
IBM System/360 Operating System

Linkage Editor (E)

Program Logh: Manual

Program Number 360S-ED-510

File No. S360-31
Form Y28-6610-2

Program Logic

This publication describes the internal logic of the
15K and 18K versions of the level E linkage editor.
The linkage editor combines and edits modules to
produce a single load module that can be loaded into
main storage by the control program. The linkage
editor operates as a processing program rather than as
a part of the control program.

This program logic manual is directed to the IBM
customer engineer who is responsible for program main­
tenance. It can be used to locate specific areas of
the program, and it enables thE~ reader to relate these
areas to the corresponding program listings. Because
program logic information is not necessary for program
operation and use, distribution of this manual is
restricted to persons wit:h program-maintenance
responsibilities.

Restricted Distribution

Form Y28-6610-2
Page revised 7/23/69 by TNL Y28-6400

PREFACE ------.-.--

This publication provides customer
engineers and other technical personnel
with information describing the internal
organization and logic of the level E
linkage editor. It is part of an inte­
grated library of IBM System/360 Operating
System Program Lo~ic Manuals. Other publi­
cations that are required for an under­
standing of the linkage editor are:

I~M Sysb~m/360 Operating System: Intro­
duction to Control Program _ L09.!.£L __ ~~O=-
3.!:am~ic Manua.!.. Y28-6605

!g~~~tem/3~~ __ Q£erating ~~~em~n=­
~epts and Facilities, C28-6535

IB.~~5tem/) 6 0. Operatin~ ___ §.ystem.;.
~§.sembler Langua.9.§.. C28-6514

rhe reader should also refer to the
co-requisite publication: IBH_System/
360 Operating Syste!!!..!.-_Link~~_Edito~
and Loader, C28-6538

This manual consists of three parts:

1. A.n Introduction. describing the link­
age editor as a whole, including its
relationship to the operating system.

The major divisions of the pr~Jram and
the relationships among them are also
described in this section.

2. A section describing each naj~r divi­
sion of the 15K and 18K versions of
linkage editor E. Each major division
is discussed in sufficient detail to
enable the reader to understand its
basic functions, and to provide a
frame of reference for the c~mments

and coding supplied in the pr~gram
listing. Common data, such as tables,
control blocks, and ~ork areas, are
discussed only to the extent required
to understand the logic of the major
divisions. Flowcharts are included at
the end of this section.

3. An Appendix, containing:

a. The input conventions and record
formats for the linkage editor.

b. The layouts of tables, ~hich may
not be essential for an under­
standing of the basic logic ~f the
program, but are essential for
analysis of storage dumps.

If more detailed informati~n is
required, the reader should refer to the
comments, remarks, and coding in the link­
age editor program listings.

The specifications contained in this publication as ameniej b~ Technical
Newsletter Y28-6400. dated July 23. 1969, cor~espond to Release 18 of
IEM System/360 Operating System.

Changes are periodically made to the specifications herein; any such
changes will be reported in subse:tuent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office servin~ your locality.

comnents may be addressej to IBM corporation, Pro~ramrninq Publications.
1271 l\venue of the l\mericas, New '{ork, New '{ork 10020.

~ International Business Machines Corporation 1969

Form Y28-6610-2
Page revised 7/23/69 by TNL Y28-6400

section 1: Introduction...... 7
Purpose of Linkage Editor • •• • • •• 7
Relationship to the Operating system 7
General Description • • • • • 8

Module structure • • • • • • • 8
External Symbol Dictionary 8
Relocation Dictionary • • • • 9
Composite Dictionaries ••••• 9
Options •••• • 9

Module Attributes 12
Main Storage Hierarchy Support • • • • • 13
Major Divisions of Linkage Editor • 13

Initial Processing • • • • • • • • • • 14
Input Processing (First Pass) •••• 14
Intermediate Processing • • • • 14
Second Pass Processing • • 14
Final Processing • • 14

Input/Output Flow • • • • • • 14
Internal Data Flow • • • 15

section 2: Discussion of Major
Divisions • • • • • _ • • • • • • 17
Initial Processor ••••• 17

Main Storage Allocation - 15K and 18K
Level E • • • • • • • • • • • 21

Input Processor ••••• • • • • • 21
Object Module Processor • • • • • • • 22
Load Module Processor • 23
ESD Processor • • • • • • 24

ESD Record Types • • • • • • • 24
CESD Record Types and subtypes • • • 24
ESD Processing • • • • • • • • • • • 25

TXT and RLD Processor - 15K and 18K
Level E • • • • • • • • • • • • • 28

TXT Process ing • • • • • • • • 28
processing Out-of-Order Text • • 28
RLD Processing • • • • • • • • • • • 29

End Processor • • • • • • • • • • • • 31
Control Statement Scanner • 31

Control Statement Processors • • • • 32
Include Processor • • _ • • • • 35
Automatic Library Call Processor • • • 37

Address Assignment Processor 38
ENTAB Size Determination Routine • • 40
Entry Processor • • • _ • • • • • • 42

Intermediate Output Processor 43
Second Pass Processor • • • • • • • • • 44

Second Pass Operation - 15K and 18K
Level E • • • • • • • • • • • • • • • 44
Relocation of Address Constants • 45

Relocation of Non-Branch Type
(A-Type) Address constants • • • 45
Relocation of Branch Type (V -
Type) Address Constants • 49
ENTAB creation • • • • • • • • 50
"Split" Address Constants - Level E 52

Relocation Routine - Level E • • ~ • • 52
Final Processor - 15K and 18K Level E • 54

Error Logging •• •• • • • • • .. • • 55
Input/Output Error Handling • • • • • 56
Module MAP and Cross-Reference Table • 56

2::>NTEN'T::> ------

LEVEL E -- FLOWCHARTS
Microfiche Directory •

· • 57
• 57

Appendix A: Reference Data For Level
E Linkage Editor ••••••
Input Conventions
Record Formats • •

Record Formats - Level E • •
SYM Input Record (Card Image)
ESD Input Record (Card Image)
Text Input Record (Card Image)
RLD Input Record (Card I~age)
END Input Record - Type 1
(Card Image) • • • • • • •
END Input Record - Type 2

• 90
• ')0

91
• 92

• • • 92
· 92
· 93
• 93

. • • 94

(Card Image) • • • • • • . . • • • . 94
SYM Record - (Load Module) . • 96
CESD Record - (Load Module)
Scatter-Translation Record . .
Control Record - (Load Module)
Relocation Dictionary Record -
(Load Module) ••••••.•.
Control and Relocation Diction3ry

· 96
· 96
· 98

• • 9 ~

Record - (Load t-1odule) • •• ..100
Reference Data For Initial
Processing - 15K and 18K Level E •.• 101

All Purpose Table • • . •• • .101
Main Storage Allocation Table .106
Minimum Table Area for Processin3
Non-Overlay Programs. • • • .107
Expansion of Table Area Into EKtr3
Available Main Storage
(Non-Overlay Processing) • • .107
Minimum Table Area for Processin3
Overlay Programs •••••••••. 108
Expansion of Table Area Into EKtra
Available Main Storage <Overlay
Processing) •••••••.•••• 109
Table of Buffer Sizes and Table
Sizes · .110

Reference Data for Input Processin3
-- Level E • . . •... 111

Alias Table • • • . . 111
Calls List. • • •••. 111
Calls List. • • ••..• 111
Composite External Symbol
Dictionary (CESD) -- Internal
Format ••••••••••••••• 112
Normal Combination of Internal
CESD Types. • • .•..• 113
Delink Table. • • • ••••• 114
Downward Calls List .••••• 114
Renumbering Table • • • . .114
Relative Relocation Constant T3ble .114
RLD Note List ••••••••.•. 115
Segment Length Table •••••.•• 115
Text Input/Output Table .116
Text Note List. • • • • . • • .116

Reference Data for Intermediate
Processing -- Level E . • . •

Segment Table (SEGTAB) • • • •
.117
.117

HalE Extel~nal Symbol Dictionary
High ID Table • • • • • • • •

Reference Data for Second Pass
Processing -- Level E • • • • •

Entry List • • • • • • • • • • •

• .118
.118

.119
• .119

Entry Table (ENTAB)
Text Table I • •
Text. Table II

• .119
••• 120

.120
Reference Data for Final Processing
-- Level E • • • • • .••••• 121

Partitioned Organization Directory
Record ••••••••••••••• 121
Module At1:ributE~s • • • • • .122
Partitioned Organization Directory
Record ••••••••••••••• 123

• .124 XADDCESD Table ••••
XAD2CESD Table • • • • • •
Table • • . • • • • • • .
List • . • • • •

• .124
. • • • .124

.124
Overlay Tree Structure -- Level E

Level E Linkage Editor - 15K Overlay
.125

Tree Structure . • • • • • • .
Level E Linkage Editor -- 18K

.125

Overlay Tree Structure • • . • • • • .126
Object Module -- Control Section
Cross Reference Table • .127
General Register Contents at ~ntry
to Modules -- Level E .127
Table Construction and Usage
Linkage Editor E • .130

Index • .131

FIGURES

Figure 1. Linkage Editor
Processing - Simple Case 8
Figure 2. Combining Control
Dictionaries •••••• 10
Figure 3. Linkage Editor
Processing - Using Overlay and
Test Opti ons •••••• • • 11
Figure 4. Linkage Editor
Processing - Using Scatter Load
and Test Options •••• 12
Figure 5. Input/Output Flow • 15
Figure 6. Internal Data Flow •• 16
Figure 7. Level E Linkage Editor
Organization ••••••••• 18
Figure 8. Control Statement
Scanner Operation •• • • • • • • • 32
Figure 9. Include Statement
Processing for a Sequential Data
Set • • • • • • • • • • • 33
Figure 10. Include Statement
Processing With Nested Members 33
Figure 11. Overlay Statement
Processing •••••••••• 34
Figure 12. Library Statement
Processing •••••••••• 36

TABLES

Table 1. Incompatible Module
Attributes • • • • • • • • • • • • • 17
Table 2. General Register
Information - Object Module
Processing • • • • • • • • • • 22
Table 3. Record Types and
Associated Processors ••••••• 23

ILLU STRll_TI ONS -----------" .

Figure 13. Include Processing •• 37
Figure 14. Automatic Library Call
Processing •••••••••
Figure 15. ENTAB Size
Determination • • • • •
Figure 16. Proc ess ing of Alias
Symbols by the ENTRY Processor
Figure 17. Writing
Scatter/Translation Records
Figure 18. Non-Branch Type
Address Constants - Relative

38

40

41

• 44

Relocation • • • • • • • • • • • • • 46
Figure 19. Non-Branch ~ype
Address Constants - Absolute
Relocation ••••••••
Figure 20. Non-Branch Type
Address Constants - Absolute and
Relative Relocation • • • •
Figure 21. Example of Delinking
Figure 22. Entry List Processing
Figure 23. ENTAB Creation
Figure 24. Split Address
Constants in the Second Pass Text
Buffer ••••••
Figure 25. Building Error
Messages (Level E)

Table 4. General Register
Information - Load Module

• • 46

47
• 48
• 50
• 51

• 52

• • 55

Processing • • • • • • • • • 24
Table 5. Flag Field Processing • • 31
Table 6. Relationship of RLD
Flag Field to Relocation • • • • 54
Table 7. Error Message -- ~odule

Cross Reference Table ••••• • • 56

Form :£28-661.0-2
Page revised 7/23/69 by TNL Y28-6400

CHART~;
--.---.,~

Chart A.A. Major Divisions · · 58 Chart CPo A.utomatic Library 2311
Chart BA. Initial Processor Processor (IEW'LCA.UT) · · · · '. · 75
(IEWLEINT) · · · · · · 59 Chart CQ. Library Open Routine
Chart CA. Input Processor (LIBOP) . · · · · · · · · · · 76
(IEWLEINP) · · · · · · · · · · 60 Chart OA.. A.ddress A.ssi~nment
Chart CB. Object Module Processor Processor (IEWLEA.DA.) · · · · 77
(IEWLEMDI) · · · · · · · · · · · · · 61 Chart DB. IEWLCENS Routine · · 78
Chart CC. L,oad Module Processor Chart DC. Entry Processor
(INP270) . · · · · · · · · · · · 62 (IEWLCENT) · · · · · · · · · · 79
Chart CD. SYM Processor (IEWLCSYM) 63 Chart DO. Entry Processor
Chart CEo gSD Processor (IEWI .. CESD) 64 (IEW'LCENT) (Continued) · · · · 80
Chart CF. ESD Processor Chart EA.. Intermediate Output
CIEWLCESD) (Continued) · · · 65 Processor (IEWLE~UT) · · · · · · · · 81
Chart CG. ESD Processor Chart FA.. Second Pass Process::>r
(IEWLCESD) (Continued) 66 (IEWLESCD) · · · · · · · · · · · · · 82
Chart CH. 'TXT and RLD Processor Chart FB. Second Pass Process::>r
(IEWLERAT) · · · · · · · · · · · · · 67 (IEWLESCD) (Continued) · · · · · · · 83
Chart CI. TXT and RLD Processor Chart F''''' '-. Relocation Routine · 84
(IEWLERAT) (Continued) .• · · · · · · 68 Chart FO. Relocation Routine
Chart CJ. TXT and RLD },)rocessor (Continued) · · · · · · · · · · 85
(IEWLERAT) (Continued) · · · · · · · 69 Chart FE. Relocation Routine
Chart CK. END Processor (IEWLCEND) 70 (Continued) · · · · · · · 86
Chart CL. Control Statement Chart GA.. Final Processor
Scanner (IE~rLCSCN) · · · · · · · 71 (IEW'LCFNL) · · · · · · · · · · 87
Chart CM. Control Statement Chart GB. Error Logging Routine
Scannf~r (IEWLCSCN) (Continued) · 72 (IEWLELOG) · · · · · · · · · · 88
Chart CN. Head 8 Routine · 73 Chart GC. Module Map Processor
Chart CO. IncludE~ Processor (IEWLCMAP) · · · · 89
(IEWLCINC) · · · · · · · · · · 74 Chart GO. SYNAD Routine · · · · · · 90

Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68

This section provides general informa­
tion describing the purpose, organization,
and internal operation of the linkage edi­
tor, and its relationship to the operating
system.

The level E linkage editor is available
in 15K and 18K versions; they differ in
speed, table sizes, and overlay structure.
All versions of the linkage edi t.or operate
in essentially the same manner.

PURPOSE OF LINKAGE EDITOR

The linkage editor is one of t~he proces­
sing programs of IBM System/360 Operating
System. It is a service program used in
association with the language translators
to prepare machine-language programs from
symbolic-language programs written in FOR­
TRAN, COBOL, report program generator, the
assembler language, or PL/I. Linkage edi­
tor processing is a necessary step that
follows source program asse~bly or
compilation.

Linkage editor processing allows the
programmer to divide his program into sev­
eral parts, each containing one or more
control sections. Each part may then be
coded in the programming language best
suited to it and may then be separately
assembled or compiled by a language trans­
lator (under the rules applicable to each
language translator) •

The primary purpose of the linkage edi­
tor is to combine and link object modules
(the output of the language translators)
into a load module in which all cross
references between control sections are
resolved as if they had been assembled or
compiled as one module. The load module
produced by the linkage editor consists of
executable machine-language code in a for­
mat that can be loaded into main storage
and relocated by program fetch.

In addition to combining and linking
object modules, the linkage editor performs
the following fUnctions:

• Library Call Processing. Modules (such
as standard subroutines) stored in a
library can be placed in the input to
linkage editor, either automatically or
upon request. If unresolved external
references remain after all input to
the linkage editor is processed, an

automatic library call routine retri­
eves the modules required to resolve
the references.

• Program Modification. Control sections
can be replaced, deleted, or rearranged
(in overlay program~ during linkage
editor processing, as directed by link­
age editor control statements. Common
control sections generated by the FOR­
TRAN, PL/I, and assembler language
translators are provided locations
within the output load module.

• Overlay Module Processing. Linkage
editor prepares modules for overlay by
assigning relative locations within the
module to the overlay segments and by
inserting tables to be used by the
overlay supervisor during execution.

• Options and Error Messages. The link­
age editor can:

1. Process vpecial options that over­
ride automatig library calls or
the effect of minor errors.

2. Produce a list of linkage editor
control statements that were
processed.

3. Produce coded diagnostic messages
and a directory describing those
diagnostic messages that were
printed out during linkage editor
processing.

4. Produce a module map or cross­
reference table of control sec­
tions in the output load module.

FELATIONSHIP TO THE OPERATING SYSTEM

The linkage editor has the same rela­
tionship to the operating system as any
other processing program. Control is
passed to the linkage editor in one of
-three ways:

1. As a job step, when the linkage editor
is specified on an EXEC job control
statement in the input stream.

2. As a subprogram, via the execution of
a CALL macro instruction (after execu­
tion of a LOAD macro instruction), a
LINK macro instruction, or an XCTL
macro instruction.

Section 1: Introduction .,

3. As a subtask, in multitaskinq- systems,
via execution of the ATTACH macro
instruction.

Linkage editor input may consist of a
combination of object modules, load
modules, and linkage editor control state­
ments. The prime function of the linkage
editor is to combine these modules, in
accordance with requirements statl~d on con­
trol statements, into a single output load
module that can be relocated and loaded
into main storage by program fetch for
execution. Output load modules are placed
in partitioned data sets (libraries).

Each module to be processed by linkage
editor has an origin that was assigned
during assembly, during compilation, or
during a previous execution of the linkage
editor. Each module in the input to link­
age editor may contain symbolic references
to control sections in other modules; such
references arle called external ref erences.

To produce an executable output load
module, the linkage editor:

1. Assigns relative main storage

2.

addresses to the control sections to
be included in the outpu1: module.
Since each input module has an origin
that was assi.gned independently by a
language translator, the order of the
addresses in the input is unpredict­
able. (Two input modules, for
example, may have the same origin.)
Linkage editor assigns an origin to
T.he first control section and then
assigns addresses, relative to this
origin, to all other control sections
in the output. 1 Each item in a control
section is relocated the same number
of bytes as -the control section
origin.

Resolves external references in the
input modules. Cross references
between control sections in different
modules are symbolic, and must be
resolved (translated into relocatable
machine addresse~, relative to the
cont.iguous main storage addresses
assigned 1:0 the output load module.
These symbolic cross-referE~nces are
made by means of address constants.
The linkage editor calculates the new
address of each relocatable expression

11f the program is in overlay, an origin is
assigned to the first control section in
each segment. Within each segment, conti­
guous addresses are assigned relative to
the segment origin.

8

in a control section and determines
the assigned origin (value) of the
item to which it refers.

Linkage editor processing is affected by
specified options, operations requested on
control statements, module attribu-tes con­
tained in partitioned data set directories,
and control information contained within
the modules themselves. The following
paragraphs describe the relationship of
module structure and module attributes to
linkage editor processing.

MODULE STRUCTURE

Object modules and load modules have the
same basic logical structure (see Figure
1). Each consists of:

• Control dictionaries, con1:aining the
information necessary to resolve sym­
bolic cross references between control
sections of differen-t modules r and to
relocate address constants.

• Text, containing the instructions and
data of the program.

• An end of module (EO~ indicator (END
statement in object modules; EOM indi­
cation in load modules) •

Each language translator usually pro­
duces two kinds of control dictionaries:
an external symbol dictionary (ESD) and a
relocation dictionary (RLD). An object
module always contains an ESDi a load
module contains an ESD, unless it is marked
with the IInot editable" attribute. Object
and load modules usually contain an RLD
(unless there are no relocatable address
constants in the modul~. A control dic­
tionary entry is generated whenever an
external symbol, an address constant, or
the beginning of a control section is
processed by a language translator.

Inpu~

Object Module

ESD

TXT

RLD

END

Figure 1. Linkage Editor
Simple Case

External Symbol Dictiona~y

OutF~

l.oad Module

EOM/RLD

Processing

The external symbol dictionary contains
entries for all external symbols defined or
referred to within a module. (An external
symbol is one that is defined in one module
and can be referred to in another.) Each
entry identifies a symbol, or a symbol
reference, and gives its location, if any,

within the module. When combining input
modules r linkage editor resolves references
between different input modules by matching
the referenced symbols to defined symbols;
it does this by searching for the external
symbol definitions in each input module's
ESD. There is an ESD entry for each named
control section and each named common area.
The ESD also contains entries that identify
unnamed control sections and unnamed common
areas.

Relocation Dictionary

The relocation dictionary ~LD) lists
all relocatable address constants that must
be modified when the linkage editor pro­
duces an output load module. ~rhe linkage
editor uses the RLD whenever it processes a
module. The RLD is also used to adjust the
value of address constants after program
fetch reads an output load module from a
library and loads it into main storage for
execution. The RLD contains at least one
entry for every relocatable address con­
stant in a module. An RLD entry identifies
an address constant by indicating both
its location within a control section and
the external symbol (in the ESD) whose
value must be used to compute the value of
the address constant.

Composite Dictionaries

An output load module is composed of all
input object modules and input load modules
processed by the linkage edi"tor (except
those that are replaced or dele"ted). The
control dictionaries of an OU"tput module
are therefore a composite of all the con­
trol dictionaries in the linkage editor
input. The control dictionaries of a load
module are called the composite ESD (CES~
and the RLD.

Figure 2 shows how the control dic­
tionaries of t.wo input modules a.re combined
into composite dictionaries by the linkage
editor. The control dictionaries and their
associated text are interrelated through a
system of line numbers and pointers.
Within an input module r each ESD item on
which an address constant may depend has a
line number (ESD identifier r or ESD ID);
the line number indicates the position of
the item r relative to the other ESD items
associated with the text. 1 Every item of
text in an object or load module has
associated control information that
describes it. This control information
includes the ESD ID of the ESD item for the

1In an object module r one type of ESD item
(LD) may not have associated text or
address constants that depend on it.
(Refer to "ESD Processor. ") Such ESD items
are excluded from the numbering system.

control section that contains the text.
(In Figure 2r the ESD ID of the text item
that contains X and Y points to line 1 of
1:he ESD for input module 1. The ESD ID of
the text item containing Z points to line 1
of the ESD for input module 2.)

Each RLD item must point to two ESD
items:

1. The ESD item for the symbol on which
the address constant depends. This is
referred to by the RLD relocation
pointer (R pointer) •

2. The ESD item for the control section
that contains the address constant.
This is referred to by the RLD posi­
tion pointer (P pointer) •

In input module 1r X and Yare address
constants. X refers to the ESD item for
the control section in which it resides
(CSECTA); therefore r both pointers of its
associated RLD item refer to the ESD entry
for the control section (line 1). Y refers
to an external reference symbol (CSECTC);
therefore r the R pointer of its associated
RLD points to the ESD entry for the extern­
al reference (line 2) r whereas the P point­
er refers to the ESD entry for its control
section (line 1) •

When the linkage editor combines the
input modules r it must maintain this system
of pointers by renumbering the ESD items to
reflect their relative positions in the
CESD of the output module. It must also
update the RLD pointers and control infor­
mation for the text so that they refer to
'the renumbered CESD items; the resulting
CESD and RLD items are shown in Figure 2.

~Note: Figure 2 is intended to show only
the relationship between ESD r text r and RLD
items before and after linkage editor pro­
cessing; the output module structure shown
applies only to the level E linkage editor.

,Options

Module structure also depends on
selected options. Figure 1 shows a simple
case in which a single object module r

containing only one control section r is
processed by the linkage editor for block
loading.

Figure 3 shows the processing of an
object module and a load module r each
containing several control sections. In
this example r test translator macro
instructions were included in an assembler
language source program and test symbol
(SYM) records were produced by the assembl­
er language translator. The TEST and over­
lay options have been specified on the
execute (EXEC) statement and overlay con-

Section 1: Introduction 9

Form Y28-'6610-2, Page Revised by TNL Y28-2301, 1/31/68

Input Module 1
---EsD--------

Symbol Type Origin
Length/
ID

CSECT A SD 000 500
(sECT C - ER 000 0--

CSECT B SD 500 1000

Input Module 2

eFigure 2. Combining Control Dictionaries

trol statements have been included in the
input to linkage editor. With these
options, the output load module produced by
the linkage edi·tor contains:

10

• SYM records to be used by'" the test
translator. (If the TEST option is not
speci.fied on the EXEC statement, SYM
records in input are not included in
the output load module). These records
contain blocked SYM and ESD statements
created during a previous execution of
linkage editor. SYM records in load
modules ar,e passed through the linkage
editor unmodified to the output device.

• A composite ESD. CESD records contain
the ESD items for the module. There is
a maximum of 15 ESD items per record on
the output device. The first eight
bytes of the CESD record contain con­
trol information pertaining to the ESD
i terns in the record. This information
consists of the ESD ID of the first ESD
item and ·the number of bytes of ESD
items in the record.

• A control record, or a composite
cont~ol/RLD record, preceding each text
record. The RLD portion, if present,
contains the RLD items used to relocate

* output Module

ESD

Symbol Type Origin
Lel1gth /
ID .. CSECT A SD 000 500

~ CSECT C SD 500 :z6~
",.--+- CSECT B SD 2500 f6O()

-,

~ t 4~O I

----..,

I; ~
1 1 RLD

I R II p I Flag I AddB _ 1
I_ 1 I F I 300 ~.../

2 I • 1 I F I 400

-HI T 700 :d X ~:J
T

RLD
R I p I Flag I Add~
2 I • 2 I F I 700

I; ~

the previous text. 1 The control portion
may contain:

1. An end of segment (EOS) indication,
if the following text record is the
last text record of an overlay
segment. 2

2. An end of module (EOM) indication,
if the following text record is the
last text record of the module. 2

3. The number of bytes of RLD informa­
tion that follow, if it is a compo­
site control/RLD record.

4. The number of bytes of control
information.

1If there is a large number of RLD items
for the previous text, there may be several
RLD records preceding the next text record.
The last of these is a control/RLD record.

2If there are no RLD items for the last
text record, the control record that pre­
cedes the text contains the EOS or EOM
indication. If there are RLD i.tems, the
EOS or EOM follows the text record. (See
Figure 3.)

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

Object
Modules

SYM
ESD
TXT
END
ESD
TXT
END
ESD
TXT
RLD
END

Load
Module

SYM
CESD
Control
Record
SEGTAB
Control
Record

TXT

ControljRLD
Record
ENTAB
EOS/
RLD/Record
Control
Record
TXT
ControljRLD
Record
ENTAB
EOS/
RLD Record
Control
Record
TXT
EOM/
RLD
Note
List

* RLD items exist for previous TXT record;
therefore, EOM/RLD follows TXT record.

** No RLD items for last TXT record;
therefore, EOM precedes TXT record.

Any overlay statements in the load module
are ignored.

Output

Load
Module

SYM
CESD
Control
Record
SEGTAB--

Control
Record

TXT

Control/
RLD Record
ENTAB
EOSj

Control
Record
TXT
Control!
RLD Record
ENTAB
EOSj
RLD Record
Control

Contr;V­
RLD Record
ENTAB
EOSj
RLD Record
Control/
EOM
TXT

Note
Lis'

Segrne nt 1
(Root
Segment)

Segment ')

Figure 3. Linkage Editor Processing - Using Overlay and Test Options

The control portion also contains the
IDs of the control sections in the
following text record, the number of
bytes of text for each ID, and a
channel command word (CCW). The chan­
nel command word contains the address
assigned by the linkage editor to the
first byte of that record, plus the
total length of the record. This
information is used by program fetch to
read the following text.

• Text for each control section. Text
records contain the code and data for
the module. In overlay, the linkage
editor produces two special types of
text records, the segment table (SEG­
TAB) and entry table (ENTAB). The
SEGTAB" located in the root segment, is
used by the overlay supervisor to keep
track of the relationship of segroents
during execution. The ENTAB is a

separate control section that may be
created by the ~inkage editor in each
overlay segment. An ENTAB is used by
the overlay supervisor to determine the
segment to be loaded when a segment not
in the path is referred to.

• A note list. The note list gives the
location of each overlay segment in the
output module library.

Figure 4 shows the module structure when
the scatter loading and test options are
requested. With these options, the output
load module contains:

• SYM records.

• A composite ESD.

• A scatter/translation record used by
program fetch to compute the relocated

Section 1: Introduction 11

Form Y28-6610-·2, Paqe Revised by TNL Y28-2356, 11/15/68

~
ESD

TXT
Load
Module

Object END Load
Modules Module

ESD

.(U"ka") ConlroljRLD TXT Editor

RLD

END

Figure 4. Linkage Editor Processing - Using Scatter Load and Test Options

addresses requi:red for scattE~r loading
the module into the main storage. The
record contains a scatter table and a
translation table-.--Thescatter table
rsoalist- of co:ntrol section addresses;
the translation table correlates the
CESD entry for each control section
with the address indicated in the
scatter table. (When a load module in
scatter format is processed again by
the linkage editor, this information is
ignored.)

• Text for e2ch control section, preceded
by a control/RLD record describing it.
(Any RLDs pertaining to a text record
a.rE~ contained in the control/RLD record
that follows it.)

• An EOM indication that marks the end of
thE~ module.

The Appendix (Section 3) contains the
format of each record type.

MODULE ATTRIBUTES

When the linkage editor generates a load
module in a library (partitioned data set)
it places an entry for the module in the
PDS directory. This entry contains "attri­
butes" describing the structure# content,
and l09ical format of the load module. The
control program uses these attributes to
determine how a module is to be loaded,
what it contains, if it is executable,
whether it is executable more than once
without reloading, and if it can be
executed by concurrent tasks.

Some module attroibutes can be specified
by the programmer; others are specified by

12

the linkage editor as a result of informa­
tion gathered during processing. In the
following list, attributes marked with an
asterisk cannot be specified by the
programmer:

• Reenterable. A reenteratle module can
be executed by more than one task at a
time and cannot be modified by itself
or by any other module during execu­
tion; i.e., a task may begin executing
a reenterable module before a previous
task has finished executing it.

• Serially Reusable. A serially reusable
module will be executed by only one
task at a time, and it will either
initialize itself and/or it will
restore any instructions or any data in
the module that it alters during its
execution.

• Overlay format. A load module struc­
tured for overlay includes a segment
table (SEGTAB) to enable the overlay
supervisor to load the proper segments,
and at least one ENTAB to assist in
passing control from one segment to
another. If a load module has the
overlay forn.at attribute, the reenter­
able, reusable, refreshable, hierarchy,
and scatter attributes cannot be pre­
sent.

• Hierarchy format. When a HIARCHY
statement is detected, the "number" and
"name" operand values are used in
building the scatter table and transla­
tion table. The high-order byte of
each CSECT address entry contains the
hierarchy number that is included in
the GETMAIN request for main storage
for program loading.

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

• Test. If this module is an assembler
language program and testing by the
test translator is desired, this attri­
bute can be specified. Test will cause
SYM records to be written. If the TEST
attribute is specified, the module can­
not be reenterable or serially
reusable.

• Only loadable. This attribute indi­
cates that the control program may load
this module only via the LOAD macro
instruction,.

• Scatter format. A load module in
scatter format is suitable for block or
scatter loading. The scatter­
translation table and the relocation
dictionary maintain logical linkage
between scattered control sections
when program fetch loads them into main
storage.

• *Block format. If neither the overlay
nor scatter attributes are specified,
it is implied that the module can only
be block loaded,. The control program
will load the module only if enough
contiguous main storage space is avail­
able for the entire module.

• *Executable. This attribute indicates
that linkage editor did not find any
errors that would prevent successful
execution. If this attribute is not
present the control program will not
load the module.

• Module contains one text record and no
relocation dictionary records. This
attribute indicates that the control
program does not have to allocate main
storage for relocation dictionary items
when loading the module. It also indi­
cates that the first text record is the
last one; there is no control record
following it. The entire module can be
read by program fetch in a single read
operation,.

• *Linkage editor assigned origin of
first text record is zero. If this
attribute is present, the first byte of
instruction or data in the first text
record is assigned to location zero.

• *Entry point assigned by linkage editor
is zero,. Indicates that the entry
point is at the first byte of the
module.

• *No relocation dictionary items pres­
ent. Indicates to the control program
that no allocation of main storage is

necessary to receive relocation dic­
tionary items when program fetch loads
them into main storage.

• Not editable. Indicates that the load
module cannot be accepted by the link­
age editor for subsequent processing.
(For example, the programmer may drop
the CESD from an output load module in
order to conserve space on the library;
such a load module cannot be repro­
cessed by linkage editor.)

• Symbol statements present. If a module
produced by the assembler language
translator is to be tested by the test
translator, it may contain a testing
symbol dictionary. In a load module,
this dictionary contains the informa­
tion from the symbol statement images
that were input to linkage editor.

• Refreshable. A refreshable module can­
not be modified by itself or by any
other module during execution; i.e., a
refreshable module can be replaced by a
new copy during execution by a recovery
management routine without changing
either the sequence or the results of
processing. (For details on recovery
management, refer to the publication:
IBM System/360 Operating System: Con­
cepts and Facilities, Form C28-6535.)

MAIN STORAGE HIERARCHY SUPPORT

If Main Storage Hierarchy Support for
IBM 2361 Models 1 and 2 is included in the
system, the linkage editor produces load
modules which can be loaded into either
processor storage or IBM 2361 Core Storage
by the control program. If the HIAR param­
eter is specified in the PARM field of the
EXEC statement, the linkage editor is ini­
tialized to accept the HIARCHY control
statement. This statement specifies the
storage hierarchy (0 for processor storage
and 1 for IBM 2361 Core Storage) into which
the CSECTs identified in the statement are
to be loaded.

MAJOR DIVISIONS OF LINKAGE EDITOR

Linkage editor processing consists of
five sequential operations:

1. Initial processing.
2. Input processing.
3. Intermediate processing.
4. Second pass processing.
5. Final processing.

Section 1: Introduction 13

Form Y28-66'10-2, Page Revised by TNL Y28-2356, 11/15/68

INITIAL PROCESSING

Initial processing begins when the con­
trol program passes control to the linkage
editor. During this operation, the linkage
editor prepares for all subsequent opera­
tions. The initial processor:

• Uses dat.a management facilities to open
data sets to be used during linkage
editor processing.

• InterprE~ts the options and attributes
specifiE~d by 1the programmer and saves
them in an all purpose table (APT).

• Uses task management facilities to
obtain main storage space for internal
tables" work areas, and input/output
buffer areas used in linkage editor
processing .•

After initial processing" control is
passed to the input processor.

INPUT PROCESSING (FIRST PASS)

All input to the linkage! editor is
processed during the first pass,. Input
records are read. checked for validity,
identified, and processed as required. The
text and HLD items that are t~o be part of
the output load module are written on the
intermediate data set (SYSU'I'l). Linkage
editor control statements are interpreted
and processed and the CESD is built in main
storage. SYM records in the input are
gathered and written out directly on the
output device as part of the output load
module. After all input has been received
and processed, control is passed to inter­
mediate processing.

I NTERMED lATE PROC:E:SS ING

Intermediate processing consists basi­
cally of two operations: address assign­
ment and intermediate output processing.
Relative machine addresses are assigned to
all external symbols that are to be con­
tained in the output load module, to the
module entr~{ poin1t, and also ·to any alter­
native entry points defined by the user
with ALIAS statements. The intermediate
output processor places the CESD and, if
required, the SEG'rAB or scatter translation
table in th4~ output module library.

SECOND PASS PROCESSING

During second pass processing, the text
and RLD ib~ms are read from the intermedi­
ate data set, address constants in the text
are relocat4~d, and. the records that 'make up

14

the output module are written on the output
module library (SYSLMOD).

FINAL PROCESSING

Final processing completes the library
directory entry for the output load module
and places it on the output module library.
If the module is structured for overlay,
the final processor writes out on SYSLMOD a
note list that indicates the location of
each segment in the output module library.
If any coded diagnostic messages were writ­
ten out on SYSPRINT during linkage editor
processing, a directory explaining these
coded messages is writ·ten. If specified, a
module map or cross-reference table is
produced. If a multiple execution of the
linkage editor is specified, control
returns to initial processing; otherwise,
control is returned to the caller.

INPUT/OUTPUT FLOW

Four data sets must be specified for
linkage editor processing; their ddnames
and functions are:

• SYSLIN. This is the "primary input
data set," containing object modules
and control statements. All input from
SYSLIN must be in 80-column card image
format. The SYSLIN source may be a
card reader, magnetic tape, a direct­
access device, or a concatenation of
data sets from different types of input
devices. 1

• SYSPRINT. This is the "diagnostic out­
put data set." Diagnostic messages,
the module map, and the cross-reference
table are written on SYSPRINT. (In the
Sequential Scheduling System, the SYS­
PRINT device is normally a printer or
magnetic tape.)

• SYSUT1. This is the "inteDllediate
set." Linkage editor uses this
set for temporary storage of text
RLD items being processed. SYSUT1
be on a direct-access volume.

data
data

and
must

• SYSLMOD. This is the "output module
data set." It is a partitioned data
set on a direct-access volume. SYSLMOD
contains load modules; their attributes
are described in the user's portion of
the directory entry for the member.

An additional data set, SYSLIB, is used
by linkage editor if there are any automat­
ic library calls to be processed. SYSLIB

1A concatenation of data sets cannot con­
tain both object and load modules.

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

can be defined only as a partitioned data
set.. The me~nbers of SYSLIB can be either
load modules or object modules (but object
and load modules cannot be contained in the
same PDS). When SYSLIB is opened, the
linkage editor determines whether the PDS
contains object or load modules by checking
the format in the data control block (DCB).
If the PDS contains object modules, the
record format (RECFM) field of the DCB
indicates "fixed (F) format"; if it con­
tains load modules, the DCB indicates
"unknown (U) format". (Load module records
are of variable length.) If SYSLIB con­
tains object modules, the linkage editor
ignores the user's portions of the PDS
directory entries for the object modules.

Other data sets may be read by linkage
editor when it processes INCLUDE or LIBRARY
statements specifying ddnames. Data sets
read into main storage with INCLUDE state­
ments may be either sequential or parti­
tioned. SYSLIB and data sets specified in
LIBRARY statements for use by automatic
library call must be partitioned.

The attributes for the "execute linkage
editor" job step are the attributes spec i-

fied on the EXEC statement. These attri­
butes may be modified if a load module
having different attributes is processed.

Figure 5 shows the input/output flow.
During the initial processing, SYSLIN,
SYSPRINT i, SYSUT1" and SYSLMOD are opened.
During input processing, the primary input
is read from SYSLIN. If an INCLUDE state­
ment is read in the primary input, the data
set whose ddname is specified on the state­
ment is opened, and is processed.

At the end of all SYSLIN input., SYSLIB
and any other data sets whose ddnames are
specified on LIBRARY statements are pro­
cessed through automatic library calls.

If the TEST option has been selected,
SYM records are written during input pro­
cessing; text and RLD items are written
sequentially on SYSUT1. The location of
each text record on SYSUT1 is entered in a
tex·t note list.. The location of each RLD
record on SYSUT1 is entered in an RLD note
list. If either note list overflows, it is
written out on SYSUT1.

Section 1: Introduction 14.1

SYSLIN

Additional
Input
Sources

SYSLIB

SYSUTl

Initial
Processing

Input
Processing

Intermediate
Processing

Second Pass
Processing

Final
Processing

Figure 5. Input/Output Flow

SYSPRINT

SYSLMOD

In intermediate processing, the CESD is
written on SYSLMOD (unless the not editable
attribute is indicated). If a scatter
table, translation table, or SEGTAB is
required, it is also written on SYSLMOD.
The note lists for the text and RLD items
on SYSUTl are read into main storage.

During second pass processing, text and
RLD records are read into main storage from
SYSUTl in the order of assigned addresses
within each segment (using the note lists
to find the records) and are written out on
SYSLMOD.

In final processing, the member name and
any alias names are entered into "the PDS
directory entry of the output load module,
via the STOW macro instruction. If any
coded diagnostic messages were written on
SYSPRINT during linkage editor processing,
a diagnostic message directory containing
error message text is written out on SYS­
PRINT. If a module map or cross-reference
table was requested, SYSLMOD is closed, and
then reopened as an input source. The CESD

is read into main storage fron SYSLMOD to
be used in producing the module map. If a
cross-reference table was requested, the
RLD iterrs are also read from SYSLMOD; at
the end of final processing, SYSLMOD is
closed. All other data sets are then
closed and control is returned to the
calling program, unless the SYSLIN input
during input processing was terminated by a
NAME statement. If a NAME statement termi­
nated the primary input, control is
returned to initial processing and SYSLMOD
is opened for output. When a NAME state­
ment is used to produce mUltiple load
modules in a single execution of linkage
editor, SYSLIN, SYSPRINT, and SYSUTl remain
open for the entire execution. (A pointer
in the DCB for SYSUTl is repositioned to
the beginning of extent of SYSUTl after
each load module is produced.) If neither
a module rrap nor a cross-reference table is
requested, SYSLMOD remains open for output.

INTERNAL DATA FLOW

A generalized representation of internal
data flow during linkage editor processing
is given in Figure 6. A pointer in the
SYSLIN or SYSLIB read block indicates the
input source from which data is to be read.
The input data is then read in and proc­
essed in the following manner:

Input records from SYSLIN are read into
the SYSLIN buffer. (SYSLIN contains only
object modules.) Object modules from SYS­
LIB are read into the SYSLIN buffer, where­
as load modules from SYSLIB are read into
the load ITodule buffer. During input proc­
essing, SYM information is gathered in the
load module buffer, text is gath~red in the
input text buffer, RLD records are proc­
essed in the input RLD buffer, and ESD
records are combined into the composite
ESD. Text and RLDs are written out on
SYSUT1, while SYM records are written
directly on SYSLMOD. CESD, SEGTAB, and
scatter/translation records are written out
on SYSLMOD during interrrediate processing.
During second pass processing, any RLD
items that were placed on SYSUTl are read
back into the second pass RLD buffer; any
text that was stored on SYSUTl is read back
into the second pass text buffer. (Two
second pass text buffers are used for
input/output overlap.) For overlay
modules, ENTAB RLD items are produced in
the ENTAB RLD buffer. (The ENTAE itself is
built in the second pass text buffer.)
After address constants in the text have
been relocated, text, RLD, and ENTAB
records are written out on SYSLMOD.

section 1: Introduction 15

Block
SYSLIB Read

Block SYSLIN Read 1 [
C-SVS L;:J---~ "'--D-C-B-A-dd-r-es-s-' ===D=C=B =A=d=dr=es=s==: --]
-S~~i;fl
ISO SYM TXT_~~_~_ .. ~.

[
Input Te;~1

Buffer ~
TXT

=? RLDs SYSU~ -

TXT RLD

[---} RLD
Buffer

_J RLDs

Second Pass RLD W_s _

_ ~put[B"ff'.'--J _l
__ _ [.. ~ .. !.'~,r~!rR~~_J

[
Second Pass RLD -L

Output Buffer J -RLDs

---C--
CCW/RLD

, __ ~L __
[

Seco>,d Pass]
Text Buffer 1 ---r--

• Figure 6. Internal Data Flow

16

... -------~
lSYSLI~j

Load Module
RLDs Buffer

SCATTER/
TXT ESD SYM TRANSLATION

TXT

SYSLMO~
1-

Form Y28-6610-2
Page revised 7/23/69 by TNL Y28-6400

The following text and the associated
flo~charts at the end of this section
describe the major divisions of the 15K and
18K versions of linkage editor E. Each
major division is further subdivided and
described to explain the general organiza­
tion and operation of linkage editor.

The major divisions of linkage editor E
are shown in chart AA.

• Initial processor.
• Input processor.
• Address assignment processor.
• Intermediate output processor.
• Second pass processor.
• Final processor.

The overall organization of linkage editor
E is shown in Figure 7.

INITIAL PROCESSOR

The initial processor builds an all
purpose table (APT), which contains
descriptions of other tables used by the
linkage editor, and contains decision indi­
cators that control linkage editor opera­
tion. The APT remains in main storage
throughout the linkage editing process and
is the major communication area among
internal functions.

When the linkage editor receives control
from the job scheduler, or from another
program via a CALL (after execution of
LOAD, LINK, XCTL, or ATTACH macro instruc­
tion), control information may be passed to
it.~ This information includes the attri­
butes and options that control linkage
editor processing. When control is passed
to the linkage editor from the job schedul-

~The method of passing information to the
linkage editor is described in the System
Reference Library publication IBM System/
360 Operating System: Linkage Editor and
Loader.

SECTION 2: DISCUSSION OF MAJOR DIVISIONS

er, the passed control information is the
information contained in the operand field
of the EXEC statement. The initial proces­
sor interprets the control information,
checks it for validity, and saves it for
later use in linkage editor processing.

A program that passes control to the
linkage editor may provide a substitute
list of ddnames to be used by the linkage
editor in place of the standard names, and
a name that is to be assigned to the output
load module in the PDS directory.

The 15K and 18K level E initial proces­
sor (IEWLEINT) (Chart BA) operates in the
following manner:

• ~fter the standard ddnames (or passed
ddnames) have been entered into the
data control blocks of the data sets
used by the linkage editor, the initial
processor opens all data sets except
SYSLIB and SYSLMOD using data manage­
ment facilities. (The SYSLIB DeB is
used for automatic library calls or
INCLUDE statements. It is opened dur­
ing input processing only if there are
any automatic calls or INCLUDE state­
ments specifying it.)

• The initial processor sets an "unlike
attributes· indicator in the SYSLIN
DCB. This indicates to the open rou­
tine that SYSLIN may be a concatenation
of data sets stored on different
devices.

• The attribute and option routine scans
and analyzes the control information
that ~as previously passed in a list to
linkage editor. The processin~ options
requested by the user and the attri­
butes to be assigned to the output load
module are compared against an option
table and noted in the all purpose
table. When mutually exclusive attri­
butes are specified for a load module,
the linkage editor ignores the incom­
patible attribute (refer to Table 1).

Section 2: Discussion of Major Divisions 17

TablE~ 1. Combinations of Module Attri­
butes and Program Options

18

Note: An X indicates incompatible attri­
butes: the attribute that appears l~~er on
the list is ignored. For example, to check
the compatibility of XREF and NE, follo~
the XREF column down and the NE ro~ across
until they intersect. since an X appears
~here they intersect, they are inc~npatible
attributes. NE is ignored.

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

IEWLEINT IEWLEOPT
*****AI ********** *****A2**********
* * * ATTR IBUTES *

INITIAL * AND
PROCESSOR *----* OPT IONS

: * 1 * PROCESSOR

***************** I *****************

IEWLEINP

:****F 1 *********:
INPUT

PROCESSOR

* *****************

I

LLO:****S2*********:
* ALLOCATION *

--* ROUTINE *

* *
* *****************

I EWLEMDI I EWLCESD

I NI T I AL PROCESS I NG

:****C2*********: *****C3********** ***********************
* OBJECT : ESO : :*!;:;~~~~*:*~;~~~~~~*:

I
r----*:*****M*O*O*U*L*E*******--------* PROCESSOR :--------:*;~~;;****:*;~!;~*****

PROCESSOR 1 * FREELINE * IEWLCPTH *

I
***************** ***********************

:*~;!;!~;**:*!~;;;~***:

I
* IEWLCRCG * IEWLCDLK *

I
I ***********************

:*~;~;~****:**********:
IEWLCSYM

I
I *****03**********

1**

1----: PRO~~~SOR
I *

II 'NP'" I ".:~~:~""""""
I :****E2*********: :****E3*********: :****~~;;;~*****:

I
* LOAD * * TEXT * *-*-*-*-*-*-*-*-*

----* MODULE *--------* AND RLD *---------* BUFRLD ..
: PRDCESSOR : 1 : PROCESSOR: :-*-*;:;;:;0;-*-*-:

I I ".:~::~............

L :****F3*********:
* END *

--* PROCESSOR *

IEWLCINC
:****G2*********:

* *
* *****************

* ----*
INCLUDE

PROCESSOR

*****G3**********
* * LIBOP *--------*

I

*

"""u, I

I --r::;~i;;:ii;:**~--~ * PROCESSOR

*

IL,,::::::: ~~ ~~:~ ~:~: : " :
* CONTROL * * READ8 *
* STATEMENT *------.-*-*-*-*-*-*-*-*-*
* SCANNER * * PROCENTY *

* * ***************** *****************

I NPUT PROCESS I NG

Figure 7. Level E Linkage Editor Organization

Section 2: Discussion of Major Divisions 18.1

M I EWLEADA

:****A 1 *********: :****A2*********:

AS~~g~~~~T :------*-*-!:::;:~~*-*-:
PROCESSOR * IEWLCENT .

IEIILEOUT
*****81**********
* * * INTERMEulATE
* OUTPUT

PROCESSOR

SCDGE.T I D
*****C2**********
* CONTROL *

SECTION "
.----*
I *

SEARCH
(GET ID)

I

I
I SCDRuTXT/SCDRDRLD I :****D2*********:

I * READ
1----. FROM
I * SYSUTI

I
I

IEWLESCD I SCDEXEC
:****El*********: :****E2*********:

SECOND •• ____ L ___ ** SECOND *
PASS PASS

PROCESSOR I EXECUTOR I

I SCDRL:LOC
I *****F2**********

I : RELOCATION *
----* ROUT I NE

I :**.************:

I
I

I
I
I SCDOUTPT

I
:****G2*********:

* OUTPUT *
--* PROCESSOR *
1**

I ************.****

I

SCDENTAB III

*****H2**********
1**
I * ENTA8
'---* CREATION

*
* *****************

INTERMEDIATE PROCESSING

SECOND PASS PROCESSING

Figure 7. Level E Linkage Editor Organizaticn <Continued)

Section 2: Discussion of Major Divisions 19

IEWLCFNL
*****Cl**********
* * FINAL

PROCESSOR * *-----
*
* *****************

FNL
*****A2**********
* * WRITE

r----* TTR LIST
I * (IN OVERLAY)
I
I
I
I
I
I
I

I FNL300

*­

*

FNL301A
I *****B2********** *****83**********
I * * * * I * SET UP PDS * * STOW
------* 01 RECTORY *---1---* MEMBER
I ENTRY * I *
I I *

*
I ***************** I *****************

I I
I II

I FNL900

I I *****C3**********
* SET UP *

FNLCN
*****02**********
* * PRINT *

-----* DOWN-GRADED

I
I
I
I

I
I

* ATTRIBUTES

I I EWLCBPT

I *****E2**********
* PRINT *

~ ____ * DI~~~~~6~C
I * DIRECTORY

!
I
I
I
I

I IEWLCMAP

I *****F2**********
* *

I * --------*

I
MAP/XREF
PROCESSOR *

*

I *****************

I
I

I IEWCEOI I :****G~~~::*****:
I * CLEANUP *
L _____ * TLRM I NATE *

* AND RETURN *
* * *****************

L ___ : S~~~
* ALIASES
*

Figure 7. Level E Linkage Editor Organizaticn (Continued)

20

FINAL PROCESSING

Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68

• SYSLMOD is opened, and the allocation
processor requests main storage space
for internal tables, buffers, and work
areas. The allocation processor issues
a request for a minimum requirement of
main storage space. The minimum value
depends on whether or not the module
being processed is structured for over­
lay; it includes an amount to be used
by data management functions. If suf­
ficient main storage space is avail­
able, the supervisor returns control to
the allocation processor and the space
exceeding the minimum requirement is
divided among the tables and buffers.
If sufficient main storage space is not
available, the control program will not
return control to linkage editor.

