IBM System/360 Operating System
Sequential Access Methods

Program Number 360S-DM-508

This publication describes the internal
logic of the routines of the gqueued sequen-
tial access method, the basic sequential
access method, and the basic partitioned
access method of IBM System/360 Operating
System. Program Logic Manuals are intended
for use by IBM customer engineers involved
in program maintenance, and by system pro-
grammers involved in altering the program
design. Program logic information is not
necessary for program operation and use;
therefore, distribution of this manual is
limited to persons with program maintenance
or modification responsibilities.

Restricted Distribution

Y28-6604-1

Program Logic

PREFACE

This publication describes the sequen-
tial access method facilities in IBM Oper-
ating System/360. It describes routines in
five categories:

¢ Queued sequential access method rou-
tines that cause storage and retrieval
of data records arranged in sequential
order.

e Basic sequential access method routines
that cause storage and retrieval of

data blocks arranged in sequential
order.
e Basic partitioned access methed rou-

tines that cause storage and retrieval
of data blocks in a member of a parti-
tioned data set, and construct entries
.and search for entries in the directory
of a partitioned data set.
¢ Executors that operate with
input/output support routines.

Second Edition (January 1967)

This publication is
it. Significant additional material has been added;

o Buffer pool management routines that
furnish buffer space in main storage.

PREREQUISITE PUBLICATIONS

Knowledge of the information in the
following publications is required for an
understanding of this publication:

IBM System/360 Operating System: Data
Management, Form C28-6537

IBM System/360 Operating System: Intro-
duction to Control Program Logic, Pro-

gram Logic Manual, Form ¥28-6605

‘RECOMMENDED READING

The publication IBM System/360 Operating
System: Control Program Services, Form

Cc28-6541, provides useful information.

a major revision of Form Y28-6604-0 and obsoletes
material

released

in a Technical Newsletter has been included, and prior material has been

updated.

This publication was prepared for production using an IBM computer to

update the text and to control the page and 1line

format. Page

impressions for photo-offset printing were obtained from an IBM 1403

Printer using a special print chain.

Copies of this and other IBM publications can be obtained through IBM

Branch Offices.

A form for readers' comments appears at the back of this publication.

It may be mailed directly to IBM.

Address any additional comments

concerning this publication to the IBM Corporation, Programming Systems

Publications, Department D58, PO Box 390, Poughkeepsie, N. Y.

12602

INTRODUCTION < & « o o o o o o o o o o«

QUEUED SEQUENTIAL ACCESS METHOD
ROUTINES. « « o o o o s o o o o o a o

GET Routines « o
Simple Buffering GET Routlnes
GET Mcodule IGG0192A. . . .
GET Module IGGO19AB.
GET Module IGGO019AC.
GET Module IGGO19AD.
GET Module IGGO019AG
(CNTRL - Card Reader) . « . . «

GET Module IGGO019AH
(CNTRL - Carxrd Reader)
GET Module IGG019AM (RDBACK) . .
GET Module IGG019AN (RDBACK) .
GET Module IGGO19AT (Paper Tape
Character conversion)
Exchange Buffering GET Routines
GET Module IGGO19EA.
GET Module IGGO19EB. . .
GET Module IGGO19EC. . . .
GET Module IGGO19ED. . . .

e e o
s e e
e e o

Update Mode GET Routine
GET Module IGGO19AE.

PUT Routines e e e s e
Simpgle Buffering PUT Routines .
PUT Module IGGO19AI. ., . . .
PUT Module IGGO19AJ.
PUT Module IGGO19AK.
PUT Module IGGO19AL.

Exchange Buffering PUT Routines
PUT Module IGGO19EE.
PUT Module IGGO19EF.

Update Mode PUTX Routine. . . .

End-of-Block Routines. « « . « « «
Ordinary End-of-Block Routines. .
End-0f-Block Module IGG019CC .
End-of-Block Module IGG019CD .
End-of-Block Module IGGO19CE .
End-of-Block Module IGGO19CF .
Chained Channel-Program Scheduling

End-of-Block Routines. . . "
End-of-Block Module IGG019CV -
End-of-block Module IGG019CW .
End-of-block Module IGG019CX .
End-of-Block Module IGG019CY .

Track Overflow End-of-Block Routlne
End-of-Block Module IGG019C2 . .

Synchronizing and Error Processing

Routines. « o o o o o
Synchronizing Module IGG019AF
(Update) - o e

Synchronizing Module IGG019AQ
(Input). o e « o .

Synchronizing Module IGG019AR
(OUtPUL) & & ¢ ¢ @ ¢ o o o o o o @

e & o & & o e * o o o & o o &

e o & & o e o

42
4y
45

4eé

CONTENTS

Track Overflow Asynchronous
Error Processing Module IGG019C1l .

Appendages . . . e o o o o s e o o =
End-of -Extent Appendages. e o e e e
Appendage IGGO019AW
(End-of-Extent - Update - QSAM)
Appendage IGGO19BM
(End-of-Extent - Update - BSAM)
Appendage IGGO19CH
(End-0Of-Extent - Ordinary). . .
Appendage IGG019CZ
(End-ocf-Extent - Chained
Channel-Program Scheduling) . .
Start I/0 (SIO) Appendages. . . .« .
Appendage IGG019CG (SIO -
Update) . . . o« o
Appendage IGG019CL (SIO - PRTOV)
Channel End Appendages. . .
Appendage IGGO019CI (Channel End
- Fixed-Length Blocked Record
Format) . . “ e e e e e o .
Appendage IGGOlQCJ (Channel End
- Variakble-Length Record
Format)
Appendage IGG019CK (Channel End
- SYSIN). . . .
Appendage IGG019CS (Channel End
- Paper Tape) . « « « « o« « o« .
Program Controlled Interruption
(PCI) Appendage (Execution of
Channel Programs Scheduled by
Chaining). . « . « .« « .« . . .
Appendage IGG019CU (Channel End,
PCI, Abnormal End - Chained
Channel Program Execution). . .
Aknormal End Appendages
Appendage IGG019C3 (Abnormal End
- Track Overflow)

QSAM Control Routines. . « « o« « ¢ « .
Control Module IGGO019CA (CNTRL -
Select Stacker - Card Reader). . .
Control Module IGG019CB (CNTRL -
Space, Skip - Printer)
Printer Overflow Macro-Expansions
PRTOV - User EXit. « « o o « o
PRTOV - No User Exit . . . « .

BASIC SEQUENTIAL ACCESS METHOD
ROUTINES. o« « o o o « o o o o o o o &

READ and WRITE Routines. . . e e e e
READ/WRITE Module IGG019BA. e o o e
READ Module IGGO19BF (Paper Tape

Character Conversion).
READ/WRITE Module IGGO019BH (Update)
WRITE Module IGG019DA (Create-BDAM)
WRITE Module IGGO019DB (Create-BDAM)
WRITE Module IGGO019DD (Create-BDAM

- Track Overflow). « ¢« « o« o o« o« &

e o o o

4eé

47
48

4s
50
50

52
53

53

53
54
55
55

56

CHECK Routines . « ¢« « ¢ « &« o o « «
CHECK Module IGGO19BB
CHECK Module IGGO019BG (Paper Tape

Character Conversion).
CHECK Module IGGO019BI (Update). . .
CHECK Module IGG019DC (Create-BDAM)

BSAM Ccntrol Routines. « e .
control Module IGG019BC (NOTE,
POINT - Direct-AccesSS) « « « « « «
Control Module IGG019BD (NOTE,
POINT - Magnetic Tape) . « « . . .
Control Module IGGO19BE (CNTRL:
Space to Tape Mark, Space Tape
Records) . . e e e
Control Module IGG019BK (NOTE,
POINT - Direct-Access - Special) .
Control Module IGG019BL (NOTE,
POINT - Magnetic Tape - Chained
Scheduling). .« .« « . <« ¢ ¢ + « . .
Control Module IGCO0002E (SVC 25
Track Balance, Track Overflow
Erase) e e e e . .
Control Module IGCOOOGI (svcC 69
BSP) 4@ 4 2 o o o o o o o o o o o

BASIC PARTITIONED ACCESS METHOD
ROUTINES. < 4« o o o o o o o o o « « =

BPAM Routines. - . .
STOW Module IGC0002A (SVC 21) e o e
FIND (C Option) Macro-Expansicn . .
Resident Module IECPFIND. . . o« .

FIND (D Option) Routine - Entry
Point and CSECT Name: IGCO018
(SVC 18). v v 4 & v o o o

BIDL Routine - Entry P01nts'
IECPBLDL, IGC018 (svC 18) . . .

Convert Relative-to-Full Address
Routine - Entry Point: IECPCNVT

Convert Full-to-Relative Address
Routine - Entry Point: IECPRLTV

Resident Module IECPFND1l.

FIND (D Option) Routine - Entry
Point and CSECT Name: IGC018
(SVC 18)e v 4 ¢ & & o a o o o« «

BLDL Routine - Entry Points:
IECPBLDI, IGC018 (svcC 18) . . .

Convert Relative-to-Full Address
Routine - Entry Point: IECPCNVT

Convert Full-to-Relative Address
Routine - Entry Point: IECPRLTV

SEQUENTIAL ACCESS METHOL EXECUTORS . .

Open EXeCUtOrS ¢« o ¢ o ¢ o & o o o o« =
Stage 1 OPEN Executors.
Stage 1 OPEN Executor IGG0191A .
Stage 1 COPEN Executor IGG0191B .
Stage 1 OPEN Executor IGG0191C
(and Dummy Data Set Module
IGGO19AV) . & v v ¢ 4 ¢ v o o =

67

68

68

69

70

70
71

74
T4
T4
74
T4
75
75
75
75
76
78
78

78
78

79

Stage 1 OPEN Executor IGG0191I .
Stage 2 OPEN Executors.
Stage OPEN Executor IGG019lD .
Stage OPEN Executor IGGO191E .
Stage OPEN Executor IGGO191F .
Stage OPEN Executor IGG0191G .
Stage OPEN Executor IGG0191H .
Stage OPEN Executor IGG0191J .
Stage OPEN Executor IGG0191K .
Stage OPEN Executor IGG0191L .
Stage OPEN Executor IGG0191M .
Stage OPEN Executor IGG0191P .
Stage OPEN Executor IGG0191Q .
Stage OPEN Executor IGGO0191R .
Stage 3 OPEN Executors.
Stage 3 OPEN Executor IGG01910 .
Stage 3 OPEN Executor IGG01911 .
Stage 3 OPEN Executor IGG01912 .
Stage 3 OPEN Executor IGG01913 .
Stage 3 OPEN Executor IGG01914 .

[SESENE SN SN SN NN VN SN SN O N

CILOSE Executors. . . e s e e e
CLOSE Executor IGG0201A e e e e e s
CLOSE Executor IGG0201B (Error

processing). .« .« . ¢ <+« ¢ o o .

SYNAD/EOV Executor IGCO00S5E (SVC 55) .
FEOV Executor IGC00032 (svC 31). . . .
EOV/New Volume Executor IGG0551A . . .

BUFFER POOL MANAGEMENT

GETPOOL Module IECQBFGL
BUILD Module IECBBFB1
GETBUF Macro-Expansion.
FREEBUF Macro-Expansion
FREEPCCL Macro-Expansion.
APPENDIX A: DECISION TABLES
APPENDIX B: QSAM CONTROL BLOCKS . . .
APPENDIX C: BSAM CONTROL BLOCKS . . .
APPENDIX D: PAPER TAPE COLE
CONVERSION - DESCRIPTION OF TABLE

MODULES &« « o o « o a o o o o o o«
Code Ccnversion Module IGG019CM .
Code Conversion Module IGGO19CN . .
Code Ccnversion Module IGG019CO .
Code Ccnversion Module IGG019CP .
Code Conversion Module IGG019CQ .
Code Conversion Module IGGO19CR . .

APPENDIX E: FEOV EXECUTOR IGCO0003A
(SVvC 31) - OPERATION FOR OUTPUT UNDER
OSAMe @ ¢ ¢ e ¢ o o o o o o o o o o @

INDEX: ¢ o o o o o o o o o o o o o o @

.106

.107

.108
.108
.108
.108
.108
.108
.108

.109

.113

FIGURES

Figure 1. Flow of Control in QSAM,
BSAM, and in BPAM for Members . . .
Figure 2. Flow of Control in QSAM .
Figure 3. Order of Records Using GET

Routines for Data Sets Opened for
RDBACK (IGG0O19AM,IGGO19AN). . . .
Figure 4. The Two Parts of an Update
Channel Program (Empty, Refill) . .
Figure 5. Relation of Seek Addresses
in Three Successive QSAM Update
Channel ProgramsS. « « « « « « « =
Figure 6. Comparison of the IOB SAM
Prefixes for Normal and for Chained
Scheduling. « o e . .
Figure 7. Track Overflow Records. .
Figure 8. Relationship of I/0
Supervisor and Appendage€s . . < . .

Figure 9. Flow of Control in BSAM .
TABLES
Table 1. Flow of Control of QSAM

Routines. .« « « ¢ o o o o o o « « &
Table 2. Module Selector - Simple
Buffering GET Modules
Table 3. Module Selector - Exchange
Buffering GET Modules
Table 4. Module Selector - Update
Mode GET Module
Table 5. Module Selector - Simple
Buffering PUT Modules
Table 6. Module Selector - Exchange
Buffering PUT Modules
Table 7. Module Selector - Ordinary
End-of-Block Modules.« .
Table 8. Comparison of the IOB SAM
Prefixes for Normal and for Chained
Scheduling. « o = e .
Table 9. Module Selector - Chalned
Channel-Program Scheduling
End-of-Block Modules.
Table 10. Module Selector - Track
overflow End-of-Block Module. . . ,
Table 11. Module Selector -
Synchronizing and Error Procdessing
Modules o« « o o ¢ ¢ 4 ¢ 4 4 e e . .
Table 12. Module Selector - Track
Overflow Asynchronous Error
Processing Module« . « . . .
Table 13. Module Selector
AppendageS. « « « o o o o o o o o
Table 14. Module Selector - Ccntrol
Modules ¢« ¢« o ¢ ¢ ¢ o o ¢ o o o o .

-

18

23

23

36

41

u7
58

10
14
20
24
27
30

34

37

38

41

L4y

4y

49

56

ILLUSTRATIONS

Figure 10. Flow of Control - SAM OPEN
EXECUtOr. ¢« « ¢ o o ¢ ¢« o o o o o o «

Figure 11. Flow of Control To and
From the SYNAD/EOV Executor
(IGCO00SE) in QSAM.

Figure 12. Flow of Control To and
Fror the SYNAD/EOV Executor

(IGCO005E) in BSAM. . . . -
Figure 13. Buffer Pool Control Block .
Figure 14. GETPOOL Buffer Pool

Structures. ¢ e
Figure 15. BUILD Buffer Pool
Structures. <
Figure 16. QSAM Control Blocks. . . .
Figure 17. BSAM Control Blocks. . . .
Figure 18. Flow of Control Between
the FEOV Executor and Other Control
Program Routines.

Table 15. Control Routines That Are
Macrc-EXpansions. « « <« « o « o« o o .
Table 16. Flow of Control of BSAM
ROULINES. &« &« o« ¢ o o« o o o o o o o =
Table 17. Module Selector READ and
WRITE Modules . . ¢« ¢ o o o o o « o =
Takle 18. Module Selector CHECK
MOAULES « o e o o o o o o o o o« o o o
Table 19. Module Selector - Control
Modules Selected and Loaded by the
OPEN Executor . . . « . . .
Table 20. Control Modules Loaded at
Execution Tim€es « o« o o o o o o o o
Table 21. Control Routines That Are
Macro-Expansicns e o o o o o o o
Takle 22. BPAM Routines Residence . .
Table 23. Sequential Access Method
Executors - Control Sequence.
Table 24. OPEN Executor Selector -
Stage 1 OPEN Executors.
Table 25. OPEN Executor Selector -
Stage 2 OPEN ExecutOrsS. . . « « « « «
Table 26. OPEN Executor Selector -
Stage 3 OPEN Executors. « .
Table 27. CLOSE Executor Selector . .
Table 28. BUILD Buffer Structuring
Takle o« ¢« ¢ ¢ o ¢ ¢ ¢ ¢ ¢ @ ¢ o o o .
Table 29. Path and Sequence of
Control cf the FEOV Executor and
Other Control Program Routines. . . .

. 77

. 92

.106
.107

.110

. 60

. 67
. 72

. 85

111

) Sequential access methods are program-
ming techniques for causing the storage and
retrieval of data arranged in sequential
order. Sequential access method facilities
in Operating System/360 consist of routines
in five categories:

e Queued sequential access method (QSAM)
routines.

e Basic sequential access method (BSAM)
routines.

e Basic partitioned access method (BPAM)
routines.

¢ Sequential access method executors.
e Buffer pool management routines.

A processing program using QSAM routines
deals with records. For input, QSAM rou-
tines turn the blocks of data of the
channel programs into a stream of input
records for the processing program; for
output, QSAM routines collect the succes-
sive output records of the processing pro-
gram into blocks of data to be written by
channel programs.

A processing program using BSAM routines
deals with blocks of data. For input, BSAM
routines cause a channel program to read a
block of data for the processing program;
for output, BSAM routines cause a channel
program to write a block of data for the
processing program. BSAM routines are also
used to read and write blocks of data for
members of a partitioned data set.

A processing program using BPAM routines
also deals with blocks of data. For out-
put, BPAM routines construct and cause
writing of entries in the directory; for
input, BPAM routines cause searching for
and read entries in the directory. To read
and write the blocks of the members, a
processing program uses the BSAM routines.

Sequential access method executors. are
modules that operate with the OPEN, CLOSE,
and EOV routines of I/0 support. When a
data control block is opened, an executor
constructs control blocks and 1loads the
access method routines unless the resident
access method (RAM) option is used. If the
RAM option is used, the selected QSAM or
BSAM 1routines are permanently resident.
When the end of a data set or volume is
reached, an executor processes .the pending

‘needed) to available status.

.macro-instruction is encountered in a

INTRODUCTION

input/output blocks. The five types of
executor are: OPEN executor, CLOSE execu-
tor, SYNAD/EOV executor, FEOV executor, and
EOV/new volume executor.

Buffer pool management - routines form
buffers in main storage and return main
storage space (for buffers no longer
A buffer pool
management routine is entered when a GET-
POOL, BUILD, GETBUF, FREEBUF, or FREEPOOL
pro-
gram.

The GETPOOL and BUILD routines both form
a pool of buffers in main storage. Howev-
er, the GETPOOL routine also obtains the
main storage space for the buffer poocl.
Main storage space must be provided by the
processing program when the BUILD routine
is used. -

The GETBUF and FREEBUF routines handle
individual buffers. GETBUF obtains a buf-
fer from a buffer pool and FREEBUF returns
a buffer to a buffer pool.

The FREEPOOL routine returns the main
storage space used for a buffer pool.

Figure 1 shows the relationship among
sequential access method routines, other
portions of the control program, and the
processing program. Certain routines
(e.g., ‘end-of-block routines and
appendages) are identical for all three
sequential access methods. Other routines
(e.g., GET or PUT for QSAM and READ or
WRITE for BSAM and BPAM) depend upon the
access method used. (0SAM and BSAM also
include control routines not shown in Fig-
ure 1.)

A processing program passes control to
sequential access method routines via a
macro-instruction. A GET, RELSE, PUT,
PUTX, or TRUNC macro-instruction is used
for QSAM, and a READ or WRITE macro-
instruction is wused for BSAM. The GET,
PUT, READ, and WRITE routines pass control
to the same end-of-block routines.
However, a GET or a PUT routine passes
control only when an end-of-block condition

occurs, and a READ or a WRITE routine
always passes control. An- end-of-block
routine - causes the I/0 supervisor to sche-

dule a channel program for execution. The
end-of-block routine then returns control
to the GET or PUT routine (for QSAM) or to
the READ or WRITE routine (for BSAM and
BPAM) . . g }

Introduction 7

Processing Program Processing Program
(Using QSAM) (Using BSAM or BPAM)
GET, PUT, PUTX READ, WRITE CHECK
GET or PUT READ or WRITE
Routine Routine
J f ? At Each Entry to a
New Buffer READ or WRITE Routine
Needed Present Buffer Ready
for Scheduling
[~ === pchronizing and End-of-Block [check L
| Erro'; l':‘:zcessmg -4 Routine [Routine —:
outine
| 7 '
: EROPT | EXCP | (ACCEPT) :
| | .
User's SYNAD . User's SYNAD |
: Routine i 1/O Supervisor | Routine |
! | | |
| | |
| | | |
|
I Track Overflow ! | :
Asynchronous Error _j __________________ Y
| Processing Routine |
: ? 1/O Interruption ;
|
| : 1/0's : i !
| upervisor |
|] Appendages 1/O Interruption I
I — - — 7 — T Supervisor
| — s
| I : | EXCP Appendages = |
| | | Superyisor = | — —— — —— - | |
L Channel Status] | S10 (b) | | :
| Word | ‘ | |
| | LPSW | v
	L Channel	
	POST (a) Program	
{ 108 ! :
DECB
A
L _J s _SAM BB o — B N o N p—
Legend:
(a) Previous Channel Program Control

(b) Next Channel Program — —— Reference

I Routines Described in This Publication

Figure 1. Flow of Control in QSAM, BSAM,

After receiving control back from an
end-of-block routine, a GET or a PUT rou-
tine passes control to a synchronizing and
error processing routine. This routine
examines the IOB to determine the status of
the channel program. If the channel pro-
gram is not yet executed, the synchronizing
routine awaits execution. If the channel
program executed successfully, control
returns to the GET oxr PUT routine which
returns control to the processing program.

and in BPAM for Members

If execution of the channel program result-
ed in permanent errors the synchronizing
routine causes control to pass to the
user's SYNAD routine.

The asynchronous error processing rou-

tine gains control as a result of being
scheduled by an appendage. The routine
processes permanent error conditions that

are encountered by a channel program for

input data with track overflow record for-
mat. The routine establishes the address
of the segment beyond the one in error.

After receiving control back from an
end-of-block routine, the READ or WRITE
routine returns control to the processing
program. To determine the status of the
channel program the processing program must
pass control to a CHECK routine via a CHECK
macro-instruction. A CHECK routine deter-
mines the status of the channel program by
referring to the DECB. If the channel

program is not yet executed, the CHECK
routine awaits execution. If the channel
program has been executed successfully,

control returns to the processing program.

If execution of the channel program result-
ed in a permanent error, a CHECK routine
causes control to pass to the user's SYNAD
routine.

When an I/0 interruption occurs, the I/O
interruption supervisor posts the status of
the execution of the channel program in the
event control block (ECB). For QSAM, the
ECB 1is 1located in the input/output block
(I0B); for BSAM, the ECB is located in the
data event control block (DECB). The EXCP
supervisor then receives control and causes
the next scheduled channel program to be
executed. Both the I/O interruption super-
visor and the EXCP supervisor may use
access method appendages.

Introduction 9

QUEUED SEQUENTIAL ACCESS METHOD ROUTINES

Queued sequential access method (QSAM)
,routines cause storage and retrieval of
records and furnish buffering and blocking
facilities. There are six types of QSAM
routines:

e GET routines.

e PUT routines.

¢ End-of-block routines.

e Synchronizing and error processing rou-
tines (including the track overflow
asynchronous error processing routine).
Appendages.

e Control routines.

Table 1 and Figure 2 show the relation-
ship of QSAM routines, other
the operating system, and the processing
program.

A GET or a PUT routine receives control
after a GET, PUT, PUTX, RELSE, or TRUNC
macro-instruction is encountered in a proc-
essing program. A GET routine presents an
input record to the processing program and
returns control to the processing program
unless the input buffer is empty. A PUT
routine accepts output records from the
processing program and returns control to

portions of

the processing program unless the

output
buffer is full. s

When an input buffer is empty, or an
output buffer is full, an end-of-block
routine receives control from the GET or

the PUT routine. An end-of-block routine
provides device oriented data for the chan-
nel program. If normal channel-program
scheduling 1is wused, the routine passes
control to the I/0 supervisor (via an EXCP
macro-instruction) to cause scheduling of
the buffer. If chained channel-program
scheduling is used, it attempts to add the
present channel program to the last one in
the chain of scheduled channel programs.
If it is successful, control returns to the
processing program. If it is unsuccessful,
control passes to the I/0 supervisor (via
an EXCP macro-instruction).

After the end-of-block routine returns
control, the GET or PUT routine passes
control to a synchronizing and error proc-
essing routine. The synchronizing routine
examines the next IOB to determine the
status of the channel program., (For a des=-
cription and diagram of the relationship of
QSAM Control Blocks refer to Appendix B.)

Table 1. Flow of Control of QSAM Routines
' T T i
|Routine Passing Control] Condition |Routine Receiving Control|
| |] |
b _ + , - 1 i
| Processing Program | GET or PUT Macro-instruction | GET or PUT |
L iR 4 4
v T T 1
| GET or PUT | Buffer ready for scheduling | End-of-block
L [l 1 4
r T H H
| End-of-block | EXCP Macro-instruction | I/0 Supervisor |
L L] 1
[] T T -—_—---'l
| I/0 Supervisor | End | End-of-block |
i 1 4 J
L} T T 1
| End-cf-block | End | GET or PUT |
L 1 4 —— 4
r T T 1
| . GET or PUT | New buffer needed | Synchronizing |
I ——— 4+ 4 — 4
1) T T X i
| Synchronizing | Channel program executed | GET or PUT |
| | without error | |
b t } - 1
| GET or PUT | No other | Processing Program |
1 iR 4
T - T 1
Supervisor | I/0 interruption | I/0 Supervisor |
e + 1 i
| I/0 Supervisor | Appendage exit condition | Appendage |
L 1 1 4
) T T 1
| Appendage | End | I/0 Supervisor]
L 4 4 d
r - 1 . T 1
| I/0 Supervisor | End | Supervisor |
L 4 1 J

[y
o

Depending on the status of the execution, a
synchronizing routine may retain control
(using the WAIT macro-instruction), return
control to the GET or PUT routine, or pass
control to the user's SYNAD routine or to
the SYNAD/EOV executor. (For a description
of the SYNAD/EOV executor (IGCO005E), and
the flow of control to and from it, refer
to the section: "Sequential Access Method
Executors.")

Processing
Program

GET, PUT, PUTX

Present Buffer
Ready for
Scheduling

Get or PUT

Routine
New Buffer
Needed
r _r‘_—_—:: Sé/rr::::r:nizing. and End-of-Block
: | Routine Routine
|
[l T EXCP
!
| SYNAD/EOV .
: | Executor 1/O Supervisor
|]
P! EROPT
|
b User's SYNAD
I | Routine
|
l '
ol
|I
L Track Overflow
| —— —% Asynchronous Error
| Processing Routine
| T 1/O Interruption
| |
| I 1/O Supervisor
| — d
r App 1/O Interruption
‘ | r—---1 Supervisor
l | l N EXCP
l | Il — Supervisor
I L. 4\ Channel Status g1 ‘
| Word | I
| | | LPSW
| OB | |
POST (d
Lo———- R :
|
|
l
|
r—1 Append I
| |
| |
| |
L_ Channel _5‘_91'3)_ _
Program
Legend: -
(a) Previous Channel Program
(b) Next Channel Program
Control
— — — Reference
I Routines Described in This Publication
Figure 2. Flow of Control in QSAM

The track overflow asynchronous error
processing routine gains control as a
result of being scheduled by an appendage.
The routine processes permanent error con-
ditions that are encountered by a channel
program for input data with track overflow
record format. The routine establishes the
address of the segment beyond the one in
error.

Appendages receive control from the 1I/0
supervisor and return control to the I/0
supervisor. Some appendages operate with
the I/0 interruption supervisor, others
operate with the EXCP supervisor.

Control routines (not shown in Figure 2)
receive control from the processing program
via the control macro-instructions (CNTRL,
PRTOV). These QSAM routines control the
printer and the card reader.

Appendix A contains decision tables that
show, for each type of routine, the proc-
essing characteristics that differentiate
the routines within that type.

GET ROUTINES

There are 14 different GET routines. A
particular GET 1routine is wused with a
specific data set on the basis of the
access condition options specified by the
processing program for access to that data
set.

A GET routine gains CPU control when a
GET or a RELSE macro-instruction is encoun-
tered. The GET routine returns control to
the processing program, unless either an
input buffer is empty and ready to be
scheduled for refilling or a new full input
buffer is needed. If a buffer is ready to
be scheduled for refilling, the GET routine
passes control to an end-of-block routine.
If a new full input buffer is needed, the
GET routine passes control to a synchroniz-
ing and error processing routine. A GET
routine presents the processing program
with a record from a block of data in an
input buffer filled by a channel program.
A RELSE routine causes the present buffer

to be considered empty and ready for
refilling.

Every GET routine determines in each
pass through the routine:

e The address of the next record.

¢ Whether an input buffer is empty and

ready to be scheduled for refilling.

¢ Whether a new full input buffer is
needed.

Queued Sequential Access Method Routines 11

GET routine, the
presented with the

In each entry into a
processing program is
next record.

GET routines differ mainly in the buf-
fering techniques they support. GET rou-
tines for simple buffering deal with buf-
fers that are permanently associated with
one DCB. GET routines for exchange buffer-
ing deal with buffers that are exchanged
between the input DCB, the output DCB, and
the processing program. The GET routine
for the Update mode of OPEN uses simple
buffering; it differs from other simple
buffering GET routines in that the same
buffer is used for both input and output.
The manner in which a GET routine performs
its processing depends on the buffering
mode.

Simple buffering GET routines determine
the address of the next record by referring
to the DCB. To determine whether a ~buffer
is empty and whether a new buffer is
needed, these routines compare the begin-
ning and ending address of the buffer. To
present a record to the processing program,
a simple buffering GET routine either moves
the record to a processing program Wwork
area or permits processing to be performed
in the buffer space. In the 1latter case,
if the record is to become part of an
output data set it must be moved to an
output buffer.

Exchange buffering GET routines deter-
mine the address of the next record by
referring to the channel program. To
determine whether a buffer is empty and
whether a new buffer 1is needed, these
routines compare the beginning and ending
address of the channel program. To present
a record to the processing program, an
exchange buffering GET routine presents the
processing program with the buffer or buf-
fer segment. The buffer (or segment) is
exchanged with a work area of the process-
ing program, or with a buffer (or segment)
from an output DCB (by a PUT routine using
exchange buffering).

The update mode GET routine determines
the address of the next input record by
referring to the DCB. (The next output
record is the last input record.) To
determine whether a new input buffer is
needed, and whether the buffer is to be
emptied (that is, whether the last block is
to be updated) before being filled with a
new Dblock, the routine also refers to the
DCB. The record is presented to the proc-
essing program, and accepted for updating,
in the same buffer space.

12

The GET routine descriptions that follow
are accordingly grouped as:

e Simple Buffering GET Routines.
e Exchange Buffering GET Routines.

e Update Mode GET Routine.

SIMPLE BUFFERING GET ROUTINES

Simple buffering GET routines use buf-
fers whose beginning and ending addresses
are in the data control block (DCB). The
beginning address is in the field DCBRECAD
(address of the next record); the ending
address 1is in the field DCBEOBAD (address
of the end of the buffer). In each pass
through a routine, it determines:

¢ The address of the next record.

e Whether an input buffer is empty and
ready to be scheduled for refilling.
new full

e Whether a input buffer is

needed.
If the records are unblocked, the
address of the next record is always that

of the next buffer.

If the records are blocked, a GET rou-
tine determines the address of the next
record by adding the 1length of the 1last
record to the address of the last record.
The address of the last record is in the
DCBRECAD field of the data control block
(DCB). If the records are fixed-length
blocked records the length of each record
is in the DCBLRECL field. If the records
are variable-length blocked records, the
length of each record is in the length
field of the record itself.

A GET routine determines whether a buf-
fer is empty and ready for refilling, and
whether a new full buffer is needed, by

testing for an end-of-block (EOB) condi-
tion.

When a buffer is empty, a GET routine
passes control to an end-of-block routine
to refill the Dbuffer. The buffers are
filled for the first time by OPEN executor

IGG01911. Thus the buffers are primed for
the first entry into a GET routine.

When a new full buffer is needed, a
routine obtains

GET
it by passing control to

the Input Synchronizing and Error Process-
ing routine (module IGGO019AQ). The syn-
chronizing routine updates the DCBIOBA

field (thus pointing to the new buffer) and
returns control to the GET routine. A GET
routine updates the DCBRECAD field by
inserting in it the starting address of the
buffer from the channel program associated
with the new IOB. To update +the DCBEOBAD
field a GET routine adds the actual length
of the block read to the buffer starting
address. These two fields, DCBRECAD and
DCBEOBAD, define the available buffer.

For unblocked records, an EOB condition
exists after every entry into the GET
routine. For blocked records, an EOB con-
dition exists when the values in the DCBRE-
CAD field and the DCBEOBAD field are equal.
In the move operating mode, the buffer can
be scheduled for refilling as soon as the
last record is moved out; accordingly, an
EOB test is made after moving each record,
to schedule the buffer as soon as possible.
Another EOB test is made on the next entry
to the routine to determine whether a new
full buffer is needed. 1In the locate nrode,
the empty buffer is scheduled when the
routine is entered, if the last record was
presented in the preceding entry; accord-
ingly, an EOB test is made on entry into
the routine to determine both whether a
buffer is empty and ready for refilling and
also whether a new full buffer is needed.

When the processing program determines
that the balance of the present buffer is
to be ignored and the first record of the
next buffer 1is desired, the processing
program issues a RELSE macro-instruction.
Control passes to a RELSE routine which
sets an EOB condition.

-

The OPEN executor primes (that is, sche-
dules for filling) the buffers if QSAM is
used with a DCB opened for Input, Update,
or Readback. (For the locate mode, all
buffers except one are primed; for the move
mode all buffers are primed.) The OPEN
executor also sets an end-of-block condi-
tion; the first time that a GET routine
gains control, it processes this condition
in the way it normally does.

There are nine

simple buffering GET

routines. Table 2 lists the routines avai-
lable and the conditions that cause a
particular <routine to be used. The OPEN

executor selects one of the routines, loads
it, and puts its address into the DCBGET
field. The table shows, for example, that
when the OPEN parameter 1list specifies
Input and the DCB specifies the GET macro-
instruction, simple buffering, the 1locate
mode, and the fixed-length record format,
routine IGG019AA is selected and loaded.

GET Module IGGO19AA

Module IGGO19AA presents the processing
program with the address of the next fixed-
length or undefined-length record. The
OPEN executor selects and loads this module
if the OPEN parameter list specifies:

- Input
and the DCB specifies:

- GET

- Simple buffering

- Locate operating mode

- Fixed-length (unblocked, blocked, or
blocked standard) or undefined-length
record format.

The module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

s It receives control when a GET macro-
instruction is encountered in a
processing program.

e It tests for an EOB condition to deter-
mine whether a buffer is empty and
ready for refilling and also whether a
new buffer is needed. (When the OPEN
executor primes the buffers, it sche-
dules all buffers except one and sets
an EOB condition.)

e If no EOB condition exists, it deter-
mines the address of the next record,
and then presents the address to the
processing program and returns control
to the processing program.

e If an EOB condition exists, it issues a
BALR instruction to pass the present
buffer to the end-of-block routine to
be scheduled for refilling. The GET
routine issues another BALR instruction
to obtain a new full buffer through the
Input Synchronizing and Error Process-
ing routine (module IGGO19AQ). The GET
routine then presents the address of
the first record of the new buffer to
the processing program and returns con-
trol to the processing program.

The RELSE routine causes an EOB condi-
tion by setting the DCBRECAD and DCBEOBAD
fields so thet they are equal; it then
returns control to the processing program.

Queued Sequential Access Method Routines 13

Table 2. Module Selector - Simple Buffering GET Modules

r T - 1
| I I
| Access Conditions | Selections |
| ! e]
r T T T T T T T T T T T T T T 1
| INPUT, GET, Simple Buffering | X | X |1 X | X | X X] X | XX | | | | X |
: e S s S S e St et e S
| RDBACK, GET, Simple Buffering | | | | | | | | | | X | X | X | X | |
p==- T et e S v et USSR
| Locate operating mode] X | X X | | | | | | | X | X | | | |
_ fommt e e e PRS St Ao
Move operating mode | | | X | X | X | X | X | X | | | X | X | X |
p=-——- T e s A St (e S
|Fixed-length record format | X | | | X | | | X | | | X | | X | | |
b s S e R e et Gt S FE
|Undefined-length record format | | X | | | X | | | X | | | X | | X | |
— - i B et S T S s St
|Variable-length record format | | | X | | | X | | | X | | | | | |
t i e S i SR st S
|Card reader, I N R e A R D R R B R B
|only a single buffer, CNTRL | | | | | | | X | X | X |] | | | |
-~ : S s et S S S S T
|Character conversion for | | | | | | | | | | | | | | |
|paper tape | I | | | I | | | I | | | I X |
b e il i e S e S
| | I | | I | I
| GET Modules I | | I | | | | | |
| | | | | | | | | | |
b s St L R A e B e e
| 1GG019AA I S S e O e e R D R
t - S B o e St et S B
I IGGO019AB | | | x| I | | | I | | | | |
t s e B e B B S mt S SRR S
| IGGO19AC | | I | X | X | | | | | | | | | |
b s e S S e
| IGG019AD | I | I | I X | I | I | | | | |
t e i et et S B
! 1GG019AG [N I N N D O R O I D I e
t i R e S B et S S
| IGGO19AH I ! | I | | I x| I I | |
b R B il et B SR R
| 1GG019AM | I I I | | | | | | X | x| I I |
t S R A e e St S
! IGGO19AN bttt b px x|
b J— B I & L ——d e 1 1 1 1 1 1 4
v T T T + + + + T T T T T T T 1
| IGGO19AT* | | | | | | | I | I | | I X |
IL" 1 i L 1 1 L L L 1 L 1 L 1 L 1!
|*This module also includes the Paper Tape Character Conversion Synchronizing and |
|Exror Processing routine. |
L J

GET Module IGGO019AB - Simple buffering

- Locate operating mode

- Variable-length (unblocked or blocked)
Module IGGO19AB presents the processing record format.

program with the address of +the next

variable-length record. The OPEN executor The mwmwodule consists of a GET routine and a

selects and 1loads this module if the OPEN RELSE routine.

parameter list specifies:

The GET routine operates as follows:

- Input
and the DCB specifies: e It receives control when a GET macro-
, instruction is encountered in a
- GET processing program.

14

e It determines the address of the next
record and tests for an EOB condition
to determine whether a buffer is empty
and ready for refilling and also wheth-
er a new buffer is needed. (When the
OPEN executor primes the buffers, it
schedules all buffers except one and
sets an EOB condition.)

e If no EOB condition exists, it presents
the address of the next record to the
processing program and returns control
to the processing program.

e If an EOB condition exists, it issues a
BALR instruction to pass the present
buffer to the end-of-block routine to
be scheduled for refilling. The GET
routine issues another BALR instruction
to obtain a néew buffer through the
Input Synchronizing and Error Process-
ing routine (module IGGO019AQ). The GET
routine then presents the address of
the first record of the new buffer to
the processing program and returns con-
trol to the processing program.

The RELSE routine causes an EOB condi-
tion by setting the DCBRECAD and DCBEOBAD
fields so that they are equal; it then
returns control to the processing program.

GET Module IGGO019AC

Module IGGO19AC moves the next fixed-
length or undefined-length = record to the
work area. The OPEN executor selects and
loads this module if the OPEN parameter
list specifies:)

- Input
and the DCB specifies:

- GET

- Simple buffering

- Move operating mode

- Fixed-length (unblocked, blocked, or
blocked standard) - or undefined-length
record format

(but not the CNTRL macro-instruction). The
module consists of a GET . routine and a
RELSE routine.

The GET routine operates as follows:

control when a GET macro-
encountered in a

e It receives
instruction is
processing program.

e It tests for an EOB condition to deter-

- mine whether a new full buffer is
needed. (When the OPEN executor primes
the buffers, it sets this EOB condition
for the first GET macro-instruction.)

e If no EOB cocndition exists, the routine
moves the next record to the work area.

e If an EOB condition exists, the routine
issues a BALR instruction to obtain a
new buffer through the Input Synchron-
izing and Error Processing routine
(module IGGO019AQ), and moves the first
record of the new buffer to the work
area.

e It tests for a new EOB condition to
determine whether a buffer is empty and
ready for refilling. (For unblocked
records, this condition exists at every
entry into the routine.)

e If no new EOB condition exists, the
routine returns control to the process-
ing program.

e If a new EOB condition exists, the
routine issues a BALR instruction to
pass the present buffer to the end-of-

block routine to be scheduled for
refilling, and then returns control to
the processing program.

The RELSE routine sets a bit in the DCB
so that the GET routine passes the buffer
for refilling and obtains a new full buffer
the next time the routine is entered.

GET Module IGG019AD

Module IGGO19AD moves the next variable-
length length record to the work area. The
OPEN executor selects and loads this module
if the OPEN parameter list specifies:

- Input
and the DCB specifies:

- GET

- Simple buffering

- Move operating mode

- Variable-length (unblocked or blocked)
record format . :

The
RELSE

(but not the CNTRL macro-instruction).
module consists of a GET and a
routine. oo

The GET routine operates as follows:

e It receives control when a GET macro-
instruction is - encountered in a
processing program.

e It tests for an EOB condition to deter-
mine whether a new full buffer is
needed. (When the OPEN executor primes
the buffers, it also sets an end-of-
block condition for the first GET
macro-instruction.)

Queued Sequential Access Method Routines 15

e If an EOB condition exists, the routine
issues a BALR instruction to obtain a
new buffer through the Input Synchron-
izing and Error Processing routine
(module IGG019AQ), and moves the first
record to the work area.

e If no EOB condition exists, the routine
moves the next record to the work area.

e It tests for a new EOB condition to
determine whether a buffer is empty and
ready for refilling. (For unblocked
records, the condition exists after
every entry to this routine.)

e If no new EOB condition exists, the
routine returns control to the process-
ing program.

e If a new EOB condition exists, the
routine issues a BALR instruction to
pass the present buffer to the end-of-
block routine to be scheduled for
refilling, and returns control to the
processing program.

The RELSE routine sets a bit in.the DCB
so that the GET routine passes the buffer
for refilling and obtains a new full buffer
the next time the routine is entered.

GET Module IGGO019AG (CNTRL - Card Reader)

Module IGGO19AG moves the next fixed-
length or undefined-length record to the
work area without scheduling the buffer for
refilling. To refill the buffer, the
processing program issues a CNTRL macro-
instruction. The OPEN executor selects and
loads this module if the OPEN parameter
list specifies:

- Input
and the DCB specifies:

- GET

- Simple buffering

- Move operating mode

- Fixed-length (unblocked, blocked, or
blocked standard) or undefined-length
record format

- CNTRL (card reader).

The module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

e It receives control when a GET macro-
instruction is encountered in a
processing program.

e If an EOB condition exists, it resets
the DCBRECAD and DCBEOBAD fields for

16

the new buffer, and then tests for

blocked records.

e If no EOB condition exists, it tests
immediately for blocked records.

e For klocked records, it wupdates the
DCBRECAD field, moves the present
record to the work area, and returns
control to the processing program.

e For unblocked records, it sets the
DCBRECAD and DCBEOBAD fields so that
they are equal, moves the present
record to the work area, and returns
control to the processing program.

