IBM System/360 Operating System

Fixed-Task Supervisor

Program Number 360S-CI-505

This publication describes the fixed-
task supervisor, which performs task
management as a major part of the primary
control program of IBM System/360 Operating
System. In addition, this manual describes
the initial program 1loader (IPL) and the
nucleus initialization program (NIP).

Program Logic Manuals are intended for
use by IBM customer engineers involved in
program maintenance, and by system program-
mers involved in altering the program de-
sign. Program logic information is not
necessary for program operation and use;
therefore, distribution of this manual is
limited to persons with program maintenance
or modification responsibilities.

Restricted Distribution

Y28-6612-2

Program Logic

Form Y28-6612-0,-1,-2, Page Revised by TNL Y¥28-2174, 4,/10/67

PREFACE

This manual describes the internal design
of the fixed-task supervisor of IBM
System/360 Operating System. Although this
publication contains information concerning
the supervisor in environments with a fixed
number of tasks, this publication is issued
only in support of single-task environments
without protection. The external charac-
teristics of this supervisor are described
in the IBM Systems Reference Library.

Information in this document is directed
to the customer engineer who maintains and
services IBM System/360 Computing System
and who is responsible for field mainten-
ance and updating of IBM System/360 Operat-
ing System. This information may also be
used by the programming systems maintenance
programmer and the development programmer
who will expand the system.

This publication may be used to locate
those areas of the system to be analyzed or
modified. The information is presented to
enable the reader to quickly relate the
task management functions to the program
listings (coding) for those functions. The
comments in the listings provide informa-
tion for thorough analysis and understand-
ing of the coding.

PREREQUISITE PUBLICATIONS

Knowledge of the information in the
following publications is required for a
full understanding of this manual.

Third Edition (February 1967)

IBM System/360: Principles of Operation,

Form A22-6821

IBM System/360 Operating System: Con-

cepts and Facilities, Form C28-6535

IBM System/360 Operating System: Super-
visor and Data Management Services, Form

C28-66u6

IBM System/360 Operating System: Super-
visor and Data Management Macro-

Instructions, Form C28-6647

IBM System/360 Operating
TESTRAN, Form C28-6648

System:

IBM System/360 Operating System: Linkage
Editor, Form C28-6538

IBM System/360 Operating System: System
Programmer's Guide, Form C28-6550

IBM System/360 Operating System: System
Generation, Form C28-6554

IBM System/360 Operating System: Intro-

duction to Control Program Logic, Pro-
gram Logic Manual, Form Z28-6605

This is a reprint of Y28-6612-1, incorporating changes released in the

following Technical Newsletter:
Form ‘Number Date
Y28-2161 September, 1967
Specifications contained herein are sub

Newsletters.

ject to change from time to time.

Any such change will be reported in subsequent revisions or Technical

This publication was prepared for production using an IBM computer to

update the text and to control the page and 1line

format. Page

impressions for photo-offset printing were obtained from an IBM 1403

Printer using a special print chain.

Copies of this and other IBM publications can be obtained through IBM

Branch Offices.

A form for readers' comments appearé at the back of this publication.

It may be mailed directly to IBM. Address any additional
concerning this publication to Programming Systems

Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

comments
Publications,

Form ¥28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4,/10/67

INTRODUCTION . & . & @ o o o & « o «

Main Storage Organization.
Partition Usage . « « o« 2 o o o «

Informational Control Blocks
Request Block Queueing. . . « o
Active Request Block Queue e o
Loaded Program List. . . <« . .
Inactive Program List (Optlonal)

/. How the Fixed-Task Supervisor Is

Organized . « « o ¢ ¢ &« o o o o« « « &
Interruption Supervision.
Task Supervision. « « « «
Main Storage Supervision.
Contents Supervision.
Program Fetch
Overlay Supervision
Time Supervision. «

Fixed-Task Supervisor Control Flow . .

CHAPTER 1: INTERRUPTION SUPERVISION
SERVICE ROUTINES. . « « « o o« o o « «

How Interruption Supervision is
Organized . « o o« v o o« o« o« « o« o « «

SVC Control Information.
Relocation Table. . . . « <« « . . .
SVC Table ©. ¢ v v ¢ ¢« v ¢ o o « o «

Optional Extemsion

Interruption Supervision Control Flow.
SVC Interruptions
SVC Entry Procedures
SVC Exiting Procedures
Dispatcher . . . « o @
Resident Type 3 and u SVC
Routine Option.
Input/Output Interruptions.
Timer/External Interruptions. . . .
Program Interruptions
Machine Check Interruptions

CHAPTER 2: TASK SUPERVISION SERVICE
ROUTINES. « o« 2 o o o « o o o o o o« @

How Task Supervision Is Organized. . .
Task Modification . . «
Task Termination. «

Task Supervision Control Flow.
BV Vo -
-~ EXTRACT '« o « o o o o o o s o o «
SPIEe @ « ¢ o o e o o o » a o« o o« @
WAIT -- Single Event. « « « « « . .
WAIT -- Multiple Event. . .
POSTe @ ¢ o ¢ o o o o o o @
Resident Abnormal Termination
Routine (ABTERM) . . . <« ¢« « « « .

.
~N ~

.
(Yo RV=JaVo RV e o]

CONTENTS

ABEND ¢ @ o 2 « o o o o a o o « o =
Normal End .« « ¢« ¢ o ¢« o o o o «
Abnormal End < . . .

CHAPTER 3: MAIN STORAGE SUPERVISION
SERVICE ROUTINES. .« « « o« 2 2 o o « =

How Main Storage Superv131on Is
Organized . . « ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o o «

Main Storage Supervision Control Flow.
GETMAIN . ¢ ¢ o o o o o o o o o « =
FREEMAIN. © ¢ ¢ o o o o o o o o o @

CHAPTER 4: CONTENTS SUPERVISION
SERVICE ROUTINES. . <« « « « o o « o =

How Contents Supervision Is Organized.

Conternts Supervision Control Flow. . .
,/ LINKei @« o « o o o o o = o « o « « o
(LOAD: (e @ 4 & @ o 4 o o e« o o o .
\\X,_(;T»Lp - - - - - - - - - - - - - - -

IDENTIFY. © ¢ o« o o o o o a o« « « =
DELETE. ¢« 2« ¢ « 2 o o« o o a a o« o« =
SYNCH o ¢ o o o @ o o o o o o« o « o
Common Subroutine (FINCH)

CHAPTER 5: PROGRAM FETCH SERVICE
ROUTINES. « o o o o o o o o o o « o =

How Program Fetch Is Organized

Program Fetch Control Flow
Initialization.
Loading « « « o o o o o o o o « o @

Overlay Modules. « . . .
End-of-Extent Appendage.
Input/Output Errors.
Relocation (Adjusting Address
Constants) . « ¢« ¢ o« ¢ v o @ o o .
Termination . « . ¢« ¢ ¢ ¢ o o o o« &

CHAPTER 6: OVERLAY SUPERVISION
SERVICE ROUTINES. 2 « o o « o = « o «

Tables Used by Overlay Supervision . .
Use of Segment Table.
Use of Entry Tables

Branching to a Segment Not in
Main Storage. . . .« « <

Branching to a Segment in Main
Storage < ¢ ¢ e . e o .

How Overlay Supervision Is Organized .

Overlay Supervision Control Flow . . .
Initialization.
Updating of Tables. . . «
Segment Loading . <« <« « < < < .« o .
Termination . . « & ¢ ¢ ¢ o« ¢« o o .

. 25

. 27
. 27
. 27
. 27
. 28
. 28

. 28

Form Y28-6612-0,-1,-2, Page Revised by

CHAPTER 7: TIME SUPERVISION SERVICE
ROUTINES (OPTIONAL) . . « o« o « o «

How Time Supervision Is Organized. .
The Timing Algorithm

Time Supervision Control
STIMER. ¢ o« ¢ o o ¢« o o o o o o =
TIME. ¢« ¢ ¢ ¢ o o o o o o o o o «
TTIMER: ¢ o « o o o o o o o o o =
Timer SLIH. . . . ¢ ¢ ¢ « « « « =

Queueing Subroutine.
Dequeueing Subroutine.

CHAPTER 8:
RECORDING

SYSTEM ENVIRONMENT
-- MODELS 40, 50, 65,

How SER is Organized
SERD o ¢ ¢ o o ¢ e o o o o o o o o @
‘Load Nucleus Resident Module --
IFBSR000.
Link Library Re51dent Module -
IFBSEROO0. . &« o o o« o o o o =

SERL ¢ v ¢ 4 ¢ ¢ ¢ ¢ ¢ o o o o o o =
Environment Recording Area
CHARTS ¢ o« o o o o o o« o o o s = o =

APPENDIX A: INITIAL PROGRAM LOADER
(IPL) & 4 ¢ ¢ e ¢ o o o o o o o o =

How IPL Is Organized

IPL Control Information.
IPL Tables. ¢ ¢ ¢« ¢ o o o o « o« «

IPL Control FlOW . « o« o o o« o o« « =
Nucleus Selection . . . « « « .
Hardware Initialization
Nucleus Location. . . « « « « « =
Control Section Data Organization
IPL Relocation. « « « « ¢ o « « &
Nucleus Load. . « « 2 « o o « « =«
RID Relocation. « « « & ¢ o« « .« .
Common I/0. o o« « « « « o « o o« «

APPENDIX B: NUCLEUS INITIALIZATION
PROGRAM (NIP) . . & ¢ o o o o o « =

TNL Y28-2174,

- 44a

-44B

b/710/67

NIP Control FI1Oow . « < « ¢ & o« « o «
CVT Initialization.
Partition Initialization.
Boundary Box Initialization . . .
Free Area Queue Element

Initialization
UCB Takle and Request Element
Initjialization e e o e
SYS1.SVCLIB, SYSl. LINKLIB, and
SYS1.LOGREC DEB Initialization .
SVC Table Extension (TTR Table)
Initialization « . .
Protection Key Initialization . .
Timer Initialization.
Building a Resident Directory for
SYS1.LINKLIB . . . « . e
Resident Access Method (RAM)
Initjalization « . .
Resident Type 3 And 4 SVC Routine
Initialization . . <« . & . « <« .
Resident Job Queue Initialization

APPENDIX C:
EDITOR MAP

GUIDE TO THE LINKAGE
OF THE NUCLEUS

APPENDIX D 2 2 o 2 2 2 o a o« o = =
Control Record - (Load Module) . . .

Relocation Dictionary Record - (Load
Module) . . . ¢« ¢ ¢ ¢ ¢ 4 e 4 e o .

Control and Relocation Diétionary
Record - (Load Module).

Partitioned Organization Directory
Record - (as Received from BLDL). .
Module Attributes
APPENDIX E v ¢ v o o o o o o o« o « =
Entry Table (ENTAB). . . ¢ o « « « .
Segment Table (SEGTAB)

APPENDIX F: SYSTEM ENVIRONMENT
RECORDING RECORD ENTRY FORMATS. . .

INDEX:. 2 ¢ a o o o o o o « o « o« o

Table

. 63

. 65

.65A

.65B

. 72

.74A

. 75

Form Y28-6612-0,-1

FIGURES

Figure
Figure

1. Request Block Queuwes 9
2. Relocation Table 13
Figure 3. SVC Table. e e o « o 18
Figure 3A. SVC Table Optlonal

Extension . . . e e e e e e o o o « o 18
Figure 4. IRB Format Options 17
Figure 5, Program Interruption

Element (PIE) Format. 21
Figure 6. Main Storage Organization. . . 24
Figure 7. Program Fetch Work Area. . . . 30
Figure 8. Note List (in Main Storage).
Figure 9. Blocks and Tables Used by
Program Fetch . . . e e . . . 31
Figure 10. Typical Load Module

(Logical Format on Dlrect Access

Device) . . . R . B &
Figure 11. Condltlons Affectlng
Channel Program Mode. . . . B 4

Figure 12. Typical Load Module
(Physical Format on Direct-Access
Device) v ¢ o o ¢ e o e o « 2 o « « o o 33

CHARTS

Chart 00. Fixed-Task Supervisor

Control Fl1oWw. . « « « « o« « « « « « - . U5
Chart 01. Interruption Supervision

control Flow. . . . « « « « o - < . b6
Chart 02. Task Supervision Control
FlIOW. v @ ¢ o« o o o a o o a o o =
Chart 03. Main Storage Supervision
Control FIOW. . « « « « « « « « « « - o U8
Chart O4. Contents Supervision Control
Flow. o 49
Chart 05. Program Fetch Control Flow . . 50
Chart 05A. PCI and Channel End

AppendageS . « .« « o o o o o s o o o D50A
Chart 06. Overlay Supervision Control
FlOWe ¢« « =« o o « o o o o o« o o « o« « o 51

.Chart 07. Time Supervision Control
FlOWe « o « o o o o o o o o o o o « « « 52

,—2, Page Revised by TNL Y28-2174,

- Figure

us710/67

ILLUSTRATIONS

Figure 13. Single-Region Overlay
Structure
Figure 14. Overlay Program Upward
Branch. . « . . « <«
Figure 15. Branch to Segment Not in

e e e o e

Main Storage.« ¢ ¢ 4 2 < -
Figure 16. Branch to Segment in Main
Storage e e o o o e e = e =

Figure 17. Chalnlng of ENTAB Entries
Used to Branch to a Segment
Figure 18. Timer Queue- .
Figure 19. Timer Queue Element (96
Bytes). < 4 o 4 . 4
Figure 20. IPL Error TYpPEeS . « « « « =
Figure 21. Main Storage Initialization
Figure 22. Boundary BOX. « « « o« « « =
Figure 23. Boundary Box Initialization
Figure 24. UCB Table Initialization. .
25. Request Element Table
Initjalization. «
Figure 26. DEB Imnitialization.

Chart 08. Initial Program Loader
Contrxol FIOW. o « ¢ ¢ o o o o o o o =
Chart 09. Nucleus Initialization
Program Contrcl Flow. « . .

Chart 10. SERO Link Library Resident
Module Control Flow . . . « « « « « .
Chart 11. SERO Link Library Resident
Module Control Flow (Continued) . . .
Chart 12. SER1 Control Flow
Chart 13. SER1 Control Flow
(Continued) e e e e =
Chart 14. SER1 Control Flow
(Continued) - e e e e e
Chart 15. SER1 Control Flow

(Continued) . « « ¢ o o o« « o o « o =

.54A

.54B
.54C

.54D
.54E

. 54F

The fixed-task supervisor is a group of
service routines that control the use of
the central processing unit and main stor-
age of IBM System/360. This supervision,
called task management in the IBM System
Reference Library, includes supervising the
interfaces between processing programs and
the primary control program. The primary
control program is made up of the service
routines for task management, data manage-
ment, and job management. The fixed-task
supervisor provides the following task man-
agement functions:

e Overlap of central processing unit
operations with input/output channel
activity.

e Servicing of all hardware interrup-
tions. :

¢ Handling of all - calls

(svcs).

supervisor
* Allocation of main storage for programs
and data.

e Dynamic loading of programs not in main
storage.

* Synchronous overlay supervision..
e Use of the hardware timer (optiomnal).
The fixed-task supervisor is part of the

primary control program, which is used to
process batch jobs sequentially. The pri-

mary control program reguires a main storx-
age capacity of at least 32,768 bytes, and
a minimum machine configuration that

includes direct-access auxiliary storage.

MAIN STORAGE ORGANIZATION

In the single-task environment of the
primary control program, main storage is
divided into two areas: the fixed or system
area, and the partition or processing pro-
gram area. In expanded environments with a
fixed number of tasks to be performed, main
storage may be divided into the fixed area
and two partitions, with one task using
each partition, except when the higher-
priority task (a teleprocessing task, for

example) temporarily requires both
partitions.
The fixed area is used for system rou-

tines that perform control functions during

INTRODUCTION

the execution of a processing program. . The
partition is used for a processing program
and its data, control blocks, and tables.

The fixed area is divided into the
nucleus and two transient areas. The
nucleus contains the more frequently used
SVC routines, the interruption handlers,
and other routines and control information.
The transient areas are two buffers into

which 1less frequently used system routines

are brought from the system residence. The
first, called the SVC transient area, is
1024 Dbytes 1long and is used for SVC rou-
tines. The second, called the I/0 supervi-
sor transient area, is 400 bytes 1long and
is wused for the input/output supervisor's
error handling routines.

PARTITION USAGE

A processing program is loaded into the

lower section of the partition. Routines
that the processing program has brought
into main storage with a LOAD macro-

instruction are placed in the upper section
of the partition, the section with the
numerically-greater main storage addresses.
These routines, which may be system or user
routines, remain in main storage for the
duration of the job-step that loaded them,
unless they are removed by using the DELETE
macro-instruction.

When the processing program issues a
LINK macro-instruction, the fixed-task
supervisor loads the requested routine into

main storage following the processing pro-
gram. If this routine LINKs to another
routine, the second routine follows the

first in wain storage. When one of these
routines issues a RETURN macro-instruction,
control returns +to the program or routine
that issued the LINK. For example, if
routine A LINKs to routine B, routine B
finishes and returns to A, and routine A
then LINKs to routine C, the fixed-task
supervisor overlays routine B with routine
C. If 7routine A repeatedly LINKs to B, B
stays in main storage. However, if A LINKs
to C between uses of B, the supervisor
overlays B in the interim period.

A routine that' has been given control
through a LINK macro-instruction and that
has completed its operation and returned
control to the routine that issued the LINK
is termed inactive. A routine that is not
inactive is termed active, implying that

Introduction 7

Form Y28-6612-0,-1,-2, Page Revised by TNL ¥28-2174, 4/10/67

the routine is currently executing, or has
ceded control to another routine but will
eventually resume control.

issues an XCTL macro-
instruction, the main storage occupied by
all inactive routines is freed. If the
issuing routine was not brought into main
storage with a LOAD macro-instruction, the
storage occupied by the issuing routine is
also freed. If the requested routine is
not already in main storage, it is brought
into the lower section of the partition.

When a routine

INFORMATIONAL CONTROL BLOCKS

Processing programs that operate in a
fixed-task environment do so as part of a
task, a unit of work for the CPU. There is
one task control Dblock (TCB) for each
partition, in which to record the addresses
of pertinent information about the user's
programs. This TCB is initialized by the
nucleus initialization program (NIP) prior
to any actual processing, and is used
sequentially for each successive task
performed Dby the system within this parti-
tion. (NIP is described in Appendix B.)