The following paragraphs describe the
allocation process in the level Eversion
of the linkage editor.

MAIN STORAGE ALLOCATION - 15K AND 18K
LEVEL E

To obtain the required main storage
space, the allocation processor (ALOC):

1. Determines the excess of main storage
space allocated by the supervisor.

2. Divides the total excess by the total
weight factor. A weight factor is a
ratio based on the individual main
storage requirements of linkage editor
tables that are not fixed in size.
(Fixed tables have weight factors of
zero.) The total weight factor
depends on whether or not the module
is structured for overlay.

3. Multiplies the quotient obtained in
step 2 (rounded to the nearest lower
integer) by the weight factor for each
table and adds the result to the
minimum requirement for the table.
This is done for all tables and buf­
fers used by the current module.

4. Divides the total byte count for each
table by the number of bytes per
entry, and saves the result in the all
purpose table.

5. Computes the addresses for the tables.

6. Releases excess main storage space,
noting the last address used.

When the required main storage space has
been allocated, tables are initialized, and
control is passed to the input processor.

INPUT PROCESSOR

After initial processing, control is
passed to the input processor. The input
processor performs a control function; the
o~erations performed depend on the nature
of the input. The input type and input
conditions are analyzed, and control is
passed to the appropriate processing rou­
tine. At the end of input, control passes
to the intermediate processor.

The 15K and 18K level E input processor
(IEWLEINP) is shown in Chart CA; it

operates in the following manner:

• Each input record is read, using one of
two read blocks. The first read block
contains the address of the SYSLIN
module buffer, the address of the SYS­
LIN DCB, and the block size and logical
record length. The second read block
contains the address of the buffer for
library records (object module buffer
or load module buffe~ , the address of
the library DCB, and the block size and
logical record length. A pointer is
used to indicate which read block is to
be used for the input record. Initial­
ly, the pointer is set to the SYSLIN
read block. If input is to be read
from a library, the include processor
(Chart CO) or automatic library call
processor (Chart CP) may move the
pointer to the library read block at
any end-of-data condition. 'The reading
of input is therefore not restricted to
a particular DCB and buffer.

• If SYSLIN is a concatenation of data
sets, the current READ is reissued when
a data set boundary is crossed.

• Control is given to the control state­
ment scanner (Charts CL and CM) for all
object module records whose first
column character is a blank, provided
that the record is not encountered "in
module." ~ontrol statements encoun­
tered within a module cause an error
indication.}

• Control is given to either the object
module processor (Chart CB) or load
module processor (Chart CC), depending
on the input module type. (All input
via include or automatic library call
is identified by record format. F
format indicates object modules: U for­
mat indicates load modules. Only
object modules are read from SYSLIN.)

section 2: Discussion of Major Divisions 21

Form Y28-66110-2, Page Revised by TNL Y28-2301, 1/31/68

• At any end-of-input (from SYSLIN or
SYSLIB), the input processor determines
if cont~rol should be given to the
include processor or to the automatic
library call processor. The include
processor is given control if more
modules must be included before resum­
ing normal processing. The automatic
library call processor receives control
if the NCAL option (no automatic
library calls) was not selected and an
end-of-input on SYSLIN has occurred.
If the NCAL option was selected, con­
trol is passed to the address assign­
ment processor.

• If a NAME stat:ement, which may indicate
a multiple execution of linkage editor,
was detected by the control statement
scanner, processing proceeds as if an
end-of-input had occurred on SYSLIN
(the automatic library call processor

receives control). However, no end-of­
input indication is made so that con­
trol will bE! returned to the initial
processor at the end of final
processing.

• If an end-o!'-input occurs on SYSLIN,
but no valid input was received, con­
trol is passed to the final processor
(Chart GA) to terminate linkage editor
processing.

OBJECT MODULE PROCESSOR

The level E object module processor is
shown in Chart CB. Object module proces­
sing consists essentially of three
operations:

1. Determination of record type.

2. Setup of general registers.

3. Special event processing.

The record type is determined by examin­
ing columns 2 through 4 of each logical
input record. For each record type, con­
trol is passed to an associated processor,
as follows:

Record
~

SYM
ESD
TXT
RLD
END

Processor

IEWLCSYM
IEWLCESD
IEWLERAT
IEWLERAT
IEWLCEND

Chart

CD
CE,CF,CG
CH,CJ
CH,CI
CK

The general registers aJ:"e loaded with
input record information to be used by the
selected processor, as described in
Table 2.

eTable 2. General Register Information - Object Module Processing
r--------------------T----------.--.-------------,
I Input Record Type I General Register I
I (Se e Append ix A for ~----------------T---------------T----------------T-----------------~
I Record Formats) I 3 I 4 I 5 I 6 I
~------------------+----------.------+---------------+----------------+-----------------i
I SYM: I I SYM Statement I I Address of SYM I
I I I byte count I I sta-tement in I
I I I I I buffer I
1---------------------+----------------+---------------+-----------------+-----------------~
I ESD I INumber of bytes IESDID of first IAddress of first I
I I lof ESD informa- IESD item on Ibyte of ESD in I
I I Ition I statement I buffer I
~------------------.--+----------------+----------------+----------------+----------------~
I TXT IAssigned addresslNumber of bytes IESDID of CSECT IAddress of first I
I lof first byte oflof text informa-Ito which text Ibyte of text- in I
I I text Ition Ibelongs Ibuffer I
~---------------------+----------------+----------------+----------------+--------·--------i
I RLD I I Number of bytes I I Address of first I
I I lof RLD informa- I Ibyte of RLD in I
I I Ition I I buffer I
~------------------+----------------+----------------+----------------t----------------i
I END IAbsolute addresslLength of CSECT I ESDID of CSECT I I
I lof entry point I for which no Icontaining entry I I
I Ion END statement I length was givenlpoint I I
I I I in ESD item I I I ,, ____________________ ..l.-________________ .l ________________ .l _____________ . ___ .l ________________ J

22

Following is a
event processing:

description of special

• When an END statement is detected, the
RLD and TXT processor is entered so
that any data still contained in the
input RLD buffer or the input text
buffer can be written out on SYSUT1.

• If the TEST option is selected, the SYM
records from the object rrodule are
gathered by the SYM processor in the
load module buffer. When the first TXT
statement in a module is encountered
(or if no text statement has been
encountered when the END statement is
detected), the SYM processor is entered
so that the contents of the load module
buffer can be written out on SYSLMOD
(see Chart CD).

• When control is returned from the ESD
processor, indicators in the all pur­
pose table are examined to determine
if:

1.

2.

A control section (SD,
common) was indicated on
statement.

PC,
the

The TEST option was specified.

or
ESD

If both conditions are met, the SYM
processor is entered to block the ESD
record with any other ESD records in
the input text buffer.

• If a control statement continuation is
expected and an object module record is
read, an error condition occurs, and a
coded diagnostic message is produced by
the error logging routine. Norwal
object module processing is then per­
formed on the record.

• If, during object module processing, a
statement is encountered which is not
one of the five acceptable types (SYM,
ESD, TXT, RLD, or END), an error condi­
tion occurs and a diagnostic message is
produced by the error logging routine.
The input record is then ignored.

LOAD MODULE PROCESSOR

The level E load module processor is
shown in Chart CC. Load modules included
in the input to linkage editor by the
include processor or the automatic library
call processor are processed in the follow­
ing manner:

• The input record type is determined by
an identification field (byte 1 of the

record), and control
associated processor,
TablE 3.

is passed to an
as shown in

• The parameter registers are loaded with
input record information to be used by
the selected processor, as described in
TablE 4.

• If the record is not identified as a
TXT, CESD, Scatter/Translation, SYM, or
CCW/RLD record, an error condition
occurs, and a diagnostic message is
printed out. The input record is
otherwise ignored.

• If the TEST option was not specified on
the EXEC statement, all SYM records are
ignored.

• If an end-af-module indication is found
in a CCW or RLD record, the END proc­
essor performs cleanup functions and
control returns to the input processor.

• When a CCW record is detected, the
following TXT record is imfrediately
read into the input text buffer before
the TXT and RLD processor is entered.

• If the test option was specified on the
EXEC statement and a SYM record is
received, control is passed to the SYM
processor to write out the record as
test translation data from the load
module buffer (see Chart CD).

-Table 3. Record Types and Associated
Processors

r-----------T----------T---------T--------,
IRecord TypelIdentifierlProcessorlChart I
~-----------+----------+---------+--------~
ITXT 1* IIEWLERAT ICH,CJ I
ICESD Ihex '20' IIEWCESD ICE,CF,CGI
I Scatter/ I I I I
ITranslationlhex'10' I (Ignored) I I
ISYM Ihex '40' IIEWLCSYM ICD I
ICCW Ihex '01' IIEWLERAT ICH,CI I
ICCW/RLD Ihex '03' IIEWLERAT ICH,CI I
IRLD Ihex '02' IIEWLERAT ICH,CI I
~-----------~---------_~---------L--------~
IIf end of module indication is on: I
~-----------T----------T---------T--------~
ICCW Ihex 'OD' IIEWLCEND ICK I
I CC·w/RLD I hex • OF' IIEWLCEND I CK I
IRLD Ihex 'OE' IIEWLCEND ICK I
~-----------~----------~---------~--------~
I *Identified by preceding control record. I l ___ J

The following paragraphs describe the
functions, during object and load module
processing, of the ESD processor, the TXT
and RLD processor, and the END processor.

Section 2: Discussion of Major Divisions 23

Table 4. General Register Information - Load Module Processing
r------------T--,
I I General Register I
iLoad module ~------------------T------------------T------------------T-----------------~
IRecord Type I 3 I 4 I 5 I 6 I
~------------+------------------+------------------+------------------+-----------------~
I SYM I I Zero I I I
~------------+------------------+------------------+------------------+-----------------~
I CESD I IByte count of ESD I ESDID of first I Address of first\
I I litems in record I CESD item in I CESD item in I
I I I I record I buffer I
~------------t------------------+------------------+------------------+-----------------~
I CCW \ Assigned address ILevel E-Byte count\ ESDID of CSECT \ I
I I of first byte of Itext in following I to which text I I
I I text in followin.g\ record I belongs \ I
\ I record \ I I I
~------------+------------------+------------------+------------------+-----------------~
I RLD I IByte count of RLD I \ Address of firstl
I I litems in record I I RLD item in I
I I \ \ I buffer I l-___________ L __________________ L __________________ L __________________ L _________________ J

E:SD PIWCESSOR

When the object or load n~dule processor
detects an ZSD record, it gives control to
the ESD processor (Charts CE, CF, and CG).

The main function of the ESD processor
is symnol resolution. It combines the
individual ESDs in the input to linkage
editor into a composite ESD, which contains
all symbols in the input which were not
changed, deleted, or replaced. The ESD
processor refers to a chained REPLACE/
CHANGE list (produced by thE control card
scanner) to determine which ESD items are
to be changed, deleted, or replaced. The
ESD processor also produces a renuI!:bering
table (RNT) , which is used by the TXT, RLD,
ci-nd--"END processor~; to translate the I:,SD ID
of the input ESD items to CESD IDs.

Every object module in the input to
linkage editor must contain at least one
ESD item. An ESD item is created by a
language translator whenever it finds a
symbol that is defined for external use.
In the assembler language, for example, ESD
items are created whenever an ENTRY, EXTRN,
COM, START, or CSECT statement, or a v-type
address constant is found. An ESD item is
created to define the beginning of each
control section, and to define a common
area. Each ESD item has a type assigned to
it that indicates its function. The ESD
types are:

24

• Section Definition (SD). Defines the
b~ginning of a named control section.

• Private Code (PC). Defines the begin­
ning of an unnamed control section.

• Label Definition (LD). Defines a label
(symbol) whose ~location is defined
relative to the location of the control
section in which it is contained. An
LD-type ESD item contains the ESD ID of
the control s~ction that contains the
label.

• Common (CM). Defines a common area for
which a main storage address is
assigned during linkage editor process­
ing. The area may be named or unnamed;
an unnamed area is referred to as a
"blank common" area.

• Pseudo Register (PR). Defines an area
external to the output module, but
referred to by it, for which main
storage space is allocated at execution
time. The linkage editor treats PR
symbols as a block that is external to
the program. The value assigned to
each sy~bol is a displacement within
this l:lock.

• External Reference (ER). Refers to a
symbol that is referred to but not
defined within an input module.

CESD Record Types and Subtypes

A load mcdule in the input to linkage
editor contains at least one CFSD record
(240 bytes, maximum). The CESD record
types are the same as for ESD records, with
the following additions:

• Null type. This indicates that the
item is to be ignored in any reprocess­
ing of the module by linkage editor.

• Label Reference (LR). This defines a
label (symbol) ~ithin a centrol sec-

tion. An LR type CESD entry is num­
bered; it contains the ESD ID of the
control section entry in the ID/length
field. An LR may be referenced direct­
ly by an RLD item in the same reodule,
whereas an LD may not. All LD items
are changed to LR items during linkage
editor processing (LDS are contained
only in object modules, never in load
modules).

• Private Code (PC) Marked Delete. This
is a CESD item created only for ENTABs
and SEGTABs. PC-delete entries are
placed in the renumbering table, indi­
cating that associated TXT and RLD
information is to be deleted.

CESD items may also contain a "subtype."
The sUbtypes are listed in the internal
CESD format in section 3.

ESD Processing

Upon receiving control froIT. the input
processor, the ESD processor saves the
ESD ID of the ESD record, the number of
bytes of £SD information, and the type
field of the first ESD item. The current
segment number is placed in the ESD, unless
it is a PR type (PRs have an alignment
value in the segment number field). If the
automatic library call indicator is on, the
segment number is set to 1 so that called
modules will be placed in the root segment.
The ESD item is then processed according to
its type, in the following manner:

• If the ESD item is an ER, bytes 10, 11,
and 12 are set to zero in the input
buffer (either the object IT.odule buf­
fer, the SYSLIN buffer, or the load
module buffer). Byte 10 must be
cleared because the automatic library
call processor uses it to indicate if
automatic library calls have been proc­
essea. Bytes 11 and 12 must be cleared
because any nonzero data (including
blanks) will be entered in the delink
table if delinking is required for the
symbol. If the input item is an ER
item from an object module, the CESD
subtype field is also reset to zero to
indicate that there are no modifiers in
the subtype field.

• If a REPLACE/CHANGE function has been
requested for the input module, the
routine IEWLCRCG examines the
REPLACE/CHANGE chain that was built in
the CESD by the control statement scan­
ner and makes the appropriate modifica­
tions. For example, if the scanner
received the statement CHANGE A (B),
the CESD contains a line for A, marked
as a change statement item in the
subtype field; the next line contains
the symbol B. The ESD processor

changes the input ESD item symbol from
A to B.

~ If the ESD item is a PC, the CESD is
not searched because each PC entry is
treated as a unique entry. The PC is
placed in the next available CESD line
and is processed in the same manner as
an SD.

• If the ESD item is NULL, the renumber­
ing routine is entered. (This routine
is described in "Non-Resolution
Processing".)

• If the ESD item is an LD, the ESD
processor changes it to an LR. The
item is then processed as an LR.
(There are some minor differences in
processing LDs that have been chanqed
to LRs; refer to "LR (or LD) Items."
For this reason, the ESD processor sets
an internal indicator when it chanqes
the type to LR.)

After determining the ESD type, the ESD
processor scans the CESD for a matching
symbol. If no match is found, non­
resolution processing proceeds as shown on
Chart CF. If the input ESD syrrbol matches
a symbol in the CESD, resolution processing
is performed as shown on Chart CG.
Resolution processing results in only onE
CESD entry for each unique input ESD sym­
bol; multiple occurrences of the same input
ESD symbol are listed in the renumbering
table (RNT) with pointers to the sinqle
CESD entry .

NON-RESOLUTION PROCESSING (CHART CF): If
no matching symbol is found in the CESD,
the input ESD item 1S processed as
described in the following paragraphs.

SD Items: If the input ESD itere is an SD:

• The free line routine
line in the CESD.
the current line is
previous CESD line
(Null lines are used
to save space.)

selects an empty
The line following

chosen unless a
is marked null.

whenever possible

• The ESD processor determines if auto­
matic library calls are being proc­
essed. If automatic library calls are
being processed, an indicator is set in
the type field of the selected CESD
line. (If a module map was requested,
this indicator is checked during module
map processing. If the indicator is
set, the control section is marked with
an asterisk in the module map or cross
reference table to indicate that it was
obtained from a library during automat­
ic library call processing.)

Section 2: Discussion of Major Divisions 25

• A "write" indicator is set in the
all-purpose table to note that SDs,
PCs, or CMs were encountered in the
input record. When control returns to
the input processor, the write indica­
tor is tested. If it is on and the
TEST option was specified, routine
IEWLCSYM will save ESD records contain­
ing SDS, PCs, or CMs, block them into
244-byte records (including four bytes
of control information), and write them
out on SYSLMOD.

• In any input object module the ESD
processo:r saves the CESD line number of
the first SD entry whose length is
zero. The END processor uses this CESD
line to enter the length specified on
the END card. (Typical FORTRAN input
has the control section length on the
Et\:D card.)

• The enter routine creates a CESD entry
for the input ESD item; it moves the
symbol, length, segment number, ID, and
type into the selected CESD line.

• The renumber routine places the line
number of the new CESD entry into the
renumbering table to provide a means of
translating the input IDs to the new
CESD IDs. For example, if the input
ESD item has a line number (ESDID) of 3
but the item is placed into the CESD at
line 5, 5 is placed in the third line
of the renumbering table. (For each
input ESD line, except LD lines, there
is a corresponding RNT line. The RNT
contains information for the current
module; it is set to zero at the end of
each input module.)

~R __ !te~s: If the input ESD i te:rr is an ER,
it is entered in the CESD and renumbered as
described above; no special processing is
required.

.hJLlo~ LD) Items:
an LR or LD:

If the input ESD item is

26

• The LABEL routine determines, when
processing an LR if the SD for the
control section has been processed. If
the SD has not been received, any LRs
that refer to that SD are chained
together in the CESD until the SD is
received. (The SD might be marked
replace; therefore, the LR cannot be
processed until the SD is received.)
Wnen the SD is received all dependent
L~s are processed. Each LR ID field is
renumbered using the renumbering table
so that it refers to the CESD ID of the
SD.

• Since LDs are not referred to by RLDs,
they are not numbered in language
translator output; therefore, LDs are

not renumbered. The enter routine
places them directly in the CESD. If
an LD is received before the SD to
which it belongs, it is handled as an
LR.

PR Items: If the input ESD item is a
pseudo register, the current segment number
is not entered in column 12 of the ESD item
(Chart CE). Column 12 of a PR item may
contain an alignment value which indicates
that the PR must be aligned to a half-word,
full-word, or double-word boundary. The PR
is then processed by the freeline, enter,
and renumber routines, as described pre­
viously.

CM Items: If the input ESD item is CM, a
"corrmon" indicator is set and the item is
treated as a delete item. If the address
that was assigned to the CM item by the
language translator is not zero, it is
saved in the del ink table for later use.
(Two CM items with the same identifying
symbol may have different assigned address­
es; therefore, the assigned address in the
input must be subtracted from all address
constants that refer to the CM items so
that they are returned to their displace­
ment value before relocation.) The CM item
is then renumbered and entered into the
CESD.

RESOLUTION PROCESSING (CHART CG): If a
matching symbol is found in the CESD, the
type fields of the input item and the
matching CESD item are compared and resolu­
tion processing is then performed. The
following ccnventions are observed during
resolution processing:

1. Input PR items may match only PR-type
entries in the CESD. If aPR-type
input item matches a non-PR item in
the CESD, it is not treated as a
match; the CESD search for a matching
PR item continues.

2. If the matching CESD item is marked
"chained," resolution is performed on
the item to which it is chained.

3. If the CESD line is marked null, the
rroatch is ignored and the search con­
tinues.

4. If the CESD item is an ER produced
from a REPLACE, CHANGE, OVERLAY, or
ALIAS statement, or from the ddname
field of an INCLUDE or LIBRARY state­
ment, the match is ignored and the
search continues.

Matching items are processed in the
following manner:

• If the input ESD item is CM, SD, or LR,
and it matches an ER in the CESD, the
input type replaces the type indicated
in the CESD item. Non-resolution proc­
essing is then performed on the input
item.

• If the input ESD item is an LR and it
matches a CM, SD, or LR in the CESD, a
"match" bit is set, indicating that a
double symbol definition is possible.
If the SD for the control section has
been entered in the CESD and is marked
for deletion, the label routine deletes
the label; if it is not marked for
deletion a "double symbol definition"
message is produced. If the SD for the
control section is not in the CESD, the
LR is chained to the matching LR; when
the so is received, the LR is deleted
or a double symbol definition is pro­
duced, depending on whether or not the
so is being deleted.

• If an input PR matches a PR in the
CESD, the greater length and the most
"constrictive" boundary alignment are
placed in the CESD entry. (A double
word alignment is more constrictive
than full word alignment; full word is
more constrictive than half word; etc.)
The input PR entry is then renumbered
to the updated PR entry in the CESD.

• If an input so item matches an SD entry
in the CESO, automatic replacement of
the control section occurs. The input
so item is entered into the CESD as a
delete-type and is chained to the
matching SO entry. (During second pass
processing, the assigned address of the
control section being replaced will be
subtracted ("delinked") from the
addresses of any non-branch type
address constants that refer to the
ER-delete entry.) The SO-delete item
remains chained only while the module
is being processed; the END processor
will change the chained items to null­
type entries. (Refer to "Oelinking
Non-Branch Type Address Constants.")

• If an input SO item matches a CM entry
in the CESO, the greater length is
entered in the length field of the SO
entry. If the program is in overlay,
the common path routine scans SEGTA1 to
find the segment in the--overlay
structure that is common to both items
and places the segment number in the SD
entry. The SD item is then written
over the CM line and renumbered. (This
is referred to as "automatic promotion
of common.")

• If an input SD or CM item matches an LR
in the CESD, a "double symbol
definition" message is produced and the

SD or CM item is entered in the CESD as
a delete-type item and is chained to
the matching LR entry, causing the SD
or CM to be replaced.

• If the input item is CM, it may be
"blank common." Blank common may match
a PC-type CESD item because both con­
tain blanks in the symbol field. In
such a case, the match is ignored and
the search continues.

• If an input CM item matches an SD or CM
item in the CESD, the greater of the
two lengths is entered in the CESD
item. (The CESD type is not changed.)
If the module is being processed for
overlay, the segment number of the
segment common to both the input item
and the CESD item is also entered in
the CESD item (automatic promotion of
common) .

• Whenever an input ER item matches an ER
in the CESD, both the type and subtype
fields are examined; the ER items are
then resolved in the following manner:

1. If the subtype fields of both ER
items are not marked, the input
iterr. is not entered into the CESDi
the matching ER remains in the
CESD and a pointer to it is placed
in thE renumbering table entry for
the input item.

2. If both items are marked "delete,"
the new ER is entered into the
CESD and the old item remains
there so that they can be delinked
individually (in this case, the
CESD may contain two ER items for
the same symbol). pelinking is
described in "Second Pass Proc­
essor."

3. If the input ER item is marked for
deletion, but the ER item in the
CESD is not marked delete, the
input ER is chained to the match­
ing ER in the CESD. The chained
ER item remains in the CESD until
the end of module is detected so
that the delink value can be
saved.

4. If the input ER item is not marked
for deletion and the ER item in
the CESD is marked "delete" or
"replace," the delete bit in the
subtype field is cleared (delete
is changed to replace) and the
item is renumbered. If the match­
ing ER item in the CESD is marked
"no call" or "library member" it
is marked "matched" before renum­
bering.

section 2: Discussion of Major Divisions 27

5. If the input ER item is marked in
the subtype field, but is not
"delete W or "replace," it is
assumed to be "never call"; if the
matching ER item in the CESD is
"library member," routine IEWLCDCN
removes the CESD item from the
chain of library members and the
input ER item is entered into the
CESD and renumbered.

TXT }mD RLD PROCESSOR - 15K AND 18K LEVEL E

When the input processor detects a TXT1
or RLD record, it gives control to the TXT
and RLD processor, passing control informa­
tion in the general registers. TXT proc­
essing is shown on Chart CJ; RLD processing
is shown on Charts CH and CI.

~rXT Processing

The manner in which TXT records are
processed depends on whether they are part
of a load module or an object module. A
load module contains records in a specified
order. However, in an object module the
records may not: be in the proper sequence
because the language translator may have
created them out of order. (The restric­
tions on linkage editor input are described
in the Appendix under "Input Conventions.")

Before any address constants can be
relocated within a control section of an
object module, all TXT records must be
placed in the proper order. This is done
in the input text buffer. Whereas control
sections vary in length, the text buffer,
into which they are read has a fixed length
(1024 bytes). Therefore, a control section
longer than 1024 bytes must be divided into
portions of 1024 bytes. (The last portion
may be less than 1024 bytes.) Each divi­
sion is called a "multiplicity." For exam­
ple, a 4100-byte control section contains
five multiplicities.

When the first text record of an object
module is read, the input text buffer is
"established" for the ID of the text record
and the multiplicity in which the first
byte of text falls. The ID is
"renumbered," using the renumbering table,
so that it refers to the CESD entry for
that control section in the output module.
The TXTIO'I' rout.ine enters ·this ID and
muliplicity into the text I/O table. Input
text records of the same multiplicity and
ID are moved into the input text buffer at
their proper location, relative to their

1Identified by the CCW/RLD record preceding
the text record in a load module.

28

position in that multiplicity, until a
change of multiplicity or ID occurs. When
the ID or multiplicity changes, the BUFTXT
routine writes out the contents of the
input text buffer on SYSUT1, and the buffer
is established for the new ID or multi­
plicity.

If an input record contains text which
spans two multiplicities, the first part is
read into the buffer. BUFTXT then writes
out the contents of the buffer onto SYSUT1
and the remainder of the record is moved
into the tuffer, which is now established
to reflect the second of the two multi­
plicities. Whenever BUFTXT writes out the
contents of the input text buffer onto
SYSUT1, an entry is made in the text note
list (for each entry in the ·text I/O table
there is a corresponding entry in the text
note list). The text I/O table keeps a
record of each occurrence of a multiplicity
and ID which has been encountered in the
input. The text note list contains the
displacement of the record from the begin­
ning of the text buffer and its relative
track address (TTR) on SYSUT1. The text
I/O table and the text note list will be
used for finding the TXT on SYSUTl during
second pass processing. The text note list
may itself be written out on SYSUT1 a
maximum of three times if processing a
large program causes it to overflow (a
fourth portion may remain in main storage);
in this case, the TTR of each part of the
text note list on SYSUT1 is entered into
the text I/O control table.

Since TXT records belonging to load
modules have been previously processed,
they are written out on SYSUT1 as soon as
they are read into the text buffer.
Entries are made in the text I/O table as
described above. If an input TXT record ID
in a load module is marked for deletion or
replacement in the renumbering table (RNT),
or contains an invalid ID, control is
immediately returned to the object or load
module processor. (The record is skipped,
thereby deleting it.)

Note: When the END statement of an input
object module is processed, ·the object
module processor gives cOLtrol to the TXT
processor so that the BUFTXT routine can
write out any TXT items still in the input
text tuffer. This is called an "END state­
ment purge." An input text buffer purge is
not required at the end of an input load
module.

Processing Out-of-Order Text

A load module contains records in a
definite order. However, records in an
object module may not be in the proper
sequence because the language translator

may have created them out of order1 . Such
records may contain discontinuities in
addresses (due to a reorigin or a disjoint­
ed control section), or they may not be
contiguous (i.e., text of a given ID and
multiplicity may be interspersed with text
of other IDs or multiplicities). The text
processor must build records of contiguous
text on SYSUTl so that the second pass
processor can place the text into its
proper position, within its ID and multi­
plicity, in the second pass text buffer.

Each byte of the first occurrence of a
given ID and multiplicity is read into the
input text buffer as it is received. Dis­
continuities and non-contiguous text are of
no consequence at the first occurrence of
an ID and multiplicity. However, once text
of a given ID and multiplicity has been
written out on SYSUT1, any subsequent text
of that ID and multiplicity must be con­
tiguous to be written out on SYSUTl within
each text record.

Text of a previously-written ID and
multiplicity is read into the input text
buffer until a discontinuitYr or text of a
different ID or multiplicity, is encoun­
tered. The contiguous text in the buffer
is then written out on SYSUT1. The discon­
tinuous (or non-contiguous) text is then
placed in the buffer. If this text rep­
resents the first occurrence of an ID and
multiplicity, the buffer is loaded without
regard for discontinuities or non­
contiguous text. If the text belongs to a
previously-written ID and mUltiplicity, the
text processor will again place only
continuous text of that ID and multiplicity
in the buffer.

A record that contains non-contiguous
text is called a "loose" record; a record
that contai~s contiguous text is called
"dense". The text note list entry for a
dense record usually has a non-zero value
in the displacement field. When the second
pass processor reads back the text frow
SYSUT1 into the second pass text buffer r it
uses this displacement to place the text in
its proper position within its ID and
multiplicity.

RLD Processing

RLD processing basically consists of:

1. Updating each set of relocation and
position pointers (R and P pointers).

1The restrictions on linkage editor input
are described in Appendix A under "Input
Conventions."

2. Processing each flag and address (FA)
in the input item until the end of the
record or the next item with an Rand
P pointer is detected.

Each P pointer of an input RLD record
refers to the ESD entry in the input module
for the control section that contains the
address constant. Each time a new P point­
er (one referring to a different ESD ID) is
detected r the BUFRLD routine writes out (on
SYSUT1) all RLD items for the previous P
that are in the RLD buffer. The relative
track address of the record on SYSUTl is
noted by entering it in the RLD note list.
If the entry referred to by the P pointer
is marked for deletion in the renumbering
table, the RLD items for that control
section are not written out on SYSUTl
because the associated text has been
skipped.

Each R pointer of an input RLD record
refers to the ESD entry in the input module
on whose value the address constant
depends. The Rand P pointers are updated,
using the renumbering table. Before renum­
bering, the Rand P pointers refer to ESD
entries of the input module that contains
the RLD items. The pointers are renumbered
so that they point to the proper entries in
the CESD being created for the output load
module. If the R pointer refers to a
deleted ESD entry, delinking way be per­
formed. If the assigned address of the
symbol referred to by the address constant
is zero, the address constant is not de­
linked. (Normal relocation is performed.)
When delinking is necessary, control passes
to the ESD processor, which places an entry
in the delink table and then returns con­
trol to the TXT and RLD processor. The
delink table entry contains the address
(delink value) of the symbol being deleted
and the CESD entry number of the identical­
ly named symbol that is to replace the
deleted symbol.

The RLD processor also saves (in the
renuwbering table) the ID of the delink
table entry for the deleted symbol, and
sets a "delink value saved" indicator. The
ID of the identically-named symbol and the
ID of the new del ink table entry are savtd
because they are later used to complete the
delinking operation. The R pointer of the
RLD item must be modified to refer to the
delink table entry for the deleted symbol,
but the original R pointer is needed to
process any V-type address constants
referred to in the RLD item. Therefore,
the R pointer is not modified until the
string of flag-address (FA) fields follow­
ing the Rand P pointers has been processed
as described below. At that time, if the
module is to be structured for overlay and

section 2: Discussion of Major Divisions 29

it contains V-type address constants1 that
refer to the symbol, the ID of the
identically-named symbol is inserted into
the cal.ls list.

Each FA field of the RLD record is
processed as follows:

• The high-order bit of the flag field is
set, to zero.

• If the address constant is an A-type,
the renumbering table entry referred to
by the R pointer is checked to deter­
mine if it is marked as a PR type. If
it is a PR, the RLD flag field is also
marked PR (because the second pass
processor must handle PRs in a special
manner). If the renumbering table
entry is not an ER, marked delete or
common, the RLD flag field is marked
for relative relocation. This indi­
cates to the second pass processor that
the difference between the origin of
the control section in the input and
the origin assigned by the linkage
editor is to be used as a relocation
factor for the value of the address
constant. If the RNT entry is an ER,
marked delete or common, the RLD flag
field is not marked. This indicates to
the second pass processor that the
address constant is to be relocated by
~b~olute relocation; the second pass
processor uses the linkage editor
assigned address of the symbol in the
output module as a relocation factor
for the value of the address constant.
(This procedure is described in the
paragraph "Second Pass Processor.")

• If the address constant is a 4-byte
v-type ("branch-type"), and the program
is in overlay, an entry is placed in
the calls list, provided that the
address constant refers across control
sections {R not equal Pl. The calls
list is used by the address assignment
processor to determine which segments
require ENTABs, and the number of
entries each ENTAB must contain.

• For both A-type and V-type address
constants, the multiplicity of the
address field is determined and is
saved in the RLD note list if it is
lower than any previous mUltiplicity in
the RLD recor'd. The RLD note list is
used during second pass processing to

1V-type address constants do not require
delinking, but may De in a FA string with
A-type address constants that do require
del inking {or other control sections in the
same input module may contain A-type
address constants that refer to the deleted
control section}.

30

read back RLD data from SYSUTl (each
RLD note list entry contains the rela­
tive track location (TTR) of an RLD
record on SYSUT1). The second pass
processor uses the multiplicity field
of the RLD note list entry to determine
if the associated RLD record should be
read back from SYSUTl for a gi~~n
multiplicity of text.

• When the last FA field in the string
has been processed, all items in the
string have been checked to determine
if they require delinking. If any
A-type address constants in the string
required delinking, the R pointer for
the string is modified to refer to the
associated delink table entry.

Table 5 shows the actions performed
during RLD processing for each input flag
format, and the format of the flags after
RLD processing. (The "output" column shows
the flag formats that are passed as input
to the relocation routine of the second
pass processor; refer to Table 6.) After
all FA fields have been processed, the RLD
processor determines if the input RLD
record is part of an object module or a
load module.

• If the input RLD record is part of an
object module, RLD items are placed in
the RLD buffer and the next input RLD
record is processed. The BUFRLD rou­
tine writes out RLD data on SYSUTl
whenever the RLD buffer is full or when
there is a change in the P pointer.
Each time the contents of the buffer
are written out, an entry is made in
the RLD note list; the entry contains
the renumbered ID of the control sec­
tion containing the RLD items, the
number of bytes of RLD information, and
the relative track address of the
record on SYSUT1. (For a large pro­
gram, the RLD note list may itself be
written out on SYSUTl a maximum of
three times. The TTR of each portion
of the note list on SYSUTl is saved in
the I/O control table.) When the END
card of an input object module is
processed, the object ~odule processor
gives control to the RLD processor so
that the BUFRLD routine can write out
any RLD items still in the RLD buffer.
This is called an "END card purge."

• RLD records in an input load module are
read directly into the RLD buffer and
are processed there, without moving
them. When the RLD data is fully
processed, it is written out on SYSUTl
(provided that the control section to
which they belong is not being
deleted). No RLD buffer purge is nec­
essary at the end of an input load
module.

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

Table 5. Flag Field Processing
r-------------------~---y--------------------,
I Input I I output I
~---------T----------~ ~---------r----------~
I * Flag I Type I Action performed I Flag I Type I
~---------+----------+---+---------+----------~
IOOOOLLST INot PR, IMarked for relative relocation 1*0100LLSTIRelative I
I I ER, CM, or I I I I
I I delete I I I I
~---------+----------+---+---------+----------~
10000LLST IER ('02' IMarked for absolute relocation 10000LLST IAbsolute I
I lin renum- I I I I
I I bering I I I I
I I table) I I I I
~---------+----------+--------------------------.-------------------+---------+----------~
10000LLST IDelete or IMarked for absolute relocation if assigned 10000LLST IAbsolute I
I ICM ('OS') laddress of input item is zero I I I
~---------+----------+---+---------+----------~
10000LLST IPR ('06') IMarked as PR (displacement value) 10010LLST IPseudo I
I I I I I Register I
I I I I IType 1 I
~---------+----------+------------.---------------------------------+---------+----------~
10000LLST IDelete or IMarked "delink value saved" if assigned 1*1000 IDelink I
I ICM laddress of input item is not zero I I I
~---------+----------+------------.--------------.-------------------+---------+----------~
10001LLST IType is IRLD is marked branch-type IOOOlLLST IBranch I
1 Inot I 1 I I
I I checked I 1 I I
~---------+----------+------------------------.-------------------+---------+-----------1
10001LLST IDelete IMarked ftdelink value saved and other FA itemsl*1000LLSTIDelink I
I or I lin string exist that are non-branch type ft andl I I
1*1001LLSTI lare being delinked I I I
~--------+----------+------------.---------------------------------+---------+----------~
10010LLST IPseudo INone - Remains as a PR (displacement value) 10010LLST IPseudo I
I I Register 1 I I Register I
I IType 1 I I IType 1 I
~--------_+----------+------------.----------------------------------+---------+-----------1
10011LLST IType is IMarked as PR (cumulative length) 10011LLST IPseudo I
I 1 not 1 I IRegister I
I I checked I I IType 2 I
~--------:1.----------~------------.-----------------------__________ ~ _________ .J. __________ ~

I*Internal types processed during second pass. i
I*Refer to "RLD Input Record (card image}ft and ftHLD data ft (load module) in Section 3: !
I Appendix. I L __ J

END PROCESSOR

When an END statement or the end of an
input load module is detected, control is
passed to the END processor (Chart CK).
The END processor:

• Resets tables that were involved in the
processing of the input module (such as
the renumbering table).

• Processes entry point information.
• Deletes any CESD lines marked CHAIN or

DELETE, and keeps track of deleted
lines.

• Enters in the CESD the length of a
control section for which no length was
specified in the ESD item (if the
length is contained on the END
statement) .•

CONTROL STATEMENT SCANNER

When the input processor detects a con­
trol statement (blank in column one), it
passes control to the control statement
scanner (Charts CL, CM, and CN). The
control statement scanner analyzes the
statement, detects any errors in format,
checks for continuation of comments or
operands, and scans a vector table to
de1:ermine the appropriate control statement
processor. Control is then passed to the
INCLUDE, REPLACE, LIBRARY, CHANGE, INSERT,

I OVERLAY, ENTRY, ALIAS, NAME, SETSSI, or
HIARCHY control statement processor.

The general format for linkage editor
control statements is shown in Figure 8.
The control statement scanner interprets
symbols enclosed in parentheses as ftlevel
1" symbols; symbols not enclosed within

Section 2: Discussion of Major Divisions 31

Form Y28-6611O-2, P.age Revised by TNL Y28-2356, 11/15/68

parentheses iare -level O. - ENTRY" ALIAS.
INSERT. and SE'TSSI control statement
operands contain only level 0 symbols.
CHANGE statement operands always contain
both a level 0 symbol and a level 1 symbol.
The operands of RE:PLACE. INCLUDE. OVERLAY"
and NAME control statements must contain
level 0 symbols. or both level 0 and level
1 symbols. LIBRA:RY statement operands may
contain levell, or both level 0 and level
1 symbols. The operation to be performed
depends on the operand format.

OPRTlONX a, .•. , b (c , d , .•.) , (e , ...), .•.
~.roHo" I i==~"O"d-===~----

'----. ~~t-T-----t-------
PI PI PI PI P1

-------j- -,---
P2

t
L.!L.J
OPDO

L-..J
OPO]

1--'-'- -I~~~--
P2

~ P+
LlL.-.J L£....J
OPDO OPD1

r-----­
P2

+ L.lL.-.J L£...J
OPDO OPOI r-- - -. -- - - - - - .. -.

P2

t
I_ . ..J L..!:..-.J
OPOO OPD]

Before Read 8
Processing

--After Read8 -

Processing

Figure 8.. Control Statement Scanner
Operat.ion

The control statement scanner searches a
vector table for' the operation symbol to
determine the associated control statement
processor. It t.hen analyzes the operands
using two work areas. "OPD1" and "OPDO."
and two pointers, "Pl" and "P:2." OPDl is
used for level 1 operand symbolsi OPDO is
for level 0 operand symbols. Pl points to
the operand symbol being analyzed; P2
points to either OPDO or OPD1, depending on
the level of the operand symbol referred to
by Pl.

An operand symbol referred to by Pl is
placed by the READ8 routine into the work
area referred to by P2.. Parentheses and
commas control the switching of pointer P2
between the work areas. For example, when

32

a left parenthesis is encountered. P2 moves
to OPDl because a level 1 operand symbol
will follow. When a comma,. blank, or right
parenthesis is detected, the PROCENTY rou­
tine passes control to the control state­
ment processor that was previously found
during the search of the vector table.

Control Statement Processors

When the operand symbols have been read
into work areas OPDO and OPD1, control is
passed to the control statement processor
at the saved entry point. scanning of the
control statement resumes when thE! control
statement processor returns control. The
individual control statement processors are
described in the following paragraphs.

INCLUDE STATEMENT PROCESSOR: ThE! include
statement processor builds a chain in the
CESD of items to be included. Each item in
the chain contains the address of the next
item in the chain (in the chain/address
field - bytes 9, 10. and ll). The last
item in the chain contains zeros in this
field.

Chained include items have two kinds of
subtypes: "include with pointer" and
"include without pointer." In Figure 9.
the statement INCLUDE M defines M as a
sequential data set. The include statement
processor creates an entry fOl: thE~ ddname M
in the CESD with the subtype "include
without pointer."

In the statement INCLUDE LIBX(A}, A is
defined as a member of a PDS. The include
statement processor creates an entry for A
in the CESD with the subtype hinclude with
pointer." The pointer is in the chain
pointer/chain ID field (bytes 14 and lS);
it contains the CESD line number of the
ddname LIBX. A single ddname, such as
LIBX. may be referred to by several
pointers.

In Figure 10. the statement: INCLUDE
TEMP(A.B.C} indicates that A~ B, and Care
members to be included from library TEMP.
Member B contains the nested statement
INCLUDE LIBX(U,V,W}; this is the last
statement processed in member B. The CESD
is shown at the time when thE~ control
statement scanner has read operand V,. but
not W. The include statement processor has
created a CESD line fo:[" operand " in the
LIBX include chain. C is currently the
last item in the TEMP include chain. When
the control statement scanner reads operand
W, the include statement processor enters a
CESD line for W between V and Ci this
process is distinct from the one that
actually searches the members Uw V~ and C
on the library. (Refer to the paragraph
"Include Processor.") At the time chosen

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

CESO

Chn Addr
Chn

Symbol Type /Reverse
Seg Sub Pointer

No Type Chain
Chain 10

Length/I 0
~r-~~ ~-- ----

Reg;"e,' f--~

~- - -- - - ----- -.-8AOO *M 02 00000000 CO

~
OPoo

L--.J
OP01

* ddname

Figure 9. Include Statement Processing for a sequential Data Set

Register 2

i
I
I All Purpose Table
L_~r--~------~

Current
Include
Pointer

Include Chain
Breaking Point
Pointer

----------1

1
2
3
4

L-__ --.. 7COO 8

Symbol Type

•
•
•

* TEMP 02

· •
•
B 02

• ·

Library

CESO

Chn Addr Reverse Seg Sub Chn Pointer Chain
Chain 10 No Type Length/I 0

~-~~--~

BO

007010 DO 04

•
U 02 007030 DO 19 7030 r -- --------, 7010 12

I · '---~ 7030 14 V 02 007060 DO 19

~
OPOO

LY-J
OP01

7060 17

19

· · •
C

• · * L1BX

· •
* ddname

02 000000 DO 04

02 BO

--.-~~-- ~---

Figure 10. Include Statement Processing With Nested Members

for this example, the data set member B is
being read; data set member A has been read
and therefore is no longer in the CESD as a
member name, but data set members Ur Vr and
C have not yet been read.

The chained CESD entries crea1:ed by the
include statement processor are later pro­
cessed by the include processor (Chart CO).

OVERLAY STATEMENT PROCESSOR: The overlay
statement processor maintains a record of
the current segment number and updates it
by one each time a new OVERLAY statement is
encountered. The relationship of segments
in an overlay tree structure is kept in
SEGTAl (see Figure 11). Entry n in SEGTAl
contains the number of the segment that
precedes the nth segment of the overlay

Sec·t:ion 2: Discussion of Major Divisions 33

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

EOVERLAYB

~'lAY~
L~

Register 2

~:J
l__ All Purpose Table

Starting Address of
Overlay Chain

o
2 1
3 2
4 2
5 1

• •
•

--------.....\

OVERLAY A OVERLAY A

2 5
OVERLAY C OVERLAY C

:T- --1
....... V.ERLA Y B 7

4

CESD

Chn Addr/ Seg Sub Chn Pointer
Symbol Type Reverse No Type Chain

Chain ID L!~ngth/ID
-

•
• E~~_}-

_----L..-__ , __ . __ _ • ... A 02 Addr of C 01 90

~
OPDO

~~: In this example, card OVERLAY C has just been
read. Name B is, no longer in the chain.

L--.J
OPD1

Figure 11. Overlay Statement Processing

tree structure (the next higher segment in
its path).. 'I'he overlay statement processor
creates a chain of overlay items in the
CESD and updates SEGTA1. If the level 1
operand (REGrON)is detected, the current
region number is i.ncremented by one, and a
zero l.S entered as the previous segment
number in SEGTA1.

If an O~~RLAY statement is encountered
that refers to a node point higher in the
overlay tree structure, all symbols identi­
fying node points higher in the path are
removed from the chain; their CESD lines
are marked nnull. '" For example, in Figure
11, when the statement OVERLAY A is encoun­
tered after segment: 4, the CESD entry for
symbol B is marked null and is no longer in
the chain. If an OVERLAY B statement was
encountered at the end of segment 5, a new
node point \oIlrould be established for B, and
symbol B would again be entered in the
CESD.

34

• I

• I
• I

/ --- -- -~
/'

(•
\ • .. C 02 000000 05 90

•
• • - --'-----

HIARCHY STATEMENT PROCESSOR: The HIARCHY
routine first determines whether the
hierarchy number is valid. If it is inval­
id, the statement is printed, an error
message is written, and the remainder of
the statement is ignored. If the number is
valid, it is converted to binary and saved
for the Scan routine.

Processing of the statement continues
with the collection of the next symbol (up
to a comrea or a blank). The CESD is
searched for this symbol; the location in
the hierarchy table corresponding to the
CESD item is set to the hierarchy number
specified. {The hierarchy table is built
during initialization if HIAR was specified
on the EXEC statement. The hierarchy table
consists of one byte per entry in a one-to­
one correspondence with the number of items
allocated to the CESD. The address of this
table is kept in a full word in the all
purpose table.}

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

If the symbol does not appear in the
CESD, the symbol is entered in an unused
entry in the CESD, marked external
reference, and the hierarchy number is
stored in the corresponding entry in the
.hierarchy table. This procedure is
repeated for each additional symbol in the
HIARCHY statement,.

The intermediate output routine uses the
hierarchy table to place the hierarchy
number associated with each CESD item in
the scatter/translation table.

INSERT STATEMENT PROCESSOR: The insert
statement processor scans the CESD for the
symbol indicated in the INSERT sta-tement.
If the symbol is found, the segment number
field is changed to the number of the
segment that contains the INSERT sta-tement.
If the symbol is not found in the CESD, a
new ER-type CESD entry is created. In

either case, the new CESD entry is marked
"insert" in the subtype field, and the
segment number of the INSERT statement is
placed in the segment number field.

REPLACE AND CHANGE STATEMENT PROCESSORS:
The replace and change statement processors
build a chain of CESD entries. Each entry
to be replaced, changed, or deleted is so
marked in the subtype field. The ESD
processor examines the replace/change chain
before processing any ESD item. Since a
REPLACE or CHANGE statement applies only to
the module that immediately follows it in
the input, the replace-change chain is
removed from the CESD at the end of the
module.

When a
statement
such as

REPLACE statement or a CHANGE
operand contains two symbols,

CHANGE A (B), A and B are entered

Section 2: Discussion of Major Divisions 34.1

in consecutive lines of the CESD. Only the
first line of the pair (the line for A)
contains the address (in the chain address
field) of the next item in the
replace/change chain.

NAME STATEMENT PROCESSOR: The name state­
ment processor places an entry in the all
purpose table containing the name under
which the following input module is to be
STOWed in the PDS directory. If the oper­
and contains the level 1 symbol (R), a bit
is set to indicate that the module is to be
STOWed as a replacement for a module of the
same name. Another bit is set to indicate
that a NAME statement was encountered; the
input processor tests this indicator and
terminates input operations for this load
module if it is set. If a NAME statement
is received from any input source other
than SYSLIN, the error routine is entered;
NAME statements are accepted only if they
are in the primary input.

SETSSI STATEMENT PROCESSOR: The SETSSI
statement processor converts the eight
bytes of hexadecimal information specified
on a SETSSI statement to a 4-byte field,
and enters it into the APT. During final
processing, this information is entered
into the system status index, a 4-byte
extension of the user data area in the PDS
directory. The index contains inforrr.ation
describing the status of members in the
library and is used for maintenance purpos­
es.

ENTRY STATEMENT PROCESSOR: The entry
statement processor places the symbol spec­
ified in an ENTRY statement in the all
purpose table. The symbol will override
any symbol specified in an END statement as
the entry point for the module.

ALIAS STATEMENT PROCESSOR: The alias
statement processor creates chained CESD
entries for a maximum of five alias names
specified in ALIAS statements. During
address assignment, these entries are used
to build the alias table.

LIBRARY STATEMENT PROCESSOR: The library
statement processor creates chained CESD
entries for the operands specified in
LIBRARY statements; a chain is created for
each distinct library. Each chain begins
with a library ddname and contains all
member names specified for the library (see
Figure 12).

A member name specified in a LIBRARY
statement can result in two kinds of ER
subtypes: "matched library member" or
"unmatched library member." If a CESD
entry is created for a member name speci­
fied in an input ER and also specified in a
LIBRARY statement, it is called a "matched
library member." However, if the member

name was specified only in a LIBRARY state­
ment, the entry subtype is "unmatched
library rr.ernber."

INCLUDE PROCESSOR

The include processor
receives control when:

(Chart CO)

1. The control statement scanner has
detected an INCLUDE statement and the
include statement processor has built
an include chain.

2. The input processor has detected an
end-of-input, and the "more includes"
indicator in the all purpose table is
on.

The include processor chooses from the
incluae chain the name of the next module
to be included. It performs preparatory
functions (OPEN, BLDL, and FIND), using the
library open (LIBOP) routine, so that the
input processor can read in the module.

The LIBOP routine (Chart CQ>:

1. Sets an input pointer to the library
read block, an area in main storage.

2. Closes the SYSLIB DCB (unless it is
open for a PDS currently being used).

3. Changes the data set organization
field of the DCB from partitioned to
physical sequential if a sequential
data set is to be included, and
updates the ddname field.

4. Opens the DCB (unless the DCB is
already open and in use).

5. Tests the record format field (RECFM)
in the DCB to determine if the includ­
ed module is a load module (U format)
or an object module (F format). If it
is a load module, the LIBOP routine
sets the "load module" indicator in
the all purpose table. This indicator
is tested by the input processor to
determine the type of module being
read.

6. Uses the BLDL macro instruction to
obtain the attributes of the included
module (if it is a load module) and
may "downgrade" the attributes of the
output load module in the APT accord­
ingly.

7. Uses the FIND macro instruction and
the directory entry obtained from BLDL
to set a pointer in the DCB to the
first record of the member (if it is a
load module).