The RELSE routine sets the value of the
DCBEOBAD field equal to that of the
DCBRECAD field to establish an EOB condi-
tion. Control then returns to the process-
ing program.

GET Module IGGO19AH (CNTRL - Card Reader)

Module IGGO019AH moves the next variable-
length record to the work area without
scheduling the buffer for refilling. To
refill the buffer, the processing program
issues a CNTRL macro-instruction. The OPEN
executor selects and loads this mwodule if
the OPEN parameter list specifies:

- Input
and the DCB specifies:

- GET

- Simple buffering

- Move operating mode

- Variable-length (unblocked or blocked)
record format

- CNTRL (card reader).

The module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

control when a GET macro-
encountered in a

e It receives
instruction is
processing program.

e If an EOB condition exists, it resets
the DCBRECAD and DCBEOBAD fields for
the new buffer, and then tests for
klocked records.

¢ If no EOB condition exists, it tests
immediately for blocked records.

e For blocked records, it wupdates the
DCBRECAD field, moves the present
record to the work area, and returns
control to the processing prograrm.

e For unblocked records, it sets the
DCBRECAD and DCBEOBAD fields so that
-they are equal, moves the present

record to the work area, and returns
control to the processing program.

The RELSE routine sets the value of the
DCBEOBAD field equal to that of the
DCBRECAD field to establish an EOB condi-
tion. Control then returns to the process-
ing program.

GET Module IGG019AM (RDBACK)

Module IGGO19AM presents the processing
program with the address of the next record
when the data set is opened for backward
reading. The OPEN executor selects and
loads this module if the OPEN parameter
list specifies:

- RDBACK
and the DCB specifies:

- GET

- Simple buffering

- Locate operating mode

- Fixed-length (unblocked, blocked, or
blocked standard) or undefined-length
record format.

The module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

e It receives control when a GET macro-
instruction is encountered in a
processing program.

e It tests for an EOB condition.

o If no EOB condition exists, it deter-
mines the address of the next record by
subtracting the DCBLRECL value from the
DCBRECAD value. The routine presents
the result to the processing program,
and returns control to the processing
program.

e If an EOB condition exists, it issues a

BALR instruction to pass the present
buffer to the end-of-block routine.
The GET routine issues another BALR

instruction to obtain a new buffer
through the Input Synchronizing and
Error Processing routine (module
IGGO19AQ). The GET routine then pre-
sents the address of the last record of
the new buffer to the processing pro-
gram, and returns control to the proc-
essing program.

The RELSE routine causes an EOB condi-
tion by setting the DCBRECAD and DCBEOBAD
fields so that they are equal; it then

returns control to the processing program.
Figure 3 illustrates the ordering of
records using this module. When reading

backwards under QSAM, each block is read
from the tape from the end of the block to
the beginning, each buffer is filled from
the end of the buffer to the beginning, and
the records are presented to the processing
program in order of the record in the last
segment of the buffer first, and the record
in the first one last. In this manner of
reading, buffering, and presenting, each
record follows in backward sequence, from
the record presented last out of one buffer
to the record presented first out of the
next buffer.

GET Module IGGO019AN (RDBACK)

Module IGGO019AN moves the next record to
the work area when the data set is opened
for Lackward reading. The OPEN executor
selects and loads this module if the OPEN
parameter list specifies:

- RDBACK
and the DCB specifies:

- GET

- Simple buffering

- Move operating mode

- Fixed-length (unblocked, blocked, or
blocked standard) or undefined-length
record format.

The module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

e It receives control when a GET macro-
instruction is encountered in a
processing program.

e It tests for an EOB condition.

e If nc EOB condition exists, it moves
the next record to the work area, and
updates the DCBRECAD field by reducing
it by the value of the DCBLRECL field.

e If an EOB condition exists, it issues a
BALR instruction to obtain a new buffer
through the Input Synchronizing and
Exrror Processing routine (module
IGGO019AQ). The GET routine then moves
the last record of the new buffer to
the work area.

e It tests for a new EOB condition.

Queued Sequential Access Method Routines 17

e If no new’ EOB condition exists, it
returns control to the processing pro-
gram.

e If a new EOB condition exists, it
issues a BALR instruction to pass the
present buffer to the end-of-block rou-
tine, and then returns control to the
processing program.

The RELSE routine issues a BALR instruc-
tion to pass the present buffer to the
end-of-block routine, and then returns con-
trol to the processing program.

Figure 3, described for GET module
IGG019AM, also illustrates the ordering of
records using this module.

3 2] %

Direction of Tape
When Writing

N

i 9 8 7 6 5

Direction of Tape

When Reading Backward -

Last GET for this block
addresses this segment

First channel program
fills this buffer

First GET for this block «— beginning here

addresses this segment 9

Last GET for this block
addresses this segment

Next channel program
fills this buffer

First GET for this block <« beginning here

addresses this segment

Last GET for this block
addresses this segment

Next channel program
fills this buffer

First GET for this block 3 < beginning here

addresses this segment

Figure 3. Order of Records Using GET Rou-
tines for Data Sets Opened for

RDBACK (IGGO019AM,IGGO019AN)

GET Module IGGO19AT (Paper Tape Character
conversion)

Module IGGO19AT converts paper tape
characters into EBCDIC characters and moves
them to the work area. The OPEN executor
selects and 1loads this module (and one of
the code conversion modules listed in
Appendix D) if the OPEN parameter 1list
specifies:

18

- Input
and the DCB specifies:

- GET

- Simple buffering

- Move operating mode

- Paper tape character conversion.

The wmodule consists of a GET routine and a
Paper Tape Character Conversion Synchroniz-
ing and Error Processing routine.

The GET routine operates as follows:

e It receives control when a GET macro-
instruction is encountered in a
processing program.

e It converts the next character and
moves it to the work area.

e It continues converting and moving
until one of the following conditions
is met, with the stated effect:

The number of characters specified
in the DCBBLKSI field of the DCB
have been noved: The routine

returns control to the processing
program.
An EOB condition is encountered:

The routine passes control to the
end-of-block routine to refill the
buffer, and then enters the Paper
Tape Character Conversion Synchron-
izing and Error Processing routine
toc obtain a new buffer. :

An end-of-record character is
encountered .(undefined-length
records only): The routine returns
control to the processing program.

The tape is exhausted: The routine
returns control to the processing
program.

A paper tape reader-detected error
character is encountered: The . rou-
tine moves the character to the
work area without conversion and
enters the Paper Tape Character
Conversion Synchronizing and Error
Processing routine.

e If one of the characters in the buffer
is an undefined character, the module
converts it to the hexadecimal charac-
ter FF, moves it to the work area, and
continues conversion. When one of the
afore-mentioned conditions is met, con-
trol passes to the Paper Tape Character
Conversion Synchronizing: and Error
Processing routine.

The Paper Tape Character Conversion Syn-
chronizing and Error Processing routine
operates as follows:

e For an EOB condition, the routine finds
the next buffer, and returns control to
the GET routine to resume converting
and moving.

e For a reader-detected error character
and for an undefined character, the
routine passes control to the process-
ing program's SYNAD routine. When con-
trol returns from the SYNAD routine, or
if there 1is no SYNAD routine present,
one of the error options is implement-
ed.

e For the ACCEPT error option, the rou-
tine returns control to the processing
program.

e For the SKIP error option, the routine
- £ills the work area again.

e For the TERMINATE error option, or if
no error option is specified, the rou-
tine issues the ABEND macro-
instruction.

Appendix D 1lists the modules composed of
the tables used for code conversion.

EXCHANGE BUFFERING GET ROUTINES

Exchange buffering GET routines use
buffers whose addresses and 1lengths are
stated in the channel program. For
unblocked records, the buffer address and
length are in one channel command word
(CCW). For blocked records, the addresses

of the buffer segments. are in ‘successive

CCWs (though”™ the segments themselves are
ngf®: necessarily located next to one
another). 1In each pass through an exchange

buffering GET routine, it determines:

¢ The address of the next record.

e Whether an input buffer is empty and
ready to be scheduled for refilling.
¢ Whether a new full

needed.

input buffer is

If the records ‘are unblocked, a GET
routine finds the address of +the next
record in the Read CCW for the next input
buffer.))

If the records are blocked, a GET rou-
tine finds the address of the next record
in the next Read CCW for the same buffer.

. ;
The next CCW is found by adding 8 to the
address of the previously current CCW (the
value stated in the DCBCCCW field in the
DCB).

If an input buffer is empty and ready to
be scheduled for refilling, a GET routine
passes control to an end-of-block routine.
The end-of-block routine passes control to
the I/O supervisor to have it schedule the
buffer. After scheduling, the I/O supervi-
sor returns control to the end-of-block
routine, and it returns control to the GET
routine.

If a new full buffer is needed, a GET
routine passes control to a synchronizing
and error processing routine. The syn-
chronizing routine enters the address of
the input/output block (IOB) that points to
that channel program into the DCBIOBA field
in the DCB.

If an end-of-block condition exists then
either an input buffer is empty and ready
to be scheduled for refilling, or a new
buffer is needed. An end-of-block condi-

tion exists for wunblocked records during
each pass through a routine; for blocked
records it exists if the values in the

fields DCBCCCW (the address of the current
CCW) and DCBLCCW (the address of the 1last
CCW) are equal.

In the locate operating mode, the empty
buffer is scheduled when the routine is
entered if the last record was presented in
the preceding entry; accordingly a test for
an end-of-block condition is made on entry
to the routine to determine both whether a
buffer is empty and also whether a new
buffer is needed.

In the substitute operating mode, the
buffer can be scheduled for refilling as
soon as a work area has been substituted
for the last buffer segment; accordingly,
an end-of-block test is made before leaving
the routine to determine whether the buffer
is empty, and another end-of-block test is
made on entry to the routine to determine
whether a new buffer is needed.

A RELSE routine sets an end-of-block
condition. This end-of-block condition is
processed so that, when the GET routine is
entered next, it operates as usual.

The OPEN executor primes (that is, sche-
dules for filling) the buffers if QSAM is
used with a DCB opened for Input. (For the
locate mode, all buffers except one are
primed; for the substitute mode all buffers
are primed.) The OPEN executor also sets
an end-of-block condition; the first time
that a GET routine gains control, it proc-
esses this condition in the way it normally
does. :

Queued Sequential Access Method Routines 19

-

There are four exchange buffering GET
routines. Table 3 lists the routines avai-
lable and the conditions that cause a
particular routine to be used. The OPEN
executor selects one of the routines, loads
it, and places its address into the DCBGET
field. The table shows, for example, that
if Input, GET, exchange buffering, locate
mode, and fixed-length blocked record for-
mat are specified module IGGO019EA is
selected for use.

Table 3. Module Selector - Exchange Buf-
fering GET Modules

] T 1
| o |
| Access Conditions | Selections |
| 1 ,'
L] T T h) T 1] T 1 1
|Input, GET, Exchange|X [|X |X |X |X [X |X |
b i v e e S S
| Locate IxixxIxt | |
b —f——t-—f——4-—f=—t =4
| Substitute b X x x|
b T e e S
| Fixed-1length X 1x| | x| IxX|
— T T B e
|variable-length | T -G I I |

t - T T ot
|Undefined-length | O I - R -G I
t e ey S S B
|Unblocked | I1XIX IX |X|X]| |
b - T e S
|Blocked | 2. S R R IR R I PO
¢ e
| I | P
| GET Modules (| | |
| I I [
¢ $=—g 71
| IGGO19EA S I R I R N
b =ttt
| IGGO19EB [> S - - H I
pme $—p-—p——t ittt
| IGG019EC [I R B D P S |
b D e e
| IGG019ED [T R D N A P
L 4L L L 1 L 1 L J

GET Module IGGO19EA

Module IGGO19EA uses the locate mode to
present the processing program with the
address of the next fixed-length blocked
record. The OPEN executor selects and
loads this module if the OPEN parameter
list specifies:

- Input
and the DCB specifies:
- GET
- Exchange buffering

- Locate operating mode
- Fixed-length blocked record format.

20

The module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

GET macro-
encountered in a

e It receives control when a
instruction is
processing program.

e It tests for an end-of-block condition
to determine whether a buffer is empty
and ready for refilling and also wheth-
er a new full buffer is needed. (When
the OPEN executor primes the buffers,
it schedules all buffers except one and
sets an end-of-block condition.)

e If no end-of-block condition exists, it
presents the address of the next record
(found in the next CCW), and returns
control, to the processing program.

e If an end-of-block condition exists,
the routine passes control to the end-
of-block routine to cause scheduling of
the buffer for refilling. On return of
control, the GET routine passes control
to the Input Synchronizing and Error
Processing routine (module IGGO019AQ) to
oktain a new full buffer. On return of

control, the GET routine then presents
the address of the first record, and
returns control, to the processing
program.

The RELSE routine causes an end-of-block
condition by setting the DCBCCCW and
DCBLCCW fields equal and returns control to
the processing program.

Note: If an input DCB using this module is
paired with an output DCB using module
IGGO019EF (Output, PUT, Exchange), a PUTX
macro-instruction addressed to the output
DCB causes an exchange of the addresses of
the current buffer segments of each DCB.
These are found in the CCWs pointed to by
the input and output DCBs.

GET Module IGGO19EB

Module IGGO019EB uses the locate mode to
present the processing program with the
address of the next unblocked record. The
OPEN executor selects and loads this module
if the OPEN parameter list specifies:

- Input
and the DCB specifies:

- GET

- Exchange buffering

- Locate operating mode

- Unblocked record format (fixed-,
variable-, or undefined-length).

The module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

e It receives control when a GET macro-
instruction is encountered in a
processing program.

e It passes control to the end-of-block
routine to cause scheduling of the
previous buffer for refilling.

e It passes control to the Input Syn-
chronizing and Error Processing routine
(module IGGO019AQ) to obtain the next
full buffer. (When the OPEN executor
primes the buffers, it schedules all
buffers except one.)

e It presents the address of the record,
and returns control, to the processing
program. For variable- or undefined-
length records, the routine also
presents the record length.

The RELSE routine returns control with-

out performing any processing.

Note: If an input DCB using this module is

paired with an output DCB using module

IGGO19EE (Output, PUT, Exchange), a PUTX

macro-instruction addressed to the output

DCB causes an exchange of the addresses of

the current buffer segments of each DCB.

These addresses are found 1in the CCWs

pointed to by the DCBCCCW fields in the

input and output DCBs.

GET Module IGGO19EC

Module IGGO1l9EC uses the substitute mode
to present the processing program with the
address of the next unblocked record. The
OPEN executor selects and loads this module
if the OPEN parameter list specifies:

- Input
and the DCB specifies:

- GET

- Exchange buffering

- Substitute operating mode

- Unblocked record format
undefined-length).

(fixed-, or

The module consists of a GET routine and a

RELSE routine.
The GET routine operates as follows:
o It receives control when a GET macro-

instruction is encountered in a
processing program.

e It passes control to the synchronizing
routine to obtain the next full buffer.

e It exchanges the address of the work
area and the address of the buffer.

e It passes control to the end-of-block
routine to cause the work area offered
by the processing program to be sche-
duled for filling.

address of the new
record, and returns control, to the
processing program. (Wwhen the OPEN
executor primes the buffers, it sche-
dules all buffers.)

e It presents the

¢ When undefined-length records are spec-
ified, the routine also presents the
record length.

The RELSE routine returns control with-
out performing any processing.

GET Module IGGO19ED

Module IGGO19ED uses the substitute mode
to present the processing program with the

address of the next fixed-length blocked
record. The OPEN executor selects and
loads this mwodule if the OPEN parameter

list specifies:
- Input
and the DCB specifies:
- GET
- Exchange buffering
- Substitute operating mode
- Fixed-length blocked record format.
The module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

control when a GET macro-
encountered in a

e It receives
instruction is
processing program.

e It tests for an end-of-block condition
to determine if a new full buffer is
needed. (When the OPEN executor primes
the buffers, it schedules all buffers
and sets an end-of-block condition.)

e If no end-of-block condition exists, it
exchanges the address of the work area
for the address stated in the current
CCW. The current CCW 1is found by
adding 8 to the value of the field
DCBCCCW.

Queued Sequential Access Method Routines 21

e If an initial end-of-block condition
exists, it passes control to the Input
Synchronizing and Error Processing rou-
tine (module IGGO019AQ) +to obtain the
next full bkuffer. It then exchanges
the address of +the work area for the
address stated in the first Read CCW of
the channel program.

e It tests for a new end-of-block condi-
tion to determine if a buffer is empty
and ready for refilling.

o If no new end-of-block condition
exists, it presents the address of the
next record, and returns control, to
the processing program.

s If a new end-of-block condition exists,
it passes control to the end-of-block
routine to cause scheduling of the
empty buffer for refilling. It then
presents thé address of the next
record, and returns control, to the
processing progran.

The RELSE routine sets an end-of-block
condition and passes control to the end-of-
block routine +to cause scheduling of the
buffer for refilling. It then returns
control to the processing program.

UPDATE MODE GET ROUTINE

The Update mode GET routine differs from
other GET routines in that it shares its
buffers (as well as the DCB and the IOBs)
with the Update mode PUT routine. The QSAM
Update mode of access uses simple buffering
(in which the Dbuffer is defined by the
start and end address of the buffer).

If a PUTX macro-instruction addressed a
record in a block, the Update mode GET
routine determines, when the end of the
block is reached, that that buffer is to be
emptied (that is, that the block is to be
updated) before being filled with a new
block of data. If no PUTX macro-
instruction addressed a record in a block,
the Update mode GET routine determines,
when the end of the block is reached, that
the buffer is to be refilled omnly, that is,
that the last block need not be updated and
the buffer can be filled with a new Dblock

of data. These characteristics of the
buffer, simple buffering, sharing the
buffer with the PUT routine, and emptying

the buffer before refilling, influence the
manner in which the Update mode GET routine
determines:

e The address of the next record.

¢ Whether the buffer can be scheduied.

22

¢ Whether a new buffer is needed.

¢ Whether to schedule the buffer for
Empty-and-Refill or for Refill-only.

The first three of these determinations
are made at every pass through the routine.
The last determination is made after the

routine establishes that the buffer can be
scheduled.
If the records are unblocked, the

address of the next record is the address

of the next buffer.

If the records are blocked, the address
of the next record is found by adding the
record length (found in the DCBLRECL fleld)
to the value in the DCBRECAD field.

Whether the buffer can be scheduled and
whether a new buffer is needed is deter-
mined by whether an end-of-block condition
exists. In the Update mode, one determina-
tion that an end-of-block condition exists
causes both the last buffer to be scheduled
and a new buffer to be sought. An end-of-
block condition exists for unblocked
records at every pass through the routine;
for blocked records it exists if the wvalues
in the DCBRECAD (the address of the current
record) field and the DCBEOBAD (the address
of the end of the block) field are equal.
To cause scheduling of the buffer, the GET
routine passes control to the end-of-block
routine. To oktain a new buffer, the GET
routine passes control to the Update Syn-
chronizing and Error Processing routine
(module IGGO019AF).

To cause scheduling of the buffer for
either Empty-and-Refill or Refill-only, the
Update mode GET routine sets the IOB to
point to the beginning of either of the two
parts of QSAM Update channel program.
These two parts are the Empty part, which
empties (writes out of) the buffer, and the
Refill part, which refills (reads into)
that same buffer. (See Figure 4.) If
execution of a QSAM Update channel program
begins with the Empty part, it is always
fcllowed by execution of the Refill part.
Each part of the QSAM Update channel pro-
gram addresses a different 1location in
auxiliary storage: The Empty part addresses
the location from which the block to be
updated was read; the Refill part addresses
the location from which the last block was
read. Addressing the last known block and
skipping over its data field leads to the
beginning of the next block, irrespective
of its address. (This method of addressing
a Search command to the block read pre-
viously to address a Read (Count, Key, and
Data) command to the next block is known as
the search-previous technique. It makes
the count field of the present block being
read the Seek address of the Refill portion

of the next channel program.) When a
buffer is to be emptied (back to the
original location of the block in auxiliary
storage), the Update mode GET routine
obtains the block address from the Seek
address of the Refill part of the next
channel program. It copies the address so
that it becomes the Seek address for the
Empty part of the present channel program.
(Ssee Figure 5.) (For a description of the
processing for a Refill-only QSAM Update
channel program, refer to the description
of the Update SIO appendage.)

Whether to schedule the buffer for
Empty-and-Refill or for Refill-only depends
on whether the block is to be updated. If
the block is to be updated, +the PUTX
routine will have set the Update flag on in
the IOB; else the flag is off. To schedule
the buffer for Empty-and-Refill, the GET
routine sets the IOB to point to the Empty
portion of the channel program and obtains
the Seek address of the block to be updated
from the Refill portion of the next channel
program. To schedule the buffer for
Refill-only, the GET routine sets the IOB
to point to the Refill portion of the
channel program. The end-of-block condi-
tion which triggors this processing also
causes control to pass to the end-of-block
routine (module IGG019CC) for issuing the
EXCP macro-instruction and to the Update
Synchronizing and Error Processing routine
(module IGGO019AF) for obtaining the next
buffer.

The PUTX routine sets the Update flag in
the IOB and returns control to the process-
ing program.

Channel Program

Mok o S S
l:; MBBCCHHR
A SEARCH The Empty portion of an
TIC Update Channel Program
WRITE (Data)
8 ¢ SEEK J
Al
= SEARCH
TIC The Refill portion of an
READ (Count) Update Channel Program
READ (Data)
~—* MBBCCHHR)
Buffer

10B

CPAD

Legend:
A ~ Address of channel program (CPAD) used to empty and refill the buffer.
(A PUTX macro-instruction was addressed to a record in this buffer.)

B - Address of channel program (CPAD) used only to refill the buffer.
(No PUTX macro-instruction was addressed to any record in this buffer.)

Figure 4. The Two Parts of an Update Chan-
nel Program (Empty, Refill)

Channel Program for the Buffer Channel Program for the Buffer Channel Program for the Buffer
Scheduled to be Emptied and Refilled To be Processed Next Just Emptied and Refilled
-1 B 1-3 o DL -2 C el
] SEARCH O SEARCH _! O SEARCH i
WRITE (Data) WRITE (Data) -——] ! WRITE (Data) - |
| I
(ti) SEARCH ’ SEARCH I ! SEARCH . @g
) I
’ ‘ READ (Count) i-——, READ (Counf) A ' READ (Count) A
L (Data) ——] X (Data) l I_ (Data) |
o Lo [e] L=y
, ! i
[Data of Block I-1 § [Data of Block | $ [Data of Block 1+1 3
Buffer Contents Buffer Contents Buffer Contents

Legend: .

A ~The Refill portion reads the count field of the block being read into the search argument of the next Refill portion.

B - To empty the buffer, the search argument of the next Refill portion is used as the search argument of this Empty portion.

C - To empty the buffer, the search argument of the next Refill portion was copied before the last time this buffer was scheduled.

D - To empty the buffer, the search argument of the next Refill portion will be copied before the next time this buffer is scheduled.

Present entries
— -—————Future entries

Figure 5. Relation of Seek Addresses in Three Successive QSAM Update Channel Programs

Queued Sequential Access Method Routines 23

The RELSE routine sets an end-of-block
condition and returns control to the proc-
essing program.

The OPEN executor primes (that is, sche-
dules for filling) all the buffers except
one if QSAM is used with a DCB opened for
Update. The OPEN executor also sets an
end-of-block condition; the first time that
the Update mode GET routine gains control,
it processes this condition in its normal
manner.

There is one Update mode GET routine.
If the access conditions shown in Table 4
are specified for a DCB, the OPEN executor
selects this routine, loads it, and places
its address into the DCBGET field.

Table 4. Module Selector - Update Mode GET
Module
r L) 1
| o | o
| Access Conditions | Selections|
| I |
b t——r—v-1-7-1
|Update, GET 1X |1X|X|X]|X]
b —t-—4-f--4-1
|Fixed-length record format 1X IX1 1 ||
} 1 J I I I
¢ $—t-4=4=4-1
|variable-length record format | | |X|X] |
t , O s at S B
|Undefined-length record format| | | | |X]|
b 4 N PR [N I I
t t-—t-4-4-1-1
|Blocked record format X 1 I1xX1 ||
[1 I T I W
t \ -—t-4-t-4-1
|Unblocked record format | 1X] |X|X]
! SN R S S S |
| | I
| GET Module | |
I | |
b Il 4
L} T Tl
| IGGO019AE® 1X |1X|X[X|X]
Il' 1 A 1_41_1 _Jl
|*This module also carries the Update mode|
| PUTX routine |
L J

GET Module IGGO19AE

Module IGGO19AE presents the processing
prograr with the next input record, flags
the IOB if the block is to be updated (that
is, -emptied and refilled), and sets the IOB
to address a QSAM Update channel program
for either Empty-and-Refill or Refill-only.

The OPEN executor selects and 1loads this
module if the OPEN parameter list speci-
fies:

- Update

and the DCB specifies:

- GET.

24

The module consists of a GET routine, a
RELSE routine, and a PUTX routine.

The GET routine operates as follows:

control when a GET macro-
encountered in a

e Tt receives
instruction is
processing program.

e It tests for an end-of-block condition
to determine whether the buffer can be
scheduled and whether a new buffer is
needed. (When the OPEN executor primes
the buffers, it schedules all buffers
except one and sets an end-of-block
condition.)

e If no end-of-block condition exists, it

presents the address of the next
record, and returns control, to the
processing program. For variable-

length and undefined-length records, it
also determines the 1length of the
record and places it in the DCBLRECL
field in the DCB.

e If an end-of-block condition exists, it
tests whether the buffer is to be
erptied and refilled or 1is to be
refilled only.

e If it is to be refilled only, it sets
the IOB to point to the start of the
Read portion of the Update channel
program and passes control to the end-
of-block routine to cause scheduling of
the buffer.

e If it is to be emptied and refilled, it
sets the IOB to point to the start of
the Update channel program. The
routine obtains the auxiliary storage
address to be used by the Write portion
of the channel program by copying the
address used by the Read portion of the
channel program associated with the
next IOB. The routine then passes
control to the end-of-block routine to
cause scheduling of the buffer.

e On return of control from the end-of-
block routine, the GET routine passes
control to the Update Synchronizing and
Exror Processing routine (module
IGG019AF) to obtain a new full buffer.

e On return of control from the
synchronizing routine, the GET routine
updates the DCBLRECL field and presents
the address of the next record, and
returns control, to the processing pro-
gram.

The RELSE routine operates as follows:
e It receives control when a RELSE macro-

instruction is encountered in the
processing program.

e It sets an end-of-block condition.

e It returns control to the processing
program.

The PUTX routine operates as follows:

e It 1receives control when a PUTX macro-
instruction is encountered in the
processing program.

e It sets the Update flag in the IOB to
show that the buffer is to be emptied
kefore being refilled.

e It returns control to the processing
program.

PUT ROUTINES

are seven different PUT routines.
A particular PUT routine is wused with a
specific data set on the basis of the
access condition options specified by the
processing program for access to that data
set.

There

A PUT routine gains CPU control when a

PUT, PUTX, or TRUNC macro-instruction is
encountered. The PUT routine returns con-
trol to the processing program, unless

either an output buffer is ready to be
scheduled for emptying or a new empty
buffer is needed. If a buffer is ready for
emptying, the PUT routine passes control to
an end-of-block routine. If a new empty
output buffer is needed, the PUT routine
passes control to a synchronizing and error
processing routine. A PUT routine accepts
a record from the processing program to
assemble a block of data for an output
channel program. A PUTX routine accepts an
output record from an input data set; a
RELSE routine causes the present buffer to
be considered ready for scheduling.

Every PUT routine determines in each
pass through the routine:

¢ The address of the next buffer segment.

e Whether, an output buffer is to be

scheduled for emptying.

¢ Whether a
needed.

new empty output buffer is

In each entry into a PUT routine, it

accepts a record for output.

PUT routines differ mainly in the buf-
fering techniques they support. PUT rou-
tines for simple buffering deal with buf-
fers that are permanently associated with
one DCB. PUT routines for exchange buffer-

ing deal with buffers that are exchanged
between the output DCB, the input DCB, and
the processing program. The PUTX routine
for the Update mode of OPEN uses simple
buffering; it differs from other PUT rou-
tines in that it shares the buffer used by
the Update mode GET routine. The manner in
which a PUT routine performs its processing
depends on the buffering mode.

Simple buffering PUT routines determine
the address of the next buffer segment by
referring to the DCB. To determine whether
a buffer is ready for scheduling and wheth-
er a new buffer is needed, these routines
compare the beginning and ending address of
the buffer (or the record and the remaining
space in the buffer). To accept a record,
a PUT routine using simple buffering either
moves the record into the buffer or
requires the processing program to do so.

Exchange buffering PUT routines deter-
mine the address of the next buffer segment
by referring to the channel program. To
determine whether a buffer is to be sche-
duled and whether a new buffer is needed,
these routines compare the beginning and
ending address of the channel program. To
accept a record, an exchange buffering PUT
routine exchanges its buffer segment for a
work area or for a buffer segment of an
input DCB, or may move the record into the
buffer segment.

The Update mode PUTX routine flags the
buffer from which the last record was
presented for updating.

The PUT routine descriptions are accord-
ingly grouped as:

e Simple Buffering PUT Routines.
¢ Exchange Buffering PUT Routines.

e Update Mode PUTX Routine.

SIMPLE BUFFERING PUT ROUTINES

Simple Luffering PUT routines use buf-
fers whose beginning and ending addresses
are stated in the DCB. The beginning
address is in the field DCBRECAD (address
of the next record); the ending address is
in the field DCBEOBAD (address of the end
of the buffer). In each pass through a
routine, it determines:

e The address of the next buffer segment.

¢ Whether an output buffer is to be

scheduled for emptying.

¢ Whether a new empty buffer is needed.

Queued Sequential Access Method Routines 25

These three determinations are made at
every pass through a PUT routine.

If the records are unblocked, the
address of the next available buffer seg-
ment is always that of the next buffer.

If the records are blocked, a PUT rou-
tine determines the address of the next
available buffer segment by adding the
length of the last record to the address of
the last buffer segment. The address of
the last buffer segment is in the DCBRECAD
field of the data control block (DCB). If
the records are fixed-length blocked
records, the length of each record is in
the DCBLRECL field. If the records are
variable-length blocked records, the length
of each record is in the length field of
the record itself.

A PUT routine determines that a buffer
is ready for emptying, and that a new empty
buffer is needed, by establishing that an
end-of-block (EOB) condition exists.

If an output buffer is to be scheduled
for emptying, a PUT routine passes control
to an end-of-block routine, to cause the
present buffer to be scheduled for output.

If a new empty buffer is needed, a PUT
routine obtains a new buffer by passing
control to the Output Synchronizing and
Exrror Processing routine (module IGGO19AR).
For a buffer that was emptied without
error, the synchronizing routine updates
the DCBIOBA field (thus pointing to the new
buffer) and returns control to the PUT
routine. The PUT routine updates the
DCBRECAD field by inserting the starting
address of the buffer from the channel
program associated with the new IOB. To
update the DCBEOBAD field, the routine adds
the 1length of the block stated in the
DCBBLKSIZE field to the buffer starting
address. These two fields, DCBRECAD and
DCBEOBAD, define the available buffer.

An EOB condition is established by dif-
ferent criteria for different record for-
mats and operating modes.
condition

For unblocked records, an EOB

exists after each record is placed in the
buffer. If using the move operating mode,
a PUT routine establishes that an EOB

condition exists for the present buffer
after the routine has moved the record into
the buffer. If using the locate operating
mode, a PUT routine establishes that an EOB
condition exists for the present buffer on

26

the next entry to the routine, after the
processing program has moved the record
into the kuffer.

For blocked records, the time that an
EOB condition occurs depends on the record
format.

For fixed-length blocked records, an EOB

condition occurs when the DCBRECAD field
equals the DCBEOBAD field. (The DCBRECAD
field shows the address of the segment for

the next record. The DCBEOBAD field shows
a value equal to one more than the address
of the end of the buffer.) If wusing the
move operating mode, the PUT routine moves
the last fixed-length record into the buf-
fer, wupdates the DCBRECAD field, and esta-
blishes that an EOB condition exists for
the present buffer. If using the locate
operating mode, the processing program
moves the last fixed-length record into the
buffer. On the next entry to the PUT
routine, the routine updates the DCBRECAD
field, and establishes that an EOB condi-
tion exists for the present buffer.

For variable-length blocked records, an

EOB condition occurs when the next record
exceeds the buffer balance, that is, the
record length is greater than the space

remaining in the buffer. If using the move
operating mode, the PUT routine establishes
that an EOB condition exists when the
record length stated in the first word of
the record exceeds the buffer balance. If
using the locate operating mode, the PUT

routine establishes that an EOB condition
exists when the value stated in the
DCBLRECL field in the DCB exceeds the

buffer balance.

A TRUNC routine sets an end-of-block
condition to empty the buffer. This end-
of-klock condition is processed so that the
next entry to the PUT routine permits it to
operate as usual. Successive entries to a
TRUNC routine without intervening entries
to a PUT routine cause the TRUNC routine to
return control without performing any
processing.

To permit a PUT routine to operate
normally when it is entered for the first
time, the OPEN executor initializes the DCB
fields DCBRECAD and DCBEOBAD. For an out-
put data set using QSAM and simple buffer-
ing, the values entered in these fields
depend on the operating mode. For locate
mode routines, it sets them to show the
beginning and end of the first buffer; for
move mode routines it sets an end-of-block
condition.

There are four simple buffering PUT
routines. (Modules for the move operating
mode include PUTX routines.) Takbkle 5 lists
the routines available and the conditions

that cause a particular routine to be used.
The OPEN executor selects one of the rou-
tines, loads it, and places its address
into the DCBPUT field. The table shows,
for example, that when the DCB specifies
the locate mode and fixed-length records,
routine IGGO19AI is selected and loaded.

Table 5. Module Selector - Simple Buffer-
ing PUT Modules

r 1 1
| . I . |
| Access Conditions |Selections |
| ! ,'
r T7Tr 7T 71T 71T 711
|Output, PUT/PUTX, Slmple IXIX XX X)X
Ibufferlng T T O

, t=f--t-4-4-1
|Locate operating mode IXIXIX) | ||
F - — e
|Move operating mode |1 IXIX|X]
L i IS S TS IS IS I |
. T TTrTTTTT
|Fixed-length record format (DS I P-4 I I
p--- S S
|Undefined-length record I P-4 T I b4 I
| format I T I I
t —4=4—4=4—4-1-1
|Vvariable-length record format| | |X| | [|X]
L TS T IO IS W I
1) T 7T +"
| ot
| PUT Modules | [| |
I I I 1
p-—- foy=t-t-y-t-]
| IGG019AI X1t 1111
F S B o vt e ot
| IGGO019AJ P-4 |
b e
| IGGO019AK 11 XX
i % TN IS I IS I A |
r T 17T 1T"11
| IGGO19AL L Lr1ox
L 1L _L_L_ L _1L_ 1}

PUT Module IGGO019AI

Module IGGO19AI presents the processing
program with the address of the next avail-
able buffer segment for a fixed-length orx
undefined-length record. The OPEN executor
selects and loads this module if the OPEN
parameter list specifies:

© - Output
and the DCB specifies:

- PUT

- Simple buffering

- Locate operating mode

- Fixed-length (unblocked,
blocked standard)
record format.

blocked, or
or undefined-length

The module consists of a PUT routlne and a -

TRUNC routine.

The PUT routine operates as follows:

e It receives control when a PUT macro-
instruction is encountered in a
processing program.

e It determines the address of the next
buffer segment wusing the value in the
DCBLRECL field.

e It tests for an EOB condition to deter-
mine whether a buffer is full and ready
for emptying and also whether a new
enmpty buffer is needed.

e If no EOB condition exists, it presents
the address of the next buffer segment
to the processing program, and returns
control to the processing program.

e If an EOB condition exists, it issues a

BALR instruction to pass the present
buffer to the end-of-block routine.
The PUT routine issues another BALR

instruction to obtain a mnew buffer
through the Output Synchronizing and
Errcr Processing routine (module
IGG019AR), and determines the address
of the first segment of the new buffer.
The PUT routine then presents this
address to the processing program and
returns control to the processing pro-
gram.

The TRUNC routine causes an EOB condi-
tion Ly setting the DCBRECAD and DCBEOBAD
fields so that they are equal; it then
returns control to the processing program.

PUT Module IGGO019AJ

~Module IGG019AJ presents the processing
program with the address of the next avail-
able buffer segment for a variable-length
record. The OPEN executor selects and
loads this module if the OPEN parameter
list specifies:

- Output
and the DCB specifies:

- PUT

- Simple buffering

- Locate operating mode

- Variakle-length (unblocked,
record format.

blocked)

The mnodule consists of a PUT routine and a
TRUNC routine.

Queued Sequential Access Method Routines 27

The PUT routine operates as follows:

e It receives control when - a PUT macro-
instruction is encountered in a
processing prografi.

e It determines the address of the next
buffer segment using the 1length field
of the record moved by the processing
program into the buffer segment located
last.

e It tests for an EOB condition to deter-
mine whether a buffer is ready for
emptying and also whether a new empty
buffer is needed, wusing the value
placed into the DCBLRECL field by the
processing program.

e If no EOB condition exists, it tests
for blocked records.

e If blocked records are specified, it
presents the address of the next buffer
segment to the processing program, and
returns control to the processing pro-
gram.

e If an EOB condition exists or if
unblocked records are specified, it
issues a BALR instruction to pass the
present buffer to the end-of-block rou-
tine. The PUT routine issues another
BALR instruction to obtain a new buffer
through the Output Synchronizing and
Error Processing routine (mcdule
IGGO19AR), and determines the address
of the first segment of the new buffer.
The PUT routine then presents this
address to the processing program and
returns control to the processing pro-
gram.

The TRUNC routine causes an EOB condi-
tion by setting the DCBRECAD and DCBEOBAD
fields so that they are -equal; it then
returns control to the processing program.

PUT Module IGGO019AK

Module IGGO19AK moves the present fixed-
length or undefined-length record into the
next available buffer segment. The OPEN
executor selects and loads this module if
the OPEN parameter list specifies:

- Output

and the DCB specifies:

28

PUT

Simple buffering

Move operating mode

Fixed-length (unblocked, blocked,
blocked standard) or undefined-length
record format.

The module consists of a PUT routine, a
PUTX routine, and a TRUNC routine.

The PUT routine operates as follows:

It receives control when a PUT macro-
instruction is encountered in a
processing program.

If an EOB condition exists, it issues a
BALR macro-instruction to obtain a new
buffer through the Output Synchronizing
and Error Processing routine (module
IGGO019AR), and then moves the record
from the work area into the first
buffer segment.

If no EOB condition exists, it moves
the record from the work area into the
next kuffer segment.

It tests for blocked records.

If blocked records are specified, it
determines the address of the next
segment and tests for a new EOB condi-
tion.

If unklocked records are specified or
if a new EOB condition exists, it
issues a BALR instruction to pass the
present buffer to the end-of-block rou-
tine, and then returns control to the
processing program.

If no new EOB condition exits, it

returns control to the processing pro-
gram.

The PUTX routine operates as follows:

e It receives control when a PUTX macro-

instruction is encountered in a
processing progranm.

It obtains the DCBRECAD value of the
input DCB, which points to the present
record in the input buffer.

It enters the PUT routine at the start.
The PUT routine then wuses the input
DCBRECAD value in place of the work
area address.

The TRUNC routine operates as follows:

e It receives control when a TRUNC macro-

instruction is encountered in a
processing program.

e Tt simulates an EOB condition.

e Tt issues a BALR instruction to pass
the present buffer to the end-of-klock
routine.

¢ On return of control from the end-of-
block routine it returns control to the
processing program.

PUT Module IGGO19AL

Module IGGO19AL moves the present
variable-length record into the next avail-
able buffer segment. The OPEN executor
selects and 1loads this module if the OPEN
parameter list specifies:

= Output
and the DCB specifies:

- PUT

- Simple buffering

- Move operating mode

- Variable-length (unblocked or
record format.

tlocked)

The module consists of a PUT routine, a
PUTX routine, and a TRUNC routine.

The PUT routine operates as follows:

e It receives control when a PUT macro-
instruction is encountered in a
processing program.

e It determines the address of the next
buffer segment and compares the length
of the next record with the remaining
buffer capacity.

e If the record fits into the buffer, it
moves the record, updates the length
field of the block, and tests for
blocked records.

e If blocked records are specified, it
returns control to the processing pro-
gram.

e If the record does not fit into the
buffer oxr if unblocked records are
specified, it issues a BALR instruction
to pass the present buffer to the
end-of-block routine. It issues anoth-
er BALR instruction to obtain a new
buffer through the Output Synchrcnizing
and Error Processing routine (module
IGG019AR). The PUT routine then moves

the record from the work area to the
buffer, updates the block-length field,
and returns control to the processing
program.

The PUTX routine operates as follows:

receives control when a PUTX macro-
encountered in a

o It
instruction is
processing program.

e It obtains the DCBRECAD value of the
input DCB, which points to the present
record in the input buffer.

e It enters the PUT routine at the start.
The PUT routine then uses the input
DCBRECAD value 1in place of the work
area address.

The TRUNC routine operates as follows:

e It receives control when a TRUNC macro-
instruction is encountered in a
processing program.

e It issues a BALR instruction to pass
control of the present buffer to the
end-of-klock routine.

e It issues another BALR instruction to
obtain a new buffer through the Output
Synchronizing and Error Processing rou-
tine (module IGGO19AR).

e It determines the address of the first
segment of +the new buffer, and then
returns control to the processing pro-
gram.

EXCHANGE BUFFERING PUT ROUTINES

Exchange buffering PUT routines use buf-
fers whose addresses and lengths are in the
channel program. For unblocked records, a
buffer address and length are in one chan-
nel command word (CCW). For blocked
records, addresses of buffer segments are
in successive CCWs (though the segments
themselves are not necessarily located next

to one another). In each pass through an
exchange buffering GET routine, it deter-
mines:

¢ The address of the next buffer segment.

e Whether an output buffer is to be

scheduled for emptying.
e Whether a new empty buffer is needed.

These three determinations are made at
every pass through a PUT routine.

Queued Sequential Access Method Routines 29

If the records are unblocked, a PUT
routine finds the address of the next
buffer in the Write CCW for the next
buffer.

If the records are blocked, a PUT rou-

tine finds the address of the next buffer
segment in the next Write CCW. The next
CCW is found ky adding 8 to the address of

the previous CCW, the value in the DCB

field DCBCCCW.

If an output buffer is to be scheduled
for emptying, a PUT routine passes control
to an end-of-block routine to cause sche-
duling of the buffer. An end-of-block
routine passes control to the I/O supervi-
sor to have it schedule the buffer. After
scheduling, the I/O supervisor returns con-
trol to the end-of-block routine, and it
returns control to the PUT routine.

If a new empty buffer is needed, a PUT
routine passes control to the Output syn-
chronizing and error processing routine.
If the channel program for the next buffer
has been executed without error, the syn-
chronizing routine enters the address of
the input/output block (IOB) that points to
that channel program into the DCBIOBA field
in the DCB.

An output buffer is to be scheduled for
emptying and a new buffer is needed if an
end-of-block condition exists. When using
exchange buffering with an output data set,
the buffer can be scheduled for emptying
when the address of the 1last record has
been placed in the last CCW or a record has
been moved into the last segment. Accord-
ingly, an end-of-block test is made before
leaving the routine. This test determines
whether the buffer is to be scheduled.
another test is made on entry to determine

whether a new kuffer is needed. An end-of-
block condition exists for unblocked
records each time the routine 4is entered;

for blocked records it exists if the
address of the current CCW (in field
DCBCCCW) and the address of the last CCW

(in field DCBLCCW) are the same.

