporary data set.

Job-Control Language 23

The control program assigns the data set
a unique name which exists only until the
end of the current job. The data set may
be accessed in following job steps by
éname. This option is useful in passing
an object module from a compiler job step
to a linkage editor job step.

DSNAME=§&name(element)

assigns a name to a member of a temporary
PDS. The name is assigned in the same
manner as the DSNAME=&name. This option
is useful in storing object modules that
will be linkage edited in a later job
step in the current job.

SPECIFYING THE DISPOSITION OF A DATA SET:
The DISP parameter is specified for both
previously created data sets and data sets
being created in this job step.

, DELETE
NEWY | , KEEP
DISP=({OLD , PASS)
MoD.J | ,CATLG

s UNCATLG

is used for all data sets residing on
magnetic tape or direct access volumes.

The first subparameter indicates when

the data: set is (was) created.

NEW

indicates that the data set is created in
this step. NEW is discussed in more
detail:in the section, Creating TLata
Sets.

OLD

indicates that the data set was created
by a previous job or job step.

MOD

indicates that the data set was created
in a previous job or job step, but
records are to be added to the data set.
Before the first I/0 operation for the
data set occurs, the data set is
positioned following the last record. If
a data set specified as MOD does not
exist, the specification is assumed to be
NEW.

The second subparameter indicates the

disposition of the data set.

DELETE

24

causes the space occupied by the data set
to be released and made available at the
end of the current job step. If the data
set was cataloged and the catalog was
used to retrieve it, it is removed from
the catalog.

IBM S/360 OS COBOL(E) Programmer's Guide

KEEP
ensures that the data set is kept intact
until a DELETE option is specified in a
subsequent job or job step. KEEP is used
to retain uncataloged data sets for
processing in future jobs. Keep does not
imply PASS.

PASS
indicates that the data set is referred
to in a later job step. When a
subsequent reference to the data set is
made, its PASS status lapses unless
another PASS is issued. The final
disposition of the data set should be
stated in the last job step that uses the
data set. When a data set is in PASS
status, the volume(s) on which it is
mounted is retained. If dismounting is
necessary, the control program issues a
message to mount the volume(s) when
needed. PASS is used to pass data sets
among job steps in the same job.

CATLG
causes the creation of a catalog entry
that points to the data set. The data
set can then be referred to in subsequent
jobs or job steps by name (CATLG implies
KEEP) .

UNCATLG
causes the data set to be removed from
the catalog at the end of the job step.

If the second subparameter is not
specified, no action is taken to alter the
status of the data set. If the data set
was created in this job (NEW), it is
deleted at the end of the current job step.
If the data set existed before this job
(MOD or OLD), it exists after the end of
the job.

DELIMITER STATEMENT

The delimiter statement (Figure 14) is used
to separate data from subsequent control
statements in the input stream, and is
placed after each data set in the input
stream.

The delimiter statement contains a slash
in column 1, an asterisk in column 2, and a
blank in column 3. The remainder of the
card may contain comments.

r T
| NAME | OPERATION OPERAND
L 4

e TS

¥ T
f7* |
L L

Figure 14. Delimiter Statement

Three steps are required to execute a COBOL
program: compiling, linkage editing, and
executing.

For each of the three steps involved in
processing, ddnames and device names are
specified by the operating system. These
ddnames, options for the compiler and
linkage editor, and specifying additional
libraries for the linkage editor are
discussed in this section.

The output of a single COBOL compilation
is an object module made up of one control
section. The name of the control section
is derived from the PROGRAM-ID statement in
the COBOL source program. A control
section is a unit of coding (instructions
and data) that is, in itself, an entity.
All elements of a control section are
loaded and executed in a constant
relationship to each other. A control
section is, therefore, the smallest
separately relocatable unit of a program.

USING CATALOGED PROCEDURES

Because writing job-control statements can
become time-consuming work for the
programmer, IBM supplies three cataloged
procedures to aid in the compiling, linkage
editing, and executing of COBOL-E programs.
Each procedure requires that a

//procstep.SYSIN DD

statement be provided in the input stream,
indicating the location of a source module
or object module to the control program.
The job-control statements needed to invoke
the procedures, and deck structures used
with the procedures, are described in the
following text.

COMPILE

COBEC is the cataloged procedure for
compilation. It is invoked by specifying
the name COBEC as the first parameter in an
EXEC statement.

(The cataloged procedure, COBEC,
consists of the control statements shown in
Figure 27 in Cataloged Procedures.)

JOB_PROCESSING

With the procedure COBEC, a DD statement
COB.SYSIN indicating the location of the
source module must be supplied in the input
stream. Figure 15 shows control statements
that can be used to invoke the procedure.

.
| 77/ jobname JOB
| // EXEC COBEC
|7//COB.SYSIN DD *

r 1
COBOL Source Module|
J

I
L
/*

e aal e p—— |

I
I
|
|
L

Figure 15. 1Invoking the Cataloged
Procedure COBEC

A sample deck struc#ure to compile a
source module is shown;in Figure 16.

r
|//JOBC JOB 00,COBOLPROG,MSGLEVEL~1
| //EXECC EXEC PROC=COBEC

| 7/COB.SYSIN DD *

1
COBOL Source Module|
J

r
I
L

/%

= o —— .
L R p———

Figure 16. Compiling a Source Module

\
|
The SYSIN data set containing the source
module is defined as data in the input
stream for the compiler. Note that a
delimiter statement follows the last COBOL
statement.

LINKAGE EDIT AND EXECUTE

COBELG is the cataloged procedure to
linkage edit COBOL object modules and
execute the resulting load module. It is
invoked by specifying the name COBELG as
the first parameter in an EXEC statement.

(The cataloged procedure to linkage edit
and execute consists of the control
statements shown in Figure 28 in Cataloged
Procedures.)

With the procedure COBELG, a DD
statement LKED.SYSIN, which indicates the
location of the object module, must be
supplied.

Job Processing 25

Figure 17 shows control statements that
can be used to invoke the COBELG cataloged
procedure.

i _
|7/ jobname JOB

| 7/ EXEC COBELG
|//LKED.SYSIN DD *

1
COBOL Object Module]
(]

I
|L
[7%
L

L T R —— |

Figure 17. Invoking the Cataloged

Procedure COBELG

A sample deck structure to linkage edit
and execute, as one load module, several
object modules entered in the input stream
is shown in Figure 18.

.
|//J0OBBLG JOB 00,ECOBOL, MSGLEVEL=1
| //ZEXECLG EXEC PROC=COBELG

| //LKED,SYSIN DD *

=

1
| First COBOL Object Module |
L J

1
Last COBOL Object Module |
J

*

N —=
e e o e s e e e e e o e e =

|
|
|
|
| .
I
|
|
|
L

Figure 18. Linkage Edit and Execute

The object module decks were created by
the DECK compiler option. The linkage
editor recognizes the end of one module and
the beginning of another, and resolves
references between them.

Figure 19 shows a sample deck structure
to linkage edit object modules that are
within a cataloged sequential data set,
OBJMODS, and subsequently execute the
program.

] 1
|//JOBBLG JOB 00,ECOBOL,MSGLEVEIL=1 |
| //EXECLG EXEC COBELG |
| //LKED.SYSIN DD DSNAME=OBJMODS,DISP=OLD |
|7//GO.SYSIN DD #* |
Ir 1 |
11 Data | |
It 4 I
|/* |
L —_— ¥
Figure 19. Linkage Edit and Execute

(Object Modules in a Cataloged
Data Set)

26 IBM S/360 OS COBOL(E) Programmer's Guide

COMPILE, LINKAGE EDIT, AND EXECUTE

The third cataloged procedure, COBECILG,
passes a source module through three
procedure steps: compile, linkage edit,
and execute. The cataloged procedure is
invoked by specifying the name COBECLG as
the first parameter in an EXEC statement.

(Figure 29 in Cataloged Procedures shows
the statements that make up the cataloged
procedure, COBECLG.)

The SYSIN data set (source module) must
be defined to the compiler. Figure 20
shows statements that can be used to invoke
the procedure, COBECLG.

.
| 7/jobname JOB

|77/ EXEC PROC=COBECLG
| #7/COB.SYSIN DD *

a1
COBOL Source Module|
J

r
|
L
/%

o o o e e
b e e e s e e, e 0l

Figure 20. Invoking the Cataloged

Procedure, COBECIG

Figure 21 shows a sample deck structure
to compile, linkage edit, and execute a
source module.

r
| #//JOBCLG JOB 00, ECOBOIL,MSGLEVEL=1
| /7/EXECC EXEC COBECLG

|7/COB.SYSIN DD *

N
COBOL Source Module|
J

r
|
L
/*

b . o s — e e .)

Figure 21. Compile, Linkage Edit, and

Execute

COMPILER PROCESSING

The names for DD statements (ddnames)
relate I/0 statements in the compiler with
data sets used by the compiler. These
ddnames must be used for the compiler.

When the system is generated, names for I/0
device classes are also established and
must be used by the programmer.

Compiler Name

The program name for the compiler is
IEPCBLOO. If the compiler is to be
executed without using the supplied
cataloged procedures in a job step, the
EXEC statement parameter

PGM=IEPCBL00

must be used.

Compiler ddnames

The compiler can use up to eight data sets.
To establish communication between the
compiler and the programmer, each data set
is assigned a specific ddname. Each data
set has a specific function and device
requirement. Table 2 lists the ddnames,
functions, and device requirements for the
data sets.

Table 2. Compiler ddnames

v L} T L]
| | | DEVICE |
[ddname | FUNCTION | REQUIREMENTS |
k + t 1
SYSIN	reading the	® card reader
	source program	e intermediate
		storage
k + + 1		
SYSPRINT	writing the	* printer
	storage map,	* intermediate
	listings, and	storage
	messages	
: —- 1 1		
SYSPUNCH	punching the	card punch
	object module	e direct-access
[deck, or creat-	e magnetic tape
	ing an object	
	module data	set
	as input to ithe	
i	linkage editor	
b ¥ — 1		
SYSUTL	work data set	® direct-access
	needed by the	* magnetic tape]
	compiler during	
	compilation	
t + t 4		
SYSUT2	work data set	* direct-access
	needed by the	* magnetic tape]
	compiler during	
	compilation	
b $ $ 1		
sYsSuT3	work data set	® direct-access
	needed by the	®* magnetic tape
	compiler during	
	compilation	
.L == ¥ !		
SYsuT4	optional work	® direct-access
	data set needed	e magnetic tape
	when using	
	debug packeti(s)	
’ t + i		
SYSLIB	optional user	e direct-access
	source program	
	library	
L .L L J

To compile a COBOL source module, five

of these data sets are necessary: SYSIN,
SYSPRINT, SYSUT1, SYSUT2, and SYSUT3, along
with the direct—accessivolume(s) that
contains the operating system. With these
five data sets, only a}listing is generated
by the compiler. If an object module is to
be punched or written on a direct-access or
magnetic tape volume, a SYSPUNCH DD
statement must be supplied. If the debug
packet(s) is to be used, a SYSUT4 DD
statement must be supplied. If the
compiler is to COPY or INCLUDE a
source-language module| from the user's
source program library, a SYSLIB DD
statement must be supplied.

For the DD statement SYSIN or SYSPRINT,

an intermediate storagée device may be
specified instead of the card reader or

Job Processing 27

printer. The intermediate storage device
usually is magnetic tape, but can be a
direct-access device.

If an intermediate device is specified
for SYSIN, the compiler assumes that the
source module deck was placed on
intermediate storage by a previous job or
job step. If an intermediate device is
specified for SYSPRINT, the maps, listing,
and error/warning messages are written on
that device; a new job or job step can
print the contents of the data set.

Compiler Device Classes

Names for input/output device classes used
for compilation are also specified by the
operating system when the system is
generated. The class names, functions, and
types of devices are shown in Table 3.

Table 3. Device Class Names

T LB 1 1
|cLASS| | |
| NAME |CLASS FUNCTIONS |DEVICE TYPE |
L 1 1 4
r] T 1
| S¥YssQ|writing, |+ direct-access |
| | reading |+ magnetic tape |
i s i {
T ¥ |

| SYSDA|writing, | direct-access |
| | reading | |
e ¢ :
| SYSCP | punching cards |e card punch |
1 1 iy *
] 1 I

|A | SYSOUT output |e printer |
| | | » magnetic tape |
L L L J

The data sets used by the compiler must
be assigned to the device classes listed in
Table 4.

28

IBM S/360 0OS COBOL(E) Programmer's Guide

Table 4. Correspondence Between Compiler
ddnames and Device Classes

r T 1
{ddname |POSSIBLE DEVICE CLASSES]
L 1 }
LB 1 1]
SYSIN	S¥SsQ, or the input stream
	device (specified by DD * or DD
	DATR)
.L +	
SYSPRINT	A, SYSSQ,SYSDA
L [4	
1 T a1	
SYSPUNCH	SYSCP, SYSSQ, SYSDA
t +	
SYSUT1	SYSSQ,SYSDA
L] J	
r) 1	
SYSUT2	SYSSQ,SYSDA
1 [d	
¥ T 1	
SYSUT3	SYSSQ,SYSDA
i 1 d	
r T 1	
SYSUT4	SYSSQ,SYSDA I
t 4 1	
SYSLIB	SYSDA
L 1 '}

r
I[PARM

PARM.procstep(=([LINECNT=nnl [,BUFSIZE=nn]l
|

[, DECK FLAGE | [, LIST
, NODECK| |, FLAGW || , NOLIST
L .

[,pMAP | [, PMAP ,MAPS

, NODMAP| | ,NOPMAP| | , NOMAPS
—

[, DISPCK

+ REGED
, NODISPCK]| | ,INVED |)

[o S et o .

1

|
I
|
!
|
I
|
|
I
|
4

Figure 22. Compiler Options

Compiler Options

Options (Figure 22) may be passed to the
compiler through the PARM parameter in the
EXEC statement. The following information
may be specified:

1. The number of lines to be printed per
page on the compiler output listing.

2. The size of each of the six work
buffers used during a compilation.

3. Whether an object module is created.

4. The type of diagnostic messages to be
generated by the compiler.

5. Whether a list of the source
statements is printed.

6. Whether a list of data-name addresses

is generated.

7. Whether a list of object code is
generated.

8. Whether a list of both data-name
addresses and object code is
generated.

9. Whether the compiler will generate
object code to test length of fields
to be DISPLAYed.

10. The type of editing performed in the

PICTURE clause and numeric literals.

There is no specified order for compiler
options in the PARM parameter.

LINECNT=nn: The LINECNT option indicates
the number of lines to be printed on each
page of the compilation output listing.

The programmer specifies a number nn, where
nn is a 2-digit integer in the range of 10
to 99. If the option is not specified, the
number of lines per page will be that
specified when the system was generated.

BUFSIZE=nn: The BUFSIZE option indicates
the size of each of the six work buffers
used during a COBOL compilation. The
BUFSIZE parameter should not be used on a
32K system. The following formula can be
used to determine the maximum value to be
used for this parameter.

C = 30000 - [(13 + I)(N)]
6

S =

S is the size of each work buffer

C is the total main storage

L is the length of the average data
name

N is the

where:

number of data names.

If the work buffers are for disk, the
maximum value of S is 3625. If the work
buffers are for tape, the maximum value of
S is 32670. If the option is not
specified, the buffer size will be that
specified when the system was generated.

DECK orxr NODECK: The DECK option specifies
that the compiled source module (i.e., the
object module) is written on the data set
specified by the SYSPUNCH DD statement.
NODECK specifies that no object module is
written. A description of the deck is
given in the section, System Output.
neither option is specified, an object
module is produced.

If

FLAGE oxr FLAGW: The FLAGE option specifies
that the compiler will suppress warning
diagnostic messages. The FLAGW option
specifies that the compiler will generate
diagnostic messages for actual errors in
the source module, plus warning diagnostic
messages for possible errors. Diagnostic
messages are written on the data set

specified by the SYSPRX
neither option is speci
diagnostic message prod
specified when the syst

LIST or NOLIST: The LI
that the source listing
data set specified by t
statement. The NOLIST!
that no source listing!
description of the sour
in the section, System.

NT DD statement. If
fied, the class of
uced is that

em was generated.

ST option specifies
is written on the
he SYSPRINT DD
option indicates

is written. A

ce listing is given

Output. If neither

option is specified, a;
produced. !

source listing is

DMAP or NODMAP: The DMAP option specifies

that the compiler will:
of the DATA DIVISION dg
addresses relative to t
object module. The lis
the data set specified
statement. The NODMAP
that a data-name listin
generated. If neither
specified, the option t
specified when the syst

PMAP or NOPMAP: The PM
that the compiler will
of object code for each
PROCEDURE DIVISION. Th
on the data set specifi
DD statement.

that a listing
generated. If
specified, the
specified when

of objec
the syst

MAPS or NOMAPS: The MA|
equivalent to specifyin
PMAP. The NOMAPS optio
specifying both NODMAP

DISPCK or NODISPCK: Th
specifies that the comp
object code that will t
time, to determine if a
DISPLAYed exceeds the r
device on which it is t
NODISPCK option specifi
will be generated. If
NODISPCK is specified,
will be that specified
generated.

REGED or INVED: The RE
that the character".”
point and the character

generate a listing
ta-names and their
he load point of the
ting is written on
by the SYSPRINT DD
option specifies

g will not be

DMAP nor NODMAP is

aken will be that
em was generated.

AP option specifies

generate a listing

statement in the
e listing is written
ed by the SYSPRINT

The NOPMAP option specifies

t code will not be

neither PMAP nor NOPMAP is
option taken will be that

em was generated.

PS option is

g both DMAP and

n is equivalent to
and NOPMAP.

e DISPCK option

iler will generate
est, at execution

. field to be

ecord length of the
o be written. The
2s that no such code
neither DISPCK nor
the option taken
when the system was

GED option specifies
represents a decimal
"," represents an

insertion character. The INVED option

specifies that the abov
characters ".", "," be

e rolls of these
reversed

:Job Processing 29

LINKAGE EDITOR PROCESSING

The linkage editor processes COBOL object
modules, COBOL subroutines, resolves any
references to subprograms, and constructs a
load module. To communicate with the
linkage editor, the programmer supplies an
EXEC statement and DD statements that
define all required data sets; he may also
supply linkage editor control statements.

LINKAGE EDITOR NAME

The program name for the linkage editor is
IEWL. If the linkage editor is executed
without using cataloged procedures in a job
step, the EXEC statement parameter

PGM=IEWL

must be used.

LINKAGE EDITOR INPUT AND OUTPUT

There are two types of input to the linkage
editor: primary and secondary.

Primary input is a sequential data set
that contains object mcdules and linkage
editor control statements. Any external
references among object modules in the
primary input are resolved by the linkage
editor as the primary input is processed.
Furthermore, the primary input contains
references to the secondary input. These
references are linkage editor control
statements and/or COBOL external references
in the object modules.

Secondary input resolves references and
is separated into two types: automatic
call library and additional input specified
by the programmer. The automatic call
library must always be the COBOL library
(5YS1.COBLIB), which is the PDS that
contains the COBOL object time subroutines.
Through the use of DD statements, the
automatic call library can be concatenated
with other partitioned data sets. Three
types of additional input may be specified
by the programmer:

1. An object module used as the main
program in the load module being
constructed. This object module, which
can be accompanied by linkage editor
control statements, is either a member
of a PDS or is a sequential data set.
The first record in the primary input
data set must be a linkage editor
INCLUDE control statement that tells

30 IBM S/360 OS COBOL(E) Programmer's Guide

the linkage editor to process the main
program.

2. An object module used to resolve
external references made in another
module. The object module, which can
be accompanied by linkage editor
control statements, is a sequential
data set. BAn INCLUDE statement that
defines the data set must be given.

3. A module used to resolve external
references made in another module. The
load module which can be accompanied by
linkage editor control statements, is a
member of a PDS. The module can be
included from the call library.

In addition, the secondary input can
contain external references and linkage
editor control statements. If a load
module is not in the automatic call
library, the linkage editor LIBRARY
statement can be used to direct the linkage
editor to reference additional libraries
during the automatic library call process.

The output load module of the linkage
editor is always placed in a PDS as a named
member. The name can be provided in the
SYSLMOD DD statement for the linkage editor
execution. For the execution of the load
module, this name can be used. Error
messages and optional diagnostic messages
are written on an intermediate storage
device or a printer. Also, a work data set
on a direct-access device is required by
the linkage editor to do its processing.
Figure 23 shows the I/O flow in linkage
editor processing.

LINKAGE EDITOR DDN S AND DEVICE CLASSES

The programmer communicates data set
information to the linkage editor through
DD statements identified by specific
ddnames (similar to the ddnames used by the
compiler). The ddnames, functions, and
requirements for data sets are shown in
Table 5.

Any data sets specified by SYSLIB or
SYSLMOD must be partitioned data sets.
(Additional inputs are partitioned data
sets or sequential data sets.) The ddname
for the DD statement that defines any
additional libraries or sequential data
sets is written in INCLUDE and LIBRARY
statements and is not fixed by the linkage
editor.

The device classes used by the compiler
(see Table 3) are also used with the
linkage editor. The data sets used by the
linkage editor may be assigned to the
device classes listed in Table 6.

SYSLIB SYSUTI SYSLMOD
Automatic Work Data utput
Call Library Set Module

Library
A
SYSLIN .
Linkage
Editor
Y
Diagnostic
Data Set
Additional —
Libraries SYSPRINT

Figure 23. Linkage Editor Input and Output

Table 5. Linkage Editor
ddnames

r

| ddname

-
T

T
| DEVICE |
FUNCTION |REQUIREMENTS |

|

| SYSLIN |primary input |0

| data, normally |e
| the output of .
|the compiler

direct access|
magnetic tape|
card reader |

|
| |
| | |
t 4 L 1
T - T . 1
| SYSLIB |automatic call |e direct access|
| | library | |
| | (5YS1.COBLIB) |]
b + t {
| sYsUT1 |work data set |e direct access|
L. [} 4
T 1 bl
| SYSPRINT |diagnostic |e printer
| | messages | intermediate
| | storage
| | device
{ 1
SYSLMOD	output data set	e direct access
for the load		
	module	
- ¥ |
user- |additional |* direct access|
specified|libraries and |e¢ magnetic tape|
| |object modules | |
L 3 L]

Table 6. Correspondence Between Linkage
Editor ddnames and Device Classes

r T 1
| ddname | POSSIBLE DEVICE CLASSES |
L [l

b 1 1
SYSLIN	S¥SsQ, SYSDA;, or the input
	stream device (specified
	by DD * or DD DATA)
[N] - 1	
r T] 1	
SYSLIB	SYSDA '
b t 1	
sysuT1	s¥sSpa
t + 1	
SYSLMOD	SYSDA ;
b ¥ 5 4	
SYSPRINT	A,SYSSQ ’
L [l J	
r v 1	
usexr-	SYSDA, SYSSQ
specified	
L 3

ADDITIONAL INPUT

The INCLUDE and LIBRARY|statements are used
to specify additional secondary input to
the linkage editor. Modules neither
specified by INCLUDE or| LIBRARY statements
nor contained in the primary input are
retrieved from the automatic call library.

INCLUDE Statement

T
Operation|Operand
[

T f
INCLUDE |ddnamel (member-name
| [,member-namel...)]
| [,ddnamel (member-name
| [, member-namel...)3}l...
H :

fon v e e e
S — A ER——

The INCLUDE statement is used to include
either members of additional libraries
(PDS) or sequential data sets. The
"ddname" specified a DD statement that
defines either a PDS copntaining object
modules and control statements or just load
modules, or defines a sequentlal data set
contalnlng object modules. The “member
name" is the name of a pember of a PDS and
is not used when a sequentlal data set is
specified.

The linkage editor processes the object
module or load module when the INCLUDE
statement is encountered.

| Job Processing 31

LIBRARY Statement

T

Operation|Operand
KN

L

+
IBRARY |ddname(member-name

| [,member-namel...)

| [,ddname {(member-name
| [,member-namel...)J...
1

[e s o . g e ey

[I -

The LIBRARY statement is used to include
members of additional libraries during the
automatic library call process. The
"ddname" must be the name of a DD statement
that specifies a PDS that contains either
object modules and linkage editor control
statements, or just load modules. The
"member name" is an external reference that
is unresolved after primary input
processing is complete.

The LIBRARY statement differs from the
INCLUDE statement in that external
references specified in the LIBRARY
statement are not resolved until all other
processing, except references reserved for
the automatic call library, is completed by
the linkage editor. (INCLUDE statements
resolve external references when the
INCLUDE statement is encountered.)

32 IBM S/360 OS COBOL(E) Programmer's Guide

Example: Twc subprograms, SUB1 and
SUB2, and a main program, MAIN, are
compiled by separate job steps. 1In
addition to the COBOL library, a private
library, MYLIB, is used to resolve external
references to the symbols X, ¥, and Z.

Each of the object modules is placed in a
sequential data set by the compiler, and
passed to the linkage editor job step.

Figure 24 shows the control statements
for this job. (Note: Cataloged procedures
are not used in this job.) In this job, an
additional library, MYLIB, is specified by
the LIBRARY statement and the ADDLIB DD
statement. SUB1 and 5UB2 are included in
the load module because SYSLIN input is the
§GOFILE data set containing the MAIN, SUBI1,
and SUB2 object modules. The MOD parameter
of DISP in STEP2 and STEP3 cause the SUB1
and SUB2 object modules to be added to the
sequential data set containing the MAIN
object module. The linkage editor input
stream, SYSLIN, is two concatenated data
sets. The first data set is the sequential
data set &GOFILE, which contains the MAIN,
SUB1, and SUB2 programs. The second data
set is the input stream containing the
LIBRARY statement. After linkage editor
execution, the load module is placed in the
PDS PROGLIB and given the name CALC, as
specified on the SYSLMOD DD statement for
STEPL.

; .
| 7730BX
|7/STEPL

JOB

EXEC PGM=IEPCBLO00O

| .
| .
I

| 7/SYSPUNCH DD
|//5YSIN DD *

| Source module for MAIN
|/ *

| 7/STEPZ

EXEC PGM=IEPCBLO0O

| .
{ .
|//SYSPUNCH DD

| 77SYSIN DD *

| Source module for SUB1
| 7*

|7/STEP3 EXEC PGM=IEPCBLOO

| .
|

| //SYSPUNCH DD
| 7/S¥YSIN DD *

| Source module for SUB2
|/*

| //STEPY EXEC PGM=IEWL

| .
l .
| 7/SYSLIB DD
|//SYSLMOD DD
| 7//ADDLIB DD DSNAME=MYLIB,DISP=OLD
|7/SYSLIN DD - DSNAME=§GOFILE,DISP=0LD
l77 DD *
| LIBRARY ADDLIB(X,Y,Z)
|7*

L

DSNAME=§GOFILE,DISP=(MOD) , UNIT=SYSSQ

DSNAME=6GOFILE, DISP=(MOD) , UNIT=SYSSQ

DSNAME=§GOFILE,DISP=(MOD) , UNIT=SYSSQ

DSNAME=SYS1.COBLIB, DISP=0OLD .
DSNAME=PROGLIB(CALC) ,UNIT=SYSDA

ot e T e R e o, - et —— — —— — — — i, S— S, S s, S— it — e, S S o S s S s, S o Sttt]

Figure 24. Linkage Editor Example

LINKAGE EDITOR PRIORITY

If control sections with the same name
appear in the input to linkage editor, the
linkage €editor inserts only one of the
control sections. The following priority
for control sections is ‘established by the
linkage editor:

1. Control sections appearing in SYSLIN or
control sections appearing in modules
identified by INCLUDE statements in
SYSLIN.

2. Contrpl sections in modules identified
by the LIBRARY statement.

3. Contrpl sections in modules appearing
in SYSLIB.

If control sections with the same name
appear inia single data set, only the
module encountered first is inserted in the
output 1oéd module.

OTHER LINKAGE EDITOR ¢ONTROL STATEMENTS
|

In addition to the LIBRARY and INCLUDE
statements, other control statements are
available for use with the linkage editor.
These statements enable the user

to: specify additional names for load
modules (ALIAS), replace control sections
within a load module (REPLACE), and change
control section names and subprogram entry
point names (CHANGE). : Also, two statements
(OVERLAY and INSERT) enable the programmer
to overlay load modules. For a detailed
description of these control statements,
see the publication, IBM System/360
Operating System: Linkage Editor.

Job Processing 33

ENTRY Statement

The ENTRY statement specifies the first
instruction to be executed.

T T
|Operation|Operand
L 1

+
|external name
L

s s e e el

1 3
| ENTRY
L —_

External name is defined as a control
section name or an entry name in a linkage
editor input module. It must be the name
of an instruction, not of data. In an
overlay program, the external name must be
defined as the name of an instruction in
the root segment.

OPTIONS FOR LINKAGE EDITOR PROCESSING

The linkage editor options are specified in
an EXEC statement. The options that are
most applicable to the CORBROL programmer
are:

PARM
PARM.procstep(=([XREF] [,LET] [, LIST])

XREF: The XREF option informs linkage
editor to produce a map of the load module;
this map indicates the relative location
and length of main programs and
subprograms. .Also, a cross-reference list
indicating all external references in each
main program and subprogram is generated.
Descriptions of the map and cross-reference
listing are given in System Output.

LET: The LET option informs linkage editor
to mark the load module ready for execution
even though error conditions were found.

LIST: The LIST option indicates that
linkage editor control statements are
listed in card-image format on the
diagnostic output data set.

Other options can also be specified for
the linkage editor. For a detailed
description of all linkage editor options,
see the publication, IBM System/360
Ooperating System: Linkage Editor.

10AD MODULE EXECUTION

When the system is generated, device names
are assigned by the operating system and
the installation. The programmer chooses
devices by specifying either the
installation or operating system names.

34 IBM S/360 OS COBOL(E) Programmer's Guide

Program Name

When "PGM=program name" is used to indicate
the execution of a load module, the module
must be in either the system library
(SYS1.LINKLIB) or a private library.
the module is in a private library, a
JOBLIB DD statement must be supplied to
indicate the name of the private library.
For example, assume that the load modules
FICA, FITX, and SITX are in the PDS
PAYROLL. These load modules are executed
as follows:

When

//JOBPAY JOB 00,ECOBOL
//JOBLIB DD DSNAME=PAYROLL,DISP=(OLD,PASS)
//STEP1 EXEC PGM-FICA

//STEP2 EXEC PGM=FITX

//STEP3 EXEC PGM=SITX

The JOBLIB DD statement concatenates the
private library PAYROLL with the system
library.

Execution ddnames

In the source module, data sets are
identified by the external names specified
in the environment division SELECT and
ASSGN clause. These names must correspond
to the ddname for the associated DD
statement at execution time.

Execution Error Messages

When an error condition recognized by
compiler-generated code arises during
execution, an error message is written on
the console typewriter. These messages,
with accompanying format and descriptions,
are shown in Appendix F.

SYSABEND Data Set

During execution of a load module, there
are various conditions that may arise to
cause the abnormal termination of the
execution. At this point, the programmer
could utilize an object-program

maLn-sforaQe dump for debugging purposes.
This is the function of a SYSABEND data
set.

When a SYSABEND data set is specified:

//SYSABEND DD SYSOUT=A

in the exe¢ution job step, the system
provides an object-program main-storage
dump on theé SYSOUT device whenever the job
step is abnormally terminated.

Execution bevice Classes

For load module execution, the programmer
can use the same names assigned to device
classes uséd by the compiler (shown in
Table 3). -However, additional names for
specific devices and device classes can be
assigned by the installation. The
programmer: can choose which device to use
for his data sets, and specify the name of
the device or class of devices in the UNIT
parameter of the DD statement.

DCB Parameter

The DCB parameter may be specified for data
sets when a load module is executed. For
information concerning the DCB parameter,
see Creating Data Sets.

Sc¢ratching Disk Data Sets

The catalgged procedures supplied by IBM
inform the operating system to scratch, at
the normaﬂ end of a job, the utility data
sets and the temporary data sets that are
passed from one job step to another. This
means thaﬁ both the disk area and data set
names are reusable for the next job to be
processed.

If a job terminates abnormally, a dump
of main storage is provided by the
operating system, after which the data sets
are scratched. However, there may be
instances where a job is abnormally
terminated without the system's providing a
dump of main storage, or an instance when
the programmer or operator manually
interrupts the complete generation of a
dump by the system. 1In these cases, the

data sets are not scratched automatically
by the operating system; they must be
scratched by a system utility program,
IEHPROGM. For a descrlptlon of this
utility program, see the publication IBM
System/360 Operating System: Utilities.
An example of scratching a data set is
shown in Appendix A of this publication.

In some cases, the d%name is that which
is provided in the DD statement. However,
some utility data sets do not have external
dsnames assigned (such as SYSUT1, SYSUT2,
etc.) in the cataloged procedures. 1In
these cases, the operatlng system assigns

an internal temporary dsname in the format

AAAAAAAA.AAAAAAAA.AAAAAAAA. AAAAAAAA.
nnnnnnnn

where n denotes a digit from 0 through 9.

To obtain the internally assigned
dsnames, the system utility program IEHLIST
must be executed. This utility program
provides a listing of the Volume Table of
Contents (VTOC) on the idisk pack. All
internal dsnames will appear on the VTOC
listing and will be in the preceding
format. These internal dsnames can then be
specified to the scratch utility program
IEHPROGM.

The following example shows the control
statements required to .execute the IEHLIST
utility program.

//L1ST JOB 123,DOE, MSGLEVEL=1

// EXEC PGM=IEHLIST ;

//SYSPRINT DD SYSOUT=A

//DbD1 DD UNIT=2311,DISP=OLD

//DD2 DD UNIT=2311,DISP=OLD, X
7/ VOLUME=SER=222222

//SYSIN DD * :
LISTVTO¢ VOL=2311=222222
/% :

The //SYSPRINT statément specifies the
device on which the listing will be
created. The //DD1 statement specifies the
system residence volumg The //DD2
statement specifies a mountable volume.

The LISTVTOC statement:specifies the
specific device from which the VTOC is to
be listed. 1If the VOL/ operand is omitted,
the system residence volume is assumed.

The following exampie shows the control
statements required to! execute the IEHPROGM
utility program, which scratches the data
set.

Job Processing 35

//SCR JOB ,SCRATCH,MSGLEVEL=1
//STP EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A

//DD1 DD UNIT=2311,DISP=OLD

//DD2 DD UNIT=2311,DISP=0OLD, X
7/ VOLUME=SER=222222
//SYSIN DD *

SCRATCH DSNAME=+.+.+.+.%, 1

VOL=2311=222222

SCRATCH DSNAME=LOADSET, 1
VOL=2311=222222
SCRATCH DSNAME=GODATA.RUN,
VOL=2311=222222

=

Ve

NOTE
The entry for the DSNAME of the SCRATCH
statement must be one continuous line of
code. Therefore, for each + appearing in
the statement just illustrated, substitute
ARAAAARAR (four are required); for #,
substitute 00000001.

The last SCRATCH statement (GODATA.RUN)
assumes that the COBECLG catalog procedure
was used, and the job name given in the job
card was RUN.

36 IBM S/360 OS COBOL(E) Programmer's Guide

Data set$s may be created in either of two
ways:

1. By writing a COBOL source program and
executing it with the proper DD
statements.

2. By using a data set utility program.
(The publication, IBM System/360
Operating System: Utilities, discusses
data set utility programs.)

This section discusses the use of the DD
statement.

To create data sets, the DSNAME, UNIT,
VOLUME, S$PACE, LABEL, DISP, SYSOUT, and DCB
parameters are of special significance (see
Figure 25). These parameters specify:

DSNAME - name of the data set

UNIT - class of devices used for the data
set

VOLUME - volume on which the data set
resides

IABEL - Label specification

DISP - the disposition of the data set
before and after the job step

SYSOUT - ultimate device for unit record
data sets

DCB - tape density, record format,

record length, etc.

Examples of DD statements used to create
data set$s are shown in Figure 26.

DATA SET NAME

DUMMY

is specified in the DD statement to
inhibit write operations specified for the

data set. The write

recognized, but no da
(When the programmer

DD statement used to

procedure, all parame
DD statement are over
programmer should not
data set that is to b
data set condition re
execution of the load

CREATING DATA SETS

statement is
ta is transmitted.
specifies DUMMY in a
override a cataloged
ters in the cataloged
ridden.) The

specify DUMMY for a
e read: an end of
sults, and the

module is terminated.

Because dummy is a positional parameter, no

keyword parameters ma
it.

y be specified with

The DSNAME parameter specifies the name

of the data set.

Only four forms of the

DSNAME parameter are msed to create data

sets.

DSNAME=dsname
DSNAME=dsname (elemen

dsname

specifies the fully
data set. This is th
can be cataloged or t

dsname(element)

i
t)
qualified name of a

e name under which it
abulated.

specifies a particular generation of a

generation data group
partitioned data set,
indexed sequential da
generation of a gener
element is a zero or
indicate a member of
set, the element is a
area of an indexed se

element is PRIME, OVFLOW, or INDEX.

significance of the e
sequential data sets
Allocating Space for

, a member of a

or an area of an
ta set. To indicate a
ation data group, the
a signed integer. To
a partitioned data

name. To indicate an
quential data set, the
The

lements for indexed
is described under
Indexed Sequential

Data_Sets.

DSNAME=&name
DSNAME=¢&name (element]

specify data sets th
created for the execu
or job step.

)

at are temporarily
tion of a single job

reating Data Sets @37

{DUMMY }
dsname
DSNAME=) dsname (element)
&name
éname (element)
DDNAME=ddname
UNIT=(namel,nl)?*
VOLUME=([PRIVATE] [, RETAIN] [, volume-sequence-number] [,volume-count]

, SER=(volume-serial-number [, volume-serial-numberl...)=

sname
* . ddname
 REF=\ *, stepname. ddname)3
*.stepname.procstep.ddname
(TRK)
SPACE=({CYL },(primary—quantity[,secondary—quantity]
average-record-length
,MXIG
< {,directory or index quantityl) [,RLSE]|,ALX [,ROUND]) &
,CONTIG
SPLIT=(n,| JCYL ([(primary guantity, {secondary quantityl)l)
average record length
- J

,NL| | , EXPDT=yyddd|)*=
LABEL= ([data~set~-sequence-number]l) ,SL(|,RETPD=XXXX

SYSOUT=A
,DELETE
NEWY | ,KEEP
DISP=({0LD} ,PASS e
Mop) | ,CATIG
,UNCATLG

0 [o]
DCB=([DEN={1}][,TRTCH= E \J[,CODE=
2 T

T

Zldp oA
e

0

{,PRTSP=) 1 \1 [, MODE {C}JI,STACK={é}}
2
3

E 2
W ACC

[,OPTCD={ C }][,EROPT— SKP}][,BUFNO=nn])
WC. ABE

[e o o S . i P S G e b ot S e T S . e — T P — — ————— — SOt 4o o {— o Sttt S ——— i S T s, e . e e . e s, i, S s e S, S

"

e e e o e s s — e — ——— (S o — — — — ——— —— —— —— — — ———— — — — — — —— ——— ——— ——— —— — {— — — — —— o— t——

Figure 25. DD Parameters for Creating Data Sets (Part 1 of 2)

38 IBM S/360 O0S COBOL(E) Programmer's Guide

P

N

omitted.

W

subparameters.

£

L]

positional subparameters.

-]

[o . . e s e e . . e o e e e)

If only "name" is specified, the delimiting parentheses may be omitted.

If only one "volume-serial-number" is specified, the delimiting| parentheses may be
SER @dnd REF are keyword subparameters; the remaining subparameters are positional

All subparameters are positional subparameters.

EXPDT and RETPD are keyword subparameters; the remaining subparameters are

All subparameters are keyword subparameters.

b e e e s S — — — — — — — . vt]

Figure 25.

DD Parameters for Creating Data Sets (Part 2 of 2)

Vo DCB=(DEN=1, TRTCH=ET) , UNIT=(2400,2)

r] 1
| Example 1: Creating a Cataloged Data Set |
I ! |
| //CALC DD DSNAME=PROCESS,DISP=(NEW,CATLG),LABEL=(,SL,EXPDT=66031);, 1]
| 77 UNIT=DACLASS, VOLUME=(PRIVATE, RETAIN, SER=AA69) , 2 |
| 77 SPACE=(300(100,100), ,CONTIG,ROUND) |
| |
| Example 2: Creating a Data Set for a Job |
I ' |
| //5YSUT1 DD DSNAME=§TEMP,UNIT=(TAPECLS,3),DISP=(NEW,PASS), : 1|
| 77 VOLUME= (, RETAIN,1,9,SER=(777,888,999)), : 2 |
| 77 DCB=(DEN=2) |
| |
| Example 3: Specifying a SYSOUT Date Set |
| I
| //5YSPRINT DD SYSOUT=A |
| |
| Example 4: Creating a Data Set that Is Kept, but Not Cataloged |
| |
| //TEMPFILE DD DSNAME=FILE, DISP=(,KEEP), 1|
| 77/ DCB=(DEN=2) |
I |
| Example 5: Creating a Data Set on a 7-Track Tape

I I
| //TEMPFILE DD DSNAME=FILE,DISP=(0OLD,KEEP), 1|
| 77 VOLUME= (PRIVATE,, ,SER=222,333), 2 |
| |
L J

Figure 26. Examples of DD Statements

DDNAME=ddname

indicates a DUMMY data set that will assume
the characteristics specified in a
following DD statement "ddname". The DD
statement identified by "ddname" then loses
its idenﬁity; that is, it cannot be
referred to by an *....ddname parameter.
The statement in which the DDNAME parameter
appears may be referenced by subsequent
*....ddname parameters. If a subsequent
statement identified by "ddname" does not
appear, the data set defined by the DD
statement containing the DDNAME parameter

is assumed to be an unused statement. The
DDNAME parameter can be used five times in
any given job step or] procedure step, and
no two uses can refer to the same "ddname".
The DDNAME parameter |is used mainly for
cataloged procedures.

Creating Data Sets 39

SPECIFYING I/0 DEVICES

The name of an input/output device or class
of devices and the number of devices are
specified in the UNIT parameter.
UNIT=(namel,nl)

name

is the name assigned to the input/output

device classes when the system is
generated, or an absolute device address.

[,n]
specifies the number-of devices allocated

to the data set. If this parameter is
omitted, 1 is assumed.

SPECIFYING VOLUMES

The programmer indicates the volumes used
for the data set in the VOLUME parameter.

VOLUME= ([PRIVATE] [,RETAIN]
[, volume-sequence-number]
[,volume-count]

¢ SER=(volume-serial-number
[,volume-serial-numberl...)

dsname

REF=/ ¥, ddname)
*,stepname. ddname
*.stepname. procstep.ddname

identifies the volume(s) assigned to the
data set.

PRIVATE

is used only for direct-access volumes.
This option indicates that the assigned
volume is to contain only the data set
defined by this DD statement. PRIVATE is
overridden when the DD statement for a data
set requests the use of the private volume
with the SER or REF subparameter. Volumes
other than direct-access volumes are always
‘considered PRIVATE.

RETAIN

indicates that this volume is to remain
mounted after the job step is completed.
Volumes are retained so that data may be
transmitted to or from the data set, or so
that other data sets may reside in the
volume. If the data set requires more than
one volume, only the last volume is
retained; the other volumes are previously

40 IBM S/360 OS COBOL(E) Programmer's Guide

dismounted. Another job step indicates
when to dismount the volume by omitting
RETAIN. If each job step issues a RETAIN
for the volume, the retained status lapses
when execution of the job is completed.

volume-sequence-number

is a one-to-four digit number that
specifies the sequence number of the first
volume of the data set that is read or
written. The volume sequence number is
meaningful only if the data set is
cataloged and earlier volumes omitted.

volume-count

specifies the number of volumes required by
the data set. Unless the SER or REF
subparameter is used this subparameter is
required for every multi-volume output data
set.

SER

specifies one or more serial numbers for
the volumes required by the data sets. A
volume serial number consists of one to six
alphameric characters. If it contains less
than six characters, the serial number is
left adjusted and padded with blanks. If
SER is not specified, and DISP is not
specified as NEW, the data set is assumed
to be cataloged and serial numbers are
retrieved from the catalog. A volume
serial number is not required for output
data sets.

REF

indicates that the data set is to occupy
the same volume(s) as the data set
identified by "dsname", "*.ddname",
"*.stepname.ddname", or
*.stepname. procstep.ddname.
the data set references.

Table 7 shows

Table 7; Data Set References
T * T 1
|OPTION' | REFERS TO]
1 4
1] 1
IREF—dshame |a data set named "dsname"|
e 1 1
REF=%, ddname	a data set indicated by
	DD statement "ddname" in
	the current job step
L .]	
r : T i	
REF=%*.stepname.	
ddname	a data set indicated by
	IDD statement "ddname" in
	the job step "stepname"
L - L [
¥ : T 4	
REF=*.gtepname.	
procstep.	
ddname	a data set indicated by
	DD statement "ddname® in
	the procedure step
	"procstep" invoked in the
	job step "stepname"
L L J

When the data set resides on a tape volume
and REF is specified, the data set is
placed on the same volume, immediately
behind the data set referred to by this
subparameter. When this subparameter is
‘used, the UNIT parameter may be omitted.

If SER or REF is not specified, the

control program will allocate any
nonprivate volume that is available.

SPECIFYiNG SPACE ON DIRECT-ACCESS VOLUMES

SPACE PZRAMETER
fTRK

SPACE=(CYL
!average—record-length ’
(primary-quantity
[,secondary-quantity]
[,directory or index quantityl)

« MXIG

,ALX
,CONTIG

[,RLSE] [,ROUND])

specifies space on a direct-access volume.
Although SPACE has no meaning for tape
volumes; if a data set is assigned to a
device class that contains both
dlrect—access devices and tape devices,
SPACE should be specified.

Noted For indexed sequential data
sets, oﬂly the CYL subparameter is
permltted. Neither the TRK subparameter
nor the :average record length can be

specified. When an indexed sequential
data set is defined by more than one DD
statement, all DD statements must contain
a SPACE parameter. For the details on how
t0o compute the space requirements of an
Indexed Sequential Data Set, refer to the
publication; IBM System/360 Operating
System: Control Program Services.

The SPACE specifies:

1. Units of measurement in which space is
allocated.

2. Amount of space allocated.’
3. Whether unused space can be released.
4. In what format space is allocated.

5. Whether space is to begin on a
cylinder boundary.

TRK
CYL
average-record-length

specifies the units of measurement in
which storage is assigned. The units may
be tracks (TRK), cylinders (CYL), or
records (average record length expressed
in decimal numbers).

(primary-quantityl[,secondary-quantityl
[,directory-quantityl)

specifies the amount of space allocated
for the data set.
!

The "primary quantity" indicates the
number of records, tracks, or cylinders to
be allocated when the job step begins.

For indexed sequential data sets, this
subparameter specifies the number of
cylinders for the prime, overflow, or
index area. For details of these

parameters, refer to Allocating Space for
Indexed Sequential Data Sets.

The "secondary quantity" indicates how
much space is to be allocated each time
previously allocated space is exhausted.
This subparameter must not be specified
when defining an indexed sequential data
set.

The "directory gquantity" is used only
when writing a PDS, and it specifies the
number of 256-byte records to reserve for
the directory of the PDS. The "index
quantity" specifies the number of
cylinders to be allocated for an index
area embedded within the prime area, when
a new indexed sequential data set is being
defined. For details of these parameters,
refer to Allocating Space for Indexed
Sequential Data Sets.

Creating Data Sets 41

For example, in the DD statement:
//TEMPFILE DD SPACE=(120, (400,100))

space is reserved for 400 records, the
average record length is 120 characters.
Each time space is exhausted, space for
100 additional records is allocated, for a
maximum of fifteen times.

In the statement:
//FICAFILE DD SPACE=(CYL, (20,2,5))

20 cylinders are allocated to the data
set. When previously allocated space is
exhausted, two additional cylinders are
allocated. In addition, space is reserved
for five records in the directory of a
PDS. Each record can contain seven
members.

RLSE

indicates that all unused external storage
assigned to this data set is released when
processing of the data set is completed.

MXIG
ALX
CONTIG

specify the format of the space allocated
to the data set. MXIG requests the
largest single block of storage that is
greater than or equal to the space
requested in the "primary quantity". ALX
requests up to five contiguous blocks of
storage, each block greater than the
"primary quantity". CONTIG requests that
the space indicated in the "primary
quantity" be contiguous.

If the subparameter is not specified,
or if any option cannot be fulfilled, the
operating system attempts to assign
contiguous space. If there is not enough
contiguous space, up to five noncontiguous
areas are allocated.

For indexed sequential data sets, RLSE,
MXIG, ALX, or ROUND must not be specified;
only CONTIG or blank (none of these
subparameters) is permitted.

ROUND

indicates that allocation of space for the
specified number of records is to begin
and end on a cylinder boundary.

Note: The SPACE parameter in the DD
statement must be used if a data set might
be written on a direct-access device. For
the compiler, the programmer should allow
150 characters per source statement in the
"primary quantity" for each data set
except SYSPRINT. For SYSPRINT, he should

42 IBM S/360 OS COBOL(E) Programmer's Guide

allow approximately 220 characters per
source statement.

SPLIT PARAMETER

SPLIT=(n, CYL
average reccrd length

[primary quantity,
[secondaryl)1)

The split (SPLIT) parameter is specified
when other data sets in the job step
require space on the same volume, and the
user wishes to minimize access arm
movement by sharing cylinders with the
other data sets. The device is then said
to be operating in a split cylinder mode.
In this mode, two or more data sets are
stored so that portions of each occupy
tracks within every allocated cylinder.

A group of data sets that share
cylinders on the same device is defined by
a sequence of DD statements. The first
statement in the sequence must specify all
parameters except "secondary quantity,"
which is optional. Each of the statements
that follow must specify only n, the
amount of space required.

n Indicates the number of tracks
per cylinder to be used for this
data set if CYL is specified.

If the average record length is
specified, n is the percentage
of the tracks per cylinder to be
used for this data set.

CYL
average
record
length Indicates the units in which the
space requirements are expressed
in the next subparameter. The
units may be cylinders (CYL) or
physical records (in which case
the average record length in
bytes is specified as a decimal
number not exceeding 65,535).

If the average record length is
given, and the data set is
defined to have a key, the key
length must be given in the DCB
parameter of this DD statement.

primary
quantity Defines the number of cylinders
or space for records to be
allocated to the entire group of

data sets.

secondary
quantity Defines the number of cylinders
or space for records to be

allocated each time the space

allocated to any of the data
sets in the group has been
exhausted and more data is to be
written. This quantity will not
be split.

LABEL INFORMATION

If the programmer wishes to catalog a data
set so that he can refer to it without
repeating information that was supplied
when thel data set was created, he must
specify certain information in the LABEL
parameter. If the parameter is omitted
and the data set is cataloged or passed,
the label information is retrieved from
data set labels stored with the data set.