Section 2: Discussion of Major Divisions 35

An example of include processing is
given in Figure 13. The input pointer is
set to the address of the library read
block. The address of the current include
item is contained in the all purpose table.

Assuming that no includes have yet been
processed, A will be the first item includ­
ed. The subtype 'DO' indicates that A is a
member of a partitioned data set. The
pointer OOOD refers to the data set DATA­
SETX. Assuming that DATASETX is not cur­
rently open and the SYSLIB DCB is not
opened for another data set, the SYSLIB DCB
is opened for DATASETX. (The RECFM field
of the data set DSCB is merged into the
DCB.) Assuming that the RECFM field indi­
cates V-format, a load module indicator is

~' LIBRARY LIB 1 (MARY'~
..L':.I BRARY LI B2 (SAM, PETE)

(

LIBRARY LlBl (JOE)

., _____ ~ ____ ~" ________ i

c5 __ §AII pur~pose TaJb __ le

L~
I
I

set in the all purpose table, and a pointer
to the load module buffer is placed in the
library read block. The attributes of A
are obtained, using BLDL, and the attri­
butes specified on the EXEC statement are
updated accordingly. (The attributes of
the output load module may be downgraded as
a result.) A pointer in the DCB is then
set to the first record of the member,
using the FIND roacro instruction, and the
"include initiated" indicator is set in the
all purpose table. The chain pointer field
of the CESD entry for A is then tested.
Since, in the example shown, this field
does not contain zeros, the "more includes"
indicator in the all purpose table is set,
and control returns to the input processor
to read this data.

(-- --- ----- -- ------ ---- - -----

I I Chn Addr Seg Sub Chn Pointer/
I Syrnbol Type / Reverse N T Chain
I Chain 10 0 ype Length/IO

~---------------+----

l....Ol
02
03
04 J :JE 02 00
05
06
07
08 PETE 02 00
09
OA
OB
OC _ .. _-_._---_._-- ._----

0!agrar1 A

._--_._ .. _._- ----r--- -------,.-
Chn Addr

Seg Sub
Chn Pointer

Symbol Type /Reverse Chain
Chain ID No Type Length/I 0

01
02
03
04 JOE 00
05
06 LI B2 02 00 BO 07
07 SAM 02 06 02 08
08 PETE 02 07 03 00
09
OA MARY 02 OC 03 00
OB
OC LlBl 02 00 BO OA

--~----,~------~--~--~--------

i'~()tes,

OJ
02
03
04
05
06
07
08
09
OA
DB
OC

Symbol

JOE

LlB2
SAM
PETE

MARY

LlBl

Type

02

02
02
02

02

02

Chn ddr/
Rever e
Chai

0

0
0
0

0

0

C

o
6
7

o

10

--

Seg Sub
Chn Pointer
Chain

No Type
Length/I 0

-

03 OA

BO 07
02 08
03 00

02 00

BO 04

.~-- ----------

• The CESO shown in diagram B results from the CESO shown in dia~Jram A after
reading in three library cards. A chain with direct cmd reverse pointers is
created for LlBl and also for LlB2.

• JOE and PETE were ERs (subtype 00) and became "matched library member"
(subtype 03).

• SAM and MARY were not previously in the CESO. They are creat'ed as "unmatched
library rnember" (subtype 02).

• The CESO shown in diagram C results from the CESO shown in diagram B after
reading in an input module containing the ER MARY and the SO JOE. (Only the
I ibrary chains are shown).

• JOE is removed from the chain in diagram C, and the chain pointers are modified.

• MARY becomes a "rnatched" subtype and will be called by the automatic
I ibrary call processor (un less resolved by other input).

• SAM remains "unmatched" and will be ignored by the automatic library call
processor (unless matched in other input).

• figure 12. Library Statement Processing

36

INCLUDE DATASETX
(A,B,C),M

9400

Load
Module
Buffer

F278

77CO

All Purpose Table

"MORE INCLUDES" INDR

C=cJ
CRRTINCL

C9FB8

INCBRKPT

C 9FB8

Input Pointer

SYSLIB DCB

RECFM

C==:=J
DDNAME

C==:=J
BLKSIZE

C==~

• Figure 13. Include Processing

The input processor reads member A using
the input pointer and library read block.
Module A is then processed. When the end
of module A is reached, the input processor
again calls the include processor because
the "more includes" indicator in the APT is
set.

When the include processor receives con­
trol again, the chain address field of the
CESD entry for A is used to find item Bi
item B is then processed in the same manner
as A. Item A is deleted from the chain,
and the CESD line is marked "null."

Note: If the item to be included is a
sequential data set (such as M, in Figure
10), there is no chain pointer in the CESD
entry. Differences in processing for this
type of include item are shown in Charts CO
and CQ.

ID
OJ
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11

F28C

967C

Lac. 0 8 12 13

9F38
9F48

9F68

C 000000- ----DQ -aOOf)

I----------+--+--':-~'::-'~ ~:--=:~:-+--t-=D=O- OooD

9F88

9FB8

9FF8

M

A

DATASETX

9F48 CO 0000

·----+-+---+----t-=-B-:..O- ----­
~_r---_r-+-- ------

I----------+-~---r_T--~----

SYSLIN
Read Block

SYSLIN
Buffer

7768

SYSLIN DCB

RECFM
I :=:J
DDNI>.ME

C==.=:J
BLKSIZE

C==:J

AUTOMATIC LIBRARY CALL PROCESSOR

The input processor passes control to
the automatic library call processor (Chart
CP) at the end of SYSLIN input, or when a
NAME statement has been detected (provided
that the NCAL option was not specified and
no more includes are to be processed).

The automatic library call processor
performs two series of CESD scans. The
first series of scans ODerates on unre­
solved ERs specified on LIBRARY statements.
It finds the first ddname that contains a
pointer in the chain pointer field (bytes
14 and 15). Such an entry is the first
item in a chain of members associated with
this ddnamei there is a distinct chain for
each ddname that was specified on a LIBRARY
statement. The second series of scans
searches for external references not speci­
fied on LIBRARY statements and attempts to
resolve them by calling members of the same

Section 2: Discussion of Major Divisions 37

name from SYSLIB.1

An example of automatic library call
processing 1S given in Figure 14. Diagram
A shows two library chains that were built
in the CESD by the library statement proc­
essor. In diagram B, an SD item for JOE
has been entered into the CESD, resolving
~he reference to JOE. (JOE was removed
from the chain by the ESD processor, and
:_he LIB1 chain ID now points to the line
containing TOM.) The automatic library
call processor operates on the library
I~ha; ns, as modified by the ESD processor
diagram B).

ID
01
02
03
04
05
06
07
08
09
OA

OB
OC
OD

Diagram A
----"-

CESD
o

LIB 1

JOE --
..::S.IMPL_E __
J!~ __________
5_AM

r!'ETE

~;OM
1-----""------

1--

1-----"------"-

Type
8

02

02
02
02
~

02

02
f--

00

62

00
----06

07

04

- 1----

Sub­
Type

12 l'l

BO

03
00
80-
02
03

02

,-

04

OA

-07---

08
00

00

---"------

ID

01
02
03
04
05
06
07
08
09
OA
OB
OC

CESD
CJ

l,IBI

j_QL_----
S.lMPLE ____
LIB2
SAM
FiETE------

l;OM

--------_. __ ._-

Diagram B

8 9 10

02

00
02
02
02
02

02

12 13 14 15

00 BO
06 02
07- 03

02 02

~

~

-Figure 14. Automatic Library Call Process­
ing

In the first series of scans, the CESD
is searched for a ddname (type 02, subtype
BO) with a chain pointer. The ddname item
LIB1 is found; its chain ID points to TOM.
Because TOM is unmatched (subtype 02) it is
not called and since TOM is the last item
in the chain (0 in the chain 10 field), the
scan is resumed for another ddname with a
chain pointer. LIB2 is found; its chain ID
points to SAM. No call is issued for SAM,
since it is unmatched. The chain ID of SAM

1SYSLIB is the standard library whenever
the linkage editor is executed as a job
step. If another program calls the linkage
editor via the LINK macro instruction, the
ddname of the standard library is passed in
a parameter list.

38

points to PETE, which is matched
(indicating that PETE is an external ref­
erence, and not just an operand of a
LIBRARY statement). The LIBOP routine
opens LIB2 and uses the BLDL macro instruc­
tion to obtain the attributes of PETE (the
attritutes of PETE are not obtained if the
format is F). A "BLDL attempted" indicator
is set for PETE so that no other search for
PETE will be made in the event of an
unsuccessful BLDL or non-resolution of the
ER for PETE ty the member PETE. LIBOP uses
the FIND ~acro instruct~on to set a pointer
in the SYSLIB DCB to the member PETE;
control is then returned to the input
processor to read in PETE.

When the input processor returns control
again to the automatic library call proc­
essor, the scan for ddnames resumes at the
beginning of the CESD v rather than at the
CESD line where the scan was interrupted,
because additional ddname items may have
been entered at any available line in ~he
CESD. (The input processor may have read
in otject modules with additional LIBRARY
statements.) When the automatic library
call processor reaches the last line of the
CESD, it begins the second series of scans.

During the second series of scans, the
CESD is searched for "unmarked" external
references (type '02't subtype'OO'). These
are ER items not specified on LIBRARY
statements. In diagram B, the scan finds
SIMPLE. Assuming that SYSLIB is the ddname
for the standard library, SIMPLE is called
from SYSLIB in the same way that PETE was
called from LIB2. Every time the automatic
library call processor receives control
from the input processor during the second
series of scans, it resumes the scan at the
beginning of the CESD (because ER items
from a library member may have been entered
in any available CESD line).

When the automatic library call proc­
essor completes the second series of scans,
control is passed to the address assignment
processor.

ADDRESS ASSIGNMENT PROCESSOR

At the conclusion of input processing,
when all automatic calls have been proc­
essed, control is passed to the address
assignment processor (charts DA through
DD). The address assignment processor per­
forms the following operations:

• Closes the SYSLIB DCB if it was opened
during input processing. It deletes
CESD entries for ER items marked
included, called, ddname, or overlay in
the subtype field. These lines are
marked "null" and are deleted if the

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

module is processed again in a subse­
quent execution of the linkage editor.

• computes. for programs in overlay. the
size of SEGTAB1. enters the size in the
all purpose table. and places a private
code delete entry for the SEGTAB in the
CESD. The PC-delete type entry is
deleted from the module if it is pro­
cessed again by linkage editore

• Uses the ENTAB size determination rou­
tine (Chart DB) to enter segment num­
bers for label references in the CESD.
If the program is in overlay. this
routine also scans the calls list
(built during RLD processing). enter~ng
pointers from one chain of calls to the
next chain; determines the number of
ENTAB bytes2 for each segment; and
places a PC-delete type entry in the
CESD for each ENTAB. (Refer to "ENTAB
Size Determination Routine.")

• Scans the CESD and assigns temporary
linked addresses to SD-. PC-. and CM­
type entries. Each segment is consi­
dered to be at a zero origin. The
temporary starting address of each con­
trol section is computed with respect
to its location in the segment. rela­
tive to the zero origin (plus any
adjustments for boundary alignment).
These addresses are temporary because
the starting addresses of the segments
must later be relocated with respect to
their positions in the overlay tree.
If the program is not in overlay (con­
sists of a single segment) the
addresses are final, because no further
relocation by address assignment is
necessary.

• Computes the temporary relocation con­
stant for each control section (the
difference between the temporary linked
address and the assigned address in the
input) and places it in the relocation
constant table (RCT). If the program
is not in overlay, these are the final
relocation constants (relative reloca­
tion factors) .•

• Accumulates the length of each segment
in the leftmost three bytes of an entry
in the segment length table (SEGLGTH).
The boundary alignment factor of the
first control section in the segment is
placed in the fourth byte of the entry.

• Determines the address of each PR-type
entry in the CESD. using the total

1SEGTAB size 24 + (4 x number of
segments).
2ENTAB size = 12 + (12 x number of unique
downward calls per segment).

length of all PRs previously encoun­
tered" plus the boundary alignment fac­
tor. This address is placed in the
CESD entry for the PRe The length of
this PR is then added to the cumulative
PR length.

• Processes the SEGLGTH table (if the
program is in overlay) to determine the
starting address of each segment. rela­
tive to the beginning of the program.
SEGTA1 is checked to find the proper
location of each segment in the tree.
SEGLGTH at this time contains the
length of each segment. To determine
the starting address of a segment, the
length of all previous segments in the
same path are added. together with any
adjustments for boundary alignment.
(Boundary alignment adjustment is de­
termined by the last three bits of the
address of the first control section in
a segment.) This sum. minus the boun­
dary alignment factor for the segment,
is the segment relocation constant
(SRC). The SRC is then placed in the
rightmost three bytes of the SEGLGTH
table. The sum of the SRC. the boun­
dary alignment factor for the segment.
and the segment length is placed in the
leftmost three bytes of the SEGLGTH
table entry for the segment. It is the
length of the path of the segment
(including the segment itself). At the
completion of this process. the entry
in SEGLGTH for each segment contains
the cumulative length of its path: the
longest of these lengths is the program
length.

• Perforrrs a second scan of the CESD if
the program is in overlay. The segment
relocation constant in the SEGLGTH
table is added to the temporary linked
address in the CESD entry for the
control section; this sum is the final
linked address. The SRC is also added
to the temporary relocation constant in
the relocation constant table: this sum
is the final relocation constant for
the control section.. -

• Makes a final scan of the CESD to
assign a final linked address to each
label reference. (If in overlay, this
is the third scan of the CESD: if not
in overlay, it is the second scan.)
The CESD entry for each LR contains a
reference to the control section in
which it resides. The relocation con­
stant for that control section is
located in the RCT and is added to the
terrporary linked address in the CESD
entry for the LR. This sum. the final
linked address for the LR, is placed in
the CESD.

Section 2: Discussion of Major Divisions 39

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

• Marks the program as not executable if
there are still unresolved external
references an.d if neither the no call
option .,or the LET option has been
specified.

• Uses the entry processor (Charts DC and
DD) to build the alias table and com­
pute an entry point for the program.
(Refer to "Ent.ry Processor. ")

ENTAB Size Determination Routine

The ENTAB size determination routine
computes the size of ENTABs so that the
size of each segment in an ove.rlay program
can be detezIDined and relative relocation
factors can be computed for use by the
second pass processor. The size is deter­
mined by t.he number of downwa:rd calls, or
calls across regions, to symbols that are
not referre!d to by segments higher in the
path of the calling segments.

An example of the ENTAB size determina­
tion routine is given in Figure 15. The
overlay tree structure shown in the illus­
tration consists of nine segments residing
in two regions; all references between
segments are made using v-type address
constants. The ENTAB size determination
routine:

• Scans the CESD fo:[' LR-type entries and
enters their segment numbers. In
Figure 16, item 6 is an LR item; its
ID/length field points to the CESD
entry for the control section in which
it resides (line 3). The segment numb­
er contained in line 3 (segment number
3) is en.tered in the segment number
field of the LR item.

• Scans the calls list, inserting chain­
ing values that point from one group of
Rand P pointers to the nE~xt group.

~iEGTAl

---------V (B)
I

1
1
2
3
4
5

o
1
2
2
1
o
6
6
o

Symbol
----_. __ ._- -_._-

1 D SD

CESD

Seg Sub­
No Type

9

Length
/ ID

I
I
I
v-------V (B)-

I
I
I
\

A 3

'---Ioo-B -

v (C)-- ---.

H - -------, C

2 i 5
I

G- 4 :
v (H) __ J

V (E)- -- - ---, v (E)_----.
I '

6
7
8
9

2

3
4

5

6

7

8

9

10

11

3

Region 1 I i

Reg;O"2~1 3 6 i-T ~ --fIT9--
7 8 E .. ------ t

I
V (D) - - - - - --)

* CV P

""

60

36

24 * PC - delete type entry for SEG TAB
24 t PC - delete type entries forENTABs

* CV := Chaining Vallie (gives number of bytes to next CV)

Figure 1S. ENTAB Size Determination

40

I
I

'---I
1
2
3
4
5
6
7
8
9
10
11

End of Calls List

Downward
Calls List

J4

I I

LJ

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

All Purpose Table

Alias Chain Address

L Address X

I
I
I

CESD .. Before Entry Processing

!
'-- ----,

I ..
Address X 3

(------

'-.... Address Y 7

(

'- ... Address Z 10

,--'-20
(

'-- --

22

Symbol

•
•
•

SAM
• - -----
•

JOE
• -------•

BILL

•
•
•

SAM

• ------•
JOE

•
* Linked address

Alias Table

Alias Symbol ESDID

Type

ER

-

ER

-

ER

SD

--

LR

Chn Addr t'ointer

Reverse Seg Sub Chn

Chain ID No Type Chn Lgth
/ID

Addr Y- , Alias

--- i--'J

Addr Z-, Alias
)

----~

000 Alias

* LAI (Length)

I- -- - - ----"
\

* LA2 20--'

CESD - After Entry Processing

Chn Addr Seg Sub
Symbol Type Reverse No Type

Chain ID

•
•
• ~

~~i~te~r
Chn
Lgth/ID

SAM 3- --- --·-.-3 SAM Null LAI I 20-,

•
• I !

JOE 7-- r- ------ 7 JOE Null LA2 2°~i •
•

BILL 0 10 BILL

f---!...---

•
-----(.

\

'- -.-20 SAM

•
•
•

22 JOE

•

Null 000

,..-- ,..----

SD LA!

LR LA2

Alia

f-- ,..--

I
I

)

(Length)

20

Figure 16,. Processing of Alias Symbols by the ENTRY Processor

• Scans the calls list, for each segment
(starting with segment 1), to find
symbols referred to by that segment.
For each reference found, the type of
cali (upward, downward, or exclusive)
is determined. If an ENTAB is required
for the segment, its size is determined
and control is passed to routine IEWL­
CAD1" which enters a PC-delete type
entry for the ENTAB in the CESD,. Ref­
erring to Figure 15, the segments are
processed in the following manner:

1. The calls list is scanned
pointers that refer to
sections in segment 1. If

for P
control
one is

found, the ENTAB size determina­
tion routine examines the asso­
ciated R pointers (which refer to
referenced symbols) to determine
the segment in which each
referenced symbol resides. In
Figure 16, the fifth P pointer
refers to line 7 of the CESD~
which contains an SD-type entry
for a control section in segment
1. The associated R pOinters
refer to line 6 (symbol B in
segment 3) and line 4 (symbol C in
segment 5). For each reference,
the type of call (upward, down­
ward~ or exclusive> is determined,

section 2: Discussion of Major Divisions 41

Form Y28-661Q-2, Page Revised by TNL Y28-2356, 11/15/68

42

using SEGTAl and the segment num­
bers of the calling and called
segments.. In Figure 15, SEGTAl
indicates that segment 1 is in the
path of segments 3 and 5; there­
fore, the calls from segment 1 to
Band C are downward calls. This
is noted in the downward calls
lis·~ by entering segment number 1
in the lines referred to by the R
pointer (lines 6 and 4). Since
segment 1 is the root segment, it
must have an ENTABi the size of
the ENTAB is determined and rou­
tine IEWLCADl creates a PC-delete
type entry for the .ENTAB in the
CESD.

2. When the scan for segment 1 is
completed, the ENTAB size deter­
mination routine scans the calls
list for P pointers that refer to
segment 2. In Figure 15, the
third P pointer in the calls list
refers (via the CESD) to segment
2. The associated R pointer
refers to CESO line 6, which con­
tains segment number 3. This
indicates (via SEGTA1) a downward
call from segment 2 to symbol B in
segment 3. In this case, however,
no entry is made in the downward
calls list because it indicates a
call to B in segment 3 from seg­
ment 1, which is higher in the
path of the calling segment (seg­
ment 2). No ENTAB is required for
segment 2 because the reference to
symbol B in segment 2 can be
resolved through the ENTAB entry
in segment 1.

3. The ENTAB size determination rou­
tine scans the calls list for P
pointers that refer to segment 3.
In Figure 15, the fourth P pointer
in the calls list refers to CESD
line 3 (segment 3). The R pointer
refers to CESD line 8 (segment 8).
SEGTAl indicates that the call
from 3 to 8 is downward" across
regions, and the call is noted in
the downward calls list. Segment
3 requires an ENTAB because it
contains a downward call to a
symbol not referred to by a seg­
ment in the path of the calling
segment; the ENTAB size is deter­
mined, and IEWLCADl creates a PC­
delete type entry for the ENTAB in
the CESD.

4. The EN'IAB size determination rou­
tine scans the calls list for P
pointers that refer to segment 4.
In Figure 15, the first P pointer
in the calls list refers to CESD
line 9 (segment 4). The R point-

ers refer to line 2 (segment 2)
and line 8 (segment 8). SEGTAl
indicates that the call from 4 to
2 is upward, while the call from 4
to 8 is downward across regions.
The upward call is ignored because
the address constant can be
resolved directly to the
referenced symbol. The downward
call from 4 to 8 is noted in the
downward calls list, replacing the
previous entry for segment 3
(because no segment with a segment
number greater than 4 can have
segment 3 in its path). Since an
ENTAE is required, the size is
determined and a PC-delete entry
is created in the CESD.

This process continues until all seg­
ments have been processed. The required
ENTABs are built by the second pass proces­
sor. (Refer to "ENTAB Creation" and "Relo­
cation of V-Type Address Constants in
Overlay.")

Entry Processor

The entry processor (Charts DC and DO):

• Enters into the alias table any alias
symbols that were chained together and
saved in the CESD by the alias state­
ment processor. Each entry in this
table consists of an a-byte symbol
field and a 2-byte ESDID field. For
each saved alias symbol, the entry
processor scans the CESD for a matching
SD-type or LR-type entry. If no match
is found, a zero is placed in the ESDIO
field of the alias table entry for the
symbol. If a matching SD or LR entry
is found, the ESDID of the alias entry
in the chain is placed in the ESDID
field of the alias table entry for the
symbol. (See Figure 16.) The address
assigned by linkage editor to the
matching SD or LR and the ESDID of its
control section are placed in the CESD
entry for the chained symbol, and the
type of the chained symbol is changed
to null.

• Determines whether the entry point was
specified as an address on an END
statement, or as a symbol on an ENTRY
statement or END s·tatemeni::

1. If the entry point was specified
as an address on an END statement,
the assigned address is determined
by either absolute or relative
relocation. If the ID on the END
statement referred to an ER which
was resolved with an SD or LR, the
address assigned by the linkage
editor to the SD or LR is added to
the address f:rom the END statement

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

(absol ute relocation) ,. If the ID
on the END statement referred
directly to an SD or PC, the
relocation constant for the SD or
PC is added to the add~ess from
the END statement (relative
relocation).

2. If a symbolic entry point was
specified on an ENTRY statement or
END statement, the CESD is scanned
for a matching SD- or LR-type
symbol. The address of the match­
ing symbol is used as 'the entry
point.

3. If no entry point was specified,
the starting address of the SD- or
pc-type control section (not
marked delete) with the lowest
assigned address is chosen as the
entry point. The entry point
associated with the main name (not
an alias) and all alias entry
points must be in segment nUIrlber
one if the program is in overlay.

INTERMEDIATE OUTPUT PROCESSOR

The intermediate output processor (Chart
EA):

• Writes out the CESD on SYSLMOD in
groups of 15 entries per reco:~d. 3.. (The
last record may consist of less than 15
entries.)

• Builds a half ESD (HESD), consisting of
the last eight bytes of each CESD
entry.. (The symbol is deleted from
each CESD entry to conserve main
storage space during second pass pro­
cessing.) The HESD is not complete at
this time,. Relative relocation factors
are later moved into the HESD when the
length/ID field is no longer needed.
(The ID of each label reference is used
in building the scatter and translation
tables.)

• Builds and writes out the segment table
(SEGTAB), preceded by a control record
describing it, if the program is in
overlay. 3.. SEGTAB contains information
required by the overlay supervisor.

• Builds a scatter table and a transla­
tion table for a program that is to be
scatter loaded and writes out scatter/

1The CESD and control record are not writ­
ten out on SYSLMOD if the "not editable"
attribute is specified.

translation records in a form accept­
able to program fetch at execution
time. The scatter/translation informa­
tion is written out on SYSLMOD in
1024-byte records,. The first four
bytes of each record are used to iden­
tify the records as scatter/translation
information. storage hierarchy desig­
nations are included in the tables if
the HIAR bit is set. If the length of
scatter/translation information is
greater than 1020 bytes, the last 1020
bytes (plus four bytes of header infor­
mation) are written out as the first
scatter/translation record. The data
in the last record may be 1020 bytes,
or less. (See Figure 17.)

• Completes the HESD by moving in rela­
tive relocation factors from the relo­
cation constant table for SD-, PC-,
CM-, or LR-type HESD entries. Each
relocation constant is a 3-byte value;
the value may be negative2 because it
is the difference between the address
assigned to a symbol by the linkage
editor and the address of the symbol in
the input module. Unused HESD space is
made available to the second pass RLD
input buffer (by decreasing the start­
ing addresses of the RLD buffer and the
TXT and RLD note lists, which are
located between the HESD and the RLD
buffer).

• Reads the TXT and RLD note lists into
main storage if they were placed on
SYSUTl during TXT and RLD processing.
(Each note list may have been written a
maximum of three times on SYSUTl for a
large program. In this case, TTRs
pointing to the locations of note list
information are contained in the I/O
control table.)

• Determines the control section contain­
ing text with the highest ESD ID in the
program (or in each segment, if the
program is structured for overlay), and
the highest segment number of the seg­
ments that contain text. (This infor­
mation is necessary so that the second
pass processor can determine when to
set the end-of-segment or end-of-module
indicator.) The highest ESDID is de­
termined ty scanning the text I/O table
for the ESDIDs of control sections that
contain text,. This ESDID is entered
into the high 10 (HIID) table along
with its associated segment number.

2If it is negative# an indicator is set in
the HESD to note that it is in complement
form.

Section 2: Discussion of Major Divisions 43

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

Beginning of
Translation ---­
Table

Beginning of
Scatter
Table

Low-Order Position
in Main St·orage ..

D
------.. --c--

._---

A

High-Order Position
in Main Storage

500 bytes

4-byte header
1020 bytes /

1020 bytes D D D D
1020 bytes

1024 bytes 1024 bytes 1024 bytes 504 bytes

Sequential Order of Records

Figure 17. W.ri ting Scatter/Translation Records

After intermediate output processing,
the second pass processor reads back TXT
and RLD records from the intermediate data
set (SYSUT1) into the second~ss tex~
buffer and second pass RLD input~ffer.
Address constants contained in the text are
relocated and control/RLD records are
created. The TXT and control/RLD records
are then written out on SYSLMOD in a format
that can be loaded by program fetch. The
second pass processor also creates informa­
tion required by the overlay supervisor and
program fetch for the processing of an
overlay load module; this infonvation con­
sists of ENTABs and associated RLD items
used to relocate the address constants.
The general operation of the second pass
processor is described in the following
paragraph. The method used to relocate
address constants is described in °Reloca­
tion of Address Constants" and "Relocation
Routine. °

SECOND PASS OPERATION - 15K AND 18K LEVEL E

When the second pass processor {Charts
FA through FE} receives control" it per­
forms the following operations:

44

• The half ESD {HESD} table is searched
for a PC- or SD-type entry to determine
the 10 of the first control section to
be processed in the current segment.
(The current segment is initially seg­
ment number one.) The multiplicity is
initialized to zero and the text input/
output table (TXTIOT) is then scanned
for this ID and multiplicity; the entry
containing this 10 and the correspond­
ing item in the text note list are used
to find the location of that multipli­
city of text on SYSUT1.

• All text records that pertain to the
current mUltiplicity are read from SYS­
UT1 into the second pass text buffer.
The second pass text buffer consists of
two 1K areas; each area can hold a
single multiplicity of text (1024
bytes). Two areas (output: text buffer
1 and cut put text buffer 2) are used to
provide for input/output overlap and
processing of "split" address con­
stants. When text is read in, it is
placed in only one of these lK areas;
sirrultaneously, text may be written out
of the other 1K area (unless a split
address constant is being processed).
The length of text read into the buffer
is determined by checking the residual
byte count in the input/output tlock
(lOB) • (Maximum size - residual byte
count = size of record.)

• All RLD records associated with the
control section currently being pro­
cessed are read into the second pass
RLD input buffer. The RLD input buffer
length is a multiple of 244; RLD reco­
rds are read into it 244 bytes apart to
simplify recognition of the beginning
and end of RLD records when they are
relocated. (Relocation is performed by
record.) The second pass processor
searches the RLD note list for the
current ID, and uses the associated TTR
to find the location of the RLD records
on SYSUT1. RLD records are read back
from SYSUT1 only if the RLD note list
entry contains a multiplicity equal to
or lower than the current multiplicity.
If all RLD records to be read in cannot
fit in the buffer, those in the buffer
are processed. The contents of the RLO
input buffer are "compressed" by scan­
ning the buffer and eliminating any
record that has been completely pro­
cessed. Additional RLD records are
then read into the available space. If

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

sufficient space cannot be made avail­
able, the last record in the buffer is
processed and overwritten until every
RLD record has been read 1n and pro­
cessed by the relocation routine.. An
overwritten record may contain RLD
items for a later multiplicity of text;
if it does, it must be read in again
for that multiplicity.

• A control record is written out on
SYSLMOD (the control information per­
tains to the text that follows it).

• The buffer relocation constant is com­
puted for all RLDs associated with the
multiplicity of text in the second pass

section 2: Discussion of Major Divisions 44.1

text buffer. This constant is added to
the address field of an RLD item to
determine if an address constant is
contained in the second pass text
buffer.

• The RLDs are relocated, using either
relative or absolute relocation factors
(refer to "Relocation of Address Con­
stants") • As each RLD item is relo­
cated, it is moved to the second pass
RLD output buffer. The RLD output
buffer can hold 30 8-byte RLD items.
If an address constant has been relo­
cated within the second pass text buff­
er and its corresponding RLD item can­
not fit in the RLD output buffer, the
contents of the RLD output buffer must
be written out. However, because the
contents of the text buffer must be
written out first, a "dummy" tE~xt reco­
rd (whose size is the same as the
relocated text record) must be written
out to reserve space for the text on
SYSLMOD. The contents of the RLD out­
put buffer are then placed on SYSLMOD.
The dummy record is written out only
for the first overflow of the RLD
buffer, for a given multiplicity of
text.

• When all RLDs pertaining to the text in
the second pass text buffer have been
processed, the text is written out on
SYSLMOD. If a dummy text record was
written, the text in the second pass
text buffer will overwrite it, using
XDAP ("execute direct-access program") ,
to maintain the proper output load
module format.

• If another multiplicity of text is to
be processed for the same control sec­
tion, the operations described above
are repeated for the new multiplicity.
The RLD items are written out in a
control/RLD record after the text to
which they pertain. (The control
information pertains to the next text
record to be placed on SYSLMODi the
RLDs pertain to the previous text.)

• When control sections for all segments
of the output module have been pro­
cessed (determined via the "high ID"
indicator in the HESD type field and
the "last segment of text" indicator in
the all purpose tabl~, the second pass
processor sets indicators in the last
control/RLD record to mark it as the
end of the module. The control/RLD
record is written out on SYSLMOD, and
control is passed to the final
processor.

Note: If the output load module is to
be structured for overlay, the second
pass processor creates a list: of rela-

tive track addresses (TTR list) to be
used by program fetch when it loads the
segments into main storage for execu­
tion. The TTR list contains one entry
for each segment in the overlay load
module. Each entry contains the rela­
tive track address of the first record
(control record) of a segment, except
for the first segment, which contains
the relative track address of the first
text record. The second pass processor
also produces a PC-type control section
containing ENTAB entries in each seg­
ment where the text requires them.
This process is described in the para­
graphs "ENTAB Creation" and "Relocation
of V-Type Address Constants in Over­
lay." The second pass processor also
creates the RLD records required by
program fetch to relocate address con­
stants contained in the ENTABs.

RELOCATION OF ADDRESS CONSTANTS

There are two types of relocatable
address constants:

1. Branch type, such as DC V (X) •
2. Non-branch type, such as DC A (X) •

The value of a branch type or non-branch
type address constant depends on a symbol
in the CESD. To adjust an address constant
to its proper value in the output load
module, the linkage editor uses an absolute
or relative relocation factor. The abso­
lute relocation factor is the address
assigned by linkage editor to the symbol on
which the value of the address constant
depends. The relative relocation factor is
the difference between the address assigned
to the symbol by linkage editor and the
address of the symbol in the input module.
The relative relocation factor may be posi­
tive or negative. The absolute and rela­
tive relocation factor of each symbol in
the CESD is computed during address assign­
ment and is saved in the half ESD (HESD).

Relocation of Non-Branch Type (A-Type)
Address Constants

A relative relocation factor is used for
a non-branch type address constant if the
symbol on which its value depends is in the
same input module as the control section
that contains the address constant. (The
address constant and the symbol it refers
to ~ere assembled or compiled together, or
were previously processed together by link­
age editor.) An example of relative relo­
cation of non-branch type address constants
is shown in Figure 18. Since the address
of DICK is known, the language translator
places it in the value of the address
constant. DICK is a known value prior to
linkage editor processing (not an external

Sect:ion 2: Discussion of Major Divisions 45

Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68

reference in the input); therefore, a rela­
tive relocation factor (+1000) is used to
relocate DICK during linkage editor
processing.

An absolute relocation factor is used
for a non-branch type address constant if
the symbol referred to by the address
constant does not have a defined value
within the same input module. (The R
pointer of the RLD item refers to an

Input Module 1

[
OOOO[J]
0999 ~

._-------_._--------
Input Module._2 __ _

0000 [OHN ~T-J
* 1000

DCA .(r}.!€t()

•
0999 •. .-----..

* Known value of DICK is inserted by
Icmguage translator.

_ __ .-....

external reference.) An example of abso­
lute relocation of a non-branch type con­
stant is shown in Figure '19. In this
example, the value of SAM is unknown when
input module 1 is processed by the language
translator; therefore, zeros are placed in
the value of the address constant. During
second pass processing, the absolute relo­
cation factor (the linkage-editor-assigned
address) is used to relocate the address
constant.

Output Module

0000

0999

1000
JOHN

1999

2000
[DICK

~

]
CSECT

•
• f 2000

• 1.000-
DCA.{D-I-EK'f

•
•
•

CSECT] •
•
•

f Relative relocation
factor is +1000.

Figure 18. Non-Branch Type Address Constants - Relative Relocation

Input Module 1

0000 ! JOE CSECT

• •
•

EXTRN SAM

• •
• *0000

DC A.{S.Od\l\j

•
•
• 0500 1--------------'

[M~~~~',!-SA-M ___ C_SE~_CT_ 11/
* longuage tronslator

inserts zeros because
value af SAM is un­
known.

/'

Output Module

0000 ,------------

JOE

0500 L-__________ ._-'

0501
SAM

1501 L-__________ _

f Actual address of SAM in the output module
(0501) is added to val ue of address constant.
(Note that the relative relocation factor of
SAM is +251.)

• Figure 19. Non-Branch Type Address Constants - Absolute Relocation

46

Figure 20 shows the use of both a
relative relocation factor and an absolute
relocation factor in relocating a symbol.
Two input modules are to be processed by
linkage editor. Input module 1 contains a
non-branch type address constant whose
value depends on the symbol PETE; PETE is
an external reference in the same module.
The language translator has assigned a
value of +10 to the address constant. The
R pointer of the RLD item refers to the ER
entry for PETE in the ESD; this entry
contains zeros in the origin and length
fields. The P pointer refers to the SD
entry for the control section that contains
the address constant.

Input module 2 contains two control
sections, BOB and PETE. BOB contains a
non-branch type address constant whose
value depends on PETE; since PETE has a
defined value (300) in the same module, the
language translator has used that value to

linkage
Editor

compute the value of the address constant
(PETE+10=310). The R pointer of the RLD
item refers to the SD entry for PETE in the
ESD; the P pointer refers to the SD entry
for BOB (the control section that contains
the address constant).

During linkage editor processing, the ER
and SD entries for PETE are merged into one
CESD entry; the R pointers of both RLD
items in the output module will refer to
that entry. The RLD P pointer for the
address constant in control section BILL
will refer to the SD entry for BILL; the P
pointer for the other address constant will
refer to the SD entry for BOB. In the
output module, both address constants will
contain the same value. since the R point­
er of the RLD item in input module 1 refers
to an ER-type ESD entry in that module, it
is marked for absolute relocation; the
absolute relocation factor for PETE (+500)
is added to the value (+10) assigned by the

Output Module

ESD Symbol Type Origin Length
Entry 1 BILL SD 0000 500
No 2 PETE SD 0500 400

~ --
3 BOB SD 0900

.- 360---
--

4 JOE LR 0620 2 --
0000 BILL CSECT

•
•
•

EXTRN PETE

•
EXTRN JOE

• '*' 0510
.oo-Hr

0490 DC ~
:f 0620

.0000-
0494 DC ALJ.et)
0499 R P Flag Acrcrress
RLD

I
2

I
1

I I ~~::~-J RLD 4 1

--
0500 PETE CSECT

• •
0620 JOE • •

~-

* Ins
tra

erted by language
0899

0900 BOB CSECT
--"~-

nslator

:I: De termined by linkage
ed i tor usi ng absol ute

ocation factors rei
(+5 00, +620)

termined by linkage * De
ed
rei

itor using relative
ocation foetor (+200)

1194

1199

R
RLD 1 2

•
•
•

EXTRN PETE

•
• • * 0510

• .oa+tr
DCA~

P Flag Address

1 3 1 11194 I

.Figure 20. Non-Branch Type Address Constants - Absolute and Relative Relocaticn

section 2: Discussion of Major Divisions 47

language translator. Since the R pointer
of the RLD item in input module 2 refers to
an SD-type ESD entry in module 2, it is
marked for relative relocation; therefore,
during relocation the relative relocation
factor for PETE (+200) is added to the
value (+310) assigned by the language tran­
slator. The relocated value for both
address constants is 510.

Relocation of all non-branch type
address constants requires an addition or
subtraction of the relocation factor to or
from tne value of the address constant in
the text of the input module. (Addition or
subtraction is specified in the flag field
of the RLD item for the address constant.)

DELINKING NON-BRANCH TYPE ADDRESS CON­
STANTS: A relative relocation factor can­
not be used to relocate an A-type address
constant that refers to a symbol in a
control section being replaced. Since the

ESD {

RLD

Module A

JOE SD 0 --.---------

-_t:f
BILL ER 0

SAM SD 1000 ----_._ .. _-------_ •.... -
JOHN LR 1050
JOE---- -._--.. --------"--

1100
DCA(~)

0

DC V (B..Itl) 700

9 •. M -- - . -- - - - - Q0Q0 - - - - -. - -- - 1 ~~~

JOHN 1~0

Module B
- ,

ESD { ~----~-!~-=h~ ~-
SAM 0

Notes:

address constant has been previously relo­
cated (by a language translator or by
linkage editor), it contains the value of a
symbcl being replaced; therefore, the value
of that symbol must be subtracted from the
value of the address constant. This proc­
ess is called delinking. In delinkinq, an
address constant is reduced to the value it
would have contained if it referred to an
external reference in the input module.
After delinking, the address constant con­
tains the value required for proper reloca­
tion, should the replaced symbol appear
later in the input, in another control
section. Delinked address constants are
treated like address constants whose values
depend on External references. (Absolute
relocation factors are used in relocating
them.)

Delinking of an A-type address constant
is shown in Figure 21. Input load modules
A and B both contain control section SAM.

Linkage
Editor

Output Module

JOE

BILL

SAM -
JOHN

0 JOE

700
800 R

2 I
4 I

1000 BILL

1630 R

DC
DC

P
1

1

DC
P

SD *
SD ;,

SD *
LR *

**

ALlC

o
1000

1800

1850

1900
J.1-B(J

~ .50)
V

I
I

(B.Itl) 100
lag F
lC

OC

AflOI:
F

0

I
I

- --:W-T- 2 I

:1:1900
l-~
_log
I JC I

1800

1850

SAM

JOHN -
* Values are derived from HESD.

11 00 + 800 = 1 900
:f 120 - 70 + 1 850= 1900

1000

800

750

3

Address

800

700
} RLD

Address

1350 RLD

JOHN 70

BILL- - -- - - - - - - - - - - - - -- -- 720

• A relative relocation foetor is used to relocate the address constant A(JOHN+50) in
control section JOE, because JOE and SAM are in the some module.

RLD

• Figure 21.

48

• The address constant A(JOHN+50) in control section BILL must be delinked because it
1350 was resolved with the symbol JOHN in the replaced control section SAM. The old

value of JOHN must be subtracted from the value of the address constant before it can
be relocated (using the absolute relocation factor) to the new value of JOHN in the
output load module.

Delink Table

000070

HESD

No Relative Reloc Fact

00 000000 01 000000
..... - ... -.......... -1 --.. -.---.~--.- -.-+--.----.. +--.-.-----

00 001000 01 000280 .. _ _+_ ... __ ._-_._----- ._-+--_ _ .. _ ... _-_._ .. +_. __ .. _._ .. _._-_.-
00 001800 01

03 001850 01

000800

000800 L. ______ -'--.~. ____ ... __ . __ ... __ __ ..1 ... __ ._ •. _ •... __ ... _.1. __ .• __ . __ ._

Example of Delinking

During linkage editor processing, the first
occurrence of control section SAM is
accepted, while the second occurrence is
deleted through automatic control section
replacement.

Control section BILL in module B con­
tains a reference to symbol JOHN in control
section SAM. Since SAM in module B will be
deleted, the address constant A (JOHN+50) in
module B must be del inked so that it may be
properly resolved with the symbol JOHN in
module A. In delinking, the old value of
JOHN is subtracted from the value of the
address constant in BILL (120-70=~)0). The
absolute relocation factor for JOHN (1850)
is then added to the delinked value of JOHN
(50+ 1850= 1900) •

DELINKING COMMON CONTROL SECTIONS: Common
control sections (either blank cornmon or
named common) must be "delinked" by linkage
editor. All references to common control
sections are made by means of non-branch
type address constants. If the assigned
address of a cornmon control section in the
input to linkage editor is not zero, all
such references must be delinkedG Delink­
ing is necessary because during linkage
editor processing all blank cornman control
sections are collected into a single con­
trol section and all identically named
cornmon control sections are gathered into
indi vidual control sections; references to
them from different input modules must be
delinked so that they can be properly
relocated with respect to the locations of
the cornmon control sections in r~e output
module.

Delinking adjusts the value of each
address constant in a common control sec­
tion so that it contains its correct dis­
placement from the control section origin.
The values of such address constants are
then relocated so that they refer to link­
age editor assigned addresses, using abso­
lute relocation factors.

Relocation of Branch Type (V - TyI~
Address Constants

Only absolute relocation factors are
used to relocate branch type address con­
stants. Since a displacemen1: is not
allowed in the value of a V-type address
constant, the absolute relocation factor is
inserted in the value field during reloca­
tion. (It is not added to or subtracted
from the value assigned by the language
translator, as described for A-type address
constants.) Because the value of a V-type
address constant is inserted, del inking is
never necessary for such address constants.

Relocation of V-type address constants in
an overlay structure is discussed in the
following paragraph.

RELOCATION OF V-TYPE ADDRESS CCNSTANTS IN -_.,-- .,_._--, ----

OVERLAY: If the output of linkage editor
is to be an overlay load module, a 4-byte1

branch type address constant in the path of
the symbol it refers to ~ut in a different
segment), or in a different region, will be
relocated in a special manner. The value
field of the address constant will contain
the address of an ENTAB entry. The ENTAB
entry will contain the address assigned by
linkage editor to the symbol referred to by
the value of the address constant. An
ENTAB entry is created for a V-type address
constant unless:

" . It is in the same segment as the
symbol to which it refers.

2. It refers to a symbol in another
region.

3. It also appears in a segment higher in
the path.

In case 3, an ENTAB entry already exists
for the V-type address constant. (The
entry was created when it was encountered
in the higher segment.) Any recurrence of
the V-type address constant in a lower
segment is resolved to the existing entry.
Whenever an ENTAB entry is created, it is
noted in an entry list; each item in the
entry list contains the entry number of the
referenced symbol in the HESD, the segment
number of the calling segment, and the
address assigned to the ENTAB entry by
linkage editor. The ENTAB creation routine
uses the entry list to build ENTAB entries.
(Hefer to "ENTAB Creation. ")

When the second pass processor begins to
process a segment, the entry list is modi­
fied so that it contains only entries for
segments higher in the path of the current
segment. (In Figure 22, segment 4 is being
processed: the entry for segment 3 is
rE~moved since it is not higher in the path
of 4.)

1AII address constants must be four bytes
tecause the high-order byte is used by the
overlay supervisor during execution. The
number of the segment containing the
address constant will be placed in the
high-order byte of any V-type address con­
s'tant resolved to an ENTAB en try. (The
high-order byte must be zero if it is not
resolved to ENTAB entry.)

Sect:ion 2: Discussion of Major Divisions 49

Form Y28-661 0--2, Page Revised by TNL Y28-230 1, 1/31/68

Current
Segment

Entry List

HESD
Seg

Entry Address
Nt..:rnber

No

--------->--._--

3

Next
available

.-..- line; 4

will be -----_._------
entered
here.

• Figure 22. Entry List Processing

During relocation, each V-type addre~::;
constant is examined to determine if an
ENTAB entry must b4:! created fo:r- it. The R
pointer of the RLD item for the address
constant is used to find the associated
HESD entry; this entry contains t;he segment
number of the symbol ref erred t;o by the
address constant. ~rhe relationship of this
segment to t:he current segment is then
determined, using SEGTA1. Depending on the
relationship in SEGTA1, the address con­
stant is relocated in one of three ways:

1. If the segment that contains the sym­
bol is higher in the path than th'e
cur-rent segment, the call is upward
and the address constant is resolved
directly.. (The absolute relocation
factor of the symbol is inserted in
the value of the address constant.)

2. If the current segment is higher in
the path than 1the segment that con­
·tains the symbol, ·the call is down­
wa.r-d. The entry list is checked to
determinE~ if an ENTAB entry was pre­
viously created for the symbol in this
segment, or in a segment higher in the
path of t:his segment. If an ENTAB
en-try for the symbol exists, its
address (contained in the entry list)
is placed in the value field of the
address constant. If no ENTAB entry
exists for the symbol, a new entry is
placed in the entry list 1 and an ENTAB
entry will be created by the ENTAB
creation routine. (Refer to "ENTAB
Creation .. ") The ENTAB entry will con­
tain the address assigned to the sym­
bol by linkage editor, and the address
of the ENTAB entry will be placed in

1Whenever a line is added to the entry
list, an RLD item is created in the ENTAB
RLD buffer so tha t 1:he address in the ENTAB
entry can be relocated when the segment is
loaded by program fE~tch for execution.

50

the value of the address constant and
in the entry list item.

3. If neither 'of the two se~~ents is
higher in the path of the other, the
call is either exclusive or across
regions. If the two segments are in
different regions" and no ENTAB entry
already exists for the symbol in the
entry list, an ENTAB Emtry will be
created and an entry is made in the
entry list; the value field of the
address constant is relocated to the
address of the ENTAB entry, which in
turn contains the relocated address of
the symbol. If the two segments are
in the same region" the call is exclu­
sive. If there is an entry in the
entry list for the symbol, the address
constant is resolved through its ENTAB
entry; if there is no ent.ry for the
symbol in the entry list, the call is
an invalid exclusive call and the
address constant is resolved directly
to the symbol. (This usually leads to
incorrect results during execution of
the module.)

ENTAB Creation

The ENTAB creation routine uses the
number of RLD items in the ENTAB RLD buffer
to determine the number of ENTAB entries to
be created for a given segment. The entry
list is scanned for all entries that were
created for the current segment; each of
these entries contains the HESD entry nureb­
er for the corresponding symbol. The value
and segment number of the symbol are
obtained from the HESD and are entered into
the ENTAB entry, along with standard infor­
mation shown in Appendix A.

ENTAB creation is shown in Figure 23.
The v-type address constants referring to
SAM and BILL in segment 1 meet the require­
ments for building ENTAB entries. The ESD
and RLD input to the second pass processor,
and the overlay tree structure are shown in
diagram A. During relocation, entries are
created for SAM and BILL in the entry list
(see diagram B); each entry contains the
address of the ENTAB entry created for the
address constant.

In segment 1, location 136 of control
section JOE contained a call to control
section SAM before relocation. After relo­
cation, location 136 contains the address
of the ENTAB entry for SAM, and the high­
order byte of the address constant contains
the segment number of the calling segment.
An ENTAB entry is created, in like manner,
for BILL in segment 1.

Diagram A.

JOE
SAM
BILL
SEGTAB
ENTAB

RLD

Type

SD
SD
SD
PC
PC

R
2

L.E.
Assigned
Address

36
272
272
0
236

HESD

Relative
Relocation

Seg Constants

1 200
2 500
3 500
1 36
1 36

Address
100
150

Input RLDs - Segment 1

Diagram B.

Output RLD Buffer Entry List

272

036 JOE

136 DC V(SAM)* Segment 1

186 DC V(BILL)*
236

SAM 272

Segment 2

DC V(BILL)

Structure with V-type address
Constants.

BILL

Segment 3

DC V(JOE)

* Zero value assigned by the assembler.

Entab RLD Buffer

lC ~"-;~--+---~--~-~~~ I 136 lD 240 o
3 lC 186 lD 252

RLDs and Entry List after relocation for control section JOE.

Diagram C.

Segment 1 after processing by Second Pass Processor.

136

186

236
248
260

Diagram D.

JOE
01000236

DC VJ5.AMY
01000248

DC V1Bl!:tJ

47FF 0024 I 00000272 I 02 I 000000
47FF 0012 I 00000272 I 03 I 000000

Standard Last ENT AB Entry

Segment 2 after processing by Second Pass Processor.

272 SAM

02000248
752 DC V{B.i-I::t1

Input RLD Buffer Output RLD Buffer

3 2 lC 680 3 2

Diagram E.

Segment 3 after Second Pass Processing

BILL

00000036
DC V{.J.ef)

Input RLD Buffer

3 lC 690

Output RLD Buffer

3

• Figure 23. ENTAB Creation

lC

lC

} ENTAB

ENTAB RLD Buffer Entry List

752 c==== ____ ~N~on~e~ ________ ~ I *

* Same as after processing segment 1.

ENT AB RLD Buffer Entry List

762 c=== ____ ~N~o~ne~ ________ ~
* Same as after processi ng segment 1

section 2: Discussion of Major Divisions 51

In segment 2, the address constant
referring to BILL does not meet the
requirements for building an ENTAB entry.
(It is not in the path of the segment
containing the symbol.) Therefore, no
ENTAB is created in segment 2. The call
from segment 2 to BILL in segment 3 is an
exclusive call. Since a call to the same
symbol appears in a higher segment comrron
to 2 and 3 (segment 1) the address constant
may refer to the ENTAB entry for BILL in
segment 1. (This is determined by scanning
the entry list for the HESD entry corr~­

sponding to the s~nbol BILL.) If a call to
BILL was not contained in a common segment,
the address constant DC V(BILL) in segment
2 would be resolved using the value
assigned by linkage editor to the syrrbol
BILL.

In segment 3, the address constant is an
upward call and is resolved directly.

