
IBM System/360 Operating System

Sequential Access Methods

Program Number 3S0S-DM-50B

This publication describes the internal
logic of the routines of the queued sequen­
tial access method, the basic sequential
access method, and the basic partitioned
access method of IBM System/360 Operating
System. Program Logic Manuals are intended
for use by IBM customer engineers involved
in program maintenance, and by system pro­
grammers involved in altering the program
design. Program logic information is not
necessary for program operation and use;
therefore, distribution of this manual is
limited to persons with program maintenance
or modification responsibilities.

Restricted Distribution

Y28-6604-1

Program Logic

PREFACE

This publication describes the sequen­
tial access method facilities in IBM Oper­
ating System/360. It describes routines in
five categories:

• Queued sequential access method rou­
tines that cause storage and retrieval
of data records arranged in sequential
order .•

• Basic sequential access method routines
that cause storage and retrieval of
data blocks arranged in sequential
order.

• Basic partitioned access method rou­
tines that cause storage and retrieval
of data blocks in a member of a parti­
tioned data set, and construct entries
and search for entries in the directory
of a partitioned data set.

• Executors that operate with
input/output supp~rt routines.

Second Edition (January 1967)

• Buffer pool management routines that
furnish buffer space in main storage.

PREREQUISITE PUBLICATIONS

Knowledge of the information in the
following publications is required for an
understanding of this publication:

IBM system/360 Operating System: Data
Management, Form C28-6537

IB,M Systerol360 Operating System: Intro­
duction to Control Program Logic. Pro­
gram Logic Manual, Form Y28-6605

RECOMMENDED READING

The publication IBM System/360 Operating
System: Control Program SerVices, Form
C28-6541, provides useful information.

This publication is a major revision of Form Y28-6604-0 and obsoletes
it. Significant additional material has been added; material released
in a Technical Newsletter has been included, and prior material has been
updated.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

A form for readers' comments appears at the back of this publication.
It may be mailed directly to IBM. Address any additional comments
concerning this publication to the IBM corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

INTRODUCTION • • • • • •

QUEUED SEQUENTIAL ACCESS METHOD
ROUTINES. • • • • • •

7

• • 10

GET Routines • • • • • • • ••• • • 11
Simple Buffering GET Routines 12

GET Module IGG019AA. ••• • • 13
GET Module IGG019AB. • • 14
GET Module IGG019AC. • • • • 15
GET Module IGG019AD. • • 15
GET Module IGG019AG

(CNTRL - Card Reader) • • • 16
GET Module IGG019AH

(CNTRL - Card Reader) • • • • 16
GET Module IGG019AM (RDBACK) ••• 17
GET Module IGG019AN (RDBACK) ••• 17
GET Module IGG019AT (Paper Tape
Character Conversion) • • • 18

Exchange Buffering GET Routines • 19
GET Module IGG019EA. • • • • 20
GET Module IGG019EB. • 20
GET Module IGG019EC. • • • • • 21
GET Module IGG019ED. • • • 21

Update Mode GET Routine • • 22
GET Module IGG019AE. • • 24

PUT Routines • • • • • • • • • • • • • • 25
Simple Buffering PUT Routines • • • • 25

PUT Module IGG019AI. • • • • 27
PUT Module IGG019AJ. • 27
PUT Module IGG019AK. • • • 28
PUT Module IGG019AL. • • • • • 29

Exchange Buffering PUT Routines • • • 29
PUT Module IGG019EE. • • 30
PUT Module IGG019EF. • • • 31

Update Mode PUTX Routine.. • • • • • 33

End-of-Block Routines. •• • • • • •
Ordinary End-of-Block Routines. •

End-Of-Block Module IGG019CC •
End-of-Block Module IGG019CD •
End-of-Block Module IGG019CE •
End-of-Block Module IGG019CF •

Chained Channel-Program scheduling

33
• • 33

34
• • 35
• • 35
• • 36

End-of-Block Routines. •• • • • • • 36
End-of-Block Module IGG019CV 38
End-of-block Module IGG019CW • 39
End-of-block Module IGG019CX • • • 40
End-of-Block Module IGG019CY • • • 40

Track Overflow End-of-Block Routine • 41
End-of-BloCk Module IGG019C2 • 42

Synchronizing and Error Processing
Routines.. 42

Synchronizing Module IGG019AF
(Update) • • • • • • • • • • • 44

Synchronizing Module IGG019AQ
(Input). • • • • • • • • • •• •• 45

Synchronizing Module IGG019AR
(Output) • • • • • • • • • • • • • • 46

CONTENTS

Track Overflow Asynchronous
Error Processing Module IGG019C1 • • 46

Appendages • • • • • • • • • • • • 47
End-of-Extent Appendages. • • 48

Appendage IGG019AW
(End-of-Extent - Update - QSAM) 48

Appendage IGG019BM
(End-of-Extent - Update - BSAM) 50

Appendage IGG019CH
(End-Of-Extent - Ordinary). • 50

Appendage IGG019CZ
(End-of-Extent - Chained
Channel-Program Scheduling) 50

start I/O (SIO) Appendages. • •• 51
Appendage IGG019CG (SIO -

Update) • • • • • • • • • •• 51
Appendage IGG019CL (SIO - PRTOV) • 51

Channel End Appendages •••••••• 51
Appendage IGG019CI (Channel End

- Fixed-Length Blocked Record
Format) • • • • • • • • • • •• 52

Appendage IGG019CJ (Channel End
- Variable-Length Record
Format) ••••••••••••• 52

Appendage IGG019CK (Channel End
- SYSIN) ••••••••••••• 53

Appendage IGG019CS (Channel End
- Paper Tape) . • • • • •• • 53

Program Controlled Interruption
(PCI) Appendage (Execution of
Channel Programs SCheduled by
Chaining). • • • • • • • • •• • 53

Appendage IGG019CU (Channel End,
PCI, Abnormal End - Chained
Channel-Program Execution). • 54

Abnormal End Appendages • • •• • 55
Appendage IGG019C3 (Abnormal End

- Track Overflow) • • • • •• • 55

QSAM Control Routines. • • • • • -.. • 56
Control Module IGG019CA <CNTRI -
Select Stacker - Card Reader) •••• 56

Control Module IGG019CB (CNTRL -
Space, Skip - Printer) • • • • • • • 57

Printer Overflow Macro-Expansions • • 57
PRTOV - User Exit. • 57
PRTOV - No User Exit • • • • •• 57

BASIC SEQUENTIAL ACCESS METHOD
ROUTINES. • • • • • • • • • • • • 58

READ and WRITE Routines. • • • • • 59
READ/WRITE Module IGG019BA. • 60
READ Module IGG019BF (Paper Tape

Character Conversion) •••••••• 60
READ/WRITE Module IGG019BH (Update) • 61
WRITE Module IGG019DA (Create-BDAM) • 62
WRITE Module IGG019DB (Create-BDAM) • 62
WRITE Module IGG019DD (Create-BDAM

- Track Overflow). • • • • • • •• 63

CHECK Routines • • • • • • • • • • • • • 63
CHECK Module IGG019BB • • • • • • • • 64
CHECK Module IGG019BG (Paper Tape
Character Conversion) •••••••• 65

CHECK Module IGG019BI (Update) •••• 65
CHECK Module IGG019DC (Create-BDAM) • 65

BSAM Control Routines. • • • • • • • • • 66
Control Module IGG019BC (NOTE,

POINT - Direct-Access) • • • • • • • 61
Control Module IGG019BD (NOTE,

POINT - Magnetic Tape) • • • • • • • 68
Control Module IGG019BE (CNTRL:

Space to Tape Mark, Space Tape
Records) • • • • • • • • • • • • 68

Control Module IGG019BK (NOTE,
POINT - Direct-Access - Special) • • 69

Control Module IGG019BL (NOTE,
POINT - Magnetic Tape - Chained
Scheduling) ••••••••••••• 10

Control Module IGC0002E (SVC 25 -
Track Balance, Track Overflow
Erase) • • • • • • • • • • • • • • • 10

Control Module IGC0006I (SVC 69 -
BSP) • • • • • • • • • • • • • • • • 11

BASIC PARTITIONED ACCESS METHOD
ROUTINES. • • • • • • • • • • 12

BPAM Routines. • • • • • • 72
STOW Module IGC0002A (SVC 21) • 12
FIND (C Option) Macro-Expansion 13
Resident Module IECPFIND. • • • • • • 73

FIND (D Option) Routine - Entry
Point and CSECT Name: IGC018
(SVC 18) ••••••••••••• 14

BLDL Routine - Entry Points:
IECPBLDL, IGC018 (SVC 18) • • • • 14

Convert Relative-to-Full Address
Routine - Entry Point: IECPCNVT • 74

Convert Full-to-Relative Address
Routine - Entry Point: IECPRLTV • 14

Resident Module IECPFND1. • • • • • • 14
FIND (D Option) Routine - Entry
Point and CSECT Name: IGC018
(SVC 18) ••••••••••••• 75

BLDL Routine - Entry Points:
IECPBLDL, IGC018 (SVC 18) • • • • 15

Convert Relative-to-Full Address
Routine - Entry Point: IECPCNVT • 75

Convert Full-to-Relative Address
Routine - Entry Point: IECPRLTV • 75

SEQUENTIAL ACCESS METHOD EXECUTORS • • • 16

Open Executors • .• • '. • • • • • • • 18
Stage 1 OPEN Executors •••••••• 18

Stage 1 OPEN Executor IGG0191A • • 18
Stage 1 OPEN Executor IGG0191B • • 78
Stage 1 OPEN Executor IGG0191C

(and Dummy Data Set Module
IGG019AV) • • • • • • • • • • • • 19

stage 1 OPEN Executor IGG0191I • • 79
Stage 2 OPEN Executors. • • • • • • • 19

Stage 2 OPEN Executor IGG0191D • • 81
Stage 2 OPEN Executor IGG0191E • • 81
Stage 2 OPEN Executor IGG0191F. 81
Stage 2 OPEN Executor IGG0191G • • 82
Stage 2 OPEN Executor IGG0191H 82
Stage 2 OPEN Executor IGG0191J. 82
Stage 2 OPEN Executor IGG0191K • • 82
Stage 2 OPEN Executor IGG0191L • • 83
Stage 2 OPEN Executor IGG0191M • • 83
Stage 2 OPEN Executor IGG0191P • • 83
Stage 2 OPEN Executor IGG0191Q • • 84
Stage 2 OPEN Executor IGG0191R • • 84

Stage 3 OPEN Executors •••••••• 85
Stage 3 OPEN Executor IGG01910 • • 85
Stage 3 OPEN Executor IGG01911 • • 85
Stage 3 OPEN Executor IGG01912 • • 85
Stage 3 OPEN Executor IGG01913 • • 86
Stage 3 OPEN Executor IGG~1914 • • 86

CLOSE Executors. • • • • •
CLOSE Executor IGG0201A
CLOSE Executor IGG0201B
processing) ••••••

(Error

• • 81
87

• • • 88

SYNAD/EOV Executor IGC0005E (SVC 55) • • 88

FEOV Executor IGC0003A (SVC 31). • • 90

EOV/New Volume Executor IGG0551A • • • • 91

• 92
• • • 92
• • • 92

BUFFER POOL MANAGEMENT • • •
GETPOOL Module IECQBFG1 •
BUILD Module IECBBFB1 • •
GETBUF Macro-Expansion. •
FREEBUF Macro-Expansion •
FREEPCOL Macro-Expansion.

• • • • 93

APPENDIX A: DECISION TABLES •

• • • 93
• 93

• • • 95

APPENDIX B: QSAM CONTROL BLOCKS •••• 106

APPENDIX C: BSAM CONTROL BLOCKS • .107

APPENDIX D: PAPER TAPE CODE
CONVERSION - DESCRIPTION OF TABLE
MODULES •••••••••••••••• 108

Code Ccnversion Module IGG019CM ••• 108
Code Conversion Module IGG019CN ••• 108
Code Conversion Module IGG019CO ••• 108
Code Conversion Module IGG019CP ••• 108
Code Conversion Module IGG019CQ ••• 108
Code Conversion Module IGG019CR ••• 108

APPENDIX E: FEOV EXECUTOR IGC0003A
(SVC 31) - OPERATION FOR OUTPUT UNDER
QSAM. • • • • • • •• 109

INDEX •• •••• 113

"'.

FIGURES

Figure 1. Flow of Control in QSAM,
BSAM, and in BPAM for Members • • • 8

Figure 2. Flow of Control in QSAM • • • 11
Figure 3. Order of Records Using GET
Routines for Data Sets Opened for
RDBACK (IGG019AM,IGG019AN) ••••••• 18

Figure 4. The Two Parts of an update
Channel Program (Empty, Refill) •••• 23

Figure 5. Relation of Seek Addresses
in Three Successive QSAM Update
Channel Programs. • •• • ••••• 23

Figure 6. comparison of the ICB SAM
Prefixes for Normal and for Chained
Scheduling. • • • • • • • • • • •• • 36

Figure 7. Track Overflow Records.. • • • 41
Figure 8. Relationship of I/O
Supervisor and Appendages • • • • • • • 47

Figure 9. Flow of Control in BSAM . 58

TABLES

Table 1. Flow of Control of QSAM
Routines. • • • • • .• • • • • • •• 10

Table 2. Module Selector - Simple
Buffering GET Modules • • • • • • • • • 14

Table 3. Module Selector - Exchange
Buffering GET Modules ••••••••• 20

Table 4. Module Selector - Update
Mode GET Module • • • • • • • • • • 24

Table 5. Module Selector - Simple
Buffering PUT Modules • • • • • • 27

Table 6. Module Selector - Exchange
Buffering PUT Modules • • • • • •• 30

Table 7. Module Selector - Ordinary
End-of-Block Modules. • • • • • • •• 34

Table 8. Comparison of the lOB SAM
Prefixes for Normal and for Chained
Scheduling. • • • • _ • • • • • • • • • 37

Table 9. Module Selector- Chained
Channel-Program Scheduling
End-of-Block Modules. • • • 38

Table 10. Module Selector - Track
Overflow End-of-Block Module. • • • 41

Table 11. Module Selector -
Synchronizing and Error Processing
Modules • • • • • • • • • • • • • 44

Table 12. Module Selector - Track
Overflow Asynchronous Error
Processing Module • • • • • • • • • 44

Table 13. Module Selector -
Appendages ••••••••••••••• 49

Table 14. Module Selector - Ccntrol
Modules • • • • • • • • • • • • • • • • 56

ILLUSTRATIONS

Figure 10. Flow of Control - SAM OPEN
Executor. • • • • • . • . 77

Figure 11. Flow of Control To and
Frore the SYNAD/EOV Executor
(IGC0005E) in QSAM. • • • •• • •• 89

Figure 12. Flow of Control To and
Frore the SYNAD/EOV Executor
(IGC0005E) in BSAM. • • • • • • • 89

Figure 13. Buffer Pool Control Block •• 92
Figure 14. GETPOOL Buffer Pool
Structures. • • • • . • • • 92

Figure 15. BUILD Buffer Pool
Structures. • • • • . • • •• 93

Figure 16. QSAM Control Blocks. • .106
Figure 17. BSAM Control Blocks ••••• 107
Figure 18. Flow of Control Between
the FEOV Executor and Other Control
Prograre Routines ••••.•.••.•. 110

Table 15. Control Routines That Are
Macro-Expansions ••••••••• , 56

Table 16. Flow of Control of BSAM
Routines ••.•••••••••.••• 59

Table 17. Module Selector - READ and
WRITE Modules • • • • • • • • • •• 60

Table 18. Module Selector - CHECK
Modules • • • • • • • • • • • • • 64

Table 19. Module Selector - Control
Modules Selected and Loaded by the
OPEN Executor • • • • • • • • • •• • 66

Table 20. Control Modules Loaded at
Execution Time. • • • • • • . • 67

Table 21. Control Routines That Are
Macro-Expansions ••••••••

Table 22. BPAM Routines Residence •
Table 23. sequential Access Method

Executors - Control Sequence. • • •
Table 24. OPEN Executor Selector -

Stage 1 OPEN Executors •••••••
Table 25. OPEN Executor Selector -

Stage 2 OPEN Executors •••••••
Table 26. OPEN Executor Selector -

Stage 3 OPEN Executors •••••••
Table 27. CLOSE Executor Selector.
Table 28. BUILD Buffer structuring

Table • • • • • • • • • • . • . • •
Table 29. Path and Sequence of

Control of the FEOV Executor and

67
72

• 76

• • 78

• • 80

• • 85
87

Other Control Program Routines ••••• 111

. Sequential access methods are program­
ming techniques for causing the storage and
retrieval of data arranged in sequential
order. Sequential access method facilities
in Operating system/360 consist of routines
in five categories:

• Queued sequential access method CQSAM}
routines.

• Basic sequential access method (BSAM)
routines.

• Basic partitioned access method CBPAM}
routines.

• sequential access method executors.
• Buffer pool management routines.

A processing program using QSAM routines
deals with records. For input, QSAM rou­
tines turn the blocks of data of the
channel programs into a stream of input
records for th~ processing program = for
output, QSAM routines collect the succes­
sive output records of the processing pro­
gram into blocks .of data to be written by
channel programs.

A processing program using BSAM routines
deals with blocks of data. For input, BSAM
routines cause a channel program to read a
block of data for the processing program;
for output, BSAM routines cause a channel
program to write a block of data for the
processing program. BSAM routines are also
used to read and write blocks of data for
members of a partitioned data set.

A processing program using BPAM routines
also deals with blocks of data. For out­
put, BPAM routines construct and cause
writing of entries in the directory; for
input, BPAM routines cause searching for
and read entries in the directory. To read
and write the blocks of the members, a
processing program uses the BSAM routines.

Sequential access method executors are
modules that operate with the OPEN, CLOSE,
and EOV routines of I/O support. When a
data control block is opened, an executor
constructs control blocks and loads the
access method routines unless the resident
access method (RAM) option is used. If the
RAM option is used, the selected QSAM or
BSAM routines are permanently resident.
When the end of a data set or volume is
re(!,ched, an executor processes.· the pending

INTRODUCTION

input/output blocks. The five types of
executor are: OPEN executor, CLOSE execu­
tor, SYNAD/EOV executor, FEOV executor, and
EOV/new volume executor.

Buffer pool management routines form
buffers in main storage and return main
storage space (for buffers no longer
needed) to available status. A buffer pool
management routine is entered when a GET­
POOL, BUILD, GETBUF, FREE BUF, or FREEPOOL
macro-instruction is encountered in a pro­
gram.

The GETPOOL and BUILD routines both form
a pool of buffers in main storage. Howev­
er, the GET POOL routine also obtains the
main storage space for the buffer pool.
Main storage space must be provided by the
processing program when the BUILD routine
is used.

The GETBUF and FREEBUF routines
individual buffers. GETBUF obtains
fer from a buffer pool and FREEBUF
a buffer to a buffer pool.

handle
a buf­

returns

The FREE POOL routine returns the main
storage space used for a buffer pool.

Figure 1 shows the relationship among
sequential access method routines, other
portion~ of the control program, and the
process1ng program. Certain routines
(e.g. ,end-of-block routines and
appendages) are identical for all three
sequential access methods. Other routines
(e.g., GET or PUT for QSAM and READ or
WRITE for BSAM and BPAM) depend upon the
access method used. (QSAM andBSAM also
include control routines not shown in Fig­
ure 1.)

A processing program passes control to
sequential access method routines via a
macro-instruction. A GET, RELSE, PUT,
PUTX, or TRUNC macro-instruction is used
for QSAM, and a READ or WRITE macro­
instruction is used for BSAM. The GET,
PUT, READ, and WRITE routines pass control
to the same end-of-block routines.
However, a GET or a PUT routine passes
control only when an end-of-block condition
occurs, and a READ or a WRITE routine
always passes control. An end-of-block
routine causes the I/O supervisor to sche­
dule a channel program for execution. The
end-of-block routine then returns control
to the GET or PUT routine (for QSAM) or to
the READ or WRITE routine (for BSAM and
BPAM).

Introduction 7

Processing Program
(Using QSAM)

EROPT

User's SYNAD
Routine

-I
I
I
I
I
I
I
I
I
I

J ______ _

I­
I
I
I
I
I
I
I
I
I

--~

CHECK
Routine

CHECK

User's SYNAD
Routine

I/o Interruption

I/o Supervisor

Appendages r I~I~~~~
I ,-- - - - - Supervisor
I I rl --l---~E~X=C~P----i---------------~
I I I Supervisor

Appendages I
I
I
I
I

L Channel Status I I
I Word _---1

I I
I I
I : POST (a)

I I

LPSW

------1
SIO (b) I

I
I
L_ Channel

Program
-~

I lOB I I

L _~_ ~~-~~ __ -jL.... __ E_~_B---'f- __ ~ _____ ~M ______ ~ ___ ~

Legend: ~
(a) Previous Channel Program
(b) Next Channel Program

-- Control
- - - Reference

~Routinl's Described in This Publication

Figure 1. Flow of control in QSAM, BSAM, and in BPAM for Members

After receiving control back from an
end-of-block routine, a GET or a PUT rou­
tine passes control to a synchronizing and
error processing routine. This routine
examines the lOB to determine the status of
the channel program. If the channel pro­
gram is not yet executed, the synchronizing
routine awaits execution. If the channel
program executed successfully, control
returns to the GET or PUT routine which
returns control to the processing program.

8

If execution of the channel program result­
ed in permanent errors the synchronizing
routine causes control to pass to the
user's SYNAD routine.

The asynchronous error processing rou­
tine gains control as a result of being
scheduled by an appendage. The routine
processes permanent error conditions that
are encountered by a channel program for

input data with track overflow record for­
mat. The routine establishes the address
of the segment beyond the one in error.

After receiving control back from an
end-of-block routine, the READ or WRITE
routine returns control to the processing
program. To determine the status of the
channel program the processing program must
pass control to a CHECK routine via a CHECK
macro-instruction. A CHECK routine deter­
mines the status of the channel program by
referring to the DECB. If the channel
program is not yet executed, the CHECK
routine awaits execution. If the channel
program has been executed successfully,
control returns to the processing program.

If execution of the channel program result­
ed in a permanent error, a CHECK routine
causes control to pass to the user's SYNAD
routine.

When an I/O interruption occurs, the I/O
interruption supervisor posts the status of
the execution of the channel program in tbe
event control block (ECB). For QSAM, the
ECB is located in the input/output block
(lOB): for BSAM, the ECB is located in the
data event control block (DECB). The EXCP
supervisor then receives control and causes
the next scheduled channel program to be
executed. Both the I/O interruption super­
visor and the EXCP supervisor may use
access method appendages.

Introduction 9

QUEUED SEQUENTIAL ACCESS METHOD ROUTINES

Queued sequential access method (QSAM)
. routines cause storage and retrieval of
records and furnish buffering and blocking
facilities. There are six types of QSAM
routines:

• GET routines.
• PUT routines.
• End-of-block routines.
• Synchronizing and .error processing rou­

tines (including the track overflow
asynchronous error processing routine).

• Appendages.
• Control routines.

Table 1 and Figure
ship of QSAM routines,
the operating system,
program.

2 show the relation­
other portions of

and the processing

A GET or a PUT routine receives control
after a GET, PUT, PUTX, RELSE, or TRUNC
macro-instruction is encountered in a proc­
essing program. A GET routine presents an
input record to the processing program and
returns control to the processing program
unless the input buffer is empty. A PUT
routine accepts output records from the
processing program and returns control to

Table 1. Flow of Control of QSAM Routines

the ~rocessing program unless the output
buffer is full.

When an input buffer is empty, or an
output buffer is full, an end-of-block
routine receives control from the GET or
the PUT routine. An end-of-block routine
provides device ori.enteddata for the chan­
nel program. If normal channel-program
scheduling is used, the routine passes
control to the I/O supervisor (via an EXCP
macro-instruction) to cause scheduling of
the buffer. If chained channel-program
scheduling is used, it attempts to add the
present channel program to the last one in
the chain of scheduled channel programs.
If it is successful, control returns to the
processing program. If it is unsuccessful,
control passes to the I/O supervisor (via
an EXCP macro-instruction).

After the end-oi-block routine returns
control, the GET or PuT routine passes
control to a synchronizing and error proc­
essing routine. The synchronizing routine
examines the next lOB to determine the
status of the channel program. (For a des­
cription and diagram of the relationship of
QSAM Control Blocks refer to Appendix B.)

r----------------------~-------------------------------------T-------------------------,
" , I
,Routine Passing Control I Condition IRoutine Receiving Control I
'I I I
~-----------------------+-------------------------------------+-------------------------~
, Processing Program' GET or PUT Macro- instruction I GET or PUT I
~-----------------------+-------------------------------------+-------------------------~ I GET or PUT , Buffer ready for scheduling ,End-af-block I
~-----------------------+-------------------------------------+-------------------------~
'End-of-block I EXCP Macro-instruction I I/O Supervisor ,
~------~----------------+-------------------------------------+-------------------------~
, I/O Supervisor I End I End-of-block I
~-----------------------+-------------------------------------+-------------------------~
'End-of-block I End I GET or PUT ,
~-----------------------+-------------------------------------+-------------------------~
, GET or PUT I New buffer needed I Synchronizing ,
~-----------------------+-------------------------------------+-------------------------i
, Synchronizing 'Channel program executed I GET or PUT I
I , wi thout error I I
~-----------------------+-------------------------------------+-------------------------i
, GET or PUT , No other I ProceSSing Program ,
~-----------------------+-------------------------------------+-------------------------1 I supervisor I I/O interruption , I/O supervisor ,
~-----------------------+-------------------------------------+-------------------------~
I I/O Supervisor I Appendage exit condition ,Appendage I
~-----------------------+-------------------------------------+-------------------------1
'Appendage , End I I/O supervisor ,
~-----------------------t-------------------------------------t-------------------------1
, I/O Supervisor I End· I Supervisor , L _______________________ L _____________________ ~ _______________ L _________________________ J

10

Depending on the status of the execution, a
synchronizing routine may retain control
(using the WAIT macro-instruction), return
control to the GET or PUT routine, or pass
control to the user's SYNAD routine or to
the SYNAD/EOV executor. (For a description
of the SYNAD/EOVexecutor (IGC0005E), and
the flow of control to and from it, refer
to the section: "sequential Access Method
Executors.")

Processing
Program

r-r-::"-:'-:'
I
I
I
I
I
I
I
I EROPT

User's SYNAD
Routine

I/o Interruption

I 0 Su ervisor

r I/o Interruption : i~===-,... __ s_u,-pe_rV_i,_or_--I

I I I
L_ J I

I Word I
I I
I lOB I

L _____ ~Q"l.U

r Appendages

I
I

I
I
I
I
I
I
I
I

I
L_

I
S!9 i!') J

Legend:
(a) Previous Channel Program
(b) Next Channel Program

Control
Reference

~ Routines Described in This Publication

LPSW

Figure. 2. Flow of Control in QSAM

The track overflow asynchronous error
processing routine gains control as a
result of being scheduled by an appendage.
The routine processes permanent error con­
ditions that are encountered by a channel
program for input data with track overflow
record forma.t. The routine establishes the
address of the segment beyond the one in
error.

Appendages receive control from the I/O
supervisor and return control to the I/O
supervisor. Some appendages operate with
the I/O interruption supervisor, others
operate with the EXCP supervisor.

Control routines (not shown in Figure 2)
receive control from the processing program
via the control macro-instructions (CNTRL,
PRTOV). These QSAM routines control the
printer and the card reader.

Appendix A contains decision tables that
show, for each type of routine, the proc­
essing characteristics that differentiate
the routines within that type.

GET ROUTINES

There are 14 different GET routines. A
particular GET routine is used with a
specific data set on the basis of the
access condition options specified by the
processing program for access to that data
set.

A GET routine gains CPU control when a
GET or a RELSE macro-instruction is encoun­
tered. The GET routine returns control to
the processing program, unless either an
input buffer is empty and ready to be
scheduled for refilling or a new full input
buffer is needed. If a buffer is ready to
be scheduled for refilling, the GET routine
passes control to an end-of-block routine.
If a new full input buffer is needed, the
GET routine passes control to a synchroniz­
ing and error processing routine. A GET
routine presents the processing program
with a record from a block of data 1n an
input buffer filled by a channel program.
A RELSE routine causes the present buffer
to be considered empty and ready for
refilling.

Every GET routine determines in each
pass through the routine:

• The address of the next record.

• Whether an input buffer is empty and
ready to be scheduled for refilling.

• Whether a new full input buffer is
needed.

Queued sequential Access Method Routines 11

In each entry into a
processing program is
next record.

GET routine, the
presented with the

GET routines differ mainly .in the buf­
fering techniques they support. GET rou­
tines for simple buffering deal with buf­
fers that are permanently associated with
one DCB. GET routines for exchange buffer­
ing deal with buffers that are exchanged
between the input DCB, the output DCB, and
the processing program. The GET routine
for the Update mode of OPEN uses simple
buffering~ it differs from other simple
buffering GET routines in that the same
buffer is used for both input and output.
The manner in which a GET routine performs
its processing depends on the buffering
mode.

Simple buffering GET routines determine
the address of the next record by referring
to the DCB. To determine whether a -buffer
is empty and whether a new buffer is
needed, these routines compare the begin­
ning and ending address of the buffer. To
present a record to the processing program.,
a simple buffering GET routine either moves
the record to a processing program work
area or permits processing to be performed
in the buffer space. In the latter case"
if the record is to become part of an
output data set it must be moved to an
output buffer.

Exchange buffering GET routines deter­
mine the address of the next record by
referring to the channel program. To
determine whether a buffer is empty and
whether a new buffer is needed, these
routines compare the beginning and ending
address of the channel program. To present
a record to the processing program, an
exchange buffering GET routine presents the
processing program with the buffer or buf­
fer segment. The buffer (or segment) is
exchanged with a work area of the process­
ing program, or with a buffer (or segment)
from an output DCB (by a PUT routine using
exchange buffering).

The update mode GET routine determines
the address of the next input record by
referring to the DCB. (The next output
record is the last input record.) To
determine whether a new input buffer is
needed, and whether the buffer is to be
emptied (that is, whether the last block is
to be updated) before being filled with a
new block, the routine also refers to the
DCB. The record is presented to the proc­
essing program, and accepted for updating,
in the same buffer space.

12

The GET routine descriptions that follow
are accordingly grouped as:

• Simple Buffering GET Routines.

• Exchange Buffering GET Routines.

• Update Mode GET Routine.

SIMPLE BUFFERING GET ROUTINES

Simple buffering GET routines use buf­
fers whose beginning and ending addresses
are in the data control block (DCB). The
beginning address is in the field DCBRECAD
(address of the next record)~ the ending
address is in the field DCBEOBAD (address
of the end of the buffer). In each pass
through a routine, it determines:

• The address of the next record.

• Whether an input buffer is empty and
ready to be scheduled for refilling.

• Whether a new full input buffer is
needed.

If the records are unblocked, the
address of the next record is always that
of the next buffer.

If the records are blocked, a GET rou­
tine determines the address of the next
record by adding the length of the last
record to the address of the last record.
The address of the last record is in the
DCBRECAD field of the data control block
(DCB). If the records are fixed-length
blocked records the length of each record
is in the DCBLRECL field. If the records
are variable-length blocked records, the
length of each record is in the length
field of the record itself.

A GET routine determines whether a buf­
fer is empty and ready for refilling, and
whether a new full buffer is needed, by
testing for an end-of-block (EOB)condi­
tion.

When a buffer is empty, a GET routine
passes control to an end-of-block routine
to refill the buffer. The buffers are
filled for the first time by OPEN executor
IGG01911. Thus the buffers are primed for
the first entry into a GET routine.

When a new full buffer is needed, a GET
routine obtains it by passing control to

the Input Synchronizing and Error Process­
ing routine (module IGG019AQ). The syn­
chronizing routine updates the DCBIOBA
field (thus pointing to the new buffer) and
returns control to the GET routine. A GET
routine updates the DCBRECAD field by
inserting in it the starting address of the
buffer from the channel program associated
with the new lOB. To update the DCBEOBAD
field a GET routine adds the actual length
of the block read to the buffer starting
address. These two fields" DCBRECAD and
DCBEOBAD, define the available buffer.

For unblocked records, an EOB condition
exists after every entry into the GET
routine. For blocked records" an EOB con­
dition exists when the values in the DCBRE­
CAD field and the DCBEOBAD field are equal.
In the move operating mode, the buffer can
be scheduled for refilling as soon as the
last record is moved out; accordingly, an
EOB test is made after moving each record,
to schedule the buffer as soon as possible.
Another EOB test is made on the next entry
to the routine to determine whether a new
full buffer is needed. In the locate roode,
the empty buffer is scheduled when the
routine is entered, if the last record was
presented in the preceding entry; accord­
ingly, an EOB test is made on entry into
the routine to determine both whether a
buffer is empty and ready for refilling and
also whether a new full buffer is needed.

When the proceSSing program determines
that the balance of the present buffer is
to be ignored and the first record of the
next buffer is desired, the processing
program issues a RELSE macro-instruction.
Control passes to a RELSE routine which
sets an EOB condition.

• The OPEN executor primes (that is, sche-
dules for filling) the buffers if QSAM is
used with a DCB opened for Input, Update,
or Readback. (For the locate mode, all
buffers except one are primed; for the move
mode all buffers are primed.) The OPEN
executor also sets an end-of-block condi­
tion; the first time that a GET routine
gains control, it processes this condition
in the way it normally dqes.

There are nine simple buffering GET
routines. Table 2 lists the routines avai­
lable and the conditions that cause a
particular routine to be used. The OPEN
executor selects one of the routines, loads
it, and puts its address into the DCBGET
field. The table shows, for example, that
when the OPEN parameter list specifies
Input and the DCB specifies the GET macro­
instruction, simple buffering, the locate
mode, and .the fixed-length record format,
routine IGG019AA is selected and loaded.

GET Module IGG019AA

Module IGG019AA presents the processing
program with the address of the next fixed­
length or undefined-length record. The
OPEN executor selects and loads this module
if the OPEN parameter list specifies:

- Input

and the DCB specifies:

- GET
- Simple buffering
- Locate operating mode
- Fixed-length (unblocked, blocked, or

blocked standard) or undefined-length
record format.

The module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

• It receives control when a GET macro­
instruction is encountered in a
processing program.

• It tests for an EOB condition to deter­
mine whether a buffer is empty and
ready for refilling and also whether a
new buffer is needed. (When the OPEN
executor primes the buffers, it sche­
dules all buffers except one and sets
an EOB condition.> -

• If no EOB condition exists, it deter­
mines the address of the next record,
and then presents the address to the
processing program and returns control
to the processing program.

• If an EOB condition exists, it issues a
BALR instruction to pass the present
buffer to the end-of-block routine to
be scheduled for refilling. The GET
routine issues another BALR instruction
to obtain a new full buffer through the
Input Synchronizing and Error Process­
ing routine (module IGG019AQ). The GET
routine then presents the address of
the first record of the new buffer to
the processing program and returns con­
trol to the processing program.

The
tion by
fields
returns

RELSE routine causes an EOB condi­
setting the DCBRECAD and DCBEOBAD
so that they are equal; it then
control to the processing program.

Queued sequential Access Method Routines 13

""r'.

Table 2. Module Selector - Simple Buffering GET Modules
r-------------------------------T---,
I I I
I Access Conditions I Selections I
I I I
~-------------------------------+---T---T---T---T---T---T---T---T---T---T---T---T---T---i
I INPUT, GET, Simple Buffering I X I X I X I X I X I X I X I X IX I I I I I X I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I RDBACK, GET, Simple Buff ering I I I I I I I I I I X I X I X I X I I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
ILocate operating mode I X I X I X I I I I I I I X I X I I I I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---t---+---+---i
IMove operating mode I I I I X I X I X I X I X I X I I I X I X I X I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
IFixed-length record format I X I I I X I I I X I I I X I I X I I I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
IUndefined-length record format I I X I I I X I I I X I I I X I I X I I
~-------------------------------t---+---+---+---+---+---+---+---+---+---+---t---+---+---i
IVariable-length record format I I I X I I I X I I I X I I I I I I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
ICard reader, I I I I I I I I I I I I I I I
lonly a single buffer, CNTRL I I I I I I I X I X I X I I I I I I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
ICharacter conversion for I I I I I I I I I I I I I I I
I paper tape I I I I I I I I I I I I I I X I
~-------------------------------+---~---+---+---~---+---+---~---+---+---~---+---~---+---i
I I I I I I I I I I I
I GET Modules I I I I I I I I I I
I I I I I I I I I I I
~-------------------------------+---T---t---+---T---+---+---T---+---+---T---t---T---t---i
I IGG019AA I X I X I I I I I I I I I I I I I

/ ~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGG019AB I I I X I I I I I I I '. I I I I I
~-------------------------------+---+---+---+---+---+---+--~+---+---+---+---+---+---+---i
I IGG019AC I I I I X I X I I I I I I I I I I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGG019AD I I I I I I X I I I I I I I I I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGG019AG I I I I I I I X I X I I I I I I I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGG019AH I I I I I I I I I X I I I I I I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGG019AM I I I I I I I I I I X I X I I I I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---t---+---i

~----------~::~~~~~-------------+---+---+---t---t---t---t---t---t---t---t---~-~-t-~-t---~
I IGG019AT1 I I I I I I I I I I I I I I X I
~-------------------------------~---~---~---~---~---~---~---~---~---~---~---~---~---~---i
11This module also includes the Paper Tape Character Conversion Synchronizing and I
IError Processing routine. I L _________________ ----------------__ J

GET Module IGG019AB

Module IGG019AB presents the processing
program with the address of the next
variable-length record. The OPEN executor
selects and loads this module if the OPEN
parameter list specifies:

- Input

and the DCB specifies:

- GET

14

- Simple buffering .
- Locate operating mode
- Variable-length (unblocked or blocked)

record format.

The mOdule consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

• It receives control when a GET macro­
instruction is encountered in a
processing program.

• It determines the address of the next
record and tests for an EOB condition
to determine whether a buffer is empty
and ready for refilling and also wheth­
er a new buffer is needed. (When the
OPEN executor primes the buffers, it
schedules all buffers except one and
sets an EOB condition.)

• If no EOB condition exists, it presents
the address of the next record to the
processing program and returns control
to the processing program.

• If an EOB condition exists, it issues a
BALR instruction to pass the present
buffer to the end-of-block routine to
be scheduled for refilling. The GET
routine issues another BALR instruction
to obtain a n~w buffer through the
Input Synchronizing and Error Process­
ing routine (module IGG019AQ).The GET
routine then presents the address of
the first record of the new buffer to
the processing program and returns con­
trol to the processing program.

The RELSE routine causes an EOB condi­
tion by setting the DCBRECAD and DCBEOBAD
fields so that they are equal; it then
returns control to the processing program.

GET Module IGG019AC

Module IGG019AC moves the next fixed­
length or undefined-length record to the
work area. The OPEN executor selects and
loads this module if the OPEN parameter
list specifies:

- Input

and the DCB s~ecifies:

- GET
- Simple buffering
- Move operating mode
- Fixed-length (unblocked, blocked, or

blocked standard) or undefined-length
record format

(but not the CNTRL macro-instruction). The
module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

• It receives control when a GET macro­
instruction is encountered in a
processing program.

• It tests for an EOB condition to deter­
mine whether a new full buffer is
needed. (When the OPEN executor primes
the buf.fers, it sets this EOB 90ndition
for the first GETmacro"'instruction.)

• If no EOB condition exists·, the routine
moves the next record to the work area.

• If an EOB condition exists, the routine
issues a BALR instruction to obtain a
new buffer through the Input Synchron­
izing and Error Processing routine
(module IGG019AQ), and moves the first
record of the new buffer to the work
area.

• It tests for a new EOB condition to
determine whether a buffer is empty and
ready for refilling. (For unblocked
records, this condition E;xistsat every
entry into the routine.)

• If no new EOB condition exists, the
routine returns control to the process­
ing program.

• If a new EOB condition exists, the
routine issues a BALR instruction to
pass the present buffer to the end-of­
block routine to be scheduled for
refilling, and then returns control to
the processing program.

The RELSE routine sets a bit in the DCB
so that the GET routine passes the buffer
for refilling and obtains a new full buffer
the next time the routine is entered.

GET Module IGG019AD

Module IGG019AD moves the next variable­
length length record to the work area. The.
OPEN executor selects and loads this module
if the OPEN parameter list specifies:

- Input

and the DCB specifies:

- GET
- Simple buffering
- Move operating mode
- Variable-length (unblocked or blocked)

record format

(but not the CNTRL macro-instruction). The
module consists of a GET and a RELSE
routine.

The GET routine operates as follows:

• It receives control when a GET macro­
instruction is encountered in a
processing program~

• It tests fOlC an EOB condition to deter­
mine whether a new full buffer is
needed. (When the OPEN executor primes
the buffers, it also sets an end-of­
block condition for the first GET
macro-instruction.)

Queued sequential Access Method Routines 15

• If an EOB condition exists, the routine
issues a BALR instruction to obtain a
new buffer through the Input Synchron­
izing and Error Processing routine
(module IGG019AQ), and moves the first
record to the work area.

• If no EOB condition exists, the routine
moves the next record to the work area.

• It tests for a new EOB condition to
determine whether a buffer is empty and
ready for refilling. (For unblocked
records, the condition exists after
every entry to this routine.)

• If no new EOB condition exists, the
routine returns control to the process­
ing program.

• If a new EOB condition exists, the
routine issues a BALR instruction to
pass the present buffer to the end-of­
block routine to be scheduled for
refilling, and returns control to the
processing program.

so
for
the

The RELSE routine sets
that the GET routine
refilling and obtains
next time the routine

a bit in the DCB
passes the buffer
a new full buffer
is entered.

GET Module IGG019AG (CNTRL - Card Reader)

Module IGG019AG moves the next fixed­
length or undefined-length record to the
work area without scheduling the buffer for
refilling. To refill the buffer, the
processing program issues a CNTRL macro­
instruction. The OPEN executor selects and
loads this module if the OPEN parameter
list specifies:

- Input

and the DCB specifies:

- GET
- Simple buffering
- Move operating mode

Fixed-length (unblocked, blocked, or
blocked standard) or undefined-length
record format

- CNTRL (card reader).

The module consists of a GET routine and a
RELSE routine.

16

The GET routine operates as follows:

• It receives control when a GET macro­
instruction is encountered in a
processing program.

• If an EOB condition exists, it resets
the DCBRECAD and DCBEOBAD fields for

the new buffer, and then tests for
blocked records.

• If no EOB condition exists, it tests
immediately for blocked records.

• For blocked records, it updates the
DCBRECAD field, moves the present
record to the work area, and returns
control to the processing program.

• For unblocked records,
DCBRECAD and DCBEOBAD
they are equal, moves
record to the work area,
control to the processing

it sets the
fields so that

the present
and returns

program.

The RELSE routine sets the value of the
DCBEOBAD field equal to that of the
DCBRECAD field to establish an EOB condi­
tion. Control then returns to the process­
ing program.