The TCB is 116 bytes 1long, with .an
additional 8 bytes at the end when neces-
sary to support the timing option, and 32

bytes preceding the first byte when
required as a floating point register save
area. The format and contents of the TCB

are given in the publication IBM System/360
Operating System: System Control Blocks.

There may be any number of programs
(logically distinct sections of code) ready
to be executed. Control passes from one
such program to another by any of several
means including a branch, LINK, XCTL, or
ATTACH, or as the result of an interruption
for which an asynchronous exit has been
specified. Every transfer of control other
than a direct branch 1is handled by the
fixed-task supervisor.

Handling such transfers requires the
maintenance of information allowing the
supervisor to return control through the

same seguence of programs but in reverse
order. For example, if A links to B and B
links to C, the supervisor must have the
necessary information to return control to
B when C completes operation and then to A

when B completes operation. The request
block (RB) is the repository for such
information.

Request blocks are chained together to
indicate the transfer of control. Each RB
points to the RB for the program that will

receive control when the program -governed
by the first RB has completed operation.
The last element in the chain is the RB for
the first program executed under the TCB.
This RB points to the TCB instead of to
another RB. In the preceding example, the
RB for program C points to the RB for
program B which vpoints to the RB for
program A, which points to the TCB. The
TCB itself points to the RB most recently
added to the queue, in this case the RB for
program C.

Normally, one RB precedes the processing
program and each requested routine. RBs
are queued on the task control block.
Those for active routines make up the
active request block queue; those for inac-
tive routines make up the inactive program
list.

The first RB is placed on the active RB
queue by NIP. An RB for job management is
substituted for this first RB when NIP
transfers control, via XCTL, to job manage-
ment.

In addition to pointing to another RB or
to the TCB, each RB contains the identifi-
cation of the requested program, the entry
point, the resume (interrupted) PSW, the
size of the request block and the program,
and the type of request block.

There are six types of request blocks:

e Program Request Block (PRB) -- used to
control programs not previously loaded.

e Interruption Request Block (IRB)--used
to control system or user asynchronous
exit routines.

® System Interruption Request Block
(SIRB) -- used to control I/O supervi-
sor error routines.

e Supervisor Request Block (SVRB) -- used
to control type 2 (resident), type 3
(non-resident, unimodular), and type 4
(non-resident, multimodular) SVC zrou-
tines. Types 2, 3, and 4 SVCs may be
enabled.

e Iloaded Program Request Flock (LPRB) --
used to control programs that are LOAD-
ed and are ATTACHed, LINKed, or XCTLed;
also used to control sections of pro-
grams that are specified by the IDEN-

TIFY macro-instruction and are
ATTACHed.

e Loaded Request Block (LRB) -- shortened
form of LPRB, used to control 1load
modules that have the "only-loadable"
attribute. (It is invalid to ATTACH,

LINK, or XCTL to these load modules.)

Form Y28-6612-0,-1,-2, Page Revised by TNL ¥Y28-2174, 4/10/67

The standard format for all request
blocks and a description of their cocntents
is given in the publication IBM System/360
Operating System: System Control Blocks.

REQUEST BLOCK QUEUEING

The TCB points to three RB queues: the

active request block queue, the 1loaded
program list, and the optional inactive
program list. (See Figure 1.)
Active Request Block Queue

The active request block queue is a
pushdown queue made up of PRBs, IRBs,

SVRBs, LPRBs, and the SIRB. There . is one
RB for each program to be executed. The
TCB, through the pointer named TCBRBP,
points to the first (current) RB on the
queue, and the last RB points back to the
TCB. XRBLNK is the queueing field.

When there is an SIRB on the active
request block queue, it is always the first
on the gqueue (pointed to by the TCB). The
routine associated with the SIRB is always
the first executed.

Loaded Program List

The 1loaded program 1list contains LRBs
and LPRBs in a two-way chain. Each 1loaded
program is represented in this list. The
TCB, through the pointer named TCBLLS,
points to the first RB on the loaded
program list. The RBs:. on the 1ist are
chained through the XRBSUC and XRBPRE
fields. XRBPRE for the first RB in the
queue points to the TCB. XRBSUC for the
last RB on the list contains zero.

An LPRB may also appear on the active
request block queue. In this case, it is
maintained on both gqueues simultaneously
through the two different sets of pointers.

Inactive Program List (Optional)

The inactive program 1list, a pushdown
queue chained through the TCBJSE pointer in

the TCB, contains PRBs removed from the
active request block queue. The inactive
list shows only programs still in main
storage. The first program represented on
the pushdown list is considered usable (if
it is a reusable program). XRBLNK is the

queueing field.

HOW THE FIXED-TASK SUPERVISOR IS ORGANIZED

The fixed-task supervisor is composed of
the following major components, each of
which is a functional grouping of supervi-
sor service routines or subroutines: inter-
ruption supervision, task supervision, main
storage supervision, contents supervision,
program fetch, overlay supervision, and
time supervision.

INTERRUPTION SUPERVISION

supervision service
interruptions on a
To do this

The interruption
routines handle all
first or introductory level.
they:

e Save information about the environment
(machine status) at the +time of the
interruption so that the environment
may be recreated later.

s Determine what action needs to be taken
and set up the routines needed.

e Route control to the needed routines.

environment.

e Return to the interrupted

TASK SUPERVISION

The task supervision service routines
maintain control information. They main-
tain the current status of program and

interruption request blocks, task control
blocks, and event control blocks. The task
supervision service routines are
responsible for modifying task operations.

Introduction 9

Active Request Block Queue

-——

B S

— — e

TCBRBP

| KRBLNK | =y ———=——1

1

[m———

| XRBLNK f——p ——————1

b J

| XRBLNK p————4

1|I|
|
|
|
i
|
kl _
[e e e e e e s e e s e e
i |
] o e e e e s s s i S
Ll
Q <]
SR 2 1w
281 8 &
gyl R
MM M
TTK
| e e
e
S S
g
| I 0
[22] | M
& =
> |
—— s rores wod

| ISP |
SVRB

SIRB

| I
PRB

o
1}
ﬂnvm.ﬂ 3
(=] | |
| Ay | M
| MM | | &
[=
I R | |
rﬂilrl'llll-
|||||||| ¥
||||||||| J
3
[}
[=]
lllllllll - [o]
| -
|||||||| 1 | .W
1.cL....I|I|J 5
'
e
0 m 4+
Mmm 24 n
L : A
o r-‘lldllrllllL m
[|
g Do P 3 9
S orEET T l. | 4
o =1 4 m m ~
[o] [N =T ~ ~ A
M mm > ="
LL : 2
e} rHJ1LrI:|I:|L e
(]
¢ I % ¢
TLIK]..IIIM_.IlJ ~ [«
S T2RT g (et g
am % &S
[P A - =
rx =< | | ~
K
L S i
[
iy
[9)]
=]
[
m
(8]
3

TCBJISE p———p——————1

1Il
|
|
|
|
|
»l
|
|
[T—
|
| E
| =
|]
| 21
* Lo
|
|
F e 1
| Z |
| = |
| m |
| & |
| i |
*.IlllllllL
|
|
— b o e ey
=] |
zZ
SNy
24 | A
o] |
— v -

| XRBLNK p——-pg ===~

|
[

PRB

TCB

| IS |

=0

| XRBLNK |

PRB

PRB

| ISSEP—— |

PRB

Request Block Queues

Figure 1.

10

MAIN STORAGE SUPERVISION

The main storage supervision service
routines establish the availability of main
storage and dynamically allocate that stor-
age to a task on . request, within the
partition associated with that task.

CONTENTS SUPERVISION

The contents supervision service rou-
tines maintain a record of the identity of
all programs and routines together with
their status and characteristics, within
each partition. The contents supervision
service routines initiate program fetch for
the dynamic loading of programs, and main-
tain the active RB queue to represent
requests for the use of programs.

PROGRAM FETCH

The program fetch service routine is a
relocating loader which brings a program
module processed by the linkage editor from
secondary storage into a single area of
storage.

OVERLAY SUPERVISION

The overlay supervision service routines
monitor the flow of control between seg-
ments of a program operating in an overlay

structure preestablished by the user
through 1linkage editor. These routines
ensure that all dependent program segments

are brought into main storage by program
fetch before the actual branch is executed.

TIME SUPERVISION

The time supervision service routines
set and maintain a clock, and - honor
requests for time intervals and exact time.

FIXED-TASK SUPERVISOR CONTROL FLOW

As shown in Chart 00, flow in the
fixed-task supervisor is in essence flow of
interruption supervision, with alternate
supplementary flow paths through other
fixed-task supervisor components and other
control program service routines -- those
of data management, input/output supervi-
sion, job management, linkage editing, and
test translation.

All interruptions in the central pro-
cessing unit, in the channels, or in the
devices attached to the channels, that
affect control program processing, are
placed before the interruption supervision
service routines along with information
identifying the cause of the interruption.
These interruption handlers pass control to
those parts of the control program that
service individual interruptions.

When the interruption has been properly
serviced, the interruption supervision ser-
vice routines again receive control and
return the central processing unit to the
state in which it was operating before the
interruption.

The CPU continues processing, but until
another interruption occurs and brings it
back into the supervisor state, it cannot
execute privileged instructions -- it can-

not execute channel instructions, storage
protection instructions, or CPU-state-
changing instructions other than svc

instructions.

Introduction 11

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

CHAPTER 1:

INTERRUPTION SUPERVISION SERVICE ROUTINES

Interruption supervision performs first
level interruption handling: that is, the
passing of control from processing program
to control program and back again. To do
this, the interruption supervision service
routines must:

e Save the interrupted environment.
from

e Insulate interruption routines
each other.

* Exercise entry control to service rou-
tines required because of the interrup-
tion.

e Return control to the interrupted pro-
gram at the completion of interruption
handling.

~ In addition, interruption supervision
provides through the SVC handlers all
interface operations associated with the

four types of supervisor call routines:

e Type 1 SVC routines. These are always
resident and are executed disabled for
their entire length. They usually
effect return of control to the inter-
rupted program without entering the
dispatcher. A type 1 SVC may only call
on other type 1 SVCs. Examples of type
1 routines are GETMAIN, FREEMAIN, EXCP,
WAIT, and EXIT.

e Type 2 SVC routines. These are also
resident; but they are partially ena-
bled, or they call on other than type 1
SVC routines. These routines are com—
pletely reenterable. Examples are
LINK, LOAD, and XCTL.

e Type 3 SVC routines. These are like
type 2 routines except that they are
not resident. They are each brought
into the 1024-byte SVC transient area.
Examples are IDENTIFY, WTO, and LOCATE.

e Type 4 SVC routines. These are
"multi-phase" type 3 routines. That
is, they are too large to be brought

into the transient area at one time and
must be brought in in phases, each
later phase overlaying an earlier one.
Transfer of control from one phase to
another is through XCTL. Examples are
OPEN, CLOSE, and EOV.

Note: Type 3 and 4 SVC routines can be
made resident. See "Resident Type 3
and 4 SVC Routine Option."

12

To achieve a high response time for
input/output interruptions, interruption
supervision has a software-implemented
disabling subroutine called the pseudo
disable routine. This routine allows
input/output interruptions to be processed
without the requesting routine losing con-
trol -- the routine which was interrupted
regains control as soon as the input/output
supervisor. has processed the interruption.
Requesting routines include those system
routines, such as the job management write-
to-operator routine, that must operate
enabled yet not lose control to another
routine.

HOW INTERRUPTION SUPERVISION IS ORGANIZED

Interruption supervision is made up of
the following service routines:
e SVC FLIH - The supervisor call first

level interruption handler does the
introductory work following an svc
interruption, and prepares for the exe-
cution of type 1 SVCs.

e SVC SLIH - The supervisor call second
level interruption handler monitors the
SVC transient area and prepares for the
execution of types 2, 3, and 4 SVCs.

e Type. 1 Exit - This routine is the

exiting procedure for type 1 SVCs.

e EXIT - This SVC routine is the exiting
procedure for types 2, 3, and 4 SVCs.

e Dispatcher - This routine passes con-
trol from routine to routine, whether
system routine or processing program
routine. Through two subroutines, the
dispatcher sets up the mechanism to
handle asynchronous exits and monitors
the I/0 supervisor transient area.

e T/0 FLIH - The input/output first level
interruption handler does the introduc-
tory work following an input/output
interruption and the clean-up work
after the input/output supervisor fin-
ishes second level handling.

e T/E FLIH - The timer/external first
level interruption handler does the
introductory work following any
timer/external interruption and the

clean-up work after the second 1level

handling is completed.

P FLIH - The program first level inter-
ruption handler monitors all program
interruptions.

e PROLOG - This routine is used by P FLIH
to set up input parameters to the
ABTERM service routine of task supervi-
sion. ‘

¢ MK FLIH - The machine check first level
interruption handler routes all machine
checks to system environment recording
(SER) for second level handling, if SER
is supported in the given environment.
Otherwise, the machine is placed in a
wait state.

e Validity Check - This routine is used
as a common subroutine by other system
routines, such as program fetch. The
validity check routine prevents program
interruptions caused by invalid
addresses (those pointing beyond the
boundaries of main storage) passed to

the control program by a processing
program. In installations that have
selected the hardware protection

option, this routine also checks for
mismatch between the storage key of the

addressed block and the protection key'

of the TCB associated with the process-
ing program.

SVC_CONTROL INFORMATION

The supervisor maintains SVC control
information in the SVC table and the relo-
cation table. These tables are in a module
called 1IEASVC00, which is assembled at

system generation time.

RELOCATION TABLE

The relocation table is used to relate
the SVC code number with its corresponding
entry in the SVC table. This relocation
table consists of a number of 1 byte
entries each of which is addressed through
indexing based on the SVC code numbers.
Each entry contains an index factor. If it
is zero, then the associated SVC code is
invalid. If non-zero then the factor gives
the number of the entry in the SVC Table.

The relocation table is divided into two
sections. The first section contains
entries for IBM codes (that is, codes
assigned to IBM-provided SVC routines) and
there is one entry for each code number
from 0 to but not including "High IBM code"
in that order, whether or not that SVC code
is in ‘use 1in the system. The second

Chapter 1:

contains entries for user codes, with one
entry for each code number from 255 to but
not including "Low User Code", in that
order, whether or not the SVC is in use in
the system.

The relocation table is variable in size
with a maximum size of 256 bytes. Both the
size and the contents of the table are
determined at System Generation based upon
the SVC routines included in the system.

The relocation table format is shown in
Figure 2.

| 1 byte |

= 1

| | - - - - - - - - ------- 0
m—

| |

—

| |

b .

| | Each entry in this
p—————q section corresponds to

| | an IBM SVC code number
p-———mi

| | (Ranging upward

[— from 0 to highest)

| |

pmmm——{

| I

b1

| |

| e —— Value in each entry

| | in both sections points
p———— to an SVC table entry

| |

— 4

I |- -=-=-=-=-=--- High IBM Code
|

| | == == == === - - - - - 255
S

| | Each entry in this

| e — 4 section corresponds to a
| | user SVC code number
-1 _

| | (Ranging downward

I — 4 from 255 to lowest)

| |

e 4

| I

e 1

1 | - =-=-=-=-=- === Low User Code
I |

Figure 2. Relocation Table

SVC TABLE

The SVC table is divided into two sec-
tions. The first section consists of a
3-byte entry for each type 1 or type 2 SVC
routine. The second section contains a
1-byte entry for each type 3 or type 4 SVC
routine.

Interruption Supervision Service Routines 13

Form Y28-6612-0,-1,-2, Page Revised by TNL Y¥28-2174, 4,/10/67

Each 3-byte entry contains a 24-bit main
storage address with the three low-order
bits defined as zero. This address is the
address of an SVC routine. The three
low-order bits of this address are used as
a 3-bit field indicating the number of
double-words required for an extended save
area (ESA) in the RB. Each 1-byte entry
contains the ESA information in the last
three bits. If the three bits are zeros, a
type 1 SVC is indicated. The SVC table and
entry formats are shown in Figure 3.

Optional Extension

The SVC table may be extended at system
generation time so that each entry is four
bytes long. The entry for a type 1 or 2
SVC routine contains a high order byte of

zeros and a 24-bit address which includes
the ESA information. Each entry for a type
3 or 4 8SVC routine contains the track

address (TT) of the transient SVC routine
in the first field, the record number (R)

on the track in the second field, the
length of the first text record in the
T T 9 - - - - =-=--- third field, and the size of the extended
| 21-Bit Address | ESA| save area in the last field. The format of
b +—- 3-Byte the SVC table with extended entries is
| | | Entries for | shown in Figure 3A.
- + 4 SVC Types
| | i 1 and 2 Note: This option must be selected if the
I } 1 resident type 3 and 4 SVC routine option is
| | | chosen.
t +—-1
| [
b +-——1
I
I} + { INTERRUPTION SUPERVISION CONTROL FLOW
| I
- +—-1
| | | The flow of control through interruption
b + { supervision, shown in chart 01, starts with
| | | an interruption. The five types of inter-
L T T L - - - - - - ruptions are svc, input/output,
100000 |ESA| timer/external, program, and machine check.
b—t-—1
| | |
SRR WS- 1-Byte
| | | Entries for SVC INTERRUPTIONS
| SVC Types
| | | 3 and U
t————+— When an SVC interruption occurs, there
| | | are two paths to the requested SVC routine.
b4 These paths are described under SVC entry
| | | procedures. When the SVC routine com-
O e TR B T pletes, there are +two possible paths of
Figure 3. SVC Table return. These paths are described under
|<~-—-8 bits——>|<————mmenr 21 bits————————— >|<—-3 bits-->|
r T T 1 T - - - - - ==-
| 00 | 21-Bit Address | ESA |
P—— + 4 i Entries for
| | | | SVC types
3 } 4] 1 and 2
| | I |
L 1 4 d - e e . - - - - -

|<--10 bits—->|<--8 bits—->|<-—-11 bits—-->|<--3 bits—->|

r T T T 1

| TT | R | Length | ESA |

} + + + 4 Entries for

| | | | | SVC types

t } 3 " { 3 and 4

| | | | |

L L L L J e e - - e m - - -
Figure 3A. SVC Table Optional Extension

14

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174,

SVC exiting procedures. The dispatcher is
discussed after the entry and exiting pro-
cedures, to show the flow back to the
processing program.