Since each of the two 1K areas of the
second pass text buffer can hold only one
mUltiplicity of text, an address constant
in a control section containing more than
one multiplicity of text may be "split"
across a buffer boundary. This situation
is shown in Figure 24. In cas~ 1, the
address constant is split across the bound­
ary between areas 1 and 2 of the second
pass text buffer; this presents no problem,
because the two parts are back-to-back, in
their proper sequenc~.
Case I

Reod A Read B

,~ ti r-------·------·,· ----,--.. -. --'-"--" -..... -.-.. ---- '.J
' .. ______ ._._ .. ______ lAD _~_~~~ ___________ . ___ ______ .

Area 1 Area 2

Case 2

k If Read B placed text in , ~e half of buffer, portions
of address constant would not be contiguous.

':j= Text is moved in buffer so that after Read B, portions of
address constant are contiguous.

• Figure 24. Split Address Constants
Second Pass Text Buffer

in the

In case 2 however, the two parts ot the
split address constant woulu not be con-

52

tiguous; read B (from SYSUT1) would place
the second part in area 1 of the buffer.
To avoid this situation, after read A the
contents ot area 2 are moved to area 1.
Read B then places the next multiplicity of
text in area 2; the address constant can
now be relocated and the text in area 1 can
be corrpletely processed. The RLD cannot be
placed in a control/RLD record until the
text in area 2 has been written out on
SYSLMOD. Therefore, the RLD for the split
address constant is saved in the HESD
~r.efi~, an e-byte area that precedes the
half ESD. (The RLD is saved because an RLD
describes a relocatable address constant
and cannot be written out until the text
containing the address constant is availa­
ble.) After the text in area 2 is written
out en SYSLMOD, the RLD is moved to the
output buffer.

RELOCATION ROUTINE - LEVEL E

Tbe relocation of address const_ants is
performed by tbe relocation routine (Charts
FC, FD, and FE); the routine operates on
the following input data:

• The a1dress of an RLD record in the RLD
input buff er. -

• The address of the next available loca­
tion for an RLD record in the RLD input
cuffer.

• The address of the next available entry
in the RLD output buffer.

• The buffer relocation constant
where:

(BRC)

ERC = starting address of TXT buffer +
relative relocation constant of
current control section
address assigned to current con­
trol section by linkage editor -
(size of text buffer X current
multiplicity).

The relocaticn routine operates in the
following manner:

1. The size of the RLD record to ce
processed is determined.

2. Each RID item is scanned to determine
.-f'
1"_ :

a. It describes an address constant
currently in the TXT buffer (ERC +
address contained in RLD address
field falls within the boundaries
of TXT buffer).

The address constant is either a
valid 2-, 3-, or 4-byte address
constant. (The only valid 2-byte

address constants are pseudo reg­
ister type.)

3. Each address constant whose RLD meets
the above requirements is moved from
the text into a computation area. The
address constant associated with the
RLD item is then relocated according
to the information in the flag field
of the RLD item (refer to Table 6).
The relocated address constant is then
placed back into the text.

4. The RLD address field is updated using
the relative relocation factor for the
control section being processed. (The
control section referred to by the P
pointer of the RLD item.)

5. The RLD is moved into the RLD output
buffer if space is available. If
space is not available, the ccntents
of the RLD output buffer are written
out on SYSLMOD. 1

6. Steps 2 through 5 are repeated until
all RLD items have been scanned in the
RLD record being processed.

7. If there are more RLD records in the
input buffer to be processed, the
address of the next record is deter­
mined and steps 1 through 6 are per­
formed. When there are no more RLD
records to be processed for the cur­
rent multiplicity of text, the reloca­
tion routine determines which RLD
items must remain in the RLD input
buffer for the next text record. It
then adjusts the contents of the input
RLD buffer and determines where the
subsequent RLD items are to be read
in.

Note: In order to minimize the number of
times that RLD records are .read from
SYSUT1, RLD records for a control section
are held in the input RLD buffer, when
possible, until all RLD records in the
buffer have been processed (because each
RLD record may pertain to many multi­
plicities of text). An RLD record is
removed from the buffer when:

1. All RLD items in the record have been
processed. (Their associated address
constants have been relocated.)

2. Another RLD record must be read into
the buffer and space is not available.

1If the XDAP indicator is off, a dummy text
record is written out before the contents
of the RLD output buffer are placed on
SYSLMOD. If the XDAP indicator is on, a
dummy write of the text record is not
required.

(The last record in the buffer is
overwritten to provide space for the
incoming record.)

When the relocation routine scans an RLD
record in the input RLD buffer it deter­
mines if the record contains RLD i teniS
belonging to a later multiplicity of text
in the current control section. If all RLD
items in an input RLD record have been
processed, the record is marked for dele­
tion from the input RLD buffer to wake room
for more input RLD records. If the RLD
record contains RLD items pertaining to
text that has not yet been read in from
SYSUT1, the record is marked "in core" in
the record length field of the RLD note
list, indicating that it is not to be
deleted.

When all records in the input RLD buffer
have been scanned, the relocation routine
determines if more RLD records for the
current multiplicity of text are to be read
in. (The read RLD routine sets an indica­
tor when it encounters such a record but
cannot read it into the buffer because the
buffer is full.) Before such records are
read in, the input RLD buffer is scanned
again to eliminate all records marked for
deletion and a "pushup" routine packs the
remaining records (those warked "in core")
so that they are contiguous from the begin­
ning of the buffer. The records to be read
in are then placed in the empty portien of
the buffer; these records are processed in
the same rranner as those already residing
in the buffer. This process is repeated
until all records that may contain RLD
items pertaining to the current mUlti­
plicity of text have been scanned and
precessed.

If there are no records in the input RLD
buffer that are marked for deletion, and
additional RLD records for the current
multiplicity of text must be read in, a
record is read in so that it overwrites the
last record in the buffer. Each record is
read in, scanned, and processed in this
manner until all RLD records for the cur­
rent multiplicity of text have been proc­
essed.

When all RLD records for a given multi­
plicity of text have been processed, the
"pushup" routine eliminates all records
marked for deletion and RLD records for the
next multiplicity of text are read into the
buffer.

To avoid processing the same RLD record
twice for the same multiplicity of text, a
"processed" indicator may be set in the
record length field of the RLD note list
when a record is overwritten. When a new
multiplicity of text is to be relocated,
the RLD note list is scanned sequentially

section 2: Discussion of Major Divisions 53

Table 6. Relationship of RLD Flag Field to Relocation
r----------------------------T-------------------------------T--------------------------,
, Input, 'Output,
~------------T---------------i Action ~----------T---------------i
, Flag 'Type' Perforrred 'Flag' Type ,
~------------+---------------+-------------------------------+----------+---------------i
I OOOOLLST , Absolute 'Absolute relocation factor is I OOOOLLST I A-type I
I I ladded to value of address con- I I ,
I I I stant I I I
~------------+---------------+-------------------------------+----------+---------------i
i 000lLLST I Branch IAbsolute relocaticn factor is I 000llLST I V-type I
~ I I inserted into value of address I I I
! I I constant I I I
t------------+---------------+-------------------------------+----------+---------------~
i 0010LLST IPR-displacementlAbsolute relocation factor is I 0010LLST I PH-displacement I
I Ivalue linserted into value of address I Ivalue I
I I (PR type 1) I constant I I I
~------------+---------------+-------------------------------+----------+---------------~
I 00llLLST IPR-cumulative IPR length from All Purpose I 00llLLST IPR-cumulative I
I I displacement ITable is inserted into value ofl Idisplacement I
I I value I address constant I I value I
I I (PR type 2) I I I I
~------------+---------------+-------------------------------+----------+---------------i
I OlOOLLST I Relative IRelative relocation factor is I OOOOLLST I A-type I
I I I added to value cf address I I I
I I I constant I I I
~------------+---------------+-------------------------------+----------+---------------~
I 1000LLST I Delink IDelink value is subtracted froml OOOOLLST I A-type I
I I laddress constant and absolute I I I
I I Irelocation factor is added to I I I
I I laddress constant I I ,
~------------~---------------~-------------------------------~----------~---------------i
INotes: I
I • If S (sign) in LLST is 1, subtraction is performed, rather than addition. I
I • In delink type, the del ink value is added or subtracted according to the opposite I
, of the sign; the absolute relocation factor is added to or subtracted from the I
I address constant according to the indicated sign. I
I • If an RLD item refers to an undefined symbol, the associated address constant is I
I not relocated. (It may have been delinked.) The high-order bit of the RLD item I
I flag field is set to one (1000LLST for an A-type constant, 10~lLLST for a V-type I
I constant) and no relocation will be perforrred when the module is loaded into main I
I storage for execution. I L ___ J

from the first entry. If an entry indi­
cates that the record is "in core" and the
record contains RLD items pertaining to the
new multiplicity of text, it is processed.
However, such a record may be removed from
the buffer so that other records can be
read in; such a record is marked
"processed" when the scan has not reached
its entry in the note list. (When the scan
reaches the entry it will be ignored and
the processed indicator will be reset.)

FINAL PROCESSOR - 15K AND 18K LEVEL B

The final processor <Chart GA) performs
"cleanup" furictions, and is the last opera­
tion of linkage editor processing. The
final processor:

54

• writes the TTR note list, created by
the second pass processor, on SYSLMOD
if the output load module is to be used

in overlay. The TTR list ccntains the
relative track address of the first
record of each segment of the overlay
load module. It is used by program
fetch to find the segments when it
loads them into main storage for execu­
tion.

• Places each ent~y in the proper format
for the partitioned data set directory,
modifies it if there are alias symbols,
and issues a STOW macro instruction1
fcr the member name and each alias.

• Checks attributes
reentrant). If the

(reusable
attributes

and
have

1The STOW macro instruction is not issued
if there was no valid input, if there were
no ESDs, if nothing was written out on
SYSLMOD, or if the run was terminated by a
severity 4 error.

Form Y28-6610-2
Page revised 7/23/69 by TNL Y28-6400

more restrictive, a message describing
the change in attributes is printed
out. (For example, the input module
was specified as "reusable" and is now
"not reusable.")

• Passes control to the diagnostic direc­
tory print routine to print out a
directory of logged errors.

• Releases main storage space that was
allocated to linkage editor.

• Checks for any final options and passes
control to the module map routine if a
module map or cross reference table was
requested.

• If the module has been marked "not
executable," an error message is
printed out. Control is then returned
to the caller, or, if a NAME card
terminated SYSLIN input for the load
module being processed, to the initial
processor.

ERROR LOGGING

Whenever an error condition (other than
input/output errors) is detected during
linkage editor processing, the error log­
ging routine (Chart GB) sets an indicator
in an error logging map arid prints out a
coded diagnostic message. During final
processing, the diagnostic directory print
routine scans the error logging map. When
an indicator is found "on" in the map, this
routine refers to an associated list (via a

Error Logging Map

o

Table

List

63

~.

------------ ----)

f:
i

1 i
I

/

/ - /

i ,

I Entry 48

i j

i
/

/

i
I
\

"-

1
\

"-

table of pointers) which is used to build a
diagnostic message.

Note: An example of error logging in level
~is given in Figure 25. Each entry in the
list contains a length indicator and a
pointer to a phrase to be assembled into
the message. (Phrases are stored to save
main storage space; complete messa~es would
require additional space due to repetition
of identical phrases.) rhe di~gnostic
directory is then printed out, one or two
lines to a message.

All error messages produced by the link­
age editor are identified by a ~ess~ge IO
having the format:

IEWDMMS

where:

lEW - identifies the message as ~ linkage
editor error message.

D contains a zero.

MM - is the message number.

S - js the severity code.

The module in which an error message
occurred is identified by the mess~ge numb­
er (MM) as shown in Table 7.

]

/

Phrases ~:)

__ -"-r ____ Ph_ra_s_e_p ___ --L ____ ---L_p_h_ra_se_R_= C Phrase M I Phrase J

Message /~~
Phrase P

* This pointer is determined by subtracting the
~'i' "".."her from the length of the error

) ,;"" .."ap (64 - 16 ~ 48).

Phrase M I Phrase ~

Figure 25. Building Error Messages (Level E)

Section 2: Discussion of Major Divisions 55

Form Y28-6610-2
Page revised 7/23/69 by TNL Y28-6400

INPUT/OUTPu'r ERROR HANDLING

when the con-trol program detects an
input/output error during linkage editor
processing or when the second pass proces­
sor finds an error following execution of
an XDAP macro instruction, the SYNAD rou­
tine <chart GD) is entered for an analysis
of the error and for production of a
message describing the error.

Error analysis depends on whether BSAM,
BPAM. or XDAP was in use at thE~ time of the
I/O error. Thus, the SYNAn routine has
three entry points. The proper SYNAD entry
point is assembled into the SYNAD field of
the DCBs for the SYSLMOD, SYSLIN, SYSUT1,
and SYSPRINT da-ta sets. The SYNAD field
for the SYSLIB DCB is filled by the include
processor when thle DCB is opened. (For
SYSLIB the entry point corresponds to BSAM
or BPAM.)

Upon entry from BPAM or XDAP, the SYNAD
routine issues the SYNADAF macro instruc­
tion for error analysis and message con­
struction. The routine moves the SYNAD­
generated m4~ssage into the TEXT I/O table
area, inserts the proper ID into the mes­
sage, and then prints the completed mes­
sage. Th4~ SYNAD routine then either
returns control to continue linkage editor
processing <in the case of an input failure
from SYSLMOD during module map' processing)
or passes control to the final processor to
terminate the edit without output.

When the SYNAD routine is entered from
BSAM., a check is made to determine whether
the error occurred while writing to SYS­
PRINT. If this is the case, the macro
instruction is not issued; instead, control
is immediately returned to the caller. If
the error did not occur while writing to
SYSPRINT, SYNAD operation is the same as
for BPAM and XDAP.

56

.Table 7. Error Message Module 2ross
Reference Table

r-----T-----------------------------------,
I MMS I Module Where Error Occurred I
~-----+-----------------------------------f
I 012 IEWLESCD
I 022 IEWLESDC
I 033 IEWLCENT
I 043 IEWLCENT
I 053 IEWLCENT
I 063 IEWLCENT
! 073 IEWLCENT

083 IEWLCENT
093 IEWLCENT
102 IEWLCEND
113 IEWLCENT
123 IEWLEADA
132 IEWLEADA
143 IEWLE;OUT
152 IEWLCENS
161 IEWLCENS
172 IEWLCENS
182 IEWLCENS
193 IEWLEADA
201 IEWLEADA
212 IEWLEINP
222 IEWLCESD,IEWLEINP,IEWLETXR
232 IEWLCESD,IEWLEINP,IEWLETXR
241 IEWLCESD
254 IEWLCESD,IEWLEADA
264 IEWLCESD
272 IEWLCINC
284 IEWLCSCN,IEWLEINT
294 IEWLCFNL
302 IEWLCSCN
314 IEWLCSCN
324 IEWLCSCN
332 IEWLCSCN
342 IEWLCINC

I 354 IEWLETXR
I 364 IEWLETXR
I 374 IEWLETXR
I 382 IEWLETXR
I 394 IEWLCFNL
I 404 IEWLCFNL
I 412 IEWLCFNL
I 421 IEWLCFNL
I 432 IEWLCINC
I 444 IEWLESCD
I 454 IEWLESCD
I 461 IEWLEADA
I 472 IEWLCENT
I 484 IEWLEINP
j 492 IEWLCSCN
I 502 IEWLCFNL
I 512 IEWLCINC
I 522 IEWLCINC
I 532 IEWLCINC
I 543 IEWLCFNL
I 630 IEWLCMAP l _____ ~ __________________________________ _

Form Y28-6610-2
Page revised 7/23/69 by TNL Y28-6400

MODULE MAP AND CROSS-REFERENCE TABLE

If the MAP option is specified, the
final processor passes control to the
module map processor <Chart GC). The
module map processor requests main storage
space, opens SYSLMOD for input, and reads
in ESD records. The ESD records for the
current segment are gathered and sorted by
address. The module map is then printed
out; the map lists, in ascending order
according to their assigned origins, all
control sections contained in the output
module and the external symbols within the
control sections. Control sections in an
overlay output module are grouped by seg­
ment and are listed in ascending order of
their assigned addresses within the
segment.

If the XREF option is specified, the
module map processor also reads back the
RLD records from SYSLMOD and builds the
cross-reference table. The cross-reference
table includes a module map and a list of
all references within a given segment that
refer across control section boundaries.
Each entry in the list contains the address
of the reference, the symbol to which it
refers, and the name of the control section
in which the symbol is defined. F~r ~ver­
lay programs, each item in the list also
contains the number of the segment in which
the symbol is defined.

section 2: Discussion of Major Divisions 56.1

Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68

LEVEL E -- FLOWCHARTS - ------

MICROFICHE DIRECTORY

The microfiche directory is designed to help you find named areas of code in the
program listing, which is contained on microfiche cards at your installation. Microfiche
cards are filed in alphameric order by otject module name. If you wish to locate a
control section, entry point, table, or routine on microfiche, find the name in colu~n
one and note the associated object module name. You can then find the item on
microfiche, via the object module name; for example, routine ALL001 is on card IEWLEINT.
The other columns provide a description of the item, its flowchart ID (if applicable) ,
its overlay segment number, and a synopsis of its function (or its contents, if a table) •

,----------T-----------T------------T--------T---------T-----T--------------------------,
I Name IDescriptionl Object ICSECT I Overlay IChartl Synopsis I
1 1 IModule Namel Name I Segment I ID I I
I I 1 (Microfiche 1 I I I I
I I 1 Name) I 1 (15K, 18K) I I I
~-----------+----------+------------+--------+----------+-----+--------------------------~
IAlias TablelTable IIEWLCENT IIEWLCENTI9,6 1-- IALIAS symbols from CESD I
~----------+-----------+-----------+--------+----------+-----+--------------------------~
IALL001 IAllocation IIEWLEINT IIEWLEINTI3,2 IBA IAllocate main storage I
I I Routine I I I I I I
~----------+-----------+------------+--------+----------+-----+--------------------------~
IAlI PurposelTable IIEWLEAPT IIEWLEAPTI1,1 1-- IMajor communications area I
I Tabl e I I I I 1 I I
~----------+-----------+------------+--------+-.--------+-----+--------------------------~
ICalls List ITable IIEWLETXR I I EWLERAT 1 6,3 1-- IEntries for V-type ADCONS I
~-----------+-----------+------------+--------+---------+-----+--------------------------~
ICESD I Table IIEWLCESD IIEWLCESDI12,7 1-- IESD control information I
~----------+-----------+-----------+--------+----------+-----+--------------------------~
IDelink ITable IIEWLEINP IIEWLEINPI4,3 1-- IEntries for symbols being I
ITable I I I I I I deleted I
~----------+-----------+------------+--------+----------+-----+-------------------------~
I Downward ITable IIEWLCENS IIEWLCENSI9,6 1-- IDownward calls from v-type I
ICalls List I I I I I IADCONS I
~----------+-----------+------------+--------+----------+-----+--------------------------~
1 ENTER I Enter IIEWLCESD IIEWLCESDI12,7 ICF IEnter ESD item in CESD I
I 1 Routine I I I 1 I I
~----------+-----------+------------+--------+---------+-----+-------------------------~
IEntry List ITable IIEWLESCD IIEWLESCDI12,7 1-- IControl information for I
I 1 I I I I IV-type ADCONS I
~----------+-----------+------------+--------+----------+-----+--------------------------~
IENTAB RLD ITable IIEWLESCD IIEWLESCDI12,7 1-- IENTAB records built here I
I Buffer I I I I 1 I I
~----------+-----------+-----------+--------+---------+-----+--------------------------~
IFREELINE I Freeline IIEWLCESD IIEWLCESDI12,7 ICF I Select next available linel
I I routine I I 1 1 lin CESD I
1------------+-----------+------------+--------+----------+-----+--------------------------~
IHalf ESD ITable IIEWLEOUT IIEWLEOUTI9 u 6 1-- IESD control information I
~----------+----------+------------+--------+----------+-----+--------------------------~
IHigh ID 1 Table IIEWLEOUT IIEWLEOUTI9 u 6 1-- IHigh ID for each segment I
I Table I I I I I I I
~-----------+-----------+------------+--------+----------+-----+-------------------------~
IIEWLCAD1 IEntry PointlIEWLEADA IIEWLEADAI9 u 6 lOB IMake CESD entries for I
I I I I I I I ENTABs I
~-----------+-----------+-----------+--------+----------+-----+--------------------------~
IIEWLCAUT IEntry PointlIEWLCINC IIEWLCINCI8 u 4 ICP IAutomatic library call I
1 1 1 1 I 1 I processing I
~-----------+----------+------------+--------+----------+-----+--------------------------1
IIEWLCBTP ICSECT IIEWLCBTP 1 IEWLCBTP I 10,8 IGA IPrint diagnostic messages I l ___________ ~ ___________ ~ ____________ ~ _______ ~ _________ ~ _____ ~ _________________________ J

(Continued)

Level E -- Flowcharts 57

Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68

r<licrofiche Directory (Continued)
r------------T--.-------.---T---------.--,.---------T-----------T-----T----------------·-----·------,
I Name I Descript~ion I Object I CSECT I Overlay 1 Chart 1 Synopsi s I
I I I Module Name I Name I Segment I ID I I
I 1 1 (Microfiche I I 1 I I
I 1 I Name) I I (15K, 18K) I I I
~-----------+-----------+-----------~--------+---------+-----+--------------------------~
IIEWLCDCN IEntry PointlIEWLCRCG IIEWLCRCGI7,3 ICG IRemoves CESD item from I
I I I I 1 I Ilibrary chain I
~-···-----------+--·----------~-----------f---------+---------+-----+--------.--------.----------~
IIEWLCDLlZ I Entry Point I IEWLEINP I IEWLEMDI 14,3 1-- I Builds De link Table I
~------------+-------------+-----.-------+---------+---------+-----+---------.. -----------------~
IIEWLCEND I CSECT IIEWLCEND I IEWLCEND 16 ,3 I CK I END StatE!ment Processing I
~----------+-----------f-----------f--------+---------+-----+--------------------------~
IIEWLCENS ICSECT IIEWLCENS IIEWLCENSI9,6 IDB IENTAB size determination I
~------------+-------------+-----------+--------+---------+-----+--------------------------~
IIEwLCENT ICSECT IIEWLCENT IIEWLCENTI9,6 IDC,DDIENTRY statement processing I
~----------+-----------f-----------f--------+---------+-----+--------------------------~
IIEWLCEOD IEntry PointlIEWLEINP I IEWLEINPI 4,3 1-- IEOD for SYSLIB; also I
I I I I I I lentered when ECM record I
I 1 I 1 I I Iread from load roodule I
~-----------+-----------+-----------+--------+---------+-----+--------------------------~
IIEWLCESD ICSECT IIEWLCESD IIEWLCESDI12,7 ICE,CFIESD record processing I
I I I I I ICG I I
~-----------+-----------+-----------+--------+---------+-----+--------------------------~
IIEWLCFAB IEntry PointlIEWLCFNL IIEWLCFNLll0,H 1-- ITermination processing I
~-----------+-----------f-----------f--------+---------+-----+--------------------------~
IIEWLCFNL ICSECT IIEWLCFNL IIEWLCFNLll0,8 IGA IFinal processing I
~----------+-------.-.----+------------+--.------+----------+-----+-----------------.-----------~
\IEWLCINC ICSECT IIEWLCINC IIEWLCINCI8,4 ICO I Include processing I
~-----------+-----------+-----------+--------+---------+-----+--------------------------~
IIEWLCLDB ICSECT IIEWLCLDB IIEWLCLDBI2,1 1-- ISYSLIB DCB I
~-----------+-----------+-----------+--------+---------+-----+--------------------------~
IIEWLCMAP I CSECT IIEWLCMAP 1 IEWLCMAP 1 11,8 I GC I Module map procE!ssing I
~-----------+-----------f-----------~--------+---------+-----+--------------------------~
IIEt'lLCPTH IEntry PointlIEWLCRCG IIEWLCRCGI7,3 ICG IFind common segment in I
I I I I I I I overlay path I
~-------·----+-·----------f-------------f----------+---------+-----+---------.-------------------~
IIEWLCRCG ICSECT IIEWLCRCG IIEWLCRCGI7,3 1-- IReplace/change processing I
~-------.----+----------.--+------------+--------+---------+-----+-----------------------------~
IIEWLCSCN ICSECT IIEWLCSCN IIEWLCSCNI8,5 ICL,CMIControl statement scan I
~----------+-----------f-----------+--------+---------+-----+--------------------------~
IIEWLCSDB I Symbol IIEWLEAPT IIEWLEAPTll,l 1-- ISYSLIN DeB I
~-------.----+------------+------------+--------+---------+-----+--------.--------------------~
I IEWLCSNX I Entry Point I IEWLCFNL I IEWLCFNL 11 0,8 1-- I Synchronous filE? error I
I 1 I 1 I I lexit I
1··_··------_·_---+---------+--------------+-_·_-----+---------+-----+---------------.------------~
IIEWLCSYM ICSECT IIEWLCSYM IIEWLCSYMI7,3 ICD ISYM processing I
~----------+-----------+-----------+--------+---------+-----+--------------------------~
IIEWLEADA ICSECT I I EWLEADA IIEWLEADAI9,6 IDA IAddress assignm=nt pro- I
I I I I I I I cessing I
~-----------+--------.----+-----------f--------+---------+-----+----------------------.------~
IIEWLEAPT ICSECT IIEWLEAPT IIEWLEAPTI1,1 1-- IAII purpose Table I
~------------+-.-----.----+-----------+--------+---------+-----+---------------.--.----------~
IIEWLEEON 1 Entry Point 1 IEWLEINP I I EWLEI l'JP 14 ,3 1-- I ECD for SYSPRIN'T I
~----------+-----------f-----------f--------+---------+-----+--------------------------~
IIEWLEINP ICSECT IIEWLEINP IIEWLEINPI4,3 ICA IInput processin9 I
~-----------+-----------+-----------+--------+---------+-----+--------------------------~
IIEWLEINT ICSECT IIEWLEINT IIEWLEINTI3,2 IBA I Initial processing I
~------------+-·-----------f-----------+--------+---------+-----+--------------.-----------~
IIEWLELOG ICSECT IIEWLELOG IIEWLELOGI2,1 1GB IError logging I
~-----------+------------+-----------+--------+---------+-----+----------------.-----------~
IIEWLEMDI ICSECT IIEWLEINP IIEWLEMDII4,3 1-- IModule input I
~----------+-----------+-----------+--------+---------+-----+--------------------------~
IIEWLEOPT ICSECT IIEWLEOPT IIEWLEOPTI3,2 IBA IAttributes and oftions I
I I I 1 I I I processing I
l_._. _____ .. _____ .L ______ . _______ .L ___________ .l-_______ .L _________ .L _____ .L ________ . __________________ J

(Continued)

58

Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68

Microfiche Directory (Continued)
r-----------T-----------T-------.----T--------T---------T-----T------------------------- -. 1
I Name I Description I Object ICSECT I Overlay IChartl Synopsis I
I I IModule Name 1 Name I Segment 1 ID 1 I
1 1 1 (Microfiche I 1 I 1 I
I 1 1 Name) 1 1 (15K, 18K) I I I
~-----------+-----------+-----------+--------+---------+-----t--------------------------~
IIEWLEOUT ICSECT IIEWLEOUT IIEWLEOUTI9,6 lEA IIntermediate output pro- I
1 / I I I I I cessing I
~-----------+-----------+-----------+--------+---------+-----+--------------------------~
IIEWLERAT ICSECT IIEWLETXR IIEWLERATI6,3 ICH,CIITXT and RLD processing I
I I I I I ICJ I I
~-----------+-----------+-----------+--------+---------+-----+--------------------------~
IIEWLERDM IEntry PointlIEWLEINP IIEWLEINPI4,3 1-- IRead routine I
~-----------+-----------+-----------+--------+---------+-----+--------------------------~
IIEWLEROU ICSECT IIEWLEROU IIEWLEROUI1,1 1-- ILinkage editor E entry I
I 1 1 I I 1 I point I
~-----------+-----------+-----------+--------+---------+-----+--------------------------~
IIEWLESCD ICSECT IIEWLESCD IIEWLESCDI12,7 IFA,FBISecond pass processing I
~----------+-----------+-----------+--------+---------+-----+--------------------------1
1 LABEL I Label IIEWLCESD IIEWLCESDI12,7 ICF IRenumber ID field of LABELl
I I Routine I I I I litem I.

~----------+-----------+-----------+--------+---------+-----+--------------------------~
ILIBOP I Library IIEWLCINC IIEWLCINCI8,4 ICQ IOpens libraries I
I 1 Open 1 I 1 I I !
1 I Routine I I 1 I 1 ~
~-----------+-----------+-------.----1---------+---------+-----+--------------------------~
INXTLINE INext Line IIEWLCESD IIEWLCESD/12,7 ICE ISet pointer to next line I
1 I Routine I I I I lin CESD I

~----------+-----------+-------.----+--------+.---------+-----+-------------------------~
IIRelocatablelTable IIEWLEADA I I EWLEADA I 9,6 1-- IRelocation constants I

1 Constant I 1 I I I 1 I
I Table I I 1 1 I 1 I
~-----------+-----------+-----------+--.------+.---------+-----+--------------------------1
I RENUMBER 1 Renumber IIEWLCESD /IEWLCESDI12,7 /CF ITranslate ESD ID to CESD I
/ I Routine / I / I I ID I
~-----------+-----------+-------.----+--------+.---------+-----+--------------------------~
I Renumbering I Table IIEWLCESD /IEWLCESD/12,7 1-- /ESD - CESD item resolution I
I Table / I I I I I I
~-----------+-----------+-------.----+--------+.---------+-----+--------------------------1
IRLDBUF IRLD Buffer IIEWLETXR I I EWLERAT I 6,3 ICH,CI/Write RLDs to SYSUT1 I
I / Routine 1 I I I 1 I
~-----------+-----------+-----------+--------+---------+-----+--------------------------1
IRLD Note I Table IIEWLETXR 1 I EWLERAT 1 6,3 1-- 1 Description, location of I
IList I 1 I 1 1 IRLDS on SYSUT1 I
~-----------+-----------+------------+--------+----------+-----+--------------------------1
I Scatter 1 Table IIEWLEOUT IIEWLEOUTI9,6 1-- 1 Ordered symbol addresses I
I Table 1 1 I 1 I I I
~-----------+-----------+-----------+--------+---------+-----+--------------------------1
ISCDCUTLD I Split ADCONIIEWLESCD IIEWLESCDI'12,7 IFC IRelocate split ADCCNs I
I 1 Routine 1 I I I I I
~-----------+-----------+-----------+--------+----------+-----+--------------------------1
ISCDRELOC IRelocation IIEWLESCD IIEWLESCDI'12,7 IFC,FDIRelocate address constants I
I I Routine 1 I I I FE I I
~-----------+-----------+------------+--------+----------+-----+--------------------------~
ISEGLGTH I Table IIEWLEADA IIEWLEADAI9,6 1-- ISegment lengths I
I Table 1 I I 1 I I I
~-----------+-----------+------------+--------+---------+-----+--------------------------1
ISEGTAB I Table IIEWLEOUT IIEWLEOUTI9,6 1-- ISegment relationships I
l ___________ ..L ___________ ..L ____________ -'--_______ ..L __________ ..L _____ ..L __________________________ J

(Continued)

Level E -- Flowcharts 58.1

Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68

Microfiche Directory (Continued)
r------------T-.-----.---T-----------T--------T---------T-----T--------·--------------------,
, NamE? I Description 1 Object 1 CSECT 1 Overlay I Chart 1 Synopsis 1
I I IModule Name I Name I Segment 1 ID 1 1
I I I (Microfiche 1 I 1 I 1
I I 1 Name) I I (15K,18K) I I I
~------------+-.------.----+-----------+--------+--------+-----+----------------.-----------~
ISYSLMOD I Symbol IIEWLEAPT IIEWLEAPTI1,1 1-- ISYSLMOD DCB I
~------------+-.----------+------------+--------+---------+-----+---------------------------~
I SYSPRINT I Symbol IIEWLEAPT I I EWLEAPT 11, 1 1-- I SYSPRIN'l' DCB I
~----------+-----------+-----------+--------+---------+-----+--------------------------~
I SYSUT1 I Symbol IIEWLEAPT I IEWLEAPT 11, 1 1-- I SYSUT1 DCB I
~------------+-.-----------+-----------+--------+--------+-----+-------------------------~
!Text I/O l'l'able IIEWLETXR I I EWLERAT 1 6,3 1-- IDescription of text on I
I Table I I I I I ISYSUT1 I
r----------+-·----·-------+-----------+--------+---------+-----+--------.-------------.-----~
I Text Note 1 'l'able IIEWLETXR I I EWLERAT 16,3 1-- 1 Location of text on SYSUT 11
IList I I 1 1 1 1 1
~------------+------.-------+----------+-------+---------+-----+----------------------.-----~
I Translation 1'J?able IIEWLEOUT 1 I EWLEOUT 19,6 1-- 1 Pointers to Scatter Table I
\Table 1 1 I I I 1 entries I
~------------+------.-------+----------+--------+---------+-----+---------.-------------------~
I TTR List I ']~able IIEWLETXH 1 IEWLERAT 16,3 1-- I Address of first text in I
1 I I I I I leach segment I
~----.--.. -----+-------------+-----------+--------+--------+-----+---------.-----------.--------~
I TXT3UF I,]~XT Buffer IIEWLETXH IIEWLERATI6,3 ICH,CJIWrite TXT to SYSUT1 1
I I Routine I I I 1 1 1 l ___________ .L. _____________ .L. ___________ .L. _______ ..L _________ .J.. _____ ..L ____________________ . ________ J

.58.2

Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68

Chart AA. Major Divisions

INITIAL PROCESSING

I .~PcJT PROCESS I NG

****A3··********
" CONTROL "

PROGRAM

I
I
I
V

*****63**********
"IEWLEINT SA.
--*-*-*-*-*-*-*

INITIAL "
PROCESSOR

I
I
V

~****C3**********

:~;~;:!~~-*-*-;~:
INPUT "

PROCESSOR

I

I
V

*****03**********
"I EWLEADA DA"
--*-*-*-*-*-*-*
" ADDRESS

ASSIGNMENT
" PROCESSOcl "

I
I
V

*****E3**********
IEWLEOUT EA
--*-*-*-*-*-*-*
" INTERMEDIATE "
" OUTPUT

:***~~~~;~~~~***:
INTLRMCDIATE I
PROCESSING I

--

SCCOND PASS
PI~OCESSING

I
V

~****F3**********
IEWLESCD FA
--*-*-*-*-*-*-*

SECOND "
PASS

****~~~~;~;~~****
I
I

I
V

*****G3**********
IEWLCFNL GA
--*-*-*-*-*-*-*
" FINAL *

PROCESSOR

_~~~~~~~~~~ ___ -----______ 1 ______ ------------------------------------_____________________ _
I
V

****H3*********
* CONTROL *

PROGRAM

Level E -- Flowcharts 58.3

• Chart EA. Initial Processor (IEWLEINT)

•• •• ·C2·*···*····
*PLACE STANDARD.

FROM CONTROL
PROGRAM

****A3*********
* *
* IEWLEINT

I
I
I
I
V

*

*****G3**********
*SAVE REGISTERS •
• 3-12 AND •
• PLACE ADDRESS •
• OF APT IN •

REGISTER 2
* •••••• *.*** ••• *.

I

I
!
v

.*. INT01
C3 •• • •••• C4* •••• * ••••

•••• • PLACE PASSED •
NO •• PARAMETER •• YES DDNAMES IN • DDNAMES IN

* DCBS OF ALL
• DATA SETS

.<--------.. LIST •• -------->* DCdS OF ALL
•• PASSED .* * DATA SETS
.. * *

***************** * •• * *****************
I * I
I I

l _____________ , _______ , < ___________________ J
INT20

I
v

·*D3*·*··**
* OPEN *

SYSLIN •
SYSUT1

SYSPRINT •

* .**********

!
I
I

FROM FINAL I
PROCESSOR I

V
·****E3**********

****E1****.**** *IEWLEOPT *
* * *-*-*-.-*-*-*-*-*
* I EWLENAM ATTR I BUTES
* AND OPTIONS
•• **.*****.*.** * PROCESSOR *

I ** ••• ************

I I l __ >I
I

INT21 v
F3*··*·

* * OPEN
SYSLMOD

•• *********

I
ALLOOl V

*****G3*·*·*··***
*ALOC *
--*-.-*-*-*-*-*

*

ALLOCATION
ROUTINE

** •• *************

I
I
I

I
V

****H3**·*******
• TO * INPUT *

PROCESSOR *
************'***

Flowcharts - Level E 59

IChart CA. Input PrOCEssor (IEWLEINP)

."-}(-.I[*c 1 ******i~*·.
LDf- ON

.,YSLIN DeB

I
I
I
I

I

I RUM INI flAL
P!.lUCL S.sOI;!

****A?*********

ILWLL INP

************.JI-**
I
I
I

, * I
M- 132 *-> I
I(.. t <_ ..

INPIO V
illt-d£~·*·*·1I1f­.

fHAD " ,"
A RLCOf~O -If ----------.->

"

IN>' 12

,*

YL ~, . ~ .
1J3 *.

UP! N
leX IT
r A"LN

'1 Nil

"
, .

C2 *. *****C 5* •• ******* .* IS --rNPc(O Ct.*
.* rHI S *. YES *_-If_*_*_*_*_*_*_* * *

. A LOAD .-------->* LUAU *---->* i32 *
..... MODULE=- ... 11 MUlJULc
.. .. PRuceSSOR ..

* •• * •• ***************
It- NO

I
I
I
v

IH'ILEcC;N V INP13 .* ..

60

*****01**********
" SET AUTOMATIC"
• LII3HAKY CALL
• I'JDICATOH UN

"
.************

I
I

I
I
V

*****El******Jf-***
*" ;:iET END OF *

INPUT
INDICATOR

I
I
I

I
v

,0,
F 1 ...

.* "*.

02 *. *****1)3**·.*******
.* w. *lcWLLMUI C~*

.* CUNTROL *. NlJ *-*-*_*_-It_*_*_*_*
. STATEMENT .. Jt-. ________ > UoJI::..CT *--->"* tl2 *

-JI. • * MODULE"* * if

",
...... if-

if YF,
I

I
v

*** * *E2. ** **** ** .. *
"IEWLCSCN Cl*
*- *-*-*-*-*- *-*_.*

CONTROL
SfArEMENT

'.JCANNcR *

~"

I
I

I
I
v

," ,

• PROCESSOR
** .. ******* ****

..If ***it
.* .l NPUT ... yc.s .* NAMe NU * *

, I<LCLIVED .-_._-., *. STArEMENT .*---->* 0.2 ..

" , .* --N.. *
" ",

"" •• * I * •• *
JI. NO I " YIC~,

i I
I ****

ro L_>: G~2 "* *
FINAL ... *

F·j~()CESSOR*"'** I ~
M-Jl**Gl*********

FIJI- ON
JYSLIB DCB

I *****G2**********
I" SET
I • AUTOMATIC
1<--" L I aRARY CALL
I "INDICATOR ON
I "

I I *********iI*******
I I
I I

I I
I :C~2: IIEWLCEOD ,0,

J ... * t .* H2 *. :;~:~~i~~**"**~~: ****

1..--.---- ____ . __ ._~ ___ ~ __ >*:* M~~~ *:*~~---->:-*-·i~~~C~~*-*-:---->: tl2 :

FROM I_DAD *.INCLUOES.* .. PRUCE.SSOR'" * ..
MODUL,:' *. 11-

PROCE5~GR * •• * *****************
" I
I
I
I
v

.. x'. .',
J2 "*. J.j

.. "* IS • , ****J4****It-****
.* AUTOMATIC *. ~ES .* NO

CALL
YES ru 11-

.LIBRAHY CALL .-M ______ >. . *------> * ADDRLSS
iII.INDICATOR.*

. SET .
M-.. • It-

M- NO

I
v

***"*
" " ... Ll2 -II: . .

If •• *
" NO
I
I
I
I
I
v

.* *.*:~~!~~~;~!****

-it * ** *K 3"'''' *** ... * * * *
IflL'W'LLA:Jf cp* ****
H· .. ·.M--If-·X_*_*_·*_*_* .. if-

A\J'~IMArIC ... ---->* t:32 *
.. L.I1H-.!ARY CALL" * *

PU:ULl:....SSUH * ***-J:
.. ******.If-* ****

r:p.riM OP!::'N l)U,~INL
CONCp-rCNA1IU,"

II*-*A=:' If * **-:11 ***-l .
OCU EX I'

I
I

I
I
I
v

f"*·"a5****~*****
f I L W ~_ EX (T ..
• -)1-*-*-* -*-_*_*-*
)l LP[N CX[T
• SET INDICATOR *

ANt) t·H ... rUl~N it-

~*.~*************

****C5****H-**If* .
RCTURN

TO OPE ~

• Chart CB. Object Module Processor (IEWLEMDI)

rROM INPUT
PROCESSOR

****Al*********
* IEWLEMDI

." .
A2 *.

.* * •
• * CONTROL *. NO

-------->. STATEMENT ."--------> .. CONTINUATION ,,-------,
" CONT I NUAT ION* "EXPCTD BUT NOT " V

*************** *..* * RECEIVED .. *****
* •• * ***************** *CC *

* YES * G3*
I * *

I
INP22 V .*. INP150 .*.

*****82********** 83 *. ~4 *. *****85**********
*LOAD PARAMETER * .* *. .* *. ~ 4-
* REGISTERS AND * .* SYM *. YES .* TEST *. YES * LOAD GR4
* SET IN MODULE *------->*. RECORD .*------>*. INDICATOR • *--------> * WITH gYTE
.. INDICATOR IN * *. .* *. ON.* * COUNT
.. A. P. T...· *..* *. .*
***************** * •• * * •• * * NO * NO

I I ****

I L_>:C~3 * *
* * V .*. .*. INP140

C 1 *. C2 *. C3 ... *****C4**********
.* *. .* *. .* *. .. *

NO.* RLD *. NO.* TXT *. NO.* ESD *. YES * SET ESD *
r ---*. RECORD .*<------*. RE.CORD .*<-----*. RECORD • *----> * INDICATOR I il:

a * __ .-.. *-* __ .-* *-. __ .-. * ON

I * •• * * •• * * •• * I * YES * YES *

I I
I I

IINP130 V INP160 .~.
I *****01********** D2 *. ****"·D3**********
I * .* *. *IEWLCSYM CD*
I CLEAR .* WERE *. YES *-il_*_*_*_*_*_*_*

I IN6i~!TOR * *. *:~~C~i~~~D:* .*----->: pG~~E
I * *..*
II ********1******** *·.·:0 ********1********

I I <---------1 I i
I V I V V

I :~~;;~~;!:::::~;: t :****E2*~*******: :****E3*********:

I
II RLD AND TXT L _____ : T~~::: :< _______ : C~~~R

PROCESSOR INDICATOR INDICATOR

* ***************** ***************** *****************
I

, I *CC *

I

I
I
V

*****04**********
::;~~:;~~-*-*-~::
* ESD *--------

PROCESSOR ..

*****C5*********-H
IEWLCSYM CD
--*-*-*-*-*-*-*

SAVE
5YM

* RECORD *
*************~*~*

I
I

I
I
I
I

I
-----> I

I

****~.

*CC *
-- G3*

* *

I
L_>* G3 *

."." * .*. INP70 .*. INP90
I Fl *. F2 *. F3 *. *****F4********** F5 *.

l .* *. .* IS *. .* ENTRY *. * LOAD GR4 * .* * •
• * END *. YES .* SYM *. NO .* POINT *. YES * WITH CONTROL * .* GR4 *. ""l)

-->*. *. RECORD .* ... ------->* 7~gig~gR.* ."---,,-->*. *. INDb~ATOR.* ·*---1 :SEC~~g~ ~~~GTH :-----,,-->*. ". c~~~~i~s .~ ·*---1

.. *. ON .* I *. .* I * RECOKD iI I *. .* I
* •• * * •• * I * •• * V ********-HiI·*iI*·**** I * •• * I

* NO .. YES I " NO **** 1\ I .. YES I
I 1 I I * * I I I I

! ! I : *::} 1<-: F4 : I I I
I I I V I NO*""" I I I

*****Gl*~******** *****G2*~******** 'I 63·*·*. INP80 G4·*·.. *****G5*~******** I
IEWLELOG Ga *IEWLCSYM CO* .* *. .* *. I * SLT NO LENGTH if- I
:~~~~~;~~I;;:~~-: *-*-*-*~~~*-*-*-: _____ J *:* AB~~~~~E *:*~~ ______ >*:* SY~~~~~C *:* I ~~6i~X~gR * I
" INPUT-NOT * PURGE ". POINT .* *. POINT.* I IN A. P. T. I
* OI:::3JECT MODULE * if- *..* *..* I I
****************. ***************** * •• * * •• * I ***************** I

I
V

***** *CC *
* G3*
* *

* YES " YES I I I I I i I < __________ J

I I I \
I I I
V V V

*****H3********** *****H4********** *****H5**********
* SET ABSULUTE " * SET SYMBOLIC * *IEWLCEND CK*

ENTRY POI NT ENTRY POI NT *-*-*-*-*-*-*-*-*
INDICATOR I~OICATUR END

IN A. P. T. IN A. P. T. PROCESSOR

I
I
V

****~J3**********
" STORE *

ASSEMBLED
ADDRE3S IN

A. P. T.

I

I
v

* * * F4 *
* *

I
I

*****J4*~"******* II

* SET ENTRY *
POINT I

INDICATOR I
IN A. P. T. I

***** .. *"********* I
I I

:****K4*~**"****: I
STORE

SYMBOL
IN A. P. T.

* I * _____ .1

*

I
I
V

*****J5**********
IEWLERAT CH
--*-*-*-*-*-*-*

END CARD *
PJRGE

********** ** * * * * ~

I
V

"CC *
.. G3*

" *

Flowcharts - Level E 61

• Chart cc. Load Module Processor (INP270)

FROM INPUT
PROCESSOR

****A l *********
* .-* II'~P270

.-)f-***-'t*********

I
v

INP270 .1O.
13t *. 82 *. ****'IfB3**********

.* *. .* *. *IEWLCSYM CD*
•• SYM *. YES .* IS TEST *. YES *-*-*-*-*-*-*-*-* *. RECORD •• --------->*. INDICATOR .*-------->1O
. . *. ON.* ... SYM PURGE

INP2Bl

.. *.. *
:1 •• * * •• * *****************

• NO • NO 1

I
I
v

.1O.

l _______________________ > L>: *::" :
" .

Cl *. *****C2********** *****C3********** *****C4********** *****cs********** .* *.)f *LOAl) NUMaER OF * * ... * LDAD ...
• * ESD 1O. YES * SET ESD" * BYTES OF CE5D * 1OLOAD ESD 10 OF • 10ADDRESS OF C~S01O *. RECORD •• ------->1O INDICATOR *------->" INFORMATION "----->1OIST ENTRY INTO .-------->1O INFORMATION •
. . • ON * " INTO GENERAL * * GENERAL. * INTL GENERAL

-- .*-- ***************** :**~~~!~!~~*:***: :**~~~!~!~~*~***: :**~~~!:!~~*~***:
* NO 1

I I
I 1
v I

INP290 .*. V
01 *. *****02********** *****03********** *****04********** ***-**05**********

.*1O. *LOAD NUMBER OF * * LOAD STARTING * "IEWLERAT CH-CJ* "IEWLCESD CE*
.* RLD *. YES '* UYTES OF RLO * *ADDf(ESS OF KLD * *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*

". RE:CORL> .*------->* INF:JRMATION ,,-------->* INFORMATION ,,------>* P'lOCEcSS PROCESS •
. . * INTO GENERAL * INTO GENERAL RLD ~SD
*.." * REGISTER 4 * REGISTER 6 * INFORMATION * INFORMATION *

* •• * ***************** ***************** ***************** *****************

i NO I I • **.-. *
I < ___ J L >: G 3 :

v .*.
f:: J *. *****E2 ** **** **** * ****E 3* ******* ** ** ... ** E4* ** * ... * ** ** *** ... *£ 5* *oM **** .. **

.* ". * LOAD ASSIGNED * * LOAD "* * * •
.* CCW/RLD ". YES ADDRESS OF * BYTE COUNT * * LOAD ID INTO * * READ TEXT

". RE:CDRD .*-------->" FOLLOWING TXT *-------->* uF TXT *----->" GENERAL *------->* RECO"<D INTD
. . " INTO GENERAL " * INTO GENERAL * REGISTER 5 * • TEXT BUFFER

.... • *
+" •• *

* NO
1

I
v

• REGISTER 3" " Rf:GISTER 4
If****** ****** ill· * *** * **** *** * **** *

I
1

INP305 .*. .*. V
FI " . F3 *. *****F4********** *****F5**********

." *. *** .. .* *. "IEwLERAT CH-CJ*' " . " . . RLD
RE CORD

.... YES'" * YFS.* LAST *. *-*-*-*-*-"*-*-*-* * SET
.*---->* r.3 ... r-------·------------* RECORD .*<--, <--* PROCESS *<-------* TEXT

1 .*.*.. .*.* I : INF~~~!TION : : INDICATOR ON *.
*.

.*

*. * ·~o *~ ... * ***************** * ... *************** + •• *
* NO

I
I
v

1
"CC" 1
* G3 *->1
* .. 1

v

* ,
* F.3 *
* ..

INP320 .*. INPI10
Gl G3 * • G4

.. " *. .* IS *. .* IS * •
.* 5CATTE~ *. YES * * • * RETURN *. YES .* ESD WRITE ". NO * •

It-. i-U COR;) • *----> * G3 * ". FROM fS') • ,,------>*. DIDICATOR ."---->* K5 *
. . * * *.PROCCSSOK.... *. ON.* ... *

*. • * *. . * if..*
-¥. • ..

* NO

.".

I
1
I

,
I----------j

!-II ·It. I .****H2**********
." •• 1 *IEWLCEND CK"

.. if l. AS T *. YE 5 V .-*-*-*-*-*-*-*-* *. rI:~ CORD • *--____ >-f END *--------,
a . f PROCESSOR'" V

* •• *
" NO
1
1
v

.... **
* KS * .. "

. . ~****TO INPUT
~ •• * .**************** *CA *PROCESSO~

* NO * H2*

I * " •

I
1

INPlll

* •• *
* YES
1
1

I
v

.* .
H4 *.