GET Module IGG019AH (CNTRL - Card Reader)

Module IGG019AH moves the next variable­
length record to the work area without
scheduling the buffer for refilling. To
refill the buffer, the processing program
issues a CNTRL macro-instruction. The OPEN
executor selects and loads this module if
the OPEN parameter list specifies:

- Input

and the DCB specifies:

- GET
- Simple buffering
- Move operating mode
- Variable-length (unblocked or blocked)

record format
- CNTRL (card reader).

The module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

• It receives control when a GET macro­
instruction is encountered in a
processing program.

exists, it resets
DCBEOBAD fields for

and then tests for

• If an EOB condition
the DCBRECAD and
the new buffer,
clocked records.

• If no EOB condition exists, it tests
immediately for blocked records.

• For blocked records, it updates the
DCBRECAD field, moves the present
record to the work area, and returns
control to the processing program.

• For unblocked records, it sets the
DCBRECAD and DCBEOBAD fields so that

. they are equal, moves the present
record to the work area, and returns
control to the processing progranl.

The RELSE routine sets the value of the
DCBEOBAD field equal to that of the
DCBRECAD field to establish an EOB condi­
tion. control then returns to the process­
ing program.

GET Module IGG019AM (RDBACK)

Module IGG019AM presents the processing
program with the address of the next record
when the data set is opened for backward
reading. The OPEN executor selects and
loads this module if the OPEN parameter
list specifies:

- RDBACK

and the DCB specifies:

- GET
- Simple buffering
- Locate operating mode
- Fixed-length (unblocked, blocked, or

blocked standard) or undefined-length
record format.

The module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

• It receives control when a GET macro­
instruction is encountered in a
processing program.

• It tests for an EOB condition.

• If no EOB condition exists, it deter­
mines the address of the next record by
subtracting the DCBLRECL value from the
DCBRECAD value. The routine presents
the result to the processing program,
and returns control to the processing
program.

• If an EOB condition exists, it issues a
BALR instruction to pass the present
buffer to the end-of-block r"outine.
The GET routine issues another BALR
instruction to obtain a new buffer
through the Input Synchronizing and
Error Processing routine (module
IGG019AQ). The GET routine then pre­
sents the address of the last record of
the new buffer to the processing pro­
gram, and returns control to the proc­
essing program.

The RELSE routine causes an EOB condi-
tion by setting the DCBRECAD and DCBEOBAD
fields so that they are equal; it then
returns control to the processing program.

Figure 3 illustrates the ordering of
records using this module. When reading
backwards under QSAM, each block is read
from the tape from the end of the block to
the beginning, each buffer is filled from
the end of the buffer to the beginning, and
the records are presented to the processing
program in order of the record in the last
segment of the buffer first, and the record
in the first one last. In this manner of
reading, buffering, and presenting, each
record follows in backward sequence, from
the record presented last out of one buffer
to the record presented first out of the
next buffer.

GET Module IGG019AN (RDBACK)

Module IGG019AN moves the next record to
the work area when the data set is opened
for tackward reading. The OPEN executor
selects and loads this module if the OPEN
parameter list specifies:

- RDBACK

and the DeB specifies:

- GET
- Simple buffering
- Move operating mode
- Fixed-length (unblocked, blocked, or

blocked standard) or undefined-length
record format.

The module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

• It receives control when a GET macro­
instruction is encountered in a
processing program.

• It tests for an EOB condition.

• If nc EOB condition exists, it moves
the next record to the work area, and
updates the DCBRECAD field by reducing
it by the value of the DCBLRECL field.

• If an EOB condition exists, it issues a
BALR instruction to obtain a new buffer
through the Input Synchronizing and
Error Processing routine (module
IGG019AQ). The GET routine then moves
the last record of the new buffer to
the work area.

• It tests for a new EOB condition.

Queued Sequential Access Ivlethod Routines 17

i I
i

• If no new/ EOB condition exists, it
returns control to the processing pro­
gram •

• If a new EOB condition exists, it
issues a BALR instruction to pass the
present buffer to the end-of-block rou­
tine, and then returns control to the
processing program.

The RELSE routine issues a BALR instruc­
tion to pass the present buffer to the
end-of-block routine, and then returns con­
trol to the processing program.

Figure 3, described for GET module
IGG019AM, also illustrates the ordering of
records using this module.

,.Direction of Tape
When Reading Backward

Last GET for this block
addresses this segment

First GET for this block
addresses this segment

Last GET for th is block
addresses this segment

First GET for this block
addresses this segment

Last GET for this block
addresses this segment

First GET for this block
addresses this segment

5

6

2

3

Direction of Tape ...
When Writing

First channel progrom
fills this buffer

_ beginning here

Next channe I progrom
fills this buffer

_ beginning here

Next channel program
fills this buffer

_ beginning here

Figure 3. Order of Records Using GET Rou­
tines for Data sets opened for
RDBACK (IGG019AM,IGG019A~)

GET Module IGG019AT (Paper Tape Character
Conversion)

Module IGG019AT converts paper tape
characters into EBCDIC characters and moves
them to the work area. The OPEN executor
selects and loads this module (and one of
the code conversion modules listed in
Appendix D) if the OPEN parameter list
specifies:

18

- Input

and the DCB specifies:

- GET
- simple buffering
- Move opera.ting mode
- Paper tape character conversion.

The module consists of a GET routine and a
paper Tape Character Conversion Synchroniz­
ing and Error Processing routine.

The GET routine operates as follows:

• It receives control when a GET macro­
instructiun is encountered in a
processing program.

• It conve~ts the next character and
moves it to the work area.

• It continues converting and moving
until one of the following conditions
is met, with the stated effect:

The number of characters specified
in the DCBBLKSI field of the DCB
have been moved: The routine
returns control to the processing
program.

An EOB condition is encountered:
The routine passes control to the
end-of-block routine to refill the
buffer, and then enters the Paper
Tape Character Conversion Synchron­
izing and Error Processing routine
to obtain a new buffer.

An end-of-record character is
encountered . (undefined-length
records only): The routine returns
control to the processing program.

The tape is exhausted: The routine
returns control to the processing
program.

A paper tape reader-detected error
character is encountered: The rou­
tine moves the character to the
work area without conversion and
enters the Paper Tape Character
Conversion Synchronizing and Error
Processing routine.

• If one of the characters in the buffer
is an undefined character, the module
converts it to the hexadecimal charac­
ter FF, moves it to the work area, and
continues conversion. When one of the
afore-mentioned conditions is met, con­
trol passes to the Paper Tape Character
Conversion Synchronizing and Error
Processing routine.

The Paper Tape Character Conversion Syn­
chronizing and Error Processing routine
operates as follows:

• For
the
the
and

an EOB condition, the routine finds
next buffer, and returns control to

GET routine to resume converting
moving.

• For a reader-detected error character
and for an undefined character, the
routine passes control to the process­
ing program's SYNAD routine. When con­
trol returns from the SYNAD routine, or
if there is no SYNAD routine present,
one of the error options is implement­
ed.

• For the ACCEPT error option, the rou­
tine returns control to the processing
program.

• For the SKIP error option., the routine
fills the work area again.

• For the TERMINATE error option, or if
no error option is specified, the rou­
tine issues the ABEND macro­
instruction.

Appendix D lists the modules composed of
the tables used for code conversion.

EXCHANGE BUFFERING GET ROUTINES

Exchange buffering GET routines use
buffers whose addresses and lengths are
stated in the channel program. For
unblocked records, the buffer address and
length are in one channel command word
(CCW) • For blocked records, the addresses'
of the buffer segments. are in successive
ccw~ (thoughr the segments themselves are
~ necessarily located next to one
another). In each pass through an exchange
buffering GET routine., it determines:

• The address of the next record.

• Whether an input buffer is empty and
ready to be scheduled for refilling.

• Whether a new full input buffer is
needed.

, ·If the records are unblocked, a
routine finds the address ,of the
record in the Read CCW for the next
buffer.

GET
next

input

If the records are blocked, a GETrou­
tine finds the address of the neJct record
in the next ReadCCW for the same buffer.

\ \
\

\

\ ,
I

The next CCW is found by addi'ng 8 to the
address of the previously current CCW (the
value stated in the DCBCCCW field in the
DCB). '

If an input buffer is empty and ready to
be scheduled for refilling, a GET routine
passes control to an end-of-block routine.
The end-of-block routine passes control to
the I/O supervisor to have it schedule the
buffer. After scheduling, the I/O supervi­
sor returns control to the end-of-block
routine, and it returns control to the GET
routine.

If a new full buffer is needed, a GET
routine passes control to a synchronizing
and error processing routine. The syn­
chronizing routine enters the address of
the inpUt/output block (lOB) that points to
that channel program into the DCBIOBA field
in the DCB.

If an end~of-block condition exists then
either an input buffer is empty and ready
to be scheduled for refilling, or anew
buffer is needed. An end-of-block condi­
tion exists for unblocked records during
each pass through a routine; for blocked
records it exists if the values in the
fields DCBCC~w (the address of the current
CCW) and DCBLCCW (the address of the last
CCW) are equal.

In the locate operating mode, the empty
buffer is scheduled when the routine is
entered if the last record was presented in
the preceding entry; accordingly a test for
an end-of-block condition is made on entry
to the routine to determine both whether a
buffer is empty and also whether a new
buffer is needed.

In the substitute operating mode, the
buffer can be scheduled for refilling as
soon as a work area has been substituted
for the last buffer segment; accordingly,
an end-of-blocktest is made before leaving
the routine to determine whether the buffer
is empty, and another end-of-block test is
made on entry to the routine to determine
whether a new buffer is needed.

A RELSE routine sets an end-of-block
condition. This end-of-block condition is
processed so that, when the GET routine is
entered next, it operates as usual.

The OPEN executor primes (that is, sche­
dules for filling) the buffers if QSAM is
used with a DCB opened for Input. (For the
locate mode, all buffers except one are
primed; for the substitute mode all buffers
are primed.) The OPEN executor also sets
an end-of-block condition; the first time
that a GET routine gains control, it proc­
esses this condition in the way it normally
does.

Queued Sequential Access Method Routines 19

There are four exchange buffering GET
routines. Table 3 lists the routines avai­
lable 'and the conditions that cause a
particular routine to be used. The OPEN
executor selects one of the routines, loads
it., and places its address into the DCBGET
field. The table shows, for example, that
if Input, GET, exchange buffering, locate
mode, and fixed-length blocked record for­
mat are specified module IGG019EA is
selected for use .•

Table 3. Module Selector - Exchange Buf-
fering GET Modules

r--------------------T--------------------,
I I I
I Access Conditions I Selections I
I I I
~--------------------+--T--T--T--T--T--T--1
I Input, GET., Exchange I X I X I X I X I X I X I X I
~--------------------+--+--+--+--+--+--+--1
I Locate IX IX IX IX I I I I
~--------------------+--+--+--+--+--+--+--1
I Substitute I I I I IX IX IX I
~--------------------+--+--+--+--+--+--+--1
I Fixed-length IX IX I I IX I IX I
~--------------------+--+--+--+--+--+--+--1
I Variable-length I I IX I I I I I
~--------------------+--+--+--+--+--+--+--1
I Undefined-length I I I IX I IX I I
~--------------------+--+--+--+--+--+--+--1
I Unblocked I IX IX IX IX IX I I
~--------------------+--+--+--+--+--+--+--1
I Blocked I X I I I I I I X I
~--------------------+--+--~--~--+--~--+--1
I I I I I I
I GET Modules I I I I I
I I I I I I
~--------------------+--+--T--T--+--T--+--~
I IGG019EA I X I I I I I I I
~--------------------+--+--+--+--+--+--+--~
I IGG019EB I IX IX IX I I I I
~--------------------+--+--+--+--+--+--+--~
I IGG019EC I I I I IX IX I I
~--------------------+--+--+--+--+--+--+--~
I IGG019ED I I I I I I IX I L ____________________ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ J

GET Module IGG019EA

Module IGG019EA uses the locate mode to
present the processing program with the
address of the next fixed-length blocked
record,. The OPEN executor selects and
loads this module if the OPEN parameter
list specifies:

- Input

and the DCB specifies:

- GET
- Exchange buffering
- Locate operating mode
- Fixed-length blocked record format.

20

The module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

• It receives control when a GET
instruction is encountered
processing program.

macro­
in a

• It tests for an end-of-block condition
to determine whether a buffer is empty
and ready for refilling and also wheth­
er a new full buffer is needed. (When
the OPEN executor primes the buffers,
it schedules all buffers except one and
sets an end-of-block condition.)

• If no end-of-block condition exists, it
presents the address of the next record
(found in the next CCW), and returns
control, to the processing program.

• If an end-of-block condition exists,
the routine passes control to the end­
of-block routine to cause scheduling of
the buffer for refilling. On return of
control, the GET routine passes control
to the Input Synchronizing and Error
Processing routine (module IGG019AQ) to
obtain a new full buffer. On return of
control, the GET routine then presents
the address of the first record, and
returns control, to the processing
program.

The RELSE routine causes an end-of-block
condition by setting the DCBCCCW and
DCBLCCW fields equal and returns control to
the processing program.

Note: If an input DCB using this module is
paired with an output DCB using module
IGG019EF (Output, PUT, Exchange), a PUTX
macro-instruction addressed to the output
DCB causes an exchange of the addresses of
the current buffer segments of each DCB.
These are found in the CCws pointed to by
the input and output DCBs.

GET Module IGG019EB

Module IGG019EB uses the locate mode to
present the processing program with the
address of the next unblocked record. The
OPEN executor selects and loads this module
if the OPEN parameter list specifies:

- Input

and the DCB specifies:

- GET
- Exchange buffering
- Locate operating mode
- Unblocked record format (fixed-,

variable-, or undefined-length).

The module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

• It receives control when a GET
instruction is encountered
processing program.

macro­
in a

• It passes control to the end-of-block
routine to cause scheduling of the
previous buffer for refilling.

• It passes control to the Input Syn­
chronizing and Error Processing routine
(module IGG019AQ) to obtain the next
full buffer. (When the OPEN executor
primes the buffers, it schedules all
buffers except one .•)

• It presents the address of the record,
and returns control, to the processing
program. For variable- or undefined­
length records, the routine also
presents the record length.

The RELSE routine returns control with­
out performing any processing.

Note: If an input DCB using this module is
paired with an output DCB using module
IGG019EE (Output., PUT, Exchange) , a PUTX
macro-instruction addressed to the output
DCB causes an exchange of the addresses of
the current buffer segments of each DCB.
These addresses are found in the CCWs
pointed to by the DCBCCCW fields in the
input and output DCBs.

GET Module IGG019EC

Module IGG019EC uses the substitute mode
to present the processing program with the
address of the next unblocked record. The
OPEN executor selects and loads this module
if the OPEN parameter list specifies:

- Input

and the DCB specifies:

- GET
- Exchange buffering
- substitute operating mode
- Unblocked record format (fixed-, or

undefined-length).

The module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

• It receives control when a GET
instruction is encountered
processing program.

macro­
in a

\

\ ,
• It passes control to the synchronizing

routine to obtain the next full buffer.

• It exchanges the address of the work
area and the address of the buffer.

• It passes control to the end-of-block
routine to cause the work area offered
by the processing program to be sche­
duled for filling.

• It presents the address of the new
record, and returns control, to the
processing program. (When the OP~N
executor primes the buffers, it sche­
dules all buffers.)

• When undefined-length records are spec­
ified, the routine also presents the
record length.

The RELSE routine returns control with­
out performing any processing.

GET Module IGG019ED

Module IGG019ED uses the substitute mode
to present the processing program with the
address of the next fixed-length blocked
record. The OPEN executor selects and
loads this module if the OPEN parameter
list specifies:

- Input

and the DCB specifies:

- GET
- Exchange buffering
- Substitute operating mode
- Fixed-length blocked record format.

The module consists of a GET routine and a
RELSE routine.

The GET routine operates as follows:

• It receives control when a GET macro­
instruction is encountered in a
processing program.

• It tests for an end-of-block condition
to determine if a new full buffer is
needed. (When the OPEN executor primes
the buffers, it schedules all buffers
and sets an end-of-block condition.)

• If no end-of-block condition exists, it
exchanges the address of the work area
for the address stated in the current
CCW. The current CCW is found by
adding 8 to the value of the field
DCBCCCW.

Queued Sequential Access Method Routines 21

• If an initial end-of-block condition
exists, it passes control to the Input
Synchronizing and Error Processing rou~
tine (module IGG019AQ) to obtain the
next full buffer. It then exchanges
the address of the work area for the
address stated in the first Read CCW of
the channel program.

• It tests for a new end-of-block condi­
tion to determine if a buffer is empty
and ready for refilling.

• If no new end-of-block condition
exists, it presents the address of the
next record, and returns control, to
the processing program.

• If a new end-of-block condition exists,
it passes control to the end-of-block
routine to cause scheduling of the
empty buffer for refilling. It then
presents the address of the next
record, and returns controL, to the
processing program.

The RELSE routine sets an end-of-block
condition and passes control to the end-of­
block routine to cause scheduling of the
buffer for refilling. It then returns
control to the processing program.

UPDATE MODE GET ROUTINE

The Update mode GET routine differs from
other GET routines in that it shares its
buffers (as well as the DCB and the lOBs)
with the Update mode PUT routine. The QSAM
Update mode of access uses simple buffering
(in which the buffer is defined by the
start and end address of the buffer).

If a PUTX macro-instruction addressed a
record in a block, the Update mode GET
routine determines, when the end of the
block is reached, that that buffer is to be
emptied (that is, that the block is to be
updated) before being filled with a new
block of data. If no PUTX macro­
instruction addressed a record in a block,
the Update mode GET routine determines,
when the end of the block is reached, that
the buffer is to be refilled only, that is,
that t.he last block need not be updated and
the buffer can be filled with a new' block
of data. These characteristics of the
buffer, simple buffering, sharing the
buffer with the PUT routine, and emptying
the buffer before refilling, influence the
manner in which the Update mode GET routine
determines: .

• The address of the next record.

• Whether the buffer can be scheduled.

22

• Whether a new buffer is needed.

• Whether to schedule the buffer for
Empty-and-Refill or for Refill-only.

The first three of these det~rminations
are made at every pass through the routine.
The last determination is made after the
routine establishes that the buffer can be
scheduled.

If the records are unblocked, the
address of the next record is the address
of the next buffer.

If
of the
record
to the

the records are blocked, the address
next record is found by adding the
length (found in the DCBLRECL field)
value in the DCBRECAD field.

Whether the buffer can be scheduled and
whether a new buffer is needed is deter­
mined by whether an end-of-block condition
exists. In the Update mode, one determina­
tion that an end-of-block condition exists
causes both the last buffer to be scheduled
and a new buffer to be sought. An end-of­
block condition exists for unblocked
records at every pass through the routine;
for blocked records it exists if the values
in the DCBRECAD (the address of the current
record) field and the DCBEOBAD (the address
of the end of the block) field are equal.
To cause scheduling of the buffer, the GET
routine passes control to the end-of-block
routine. To obtain a new buffer, the GET
routine passes control to the Update Syn­
chronizing and Error Processing routine
(module IGG019AF).

To cause scheduling of the buffer for
either Empty-and-Refill or Refill-only, the
Update mode GET routine sets the lOB to
point to the beginning of either of the two
parts of QSAM Update channel program.
These. two parts are the Empty part, which
empties (writes out of) the buffer, and the
Refill part, which refills (reads into)
that same buffer. (See Figure 4.) If
execution of a QSAM Update channel program
begins with the Empty part, it is always
followed by execution of the Refill part.
Each part of the QSAM Update channel pro­
gram addresses a different location in
auxiliary storage: The Empty part addresses
the location from which the block to be
updated was read; the Refill part addresses
the location from which the last block was
read. Addressing the last known block and
skipping over its data field leads to the
beginning of the next block, irrespective
of its address. (This method of addressing
a Search command to the block read pre­
viously .to address a Read (Count, Key, and
Data) command to the next block is known as
the search-previous technique. It makes
the count field of the present block being
read the Seek address of the Refill portion

of the next channel program.) When a
buffer is to be emptied (back to the
original location of the block in auxiliary
storage), the Update mode GET routine
obtains the block address from the Seek
address of the Refill part of the next
channel program. It copies the address so
that it becomes the Seek address for the
Empty part of the present channel program.
(See Figure 5.) (For a description of the
processing for a Refill-only QSAM Update
channel program, refer to the description
of the Update 510 appendage.)

Whether to schedule the buffer for
Empty-and-Refill or for Refill-only depends
on whether the block is to be updated. If
the block is to be updated, the PUTX
routine will have set the Update flag on in
the lOB; else the flag is off. To schedule
the buffer for Empty-and-Refill, the GET
routine sets the lOB to point to the Empty
portion of the channel program and obtains
the Seek address of the block to be updated
from the Refill portion of the next channel
program. To schedule the buffer for
Refill-only, the GET routine sets the lOB
to point to the Refill portion of the
channel program. The end-of-block condi­
tion which triggers this processing also
causes control to pass to the end-of-block
routine (module IGG019CC) for issuing the
EXCP macro-instruction and to the Update
Synchronizing and Error Processing routine
(module IGG019AF) for obtaining the next
buffer.

The PUTX routine sets the Update flag in
the lOB and returns control to the process­
ing program.

Channel Program

C" MBBCCHHR

A SEARCH

TIC

~ WRITE (Data)

00-- SEEK
B

SEARCH

TIC

READ (Count)

..- --1 READ (Dala)

--oi MBBCCHHR

Buffer

~

lOB

CPAD

Legend:

\

}

The Empty portion of an
Update Channel Program

1 The Refill portion of an J "_'~"M''''_

A - Address of channel program (CPAD) used to empty and refill the buffer.
(A PUTX macro-instruction was addressed to a record in this buffer.)

B ;.. Address' of channel program (CPAD) used only to refill the buffer.
(No PUTX macro-instruction was addressed to any record in this buffer.)

Figure 4. The Two Parts of an Update Chan­
nel Program (Empty, Refill)

Channel Program for the Buffer
Scheduled to be Emptied and Refilled

Channel Program for the Buffer
T a be Processed Next

Channel Program for the Suffer
Just Emptied and Refilled

c: 1-1
B

c: 1-3
0

c: ...P---C ~---I 1-2 C

SEARCH SEARCH SEARCH
I

WRITE {Data} f-- WRITE {Data} 1--, I WRITE (Data) --I
I

I
I

~
I

I r- SEARCH .-- SEARCH

I
r- SEARCH

I

A A A ; I I I READ (Count) ~- ---: READ (Count) READ (Count)

~]1 l!~
I

I

C? L_=
(Data) il L __ ~ (Data) L_~ (Data)

1+1 1-1 I

~
Data of Block I-l ~ Data of Block I i Data of Block 1+1

Buffer Contents Buffer Contents Buffer Contents

Legend:'
A -'The Refill portion reads the count field of the block being read into the search argument, of the next Refill portion.

B - To empty the buffer, the search argument of the next Refill portion is used as the ,search a'gument of this Empty portion.

C - To empty the buffer, the search argument of the next Refill portion was copied before the last time this buffer was scheduled.

o - To emPty the buffer, the search argument of the hext Refill portion will be copied before the next time this buffer is scheduled.

~--- Present entries
---. -- Future entries

1

Figure 5. Relation of Seek Addresses in Three Successive QSAM Update Channel Programs

Queued Sequential Access Method Routines 23

The RELSE routine sets an end-of-block
condition and returns control to the proc­
essing program.

The OPEN executor primes (that is, sche­
dules for filling) all the buffers except
one if QSAM is used with a DCB opened for
Update. The OPEN executor also sets an
end-of-block condition; the first time that
the Update mode GET routine gains control,
it processes this condition in its normal
manner.

There is one Update mode GET routine .•
If the access conditions shown in Table 4
are specified for a DCB., the OPEN executor
selects this routine, loads it, and places
its address into the DCBGET field.

Table 4. Module Selector - Update Mode GET
Module

r------------------------------T----------,
I I I
I Access Conditions I Selections I
I I I
~------------------------------+--T-T-T-T-~
I Update, GET IX IXIXIXIXI
~------------------------------+--+-+-+-+-~
IFixed-length record format IX IXI I I I
~------------------------------+--+-+-+-+-~
IVariable-length record format I I IXIXI I
~------------------------------+--+-+-+-+-~
IUndefined-length record format I I I I IXI
~------------------------------+--+-+-+-+-~
IBlocked record format IX I IX I I I
~-----~------------------------+--+-+-+-+-~
IUnblocked record format I IXI IXIXI
~------------------------------+--~-~-~-~-~
I I I
I GET Module I I
I I I
~------------------------------+--T-T-T-T-~
I IGG019AE1 IX IXIXIXIXI
~------------------------------~--~-~-~-~-~
11This module also carries the Update model
I PUTX routine I
L ______________ ---------------____________ J

GET Module IGG019AE

Module IGG019AE presents the processing
program with the next input record, flags
the lOB if the block is to be updated (that
is~ emptied and refilled), and sets the lOB
to address a QSAM Update channel program
for either Empty-and-Refill or Refill-only.
The OPEN executor selects and loads this
module if the OPEN parameter list speci­
fies:

- Update

and the DCB specifies:

- GET.

24

The module consists of a GET routine, a
RELSE routine, and a PUTX routine.

The GET routine operates as follows:

• It receives control when a GET macro­
instruction is encountered in a
processing program.

• It tests for an end-of-block condition
to determine whether the buffer can be
scheduled and whether a new buffer is
needed. (When the OPEN executor primes
the buffers, it schedules all buffers
except one and sets an end-of-block
condition.)

• If no end-of-block condition exists, it
presents the address of the next
record, and returns control, to the
processing program. For variable­
length and undefined-length records, it
also determines the length of the
record and places it in the DCBLRECL
field in the DCB.

• If an end-of-block condition exists, it
tests whether the buffer is to be
emptied and refilled or is to be
refilled only.

• If it is to be refilled only, it sets
the lOB to point to the start of the
Read portion of the Update channel
program and passes control to the end­
of-block routine to cause scheduling of
the buffer.

• If it is to be emptied and refilled, it
sets the lOB to point to the start of
the Update channel program. The
routine obtains the auxiliary storage
address to be used by the Write portion
of the channel program by copying the
address used by the Read portion of the
channel program associated with the
next lOB. The routine then passes
control to the end-of-block routine to
cause scheduling of the buffer.

• On return of control from the end-of­
block routine, the GET routine passes
control to the Update Synchronizing and
Error Processing routine (module
IGG019AF) to obtain a new full buffer.

• On return of control from the
synchronizing routine, the GET routine
updates the DCBLRECL field and presents
the address of the next record, and
returns control, to the processing pro­
gram.

The RELSE routine operates as follows:

• It receives control when a RELSE macro­
instruction is encountered in the
proceSSing program.

• It sets an end-of-block condition.

• It returns control to the processing
program.

The PUTX routine operates as follows:

• It receives control when a PUTX macro­
instruction is encountered in the
processing program.

• It sets the Update flag in the. lOB to
show that the buffer is to be emptied
before being refilled.

• It returns control to the processing
program.

PUT ROUTINES

There are seven different PUT routines.
A particular PUT routine is used with a
specific data set on the basis of the
access condition options specified by the
processing program for access to that data
set.

A PUT routine gains CPU control when a
PUT., PUTX, or TRUNC macro-instruction is
encountered. The PUT routine returns con­
trol to the processing program., unless
either an output buffer is ready to be
scheduled for emptying or a new empty
buffer is needed. If a buffer is ready for
emptying, the PUT routine passes control to
an end-of-block routine. If a new empty
output buffer is needed, the PUT routine
passes control to a synchronizing and error
processing routine. A PUT routine accepts
a record from the processing program to
assemble a block of data for an output
channel program. A PUTX routine accepts an
output record from an input data set; a
RELSE routine causes the present buffer to
be considered ready for scheduling.

Every PUT routine determines in each
pass through the routine:

• The address of the next buffer segment.

• Whether, an output buffer is to be
scheduled for emptying .•

• Whether a new empty output buffer is
needed.

In each entry into a PUT routine, it
accepts a record for output.

PUT routines differ mainly in the buf­
fering techniques they support. PUT rou­
tines for simple buffering deal with buf­
fers that are permanently associated with
one DCB. PUT routines for exchange buffer-

ing deal with buffers that are exchanged
between the output DCB, the input DCB, and
the processing program. The PUTX routine
for the Update mode of OPEN uses simple
buffering; it differs from other PUT rou­
tines in that it shares the buffer used by
the Update mode GET routine. The manner in
which a PUT routine performs its processing
depends on the buffering mode.

Sireple buffering PUT routines determine
the address of the next buffer segment by
referring to the DCB. To determine whether
a buffer is ready for scheduling and wheth­
er a new buffer is needed, these routines
compare the beginning and ending address of
the buffer (or the record and the remaining
space in the buffer). To accept a record,
a PUT routine using simple buffering either
moves the record into the buffer or
requires the processing program to do so.

Exchange buffering PUT routines deter­
mine the address of the next buffer segment
by referring to the channel program. To
determine whether a buffer is to be sche­
duled and whether a new buffer is needed,
these routines compare the beginning and
ending address of the channel program. To
accept a record, an exchange buffering PUT
routine exchanges its buffer segment for a
work area or for a buffer segment of an
input DCB, or may move the record into the
buffer segment.

The Update mode PUTX routine flags the
buffer from which the last record was
presented for updating.

The PUT routine descriptions are accord­
ingly grouped as:

• Simple Buffering PUT Routines.

• Exchange Buffering PUT Routines.

• Update Mode PUTX Routine.

SIMPLE BUFFERING PUT ROUTINES

Simple buffering PUT routines use buf­
fers whose beginning and ending addresses
are stated ln the DCB. The beginning
address is in the field DCBRECAD (address
of the next record); the ending address is
in the field DCBEOBAD (address of the end
of the buffer). In each pass through a
routine, it determines:

• The address of the next buffer segment.

• Whether an output buffer is to be
scheduled for emptying.

• Whether a new empty buffer is needed.

Queued Sequential Access Method Routines 25

These three determinations are made at
every pass through a PUT routine.

If the records are unblocked, the
address of the next available buffer seg­
ment is always that of the next buffer.

If the records are blocked, a PUT rou­
tine determines the address of the next
available buffer segment by adding the
length of the last record to the address of
the last buffer segment. The address of
the last buffer segment is in the DCBRECAD
field of the data control block (DCB). If
the records are fixed-length blocked
records, the length of each record is in
the DCBLRECL field. If the records are
variable-length blocked records, the length
of each record is in the length field of
the record itself.

A PUT routine determines that a buffer
is ready for emptying, and that a new empty
buffer is needed, by establishing that an
end-of-block (EOB) condition exists.

If an output buffer is to be scheduled
for emptying, a PUT routine passes control
to an end-of-block routine, to cause the
present buffer to be scheduled for output.

If a new empty buffer is needed, a PUT
routine obtains a new buffer by passing
control to the Output Synchronizing and
Error Processing routine (module IGG019AR).
For a buffer that was emptied without
error, the synchronizing routine updates
the DCBIOBA field (thus pointing to the new
buffer) and returns control to the PUT
routine. The PUT routine updates the
DCBRECAD field by inserting the starting
address of the buffer from the channel
program associated with the new lOB.. To
update the DCBEOBAD field, the routine adds
the length of the block stated in the
DCBBLKSIZE field to the buffer starting
address. These two fields., DCBRECAD and
DCBEOBAD, define the available buffer.

An EOB condition is established by dif­
ferent criteria for different record for­
mats and operating modes.

For unblocked records, an EOB condition
exists after each record is placed in the
buffer. If using the move operating mode,
a PUT routine establishes that an EOB
condition exists for the present buffer
after the routine has moved the record into
the buffer. If using the locate operating
mode, a PUT routine establishes that an EOB
condition exists for the present buffer on

26

the next entry to the routine, after the
processing program has moved the record
into the tuffer.

For blocked records, the time that an
EOB condition occurs depends on the record
format.

For fixed-length blocked records, an EOB
condition occurs when the DCBRECAD field
equals the DCBEOBAD field. (The DCBRECAD
field shows the address of the segment for
the next record. The DCBEOBAD field shows
a value equal to one more than the address
of the end of the buffer.) If using the
move operating mode, the PUT routine moves
the last fixed-length record into the buf­
fer, updates the DCBRECAD field, and esta­
blishes that an EOB condition exists for
the present buffer. If using the locate
operating mode, the processing program
moves the last fixed-length record into the
buffer. On the next entry to the PUT
routine, the routine updates the DCBRECAD
field, and establishes that an EOB condi­
tion exists for the present buffer.

For variable-length blocked records, an
EOB condition occurs when the next record
exceeds the buffer balance, that is, the
record length is greater than the space
remaining in the buffer. If using the move
operating mode, the PUT routine establishes
that an EOB condition exists when the
record length stated in the first word of
the record exceeds the buffer balance. If
using the locate operating mode, the PUT
routine establishes that an EOB condition
exists when the value stated in the
DCBLRECL field in the DCB exceeds the
buffer balance.

A TRUNC routine sets an end-of-block
condition to empty the buffer. This end­
of-block condition is processed so that the
next entry to the PUT routine permits it to
operate as usual. Successive entries to a
TRUNC routine without intervening entries
to a PUT routine cause the TRUNC routine to
return control without performing any
processing.

To permit a PUT routine to operate
normally when it is entered for the first
time, the OPEN executor initializes the DCB
fields DCBRECAD and DCBEOBAD. For an out­
put data set using QSAM and simple buffer­
ing, the values entered in these fields
depend on the operating mode. For locate
mode routines, it sets them to show the
beginning and end of the first buffer; for
move mode routines it sets an end-of-block
condition.

There are four simple buffering PUT
routines. (Modules for the move operating
mode include PUTX routines.) Table 5 lists
the routines available and the conditions

that cause a particular routine to be used.
The OPEN executor selects one of the rou­
tines, loads it, and places its address
into the DCBPUT field. The table shows,
for example, that when the DCB specifies
the locate mode and fixed-length records,
routine IGG019AI is selected and loaded.

Table 5. Module Selector - Simple Buffer-
ing PUT Modules

r----------------------------T-· ---------,
I I I
I Access Conditions ISelections I
I I I
~----------------------------+-T-T-T-T-T-i
I Output, PUT/PUTX, Simple IXIXIXIXIXIXI
I buffering I I I I. I I I
t--~--------------------------+-+-+-+-+-+-i
ILocate operating mode IXIXIXI I I I
t------~----------------------+-+-+-t~+-+-i
IMove operating mode I I I IXIXIXI
~-----------------------------+-+-+-+-+-+-i
IFixed-length record format IXI I IXI I I
t-----------------------------f-f-f-+-+-f-i
IUndefined-length record I IXI I IXI I
I format I I I I I I I
t-----------------------------+-+-f-+-f-f-i
I Var iable-length record format t t IX I I I X I
t-----------------------------+-~-+-+-~-+-i
I I I I I I
I PUT. Modules I I I I I
I I I I I I
~---------------------------+-T-f-f-T-f-i
I IGG019AI IXIXI I I I I
t-----------------------------f-f-f-+-f-+-~
I IGG019AJ I I IXI I I I
t-------:--------------...;....;.-----f-+-+-+-f-+-i
I IGG019AK I I I IXIXI I
t------------------~---------+-+-+-f-+-+-i
I IGG019AL I I I I I IXI L ____________________________ ~~_~_~_~~_J

PUT Module I.GG019AI

Module IGG019AI presents the processing
program with the address of the next avail­
able buffer segment for a fixed-length or
undefined-length record. The OPEN executor
selects and loads this module if the OPEN
parameter list specifies:

- Output

and the DCB specifies:

- PUT
- Simple buffering
- Locate operating mode
-Fixed-length (unblocked, blocked, or

blocked standard) or undefined-length
record format.

The PUT routine operates as follows:

• It receives control when a PUT macro­
instruction is encountered in a
processing program.

• It determines the address of the next
buffer segment using the value in the
DCBLRECL field.

• It tests for an EOB condition to deter­
mine whether a buffer is full and ready
for emptying and also whether a new
empty buffer is needed.

• If no EOB condition exists, it presents
the address of the next buffer segment
to the processing program, and returns
control to the processing program.

• If an EOB condition exists, it issues a
BALR instruction to pass the present
buffer to the end-of-block routine.
The PUT routine issues another BALR
instruction to obtain a new buffer
through the Output Synchronizing and
Error Processing routine (module
IGG019AR), and determines the address
of the first segment of the new buffer.
The PUT routine then presents this
address to the processing program and
returns control to the processing pro­
gram.

The
tion by
fields
returns

TRUNC routine causes anEOB condi­
setting the DCBRECAD and DCBEOBAD
so that they are equal; it then
control to the processing program.

PUT Module IGG019AJ

Module IGG019AJ presents the processing
program with the address of the next avail­
able buffer segment for a variable-l.ength
record. The OPEN executor selects and
loads this module if the OPEN parameter
list specifies:

- Ou.tput

and the DCB specifies:

- PUT
- Simple buffering
- Locate operating
- Variatle-length

record format.

mode
(unblocked, blocked)

The module consists of a PUT· routine and a· The module consists of a PUT routine and a
TRUNC routine. TRUNC routine.

Queued Sequential Access Method Routines 27

The PUT routine operates as follows:

• It receives control when a PUT
instruction is encountered
processing program,.

macro­
in a

• It determines the address of the next
buffer segment using the length field
of the record moved by the processing
program into the buffer segment located
last.

• It tests for an EOB condition to deter­
mine whether a buffer is ready for
emptying and also whether a new empty
buffer is needed, using the value
placed into the DCBLRECL field by the
processing program.

• If no EOB condition exists, it tests
for blocked records.

• If blocked records are specified, it
presents the address of the next buffer
segment to the processing program, and
returns control to the processing pro­
gram.

• If an EOB condition exists or if
unblocked records are specified, it
issues a BALR instruction to pass the
present buffer to the end-of-block rou­
tine. The PUT routine issues another
BALR instruction to obtain a new buffer
through the Output Synchronizing and
Error Processing routine (module
IGG019AR), and determines the address
of the first segment of the new buffer.
The PUT routine then presents this
address to the processing program and
returns control to the processing pro­
gram.

The TRUNC routine causes an EOB condi­
tion by setting the DCBRECAD and DCBEOBAD
fields so that they are equal; it then
returns control to the processing program.

PUT Module IGG019AK

Module IGG019AK moves the present fixed­
length or undefined-length record into the
next available buffer segment. The OPEN
executor selects anq loads this module if
the OPEN parameter list specifies:

- Output

and the DCB specifies:

28

- PUT
- Simple buffering
- Move operating mode

Fixed-length (unblocked, blocked,
blocked standard) or undefined-length
record format.

The module consists of a PUT routine, a
PUTX routine, and a TRUNC routine.

The PUT routine operates as follows:

• It receives control when a PUT
instruction is encountered
processing program.

macro­
in a

• If an EOB condition exists, it issues a
BALR macro-instruction to obtain a new
buffer through the Output Synchronizing
and Error Processing routine (module
IGG019AR), and then moves the record
from the work area into the first
buffer segment.

• If no EOB condition exists, it moves
the record from the work area into the
next buffer segment.

• It tests for blocked records.

• If blocked records are specified, it
determines the address of the next
segment and tests for a new EOB condi­
tion.

• If unblocked records are specified or
if a new EOB condition exists, it
issues a BALR instruction to pass the
present buffer to the end-of-block rou­
tine, and then returns control to the
processing program.

• If no
returns
gram.

new EOB condition exits, it
control to the processing pro-

The PUTX routine operates as follows:

• It receives control when a PUTX
instruction is encountered
processing program.

macro­
in a

• It obtains the DCBRECAD value of the
input DCB, which points to the present
record in the input buffer.

• It enters the PUT
The PUT routine
DCBRECAD value in
area address.

routine at the start.
then uses the input
place of the work

The TRUNC routine operates as follows:

• It receives control when a TRUNC macro­
instruction is encountered in a
processing program.

• It simulates an EOB condition.

• It issues a BALR instruction to pass
the present buffer to the end-of-block
routine.

• On return of control from the end-of­
block routine it returns control to the
processing program.

PUT Module IGG019AL

Module IGG019AL moves the present
variable-length record into the next avail­
able buffer segment. .The OPEN executor
selects and loads this module if the OPEN
parameter list specifies:

- Output

and the DCB specifies:

- PUT
- Simple buffering
- Move operating mode
- Variable-length (unblocked or blocked)

record format.

The module consists of a PUT routine, a
PUTX routine, and a TRUNC routine.

The PUT routine operates as follows:

• It receives control when a PUT
instruction is encountered
processing program,.

macro­
in a

• It determines the address of the next
buffer segment and compares the length
of the next record with the remaining
buffer capacity.

• If the record fits into the buffer" it
moves the record., updates the length
field of the block" and tests for
blocked records.

• If blocked records are specified, it
returns control to the processing pro­
gram.

• If the record does not fit into the
buffer or if unblocked records are
specified, it issues a BALR instruction
to pass the present buffer to the
end-of-block routine. It issues anoth­
er BALR instruction to obtain a new
buffer through the output Synchronizing
and Error Processing routine (module
IGG019AR). The PUT routine then moves

the record from the work area to the
buffer, updates the block-length field,
and returns control to the processing
program.

The PUTX routine operates as follows:

• It receives control when a PUTX macro­
instruction is encountered in a
processing program.

• It obtains the DCBRECAD value of the
input DCB, which points to the present
record in the input buffer.

• It enters the PUT routine at the start.
The PUT routine then uses the input
DCBRECAD value in place of the work
area address.

The TRUNC routine operates as follows:

• It receives control when a TRUNC macro­
instruction is encountered in a
processing program.

• It issues a BALR instruction to pass
control of the present buffer to the
end-of-block routine.

• It issues another BALR instruction to
obtain a new buffer through the Output
Synchronizing and Error Processing rou­
tine (module IGG019AR).

• It determines the address of the first
segment of the new buffer, and then
returns control to the processing pro­
gram.

EXCHANGE BUFFERING PUT ROUTINES

Exchange buffering PUT routines use buf­
fers whose addresses and lengths are in the
channel program. For unblocked records, a
buffer address and length are in one chan­
nel command word (CCW). For blocked
records, addresses of buffer segments are
in successive CCWs (though the segments
themselves are not necessarily located next
to one another). Ineach.pass through an
exchange buffering GET routine, it deter­
mines:

• The address of the next buffer segment.

• Whether an output buffer is to be
scheduled for emptying.

• Whether a new empty buffer is needed.

These three determinations are made at
every pass through a PUT routine.

Queued sequential Access Method Routines 29

If the records are unblocked,
routine finds the address of the
buffer in the Write ecw for the
buffer.

a PUT
next
next

If the records are blocked" a PUT rou­
tine finds the address of the next buffer
segment in the next Write CCW. The next
CCW is found by adding 8 to the address of
the previous cew, the value in the DCB
field DCBcecw.

If an output buffer is to be scheduled
for emptying, a PUT routine passes control
to an end-of-block routine to cause sche­
duling of the buffer. An end-of-block
routine passes control to the I/O supervi­
sor to have it schedule the buffer,. After
scheduling, the I/O supervisor returns- con­
trol to the end-of-block routine, and it
returns control to the PUT routine,.