, NL
LABEL=([data set sequence number]{;§é}

s EXPDT=yyddd |
» RETPD=XXXX

data-set~sequence-number

is a 4-digit number that identifies the
relative location of the data set with
respect to the first data set on a tape
volume. (For example, if there are three
data sets5 on a magnetic tape volume, the
third data set is identified by data set
sequence number 3.) If the data set
sequence number is not specified, the
operating system assumes 1. (This option
should not be confused with the volume
sequence number, which represents a
particular volume for a data set.)

&)

specifies whether standard labels exist
for a data set. SL indicates standard
labels. NL indicates no labels.

EXPDT=yyddd
RETPD=XXXX

specifies how long the data set shall
exist. The expiration date, EXPDT=yyddd,
indicates the year (yy) and the day (ddd)
the data set can be deleted. The period
of retention, RETPD=xxxX, indicates the
period of time, in days, that the data set
is to be retained. If neither is
specified, the retention period is assumed
to be zero.

DISPOSITION OF A DATA SET

The disposition of a data set is specified
by the DISP parameter; see Data Definition
(DD) Statement. The same options are used
for both creating data sets and using
previously created data sets. When a data
set is created, the subparameters used are
NEW, KEEP, PASS, and CATLG.

WRITING A UNIT RECORD DATA SET ON THE
PRINTER

A printed output data set may be written
using the following parameter.

SYSOUT=A

DCB PARAMETER

For load module execution, the COBOL
programmer may specify the details of a
data set by using COBOL source statements
and DD statement subparameters of the DCB
parameter. The illustrations given in the
following are examples of DCB
subparameters for processing these file
organizations:

s Sequential

e Indexed Sequential

e Direct or Relative

Sequentially organized data sets may
reside on magnetic tape or direct-access
volumes. Direct relative or indexed files
must reside on direct-access volumes.

Note that some DCB subparameter values
(see Tables 10, 11, and 12) may be
supplied by DD statements; other values
are supplied either by certain COBOL
source statements or by the COBOL
compiler.

DCB FOR PROCESSING SEQUENTIAL DATA SET

DCB= ([DEN={0]1]2}]
[, TRTCH={C|E|T|ET|U|UC}]
[,PRTSP={0|1]|2]|3}]
[,MODE={C|E}] [,STACK={1]2}]
[,OPTCD={W{|C|WC}] [ERROPT={ACC|SKP|ABE}1}
[,DSORG=PS] [, MACRF=({GL|PL|GL, PL})
[,DDNAME=symboll [, RECFM={F|U|V}
[, LRECL=absexpl [,BLKSIZE=absexp]
[, BFTEK=S] [, BUFNO=absexp]
[,BFALN= F D 1}1[,BUFL=absexp]
[, BUFCB=relexpl [,EODAD=relexpl
[,SYNAD=relexpl)

Creating Data Sets 43

A description of the DCB subparameters
follows.

DEN={0]1]2}

can be used with magnetic tape, and
specifies a value for the tape recording
density in bits per inch as listed in
Table 8.

Table 8. DEN Values
r T |
|DEN |TAPE RECORDING DENSITY (BITS/INCH) |
I -
[value| Model 2400 |
| b 1
| | 7 Track 9 Track |
F + -1
| o | 200 - I
[1 | 556 - [
| 2 | 800 800 i
i 41 (]

TRTCE={C|E|T|ET|U|UC|}

is used as with 7-track tape to specify
the tape recording technique, as follows:
C - specifies that the data conversion
feature is to be used; if data
conversion is not available, only
format-F and -U records are supported
by the control program.

specifies that even parity is to be
used; if omitted, odd parity is
assumed.

specifies that BCDIC to EBCDIC
translation is required.

specifies that even parity is to be
used and BCDIC to EBCDIC translation
is required.

unblock (permit) data checks on a
printer with the Universal Character
Set feature.

UC- unblock data checks on a printer and

use chained scheduling.
PRTSP={0|1]| 2|3}

specifies the line spacing on a printer as
0o, 1, 2, or 3.

MODE={C|E}

can be used with a card reader, a card
punch, or a card read punch and specifies
the mode of operation as follows:

C - the card image (column binary) mode

E - the EBCDIC code

4y

IBM S/360 OS COBOL(E) Programmer's Guide

If this information is not supplied by
any source, E is assumed.

STACK={1}] 2}

can be used with a card reader, a card
punch, or a card read punch and specifies
which stacker bin is to receive the card.
Either 1 or 2 is specified. If this
information is not supplied by any source,
1 is assumed.

OPTCD={W|C|WC}

specifies an optional service to be
performed by the control program, as
follows.

W - perform a write validity check (on
direct-access devices only).

C - process

method.

using the chained scheduling

WC- perform a validity check and use
chained scheduling.

If this information is not supplied by any
source, none of the services are provided.

EROPT={ACC|SKP|ABE}

specifies the option to be executed if an
error occurs and either there is no
synchronous exceptional error (SYNAD) exit
routine or there is a SYNAD routine and
the programmer wishes to return from it to
his processing program. One of the
following is specified:

ACC - accept error block

SKP - skip error block

ABE - terminate the task

Table 9 indicates the choices that are

permitted for each type of data set
processing.

Table 9. Erxror Options for QSAM
r T |
| PROCESS DATA SET FOR|
| OPERAND } 1]
| | INPUT, RDBACK | OUTPUT |
b + 4 {
acc	X	x2
SKP	X	
ABE	X	X
% p L i		
*valid for printer only.		
L J

DSORG=PS

specifies the organization of the data set

as PS (a physical sequential
organization).

MACRF= ({GL| PL| GL, PL})

specifiés the types of macro instructions
that will be used in processing the data
sets, where:

G indicdtes the GET macro instruction,
P indicates the PUT macro instruction, and
L indicdtes locate-mode operation

DDNAME=s$ymbol

specifies the name of the DD statement
that will be used to describe the data set
to be processed.

RECFM={F|U|V}

specifie¢s the characteristics of the
recoxrds in the data set, where:

F - fixed-length records
U - undefined records
V - variable-length records

LRECL=absexp

specifies the length, in bytes, of a
format-F logical record or the maximum
length of a format-V logical record. This
operand is omitted for format-U records,
but must be supplied for format-F and -V
records. The maximum value is 32,760.

BLKSIZE=absexp

specifies the maximum length, in bytes, of
a block. For format-F records, the length
must be an integral multiple of the LRECL
value. For format-V records, the length
must inc¢lude the U-byte block-length field
that is:.recorded at the beginning of each
block. The maximum value is 32,760.

When :writing records on magnetic tape,
the block size should be at least 18
bytes. iShorter blocks will be treated as
noise records by the control-program
error-recovery routines.

BFTER=S

specifiés the type of buffering to be
supplied by the control program is S
(simple buffering).

BUFNO=absexp

specifies the number of buffers to be
assigned to the data control block. The
maximum number is 255.

BFALN={F|D}

specifies the boundary alignment, in
bytes, of each buffer, as follows:

F - the buffer starts on a full-word
boundary (one that is not necessarily
a double-word boundary).

D - the buffer starts on a double~word
boundary.

BUFL=absexp

specifies the length in bytes of each
buffer to be obtained for a buffer pool.
The maximum value is 32.760. If this
information is not supplied by any source,
the control program calculates the length
by using the value supplied for the
BLKSIZE operand.

BUFCB=relexp

specifies the address of a buffer pool
control block (i.e., the 8-byte field
preceding the buffers in a buffer pool).

EODAD=relexp

specifies the address of the user's
end-of-data set exit routine for input
data sets. This routine is entered when
the user requests a record and there are
no more records to be retrieved. If no
routine has been provided, the task is
abnormally terminated.

SYNAD=relexp

specifies the address of the user's
synchronous error exit routine. The
routine is entered if input/output errors
result from an attempt to process data
records. If no routine is specified and
an error occurs, the option specified by
the EROPT parameter is executed.

Table 10 shows the values supplied for
DCB subparameters by the COBOL compiler,
by statements in the COBOL source program,
and those subparameters that may be
supplied by a DD statement for a
sequential data set.

Creating Data Sets 45

| Table 10. DCB Subparameter Values For Sequential Data Set

DCB |Va1ue Supplied |Value Supplied |Value Supplied
Parameter |Unconditionally |by COBOL Source |by DD statement
| by COBOL Compllerlstatement

1
I |
| |
| | |
[N 1 (] .|
L) Ll f T
| DEN | | |DEN={0(112} |
L L [l 1 4
v T T L) 1
| TRTCH | | | TRTCH={C|E|T|ET|U}UC} |
L J L 1 J
L] 1 T T 1
| PRTSP | | |PRTSP={0[1]2]|3}]
L 1 1 4 d
r T T T t
| MODE | | | MODE={C | E} |
L 1 3 4 4
{ T T T 1
| STACK | | |STACK={1|2} |
b $——- ¥ $ 3
|oPTCD | | |OPTCD‘{W|C|WC} |
b= ¥ : t 1
| EROPT | | | EROPT={ACC|SKP|ABE} |
b= ¥ ¥ ¥ i
| DSORG | PS | | |
L 1 + iR — J
r T T A
| MACRF | GL | OPEN INPUT | i
| | PL | OPEN OUTPUT | |
| | 6L, PL |OPEN I-0 | |
L + 1 4 d
] T T T a
| DDNAME | |External-name in | |
| | |ASSIGN clause | |
L 1 4 [J
v T T T 1
| | | tRECORDING MODE | [
| RECFM | | BLOCK CONTAINS, | |
| | | ADVANCING clauses| |
et S + -+ {
| LRECL | |RECORD CONTAINS | [
| | | clause2 | |
L 1 1 4 J
r T T T b)
|BLKSIZE | | BLOCK CONTAINS | |
| | | clause? | |
L 1 i | 1 J
v T T T 1
| BFTEK i s i] |
.L 4 —— + -~ 1
| BUFNO# [|RESERVE clause |BUFNO=nn |
% ¥ 1 1 |
| BFLAN | D | | |
s l L [1
¥ T T T L]
|BUFL | 0s | | |
L L 1 |]
L) T T T 1
| BUFCB | | SAME AREA clause | |
L 1 BN 4 4
I T T I 1
| EODAD | | AT END clause | |
L — 1 1 4 J

I) T T 1) a
| SYNAD | |USE statement | |
I I joption 5 [I
L L L L - J
r 1
[Notes: |
|+ If RECORDING MODE is not specified in the source program, the compiler assumes a V |
| format. |
|2 The record length is calculated by the compiler. |
|3 If this clause is omitted, the data set is considered to be unblocked. |
|4 This parameter may be specified optionally from the DD statement or the COBOL |
| RESERVE clause. If the RESERVE clause is specified, the DD statement BUFNO
| parameter is considered noise and does not override the number inserted by the |
| compiler. |
|® When BUFL=0, the system makes the buffer size equal to the block size. |
L i

46 IBM S/360 OS COBOL(E) Programmer's Guide

ALLOCATING SPACE FOR INDEXED SEQUENTIAL
DATA SETS

Indexed sequential data sets consist of
one, two, or three areas:

e Prime area. This area contains data
records and the accompanying track
indexes. It exists in all indexed
sequéntial data sets.

e overflow area. This area contains data
records that overflow from tracks of
the prime area when records are added
to the data set. This area may or may
not eéxist in an indexed sequential data
set.

e Index area. This area contains the
master and cylinder indexes for an
indexed sequential data set. It exists
for any data set that has a prime area
on more than one cylinder.

The ayeas allocated and their locations
depend on the parameters specified in the
DD statement or statements that define the
data set:; For a description of the
parameters and subparameters that can be
used in DD statements defining a new
indexed sequential data set or specifying
an existing one, refer to the publication,
IBM System/360 Operating System: Job
Control IL.anguage.

DCB FOR CREATING INDEXED SEQUENTIAIL DATA
SETS

DCB=([,QPTCD={WLI}] ¢+ DSORG=IS
[,MACRF=(PL)] [,DDNAME=symbol]
[,RECFM={F|FB}] [,LRECL=absexp]
[, BLKSIZE=absexp] [,RKP=absexp]
[, KEYLEN=absexp]

[, BUFNO=absexp]
[,5YNAD=relexpl)

OPTCD
OPTCD={WLI}

specifies an optional service to be
performed by the program as follows:

W - a write validity check (on
direct-access devices only)

L - delete option: wuser marks records
for ﬂeletion: records so marked may
actually be deleted when new records
are added to the data set.

I - usé independent overflow area.

DSORG=IS

specifies the organization of the data set
as IS (an indexed sequential organization).
This subparameter is required to be
supplied by the programmer in the DD
statement.

MACRF=(PL)
specifies the macro instruction that will
be used in processing the data sets as

follows:

PL - indicates that locate mode PﬂT macro
instructions are to be used.

DDNAME=symbol

specifies the name of the DD statement that
will be used to describe the data set to be
processed.

RCFM={F |FB}

specifies the characteristics of the record
in the data sets as follows:

F - fixed-length records
FB - fixed-length, blocked records
LRECI~absexp

specifies the length of a logical recoxd in
bytes.

BLKSIZE=absexp

specifies the maximum length of a block in
bytes. For fixed-length records, the block
must be an integral multiple of the LRECL
value.

RKP=absexp

specifies the relative position of the

first byte of the record key within each
logical record. The value specified cannot
exceed the logical record length minus the
record key length.

KEYLEN=absexp

specifies the length of the record key, in
bytes, associated with a logical record.
The maximum length of the record key is 255
bytes.

BUFNO=absexp

specifies the number of buffers to be
assigned to the data control block. The
maximum number that can be specified is
255; however, the number must not exceed
the limit on input/output requests
established during system generation.
information can be supplied by the DD
statement or the user's problem program.

This

Creating Data Sets ®u47

o us

SYNAD=relexp

specifies the address of the user's
synchronous error exit routine. The
routine is entered if input/output errors
result from an attempt to process data
records, If no routine is specified and an
error occurs, the option specified by the
EROPT parameter is executed.

ACCESSING INDEXED SEQUENTIAL DATA SETS

When accessing and/or updating indexed
sequential data sets, the DCB subparameters
specified for creating indexed sequential
data sets are applicable with the following
differences, and additions.

DIFFERENCES

[, MACRF={ (GL) | (GL,PU) | (R) | (RU,WUA) }1

G - indicates GET macro instruction
L - indicates locate mode

P - indicates PUT macro instruction
U - indicates sequential updating

R - indicates READ macro instruction
U - indicates read for update

W - indicates WRITE macro instruction

UA - indicates add new records, update
existing records.

ADDITIONS

[,NCP=1]

specifies the number of channel programs to

IBM S/360 0OS COBOL(E) Programmer's Guide

be established for this data control block.
The value 1 is supplied by the compiler.

[,MSWA=relexpl

specifies the address of a main storage
work area reserved for the control program.

If specified when fixed-length records
are being added to the data set, the
control program uses the work area to speed
up record insertionm.

[,SMSW=absexp]

specifies the number of bytes reserved for
the main storage work area. For unblocked
records, the work area must be large enough
to contain the count, key, and data fields
of all the blocks on one track. For
blocked records, the work area must be
large enough to contain one logical record
plus the count and data fields of all the
blocks on one track. The maximum number of
blocks on one track is 32,767.

[,EODAD=relexpl

specifies the address of the user's
end-of-data set exit routine for input data
sets. This routine is entered when the
user requests a record and there are no
more records to be retrieved. If no
routine has been provided, the task is
abnormally terminated.

Table 11 shows the values supplied for
DCB subparameters by the COBOL compiler, by
statements in the COBOL source program, and
those subparameters that may be supplied by
a DD statement for an indexed sequential
data set.

Table 11. DCB Subparameter Values For Indexed Sequential Data Set
r——— ¥ T T T 1
| DCB _ |Value sSupplied |Value Supplied by |Value Supplied
|Parameter |Unconditionally|COBOIL Source Statement |By DD Statement |
| | By COBOL | | |
i | compiler | | |
SR i] L]
T [} T 1
|oPTCD |WLI | |
. ¥ ¥ ¥ 1
| DSORG |1s | | DSORG=IS |
IR 1] J 4
r * T T T 1
MACRF i			
Sequential	GL	OPEN INPUT	
	6L, PU	OPEN I-O	
	PL	OPEN OUTPUT	
t + + i			
Random	R	OPEN INPUT	
I	RU, WUA	OPEN I-O	
: t-- + : H 1			
DDNAME		External-name in ASSIGN Clause	
L I 1 4 _l			
r T] T			
RECFM		RECORDING MODE Clause	
L L 1 L]			
r T T T 1			
LRECL I	RECORD CONTAINS Clause	[
L 1 (L Jd			
r T T 1 q			
BLKSIZE		BLOCK CONTAINS Clause	
% } t ¥ 1			
RKP [RECORD KEY Clause		
b t t ¥ 1			
KEYLEN		RECORD KEY Clause	i
L 1 [1 4			
v T T 1 1			
NCP 1	I		
I 4 (3 L 4			
F 1 T [] a			
MSWA		TRACK AREA Clause I [
L L L 1 J			
r T T T a			
BUFNO		RESERVE Clause	BUFNO=nnn
% + $: a—— 1			
SMsW		TRACK AREA Clause	
— +—- + $ 1			
EODAD		AT END Clause	{
L L 4 (R J			
T T T . 1 1			
SYNAD		USE Statement Option 5	
L. L L L]

DCB FOR CREATING DIRECT OR RELATIVE
ORGANIZATION DATA SET

DCB={([,0PTCD=W] [,DSORG=PS]
[, MACRF=(WL)] [,DDNAME=symbol]
[,RECFM={F|V|U}]1 [,LRECL=absexpl
[, BLKSIZE=absexp]l [,DEVD=DA,KEYLEN=valuel
[,NcP=1] [,EODAD=relexp]
[,SYNAD=relexpl)

OPTCD=W
specifies an optional service to be
performed by the program as follows:
W-a write validity check (on
direct-access devices only)

DSORG=PS

specifies the organization of the data set
as PS (a physical sequential organization)

MACRF= (WL)

specifies the macro instruction that will
be used in processing the data sets as
follows:
W - indicates use of WRITE macro
instruction
L - indicates LOAD mode for direct data
set

DDNAME=symbol

specifies the name of the DD statement that
will be used to describe the data set to be
processed.

RECFM={F|V|U}

specifies the characteristics of the record
in the data set as follows:

F - fixed-length records

Creating Data Sets o 49

in bytes for format-F records.

V - variable-length records
U - undefined records

LRECI=absexp

specifies the length of a format-F logical
record in bytes or the maximum length of a
format-vV or U logical record

BLKSIZE=absexp

specifies the maximum length of the block
The length
must be an integral multiple of the LRECL
value. For format-V records, the length
must include the four-byte block length
field that is recorded at the beginning of
each block.

DEVD=DA, KEYLEN=value

specifies the device or devices on which
the data set resides
DA - specifies a direct-access device
KEYLEN - specifies the length of the
key, in bytes, associated with a
physical block.

NCP=1

specifies the maximum number of READ or
WRITE macro instructions that are issued
before a CHECK macro instruction.

SYNAD=relexp

specifies the address of the user's
synchronous error exit routine. The
routine is entered if input/output errors
result from an attempt to process data
records. If no routine is specified and an
error occurs, the option specified by the
EROPT parameter is executed.

ACCESSING DIRECT OR RELATIVE ORGANIZATION
DATA SETS

When accessing and/or updating direct data
sets, the DCB subparameters specified for
creating direct data sets are applicable,
with the following differences, and
additions.

DIFFERENCES

[, OPTCD={WE |WR}]

W - indicates a write validity check be

50 IBM S/360 OS COBOL(E) Programmer's Guide

performed

E - indicates an extended search be
performed

R - indicates that relative block
addresses be used

[,DSORG=DA]
DA - indicates direct or relative
organization

R

[,MACRF=/ WL
(RKC, [WAKC])
(RIC, [WAICT)

R - indicates use of READ macro
instruction

K - indicates that search arqument is a
key

I - indicates that search argqument is a
block identification

W - indicates use of WRITE macro
instruction

A - indicates that blocks are to be
added to the data set

C - indicates use of check macro.

ADDITIONS

[,KEYLEN=absexpl

specifies the length of the key for each
physical record in bytes

[, LIMCT=absexpl

specifies the maximum number of blocks or
tracks searched when the extended search
option is chosen

[, EODAD=relexpl

specifies the address of the user's
end-of-data set exit routine for input data
sets. This routine is entered when the
user requests a record and there are no
more records to be retrieved. If no
routine has been provided, the task is
abnormally terminated.

Table 12 shows the values supplied for
DCB subparameters by the COBOL compiler, by
statements in the COBOL source program, and
those subparameters that may be supplied by
a DD statement for a direct-access data
set.

Table 12. DCB Subparameter Values For Direct or Relative Organization Data Sets

r T T T 1
DCB	Value Supplied	Value Supplied by	Value Supplied
Parameter	Unconditionally	COBOL Source Statement	By DD Statement
	By COBOL		
	Compiler]
L 1 L X 3			
v) T T			
OPTCD o			
Direct organization	WE		
t -1 4 !			
Relative organization	WR		
b 1 —1 t !			
DSORG [
Sequential access	PS		
t 1 + {			
Random—-access	DA		
[—t 1 1 4			
r T T T 1			
MACRF			
Sequential-access IR	OPEN INPUT		
b $ + 1			
[WL	OPEN OUTPUT I	
F ¥ 4 {			
Random-access			
i Direct	RKC	OPEN INPUT I i	
organization			
F t 1			
	RRC, WAKC	OPEN I-O	
, b ¥ t !			
Relative	RIC	OPEN INPUT	
organization			
i + ¢ 4			
[RIC,WAIC	OPEN I-O	
b $ 4 1 1			
DDNAME		External-name in ASSIGN clause	
I } 1 t			
DEVD	DA,KEYLEN=nnn	SYMBOLIC KEY Clause I I	
	(nnn=0 - 255)		
—" t } : 4			
RECFM		RECORDING MODE Clause	
b= 1 $ 1 1			
LRECL		RECORD CONTAINS Clause	
L [L d		
13 T T T a			
BLKSIZE		BLOCK CONTAINS Clause I	

H + -+ { 1
| NCP |1 I | |
b + + , ¥ -
| KEYLEN | | SYMBOLIC KEY Clause i I
F 1 + fomm e !
| LIMCT | |APPLY Clause Option 1 | |
¢ : ¥ 1 1
| EODAD | |AT END Clause | |
I] 4 3]
I T T - T 1
| SYNAD | |USE Statement Option 5 | |
L L (R L J

The following DD statements are examples
for processing indexed sequential, direct,
relative, sets.

Creating Data Sets @ 51

Example of DD statements for Indexed //G0.SYSUT6 DD DSNAME=§(RANDOM, UNIT=SYSDA,X

Sequential organization: /7 SPACE=(TRK, (10,5))
//G0.SYSUTS DD DSNAME=ISAM(PRIME), X
V4 UNIT=2311, X This example specifies:
/7 VOLUME=SER=111111, X
/7 DCB=(,DSORG=1IS), X e that a temporary data set (named
// SPACE=(CYL, (3)), X RANDOM) is to be processed on a direct
/77 DISP=(NEW,KEEP) access device;
7/ DD DSNAME=ISAM(OVFLOW), X
Vo4 UNIT=2311, X e that the data set be allocated a space
// VOLUME=SER=111117%, X of ten tracks, with a secondary
V4 DCB=(,DSORG=IS), X allocation of 5 tracks, if needed;
/7 SPACE=(CYL, (1)), X
, /7 DISP=(NEW, KEEP) s that the COBOL external name for this
/7 DD DSNAME=ISAM(INDEX), X data set is SYSUT6.
/7 UNIT=2311, X
Vo4 VOLUME=SER=111111, X Example of DD statement for sequential
/7 DCB=(,DSORG=1S), X organization:
V4 SPACE=(CYL, (1)), X
// DISP=(NEW,KEEP) //G0.SYSUT7 DD DSNAME=SEQUENTIAL, X
V4 UNIT=2311, X
This example specifies: // DISP=(NEW,DELETE) , X
, /7 DCB(,OPTCD=W), X
e that an indexed sequential data set /7 SPACE=(TRK, (20,5))
(named ISAM), is to be processed on a
2311 disk pack; This example specifies:
¢ that the volume serial number of the e that a data set (named SEQUENTIAL) is
volumes required by the data set is to be processed on a 2311 disk pack;
111111;
» that the data set is to be deleted
e that the data set is to be kept after after execution;
execution of the run;
e that the data set be allocated 20
e that the prime area consists of three tracks with a secondary allocation of 5

cylinders, the overflow area, and the tracks, if needed; and
index area of one cylinder each, and
¢ that the COBOL external name for the
e that the COBOL external name for the data set is S¥YSUT7
data set is SYSUTS.
Note: For sequential, direct, and
Example of DD statement for Direct or relative organizations, essentially the
Relative organizations: same DD statements can be used.

® 52 IBM S/360 OS COBOL(E) Programmer's Guide

This section contains figures showing the
job-control statements used in the COBOL
(E-Level Subset) cataloged procedures and a
brief description of each procedure. This
section also describes statements used to
override statements and parameters in any
cataloged procedure. (The use of cataloged
procedures is discussed under Job
Processing.)

COMPILE

The cataloged procedure for compilation
(COBEC) is shown in Figure 27.

r
| 7//COB EXEC PGM=IEPCBLOO

| #//SYSPRINT DD SYSOUT=A

| //SYSPUNCH DD UNIT=SYSCP

| #//SYSUT1 DD UNIT=SYSDA,

\77 SPLIT=(2,CYL, (40,10))
| //SYSUT2 DD UNIT=SYSDA,SPLIT=4

| //SYSUT3 DD UNIT=SYSDA, SPLIT=U

L

>
L ———

Figure 27. Compile Cataloged Procedure

(COBEC)

The EXEC statement that invokes the
COBOL~E compiler is named COB; the EXEC
statement indicates that the operating
system is to execute the program IEPCBLOO
(the name for the COBOL-E compiler).
Compiler options are not explicitly
supplied with the procedure: default
options are assumed. The programmer can
override these default options by using an
EXEC statement that includes the options he
desires. To execute a compilation using
the cataloged compile procedure, the
programmer must add SYSIN and, if
necessary, SYSLIB.

LINKAGE EDIT AND EXECUTE

The cataloged procedure to linkage edit
COBOL object modules and execute the
resulting load modules (COBELG) is shown in
Figure 28.

CATALOGED PROCEDURES

1
| //LKED EXEC PGM=IEWL, 1]
|77 PARM=(XREF, LIST, LET) |
| #//SYSLIB DD DSNAME=SYS1.CCBLIB, 1]
|77 DISP=(OLD, KEEP) |
| 7/SYSLMOD DD DSNAME=&GODATA(RUN), 1}
|7/ DISP= (NEW, PASS), 2]
|77 UNIT=SYSDA, 3]
(V4 SPACE=(1024, (50,20,1)) |
| //SYSUT1 DD UNIT=SYSDA, 1|
|77/ SPACE= (1024, (50,20)) i
| //SYSPRINT DD SYSOUT=A |
|//5YSLIN DD DDNAME=SYSIN]
|7/GO EXEC PGM=#%.LKED.SYSLMOD, 1)
|77 COND= (5, LT, LKED) |
| //SYSABEND DD SYSOUT=A |
| 7/8¥SOUT DD SYSOUT=A, 1]
|77/ DCB= (, BLKSIZE=120, 2|
V4 LRECL=120) |
L i
Figure 28. Linkage Edit and Execute

Cataloged Procedure

The EXEC statement that invokes the
linkage editor is named LKED and specifies
that the operating system is to execute the
program IEWL, the name for the linkage
editor program. This statement also
specifies the XREF, LIST, and LET options
for the linkage editor. The programmer can
override these options by using the EXEC
statement in the input stream.

The EXEC statement named GO executes the
load module produced by the linkage editor
procedure step. The PGM parameter
specifies that the operating system is to
execute the data set defined by the DD
statement SYSLMOD in the procedure step
LKED. To execute a run using the cataloged
linkage edit and execute procedure, the
programmer must add SYSIN.

COMPIIE, LINKAGE EDIT, AND EXECUTE

The cataloged procedure to compile, linkage
edit, and execute a COBOL source module
(COBECLG) is shown in Figure 29.

Cataloged Procedures 53

¢
|7//7COB EXEC PGM=IEPCBLOO
| //SYSPRINT DD SYSOUT=A

| 77S8YSUT1 DD UNIT=SYSDA,SPLIT=(2,CYL, (40,10))

|//8YSUT2 DD UNIT=SYSDA,SPLIT=4
| 77S8YSUT3 DD UNIT=SYSDA,SPLIT=4

| //SYSPUNCH DD DSNAME=§LOADSET,DISP=(MOD,PASS),

|77 UNIT=SYSDA,SPACE=(TRK, (50,10))

|//LKED EXEC PGM=IEWL, PARM= (XREF,LIST,LET),COND=(9,LT,COB)
|//SYSLIN DD DSNAME=E§LOADSET, DISP=(OLD,DELETE)

|77 DD DDNAME=SYSIN

|7/SYSLMOD DD DSNAME=§&GODATA (RUN),DISP=(NEW,PASS),
|77 UNIT=SYSDA, SPACE= (1024, (50,20,1))
|//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=(OLD,KEEP)

| //SYSUT1 DD UNIT=(SYSDA,SEP=(SYSLIN, SYSLMOD)),

\77 SPACE= (1024, (50,20))
| //SYSPRINT DD SYSOUT=A

|//GO EXEC PGM=*.LKED.SYSLMOD,COND=((9,LT,COB), (5,LT,LKED))

| //SYSABEND DD SYSOUT=A

| //8YSOUT DD SYSOUT=A,DCB=(,BLKSIZE=120,LRECL=120)
L

[y

[y
e e e e e e e e ————————)

[

Figure 29.

The cataloged procedure COBECLG consists
of the statements in the COBEC and COBELG
procedures, with one exception. The DD
Statement SYSLIN in the linkage editor
procedure step LKED identifies the compiler
output as the primary input. The
programmer does not have to define the
linkage editor input as he did with the
procedure COBELG, but he must define the
data set SYSIN for the compiler so that the
source module can be read.

USER CATALOGED PROCEDURES

The programmer can write his own cataloged
procedures and tailor them to the
facilities in his installation. He can
also permanently modify IBM-supplied
cataloged procedures. For information
about modifying cataloged procedures that
are members of a symbolic library, see the
publication, IBM System/360 Operating
System: Utilities. An example of
modifying cataloged procedures is shown in
Appendix A of this publication.

OVERRIDING CATALOGED PROCEDURES

Cataloged procedures are composed of EXEC
and DD statements. A feature of the
operating system is its ability to read
control statements and modify a cataloged
procedure for the duration of the current
job. Overriding is only temporary; that
is, the parameters added or modified are in
effect only for the duration of the job.

54 IBM S/360 OS COBOL(E) Programmer's Guide

Compile, Linkage Edit, and Execute Cataloged Procedure

The following text discusses the techniques
used to modify cataloged procedures.

OVERRIDING PARAMETERS IN THE EXEC STATEMENT

Two forms of keyword parameters ("keyword”
and "keyword.procstep") are discussed under
Jop-Control Language. The form
"keyword.procstep™ is used to add or
override parameters in an EXEC statement in
a cataloged procedure.

Note: When the PARM parameter is
overridden, all options stated in the EXEC
statement in the procedure step are
deleted.

The COBOL programmer can, for example,
add (or override) compiler or linkage
editor options for an execution of a
cataloged procedure, or he can state
different conditions for bypassing a job
step.

Example 1: Assume the cataloged procedure
COBEC is used to compile a program, and the
programmer wants to specify the NODECK
option. The following statement can be
used to invoke the procedure, and to supply
the compiler options.

//STEP1 EXEC COBEC, X
/7 PARM, COB=NODECK

The PARM option applies to the procedure
step COB.

Example 2: Assume the cataloged procedure
COBELG is used to linkage edit and execute

a program. Furthermore, the MAP option
overrides XREF, LET, and LIST in the
linkage editor step and the COND parameter
is changed for the execution of the load
module. The following EXEC statement adds
and overrides parameters in the procedure.

//PERFORM EXEC COBELG, PARM.LKED=MAP, X
/7 COND.GO=(3, LT, PERFORM. LKED)

The PARM parameter applies to the
linkage editor procedure step LKED, and the
COND parameter applies to the execution
procedure step GO.

Example 3: Assume a source module is
compiled, linkage edited, and executed
using the cataloged procedure COBECLG.
Furthermore, the compiler option BUFSIZE
and the linkage editor option MAP are
specified. The following EXEC statement
adds and overrides parameters in the
procedure.

//STEP1 EXEC COBECILG, 1
// PARM.COB="BUFSIZE=600", 2
7/ PARM. LKED=MAP

OVERRIDING AND ADDING DD STATEMENTS

A DD statement with the name
"stepname.ddname" is used to override
parameters in DD statements in cataloged
procedures or to add DD statements to
cataloged procedures. The "stepname"
identifies the step in the cataloged
procedure. If "ddname" is the name of a DD
statement:

1. present in the step, the parameters in
the new DD statement override
parameters in the DD statement in the
procedure step.

2. not present in the step, the new DD
statement is added to the step.

In any case, the modification is only
effective for the current execution of the
cataloged procedure.

When overriding, the original DD
statement in the cataloged procedure is
copied, and the parameters specified in it
are replaced by the corresponding
parameters in the new DD statement.
Therefore, only parameters that must be
changed are specified in the new DD
statement. Therefore, only parameters that
must be changed are specified in the new DD
statement. Except for the DCB parameter,
only an entire parameter may be overridden.

If more than one DD statement is
modified, the overriding DD statements must

be in the same order as the DD statements
appear in the cataloged procedure. Any DD
statements added to the procedure must
follow overriding DD statements.

When the procedures COBEC and COBECLG
are used, a DD statement must be added to
define the SYSIN data set to the compile
step in the procedures (see Figures 15 and
20). When the procedure COBELG is used, a
DD statement must be added to define the
SYSIN data set (see Figure 17).

Example 1: Assume the data sets identified
by ddnames CALC1 and CALC2 are named,
cataloged, and assigned specific volumes.
The following DD statements are used to add
this information and indicate the location
of the source module.

//7J0B1 JOB MSGLEVEL~=1
//STEP1 EXEC COBECLG
//COB.SYSIN DD *

r 1
| COBOL Source Module |
L J

/*
//G0.CALC1 DD DSNAME=FTAX, X
/7 DISP=(NEW,CATLG), X
// VOLUME= (PRIVATE, SER=987K)
//GO.CALC2 DD DSNAME=STAX, X
// DISP=(NEW,CATILG), X
/7 VOLUME= (PRIVATE, SER=1020)
Example 2: Assume the compile, linkage

edit, and execute cataloged procedure
(COBECLG) is used with:

1. A COBOL main program MAIN in the input
stream.

2. A linkage editor control statement that
specifies an additional library, MYLIB.
MYLIB is used to resolve external
references for the symbols A, B, and C.

The following example shows the deck
structure.

//JOBCLG JOB 00,COBOLPROG, MSGLEVEL~1
//STEP1 EXEC COBECLG
//COB.SYSIN DD *

r A
| COBOL Source Module MAIN |
L J
/%
//LKED.ADDLIB DD DSNAME=MYLIB
//LKED.SYSIN DD *

LIBRARY ADDLIB (A,B,C)
/*
//G0.ddname DD statements

The DD statement COB.SYSIN indicates to the
compiler that the source module is in the
input stream. The DD statement LKED.ADDLIB
defines the additional library MYLIB to the
linkage editor. The DD statement
LKED.SYSIN defines a data set that is

Cataloged Procedures 55

concatenated with the primary input to the
linkage editor. The linkage editor control
statements and the object modules appear as
one data set to the linkage editor. The DD
statements GO.ddname define data sets for
input and output for the load module.

56 IBM S/360 OS COBOL(E) Programmer's Guide

This section is intended to help the
programmer reduce the amount of storage
required for a program, which should result
in a reduction of execution time, and/or
linkage editing time for that program.

This section discusses:

®» General COBOL programming suggestions
for effective coding.

® Descriptions of data forms, numeric
data format usage and other related
factors affecting the use of main
storage.

» Specific examples (of data definitionms,
relationals, arithmetics and complex
instructions) to illustrate the effect
they have on main storage.

s Specific examples of good and bad
coding technigques along with some
important considerations when using
certain types of data.

» Effective techniques for handling files
along with I/O considerations and
debugging techniques.

Application of the techniques and

suggestions discussed should result in a
more efficient program.

CONSERVING STORAGE

The data division is important in that the
definition of data can affect the number of
program steps generated in the procedure
division.

The definition of data used in
computationals is also important. The
saving of one byte in the data division can
cause a significant increase in the number
of instructions generated in the procedure
division. Conversely, a meaningful
addition of one byte in the data division
can result in a savings of 20 or more bytes
of generated instructions for the procedure
division. By judicious choice of such
items as decimal-point alignment, sign
declaration, and usage, the object code
produced for the procedure division is more
efficient. The compiler resolves all of
the allowable mixed data usages
encountered. If the programmer is
unconcerned about the program's efficiency,
the required additional instructions are
generated and additional storage is used.

PROGRAMMING CONSIDERATIONS

coding according to the
can effect a
Attention

A programmer,
suggestions set forth here,
substantial savings in storage.
to decimal alignment (one of the
suggestions) saves storage as follows.

To execute a statement, data must be
aligned. Neglecting decimal alignment when
defining data, forces the compiler to align
decimal points, which costs 18 or more
bytes for each alignment procedure
executed, thus using storage unnecessarily.

To give the programmer an idea of the
effect data has on storage when data is
defined without regard to optimization of
data declarations, consider the following
percentages and the ensuing example.

In a typical source statement deck, the
frequency of the most common verbs written
in the procedure division of a COBOL
program, averaged over a number of
programs, is:

MOVES - 50%
GO TO - 20%

IF - 15%
Miscellaneous (arithmetics, I/0 PERFORMS,
etc.) - 15%

Assume that the number of move
statements, out of a total of 250
procedural statements, is 125 and that all
the sending fields and related receiving
fields are defined without decimal
alignment (worst case).

An example of one pair of fields is:

77 A PICTURE 99vV9 COMPUTATIONAL-3.
(sending field)

77 B PICTURE 999V99 COMPUTATIONAL-3.
(receiving field)

Because the receiving field is one
decimal position larger than the sending
field, decimal alignment must be performed.

The cost in bytes of decimal alignment
for these moves is: 125 moves times 18, or
2,250 bytes of storage. Each time these
moves are executed 2,250 bytes of storage
are used.

A programmer aware of the cost of
nonalignment can conserve great amounts of
storage by simply aligning decimals. Using
one additional byte to align decimals in
the data sending or receiving fields is
small in cost, considering the savings
possible in the procedure division.

Programming Considerations 57

The programming suggestions given in the
ensuing text should result in a savings in
storage and/or faster compilations.

BASIC PRINCIPLES OF EFFECTIVE COBOL CODING

The techniques described in this section
will help the programmer write efficient
programs. If followed, the suggestions
will reduce the number of bytes used by his
program. The basic principles for writing
efficient COBOL programs are:

s Match decimal places in related fields
(decimal-point alignment).

e Match integer places in related fields
(unequal-length fields).

¢ Do not mix usage of data formats
(mixed-data formats).

e Include an S (sign) in all numeric
pictures (sign control).

¢ Keep arithmetic expressions out of
conditionals (conditional statements).

GENERAL PROGRAMMING SUGGESTIONS

The following is a list of general coding
suggestions to aid the programmer in
writing COBOL programs. Simple examples
are given here to illustrate the use of the
suggestions listed. The vast number of
ways data can be defined and used makes it
prohibitive to illustrate the cost (in
bytes) of handling each situation. The
values in number of bytes in the examples
given are representative. They vary widely
according to the way data is defined and
used.

Specific costs in number of bytes for
several different methods of representing
data are given under Examples Showing
Effect of Data Declarations.

DECIMAL-POINT ALIGNMENT

The number of decimal positions should be
the same whenever possible. If they are
not, additional moves for padding, sign
movement, and blanking-out result. The
impact on storage is illustrated under
Conserving Storage.

Statements involving fields with an
unequal number of digits require

58 IBM S/360 OS COBOL(E) Programmer's Guide

intermediate operations for decimal-point
alignment.

Define data efficiently, or move it to a
work area to align data used in multiple
operation.

To get efficient code, the programmer
should align decimal points wherever
possible. As a general rule, two or four
additional instructions (12 to 18 bytes)
are required in basic arithmetic statements
and IF statements when decimal-point
alignment is necessary to process two
COMPUTATIONAL-3 fields.

Example:
77 A PICTURE S999Vv99

77 B PICTURE S99V9

COMPUTATIONAL-3.
COMPUTATIONAL-3.

By adding one more decimal place to
FIELD B, (PICTURE S999V99), the need for
alignment instructions is eliminated, and
no more bytes are required for field B.
(Remember, hardware requires an odd number
of digits for internal decimal fields. Use
an odd number of nines when defining data
in COMPUTATIONAL-3 format. This practice
results in more efficient object code
without using additional storage for the
item defined.)

Example: ADD 1 TO A.

The literal is compiled in internal
decimal form, but decimal-point alignment
instructions are necessary (4 instructions,
18 bytes). If instead, the literal is
written 1.00, only one byte is added in the
literal area. The 18 bytes required for
alignment of decimal points are eliminated.

UNEQUAL~LENGTH FIELDS

Use the same number of integer digits in a
field. An intermediate operation may be
required when handling fields of unequal
length. For example, zeros may have to be
inserted in numeric fields and blanks in
alphabetic or alphameric fields in order to
pad out to the proper length. To avoid
these operations, be sure that the number
of integer digits in fields used together
are equal. Any increase in data field size
is more than compensated for by the savings
in generated object code.

For example, if data is defined as:
SENDFLD PICTURE S$999
RECEIVEFLD PICTURE S99999.

and SENDFLD is moved to RECEIVEFID, the
cost of zeroing high-order positions
(numeric fields are justified right) is 10

bytes. To eliminate these 10 bytes define
SENDFLD as:

SENDFLD PICTURE S$99999.

MIXED-DATA FORMATS

Do not mix data formats. When fields are
used together in move, arithmetic, or
relational statements, they should be in
the same format whenever possible.
Conversions require additional storage and
execution time. Any operations involving
data items of different formats require
conversion of one of the items to a
matching data format before the operation
can be executed. For example, when
comparing a DISPLAY field to a
COMPUTATIONAL-3 field, the code generated
by the COBOL processor moves the DISPLAY
field to an internal work area, converting
it to a COMPUTATIONAL-3 field. It then
executes the compare. This usage, although
valid in COBOL, has the effect of reducing
the efficiency of the program, by
increasing its size. For maximum
efficiency, avoid mixed data formats or use
a onetime conversion; that is move the data
to a work area, thus converting it to the
matching data format. By referencing the
work area in procedural statements, the
data is converted only once instead of for
each operation.

The following example illustrates the
conversions that take place when the
components of a COMPUTE are defined:

A COMPUTATIONAL-~1.
B PICTURE $S99V9 COMPUTATIONAL-3.
C PICTURE $9999V9 COMPUTATIONAL-3.

and the following computation is specified,
COMPUTE C = A * B.

the internal decimal data (COMPUTATIONAL-3)
is converted to floating-point format and
then the COMPUTE is executed.

The result (which is in floating point)
is converted to internal decimal. The
required conversion routines are time
consuming and use storage unnecessarily.

The following examples show what must
logically be done, before the indicated
operations can be performed, when working
with mixed-data fields.

DISPLAY to COMPUTATIONAL-3

To Execute a MOVE: No Additional code is

required (if proper alignment exists)
because one instruction can both move and
convert the data.

To Execute a COMPARE: Before a COMPARE is

To Perform Arithmetics:

executed, DISPLAY data must be converted to
COMPUTATIONAL-3 format.

Before arithmetics

are performed, DISPLAY data is converted to
COMPUTATIONAL-3 data format.

DISPLAY to COMPUTATIONAL

To Execute a MOVE: Before the MOVE is
executed, DISPLAY data is converted to
COMPUTATIONAL-3 data format, and then the
COMPUTATIONAL-3 data to COMPUTATIONAL data
format.

To Execute a COMPARE: Before a compare is
executed, DISPLAY data is converted to
COMPUTATIONAL-3 data format, and the
COMPUTATIONAL data to COMPUTATIONAL-3
format.

To Perform Arithmetics: Before arithmetics
are performed, DISPLAY data is converted to
COMPUTATIONAL-3 format, and then the
COMPUTATIONAL-3 data to COMPUTATIONAL
format.

COMPUTATIONAL-3 to COMPUTATIONAL

To Execute a MOVE: Before a MOVE is
executed, COMPUTATIONAL-3 data is moved to
a work field, and then converted to
COMPUTATIONAL data format.

To Execute a COMPARE: Before a COMPARE is
executed, COMPUTATIONAL data is converted
to COMPUTATIONAL-3 data format.

To Perform Arithmetics: Before arithmetics
are performed, COMPUTATIONAL-3 data is
converted to COMPUTATIONAL data format.

COMPUTATIONAL to COMPUTATIONAL-3

To Execute a MOVE: Before a MOVE is
executed, COMPUTATIONAL data is converted
to COMPUTATIONAL-3 data format.

To Execute a COMPARE: Before a COMPARE is

Programming Considerations 59

executed COMPUTATIONAL data is converted to
COMPUTATIONAL-3 data format.

To Perform Arithmetics: Before arithmetics

are performed, COMPUTATIONAL data is
converted to COMPUTATIONAL-3 data format.

COMPUTATIONAL to DISPLAY

To Execute a MOVE: Before a MOVE is
executed, COMPUTATIONAL data is converted
to COMPUTATIONAL-3 data format, and then
the COMPUTATIONAL-3 data to DISPLAY data
format.

To Execute a COMPARE: Before a COMPARE is
executed, COMPUTATIONAL data is converted
to COMPUTATIONAL~3 data format, and DISPLAY
data to COMPUTATIONAL-3 data format.

To Perform Arithmetics: Before arithmetics
are performed, COMPUTATIONAL data is
converted to COMPUTATIONAL-3 data format,
and DISPLAY data to COMPUTATIONAL-3 data
format. The result is generated in a
COMPUTATIONAL-3 work area, which is then
moved to the DISPLAY result field.

COMPUTATIONAL-3 to DISPLAY

To Execute a MOVE: Before a compare is
executed, DISPILAY data is converted to
COMPUTATIONAL-3 data format.

To Execute a COMPARE: Before a compare is
executed, DISPIAY data is converted to
COMPUTATIONAL-3 data format.

To Perform Arithmetics: Before arithmetics
are performed, DISPLAY data is converted to
COMPUTATIONAL-3 data format. The result is
generated in a COMPUTATIONAL-3 work area,
which is then converted and moved to the
DISPLAY result field.

DISPIAY to DISPLAY

To perform Arithmetics: Before arithmetics
are performed, all DISPLAY data is
converted to COMPUTATIONAL-3 data format.
The result is generated in a
COMPUTATIONAL~3 work area, which is then
converted and moved to the DISPLAY result
field.

60 IBM S/360 OS COBOL(E) Programmer's Guide

Conversion of COMPUTATIONAL-1 or -2 Data

For efficient object code, use of
floating-point (COMPUTATIONAL-1 or -2)
numbers mixed with other usages should be
held to a minimum. The conversion from
internal to external floating point and
vice-versa is done by subroutines. Fields
used in conjunction with a floating-point
number are converted to floating point,
causing the object program to perform
conversions. For example, assume a COMPUTE
is specified as:

COMPUTE A = B ¥ C + D + E.

Assume B is COMPUTATIONAL-1 or -2 data and
all other fields are defined as
COMPUTATIONAL-3 data. Fields C, D, and E
are converted to COMPUTATIONAL-1 or -2 data
format, the calculation performed, and the
result converted back from COMPUTATIONAL-1
or -2 data format to COMPUTATIONAL-3 data.
If field B is defined as COMPUTATIONAL-3,
no conversion is necessary. Use of
floating-point numbers is more efficient
when used in programs with computational
data that is practically all
COMPUTATIONAL-1 or -2 type. If it is
necessary to use floating-point data, be
careful not to mix data formats.

SIGN CONTROL

For numeric fields specified as unsigned
(no S in the picture clause of decimal
items), the COBOL processor attempts to
ensure that a special positive sign (F) is
present so that the values are treated as
absolute.

The processor moves in a hexadecimal F
whenever the possibility of the sign
changing exists. Examples
are: Subtracting unsigned fields, moving a
signed field to an unsigned field, or an
arithmetic operation on signed fields where
an unsigned result field is specified.

The sign is not checked on input data or
on group level moves. The programmer must
know what type of data is being used, under
those circumstances.

The use of unsigned numeric fields
increases the possibility of error (an
unintentional negative sign could cause
invalid results) and requires additional
generated code to control the sign. The
use of unsigned fields should be limited to
fields that are to be treated as absolute
values.

Note: The hexadecimal F, while treated
as a plus, does not cause the digit to be
printed or punched as a signed digit.

The programmer should include a sign in
numeric pictures unless absolute values are
desired. The following example illustrates
the additional instructions generated by
the compiler each time an unsigned field is
modified.

If data is defined as:

A PICTURE 999.
B PICTURE S999.
C PICTURE S999.

and the following moves are made,

MOVE B TO A.
MOVE B TO C.

moving B to A causes four more bytes of
storage to be used than moving B to C,
because an absolute value is specified for
receiving field A.

CONDITIONAL STATEMENTS.

Keep arithmetic expressions out of
conditional statements. Computing
arithmetic values separately and then
comparing them may produce more accurate
results than including arithmetic
statements in conditional statements. The
final result of an expression included in a
conditional statement is limited to an
accuracy of six decimal places. The
following example shows how separating
computations from conditionals can improve
accuracy.

If data is defined as:

77 A PICTURE S9V9999 COMPUTATIONAL-3.
77 B PICTURE S9V9999 COMPUTATIONAL-3.
77 C PICTURE S999V99999999 COMPUTATIONAL-3.

and the following conditional statement is
written,

IF A * B = C GO TO EQUALX.

the final result will be 99V999999.
Although the receiving field for the final
result (C) specifies eight decimal
positions, the final result actually
obtained in this example contains six
decimal places. For ‘increased accuracy,
define the final result field as desired,
perform the computation, and then make the
desired comparison as follows.

77 X PICTURE IS S999V9(7) COMPUTATIONAL-3.
COMPUTE X = A * B.
IF X = C GO TO EQUALX.

OTHER CONSIDERATIONS WHEN USING DISPLAY AND
COMPUTATIONAL FIELDS

DISPLAY (Non-Numeric and External Decimal)

Fields

Zeros and blanks are not inserted
automatically by the logical instruction
set. A move requires coding to insert
zeros or blanks. On compares, the smaller
item must be moved to a work area where
zeros or blanks are inserted before the
compare.