A TRUNC routine sets an end-of-block
condition to empty the buffer. This end-
of-block condition is processed so that the
next entry to the PUT routine permits it to
operate as usual. Successive entries to a
TRUNC routine without intervening entries
to a PUT routine cause the TRUNC routine to
return control without performing any
processing.

The processing performed by the OPEN
executor for an output data set using QSAM
and exchange ruffering includes setting an
end-of-block condition. On the first entry
to an exchange buffering PUT routine it
processes this condition as usual.

30

There are two exchange
routines. Table 6 1lists each of these
routines and the conditions that cause
eithexr routine to be used. The OPEN execu-
tor selects one of the routines, loads it,
and places its address into the DCBPUT

buffering PUT

field. The table shows, for example, that
if Output, PUT, exchange, move, and
unblocked record format are specified,

module IGGO1l9EE is selected for use as the
PUT routine.

Table 6. Module Selector - Exchange Buf-
fering PUT Modules

[1 I
| Access Conditions | Selections |
!]]
v T T 7T 7T 7771
|Output, PUT/PUTX, Exchange |X|X|X|X|X|X|X]
t —————f=t=t—f—f-f=1-1
|Move mode IX1X1X) | OIX] |
t T S
| Sukstitute mode P IxIx X
------ e ot oty
|Unblocked record format I XIXIXIXIX) | |
e T t—4-t-4-1-1-4-1
|Blocked record format [I P 4 P4
b= R
| Fixed-1length [T T S O T I
|record format 1X1 | IX] |X|X]
p=——- e e it ot B
|Variable-length Pttt
| record format I ;4 T O O
¢ , —f—t—f-t-f--4-
|Undefined-1length | T T O R T I
| record format | 1Ixp x|
T T_L_L_L_L_T-L-1
| PUT Modules | | |
| | | |
t t-r-r-r-T—t-1-4
| IGGO19EE I XIX|XIX|X] | |
b ~=4=4—4—1—1-1-1
| IGGO19EF P11 IXIX]
L T TR T T WA O S S |

PUT Module IGGO19EE

Module IGGO1l9EE puts an unblocked record
into the next buffer. The OPEN executor
selects and 1loads this module if the OPEN
parameter list specifies:

- Output
and the DCB specifies:

- PUT, PUTX

- Exchange buffering

- Unblocked record format

- Move operating mode and fixed-,
variable-, or undefined-length record
format; or substitute operating mode
and fixed-, or undefined-length record
format.)

The
PUT

the

the

the

module consists of a PUT routine, a
X routine, and a TRUNC routine.

The PUT routine operates as follows for
Move mode:

It receives control if a PUT macro-
instruction is encountered in the
processing program.

It passes control to the Output Syn-
chronizing and Error Processing routine
(module IGG019AR) to obtain the next
buffer.

It determines the address of the Write
(data) CCW, enters the length in the
CCW and finds the buffer address.

It moves the record from the work area
into the buffer.

It passes control to the end-of-klock
routine to cause scheduling of the
buffer.

It returns control to the processing
program.

The PUT routine operates as follows for
Sukstitute mode:

It receives control when a PUT macro-
instruction is encountered in a
processing program.

It passes control to the Output Syn-
chronizing and Error Processing routine
(module IGGO019AR) to obtain the next
buffer.

It determines the address of the Write
(data) CCW, enters the length in the
CCW and finds the buffer address.

It exchanges the address of the work
area and the address of the buffer
area.

It passes control to the end-of-klock
routine to cause scheduling of the
buffer for output.

It returns control, and the address of
the buffer, to the processing program.

The PUTX routine operates as follows if
input DCB specifies simple buffering:

It receives control when a PUTX macro-
instruction is encountered in a
processing program.

e It passes control to the Output Syn-
chronizing and Error Processing routine
(module IGGO019AR) to obtain the next
kuffer.

e It finds the address of the input
buffer in the DCBRECAD field of the
input DCB and the input buffer length
in the DCBLRECL field.

® It moves the record from the input
buffer to the output buffer and enters
the length in the Write (data) CCW.

e It passes control to the end-of-block
routine to cause scheduling of the
buffer for output.

¢ It returns control to the processing
program.

The PUTX routine operates as follows if
the input DCB specifies exchange buffering:

e It receives control when a PUTX macro-
instruction is encountered in a
processing program.

e It passes control to the Output Syn-
chronizing and Error Processing routine
(module IGGO19AR) to obtain the next
buffer.

e Tt finds the address of the Read CCW
and the 1length of the buffer in the
DCBCCCW and DCBLRECL fields of the
input DCB; it finds the address of the
Write CCW in the DCBCCCW field of the
output DCB.

e It exchanges the buffer addresses and
enters the length into the Write CCW.

e It passes control to the end-of-block
routine to cause scheduling of the
buffer for output.

e It returns control to the processing
program. ‘

The TRUNC routine receives control when
a TRUNC macro-instruction is encountered in
a processing program; it returns control to
the processing program without performing
any processing. '

PUT Module IGGO1l9EF

Module IGGO19EF puts a blocked record
into the next buffer segment. The OPEN
executor selects and loads this module if
the OPEN parameter list specifies:

- Output

Queued Sequential Access Method Routines 31

and

The
PUT

32

the DCB specifies:

PUT, PUTX

Exchange kuffering

Move or substitute operating mode
Fixed-length blocked record format.

module consists of a PUT routine, a
X routine, and a TRUNC routine.

The PUT routine operates as follows:

control when a PUT macro-
encountered in the

It receives
instruction is
processing program.

If there is an end-of-block condition
on entry to the routine, it passes
control to the Output Synchronizing and
Error Processing routine (module
IGGO019AR) to obtain the next buffer.

If the move mode is used, and either
there is no end-of-block condition or
control has returned from the synchron-
izing routine, the PUT routine moves
the record from the work area into the
next buffer segment.

If the substitute mode is used, and
either there is no end-of-block condi-
tion or control has returned from the
synchronizing routine, the PUT routine
exchanges the current buffer segment
address of the output DCB for either
the current buffer segment address of
the input DCB or the address of a work
area.

It tests for another end-of-block con-
dition to determine if the buffer is to
be scheduled for output.

If there is no end-of-block condition,
it returns control to the processing
prcgram.

If there is an end-of-block condition,
it passes control to the end-of-block
routine to cause scheduling of the
buffer. On return of control to the
PUT routine, it returns control to the
processing program.

The PUTX routine operates as follows:
It receives control when a PUTX macro-

instructiocn is encountered in the
processing program.

e If there is an

end-of-block condition
on entry to the routine, it passes
control to the Output Synchronizing and
Error Processing routine (module
IGGO19AR) to obtain the next buffer.

If the input DCB uses simple buffering,
and either there is no end-of-block
condition or control has returned from
the synchronizing routine, the PUTX
routine moves the record from the input
kuffer segment into the next output
buffer segment.

If the input DCB uses exchange buffer-
ing, and either there is no end-of-
block condition or control has returned
from the synchronizing routine, the
PUTX routine exchanges the buffer
segment addresses of the current output
and input CCWs.

It tests for another end-of-block con-
dition to determine if the buffer is to
ke scheduled for output.

If there is no end-of-block condition,
it returns control +to the processing
program.

If there is an end-of-block condition,
it passes control to the end-of-block
routine to cause scheduling of the
buffer for output. On return of con-
trol to the PUTX routine, it then
returns control to the processing pro-
gram.

The TRUNC routine operates as follows:

e It receives control when a TRUNC macro-

instruction is encountered in a

processing program.

It returns control to the processing
program without any further processing
if the buffer was scheduled for output
on the preceding entry into the PUT or
PUTX routine.

It turns off the chain-data bit in the
CCW used in the preceding pass through
the PUT or PUTX routine. (The chain-
data kit is set on in every CCW in the
normal course of operation of the PUT
or PUTX routine to offset any possible
prior truncation.)

e It passes control to the end-of-block
routine to cause scheduling of the
buffer for output. On return of
control, the TRUNC routine then returns
control to the processing program.

UPDATE MODE PUTX ROUTINE

The Update mode PUTX routine differs
from other PUT routines in that it shares
its buffers (as well as the DCB and the
IOBs) with the Update mode GET routine. It
is the Update mode GET routine that deter-
mines the address of the segment, when the
end of the buffer is reached, and when a
new kuffer is needed. Thus all that is
left for the PUTX routine to do is to flag
the block for output.

There is one Update mode PUT routine; it
is part of module IGGO19AE which also
carries the Update mode GET routine. The

module (including the PUTX routine) is
described in the Update mode GET routine
section of this manual. \

END-OF~BLOCK ROUTINES

There are nine different end-of-klock
routines. They are selected for use with a
particular data set on the basis of the
access conditions specified by the process-
ing program for that data set. Unless
Inout or Outin is specified in the OPEN
parameter list, one end-of-block routine is
selected. If Inout or Outin are specified,
two end-of-block routines may be required.

An end-of-block routine receives control
from a GET or a PUT routine (when wusing
QSAM), or from a READ or WRITE routine
(when using BSAM). In general, end-of-
block routines pass control to the I/0
supervisor. An end-of-block routine
receives control from a GET or a PUT
routine when a buffer is ready for schedul-
ing. An end-of-block routine receives con-
trol from a READ or WRITE routine at each
pass through those routines. Control pass-
es from an end-of-block routine to the I1I/0
supervisor, except when a channel program
is chained to another one not yet executed.
End-of-block routines provide device ori-
ented entries for the channel program, such
as control characters and auxiliary storage
addresses. ‘

End-of-block routine descriptions are
grouped as follows:

e Ordinary end-of-block routines. These
routines perform device oriented proc-
essing when normal channel program
scheduling is wused (except when it is
used with an output data set with track
overflow).

¢ Chained channel-program scheduling end-
of-block routines. These routines
perform device oriented processing and
attempt to chain channel programs when
chained channel-program scheduling is

used.
e Track overflow end-of-block routine.
This routine performs device oriented

processing and computes segment lengths
and constructs count fields when track
overflcw (which wuses normal channel-
program scheduling) is used with an
output data set.

ORDINARY END-OF-BLOCK ROUTINES

Ordinary end-of-block routines process
channel programs for all devices. This
processing is independent of the progress
of a previous channel program and causes

access to proceed one channel program at a

time. In the case of output data sets on
direct-access devices, the routines 1limit
the size of the block to the track

capacity. For direct-access devices, an
ordinary end-of-block routine computes aux-
iliary storage addresses for output data
sets and input data sets with fixed-length

standard record format to avoid end-of-
track interruptions. For unit record
devices these routines process control
characters and PRTOV macro-instructions.

For an input data set with track overflow
progression from track to track is con-
trolled by the track overflow bit in the
overflowing segment, not by computation of
the end-of-block routine nor by an entry in
the channel program.

ordinary end-of-klock
routines. Table 7 1lists the routines a-
vailable and the conditions that cause a
particular routine to be used. For QSAM,
the CPEN executor selects one of the rou-
tines, loads it and places its address into
the DCBEOB field. For BSAM and BPAM the
OPEN executor selects one of the routines,
loads it, and places its address into both
the DCBEOBR and DCBEOBW fields. If Inout
or Outin is specified, a second end-of-
block routine may be selected and loaded.
Its address replaces one of the duplicate
addresses in the DCB. The table, for
example, shows that when normal channel-
program program scheduling is used, and the

There are four

Queued Sequential Access Method Routines 33

device type 1is magnetic tape, <routine
IGG019CC is selected and loaded for use as
the end-of-block routine for that DCB.

Table 7. Module Selector

of-Block Modules

- Ordinary End-

Access Conditions Selections

>
>
>
I
>

Normal channel-
program scheduling

>
|
o
|
|

Input, or

>

B S B St s ot St i S Sty stk chwe s s SOR amron

Update

A e o e e e e e e |

R e T Ty U UUI U T TP WSS S SR S S USSR L S Sy S SER S U U SRR SR SR S T - ——

Output, or

>
|
>
|

Inout, Outin

o e e o g — —— — ———— —— ———

|Card reader or
| paper tape reader

-~

|Printer or card
|punch

L —
|Magnetic tape
b——-
|Direct-access
|storage

L

i
VS St sl st st sl sty

>
o e e e e e e e e e e e e e e e o e e e o

>

r
|Track overflow
IS

>

¥

|Record format is
|not fixed-length
|standard

1

e a i i et et T e S ah s S

e e o e e o e e e e e e e e e e e s e e e o e e]

>

r

|Record format is
| fixed-1length
|standard

b

s
|No control
|character
t

r

|Machine control
| character

b

L}
|ASA control
| character

| PRTOV-No user exit

SR YR SOV SRS RS S — -

End-of-Block
Modules

1GG019ccC

>

b e o o e e e e e
<

L MR |

IGG019CD

IGGO19CE

IGGO019CF

I
_— ——i_1

[o Y — . — e c—— — S— —— o ———
|
|
|
|
|

s e bt e bt e s v e

-

44X
k-—d——"+-—ﬂk-—4
— e e e e |
b — 24

34

End-Of-Block Module IGG019CC

Module IGG019CC does nothing more than
cause a channel program to be scheduled.

The OPEN executor selects and loads this
module if one of the following conditions
exists:

- The DCB specifies normal channel-
program scheduling and magnetic tape,
card reader, or paper tape as the
device type.

- The data set is opened for Input, and
the DCB specifies normal channel-
program scheduling, direct-access
storage device, and a record format
other than fixed-length length stand-
ard.

- The data set is opened for Inout or
Outin, and the DCB specifies normal
channel-program scheduling, direct-
access device storage and a record
format other than fixed-length
standard. The address of this module
is placed in the DCBEOBR field.

- The data set is opened for Update.

The module operates as follows:

e It receives control when a GET or a PUT
routine finds that a buffer is ready to
be scheduled, or at the conclusion of
the processing performed by a READ or
WRITE routine.

e If the device type is magnetic tape,
paper tape, or card reader, the module
issues an EXCP macro-instruction and
returns control to the GET, PUT, READ,
or WRITE routine.

e If the device type is direct-access and
more than one IOB is associated with
the DCB, the module issues an EXCP
macro-instruction K and returns control
to the GET or READ routine.

e If the device type is direct-access. and
only one IOB is associated with the
DCB, the module copies the DCBFDAD
field in the DCB into the IOBSEEK field
in the 1IOB, issues an EXCP macro-
instruction and returns control to the
GET or READ routine.

End-of-Block Module IGG019CPB

Module IGG019CD schedules a channel
program after determining that the next
block fits on a track within the allocated
extents.

The OPEN executor selects and loads this
module if one of the following c¢onditions
exists:

- The data set is opened for Output, and
the DCB specifies normal channel-
program scheduling, no track-overflow,
and direct-access storage as the device

type.

- The data set is opened for Input, and
the DCB specifies normal channel-
program scheduling, direct-access

storage as the device type.

- The data set 1is opened for Inout or
Outin, and the DCB specifies direct-
access device storage. If the record
format (also specified in the DCB) is

other than fixed-length standard the

- address of this module is placed in the
DCBEOBW field. If the record format is
fixed-length standard, the address of
this module is placed in both DCBEOBR
and DCBEOBW fields. :

The module operates as follows:

e It receives control when a GET or a PUT
routine finds that a buffer is ready to
be scheduled, or at the conclusion of
the processing performed by a READ or
WRITE routine.

e It calculates the bklock 1length using
the value overhead-last record. (This
value is found in the resident 1I/0
device table. The address of the table
is in the field DCBDVTBL.) It compares
the calculated block length with the
value in the DCBTRBAL field of the DCB.

e If the block length is equal to or less
than the DCBTRBAL field value, the
module determines that the block fits

~on the track.

e« If the block length exceeds the
DCBTRBAL field value, the module - finds
the next track as follows:

It converts the full device address

(MBBCCHHR) of +the present track
into a relative address (TTR) by
passing control to the IECPRLTV

routine.
It adds 1 tc the value of TT.

It converts the relative address of
the next track into the full device
address by passing control to the
IECPCNVT routine.

e If there is another track in the allo-
cated extents, its full address has
been entered in the field DCBFDAD and
the block fits on the track.

o If there 1is no other +track in the
allocated extents (as shown by the
erxor return code from routine
IECPCNVT), an EOV condition exists.

The module sets the DCBCIND1 field in
the DCB and the CSW field in the IOB to
show this, and returns control to the
GET, PUT, READ, or WRITE routine with-
out issuing an EXCP macro-instruction.
The EOV condition is eventually recog-
nized and processed, in (QSAM by the
synchronizing routine, in BSAM by the
CHECK routine.

e When the module determines that the
block fits on the track, the module
calculates the actual block 1length,
using the value overhead-not 1last
record. (This value is found in the
resident I/0O device table.) It adjusts
the value in the DCBTRBAL field by this
amount, and updates the DCBFDAD field

and the ID field of the count area of
the klock (located immediately after
the channel program). It then issues

an EXCP macro-instruction and returns
control to the GET, PUT, READ, or WRITE
module.

End-of-Block Module IGGO19CE

Module IGGO19CE, if necessary, modifies
channel programs for unit record output
devices when ASA control characters are not
used. The module then causes scheduling of
the channel program, whether it was modi-
fied or not. The OPEN executor selects ana
loads this module if the DCB specifies:

- Normal channel-program scheduling

- Punch, or printer

= Machine control
trol character.

character, or no con-

Queued Sequential Access Method Routines 35

The module operates as follows:

e It receives control when a PUT routine
finds that a buffer is ready to be
scheduled, or at the conclusion of the
processing performed by a WRITE rou-
tine.

e It adjusts, in the channel program, the
length and starting address either for
the 1length field of variable-length
records or for a control character. If
there are variakle-length records and a

control character, the module adjusts
for both.
e If a control character is present, it

inserts it as the command byte of the
Write channel command word (CCW).

e It tests the DCB field at location
(DCBDEVT+1) for a PRTOV mask. If a
PRTOV mask is present, the module tem-
porarily inserts it into the 1length
field of the NOP CCW and sets the first
bit in the IOB. The PRTOV appendage
(IGG019CL) tests for the presence of
the IOB bit and the CCW mask.

e It issues an EXCP macro-instruction and
returns control to the PUT or WRITE
routine. i

End-of-Block Module IGGO019CF

Module IGGO19CF modifies channel pro-
grams for wunit record output devices when
an ASA control character is present. The
module then causes scheduling of the chan-
nel program, whether it was modified or
not. The OPEN executor selects and loads
this module if the DCB specifies:

- Normal channel-program scheduling
- Punch, or rrinter
- ASA control character.

The module operates as follows:

e It receives control when a PUT routine
finds that a buffer is ready to be
scheduled, or at the conclusion of the
processing performed by a WRITE rou-
tine.

¢ It adjusts, in the channel program, the
length and starting address for the
control character, and for the length
field of variable-length records.

36

e It translates the control character and
inserts it as the command byte of the
control channel command word (ccwW)
which precedes the Write CCW.

e It tests the DCB field
(DCBDEVT+1) for a PRTOV mask. If a
PRTOV mask is present, the module
inserts it into the length field of the
Control CCW and sets the first bit in
the IOB. The PRTOV appendage
(IGG019CL) tests for the presence of
the IOB bit and the CCW nask.

at location

e It issues an EXCP macro-instruction and
returns control to the PUT or WRITE
routine.

CHAINED CHANNEL-PROGRAM SCHEDULING
END-OF-BLOCK ROUTINES

Chained channel-program scheduling con-
sists of Jjoining the channel programs
before execution and parting and posting
the channel programs after execution.
Joining is performed by the end-of-block
routines and mainly uses the input/output
block (IOB); parting and posting is per-
formed by appendages and uses the interrup-
tion control block (ICB). (For a descrip-
tion of the parting process, refer to the
program controlled interruption -PCI-
appendages.) The IOB constructed by the
OPEN executor when chained channel-program
scheduling is used differs from the IOB
used in normal channel-program scheduling.
These differences are illustrated in Figure
6 and tabulated in Table 8.

(b)
SAM Prefix to |OB when
chained channel-program
scheduling is used

Flags ! Offsets
First ICB

(a)
SAM Prefix to IOB when
normal channel-program
scheduling is used

Event Control Block
Last NOP CCW

Next |OB Event Control Block

Standard 108 Standard 10B

ECB Address **

2 Words

‘ ECB Address *

- 2 Words -

** Always shows the address of
the ECB in the SAM prefix,
irrespective of whether QSAM
or BSAM is used.

* When QSAM is used, the address
is that of the ECB in the
SAM prefix; when BSAM is used
the address is that of the ECB
in the data event control block
(DECB).

Figure 6. Comparison of the IOB SAM Pre-
fixes for Normal and for Chained
Scheduling ‘ ‘

These routines join channel programs so
that the channel executes successive chan-
nel programs without interruption as if
they were one continuous channel program.
To join the present channel program to one
already scheduled, the end-of-block routine
finds the last CCW of the preceding channel
program, by referring to the IOB, and
changes that CCW from a NOP command to a
TIC command. If this joining is performed
before the channel attempts to execute
(more precisely, before it fetches) that
CCW, the joining process is successful. If
the execution of the preceding channel
program is completed while the routine is
operating the joining is unsuccessful. The
routine tests the success or failure of the
joining by testing whether the IOB has been
posted as completed. If successful, con-
trol returns to the calling program; if
unsuccessful, the routine resets the IOB
for the EXCP macro-instruction and passes
control to the I/O supervisor.

The chained scheduling end-of-block rou-
tines, 1like the ordinary end-of-block rou-
tines, provide device oriented entries for
channel programs. For direct-access devi-
ces they compute auxiliary storage address-
es; for unit record devices they process
control characters. (No processing is per-
formed for the PRTOV macro-instruction

Table 8.

since it and chained scheduling are mutual-
ly exclusive.)

There are four chained scheduling end-
of-block routines, each performing joining
and . channel program entry processing for a

different set of access condition options.
Table 9 1lists the routines available and
the conditions that cause a particular

routine to be used.

For QSAM, the OPEN executor selects one

of the routines, loads it and places its
address into the DCBEOB field. For BSAM
and BPAM the OPEN executor selects one of

the routines, - loads it, and places its
address into both the DCBEOBR and DCBEOBW
fields. If Inout or Outin is specified, a
second end-of-klock routine may be selected
and lcaded. 1Its address replaces one of
the duplicate addresses in the DCB. '

The table, for example, shows that when
chained scheduling is used, the Open mode
is Input, and the device type is magnetic
tape, routine IGGO19CW 1is selected and
loaded for use as the end-of-block routine
for the DCB.

Comparison of the IOB SAM Prefixes for Normal and for Chained Scheduling

[———— e ————— T

Prefix Parameter

Normal Scheduling

T

Chained Sc¢heduling

Number of IOBs

As many as there are buffers
or channel programs

Only 1
ICBs as there are buffers or
channel programs)

(There are as many

Size of SAM Prefix 2 words

4 words

Contents of
Link Address field

Address of the next IOB

Flags
Offsets

Use of

ECB field program execution

Used in QSAM tc post channel
(In BSAM,
the ECB in the DECB is used)

a channel program execution
that is terminated by
channel end interruption
(that is, channel program
chaining has been broken)

‘}__...
Contents of
IOBFICR field

Field does not exist

Address of the first ICB

Cthents of
JOBLNOP field

Field does not exist

Address of NOP CCW of channel
program scheduled last

e e s ki e e i e — — —— —— e o o s —— e c— —— e ———)

I
I
4
|
|
I
4
T
|
l
$
I
|
+
| Used in QSAM and BSAM to post
I
|
I
|
I
4
T
I
I
4-
+
|
|
4

Queued Sequential Access Method Routines 37

Table 9. Module Selector-Chained Channel-
Program Scheduling End-of=Block

Modules
r N i T 1
N	
Access Conditions	Selections
— t—r-r-r-v-r-1-7-1	
Chained channel-program	X
scheduling T T T N	
t , R b ot	
Input IXixppxe el	
b ~4=4-f-1-t-4-4-1-	
Output [T IXE XXX [X]	
t 44—+	
Card reader 10:4 F T T T T I	
L Jed ottt L]	
l'_ TT- T TtT71T 1T 1T7T1	
Printer or card punch PP b XXX	
b , —t—t 4=t -4-4-1-1	
Magnetic tape FIXIXE L 11	
[N ———— I IO TSN NSO OGN ESNN SN I I	
v . TT7T-7T-7T77T7T7T71	
Direct-access storage [T I -4 -4 I I I	
F e i B	
No control character 1P Ixp 1	
- e S R
|Machine control character| | | | | | |X] |
t o o e
|ASA control character [Py
B e
| I O O T T R I
| End-of-Block Modules R O O T T O I |
I A O T I T O I
¢ , t-t-t-t-t-t-i-1-4
I 1GG019CV R Y -9 I A |
b o v s vt B e |
| IGG019CwW (PAPSP AP N I I
% , v oo
| IGG019Cx [T I I B 4 P9 I
b I et ot |
| IGe019cy [T T I I I Y Y
L - il L L 1. _1_1_3J

End-of-Block Module IGG019CV

Module IGG019CV computes from the track
balance (and from further allocated extents
on this volume, if necessary) a valid
storage address for a channel program for
an output data set on a direct-access
device, and attempts +to join the channel
program to the preceding one. The OPEN
executor selects. and loads this module if
the OPEN parameter list specifies:

- Output

and the DCB specifies:
- Chained channel-program scheduling
- Direct-access storage.

The module operates as follows:

38

e It receives control from a PUT routine

when that routine finds that a buffer
is ready to be scheduled, or from a
WRITE routine at the conclusion of its
processing. -

It calculates the block 1length wusing
the overhead value for a last block on
a track. (This value is found in the
resident I/0 device table. The address
of the table is in the field DCBDVTBL.)
It compares the calculated block length
with the value in the DCBTRBAL field of
the DCB.

If the block length is equal to or less
than the DCBTRBAL field value, the
module determines that the block fits
on the track.

If the block length exceeds the
DCBTRBAL field value, the module calcu-
lates the next sequential track address
and compares it with the end address of
the current extent shown in the data
extent block (DEB).

If no end-of-extent condition exists,
it determines that the block fits on
the track.

If an end-of-extent condition exists,
it seeks a new extent in the DEB.

If a new extent exists, it updates the
DCBFDAD and DCBTRBAL fields and deter-
mines that the block fits on the track.

If there is no further extent, an EOV
ccendition exists. The module sets the
DCBCIND1 field in the DCB and the CSW
field in the IOB to show this, and
returns control to the GET, PUT, READ,
or WRITE routine without issuing an
EXCP macro-instruction. The EOV condi-
tion is eventually recognized and proc-
essed, in OSAM by the synchronizing
routine, in BSAM by the CHECK routine.

If the module determines that the block
fits on the track, the module calcu-
lates the actual block length using the
overhead value for a block that is not
the last on a track. (This value is
found in the resident I/0 device
table.) It adjusts the value in the
DCBTRBAL field by this amount, and
updates the DCBFDAD field and the 1ID
field of +the count area of the block
(located immediately after the channel
program) . :

e If the block fits on the track, the

module next attempts to join the chan-
nel program for the current buffer to
the preceding channel program (that is,
chain schedule) by:

Setting the ICB to not-complete.

Inserting the address of either the
Write or the Search CCW of this
channel program into the NOP CCW of
the preceding channel program, The
address of the Write CCW is insert-
ed if the present and the preceding
channel program address the same
track, The address of the Search
CCW is inserted if the present and
the preceding channel programs ad-
dress different tracks. In this
case, the Search CCW addresses rec-
ord zero of the next track,

Changing the NOP CCW in the preced-
ing channel program to a TIC CCW.

bpdating the SAM IOB prefix block
to point to the end of the current
channel program.

It determines whether the joining was
successful by testing the ECB (pointed
to ky the IOB) for a completion posting
by the I/0 supervisor.

If the I/0 supervisor did not post the
event as completed, the joining was
successful and the routine returns con-
trol to the calling routine.

If the I/0 supervisor did post the
event as completed, the routine tests
the ICB for the present channel program
to find whether the joining was suc-
cessful or not.

If the present ICB remains unposted,
the present channel program was not
joined to the preceding one. The rou-
tine prepares to cause restart of the
channel by copying the Seek address and
the channel program start address from
the current ICB into the IOB, and uses
the EXCP macro-instruction to cause
scheduling of the channel prograr. It
then returns control to the calling
routine.

If the present ICB is posted complete,
the present channel program was joined
successfully. (The routine was inter-
rupted long enough, between the joining
and the testing, for the channel pro-
gram to be executed and for the channel
end appendage to post the ICB.) The
routine ' returns control to the calling
routine.

End-of-block Module IGGO19CW

Module IGGO019CW attempts to join the
present channel program to the last one in
the chain of scheduled channel programs.
The OPEN executor selects and loads this
module if either of the following condi-
tions exists:

- The OPEN parameter list specifies Input
and the DCB specifies chained channel-
program scheduling and any device.

- The OPEN parameter list specifies
Output and the DCB specifies chained
channel program scheduling and magnetic
tape.

The module operates as follows:

e Tt receives control from a GET or a PUT
routine when that routine finds that a
buffer is ready to be scheduled, or
from a READ or WRITE routine at the
conclusion of its processing.

e If the device type 1is magnetic tape,
the routine determines the increment
value and stores it in the ICB.

o The module attempts to join the channel
program for the current buffer to the
preceding channel program (that is,
chain schedule) by:

Setting the ICB to not-complete.

Inserting the address of the cur-
rent channel program into the NOP
CCW of the preceding channel pro-
gram.

Changing the NOP CCW in the preced-
ing channel program to a TIC CCW.

Updating the SAM IOB prefix block
to point to the end of the current
channel program.

e It determines whether the joining was
successful by testing the ECB (pointed
to by the IOB) for a completion posting
by the I/O supervisor.

e If the I/0 supervisor did not post the
event as completed, the joining was
successful and the routine returns con-
trol to the calling routine.

e If the 1I/O supervisor did post the
event as completed, the routine tests
the ICB for the present channel program
to find whether the joining was suc-
cessful or not.

gueued Sequential Access Method Routines 39

ICB remains unposted,
the present channel program was not
joined to the preceding one. The rou-
tine prepares to cause restart of the
channel by copying the channel program
start address (and the Seek address, if
direct-access storage) from the current
ICB into the 1IO0OB, and uses the EXCP
macro-instruction to cause scheduling
of the channel program. It then
returns control to the calling routine.

e If the present

e If the present ICB is posted complete,
the present channel program was Jjcined
successfully. (The routine was inter-
rupted long enough, between the joining
and the testing, for the channel pro-
gram to be executed and for the channel
end appendage to post the ICB.) The
routine returns control to the calling
routine.

End-of-block Module IGG019CX

- Module 1IGG019CX, if necessary, modifies
channel programs for unit record output
devices when ASA control characters are not
used. The module then attempts to join the
current channel program to the preceding
one. The OPEN executor selects and 1loads
this module if the DCB specifies:

- Chained channel-program scheduling

- Printer or card punch

- No control character, machine control
character.

The module operaﬁes as follows:

e It receives control from a PUT xroutine
when that routine finds that a buffer
is ready for scheduling, or from a
WRITE routine at the conclusion of its
processing.

e It adjusts the length entry and the
start address entry in the channel
program for either a control character
or a variakle-length block length field
or for both, if both are present.

e It inserts the control character, if
present, as the command byte of the
Write channel command word (CCW).

¢ It attempts to join the channel program
for the current buffer to the preceding
channel program (that is, chain
schedule) by:

Setting the ICB to not-complete.
Inserting the address of the cur-
rent channel program into the NOP

CCW of the preceding channel pro-
gram.

40

Changing the NOP CCW in the preced-
ing channel program to a TIC CCW.

Updating the SAM IOB prefix block
to point to the end of the current
channel program.

* It determines whether the joining was
successful by testing the ECB pointed
to by the IOB for a completion posting
by the I/0 supervisor.

¢ If the I/0 supervisor did not post the
event as completed, the Jjoining was
successful and the routine returns con-
trol to the calling routine.

o If the I/O supervisor did post the
event as completed, the routine tests
the ICB for the present channel program
tc find whether the joining was suc-
cessful or not.

¢ If the present ICB remains unposted,
the present channel program was not
joined to the preceding one. The rou-
tine prepares to cause restart of the
channel by copying the channel program
start address from the current ICB into
the I0OB, and uses the EXCP macro-
instruction to cause scheduling of the
channel program. It then returns
control to the calling routine.

o If the present ICB is posted complete,
the present channel program was joined
successfully. (The routine was inter-
rupted long enough, between the joining
and the testing, for the channel pro-
gram to ke executed and for the channel
end appendage to post the ICB.) The
routine returns control to the calling
routine.

End-of-Block Module IGG019CY

Module IGG019CY modifies channel pro-
grams for unit record output devices when
ASA control characters are used. The

module then attempts to join the current
channel program to the preceding one. The
OPEN executor selects and locads this module
if the DCB specifies:

- Chained channel-program scheduling
- Printer or card punch
- ASA control character.

The module operates as followé:

o It receives contrcl from a PUT routine
when that routine finds that a buffer
is to be scheduled, or from a WRITE
routine at the conclusicn of its proc-
essing.

o It adjusts

the 1length entry and the
start address entry in the channel
program for either the control charac-
ter or a variakle-length block 1length
field or for both, if both are present.

It translates the control character and
inserts it as the command byte of the
control CCW (which precedes the Write
CCW).

It attempts to join the current channel
program to the preceding one (that is,
chain schedule) by:

Setting the ICB to not-complete.

Inserting the address of the cur-
rent channel program into the NOP
CCW of the preceding channel pro-
gram. '

Changing the NOP CCW in the preced-
ing channel program to a TIC CCW.

Updating the SAM IOB prefix block
to point to the end of the current
channel program.

It determines whether the joining was
successful by testing the ECB pointed
to by the IOB for a completion posting
by the I/0 supervisor.

If the I/0 supervisor did not post the
event as completed, the joining was
successful and the routine returns con-
trol to the calling routine.

If the I/0 supervisor did post the
event as completed, the routine tests
the ICB for the present channel program
to find whether the 3joining was suc-
cessful or not.

If the present ICB remains unposted,
the present channel program was not
joined to the preceding one. The rou-
tine prepares to cause restart of the
channel by copying the channel program
start address from the current ICB into
the I0B, and uses the EXCP macro-
instruction to cause scheduling of the
channel program. It then returns
control to the calling routine.

If the present ICB is posted complete,
the present channel program was joined
successfully. (The routine was inter-
rupted long enough, between the joining
and the testing, for the channel pro-
gram to be executed and for the channel
end appendage to post the ICB.) The
routine returns control to the calling
routine.

TRACK OVERFLOW END-OF—ELOCK ROUTINE

The track overflow end-of-block routine
processes channel programs for output data
sets whose blocks may overflow from one
track onto another. (See Figure 7.) Such
a block is written by a channel program
consisting of a channel program segment for
each track to be occupied by a segment of
the klock. The track overflow end-of-block
routine computes the address of each track
written on; to progress from track to track
(to continue writing successive segments of
one kLlock) the channel program uses the
Search command with the multiple-track
(M/T) mode.

a - Block Length is Less Than Track Balance
(No Overflowing Segment)

| Data]

b - Block Length is Greater Than Track Balance
(First Segment Overflows Track)

[Data]

{ Data (Continued) |

¢ - Block Length is Greater Than Track Capacity
(Several Overflowing Segments)

I Data (Continved) I

I Data (Continued) I

I Data (Continued) I

|Da|'a (Continued) I

Figure 7.

Track Overflow Records

There is one track overflow end-of-block
routine (module IGGO019C2); it is used with
output data sets. If the access conditions
shown in Tabkle 10 are specified for a DCB,
the OPEN executor selects this routine,
loads 1it, and places its address into the
DCBEOB field or DCBEOBW. (For an input
data set with track overflow, end-of-block
module IGG019CC is used.)

Takle 10. Module Selector - Track Overflow
End-cof-Block Module

r——- T 1
| ' | o
| Access Conditions | Selections |
| | |
e P e 1
| Output, Inout, Outin | X

4 4
- T 1
| Track Overflow | X |
| t !
| | I
| End-of-Block Module | |
| I |
[— 4 4
r [} 1l
| IGG019c2 | X]
L 1 3

Queued Sequential Access Method Routines 41

End-of-Block Module IGG019C2

Module IGG019C2 performs device-oriented
processing when track overflow is permitted
with an output data set. The OPEN executor
selects and loads this module If the OPEN
parameter list specifies:

- Output, Inout, or Outin

and the DCB specifies:
- Track overflow.
The module operates as follows:
¢ It receives control from a PUT routine

when that routine finds that a buffer
is to be scheduled, or fror a WRITE

routine at the conclusion of its proc-
essing.
* It compares the block length with the

space remaining on the track last writ-
ten on.

e If the entire block fits on this track,

the module completes a channel program
(consisting of one channel program
segrment) for writing the block, updates

the track balance, and passes control
to the I/0 supervisor.

e If at least a one-byte data-field fits
on this track, the module completes a
channel program segment for the segment
of the block that fits on the track (by
entering the Seek address, main storage
address, and count field for the chan-
nel program segment) and tests if there
is another track in the same extent.

e If the next track is in this extent, it
compares the remaining block 1length
with the track capacity.

e If the remainder of the block exceeds
the track capacity, the module proceeds
as when at least one byte fits on the
track.

less
the module

e If the remainder of the block is
than the track capacity,
completes +the final channel program
segment for the final segment of the
block, updates the track balance, and
passes control to the I/0O supervisor.

42

e If the next track is 'not in this
extent, the module passes control to
the track balance routine via an SVC 25
instruction. (That routine will erase
all tracks in the current extent that
were found insufficient for the block
to be written.) On return of control
from the track balance ©routine, the
module tests if there 1is another
extent.

e If there is another allocated extent on
this volume, the module reconstructs
the channel program by proceeding when
at least one byte fits on a track.

e If there is no other allocated extent

" on this volume, an end-of-volume condi-
tion exists. The module sets the
DCBCIND1 field in the DCB and the CSW
field in the IOB to show this, and
returns control to the PUT or WRITE
routine without issuing an EXCP macro-
instruction. The EOV condition is
eventually recognized and processed, in
OSAM by the synchronizing routine, in
BSAM by the CHECK routine.

SYNCHRONIZING AND ERROR PROCESSING ROUTINES

A synchronizing and error processing
routine synchronizes execution of the proc-
essing program with execution of the chan-
nel programs, and performs error processing
to permit continued access to the data set
after an error was encountered during the
execution of a channel program.

There are five synchronizing and error
processing routines. Four of the five
routines:

- Are unique to QSAM
- Both synchronize and process errors

- Receive control from a GET or a PUT
routine)

- Are an address in the

DCB.

pointed to by
The fifth routine, the track overflow
asynchronous error processing routine:
- Is shared between QSAM and BSAM
- Only processes errors
- Receives control by being scheduled by
the track overflow abnormal end appen-

dage

- Is pcinted to. by an address in an
interruption request block (IRB).

To synchronize, the QSAM Input and Out-
put Synchronizing and Error Processing rou-
tines (modules IGGO019AQ and IGG019AR)
return control to the GET or PUT routine
immediately if the channel program executed
without error; or wuse the WAIT macro-
instruction if the channel program has not
yet executed. To process errors, these
routines pass control +to the SYNAD/EOV
executor (using SvC 55) to distinguish
between the processing necessary for unit
check - that is, a permanent error - and
unit exception - that is, an end-of-volume
condition.

For a unit check the executor returns
control to the synchronizing routine, which
in turn passes control to the SYNAD
routine. Oon return of control from the
SYNAD routine, the synchronizing routine
again passes control to the executor to
implement the error options. For the
ACCEPT and SKIP options, control returns
once more to the synchronizing routine. It
now operates as when it is first entered.

For a unit exception the executor causes
end-of-volume processing by the end-of-
volume routine of I/0 support. That
routine passes control to the EOV/new vol-
ume executor. The executor returns control
to the synchronizing routine. It now oper-
ates as when it is first entered.

To synchronize the Paper Tape Character
Conversion Synchronizing routine (contained
in the paper tape GET module IGG019AT)
returns control to the GET routine immedi-
ately if the channel program executed with-
out error; or uses the WAIT macro-
instruction if the channel program has not
yet executed. To process errors, the
routine passes control to the SYNAD rou-
tine. When control returns from the SYNAD
routine to the synchronizing routine, the
latter implements the error option. (The
equivalent of an end-of-volume condition is
handled by the paper tape GET routine.)

To synchronize, the Update Synchronizing
and Error Processing routine - (module
IGGO019AF), returns control to the GET rou-
tine immediately if the channel program
executed without error; or uses the WAIT
macro-instruction if the channel program
has not yet executed. To process an end-
of-volume condition, the routine suspends
volume-switching until processing on the
old volume is finished. To process
permanent errors, the: routine - interprets
the error option to assure that neither a
buffer nor a block is skipped.

The error processing performed by the
track overflow asynchronous error process-

ing routine (module IGG019C1l) distinguishes
two kinds of errors - those in the block
being read and those in the block being
skipped over to read the next one, For
errors in the block being read, the routine
sets the channel program to permit the
processing program to continue reading the

segments and blocks beyond the one in
error; for errors in the block being
skipped, the routine resets the channel
program and uses the EXCP °© macro-

instruction, sc that the processing program
is unaware of the error.

For an error whose character and
occurrence the processing program must know
about (errors in segments of the block
being read into the buffer), the track
overflow routine addresses the IOB to the
next track and its channel program and
causes control to return to the processing
program via the TCB queue. For errors
whose correction does not affect the proc-
essing program (errors in segments of the
block being skipped over), the module uses
the EXCP macro-instruction to skip around
the defective segment to present the proc-
essing program with the block it expects to
obtain. This latter condition only holds
if an error occurs on a Read-Data CCW with
the Skip bit on for a segment that is not
the last or only segment on an alternate
track. In that case control returns to the
processing program when the desired block
is in the buffer in its entirety. Fox
errors that 'do not permit reading the
entire block in one pass without error,
control returns to the processing program
with the IOB set to a track and channel
program that permits reading the segments
following the defective one. The defective
segment and the preceding good segments of
the block are in the buffer at the time
control is returned to the processing pro-
gram.

Four of the five routines described here
(those enumerated in Table 11) are unique
to QSAM. One of these routines gains
control when a GET or a PUT routine finds
that it needs a new buffer. Takle 11 lists
the routines available and the ~conditions
that cause a particular routine to be used.
The OPEN executor selects one of the rou-
tines, loads it, and puts its address into
the DCBGERR/PERR field.