.* *. **** .* IS TEST if. NO * *
. INL>ICATOR .---->* K5 *

. ON. * *
*. • *

* •• *
.. YES

I
1
v

.* . V
*****Jl**********
IEWLELOG G8
-~-.--*- ... -*-*-*

-f****J2********** ****ilJ3********** J4 *. *****J5**********

.. UNRECONIZABLE *---,

: IN~g6ut~AO : I
~**************** v

62

.. *
iI· 63 "

~fIL\¥LC5YM CD"'"* * .* IS *. *IEWLCSYM Cu·
if-*_*_*_'II-_*_*_*_* * SET SVM'" NO INPUT *. YES *-*-*-*-*-*-*-*-*

SAVE • <------* RECI::IVE *<-------*. A LOAD .1O------>* •
ESD * * BIT *. MODULE .* " SYM PuRGE

·n CAr~D * *. .*
***************** * ... *************** * •• *

1
v

**** " -,
... K5 *
" ..

**** I

: K5 :->1
* • 1

I
v

* **"*K~********* *

RETURN

TO INPUT
PROCESSOR

• Chart CD. SYM Processor (IEWLCSYM)

FROM LOAD OR
OBJECT MODULE
PROCESSOR

****A2*********
* *
* IEWLCSYM *
* ***************

I

I
v

SYMOOI00 .*.
B2 * •

• * *.
NO.* OBJECT *.

r---------------*. MODULE .*
I *..*

I *. • *
*. . *

* YES

I I
I I
I V

SYM00200 V SYM00600 .*. SYM00900
*****Cl********** C2 *. *****C3**********
* * .* IS *. * *
*INITIALIZE FOR * .* TEXT *. NO * MOVE SYM/ESD *
WRITE FROM LOAD iI.3UFFER TO ,n.: .*-·------>*RECORD TO TEXT *
* MOD~LC 3UFFER * *. PJRGEO .* * BUFFER *
* *. .* *

I

I
I
I
I
I

I
I
I
I
I

. .
* YES

I
I
V

*****D2**********
* * *INITIALIZE FOR *
WRITE FROM 08J.
* MODULE aUFFEK *

* *****************
I

I I
I I L ______________________ >I

SYM00300
I
V

******E2***********

WRITE
AND

CHECK

I

I

I
V

*****03**********
* * * INCREMENT *

COUNT

I < ---------------------

SYM00500 I
v

****F2*********
* * * RETURN *
* * ***************

TO LOAD OR
OdJCCT MODULE

PROCESSCR

Flowcharts - Level E 63

eChart CEo ESD Processor (IEWLCESD)

FH[JM INPUT
PH[JCESSOR

"·"*-*Al·********
* IEWLCESO

JI * ... *********

I
I
V

*****B 1 ••• * *** **... * ****liT"'''''' * * *****
.. INITIALIZE, * * *
"SAVE ESOIO. NO.' SET SEGMENT
.. UF E.~:iD ITEMS .. * NUMt3CR iI.----~--,
"FSO TYPE. AOOH * TO UNE • I

: .. ~~*~~~~*!~~*~~!: *.It.* IHHHHI******4 I
I /I I
I I I

··CF * I I I
• C 1 • --> I I I
* • I I I
"·*-11* V I YL':, I

L~,nAO .*. .*. ILSDIA .* .
• .:CI 15 *-._ :*---**C2***'»-*****: _.C3

IJ
*-*_ I .*C4

IS
*-._ :****C5*********:

.' eSD TYPE '. NO *INSU-IT CUHRENT • .* AUTOMATIC *. NO V .* ESD TYPE *. YES LU,D tlYTLS
.... l-l~iE-.UOO • *-------->*SEGMENT NUMBER *--~------>*. L I tJRAR Y CALL • *------>* • EXTERNAL • *-------->* 1 0.. 11. AND 12 *

~.REGISTER .* * IN ESO (IN * *.INDICATOR.* *.REFERENCE.* * UF ~SD ITEM
<.(PR).* BYTE 12)' '. ON .* •. (ER).* "

~ •• * ***************** * •• * * •• * *****************
<. YE S •• NU I
I I I
I I
I < --- ------------------.--------------------------- - --- --.---.- ------------ - - _____ J I
V /I V

1".'",1)2 • tt-. .*.
D1 *. ****402**4M4***** 05 * •

• * ANY *. 'IEWLCHCC' I.' IS *.

*: k· R~~~~~~~/ *: *~:~ __ ._._>:-;~:~*~~~:~~~; -: L _____________ ~~*: * AN T~;~cC I *: *
'. SYMBOLS .' • CHANGE CHAIN • *. MODULE .*

JI:. .)1 * ...
••• * -II*********M-****** * •• *

, NO * Yt:.S
I
I I I < ____________________ . ____ .J
V

L",,)3 .*.

I
I
I
I
I
V

L.l *. *****E2***tt-******
.. * JS *. *NXTLINE *

.J! E..SD TYPE. *. YES *-*-*-*-*-*-*-*-*
. PRIVATE .-------->* SET POINTER *--------,

liI-. CODE.* .. ro NEXT LINE" V
M.(PC) .* * OF C[SD .. *****

* •• * .******tt-* •• ****** *CF *
... NO

1~.) *. YES
. eSD TYPE .-------,

~ .. I\!tJLL •• v
.. ***i ••

*LF •
* F;?*

* ,t

.-11".
e: 1 *. *****G2**********

... IS *. .. II-

.~ l~O TYPE *. YES * CHANGE TYPE *
".LABEL OEFINI-.*---------:>"TO LH INDICATe"

'.. TION.* *THAT I T ';lAS AN •
-.(LD) .* • LO •

* •• * .***************-
If- NO

I
*CT' I I
: 'i 1 ,," -> I < ________________________ .J
if. lII-* II- I

• t:L3* . .

1~·,'J4 V
tt-~·j(·**hl ***If-******
" " Jl AKCH THe

CE. '.::·0 FGr~ A *
"MATCHING SYMBOL* . "
*****~****** .. ****

I
I

'cre' I
* .J 1 • -> I
*" .. 1<-------------·--------,

V I NO
I '.,[)~ .*. FSD6.* ..

64

~! 1 *". ')2 * •
• * IS *. .* DOES * •

•)(. THIS TI-fE *. NO .* ESD *.
"* .. LN(J OF fHE • *------->*. MATCH CESD • *

l(.. CC::SiJ .* *. SYMBOL .*
... • * *...

* ... *
.. YF S
I
I
V

*****NON-RESOLUTION
"CF .PROCESS! NG
* AI'"
" .

......
• YES
I
I
v

'RESDLLJTIO,,"
*CG 'P:<OCESSING
... Al*

* "

L __________________ _
*****E5·********* . .

ZE.RIJ THE
------._-----------------------. SU i3 T Y P E

FIlcLD

• Chart CF. ESD Processor (IEWLCESD) (Continued)

M ESII,23 ESD23A
*****AI********** A2 *. *****A3**********
*FREELINE * .* IS *. *LABEL * ****
--*-*-*-*-*-*-* .* ESD *. YES *-*-*-*-*-*-*-*-* * *

r->* SELECT NEXT *-------->*. TYPE LABEL • *--------> * RENUMBER ID *---->* E2 *
1 * AVAILAdLE * A *.REFERENCE.* A * FIELD OF * * *
1 * LINE IN CESD * 1 *.(LR) .* 1 * LABEL ITEM ! ***************** ! *·*·~O ! *****************

** ** I **
*CF * *CF * *CF *
* AI* * A2* 1 * A3*

1 *****
v

.*. ESD21 .*.
B2 *. B3 *. *****04**********

.* IS *. .* I~ *. * INDICATE THAT *
.* ESD TYPE *. YES .* AUTOMATIC *. YES * SD IS FROM

. A SECTION .-------->*.LIBRARY CALL .*-------->* A LIORARY
DEFINITION. A *.INDICATOR.* (AUTOLIC

*. (SO) • * 1 - *. ON • * I NPLIT) *
* * * •• * I * •• * *"*******.J(-******,**
* 02 * * NO * * NO 1
* * 1 * * 1 1

*f** I :C~3: I < ________________________ J

I v 1
.*. ES022 V

*****Cl********** C2
* MARK ~OMMON * .* IS *.
* ITEM AS A * YES .* ESD TYPE *. NO
-II-DELETE ITEM AND*<--------*. COMMON *---,

SET COMMON *. (CM) .*. I
INDICATOR *..*

* * * D2 *--,
* * 1

1

v

* * * El *

*****C3**********
* INDICATE THAT *
-II ESD IS SD OR
* PC-SET ESD *
WRITE INDICATOR

IN APT

1
1

*CF * 1
* 02 *->1
* * 1
**** v

• *. .*.
D3 *. ::)4 *.

V
*****D2**********
*ENTER * .* *. .* IS *. ~~~*
--*-*-*-*-*-*-* NO.* IS *. YES .* LENGTH *. yes * *

r-->* ENTER THE *<--, <----*. SO LENGTH .*-------->*. 10 SAveD .*---->* D;" *
1 * ITEM IN THE * 1 *. ZERO .* *.INDICATOR.*'"

* * I ******~~~~******* I
* El * I **** I ***

**** 1 *CF * 1 *CF *
1 I ** E2**-> I * D2*
1 *****
v 1 **** 1

. *. 1 V
EI *. 1 *****E2**********

.* *. 1 *RENUMBER *

: INDigATOR *:*NO __ ~ :~~;~~:;;~*~;~;~:
. ON. * TO CESDID IN *
.. *RENUM3ERING T3L*

. ..
* YES

1
1

I
V

ESD29 .*.

. . *. ON .*
"* •• *

* NO
1
1
1
1
1
V

*****E4**********
*r,AVE NO LENGTH *
* L I NC AOOR[cS",
* AND SET ID *
SAVED INDICATOR

II-.J APT
************~****

1
I **-11*

L_>: 02 :

F2 *. *****F3********** *****F4**********
.* IS *. * CLEAR COMMON * *IEWLCDLK ..

• * COMMON *. YES INDICATOR * *-*-*-*-*-*-*-*-*
*. INDICATOR • *--------> * PREPARE FOR *-------->* BUILD ENTRY *

. ON. * DEL INKING * * FOR CESD LINE *
. . * * IN OELINK TUL *

1 * •• * ***************** *****************
1 * NO

I I I L _______________________ > I < ___ J
v

ESD30 ESD30AO
G2 *. *****G4**********

.* ANY *. * GO TO NEXT *
.* MORE *. YES * ESD ITEM ~

*. INPUT ESD • *-------------------------------> * -SAVE ESD *-------,
. ITEMS . * TYPE * V

. .
* •• *

* NO

I
I
V

****H2********l!
* * RETURN

*CE *
* CIl!

Flowcharts - Level E 65

• Chart CG. ESD Processor (IEWLCESD) (Continued)

***** *CG *
«- AI*

* *
*

I
ESD6A V

*****Al ******* *** . "
SAVE TYPE *

OF MATCH I NC,
CleSD ENTRY

I

I
I
V

*****81·****** ***
··IDCESD "
--*-*-*-*-*-*-*
"DETERMINE LINE *
*NO. OF CURRENr "

:***;;~~*~!~;*.*:
I

I
V .*.

Cl *.
.* IS *. .* CESD '. YES

'*.. TYPE .*--,
*. NULL .' I

. . I
* •• * v

RESOLUTION PROCESSING

*
* " *CF *

* E2*

" I
I YES .*. ESD12A .*. .*.

A2 *. A3 *. *****A4********** AS *.
.* IS *. .* IS *. ... CLEAR SUBTYPE'" .* IS *.

." ESD TYPE *. NO ." ER *. YES "DELETE BIT * .* CESD *.
,-->*. DELETE/ ."---->". UNMARKED .--------->" IN CESD LINE *----->". UNMARKED OR .*

I
*l~**

'" * ... J\2 * . "

. REPLACE . *. (ESD) .* * (MAKE IT A" *. NEVER .* *-. __ .-- *- ... __ .-- :***~;~;:~;l****: *.~~L:*.*
" YES " NO " NO

I
V .*.

B2 ".
.* IS *.

.* CESD *. NO

I,
* loB *-> I
" "I

V
ESD17A ." .

83 *. *****84**********
.* IS ". "IEWLCDCN"

.* CESO *. YES *-*-*-*-*-*-*-*-*

I
I
V

*****85**********
" *

.TYPE DELETE/ .--, "TYPE A LIBRARY."--->" REMOVE "
MARK

CESD TYPE
MATCHED ".,,~EPLAC:*." I *. MEMBER .* "LIBRARY MEMBER *

.. ... FROM CHAIN ...
.... v * •• * *****************

... YES ****

I
v

* " ... F5 ...

" *

" NO

L **** *CF ..
>* A2 ...

* "
.*. .*.

C2 *. C3 *.
.* IS *. .* IS * •

• * CESD *. YES .* ESD *. NO .. *
*. TYPE • ,,---->... TYPE ."-->" K4 *

. DELETE . *. DELETE.* ** *.. *
* •• * * •• *

I
V

***** *CF ...
... A2*

" " -

I
V

"CF *
* E2*
" *

... NO ***** i NO i YES *CE ...
... Jl*
* ;+

*
V V

ESD7

**** " ..
.. F5 ..
.. *

*.***
*CF *
.. Al *

.. * *****04********** ~****05**********

YES
NO
NO
YES I

NO
VieS
NO
YI~S

GO
TO

CE.11
CE.11
CG_11
CO~1T I NUE

* * UPDATE LENGTH" 'IEWLCPTH *
OF CESD" If-_*_*_*_*_*_"_*_*

ENTRY ,,----->, FIND
TO GREATER" ~ COMMON PATH

" LENG TH" 'SEGMENT"
********* .. *** .. **.. .****************

I I
I NO

*********!*********1***********
.*. .*. (TYPE IS

E3 *. E4 ". CD)

V

*CF *
* E2*

" *

I
I

.V.
F1 *.

.* IS *.
NO.* ESD '.

, .. --il. LENGTH .*
*. GREATER ...

if. .*
* •• * * YES

I
V

*· ·**G 1 **********
* " * SET CESD *
" LENGTH EQUAL "
* TO ESD LENGT~ "
" ..
*********** .. ** .. **

I
I

-------->1

I
ESD10 V

.* IS *. .* IS *.
YES.* CESO *. NO .* CESO *. YES * *

r------·If • TYPE .*-------->*. TYPE .*-->* J4 *
V *. PC.* *. LR.* .. *

.. *-*. *..* *..*
lf CE • * •• * * •• *
* Hl* * *

.. * " I
I YES

ESD18 .". ." . ESD151>:
*****F2**********
" *

F3 iI'. F4 *. *****F5**********
.* IS *. .* IS *. .OELCHN *

SET MATCH
INDICATOR

.* ESO *. NO .* ESO *. YES *-*-*-*-*-*-*-*-*
*--,
- I

. TYPE .------->". TYPE ."-------->, CREATE A LINE *
*. CM ." (TYPE IS *. DELETE." "'CHAINED TO LINE*

.* ER) *.." I 'FOR MATCHNG SYM* I
* ••• * *·*·~o *l**********j********

"II "I I "*"" ". I ****

V

*CF *
* A3* L_>:C~2 * * : F5 : L_>:C62 * *

I YES I NO * * :****
* *

.*. ESUI4.*. .*.
G2 *. G3 *. G4 *. *****G5**********

.* IS *. .* IS *. .* IS *. • SET CESO *
." ESD *. NO .* ESD *. YES ." CESD *. YES , LENGTH EQUAL *

. TYPE AN .-------->. TYPE AN .*---->*. TYPE .*----->, TO GREATER OF *
. LR. *. 50.* *. CM.* • CESD AND ESD ...
.. *..* ...* If. ITEMS *

* •• * * •• * * •• * ***************
* .. * NO
1\ ****
I *CE *
I * J1*<-,
I NO * *"*: I YES

. *. ESD12 .*.
H2 *. H3 ~.

.* IS *. .* IS *.
.* CESO *. YES .* CE5D *.

E5015

I
I
I
V

.* •
H4

.* IS *.
.* CESD *. NO

ESD14A

I
V .*.

H5 *.
.* IS *.

.* OVERLAY *. YES

*****H 1 ** .. **** w-**
~ SET CESO *

ALIGNMENT
EQUAL TO

HIGHEST OF
*---.
* I

I
V

". TYPE AN .*---->*. ITEM FOR A .- ". TYPE AN .*---, '. I ND I CAToR • *--_.,
. ER. *. CONTROL .* *.*. LR .*~* I

- CESD AND ESD

.. *.CARD .*
* •• * * •• * * •• * V

*CF *
* E;~*

* * NO

:"::*:->i YES :~::~: " I
I
I
I

.... I
J 1 *. I

• * IS *. I
... CESD '. NO I r->*" TYPE .* _____________ --1

*. CHAINED .'.
. .

* •• * * YES ..1u , ..
.. • Jl ..

" .. I
I
I
V

*****Kl*******·**
.. SET CESD *
, POINTER *

TO 'CHAINED
TO' LINE

I
I

I
V

.' .
J3 -I •

.* IS *.
.* ESO *. NO

. TYPE CM,SD, .---1 *. OR LR • *
*. • *

!: SO 17

..... * v
* YES ****

I
V

.' .

.. A2 *
• *

**** I
V

*****J4**********
*DLDEF "
--*-*-*-*-*-*-4
" DoUliLE LABEL
* DEFINITION

:*****~~~~~******
I ****

L>: F5 :

* *

K3 *****K4**********
.* IS *. .. IEWLCDLK *

NO.* CESO *. YES *-*-*-*-*-*-*-*-*
... u3 *<----*. TYPE • *-------> * DELINK *-------,
* * *. DELETE." "" CESD * V

. ON I!'.I .
. APT .

* •• * * NO

l ****
*CF *

->* A2 *
" *

*****J5**********
'I EWLCPTH *

I

I
--*-*-*-*-*-*-* I

FIND *<. __ .J

COMMON PA TH *

:****~;~~;~!****:
I

I
V

*CF *
* A2*
* ..

I
* *.* **I,,*:*****;!~~******* :~;*:

* A4:!.M-

66
I
V

** .. * .. "
.. Al *
* *

* * * • K4 *
- *

Chart CH. TXT and RLD Processor (IEWLERAT)

.*. .*.
A2 *. A3 *. *****A4********** *****A5**********

****AI********* .* *. .* IS *. *BUFRLD ... *aUFTXT *
...* END *. YES .* THIS *. NO *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*

IEWLE~AT *-------->*. CARD .*-------->*. A LOAD • *-------> * PURGE RLD *-------> * PURGE TEXT *
* *. PURGE .* *. MODULE .* * BUFFER * * BUFFER

*************** *..* *..* *
FROM OBJECT *. . * *. . * ***************** *****************
PROCESSGR I I OR LOAD MODULE * NO * YES I

! ~-------------------->I
.*.

82 *. V
.* IS *. ****85*********

.* THIS AN *. TXT * *
. RLD OR TEXT .--------, RETURN *

. RECORD . V
.. ***** * •• * *CJ *

* RLD * A2*

I ***

TO OBJECT OR
LOAD MODULE
PROCESSOR

***** I *CH *
* C2* V
* * *****C2**********

* * SET COUNTERS *
L _____ >: FgRA~5x~

* POINTERS

I
v .*.

D2 *. *****03**********
.* IS P *. * SET DELETE *

.* POINTER *. YES * INDICATOR
*. MARKED DELETE. *-------->* -RLD ITEM

. IN RNT . * MUST NOT dE
.. PROCESSED * 'f" ___________ =~J'

v .*.
E2 *.

.* 15 P *.
.* POINTER *. NO

. SAME AS .---­
.PREVIOUS .

. p .
* •• *

*BUFRLD
--*-*-*-*-*-*-*
* WRT OUT RLDS *
*FOR PREV P UN- *
:LESS IT WAS 1ST:

* YES * RLD OF MODULE *

I

< •••••••••••••••••••••••• :
v

.* .
F2 *. *****F3**********

.* *. *IEWLCDLK *
.* IS *. YES *-*-*-*-*-*-*-*-* *. DEL I NK I NG • *------>* DEL I NK

.NECESSARY. * ROUTINE
.. * *

* •• * *****************

i <=-__________ J
I
v

:****G2*********:
RENUMBER *

RAND P
POINTERS

* *****************

I
I
v .*. .*. H2 *. H3 *. *****H4********** .* IS *. (A TYPE) .* IS R *. * MARK FLAG *

* * .* FLAG OF *. NO .* POINTER *. YES * FIELD OF RLD
* H2 *---->*.RLD MARKED AS.*------->*. A PSEUDO- .*----->* AS A PSEUDO
* * *. BRANCH .* if.REGISTER .* REGISTER

.!!P:.* *I~.R~!.* :*****!~~;******:
* YES * NO I

I
(v TYPE) I I

1<-----------1 v v .*. .*.
J2 *. J3 *. *****J4**********

.* *. .* IS R *. * MARK FLAG *
.* OVERLAY *. NO .* POINTER *. NO * FIELD OF RLD

. INDICATOR .----- *. AN EXTERNAL .*----->* FOR RELATIVE
. SET . If.REFERENCE.* * RELOCATION
.. *IN RNT.*

* •• * * •• * ***************** i '" ; ,:=-___________ J
v v .*.

*****K2********** *****K3********** K4 *. *****K5********** *PLACE ENTRY IN * * FIND MULT OF * .* *. * UPDATE *
* CALLS LIST-IF * V * ADDRESS FIELD * .* IS *. YES * COUNTERS FOR *
*LIST OVERFLOWS *---->* OF RLD-SAVE *------>*.CONTINUATION .*------>* A FLAG- *
* SEND ERROR * * IF LOWER THAN * *. ~IT IN .* : ADDRESS FIELD :

:*~~~~!~~~!~!!;*: :~~;~!~~~*~~;!:*: *R;~ :;T* ***************** i NO I
V V

***** ****
*CI * * *
**A~* : H2 :

Flowcharts - Level E 67

Chart CI.

*CI *

TXT and RLD Processor (IEWLERAT) (Continued)

.. A2* .*. .*. .* •
... * A'i:.'·K-. A 3 •• A4

* .* IS ". .* IS ". .* *.
"*A5*******
*BUFRLD

L ____ >*:* I~~;'Ig~OR ~f:*NO _____ >*:* T:~6;DA *:*_Y_F_S ___ >.:" 6~D *:*~=~ ____ >:-*-;~~~~-~~;--*-*

68

". SET .* *. MODULE .* *. INPUT .* * dUFFER
4- •

" Yf~S
I
I
I
I
I
V

""*"*82*****""***
"THE PRECEEOING *
" RLD ITEMS ARE *
* NOT TO BE *

WRITTE"I OUT

I
I

I
I
I
I
I
I
I
I
I
I

* • • *
i(NO
I

• * I
" LJ3 ,,-> I
* "I v .. ".

* • .*
*. . *

" NO
I "***
L_>:C~2**

83 *. **""*84""***"****
.If WILL if. *UUFRLO

.* ~LO ITEMS ". NO ,,-,,-*-*-,,-*-*-*-*
*. FIT IN RLO • *-------->* PURGE RLD

if. BUFFER .* * dUFFER ... • If

If-. • ..

.. YES
I
I
I
I
I
v

*"-"*C3"""*"*""""
If "

('lOVE RLD "
J TEI~S INTO
I~I_D BUFFER

"*-"*-"""""-**-*-
I
I
I
v

If "
,,- i-3:3 ..

* "

I I L ___________________________ > I
v . " ..

1)3 if •

• ' AilE ...
• • Al I RI _:) ". NO

.- r TTMS I'~ INPUT. *-------,
if. RCCORD ." V

::I.P~--l.lJC .* ".****
••••)f *CH ..

" YC~ " C2"
I
I
I
I
I
I
V

)(·*.'~F ~*****"'iI'**

I,L 1 URN

!4.)fo)(ct--if- if-." *** .. . Jt*-**
lU UUJECT
CI-i LUAD
MUDULE
P!<UCl-=-S~;O~

I
I

I
I
I
I
V

"*135*******

RFTURN *

TO LOAD
MODULE
PROCESSOR

"

Chart CJ. TXT and RLD Processor (IEWLERAT) (Continued)

*.****
*CJ *
.. A2* .*. .*.
* * A2 *. A3 *. *****A4*********** IS *. .* IS *. *IEWLELOG GB* ****A5*********

I .* TXT ReD *. NO .* TXT 10 *. NO *-*-*-*-*-*-*-*-*.. *
L------>*MARKED DELETE/.*---->". AN SD OR • *-------> * INVALID ID *------>* RETURN

. I~EPLACE . *. PC.* * ON TXT CARD * * -If

IN RNT. *0.* ***************
* •• * * •• * ***************** TO INPUT

" YES " YES PROCESSOR

I
I
V

****:32*********
* " " RETURN

TO OBJECT
OR LOAD
MODULE
PROCESSOR

I
V

*****83**********
" CALCULATE "

WHERE THIS
* TXT RECORD "
• SHOULD APPEAR "
" IN TXT BUFFER'

I

I
V

*****C3********** . "
RENUMBER ID

" DETERMINE
" MULTIPLICITY

" *****************

I
I
V .".

03 *. *****U4********** *****05***~*·****
.* IS *. *1XTIOT ... *oUFTXT *

.* THIS *. YES *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *. A LUAD .*------>* PLACE ENTRY *-------->~ PURGE TXT
it. MODULE .* * IN TEXT I/O " * BUFFER
.. * TABLE * *

* •• * ***************** *****************
" NO I

E3 *. *****E4**********
." IS ". "TXTIDT *

.* THIS *. YES *-*-*-*-*-*-*-*-*
".THE FIRST TXT.*----->* PLACE ENTRY

".RECORD OF.* " IN TEXT I/O

M~~U~~. :*****!!~~~*****: i NO I
1< ______ J
V .".

F3 *. *****F4**********
.* IS *. * RESET *

.* CURRENT *. YES CONTIGUITY *
*. TEXT 10 • *----> " INDICATOR

". NEW • * * (FOR CURRENT

-. _.-* :******!~J*******
" NO I I

I

I
V

~* ~HI [S**iI *it ****
* IILTURN

*************** ro LOAu
MODULE
PROCESSOf-<

"" "::....... "" ... "":~··.....I I
r---------------*. CONT I GUI TY • * <-----* • MUL TI PL IC I TY • *

I

.INDICATOR. *. NEW .*
. SET . *..*

* •• * * •• *
* NO * YES I

* * I
: H3 :-> I < __________________ J

V **** I ." . V
HI *. *****H3**********

:-*-*~~~!~!-*-*-: .* * •
• * IS *. NO

. CONTIGUITY .---->* H3 * * PURGE TEXT OF *
* OLD 10 OR OLD * *.SATISFIED.* * *

:*~~;!!~;!;;~!**: *. .*
* •• *

* YES

I
I V I L __ >I

V .*.
*****J2********** J3 *.
* SPLIT TEXT * .* WILL *.

RECORD AND * NO.* TXT RCD *.
MOVE FIRST *<------*. FIT IN TXT .*

PART INTO * *. BUFFER .*

!~!*~~~~;~: *-*- _.-*
I * YES

I I
V V

*****K2********** *****K3**********
*SUFTXT * * * ****K4*********
--*-*-*-*-*-*-* ... MOVE TEXT'" * *
* PURGE TXT BFR *------->* INTO TEXT *-------> " RETURN
*(ONLY 2ND PART * * BUFFER * *
:~:*!~!*~~~!!~~2: ****************: ~~*~;~~~;******

MODULE
PROCESSOR

Flowcharts - Level E 69

• Chart. CK. END Processor (IEWLCEND)

i
I
I

I
I

I

"'*Al If.***",*
" " • I EWLCEND "

I

I
I
V

~**~*dl**********
• INITIALIZE *

RENUMBER I NG "
• TABLE AND CESD "
"BASE REGISTERS"

" " ***~*************
I

I
v

." .
Cl *.

.)t IS *.
YES •• THE ENTRY *.

---".POINT BIT ON ."
". I N APT • *

If-. .*
* •• *

.)1 NO

I .*.
I DI *.
I .1f- *.
V NO.* IS *.
., ___ 4. ENTRY TYPE .*
I *.AdSOLUTE .*
I'. ."
I * •• "
I " YES

I I
I I
I I
I I
IEND03 V
i *****El**********
I "RENUMBER THE "
I " lD FIELD

I : FOR A~~~~~~TE
I
I
I
I

I
I
I
I
I
I

I
I
I
I

I

I
I
V

***-Jt*F 1 *** ... ***".**
" " -Jt SET ENTRY
" POINT BIT ON
* I N APT

I
I

--->1

I
v

},NDI .*.
Gl *.

.,. IS *.
.. * ~o LENGTH it. NO * ..

. ~IT ON IN .---->* A3 *
*. APT.n * *

If. • *
* •• * * YES

I
I
I
I
v . ".

iiI *. *****H2**********
.' IS ". "IEWLELOG GS"

.* LENGTH J~. NO *-*-*-*-*-*-*-*-*
'-.GIVEN IN END ."------>* NJ LENGTH

". RECORD .Of * GIVEN FOR "
'. ." "CONTROL "ECT I ON"

* •• * ***************** i YES I
I < ________________________ J
I

I'NDlA v

70

* **** J 1 ******.,. .• *
" PUT LENGTH "
"I NT() CESD ENT"~Y"
'FOR THE CONTROL *
* SECTION *

I
I
V

*****K 1 **********
" " * 1 URN OFF ...

'NO LENGTH'
INDICATCR

.. I N APT *

I
I
v

**** " .
* A.3 * , "

* .. A3 ..

* "
I

I
L ND2 V

*****A3**********
*Cl.EAR REPl.ACE/ "
* CHANGE BITS *

AND SYMBOL r-------

ENC-I
:****A5*********:

" REFER TO
-----> .. CESD USING

: RNT ID VALUE

***************** ::]::...... I

""*B3*t ... ",,*,, I' J ...
* SETUP LOOP .. .* IS *.

~~~~~ ig I i(::NTR~[~DTYPE *:*~:.~, 

:**:::!~~~~:::**: I *.*~ELETE.*." I 
I I ". *. ~o I 

--------> I I I i 
IrND3 .~. I v I 
I C3 * ~ C5·"·". II 

I .*·~NTliYp~*·*. YES NO ."." C~;D *.". I 
I ". DELETE OR ."- .----------------------".ENTRY'S TYPE." I 
I ". CHAIN.* I ". *. CHAIN."." I 
I ".".".:~' I *·"·:E5 I 
I I I I < _______ J 

I 
END 1 0 1 <-------A

1

-
J 

END4 t 
* ... --.03* *** .... **--.. .. ****05 ***** ***** 

I 
" " I ,," ZERO OUT BLANK OUT 

RENUMBERING CESD 
TABLE ENTRY ENTRY 

I I "*"""***r"**"***" 

I I 

I ~ 
IENLlIOB .*. 
I E3 *. 
I ... *. 
L~~,:' RN/~OOP ." 

*. DONE .* 
*. . .. 

* ••• 
* YF5 

I 
I 
I 
I 
V 

····F1·******** 
* * -> RE T UI~N 

TO INPUT 
PROCESSOR 

* 
***************** 

I 
V 

*****ES********** 
• I NCREMENl " 

ENTRIES * 
DELETED 

COUNT 

I 
v .". 

*****F4********** F5 *. 
*SAVE CESD ENTRY" .' IS'. 
" NUMBER AS * YES .* THIS THE >. 
" FIRST OF THE *<------'.FIRST DEl.ETE.D." 
* CHAIN" *. ENTRY .* 
* * *.. * 
***************** * •• * I i NO 

l _________________ > I 
I 
V 

*****G5********** 
*USING INDEX TU " 
" LAST ENTRY GF .. 
• CESD CHAI~- .. 
" PUT NEW ENTRY " 
*NUM8ER IN.CESD .. 
•• *************** 

I 
I 
I 

I 
I END~****H5*~***'**" • 
I " PUT ENTRy " 

I 
* NUMaE~ OF 
" DELETED CE'3D .. 
-ENTRY IN APT AS* 

I :,,~:~!*~~,,;~:!~*: 
I I L _______________________________ J 



• Chart CL. Control Statement Scanner (IEWLCSCN) 

FROM INPUT 
PROCESSOR 

****AI********* 
* * IEWLCSCN * 

I 

I 
SCN900 V .*. SCNI0240 .*. .*. 

*****81********** t32 *. 93 *. 64 -fl. *****[]5*********~ 
*SAVE COLUMN 72 * .* IS *. .* IS *. .* IS *. iI RESET .. 
* -SET POINTER * .* THIS A *. YES .* THIS A *. YES .* THERE *. YES * COMMENTS AND * 
* PI TO *------>*.CONTINUATION .*------->*.CONTINUATION .*----->*. A BLANK IN .*-------->* CONTINUATION 

COLUMN I * *.STATEMENT.* *OF COMMENTS* *. COLUMN .* INDICATO~S 

*..* *..* *. 72 .* * 
* •• * * •• * * •• * ***************** * NO * NO * NO I 

I I I I 
I I **~** *;~** 

*eM * *eM * 
SCNIOOO V V * C4* * C4* 

*****c 1 ********** *****C2********** *****C3********** * * * * 
*READ8 CN* * * * SET POINTER * * 
*-*-*-*-*-*-*-*-* * SET POINTER * PI TO READ 
*READ OPERATION *<------* P2 TO * COLUMN 16 * 
*SYM-SET OPTION * * OPD I * (CONTINUATION * 

:!~~!;!!~~*!~*!*: ***************** :*~~*~~;~!~~~2**: 

I 
v .*. 

01 *. 
• * DID *. 

I 
v .*. 

D3 * • 
.* *. 

NO.* SYMBOL *. 
r--*. END ~ITH A .* 

.* OLD *. YES * * 
*. STATUS WAS .*--->* G2 * 

I *. BLANK .* *. LEVEL 1 .* * * 
I *. .* *. .* 
v * •• ill' * •• * 

***** * YES * NO 
*eM iI· I 
* B4* 

I * * * I 
SCNIOI00 V 

*****E 1 ********** 
* SEARCH * 
* PROCESSOR KEY * 
* TABLE FOR * 
* MATCH 

I 
v 

V 
*****E3********** 
* * * SE.T POINTER 

P2 TO 
OPD 0 

:---, 

.*. SCNIOl20 
F 1 *. *****F2********** *****F3********** *****F4********** 

.* *. * SAVE ENTRY * *TURN ON 'OPD 0 * *READ8 CM* 
.* IS *. YES * POINT OF * *NEW' INDICATOR * V *-*-*-*-*-*-*-*-* 

*. THERE A .*------>* PROCESSOR *---->*AND SET 'LEVEL '*--->* READ 1ST OPND * 
*. MATCH .* * -SET POINTER * * INDICATOR * *OR CONTINUATION* 

*_* __ .e* :**~~*!~*~~~*~**: :****!~*;~~~****: :***~!~!~~!;~***: 
* NO I I :~:** 

**~** : G4 * *-> 
*eM * **** v 
" B4* SCNI0180 .*. SCNIOl30 .*. 
* * *****G2********** G3 *. G4 *. * * .* ENDED *. .* WAS *. 

SET 'LEVEL' * YES .* BY A LEFT *. YES .* AT LEAST *. 

TO ONE * *. .* *.Ct-tARACTER.* 
INDICATOR *<-l <-_.*. PARENTHESIS .*<----*. ONE VALID .* 

* * *..* *.READ .* 
***************** I * •• * * •• * 

I **** * NO * NO 

*CL * * G2 * * * * * L ***" I 
* H2 *->1 ****** >* K3 * SCNI0220 I 
:*** * I * * V 

SCNIOl90 V .*. 
*****H2 ********** *****H3********** H4 *. * * * * .* ENDED *. 

SET POINTER * SET 'OPDO * YES .* BY A LEFT *. 
P2 TO r--* ABSENT' *<----*. PARENTHESIS .* 

* 
* 

OPD I I * INDICATOR * *. *. .*'* 

***************** 

I 
V 

*****J2********** *REA08 CN* 
*-*-*-*-*-*-*-*-* 
*REAO NEXT SYMB * 
* -SET OPTION * 
*INDICATOR TO 0 * 
***************** 

I 
V 

v ***************** *. .* **** * NO * ... 
* G2 * 
* * I 

V .*. 
J4 *. 

• * *. 
YES.* IS *. 

,-----*. CONTINUITY .* 
V *.INDICATOR.* 

***** *. SET .* 
*eM * * •• * 
* B4* " NO 
* * I 

I 
V 

**** 
* * .*. SCNI0140 : G5 : 

K2 *. *****K3********** .* AT ". *PROCENTY * 
* * NO.* LEAST *. YES *-*-*-*-*-*-*-*-* 
* G5 *<----*. ONE VALID .*-------->* PASS CONTROL *---~ 
* * *. CHAR.* A * TO CTRL STMNT * V 

*'*.*.*'* **!**:***~~~~;~~~~***: :~~~: 
* K3 * 
* * 
**** 

**** 

NOTE - OPTION 
INDICATOR IS 
SET TO I 

* • 
: G5 : 

**** I 
I 
V 

SCNI0200 .*. 
G5 *. 

.* *. 
NO." ENDED *. 

r--* BY A • il-

I . *. BLANK .-If 

*. .* 
v * •• * 

***** * YES 
*CM * 
* 84* 

" * 
I 
i 
V .*. 

H5 *. 
.* IS *. 

NO.* OLD *. 
r--*. STATUS .* 
I *.;~o~gM~~*·* 
V * •• i! 

***** * YES 
*CM * I 
* B4* I 
* * I 

V .*. 
J5 *. 

.* * • 
YES.* BLANK *. 
r--*. IN COLUMN .* 
J *.*. 72 .*.* 
V * •• * 

***** * NO *CM * I 
* B4* I 

" * I 
V 

*****K5*********~ 

* * * SET 
* CONTINUATION 
* INDICATOR 
* ***************** 

I 
**~** 
*eM * 
* C4* 
* * 
* 

Flowcharts - Level E 71 



• Chart eM . Control Statement Scanner (IEWLCSCN) (Ccntinued) 

***** 
*CM . . AI" . . 

I 
I 
v .*. 

*. .. *. . " LEVEL 

" . ONE .. .* •.. . . . . . " 

'~CN 1 0 l/~ 5 
A; . " .* 

NO .* ENDED .-If 

.*---------->*. ,JY A .*---------->*. 
.... LUMMJ\ .iI it. 

*. .* '. * •• 11 

ENl)[[l 
dY A 
llLANK 

.... .." 

" . .. 
• *--. . 

" YrC-} 'fr-'] If YI', 

I '* .. *** -jI 
L,. r;;' * , , 

~jCNIOlS0 .*. 
til II. :)2 

.. If- L':NDED .)I". .. If 

.If-iJY A RIGHT ... 1\10 .* ENOL!) 
1* ~ PAHF.NTHES IS .. *-------->*.. BY COMMA 

)1(-. *. 
'" .' 

11' • • if 

-it- Y[-::S 

. " 
If-.. .. j;\ 

.. YLS 

I 
I 
V 

*"W··)1--/ll 

*e I )f 

;;CNll)lbO 

72 

.".**C 1 ***** .. * .... -* 
• * 

51: T LE- VEL 
ItWICATOFl 

"1) ZEPO 

." . 
lIclt***lJl********iI. D2 -It. 

'* UPDATE PI * .* IS -II.. -Ifit-lf-lf 

pnINT~-R .* Pi Ar *. YES" * 
., n NEXT *--------->*.. COLUMN .. " ----.>* C4 -II 

CULUMi-J" *.. 72 . " 
jII- .... ***.;t*********..... -II ... * 

"* hlU 

.' . 
' . 

.. )I IS .... 
.. -)I r HIS .... NO .. .. 

*. (JiAI.(:ACTcR .*----->* C'''' * 
If. A CUMMA .it .... 

II.. .." 
}f •• if 

.. YE:S 

... * **F- 2. ** **** *** * 
" " 'leT I EI-JDED 

BY A COMMA-
IN STATUS 

11-** * ... ** ** * ****-)1 ** 
I 
I 

• "I 
• (~? -M._> I 

• "I 
S<'NIOI70 V 

It. ** *G2. ** ... ***** ** 
* * SET POHITEP 

P? ON 
IJPIJ 0 

1f****H? ********* __ 
II-RF.AD8 eN* 
Il-_ )(-_._*_*_ .. _ *_*_* 
'rlEAD NEXT PARMI" 
• SET IJPTION " 
*INIJICATIJP TIJ 0 * 
,,)f- * **** ** *** * **** 

I 

I 
V 

***** ·CL ... 
.. G4* . " 

i 
• *. 

A4 . . 
. " 

.* 8LANK *. NU 

-1 
V 

",'-.,t If If A5* *-JI ***-:t" ** 
* ~-:.c r -1(­

* COMMeNT;) ANU 
- - ->*. IN COLUMN .*"----, * CUNT INUA I IUN 

... 12 • * I I NlJ I CA r UR~i 

' . * .... 

If- _34 If- __ , 

" • I 
I 

~;CNIU230 V 

* * * * * J4 ** * *** .. * * * 
*ILWLLLOL CU* 
*- *- *- *-* -* -* -*-* 

eRRUR .. 
i~UtJ r I NL 

I 
I 
I I 
I I 
I I 
I I 
I I 

I I 
I I 
I I 
I I 
I I 
I I 
I I •••• -JI.ltll-7 11 **-M-M*** I I 

I V I 
ItCM" I <-------.~ --------, I 
: c4 J! -M_> f < __________ ~ ________________ J 
•••• I 

~JLNIU21u I 
V 

* If- * *C:4** **** *** 



• Chart CN. Read 8 Routine 

FROM CONTROL 
STATEMENT 
SCANNER 

***'J(-A 1 ********* 
" " READ8 

I 

I 
I 

SCNIIRD8 V 
*****81********** 
• * 
* SAVE 'STATUS' " 
if IN 'OLD if-

STATUS' 

I 
I 

I 
V 

*****C1********** 
* CLEAR WORK * 
* AREA REFERRED * 
" TO SY POINTER * 
* P2 * 

I 
I 
V 

*****01*"'******** 
* * SET 

CHARACTER 
COUNT TO 9 

I 
V 

*****El********** 
* RESET 'AT * 

LLAST ONE * 
VALID 

CHARACTER' 
* INDICATOR * 
***************** 

I 
****'11:* I 
* Fl ... _>1 
* • I 

I 
SCNIIOOO V .*. SCNI0230 

F2 *. *****F3********** 
.* IS *. *IEWLELCG GB* 

.* PI AT *. YES *-*-*-*-*-*-*-*-* * * 
*****F!********** 
* UPDATE PI * 

POINTER TO 
NEXT 

CHARACTER 
*-------->*. COLUMN .*-------->*OPERAND EXTENDS*---->* J3 * 
* *. 72.* A * dE YOND COLUMN * * * 

*..* I * 71 * 
*l*************iI***** * •• -}:i 

* NO 
I * * .. F3 i( 

* * ***if· I 
V .*. .*. .*. SCNII020 

G2 *. G3 *. G4 *. *****G5********** 
.* IS *. .* *. .* IS PI *. * SET 'ENDED ~y * 

.* PI AT *. NO ." IS *. NO .* AT A LEFT *. YES * A LEFT 
*. A BLANK •• ---~--->*. PI AT .*------->*. PARENTI-fESIS .*-------->* PARENTHESIS' 

*.CHARACTER.* *. COMMA .* *. .* .. INDICATOR 
*..* *..* oJI..* * IN STATUS * 

..... * ... • * *. ... ***************** * YES * NO .. YES 
I **** l * " ->* J3 * 

* " I I 
I V 

SCNll0S0 SCNII040 .*. SCNIIOIO V .*. SCNII030 
****ilHl********** 1-i2 *. if-****H3********** 1;4 *. *****H5*******iI** 
* SLT 'ENDE0 BY * .* IS *. .. SET 'ENDED BY .. .* IS *. * SET 'eNDED dY * 
* A 8LANK' * NO.* OPTION *. * COMMA' .* PI AT A '. YES * RIGHT 
" INCICATOR IN *<--------*. INDICATOR ." * INDICATOR II~ *. RIGHT .*-------->* PARENTHESIS' 
* STATUS * A *. SET.* * STATUS *PARENTHESIS* * INDICATOR 

I 
I 
V 

**** * • 
.. JJ * . " 

I *..* *..* * IN STATU3 * I *·*·~ES ********j******** *·,,·~o ********j******** 

I I : J3 :-> I I L_>: J3 : 

I V I I 

I .*. I V .* . 
.*J2 IS ~.*. ~***J3*~******* :****J4********iI: .*J5 *-._ 

l~=~*O~E: A i N6i~~io~:.. .. RETUI~N'" 6~~T~~~~ : _______ >*: * COUNi 5 ZERO .... NO 
*. SET .* COUNT * *. .<M -*---1 
*..* *************** *. .* I 

*·*·~o ~~A~~~~~~L ***************** *·*·~ES I 
r----------> I SCANNER I * **** * I 
I V L_>* F3 * I 

I
I * * * * I 

* FI * SCNII005 I 
J .. * *****K3********** *****K4********** **~**K5********** I 

L _________ :::: _______________ = 6~~~~~~oi~ :< ____ : s~~~~:~~~~~ST :< ______ : ~k:!N~g;~~~r :<_J 

AREA .> * INDICATOR * * TO BY P2 " 

Flowcharts - Level E 73 



• Chart co. Include Processor (IEWLCINC) 

FROM INPUT 
PROCESSor' 

****AI******·** 
* * IEWLCINC 

************.** 
I 
I 

I 
I 
I 

* 

INCLUIOO V 
*****BI******·*** 
* FIND FIRST * 
* OR NEXT ITEM 

11\1 INCLUDE 
CHAIN TO BE 

* INCLUDED 
***************** 

I 

I 
V 

INCLUI20 .*. INCLU250 
*****C2********** 

74 

CI *. 
." *. 

.* IS IT *. YES * 
* AN INCLUDE WI TH*-------->* 

*. POINTER .* 
if. .* 

RESET * 
'PHYSICAL 

SEQUENTIAL' 
INDICATOR 

*. • * ************-**** 
* NO 
I 

I 
v 

*****01********** 
* SET * 
* 'PHYSICAL * 

SEQUENTIAL' * 
INDICATOR * 

* .**************** 

I 

I 
I 
I 

I 
I 
I 

I 
I 
I 
I 
I 

I 
I I I < __________________________ J 

I 
v 

*****EI********** 
*LIBGP CQ* 
*-*-*-*-*-*-*-*-* 
• OPEN. BLDL * 

AND FIND 

***************** 
I 

I 
I 
I 
v 

• -.)1-. 

,= I * • 
• ~ IS * .. 

• * THIS THE *. YES 
... LAST I TEM IN. *------------------, 

*. INCLUDE .* I 
*.CHAIN.* I 

*. .* 
• NO I 
I I 
I I 

I I 
I I 
V INCLU300 V 

*****Gl********** *****G2********** 
.. SET * * RESET * 
*'MeRE INCLUDES * *'MORE INCLUDES * 
* TO COME' TO COME' * 

INDICATOR INDICATOR 

***************** ***************** 

I I 
I I 
I I I < _____________ . ____________ J 

I 
V 

****HI **** .. *~'** 
• * 

RETURN * 

** ** ********,,1-* * 
TO INPUT 
P'~OCESSOR 



Chart CP. Automatic Library Call Processor (IEWLCAUT) 

*
****A2********** :****A3*********: 

* INITIATE * 
IEWLCAUT *---->* CESD 

* * SCAN 
*************** FROM INPUT 
PROCESSOR ***************** 

* **** * I 
: 83 :-> < ___________________ , 

**** v A 1 

:****B2*********: .*B3·*·*.*. I I 
IN~HrE :< ___ YES*::. C~~: .::* 

::::::**r******: *. *. *1 .~~ * I 
: C2 :->1 
**** v v .*. .*. 

****C1********* _*C2 *-._ .*i~ TH~S*. I 
* TO * YES.* END *. .* A DDNAME *. ~ 

ADDRESS *<-----*. OF .* *. ENTRY FOR A .* 
ASSIGNMENT * *. CESD .* *. LIBRARY .* 

*************** *..* *..* 
* •• * * •• * 

* NO * YES 

I 
V 

*****02********** 
* * * PICK UP NEXT * 
* ENTRY OF CESD * 

* * 
* * ***************** 
* C2 * I * * 

" I NO V 
.*. .*. 

El *. E2 *. 
.* IS *. .* *. 

.* THIS AN *. NO.* IS IT *. 
*.OVRLY CONTROL.*<--------*.ER.5UBTYPE 0 .* 

*.STATEMENT.* *. .* 
*..* *..* 

* .• * * •• * 
* YES * YES 

I 
V 

*****Fl********** 
* * *MARK THIS ENTRY* 
*NULL. PLACE IT * 
* IN NULL CHAIN * 
* * ***************** 

I 
v 

**** 
* * * C2 * 
* * **** 

I 
v .*. 

F2 *. 
.* WAS *. 

YES.* A BLDL *. 
r--*PREV. ATTEMPTED* 
I *. FOR IT .* 
I *. .* 
v * •• * 

**** * NO 
* * I 

* * * C2 * I 
I 
V 

*****G2********** 
::!~~~*-*-*-*-;~: 

OPEN. BLDL 
AND FIND 

* ***************** 

I 
v .*. *****Hl********** H2 *. 

*IEWLELOG GB* .* *. 
*-*-*-*-*-*-*-*-* YES • * L IBOP *. 

ERROR * <------*. FAILURE .* 
MESSAGE * *. .* 

* *..* 
***************** * •• * 

* NO 

I 
v .*. 

03 *. *****04********** 
.* *. *MARK THIS ENTRY* 

*:* POI~~~~ =0 *:*~>: ~¥L'IN ~bt~E : ___ J 
*. .* * CHAIN. 

*. .* 
* •• * 

* NO 

I 
V 

*****E3********** 
* INITIATE * 
* PROCESSING OF * 
* THIS LIBRARY * 
* CHAIN 

***************** 
I 

r--------> I 
1 *****F3*~******** 
1
** TAKE NEXT 

ENTRY IN 

I :*~:::::r*:::::*: 

I .L 
1 

G3 *. 
.* *. 

.* END *. YES * * 
*. OF LIBRARY .*-->* B3 ., 

I ····:~i:;;··· .. 

I H3 *. 

~ 
.*IS THIS*. 

NO.* ENTRY A *. 
-*MATCHED LIBRARY* 

" *. MEMBER .* 

I 
v 

**** 

I *.*.*.~~: 

r------J I I * • 
* C2 * 
* * I I 

v .*. 
*****J2 ********** J3 *. 
*IEWLELOG Ga* .* WAS *. 

t :-*-*-~~~~~-*-*-:---> ~~*: * PREe~gbsL y *: * 
I 

* ~ESSAGE * *.ATTEMPTED.* 
*FOR IT.* 

***************** * •• * 

I .1.", i '" 
****K 1 ********* I . * K2 *. *. ::~:~~3*******~~: 

* * V NO. * L I BOP *. *-*-if--*-*_*_*_*_* 
RETURN *<-------*. FAILURE .*<----* OPEN. BLDL 

* * *. .* * AND FIND 
*************** *..* * 
TO INPUT * •• * ***************** 
PROCESSOR * 

Flowcharts - Level E 75 



• Chart CQ. 

" 

.II-*C:l******* . .. 
* 
* .. 

CL(JSE 
THE 

DATA SET 

Library Open Routine (LIBOP) 

J-~UM INCLUDE/ if***A~********* 
AJTUMATIC LIHRARY .. 
C,A.L.L P:{()CFSSrJR. IIHOP 

* .. 
Jf. O/~ .. 
* , 

1\ 
I 
I NO 

.'. 

J:flf-fl-_******* .... -'f 
I 
I 

I 
I 
I 
I 
v 

)I- .** -tI-H '3***** ***** 
If- ';F 1 I INPUT * 

P {J I N r 1- R' T f} * 
n 'I IlJl~AHY '·H·I\D .. 

in IILK I .. 

.' . 
C2 *. C i 

.* IS IT *. ..IS THIS •• 
it YE~; .*A PHYSICAL *. .* DATA SET /II .• 

*<.--.------..•• SeQUENTIAL .*<--------*. GPF N F{1R .* 
... *. DATA .* *. r;YSI 18 

-II. ::;rT .* *. 11ed .* 
* ... * .... * 

if .. NIl 

-. ---~::=~~oo---------··l !NCLLJ350 .*. 

:.***g~::~=;"***: I .,D: s IT ". 
.SKEI<ETON SVSLI8* V '(Fe; .*A PHY.o::.ICAL ... 

DC~~ INTO A *< ________ il. SF-Q\,CNTIAl. 
PHYSICAL" -JI-. i)ATA 

*SEQUENT I AL DeB 4- ... :)I:T • * 
**-If-**.If-*********** ..... 

• NO 
I 
I 
I 

I 
fNCLU450 V 

-JI****L 1********** 
.. {:QNVrRT 4-

4SKELI:~TlJN SY51 1134-
oeiJ I NTO A 4-

'* f-IAI~rITTnNl[; 
j( I)ATA (",FT I)C,j 4-

itillll-If-**.lf-If-*******,. 

rHI­
I)A I A 'iFT 

INCLU510 .... 
***4~Gl********** *.**~G2********** G~ 
xIEWLELOG GB*" * .. * *. 
*~*-.-*-*-*-*-*-* .. SET LIBOP * NO.* WAS *. 

ERfWR *<-.----* FAILURE BIT *<--, <--'--*OPEN ~'UCCES·'>FUL* 
PROCESS I NG ON. I ". ." 

._.*****if******** * •• ** .. ****.****** * .• 1.. *. -fI ... *. JI 
A .. YF~ 

\I 
-)I.-J~** .. . 

.. ".4 * . .. 

I : G.' .. I .... 
I 
I INCI..U455 

t-LI 
15 *. 

, . 
)I A4- .. . . 

I 
I 
I 
v 

.. "',. .... J\/~**"" ** ** ** 
* SFT * 

LOAD MODULE 
111 T 

I:'J APT 

M~If-**If-*********** 
I 

I 
I 
I 
I 
V 

-JI--Jl.* /1111/,********** 
*[)r-r:-,IC;NATr:- LOAD 4-

.. MflDlJIT dlJFFFR * 
FOq lJSF AS * 

: luf-lARY INPUT * 
II dlJFFFR -II­

~*.****.********* 

C4 
.* IS *. 

.* PHYSICAL *. yes 
". SEQUENT I AL •• -.--->* C2 * 

*.INDICATOR.* 
*. ON .* 

.II. • .. 

* NO 
I 

" "I 
JI ')4 -tI --> I 
" • I 

I 
V 

.4D4******* 

.. dLDL 
.. FO;.! ME MdER .. 

NAMF .. 

.". 
~ 4- ... 

.* WAS *. **** 
... HLDL *. NO .. .. 

... suer ESSFUL • * .... -> * (·2 * 
i! • • * * * 

.* **** 
* •• * 

YL '; 

I 
v 

* ****1:·/ ... **** **it-*** 

PRnr:F:~,)('"'; 

MOOULE 
ATTI--ll AIJT["S 

I 
I 
V 

**G44****** 

* FIND 
* .. (BLDl. ENTRY) 

I 
I 
I 

* 

* F5 -¥ 

.. * 
**** 

I 
I 

INCLLJ460 v 
*****F5*********~ 
~ RESET * 
* L [lAD MODULE 

31T 
11'1 APT 

***************** 
I 
I 

I 
I 
v 

*****G5********** 
• DESIGNATE 'f 
* OBJECT MODLJLE * 
.BUFFER FOR USE * 
* AS LIBRARY * 
:*~~~~!*~~~:;~**: 

I 

I 
I 
v .*. 

H5 *. 
• * IS *. I .... YF- S. • 

1 

1 

I 
* * YES.* 8LK SIZE *. 

76 

I 

I 
I 

I 
I 
L. 

FOHMAT U ... ----:>* A4 * 
II!. (L OAD .. -- .. * 

"MODULE )* 
__ •• M-

N- N() 

. ". 
J.3 

• .II I ~... Jf-* * * 
NU.* RfCQRO *. YES * * 
~*. FOh'MAT F .*_ .. _.-._>* FS • 

". «(j()JECT ." 
• Mr:D'JLF: ). 

". ... * 

I 
I 
I 
I 
I 
I 
I 

I 
I 

• • I 

.. G2 *<--*. LARGER THAN • * 
* * •• BUF SIZE .* 

*. . * 
* •• * * NO 

: .::.:·-:>1<---------------
INCLU610 I 

v 
****K4**·*·**** If- !~ f(~~~~~gE LIBRARY 

'H rUKN * CALL PROCESSOR 

* **** •• ****** •• * 



.Chart DA. Address Assignment Processor (IEWLEADA) 

ICROM INPUT 
PROCESSOR 

****Al********* 
" IEWLEADA 

" *************** 

I 
I 
I 
I 
I 

ADAOOIOO V 
*****81********** 
* CLOSE SYSLIN • 
* CLEAR ADDRESS * 
• ASS I GNMENT * 
• COUNTERS AND 
" INDICATORS " 
*.*************** 

I 
I 
I 
I 
I 
V 

ADA00120 ••• ADAOIOOO 
Cl *. *****C2********** 

•••• "COMPUTE SEGTAB * 
." IN •• YES • LENGTH AND 

*. OVERLAY •• ------->" BUILD A PC 
*. .* .. ENTRY FOR .. "SEGTAB IN CESD 

* •• * ***************** * NO I 

I I 1<------ __________________ -.1 
V ADA00150 ADA00200 ADA00300 

*****01********** *****02********** *****03********** *****D4********** *****D5********** 
• I EWLCENS DB. • ASS I GN TEMP " • COMPUTE. * ACCUMULATE. • IF PR ASS I GN * 
*-.-*-.-*-*-*-*-* * LINKED ADDR * *TEMPORARY RELOC. • SEG LENGTH. • DISPLACEMENT " 

ENTER SEG *-'----->*TO EACH SO. PC .-------->.CONST FOR EACH .----->* AND ENTER IT *--------->. IN CESD AND 
NOS IN CESD * * OR CM LINE. .CONTROL SECTION* * IN SEG LGTH • • ACCU~ULATE 

OF CESD .SAVE RC IN RCT * "TABLL. • TOTAL PR LGTH • 
***************** ***************** ***************** ***************** 

I 

\ 

r-------------------------------------------------------------------------------------------------------------- __ 1 
V .*. 

El *. *****E2********** *****E3********** *****E4********** 
.* *. " TEMPORARY * "TEMP REL CONSTS* • PROGRAM LGTH " 

.* IN *. NO * LINKED * * ARE THE FINAL. • IS EQUAL TO 

". *. OVERLAY .*' *------>: ~~~~~S~i~K~~E :------->: R26~~~~~~~ :-------->: ~~~~~~T o~ :-----1 
*..* • ADDRESSES " • * I 

* •• * ***************** ***************** ***************** I 
" YES I 
I I 
I I 
I I 

~DA~!!~~Fl*~******** *****F2********** AOA~!~~~F3********** *****F4*********~ I *****F5********** 
* SCAN SEG LGTH • *PROGRAM LENGTH * • SCAN CESD AND " • OUR I NG SCAN.. I· UPDATE L f< * 
• COMPUTE SEG " EQUALS LENGTH * *UPDATE ADDRESS * * COMPUTE FINAL * v. ADORe SSES US I NG. 
* RELOC CONSTS *------->* OF LONGEST .--------->* OF EACH SO. *------>* RELOC CONST .-------->* RELOC CONST • 
* (START AODR * * PATH: * PC, OR CM: * FOR SD,PC,CM * * OF SO, PC, 

:*~~~*;!~~*~~~J*: ***************** ***************** :!~~*~~!*!~*~~!*: ******~~*~~*****: 

r----------------------------------------------------------------------------------
V 

*****Gl********** 
*WRITE OUT ERROR* 
* MESSAGE FOR * 
*ANY UNRESOLVED * 
* EXTERNAL * 

REFERENCES • 
***************** 

.". 
HI *. *****H2********** 

.* *. * PROGRAM IS ~ 
.* NO *. NO * EXECUTABLE 

*. CALL • *------>* ON LET 
*. .* * OPTION ONLY 

*. .* 
* •• * 

* YES 
I 
I I 
L _____________________ > I 

I 
V 

*****J2********** *****J3********** 
* SET MARKED * * I EWLCENT DC* ****J4********* 

CESD ITEMS * *-*-*-*-*-*-*-*-* * TO * 
TO NULL *----->* COMPUTE ENTRY *----->* INTERMEDIATE 

TYPE * * PT AND BUILD * * PROCESSOR 
* ALIAS TABLE *************** 
***************** 

I 
I 
I 

____________ J 

Flowcharts - Level E 77 



.Chart DB. IEWLCENS Routine 

FROM ADDRESS 
ASSI GNMENT PROC ESSOR 

****A2********* 
* " IEWLCENS 

I 
I 

I':NS0070 V 
Jr..'" * .82 ********* It­
" " * SCAN CESD 

FOR LABEL 
REFERENCES 

.*****~********** 
I 
I 

I 
V 

*****C2********** * USING 10 OF * 
" ID LENGTH * 
*F I ELD. REFER T D* 
*<;D OR PC ENTRY " 
" IN CESD * 
***************** 

I 
I 
v 

...... **D2 ·It ... **** **** 
" 

. 
INSERT SEG 
NO. IN CESD 

FOR LR 

M-***** *.11-,* ******** 
I 

I 
v .1O. 

E2 * • 
• * * • 

• * TN *. 'JO *. OVERLAY .*-----------------------------·--1 

*. .* 
* ... * * YES 

! 
I 
V 

.* 

****~F2********** 
*SCAN CALL LIST * 
* LNTLRING 

CHA IN 
POINTERS 

* ***************** 

I 
V 

ENS015 .*. 

78 

(;2 *.. 4****G3*,********4 
• ANY CALLS. "I EIOILELOG GS* 

.* FRUM SEG *. NO if-*-*-*-*_*_*_*_* 
'·.NO. 1 TO ANY .*------>" PROG IS EXEC-" 

*. OTHER .* " UTABLE ON LET " 
*. SEG .* ... OPTION ONLY )to 

* •• * if**********"'***** 
" YES 

I I I < _____________________ J 
I 
v 

*****H2·********* 
" DETERMINE • 

NUMI3ER OF 
ENTAd LINES 

FOR EACH 
.. SEGMENT ... 
*** .. *** .********-11 

I 

I 
V 

*****J2~********* 

::: ~~~.: :~:!-*-*-*-: 
" MAKE eNE CESD " 
"ENTRY FOR ENTA8* 

:**~;~*;;~~~~! **: 
I 

I 
I 
I 

I 
I 
L _________________ . _____ .. _ ..... _ ****K4********* 

* " . -->* RETURN 

* 

fO ADDRESS 
ASSIGNMENT 
PROCESSOI< 



-Chart DC. Entry Processor (IEWLCENT) 

FROM ADDRESS 
ASSIGNMENT 
PROCESSOR 

****A2********* 
* * IEWLCENT * 

*************** 

I 
r---------->I 

I 
tNT00150 V 

*****B2********** 
* FIND NEXT * 

CHAINED 
ALIAS ENTRY * 

IN CESD * 

***************** 

I 
I 

I *****C2*~******** 
* MOVE CHAINED * 
* ALIAS SYMBOL * 

I * FROM CESD TO I * ALIAS TABLE 

I ***************** 

I I 
IENT00190 V 

*****D2********** 
* SCAN CESD * 
* FOR MATCHING * 
* ALIAS * 
* SYMBOL * 
* * 

I 
***************** 

I 
V .*. 

I 
E2 *. *****E3********** *****E4****.***** *****E5********** 

.* *. * ENTER ESDID * *SET TYPE FIELD * *PUT ADDRESS OF * 
.* SYM *. YES * OF CHAINED * *OF ALIAS SYMBOL* *50 OR LR ENTRY * 

*. MATCH .*-------->* ALIAS SYMBOL *-------->* ENTRY IN CESD *-------->* FOR ALIAS IN 
FOUND .* *IN ALIAS TABLE * * TO 'NULL' * *CESD ENTRY FOR * 

* * * * * ALIAS SYMBOL * 
* •• * ***************** ***************** ***************** i NO 

V 
*****F2********** 
* ENTER ESDID * 
* OF ZERO IN * 
*ALIAS TABLE FOR* 
* THIS ENTRY * 
* * ***************** 

I 1< 

6NT00160 .~. ENT00200 .*. 
G2 *. G3 * • 

• * *. .* IS *. 
YES.* ANY *. NO .* THERE *. NO 
-*.*~O~~T~i~~S.*.*-------->*.*.ANp5~~~Y .*.*-------.~ 

*..* *..* ***** 
* •• * * •• * *00 * 

* * YES * A5* 
I *** 
V 

***** 
*DD * 
* A2* 
* * 
* 

I 
V 

*****F5********** 
* PUT ESDID OF * 
*CONTROL SECTION* 
*OF ALIAS SYMBOL* 
* IN CESD ENTRY * 
* FOR SYMBOL * 
***************** 

I 

J 

Flowcharts - Level E 79 



• Chart DD. Entry Processor (IEWLCENT) (Continued) 

*** •• 
*f)D * 
iii 1\:>11 

1 

i 

. '. 
A2 ". 

. ' -;. * .. c,YMflOL.! C 

. ' 

I N rOO..:jOU 

NO 

t-*II .. *d2 ..... If ..... ** 
(- SCAN CE:.5D 

r nl~ 
1- MArCHING * 
;t';;, rlH LI~ '-;YMdOL* 
:/ M 

~.~M***.~**.****~ 

-;I. 

. ' 
'. 

. '. 
'. 

'·,YMBOI 
'-DUN!) 

'. .' 
.' 

I • YES 

I I 
I I 

FNT01250 
*****A4********** *****A~********** 
.. USING ESDID .. *SCAN CCSD FO:<: A* 

.If [~ _. NU *~~~M END CARO, .. *CONT seCT (SO, .. 
----->'. F.P. .*--------->* POINT TO CESD * r->*PC-NCT DELETE:) • 

If-.I~j-LAf {VI:- .* *ENTRY FOR C.S. .. I" ~1 TH LOWEST .. 
)I..iI *CLJNTAINING E.P.* I *ASSIGNED ADOR ... 

W·~·:FS ********7********! ********7******** 

.. *** .. /i.-l* ... *. * *** * .. 

.. USING [SuID * 
• FRnM rND CARD * 
.. LOCATE RF.:L * 
*CONST FOR c.s ... 
II { I IN 1 A r N I NG r-. P ... 

...... *** .. ***-*.*** 
I 
I 
I 
I 
I 
I 
V 

)l-MJ:·-JfC3********** 
~ ADO RFL CONST .. 
* TO ASSEMBLED * 
.. ADDRFSS .. 
:(f-RnM rND CARD): 

* ....... ** ••• *.*** 

I *~D** I 
" :*!~: I 
V I 

~****:14********** I 
• ADD CONTRGL * I 
:~~~T!~~E:~E~~SS: I 
: Ai~I~~~Dr;ggR : I 
********i******** I 

i I 
I I 
I v 
I .* . I _.C5 .- •• 

I YES.* [NTRY *. 
, <----------------*. FOUND • * 

I , 
I 

I , < ---- ----- ----- ------- ________ J I 
I v 
, LNTOOEOO .*. 

*****Dl********** I n2 *. 
'IEIOILELOG GB*, .* IS 
If-·_*-If--X_*_*_*_*_* V NO.* ENTRY PT •• 

INVALID *<--------*.CONT SfCT IN .* 
f:NTRY * *. SEGMENT .' 
POINT :II *. NO.1." 

If 11)( If******* .. ***** * .... * 

80 

.. Yf '. , 
I , 

FNTOOSOO V 
-1~*1I **E2********** 
*S~VE E.P. ADOR .. 
-1~ SAVE 
* E ')010 OF c.~:;. * 
• CONTAINING * 

E .P. .. 

)~*. ** .. ** .... ******* 
I 
I 
I 
I ------------------ -- -> 1<-----

'-NT01CO I 
V 

*- **"=:2********* 
~~ II 

F1F:TlJRN 

TC ADDRE SS 
A,;"=)IGNME~~T 

PhOCESSOR 

I 
V 

.. * .. ** 05* ***.***** 
*IEWLicLOG Go" 
*-*-*-*-*-*-*-*-* 

INVALID 
f:-lTRY 

• ~OINT " 
***************** 

I , 

I 
I 
I 
I 

J 



-Chart EA. 

Form Y28-6610-2 f Page Revised by TNL Y28-2356, 11/15/68 

Intermediate Output Processor (IEWLEOUT) 

PROM 
ALDRFSS 
ASSIGNflENT 

***.A 2. ** ***** * 
* * '" IEIIL FOUT * 
* * **.************ 

I 
OUT00300 • *. 

B2 * . 
. '" * . . * NOT *. YES 

*. .* *. .* * .. '" 
'" NO 

"'. EDITABLE .*-----1 

I !OUT00400 ****.*C2 •••• *.****. ***.*C3 •• *** •• **. 
'" * • WRI~E OUT. * BUILD * 

CESD ON ------.->. HALF • 
SYSLMOD • ESD • 

* • 
***.***.*.... ..* •• ******.*.*** 

1 
OUT00525 .*. OUT00970 

03 •• *.*.*04**.****** • 
• * *. .1 EWLELOG GB* .***05***.* •• *. 

*: * I~E~6AD *:.!~--.---->:-*-*N~-;E;T*-*-:-------->: yjgu : 
*. MODULE .* * IN LOAD * * PROCESSOR * *. . * * MODULE * **********.**** 

* •. * ******"''''*'''****'''** * YES 

1 
• *. OUT00550 • *. OUT01000 • "'. 

*.***El.***.***** E2 *. E3 *. E4 *. ******E5********* •• 
* GET HIERARCHY * .* *. .* *. .* *. BUILD AND 
* NO. FOR EACH * YES . * IS *. . '" IS *. YES • * NOT *. NO * WRITE OUT 
*CESD ITEM FROM *<------*. HIARBIT • *<--1 *. PROGRAM IN .*----.--->*. EDITABLE • *----> SEGTAB 
* HIERARCHY * *. SET .* *. OVERLAY .* *..* CONTROL 
* TABLE * *..* *..* *..* RECORD 
********i******** *'.·:0 I *'*';0 *'''''~ES ******1******* 

L ________ --.;~~;;;;~-, I . !. L _______ ~~~~~~~~--> 
******Fl****"'****** *****F2********** F3 *. ******Y5*********** 

WRITE OUT ,. BUILD * . * IS *. BUILD AND 
SCATTFR '" * SCATTER AND * YES.. PROGRAM *. WRITE 

TRANS <--------. TRANSLATION * ------*. TO BE SCATTER. * OUT 
RECORDS '" TABLES. *. LOADED * SEGTAB 

'" '" "'.. * ************* ***** ••••• ******* * •• * ***.****** •• * 

L----------------------;~;;~~;-->i<:------------------------------1 
*****G 3* .• ******** 
*PUT RELOCATION * 
* CONSTANTS IN * 
: ~~~DC~~Ro~D[R : 
* * ***************** 

I 
******H3*********** 

READ TXT 
AND RLD 

NOTE LISTS 
INTO MAIN 

STORAGE 
************* 

,"""10 I 
:·*M.1PK*~>t.W**: 
",WITH HIGH' ESDID* 
*IN PROGRAM (OR * 
* EACH SEG WITH * 
:r*r*!~*~Yi~~t*l: 

I '0,,'575 
*****K3********** ***.*K4********** 
* SAVE HIGHEST * * * ••• *KS* •••••••• 
* SEG NO. OF * * INITIALIZE. • TO SECOID • 
* SEGMENTS *-------->* POR .---->. PASS * 
* THAT CONTAIN • * SECOND PASS * * PROCESSOR • 
* TEXT • * * .***.* •• **.*.** 
.********.******* ******"'********** 

Level E -- Flowcharts 81 



Chart FA. 

FROM 
INTERMEDIATE 
PROCESSOR 

Second Pass Processor (IEWLESCD) 

. .... 
·FA .. .... . ~. . 
I 

SCDGETID V ·····A2·········· 

* .. 
: A3 : .... 

1 
v 

SCDREL.OC .... 
... 3 *. • •••• " ••••••••••• .. ····.1··*··· •• • .. : S~~:C~E~~SO .. ." DO *. *SCDRELOC FC • 

• "THESE RLOS ... NO *-*-*-*-*-*-*-*-* : **.:::~::~: .. ** :---->: c~~gc~~s~5 *. PERTAIN TO .*--->- -
... ENTAB.* A .. .. 

* ..... *. flo J : ••••••••••••••• : 

82 

................. 
(::::-,1 

SCDRDTXT v ·····62*········. - READ ALL TEXT * 
• OF CURRENT * 
• MULTIPLICITY * 
• -INDICATE IF * 

::~~~.:~:.~~:.!~: 

1 
v ·····C2·········· - COMPUTE * 

l.ENGTH * 
OF TEXT * 

IN BUFFER : 

·······T······· 
v 

SCDRORLD .*. 
02 *. 

.* ANY *. 
• * RL.OS IN *. NO *. THIS .* *. MOQULE .* 

*. .* ... • * 

l:!:: ._,j m 

v ··.·.E2·········. - READ RLD * 
- RECDROS UNT I L -
- ALL ARE READ * 
- OF BUFFER _ 

: •••• !~.:~;~ •••• : 

1 
v ...... F2·········. 

- SAVE END OF -
-LAST RECORD IN -
-BUFFER-INDICATE* 
• IF MORE • 

:.*!~.:5.:~:~* •• : 

l:~::·+ 
SCDEXEC v 

•• M •• G2·········. 
• SET UP • 
• CONTROL * 
• INFORMATION • 
• AND WRITE * 
- RECORD • *** •••••••••••••• 

I 
v .•. 

H2 * • 
• * IS * • 

• - THIS *. NO -.FIRST RECORD ._ 
*. OF A .* 

*. SEG .-·f" 
V ·····J2······*··· .. SAVE .. 

RELATIVE • 
DISK 

: ADDRESS • 

········F······ 
v .*. 

., YE'i • * .. _ .. _ , 
.. "4 .. 
* -

v 
v .- • . -... B3··........ 64 ... 

.. MOVE: RLOS .. ... ALL ... 

.. FROM ENTAB" .*RLD RECORDS •• NO 

- B.UFFER TO RLD *J>.. PROCESSED .-.~------
.. OUTPUT" *. .-
.. BUFFER" ....-·······T······· .'. ';., 

V SCDRDRLD V ..... C3........... • .••• C5 ........•. 
.. ADJUST RLD " " READ RLD .. 
" BYTE COUNT * * RECORDS UNT I L .. 
* AND PLACE RLD - " ALL ARE READ .' 
"EN1'RY IN CONT / * • OR BUFFER .. 

: •• :;~.:;~~:~ ••• : :* ••• !~.~~~;* ••• : ...... 
·FI, .. 
: 1)3"*1 < _________ -' 

1 •••.• v .*. SCOOUTPT v 
03 *. ••· •••• 0 •••••••••••• ·····05·········· • * HAS *. OVERWRI TE " SAVE END OF .. 

... DUMMY ". YES - DUMMY TEXT - LAST RECORO .. *. TEXT BEEN .----> IN PLACE 
,

* I N BUFFER • 
.f'. WRITTEN .* USING • INDICATE IF -

"MORE TO tiE REAO* 
.~ .................. . *. * •• *.. • ••• :~:~ ...... 

- NO 

I 
SCDOUTPT V ······E3··········· WRITE 

- TEXT AT NEXT - V. 
AVAILABLE --->-

DISK -

- * 
: A4 : .... 

.... !~~:~~~... :................. .. .. 

I 
: 82 : 

"~"" 
v I YES .-. .-. 

F4 *. F5 * • 
.* NEW *. .* ANY * • • * tlUFFER *. NO •• MORE TXT *. 

-.ALREADY CON- •• --->*. RECORDS FOR .* 
*. TAINS .* *. THIS 10 .* 

*.TEXT •• *.. • 
•• • * - •• -

* YES " NO 

1 1 
.~** .*~ ... 

.. • "FB • 

: E2 : **A! • 

K2 *. ..* .. 1(3 •••••••••• 

• _ ·~LO~N~OR *. *. YES : ~~=~~~E : 
•• THIS CSECT • *---> * RELOCATION ., 

*. .* .. CONSTANT .. 
*..* .. .. * •• * •• ..,............... .~ •• 

-I NO .. .. 

.~.. : .::.: 
- -: 03 : 



Chart FB. Second Pass Processor (IEWLESCD) <Continued) 

***** 
*FB * 
* A1* 
* * 
* 
I 
v .*. 

A1 * • 
• * ALL * • 

• * TEXT OF *. NO 
*. CURRENT .*-------, 

*. SEGMENT .* V 
*WRITTEN* ***** 

*. . * *FA * 
* YES * A2* 

I 
I 
v 

* * 

.*. .*. 
B1 *. B2 * • 

• * DOES *. .* ANY * • 
• * SEGMENT *. NO .* RLDS TO *. NO 

*. CONTAIN .*-------->*. BE WRITTEN .*---, 
*. ENTABS .* *. OUT .* 

.* 
*. .* 

* YES 
I 

I 
SCDENTAB V 

*****C1********** 
*CREATE TEXT FOR* 
* ENTAB AND RLD * 
* FOR SEGTA6 -- * 
*SET RLD INDICA-* 
* TOR IN APT. * 
***************** 

I 
v 

***** 
*FA * 
* G2* 
* * 
* 

*. .* 
... • * 

* YES 

I 
v 

C2 *. 
.* *. 

NO.* IS *. r- o

-*. *. T~~~M~~~T.*.~ 
I *. .* 

I *. .* 
* YES 

I I 
I I 
I I 
I *****D2*~******** 

* SET END OF * 

I 
MODULE * 

* INDICATOR * 
* IN CONTROL * 
* RECORD • 

I ***************** 

L __ > I 
I 
I 

*****E2*~******** I 
* SET END OF • 
* SEGMENT • 
* INDICATOR • 
* IN CONTROL • I 
* RECORD * I 

sco:~*:::"'I"""" 1III 

******F2*********** 
WRITE 

RLD * 
CONTROL 
RECORD * 

******j****** I 
I < __________ J 
I 
v .*. 

G2 *. *****G3********** 
.* *. * * 

.* ANY *. YES * GO TO * 
*. MORE • *--------> * NEXT *-------, 

*.SEGMENTS .* * SEGMENT * V 
*..* * * ***** 

* •• * ***************** *FA * i NO '.A~' 

V 
****H2********* 

* TO * 
FINAL * 

* PROCESSOR * 
*************** 

Flowcharts - Level E 83 



• Chayt Fe. Relocation Routine 

-fl •• **H? .......... . 
-If- ~r:T 'IN-COR!:' .. 
.. IND. OFF, • 
*UJMPUTE SIze QF* 
-JlHI_D INPUT Reo. -II­, . 
It. *.***.*.****It** 

\ 
JI- It ~ ... -I(- I 

" ':2 ,,-> I . "\ 

~ 
• * "**C2***** •• It.* 
* Sf:.T liP t--(JR * 
-Jt 'jeAN ANLJ TeST -II­

lit OF r:ACH KLD .. 
*1 rFM IN CjRRF~T. 
jf rH:cor~D .. 
** ..... * •• *****If-** 

I 
\ 

~ .*. 
[) 1 .. .. ()~.~ .... 

.It [.OES *. .* ODES -tI. 

NIJ .. " THE NEXT .... NO .. -t- CURRENT If- .. 

•• rEXl RECORD .*<--------*. TEXT Rl:.CDRD .-
H. CC';\lTAIN .* ". CONTAIN •• 

eII-. /J DCON." *. AOC ON." 
-II •• -11 * •• * 

YE:S .. YES 
I 
\ 
\ 

! .. * JI -*1:.1 •· •• ·It ••••• _ 

If- SFT .. 
• 1 "I-CORE I -II-

INC ICATOR 
IJN 

I 
I **** 

>! _.>: K4 : 

.. 11-11 .:IIF 1.********* 
*1: WLLLOG GtJ. 
If-_ ilO_il"_iI _*_*_ *_*_* 
*INVAL.ID 2-I3YTE 
-II r~OC:Of\1 HAS NOT 
MH' __ LN i-LLOC.Afl.D • 
11· .. 11*************_ 

I 
\ 
I' • 
t --;* K~ .. 

1 

! ··-·**E2**······** .. COMPdTE II-

* LENGTH 
• OF ADDRess 
I CDNSTANT 

\ 

I 
~ .'. 

i--2 

• * IS 
ADCON )I. 

1 I'll VAL ID .It 

It.( ;~-BYTl) •• 

*. • * 
)I ... * 

, "1O 

I 

I 
~ .*. 

•• 11**(,1 •• ***.*It** (~/ 
1i-'.CDCUl LD * IS 
11-11-*--11-*-*_*_*_* YE<, .-. AiJDRE.S~ 11-. 

• -,PL 11 ADDRESS *<--------*. .* 
cD"'!:, rANT * 

HllUY INE 4 
11-*-11-.**-11 ********.... JI ... * 

t" 

\ 
\ 
\ 

>~ . '. 
• /o! :}UL.'j •• 

NII .. 1i ADCUN )I. 

_. I~LUUIi~~ • It 

li.lJU~ INKING •• 
if.. .. if-

I 
\ 

! 
** of**.)?*,,*****"*·" 
* US T A I N DEL I NK .. 
.. VALUI:::. AND 

COf~KECT R * 
Jf POI NTER FOR .. 
.. REL.OCATION .. 
_* -* .. *** .... ***11** 

\ 

-> I 
I 

~ 

\ 
, / I 

I"" ;',;~;*A~~~;*'***'; 
I • AL)U1N • 
I * f;~UM lEXT TO .. I : WUI~K I~L(, I ~~ TER : 

1 ****** .... * .. ** ... *** 
\ 
\ 

I 
I I .... fl ~ 1-14 I~:> :****~~;~=~*****: 

1 *::.:;:::) :h~f, .:: ,~<~-- --->*::~';~~gV~~G:::*~~=----->: C~~~~~~lb~T6'l : 

1

1 11-,,* •• *",11- It .. *. ... :*** .... :~~~~*****: 
.. t-Jn I 

I I 1 ... **** .. 

I I L>* ,., • 
\ v 
I .'. 

I ./i~ HI:~OIt. 
I .It I NrHY f-O,-l It. N£] 

I *·:~~;]~~A~~~~F;: •• 1---

\ 
\ 
I 
\ 
I 
I 

\ 
\ 

I 
\ 

~ 
** .. II-*U.1***· ••• * •• 
* MAK E I T A It 

FOUR l:;IYTE 
NEGATIVE 
NlJ"'d~ I.,> 

\ 
\ 

* • \' 
• L ~ 11- •• > I · '\ 

~ 
** .... ·F~.J .. *4-*··· .. ** 
.. pcr;.'FflRM • 
*RELDeAl ION -ADO • 
.. OR 5UdTRACT * 
• iH_LOCATION .. 
• f--AC 1 (11-< 

I ••• 11-* ..... ** .. * ..... 
\ \ 

I \ 
* '\ 
• ,., .'-> \ 

I • • \<-.----

\ ~ I ...... t-.j.""'* ••• *." 
I * I~E~g~~TL:J It 

I .. A[JCUN I::IACK 
I 4- INTC TEXT 
I 4- I·H:C.O~O • I .. **-JI***·7**It***** 

\ \ 
I *1-( -JI I 
I .. (~i 14- -> I 
\ . . \ 
I * •• , \ 
I ,COMVHL U V 
I .****(L:i* *_ II .. _*iI ** 
I .. ADD RClATIVE II 

I .. i~LLUCA 1 TUN 
I .. FACTOF! TO 
I * AL)lJf~L S~) ,- I LLU II 

I • OF HLD I TEM It 

I .-11.",,,**,, .. *******4 
\ \ 
\ \ 
\ I 
I I 

i ~ 
\ .' . 
I Hi 

\ .' 
I It::. n~;~~t!l~~N.::I~t.-, 

*. . .. 

•• IS I !-It 

.* . c. 
.' .* I' ... 

***.* C5'" *4-** ***** 
* ADO OR * 

SU8TRACT 
•• RLD TYPf • *---_._---> * DfLi NK 

·.'[)["LINK· .* . . 

114 

.' 

\ 
\ 
\ 

~ 
. *. 

VAL'JE 

\ 

! 
.. t~.3 .. 

• II- *. YES * _ 
*. RLO TYPE .-----> ... E3 * 

lI-'AUSULtlTE'.* *. .. .-
••• * 

* NO 

I 
\ 

! 
•• **ltt 4 .... **** •• * 
-TYPE IS .JF./ANCH .. 
*O~ PR TYP~:: 1 - .. 
It INSERT ABS REl. .. -
* FACTOR INTO * 
.VAt Uf OF ADCON • 
.._ .. ****_iI It**.*.* 

\ 

I 
,, __ "_,, ______ , _____ J 

·"**-H4*·****··** 
• :)AVL I~LLJ .. 
.. Ill::.M IN * 

---,. I-H:::~O PRl.FIX .. 
* 'OTH·CNTRY' -

! .'. 
F5 

• It IS * • 
.* WRITE. *. 

*. 'XOAP' .*·---1 
*.INDICATLJ~.- I 

*. ON.* I 
.... * I 

NO \ 
\ 
\ 
\ 
\ 
\ 

~)COOUTPT V 
.* 4-·1 *.G5* ***** ****. 

WRITE OUT 
A 

OJMMY 
TE:XT 

I~ECOKO 

***-********* 
I 
\ 
\ 
\ 

! 
*****HS· ******** * 
* SET .. 
* WRIT!::. 'XOAP' 
* INDICATOR 

ON 

\ 
\ 
I 
\ 

i 
\ 
I 
\ 
\ 
I 
\ 

I 
I 
I 
I 
\ 
\ 
I 
\ 
\ 

****** .. ********** I 
\ I 
\ \ \ < __________ J 

I 
\ 

'JCOUIJTPl V 
** ... **J5*** *****.** 

WI~ITE OUT 
.. HLU RLt.URD 

... j~LD OUTPUT • * ___ >-JI F~:> • INITIAL IZC 
aUF FER 

CUNTt.Nl ~ 
*** **** .. ** *** 

... I3UFFFR •• 
•• FULL. .... 

* .... 

\ 
*Fe tI- I 
14- K S II~> I , . \ 

I 
\ * • 
L_>. K3 * 

.' K;'> .'. I ~ 

.. K4 *-> I 
* .. 0 

• *. 
*iI***K 3*.******** *."**K~"'**".***** 
* MfJVL: RLD ITLM • LNO *. *RLLUC 120 * 

v 

ItFn * 
/I A21t 

VI:. ~i • f TIll 5 AN •• NO I 
~.. OVCHLA Y • * _____ .. _J 

f. MODULE 

*. 

• TO OUTPur If ... UF- JI_*_*_4_*_*_*_*_* 
*bUI··t-Lf-l, ADJUST .. ----.----~--~~;>.. RLIJ .*-----·~·--> .. OIRECTS RETURN if-

*!JYTF: COUNT AND" *. HCCOHD •• A -JI TO PROCESS if-

*t-RI--t-. 'jPAC.1 PII~.* It..-I- I * Nt..XT RLO ITEM .. 

** ** * * **** *. * .*.. *. i . ~L ~ *! ** *.* •• ** * j' ******* 
~ ... K~") * ~ 

IIt-T .. 



• chart FD. Relocation Routine (Continued) 

SCDOVLY 

***** 
*FD * 
* A2* 

* 

A2 ... 
• * I S IT ... 

• * A V-TYPE *. NO 
*. AJORESS .*------, 

*.CONSTANT .* V 

*..* ***** * •• * *Fe * 
"* YES * A3* 

r------~~~ 

I 
. *~6ES :N*. 

YES .*ENTRY LIST *. 
.---*. ENTRY EXIST .* 

I 
*.~?RI61·iI:*.* 

* •.• * 
* NO 

I I 

**iI **Bl -11'********* B2 

, ! 
I d4 .*. *. *****B5********** 

*IEWLELOG GU* .... IS *. I • if· *. *IEWLELOG GtJ* 
*-il'-*-*-*-*_*_*_* NO ... ADCON' 5 *. 
* INVALID *<-------*. LENGTH FOUR .* 

V-TYPE" *. tlYTES .* I 
.* WILL YES *_*_*_*_*_*_il_il-* 

*. ENTRY LIST .*-------->* TAULE 
*.OVERFLOW .* OVERFLOW 

:*****:~~~~*****: *. * •• *.* , *..* 

I i YES 

I *. , * 

I j" :;~*: ! 
* K3* .*. 

C2 * • 
• * IS * • 

• * THE *. YES I' :****C4*~"******: 
* CREATE NEW 

*ADCON' 5 SYMBOL .*-------, I * ENTRY IN 
*UNRESCLVED.* V 

"'. • -II ***** 
I ENTRY LIST 

* •• :If. *FC * 
* NO * A3* 

I **** ... *** -IH.****· .. ·** 

1 
, * * 

I , 
GETSEG V 

**if **02********** 

* * 
.OBTAIN SEGMENT * 
.. NUMBER OF * 
*CALLED SEGMENT * 
* * ******iI ********** , 

I 
V 

*****E2 ********** 
*UBTAIN SEGMENT * 
* NUMBER OF * 

CALL ING 
SEGMENT 

******111·********** 

I , 
I , 
v 

** ***F 2 iI·* ******** 

: :;~~~~~~-*-*-*-: 
*F I NO COMMON SEG* 
* WITH HIGHEST * 
* SEG NUMBER * 
***************** 

I 
I 
v .*. 

G2 * • 
• * *. 

YES.* IS *. 
r-----*.IT AN UPWARD .* 
V *. CALL .* 

***** *..* 
*FC * * •• * 
* A3* * NO 

I 
I' 

I 

II 
H2 *. , , 

.*.* I::SA *.*. YES II 
*. UOWNWARD .*--------------> 

*. CALL • * I' *. .* I 
* •• * I * NO 

.!. I I 
.*J2 IS *.*. I I 

*::ATE~!LACALL *:*~ _________ _.J 
*. ACROSS .* I 

*R;~I~~S* I 
* NO 

I 

*****04 **.11-******* 
* CHANGE V-TYPE * 
* ADeON' S VALUE .. 
.. SO THA r IT * 
*POINTS TO CNTAB* 
* r:NTr~Y * 
**** ... **** 11-******111 

I 
*****E4** 11-******* 
* * CREA fE 

ENTAU 
RLD 

* I TEM it 

********* .. ******* 

I , 
V 

*****F4** 11-******* 
* * *END-OF-ROUT I NE * 
.. HOUSEKCtP I NG * 
* * 
********* It******* 

I 
V 

*Fe * 
* G3* 

* 

*****K4** ******** K2 ·~·*. I .* IS *. * CHANGE V-TYPE * 
NO.* IT AN *. YES V * ADCON'S VALUE * 

r-------*. ALLOWABLE • *-----------------> * SO THAT IT *-----, 
*.EXCLUSIVE.* *POINTS TO EXIST* V 

*.CALL .* *-ING ENTAB ENTY* 
*. *.* **********iI·****** :F~3: 

1 
... **** 
"GA * 
* G2* 

Flowcharts - Level E 85 



• chart FE. Relocation Routine (Continued) 

***** -FE ... 

.. *A~* 

* 
I 
V 

F.l:ELOC190 .*. 
*****Al**.**".*** A2 *. * ELIMli>4ATE ... .*IN CORE*. 
* RLD NOTELIST * NO .* INDICATOR •• 
* ENTRY FOR *<------*. ON FOR THIS .* 
* TH 15 RE.CORD .. .... RECORD .. " 
* * *..* 
******** •• *** ... *** * •• * 

86 

l.__________ ... ___ > i YES 

I 
RELOC200 V 

*****82*********-
.. INCREMENT .. 
It TO NEXT RLD .. 
*RECORD POS I T ION* 
.. IN BUFFER .. . 
It •• " ************* 

C2 

I 
! .*. 

.* IS 
.-H' AN RLD 

*. RECORD .*----, 
*. PRESENT .* V 

*. •• 
If •• * *Fe ... i NO .. * A! * 

I 
SCDPSHUP V 

*****02 ********** 
.MAKE BUFF SPACE. 
*AVAIL BY MOVING­
.. PARTIALLY ... 
• PROCESSED ReDS .. 

:~~~~*~~~;;*~;~;: 

I 
v .*. 

1::2 * • 
• * ANY * • • * MOR E RL 0 ... NO 

-ReDS TO BE READ*---, 
*.FOR CURR •• * V 

*. TEXT ... ***** * •• * -FA .. i YES * *0;* 

RELOC220 • *. 
F2 - • 

• *15 THIS •• 
.. *RLD RECORD .... NO 

•• PROCESSED FOR.*---, 
.... CURRENT .* 

*.TEXT .* 
* •• * I '" 

V 
*****G2********** 
.... '-'ARK IT .... 
* PROCESSED. SO it 
*IT WILL NOT BE ... 
: READ IN AGAIN: 

*****--** ... ** .. ***** I I I I < ___ --.J 
I 
v 

RELOC230 .*. 
H2 * • 

• if ... 

• iI ANY *. YES 
*. ROOM IN RLD .*--, 

".*I~UFFER.*.* I 
* •• * 

* NO 

I 
V 

*****.12*********" * PEI~MIT THE .. 
* LAST RECORD .. 
... IN HLD BUFFER ... 
* OVERLAID .... 

***** .•• ********** 

l'-~-~ 
"*****t:::2********"'* 
* SET RETURN * 
* FROf1 READ RLD " 
* TO nETURN TO .... 
* 'RELOCATE ... 

:****~:~~! !~;****: 
I 
v 

***** 
*FA * 
.. E2* 



• Chart GA. Final Processor (IEWLCFNL) 

FROM I NTERMEO I ATE 
OUTPUT OR SECOND 
PASS PROCESSOR FROM BI SAM 

****A2********* ****A3*****'.*** :****A4*********: ... **A5******* * 
* * * SYNCHRONOUS * * SYNCHRONOUS * * CLOSE 

IEWLCFNL 4- EXIT *---->* I/O ERROR *-------->* FILE IN 

*********iI ***** * ****~~~!!~; ... *** * : EXIT ENTRY: * ERROR 

I 
v 

FNL 1 00 .*. 
82 *. ******83***** '.***** *****84********** 

* * .* *. 
.* QVLY *. YES * WRITE TTR * * PLACE TTR OF * 

*. OPTION .*-----> LIST FOR 
*.SPECIFIED.* * SEGMENTS 

*. .* 
* •• * * NO 

I 

1<-----I 
FNL300 V 

*****C2********** *****C3********** 
* PLACE MEMBER * * SET UP C-B-YTE * 
* NAME IN PDS * * OF DIRECTORY * 
*DIRECTORY FROM *----->* FOR BLOCK/ * 
* NAME CARD * *SCATTER FORMAT * 
* OR DEt3 * * * 
***************** ****************iI 

*GA * 1 :*:: * *-1 < _____________ -.1 

----> * OVERLAY TTR * 
* LIST IN PDS * 

:***~!~;~!~~!***: 
I 
J 

FNLSTA v FNL700 .*. FNL600 
**02******* D3 *. *****D4"'***.:r tc·-t .. *** 

* STOW * .* *. *IEWLELOG G8* 
* DIRECTORY * .* ANY *. YES *_*_*_*-*_il'_*_*_* 

* WITH AOD OR *---->*. ERRORS • *---> * LOG ERROR * 
* REPLACE AS * *. .* * TYPE AND * 

* *~!~;;!;~** * *. * •• *.* :****~~;~~~;****: 

* E2 *--, 
* * 1< 

* NO j I 
v 

**** 
* * 

**** V 
FNL900 .*. .*. 

**********iI 

I 
V 

*****85********** 

:~;~;~;~~-*-*-~~: 
* SEVERITY 4 * 
* NO RETURN if 
* AFTER PRINT * 

********1******** 

**** 
* * * G2 * 
* * 

E2 *. *****E3********** E4 *. *****E5********** 
.* *. * SAVE MAIN * .* RENT *. * SAVE MAIN * 

• * ANY AL 1 AS *. YES * MEMBER NAME * • * OR RBUl *. YES * MEMBER NAME * 
*. TO BE .*---->*AND ENTRY POINT*---->*. ATTRIBUTES .*--->* AND E.P. IN 4-

*. STOWED .* * PUT IN ALIAS * *. ON.* * DIRECTORY AND * 
*..* * NAME * *..* * ADJUST C-BYTE * 

* •• * ***************** * •• * ***************** 
**** * NO * NO I 

: F2 :->1 1 <----------j 
**** v 

FNLCN .*. FNL900A V 
F2 *. ****itF3****iI***** *****F4***n****** 

.* HAVE *. * * * PICK UP * 
.*ATTRIBUTES *. YES *PRINT IMAGE TO * * ALIAS E"P. .. 

*.CHANGE SINCE .*--->* NOTIFY OF * *(E!THER DEFII'\IED* 
*.START OF .* .. CHANGED * OR USE MAIN * 

*.EDIT .* * ATTRIBUTES * * E.P.) * 
*. ... ***************** ***************** 

**** i NO I I 
i~~~~L~~O~R: G2 * *-> < 

*GA * 1 I 
I EWLE I N TO **** 
TERM I NATE V FNLCN2 FNL301 V 

*****G2********** **G4***·lt-*** 
*IEWLCBTP * STOW ALIAS IN 
*-*-*-*-*-*-*-*-* * PARTIONEO * 
* GO TO PRINT * * DATA SET * 
* DIAGNOSTIC * * DIRECTORY * 
:***~!~~i!~~:***: * ~. * ******* . .,*** ¥ 

1 : ~3 : I 

v v v 
.*. IEWLCEOI .*. .*. 

*****Hl ********** H2 *. H3 *., H4 •• *****H5********** 

:~~~~~~~~-*-*-::: YES • * • * MAP *. *. NO • *. * END *. *. YES • * • * ANY *. *. YES :~;~;:;~;-*-*-;~: 
* PRINT MAP *<------*. OR XREF .*--->*. OF .*---, *. ERRORS .*----->* LOG ERROR * 

OR * *.SPECIFIED.* *. INPUT.* I *. * * TYPE AND * 
:*****~~;.~******: * •• * * ... * * •• *. * MESSAGE * 

1 

*.*.* *·*·~o *·*·~O *********1******** 

v r---------~ I *~** 
* **** * 1---- * * 
* H3 * V FNL 150 V * Fe * 
* * * **J2******* * * **J3****U.** * :****J4*********: * * 

* * 1~i~~~~6~~~E * * * * C~~EE : ~~I!~ ~~~~T : __ >: E2 : 

* * *~~!~~!!l** * * ***::~::n** * * :*::::*:::::::**: * * 

I j 
V *****K3****'''***** 

****K2********* * SET UP * ****K5***** **** 
* RETURN * *CONDITION COOE * * RETURN +. 
* TO * * INDICATING IF *----- ------>* TO * 
* **!~!!!!;~;;~** * :*:~~~;~!!i~;i:**: * ****;:;~;~***** .. 

Flowcharts - Level E 87 



Chart GB. 

iI-*****C 1 **** ******* 
WRITE 

Error Logging Routine (ILWLELOG) 

·"**A2****·"·** 
I I=' IIIL 1- L U(~ 

I 
I 

i 
I 
I 

~ 
*·JI**d2********** 
.. SEYERATI::. * 
.. LRf~OR CUDF 
.. AND * 
.. ...,1 SSAGF NUM3F ~ if-

11-*11-********** •••• 

C2 

I 
I 
I 
I 

~ 
. *. 

.. " .... 
OUT ... YES .,f CONT,~uL *. 

CARD 
IMAGE 

•• ** .. ******** 
I 

I 
V 

****Dl********* 

RETURN 

88 

<---------*.. 'lTATLi"'ENT •• 
TO 81: 

*L I :,TI :J .. * 
.... ..-II-

;)2 -11- .. 

.* CES[) •• 
• if sv"18LL TO 4-. NO 

*. DE WRITTEN .*---, 
il. ndT .. * I 

.* I 
...... '" I 

~ vrs I 
I I 

i i 
~ i 

** .. ·II*~-~********** I 

.. MUVe 5 YMBOL * 

.. fO MESSAGE • 

.. duFFE.R 

I 
I 
I 

I 
11-*********"'****** I 

I I 
I I 
I I 
I I 

~ I .*. I 
F? I 

." I 
.. 'II IS -II .• NO V 

-II-THLRE" A ;FCQND .. *----, 
II. SYMBOL .* 

*. 
11.. .. if-

4 YFS 
I 

1 
·****b2********** 
II- MOVE * 
.;f SE-COND * 

'iVMOOL TO .. 
"*t.llC"';AC-E" OUFFC,1 * 
* " 
*4*************** 

H,,~ 

.' 

i 
1< 
I 

~ .11-. 

.. " LONTf~Ol .... NO 

*. ST~~E~~NT .*---1 

*.:~~~~:~ I 
I I 
i I 
t i 

4-****J2*****"***** I 
ij" d5E ADDRESS * I 

IN GR 2 TO * I 
II M:)VE CONTROL" I 
-ilSTATEMENT rNTO" I 
:~:~~:~;*~~~~~~*: I 

I I I < __________ 1 
I 
I 

t 
IHf ** II *K2 *********** 

WRI TE 
nUT 

MeSSAGE 
BUFFFR 

**.'11 

* 84 .. 

1 
*****A4** ******* * 
* * tJPDATF 

CONor T 1 ON 
CODE 

******* ** * ***** ** 
I 

i 
! 

.4" • 

C4 
.... * • 

.* SEvEI~IrY *. YE.S 
... CDDE_ • *-----"1 

'''' **~* .. 
•• ... ·GA .. 

.. NO .. O?* 

i 
I 
I 
I 

~ 
****04*·******· 

.. * TO f I NAt 
If Pf--lOC£SSUR 



Chart GC. 

iI*** 
" * * tJ 1 * 
" " 

.' . 

Module Map Processor (IEWLCMAP) 

-)I -JHI *A2**-Jf--lI ***** · . [[ WLC"tAP 

*************** 
I 
I 
1 
I 
1 
1 
1 

MAPOOO V 

.* 

...*** 

" * * A4 * .. " 

.' . 
A4 

UNRl :; 

YES.* IS *. .* 
.. 

r------------*. RL0 TYPE Pt~ ."* r--->it., 
j ....* I *. 

A" 

I ". • * 1 '. 
I *. ... I it. 

. . 
I " NO I " YL_C, 

1 1 1 
1 1 1 

i I I 
v v 1 

• *. • *. I 

1 
1 
1 
I 
1 

v 

*. :\10 

.11 '. 
.N .*. 

YL~~.* IS TI--fIS *. 
* * ** ... ~? * .. **** ** ** * INITIALIZE. .. 

GLTMAIi\l., * 
1::33 *. ..:.4 it. I 

.* *. .il:IS CC_SD*. I 
NU.IE- IS *. .* TYPE Cf~ *. YC~ I 

*****L!:>*****iI***,* 
* INDICATC K 

-It 'N~ VE·~ CALL' 
" PRINT HEADER 
.. UPcN SYSLMOD 

iI. T~L LAST .* 
*. S[GMLN-' • it 

r-----*.IE-.~~Op~~PE .*.* *.~~N~ESOLVCO!*.*-----j * ON f\'.A~) PRJ i\jT 
:II- Llf\lL 

"*. .If 1 ".. * 
iI- ..... 

NU I *·*·~CS 
1 1 
1 1 

.... * 
" NO 
I 
I 

1 
1 
I 1 1 1 1 

I 1 1 
I < ______________________ J 

~',APOO 1 
*****"*CZ*********** 

HCAD 0_50 AND 

I 1 
1 v 
I *iI: ***C3********** 

I 
MAPOl19 V 

******C4""********* 
WRITe 

****"*L~********** 
* INUICATE * 

v 
*****Cl********** 
"R~INITIALIZE • 
.. h!.LGISTERS. • FIRST CONTRO~ " 

RLCCR::l 
t * CUM3~~iIVE "* OUT LINE * * 'lJNt~LSOLVED' 

PKRtcML'lT 
SLGMENT ,m. 1 LLNGTH ON <--------* ON MAP PR I t'>JT 

FROM 1 VALUE SYSPRINT 
SYSMOD 

************* 
1 
1 
i 

1 1 L _______________________ > 1 

******01*********** 
""<ITE OUT PIPS 

*CUMUL. LENGTH, .. 
-> [.P. ADOR •• 

TlJT AL 
Ll~NG TH 

*~*********** 
1 
I 

I 
I 

I 
V 

****f-l ****11 **** . " 
" RL JUHN 

1LJ FINAL 
PROCES50i< 

I 
v 

*****02********** 
'MAP003 " 
*-*-*-*-*-*-*-*-* 
" GAT~ER eLSD * 
• cNh<IES FOR 
* PRESENT SEG. .. 
***************** 

1 
I 
I 
1 
1 
1 

MAPOUl~ v 
*****E2********** 
• 5URT AS5EM~LLO • 
" eESD ENTRIES •• 
.. USC ADD~tSS * 

AS KLY 
" " ***************** 

I 
1 
1 
1 
1 
1 

,"tAPOOS" V 
*****F~********** 

" CI<LATE MAP 
FOR THIS 

S[GMENT 

." . 
G2 '. 

.* *. 
~ * NO.* XREr *. 
* t31 *<----*. SPECIFICD ... 
it * *. .. 

* •• * * YL5 
1 

* "I 
" H2 *->1 
" "I 

I 
XReF~ v 

*****~2********** 
• INITIALIZ", • 

FOR LJUP 
OF eeSD 
Ai'>JD RLD 

1 
1 
I 
I 
1 
1 
1 

I 
1 
1 
1 
I 
1 
1 

I 
I 
I 

I 
1 
I 

1 

I 
1 
1 

I 
1 1 
1 1 I < ______________________ J 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
I 
1 
1 
1 
1 
I 

I 
I 
1 
I 

I 
I 

I 
I 
I 
I 

I 
I 
I 
I 
I 
1 
1 
I 
1 
1 
I 
I 
I 
1 

I 
1 
I 
I 
1 
1 
I 
1 

I 
I 
1 
1 

RLDOLJT 

" " 
.. 1::.4- "* 
" " 

.*. 
E.:4 *. 

**** .* ... 
* * LAST.* THIS *. RLD 
"* dl *<---*. RECOR;)'S .*----, 

*. TYPE.* I 
*. .• 1 

* •• * * ecw 
I 
1 
1 
I 
V 

******F4*********** 

PASS oveR 
TLxr 

I~LeORD 

I 
I 
1 
1 
1 
1 

I 
1 
1 
1 

I 
1 

************* I 
I 1 I < _________ J 
1 
I 
I 
V 

******G4*********** 

READ 
RLD 

RLCIJRD 

I 
1 
I 
v 

**** 
" " * H2 * 
* " **.It-* 

I I 1 
r-----------------------> I < __________ '!.. ___________ ._J 
I v 
I MAPOl2 ••• 

t .*J~OES *. **** 
I .~ T;"I!S :~Lu *. NO * -,I(. 

I *. LNTRY'S .*---->* A4- * 
i *. R~P.* "* * 
i *..* **** 
I * •• * 
I * YES 
1 1 
I 1 
1 I 
1 1 
I v 
1 .". 

-;{'lI**itKI ********"** K2 
• I NCf~EME.NT * ."* 
M ru "* NO .* 

.\1 L X T * < ---------* • 
ITt M *. 

ENO 
OF 

LOOP 

*****11-*********** * •• * 

*. YES * it 
.*---->* E:.4 "* 

• * * * 

* L! Nt. 

Level E -- Flo~cnarts 89 



Form Y28-6610-2 
Page revised 7/23/69 by TNL Y28-6400 

• Chart GD. 

90 

SYNAD Routine 

n:WLCllOl .... 
1\3 += .. 

****A2********* .*" ****A4********* 
*ENTER Fl{OM 1:15AM* • * IS THIS *. YE.; * RETURN TO * 

*-------->*.FROM SYSPRINT.*-------->* CALLER * 

****** •• ",******.. ... .,,* ... *************** 

****C2********* 
:ENTER FROM BPAM! 

.. .. 
** ••• * •••• * •••• 

* * NO 

1 
+****R ~********** 
.. * 
.. ~;YNADAF MACRO * 
:+ F();~ BSA~1 *' 

***************** 

I **** 
.. * 

._>* fo~~ .... 

* • 
U"iLCR02 

*****(~i*.******** 

* * * c;YN'l.Dn.F Ml,CRO .. 
--- "': F'~t{ HPA~ ... 

* *************.*** 

Il J *****D4********** 
." *. * ~~T RIT * 

.+l·;N'T'RY FRDM *. YIo~; INDICATING 
.. MAP *-- .. ---->* ERROR WHILS * 

.. "'" :lJI·;A.r)I;~C; SYfa,MOO! 

.. .. 
>* F1 .. .. .. 

**** IEWLCPO] 
,. ...... :+ '* E --{ ......... ** -+- **** 

****E;2********* .. ... 
.. ENTER FROM XDAP* * ~>YNI\DAF MhCRO .. 
.. • ... -- - --.- -. >. FOR F.XCP .. 
* ... 

t************** 

... t<***F2********** 
*rNSERT'IEW0630'· 
*IN MESSAGE, SRT* 
*!:lIT IN APT FOR * * BIT Ml,P .. 
.. PROCESSOR .. 
****.************ 

.. * *' •• ** * .... * +: ........ 

.. ***. - 1<-----------,. J-"J *-.> .. . 
i<*.* V 

lE;NLF~;FR • *. 
1"1 *$ *****F4********** 

•• *. *INSERT'IJ:,w0294'* 
* F:RR.OR * • * I N ~lE:SSAGE, Sf T* 

HEMlING • *-------->*BIT TN APT FO,< * 
*. SVSLMOD •• • 1311' '\AP * 

* . .." *' PRQCES~~~R *' 
.. *' *****'*'*********** 

l_ _ _ ________________ __ _ __ _; < _________________________ 1 

*****c 3********** .. .. 
-t:MOl}}:. ~iESSl\~-;E TO* 
: I'!UNT IlUFFEH * 
,. 
.. +* •• ************ 

j 
+: * * ** }L1 ** *' ** *- * >1< .. * 
• [EWLEPNT • 
.. -*-* - * - +-*-*- *- * 
• * *PRI04'I' !'JIESSl\GF .. ,. .. 
**+************** 

j 
*****.J ~* .. ******** · .. · ,. 
:~;YNI\DRL:i MACRO : · .. t************-**** 



Form Y28-6610-2 
Page revised 7/23/69 by TNL Y28-6400 

APPENDIX A: 

This section contains reference informa­
tion, including linkage editor conventions, 
tables, and record formats, for the 15K and 
18K level E linkage editor. 

Note: The I/O conventions and record for­
mats for linkage editor E and linkage 
editor F are the same. 

INPUT CONVENTIONS 

Input modules (object or load) to be 
processed in a single execution of linkage 
editor must conform with a number of input 
conventions. Violations of the following 
rules are treated as errors by linkage 
editor: 

• All text records of a control section 
must follow the ESD record containing 
the SD or PC entry that describes the 
control section. 

• The end of every input module must be 
marked by an end record (END in object 
modules, LAST in load modules). 

• Each input module may contain only one 
no-length control section (a control 
section whose length field in the SD­
or PC-type ESD entry that describes it 
contains zeros). The length must be 
specified on the END record of any 
module that contains a no-length con­
trol section. 

• After processing the first text record 
of a no-length control section, linkage 
editor will not accept a text record of 
a different control section within the 
same input module. 

• Any RLD item must be read after the ESD 
item to which it refers; if it refers 
to a label within a different control 
section, it must be read after t.he ESD 
item for that control section. 

• The language translators must gather 
RLD items in groups of identical posi­
tion pointers. No two RLD items having 
the same P pointer can be separated by 
an RLD item having a different P 
pointer. 

REFERENCE DATA FOR LEVEL E LINKA3E EDITOR 

• Each record of text1 and each LD- or 
LR-type ESD record must refer to an SD 
or PC entry in the ESD. 

• The position pointer of every RLD reco­
rd must point to an SD- or pc-type 
entry in the ESD. 

• No LD or LR may have the same n~me as 
an SD or CM. 

• All SYM records must be placed at the 
beginning of an input module. The ESD 
for an input module containing test 
translator statements must follow the 
SYM records and precede the TXT 
records. 

• Linkage editor accepts TXT records that 
are out of order within a control 
section, even though linkage editor 
processing may be affected. TXT reco­
rds are accepted even though they may 
overwrite previous text in the same 
control section. Linkage editor does 
not eliminate any RLD records that 
correspond to overwritten text. 

• During a single execution of linkage 
editor, if two or more control sections 
having the same name are read in, only 
the first control section is accepted; 
the subsequent control sections are 
deleted. 

• Linkage editor interprets common (eM) 
ESD items (blank or with the sane name) 
as references to a single control sec­
tion, whose length is the naximum 
length specified in the CM items of 
that name (or blank). No text n~y be 
contained in a common control section. 

• within an input module, linkage editor 
does not accept an SD- or PC-type ESD 
item after the first RLD item is read. 

1'0 avoid 
input/output 
should also 

unnecessary 
operations, 

conform with 

scanning and 
input modules 
the following 

1A common (CM) control section cannot con­
tain text or external references. 

Appendix A: Reference Data For Level E Linkage Edit~r 90.1 



conventions. Although violations of these 
rules are not treated as errors, compliance 
with them will improve the efficiency of 
linkage editor processing. 

• Within an input module, no LD or SD 
should have the same name as an ER. 

• Within an input module, no two ERs 
should have the same name. 

• Within an input module, TXT records 

should be in the order of the addresses 
assigned by the language translator. 
(If TXT records are not in address 
sequence, each reorigin operation may 
require additional linkage editor proc­
essing time.) 

RECORD FORMATS 

Following are the record formats pro­
duced during linkage editor processing. 

Appendix A: Reference Data For Level E Linkage Editor 91 



RECORD FORMATS - LEVEL E 

The following are the card image load module record formats for the 
editor. 

level 

-.--I---

1 
.. --.... -.-.... -... -... --... -----.. -

5-1D 111,1213-72 
.---.-... --~---.-.-, .. -.. ~.~----.-- ____________________ ~I~_.7-3--8-0--_J 

[ Not ""d 

I~STR!,-N data 

t'-lumbe~ of bytes of TESTRAN data 

L..-.- Blank 

c ...... ~YM 

12-9-2 (0000 DOl 0) 

,-1- ~-~-1--5-,~~~~ 13,~ 15,t--'~~--------
: - ESD Data -- see below 

I -- Blank-~~~D items are LD 

I -- Blank 

L -- ~umbe, of bytes of ESD data 

--- I:.SD 

12-9-2 (0000 0010) 
LS D Data Item 

I~=~-~.~~·I-=-~.~= 
-'-r--'-r--.-~_,__'_._---' 

92 

:?:~:.Q - if length is on END card. 
Length of control section (if type is: SD,PC,CM) 
id·;~t·i·fie~ of SD entry containing name 
Blank if type is ER 

- G;-;';gth of pseudo-register (PR) 

-... - Blank - AI iDnment Factor for type PR 

24 bit c:?_cJ:,"2~ (SD, PC, LD, LR) 

.- Typ~: - Hex (OO~SD,0ILD,0~lcER,03=LR,04PC,05CM,06cPR) 

~.~ -- when type is: SD, LD, LR, ER, CM, PR 
~Lc~ -- when type is: PC: or blank.CM. 

I 73-80 

[ Not used 

E linkagE: 



Text Input Record (Card Image) 

TXT 

17-72 

Text data (machine language code) 

ESD Identifier of SD for control section of this text 

Blank 

Number of bytes of text data 

Blank 

24 bit address of first byte of text data 

Blank 

12-9-2 (0000 0010) 

73-80 

1_- Not used 

Appendix A: Reference Data For Level E Linkage Editcr 93 



Blank 

--- RLD 

11-11['3_'6 ~'7-~ ___ ._. ______ _ 
RLD data - see below 

- Blank 

- Number of bytes of RLD data 

I 73-_8_0 __ ---1 

[ NO~ used 

--.---- 12-9-2 (00000010) 

1,~;,4 ~ RLD do!<';,em 

L~,_~';gOed od-",=-,= of oddre .. ""'00' 
Flog field -- (TTTTLLSTn) 
--~IrTT=type 

OOOO=non·-branch 
0001 =branch 
0011=pseudo register cumulative length 

LL=length of address constant 
01 =2 byte,;------

10=3 byte:; 
11=4 byte:; 

S=Direction of relocation 
O=positive (+) 
l=negative (-) 

Tn=type of next RLD item 
O=next RLD item has a different R or P 

pointer; they are present in the next item. 
l=next RLD item has the same Rand P point­

ers, hence they are omitted. 

Posi~on poi~~~ (P) - ESDID of SD for control section that contains the address constant 

------ R~?~_<:J.!i?_~.J~_~inter (R) - ESDID of CESD entry for the symbol being referred to. Zero (00) if type=PR cumultative length 

1 . ~ .. :~~·~5...L.,-__ .L"-' 
9-14 15,16 

___ 17-28 -=~ 1[' \ 33-80 -

- Not used 

Control section length for control section who!e length was 110t specified 
in sD EsD item. Byte 29 is binary zero if len~lth is present. 

EsDID of sD item for this control section that contains the address specified in byte~ 6-8. 

24 bit address of entry point (optional) 

12-9-2 (00000010) 

94 



END Input Record - Type 2 <Card Iw~ 

5-16 I 

- Blank 

'--12-9-2 (0000 0010) 

17-24 I 25-28 I 29-32 I 33-80 

Not used 

L- Control section length for control section whose length was not specified 
in SD ESD item 

'---- Symbolic entry point name (optional) 

Appendix A: Reference Data For Level E Linkage Editor 95 



SYM Record - (Load Module) .. _--_._-.">---.. -

SYM data and ESD data IESD type SD, CM and PC items) - (maximum of 240 -_ .. - ... ...... - ... - .. _ .... _ .... _ .... _... h yt es ) 

L __ C.'?,::rl~ - ir bytes, of :'YM and ESD data (2 bytes) 

- specifies into,mation for TESTRAN - (1 byte) 
1000 OCOO - this SYM I·ecord contains ESD items (SD, PC or CM) from 

(l load module thar was not "under test". The test 
option wns not specified when it was link edited. 

0000 OCOO - this SYM record i~ not the above type. 

Identificoti()n - specifies this is a SYM recold -- 0100 0000 11 byte) 

CESD Record - (Load Module) 
--"-.--.--------"--."-~-... -.-- ... -----... --".-----".-_._"_._-_._-----

8-247 up to 240 bytes of ES D data l------
ESQ .. ~~ - for detailed information see below. 

~~..lJ!!.! - in bytes, of ESD data (2 bytes) 

ES DI D of first ES D item (2 bytes) 

---Sp(]re - 3 bytes of binary zeros 

.... ~~..!!.fi.~!.~r:! -- 0010 0000 -- (1 byte) 

CESD Data. (Load Module) 

-ID/length - length (3 bytes), when type is: SD, PC, CM or PR 
I D (2 bytes), when type is LR 
Zero (3 bytes), when type is ER or Null 

Se!3lTle~tnumber _. in which this symbol appears. Zero when type is ER or Null (1 byte). 

t..9.Qress - linkage ed itor ass igned address of th is symbol. Zero when type is ER or Null (3 bytes). 

-lie!: _. (1 byte) Section definition (SD) - hex 00 
Label reference (LR) - hex 03 
Private code (PC) - hex 04 
Private code marked delete 
(ENT AB and SEGT AB control sections) - hex 14 
Common (CM) - hex 05 
Null 
External refer,=nce (ER) 
Pseudo register (PR) 

- hex 07 
- hex 02 
- hex 06 

-~L'mb<:.! - The eight character external name - Zero when type is Null. 

96 



Scatter-Translation Record 

I LOrl~1_IL2r-_3_1~4_-_1_0_2_3 ___________________________________ ~SL-________ U_p. __ to __ an_d __ in_c_l_ud __ in_g_l_0_2_0_b_y_t_es ______________ ~ 

- Data - may contain translation table, translation table and scatter table or scatter table only 

-Count - in bytes/of data field 

- Zero - one byte of binary zeros 

---Identification - identifies this as a scatter-translation I ecord - bit configur­
ation is: 0001 0000 

Translation Table 

Padding (2 bytes) - if necessary, to force fu II-word boundary al ignment of scatter tab Ie. 

Pointer (2 bytes) - to the scatter table entry that contains the address of the 
control section containing this CESD entry. 
Number of translation table entries = number of CESD entries +1. 
Pointer will be zero if its corresponding CESD entry is not 
SD, PC, CM or LR. 

~. Zero - 2 bytes of binary zeros 

Scatter Table 

- of a control section (SD, PC or CM) 

Zero - 4 bytes of binary zeros 

Padding (2 bytes) if necessary to align scatter table to a full-word boundary. 

Translation data 

Appendix A: Reference Data For Level E Linkage Editor 97 



Control Reco:rd (Load Module> 

1~0~IJ_-3_4I.4_-5~16-_7~1 ___ 8"_-J:) ___ ~~J 

98 

- Length of text record and/or length of control section - specifies the 
length of the control section (in bytes) to which the text in the 
following record belongs, or the number of bytes of a control 
section contained in the following text record (2 bytes) 

* CESD entry number - specifies the composite external symbol dictionary entry that 
cont(]ins the control section name of the control section of which this text is a part (2 bytes) 

ChannEll Command Word (CCW) - that could be used to read the text record that follows. The data address field contains 
the linkage editor assigned address of the first byte of text in the text record that follows The count field contains the 
length of the succeeding text record. 

- ~"ount - conl"ains two bytes of binary zeros. 

- Count - in bytes, of the control information (CESD ID, length of control section) following the CCW field. The 
count is always 4 bytes when processed by the level E linkage editor. 

- ~~are - contains three bytes of binary zeros 

Iden~ification - !;pecifies that this is: (1 byte) 

• A control record - 0000 0001 

• The control record that precedes the last text record of this overlay segment - 0000 0101 (EOS) 

• The control record that precedes the last text record of the module - 0000 11 01 (EOM) 



Relocation Dictionary Record (Load Module) 