SVC Entry Procedures

Entry to SVC routines is handled by the
SVC FLIH and the SVC SLIH. The execution
of any SVC instruction causes the hardware
to give control to the SVC FLIH by loading
a new PSW that is disabled for all maskable
interruptions except machine check. The
SVC instruction contains an 8-bit code
which indicates to the SVC FLIH which
service routine is required.

Chapter 1:

4710767

All registers are stored in the SVC save
area. The SVC code is compared to the
largest valid IBM-provided value plus one.
If the code is equal to or larger than the
maximum, the code is analyzed to determine
whether - the request is for a user-provided
SVC routine. Abnormal termination of the
task occurs if the requested SVC routine is
not defined in the particular system con-

figuration. If defined but unsupported
(e.g., DETACH) it 1is treated as a no-
operation' (NOP).

Next, the SVC FLIH "determines whether

the requested SVC routine is listed in a
resident SVC table. If listed, the address
of the SVC routine is picked up from the
table and used to enter the routine.

Interruption Supervision Service Routines 1ua

Form Y28-6612-0,-1,-2, Page Revised by TNL Y¥Y28-2174,

for other than a
FLIH branches to
moving the original
TCB. The SLIH

When the request is
type 1 SVC routine, the
the SVC SLIH after
register contents to the
creates SVRBs for types 2, 3, and 4 SVC
routines. If the routine is a type 2 SVC,
the SLIH passes control +to the routine
directly. If the routine is a +type 3 or
type 4, then control is passed only after
it has been placed in the transient area
via the FINCH routine (described in Chapter
4).

Specifically, the sve SLIH first
separates type 2 requests from types 3 and
4 so that the SLIH's SVRB creation and
initialization subroutine can be executed
immediately. For type 3 and U4 requests,
the SVC SLIH initializes and, if necessary,
fetches the required routines.

The SVRB creation and initialization
subroutine stores the requestor's PSW in
the current RB and then creates an SVRB for
the called routine. The size of the SVRB
is determined from the three low-order bits
of the address in a full word. The address
field of this full word is initialized by
the SVC FLIH for type 2 requests and by the
SLIH for type 3 and 4 requests, to contain
in the three low order bits a value between
1 and 7. This value minus one is equal to
the number of double-words of extended save
area required by the called SVC routine.

The SVRB creation and initialization
subroutine clears the three low-order bits
of the address and saves the address in a
register to preserve it across the GETMAIN
which is issued for the SVRB. After get-
ting the storage for the SVRB, the subrou-
tine initializes it and queues it on the
active RB queue.

If the SVC routine is a type 2, reg-
‘isters 0, 1, and 15 are restored from the

save area of the SVRB, environmental reg-
isters are 1loaded, and the +type 2 SVC
routine is entered.

If the SVC is a type 3 or 4, the SLIH

examines the SVC table, extracts informa-
tion telling the size of the extended save
area needed in the SVRB, and creates and
initializes the SVRB.

If the current transient area occupant
is not the requested routine, the requested
routine must be loaded by FINCH, which is
entered by a BALR. When the loading is
completed, FINCH returns control to the SVC
SLIH.

The separate phases of type 4 SVC rou-

tines bring each successive phase into the
transient area by wusing XCTL wuntil the

Chapter 1:

4/10/67

phases are completed. The
issues an SVC EXIT instruction.

final phase

SVC Exiting Procedures

There are two exiting procedures for SVC
routines -- +type 1 exit and EXIT. Type 1
SVC routines with the exception of EXIT
return to the type 1 exit for handling.
Type 1 exit goes to the dispatcher for task
switching or to the interrupted program --
either a processing program or a service

routine. Types 2, 3, and 4 SVC routines
return to the second procedure. EXIT
dequeues the SVRB from the TCB's active RB

queue and passes control to the dispatcher.

TYPE 1: Type 1 SVC routines branch direct-
ly to the type 1 exit on completion.
Registers are reloaded from the type 1
register save area of the SVC FLIH. The

SVC old PSW is checked to determine if the
requestor of the exiting type 1 SVC routine
was disabled indicating that control is to
be retained. If disabled, the requestor is
reentered by loading the SvVC old Psw. If
the requestor was enabled, two full words,
together called the TCB pointer or IEATCBP
on the listing, are compared. If they are
not equal, a task switch is indicated.
Registers are saved in the task control
block, the SVC o0ld PSW is saved in the
current RB on the active request block
queue, and a branch is taken to the dis-
patcher. If a switch is not indicated, the
requestor of the exiting type 1 SVC is
reentered by loading the SVC old PSW.

2, 3, and 4 SVC routines, as
exit routines and
supervisor-assisted

EXIT:
well as

Types

asynchronous
routines entered by
linkages, complete by using the EXIT rou-
tine directly or indirectly. Using EXIT
directly means issuing an SVC EXIT instruc-
tion. Using EXIT indirectly means issuing
a branch instruction with register 14 as an
operand (ox issuing a RETURN macro-
instruction which expands +to include a
branch on register 14), where register 14
is preset by the supervisor to point to an
SVC EXIT instruction in the nucleus.

EXIT determines the type of routine that
is exiting, performs the necessary terminal
procedures for the routine, and prepares
for return to the routine in control prior
to the exiting routine. In addition, EXIT
determines if the routine to receive
control is an SVC routine executed in the
transient area. It is possible that the

Interruption Supervision Service Routines 15

Form Y28-6612-0,-1,-2, Page Revised by TNL Y¥Y28-2174, 4/10/67

sequence of events has caused the transient
area to be overlaid since the SVC routine
last had control. In this case, the tran-
sient area refresh subroutine of EXIT is
entered to restore the SVC routine to the
transient area.

EXIT passes control to either the dis-
patcher, a processing program, an asynchro-
nous exit routine, or the task termination
routine. The first and most common place
is the dispatcher. The second, a process-
ing program, is given control when the exit
is from a program interruption routine.
The third, an asynchronous exit routine, is
given control when the exiting routine is
an asynchronous exit routine and there are
additional requests for the routine (RQEs)
queued on the IRB under which it is operat-
ing. The fourth, the task termination
routine, 1is given control when the return-
ing program is the highest control 1level
for a task.

When entered, EXIT resets the type 1
switch because, although EXIT is entered as

a type 1 SVC routine, it does mnot return
through the normal type 1 exit. This is
due to the peculiarity of being a transi-

tional routine which passes control from
one program to another.

After resetting the type 1 switch, EXIT
determines 1if the exiting routine is a
program interruption routine. If it is,
the address of a program interruption ele-
ment (PIE) is loaded from the TCBPIE field
of the TCB. The PIE contains the PSW and
the contents of registers 14 through 2 that
were in effect when the program interrup-
tion occurred, unless they were modified by
the user's program interruption routine.
The right half of the PSW saved in the PIE
is moved to the SVC old PSW, registers 14
through 2 are loaded from the PIE register
save area, and the SVC old PSW is loaded to
return control to the processing program.
Unless the user's program interruption rou-
tine modified the values in the PIE or in
registers 3 through 13, the processing
program regains control at the instruction
following that which caused the program
interruption.

If the exiting routine is not a program
interruption routine, EXIT saves registers
10 through 1 in the register save area of
the TCB and obtains the address of the RB
for the exiting routine from the RB pointer
field (TCBRBP) of the TCB and the address
of the RB for the routine next to receive
control from the XRBINK field of the exit-
ing RB. EXIT tests to see if the exiting
RB is an IRB or the single SIRB in the

16

system. (Both IRBs and the SIRB are dis-
cussed under Dispatcher and Exit Effector.)
If it is either, EXIT determines if the RB
has:

e Interruption queue elements (IQEs) with
4-byte link fields.

e TQEs with 2-byte link fields.

e No IQEs.

If the RB has interruption queue ele-
ments, the IQE at the top of the RB's XRBQ
queue 1is removed. If the IQE has a 2-byte
link field, the IQE is returned to the 1I/O
supervisor to be placed on its list of
available queue elements. (In the 1I/0
supervisor program logic manual, IQEs with
2-byte link fields are called request ele-
ments.) Interruption queue elements with
4-byte link fields are not gueued on any
other queue and are effectively discarded
when they are removed from the XRBQ unless
the NEXAVL field of the 1IRB exists, in
which case they are returned to this queue.

The RB is checked for more queue ele-
ments. If +there are more, and if the new
top IQE has a 2-byte 1link field, the
address of the top IQE is 1loaded into
registers 1 and O. If the top queue
element has a U-byte link field, register 0
contains the address of the IQE, as before,
but register 1 contains the data from the
second 4-byte field of the queue element.
In either case, the return address to be
used by the asynchronous exit routine is
loaded in register 14, and the entry point
address of the asynchronous exit routine
from the XRBEP field of the RB is loaded
into register 15 before the routine is
entered. The first word of the RB, poten-
tially the register save area address, is
loaded into register 13.

If there are no other IQEs gueued on the
RB, the saved registers are moved from the
RB's register save area to the TCB's reg-
ister save area. The exiting RB is
dequeued from the active program queue of
the task, and the routine to receive con-
trol 1is <checked to see if it is in a wait
state. If it is in a wait, the first word
of the TCB pointer is set to zero, indicat-
ing that a task switch is necessary. If
the RB is not waiting, the status bits in
the RB for the routine to regain control
are checked to see if the routine is a type
3 or 4 gvc. If it is, the name field in
the RB (XRBNM) is compared to the name of
the routine in the transient area. If the
routine is not in the transient area, the
transient area refresh subroutine is
entered to bring it in. EXIT branches to-
the dispatcher.

Dispatcher

Loading a PSW to pass control to a
routine associated with a request block is
called dispatching. Dispatching is accom-
plished when EXIT, type 1 exit, I/0O FLIH,
or T/E FLIH branches +to the dispatcher.
The dispatcher gives control either to the
routine 1last in control or to a different
routine, or places the machine in a wait
state. Dispatching a routine belonging to
a task different than the task 1last in
control, or placing the machine in the wait
state, is called task switching.

Task
routine in the current task can no
be executed because:

switching occurs when the current
longer

routine has issued a WAIT
setting the WAIT

e The current
macro-instruction,
flag in the RB.

* A system routine has indicated that no
routine in the current task can exe-
cute, by setting non-dispatchabl bits
in the TCB.

* A task of higher priority pre-empts the
carrent task by becoming ready (in
environments where the number of tasks
is fixed but greater than one).

After receiving control, the dispatcher
first schedules any requests for system
asynchronous exit routines. Then it exam-
ines the first and second words of the TCB
pointer. If the first word is not zero, it
dispatches the task whose TCB is addressed.
If the first word contains zero, the dis-
patcher searches for the first ready task
on the queue of TCBs starting with the TCB
addressed by the second word of the TCB
pointer. (In a single-task environment,
the TCB queue has only one TCB on it - the
current TCB.) A ready task is one whose
TCB has no non-dispatchable bits set and
whose current RB is not waiting. In sys-
tems with the timer option (see Chapter 7),
the dispatcher dequeues the timer element
for a task time request before entering the
wait state, and queues it again when leav-
ing the wait state.

When dispatching a task, the dispatcher
places the address of the task in both
words of the TCB pointer, restores the
registers, and loads the resume PSW. If
there are no ready tasks, the machine wait
state is indicated by turning on a bit in
the resume PSW before loading it.

The dispatcher has a very important
subroutine called the exit effector. The
exit effector schedules the input/output

Chapter 1:

Part Three:

supervisor's error routines using the I/O
supervisor transient area and schedules
requests to enter asynchronous exit rou-
tines by:

e Initializing an IRB or the SIRB.

e Placing the IRB or the SIRB on the

active RB queue.

e Manipulating the saved registers to
allow the dispatching of the asynchron-
ous exit routine.

EXIT EFFECTOR: The exit effector consists
of three parts. The first two parts are
used by routines that require asynchronous
exits. The third part 1is a dequeueing
routine used by the dispatcher.

Part Ome: The first part of the exit
effector is the CIRB service routine. This

routine creates and initializes an IRB and,
if specified, acquires additional storage
within the partition for a register save
area and a work area used for building
interruption queue elements (IQEs). The
address of the register save area is locat-
ed in the three 1low-order bytes of the

first word of the IRB. The format of the
IRB is shown in Figure 4.

r 1
| _ |
| 96 bytes (required) |
| |
b 1
| NEXAVI=#%+4 (optional) |
.* 1
| Work area for building IQEs (optional) |
| |
L J
Figure 4. IRB Format Options

second part of the exit
effector is used by a calling routine to
schedule an asynchronous exit routine.
Part two queues the IQE provided in reg-
ister 1 as input, in FIFO order on either
the 2-byte AEQ (asynchronous exit queue) or
the U4-byte AEQ.

Part Two: The

The third, dequeueing part of
the exit effector is entered by the dis-
patcher when the dispatcher finds that the
AEQ points to an IQE. (Each time it is
entered, the dispatcher checks for entries
on the AEQ.) Part three dequeues the IQE
from +the AEQ, finds the IRB and TCB asso-
ciated with the IQE, queues the IQE cn the
IRB and the IRB on the TCB's active RB
queue. When two or more IQEs refer to the
same IRB, they are queued in FIFO order.

Interruption Supervision Service Routines 17

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174,

Part three ensures that no IRB is sche-

duled for a task which has the SIRB on its
active RB queue. The interruption queue
element remains on the asynchronous exit

queue to defer scheduling of the current
IRB until the SIRB is inactive.

I/0 SUPERVISOR ASYNCHRONOUS EXIT PROCESS-
ING: The name of the error routine to
receive control is generated using informa-
tion in the UCB pointed to from the second
half-word of the IQE. If the requested
routine is in the I/0 supervisor transient

area, the routine is dispatched. Other-
wise, FINCH (a routine described in Chapter
4) handles the interface with the data

management BLDL routine and program fetch
to load the error routine into the I/0
supervisor transient area and ensures that
the return address, entry point, and IQE
address are in the registers and that the
current error routine entry point is in the
entry point slot of the SIRB.

EXITING FRCM OTHER ASYNCHRONOUS EXIT ROU-
TINES: When the asynchronous exit routine
for the first IQE is completed, EXIT is
entered. The IQE is then dequeued from the
IRB and is either returned to the I/0
supervisor or queued on the NEXAVL field
that immediately follows the IRB, or dis-
carded.

If there are no additional IQEs gqueued
on .the IRB when an asynchronous exit rou-
tine returns, EXIT dequeues the IRB from
the active RB queue. If there are addi-
tional IQEs queued on the IRB, the neces-
sary initialization steps are executed and
the IRB routine is reentered directly.

If the IRB and a work area were obtained
by using part one of the exit effector, the
work area is freed when the IRB is freed.
If the IRB is to be reused, it is dequeued
but is not freed.

Resident Type 3 and 4 SVC Routine Option

At system generation time, the user can
select the resident type 3 and 4 SVC
routine option. Frequently used routines

can be made resident and need not be
brought into the transient area each time
they are required. A resident type 3 or &4
routine takes on the characteristics of a
type 2 routine except when it issues an
XCTL macro-instruction (see Chart 04).

18

The following differences

4710767

in operation

result when the user chooses the resient
option (and the optional extension of the
of the SVC table).

1.

When the nucleus initialization pro-
gram (Appendix B) makes each type 3 orx
4 routine resident, the routine's
entry in the SVC table 1is changed.
The track address, record number and
length fields are overlaid by X'FF'
and the entry point of the routine.
Each time a type 3 or 4 SVC routine is
requested, the SVC table is checked.
X'FF', a number larger than any track
address, indicates that the entry cor-
responds to a resident type 3 or 4
routine. The format of each entry for
a resident type 3 SVC routine or for
the first module of a resident type U
routine is: ‘

|<-8 bits->|<---21 bits-->|<-3 bits->|

T
| X'FF' | Entry point |
| | address |
L L

1

ESA |

|

i 4

The SVC entry procedure for a resident
type 3 or 4 routine is similar to that
for a type 2 routine, that is, a
resident type 3 or 4 routine does not
require the services of FINCH because,
like a type 2, the routine need not be
loaded into the transient area.

The SVC exiting procedure does not
require the services of the transient
area refresh subroutine if a resident
type 3 or 4 routine receives control
since a resident routine does not
operate in the transient area and
could not have been overlaid since it
last had control. The transient area
refresh subroutine examines the SVRB
of the SVC routine receiving control.
The SVRB indicates that the routine is
a type 3 or 4. If the entry point in
the SVRB does not correspond to the
transient area entry point, a resident
type 3 or 4 routine is gaining con-
trol. If the entry point is that of
the transient area, a non-resident
routine is being requested and the
transient area must be checked to
ensure that the routine has not been
overlaid since it was last used.

The XCTL service routine checks the
RSVC load list created by the nucleus
initialization program (Appendix B) to
determine if the SVC routine is resi-
dent or if it requires loading.

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4,/10/67

INPUT/OUTPUT INTERRUPTIONS

Certain events, such as errors or com-
pleted actions in an input/output device or

in the <channel +to which it is attached,
cause the number of the device and a word
of more detailed information about the

status of the channel and the nature of the
event to be placed in storage. The I/0
FLIH 1is not concerned with the workings of
the channel scheduler or with the inner
details of input/output handling. It per-
forms machine interruption supervision and
insulates the input/output interruption
from other types of interruptions. The I/0
FLIH is given control by the input/output
new PSW. The I/O FLIH is entered:

e Disabled for all maskable interruptions
other than machine check.

e In supervisor state.

The first instruction of the I/0 FLIH is
a NOP/branch switch, set to a branch by the
first input/output interruption, allowing
input/output interruptions to be processed
in groups. The first interruption of a
group causes the I/0 FLIH to execute some
initialization instructions which block any

further execution of this "first-time
logic" for successive interruptions in a
group. Registers two through nine are
saved.

If the system is not pseudo disabled,

the input/output o014 PSW is saved in the
current RB. The wait bit in the
input/output old PSW 1is set to zero

(non-wait state), and registers ten through
one are saved in the TCB's general register
save area.