COMPUTATIONAL-3 (Internal Decimal) Fields

The decimal feature provides for the
automatic insertion of high-order zeros on
adds, subtracts, and compares.

When a blank field (40) is moved into a
field defined as COMPUTATIONAL-3, the sign
position is not changed; thus the invalid
sign bits of the blank field are retained.
An arithmetic operation with such a field
results in a program check. Before moving
a blank field into a COMPUTATIONAL-3 field
to be operated on, the sign position must
be converted to a valid COBOL sign (F0).

COMPUTATIONAL Field

Operating System furnishes a large
repertoire of halfword and fullword
instructions. Binary instructions require
one of the operands to be in a register
where a halfword is automatically expanded
to a fullword. Therefore, handling mixed
halfword and fullword fields requires no
additional operations.

COMPUTATIONAL 1 and 2 Fields

A full set of short- and long-precision
instructions are provided which enables
operations involving mixed precision fields
to be handled without conversion.

DATA FORMS

To conserve storage, the programmer must
know COBOL data forms, and how they affect
storage. Equally important is the way he
organizes his data. The following

Programming Considerations 61

information illustrates the various types
of COBOL data forms, and their respective
costs in alignment. Characteristics and
requirements are described for the possible
usages of numeric data, along with symbolic
illustrations of what forms they take
within the machine. Also included is a
brief discussion of how to organize data
efficiently.

ELEMENTARY ITEMS

The number of bytes occupied by data in
main storage depends on its format (or
mode). Table 13 illustrates the number of

Table 13.

bytes required for each class of elementary
item.

If files and working storage are
organized so that all halfwords, fullwords,
and doublewords are grouped together,
essentially no additional storage is used.
However, if these items are not grouped
together properly, the amount of storage
required for alignment is:

Halfword - 1 byte
Fullword - 1 to 3 bytes
Doubleword - 1 to 7 bytes

Number of Bytes Required for Each Class of Elementary Item

{Binary} Bytes

r - a
| TYPE OF ITEM CALCULATION OF REQUIRED BYTES FROM PICTURE |
—— — 1
| DISPLAY |
| I
| Alphabetic Bytes = Number of A's in picture |
| Alphanumeric Bytes = Number of X's in picture |
| External Decimal Bytes = Number of 9's in picture |
| External |
| floating} Bytes = Number of characters in picture
= point :
| Report Bytes = Number of characters in picture |
| except P, V |
| |
| COMPUTATIONAL-3 |
| Internal Decimal Bytes = (Number of 9's +1 divided by 2,
| rounded up) |
| |
| COMPUTATIONAL Size Alignment |
= 2 if 1=<N<4 Halfword Machine Address !
| 4 if 5<N<9 Fullword Machine Address
[|
| |
| |
| I
| |
| I
| I
[I
| |
| |
| |
L J

8 if 10<N<18 Fullword
Where N=Number of 9's

Doubleword machine address

COMPUTATIONAL-1 orx 4 if short-
COMPUTATIONAL-2 precision Fullword

Internal (computa-

{:floating Bytes = tional-1)
point 8 if long
precision

(computa-

tional-2)

Machine Address
in picture

machine address

GROUP ITEM

Group moves of 256 or less bytes cost less
than a series of single alphanumeric moves
of the elementary item within the group
item. Any move of a group or elementary
item greater than 256 bytes in size results
in a subroutine being executed.

62 IBM S/360 OS COBOL(E) Programmer's Guide

When computational usage is specified in
COBOL slack bytes are inserted to give
proper halfword or fullword or double-word
boundary alignment. This is necessary so
that the elementary item can be handled
properly in binary arithmetic. However,
using group items that include slack bytes
could cause problems.

It is possible for two group items,
defined exactly the same, to have a
different number of slack bytes because
they begin in different places, relative to
word boundaries. Since group items use
slack bytes as normal data, a move of the
smaller of these to the larger can cause a
loss of data.

For example, assume two groups are
defined as follows:

01 RECORD-1.
02 GOLD PICTURE XX DISPLAY.
02 MINERALS COMPUTATIONAL.

Case 1 03 OPAL PICTURE 99.
03 QUARTZ PICTURE 99999.
01 RECORD-1.
02 MINERALS COMPUTATIONAL.
Case 2 03 OPAL PICTURE 99.

03 QUARTZ PICTURE 99999.

Case 1 group (02 MINERALS) consists of a
total of six bytes (it does not contain
slack bytes).

Case 2 group (02 MINERALS) consists of a
total of eight bytes, including two slack
bytes.

In case 2, 03 QUARTZ will be preceded by
two slack bytes. Thus, if case 2 group (02
MINERALS) is moved to case 1 group, the
last two bytes of data will be lost.

If case 1 group (02 MINERALS) is moved
to case 2 group, no data will be lost but
the elementary 03 QUARTZ will be improperly
aligned.

NUMERIC DATA FORMAT USAGE

Figure 30 lists the common characteristics
and special characteristics of numeric
data.

Programming Considerations @63

T

—_

T

T T
|Boundary |

1] 1
I !
| | Bytes |Converted in |Alignment|Special

| Type of Data|Required |Typical Usage |Arithmetics |Required |Characteristics |
L 4 1 1 L 1 4
1] T T] Ly T 1
| DISPLAY |1 per digit|Input from cards |Yes | No |May be used for

| (External] |Output to cards, | | |numeric fields up to]
Decimal)		1listings			18 digits long.
I I	I I				
					Fields over 15
					digits require extra
					instructions if used
]] in computations.		
.L 1 S ¥ : ¥ 1					
COMPUTA-	1 byte per	Input to a report	Not normally	[No	Requires less space
TIONAL~-3	2 digits	item			than display.
(Internal	atter the				
Decimal)	1st byte	Arithmetic fields			Convenient form for
	for low-			decimal alignment.	
{	order digit	Work areas			
					The natural form
]					contains an odd
					number of digits.
.L ¢ ¢ 4 ¢ + 1					
COMPUTA-	*2 bytes if	Subscripting	Yes/No--for	Yes	Rounding and on-size
TIONAL	1<N<4	Arithmetic	mixed usages		error tests are

| (Binary) | | | | | cumbersome.

| | | | |
| | ¥4 bytes if| |No--for | |Always must be |
| | 55N<9 | | unmixed usage| | signed.

| I | | I |
| | *8 bytes if] | | |Fields of over 8

| |10<N<18 I | | |digits require more |
| | | | | |handling. |
t + + + + + i
| COMPUTA- |4 bytes | Fractional expo- |No |Yes |Tends to produce

TIONAL-1	8 bytes	nentiation, or			less accuracy.
COMPUTA-		very large or			Computational-2 is
TIONAL-2		small values]	more accurate than	
					Computational-1.]
				I I	
(Floating)					Requires floating-
Point)]		point feature.	
L 1 L L i i K

*Where N= number of digits in PICTURE.

Figure 30.

Characteristics of Numeric Data

64 IBM S/360 OS COBOL(E) Programmer's Guide

MACHINE REPRESENTATION OF DATA ITEMS

The following examples are machine
representations of the various data items
in COBOL.

DISPLAY (External Decimal)

If value is -1234, and:

Picture and Usage are:
PICTURE 9999.

or
PICTURE S9999.

Machine Representation is:
[FI{|F2|F3|F4|
L J

Byte

or
|F1|F2|F3|D4|
IR SR S S

Byte

The sign position of an unsigned
receiving field is changed to a hexadecimal
F.

Hexadecimal F is arithmetically treated
as plus in low-order byte. The character D
represents a negative sign. This form of
data is referred to as external decimal.

COMPUTATIONAL-3 (Internal Decimal)

If value is +1234, and:

Picture and Usage are:
PICTURE S9999 COMPUTATIONAL-S.
or
PICTURE 9999 COMPUTATIONAIL-3.

Machine Representation is:
[01] 23] 4C]
IS W N

Byte
oxr

|01]23|4F|

| IS W T——

Byte

Hexadecimal F is arithmetically treated
as plus. The character C represents a
positive sign. This form of data is
referred to as internal decimal.

COMPUTATIONAL (Binary)

If value is 1234, and:

Picture and Usage are:
PICTURE S9999 COMPUTATIONAL.

Machine Representation is:
10000j0100(1101|0010]|
L L i 1 J

t
sign Byte

A 1 in sign position means number is
negative. A 0 in sign position means
number is positive.

This form of data is referred to as
binary.

COMPUTATIONAL-1 or COMPUTATIONAL-2
(Intexrnal Floating Point)

If value is +1234, and:

Picture and Usage are:

COMPUTATIONAL-1.

Machine Representation is:
10/1000011|0100 1101 0010 0000 0000 0000}
L1 A d

s 1 78 31

S is the sign position of the number. A
0 in the sign position indicates that the
sign is plus. A 1 in the sign position
indicates that the sign is minus.

This form of data is referred to as
floating point. The example is one of
short precision. 1In long precision, the
fraction length is 56 bits. For a detailed
explanation of floating-point
representation, refer to IBM System/360
Principles of Operation.

EXAMPLES SHOWING EFFECT OF DATA
DECLARATIONS

The specific series of instructions that
are generated vary widely with the
description of the data fields involved.
Some examples of the range to be expected
by slight differences in the data
descriptions follow. The examples of
possible expansions used are illustrative
and should not be used for estimates of
storage.

Programming Considerations 65

MOVE

Assume that data items A,B,C, and D are
defined for the purpose of being moved as
COMPUTATIONAL-3 fields or DISPLAY fields.

A PICTURE S99V99.
B PICTURE S99V99.
C PICTURE S99V9.
D PICTURE S99.

COMPUTATIONAL-3 Fields

If items A, B, C and D are defined as
COMPUTATIONAL-3 fields, then the cost in
bytes to:

Move A to B is: (when both integer and
decimal places are equal) 6 bytes for a
simple move.

Move C_to B is: (The sign position must be
moved, and the original sign changed.)
6 bytes for a simple move, and 18 bytes
for decimal alignment. Total = 24 bytes.

Move C to D is:
separate move.)
6 bytes for a simple move, and 18 bytes

for decimal alignment. Total = 24 bytes.

(The sign requires a

DISPLAY Fields

If data items A, B, C, and D are defined as
DISPLAY fields, then the cost in bytes to:

Move A to B is: (When both integer and
decimal places are equal) 6 bytes for a
simple move.

Move C to D is:
6 bytes for a simple move, and 6 bytes
for decimal alignment. Total = 12 bytes.

Move DISPLAY to COMPUTATIONAL-3

The cost in bytes of moving DISPLAY data to
a COMPUTATIONAL-3 field is: 6 bytes for
conversion, and up to 24 bytes for decimal
alignment.

66 IBM S/360 OS COBOL(E) Programmer's Guide

Move COMPUTATIONAI~3 to Report

The cost in bytes of moving COMPUTATIONAL-3
data to a REPORT field is:

24 bytes for a simple move,

12 bytes for floating insertion character,
24 bytes for non-floating digit position,
18 bytes for decimal alignment,

24 bytes for trailing characters,

12 bytes for unmatched digit positions.

RELATIONALS

IF COMPUTATIONAL-3 = COMPUTATIONAL-3

The cost in bytes to execute an IF
statement when all data is defined as
COMPUTATIONAL-3 is:

6 bytes for the compare and branch
instruction (no decimal alignment);

42 bytes for the compare and branch with
decimal alignment.

IF DISPLAY = COMPUTATIONAL-3

The cost in bytes to execute an IF
statement when data is defined as DISPLAY
and COMPUTATIONAL~3 is:

6 bytes for conversion,

18 bytes for the compare and branch
instruction, and

18 bytes for decimal alignment.

COMPUTATIONAL = COMPUTATIONAL

The cost in bytes to execute an IF
statement when all data is defined as
COMPUTATIONAL is:

18 bytes for the compare and branch
instruction, when the number of decimal
digits is 1 to 9.

The number of bytes required to execute
the IF statement is unpredictable when the
number of decimal digits is from 10 to 18.

IF A*¥ B=C * D, ETC.

For optimum use of storage when writing any
IF statement, first make all computations,
and then compare results.

ARITHMETICS

ADD COMPUTATIONAL-3 TO COMPUTATIONAL-3

The cost in bytes to execute an ADD
statement when all data is defined as
COMPUTATIONAL-3 is:

6 bytes to execute the add, up to 56 bytes
for alignment of decimals, and 4 bytes for
blanking the sign.

GENERAL TECHNIQUES FOR CODING

The following examples illustrate how COBOL
data fields can be manipulated. Some of
the techniques illustrated are basic, and
can be used in most programs, while others
are designed to give the programmer an
insight into techniques applicable to more
sophisticated programs.

INTERMEDIATE RESULTS IN COMPLEX EXPRESSIONS

The compiler can process complicated
statements, but not always with the same
efficiency of storage utilization as the
source programmer. Because truncation may
occur during computations, unexpected
intermediate results may be obtained.
rules for truncation are in the
publication, IBM System/360 Operating
System: COBOL lLanquage.

The

A method of avoiding unexpected
intermediate results is to make critical
computations by assigning maximum (or
minimum) values to all fields and analyzing
the results by testing critical
computations for results expected.

Because of concealed intermediate
results, the final result is not always
obvious.

Alternate Method of Solution_ (Unexpected
Intermediate Results)

The necessity of computing worst case (or
best case) results can be eliminated by
keeping statements simple. This can be
accomplished by splitting the expression,
and controlling intermediate results to be
sure unexpected final results are not
obtained. Consider the following example:

COMPUTE B = (A + 3) / C + 27.600.

First define adequate intermediate result
fields, e.g.:

02 INTERMEDIATE-RESULT-A

PICTURE S9(6)V999.
02 INTERMEDIATE-RESULT-B

PICTURE S9(6)V999.
Then, split up the expression as follows.
ADD A,3 GIVING INTERMEDIATE-RESULT-A.
Then write:

DIVIDE C INTO INTERMEDIATE-RESULT-A
GIVING INTERMEDIATE-RESULT-B.

Then, compute the final result by writing:
ADD INTERMEDIATE-RESULT-B, 27.600 GIVING B.

ARITHMETIC SUGGESTIONS

ARITHMETIC FIELDS

Initialize arithmetic fields before using
them in computations. If the user attempts
to use a field without it being
initialized, the contents of the field is
upredictable: therefore, invalid results
might be obtained, or the job might
terminate abnormally.

EXPONENTIATION

Avoid exponentiation to a fractional power.
For example: V #**x (P / N).

This requires the use of the
floating-point feature. Use of floating
point can be avoided by dividing the
statements into separate computations. The
first example given requires the use of the
floating-point feature. The second example
restates the problem, illustrating how the
use of floating point can be circumvented.

Assume data is defined:

DATA DIVISION.

WORKING~-STORAGE SECTION.

77 FLD PICTURE S99V9, COMPUTATIONAL-3.
77 EXPO PICTURE S99, COMPUTATIONAL-3.
77 P PICTURE S99.

77 N PICTURE S99.

77 VALUE1 PICTURE S99.

Assume values used in the example were
appropriately moved into their respective
symbolic names as follows: VALUEl = 5, P =
10, and N = 5.

Programming Considerations 67

Example 1

COMPUTE FLD = VALUE 1 #** (P / N).

Because (P/N) = 10/5 = 2.00 (with
decimal ‘places), the floating-point feature
is required to solve this statement even
though the exponent is an integer. The use
of this type of statement involves the
floating-point feature because it is not
known whether decimal digits are’ present
when the exponent is developed.

Example 2

The statement in example 1 can be solved by
writing:
COMPUTE EXPO = (P / N).

The result is truncated to two significant
digits (s599).

Then write:
COMPUTE FLD = VALUEl1l #** EXPO.

Thus, the statement written in example 1
can be solved by dividing it into two
separate computations, avoiding the need
for floating-point instructions.

Another occurrence that can affect final
results is intermediate result truncation.
For example:

Assume that VALUEl = 10, and N = 2.

If COMPUTE FLD = (VALUEl1l ** N) - 2 is
written, by substitution the result is:

FLD = (VALUE1l #** N) - 2
S99V9 = (S99 ** 599) - 2
S99V9 = (10 ** 2) - 2
S99v9 = 100.0 - 2 By the rule for
truncation:
[————— 1
—_—t ——d

.
S|99v9| = 1]00.0f - 2.

The most significant digit is truncated.
The final result is then:

FLD = 00.0 - 2
FLD = 02.0, could be an unexpected result.

The situation can be corrected by
expanding the target field (FLD) as
follows:

77 FID PICTURE S999V9.

Then, when the statement is written
(assuming VALUEl1 = 10, and N = 2):

68 IBM S/360 OS COBOL(E) Programmer's Guide

COMPUTE FLD = (VALUE1l #* N) - 2,

The result is:

FID = (VALUEl1l #** N) - 2
S999V9 = (S99 ** S599) - 2
S999V9 = (10 ** 2) - 2.

By the rule for truncation:

fm===""7"""" b
f"-'l'-_1 F__J'__'I
S1999v9| = |100.0]| - 2.

The result is,
+

FLD = 098.0, which is the expected result.

SUBSCRIPTING

Use a constant subscript instead of a
variable (data-name) subscript whenever
possible. Constant subscripts are resolved
during compile time, whereas variable
(data-name) subscripts are resolved at
object time.

Example

Instead of NAME (51, S2) use:
where S1=1, and S2=23.

NAME (1,23)

The address of NAME (in the latter case)
is resolved at compile time, based on the
given constant subscripts.

When variable subscripting is used, the
address of the field is computed each time
a subscripted field is referenced.

For efficient coding, frequently
referenced subscripted fields should be
moved to a work arxea, manipulated, and if
necessary, returned.

Example

ADD D TO TAB-FIELD (A,B,C).

IF TAB-FIELD (A,B,C) = LIMIT-FLD
GO TO ERR.

MOVE TAB-FIELD (A,B,C) to F.

COMPUTE TAB~FIELD (A,B,C) = TAB-FIELD
(A,B,C) + F / G.

Bad
Code

This coding could be improved by
writing:

MOVE TAB-FIELD (A,B,C) TO WORK-FLD.
ADD D TO WORK-FLD.

IF WORK-FLD = LIMIT-FLD

GO TO ERR.

MOVE WORK-FLD TO F, COMPUTE TAB-FIELD
(A,B,C) = WORK-FLD + F / G.

Good
Code

Binary Subscripting

Use binary mode items for subscripting.
Data-name subscripts not in binary are
converted to binary at object time.

COMPARISONS

Numeric comparisons are usually done in
COMPUTATIONAL-3 format; therefore,
COMPUTATIONAL-3 is usually the most
efficient data format.

Because compiler inserted slack bytes
can contain meaningless data, group
compares should not be attempted when slack
bytes are within the group unless the
programmer knows the contents of the slack
bytes.

REDUNDANT CODING

To avoid redundant coding of usage
designators, use computational designators
at the group level (this does not affect
the object program).

Exanmple

Instead of:

02 FULLER.
03 A COMPUTATIONAI~-3 PICTURE 99V9.
03 B COMPUTATIONAL-3 PICTURE 99V9.
03 C COMPUTATIONAL-3 PICTURE 99V9,.

Write:

02 FULLER COMPUTATIONAL-3.
03 A PICTURE 99V9.
03 B PICTURE 99V9,.
03 C PICTURE 99V9.

EDITING

A high-order nonfloating digit position
involves more instructions than a floating
digit position.

Example

nonfloating floating
999.99 vs $$59.99

The blank-when-zero is implied in certain
pictures. For example:
222.22

If blank-when-zero is not required for
low-order characters, much more efficient
coding is generated by pictures such as:

22%2.99

OPENING FILES

Open requires a work area that cannot be
recovered in a COBOL program. Less storage
is used if single-file opens are given
(reusing the positions) instead of a
multiple open, which requires approximately
500 bytes of additional storage for each
file-name.

To conserve storage, use:
OPEN INPUT FILEA OPEN INPUT FILEB.

rather than:

CPEN INPUT FILEA, FILEB.

ACCEPT

The ACCEPT verb does not provide for
recognition of the last card being read
from a card reader. When COBOL detects a
/% card a system ABEND occurs (completion
code 337). Because of this system action,
an end-of-file detection requires special
treatment. Thus the programmer must
provide his own end card (some card other
than /%) which can be tested to detect an
end of file.

PARAGRAPH NAMES

Paragraph names use storage when the
PERFORM verb is used in the program. Use
of paragraph names for comments requires
more storage than the use of NOTE or a

Programming Considerations 69

blank card. Use NOTE and/or a blank card
for identifying in-line procedures where
paragraph names are not required.

Example

Avoid.

MOVE A TO B.

PERFORM JOES-ROUTINE.
JOES-ROUTINE. COMPUTE A =D + E * F.

Recommended :

MOVE A TO B.

PERFORM ROUTINE.

NOTE JOE'S ROUTINE.
ROUTINE. COMPUTE A = D + E * F.

TRAILING CHARACTERS

Pictures with a trailing period or comma
require that punctuation follow, or the
trailing picture character is treated as
punctuation.

Example

77 A PICTURE IS 999., USAGE IS DISPLAY

REDEFINITION

The results of moving a field to itself
through the use of redefinition are
unpredicatable.

To manipulate unusual data forms, use
REDEFINES. For example, a technique for
isolating one binary byte follows.

02 A PICTURE S99 COMPUTATIONAL.
02 FILLER REDEFINES A.

03 FILLER PICTURE X.

03 B PICTURE X.

Explanation:

COMPUTATIONAL sets up a binary halfword:

|
L 4 J

|
L

si 7 8 15
\ J\ /
t Byte 1 Byte 2

A

70 IBM S/360 OS COBOL(E) Programmer's Guide

02 FILLER REDEFINES A., states that A is to
be redefined as follows.

» Ignore first byte (03 FILLER PICTURE X).
e Name second byte B. (03 B PICTURE X).

Now byte B can be moved to a work area,
and operated on logically at the assembler
level, or compared logically at the COBOL
level. It can be stored on a file, and
later moved back to its point in a
similarly defined field.

Use of data in this manner can present
problems regarding signs and numeric
values. These problems require a knowledge
of both System/360, and COBOL.

Another illustration of using REDEFINES
to manipulate data concerns the test IF
NUMERIC. A field is considered numeric
(under normal language usage) if all the
positions of the field are numeric with the
exception of the sign position.

If a field is to be considered numeric
only when it is unsigned, the sign position
must be tested. A technique for relocating
the sign (or "shifting") so that it can be
tested as an unsigned numeric value
follows.

Assume a field is defined:

02 IF-NUM-FIELD PICTURE X(5) VALUE °'00000°'.
02 CHANGE-FIELD REDEFINES IF-NUM-FIELD.

03 REAL-FIELD, PICTURE S9(4).

03 FILLER, PICTURE X.
IF-NUM-FIELD defines a 5-byte alphameric
field.
REAL-FIELD redefined this field to be 4
bytes numeric.

The fields appear in storage as follows:

JF-NUM~FIELD

1 2 3 QJ é«’ Byte position

~

REAL~FIELD

FILLER

To make an IF NUMERIC, test true for only
unsigned fields.

1. Move the 4-byte value to be tested into
REAL-FIELD. The value and its sign
occupy bytes 1-4.

For example:

If +1234 is moved to REAL-FIELD, the
resultant field appears in storage as
follows:

IF-NUM-FIELD

r \
Case A |F1|F2|F3|CU4|FO|
bend L b L}
1 2 3 4 5
—_—

Byte position

REAL-FIELD FILLER

Note that the low-order byte (rightmost
byte) of IF-NUM-FIELD retains its initial
value of 0.

If 1234 is moved to REAL-FIELD, the
resultant field appears in storage as
follows:

IF-NUM-FIELD

P

r A}
Case B |F1|F2|F3|F4|FO|
L L L L L J

1 2 3 4 5 Byte position
————

REAL-FIELD FILLER

2. Test IF-NUM-FIELD FOR NUMERIC.
All four bytes of REAL-FIELD will be
tested as an unsigned numeric value
because the sign position was "shifted
left one position," and is no longer in
the units position of IF-NUM-FIELD. If
the value is unsigned, a hexadecimal F
appears in the sign position or fourth
byte of the U4-byte field, and it
appears as un unsigned numeric.

Thus in the preceding example, when the
fourth byte is tested in case A, the
numeric test fails, but when tested in case
B the numeric test is satisfied.

ALIGNMENT AND SLACK BYTES. - (A
CONSIDERATION WHEN USING BINARY OR FLOATING
POINT DATA.)

Unless binary or floating-point data is
used the user need no be concerned with
slack bytes. The number of bytes of main
storage necessary for the data division
must include bytes added to produce valid
boundary alignment for binary and
floating-point data fields.

Slack bytes required to align data are
generated by the compiler.

Example:

01 RECORD.
02 FLD-1 PICTURE IS X(2).
02 FLD-2 PICTURE IS 599999 COMPUTATIONAL.

Because FLD-2 is binary and five digits
in length, the compiler sets aside one
fullword which must be aligned on a
fullword boundary. In this example, two
slack bytes are required. The compiler
inserts them automatically.

A warning diagnostic is given when ‘slack
bytes are inserted by the compiler.

Because COBOL aligns computational
fields on output files and expects them to
contain slack bytes (where required) on
input files, a problem could exist when
reading or writing a file.

A file to be read that contains
computational fields without slack bytes
must be coded in the same manner. That is,
it must be coded with the knowledge that it
does not contain slack bytes. If the file
contains computational data without slack
bytes, the data will not be properly
aligned when read from the file; thus it
cannot be processed by the compiler.

The following is a technique for
manipulating computational data not
containing slack bytes so that it may be
processed by the compiler.

Assume a group record called RECORD-C
exists on a file and consists of 2-bytes of
alphameric data called GOLD, and 4-bytes of
binary data called SILVER. The record on
the file would look like:

RECORD~C

Programming Considerations @71

®72

If an FD were defined:

01 RECORD-C.
02 GOLD PICTURE XX.
02 SILVER PICTURE 599999 COMPUTATIONAL.

The compiler assumes the following
structure:

=TI IrI"TrTTTTT
L_i_1 [] 1 1 1_41_1
+ '

| t SILVER

| SLACK

GOLD BYTES

|
RECORD-C

When the record on the file is read, it
is placed in the area defined, left
justified. The area thus contains the
following:

t +

GOLD ¢ SILVER (This is the compiler-
| SLACK generated address for
| BYTES SILVER.)

RECORD-C

Thus the first 2-bytes of the 02 SILVER
are lost because of misalignment. Hence,
when the 02 SILVER is accessed, only the
last 2-bytes are available.

To circumvent this problem, define
RECORD-C as follows:

01 RECORD-C.
02 GOLD PICTURE XX.
02 SILVER PICTURE XXXX.

and a GROUP item such as:

01 LEAD.
02 DIAMOND PICTURE S99999 COMPUTATIONAL.

Now, access the record (RECORD-C). This
places it in the buffer, properly aligned.
Then move the U-byte elementary 02 SILVER
(which is defined as alphameric but is
actually binary data) to the record 01
LEAD. Because the 01 LEAD is a group item,
the data moved retains its original form
(no data conversion takes place) and the
elementaries 02 SILVER and 02 DIAMOND are
properly aligned. Thus, by accessing
DIAMOND, the binary data can be operated on
as desired.

Assuming the same record (RECORD-C) out
on the file, an alternate method of
obtaining proper alignment when reading the
record follows.

Define a record in an FD as follows:

IBM S/360 OS COBOL(E) Programmer's Guide

01 RECORD-C.
02 GOLD PICTURE XX.
02 SILVER PICTURE XXXX.

The area defined would look like:

GOLD |
| SILVER
RECORD-C

Then define a record in the
WORKING-STORAGE section as:

01 BRASS.
02 LEAD PICTURE XXXX.
02 DIAMOND REDEFINES LEAD PICTURE,
S$99999 COMPUTATIONAL.

As before, when the record is accessed,
it is placed in the buffer properly
aligned. Its structure in the buffer would

| SILVER
RECORD-C

Now move the U4-byte elementary 02 SILVER
to the elementary 02 LEAD. Because the 02
SILVER and 02 LEAD elementaries are both
defined as display, the data retains its
original form and the elementaries are
properly aligned. By accessing the
REDEFINES (DIAMOND), the binary data can be
operated on as desired. The same problem
could exist when reading or writing
floating-point data.

For a complete discussion of slack
bytes, refer to the publication, IBM
System/360 Operating System: COBOL

Language.

GENERAL INFORMATION--FILE HANDLING

BUFFERS

In IBM System/360 Operating System COBOL, a
buffer is as a designated area in main
storage for I/0 transactions. When a file
is read, a block is read into a buffer
where the records are addressed directly as
they are accessed. Use of the READ or
WRITE directs a pointer to the appropriate
record, or record area, of interest in the
buffer.

RECORD BLOCKING

The size of the buffer area is computed by
multiplying the number of records specified
in the BLOCK CONTAINS clause by the maximum
record size (slack bytes and control fields
included). When fixed-length records are
written each physical record contains the
number of records specified in the BLOCK
CONTAINS clause. The last physical record
may be short. No padding records are
generated for short records. As many
variable-length records as can fit into the
buffer area are written, providing that
there is sufficient room for a
maximum-length record. For example, where
the number of records is 6 and the maximum
record size is 500, a 3,000-position buffer
is provided. Records are located in the
buffer until such time as less than 500
positions remain.

For Example:

T T
112 3

4 5
500375

[e ——
- — - —
== —

$o=t
500(250]375
L L

Because the records occupy 2,625
positions of the buffer, and it is not
known if the next record is greater than
375 positions, these seven records are
written out as a 2,625~-character block.
Record eight is generated as the first
record in an empty buffer. This means that
the actual blocking is variable, depending
on record size. Again, no padding recoxrds
are provided.

This technique provides for good
utilization of storage buffers in most
cases. Efficiency is lost if a small
blocking factor is specified and there is a
large variablility in record size. For
example, if a 'BLOCK CONTAINS 2000
CHARACTERS' clause is written with a
maximum record size of 1,000 characters,
the following situation could exist.

———p———p———p———

1121314

[250]250]250|300|
| ESpN I ISV IpE— |

2000

The four records total 1,050 characters,
but since a 1, 000-character maximum size
must be anticipated, the UL-record
1,050-character block has to be written.
Note that in any event, the records per
block at least equal the number of records
specified in the BLOCK ,CONTAINS clause.

APPLY WRITE ONLY

This clause permits the maximum use of a
variable block.

When this clause is specified, the
compiler checks each record, before it is
written, to determine if the record can fit
into the area remaining in the block. If
it fits, the record is written into the
block. If the record is too large to fit,
the block is written out and a new one is
started. Thus, use of the APPLY WRITE ONLY
results in the maximum record size
specified being ignored.

PROCESSING BUFFERS

Files can be processed using multiple
buffers. Logical records are referenced in
the proper block by adjusting registers
(using them as pointers).

This technique eliminates the need for
moving a record from the buffer area to a
separate record work area, as well as the
record work area itself. The record can be
operated on directly in the buffer area.

When processing records in a buffer, the
next read results in the previous record
not being available. Because the previous
record is no longer available, the
technique of moving a high value to the
control field of the last record (to force
the processing of records remaining on the
other file) cannot be used.

Here are several alternate approaches:

1. A GO TO statement, prior to the
compare, can be altered during the AT
END procedure to GO TO the low compare
procedure, thus bypassing the compare.

2. A dummy record having a high value in
its control field can be provided as
the last logical record. This
automatically causes the associated
files to compare low. However, this
can result in the AT END condition
never occurring.

3. The control field can be moved to a
separate work area following the read,
and compared in the work area. The
control field is then available in the
work area following an AT END
condition. The AT END procedure can
move a high value into the control
field.

Programming Considerations 73

74

VARIABLE RECORD ALIGNMENT CONTAINING OCCURS
DEPENDING CLAUSE

Records are processed in the file's buffer
area. The first record starts on a
doubleword boundary. If there is no OCCURS
DEPENDING clause, a diagnostic is given
indicating the padding to be added to the
record to assure proper alignment of
succeeding records.

To align blocked V-type records
containing an OCCURS DEPENDING clause in
the buffer:

1. Determine the largest alignment factor
within the record.

Alignment
factor is For

2 COMPUTATIONAL (1-4 digits)

4 COMPUTATIONAL-1 or COMPUTATIONAL
(5-18 digits)

8 COMPUTATIONAL-2

0 OTHER

2. For alignment factors of four or less,
- pad both the fixed and the variable
portions of the record to an even
multiple of the alignment factor.

3. For an alignment factor of eight, move

the: record, as a group, to a 01 in the
working storage section.

1/0 PROGRAMMING CONSIDERATIONS

The following text discusses:

s Use after standard error
considerations.

o Dummy record codes for direct
organization files.

s The use of rewrite with random indexed
sequential files.

s Considerations when updating or adding
to a BISAM file.

¢ The DD requirements, and DCB parameters
supplied (by the compiler) when using
ACCEPT and DISPLAY verbs.

e The allocation of utility work space
for the COBOL-E compiler.

e Labeling requirements for compiling and
executing.

¢ The use of additional storage by the
COBOL-E compiler.

IBM S/360 OS COBOL(E) Programmer's Guide

USE AFTER STANDARD ERROR CONSIDERATIONS

When an uncorrectable I/0 error occurs, the
USE AFTER STANDARD ERROR declarative is
entered, and general registers 14, 15, 0
and 1 are stored, respectively, in four
words located at address: DCB - 20 bytes.
A description of the contents of these
registers can be found, under the
appropriate access method, in the
publication, IBM System/360 Operating
System: Control Program Services. If a
subprogram is called using file-name as a
parameter, the address of the DCB is
passed, and any action on the error can be
taken at the user's discretion.

DUMMY RECORD CODES FOR DIRECT ORGANIZATION
FILES

When reading direct files sequentially,
dummy records are presented along with
valid user records. They can be identified
by the first byte of the symbolic key,
which is hexadecimal FF.

THE USE OF REWRITE WITH RANDOM INDEXED
SEQUENTIAL FILES

When using rewrite with random sequential
files, each record read must be rewritten,
otherwise the data set will be destroyed.

CONSIDERATIONS WHEN UPDATING OR ADDING TO A
BISAM FILE

If a BISAM file is updated using a REWRITE
statement, a REWRITE statement must be
executed after every READ statement and
prior to any other input/output statement
on that file. A suggested sequence for
reading a record in BISAM, inserting a
different record into that file, and
rewriting the updated original record is:

READ recoxrd x
REWRITE record x
WRITE record y
READ record x
REWRITE record x

If the TRACK-AREA clause is not
specified for BISAM, and a record is added
to the file, the contents of the SYMBOLIC
KEY is unpredictable after the WRITE is
executed.

DD REQUIREMENTS AND DCB PARAMETERS FOR
ACCEPT AND DISPLAY VERBS

Tables 14 and 15 indicate the DD
requirements, and DCB parameters supplied
when using the ACCEPT and DISPLAY verbs.

The parameters in Table 14 (and any
other appropriate DCB parameters) can be
specified by the user on his DD cards.
Table 14. Relationship of ACCEPT and
DISPLAY Verbs and DD Card

+
CCEPT... (Default option is|
SYSIN)

>

| Yes
i

q - T 1
| |DD CARD |
| VERB FORMAT | REQUIRED |
L —e e i S 4
v 1 1
|DISPLAY...UPON CONSOLE | No |
L] (|
r L A
| DISPLAY...UPON SYSPUNCH | Yes |
Jp— | I K|
T A
|DISPLAY. .. (Default option is| |
SYSOUT) | Yes |
+ —

4
ACCEPT...FROM CONSOLE | No |
t 1
|
|
a

[e g ey —

The DISPLAY and ACCEPT data set DCB
parameters given in Table 15 are filled in
by the COBOL-E compiler.

Those parameters not supplied by the
compiler must be supplied by the user.

Table 15. Compiler Supplied Data Set DCB
parameters for ACCEPT and
DISPLAY verbs.

T T T -
| | DISPLAY | ACCEPT|
|DCB PARM. | SYSPUNCH SYSOUT | SYSIN |
i L 1]
F T))
| DSORG | PS PSs | Ps |
i l_ + .'
r 1B

| MACRF | PL PL |GL |
F b + 1
| DDNAME | SYSPUNCH SYSOUT | SYSIN |
b ¢ 1 1
| RECFM |F U |u |
L [1 |
¥ r T |
| LRECL |80 * ===
L 1 L J
H T 1 1
|BLKSIZE |80 * === |
L 4L 1 4
I T T 1
| BFTEK is s |s |
1 IL L]

The parameters given in Table 15 are
defined as follows:

PS - specifies a physical sequential
organization
PL - specifies put-locate-mode operation

GL - specifies get-locate-mode operation
F -~ specifies fixed-length records
U - specifies undefined records
80 - for LRECL, specifies length in bytes
of a format-F logical record
80 - for BLKSIZE, specifies the length of a
block in bytes
S - specifies simple buffering
* - must be supplied in DD cards by user.
The user must add an additional
character for the purpose of forms
control.

ALLOCATION OF UTILITY WORK SPACE

Table 16 is a guide to allocation of
utility work space, and enables the
programmer to specify a reasonable number
of tracks for utility files without using
storage unnecessarily.

Table 16. Track Allocation for Utility

Work Space

The number of tracks required for:

f 1
I |
| |
| 150 500 1000 |
| Source Source Source |
| Cards Cards Cards |
|Device are are are |
| |
12311 17 57 114 |
L J

The programmer can estimate the total
number of ‘tracks required for utility work
space by extrapolating from the figures
given in Table 16. The number of tracks
needed for each utility can then be
specified in the SPACE parameter of the
appropriate DD statement as follows:

SYSUT1 = 20% of the total number of tracks
SYSUT2 = 40% of the total number of tracks
SYSUT3 = 40% of the total number of tracks,

The SYSPUNCH and SYSOUT data sets on a
direct-access device can be allocated space
on a 10-track base with secondary
allocation of 10-track increments, if
needed.

The parameter can be specified on the DD
card for the data set as follows:

SPACE=(TRK, (10,10))

Programming Considerations 75

LABELING FOR UTILITY WORK FILES

Labels for utility data sets are not
required for compilation. The system OPEN
routines process utility work files
automatically. However, if labels are
present, the programmer should be certain
that they are specified in the appropriate
utility DD statements. If they are not,
compilation may be unsuccessful:

The compiler interprets the NO REWIND
parameter of the OPEN clause as comments.
When the file is opened at execution time,
the operating system accesses the file as
specified by the data set sequence number
in the label parameter or the MOD parameter
of the DD card.

At object time, labels are the complete
responsibility of the user in that the same
label status must be indicated in the DD
cards as specified in the COBOL source
program.

User labels are not supported by the
control program for the initial release of
COBOL~-E.

USE OF ADDITIONAL STORAGE BY THE COBOL-E
COMPILER

Additional storage is used by the compiler
in one or both of two ways:

e to increase table space, and/or:
e to increase buffer sizes

If the initial space allocated for tables
was completely used, and additional storage
is needed and available, the table space is
dynamically increased by the compiler. The
user cannot control the allocation of
additional storage space for tables.

However, the programmer can specify
buffer sizes for a specific compilation by
using the BUFSIZE parameter in the EXEC
statement. This temporarily overrides the
system generated buffer sizes for the one

- compilation.

DEBUGGING TECHNIQUES

The DEBUG feature in the COBOL (E-Level
Subset) Language allows the programmer to
use three new verbs (as well as any other
verb) for the purposes of debugging COBOL
source programs. These verbs are TRACE,
EXHIBIT, and ON. They can appear anywhere

76 IBM S/360 OS COBOL(E) Programmer's Guide

in the COBOL program or in a compile-time
debugging packet. Their formats and a
description of their use is contained in
the publication, IBM System/360 Operating
System: COBOL Lanquage. However, this
section is included in this publication to
give the programmer an idea of when to use
the debugging language, and how to
construct a debugging packet, and what
job-control statements are needed to use
the debugging packet(s).

Appendix F contains a complete list of
debugging packet error messages. These
messages reflect errors in the debugging
packet(s) only. They are not associated
with compiling.

The TRACE and EXHIBIT clauses cause
compiler generated "DISPLAY's". Therefore,
a DD card for SYSOUT is required for
specifying the logical output device.

TRACE

When a job fails to execute correctly and
the diagnostic messages fail to indicate
how to correct the error, a READY TRACE
statement can be inserted at a point known
to be prior to the trouble area. The TRACE
displays each paragraph name as control
passes into that paragraph. To reduce the
volume of such a trace, it is possible to
turn on the trace with a READY TRACE
statement and turn if off with a RESET
TRACE if the area can be localized. The
TRACE function can be used any number of
times within the program.

It would reduce the volume if RESET were
issued upon entering a loop (containing a
paragraph-name) and READY were issued upon
leaving the loop.

It is sometimes difficult to determine
what the specific path of program logic is.
This is especially true with a series of
PERFORMS or nested conditions. A TRACE
statement can be very beneficial as an aid
to this problem. Also, if values are
inconsistent, a TRACE statement will again
aid in determining whether or not a program
is actually going through a certain point.

EXHIBIT

To £ind out what specifically caused the
error within the paragraph, additional data
can be obtained from the fields within the
specific paragraph by use of the EXHIBIT
statement. The EXHIBIT statement displays
the field and the source name for

identification purposes. Its use can be
restricted to display the field only if it
has changed since the last time the program
passed through that point. This permits
the programmer to check on the value of the
subscript name or other fields that are
pertinent to a given field, and check out
logic errors. An example of the various
forms of this statement follows.

DATA DIVISION.
77 NO-CHANGE-NAME PICTURE XX VALUE 'AB'.
77 SUB-SCRIPT-NAME PICTURE S999
COMPUTATIONAL VALUE 30.

PROCEDURE DIVISION.

TEST-1.OOP.
EXHIBIT NAMED NO-CHANGE-NAME.
EXHIBIT CHANGED NAMED SUB-SCRIPT-MNAME.
EXHIBIT CHANGED SUB-SCRIPT-NAME.
EXHIBIT CHANGED NO-CHANGE-NAME.
ADD 10 TO SUB-SCRIPT-NAME. IF
SUB-SCRIPT-NAME = 100 NEXT SENTENCE ELSE
GO TO TEST-LOOP.

The print out for this example is:

NO-CHANGE-NAME = AB
SUB-SCRIPT-NAME = 30
30
AB
NO-CHANGE-NAME = AB
SUB-SCRIPT-NAME = 40
40
NO-CHANGE-NAME = AB
SUB-SCRIPT-NAME = 50
50

ON

It is possible, where large volumes of data
are involved, to sample specific portions
of a program by use of the ON statement.
The ON statement allows the programmer to
perform a series of operations at certain
times when a program passes a particular

point. For example, a series of operations
could be performed the 110th time through a
loop and every 5th time thereafter until
the 275th time. This allows the programmer
to determine whethexr or not a given loop
gets out of the expected range for a
particular program. There can be any
number of these statements, and there is a
five-digit compiler counter generated for
each one. The counter starts as zero, and
is increased by one each time the path of
program execution falls through that
specific point. For example, if the
programmer knows that the error occurs on
the 500th record processed, the ON
statement may be used to count reccrds.
Then a READY TRACE can be set as the
counter approaches the point at which the
error occurred. This eliminates tracing
each statement up to that point.

Note that this type of example could
also have been done by a counter or a
PERFORM, but this method is easier.

THE DEBUG PACKET

The debug packet is a tool used for
debugging COBOL object modules. It is
positioned in the job input stream before
the COBOL source module. The packet is
combined (merged) with the COBOL source
module before compilation begins. Where
the packet is positioned within the COBOL
source module is determined by the
procedure division name specified in the
*DEBUG card of the packet.

Job Control Setup for Using Debug Packets

Debug packets for a given compilation are
processed, as separate job steps,
immediately preceding the job step that
executes the COBOL compiler program.
Figure 31 contains the job-control
statements, and data sets needed to use
debug packets.

Programming Considerations 77

r
| //PACKCBL JOB 1234, BROWN, MSGLEVEL=1

//COB.SYSIN DD

needed.

DSNAME=§COMPSET ,DISP=(OLD, DELETE)
DD cards for the execute step of the procedure if

1

|
| 7/DEBUG EXEC PGM=IEPDBGOO |
|//SYSPRINT DD SYSOUT=A |
| /7/SYSUT1 DD UNIT=SYSDA, SPACE=(TRK, (10,10)) |
| /7/SYSUTL DD DSNAME=§COMPSET ,DISP= (NEW, PASS), 1]
|77 UNIT=SYSDA, SPACE=(CYL, (10,10)) |
|//SYSIN DD * |
| |
| DEBUG Packet (s) |
I Source Modules |
I I
| {COBOL Source Module}l |
| |
|/* |
| 7//COMPILG EXEC PROC=COBECLG |
| |
I |
| I
L]

Figure 31. Deck Setup For Debug Packet

The functions of the job-control
statements and the data sets needed to
employ the debug packet are as follows.

The //DEBUG statement specifies that the
debug packet processing program be
executed.

The //SYSPRINT DD statement specifies
the data set for DEBUG packet diagnostics.

The //SYSUT1 DD statement specifies a
work data set on which the DEBUG packets
are stored for future merging into the
procedure division of the COBOL source
module.

The //SYSUT4 DD statement specifies a
work data set on which the COBOL source

78 IBM S/360 OS COBOL(E) Programmer's Guide

module is written, with the DEBUG packets
properly inserted in the procedure
division. This data set then becomes
SYSIN, the input data set to the compiler.

The //COMPILG step specifies that the
cataloged procedure to compile, linkage
edit, and execute be executed.

The //COB.SYSIN DD statement specifies
that the input data set (SYSIN) to the
compiler by SYSUT4 data set of the DEBUG
step.

Any diagnostic messages generated during
the DEBUG step appear on the listing
preceding the source listing produced by
the compiler. Refer to Appendix E for a
list of the debug diagnostic messages.

COBOL SOURCE PROGRAM LIBRARY

Incorporated in the COBOL language are
clauses for utilizing the source program
library facility.

Prewritten source program entries in a
user-created library can be included in a
COBOL program at compile time. Thus,
standard file descriptions, record
descriptions, or procedures can be used
without having to restate them. They are
included in a source statement program by
means of a COPY or INCLUDE clause.

To catalog or update a source program in
a user-created library, a utility program
must be used. Following are examples of:

* Cataloging some source statements to a
user-created library, and what happens
when they are retrieved. Included in
this example is the job-control
statement for automatically
sequence-numbering the source
statements cataloged.

e Updating an existing member of the
user—-created library.

EXAMPLE OF_ CATALOGING SOQURCE PROGRAM
STATEMENTS TO A_ LIBRARY

The job-control statements to catalog
source statements to the source statement
libraxy are:

//CATALOG JOB

/7 EXEC PGM=IEBUPDAT, X
/77 PARM= (NEW)

//SYSUT2 DD DSNAME=COBOLLIB, X
V4 UNIT=2311, X
Ve DISP=(NEW,KEEP), X
7/ VOLUME=SER=111111, X
/7 SPACE=(TRK, (15,10,10)), X
Ved DCB=(,RECFM=F, X
Vo4 BLKSIZE=80)

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

iv4 ADD CFILEA,01,1,1

BLOCK CONTAINS 13 RECORDS
RECORD CONTAINS
120 CHARACTERS

o/ NUMBR 00000000,00000000,
00000010,00000010

e ENDUP

Ve

USE OF SOURCE PROGRAM LIBRARY FACILITY

In this example, IEBUPDAT is the name of
the IBM-supplied utility program that
accomplishes the cataloging. These
statements are copied in an FD entry. The
library entry does not include either FD or
the file-name, but instead begins with the
first clause following the file-name.

The NUMBR statement in this procedure
results in the source statements being
automatically sequence numbered. The first
source statement will be numbered 00000010,
and each succeeding statement a number
incremented by 00000010.

The same procedure can be used to
catalog entire source programs, if desired.

Note: At compile time, the data set
containing the cataloged source statements,
must be assigned to SYSLIB. (In the
example given, this data set DSNAME is
COBOLLIB.)

COoPY (DATA DIVISION)

The COBOL COPY clause permits the user to
include prewritten data-division entries or
environment-division clauses in this source
program at compile time. An example
illustrating what actually gets copied when
the cataloged entry 'CFILEA' is retrieved
from the user-created source program
library follows.

Assume the following source COBOL
statement is written:
FD FILEA COPY 'CFILEA'.

COPY 'CFILEA' is replaced by the actual
entries i.e., BLOCK CONTAINS 13 RECORDS,
etc. within the compiler for compilation
purposes.

The output listing would show the
following:

FD FILEA COPY 'CFILEA'
* BLOCK CONTAINS 13 RECORDS
* RECORD CONTAINS 120 CHARACTERS.

Internally (to the compiler) the output
would look like:

FD FILEA BLOCK CONTAINS 13 RECORDS
RECORD CONTAINS 120 CHARACTERS.

The source statement referencing the
user-created library is followed by the

Use of Source Program Library Facility 79

® 80

actual library entries, except for data
entries which have a duplicate level number
and data-name. Explicitly, CFILEA
identifies the entries actually recorded in
the library. This is the library name. It
is the header record required for
identification of the entries, and is not
itself retrieved (not copied internally by
the compiler).

All entries associated with the library
name are copied.

In the case of data entries which have a
duplicate level number and data-name, the
following results are obtained when issuing
a COBOL COPY statement.

Assume the job-control and COBOL
statements written to catalog a file are:

//CATALOG

JOB
7/ : EXEC PGM=IEBUPDAT,PARM=(NEW)
//SYSUT2! DD DSNAME=COBOLLIB, X
/7 UNIT=2311, X
7/ DISP=(NEW,KEEP), X
7/ VOLUME=SER=111111, X
// SPACE=(TRK, (15,10,10)), X
/7 DCB=(,RECFM=F, BLKSIZE=80)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
o/ ADD XFILEY,01,1,1
01 PAYFILE USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9 OCCURS 1
DEPENDING ON CALC OF
PAYFILE.
-/ ENDUP
/¥

and, the source COBOL statement written is:
01 GROSS COPY 'XFILEY'.

On the output listing, the statements would
look like:

01 GROSS COPY 'XFILEY'.

01 PAYFILE USAGE IS DISPLAY.

* 02 CALC PICTURE 99.
* 02 GRADE PICTURE 9 OCCURS 1
* DEPENDING ON CALC OF PAYFILE.

Internally (within the compiler), the
statements would look like:

01 GROSS USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9 OCCURS 1
DEPENDING ON CALC OF PAYFILE.

INCLUDE (PROCEDURE DIVISION)

The procedure for copying from the
user-created source program library from
within the procedure division is the same

IBM S/360 OS COBOL(E) Programmer's Guide

as that described for the data division.
The results are identical.

Assume a procedure named PROCESS is in
the user-created source program library,
and was cataloged as follows.