If a new empty buffer is needed" a PUT
routine passes control to the output syn­
chronizing and error processing routine.
If the channel program for the next buffer
has been executed without error, the syn­
chronizing routine enters the address of
the input/output block (lOB) that points to
that channel program into the DCBIOBA field
in the DCB.

An output buffer is to be scheduled for
emptying and a new buffer is needed if an
end-of-block condition exists. When using
exchange buffering with an output data set,
the buffer can be scheduled for emptying
when the address of the last record has
been placed in the last ecw or a record has
been moved into the last segment. Accord­
ingly" an end-of-block test is made before
leaving the routine. This test determines
whether the buffer is to be scheduled.
another test is made on entry to determine
whether a new buffer is needed. An end-of­
block condition exists for unblocked
records each time the routine is entered;
for blocked records it exists if the
address of the current CCW (in field
DeBCCCW) and the address of the last CCW
(in field DCBLCCW) are the same.

A TRONC routine sets an end-of-block
condition to empty the buffer. This end­
of-block condition is processed so that the
next entry to the PUT routine permits it to
operate as usual. Successive entries to a
TRUNC routine without intervening entries
to a PUT routine cause the TRUNe routine to
return control without performing any
processing.

The processing performed by the OPEN
executor for an output data set using QSAM
and exchange buffering includes setting an
end-of-block condition. On the first entry
to an exchange buffering PUT routine it
processes this condition as usual.

30

There are two exchange buffering PUT
routines. Table 6 lists each of these
routines and the conditions that cause
either routine to be used. The OPEN execu­
tor selects one of the routines, loads it,
and places its address into the DCBPUT
field. The table shows" for example, that
if output, PUT, exchange, move, and
unblocked record format are specified,
module IGG019EE is selected for use as the
PUT routine.

Table 6. Module Selector - Exchange Buf-
fering PUT Modules

r---------------------------T-------------,
I I I
I Access Conditions I Selections I
I I I
~--------------------------~+-T-T-T-T-T-T-~
I Output" PUT/PUTX, Exchange IXIXIXIXIXIXIXI
~---------------------------+-+-+-+-+-+~+-~
IMove mode IXIXIXI I IXI I
~---------------------------+-+-+-+-+-+-+-~
ISubstitute mode I I I IXIXI IXI
~---------------------------+-+-+-+-+-+-+-~
IUnblocked record format IXIXIXIXIXI I I
~---------------------------+-+-+-+-+-+-+-~
IBlocked record format I I I I I IXIXI
~---------------------------+-+-+-+-+-+-+-~
I Fixed-length II I I I I I I
Irecord format IXI 1 IXI IXIXI
~---------------------------+-+-+-+-+-+-+-~
I Variable-length I I I I I I I I
Irecord format I IXI I I I I I
~---------------------------+-+-+-+-+-+-+-~
I Undefined-length I I I I I I I I
I record format I I I X I I X I I I
~---------------------------+-~-~-~-~-+-~-~
I I I I
I PUT Modules I I I
I I I I
~---------------------------+-T-T-T-T-+-T-~
I IGG019EE IXIXIXIXIXI I I
~---------------------------+-+-+-+-+-+-+-~
I IGG019EF I I II I IXIXI L ___________________________ ~~_~_~~~_~_~_J

PUT Module IGG019EE

Module IGG019EE puts an unblocked record
into the next buffer. The OPEN executor
selects and loads this module if the OPEN
parameter list specifies:

- Output

and the DCB specifies:

- PUT, PUTX
- Exchange buffering
- Unblocked record format
- Move operating mode and fixed-,

variable-, or undefined-length record
format; or substitute operating mode
and fixed-, or Undefined-length record
format.

The module consists of a PUT routine, a
PUTX routine, and a TRUNC routine.

The PUT routine operates as follows for
the Move mode:

• It receives control if a PUT macro­
instruction is encountered in the
processing program.

• It passes control to the Output Syn­
chronizing and Error Processing routine
(module IGG019AR) to obtain the next
buffer.

• It determines the address of the Write
(data) CCW, enters the length in the

CCW and finds the buffer address.

• It moves the record from the work area
into the buffer.

• It passes
routine to
buffer.

control to the end-of-block
cause scheduling of the

• It returns control to the processing
program.

The PUT routine operates as follows for
the Substitute mode:

• It receives control when a PUT macro­
instruction is encountered in a
processing program.

• It passes control to the output Syn­
chronizing and Error Processing routine
(module IGG019AR) to obtain the next
buffer.

• It determines the address of the Write
(data) CCW, enters the length in the
CCW and finds the buffer address.

• It exchanges the address
area and the address
area.

of
of

the work
the buffer

• It passes control to the end-of-block
routine to cause scheduling of the
buffer for output.

• It returns control, and the address of
the buffer, to the processing program.

The PUTX routine operates as follows if
the input DCB specifies simple buffering:

• It receives control when a PUTX macro­
instruction is encountered in a
processing program.

• It passes control to the Output Syn­
chronizing and Error Processing routine
(module IGG019AR) to obtain the next
buffer.

• It finds the address of the input
buffer in the DCBRECAD field of the
input DCB and the input buffer length
in the DCBLRECL field.

• It moves the record from the input
buffer to the output buffer and enters
the length in the Write (data) CCW.

• It passes control to the end-of-block
routine to cause scheduling of the
buffer for output.

• It returns control to the processing
program.

The PUTX routine operates as follows if
the input DCB specifies exchange buffering:

• It receives control when a PUTX ma.cro­
instruction is encountered in a
processing program.

• It passes control to the Output Syn­
chronizing and Error Processing routine
(module IGG019AR) to obtain the next
buffer.

• It finds the address of the Read
and the length of the buffer in
DCBCCCW and DCBLRECL fields of
input DCB; it finds the address of
Write CCW in the DCBCCCW field of
output DCB.

CCW
the
the
the
the

• It exchanges the buffer addresses and
enters the length into the Write CCW.

• It passes control to the end-of-block
routine to cause scheduling of the
buffer for output.

• It returns control to the processing
program.

The TRUNC routine receives control when
a TRUNC macro-instruction is encountered in
a processing program; it returns contralto
the processing program without performing
any processing.

PUT. Module IGG019EF

Module IGG019EF puts .c;t blocked record
into the next buffer segment. The OPEN
executor selects and loads this module if
the OPEN parameter list specifies:

- Output

Queued Sequential Access Method Routines 31.

and the DeB specifies:

- PUT, PUTX
- .Exchange l:uffering
- Move or substitute operating mode
- Fixed-length blocked record format.

The module consists of a PUT routine, a
PUTX routine, and a TRUNe routine.

32

The PUT routine operates as follows:

• It receives control when a PUT macro­
instruction is encountered in the
processing program.

• If there is an end-of-block condition
on entry to the routine, it passes
control to the Output Synchronizing and
Error Processing routine (module
IGG019AR) to obtain the next buffer.

• If the move mode is used, and either
there is no end-of-block condition or
control has returned from the synchron­
izing routine, the PUT routine moves
the record from the work area into the
next buffer segment.

• If the substitute mode is used, and
either there is no end-of-block condi­
tion or control has returned from the
synchronizing routine, the PUT routine
exchanges the current buffer segment
address of the output DeB for either
the current buffer segment address of
the input DeB or the address of a work
area.

• It tests for another end-of-block con­
dition to determine if the buffer is to
be scheduled for output.

• If there is no end-of-block condition,
it returns control to the processing
program.

• If there is an end-of-block condition,
it passes control to the end-of-block
routine to cause scheduling of the
buffer. On return of control to the
PUT routine, it returns control to the
processing program.

The PUTX routine operates as follows:

• It receives control when a PUTX macro­
instruction is encountered in the
processing program.

• If there is an end-of-block condition
on entry to the routine, it passes
control to the Output Synchronizing and
Error Processing routine (module
IGG019AR) to obtain the next buffer.

• If the input DeB uses simple buffering,
and either there is no end-of-block
condition or control has returned from
the synchronizing routine, the PUTX
routine moves the record from the input
l:uffer segment into the next output
buffer segment.

• If the input DeB uses exchange buffer­
ing, and either there is no end-of­
block condition or control has returned
from the synchronizing routine, the
PUTX routine exchanges the buffer
segment addresses of the current output
and input eews.

• It tests for another end-of-block con­
dition to determine if the buffer is to
be scheduled for output.

• If there is no end-of-block condition,
it returns control to the processing
program.

• If there is an end-of-block condition,
it passes control to the end-of-block
routine to cause scheduling of the
buffer for output. On return of con­
trol to the PUTX routine, it then
returns control to the processing pro­
gram.

The TRUNe routine operates as follows:

• It receives control when a TRUNC macro­
instruction is encountered in a
processing program.

• It returns control to the processing
program without any further processing
if the buffer was scheduled f'or output
on the preceding entry into the PUT or
PUTX routine.

• It turns off the chain-data bit in the
ecw used in the preceding pass through
the PUT or PUT X routine. (The chain­
data bit is set on in every ecw in the
normal course of operation of the PUT
or PUTX routine to offset any possible
prior truncation.)

• It passes control to the end-of-block
routine to cause pcheduling of the
buffer for output. On return of
control, the TRUNC routine then returns
control to the processing program.

UPDATE MODE PUTX ROUTINE

The Update mode PUTX routine differs
from other PUT routines in that it shares
its buffers (as well as the DCB and the
lOBs) with the Update mode GET routine. It
is the Update mode GET routine that deter­
mines the address of the segment, when the
end of the buffer is reached, and when a
new buffer is needed~ Thus all that is
left for the PUTX routine to do is to flag
the block for output.

There is one Update mode PUT routine; it
is part of module IGG019AE which also
carries the Update mode GET routine. The
module (including the PUTX routine) is
described in the Update mode GET routine
section of this manual. \

END-OF-BLOCK ROUTINES

There are nine different end-of-block
routines. They are selected for use with a
particular data set on the basis of the
access conditions specified by the process­
ing program for that data set. Unless
Inout or Outin is specified in the OPEN
parameter list, one end-of-block routine is
selected. If Inout or Outin are specified,
two end-of-block routines may be required.

An end-of-block routine receives control
from a GET or a PUT routine (when using
QSAM), or from a READ or WRITE routine
(when using BSAM). In general, end-of­
block routines pass control to the I/O
supervisor. An end-of-block routine
receives control from a GET or a PUT
routine when a buffer is ready forschedul­
ing. An end-of-block routine receives con­
trol from a READ or WRITE routine at each
pass through those routines. Control pass­
es from an end-of-block routine to the I/O
supervisor, except when a channel program
is chained to another one not yet executed.
End-of':"block routines provide device ori­
ented entries for the channel program, such
as control characters and auxiliary storage
addresses. '

End-of-block routine descriptions are
grouped as follows:

• Ordinary end-of-block routines. These
routines perform device oriented proc­
essing when normal channel program
scheduling is used (except when it is
used with an output data set with track
overflow) •

• Chained channel-program scheduling end­
of-block routines. These routines
perform device o,riented processing and
attempt to chain channel programs when
chained channel-program scheduling is
used.

• Track overflow end-of-block routine.
This routine performs device oriented
processing and computes segment lengths
and constructs count fields when track
overflcw (which uses normal channel­
program scheduling) is used with an
output data set.

ORDINARY END-OF-BLOCK ROUTINES

Ordinary end-af-block routines process
channel programs for all devices. This
processing is independent of the progress
of a previous channel program and causes
access to proceed one channel program at a
time. In the case of output data sets on
direct-access devices, the routines limit
the size of the block to the track
capacity. For direct-access devices, an
ordinary end-of-block routine computes aux­
iliary storage addresses fer output data
sets and input data sets with fixed-length
standard record format to avoid end-of­
track interruptions. For unit record
devices these routines process control
characters and PRTOV macro-instructions.
For an input data set with track overf~ow
progression from track to track is con­
trolled by the track overflow bit in the
overflowing segment, not by computation of
the end of-block routine nor by an entry in
the channel program.

There are four ordinary end-of-block
routines. Table 7 lists the routines a­
vailable and the conditions that cause a
particular routine to be used. For QSAM,
the OPEN executor selects one of the rou­
tines, loads it and places its address into
the DCBEOB field. For BSAM and BPAM the
OPEN executor selects one of the routines,
loads it, and places its address into both
the DCBEOBR and DCBEOBW fields. If Inout
or Outin is specified, a second end-of­
block routine may be selected and loaded.
Its address replaces one of the duplicate
addresses in the DCB. The table, for
example, shows that when normal channel­
program program scheduling is used, and the

Queued Sequential Access Method Routines 33

device type is magnetic tape, routine End-Of-Block MOdule IGG019CC
IGG019CC is selected and loaded for use as
the end-of-block routine for that DCB.

Table 7. Module Selector - Ordinary End-
of-Block Modules

r---------------------T-------------------,
I I I
I Access Conditions I Selections I
I I I
~---------------------+-T-T-T-T-T-T-T-T-T-~
INormal channel- IXIXIXIXIXIXIXIXIXIXI
Iprogram scheduling I I I I I I I I I I I
~---------------------+-+-+-+-+-+-+-+-+-+-~
I Input, or I I I I X I X I X I I I I I
~---------------------+-+-+-+-+-+-+-+-+-+-~
I Upda te I I I X I I , , I I I I
~---------------------+-+-+-+-+-+-+-+-+-+-~
lout put, or I I I I I I I X I I I I
~---------------------+-+-+-+-+-+-+-+-+-+-~
I Inout, outin I I I I X I I X I X I I I I
~---------------------+-+-+-+-+-+-+-+-+-+-~
ICard reader or IXI I I I I I I I I I
Ipaper tape reader I I I I I I I I I I I
~---------------------+-+-+-+-+-+-+-+-+-+-~
IPrinter or card I I I I I I I IXIXIXI
I punch I I I I I I I I I I I
~---------------------+-+-+-+-+-+-+-+-+-+-~
IMagnetic tape I IXI I I I I I I I I
~---------------------+-+-+-+-+-+-+-+-+-+-~
IDirect-access I I I IXI IXIXI I I I
I storage I I I I I I I I I I I
~---------------------+-+-+-+-+-+-+-+-+-+-~
ITrack overflow I I I I IXI I I I I I
~---------------------+-+-+-+-+-+-+-+-+-+-~
IRecord format is I I I IXI I I I I I I
Inot fixed-length I I I I I I I I I I I
I standard I I I I I I I I I I I
~---------------------+-+-+-+-+-+-+-+-+-+-~
I Record format is I I I I I I X I I I I I
I fixed-length I I I I I I I I I I I
I standard I I I I I I I I I I I
~--------------~------+-+-+-+-+-+-+-+-+-+-~
INO control I I I I I I I IXI I I
t character I I I I I I I I I I I
~---------------------+-+-+-+-+-+-+-t-+-t-~
IMachine control I I I I I I I I IXI I
I character I I I I I I I I I I I
~---------------------+-+-+-+-+-+-+-+-+-+-i
IASA control I I I I I I I I I IXI
I character I I I I I I I I I I I
~---------------------+-+-+-+-+-+-+-+-+-+-~
IPRTOV-No user exit I I I I I I I pqxlxl
~---------------------+-~-~~-~-+-~-+-~-+-~
I I I I I t
I End-of-Block I I I I I
I Modules I I I I I
I I I I I I
~---------------------+-T-T-T-T-+-T-+-T-+-~
I IGG019CC IXIXIXIXIXI I I I I I
~---------------------+-+-+-+-+-+-+-+-+-+-~
I IGG019CD I I I I I I X I X I I I I
~-----------.:.---------+-+-+-t-+-+-+-t-t-+-~
I IGG019CE I I I I I I I IXIXI I
~---------------------+-+-+-+-+-+-+-+-+-+-~
I IGG019CF I I I I I I I I I IXI L _____________________ ~_~_~_~_~_~_~_~_~_~_J

34

Module lGG019CC does nothing more than
caUse a channel program to be schedUled.

The OPEN executor selects and loads this
module if one of the following conditions
exists:

- The DCB specifies normal channel­
program scheduling and magnetic tape,
card reader, or paper tape as the
device type.

The data set is opened for Input, and
the DCB specifies normal channel­
program scheduling, direct-access
storage device, and a record format
other- than fixed-length length stand­
ard.

- The d.Clta set is opened for Inout or
Outin, and the DCB specifies normal
channel-program scheduling, direct­
access device storage and a record
format other than fixed-length
standard. The address of this module
is placed in the DCBEOBR field.

- The data set is opened for Update.

The module operates as follows:

• It receives control when a GET or a PUT
routine finds that a buffer is ready to
be scheduled, or at the conclusion of
the processing performed by a READ or
WRITE routine.

• If the device type is magnetic tape,
paper tape, or card reader, the module
issues an EXCP macro-instruction and
returns control to the GET, PUT, READ,
or WRITE routine.

• If the device type is direct-acces$ and
more than one lOB is associated with
the DCB, the IPodule issues an EXCP
macro-instruction. and returns control
to the GET or READ routine.

• If the device type is direct-access and
only one lOB is associated with the
DCB, the module copies the DCBFDAD
field in the DCB into the IOBSEEK field
in the. lOB, issues an EXCP macro­
instruction and returns control to the
GET or READ routine.

End-of-Block ModuleIGG019CD

Module IGG019CD schedules a channel
program after determining that the next
block fits on a track within the allocated
extents.

The OPEN executor selects and loads this
module if one of the following conditions
exists:

- The data set is opened for output, and
the DCB specifies normal channel­
program scheduling, no track-overflow,
and direct-access storage as the device
type.

- The data
the DCB
program
storage as

set is opened for Input, and
specifies normal channel-

scheduling, direct-access
the device type.

- The data set is opened for Inout or
Outin, and the DCB specifies direct­
access device storage. If the record
format (also specified in the DCB) is
other than fixed-length standard the
address of this module is placed in the
DCBEOBW field. If the record format is
fixed-length standard, the address of
this module is placed in both DCBEOBR
and DCBEOBW fields.

The module operates as follows:

• It receives control when a GET or a PUT
routine finds that a buffer is ready to
be scheduled, or at the conclusion of
the processing performed by a READ or
WRITE routine.

• It calculates the block length using
the value overhead-last record. (This
value is found in the resident 1/0
device table. The address of the table
is in the field DCBDVTBL.) It compares
the calculated block length with the
value in the DCBTRBAL field of the DCB.

• If the block length
than the DCBTRBAL
module determines
on the track.

is equal to or less
field value, the

that the block fits

• If the block length exceeds the
DCBTRBAL field value, the module finds
the next track as follows:

It converts the
(MBBCCHHR) of
into a relative
passing control
routine.

full device address
the present track

address (TTR) by
to the IECPRLTV

It adds 1 to the value of TT.

It converts the relative address of
the next track into the full device
address by passing control to the
IECPCNVT routine.

• If there is another track in the allo­
cated extents, its full address has
been entered in the field DCBFDAD and
the block fits on the track.

• If there is no other track in the
allocated extents (as shown by the
error return code from routine
IECPCNVT), an EOV condition exists.
The module sets the DCBCINDl field in
the bCB and the CSW field in the lOB to
show this, and returns control to the
GET, PUT, READ, or WRITE routine with­
out issuing an EXCP macro-instruction.
The EOV condition is eventually recog­
nized and processed, in QSAM by the
synchronizing routine, in BSAM by the
CHECK routine.

• When the module determines that the
block fits on the track, the module
calculates the actual block length,
using the value OVerhead-not last
record. (This value is found in the
resident I/O device table.) It adjusts
the value in the DCBTRBAL field by this
amount, and updates the DCBFDAD field
and the ID field of the count area of
the block (located immediately after
the channel program). It then issues
an EXCP macro-instruction and returns
control to the GET, PUT, READ, or WRITE
module.

End-af-Block ModuleIGGCl19CE

Module IGG019CE, if necessary, modifies
channel programs for unit record output
devices when ASA control characters are not
used. The module then causes scheduling of
the channel program, whether it was modi­
fied or not. The OPEN executor selects ana
loads this module if the bCB specifies:

- Normal channel~program scheduling
- Punch, Or printer
- Machine control charactE31:, or no con-

trol character.

Queued Sequential Access Method Routines 35

The module operates as follows:

• It receives control when a PUT routine
finds that a buffer is ready to be
scheduled, or at the conclusion of the
processing performed by a WRITE rou­
tine.

• It adjusts, in the channel program, the
length and starting address either for
the length field of variable-length
records or for a control character. If
there are variable-length records and a
control character, the module adjusts
for both.

• If a control character is present, it
inserts it as the command byte of the
Write channel command word (CCW).

• It tests the DeB field at location
(DCBDEVT+l) for a PRTOV mask. If a
PRTOV mask is present, the module tem­
porarily inserts it into the length
field of the NOP CCW and sets the first
bit in the lOB. The PRTOV appendage
(IGG019CL) tests for the presence of
the lOB bit and the CCW mask.

• It issues an EXCP macro-instruction and
returns control to the PUT or WRITE
routine.

End-of-Block Module IGG019CF

Module IGG019CF modifies channel pro­
grams for unit record output devices when
an ASA control character is present. The
module then causes scheduling of the chan­
nel .program, whether it was modified or
not. The OPEN executor selects and loads
this module if the DCB specifies:

36

- Normal channel-program scheduling
- Punch, or printer
- ASA control character.

The module operates as follows:

• It receives control when a PUT routine
finds that a buffer is ready to be
scheduled, or at the conclusion of the
processing performed by a WRITE rou­
tine.

• It adjusts, in the channel program, the
length and starting address for the
control character" and for the length
field of variable-length records.

• It translates the control character and
inserts it as the command byte of the
control channel command word (CCW)
which precedes the Write CCW.

• It tests the DCB field at location
(DCBDEVT+l) for a PRTOV mask. If a
PRTOV mask is present, the module
inserts it into the length field of the
Control CCW and sets the first bit in
the lOB. The PRTOV appendage
(IGG019CL) tests for the presence of
the lOB bit and the CCW R,ask.

• It issues an EXCP macro-instruction and
returns control to the PUT or WRITE
routine.

CHAINED CHANNEL-PROGRAM SCHEDULING
END-OF-BLOCK ROUTINES

Chained channel-program scheduling con­
sists of joining the channel programs
before execution and parting and posting
the channel programs after execution.
Joining is performed by the end-of-block
routines and mainly uses the input/output
block (lOB); parting and posting is per­
formed by appendages and uses the interrup­
tion control block (ICB). (For a descrip­
tion of the parting process, refer to the
program controlled interruption -PC I­
appendages.) The lOB constructed by the
OPEN executor when chained channel-program
scheduling is used differs from the lOB
used in normal channel-program scheduling.
These differences are illustrated in Figure
6 and tabulated in Table 8.

(a)
SAM Prefix to lOB when
normal channel-program
scheduling is used

Next lOB I Event Contro I Block

Standard lOB

I EeB Address *

• 2 Words

.. When QSAM is used, the address
is that of the ECB in the
SAM prefix; when BSAM is used
the address is that of the ECB
in the data event control block
(DECB).

•

(b)
SAM Prefix to lOB when
chained channel-program
scheduling is used

Flags I Offsets I Event Control Block

First ICB I Last NOP CCW

Standard lOB

I ECB Address **

----2Words---

'II'll Always shows the address of
the ECB in the SAM prefix,
irrespective of whether QSAM
Of. BSAM is used.

Figure 6~ Comparison of the lOB SAM Pre­
fixes for Normal and for Chained
Scheduling

These routines join channel programs so
that the channel executes successive chan­
nel programs without interruption as if
they were one continuous channel program.
To join the present channel program to one
already scheduled, the end-of-block routine
finds the last CCW of the preceding channel
program, by referring to the lOB, and
changes that CCW from a NOP command to a
TIC command. If this joining is performed
before the channel attempts to execute
(more precisely, before it fetches) that
CCW, the joining process is successful. If
the execution of the preceding channel
program is completed while the routine is
operating the joining is unsuccessful. The
routine tests the success or failure of the
joining by testing whether the lOB has been
posted as completed. If successful, con­
trol returns to the calling program; if
unsuccessful, the routine resets the lOB
for the EXCP macro-instruction and passes
control to the I/O supervisor.

The chained scheduling end-of-block rou­
tines, like the ordinary end-of-block rou­
tines, provide device oriented entries for
channel programs. For direct-access devi­
ces they compute auxiliary storage address­
es; for unit record devices they process
control characters. (NO processing is per­
formed for the PRTOV macro-instruction

since it and chained scheduling are mutual­
ly exclusive.)

There are four chained scheduling end­
of-block routines, each performing joining
and. channel program entry processing for a
different set of access condition options.
Table 9 lists the routines available and
the conditions that cause a particular
routine to be used.

For QSAM, the OPEN executor selects one
of the routines, loads it and places its
address into the DCBEOB field. For BSAM
and BPAM the OPEN executor selects one of
the routines, loads it, and places its
address into both the DCBEOBR and DCBEOBW
fields. If Inout or Outin is specified, a
second end-of-block routine may be selected
and leaded. Its address replaces one of
the duplicate addresses in the DCB.

The table, for example, shows that when
chained scheduling is used, the Open mode
is Input, and the device type is magnetic
tape, routine IGG019CW is selected and
loaded for use as the end-of-block routine
for the DCB.

Table 8. Comparison of the lOB SAM Prefixes for Normal and for Chained Scheduling
r-----------------------T-------------------------------T-------------------------------,
I I I I
I Prefix Parameter I Normal Scheduling I Chained SCheduling I
t I I I
.-----------------------+-------------------------------+-------------------------------~ I Number of lOBS I As many as there are buffers I Only 1 (There are as many I
I I or channel programs I ICBs as there are buffers or I
I I I channel programs) I
~-----------------------+-------------------------------+-------------------------------f I Size of SAM Prefix I 2 words I 4 words I
~-----------------------+-------------------------------+-------------------------------~ I Contents of I Address of the next lOB I Flags I
I Link Address field I I Offsets I
~-----------------------+-------------------------------+-------------------------------1 I Use of I Used in QSAM to post channel I Used in QSAM and BSAM to post J
I ECB field I program execution (In BSAM, I a channel program execution I
I I the ECB in the DECB is used) I that is terminated by I
I I I channel end interruption I
I I I (that is, channel program I
I I I chaining has been broken) I
~-----------------------+-------------------------------+-----------------------~-------1 I Contents of I Field does not exist I Address of the first ICB I
I IOBFICB field I I I
.-----------------------+-------------------------------+-------------------------------~ I Content$of I Field does not exist I Address of NOP CCW of channel I
I IOBLNOP field I I program scheduled last I L _______________________ ~ _______________________________ ~ __________________________ ~ ____ J

Queued sequential Access Method Routines 37

Table 9. ModQle
Program
ModQles

Seleqtor-ChaineQ Channel­
SchedQling End-of-Block

r--------------------------T---------------,
I I I
I I I
I Access Conditions I Selections I
I I I
~--~----------------------+~-T-T-T-T-T-T-i
IChained channel-program IXIXIXIXIXIXIXIXI
I scheduling I I I I I I I II
~---------------------'"'---+-+-+-+-+-+-+-+-i
I Input I X I X I I X I I I I I
~-------------------------+-t-+-+-+-t-+-+-i
I Output I I IXI IXIXIXIXI
~-------------------------+-+-+-+-+-+-+-+-i
ICard re.ader IXI I I I I I I I
~-------------------------+-+-+~+-+-+-+-+-i
IPrinter or card punch I I I I I IXIXIXI
~-------------------~-----+-+-+-+-+-+-+-+-i
IMagnetic tape I IXIXI I I I I I
~-------------------------+-+-+-+-t-+-+-+-i
IDirect-access storage I I I IXIXI I I I
~-------------------------+-+-+-+-+-t-+-+-i
INO control character I I I I I IXI I I
~-------------------------+-+-+-+-t-+-+-+-i
I Machine control character I I I· I I I I X I I
~-------------------------+-+-+-+-+-+-+-+-i
I ASA control character I I I I I I I I X I
~-------------------------+-+-+-+-+-+-+-+-i
I I I I I I I I I I
I End-of-Block Modules I I I I I I I I I
I I I I II I I I I
~-------------------------+-+-+-+-+-+-+-+-i
I IGG019CV I I I I IXI I I I
~-------------------------+-+-+-+-+-+-+-+-i
I IGG019CW IXlxlXIXI I I I I
~-------------------------t-+-+-+-+-+-t-+-i
I IGG019CX I I I I I IXIXI I
~-------------------------+-+-+-+-+-+-+-+-i
I IGG019CY I I I I I I I IXI
L _________ -------_--______ ~_~-~_~-~-~_~_~_J

End-ot-Block Module IGG019CV

Module IGG019CV compQtes from the track
balance (and from further allocated extents
on this volume, if necessary) a valid
storage address for a channel program for
an output data set on a direct-access
device, and attempts to join the channel
program to the preceding one. The OPEN
executor selects· and loads this modQle if
the OPEN parameter list specifies:

- Output

and the DCB specifies:

- Chained channel-program scheduling
- Direct-access storage.

The module operates as follows:

38

• It receives control from a PUT routine
when that routine finds that a buffer
is ready to be schedQled, or from a
WRITE routine at the conclQsionOf its
processing.

• It calculates the block length using
the overhead valQe for a last biock on
a track. (This value is found in the
resident I/O device table. The address
at the table is in the field DCBDVTBL.)
It compares the calculated block length
with the value in the DCBTRBAL field of
the DCB.

• If the block length is equal to or less
than the DCBTRBAL field value, the
module determines that the block fits
on the track.

• If the block length exceeds the
DCBTRBAL field value, the modQle calcu­
lates the next sequential track address
and compares it with the end address of
the current extent shown in the data
extent block (DEB).

• If.no end-of-extent condition exists,
it determines that the block fits on
the track.

• If an end-of-extent condition exists,
it seeks a new extent in the DEB. ,

• If a new extent exists, it updates the
DCBFDAD and DCBTRBAL fields and deter­
mines that the block fits on the track.

• If there is no further extent, an EOV
condition exists. The module sets the
DCBCINDl field in the DCB and the CSW
field in the lOB to show this, and
returns control to the GET, PUT, READ,
or WRITE routine wit.hout issuing an
EXCP macro-instruction. The EOV condi­
tion.is eventually recognized and proc­
essed, in QSAM by the synchronizing
rOQtine, in BSAM by the CHECK routine.

• If the module determines that the block
fits on the track, the module calcu­
lates the actual block length using the
overhead value fOr a block that is not
the last on a track. (This value is
found in the resident I/O device
table.) It adjusts the value in the
DCBTRBAL field by this amount, and
Qpdates the DCBFDAD field and the ID
field of the COQnt area Of the block
(located immediately after the channel
program) •

• If the block fits on the track, the
module next attempts to join the chan­
nel program for the current buffer to
the preceding channel program (that is,
chain schedule) by:

Setting the ICB to not-complete.

Inserting the address of either the
Write or the Search CCW of this
channel program into the NOP CCW of
the preceding channel program. The
address of the Write CCW is insert­
ed if the present and the preceding
channel program address the same
track. The address of the Search
CCW is inserted if the present and
the preceding channel programs ad­
gress different tracks. In this
case, the Search CCW addresses rec­
ord zero of the next track.

Changing the NOP CCW in the preced­
ing channel program to a TIC CCW.

Updating the SAM lOB prefix block
to point to the end of the current
channel program.

• It determines whether the joining was
successful by testing the ECB (pointed
to by the lOB) for a completion posting
by the I/O supervisor.

, If the I/O supervisor did not post the
event as completed, the joining was
successful and the routine returns con­
trol to the calling routine.

• If the I/O supervisor did post the
event as completed, the routine tests
the IeB for the present channel program
to find whether the joining was suc­
cessful or not.

• If the present ICB remains unposted,
the present channel program was not
joined to the preceding one. The rou­
tine prepares to cause restart of the
channel by copying the Seek address and
the channel program start address from
the current ICB into the lOB, and uses
the EXCP macro-instruction to cause
scheduling of the channel progran:. It
then returns control to the calling
routine.

• If the present ICB is posted complete,
the present channel program was joined
successfully. (The routine was inter­
rupted long enough, between the joining
and the testing, for the channel pro­
gram to be executed and for the channel

.end appendage to post the rCB.) The
routine returns control to the calling
routine.

End-ot-block Module IGG019CW

Module IGG019CW attempts to join the
present channel program to the last one in
the chain of scheduled channel programs.
The OPEN executor selects and loads this
module if either of the following condi­
tions exists:

- The OPEN parameter list specifies Input
and the DCB specifies chained channel­
program scheduling and any device.

- Tbe OPEN parameter list specifies
output and the DCB specifies chained
cbannel program scheduling and magnetic
tape.

The module operates as follows:

• It receives control fron: a GET or a PUT
routine when that routine finds that a
buffer is ready to be scheduled, or
from a READ or WRITE routine at the
conclusion of its processing.

• If the device type is magnetic tape,
the routine determines the increment
value and stores it in the rCB.

• The module attempts to join the channel
program for the current buffer to the
preceding channel program (that is,
chain schedule) by:

Setting the rCB to not-complete.

Inserting the address of the cur­
rent channel program into the NOP
CCW of the preceding channel pro­
gram.

Ch(l.nging the NOP CCW in the preced­
ing channel program to a TIC CCW.

Updating the SAM lOB prefix block
to point to the end of the current
channel program.

• It determines whether the joining was
succeSsful by testing the ECB (pointed
to by the rOB) for a completion posting
by the I/O supervisor.

• If the I/O supervisor did not post the
event as completed, the joining was
successful and the routine returns con­
trol to the calling routine.

• If the I/O supervisor did post the
event as completed, the routine tests
the ICB for the present channel program
to find whether the joining was suc­
cessful or not.

Queued Sequential Access Method Routines 39

• If the present ICB remains unposted,
the present channel program was not
joined to the preceding one. The rou­
tine prepares to cause restart of the
channel by copying the channel program
start address (and the Seek address, if
direct-access storage) from the current
ICB into. the lOB, and uses the EXCP
macro-instruction to cause scheduling
of the channel program. It then
returns control to the calling routine.

• If the present ICB is posted complete,
the present channel program was joined
successfully. (The routine was inter­
rupted long enough, between the joining
and the testing, for the channel pro­
gram to be executed and for the channel
end· appendage to post the ICB.) The
routine returns control to the calling
routine.

End-of-block Module IGG019CX

Module IGG019CX, if necessary, modifies
channel programs for unit record output
devices when ASA control characters are not
used. The module then attempts to join the
current channel program to the preceding
one. The OPEN executor selects and loads
this module if the DCB specifies:

40

- Chained channel-program scheduling
- Printer or card punch
- No control character, machine control

character.

The module operates as follows:

• It receives control from a PUT routine
when that routine finds that a buffer
is ready for scheduling, or from a
WRITE routine at the conclusion of its
processing.

• It adjusts the length entry and the
start address entry in the channel
program for either a control character
or a variacle-length block length field
or for both, if both are present.

• It inserts the control character, if
present, as the command byte of the
Write channel command word (CCW).

• It attempts to join the channel program
for the current buffer to the preceding
channel program (that is, chain
schedule) by:

setting the ~CB to not-complete.

Inserting the· .address of the cur­
rent channel program into the NOP
CCW of the preceding channel pro­
gram.

Changing the NOP CCW in the preced­
ing channel program to a TIC CCW.

Updating the SAM lOB prefix block
to point to the end of the current
channel program.

• It determines whether the)01n1ng was
successful by testing the ECB pointed
to by the lOB for a completion posting
by the I/O supervisor.

• If the I/O supervisor did not post the
event as completed, the joining was
successful and the routine returns con­
trol to the calling routine.

• If the I/O supervisor did post the
event as completed, the routine tests
the ICB for the present channel program
to find whether the joining was suc­
cessful or not.

• If the present ICB remains unposted,
the present channel program was not
joined to the preceding one. The rou­
tine prepares to cause restart of the
channel by copying the channel program
start address from the current ICB into
the lOB, and uses the EXCP macro­
instruction to cause scheduling of the
channel program. It then returns
control to the calling routine.

• If the present ICB is posted complete,
the present channel program was joined
successfully. (The routine was inter­
rupted long enough, between the joining
and the testing, for the channel pro­
gram to be executed and for the channel
end appendage to post the ICB.) The
routine returns control to the calling
routine.

End-of-Block Module IGG019CY

Module IGG019CY modifies channel pro­
grams for unit record output devices when
ASA control characters are used. The
module then attempts to join the current
channel program to the preceding one. The
OPEN executor selects and loads this module
if the DCB specifies:

- Chained channel-program scheduling
- Printer or card punch

ASA control character.

The module operates as follows:

• It receives control from a PUT routine
when that routine finds that a buffer
is to be scheduled, or from a WRITE
routine at the conclusion of its proc-
essing.

• It adjusts the length entry and the
start address entry 1n the channel
program for either the control charac­
ter or a variable-length block length
field or for both, if both are present.

• It translates the control character and
inserts it as the command byte of the
Control CCW (which precedes the Write
CCW> •

• It attempts to join the current channel
program to the preceding one (that is,
chain schedule) by:

setting the ICB to not-complete.

Inserting the address of the cur­
rent channel program into the NOP
CCW of the preceding channel pro-
gram. .

Changing the NOP CCW in the preced­
ing channel program to a TIC CCW.

Updating the SAM lOB prefix block
to point to the end of the current
channel program.

• It determines whether the joining was
successful by testing the ECB pointed
to by the lOB for a completion posting
by the I/O supervisor.

• If the I/O supervisor did not post the
event as completed, the)01n1ng was
successful and the routine returns con­
trol to the calling routine.

• If the I/O supervisor did post the
event as completed, the routine tests
the ICB for the present channel program
to find whether the joining was suc­
cessful or not.

• If the present ICB remains unposted,
the present channel program was not
joined to the preceding one. The rou­
tine prepares to cause restart of the
channel by copying the channel program
start address from the current ICB into
the lOB, and uses the EXCP macro­
instruction to cause scheduling of the
channel program. It then returns
control to the calling routine.

• If the present ICB is posted complete,
the present channel program was joined
successfully. (The routine was inter­
rupted long enough, between the joining
and the testing, for the channel pro­
gram to be exec'uted and for the channel
end appendage to post the ICB.) The
routine returns control to the calling
routine.

TRACK OVERFLOW END-OF-BLOCK ROUTINE

The track overflow end-of-block routine
processes channel programs for output data
sets whose blocks may overflow from one
track onto another. (See Figure 1.> Such
a block is written by a channel program
consisting of a channel program segment for
each track to be occupied by a segment of
the block. The track overflow end-of-block
routine computes the address of each track
written oni to progress from track to track
(to continue writing successive segments of
one block) the channel program uses the
Search command with the multiple-track
(M/T) mode.

a - Block Length is Less Than Track Balance
(No Overflowing Segment)

Data

b - Block length is Greater Than Track Balance
(First Segment Overflows Track)

Data (Continued)

c - Block Length is Greater Thon Track Copacity
(Severed Overflowing Segments)

Data (Continued)

Data (Continued)

Data (Continued)

IDoto (Continued) I

Figure 1. Track Overflow Records

Doto

There is ene track overflow end-of-block
routine (module IGG019C2)i it is used with
output data sets. If the access conditions
shown in Table 10 are specified for a DCB,
the OPEN executor selects this routine,
loads it, and places its address into the
DCBEOB field or DCBEOBW. (For an input
data set with track overflow, end-of-block
module IGG019CC is used.>

Table 10. Module Selector - Track Overflow
End-of-Block Module

r----------------------------T------------,
I I I
I Access Conditions I Selections I
I I I
~----------------------------t------------~ I Output, Inout, Out in I X I
~----------------~-----------t------------~ I Track Overflow I X I
.----------------------------t------------i
I I I
I End-of-Block Module I I
I I I
~·---------------------------t------------~ I IGG019C2 I X I L ____________________________ ~ ____________ J

Queued Sequential Access Method Routines 41

End-of-Block Module IGG019C2

Module IGG019C2 performs device-oriented
processing when track overflow is permitted
with an output data set. The OPEN executor
selects and loads this module If the OPEN
parameter list specifies:

- Output, Inout, or outin

and the DCB specifies:

42

- Track overflow.

The module operates as follows:

• It receives control from a PUT routine
when that routine finds that a buffer
is to be scheduled, or from a WRITE
routine at the conclusion of its proc-
essing,.

• It compares the block length with the
space remaining on the track last writ­
ten on.

• If the entire block fits on this track,
the module completes a channel program
(consisting of one channel program
segment) for writing the block, upqates
the track balance, and passes control
to the I/O supervisor.

• If at least a one-byte data-field fits
on this track, the module completes a
channel program segment for the segment
of the block that fits on the track (by
entering the Seek address, main storage
address, and count field for the chan­
nel program segment) and tests if there
is another track in the same extent.

• If the next track is in this extent, it
compares the remaining block length
with the track capacity.

• If the remainder of the block exceeds
the track capacity,. the module proceeds
as when at least one byte fits on the
track.

• If the remainder of the block is less
than the track capacity. the module
completes the final channel program
segment for the final segment of the
block, updates the track balance. and
passes control to the I/O sup~rvisor.

• If the next track is not in this
extent, the module passes . control to
the track balance routine via anSVC 25
instruction. (That routine will erase
all tracks in the current extent that
were found insufficient for the block
to be written.) On return of control
from the track balance ~outine, the
module tests if there is another
extent.

• If there is another allocated extent on
this volume, the module reconstructs
the channel program by proceeding when
at least one byte fits on a track.

• If there is no other allocated extent
on this volume, an end-of-volume condi­
tion exists. The module sets the
DCBCINDl field in theDCB and the CSW
field in the lOB to show this, and
returns control to the PUT or WRITE
routine without issuing an EXCP macro­
instruction. The EOV condition is
eventually recognized and processed, in
QSAM by the synchronizing routine, in
BSAM by the CHECK routine.

SYNCHRONIZING AND ERROR PROCESSING ROUTINES

A synchronizing and error processing
routine synchronizes execution of the proc­
essing program with execution of the chan­
nel programs, and performs error processing
to permit continued access to the data set
after an error was encountered during the
execution of a channel program.

There are five synchronizing
processing routines. FOUr of
routines:

- Are unique to QSAM

and
the

error
five

- Both synchronize and process errOrS

- Receive control from a GET or a PUT
routine

- Are pointed to by an address in the
DCB.

The fifth routine, the track overflow
asynchronous error processing routine:

- Is shared between QSAM and BSAM

- Only processes errors

- Receives control by being Scheduled by
the track overflow abnormal end appen­
dage

- Is pOinted to by an address in an
interruption request block (IRB).

To synchronize, the QSAM Input and out­
put Synchronizing and Error Processing rou­
tines (modules IGG019AQ and IGG019AR)
return control to the GET or PUT routine
immediately if the channel program executed
without error; or use the WAIT macro­
instruction if the channel program has not
yet executed. To process errors, these
routines pass control to the SYNAD/EOV
executor (using SVC 55) to distinguish
between the processing necessary for unit
check - that is. a permanent error and
unit exception - that is, an end-of-volume
condition.

For a unit check the executor returns
control to the synchronizing routine, which
in turn passes control to the SYNAn
routine. On return of control from the
SYNAD routine, the synchronizing routine
again passes control to the executor to
implement the error options. For the
ACCEPT and SKIP options, control returns
once more to the synchronizing routine. It
now operates as when it is first entered.