Chapter 1:

‘off, the dispatcher is

Interruption Supervision Service Routines

If the syster is pseudo disabled,
registers 10 through 1 are saved in the
interruption supervision pseudo disable

save area, and the input/output old PSW is
saved.

I/0 FLIH branches directly to that part
of the input/output supervisor which han-
dles interruptions. Upon return from the
I/0 supervisor, the NOP/branch switch is
reset to no-operation. Registers 2 through
9 are restored.

The pseudo disable switch is tested. If
entered. If on,
registers 10 through 1 are restored from
the pseudo disable save area, and control
returns to the interrupted routine by load-
ing the input/output old PSW.

TIMER/EXTERNAL INTERRUPTIONS

Timer/external interruptions may come
from the optional hardware timer at 1loca-
tion 80, from the interrupt key on the
console, and from six external units. The
T/E FLIH in the fixed-task supervisor han-
dles two kinds of timer/external interrup-
tions: those caused by the optional hard-
ware timer and those caused by the inter-
rupt key on the console. The T/E FLIH
passes control to time supervision for
second 1level handling of timer interrup-
tions and to job management's external
interruption routine for second level han-
dling of interrupt key interruptions.

When an interruption occurs, the hard-

ware stores the current PSW in the
timer/external o01d PSW location, indicates

18A

the cause of the interruption in the inter-
ruption code field in the T/E old PSW, and
loads the new PSW from the timer/external
new PSW location. This gives control to
the T/E FLIH.

The T/E FLIH saves registers 10 through
1 in the TCB, stores the timer/external old
PSW in a standard original old PSW location
(see program 1listing), and examines the
interruption code in the timer/external old
PSW to determine the interruption type.

interruption type is
identified, the T/E FLIH branches to the
appropriate second level handler. On com-
pletion of the second level handling, con-
trol is returned to the FLIH. A second,
simultaneous interruption may have
occurred, and the FLIH checks for this
possibility, handling it in the same way as
the first interruption.

When a supported

After handling supported timer/external
interruptions, the FLIH branches to the
dispatcher. If non-supported timer/exter-
nal interruptions occur, the T/E FLIH
returns control immediately to the inter-
rupted routine rather than to the dispatch-
er.

PROGRAM INTERRUPTIONS

If the program being executed attempts
an improper action, a program interruption
occurs and a code describing the attempt is

stored in the program old PSW. Improper
events causing program interruptions
include addressing non-existent operation

codes and attempting to execute privileged
instructions. Users may specify fixed
point overflow, decimal overflow, exponent
underflow and significance as additional
improper events requiring special handling.

If the user wishes to handle some or all
program interruptions, he first issues a
SPIE macro-instruction which generates a
program interruption element (PIE) and
inserts its address in the TCB. The pro-
gram first 1level interruption handler
(P FLIH) is given control by the hardware
after any program interruption. The P FLIH

Chapter 1:

checks the TCB for an address of a PIE. 1If
no PIE address is present in the TCB, the
interruption is unanticipated, and the P
FLIH passes control to the PROLOG routine
to initiate abnormal termination of the
task.

If a PIE address is present in the TCB,
the PIE is examined and the address of a
program interruption control area (PICA) is
extracted. The P FLIH tests the user's
program interruption mask in the PICA to
see if the user is handling the type of
program interruption that has occurred.
The type that has occurred is shown in the

interruption code in the program interrup-
tion old PSW. If the user is handling the
interruption, the P FLIH saves the old PSW

and registers 14 through 2 in the PIE.
Register 14 is 1loaded with a return
address, register 1 with the address of the
PIE, and register 15 with the address of
the user's routine. The P FLIH places the
address of the user's interruption routine,
obtained from the PICA, into the old PSW,
restores the work registers from the save
area, and loads the modified old PSW to
return to the user's program at the entry
point of his program interruption handler.

The user may return to the main body of
his program from his program interruption
handling routine either by a direct branch
or by issuing a RETURN macro-instruction.
If the user returns to the main body of his
program by a direct branch, he must reset
the first-time-entry switch in the PIE.

If the program interruption type is not
handled by the user, PROLOG is entered by a
branch. This routine sets up the abnormal
termination linkage and branches to ABTERM.

MACHINE CHECK INTERRUPTIONS

If the error detection equipment finds a
machine error, information representing the
internal state of the machine is placed in
the diagnostic scan-out area of main stor-

age. The hardware gives control to System
Environment Recording or causes a wait
state.

Interruption Supervision Service Routines 19

CHAPTER 2:

TASK SUPERVISION SERVICE ROUTINES

The task supervision service routines
maintain control information, cause tasks
to be executed, and perform other task-
related services. Task supervision service
routines:

e Maintain task control blocks.

e Enter tasks into the wait state.

e Post completed events in the
control block.

e Maintain control levels
request blocks.

event

indicated by

HOW TASK SUPERVISION IS ORGANIZED

The task supervision service routines
are functionally divided into two areas in

the fixed-task supervisor: task
modification and task termination.
TASK MODIFICATION

In the fixed-task supervisor, issuance

of an ATTACH macro-instruction causes con-
trol to be given to a routine named by the
issuer of the macro-instruction. The
ATTACH service routine passes control to
the requested routine and regains control
when the attached program completes.
ATTACH optionally posts an event control
block to mark the completion, and, also
optionally, passes control to a user-
specified exit routine. If no special exit
is specified, ATTACH returns control to the
attaching routine.

Through the EXTRACT and SPIE service
routines, task supervision allows the user
to make better use of the system's
controls. EXTRACT provides a processing
program with information contained in spec-
ified fields of the task control block.
SPIE allows the user to specify the address

of an exit routine to be entered when
specified program interruptions occur. The
SPIE routine sets the program mask in the
PSW as specified when a SPIE macro-
instruction is given.

Through the WAIT and POST service

routines, task supervision monitors the
movement of the task between the ready and
wait states. WAIT bars the continuation of
the task until an event specified in the
WAIT macro-instruction parameters has taken
place and has been indicated by the execu-

20

tion of a POST macro-instruction. As an
option, a WAIT routine to service multiple
event completions may be chosen by the
user. POST signals that the event rep-
resented by a specified event control block
has occurred. This may result in a task
being moved from a wait state to a ready
state.

TASK TERMINATION

A task may be terminated by itself or by
the system. Task supervision completes a
task's execution through ABTERM and ABEND
service routines. The ABTERM service rou-
tine schedules the ABEND routine, which
terminates the task. The ABDUMP service
routine is used when a full storage dump is
required.

TASK_SUPERVISION CONTROL FLOW

As shown . in Chart 02, flow of task
supervision 1is the flow of the individual
modular service routines. Each receives
control from interruption supervision and
returns control to its particular exiting
procedure. The one exception is the Abterm
routine, which 1is branched to by any ser-
vice routine, and returns to that routine
by a branch.

ATTACH

The ATTACH service routine searches for
the RB of the requested routine in the
inactive program 1list and in the loaded
program list. If the requested routine is
not in the partition, ATTACH uses FINCH to
bring it in. ATTACH places a request block
on the RB queue for the attached routine.
Control is given to the attached routine by
loading a PSW with an LPSW. The request
block queue is ordered as follows:

¢ RB for the attached routine.
¢ SVRB for the ATTACH routine.
e RB for the attaching routine.

When the attached routine completes, the
ATTACH routine is dispatched and optionally
posts the event control block. If the
attaching routine specified an exit routine

in the ETXR parameter of the ATTACH macro-
instruction, ATTACH places a request block
on the active RB dqueue for the exit
routine. When the ATTACH routine com-
pletes, the exit routine is dispatched, if
this option was specified. When the exit
‘routine completes, the attaching routine is
dispatched.

EXTRACT

The EXTRACT service routine 1is entered

from interruption supervision when the
EXTRACT macro-instruction is issued. Upon
entry, EXTRACT zeroes all fields in the

list area specified by the user, except for
the task input/output table (TIOT) address
field. If the macro-instruction's param-
eters specified TIOT or ALL, the address in
the TCB of the TIOT is inserted into its
respective field in the user's 1list.
EXTRACT issues an SVC EXIT instruction on
completion.

SPIE

The SPIE service routine is used to set
up indications that the user has requested
program interruption control. SPIE is
entered by the SVC SLIH when a SPIE macro-
instruction is given. Thirty-two bytes of
main storage space for a program
interruption element (PIE) is obtained, and
the address of the PIE is saved in the TCB.
In creating the PIE (Figure 5), the SPIE
routine places in the first four bytes the
address of the program interruption control
area (PICA) specified by the processing
program in the SPIE macro-instruction. The
SPIE routine sets aside the second eight
bytes as a program interruption old PSW
save area, and the next 20 bytes as a
5-register save area.

A program mask whose contents is deter-
mined by the interruptions selected is
stored into the caller's resume PSW. SPIE
executes an SVC EXIT instruction on comple-
tion.

r T T 1
User's	o014	
PICA	PswW	Register Save Area
Address	Save	
	Area	
L L 1 4
4 bytes 8 bytes 20 bytes
Figure 5. Program Interruption Element

(PIE) Format

Chapter 2:

WAIT -- SINGLE EVENT

When WAIT is entered by the SVC inter-
ruption handler, the wait count passed as a
parameter of the WAIT macro-instruction is
tested for =zero. If it is =zero, the
routine returns immediately by branching to
the type 1 SVC exit. If it is non-zero,

then the resume PSW of the caller is
enabled for input/output and external
interruptions. The wait and complete Dbits

are tested 1in the ECB whose address was
passed by the macro-instruction. When the
complete bit is on, indicating that this
event is already completed, WAIT branches
to the type 1 exit. If the wait bit is on,
indicating this event is already being
waited for, WAIT terminates the task by
branching to ABTERM. (Checking the wait
bit is performed only if the validity check
option is selected during system genera-
tion.) If neither bit is on, the wait bit
is turned on and the address of the current
RB is placed in the ECB. A wait count of
one 1is placed in the current RB, and the
first word of the TCB pointer, IEATCBP, is
zeroed as a signal to the dispatcher that
the task is waiting. WAIT returns by
branching to the type 1 exit in interrup-
tion supervision.

WAIT -- MULTIPLE EVENT

The WAIT service routine is entered by
the SVC FLIH as a result of a WAIT macro-
instruction. Upon entry to the WAIT
routine, the wait count passed as a param-
eter is tested for zero. If it is zero,
the routine returns immediately by branch-
ing to the type 1 SVC exit. If the wait
count is non-zero, the resume PSW of the
caller is enabled for input/output and
external interruptions. The wait count is
saved and a loop initialized to address the
ECBs addressed by the macro-instruction
parameter list. An ECB counter is incre-
mented as each ECB is addressed.

As in single-event WAIT, on an optional
basis, the wait bit in the first ECB is
tested. If it is on, indicating that this
ECB is already being waited on, the next
ECB is addressed. If the wait bit is off,
the completion bit is tested. If the
completion bit 1is off, indicating that a
POST has not yet occurred, the wait bit is
turned on and the address of the current RB
is placed in the ECB. If this event has
already completed -- if the completion bit
is on -- the wait count is decremented and
tested for zero. If the count is mot zero,
a test is made to see if this address is
the last element in the parameter ECB list.

Task Supervision Service Routines 21

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174,

If it is not the last element, the cycle is
repeated. If it is the last element, the
loop is exited. If the wait count becomes
zero, all +the wait bits in the ECBs are
turned off and the WAIT routine exits to
the type 1 exit, without putting the cur-
rent RB into a wait state since its count
has already been satisfied.

When all ECBs have been addressed and
the wait count has not become zero, the
total number of ECBs specified is compared

to the original wait count. If the number
of ECBs specified is less than the count,
the count cannot be satisfied; the task 1is
abnormally terminated by scheduling ABEND
through a branch tc ABTERM.

If the wait count 1is 1less than the
number of ECBs, a bit is turned on in the
RB to indicate to POST that a wultiple-
event WAIT has been issued where the number
of ECBs is greater than the wait count. If
the wait count is less than or equal to the
" number of ECBs, WAIT inserts the wait count
into the current RB and sets the first word
of the TCB pointer to zero as a signal that
the task is waiting. The WAIT service
routine returns by branching to the type 1
exit routine of interruption supervision.

POST

The POST service routine is entered by
the SVC FLIH after a POST macro-instruction
is issued, but an alternate ertry is
provided so that system routines can branch
directly to POST. Upon entry, POST tests
the completion bit of the ECB whose address
was passed as an input parameter. If it is
on, indicating that the ECB has already
been posted, the POST routine returns by
branching to the type 1 exit or tc the
system routine which entered POST.

If the completion bit is off, the wait
bit is tested to see if this event is being
waited on. If the bit is off, the comple-
tion code is placed in the ECB and the
completion bit is turned on. If the wait
bit is on, the RB wait count is dJdecrement-
ed, the completion code is placed in the
ECB, the completion bit is turned on, and
the wait bit is turned off. POST returns
by branching either to type 1 exit or to
the system routine which branched to POST.

In systems with a multiple event WAIT,
POST performs further operations. When the
wait count in the RB is decremented to
zero, POST tests a bit in the waiting RB to
see if the number of ECBs specified in the
associated WAIT was greater than the wait
count specified.

22

b/71C/67

If the number of ECBs was greater, then
POST turns off the wait bits in all ECBs in
the ECB 1list specified which have not yet
Leen posted, to indicate that no one is

waiting for these events to be completed
and to prevent an erroneous POST. The
address of the ECB 1list is located in a

register save area belonging to an RB or to
the TCB. POST finds the addresses by
determining which RB is waiting. If RB 3
in the following diagram is waiting, the
address of the ECB list is in the register
1 field of the TCB register save area. If
RB 2 is waiting, the list address is in the
same field of the register save area of RB
3. If RB 1 is waiting, the address is 1in
the register save area of RB2.

TCB

r————==7

< -— 1
| | |
| | RB 3 RB 2 RB 1
| | r—————- 1 r——=——= pm———— 1
| | | | | | | |
| t——> F——>4 F-->1 |
| | | | | | | |
‘ I L i] L 3 L 3
e 3

If the number of events waited on equals
the number of events specified, the wait
bits are turned off by POST as the events
complete. After turning off the wait bits,
POST places the completion code in the ECB,
and returns.

RESIDENT ABNORMAL TFRMINATION ROUTIN
(ABTERM)

Certain system routines branch to the
ABTERM service routine to schedule the
abnormal termination of a task. ABTERM
returns to the system routine by Ybranching
to the address passed to ABTERM in register

14.

When entered by a type 1 SVC routine,
ABTERM saves the right half of the SvVC old
PSW and replaces the right half with the
address of an SVC ABEND instruction. The
task completion code 1is stored in the
TCBCMP field provided in the TCB. After
turning cff the type 1 switch in the SVC
FLIH, ABTERM loads registers 0 and 1 from
the +type 1 SVC save area, restores reg-
isters and branches on register 14 as set
by the SVC routine which branched to it.

When entered by any other system rou-
tine, ABTERM locates the current RB on the
RB queue of the TCB, saves the wait count
from the RB, replacing it with a zero wait
count, and saves the <right half of the

resume PSW from this RB. The task comple-
tion code is stored in the TCBCMP field in
the TCB. ABTERM replaces the right half of
the resume PSW in the RB with the address
of an SVC ABEND instruction, restores the
registers and branches on register 14 as
set by the system routine which branched to
it.

ABEND

The ABEND service routine is a type &
SVC routine that is used for both normal
and abnormal termination of tasks. The
basic function of ABEND is to terminate all
internal activities of the current task and
give control via XCTL to the GO module of
job management to continue processing.

Normal End

When ABEND is entered for a normal
termination, it <checks if all data sets
have been closed. If any data sets are
still open, ABEND calls the data management
CLOSE routines. The task completion code
is stored in the TCBCMP field of the TCB,
and all main storage within the task's
partition is designated as a free area.
ABEND then XCTLs to job management to
initiate either the next step of this job
or the first step of a new job.

Abnormal End

When ABEND is entered for an abnormal
termination, it checks if ABTERM was
entered and if it was, ABEND restores the

Chapter 2:

PSW and wait count to the RB that called
ABEND. If ABTERM was not entered, ABEND
stores the completion code in the TCBCMP
field = of the TCB. ABEND purges all
input/output operations initiated for this
task wusing the HALT I/0 option. It per-

forms validity checking of the various

system queues -- such as main storage
supervision queues, contents supervision
queues, and data management queues -- to

prevent ABEND from being’ requested while
ABEND is in progress. ABEND removes the
SIRB from the active RB queue.

ABEND determines the amount of main

storage it will - need and acquires the
storage either by wusing GETMAIN or by
overlaying reentrant code at the beginning

of the partition.

ABEND checks if the abnormally terminat-
ing routine has requested a dump. If a
dump was requested, ABEND searches the TIOT
for a SYSABEND ddname. If this entry is
not located, ABEND assembles pertinent
information and packs it in main storage
for eventual printing by the job management
routines. This information is referred to
as an indicative dump. If the SYSABEND
entry was located, ABEND opens a DCB and
calls a type 4 SVC routine named ABDUMP.
ABDUMP assembles a full hex-formatted dump
of the TCB, PSW, RBs, save areas, and all
of main storage.

Upon completion of either the indicative
dump or ABDUMP, or if no dump was taken,
ABEND attempts to CLOSE all data sets by
calling the data management CLOSE routines.
As in normal termination, all main storage
within the partition is designated as a
free area. ABEND XCTLs to job management
to print the indicative dump if provided
and to initiate the next task.

Task Supervision Service Routines 23

CHAPTER 3:

MAIN STORAGE SUPERVISION SERVICE ROUTINES

The main storage supervision service
routines establish the availability of main
storage space and dynamically assign space
for program loading and work areas. Within
each partition, the main storage supervi-
sion service routines:

e Allocate main storage space dynamical-
ly.

¢ Release main storage space dynamically
on request.

e Maintain a record of all free areas of
main storage.

HOW MAIN STORAGE SUPERVISION IS ORGANIZED

Main storage supervision is permanently
resident within the nucleus, is not reen-
terable, and is disabled for all maskable
interruptions except machine check. It is
made up of the GETMAIN and FREEMAIN service
routines.