//CATALOG JOB
/7 EXEC PGM=IEBUPDAT, PARM=(NEW)

//SYSUT2 DD DSNAME=COBOLLIB, X
// UNIT=2311, X
/77 DISP=(NEW,XEEP), X
/7 VOLUME-SER=111111, X
/7 SPACE=(TRK, (15,10,10)), X
7/ DCB=(, RECFM=F, X
/7 BLKSIZE=80)

//SYSPRINT DD SYSOUT=A

//5YSIN DD *

./ ADD PROCESS,01,1,1

COMPUTE QTY-ON-HAND =
TOTAL~USED~NUMBER-ON-HAND.
o/ ENDUP
/¥

To retrieve catalog entry PROCESS, write:
Paragraph-name. INCLUDE 'PROCESS'.

It is the user's responsibility to
supply the name for paragraph-name.

UPDATING AN EXISTING MEMBER OF A
USER-CREATED LIBRARY

Assume a member called CFILEA is cataloged
to a user-created library. The following
is an example of a procedure for updating
this member.

//UPDATE JOB
7/ EXEC PGM=IEBUPDAT,PARM=(MOD)
//8YSUT1 DD DSNAME=COBOLLIB, X
Va4 UNIT=2311, X
/7 DISP=(NEW, KEEP), X
/7 VOLUME=SER=111111, X
7/ SPACE=(TRK, (15,10,10)), X
Va4 DCB= (, RECFM=F, X
7/ BLKSIZE=80)
//SYSUT2 DD DSNAME=COBOLLIB, X
/7 UNIT=2311, X
// DISP=(NEW,KEEP), X
7/ VOLUME=SER=222222, X
V4 SPACE=(TRK, (15,10,10)), X
/77 DCB= (, RECFM=F, BLKSIZE=80)
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
o/ CHNGE CFILEA,01,1,1

BLOCK CONTAINS

20 RECORDS00000010
e REPRO XFILEY,01,1,1
./ ENDUP
/*

To update a member of an existing

library, another library is built. Thus

(as illustrated in the procedure) CFILEA is

altered. WNote that XFILEY is also copied
into the new library in its entirety.

The programmer should be sure to supply
the appropriate sequence number (in columns
73-80) for the member of the library that

is changed. In the example, 00000010 is
the sequence number supplied for the
statement: BLOCK CONTAINS 20 RECORDS. It

is assumed to be positioned in columns
73-80.

Use of Source Program Library Facility @81

3}
]
€
!

3YSTEM OUTPUT

The compiler, linkage editor, and load
modules produce aids that can be used to
document and debug programs. This section
describes the listings, maps, card decks,
and error messages produced by these
components of the operating system.

COMPILER OUTPUT

The compiler can generate a listing of
source statements, a storage map, and an
object module card deck. Source module
diagnostic messages are also produced
during compilation.

SOURCE LISTING (LIST)

A description of a source module listing
follows. The listing is obtained on
SYSPRINT when LIST is specified in the PARM
parameter of the EXEC statement. The

82 IBM S/360 OS COBOL(E) Programmer's Guide

header line printed across the top of the
source listing is the first line on the
first page of the listing.

r
| PRINT
| POSITIONS |PRINTED INFORMATION

| and DDD = day)
L

1
|
I
k ——= 4
1-13	LEVEL: NMMMYY (where N =
	distribution number, MMMY =
	month and year of
	distribution)
]	
Positioned	Official name and design point
centrally	of compiler (COBOL-E)
in print	
line	
J

| ‘

106 - 117 |DATE: YY.DDD (where YY = year
|
(R

Figure 32 is a skeleton example of a
COBOL source listing. The associated job
control cards are given in Figure 42 of

Appendix A.

-

COBOL E DATE 66.021
000000 IDENTIFICATION DIVISION.
000010 PROGRAM-ID. 'TCECAPO8"'.
000020 REMARKS.

wWN =

. In this example,
Lines 4 through 34 were comments

35 000360 ENVIRONMENT DIVISION.

36 000370 CONFIGURATION SECTION.

37 000380 SOURCE-COMPUTER. IBM-360 ESO.
38 000390 OBJECT-COMPUTER. IBM-360 ES50.
39 000400 INPUT-OUTPUT SECTION.

40 000410 FILE-CONTROL.

41 000420 SELECT EQUAL-~HETROGEN-FILE ASSIGN TO
42 000430 'DATASET1'
43 000440 UTILITY.
4y 000450 SELECT EQUAL-HETROGEN-FILE-2 ASSIGN TO
45 000460 'DATASET1'
46 000470 UTILITY.
000480 DATA DIVISION.
48 000490 FILE SECTION.
49 000500 FD EQUAL-HETROGEN-FILE
550 000210 BLOCK CONTAINS 800 CHARACTERS
51 000520 RECORD CONTAINS 80 CHARACTERS
52 000530 RECORDING MODE IS F
53 000540 LABEL RECORDS ARE STANDARD
54 000550 DATA RECORDS ARE CHCK-RECORD-11 CHCK-RECORD-21.

55 000560 01 CHCK-RECORD-11.

56 000570 02 NAME1l PICTURE IS A(12).

57 000580 02 ADDRESS1 PICTURE IS X(10).
58 000590 02 FILLER PICTURE IS X(5).

User written source statements

000980 01 CHCK-RECORD-21.

=
~

97

98 000990 02 FILLER PICTURE IS AA.

99 001000 02 DEPT PICTURE IS X(3).
|100 001010 02 FILLER PICTURE IS 9(11).
|101 001020 02 MAN-NO PICTURE IS 9(6).
|102 001030 02 DATE-HIER PICTURE IS X(10).
103 001040 02 FILLER PICTURE IS X(45).
{104 001050 02 STATE PICTURE IS 99.
|105 001060 88 PENNA VALUE Is 10.
|106 001070 88 NEW-YORK VALUE IS 15.
1107 001080 02 ID-CODE PICTURE IS 9.
|]108 001090 88 RECORD-2 VALUE IS 2.

1209 001100 WORKING-STORAGE SECTION.
|110 001110 77 WRITE-COUNTER
L

e e e e e e o o s e e e e e i e e e e i . i . . e " S ——— . . . o . o, i St . S B S S, . . ST, . . S . . oo S S P . S s e e, . et . s o

Figure 32. Example of COBOL Source Listing (Part 1 of 2)

System Output 83

r— 1
|111 001120 PICTURE IS 99 |
1112 001130 VALUE IS 00 |
113 001140 USAGE IS DISPLAY.]
114 001150 77 READ-COUNTER |
{115 001160 PICTURE IS 99

116 001170 VALUE IS 00 |
{117 001180 USAGE IS DISPLAY. |
|118 001190 77 GOOD-COMP-COUNTER

| . |
I . |
| . !
| . |
| . |
I . |
| . I
| User written source statements |
| . |
| : |
]141 001420 02 COMP-DEPT |
|142 001430 PICTURE IS X(3) |
|143 001440 VALUE IS 'Du3" |
{144 001450 USAGE IS DISPLAY. |
|145 001460 02 COMP-MAN-NO |
|146 001470 PICTURE IS 9(6) |
|147 001480 VALUE IS 960640 |
148 001490 USAGE IS DISPLAY. |
|149 001500 PROCEDURE DIVISION.]
|150 001510 DISPLAY-HEADER. |
1151 001520 DISPLAY ' GROUP A LEVEL P TEST CASE 8 '. |
[152 001530 DISPLAY ' '. |
1153 001540 OPEN OUTPUT EQUAL-HETROGEN-FILE. |
|154 001550 STARTI1. |
[155 001560 MOVE COMP-NAME TO NAME]. |
|156 001570 MOVE BORN-DATE TO BIRTH-DATEl. |
1157 001580 MOVE 1 to IDENTI1. |
|158 001590 WRITE-REC1. |
|159 001600 WRITE CHCK-RECORD-11. |
|160 001610 ADD 1 TO WRITE-COUNTER. |
|161 001620 START2. |
1162 001630 MOVE COMP-DEPT TO DEPT1. |
]163 001640 MOVE COMP-MAN-NO TO MAN-NO1. |
j164 001650 MOVE 2 TO ID-CODEl. |
| . |
| . I
| . |
| . |
I . I
| . |
| . |
| User written source statements

| : | |
1239 002410 DISPLAY 'WRITE-COUNTER = ' WRITE-COUNTER. |
|240 002420 DISPLAY 'SHOULD BE = 20 ‘.

241 002430 DISPLAY ' READ-COUNTER = ' READ-COUNTER. |
|242 002440 DISPLAY ' SHOUID BE = 21 ‘. |
243 002450 DISPLAY ' ERROR-COMP-COUNTER = ' ERROR-COMP-COUNTER. |
|244 002460 DISPLAY ' SHOULD BE = 00 °'. |
|245 002470 DISPLAY ' GOOD-COMP-COUNTER = ' GOOD-COMP-COUNTER. |
|246 002480 DISPLAY ' SHOULD BE = 20 °'. |
{247 002490 STOP RUN. |
L d

Figure 32.

8u

Example of COBOL Source Listing (Part 2 of 2)

IBM S/360 OS COBOL{E) Programmer's Guide

The components of a source listing are:

1. A compiler generated line number which
is shown in the leftmost columns
followed by the source card image. The
compiler generated line number is used
in diagnostic and PMAP references.

2. All COBOL words, punctuation, and other

: groups of characters on each line are
referenced as elements on the line in
diagnostics and PMAP listings.

3. Sequence numbers out of order. If
columns 1-6 of the source statement are
not blank, they are sequence checked.
The character "S" is placed to the left
of a compiler-generated line number
when a source sequence number is not in
logical ascending order.

Example: Assume that a statement
numbered 50 (refer to Figure 32) was
out of sequence. The compiler would
list the source statement as:

S50 BLOCK CONTAINS 800 CHARACTERS.

4, Library cards. Cards coming from the
source statement library as a result of
a COPY or INCLUDE statement are noted
with the character "*", which is
printed to the right of the
compiler-generated line number.

STORAGE MAP

The storage map consists of a data map
(DMAP) , and a procedure map (PMAP).

Data Map (DMAP)

A data map for a source listing is obtained
when DMAP is specified in the PARM
parameter of the EXEC statement.
map is output by SYSPRINT.

The data

Figure 33 is an example of a data map.
It is a portion of the data map generated
for Figure 32.

This listing shows each non-procedure
nanme defined in the program and its
relative address. File-names,
record-names, and condition-names are
identified in the name column. The
relative location of each entry is shown
(column headed LOCATION). Linkage and file
entries are relative to the 01 or 77.
Working storage is relative to the load
point for the program. The relative
addresses are expressed as hexadecimal
numbers.

T t ¥
| TYPE| LOCATION|DATA NAME
L 1 1

r T T

| FILE | | EQUAL~HETROGEN-FILE |
|REC {000000 |CHCK-RECORD-11 I
| [000000 |NAMEL I
i [00000C |ADDRESS1 I
| |00001B | WIFE1 |
| [000021 |BIRTH-DATEL |
I {000021 |DAY1 |
i [000023 | MONTH1 |
i [000025 |YEAR1 [
I |00004F | IDENT1 |
| COND| | REC11 i
|REC |000000 |CHCK-RECORD-21 [
i 1000002 |DEPT1 I
I {000010 | MAN-NO1 |
I |000016 |DATE-HIER1 |
I {00004D |STATE1 |
| COND | | PENNA1 |
| COND | | NEW-YORK1 I
	00004F	ID-CODEL
COND		RECORD- 21
FILE		EQUAL-HETROGEN-FILE-2
L L 1 —_— J

Example of Data Map Generated
for a COBOL Program

Figure 33.

Procedure Map (PMAP)

A procedure map is obtained when PMAP is
specified in the PARM parameter of the EXEC
card. The details of PMAP are given for
their debugging value to a programmer.
Figure 34 is an example of a procedure map.
It is a portion of the procedure map
generated for Figure 32.

I LINE/POS - Contains the statement line

number, and position of the COBOL verb
on the line. These numbers are decimal
numbers. The actual instruction(s)
used to accomplish the COBOL statement
is identified by the compiler-generated
internal line number(s). If more than
one instruction was generated, the
compiler-generated line number for that
COBOL statement would be repeated for
each instruction listed.

The line counter cannot exceed 4095.
At this point it resets to zero.

ADDR - Contains the relative address of
each instruction in the procedure
division in hexadecimal. The addresses
are relative to the program's load
point.

INSTRUCTION - Contains the actual

instruction generated for the COBOL
statement.

System Output 85

Note: line number 00167-01 and 00167-03.
Line number 00167-01 refers to a verb which
is the first item on the line, whereas
00167-03 refers to a verb which is the
third item on the line.

m=T T
LINE/POS|ADDR |INSTRUCTION
1 4

e

T T
{00165 01]|000564|58 FO 3 234 0 SEF
[00166 01]00056A|41 10 4 050
00166 01]|00056E|58 FO 1 030
00166 01]000572|05 EF
{00166 01]000574|18 51

00167 01]000576|58 FO 3 234 0 SEF
[00167 03]|00057C|F2 F1 3 168 4 000
{00167 03]000582|FA FO 3 168 4 142
{00167 03|000588|F3 1F 4 000 3 168
00167 03|00058E|96 FO 4 001

3 234 0 SEF

el e e e PSR —— Sp——

|00168 01]000592|58 FO
L H L 1

Figure 34. Example of a Procedure Map
Generated for a COBOL Program

OBJECT MODULE CARD DECK

An objeét module card deck is produced
unless NODECK is specified in the PARM
parameter of the EXEC statement.

An object module, the output of a COBOL
(E) execution, consists of control
dictionaries and text (instructions and
data). 'The control dictionaries contain
the information necessary to resolve
cross-references between control sections
and modules. Figure 35 illustrates the
contents of an object module.

86 IBM S/360 OS COBOL(E) Programmer's Guide

External Symbol Dictionary

Text

Relocation Dictionary

END

Figure 35. Example of an Object Module

The COBOL-E compiler also produces an
END statement that marks the end of the
object module. The deck is made up of four
types of cards: TXT, RLD, ESD and END. A
functional description of these cards is
given in the following paragraphs.

Object Module Cards

Every card in the object module deck
contains a 12-2-9 punch in column 1 and an
identifier in columns 2 through 4. The
identifier consists of the characters ESD,
RID, TXT or END. The first four characters
of the name of the program are placed in
columns 73 through 76 with the sequence
number of the card in columns 77-80.

EXTERNAL SYMBOL DICTIONARY: The external
symbol dictionary contains entries for all
external symbols defined or referred to
within a module. (An external symbol is
one that is defined in one module so that
it can be referred to in another.) Each
entry identifies a symbol, or a symbol
reference, and gives its location, if any,
within the module.

Three types of ESD (external symbol
dictionary) cards are generated as follows:

ESD, type 0 - contains the name of the
compiled control section and indicates
its compiled origin.

ESD, type 1 - contains the name of a
secondary entry point within a control
section. These ESD's result from COBOL
ENTRY statements.

S

ESD, type 2 - contains the names of
subprograms referred to by CALL
statements, and names of COBOL object
time subroutines to be linkage edited
with the compiled control section.

The type number: O,

card column 25.

1 or 2 is placed in

RELOCATION DICTIONARY: The relocation
dictionary lists all relocatable address
constants that must be modified when the
linkage editor produces an output load
module. The RID is used to adjust the
value of address constants. The RLD
contains at least one entry for every
relocatable address constant in a module.
An RLID entry identifies an address constant
by indicating its location within a control
section and the external symbol (in the
ESD) whose value must be used to compute
the value of the address constant.

An RLD (relocation dictionary) card is
generated for external references indicated

in ESD, type 2 cards. When the linkage
editor has resolved external references,
the address constant at the address
indicated in the RID card contains the
relative address assigned to the subprogram
indicated in the ESD, type 2 card. RLD
cards are also generated for branching and
subroutine linkage.

TXT Card: The TXT card contains the
literals used by the programmer in his
source module, and any literals generated
by the compiler, coded information for
DISPLAY statements, and machine
instructions generated by the compiler from
the source module.

END Card: One END card is generated for
each compiled source module. This card
indicates the end of the object module to
the linkage editor. It also contains the
entry point of the object module.

OBJECT MODULE DECK STRUCTURE: Figure 36
illustrates the COBOL object module deck
structure.

(END Card

/[

RLD Cards for Branching

and Subroutine Linkage
[/

(ESD Cards for Subprograms
/

CALLED
TXT Cards for Object
Module Instructions

(TXT Cards for Global Table

/

ESD, Type 2 Cards 1dentify
COBOL Object Time Sub-
routines

/
(TXT Cards for Literals
/
TXT Cardls for Working
Storage

ESD, Type O Cards Define
the Program Name Control
Section

Figure 36. COBOL Object Module Deck Structure

These cards are generated
by the compiler randomly.

System Output 87

SOURCE MODULE DIAGNOSTICS

Two types of diagnostic messages are
written by the compiler: error and
error-warning.

When the FLAGE option is specified in
the PARM parameter of the EXEC card, the
compiler will not generate error warning
diagnostic messages.

When the FLAGW option is specified in
the EXEC card, the compiler generates
messages for actual errors, plus warning
diagnostic messages.

Source Module Error-Warning Messages

All error-warning messages produced are
written in a group following the source
module listing and storage map. Figure 37
shows the format of each message as it is
written on the data set specified by the
SYSPRINT DD statement.

These diagnostics were generated by the
compiler for the program shown in Figure
32. For a complete list, and descriptions
of the error messages refer to Appendix F.

r
| DIAGNOSTICS

| MESSAGE
1

b——— T T
| LINE/POS|ER CODE|CLAUSE
i

T T
IEP051W|ALIGNMENT | FOR PROPER
[|ALIGNMENT, A 5
| BYTE LONG
| FILLER ENTRY
| IS INSERTED
| PRECEDING
| ASTR.
L

|129-1

132-1
|ALIGNMENT, A 5
| BYTE LONG

| FILLER ENTRY

| IS INSERTED

| PRECEDING

| DATA-INFO.

X

e e e e o o e e e
T L S UUIpESSY PSS AP SAp——

|
| |
| s

| 1

| |

| |

b + +

| IEPOS5IW|ALIGNMENT | FOR PROPER
| |

| |

! |

n |

| |

| |

L 1

Figure 37. Example of Source Module

Diagnostics

LINE/POS - Contains the internal line
numbers of the source statements, and
the element position of the COBOL verb
on the line where the error was
detected. When the compiler cannot
locate the item in error on the line,

88 IBM S/360 OS COBOL(E) Programmer's Guide

it only identifies the line at fault.
When the compiler generates the line
number 0-0, it is referring to an
entire section (the section may be
missing).

ER CODE - Contains a message number and the
severity level of the error:

MESSAGE NUMBER - The format of the message
number, and the associated message is
described in Appendix F.

Severity Code.

W = WARNING
C = CONDITIONAL
E = ERROR

W WARNING - Your attention is called
to a condition that can cause a
problem, but should permit a
successful run.

C CONDITIONAL - The error statement
is dropped or corrective action is
taken. The compilation is
continued as it may have debugging
value, but the programs should not
execute as intended.

E ERROR - This condition seriously
affects execution of the job.
Execution should not be attempted.

CLAUSE - This column identifies either the
particular COBOL clause being processed
at the time ' the diagnostic was
discovered or the basic area that was
involved, such as ALIGNMENT, FD, I-O
CONTROL, or similar items.

MESSAGE - The actual message is given here.

For specific details of these messages,
refer to Appendix F.

Working with Diagnostics

1. Handle the diagnostics in the order in
which they appear on the source
listing. It is possible to get
compound diagnostics. Frequently, an
earlier diagnostic indicates the reason
for a later diagnostic. For example, a
messing quote for an alphabetic or
alphameric literal could involve the
inclusion of some clauses not intended
in that particular literal. This could
cause some apparently valid clause to
be diagnosed as invalid because it is
not complete, or is in conflict with
something that preceded it.

2. Check for missing or extra punctuation,
or other errors of this type.

3. Frequently, a seemingly meaningless
message is clarified when the valid
syntax or reference format is
referenced. Diagnostics are coded
directly from the reference format and
are designed for use in conjunction
with the particular type of reference.

(See Appendix D.)

How Diagnostic Messages Are Determined

The compiler scans the statement element by
element to determine whether the words are
combined in a meaningful manner. Based
upon the elements that have already been
scanned, there are only certain words or
elements that can be correctly encountered.

If the anticipated elements are not
encountered, a diagnostic message is
produced. Some errors may not be uncovered
until information from various sections of
the program are combined and the
inconsistency indicated. Diagnostics
uncovered in this manner can produce a
slightly different format than those
uncovered when the actual source text is
still available. The message that is made
unique through that particular error may
not have, for example, the actual source
statement that produced the error. The
position and sequence reference, however,
indicates the place at which the error was
uncovered.

Errors appearing to be identical are
diagnosed in a slightly different manner,
depending on where they were encountered by
the compiler and how they fit within the
context of valid syntax. For example, a
period missing from the end of the
working-storage section clause, is
diagnosed specifically as a period
required. There is no other information
that can occur at that point. However, if
at the end of a record description entry,
an element is encountered that is not valid
at that point, such as the digits 02, they
are diagnosed as invalid. Any clauses
associated with the clause at that entry,
that conflict with the entries in the
previous entry (the one that had the
missing period), are diagnosed. Thus, a
missing period produces a different type of
diagnostic in one case than in another.

If a given compilation produces more
than 25 diagnostic messages, they are
presented in a batched sequence. The first
25 messages are sorted in order, followed
by the second series, which is also sorted
in order.

If an error occurs after the 4095 source
statement the line sequence number of the

source statement in error can usually be
determined by adding 4095 to the sequence
number given in the diagnostic message. A
message frequently suggests the division of
a COBOL source program in which the error
occurred.

Examples of How Diagnostics Are Generated

Each message has a general or skeleton
form. Unique words for each message are
inserted to identify the specific error
that was encountered. The following two
‘examples illustrate this form.

Example 1:
COBOL format is

MOVE data-name TO data-name...

literal
Error 1 MOVE FIELDA TOO FIELDB
023
ERROR #178
Information
INSERT1 TO passed to
diagnostic

INSERT2 TOO out of phase.

Skeleton Message #178 E SYNTAX REQUIRES
WORD "Insertl". FOUND "Insert2".

23-3 IEP178 E SYNTAX
FOUND "TOO".

Message appears as:
REQUIRES WORD "TO".

Example 2:

Error 2

023 NOVE FIELDA TO FIELDB
ERROR #549
INSERT1 NOVE

Skeleton message #549 E WORD 'Insert 1' WAS
EITHER INVALID OR SKIPPED DUE TO ANOTHER
DIAGNOSTIC.

Message appears as: 23-1 IEPS549E "NOVE"

UNHANDLED. WORD NOVE WAS EITHER INVALID OR
SKIPPED DUE TO ANOTHER DIAGNOSTIC.

LINKAGE EDITOR OUTPUT

The linkage editor produces a map of a load
module (module map), or cross-reference
list and a module map when the MAP or XREF
options, respectively, are specified in the
PARM parameter of the EXEC statement. The
linkage editor also produces diagnostic
messages. For a complete list of linkage
editor diagnostics, refer to the

System Output 89

publication IBM System/360 Operating
System: Linkage Editor.

MODULE MAP

The module map is written on the data set
specified in the DD statement called
SYSPRINT. The module map is a listing of
the control sections processed by the
linkage editor.

Each control section is listed giving:

¢ Tts name, origin, and length. The name
is the program ID. The origin and
length of the control section are
listed in hexadecimal numbers.

e Any entry points within the control
section and their locations.

Also listed are:

e Any functions called from the data set
specified by the SYSLIB DD statement.
These functions are subprograms
included in the main program by
automatic library calls, and are
identified by asterisks.

¢ A segment number for each control
section in an overlay structure.

¢ The total length and entry point for
the load module.

Figure 38 is an example of a load module
map. It is the load module map for the
program shown in Figure 32. The map
contains a main program (TCECAP08, the
PROGRAM ID.) and four subprograms, each of
which is a control section: IEP02300,
IEP02800, IEP03000, and IEPOO400. The
asterisks following the names of these
control sections indicate that the linkage
editor obtained them from the automatic
call library for the purpose of resolving
references. The origin of the main program
(TCECAPO08) is the relative address 00 and
its length is BBO. The entry point for the
main program is at 490. The origin of
subprogram IEP02300 is BBO and its length
is 21E (all numbers are hexadecimal
numbers) .

The entry points within a subprogram are
listed in a string under the heading ENTRY.
The entry points within subprogram IEP02300
are IEP02301 at location BBO, IEP02302 at
location CAC, RETURN at location CAC, and
TEP02304 at location CDE.

|CONTROL SECTION ENTRY |
| NANE ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION |
| TCECAPO8 00 BBO i
{IEP02300* BBO 21E IEP02301 BBO IEP02302 CAC RETURN CAC IEP02304 CDE :
‘IEP02800* DDO 19C IEP02801 DDO IEP02802 E46 |
:IEP03000* F70 3C IEP03001 F70 :
IIEPOOQOO* FDO 2A4 IEPOO4O1 FBO I
}ENTRY ADDRESS 490 I
iTOTAL LENGTH 1254 j

Figure 38. Example of a Module Map

CROSS-REFERENCE TABLE

The cross-reference table is written along
with the module map, when the option XREF
is specified. It lists the location from
which an. external reference is made, the
symbol externally referenced, the control
section in which the symbol appears, and
the segment number of the control section
in which the symbol appears. The

20 IBM S/360 OS COBOL(E) Programmer's Guide

cross-reference table appears after the
module map for all control sections, unless
the linkage editor is building an overlay
structure. Figure 39 is an example of a
cross-reference table. It is the
cross-reference table for Figure 32.

Location 478, in the cross-reference
table, is the address where the CALL or
reference is made to subprogram entry point

IEP02301 given in the REFERS TO SYMBOL
column.

REFERS TO SYMBOL column lists all
references to the entry points of each
subprogram, and from one control section to
another, for the entire load module (which
is the entire program).

The control sections that contain the
entry points referenced are listed in the
column labeled IN CONTROL SECTION. Thus,
entry point IEP02301 resides in control

‘section IEP02300.

The ENTRY ADDRESS of the load module is
490, and its entire length, including all
subprograms, is 1,254 hexadecimal bytes.

r

| CROSS REFERENCE TABLE

|,___

| CONTROL SECTION ENTRY

| NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
|TCECAPOS 00 BBO

=IEP02300* BBO 21E IEP02301 BBO IEP02302 CAC RETURN CAC IEP02304 CDE
IIEPOZSOO* DDO 19C IEP02801 DDO IEP02802 Eu46

}IEP03000* F70 3C IEP03001 F70

|
| IEPOO4OO* FBO 2A4 IEPOO4O1 FBO

|
| LOCATION

REFERS TO SYMBOL IN CONTROL SECTION
|

|478 IEP02301 IEP02300
|

|47C IEP02302 1IEP02300
]

480 IEP02304 IEP02300
[

|48y IEP02801 IEP02800
l,

| 488 IEP02802 IEP02800
|

|480 IEP03001 IEP03000
|

|CFY IEPO0401 IEPO0L00

|
|ENTRY ADDRESS 490

|
| TOTAL. LENGTH 1254
L p——

e s s e s e R e e e o e e = e e e . i e i e e i, S . . e, . e, Sl e . el e]

Figure 39.

LOAD MODULE OUTPUT

The programmer defines the output data sets
for load module execution through the
appropriate source module statements and
corresponding DD statements. The
environment and data division statements
define the data set. The WRITE and DISPLAY
verbs in the procedure division generate
the creation of the data set. Two types of
messages can be generated from a load
module: object time messages and operator
messages.

Example of a Cross—-Reference Table

OBJECT TIME MESSAGES

When an error condition that is recognized
by compiler generated code occurs during
execution, an error message is written on
the CONSOLE typewriter.: These messages and
their descriptions are contained in

Appendix F.

System Output 21

OPERATOR MESSAGES

A message is transmitted to the operator
when a STOP 'literal' or an ACCEPT ...
FROM CONSOLE source statement is executed.
The messages are written on the console
typewriter. Refer to Appendix F for a
description of these messages.

OBJECT PROGRAM DUMPS

An object program can dump before normal
termination of a procedure. A dump could
be caused by any of the errors listed here.
Several of these errors can occur at the
COBOL language level while others can occur
at the job-control level.

Typical Source Program Errors Initiating
Dumps at Execution Time

A dump can occur at the COBOL language
level for the following reasons.

1. A GO TO statement with no procedure
name following it may not have been
properly initialized with an ALTER
statement. The execution of this
statement would cause an invalid
branch.

2. Performing arithmetics or moves on
numeric fields that have not been
properly initialized could cause an
interrupt and a dump. For example,
neglecting to initialize an OCCURS
DEPENDING ON name, or referencing data
fields prior to the first read.

3. Invalid data in a numeric field
resulting from redefinition.

4. Input/output errors that are
nonrecoverable.

5. Destroying a machine instruction in
the program could move data fields
into the procedure division. This
could happen, for example, by using a
subscript whose value exceeds its
defined maximum.

6. Attempting to execute an invalid
operation code through a systems error
or invalid program.

7. Generating an invalid address to an
area that has address protection.

8. Subprogram linkage declarations that
are not defined exactly as they are
stated in the calling program.

92 IBM S/360 OS COBOL(E) Programmer's Guide

9. Data or instructions can be modified
by entering a subprogram and
manipulating data incorrectly. A
COBOL subprogram could acquire invalid
information from the main program;
that is, a CALL using a procedure-name
and an ENTRY using a data-name.

10. There is no conversion, alignment, or
error checking of incoming data
associated with the clause ACCEPT FROM
CONSOLE. Any assumptions made by the
programmer concerning these functions
could result in the initiation of a
dump.

11. Data records must be 80 characters in
length for files in the input stream
when the input device is a disk or
tape unit.

12. An input file contains invalid data
such as a blank numeric field or data
incorrectly specified by its data
description.

The compiler does not generate a
test to check the sign position for a
valid configuration before the item is
used as an operand. The programmer can
test for valid data by means of the
numeric class test and, by use of the
TRANSFORM statement, convert it to
valid data under certain circumstances.

For example, if the units position
of a numeric data item described as
USAGE IS DISPLAY contained a blank, the
blank could be transformed to a zero,
thus forcing a valid sign.

Abnormal Termination Dumps

The control program prints an abnormal
termination dump if a task is abnormally
terminated, and a DD statement with a data
definition name of SYSABEND in the name
field was specified.

The abnormal termination dump is written
in the SYSABEND data set. The details for
specifying the abnormal termination dump
are given in the section Job Processing.
This data set can be on a printer, so that
the dump is printed as it is produced, or
on any other type of device, so that the
dump can be printed later.

Figure 40 gives the format of an
abnormal termination dump. Only the items
pertaining to the module load address, and
the program entry point are discussed here.
For a complete description of the abnormal
termination dump, refer to the publication,
IBM System/360 Operating System: _Control
Program Messages and Completion Codes.

How to Use a Dump

Information regarding the error and the
reason for an interrupt (and therefore a
dump) can be obtained from the completion
code, which appears at the beginning of the
abnormal termination dump. The completion
code indicates the reason for the SYSABEND
dump, such as a permanent I/0 error,
incomplete job control, etc. A description
of all the completion codes is given in the
publication, IBM System/360 Operating
System: Control Program Messages and
Completion Codes.

The INTERRUPT at hhhhhh entry, located
approximately halfway down in the dump,
gives the instruction address that follows
the address at which the interrupt
occurred. Thus the immediately preceding
instruction is that which initiated the
dump. The instruction address can be
compared to the procedure map. A procedure
map is obtained by specifying PMAP in the
PARM parameter of the EXEC statement. The
load address of the module must be
subtracted from the instruction address to
obtain the relative instruction address as
shown in the procedure map.

The load address of the module (load
module) can be obtained from the abnormal
termination dump, ACTIVE RBS (request
blocks) specification. The last six
digits, hhhhhh, of the Addd hhhhhh

specification under ACTIVE RBS, are the
hexadecimal address of the first RB. The
load address of the module (entire program,
or object program) is 20 hexadecimal bytes
beyond this point. The last six
hexadecimal digits of the USE/EP hhhhhhhh
specification under ACTIVE RBS are the
entry point of the program. The address of
the first generated instruction of the
procedure division is located 52 bytes
beyond the entry point, and is the first
address given in the procedure map (PMAP).

The first 52 bytes contain a COBOL
initialization routine.

The contents of PMAP provide a relative
address for each statement. By using the
error address and PMAP, the programmer can
locate a specific statement appearing

within a line of the source program, if the

.interrupt was within the COBOL program.

Examination of the statement and the fields
associated with it, may produce information
as to the specific nature of the error.

STORAGE LAYOUT OF OBJECT PROGRAM

Each COBOL program written is positioned in
main storage in a prescribed manner. The
relative position in storage of all the
components of a program is given in Figure
41.

System Output 93

pe

* % *+ ABDUMP REQUEGSTETD®* * *

JOB ccccccce STEP ccccccee DATE ddddd PAGE dddd

COMPLETION CODE SYSTEM = hhh (or USER = dddd)

PSW UPON ENTRY TO ABEND hhhhhhhh hhhhhhhh

FL.PT. 0-6 hh.hhhhhh hhhhhhhh hh.hhhhhh hhhhhhhh hh,.hhhhhh hhhhhhhh hh.hhhhhh hhhhhhhh
TCB hhhhhh RB hhhhhh PIE hhhhhh DEB hhhhhh TIOT hhhhhh CMP hhhhhh TRN hhhhhhhh
MSS hhhhhhhh PK/FLGS hhhhhhhh FLGS/LDP hhhhhhhh LLS hhhhhh JLB hhhhhh JSE hhhhhhhh
ID/FSA hhhhhhhh TCB hhhhhh TME hhhhhh

PIE PICA hhhhhhhh PSW hhhhhhhh hhhhhhhh 14 hhhhhhhh 15 hhhhhhhh 00 hhhhhhhh 01 hhhhhhhh 02 hhhhhhhh
ACTIVE RBS

Addd hhhhhh NM ccccccec SZ/STAB hhhhhhhh USE/EP hhhhhhhh PSW hhhhhhhh hhhhhhhh Q hhhhhh WT/LNK hhhhhhhh
REGS 0-7 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
REGS 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
LOAD LIST

Lddd hhhhhh NM ccccccecc SZ/STAB hhhhhhhh USE/EP hhhhhhhh UB hhhhhh

SAVE AREA TRACE

ccccecccc WAS ENTERED VIA LINK(CALL) ddddd AT EP cccccce.s

SA hhhhhhhh WDl hhhhhhhh HSA nhhhhhhhh LSA hhhhhhhh RET hhhhhhhh EP hhhhhhhh

00 hhhhhhhh 01 hhhhhhhh 02 hhhhhhhh 03 hhhhhhhh 04 hhhhhhhh 05 hhhhhhhh 06 hhhhhhhh
07 hhhhhhhh 08 hhhhhhnh 09 hhhhhhhh 10 hhhhhhhh 11 hhhhhhhh 12 hhhhhhhh

INCORRECT BACK CHAIN

INTERRUPT AT hhhhhh

PROCEEDING BACK VIA REG 13

REGS AT ENTRY TO ABEND

REG 0=7 nhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
REG 8-15 hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
ahhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
nhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
LINES hnhhhh-hhhhhh SAME AS ABOVE

hhhhhh hhhhhhhh hhhhhhhh nhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh

END UF DUMP

Figure 40. Format of Abnormal Termination Dump

r -
| WORKING STORAGE AND DATA LITERALS

L

r

|EDIT MASKS
|DCB's
% —_—
| PROCEDURE LITERALS

L
b
|[WORK AREA & GLOBAL TABLE

| INSTRUCTIONS
L

| IR Ty WU TR ——— T PSR-

Figure 41. Object Storage Layout

94 IBM S/360 OS COBOL(E) Programmer's Guide

UB hhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh
hhhhhhhh

hhhhhhhh

The following examples show the job-control
statements used to compile, linkage edit
and execute a source module, scratch an
existing data set, and catalog the
programmer's own procedures. No attempt is
made to describe all the parameters used in
the job-control language. The assumption
is made that the user has read, and is
familiar with, the sections Job-Control
Lanquage and Job Processing.

The comments stress the major points of
importance for the particular example
given.

DEFAULT OPTIONS

For the examples given, it is assumed that
LIST, PMAP, and DMAP are default options in
the compiler. Because these parameters are

APPENDIX A. EXAMPLES OF JOB PROCESSING

established at system generation time for
the examples given, they are absent from
the parameter lists used in the examples.

EXAMPLE 1.
EXECUTE

COMPILE, LINKAGE EDIT, AND

The example given in Figure 42 processes
records by writing them on a disk pack, and
then reading them back. Illustrated are
excerpts of the actual listing produced.
The example indicates the job-control
statements required, and the system
information provided regarding the data
sets used.

| /7/EXAMPLE1 JOB ,JOHNDOE,MSGLEVEL~=1.

|
| 7/sTP1

EXEC PGM=IEPCBLOO

| /7SYSUTL DD DSNAME=UT1,DISP=(NEW,DELETE), SPACE=(TRK, (50,10)), X
V|77 UNIT=2311, VOLUME=SER=111111

| //SYSUT2 DD DSNAME=UT2,DISP=(NEW,DELETE), SPACE=(TRK, (50,10)), X
\77 UNIT=2311, VOLUME=SER=111111

| 7//SYSUT3 DD DSNAME=UT3,DISP=(NEW,DELETE),SPACE=(TRK, (50,10)), X
|77 UNIT=2311,VOLUME=SER=111111

| //SYSPRINT DD SYSOUT=A

| //SYSPUNCH DD DSNAME=PCH,DISP=(NEW,PASS),SPACE=(TRK, (50,10)), X

|77 UNIT=2311,VOLUME=SER=111111
| //STP1.SYSIN DD *

| IEF2361 ALLOCATION FOR EXECUTE STP1
|IEF237I SYSUT1 ON 190
| IEF2371 SYSUT2 ON 190
|IEF237I SYSUT3 ON 190

| IEF237I SYSPUNCH ON 190
|IEF237I SYSIN ON 00C

Compilation listing

EXAMPLEL

*Control program messages indicating allocation of data sets.

**Control program messages indicating disposition of data sets.

i s s it . — e —— ——— — —— —— — ——— — —— — — —— —— o— —— o]

Figure 42.
(Part 1 of 3)

Example of Job Control Statements for Compile, Linkage Edit and Execute

Appendix A 95

e o e et . e

End compilation listing

| IEF2851I UT1 DELETED)

| IEF285I VOL SER NOS= 111111.

|IEF2851I UT2 DELETED
|IEF285I VOL SER NOS= 111111.

|IEF285I UT3 DELETED
|{IEF285I VOL SER NOS= 111111. **
|IEF285I SYSOUT) SYSOUT

| IEF285I VOL SER NOS= FGG.

|IEF285I SYSOUT SYSOUT

| IEF285I VOL SER NOS= FGG.

| IEF2851I PCH PASSED

| IEF2851 VOL SER NOS= 111111.

|//STP2 EXEC PGM=IEWL,PARM='XREF,LIST,LET"'

|//SYSLIB DD DSNAME=SYS1.COBLIB,DISP=(OLD,KEEP) ,UNIT=2311, X
177 VOLUME=SER=111111

|//SYSLMOD DD DSNAME=OBJECT(TEST1),DISP=(NEW,PASS),UNIT=2311, X
V77 VOLUME=SER=111111, SPACE=(TRK, (10,10,10))

|//s¥suT1 DD UNIT=2311,SPACE=(TRK, (10,10)), X
\ /7 VOLUME=SER=111111,DISP=(NEW, DELETE) ,DSNAME=LINKUTL

| //SYSLIN

\ /7 DISP=(OLD, DELETE) , VOLUME=SER=111111

| //SYSPRINT DD SYSOUT=A

| IEF236I ALLOCATION FOR EXECUTE STP2 EXAMPLE1

|IEF237I SYSLIB ON 190

|IEF237I SYSLMOD ON 190 *

| IEF237I SYSUT1 ON 190

| IEF2371 S

| IEF2851
| IEF2851
| IEF2851
| IEF285I
| IEF285I
| IEF2851
| IEF285I

| IS

YSLIN ON 190

Module Map and Cross-Reference Table

End of Module Map and Cross-Reference Table

SYS1.COBLIB
VOL SER NOS=
OBJECT

VOIL, SER NOS=
LINKUTL

VOL SER NOS=
PCH

.
I
|
|
|
|
|
!
|
I
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|

DD DSNAME=#.STP1.SYSPUNCH,UNIT=2311, X |
I
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
I
!
|
|
J

KEPT
111111,

PASSED
111111. **

DELETED
111111.

DELETED

Figure 42.

Example of
2 of 3)

Job Control Statement for Compile, Linkage Edit and Execute (Part

96 IBM S/360 OS COBOL(E) Programmer's Guide

| IEF285I VOL SER NOS= 111111.

| IEF285I SYSOUT SYsSouT

| IEF285I VOL SER NOS= FGG. * %
| IEF285I SYSOUT sSYsouT

| IEF285I VOL SER NOS= FGG.

| 7/STP3 EXEC PGM=%.STP2.SYSLMOD

| 7/5YSOUT DD SYSOUT=A,DCB=,BLKSIZE=120,LRECL=120)

| //SYSABEND DD SYSOUT=A

| //STP3.DATASET1 DD DSNAME=DISKTEST,UNIT=2311,VOLUME=SER=111111, C
|77 SPACE= (TRK, (10,10)) ,DISP=(NEW, KEEP)
EXAMPLE1

|IEF2361 ALLOCATION FOR EXECUTE STP3
| TEF2371I SYSLMOD ON 190
| TEF2371 DATASET1 ON 190

GROUP A LEVEL P TEST CASE 8)

END TEST
| NRITE-COUNTER = 20

| SHOULD BE = 20

| READ-COUNTER = 21

| SHOULD BE = 21

| ERROR-COMP-COUNTER = 00
| SHOULD BE = 00

| GOOD-COMP-COUNTER = 20

| SHOULD BE = 20

| GOOD-COMP-COUNTER = 20)
|

| IEF285I OBJECT

I IEF285I VOL SER NOS=111111.
I IEF285I SYSOUT

| IEF285I VOL SER NOS= FGG.

i IEF285I SYSOUT

| IEF285I VOL SER NOS= FGG.

| IEF285I DISKTEST

| IEF285I VOL SER NOS= 111111.
[IEF285I OBJECT

[IEF285I VOL SER NOS= 111111.
| IEF285I DISKTEST

I IEF285I VOL SER NOsS= 111111.

Output generated by
load module execution

PASSED

SYSOoUT

SYSouT

KEPT

DELETED

DELETED

e o s i . e e —— — " — — it — S— i ——— . —. s, S ot e S—— Tt it — T St i S S o . s, . some]

[—

Figure 42,
(Part 3 of 3)

STEP 1. COMPILATION

The //STPlL EXEC statement designates that
the program to be executed is the COBOL-E
compiler.

The //SYSUT1 DD statement defines the
first utility data set. It is on a 2311
disk pack. The DISP parameter (NEW,DELETE)
specifies that this is a new data set, and
it is to be deleted when the step is
terminated.

: SYSUT2 and SYSUT3 are the second and
third utility files needed for the
compilation. Their parameters are
identical to those used for SYSUT1.

//SYSPRINT DD statement specifies that a
source listing of the compilation be

Example of Job Control Statements for Compile, Linkage Edit and Execute

written on SYSOUT which could be a tape or
printer.

The //SYSPUNCH DD statement defines a
data set that will receive the object
module in card image format for subsequent
linkage editor processing. Notice the DISP
parameter PASS. This parameter specifies
that this data set will be referred to in a
subsequent job step. If several COBOL
programs (e.g. a main program and some
subprograms) are compiled in separate job
steps and then linkage edited together as
part of the same job, the DISP parameter
NEW should be replaced by MOD for all but
the first compilation.

The //STP1.SYSIN DD * statement defines

the input to the compiler to be the source
statements that immediately follow.

Appendix A 97

The information printed on the lines
identified by IEF236I indicates the
physical unit assignments (at the addresses
indicated in the listing) for the logical
data sets during the compilation.

The IEF285I lines are a history of the
defined data sets for the compilation. For
example:

s The SYSUT1 DD statement and DISP
parameter specified that this data set
(SYSUT1) be deleted. The listing
indicates that it was deleted - (UT1
cee DELETED) .

¢ The SYSPUNCH DD statement DISP
parameter specified that this data set
(SYSPUNCH) be passed. The listing
indicates that it was passed -- (PCH
PASSED).

STEP 2. LINKAGE EDITOR PROCESSING

The //STP2 EXEC statement designates that
the program will be linkage edited with the
following options exercised:

1. XREF - This option specifies that a
module map and cross-reference table be
printed in the listing.

2. LIST - This option specifies that all
linkage editor control statements be
printed in the listing.

3. LET - This option specifies that the
load module be executed even though
errors are detected.

The //SYSLIB DD statement defines the
COBOL subroutine library for the linkage
editor automatic call library as
SYS1.COBLIB.

The //SYSLMOD DD statement specifies the
load module data set which is the result of
linkage editor processing. Note that the
DISP parameter specifies that the data set
be passed.

The //SYSUT1 DD statement defines a work
data set.

The //SYSLIN DD statement defines the
input data set to the linkage editor. It
is the SYSPUNCH data set of STP1, and is
identified by the DSNAME parameter
*,STP1.SYSPUNCH. This data set is the
object deck produced as specified in STP1.

The //SYSPRINT DD statement specifies
that linkage editor diagnostics be output
on the printer.

98 IBM S/360 OS COBOL(E) Programmer's Guide

The information printed on the lines
identified by IEF2361I indicates the
physical unit assignments for the logical
data sets during the linkage editing.

The information printed on the lines
identified by IEF285I is the history of the
defined data sets for the linkage edit.

STEP 3. LOAD MODULE EXECUTION

The //STP3 EXEC statement specifies that
the load module to be executed is the data
set called *.STP2.SYSLMOD.

The //SYSOUT DD statement is required
because the DISPLAY verb option is used in
the program. Each DISPLAY ... verb results
in the printing of a record on the printer.
The block size and logical record size for
this data set is 120 characters.

The //SYSABEND DD statement specifies an
abnormal termination dump for a job. Refer
to How To Use A Dump for a brief
description of an abnormal termination
dump. For complete details of the abnormal
termination dump, refer to the publication,
IBM Systemv/360 Operating System: Control
Program Messages and Completion Codes.

The //STP3.DATASET1 DD statement defines
the data set that is processed by the
problem program. Notice that DATASET1 in
the STP3 DD statement is the external-name
used in the ASSIGN clause of this program.
(Refer to the environment division in
Figure 32.)

The information printed on the lines
identified by IEF237I indicates the
physical unit assignments for the logical
data sets used for execution of the load
module.

The WRITE-COUNTER, READ-COUNTER, etc.
are display data specified in the
WORKING-STORAGE SECTION, and requested in
the procedure division of the COBOL source
program. (Refer to the source listing in
Figure 32.)

The information printed on the lines
identified by IEF285I is a history of the
data sets defined for execution of the load
module.

Figure 43 shows the I/0 flow for this
example.

TCECAPO8

Source Statements

)

N Compile and
“linkage Edit

f Write
TCECAPO8
Load Module | Read
Execution 4 Output
Y

Print on SYSOUT
Printer

Figure 43, 1I/O Flow Diagram For Example 1

EXAMPLE 2. SCRATCHING A DATA SET

In the event of an abnormal job
termination, defined data sets might be
retained by the system. When the same
program or any other program is executed
again, using the identically defined data
sets, the system recognizes these data sets
as duplicates and terminates the job. It
checks each data set against those it
already retains. It does not accept
already recorded data sets; as a result,
the job is terminated.

The scratch procedure ensures that a job
is not terminated because of an already
existing data set.

Figure 44 is an example of a program
that scratches existing data sets.

-scratch.

r 1
| 7/SCR JOB ¢+ SCRATCH, MSGLEVEL~1 |
| //STP EXEC PGM=IEHPROGM |
| //SYSPRINT DD SYSOUT=A |
| #//DD1 DD DISP=0OLD, X|
|77 VOLUME=SER=111111, X|
(V24 UNIT=2311 |
| 7/SYSIN DD * |
| |
| Specified data sets to be |
| scratched |
| |
| IEF236I ALLOCATION FOR SCR STP |
| IEF237I DD1 ON 190 |
| IEF2371 SYSIN ON 000 |
L 4

Example of Job-Control
Statements for Scratching Data
Sets

Figure uu.

JOB STATEMENTS AND DATA SETS FOR SCRATCHING
DATA SETS

In example 2, //STP EXEC card parameter
IEHPROGM is the name of the IBM-supplied
utility program that accomplishes the

That is, it erases the data sets
specified after the //SYSIN DD * statement.
Thus, the data sets defined in the program
to be executed are accepted by the system,
and the program can be executed.

//SYSPRINT DD, //DD1 DD, and //SYSIN DD *
are work data sets required by the utility
program.

For details on how to specify data sets
to be scratched, refer to Scratching_-Data
Sets in the Job Processing section.

EXAMPLE 3. CATALOGING A PROCEDURE

Figure 45 illustrates how to catalog a
procedure. The procedure being cataloged
is a compile, linkage edit, and execute
procedure.

Once a procedure is cataloged, it is
available to the user by merely specifying
the name of the procedure in the // EXEC
statement.

Appendix A 99

;
| //CATLG3 JOB

| //STEPA EXEC
|//SYSUT2 DD
| //SYSPRINT DD
| //SYSIN DD

| ./ ADD
./ NUMBR
| ./

|//STP1 EXEC
| //SYSLIB DD
|77
| //SYSUT1 DD
/7
|77
| //SYSUT2 DD
V24
|77
|//SYSUT3 DD
V2
|77
| //SYSPRINT DD
| //SYSPUNCH DD
|77

s CATLGPROC, MSGLEVEL=1
PGM=IEBUPDAT, PARM= (NEW)
DSNAME=SYS1.PROCLIB,DISP=(OLD)
SYSOUT=A

DATA

CBLPROC3,00,01
00000000,00000000,00000000,
00000010

PGM=IEPCBLOO
DSNAME=COBOLLIB,UNIT=2311,
DISP=(OLD,XEEP) ,VOLUME=SER=111111
DSNAME=UT1, DISP=(NEW,DELETE),
SPACE= (TRK, (50,10)) ,UNIT=2311,
VOLUME=SER=222222

DSNAME=UT2, DISP=(NEW, DELETE),
SPACE= (TRK, (50,10)),UNIT=2311,
VOLUME=SER=222222

DSNAME=UT3, DISP=(NEW, DELETE),
SPACE= (TRK, (50,10)),UNIT=2311,
VOLUME=SER=222222

SYSOUT=A

DSNAME=PCH, DISP=(NEW, PASS),
SPACE=(TRK, (50,10)) ,UNIT=2311,

i

MK XX

ta]

|77 VOLUME=SER=222222

|7/78TP2 EXEC PGM=IEWL,PARM='XREF,LIST,LET'

| //SYSLIB DD DSNAME=SYS1.COBLIB,DISP=(OLD,KEEP), X
|77 UNIT=2311, VOLUME=SER=111111

|//SYSLMOD DD DSNAME=&GODATA(TEST) ,DISP=(NEW,PASS), X
|77 UNIT=2311,VOLUME=SER=111111, X
|77 SPACE= (TRK,10,10,10))

| //5¥SUT1 DD UNIT=2311,SPACE=(TRK, (10,10)), X
|77 VOLUME=SER=222222,DI5P=(NEW,DELETE)

| 7//SYSLIN DD DSNAME=*.STP1l.SYSPUNCH,UNIT=2311, X
\77 DISP=(OLD,DELETE), VOLUME=SER=222222

| 7/STP3 EXEC PGM=*,STP2.SYSLMOD

| 7/58YsSOUT DD SYSOUT=A,DCB=(,BLKSIZE=120,LRECL=120)

| //SYSABEND DD SYSOUT=A
| . /ZENDUP

|7*

L

b e e e s i e s —— ——— T o S, " e, T et s, o e i i, M. e S e, et . s s s e s . . o]

Figure 45. Example of Job-Control Statement for Cataloging a Procedure

JOB-CONTROL STATEMENTS AND DATA SETS FOR
CATALOGING A PROCEDURE

In example 3, the //STEPA EXEC PGM
parameter IEBUPDAT is the name of the
IBM-supplied utility program that
accomplishes the cataloging. The parameter
NEW indicates that the input to the utility
program consists of the SYSIN data set.