~~~j~I_-_3~1,4_,_5~1~6_,_7~1~~~8_-_1_5~~~_I~~1_6_-_2_55~~~~ __ ~~~~~~~~_S~SReCo~leng~ can be between 24and256 

- RLD data -- see below

- Spare - contains 8 bytes of binary zeros

- Count - in bytes of the relocation dictionary information following the spare 8 byte field (2 bytes)

- Count - contai ns two bytes of bi nary zeros

'-- Spare - contains three bytes of binary zeros

Identification - specifies that this is: (1 byte)
• A relocation dictionary record - 00000010
• The last record of the segment - 0000 0110
• The last record of the module - 0000 1110

~~~~ __ ~C ____ ~IFI_A_~~IFI~A~IR~I~pIF~IA~ 
[ Address - I inkage editor assigned address of 

the address constant (3 bytes) 

Flag - (1 byte) When byte format is xxxxLLST, 
-- specifies miscellaneous information as follows: 

xxxx specifies the type of this RLD item (address constant). 
0000 -- non-branch type in assembler language, DC A (name) 
0001 -- branch type (in assembler language, DC V (name) 
0010 -- pseudo register displacement value 
0011 -- pseudo register cumulative displacement value 
1000 and 1001 -- this address constant is not to be relocated because it refers to an unresolved symbol. 
LL specifies the length of the address constant. 
01 -- two byte 
10 -- three byte 
11 -- four byte 
S specifies the direction of relocation. 
o -- positive 
1 -- negative 
T specifies the type of the next following RLD item. 
0-- the following RLD item has a different relocation and/or position pointer. 
1 -- the following RLD item has the same relocation and 

position pointers as' this and therefore is omitted. 
Position pointer - contains the entry number of the CESD entry (or translation table entry) 

that i ndi cates whi ch control secti on hoi ds the address constant (2 bytes). 

Relocation pointer - contains the entry number of the CESD entry (or translation table entry) that indicates which symbol value 
is to be used in the computation of the address constant's value (2 bytes). 

Appendix A: Reference Data For Level E Linkage Editor 99 



a 1 - 3 8-15 I~ _I __ ~~_=--S S 

I 

I l Address 

n-IT' 
* Length of control section 

or text record (2 bytes) 
*CESD entry number (2 bytes) 

! -~~ 
I Adde"" (3 byt",: 

-~~ (1 byte) 

--Posi"ion pointer (2 bytes) 

::::ounj, in bytes, of RLD informot;on (2 bytes) 

.- Count, in bytes, of control information following the last RLD address field. 
The control information contains the ID and length of control sections in the 
following text record (2 bytes). 

l·1 J-~~fr.e (3. byt(e]s)b) 'f. h h· d . 
uen-.!'.....'.£Cl!I~ yte - spec lies t at t IS recor I!: 

• A control and RLD record - 00000011 - (it is followed by a text record) 
• A control and RLD record that is followed by the last text record of a segment - 0000 01]] ([OS) 
• A control and RLD record that is followed by the last text record of a module - 0000 1111 (EOM) 

Note: For detailed descriptions of the data fields see Relocation Dictionary Record, and Control Record. 

fliP record length varies from 20 to 260 bytes in the level E linkage editor 

100 



Form Y28-6610-2 
Page revised 7/23/69 by TNL Y28-6400 

REFERENCE DATA FOR INITIAL PROCESSIN3 - 15K AND 18K LEVEL E 

rhe following tables pertain to initial processing in the level E linkage editor. 

All Purpose Table 

o PDSE1 

8 PDSE2 PDSE3 PDSE4 

16 -~-P--DS-E-5~~~---+----PDSE6 _~S~ I PSDjj8 PDSE9 

PJ5SW--r ~~--~---~-~ 
24 (contin- PDSE10 PDSE11 PDSE12 

32 It;'q-p~ __ S_E __ 1_~_-~-_--,-------_-_-_;_D --,-S ~-4 --r--p-DS E 15 -r--Ip-D-S-E 1-6---1 

~El6I----
40 (contin- PDSE17 

~- ----~---~~~~-+~--~~~~~~---~~~ 
PDSE18 

48 
PDSE18 REGSA 

(continued) 
r-----~---~~~~~~~-~~~~~~--~~--~~~ 

232 

240 

248 

256 

264 

272 

280 

DLKT CHlSD 

SELST TNLS2 

RNLS2 TTRLlST 

CUTRLD RL0131 

INRLD 
BITMAP 

(1::llor Logging Mop, 
I------~------------ -----

BITMAP LlNECNT HI~,tV 
(con ti nued) 

INCBRKPT CRRTINCL 

r-~--~~~~~~--------r-

56:::~ 
REGSA 

(conti nued) 
::::::: 288 ENCDX ENTIX ENRIX cNT2X 

120 

128 

136 

r---------------_______________ I-~------------I 
REGSA 10CT 

(conti nued) 
~~~--~~~~~~--~~~~~~----------------

10CT
(continued)

r-~~~--------~~~~--~~--~----------------

10CT
(continued)

144 c_

u

"~~ko'o~~:ed) .. l ;;~O I APtPT'1 APTJ
152 CTTR I CSNO CRNO

f---- ---

160 SLNTB PRA L

r----- --------~--~~--+_~~~~~~~------~

168 FLCD RCCE

------ ----- -----~----~~----r____-- - - -------------------

176 RCCB ALCB

t--------

184 OVCMBGAD SGTl

296 ENR2X ENTOX ENDTX

1---------- --.-.. --

304 ENS1X BU~'SIZ

312 EI"-JRLDIX ENRLD2X t f'.;SPX

I----~~--~~~~~--~r--

320 SAVATS IAPTSWS

r----------~.-.---L---- -.. ---- --
I::Ni~IC

EPSM
328

(continued)

336 ENTIC ENIRC ENCL.C

344 ENSIC ENASC i EN;:)TC ENCDC

1---------

352 ENEL TC ENT2C ENR2C ENSf'C

360 SYSRTN

---+-------------,--~ 1----------.--

192 CLLT
I

TNTl 368 l.... SP.4CES
--- ---------- ~----------------,

I
200 RNT1 LSTS 440 IEWLCSCD I SS:

-- -> .

208 RECNT LOGAREA 448 LIBNAME

216 SYINB ERDIG

~-

-----r--------- l --
MAXBLKSZ I APTOOO _1 __ _ 456 HIARBIT

224 TXTIO ALAS DCB'S
1--------------------- -

824 APTEXLST

832 APTXLSTl APTXLlST

840 APTREG3 HIARADiJ

'------------- ------'-- -------------

Appendix A: Reference Data For Level E Linkage ~jlt~r 101

Explanation of APT Entries
r--------T--,
IPDSEl I Member or alias name of module being created.
IPDSE2 I Relative disk address (TTR) of module on SYSLMOO.
POSE3 I C byte - see partitioned organization directory record, alias in1icator

I
I
I
I
I
I
I

PDSE4
POSE5
POSE6

POSE7

I
IPOSE8
I
I
I
I
I
I
I
I
I
I
I
I
!
I
IPOSE9
IPOSE10
!PDSEll
IPOSE12
IPOSE13
IPOSE14
IPOSE15
IPOSE16
IPDSE17
I
IPDSE18
i
I
II

I
II

~
ijREG!:iA
~
IIOCT
~
I
~
I
I
I

I and miscellaneous information.
I During second pass processing, POSE2 and PDSE3 contain the en1 address of
I the RLO record currently in the second pass RLO input buffer.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
t

Relative disk address (TTRO) of first text record.
Relative disk address of note list or scatter-translation recor1.
"L" byte, number of TTRs in note list if present.

Module attributes -----_._-_._---_._------

Bit 0
1
2
3
4

- Reenterable
- Reusable
- Overlay
- Test
- Only loadable
- Block/scatter

6 - Executable

Bit
Bit
Bit
Bit
Bit 5
Bit
Bit 7 - 1 Text record, no RLD

Bit 0
Bit 1

Bit 2

Bit 3

- compatibility -
- Origin of 1st

record is zero.
- Assigned entry

is 0
- Module contains

text

point

RLO
items

Bit 4 - Module can bE~ repro-
cessed

Bit 5 - Module does not con­
tain SYM records

Bit 6 - Spare
Bit 7 - Module is refreshable

Initial
Value -0--

o
o
o
o
o
1
o

o
1

1

o

o

o

o
o

Total contiguous main storage requirement of module.
Length of first text record.
Entry point address.
Assigned origin of first text record.
Length, in bytes, of scatter list.
Length, in bytes, of translation table.
ESDID of the first text record.
ESDID of control section containing the entry point.
Entry point of main member name.

Member name of module.
During input processing, word 1 of PDSE18 contains the CESD address :>f the
control section with no length given.
During second pass processing, PDSE18 is used in the following manner:

Word 1 Address of next free entry in RLD output buffer.
Word 2 = Address of address constant within the text buffer.

Register save area for IDS

Input/Output Control Table
During second pass processing, IOCT contains the following data~

Words 1-3 = Register save area (reg. 13-15)
word 4 Address of next available entry in ENTAB
Word 4 Address of next available entry in ENTAB RLD buffer.
Word 5 Address of current entry in the Entry List.
Word 6 Address of the RLO record in the RLO input buffer that is

I currently being processed. l ________ ~ ___ _

(C:>ntinued)

102

Explanation of APT Entries <Continued)
r--------T--,
APTO

APTl

APT2

APT3

CTTR
CSNO
CRNO

SLNTB
PRAL
FLCD
RCCE

All Purpose Indicators
Bit 0 - NCAL
Bit 1 - XREF
BIT 2 - MAP
Bit 3 - LET
Bit 4 - LOG
Bit 5 - XCAL
Bit 6 - Input record is text or RLD.
Bit 7 - A library card bas been read

All Purpose Indicators
Bit 0 - More include input to come
Bit 1 Auto library call in operation
Bit 2 Object or load module.
Bit 3 Delete indicator.
Bit 4 Entry point has been received.
Bit 5 Symbolic or absolute entry point.
Bit 6 Entry card has been received.
Bit 7 ESD-Write indicator.

All Purpose Indicators
Bit 0 - Length received in END iterr.
Bit 1 - No lengtb received in the SD record.
Bit 2 - SYM records in load module.
Bit 3 - Status indicator received.
Bit 4 - Include processing previously initiated.
Bit 5 - Input/Output overlap indicator.
Bit 6 - In module indicator
Bit 7 - Control statement continuation

All Purpose Indicators
Bit 0 End of file.
Bit 1 - Name card received
Bit 2 - End of input
Bit 3 - Stow as a replacement
Bit 4 - Split address constant to be output.
Bit 5 - More RLDs to be processed
Bit 6 - Current RLD for split address constant found.
Bit 7 - SYSLIB data set is open.

TTRO of first CESD record on SYSLMOD, if MAP or XREF is specified.
Current segment number.
Current region number.
During second pass processing,
segment.
Address of segment length table

CRNO contains the last ID for the current

Pseudo register accumulative length.
Address of first deleted CESD entry.
Address of end of replace/change chain.
During second pass processing, RCCE is used as a work area to perform
address constant alignment.

RCCB Address of beginning of replace/change chain.
During second pass processing, RCCB contains the address of the address
constant in the work area.

IALCB Address of beginning of Alias chain.
I During second pass processing, ALCB contains the address of the next ENTAB
I entry in, the HESD.
IOVCMBGAD Address of beginning of overlay cbain
I During second pass processing, OVCMBGAD contains the address of the RLD note
I list entry for the currently processed RLD input record.
ISGTl Address of SEGTABl
ICLLT Address of calls list.
I During second pass processing, CLLT contains the maximum size of the RLD
I input buffer. l ________ ~ __ J

<Continued)

Appendix A: Reference Data For Level E Linkage Editor 103

Ex~lanation of APT ~ntries (Continued)
r--------T--,
ITNT1 I Ad1ress of t~xt note list 1
IRNTl I Address of RLD note list 1
I LSTS I Last segment in each regicn
jRECNT I Address of relocation constant table or renurotering table.

I During second pass proces~:3ing, HFCNT contains the buffer relocation con-

I LOGA:{EA
, SYSEm
IERDIG
!TXTIO
IALAS
IDLKT
ICHES]
ISELST
ITNLS2
IRNLS2
!TTRLIST
jOUTRLD
IRLDBl
iINRLD
i BITf'llAP
iLINECNT
IHISEV
IINCBRKPT
ICRRTINCL
jENCDX
jENT1X
jENR1X
!ENT2X
IENR2X
iENTOX
IENCLX
IENDTX
!ElJS1X
IBUFSIZ
lHESD
lENRLD1X
jENRLD2X
iENELTX
IENSflX
jSAVATS
!
jAPTSWS

I
i
IEPSM
i

I ::;tant.
I
I
I
I
I

Address of 32 byt~ error logging area
Address of object mcdule buffer
Address of error log routine
Address of text I/O table
Address of alias tatle
Aadress of delink table
Address of composite ESD
Address of second pass entry list
Address of Text Note list 2
Address of RLD Note list 2
Address of TTR list
Address of secona pass output RLD buffer
Address of ENTAB buffer
Address of second pass input RLD tuffer
Bit switches used to log ~rror messages
Line count of lines printed on SYSPRINT
Highest severity message
Address of breaking point in Include Chain
Address of currently included ESD item
Maximum number of entries in CESD/HESD
Maximum number of entries in text note list 1
Maximum number of entries in RLD note list 1
Maximum number of entries in text note list 2
~aximum number of entries in RLD note list 2
~ljaximUIn number of entries in text I/O table
Maximum number of entries in calls list
Maximum number of entries in delink table
Maximum number of segroents
Size of load module input buffer
1'l.ddres~3 of HESD
Maximum size of first pass RLD buffer
Maximum size of second pass input RLD tuffer
Maximum number of entries in second pass entry
SEGTAB ID
Attribute save area

All purpose taDle switches
Bit 0-2 - Spare
Bit 3 .- Linkage editor E=1, linkage editor
Bit q Bit map processed - Initial value

list

F=3
=0

Bit '5 - Linkage editor input received - Initial
Bit 6 - SYM receivea - Initial value =0
Bit '7 - ESD received - Initial value =0

Entry point symbol or address

value =0

During second pass processing, EPSM contains the following data:
Bytes 1-4 = Address of next ENTAB entry to be built.
Byte 5 = Segment number of the next segment that requires an ENTAB to be

created for it.
Byte 6 = Not used.
Byte 7,8 = Length of address constant being processed.

I
jENT1C Current number of bytes in text note list 1
IENR1C Current number of bytes in RLD note list 1
IENITC Current number of bytes in text I/O centrol table
IENIRC Current number of bytes in RLD I/O control table
I During second pass processing, ENITC and ENIRC contains the linkage editor
! assigned address of current text record. L ________ L __ J

(Continued)

L04

Form Y28-6610-2, Page Revised by TNL Y28-2356, 11/15/68

Explanation of APT Entries (Continued)
,.--------''\!------------------------------------'---------------------------------------,
ENTOC
ENCLC

ENS1C

ENASC
ENDTC

ENCDC
ENE LTC
ENT2C

ENR2C
ENSPC
SYSRTN

SPACES

Current number of bytes in text I/O table
Current number of bytes in calls list
During second pass processing" ENCLC contains the last R pointer obtained
from the RID buffer.
Current nurober of entries in SEGTAEl
During second pass processing, ENS1C contains the current segment number.
Current number of entries in alias table
Current number of entries in del ink table
During second pass processing, ENDTC contains the next multiplicity number
of the text to be read in for processing.
Current number of entries in CESD/HESD
Current numoer of entries in second pass entry list
Current number of entries in text note list 2
During second pass processing, ENT2C contains the last R pointer that was
placed into the RLD output buffer.
Current number of entries in RLD note list 2
Highest segment number of segment containing text
Save area for register 13 and 14 for return to job management

Save area
IEWLEDEl = SPACES+32
IEWLEDE2 = SPACES+52

During second pass processing, SPACES contains the following data:
Words 1,2 Address and loop counter for next RLD note list entry to

process f or current 'text.
Word 3 = Address of next available byte in the RLD input buffer.
Words 4-7 = Temporary save area for BSAM disk address or track balance.
Word 8 = Address of end of ENTAB RLD buffer.
Words 9-13 = DECB for text buffer 1.
Words 14-18 = DECB for text buffer 2.

IEWLCSCDI Address of second pass processor
SSI I System status indicator
FFCADR I Highest address retained by allocation routine
LIBNA~1E I Name of library for automatic library call
MAXBLKSZI Maximum block size for linkage editor E (80 byte)

IAPTOOO I SYNAD for printer
IHIARBIT I Storage hierarchies have been specified if high order byte contains X·Ol·.
I DCBs I DeBs for linkage editor devices.
IAPTREG3 I Save area.
IHIARADD I Hierarchy table address. I L ________ ~ ___ J

Appendix A: Reference Data For Level E Linkage Editor 105

Main ~torage: Allocation Tabl:.~

Used by Allocation Processor

106

~ormal total weight - 582 (4 bytes)

Normal minimum main storage - 3309 bytes
(4 bytes)

Overlay total weight - 603 (4 bytes)

Overlay minimum main storage - 3605 bytes _
{4 bytes}

~ Minimum size - The minimum numbE~r of bytes of main storage required for this table (2 bytes).

- Weight - The factor used to allocate extra main storage to enlarge the table. It specifies how many
--- bytes will be added to this table for every 582 bytes (or 603 bytes, with overlay) which become available {2 bytes}.

Number of bytes.E~r entry - The number of bytes per entry for this table (1 byte)

'--. Number of Entries-156 - The number of entrie; value for this toble found in the All Purpose Table, reduced by 156 (1 byte)

!~ddress-156 - The addr,m assigned to this table (buffer or area) found in the All Purpose Table reduced by 156 (1 byte)

Indicators - (1 byte)
Bit 0 - Table needed to process overlay modules only.
Bit 1 - Table needed during first pass.
Bit 2 - Table needed for intermediate processing.
Bit 3 - Table needed during second pass.
Bit 4 - Table requires double-word alignment.
Bit 5 - Table requires word alignment.
Bit 6 - Table has a maximum size of 240 or 64 bytes.
Bit 7 - Table has a ;:eroeth entry (Prefix).

Minimum Table Area for Processing Non-Overlay Programs

INITIAL AND INPUT PROCESSING I INTERMEDIATE PROCESSING I SECOND PASS PROCESSING

o

108

228

264

314
344

976

1156

1380

1624

1669

1725
1884

2052

Text I/O Tab Ie -- 108 bytes

Delink Table -- 120 bytes

logout Area -- 32 bytes

Object module buffer AI ias Table -- 50 bytes
80 bytes

Half ESD -- 656 bytes

--
CESD -- 1280 bytes

Text Note Li st 2 -- 180 bytes

RLD Note List 2 -- 224 bytes

Unused **

Text Note List 1 -- 45 bytes

RLD Note Li st 1 -- 56 bytes

Renumbering and Relocation Constant Tables
324 bytes

* The byte number below is not consecutive because of the necessity for proper boundary 01 ignment.
** If an additional 9,312 bytes are available, there is no unused space during intermediate processing.

-- -

--

--

--- ----

-- -

- ----

Input RlD Buffer
244 bytes

Output RLD Buffer
260 bytes

Expansion of Table Area Into Extra Available Main Storage (Non-Overlay Processing)

o

48

78

254

334
430
446

466

494

582

I PROCESSING ===r SECOND PASS PROCESSING

--

INITIAL AND INPUT PROCESSING INTERMEDIATE
------~~----~------ -_ - -

Text I/O Table -- 48/582 of any extra available main storage above minimum
--- -- ----

Delink Table -- 30/582
--

Half ESD -- 176/582

CESD -- 352/582
TEXT Note List -- 80/582

---- --

Unused RLD Note List -- 112/582
- --~--~--.-- ----

TEXT Note List 1 -- 20/582

RLD Note List 1 -- 28/582
Unused during second pass
processing

Renumbering and Relocation Constant Table -- 88/582

Appendix A: Reference Data For Level E Linkage Editor 107

INITIAL AND INPUT PROCESSING INTERMEDIATE PROCESSING SECOND PASS PROCESSING
()

108
Text I/O table -- 108 bytes

--

140
SEGTAB 1 -- 32 bytes

----.-----.---.--.. -.----.---.-.-- ----.. --.-.-- -.. -.. -.---.-.. ----.-.----.- -----.--.---.--.-----.---.. ------------------------.-----_._----------1

264
Delink table -- 120 bytes

Logout area -- 32 bytes
2'16

Object Module Buffer
346 80 bytes ~ __
3/6 r--------.---------------

AI ias Table -- 50 bytes
------_. _._--_ _--_._._.- -_._--_. __ ._--_ ... _---------_._---------_._---------

1002

11 R2

1406

16~jO

1656

Ha I f ES D -- 656 bytes

f------------------ -----------.. -.-------------------------------.---- -.--.... -- .. --.-.-.-------

CESD -- 1280 bytes

Text Note List 2 -- 180 bytes

RLD Note List 2 -- 224 bytes
f----... ---- -....... - - --... -- -------.--.------,----. ---------.-------------------

Unused **
Input RLD Buffer - 244 bytes

~_-----------------------------L-------------------.-------

Text Note List 1 -- 45 bytes
1701 1--------.-----.. -.-.-----.----------------.------------------- Output RLD Buffer - 260 bytes

RLD Note List 1 -- 56 bytes
1757 1----------------.-----------------.---.--------------.--------------------------1

1910 Renumbering and Relocation Constant Tables -- 324 bytes

2084 1------------.. ---- ----------- -.--.-.-. - .-.. -.

:2096

Calls List -- 220 bytes

f-------------------------------------~

Entry Li st -- 186 bytes

TTR List -- 124 bytes
f------------------------.---- -. -.--.--_.-2Z~O

2304 -- --.. - ... ------.---.----.. ----------~

Unused ENT AB RLD Buffer -- 124 bytes
-23/1,1- 1-----___ .1-____________________ . _____ -'

.\- The byte number below is not consecutive because of the necessity for proper
boundary a I i~Jnment.

tOR

I" an additional 10,251 bytes are available, ther'~ is no unused space during
intermediate processing.

Expansion of Table Area Into Extra Available Main storage (Overlay Processing)

o

48

49

79

255

335
431

447

467

495

583

603

I I
-_ -

INITIAL AND INPUT PROCESSING INTERMEDIATE PROCESSING SECOND PASS PROCESSING
------~--

Text I/O Table -- 48/603 of any extra available main storage above minimum requirements

-~~---

SEGTABI -- 1/603
-----.------~~--.--.--~---- - -- -- .-

Delink Table -- 30/603
-_. - --~.--~

Half ESD -- 176/603
CESD -- 352/603

-.----~--- -

Text Note List 2 -- 80/603
. -- ---------

RLD Note List 2 -- 112/603

--- ---

Text Note List 1 -- 20/603
Entry Li st -- 6/603

TTR List -- 4/603
-- ~

RLD Note List 1 -- 28/603 ENTAB RLD Buffer -- 4/603
.. -

Renumbering and Relocation Constant Table
Unused during second pass processing

88/603

Calls List -- 20/603

Appendix A: Reference Data For Level E Linkage Editor 109

Table of Buffer Sizes and Table Sizes

---------------------I---------~-----___r_------,--------,--------------------------~-------,- ------r----------------~
Order Present in: Size {in bytes}

Table Name

Alias Table

OVLY
Only

No

in
Coding

5

Bytes/
Entry

10

Weight

o

1st
Pass

No

Int
Proc

Yes

2nd
Pass

Yes

Prefix

No

Align
Min. Max.

Byte 50 50
----.----------------- ------/------. C----. __ . __ ._ /---.-----/-----------+------+------+-----+-----+------+----i

Calls List Yes 20 2 20 Yes Yes No No Word 220
--.-.---.. --.-- --.-.--------- ------l-------+-------I/------.--.... --t-------+------+----+-------+--.----+-----+-----/

. ___ Com~osite_E_S __ D ___________ ~ __ N_o_~----I--I-~---16 __ +_-3-5-2_-+-_Y-e-s-+__N_o--+-__ N-o--i--Y-e-s--+--D-b-l-w-d~_1_2_B __ O __ -+ _____ ~

Delink Table No 3 5 30 Yes Yes Yes Yes Byte 120
---------.. -.- ----- - "-".-.. -.. -... --.-- ----/----------I------I------+-----f--------+-------f--------+------l

ENTAB RLD Buffer Yes 16 1 4 No No Yes No Word 124 240
--- --.------.---- ------c------/------/---------+----+-----+----+------+------+--.---I----~

186 Entry List Yes 14 6 6 No No Yes No Byte
--------------- ----... -.-- .. -.. --- i----··-----+----~----+_---_+----+_---_+--...:...--+_----__+----_/

Error Log Area No 4 0 Yes Yes Yes No Word 32
--------/------1------1--------+----+-----+----+-------+-----1-------I-----~

Half ESD No 7 8 176 No Yes Yes No Dblwd 648
------------------ --_._---/----_ .. ---!------I--------I-----+-----/----+-----/-_.-----I------+----

Half ESD Prefix No 6 o No Yes Yes No Dblwd 8 8
---.------------- --------/------- -----.-.- f--·· -.----1----------+------1------1------1----.---1------+.----1

Input RLD Buffer No 12 o No No Yes No Word 244 244
--------.- ----... ------. ----.----.-- ------.-- ----.--- ------+--.------+-----+---.-~----~---~----___1~----+---_j

Object Module Buffer No 10 0 Yes No No No Byte 80 80
.---.. --... ------------ ------1------ -------1-------/------1------+----+-----+-.---+------+-----

Output RLD Buffer No 13 0 No No Yes No Word 260 260
---_._-_ .. - ----------.-- -------/---_._._._._- ---- /---- +--------- ._------+-----+----+------+------!--------I

Relocatable Constant Table No 19 4 88 No Yes No Yes Word 320
-------.------.-... ------- ---.-----... -.. ---.--. -------.- -.---.-.-----t------- /-------+-----/----+--.---+--.--+-----1

Renumbering Table No 19 4 88 Yes No No Yes Word 320
-.. ------ --.-----.---.- ------- /---- ---.---- /---.-----t-----t----.---I------If--------I-------II------+--------I

Renumbering Table Prefix No 18_5 4 0 Yes Yes No No Word 4 4
-... ----.-.---- .. ----.- -.---.- ----.-.-.- -.---... -.. - ------+------l-----------I--------+------I----.----I------+-.-------I

RLD Note List 1 No 18 7 28 Yes Yes No No Byte 56
--.-.---.. --- -------.... --.-.-.--.--- ------.. ---- --.--.--.. -." --------.----- t---------+---.---I-------I------I--------/-----+---------I

RLD Note List 2 No 9 7 112 No Yes Yes No Byte 224
.--------... - _ .. ____ . ________________ .. ______ .. _. __ ._._--.-JI-____ + ____ --/ _____ + _____ --I ____ +-______ --I

SEGTABI Yes 2 Yes Yes Yes Yes Byte 32 64
--_._------ ----------- .• ---.---..... -..... ---.+----.------J-----------------.. ---f------+-------+------+------t------+-.-------l

Text I/O Table No 3 48 Yes Yes Yes Byte
-----1-------+-----+-------/------1------+---

No

Text Note List 1 No 17 5 20 Yes Yes No No Byte

108

45
----------... -------.- -.--.--/------- ---1--------- ------/--------+------/-----I-------I------+-.------l

Text Note List 2 No 8 5 80 No Yes Yes Yes Byte 180
------.-------.. ---.... -.--- ---... --... ----\--------- ---/--------t---------I------+-----+-----+--

TTR List Yes 15 4 4 No No Yes Yes Word 124

* Maximum i~ determined by availability of main storage

110

REFERENCE DATA FOR INPUT PROCESSING -- LEVEL E

Alias Table

Built by: Entry Processor
Referred to by: Final Processor

CESD entry number - present only if symbol is one that is present in the CESD and is type
SD or LR. This field contains zero for all other symbols (2 bytes).

Symbol - the eight-character alias name (8 bytes)

Calls List

as built by RLD processor

2 bytes of binary zeros

Relocation pointer - points to the referred to symbol in the CESD (types SD, LR, ER and CM) (2 bytes).

Relocation pointer (2 bytes)

Relocation pointer (2 bytes)

Position pointer - points to SD or PC in CESD that contains the references (V-constants) (2 bytes)

Calls List

As altered and used by ENTAB size determination (lEWLCENS)

2 bytes of binary zeros
(End of chain indicator)

Chaining value - inserted by IEWLCENS -- count, in bytes, to next chaining value (2 bytes)

Appendix A: Reference Data For Level E Linkage Editor 111

Internal Format

Th~ following tables
the linkage editor.

are produced during input processing in the level £ version of

Built by: ESD Processor and Control Statement Processors
Modified by: Address Assignment Processor

I I S SL-.L-I _------'-1---1--1 I II

-Chain pointer/chain 10/length - Chain pointer when the entry
-------- -type-i~:ER~T~clude w/pointer or an ER-ddname

that was extracted from a 1.1 BRARY control statement

Chain ID when the entry type is:
ER-Library (the symbol was extracted from a LIBRARY control statement).

I

i

l-"yml""

ll2

i

I !

I :

I

!

Length of control section for type:
SD, PC, PR, or CM (2 bytes)

- ~~btYF:= -" ER
ER-C:)ntrol change
ER-C:)ntrol replace
ER-C:)ntrol delete
ER-C")ntrol include w/ pointer
ER-C:)ntrol include w/a pointer
FR-ddname
ER-AI ias
ER-Overlay
ER-Unmatched I ibrary member
ER-Matched I ibrary member
ER-Unmatched no call
ER-Matched no call
ER-Never call
ER-Delete
ER - Replace

(I byte)

0000 0000
1111 0000
1110 0000
1110 1000
1101 0000
1100 0000
1011 0000
1010 0000
1001 0000
0000 0010
0000 0011
0000 0100
0000 0101
0000 0110
0000 1000
0000 0000

L-Segment number - this symbol appears in (1 byte). When type is

H~

00
Fa
EO
F8
00
co
BO
AO
90
02
03
04
05
06
08
00

I

[-------- PR, this byte contains the alignment value (See Half ESO).

- Typ~ - Section definition (SO) xxxx
Label reference (LR) xxxx
Private code (PC) xxxx
Common (CM) xxxx
Pseudo register (PR) xxxx
Null 0000
External reference (ER) xxxx
(1 byte)

NOTE: Not applicable

- the eight-character symbol ic name (8 bytes)

0000
0011
0100
0101
0110
0111
0010

Subc I ass ification -
Oe I ete xxx 1 xxxx
Replace xxx 1 xxxx
I nsert xx 1 x xxxx
Chain xlxx xxxx
Map 1 xxx xxxx

No~rnaJL_Cornbination of Internal CESD Types

CE5 ,D Entry Type

Section Definition

Private Code

Commo n

Pseudo Register

Externa I Reference

Label R eference

NULL

Replace
-~.----

Insert
~

Chain

Map
---.----.~~-------

Delete

ER - Un
rary Me

matched Lib-
mber Name

atched Library
r Name

ER - M
Membe

matched No ER - Un
Call N clme

ER - M otched No Call

ER - N ever Call

verlay Control ER - 0
Stateme

ERE - A
Stateme

nt
----.~---

I ias Control
nt

ERE - d
Library

dna me from
or Include Statement

c:1 ude Control ER - In
Stateme nt wlo Pointer

clude Control ER - In
Stateme nt with Pointer

place Control ER - Re
Stateme nt (3)

ER - Co ntrol Delete (4)

ER - Ch
Stateme

ange Control
nt (3)

Type Field

(byte 8)

xxxx xOOO

xxxx xl 00

xxxxx101

xxxx xli a

xxxx 0010

xxxx xOll

0000 0111

xxx 1 xxxx

xxi x xxxx

xl xx xxxx

1 xxx xxxx
f--

xxxi xxxx

0000 0010

0000 001 a

0000 0010

0000 0010

0000 0010

0000 0010

0000 0010

0000 0010

0000 001 a

0000 0010

0000 0010

0000 0010

0000 001 a

1. Alignment Value - Specifies boundary alignment
of the pseudo register.
00 = byte 01 ignment
01 = halfword alignment
03 = full-word alignment
07 = double-word alignment

Chain Address/
Chain ID
(bytes 9-11)

Hex 00 or 80

Reverse chain ID

Reverse chain ID (2)

Address of next
item in the chain

Address of next
item in the chain

Address of next
item in the chain

Address of next
item in the chain

Address of next
item in the chain

Address of next
item in the chain

Address of next
item in the chain

2. BLDL has been issued for this member name if bit 64 is set to 1.
3. Two CESD entries are made for each Replace or Change control statement,

one entry for each symbol. '
4. This entry results from a Replace or Change control statement containing

only a single symbolic name.