The GETMAIN service routine allocates
storage to a task according to its needs,
when a GETMAIN macro-instruction is issued.

The FREEMAIN service routine releases

storage space on request, when a FREEMAIN
macro-instruction is issued.

MAIN STORAGE SUPERVISION CONTROL FLOW

As shown in Chart 03, the flow of main
storage supervision is the flow of the
service routines. The GETMAIN and FREEMAIN
routines receive control from the SVC FLIH,
and give up control through type 1 exit.
Register-type GETMAIN and FREEMAIN requests
have a separate entry point. An exception
occurs when an error condition is encoun-
tered. 1In this case, control passes to
ABTERM by means of a branch.

In the introduction to this manual, main
storage was described as being separated
into at least two areas, the fixed area and
the partition (see Figure 6). The parti-
tion is the area subject to the fixed-task
supervisor's storage allocation algorithm.
This algorithm allocates space in the upper
(higher address) portion of the partition
to LOADed routines and data areas requested
by the user, and space in the lower (lower

24

address) portion to the processing program
itself and to routines it has called
through LINK, XCTL, and ATTACH.
r >l' 1
	,
	Free Area
>} T i -	
	-4t Next FQE
I I B - i -	
I I	
bl ,	
I I	Occupied Area
T	A
I R	R
I I	T
I I Y+ 1 I	
I N	T
I N	I
[T Free Area	(o]
I I	N
O	
I I T —9 -	
	->] 0
[t i i -	
I	
	_
1	
[
[
I >t {1 ----	
I B	
I I B s 2]	
te—}——4—-44¢t HI Boundary	
N Ut	
L——-4{ ¢t LO Boundary	
=—=q	E E
b +{t 1st FQE	<-—4TCB
' L J L J I	
L] - - - -
Figure 6. Main Storage Organization
More specifically, when a processing
program executes a GETMAIN macro-

instruction with a numbered subpool request
ranging from 0 through 127, storage is
allocated in the upper end of the
partition. A request with a subpool number
from 128 +through 255 is invalid for pro-
cessing programs, and causes task termina-
tion. When a privileged routine executes
GETMAIN with a subpool number ranging from
0 through 127, storage is allocated in the
lower end of the partition; subpool numbers
128 through 255 cause storage to be allo-
cated in the wupper end of the partition.
However, by convention, subpool numbers 129
through 248 are not used.

Areas not in use at a
referred to as free areas
resented in a free area queue by a
of free area queue elements (FQEs). Each
free area begins and ends on a double word
boundary; requests for main storage space
are always rounded up to multiples of eight
bytes.

given time are
and are rep-
series

Each free area queue element is eight
bytes long. The first four bytes contain
the address of the next lower free area if
there 1is one, or zero if there is no lower
free area. The second four bytes contain
the length of the free area. The free area
queue element is always in the lowest eight
bytes of each free area.

The first element in the free area queue
is pointed to by the first word of a three
word block in the nucleus. This block,
called the boundary box, is initialized by
the nucleus initialization program and is
pointed +to by the TCBMSS field in the TCB.
The boundary box contains the address of
the beginning of the partition in its
second word, and the address-plus-one of
the end of the partition in its third word.

GETMAIN

When a GETMAIN is executed, the free
area queue is searched for space as 1large
or larger than that required. If found,

the space is allocated, and the amount used

Chapter 3:

is subtracted from the free area from which
it was removed. If space is not found and
the request was conditional, GETMAIN ends
by branching to type 1 exit. If the area
is not found and the request was uncondi-
tional, GETMAIN branches to ABTERM to sche-
dule the termination of the task.

In systems with the optional inactive
program list, GETMAIN frees all routines on
the inactive program list pointed to by the
TCB if adequate space 1is not found by
searching the free area queue. GETMAIN
returns the space in which the freed rou-
tines resided to the free area queue and
searches again. GETMAIN always frees the
inactive program 1list whenever a system
routine requests space in the lower end of
the partition.

FREEMAIN

When a FREEMAIN is executed, the area to
be freed is checked for any overlap with
existing free areas. If overlap exists, an
error has occurred and FREEMAIN branches to
ABTERM for the scheduling of an abnormal
termination of the task. Otherwise,
FREEMAIN combines the area to be freed with
any adjacent free area, by updating that
area's FQE. If there are no adjacent free
areas, FREEMAIN creates an FQE for the
newly freed area and queues the FQE on the
free area queue. On completion, FREEMAIN
branches to type 1 exit.

Main Storage Supervision Service Routines 25

CHAPTER U4:

CONTENTS SUPERVISION SERVICE ROﬁTINES

Contents supervision service routines
record the identity, main storage location,
size, properties and users of routines
which, with the data they operate on, make
up tasks. Completed routines are not
jmmediately destroyed but may remain in
storage until the space is required. Con-
tents supervision service routines maintain
three lists (see the discussion of request
block queueing in the introduction to this
manual) of routines in each partition:

e Active request block queue -- a list of
active routines given control by type
I, 1III, or IV linkage, excluding type

1 SVCs.
e Inactive program list (optional) -- a
list of inactive routines originally

brought into storage by LINK, XCTL or
ATTACH, but which are no longer in use.

list of
brought into

o Ioaded program 1list -- a
frequently-used routines
storage by a LOAD.

Each routine in these 1lists 1is rep-
resented by an RB that immediately precedes
the routine in main storage. Exceptions to
this are: the SIRB, which is permanently in
the nucleus; SVRBs, which are always in the
:upper end of main storage, away from their
associated routines; and "minors,"™ which
are RBs placed on the loaded program list
by the optional IDENTIFY macro-instruction
and which represent routines embedded in
the processing program.

Contents supervision maintains the three
lists by chaining together the RBs for the
routines. Each 1list is pointed to by the
TCB.

HOW CONTENTS SUPERVISION IS ORGANIZED

Contents supervision is made up of the
following service routines: LINK, LOAD,
XCTL, IDENTIFY (optional), DELETE, SYNCH,
and a common subroutine called FINCH.

The LINK service routine passes control
from the routine that issued the LINK
macro-instruction to another routine so
that the issuer regains control when the
second routine completes.

The LOAD service routine brings a rou-

tine specified in the parameters of a LOAD
macro-instruction into main storage and

26

inserts its RB on the loaded program 1list
with a use count of one. If the routine is
already on the 1list, the service routine
merely adds one to the use count, which
thus reflects the number of times a LOAD
has been issued for this routine minus the
number of times a DELETE has been issued
for it.

The XCTL service routine passes control
from the routine issuing the XCTL macro-
instruction to a requested routine. When
the requested routine completes, control is
not returned to the issuer, which has been
removed from the active RB queue, but to
the routine which preceded the issuer of
the XCTL. The issuer of the XCTL is
removed from main storage if it has not
been LOADed

The IDENTIFY service routine causes a
routine named by the issuer of the IDENTIFY
macro-instruction to have a minor RB
created for it, and causes this RB to be
chained on the loaded program list. The RB
which is the result of the IDENTIFY is on
the LOAD 1l1list only for control purposes.
The RBs of these identified routines are
removed from the loaded program list and
the RB space 1is released whenever these
routines are inactive and the routine con-
taining them 1is placed on the inactive
program list or is deleted.

The DELETE service routine decrements
the use count in the RB of a LOADed routine
named by the issuer of a DELETE macro-
instruction. When the use count becomes
zero, DELETE removes the RB from the loaded

program list and frees the storage space
occupied by the routine. (Note: In systems
which include the IDENTIFY macro-

instruction, any minors associated with the
named routine are also removed by DELETE.)

The SYNCH service routine creates,
initializes, and queues program request
blocks. System routines or processing pro-
grams use this routine to create PRBs for
segments of code which they designate by
placing an entry point address in register
15 and executing an SVC SYNCH instruction.
After the PRB 1is queued on the active
request block queue, SYNCH returns by exe-
cuting an SVC EXIT instruction.

The FINCH service routine interfaces
with the data management BIDL routine, and
with program fetch which is described in
the next chapter of this manual, to
retrieve routines from auxiliary storage.
Routines may be retrieved when a LINK,

LOAD, XCTL, or ATTACH macro-instruction is
issued, or when a non-resident SVC routine
or non-resident input/output supervisor
error routine 1is requested. After the
routines are loaded into main storage,
FINCH records information concerning their
attributes and main storage locations into
the appropriate contents supervision lists.

CONTENTS SUPERVISION CONTROL FLOW

As shown in Chart 04, the flow of
contents supervision is essentially the
flow of the individual service routines,
which receive control from interruption

supervision and pass control to their par-
ticular exit routine on completion. FINCH
is an exception in that it receives control
from LINK, LOAD, and XCTL, as well as from
a number of other system routines including
ATTACH and the SVC FLIH, and returns to
whatever routine requested its services.

LINK

The LINK service routine is entered by
the SVC SLIH in response to a LINK macro-
instruction.

LINK searches the 1loaded program 1list
for the RB of the requested routine and if
it is found and is inactive, prepares the
RB for dispatching. If the routine is not
found or if it is active, LINK checks the
first RB on the inactive program list. If
this RB represents the requested routine,
and is reschedulable, LINK prepares the RB
for dispatching.

When these two steps fail, LINK clears
the inactive program 1list and frees the
storage occupied by the represented
routines, and enters FINCH. FINCH con-
structs an RB for the requested routine and
places both the RB and its routine in the
lower end of the partition.

On return from FINCH, LINK prepares the
RB for dispatching by:

e Initializing LINK's SVRB so that reg-
ister loading causes the requested rou-
tine to execute EXIT when it issues the
RETURN macro-instruction.

® Flagging the requested routine's RB to
indicate that it is active.

e Placing the requested routine's RB on
the active RB queue between the RB for
LINK and the RB for the issuer of the
request, to ensure that the requested

Chapter U4:

routine is entered when LINK issues

EXIT.

e Issuing the SVC EXIT instruction.

LOAD

The LOAD service routine is entered by
the SVC SLIH when a LOAD macro-instruction
is issued. LOAD searches the loaded pro-
gram 1list for the RB of the requested
routine, and if it finds it, increments the
use count and passes the - requested
routine's entry point to the issuer in
register 0. LOAD branches to the terminal
portion of LINK that issues +the SVC EXIT
instruction.

If the requested routine is not found on
the 1loaded program list, LOAD kranches to
FINCH to load the routine into storage. On
return from FINCH, LOAD initializes the
requested routine's RB and places it on the
loaded program 1list, sets the RB's use

count to one and branches to LINK to issue
the SVC EXIT instruction.
If the 1resident access method (RAM)

option was selected at system generation
time and the name of the requested routine
is prefixed by IGG019, LOAD searches the
RAM system 1load 1list first. If the RB of
the routine is found there, the use count
is not incremented and the entry point of
the routine 1is passed to the user in
register O. If the RB of the routine is
not found in the system 1load 1list, LOAD
searches the loaded program list and pro-
ceeds as previously described.

XCTL

The XCTL service routine is entered by
the SVC SLIH when an XCTL macro-instruction
is issued.

If XCTL was issued by an SVC routine
operating in the transient area, the XCTL
service routine branches to FINCH to locate
the routine on the SVC library and bring it
into the transient area. XCTL kranches to
that part of LINK that completes the ini-
tialization of the RB and executes an SVC
EXIT instruction.

If XCTL was not issued by a transient
routine, the XCTL routine dequeues the
issuer's RB and its minors from the active
RB queue. The RB for the routine which
issued XCTL is placed on the 1inactive

Contents Supervision Service Routines 27

Form Y28-6612-0,-1,-2, Page Revised by TNL ¥28-2174, 4,/10/67

program 1list unless it was LOADed. If the
requested routine is on the loaded program
list and inactive, XCTL branches to LINK
to:

e Set the active bit in the RB for the

requested routine.
¢ Queue the RB on the active RB queue.
e Issue an SVC EXIT instruction.

If the RB of the requested routine was
not found inactive on the 1loaded program
list, XCTL frees storage of the routines
represented on the inactive program 1list
and branches to FINCH to bring in the
routine. On return from FINCH, XCTL ini-
tializes the routine in the same manner as
if its RB had been found inactive on the
loaded program list.

If the resident type 3 and 4 SVC routine
option was selected at system generation
time and an XCTL macro-instruction was
issued by a type 3 or 4 routine, the XCTL
routine checks the RSVC system load list to
determine if the requested routine is resi-
dent or requires loading.

IDENTIFY

The IDENTIFY service routine is entered
by the SVC SLIH in response to the issuance
of an IDENTIFY macro-instruction which is
an option in the fixed-task environment.

IDENTIFY builds and initializes a minor
request block to describe a routine speci-
fied in the parameters of the IDENTIFY
macro-instruction, and chains this minor to
the loaded program 1list and to the RB of
the routine which contains the identified
routine. IDENTIFY returns to the issuer by
issuing an SVC EXIT instruction.

DELETE

The DELETE service routine is entered by
the SVC FLIH when a DELETE
instruction is issued. The DELETE routine
decrements the use count in the RB of the
routine specified in the parameters of the
DELETE macro-instruction. If the use count
reaches zero, DELETE dequeues the routine
from the loaded program list and issues a
FREEMAIN macro-instruction to release the

28

macro-

storage occupied by the specified routine
and its RB.. On return from FREEMAIN,
DELETE repeats the deleting process for any
minors belonging to the specified routine.
DELETE returns by branching to the type 1
SVC exit.

If the RB of a routine is found in the
Resident Access Method system 1load 1list,
the use count is not decremented by DELETE
and the FREEMAIN macro-instruction is not
issued.

SYNCH

The SYNCH service routine is entered by
the SVC SLIH when a SYNCH macro-instruction
is executed. SYNCH uses GETMAIN to obtain
32 bytes of main storage from the lower end
of the partition for the creation of a PRB.
The PSW in the PRB is initialized by SYNCH
to address the 1location specified in
register 15 by the issuer of the macro-
instruction. SYNCH sets the PSW completely
enabled in problem program mode, with the
protection key recorded in the task control
block. After the PRB 1is created and

. ipitialized, SYNCH queues it on the active

request block queue below the SVRB for
SYNCH, and returns by issuing an SVC EXIT

“instruction.

COMMON SUBROUTINE (FINCH)

The
a branch from seven other

FINCH service routine is entered by
system routines

and it returns to them by a branch. The
seven service routines which branch to
FINCH are:

e ATTACH e SVC SLIH

e TINK e EXIT EFFECTOR

e TLOAD e EXIT

e XCTL

FINCH uses the data management BLDL
routine to locate a named routine on an
external storage device. Using the infor-
mation provided by BLDL, FINCH initializes

the program fetch parameters and uses the
program fetch routine to bring the speci-
fied routine into main storage. FINCH
allows for necessary RBs when issuing GET-
MAIN, and initializes them with the RB type
and the size of the storage space they and
their routines occupy.

Program fetch, a part of the resident
nucleus, places into main storage load
modules obtained frcm the system library or

any other library organized as a parti-
tioned data set. Program fetch is reenter-
able; that is, it can be used concurrently

by more than one task. The module name of
program fetch is IEWFTMIN.

Program Controlled Interrupt (PCI) fetch
is an optional program fetch module that
can be used in place of IEWFTMIN. The
module name of PCI fetch 1is IEWFTPCI.
Either IEWFTMIN or IEWFTPCI is selected at
system generation time. PCI fetch improves
performance on some System/360 models by
requiring only one revolution of the disk
to place the contents of one track into
main storage. The differences between PCI
fetch and standard program fetch are point-
ed out in notes throughout the chapter.

Program fetch has two entry points.
Contents supervision passes control to pro-
gram fetch by branching to IEWMSEPT, over-
lay supervision passes control to program
fetch by branching to IEWFBOSV.

A load module is placed into main stor-
age using block loading, which places an
entire load module into a contiguous main
storage area. IEWFTMIN and IEWFTPCI oper-
ate 1in block loading mode only. Standard
program fetch requires one revolution of
the disk for each RLD record read. Stand-
ard fetch waits for channel end so that it
can begin any necessary relocation. When
it has completed relocation, standard pro-
gram fetch issues another EXCP to read the
next RLD and/or text record. Note: PCI
fetch reads in the RLD and/or text record
and then, rather than waiting for channel
end to occur, it uses a PCI appendage to
allow the channel program to read the next
RLD and/or text record into another buffer.
The PCI appendage gives control to the
relocation subroutine which performs any
relocation that is required on the contents
of the previous buffer while the next
buffer is being filled. This improved
performance assumes:

e That a buffer is always available for
RLD records to be read into.

e That no errors occur during I/O
tion.

execu-

e That no cylinders are crossed while the
program is being fetched.

e That the speed of the CPU allows the

Chapter 5:

CHAPTER 5: PROGRAM FETCH SERVICE ROUTINES

PCI appendage to change a CCW from a
NOP to a TIC to the next channel
program ktefore the channel picks up
that CCW.

HOW PROGRAM FETCH IS ORGANIZED

Program fetch 1is organized to perform
the fcllowing specific functions:

e Initialization. Performs initializa-
tion procedures to prepare for the
loading of a module.

¢ Icading. Reads text records and RLD
records of a load module into main
storage.

e Relocation. Adjusts values of address
ccnstants to reflect the relocation of
a module that has been loaded into main
storage.

e Termination.
cedures after a module has been
into main storage.

Performs termination pro-
loaded

PROGRAM FETCH CONTROL FLOW

Prcgram fetch receives control from con-
tents supervision when either a LINK,
ATTACH, LOAD, or XCTL macro-instruction is
issued and a usable copy of the module
specified is not 1in main storage. When
contents supervision requests a block
module, program fetch 1loads the entire
module. A load module with the scatter
attribute is block loaded. When an overlay
module is requested, only the root segment
is loaded.)

Program fetch receives control from
overlay supervision when a segment of an
overlay program specifies another segment

that is not in main storage either by a
kranch or by 1issuing a SEGWT or CALL
macro-instruction. Aiter receiving control
from overlay supervision, program fetch
loads the requested segment.

The initialization procedures shown in
Chart 05 are performed each time program
fetch begins execution. Control then pass-
es to the loading routine, which reads in
the module. Relocatable address constants
embedded in text records are adjusted by

Program Fetch Service Routines 29

the relocation routine. Control passes
between the loading routine and the reloca-
tion routine until the entire segment or
module is loaded and relocated. Termina-
tion procedures are then performed and
control is returned to the caller.