/7/SYSUT2 defines the work file for the
utility program. The parameter PROCLIB
defines the PDS to be updated.

The //SYSIN DD DATA statement indicates
to the system that the job-control
statements that follow are to be treated as
data and are not to be interpreted.

The ./ ADD CBLPROC3 statement is a
utility statement and indicates that the

following procedure (data set) is to be
added to the library. The ./ENDUP
statement (at the end of the listing) is a
utility statement signifying the end of the
source statements to be cataloged.

(Neither ./ utility statements are entered
in the library.) The name CBLPROC3
specified in the ./ ADD statement
identifies the procedure to be cataloged,
and is the procedure name to be used in the
// EXEC statement when the procedure is
desired.

The ./ NUMBR statement specifies to the
utility program that sequence numbers be
assigned to the records within the new
catalog procedure.

The //SYSLIB DD statement (in STP1 of
the procedure) indicates to the compiler
that a program to be compiled might contain
COPY or INCLUDE statements. The remainder

100 IBM S/360 OS COBOL(E) Programmer's Guide

of the parameters on the //SYSLIB DD
statement describes the source statement
library. If this DD statement is omitted,
the compiler terminates the job upon
encountering a COPY or INCLUDE statement in
the source statement program.

The //SYSLIB DD statement (in STP2 of
the linkage edit procedure) identifies the
COBOL subroutine library for the linkage
editor. The parameter SYS1.COBLIB is the
name of the COBOL subroutine library.

The //SYSLMOD DD statement defines the
output data set to the linkage editor.

The //SYSUT1 DD statement defines the
work data set for the linkage editor.

The //SYSLIN DD statement defines the
primary input data set to the linkage
editor. It is identified by the parameter
STP1.SYSPUNCH.

The //STP3 EXEC parameter .3TP2.SYSLMOD
identifies the load module to be executed
by the system.

For descriptions of the //SYSABEND DD
statement and any other statements or
parameters not covered in Figure 45, refer
to Example 1 (Figure 42) in this appendix,
the section, Creating Data Sets, or the
publications IBM System/360 Operating
System: Control Program Messages and

Complietion Codes, and IBM System/360
Operating System: Job Control Language.

Appendix A 101

APPENDIX B. ASSEMBLER LANGUAGE SUBPROGRAMS

This appendix provides information needed
to prepare and use subprograms written in
assembler language with a main program
written in COBOL.

CALLED AND CALLING PROGRAMS

Any program referred to by another program
is a called subprogram. If this called
subprogram refers to another subprogram, it
is both a called and calling subprogram.
In Figure 46, program A calls subprogram B;
subprogram B calls subprogram C; therefore:

1. A is considered a calling program by B.

2. B is considered a called subprogram by
A,

3. B is considered a calling subprogram by

4. C is considered a called subprogram by

B.
r 1
I A B c |
| r N 1 r 1 r 1 |
| | Ccalling | | called | | I
| | program |->| subpro- | | ||
| | of B | | gram of | | I
[I | A [I
| | pmmmmmemme {0 I
|| | | Calling | | Called | |
| | | | subpro- |->| subpro- | |
I | | gram of | | gram of | |
I i I c | | B I
l L J L J L] '
L J

Figure 46. Called and Calling Programs

There are three basic ways to use
assembler-written subprograms with a main
program written in COBOL:

1. A COBOL main program Or subprogram
calling an assembler-written
subprogram.

2. An assembler-written subprogram calling
a COBOL subprogram.

3. An assembler-written subprogram calling
another assembler-written subprogram.

102 IBM S/360 OS COBOL(E) Programmer's Guide

From these combinations, more
complicated structures can be formed.

The operating system has established
certain conventions to give control to and
return control from assembler-written
subprograms. These conventions, called
linkage conventions, are described in the
following text.

LINKAGE CONVENTIONS

The save and return routines for assembler
subprograms need not be written exactly the
same as those generated by the COBOL
compiler. However, there are basic
conventions for COBOL programs to which the
assembler programmer must adhere. These
conventions include:

1. Using the proper registers to establish
linkage.

2. Reserving, in the calling program, an
area that is used by the called
subprogram to refer to the argument
list.

3. Reserving, in the calling program, a
save area in which the registers may be
saved.

REGISTER USE

The operating system has assigned functions
to certain registers used in linkages. The
function of each linkage register is shown
in Table 17.

Table 17. Linkage Registers

r r T 1
| REGISTER | REGISTER| |
| NUMBER | NAME | FUNCTION |
1 L 4 4
v T T 1
1	Argument	Address of the argument
	Register	list passed to the
		called subprogram.
k t + - i		
13	Save	Address of the area
	Register	reserved by the callingj
		program in which the i
{	contents of certain	
		registers are stored by
		the called program.
- ¢ $ 1
| 14 |Return |Address of the location|
| |Register|in the calling program |
| | |to which control is |
| [| returned after |
| | |execution of the called|
| | | program.. |
b 4 t 1
| 15 |Entry |Address of the entry |
| |Point | point in the called |
| |Register|subprogram. |
L L L 4

ARGUMENT LIST

Every assembler-written subprogram that
calls another subprogram must reserve an
area of storage (argument list) in which
the argument list used by the called
subprogram is located. Each entry in the
parameter list occupies four bytes and is
on a full-word boundary.

In the first byte of each entry in the
parameter list, bits 1 through 7 contain
zeros. However, bit 0 may contain a 1 to
indicate the last entry in the parameter
area.

The last three bytes of each entry
contain the 24-bit address of the argument.

SAVE AREA

An- assembler subprogram that calls another
subprogram must reserve an area of storage
(save area) in which certain registers
(i.e., those used in the called subprogram
and those used in the linkage to the called
subprogram) are saved.

The maximum amount of storage reserved
by the calling subprogram is 18 words.
Figure 47 shows the layout of the save area
and the contents of each word.

A called COBOL subprogram does not save
floating-point registers. The programmexr

.is responsible for saving and restoxing the

contents of these registers in the calling
program.

L3 1
| AREA r ; 1 |
(woxrd 1)	This word is a part of the	
	standard linkage convention	
	established under the	
i	operating system. The woxd	
	must be reserved for proper	
	addressing of the [
	succeeding entries.	
	However, an assembler	
	subprogram: may use the word	
	for any desired purpose.	
AREA+U F : --		
(word 2)	The address of the previous	
	save area; that is, the	
	save area of the subprogram	
	that called this one.	
AREA+8 F i 1		
(word 3)	The address of the next 1 1	
	save area; that is, the	
	save area of the subprogram	
	to which this subprogram	
	refers. I	
AREA+12 } i 1		
(word 4)	The contents of register	
	14; that is, the return (.	
	address. [
AREA+16 3 {1		
(word 5)	The contents of register	
115; that is, the entry I		
:AR 2420 1address. ! :		
EA+ r 1		
(word 6)	The contents of register 0.	
AREA+24 b 1		
(woxrd 7)	The contents of register 1.	
t 1		
AN ;		
	.	
AREA+68 t 1 1		
(word 18)	The contents of register	
112. I		
t 1		
L 4
Figure #47. Save Area Layout and Word

Contents

Appendix B 103

r 1
|deckname START 0 |
| ENTRY name, |
| EXTRN name, |
| USING *,15 i
|* Save Routine |
| namey STM 14,r,,12(13) The contents of registers 14, 15, and 0 through |
| * ry; are stored in the save area of the calling

| * program (previous save area). r, is any number

| * from 0 through 12. |
| LR r>,13 Loads register 13, which points to the save area |
| * of the calling program, into any general |
| * register, r,, except 0 and 13. |
| LA 13,AREA Loads the address of this program's save area]
| * into register 13. |
| ST 13,8(0,xr3) Store the address of this program's save area |
| * into word 3 of the save area of the calling

| * program. |
| ST r,,4(0,13) Stores the address of the previous save area

| * (i.e., the same area of the calling program) into|
| * word 2 of this program's save area.

| BC 15, prob, |
| AREA DS 18F Reserves 18 words for the save area. This is |
| * last statement of save routine. |
|prob, User-written program statements |
|* Calling Sequence |
| LA 1,ARGLST First statement in calling sequence.

| L 15, ADCON |
| BALR 14,15 |
| * Remainder of user-written program statements |
|* Return Routine [
| L 13,AREA+4 First statement in return routine. Loads the

| * address of the previous save area back into

| * register 13. |
| LM 2,R4 ,28(13) The contents of registers 2 through r;, are

| * restored from the previous save area.

| L 14,12(13) Loads the return address, which is in word 4 of |
| * the calling program's save area, into register

| * 14. |
! MVI 12(13) ,X'FF’ Sets flag FF in the save area of the calling |
| * program to indicate that control has returned to |
| * the calling program. |
| BCR 15,14 Last statement in return routine.

| ADCON DC A(name,) Contains the address of subprogram name,.

|* Parameter List |
| ARGLST DC AL4(arqg,) First statement in parameter area setup. |
| DC AL4 (argy) |
| DC X'80" First byte of last argument sets bit 0 to 1. |
| DC AL3(argp) Last statement in parameter area setup. |
i 4

Figure 48. Sample Linkage Routines Used with a Calling Subprogram

Example in-line parameter list may be used; see
In-line Parameter List.)

The linkage conventions used by an 4. A save area on a fullword boundary.
assembler subprogram that calls another
subprogram are shown in Figure 48. The
linkage should include:
LOWEST LEVEIL SUBPROGRAM

1. The calling sequence,
If an assembler subprogram does not call

2. The save and return routines. any other subprogram (i.e., if it is at the
lowest level), the programmer should omit
3. The out-of-line parameter list. (2An the save routine, calling sequence, and

104 IBM S/360 OS COBOL{E) Programmer's Guide

parameter list shown in Figure 48. If the
assembler subprogram uses any registers, it
must save them. Figure 49 shows the
appropriate linkage conventions used by an
assemblexr subprogram at the lowest level.

Note: If registers 13 and/or 14 are used
|in the called subprogram, their contents
| should be saved and restored by the
|called subprogram.

L

- |
| deckname START 0 |
| ENTRY name |
| USING *,15 I
| name STM 14,ry,12(13) |
[. |
I . |
| . |
| |
|Usex-written program statements |
| . |
| . [
I . |
| LM 2,r,,28(13) |
| MVI 12(13),X'FF* |
| BCR 15,14 |
; 1
| |

|
|
|
J

Figure 49. sample Linkage Routines Used

with a Lowest Level Subprogram

IN-LINE PARAMETER LIST

The assembler programmer may establish an
in-line parameter list instead of
out-of-line list. 1In this case, he may
substitute the calling sequence and
parameter list shown in Figure 50 for that
shown in Figure 48.

v 1
| ADCON nC A(proby)

| . |
| . |
| . |
| LA 14,RETURN |
| L 15,ADCON I
| CcNOP 2,4 |
| BALR 1,15 I
I DC ALA4(arg,) [
| DC AL4(argy) |
| . |
| . |
I . |
[DC Xx'80" I
| DC AL3(argp) |
| RETURN BC 0,X'isn’ |
t J
Figure 50. Sample In-Line Parameter List

DATA FORMAT OF ARGUMENTS

Any assembler-written subprogram must be
coded with a detailed knowledge of the data
formats of the arguments being passed.

Most coding errors will probably occur
because of the data-format discrepancies of
the arguments.

If one programmer writes both the main
program and the subprogram, the data
formats of the arguments should not present
a problem when passed as parameters.
However, when the programs are written by
different programmers, the data-format
specifications for the arguments must be
clearly defined for the user.

ACCESSING INFORMATION NOT DIRECTLY

AVAILABLE AT THE COBOL LANGUAGE LEVEL

Figures 51 and 52 are listings of a COBOL
language source program and an assembler
language subprogram, respectively. These
programs illustrate how a COBOL programmer
can access information in subprograms not
directly available through the COBOL
language. They allow the programmer to:

o Obtain a value from the PARM parameter
of the EXEC card

» Obtain the date from the control
program

¢ Set a condition code to be used by the
next job step.

The documentation within the assembler
subprogram explains what is accomplished
within each segment of the subprogram.

Appendix B 105

1001001

IDENTIFICATION DIVISION.

.

|
1001002 PROGRAM-ID. 'EXAMPLEA'. |
|002001 ENVIRONMENT DIVISION. |
002002 CONFIGURATION SECTION. |
|{002003 SOURCE~-COMPUTER. IBM-360 H50. |
joo2004 OBJECT-COMPUTER. IBM-360 H50. |
}002005 INPUT-OUTPUT SECTION. |
1002006 FILE-CONTROL. [
1002007 SELECT INFILE ASSIGN °‘CARDREAD' UTILITY. |
002008 SELECT OUTFILE ASSIGN 'TAPEOUT' UTILITY. |
1003001 DATA DIVISION. |
1003002 FILE SECTION.]
1003003 FD INFILE RECORDING F LABEL RECORD OMITTED DATA RECORD INAREA. |
joo3004 01 INAREA. |
1003005 02 PART-NUMBER PICTURE IS X(10). |
|003006 02 QUANTITY PICTURE IS 9(6). |
[003007 02 COST PICTURE IS 9(4)V99. |
003008 02 FILLER PICTURE X(58). |
]003009 FD OUTFILE RECORDING F LABEL RECORD STANDARD DATA RECORD |
1003010 OUTAREA BLOCK CONTAINS 10 RECORDS. |
[003011 01 OUTAREA. |
1003012 02 PART-NUMBER PICTURE IS X(10). |
1003013 02 SERIAL-DAY PICTURE IS 9(3). |
|003014 02 QUANTITY PICTURE IS S9(6) USAGE IS COMPUTATIONAL-3. |
003015 02 COST PICTURE IS 9(4)V99 USAGE IS COMPUTATIONAL-3. |
|003016 02 EXTENSION PICTURE IS 9(6)V99 USAGE IS COMPUTATIONAL-3. |
|]003017 02 MFG-DAY PICTURE IS X(3). |
|003018 02 FILLER PICTURE IS X. |
|003019 WORKING-STORAGE SECTION. |
|]003020 77 MFG-DAY-LENGTH PICTURE S9 VALUE +3 COMPUTATIONAL. |
1003021 77 DATA-ERROR-COUNT PICTURE S99 COMPUTATIONAL VALUE 0. |
003022 77 COND-CODE-FOR-NEXT-JOB-STEP PICTURE 99 COMPUTATIONAL. |
|]003023 77 GO-COND-CODE PICTURE 99 VALUE 4 COMPUTATIONAL. |
|003024 77 STOP-COND-CODE PICTURE 99 VALUE 64 COMPUTATIONAL. |
1003025 01 EXEC-PARM-VALUE. |
joou001 02 PARM-LENGTH PICTURE S9 COMPUTATIONAL. |
| 004002 02 MFG-DAY-FROM-EXEC-PARM PICTURE IS 9(3). |
004003 01 SERIAL-DAY-FROM-TIME-MACRO PICTURE 9(3). |
1005001 PROCEDURE DIVISION. |
[005002 GO-TO-SUBROUTINE. i
1005003 ENTER LINKAGE. |
| 005004 CALL 'GETPARM' USING EXEC-PARM-VALUE, I
1005005 SERIAL-DAY-FROM-TIME-MACRO. |
| 005006 ,ENTER COBOL. |
1005007 START-MAIN-PROGRAM. |
1005008 IF PARM-LENGTH EQUAL TO MFG-DAY-LENGTH THEN NEXT SENTENCE, |
|005009 OTHERWISE GO TO ABORT-JOB. |
[005010 IF MFG-DAY-FROM-EXEC-PARM IS NOT NUMERIC GO TO ABORT-JOB. |
{005011 OPEN INPUT INFILE. OPEN OUTPUT OUTFILE. |
1005012 READFILE. |
1005013 READ INFILE AT END GO TO END-OF-JOB. |
|005014 IF COST OF INAREA NOT NUMERIC GO TO ERRORENTRY. |
005015 IF QUANTITY OF INAREA NOT NUMERIC GO TO ERRORENTRY. |
1005016 MOVE QUANTITY OF INAREA TO QUANTITY OF OUTAREA. |
|005017 MOVE COST OF INAREA TO COST OF OUTAREA. |
005018 MULTIPLY QUANTITY OF OUTAREA BY COST OF OUTAREA GIVING |
|005019 EXTENSION ON SIZE ERROR GO TO ERRORENTRY. |
1005020 MOVE PART-NUMBER OF INAREA TO PART-NUMBER OF OUTAREA. |
1005021 MOVE MFG-DAY-FROM-EXEC-PARM TO MFG-DAY. |
1005022 MOVE SERIAL-DAY-FROM-TIME-MACRO TO SERIAL-DAY. |
1005023 WRITE OUTAREA. GO TO READFILE. |
L J
Figure 51. COBOL Source Program (Part 1 of 2)

106 IBM S/360 OS COBOL(E) Programmer's Guide

Appendix B

[} |
1005024 ERRORENTRY. |
005025 ADD 1 TO DATA-ERROR-COUNT.
| 006001 DISPLAY 'ERROR PN' PART-NUMBER OF INAREA. |
1006002 GO TO READFILE. |
1006003 ABORT-JOB. |
1006004 DISPLAY 'IMPROPER PARM VALUE IN EXEC CARD, JOB TERMINATED'. |
. 1006005 SET-STOP-CODE. |
|]006006 MOVE STOP-COND-CODE TO COND-CODE-FOR-NEXT-JOB-STEP. |
| 006007 GO TO EXIT-JOB. |
1006008 END-OF-JOB. |
|006009 DISPLAY 'END OF JOB'. |
1006010 CLOSE INFILE, OUTFILE. i
|006011 IF DATA-ERROR-COUNT GREATER THAN 5, GO TO SET-STOP-CODE. |
1006012 MOVE GO-COND-CODE TO COND-CODE-FOR-NEXT-JOB-STEP. |
|006013 EXIT-JOB. |
006014 ENTER LINKAGE. |
1006015 CALL ‘'SETCODE' USING COND-CODE-FOR-NEXT-JOB-STEP. |
| 006016 ENTER COBOL. |
L J
Figure 51. COBOL Source Program (Part 2 of 2)

107

GETPARM

* O *

* * ¥

*
*
*
SETCODE

*
*
*
DATEAREA

r
|
|
| *
| *
|
|
I
|
I
|
I
|
|
I
|
|
I
|
I
[*
I*
!
I
|
[
|
|
|
|
|
|
|
[
|
|
|
|
I
|
|
|
|
I
|
I
| SAVEAREA
IL

START
ENTRY SETCODE
SAVE REGISTERS AND POST SAVE AREAS

STM 14,5,12(13) SAVE REGISTERS

BAIR 5,0 ESTABLISH BASE REGISTERS

USING *,5

LA 14 ,SAVEAREA LOAD NEW SAVE AREA ADDRESS

ST 14,8(13) NEW SAVE AREA ADDR TO OLD SAVE AREA
ST 13,4(18) OLD SAVE AREA ADDR TO NEW SAVE AREA
L 2,4(0,13) ADDR OF SAVE AREA USED BY COBOL

LR 13,14 NEW SAVE AREA ADDRESS T- REGISTER 13

MOVE EXEC CARD PARM OPERAND TO COBOL PROGRAM

L 4,24€0,2) ADD OF INITIATOR PARAMETER LIST

L 2,0(0,4) ADDR OF EXEC CARD PARM OPERAND DATA
L 4,0(0,1) ADDR OF COBOL NAME 'EXEC-PARM-VALUE'
mMve 0(5,4),0(2) MOVE PARM DATA TO COBOL PROGRAM
OBTAIN DATE AND PLACE SAME IN COBOL PROGRAM

LR 4,1 SAVE ADDR OF COBOL PARAMETER LIST
TIME DEC GET DATE

ST 1,DATEAREA SAVE DATE

L 2,4(0,4) ADDR OF COBOL DATE RECEIVING FIEID

UNPK 0(3,2),DATEAREA+2(2) MOVE DATE TO COBOL PROGRAM

RESTORE REGISTERS, RETURN TO COBOL PROGRAM

L 13,4(13) RESTORE REGISTER 13
LM 14,5,12(13) RESTORE REGISTERS
BR 14 RETURN TO COBOL PROGRAM

SET CONDITION CODE AT TERMINATION OF COBOL PROGRAM

L 2,0(0,1) COND-CODE VALUE ADDR

LH 15,0(0,2) SET COND-CODE

L 13,4(0,13) RESTORE REGISTER 13

L 14,12(13) RETURN ADDR IN TERMINATOR
LM 0,12,20(13) RESTORE REGISTERS

BR 14 RETURN TO TERMINATOR

CONSTANTS USED BY ASSEMBLER ROUTINE

Ds F WORK-AREA FOR DATE
DS 18F
END GETPARM

Figure 52.

Assembler Subprogram

108 IBM S/360 OS COBOL(E) Programmer's Guide

el T e U g U Uy S U P S P W p——

The COBOL program itself is produced as one
control section. However, there may be
subprograms and other external referxences,
such as entry points to subprograms, to be
resolved. The subprograms that a user may
wish to combine with the main program can
be obtained from SYSIN, the automatic call
library (COBLIB), or one of his own
libraries.

The following discussion illustrates the

procedures available for processing COBOL
subprograms. The first technique employs
the linkage editor without using the
overlay facility. The second technique
employs the linkage editor using an overlay
technique, This technique allows the
programmer to specify, at linkage edit
time, the overlays required for a program.
During execution of a program overlays are
performed automatically for the programmer
by the control program. The third
technique, which is used during execution,
requires that the programmer generate the
needed macro instructions to effect the
overlays.

The largest load module that can be
processed by Fetch is 524,248 bytes.
If a load module exceeds this limit,
it should be divided.

Note:

CONSIDERATIONS FOR OVERLAY

Assume a COBOL main program exists, called
COBMAIN, that contains calls at one or more
points in its logic to COBOL

subprograms: CSUB1, CSUB2, CSUB3, CSUB4,
and CSUB5. Also assume that the load
module sizes for the main program and the
subprograms are as given in Figure 53.

r T
| PROGRAM|MODULE SIZE (IN BYTES)
L 1

r T
[COBMAIN|

]

|

(]

]

20,000 |

|CSUB1 | 4,000 |

|csuB2 | 5,000 |

|csuB3 | 6,000 |

|csuBs | 3,000 |

|CSuUBS | 4,000 |

L L]
Figure 53, Assumed Program Module Sizes

Through the linkage mechanism, ENTER
LINKAGE, CALL SUBl..., all subprograms plus
COBMAIN must be linkage edited together to
form one module 42,000 bytes in size.
Therefore, COBMAIN would require 42,000
bytes of storage in order to be executed.

APPENDIX C. OVERIAY STRUCTURES

Normally, all subprograms referenced by
the COBOL source program, including the
main program, will fit into main storage.
Therefore, the linkage editor nonoverlay

‘technique of processing can be used to

execute the entire program.

Figure 54 illustrates the storage layout
for nonoverlay processing.

COBOL MAIN PROGRAM

e el e, el

i

|

s

| SUBRTNX

1

I

| SUBPROGRAM A

R

T

| SUBPROGRAM B {
l]
r : |
| SUBPROGRAM C |
L J
Figure 54. Storage Layout for Nonoverlay

Processing

LINKAGE EDIT WITHOUT OVERLAY

Figure 55 shows a deck setup for a
nonoverlay structure. In this case, all
the subprograms (including MAIN PROGRAM)
fit into main storage.

[/
/
(SUBPROG C

/
 susproG B

/
(SUBPROG A

{ INCLUDE SUBRNX

y4
COBOL MAIN
PROGRAM

{ DD CARDS
(EXEC PROGRAM

(JOB

Figure 55.

Example Deck for Linkage Editor
Nonoverlay Structure

Appendix C 109

OVERLIAY PROCESSING

If the subprograms needed do not fit into
main storage, it is still possible to use
them. The technique that enables using
subprograms that do not fit into main
storage (along with the main program) is
called overlay.

Figure 56 illustrates storage layout for
overlay processing.

LD 1
| COBOL MAIN PROGRAM |
b d
r 1
| SUBRTNX I
F -
| SUBPROGRAM |
k -4
| AorBorc |
L -4

Figure 56. Storage Layout for Overlay
Processing

There are two techniques of overlay
available to the COBOL programmer. They
are:

. Preplahned overlay using the linkage
editor

e Dynamic overlay using macro
instructions during execution

PREPIANNED LINKAGE EDITING WITH OVERLAY

The preplanned linkage editor facility
permits the reuse of storage locations
already occupied. By judiciously
segmenting a program, and using the
preplanned linkage editor overlay facility,
the programmer can accomplish the execution
of a program too large to fit into storage
at one time.

In using the preplanned overlay
technique, the programmer specifies, to the
linkage editor, which subprograms are to
overlay each other. The subprograms
specified are processed, as part of the
program, by the linkage editor so they can
be automatically placed in main storage for
execution when requested by the program.
The resulting output of the linkage editor
is called an overlay structure.

it is possible, at linkage edit time, to
set up an overlay structure by using the
COBOL source language statement ENTER
LINKAGE and the linkage editor OVERLAY
statement. These statements enable a user

110 IBM S/360 OS COBOL(E) Programmer's Guide

to call a subprogram that is not actually
in storage. The details for setting up the
linkage editor control statements for
accomplishing this procedure can be found
in the publication, IBM System/360
Operating System: Linkage Editor.

In a linkage editor run, the programmer
specifies the overlay points in a program
by using OVERIAY statements. The linkage
editor treats the entire input as one
program, resolving all symbols and
inserting tables into the program.

These tables are used by the control
program to bring the overlay subprograms
into storage automatically, when called.

Figure 57 shows the deck setup for an
overlay structure using preplanned linkage
editor overlay. The OVERLAY statements
specify to the linkage editor that the
overlay structure to be established is one
in which SUBPROGA, SUBPROGB and SUBPROGC
overlay each other when called during
execution.

7
/

{SUBPROG C
(OVERLAY ALPHA

/

{ SUBPROG B
(OVERLAY ALPHA
yA

(SUBPROG A

{ OVERLAY ALPHA
{ INCLUDE SUBRNX

(COBOL MAIN
PROGRAM

{ DD CARDS
{ EXEC PROGRAM

(JOB

Figure 57. Example Deck for Linkage Editor
Overlay Structure

DYNAMIC OVERLAY FEATURE

In preparation for the dynamic overlay
technique, each part of the program that is
brought into storage independently should
be processed separately by the linkage

editor. (Hence, each part must be
processed as a separate load module). To
execute the entire program, the programmer
must:

1. Specify the main program (in Figure 53
COBMAIN) in the EXEC statement, and

2. Bring the separately processed load
modules into storage, when they are
required, by using the appropriate
supervisor linkage macro instructions.
This is accomplished during execution.

This technique can be used to overlay
subprograms during execution. To
accomplish dynamic overlay of subprograms,
the programmer must write an assembler
language subprogram that employs the LINK
macro to call each COBOL subprogram. For a
detailed description of the LINK macro
instruction, refer to the publication, IBM
System/360 Operating System: Control
Program Services.

In using this technique, the main
program (in Figure 53, COBMAIN)
communicates with the assembler language
subprogram by using the COBOL language CALL
statement. The COBOL CALL statement can be

used to pass the name of the COBOL
subprogram (to be linked), and the
specified parameter list, to the assembler
language subprogram. This procedure is
effected with each CALL used in the main
program. Hence, each CALL results in
linking with a subprogram through the
assembler language subprogram.

When the COBOL subprogram is finished
executing, it returns to the assembler
language subprogram, which in turn returns
to the main program (in Figure 53,
COBMAIN). The process is repeated for each
CALL to the assembler language subprogram.

This technique requires that a
programmer have detailed knowledge of the
linkage conventions, assembler language,
and the LINK macro with its features and
restrictions.

Beyond this, the programmer must ensure
that the COBOL subprogram modules exist in
a private library (PDS) and are defined by
a //JOBLIB DD statement in the job-control
language for execution of the main program.

Refexr to Job-Control Language for a
description of the //JOBLIB DD statement.

Appendix C 111

APPENDIX D. COBOL_SYNTAX FORMATS

The following is a list of COBOL statements to be used with initial release version of
the COBOL (E) compiler.

IDENTIFICATION DIVISION.

PROGRAM=ID. 'program-name'.

[AUTHOR. sentence...]
[INSTALLATION. sentence...]
[DATE-WRITTEN. sentence...]
[DATE-COMPILED. sentence...])
[SECURITY. sentence...l
[REMARKS. sentence...]

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

[SOURCE-COMPUTER. IBM-360 [model~-number].]
[OBJECT-COMPUTER. IBM-360 [model-numberl].]
INPUT-OQUTPUT SECTION. [COPY library-name.]
FILE-CONTROL. [COPY library-name.]

" SELECT file-name [COPY library-name] W
DIRECT-ACCESS PRPPa
ASSIGN TO external-name UTILITY device-number
{UNIT——RECORD }UNIT (s]

NO
[RESERVE {integer} ALTERNATE AREAIS]]

RANDOM

"INDEXED
{ ORGANIZATION IS{DIRECT 1
RELATIVE

[SYMBOLIC KEY IS data-namel

[ACCESS IS{%EQUENTIA%}]

[ACTUAL KEY IS data-namel

[RECORD KEY IS data-name)
[TRACK-AREA IS data-name CHARACTERS]
[FILE-LIMIT IS integer TRACKS]

I-0-CONTROL.

[SAME AREA FOR file-name-1 file-name-2... .]

[APPLY overflow-name to FORM-OVERFLOW ON file-name.]

[APPLY RESTRICTED SEARCH OF integer TRACKS ON file-name... .]
[APPLY WRITE-ONLY ON file-name... .1}

DATA DIVISION.

FILE SECTION.
FD file-name [COPY library-name.]l
[BLOCK CONTAINS integer CHARACTERS |]
RECORDS

U
[RECORDING MODE IS { F }]
v

112 IBM S/360 OS COBOL(E) Programmer's Guide

{RECORD CONTAINS [integer-1 TOl]_ integer-2 CHARACTERS]
RECORD IS STANDARD
LABETL RECORDS are OMITTED

RECORD IS
DATA RECORDS ARE { record-name... .

Record Description Entry.
WORKING-STORAGE SECTION.
Record Description entries
LINKAGE SECTION.

Record Description entries

data-name
level-number | FILLER [REDEFINES data-name-2]1 [COPY library-name.]
alpha-form
an-form
PICTURE IS numeric-form
report-form
- fp-form
[OCCURS integer TIMES[DEPENDING ON data-namell]
(JUSTIFIED RIGHT]
BLANK WHEN ZERO]
[(VALUE IS literall

B DISPLAY
COMPUTATIONAL

USAGE IS COMPUTATIONAL-1
COMPUTATIONAL-2
COMPUTATIONAL-3

PROCEDURE DIVISION.
[Section-name SECTION.]
Paragraph-name.

ACCEPT data-name [FROM CONSOLE]

numeric-literal
ADD floating-point-literal).
data-name-1 GIVING data-name-n

[ROUNDED] [ON SIZE ERROR imperative-statement...]
ALTER {procedure-name-1 TO PROCEED TO procedure-name-2}...

CLOSE file-name |REEL||WITH NO REWIND
PNIT WITH LOCK “ee

data-name-2

COMPUTE data-name-1 [ROUNDED] = numeric-literal
floating-point-literal
arithmetic-expression

[ON SIZE ERROR imperative-statement...l

data-name CONSOLE
DISPIAY literal ves UPON SYSPUNCH

data-name-1 data-name-2 [GIVING data-name-3]
DIVIDE numeric-literal-1) INTO(numeric-literal-2 GIVING data-name-3
floating-point-literal-1 floating-point-literal-2 GIVING data-name-3

[ROUNDED] [ON SIZE ERROR imperative statement...]

Appendix D 113

ENTER LINKAGE.

CALL entry-name [USING argument...J].
ENTRY entry-name [USING data-name...l.
RETURN.

ENTER COBOL.

ALL
EXAMINE data-name TALLYING (LEADING ycharacter-1' [REPLACING BY 'character-2']
UNTIL FIRST

‘ ALL
| EXAMINE data-name REPLACING LEADING 'character-1'BY 'character-2'
] UNTIL FIRST
i FIRST
; NAMED
EXHIBIT {CHANGED NAMED} {data-—name }
CHANGED non-numeric-literal

paragraph-name. EXIT.

GO _TO procedure-name-1 [procedure-name-2... DEPENDING ON data-namel

IF condition [THEN] statement-1 ELSE statement-2...
NEXT SENTENCE OTHERWISE [{NEXT SENTENCE

CONDITIONS:
>
<
= data-name-2
data-name-1 GREATER THAN arithmetic-expression-2
) arithmetic-expression-1) IS [NOT] LESS THAN figurative-constant-2
’ figurative-constant-1 EQUAL TO literal-2

POSITIVE
data-name ZERO
arithmetic-expression Is [NOT] NEGATIVE
[NOT]1 condition-name
[NOT]1 overflow-name

NUMERIC
data-name IS [NOT] ALPHABETIC

section-name SECTION. | INCLUDE library-name.
paragraph-name.

b data-name-{}

MOVE)literal TO data-name-2 ...

data-name-1
MULTIPLY numeric-literal-1
floating-point-literal-1

numeric-literal-2 GIVING data-name-3

{data-name—z [GIVING data-name-3] }
BY
floating-point-literal-2 GIVING data-name-3

[ROUNDED] [ON SIZE ERROR imperative statement...]
NOTE comment...

ON integer-1 [AND EVERY integer-2] [UNTIL integer-3] imperative-statement...}

NEXT SENTENCE
ELSE statement...
OTHERWISE NEXT SENTENCE

114 IBM S/360 OS COBOL(E) Programmer's Guide

(INPUT {file-name [with NO REWIND] [REVERSED]} ...
[OUTPUT {file-name [with NO REWIND]}....]
[I-0 {file-namel}...]
OPEN /OUTPUT {file-name [with NO REWIND]}... g
< [INPUT {file-name [with NO REWIND] [REVERSED]l}...]
JI-0 {file-namel}...]
I-0 {file-namel}... [OUTPUT {file-name (with NO REWIND 1}...]
L [INPUT {file-name [with NO REWIND] [REVERSED]}...] J
integer TIMES
PERFORM procedure-name-1 [THRU procedure-name-2] {éata-name }

UNTIL condition

PERFORM procedure-name-1 [THRU procedure-name-2]

VARYING data-name-1 FROM)numeric-literal-1
data-name-2

BY) numeric-literal-2 UNTIL test-condition-1
data-name-3

-[AFTEB data-name-4 FROM f[numeric-literal-3)\ |
data-name-5

BY) numeric-literal-4 UNTIL test-condition-2]
data-name-6

[AFTER data-name-7 FROM numeric-literal-5
data-name-8

data-name-9

BY {%umeric—literal-G} UNTIL test-condition-3]

L. -
READ file-name RECORD [INTO data-namel] AT END imperative-statement...

READ file-name RECORD [INTO data-namel
INVALID KEY imperative statement...

STOP JRUN
literal

data-name-1
SUBTRACT numeric-literal-1 o
floating-point-literal-1,

numeric-literal-m GIVING data-name-n
floating-point-literal-m GIVING data-name-n

data-name-m [GIVING data—-name-nl
FROM

{ROUNDED] {ON SIZE EROR Imperative statement...]

READY
RESET [TRACE
FRANSFORM data-name-3 CHARACTERS

figurative-constant-1 figurative-constant-2
FROM non-numeric-literal-1) TO{ non-numeric-literal-2
data-name-1 data-name-2

WRITE record-name [FROM data-name-1] [AFTER ADVANCING {data—name-%} LINES]
integer

WRITE record-name [FROM data-name-11]
INVALID KEY imperative statement...

REWRITE record-name [FROM data-namel
INVALID KEY imperative statement...

Appendix D

115

Permissible values for data-name-2: Permissible Integers:

Value Interpretation 0 - skip to next-page
1 - skip 1 line

b (blank) single spacing 2 - skip 2 lines

0 double spacing 3 - skip 3 lines

- triple spacing

+ suppress spacing

1 through 9 skip to channel 1 through 9, respectively

A, B, C, skip to channels 10, 11, 12, respectively

vV, W pocket select 1 or 2, respectively on the

IBM 1442, or 2520 and P2 or RP3 on the IBM 2540.

Permissible Comparisons.

r 1
| Second Operand |
r -IL T T =ll
|First Operand |GR|AL |AN IED |ID IBI |EF |IF IRP |FC |
e B et e At et Sveetat
|Group Item (GR) |NN|NN |NN |NN | NN |NN |NN |NN |NN NN |
1 ! 1 1] B IR ENUORII R S—
Ll 1 T T) T T + "
|Alphabet1c Item (AL) |NN|NN |[NN | | | | | I | NN1 |
S A e S e |
|A1phanumer1c (non- | | | | | | | | | I
|report) Item (AN) |NN|NN |NN |NNS| | | | | NN |NN |
’ T e S B e
|External Decimal [| | | | | | i
|Item (ED) |NN| |NNS|NU |NU |NU |NU |NU | |NN3|
! e T M B e S S
| Internal Decimal |1 | | | | | | | |]
jItem (ID) | NN| | |{NU |NU |NU |NU |NU | |NU2 |
¢ e T e St et A e St
|Binary Item (BI) |NN| | |NU |NU |NU [NU |NU | |NU2|
; _ e S e B e
|External Floating- (. | | | | | | | |]
|point Item (EF) || | INU |NU |NU [NU |NU | |NU=2 |
L 1 4 1 1 1 L 1 1 1 1 J
r . 1 T T t I ¥ T 1 T] 1
|Internal Floating- | | | | | | | | | | |
|point Item (IF) | NN | | |NU |NU |NU |NU |NU | |NU2 |
b — e B B vt e
|Report Item (RP) | NN | NN | | | | | | NN | NN4
T B B s G Mt SR
|Figurative Constant | |] | | | |] | |
| (FC) NN |NN1|NN |NN3|NU2|NU2|NU2|NU2 | NN | |
L l_L 1 L i 4 L L i 1 1

Abbreviations for Types of Comparison:

NN--Comparison as described for non-numeric items.

NU--Comparlson as described for numeric items.
1 Permitted with the figurative constants SPACE and ALL ‘character' where character must
be alphabetic.

2 pPermitted only if figurative constant is ZERO.

3 Permitted only if figurative constant is ZERO or ALL ‘character' where character must
be numeric.

4 Not permitted with figurative constant QUOTE.

5 External decimal field must consist of integers.

® 116 IBM S/360 OS COBOL(E) Programmer's Guide

;
|
-4
|
4
|
.l
|
.|
|
.|
]

N

o ot e L e et I

T

T

e Ml

T

L

Receiving Field

L Bt e o L

+--1
Y |Y |N [N [N |N |N [N
Y |Y |Y |N |N |N N |N |

T

J
1

[Y [¥ |Y [N [N [N [N [N [N

|GR|AL|AN|ED|ID|BI|EF|IF|RP
t——t—t-——t——t-—f-—t—t-——}—-

1

i
+——
Y

1

|Internal Decimal (ID)

|External Decimal (ED)
'f
L
T

Permissible Moves.
|Alphanumeric (AN)

| Source Field
|Alphabetic (AL)
I

|Binary (BI)

Group (GR)
[

3
T

lllldnlllﬂ.ljlllﬂ'lﬂllllj
HloMIEINIEl =
N I N D
LI | 1=l o=
N N N
S M L =2 R =
uanl:ﬂ||||4:lLT||1T||1||:|||L
> > ™M1 Z 4
|||.“.||.“||LT|._T|.T|IIL
Mol M L z
T|l||"lll|l“|||l_l.|lI|JT.lll.|1
LI | o= =4
..llllnlllllnlllulll.TIlTl‘ll
Zl B MM ™ >
'|:|4:||!ﬂ.nL:ILTIlTlllxul
Z 1 z | Z 1™ =4
1||+||L_|||_T|LT|+|||.._
> Sl ™
|.lnulT||u|4|||Lr|xlT||LT||||||1
| [
fos]
(G}
H -
1 | R0
o o =
<t < -2
o - -]
+ +$ N
o © o>
o) o]
—~ - ~ (O34
By~ o~ =1 [le]
[[A a4
B A |~ ©
© ~ @~ S -
Csibaitiel8)88
gEigElciciO i By
mo_mo ORI ldAdD
B IlHA | MmIN ISP
—— . —— i w— el c— i e———————

Appendix D @ 117

1 For integers only

APPENDIX E. SUBROUTINES USED BY COBOL

A table of subroutines used by

follows. With the use of this

programmer can determine the ef
the programmer in his efforts t
reason (debugging).

TABLE OF COBOL SUBROUTINES

COBOL to accomplish the statements or actions specified
table and the linkage editor cross-reference list, the
fect of his source statements. This table should guide
o conserve storage and isolate a trouble to a specific

T
| SUBROUTINE NAME

T
| ACTION
1

| ITHD00 00O
Converts an external
floating~point number
to an internal floating-
point number.

]

|Required for manipulation of external

|floating-point data in:

MOVE - When send field is external
floating point in MOVE statement.

COMPUTATIONAL - When one field is external, and one
field is internal floating point in
computational statement.

IHD00100
Floating-point
exponential subroutine.

Required for exponentiation to non-integer power.

IHD00200

Packed divides subroutine.
It divides 16-byte 30-
character dividend by

a l1-byte 30-character
divisor producing a 16-byte
30-character quotient.

No registers are used.

Required for division of complex computes,
COMPUTATIONAL of over 9 digits and
COMPUTATIONAL-3 of over 16 digits.

IHD00300
Packed multiply subroutine.
It multiplies two 30-

and produces a 60-character
packed product.

Required for complex computes,
COMPUTATIONAL fields of over 9, or
COMPUTATIONAL-3 of over 16 digits.

IHDOOLOO
Error message subroutine.
It outputs object time
messages.

Required with floating-point and
non-integer exponentiation.

IHD00500
Packed exponentiation
subroutine.

Required for exponentiation to an
integer power. (Used with IEP00700
[floating-point exponentiation] subroutine.)

IHD00600
Floating-point
logarithm subroutine.

|
|
|
I
|
———
+
|
I
I
4
T
|
|
|
|
I
I
!
[
d
1]
!
|
I
I
I
|
N
T
I
|
|
|
41
)
|
I
|
1
T

|Required whenever floating conversion
|is needed. Used with IEP00700 (floating-

| point exponentiation) subroutine.
4

IHD00700
Floating-point exponen-

|
|
[
|
|
|
L
T
{
|
|
L
r
|
|
i
|
|
|
|
|
L
v
|
|
' .
| character packed fields
|
|
L
T
|
|
|
|
L
)
i
|
|
L
t
|
{
|
L
r
|
| Loat ;
| tiation subroutine.
L

1
|Required to set up floating-point conversion routines
| for non-floating point exponentiation.

L

T T e T Y Sp——

118 IBM S/360 OS COBOL(E) Programmer's Guide

r
| THD00800

Converts packed decimal to
floating point. Conversion

is accomplished by calling
two other subroutines
IHD01600, which

converts the number from
packed decimal to binary

and IHD01500, which converts
the binary number to floating
point and then returns.

e ——— e e . s st . e

]
|May be required when floating-point
]and/or non-integer exponentiation'is used.

ARITHMETIC - Required when packed and
floating-point operation
are in the same statement.
MOVE - Required if the sending field is
packed and the receiving field
is floating point in a move statement.
COMPUTATIONAL - Required if one field is
packed, and one field is floating point
in a computational statement.

1
I
I
| |
| |
I |
| I
| |
| |
| |
| |
| |
- ¥ -~ 1
| THD 00900 | ARITHMETIC - Required when there is a floating- |
| Converts floating-point | point operand and the receiving field is |
| numbers to zoned decimal | zoned in an arithmetic statement. |
| numbers. Conversion is | MOVE - Required if the sending field is |
i accomplished by calling | Floating point, and the receiving |
| two other subroutines; | field is zoned in a move statement. |
| IHD01100, which | |
| converts the number from | |
| floating point to binary, | |
| and IHD01800, which | |
| converts the binary number | |
| to zoned decimal and returns. | |
i { 4
| ITHD01000 |Required for: i
| Converts a binary number to | ARITHMETIC - Required when multiplying a binary |
| a packed decimal number. | field by a packed field or vice versa. |
| Used with IHD01300 (floating | - Required if multiplication is done |
| point to packed decimal)] in binary. |
| subroutine. | MOVE - (Special Class) - If sending field is |
| | internal floating point, and receiving field|]
| | is binary. The binary number must fall |
| | within the limits specified. (9 decimal |
| | digits <binary number <18 decimal digits.) |
| | - If sending field is binary and receiving |
| | field is binary. |
| | - If sending field is less than 9 and |
| | Receiving field is less than or equal to 9, |
| | or both are greater than: 9 decimal digits. |
| | - If sending field is binary and receiving |
| | field is packed, and sending field is |
| | greater than 9 decimal digits. |
| | COMPUTATIONAL - If one field is binary and the
| | other is zoned. |
{ | - If one field is binary and the other is |
| | packed. |
| | - If both fields are binary and A is less |
| | than 10, B is less than 10, and the scales |
| | of both fields are equal. |
| | - If the scale of the sending field is |
| | greater than the scale of the receiving |
| | field, and the real or implied integer
| | positions of the receiving field plus the |
| | scale of the sending field is less than 10. |
i | - If the scale of the sending field is less |
| | than the scale of the receiving field, and |
| | the real or implied decimal positions plus |
| | the scale of the receiving field is less |
| | than 10. |
t L J

Appendix E

119

IHD01100
Converts an external floating-

roint number to a binary
number. Used with IHD00900
(floating point to zoned
decimal) subroutine,
IEP01300 (floating point to
packed decimal) subroutine,
IHD01400 (floating point to
binary) subroutine and
IHD01900 (miscellaneous
fields to external floating
point) subroutine.

field is external floating point.

MOVE - Required when send field is external or
internal floating point, and receiving

IHDO01200

Converts a zoned decimal
number of a floating point
number. Conversion is
accomplished by calling
the same subroutines used
by IHD00900.

MOVE - Required when send field

is zoned and receiving

field is floating point.
COMPUTATIONAL -~ Required when

one field is zoned and the

other field intermal floating point.

I8D01300

Converts a floating point
number to packed decimal
format. Conversion is
accomplished by calling
IHD01100, which

converts a floating-point
number to binary, and
IHD01000, which

converts the binary number
to packed decimal

and then returns.

THDO1400

Converts an internal
floating-point number

to a binary format.
Conversion is accomplished

by calling subroutine IHD(01100

which does

the actual converting

of the floating-point number
to a binary number format.

MOVE - Required when send field is external
or internal floating point and
receiving field is packed.

MOVE - Required when sending field
is external or intermal
floating point and receiving
field is binary.

[e e e . s . e . e S . o e, e e e[. e Sttt . s i . e, st i, T e, e S e, et . . e, et e, . . U s S i, et e o st Y e et . . . ittt et e i e S . e

IHD01500

Converts a binary number
into double precision
floating-point. May be
required when floating-
point and/or non-integer
exponentiation are used.
Used with IHD00800 {(packed
to floating point) sub-
routine, IHD00000 (external
floating point) subroutine,
IHD01200 (zoned decimal to
floating point) subroutine,
IHD01900 (miscellaneous
field type to external
floating point) subroutine.

e e e e e e e e e e ——— ——— e e, e e

MOVE - Required when sending field is binary and

receiving field is floating point.

ARITHMETIC - Required when one operand is binary

and one operand is floating point.

COMPUTATIONAL - Required when one field is binary

and one is internal floating point.

!
|
|
|
I
|
|
I
|
|
|
|
|
.‘
|
!
|
|
|
I
|
.'
[
|
|
I
I
|
|
|
|
|
|
I
{
|
I
|
|
|
|
I
I
|
|
1
|
|
|
|
|
!
|
|
|
[
|
|
I
!
|
|
J

120

IBM S/360 OS COBOL(E) Programmer's Guide

o e e e e . e e e . e . M St A . S o S . S i, i, e . St e . G S . . e ettt . o o S, e S e o S . S, B S s . S, e, s it e, e, . S e, . S B . e e S st

-

IHDO01600
Converts either a packed
decimal or a zoned decimal
number to a binary
number when receiving field
is greater than 9 digits.

MOVE - Required: If the sending field is external
decimal, and receiving field is packed,
receiving field must be 9 decimal digits.

COMPUTATIONAL - If one field is binary or zoned
and one field is packed.

- If both fields are binary and the

following conditions are not met:

* the length of the fields are unequal

e A and B are both less than 10, and the
scales of the fields are equal

- If the scale of the sending field is
greater than the scale of the receiving
field and the real or implied integer
positions of the receiving field plus the
scale of the sending field is less than 10.

- If the scale of the sending field is less
than the scale of the receiving field and
the real or implied decimal positions plus
the scale of the receiving field is less

A ——— e

Converts a packed
decimal number to a
zoned decimal number.

than 10.
THD01700 | COMPUTATIONAL - Required when either or both
Compares two alphabetic | fields are 255 bytes.
fields of different lengths, |
no restriction on maximum |
length, when either or both |
fields are greater than 255 |
bytes. |
—_— $——o
TIHD01800 | ARITHMETICS - Required when operations are
Converts a binary number | performed in binary and the
to a zoned decimal number. | receiving field is zoned.
Used with IHD00900 | MOVE - Required when sending field is binary and
(floating-point zoned | receiving field is zoned.
decimal) subroutine. | MISCELLANY - Required if user displays binary item.
1
1
IHD01900 | MOVE - Required when receiving field is
Converts a field of any of | external floating point.
the following formats to | MISCELLANY - Required if user displays
external floating point: | internal floating point.
external decimal, internal |
decimal, binary, internal |
floating point, figurative |
constant of zero. Con- |
version is accomplished in |
some cases by calling |
IHD01100, which |
converts internal floating |
point to binary, and IHD01500 |
which converts binary |
to external floating point. |
L
T
IHD02000 |Used to move group items longer than 256 bytes.
L
T
IHD02100 | Performs the class test on alphameric as specified in
|the publication IBM System/360 Operating System:
|COBOL Langquage.
IHD02200 ARITHMETIC - Required when the operations are

performed in packed, and the
receiving field is zoned.