For a unit exception the executor causes
end-of-volume processing by the end-of­
volume routine of I/O support. That
routine passes control to the EOV/new vol­
ume executor. The executor returns control
to the synchronizing routine. It now oper­
ates as when it is first entered.

To synchronize the Paper 'l'apeCharacter
Conve.rsion Synchronizing routine (contained
in the paper tape GET module IGGQ19AT)
returns control to the GET routine immedi­
ately if the channel program executed with­
out error; or uses the WAIT macro­
instruction if the channel program has not
yet executed. To proceSs errors, the
routine passes control to the SYNAn rou­
tine. When control returns from the SYNAn
routine to the synchronizing routine. the
latter implements the error option. (The
equivalent of an end-of-volume condition is
handled by the paper tape GET routine.)

To synchronize, the Update Synchronizing
and Error Processing routine (module
IGG019AP), returns control to the GET rou­
tine immediately if the channel program
executed without error; or uses the WAIT
macro-instruction if the channel program
has not yet executed. To process an end­
of-volume condition, the routine suspends
volume-switching until processing on the
old volume is finished. To process
permanent errors, the routine ·interprets
the error option to assure that·neither a
buffer nor a black is skipped.

The. error p~ocessing performed by the
track overflow asynchronous error process-

ing routine (module IGG019Cl) distinguishes
t1lll0 ·kinds of errors - those in the block
being read. and those in the block being
skipped over to read the next one. For
errors in the block being read, the routine
sets the channel program to permit the
processing program to continue reading the
segments and blOCkS beyond the one in
error; for errors in the block being
skipped, the routine resets the channel
program and uses the EXCP macro­
instruction, so that the processing program
is unaware of the error.

For an error whose character and
occurrence the processing program must know
about (errors in l;legments of the block
being read into the buffer), the track
overflow routine addresses the loa to the
next track and its channel program and
causes control to return to the processing
program via the TCB queue. For errors
Whose correction does not affect the proc­
essing program (errors in segments of the
block being skipped over>, tbe module uses
the EXCP macro-instruction to skip arQund
the defective segment to present the proc­
essing program with the block it expects to
obtain. This latter condition only holds
if an error occurs on a Read-Data CCW with
the Skip bit on for a segment that is not
the last or only segment on an alternate
track. In that case control returns to the
processing program when the desired block
is in the buffer ip its entirety. For
errorS that ,do not permit reading the
entire block in one pass witho~t error,
control returns to the processing program
with the IO~ set to a track and channel
program that permits reading the segments
following the defectiVe one. The defective
segment and the preceding good segments Of
the block are in the buffer at the time
control is returned to the processing pro­
gram.

Four of the five routines described here
(those enumerated in Table 11) are uni'!ue
to QSAM. One of these routines ga1ns
control when a GET or a PUT routine finds
that it needs a new buffer. Table 11 lists
the routines available and the conditions
that cause a particular routine to be used.
The QPEN executor selects one of the rou­
tine.s, loads it, and puts its address into
the DCEGERR/PERR field~

The fifth routine (identified in Table
12) is shared between QSAM and ESAM. It
gains control be being scheduled for even~
tual execution by track overflow flow
abnormal end appendage IGG01ge3. The OPEN
executor loads it and enters its address in
an IRE: the address of the IRE is in the
DEE. <If QSAM is used, module I(,3G019AQ is
also used.) .

Queued Sequential Access Method Routines 43

Table 11. Module Selector - Synchronizing
and Error Processing Modules

r-----------------------------T-----------,
I I I
I Access Conditions ISelections I
I I I
~-----------------------------+--T--T--T--i
IGET IX IX I IX I
~-----------------------------+--+--+--+--i
I PUT , I I IX I I
~-----------------------------+--+--+--+--i
IInput. Readback I IX I I I
~-----------------------------+--+--+--+--i
,output I I IX I I
~-----------------------------+--+--+--+--i
I Update IX I I I I
~-----------------------------+--+--+--+--i
IPaper tape I I I IX I
Icharacter conversion I I I I I
~-----------------...,--,---------+--+--+--+--i
I I I I I I
I Modules I I I , I
I I , I I I
~-----------------------------+--+--+--+--i
I IGG019AF IX I I I I
~-----------------------------+--+--+--+--i
I IGG019AQ I IX I I ,
~----------------~------------+--+--+--+--i
I IGG019AR I I IX I I
~----------------------------+--+--+--+--i
, IGG019AT1 I I I IX I
~------~----------------------~--~--~--~--~
11This module includes both the paper tapel
I synchronizing and error processing rou-I
I tine and the paper tape GET routine. I
I Both routines are described in the GET I
I routines section of this publication. I L ___ J

Table 12. Module Selector - Track Overflow
Asynchronous Error processing
Module '

r----------------------------T------------,
I I· I
I Access Conditions I Selections I
I I I
~----------------------------+-----T------~
I GET I X I I
~----------------------7'""'----+-----+------i I READ I I X I
~----------------------------+-----+------i
I Input, Inout. Outin I X I X I
~----------~-----------------+-----+------i
ITrack Overflow I X I X, I
~----------------------------+-----+------i
I I I I
I Module I I I
I . I I I
~----------------------------+-----+------i I IGG019C1 I X I X I L ____________________________ ~ _____ 4 ______ J

44

SYNCHRONIZING }o]ODULE IGG019AF (UPDATE)

Module IGG019AF finds the next buffer
and assures that it has been refilled. If
a unit status prevented refilling the buf­
fer. the module processes the pending chan­
nel programs according to whether they are
Empty-and-Refill or Refill-only channel
programs. The OPEN executor selects and
loads this module if the OPEN parameter
list specifies:

- Update

and the DCB specifies:

- GET.

The module operates as follows if no
error occurred:

• It receives control when the Update GET
routine finds that a new buffer 1S
needed. It also receives control after
the FEOV macro-instruction is encoun­
tered in a processing program, once
from the Update GET routine (when the
FEOV executor schedules the last
buffer) and once directly from the FEOV
executor (when it awaits execution of
the scheduled buffers.)

• If the next buffer has been refilled,
the module returns control to the
Update GET routine.

• If the channel program for the' next
huffer has not yet executed. the module
awaits its execution.

The module operates as follows if an
end-of-volume condition was encountered:

• It receives control when the Update GET
routine finds that a neW buffer is
needed or when the FEOV executor awaits
execution of the scheduled buffers.

• If the channel program for the next
buffer encountered an end-of-volume
condition, or if control has come to
this ,module due to an FEOV macro­
instruction, the module finds the lOBs
flagged for output. It then resets the
command-chain flag at the end of the
Empty portion of the channe! program to
off, and schedules the Empty channel
programs for execution via an EXCP
macro-instruction.

• If all Empty channel programs have been
executed, or if none are pending, the
module passes control to the SYNAD/EOV
executor via an avc 55 instruction. If
this module has control due to an FEOV
macro-instruction, control returns to
the routine that passed control.

• If a permanent error is encountered
during execution of Empty channel
programs for an end-of-volume condition
or for an FEOV macro-instruction, con­
trol passes to the SYNAD routine, if
one is present. The SYNAD routine
returns control to this module.

• The module then processes the error
option as follows:

• Accept or Skip Option:

The pending Empty channel programs
are rescheduled for execution via
EXCP macro-instructions.

• Terminate Option:

Control passes to the ABEND, rou­
tine.

The module operates as follows if a
permanent error was encountered:

• It receives control when the update GET
routine finds that a new buffer is
needed.

• If the channel program for the next
buffer encountered a permanent error
and a SYNAD routine is present, the
module passes control to the SYNAD
routine.

• If control returns from the SYNAD rou­
tine, or if there is no SYNAD routine,
the module processes the error option
in the following manner:

• Accept Option:

If the error occurred in the Empty
portion of a channel program, the
module resets the lOB to point to
the Refill portion of the channel
program and issues an EXCP macro­
instruction for it and all
following lOBs.

If the error occurred in the Refill
portion of a channel program, the
module posts the current lOB as
complete without .error and issues
an EXCP macro-instruction for all
the lOBs except the present one.

The module assures refilling of the
buffer associated with the first
lOB and then returns control to the
Update GET routine .•

• Skip Option:

If the error occurred in the Empty
portion of a channel program, the
module operates as it does for the
Accept option.

If the error occurred in the Refill
portion of a channel program, the
module issues an EXCP macro­
instruction for all lOBs.

The module assures refilling
buffer associated with the
lOB and then returns control
Update GET routine.

of the
first

to the

• Termina.te Option:

If the error occurred in the Empty
portion of a channel program, the
module passes control to the ABEND
routine.

If the error occurred in the Refill
portion of a channel program, the
module finds the end of the Empty
portion of any pending Empty-and­
Refill channel programs, resets the
command-chain flag to off, and
issues an EXCP macro~instruction
for these Empty channel programs.
On execution of all the channel
programs, the module passes control
to the ABEND routine.

SYNCHRONIZING MODULE IGG019AQ (INPUT)

Module IGG019AQ finds the next input
buffer, determines its status, and passes a
full buffer to the GET routine. The OPEN
executor selects and loads this module if
the OPEN parameter list specifies:

- Input, Readback

and the DCB specifies:

- GET.

The module operates as f'ollows:

• It receives control when a GET routine
determines that a new buffer is needed.

• It finds the next lOB and tests the
status of the channel program associat­
ed with that lOB.

• If the channel program is
executed, the module issues
macro-instruction.

not yet
a WAIT

• If the channel program has been execut­
ed normally, the module updates the
DCBIOBA field to point to this lOB and
returns control to the GET routine.

Queued sequential Access Method Routines 45

• If an error occurred during the execu­
tion of the channel program, the module
issues an SVC 55 instruction to pass
.control to the SYNAD/EOV executor
(IGc0005E). (For an EOV condition,
control eventually passes to the end­
of-volume routine or I/O support and
returns after the next volume has been
found and the purged channel programs
have been rescheduled. For a
description of the flow of control from
the SYNAD/EOV executor for a permanent
error condition, refer to the section:
Sequential Access Method Executors, in
this publication.)

SYNCHRONIZING MODULE IGG019AR (OUTPUT)

Module IGG019AR finds the next output
buffer, determines its status, and passes
an empty buffer to the. PUT routine. The
OPEN executor selects and loads this module
if the OPEN parameter list specifies:

- Output

and the DCB specifies:

46

- PUT.

The module operates as follows:

• It receives control when a PUT routine
determines that a new buffer is needed.

• It finds the next lOB and tests the
status of the channel program associat­
ed with that lOB.

• If the channel program is
executed, the module issues
macro-instruction.

not yet
a WAIT

• If the channel program has been execut­
ed normally, the module updates the
DCBIOBA field to pOint to this lOB and
returns control to the PUT routine.

• If an error occurred during the execu­
tionof the channel program, the module
issues an SVC 55 instruction to pass
control to the SYNAD/EOV executor
(IGC0005E). (For an EOV condition,
control eventually passes to the end­
of-volume routine of I/O support and
returns after a new volume or more
space has been found and the purged
channel programs have been rescheduled.
For a description of the flow of
control from the SYNAD/EOV executor for
a permanent error condition, refer to
the section:' Sequential. Access Method
Executors, in this publication.)

TRACK OVERFLOW ASYNCHRONOUS
ERROR PROCESSING MODULE IGG019C1

ModUle IGG019C1 (used in both QSAM and
BSAM) processes error conditions that are
encountered in the execution of a channel
program for an input data set with track
overflow. Its processing of error condi­
tions is asynchronous to the execution of
the channel program, the I/O supervisor, Or
the processing program. It receives con­
trol by being scheduled for execution by
the track overflow abnormal end appendage
IGG019C3. It passes control to the proc­
eSSing program through the supervisor. The
module determines the Seek address for
reading the segments and blocks beyond the
segment in error and inserts it in the
IOBSEEK field. If the error occurred in a
segment of the block being read into the
buffer, the segment following the segment
in error is read, if the processing program
chooses the ACCEPT option in the SYNAD
routine. If the error occurred in a seg­
ment in the block preceding the block to be
read into the buffer (that is, the error
occurred in the block being skipped over to
find the block to be read into the buffer),
the wanted block is in the buffer when the
processing program obtains the buffer.

The OPEN executor selects and loads this
module (and places its address into an IRB
pointed to in the DEB) if the OPEN paramet­
er list specifies:

- Input, Inout, or Outin

and the DCB specifies:

- Track Overflow
- Gl!:T or READ.

The module
error occurred
Read-Data CCW:

operates as follows if the
in a ccw other than a

• It receives control from the supervi­
sor.

• It increases the track address in the
lOB by 1., posts the ECB with the error
code, and causes control to return to
the processing program.

The module operates as follows if the
error occurred in a .Read-Data CCW (without
a Skip bit on):

• It receives control from the supervi­
sor.

• If the segment in error is the last or
only segment of the block, the module
posts the ECB with the. error code and
causes contralto .return to the proc­
essing program.

• If the segment in errer is net the last
segment and it is net en an alternate
track, the medule sets the lOB to'
address the track fellewing the track
in erJ;er, pests the ECB with the errer
cede, and causes centrel to' return to'
the precessing program.

• If the segment in errer is net the last
segment and it is en an alternate
track, the medule increases the track
address in the lOB by 1" pests the ECB
with the errer cede, and causes centrel
to' return to' the precessing pregram.

The medule eperates as fellews if the
errer eccurred in a Read-Data CCW with the
Skip bit en:

• It receives centrel frem the supervi­
sere

• If the segment in errer is the final er
enly segment ef a bleck and it is net
en an alternate track, the medule sets
the lOB to' address the track in errer,
changes the Read-Data cemmand to' a NOP
cemmand and issues an EXCP macre­
instructien fer the changed channel
pregram.

• If the segment in errer is the final er
enly segment ef a bleck and it is en an
a~ternate track, the medule sets the
IO~ to' address the track fellewing the
ene eriginally addressed, pests the ECB
with the errer cede, and causes centrel
to' return to' the precessing pregram.
(In . the case ef an errer in a final or
enly segment en an alternate track, the
remaining segment er blecks en that
track will net be read.)

• If the segment in errer is net the .last
ene and it is not on an alternate
track, the medule sets the lOB to'
address the track fellowing the one in
'errer and issues an EXCP macro­
instruction fer the readdressed channel
pregram.

• If the segment in errer is net the last
ene and it is en an alternate track,
the medule successively increases the
track address in the lOB by 1 and
issues an EXCP macro-instructiO'n fer
the readdressed channel prO'gram.

• When centrel .returns from the I/O
superviser, this. module awaits execu­
tien ef the channel program via a WAIT
macro-instruction.' On channel program
exectltion, the module resteres the
purged lOBs (and the Read~Skip command,
if it was changed to'. a NOP command) and
causeS control to' return to' the proc-
eSSing pregram. .

APPENDAGES

Appendages are access methed reutines
that receive centrel from and return cen­
trol to the I/O superviser and that eperate
in the superviser state. (The same appen­
dages used in QSAM and in BSAM.) An
appendage that receives centrel frem the
I/O interrupti en superviser, tests and may
alter the channel status .werd (CSW). The
I/O interruptien superviser uses the csw to'
post the event .centrol bleck (ECB). An
appendage that receives centrel from the
EXCP supervisor, before the latter causes
executien ef the c.hannel pregram by using
the SIO instructien, may update or alter
channel commands just before channel pro­
gram executien. The relationship ef the
I/O supervisor and the appendages are
illustrated in Figure 8.

I'"
I
I
I

~
I "-::::::::::::::::=:::=='--I
I

PCI
Exit

Channel
End
Exit

Abnormal
End
Exit

I--___ PO_ST-t' - --~ B

LS\ ~,:I f -- '-S_IO ___ --'

Legend:

-- Confrol
---- Referenee"

QJ Described In This PublicatIon

Figure 8. Relationship of I/O Supervisor
and Appendages

The 1/0 supervisor permits an appendage
to gain control at certain exit points. At
that time the I/O supervisor refers .to' the
entry associated .with that exit in the
appendage vector table (whose a.ddressis in
the data enent bleck- DEBh If.an €Dtry
contains the address of an appendagE'!:;cen­
trol passes toLt; else control·, relliains
with the I/O superviser. The five. I/O
superviser exits" at whi.ch appendages
receive control, are:

Queued sequential Access Method Routines 47

- End-of-Extent
- SIO
- Channel End
- PCI
- Abnormal End.

Appendages differ from other sequential
access method routines that are loaded by
the OPEN executor into processing program
main storage in that they operate in the
supervisor state and in that they operate
asynchrcnously with the processing program,
that is, the events that cause them to gain
control depend, not on the progress of the
processing program, but on the progress of
the channel program. There are twelve
appendages. No, one, or several appendages
may be used with one DCB. Table 13 lists
the appendages, the conditions that cause
the different appendages to be used, and
the I/O supervisor exits that pass control
to them. The OPEN executor selects and
loads all the necessary appendages to be
used with that DCB, and places their
addresses into the various fields of the
appendage vector table. For example, if
the update mode of OPEN is specified,
appendage IGG019CG, associated with the SIO
appendage exit, is selected and loaded by
the Open executor.

END-OF-EXTENT APPENDAGES

End-of-extent appendages gain cpu con­
trol if the EXCP supervisor finds an end­
of-extent condition. This condition exists
if the direct-access device storage address
associated with a channel program is
outside of the extent currently pointed to
in the data extent block (DEB).

Four end-of-extent appendages are pro­
vided for use with sequential access method
routines:

48

• IGG019AW processes an end-of-extent
condition for QSAM Update mode channel
programs.

• IGG019BM
condition
programs.

processes an end-of-extent
for BSAM Update mode channel

• IGG019CH processes an end-of-extent
condition when neither the Update mode
nor chained channel:"program scheduling
is specified.

• IGG019CZ processes end-of-extent condi­
tions when chained channel-program
scheduling is used.

Appendage IGG019AW (End-of-Extent - Update
- QSAM)

Appendage IGG019AW readdresses the
Refill porticns of all QSAM Update channel
programs to a new extent. The OPEN execu­
tor selects and loads this module for use
as the end-of-extent appendage if the OPEN
parameter list specifies:

- Update

and the DCB specifies:

- GET.

The appendage operates as follows:

• It receives control
supervisor under one of
conditions:

from
the

the EXCP
following

A Refill portion of QSAM Update
channel program attempts to read
the first block beyond the present
extent.

The remaining channel programs
attempt to refill their buffers
from the new extent.

• If there is no other extent, the appen­
dage sets error indications in the lOB
and the DCB (to show an end-of-volume
condition) and returns control to the
EXCP supervisor. The EXCP supervisor
then issues a PURGE macro-instruction
for that channel program. (The Update
synchronizing routine assures writing
out of the Empty portions of pending
channel programs.)

• If the interruption occurred in a Read­
Count CCW and there is a new extent,
the appendage builds a Seek address for
the new extent using the starting
address from the DEB. It then copies
this new seek address into the lOB and
UCB (unit control block), and updates
the M value in the Refill portion of
each channel program.

• If the interruption occurred in a Seek
CCW, the appendage copies the Seek
address from the Refill portion of the
present channel program into the lOB
and UtB.

• It resets the lOB and UCB to address
the next track and its channel progranl
and returns control to'the I/O supervi­
sor.

Table 13. Module Selector - Appendages

Access Conditions Selections

I nput I I nout I Outi n X X X

Readback X

Update X X X

Sysin X

GET X

READ X

Record format is fixed-length X

Record format is fixed-length blocked X

Record format is variable-length X

Record format is not fixed-length standard X

Direct-access storage X X

Printer X

Paper tape X

Chained scheduling X X

Track overflow X

Appendages

IGG019AW AW

IGG019BM BM

IGG019CG CG

IGG019CH CH

IGG019CI CI

IGG019CJ CJ

IGG019CK CK

IGG019CL CL

IGG019CS CS

IGG019CU CU

IGG019CZ CZ

IGG019C3 C3

Exits

End-of-Extent AW BM CH CZ

SIO CG CL

Channel End CI CJ CK CS CU

PCI CU

Abnorma I End CU C3

Queued Sequential Access Method Routines 49

Appendage IGG019BM (End-of-Extent - Update
- BSAM)

.Appendage IGG019BM readdresses channel
programs to a new extent for a DCB opened
for Update and using BSAM. The OPEN execu­
tor selects and loads this appendage for
use as the end-of-extent appendage if the
OPEN parameter list specifies:

- Update

and the DCB specifies:

- READ.

The appendage operates as follows:

• It receives control from the EXCP
supervisor when a channel program to
refill a buffer attempts to read the
first block beyond the present extent.

• If there is no other extent (for a
Refill channel program), the appendage
sets error indications in the lOB and
the DCB (to show an end-of-volume
condition) and returns control to the
EXCP supervisor.

• If there is a new extent (for a Refill
channel program), the appendage adds 1
to the value of M in the DCBFDAD field
and in the Seek address of each Refill
channel program for the DCB. It places
the new Seek address into the current
lOB and into the UCB, and returns
control to the EXCP supervisor. The
supervisor restarts the channel pro­
gram.

Appendage IGG019CH (End-Of-Extent -
Ordinary)

Appendage IGG019CH finds a new extent
when the EXCP supervisor finds an end-of~
extent extent condition. The OPEN executor
selects and loads this appendage for use as
the end-of-extent appendage if the OPEN
parameter list specifies:

- Input, Inout, or outin

and the DCB specifies:

- Direct-access storage device
- Record format other than fixed-length

standard
- NOrmal channel-program scheduling.

50

The appendage operates as follows:

• It receives control when a channel
program attempts to read a block beyond
the present extent.

• The appendage examines the DEB for
another extent.

• If there is another extent, the
appendage enters the new full device
address in the DCB, the unit control
block (UCB), and the lOBs, and returns
control to the EXCP supervisor. The
EXCP supervisor restarts the channel
program.

• If there is no other extent, the appen­
dage sets error indications in the lOB
and thE DCB (to show an end-of-volume
condition) and returns control to the
EXCP supervisor. The EXCP supervisor
then issues a PURGE macro-instruction
for that channel program.

Appendage IGG019CZ (End-of-Extent - Chained
Channel-Program scheduling)

Appendage IGG019CZ readdresses the chain
of channel programs to a new extent when
the EXCP supervisor finds an end-of-extent
condition. The OPEN executor selects and
loads this appendage for use as the end-of­
extent appendage if the DCB specifies:

- Chained channel-program scheduling
- Direct-access storage device.

The appendage operates as follows:

• It receives control when an end-of­
track condition interrupts the chained
scheduling and the I/O supervisor finds
that the next track is not in the
current extent.

• If there is another extent, the
appendage enters the new Seek address
in the PCB, lOB, and unit control block
CUCB), updates t.he Seek addresses of
the remaining ICBs, and returns control
to the I/O supervisor to reschedule the
channel program for execution.

• If there is no other extent, the appen­
dage sets a volume-full indication in
the DCB, lOB, and ICB and returns
control to the I/O supervisor to skip
further scheduling for this DCB.

START I/O (SIO) APPENDAGES

Start I/O (SIO) appendages, if present,
gain CPU control when the start I/O subrou­
tine of the EXCP supervisor reaches the
start I/O appendage exit. These appendages
set channel program entries whose value
depends on events associated with the exe­
cution of the preceding channel program.
There are two SIO appendages:

• IGG019CG. This appendage makes the
Seek address accessible to the I/O
supervisor for QSAM and BSAM Update
channel programs that refill buffers.
(This is necessary because the Seek
address for such a channel program is
read in by the preceding channel,pro­
gram into a location unknown to the I/O
supervisor.)

• IGG019CL. This appendage causes the
next line to print at the top of a new
page if a printer overflow condition
was encountered in the execution of the
last channel program.

Appendage IGG019CG (SIO - update)

Appendage IGG019CG resets the lOB to the
Seek address and channel program for
refilling for a Refill-only Update channel
program. The OPEN executor selects and
loads this appendage for use as the SIO
appendage if the OPEN parameter list speci­
fies:

- update.

The appendage operates as follows:

• It receives control whenever the EXCP
supervisor reaches the SIO appendage
exit.

• It tests the lOB to determine whether
the buffer is to be emptied and
refilled or to be refilled only.

• If the buffer is to be emptied and
refilled, the module returns control to
the EXCP supervisor.

• If the buffer is to be refilled only,
the module resets the lOB to the Refill
portion of the channel program and its
Seek address and returns control to the
EXCP supervisor.

Appendage IGG019CL (SIO - PRTOV)

Appendage IGG019CL causes a skip to the
top of a new page with the first channel
program following a printer overflow condi­
tion. The OPEN executor selects and loads
this appendage for use as the SIO appendage
if the DCB specifies:

- Printer.

The appendage operates as follows:

• The appendage tests the lOB to deter­
mine whether a PRTOV macro-instruction
was issued with this PUT or WRITE
macro-instruction.

• If a PRTOV macro-instruction was not
issued, the appendage returns control
to the EXCP supervisor immediately.

• If the PRTOV macro-instruction was
issued, the appendage resets the PRTOV
bit in the lOB and tests the DCBIFLGS
field to determine whether a printer
overflow condition has occurred.

• If printer overflow has not occurred,
the appendage returns control to the
EXCP supervisor.

• If printer overflow has occurred, the
appendage resets the DCBIFLGS field,
inserts the "skip to 1" command byte
into the channel program, updates the
lOB channel program start address field
and the channel address word (location
72), and returns control to the EXCP
supervisor.

CHANNEL END APPENDAGES

Channel end appendages, if present, gain
CPU control when the I/O interruption
supervisor reaches the channel end appen­
dage exit. FOr a SYSIN data set, the SYSIN
appendage recognizes the delimiter charac­
ters. For other data sets, other appenda­
ges distinguish between valid and invalid
block lengths by computation. The five
channel end appendages are:

• IGG019CI. This appendage distinguishes
between
blocks

wrong-length and truncated
when fixed-length blocked

records are being read using normal
channel program scheduling.

• IGG019CJ.
between
length
records
channel

This appendage distinguishes
wrong-length and variable­

blocks when variable-length
are being read using normal
program scheduling.

Queued sequential Access Method Routines 51

• IGG019CK. This appendage recognizes
SYSIN delimiter characters.

• IGG019CS. This appendage
between valid and invalid
indications when paper
read.

distinguishes
wrong-length

tape is being

• IGG019CU. This appendage (which also
appears at the PCI and abnormal end
exits), parts executed channel programs
that were scheduled by chaining, and
posts the completions.. For channel end
channel status, this appendage dis­
tinguishes between wrong-length and
truncated blocks when fixed-length
blocked records are being read using
chained channel-program scheduling.

(Refer to the section for PCI appendages
for a discussion of parting of chained
channel-programs and a description of
appendage IGG019CU.l

Appendage IGG019CI (Channel End -
Fixed-Length Blocked Record Format)

Appendage IGG019CI distinguishes between
valid wrong-length blocks and truncated
blocks. The OPEN executor selects and
loads this appendage if the OPEN parameter
list specifies:

- Input, Readback, Inout, or Outin

and the DCB specifies:

- Fixed-length blocked records.

(Under these conditions the SLI flag is off
in the Read channel command word.)

52

The appendage operates as follows:

• It receives control when the I/O inter­
ruption supervisor arrives at the chan­
nel end exit.

• If the appendage finds either the unit
exception bit on in the channel status
word, or the wrong-length indication
off., it returns control to the I/O
interruption supervisor immediately.

• The appendage calculates the length of
the block and compares this length to
that in the DCBLRECL field.

• If the fixed-length blocked record for­
mat is specified and the block length
is an integral multiple of the DCBLRECL
field value (showing it to be a trun­
cated block), the appendage turns off
error indications in the ECB and the
DCB and returns control to the I/O
interruption supervisor.

• If the fixed-length blocked standard
record format is specified and the
block is a truncated block, the appen­
dage determines that this is the last
block of the data set. The appendage
sets bits in the DCB and the ECB to
show that an end-of-volume (EOV) condi­
tion exists, and returns control to the
I/O interruption supervisor.

• If the block length is not an integral
multiple, the appendage returns control
to the I/O interruption supervisor
immediately. The I/O interruption
supervisor then sets the ECB to show
that the channel program was executed
with an error condition.

Appendage IGG019CJ (Channel End -
Variable-Length Record Format)

Appendage IGG019CJ distinguishes between
valid wrong~length blocks and variable­
length blocks. The OPEN executor selects
and loads this .appendage if the OPEN
parameter list specifies:

- Input, Inout, Outin

and the DCB specifies:

- Variable-length records.

(Under these conditions the SLI flag is off
in the Read channel command word.)

The appendage operates as follows:

• It receives control when the I/O inter­
ruption supervisor arrives at the chan­
nel end exit.

• If the appendage finds a unit exception
bit on in the channel status word, it
returns control to the I/O interruption
supervisor immediately.

• The appendage calculates the length of
the block and compares it to that in
the block length field.

• If the lengths are equal, the appendage
turns off error indications in the ECB
and DCB and returns control to I/O
interruption supervisor.

• If the lengths are not equal, control
is returned to the I/O interruption
supervisor immediately. The I/O inter­
ruption supervisor then sets the ECB to
show that the channel program executed
with an error condition.

Appendage IGG019CK (Channel End - SYSIN)

Appendage IGG019CK translates the delim­
iter character for a SYSIN data set into an
end-of-data-set indication for the access
method routine. The OPEN executor selects
and loads this appendage if the device
assigned to this DCB is SYSIN.

The appendage operates as follows:

• It receives control when the I/O inter­
ruption supervisor arrives at the chan­
nel end exit.

• The appendage tests the buffer for the
SYSIN delimiter characters /*.

• If the characters read are not delimi­
ter characters, the appendage returns
control to the I/O supervisor.

• If the characters read are deliwiter
characters, the appendage turns on the
unit exception bit in the channel sta­
tus word and the error flag in the DCB,
indicating an end-of-data set condi­
tion, and returns control to the I/O
supervisor.

Appendage IGG019CS (Channel End - Paper
Tape)

Appendage IGG019CS distinguishes between
valid wrong-length blocks and the wrong­
length indication characteristic when paper
tape is being read. The OPEN executor
selects and loads this appendage if the DCB
specifies:

- Fixed-length record format
- Paper Tape.

The appendage operates as follows:

• It receives control when the I/O
interruption supervisor arrives at the
channel end exit.

• If the channel status word (CSW) resi­
dual count is zero" the appendage turns
off error indications in the lOB and
the DCB and then returns control to the
I/O supervisor.

• If the channel status word (CSW) resi­
dual count is not zero, the appendage
returns control to the I/O supervisor
immediately.

PROGRAM CONTROLLED INTERRUPTION (PCI)
APPENDAGE (EXECUTION OF CHANNEL PROGRAMS
SCHEDULED BY CHAINING)

There is one program controlled inter­
ruption (PCI) appendage. If chained
channel-program scheduling is used, its
address is placed into the appendage vector
table for all three I/O interruption super­
visor exits: PCI, channel end, abnormal
end.

A program controlled interruption (PCI),
in the sequential access methods, signals
the normal execution of a channel program
that was scheduled by chaining. The inter­
ruption occurs when control of the channel
has passed to the next channel program. If
the only channel status is PCI the I/O
supervisor performs no processing; if other
channel conditions are also present, the
I/O supervisor processes these in normal
fashicn after it regains CPU control from
the PCI appendage.

This appendage performs the following
three functions:

• It performs the channel status analysiS
usually done by the I/O interruption
supervisor. The interruption is caused
by a condition in the logic of the
channel program rather than a condition
in the channel or the device. The
condition is meaningful only to the
processing program (in this case, the
access method routines, or, more speci­
fically, the appendage) and has no
meaning to the I/O supervisor.

• It repeats this process for preceding
channel programs whose PCls were lost.
PCls are not stacked. If a channel
remains masked from the time of one PCI
until after another PCI, only one PCI
occurs.

• It performs processing normally neces­
sary for other interruptions (for exam­
ple, channel end). Interruptions other
than PCls may terminate execution of
chained channel programs.

Accordingly, a PCI appendage not only
does the processing implicit for the logi­
cal condition that the interruption signals
(namely, that the preceding channel program
executed normally), but also extends this
processing back to any preceding channel
programs whose PCI may have been masked
and, finally, takes CPU control at other
I/O interruption supervisor appendage exits
if chained channel-program scheduling is
used.

Queued Sequential Access Method Routines 53

Appendage IGG019CU(Channe1 End, PCI,
Abnormal End - Chained Channel-Program
Execution)

Appendage IGG019CU disconnects (parts)
chained channel programs that have executed
and posts their completion; in addition, it
performs normal channel end and abnormal
end appendage processing. (For a descrip­
tion of the joining process of chained
channel-program scheduling refer to the
descriptions of the chained channel-program
scheduling end-of-block routines.> The
OPEN executor selects and loads this appen­
dage for use as the channel end, PCI, and
abnormal end appendage if the DCB speci­
fies:

54

- Chained channel-program scheduling.

The appendage operates as follows:

• It receives control from the I/O inter­
ruption supervisor when the latter
arrives at the PCI, channel end, and
abnormal end appendage exits.

• It tests whether
field "First ICB"
channel program.

the CSW and the lOB
pOint to the same

• If they do" the appendage returns con­
trol to I/O supervisor, unless a chan­
nel end condition exists.

• If they do not, the appendage discon­
nects (parts) the channel program
(pointed to by the ICB) from the next
channel program in the chain as fol­
lows:

For input, the appendage tests the
lOB for an end-of-vo1ume condition.
.If it exists, the appendage contin­
ues as for a channel end interrup­
tion with a permanent error.

For output, or for input without an
associated end-of-vo1ume condition,
the appendage resets the COIr;mand in
the last CCW from TIC to NOP and
the address to the beginning of the
next channel program.

If the device is magnetic tape, it
updates the DCBBLKCT field in the
DCB.

If a WAIT macro-instruction was
addressed to this channel program,
the appendage causes the POST rou­
tine to perform its processing and
to return control to the appendage.

It posts the ICB with the comple­
tion code and with channel end and
updates the lOB SAM prefix to point
to the next ICB.

It repeats this parting process
until the lOB and the CSW point to
the same channel program.

The appendage continues as follows if
channel end occurred without an error:

• It sets the lOB and the ICB to show the
channel program completed without
error, and resets the lOB to point to
the next channel program and ICB.

• If there are more channel programs to
be executed, the appendage resets the
lOB to not-complete and passes control
to the EXCP supervisor tc schedule
these channel programs.

• If there are no more channel
to be executed, the appendage
control to the I/O supervisor
mal

programs
returns

for nor-

The appendage continues as follows if
the channel end interruption occurred with
a wrong length indication:

• It determines whether a truncated block
has been read.

• If a truncated block has been read in a
data set with fixed-length blocked
standard record format, it sets:

the DCB to show an end-of-volume
condition,

the current ICB to complete­
without-error.

the next ICB to
error,

complete-with-

the CSW in the next ICB to show
channel end and unit exception.

It returns control to
interruption supervisor.

the I/O

• If a truncated block has been read in a
data set with fixed-length blocked
record format, the appendage sets the
ICB to complete-without-error and
resets the lOB to point to the next ICB
and its channel program. The appendage
causes control to pass to the EXCP
supervisor to restart the channel.

• If a hlock with wrong length data has
been read, the appEmdage continues as
for permanent errors.

The appendage continues as follows if
channel end occurred with an error:

• It isolates the channel program in­
error by parting it from the next one.

• It sets the lOB to point to the
channel-program in-error.

• It sets the DCB to show that the
channel program is being retried.

• It returns control to the I/O interrup­
tion supervisor. That routine then
processes the channel program in the
Error Retry procedure.

The appendage continues as follows if
channel end occurred with a permanent
error:

• It receives control after the I/O
supervisor Error Retry procedure is
found unsuccessful in correcting the
error.

• It posts the ICB to show that the
channel program as completed in-error.

• It parts the channel program in-error
from the following one.

• It resets the lOB to point to the
channel program after the one in-error.

• It returns control to the I/O interrup­
tion supervisor.

ABNORMAL END APPENDAGES

Abnormal end appendages receive control
from the I/O interruption supervisor when
the latter finds a unit check condition in
the channel status word (CSW). The appen­
dages for this exit are a track overflow
appendage and a chained channel-program
execution appendage shared with the channel
end and PCI exits. The shared appendage is
described under the PCI appendage.

A unit check status in a channel
addressing an input data set with track
overflow may indicate a permanent error in
one segment of a block. If there are
further good segments, or if the segment in
error is being skipped over to find the
next block, the sequential access methods
attempt to continue access beyond the seg-

ment in error. The processing necessary to
accomplish this is performed by the track
overflow asynchronous error processing rou­
tine (module IGG019Cl, described in the
synchronizing and error processing routines
section), rather than by the appendage. To
permit other I/O operations to continue,
the appendage suspends further processing
of the condition by the I/O supervisor,
schedules the asynchronous error processing
routine, and returns control to the I/O
supervisor.

Appendage IGG019C3 (Abnormal End - Track
Overflow)

Appendage IGG019C3 schedules the track
overflow asynchronous error processing rou­
tine if a permanent error occurs in a
channel program for an input data set with
track overflow. The OPEN executor select
and loads this appendage for use as the
abnorrr.al end appendage if the OPEN paramet­
e~ list specifies:

- Input, Inout or Outin

and the DCB specifies:

- Track overflow.

The appendage operates as follows:

• It receives control from the I/O inter­
ruption supervisor when the latter
reaches the abnormal end appendage
exit.

• If the CSW that caused this appendage
to gain control addresses a Read-Data
CCW (without a Skip bit) and shows a
unit exception channel status, the
appendage returns control to the I/O
interruption supervisor without further
processing. (After control returns to
the processing prograr<1, the synchroniz­
ing or CHECK routine processes this
channel status as an end-of-volume con­
dition.)

• If the CSW that caused this appendage
to gain control addresses a Read-Data
CCW (with a Skip bit on) and shows a
unit exception or a unit check channel
status, the appendage passes control to
the exit effector routine together with
the entry point address of I/O supervi­
sor that causes the I/O supervisor not
to post the ECB and to retain the
request element for the channel pro­
gram. (The exit effector routine will
schedule the track overflow asynchron­
ous error processing routine for even­
tual execution and pass control to the
given entry' point.)

Queued sequential Access Method Routines 55

QSAM CONTROL ROUTINES

These control routines, shared by QSAM
and BSAM, consist of both modules loaded by
the OPEN executor and macro-expansions.
The selection and loading of one of the
modules is done by the OPEN executor and
depend on the access conditions; the pre­
sence of macro-expansions depends solely on
the use of the corresponding macro­
instruction in the processing program and
is independent of the presence or absence
of modules.

If a CNTRL macro-instruction is
encountered in a processing program using
QSAM or BSAM, control passes to a control
routine. The PRTOV macro-expansions place
the code to be executed in-line in the
processing program. CNTRL routines pass
control to the I/O supervisor; the macro­
expansions return control to the processing
program. The CNTRL routine for the card
reader causes execution of a channel
program that stacks the card just read into
the selected stacker. The CNTRL routine
for the printer causes execution of a
channel program with a command to space or
to skip. The printer overflow macro­
expansions cause the printer overflow
condition to be sensed for.

There are two CNTRL routines in QSAM;
they are load modules. Table 14 lists the
routines available and the conditions that
cause a particular routine to be used. The
OPEN executor selects one of the modules,
loads it, and puts its address into the
DCBCNTRL field.

Table 14. Module Selector - Control
Modules

r-------------------~---------T-----------,
I I I
I Access Conditions Iselections I
I I I
~-----------------------------+-----T-----~
I CNTRL I X I X I
~-----------------------------+-----+-----i
I Printer I X I I
~-----------------------------+-----+-----i
I Card Reader, I I X I
I a single buffer I I I
~-----------------------------+-----+-----i
I I I I
I Modules I I I
I I I I
~-----------------------------+-----+~~---i
I IGG019CA . I X I I
~-----------------------------+-----+-----i
I IGG019CB I I X I L _____________________________ i _____ i _____ J

56

There are two PRTOV routines; they are
macro-expansions. Whenever the assembler
encounters either of the two macro­
instructions shown in Table 15, it
substitutes the corresponding macro­
expansion in the processing program object
module.

Table 15. Control Routines That Are Macro-
Expansions

r-----------------------------T-----------,
I I I
I I Number of I
I Macro-Instruction I Macro- I
I I Expansions I
I I I
~-----------------------------+-----------~
I PRTOV - User exit I 1 I
~-----------------------------+-----------i
I PRTOV - No user exit I 1 I L _____________________________ i ___________ J

CONTROL MODULE IGG019CA (CNTRL - SELECT
STACKER - CARD READER)

Module IGG019CA permits stacker
selection on the card reader. The OPEN
executor selects and loads this module if
the DCB specifies:

- CNTRL

- Card reader

- One buffer.

The module operates as follows:

• It receives control when the CNTRL
macro-instruction is 'encountered in a
processing program.

• For QSAM, the module schedules a chan­
nel program which stacks the card just
read, reads the next card into the
buffer, and returns control to the
processing program. (Card reader GET
modules IGG019AG and IGG019AH depend on
the use of this routine to refill empty
l::uffers.)

• For BSAM, the module schedules a chan­
nel program which stacks the card just
read, and then returns control to the
processing program. (The READ/WRITE
module IGG019BA causes a channel pro­
gram to be scheduled that reads the
next card into the buffer.)

CONTROL MODULE IGG019CB (CNTRL - SPACE,
SKIP - PRINTER)

Module IGG019CB causes printer spacing
and skipping by use of macro-instructions~
the spacing or skipping to be performed are
specified as operands of the macro­
instruction. The OPEN executor selects and
loads this module if the DCB specifies:

- CNTRL

- Printer.

The module constructs a channel
to control the device" issues
macro-instruction and then returns
to the processing program.

PRINTER OVERFLOW MACRO-EXPANSIONS

The PRTOV macro-expansions
processing program response to
overflow conditions.

program
an EXCP

control

permit
printer

The following macro-expansions are
created as in-line coding during the expan­
sion of the macro-instruction.

PRTOV - User Exit

The coding operates as follows:

• A WAIT macro-instruction is issued for
the lOB pointed to by the DCBIOBA
field.

• The DCBIFLGS field of the DCB is tested
for an overflow condition.

• If an overflow condition exists, a BALR
instruction is issued to pass control
to the user's routine.

• If no overflow condition exists, con­
trol passes to the next instruction.

PRTOV - No User Exit

The coding creates a test mask in the
DCB field located at (DCBDEVT+l) and
returns control to the processing program.

(The printer end-of-block routine tempo­
rarily stores the mask in the NOP channel
command word (CCW) preceding the Write CCW,
turns on a bit in the first byte of the lOB
and resets the mask. The PRTOV appendage
tests the lOB bit, to determine whether to
respond to, or ignore, an overflow condi­
tion, and resets it.)

Queued sequential Access Method Routines 57

BASIC SEQUENTIAL ACCESS METHOD·ROUTINES

Basic sequential access method (BSAM)
routines cause storage and retrieval of
blocks of data. BSAM routines furnish
device control, but do not provide block­
ing. There are six types of BSAMroutines:

• READ routines.
• WRITE routines.
• End-of-block routines.
• CHECK routines.
• Appendages.
• Control routines.