Note: PCI fetch performs relocation asyn-
chronously with its input/output execution.

INITIALIZATION

Contents supervision supplies program
fetch with the following parameters (see
program listing for contents of general
registers and fetch parameter list):

Main storage address of applicable par-
titioned organization directory record.

Main storage address of an opened data
control block (DCB) to bLke wused while
loading the module.

Main storage address of the work area
to be used (see Figure 7).

Main storage address of area into which
NOTE list is to be read for overlay
programs (see Figure 8).

Main storage address at which to begin
loading the module.

Return address in general register 14.

29A

Byte
r—— 1
0] CHPG1l -Channel Program |
| (7 double words) |
| r —1- 1
32| | ECB | IOB |
| | (1 word) | |
e L 4 1
64| IOB -Input/Cutput Block | IOBSKBUF |
| (8 words) |IOB Seek]|
b T < $ 1
96| Buffer |SEEKBUF -Fetch Seek| |
| (2 words) |Buffer (3 words) | |
b-—- L b
128| REGSAVE -Register Save Area] |
| (10 words) | |
b ! |
160} |
| |
| |
192} |
I I
] |
2244 RLDBUF |
I I
| Relocation Dictionary Buffer |
256 |
i (64 words) |
| |
288 |
| |
| |
320} |
| |
| I
352] |
I |
| I
384 |
| |
L J

Figure 7. Program Fetch Work Area

Overlay supervision supplies
fetch with the following parameters:

program

e Main storage address of the data con-
trol block (DCB) previously used to
read in the root segment.

e Main storage address of the note list
(loaded before the root segment).

e Main storage address of a work area for
use by program fetch.

30

Note: The work area for PCI fetch is

within the PCI program.

¢ Segment number of the requested segment
multiplied by 4.

e Return address in general register 14.

r———= - . 1
| |Relocation factor for module |
| | |
i L 4
¥ T . 1
| | Concatenation |
| | Number |
t L i
| TTRO - relative (to beginning of data |
|set) disk address of segment 1 I
- J

i
| TRRO - relative (to beginning of data |
|set) disk address of segment 2 |
L— _ 1
| I
I |
r - 1
| TRRO - relative (to beginning of data |
|set) disk address of segment N |
L J

Concatenation Number - This a value
specifying this data set's sequential
position within a group of concaten-
ated data sets.

Figure 8. Note List (in Main Storage)

After receiving control, program fetch
uses the parameters supplied to build an
input/output block (IOB), an event control
block (ECB), and a channel program (CCW
list) in the specified work area. The
channel program is used to read in the
program, and if necessary, the note 1list
containing the relative disk addresses of
the overlay module's segments. Figure 9
shows the relationship of the blocks and
tables used by program fetch to load block
and overlay modules.

Note: PCI fetch builds three channel pro-
grams in the PCI fetch work area. The work
area also contains three relocation dic-
ticnary buffers.

r) |
r >4 DCB (for library |
| r——>{containing program|
| | | being loaded) |
| = 1| L 4
r 1 | | t—-1
| | | | I0B | r 1
| Parameter |j——————- 4 | b >4 ECB |
| . k=== | [t B 4
| List b= | R |
| [| r 1
L 1| L——->] Channel Program |
I | L J
||
| 1
|1 ———————————— r 1
L-—->{PDS Directoryp——————=——7	ewccccccccccen.]			
	Record -————-1		.Direct-Access.	
]			e-.Deviceeeeea.]
		1 R [N [P		
t 1]	>+ {			
Block Modules				Program
		t 1		
		[P		
		I		
		t .		
1 1 1				
T T T				
		r 1		
			..:.........._.	
			.Direct-Access.	
Overlay Modules				eee..Device....
		[
	t >+ i			
		SEGTAB		
	j=——————-	Overlay Module		
		Segment 1		
	t !			
[m———————— 1		Segment 2		
b >4		t 4		
Note			Segment 3	
I		b 1		
List			Segment U4	
l L > {				
		Note 1list		
b e . t 4				
P R				
[
r 1 Jeeeeeecreecannel				
Legend	eoocevscaccacasl			
specifies]]eeeececacaneanesl			
——— > a pointer		ewcecccaccaccassl		
L J L J
Figure 9. Blocks and Tables Used by Program Fetch
LOADING length and the relative disk address of a

A load module (Figure 10) consists of
control records, text records, RLD records,
and composite control RLD records. These
records are of variable length. Their
formats are shown in Appendix D.

After control is received from contents
supervision, program fetch obtains the

Chapter 5:

module's first text record from the parti-
tioned organization directory record (see
Appendix D). Subsequent text records are
read using the length given in the control
record preceding each text record. One or
more records containing RID information
will follow a text record that has embedded
relocatable address constants. Program
fetch uses the RID information to find and
adjust the values of the address constants.

Program Fetch Service Routines 31

When 1loading a klock or overlay module,
progran fetch alters the mode of its chan-
nel program according to the type and
sequence of records contained in the module
(see Figure 11). The normal sequence of
records in a module is: control information
- text record - control information - text

record. Two records are read at a time as
long as the normal sequence -- a text
record followed by control information --

When the second of the two
records read in the normal mode does not
contain control information, program fetch
alters the mode of the channel program so
that a subsequent EXCP macro-instruction

is encountered.

causes a single record to be read. Each
record read singly is checked for control
information. If present, procgram fetch

restores its channel program to the normal
mode. Text records are read into their
assigned main storage location; RLD records
are read into the RLD buffer.

As program fetch 1loads a module, it
reads the count record preceding each data
record into the fetch seek buffer. The
channel program's search command specifies
the last count record read. This is the
count record that precedes the last data
record that was read. When the count
record specified by the search command is
found, a subsequent read count, key and
data command will result in skipping the
data record that followed the count record
and will begin reading at the next count
record, as shown in Figure 12.

r 1T 1r 1T 1r 1T T 1
Record 1		Record 2		Record 3		Record 4		Record 5		Record 6		Record 7
Control		Text		Control		Text	1 RLD		Control-RLD-		Text	
I	1	1	1		End-of-seg.							
20 bytes		500 bytes		20 bytes		1024 bytes		260 bytes		200 bytes		15 bytes
L 1L 1 S 3L 1L It]
Figure 10. Typical Load Module (Logical Format on Direct-Access Device)
- T T 1
| Number of Records | Source (if any) of Record Length | |
| Condition |Read With Each | and Relative Disk Address (TTR), |
| |EXCP Issued | if not reading sequentially |
t + T + 1
| |standard| PCI | |
| | Fetch | Fetch | |
| Normal first EXCP for all 3 + { Partitioned Organization Directory |
| modules including root 12 | reads | Record | |
| segment of overlay modules | lall | |
| | | recoxds | |
| | |connected | |
| Normal Mode |2 |with | Control record provides record |
| | |the | length of following text record |
| | |load | |
| First EXCP for a segement |11 |module | NOTE 1list provides relative disk |
| : | | | address (TTR) |
| | | | |
| EXCP for a NOTE list |1 |1 | Partitioned Organization Directory |
| | | | Record) . |
| EXCP to read a control |1 |not appli-| None |
| and/or RLD record that prev- | |cakle for | |
| iously caused an incorrect | |PCI | |
| length input/output error | | | |
| | | |
| Previous record was RLD only | |not appli-| None |
| (did not contain control |11 |cakle for | |
'} information) | |PCI | |
| | | | |
| EXCP for a module that con- | | | Partitioned Organization Directory |
| sists of one text recocrd and |1 |1 | Record |
| no RID records | | | |
| : | | | |
| Last record of the module is | |not appli-| Control record provides record |
| a text record |11 |cable for | length of following text record |
| : i |PCI | |
L 4 1 4 J

Figure 11.

32

Conditions Affecting Channel Program Mode

Will result in a
subsequent read
of data starting

Note: For PCI
fetch,a search

for this count

program when either of the
tions occur:

following condi-

e The last text record of a module is to
ke read (indicated by the setting of
the end-of-segment bit in the preceding
control record).

° loaded consists of a

A module to be

single text record without any RLD

information following it (indicated by

the module's attributes in the PDS
directory).
Overlay Modules

When ~an overlay module is loaded, its

NOTE list is first read into main storage.

The root segment is then read into main
storage using normal block 1loading proce-
dures.

i
N

While an overlay program is being exe-
cuted, the NOTE 1list which contains the
main storage address of the SEGTAB and the
relative disk addresses of the module's
segments, remains in main storage.

After the root segment has been loaded
the SEGTAB is initialized. Program fetch
inserts, into SEGTAB, the main storage
address of data control block (DCB) and the

Chapter 5:

|
|
|
record. | here.
' v
Count Data Count Data Count Data Count Data Count Data Count Data
T T T T7T T7T - TTY™T™T =TT T 7T 17777777 7T T
P [I [| I I [I I I I
1 | |Control|l | | | Text | | | |Control] | | | Text | | | |Control}l | | | Text
o I I 1 I I I | | [
L1 AL _ L. 1 ———— L1 11 L1 11 —d b1 1L 11
| A [
| | I
L | 4
Previous EXCP | |
|
A search for Will result in a
this count subsequent read
record count, key and data
starting here
Figure 12. Typical Load Module (Physical Format on Direct-Access Device)
Note: For PCI fetch, the search command NOTE list, and if required, sets the
specifies a count record and the subsequent TESTRAN indicator.
read begins with the data that follows that
count record. See Figure 12. To read in a segment other than the root
segment, program fetch uses a relative disk
Program fetch causes a single record to address found in the NOTE list to read the
be read by turning off the command chaining first control record of the segment. The
bit in the first read CCW of the channel information in the control record is wused

to begin reading in the

normal mode.

segment in the

End-of-Extent Appendage

A load module may reside in one or more
extents on a direct-access device. The
boundaries of these extents are specified
in the data extent block (DEB) for the
library containing the module being loaded.
When an EXCP macro-instruction is issued
that results in crossing one of the extent
boundaries within which a portion of the
rmodule being loaded resides, the
input/output supervisor passes control to
program fetch's end-of-extent appendage.
The appendage acquires the beginning extent
boundary for the next portion of the 1load
module from the DEB, places it into the
unit control block (UCB), and returns con-
trol to the input/output supervisor.

Input/Output Errors

All .input/output errors are handled by
the I/0 supervisor, except incorrect length
errors occurring while reading

control
and/or RLD records. .

Program Fetch Service Routines 33

Note: For PCI fetch, all input/output
errors are handled by the I/0 supervisor.

Normally, an incorrect length indication
is expected when reading control and/or RLD
records, since they are variable length and
their specific 1length is not known in
advance. After reading such a record with
a maximum possible count (256 bytes), pro-
gram fetch examines the content of the
record to check that what was read was of
correct length. If this check fails, pro-
gram fetch makes one more attempt to read
the record, this time with the exact
expected count. If the attempt to reread
fails, control is given to the caller and
an error code is passed.

RELOCATION (ADJUSTING ADDRESS CONSTANTS)

Program fetch adjusts address constants
by adding (or subtracting) a relocation
factor to (or from) the address constant's

value that is embedded in the load module.

When a module 1is block 1loaded, its
relocation factor is the difference between
its 1linkage editor assigned address, which
is always zero, and the first byte of main

storage into which the module is to be
loaded. For example, assume a module is to
be loaded into main storage beginning at
address 4000. If the RID flag bit is

positive a relocation factor of +4000 is
added to the relocatable address constant.
If, however, the RLD flag bit is negative,
the relocation factor is subtracted from

34

the address constant (see
RLD entry format). The 1linkage editorx
assigned address of every relocatable
address constant is given by the relocation
dictionary (RLD).

Appendix D for

Address constants in the root segment of
an overlay module are adjusted in the same
manner as those in a block module. The
root segment's relocation is used to adjust
the address constants of all segments of
the module since an overlay module is

essentially block loaded. The relocation
factor is stored in the NOTE 1list by
program fetch and is available throughout

the execution of the overlay module.

TERMINATION

When a block module or the root segment
of an overlay module has been 1loaded,
program fetch computes the relocated entry
point of the module and places it in the

fetch (parameter) 1list. When a root seg-
ment of an overlay module is 1loaded, pro-
gram fetch also inserts the main storage

address of the data control block (DCB) and
the NOTE 1list into the segment takle
(SEGTAB) .

To specify a successful or unsuccessful
loading, program fetch passes the appropri-
ate termination code to its caller. Con-
trol is then returned to the caller via a
kranch to the address in the link/return
register.

CHAPTER 6:

OVERLAY SUPERVISION SERVICE ROUTINES

The overlay supervision service routines
control the loading of overlay program
segments and assist the flow of control
between the segments of an overlay program.
While performing these functions, these
routines place data into and use data from
the segment table (SEGTAB) and the entry
tables (ENTABs).

Because the segment and entry tables are
part of each overlay program, the overlay
supervisor is reenterable and its services
can be used concurrently by many overlay
programs.

During execution, an overlay program
issues requests for segments. The requests
can be explicit via a SEGLD or SEGWT
macro-instruction or implicit via a branch
that is routed through an ENTAB. In either
case, the overlay supervisor receives con-
trol from the SVC handler and checks the
SEGTAB to determine whether the requested
segment is in main storage. If not, the
overlay supervisor requests program fetch
to load the segment. When this segment is
part of an overlay program that is being
tested, the overlay supervisor also passes
control to the TESTRAN interpreter.

Program fetch and the TESTRAN interpret-
er each return control to the overlay
supervisor after their functions have been
performed.

SEGID is not supported in this configu-
ration; a SEGLD request is treated as a NOP
instruction.

TABLES USED BY OVERLAY SUPERVISION

The segment table (SEGTAB) and the entry
tables (ENTABs) that contain the data . used
by the overlay supervisor are created by
the linkage editor from information in the
relocation dictionary (RLD) and the user's
control statements.

Figure 13 shows the SEGTAB and ENTABS in
a typical single region overlay structure;
the ENTAB and SEGTAB formats are given in
Appendix E.

|

|

|

I

|Root Segment
| (Seg 1)

|

|

|

T L 1 T
FECEELEEREE R e e

T

_______“_.___q,__-
=)
£
H

| ENTAB

|
|
|
|
| Seg 2 Seg 5
|
|
|
T 1 . T
IIIIII!IHIIIIIIIIHLIIIIII
T

TEXT

e e et e e e e e e

=
=
o
=

0n

®

Q

=

b o e e e, s i, — . e ——— ——— | —— . Son s, s S, s, . e}

L s s e e e s — ———— — —— o —]

[o s .

Figure 13. Single-Region Overlay Structure

USE OF SEGMENT TABLE

The segment table (SEGTAB) contains data
that describes the structure and status of
an overlay module, and is a directory for
the segments of that module. It contains

both fixed and variable information. The
fixed information includes:
e TEST indicator. This indicator is set

by program fetch if the partitioned
organization directory record indicates
that the program is being tested under
TESTRAN.

Chapter 6: Overlay Supervision Service Routines ' 35

e Last segment number of each region.
This value defines the segment that
ends a region and is used to determine
the region that contains a particular

segment.

e Previous segment number of each segment
in the module. The overlay supervisor
uses this field to determine the addi-

tional segments that must be loaded
with the requested segment. (These
additional segments are those in the

path of the requested segment.)

The variable information includes:

e Pointers. These pointers are addresses
of the NOTE list and DCB.

e Highest number segment of each region
in main storage. This value is ini-
tialized to 1 for the first region by
the linkage editor.

e Status indicator for each segment. The

overlay supervisor sets a status indi-
cator for each segment to indicate
either that the segment is not in main

storage, that the segment is being
loaded into main storage, or that the
segment is present in main storage.

For more information about the SEGTAB,
see Appendix E.

USE OF ENTRY TABLES

The entry tables (ENTABs) assist in
passing control between the overlay super-
visor and an overlay program. They handle
downward branches in an overlay program,
that is, the branches to segments lower in
the path.

When the overlay program executes an
upward branch, the overlay supervisor is
not entered, and the ENTABs and SEGTAB are
not used. An upward branch is direct
because segments in the path are always in
main storage (Figure 14).

36

o o e e e s e S S o — —— . — — — S i o o T . S . e, o, .

| i

[SEGTAB |

I !

L J

R r 1
0 | SEG1 CSECT |
o | ENTRY EASY |
T | . I
[L 15, ADCON1 |

s | BR 15 |
E | . |
G I . l
r—->| EASY SR 1,1 I
I . I

| ; |

| ADCON1 DC V(FOX) |

| . I

I . I

I . |

L 4

r T L]) 1

|B DISP |ADDRESS|SEG NO. | |

[(15,0) [of FOX |of FOX | I

E L L. L. L J
N

T | I
A

B¢ T T T T 1]

|Sve 45|L 15,4(0,15) |[BR 15 | | |

| I | I |

L L L L [} (]

r 1

| SEG 3 CSECT |

| . |

I . |

I . |

I L 15,ADCON2 |

+ BR 15 |

| . I

I . |

I . I

| ADCON2 DC V (EASY) I

| . |

I . |

L J

Figure 14. Overlay Program Upward Branch

Branching to a Segment Not in Main Storage

When an overlay program branches to a
segment not in main storage, control is
passed to the applicable ENTAB (step A of
Figure 15). The branch instruction in the
ENTAB passes control to an SVC instruction
contained in the first field of the last
ENTAB entry (step B). The SVC instruction

causes an SVC interruption, and passes
control to the SVC handler and then to the
overlay supervisor (step C). The overlay
supervisor uses a pointer in general reg-
ister 15 to obtain the information required
to:

e Determine the number of the
segment from the ENTAB.

requested

e Determine the status of the requested
segment from the SEGTAB.

e Pass control to the requested segment
at the entry point specified by the
address of the entry point field in the
ENTAB.

After the segment is loaded, control is
returned to the second field of the last
ENTAB entry, the instruction following the
sSvCc (step D). When the load and branch
instructions have been executed, control is
passed to the correct entry point.