MISCELLANY - Required if user displays
packed format.

b e e s . e e, o . . e e i e . o . e e . i, et . e . et . S . .t e et S s st s, . e, e . e s, i . et . . i et s S ot P S S e, S s, e i s, st e St e]

——— —— -

Appendix E 121

-
| THD02300

T

|This subroutine consists of three parts:

|1. The first part builds a table of the beginning
and end addresses of the PERFORM or nested
PERFORMS and the return address. It checks the
validity of addresses.

The second part checks to see if the PERFORM is
complete by comparing return addresses.

The third part deletes or eliminates the table
entries by resetting pointers and counters.

w N
. .

|Required for object program compatibility with
|Version I COBOL.
L

IHDO2400

+
|Used to move fields when either, or both fields are
|variable groups.

|Requirements:

R1 points to 'sending' field

R2 points to 'receiving' field

WORKA is length of 'sending' field

WORKA+2 is length of 'receiving' field

WORKA+4 is '01*' if 'receiving' field is
right-justified.

IHD02500

—————

|Used to compare two fields either or both of which
|are group variable. Used with fields defined with
joccurs depending on

|Requirements:

R1 points to FIELD1.

R2 points to FIELD2.]

WORKA is the same length as FIELDI1.

WORKA+2 is the same length as FIELD2.

IHD02600

|
|
|
|
—t
4

|Checks length of field to be displayed to be sure it

|fits into defined field, and moves display data to an

|output buffer. Used if a display data fit check is
| specified at object time.

|Requirements:

| WORKW - must be address of byte after buffer.

| WORKA+4 - must be number of bytes to move minus 1.
| Rl - points to next available buffer byte.

| R2 - points to data to be moved.
4

IHD02700

|Writes out display data on SYSPUNCH. Used when
Jdisplay on SYSPUNCH is specified.
1

IHD02800

b

|Writes out display data on SYSOUT. Required when
| EXHIBIT, TRACE, or standard DISPLAY statements are
|used (i.e., not UPON CONSOLE or UPON SYSPUNCH).

1

IHD02900

13
|Reads a record from SYSIN and moves data to the field

| specified by data-name.

]

|Required when ACCEPT is specified (not ACCEPT FROM
| CONSOLE) .

1

IHD03001

+
|Required when QSAM or QISAM files are used.
[

IHD03002

)

|Completes the creation of a relative file. Required
|when access sequential and organization relative
|clauses are used.

4

IHDO03004

[o e e e i e o . e A i " . S . e S . S e S A . St St . . . e, e Mo S s . e . it S e, . e . s St S S . e s e e, e e e . e

T

|structures buffers and directly organization files
|accessed sequentially. Required when access

| sequential and organization direct clauses are used.
L

e e i e b s . e i e i . T . s b, v e i, s . s sy . —— ——— — o . el . . B, i st . e S D e, . s, S s e e e, it i anes e S s . S—— — o . St S .]

122 IBM S/360 OS COBOL(E) Programmer's Guide

.
| THD03008

]

|Completes the creation of a direct file. Required
|when access sequential and organization direct
|clauses are used.

L

| THD03101

{
| Synchronous error routine for QISAM. Required
|whenever QISAM files are used.

[}

IHD03102

b
|Check routine for BISAM. Required whenever BISAM
|files are used.

KN

IHD03104

+
|]Synchronous error routine for QSAM and BSAM.
|Required whenever QSAM or BSAM files are used.
4

IHDO03108

r
| synchronous error routine for BDAM. Required
| whenever BDAM is used.

L

IHD03300

!
|If one field is divided by another and the divisor is
| zero, this subroutine links to the on size error

| routine.

1

IHDO3402

[s e e e g e e e e ety . . g e

+
|Create direct organization files. Required when a
|write is given for a file with access sequential and
|organization direct.

1

b e e e e e e e e v e e e e e e e et s e e e ——

Appendix E @ 123

APPENDIX F. SYSTEM/360 DIAGNOSTICS

This appendix contains a detailed
description of system diagnostics.
consist of:

They

e System diagnostic messages
e Compiler diagnostic messages

¢ Load module execution diagnostic
messages
Object time messages
Operator messages

¢ Debug packet error messages

These messages are produced during
compilation and load module execution.

Certain conditions that are present when
a module is being processed can cause
linkage editor diagnostics. For a complete
description of these messages, refer to the
publication, IBM System/360 Operating
system: Linkage Editor.

SYSTEM DIAGNOSTIC MESSAGES

System diagnostic messages consist of
messages and completion codes, which are
directed to the programmer by the IBM
System/360 Operating System control
program. The messages indicate coding
errors found in job-control statements,
system macro instructions, and errors
detected during processing by the job
scheduler. The completion codes indicate
conditions causing the control program to
abnormally terminate execution of a task.
Where possible, appropriate user responses
are suggested. For a complete list of
system diagnostic messages, refer to the
publication, IBM System/360 Operating
System: Control Program Messages and
Completion Codes.

COMPILER DIAGNOSTIC MESSAGES

Explanations and the action taken on
compiler diagnostic messages are placed, in
each case, after the particular error
message. Where no action is indicated, the
statement causing the message may be
dropped. Although the messages are
arranged in ascending numeric order, they
are not necessarily numbered consecutively.

The sequence number counter associated
with diagnostic messages cannot exceed
4095. At this point the sequence counter
resets to zero. The nature of the message
usually indicates the COBOL division in
which the error was detected.

Accompanying each error message is a
severity code: W = WARNING, C =
CONDITIONAL, E = ERROR. For a description
of these codes, refer to the discussion
under Source Module Diagnostics. Where
uniquely applicable, a System Action and/or
a User Response accompanies the message.

UNEXPECTED DIAGNOSTICS

It is possible for the user to write COBOL
source statements that can result in
diagnostics being generated that do not
appear in the list given. These diagnostic
messages cover features of the compiler not
supported at this time.

IEPOO1I C LITERAL EXCEEDS 120 CHARACTERS
System Action: The element
count begins following the next
quote on the line, if there is
one, or following the element
beginning after the 120th
character.

User Response: Change the
length of the literal so it
does not exceed the allowed
maximum, or insert the missing
quote, or define the literal
with two statements; execute
the compilation again.

IEP002I W LITERAL CONTINUATION QUOTE

INVALID IN MARGIN A

Explanation: The literal
continuation quote should
appear in Margin B.

System Action: The
continuation is allowed.

LITERAL IMPROPERLY CONTINUED OR
CONTINUATION QUOTE IS MISSING

IEPOO3I C

Explanation: This may be the
result of a missing quote sign
on the preceding line.

124 IBM S/360 OS COBOL(E) Programmer's Guide

IEPOOLTI C

IEPOO5I C

IEP006I C

System Action: The non-numeric
literal is truncated at the end
of the preceding line. The
syntax scan resumes with the
first element of the next line.

User Response: Check for
missing quote, column 7
continuation hyphen, or
improper formation of the
non-numeric literal.

SYNTAX REQUIRES A BLANK AFTER A
PERIOD OR THIS PERIOD IS
INVALID DECIMAL POINT

System Action: The inverted
print edit word with the
invalid decimal point is
dropped, and processing
continues with the next word.

User Response: Check syntax of
statement in error, and try
again.

XXX EXCEEDS 30 CHARACTERS

Explanation: Any element that
is not a non-numeric literal is
truncated after 30 characters.

System Action: Normal
processing continues with a
literal made up of the first 30
characters.

User Response: Alter the
length of the literal to
conform with the specifications
for this class of literal.

XXX REQUIRES QUALIFICATION

Explanation: This indicates
that the name is defined in
more than one location, and
requires qualification in order
to be unique.

System Action: The first name
defined is used, and the
compilation continues. If it
is the name desired, the run
will compile as desired. For
further system action, see
message IEP013I. It explains
the handling for the procedure
division statement.

User Response: Correct the
procedural statements in error,
or change the duplicate data
names soO they are unigque.

IEPOO7I C

IELOO8I C

IEPOO9T E

IEPO10I W

IEPO11I E

IEP012I C

Execute the job again.

XXX HAS UNDEFINED QUALIFICATION

Explanation: One or more of
the names in the qualification
hierarchy are not defined as a
group containing the data-name.
This may have resulted from the
dropping of a data-name because
of an error at its point of
declaration, or because of a
misspelling.

System Action: The first name
defined is used. If it is the
name desired, the run will
compile as desired.

User Response: Check for
misspelling of the data-name,
or the data-name's qualifier in
the hierarchy order.

XXX REQUIRES MORE QUALIFICATION

Explanation: The number of
qualifiers or the names are not
sufficient to make the subject
name unique. Another name
could have the same
qualification.

System Action: The first name
defined is used, and the
compilation continues. If it
is the name desired, the run
will compile as desired. For
further system action, see
message IEP013I. It explains
the handling for the procedure
division statement.

SUBSCRIPTED 88 MUST HAVE A
RIGHT PARENTHESIS. WILL BE
TREATED AS A DATA NAME

SYNTAX REQUIRES A BLANK AFTER A
RIGHT PAREN, SEMICOLON AND OR
COMMA

Explanation: Normal processing

continues.

XXX IS UNDEFINED

XXX HAS MORE SUBSCRIPTS THAN
DECLARED IN THE DATA DIVISION

Explanation: The Procedure

Division reference to the
data-name has too may

Appendix F 125

IEPO13I C

IEP023I C

IEPO24T C

IEP025I C

126 IBM S/360 OS COBOL(E) Programmer's Guide

subscripts. The number of
subscripts must match the
number of OCCURS clauses in the
definition hierarchy in the
Data Division.

System Action: Normal

processing continues with the
next word.

RECORD-NAME 'XXX' IS ASSOCIATED
WITH INVALID FD ENTRY

Explanation: The FD associated
with the SELECT clause is
invalid.

System Action: The error
attribute for the record is
output, and normal processing
continues with the next word.

User Response: Check FD
entries for proper device
labels, requires clauses,
missing period terminator, etc.

COPY AND INCLUDE MUST NOT BE
USED WITHIN LIBRARY ENTRIES

System Action: Words following
the library name are diagnosed
according to the clause being
processed, up to the next
required clause.

PERIOD MISSING FOLLOWING XXX.
THE NEXT CARD MAY BE SKIPPED.

System Action: For the Data

Division COPY statement - Any
other entry following the name
is diagnosed as the missing
period and the return is made
to the phase. The phase
diagnoses all entries up to the
next period according to the
current clause string. Normal
processing continues. For the
Procedure Division INCLUDE
statement - Interrogation of
the library name continues to
determine its validity and
whether or not it is on the
library. 1If the library name
is wvalid, and it is found,
normal processing continues.

User Response: A period should

be inserted following library
book name.

XXX IS AN INVALID LIBRARY NAME
OR NOT FOUND ON LIBRARY

IEP026I C

IEPO27I W

IEP028I C

IEP029I W

IEPO30I W

Explanation: The library name
may have been misspelled, not
previously cataloged or not
properly terminated with a
guote.

System Action: Any word other
than period immediately
following the library name is
diagnosed according to the
current clause string up to the
next period. This includes the
current card and the next card,
if read.

User Response: Check for the
possible causes given in the
explanation.

FLOATING-POINT NUMBER XXX IS
BELOW OR ABOVE VALID RANGE
System Action: The value zero
is assumed.

NUMBER OF DECIMALS IN LITERAL
XXX AND DATA ENTRY DISAGREE

System Action: Truncation or
padding is performed according
to the rules governing the MOVE
verb.

LITERAL XXX IS INVALID AND IS
DROPPED

Explanation: The value clause
conflicts with the description
of the entry.

System Action: The value
clause is dropped.

LITERAL XXX AND PICTURE SIZE
DISAGREE

Explanation: This diagnostic
indicates a literal that is
larger than its picture.

System Action: The literal is
truncated to picture size from
left to right, unless right
justification is specified.
The scan is continued as if no
error occurred.

LITERAL XXX WAS SIGNED, ENTRIES
PICTURE WAS UNSIGNED

Explanation: The literal
encountered in this entry

IEPO31I W

IEP032I C

IEPO4II C

IEPOL2I C

IEPO43I C

IEP4LT C

IEPOU4SI C

contains a sign, it does not
appear as part of the entry
because the picture is
unsigned.

NUMBER OF INTEGERS IN LITERAL
XXX AND DATA ENTRY DISAGREE
System Action: Same as for
message IEP027I.

LIBRARY NAME IS AN INVALID
EXTERNAL NAME OR NOT ON THE
LIBRARY.

Explanation: The library name
may have been misspelled, not
cataloged, or not properly
terminated with a quote,

System Action: The invalid or
not found library name is
dropped and the next card is
read.

THIS CLAUSE IGNORED AT THE 01
LEVEL IN XXX ENTRY

Explanation: The occurs clause
not valid as an 01l or 88 entry.
System Action: The clause is
dropped.

User Response: Alter the
clause's level number to one
that is valid or remove the
occurs from the statement in
error.

THIS CLAUSE IGNORED IN XXX
ENTRY AS IT PROVIDES MORE THAN
3 LEVELS OF SUBSCRIPTING

DEPENDING ON OPTION IN XXX
ENTRY IS IGNORED DUE TO PRIOR
USE

DEPENDING ON OPTION IN XXX
ENTRY IS IGNORED BECAUSE IT IS
SUBORDINATE TO A PREVIOUS
CLAUSE

THE LEVEL OF XXX ENTRY
INVALIDATES THE DEPENDING
OPTION AT THE PRECEDING XXX
ENTRY. THE DEPENDING OPTION IS
DROPPED

Explanation: The level number
just encountered indicates that

IEPO46I C

IEPO4TI E

IEPO48TI W

IEPO4UOT W

IEPOS0I W

there was an occurs depending
that did not include the last
entry within the 01.

System Action: The depending
option is dropped.

XXX ENTRY CONTAINS AN ILLEGAL
LEVEL NUMBER OR REDEFINES
CLAUSE WHICH IS IGNORED

Explanation: A redefines
clause must redefine an entry
at the same level number.

System Action: The level
number or the redefines clause
is ignored.

User Response: Alter the level
number or relocate the
redefines clause to conform
with the specification.

INTERNAL QUALIFIER TABLE
OVERFLOWED WHEN HANDLING XXX.
RESTARTED QUALIFIERS WITH XXX.

Explanation: The sum of all
the characters in the data-name
and all its qualifiers + 4
times (the number of
qualifiers+1l) must not exceed
300.

ENTRY PRECEDING XXX IS OF
VARIABLE LENGTH

XXX IS LARGER THAN ENTRY
REDEFINED

Explanation: The current entry
is larger than the area
redefined.

System Action: The area is
assumed to be expanded.

User Response: The redefined
area may be expanded.

XXX ENTRY PRECEDING XXX IS
LARGER THAN ENTRY REDEFINED

Explanation: The same as for
message IEPOU49I, only for a
group entry
System Action: Same as for
message IEPOUII.

Appendix F 127

IEPOS1I C

IEPO052I C

IEPOS53I W

IEPOSUI W

128 IBM S/360 OS COBOL(E) Programmer's Guide

THIS CLAUSE INVALID IN XXX
ENTRY AS REDEFINED AREA IS
SUBSCRIPTED.

Explanation: It is invalid to
redefine an area containing an
occurs clause.

System Action: The
redefinition clause is dropped.

THIS CLAUSE IGNORED IN XXX
ENTRY DUE TO REDEFINES OR
OCCURS CLAUSE IN PRECEDING XXX
LEVEL

Explanation: A value clause
cannot appear in an entry
subordinate to a redefines
clause.

System Action: The value
clause is dropped.

FOR PROPER ALIGNMENT, A XXX
BYTE LONG FILLER ENTRY IS
INSERTED PRECEDING XXX

Explanation: Binary or
floating point data improperly
aligned for computations.

System Action: Binary and
floating-point data are aligned
on an appropriate boundary by
the compiler. The alignment is
performed by inserting an
assumed filler entry preceding
the item requiring alignment.

User Response: The number of
slack bytes required can be
reduced by the use of a
different data format such as:
internal decimal, grouping
aligned items to the beginning
of a record, or otherwise
positioning them so that they
will have the proper alignment
within the record. A
discussion of slack bytes can
be found in the publication,
IBM System/360 Operating
System: COBOL Language.

FOR PROPER ALIGNMENT, A XXX
BYTE LONG XXX FILLER ENTRY IS
INSERTED PRECEDING XXX

Explanation: Binary or
floating-point data is
improperly aligned for
computations.

System Action: Groups are

IEPOS55I E

IEPO56I W

IEPOS7I E

IEPO58I E

aligned according to the
alignment requirements of the
first elementary within that
group. The level number
indicated in the diagnostic
message shows exactly where the
implied filler entry was
inserted. ¥For further
explanation, see message
TEPOS53I.

XXX ENTRY PRECEDING XXX EXCEEDS
MAXIMUM SIZE OF 4092 BYTES

Explanation: The group defined
at the indicated level
preceding the point where this
message was generated exceeded
the maximum size permitted in
the file or linkage section.

System Action: The compilation
is continued, but execution is
not attempted.

User Response: Reduce the
record size to the allowable
maximum size.

XXX ENTRY PRECEDING XXX EXCEEDS
MAXTIMUM LENGTH OF 32,768 BYTES

Explanation: See message
IEP055I. It applies to
Working-Storage section.

System Action: See message
IEP055I. It applies to the
Working-Storage section.

PROGRAM EXCEEDS 240 BASE
LOCATORS MAXIMUM AT XXX

Explanation: A base locator is
assigned for each file for each
01 or 77 in the linkage
section, and for every 4,096
bytes in the working-storage
section.

System Action: The base
locator counter wraps around
and the results are
unpredictable.

User Response: Reduce the
number of base locators.

ERRONEOUS OR MISSING DATA
DIVISION

Explanation: No data division
entries were present.

IEPO59I E

IEPO60I W

IEPO61I C

IEP0O62I W

IEPO63I W

System Action: All data
division entries were present.

Ssystem Action: All data
division entries were dropped
because of errors.

SYMBOLIC KEY NOT ALLOWED WITH
SEQUENTIAL, ACCESS METHCD ON
FILE 'XXX'

XXX LEVEL PRECEDING XXX IS OF
VARIABLE LENGTH

Explanation: The entry,
defined at the level indicated,
that preceded this clause,
contained an occurs depending
clause.

System Action: The redefined
clause is dropped because it is
illegal to redefine a
variable-length entry.

XXX ENTRY EXCEEDS MAXIMUM
LENGTH FOR ITS DATA TYPE

Explanation: The maximum
permitted length of an entry
depends on the type of data
defined for that entry.

Numeric data cannot exceed '18
digit positions, report entries
cannot exceed 127 character
positions.

System Action: The maximum

size is used.

XXX REQUIRED ALIGNMENT AND
STARTS XXX BYTES PAST THE START
OF THE ENTRY IT REDEFINED

Explanation: The entry
containing the redefines clause

requires alignment that differs
from the alignment of the
clause redefined. If alignment
is required, insert a filler
the size of the number of bytes
indicated in the message before
the item being redefined.

TO ALIGN BLOCKED RECORDS ADD
XXX BYTES TO THE 01 CONTAINING
DATA NAME XXX

Explanation: The first record
in a buffer is aligned on a
double word boundary. All 01's
are assumed to start on a
double word boundary. If

IEPO6UT W

IEP076I W

IEP0771 E

IEPO78I C

IEPO79I C

IEPO8OI C

binary or floating-point
numbers are used in the record
and if the records are blocked
in a buffer, the succeeding
records may not be properly
aligned. Alignment can be
obtained by padding each record
by the indicated number of
bytes and processing in the
buffer, or by moving each
record, as a group, to an 01 in
the working storage section
before processing the
computational field. The
pointer to this diagnostic
indicates the last element
within a record. The padding
must go into the preceding 01
record, not the 01 that may
immediately follow the
indicated data name.

IF THE PRECEDING RECORD IS
BLOCKED, IT MAY BE ALIGNED BY
MOVING TO AN (01 IN THE
WORKING-STORAGE SECTION

Explanation: When records are
variable and blocked, only the
first record can be aligned.

INTEGER OPTION IS NOT PERMITTED

System Action: The clause is

dropped.

USER LABELS NOT SUPPORTED IN
THIS VERSION

INTERNAL FILE-NAME AND
DESCRIPTION TABLE OVERFLOWED.
XXX NOT PROCESSED

Explanation: There is a fixed
number of files that can be
handled by a given COBOL
compilation (25). 1If
additional files must be
handled, they can be processed
in a subprogram and accessed
via the linkage facility.

System Action: Any files
encountered after the maximum
permitted are dropped. The
maximum permitted is 25.

RESTRICTED SEARCH INTEGER TOO
LARGE ON XXX. CLAUSE DROPPED

MORE THAN THREE FORMS OVERFLOW
CLAUSES. OVERFLOW-NAME XXX

Appendix F 129

IEPOBITI W

IEPO82I W

IEPO83I W

TEPO8L4TI W

IEPO87I C

130 IBM S/360 OS COBOL(E) Programmer's Guide

ENTRY IS DROPPED

XXX APPEARED PREVIOUSLY IN A
'SAME' CLAUSE. REMAINDER OF
*SAME' CLAUSE DROPPED

Explanation: A given filename
can appear in only one
same-area clause. Any
duplication encountered is
dropped.

System Action: The entire
same-area clause is dropped.

User Response: Eliminate the
duplicate statement.

INTERNAL 'SANME' TABLE OVERFLOW.
ENTRIES AFTER XXX DROPPED

Explanation: A fixed number of
filenames and combinations of
filenames are allowed in an
internal same-area table. If
reducing the number of
filenames or the number of
same-area clauses does not
relieve the situation, it may
require an entry to a
subprogram to permit a large
number of files to be
referenced in this manner.

RECORD LENGTH SPECIFIED
DISAGREES WITH CALCULATED MAX.
RECORD LENGTH OF XXX ON XXX.
CALCULATED RECORD LENGTH
ASSUMED.

Explanation: The actual length
of each record is calculated
during compilation time by
totaling all its components.

If the length disagrees with
the specified maximum, this
warning diagnostic is given to
indicate that the specified
record size is ignored.

BLOCK SIZE FOR XXX TOO BIG.
32K ASSUMED

Explanation: The integer
specifying block size of the
referenced files is too larxge.

System Action: The maximum
size allowed is used.

THE XXX FILE MUST BE DESCRIBED
IN A SELECT CLAUSE. CURRENT
ENTRY IGNORED

IEP088I C

IEPO90I C

IEP0931

IEPOOUTI

IEP0961

IEP098I

IEPO99I

IEP100I

IEP101IX

Explanation: The subject file
was referenced in the
environment division or in an
FD clause. There is no select
clause to define this file.

The filename referenced may be
an invalid entry encountered at
the point that a filename was
expected.

LABEL RECORD DATA-NAME MUST BE
DEFINED IN LINKAGE SECTION

System Action: Label recoxrds
are assumed standard.

THE DESCRIFTION OF XXX FILE
CONFLICTS ON THE FOLLOWING

POINTS --- XXX

Explanation: The description
of the file referenced contains
factors that conflict with each
other. The factors can be in
the description of the file in
the environment division, in
the FD of the file section, or
in other areas such as the
record description for that
file.

System Action: The points in
conflict are defined by the
trailing clauses of the
diagnostic.

XXX NOT HANDLED WITH PRESENT
RELEASE

XXX FILE WAS NOT DEFINED BY AN
FD ENTRY
Explanation: No data control

block is built for this file,
therefore, it cannot be used.

ONLY ONE CHECKPOINT FILE MAY BE
SPECIFIED

XXX FILE ASSUMED TO BE UTILITY

XXX FILE UNIT MISSING AND
ASSUMED TO BE 1403 PRINTER

DIRECT-ACCESS ASSIGNED TO XXX
NOT SUPPORTED IN THIS VERSION

XXX FILE IS ASSIGNED TO UNIT

IEP102I

IEP1061I

IEP1071
IEP108I
IEP1101
IEP112X
IEP115T

IEP1161

IEP117I
IEP118I

IEP1191I

IEP1761

RECORD AND MUST BE RECORDING
MODE IS F

Explanation: Unit record must
be fixed length.

System Action: The largest
described length is assumed.
A MAXIMUM OF 1 ALTERNATE AREA
IS ALLOWED FOR XXX FILE

System Action: One alternate
area is reserved.

ONLY ONE AREA SUPPORTED FOR
INDEXED OR DIRECT ORGANIZATION.
ONE AREA ASSIGNED FOR XXX

RECORD KEY REQUIRED FOR INDEX
ORGANIZATION FILE XXX

LENGTH OF SYMBOLIC/RECORD KEY
GREATER THAN 255

INCORRECT DATA ITEM TYPRE
SPECIFIED FOR KEY

SYMBOLIC AND RECORD KEY LENGTH
FOR XXX DISAGREE

LENGTH OF ACTUAL KEY IS
GREATER/LESS THAN 5

FILE LIMIT VALID FOR DIRECT
ORGANIZATION, SEQUENTIAL ACCESS
OUTPUT FILES ONLY

SYMBOLIC KEY MUST BE SPECIFIED
FOR XXX

ACTUAL KEY MUST BE SPECIFIED
FOR OUTPUT FILES

ONLY ONE AREA SUPPORTED FOR
OTHER THAN STANDARD SEQUENTIAL,
AND INDEXED ORGANIZATION -
SEQUENTIAL ACCESS FILES

WORD RECORD OR RECORDS IS
REQUIRED. FOUND XXX.

Explanation: Syntax skips
until the next clause, level

number, or period at the end of
the file description is

IEP177I W

IEP178I C

IEP179I W

IEP180I E

IEP181TI W

IEP183I C

IEP184T W

IEP185I W

IEP186I W

IEP187I C

encountered.

PERIOD REQUIRED AFTER WORD
SECTION

SYNTAX REQUIRES XXX. FOUND

XXX.
System Action: This clause is
ignored.

XXX IS AN INVALID FILE-NAME
FORMAT

Explanation: A filename must
follow the format rules for
data-names.

System Action: Invalid names
are truncated tc 30 characters
and assumed to be valid.

XXX EXCEEDS 30 CHARACTERS AND
IS DROPPED

System Action: The picture is
too long, and is dropped.

THE OPTION WORD IS MISSPELLED
OR OMITTED. FOUND XXX.

System Action: The usage
assumed is display.

XXX IS AN INVALID OR EXCESSIVE
INTEGER

Explanation: The integer
indicated in this clause is
determined to be invalid.

System Action:
not used.

The integer is

XXX IS AN INVALID LEVEL NUMBER

LABEL RECORDS IS OMITTED.
LABELS ASSUMED STANDARD.

SYNTAX REQUIRES DATA RECORD
CLAUSE

System Action:
proceeds.

Syntax scanning

MODE MUST BE V, F, OR U. FOUND

XXX.

Appendix F 131

IEP190I W

IEP191I W

IEP192I W

IEP194I C

IEP195I E
IEP196I W
IEP197I W

IEP201I C

132 IBM S/360 OS COBOL(E) Programmer's Guide

User Response: If VvV, F, or U
was specified, check the
element number on this line for
a misspelled optional word.

XXX IS AN INVALID DATA-NAME
FORMAT

System Action: The invalid
data-name(s) are truncated to
30 characters and used.

SD OR SA ENTRY REQUIRES F LEVEL
COMPILER

System Action: Syntax skips to
next margin-A entry.

XXX IS AN INVALID RECORD-NAME
FORMAT

System Action: Invalid record
names are truncated to 30
characters and assumed valid.

XXX IS INVALID AT THIS POINT.
CHECK FOR SYNTAX ERROR ON
CURRENT/PREVIOUS STATEMENT

Explanation: While processing
a given clause or sentence, an
unexpected element was
encountered. The clause may be
valid but misplaced. This
diagnostic is also given for
clauses that are not valid
source input to this level
compiler.

User Response: Check for prior
diagnostics, extra or missing
period, invalid continuation of
non-numeric literals or a
misspelled word.

SYNTAX REQUIRES AN FD ENTRY.
FOUND XXX.

SYNTAX REQUIRES AN 01 LEVEL
ENTRY. FOUND XXX.

NOT VALID FOR THIS LEVEL
COMPILER.

XXX Is AN INVALID DATA~NAME
FORMAT BUT ASSUMED VALID.

System Action: Invalid
data-names are truncated to 30

IEP202I C

IEP203I C

IEP204I C

IEP205I W

IEP206I W

IEP207I W

IEP210I C

IEP211I C

characters and assumed valid.

XXX IS INVALID AT THIS POINT.
CHECK FOR SYNTAX ERROR OR
CURRENT/PREVIOUS STATEMENT.

Explanation: The explanation
and user response is the same
as that for message IEP194T.

THIS USAGE XXX CONFLICTS WITH
THE GROUP USAGE AND IS IGNORED

XXX IS AN INVALID OR EXCESSIVE
INTEGER

System Action: The invalid
integer is dropped.

XXX IS AN INVALID DATA-NAME
FORMAT, BUT ASSUMED VALID.

WORD ZERO IS REQUIRED. FOUND

XXX.
System Action: The clause is
ignored.

WORD RIGHT IS REQUIRED.
XXX.

FOUND

System Action: The clause is

ignored.

THIS ENTRY CONFLICTS WITH THE
FPOLLOWING DESCRIPTIONS ---XXX.

Explanation: Various clauses
specified for a data entry are
compared with previous
specifications for the entry.
If there is any factor that
conflicts with the subject
clause, it is listed as a
trailer to this entry. Factors
included that are not
themselves clauses would be
elementary or group item usage,
specified at a group level in
previous clauses. This message
can appear if a period is
missing at the end of a data
entry or (for example) when the
picture clause for the second
entry is encountered, and
automatically conflicts with
the picture clause for the
previous entry.

XXX EXCEEDS 30 CHARACTERS AND

IEP212I C

IEP213I W

IEP214I C

IEP215I W

IS TRUNCATED.

ONLY LEVELS 77 OR 01 ARE
PERMITTED AT THIS POINT.
XXX.

FOUND

System Action: Syntax skips
until a section name or level
number is found.

THE FOLLOWING DESCRIPTIONS
INVALID AT GROUP LEVEL ---XXX.

Explanation: The data entry
described is determined to be a
group, although the entries
specified as trailers to this
diagnostic are invalid at the
group level. This diagnostic
can be produced by an invalid
level number that was changed
to an 01, or a misunderstanding
as to how a group is defined
and what clauses are valid at
the group level. A missing
period can also produce this
diagnostic.

XXX DATA ENTRY REQUIRES A
PICTURE, COMPUTATIONAL-1 OR
COMPUTATIONAL-2.

Explanation: This diagnostic
can be produced by an error in
the following level number
which caused its level to be
changed to an 01, thereby
making this entry an
elementary.

System Action: Any statement
in the procedure division
containing a reference to this
entry is diagnosed and dropped.

User Response: Check for
missing periods or other
diagnostic messages.

SYNTAX REQUIRES AN ENTRY IN
MARGIN A. FOUND XXX IN MARGIN
B

System Action: Following
certain entries in a source
program, a specific clause must
be encountered in margin A. If
it is found in margin B, it is
diagnosed but handled by the
compiler.

User Response: Appropriately

IEP216I W

IEP217I W

IEP218I W

IEP221I C

IEP222I C

locate the clause in margin A.

SYNTAX REQUIRES AN ENTRY IN
MARGIN B. FOUND XXX IN MARGIN
A CHECK FOR MISSING PERIOD.

Explanation: All entries in
margin A must be preceded by a
period.

System Action: The compiler
was in the middle of processing
a clause or sentence and
encountered the indicated word
in margin A, thus a diagnostic
is issued and the word is
processed as if wvalid.

LEVEL 77 ENTRIES MUST PRECEDE
OTHER LEVELS AND ARE ASSUMED TO
BE 01 LEVEL.

SYNTAX PERMITS ONLY LEVELS 77,
88, OR 01 AFTER A 77 LEVEL.
CHANGED XXX TO 01.

SYNTAX FOR ALL REQUIRES XXX BE
A SINGLE CHARACTER IN QUOTES

System Action: The value
clause is dropped.

PICTURE XXX WAS FOUND INVALID
WHILE PROCESSING XXX. THE
PICTURE IS DROPPED

Explanation: Any element that
follows the word picture in a
data description, other than
the word that is dropped, is
assumed to be a picture, and is
passed to a later phase for
analysis. The analysis
proceeds from left to right on
a character-by-character basis.
The character identified in the
message is the one processed at
the time the picture is
determined to be invalid. The
specific character itself may
be invalid or may. have
indicated that a previous
character or condition is
invalid. For example, an E
encountered in an external
floating-point picture may
indicate that a preceding
decimal was omitted in the
mantissa.

System Action: The picture is
dropped, and the entry

Appendix F 133

IEP227I E

IEP228T E

IEP229T E

IEP233I C

IEP234TI W

IEP235T W

IEP237I E

IEP238I W

IEP239I W

IEP241I C

134 IBM S/360 OS COBOL(E) Programmer's Guide

identified as an error.

FILE SECTION OUT OF SEQUENCE

SYNTAX PERMITS ONLY ONE XXX IN
SOURCE PROGRAM

System Action:
proceeds.

Syntax scan

WORKING STORAGE SECTION OUT OF
SEQUENCE

REPORT SECTION REQUIRES F LEVEL
COMPILER

WORD SECTION MISSING

PERIOD MUST FOLLOW WORD SECTION

XXX IS MISPLACED

Explanation: The statement is
probably out of place in the
source deck; i.e., FD is
WORKING-STORAGE

System Acticon: The statement
is processed as it is, however,
execution may not be as
desired.

User Response: Properly locate
the misplaced statement.

XXX IS AN INVALID SECTION NAME,
A MISSING FD OR AN
INVALID/MISPLACED LEVEL
INDICATOR

System Action: Syntax skips
until a valid section-name or
level number is found.

SYNTAX REQUIRES 'DIVISION'

LEVEL PRECEDING 88 MUST BE AN
ELEMENTARY.

Explanation: Any level number
preceding an 88 entry must be
an elementary.

System Action: If the level
number preceding an 88 is not
an elementary, it is assumed to

IEP242I W

IEP3011I W

IEP302I C

IEP303I W

IEP304I E

IEP305I C

IEP306I W

be one and is processed.

THE 88 ENTRY DOES NOT HAVE A
VALUE, THEREFORE, IT IS
DROPPED.

SYNTAX REQUIRES XXX IN MARGIN
A. FOUND XXX. RESTART WITH
XXX.

Explanation: Syntax requires
the specific entry indicated to
be in margin A. If the entry
is found in margin B,
compilation resumes.

SYNTAX REQUIRES XXX. FOUND
XXX. RESTART WITH XXX. IF
WORDS REQUIRED AND FOUND ARE
THE SAME, THE ENTRY IS IN THE
WRONG MARGIN.

System Action: Syntax skipped
to the restart clause.

XXX IS AN INVALID
CONDITION-NAME FORMAT.

Explanation: The name shown is
an invalid condition name.

System Action: The name is
truncated to 30 characters and
assumed valid.

XXX IS AN INVALID EXTERNAL-NAME
FORMAT. RESTART WITH XXX.

Explanation: An external name
was expected at this point in
the scan of the subject clause.
An external name must be
enclosed in quotes. It must
start with an alphabetic
character, cannot contain more
than eight characters, and the
only valid characters are
letters and numerals. A dash
is not permitted.

SYNTAX REQUIRES SAME, RERUN,
APPLY, OR XXX DIVISION. FOUND
XXX. RESTART WITH XXX.

User Response: Check for
invalid sequence of source
program cards or extra periods.

SYNTAX REQUIRES ENVIRONMENT OR
XXX DIVISICN IN MARGIN A.
FOUND XXX. RESTART WITH XXX.

IEP307I E

TEP308I W

IEP309I C

IEP310I W

IEP311I E

IEP312I C

IEP313I W

User Response: Same as for

message IEP305I.

SYNTAX REQUIRES I-O-CONTROL
INPUT-OUTPUT, OR XXX DIVISION
IN MARGIN A. FOUND XXX.
RESTART WITH XXX.

User Response: Same as for
message IEP305I.

XXX IS AN INVALID DATA-NAME
FORMAT. RESTART WITH XXX.

Explanation: A data-name was
expected at this point in the
scan of the subject clause.

System Action: Invalid format
is truncated to 30 characters
and processed as if valid.

ENVIRONMENT PARAGRAPHS OUT OF
ORDER.

System Action: Statements are
handled anyway.

XXX IS AN INVALID 360
MODEL~NUMBER. RESTART WITH
XXX.

System Action: Syntax scan
skips to the restart clause.

SYNTAX REQUIRES FILE-CONTROL,
XXX OR DATA DIVISION IN MARGIN
A. FOUND XXX. RESTART WITH
XXX.

User Response: Same as forx
message IEP305I.

XXX IS AN INVALID OR EXCESSIVE
INTEGER. RESTART WITH XXX.

Explanation: The syntax at
this point of scan of the
specified clause requires an
integer.

System Action: The element
found was invalid and is
dropped.

XXX Is AN INVALID FILE-NAME
FORMAT. RESTART WITH XXX.

Explanation: The syntax scan
of the subject clause requires

IEP314I E

IEP315I W -

IEP316I C

IEP3171I C

IEP318I E

IEP319I C

a filename at this point.

System Action: The element
found was invalid. It was
truncated to 30 characters and
used as if wvalid.

XXX IS AN INVALID LIBRARY-NAME
FORMAT. RESTART WITH XXX.

Explanation: A library name is
required at this point.

System Action: The format is
invalid. It is dropped.

MORE THAN THREE OVERLFOW OPTION
CLAUSES ARE USED.

Explanation: BAn internal table
permits a maximum of three form
overflow names to be assigned
in any compilation.

System Action: All form
overflow names in excess of the
maximum allowed (three) are
dropped.

SYNTAX REQUIRES INDEXED OR XXX.
FOUND XXX. RESTART WITH XXX.

Explanation: This message
applies to a direct access
storage device only.

SYNTAX REQUIRES SEQUENTIAL OR
XXX. FOUND XXX. RESTART WITH
XXX.

Explanation: This message
applies to a direct access
storage device only.

SYNTAX REQUIRES XXX OR DATA
DIVISION IN MARGIN A, OR SELECT
IN MARGIN B. FOUND XXX.
RESTART WITH XXX.

Explanation: The syntax for
the specific clause requires
specific entries at this point.

User Response: Check for
misspelled words, or excessive
periods.

SYNTAX REQUIRES UTILITY,
DIRECT-ACCESS OR XXX. FOUND
XXX. RESTART WITH XXX.

Explanation: Same as for

Appendix F 135

IEP320I W

IEP321I E

IEP322I W

IEP323I W

TEP324T E

IEP4O1I C

136

message IEP318I.

XXX IS AN INVALID
I-O-DEVICE-NUMBER.
WITH XXX.

RESTART

Explanation: Same as for
message IEP318I.

NO PROCESSING OF THIS MULTIPLE
SPECIFIED DIVISION OR SECTION.
RESTART WITH XXX.

Explanation: A section or
division was encountered more
than once.

System Action: The additional
section or division is dropped,
rather than disturb the
internal sequence of the
compilation.

FILE-NAME OR DATA-NAME EXCEEDS
30 CHARACTERS. TREATED AS
30-CHARACTER NAME.

SYNTAX REQUIRES XXX OR
CLAUSE-NAME. FOUND XXX.
RESTART WITH XXX.

System Action: Syntax scan
skips to the restart clause.

SYNTAX REQUIRES REEL OR XXX.
FOUND XXX. RESTART WITH XXX.

System Action: Syntax scan
skips to restart clause,

SYNTAX REQUIRES A DATA-NAME.
FOUND XXX.

Explanation: The syntax of the
indicated clause requires a
data-name. The element found
was not defined as a valid
data-name. The element may be
indicated here, or, an
indication given that it was an
invalid name such as, filename,
condition name, figcon, or
overflow name.

System Action: The compilation
continues at the next verb or
paragraph label.

User Response: Check for
misspelled data-name in

diagnostics, which would
nullify the definition of a

IBM S/360 0OS COBOL(E) Programmer's Guide

IEP4O2I C

IEP4031

IEP4OLT

IEP4O5I

IEP406I

IEPLO7I

valid data~-name, or the use of
a COBOL word as a data-name.

SYNTAX REQUIRES NEXT ITEM BE
XXX.

Explanation: The syntax for
this clause requires a specific
word that was not found. The
item encountered was probably a
data-name. The next item
indicates that the syntax
requires a specific word or
words. None were found.

System Action: The element
found is displayed unless it
was a name, in which case the
word invalid name or data name
is indicated. Compilation
continues at the next verb or
paragraph level.

User Response: The reference
format for the clause specified
should be consulted if the
meaning of the message is not
immediately clear. Also check
for: missing periods,
preceding diagnostic messages,
invalid non-numeric literals,
COBOL words used as data-names.

SYNTAX REQUIRES A DATA-NAME OR
NUMERIC-LITERAL. FOUND XXX.

Explanation: See message

IEPL4O2T.

SYNTAX REQUIRES EITHER WORD TO,
OR GIVING. FOUND XXX.

Explanation: See message

IEP402I.

SYNTAX REQUIRES A SINGLE
CHARACTER IN QUOTES OR A
FIGCON. FOUND XXX.

Explanation: See message

IEP40O2T.

SYNTAX REQUIRES A FILE~-NAME.
FOUND XXX.

Explanation: See message

IEP402I.

SYNTAX REQUIRES DATA-NAME OR
INTEGER. FOUND XXX.

IEP4O8TI

IEPLO9T

IEP410T

IEP4III

IEP412T

IER413TI

IEP4ILT

IEP415T

IEP416I

C

C

C

Explanation: See message

IEP402T.

SYNTAX REQUIRES WORK INPUT,
OUTPUT, OR I-O. FOUND XXX.

Explanation: See message

IEP402I.

SYNTAX REQUIRES A
PROCEDURE-NAME. FOUND XXX.

Explanation: See message

IEP4O2TI.

SYNTAX REQUIRES A DATA-NAME OR
LITERAL. FOUND XXX.

Explanation: See message

IEP402TI.

SYNTAX REQUIRES WORD CALL,
ENTRY, OR RETURN. FOUND XXX.

Explanation: See message

IEPLO2I.

SYNTAX REQUIRES AND
EXTERNAL-NAME. FOUND XXX.

Explanation: See message

IEPUO2I.

SYNTAX REQUIRES =. FOUND XXX.

Explanation: See message

IEP402T.

SYNTAX REQUIRES EXPRESSION TO
BEGIN WITH EITHER A DATA-NAME,
NUMERIC-LITERAL, +, -, OR (.
FOUND XXX. TWO OPERATORS MAY
NOT APPEAR ADJACENT TO ONE
ANOTHER.

Explanation: See message

IEP4021I.

SYNTAX REQUIRES CALL PARAMETERS
TO BE EITHER DATA-NAME,
PROCEDURE~NAME OR FILE-NAME.
FOUND XXX.)

Explanation: See message

IEPLO02T.

SYNTAX REQUIRES DATA-NAME,
LITERAL, FIGCON, (OR
NOT. FOUND XXX.

+t, =y

IEP417I C

IEPL18TI C

IEP419T C

IEP420I C

IEPL421TI C

IEPU422I C

See message

Explanation:
IEP402I.

SYNTAX REQUIRES ARITHMETIC
OPERATOR OR RELATIONAL. FOUND
XXX.

Explanation: See message

IEPL4O2T.

SYNTAX REQUIRES A DATA-NAME,
NUMERIC-LITERAL, OR (AFTER AN
OPERATOR. FOUND XXX.

Explanation: See message

IEPLO2T.

SYNTAX REQUIRES A DATA-NAME,
LITERAL, FIGCON, (, + OR -
AFTER A RELATIONAL. FOUND XXX.

Explanation: See message

IEPLO2T.
SYNTAX REQUIRES A VERB, PERIOD,
ELSE OR OTHERWISE. FOUND XXX.

Explanation: The end of a
valid clause was encountered.
The element that followed the
valid termination of this
clause is not valid.

System Action: Compilation
continues at the next verb or
paragraph label.

User Response: If the
preceding clause had some
options, check the reference
format to determine if the
options were specified
incorrectly. A COBOL word used
as a data-name, or an extra
period, can also produce this
diagnostic.

ENTRY PARAMETER MUST BE A

DATA-NAME. FOUND XXX.
Explanation: The only

parameters that can be passed
to a COBOL subprogram are
data-names. The data-names
must be defined in the linkage
section of the subprogram.

System Action: Compilation
continues at the next verb or
paragraph label.

SYNTAX REQUIRES A RELATIONAL.

Appendix F 137

IEP4231

IEP424T

IEP425T

IEP427T

IEP428T

IEP429T

TEP430I

IEP431X

138 IBM S/360 OS COBOL(E) Programmer's Guide

FOUND XXX.

Explanation: Syntax requires
that the next element be a
relational.

System Action: Compilation
continues at the next verb or
paragraph label.

User Response: Check for
invalid punching or a preceding

error.

SYNTAX REQUIRES WORD INPUT OR
OUTPUT. FOUND XXX.

Explanation: See message

IEP402I.

SYNTAX REQUIRES WORDS - TO
PROCEED TO -. FOUND XXX.

Explanation: See message

IEP402T.

SYNTAX REQUIRES WORD CONSOLE OR
SYSPUNCH. FOUND XXX.

Explanation: See message

IEP402I.

SYNTAX REQUIRES A DATA-NAME,
FIGCON OR NON-NUMERIC LITERAL.
FOUND XXX.

Explanation: See message

IEP402I.

SYNTAX REQUIRES A

PROCEDURE-NAME AFTER -GO TO -
NOT PRECEDED BY A
PARAGRAPH-NAME. FOUND XXX.

Explanation: See message

IEP4O2T.

SYNTAX REQUIRES ALL, LEADING,
UNTIL, OR FIRST. FOUND XXX.

Explanation: See message

IEP402I.

SYNTAX REQUIRES WORD TALLYING
OR REPLACING. FOUND XXX.

Explanation: See message

IEP4O2I.

SYNTAX REQUIRES WORD -

IEP4321 C

IEP433I C

IEP434T C

IEP435I E

IEP436I C

IEP437I C

IEP438I C

IEP439T C

DEPENDING ON -. FOUND XXX.

Explanation: See message

IEP4021T.

DATA TYPE MUST BE ED, ID OR BI.

Explanation: Valid syntax for
the subject verb permits only
specific data types. The data
type as determined by the
definition in the data division
is invalid for its use here.

System Action: The statement
is dropped from the point of
error.

SYNTAX REQUIRES WORD TRACE.
FOUND XXX.

Explanation: See message

IEPL4O2I.

SYNTAX REQUIRES THAT A PERIOD
OR SECTION FOLLOWS
PARAGRAPH-NAME. FOUND XXX.

Explanation: See message

IEPL4O2I.

DATANAME AND ANY QUALIFIER MUST
APPEAR WITHIN THE FIRST SEVEN
OPERANDS OF STATEMENT FOR
CHANGED OPTION.

Explanation: See message

IEP40O2I.

SYNTAX REQUIRES A DATA-NAME,
FIGCON OR LITERAL. FOUND XXX.

Explanation: See message

IEP402I.

SYNTAX REQUIRES A FIGCON.
FOUND XXX.

Explanation: See message

IEP4O2T.
SYNTAX REQUIRES DATA-ITEM TO BE
NO LONGER THAN FOUR.

Explanation: See message

IEP402I.

WRONG SUBSCRIPT SPECIFICATION.

Explanation: Data names and

IEP44OI C

IEP4U1T C

IEP4L2T C

IEP4LU3TI E

condition names can be
subscripted to a depth of
three. A subscript is required
for each occurs clause
specified at the specified data
name or in groups containing
that data name.

System Action: The compilation
continues at the next verb or
paragraph label.

User Response: Check for fewer
or more subscripts than occurs
clauses in the hierarchy.
Subscripts must be enclosed in
parentheses, and separated from
each other by a comma or a
blank.

INCORRECT SPECIFICATION IN
DECLARATIVE-SECTION. FOUND
XXX.

Explanation: See message

IEPLO2T.

SYNTAX REQUIRES AN INTEGER NOT
LONGER THAN 5. FOUND XXX.

Explanation: The integer
exceeds the size permitted by
language specifications.

System Action: The compilation
continues at the next verb or
paragraph label.

THE DECLARATION OF THIS
DATA-NAME CAUSED IT TO BE
FLAGGED AS AN ERROR.

Explanation: The data-name
encountered was flagged by the
data division as containing an
error in its declaration.

System Action: Compilation
continues at the next verb or
paragraph label.

User Response: Correct the
declaration as indicated by the

data division diagnostics and
reconpile.

SYNTAX REQUIRES A VERB. FOUND

XXX.

Explanation: A point was
reached where a verb was

required, and was missing. For
example 'IF = B.' requires a
verb between B and period.

IEPA44LT E

IEP500I W

IEP501I W

IEP502I W

IEP5031I W

IEP504T W

IEP5051I C

System Action: The statement
is skipped from the point of
the error.

SYNTAX REQUIRES A RECORD NAME.
FOUND XXX.

Explanation: See message

IEP4O2I.

AN OPERAND'S LENGTH EXCEEDS AND
TRUNCATED TO 256 BYTES

Explanation: The maximum
number of bytes that can be
displayed is 256.

System Action: The operand is
truncated to 256 bytes and
displayed.

IF THIS VARIABLE-LENGTH ENTRY
EXCEEDS 256, RESULTS WILL BE
UNPREDICTABLE.

Explanation: A maximum of 256
bytes can be displayed.

System Action: The entry is
truncated to 256 bytes and
displayed.

LITERAL EXCEEDS AND IS
TRUNCATED TO 72 BYTES.

System Action: In a
stop-literal statement only the
first 72 bytes of a longer
field are typed on the console.

DATA EXCEEDS AND IS TRUNCATED
TO 72 BYTES.

Explanation: A maximum of one
line (72 bytes) can be
retrieved using the ACCEPT FROM
CONSOLE statement.

DATA EXCEEDS AND IS TRUNCATED
TO 256 BYTES.
Explanation: A maximum of 256

bytes can be accepted from
SYSIN.

FILENAMES OR STERLING-DATATYPE
NOT ALLOWED IN COMPARE.

Explanation: See message

Appendix F 139

IEP506I C

IEP507I W

IEP508T E

IEP509I C

IEP510I C

IEP511T C

IEP512I C

IEP513I C

140 IBM S/360 OS COBOL(E) Programmer's Guide

IEP5061I.