Figure 9 and Table 16 show the relation­
ship of BSAM routines, other portions of
the operating system, and the processing
program.

A READ or a WRITE routine receives
control after a READ or a WRITE macro­
instruction is encountered in a processing
program. A READ or WRITE routine partially
completes a channel program using
parameters from the data event control
block (DECB), and passes the DECB, together
with the input/output block (lOB), to an
end-of-block routine. (For a description
and diagram of the relationship of the
DECB, the lOB, the data control block
(DCB) , channel prograrf, and buffer, refer
to Appendix C.)

An end-of-block routine provides device
oriented data for the channel program. If
normal channel-program scheduling is used,
the routine passes control to the I/O
supervisor (via an EXCP macro-instruction)
to cause scheduling of the buffer. If
chained channel-program scheduling is used,
it attempts to add the present channel
program to the last one in the chain of
scheduled channel programs. If it is suc­
cessful, control returns to the processing
program. If it is unsuccessful, control
passes to the I/O supervisor (via an EXCP
macro-instruction). (For a detailed des­
cription of the end-of-block routines refer
to "Queued Sequential Access Method ROu­
tines" section in this publication.)

A CHECK routine receives control from
the processing program via a CHECK macro­
instruction. A CHECK routine examines the
DECB to determine the status of the channel
program. If the channel program executed
normally, control returns to the processing
program. However, if the channel program
executed with an error, control passes from
the CHECK routine to the SYNAD/EOV executor
(IGC0005E) for processing of error
conditions. For permanent errors, control

58

returns to the CHECK routine, and it then
passes control to the processing program's
SYNAD routine. (For EOV conditions, con­
trol passes to the EOV routines.)

READ,
WRITE

I/o Interruption

I/o Supervisor

I/O Interruption

Processing
Program

I-__ S-,up_e_rv_is_o_r ----1L--.--ll
EXCP I I

Supervisor I I
~----,----~ I

I I L

LPSW I I

CHECK

---, --I I

""===r=r=:::=:'.l+--] I I
I I
I I
I I

Executor I I

ACCEPT

User's SYNAD
Routine

Track Overflow

I
I
I
I

__ .-l

-,
I
I
I
I

_...1

I
I
I
I
I
I

I
I I DECB

i ~"(O§---
I
I

Legend:

I
I
I
I
I
I
I
L ___ _

SIO (b)

(a) Previous Channel Program
(b) Next Channel Program

-- Control
- - - Reference

Appendages

Idl Routines Described in This Publication

Figure 9. Flow of Control in BSAM

---,
I
I
I
I

--.I

__ J

Table 16. Flow of Control of BSAM Routines
r-----------------------T---------------------~---------------r------------------------~,
I I I I
IRoutine Passing Control I Condition IRoutine Receiving Control I
I I I I
~-----------------------+--------~----------------------------+-------------------------~
I Processing I READ or WRITE I READ or WRITE I
I Program I Macro-instruction I I
~-----------------------+-------------------------------------+-------------------------~ I READ or WRITE I Branch instruction I End-of-block I
~-----------------------+---------~---------------------------+------------------------~~
I End-of-block I EXCP Macro-instruction I I/O supervisor I
~-----------------------+-------------------------------------+---.---------------------~ I I/O supervisor I End I End-of-block I
~-----------------------+-------------------------------------+-----------------.-------~
I End-of-block lEnd I READ or WRITE I
~-----------------------+------------;,.;------------------------+-------------------------~
I READ or WRITE I End I Processing I
I I I Program I
~-----------------------+-------------------------------------+-------------------------~
I Processing I CHECK Macro-instruction I CHECK I
I Program I I I
~-----------------------+--------~----------------------------+-------------------------~
I CHECK I Channel program not yet executed I WAIT I
~-----------------------+-------------------------------------+-------------------------~
I CHECK· I Channel program executed I SYNAD/EOV I
I I with error I Executor I
~-------------~------~--+-------------------------------------+-------------------------~
I CHECK I Channel program executed I Processing I
I I without error I Program I
~-----------------------+-------------------------------------+-------------------------~
I supervisor I I/O interruption 11/0 supervisor I
~-----------------------+-----~-----~-------------------------+-------------------------~
I I/O supervisor I Appendage exit condition I Appendage I
~-----------------;,.;-~---+-------------------------------------+-------------------------~
I Afpendage I End I I/O supervisor I
~-----------------------+-------------------------------------+-------------;,.;-----------~ I I/O supervisor I End I Supervisor I
L ______________ ----____ --L _____ '"-_________________ -'-_____________ .L_---------------_--------J

The asynchronous error processing rou­
tine (described in the "Queued Sequential
Access Methods Routines" section of this
publication) gains control by being sche­
duled by an appendage. The routine proc­
esses permanent error conditions that are
encountered by a channel program for input
data with track overflow record format.
The routine establishes the address of the
segment beyond the one in error.

An appendage receives control from the
I/O supervisor and returns control to the
I/O supervisor. Some appendages operate
with the I/O interruption supervisor, and
others operate with the EXCP supervisor.
(Appendages are described in the "Queued
sequential Access Method Routines" section
of this publication.)

Control routines (not shown in Figure 9)
permit the processing program to control
the positioning of auxiliary storage devi­
ces. They receive control when the CNTRL
(Printer, Tape, Card Reader), PRTOV, NOTE,
POINT or BSP macro-instructions are encoun­
tered in'a processing program. The track

balance routine receives control from a
WRITE routine or the track overflow end-of­
block routine.

Appendix A contains decision tables that
show for each type of routine, the
processing characteristics that differenti­
ate the routines within that type.

READ AND WRITE ROUTINES

A READ or WRITE routine receives control
when the processing program issues· a READ
or a WRITE macro-instruction. The READ and
WRITE routines used with data sets organ...;.
ized for the sequential . or partitioned
access methods pass control to'the end-of­
block routines, which in turn pass control
to the I/O. supervisor. The WRITE routines
used to create data sets organized for
later access by basic direct"-access method
(BDAM) routines, includetheend-of-block
function within themselves, and sopass
control to the I/O supervisor directly. A

Basic Sequential Access Method Routines 59

READ or WRITE routihe processes parameters
set by the processing program in the DECB,
to permit scheduling of the next channel
program.

There are six READ,. WRITE routines.
Table 17 lists the routines available and
the conditions that cause a particular
module to be used. The OPEN executor
selects one of these routines, loads it,
and puts its address into the DCBREAD/WRITE
field. The table shows" for example, that
module IGG019BH is selected and loaded if
Update and the READ macro-instruction are
specified .•

Table 17. Module Selector - READ and WRITE
Modules

r-----------------T-----------------------,
I I I
IAccess Conditions I Selections I
I I I
~-----------------+--T-~--T--T--T--T-_y--~
I Input or I X I I X I X I I I I I
.-----------------+--+--+--+--+--+--+--+--~
10utput or I IX I I I IX IX IX I
~-----------------+--+--+--+--+--+--+--+--i
IInout, Outin IX IX I I I I I I I
.-----------------+--+--+--+--+--+--+--+--~
I Update I I I I IX I I I I
.-----------------+--+--+--+--+--+--+--+--~
I READ IX I IX IX IX I I I I
.-----------------+--+--+--+--+--+--+--+--i
I WRITE I I X I I I I I I I
.-----------------+--+--+--+--+--+--+--+--~
IWRITE (LOAD) I I I I I IX IX IX I
I (Create--BDAM) I I I I I I I I I
.-----~-----------+--+--+--+--+--+--+--+--~
IPaper tape I I IX IX I I I I I
I character I I I I I I I I I
I conversion I I I I I I I I I
• -----------------+--+--+--+--+--+--+--+--i
I Fixed-length I I IX I I IX I IX I
I record format I I I I I I I I I
.--------.,.--------+--+--+--+--+--+--+--+--i
IUndefined-length I I I IX I I IX I I
Irecord format or I I I I I I I I I
.-----------------+--+--+--+--+--+--+--+--~
I Variable-length I I I II I IX I I
I record format I I I I I I I I I
.-----------------+--+--+--+--+--+--+--+--~
ITrack Overflow I I I I I I I IX I
.-----------------+--~.,.-+--~-+--~-~--~--~
I READ, WRITE I I I I
I Modules I I I I
.-----------------+--T--+--T--+--T--T--T--~
I IGG019BA I X I X I I I I I I I
.-----------------+--+--+--+--f--+--+--+--i
I IGG019BF I I I X I X I I I I I
~-----------------+--+--+--+--+--+--+--+--~
I IGG019BH I I I I I X I I I I
.-----------------+--+--+--+--+--+--+--+--i
I IGG019DA I I I I I I X I I I
~-----------------+--+--+--+--+--+--+--+--i
I IGG019DB' I I I I I I I X I I
~-----------------+--+--+--+--+--+--+--+--~
I IGG019DD I I I I I I I IX I l _________________ ~ __ ~ __ ~ __ ~ __ ~_~ __ ~ __ ~ __ J

60

READ/WRITE MODULE IGG019BA

Module IGG019BA completes the channel
program to be scheduled next, and relates
control blocks used by the I/O supervisor
to the channel program. The OPEN executor
selects and loads this module if the OPEN
parameter list specifies:

- Input, Output, Inout, or Outin

and the DCB specifies:

- READ or WRITE.

The module operates as follows:

• It receives control when a READ or
WRITE macro-instruction is encountered
in a processing program.

• It enters the address of the lOB into
the DECB to permit the CHECK routine
later to test execution of the channel
program.

• It completes the channel program by
inserting the buffer address from the
DECB, and the length from either the
DECB (for undefined-length records),
the DCB (for fixed-length records, and
for input of variable-length records),
or the record itself (for output of
variable length records).

• If a block is to be written on a
direct-access storage device, the
module tests the DCBOFLGS field in the
DCB to establish the validity of the
value in the DCBTRBAL field •

• If the DCBTRBAL value is valid, or if a
block is to be written on a device
other than direct-access storage, or if
a block is to be read from any device,
the module passes control to an end-of­
block routine.

• If the DCBTRBAL value is not valid
(that is, the preceding operation was a
READ, POINT, or OPEN for MOD) the
module issues an SVC 25 instruction to
pass control to BSAM control module
IGC0002E to obtain a valid track
balance. When control returns to this
module, it passes control to an end-of­
block routine.

READ MODULE IGG019BF (PAPER TAPE CHARACTER
CONVERSION)

Module IGG019BF completes
program to read paper tape,
execution, and converts the

a channel
awaits its

paper tape

characters into EBCDIC characters. The
OPEN executor selects and loads this module
(and one of the code conversion modules
listed in Appendix D) if the DCB specifies:

- READ
- Fixed-length or undefined-length record

format
- Paper tape.

The module operates as follows:

• It receives control when a READ macro­
instruction is encountered in a
processing program.

• It enters the address of the lOB into
the DECB, to permit the CHECK routine
to test execution of the channel pro­
gram.

• It completes the channel program by
inserting the buffer address from the
DECB, and the length value from the
field DCBBLKSI (for fixed-length record
format) or the DECB (for undefined­
length record format).

• It passes control to the end-of-block
routine.

• When control returns from the end-of­
block routine, the module issues a WAIT
macro-instruction to await execution of
the channel program.

• It converts each character in the
buffer until one of the following con­
ditions is met, with the stated effect:

Conversion has
of characters
length value:
control to the

provided the numcer
specified in the
The module returns

processing program.

All the characters read have been
converted, but into a smaller num­
ber of characters. (Some input
character codes have no correspond­
ing EBCDIC translation in a speci­
fic code conversion module. There­
fore., after conversion of all char­
acters in the buffer, the number of
converted characters may be less
than the length value): The module
completes a channel program for the
number of additional characters
needed to fill the buffer, passes
control to the end-of-block routine
which issues the EXCPmacro­
instruction to schedule the channel
program, and issues a WAIT macro­
instruction for the channel
program. When control returns, the
module resumes converting charac­
ters.

An end-of-record character is en­
countered (undefined-length record
format only): The module returns
control to the processing program.

The tape is exhausted: The module
returns control to the processing
program.

A paper tape reader-detected error
character is encountered: If neces­
sary because of compression, the
module moves the character to the
left (without conversion), and
returns control to the processing
program.

• If one of the characters in the buffer
is an undefined character, the module
converts the character to the hexadeci­
mal character FF, sets an indication of
this condition in the lOB for the paper
tape CHECK routine, and continues con­
version until one of the other condi­
tions is met.

Appendix D lists the modules composed of
the tables used for code conversion.

READ/WRITE MODULE IGG019BH (UPDATE)

Module IGG019BH ascertains whether a
buffer supplied by the processing program
is to be written from or read into, and
causes a corresponding BSAM Update channel
program to be executed. The OPEN executor
selects and loads this module if the OPEN
parameter list specifies:

- Update

and the DCB specifies:

- READ.

The module operates as follows:

• It gains control when the processing
program uses a READ or a WRITE macro­
instruction.

• If data is to be read into a buffer,
the module flags the lOB for a Read
operation, sets it to point to the Read
channel program, and copies the length
and buffer address from the DECB or the
DCB into the Read CCW.

• If data is to be written from a buffer,
the module flags the lOB for a Write
operation, sets it to point to the
Write channel program, .copies the
auxiliary storage address from the
DCBFDAD field into the IOBSEEK field
and completes the length and buffer
address entries in the Write ccw.

Basic Sequential Access Method Routines 61

• The module passes control to end-of­
block module IGG019CC. On return of
control from that module, it returns
control to the processing program.

WRITE MODULE IGG019DA (CREATE~BDAM)

Module IGG019DA writes, for a data set
later to be processed by BDAM, fixed-length
data blocks, fixed-length dummy blocks, and
record-zero blocks. The OPEN executor
selects and loads this module if the DCB
specifies:

62

- WRITE (LOAD)
- Fixed-length record format.

The module operates as follows:

• It receives control from the processing
program when it encounters a WRITE
macro-instruction and also frow the
EOV/new volume executor after the end­
of-volume routine of I/O support has
obtained another extent.

• It connects the next available lOB to
the DCB and the DECB.

• It determines, in the same wanner as
end-of-block routine IGG019CD, whether
this block fits on the current track
and updates the DCBTRBAL field.

• If this is neither the first nor the
last block of a track" the module
updates the full device address (FDAD)
in the DCB and the lOB and issues an
EXCP macro-instruction. It then
returns control to the processing pro­
gram or the EOV/new volume executor
(whichever it received control from).

• If this is the last block of a track
(that is, no other block will fit on
the track except the present block),
the module updates the full device
address (FDAD) in the DCB and the lOB,
expands the channel program to write
the record-zero block for that track as
well as the last data block, and issues
an EXCP macro-instruction. The module
then returns control to the routine
from which it received control.

• If this is the first block Of a new
track and there is another track in the
allocated extent, the module finds the
next track in the allocated extent,
updates the· full device address (FDAD)
in the DCB and the lOB, and issues an
EXCP macro-instruction. It then
returns control to the routine from
which it received control.

• If this is the first block of a new
track and there is no other track in
the allocated extent, the rr-odule sets
an EOV condition indication and returns
control to the processing program.

WRITE MODULE IGG019DB (CREATE-EDAM)

Module IGG019DB writes, for a data set
thereafter to be processed by BDAM,
variable-length and undefined-length blocks
and record-zero blocks. The OPEN executor
selects and loads this module if the DCB
specifies:

- WRITE (LOAD)
- Variable-length or undefined-length

record format.

The module essentially consists of two
routines: one to write data blocks; one to
write record-zero blocks.

To write a data block for BDAM, the
routine operates as follows:

• It receives control from the processing
program when it encounters a WRITE-SF
macro-instruction and also from EOV/new
volume executor (to write the block not
written into the previous volume) after
the end-of-volume routine of I/O sup­
port has obtained another extent.

• It determines whether this block fits
on the current track in the same manner
as end-of-block routine IGG019CD and
updates the DCBTRBAL field.

• If one of the following conditions
exists, it returns control (without any
further processing) to the processing
program or to the EOV/new volume execu­
tor (whichever it received control
from) :

A block other than the first block
on a track is to be written, but it
does not fit on the balance of the
track.

The first block is to be written on
a track, but the allocated extents
are exhausted. (For this condi­
tion,themodule sets an EOV condi­
tion indication before it returns
control.)

• If either of the following conditions
exists, the module updates the full
device address (FDAD) in the DCE, the
lOB, and the channel program, issues an
EXCP macro-instruction" and then returns
control to the· routine from which con­
trol was received:

A block other than the first block
on the track is to be written and
it fits on the balance of the
track.

The first block is to be written on
a track and there is another track
in the allocated extents.

• It returns control to the processing
program or the end-of-volume routine.

To write a record-zero block for BDAM,
the routine operates as follows:

• It receives control when a WRITE-SZ
macro-instruction is encountered in the
processing program, or after the end­
of-volume routine has obtained another
extent.

• It updates the record-zero area and the
channel program to write the record­
zero block and issues an EXCP macro­
instruction. The routine returns
control to the processing program or to
the end-of-volume routine.

• If there are no data blocks on the
track, the module modifies the channel
program to clear the track after writ­
ing the record-zero block.

WRITE MODULE IGG019DD (CREATE-BDAM - TRACK
OVERFLOW)

Module IGG019DD creates data sets (with
track overflow) of fixed-length data and
fixed-length dummy blocks that are subse­
quently to be processed by BDAM. The
module segments the block, enters the seg­
ment lengths and buffer segment addresses
in the channel program, updates storage
addresses for the channel program, and
count fields for the block to be written
and for records zero of the tracks. The
OPEN executor selects and loads this module
if the OPEN parameter list specifies:

- output

and the DCB specifies:

- WRITE (LOAD)
- Fixed-length record format
- Track overflow.

The module operates as follows:

• It receives control from the processing
program when the program finds a WRITE
macro-instruction, or from the end-of­
volume routine of IIO support after
that routine has obtained a new volume
to write out any pending channel

programs. (The end-of-volume routine
receives control from the CHECK routine
when that routine finds that a channel
program did not execute because of an
end-of-volume condition.)

• If no lOB is available, it returns
control to the processing program.

• If an lOB is available, it stores its
address in the DCB and the DECB.

• If the block last written was the last
one for this extent, the module erases
the balance of the extent.

• If the block last written filled the
last track used, the module obtains the
address of the next track.

• It sets the lOB and its channel program
to write the block onto the next avail­
able track.

• If the block does not fill the track,
the module completes the count field
for this record and issues an EXCP
macro-instruction.

• If the block fills the track, the
module sets the track-full indicator,
completes record zero for this track,
links the channel program that writes
record zero to the channel program that
writes the data record, and issues an
EXCP macro-instruction.

• If the block overflows the track, the
module completes record zero for this
track and completes a channel program
to write record zero, completes the
count field and channel program for the
segment that fits on the track, and
constructs the identification for
record one of the next track.

• It repeats the preceding
ment is left that does
track. For the final
module operates as for
fits on the track.

until a seg­
not overflow a

segment, the
a block that

• On return of control from the IIO
supervisor, the module returns control
to the routine from which it was
received.

CHECK ROUTINES

A CHECK routine synchronizes the execu­
tion of channel programs with that of the
processing program. When the processing
program issues a READ or WRITE macro­
instruction, control returns to the
processing program (from the. READ or WRITE

Basic Sequential Access Method Routines 63

routine> when the channel program has been
scheduled for execution or, if reading
paper tape, when the buffer has been filled
and the data converted. To determine the
sta'te of execution of the channel program,
the processing program issues a CHECK
macro-instruction; control returns to the
processing program (from the CHECK routine)
if the channel program was executed suc­
cessfully, or if it was executed success­
fully after the CHECK routine caused
volume-switching. For permanent errors,
control passes to the processing program's
SYNAD routine. Reading or writing under
BSAM, the SYNAD routine may continue proc­
essing the data set by returning control to
the CHECK routine; writing in the Create­
BDAM mode, processing cannot be resumed.

There are four CHECK routines. Table 18
lists the routines available and the
conditions that cause a particular module
to be used. The OPEN executor selects one
of the four routines, loads it, and places
its address into the DCBCHECK field. For
example, the table shows that module
IGG019BG is selected and loaded if READ and
paper tape character conversion is speci­
fied.

Table 18. Module Selector - CHECK Modules
r---------------------T-------------------,
I I I
I Access Conditions I Selections I
I I I
~---------------------+---T---T---T---T---~
I Input or , X, 'X I , I
~---------------------+---+---+---+---+---~
10utput or I I X I I I I
~---------------------+---+---+---+---+---~
I Inout, Outin I X I X I I , I
~-------------~-------+---+---+---+---+---~
,Update I I I 'X I I
~---------------------+---+---+---+---+---~
I READ I X I I X I I I
~---------------------+---+---+---+---+---~
I WRITE I I X I I I I
~---------------------+---+---+---+---+---~
IWRITE(LOAD) I I I I I X I
I (Create-BDAM) I I , I I I
~---------------------+---+---+---+---+---~
I Paper tape I I I X I I I
Icharacter conversion I I I I I I
~---------------------+---i---+---i---i---~
I I I I
I CHECK Modules I I I
I I I I
~---------------------+---T---+---T---T---~
I IGG019BB I X I X I I I I
~---------------------+---+---+---+---+---~
I IGG019BG I I I X I I I
~---------------------+---+---+---+---+---~
I IGG019BI I I I I X I I
~---------------------+---+---+---+---+---~
I IGG019DC I I I I I X I L _____________________ i ___ i ___ i __ ~i ___ i ___ J

64

CHECK MODULE IGG019BB

Module IGG019BB synchronizes the execu­
tion of the channel program to that of the
processing program, and responds to any
exceptional condition remaining after the
I/O supervisor has posted execution of the
channel program in the lOB. The OPEN
executor selects and loads this module if
the OPEN parameter list specifies:

- Input, Output, Inout, or Outin

and the DCB specifies:

- READ or WRITE.

The module operates as follows:

• It receives control when a CHECK macro­
instruction is encountered in a
processing program.

• It tests the DECB for successful execu­
tion of the channel program.

• If the channel program was executed
normally, the module returns control to
the processing program.

• If the channel program is not yet
executed, the module issues a WAIT
macro-instruction.

• If the channel program encountered an
error condition in its execution, the
rrodule issues an SVC 55 instruction to
pass control to the SYNAD/EOV executor
(IGC0005E). Two types of returns from
the executor are possible:

If the executor determines the
error condition to be an EOV condi­
tion, the executor passes control
to the end-of-volume routine of I/O
support for volume switching. That
routine passes control to the
EOV/New Volume executor which res­
chedules the purged channel pro­
grams. That executor returns con­
trol to the CHECK module.

If the executor determines the
error condition to be a permanent
error, the executor returns control
to the CHECK module immediately.
Centrol is then passed to the proc­
essing program's SYNAD routine. If
the SYNAD routine returns control
to CHECK routine, the routine
issues a second SVC 55 instruction
to pass control to the SYNAD/EOV
executor (IGC0005E) again. The
executor treats this as an ACCEPT
error option, implements it, and
returns control to the routine,
which then returns control to the
processing program.

CHECK MODULE IGG019BG (PAPER TAPE CHARACTER
CONVERSION)

Module IGG019BG processes error condi­
tions detected by READ module IGG019BF.

This module is loaded if the DCB speci­
fies the READ macro-instruction and paper
tape character conversion.

The module operates as follows:

• It receives control when a CHECK macro­
instruction is encountered in a
processing program.

• If the READ routine filled the buffer
with valid characters, the CHECK module
returns control to the processing pro­
gram.

• If the READ routine stopped converting
because of a reader-detected error
character, or if the READ routine
encountered an undefined character, the
CHECK module passes control to the
processing program's SYNAD routine.

• If control returns from the SYNAD rou­
tine, the CHECK module returns control
to the processing program.

• If the channel program encountered an
EOV condition, the CHECK module issues
an SVC 55 instruction. Control passes
to the SYNAD/EOV executor (IGC0005E),
then to the 2nd-of-volume routine of
I/O support, and finally to the proc­
essing program's EODAD routine.

CHECK MODULE IGG019BI (UPDATE)

Module IGG019BI synchronizes the execu­
tion of a BSAM Update channel program to
the progress of the processing program. (A
BSAM Update channel program either writes
data from a buffer or reads data into a
buffer.) The module also causes processing
of permanent errors and end-of-volun'e con­
ditions. The OPEN executor selects and
loads this module if the OPEN parameter
list specifies:

- update

and the DCB specifies:

- READ.

The module operates as follows:

• It receives control when the processing
program uses the CHECK macro-
instruction.

• It tests the ECB in the DECB for
successful execution of the channel
program associated with that DECB.

• If the channel program is not yet
executed, the module uses a WAIT macro­
instruction.

• If the channel program has been
executed normally, the module returns
control to the processing program.

• If the channel program encountered an
error condition in its execution the
module tests to determine if the error
is an EOV condition.

• If the error is an EOV condition, the
module sets an indicator to show that
this entry is from the CHECK module and
passes control to the processing
program's EODAD routine.

• If the error is not an EOV condition
the module issues an SVC 55 instruction
to pass control to the SYNAD/EOV execu­
tor (module IGC0005E).

• On return of control from the SYNAD/EOV
executor the CHECK module passes con­
trol to the processing program's SYNAD
routine. If the SYNAD routine returns
control to CHECK routine, the routine
issues a second SVC 55 instruction to
pass control to the SYNAD/EOV executor
(IGC0005E) again. The executor treats
this as an ACCEPT error option, imple­
ments it, and returns control to this
routine, which then returns control t_o
the processing program.

CHECK MODULE IGG019DC (CREATE-BDAM)

Module IGG019DC synchronizes the execu­
tion of the channel program (to write a
block for a BDAM data set) to the progress
of the processing program, and responds to
exceptional conditions encountered in the
execution of the channel program. The OPEN
executor selects and loads this module if
the DCB specifies:

- WRITE (LOAD).

Basic Sequential Access Method Routines 65

The module operates as follows:

• It receives control when the processing
program uses the CHECK macro-
instruction.

• If the channel program is not yet
executed, the module issues a WAIT
macro-instruction.

• If the channel program executed without
error" the module returns control to
the processing program.

• If the execution of the channel program
encountered a permanent error
condition, the module passes control to
the processing program's SYNAD routine.
If control is returned from the SYNAD
routine, or if there is no SYNAD rou­
tine, the module issues an ABEND macro­
instruction.

• If the WRITE routine encountered an EOV
condition (and, therefore did not
request scheduling of the channel pro­
gram for execution), this module passes
control to the SYNAD/EOV executor
(IGC0005E) by issuing an SVC 55
instruction. On return of control this
module tests for completion of the
channel program.

BSAM CONTROL ROUTINES

A control routine receives control when
a control macro-instruction (for example"
CNTRL, NOTE, POINT, BSP) is used in a
processing program or in another control
routine. BSAM control routines (which
include those available in QSAM) pass con­
trol to the I/O supervisor, another control
routine, or return control to the process­
ing program directly. BSAM control rou­
tines cause the physical or logical posi­
tioning of auxiliary storage devices.

There are three types of BSAM control
routines:

66

• Routines that are loaded into process­
ing program main storage by the OPEN
executor (CNTRL, NOTE/POINT).

• Routines that are loaded into supervi­
sory transient area main storage by an
SVC instruction in a processing program
macro-expansion or in another control
routine (BSP, Track Balance).

• Routines that
expansions in
(PRTOV).

are in-line macro­
the processing program

Routines that are loaded by the OPEN
executor are mutually exclusive; that is,
only one of them can be used with one DCB.
The PRTQV macro-expansions result in
instructions that set or test bits that
cause branching in either the processing
program or in an appendage.

Tables 19, 20, and 21 list the various
kinds of control routines and the paramet­
ers that cause them to gain control. Table
19 shows the access condition options that
cause the OPEN executor to load a control
routine for use with a DCB. Table 20 lists
the SVC instructions that cause a control
routine to be loaded at execution time.
Table 21 lists the different macro­
expansions constructed by the assembler.

Table 19. Module Selector
Modules Selected and
the OPEN Executor

Control
Loaded by

r---------------------------T-------------,
I I I
I Access Conditions I Selection I
I I I
~---------------------------+-T-T-T-T-T-T-~
I NOTE/POINT IXIXI IXIXI I I
~---------------------------+-+-+-+-+-+-+-~
I Update, Track Overflow, orl I I IXI I I I
~---------------------------+-+-+-+-+-+-+-~
I Chained Scheduling I I I IXIXI I I
~---------------------------+-+-+-+-+-+-+-~
I CNTRL I I IXI I IXIXI
~---------------------------+-+-+-+-+-+-+-~
I Direct-Access Storage IXI I IXI I I I
~---------------------------+-+-+-+-+-+-+-~
I Magnetic Tape I IXIXI IXI I I
~---------------------------+-+-+-+-+-+-+-~
I Printer I I I I I I X I I
~---------------------------+-+-+-+-+-+-+-~
I Card Reader I I I I I I IXI
~---------------------------+-~-~-~-~-~-~-~
I I I
I control Modules I I
I I I
~---------------------------+-T-T-T-T-T-T-~
I IGG019 BC I X I I I I I I I
~---------------------------+-+-+-+-+-+-+-~
I IGG019BD I IXI I I I I I
~---------------------------+-+-+-+-+-+-+-~
I IGG019BE I I I X I I I I I
t---------------------------+-+-+-+-+-+-+-~
I IGG019BK I I I IXI I I I
~----------~----------------+-+-+-+-+-+-+-~
I IGG019BL I I I I I X I I I
~---------------------------+-+-+-+-+-+-+-~
I IGG019CA1 I I I I I IXI I
~---------------------------+-+-+-+-+-+-+-~
I IGG019CB'- 1 I I I I I IXI
~---------------------------~-~-~-~-~-~-~-~
I'-These routines are also used in QSAM; I
I see that section for description of I
I these routines. I L ___ J

Table 20. Control Modules Loaded at Execu-
tion Time

r---T--------T-----------------T----------,
I I Macro- I I I
ISVCllnstruc-1 Function IModule No.1
I No. I tion I I I
~---+--------+-----------------+----------i
125 I (none) I Establish valid 1 IGC0002E 1
I I I track balance 1 I
" , Erase balance I ,
I' I of extent for 1 I
I I , track overflow I I
~---+--------+-----------------+----------i
169 ,BSP ,Device I IGC00061 I
I I , Independent I I
" I Backspace (tape" I
" I direct-access) I I L ___ ~ ________ ~ _________________ ~ __________ J

Table 21. Control Routines That Are
Macro-Expansions1 2

r-----------------------------T-----------,
I " I , Number of ,
I Macro-Instruction 1 Macro- I
, I Expansions,
, I'
~-----------------------------+-----------i
1 PRTOV - User exit ,1,

~-----------------------------+-----------~ , PRTOV - No user exit , 1 , L _____________________________ ~ ___________ J

1These routines are also used in QSAM;
see that section for a description of
the routines.

2This table duplicates Table 15; it is
repeated here tc identify all control
routines available in BSAM.

CONTROL MODULE IGG019BC (NOTE, POINT -
DIRECT-ACCESS)

The OPEN executor selects and loads this
module if the DCB specifies:

.,.. POINT
- Direct-access storage device.

The module consists of two routines:
NOTE and POINT.

NOTE Routine

The NOTE routine in module IGG019BC
converts the full direct-access device
address (FDAD) for' the last block read or
written.", to a relative address (of the fortll
TTR), and presents that value to the proc­
essing program.

The NOTE routine operates as follows:

• It receives control when a NOTE macro­
instruction is encountered in a
processing program.

• It obtains the FDAD value used by the
channel program last executed. The
address is found in either the lOB or
the DCB depending upon which macro­
instruction the last channel program
implemented.

• If the macro-instruction was READ and
more than one buffer is used, the
channel program last executed placed
the FDAD value into the IOBSEEK field
in the lOB.

• If the macro-instruction was READ and a
single buffer is used, the channel
program last executed placed the FDAD
value into the DCBFDAD field of the
DCB.

• If the macro-instruction was WRITE, the
end-of-block routine placed the FDAD
value into the DCBFDAD field.

• It issues a BALR instruction to pass
control to the IECPRLTV routine; which
converts full addresses into relative
addresses.

• It returns the address and control to
the processing program.

POINT Routine

The POINT routine in module IGG019BC
converts a relative address (of the form
TTRZ) to the full direct-access device
address (FDAD) used by the next channel
program to read or write the block noted.

The POINT routine operates as follows:

• It receives control when a POINT macro­
instruction is encountered in a
processing program.

• It issues a BALR instruction to pass
control to the IECPCNVT routine. That
routine converts the relative address
to the full address and returns control
to the POINT routine. If the process­
ing program passed an invalid relative
address, the routine sets the DCBIFLGS
and IOBECBCC fields to show that an
addressing error occurred, before
returning control. (The CHECK routine
finds the error and processes accord­
ingly.)

Basic Sequential Access Method Routines 67

• It establishes the actual value to be
used by the next channel program by
testing the fourth byte of the relative
address (TTRZ) • If the value of Z is
zero, the full address is decrerrented
by one; if Z is one, the address
calculated by the IECPCNVT routine is
left unchanged. (For an explanation of
how the value of Z is set, refer to the
description of the POINT macro­
instruction in the publication IBM
System/360 Operatinq System: control
Program Services.)

• It inserts the value in the DCBFDAD and
IOBSEEK fields, sets the DCBOFLGS field
to show that the contents of the
DCBTRBAL field are no longer valid, and
returns control to the processing pro­
grarr.

CONTROL MODULE IGG019BD (NOTE, POINT -
MAGNETIC TAPE)

The OPEN executor selects and loads this
module if the DCB specifies:

- POINT
- Magnetic Tape.

This rrodule consists of two routines: NOTE
and POINT.

NOTE Routine

The NOTE routine in module IGG019BD
presents the contents of the DCBBLKCT field
of the DCB to the processing program and
returns control to the processing program.

POINT Routine

The POINT routine in module IGG019BD
positions the tape at the block for which
NOTE was issued.

68

The POINT routine operates as follows:

• It receives control when a POINT macro­
instruction is encountered in a
processing program.

• It constructs a channel program to read
forward or backward one block.

• It passes the channel program for exe­
cution the number of times required to
position the tape at the desired block.

• It follows the last Read channel pro­
gram by a NOP channel program to obtain
device end information for the last
spacing operation.

• It returns control to the processing
program, unless a tape mark, load
point, or permanent error is encoun­
tered in one of the executions of the
Read channel program. In that case,
the routine sets the DCBIFLGS field to
indicate a permanent error, before
returning control to the processing
program. (Subsequent processing by the
READ or WRITE routine to cause schedul­
ing of channel programs for execution
will result in their not being sche­
duled. On the next entry into the
CHECK routine, it detects and processes
the error condition.>

CONTROL MODULE IGG019BE (CNTRL: SPACE TO
TAPE MARK, SPACE TAPE RECORDS)

Module IGG019BE positions magnetic tape
at a point within the data set specified by
the CNTRL macro-instruction. The OPEN exe­
cutor selects and loads this module if the
DCB specifies:

- CNTRL
- Magnetic Tape.

The module consists essentially of two
routines: One ~or spacing forward or back­
ward to the tape mark (the FSM/BSM
routine), and one for spacing forward or
backward a number of tape records (the
FSR/BSR routine).

The FS~/BSM routine operates as follows:

• It receives control when a CNTRL macro-
instruction is encountered
processing program.

in a

• It constructs a channel program to
space to the tape mark in the desired
direction.

• It issues an EXCP macro-instruction for
the FSM or BSM channel program. Con­
trol returns to the routine at channel
end for the FSM/BSM channel prograrr,.

• It issues an EXCP macro-instruction for
a NOP channel program to obtain device
end information from the FSM/BSM chan­
nel program.

• It issues an EXCP macro-instruction for
a BSR or FSR channel program to pOSi­
tion the tape within the data set,
after the FSM/BSM channel program
encounters a tape-mark.

• It issues an EXCP macro-instruction for
a NOP channel program again, to obtain
device end information from the BSR/FSR
channel program. The routine then
returns control to the processing pro­
graro.

The FSR/BSR routine operates as follows:

• It receives control when a CNTRL macro­
instruction is encountered in a
processing program.

• It constructs a channel program to
space one record in the desired direc­
tion.

• It reduces the count passed by the
control macro-instruction and issues an
EXCP macro-instruction for the FSR or
BSR channel program.

• When the count is zero, it issues an
EXCP macro-instruction for a NOP chan­
nel program to obtain the device end
information from the last FSR/BSR chan­
nel program. The routine then returns
control to the processing prograro.

• If a load point is encountered during
spacing, the routine returns control to
the processing program.

• If a tape mark is encountered during
spacing, the routine repositions the
tape to a point within the data set by
reverse spacing one block and returns
control to the processing program.

• If a permanent error is encountered
during spacing, the routine issues a
BALR instruction to pass control to the
SYNAD routine, if one is present; if
not, it issues an ABEND macro­
instruction.

CONTROL MODULE IGG019BK (NOTE, POINT -
DIRECT-ACCESS - SPECIAL)

This module contains the NOTE and POINT
routines for the special access conditions
of chained scheduling, track overflow, and
Update. The OPEN executor selects and
loads this module if the DCB specifies:

- POINT
- Direct-access storage
- Chained scheduling, track overflow, or

the OPEN parameter is Update.

NOTE Routine

The NOTE routine in module IGG019BK
finds the full direct-access device address
(FDAD) for the last block read or written,

converts it to a relative address (of the
form 'I'TR), and presents that value to the
processing program.

The NOTE routine operates as follows:

• It receives control when a NOTE macro­
instruction is encountered in a
processing prograro.

• It obtains the FDAD value used by the
channel program last executed. The
location of this address depends on
which macro-instruction the last chan­
nel program implemented.

• If the macro-instruction was READ and
more than one buffer is used, the
channel program last executed placed
the FDAD value into the IOBSEEK field
in the lOB if track overflow or Update
is being used, and into the ICBSEEK
field if chained scheduling is used.

• If the macro-instruction was READ and
only a single buffer is used the chan­
nel program last executed placed the
FDAD value into the DCBFDAD field of
the DCB.

• If the macro-instruction was WRITE, the
end-of-block routine placed the FDAD
value into the DCBFDAD field.

• It issues a BALR instruction to pass
control to the IECPRLTV routine, which
converts full addresses into relative
addresses.

• It returns the address and control to
the processing program.

POINT Routine

The POINT routine in module IGG019BK
establishes the full direct-access device
address (FDAD) used by the channel program
to read or write the block noted.

The POINT routine operates as follows:

• It receives control when a POINT macro-
instruction is encountered
processing program.

in a

• It issues a BALR instruction to pass
control to the IECPCNVT routine. That
routine converts the relative address
to the full address and returns control
to the POINT routine. If the process­
ing program passed an invalid relative
address, the executor sets the DCBIFLGS
and the IOBECBCC fields to show that an
addressing error occurred, before
returning control. (The CHECK routine
finds the error and processes accord­
ingly.)

Basic sequential Access Method Routines 69

• It establishes the actual value to be
used by the next channel program by
testing the fourth byte of the relative
address (TTRZ). If the value of Z is
zero, the full address is decremented
by one; if Z is one, the address
calculated by the convert routine is
left unchanged. (For an explanation of
how the value of Z is set, refer to the
description of the POINT macro­
instruction in the publication IBM
System/360 Operating System/360
Operating System: Control Program Ser­
vices.)

• It inserts the value into the DCBFDAD
and IOBSEEK fields if track overflow or
Update is being used, and also into the
ICBSEEK field if chained scheduling is
used.. It sets the DCBOFLGS field to
show that the contents of the DCBTRBAL
field are no longer valid, and returns
control to the processing program.

CONTROL MODULE IGG019BL (NOTE, POINT -
MAGNETIC TAPE - CHAINED SCHEDULING)

Module IGG019BL is selected and loaded
by the OPEN executor if the DCB specifies:

- POINT
- Magnetic Tape
- Chained scheduling.

The module consists of two routines:
NOTE and POINT.

NOTE Routine

The NOTE routine in module IGG019BL
presents the contents of the DCBBLKCT field
of the DCB to the processing program and
returns control to the processing program.

POINT Routine

The POINT routine in module IGG019BL
positions the tape at the black for which
NOTE was issUed. It operates as follows:

70

• It receives control when a POINT macro­
instruction is encountered in a
processing program.

• A channel program is constructed to
read forward or backward one black.

• The channel program is passed for exe­
cution the number of times required to
position the tape at the desired block.

• The last spacing channel program is
fallowed by a NOP channel program to
obtain device end information for the
last spacing operation.

• Control is returned to the proceSSing
program, unless a tape mark, load
paint, or permanent error is encoun­
tered in the execution of one of the
channel programs. In that case, the
routine sets the DCBIFLGS field to
indicate a permanent error before
returning control to the processing
program. (Subsequent attempts by the
READ or WRITE routine to cause schedul­
ing of channel programs for execution
will result in their not being sche­
duled. On the next entry into the
CHECK routine, that routine detects and
processes the condition.)

CONTROL MODULE IGC0002E (SVC 25 - TRACK
BALANCE, TRACK OVERFLOW ERASE)

Module IGC0002E consists of two routines
that erase either a part of one track or
several tracks. The track balance routine
determines the available space by erasing
the remainder of the track; the track
overflow erase routine erases tracks at the
end of each extent on which there are no
data fields for blocks of the data set to
which the extent belongs. The routine is
used when a block in a data set with track
overflow record format· would span extents.

This module is loaded at execution time
into supervisor transient area main storage
if either READ/WRITE module IGG019BA or
end-of-block module IGG019C2 arrives at an
SVC 25 instruction.

Track Balance Routine

The track balance routine establishes a
valid value for the DCBTRBAL field of a DCB
opened for output to a direct-access
device, when the field value has been
invalidated by a preceding READ, POINT, or
OPEN for MOD macro-instruction.

The routine operates as follows:

• It receives control after it is loaded.

• It ccnstructs, and issues an EXCP
macro-instruction for, a channel pro­
gram with the Erase command and a count
exceeding the track capacity. The
erase operation begins following the
block just read or on the block pointed
at.

• It determines the actual track balance
by subtracting the residual count in
the channel status word (CSW) from the
count used in the channel prograrr" and
inserts the difference in the DCBTRBAL
field of the DCB.

• It returns control to the WRITE rou­
tine.

Track Overflow Erase Routine

The track overflow erase routine erases
the space on a direct-access storage device
that lies between the last block to be
written into the current extent and the end
of that extent. If track overflow end-of­
block routine IGG019C2 finds that the next
segment of a block falls on a track beyond
the present extent. that end-of-block
routine uses the SVC 25 instruction to pass
control, and the channel program, to this
routine.

The routine operates as follows:

• It receives control when it is loaded.

• It substitutes Erase commands for the
Write commands in the channel program
associated with the present lOB.

• It issues an EXCP macro-instruction to
cause execution of the channel program
and a WAIT macro-instruction for its
completion.

• It returns control to the track over­
flow end-of-block routine, irrespective
of any errors in the execution of the
channel program.

CONTROL MODULE IGC00061 (SVC 69 - BSP)

Module IGC00061 backspaces the data set
one block, whether the data set is on a
magnetic tape or direct-access device.