The fifth routine (identified in Takle
12) is shared ketween QSAM and BSAM. It
gains control be being scheduled for even-
tual execution by track overflow flow
abnormal end appendage IGG019C3. The OPEN
executor locads it and enters its address in
an IRB; the address of the IRB is in the
DEB. (If QSAM is used, module IGG019AQ is
also used.) :

Queued Sequential Access Method Routines 43

Table 11. Module Selector - Synchronizing

and Error Processing Modules

| T I i
| Access Conditions | Selections |
I] |
N — 4 d
S T T T T 1
| GET X Ix | Ix |
e e |
| PUT x|
b 1 4 1 L 1
1) . T T T T 1
| Input, Readback 1 1X1 | |
% s SRR
|output [I P O
[L 4 4 1 d
r T T T T a |
|Update | I R
k=== ottt
| Paper tape 1 1 1 I1x |
| character conversion | T |

I 4 1 1 4 4
v T T T T 1
| I R B
| Modules R Y T I |
| [I I
[N 1 1 1 1 d
v T T T T 1
] IGGO19AF [D: S N N
[l 4 4 4 4 J
L) T T T T |
] IGGO019AQ [-G I I
L N 4 4 L 4
v ~ T T T T 1
| IGGO19AR 11 x|
L 4 4 4 4 J
v T T T T 1
| IGG019AT* [N I b
'f L L L L ;Il
|*This module includes both the paper tape|
| synchronizing and error processing rou-|
| tine and the paper tape GET routine. |
| Both routines are described in the GET|
| routines section of this publicaticn. |
L J

Module Selector - Track Overflow

Table 12.
Asynchronous Error Processing
Module ‘
| 1 i
| Access Conditions | Selections
i -
|GET 1 x|
o } }
| READ | X
% t
| Input, Inout, Outin | X X
Track Overflow X | X
| 1
| Module | |
| |
p-—- et B 1
IGG019cC1 | X | X |
L i J

uy

SYNCHRONIZING MODULE IGGO19AF (UPDATE)

Module IGGO19AF finds the next buffer
and assures that it has been refilled. If
a unit status prevented refilling the buf-
fer, the module processes the pending chan-
nel programs according to whether they are
Empty-and-Refill or Refill-only channel
programs. The OPEN executor selects and
loads this module if the OPEN parameter
list specifies:

- Update
and the DCB specifies:
- GET.

The module operates as follows if no
error occurred:

e It receives control when the Update GET
routine finds that a new buffer is
needed. It also receives control after
the FEOV macro-instruction is encoun-
tered in a processing program, once
from the Update GET routine (when the
FEOV . executor schedules the last
buffer) and once directly from the FEOV
executor (when it awaits execution of
the scheduled buffers.)

e Tf the next buffer has been refilled,
the module returns control to the
Update GET routine.

» If the channel program for the next
buffer has not yet executed, the module
awaits its execution.

The module operates as follows if an
end-of-volume condition was encountered:

e It receives control when the Update GET
routine finds that a new buffer is
needed or when the FEOV executor awaits
execution of the scheduled buffers.

e If the channel program for the next
buffer encountered an end-of-volume
condition, or if control has come to
this module due to an FEOV macro-
instruction, the module finds the IOBs
flagged for output. It then resets the
command-chain flag at the end of the
Empty portion of the channel program to
off, and schedules the Empty channel
programs for execution via an EXCP
macro~instruction.

* If all Empty channel programs have been
executed, or if ncone are pending, the
wmodule passes control to the SYNAD/EOV
executor via an SVC 55 instruction. 1If
this module has control due to an FEOV
macro-instruction, control returns to
the routine that passed control.

e If a permanent error 1is encountered
during execution of Emnpty channel
programs for an end-of-volume condition
or for an FEOV macro-instruction, con-
trol passes to the SYNAD routine, if
one 1is present. The SYNAD routine
returns control to this module.

The module then processes the error
option as follows:

e Accept or Skip Option:
The pending Empty channel programs
are rescheduled for execution via
EXCP macro-instructions.

¢ Terminate Option:

Control passes to the ABEND rou-
tine. -

The module operates as follows if a

permanent error was encountered:

e It receives control when the Update GET
routine finds that a new buffer is
needed. '

If the channel program for the next
buffer encountered a permanent error
and a SYNAD routine 1is present, the
module passes control to the SYNAD
routine.

If control returns from the SYNAD rou-
tine, or if there is no SYNAD routine,
the module processes the error option
in the following manner:

e Accept Option:

If the error occurred in the Empty
portion of a channel program, the
module resets the IOB to point to
the Refill portion of the channel
program and issues an EXCP macro-
instruction for it and all
following IOBs.

If the error occurred in the Refill
portion of - a channel program, the
module posts the current IOB as
complete without error and issues
an EXCP macro-instruction for all
the IOBs except the present one.

The module assures refilling of the
buffer associated with the first
I0OB and then returns control to the
Update GET routine.

e Skip Option:

If the error occurred in the Empty
portion of a channel program, the
module operates as it does for the
Accept option.

If the error occurred in the Refill
portion of a channel program, the
module issues an EXCP macro-
instruction for all IOBs.

The module assures refilling of the
buffer associated with the first
IOB and then returns control to the
Update GET routine.

e Terminate Option:

If the error occurred in the Empty
portion of a channel program, the
module passes control to the ABEND
routine.

If the error occurred in the Refill
portion of a channel program, the
wodule finds the end of the Empty
portion of any pending Empty-and-
Refill channel programs, resets the
command-chain flag to off, and
issues an EXCP macro-instruction
for these Empty channel programs.
Oon execution of all the channel
programs, the module passes control
to the ABEND routine.

SYNCHRONIZING MODULE IGGO019AQ (INPUT)

Module IGG019AQ finds the next input
buffer, determines its status, and passes a
full buffer to the GET routine. The OPEN
executor selects and loads this module if
the OPEN parameter list specifies:

- Input, Readback
and the DCB specifies:
- GET.
The module operates as follows:

e It receives control when a GET routine
determines that a new buffer is needed.

e It finds the next IOB and tests the
status of the channel program associat-
ed with that IOB.

e If the channel program 1is not yet
executed, the module issues a WAIT
rmacro-instruction.

¢ If the channel program has been execut-
ed normally, the module updates the
DCBIOBA field to point to this IOB and
returns control to the GET routine.

Queued Sequential Access Method Routines 45

e If an error occurred during the execu-
tion of the channel program, the module

issues an SVC 55 instruction to pass
control +to the SYNAD/EOV executor
(IGCOO05E). (For an EOV condition,
control eventually passes to the end-

of-volume routine of I/0 support and
returns after the next volume has Dbeen
found and the purged channel programs
have been rescheduled. For a
description of the flow of control from
the SYNAD/EOV executor for a permanent
error condition, refer to the section:
Sequential Access Method Executors, in
this publication.)

SYNCHRONIZING MODULE IGGO019AR (OUTPUT)

Module IGGO19AR finds the next output
buffer, determines its status, and passes
an empty buffer to the PUT routine. The
OPEN executor selects and loads this module
if the OPEN parameter list specifies:

- Output
and the DCB specifies:
- PUT.
The module operates as follows:

e It receives control when a PUT routine
determines that a new buffer is needed.

e It finds the next IOB and tests the
status of the channel program associat-
ed with that IOB.

e If the channel program is
executed, the module issues a
macro-instruction.

not yet
WAIT

e If the channel program has been execut-
ed normally, the module updates the
DCBIOBA field to point to this IOB and
returns control to the PUT routine.

e If an error occurred during the execu-
tion of the channel program, the module
issues an SVC 55 instruction to pass
control to the SYNAD/EOV executor
(IGCO005E). (For an EOV condition,
control eventually passes to the end-
of-volume routine of I/0 support and
returns after a new volume or more
space has been found and the purged
channel programs have been rescheduled.
For a description of the flow of
control from the SYNAD/EOV executor for
a permanent error condition, refer to
the section: Sequential Access Method
Executors, in this publication.)

46

TRACK OVERFLOW ASYNCHRONOUS
ERROR PROCESSING MODULE IGG019C1

Module IGG019C1 (used in both QSAM and
BSAM) processes error conditions that are
encountered in the execution of a channel
program for an input data set with track
overflow. 1Its processing of error condi-
tions is asynchronous to the execution of
the channel program, the I/0 supervisor, or
the processing program. It receives con-
trol by being scheduled for execution by
the track overflow abnormal end appendage

IGG019C3. It passes control to the proc-
essing program through the supervisor. The
module determines the Seek address for
reading the segments and blocks beyond the
segment in error and inserts it in the
IOBSEEK field. If the error occurred in a

segment of the block being read into the
buffer, the segment following the segment
in error is read, if the processing program
chooses the ACCEPT option in the SYNAD

routine. If the error occurred in a seg-
ment in the block preceding the block to be
read into the buffer (that is, the error

occurred in the block being skipped over to
find the block to be read into the buffer),
the wanted block is in the buffer when the
processing program obtains the buffer.

The OPEN executor selects and loads this
module (and places its address into an IRB
pointed to in the DEB) if the OPEN paramet-
er list specifies:

- Input, Inout, or Outin
and the DCB specifies:

- Track Overflow
- GET or READ.

The module operates as follows if the
error occurred in a CCW other than a
Read-Data CCW:

*» It receives control from the supervi-
sor.

e It increases the track address in the
IOB by 1, posts the ECB with the error
code, and causes control to return to
the processing program.

as follows if the
(without

The module operates
error occurred in a Read-Data CCW
a Skip bit on):

e It receives control from the supervi-
sor. '

e If the segment in error is the last or

- only segment of the block, the module
posts the ECB with the error code and
causes control to return to the proc-
essing program. :

error

If the segment in error is not the last
segment and it is not on an alternate
track, the module sets the IOB to
address the track following the track
in error, posts the ECB with the error
code, and causes control to return to
the processing program.

If the segment in error is not the last
segment and it 1is on an alternate
track, the module increases +the track
address in the IOB by 1, posts the ECB
with the error code, and causes control
to return to the processing program.

The module operates as follows if the
occurred in a Read-Data CCW with the

Skip bit on:

It receives control from the
sor.

supervi-

If the segment in error is the final or
only segment of a block and it is not
on an alternate track, the module sets
the IOB to address the track in error,
changes the Read-Data command to a NOP
command and issues an EXCP macro-
instruction for the changed channel
program.

If the segment in error is the final or
only segment of a block and it is on an
alternate track, the module sets the
IOB to address the track following the
one originally addressed, posts the ECB
with the error code, and causes control
to return to the processing program.
(In the case of an error in a final or
only segment on an alternate track, the
remaining segment or Llocks on that
track will not be read.) -

If the segment in error is not the last
one and it is not on an alternate

track, the module sets the IOB to
address the track following the one in
‘error and issues an EXCP macro-

instruction for the readdressed channel
progranm.

If the segment in error is not the last
one and it is on an alternate track,
the module successively increases the
track address in the IOB by -1 and
issues an EXCP macro-instruction for
the readdressed channel program.

When control returns from the 1I/0
supervisor, this module awaits execu-
"tion of the channel program via a WAIT
macro-instruction. On channel program
execution, the module restores the
purged IOBs (and the Read-Skip command,
if it was changed to a NOP command) and
causes control to return to the proc=-
essing program. ,

Queued Sequential Access Method Routines

APPENDAGES

Appendages are access method routines
that receive control from and return con-
trol to the I/O supervisor and that operate
in the supervisor state. (The same . appen-
dages used in (QSAM and in BSAM.) An
appendage that receives control from the
I/0 interruption supervisor, tests and may
alter the channel status word (CSW). The
I/0 interruption supervisor uses the CSW to

post the event control block (ECB). An
appendage that receives control from the
EXCP supervisor, before the latter causes

execution of the channel program by using

the SIO instruction, may update or alter
channel commands just before channel pro-
gram execution. The relationship of the
I/0 supervisocr and the appendages are
illustrated in Figure 8.
1/0 Supervisor
PCl PCl
Exit Appendag:
.g Ch::;el (’:\hcnne} End
g Exit PF M
=]
a
5 |
5 _ Channel Status _J
£ Word (
£
E
Q Abnormal Abnormal- End
- End A :
Exit —
POST - — ——— i ECB
| End-of-Extent End-of- o '
| Append Extent .
| Exit S
| §
%- Hle) $10 3
Append: Exit a
|]
| &
Program

Légend :
Control
== —— Reference

(L] Described in This Publication

Figure 8. Relationship of 1I/0 Supervisor
and Appendages
The I/0 supervisor permits an appendage

to gain control at certain exit points. At
that time the I/O supervisor refers to the
entry associated with that exit in the
appendage vector table (whose address is in
the data extent block = DEB). If .an entry
contains the address of an appendage, con-
trol passes to it; else control = remains
with the I/0O supervisor. The five I/0
supervisor exits, at which appendages
receive control, are: :

47

- End-of-Extent
- SIO

- Channel End

- PCI

- Abnormal End.

Appendages differ from other sequential
access method routines that are loaded by
the OPEN executor into processing program
main storage in that they operate in the
supervisor state and in that they operate
asynchrcnously with the processing program,
that is, the events that cause them to gain
control depend, not on the progress of the
processing program, but on the progress of
the channel program. There are twelve
appendages. Nc, one, or several appendages
may be used with one DCB. Table 13 1lists
the appendages, the conditions that cause
the different appendages to be used, and
the 1I/0 supervisor exits that pass control
to them. The OPEN executor selects and
loads all the necessary appendages to be
used with that DCB, and places their
addresses into the various fields of the
appendage vector table. For example, if
the Update mode of OPEN is specifieqd,
appendage IGG019CG, associated with the SIO
appendage exit, 1is selected and loaded by
the Open executor.

END-OF-EXTENT APPENDAGES

End-of-extent appendages gain CPU con-
trol if the EXCP supervisor finds an end-
of-extent condition. This condition exists
if the direct-access device storage address
associated with a channel program is
outside of the extent currently pointed to
in the data extent bklock (DEB).

Four end-of-extent appendages are pro-
vided for use with sequential access method
routines:

¢ IGGO19AW processes an end-of-extent
condition for QSAM Update mode channel
programs.

e IGGO19BM processes an end-of-extent

condition for BSAM Update mode channel
programs.
e IGGO019CH processes an end-of-extent

condition when neither the Update mode
nor chained channel-program scheduling
is specified.

¢ IGG019CZ processes end-of-extent condi-

tions when chained channel-program
scheduling is used.

48

Appendage IGGO019AW (End-of-Extent - Update
= QSAM)

Appendage IGGO019AW readdresses the
Refill portions of all QSAM Update channel
programs to a new extent. The OPEN execu-
tor selects and loads this module for wuse
as the end-of-extent appendage if the OPEN
parameter list specifies:

- Update
and the DCB specifies:
- GET.
The appendage operates as follows:
o Tt receives control from the EXCP
supervisor under one of the following

conditions:

A Refill portion of QSAM Update
channel program attempts to read

the first block beyond the present
extent.
The remaining channel programs

attempt to refill their buffers
from the new extent.

e If there is no other extent, the appen-
dage sets error indications in the IOB
and the DCB (to show an end-of-volume
condition) and returns control to the
EXCP supervisor. The EXCP supervisor
then issues a PURGE macro-instruction
for that channel program. (The Update
synchronizing routine assures writing
out of the Empty portions of pending
channel programs.)

o If the interruption occurred in a Read-
Count CCW and there is a new extent,
the appendage builds a Seek address for

the new extent using the starting
address from the DEB. It then copies
this new Seek address into the IOB and

UCB (unit control block), and updates
the M value in the Refill portion of
each channel program.

e If the interruption occurred in a Seek
CCW, the appendage copies the Seek
address from the Refill portion of the
present channel program into the IOB
and UCB.

e It resets the IOB and UCB to address
the next track and its channel program
and returns control to the I/0 supervi-
sor.

Table 13. Module Selector - Appendages

Access Conditions Selections
Input, Inout, Outin X | X [X
Readback X
Update X | XX
Sysin X
GET ’ X
READ X
Record format is fixed-length X
Record format is fixed-length blocked X
Record format is variable-length X
Record format is not fixed-length standard X
Direct-access storage X X
Printer X
Paper tape X
Chained scheduling X |1 X
Track overflow X
Appendages
1GGO15AW AW
1GGO019BM BM
1GGO019CG CG
1GGO19CH CH
1GG019CI Ci
1GGO019CJ cJ
1GGO019CK CK
1GGO19CL CL
1GG019CS Cs
1GGO019CU cu
1GG019CZ cz
1GGO019C3 Cc3
Exits
End-of-Extent AW, BM CH cz
SIO CG CL
Channel End Cl [CJ (CK ’ Cs |CU
PCI cu
Abnormal End Ccu c3

Queued Sequential Access Method Routines 49

Appendage IGG019BM (End-of-Extent - Update
— BSAM)

Appendage IGG019BM readdresses channel
programs to a new extent for a DCB opened
for Update and using BSAM. The OPEN execu-
tor selects and loads this appendage for
use as the end-of-extent appendage if the
OPEN parameter list specifies:

- Update

and the DCB specifies:

- READ.

The appendage operates as follows:

control from the EXCP
supervisor when a channel program to
refill a buffer attempts to read the
first block beyond the present extent.

o It receives

e If there is no other extent (for a
Refill channel program), the appendage
sets error indications in the IOB and
the DCB (to show an end-of-volume
condition) and returns control to the
EXCP supervisor.

e If there is a new extent (for a Refill
channel program), the appendage adds 1
to the value of M in the DCBFDAD field
and in the Seek address of each Refill
channel program for the DCB. It places
the new Seek address into the current
IOB and into the UCB, and returns
control +to the EXCP supervisor. The
supervisor restarts the channel pro-
gram.

Appendage IGGO019CH (End-Of-Extent -
Oordinary)

Appendage IGGO019CH finds a new extent
when the EXCP supervisor finds an end-of-
extent extent condition. The OPEN executor
selects and loads this appendage for use as
the end-of-extent appendage if the OPEN
parameter list specifies:

- Input, Inout, or Outin
and the DCB specifies:
- Direct-access storage device
- Record format other than fixed-length

standard
- Normal channel-program scheduling.

50

The appendage operates as follows:

e It receives control when a channel
program attempts to read a block beyond
the present extent.

e The appendage examines the DEB for

another extent.

e If there is another
appendage enters the new full device
address in the DCB, the unit control
klock (UCB), and the IOBs, and returns
control to the EXCP supervisor. The
EXCP supervisor restarts the channel
program.

extent, the

e If there is no other extent, the appen-
dage sets error indications in the IOB
and the DCB (to show an end-of-volume
condition) and returns control to the
EXCP supervisor. The EXCP supervisor
then issues a PURGE macro-instruction
for that channel program.

Appendage IGG019CZ (End-of-Extent - Chained

Channel-Program Scheduling)

Appendage IGG019CZ readdresses the chain
of channel programs to a new extent when
the EXCP supervisor finds an end-of-extent
condition. The OPEN executor selects and
loads this appendage for use as the end-of-
extent arpendage if the DCB specifies:

- Chained channel-program scheduling
- Direct-access storage device.

The appendage operates as follows:

e It receives control when an end-of-
track condition interrupts the chained
scheduling and the I/0O supervisor finds
that the next track 1is not in the
current extent.

e If there is another extent, the
appendage enters the new Seek address
in the DCB, IOB, and unit control block
(UCB), updates the Seek addresses of
the remaining ICBs, and returns control
to the I/O supervisor to reschedule the
channel program for execution.

e If there is no other extent, the appen-
dage sets a volume-full indication in
the DCB, IOB, and ICB and returns
control tc the I/O supervisor to skip
further scheduling for this DCB.

START I/0 (SIO) APPENDAGES

Start I/0 (SIO) appendages, if present,
gain CPU control when the start I/0 sukrou-
tine of the EXCP supervisor reaches the
start I/0 appendage exit. These appendages
set channel program entries whose value
depends on events associated with the exe-
cution of the preceding channel program.
There are two SIO appendages:

e IGG019CG. This appendage makes the
Seek address accessible to the I/0
supervisor for QSAM and BSAM Update
channel programs that refill buffers.
(This 1is necessary because the Seek
address for such a channel program is
read in Ly the preceding channel .pro-
gram into a location unknown to the I/O

supervisor.)

e IGG019CL. This appendage causes the
next 1line to print at the top of a new
page if a printer overflow condition
was encountered in the execution of the
last channel program.

Appendage IGG019CG (SIO - Update)

Appendage IGG019CG resets the IOB to the
Seek address and channel program for
refilling for a Refill-only Update channel
program. The OPEN executor selects and
loads this appendage for wuse as the SIO
appendage if the OPEN parameter list speci-
fies:

- Update.
The appendage operates as follows:

e It receives control whenever the EXCP
supervisor reaches the SIO appendage
exit.

e It tests the IOB to determine whether
the buffer is to be emptied and
refilled or to be refilled only.

e If the buffer is to be emptied and
refilled, the module returns controcl to
the EXCP supervisor.

e If the buffer is to be refilled only,
the module resets the IOB to the Refill
portion of the chamnel program and its
Seek address and returns control to the
EXCP supervisor.

Appendage IGGO019CL (SIO - PRTOV)

Appendage IGGO019CL causes a skip to the
top of a new page with the first channel
program following a printer overflow condi-
tion. The OPEN executor selects and loads
this appendage for use as the SIO appendage
if the DCB specifies:

- Printer.
The appendage operates as follows:

¢ The appendage tests the IOB to deter-
mine whether a PRTOV ' macro-instruction
was 1issued with this PUT or WRITE
macro-instruction.

e If a PRTOV macro-instruction was not
issued, the appendage returns control
to the EXCP supervisor immediately.

e If the PRTOV macro-instruction was
issued, the appendage resets the PRTOV
kit din the IOB and tests the DCBIFLGS
field to determine whether a printer
overflow condition has occurred.

e If printer
the appendage returns
EXCP supervisor.

overflow has not occurred,
control to the

e If printer overflow has occurred, the
appendage resets the DCBIFLGS field,
inserts the "skip to 1" command byte
into the channel program, updates the
IOB channel program start address field
and the channel address word (location
72), and returns control to the EXCP
supervisor.

CHANNEL END APPENDAGES

Channel end appendages, if present, gain
CPU control when the 1I/O interruption
supervisor reaches the channel end appen-
dage exit. For a SYSIN data set, the SYSIN
appendage recognizes the delimiter charac-

ters. For other data sets, other appenda-
ges distinguish between valid and invalid
klock lengths by computation. The five

channel end appendages are:

¢ IGG019CI. This appendage distinguishes
between wrong-length and truncated
klocks when fixed-length blocked

records are being read using normal
channel program scheduling.
e IGG019CJ. This appendage distinguishes
between wrong-length and variable-
length blocks when variable-length
records are being read using normal
channel program scheduling.

Queued Sequential Access Method Routines 51

¢ IGGO19CK. This appendage recognizes
SYSIN delimiter characters.

e IGG019CS. This appendage distinguishes
between valid and invalid wrong-length
indications when paper tape is keing
read.

e IGG019CU. This appendage (which also
appears at the PCI and abnormal end
exits), parts executed channel programs
that were scheduled by chaining, and
posts the completions. For channel end
channel status, this appendage dis-
tinguishes between wrong-length and
truncated blocks when fixed-length
blocked records are being read using
chained channel-program scheduling.

(Refer to the section for PCI appendages
for a discussion of parting of chained
channel-programs and a description of
appendage IGG019CU.)

Appendage IGGO019CI (Channel End -
Fixed-Length Blocked Record Format)

Appendage IGG019CI distinguishes between
valid wrong-length blocks and truncated
blocks. The OPEN executor selects and
loads this appendage if the OPEN parameter
list specifies:

- Input, Readback, Inout, or Outin
and the DCB specifies:
- Fixed-length blocked records.

(Under these conditions the SLI flag is off
in the Read channel command word.)

The appendage operates as follows:

s It receives control when the I/0 inter-
ruption supervisor arrives at the chan-
nel end exit.

e If the appendage finds either the unit
exception bit on in the channel status
word, or the wrong-length indication
off, it returns control to the I/0
interruption supervisor immediately.

¢ The appendage calculates the length of
the block and compares this length to
that in the DCBLRECL field.

e If the fixed-length blocked record for-
mat is specified and the block 1length
is an integral multiple of the DCBLRECL
field value (showing it to be a trun-
cated block), the appendage turns off
error indications in the ECB and the
DCB and returns control to the 1I/0
interruption supervisor.

52

e If the fixed-length blocked standard
record format is specified and the
block is a truncated block, the appen-
dage determines that this is the last
block of the data set. The appendage
sets kits in the DCB and the ECB to
show that an end-of-volume (EOV) condi-
tion exists, and returns control to the
I/0 interruption supervisor.

e If the klock length is not an integral
multiple, the appendage returns control
to the I/0 interruption supervisor
immediately. The I/0 interruption
supervisor then sets the FECB to show
that the channel program was executed
with an error condition.

Appendage IGG019CJ (Channel End -

Variakle-Length Record Format)

Appendage IGG019CJ distinguishes between
valid wrong-length blocks and variakble-
length Lklocks. The OPEN executor selects
and loads this appendage if +the OPEN
parameter list specifies:

- Input, Inout, Outin

and the DCB specifies:
- Variable-length records.

(Under these conditions the SLI flag is off
in the Read channel command word.)

The appendage operates as follows:

e It receives control when the I/O inter-
ruption supervisor arrives at the chan-
nel end exit.

» If the appendage finds a unit exception
bit on in the channel status word, it
returns control to the I/O interruption
supervisor immediately.

¢ The appendage calculates the length of
the block and compares it to that in
the rklock length field.

e If the lengths are equal, the appendage
turns off error indications in the ECB
and DCB and returns control to I/0
interruption supervisor.

e If the 1lengths are not equal, control
is returned to the I/0 interruption
supervisor immediately. The I/0 inter-
ruption supervisor then sets the ECB to
show that the channel program executed
with an error ccndition.

Appendage IGG019CK (Channel End - SYSIN)

Appendage IGGO19CK translates the delim-
iter character for a SYSIN data set into an
end-of-data-set indication for the access
method routine. The OPEN executor selects
and loads this appendage if the device
assigned to this DCB is SYSIN.

The appendage operates as follows:

e It receives control when the I/0 inter-
ruption supervisor arrives at the chan-
nel end exit.

e The appendage tests the buffer for the
SYSIN delimiter characters /*.

e If the characters read are not delimi-
ter characters, the appendage returns
control to the I/O supervisor.

e If the characters read are deliriter
characters, the appendage turns on the
unit exception bit in the channel sta-
tus word and the error flag in the DCB,
indicating an end-of-data set condi-
tion, and returns control to the 1I/0
supervisor.

Appendage IGG019CS (Channel End - Paper
Tape)

Appendage IGG019CS distinguishes between
valid wrong-length blocks and the wrong-
length indication characteristic when paper
tape is being read. The OPEN executor
selects and loads this appendage if the DCB
specifies:

- Fixed-length record format
- Paper Tape.

The appendage operates as follows:

e It receives control when the 1/0
interruption supervisor arrives at the
channel end exit.

e If the channel status word (CSW) resi-
dual count is zero, the appendage turns
off error indications in the IOB and
the DCB and then returns control to the
I/0 supervisor.

e If the channel status word (CSW) resi-
dual count is not zero, the appendage
returns control to the I/0 supervisor
immediately.

PROGRAM CONTROLLED INTERRUPTION (PCI)
APPENDAGE (EXECUTION OF CHANNEL PROGRAMS
SCHEDULED BY CHAINING)

There is one program controlled inter-
ruption (PCI) appendage. If chained
channel-program scheduling is wused, its
address is placed into the appendage vector
table for all three I/0 interruption super-
visor exits: PCI, channel end, abnormal
end.

A program controlled interruption (PCI),
in the sequential access methods, signals
the normal execution of a channel program
that was scheduled by chaining. The inter-
ruption occurs when control of the channel
has passed to the next channel program. If
the only channel status 1is PCI the I/0
supervisor performs no processing; if other
channel conditions are also present, the
I/0 supervisor processes these in normal
fashicn after it regains CPU control from
the PCI appendage.

. This appendage the following

three functions:

performs

e It performs the channel status analysis
usually done by the I/O interruption
supervisor. The interruption is caused
by a condition in the 1logic of the
channel program rather than a condition

in the channel or the device. The
condition is meaningful only to the
processing program (in this case, the

access method routines, or, more speci-
fically, the appendage) and has no
meaning to the I/O supervisor.

e It repeats this process for preceding
channel programs whose PCIs were lost.
PCIs are not stacked. If a channel
remains masked from the time of one PCI
until after another PCI, only one PCI
occurs.

¢ It performs processing normally neces-
sary for other interruptions (for exam-
ple, channel end). Interruptions other
than PCIs may terminate execution of
chained channel programs.

Accordingly, a PCI appendage not only
does the processing implicit for the logi-
cal condition that the interruption signals
(namely, that the preceding channel program
executed normally), but also extends this
processing back to any preceding channel
programs whose PCI may have been masked
and, finally, takes CPU control at other
I/0 interruption supervisor appendage exits
if chained channel-program scheduling is
used.

Queued Sequential Access Method Routines 53

Appendage IGG019CU (Channel End, PCI,
Abnormal End - Chained Channel-Program
Execution)

Appendage IGG019CU disconnects (parts)
chained channel programs that have executed
and posts their completion; in addition, it
performs normal channel end and abnormal
end appendage processing. (For a descrip-
tion of the joining process of chained
channel-program scheduling refer to the
descriptions of the chained channel-program
scheduling end-of-block routines.) The
OPEN executor selects and loads this appen-
dage for use as the channel end, PCI, and
abnormal end appendage if the DCB speci-
fies:

- Chained channel-program scheduling.
The appendage operates as follows:

® Tt receives control from the I/0 inter-
ruption supervisor when the latter
arrives at the PCI, channel end, and
abnormal end appendage exits.

e It tests whether the CSW and the IOB
field "First ICB" point to the same
channel program.

e If they do, the appendage returns con-
trol to I/0 supervisor, unless a chan-
nel end condition exists.

e If they do not, the appendage discon-
nects (parts) the channel program
(pointed to by the ICB) from the next
channel program in the chain as fol-
lows:

For input, the appendage tests the
IOB for an end-of-volume condition.
If it exists, the appendage contin-
ues as for a channel end interrup-
tion with a permanent error.

For output, or for input without an
associated end-of-volume condition,
the appendage resets the command in
the last CCW from TIC to NOP and
the address to the beginning of the
next channel program.

If the device is magnetic tape, it
updates the DCBBLKCT field in the
DCB. .

If a WAIT macro-instruction was
addressed to this channel program,
the appendage causes the POST rou-
tine to perform its processing and
to return control to the appendage.

54

It posts the ICB with the comple-
tion code and with channel end and
updates the IOB SAM prefix to point
to the next ICB. ‘

It repeats this parting process
until the IOB and the CSW point to
the same channel program.

The appendage continues as follows if
channel end occurred without an error:

¢ Tt sets the IOB and the ICB to show the
channel program completed without
error, and resets the IOB to point to
the next channel program and ICB.

¢ If there are more channel programs to
be executed, the appendage resets the
IOB to not-complete and passes control
to the EXCP supervisor tc schedule
these channel programs.

¢ If there are no mcre channel programs
to be executed, the appendage returns
control to the I/0 supervisor for nor-
mal

The appendage continues as follows if
the channel end interruption occurred with
a wrong length indication:

e It determines whether a truncated block
has been read.

s If a truncated block has been read in a
data set with fixed-length blocked
standard record format, it sets:

end-of-volume

the DCB to show an

condition,

the current ICB to
without-error.

complete-

the next ICB to

error,

complete-with-

the CSW in the mnext ICB to show
channel end and unit exception.

It returns control to the I/0
interruption supervisor.

e If a truncated block has been read in a
data set with fixed-length blocked
record format, the appendage sets the
IcB to complete-without-error and
resets the IOB to point to the next ICB
and its channel program. The appendage
causes control to pass to the EXCP
supervisor to restart the channel.

e If a block with wrong length data has
been read, the appendage continues as
for permanent errors.)

The appendage continues as follows if
channel end occurred with an error:

¢ It isolates the channel program in-
error by parting it from the next one.

e It sets the IOB to point to the
channel-program in-error.

o Tt sets the DCB to show that the
channel program is being retried.

e It returns control to the I/O interrup-
tion supervisor. That routine then
processes the channel program in the
Error Retry procedure.

follows if
permanent

The appendage continues as
channel end occurred with a
error:

e It receives control after the 1/0
supervisor Error Retxy procedure is
found unsuccessful in correcting the
error.

e It posts the ICB to show that the
channel program as completed in-error.

e Tt parts the channel program in-error
from the following one.

e It resets the IOB to point to the
channel program after the one in-error.

¢ It returns control to the I/0 interrup-
tion supervisor.

ABNORMAL END APPENDAGES

Abncrmal end appendages receive control
from the I/0 interruption supervisor when
the 1latter finds a unit check condition in
the channel status word (CSW). The appen-
dages for this exit are a track overflow
appendage and a chained channel-program
execution appendage shared with the channel
end and PCI exits. The shared appendage is
descriked under the PCI appendage.

A unit check status in a channel
addressing an input data set with track
overflow may indicate a permanent error in
one segment of a block. If there are
further good segments, or if the segment in
error is being skipped over to find the
next . block, the sequential access methods
attempt to continue access beyond the seg-

ment in error. The processing necessary to
accomplish this is performed by the track
overflow asynchronous error processing rou-
tine (module 1IGG019C1l, described in the
synchronizing and error processing routines
section), rather than by the appendage. To
pernmit other I/O operations to continue,
the appendage suspends further processing
of the condition by the I/0 supervisor,
schedules the asynchronous error processing
routine, and returns control to the I/0
supervisor.

Appendage IGG019C3 (Abnormal End - Track

Overflow)

Appendage 1IGG019C3 schedules the track
overflow asynchronous error processing rou-
tine if a permanent error occurs -in a
channel program for an input data set with
track overflow. The OPEN executor select
and loads this appendage for use as the
abnorral end appendage if the OPEN paramet-
er list specifies:

- Input, Inout or Outin

and the DCB specifies:
- Track overflow.
The appendage operates as follows:

e It receives control from the I/0 inter-

ruption supervisor when the latter
reaches the abnormal end appendage
exit.

s If the CSW that caused this appendage

to gain control addresses a Read-Data
CCW (without a Skip bit) and shows a
unit exception channel status, the
appendage returns control to the I/0
interruption supervisor without further
processing. (After control returns to
the processing program, the synchroniz-
ing or CHECK routine processes this
channel status as an end-of-volume con-
dition.)

e If the CSW that caused this appendage
to gain control addresses a Read-Data
CCW (with a Skip bit on) and shows a
unit exception or a unit check channel
status, the appendage passes control to
the exit effector routine together with
the entry point address of I/0 supervi-
sor that causes the I/0 supervisor not
to post the ECB and to retain the
request element for the channel pro-
gram. (The exit effector routine will
schedule the track overflow asynchron-
ous error processing routine for even-
tual execution and pass control to the
given entry point.)

Queued Sequential Access Method Routines 55

QOSAM CONTROL ROUTINES

These control routines, shared by QSAM
and BSAM, consist of both modules loaded by
the OPEN executor and macro-expansions.
The selection and 1loading of one cf the
modules is done by the OPEN executor and
depend on the access conditions; the pre-
sence of macro-expansions depends solely on
the use of the corresponding macro-
instruction in the processing program and
is independent of the presence or absence
of modules.

If a CNTRL macro-instruction is
encountered in a processing program using
QSAM or BSAM, contrcl passes to a control
routine. The PRTOV macro-expansions place
the code tc be executed in-line in the
processing program. CNTRL routines pass
control to the I/O supervisor; the macro-
expansions return control to the processing
program. The CNTRL routine for the card
reader causes execution of a channel
program that stacks the card just read into
the selected stacker. The CNTRL routine
for the printer causes execution of a
channel program with a command to space or
to skip. The printer overflow macro-
expansions cause the printer overflow
condition to be sensed for.

There are two CNTRL routines in QSAM;
they are load modules. Table 14 lists the
routines available and the conditions that
cause a particular routine to be used. The
OPEN executor selects one of the modules,
loads it, and puts its address into the
DCBCNTRL field.

Table 14. Module Selector - Control
Modules

[} T T =" 1
| , | o
| Access Conditions |Selections |
| | |
% —— 4]
v 1 T 1
| CNTRL | x | x |
[N 1] 4
" . L) T 1
| Printer | x | |
L 1 i)]
r T T 1
| Card Reader, | | X |
| a single buffer | | |
I i |
I		
Modules		
L 4 1 d		
¥ T T 1		
IGG019CA	X	
b 1 4 4		
T T T 1		
IGG019CB		X
L i 1]

(54
[e))

There are two PRTOV routines; they are
macro-expansions. Whenever the assembler
encounters either of the two macro-
instructions shown in Table 15, it
substitutes the corresponding macro-
expansion 1in the processing program object
module.

Table 15. Control Routines That Are Macro-

Expansions

Number of
Macro-
Expansions

Macro-Instruction

PRTOV - User exit

PRTOV - No user exit

TR T S ———
TR S WY ———

[e g e o . e e e e)

CONTROL MODULE IGGO019CA (CNTRL - SELECT
STACKER - CARD READER)

Module 1G6G019ca permits stacker
selection on the card reader. The OPEN
executor selects and loads this module if
the DCB specifies:

CNTRL

Card reader

One buffer.

The module operates as follows:

CNTRL
in a

e It receives control when the
macro-instruction is encountered
processing program.

s For QSAM, the module schedules a chan-
nel program which stacks the card just
read, reads the next card into the
buffer, and returns contrcl to the
processing program. (Card reader GET
modules IGGO19AG and IGGO019AH depend on
the use of this routine to refill empty
tuffers.)

e For BSAM, the module schedules a chan-
nel program which stacks the card just
read, and then returns controcl to the
processing program. (The READ/WRITE
module IGGO019BA causes a channel pro-
gram to be scheduled that reads the
next card into the buffer.)

CONTROL MODULE IGGO19CB (CNTRL - SPACE,
SKIP - PRINTER)

Module IGGO19CB causes printer spacing
and skipping by use of macro-instructions;
the spacing or skipping to be performed are
specified as operands of the macro-
instruction. The OPEN executor selects and
loads this module if the DCB specifies:

-~ CNTRL

- Printer.

The module constructs a channel program

to control the device, issues an EXCP
macro-instruction and then returns control
to the processing program.
PRINTER OVERFLOW MACRO-EXPANSIONS

The PRTOV macro-expansions permit
processing program response to printer

overflow conditions.

The following macro-expansions are
created as in-line coding during the expan-
sion of the macro-instruction.

PRTOV - User Exit

The coding operates as follows:

¢ A WAIT macro-instruction is issued for
the IOB pointed to by the DCBIOBA
field.

¢ The DCBIFLGS field of the DCB is tested
for an overflow condition.

e If an overflow condition exists, a BALR
instruction is issued to pass control
to the user's routine.

¢ If no overflow condition exists, con-
trol passes to the next instruction.

PRTOV - No User Exit

The coding creates a test mask in the
DCB field 1located at (DCBDEVT+1) and
returns control to the processing program.

(The printer end-of-block routine tempo-
rarily stores the mask in the NOP channel
command word (CCW) preceding the Write CCW,
turns on a bit in the first byte of the IOB
and resets the mask. The PRTOV appendage
tests the IOB bit, to determine whether to
respond to, or ignore, an overflow condi-
tion, and resets it.)

Queued Sequential Access Method Routines 57

BASIC SEQUENTIAL ACCESS METHOD ROUTINES

Basic sequential access method (BSAM)
routines cause storadge and retrieval of
blocks of data. BSAM routines furnish

device control, but do not provide block-
ing. There are six types of BSAM routines:

REALC routines.

WRITE routines.
End-of-block routines.
CHECK routines.
Appendages.

Control routines.

Figure 9 and Table 16 show the relation-
ship of BSAM routines, other portions of
the operating system, and the processing
prograr.

A READ or a WRITE routine receives
control after a READ or a WRITE macro-
instruction is encountered in a processing

program. A READ or WRITE routine partially
completes a channel program using
parameters from the data event .-control

block (DECB), and passes the DECB, together
with the input/output block (IOB), to an
end-of-klock routine. (For a description
and diagram of the relationship of the
DECB, the 1IOB, the data control block
(DCB), channel prograr, and buffer, refer
to Appendix C.)

An end-of-block routine provides device
oriented data for the channel program. If
normal channel-program scheduling is wused,
the routine passes control +to the I/0
supervisor (via an EXCP macro-instruction)
to cause scheduling of the buffer. If
chained channel-program scheduling is used,
it attempts to add the present channel
prograr to the 1last one in the chain of
scheduled channel programs. If it is suc-
cessful, control returns to the processing
prograr. If it 1is unsuccessful, control
passes to the I/0 supervisor (via an EXCP
macro-instruction). (For a detailed des-
cription of the end-of-block routines refer
to "Queued Sequential Access Method Rou-
tines" section in this publication.)

A CHECK routine receives control from
the processing program via a CHECK macro-
instruction. A CHECK routine examines the
DECB to determine the status of the channel
progranm. If the channel program executed
normally, control returns to the processing
program. However, if the channel program
executed with an error, control passes from
the CHECK routine to the SYNAD/EOV executor
(IGCOO005E) for processing of error
conditions. For permanent errors, control

58

returns to the CHECK routine, and it then
passes control to the processing program's
SYNAD routine. (For EOV conditions, con-
trol passes to the EOV routines.)

Processing
READ, Program CHECK
WRITE
READ or WRITE CHECK —— 7
Routine Routine —I |
[
I
End-of-Block SYNAD/EOV |
Routine Executor | |
|
|
ACCEPT [
.
. User's SYNAD —
1/O Supervisor Routine |l
L
b
L
L
Track Overflow I |
Asynchronous Error | g — — I |
Processing Routine
1/0 Interruption - |
1 I
1/O Supervisor] |
1/O Interruption Appendages —— |
Supervisor -1 | |
EXCP L l |
Supervisor I
1 | | | |
‘ | | L Channel Status 2 1 |
LPSW | : Word |
|
| ' DECB '
| L __ > ECB +—-—— —— _]
| POST (a)
|
|
|
|
{ Appendages _l
| 1
I |
‘ l
L Channel]
S10 (b) Program
Legend:

(a) Previous Channel Program
(b) Next Channel Program

Control
— — — Reference

I Routines Described in This Publication

Figure 9. Flow of Control in BSAM

Table 16. Flow of Control of BSAM Routines ,
r T T =1
: : s I . l
|Routine Passing Control] Condition |Routine Receiving Control]
| | | |
b= - + t 1
| Processing | READ or WRITE | READ or WRITE |
| Program | Macro-instruction | : |
L iR 4 .
r T T ""‘
{ READ or WRITE | Branch instruction | End-of-block |
+ 1 4 —_ 4
L T T 1
| End-of-block | EXCP Macro-instruction | I/0 supervisor |
L 1 4 4
[} T T i h}
i I/0 supervisor | End | " End-of-block |
L 1 1
L3 T T '!
| End-of-block | End | READ or WRITE |
% 1 ————— KN 4
L} T 1 1
| READ or WRITE | End | Processing |
| | | Program |
b + 1 1
| Processing | CHECK Macro-instruction | CHECK |
| Program | | |
t + + {
| CHECK | Channel program not yet executed | WAIT |
I 4 4 . 4
r T T 1
| CHECK - | Channel prcgram executed | SYNAD/EOV
| | with error : | Executor |
F + + 1
| CHECK | Channel program executed: | Processing |
| | without error | Program |
t ¢ - t {
| Supervisor | I/0 interruption | I/0 supervisor |
L L . 4 4
r T T g 1
| I/0 supervisor | Appendage exit condition | Appendage |
! - L ——— 1 4
L} T T]
| Arpendage | End | I/0 supervisor |
IR 1 4 4
r T 1 N 1
| I/0 supervisor | End | Supervisor |
L [L J
The asynchronous error processing rou- balance routine receives control from a
tine (described in the "Queued Sequential WRITE routine or the track overflow end-of-
Access Methods Routines" section of this block routine.
publication) gains control by being sche-

duled by an appendage. The routine proc-
esses permanent error conditions that are
encountered by a channel program for input
data with track overflow record format.
The routine establishes the address of the
segment beyond the one in error.