USAGE OF DATA-TYPES CONFLICT.
THE TEST DROPPED.

Explanation: Only certain data
types can be compared to each
other. The types specified are
invalid. Reference can be made
to the compared table to
determine the valid
combinations. Logical compares
of fields that are classified
as invalid compares can often
be made through a redefinition,
and a description of one or
both of the fields as
alphanumeric.

EXIT MUST BE ONLY STATEMENT IN
PARAGRAPH.

System Action: Compilation
continues normally.

THE STATEMENT CONTAINS AN
UNDEFINED DATANAME.

Explanation: See message

IEP4O2I.

AN ALPHABETIC DATA-NAME CAN BE
TESTED ONLY FOR ALPHABETIC OR
NOT ALPHABETIC, AND NUMERIC
DATA-NAME ONLY FOR NUMERIC OR
NOT NUMERIC, THE TEST IS
DROPPED.

COMPARISON OF TWO LITERALS OR
FIGCONS IS INVALID.

Explanation: See message

IEP5061I.

DATA-TYPE IN ARITHMETIC
STATEMENT IS NOT NUMERIC OR
RECEIVING FIELD IS NOT NUMERIC
OR REPORT.

Explanation: See message

IEP5061I.

DATA-NAME IN CLASS-TEST MUST BE
AN, ED, OR ID.

Explanation: See message

IEP5061T.

DATA-NAME IN SIGN-TEST MUST BE
NUMERIC.

IEP5141

IEP515T

IEP5161I

IEP5171

IEP5181

IEP5191

IEP520I

IEP5211

Explanation: See message

IEP5061I.

DATA EXCEEDS AND IS TRUNCATED
TO 72 BYTES.

System Action: If the data is
longer than 72 bytes, only the
first 72 bytes are printed for
DISPLAY ON CONSOLE statement.

DATA EXCEEDS AND IS TRUNCATED
TO 120 BYTES.

System Action: If the data is
longer than 120 bytes, only the
first 120 bytes are printed for
a DISPLAY statement.

OPEN 'NO REWIND' OR 'REVERSED'
CANNOT BE SPECIFIED FOR A UNIT
RECORD, DIRECT-ACCESS OR
DISK/DATA CELL UTILITY FILE.
System Action: The options are
ignored.

'NO REWIND' OR 'LOCK' CANNOT BE
SPECIFIED FOR A UNIT RECORD,
DIRECT-ACCESS OR DISK/DATA CELL
UTILITY FILE.

System Action:
ignored.

The options are

MORE THAN FORTY PARAMETERS ARE
NOT ALLOWED WITH THE STATEMENT.

SYNTAX ALLOWS ZERO AS ONLY
VALID FIGCON IN A COMPARISON
WITH BI, ID, EF, AND IF.

Explanation: See message

IEP5061I.

SYNTAX ALLOWS SPACE OR ALL AS
ONLY VALID FIGCONS IN
COMPARISON WITH AN ALPHABETIC
FIELD.

Explanation: See message

IEP5061I.

DATATYPE MUST BE ED, EF, AL,
AN, OR GF. FOUND XXX.

Explanation: The data types
indicated are the only valid
ones that can be used in the

IEP522T C

IEP523I C

IEP524T C

IEP525I C

IEP526I C

clause indicated.

System Action: Compilation
continues at the next verb or
paragraph label.

SYNTAX REQUIRES WORD RUN OR
LITERAL. FOUND XXX.

System Action: The syntax scan
skips the rest of the
statement.

RECEIVING FIELDS IN PRECEDING
STATEMENT IS A LITERAL.

Explanation: A procedure
division literal cannot be
changed as the result of
arithmetic or a move. The
statement, SUBTRACT data name
FROM literal, would specify
invalid action of this type.

System Action: Compilation
continues at the next verb or
paragraph label.

SYNTAX REQUIRES AT LEAST TWO
OPERANDS BEFORE GIVING OPTION.

Explanation: For example, ADD

A GIVING B.

System Action: The statement

is skipped.

THE EXPRESSION HAS MORE RIGHT
PARENS THAN LEFT PARENS TO THIS
POINT. FOUND XXX.

Explanation: The number of
right parentheses and left
parentheses in a statement must
agree. At no point in time can
there be more right parentheses
than left parentheses.

System Action: The statement
is skipped from the point of
the error.

User Response: Check for extra
periods or missing periods, an
error in a non-numeric literal,
or mispunched operators or
subscripted fields that are
invalidly packed together
without an intervening blank.

THE EXPRESSION HAS UNEQUAL
NUMBER OF RIGHT AND LEFT
PARENS.

IEP527I C

IEP528I C

IEP529I C

IEP530I C

IEP5311 E

IEP532I E

Explanation: See message

IEP5251.

DATA-TYPE MUST BE ED, ID, OR
BI, FOUND XXX.

System Action: The statement
is skipped from the point of
error.

VARYING OPTION EXCEEDS THREE
LEVELS.

Explanation: A maximum of
three levels is permitted with
the varying option of the
PERFORM verb.

System Action: The statement
is dropped from the point of
error.

DATA-TYPE MUST BE ED, ID, BI,
EF, OR IF.

Explanation: The data types
shown are the only valid ones.
The data-name found is not one
of these types.

System Action: The statement
is skipped from the point of
error.

NUMBER OF ELSES EXCEEDS NUMBER
OF IFS.

Explanation: Number of else
must balance out with the
appropriate number of else or
otherwise.

System Action: Statement is
skipped from the point of
error.

User Response: Recount and
make corrections.

INTERNAL OCCURS-DEPENDING-ON
TABLE OVERFLOWED AVAILABLE CORE

STATEMENT HAS TOO MANY OPERANDS

Explanation: The statement
referenced is too large or
complex for the internal tables
needed for compilation.

System Action: The statement
is skipped from the occurrence
of this condition.

Appendix F 141

IEP533I E

IEP534T E

IEP535T E

IEP536I E

IEP537I C

IEP549T E

IEP550I C

IEP551I C

142 IBM S/360 OS COBOL(E) Programmer's Guide

User Response: The statement
should be divided into more
than one statement.

PARENTHESIZING REQUIRES SAVING
TOO MANY OPERANDS.

Explanation: See message

IEP532I.

PARENTHESIZING REQUIRES SAVING
TOO MANY INTERNALLY GENERATED
LABELS.

Explanation: See message

IEP532I.

PARENTHESIZING REQUIRES SAVING
TOO MUCH OF STATEMENT

Explanation: See message

IEP5321I.

ARITHMETIC EXPRESSION REQUIRES
MORE THAN 9 INTERMEDIATE RESULT
FIELDS.

Explanation: See message

IEP5321I.

NOT HANDLED IN THIS VERSION

WORD XXX WAS EITHER INVALID OR
SKIPPED DUE TO ANOTHER
DIAGNOSTIC

Explanation: The majority of
these messages will probably be
caused by words skipped because
of another diagnostic that
occurred earlier in the
statement. This diagnostic
also occurs because of
misspelled words.

User Response: In the case of
words skipped, correct the
previous error, or correct
misspellings.

A FIGURATIVE CONSTANT IS NOT
ALLOWED AS A CALL OR ENTRY
PARAMETER.

System Action: The statement
is skipped from the point of
error.

SYNTAX REQUIRES WORD TO. FOUND

IEP552I C

IEP5531 E

IEP554I C

IEP555I C

IEP556I E

IEP557I W

IEP5581 E

XXX.

System Action: Syntax scan
skips the rest of the
statement.

RECEIVING FIELD MUST BE A
DATA-NAME. FOUND XXX.

System Action: The statement
is skipped from the point of
error.

FIGURATIVE CONSTANT IS NOT
ALLOWED AS A RECEIVING FIELD.

System Action: The statement
is skipped from the point of
the error.

THE XXX DATA-TYPE IS NOT A
LEGAL RECEIVING FIELD.

System Action: The statement
is skipped from the point of
the error.

User Response: Check the table
of permissible moves in the
COBOL specification.

OVERFLOW NAME IS NOT A VALID
SENDING FIELD.

System Action: The statement
is skipped from the point of
the error.

END DECLARATIVES IS MISSING
FROM PROGRAM.

Explanation: The entire
procedure division is treated
as a declarative section.

FLOATING-POINT CONVERSION MAY
RESULT IN TRUNCATION.

Explanation: Conversion of
floating-point numbers can
result in truncation of
low-order digits.

I-O0 OPTION FOR FILE CONFLICTS
WITH NO REWIND.

System Action: The statement is
skipped from the point of the
€error.

IEP559I E

IEP560I C

IEP561I C

IEP562I C

JEP563I C

IEPS564T C

IEP565I C

OUTPUT OPTION FOR FILE
CONFLICTS WITH REVERSED.

Explanation: The output option
conflicts with an opening of a
file, reversed.

System Action: The statement is
skipped from the point of the
error.

SYNTAX REQUIRES WORD NAMED,
CHANGED, OR CHANGED NAMED.
FOUND XXX.

System Action: The statement is
skipped from the point of
errox.

DATA TYPE MUST BE ED, ID, BI,
EF, IF, RP, AL, AN, OR GF.
FOUND XXX.

Explanation: A filename,
condition name, figcon, or
variable-length group is not
valid at this point.

System Action: The statement is
skipped from the point of the
error.

DATA ENTRY MUST NOT EXCEED 120
CHARACTERS.

Explanation: The data entry
specified exceeds the maximum
permitted for this type of
output.

System Action: The statement is

skipped from the point of the
error.

DATA ENTRY MUST BE DISPLAY.
System Action: The statement

is skipped from the point of
the error.

SYNTAX REQUIRES ONE OF THE
ALIOWABLE CHARACTERS. FOUND
XXX.

System Action: The statement
is skipped from the point of
the error.

IF STATEMENT MUST BE TERMINATED
BY A PERIOD.

Explanation: This diagnostic

IEP5661

IEP5671

IEP568I

IEP5691

IEP570I

IEP5711

IEP5721

is obtained when the IF
statement is the last statement
of a paragraph and a label is
detected instead of a period.

System Action: The statement
is skipped from the point of
error.

DATA TYPE MUST BE AL, AN, RP,
OR GROUP.

System Action: The statement
is skipped from the point of
error.

DATA TYPE MUST BE AL, AN,
FIGCON OR FIXED-LENGTH GROUP.

System Action: The statement
is skipped from the point of
the error.

DATA ITEM MUST NOT EXCEED 256
CHARACTERS.

System Action: The statement
is skipped from the point of
the error.

DATA ENTRIES MUST BE OF EQUAL
LENGTH.

System Action: The statement
is skipped from the point of
the error.

THE LENGTH OF THE SECOND
OPERAND MUST BE EQUAL TO THE
FIRST OR A SINGLE CHARACTER

System Action: The statement
is skipped from the point of
the error.

A RECORD NAME MUST BE
ASSOCIATED WITH THIS FILE.
FOUND XXX.

System Action: The statement
is skipped from the point of
the error.

ONLY ONE DATA-NAME MAY BE
ASSOCIATED WITH THE CHANGED
OPTION.

System Action: The statement
is skipped from the point of
the error.

Appendix F 143

IEPS573I C

IEP601T W

IEP602T W

IEP603I C

IEP60LT E

IEP605I E

144 IBM S/360 OS COBOL(E) Programmer's Guide

DATA TYPE MUST BE ED, ID, BI,
EF, IF, SN, SR, RP, AL, AN, FC,
OR GROUP.

System Action: The statement
is skipped from the point of
erxor.

NO SIGNIFICANT POSITION MATCHES
BETWEEN SENDING AND RECEIVING
FIELDS IN MOVE. .RECEIVING
FIELD IS SET TO ZERO.

Explanation: There are no
digit positions in common
between the sending and
receiving fields. This can be
illustrated by moving a field
with picture 99 to a receiving
field with picture V99.

System Action: The receiving
field is set to zero.

DESTINATION FIELD DOES NOT
ACCEPT THE WHOLE SENDING FIELD
IN MOVE.

Explanation: The sending field
is larger than the receiving
field in either its integer or
decimal positions or both.

System Action: The sending
field is truncated.

AFTER ADVANCING OPTION NOT
ALLOWED WITH REWRITE.

System Action: The statement
is skipped from the point of
the error.

SOURCE PROGRAM EXCEEDS INTERNAL
LIMITS.

Explanation: The program is

too large.

User Response: The user should
do one of the following, and
try again:

e Divide the program into two
or more parts

e Simplify compound conditional
statements.

PROCEDURE NAME MULTIPLY

DEFINED.

Explanation: Procedure name

IEP606I E

IEP607I E

IEP608I E

IEP609I E

IEP610I E

IEP611I E

IEP612I E

IEP6131I W

IEP614I E

indicated was multiply defined

and was not qualified properly

by the appropriate section name
when used.

PROCEDURE-NAME XXX NOT DEFINED

Explanation: The name
indicated was incorporated into
a GO TO or a PERFORM statement,
and was never defined.
Procedure names must begin in
columns 8 through 11 at the
point where they are defined.

INVALID LITERAL XXX.

User Response: Check for
multiple decimal points,
non-numeric characters not
enclosed in quotes.

XXX IS NOT ALLOWED TO HANDLE
MORE THAN 25 FILES IN ONE
STATEMENT.

The rest of the
Only 25

System Action:
statement is skipped.
files are handled.

PROCEDURE~-NAME XXX HAS ILLEGAL
CONTENT AND IS DROPPED.

‘CONDITION NAME' WAS EITHER NOT
ALLOWED IN THIS STATEMENT OR
SKIPPED DUE TO ANOTHER
DIAGNOSTIC

TOO MANY PARAGRAPH NAMES HAVE
BEEN USED IN CALL STATEMENTS.

OPEN STATEMENT CONTAINS MORE

THAN 9 FILENAMES. OPEN WILL
SPLIT.
System Action: Handles

multiple OPEN statements each
containing 9 filenames.

USING STATEMENT HAS BEEN
INCORRECTLY SPECIFIED.

THIS CONDITIONAL HAS A MISSING
RELATIONAL OPERATOR.

System Action: The statement
is skipped from the point of
the error.

IEP6151 E

IEP616I E

IEP6171I E

IEP618I E

IEP6191

=

IEP620T E

IEP6211

ot
[

IEP622I C

IEP623T E

READ 'AT END' REQUIRED FOR
FILES WITH ACCESS SEQUENTIAL

System Action: The entire
statement is skipped.
*INVALID KEY' REQUIRED FOR
FILES WITH ACCESS RANDOM

System Action: The entire
statement is dropped.

WRITE 'FROM' OPTION REQUIRED
WITH APPLY WRITE~ONLY

System Action: The entire
statement is dropped.

REWRITE INVALID ON DIRECT OR
RELATIVE SEQUENTIAL FILES

System Action: The entire
statement is dropped.

WRITE INVALID FOR RELATIVE
RANDOM FILE

System Action: The entire
statement is dropped.

WRITE 'INVALID KEY' REQUIRED
FOR INDEXED SEQUENTIAL FILE

System Action: The entire
statement is dropped.

OPEN *'I-O' INVALID FOR DIRECT
OR RELATIVE SEQUENTIAL FILES

Explanation: On OPEN and CLOSE
no code 1is generated for the
file in error.

System Action: Syntax scan
skips to the next file in the
statement.

OPEN 'OUTPUT' INVALID FOR FILES
WITH ACCESS RANDOM, I-O
ASSUMED.

Explanation: See message

IEP621T.

OPEN ‘'REVERSED' VALID ONLY ON
STANDARD SEQUENTIAL FILES

Explanation: See message

IEP6211.

IEP625I E

IEP626I E

IEP6271I E

IEP628I E

IEP700I E

IEP701I E

IEP702I E

IEP703I E

IEP704T E

IEP705I

IEP709I W

OPEN 'REVERSED' INVALID FOR
FILES WITH FORMAT V RECORDS

CLOSE 'UNIT' OR 'REEL' VALID
ONLY FOR STANDARD SEQUENTIAL
FILES

Explanation: See message

IEP6211.

' INVALID KEY' INVALID FOR
STANDARD, DIRECT OR RELATIVE
SEQUENTIAL FILES.

System Action: The clause is
skipped.

'ACTUAL KEY' REQUIRED FOR
DIRECT SEQUENTIAL OUTPUT FILES

IDENTIFICATION DIVISION NOT
FOUND

DATA DIVISION NOT FOUND.
COMPILATION CANCELED.

PROCEDURE DIVISION NOT FOUND.
COMPILATION CANCELED.

SOURCE PROGRAM EXCEEDS INTERNAL
LIMITS. COMPILATION CANCELED.

DATA-NAME TABLE OVERFLOW.
COMPILATION CANCELED.

Explanation: The data-name
attribute table has a maximum
size of 64K bytes.

User Response: Reduce the
length of data-names, and
recompile.

NO DIAGNOSTICS IN THIS
COMPILATION.

INCORRECT EXECUTE PARAMETER -
XXX.

LOAD MODULE EXECUTION DIAGNOSTIC MESSAGES

Load module execution diagnostic messages

are of two types:

object time messages,

and operator messages.

Appendix F @145

OBJECT TIME MESSAGES

Most object time messages are self
explanatory. Where necessary, examples are
included to explain the message.

IEP999I MINUS BASE MADE POSITIVE §
FLOATING POINT EXPONENTIATION
CONTINUED.

IEP998I ZERO BASE TO POSITIVE EXPONENT -
FLOATING-POINT ANSWER MADE ZERO.
IEP997I ZERO BASE TO MINUS EXPONENT -
FLOATING-POINT ANSWER IS MAX F.P.
NUMBER.

IEP996I RESULT TOO BIG - FLOATING-POINT
EXPONENTIATION ANSWER IS MAX F.P.
NUMBER.

IEP993I ZERO BASE TO MINUS EXPONENT -
PACKED EXPONENTIATION RESULT MADE
ALL NINES.

OPERATOR MESSAGES

In addition to system diagnostic and object
time messages the COBOL load module may
issue operator messages.

The following message is generated by
STOP 'literal"'.
IEPOOOD text provided by object program.
Explanation: This message is
issued at the programmer's
discretion to indicate possible

alternative action to be taken by
the operator.

Operator Response: Follow the
instructions given both by the
message and on the job request
form supplied by the programmer.

146 IBM S/360 OS COBOL(E) Programmer's Guide

If the job is to be resumed, issue
a2 REPLY command with a text field
that contains any l-character
message.

The following message is generated by an
ACCEPT ... FROM CONSOLE.

IEP990D ‘'AWAITING REPLY'

Explanation: This message is
issued by the object program when
operator intervention is required.

Operator Response: Issue a REPLY
command. (The contents of the
text field should be supplied by
the programmer on the job request
form.)

DEBUG PACKET ERROR MESSAGES

The following is a complete list of
precompile error messages. They apply to
errors in the debugging packets only.
IEP850I TABLE OF DEBUG REQUESTS
OVERFLOWED. RUN TERMINATED.
IEP851I THE FOLLOWING CARD DUPLICATES A
PREVIOUS *DEBUG CARD. THIS PACKET
WILL BE IGNORED.

IEP852I THE FOLLOWING PROCEDURE DIVISION
NAMES WERE NOT FOUND. INCOMPLETE
DEBEG EDIT IS NOT TERMINATED.
IEP853I THE FOLLOWING #*DEBUG CARD DOES NOT
CONTAIN A VALID LOCATION FIELD.
THIS PACKET WILL BE IGNORED.
IEP854I IDENTIFICATION DIVISION NOT FOUND.
RUN TERMINATED.

IEP855I DEBUG EDIT RUN COMPIETE. INPUT
FOR COBOL COMPILATION ON SYSUTH4.

A (Device Type) 28
Abnormal Termination Dumps 92
ACCEPT 69, 75
Accessing Direct or Relative Organization
Data Sets 50
Additions 50
Differences 50
Accessing Indexed Sequential Data Sets 48
Additions 48
. Differences 48
Accessing Information Not Directly
Available at the COBOL Language
Level 105
Account Number 13
Accounting Information
ACCT 18, 23
ACCT. procstep 18
Adding DD Statements 55
ADDR (PMAP) 85
Alignment and Slack Bytes 71
Allocation of Utility Work Space 75
Allocating Space for Indexed Sequential
Data Sets 47
Apostrophe 11
Appendix A. Examples of Job
Processing 95

13, 18, 23

Appendix B. Assembler Language
Subprograms 102
Appendix C. Overlay Structures 109
Appendix D. COBOL Syntax Format 112
Appendix E. Subroutines used
by COBOL 118
Appendix F. System/360 Diagnostics 124
APPLY WRITE ONLY 73
Argument List 103
Arithmetics 67

Arithmetic Suggestions 67

Assembler Subprograms 7, 108

Assigning Names To Temporary Data Sets 23
Asterisk 11, 21

Automatic Call Library 30

Basic Principles of Effective COBOL
Coding 58

BFALN 45

Binary Subscripting 69

BLKSIZE 45, 47, 49

Braces 11

Brackets 11

BUFCB 45
Buffers 72

BUFL 45

BUFNO 45,

BUFSIZE 29

BUFTEK 45

47

C (Conditional) 88

Called and Calling Programs
Catalog 6

Cataloged Data Set 6
Cataloged Procedure 9
Cataloged Procedure for Linkage Edit 53

102

INDEX

Cataloged Procedure Name 16
CATALOGED PROCEDURES 53

Cataloged Procedures, Using 25
Cataloging a Procedure, Example 3 99
Characteristics of Numeric Data 64
Classes of Elementary Items 62

Clause (Error message) 88
COBEC 9

COBECLG 9

COBELG 9

COBOL Processing 7

COBOL Source Listing, Example of
COBOL Source Program Library 79
COBOL Source Program (Example)
COBOL Subprograms 7

Coding Job Control Statement 10
Comma 11
Comments 11
Compile 5, 9,
Comparisons 69
Compile Cataloged Procedure (COBEC)
Compile, Linkage Edit, and Execute,
Example 1- 95

Compile, Linkage Edit and Execute Cataloged
Procedure (COBECLG) 54

Compile, Linkage Edit, Execute 2, 26,
Compiler and Linkage Editor Options 17
Compiler ddnames 27
Compiler Device Classes
Compiler Diagnostics
Compiler Name 27
Compiler Options 28
Compiler Output 82
Compiler Processing 26

Compiling a Source Module 25
Computational (Binary), Machine
Representation 65
Computational=Computational,

Relationals 66

Computational Field 61

Computational to Computational-3 59
Computational to Display 60
Computational 1 and 2 Fields 61
Computational-l Or -2 (Floating Point),
Machine Representation 65

Computational-3 (Internal Decimal),
Machine Representation 65
Computational-3 (Internal Decimal)
Fields 61

Computational-3 Fields, Move 66

Computational-3 to Computational 59

Computational-3 to Display 60

COND Parameter 18

COND.procstep 18

Conditional 14, 88

Conditional Statements 61

Conditions for Bypassing a Job Step

Conditions for Terminating a Job 15

Conserving Storage 57

Considerations for Overlay 109

Considerations when Updating or Adding
to a BISAM File 72

83, 84

106, 107

25, 53

53

53

28
124

18

Index 147

Continuing Control Statement 11

Control Section 920

Control Section, Name of 25

Control Sections 33

Control Statement Messages 13

Correspondence Between Compiler ddnames
and Device Classes 28

Correspondence Between Linkage Editor
ddnames and Device Classes 31
Conversion of Computational-l or -2
Data 60

COPY (Data Division) 79

CREATING DATA SETS 37
Cross-Reference Table 20

DATA 22

Data Definition (DD) Statement 18
Data Format of Arguments 105

Data Forms 61

Data Map (DMAP) 85

Data Set Considerations 8

Data Set Name 37

Data Set References 41

Data Sets 5, 8

DCB for Creating Direct or Relative
Organization Data Sets 49

DCB for Creating Indexed Seguential
Data Sets 47

DCB for Processing Sequential Data
Set 43

DCB Subparameter Values for Direct or
Relative Organization Data Sets 51
DCB Subparameter Values for Indexed
Sequential Data Set 49

DCB Parameter 35, 37, 43, 47, 49
DCB Parameters for ACCEPT and DISPLAY
Verbs 75

DCB Subparameter Values for Sequential
Data Set 46

DDNAME 38, 45, 47, 49

ddname 19

DD Parameter for Creating Data Sets 38

DD Requirements for ACCEPT and DISPLAY
Verbs 75

DD Statement 10, 23

DD Statement Examples 21

DD Statement Operands 21

DD Statements, Examples of 39
Debugging Techniques 76

Debug Packet 77

Debug Packet, Deck Setup 78

Debug Packet, Job Contrecl Statements 78
Debug Packet Error Messages 124, 146
Debug Packets, Job Control Setup 77
Decimal-Point Alignment 58

DECK, NODECK 29

Default Options 95

Delimiter Statement 10, 24

DEN Values 44

Determining Diagnostics 88

DEVD 50

Device Class 6

Device Class Names 28

Device Classes, Linkage Editor 31
Directory Index 8

DISP 19, 37

DISPCK, NODISPCK 29

¢ 148 IBM S/360 OS COBOL-E Prog. Gd.

DISPLAY 75

Display (External Decimal), Machine
Representation 65

Display (Non-Numeric and External Decimal)
Fields 61

Display and Computational Fields, Other
Considerations 61

Display Fields, Move 66

Display to Computational 59

Display to Computational-3 59

Display to Display 60

Disposition of Data Set 43

DMAP, NODMAP 29

DSNAME 37

DSNAME=* ,ddname 23

DSNAME=&name 23, 37

DSNAME=&name (element) 24

DSNAME=* , stepname .ddname 23

DSNAME=*,stepname.procstep.ddname 23

DSNAME=dsname 37

DSORG 44, 47, 49

DUMMY 21, 37

Dummy Record Codes for Direct Organization
Files 74

Dynamic Overlay Feature 110

E (Error) 88

Editing 69

Elementary Items 63

Ellipsis 11

END Card 87

ENTRY Address 90

ENTRY Statement 34

EODAD 45

Equal Sign 11

ER CODE 88

EROPT 45

Error 14, 88

Error Code (ER CODE) 88

Error Codes, Compiler 15, 88
Error Options for QSAM 44

ESD Card 87

Example, Linkage Editor Deck Structure 33
Example of Cataloging Source Program
Statements to a Library 79

Example of How Diagnostics are
Generated 89

Examples of Use of Symbols 11, 12
Examples Showing Effect of Data
Declarations 65

EXEC Statement 10, 14, 17

EXEC Statement, Sample 15

Execute 5, 10

Execute Statement Parameters, Examples of
Overriding 54

Execution Device Classes 35

Execution ddnames 34

Execution Error Messages 34

Exhibit 77

EXPDT 43

Exponentiation 67

External Symbol Dictionary 86

File Handling, General Information 72
Filler 70
FLAG, FLAGW 29

General Programming Suggestions 58

General Techniques for Coding 67
Generation Data Set 6
Generation Data Group 6

Generating Diagnostics 89

Group Item 62

How Diagnostics are Determined 89
How to Use a Dump 93

Hyphen 11

Identifying a Created Data Set 23
If-Numeric Test 71

If Statement 66

INCLUDE (Procedure Division) 80
INCLUDE Statement 31

INCLUDE Statement (Secondary Input to

Linkage Editor) 31
Initiating Dumps at Execution Time
Source Program Errors 92
In-Line Parameter List 105
INSTRUCTION (PMAP) 85
Intermediate Results in Complex
Expressions 67

INVED (edit) 29

Invoking a Cataloged Procedure
I/0 Programming Considerations

Job 5,10

JOB CONTROL LANGUAGE 10

r

26
74

Job-Control Statements and Data Sets

Cataloging a Procedure 100
JOBLIB 20
JOB PROCESSING 25
JOB Statement 10, 12, 13
Job Statement, Sample 13
Job Step 5, 9

KEYLEN 47
Keyword Parameters 11, 17
Label Information 37, 43, 76

Labeling for Utility Work Files
LIBRARY Statement 32

76

LIBRARY Statement (Secondary Input to

Linkage Editor) 31

LIMCT 50

LINECNT 29

Line-Position Number 85, 88
Linkage Conventions 102

Linkage Edit 5

Linkage Edit and Execute 92, 26,
Linkage Edit and Execute Cataloged

Procedure (COBELG) 53

Linkage Edit and Execute (Object Modules

in a Cataloged Data Set) 26
Linkage Edit Without Overlay
Linkage Editor 7
Linkage Editor (Additional Input)
Linkage Editor Control Statements
(Other) 33
Linkage Editor
Linkage Editor

ddnames 31
ddnames and Device

Classes 30
Linkage Editor Example 33
Linkage Editor Input and Output 30
Linkage Editor Name 30
Linkage Editor, Options for Processing

Linkage Editor Output 89

53

109

31

34

Linkage Editor Priority 33
Linkage Editor Processing 30
Linkage Editor Processing (Options)
LIST 35

LIST, NOLIST
Load Module 7
Load Module Execution Diagnostic
Messages 124, 145

29

Load Module Execution 7, 34
Load Module Output 91
Lowest Level Subprogram 104

LRECL 45, 47, 50

Machine Instruction (Actual) 85
Machine Representation of Data Items
MACRF 45, 47, 49
MAPS, NOMAPS 29
Member of PDS 8
Message Number 88
Mixed-Data Formats
MODE 44
Module Map
Move 66
Move Computational-3 to Report
Move Display to Computational-3
MSGLEVEL 13

MSWA 48

59
90

66
66

Name Field

NCP 50

NL 43

Notation for Defining Control
Statements 11

Numeric Data Format Usage

10, 13, 16, 19

63
Object 92
Object
Object
Object
Object
Object
Object
On 77
Opening Files
Operand Field
Operation Field
Operator Codes
Operator Messages
OPTCD 44, 47, 49
Or 11
Overlay Processing
Overriding 9
Overriding and Adding DD Statements
Overriding Cataloged Procedures 54
Overriding DD Statements 55
Overriding Parameters in the EXEC
Statement 54

Program Dumps
Module 7
Module Cards 86
Module Card Deck 86
Module Deck Structure
Storage Layout 94
Time Messages 91, 124,

87
146

69
10, 13,
10, 14
14

92,

16, 20

124, 146

110

Paragraph Names 69
Parentheses 11

PARM 17, 34
PARM.procstep 17, 34
Partitioned Data Set 8
PDS 8

Period 11

Permissible Comparisons
Permissible Moves 117
PGM 16

116

EIndex

34

65

55

149

PGM=*.stepname.ddname 16

PGM=*.stepname.procstep.ddname 16
PGM=IEWL 30

PGM=program-name 16

PMAP,NOPMAP 29

Positional Parameters 11, 16, 19

Preplanned Linkage Editing with
Overlay 110

Primary Input 30

PRIVATE 40

PROC
PROC=cataloged-procedure-name 16
Procedure Map (PMAP) 85

Procedure Step 9

Processing Buffers 73
PROGRAM~ID 25

PROGRAMMING CONSIDERATIONS 57
Program Name 16, 34
Programmer's Name 13

PRTSP 44

Qualified Name 6

RECFM 45, 47, 49

Record Blocking 73

Redefinition 71

Redundant Coding 69

REGED, INVED (edit) 29

REF 40

Referring to a Data Set in a Cataloged
Procedure 23

Referring to a Data Set in a Previous
Job Step 23

Referring to a Data Set in the Current
Job Step 23

Register Use (Linkage Conventions) 102
Relationals 66
Relative Address (ADDR) 85

Relocation Dictionary 87

RETAIN 40

RETPD 43

Retrieving Data Sets (Previously
Created) 22

REWRITE (Use of with Random Indexed

Sequential Files) 74
RKP 47

RLD Card 87

RLSE 42

ROUND 42

Sample Deck Structure of Compile, Linkage

Edit, Execute 26

Sample Decks to Linkage Edit and
Execute 26

Save Area 103

Scratching a Data Set, Example 2 99
Scratching Disk Data Sets 35
Secondary Input 30

Sequential Data Set 8

SER 40

Severity Code 88

Sign Control 60

SL 43

Slack Bytes 71

Slash 11

SMSW 48

Source Listing (LIST) 82
Source Module 7

e 150 IBM S/360 OS COBOL-E Prog. Gd.

Source Module Diagnostics 88

Source Module Error-Warning Messages 88
SPACE 41

Specifying a Cataloged Data Set by

Name 23

Specifying a Cataloged Procedure 16
Specifying Disposition of a Data Set 24
Specifying a Generation Data Group or
PDS 23

Specifying a Program Described in a
Cataloged Procedure 16

Specifying a Program Described in a
Previous Job Step 16

Specifying a Program in a Library 16
Specifying Data in the Input Stream 21
Specifying I/O Devices 40

Specifying Space on Direct-Access
Volumes 41

Specifying Volumes 40
SPLIT Parameter 42

STACK 44

Stepname 16
Storage Layout of Object Program 93
Storage Map 85
Subparameters 11
Superscript 11
Subscripting 68
Symbols 11

SYNAD 45
SYSABEND Data Set 34
SYSDA 28
SYSCP 28
SYSIN 27

SYSLIB 27, 31
SYSLIN 31

SYSLMOD 31

SYSNAD 48

SYSOUT 22

SYSOUT=A 22, 37, 53
SYSOUT Parameter 22
SYSPRINT 27, 31
SYSPUNCH 27

SYSSQ 28

System Diagnostic Messages 124
SYSTEM OUTPUT 82
SYSUTL 27, 31
SYSUT2 27

SYSUT3 27

SYSUT4 27

Text Card 87

The Debug Packet 77

The Use of Rewrite with Random Index
Sequential Files 74

Trace 76

Track Allocation for Utility Work
Space 75

Trailing Characters 71

TRK 41

TRTCH 44

TXT Card 87

Typical Source Program Errors 92

Underscore 11

Unequal-Length Fields 58

Unexpected Intermediate Results, Alternate
Solution 67

UNIT 22, 37

UNIT Parameter 22

Unit Record Parameters 21

Updating an Existing Member of a
User-Created Library 80

Updating or Adding to a BISAM File
(Considerations) 72

Use After Standard Error Considerations

Use of Additional Storage by COBOL-E
Compiler 76

Use of Source Program Library
Facility 79

User Cataloged Procedures 54

Using Cataloged Procedures 25

UTILITY 75

Variable Record Alignment Containing
OCCURS DEPENDING Clause 74

VOLUME 6, 37, 41

Volume-count 40
Volume-sequence-number 40

VTOC 35

W (Warning) 88

Warning 14, 88

Working with Diagnostics 88

Writing a Unit Record Data Set on a
Printer 43

XREF 34

74

Index

151 o

C24-5029-2

BNV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

READER'S COMMENT FORM

IBM System/360
Operating System
COBOL (E) Programmer's Guide C24-5029-2

® Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is '"No'' or requires qualification,
please explain in the space provided below. All comments will be handled on a non-confi-
dential basis. Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

Yes No
® Does this publication meet your needs? — | —1
® Did you find the material:
Easy to read and understand? — -
Organized for convenient use ? — -
Complete ? — -
Well illustrated? — -
Written for your technical level? — c
® What is your occupation?
e How do you use this publication?
As an introduction to the subject? {I— As an instructor in a class? [
For advanced knowledge of the subject? — As a student in a class? —
For information about operating procedures? [CJ As a reference manual? —

Other
@ Please give specific page and line references with your comments when appropriate.

COMMENTS:

e Thank you for your cooperation. No postage necessary if mailed in the U. S. A.

C24-5029-2

Fold

Staple

FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITEQ STATES

POSTAGE WILL BE PAID BY . . .

IBM CORPORATION

1271 AVENUE OF THE AMERICAS
NEW YORK, N.Y. 10020

ATTENTION: PUBLICATIONS, DEPT. D39

Fold

TIBIML

L4

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

:SJUSWUIO)) [BUONIPPY

IBM

Technical Newsletter File Number $360-24
Re: Form No. C24-5029-2

This Newsletter No. N28-0229
. Date November 15, 1967

Previous Newsletter Nos. None

IBM System/360 Operating System

COBOL (E) Programmer's Guide

This Technical Newsletter amends the publication IBM System/360
Operating System: COBOL (E) Programmer's Guide, Form C24-5029-2,

In the referenced publication, replace the pages listed below

. with the corresponding pages attached to this newsletter.

Pages Subject of Amendment
1- 4 Front matter
5- 6 Clarification of the term "job" rather than

"job step" with reference to data set and
group generation

27~ 28 Specification of Write Verify in COBOL
work files

29- 30 Amends buffer size relating to the system
utility device .

39- 40 Amends table showing format for UNIT

43- 4u,

47- 50 Amends the DCB subparameter "OPTCD"

51- 52 Amends example of DD statements for Indexed
Sequential organization

103-104 Amends example of statement in return routine

Lu5-14¢6 Adds error messages

A vertical line to the left of the column shows where text has
been changed; changes to illustrations are shown by a bullet (e)
to the left of the caption.

The specifications contained in this publication correspond to
Release #1l4 of the IBM System/360 Operating System.

Please file this page at the back of the publication. It will
provide a reference to changes, a method of determing that all
amendments have been received, and a check that the publication
contains the proper pages,.

IBM Corporation, Programming Systems Publications, 1271 Avenue of the Americas, New Y ork, N.Y. 10020

PRINTED IN U.S.A.

Systems Reference Library

IBM System/360
Operating System
COBOL (E) Programmer's Guide

This reference publication describes how to
compile, linkage edit, and execute a COBOL
(E-Level Subset) program. It also describes the
output of compilation and execution, how to make
optimal use of the compiler and a load module, and
compiler and load module restrictions.

The corequisite to this publication is IBM
System/360 Operating System: COBOL Language,
Form C28-6516.

Other publications related to this one are:
IBM System/360 Principles of Operation,
Form A22-6821.
IBM System/360 Operating System: cControl
Program Services, Form C28-65u41.
IBM System/360 Operating System: Job _Control
Language, Form C28-6539.
IBM System/360 Operating System: Utilities,
Form C28-6586.
IBM System/360 Operating System: Linkage
Editor, Form C28-6538.
IBM System/360 Operating System: Control
Program Messages and Completion Codes,
Form C28-6608.

For a list of other associated System/360
publications, see the IBM System/360 Bibliography,
Form A22-6822.

File Number S360-24 | 0S
Form C24-5029-2

|

Form C24-5029-2
Page Revised 11/15/67 by TNL N28-0229

PREFACE

The purpose of the Programmer's Guide is to
enable programmers to compile, linkage
edit, and execute COBOL (E-Level Subset)
programs under control of IBM System/360
Operating System. The COBOL (E-Level
Subset) language is described in the
publication IBM System/360 Operating
System: COBOL_Language, Form C28-6516,
which is a corequisite to this publication.

The Programmer's Guide is organized to
fulfill its purpose at three levels:

1. Programmers who wish to use the
cataloged procedures as provided by IBM
need read only the Introduction and
Job-Control Language sections to
understand the job-control statements,
and the Job Processing section to use
cataloged procedures for compiling,
linkage editing, and executing COBOL
programs. The Programming
Considerations and System Output
sections are recommended for
programmers who want to use the COBOL
language more effectively.

Third Edition

2. Programmers who are also concerned with
creating and retrieving data sets,
optimizing the use of I/0 devices, or
temporarily modifying IBM-supplied
cataloged procedures should read the
entire Programmer's Guide.

3. Programmers concerned with making
extensive use of the operating system
facilities, such as writing their own
cataloged procedures, should also read
the entire Programmer's Guide in
conjunction with the publications
listed on the front cover of this
publication.

In addition to providing reference
information on compiling, linkage editing,
and executing programs, this publication
contains appendices that:

1. Give several examples of processing.
2. Contain detailed descriptions of the

diagnostic messages produced during
compilation and load module execution.

This edition, Form C24-5029-2, is a major revision of, and makes obso-
lete, Form C24-5029-1. Changes to this publication are indicated by a
vertical line to the left of the text that is affected. Changes to
illustrations are indicated by a bullet (e) at the left of the caption.

Significant changes and additions to the specifications contained in
this publication will be reported in subsequent revisions or
Technical Newsletters.

Requests for copies of IBM publications should be made to your
IBM representative or to the IBM branch office serving your locality.

Comments may be addressed to IBM Corporation, Programming Publications,
1271 Avenue of the Americas, New York, N.Y. 10020

© International Business Machines Corporation, 1966

Form C24-5029-2
Page Revised 11/15/67 by TNL N28-0229

INTRODUCTION « + + « « o « 0 o v o v .
Job and Job Step Relationship. « . .« .
Data SeLS. o « 4 ¢ + o o o o o o o o o
COBOL Processing‘.-. e e e e e e e e
JOB-CONTROL LANGUAGE .« . & o « o « o &
Coding Job-Controi Statements.
JOB Statemeht. W e e e e e e e e e e
EXEC Statement . ¢« « o « « ¢ o o o o o
Data Definition (DD) Statement
Delimiter Statement. . . . « « « « + &
JOB PROCESSING o o « « o o o o o s o @
Using Cataloged Procedures . « « « .
Linkage Editor Processing. . « . « .« .
Load Module Execution. . «« . .
CREATING DATA SETS ¢ v ¢ « o o o« o = =
Data Set Name€. « « « « o o « o « o o =
Specifying Input/Output Devices. . . .
Specifying Volumes . . ¢« « « « o « o o

Specifying Space on Direct-Access
VOlUMES & & o 4 o o« o o o o o o« o = =

Label Information. « « « o o« « « o« « &
Disposition of a Data Set. . « « . .« .

Writing a Unit Record Data Set on the
Printer o« o o o +o o o o o « o o o o o

DCB Parameter. ¢ « « o « « o o o o » =

Allocating Space for Indexed
Sequential Data SetS. « o o o o o o .

DCB for Creating Indexed Sequential
Data SetS .« o o« ¢« o o ¢ o o o o o o o

Accessing Indexed Sequential Data Sets

DCB for Creating Direct or Relative
Organization Data Set

Accessing Direct or Relative
Organization Data SetS. « ¢ o« o« « «

< ;o

10
10
12
14
17
24
25
25
30
34
37
37
40
40

41
43
43

43
43

b4e

46
48

49

50

CONTENTS

CATALOGED PROCEDURES . .« ¢ « ¢ o o « «
Compile. ¢ ¢ ¢« v ¢ o o s o s e e o o
Linkage Edit and Execute . . « « o« «
Compile, Linkage Edit, and Execute . .
User Cataloged Procedur€S. . « o« « + =
Overriding Cataloged Procedures. . . .
PROGRAMMING CONSIDERATIONS o« o« o« o« + =«
conserving StOrage « « + o « o s s e s

Basic Principles of Effective COBOL
COAiNgae o » o o o o s o o o « s o o @

General Programming Suggestions. . . .
Data FOYXMS « « o ¢ ¢ « o « o o o o o =

Examples Showing Effect of Data
DeclarationNSe o « o o o o o o o o o .

Relationals. « « v v ¢ ¢ o o « o o + o
Arithmetics. ¢ & ¢ ¢ ¢« v ¢ ¢« « « o . .
General Techniques for Coding.
Arithmetic Suggestions+ « . « .
General Inf;rmation—-File Handling . .
I1/0 Programming Considerations
Debugging Techniques « « « «
USE OF SOURCE PROGRAM LIBRARY FACILITY
COBOL Source Program Library . . « « .

Example of Cataloging Source Program
Statements to a Library

Copy (Data Division) . . . « .« « « . .
INCLUDE (Procedure Division)

Updating an Existing Member of a
User-Created Library. . . ¢« « ¢« « o &

SYSTEM OUTPUT. « « o ¢ o o o o o o = =
compiler OUtPUt. « « « ¢ o « « » o« o &
Linkage Editor Output. . . «

Load Module Output « . . .

53
53
53
53
53
53
57
57

58
58
61

65
66
67
67
67
72
74
76
79

79

79

79
80

80
82
82
89

91

Form C24-5029-2
Page Revised 11/15/67 by TNL N28-0229

APPENDIX A. EXAMPLES OF JOB PROCESSING . 95 APPENDIX C. OVERLAY STRUCTURES109
Default Options. . . « . ¢« ¢« « « &« « « « 95 Considerations for Overlay . « « . « « 109

Example 1. Compile, Linkage Edit, and Linkage Edit Without Overlay109
Execute ¢ ¢ 4 4 ¢ . . .« . 95

Overlay Processing « . « « « « « &+ « « 110
Example 2. Scratching a Data Set 99

APPENDIX D. COBOL SYNTAX FORMATS112
Example 3. Cataloging a Procedure. . . . 99

APPENDIX E. SUBROUTINES USED BY COBOL. .118

APPENDIX F. SYSTEM/360 DIAGNOSTIC
MESSAGES. . 4 & & o ¢ o o o o =« « « « o124

Called and Calling ProgramsS. . . « . « .102 System Diagnostic Messages . « « « « « 124

APPENDIX B. ASSEMBLER LANGUAGE
SUBPROGRAMS -+ . <« « « « « « « & « » - 2102

Linkage Cconventions. . . . « « « « « o« .102 Compiler Diagnostic Messages124

Lowest Level Subprogram. . «103 Load Module Execution Diagnostic
MESSAgES. « « « « o o o « o « o o « o <145

Accessing Information Not Directly
Available at the COBOL Language

Level . v v v o o« o o o o o o s « s « 4105 INDEX. 147

- . e ® e e e & e e« = e« e o e e

Debug Packet Error MessSageS. « « « . « .1U6

The IBM System/360 Operating System
(referred to here as the operating system)
consists of a control program and
processing programs. The control program
supervises execution of all processing
programs, such as the COBOL-E compiler, and
all problem programs, such as a COBOL
problem program. Therefore, to execute a
COBOL program, the programmer must first
communicate with the operating system. The
medium of communication between the
programmer and the operating system is the
job-control language.

Job-control language statements define
units of work to the operating system. Two
units of work are recognized: the job and
the job step. The statements that define
these units of work are the JOB and the
EXEC (execute) statements. Another
important statement is the DD (data
definition) statement, which gives the
operating system information about data
used in jobs and job steps. The flow of
control statements and any data placed in
the flow of control statements is called
the input_stream.

Note: Throughout this publication certain
arbitrary options are given in illustrative
examples. Some of the options used are a
function of system generation; therefore,
these examples may not be valid for all
systems.

JOB_AND JOB _STEP RELATIONSHIP

When a programmer is given a problem, he
analyzes that problem and defines a precise
problem-solving procedure; that is, he
writes a program or a series of programs.
Executing a main program (and its
subprograms) is a job_step to the operating
system. A job consists of executing one or
more job steps.

At its simplest, a job consists of one
job step. For example, executing a payroll
program is a job step.

In another sense, a job consists of
several interdependent job steps, such as a
compilation, linkage edit, and execution.
Job steps can be related to each other as
follows.

INTRODUCTION

1. One job step may pass intermediate
results recorded on an external storage
volume to a later job step.

2. Whether or not a job step is executed
may depend on results of preceding
steps.

In the series of job steps (compilation,
linkage edit, and execution), each step can
be a separate job with one job step in each
job. However, designating several related
job steps as one job is more efficient:
processing time is decreased because only
one job is defined, and interdependence of
job steps may be stated. (Interdependence
of jobs cannot be stated.) Each step may
be defined as a job step within one job
that encompasses &all processing.

JOB: Compile, linkage edit, and execute
JOB STEP 1: Compile COBOL program
JOB STEP 2: Linkage edit compiled
program
JOB STEP 3: Execute linkage edited
program

Figure 1 illustrates these three job
steps.

The important aspect of jobs and job
steps is that they are defined by the
programmer. He defines a job to the
operating system by using a JOB statement;
he defines a job step by the EXEC
statement.

DATA SETS

In Figure 1, one collection of input data
(source program) and one collection of
output data (compiled program) are used in
job step 1. 1In the operating system, a
collection of data that can be named by the
programmer is called a data_set. A data
set is defined to the operating system by a
DD statement.

A data set resides on a volume(s), which
is a unit of external storage that is
accessible to an input/output device. (For
example, a volume may be a reel of tape or
a disk pack.)

Introduction 5

Form C24-5029-2
Page Revised 11/15/67 by TNL N28-0229

Source
Input
Y
Job Step 1
Compile
Compiled
Program
Job Step 2
Linkage Edit
Linkage
| Edited
) Program
Job Step 3
Execute
Y
Output

Figure 1. Job Example with Three Job Steps

Several I/0 devices grouped together and
given a single name when the system is
generated constitute a device class. For
example, a device class can consist of all
the tape devices in the installation,
another can consist of the printer, a
direct-access device, and a tape device.

The name of a data set and information
identifying the volume(s) on which the data
set resides may be placed in an index to
help the control program find the data set.
This index, which is part of an index
structure called the catalog, resides on a
direct-access volume. Any data set whose
name and volume idertification are placed
in this index is called a cataloged data
set. When a data set is cataloged, the
information needed to access the data set
is its name and disposition. Other
information associated with the data set,
such as device type, position of the data
set on the volume, and format of records in
the data set, is availaple to the control
program.

| data sets into four groups:

Furthermore, a hierarchy of indexes may
be devised to classify data sets and make
names for data sets unique. For example,
an installation may divide its cataloged
SCIENCE,
ENGRNG, ACCNTS, and INVNTRY. In turn, each
of these groups may be subdivided. For
example, the ACCNTS group may be subdivided
into RECEIVE and PAYABLE; PAYABLE may
contain volume identification for the data
sets PAYROLL and OVERHEAD. To find the
data set PAYROLL, the programmer specifies
all indexes beginning with the largest
group, ACCNTS; then the next largest group,
PAYABLE; finally, the data set PAYROLL.

The complete identification needed to find
that data set PAYROLL is
ACCNTS.PAYARBLE.PAYROLL.

Data set names are of two
classes: unqualified and qualified. An
unqualified name is a data set name or an
index name that is not preceded by an index
name. A gualified name is a data set name
or index name preceded by index names
representing index levels; for example, in
the preceding text, the qualified name of
the data set PAYROLL is
ACCNTS.PAYABLE. PAYROLL.

Data set identification may also be
based upon the time of generation. In the
operating system, a collection of
successive, historically related data sets
is a generation data group. Each of the
data sets is a generation data set. A
generation number is attached to the data
group name to refer to a particular
generation. The most recent generation is
0; the generation previous to 0 is -1; the
generation previous to -1 is =-2; etc. An
index describing a generation data group
must exist in the catalog.

For example, a data group named YTDPAY
might be used for a payroll application.
The generations for the generation data
group YTDPAY are;

YTDPAY (0)
YTDPAY (-1)
YTDPAY (-2)

When a new generation is being created, it
is called generation (+n), where n is an
integer with value greater than 0. For
example, after the data set YTDPAY(+1l) has
been created, at the end of the job the
operating system changes the data set name
to YTDPAY(0). The data set that was
YTDPAY(0) at the beginning of the job
becomes YTDPAY(-1) at the end of the joo,
and so on.