The expansion of the macro-instruction
BSP includes an SVC 69 instruction which
causes the module to be loaded and entered.
The module essentially consists of two
parts, one for magnetic tape and one for
direct-access devices.

For magnetic tape, the module operates
as follows:

• It receives control after it is loaded.

• It constructs and issues an EXCP macro­
instruction for a channel program to
backspace one block.

• It constructs and issues an EXCP macro­
instruction for a NOP channel program
to obtain device end information from
the backspace channel program.

• If the backspace channel program
executed normally, the module sets reg­
ister 15 to zero and returns control to
the processing program.

• If the channel program executed with an
error other than unit exception, the
module sets the DCBIFLGS field to indi­
cate a permanent error. (The CHECK
macro-instruction, following the next
READ or WRITE macro-instruction, causes
the CHECK routine to pass control to
the processing program's SYNAD
routine.)

• If the backspace channel program exe­
cuted with a unit exception, the module
constructs and issues an EXCP macro­
instruction for a channel program to
forward space the tape one block. It
next constructs .and issues a NOP
channel program to obtain device end
information from the forward space
channel program. When channel end for
the NOP channel program occurs, the
module returns control to tne process­
ing program with register 15 set to an
error code.

For direct-access devices, the module
operates as follows:

• It receives control after it is loaded.

• It decrements the DCBFDAD field in the
DCB to the preceding block address,
across tracks, cylinders, or extents.

• It sets the DCBOFLGS field to show that
the DCBTRBAL field value is invalid.

• If a valid preceding DCBFDAD value has
been established, the module returns
control to the processing program with
register 15 set to zero.

• If there is no valid preceding DCBFDAD
value (because the processing program
attempts to backspace beyond the first
block), the module returns control to
the processing program with register 15
set to an error code.

• If a permanent error is encountered
when reading the count fields (to esta­
blish the preceding DCBFDAD field
value), the DCBIFLGS field value is set
to indicate a permanent error. (The
CHECK routine, following the next READ
or WRITE macro-instruction, causes con­
trol to pass to the processing
program's SYNAD routine.>

Basic Sequential Access Method Routines 71

BASIC PARTITIONED ACCESS METHOD ROUTINES

A partitioned data set has a directory
and members. The directory is read and
written using BPAM routines~ the members
are read and written using BSAM routines.
{Refer to the BSAM portion of this publica­
tion.} A processing program using BPAM
routines for input from the directory is
presented with the address of a member in a
channel program or in a table~ fcr a
processing program using BPAM for output to
a directory, the routines determine the
address of the member and record that
address in the directory.

BPAM ROUTINES

BPAM routines store and retrieve entries
in the directory and convert between rela­
tive and absolute auxiliary storage
addresses. Directory entries are entered
and found by constructing channel programs
that search the directory for appropriate
entry blocks and by locating an equal, or
higher, entry within the block. Address
converting routines refer to the data
extent block (DEB) to determine the address
value complementary to the given value.

BPAM routines (see Table 22) differ from
BSAM and QSAM routines in that BPAM rou-

Table 22. BPAM Routines Residence

tines are not loaded at OPEN time; the STOW
routine is loaded at execution time, all
the coding for FIND (C option) is a macro­
expansion, and the FIND (D option)/BLDL
routine and the converting routines are in
resident main storage. Table 22 shows how
these routines gain control.

STOW MODOLE IGC0002A (SVC 21)

Module IGC0002A finds entries in BPAM
directory entry blocks and keeps the
directory left-justified after entries have
been inserted or deleted.

The expansion of the STOW macro­
instruction includes an SVC 21 instruction
that causes this module to be loaded and to
gain control. The STOW macro-instruction
is issued in one of two ways:

Explicitly by a processing program
using BPAM for output.

Implicitly by a processing program
using BSAM, QSAM, or BPAM for output,
when issuing a CLOSE macro-instruction
to a D.CB opened for a member of a
partitioned data set.

r---------------------T---------------------T---------------------T---------------------,
I I I I Instruction I
I BPAM Routines I Module NUKber I Residence I Passing I
I I I I Control I
~---------------------+---------------------+---------------------+---------------------~
I STOW I IGC0002A I Supervisory Transient I SVC 21 I
I I IArea I I
~---------------------+---------------------+---------------------+------------------~--~
I FIND (C Option) I (Macro Expansion) IProcessing Program IFIND (C Option) I
I I IArea I I
~---------------------+---------------------+---------------------+---------------------~
I FIND (D Option) I IECPFIND,IECPFNDl ISupervisory Resident ISVC 18 I
I I IArea I I
~---------------------+---------------------+---------------------+---------------------~
I BLDL I IECPFIND,IECPFND1 I supervisory Resident I SVC 18 or I
I I I Area I BAL IECPBLDL I
~-----------~---------+---------------------+---------------------+---------------------~
I Convert TTR I IECPFIND,IECPFNDl ISupervisory Resident IBAL IECPCNVT I
I I IArea I I
~---~-----------------+---------------------+---------------------+---------------------~
I Convert MBBCCHHR I IECPFIND,IECPFNDl Isupervisory Resident IBAL IECPRLTV I
I I IArea I I L-____________________ ~ _____________________ ~ _____________________ ~ _____________________ J

72

The module operates as follows:

• It receives control when it is loaded.

• If an ADD (Not ALIAS) or a REPLACE (Not
ALIAS) option is specified, the module
writes an end-of-data set mark
(zero-length data block) at the end of
the member. The module then stores,
for use at the next entry into the STOW
module, the relative address of the
next block to be written, in the
DCBRELAD field of the DCB. (The OPEN
routine determines the first relative
address for the first entry to this
module.)

• For any option, the module searches the
directory for an entry block with a key
equal to or higher than the member
name, and reads that entry block into
the input buffer.

• The module compares the entries in the
entry block to the member name in the
instruction operand. Entries whose
value is lower than that of the member
nalfe are moved to the output buffer.

• For entries that equal the member name,
the module checks to determine whether
the REPLACE, the CHANGE, or the DELETE
option is specified.

• If the REPLACE option is specified, the
module moves the new entry from the
work area to the output buffer, skips
the present entry, and moves the
remaining entries to the output buffer.
It issues an EXCP macro-instruction to
write the updated entry block into the
directory.

• If the CHANGE option is specified, the
module moves the present entry less the
present name to the new entry work
area. To enter the new entry in its
proper entry block, the routine contin­
ues as though the ADD option were
specified.

• If the DELETE option is specified, the
module skips the present entry and
moves the remaining entries to the
output buffer. The module now shifts
the halance of the entries in the
directory to the left by constructing
the necessary channel programs. It
reads a block, shifts entries into the
remaining space of the preceding block,
writes the completed entry block., and
starts the next block.

• For entries that are higher than the
member name, the module checks to
determine whether the ADD option is
specified.

• If the ADD option is specified, the
rr,odule moves the new entry from the
work area to the output buffer before
moving the high entry and those follow­
ing it. The module then shifts to the
right all entries following the added
entry by constructing the channel pro­
grams necessary alternately to write
and read entry blocks. The module
writes the full block, moves the
remaining entries to the output buffer,
reads another entry block, and then
completes and writes the output buffer.

• On completion of all channel programs
necessary for the specified option, the
routine returns control to either the
processing program, or the CLOSE rou­
tine.

FIND (C OPTION) MACRO-EXPANSION

This coding causes translation of the
relative address into a full device address
(FDAD) and its insertion into the next lOB.

The macro-expansion produces object code
that places the relative address in the
DCBRELAD field in the DCB and issues a BALR
instruction to pass control to the POINT
routine.

RESIDENT MODULE IECPFIND

Unless BLDLTAB is specified for the
RESIDNT option of the SUPRVSOR macro­
instruction in the system generation
(SYSGEN) program, this module is link­
edited at SYSGEN time with other modules to
make up the resident nucleus. (If BLDLTAB
is specified, module IECPFND1 is used.)

The routines composing the module gain
control through an SVC 18 instruction in a
processing program or a BALR instruction in
a control program. A FIND (D Option) or
BLDL macro-instruction expansion generates
an SVC 18 instruction which causes control
to pass to CSECT IGC018, the entry point
for the FIND (D Option) and BLDL routines.
Contrel programs may use a BALR instruction
and the address found in the communications
vector table (CVT) for entry points
IECPBLDL, IECPCNVT, and IECPRLTV to pass
control to the respective routines.

Basic Partitioned Access Method Routines 73

FIND (D Option) Routine - Entry Point and
CSECT Name: IGC018 (SVC 18)

The FIND (D Option) routine finds the
relative address of the member named in the
macro-instruction. It then causes the
relative address to be converted into the
full device address (FDAD) and to be loaded
into the DCBFDAD and IOBSEEK fields. The
routine operates as follows:

• It searches the directory for an entry
block with a key equal to., or higher
than, the given member name.

• It reads that entry block into main
storage and searches the entry block
for the matching entry .•

• It enters the relative address stated
in the entry into the DCBRELAD field in
the DCB and issues a BAL instruction to
pass control to the POINT routine.
Control returns to the processing pro­
gram.

BLDL Routine - Entry Points:
IECPBLDL, IGC018 (SVC 18)

The BLDL routine completes a BLDL table
with the directory entry for each of the
members named in the BLDL table. The
routine operates as follows:

• It searches the directory for an entry
block with a key equal to, or higher
than, the given member name.

• It reads 'that block into main storage
and searches the entry block for the
matching entry.

• It moves the entry into the processing
program's BLDL table, obtains the next
name to be matched, and returns to the
beginning of the routine.

• When the BLDL table has been completed,
the routine returns control to the
processing program.

Convert Relative-to-Full Address Routine -
Entry Point: IECPCNVT

Converting routine IECPCNVT accepts, in
register 0., a relative address (of the form
TTR) for direct-access devices and presents
the corresponding full device address (of
the form MBBCCHHR) at the location shown by
register 2.

74

The routine operates as follows:

• For each extent, the module reduces the
aIf,ount TT by the number of tracks in
the extent. When the balance is nega­
tive, the proper extent has been
reached.

• It determines the full device address
for the specified relative value.

Convert Full-to-Relative Address Routine -
Entry Point: IECPRLTV

Converting routine IECPRLTV accepts,
from the location shown by register 2, a
full device address (of the form MBBCCHHR)
for direct-access devices and presents the
corresponding relative address (of the form
TTR) in register o.

The module totals the number of tracks
per extent for the (M - 1) extents. For
extent M, it adds the number of tracks
entered into the extent.

RESIDENT MODULE IECPFNDl

If BLDLTAB is specified for the RESIDNT
parameter of the SUPRVSOR macro-instruction
when the system is generated, this module
is link-edited at SYSGEN time with other
modules to make up the resident nucleus.
(If BLDLTAB is not specified, module
IECPFIND is used.) At initial program
loading (IPL) time, the nucleus initializa­
tion program (NIP) constructs a resident
BLDL table from SYS1.LINKLIB directory
entries.. That table is the one referred to
by the FIND and BLDL routines in this
module.

The routines composing the module gain
control through an SVC 18 instruction in a
processing program or a BALR instruction in
a control program. A FIND (D Option) or
BLDL macro-instruction expansion generates
an 8VC 18 instruction which causes control
to pass to CSECT IGC018, the entry point
for the FIND (D Option) and BLDL routines.
Control programs may use a BALR instruction
and the address found in the communications
vector table (CVT) for entry points
IECPBLDL., IECPCNVT, and IECPRLTV to pass
control to the respective routines.

FIND CD Option} Routine - Entry Point and
CSECT Name: IGC018 (SVC lS)

The FIND (D Option) routine finds the
relative address of the member named in the
macro-instruction. It then causes the
relative address to be converted into the
full device address (FDAD) and to be loaded
into the DCBFDAD and lOB SEEK fields. The
routine operates as follows:

• If SYS1.LINKLIB is the referenced
library, it scans the resident BLDL
table for an entry that matches the
given member name.

• If SYS1.LINKLIB is not the referenced
library, or if the name is not in the
table, it searches the directory for an
entry block with a key equal to, or
higher than, the given member na~e. It
reads that entry block into main stor­
age and searches the entry block for
the matching entry.

• If the name is in the table, or after
finding the 'matching entry in an entry
block read. in, it enters the relative
address stated in the entry into the
DCBRELAD field in the DCB.

• It issues a BAL instruction to pass
control to the POINT routine.

• It returns control to the processing
program.

BLDL Routine - Entry Points:IECPBLDL,
IGC018 (SVC 18)

The BLDL routine completes a BLDL table
with the directory entry for each of the
members named in the BLDL table. The
routine operates as follows:

• If SYS1.LINKLIB is the referenced
library; it scans the resident BLDL
table for an entry that matches the
given member name.

• If SYS1.LINKLIB is not· the referenced
library, or if the name is not in the
table, it searches the directory for an
entry block with a key equal to, or

. higher than, the given member nan,e. It

reads that block into main storage and
searches the entry block for the n,atch­
ing entry.

• If the name is in the table, or after
finding the matching entry in an entry
block read in, it moves the entry into
the processing program'sBLDL table,
obtains the next name to be matched,
and returns to the beginning of the
routine.

• When the BLDL table has been completed,
the routine returns control to the
processing program.

Convert Relative-to-Full Address Routine -
Entry Point: IECPCNVT

converting routine IECPCNVT accepts, in
register 0, relative addresses (of the form
TTR) for direct-access devices and presents
the corresponding full device addresses (of
the form MBBCCHHR) at the location shown by
register 2.

The routine operates as follows:

• For each extent, the routine reduces
the amount TT by the number of tracks
in the extent. When the balance is
negative, the proper extent has been
reached.

• It determines the full device address
for the specified relative value.

convert Full-to-Relative Address Routine -
Entry Point: IECPRLTV

converting routine IECPRLTV accepts,
from the location shown by register 2, a
full device address (of the form MBBCCHHR)
for direct-access devices and presents the
corresponding relative address (of the form
TTR) in register o.

The routine totals the number of tracks
per extent f or the (M - 1) extents. For
extent M, it adds the number of tracks
entered into the extent •

Basic Partitioned Access Method Routines 75

SEQUENTIAL ACCESS METHOD EXECUTORS

Sequential access method executors are
routines that receive control froIT, pass
control to, or return control to I/O sup­
port routines. (For a description of I/O
support routines refer to the publication
IBM System/360 Operating system:
Input/Output Support, Program Logic Manual,
Form Y28-6609.) Table 23 shows the
sequence of control between executors and
other routines. Executors perform process­
ing unique to an access method when a data
control block is being opened or closed, or
an end-of-volume condition is being proc­
essed. These executors (used for QSAM,
BSAM, and BPAM) are of five types:

• OPEN executor
• CLOSE executor
• SYNAD/EOV executor
• EOV/new volume executor
• FEOV executor.

Executors differ from other access meth­
od routines in that they are executed from
the supervisory transient area. It is the
OPEN executor that loads the access method
routines into the processing program area
for later use during processing program
execution.

The OPEN executor is entered from the
OPEN routine of I/O support, and returns
control to that routine. (See Figure 10.)
It constructs the data extent block (DEB),
the input/output blocks (lOB), the channel
programs, and, if chained channel-program
scheduling is used, interruption control

blocks (ICB). It selects and load the
access method routines to be used with the
data control block (DCB) being opened.

The CLOSE executor is entered from the
CLOSE routine of I/O support, and returns
control to it. The executor handles any
pending channel programs and releases the
main storage used by the lOBs (and ICBs)
and channel programs.

The SYNAD/EOV executor is entered when
synchronizing or CHECK routine finds that a
per~anent I/O error or end-of-volume (EOV)
condition was encountered during the execu­
tion of a channel program. The executor
passes control to the end-of-volume routine
of I/O support, or executes the error
options specified by the processing pro­
gram. The executor provides a work area in
main storage for the end-of-volume routine.

The FEOV (force-end-of volume) executor
is entered when an FEOV macro-instruction
is encountered in a processing program.
The executor handles any pending channel
programs, provides a work area in main
storage for the end-of-volume routine, and
passes control to theend-of-volume routine
of I/O support.

The EOV/new, volume executor receives
control fronl the end-of-volume routine of
I/O support. The executor causes the I/O
supervisor to reschedule any channel pro­
grams not executed because of the EOV
conditions.

Table 23. Sequential Access Method Executors - Control Sequence
r-----------------T-----------------T-------------------T---~-------T-------------------, , , , I I I
, I I Receives Control , I Passes Control I
, Executor I Number , From I Via I To I
, I I I I I
~-----------------+-----------------+-------------------+-----------+-------------------1
I OPEN , See Tables 24, I See Figure 10 IXCTL I See Figure 10 I
, I 25,26 I ,(WTG Table) I I
~-----------------+-----------------+~------------------+-----------+-------------------1
I CLOSE 'IGG0201A I CLOSE Routine IXCTL I CLOSE Routine I
I I IGG0201B t I (WTG Table) I I
~-----------------+-----------------+-------------------+-----------+-------------------~
I SYNAD/EOV ,IGC0005E I Synchronizing,. I SVC 55 I EOV Routine I
I I. I CHECK Routines I I I
~-----------------+-----------------+-------------------+-----------+-------------------1
I FEOV I IGC0003A I Processing IFEOV Macro-I EOV Routine I
I , I Program I Instruction I I
, I I I (SVC 3D I I
~-----------------+-----------------+-------------------+-----------+-------------------~
I EOV/new volume I IGG0551A I EOV Routine IXCTL I See Executor I
, , I I I Description I L _________________ ~ _________________ ~ ___________________ ~ ___________ i ___________________ J

76

I' OPEN Routine " / OPEN Routine '\

~rite Output Labe./
Module

"-Merge DCB/JFC~
Module

t.. ...
IGG0191A

Construct DEB

Stage 1
t

IGG0191B IGG01911 IGG0191C

Device Initiation Build Buffer Pools Dummy Data Set
Stage 2 Stage 2

Executor Selection Executor Sel ect ion

• •

IGGOI91J IGG0191R
Normal Scheduling f---+ Chained Scheduling

I--
r-- Inout, Outin

-
Inout, Outin

Direct-Access Storage

IGG0191D IGG0191K

r--- Normal Scheduling f---+ Chained Scheduling --Direct-Access Storage Direct-Access Storage
IGG0191E

Exchange Bufferi ng

IGG0191G ~ Magnetic Tape, -
Normal Scheduling IGG0191Q Direct-Access Storage

Stage 2

Chained Scheduling IGG0191L
Unit Record, ----.: f---+ --- Input f-----..; Magnetic Tape, Unit Record,. Create-BDAM

f----.
Paper Tape Magnetic Tape (WRITE-LOAD)

Inout, Outin -
IGG0191F

Magneti c Tape Exchange Bufferi ng
IGG0191M

Exchange Buffering IGG0191H ~ Magnetic Tape, - Create":BDAM
Unit Record Track Overflow Direct-Access Storage (WRITE-LOAD) --0.1

<1 Output Track Overflow

a
IGG0191P

L..-.,
Update

Update and Track
Overflow

IGG01912 IGG01910 IGG01913 IGG01914
Update Track Overflow

(None of the other) Exchange Bufferi ng

Stage 3
Paper Tape Chained Scheduling

• •
IGG01911 I

QSAM I
_t.. -. L OPEN Routine"

"- Final Module)
Figure 10. Flow of Control - SAM OPEN Executor

Sequential Access Method Executors 77

OPEN EXECUTORS

The OPEN executors are grouped into
three. stages. Those in the first stage
receive control from the OPEN routine of
I/O support. These executors pass control
to one of the stage 2 executors, or return
control to the OPEN routine. The stage 2
executors in turn, pass control to the
stage 3 executors, or return control to the
OPEN routine. Stage 3 executors return
control to the OPEN routine. Before relin­
quishing control, each executor specifies
the next executor to be called for the data
set being opened, and also examines the
where-to-go (WTG) table to determine wheth­
er other data sets being opened at the same
time need its services. (For a description
of the WTG table refer to the publication
IBM System/360 Operating System:
Input/Output Support, Program Logic
Manual.)

Figure 10 shows the executors that com­
pose the three stages., and their relation­
ship.

STAGE 1 OPEN EXECUTORS

Stage 1 OPEN executors construct data
extent blocks (DEB) and buffer pools.
There are separate executors for actual
data sets and for dummy data sets. The
executor for actual data sets consists of
three modules and passes control to a stage
2 executor (via an XCTL macro-instruction);
the executor for dummy data sets consists
of one module and returns control to the
OPEN routine. Either executor receives
control from the OPEN routine by being
identified in the WTG table and being
loaded into the supervisory transient area.
On conclusion of all stage 1 executors'
processing, the last enters in the WTG
table the identification of the stage 2
executor that is required. Table 24 lists
the access conditions that cause different
stage 1 executors to be selected, loaded.,
and to receive control after loading.

stage 1 OPEN Executor IGG0191A

Executor IGG0191A receives control from
the OPEN routine, unless the DD statement
is DUMMY. (If the DD statement is DUMMY,
executor IGG0191C receives control from the
OPEN routine.)

The executor operates as follows:

• It receives control after it is loaded.

78

• It computes the amount of main storage
required for the data extent block
(DEB), obtains the space, and enters
the addresses of the extents. If no
primary extent has been requested for
an output data set, as shown by the
value in the field DS1NOEPV in the data
set control block (DSCB), the executor
sets the DCBCINDl field to show a
volume-full condition.

• It specifies in the WTG table that
executor IGG0191B is the next executor
required for this DCB. It then search­
es the WTG table to pass control to
another executor. For executor
IGG0191A, this is always executor
IGG0191B.

Table 24. OPEN Executor Selector
Stage 1 OPEN Executors

r-----------------------T-----------------,
I I I
I Access Conditions I Selection I
I I I
~-----------------------+-----T-----T-----1
I Actual data set I X I X I I
.-----------------------+-----+-----+-----1
I Buffer Pool Required I I X I I
.-----------------------+-----+-----+-----1
I Dumny data set I I I X I
~-----------------------+-----+-----+-----1
I I I I I
I Executors I I I I
I I I I I
.-----------------------+-----+---~-+-----1
I IGGOl91A I X I X I I
I and IGG0191B I I I I
~-----------------------+-----+-----+-----1
I IGGOl91C I I I X I
.-----------------------+-----+-----+-----1
I and IGG01911 I I X I I L _______________________ L _____ L _____ L _____ J

Stage 1 OPEN Executor IGG0191B

Executor IGG0191B is always loaded after
executor IGG0191A has completed processing
all entries in the WTG table.

The executor operates as follows:

• It receives control after it is loaded.

• If the device type is direct-access
storage, it determines the first Seek
address and enters it in the DCBFDAD
field.

• If the DCB is opened for MOD, it copies
the contents of the DS1TRBAL field of
the DSCB into the DCBTRBALfield of the
DCB.

• If the DCB is opened for input and the
data set control block (DSCB) shows
that the data set contains no data, it
sets the DCBCINDl field to show a
volume-full condition. For example,
for an error log pata set without
entries the DSCB field DS1LSTAR (which
contains the value TTR) has an entry of
TTR=O.

• If this or the preceding executor sets
a vOlume-full indication in the DCB,
the executor sets the IOBFLAGl field
(and the ICBFLAGl field, if chained
scheduling is used) to show an end-of­
volume condition.

• If the device is a printer with the
universal character set (UCS) feature,
the executor constructs a channel
program to prevent (block) or to allow
(unblock) data checks for the printer,
and issues an EXCP macro-instruction
for it. (The lOB, DEB, and DCB located
in the work area of the OPEN routine
are used to schedule and execute the
channel program.)

• If a buffer pool is to be built, as
shown by entries in the DCBBUFNO or
DCBBUFCB fields, the executor specifies
in the WTG table that executor IGG01911
is the next executor required for this
DCB. It then searches the WTG table to
pass control to another executor.

• If no buffer pool is to be built, the
executor specifies in the WTG table the
stage 2 executor required for this DCB.
It then searches the WTG table to pass
control to another executor.

Stage 1 OPEN Executor IGG0191C (and Dummy
Data Set Module IGG019AV)

Executor IGG0191C operates as follows:

It receives control from the OPEN rou­
tine if the DD statement is DUMMY, and
loads module IGG019AV. Dumrry data sets
require only this executor; if no other
data sets are being opened, control returns
to the OPEN routine~

Dum roy data set module IGG019AVoperates
as follows:

It receives control when a sequential
access method macro-instruction refers to a

dummy data set. For a dummy input data
set, the module passes control to the
user's EODAD routine; for a dummy output
data set, the module returns control to the
processing prograrr, irrmediately, without
scheduling any I/O operation.

Stage 1 OPEN Executor IGG01911

Executor IGG01911 is loaded after execu­
tor IGG0191B if the OPEN executor must
build buffer pools.

The executor operates as follows:

• It receives control after it is loaded.

• If the values in both the DCBBUFL and
DCBBLKSI fields are zero, the executor
passes control to the ABEND routine.

• If the value in either the DCBBUFL or
DCBBLKSI field is not zero, the execu­
tor uses that value to establish the
size of the buffer. The value in the
field DCBBUFNO determines the number of
buffers constructed.

• It specifies in the WTG table the stage
2 executor required for this DCB. It
then searches the WTG table to pass
control to another executor.

STAGE 2 OPEN EXECUTORS

A stage 2 OPEN executor establishes
device oriented information for the proc­
essing described by a DCB, and completes
device oriented control blocks or fields.
One of the stage 2 executors receives
control for each DCB being opened; the WTG
table identifies the executor required for
each DCB. On conclusion of an executor's
processing it enters in the WTG table the
identification of the stage 3 executor
required. Table 25 lists the access condi­
tions that cause the different stage 2
executors to be loaded and to receive
control.

The device oriented processing performed
by a stage 2 executor primarily consists of
the construction of input/output blocks
<rOBl and their associated channel pro­
grams, and the identification of the end-
of-block routine required for the
processing described by the DCB. For
chained channel-program scheduling an exe­
cutor also constructs interruption control
blocks (ICB).

Sequential Access Method Executors 79

Table 25. OPEN Executor Selector - Stage 2 OPEN Executors
r---------------------------T---,
I I I
I Access Conditions I Selection I
I I I
~---------------------------+---T---T---T---T---T---T---T---T---T---T---T---T---T---T---~
I BSAM or I X~I I I I X~I X I X~I X I X~I X I X I X~I X~I X~I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I QSAM I X~I X I X I X I X~I I X~I I X~I I I X~I X~I X~I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
1 Input or I X21 X 1 I X21 I I I I X21 I I I I 1 I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I output I X 2 I I X I X 2 I I I I I X 21 1 I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+~--+---+---+---~
I Inout, Outin I I I I I I X I I X I I I I I I I X I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I Update I I I I I I I I I I I I X I X I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I Unit Record I I I I X I X41 I I I I I I I I X51 I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I Magnetic Tape I I X31 X31 I X41 X I I I I I I I I X51 I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I Paper Tape I I I I I X41 I I I I I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+~--+---+---~
I Direct-Access Storage I X I X31 X31 I I I I X I X I I I I I I I
~---------------------------+---+---+---+---+--~+---+---+---+---+---+---+---+---+---+---~
I WRITE-LOAD <Create-BDAM) I I I I I I I I I I X I X I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I Exchange Buffering I I X I X I X I I I I I I I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+--~+---+---+---~
I Track Overflow I I I I I I I X I I I I X I I X I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I Chained Scheduling I I I I I I I I I X I I I I I X I X I
~---------------------------+---+---+---+---~---~---+---+---+---+---+---+---~---+---+---~
I I I I I I I I I I I I I I
I Executors I 1 I I I I I I I I I I I
I I I I I I I I 1 I I I I I
~---------------------------+---+---+---+---T---T---+---+---+---+---+---+---T---+---+---~
1 IGG0191D I D I I I I I I I I I I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I IGG0191E I I E I I I I I I I I I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I IGG0191F I I I F I I I I I I I I I I 1 I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I IGGOl91G I I I 1 GIG I G I I I I I I I 1 1 I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I IGG0191H 1 I I I I I I H I I I I I I I 1 I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I IGGOl91J 1 I 1 I 1 1 I 1 J I I I 1 I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I IGG0191K I I I I 1 I I I I K I I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I IGG0191L I I I I I I I I I I L I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I IGG0191M I I 1 I I 1 I I I I I M I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I IGG0191P I I I I I I I I I I liP 1 P I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I IGG0191Q I I I I I I I I I I I I I I Q I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I IGG0191R I I I I I I I I I I I 1 I I I R I
~---------------------------~---~--~---~---~---~---~---~---~---~---~---~---~---~---~---~
I ~This executor is selected for either QSAM or BSAM. I
I 2This executor is selected for either Input or Output. I
I 3This executor is selected for either Magnetic Tape or Direct-Access Storage. I
I 4This executor is selected for either Unit Record, Magnetic Tape, or Paper Tape. I
I 5This executor is selected for either unit Record or Magnetic Tape. I L ______________________________ ----___ J

80

Stage 2 OPEN Executor IGG0191D

Executor IGG0191D receives control after
executor IGG0191B or IGG01911 if the OPEN
parameter list specifies:

- Input or Output

and the DeB specifies:

- Direct-access storage device

- BSAM, or QSAM and simple buffering

(but neither Update, nor track overflow,
nor chained channel-program scheduling is
specified). It may also receive control
after executors IGG0191E, IGG0191F, or
IGG019lK.

The executor constructs lOBs and channel
programs and places the address of the
first lOB into the DeB.

The executor specifies in the WTG table
that executor IGG01910 is the next executor
required for this DeB. It then searches
the WTG table to pass control to another
executor.

stage 2 OPEN Executor IGG0191E

Executor IGG0191E receives control after
executor IGG0191B or IGG01911 if the OPEN
parameter list specifies:

- Input

and the DeB specifies:

- Exchange buffering

- Magnetic tape, or direct-access storage

(but not track overflow). The executor is
loaded, and gains control, when its iden­
tification in the WTG table is found by
another executor.

The executor operates as follows:

• It receives control after it is loaded.

• If the operating mode is move, or the
record format is variable-length
blocked, or the record format is
variable-length and the operating mode

is substitute, simple buffering is sub­
stituted for exchange buffering.
Therefore, it identifies (in the WTG
table) executor IGG0191D (if the device
type is direct-access storage) or exe­
cutor IGG0191G (if the device-type is
unit record) as the executor required
next for this DeB. It then searches
the WTG table to pass control to anoth­
er executor.

• It identifies the end-of-block routine
to be used in the processing specified
by the DeB, and obtains space for and
constructs lOBs and channel programs
and links them.

• If the device is direct-access storage,
it copies the starting Seek address
from the DeB into the lOB.

• It specifies in the WTG table that
executor IGG01914 is the next executor
required fer this DeB. It then search­
es the WTG table to pass control to
another executor.

Stage 2 OPEN Executor IGG0191F

Executor IGG0191F receives control after
executor IGG0191I if the OPEN parameter
list specifies:

- Output

and the DeB specifies:

- Exchange buffering

- Magnetic tape, or direct-access storage

(but not track overflow). The executor is
loaded, and gains control, when its iden­
tification in the WTG table is found by
another executor.

The exeoutor operates as follows:

• It receives control after it is loaded.

• If the operating mode is move, or the
record format is variable-length
blocked, or the record-format is
variable-length and the operating mode
is substitute, simple buffering is sub­
stituted for exchange buffering.
Therefore, it identifies (in the WTG
table) executor IGG0191D (if the device
type is direct-access storage) or
IGG0191G (if the device type is unit
record or magnetic tape) as the execu­
tor required next for this DeB. It
then searches the WTG table to pass
control to another executor.

sequential Access Method Executors 81

• It identifies the end-of-block routine
to be used in the processing specified
by the DCB, and obtains space for and
constructs lOBS and channel programs
and links them.

• It specifies in the WTG table that
executor IGG01914 is the next executor
required for this DCB. It then search­
es the WTG table to pass control to
another executor.

Stage 2 OPEN Executor IGG0191G

Executor IGG0191G receives control after
executor IGG0191B or IGG01911 if:

- The DCB specifies BSAM and either unit
record, magnetic tape, or paper tape

- The DCB specifies QSAM, simple buffer­
ing, and either unit record, magnetic
tape, or paper tape

- The DeB spec1.fies QSAM, exchange buf­
fering, and unit record

- The OPEN parameter is Inout or Outin
and the DCB specifies magnetic tape

(but not if update, track overflow, or
chained channel-program scheduling is
specified). It may also receive control
after executors IGG0191E, IGG0191F, and
IGG0191Q.

The executor constructs lOBs and channel
programs and places the address of the
first lOB into the DeB.

The executor specifies in the WTG table
the next executor required for this DCB.
If the DCB specifies exchange buffering,
the next executor is IGG01914. If the DCB
specifies paper tape, the next executor is
IGG01912. For the remaining access condi­
tions that cause this executor to be used,
the next executor is IGG01910. The execu­
tor then searches the WTG table to pass
control to another executor.

Stage 2 OPEN Executor IGG0191H

Stage 2 OPEN executor IGG0191H receives
control after executor IGG0191B or
IGG0191I, if the DCB specifies:

- Track overflow

82

(but not Update). The executor is loaded
and gains control, when another executor
finds its identification in the WTG table.
(If both track overflow and Update are
specified, executor IGG0191P receives con­
trol.)

The executor operates as follows:

• It receives control after it. is loaded.

• It identifies the end-of-block routine
and the direct-access NOTE/POINT rou­
tine to be used in the processing
specified by this DCB.

• It obtains space for and constructs
lOBs and channel programs for the maxi­
mum number of segments possible. It
links the channel programs to the lOBs
and the lOBs to one another.

• It specifies in the WTG table that
executor IGG01913 is the next executor
required for this DCB. It then search­
es the WTG table to pass control to
another executor.

Stage 2 OPEN Executor IGG0191J

Executor IGG0191J receives control after
executor IGG0191B or IGG01911 if the OPEN
parameter list specifies:

- Inout or Outin

and the DeB specifies:

- Direct-access storage.

The executor constructs lOBs and channel
programs (including a portion for write­
check, if it has been specified), and puts
the address of the first lOB into the DeB.

The executor specifies in the WTG table
that executor IGG01910 is the next executor
required for this DCB. It then searches
the WTG table to pass control to another
executor.

Stage 2 OPEN Executor IGG0191K

Executor IGG0191K receives control after
executor IGG0191B or IGG01911 if the DCB
specifies:

- Chained channel-program scheduling

- Direct-access storage.

It is loaded and
another executor
in the WTG table.

receives control when
finds its identification

The executor operates as follows:

• It receives control after it is loaded.

• If the NOTE/POINT macro-instruction is
used, the executor identifies direct
access NOTE/POINT module IGG019BK to be
lOaded for use with this DCB.

• It identifies the end-of-block routine
to be loaded and used for the
processing described by this DCB.

• It obtains space for, and constructs,
one lOB, the required number of ICBs
(that is, one ICB per channel program
or buffer), and their associated chan­
nel programs, and then links them.

• It specifies in the WTG table that
executor IGG01913 is the next executor
required for this DCB. It then search­
es the WTG table to pass contrcl to
another executor.

Stage 2 OPEN Executor IGG0191t

Executor IGG0191L receives control after
. executor IGG0191B or IGG01911 if the DCB
specifies:

- Create-BDAM (WRITE-LOAD).

The executor constructs lOBs and enters the
address of the first lOB into the DCB. If
track overflow is not specified, the execu­
tor also builds channel programs. (If
track overflow is specified, channel pro­
grams are built by executor IGG0191M.)
This executor also loads the Create-BDAM
WRITE and CHECK routines, and inserts their
addresses into the DCB.

Unlike other stage 2 executors that
cause control to pass to a stage 3 execu­
tor, this one indicates in the WTG table
that OPEN executor processing for this DCB
is completed, unless track overflow is
specified. <If track overflow is speci­
fied,it identifies executor IGG0191M as
the next executor required for this DCB.)
It then searches the WTG table to pass
control to another executor. If the WTG
table has no other entries, the executor
returns control to the OPEN routine.

Stage 2 OPEN Executor IGG0191M

Stage 2 OPEN executor IGG0191M con­
structs channel programs to write track
overflow blocks using BSAM for a data set
to be later processed by BDAM. Executor
IGG0191L identifies it in the WTG table as
its successor executor if the DCB speci­
fies:

- Create-BDAM (WRITE-LOAD)

- Track overflow.

It is loaded and gains control when another
executor finds its identification in the
WTG table.

The executor operates as follows:

• It receives control after it is loaded.

• If the extents are smaller than the
blocks, it passes control to the ABEND
routine.

• It constructs channel programs to write
the number of segments required by the
size of the block.

• It specifies in the WTG table that OPEN
executor processing is completed for
this DCB. It then searches the WTG
table to pass control to another execu­
tor. If the WTG table has no other
entries, the executor returns control
to the OPEN routine.

Stage 2 OPEN Executor IGG0191P

Stage
control
IGG0191I
fies:

2 OPEN executor IGG0191P receives
after executors IGG0191B or

if the OPEN parameter list spec i-

- Update

(whether or not track overflow
specified). It is loaded and
control when another executor
identification in the WTG table.

is also
receives

finds its

The executor operates as follows:

• It receives control after it is loaded.

• It identifies module
end-of-block routine
use with the DCB.

IGG019CC as the
to be loaded for

Sequential Access Method Executors 83

• If the NOTE/POINT macro-instruction is
specified, it identifies module
IGG019BC as the NOTE/POINT routine to
be loaded for use with this DCB.

• It obtains space for, and constructs,
lOBs and channel programs to empty and
refill each buffer. For QSAM, the
executor links the channel programs so
that a buffer may be either refilled
only (by executing only the second half
of the channel program) or may be
emptied and refilled (by executing the
channel program from the beginning).

• It specifies in the WTG table that
executor IGG01912 is the next executor
required for this DCB. It then search­
es the WTG table to pass control to
another executor.

stage 2 OPEN Executor IGG0191Q

Executor IGG0191Q gains control after
executors IGG0191B or IGG01911 if the DCB
specifies:

- Chained channel-program scheduling

- Unit record, magnetic tape.

It is loaded and receives
another executor finds its
in the WTG table.

control when
identification

84

The executor operates as follows:

• It receives control after it is loaded.

• If the DCB specifies the CNTRL macro­
instruction this executor identifies
executor IGG0191G in the WTG table as
the next executor to receive control
for this DCB. It then searches the WTG
table to pass control to another
executor.

• If the NOTE/POINT macro-instruction is
specified and the device is magnetic
tape, it identifies module IGG019BL to
be loaded for use with the DCB.

• If the NOTE/POINT macro-instruction is
specified, and the device is unit
record, it identifies dummy data set
module IGG019AV to be loaded and used
in place of NOTE/POINT.

• It identifies the end-of-block routine
to be loaded and used for the process­
ing described by this DCB.

• It obtains space for, and constructs,
one lOB, the required number of ICBs
(one per buffer or channel program),
and channel programs appropriate to the
device, and links them.

• It specifies in the WTG table that
executor IGG01913 is the next executor
required for this DCB. It then search­
es the WTG table to pass control to
another executor.

Stage 2 OPEN Executor IGG0191R

OPEN executor IGG0191R receives control
after executors IGG0191B or IGG0191I if the
OPEN parameter list specifies:

- Inout, or Outin

and 'the DCB specifies:

- Chained channel-program scheduling.

The executor is loaded and receives control
when another executor finds its identifi­
cation in the WTG table.

The executor operates as follows:

• It receives control after it is loaded.

• If the device is direct-access storage,
it identifies NOTE/POINT module
IGG019BK to be loaded for use with the
DCB.

• If the device is maqnetic tape, it
identifies NOTE/POINT module IGG019BL
to be loaded for use with the DCB.

• It identifies the end-of-block routine
to be loaded for use with the DCB.

• It obtains space for, and constructs,
cne lOB, the required numcer of ICBs
(one per buffer or channel program),
and channel programs for direct-access
storage or magnetic tape, and links
them.

• It specifies in the WTG table that
executor IGG01913 is the next executor
required for this DCB. It then search­
es the WTG table to pass control to
another executor.

STAGE 3 OPEN EXECUTORS

A stage 3 executor identifies and loads
the modules needed to perform the process­
ing described by the DCB.. If QSAM is used,
and an input data set is to be processed, a
second stage 3 executor also primes the
buffers. Table 26 lists the access condi­
tions that cause the different stage 3
executors to be loaded and to gain control.

Table 26. OPEN Executor Selector - Stage 3
OPEN Executors

r--------------------T--------------------,
I I I
I Access Conditions I Selection I
I I I
~--------------------+--T--T--T--T--T--T--1
IPaper Tape IX I I I I I I I
~--------------------+--+--+--+--+--+--+--~
I Upda te I I X I I I I I I
~--------------------+--+--+--+--+--+--+--1
IChained Scheduling I I IX I I I I I
~-------------------+--+--+--+--+--+--+--~
IExchange Buffering I I I IX I I I I
~--------------------+--+--+--+--+--+--+--~
ITrack Overflow I I I I IX I I I
~--------------------+--+--+--+--+--+--+--~
INone of the preced- I I I I I IX I I
I ing I I I I I I I I
~--------------------+-~+--+--+--+--+--+--~
I QSAM I I I I I I IX I
~--------------------+--i--i--i--i--i--i--~

I I I
I Executors I I
I I I
~--------------------+--T--T--T--T--T--T--~
I IGG01910 I I I I I IX I I
~--------------------+--+--+--+--+--+--+--~
I IGG01911 I I I I I I I X I
~--------------------+--+--+--+--+--+--+--~
I IGGOl912 I X I X I I I I I I
~--------~-----------+--+--+--+--+--+--+--~
I IGG01913 I I IX I IX I I I
~--------------------+--+--+--+--+--+--+--1
I IGG01914 I I I IX I I I I L ____________________ i __ i __ i __ i __ i __ i __ i __ J

Stage 3 OPEN Executor IGG01910

Executor IGG01910 receives control after
executor IGG0191D or IGG0191J. It also
receives control after executor IGG0191G
unless the DCB specifies paper tape.

This executor operates as follows:

• It identifies and loads the device­
independent routines.

• It loads the device-dependent routines
identified by a mask set in stage 2.

• It enters
into the
appendages
table.

the address of the routines
DCB, and the address of
into the DEB appendage

• It enters the identification of ~ach
routine loaded, into the DEBSUBID field
of the DEB.

• If QSAM is used, the executor specifies
in the WTG table that executor IGG01911
is the next executor required for this
DCB. It then searches the WTG table to
pass control to another executor.

• If BSAM is used, the executor specifies
in the WTG table that OPEN executor
processing is completed for this DCB.
It then searches the WTG table to pass
control to another executor. If the
WTG table has no other entries, the
executor returns control to the OPEN
routine.

Stage 3 OPEN Executor IGG01911

Executor IGG01911 is entered from execu­
tors IGG01910, IGG01912, IGG01913 and
IGG01914 if the DeB specifies:

- GET, or PUT.

This executor operates as follows:

• It completes any remaining DCB fields.

• It completes the lOBs.

• For input it issues a BALR instruction
to pass control to the end-of-block
routine identified by a stage 2 execu­
tor and loaded by one of the other
stage 3 executors. The end-of-block
routine issues an EXCP macro­
instruction to prime the buffers.