An appendage receives control from the
I/0 supervisor and returns control to the
I/0 supervisor. Some appendages operate
with the I/O interruption supervisor, and
others operate with the EXCP supervisor.
(Appendages are described in the "Queued
Sequential Access Method Routines" section
of this publication.)

Control routines (not shown in Figure 9)
pernit the processing program to - control
the positioning of auxiliary storage devi-
ces. They receive control when the CNTRL
(Printer, Tape, Card Reader), PRTOV, NOTE,
POINT or BSP macro-instructions are encoun-
tered in‘a processing program. The track

Appendix A contains decision tables that
show for each type of routine, the
processing characteristics that differenti-
ate the routines within that type.

READ AND WRITE ROUTINES

A READ or WRITE routine receives control
when the processing program issues a READ
or a WRITE macro-instruction. The READ and

WRITE routines used with data sets organ-
ized- for the sequential or partitioned
access mwethods pass control to the end-of-

block routines, which in turn pass control
to the I/0 supervisor. The WRITE routines
used to create data sets organized for
later access by basic direct-access method
(BDAM) routines, include the end-of-block
function within themselves, and 'so pass
control to the I/0 supervisor directly. A

Basic Sequential Access Method Routines 59

READ

or WRITE routine processes parameters

set by the processing program in the DECB,

to permit
prograrm.

There are
Table

the conditions

six READ,.
17 1lists the routines available and
that
module to be wused.
selects one of these

WRITE

cause a
The OPEN
routines,

scheduling of the next channel

routines.

particular
executor
loads it,

and puts its address into the DCBREAD/WRITE

field.

The table shows, for example, that
module IGGO019BH is selected and loaded

if

Update and the READ macro-instruction are
specified.
Table 17. Module Selector - READ and WRITE
Modules
) T 1
l e : '
|Access Conditions| Selections |
| | |
% % T T T T m —T—_T__“
| Input or x| ixxr 11|
f=-- s e ot st
|output or X0 XX |1x |
! o vt e S S B
|Inout, Outin [0S .S Y A (N (R I B
b B e e S e
|Update [R N R P O I N
t oo e et S
| READ X1 (xI1xixt | 1 |
b S T s s et B
|WRITE I - N O N Y I
t T Mt St et ot |
|WRITE (LOAD) b xIx x|
| (Create--BDAM) [T TR I A (R B
% Bt st St B S
|Paper tape Froxxr rr
|character [A N K N N N N
| conversion [T I T I N R |
b=- S A e S e
|Fixed-length Froix o ixo1x |
|record format [T N A N N I I
b S fa et S S S
|Undefined-length | | | X | | X | |
|record format oxr { | | | | | | | |
e 1 4 4 4 4 1 4 1 3
R T T T T T T T T)]
|Variable-length | | | | | | IX |
|record format [S O I R A I
b L s e S e e
| Track oOverflow [T T I [I T -G |
L 4 L 4 L 4 4 4 4 4
r T T T 1
| READ,WRITE | | | |
I Modules | | | |
k t-——r—t-—7—t-——r--7--v—{
| IGG019BA -SSR O A I I
b 1 1 4 4 1 1 l__+__.'
8 T T T T T T T
| IGGO19BF [O - - R I R
% s e e
| IGGO019BH N R N (R PO IR I
I 4 4 4 1 1 4 1 J]
[} T T T T T T T T 1
| IGG019DA [R I TR TR -G I
b e B et S e e S
| IGG019DB [A I (R N N P
b I e
| 1GG019DD | I N AR (N I N P O
L 1 41 L L iy L L L i |

o))
o

READ/WRITE MODULE IGG019BA

Module IGGO019BA completes the channel
program to be scheduled next, and relates
control klocks used by the I/0 supervisor
to +the channel program. The OPEN executor
selects and loads this module if the OPEN
parameter list specifies:
or Outin

- Input, Output, Inout,

and the DCB specifies:
- READ or WRITE.
The module operates as follows:

e It receives control when a READ or
WRITE macro-instruction is encountered
in a processing program.

e It enters the address of the IOB into
the DECB to permit the CHECK routine
later to test execution of the channel
program.

¢ It completes the channel program by
inserting the buffer address from the
DECB, and the length from either the
DECB (for undefined-length recoxds),
the DCB (for fixed-length records, and
for input of variable-length records),

or the record itself (for output of
variable length records).

e If a block 1is to be written on a
direct-access storage device, the
module tests the DCBOFLGS field in the

DCB to establish the validity of the
value in the DCBTRBAL field.

e If the DCBTRBAL value is valid, or if a
krlock is to be written on a device
other than direct-access storage, or if
a block is to be read from any device,
the module passes control to an end-of-
block routine.

e If the DCBTRBAL value
(that is, the preceding
READ, POINT, or OPEN
module issues an SVC 25
pass control to BSAM control module
IGCO0002E to obtain a wvalid track
balance. When control returns to this
module, it passes control to an end-of-
tlock routine.

is not wvalid
operation was a
for MOD) the
instruction to

READ MODULE IGGO19BF (PAPER TAPE CHARACTER
CONVERSION)

Module IGGO19BF conpletes a channel
program to read paper tape, awaits its
execution, and converts the paper tape

characters into EBCDIC characters. The
OPEN executor selects and loads this module
(and one of the code conversion modules
listed in Appendix D) if the DCB specifies:

- READ

- Fixed-length or undefined-length record
format

- Paper tape.

The module operates as follows:

e It receives control when a READ macro-
instruction is encountered in a
processing program.

e It enters the address of the IOB into
the DECB, to permit the CHECK routine
to test execution of the channel pro-
gram.

e It completes the channel program by
inserting the buffer address from the
DECB, and the 1length value from the
field DCBBLKSI (for fixed-length record
format) or the DECB (for undefined-
length record format).

e Tt passes control to the end-of-klock

routine.

¢ When control returns from the end-of-
block routine, the module issues a WAIT
macro-instruction to await execution of
the channel program.

e It converts each character in the
buffer until one of the following con-
ditions is met, with the stated effect:

Conversion has provided the numker
of characters specified in the
length value: The module returns
control to the processing program.

All the characters read have been
converted, kut into a smaller num-
ber of characters. (Some input

character codes have no correspond-
ing EBCDIC translation in a speci-
fic code conversion module. There-
fore, after conversion of all char-
acters in the buffer, the number of
converted characters may be 1less
than the length value): The module
completes a channel program for the
number of additional characters
needed to fill the buffer, passes
control to the end-of-block routine
which issues the EXCP . macro-
instruction to schedule the channel
program, and issues a WAIT macro-
instruction for the channel

program. When control returns, the
module resumes converting charac-
ters.

An end-of-record character is en-
countered (undefined-length record
format only): The module returns
control to the processing program.

The tape is exhausted: The module
returns control to the processing
program.

A paper tape reader-detected error
character is encountered: If neces-
sary because of compression, the
module moves the character to the

left (without conversion), and
returns control to the processing
program.

e If one of the characters in the buffer
is an undefined character, the module
converts the character to the hexadeci-
mal character FF, sets an indication of
this condition in the IOB for the paper
tape CHECK routine, and continues con-
version until one of the other condi-
tions is met.

Appendix D lists the modules composed of
the tables used for code conversion.

READ/WRITE MODULE IGGO019BH (UPDATE)

Module IGGO019BH ascertains whether a
buffer supplied by the processing program
is to be written from or read into, and
causes a corresponding BSAM Update channel
program to be executed. The OPEN executor
selects and loads this module if the OPEN
parameter list specifies:

- Update
and the DCB specifies:
- READ.
The module operates as follows:
e It gains

program uses a READ or a
instruction.

control when the processing
WRITE macro-

e If data is to be read into a buffer,
the mcdule flags the IOB for a Read
operation, sets it to point to the Read

channel program, and copies the length -

and buffer address from the DECB or the
DCB into the Read CCW.

¢ If data is to be written from a buffer,
the module flags the IOB for a Write

operation, sets it to point to the
Write channel program, .copies the
auxiliary storage address from the

DCBFDAD field into the IOBSEEK field
and completes the 1length and buffer
address entries in the Write CCW.

Basic Sequential Access Method Routines 61

e The module passes control. to end-of-
block module IGGO019CC. On return of
control from that wmodule, it returns

control to the processing program.

WRITE MODULE IGGO19DA (CREATE-BDAM)

Module IGGO19DA writes, for a data set
later to be processed by BDAM, fixed-length
data blocks, fixed-length dummy blocks, and
record-zero klocks. The OPEN executor
selects and loads this module if the DCB
specifies:

- WRITE (LOAD)
- Fixed-length record format.

The module operates as follows:

e It receives control from the processing
program when it encounters a WRITE
macro-instruction and also from the
EOV/new volume executor after the end-
of-volume routine of I/0 support has
obtained another extent.

¢ It connects the next available IOB to
the DCB and the DECB.

¢ It determines, in the same manner as
end-of-block routine IGG019CD, whether
this block fits on the current track
and updates the DCBTRBAL field.

o If this 1is neither the first nor the
last block of a track, the module
updates the full device address (FDAD)
in the DCB and the IOB and issues an
EXCP macro-instruction. It then
returns control to the processing pro-
gram or the EOV/new volume executor
(whichever it received control from).

e If this is the last block of a track
(that 1is, no other block will fit on
the track except the present block),
the module updates the full device
address (FDAD) in the DCB and the IOB,
expands the channel program to write
the record-zeroc block for that track as
well as the last data block, and issues
an EXCP macro-instruction. The module
then returns control to the routine
fror which it received control.

e If this is the first bklock 'of a new
track and there is another track in the
allocated extent, the module finds the
next track .in the allocated extent,
updates the full device address (FDAD)
in the DCB and the IOB, and issues an
EXCP macro-instruction. It then
returns control to the routine from
which it received control.

62

e If this 1is the first block of a new
track and there is no other +track in
the allocated extent, the mwodule sets
an EOV condition indication and returns
control to the processing program.

WRITE MODULE IGG019DB (CREATE-BDAM)

Module IGGO19DB writes, for a data set
thereafter to be processed by BDAM,
variable-length and undefined-length blocks
and record-zero blocks. The OPEN executor
selects and loads this module if the DCB
specifies:

- WRITE (LOAD)
- Variable-length or
record format.

undefined-length

The module essentially consists of two
routines: one to write data blocks; one to
write record-zero blocks.

To write a data block for BDAM, the
rcutine operates as follows:

¢ It receives control from the processing
program when it encounters a WRITE-SF
macro-instruction and also from EOV/new
volume executor (to write the block not
written into. the previous volume) after
the end-of-volume routine of I/O sup-
port has obtained another extent.

e It determines whether this block fits
on the current track in the same manner
as end-of-block routine IGG019CD and
updates the DCBTRBAL field.

e If one of the following conditions
exists, it returns control (without any
further processing) +to the processing
program or to the EOV/new volume execu-
tor (whichever it received control
from) :

A block other than the first Dblock
on a track is to be written, but it
does not fit on the balance of the
track.

The first block is to be written on
a track, but the allocated extents
are exhausted. (For this condi-
tion, the module sets an EOV condi-
tion indication before it returns
control.)

e If either of the following conditions
exists, the module 'updates the full
device address (FDAD) in the DCB, the
I0B, and the channel program, issues an
EXCP macro-instruction and then returns
control to the routine from which con-
trol was received:

A block other than the first block
on the track is to be written and
it fits on the balance of the
track.

The first klock is to be written on

a track and there is another track
in the allocated extents.
e It returns control to the processing
program or the end-of-volume routine.
To write a record-zero klock for BDAM,
the routine operates as follows:
e It receives control when a WRITE-SZ

macro-instruction is encountered in the
processing program, or after the - end-
of-volume routine has obtained another
extent.

e Tt updates the record-zero area and the

channel program to write the record-
zerc Lklock and issues an EXCP macro-
instruction. The routine returns

control to the processing program or to
the end-of-volume routine.

e If there are nc data blocks on the
track, the module modifies the channel
program to clear the track after writ-
ing the record-zero block.

WRITE MODULE IGG019DD (CREATE-BDAM - TRACK
OVERFLOW)

Module IGGO019DD creates data sets (with
track overflow) of fixed-length data and
fixed-length dummy blocks that are subse-
quently to be processed by BDAM. The
module segments the block, enters the seg-
ment lengths and buffer segment addresses
in the channel program, updates storage
addresses for the channel program, and
count fields for the block to be written
and for records zero of the tracks. The
OPEN executor selects and loads this module
if the OPEN parameter list specifies:

- Output
and the DCB specifies:
WRITE (LOAD)

Fixed-length record format
Track overflow.

The module operates as follows:

e It receives control from the processing
program when the program finds a WRITE
macro-instruction, or from the end-of-
volume routine of I/0 support after

~that routine has obtained a new vclume
to write out any pending channel

programs. (The end-of-volume routine
receives control from the CHECK routine
when that routine finds that a channel
program - did not execute because of an
end-of-volume condition.)

e If no IOB 1is available, it returns
control to the processing program.

e If an IOB is
address in the

available, it stores its
DCB and the DECB.

e If the block last written was the last
one for this extent, the module erases
the balance of the extent.

o If the block last written filled the
last track used, the module obtains the
address of the next track.

e Tt sets the IOB and its channel program
to write the block onto the next avail-
akle track.

e If the block does not fill the track,
the module completes the count field
for this record and issues an EXCP
macro-instruction.

e If the block £fills the track, the
module sets the track-full indicator,
completes record zero for this track,
links the channel program that writes
record zero to the channel program that
writes the data record, and issues an
EXCP macro-instruction.

o If the block overflows the track, the
module completes record zero for this
track and completes a channel program
to write record =zero, completes the
count field and channel program for the

segrent that fits on the track, and
constructs the identification for
record one of the next track.

e It repeats the preceding until a seg-

ment is 1left that does not overflow a
track. For the final segment, the
module operates as for a block that

fits on the track.

e On return of control from the I/O
supervisor, the module returns control
to the routine from which it was
received.

CHECK ROUTINES
A CHECK routine synchronizes the execu-

tion of channel programs with that of the
processing program. When the processing
program issues a READ or WRITE macro-
instruction, control returns to the

processing program (from the READ or WRITE

Basic Sequential Access Method Routines 63

routine) when the channel program has been
scheduled for execution or, 1if reading
paper tape, when the buffer has been filled
and the data converted. To determine the
state of execution of the channel program,
the processing program issues a CHECK
macro-instruction; control returns to the
processing program (from the CHECK routine)
if the channel program was executed suc-
cessfully, or if it was executed success-
fully after the CHECK routine caused
volume-switching. For permanent errors,
control passes to the processing program's
SYNAD routine. Reading or writing under
BSAM, the SYNAD routine may continue proc-
essing the data set by returning control to
the CHECK routine; writing in the Create-
BDAM mode, processing cannot be resumed.

There are four CHECK routines. Table 18
lists the routines available and the
conditions that cause a particular module
to be used. The OPEN executor selects one
of the four routines, loads it, and places
its address into the DCBCHECK field. For
example, the takle shows that module
IGG019BG is selected and loaded if READ and

paper tape character conversion is speci-
fied.

Table 18. Module Selector - CHECK Modules
r T 1
| _ o | , |
| Access Conditions | Selections |
| | I
L R 4
r T T T T T 1
| Input or | X | | X | |]
F T mt S B
|output or Lorxr 0
F e et e
| Inout, Outin | X | X | | | |
t I m S
|Update | l | I x| |
t e e S S
| READ Fxt x|
}- S e S S
| WNRITE I L x 1 | I
b 4t
| WRITE (LOAD) | | | | | X |
| (Create-BDAM) | | | | | |
b -
|Paper tape . I
|character conversion | | | | | |
F s
| I | I
| CHECK Modules | | |
I I I |
b T S e S
i IGG019BB | X | X | | | |
¢ Rt s SR S
| IGGO019BG | | | X | | |
b S St |
| IGGO019BI | | | | X | |
t S
| IGG019DC | | | | | X |
L L L 4 1 P I

)}
=

CHECK MODULE IGG019BB

Module IGGO019BB synchronizes the execu-
tion of the channel program to that of the
processing program, and responds to any
exceptional condition remaining after the
I/0 supervisor has posted execution of the
channel program in the IOB. The OPEN
executor selects and loads this module if
the OPEN parameter list specifies:

Input, Output, Inouf, or Outin

and the DCB specifies:

READ or WRITE.
The module operates as follows:

e It receives control when a CHECK macro-
instruction is encountered in a
processing program.

e Tt tests the DECB for successful execu-
tion of the channel program.

e If the channel program was executed
normally, the module returns control to
the processing program.

e If the channel program is
executed, the module issues a
macro-instruction.

not yet
WAIT

e If the channel program encountered an
error condition in its execution, the
rodule issues an SVC 55 instruction to
pass control to the SYNAD/EOV executor
(IGCO0005E). Two types of returns from
the executor are possible:

If the executor determines the
error condition to be an EOV condi-
tion, the executor passes control
to the end-of-volume routine of I/0
support for volume switching. That
routine passes control to the
EOV/New Volume executor which res-
chedules the purged channel pro-
grams. That executor returns con-
trol to the CHECK module.

If the executor determines the
error condition to be a permanent
error, the executor returns control
to the CHECK module immediately.
Ccntrol is then passed to the proc-
essing program's SYNAD routine. If

the SYNAD routine returns control
to CHECK routine, the routine
issues a second SVC 55 instruction

to pass control to the SYNAD/EOV
executor (IGCO0005E) again. The
executor treats this as an ACCEPT
error option, implements it, and
returns control to the routine,
which then returns control to the
processing program.

CHECK MODULE IGGO019BG
CONVERSION)

(PAPER TAPE CHARACTER

Module IGG019BG processes erxror condi-
tions detected by READ module IGGO019BF.

This module is loaded if the DCB speci-
fies the READ macro-instruction and paper
tape character conversion.

The module operates as follows:

e It receives control when a CHECK macro-
instruction is encountered in a
processing program.

e If the READ routine filled the buffer
with valid characters, the CHECK nrodule
returns control to the processing pro-
gram.

e If the READ routine stopped converting
because of a reader-detected error
character, or if the READ routine
encountered an undefined character, the
CHECK module passes control to the
processing program's SYNAD routine.

e Tf control returns fromr the SYNAD rou-
tine, the CHECK module returns control
to the processing program.

e If the channel program encountered an

EOV condition, the CHECK module issues
an SVC 55 instruction. Control passes
to the SYNAD/EOV executor (IGCOO005SE),

then to the end-of-volume routine of
I/0 support, and finally to the proc-
essing program's EODAD routine.

CHECK MODULE IGG019BI (UPDATE)

Module IGGO019BI synchronizes the execu-
tion of a BSAM Update channel program to
the progress of the processing program. (A
BSAM Update channel program either writes
data from a buffer or reads data into a
buffer.) The module also causes processing
of permanent errors and end-of-volume con-
ditions. The OPEN executor selects and
loads this module if the OPEN parameter
list specifies:

- Update
and the DCB specifies:

- READ.

The module operates as follows:

e It receives control when the processing

program uses the CHECK macro-
instruction.

e It tests the ECB in the DECB for
successful execution of the channel

program associated with that DECB.

e If the channel program is not yet
executed, the module uses a WAIT macro-
instruction.

o If the channel program has been
executed normally, the module returns
control to the processing program.

¢ If the channel program encountered an
error condition in its execution the
rodule tests to determine if the error
is an EOV condition.

e If the error is an EOV condition, the
module sets an indicator to show that
this entry is from the CHECK module and
passes control to the processing
program's EODAD routine.

e If the error is not an EOV condition
the module issues an SVC 55 instruction
to pass control to the SYNAD/EOV execu-
tor (module IGCOOO5E).

e On return of control from the SYNAD/EOV
executor the CHECK module passes con-
trol to the processing program's SYNAD
routine. If the SYNAD routine returns
control to CHECK routine, the routine
issues a second SVC 55 instruction to
pass control to the SYNAD/EOV executor
(IGCOO005E) again. The executor treats
this as an ACCEPT error option, imple-
ments it, and returns control to this
routine, which then returns control to
the processing program.

CHECK MODULE IGG019DC (CREATE-BDAM)

Module IGGO019DC synchronizes the execu-
tion of the channel program (to write a
klock for a BDAM data set) to the progress
of the processing program, and responds to
exceptional conditions encountered in the
execution of the channel program. The OPEN
executor selects and loads this module if
the DCB specifies:

- WRITE (LOAD).

Basic Sequential Access Method Routines 65

The module operates as follows:

e It receives control when the processing

program uses the CHECK macro-
instruction.
e If the channel program is not yet

executed, the module issues a WAIT

macro-instruction.

e If the channel program executed without
error, the module returns control to
the processing program.

e If the execution of the channel program
encountered a permanent error
condition, the module passes control to
the processing program's SYNAD routine.
If control is returned from the SYNAD
routine, or if there is no SYNAD rou-
tine, the module issues an ABEND macxro-
instruction.

e If the WRITE routine encountered an EOV
condition (and, therefore did not
request scheduling of the channel pro-
gram for execution), this module passes
control to the SYNAD/EOV executor
(IGCOO0O0S5E) by issuing an SVC 55
instruction. On return of control this
module tests for completion of the
channel program.

BSAM CONTROL ROUTINES

A control routine receives control when
a control macro-instruction (for example,
CNTRL, NOTE, POINT, BSP) is wused 1in a
processing program or in another control
routine. BSAM control routines (which
include those available in QSAM) pass con-
trol to the I/0 supervisor, another control
routine, or return control to the process-
ing program directly. BSAM control rou-
tines cause the physical or logical posi-
tioning of auxiliary storage devices.

There are
routines:

three types of BSAM control

e Routines that are loaded into process-
ing program main storage by the OPEN
executor (CNTRL, NOTE/POINT).

e Routines that are loaded into supervi-
sory transient area main storage by an
SVC instruction in a processing program

macro-expansion or in another control
routine (BSP, Track Balance).
e Routines that are in-line macro-

expansions in the

(PRTOV).

processing prograrm

66

Routines that are 1loaded by the OPEN
executor are mutually exclusive; that is,
only one of them can be used with one DCB.
The PRTOV macro-expansions result in
instructions that set or test bits that
cause branching in either the processing
program or in an appendage.

Takles 19, 20, and 21 list the various
kinds of control routines and the paramet-
ers that cause them to gain control. Table
19 shows the access condition options that
cause the OPEN executor to load a control
routine for use with a DCB. Table 20 lists
the SVC instructions that cause a control
routine to ke 1loaded at execution time.
Table 21 1lists the different macro-
expansions constructed by the assembler.

Table 19. Module Selector - Control
Modules Selected and Loaded by
the OPEN Executor

r - T -

| | |

| Access Conditions | Selection |
| | |

t—- t—-T-T-T-T-T-1 %

| NOTE/POINT IX1X] 11X |

— t-—t—t—t-4-4-1

| Update, Track Overflow, or| | | |X| | | |

— ot t-+-4-4-1-4-+-1

| Chained Scheduling P-4 P4 I

t F-4-f=t-t-+-+-1

| CNTRL Frxr | Ixix|

F — ~f=t-4-4-4-4-4-1{

| Direct-Access Storage X L IXt v 1

t . t=f=t=4-1-1-+-4

| Magnetic Tape | IXIXD X1]|

S B e R o

| Printer [A B I B 4 B

k- - ~f-t-4-t-1-+-1-1

| Card Reader PP Xl

8 ol 1l L1 L__,{

I i |

| Control Modules | |

| | |

""‘" % T-TTT-TT°7 %

| IGGO19BC [I O A I

e $-=t—4-4-1-4-4

| IGGO019BD I -« T O T O

F M et S S

] IGGO19BE (I T 9 N O O

t - ——f—f——t-t-1-1

| IGGO19BK P B

t ~f=f=t-t-4-3-1-

| 1GG019BL x|

prmmmmmm e - ——f--t-4-4-4-{

| IGG019CAr (I T T I I D 4

b $-4-4-f-4-1-1-1

| IGG019CB* [I 4|

—_— ——— IS Y N T O O
|*These routines are also used in QSAM; |
| see that section for description of |
| these routines. |
1 J

Table 20. Control Modules Loaded at Execu-

tion Time

r~—==7 T T 1
	Macro-		
svC	Instruc-	Function	Module No.
No.	tion		
f-=-1t $ - -~} -1			
25	(none)	Estaklish valid	IGCOO0O2E
		track balance	
		Erase balance	
		of extent for	
		track overflow	
-1 frmmme 4 -			
169	BSP	Device	IGC0006I
		Independent	
		Backspace (tape,	
] | | direct-access) | |
L L 4 L d
Table 21. Control Routines That Are
Macro-Expansions1 2

L T 1
| I I
	Number of
Macro-Instruction	Macro-
	Expansions
	I
L 4 .I
L} . T

| PRTOV - User exit | 1 |
L 4 4
r T 1
| PRTOV - No user exit | 1 |
L -4 4

iThese routines are also used in QSAM;
see that section for a description of
the routines.

2This table duplicates Table 15; it is
repeated here tc identify all control
routines available in BSAM.

CONTROL MODULE IGGO19BC (NOTE,
DIRECT-ACCESS)

POINT -

The OPEN executor selects and loads this
module if the DCB specifies:

- POINT

- Direct-access storage device.

The module consists of two ‘routines:
NOTE and POINT.
NOTE Routine

The NOTE rxoutine ‘in module IGGO019BC
converts the: full direct-access device
address (FDAD) for' the last block read or

written,. to a relative address (of the form
TTR), and presents that value to the proc-
essing program.

The NOTE routine operates as follows:

o It receives control when a NCTE macro-
instruction is encountered in a
processing program.

e It obtains the FDAD value used by the
channel program last executed. The
address 1is found in either the IOB or
the DCB depending upon which macro-
instruction the 1last channel program
implemented.

¢ If the macro-instruction was READ and

more than one buffer 1is wused, the

channel program 1last executed placed
the FDAD value into the IOBSEEK field
in the IOB.

o If the macro-instruction was READ and a

single bLuffer is wused, the channel
program last executed placed the FDAD
value into the DCBFDAD field of the
DCB.

e If the macro-instruction was WRITE, the
end-of-klock routine placed the FDAD
value into the DCBFDAD field.

e It issues a BALR instruction to pass
control to the IECPRLTV routine, which

converts full addresses into relative
addresses.
e It returns the address and control to

the processing program.

POINT Routine

The POINT routine in module IGGO019BC
converts a relative address (of the form
TTRZ) to the full direct-access device
address (FDAD) used by the next channel

program to read or write the block noted.

The POINT routine operates as follows:

e It receives control when a POINT macro-
instruction is encountered in a
processing program.

e Tt issues a BALR instruction to pass
control to the IECPCNVT routine. That
routine converts the relative address

to the full address and returns control
to the POINT routine. If the process-
ing program passed an invalid relative

address, the routine sets the DCBIFLGS
and IOBECBCC fields to show that an
addressing error occurred, before
returning control. (The CHECK routine
finds the error and processes accord-
ingly.)

Basic Sequential Access Method Routines 67

e It establishes the actual value to be
used by the next channel program by
testing the fourth byte of the relative
address (TTRZ). If the value of 7 is
zexo, the full address is decrerented
by one; if Z 1is one, the address
calculated by the IECPCNVT routine is
left unchanged. (For an explanation of
how the value of Z is set, refer to the
description of the POINT macro-
instruction in the publication IBM
System/360 Operating System: Control
Program Serxrvices.)

e It inserts the value in the DCBFDAD and
IOBSEEK fields, sets the DCBOFLGS field
to show that the contents of the
DCBTRBAL field are no longer valid, and
returns control to the processing pro-
grarm.

CONTROL MODULE IGGO19BD (NOTE, POINT -
MAGNETIC TAPE)

The OPEN executor selects and loads this
module if the DCB specifies:

= POINT
- Magnetic Tape.

This module consists of two routines: NOTE
and POINT.

NOTE Routine

The NOTE routine in module IGGO019BD
presents the contents of the DCBBLKCT field
of the DCB to the processing program and
returns control to the processing program.

POINT Routine

The POINT routine in module IGGO19BD
positions the tape at the block for which
NOTE was issued.

The POINT routine operates as follows:
e Tt receives control when a POINT macro-
instruction is encountered in a

processing program.

* It constructs & channel program to read
forward or backward one block.

e It passes the channel program for exe-

cution the number of times required to
position the tape at the desired block.

68

e It fcllows the last Read channel pro-
gram ky a NOP channel program to obtain
device end information for the last
spacing operation.

e It returns control to the processing
program, unless a tape mark, 1load
point, or permanent error 1is encoun-

tered in one of the executions of the
Read channel program. In that case,
the routine sets the DCBIFLGS field to
indicate a permanent error, before
returning control to the processing
program. (Subsequent processing by the
READ or WRITE routine to cause schedul-

ing of channel programs for execution
will result in their mnot being sche-
duled. On the next entry into the

CHECK routine, it detects and processes
the error condition.)

CONTROL MODULE IGGO019BE (CNTRL: SPACE TO
TAPE MARK, SPACE TAPE RECORDS)

Module IGGO19BE positions magnetic tape
at a point within the data set specified by
the CNTRL macro-instruction. The OPEN exe-
cutor selects and loads this module if the
DCB specifies:

- CNTRL
- Magnetic Tape.

The module consists essentially of two
routines: One for spacing forward or back-
ward to the tape mark (the FSM/BSM
routine), and one for spacing forward or
backward a number of tape records (the
FSR/BSR routine).

The FSM/BSM routine cperates as follows:
e It receives control when a CNTRL macro-

instruction is encountered in a
processing program.

e It constructs a channel program to
space to the tape mark in the desired
direction.

e It issues an EXCP macro-instruction for
the FSM or BSM channel program. Con-
trol returns to the routine at channel
end for the FSM/BSM channel program.

e It issues an EXCP macro-instruction for
a NOP channel program to obtain device
end information from the FSM/BSM chan-
nel program.

» It issues an EXCP macro-instruction for
a BSR or FSR channel program to posi-
tion the tape within the data set,
after the FSM/BSM channel program
encounters a tape-mark.

e It issues an EXCP macro-instruction for
a NOP channel program again, to oktain
device end information from the BSR/FSR
channel program. The routine then
returns control to the processing pro-
gram.

The FSR/BSR routine operates as follows:
e It receives control when a CNTRL macro-

instruction is encountered in a
processing program.

e It constructs a channel program to
space one record in the desired direc-
tion.

e It reduces the count passed by the
control macro-instruction and issues an
EXCP macro-instruction for the FSR or
BSR channel program.

e When the count is zero, it issues an
EXCP macro-instruction for a NOP chan-
nel program to obtain the device end
information from the last FSR/BSR chan-
nel program. The routine then returns
control to the processing program.

e If a load point is encountered during
spacing, the routine returns control to
the processing program.

¢ If a tape mark is encountered during
spacing, the routine repositions the
tape to a point within the data set by
reverse spacing one block and returns
control to the processing program.

e If a permanent error is encountered
during spacing, the routine issues a
BALR instruction to pass control to the
SYNAD routine, 1if one is present; if
not, it issues an ABEND macro-
instruction.

CONTROL MODULE IGGO19BK (NOTE,
DIRECT-ACCESS - SPECIAL)

POINT -

This module contains the NOTE and POINT
routines for the special access conditioms
of chained scheduling, track overflow, and
Update. The OPEN executor selects and
loads this module if the DCB specifies:

- POINT

- Direct-access storage

- Chained scheduling, track overflow, or
the OPEN parameter is Update.

NOTE Routine
The NOTE 1routine in mwodule IGG019BK

finds the full direct-access device address
(FDAD) for the last block read or written,

it to a relative address (of the
to the

converts
form TTR), and presents that value
processing program.

The NOTE routine operates as follows:

e It receives control when a NOTE macro-
instruction is encountered in a
processing program.

e It obtains the FDAD value used by the
channel program 1last executed. The
location of this address depends on
which macro-instruction the last chan-
nel program implemented.

s If the macro-instruction was READ and
more than one buffer 1is used, the
channel program last executed placed
the FDAD value into the IOBSEEK field
in the IOB if track overflow or Update
is being wused, and into the ICBSEEK
field if chained scheduling is used.

e Tf the macro-instruction was READ and
only a single buffer is used the chan-
nel program last executed placed the
FDAD value into the DCBFDAD field of
the DCB.

e If the macro-instruction was WRITE, the
end-of-block routine placed the FDAD
value into the DCBFDAD field.

e Tt issues a BALR instruction to pass
control to the IECPRLTV routine, which
ccnverts full addresses into relative
addresses.

e It returns the address and control to

the processing program.

POINT Routine

The PCINT routine in module IGGO19BK
estaklishes the full direct-access device
address (FDAD) used by the channel program
to read or write the block noted.

The POINT routine operates as follows:

e It receives control when a POINT macro-
instruction is encountered in a
processing program.

e It issues a BALR instruction to pass
control to the IECPCNVT routine. That
routine converts the relative address

to the full address and returns control
to the POINT routine. If the process-
ing program passed an invalid relative

address, the executor sets the DCBIFLGS
and the IOBECBCC fields to show that an
addressing error occurred, before
returning control. (The CHECK routine
finds the error and processes accord-
ingly.)

Basic Sequential Access Method Routines 69

e Tt establishes the actual value to be
used by the mnext channel program by
testing the fourth byte of the relative
address (TTRZ). If the value of Z is
zero, the full address is decremrented
by one; if 2Z is one, the address
calculated by the convert routine is
left unchanged. (For an explanation of
how the value of Z is set, refer to the

description of the POINT macro-
instruction in the publication IBM
System/360 Operating Systen/360
Operating System: Control Program Ser-
vices.)

e Tt inserts the value into the DCBFDAD
and IOBSEEK fields if track overflow or
Update is keing used, and also into the
ICBSEEK field if chained scheduling is
used. It sets the DCBOFLGS field to
show that the contents of the DCBTRBAL
field are no longer valid, and returns
control to the processing program.

CONTROL MODULE IGGO19BL (NOTE, POINT -
MAGNETIC TAPE - CHAINED SCHEDULING)

Module IGGO1l9BL is selected and loaded
by the OPEN executor if the DCB specifies:

= POINT
- Magnetic Tape
- Chained scheduling.

The module consists of two routines:
NOTE and POINT.
NOTE Routine

The NOTE routine in module IGGO019BL

presents the contents of the DCBBLKCT field
of the DCB to the processing program and
returns control to the processing program.

POINT Routine

The POINT routine in module IGG019BL
positions the tape at the block for which
NOTE was issued. It operates as follows:

e Tt receives control when a POINT macro-
instruction is encountered in a
processing program.

¢ A channel program is constructed to
read forward or backward one block.

e The channel precgram is passed for exe-

cution the number of times required to
position the tape at the desired block.

70

¢ The last spacing channel program is
followed by a NOP channel program to
oktain device end information for the

last spacing operation.

¢ Contrcl is returned to the processing
program, unless a tape mark, load
point, or permanent error is encoun-
tered in the execution of one of the
channel programs. In that case, the
routine sets the DCBIFLGS field to
indicate a permanent error before
returning control to the processing
program. (Subsequent attempts by the
READ or WRITE routine to cause schedul-

ing of channel programs for execution
will result in their not being sche-
duled. On the next entry into the

CHECK routine, that routine detects and
processes the condition.)

CONTROL MODULE IGCO002E (SVC 25 - TRACK
BALANCE, TRACK OVERFLOW ERASE)

Module IGCO002E consists of two routines
that erase either a part of one track or
several tracks. The track balance routine
determines the available space Ly erasing
the remainder of the track; the track
overflow erase routine erases tracks at the
end of each extent on which there are no
data fields for blocks of the data set to
which the extent belongs. The routine is
used when a block in a data set with track
overflow record format would span extents.

This module is loaded at execution time
into supervisor transient area main storage
if either READ/WRITE wmwodule IGG019BA or
end-of-block module IGG019C2 arrives at an
SVC 25 instruction.

Track Balance Routine

The track balance routine establishes a
valid value for the DCBTRBAL field of a DCB
opened for output to a direct-access
device, when the field value has been
invalidated by a preceding READ, POINT, or
OPEN for MOD macro-instruction.

The routine operates as follows:
e It receives control after it is loaded.

e It ccnstructs, and issues an EXCP
macro-instruction for, a channel pro-
gram with the Erase command and a count
exceeding the track capacity. The
erase operation begins following the
klock just read or on the block pointed
at.

e It determines the actual track balance
by subtracting the residual count in
the channel status word (CSW) from the
count used in the channel program, and
inserts the difference in the DCBTRBAL
field of the DCB.

¢ It returns control to the WRITE
tine.

rou-

Track Overflow Erase Routine

The track overflow erase routine erases
the space on a direct-access storage device
that lies between the 1last block to be
written into the current extent and the end
of that extent. If track overflow end-cf-
block routine IGG019C2 finds that the next
segment of a block falls on a track beyond
the present extent, +that end-of-klock
routine uses the SVC 25 instruction to pass
control, and the channel program, to this
routine.

The routine operates as follows:
e Tt receives control when it is loaded.

e It substitutes Erase commands for the
Write commands in the channel program
associated with the present IOB.

e It issues an EXCP macro-instruction to
cause execution of the channel program
and a WAIT macro-instruction for its
completion.

e It returns control to the track over-
flow end-of-block routine, irrespective
of any errors in the execution of the
channel program.

CONTROL MODULE IGC0006I (SVC 69 - BSP)

Module 1IGC0006I backspaces the data set
one block, whether the data set is on a
magnetic tape or direct-access device.

The expansion of the macro-instruction
BSP includes an SVC 69 instruction which
causes the module to be loaded and entered.
The module essentially consists of two
parts, one for magnetic tape and one for
direct-access devices.

For magnetic
as follows:

tape, the module operates

e It receives control after it is loaded.

e It constructs and issues an EXCP macro-
instruction for a channel program to
kackspace one block.

It constructs and issues an EXCP macro-
instruction for a NOP channel program

to obtain device end information from
the kackspace channel program.
If the backspace channel program

executed normally, the module sets reg-
ister 15 to zero and returns control to
the processing program.

If the channel program executed with an
error other than unit exception, the
module sets the DCBIFLGS field to indi-
cate a permanent error. (The CHECK
macro-instruction, following the next

READ or WRITE macro-instruction, causes
the CHECK routine to pass control to
the processing program's SYNAD

routine.)

If the backspace channel program exe-
cuted with a unit exception, the module

constructs and issues an EXCP macro-
instruction for a channel program to
fcrward space the tape one block. It
next constructs .and issues a NOP
channel program to obtain device end
information from the forward space
channel program. When channel end for
the NOP channel program occurs, the
module returns control to the process-
ing program with register 15 set to an
error code.
For direct-access devices, the module

operates as follows:

Basic Sequential Access Method Routines

It receives control after it is loaded.

It decrements the DCBFDAD field in the
DCB to the preceding klock address,
across tracks, cylinders, or extents.

It sets the DCBOFLGS field to show that
the DCBTRBAL field value is invalid.

If a valid preceding DCBFDAD value has
been established, the module returns
control to the processing program with
register 15 set to zero.

If +there is no valid preceding DCBFDAD
value (because the processing program
attempts to backspace beyond the first
block), the module returns control to
the processing program with register 15
set to an error code.

If a permanent error is encountered
when reading the count fields (to esta-
blish the preceding DCBFDAD field
value), the DCBIFLGS field value is set
to indicate a permanent error. (The
CHECK rxoutine, following the next READ
or WRITE macro-instruction, causes con-
trol to pass to the processing
program's SYNAD routine.)

71

BASIC PARTITIONED ACCESS METHOD ROUTINES

A partitioned data set has a
and members. The directory is read and
written using BPAM routines; the menbers
are read and written using BSAM routines.
(Refer to the BSAM portion cof this publica-
tion.) A processing program using BPAM
routines for input from the directory is
presented with the address of a member in a
channel program or in a takle; fecr a
processing program using BPAM for output to
a directory, the routines determine the
address of the member and record that
address in the directory.

directory

BPAM_ROUTINES

BPAM routines store and retrieve entries
in . the directory and convert between rela-
tive and absolute auxiliary stocrage
addresses. Directory entries are entered
and found by constructing channel programs
that search the directory for appropriate
entry Lklocks and by locating an equal, or
higher, entry within the block. Address
converting routines refer to the data
extent block (DEB) to determine the address
value complementary to the given value.

BPAM routines (see Table 22) differ from

tines are not loaded at OPEN time; the STOW
routine is loaded at execution time, all
the coding fcr FIND (C option) is a macro-
expansion, and the FIND (D option)/BLDL
routine and the converting routines are in
resident main storage. Table 22 shows how

these routines gain control.

STOW MODULE IGC0002A (svC 21)

Module IGC0002A finds entries in BPAM
directory entry blocks and keeps the
directory left-justified after entries have
been inserted or deleted.

The expansion of the STOW macro-
instructicn includes an SVC 21 instruction
that causes this module to be loaded and to
gain control. The STOW macro-instruction
is issued in one of two ways:

- Explicitly by a processing program
using BPAM for output.

- Implicitly by a processing program
using BSAM, QSAM, or BPAM for output,
when issuing a CLOSE macro-instruction
to a DCB opened for a member of a

BSAM and QSAM routines in that BPAM rou- partitioned data set.

Table 22. BPAM Routines Residence

r T T T 1
| | | | Instruction |
| BPAM Routines | Module Nurber | Residence | Passing

| | : | | Control |
R l 4 4 d
r T T . . T 1
| STOW | IGC0002A | Supervisory Transient|sSVC 21 |
| | |Area | [
t 4 t 1 =
| FIND (C Option) | (Macro Expansion) |Processing Program | FIND (C Option) |
| I |Area | ' |
b + + + {
| FIND (D Option) | IECPFIND, IECPFND1 |Supervisory Resident |SVC 18 |
| | |Area | |
b ¢ ¥ == !
| BLDL | IECPFIND, IECPFND1 |Supervisory Resident |SVC 18 or |
| | |Area | BAL IECPBLDL |
- } e -t %
| Convert TTR | IECPFIND, IECPFND1 |Supervisory Resident |BAL IECPCNVT |
|] |Area | |
; + + t {
| Convert MBBCCHHR | IECPFIND,IECPFND1 |Supervisory Resident |BAL IECPRLTV |
| 1 jprea | |

72

The module operates as follows:

e It receives control when it is loaded.

e If an ADD (Not ALIAS) or a REPLACE (Not
ALIAS) option is specified, the module
writes an end-of-data set mark
(zero-length data block) at the end of
the menber. The module then stores,
for use at the next entry into the STOW
module, the relative address of the
next Dblock to be written, in the

DCBRELAD field of the DCB. (The OPEN
routine determines the first relative
address for the first entry to this

module.)

For any option, the module searches the
directory for an entry hlock with a key
equal to or higher than the memker
name, and reads that entry block into
the input buffer.

The module compares the entries in the
entry block to the member name in the
instruction operand. Entries whose
value is lower than that of the member
narwre are moved to the output buffer.

For entries that equal the member name,
the module checks to determine whether
the REPLACE, the CHANGE, or the DELETE
option is specified.

If the REPIACE option is specified, the
module moves the new entry from the
work area to the output buffer, skips
the present entry, and moves the
remaining entries to the output buffer.
It issues an EXCP macro-instruction to
write the updated entry block into the
directory.

If the CHANGE option is specified, the
module moves the present entry less the
present name to the new entry work
area. To enter the new entry in its
proper entry klock, the routine contin-
ues as though the ADD option were
specified.