Segment ER Subtype ddname Poi nter/
Number Chain ID/Length
(byte 12) (byte 13) (bytes 14- 15)

1 to 64 Length of control section

1 to 64 Length of control section

1 to 64 Length of common area
--

Alignment Length of pseudo register
value (1)

0000 0000
--

1 to 64 CESD entry no. of
SD or FC (ID)

._-

0000 0000

----.-

0000 1000
--_.-

0000 0010 CESD entry no. of
next item (ID)

0000 0011 CESD entry no. of
next item (ID)

0000 0100

--I-----.-~.-- --- ~--'- -- -

0000 0101
------.--

0000 0110

1001 0000

10100000

1011 0000 Forward chain
PTR (Library onl y)

1100 0000

--

11 01 0000 Pointer to li-
brary's ddname

--

1100 0000

1110 1000

1111 0000

Appendix A: Reference Data For Level E Linkage Editor 113

Delink Table

Built by: RLD Processor (Del ink Routine),
Referred to by: Second Pass Processor, RLD Processor

LLlL_ 1 r: ________ -ss

Address - assigned to the symbol being deleted (3 bytes)

- CESD entry number (lD) - is the relocation pointer of an RLD item referring to the symbol that is
.-------... replacing the identically named symbol (or symbols) to be deleted. (2 bytes)

Downward Calls List -----------------

Built by <Jnd referred to by IEWLCENS routine

WC.--,---,--I -,----,-I 1 -[[[[I

- Segment number - entries are one for one with those of the CESD. If a

=sSL--. _____ -LI----L-J1 IL-L-JI ~

------- dc)wnward call is made to a symbol, the segment's number from

which the call is made is entered in the downward calls list
01 an entry corresponding to the ESDID of the symbol in the
CESD. The list is initially zero. (I byte)

g~~~~~bering TaDle

Built by: ESD Processor
Referred to by: TXT, RLD, END and ESD Processor

[o,~ 2 3[11 DIC---··---··---·-···---····---SSL--___ --L--L-l[I-L-I -.1.-1 I
Type ~ubtyp~

114

~~z JHtLQWA
Section Definition - 000 Null - 000000
Label Reference - 01 I Delete - 00010
External Reference- 010 Replace - 00010
Private Code - 100 Chain - 01000
Common - 101 Insert - 00100
Pseudo Register - 110 Library - ·:0000
Null - III

(I byte)

-- Flag - to indicate whether the section definition (SD or PC) this entry corre-
-- sponds to is present in the CESD (0000 0001), or that other CESD items

are dependenl· on its presence (0000 0(10), or that a Delink Table entry
was created for this symbol (0000 0100). (I byte)

~:~entry ~~ber (ID) _. points to an entry in the CESD. (2 bytes)

Relative Relocation Constant Table

Built by and referred to by Address Assignment Processor

I 3S~ ______ ~~~~

[R.looo';on Con"ool = (Hnk09' .daoe 0";9n.d odd"")-(p"v;o",ly 0";900d odd",,) of 0
control section (SD, PC or CM) or a label reference (LR). The

RLD Note List

Built by: RLD Processor

entries are one for one with CESD, in true or complement form. Com­
plement form specified by binary ones in the high-order byte (4 bytes)

Referred to by: Second Pass Processor

Relative Track Address (TTR) - of this RLD record on SYSUTI.

Record length - the number of words of RLD data.
During Second Pass Processing:

Bit 0 is an 'In Core' indicator.
Bit 1 is a 'Processed' indicator.

Lowest mul tipl i ci ty - of the control section referred to by
the ID field, to which the RLD infor­
mation in this record pertains.

!.Q - the CESD entry for the control section (SD or PC)
that this RLD information pertains to.

Appendix A: Reference Data For Level E Linkage Editor 115

Segmen~ Lenqt:h Tarle

Built and referred to by' Address Assignment Processor

[=:TI~-=~TI==-II __ L_ILTI SJ I I I I I I
I 1 r Appeaeao" at 'obi, ah,e cdgom,", at cao'col ",Hao add""",

I '

I

1_ '---- ~()t __ l!~,,=-~ (2 bytes)

~~~dary Alig_~~e~ctor *(1 byte) - contains the low-order three bits 
of the previausly assigned address of the 
first control section of 0 segment. 

Cumulative Segment Length (3 bytes) - in bytes, of control sections in this segment 
----- ....... -.......... ---- (including the ENTAB, if present). 

il ~,~~~,gm'", add""" ace d,"em;oed 

Segment Relocation Constant (3 bytes) - for the segment that COl responds to this entry 

--- Pat~~Il~t~ (3 bytes) - in bytes, of this segment, including this segment and its ENTAB 

k i'lote: The three low--order bits of the previously assignee: address of 
th~ first control section of each segment are saved in the 
hiqh-order byte of the seqment relocotion constant field. These 
birs are used to retain correct byte olignment when computing 
the segment relocotion constant. When the computation is 
ccmpleted, the result will overwrite all three bytEs of the 
seqment relocCltion constcmt field. 

Built by: lext Processor 
Referred to by: Second Pass Processor and Text Processor 

II I I 
l 

[~]:-[-n=rc------. --=sL---___ ----L,----L,-L..-_.l.......l--1 I ~I I 

Built by: Text Processor 
Referred to by: Second Pass Processor 

[J:~=:lI 

CE~~=-n!rYIl_~_rl1~er (ID) - points to CESD entry that 
contains the section defini­
tion (SD,PC) for this control 
secti on. (2 bytes) 

fv\ultiplici!2'_~IJ_rrl~~! - of this piece of text. 
(I byte) 

----------.--==s L--------L...r----'---r----l-"~J~ 

Buffer displacement - location of this text record 
- relative to beginning of text 

buffer (2 bytes). 

Relgtjve.trCJ<:;<_CldcJress (TTR) - of this text record on SYSUTI (3 bytes) 

Note: ThE're is 0 one-to-one correspondence between entries of text input/output table 
omCthe text note list. 

116 



REFERENCE DATA FOR INTERMEDIATE PROCESSING -- LEVEL E 

The following table is produced during intermediate processing in the level E 
of the linkage editor. 

version 

Segment Table <SEGTAB) 

Built by Intermediate Output Processor 

TEST I 
Indicator 

Address of Data Control Block (DCB) used to load module * 
~ -- "~~ 

Address of note list * 
~" 

Last segment Highest segment no. Last segment Highest segment no. 
number of region 1 in storage-region 1 number of region 2 in storage-region 2 

1----
Last segment 

--"-

Highest segment no. Last segment Highest segment no. 
number of region 3 in storage-region 3 number of region 4 in storage-region 4 

-~- ~-""---

Zero (Not used in the Fixed-Task Supervisor) * 
------

(Not used in the Fixed-Task Supervisor) * 
-~ ~-

Previous segment * Status 

number for segment 1 Zero Indicator 
~-

Status Previous segment Address of entry table enlTY (when caller 
number for segment 2 chain exists) * Indicator 

~-

Previous segment Address of entry table entry (when caller Statu~ 
L-_____ n_u_m_b_e_r~f_or __ se~g~m_e_n_t_N ________ _L ______________________ ~c~h~a~in~ex~·~,s~ts~) __________________________________________________ J__I_n_d_ic~J 

~---------
TEST indicator -- specifies that this module is "under test" using 

TESTRAN. (Bit 1) Initialized by program fetch. 
Highest segment no. in storage -- is initially set to 00 except for 

region 1 which is initially set to 01 by linkage editor. 

Status indicator -- indicates the status of this segment with the 
two last bits of the entry table address field as follows: 

4 bytes 

00 segment is in main storage as a result of a branch to the segment. 
10 segment is in main storage, no caller chain exists. 
01 segment is not in main storage, but is scheduled to be loaded. 
11 segment is not in main storage. 

The status indicator for segment 1 is initially 
set to 10, all the rest are initially set to 11. 

~" set to zero by I inkage editor 

----1 

Appendix A: Reference Data For Level E Linkage Editor 117 



Built by: Intermediate Output Processor 
Referred to by: Second Pass Processor 

.~C===S)L---.._ .----1..-1 .L--..I --L-I .l..--I --'--_) )L---_I--L-I 1 1 ] 

~ooe~ 
entry {8 bytes} 

Relative Relocation Constant - not applicable to types ER, PR and Null (3 bytes) 

Segment Number* - segment in which this symbol appears. Segment number ~ 
------ 1 in non-overlay programs. {I byte} 

linkage Editor assigned address - of this symbol {absolute value of the address constant} {3 bytes} 

Indicator-Type - Bit zero is not used. Bits 1, 2 and 3 are used as an indicator field that applies to: 
--._-------- SD, PC - Bit 1 ~ a -- this control section (S D or PC) does not have 

the highes'· CESD entry number in this segment 
~ 1 -- this control section (SD or PC) has the 

highest CESD entry number in this segment 
SD, PC or CM - Bit 2 ~ a -- relcltive relocation constant is a positive value 

_c 1 -- relCltive relocation constant is in 
. complemented form 

PC delete - Bit 3 ~ 1 -- indicah~s that this unnamed control section 
is a SEGTAB or ENTAB. 

Bits 4, 5, 6 and 7 are used to specify the entry type: 
0000 - Section Definitio~SD) 
0010 = External Reference (ER) - all fields are zero except type 
0011 = Label Reference (LR) 
0100 = Private Code (PC) 
0101 = Common (CM) 

* 0110 = Pseudo Register (PR) - the segment number field contains a byte alignment v-olue as follows: 
o ~ byte 01 ignment 
1 ~ half word alignment 
3 ~ full word alignment 
7 = double word al ignment 

0111 ~ Null - all fiel ds are zero except type 

Built and referred to by Intermediate Output Processor 

ITIILr~-,--1 _-------------SS 

- CESD entry number - entries are in segment number order. Each 
----- ----.--- --- entry contains the highest CESD entry number 

(ID) assigned to a section definition (SD or PC) 
within that segment. {2 bytes} 

Note: If segment d,)es not contain text, its corresponding entry contains zero. 

118 

I ] 



REFERENCE DATA FOR SECOND PASS PROCESSING -- LEVEL E 

The following tables are produced during second pass processing by the level Eversion 
of the linkage editor. 

Entry List. 

Bui I t by and referred to by Second Pass Processor 

Entry Table (ENTAB) 

Built by Second Pass Processor 

Address - linkage edi tor assigned address of the 
--- ENTAB entry for this symbol (3 bytes) 

Segment number - that will contain this ENTAB entry 

Half ESD entry number - corresponding to the CESD entry that 
contained the referred to symbol 

Unconditional branch to last Address of referred 
entry BC 15, DISP (15,O) to symbol 

Unconditional branch to last Address of referred 
entry BC 15, DISP (15,O) to symbol 

Unconditional branch to last I Address of referred 
entry-BC 15, DISP (15,O) to sl'mbol 

SVC 45 I 
L 15, 4 (O, 15) Loads GR15 with 

I BCR 15,15 
the value of the ADCON 

"to" seg 
number 

"to" seg 
number 

"to" seg 
number 

"from" 
seg no 

Previous Caller 
(zero initially) 

--I--- -------- ---
Previous Caller 
(zero initially) 

Prev ious Caller 

1----- (zero in~!I9JI2') 
Address of segment 
table (SEGT AB) 

~] 
I 
I 
I 

=] r-- 2 by'" +2 bY'''---''~-IooII·II----2 by'" --1-2 bY,,,+l by,,-... ~'*'I· ___ ---3 by',,------1 

DISP -- is the displacement, in bytes, of this entry from the last entry. 
"to" segment number -- is the number of the segment containing the symbol being referred to. 
"from" segment number -- is the number of the segment that contains th is entry tab Ie. 

Appendix A: Reference Data For Level E Linkage Editor 119 



Text Table I --_. - -.-.----.--~---

Bu i I t ond referred to by Second Pass Processor 

10 1 ~[1~~_~5_I-~~ 

[ CAdde." of ".x, fee. b". '" oo'po' 'ox, boff.e I (4 by'''), 

Data Event Control Block - (DECB) - for text buffer (4 bytes). 

-Indicators - (1 byte) Bit 0 - 0 ~ no more RLD items to be 
processed for text now in buffer. 

1 = RLD items are still to be 
processed for text now in buffer. 

Bit 1 - 0 =. no more text to be processed 
for th is control section. 

1 _. more text to be processed 
for this control section. 

Bit 6 - 0= no text present in buffer. 
1 = text present in buffer. 

Bit 7 - 0 = not last input record in buffer 1. 
1 .=, last input record in text buffer 1. 

-·Multipl icity Number .- of present record (1 byte). 

- <;;.~,:!.! - of bytes of text in text buffer 1 (2 bytes). 

End add, ess + l of th is text buffer (4 bytes) • 

'ita'~ng address of this text buffer (4 bytes). 

T'ext Table .I I 

IJuilt and referred to CJy Second IJ ass Processor 

[-~=? :f-~:' .-. 8,9 1011E52_15-16_19] 
- Address of nE!)(tfree b.r!e in output text buffer 2 (4 bytes). 

Data Event Control Bloc::k - (DECB) - for text buffer (4 bytes). 

120 

-Indicators - (1 byte) Bit 0 - 0 = not first text record of module. 
1 = first text record of module. 

Bit 1 - 0 not writing a text output record. 
1 writing a text output record 

Bit 2 - 0 = not first record of a segment (output). 
1 first record of a segment 

(Note: macro-instruction should be issued). 
Bit 3 - 0 ,= Use BSAM to write out contents of text buffer. 

1 = Use XDAP to write out contents of text buffer. 
Bit 4 - 0 = Not a dummy write of text. 

1 Is a dummy write of text. 
Bit 6 - 0 = no text present in buffer. 

1 .= text present in text buffer 2. 
Bit 7 - 0 = not last input text record in buffer. 

1 last input text record in text buffer 2. 

- Multiplicity Number .- of present record (1 byte). 
-_ .•. _. __ ._--- - --~- "------_.-

COI:!..l2.! - of bytes of text in text buffer 2 (2 bytes). 

--_ .. End c~ress+ 1 of th is text buffer (4 bytes). 



F'orro Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68 

REFERENCE DATA FOR FINAL PROCESSING -- LEVEL E 

The following reference data is used during final processing in the level E version of 
the linkage editor • 

• Partitioned Organization Directory Record 

As Received From BLDL 

Byte 

Name of Load Module (Member or AI ias Name) 

4 

12 

16 

20 

Relative (to beginning of data set) track address of module (TTR) 

Byte of binary 
zeros. 

Continuation of 
track address 

Alios indicator and 
miscellaneous info 

Byte of binary 
Zeros 

I 
Concatenation 
number 

Relative (j·o beginning of data set) 
track address of fi rst text record 

Relative (to beginning of data set) 
track address of note I ist or scatter-

--. --.---~.- .. t----.--.. -.-------.. ---e-----.-. ---------.---.-.. -.---

translation record Number of entries 
in note list *'k 

Module attributes 
0,1,2,3,4,5,6,7 ,8, 9,10,11,12, 13,R, 15 

_. ____ .. ___ .. __ . __ . ...L ____________ ._--L ______________ ,--____ .. ______ . ~. 

I Length (in bytes) of 24 Total contiguous quantity of main storage required by the 
module J first text record 

28 -----~ ~~0:-~-ua-t-io-n ~--·---·I---------M-o-d-u-Ie-·-,s--I-in--k-a-ge-e-d~i to-r--a-SS-ig-n-ed--e-nt-ry--p·o-i-nt-a-d-d-re~ss--··--.-.---

32 Linkage editor assigned origin of first text record 

.----_._--.-.--~----

36 

40 

For load modules in scatter format odd: 
r-----------------------r----------------------------------------------~ 

List (in bytes) 

--.--... - ...... ----- ---.. --c-. 
section name) for 
first text record 

Length of translation table (in bytes) 

ES DI D (CES D entry number of control 
section name) contuining entry point 

Length of Scatter 

ESDID (CESD entry 
number of control 

--_.-

r-------.----------------------------------.---r----------------.-----~I.-.-... Enhypoi~add~H For load modules with RENT or REUS attribute and 01 ias names add; . 

] 44 of the member name 

48 
Member Name 

52L---____ .J 
C _ ____ =J. 551 Bytes - Aligned on a halfword boundary at the end of the PDS record 

---

Alias indicator and miscellaneous information: 
1. Alias indicator -- ° signifies none, 1 signifies alias -- bit ° 
2. Number of relative disk addresses (TTR) in user data field -- bits 1,2 
3. Length of user duta field (in halfwords) -- bits 3-7 

PODS Directory Record size: 
Block format 36 bytes (with 01 ias names, 46 bytes) 
Scatter format 44 bytes (with 01 ias names, 54 bytes) 

For 551, add 4 bytes to sizes given above 
*This is normally a z.ero byte inserted to maintain halfword boundaries. 

If the ~CB ope~and was:pecified as zero and the name was found in the link library, this 
byte will contain 01; If the name was found in the job library, this byte will contain a 2. 
**This byte contains zero if load module is not in overlay. 
Rc·Reserved 

Appendix A: Reference Data For Level E Linkage Editor 121 



Form Y28-66'IO-2, Page Revised by TNL Y28-2301, 1/31/68 

Module Attributes 

Bit Number 

o 

2 

3 

4 

6 

." 

10 

11 

12 

13 

14 
15 

Attributes Bit Setti:Q.9: 

RENT 0 
1 

REUS 0 
1 

OVLY 0 
1 

TEST 0 
1 

LOAD 0 
1 

Format 0 
1 

Executable 0 
1 

Format 0 

Compatibility 0 

Format 0 

Format 0 
1 

Format 0 
1 

Editability 0 
1 

Format 0 
1 

Rese]~ved 

Refreshable 0 
1 

Indication 

Not re-enterable 
Re-enterable 
Not reusable 
Reusable 
Not an overlay module 
OVerlay module 
Not under test 
Under test 
Not only load able 
Only loadable* 
Block format 
Scatter Format 
Not executable 
Executable 
Module contains more than one text record and/or 
RLD record. 
Module contains only one text record and no RLD 
record. 
Module can be processed by all levels of linkage 
editor. 
Module cannot be reprocessed by linkage editor 
E. 
Linkage editor assigned origin of first text 
record is not zero. 
Linkage editor assigned origin of first text 
record is zero. 
Linkage editor assigned entry point is not zero. 
Linkage editor assigned entry point is zero. 
Module contains RLD record(s). 
Module does not contain an RLD record. 
Module can be reprocessed by linkage editor. 
Module cannot be reprocessed by linkage editor. 
Module does not contain TESTRAN symbol records. 
Module contains TESTRAN symbol records. 

Module is not refreshable 
Module is refreshable 

*Module can be loaded only with the LOAD macro instruction. When the module is in main 
storage, it~ is entered directly, not through the use ofaXCTL, LINK or ATTACH macro 
instruction. 

122 



Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68 

• Partitioned Organization Directory Record 

As built by linkage editor 

As built by linkage editor 

Byte 0 

4 

8 

12 

16 

Name of load module (Member or alias name) 

Relative (to beginning of data set)track address of 
module. (TTR) 

Relative (to beginning of data set)trackaddress of first 
text record. (TTR) 

Relative (to beginning of data set)track address of note 
list or Scatter/translation record. (TTR) 

AI ias indicator and 
miscellaneous info. 

Byte of binary 
zeros. 

Number of entries 
in note list.* 

20 Module Attributes (see below) 

I 
Total contiguous main storage required 

0,1,2,3,4,5,6,7,8,9,10,11,12,13,R,15 

24 for the module. Length (in bytes) of first text record. Module's linkage 

----

---

--~--

- --

--~ -

I 

I 

I - --------

28 editor assigned entry point address Linkage editor assigned origin of 

first text record 

I 
For load modules In scatter format add: 

32 

-.-- -------~ 

Length of scatter list (in bytes) Length of transla-

366ion 

40 se 
ai 

table ES DI D (CES D entry number of control ESDID (CESD entry 
(in bytes) section name) for first text record. number of control 

ction name) cont-
ning entry point. For load modules with RENT or REUS attribute and Alias 

names add: 

Entry point C1ddress of the member name 

44 r-- Member name 
48~ _______________________________________________________________________________________ ___ 

SSI Bytes - Aligned on a half-word boundary at the end of the PDS 
record. 

Alias indicator and miscellaneous information: 
1. Alias indicator -- 0 signifies none, 1 signifies alias 
2. Number of relative track addresses in user data field 
3. Length of user data field (in halfwords) 

PODS Directory Record size: 

bit 0 
bits 1,2 
bits 3-7 

Block format 34 bytes (when rounded to a half-word boundary) 
Block format with alias names 44 bytes 
Scatter format 42 bytes 
Scatter format with alias names 52 bytes 

For SS I, add 4 bytes to sizes given above 

R=Reserved 
*Th is byte contains zero if load module is not in overlay. 

Note: The record format shown above is the same 
as the corresponding record format for 
linkage editor F. 

-- --

_J 

Appendix A: Reference Data For Level E Linkage Editor 123 



~~J?J2.'<;::I~.J) Tab~ - built and referred to 
by Cross Reference Table Routine 

'l 8dd'~ _ that ;, a,,;g",d~O th;, 'Ym~g----L 
bol. (4 bytes) 

2:(AD2CESD Table - built and referred to 
by Cross Reference Table Routine 

I I I ) ~~_ I-'------'--'-----'r-----T--""\ 

L(amp~;te 'SD eot,y o"mbe, - 'pedBe, the ('SD eorry eooto;o;o, the 
symbol (2 bytes) • 

. ~ot~,: There is (] one-to-one correspondence between entries in the above tables. 

TABLE - referred to by IEWLCBPT. 

LIST - referred to by IEWLCBPT. 

II 
t,do _~'--M,-I ,-s-sa-g.J..e-ln-d-i-c-a: ~del;ma~ a Ig,""~ ~ oat';" thot deH", 

::J message. (1 byte - hex FF) 

!:2.inter - to I·he first chmacter of a phrase. (2 bytes) 

-~oun~.:..! - of characters in the phrase. (1 byte) 

124 



OVERLAY TREE STRUCTURE -- LEVEL E 

The following are the overlay tree structures for the 15K and 18K versions ot the 
level E linkage editor. 

LEVEL E LINKAGE EDITOR - 15K OVERLAY TREE STRUCTURE 

2 

I 

IEWLELOG 

IEWLCLDB 

3 IEWLEINT 4 

IEWLPOPT 

5 IEWLEMDI *-k 

IEWLETB1 -k-k 

6 IEWLERAT 7 

IEWLCEND 

---

---

, 

* Csect within IEWLELOG 
Csects within IEWLEINP 

-
1 IEWLEROU (Entry Point) ----

!lYVLEAPT 

IEWLESCD 

IEWLEINP 9 IEWLEADA IEWLCFNL IEWLC 
---- --MAP 

IEWLERDS* 

10 11 

8 IEWLCINC 
IEWLEOUT 

IEWLEBTP ---
IEWLCENT 

IEWLCSCN 

IEWLCESD ----
IEWLCRCQ 

IEWLCSY~ 

--

Table and Buffer Area (Minimum) 
See: Table of Table and Buffer Sizes 

Main Storage Allocation Table 

Data Management and Control Program Blocks 

--~~ ~- ---

Appendix A: Reference Data For Level E Linkage Editor 125 



LEVEL E LINKAGE EDI'rGR -- 18K OVERLAY TREE STRUCTURE 
- -._-_ .. _._----_._._._._ .. _.- ------ - ------_ .. _------

2 IEWLEINT 3 

IEWLEOPT 

j,-----------

4 U IEWLClNC 

IEWLEINP 

IEWLEMDI*k 

IEWLCEND 

IEWLCESD 

IEWLERAT 

IEWLCSYM 

IEWLETB 1** 

IEWLERDS* 

IEWLCRCG 

--_ .. _.---_._- .----
1 IEWLEROU 

IEWLEAPT 

IEWLELOG 

IEWLCLDB 

6 IEWLEADA 

IEWLEOUT 

IEWLCENS 

IEWLCENT 

'-

.5 IEWLCSCN 

7 IEWLESCD 8 IEWLCMAP 

IEWLCBTP 

IEWLCFNL 

'-___ ___ :t ____ .. _ .. _ ... __ ------------- ----------

See: Table of Table and Buffer Sizes 
Main Storage Allocation Table 

* Csect within IEWLELOG 
** Csects within IEWLEINP 

126 



Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68 

Obj ect Module -- Control Section Cross ReferencE~ Table 
r-------------------------------------------T-------------------------------------------, 
I Module Name I CSECT Name I 
~------------------------------------------+--------------------------------------------~ 

I EWLCBTP IEWLCBTP 
IEWLCEND I EWLCEND 
I EWLCENS IEWLCENS 
IEWLCENT IEWLCENT 
IEWLCESD IEWLCESD 
IEWLCFNL IEWLCFNL 
IEWLCINC IEWLCINC 
IEWLCLDB IEWLCLDB 
IEWLCMAP IEWLCMAP 
I EWLCRCG I EWLCRCG 
IEWLCSCN I EWLCSCN 
I EWLCSYM I EWLCSYM 
I EW LEAD A 
IEWLEAPT 
IEWLEINP 

I EWLEINT 
I EWLELOG 

I EWLEOPT 
IEWLEOUT 
I EWLEROU 
IEWLESCD 
I EWLETXR 

I EWLEADA 
I EWLEAPT 
IEWLEINP 
I EWLEMDI 
IEWLETB1 
IEWLEINT 
IEWLELOG 
I EWLERDS 
I EWLEOPT 
I EWLEOUT 
IEWLEROU 
I EWLESCD 
IEWLERAT l ___________________________________________ ~ ___________________________________________ J 

General Register Contents at Entry to Modules -- Level E 
r--------------------T------------------------------------------------------------------, 
I Module Entry Point I Register Contents I 
~---------------------+------------------------------------------------------------------~ 
I IEWLCBTP I 2 Address of all purpose table I 
I I 13 -- Address of APT register save are (REG SA) I 
I I 14 -- Return address I 
I I 15 -- Entry point address I 
~--------------------+------------------------------------------------------------------~ 
I IEWLCEND I 2 Address of all purpose table I 
I I *3 Address of entry point, if present I 
I I *4 CSECT length from END card, if present I 
I I *5 10 of absolute ent.ry point on END card, if present I 
I I *6 Address of symbolic name, if present I 
I I 13 Address of APT register save area (REGSA) I 
I I 14 Return address I 
I I 15 Entry point address (IEWLCEND) I 
~--------------------+-----------.-------------.-----------------------------------------~ 
I IEWLCENS I 2 Address of all purpose table I 
I I 13 -- Save area address I 
I I 14 -- Return address I 
I I 15 -- Entry point address I l ____________________ ...1.. ___________________________________________________________________ J 

(Continued) 

Appendix A: RefE~rence Data For Level E Linkage Editor 127 



F'orm Y28-6610--2, Paqe Revised by TNL Y28-2301, 1/31/68 

General Regist~er Contents at Entry to l'obdules -- Level E (Continued) 
r----------------------T----------------------------------------------------------------, 
I Module Entry Poini: I Register Contents I 
1---------------.--------+-------.-----------------------------------------·-----------------1 
I IEWLCENT I 2 Address of all purpose table J 
I I 13 -- Save area address I 
I I 14 -- Return address J 

I I 15 -- Entry point address I 
t--------------·-------+-----------------------------------------------·-------------------1 
~ IEWLCESD I 2 Address of all purpose table I 
I I 4 Byte count of ESD items to be processed I 
i I *5 ID of first ESD item input I 
I I *6 Address of first ESD item to be processed I 
I I 7 Pointer to address specified within IEWLEMDI I 
I I 13 Address of APT register save area (REGSA) I 
I I 14 Return address I 
I I 15 Entry point address I 
~--------------------·-f-------------·------------------------------------------------------1 
I I EWLCFNL I 2 -- Address of all purpose table I 
I I 15 -- Entry point address: IEWLCFNL or IEWLCFAB for normal I 
I I processing; IEWLFSER for SYNAD exit I 
~----------------------+-----------------------------------------------------------·-------1 
I IEWLCINC I 2 -- Address of all purpose table I 
! I 13 -- Address of APT regi ster save area (REGSA) I 
I I 15 -- Entry point address I 
.'--·-----------------f-------------------------------------------------·------------------1 
I 1 EWLCMAP I 2 Address of all purpose table I 
I I 13 -- Address of APT register save area (REGSA) I 
I I 14 -- Return address I 
I I 15 -- Entry point address I 
~------------·-----·--f------------------------------------------------.-------------------~ 

I EWLCSCN I 1 Input record buffer address I 
I 2 AddrE~SS of all purpose table I 
I 13 -- Address of APT register save area (REGSA) I 

I I 14 -- Return address I 
i I 15 -- Entry point address I 
~-------------.------.-+--------------------------------------------------------·-----------1 
I IEWLCSY1'1 I 2 Address of all purpose table I 
I I 4 Byte count of TESTRAN data to be processed I 
I I 6 Buffer address I 
I I 7 Pointer to address specified within IEWLEMDI I 
I I 13 Address of APT register save area (REGSA) I 
I J 14 Return address I 
I I 15 Entry point address I 
~--------------------+------------------------------------------------------------------1 
I I EWLEAD1\ I 2 -- Address of all purpose table I 
I I 13 -- Address of APT register save area (REGS~ I 
I I 15 -- Entry point address I 
~--------------------f------------------------------------------------------------------1 
I IEWLEINP I 2 -- AddrE~ss of all purpose table I 
I I 13 -- Address of APT register save area (REGSA) I 
I I 15 -- Entry point address I 
~-------.---------------+------------------------------------------------------------------1 
I IEWLEINT I 1 Address of parameter list (first half word of parameter I 
I I field is length of field, right justified) I 
I I 13 -- Save area address I 
I I 14 -- Return address I 
I I 15 -- Entry point address I 
l. ___ . ____________ . _______ -L-. _______________________________________________________ . _________ J 

(Continued) 

128 



Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68 

General Register Contents at Entry to Modules -- Level E (Continued) 
r-------·-------------T-----------------------------------------------------------------, 
I Module Entry Point I Register Contents I 
~--------------------1_--------------------------------------------------------------------~ 
Ii I EWLELOG I 0 -- Error code: bits 0-15 0 I 
I I bits 16-19 disposition (1,2,3) I 
I I bits 20-23 severity (1,2,3,4) I 
I I bits 24-31 message number I 
I I 1 Address of first symbol to be printed (optional) I 
I I 13 Address of second symbol to be printed (optional) I 
I I 14 Return address I 
I I 15 Entry point address I 
~-------,-------------1_--------------------------------------------------------------------~ 
I I EWLEMDI I 2 -- Address of all purpose table I 
I I 13 -- Pointer to address specified within IEWLEMDI I 
I I 15 -- Address specified within IEWLEMDI I 
~-------.------------+-------------------------------------------------------------------~ 
I IEWLEOPT I 1 Address of parameter list (first half word of parameter I 
I I field is length of field, right justified) I 
I I 2 Address of all purpose table I 
I I 13 Address of APT register save area (REGSA) I 
I I 14 Return address (INT20A in IEWLEINT) I 
I I 15 Entry point address I 
~--------------------+--------------------------------------------------------------------~ 
I IEWLEOUT I 2 Address of all purpose table I 
I I 13 -- Save area address I 
I I 14 -- Return address I 
I I 15 -- Entry point address I 
~--------------------+------------------------------------------------------------------~ 
I TEWLEROU I 1 Address of parameter list (first half word of parameter I 
I I field is length of field, right justifie~ I 
I I 13 -- Save area address I 
I I 14 -- Return address I 
I I 15 -- Entry point address I 
~--------------------1_------------------------------------------------------------------~ 
I IEWLESCD I 2 -- Address of all purpose table I 
I I 13 -- HESD address of next ENTAB I 
I I 15 -- Entry point address I 
~--------------------+------------------------------------------------------------------~ 
I I EWLETXR I 2 Address of all purpose table I 
I (Text I *3 Assernbl ed address of first byte of text record I 
I Processing) I *4 Byte count of text record I 
I I *5 ID of text record I 
I I 6 Storage address of this input text record I 
I I 13 Address of APT register save area (REGSA) I 
I I 14 Return address I 
I I 15 --Entry point address (I EWLERAT} I 
~--------------------+--------------------------------------------------------------------~ 
I I EWLETXR I 2 Address of all purpose table I 
I (RLD I *4 Byte count of RLD record I 
I Processing) I 6 Storage address of this RLD record I 
I I 13 Address of APT register save area (REGSA) I 
I I 14 Return address I 
I I 15 Entry point address (I EWLERAT} I 
~--------------------L--------------------------------__________________________________ ~ 
I*Pertains to editor input. I l _______________________________________________________________________________________ J 

Appendix A: Reference Data For Level E Linkage Editor 129 



Form Y28-6610-2, Page Revised by TNL Y28-2301, 1/31/68 

Table Construction and Usage -- Linkage Editor E 
r---------------------------------------T-----------T-----------------------------------------, 
I TABl~E I BUILT BY I USED AND/OR ~10DIFIED BY I 
~----------------------------------t-----------+---------------------------------------i 

Alias Table IEWLCENT I EWLCFNL 
All Purpose Table IEWLEINT ** 
Calls List I EWLERAT IEWLCENS 
CESD IEWLCESD IEWLERAT,IEWLCSCN,IEWLCINC,IEWLCAUT, 

IEWLCENS,IEWLCENT,IEWLEOUT 
Delink TablE~ IEWLCESD I EWLERAT 
Downward Calls List IEWLCENS * 
Entry List SCDRELOC * 
Entry Table (ENTAB) IEWLESCD * 
Half ESD IEWLEOUT IEWLESCD,SCDRELOC 
Hafl ESD PrE~fix SCDRELOC * 
High ID Table IEWLEOUT * 
Relocation Constant Table IEWLEADA I EWLEOUT 
Renumbering Table IEWLCESD I EWLERAT 
RLD Note List IEWLERAT IEWLEOUT,IEWLESCD 
Scatter Table IEWLEOUT * 
SEGLGrrH Table IEWLEADA * 
SEGTAB IEWLEOUT SCDRELOC,IEWLCENS 
Text Table I & II IEWLESCD * 
Text I/O Table IEWLERAT IEWLEOUT,IEWLESCD 
Text Note Li.st IEWLERAT IEWLEOUT,IEWLESCD 
Translation Table I EWLEOUT * 
TTR List (TXT I/O Control Table) IEWLERAT IEWLEOUT,IEWLESCD 
XADDCESD Table IEWLCMAP * 
XAD2 CESD Table IEWLCMAP * 

~-------------_------_----------------..1.-_--------.L----___________________________________ ~ 
I *Built and processed enti.rely within one routine I 
I **Major comnllnications area throughout linkage editor processing I l _________________________________________________________________________________________ J 

130 



Form Y28-6610-2 
Page revised 7/23/69 by TNL Y28-6400 

A-type constant 30,45,48 
Absolute relocation 30,43,45,46 
Absolute relocation factor 45-49 
Address assignment processor 17,22,30,38 
Address constant 8 

branch-type (V-type) 29,30,49,50 
del inking of 29,48,49 
non-branch type (A-type) 30,45-49 

"split" 44,52 
Alias 

entry point 43 
name 15,35,42,43,54 

ALI~S statement 14 
processing of 35 

Alias table 35,40,42 
All purpose table (APT) 
13,17,35,36,101-105 

Allocation (ALOC) processor 21 
Allocation of main storage 21 
Area 

user data 35 
Attribute and option routine 17 
Attributes 12,122 

downgrading of 35 
passing of 17 

Automatic library call 
in initial processing 17 
in input processing 21 
processing of 37 

Automatic library call processor 21 
operation of 37 

Automatic promotion of common 27 
Automatic replacement 27 

Blank common 24,27,49 
BLDL macro instruction 35 
Block format attribute 13 
Boundary alignment factor 
Buffer relocation constant 
BUFRLD routine 30 
BUFTXT routine 28 

Calls 
across regions 50 

39 
(BRC) 

automatic library 37 
determination of type 40,41 
downward 42 
exclusive 41,50 
invalid exclusive 50 
library 7 
upward 42 

Calls list 30 
CESD 10 

processing of 25 
record types and subtypes 24 

CHANGE statement 
processing of 34.1 

Channel command word (CCW) 11 
Common (CM) 24 

52 

non-resolution processing of 26 
resolution processing of 27 

Common path routine 27 

Composite dictionaries 9 
Concatenated data sets (on SYSLIN) 
14,17,21 

Control sections 
automatic replacement of 27 
dE~linking of 49 

Control statement processors 32 
Control statement scanner 21 

operation of 31 
Control/RLD record 10,11 
Cross-reference table 14,15 

Delink table 25,26,30 
Delinking 

of common control sections 49 
of external symbol 25 
of non-branch type (~-type) add~ess 

constants 30,413 
DenSE~ record 29 
Determining ESD type 25 
Diagnostic directory print routine 55 
Diagnostic message directory 15 
Diagnostic messages 14,15 
Diagnostic output data set (SYSPRI~r) 

Directory, microfiche 57-58.2 
Downward call 42 
Downward calls list 42 
Dummy text record 45 

END processor 
in load module processing 
in object module processing 
operation of 31 

END statement 8 
purge 30 

ENr~B 11 
computing size of 40 
creation of 50 

ENTAB RLD buffer 50 
Enter routine 26 
Entry list 49 
Entry point processing 31,32 
Entry processor 40,42 
ENrRY statement 43 

processing of 35,42 
EOM indicator 8,10 
EOS indication 10 
Error handling, I/O errors 56 
Error logging 55 
Error messages 7 
ESD 8 

record types 24 
ESD item 

creation of 24 
ESD processing 25 
ESD processor 

23 
22 

in load module processing 24 
in object module processing 24 
operation of 24 

ESDID 9 
Executable attribute 13 

J NDEX 

14 

Irdex: 131 



l"orm Y28-6610-2 
Paqe revised 7/23/69 by TNL Y28-6400 

Exclusive call 41,50 
External reference (ER) 24 

n~n-resolution processing 
resolution processing of 

External references 8 
External symbol dictionary 8 

Final linked address 39 
Final processing 

general 14 
Final processor 54 
Final relocation constant 39 
FIND macro instruction 35 
Fixed (P) format 14_1 
Freeline routine 25 

Half ESD table (HESD) 43 
HESD prefix 52 

of 26 
26,27 

HIARCHY statement processor 31,34,35 
Hierarchy format 12 
High ID table (HIIO) 44 

IEW1.CA01 routine 
Include processor 
INC1.3DE statement 

42 
22,35 
14.1 

in initial processing 14.1 
processing of 32 
with nested members 32 

Incompatible module attributes 17 
Initial processing 14 
Initial ~rocessor 17 
Input pointer 35 
Input processing 13,14 
Input processor 21 
Input text buffer 15 
Input/ouput error handling 56 
Input/output flow 14 
INSERT statement 

processing of 34.1 
Intermediate data set (SYSUT1) 14 
Intermediate output processor 43 
Intermediate processing 

general 14 
operation 43 

Invalid exclusive call 50 

Label definition (1.0) 24 
changing to LR 25 
non-resolution processing of 26 

Label reference (1.R) 24 
non-resolution processing of 26 
resolution processing of 27 

Label routine 26 
LET option 40 
LIBOP routine 38 
Library calls 7 
Library read block 21,35,37 
LIBR~RY statement 14.1,37 
Linkage editor 

general description 8 
major divisions 13 
multiple executions of 22 
organization 19-23 
purpose 7 
relationship to operating system 1 

Load modulE~ 
structure 8 

Load module buffer 15 

132 

Load module processor 21 
operation of 23 

Loose recor:1 29 

Major divisions 13 
discussion of 11 

MAP option 56 
Microfiche directory 51-58.2 
Module 

attributes 12 
load 8 
object 8 
overlay 1 
structure 8 

Module map 14,15,56 
Module map processor 56 
Multiplicity 28 

NAME statement 22,55 
processing of 35 

NAME statement processor 35 
NCAL option 22 
Node point 34 
Non-branch type address constant 45-50 
Non-resolution processing 25,26 
Not editable attribute 13,43 
Note list 11,14 
Null type 24 

ESD processing of 25,26 

Object module 
structure 8 

Object module buffer 21 
Object module processor 22 
Only loadable attribute 13 
OPEN macro instruction 35 
Option table 18 
Options 1,9 

passing of 11 
Organization 18-20 
Output module library (SYSLM~D) 14 
Overlay format 

attribute 12 
module structure for 10 

Overlay modules 
processing by linkage editor 7 

OVERL~Y statement 
processing of 33 

P (position) pointer 9 
PC-delete entry 42 
POS directory 11 
Primary input data set (SYSLIN) 14 
Private code (PC) 24 

ESD processing of 25,26 
marked delete 25 

PROCENTY routine 32 
Program modification 1 
Pseudo register (PR) 24 

non-resolution processing of 26 
resolution processing of 26,21 

Purpose of linkage editor 1 

R (relocation) pointer 9 
RE~D8 routine 32 
Read blocks 21 
Reenterable attribute 12 
Refreshable attribute 13 



Form Y2B-6610-2 
Page revised 7/23/69 by TNL Y2B-6400 

Register loading 
load module processing 23 
object module processing 22 

Relative relocation 30 
Relative relocation factor 45-50 
Relocation 

of A-type address constants 45-49 
of V-type address constants 49,50 
routine 52 
using absolute relocation factor 46 
using relative relocation factor 45 

Relocation constant table 39 
Relocation dictionary 9 
Relocation factor 30,45 
Relocation of address constant 45 

branch type (V-type) 49 
non-branch type (A-type) 45 

Relocation routine 52 
Renumber routine 26 
Renumbering table (RNT) 

in ESD processing 24,26 
in TXT processing 2B 

REPLACE and CHANGE statement processor 
REPLACE statement 

processing of 43 
REPLACE/CHANGE list 24 
REPLACE/CHANGE routine 25 
Resolution processing 26 
Reusable attribute 12 
RLD 9 

flag field processing 30 
position pointer 9 
relocation pointer 9 

RLD buffer 29 
RLD note list 29,30 

, RLD records 
in module structure 9.10 
processing of 29 

scatter format 
attribute 13 
module structure for 11,12 

Scatter load option 11 
Scatter table 12,43 
Scatter/translation record 12,11,43 
Second pass processing 

general 14 
operation 44 

Second pass processor 44 
second pass RLD input buffer 44 
Second pass RLD output buffer 45 
Second pass text buffer 44 
Section definition (SD) 24 

non-resolution processing of 25 
resolution processing of 27 

Segment length table (SEGLGTH) 39 
Segment relocation constant (SRC) 39 
SEGTAB 12 

34 

building of 43 
computing size of 39 

SE3TI\1 27,33,50 
Serially reusable attribute 12 
"Split" address constants ll4 w5i 
Standard DD names 17 
STOW macro instruction 15,35,54-
SYM processor 

in object module processing 
SYM record 10 

in input proces~ing 14 
Symbol resolution 2U 
SYNAD routine 90 
SYSLIB 14,14.1 
SYSLIN 14 
SYSLIN buffer 15 
SYSLIN DCB, use of 17 
SYSLMOD 14 
SYSPRINl' 14 
System status index 5~ 
SYSUT1 13,14 

Temporary linked addresses 39 
Temporary relocation constan~ 
TEST option 

attribute 13 
in load module orocessinc 
in object modul~ process~~c 
module structure tor 11 

Text I/O control table 28 
Text I/O table 28 
Text note list 28 
Text records 

deletion of 28 
dense 29 
dummv 45 
in module structure B,ll 
loose 29 
processing of 28 

Translation table :1.43 
TTR list 45,5 u 
TXT 3nd RLD processor 

in load module processing 
in object module processinq 
operation 28 

TXTIOT routine 28 

Unknown (U) format 
Upward call 41 

Vector table 31 

• ..L 

V-type address constants 
ESD items for 24 
relocation of ug 

weight factor 21 

XDAP 45 
XREF option 56 

23 
22 



.. ' 

Technical Newsletter File Number S3bO-31 

Re: Form No. Y28-6610-2 

This Newsletter No . Y28-6400 

Dare July 23, 1969 

IBM System/360 Operating System 
Link~~~ditor eE) 
Program Lo~i£_~anual 

Previous Newsletter Nos. 'f 28 - 2 3 5 6 
Y28-2301 

This Technical Newsletter, a part of Release 18 of the 
System/360 Operating System, provides replacement pages for the 
Linkage Editor (E) Program Logic Manual, Form Y28-6610-2. These 
replacement pages remain in effect for subsequent releases unless 
specifically altered. Pages to be inserted and/or removed are 
listed below. 

Cover, Preface 
contents, Illustrations 
17,18 
55,56,56.1 
89,90,90.1 
101,102 
Index 

~ change to the text or a small change to an illustration is 
indicated by a vertical line to the left of the change; a changed 
or added illustration is denoted by the symbol • to the left of 
the caption. 

Su~~~y of Amendments 

This amendment describes the improved error 
which uses the SYNADAF macro instruc'l:ion, 
errors. 

handling facility 
and corrects minor 

Please file this cover letter at the back of the publication to 
provide a record of changes. 

IBM Corporation, Programming Publications, 1271 Avenue of the Americas, New York, N.Y. 10020 

PRINTED IN U, S, A. Restricted Distribution 



Technical Newsletter File Number 8360-31 

Re: Form No. Y28-6610-2 

This Newsletter No. Y28-2356 

Date November 15, 1968 

IBM SYSTEM/360 OPERATING SYSTEM 
LINKAGE EDITOR (E) 
PROGRAM LOGIC MANUAL 

Previous Newsletter Nos. Y28-2301 

This Technical Newsletter, a part of release 17 of the 
System/360 Operating System, provides replacement pages for the 
Linkage Editor eE) Program Logic Manual, Forw Y28-6610-2. These 
replacement pages remain in effect for subsequent releases unless 
specifically altered. Pages to be inserted and/or removed are 
listed below. 

Contents 
11-14.1 
17-18.1 
31-34.1 
39-44.1 
81,82 
101,102 
105,106 
Index 

A change to the text or a small change to an illustration is 
indicated by a vertical line to the left of the change; a changed 
or added illustration is denoted by the symbol • to the left of 
the caption. 

Summary of Amendments 

This amendment describes how the linkage editor can produce a 
load module capable of being loaded by the control program into 
either processor storage or 2361 Core Storage. 

File this cover letter at the back of the manual to provide a 
record of changes. 

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602 

PRINTED IN U. S. A. 



Technical Newsletter File Number 5360-31 

Re: Form No. Y28-6610-2 

This Newsletter No. Y28-230 1 

Date January 31, 1968 

IBM SYSTEM/360 OPERATING SYSTEM 
LINKAGE EDITOR (E) 
PROGRAM LOGIC MANUAL 

Previous Newsletter Nos. 

This publication corresponds to Release 15 and contains amend­
ments to the Linkage Editor E PLM publication. Replacement and/or 
supplemental pages to be inserted in the publication are noted 
below. Corrections and additions to text and/or illustrations are 
indicated by a vertical bar to the left of the text or illustra­
tion and a bullet (.) to the left of the illustration caption. 

Pages to Be 
Inserted 

Cover, Preface 
Contents, Illustrations 
7-14.1 
17,18 
21 ,22 
45,46 
49,50 
57-58.3 
89,90 
101,102 
121-130 
Index 

Summary of Amendments 

Pages to Be 
.Removed 

Cover, Preface 
Contents, Illustrations 
7-14 
17,18 
21 ,22 
45,46 
49,50 
57,58 
89,90 
101,102 
121-141 
Index 

This amendment deletes information pertaining to the 44K 
version of the level E linkage editor, and describes modifications 
for automatic system recovery (AS~, an optional feature that may 
be included in model 65 configurations using the MFT or MVT 
versions of the operating system (pages 13, 17, 102, 121-123). 

This amendment also provides: 

• Corrections to Figure 2 (page 10), Figure 19 (page 46) , and 
Figure 22 (page 50) • 

• A microfiche directory (pages 57-58.3). 
• A table describing- the contents of registers when modules are 

entered (pages 127-129). 
• A table describing where tables are constructed and used (page 

130) • 
• A reorganization of Table 2 (page 22). 
• A note that the I/O conventions and record formats for linkage 

editor E and linkage editor Fare the same (pages 90, 123). 

Note: Please file this cover letter at the back of the publica­
tion. Cover letters provide a quick reference to changes and a 
means of checking receipt of all amendments. 

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602 

PRINTED IN U.S.A. RESTRI CTED DI STRI BUTtO N 

None 



READER'S COMMENT FORM 

IBM System/360 Operating System 
Linkage Editor 
Program Logic Manual 

• Is the material: 
Easy to read? "" 
Well organized? 
Complete? 
Well illustrated? 
Accurate?" "" 
Suitable for its intended audience? 

• How did you use this publication? 
o As an introduction to the subject 
o For additional knowledge 

Other" 

• Please check the itenlS that describe your position: 
o Customer personnel 0 Operator 
o IBM personnel 0 Programmer 
o Manager 0 Customer Engineer 
o SystelTIS Analyst 0 Instructor 

Yes 
o 
o 
o 
o 
o 
o 

Form Y28-6610-2 

No 
o 
o 
o 
o 
o 
o 

o Sales Representative 
o Systems Engineer 
o Trainee 
Other 

• Please check specific criticism ( s ), give page number ( s ), and explain below: 
o Clarification on page ( s ) 0 Deletion on page ( s ) 
o Addition on page ( s ) 0 Error on page ( s ) 

Explanation: 

• Thank your for your cooperation. No postage necessary if mailed in the U.S.A. 



Y28-6610-2 

YOUR COMMENTS PLEASE . . . 

This publication is one of a series which serves as reference for systems analysts, program·­
mers and operators of IBM systems. Your answers to the questions on the back of this 
form, together with your comments, will help us produce better publications for your use. 
Each reply will be carefully reviewed by the persons responsible for writing and publish­
ing this material. All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in utilizing your IBM 
system should be directed to your IBM representative or to the IBM sales office serving 
your locality. 

Fold Fold 
...................................................................................................................................................................................... : 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A. 

Attention: Programming Systems Publications 

DepartmE~nt 058 

POSTAGE Will BE PAID BY 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

[ - ----] 
FIRST CLASS 

PERMIT NO. 81 
POUGHKEEP~IE, N.Y. 

- ---------

• 

................................ eoe ............................................................................................................. " .......................................... .. 

Fold 

® 

International Business Jvlachines Corporation 
'Data Processing Division 
112 East Post Road, White Plains, N.Y.l0601 
[USA Only] 

IijMWorld TradEl Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

Fold 

Vl 
'-­
(,.) 

o· o 

c: 
Vl 

~ 



Y28-6610-2 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.106D1 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza! New York, New York 10017 
[ International] 

-< 
~ 
I 

0-
0-

o 
I 

N 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014.0
	014.1
	015
	016
	017
	018.0
	018.1
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034.0
	034.1
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044.0
	044.1
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056.0
	056.1
	057
	058.0
	058.1
	058.2
	058.3
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090.0
	090.1
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	_01
	_02
	_03
	replyA
	replyB
	xBack