[e e s oy

e

SEGTAB
R r 1
O | SEG1 CSECT |
o | ENTRY EASY |
T | L 15, ADCON1 |
cecceccac]|ecceacaaeas BR 15 |
. s | . |
. E | N |
. G | EASY SR 1,1 |
Step A | . |
- | ADCON1 DC V (FOX) |
L 3
. r T T T 1
eeeee-ss>] B DISP(15,0) | Address of |Seg.no. | |
| l FOX |of FOX | |
E L 4 L L d
N .
T| ...Step B.... |
A v
B r T T T T 1
ceeeeStep Ceeeeveanss| SVC 45|L 15,4(0,15) | BR 15 | |Address of SEGTAB |
L L 1 L L i)
. A B
v . .
S — 1 . .
|overlay leeecaceaStep Decenccacen .
| Supervisor | cscssscemscnccncse
S —— | .
A . r 1
| . | SEG3 CSECT |
v . | . |
__________ . | . |
| Program .| . Step E | L 15, ADCON2 |
| Fetch [. | BR 15 |
B . . | . |
. | . |
- | ADCON2 DC V(EASY) |
L J
__________ 1 .
SEG2 CSECT) .
| ENTRY FOX | .
| FOX AR 1,2 |<eeecsccecscncnanse XXXXXXXX XXX XXX XXX XX XX XXX KX XX XKXXX
- X X
| . | X <.e.e..> Shows control flow X
. X X
L e e == - = 4 XXXXXXX XXX XXX XXX XXX X XXX XXX XXXXX
Figure 15. Branch to Segment Not in Main Storage

Chapter 6:

Overlay Supervision Service Routines 37

Branching to a Segment in Main Storage

When a segment 1is loaded into main
storage, because of an implicit call (a
branch through an ENTAB), the displacement
(DISP) field in the ENTAB entry through
which the branch was routed is increased by
2 (Figure 16). When the overlay program
executes another branch to this ENTAB
entry, the SVC instruction is bypassed, and
control is given to the second field of the
last ENTAB entry. Execution of the
instruction in this field causes general
register 15 to be 1loaded with the main
storage address assigned to the indicated
symbol. A branch to that location is then
executed.

A caller is an ENTAB entry that assisted
in routing a branch from a segment to an
entry point in a segment lower in the path.
ENTAB entries that have been modified to

bypass the SVC instruction are chained
together in a caller chain (Figure 17).
These entries are chained only if the

called and calling segments are located in
the same region. Chaining is accomplished
by placing a pointer to (address of) the
modified ENTAB entry into the caller field
of the SEGTAB when the segment is brought
into main storage. If this segment is
requested again, the contents of the SEGTAB
caller field (a pointer to a previous
caller) 1is placed into the previous caller
field of the referred to ENTAB entry, and a
pointer to this ENTAB entry is placed in
the caller field of the SEGTAB. 1In this
way, a chain is created that begins at the
SEGTAB entry and points to all the ENTAB
entries (in the same region) that were
modified (+2) to bypass the SVC 45 instruc-
tion. When the segment is to be overlaid,
the caller chain is used to reset all of
the modified ENTAB entries in the chain.

e

I
SEGTAB |
|
J
r 1
R | SEG1 CSECT |
o | ENTRY EASY |
o | . |
T | L 15, ADCON1 |
eececse]|eeaceeeess BR 15 |
. s | . |
. E | . |
. G | EASY SR 1,1 |
. | . [
. | . |
. | ADCON1 DC V (FOX) |
L]
- r T T T 1
eeees.>|] B DISP(15,0) | Address of |Seg.no.| |
| | FOX |of FOX | |
E L 4 L L]
N .
T cecccae
A v
B T T T T 1
| svC 45|L 15,4(0,15) | BR 15 | |Address of SEGTAB |
L L i 1 L J
| —— .
| Overlay | .
| Supervisor| .
b J .
r 1 M
| SEG2 CSECT | .
| ENTRY FOX| .
| . | .
| FOX SR I L
| . |
I . I
I . I
L 1
Figure 16. Branch to Segment in Main Storage

38

ENTAB - Segment N

R T T T h]
First | | | I
Caller of | +2 | | 0 | <—————=—
Segment 2 | | | | |
| | I | |
L [i 4 I
v T T B
| | | | !
| | | | |
L 1 [] l
r T T 1
|] I | [SEGTAB
| | | | | r 1
L 1 L i] I l I
r T T 1
Third | +2 | | Address | <==——1 | . .
Caller | | | S . .
' t ' o I I . .
r T T 1 .
| ! | P . .
| | | | I | |
} i 1 1 I I l L l q
r T T 1 r T 1
Second | +2 | | Address |<-1 | | Il |
Caller | | | p———4--1 | 0] I I
¢ ; ' { | | |
¥ T + 4
Fourth | +2 | | Address [S— } + | i
Caller | | | | <———————— | Address of last |
L L L J | 1 | caller of segment | I
. . [1 2 |
P - 1 [I 1
r T 1
. . | | |
I 1] | I
. |
L L l J
Figure 17. Chaining of ENTAB Entries Used to Branch to a Segment

HOW OVERLAY SUPERVISION IS ORGANIZED

Overlay supervision is composed of a
resident module called overlay supervisor 1
and either of two non-resident modules
selected at SYSGEN time called overlay
supervisor 2.

The module
is IEWSVOVR;

name of overlay supervisor 1

the module name of overlay
supervisor 2 1is IEWSYOVR for the basic
synchronous module or IEWSXOVR for the
basic synchronous module with optional
SEGWT checking. To pass control to either
version of overlay supervisor 2, overlay
supervisor 1 issues a LINK macro-
instruction that specifies IEWSZOVR, which
is the member name of the selected module
in the LINKLIB.

OVERLAY SUPERVISION CONTROL FLOW

The resident module has two entry
points: IGC037 and IGCO45. The SVC handler
passes control to IGC037 as a result of an
svc 37 instruction (SEGWT macro-

Chapter 6:

instruction), or to IGCO45 as a result of
an SVC 45 instruction (an intersegment
branch that is routed through an ENTAB).
An SVC 37 instruction with zero in general
register 0 specifies a SEGLD macro-

instruction, whereas a one in general
register 0 specifies a SEGWT macro-
instruction. (SEGLD is treated as a NOP in

a single-task environment.) Chart 06 shows
overlay supervisor control flow.

Overlay supervisor 1 is
resident in the nucleus of the operating
system. It performs the first portion of
initialization and then 1links to overlay
supervisor 2. When control is returned to
overlay supervisor 1, it performs the
remaining termination procedures and issues
an SVC EXIT instruction.

permanently

When a requested program is an overlay
program, contents supervision issues a LOAD
macro-instruction to bring overlay supervi-
sor 2 into main storage. Overlay supervi-
sor 2 remains in main storage for the
duration of the task that required it.
When given control by overlay supervisor 1,
overlay supervisor 2 performs the remaining

initialization procedures, loads the
requested segments, wupdates the segment
Overlay Supervision Service Routines 39

table (SEGTAB) and entry tables (ENTABs),

performs some termination procedures, and
then returns control to overlay supervisor
1.

INITIALIZATION

During linkage editor processing, if the
address constants of a segment are resolved
to an ENTAB, the number of the segment is
placed in the high-order byte of the
address constants. The V-type address con-
stants that are not resolved to an ENTAB
contain a zero in their high-order bytes.
The address constants can be the result of
an expansion of a SEGLD, SEGWT, or CALL
macro-instruction, or the result of the
user creating an address constant for use
with a branch instruction. If a SEGLD or
SEGWT request 1is received and the high-
order byte of the V-type address constant
is zero, the request is treated as a NOP.

The overlay supervisor obtains the
segment number of the requested segment
from the "to segment number" field in the
ENTAB. The overlay supervisor obtains the
address of the SEGTAB from the 1last entry
in the ENTAB, and checks the SEGTAB to
determine the segment's status and rela-
tionship to the overlay structure.

The basic synchronous module with
optional checking (IEWSXOVR) detects over-
lay requests that would cause the request-
ing segment to be overlaid. This module
checks only those requests that result from
the execution of a SEGWT macro-instruction.

UPDATING OF TABLES

Before segments are loaded, the overlay
supervisor updates the SEGTAB and ENTABs of
the overlay program to reflect the changes
to be made in the overlay structure present
in main storage. For each segment that is
logically overlaid, a status indicator is
reset in the SEGTAB. The SEGTAB is scanned

40

to find the caller chains (Figure 15),
which are used to reset the ENTAB entries
to their original state (the state before
the segment containing the corresponding
entry point was loaded into main storage).
The ENTAB entries are reset by subtracting
+2 from the displacement field of the
branch. When the SEGTAB and ENTAB entries
of the last segment have been updated, the
segments are loaded.

SEGMENT LOADING

During segment loading, the overlay
supervisor scans the SEGTAB to determine
which segments are needed and directs pro-
gram fetch to 1load the requested segment
and all segments in its path that are not
in main storage.

TERMINATION

The overlay supervisor checks the TEST
indicator in the SEGTAB to determine if the
overlay program is "under test". If wunder
test, a LINK macro-instruction is issued
specifying the TESTRAN interpreter. After
TESTRAN interpreter execution, control is
returned to overlay supervisor.

If the overlay supervisor was entered
via an SVC 45 instruction (through an
ENTAB), and the ENTAB through which the
request was routed is in the root segment
or is in the same region as the requested
segment, the caller chain is updated
(Figure 15) and the address field of the
branch is altered in the calling ENTAB. If
the requesting and requested segment are
not in the same region, the caller chain
and the branch instruction in the ENTAB are
not altered. Subsequent branches to an
altered ENTAB entry are routed directly to
the segment.

Control is returned to overlay
sor 1.

supervi-

CHAPTER 7:

The time supervision service routines
are an optional feature of the fixed-task
supervisor for installations that have
selected the hardware timer as a part of
their Computing System/360. Time supervi-
sion processes requests for the date and
time of day, and requests for setting a
time interval interruption, for checking if
that interval has elapsed, and for cancel-
ling that interval. Additional functions
include maintaining a queue of pending
requests and maintaining the relationship
between the actual time of day and the
hardware.

HOW TIME SUPERVISION IS ORGANIZED

Time supervision is made
following service routines:
level interruption handler (SLIH),
TIME, and TTIMER.

up of the
timer second
STIMER,

The timer SLIH monitors all types of
interval expirations, including those of
the control program, and maintains the
queue of time interval requests.

The STIMER service routine sets an
interval into a software interval timer,
specifies when that interval timer is to be
decremented and what action is to be taken
when an interruption signals completion of
the interval. It does these things in
response to an STIMER macro-instruction.

The TIME service routine places the time
of day in register 0 and the current date
in register 1, when requested through a
TIME macro-instruction. The time returned
is the time of day based on a 24-hour clock
that is set with local time by the operator
through the SET command.

The TTIMER service routine tests the
interval timer in response to a TTIMER
macro-instruction, and places in register 0
the time remaining in the TASK or REAL
interval previously set by an STIMER macro-

instruction. The TTIMER service routine
can also cancel previously specified
intervals.

THE TIMING ALGORITHM

Within the timer SLIH is a U-byte field
called the 6-hour pseudo clock (SHPC). By
manipulating the values contained in the

Chapter 7:

)
TIME SUPERVISION SERVICE ROUTINES (OPTIONAL)

SHPC and the hardware timer, time supervi-
sion maintains real time while timing a
prespecified interval.

For example, assume that the 6-hour time
of day (TOD), defined as equal to the
contents of the SHPC minus the contents of
the hardware timer, is zero hours. A
request 1is received for a one hour inter-
val. This is accomplished by placing one
hour in the SHPC and in the timer.

SHPC - timer =
1 hour - 1 hour =

6-hour TOD
0 hour

After an hour, the contents of the timer
have automatically decremented to zero and
an interruption occurs.

SHPC - timer = 6-hour TOD
1 hour - 0 hour = 1 hour
If a 2-hour interval is requested, two

hours is added to the timer and two hours
is placed in the SHPC.

SHPC - timer = 6-hour TOD

(1 hour + 2 hours) - 2 hours = 1 hour
Two hours later, when the interruption
occurs, the correct 6-hour TOD of three
hours is indicated by the SHPC.

To correlate the internal, software
pseudo clock time with real time, two other
pseudo clocks are maintained by time super-
vision. One is a 24-hour pseudo clock
called the T4PC. The other is a local time
pseudo clock called the LTPC.

Each time the SHPC reaches six hours the
SHPC is reset to =zero and six hours is

added to TUPC. The TUPC is reset to zero
each time 24 hours pass. The TU4PC is
initially set to =zero at initial program
load. The contents of the TU4PC plus the

6-hour TOD is defined as the T4PC TOD.

The contents of the LTPC initially is
equal to the time keyed in at the console
by the operator tlrough the SET command.
The local time of day which 1is returned,
when requested, is computed by adding the
contents of the LTPC to the T4PC TOD.

The three basic time relationships of
the timing algorithm are:

e The 6-hour TOD is equal to the contents
of the 6-hour pseudo clock minus the
contents of the hardware timer.

Time Supervision Service Routines (Optional) 41

e The 24-hour TOD is equal to the con-
tents of the 24-hour pseudo clock plus
the 6-hour TOD.

¢ The local TOD is equal to the contents
of the local time pseudo clock plus the
24-hour TOD.

Time supervision maintains a queue
(Figure 18) of timer queue element
(Figure 19) representing interval requests.
The timer queue is a two-way chain ordered
so that the request for the next interrup-
tion is at the top of the queue, while the
request for the last interruption is at the
bottom of the queue. To ensure that the
timer gqueue element 1is inserted at the
right place in the queue when a new request
is received, the interval requested is
translated into a value that is relative to
the software clocks. This is done by
-adding the value of the interval requested
to the 6-hour TOD. This new value is
placed in the TQVAL field of the timer
queue element and is used by the queueing
subroutine of the timer SLIH to position
the element on the queue.

r 1

| SHPC = 6-Hour Pseudo Clock |

L K}

r 1

| T4PC = 24-Hour Pseudo Clock |

L J

r 1

| LTPC = Local-Time Pseudo Clock |

L J

T R 1

| TQPTR = Pointer to Timer Queue b+
r=>1 i
| I
| r - 3 <A
L—— 6-Hour Element b1
r—>t S
I I
| r - 1<-4
L4 Midnight Element b=
>t i
| I
| r <4
L—q Pseudo Element |

L 4
Figure 18. Timer Queue

When the element reaches the top of the
queue, the interval placed in the timer is
calculated by subtracting the value of the
contents of the SHPC from the value of the
contents of the TQVAL field of the element.
The result of this subtraction is added to
the timer, while the unsubtracted value of
the contents of the TQVAL field of the
element is placed in the SHPC.

42

Flags TCB Pointer
Pointer to Successor
Pointer TQVAL = Time of

to Predecessor Expiration (TOX)

e s Y

[o e o o e e o . S S . e e, S oy
e e

PRB Exit
Pointer Pointer
Save Area for 16 Registers
Figure 19. Timer Queue Element (96 Bytes)

At initial program load, two permanent

entries are placed on the timer queue
representing time supervision interval
requests. One is a 6-hour interval request

and the other is a request for an interval
that is calculated to cause an interruption
at midnight, local time. When the midnight
interruption occurs, time supervisor incre-
ments by one the day-of-the-year count
obtained from the operator's SET command.
When the six-hour interruption occurs, time
supervision updates the TU4PC and decrements
by six hours the contents of the TQVAL
field in each of the elements in the timer
queue. In addition, a pseudo element is
placed at the end of the queue to mark the
queue's terminal point.

TIME SUPERVISION CONTROL FLOW

As shown in Chart 07, the flow of time
supervision is generally through two paths.
In the first path, control is received from
the SVC FLIH by one of the three SVC
routines -- STIMER, TIME, and TTIMER.
STIMER and TTIMER interface with the timer
SLIH's queueing and dequeueing subroutines.
TIME and TTIMER return by branching to the
type 1 SVC exit, while STIMER executes an
SVC EXIT instruction. In the second path,
control is received from and returned to
the T/E FLIH by the timer SLIH by branch-
ing.

STIMER

The STIMER service routine sets up time
intervals, represented by timer queue ele-
ments, at the completion of which a
timer/external interruption will occur.
When entered, STIMER initializes the timer
queue element's fields. STIMER wuses the
queueing subroutine of the timer SLIH to

insert the newly created timer queue ele-
ment into the timer queue. If a WAIT
interval is requested, STIMER executes an
SVC WAIT instruction.

TIME

The flow through the TIME service rou-
tine consists of testing the input parame-
ters of the TIME macro-instruction for the
existence of the various options.

The time -- whether formatted in
26-microsecond timer units, ten-millisecond
binary units, or packed decimal form -- is
always given in terms of local time of day
(LTOD). This is calculated according to
the formula

LTOD = LTPC + TUPC + SHPC-timer

where LTPC 1is the contents of the local
time of day pseudo clock, T4PC is the
contents of the 24-hour pseudo clock, SHPC
is the contents of the 6-hour pseudo clock,
and timer is the contents of the hardware
timer at location 80.

The 1local time of day is placed in

register 0, and the day of the year in
register 1.

TTIMER

routine determines
in an interval

The TTIMER service
how much time remains
requested by a previous STIMER macro-
instruction, and cancels the interval. if
the CANCEL parameter is present.

When entered, the TTIMER routine
determines whether the interval has
expired. If it has, no action is taken.
If it has not, the time remaining in the
tested interval is returned to the user in
register 0. TTIMER tests for the cancel
option and, if it is present, TTIMER uses
the dequeueing subroutine of the timer SLIH
to take the timer queue element off the
timer queue.

TIMER SLIH

The timer SLIH receives control from the
T/E FLIH when a timer interruption occurs.
The SLIH identifies the type of interval
that has expired and then satisfies the
specific requirement.

Chapter 7:

The SLIH removes the expired timer queue
element from the timer queue through one of
its two major subroutines (the dequeueing
subroutine) resets the hardware timer to
time the next interval on the gqueue, and
resets the SHPC. The action taken by the
SLIH after an expiration depends on the
interval type:

e If it is a WAIT type, the SLIH executes
the SVC POST instruction.

e If it 1is a REAL or TASK type, and an
exit address was specified, the exit is
scheduled through the Exit Effector
routine.

e If it is a 6-hour time supervision
type, six hours is subtracted from the
TQVAL field of each timer queue ele-
ment, and the 6-hour interval request
is queued again.

e If it is a midnight time supervision
type, the day-of-the-year count is
incremented by one and the midnight
interval request is queued again.