If the DELETE option is specified, the
module skips the present entry and
moves the remaining entries to the
output buffer. The module now shifts
the balance of the entries in the
directory to the left by constructing
the necessary channel programs. It
reads a block, shifts entries into the
rermaining space of the preceding block,
writes the completed entry block, and
starts the next block.

e For entries that are higher than the

member name, the module checks to
determine whether the ADD option is
specified.

e If the ADD option is specified, the
module moves the new entry from the
work area to the output buffer before
mceving the high entry and those follow-
ing it. The module then shifts to the
right all entries following the added
entry by constructing the channel pro-
grams necessary alternately to write
and read entry blocks. The module
writes the full block, moves the
remaining entries to the output buffer,
reads another entry block, and then
completes and writes the output buffer.

¢ On completion of all channel programs
necessary for the specified option, the
routine returns control to either the
processing program, or the CLOSE rou-
tine.

FIND (C OPTICN) MACRO-EXPANSION

This coding causes translation of the
relative address into a full device address
(FDAD) and its insertion into the next IOB.

The macro-expansion produces object code
that places the relative address in the
DCBRELAD field in the DCB and issues a BALR
instruction to pass control to the POINT
routine.

RESIDENT MODULE IECPFIND

Unless BLDLTAB 1is specified for the
RESIDNT option of the SUPRVSOR macro=-
instruction in the system generation
(SYSGEN) program, this module is 1link-
edited at SYSGEN time with other modules to
make up the resident nucleus. (If BLDLTAB
is specified, module IECPFND1 is used.)

The routines composing the module gain
control through an SVC 18 instruction in a
processing program or a BALR instruction in
a control program. A FIND (D Option) or
BLDL macro-instruction expansion generates
an SVC 18 instruction which causes control
to pass to CSECT IGCO018, the entry point
for the FIND (D Option) and BLDL routines.
Contrcl programs may use a BALR instruction
and the address found in the communications
vector table (CVT) for entry points
IECPBLDL, IECPCNVT, and IECPRLTV to pass
control to the respective routines.

Basic Partitioned Access Method Routines 73

FIND (D Option) Routine - Entry Point and
CSECT Name: IGC018 (sSvC 18)

The FIND (D Option) routine £finds the
relative address of the member named in the
macro-instruction. It then causes the
relative address to be converted into the
full device address (FDAD) and to be lcaded
into the DCBFDAD and IOBSEEK fields. The
routine operates as follows:

e It searches the directory for an entry
block with a key equal to, or higher
than, the given member name.

e It reads that entry block into main
storage and searches the entry block
for the matching entry.

e It enters the relative address stated
in the entry into the DCBRELAD field in
the DCB and issues a BAL instruction to
pass control +to the POINT routine.
control returns to the processing pro-
gram.

BLDL Routine - Entry Points:
IECPBLDL, IGCO018 (SvcC 18)

The BLDL routine completes a BLDL takle
with the directory entry for each of the
members named in the BLDL takble. The
routine operates as follows:

e It searches the directory for an entry
block with a key equal to, or higher
than, the given member name.

e It reads ‘that block into main stcrage
and searches the entry block for the
matching entry.

e It moves the entry into the processing
program's BLDL table, obtains the next
nare to be matched, and returns to the
beginning of the routine.

e When the BLDL table has been completed,
the routine returns control to the
processing program.

Convert Relative-to-Full Address Routine -
Entry Point: IECPCNVT

Converting routine IECPCNVT accepts, in
register 0, a relative address (of the form
TTR) for direct-access devices and presents
the corresponding full device address (of
the form MBBCCHHR) at the locaticn shown by
register 2.

74

The routine operates as follows:

e For each extent, the module reduces the
arount TT by the nuwber of tracks in
the extent. When the balance is nega-
tive, the proper extent has been
reached.

e It determines the full device address
for the specified relative value.

Convert Full-to-Relative Address Routine -

Entry Point: IECPRLTV

Converting . routine IECPRLTV accepts,
from the location shown by register 2, a
full device address (of the form MBBCCHHR)
for direct-access devices and presents the
corresponding relative address (of the form
TTR) in register O.

The module totals the number of tracks
per extent for the (M - 1) extents. For
extent M, it adds the number of tracks
entered into the extent.

RESIDENT MODULE IECPFNDI1

If BLDLTAB is specified for the RESIDNT
parameter of the SUPRVSOR macro-instructicn
when the system is generated, this module
is link-edited at SYSGEN time with other
modules to make up the resident nucleus.
(If BLDLTAB is not specified, module
IECPFIND is wused.) At initial program
loading (IPL) time, the nucleus initializa-
tion program (NIP) constructs a resident

BLDL takle from SYS1.LINKLIB directory
entries. That table is the one referred to
by the FIND and BIDL routines in this
module.

The routines composing the module gain
control through an SVC 18 instruction in a
processing program or a BALR instruction in
a control program. A FIND (D Option) or
BLDL macro-instruction expansion generates
an SVC 18 instruction which causes control
to pass to CSECT IGC018, the entry point
for the FIND (D Option) and BLDL routines.
Control programs may use a BALR instruction
and the address found in the communications
vector table (cvT) for entry points
IECPBLDL, IECPCNVT, and IECPRLTV to pass
control to the respective routines.

FIND (D Option) Routine - Entry Point and
CSECT Name: IGC018 (SvC 18)

The FIND (D Option) routine finds the
relative address of the member named in the
macro-instruction. It then causes the
relative address to be converted into the
full device address (FDAD) and to be locaded
into the DCBFDAD and IOBSEEK fields. The
routine operates as follows:

o If SYS1.LINKLIB is the referenced
likrary, it scans the resident BLDL
takle for an entry that matches the
given memker name.

e If SYS1.LINKLIB is not the referenced
likrary, or 1if the name is not in the
table, it searches the directory for an
entry klock with a key equal to, or
higher than, the given memker name. It
reads that entry block into main stor-
age and searches the entry block for
the matching entry.

¢ If the name is in the table, or after
finding the matching entry in an entry
block read . in, it enters the relative
address stated in the entry into the
DCBRELAD field in the DCB.

e It issues a BAL instruction to pass
control to the POINT routine.

e Tt returns control to the
prcgraim.

processing

BLDL Routine - Entry Points: IECPBLDI,
IGC018 (SvC 18)

The BLDL routine completes a BLDL table
with the directory entry for each of the
members named in the BLDL takle. The
routine operates as follows:

SYS1.LINKLIB is the referenced
library, it scans the resident BIDL
table for an entry that matches the
given memkber name.

o If

e If SYS1.LINKLIB is not the referenced
likrary, or if the name is not in the
takle, it searches the directory for an
entry block with a - key equal to, or
higher than, the given member name. It

reads that block into main storage and
searches the entry klock for the match-
ing entry.

e If the name is in the table, or after
finding the matching entry in an entry

block read in, it moves the entry into
the processing program's BLDL takle,
oktains the next name to be matched,

and returns to the

routine.

beginning of the

¢ When the BLDL table has been completed,
the routine returns contrcl to the
processing program.

Convert Relative-to-Full Address Routine -

Entry Point: IECPCNVT

Converting routine IECPCNVT accepts, in
register 0, relative addresses (of the form
TTR) for direct-access devices and presents
the corresponding full device addresses (of
the form MBBCCHHR) at the location shown by
register 2.

The routine operates as follows:

e For each extent, the routine reduces
the amount TT by the number of tracks
in the extent. When the balance is
negative, the proper extent has been
reached.

e It determines the full device address
for the specified relative value.

Convert Full-to-Relative Address Routine -

Entry Point: IECPRLTV

Converting routine IECPRLTV accepts,
fror the location shown by register 2, a
full device address (of the form MBBCCHHR)
for direct-access devices and presents the
corresponding relative address (of the form
TTR) in register 0.

The routine totals the number of tracks
per extent for the (M - 1) extents. For
extent M, it adds the number of tracks
entered into the extent.

Basic Partitioned Access Method Routines 75

SEQUENTIAL ACCESS METHOD EXECUTORS

Sequential access method executors are
routines that receive control fror, pass
control to, or return control to I/0O sup-
port routines. (For a description of I/0
support routines refer to the publication
IBM Systen/360 Operating System:
Input/Qutput Support, Program Logic Manual,
Form Y¥28-6609.) Table 23 shows the
sequence of control between executcrs and
other routines. Executors perform process-
ing unique to an access method when a data
control block is being opened or closed, or
an end-of-volume condition is being proc-
essed. These executors (used for QSAM,
BSAM, and BPAM) are of five types:

OPEN executor

CLCSE executor
SYNAD/EOV executor
EOV/new volume executor
FEOV executor.

® 6 o 0 0

Executors differ from other access meth-
od routines in that they are executed from
the supervisory transient area. It is the
OPEN executor that loads the access method
routines into the processing prcgram area
for 1later use during processing program
execution.

The OPEN executor is entered from the
OPEN routine of I/0 support, and returns
control to that routine. (See Figure 10.)
It constructs the data extent block (DEB),
the input/output blocks (IOB), the channel
programs, and, if chained channel-program
scheduling is used, interruption control

blocks (ICB). It selects and 1load the
access method routines to be used with the
data control block (DCB) being opened.

The CLOSE executor is entered from the
CLOSE routine of I/O support, and returns
control to it. The executor handleés any
pending channel programs and releases the
main storage used by the IOBs (and ICBs)
and channel programs.

The SYNAD/EOV executor is entered when
synchronizing or CHECK routine finds that a
perxranent I/0 error or end-of-vclume (EOV)
conditicn was encountered during the execu-
tion of a channel program. The executor
passes control to the end-of-volume routine
of I/0 support, or executes the error
options specified by the processing pro-
gram. The executor provides a work area in
main storage for the end-of-volume routine.

The FEOV (force-end-of volume) executor
is entered when an FEOV macro-instruction
is encountered in a processing program.
The executor handles any pending channel
programs, provides a work area in main
storage for the end-of-volume routine, and
passes control to the end-of-volume routine
of I/0 support.

The EOV/new, volume executor receives
control from the end-of-volume routine of
I/0 support. The executor causes the I1/0
supervisor to reschedule any channel pro-
grams not executed Lecause of the EOV
conditions.

Table 23. Sequential Access Method Executors - Control Sequence

r T T T ; T -
I I) I I
		Receives Control		Passes Control
Executor	Number	From	Via	To
	I I I			
[4 1 —— 4 ..+ 4				
L} T T . T . 1				
OPEN	See Tables 24,	See Figure 10	XCTL	See Figure 10

| | 25,26 | | (WTG Table) |]
¢ 4 i 4 4 1
| CLOSE | I6G0201A | CLOSE Routine | XCTL | CLOSE Routine |
| | IGG0201B i | (WG Table) | |
t + + -—-1 t 1
| SYNAD/EOV | IGCO005E | Synchrenizing, |SvVC 55 | EOV Routine |
| | | CHECK Routines | [|
8 4 _+_,__ 1 4 Jd
r T R T T N a
| FEOV | IGC0003A | Processing | FEOV Macro-| EOV Routine

| | | Program | Instruction| |
| | | | (svCc 31) | |
I 1 4 ————— 1 4
L} T T . T T 1
| EOV/new volume | IGG0551A | EOV Routine | XCTL | See Executor

| | | | | Description |
L ——— L L 3 1 J

~
o

OPEN Routine

Write Output Label
Module

OPEN Routine
Merge DCB/JFCB
Module

IGGOI91A
Construct DEB
s Y
tage 1 IGG01918 1GGO1911 IGGO191C
Device Initiation Build Buffer Pools Dummy Data Set
Stage 2 Stage 2
Executor Selection Executor Selection
Ny v !
a
1IGG0191J IGGOIZIR
Normal Scheduling Y Chained Scheduling
S
Inout, Outin Inout, Outin
Direct-Access Storage
IGG0I91D IGGO0191K
| Normal Scheduling VL_, Chained Scheduling
1
Direct-Access Storage Direct~Access Storage IGCOI91E
Exchange Buffering
IGGo1916 I—» Magnetic Tape,
Normal Scheduling IGG0191Q Direct-Access Storage
Chained Scheduling IGGO191L
Unit Record, ! Input
Stage 2 < Magnetic Tape, > Unit Record,. Create-BDAM
. Paper Tape Magnetic Tape (WRITE-LOAD)
Inout, Outin IGGOI91F
Magnetic Tape Exchange Buffering
IGGO191M
Exchange Buffering 1GGO191H Magnetic Tape, Create-BDAM
Unit Record Track Overflow Direct-Access Storage (WRITE-LOAD)
Output Track Overflow
O)
IGGOI191P
Update
L
Update and Track
Overflow
L
1GG01912 IGG01910 IGGO01913 IGG01914
Update Track Overflow
(None of the other) Exchange Buffering
Stage 3 Paper Tape Chained Scheduling
Y Y
IGGO01911
QSAM

Figure 10.

Flow of Control

OPEN Routine

Final Module

- SAM OPEN Executor

Sequential Access Method Executors

77

OPEN EXECUTORS

The OPEN executors are grouped into
three stages. Those in the first stage
receive control from the OPEN routine of
I/0 support. These executors pass control
to one of the stage 2 executors, or return
control to the OPEN routine. The stage 2
executors in +turn, pass control to the
stage 3 executors, or return control to the
OPEN routine. Stage 3 executors return
control to the OPEN routine. Before relin-
quishing control, each executor specifies
the next executor to be called for the data
set being opened, and also examines the
where-to-go (WTG) table to determine wheth-
er other data sets being opened at the same
time need its services. (For a description
of the WIG table refer to the publication

IBM System/360 Operating System:
Input/Qutput Support, Program Logic

Manual.)
Figure 10 shows the executors that com-

pose the three stages, and their relation-
ship.

STAGE 1 OPEN EXECUTORS

Stage 1 OPEN executors construct data
extent blocks (DEB) and buffer pools.
There are separate executors for actual

data sets and for dummy data sets. The
executor for actual data sets consists of
three modules and passes control to a stage
2 executor (via an XCTL macro-instruction);
the executor for dummy data sets consists
of one module and returns control to the
OPEN routine. Either executor receives
control from the OPEN routine by being
identified in the WTG table and Leing
loaded into the supervisory transient area.
On conclusion of all stage 1 executors'
processing, the 1last enters in the WTG
table the identification of the stage 2
executor that is required. Table 24 1lists
the access conditions that cause different
stage 1 executors to be selected, loaded,
and to receive control after loading.

Stage 1 OPEN Executor IGG0191A

Executor IGGO0191A receives control from
the OPEN routine, unless the DD statement
is DUMMY. (If the DD statement is DUMMY,
executor IGG0191C receives control from the
OPEN routine.)

The executor operates as follows:

e It receives control after it is loaded.

78

e It computes the amount of main storage
required for the data extent block
(DEB), obtains the space, and enters
the addresses of the extents. If no

primary extent has been requested for
an output data set, as shown by the
value in the field DSINOEPV in the data
set control block (DSCB), the executor
sets the DCBCIND1 field to show a
volume-full condition.

e It specifies in the WTG table that
executor IGG0191B is the next executor
required for this DCB. It then search-
es the WIG table to pass control to

another executor. ~For executor
I6G0191A, this is always executor
IGGO0191B.
Table 24. OPEN Executor Selector -
Stage 1 OPEN Executors
r T 1
.)
Access Conditions	Selection
[1 4	
r T T T 1	
Actual data set	X
L 1 1 1 3	
) . T T 1 1	
Buffer Pool Required	
L 4 4 iR J	
T T T T h]	
Dumry data set	
L 1 1 1 4	
v T T T 1	
]	
Executors	
L (] 1 1 4	
r T T T 1	
IGG0191A	X
and IGG0191B	
1 4 4 4	
T T 1 1	
1GG0191C	I
L 4 4 4	
T T h] 1	
and IGG0191I i	X
L L L L d

Stage 1 OPEN Executor I1GG0191B

Executor IGG0191B is always loaded after
executor IGG0191A has completed processing
all entries in the WTG table.

The executor operates as follows:
» It receives control after it is loaded.

e If the device type is direct-access
storage, it determines the first Seek
address and enters it in the DCBFDAD
field.

e Tf the DCB is opened for MOD, it copies
the contents of the DS1TRBAL field of
the DSCB into the DCBTRBAL field of the
DCB.

e If the DCB is opened for input and the
data set control block (DSCB) shows
that the data set contains no data, it
sets the DCBCIND1 field to show a
volume-full condition. For example,
for an error 1log data set without
entries the DSCB field DS1LSTAR (which
contains the value TTR) has an entry of
TTR=0.

e If this or the preceding executor sets
a volume-full indication in the DCB,
the executor sets the IOBFLAGl field
(and the ICBFLAG1 field, if chained
scheduling is used) to show an end-of-
volume conditicn.

o If the device 1is a printer with the
universal character set (UCS) feature,
the executor constructs a channel

program - to prevent (block) or to allow
(unklock) data checks for the printer,
and issues an EXCP macro-instruction
for it. (The IOB, DEB, and DCB located
in the work area of the OPEN routine
are used to schedule and execute the
channel program.)

o If a buffer pool is to be built, as
shown by entries in the DCBBUFNO or
DCBBUFCB fields, the executor specifies
in the WTG table that executor IGG01911I
is the next executor required for this
DCB. It then searches the WTG table to
pass control to another executor.

e If no buffer pool is to be built, the
executor specifies in the WTG takle the
stage 2 executor required for this DCB.
It then searches the WTG table to pass
control to another executor.

Stage 1 OPEN Executor IGG0191C (and Dummy
Data Set Module IGGO019AV)

Executor IGG0191C operates as follows:

control from the OPEN rou-
tine if the DD statement 1is DUMMY, and
loads module IGGO19AV. Dumry data sets
require only this executor; if no other
data sets are being opened, control returns
to the OPEN routine.

It receives

Dumry data set module IGGO19AV operates
as follows:

It receives control: when a sequential
access method racro-instruction refers to a

dummy data set. For
set, the module passes control to the
user's EODAD routine; for a dummy output
data set, the module returns control to the
processing program imrmediately, without
scheduling any I/0 operation.

a dummy input data

Stage 1 OPEN Executor IGG01911I

Executcr IGG0191I is loaded after execu-
tor IGG0191B if the OPEN executor must
build buffer pools.

The executor operates as follows:
e It receives control after it is loaded.

e If +the wvalues in both the DCBBUFL and
DCBBLKSI fields are zero, the executor
passes control to the ABEND routine.

e If the value in either the DCBBUFL or
DCBBLKSI field is not zero, the execu-
tor uses that value to establish the
size of the buffer. The value in the
field DCBBUFNO determines the numwber of
buffers constructed.

* It specifies in the WTG table the stage
2 executor required for this DCB. It

then searches the WTG table tc pass
contrcl to another executor.
STAGE 2 OPEN EXECUTORS
A stage 2 OPEN executor establishes

device oriented information for the proc-
essing described by a DCB, and completes
device oriented control blocks or fields.
One of the stage 2 executors receives
control for each DCB being opened; the WTG
table identifies the executor required for
each DCB. On conclusion of an executor's
processing it enters in the WTG table the
identification of the stage 3 executor
required. Table 25 lists the access condi-
tions that cause the different stage 2
executors to be 1loaded and to receive
control.

The device oriented processing performed
by a stage 2 executor primarily consists of
the construction of input/output blocks
(IOB) and their associated channel pro-
grams, and the identification of the end-
of-block routine required for the
processing described by the DCB. For
chained channel-program scheduling an exe-
cutor also constructs interruption control
blocks (ICB).

Sequential Access Method Executors 79

OPEN Executor Selector - Stage 2 OPEN Executors

Table 25.

Selection

o

X |
B v e [S S S vt S S S S e

Access Conditions

BSAM or
QSAM
Input or

L}
|
t

| x2|

|....._

| X | x2|

| x2|

| Output

TTTTTT
<
e e e e e e
| 0w |
| al
|“.||ILTI||AI..I-.L_I
| |
| |
+——t—
PRy
L
| | |
| | |
TTTTTTT
| | | |
| | | |
TTTTTTT
| | |
| | |
LV
< | |
| | i |
e cet SR
] | | |
| | | |
! | | |
T
| > | |
| | | |
A P .
| [
| | >
] | |
I.—I||II:II|“I|I"I
|
L
==
| |
| 1
+—t—t—t
| |
| |
I“IILTlLT'LT
| i
et —t—t—
|
=}
o T
+ M
=1 [¢]
O 9]
V]
- 24
£
=B +
[l -
a1 (=]
H “ =)
[S SR PRSI S

Magnetic Tape

L0 rxsp
T R Mt S e S

x4 x 1 |

| X3 X3

pom—t-—t

-1

I

!
T et e e S S e

| X%

|

Paper Tape

r
|

IR
v

+
| X | X3] x3]

I 3 T N N R R
e T e S s S

|

| Direct-Access Storage

|8
3

-+ —

A A T R A B I3 I 35 A T S
e S S S Mt et S S

1
+

| WRITE-LOAD (Create-BDAM)

L
t

T T N I R T B
T S s e S S

X1 X

| X

| Exchange Buffering

l.____

fr o o rxr o rx |

|

4
I
1
T
|

| Track Overflow

I“III_1. I'J.Ill-lllj.ll-l'“llllu"llﬂllj_ll
< | e
LU T T T A R
el o
'T||4!||l||17||4:1111:ﬁ||4| +=—
|
|] |] |
i | | I |
T3 R
1] | | | 1 1
| I 1 i | i i
B T T T T T
| | | | | | | |
| | | | | | | _
5 T e S S S S S
| | | | | | | |
| | | | | | | |
LU T T T e e
| »< | | | | | | |
| | | | | | | |
e e e e e e e e e e
1 | |]] | [I
| | 1 | I 1B
| [| | | |
B T T S T T
| | |] | oo |
| [| | I | |
B T T S T U A T
| 1] | | | o | |
1 | | |]] | |
T N S S e A
| Pl
T A T T S H
| | 1 1O 1 |
i | | | I i
LT||+:I||I:?||¢!I|ﬁ|:%||1 —+— 4.
il |
LT|+||I.LT|1T.I|“n|.“|I.LT.l+||“.
. |
LT.I.TI.I.|+|+|+|%|4..l.fll
| A |
ettt — === —
| |
| |
| |
I |
o
<] 0 |
o M [a] =3 I I =1] 2o} L»]
— 0 R T I I B I B e B
S s} NN ENEEE)
ko) =1 Ald |l A Ao
0] 3] clo|lojio o |o
e} (0] G} O] [©} (U] (O] O]}
Q > G} (O] [0} [0} O] U]
0] HiHIHIHITHAR|H
ho)
o]
IS
o |
o |
Ko |
(&) |
Lrllrl'llrllr'l—r||=|||Lr.|lrlll:|.||L

IGG0191K

B A S A A
[T -
| | |
R T e
1o
R T T
P
| '
B e
PR
I B
N T T
= | I
| | |
B T
X [B
| | |
B T T
[
| | |
— = e — o
o
[R
] P
— e — e —
oo
[R T
o
—t e — - —
I R
] [
| | |
B S S
[|
o
B T e A
| [
oo
e — - —
o
[T B
o0
—t—— - ——
o
| |
— ==t
“
—+——t—t—
|
I
I
| |
QIS IAMlOolm
R R R
=)} [e)])] [e)]) <))
R R
o (@] o o o
VIV IV Y
[O] U] [} O]
HH A I~
i
|
|
rl"lu.I.L.lllllrllLrllll.l

1

s selected for e

1

S executor

1Thi

ther QSAM or BSAM.

Magnetic Tape, or Paper Tape.

ther Magnetic Tape or Direct-Access Storage.
ther Unit Record or Magnetic Tape.

is}
=]
[oh)
i) -
=] Lol
(@] M
0]
™ 8}
o (]
~
5}
3 +
Qo
] =]
=] o]
™ ™
(] ()
S e}
PPP
o o o
[OI)
oMM
000
[Pt
T T Y
[OaC M)
P
VOO
QLo
~ e~
(OO
nunn
nunn
[
MMM
O 00
P PP
o s B =
[OXNOTNS]
[OOR0]
L]
(OO
nnn
o oo
Fojieiie]
HEHE
N oM

1

lected for e

1S se

tor

1S execu

STh
80

Stage 2 OPEN Executor IGG0191D

Executor IGG0191D receives control after
executor IGG0191B or IGG0191I if the OPEN
parameter list specifies:

= Input or Output
and the DCR specifies:
- Direct-access storage device

- BSAM, or OSAM and simple buffering

(but neither Urdate, nor track overflow,
nor chained channel-program scheduling is
specified). It may also receive control
after executors IGGO191E, IGG0191F, or
IGG0191K.

The executor constructs IOBs and channel
programs and places the address of the
first IOB into the DCB.

The executor specifies in the WTG takble
that executor IGG01910 is the next executor
required for this DCB. It then searches
the WTG takle to pass control to another
executor.

Stage 2 OPEN Executor IGG0191E

Executor IGGO191E receives control after
executor IGGO0191B or IGG0191I if the OPEN
parameter list. specifies:

- Input
and the DCB specifies:

- Exchange buffering

- Magnetic tape, or direct-access storage
(but not track overflow). The executor is
loaded, and gains control, when its iden-

tification in the WIG table is found by
another executor.

The executor operates as follows:

e It receives control after it is loaded.

e If the operating mode is move, or the
record format is variable-length
blocked, or the record format is

variable-length and the operating mode

is sukstitute, simple buffering is sub-
stituted for exchange buffering.
Therefore, it identifies (in the WTG
table) executor IGG0191D (if the device
type is direct-access storage) or exe-

cuter IGG0191G (if the device-type is
unit record) as the executor required
next for +this DCB. It then searches

the WTG table to pass control to anoth-
er executor.

¢ It identifies the end-of-block routine
to be used in the processing specified
ky the DCB, and obtains space for and
censtructs IOBs and channel programs
and links them.

e If the device is direct-access storage,
it copies the starting Seek address
from the DCB into the IOB.

e It specifies in the WTG table that
executor IGG01914 is the next executor
required fcr this DCB. It then search-
es the WTG table to pass control to
another executor.

Stage 2 OPEN Executor IGGO191F

Executcr IGG0191F receives control after
executor IGG0191I if the OPEN parameter
list specifies:

- Output
and the DCB specifies:
- Exchange buffering
- Magnetic tape, or direct-access storage

(but not track overflow). The executor is
loaded, and gains control, when its iden-
tification in the WTG table is found by
another executor. .

The executor operates as follcws:
e It receives control after it is lcaded.

e If the operating mode is move, or the

- record format is variable-length
klocked, or the = record-format is
variakle-length and the operating mode
is sukstitute, simple buffering is sub-
stituted for exchange buffering.
Therefore, it identifies (in the WTG
table) executor IGG0191D (if the device
type 1is direct-access storage) or
IGG0191G (if the device type is unit
record or magnetic tape) as the execu-
tor required next for this DCB. It
then searches the WTG table to pass
centrol to another executor.

Sequential Access Methcd Executors 81

e It identifies the end-of-block routine
to be used in the processing specified
by the DCB, and obtains space for and
constructs IOBs and channel programs
and links them.

e Tt specifies 1in the WTG table that
executor IGG01914 is the next executor
required for this DCB. It then search-
es the WTG table to pass control to
another executor.

Stage 2 OPEN Executor IGG0191G

Executor IGG0191G receives control after
executor IGG0191B or IGGO0191I if:

- The DCB specifies BSAM and either unit
record, magnetic tape, or paper tape

- The DCB specifies QSAM, simple buffer-
ing, and either unit record, magnetic
tape, or paper tape

- The DCB specifies QSAM, exchange buf-
fering, and unit record

- The OPEN parameter is Inout or Outin
and the DCB specifies magnetic tape

(but not
chained

if Update,
channel-program

track overflow, or
scheduling is

specified). It may also receive control
after executors IGGO0191E, IGGO0191F, and
I1GG01919.

The executor constructs IOBs and channel
programs and places the address of the
first IOB into the DCB.

The executor specifies in the WTG takle
the next executor required for this DCB.
If the DCB specifies exchange buffering,
the next executor is IGG01914. If the DCB

specifies paper tape, the next executor is
IGG01912. For the remaining access condi-
tions that cause this executor to ke used,

the next executor is IGG01910. The execu-
tor then searches the WTG table to pass
control to another executor.

Stage 2 OPEN Executor IGG0191H

Stage 2 OPEN executor IGG0191H receives
control after executor IGG0191B or
IGG01911I, if the DCB specifies:

- Track overflow

82

(but not Update). The executor is loaded
and gains control, when another executor
finds its identification in the WTG table.
(If both track overflow and Update are
specified, executor IGG0191P receives con-
trol.)

The executor operates as follcws:
» It receives control after it is loaded.

e It identifies the end-of-block routine
and the direct-access NOTE/POINT xrou-
tine to be wused inr +the processing
specified by this DCB.

e It obtains space for and constructs
I0Bs and channel programs for the maxi-
mum number of segments possible. It
links the channel programs to the IOBs
and the IOBs to one another.

e It specifies in the WTG table that
executor IGG01913 is the next executor
required for this DCB. It then search-
es the WTG table to pass control to
another executor.

Stage 2 OPEN Executor IGG0191J

Executor IGG0191J receives control after
executor IGG0191B or IGG0191I if the OPEN
parameter list specifies:

- Inout or Outin
and the DCB specifies:
- Direct-access storage.

The executor constructs IOBs and channel
programs (including a portion for write-
check, if it has been specified), and puts
the address of the first IOB into the DCB.

The executor specifies in the WTG table
that executor IGG01910 is the next executor
required for this DCB. It then searches
the WTG table to pass control to another
executor.

Stage 2 OPEN Executor IGG0191K

Executor IGGO191K receives control after
executor IGG0191B or IGG0191I if the DCB
specifies: :

- Chained channel-program scheduling

- Direct-access storage.

It is 1loaded and
another executor
in the WTG takle.

receives control when
finds its identification

The executor operates as follows:
e It receives control after it is loaded.

e If the NOTE/POINT macro-instruction is
used, the executor identifies direct
access NOTE/POINT module IGGO019BK to be
loaded for use with this DCB.

e It identifies the end-of-block routine
to be 1loaded and used for the
processing described by this DCB.

e Tt obtains space for, and constructs,
one IOB, the required number of ICBs
(that 1is, one ICB per channel program

or buffer), and their associated chan-

nel programs, and then links themn.

e It specifies in the WTG table that
executor IGG01913 is the next executor
required for this DCB. It then search-
es the WTG table to pass contrcl to
another executor.

Stage 2 OPEN Executor IGG0191L

Executor IGGO0191L receives control after
- executor IGG0191B or IGG0191I if the DCB
specifies:

- Create-BDAM (WRITE-LOAD).

The executor constructs IOBs and enters the
address of the first IOB into the DCB. If
track overflow is not specified, the execu-
tor also builds channel prograns. (If

track overflow is specified, channel pro-
grams are built by executor IGG0191M.)
This executor also 1lcads the Create-BDAM

WRITE and CHECK routines, and inserts their
addresses into the DCB.

Unlike other stage 2 executors that
cause control to pass to a stage 3 execu-
tor, this one indicates in the WTG table

that OPEN executor processing for this DCB
is completed, unless track overflow is
specified. (If track overflow is speci-
fied, it identifies executor IGG0191M as
the next executor required for this DCB.)
It then searches the WTG table to pass
control to. another - executor. If the WIG
table has no other entries, the executor
returns control to the OPEN routine.

Stage 2 OPEN Executor IGG0191M

Stage 2 OPEN executor IGG0191M con-
structs channel programs to write track
overflow blocks using BSAM for a data set
toc be later processed by BDAM. Executor
IGG0191L identifies it in the WTG table as
its successor executor if the DCB speci-
fies:

- Create-BDAM (WRITE-LOAD)

- Track overflow.

It is loaded and gains contrcl when another
executor finds its identification in the
WTG table.

The executor operates as follows:

o It receives control after it is loaded.

e If the extents are smaller than the
klocks, it passes control to the ABEND
routine.

¢ It constructs channel programs to write
the number of segments required by the
size of the block.

e Tt specifies in the WTG table that OPEN
executor processing is completed for
this DCB. It then searches the WTG
table to pass control to another execu-
tor. If the WTG table has no other
entries, the executor returns control
to the OPEN routine.

Stage 2 OPEN Executor IGG0191P

Stage 2 OPEN executor IGGO0191P receives
control after executors IGG0191B or
IGG0191I if the OPEN parameter list speci-
fies:

- Update
(whether or not track overflow is also
specified). It is 1loaded and receives
control when another executor finds its

identification in the WTG table.
The executor operates as follows:
e It receives control after it is loaded.

IGG019CC as the
to be loaded for

e It identifies module
end-of-block routine
use with the DCB.

Sequential Access Method Executors 83

e If the NOTE/POINT macro-instruction is
specified, it identifies module
IGG019BC as the NOTE/POINT routine to
be loaded for use with this DCB.

e It obtains space for, and constructs,
IOBs and channel programs to empty and
refill each buffer. For OQSAM, the
executor links the channel programs so
that a buffer may be either refilled
only (ky executing -only the second half
of the channel program) or may be
enmptied and refilled (by executing the
channel prcgram from the beginning).

e It specifies in the WTG table that
executor 1IGG01912 is the next executor
required for this DCB. It then search-
es the WTG table to pass control to
another executor.

Stage 2 OPEN Executor IGG0191Q0

Executor IGG0191Q gains control after
executors IGG0191B or IGG0191I if the DCB
specifies:

- Chained channel-program scheduling

- Unit record, magnetic tape.

control when
identification

It is 1loaded and receives
another executor finds its
in the WTG table.

The executor operates as follows:

e Tt receives control after it is loaded.

e If the DCB specifies the CNTRL macro-

instruction this executor identifies
executor IGG0191G in the WTG table as
the next executor to receive control

for this DCB.
table to pass
executor.

It then searches the WTG
control to ancther

e If the NOTE/POINT macro-instruction is
specified and the device 1is wmagnetic
tape, it identifies module IGGO19BL to
be loaded for use with the DCB.

e If the NOTE/POINT macro-instruction is
specified, and the device is unit
record, it identifies dummy data set
module IGG019AV to be loaded and used
in place of NOTE/POINT.

e It identifies the end-of-block routine
to be loaded and used for the process-
ing described by this DCB.

84

e It obtains space for, and constructs,
one IOB, the required number of ICBs
(one per buffer or channel program),
and channel programs appropriate to the
device, and links them.

o It specifies in the WTG table that
executor IGG01913 is the next executor
required for this DCB. It then search-
es the WIG table to pass control to
another executor.

Stage 2 OPEN Executor IGGO0191R

OPEN executor IGG0191R receives control
after executors IGG0191B or IGGO0191I if the
OPEN parameter list specifies:

- Inout, or Outin
and "the DCB specifies:

- Chained channel-program scheduling.
The executor is loaded and receives control
when another executor finds its identifi-
cation in the WTG takle.

The executor operates as follows:

e It receives control after it is loaded.

¢ If the device is direct-access storage,

it identifies NOTE/POINT module
IGG019BK to be loaded for use with the
DCB.

e If the device is mwagnetic tape, it
identifies NOTE/POINT module IGGO019BL

tc be loaded for use with the DCB.

e It identifies the end-of-block routine
to be loaded for use with the DCB.

¢ It obtains space for, and constructs,
cne IOB, the required numcer of ICBs
(cne per buffer or channel program),
and channel programs for direct-access

storage or magnetic tape, and 1links
them.
e It specifies in the WTG table that

executor IGG01913 is the next executor
required for this DCB. It then search-
es the WTG table to pass control to
another executor.

STAGE 3 OPEN EXECUTORS

A stage 3 executor identifies and 1loads
the modules needed to perform the process-
ing described by the DCB. If QSAM is used,
and an input data set is to be processed, a
second stage 3 executor also primes the
buffers. Takle 26 lists the access condi-
tions that cause the different stage 3
executors to ke loaded and to gain control.

Table 26. OPEN Executor Selector - Stage 3
OPEN Executors
| I I
| Access Conditions | Selection |
I I
% R B T T T T T "
|Paper Tape N
— o Mt B B
|Update ot 0 rr
p=——- e N S
|Chained Scheduling | | X | | | | |
L 4 i 1 4 3 1 1 4
r . T T T T T T T a1
|Exchange Buffering | | | X1 | | |
t N ot e
|Track Overflow R TR I I S I |
s 1 1 1 1 |] 1 4
L} T [} T T T T 1 1
|None of the preced- | | | | | I1X | |
| ing et
t =411
| 0sAM P | N PO
s 1 L 4 1 4 L 4
r T 1
|- | |
| Executors | |
| I |
t t-—r—1——7—71——7--7
1 16601910 N
t $——p— - —1—
| IGG01911 R TR R A I I G |
8 1 1 1 L 4 4 | 4
v T T 1 1 a T T 1
| IGG01912 (DS - I T I I
- e SVl |
| IGG01913 o x|
L 1 4 1] L 1 4 4
L] T T [} T 1 T T 1
[IGG0191u [T T DG I T B
L L 1 .y 4 L 1 i J

Stage 3 OPEN Executor IGG01910

Executor IGG01910 receives control after
executor IGG0191D or IGG0191J. It also
receives control after executor IGG0191G
unless the DCB specifies paper tape.

This executor operates as follows:

e It identifies and 1loads the device-

independent routines.

¢ It loads the device-dependent routines
identified by a mask set in stage 2.

e It enters the address of the routines
into the DCB, and the address of
appendages into the DEB appendage
table.

e It enters the identification of each
routine loaded, into the DEBSUBID field
of the DEB.

e If QSAM is used, the executor specifies
in the WTG table that executor IGG01911
is the next executor required for this
DCB. It then searches the WIG table to
pass control to another executor.

e If BSAM is used, the executor specifies
in the WIG table that OPEN executor
processing 1is completed for this DCB.
It then searches the WIG table to pass

control to another executor. If the
WTG table has no other entries, the
executor returns control to the OPEN
routine.

Stage 3 OPEN Executor IGG01911

Executor IGG01911 is entered from execu-
tors I1GG01910, I6G01912, 1IGGO01913 and
IGG01914 if the DCB specifies:

- GET, or PUT.

This executor operates as follows:

e It completes any remaining DCB fields.
* It completes the IOBs.

e For
to pass
routine
tor and loaded by one
stage 3 executors. The end-of-klock
routine issues an EXCP macro-
instruction to prime the buffers.

input it issues a BALR instruction
control to the end-of-block
identified by a stage 2 execu-
of the other

e It searches the
contrcl to another
WIG table has no
executor returns control to the
routine.

WIG table to pass
executor. If the
other entries, the
OPEN

Stage 3 OPEN Executor IGG01912

Executor IGG01912 is entered from
executor IGG0191P, and also fromr executor
IGG0191G if the OPEN parameter is:

- Urdate
or if the DCB specifies:

- Paper Tape.

Sequential Access Method Executors 85

The executor operates as follows:

e Tt identifies and 1loads the
independent routines.

device-

e It loads the device-dependent routines.

e It enters the addresses of the routines
into the DCB, and the address of the
paper tape appendage into the appendage
vector takle.

e If OSAM is used, the executor specifies
in the WTG table that executor IGG01911
is the next executor required for this
DCB. It then searches the WTG table to
pass control to another executor.

e If BSAM is used, the executor specifies
in the WTG table that OPEN executor
prccessing is completed for +this DCB.
It then searches the WIG table to pass
control to another executor. If the
WTG table has no other entries, the
executor returns control to +the OPEN
routine.

Stage 3 OPEN Executor IGG01913

Executor IGG01913 receives control after
executor IGGO0191H, IGGO0191K, IGG0191Q, and
IGG0191R, if the DCB specifies:

- Chained channel-program scheduling, or
track overflow.

control when
identification

It 1is 1loaded and receives
another executor finds its
in the WTG table.

The executor operates as follows:
e Tt receives control after it is loaded.

e If OQSAM is specified, it identifies,
loads, and places the address into the
DCB of:

¢ A GET or a PUT routine
* A synchronizing routine

and specifies in the WTG takle that
executor IIG01911 is to receive control
next for this DCB.

e If BSAM is
loads,
DCB of:

specified, it identifies,
and places the address into the

86

e A READ or WRITE routine

e A CHECK routine

e A routine to serve the NOTE/POINT
macro-instruction if it is speci-
fied

and specifies in the WTG table that

OPEN executor processing is completed
for this DCB.

o It identifies and loads all the
appendages required and places their
addresses into the appendage vector
table.

e It loads the end-of-block routine iden-
tified by a stage 2 executor and places
its address into the DCB.

e It searches the WTG table to pass
control to another executor. If the
WTG table has no other entries, the
executor returns contrcl to the OPEN
routine.

Stage 3 OPEN Executor IGG01914

Executor IGG01914 receives control after
executor IGGO0191E, IGG0191F, and IGGO0191G
if the DCB specifies:

- Exchange kuffering.

control when
identification

It 1is 1loaded and receives
another executor finds its
in the WTG table.

The executor operates as follows:
o It receives control after it is loaded.
e If the access conditions specified are:
Output and locate, or
Input and move, ox
Input, locate, and variable-length
it specifies in the WTG table that
executor IGG01910 is required for this
DCB.

It then searches the WTG takle to pass
control to another executor.

e It identifies, 1loads,
address into the DCB of:

and puts the

e A GET or a PUT routine
e A synchronizing routine

and specifies executor IGG01911 in the
WIG table as the executor to receive
control next for this DCB.

e It identifies and loads all the appen-
dages required and places their
addresses into the appendage vector
table.

e It loads the end-of-block routine iden-
tified by a stage 2 executor and places
its address intoc the DCB.

» It searches the WIG table to pass
control to another executor.

CLOSE EXECUTORS

There are twec CLOSE executors. The
first omne (IGG0201A) always receives con-
trol if one of the sequential access meth-
ods is used. The second one (IGG0201B)
receives control after executor IGG0201A if
0SAM was used with an output data set and a
channel program encountered an error condi-
tion while executor IGG0201A had CPU con-
trol. Control returns to the CLOSE routine
of I/0 support when CLOSE executor process-
ing is completed. Table 27 shows the
conditions that cause the two executors to
gain control.

Table 27. CLOSE Executor Selector

i | i
| Access Conditionms | Selection |
I

! ! |
r " T " T "7 ——1
|CLOSE macro-instruction | X | X |
e -~ o
Permanent errcr or end-of-		
volume condition when using		X
QSAM for output		
L i L 4		
1)) i T T 1		
I		
- ‘Executors		
I		I
L 4 4 4		
r T T 1		
IGG0201A	X	X
8 - - ,_,‘
v T

I IGG0201B T
L — L 1

CLOSE EXECUTOR IGG0201A

Executor IGG0201A receives control from
the CLOSE routine of I1/0 support if the
DCBDSORG field specifies a value of PS orxr
PO. . : :

The executor operates as follows:

e It receives control after it iskloaded.

e If both the OPEN parameter is Output

and the DCB specifies PUT, the executor
issues a TRUNC and a PUT macro-
instruction to cause scheduling of the
last buffer. On return of control, the
executor awaits execution of the last
channel program.

If all channel programs were executed
without encountering either an end-of-
volume condition or a permanent error,
the executor continues processing.

If any of the preceding channel
programs encountered either a permanent
error or an end-of-volume condition,
the executor specifies in the WTG table
that executor IGG0201B is required for
this DCB. Depending on the remaining
entries in the WTG table, it then
either processes another DCB, oOr passes
control to executor IGG0201B.