Form C24-5029-2
Page Revised 11/15/67 by TNL N28-0229

Compiler Name

The program name for the compiler is
IEPCBL0O. If the compiler is to be
executed without using the supplied
cataloged procedures in a job step, the
EXEC statement parameter

PGM=IEPCBLO0O

must be used.

Compiler ddnames

The compiler can use up to eight data sets.
To establish communication between the
compiler and the programmer, each data set
is assigned a specific ddname. Each data
set has a specific function and device
requirement. Table 2 lists the ddnames,
functions, and device requirements for the
data sets.

To compile a COBOL source module, five
of these data sets are necessary: SYSIN,
SYSPRINT, SYSUT1l, SYSUT2, and SYSUT3, along
with the direct-access volume(s) that
contains the operating system. With these
five data sets, the compiler generates a
listing only. If an object module is to be
punched or written on a direct-access or
magnetic tape volume, a SYSPUNCH DD
statement must be supplied. If the debug
packet(s) is to be used, a SYSUT4 DD
statement must be supplied. If the
compiler is to COPY or INCLUDE a
source-language module from the user's
source program library, a SYSLIB DD
statement must be supplied.

Table 2. Compiler ddnames
r———-—- T - B Bttt 1
| [|DEVICE |
|ddname | FUNCTION | REQUIREMENTS |
-- --- ot S 1
|SYSIN | reading the |* card reader |
] | source program |e intermediate |
| | | storage |
et T —— :
SYSPRINT	writing the	* printer
	storage map,	intermediate
	1istings, and	storage
	messages	
S S frmmmmmmmmmmoeee :		
SYSPUNCH	punching the	® card punch
	object module	» direct-access)
	deck, or creat-	e magnetic tape
	ing an object	
	module data set	
	as input to the	
	linkage editor	
—— —4—- -- i		
SYSUT1	work data set	® direct-access
	needed by the	¢ magnetic tape
	compiler during	
	compilation	
SYSUT2	work data set T' direct-access	
	needed by the	* magnetic tape]
	compiler during	
	compilation	
— T T — Fommmmmmmmmemee 1		
SYSUT3	work data set	* direct-access
	needed by the	* magnetic tape
jcompiler during		
	compilation	
v -—4-- i		
SYSuT4	optional work	direct-access]

| |data set needed |e magnetic tape]|
| |when using
| | debug packet(s)

|
|

—— B Prra— 1
|
|
L

| SYSLIB |optional user
| | source program
| |library
L L

For the DD statement SYSIN or SYSPRINT,
an intermediate storage device may be
specified instead of the card reader or

Job Processing 27

Form C24-5029-2
Page Revised 11/15/67 by TNL N28-0229

printer. The intermediate storage device
usually is magnetic tape, but can be a
direct-access device.

If an intermediate device is specified
for SYSIN, the compiler assumes that the
source module deck was placed on
intermediate storage by a previous job or
job step. If an intermediate device is
specified for SYSPRINT, the maps, listing,
and error/warning messages are written on
that device; a new job or job step can
print the contents of the data set.

Compiler Device Classes

Names for input/output device classes used
for compilation are also specified by the
operating system when the system is
generated. The class names, functions, and
types of devices are shown in Table 3.

Table 3. Device Class Names
r - === T h
|CLASS| | I
| NAME |CLASS FUNCTIONS|DEVICE TYPE i
3 —_———— -4-- 4
T 1
| SYssQ|writing, |* direct-access]
| | reading | * magnetic tape |
e -—=-- e 1
| S¥YSDA|writing, | direct-access |
| | reading | |
e + : +-- '
| SYSCP|punching cards |e¢ card punch |
—— ¥ RO 1
|A | SYSOUT output | printer |
] | | * magnetic tape |
[L ——deee J

PARM

K;ARM procsteé}—([LINECNT =nnl [, BUFSIZE=nn)

| [, DECK , FLAGE | [, L1ST
NODECK| |, FLAGW NOLIST

.
|
|
|
|

,DMAP .PMAP ,MaPs ||

,NODMAP| |, NOPMAP ||, NOMAPS | |

- |
|
|
-d

[, DISPCK , REGED
,NoDb1spcK| |, INVED

[e s e e ot

Figure 22. Compiler Options

28

The data sets used by the compiler must
be assigned to the device classes listed in
Table 4.

Table 4. Correspondence Between Compiler
ddnames and Device Classes

T 1
|ddname |POSSIBLE DEVICE CLASSES |
’ 4 -4
t
SYSIN	SYSSQ, or the input stream
	device (specified by DD * or DD
	DATA)
% - - 1	
SYSPRINT	A, SYSSQ, SYSDA
L Fi	
b 4 !	
SYSPUNCH	SYSCP, SYSSQ, SYSDA
L L _______ _4	
b	
sYsuT1	SYSSQ SYSDA
t ¥ e	
SYSUT2	SYSSQ,SYSDA
b-- $ {	
SYSUT3	SYSSQ,SYSDA
[N + J	
r t	
SYSUT4	SYSSQ,SYSDA
r + {	
SYSLIB	SYSDA [
L 4 J

Compiler Options

Options may be passed to the compiler
through the PARM parameter in the EXEC
(Figure 22). The following information may
be specified:

1. The number of lines to be printed per
page on the compiler output listing.

2. The size of each of the six work
buffers used during a compilation.
For workfiles in COBOL, a write
validity check is not specified.
can be overridden by specifying
OPTCD=W on the SYSUT DD cards.

This

3. Whether an object module is created.

4. The type of diagnostic messages to be
generated by the compiler.

5. Whether a list of the source
statements is printed.

6. Whether a list of data-name addresses
is generated.

Form C24--5029-2
Page Revised 11/15/67 by TNL N28-0229

7. Whether a list of object code is
generated.

8. Whether a list of both data-name
addresses and object code is
generated.

9. Whether the compiler will generate
object code to test length of fields
to be DISPLAYed.

10. The type of editing performed in the
PICTURE clause and numeric literals.

There is no specified order for compiler
options in the PARM parameter.

LINECNT=nn: The LINECNT option indicates
the number of lines to be printed on each
page of the compilation output listing.

The programmer specifies a number nn, where
nn is a 2-digit integer in the range of 10
to 99. If the option is not specified, the
number of lines per page will be that
specified when the system was generated.

BUFSIZE=nn: The BUFSIZE option indicates
the size of each of the six work buffers
used during & COBOL compilation. The
BUFSIZE parameter should not be used on a
32K system. The following formula can be
used to determine the maximum value to be
used for this parameter.

g = C_=_30000 - [{13 + L) (N)]
- 6

S is the size of each work buffer

C is the total main storage

L is the length of the average data
name

is the number of data names.

where:

=4

The maximum value of S can never exceed
the block size of a particular utility file
as specified for the device. For example,
if the work buffers are for tape, the
maximum value of S is 32670. If the work
buffers are for disk, the maximum value of
S depends upon the type of direct-access
device assigned to the system utility
device:

Device Maximum Value of S
2301 20483

2302 4984

2303 4892

2311 3625

2314 7294

2321 2000

Note: If the assignments to the system

utility devices are mixed (i.e., SYSUT1
assigned to 2311, SYSUT2 assigned to 2301,
SYSUT3 assigned to 2314, etc.), the maximum
value of S cannot exceed the smallest value
corresponding to the assigned devices. For

example, if SYSUT1 is assigned to a 2311
and SYSUT2 is assigned to a 2314, S cannot
exceed 3625, the smaller of 3625 and 7294.

DECK_or NODECK: The DECK option specifies
that the compiled source module (i.e., the
object module) is written on the data set
specified by the SYSPUNCH DD statement.
NODECK specifies that no object module is
written. A description of the deck is
given in the section, System OQutput. If
neither option is specified, an object
module is produced.

FLAGE _or FLAGW: The FLAGE option specifies
that the compiler will suppress warning
diagnostic messages. The FLAGW option
specifies that the compiler will generate
diagnostic messages for actual errors in
the source module, plus warning diagnostic
messages for possible errors. Diagnostic
messages are written on the data set
specified by the SYSPRINT DD statement. If
neither option is specified, the class of
diagnostic message produced is that
specified when the system was generated.

LIST or NOLIST: The LIST option specifies
that the source listing is written on the
data set specified by the SYSPRINT DD
statement. The NOLIST option indicates
that no source listing is written. A
description of the source listing is given
in the section, System Output. If neither
option is specified, a source listing is
produced.

DMAP or NODMAP: The DMAP option specifies
that the compiler will generate a listing
of the DATA DIVISION data-names and their
addresses relative to the load point of the
object module. The listing is written on
the data set specified by the SYSPRINT DD
statement. The NODMAP option specifies
that a data-name listing will not be
generated. If neither DMAP nor NODMAP is
specified, the option taken will be that
specified when the system was generated.

PMAP or NOPMAP: The PMAP option specifies
that the compiler will generate a listing
of object code for each statement in the
PROCEDURE DIVISION. The listing is written
on the data set specified by the SYSPRINT
DD statement. The NOPMAP option specifies
that a listing of object code will not be
generated. If neither PMAP nor NOPMAP is
specified, the option taken will be that
specified when the system was generated.

MAPS or NOMAPS: The MAPS option is
equivalent to specifying both DMAP and
PMAP. The NOMAPS option is equivalent to
specifying both NODMAP and NOPMAP.

DISPCK_or NODISPCK: The DISPCK option
specifies that the compiler will generate
object code that will test, at execution

Job Processing 29

Form C24-5029-2
Page Revised 11/15/67 by TNL N28-0229

time, to determine if a field to be
DISPLAYed exceeds the record length of the
device on which it is to be written. The
NODISPCK option specifies that no such code
will be generated. If neither DISPCK nor
NODISPCK is specified, the option taken
will be that specified when the system was
generated.

REGED_or INVED: The REGED option specifies

that the character "."™ represents a

decimal point and the character *,"
represents an insertion character.

The

| INVED option specifies that the above roles
of these characters ".", *," be reversed.

Job Processing

29.1

LINKAGE FDITOR PROCESSING

The linkage editor processes COBOL object
modules, COBOL subroutines, resolves any
references to subprograms, and constructs a
load module. To communicate with the
linkage editor, the programmer supplies an
EXEC statement and DD statements that
define all required data sets; he may also
supply linkage editor control statements.

LINKAGE EDITOR NAME

The program name for the linkage editor is
IEWL. If the linkage editor is executed
without using cataloged procedures in a job
step, the EXEC statement parameter

PGM=IEWL

must be used.

LINKAGE EDITOR INPUT AND OUTPUT

There are two types of input to the linkage
editor: primary and secondary.

Primary input is a sequential data set
that contains object modules and linkage
editor control statements. Any external
references among object modules in the
primary input are resolved by the linkage
editor as the primary input is processed.
Furthermore, the primary input contains
references to the secondary input. These
references are linkage editor control
statements and/or COBOL external references
in the object modules.

Secondary input resolves references and
is separated into two types: automatic
call liprary and additional input specified
by the programmer. The automatic call
library must always be the COBOL library
(SYS1.COBLIB), wnich is the PDS that
contains the COBOL object time subroutines.
Through the use of DD statements, the
automatic call library can be concatenated
with other partitioned data sets. Three
types of additional input may be specified
by the programmer:

1. An object module used as the main
program in the load module being
constructed. This object module, which
can -be accompanied by linkage editor
control statements, is either a member
of a PDS or is a sequential data set.
The first record in the primary input

30

data set must be a linkage editor
INCLUDE control statement that tells
the linkage editor to process the main
program.

2. An object module used to resolve
external references made in another
module. The object module, which can
be accompanied by linkage editor
control statements, is a sequential
data set. An INCLUDE statement that
defines the data set must be given.

3. A module used to resolve external
references made in another module. The
load module which can be accompanied by
linkage editor control statements, is a
member of a PDS. The module can be
included from the call library.

In addition, the secondary input can
contain external references and linkage
editor control statements. If a load
module is not in the automatic call
library, the linkage editor LIBRARY
statement can be used to direct the linkage
editor to reference additional libraries
during the automatic library call process.

The output load module of the linkage
editor is always placed in a PDS as a named
member. The name can be provided in the
SYSLMOD DD statement for the linkage editor
execution. For the execution of the load
module, this name can be used. Error
messages and optional diagnostic messages
are written on an intermediate storage
device or a printer. Also, a work data set
on a direct-access device is required by
the linkage editor to do its processing.
Figure 23 shows the I/0 flow in linkage
editor processing.

LINKAGE EDITOR DDNAMES AND DEVICE CLASSES

The programmer communicates data set
information to the linkage editor through
DD statements identified by specific
ddnames (similar to the ddnames used by the
compiler). The ddnames, functions, and
requirements for data sets are shown in
Table 5.

Any data sets specified by SYSLIB or
SYSLMOD must be partitioned data sets.
(Additional inputs are partitioned data
sets or sequential data sets.) The ddname
for the DD statement that defines any
additional libraries or sequential data
sets is written in INCLUDE and LIBRARY
statements and is not fixed by the linkage
editor.

Form C24-5029-2
Page Revised 11/15/67 by TNL N28-0229

pr—— - -

|* If only "name" is specified,

omitted.

subparameters.

positional subparameters.

[—
Y
-

5 EXPDT and RETPD are keyword subparameters;

the delimiting parentheses may be omitted.

2 If only one "volume-serial-number" is specified, the delimiting parentheses may be

All subparameters are positional subparameters.

the remaining subparameters are

-1
I
|
|
:

3 SER and REF are keyword subparameters; the remaining subparameters are positional |
|
|
|
|
|
|
|

6 All subparameters are keyword subparameters.

———— ——— N |

Figure 25. DD Parameters for Creating Data Sets (Part 2 of 2)

r it 1
| Example 1: Creating a Cataloged Data Set |
| I
| //CALC DD DSNAME=PROCESS,DISP=(NEW,CATLG),LABEL=(,SL,EXPDT=66031), 1 |
| 77 UNIT=DACLASS,VOLUME= (PRIVATE,RETAIN, SER=AA69), 2 |
| 77 SPACE=(300(100,100), ,CONTIG,ROUND) |
I |
| Example 2: Creating a Data Set for a Job |
I |
| //SYSUT1 DD DSNAME=¢§TEMP,UNIT=(TAPECLS,3),DISP=(NEW,PASS), 1 |
| 77 VOLUME=(,RETAIN,1,9,SER=(777,888,999)), 2 |
| 77 DCB= (DEN=2) |
| |
| Example 3: Specifying a SYSOUT Date Set |
| |
| //SYSPRINT DD SYSOUT=A |
| |
| Example 4: Creating a Data Set that Is Kept, but Not Cataloged |
| |
| //TEMPFILE DD DSNAME=FILE,DISP=(,KEEP), 1 |
| 77 DCB= (DEN=2) |
| |
| Example 5: Creating a Data Set on a 7-Track Tape |
| |
| //TEMPFILE DD DSNAME=FILE,DISP=(OLD,KEEP), 1 |
| 77 VOLUME=(PRIVATE,, ,SER=222,333), 2 |
| 77 DCB= (DEN=1, TRTCH=ET) , UNIT=(2400-2) |
L _— - -4

Figure 26. Examples of DD Statements

DDNAME=ddname

indicates a DUMMY data set that will assume
the characteristics specified in a
following DD statement "ddname". The DD
statement identified by "ddname" then loses
its identity; that is, it cannot be
referred to by an *....ddname parameter.
The statement in which the DDNAME parameter
appears may be referenced by subsequent

*....ddname parameters. If a subsequent
statement identified by "ddname" does not
appear, the data set defined by the DD
statement containing the DDNAME parameter
is assumed to be an unused statement. The
DDNAME parameter can be used five times in
any given job step or procedure step, and
no two uses can refer to the same "ddname".
The DDNAME parameter is used mainly for
cataloged procedures.

Creating Data Sets 39

SPECIFYING INPUT/OUTPUT DEVICES

The name of an input/output device or class
of devices and the number of devices are
specified in the UNIT parameter.

UNIT= (namel,n))

name

is the name assigned to the input/output
device classes when the system is
generated, or an absolute device address.
[,nl

specifies the number-of devices allocated

to the data set. If this parameter is
omitted, 1 is assumed.

SPECIFYING VOLUMES

The programmer indicates the volumes used
for the data set in the VOLUME parameter.

VOLUME= ([PRIVATE] [,RETAIN]
[,volume-sequence-number]
[,volume-count]

s SER=(volume-serial-number
[,volume-serial-numberl...)

dsname

REF=/ * ddname)
*.stepname.ddname
¥ .stepname.procstep.ddnam

identifies the volume (s} assigned to the
data set.

PRIVATE

is used only for direct-access volumes.
This option indicates that the assigned
volume is to contain only the data set
defined by this DD statement. PRIVATE is
overridden when the DD statement for a data
set requests the use of the private volume
with the SER or REF subparameter. Volumes
other than direct-access volumes are always
considered PRIVATE.

40

RETAIN

indicates that this volume is to remain
mounted after the job step is completed.
Volumes are retained so that data may be
transmitted to or from the data set, or so
that other data sets may reside in the
volume. If the data set requires more than
one volume, only the last volume is
retained; the other volumes are previously
dismounted. Another job step indicates
when to dismount the volume by omitting
RETAIN. If each job step issues a RETAIN
for the volume, the retained status lapses
when execution of the job is completed.

volume-sequence-number

is a one-to-four digit number that
specifies the sequence number of the first
volume of the data set that is read or
written. The volume sequence number is
meaningful only if the data set is
cataloged and earlier volumes omitted.

volume-count

specifies the number of volumes required by
the data set. Unless the SER or REF
subparameter is used this subparameter is,
required for every multi-volume output data
set.

SER

specifies one or more serial numbers for
the volumes required by the data sets. A
volume serial number consists of one to six
alphameric characters. If it contains less
than six characters, the serial number is
left adjusted and padded with blanks. If
SER is not specified, and DISP is not
specified as NEW, the data set is assumed
to be cataloged and serxrial numbers are
retrieved from the catalog. A volume
serial number is not required for output
data sets.

REF

indicates that the data set is to occupy
the same volume(s) as the data set
identified by "dsname", "*.ddname",
"*,stepname.ddname", or
*_.stepname.procstep.ddname.
the data set references.

Table 7 shows

allocated to any of the data
sets in the group has been
exhausted and more data is to be
written. This quantity will not
be split.

LABEL INFORMATION

If the programmer wishes to catalog a data
set so that he can refer to it without
repeating information that was supplied
when the data set was created, he must
specify certain information in the LABEL
parameter, If the parameter is omitted
and the data set is cataloged or passed,
the label information is retrieved from
data set labels stored with the data set.

(,NL
LABEL=([data-set-sequence-numberl\, SL

,EXPDT=yyddd
, RETPD=xXXxX)
data-set-sequence-number

is a 4-digit number that identifies the
relative location of the data set with
respect to the first data set on a tape
volume. (For example, if there are three
data sets on a magnetic tape volume, the
third data set is identified by data set
sequence number 3.) If the data set
sequence number is not specified, the
operating system assumes 1, (This option
should not be confused with the volume
sequence number, which represents a
particular volume for a data set.)

NL
SL

specifies whether standard labels exist
for a data set. SL indicates standard
labels. NL indicates no labels.

EXPDT=yyddd
RETPD=XXXX

specifies how long the data set shall
exist. The expiration date, EXPDT=yyddd,
indicates the year (yy) and the day (4ddd)
the data set can be deleted. The period
of retention, RETPD=xxxx, indicates the
period of time, in days, that the data set
is to be retained. If neither is
specified, the retention period is assumed
to be zero.

DISPOSITION OF A DATA_ SET

The disposition of a data set is specified
by the DISP parameter; see Data Definition
(DD) Statement. The same options are used
for both creating data sets and using
previously created data sets. When a data
set is created, the subparameters used are
NEW, KEEP, PASS, and CATLG.

WRITING A_UNIT RECORD DATA SET ON THE
PRINTER

A printed output data set may be written
using the following parameter.

SYSOUT=A

DCB_PARAMETER

For load module execution, the COBOL
programmer may specify the details of a
data set by using COBOL source statements
and DD statement subparameters of the DCB
parameter. The illustrations given in the
following are examples of DCB
subparameters for processing these file
organizations:

e Sequential

e Indexed Sequential

e Direct or Relative

Sequentially organized data sets may
reside on magnetic tape or direct-access
volumes. Direct relative or indexed files
must reside on direct-access volumes.

Note that some DCB subparameter values
(see Tables 10, 11, and 12) may be
supplied by DD statements; other values
are supplied either by certain COBOL
source statements or by the COBOL
compiler.

DCB FOR PROCESSING SEQUENTIAL DATA SET

DCB= (I[DEN={0]|1]2}]
{,TRTCH={C|E|T|ET|U|UC}]
[,PRTSP={0]1]2]|3}]
{,MODE={C|E}] [, STACK={1]2}]
[,OPTCD={W|C|WC}] [ERROPT={ACC | SKP|ABE}]
[,DSORG=PS] [, MACRF=({GL| PL|GL, PL})
{, DDNAME=symbol] [,RECFM={F|U|V}

[,LRECL=absexpl [, BLKSIZE=absexp]
[, BFTEK=S] [, BUFNO=absexp]l
(,BFALN= F D][,BUFL=absexpl

[, BUFCB=relexpl ([, EODAD=relexp]
[, SYNAD=relexpl)

Creating Data Sets 43

Form C24-5029-2
Page Revised 11/15/67 by TNL N28-0229

A description of the DCB subparameters
follows.

DEN={0]1|2}

can be used with magnetic tape, and
specifies a value for the tape recording
density in bits per inch as listed in
Table 8.

Table 8. DEN Values

r-———- T -= - 1
|DEN |TAPE RECORDING DENSITY (BITS/INCH) |
| b - i
| Value] Model 2400 |
l p----= e 1
i | 7 Track 9 Track |
e 1 e 1
I 0 | 200 - |
| 1 | 556 - |
I 2 | 800 800]
L i Jd

TRTCH={C|E|T|ET|U{UC|}

is used as with 7-track tape to specify
the tape recording technique, as follows:
C - specifies that the data conversion
feature is to be used; if data
conversion is not available, only
format-F and -U records are supported
by the control program.

specifies that even parity is to be
used; if omitted, odd parity is
assuned.

specifies that BCDIC to EBCDIC
translation is required.

specifies that even parity is to be
used and BCDIC to EBCDIC translation
is required.

unblock (permit) data checks on a
printer with the Universal Character
Set feature.

UC- unblecck data checks on a printer and

use chained scheduling.
PRTSP={0]1}|2]3}

specifies the line spacing on a printer as
0, 1, 2, or 3.

MODE={C|E}

can pe used with a card reader, a card
punch, or a card read punch and specifies
the mode of operation as follows:

C - the card image (column binary) mode

E - the EBCDIC code

4y

If this information is not supplied by
any source, E is assumed.

STACK={1]2}

can be used with a card reader, a card
punch, or a card read punch and specifies
which stacker bin is to receive the card.
Either 1 or 2 is specified. If this
information is not supplied by any source,
1 is assumed.

OPTCD={W|C|WC}

specifies an optional service to be
performed by the control program, as
folliows.

W - perform a write validity check (on
direct-access devices only).

C - process using the chained scheduling
method.

WC- perform a validity check and use
chained scheduling.

If this information is not supplied by any
source, none of the services are provided,
except in the case of the IBM 2321
direct-access device where OPTCD=W is
specified by the operating system.

EROPT={ACC | SKP | ABE }

specifies the option to be executed if an
error occurs and either there is no
synchronous exceptional error (SYNAD) exit
routine or there is a SYNAD routine and
the programmer wishes to return from it to
his processing program. ©One of the
following is specified:

ACC - accept error block

SKP - skip error block

ABE - terminate the task

Table 9 indicates the choices that are

permitted for each type of data set
processing.

Form C24-5029-2

Page Revised 11/15/67 by TNL N28-0229

Table 9. Error Options for QSAM

re===== B I b
| | PROCESS DATA SET FOR |
| OPERAND pmmmmmmmm e e P S {
| | INPUT , RDBACK | QUTPUT |
_______ 4 —— -t - d
H T A

| Acc | X | x2 i
| SKp | X | |
| ABE | X | X I
_______ L=l __-___.'
I

d

DSORG=PS

specifies the organization of the data set

Creating Data Sets

44.1

Form C24-5029-2
Page Revised 11/15/67 by TNL N28-0229

ALLOCATING SPACE FOR INDEXED SEQUENTIAL
DATA SETS

Indexed sequential data sets consist of
one, two, or three areas:

e Prime area. This area contains data
records and the accompanying track
indexes. It exists in all indexed
sequential data sets.

e Overflow area. This area contains data
records that overflow from tracks of
the prime area when records are added
to the data set. This area may or may
not exist in an indexed sequential data
set.

e Index area. This area contains the
master and cylinder indexes for an
indexed sequential data set. It exists
for any data set that has a prime area
on more than one cylinder.

The areas allocated and their locations
depend on the parameters specified in the
DD statement or statements that define the
data set. For a description of the
parameters and subparameters that can be
used in DD statements defining a new
indexed sequential data set or specifying
an existing one, refer to the publication
IBM System/360 Operating System: Job

|]control Language, Form C28-6539.

DCB FQR _CREATING INDEXED SEQUENTIAL DATA
SETS

DCB=([,OPTCD={WLI}] ,DSORG=IS
[,MACRF=(PL)] [,DDNAME=synbol]
{,RECFM={F|FB}] [,LRECL=absexp]
[, BLKSIZE=absexpl] [,RKP=absexp]
[,KEYLEN=absexp]

[, BUFNO=absexp]
[,SYNAD=relexpl)

OPTCD
OPTCD={WLI}

specifies an optional service to be
performed by the program, as follows:

W - a write validity check (on
direct-access devices only)

L - delete option: user marks records
for deletion; records so marked may
actually be deleted when new records
are added to the data set.

I - use independent overflow area.

If this information is not supplied by
any source, none of the services are pro-
vided, except in the case of the IBM 2321
direct-access device where OPTCD=W is
specified by the operating system.

DSORG=IS

specifies the organization of the data set
as IS (an indexed sequential organization).
This subparameter is required to be
supplied by the programmer in the DD
statement.

MACRF=(PL)

specifies the macro instruction that will
be used in processing the data sets, as
follows:

PL - indicates that locate mode PUT macro
instructions are to be used.

DDNAME=symbol

specifies the name of the DD statement that
will be used to describe the data set to be
processed.

RCFM={F|FB}

specifies the characteristics of the record
in the data sets, as follows:

F - fixed-length records

FB - fixed-length, blocked records
LRECL=absexp

specifies the length of a logical record in
bytes.

BLKSIZE=absexp

specifies the maximum length of a block in
bytes. For fixed-length records, the block
must be an integral multiple of the LRECL
value.

RKP=absexp

specifies the relative position of the
first byte of the record key within each
logical record. The value specified cannot
exceed the logical record length minus the
record key length.

Creating Data Sets u7

Form C24-5029-2
Page- Revised 11/15/67 by TNI N28-0229

KEYLEN=absexp

specifies the length of the record key, in
bytes, associated with a logical record.
The maximum length of the record key is 255
bytes.

BUFNO=absexp

specifies the number of buffers to be
assigned to the data control block. The
maximum number that can be specified is
255; however, the number must not exceed
the limit on input/output requests
established during system generation.
information can pe supplied by the DD
statement or the user's problem program.

This

Creating Data Sets 47.1

SYNAD=relexp

specifies the address of the user's
synchronous error exit routine. The
routine is entered if input/output errors
result from an attempt to process data
records. If no routine is specified and an
error occurs, the option specified by the
EROPT parameter is executed.

ACCESSING_INDEXED SEQUENTIAL DATA SETS

When accessing and/or updating indexed
sequential data sets, the DCB subparameters
specified for creating indexed sequential
data sets are applicable with the following
differences, and additions.

DIFFERENCES

[, MACRF={ (GL) | (GL, PU) | (R) | (RU, WUA) }]

G - indicates GET macro instruction
L - indicates locate mode

P - indicates PUT macro instruction
U - indicates sequential updating

R - indicates READ macro instruction
U - indicates read for update

W - indicates WRITE macro instruction
UA - indicates add new records,
update existing records.

ADDITIONS

[,NCP=1]}

specifies the number of channel programs to

48

be established for this data control block.
The value 1 is supplied by the compiler.

[,MSWA=relexp]

specifies the address of a main storage
work area reserved for the control program.

If specified when fixed-length records
are being added to the data set, the
control program uses the work area to speed
up record insertion.

[, SsMsw=absexpl

specifies the number of bytes reserved for
the main storage work area. For unblocked
records, the work area must be large enough
to contain the count, key, and data fields
of all the blocks on one track. For
blocked records, the work area must be
large enough to contain one logical record
plus the count and data fields of all the
blocks on one track. The maximum number of
blocks on one track is 32,767.

[,EODAD=relexp]l

specifies the address of the user's
end-of-data set exit routine for input data
sets. This routine is entered when the
user requests a record and there are no
more records to be retrieved. If no
routine has been provided, the task is
abnormally terminated.

Table 11 shows the values supplied for
DCB subparameters by the COBOL compiler, by
statements in the COBOIL source program, and
those subparameters that may be supplied by
a DD statement for an indexed sequential
data set.

Form C24-5029-2
Page Revised 11/15/67 by TNL N28-0229

Table 11. DCB Subparameter Values For Indexed Sequential Data Set
r - T - T - I 2 1
|DCB |Value Supplied |Value Supplied by |[Value Supplied]
| Parameter |Unconditionally|COBOL Source Statement |By DD Statement |
| | By COBOL | | |
[|Compiler | [|
---------------------------- fommm e ———me- pommmmm- - e
| OPTCD | WLI [| |
b e R -- --- 4= oo 1
| DSORG j1s i | DSORG=1S |
———————————— } -- —fmm oo - 1 e
MACRF	i		
sSequential	GL	OPEN INPUT	
	GL, PU	OPEN I-0	
	PL	OPEN OUTPUT [
T e s i			
Random	R JOPEN INPUT		
JRU, WUA	OPEN I-0O [
e ——— ¥ e e 4 e e 1			
DDNAME i	External-name in ASSIGN Clause		
— R Tt - -4- --- 1			
RECFM		RECORDING MODE Clause	
pommmmm e R o T e :			
LRECL		RECORD CONTAINS Clause !	
———————————— e G 1- —mmmmmm e			
BLKSIZE		BLOCK CONTAINS Clause	I
------------- Fommmmm oo oo O —memom- e			
RKP		RECORD KEY Clause	
—— -—4 e T ¥ e :			
KEYLEN		RECORD KEY Clause]	
———————————— T S e s ————- —			
NCP K		[
-------------- e e S e			
MSWA [TRACK AREA Clause]	
------------- e t - -+ S —			
BUFNO		RESERVE Clause	BUFNO=nnn
———————————— e T -—-1			
sMswW		TRACK AREA Clause	
———————————— e —mm - e			
EODAD		AT END Clause	
------------ ommmmmmmmmmmm—t -- - e --- -1			
SYNAD		USE Statement Option 5	
. I A e e J
DCE _FOR_CREATING DIRECT OR_RELATIVE direct-access device where OPTCD=W is

ORGANIZATION DATA SET

DCB=([,0PTCD=W] [,DSORG=PS]
[,MACRF=(WL)] (,DDNAME=symbol]
[,RECFM={F|V|U}] [,LRECL=absexpl
[,BLKSIZE=absexpl] [,DEVD=DA,KEYLEN=valuel
[,NCP=1} [,EODAD=relexp]
[,SYNAD=relexpl)

OPTCD=W

specifies an optional service to be
performed by the program, as follows:

W - a write validity check (on

direct-access devices only)

1f this information is not supplied by
any source, the service is not provided,
except in the case of the IBM 2321

specified by the operating system.

DSORG=PS

specifies the organization of the data set
as PS (a physical sequential organizatiocon)

MACRF= (WL)
specifies the macro instruction that will
be used in processing the data sets, as
follows:
W - indicates use of WRITE macro
instruction
L - indicates LOAD mode for direct data
set

Creating Data Sets 49

Form C24-~5029-2
Page Revised 11/15/67 by TNL N28-0229

DDNAME=symbol

specifies the name of the DD statement that
will be used to describe the data set to be

processed.

RECFM={F|V|U}

specifies the characteristics of the record

in the data set, as follows:

F - fixed-length records

Creating Data Sets

49,1

V - variable-length records
U - undefined recoxds

LRECL=absexp

specifies the length of a format-F logical
record in bytes or the maximum length of a
format-vV or format-U logical record.

BLKSIZE=absexp

specifies the maximum length of the block
in bytes for format-F records. The length
must be an integral multiple of the LRECL
value. For format-V records, the length
must include the four-byte block length
field that is recorded at the beginning of
each block.

DEVD=DA,KEYLEN=value

specifies the device or devices on which
the data set resides
DA - specifies a direct-access device
KEYLEN - specifies the length of the
key, in bytes, associated with a
physical block.

NCP=1

specifies the maximum number of READ or
WRITE macro instructions that are issued
before a CHECK macro instruction.

SYNAD=relexp

specifies the address of the user's
synchronous error exit routine. The
routine is entered if input/output errors
result from an attempt to process data
records. If no routine is specified and an
error occurs, the option specified by the
EROPT parameter is executed.

ACCESSING DIRECT OR RELATIVE ORGANIZATION
DATA SETS

When accessing and/or updating direct data
sets, the DCB subparameters specified for
creating direct data sets are applicable,
with the following differences and
additions.

DIFFERENCES
[,OPTCD={WE | WR}]
W — indicates a write validity check be

performed

50

E - indicates an extended search be
performed

R - indicates that relative block
addresses be used

[,DSORG=DA]
DA - indicates direct or relative
organization

R

[,MACRF= WL
(RKC, [WAKC])
(RIC, [WAICD)

R - indicates use of READ macro
instruction

K - indicates that search argument is a
key

I - indicates that search argument is a
block identification

W - indicates use of WRITE macro
instruction

A - indicates that blocks are to be
added to the data set

C - indicates use of check macro
instruction
ADDITIONS

[,KEYLEN=absexpl

specifies the length of the key for each
physical record in bytes

[,LIMCT=absexp]l

specifies the maximum number of blocks or
tracks searched when the extended search
option is chosen

[,EODAD=relexpl

specifies the address of the user's
end-of-data set exit routine for input data
sets. This routine is entered when the
user requests a record and there are no
more records to be retrieved. If no
routine has been provided, the task is
abnormally terminated.

Table 12 shows the values supplied for
DCB subparameters by the COBOL compiler, by
statements in the COBOL source program, and
those subparameters that may be supplied by
a DD statement for a direct-access data
set.

Table 12. DCB Subparameter Values for Direct-Access Data Sets

[m———=== e s—ssseees T-——= PR H e T 1
{value Supplied			
	Unconditionally		
DCB	by COROL	Value Supplied by	Value Supplied
Parameter	Compiler	COBOL Source Statement	by DD Statement
e e —— o fommmm oo :			
OPTCD			
Direct crganization	WE		
T G Frmmmmmmmm e 1			
Relative organization	WR		
e pommmmmmmmm oo fommmm e -—- frmmmm oo '			
DSORG			
Sequential access	PS		
T e fommmmmmm e .			
Random-access	D&		
b oo oo +-- e rmmm o m e :			
MACRF			
Sequential-access IR	OPEN INPUT		
! pommmmm e e R oo mmmmme e 1			
	WL	OPEN OUTPUT	
! - T fommmmmmm oo 1			
Random-access			
{ Direct	RKC	OPEN INPUT I I	
organization			
I et fommmmmmm oo 1			
	RKC, WAKC	OPEN I-0O [[
b= o frmmmmmmmm e i			
Relative	RIC	OPEN INPUT	
I organization			
n bmmmmm oo o fmmmmmmmm oo 1			
	RIC,WAIC	OPEN I-O i [
——————————————————————— e e TG			
DDNAME		External-name in ASSIGN clause	
----------------------- N Mt			
DEVD	DA, KEYLEN=nnn	SYMBOLIC KEY Clause	[
]	(nnn=0 - 255)		
—————————————————— e T			
RECFM		RECORDING MODE Clause	
------------------------ TR S			
LRECL		RECORD CONTAINS Clause { 1	
——————————————————————— oo m e T			
BLKSIZE		BLOCK CONTAINS Clause]	
bmmmmmmm e e e ommmmmmmmees 1			
Nep 1	!		
------------------- t--- T TS M			
KEYLEN		SYMBOLIC KEY Clause	
—————— - e B T			
LIMCT		APPLY Clause Option 1	
------------------ - -- —mmmmmmem e e e			
EODAD		AT END Clause	
pom e oo e T ommmm oo :			
SYNAD		USE Statement Option 5]
. S N P J

The following DD statements are examples
for processing Indexed Sequential, Direct,
Relative sets.

Creating Data Sets 51

Form C24-5029-2
Page Revised 11/15/67 by TNL N28-0229

Example of DD statements for Indexed
Sequential organization:

//GO.SYSUT5 DD DSNAME=ISAM(INDEX),

77 UNIT=2311,
,7 VOLUME=SER=111111,
/7 DCB=(,DSORG=IS),

/7 SPACE= (CYL, (1)),

// DISP=(NEW, KEEP)

/7 DD DSNAME=ISAM(PRIME),
77 UNIT=2311,

77 VOLUME=SER=111111,
/7 DCB= (, DSORG=1IS) ,

VY SPACE= (CYL, (3)),

7/ DISP= (NEW, KEEP)

/7 DD DSNAME=ISAM (OVERFLOW) ,
77 UNIT=2311,

7/ VOLUME=SER=111111,
/7 DCB=(, DSORG=IS) ,

7/ SPACE= (CYL, (1)),

77 DISP=(NEW, KEEP)

This example specifies:

¢ that an indexed sequential data set
(named ISAM),
2311 disk pack;

e that the volume serial number of the
volumes required by the data set is
111111;

e that the data set is to be kept after

execution of the run;

e that the prime area consists of three
and the
index area of one cylinder each, and

cylinders, the overflow area,

e that the COBOL external name for the
data set is SYSUTS.

Example of DD statement for Direct or
Relative organizations:

52

is to be processed on a

A N B S R]

I

//G0.S5SYSUT6 DD DSNAME=§RANDOM,UNIT=SYSDA,X

/7

SPACE=(TRK, (10,5))

This example specifies:

¢ that a temporary data set (named

RANDOM) is to be processed on a direct-
access device;

that the data set be allocated a space
of 10 tracks, with a secondary
allocation of 5 tracks, if needed;

that the COBOL external name for this
data set is SYSUT6.

Example of DD statement for sequential

organization:

//G0.SYSUT7 DD DSNAME=SEQUENTIAL,

//
//
/7
/7

Note:
organizations,

UNIT=2311,
DIsSP=(NEW,DELETE) ,
DCB(, OPTCD=W),
SPACE= (TRK, (20, 5))

[al o]

This example specifies:

¢ that a data set (named SEQUENTIAL) is

to be processed on a 2311 disk pack;

that the data set is to be deleted
after execution;

that the data set be allocated 20
tracks with a secondary allocation of 5
tracks, if needed; and

that the COBOL external name for the
data set is SYSUT7

For sequential, direct, and relative
essentially the same DD

Statements can be used.

Table 17. Linkage Registers

r T== e 1

| REGISTER | REGISTER| i

| NUMBER | NAME | FUNCTION |

promm e oo prmmmmmee — y

| 1 |Argument|Address of the argument|
I

| |Register|list passed to the
|called subprogram.
O e T ——— 1
13 | Save |Address of the area |

|Register|reserved by the calling|
|program in which the]
{contents of certain
|registers are stored by
|the called program.

!
[|
| |
[I
--------- e - - 1
14 | Return |Address of the location]|
|Register|in the calling program |
| jto which control is |
| |returned after |
| |execution of the called|]
| | program. |
--------- T e PO
15 |Entry |Address of the entry |
| Point |point in the called |
|

| Register |subprogram.
L S J

ARGUMENT LIST

Every assembler-written subprogram that
calls another subprogram must reserve an
area of storage (argument 1list) in which
the argument 1list used by the called
subprogram is located. Each entry in the
parameter list occupies four bytes and is
on a full-word boundary.

In the first byte of each entry in the
parameter list, bits 1 through 7 contain
zeros. However, bit 0 may contain a 1 to
indicate the last entry in the parameter
area.

The last three bytes of each entry
contain the 24-bit address of the argument.

SAVE AREA

An assembler subprogram that calls another
subprogram must reserve an area of storage
(save area) in which certain registers
(i.e., those used in the called subprogram
and those used in the linkage to the called
subprogram) are saved.

The maximum amount of storage reserved
by the calling subprogram is 18 words.
Figure 47 shows the layout of the save area
and the contents of each word.

A called COBOL subprogram does not save
floating-pcint registers. The programmer
is responsible for saving and restoring the
contents of these registers in the calling
program.

S _—
| AREA

fm————
| (word 1) |This word is a part of the
| standard linkage convention
|established under the
joperating system. The wordj
|mast be reserved for proper|
Jaddressing of the |
|succeeding entries. |
|However, an assemkler |
| subprogram may use the word|
|for any desired purpose. |

— . S ad

I

|

I

I

I

|

|

I

I

I

I

AREA+4 -—d |
(word 2) |The address of the previous| |
|save area; that is, the | |

| save area of the subprogram| |

‘ |that called this one. (.
| AREA+8 S e i |
(word 3)	The address of the next	
	save area; that is, the	
	save area of the subprogram	
	to which this subprogram 1	
	refers. I	
AREA+12 pommmmmmmm e i		
(word 4)	The contents of register [
j14; that is, the return		
	address.	
AREA+16 3 - 1		
(word 5)	The contents of register	
[15; that is, the entry	
	address.	
AREA+20 b {1		
(word 6)	The contents of register 0.]	
AREA+24 pem————— - - -1]		
(word 7)	The contents of register 1.	
pommmms — {1		
I .	. ' [
I . I . I		
.	. [
AREA+68 t - —_—— 1		
(word 18)	The contents of register [
[12. .		
O T		
L J

Save Area Layout and Word
contents

Figure u47.

Appendix B 103

Form C24-5029-2
Page Revised 11/15/67 by TNL N28-0229

r—====== - - T TE T T T T T T T T TTTTTT T I T T T h)
| deckname START O |
| ENTRY name, |
| EXTRN name, |
i USING *,15 i
| * Save Routine |
|name, STM 14,r.,12(13) The contents of registers 14, 15, and 0 through |
| * r, are stored in the save area of the calling |
| * program (previous save area). r; is any number |
| * from 0 through 12. |
] LR r,,13 Loads register 13, which points to the save area |
| * of the calling program, into any general
| * register, r,, except 0 and 13. |
| LA 13, AREA Loads the address of this program's save area I
| * into register 13. |
| ST 13,8(0,r3) Store the address of this program's save area |
| * into word 3 of the save area of the calling |
| * program. |
| ST ro,4€0,13) Stores the address of the previous save area |
| * (i.e., the same area of the calling program) |
| * into word 2 of this program's save area. |
| BC 15,prob, |
| AREA DS 18F Reserves 18 words for the save area. This is |
| * last statement of save routine. |
| proby User-written program statements |
|* Calling Sequence |
| LA 1,ARGLST First statement in calling sequence. |
| L 15, ADCON |
| BALR 14,15 |
| * Remainder of user-written brogram statements |
|* Return Routine |
11 L 13,4(0,13) First statement in return routine. Loads the |
| * address of the previous save area back into |
| * register 13. . |
| LM 2,r4,28(13) The contents of registers 2 through r,, are |
| * restored from the previous save area.
| L 14,12(13) Loads the return address, which is in word 4 of |
| * the calling program's save area, into register |
| * 14, |
| MVI 12(13),X'FF" Sets flag FF in the save area of the calling |
| * program to indicate that control has retunred |
| * to the calling program. |
| BCR 15,14 Last statement in return routine. |
| ADCON DC A(namey) Contains the address of subprogram name,. |
|* Parameter List |
| ARGLST DC AL4 (argy) First statement in parameter area setup. |
] DC AL4 (argy) |
| DC X'80°* First byte of last argument sets bit 0 to 1. |
| DC AL3 (argp) Last statement in parameter area setup.
e e e e e e e e e e e e o e e e - - J

eFigure 48. Sample Linkage Routines Used with a Calling Subprogram

Example 3. The out-of-line parameter 1list.
(An in-line parameter list may be used;
see In-line Parameter List.)

The linkage conventions used by an
assembler subprogram that calls another 4. A save area on a fullword boundary.
subprogram are shown in Figure 48. The
linkage should include:
LOWEST LEVEL SUBPROGRAM

1. The calling sequence.
If an assembler subprogram does not call
any other subprogram (i.e., if it is at the
2. The save and return routines. lowest level), the programmer should omit
the save routine, calling sequence, and

104

Form C24-~-5029-2
Page Revised 11/15/67 by TNL N28-0229

IEP615I E

IEP616I &

IEP617I E

‘IEP618I E

IEP619I E

IEP620I E

IEP621I E

IEP622I C

IEP623T E

READ 'AT END' REQUIRED FOR
FILES WITH ACCESS SEQUENTIAL

System Action: The entire
statement is skipped.

'INVALID KEY' REQUIRED FOR
FILES WITH ACCESS RANDOM

System Action: The entire
statement is dropped.

WRITE 'FROM' OPTION REQUIRED
WITH APPLY WRITE-ONLY

System Action: The entire
statement is dropped.

REWRITE INVALID ON DIRECT OR
RELATIVE SEQUENTIAL FILES

system Action: The entire
statement is dropped.

WRITE INVALID FOR RELATIVE
RANDOM FILE

System Action: The entire
statement is dropped.

WRITE 'INVALID KEY' REQUIRED
FOR INDEXED SEQUENTIAL FILE

System Acticn: The entire
statement is dropped.

OPEN 'I-0O' INVALID FOR DIRECT
OR RELATIVE SEQUENTIAL FILES

Explanation: On OPEN and CLOSE
no code is generated for the
file in error.

System Action: Syntax scan
skips to the next file in the
statement.

OPEN 'OUTPUT' INVALID FOR FILES
WITH ACCESS RANDOM, I-O
ASSUMED.

Explanation: See message
IEP6211I.

OPEN 'REVERSED' VALID ONLY ON

STANDARD SEQUENTIAL FILES

Explanation: See message

IEP6211I.

IEP624I

IEP6251I

IEP626I

IEP6271

IEP6281

IEP700I

IEP701I

IEP7021

IEP703I

IEP704LI

IEP705I

IEP709I

W

W

A FILE WHOSE ORGANIZATION IS
INDEXED AND ACCESS IS
SEQUENTIAL (QISAM) OPENED AS
OUTPUT MAY NOT ALSO BE OPENED
AS INPUT OR I-O IN THE SAME
PROGRAM WITH THE SAME
FILE-NAME.

OPEN 'REVERSED'" INVALID FOR
FILES WITH FORMAT V RECORDS

CLOSE 'UNIT' OR 'REEL' VALID
ONLY FOR STANDARD SEQUENTIAL
FILES

Explanation: See message

IEP6211I.

" INVALID KEY' INVALID FOR
STANDARD, DIRECT OR RELATIVE
SEQUENTIAL FILES.

System Action: The clause is
skipped.

'ACTUAL KEY' REQUIRED FOR
DIRECT SEQUENTIAL CUTPUT FILES

IDENTIFICATION DIVISION NOT
FOUND

DATA DIVISION NOT FOUND.
COMPILATION CANCELED.

PROCEDURE DIVISION NOT FOUND.
COMPILATION CANCELED.

SOURCE PROGRAM EXCEEDS INTERNAL
LIMITS. COMPILATICN CANCELED.

DATA-NAME TABLE OVERFLOW.
COMPILATION CANCELED.

Explanation: The data-name
attribute table has a maximum
size of 64K bytes.

User Response: Reduce the
length of data-names, and
recompile.

NO DIAGNOSTICS IN THIS
COMPILATION.

INCORRECT EXECUTE PARAMETER -
XXX.

Appendix F 145

Form C24-5029-2
Page Revised 11/15/67 by TNL N28-0229

IEP710I W

BUFSIZE GREATER THAN BLKSIZE -
TRUNCATED TO BLKSIZE

Explanation: For the devices
specified, the BUFSIZE exceeded
the maximum allowable block
size. A BUFSIZE equal to the
allowable block size is used
instead.

For additional information,
see "Compiler Options"™ under
"Job Processing."

LOAD MODULE EXECUTION DIAGNOSTIC MESSAGES

Load module execution diagnostic messages
are of two types: object time messages,

and operator messages.

Appendix F

145.1

OBJECT TIME MESSAGES

Most object time messages are self
explanatory. Where necessary, examples are
included to explain the message.

IEP9991 MINUS BASE MADE POSITIVE 6§
FLOATING POINT EXPONENTIATION
CONTINUED.

IEP998I ZERO BASE TO POSITIVE EXPONENT -
FLOATING~POINT ANSWER MADE ZERO.
IEP9971 ZERO BASE TO MINUS EXPONENT -
FLOATING-~POINT ANSWER IS MAX F.P.
NUMEER.

IEP996I RESULT TOO BIG - FLOATING-POINT
EXPONENTIATION ANSWER IS MAX F.P.
NUMBER.

IEP9931 ZERO BASE TO MINUS EXPONENT -
PACKED EXPONENTIATION RESULT MADE
ALL NINES.

OPERATOR MESSAGES

In addition to system diagnostic and object
time messages the COBOL load module may
issue operator messages.

The following message is generated by
STOP 'literal'.
IEPOOOD text provided by object program.
Explanation: This message is
issued at the programmer's
discretion to indicate possible
alternative action to be taken by
the operator.

Operator Response: Follow the
instructions given both by the
message and on the job request
form supplied by the programmer.

146

If the job is to be resumed, issue
a REPLY command with a text field
that contains any l-character
message.

The following message is generated by an

ACCEPT ... FROM CONSOLE.
IEP990D 'AWAITING REPLY'
Explanation: This message is

issued by the object program when
operator intervention is required.

Operator Response: Issue a REPLY
command. (The contents of the
text field should be supplied by
the programmer on the job request
form.)

DEBUG PACKET ERROR MESSAGES

The following is a complete list of
precompile error messages. They apply to
errors in the debugging packets only.
IEP850I TARLE OF DEBUG REQUESTS
OVERFLOWED. RUN TERMINATED.
IEP8511I THE FOLLOWING CARD DUPLICATES A
PREVIOUS *DEBUG CARD. THIS PACKET
WILL BE IGNORED.

IEP8521I THE FOLLOWING PROCEDURE DIVISION
NAMES WERE NOT FOUND. INCOMPLETE
DEBEG EDIT IS NOT TERMINATED.
IEP853I THE FOLLOWING *DEBUG CARD DOES NOT
CONTAIN A VALID LOCATION FIELD.
THIS PACKET WILL BE IGNCRED.
IEP854I TIDENTIFICATION DIVISION NOT FOUND.
RUN TERMINATED.

IEP855I DEBUG EDIT RUN COMPLETE. INPUT
FOR COBOL COMPILATION ON SYSUTH.