• It searches the WTG table to pass
control to another executor. If the
WTG table has no other entries, the
executor returns control to the OPEN
routine.

Stage 3 OPEN Executor IGG01912

Executor IGG01912 is entered from
executor IGG0191P, and also frOID executor
IGG0191G if the OPEN parameter is:

- Update

or if the DCB specifies:

- Paper Tape.

Sequential Access Method Executors 85

The executor operates as follows:

• It identifies and loads the device­
independent routines.

• It loads the device-dependent routines.

• It enters the addresses of the routines
into the DeB, and the address of the
paper tape appendage into the appendage
vector table.

• If QSAM is used, the executor specifies
in the WTG table that executor IGG01911
is the next executor required for this
DCB. It then searches the WTG table to
pass control to another executor.

• If BSAM is used, the executor specifies
in the WTG table that OPEN executor
processing is completed for this DeB.
It then searches the WTG table to pass
control to another executor. If the
WTG table has no other entries, the
executor returns control to the OPEN
routine.

Stage 3 OPEN Executor IGG01913

Executor IGG01913 receives control after
executor IGG0191H, IGG0191K, IGG0191Q, and
IGG0191R, if the DeB specifies:

- Chained channel-program scheduling, or
track overflow.

It is loaded and receives
another executor finds its
in the WTG table.

control when
identification

86

The executor operates as follows:

• It receives control after it is loaded.

• If QSAM is specified, it identifies,
loads, and places the address into the
DeB of:

• A GET or a PUT routine
• A synchronizing routine

and specifies in the WTG table that
executor IIG01911 is to receive control
next for this DeB.

• If BSAM is specified, it identifies,
loads, and places the address into the
DeB of:

• A READ or WRITE routine
• A CHECK routine
• A routine to serve the NOTE/POINT

macro-instruction if it is speci­
fied

and specifies in the WTG table that
OPEN executor processing is completed
for this DeB.

• It identifies and loads all the
appendages required and places their
addresses into the appendage vector
table.

• It loads the end-of-block routine iden­
tified by a stage 2 executor and places
its address into the DeB.

• It searches the WTG table to pass
control to another executor. If the
WTG table has no other entries, the
executor returns control to the OPEN
routine.

Stage 3 OPEN Executor IGG01914

Executor IGG01914 receives control after
executor IGG0191E, IGG0191F, and IGG0191G
if the DCB specifies:

- Exchange buffering.

It is loaded and receives control when
another executor finds its identification
in the WTG table.

The executor operates as follows:

• It receives control after it is loaded.

• If the access conditions specified are:

output and locate, or
Input and move, or
Input, locate, and variable-length

it specifies in the WTG table that
executor IGG01910 is required for this
DeB.

It then searches the WTG table to pass
control to another executor.

• It identifies, loads, and puts the
address into the neB of:

• A GET or a PUT routine
• A synchronizing rout~ne

and specifies executor IGG01911 in the
WTG table as the executor to receive
control next for this DCB.

• It identifies and loads all the appen­
dages r~quired and places their
addresses into the appendage vector
table.

• It loads the end-of-block routine iden­
tified by a stage 2 executor and places
its address into the DCB.

• It searches the WTG table to pass
control to another executor.

CLOSE EXECUTORS

There are two CLOSE executors. The
first one (IGG0201A) always receives con­
trol .if one of the sequential access meth­
ods is used. The second one (IGG0201B)
receives control after executor IGG0201A if
QSAM was used with an output data set and a
channel program encountered an errOr condi­
tion while executor IGG0201A had CPU con­
trol. Control returns to the CLOSE routine
of I/O support when CLOSE executor process­
ing is completed.. Table 27 shows the
conditions that cause the two executors to
gain control.

Table 27. CLOSE Executor Selector

r-----------------------------T-----------, I I I
I Access Conditions I selecti~n I
I I I
r-------------------~---------+-----T-----i
ICLOSE macro-instruction I X I X I
~-----------------------------+-----+-----i
IPermanent error orend-of- I I I
Ivolume condition when using I I X I
IQSAM for output I I I

~-----------------------------+-----+-----i
I I I I
I Executors I I I
I I I I
~-----------------------------+-----+-----i
I IGG0201A I X I x I
~--------------'-.,..-----------'-+-----+-----~ I IGG0201B I I X I L _______ , __________________ ,_---L-----J..-----J

CLOSE EXECUTOR IGG0201A

Executor IGG0201A receiVeS control from
the CLOSE routine of I/O support if the
DCBDSORG field specifies a value of PS or
PO.

The executor operates as follows:

• It receives control after it is loaded.

• If both the OPEN parameter is output
and the DCB specifies puT, the executor
issues a TRUNC and a PUT macro­
instruction to cause scheduling of the
last buffer. On return of control, the
executor awaits execution of the last
channel program.

• If all channel programs were executed
without encountering either an end-of­
volume condition or a permanent error,
the executor continues processing_

• If any of the preceding channel
programs encountered either a permanent
error Or an end-of~volume condition,
the eXecutor specifies in the WTG table
that executor IGG0201B is required for
this DCB. Depending on the remaining
entries in the WTG table, it then
either processes another DCB, or passes
control to executor IGG0201B.

• If either Output or PUT are not speci­
fied, the executor issues a PURGE
macro-instruction for any pending chan­
nel programs. Note that when process­
ing under BSAM the CHECK routine
assures execution of all channel pro­
grams.

• If output and either a DCBDSORG field
value of PO, or WRITE or PUT with a DD
statement of the fOXlll (MEMBERNAME) are
specified, the executor issues a STOW
macro~instruction. On completion of
the STOW routine, the executor tests
for I/O errors and for logica,l errors,
such as insuf,ficient space in the
directory. For either type of error,
the executor issues an ABEND macro­
instru.ction with a code of hexadecimal
OB14.

• If QSAMand simple buffering are speci­
fied, the executor returns the buffers
associated with the DCB to the buffer
control block pointed to by the address
in the field DCBBUFCB.

• The executor computes the amount of
space occupied by the channel p:rograms,
lOBs (and ICBs, if chained scheduling
is used), and returns that space to the
supervisor via a FREEMAIN macro­
instruction.

• The executor specifies in the WTG table
that CLOSE executor processipg is
completed for this DCB. Depending on
the remaining entries in the WTG table,
it then either prOCesses another DCB,
passes control to executor IGG0201B, or
returns control to the CLOSE routines.

Sequential Access Method Executors 87

CLOSE EXECUTOR IGG0201B (ERROR PROCESSING)

Executor IGG0201B receives control after
executor IGG0201A if the latter finds that
a channel program for an output data set
using QSAM encountered a permanent error or
an end-of-volume condition. It is loaded
and receives control when its identifi­
cation is found in the WTG table.

88

The executor operates as follows:

• It receives control after it is loaded.

• It determines whether a channel program
encountered a permanent error or an
end-of-volume condition.

• If a channel program encountered a
permanent error, the executor performs
its rema1n1ng processing. Any buffers
not written out are not processed.

• If a channel program encountered an
end-of-volume condition, the executor
finds the lOB associated with that
channel program and places its address
into the DCBIOBA field. It then passes
control to the Output synchronizing
routine for normal processing of the
end-of-volume condition. When control
returns, the executor performs its
remaining processing, unless one of the
channel programs encountered a perman­
ent error or another end-of-volume con­
dition.. In either of those cases, it
resumes processing as when it first
received control.

• If Output and either a DCBDSORG field
value of PO, or WRITE or PUT with a DD
statement of the form (MEMBERNAME) are
specified, the executor issues a STOW
macro-instruction. On completion of
the STOW routine, the executor tests
for I/O errors and for logical errors,
such as insufficient space in the
directory. For either type of error,
the executor issues an ABEND macro­
instruction with a code of hexadecimal
OB14.

• If QSAM and simple buffering are speci­
fied, the executor returns the buffers
associated with the DeB to the buffer
control block pointed to by the address
in the field DCBBUFCB.

• The executor computes the amount of
space occupied by the channel programs,
lOBs (and ICBS, if chained scheduling
is used), and returns that space to the
supervisor via a FREEMAIN macro­
instruction.

• The executor specifies in the WTG table
that CLOSE executor processing is
completed for this DCB. Depending on
the remaining entries in the WTG table,
the executor either proeesses another
DCB or returns control to the CLOSE
routine.

SYNAD/EOV EXECUTOR IGC0005E (SVC 55)

Executor IGC0005E performs error-
condition processing. If a synchronizing
and error routine (in QSAt-J), or a CHECK
routine (in BSAM), finds that the execution
of a channel program encountered either a
perroanent error or an end-of-volume (EOV)
condition, the routine issues an SVC 55
instruction. (The Update Synchronizing and
Error Processing routine passes control to
this executor only for an end-of-volume
condition; the Paper Tape Synchronizing and
Error Processing routine never passes
control to this executor.) An SVC 55
instruction causes this executor to be
loaded and to receive control.

Control passes to and from this executor
along three paths, depending upon whether
control was received due to an EOV condi­
tion, due to a permanent error condition
and there is a SYNAD routine present, or
due to a permanent error condition and
there is no SYNAD routine present. The
flow of control under these three condi­
tions in QSAM is shown in Figure 11, for
BSAM, it is shown in Figure 12.

For an EOV condition, the executor oper­
ates as follows:

• It obtains a work area.

• It passes control to the end-of-volume
routine of I/O support. If that rou­
tine finds a new volume, it eventually
passes control to EOV/new volume execu­
tor. After processing, the executor
returns control to the synchronizing
and error processing or to the CHECK
routine.

If there is no SYNAD routine present,
the executor op~rates as follows for a
permanent error condition:

• For QSAM, the executor implements the
error options specified in the field
DCBEROPT in the DCB. It returns con­
trol to the synchronizing routine for
the SKIP or ACCEPT option.

• For BSAM, the executor passes control
to the ABEND routine.

5VC 55 -- 5ynchronizing 51 Nl El 5YNAD/EOV
Executor Routine

~

55 (iGCOOO5E)

1 T 56 I I 56(a)

54 53 52 N2 E2
53

~
User's 5YNAD EOV Routine of

I
ABEND Routine

Routine 1/0 5upport

E4 E3

EOV/New Volume
Executor

(iGG0551A)

Le gend:

5 5YNAD Routine Present } Permanent Error Condition
N No 5YNAD Routine Present
E End-oF-Volumne Condition
(a) Alternate Path For TERMINATE Option

~Described in This Publication

Figure 11. Flow of Control To and FrOID the SYNAD/EOV Executor (IGC0005E) in QSAM

5VC 55

~ CHECK r
51 Nl El 5YNAD/EOV

Routine Executor
r---1 55 (I GC0005E)

1 T 56 I I
54 53 52 E2 N2

~
User's sYNAD

I
EOV Routine of

I ABEND Routine I Routine 1/0 Support

E4 E3

EOV /New Volume
Executor

(lGG0551A)

Legend:

5 5YNAD Routine Present I
N No SYNAD Routine Present Permanent Error Condition

E End-oF-Volume Condition

~ Described in This Publication

Figure 12. Flow of Control To and FrOID the SYNAD/EOV Executor (IGC0005E) in BSAM

sequential Access Method Executors 89

If there is a SYNAD routine present, the
executcr operates as follows for a perman­
ent error condition:

• For QSAM, the executor returns control
to the synchroni~ing routine. (The
synchronizing routine then passes con­
trol to the user's SYNAD routine.
After error processing, the user's
SYNAD routine may return control to the
synchronizing routine. The synchroniz­
ing routine issues a second SVC 55
instruction to pass control to this
executor.>

• For QSAM, the executor then implements
the error option and returns control to
the synchronizing routine (for the SKIP
or ACCEPT option).

• For BSAM, the executor returns control
to the CHECK routine. (The CHECK rou­
tine passes control to the user's SYNAD
routine. A return of control from the
SYNAD routine to the CEECK routine in
BSAM is interpreted as an ACCEPT error
option. The CHECK routine issues a
second SVC 55 instruction to pass con­
trol to this executor again.)

• For BSAM, the executor then implements
the ACCEPT error option and returns
control to the processing prograrr.

The executor implements error options in
the following manner:

• For the
executor
routine.

TERMINATE error
passes control

option, the
to the ABEND

• For the ACCEPT error option, the execu­
tor issues EXCP macro-instructions to
reschedule all channel programs except
the one executed with an error. If the
device is a printer all channel pro­
gra~s are rescheduled.

• For the
issues
chedule
the one

SKIP error option, the executor
EXCP macro-instructions to res­
all channel programs, including
executed with an error.

FEOV EXECUTOR IGC0003A (SVC 31)

Executor IGC0003A causes reading or
writing to be discontinued for the balance
of the present volume and permits the
processing program to start reading or
writing a new volume. The FEOV
(force-end-of-volume) . macro-expansion
includes an SVC 31 instruction that causes
this executor to be loaded and to gain
control.

90

For an input data set, processed under
QSAM or BSAM, the executor operates as
follows:

• It receives control when the processing
program uses an FEOV macro-instruction.

• It obtains a work area by means of a
GETMAIN macro-instruction.

• It prevents the execution of any pend­
ing channel programs by means of the
PURGE macro-instruction.

• It passes control, and the work area,
to the end-of-volume routine of I/O
support by means of an XCTL macro­
instruction.

For an output data set processed under
BSAM, the executor operates as follows:

• It receives control when the processing
program uses an FEOV macro-instruction.

• It obtains a work area by means of a
GETMAIN macro-instruction.

• It passes control, and
to the end-of-volume
support by means of
instruction.

the work
routine

an XCTL

area,
of I/O
macro-

For an output data set processed under
QSAM, the operation of the executor, and
the resultant flow of control, depends on
the operating rr,ode and how certain channel
programs execute. The operation and flow
of ccntrol for each possible combination of
mode and channel program execution is
described in detail in Appendix E.

In general, assuming normal execution of
all channel programs, the executor operates
as follows:

• It receives control when the processing
program uses an FEOV macro-instruction.

• It obtains a work area by means of a
GETMAIN macro-instruction.

• It passes control to the PUT routine to
cause scheduling of the present buffer
for output.

• It awaits execution of all pending
channel programs.

• It passes control, .and the work area,
to the end-of-volume routine of I/O
support by means of an XCTL macro­
instruction.

EOV/NEW VOLUME EXECUTOR IGG0551A

Executor IGG0551A schedules, for
execution with the new volume, any channel
prograflls not executed with the old voluflle.
The end-of-volume routine of I/O support
issues an XCTL macro-instruction to pass
control to this executor after the routine
has caused the mounting of the next volume
of the input data set; for an output data
set, the routine passes control to this
executor after the routine has fIlounted a
new volume, or acquired additional space on
the current volume.

The executor operates as follows:

• It receives control when the next, new,
or more volume is available.

• It resets all indications of the end­
of-volume condition in the DCB.

• If the device
the executor
device address
the lOB.

type is direct-access,
inserts the new full

(FDAD) into the DCB and

• It issues BALR instructions to pass
pending channel programs to the end-of­
block routine to have them scheduled
for execution. (If Create-BDAM
WRITE-LOAD is specified, control pass
es to the Create-BDAM WRITE routine.>

• It issues a FREEMAIN macro-instruction
for the work area obtained for the
end-of-volume routine.

• It returns control to the routine that
passed control to the end-of-voluflle
routine via the SVc 55 instruction.
For a normal end-of-volume condition
found by a synchronizing or CHECK rou­
tine, control returns to the synchron­
~z~ng or CHECK routine. For a forced
end-of-volume condition established by
an FEOV macro-instruction in the proc­
essing program, control returns to the
processing program. For an end-of­
volume condition arising during the
FEOV executor, control returns to the
FEOV executor.

Sequential Access Method Executors 91

BUFFER POOL MANAGEMENT

Buffer pool management routines form
main storage space into buffers, and they
return buffers that are no longer needed.
There are five buffer pool management
routines:

• GETPOOL This routine obtains main
storage and forms a buffer pool.

• BUILD - This routine forms a buffer
pool in main storage supplied by the
processing program.

• GETBUF - This routine provides buffers
from the buffer chain.

• FREEBUF - This routine returns buffers
to the buffer pool.

• FREEPOOL - This routine
storage previously used
pool.

returns main
for a buffer

GETPOOL MODULE IECQBFG1

Module IECQBFGl obtains main storage
space and forms it into buffers. It is
loaded at execution time by a LINK macro­
instruction.

92

The module operates as follows:

• It rounds the buffer length to
higher double-word multiple
specified length is not such a
pIe.

the next
if the

multi-

• It determines buffer alignment from the
DCEBUFAL field value in the DCB.

• It computes
required and
instruction.

the number of bytes
issues a GETMAIN macro-

• It constructs a buffer pool control
block in the first eight bytes of
storage obtained.

• If double-word (not-full-word) align­
ment is specified in the DCBBUFAL field
in the DCB, the module starts the first
buffer at the byte immediately
following the BUFCB.

• If full-word (not-double-word) align­
ment is specified in the DCBBUFAL
field, the module skips one word after
the buffer pool control block before
starting the first buffer.

• It chains the first buffer to the
buffer pool control block and deter­
mines the start of the next buffer by
adding the rounded buffer length value
te the address of the first buffer.
The module chains the next buffer to
the preceding buffer, and continues
until all the buffers have been
chained.

• It returns control to the processing
program.

illustrates
(BUFCB) that

Figure 14
structures

Figure 13
control block
buffer peol.
buffer pool
GETPCCL Irodule.

the buffer pool
describes the

illustrates the
formed by the

BUFAD

BUFCB
Address of

First Avoilable Buffer

Byte 0

Figure 13. Buffer

Double-Word
Buffer Alignment Specified

BUF B

--2 Words-

BUFl

Length of
Each Buffer

4 6

Pool Control Block

Full-Word (Not-Double-Word)
Buffer Alignment Specified

BUFCB

Figure 14. GETPOOL Buffer Pool Structures

BUILD MODULE IECBBFB1

8

Module IECBBFBl forms main storage space
supplied by the processing program into
buffers. It is loaded at execution time by
a LINK macro-instruction.

The module operates as follows:

• It rounds the buffer length to the next
higher full-word multiple ·if the speci­
fied length is not such a multiple.

• It constructs a buffer pool control
block in the first eight bytes of the
ffiain storage space provided by the
processing program.

• It starts the first buffer at the byte
imffiediately following the buffer pool
control block.

• It chains the first buffer to the
buffer pool control block and deter­
mines the start of the next buffer by
adding the rounded buffer length value
to the address of the first buffer.
The module chains the next buffer to
the preceding buffer, and continues
until all the buffers are chained.

• It returns control to the processing
program.

Table 28 lists for each possible combi­
nation of space alignment and buffer length
parity the illustration that shows the
structure of the resulting buffer chain or
pool. Figure 13 illustrates the buffer
pool control block (BUFCB), Figure 15
illustrates the various buffer alignrrents
that the BUILD module forms.

GETBUF MACRO-EXPANSION

The purpose of this coding is to provide
the next buffer from the buffer pool. The
macro-expansion produces in-line code that
presents the address of the next buffer to
the processing program and updates the
buffer pool control block to point at the
following buffer.

FREEBUF MACRO-EXPANSION

The purpose of this coding is to return
a buffer to the buffer chain. The macro­
expansion produces in-line code that stores
the address presently in the buffer pool
control block in the first word of the
buffer being returned, and then stores the
address of that buffer in the buffer pool
control block.

Table 28. BUILD Buffer Structuring Table

Alignment of First Byte of
Parity of N umber of

Buffer Words in Buffer Length
Space Passed in after Rounding Up Pool

BUI LD Macro-Instruction Length Parameter of Structure

BUILD Macro-Instruction

Even A
Double - Word Odd B

Full - Word Even C
(Not - Double - Word) Odd D

-0-

D

BUFCB- BUFCB-

BUFCB

,
---'

-0-

-0- , _____ ...J

-2words ---

Figure 15. BUILD Buffer Pool Structures

FREEPOOL MACRO-EXPANSION

The purpose of this coding is to return
the space previously allotted to the buffer
chain to available main storage. The
macro-expansion produces in-line code that
computes the total number of bytes to be
returned, issues a FREEMAIN macro­
instruction, and sets the DCBBUFCB field in
the DCB to show that no buffer pool is
associated with that DCB.

Buffer Pool Management 93

APPENDIX A: DECISION TABLES

These decision tables show the routines available and the access conditions that cause
a routine to be used. They duplicate the decisicn tables in the text in tatle number,
form, and content. A table that occupies a whole page rray be out of sequence.

Table 2. Module Selector - Simple Buffering GET Modules
r-------------------------------T---,
I' I I Access Conditions I Selections I

I I I
~-------------------------------+---T---T---T---T---T---T---T---T---T---T---T---T---T---~
IINPUT, GET, Simple Buffering I X I X , X I X I X I X I X I X I X I I I I 'X,
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
IRDBACK, GET, Simple Buffering' , I I , I I I , I X I X I X I X I I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
,Locate operating mode I X I X I X I I , I I I I X I X I I I I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
IMove operating mode I I I I X I X I X I X I X I X I , 'X, X I X ,
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
IFixed-length record format I X, , I X, , I X I I I X, 'X, , I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
,Undefined-length record format, 'X, , 'X, , 'X I , I X, 'X I I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
'Variable-length record format, I I X I I I X I , 'X, I I I I I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
ICard reader, I , , , , I I I I , I I I , I
lonly a single buffer, CNTRL I I I I I I I X I X I X I I I I I I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
ICharacter conversion for i I I I I I , , I I , , , I I
Ipaper tape I , I I , , , I I I I , , I X I
~-------------------------------+---~---+---+---~---+---+---~---+---+---~---+---~---+---~
, I 'I 'I I I I "
, GET Modules , I' " " , 'I
I I I I I I 'I I I I
~--------------"-----------------+---T---+---+---T---+---+---T---+---+---T---+---T---+---~
I IGG019AA , X , X I I I , I I , , , I , , I
~--------~----------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I IGG019AB I I I X I I I I I , I I , , , I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
, IGG019AC I' , 'X I X I , , I I , I I I ,
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I IGG019AD , I , I I 'X I I , , i , , , I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
, IGG019AG I I , I , I I X , X I I I I I I I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGG019AH , I , , I I , , I X I , , , I I
~-------------------------------+---+---+---+---+---+-~-+---+---+---+---+---+---+---+---i
, IGG019AM , , I I I , , I I 'X, X, I I ,
~---------------------------~---+---+---+---+---+---t---+---+---t---+---+---+---+---+---~
I IGG019AN 'I , I I I I I I , I 'X I X, I
~-------------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---~
I IGG019AT1. 'I I I I , , I I I , I I 'X I
~-------------------------------~---~---~---~---~---~---~---~---~---~---~---~---~---~---~
I1.This module also. includes the Paper Tape Character Conversion Synchronizing and ,
IError Processing routine. I l ___ J

Appendix A: Decision Tables 95

Table 3. Module Selector - Exchange
Buffering GET Modules

r--------------------T--------------------,
I I I
I Access Conditions I Selections I
I I I
~--------------------+--T--T--T--T--T--T--~
I Input, GET, ExchangelX IX IX IX IX IX IX I
~--------------------+--+--+--+--+--+--+--~
I Locate IX IX IX IX I I I I
~--------------------+--+--+--+--+--+--+--~
I Substitute I I I I IX IX IX I
~--------------------+--+--+--+--+--+--+--~
I Fixed-length IX IX I I IX I IX I
~--------------------+--+--+--+--+--+--+--~
I Variable-length I I IX I I I I I
~--------------------+--+--+--+--+--+--+--~
I Undefined-length I I I IX I IX I I
~--------------------+--+--+--+--+--+--+--~
I Unblocked I IX IX IX IX IX' I I
~--------------------+--+--+--+--+--+--+--~
I Blocked I X I I I I I I X I
~--------------------+--+--~--~--+--~--+--~
I I I I I I
I GET Modules I I I I I
I I I I I I
~--------------------+--+--T--T--+--T--+--~
I IGG019EA IX I I I I I I I
~--------------------+--+--+--+--+--+--+--~
I IGG019EB I I X I X I X I I I I
~--------------------+--+--+--+--+--+--+--~
I IGG019EC I I I I IX IX I I
~--------------------+--+--+--+--+--+--+--~
I IGG019ED I I I I I I IX I L ____________________ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ J

Table 4. Module Selector - Update Mode GET
Module

r------------------------------T----------,
I I I
I Access Conditions I Selections I
I I I
~------------------------------+--T-T-T-T-i
IUpdate, GET IX IXIXIXIXI
r------------------------------+--+-+-+-+-~
IFixed-length record format IX IXI I I I
~------------------------------+--+-+-+-+-i
IVariable-length record format I I I X I X I I
~------------------------------+--+-+-+-+-~
IUndefined-length record format I I I I IXI
~------------------------------+--+-+-+-+-i
I Blocked record f orrra t I X I I X I I I
~------------------------------+--+-+-+-+-~
IUnblocked record format I IXI IXIXI
~------------------------------+--i-~-i-~-i
I I I
I GET Module I I
I I I
~------------------------------+--T-T-T-T-i
I IGG019AE1. IX IXIXIXIXI
~------------------------------i--i-~-~-~-i
I1.This module also carries the Update model
I PUTX routine I L ___ J

96

Table 5. Module Selector - Simple Buffer-
ing PUT Modules

r-----------------------------T-----------,
I I I
I Access Conditions ISelections I
I I I
~-----------------------------+-T-T-T-T-T-~
IOutput, PUT/PUTX, Simple IXIXIXIXIXIXI
I buffering I I I I I I I
~-------------------·----------+-+-+-+-+-+-i
ILocate operating mode IXIXIXI I I I
~-----------------------------+-+-+-+-+-+-i
IMove operating mode I I I IXIXIXI
~-----------------------------+-+-+-+-+-+-i
IFixed-length record format IXI I IXI I I
~-----------------------------+-+-+-+-+-+-i
IUndefined-length record I I I I I I I
I format I IXI I IXI I
~-----------------------------+-+-+-+-+-+-i
IVariable-length record format I I IXI I IXI
~-----------------------------+-~-+-+-~-+-i
I I I I I I
I PUT Modules I I I I I
I I I I I I
~-----------------------------+-T-+-+-T-+-i
I IGG019AI IXIXI I I I I
~-----------------------------+-+-+-+-+-+-i
I IGG019AJ I I IXI I I I
~-----------------------------+-+-+-+-+-+-i
I IGG019AK I I I IXIXI I
~-----------------------------+-+-+-+-+-+-i
I IGG019AL I I I I I IXI L _____________________________ i_~_i_~_~_~_J

Table 6. Module Selector - Exchange Buf-
fering PUT Modules

r---------------------------T-------------,
I I I
I Access Conditions I Selections I
I I I
~---------------------------+-T-T~T-T-T-T-i
I Output, PUT/PUTX Exchange IXIXIXIXIXIXIXI
~---------------------------+-+-+-+-+-+-+-i
IMove mode IXIXIXI I IXI I
~---------------------------+-+-+-+-+-+-+-~
ISubstitute mode I I I IXIXI IXI
~---------------------------+-+-+-+-+-+-+-i
IUnblocked record format IXIXIXIXIXI I I
~---------------------------+-+-+-+-+-+-+-i
IBlocked record format I I I I I IXIXI
~---------------------------+-+-+-+-+-+-+-i
IFixed-length record format IXI I IXI IXIXI
~---------------------------+-+-+-+-+-+-+-i
IVariable-length record I IXI I I I I I
I format I I I I I I I I
~---------------------------+-+-+-+-+-+-+-i
IUndefined-length record I I IXI IXI I I
I format I I I I I I I I
~---------------------------+-i-~-~-~-+-~-i
I I I I
I PUT Modules I I I
I I I I
~---------------------------+-T-T-T-T-+-T-i
I IGG019EE IXIXIXIXIXI I I
~---------------------------+-+-+-+-+-+-+-i
I IGG019EF I I I I I IXIXI L ___________________________ ~_i_i_i_~_~_~_J

Table 7. Module Selector - Ordinary End­
of-Block Modules

r---------------------T-------------------,
I I I
I Access Conditions I Selections I
I I I
~---------------------+-T-T-T-T-T-T-T-T-T-~
INorroal channel- IXIXIXIXIXIXIXIXIXIXI
Iprogram scheduling I I I I I I I I I I I
~---------------------+-+-+-+-+-+-+-+-+-+-~
I Input, or I I I I X I X I X I I I I I
~---------------------+-+-+-+-+-+-+-+-+-+-~
I Update I I I X I I I I I I I I
~---------------------+-+-+-+-+-+-+-t-t-t-~
I Output, or I I I I I I IXI I I I
~---------------------t-t-t-+-t-t-+-t-+-t-~
I Inout,Outin I I I IXI IXIXI I I I
r---------------------t-t-t-t-t-t-t-+-t-t-~
Icard reader or IXI I I I I I I I I I
Ipaper tape reader I I I I I I I I I I I
~---------------------t-t-t-t-+-t-t-t-+-+-~
IPrinter or card I I I I I I I IXIXIXI
Ipunch I I I I I , I I , I ,
~---------------------t-+-+-t-t-t-t-t-t-t-~
IMagnetic tape I IXI I I I I I I I I
~---------------------t-t-t-t-t-t-t-t-+-+-~
I Direct-access I I I I X I I X I X I I I I
I storage I I I I I I I I , I I
~---------------------t-t-t-+-t-t-t-t-t-+-~
ITrack overflow I I I I IXI I I I I I
~---------------------+-+-t-+-+-+-t-+-+-t-~
IRecord forroat is I I I IXI I I I I I I
,not fixed-length I I I , I I I I I I I
I standard I I I I I I I I I I I
r---------------------t-t-t-t-t-t-t-t-+-t-i
IRecord format is I I I I I IXI I I I I
I fixed-length I I I I I I I I I I I
I standard I I I I I I I I I I I
~---------------------+-+-t-t-t-t-t-t-t-t-i
INo control I I I I I I , IXI I I
I character I I I I I I I , I I I
~---------------------t-t-t-+-t-t-t-t-t-t-~
I Machine control I I I I I , I I IXI ,
I character , I I , I I I I I I I
~---------------------t-+-t-t-t-t-t-+-t-t-i
IASA control I I I I I I I I I IXI
I character I I I I I I I I I I I
~---------------------+-+-t-t-t-t-t-t-t-t-i
IPRTOV-NO user exit I I I I I I I IXIXIXI
~---------------------t-~-~-~-~-t-~-t-~-t-i
I I I I I I
I End-of-Block I I I I I
I Modules I I I I I
I I I I I I
~---------------------t-T-T-T-T-t~T-t-T-t-i
I IGG019CC IXIXIXIXIXI I I I I I
~---------------------t-t-t-t-t-t-t-t-t-t-~
I IGG019CD I I I I I IXIXI I I I
~---------------------t-t-t-t-t-t-t-+-t-t-i
I IGG019CE I I I I I I I IXIXI I
~---------------------t-t-+-t-t-t-t-t-+-t-~
I IGG019CF I I I I I I I I I IXI L _____________________ ~_~_~_~_~_~_~_~_~_~_J

Table 9. Module Selector Chained
Channel-Program Scheduling End­
of-Block Modules

r-------------------------T---------------,
I I I
I Access Conditions I Selections I
I I I
~-------------------------t-T-T-T-T-T-T-T-i
IChained channel-prograro IXIXIXIXIXIXIXIXI
I scheduling I I I I I I I I I
~---~---------------------t-t-t-t-t-t-t-t-i
I Input IXIXI IXI I I I I
~-------------------------t-t-t-+-t-t-t-t-i
I Output I I IXI IXIXIXIXI
~-------------------------+-t-t-t-t-t-t-t-i
I Card reader I X I I I I I I I I
~-------------------------t-t-+-t-t-t-t-t-i
IPrinter or card punch I I I I I IXIXIXI
~-------------------------t-t-+-t-+-t-t-t-~
I Magnetic tape I I X I X I I I I I I
~-------------------------+-t-t-t-t-t-t-+-i
IDirect-access storage I I I IXIXI I I I
~-------------------------t-t-t-t-+-t-t-t-i
INO contrcl character I I I I I IXI I I
~-------------------------+-+-t-t-+-t-+-t-i
IMachine control character I I I I I I IXI I
~-------------------------+-t-+-t-t-t-+-t-~
IASA control character I I I I I I I IXI
~-------------------------t-~-~-~-t-t-~-t-~
I I I I I I
I End-of-Block Modules I I I I I
I I I I I I
~-------------------------t-T-T-T-t-t-T-t-~
I IGG019CV I I I I I X I I I I
~-------------------------t-t-t-t-+-t-+-t-~
I IGG019CW IXIXIXIXI I I I I
~-------------------------+-+-+-+-t-+-t-+-i
I IGG019CX I I I I I IXIXI I
~-------------------------+-t-+-t-t-t-+-t-~
I IGG019CY I I I I I I I IXI L _________________________ ~_~_~_~_~_~_~_~_J

Table 10. Module Selector - Track Overflow
End-of-Block Module

r----------------------------T------------,
I I I
I Access Conditions I Selections I
I I I
~----------------------------+------------~
I Output, Inout, Outin I X I
~----------------------------+------------~
I Track Overf low I X I
~----------------------------+------------~
I I I
I End-cf-Block Module I I
, I I
~----------------------------+------------~
I IGG019C2 I X I L ____________________________ ~ ____________ J

Appendix A: Decision Tables 97

Table 11. Module Selector - Synchronizing Table 14. Module Selector Control
and Error Processing Modules Modules

r----------------------~------T-----------,
I I I
I Access Conditions ISelections I
I I I
~-----------------------------+--T--T--T--~
IGET IX IX I IX I
~-----------------------------+--+--+--+--~
IPUT I , IX I I
r---------------~-------------+--+--+--+--~
,Input, Readback I IX I I I
~-----------------------------+--+--+--+--~
I output , I IX I I
~-----------------------------+--+--+--+--~
I Update IX I I I I
~-----------------------------+--+--+--+--i
IPaper tape I , I IX'
Icharacter conversion 'I I I I
~-----------------------------+--+--+--+--~
I I I I I I
I Modules , , I I I
, I , I I I
~-----------------------------+--+--+--+--i
I IGG019AF IX I I , I
~-----------------------------+--+--+--+--i
I IGG019AQ I IX I I I
~-----------------------------+--+--+--+--i
I IGG019AR I I IX I I
~-----------------------------+--+--+--+--i
I IGG019AT1 I I I IX I
~---------.--------------------.1.--.1.--.1.--.1.--~
11This module includes both the paper tape I
I synchronizing and error processing I
I routine and the paper tape GET routine. I
, Both routines are described in the GETI
, routines section of this publication. I L ___ J

Table 12. Module Selector - Track Overflow
Asynchronous Error processing
Module

r----------------------------T------------,
I I I
I Access Conditions I Selections I
, I I
~----------------------------+-----T------i
IGET , X I I
~----------------------------+-----+------i
I READ , I X I
~----------------------------+-----+------i.
IInput, Inout, outin I X I X I
r----------------------------+-----+------i
ITrack Overflow , X I X I
~----------------------------+-----+------i
I , I I
I Module I I I
I I I I
~----------------------------+-----+------i
I IGG019Cl I X I X I L ____________________________ .1. _____ .1. ______ J

98

r-----------------------------T-----------,
I I I
I Access Conditions ISelections I
I I I
~-----------------------------+-----T-----i I CNTRL . I X , X ,

~-----------------------------+-----+---~-i
, Printer , X, ,
~-----------------------------+-----+-----i
I Card Reader, " X ,
, a single buffer , , ,
~-----------------------------+-----+-----i I , I ,
, Modules '" , , , ,
~----------~------------------+-----+-----i
I IGG019CA , X I I
~-----------------------------+-----+-----i
, IGG019CB " X , L ___ ~ _________________________ .1. _____ .1. _____ J

Table 15. Control Routines That Are Macro-
Expansions

r-----------------------------T-----------,
I " I I Number of ,
, Macro-Instruction ,Macro- ,
I , Expansions'
I I'
~-----------------------------+-----------i
I PRTOV - User exit ,1,
~-----------------------------+-----------i
I PRTOV - No user exit I 1 , L _____________________________ .1. ___________ J

Table 13. Module Selector - Appendages

Access Conditions Selections

Input, I nout, Outi n X X X

Readback X

Update X X X

Sysin X

GET X

READ X

Record format is fixed-length X

Record format is fixed-length blocked X

Record format is variable-length X

Record format is not fixed-length standard X

Direct-access storage X X

Printer X

Paper tape X

Chained scheduling X X

Track overflow X

Appendages

IGG019AW AW

IGG019BM 8M

IGG019CG CG

IGG019CH CH

IGG019CI CI

IGG019CJ CJ

IGG019CK CK

IGG019CL CL

IGG019CS CS

IGG019CU CU

IGG019CZ CZ

IGG019C3 C3

Exits

End-of-Extent AW BM CH CZ

510 CG CL

Channel End CI CJ CK CS CU

PCI CU

Abnormal End CU C3

Appendix A: Decision Tables 99

Table 11. Module Selector - READ and WRITE Table 18. Routine Selector CHECK
Modules Routines

r-----------------T-----------------------,
I I I
IAccess Conditions I Selections I
I I I
~-----------------+--T--T--T--T--T--T--T--~
I Input, or I X I I X I X I I I I I
~-----------------+--+--+--+--+--+--+--+--~
loutput, or I IX I I I IX IX IX I
~-----------------+--+--+--+--+--+--+--+--~
IInput, Outin IX IX I I I I I I I
~-----------------+--+--+--+--+--+--+--+--~
I Update I I I I IX I I I I
~-----------------+--+--+--+--+--+--+--+--~
I READ IX I IX IX IX I I I I
~-----------------+--+--+--+--+--+--+--+--~
IWRITE I IX I I I I I I I
~-----------------+--+--+--+--+--+--+--+--~
IWRITE (LOAD) I I I I I IX IX IX I
I (Create-BDAM) I I I I I I I I I
~-----------------+--+--+--+--+--+--+--+--~
I Paper tape 'I I X I X I I , I I
,character I I I I I I , I ,
I conversion I' I I I , , I ,
~-----------------+--+--+--+--+--+--+--+--~
I Fixed-length I' IX I I IX' 'X,
Irecord format I I I I I I , , I
~-----------------+--+--+--+--+--+--+--+--~
,Undefined-length I I I IX I I IX, I
Irecord format or I I I I , I I I I
~-----------------+--+--+--+--+--+--+--+--~
I Variable-length I I I I I I IX' I
Irecord format I I I I I I I , I
~-----------------+--+--+--+--+--+--+--+--~
ITrack Overflow I I I I I I I IX I
~-----------------+--i--+--i--+--i--i--i--~
, READ, WRITE I I I ,
I Modules I I I I
~-----------------+--T--+--T--+--T--T--T--~
I IGG019BA IX IX I I I I I , I
~-----------------+--+--+--+--+--+--+--+--~
I IGG019BF I I IX IX I I I I I
~-----------------+--+--+--+--+--+--+--+--~
I IGG019BH I I I , I X I I I I
~-----------------+--+--+--+--+--+--+--+--~
I IGG019DA I I I I , IX I I I
~-----------------+--+--+--+--+--+--+--+--~
I IGGO 19DB I I I I I , 'X I ,
~-----------------+--+--+--+--+--+--+--+--~
I IGG019DD I' I , , , I IX I
L _________________ i __ i __ i __ i __ i __ i __ i __ i __ J

100

r---------------------T-------------------,
I I I
IAccess Conditions I Selections I
I I I
~---------------------+---T---T---T---T---~
I Input or I X I I X I I I
~---------------------+---+---+---+---+---~
I Out put or I I X I I I I
~---------------------+---+---+---+---+---~
IInout, Outin I X I X I I I I
~---------------------+---+---+---+---+---~
I upda te I I I I X I I
~---------------------+---+---+---+---+---~
I READ I X I I X I I I
~---------------------+---+---+---+---+---~
I WRITE I I X I I I I
~---------------------+---+---+---+---+---~
IWRITE (LeAD) I I I I I I
, (Create-BDAM) I I I I I X I
~---------------------+---+---+---+---+---~
I Paper tape I I I X I I I
Icharacter conversion I I I I I I
~---------------------+---i---+---i---i---~
I I I I
I CHECK Modules I I I
I I I I
~---------------------+---T---+---T---T---~
I IGG019BB I X I X I I I I
~---------------------+---+---+---+---+---~
I IGG019BG I I I X I I I
~---------------------+---+---+---+---+---~
I IGG019BI I I I I X I I
~---------------------+---+---+---+---+---~
I IGG019DC I I , I I X I L _____________________ i ___ i ___ i ___ i ___ i ___ J

Table 19. Module Selector Control
Modules Selected and Loaded by
the OPEN Executor

r---------------------------y-------------,
I I I
I Access Conditions I Selection I
I I I
~---------------------------+-T-T-T-T-T-T-~
I NOTE/POINT IXIXI IXIXI I I
r---------------------------+-+-+-+-+-+-+-~
I Update, Track Overflow, orl I I IXI I I I
r---------------------------+-+-+-+-+-+-+-~
I Chained Scheduling I I I IXIXI I I
~---------------------------+-+-+-+-+-+-+-~
I CNTRL I I I X I I I X I X I
~---------------------------+-+-+-+-+-+-+-~
I Direct-Access Storage IXI I IXI I I I
~---------------------------+-+-+-+-+-+-+-~
I Magnetic Tape I IXIXI IXI I I
~---------------------------+-+-+-+-t-+-+-~
I Printer I I I I I IXI I
~---------------------------+-+-+-+-+-+-+-~
I Card Reader I I I I I I IXI
~---------------------------+-~-~-~-~-~-~-~
I I I
I Centrol Modules I I
I I I
~---------------------------+-T-T-T-T-T-T-~
I IGG019BC IXI I I I I I I
~---------------------------+-+-+-+-+-+-+-~
I IGG019BD I IXI I I I I I
~---------------------------+-+-+-+-+-+-+-~
I IGG019BE I I I X I I I I I
~---------------------------+-+-+-+-+-+-+-~
I IGG019BK I I I I X I I I I
~---------------------------+-+-+-+-+-+-+-~
I IGG019BL I I I I IXI I I
~---------------------------+-+-+-+-+-+-+-~
I IGG019CA1 I I I I I IX II
~---------------------------+-+-+-+-+-+-+-~
I IGG019CB1 I I I I I I IXI
~---------------------------~-~-~-~-~-~-~-~
11These routines are also used in QSAM~ I
I see that section for description of I
I these routines. I L ___ J

Table 20. Control Modules Loaded at Execu-
tion Time

r---T--------T-----------------T----------,
I I Macro- I I I
ISVCIInstruc-1 Function IModule No.1
INo·1 tion I I I
~---+--------+-----------------+----------~
125 I (none) I Establish I IGC0002E I
I I I valid track I I
I I I balance I I
I I I Erase balance I I
I I I of extent for I I
I I I track overflow I I
~---+--------+-----------------+----------~
169 I BSP I Device I IGC0006I I
I I I Independent I I
I I I Backspace (tape, I I
I I I direct-access) I I L ___ ~ ________ ~ _________________ ~ __________ J