If either Output or PUT are not speci-
fied, the executor issues a PURGE
macro-instruction for any pending chan-
nel programs. Note that when process-
ing under BSAM the CHECK routine
assures execution of all channel pro-
grams. ~

If Output -and either a DCBDSORG field
value of PO, or WRITE or PUT with a DD
statement of the form (MEMBERNAME) are
specified, the executor issues a STOW
macro-instruction. On completion of
the STOW routine, the executor tests
for I/0 errors and for logical errors,
such as insufficient space in the
directory. For either type of error,
the executor issues an ABEND macro-
instrxuction with a code of hexadecimal
0B14. ,

If QSAM and simple kuffering are speci-
fied, the executor returns the buffers
associated with the DCB to the buffer
control klock pointed to by the address
in the field DCBBUFCB.

The executor computes the amount of
space occupied by the channel programs,
ICBs (and ICBs, if chained scheduling
is used), and returns that space to the
supervisor via a FREEMAIN macro-
instruction. '

The executor specifies in the WTG table
that CLOSE executor processing is
completed for this DCB. Depending on
the remaining entries in the WTIG table,
it then either processes another DCB,
passes control to executor IGG0201B, or
returns control to the CLOSE routines.

Sequential Access Method Executors 87

CLOSE EXECUTOR IGG0201B (ERROR PROCESSING)

Executor IGG0201B receives control after
executor IGG0201A if the latter finds that
a channel program for an output data set
using QSAM encountered a permanent error or
an end-of-volume condition. It is 1lcaded
and receives control when its identifi-
cation is found in the WTG table.

The executor operates as follows:
e It receives control after it is loaded.

e It determines whether a channel program
encountered a permanent error or an
end-of-volume condition. :

e If a channel program encountered a
perranent error, the executor performs
its remaining processing. Any buffers
not written out are not processed.

e ITf a channel program encountered an
end-of-volume condition, the executor
finds the 1IOB associated with that
channel program and places its address
into the DCBIOBA field. It then passes

control to the Output synchronizing
routine for normal processing of the
end-of-volume condition. When control

returns, the executor performs its
reraining processing, unless one of the
channel programs encountered a perman-
ent error or another end-of-volume con-
dition. In either of those cases, it
resumes processing as when it first
received control.

e If Output and either a DCBDSORG field
value of PO, or WRITE or PUT with a DD
statement of the form (MEMBERNAME) are
specified, the executor issues a STOW
macro-instruction. On completion of
the STOW routine, the executor tests
for I/0 errors and for logical errors,
such as insufficient space in the
directory. For either type of errcr,
the executor issues an ABEND macro-
instruction with a code of hexadeciral
OBR14.

e If OSAM and simple buffering are speci-
fied, the executor returns the bLkuffers
associated with the DCB to the buffer
control block pointed to by the address
in the field DCRBBUFCB.

* The executor computes the amount of
space occupied ky the channel programs,
IoBs (and ICBs, if chained scheduling
is used), and returns that space to the
supervisor via a FREEMAIN macro-
instructicn.

88

¢ The executor specifies in the WTG takle
that CLOSE executor processing is
completed for this DCB. Depending on
the remaining entries in the WTG table,
the executor either processes ancther
DCB or returns control to the CLOSE
rcutine.

SYNAD/EQOV_EXECUTOR IGCOOQO5E (SVC 55)

Executor IGCOOOSE verforms error-
condition processing. If a synchronizing
and error routine (in QSAM), or a CHECK
routine (in BSAM), finds that the execution
of a channel program encountered either a
permranent error or an end-of-volume (EOV)
condition, the routine issues an SVC 55
instruction. (The Update Synchronizing and
Error Processing routine passes control to
this executor only for an end-of-volume
condition; the Paper Tape Synchronizing and

Error Processing routine never passes
control +to this executor.) An SVC 55
instructicn causes this executor to be

loaded and to receive control.

Contrcl passes to and from this executor
along three paths, depending upon whether
control was received due to an EOV condi-
tion, due to a permanent error condition
and there is a SYNAD routine present, or
due to a permanent error condition and
there is no SYNAD routine present. The
flow of control under these three condi-
tions in QSAM is shown in Figure 11, for
BSAM, it is shown in Figure 12.

For an EOV condition, the executor oper-
ates as follows:

e It oktains a work area.

e It passes control to the end-of-volume
rcutine of I/0 support. If that rou-
tine finds a new volume, it eventually
passes control tc EOV/new volume execu-
tor. After processing, the executor
returns control to the synchronizing
and error processing or to the CHECK
routine.

If there 1is no SYNAD routine present,
the executor operates as follows for a
perranent error condition:

e For QSAM, the executor implements the
erxrror opticns specified in the field
DCBEROPT in the DCB. It returns con-
trol to the synchronizing routine for
the SKIP or ACCEPT option.

e For BSAM, the executor passes control
to the ABEND routine.

SVC 55

Synchronizing S1 N1 _El > SYNAD/EOV
| Routine Executor
S5 (IGC0005E)
.[%6 $6(a)
S4 S3 S2 N2 E2
S3
B e EOV Routine of ABEND Routine
Routine 1/O Support
E4 E3

EOV/New Volume
Executor
(IGG0551A)

]

Legend:

S SYNAD Routine Present

N No SYNAD Routine Present
E End-of-Volumne Condition
(o) Alternate Path for TERMINATE Option

==\ Described in This Publication

} Permanent Error Condition

Figure 11. Flow of Control To and From the SYNAD/ECV Executor (IGCO005E) in QSAM
SvC 55
CHECK S1 N1 El . SYNAD/EOV
1 Routine Executor
S5 (1GCO005E)
| s6]
S4 S3 S2 E2 N2
—> 1 .
User's SYNAD EOV Routine of .
Routine I/O SUPPOI’f ABEND Routine
E4 E3

EOV/New Volume
Executor
(IGG0551A)

Legend:

S SYNAD Routine Present
N No SYNAD Routine Present
E End-of-Volume Condition

| Described in This Publication

Permanent Error Condition

Figure 12.

Sequential Access Method Executors

Flow of Control To and From the SYNAD/EOV Executor (IGCOO0O5E) in BSAM

If there is a SYNAD routine present, the
executcr operates as follows for a perman-
ent error condition:

e For QSAM, the executor returns control
to the synchronizing routine. (The
synchronizing routine then passes con-
trol to the wuser's SYNAD routine.
After error processing, the wuser's
SYNAD routine may return control to the
synchronizing routine. The synchroniz-
ing routine issues a second SVC 55
instruction to pass control to this
executor.)

e For QSAM, the executor then implements
the error option and returns contrcl to
the synchronizing routine (for the SKIP
or ACCEPT option).

e For BSAM, the executor returns control
to the CHECK routine. (The CHECK rou-
tine passes control to the user's SYNAD
routine. A return of control from the
SYNAD routine to the CHECK routine in
BSAM 1is interpreted as an ACCEPT error
option. The CHECK routine issues a
second SVC 55 instruction to pass con-
trol to this executor again.)

¢ For BSAM, the executor then implements
the ACCEPT error option and returns
contrcl to the processing prograr.

The executor implements error options in
the following manner:

e For the TERMINATE error option, the
executor passes control to the ABEND
routine.

¢ For the ACCEPT error option, the execu-
tor issues EXCP macro-instructions to
reschedule all channel programs except
the one executed with an error. If the
device is a printer all channel pro-
grars are rescheduled.

e For the SKIP errxor option, the executor
issues EXCP macro-instructions to res-
chedule all channel programs, including
the one executed with an error.

FEOV_EXECUTOR IGC0003A (sSvC 31)

Executor IGC0003A causes reading or
writing to be discontinued for the bkalance

of the present volume and permits the
processing program to start reading or
writing a new volume. The FEOV

(force-end-of-volume)) macro-expansion
includes an SVC 31 instruction that causes
this executor to be 1loaded and to gain
control.

90

For an input data set, processed under
QSAM or BSAM, the executor operates as
follows:

e It receives control when the processing
program uses an FEOV macro-instruction.

e It coktains a work area by means of a
GETMAIN macro-instruction.

s It prevents the execution of any pend-
ing channel programs by means of the
PURGE macro-instruction.

e It passes control, and the work area,
to the end-of-volume routine of 1I/0

. support by means of an XCTL macro-
instruction.

For an output data set processed under
BSAM, the executor operates as follows:

e It receives control when the processing
program uses an FEOV macro-instruction.

e It oktains a work area hy means of a
GETMAIN macro-instruction.

e It passes control, and the work
to the end-cf-volume routine
support by means of an
instruction.

area,
of I/0
XCTL macro-

For an output data set processed under
Q0SAM, the operation of the executor, and
the resultant flow of control, depends on
the operating mode and how certain channel
programs execute. The operaticn and flow
of ccntrecl for each possible comkination of
mode and channel program execution is
described in detail in Appendix E.

In general, assuming normal execution of
all channel programs, the executor operates
as follows:

e It receives contrcl when the processing
program uses an FEOV macro-instruction.

e It oktains a work area by means of a
GETMAIN macro-instruction.

e It passes control to the PUT routine to
cause scheduling of the present buffer
for output.

e It awaits execution of all pending
channel programs. i

e Tt passes control, and the work area,
tc the end-of-volume routine of I/0
support by means of an XCTL macro-
instruction.

EQV/NEW VOLUME EXECUTOR IGGO0551A

Executor IGG0551A schedules, for
executicn with the new volume, any channel
programs not executed with the old volume.
The end-of-volume routine of I/0 support
issues an XCTL. macro-instruction to pass
control to this executor after the routine
has caused the mounting of the next volume
of the input data set; for an output data
set, the routine passes control to this
executor after the routine has mounted a
new volume, or acquired additional space on
the current volume.

The executor operates as follows:

e It receives control when the next, new,
or more volume is available.

o It resets all indications of the end-
of-volume condition in the DCB.

e If the device type is direct-access,
the executor inserts the new full
device address (FDAD) into the DCB and
the IOB.

e It issues BALR instructions to pass

pending channel programs to the end-of-
block routine to have them scheduled
for execution. (If Create-BDAM -
WRITE-LOAD 1is specified, control pass
es tc the Create-BDAM WRITE routine.)

It issues a FREEMAIN macro-instruction
for the work area obtained for the
end-of-volume routine.

It returns control to the routine that
passed control to the end-of-volume
routine via the §8VC 55 instruction.
For a normal end-of-volume condition
found by a synchreonizing or CHECK rou-
tine, control returns to the synchron-
izing or CHECK routine. For a forced
end-of-volume condition estaklished by
an FEOV macro-instruction in the proc-
essing program, control returns to the
processing program. For an end-of-
volume condition arising during the
FEOV executor, control returns to the
FEOV executor.

Sequential Access Method Executors 91

BUFFER POOL MANAGEMENT

Buffer pool management routines form
main storage space into buffers, and they
return buffers that are no 1longer needed.
There are five bkuffer pool management
routines:

¢ GETPOOL - This routine obtains main
storage and forms a buffer pool.

¢ BUILD - This routine forms a buffer
pocl in mwain storage supplied by the
processing program.

¢ GETBUF - This routine provides buffers

from the buffer chain.

e FREEBUF - This routine returns buffers
to the buffer pool.

¢ FREEPOOL - This routine returns main
storage previously used for a buffer
pool.

GETPOOL MODULE IECQBFG1

Module IECQBFGl1 obtains main storage
space and forms it into buffers. It is
loaded at execution time by a LINK macro-
instruction.

The module operates as follows:

e It rounds the buffer length to the next
higher double-word multiple if the
specified length is not such a multi-
ple.

¢ It determines buffer alignment from the
DCEBUFAL field value in the DCB.
number of

e It computes the bytes

required and issues a GETMAIN macro-
instruction.

e It constructs a Luffer pool control
bklock in the first eight bytes of

storage obtained.

e If double-word (not-full-word) align-
ment is specified in the DCBBUFAL field
in the DCB, the module starts the first
buffer at the byte immediately
following the BUFCB.

e If full-word (not-double-word) align-

ment 1is specified 1in the DCBBUFAL

field, the module skips one word after
the buffer pool control Lklock before
starting the first buffer.

92

e Tt chains the first buffer to the
buffer pool contrcl ©block and deter-
rines the start of the next buffer by
adding the rounded kuffer length value
tc the address of the first buffer.
The module chains the next Luffer to

the preceding buffer, and continues
until all the buffers have been
chained.

e It returns contrcl to the processing
program.

Figure 13 illustrates the buffer pool
control block (BUFCB) that describes . the
buffer pcol. Figure 14 illustrates the
buffer pool structures formed by the
GETPCOL module.

BUFAD BUFNO BUFL
BUFCB Address of Number of Length of
First Available Buffer Buffers Requested | Each Buffer
Byte 0 4 6 8
Figure 13. Buffer Pool Control Block
Double-Word Full-Word (Not-Double -Word)
Buffer Alignment Specified Buffer Alignment Specified
BUFCB
q’_ T <
SR ——
¥
=g —|
T
———-l
L _=0-__
“+—2 Words — 1%
Figure 14. GETPOOL Buffer Pool Structures

BUILD MODULE IECBBFB1

Module IECBBFB1 forms main storage space
supplied by the processing program into
buffers. It is loaded at execution time by
a LINK macro-instruction.

The module operates as follows:
¢ It rounds the buffer length tc the next

higher full-word multiple if the speci-
fied length is not such a multiple.

e It constructs a buffer pool control
block in the first eight bytes of the
main storage space provided Ly the
processing program.

e It starts the first buffer at the byte
immediately following the buffer pocl
control block.

e It chains the first buffer to the
buffer pool control block and deter-
mines the start of the next buffer by
adding the rounded buffer length value
to the address of the first buffer.
The module chains the next buffer to
the preceding buffer, and continues
until all the kuffers are chained.

e Tt returns
program.

control to the processing

Takle 28 lists for each possible combi-
nation of space alignmént and buffer length

parity the illustration that shows the
structure of the resulting buffer chain or
pool. Figure 13 illustrates the buffer
pool control block (BUFCB), Figure 15
illustrates the various buffer alignments

that the BUILD module forms.

GETBUF MACRO-EXPANSION

The purpose of this coding is to provide
the next buffer from the buffer pool. The
macro-expansion produces in-line code that
presents the address of the next buffer to
the processing program and updates the
buffer pool control block to point at the
following buffer.

FREEBUF MACRO-EXPANSION

The purpose of this coding is to return
a buffer to the buffer chain. The macro-
expansion produces in-line code that stores
the address presently in the buffer pool
control block in the first word of the
buffer being returned, and then stores the
address of that buffer in the buffer pool
control block.

Table 28. BUILD Buffer Structuring Table

Parity of Number of
Words in Buffer Length
after Rounding Up Pool

Length Parameter of Structure
BUILD Macro=Instruction

Alignment of First Byte of
Space Passed in
BUILD Macro-Instruction

Even A

Double - Word Odd B

Full - Word Even ¢

(Not - Double - Word) Odd D
A B

C BU:FC B <

BUFCB-

N

BUFCBW

<—— 2 words —*>

BUILD Buffer Pool Structures

Figure 15.

FREEPOQOL MACRO-EXPANSION

The purpcse of this coding is to return
the space previously allotted to the buffer
chain to available main storage. The
macro-expansion produces in-line code that
computes the total number of bLytes to be
returned, issues a FREEMAIN macro-
instructicn, and sets the DCBBUFCB field in
the DCB to show that no buffer pool is
associated with that DCB.

Buffer Pool Management 93

DECISION TABLES

APPENDIX A:

These decision tables show the routines available and the access conditions that cause

They duplicate the decisicn tables in the text in takle number,

A table that occupies a whole page may be out of sequence.

to be used.

form, and content.

a routine

Module Selector - Simple Buffering GET Mcdules

Table 2.

e e T S L S S A H A
<o | (e | | | | L | | | | | | |
| | | | | | | | | | | | | |
A U T U T O S T Tt A e S S S
IR [1> | | | 1 | | | | |
| | | | | | | | | | | | | |
SRRV B AV VS D A e T T e i S S
1> | > o | | | | | | | | | |
| | | | | | | | | | | | | | |
| T U S T O S T T e S S S St S
PR | | oo P
JA A A T O s S T i e T T A S
PR “ n R P
| U U S T T e T S S M R S
RS T N U ol el NN (N0 N NN O o
R U R DU R R i A T R R R A R
=) =< | | < I > <o | | <o |
| o | | | | | | | | | | |
N S A s T SO H H S R A N A e S T
| O < | | > > [} <o | | | x|
| [| | | | | | | | | | | i | 1
S S S S s T A S St St S S S S S R R S
KON ik T N Aol U N ot N .
T|.._T||LT|'_T.I4.||..“|||“|I.LT|1.|“|I.|..“|I..I|LT||+|||“||LT|.LTI..“|I.|“||.
| =< | [I < | | | (BB | | |
] | | | |] | | | | | | | |
AV T R T T U T S T
SRR | | P
T||T||L_|'I..AT!a..TlnT"“..allT|.||4u||.nT.I|.|..Tu|..T..l|“||||“||||“||||“||+.l
ol B e iR
T.|1T||unu||T|LT|11I.|T|L_1I.||“!|.I1T..|..||lTllTlunul..“rllTl.“n|1:|
|
SR A SR R SRR
T|1T|4|||q“||1.|.l+.||“|||“||.l|”|alli _T|4|||1TI..|“|||T||“|.I..T|
o] o] < | “ " > “ [}
o e e e e e o e
P
| o © +
| o =1 m]
| < Ha) =1 =
I A] + o Mo 24
I N U] 1] W o | B
Q|- E o Z ~ |
(0] | H | | o (o} |
=} LIS~ (e} IR I L=l |
o} =] 9} (] o} N - 1
o m | o] 0 o] - =] [}
+ | o o} v | © Q 4] 0} (9] 0}
| o (] ~ 15 o Mol [} Lol) ~ < 2] Q Q Q = I
| kel — on 9} o1 8] W [9)] 2] IR IR T IR TR
=] e o | E 0| g =}] o] o |l o | o N | oo
[o} g1+ a [N S =} Q () 8} Jed Ted oA | e A
Q o [e [BN BRN] o P > = o O jlo |l |lOo|lOo|O
w0 + S} =1 o [0} =} QIO IO 1V IVIVvIY
0] -~ o] o e} Q [=] -~ o] = 0] 0] [0} O] (U] O (O]
7] - | B Mol P 0] ool 0 23] H ol I H I H [H | H A
(] H 3] 1] © o 1 — [=1 v U]
(3} Mmoo QM =B el | Lo Mo
6] U] [0} [O] Q [} © w (O]
<< - [T a1~ 0] FERES}
- [o (o2 I o Q M ® O |
H 1O | | T | W © o M |
2 < 4] [] Q Bal T >N MO
[V] 4] > X 1T | M o=t T Q
z =] Q O I = oo | S
HimiA IS I®&IDIPIOOIOQ
b e e e e i el e s s e e e e e S ey —— . —— v —— ey ——— —— i w— — w— iy — e w—— e w—

S T S R St et St

| I | | x| X | |
1 4 1 i I)

|

!
1

IGGO19AN

|
S e S S
L-__L___L---l__-l-__i__-L_

IGG019AT*

- -

- —

- —

!

| | | | I I I |
4 4
the Paper Tape Character Conversion Synchronizing

also. includes

¢
I
8
L)

— ey

and

module
|Exrror Processing routine.

L

|*This

95

Decision Tables

Appendix A:

Buffer-

Module Selector - Simple
ing PUT Modules

Table 5.

Selector - Exchange

Buffering GET Modules

Module

Table 3.

[e e e e e e S e e S o e o e e o e S ! e e o e S e e e S St [e e s S e e S e e oY e S e o e A S e, S S e e S e S S e W et s

|
| | 1< | [| | | 1 Y4 > ! R | | | 1>
n | o e e e e e e e e e e e e e e e e e =] b e e A e e e e e e e] bt ——f
[« [| > | o | | | [m 0] > | 1> | | | R
o} o o e e e o e e e e e e e e | o e - [=] e o e e e e e e e e o e e e e e e e e e e e
- [| P> | | | | [[0} e} > IR R | | [Ba | [|
+ b e e e e e e e e e e e e e e e e e o o o e e e e e e e e e e e e e e — o —{
0 (e 1> | | [| IR | =} + > [(] | | > |
V] o e e e e e e e e e e e e e e e e — e e © 0 b e e e e e e e e e e e e e e A - e] ——t—
~ [Be] I =< | | | L] | | »< | | | K] [} P | > | | (] | [|
[} | e e o e e e e e o e e e e o e = e e e e o 9] ~ o e e e e e o e e e e e e e e =t —f
[4)] (e [[| | > | >] I > 1< | 1> | [Be] | | [|
o e e e e e o e e e e e e e i e e e e e e e e e e e e o] n e e e e e e s e e o e e e e e e e] ot —
| | | | [| | I 1= I > [| | [|
| | | | © | | | o = e = e e e e e e e e e e e e e e e e o
| | | I g 1 | 0 | | | | | |
| | [Mo |] | + | |
| | (] o | | Mo~ [1] | |
(Y} | B w | | [og=] | o & | |
0 |~ I N 1T | | o | & + M el | |
=] [T (¢] ™ Lol | 00 0 | © | [(o] he] - | |
o] I B (O] Y o] MO | (O a | .S | [=] Y4 bl o] | |
o | T | (8] o | [} — o I O | M © [0} 0 | |
+ | 0 Q [T V) 9] O] (O8]] [9} S5 Lol Q [|
o | g 17”0 ™ 5] 0] - H iR I 14 n o + K] L% N ~] ~ ()] |
L] [o o} - =} Q1€ | G| g [N o o o] Y] [V} Mok
o | > ol g [-] Lol Nl o | & il i T | W 0 o] ~ [
Q | B =] [+ &~ O i L — i (V3R] =] [] M [= + | =] ()N)}
O |2 Bl o)l M o 4+ = (=] o (=} (=] - & [0} o] e} [} Lo N + o | Lol - -
[+ a [=} o VIV IVLIY S oeH] A o 8] M o [(9} o | o |
9] I\ [K = [\ a | [[0} 0 O] (U] T M N g1 0 o Ko} [V] = OB O]
2] | e M + + ~ [] (] = =] [[o2)) 9] [[O + 0] — OO
[} (= Q] ol |~ (M 2 0] [ON] 0] o~ [& H o
4] IR DL QM [=E] [) 2% O IPIo ~ <] | [Be] jo) |
0 | IS} o [}] (7] () 0 T3 (0] [N)] O A |
< | o= (o [+ | - . &) - O | ¥ 4 Le] ~ |- [+ |
| M Q [¢] | ~H 4P 1 Q e} =Y [& | A 9] [} [e S MalE o |
| B0 | P T IH® | © (= IR 1T O I XM ITIO®mIH®E |
I Q4% o | o Q| OE |A (V] QIO I0NIA1IOIOIAEI Vg | |
| % [SINI-4 X 1O M I N - L ID>1IQ1 Q)1 01 X1 HMHITHM | | |
| 83 o1l 0 ol SO0 1 ® Q =] o111~ sl O | 80 | |
| [-] DWH I > © (@] 2 101D 1/ =) PH I DWW | |
b e e e e s o s — e ——— — . —— o — o w—————— wn— v vo— v — vl w—l T e e e e vl o el e s e i e ey o g e ol —— v c—— . o—————— c— b w—c)
e T N e T - ———- " T o T e o o o S e S = o =
| | | | | | | | | | | | | | E] | 0 IR | IR 1> > (]
| 1< R | | 1> | | | | U] | =] e e o e e e o o e o —- T
e e e e e o e e e e e e e e e e e e e = e e Q [> | I > | < Q
1 1 | 1 [| | 1 | | [| [}] b o e e o e e e e e e F—< E
[1> | IR | | | IR o] + <o [R | <
0 o o e e e e e e e e e e e e e | o o e = — ¢} 0 f—t——— A — o —— | —- @
[| | | | | | | | | | | | 2 0] <o | | 1< | =< +
Q X IR | <o | | | [~ fr e e = e e e e e e e o - ©
- o e o] [0}] | | o}
+ | | | | | | | | | | + 0] $olx | te] | < u
O Mol | | | = < | IRl |] o o e e e e e e e e o e e e e e o e e e e e o D)
[} pe e e e o o e e e e o e o — e A e Lo] +
- | | | | | | | | | [e]] + ©)
Q XX | [< | [Il | =l i m =
(4] p— = — e - o o A e e = +
[} | | | | | [4 N (@]
Mo 1< o] | <o © O | 7}
o o = e e e o e e e e o e e e e e e e e e e e e e o e e] g | W [}
| | | | | | o} M T + o
Mo IR o 3 | + (] (ol o] r 1] =]
e e o o e e e e e e e e e e e e o e e e e e e e e e e e e e 0 o (e} N [e B RS & ~
[] | | | | [0} (o} [o] 4] © 18] ©
o | | | | | — o Le] &) [0} 5 o (0] o 0
1] =] [] | + o] 0] M M W ~ =
= © 4] | s o - o j=} < o
o K=l fel feo] 9] S 1w | T o] o [0}
o [3] KRN] [N} =] (O3 =R T 1 (9] i B
+ o] + o (] < M Q =] — — Q ™ + o | T Q] o ©
- 2] o e — 3] = 3] <] [=3g=] @] o a M 9] (U] V]
je} < =} [V} =} ooy | oy | o LoRo]] =}) o] [} & U] (TR~
=] - + Q i o] -~ - — — O O 9] H 4 (0] — 4] L] 53} - — e
(o] 13 [0} ol =~ | Q o o o o =2 %] 53] o I I | | (V] (U] =
] &3] + =} | T 1T = IV IV IO [0} U] [=} | Lol M T Lo l=}
O =} 19} (o) [} 9} (OB IOCRN RN IO} 4] (0] (V] 7} [0} Q0O
0n Pl £ 1M | T EH HolH [H - . 3} .~ | =)= [o B B M
0 - O | A | Q1A [$ 9} = = < (0] | Qe (0] 9}
] + + + Lo} [} Y o 4 U] + T (0] Y4 4 (@] n =X
8] 3] 1]] Ul] - 18] ()] M Q Nal Q 0] ~ o~
Q oN] Q Q » ™ ke Q (o] | | - [l] - Lo [} Q (==
[H =} Q SolA o] 3] =) | | Q I Qi © oo~ =] [l
HidAlQl&|IPIDIDIM |_| | © ID |k IP>IDIAID |
b e e e e " d ———— — e w— i — el — e — i —— b ——— —— — — e e e am— T b e e e el e e e ek e b c—— vl c— ke w—er csm—— c——ty e— i a—c—]

96

Chained

Selector i
Channel-Program Scheduling End-

Module
of-Block Modules

Takle 9.

Ordinary End-
of-Block Modules

Module Selector -

Table 7.

o e T T T S T " w [T S e T e e e e ey —-
[| IR IR | | | 1> | | | I > (0] | |
| e atemte ml b e R S e D e st e R e el aldy - [0)] |
[| 1> IR | | IR | | | [L] a |

9] e e e e e e e e e e e e e e e —— b e e e e e M (e} |
<] [| 1> 1> | [| | | | IR [] |
(@] b e ——t — e e = e e e e e e e e e e e e e e e > + |
- I > | =< | | | > | | | I > | | (@] 0 <o <
+ o e e e e o e e e e o e e e e e e e e e e e e o e o e e e e e (0] |
6] | > > | | | 1> | | | | 1> | 4 — |
0] | o e e e e o e o e e e e e e e e] o e e e e e o Q [0} |
— | > | [| > |] | | | [| [0 0 |
[0) | e e e e e e e e e e e e e e b e e e e M |

| 0 I > 1< | | | > | | | | | [| H QO e e e o e e e e e e e o
p——t et — b e e = — e e e] o e e e e e e e o ~ | |
[> | [| | | | | | | [| | (=] | |

e e S L e e b e e e e e D e S nle T
| | | | | | | | M | | o O |
| | | | | | | | O | o=
(=] | | | | | | I+ | +
| © | | | | | 9] n | O | 0 [+] |

[0)] [| | S I o | © M [0)] | Q0| =] o - |
=] I o | | (O3] | O | M] V] ~ ~ O (@] + =] |
(@] | O | | =] [© + =} | (O] o =] T
o | N | | 3 [= 0 o] nm + (@] o N
+ [T | | o1 1 01 0 [3) o] QO | o = O
o [| | + © - = > = B T o) [ORCT] L} - 3 o
L] (] | [} T 0n M ~ [y @] @] @] (@] ~ O =] + o] A !
& IV | | - © o] < ~q o)) (<)) o)} (<)} S0 Q =] ~ O o
(o] [| | M)] n e ~ (O] 6] L -t —l ~ Lo lo} Q [W [} (U]
@] [| | O Q] 6] + | O o (] o o (O3 =] = M — U]
| © | | M [} (] o ~ ~ U] 0 O IR =M 0 - [} m L]
9] I oo | | © ~ + Q ~ (0] O m Q O O 1o 2] | I > |
%} 1 0& | | T o (9] 0] 9} ~ [HolH L H L H [0} I ~ 10O [
O] | o] | I © O © N + W | * Q + Q
6] | O~ | 1o L sl [} +] [O | o 6] =} L4 |
[(B IR] Q| 4+ = [S] o)] — Y (ST 4] o]
< I &S0 1L 1 31 + (] [§] O | A [§) T + © <]
| QO 51 Q1T <]] [0} 0| g]) =B]]
| @S [sl o ~ O < 2] ~ O I &
1 8 0 =T = T B 1+ I I = 1] o] © [4p} | Eel |
1 O®0n H 1O | O |/~ = [= 1 = < | | © | | |
S L s P Wprp SN W SR T e e e e e s T e e st e ey e v . e w——— v —)
[o e e e e e e T e g e e e e e e e e e e e T T e Y o o Sy T o s s o o P e S = T e
| I > | [} | | | [| | | | | | | [1> | | [l
| o o e e e e e e e o e e e e e e e e e e e e A e e e e e e e e e e e e e e e e e e e]
1] (] | | | | | [| | | | | | [a] | | >< | | =<1 |
=] e] e e o o e |
o [| | | | | | > | | | | | I > | | [Be | 1< |
~ e s e e e e e o o e e e e s e e e e e e e e
+) (] | | [I I | | | [B | | | | | | | 1> | |
4} o o e e e e e e e e e e e e e e e e e e s e e e e e e e e e e e e e e e —t— e — - —f
[] [[| > | | [] | | [e | | | | | > | |
~ o o e o e e e e e e e i e]
() [[| | | | | | = | | | | | =< | |
9] o e e o e o e e s e e e s e s s e e e e s e e e e s e e s i e e e e e e e o e s e e] b A e = A —
=< [] | | | | I > | [e | | | | =< | | |
e e e o e e e e e o e o e e e e e e e e e e o e e e e |
» | 1> | | | | | | | | | | | =< | |
[e e o e o e — = o e |
< | | | | | | 1> | | | | | | ol | |
o e e e e e o e s e o e e e e e e e e e e b e o e e e e |
I > | | | | [| | | | | | | | | <1 [} 1
w||.||lTp|I.|_T|1T.ILT.I|_T|LT.I||“||.I..“..||“|l-||“|.l..“|.|.l|+l.|.l+|l.+||..|“||..|1T|lT||||.._T|I..“|||_T|1T.IL
| | | | | | | |
| | | | | | | |
n o | | | + |
[a | ™ o |
e} o Q n g ()]]
ol (] BN o] o o - 9} ~
+ ~ 3 M © M 2)] [0} Q
o Qo o 7]] 9] (o] +L g + M M o] Q /A = [H)
Lo} (<IN}] 18] Q 0 ~ o v V=] + [} ~ 0 Q O @] Q
=] [=j =] [=] - © (] Y g g 4 e ~ n m o ANl | | o
[} ® O M -~ [V]] + 9] ~ Mo MO ~ [} (9] = - i i -l !
& S0 - Ol+L 1Tl O 0 [0} o™ o g O M [S3RY] oM Y o |0 |o o
[3} 0] =4 G 9} © P 1 WOUOT | HODT MO Q1P Q o™ Q10 IV IO
9] & ~ | O [N ~ o (] o X M M (Y] SR |z | O QILuoiIo i1ou
2] -~ © - V] + - M (] + + O T © T | © &S 0 [=¢) o0 | T =] [} - =]
0} [T B SR Y] [~ B N | RS 0] Om | & M 4T M T O omIAm™ Om | =]
6] & o =] 1] Q, =] T Qo s 0 =] D M 6] o =] (o2 NN = OM S M M (o] 23]
(6] o O Q1T + (@] N QA g [e)} ~ O © OPm | OXm © Owm < © 3]
< O M =} Q| B (S} © © N 3 © | AP M QOoO+L | OAP o g eSS | ng | X
ZuaIlHIDIOIH|ODAIAUISE | AR B I M nﬁauuR:;s ZO0O |20 1RO | A
R el P e R e R ——— — ki s e e s iy e e i — i ———— vty e el — e c— s w—)

97

Decision Tables

Appendix A:

Table 11. Module Seléctor - Synchronizing Tabkle 14. Module Selector - Control
and Error Processing Modules Modules
r T 1 r T 1
| : I s | oo
| Access Conditions |Selecticns | | Access Conditions |Selections |
| | | | | |
L 1 4 ——— 4 -
v T T T L) 1 l' T T "
|GET IX 1X 1 X | | CNTRL | X | X |
i - 1 1 1 4 4 ‘, ______ —_——— 4 1 4
v T T T T 1 . T T 1
| PUT | T P | Printer | X | |
F ~ fo—t=—t—t— |- S |
| Input, Readback | P I | Card Reader, | | X |
— $——4——4-——+-—- | a single buffer | | |
|Output R T S R N ¢ t + i
! o et e S N | l '
| Update X1 1 1 | | Modules | | |
b 1 1 4 4 4 | l I l
1) T T T T 1
|Paper tape ‘ I T O B v S
|character conversion | I T I | 1GG019cA | X |
1 1 L 1 1 4 '._____ —_— ——— o o 3 4 4
r T T T T 1 T T 1
I [16G019CB | x|
| Modules [I T L 1 i 4
| | I I
N 1 1 1 1 J
LD T T T T 1
| IGGO19AF X1 1 1 |
b—- +——+4+—4—+-- Table 15. Control Routines That Are Macro-
| IGG019AQ I 11X 1 1 | Expansions
[4 1 4 1 4 ——— -
T T T T T1 r T 1
| IGGO192R [T B I | |
t t—t——+—1+-+ I . | Number of |
| IGGO19AT* | I B DG | Macro-Instruction | Macro-
t Lt 114 | | Expansions|
|2*This module includes both the paper tape| |] |
| synchronizing and error processing]| 2 - 4 4
| routine and the paper tape GET routine. | | PRTOV - User exit | 1 |-
| Both routines are described in the GET| t + |
| routines section of this publication. | | PRTOV - No user exit | 1 |
L 3 L 1 1

Table 12. Module Selector - Track Overflow

Asynchronous Exrror Processing

Module
r T 1
l s l oo
| Access Conditions | Selecticns |
| | |
L 1 4
v T T)
| GET | X | |
b 1 1]
v T T 1
| READ | | X |
L 1 4 4
v . T T 1
| Input, Inout, Outin | X | X |
L L +_ |
r T))
|Track Overflow | X | X |
L - 1 1 4
i T T 1
Module]	
p——- ot et		
IGG019C1	X	X
L 1 L 3

9

8

Table 13.

Module Selector - Appendages

Access Conditions Selections
Input, Inout, Outin X | X |X
Readback X
Update X X | X
Sysin X
GET X
READ X
Record format is fixed-length X
Record format is fixed=-length blocked X
Record format is variable-length X
Record format is not fixed-length standard X
Direct-access storage X X
Printer X
Paper tape X
Chained scheduling X | X
Track overflow X
Appendages
1GGO195AW AW
1GGO019BM BM
1GGO19CG CcG
1GGO19CH CH
1GGO019CI Ci
1GG019CJ CcJ
1GGO019CK CK
1GGO19CL CL
1GG019CS cs
1GGO19CU Ccu
1GG019CZ Ccz
1GG019C3 c3
Exits
End-of-Extent AW BM CH cz
slo CG CL
Channel End Cl [CJ |CK Cs [CU
PCI Ccu
Abnormal End CcuU Cc3

Appendix A:

Decision Takles

99

CHECK

Routine Selector

Takle 18.

Module Selector - READ and WRITE
Modules

Table 17.

Routines

o T g e e —r— "
[R R I I
[T N [N B I
[I T T i T

A R RV R R R N A A
0 (N T I N | [N I
= oo I R
N e A S s S T S S A A S
P I T N I oo
3 R | A
] o e e o e e e e e e e e e e e e e e e e —— —— —
e R U R] 1 N
o IS IR B B | I
w AR I A
IV VRV D S .
T T B R T~ I R i I I T T B
[IR T IR S | PTTL
Z T T T S e e S T S S T T
I N e I I B
P I ol u | I
o "0 1
) [wio— I
g T Mo I
o o o1 T |
- P 51 9 milowidIY
» P I ~1 g1 = mi@mimiA
o - i ~= 1 0l N R RN =N
B A i Q< O Al e o
g | NN <gdlo | O Sclolo |o
o | MDD Sm il aMl B\ D100 1O
O 1M |]OI1O| A1l mo | m ©O1010 10
o [o PPl O HolHE | HE A
0 FUR B P O | o
0 PID IR I I I B VI P
o SIS Ig i iQIHIHO| ONI P
O UILPIOIDTIQ IHIHMNI QLTI oo
0 CIBIelalEIg IigO|css | oo I
& 1RO IHIDIMIZIE> | MO | | I

b e s s e s by e s s e e e e vk " el —— i — — i v——— o — b ———— o —

[e e S S e e "
N |] |] P Poor
R N] | > R

DU T e U A S U B A S S H A
R | R R
| B s a e st S B R e b e e e e e A e - — o
Iow N | i I I o N
g N L N I P R
S rTTTTTTITITTTTTTTTTTTTTTTTTTTTY O TTTTI T
P R |] I I P I R =T R I
7 U T T S e S T S et T S S S T A S A
—~ S LR [I I o RN
2 S T S S A S i s S S S A S T S
> R | N I I N o
DV D N O I i S S T S S SO T S S T B
ERENEE > | i I I 1 o EXEN o
N e e e A S TR S T S
> SRR I I i i o N o
T|.||LT|1TIILT||11|1T|LTI|.1II.LT‘.IlIILTIIIT||I.|._II||LT||_T|II"||1T|ILT|||LTIIl_Tll_Tl.L
0
g o M i
o Boila |
- o) 3 i
It a PIEPL DL 10 1M
e < ~= Sm | 0m | &€® | = | TR - B A R =
Be) A Q< PEIMEICEIWIHo @ ImIidalialala
g MO B LA 10 SIOHIISIMOINIROIONINIO |G IO |0
o MO |3 OmM I MO | B0 |TO |1 O01Q [BAldldidIidldld
O o ¢} A1 1 00Ad|0WH QW IOWIDI s lolojojololo
N co PPl < ~ CIQATIVIVIVIVIVIO
I w S TR BN) il OMI 1T I:ADT QD CO1O IO IO IO |00
I P3P HIEHM MO0 ITH W g X IEHS H | HITHTATH]HA
o S RIS I8 IAIHIHO | OND Q0100 [HO |U 1M
0 QIR I UITICIHIHN I QB E I X0 IDO I MO I ® |
0 SIS IS 1 AIdIgIO IS0l dAO I g0 | B8O 1M |
< H]JOIHIDI|IXM|Z|E~ | A0O0IKMNIDNIPHIH |
e e e v e e e c— v —— c— b —— — e ———— ——— o —— — - —— et w—— i —l e—— . —— —— e c— . — e c— b —

100

Table 19. Module Selector - Control
Modules Selected and Loaded by
the OPEN Executor

- T - 1

| , | o

| Access Conditions | Selection |

| | |

t——- t-r-1-1-1-7-7-1

| NOTE/POINT IXIX] IXIX] ||

F St et S B

| Update, Track overflow, or| | | |X] | | |

e ——t-t-t-f-4-4-4-1

| Chained Scheduling I IXIXD

F ——t-t-f-+-4-1-1

| CNTRL ILIxr 1 IxIx|

e $-4-4-4-1-1-4-1

| Direct-Access Storage PAE P |

p——v F-—t-+-4-4-4-1

| Magnetic Tape | 1X1X] 1X)]

pmmme e e I et
| Printer b1

t —f-f---4-4-4-1

| Card Reader [I I I O I D 4

b —————e - S O Y S [O S |

|] |

| ccntrol Modules | |

| | I

- t—r-r-r-71-1-7-1

| IGG019BC Xt 41101111

pmmmmm f-t=t-+-4-4-1-1

| IGGO19ED It

t - I o e

| IGGO19BE (I T 1< I O I I

¢ ———t-t-t-f-1-4-1-1

| IGGO019BK [P4 I

- - ———f—t-t-t-$-4-1-1

| IGG019BL (I I I I ¢ I I

p— ———t - 4-4-1-1

| IGG019cat N N D4

— - ~$-4-4-4-4-4-1-1

| IGG019CB* PP 1xl

8 S S Y Y SR W

|*These routines are also used in QSAM; |

| see that section for description of |
| these routines. |

L —_— —_ J

Takle 20. Control Modules Loaded at Execu-
tion Time

r~——71-—- - - T]

| Macro- | | |
| SVC|Instruc-| Function | Module No. |
No.| tion | ! |
e e 1 1
25	(none)	Estatlish	IGCO002E
		valid track	
		balance	
		Erase balance	
		of extent for	
		track overflow	
P et oo o 1			
69	BSP	Device	IGC0006I
		Independent	
		Backspace (tape,	
		direct-access)	
I R R i -4			
Takle 21. Ccntrol Routines That Are

Macro-Expansions® 2

r - - T - —
I I |
	Number of
Macro-Instructicn	Macro
	Expansions
	I
oo e e Frmmmmmeee 1	
PRTOV - User exit	1
TP frmmmm oo 1	
PRTOV - No user exit	1
pomem e e =d -4	
*These routines are also used in QSAM;	
see that section for a description of	
the routines.	
2This table duplicates Table 15; it is	
repeated here to identify all control	
routines available in BSAM.	
L _— -1

Appendix A: Decision Takles 101

Table 22. BPAM Routines Residence

r - T 2 T T T = - 1
			Instruction
BPAM Routines	Module Nunber	Residence	Passing
			Control
p-—- e ——— 1 T Srv 1			
STOW	I6C0002a	Supervisory Transient	SVC 21
		Area	
b= —mmmemt —om P fmm e			
FIND (C Option)	(Macro Expansion)	Processing Program	FIND (C Option)
		Area	
p-=-= ¥ S = b 1			
FIND (D Option)	IECPFIND,IECPFND1	Supervisory Resident	SVC 18
		Area	
F $om 1 : $ - -			
BLDL	IECPFIND,IECPFND1	Supervisory Resident	SVC 18 or
		Area	BAL IECPBLDL
. —-1 ~ 1 _ 1 e			
Convert TTR	IECPFIND,IECPFND1	Supervisory Resident	BAL IECPCNVT
		Area	I
k t - - -1			
Convert MBBCCHHR	IECPFIND,IECPFND1	Supervisory Resident	BAL IECPRLTV
		Area	
L L R, - A e e ——— J
Table 23. Sequential Access Method Executors - Control Sequence

r T T T T 1
| | | _ | |
| | | Receives Control | | Passes Control |
| Executor | Number | Fromn | Via | To

| I | | | I
L 4 B S 4 1 - _l
r T T N T T R

| OPEN | See Tables 24, | See Figure 10 | XCTL | See Figure 10 |
| | 25, 26 | | (WG Table) | |
pomm—- $ 1 ————————} fommm oo |
| CLOSE | IGG0201A | CLOSE Routine |XCTL | CLOSE Routine

| | IGG0201B | | (WTG Table) | |
¢ 3 rmmmmm oo ¥ -4 {
| SYNAD/EOV | IGCOOOSE | Synchronizing, |SVC 55 | EOV Routine |
| | | CHECK Routines | | |
¢ $ ¥ e oo 1
| FEOV | IGC0003A | Processing | FEOV Macro-| EOV Routine

| | | Program | Instruction| |
| | | | (svCc 31) | |
t ¥ -4- 1 e T i
| EOV/new volure | IGG0551A | EOV Rcutine | XCTL | See Executor

| | | | | Description |
L - - L | I, —_— —_—t —— ~J4

102

103

Decision Tables

OPEN Executor Selector - Stage 3

OPEN Executors

Takle 26.