Table 21. ccntrol Routines That Are
Macro-Expansions1 2

r-----------------------------T-----------,
I I I
I I Number of I
I Macro-Instruction I Macro I
I I Expansions I
I I I
~-----------------------------+-----------1
I PRTOV - User exit I 1 I
~-----------------------------+-----------~
I PRTOV - No user exit I 1 I
~-----------------------------~-----------~
11These routines are also used in QSAM~ I
I see that section for a description of I
I the routines. I
12This table duplicates Table 15~ it is I
I repeated here to identify all control I
I routines available in BSAM. I L ___ J

Appendix A: Decision Tables 101

Table 22. BPAM Routines Residence
r---------------------T---------------------T----------------~----T---------------------,
, , , , Instruction ,
, BPAM Routines , Module Nunber , Residence , Passing ,
, I , ,Control,
~---------------------t---------------------t---------------------t-------------~-------i
, STOW ,IGC0002A Isupervisory Transient,SVC 21 ,
I , IArea I ,
~---------------------+---------------------+---------------------t---------------------i
, FIND (C Option) I (Macro Expansion) IProcessing Program IFIND (C Option) ,
, I ,Area , I
~---------------------t---------------------t---------------------t---------------------i
I FIND (D Option) I IECPFIND,IECPFNDl ISupervisory Resident ISVC 18 ,
, I IArea I I
~--------------------+---------------------t---------------------+---------------------i
, BLDL , I~CPFIND,IECPFND1 'Supervisory Resident ISVC 18 or I
I , , Area I BAL IECPBLDL ,
~---------------------+--------~------------+---------------------+---------------------i
, Convert TTR ,IECPFIND,IECPFND1 ,Supervisory Resident IBAL IECPCNVT I
I I IArea , I
~---------------------+---------------------+---------------------t---------------------i
I Convert MBBCCHHR I IECPFIND,IECPFND1 ISupervisory Resident IBAL IECPRLTV ,
, , 'Area I I L _____________________ ~ _____________________ ~ _____________________ ~ _____________________ J

Table 23. Sequential Access Method Executors - Control Sequence
r-----------------T-----------------T-------------------T-----------T-------------------,
I I I " , I , I Receives Control , , Passes Control I
, Executor , Number I From ,Via I To ,
I , I I I ,
~-----------------+-----------------+-------------------+-----------t-------------------i I OPEN , See Tables 24, I See Figure 10 ,XCTL I See Figure 10 I
I I 25, 26, , (WTG Table) I I
~-----------------t-----------------t-------------------+-----------+-------------------i
I CLOSE I IGG0201A ,CLOSE Routine ,XCTL I CLOSE Routine I
I I IGG0201B I I (WTG Table) I I
~-----------------t-----------------+-------------------+-----------+-------------------i
I SYNAD/EOV ,IGC0005E I Synchronizing. 'SVC 55 'EOV Routine ,
I I I CHECK Routines I I ,
~-----------------+-----------------+-------------------+-----------+-------------------i I FEOV ,IGC0003A, Processing 'FEOV Macro-, EOV Routine ,
, I ,Prograro I Instruction' I
I I , I (SVC 31) , I
~-----------------t-----------------t-------------------+-----------+-------------------i
, EOV/new volume ,IGG0551A I EOV Routine ,XCTL 'See Executor I
, , I 'I Description I L _________________ ~ _________________ ~ ___________________ ~ ___________ ~ ___________________ J

102

Table 24. OPEN Executor Selector - stage 1 Table 26. OPEN Executor Selector - stage 3
OPEN Executors OPEN Executors OPEN Executors

r-----------------------T-----------------,
I I I
I Access Conditions I Selection I
I I I
~-----------------------+-----T-----T-----~
I Actual data set I X I X I I

~-----------------------+-----+-----+-----i
I Buffer Pool Required I I X I I

~--------------~--------+-----+-----+-----~
I Dummy data set I I I X I

~-----------------------+-----+-----+-----i I , , , ,
, Executors , , , ,
I , I , ,
~-----------------------+-----+-----+-----~
I IGG0191A I X , X, ,
I and IGG0191B , , , ,
~-----------------------+-----+-----+-----~
, IGG0191C , I 'X,
~--------------~--------+-----+-----+-----~
, and IGG01911 , 'X, , l _______________________ ~ _____ ~ _____ ~ _____ J

r--------------------T--------------------, , , ,
, Access Conditions , Selection ,
, I I
~--------------------+--T--T--T--T--T--T--i
,Paper Tape 'X, , , , , , ,
~--------------------+--+--+--+--+~-+--+--~
,Update , 'X, I , , , ,
~--------------------+--+--+--+--+--+--+--~
,Chained Scheduling , , 'X, , , , ,
~--------------------+--+--+--+--+--+--+--~
'Exchange Buffering , , , 'X I , , ,
~--------------------+--+--+--+--+--+--+--~
'Track Overflow 'I" 'X, , ,
~--------------------+--+--+--+--+--+--+--~
,None of the pre~ed-' , , , , 'x, ,
, ing , , , , , , I ,
~--------------------+--+--+--+--+--+--+--~
'QSA~ , , , , , , 'x,
~----------------~---+--~--~--~--~--~--~--~ , , ,
, Executors, , , , ,
~--------------------+--T--T--T--T--T--T--~
, IGG01910 '" ., , 'X, ,
~--------------------+--+--+--+--+-.;..+--+~-~
, IGG01911 'I"'" x ,
t--------------------+--+--+--+--+--+--+--~
, IGG01912 'X 'X, , , I I ,
~--------------------+--+--+--+--+--+--+--~
, IGGOl913 "'X I IX' , I

. t--------------------+--+--+--+--+--+--+--i
I IGG01914 'I' I X I , I I l ____________________ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ ~ __ J

Appendix A: Decision Tables 103

Table 25. OPEN Executor Selector - Stage 2 OPEN Executors
r---------------------------T---,
I I I
I Access Conditions I Selection I
I I I
~---------------------------+.---T---T---T---T---T---T---T---T--.---T---T---T---T---T---i
I BSAM or I X11 I I I X11 X I X11 X I X11 X I X I X11 X11 X11 I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I QSAM I X1 1 X I X I X I X11 I X11 I X11 I I X11 X~I X11 I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I Input or I X21 X I I X21 I I I I X21 I I I I I I
~---------------------------+_--+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I output I X21 I X I X21 I I I I X21 I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I Inout, outin I I I I I I X I I X I I I I I I I X I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I Update I I I I I I I I I I I I X I XI I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I Unit Record I I I I X I X-I I I' I I I I I I X51 I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I Magnetic Tape I I X31 X31 I X-I X I I I I I I I I X51 I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I paper Tape I I I I I X-I I I I I I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I Direct-Access ~torage I X I X3 1 X3 1 I I I I X I X I I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I WRITE-LOAD (Create-BDAM) I I I I I I I I I I X I X I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I Exchange Buffering I I X I X I X I I I I I I I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I Track Overf low I I I I I I I X I I I I X I I X I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I Chained scheduling I I I I I I I I I X I I I I I X I X I
~---------------------------+---+---+---+---~---~---+---+---+---+---+---+---~---+---+---i
I I I I I I I I I I I I I I
I Executors I I I I I I I I I I I I I
I I I I I I I I I I I I I I
~---------------------------+---+---+---+---T---T---+---+---+---+---+---+---T---+---+---i
I IGG0191D I D I I I I I I I I I· I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGGOl91E I I E I I I I I I I I I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGG0191F I I I F I I I I I I I I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGGOl91G I I I I GIG I G I I I I I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGG0191H I I I I I I I H I I I I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGG0191J I I I I I I I I J I I I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGGOl91K I I I I I I I I I K I I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGGOl91L I I I I I I I I I I L I I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGG0191M I I I I I I I I I I I M I I I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGGOl91P I I I I I I I I I I I I PIP I I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGG0191Q I I I I I I I I I I I I I I Q I I
~---------------------------+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---i
I IGGOl91R I I I I I I I I I I I I I I I R I
~---------------------------~---~---~---~---~---~---~---~---~---~---~---~---~---~---~---i
I 1This executor is selected for either QSAM or BSAM. I
I 2This executor is selected for either Input or Output. I
I 3This executor is selected for either Magnetic Tape or Direct-Access Storage. I
I -This executor is selected for either Unit Record, Magnetic Tape, or Paper Tape. I
I 5This executor is selected for either Unit Record or Magnetic Tape. I l __________________ ~ __ J

104

Table 21. CLOSE Executor· Selector
r-----------------------------T-----------,
I I I
I Access Conditions I Selection I
I I I
~-----------------------------+-----T-----i
I CLOSE macro-instruction I X I X I
t-----------------------------+-----+-----i
I Perroanent error or I I I
I end-of-volume condition I I X I
I when using QSAM for output I I I
t-----------------------------+-----+-----i
I I I I
I Executors I I I
I I I I
~-----------------------------+-----+-----i
I IGG0201A I X I X I
t-----------------------------+-----+-----i
I and IGG0201B I I X I L _____________________________ ~ _____ ~ _____ J

Appendix A: Decision Tables 105

APPENDIX B: QSAM CONTROL BLOCKS

Figure 16 shows the control Qlocks used
in QSAM. Through the data control block
(DCB), the QSAM routines associate the data
Qeing processed with the processing pro~
gram. Fields in the DCB point to the start
of a Quffer, the end of a Quffer, and an
input/output block (lOB). These fields are
updated as successive chapnel programs are
executed. Each lOB points at the next lOB
and at a channel prograXfI <CP), and carries
an event control Qlock (ECB) that the I/O
supervisor posts after the channel program
has Qeen executed.

106

~o lOB .-
I - NEXT lOB

I ECB

I CPAD
I
I o 0 CP 0
I
I
I 0

p- lOB I
-- --.1: NEXT lOB I

I ECB 21
I - CPAD I I
I "
1 0 o 0

CP
1

0 21 I -L
1

I

~ I lOB

-Ll - - NEXT loa
Eca

r- CPAD
0

CP 0
L.-..j J-

Legend.
Address Values:
o Enterecl by the OPEN exe~utor.
1 Updated by the synqhron;,;ing routine.
2 UpdQted by the GET or PUT routine.
- - - Successive Address Values

DCB

10BA

RECAD

EOBAD
t::::::::=-

BUFFER POOL

1

2

3

Figure 16. QSAM Control Blocks

r--

~
I
I
I
I

1+-2--1
I
I
I
1

ro-~

Figure 17 shows the control blocks used
in BSAM and their stages of completion.
stage 0 shows the state of the control
blocks Defore any READ or WRITE macro­
instruction. Stage 1 shows the effect of
the READ or WRITE macro-instruction, that
is, the values supplied by the processing
program in the data event control block
(DECB). Finally, stage ~ shows the effect
of the READ or WRITE routine'S tying
together these control blocks.

o

Before any READ or WRITE macro­
instruction, the data control block (PCB)
points to the first input/output clock
(lOB). This lOB points back to the DCE, to
the next lOB, and to the channel program
(CP). The.READ or WRITE macro-instruction
identifies the DCB and the buffer to be
read into or written out. Finally, the 2
READ or WRITE routine connects the DECB
with the current lOB, inserts the address
of the ECB (which is located in the DECB)
into the lOB, and points the channel
program to the buffer. Successive macro­
instructions cause updating of the lOB
address in the DCB and insert address
values in the next DECB. lOB. and channel
program.

2

APPENDIX C: BSAM CONTROL BLOCKS

DEeB

2
10BAD

lOB DeBAD
1

DC BAD ~
EeB

...L,.....r
BUFFER

0 BUFAD ~
EeAD

r--- NEXT lOB

0 oQ ePAD
ep 2

DEeB

2 1+---108------- IDBAD 1
DeBAO -------.

- -~
2 r" EeB BUFFER

DC BAD 1 I
0 BUFAD -r..t (

I EeBAD _..1

I r-- NEXT lOB I
I ePAD I
I o a 2 I

I
ep I

________ ----..1

I
I
I
I DEeB
I 2 , +---108------ -- 10BAD 1 I DeBAO r- --- ----. t- .- -....-----..

2 r-" ECB BUFFER
'0 0 pC BAD

BUFAD r-!T-l I I EeBAD _J
I NEXT lOB I , CPAD I

I
I 0 I

I CP I

I
2 _________ ---...1

I
I
I
I DeB
I I
l.----- IDBA I

Legend:
Addre$s Vqlues
o Ent.red by the OPEN Executor.
1 Provided by the processing progrom.
2 Completed by the READ or WRITE routine.
- -- Successive Address Volues.

Figure 17. BSAM control Blocks

Appendix C: BSAM Control Blocks 107

APPENDIX D: PAPER TAPE CODE CONVERSION - DESCRIPTICN OF TABLE r,-iODULES

GET routine IGG019AT (paper tape) and
WRITE routine IGG019BF (paper tape) use the
tables in the following modules to convert
characters read from paper tape to EBCDIC
characters.

CODE CONVERSION MODULE IGG019CM

This module is loaded by the OPEN
executor if the DCB specifies paper tape,
and code conversion for teletype transmis­
sion code.

The module consists of three tatles:

• A validity checking and special func­
tions table.

• A lower case character translation
table.

• An upper case character translation
table.

CODE CONVERSION MODULE IGG019CN

This module is loaded by the OPEN execu­
tor if the DCB specifies paper tape, and
code conversion for ASCII paper tape code.

The module consists of two tables:

• A validity checking and special func­
tions table.

• A character translation table.

CODE CONVERSION MODULE IGG01QCO

This module is loaded by the OPEN execu­
tor if the DCB specifies paper tape, and
code conversion for Burroughs paper tape
code.

The module consists of two tables:

• A validity checking and special func­
tions table.

• A character translation table.

108

CODE CONVERSION MODULE IGG019CP

This module is loaded by the OPEN execu­
tor if the DCB specifies paper tape, type
and code conversion for Friden paper tape
code.

The module consists of three tables:

• A validity checking and special func­
tions table.

• A lower case character translation
table.

• An upper case character translation
table.

CODE CONVERSION MODULE IGG019CQ

This module is loaded by the OPEN execu­
tor if the DCB specifies paper tape, and
code conversion fer IBM PTTC/8 code.

The module consists of three tables:

• A validity and special functions table.

• A lower case character translation
table.

• An upper case character translation
table.

CODE CONVERSION MODULE IGG019CR

This module is loaded by the OPEN execu­
tor if the DCB specifies paper tape, and
code conversion for NCR paper tape code.

The module consists of three tables:

• A validity checking and special func­
tions table.

• A lower case character
table.

translation

• An upper case character translation
table.

APPENDIX E: FEOV EXECUTOR IGC0003A (SVC 31) - OPERATION FOR OUTPUT UNDER QSAM

The operation of the FEOV executor for
an output data set processed under the
queued sequential access method (QSAM)
depends on the operating mode and the
execution of certain channel programs.

In the move operating mode, the execu­
tion of all channel programs is tested by
the FEOV executor. It awaits the execution
of the channel program for the present
buffer, and causes processing of any error
conditions.

In the locate operating mode, the execu­
tion of the channel program for the next
buffer in the chain is tested by the output
synchronizing routine. This test occurs
immediately after the end-of-block routine
has caused .the channel program for the
present buffer to be scheduled for execu­
tion. The execution of the channel pro­
grams for all the following buffers,
including the one just scheduled, is tested
by the FEOV executor after the last channel
program has executed.

When a QSAM routine tests the execution
of a channel program, one of three condi­
tions may be established, with the stated
results:

• The channel program executed
Normal processing continues.

normally:

• The channel program is not yet execut­
ed: The testing routine awaits comple­
tion of the channel program.

• The channel program executed with an
error condition: The testing routine
passes control to the SYNAD/EOV execu­
tor (IGC0005E), by.means of an SVC 55
instruction in synchronizing routine
IGG019AR. The executor distinguishes
between permanent error conditions and
end-of-volume conditions. (For a des­
cription of the error processing opera­
tions initiated by the SYNAD/EOV execu­
tor, refer to the section: sequential
Access Method Executors, in this publi­
cation.)

The FEOV executor substitutes its own
SYNAD routine (contained within module
IGC0003A) for the processing program's.
That SYNAD routine releases the work area
normally obtained by the executor and
issues an ABEND macro-instruction.

The operation of the FEOV executor, and
the resultant flow of control between it
and other control program routines, differs
for each of eight conditions. The condi­
tions are described below. Figure 18
illustrates the flow of control between the
executor and other routines. Table 29
specifies the path of control for the eight
conditions.

Condition 1: An output data set is proc­
essed under QSAM in the move mode, and all
channel programs execute normally.

The executor operates as foilows:

• It issues a TRUNC macro-instruction to
pass control to the PUT routine. (The
PUT routine passes control to the end­
of-block routine, which causes the
channel program for the present buffer
to be scheduled for execution. Control
returns to the PUT routine, which
returns control to this executor.)

• It awaits execution of the channel
program for the present buffer.

• It tests the execution of
program and finds that
normally.

the
it

channel
executed

• It passes control to the end-of-volume
routine of I/O support. (That routine
passes control to the EOV/new volume
executor, which returns control to the
processing program.)

Condition 2: An output data set is proc­
essed under QSAM in the move mode, and a
permanent error condition is encountered in
the execution of a channel program.

The executor operates as follows:

• It issues a TRUNC macro-instruction to
pass control to the PUT routine. (The
PUT routine passes control to the end­
of-block routine, which causes the
channel program for the present buffer
to be scheduled for execution. Control
returns to the PUT routine, which
returns control to this executor.>

Appendix E: Operation of FEOV Executor for Output under QSAM 109

• It awaits execution of the channel
program, and finds that it encountered
an error condition in its execution.
It passes control to the synchronizing
routine. (That routine finds the same
error condition and passes control to
the SYNAD/EOV executo~ (IGC0005E) by
means of an SVC 55 instruction. The
SYNAD/EOV executor finds that the error
condition is a permanent error condi­
tion and returns control to the syn­
chronizing routine, which returns con­
trol to the FEOV executor.>

• It issues an ABEND macro-instruction.

Condition 3: An output data set is proc­
essed under QSAM in the move mode, and an
end-of-volume condition is encountered in
the execution of a channel program.

The executor operates as follows:

• It issues a TRUNC macro-instruction to
pass control to the PUT routine. (The
PUT routine passes control to the end­
of-block routine, which causes the

;---

12

SVC 31

FEOV Executor
(1 GC0003A)

7 10

I Synchronizing
Routine

SVC55 819
SYNAD/EOV Executorl" __ ~----'

(1GCOOO5E)

III
I EOV Routine of t~ __ -,I

I/O Support r
13

EOV/ New
Volume Executor

(1GG0551A)

14~
Processing
Program

15

channel program for the present buffer
to be scheduled for execution. control
returns to the PUT routine; which
returns control to the FEOV executor.>

• It awaits execution of the channel
program, and finds that it encountered
an error condition in its execution.

• It passes control to the synchronizing
routine. (The routine finds the same
error condition and passes control to
the SYNAD/EOV executor (IGC0005E) by
means of an SVC 55 instruction. The
SYNAD/EOV executor finds that the error
condition is an end-of-volume condition
and passes control to the EOV routine
of I/O support. That routine passes
ccntrol to the EOV/new volume executor,
which retuz.ns control to the synchron-
1z1ng routine. The synchronizing rou­
tine now returns control to the FEOV
.executor.)

• It passes control to the end-of-volume
routine of I/O support. (That routine
passes control to the EOV/new volUme
executor again, which now returns con­
trol to the processing program.>

16

1 6 I ABEND I Routine

PUT Routine

I,
4 5 2 3

I ~nd-of-Block p
Routine 'I

Note, Refer to Table 29 for the
Sequence of Control

legend,
1 ,2 Pafh Number

~ Described in This Publication

Figure 18. Flow of Control Between the E'EOV Executor and Other Control Program Routines

110

Table 29. Path and Sequence of Control of
the FEOV Executor and Other Con­
trol Program Routines

Condition Sequence of Control
(0) (b)

1 1,2,3,6,12,13,14

2 1,2,3,6,7,8,9 10,16
3 1,2,3,6,7, S, 11,13,15,10,12,13,14

4 1,2,34,5,6,12,13,14
5 1,2,3,4,8,9,10,16

6 1,2,34,5,6,7,8,9,10,16
7 1,2,3,4,8,11,13,15,.10,12,13,14

8 1,2,3,4,5,6,7,8,11,13,15,10,12,13,14

Legend:
(a) ~ Refer to Appendix E for" description of the conditions.
(b) ~ Refer to Figure 18 for an identification of the routine passing control

and the routihe receiving cOhtrol.

Condition 4; An output data set is proc­
essed under QSAM in the locate mode, and
all channel programs execute normally.

The executor operates as follewsl

• It issues a TRUNC and a PUT macro­
instruction to pass control to the PUT
routine. (The PUT reutine passes
cOntrel to the end-of-block routine,
Which causes the channel progratt for
the present buffer to be scheduled for
execution. The PUT routine then passes
control to the synchronizing routine to.
obtain the next bUffer. That routine
finds that the channel pregram for the
next buffer executed normally, and
returns control to the PUT routine.
The PUT routine returns control to the
FEOV executer.)

• It awaits execution of the last channel
program, and finds that the channel
pregram executed normally.

• It passes control to the EOV routine of
I/O support. (That reutine passes cen­
trol to the EOV/new velume executor,
which returns control to the processing
program.)

Condition 5: An output data set is proc­
essed under QSAM in the locate mode, and
the execution of the channel pregram for
the next buffer in the chain encountered a
permanent error.

The FEOV executor eperates as fellows:

• It issues a TRONC and a PUT macro­
instruction to pass control to the PUT
routine. (The PUT reutine passes
contra I to. the end~af~block routine,
which causes the channel pragram fer
the ptesent buffer to. be scheduled far
executian. The POT rautine then passes
cantral to the synchronizing reutine to.

obtain the next buffer. The synchran­
izing routine finds that the channel
pregram executed with an error candi­
tion and passes cantral to. the
SYNAD/EOVexecutar (IGC0005E), by means
af an SVC 55 instruction. The
SYNAD/EOV executar finds that the error
canditian is a permanent errar candi­
tian, and returns control to the syn­
chranizing routine. The synchronizing
routine now returns contral to. the FEOV
executor.)

• It issues an ABEND macro-instruction.

condition 6: An output data set is prac­
essed under QSAM in the lacate made, and
the execution of the channel program for
any buffer ot'her than the buffer specified
in condition 5 encounters a permanent
errar.

The executor aperates as fallews:

• It issues a TRUNC and a PUT macra­
insttuction to. pass contral to. the PUT
routine. (The PUT routine passes
control to the end-of-black rautine,
which causes the channel pragram far
the present buffer to. be scheduled far
executian. The PUT routine then passes
contral to. the synchronizing rautine,
which returns' contralto. the PUT rou­
tine. The PUT routine returns contra I
to the executot.)

• It awaits execution af the channel
program for the last buffer and finds
that the channel pragram executed with
an ettor condition.

• It passes canttol to the synchranizing
toutine. {The routine finds the same
error canditian and passes contral to.
the SYNAD/EOV executat (IGC0005E), by
weans af an SVC 55 macro~instructian.
The SYNAD/EOV executer finds that the
error candition is a permanent errar
conditian and returns contral to the
synchtonizing rautine, which returns
cantral to the FEOV executor.}

• It issues an ABEND macra-instruction.

Candition 7: An aut put data set is proc­
essed under QSAM in the lacate made, and
the executian of the channel program far
the next buffer in the chain encauntered an
end-of-volume conditian.

The executar aperates as follaws:

• It issUes a TRUNC and a PUT macro­
instructian to. pass cantral to. the PUT
rautine. (The PUT rautine passes
control to the end-af~black routine,
which causes the channel pragram far
the ptesent buffer to be schedUled for

Appendix E: Operatian af FEOV Executar for Output under QSAM 111

execution. The PUT routine then passes
control to the synchronizing routine to
obtain the next buffer. The synchron­
~z1ng routine finds that the channel
program executed with an error condi­
tion, and passes control to the
SYNAD/EOV executor (IGC0005E), by means
of an SVC 55 instruction. The
SYNAD/EOV executor finds that the error
condition is an EOV oondition, and
passes control to the EOV routine of
I/O support. That routine passes con­
trol to the EOV/new volume executor,
which passes control to the synchroniz­
ing routine. The synchronizing routine
returns control to the PUT routine,
which now returns control to the FEOV
executor.>

• It passes control and the work area to
the EOV routine of I/O support. (That
routine passes control to the EOV/new
volume executor again, which now
returns control to the processing pro­
graw.>

Condition 8: An output data set is proc­
essed under QSAM in the locate mode, and
the channel program for any buffer other
than the one specified in condition 7
~ncounters an end-of-volume condition.

The executor operates as follows:

• It passes control to the PUT routine.
(The PUT routine passes control to the
end-of-block routine, which causes the
channel program for the present buffer
to be scheduled for execution. The PUT
routine then passes control to the

112

synchronizing routine which
control to the PUT routine.
routine returns control to
executor.>

returns
The PUT
the FEOV

• It awaits execution of the channel
program for the present buffer, and
then finds that the channel program
executed with an error condition.

• It passes control to the synchronizing
routine. (The routine finds the same
error condition and passes control to
the SYNAD/EOV executor (IGC0005E) by
means of an SVC 55 instruction. The
SYNAD/EOV executor finds that the error
condition is an EOV condition and pass­
es control to the EOV routine of I/O
support. That routine passes control
to the EOV/new volume executor, which
passes control to the synchronizing
routine, which returns control to the
FEOV executor. >

• It passes control, and the work area,
to the EOV routine of I/O support.
(That routine passes control to the
EOV/new volume executor again, which
now returns control to the processing
program. >

Note: An EOV condition is found during the
implementation of an FEOV macro-instruction
in conditions 3, 7, and 8. The subsequent
processing results in three volumes: Two
volumes containing all the blocks scheduled
for output by the FEOV macro-instruction
and prior PUT macro-instructions, and a
third volume available for writing new
blocks.

ABEND routine receives control
19,45,66,69,79,83,87 / 88,90,109,110,111

Address conversion routines
full-to-relative address (IECPRLTV)

74,75
relative-to-full address (IECPCNVT)

74,75
Appenaages

abnormal end 55
channel end 51-53
end-of-extent 48-50
introduction to 47,,48
PCI 53-55
SIO 51

Asynchronous error processing routine,
track overflow

description of 46.,47
introduction to 43
IRB constructed 46
IRB scheduled 55

Backspace
BSP routine (IGC00061 - SVC 69) 71
CNTRL routine (IGG019BE) 68

Basic direct-access method (BDAM)
see: Create-BDAM

Basic partitioned access method routines
see: BPAM routines

Basic sequential access method routines
see: BSAM routines

BLDL routine (IECPBLDL, IGC018 - SVC 18)
BLDLTAB option not used 73,74
BLDLTAB option used 74,75

BLDLTAB option not used 73,74
BLDLTAB option used 74.,75
Block fits into the allocated extents

see: Calculating whether a block fits
within the allocated extents

Blocked records
GET routines

exchange buffering 19
simple buffering 12
Update mode 22

PUT routines
exchange buffering 30
simple buffering 26
Update mode

see: Update mode GET routines
BPAM routines

description of 72-75
effect of BLDLTAB option 73,74
introduction to 72
relation to BSAM routines 7,72
relation to processing program 7,72
residence of 72

BSAM control blocks
relation of 107

BSAM routines
flow of control
introduction to
relation to BPAM

58,59
58,59
routines 7,72

relation to processing program 7,58
relation to QSAM routines 7-9
shared with QSAM

appendages 47-55
end-of-block routines 33-42
track overflow asynchronous error

processing routine 43,46,47
Buffer alignment 92
Buffer flushing CLOSE executor 87

see also: Buffer priming OPEN executor
Buffer is empty (GET routines)

exchange buffering 19
simple buffering 12
Update mode 22

Buffer pool management 92,93
Buffer priming OPEN executor 85
Buffer ready for emptying (PUT routines)

exchange buffering 19
simple buffering 12
Update mode

see: Buffer is empty (GET routines),
Update mode

Buffering techniques
GET routines 12
PUT routines 25

BUILD routine (IECBBFB1) 92

Calculating whether a block fits within the
allocated extents

if track overflow is not specified
35,38,62

if track overflow is specified 42,63
Card reader GET routines 16
Chained channel-program scheduling

appendages
abnormal end, channel end, PCI

53-55
end-of-extent 50

end-of-block routines 36-41
lOB prefix 36
joining

description of end-of~block
routines 38-41

end-of-block routine finds joining
unsuccessful 37,39

introduction to 37
NOTE/POINT routines
parting

channel end appendage finds chaining
terminated 54,55

description of PCI appendage 54,55
introduction to 53

stage 2 OPEN executors 82,84
stage 3 OPEN executor 86

Chained scheduling
see: chained channel-program scheduling

Character conversion
see: paper tape character conversion

CHECK routines
description of 64-66
introduction to 63

Index 113

CLOSE executor
description of 87,88
introduction to 87

CNTRL rOlitines
card reade:r: 56
magnetic tape 68
printer 57

control blocks, relation of
BSAM 107
QSAM 106

Control character end-of-block routines
chained scheduling 40,41
normal scheduling 35,36

Control routines
BSAM

QSAM

macro-expansions (shared with QSAM)
57

modules loaded at execution time
70,71

modules loaded at OPEN time
56,57,66-70

roacro-expansions (Shared with BSAM)
57

modules loaded at OPEN time (shared
with BSAM) 56,57

Converting routines
see: address con~ersion routines, paper

tape character conversion routines
Create-BDAM (WRITE-LOAD)

CHECK routine 65
stage 2 OPEN executo:r:S 83
WRITE (no track overflow) routines 62
WRITE (track o~erflow) routine 63

Data check for printer with UCS feature 79
DCBCINDi field set 35~38,42,78,79
DD statement is DUMMY 79
Decision tables 95-105
DS1LSTAR field 79
DS1NOEPV field 78
Dummy data set routine (IGG019AV) 18

Effector routine
see: Exit effector routine

Empty buffer
GET routines

exchange buffering 19
simple buffering 12
Upda te Rlode 22

PUT routines
exchange bUffering 30
simple buffering 26
Update mode
see: Update mode GET routines

End-of-block condition exists
GET routines

exchange buffering 19
simple buffering 12
Update mode 22

PUT routines
exchange buffering 30
sirople buffering 26
Update mode

see: Update mode GET routines
End-oi-block routines

114

chained channel-program scheduling
36-41

Inout or Outin mode not used 33
Inout or Outin mode used 33,31,41
introduction to 33
ordinary 33-36
track overflow 41-42

End-of-extent
appendages

chained scheduling 50
normal scheduling 48-50

end-of-block routines
chained scheduling 36-40
normal scheduling 33-36

End-of-volume
see: EOV

EODAD routine
control passes to 65,79

EOV executor
see: EoV/new volUme executor, SYNAD/EOV

executor
EOV routine of I/O support

control passed to
CHECK routine 91
create-BDAM WRITE routine· 62,91
EOV/new volume executor 88
FEOV executor 90
synchronizing routines 88

control recei~ed from
CHECK routines 63-65,88
Create-BDAM CHECK routine 65
FEOV executor 90 .
SYNAD/EOV exebutor 88
synchronizing routines Q2-46,88

EOV/new volume executor 91
Error option implementation

Input, output, Readhack modes
43,64,65,8!i,90

p~per tape 19
track overflow option 46
Update roode 46

Exchange buffering
GET routines

d~scription of 20-22
introduction to 19,20

PUT routines
description of 30-33
introduction to 29,30

stage 2 OPEN executors 81
stage 3 OPEN executor 86

Executors
CLOSE 81,88
EOV/new ~olume 91
FEOV 90
introduction to 76
OPEN

RAM option not used 7
RAM option used 7
stage 1 78,79
stage 2 79-84
stage 3 85-87

relation to I/O sUpport 7,76
SYNAD/EOV 88,90

Exit effector routine 55

FEOV executor (IGC0003A - SVC 31) 90
FEOV SYNAD routine 109
FIND

C option (macro-expansion) 73

D option (IGC018 - SVC 18)
BLDLTAB option not used 14
BLDLTAB option used 15

Flow of Control
BSAM routines 58
executors 16,11;89,111
QSAM routines 10,11

Forward space
CNTRL routine (IGG019BE) 68

FREEBUF macro-expansion 93
FREEPOOL macro-expansion 93
Full buffer

GET routines
exchange buffering 19
simple bUffering 12
Update mode 22

PUT routines
see: buffer ready for emptying

GET routines
buffering techniques 12
card reader 16
exchange bUffering 19-22
introduction to 11,12
paper tape character conversion 18
Readback 11
simple buffering 12-18
Update mode 24

GETBUF macro-expansion 93
GETPOOL routine (IECQBFG1) 92

IECBBFB1 92
IECPBLDI

BLDLTAB option not used 73,74
BLDLTAB option used 14,15

IECPCNVT 14,15
IECPFIND 13
IECPFNDl 14
IECPRLTV 74,75
IECQBFG1 92
IGC0002A 72
IGC0002E 70
IGC0003A 90
IGC0005E 88
IGC00061 11
IGc018

BLDLTAB option not used 73,74
BLDITAB option used 74,75

IGG019AA 13
IGG019AB 14
IGG019AC 15
IGG019AD 15
IGG019AE 24
IGG019AF 44
IGG019AG 16
IGG019AH 16
IGG019AI 21
IGG019AJ 27
IGG019AK 28
IGG019AL 29
IGG019AM 11
IGG019AN 11
IGG019AQ 45
IGG019AR 46
IGG019AT 18
IGG019AV 79
IGG019AW 48
IGGOi9BA 60

IGG019BB 64
IGG019BC 67
IGG019BD 68
IGG019BE 68
IGG019BF 60
IGG019BG 65
IGG019BH 61
IGG019BI 65
IGG019BK 69
IGG019BL 10
IGG019BM 50
IGG019CA 56
IGG019CB 51
IGG019CC 34
IGG019CD 35
IGG019CE 35
IGG019CF 36
IGG019CG 51
IGG019CH 50
IGG019CI 52
IGG019CJ 52
IGG019CK 53
IGG019CL 51
IGG019CM 108
IGG019CN 108
IGG019CO 108
IGG019CP 108
IGG019CQ 108
IGG019CR 108
IGG019CS 53
IGG019CU 54
IGG019CV 38
IGG019CW 39
IGG019CX 40
IGG019CY 40
IGG019CZ 50
IGG019Cl 46
IGG019C2 42
IGG019C3 55
IGG019DA 62
IGG019DB 62
IGG019DC 65
IGG019DD 63
IGG019EA 20
IGG019EB 20
IGG019EC 21
IGG019ED 21
IGG019EE 30
IGG019EF 31
IGG019iA 78
IGG0191B 78
IGG0191C 19
IGG0191D 81
IGG0191E 81
IGGOl91F 81
IGGOl91G 82
IGG0191H 82
IGG01911 79
IGG0191J 82
IGG0191K 82
IGG0191L 83
IGG019iM 83
IGG0191P 83
IGG0191Q 84
IGGOl91R 84
IGG01910 85
IGGOl911 85
IGG01912 85

Index 115

IGG01913 86
IGG01914 86
IGG0201A 87
IGG0201B 88
IGG0551A 91
Inout, Out in wades

alternate end-of-block routines
33,35,37,42

stage 2 OPEN executors 82
Input data set without data (IGG019AV) 79
Input data set without entries (IGG0191B)

79
Interruption request block (IRB)

see: Asynchronous error processing
routine, track overflow

I/O interruption 9
lOB prefix for chained scheduling 36

LOAD-BDAM (WRITE-LOAD)
see: Create-BDAM

Macro-expansions
FIND (C option) 73
FREEBUF 93
FREEPOOL 93
GETBUF 93
PRTOV 57

Module selector tables
see: Decision tables

New buffer
see: .Full buffer, GET routines; Ewpty

buffer, PUT routines
New volume executor

see: EOV/new volume executor
Next buffer segment (PUT routines)

exchange buffering 30
simple buffering 26
Update mode

see: Next record (GET routines),
Update mode

Next record (GET routines)
exchange buffering 19
simple buffering 12
Update mode 22

NOTE/POINT routines
chained scheduling 69,70
normal scheduling 67,68
track overflow 69
Update mode 69

OPEN executor
introduction to 78
RAM option not used 7
RAM option used 7
stage 1 78,79
stage 2 79-84
stage 3 85-87

Outin mode
see: Inout mode

Paper tape
appendage (IGG019CS) 53

Paper tape character conversion routines
CHECK routine (IGG019BG) 65
GET routine (IGG019AT) 18
READ routine (IGG019BF) 60,61
stage 2 OPEN executor (IGG0191G) 82

116

stage 3 OPEN executor (IGG01912) 85
synchronizing and error processing

routine (IGG019AT) 19
Paper tape code conversion modules 108
PCI

use in the parting process of chained
channel-program scheduling 53

POINT routines
see: NOTE/POINT routines

Priming input buffers
introduction to

exchange buffering 19
simple buffering 13
Update mode 24

stage 3 OPEN executor 85
Printer with UCS features 79
Processing program

relation to SAM routines 7
Program controlled interruption

see: PCI
PRTOV

appendage 51
end-of-block routines 35
macro-expansions 57

PUT routines
buffering techniques 25
exchange buffering 29-33
introduction to 25
simple buffering 25-29
Update mode 33

PUTX routines
description of

see: PUT routines

QSAM control blocks
relation of 106

QSAM routines
flow of control 10,11
introduction to 10
relation to BSAM routines 7-9
relation to processing program 7
shared with BSAM

appendages 47-55
end-of-block routines 33-42
track overflow asynchronous error

processing routine 46
Queued sequential access method

see: QSAM routines

RAM option specified in system generation
(SYSGEN) process and used in initial
program loading (IPL) process 7

READ routines
description of 60-63
introduction to 59

Readback wode GET routines 17
RELSE routines

description of
see: GET routines

introduction to
exchange buffering 19
siwple buffering 13
Update mode 24

Resident access method option
see: RAM option

Scheduling
see: chained channel-program scheduling

see also: end-of-block routines
Search-previous auxiliary storage
addressing 23

Seek addresses in QSAM Update mode 23
Sequential access methpds 7
Sequential access methods executors

see: executors
Sequential access methods facilities 7
sequential access methods (SAM) routines

effect of BLDLTAB 73,74
effect of RAM 7
introduction to 7

Simple buffering
GET routines

description of 13-18
introduction to 12,13

PUT routines
description of 27-29
introduction to 25-27

Update mode routines
description of 24,25,33
introduction to 22-24

stage 2 OPEN executors 79-85
stage 3 OPEN executors 85,86

Space magnetic tape
BSP routine (SVC 69-IGC0006I) 71
CNTRL routine (IGG019BE) 68

STOW routine (SVC 21-IGC0002A) 72
SVC 18 (IGC018)

BLDLTAB option not used
FIND (D option), BLDL routines 74

BLDLTAB option used
FIND (D option), BLDL routines 75

SVC 21 (IGC0002A) - STOW routine 72
SVC 25 (IGC0002E) - track balance routine,
track overflow erase routine 70

SVC 31 (IGC0003A) - FEOV executor 90
SVC 55 (IGC0005E) - SYNAD/EOV executor 88
SVC 69 <IGC0006I) - BSP control routine 71
SYNAD routine, FEOV executor 109
SYNAD/EOV executor (SVC 55 - IGC0005G) 88
Synchronizing and error processing routines

Input, Readback 43,45
introduction to 42,43
output 43,46
paper tape character conversion 19,43
shared between QSAM and BSAM 46,47
track overflow (asynchronous) 43,46,47
unique to QSAM 44-46
Update mode 43,44

SYSIN appendage (IGG019CK) 53

Track balance routine (SVC 25-IGC0002E) 70
Track erase routine (SVC 25-IGC0002E) 71
Track overflow

abnormal end appendage 55
Create-BDAM WRITE routine 63
end-of-block routine 42

erase routine 71
error processing

see: asynchronous error processing
routine

introduction to 41
stage 2 OPEN executors

Create-BDAM not used 82
Create-BDAM used 83

stage 3 OPEN executor (Create-BDAM not
used) 86

TRUNC routines

UCS

description of
see: PUT routines

introduction to
exchange buffering 30
simple buffering 26

see: printer with UCS feature
Unblocked records

GET routines
exchange buffering 19
simple buffering 12
Update mode 22

PUT routines
exchange buffering 30
simple buffering 26
Update mode

see: Update mode GET routines
universal Character Set

see: printer with UCS feature
Update mode

appendages
end-of-extent

BSAM 50
QSAM 48

SIO 51
CHECK routine 65
GET routine

description of
introduction to

NO'IE/POINT routine
PUTX routine 33

24,25
22-24

69

QSAM channel programs (Empty-and-Refill,
Refill-only) 23

READ/WRITE routine 61
stage 2 OPEN executors 83
stage 3 OPEN executor 85
synchronizing routine 44

Where-to-go (WTG) table
introduction to 76

OPEN executor 78
CLOSE executor 87

WRITE routines
description of 60-63
introduction to 59

WRITE-LOAD
see: Create-BDAM

Index 117

Y28-6604-1

InternaHonal8usiness Machines Corpora Han
Data Processing Division
112 EIJst Post Road, White Plains, N.Y.lOBOl
[USA Only)

IBM World Trade Corporation
821 United NaHons Plaza, NawYork, NawYork 10017
(Intarnational)

I<

"­a
I

" C1
C

"" I
I-

READER'S COMMENTS

Titl~: IBM System/360 Operating System
Sequential Access Methods
Program Logic Manual

Is the material;
Easy to Read?
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience?

How did you use this publication?
___ As an introduction to the subject

Yes

Other ____________ ------------__ -------

Please check the items that describe your position:
_ Customer personnel _. _Operator
_. laM personnel ___ Programmer

No

_. _. Manager _Customer Engineer
_ ._ Systems Analyst _ Instructor

Form: Y28-6604-l

For additional knowledge
fold -

_Sales Representative
_. _ Systems Engineer
_.Trainee

Other ______ --____ _

Please check specific criticism(s), give page number(s),and explain below:
_ Clarification on page (s)
. Addi tion on page (s)
_. _ Deletion on page (s)
_. Error on page (s)

Explanation:

fold

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage NeceSSary if Mailed in U.S.A.

Y28-6604-1"

staple

fold

r--,
I BUSINESS REPLY MAIL I
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I L-___ J

POSTAGE WILL BE PAID BY

IBM CORPORATION
P.O. BOX 390
POUGHKEEPSIE, N. Y. 12602

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS
DEPARTMENT D58

r--------------------, I FIRST CLASS I
I PERMIT NO. 81 I
I I
I POUGHKEEPSIE, N.Y. I L ____________________ J

111111

111111

111111

111111

111111

I11I11

111111

'" Ii
::s
rt"
CD
p"

....
--- ::s
fold

International Business Machines Corporation
Data Processing Divieion
112 East Post Road, White Plains, N.y.tOBOt
[USA Only]

IBM World Trade Corporation
82t United Nations Plaza, New York, New York tOOt7
[International]

c: f · Ol · :t:' ·
><
I\J
co
I

0\
0\
0
+=
I

sta