OPEN Executor Selector - Stage 1
OPEN Executors OPEN Executors

Table 24.

A R S T A S T R S A AR R
| | | | | I > ! | <1 | |
T T T T S M AR T R T
| | | | [| [| | |
A T S S S T N S T T
1 | | P> | | | [
pr o A o A e o e e e e o e e e e e e e e e
=} | | | | | | | | [
[¢] | | IR | 1 | | | |
o P e e e e e e e e e o e e e e e e e
+ | I i | | | [| | |
O | 1> | | | | | | 1>
V] 1> | | | | <o]
w T||“|I|11||1T|1T|ll"||||.+.|1 ”||||"|||1T|.l“||||“|||1
=< | | | <o |
T|||||l1|||4|||1T||11||11||L1||||4|||1T|r||||L|||1n||11||4|111|||L
| [} 1
7] | o1 o Lol |
=} | =] [+ 0] |
[e] | B B] 0 |
el | - - 1]
+ | j=} U] 3 o 0]]
ol T | W (o] Q, N S lH|IN|TO |
Lo (] Y -~ o] i - - i i
=] < =] [} + N <)) N | [=))
(o] (0] 0 m] =] Tl e
&) Q 9] O | P (6] o 1o o 1o | o
© o > 9 GBI O] OB IRCEN O]
0] 3] Lol o1 O I W 13 OB IR O] U} [CEN O]
%] | (] <] =} (©] 3] H |- =] H |-
[[] + = © -~ 1
0 1] © o S Q [OBR e N - |
¢] Q1T [0 © [N = Y |
< © 2,1 S x M oA | 0 |
a7 jan} Q 3] H =z (@] | |
b e e e skt e i s s e i e ey e —— . e sl s v s s e s, e iy e e sannes sy e saad
_I-IllIJ1|I-JI||J1|I¢.II|IIIMIIIJ1.II.J_II|J
] |
el | <
| |
1|1T..I|ATI.1_TI.|||..“||||..T|1T.IJ
=1
o = < = =
o
+
% TlllTllTIuLTllll'l_TI||.1T|||_T|...
~ |
[)] =< [Iie
w
T|l|||ILT||LT||JT||LT|||I||;T||||11||1T||4
ho]
)] 9}
=} M
[e] o
o s
+ + o’ 0]
o ()] (ORI~ M <M | O]
el (0] 24 0] o R R -t
[« (0] + AN ||
[e] [T) =} et] e -
O + o] 0] 19} oo [} o
] o | ¥] [OCRGENIRU] [©]
(7] Le] =" © o] JCROIN IR O] O]
7] o) 3] [N B =
[0} ~ M
Q] Y] >~ |
0 Sl 5 oA o]
< + o =] (=2 o]
[C = S| | © ©
Y “ M (=) “ “
b e e e e s e e e s e o — — e e w— ok e— vl cn—]

Appendix A:

OPEN Executor Selector - Stage 2 OPEN Executors

Table 25.

N R N L D 7
IR Rl O O O O O O O B | | - i
o e b e A e o e e e e e e e e e e e o e e e o e e e e e e e e o e e e e e e e e i e e e e e e e e e e e e
o " | | | | o 1w | | | [| | | | | | |
ol N L O Rl Rt G O M B | L 1o
o o e o e e e e e e e e e e 0]
w R | | | | | | | | | | | | | | | o
=< <o | | =< | | | | | [B I | | | | I A * ©
] | | | | | | | | | | | | | | | [ON]
b e o e e e e e e —— e e e e = e — e e — o e e e e e e e e e e o e — e — o
1 " | |]] | | | | | I | |]] | M M
tel > | | <o | | | |] | | | | | [M Q
| | | | 1 | | 1 | | i I ! I O &
T|1|“|.|4.|.|“..Iu.“|.|JT|4.||“..||“..||“||1TI.|”||L1|z“|||_T||.I|"|.ILT|1TI.lT|4.I...“||1T|..T||"||4|.IL_..|4.|1 & %
=< | | | | | | | =< L | | | | =1 I |
| | | | |] | | | | | | | I | | | 0 M
“||4.I.11||..“..I.1T|....“|l..“|l.4!...4.|4..|..“.Ii_u|LT||“|.ILT|.II.‘“...ILT.IJ|||“||.“||11.|1||1..||4.||“||.4.||“...ll % o ¢
1< | | | | | IR | | | | = | | | | O -«
| | | | | | | | | I | | | | | OV wm
o e e o e e - e — e e e < Qe
-l o [| | | | | | | I | | | | | | ©
el el el he I el N BN el | S R 8o
o e e e e o e e e e o e o e e e e e e e e e e e e e e e e o e A [ORNOR]
4+ |] I [} |]] | | [| | | e+
6] =< |] < | | [BRI | | | Lv] | | 1 | 4P g
(0] | | |] | I] | | | | | | | [« Ne)l
~ Pt — e o e A e e e e - 8 ©
[[o | | | | | |] | | | | | | | | | e MOV
1] = < | | i | | | | | > |] | fas] | | | | | £ O0m
| | | | | | | | | | | | | | | | | =] =M
= e o e e e e — e e e e e e e e e e e e e e e o e e e e e e e e e e e e e e e e e e — .« OO [¢)
| | I | | | | | [| | | I | [| 2P .
<o | [} LI | | 1> 1 | | |] | | | (O] | |] | | | € B3 ®TT
| | | | | | | | |]] | |] | | | | | | ROEH MM
b — e e e e e e e e e e e e e e e pr = e = - o = e = e e e e o e o e e e e) o0
" o1d | | I 13 13 | | | | | | | | [} M OO0DD
) | MKoEX = | | | | O | | | | HMOH QOO
| |] | | | | | | | | | | o +HP MM
TlllTl+I+|IIlT|IL.l||.I.II‘+||TIIATIIII.T.I]T'|TI+II T|+l+||ITllrll—lIlTl‘TllT.IllTllTllTlL . t e
I N o | | I | | P =
o] = =< o] =< | O] | | & Quoved -
| | | | nocmweg
T|1T|..|.1||T..|1T|..T|11|LT.|1TI...?|LTI.1T||“-|.“||J_1.|.I|1T|11|iT||1T.I1T|1T|1T|11!1T||“||l_T||“||1 OHZ P D
0 4
bl ~ o] = <o | | 22 | | | Mo MMM
| | [} | | (OO OB O]
o e e e e e e e e e e e e e e o e A e e ——) O G GGG
4] [y}] | |] PR PR
[l e o] = 1 = | o o o o o
| | [ONN BRI
e s e o e e e e e e o e e e e e e e e e e e e e e e e e e
L] -l N o | MMM MM
o] tel = < Lol (=] i 00000
i | U U 4 Y
o e e e e e e e e e e e e o e e o — e e e e e e e s e — e e — e e e e o — e e e e e e e e e e e e e e e e
| Lelio o ReRiol
ooV
—~ P PP PP
= OLVLOLOOLDO
& QOO OO
0 [=] Lo v on Kl
o ol Mm VLo OO
o 5] | nnononan
] M (] o o
+ [o 3 Y] [§] [S] 2} . nunonan
- L1 ® o o o) [a] 53] =] U] jas} L] 4 =] = a7 (@ I = 4 U I R T T
Lo} n| o N - 0] A lH A P A A e T [e |
=) M U] k3 =] + ol || |y |y | | O ANl || o MMM MM
Q] 1] O 4y (@] el =} i ! I i L B ! —t ! ! — — 00000
@] e o] i~ |- |~ Q 0 C IO |0 |0 IO IOl |l |0 |0 ||l |l RPPPLPPP
o Lol] (] =] Wy e} [} [} Q U] (U] (&) (V] O} O] G} O} G} O} T i R}
n + N 5 (0] Q Q m M [&] o] 1O} Q [0} O (U] [0} O} 10} [0} O} [0} U] VOLVDOLULODD
7] =4 9} 0O g [N]] HiHIHIHIHTH[H[H R §H A VOO
[} M (@] 4] (8] © Y Q Q > | L]
0 M (o] O | [| = ol O el | QOO OO
O o] + ~] [+ + | S (] |
< + =] + + [N 9] = (]] =]] nunnonan
= 1= 3 Q4 =] © + =] Y] 9] [e O -~ | R I e I |
& | < Q| P (e} Lol ~)] [oN) N L) O] © | L o000
ninlael s =] Q1 g © © |- | X % I =] | HEHEHBHB
m (o} “ o] (o] H s == = M~ [a] = 3] [@] | dN®MTWO
rlllIIL|IllrlllrlllrlllrlllllrnllrllllLlallLf'l:lll.llllL.Ill:lll.ll'll.llll_lll_lIL‘I‘L_IllL.lI.L.IlLrl'l:lll.llll:lllnln'llr lllll o

104

Table 27. CLCSE Executor Selector

r - - T 1
l o o
| Access cConditions | Selecticn |
I | |
8 e e e e e e e e o o e o e e | d
r . . T T 1
| CLOSE macro-instruction | X | X |
L 4 +___ J
v T 1
Permanent error or		
end-ocf-volume condition		X
when using CSAM for output		
8 L I I ——		
b Rt		
		I
Executors		
		I
t S et S		
IGG0201A	x	x
pmm 1 R		
and IGG0201B		X
L 4 4 4

Appendix A:

Decision Tables

105

APPENDIX B: QOSAM CONTROL BLOCKS

Figure 16 shows the control blocks used
in 9SAM. Through the data control block
(DCB), the QSAM routines associate the data
being processed with the processing pro-
gram. Fields in the DCB point to the start
of a buffer, the end of a buffer, and an
input/output klock (IOB). These fields are
updated as successive channel programs are
executed. Each IOB points at the next IOB
and at a channel program (CP), and carries
an event control block (ECB) that the I/O
supervisor posts after the channel program
has been executed.

106

DCB

1OBA

Lo 108]

] NEXT 108

ECB

CPAD
o

o & 0

RECAD _

EOBAD

_BUFFER POOL

ECB
CPAD

N

1o

e
cp

—_—— e e — — —

le—

108

Yo
L

|

|

|

[

|

[

|

' . 108
*-—————’ NEXT 108
[

|

:

|

|

l

|

|

R = NEXT IOB
ECB
CPAD

cp

Legend:
Address Values:
0 Entered by the OPEN executor,
1 Updated by the synchronizing routine.
2 Updated by the GET or PUT routine.
— — — Successive Address Values

N

Y
[

Figure 16. QSAM Control Blccks

Figure 17 shows the control bklocks used
in BSAM and their stages of completion.
Stage 0 shows the state of the control
blocks before any READ or WRITE macro-
instruction. Stage 1 shows the effect of
the READ or WRITE macro-instruction, that
is, the values supplied by the processing
program in the data event control klock
(DECB). Finally, stage 2 shows the effect
of the READ or WRITE routine's tying
together these control blocks.

Before any READ or WRITE macro-
instruction, the data control klock (DCB)
points to the first input/output Lklock
(IOB). This IOB points back to the DCB, to
the next IOB, and to the channel prcgram
(CP). The READ or WRITE macro-instruction
identifies the DCB and the buffer to ke
read into or written out. Finally, the
READ or WRITE 1routine connects the DECB
with the current IOB, inserts the address
of the ECB (which is located in the DECB)
into the IOB, and points the channel
program to the buffer. Successive macro-
instructions cause updating of the IOB
address in the DCB and insert address
values in the next DECB, IOB, and channel
program.

0

APPENDIX C:

BSAM CONTROL BLOCKS

DECB
2
TOBAD
198 DCBAD !
BUFFER
e ? B | 3
ECAD >
- NEXT 108 b
CPAD
0| o [—————]
EECPZZ
DECB
* z 10BAD
____________ 1
L 108 DCBAD - ——— ——— ol
5 DCBAD 2 77 SSEAD L BUFFERf
ECBAD L- (
NEXT 108 |

_CPAD |

0{ 0 l—e————l2 |
CP |
____________ 4

DECB
- 2 IOBAD
_____________]
] ol DCBAD - -——-——- >~
> ECh BUFFER
DCBA 21 1
K 0 ECBAII)) |~ | | _BUFAD — i
| lef— NEXT 108 :
: CPAD i
0 |
Cp
| [::2—————————~~~J
|
[
|
; DCB
e —— oBA |
b i)

Legend:
Address Values

0 Entered by the OPEN Executor.

1 Provided by the processing program.

2 Completed by the READ or WRITE routine.
- == Successive Address Values.

Figure 17. BSAM Control Blocks

Appendix C:

BSAM Control Blocks

107

APPENDIX D¢

PAPER TAPE CODE CONVERSION - DESCRIPTICN OF TABLE MODULES

GET routine IGGO019AT (paper tape) and
WRITE routine IGGO19BF (paper tape) use the
tables in the following modules to convert
characters read from paper tape to EBCDIC
characters.

CODE CONVERSION MODULE IGG019CM

This module 1is loaded by the OPEN
executor if the DCB specifies paper tape,
and code conversion for teletype transmis-
sion code.

The module consists of three takles:

e A wvalidity
tions table.

checking and special func-

e A lower case character translation
table.

e An upper case character translation
table.

CODE CONVERSION MODULE IGGO019CN

This module is loaded by the OPEN execu-
tor 1if the DCB specifies paper tape, and
code conversion for ASCII paper tape code.

The module consists of two tables:

e A wvalidity
tions table.

checking and special func-

¢ A character translation taktle.

CODE CONVERSION MCDULE IGGO019CO

This module is loaded by the OPEN execu-

tor if the DCB specifies paper tape, and
code conversion for Burroughs paper tape
code.

The module consists of two takles:

e A validity checking and
tions table.

special func-

e A character translation table.

108

CODE CONVERSION MODULE IGGO019CP

This module is loaded by the OPEN execu-
tor if the DCB specifies paper tape, type
and code conversion for Friden paper tape
code.

The wmodule consists of three tables:

¢ A validity
tions takble.

checking and special func-

e A lower case character translation
table.

e An upper case character translation
table.

CODE CONVERSION MODULE IGG019CQ

This module is loaded by the OPEN execu-
tor if the DCB specifies paper tape, and
code conversion fcr IBM PTTC/8 code.

The module consists of three tables:

e A validity and special functions table.

e A lower case character translation
table.

e An upper case character translation
table.

CODE CONVERSION MODULE IGGO019CR

This module is loaded by the OPEN execu-
tor if the DCB specifies paper tape, and
code conversion for NCR paper tape code.

The module consists of three tables:

e A validity checking and
tions takle.

special func-

e A 1lower case character translation
table.

e An upper case character translation
table.

APPENDIX E:

FEOV_ EXECUTOR IGC0003A (SVC 31) - OPERATION FOR OUTPUT UNDER QSAM

The operation of the FEOV executor for

an output data set processed under the
queued sequential access method (QSAM)
depends o¢on the operating mode and the

execution of certain channel programs.

In the move operating mode, the execu-
tion of all channel programs is tested by
the FEOV executor. It awaits the executiocn
of the channel program for the present
buffer, and causes processing of any error
conditions.

In the locate operating mode, the execu-
tion of the channel program for the next
buffer in the chain is tested by the Output
synchronizing routine. This test occurs
immediately after the end-of-block routine
has caused .the channel program for the
present buffer to be scheduled for execu-
tion. The execution of the channel pro-
grams for all the following puffers,
including the one just scheduled, is tested
by the FEOV executor after the last channel
prograr has executed.

When a QSAM routine tests the execution
of a channel program, one of three ccndi-
tions mway be estaklished, with the stated
results:

e The channel program executed mnormally:
Normal processing continues.

e The channel program is not yet execut-
ed: The testing routine awaits comple-
tion of the channel program.

¢ The channel program executed with an
error condition: The testing routine
passes control to the SYNAD/EOV execu-
tor (IGCO0005E), by means of an SVC 55
instruction in synchronizing routine
IGGO019AR. The executor distinguishes
between permanent error conditicns and
end-of-volume conditions. (For a des-
cription of the error processing opera-
tions initiated by the SYNAD/EOV execu-
tor, refer to the section: Sequential
Access Method Executors, in this publi-
cation.)

The FEOV executor substitutes its own
SYNAD routine (contained within module
IGC0003A) for the processing program's.
That SYNAD routine releases the work area
normally obtained by the executor and
issues an ABEND macro-instruction.

Appendix E:

The cperation of the FEOV executor, and
the resultant flow of control between it
and other contrcl program routines, differs
for each of eight conditions. The condi-
tions are described below. Figure 18
illustrates the flow of contrcl between the
executor and other routines. Takle 29
specifies the path of control for the eight
conditions.

Condition 1: An output data set is proc-

Condition 2:

essed under QSAM in the move mode, and all
channel programs execute normally.

The executor operates as follows:

¢ It issues a TRUNC macro-instruction to
pass control to the PUT routine. (The
PUT routine passes control to the end-
of-blecck routine, which causes the
channel program for the present buffer
to be scheduled for execution. Control
returns to the PUT routine, which
returns control to this executor.)

e It awaits execution of the channel
program for the present buffer.

e It tests the execution of the channel
program and finds that it executed

normally.

e It passes control to the end-of-volume
routine of I/O support. (That routine
passes control to the EOV/new volume
executor, which returns control to the

processing program.)

An output data set 1is proc-
essed under QSAM in the move rmode, and a
permanent error condition is encountered in
the execution of a channel program.

The executor operates as follows:

e It issues a TRUNC macro-instruction to
pass control to the PUT routine. (The
PUT routine passes control to the end-
of-block routine, which causes the
channel program for the present buffer
to be scheduled for execution. Control
returns to the PUT routine, which
returns control to this executor.)

Operation of FEOV Executor for Output under QSAM 109

Condition 3:

It awaits execution of the channel
program, and finds that it encountered
an error condition in its execution.
It passes control to the synchronizing
routine. (That routine finds the same
error condition and passes control to
the SYNAD/EOV executor (IGCO005E) by
means of an SVC 55 instruction. The
SYNAD/EOV executor finds that the error
condition is a permanent error condi-
tion and returns control to the syn-
chronizing routine, which returns con-
trol to the FEOV executor.)

It issues an ABEND macro-instruction.

An output data set is proc-

ess

end-of-volume

ed under QSAM in the move mode, and an
condition is encountered in

the execution of a channel program.

The executor operates as follows:

It issues a TRUNC macro-instruction to

channel program for the present buffer
to be scheduled for execution. Control
returns to the PUT routine, which
returns control to the FEOV executor.)

It awaits execution of +the channel
program, and finds that it encountered
an error condition in its execution.

It passes control to the synchronizing
routine. (The routine finds the same
error condition and passes control to
the SYNAD/EOV executor (IGCOOO5E) by
means of an SVC 55 instruction. The
SYNAD/EOV executor finds that the error
condition is an end~of-volume condition
and passes control to the EOV routine
of I/0 support. That routine passes
ccntrol to the EOV/new volume executor,
which returns control to the synchron-
izing routine. The synchronizing rou-
tine now returns control to the FEOV
executor.)

It passes control to the end-of-volume
routine of I/0 support. (That routine

pass control to the PUT routine. (The passes control to the EOV/new volume
PUT routine passes control to the end- executor again, which now returns con-
of-klock routine, which causes the trol to the processing program.)
SVC 31
FEQV Executor 16
(1GC0003A)
4
12 7| |10 1l e éABEfle
~ Routine
PUT Routine
4115 2| |3
‘Y
Synchronizing
Routine
SVC 55 8| 19 Y
SYNAD/EOV Executor End-of -Block
(1GCO0005E) Routine
[1
EOV Routine of
1/O Support
13 , 15
EOV/ New
»| Volume Executor
(1GGO551A) Note: Refer to Table 29 for the
- Sequence of Control
14 1 " Legend:
A 1,2...... Path Number
Processing
Program Q Described in This Publication
Figure 18. Flow of Control Between the FEOV Executor and Other Control Program Routines

110

Table 29. Path and Sequence of Control of
the FEOV Executor and Other Con-

trol Program Routines

Condition Sequence of Control
@ &
1) 1,2,3,6,12,13,14
2 1,2,3,6,7,8,9,10,16
3 1,2,3,6,7,8,11,13,15,10,12,13,14
4 1,2,3,4,5,6,12,13,14
5 1,2,3,4,8,9,10,16)
6 1,2,3,4,5,6,7,8,9,10,16
7 1,2,3,4,8,11,13,15,10,12,13,14
8 1,2,3,4,5,6,7,8,11,13,15,10,12,13,14
Legend:

(a) = Refer to Appendix E for a description of the condifions.
(b) = Refer to Figure 18 for an identification of the routine passing control
and the routine receiving control.

condition 4: An output data set is proc-
essed under CSAM in the locate mode, and
all channel programs execute normally.

The executor operates as follows:
TRUNC

e It issues a and a PUT macro-

instruction to pass control to the PUT
routine. (The PUT routine passes
control to the end-of-block routine,

which causes the channel program for
the present buffer to be scheduled for
execution. The PUT routine then passes
control to the synchronizing routine to
obtain the next buffer. That routine
finds that the ¢hannel program for the
next buffer executed normally, and
returns control to the PUT routine.
The PUT routine returns control to the
FEOV executor.)

¢ It awaits execution of the last channel
program, and finds that the channel
program executed normally.

® It passes control to the EOV routine of
I/0 support. (That routine passes con-
trol to the EOV/new volume executor,
which returns control to the processing
program.)

Condition_ 5: An cutput data set is proc-
essed under QSAM in the 1locate mode, and
the execution of the channel program for
the next buffer in the chain encountered a
permanent error.

The FEOV executor operates as follows:

e It issues a TRUNC and a PUT macro-
instruction to pass control to the PUT
routine. (The PUT routine passes
control +to the end-of-<block routine,
which causes the channel program for
the present buffer to be scheduled for
execution. The PUT routine then passes
control to the synchronizing routine to

Appendix E:

Condition 6:

Condition 7:

obtain the next buffer. The synchron-
izing routine f£finds that the channel
program executed with an error condi-
tion and passes control to the
SYNAD/EOV executor (IGCO005E), by means
of an svc 55 instruction. The
SYNAD/EOV executor finds that the error
condition is a permanent error condi-
tion, and returns control to the syn-
chronizing routine. The synchronizing
routine now returns control to the FEOV
executor.)

s It issues an ABEND macro—instruction.

An output data set is
essed under QSAM in the locate mode, and
the execution of the channel program €for
any buffer other than the buffer specified
in condition 5 encounters a permanent
€rror.

proc-

The executor oOperates as follows:

e It issues a TRUNC and a PUT macro-

instruction to pass control to the PUT
routine. (The PUT routine passes
contrcl to the end-of-block routine,

which causes the channel program for
the present buffer to be scheduled for
execution. The PUT routine then passes
control to the synchronizing routine,
which returns control to the PUT rou-
tine. The PUT routine returns control
to the executor.)

e It awaits execution of the channel
program for the last buffer and finds
that the channel program executed with
an error condition.

e It
rcutine.

passes control to the synchronizing
(The routine finds the same
error condition and passes control to
the SYNAD/EOV executor (IGCOO00O5E), by
means of an SVC 55 macro-instruction.
The SYNAD/EOV executor finds that the
error condition 1is a permanent error
ccndition and returns control to the
synchronizing routine, which returns
control to the FEOV executor.)

e It issues an ABEND macro-instruction.

An output data set is
essed under QSAM in the locate mode, and
the execution of the channel program for
the next kuffer in the chain encountered an
end-=of-vclume condition.

proc-

The executor operates as follows:

e It issues a TRUNC and a PUT macro-
instruction to pass control to the PUT
routirne. (The PUT routine passes
control to the end=of-block routine,
which causes the channel program for
the present buffer to ke scheduled for

Operation of FEOV Executor for Output under QSAM 111

execution. The PUT routine then passes
control to the synchronizing routine to
obtain the next buffer. The synchron-
izing routine finds that the channel
program executed with an error ccndi-
tion, and passes control to the

SYNAD/EOV executor (IGCO0005E), by means

of an svC 55 instruction. The
SYNAD/EOV executor finds that the errxor
condition is an EOV condition, and
passes control to the EOV routine of
I/0 support. That routine passes con-
trol to the EOV/new volume executor,
which passes control to the synchrcniz-
ing routine. The synchronizing routine
returns control +to the PUT routine,
which now returns control to the FEOV
executor.)

e It passes control and the work area to
the EOV routine of I/0 support. (That
routine passes control to the EOV/new
volume executor again, which now
returns control to the processing pro-
gram.)

Condition 8: An output data set is proc-
essed under QSAM in the 1locate mode, and
the channel program for any buffer other
than the one specified in conditicn 7
encounters an end-of-volume condition.

The executor operates as follows:

e It passes control to the PUT routine.
(The PUT routine passes control to the
end-of-block routine, which causes the
channel program for the present buffer
to be scheduled for execution. The PUT
routine then passes control to the

112

synchronizing routine which returns
contrcl to the PUT routine. The PUT
routine returns control to the FEOV
executor.)

e It awaits execution of the channel
program for the present buffer, and
then finds that the channel program

executed with an error condition.

e It passes control to the synchronizing
routine. (The routine finds the same
error condition and passes control to
the SYNAD/EOV executor (IGCOOO5E) by
means of an SVC 55 instruction. The
SYNAD/EOV executcr finds that the error
condition is an EOV condition and pass-
es control to the EOV routine of I/0
support. That routine passes control
to the EOV/new volume executor, which
passes control to the synchronizing
routine, which returns control to the
FEOV executor.)

e It passes control, and the work area,

to the EOV routine of 1I/0 support.
(That routine passes control to the
EOV/new volume executor again, which

now returns
program.)

control to the processing

Note: An EOV condition is found during the
implementation of an FEOV macro-instruction
in conditions 3, 7, and 8. The subsequent
processing results in three volumes: Two
volumes containing all the blocks scheduled
for output by the FEOV macro-instruction
and prior PUT macro-instructions, and a
third volume available for writing new
blocks.

ABEND routine receives control
19,45,66,69,79,83,87,88,90,109,110,111
Address conversion routines
full-to-relative address (IECPRLTV)
74,75
relative-to-full address (IECPCNVT)
74,75
Appendages
abnormal end 55
channel end 51-53
end-of-extent 48-50
introduction to 47,48
PCI 53-55
SIO 51
Asynchronous error processing routine,
track overflow
description of 46,47
introduction to 43
IRB constructed U6
IRB scheduled 55

Backspace
BSP routine (IGC0006I - SVC 69) 71
CNTRL routine (IGGO19BE) 68
Basic direct-access method (BDAM)
see: Create-BDAM
Basic partitioned access method routines
see: BPAM routines
Basic sequential access method routines
see: BSAM routines
BLDL routine (IECPBIDL, IGC018 - SVC 18)
BLDLTAB option not used 73,74
BLDLTAB option used 74,75
BLDLTAB option not used 73,74
BLDLTAB option used 74,75
Block fits into the allocated extents
see: Calculating whether a block fits
within the allocated extents
Blocked records
GET routines
exchange buffering 19
simple kuffering 12
Update mode 22
PUT routines
exchange buffering 30
simple buffering 26
Update mode
see: Update mode GET routines
BPAM routines
description of 72-75
effect of BLDLTAB option 73,74
introduction to 72
relation to BSAM routines 7,72
relation to processing program 7,72
residence of 72
BSAM control blocks
. relation of 107
BSAM routines
flow of control 58,59
introduction to 58,59
relation to BPAM routines 7,72

INDEX

relaticn to processing program 7,58
relation to QSAM routines 7-9
shared with QSAM
appendages 47-55
end-of-klock routines 33-42
track overflow asynchronous error
processing routine 43,46,47
Buffer alignment 92
Buffer flushing CLOSE executor 87
see also: Buffer priming OPEN executor
Buffer is empty (GET routines)
exchange buffering 19
simple buffering 12
Update mode 22
Buffer pcol management 92,93
Buffer priming OPEN executor 85
Buffer ready for emptying (PUT routines)
exchange buffering 19
simple buffering 12
Update mode
see: Buffer is empty (GET routines),
Update mode
Buffering techniques
GET routines 12
PUT routines 25
BUILD routine (IECBBFB1) 92

Calculating whether a block fits within the
allocated extents
if track overflow is not specified
35,38,62
if track overflow is specified 42,63
Card reader GET routines 16
Chained channel-program scheduling
appendages
abknormal end, channel end, PCI
53-55
end-of-extent 50
end-of-block routines 36-41
IOB prefix 36
joining
description of end-of-block
routines 38-41
end-of-block routine finds joining
unsuccessful 37,39
introduction to 37
NOTE/POINT routines
parting
channel end appendage finds chaining
terminated 54,55
description of PCI appendage 54,55
introduction to 53
stage 2 OPEN executors 82,8.4
stage 3 OPEN executor 86
Chained scheduling
see: chained channel-program scheduling
Character conversion
see: paper tape character conversion
CHECK routines
description of 6U4-66
introduction to 63

Index 113

CLOSE executor
description of 87,88
introduction to 87
CNTRL routines
card reader 56
magnetic tape 68
printer 57
Control blocks, relation of
BSAM 107
QSAM 106
Control character end-of-block routines
chained scheduling 40,41
normal scheduling 35,36
Control routines

BSAM
macro-expansions (shared with QSAM)
57
modules loaded at execution time
70,71
modules loaded at OPEN time
56,57,66«70
QSAM
macro-expansions (shared with BSAM)
57
modules loaded at OPEN time (shared
with BSAM) 56,57

Converting routines
see: address conversion routines, paper
tape character conversion routines
Create-BDAM (WRITE-LOAD)
CHECK routine 65
stage 2 OPEN executors 83
WRITE (no track overflow) routines 62
WRITE (track overflow) routine 63

Data check for printer with UCS feature 79
DCBCIND1 field set 35,38,42,78,79

DD statement is DUMMY 79

Decision tables 95-105

DS1LSTAR field 79

DS1INOEPV field 78

Dummy data set routine (IGG019AV) 78

Effector routine
see: Exit effector routine
Empty buffer
GET routines
exchange buffering 19
simple kuffering 12
Update mode 22
PUT routines
exchange buffering 30
simple kuffering 26
Update mode
see: Update mode GET routines
End-of-klock condition exists
GET routines
exchange buffering 19
simple buffering 12
Update mode 22
PUT routines
exchange kuffering 30
sirple buffering 26
Update mode
see: Update mode GET routines
End-of-kblock routines
chained channel-program scheduling
36-41

114

Inout or Outin mode not used 33

Inout or Outin mode used 33,37,41

introduction to 33

ordinary 33-36

track overflow 41-42
End-of-extent

appendages

chained scheduling 50

normal scheduling 48-50
end-of-block routines
chained scheduling 36-40

normal scheduling 33-36
End-of-volume
seet EQV
EODAD routine
contrcl passes to
EOV executor
see: EOV/new volume executor, SYNAD/EOV
executor
EOV rcutine of I/O support
control passed to
CHECK routine 91
Create~BDAM WRITE routine.
EOV/new volume executor 88
FEOV executor 90
synchronizing routines 88
control received from
CHECK routines 63-65,88
Create-BDAM CHECK routine 65
FEOV executor 90
SYNAD/EOV executor 88
synchronizing routines
EOV/new volume executor 91
Error option implementation
Input, Output, Readkack modes
43,64,65,88,90
paper tape 19
track overflow option 46
Update node W46
Exchange kuffering
GET routines
description of 20-22
introduction to 19,20
PUT rcutines '
description of 30-33
introduction to 29,30
stage 2 OPEN executors 81
stage 3 OPEN executor 86
Executors
CLOSE 87,88
EOV/new volume 91

65,79

62,91

42-46,88

FEOV 90
introduction to 76
OPEN

RAM option not used 7
RAM cption used 7
stage 1 78,79
stage 2 79-84
stage 3 85-87
relation to I/0 support 7,76
SYNAD/EOV 88,90
Exit effector routine 55

FEOV executor (IGC0003A - svC 31) 90
FEOV SYNAD routine 109
FIND

C option (macro-expansion) 73

D option (IGC018 - SVC 18)
BLDLTAB opticn not used 74
BLDLTAB option used 75

Flow of Control
BSAM routines 58
executors 76,77,89,111
QSAM routines 10,11
Forward space

CNTRL routine (IGGO19BE) 68
FREEBUF macro-expansion 93
FREEPOCL macro-expansion 93
Full buffer

GET routines
exchange buffering 19
simple buffering 12
Update mode 22

PUT routines

see: buffer ready for emptying

GET routines
buffering techniques 12
card reader 16
exchange buffering 19-22
introduction to 11,12
paper tape character conversion
Readkack 17
simple buffering 12-18
Update mode 24
GETBUF macro-expansion 93
GETPOOL routine (IECQBFGl) 92

IECBBFB1 92

IECPBLDL
BLDLTAB option not used 73,74
BLDLTAB option used 74,75

IECPCNVT 74,75

IECPFIND 73

IECPFND1 74

IECPRLTV 74,75

IECQBFG1 92

IGC0002a 72

IGCO0002E 70

IGCO003A 90

IGCO005E 88

IGC0006I 71

IGCO018
BLDLTAB option not used 73,74
BLDLTAB option used 74,75

IGG019AA 13

IGG019AB 14

IGG019AC 15

IGG019AD 15

IGGO19AE 24

IGGO19AF 44

IGG019AG 16

IGG0192H 16

IGG019AI 27

IGG019AJ 27

IGGO19AK 28

IGGO19AL 29

IGG019AaM 17

IGG019AN 17

IGG019AQ 45

IGGO19AR 46

IGGO19AT 18

IGG019AV 79

IGG019AW 48

IGG019BA 60

IGGO019BB
IGGO019BC
IGG019BD
IGGO19BE
IGGO19BF
IGG019BG
IGGO019BH
IGGO019BI
IGGO019BK
IGGO019BL
IGG019BM
IGG019CA
IGG019CB
IGGo019CC
IGG019CD
IGGO19CE
IGGO19CF
IGG019CG
IGGO019CH
IGG019CI
IGG019CJ
IGG019CK
IGG019CL
IGG019CM
IGGO019CN
IGG019Co
IGGO019CP
IGG019CQ
IGGO19CR
IGGO19Cs
IGG019CU
IGGO19cv
IGG019CW
IGG019CX
IGG019cY
IGG019CzZ
IGGo19C1
I1GG019C2
16G019C3
IGG019DA
IGG019DB
IGG019DC
IGG019DD
IGGO19EA
IGGO19EB
IGGO19EC
IGGO19ED
IGGO19EE
IGGO19EF
IGG0191A
IGG0191B
IGG0191C
IGG0191D
IGGO191E
IGGO191F
IGG0191G
IGG0191H
IGG0191I
IGG0191J
IGGO0191K
IGG0191L
IGG0191M
IGG0191P
IGG0191Q
IGGO191R
IGG01910
IGG01911
IGG01912

Index

115

IGG01913 86
IGG01914 86
I1GG0201A 87
IGG0201B 88
IGG0551Aa 91
Inout, Outin modes
alternate end-of-block routines
33,35,37,42
stage 2 OPEN exeéecutors 82

Input data set without data (IGG019AV) 79

Input data set without entries (IGG0191B)
79
Interruption request block (IRB)
see: Asynchronous error processing
routine, track overflow
I/0 interruption 9
IOB prefix for chained scheduling 36

LOAD-BDAM (WRITE-LOAD)
see: Create-BDAM

Macro-expansions
FIND (C option) 73
FREEBUF 93
FREEPOOL 93
GETBUF 93
PRTOV 57

Module selector tables
see: Decision takles

New buffer
see: Full buffer, GET routines; Emnpty
tuffer, PUT routines
New volume executor
see: EOV/new volume executor
Next buffer segment (PUT routines)
exchange buffering 30
simple buffering 26
Update mode
see: Next record (GET routines),
Update mode
Next record (GET routines)
exchange buffering 19
simple buffering 12
Update mode 22
NOTE/POINT routines
chained scheduling 69,70
norral scheduling 67,68
track overflow 69
Update mode 69

OPEN executor
intrcduction to 78
RAM option not used 7
RAM option used 7
stage 1 78,79
stage 2 79-84
stage 3 85-87

Outin mode
see: Inout mode

Paper tape
appendage (IGG019CS) 53
Paper tape character conversion routines
CHECK routine (IGGO019BG) 65
GET routine (IGGO019AT) 18
READ routine (IGGO19BF) 60,61
stage 2 OPEN executor (IGG0191G) 82

116

stage 3 OPEN executor (IGG01912) 85
synchronizing and error processing
routine (IGGO19AT) 19
Paper tape code conversion modules 108
PCI
use in the parting process of chained
channel-program scheduling 53
POINT routines
see: NOTE/POINT routines
Priming input kuffers
introduction to
exchange buffering 19
simple buffering 13
Update mode 24
stage 3 OPEN executor 85
Printer with UCS features 79
Processing program
relation to SAM routines 7
Program controlled interruption
see: PCI
PRTOV
appendage 51
end-of-block routines 35
macro-expansions 57
PUT rcutines
buffering techniques 25
exchange kuffering 29-33
introduction to 25
simple buffering 25-29
Update mode 33
PUTX routines
description of
see: PUT routines

QSAM control blocks
relation of 106
QSAM routines
flow cf control 10,11
introduction to 10
relation to BSAM routines 7-9
relation to processing program 7
shared with BSAM
appendages 47-55
end-of-klock routines 33-42
track overflow asynchronous error
processing routine 46
Queued sequential access method
see: QSAM routines

RAM option specified in system generation
(SYSGEN) process and used in initial
program loading (IPL) process 7

READ routines

description of 60-63
introduction to 59
Readback mode GET routines - 17
RELSE routines
description of
see: GET routines
introduction to
exchange buffering 19
sirple buffering 13
Update mode 24

Resident access method option

see: RAM option

Scheduling
see: chained channel-program scheduling

see also: end-of-block routines
Search-previous auxiliary storage
addressing 23
Seek addresses in QSAM Update mode 23
Sequential access methods 7
Sequential access methods executors
See: executors
Sequential access methods facilities 7
Sequential access methods (SAM) routines
effect of BIDLTAB 73,74
effect of RAM 7
introduction to 7
Simple buffering
GET routines
description of 13-18
introduction to 12,13
PUT routines
description of 27-29
introduction to 25-27
Update mode routines
description of 24,25,33
introduction to 22-24
stage 2 OPEN executors 79-85
stage 3 OPEN executors 85,86
Space magnetic tape
BSP routine (SVC 69-IGC0006I) 71
CNTRL routine (IGGO19BE) 68
STOW routine (SVC 21-IGC0002R) 72
svC 18 (IGC018)
BLDLTAB option not used
FIND (D option), BLDL routines 74
BLDLTAB option used
FIND (D option), BLDL routines 75
SVC 21 (IGC00022) - STOW routine 72
SVC 25 (IGCO002E) - track kalance routine,
track overflow erase routine 70
SvC 31 (IGC00032) - FEOV executor 90
SVC 55 (IGCOOO5E) - SYNAD/EOV executor 88
SVC 69 (IGC0006I) - BSP control routine 71
SYNAD routine, FEOV executor 109
SYNAD/EOV executor (SvC 55 - IGC0005G) 88
Synchronizing and error processing routines
Input, Readback 43,45
introducticn to 42,43
output 43,46 .
paper tape character conversion 19,43
shared between QSAM and BSAM 46,47
track overflow (asynchronous) 43,46,47
unique to QSAM 4u-46
Update mode 43,44
SYSIN appendage (IGG019CK) 53

Track kalance routine (SVC 25-IGCO002E) 70
Track erase routine (SVC 25-IGC0002E) 71
Track overflow

abnormal end appendage 55

Create-BDAM WRITE routine 63

end-of-block routine 42

erase routine 71
error processing
see: asynchronous error processing
routine
introduction to 41
stage 2 OPEN executors
Create-BDAM not used 82
Create-BDAM used 83
stage 3 OPEN executor (Create-BDAM not
used) 86
TRUNC routines
descripticn of
see: PUT routines
introduction to
exchange buffering 30
simple buffering 26

UcCs
see: printer with UCS feature
Unblocked records
GET routines
exchange buffering 19
simple buffering 12
Update mode 22
PUT routines
exchange buffering 30
simple buffering 26
Update mode
see: Update mode GET routines
Universal Character Set
see: printer with UCS feature
Update mode

appendages
end-of-extent
BSAM 50
QSAM 48
sI0o 51

CHECK routine 65
GET routine
description of 24,25
introduction to 22-24
NOTE/POINT routine 69
PUTX routine 33
QSAM channel programs (Empty-and-Refill,
Refill-only) 23
READ/WRITE routine 61
stage 2 OPEN executors 83
stage 3 OPEN executor 85
synchronizing routine 44

Where-to-go (WTG) table
introduction to 76
OPEN executor 78
CLOSE executor 87
WRITE routines
descripticn of 60-63
introduction to 59
WRITE-LOAD
see: Create-BDAM

Index 117

Y28-6604-1

ISV

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017
[International]

*y*Q°N UT PIIAUTIA

T-hNAQ-R7X

READER'S COMMENTS

Title: IBM System/360 Operating System Form: Y28-6604~-1
Sequential Access Methods
Program Logic Manual

Is the material: Yes No
‘Easy to Read? - _—
Well organized? . —
Complete? —_— —_—
Well illustrated? —_ —
Accurate? I S
Suitable for its intended audience? —_ —
How did you use this publication?
— As an introduction to the subject ___ For additional knowledge
Other fold
Please check the items that describe your position: .
— Customer personnel ——Operator - Sales Representative
— IBM personnel — Programmer — Systems Engineer
—— Manager : —Customer Engineer —Trainee
— Systems Analyst —Instructor Other

Please check specific criticism(s), give page number(s),and explain below:
——Clarification on page(s)
—— Addition on page(s)
—— Deletion on page(s)
—— Error on page(s)

Explanation:

fold

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

Y28-6604~1¢

staple st
fold i
I 1
| FIRST CLASS |
| PERMIT NO. 81 |
| I
| POUGHKEEPSIE, N.Y. |
L 4
L] 1
| BUSINESS REPLY MAIL |
| NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. |
L 4 RERRN
NRRRN:
POSTAGE WILL BE PAID BY
RERRN
IBM CORPORATION
P.O. BOX 390 AEERE
POUGHKEEPSIE, N. Y. 12602
AENNN!
9
ATTN: PROGRAMMING SYSTEMS PUBLICATIONS IRRRRE .
DEPARTMENT D58 o
AERER! g
'—l.
, N
fold = f
%)
>
<
N
o]
1
(<)}
[=)]
o
=
1
|-l
TBM
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]
IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International] ' sta

020G 938