Queueing Subroutine

The queueing subroutine of the timer
SLIH is used by the dispatcher, the SLIH,
STIMER, and by the SET command handler of
job management, to place a timer element on
the timer queue. The dispatcher wuses the
routine when placing a task with a time
interval request in control of the CPU.

The queueing subroutine converts the
absolute time interval in the element to a
relative time based on the 6-hour TOD. If
the interval is found to be smaller than
the current interval on the queue, the new
smaller interval is added to the timer and
placed in the SHPC. If the interval is not
smaller, the correct insert point on the
queue is located for the element, which is
queued.

Dequeueing Subroutine

The dequeueing subroutine is used by the
dispatcher, STIMER, and TTIMER to remove
elements from the timer queue by pointer
manipulation. If the element was at the
top of the queue, control is passed to the
SLIH, which resets the timer and SHPC.
Control is passed back to the caller by a
branch, at the completion of the dequeueing
subroutine, unless a branch was made to the
SLIH, which returns control directly to the
¢aller.

Time Supervision Service Routines (Optional) 43

CHAPTER 8:

SYSTEM ENVIRONMENT RECORDING -- MODELS 40, 50, 65, 75

System environment recording (SER) is ' a
set of ' optional control program routines
that record hardware malfunctions of the
CPU and channels in System/360 Models 40,
50, 65, and 75. The wuser may choose to
have no SER routines or either of two
model-dependent versions of SER called SERO
and SER1.

As explained in Chapter 1 in "Machine
Check Interruptions," when a machine check
interruption occurs (CPU check switch must
be in process mode), either the computer is
placed in a wait state or control is given
to SER. SER may also be entered by the SER
interface of the I/0 supervisor if a chan-
nel error occurs. If the computer is
placed in a wait state, the operator rums a
standard, separately-packaged diagnostic
program called SEREP, described in the
publication IBM System/360: General Pro-
gramming Considerations.

HOW SER IS ORGANIZED

The less complex version of system envi-
ronment recording, SERO, determines the
type of malfunction and, if possible,
writes out a record describing the error on
a data set called SYSl.LOGREC. This data
set resides on the primary system residence
volume. If SERO cannot write the record,
the computer is placed in a wait state and
a message is printed to the operator to use
SEREP. If the recording is partially or
fully completed, the computer is placed in
a wait state and a message is printed to
the operator requesting him to reload the
operating system.

The more complex version of system envi-
ronment recording, SER1l, also collects and
writes out hardware environment data, but
in addition, it performs selective termina-

tion analysis which attempts to associate
the error with a specific task. If the
error can be associated with a specific

task and if the control program has not
been damaged by the error,. the task is
terminated abnormally; if not, the computer
is placed in the wait state.

When the SYS1.LOGREC data set has been
filled, the operator runs the environment
recording edit and print (EREP) routine.
This routine formats and writes the records
placed on SYS1.LOGREC by SER onto printer,
tape, or disk according to wuser specifi-

uy

cations. EREP is described in the IEM
System/360 Operating System: Utilities,
Program Logic Manual, Technical Newsletter
Numker ¥28-2163.

SERO

As described in Charts 10 and 11, SERO
collects, formats, and writes error infor-
mation resulting from a machine check or

from a channel error. The program is
divided into two modules: the load nucleus
resident module IFBSR000, and the 1link

library resident module, IFBSERO0O.

Load Nucleus Resident Module -- IFBSR000

The resident portion of SERO is non-
reusable and does not require Operating
Systen/360 facilities. The primary
functions of this module are to halt all
I/0 activity and to read the first text
record of the non-resident portion of SERO
into an area which begins 32 bytes past the
nucleus.

If a machine check occurs, the resident
module gains control directly from the
machine-check new PSW. If a channel error
is detected, the module is entered from the
I/0 supervisor which 1loads the machine-
check new PSW.

This module saves information to be used
later by the non-resident portion of SERO
in a 22-byte field in lower storage. After

it has halted I/0 on all devices, the
module reads the first 1024 Lytes of
IFBSEROO into storage. If after ten
retries, the resident module is not able to

read IFBSEROO into main storage, it sets up
the IOS wait state code 000FOA and branches
to the Bell Ring/Wait State module which

sounds the console alarm and places the

computer in the wait state. The code

000FOA is displayed in the instruction

counter.

Link Library Resident Module -- IFBSER0O
Like 1IFBSR000, the IFBSER00 module does

not require any operating system facili-
ties. There is an IFBSER00 module for each

3ystem/360 Model; the appropriate module is
selected at SYSGEN time.

After the module loads the remainder of
.tself into main storage, it checks 1loca-
:ion 50 to determine which type of error
1as occurred. This location 1is preassem-
)led to X'FF'. If the error is a machine
heck, location 50 is overlaid by the
nrachine-check old PSW; a channel error does
10t change location 50. Once the type of
arror is established, the routine sets wup
:he appropriate kind of record entry in
vhich to place information about the error.

The routine enables itself for machine
check interruptions. If it is already
collecting error data and receives a
nachine check interruption, the routine
stops all data collection and writes out
shat it has accumulated up to that point.
[f a third error occurs, the routine cannot
continue; it prints out an error message.

If IFBSER0O0 was entered because of a
rachine check interruption, the general
ourpose registers are checked for valid
s>arity on all models except Model U40.
Parity indicators are available for all
registers except 13, 14, and 15 on Models
50 and 75. Floating point registers are
also checked for valid parity if the wodel
is equipped with floating point.

The routine checks the busy bit in each
anit control block (UCB) to determine which
/0 units were busy when the error
dccurred. The addresses of up to ten busy
I/0 devices are collected. The routine
then fills in a record with the program
identification, day, and time. After exam-
ining the seek address obtained from the
neader record of the SYS1.LOGREC data set,
the routine writes on that data set the
record it has just created and an end-of-
file record.

If the routine records a partial or
complete error record, it informs the
operator by printing a message or display-
ing a code in the instruction counter.

1. TIFBF0O5W MACHINE ERROR. RELOAD 0S/360
This indicates that no machine check
interruptions occurred during the data
collection phase of the routine and a
complete ‘record entry describing the
error was placed on SYSl.LOGREC.

2. IFBFO6W MACHINE ERROR. RELOAD 0S/360
This indicates that a machine check
interruption occurred during the data
collection phase of the routine, but
the attempt to place a partial data
record on SYS1.LOGREC was successful.

3. The 1IOS display code 000F05 oxr 000F06
is set up and the routine branches to

the Bell Ring/Wait State module. This
indicates that the routine has com-
pleted its function as described in
either 1 or 2 above but was unable to
print a message to the operator.

If the routine does not write an error
record it issues one of the following
messages:

1. IFBF(07S MACHINE ERROR. EXECUTE SEREP

Successive machine check errors have
occurred during the data collection
phase of the routine and the attempt

to place a partial record on
SYS1.LOGREC was not successful.

2. IFBF08S MACHINE ERROR. EXECUTE SEREP
Because of I/0 errors, the data col-
lected on the original error was not
entered on SYS1.LOGREC.

3. IFBF09S MACHINE ERROR. EXECUTE SEREP
The SYS1.LOGREC data set was full or
the safety byte in its header record
was off.

4. IFBFOAS MACHINE ERROR. EXECUTE SEREP
The 1link 1library resident module,
IFBSER0O, could not be read into main
storage.

SER1

Like SERO, SER1 collects, formats, and

writes error information resulting from a
machine check or a channel failure as
described in charts 12, 13, 14, and 15.
SER1, unlike SERO, is a single, serially

reusable module that resides in the
nucleus. In addition to writing error
records, it attempts to identify the error

with a specific task. If a task/error
relationship can be established, and if the
control program is in no way damaged by the
error, the task is terminated abnormally,
but system operation continues. If, howev-
er, the error cannot be associated with a
task, or if the control program is affected
by the error, the system must be reloaded.

SER1 is entered in the same manner as
the resident portion of SERO. It is

entered as the result of either of the
following errors:
1. 2 machine check interruption. (The
machine-check new PSW points to SER1.)
2. A channel check (inboard). (I0S loads
the machine-check new PSW.)
SER1 checks 1location 50 to determine

which type of error-occurred. - Location 50
initially contains X'FF', which is overlaid

System Environment Recording -- Models 40, 50, 65, 75 44n

Form Y¥28-6612-0, -1, Page Revised by TNL ¥28-2161, 9/21/66

by the machine-check o0ld PSW if the error
is a machine check. Location 50 is not
changed if SER1 is entered because of a
channel error.

SER1 gathers error data into either a
machine-check record entry or a channel-
check record entry and writes the record on
SYS1.LOGREC. SER1 functions within the
framework of the operating system; all 1I/0
communication with the SYS1.LOGREC data set
is| via the EXCP macro-instruction unless
the control program was affected by the
error. If the control program is damaged,
SER1 uses its own I/O routines. The DEB
and DCB required when EXCP is used reside
in the nucleus and are opened at IPL time
by the nucleus initialization program
(NIP).

If SER1 is able to associate the error
with a task and the control program has not
been damaged, SER1 terminates that task by

branching to the abnormal termination
service routine, ABTERM. When control
returns from ABTERM, SER1 re-initializes

itself and branches to the
that the system can continue.

dispatcher so

Thus, the requirements for system con-
tinuation are task/error relationship, a
complete record of the error, and success-
ful termination of the task. In the fol-
lowing cases, these requirements are not
met, so the system must be reloaded.

1. Additional failures occur while SER1
is handling an error. Data collection
on the original error stops, and SER1
attempts to write a partial record on
SYS1.LOGREC. The partial record con-
tains the information gathered up to
the time the second error occurred.

2. A complete record was written, but the
error could not be associated with a
specific task.

3. A complete record was written, but the

control program was affected Ly the
error.

44B

4. The control program was damaged by the
error and a complete record could not
be written.

In any of these cases, a message is printed
on the primary output device instructing
the operator to reload the operating sys-
tem, and SER1 places the system in the wait
state.

ENVIRONMENT RECORDING AREA

SYS1.I1OGREC is a data set on the system
residence device used exclusively for
dynamic output from SERO, SER1l, and all
preservation recording systems. The data
set 1is formatted during system generation
by the disk/drum initialization utility
program descriked in IBM System/360 Operat-
ing System: System Generation. The data

SYS1.LOGREC contains is edited and printed
by EREP.

The data set contains three types of
records:

1. Header record - This is the first

record in the data set. It defines

the extent of the data set, and points
to the last record written. It also

contains a safety byte used to detect
overrun. The record is 38 bytes in
length.

2. Statistical Data Record Area - This
area contains a record for each wunit
control block (UCB) in the systemn.

3. Record Entry Area - This area begins

on the track following the area occu-
pied by statistical data records.
SER0 and SER1 write the records they

create in this area. The format of
these records is described in Appendix
F.

Chart 00. Fixed-Task Supervisor Control Flow

(Described in the introduction to this

manual)

K HRE KRR H R
AN

* INTERRUPTION ¥

* *

R RRHNNEK

INTERRUPTION

SUPERVISION CHART 01

KNI HNXH
* *

* ENTRY *
* PROCEDURES *
* *
* *
* *

NN NN

v
o¥e
- *o
¥ *e
o* EXECUTE *.
*o SERVICE
*o ROUTINE o¥%
*e .
X, ok
*

v
F3 0TI I N
* *

* EXITING *
* PROCEDURES *
* *
* *
* *

R KRR NN HNHNR

L T T O T O T T T T T T T T T T I I B |

L T T e I T T T T T T T I O O

L T T T T O I A O A B O}

LI B B B

L T T O R

v
HEEREEERERHERHKE
* PROCESSING *
* PROGRAM *
* *

IR RN RRH

1

FIXED-TASK SUPERVISOR COMPONENTS

.
*
/l\
]
v
|

= TASK SUPERVISION CHART 02 -
- ABEND EXTRACT SPIE -
- ATTACH POST WAIT -
— MAIN STORAGE SUPERVISION CHART 03 -
- FREEMAIN GETMAIN -
— CONTENTS SUPERVISION CHART 04 -
- DELETE LINK SYNCH -
- IDENTIFY LOAD XCTL -
— PROGRAM FETCH CHART 05 -
— OVERLAY SUPERVISION CHART 06 -
TIME SUPERVISION CHART 07
v
TIME TIMER SLIH

STIMER TTIMER

[B A I

OTHER CONTROL PROGRAM COMPONENTS

I1/0 SUPERVISOR

PLM Z28-6616—0

TESTRAN PLM Z28-6611-0

T

INITIAL PROGRAM LOADER-—--—-—-———CHART 08
NUCLEUS INITIALIZATION PROGRAM——CHART 09

L T T T T I I A I R I)

LN T T T T T T T T T T O I A B B

CHARTS

Charts 45

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67
e Chart 01. Interruption Supervision Control Flow
. .
(Described in Chapter 1)
TEAAIH IEAAIH
*l!**Az****l*ii** HHRHEAZHRINEE R RN RN ASHI KRR HE
FREEALRARRRER R * SVC FLIH * * * TYPE 1 EXIT *
* svC * - e * TYPE 1 e e ek S I S P R e et S S B
* INTERRUPTION ¥*——— >#SORTS OUT TYPE1H >% APPROPRIATE >%* FINDS OUT IF e
* *SVCSe SETS TYPE* svC * TYPE 1 SVC * *TYPE 1 SW SET OR*
FHHKEHHREHHEXKR K * 1 SWITCH * ROUTINE * CALLR DISABLD ¥
*******t********& R e e P TR Y FE T
|
E
o
IEAATA N R
HHHERB IR XHREH KRR K *****53*§********
* SVC SLIH T
H—R—f—H—R—R-k—%—% TYPE 2 *—*—*—*_* *— i—*— Y
* SETS UP AND * ># APPRGPRIATE % "~ P
*QUEUES SVRB ON * SVC * TYPE 2 SVC * E
* ACTIVE LIST * * ROUTINE
HHFF K I KKK RK **i*****}**i***** 1
S
w
1
T
C
H
R HCTHHHR R HIRN
* * S
RESIDENT TYPE 3 ¥—%——¥_%—%—_%—%_% E
———————————>% APPROPRIATE #* > T
OR 4 sSvC * TYPE 3 OR 4 %
* SVC ROUTINE * A
R EE KRR XK AN N
D
D
1
S
A
IEAATA B8
USES FINCH *****03**1******* R HDLIEK TR RN L
GET *EXIT SVC 3% E
TypEs 3,4 *-*-;—*—*_*-*_*_* v Hm N R R R M
- ——————————>% APPROPRIATE * >¥DEQUEUES THE RB*. > E
SVCS *TYPE 3 OR 4 SVC#* * FROM THE * N
* ROUT INE * % ACTIVE RBQ * T
KK KRR By
IF CALLER PSEUDO DISABLED
T 1
|
IEAATH .
HEERREDHHERERIRRR EREIHRERHER
HRARE]IIRERENR * 170 FLIH * * * HRRRELEEEEHER AR
* INPUT/0UTPUT ¥ N XN NN * INPUT/ * * INTERRUPTED ¥
* INTERRUPTION #* >* SAVES AND *< >* OUTPUT * * SERVICE *
* * * RESTORES * * SUPERVISOR * ROUT INE
Ee e *MACHINE STATUS * * * Tt e
KKK R RRRR L
|
| >
IEAQEX00
A DRI RN K RE JHH R RN AR RR
HRHRF] NN RE R * T/E FLIH * * T/E ROUTINE %
#TIMER/EXTERNAL * D e T o R EE e e et
* INTERRUPTION #—— >*¥POSTS ECBS.SET *< >%* APPROPRIATE *
* * *IRBSe ADJ CLOCK¥* *TIMER/EXTERNAL *
FREERHRERREIRRR #+ TIMR REQ QUE.* *SERVICE ROUTINE*
PR T e e KKK KN AR
! >
IEAATH IEAAPLOO IEAAABOO I1EAAPS v
HHIHRHDHH XN RN EAEERHIERERRRER RS HHEHHHS RN R TR RN
R] RN R E R * P FLIH *NO * PROLOG * HHH L H KRR RE XA #* DISPATCHER *
* PROGRAM Kk R KR K —H—¥PIE Hm e K W Hm R — K=K * * B o S W W W
* INTERRUPTION %— >*CHECKS FOR PIE *)*SETS COMPLETIDN* >* ABSTERM * *DETERMINES NEXT#*
* #* SHOWING USER ¥ CODE,TCB ADDR * * * ROUTINE TO *
HEREREHRRERRRER * ANTICIPATION * * AND RTN ADDR * R IIHIENRNKR R * CONTROL CPU *
RN RN P e e T T HHEEEEEEREHREERERRE
lP!E
> <
HRRH PO REERRERER
* F *
* ANY SERVICE *
* ROUT INE *
ERREREREERRRRRR
A
SERO SERI TEAATA
HHHERKL HH RN v
HRHRC] HRERRRE R HHE XK IHERIE TR RR *VALIDITY CHECK * HRRRICSHERRXRRR
* MACHINE CHECK * MACHINE WAIT SYSTEM F W W R R W N *
* INTERRUPTION % >%¥ ENVIRONMENT # * TEST * * PROCESSING *
* * STATE OR * RECORDER * * ADDRESSES * * PROGRAM *
NI KRR FRHNIH KRR N * * L e LT

13

HREHAERERERAREERR

< s
Chart 02. Task Supervision Control Flow
- .
(Described in Chapter 2)
I NN RN
* FROM *
* svC *
* FLIH OR SLIH *
NN NN RN
) ,
| |
| IEAAADOO IEAATMOO
| THROUGH THROUGH
IEAAATOO IEAAXROO v IEAAPT v IEAAADC3 v IEAATMOS
LR S RS S S R S s FHN AR ER R RRRR * B NI W NN
* ATTACH * * EXTRACT * * POST * * ABDUMP * * ABEND *
L e s e e T s B Lk e et B et B e Bt L Bl Sl Bs B S Bt s EE B Bl S an Bt St s R Bl Bt Bt Bt Bt B Tt
*PASSES CONTROL * * PROVIDES D % SIGNALS THAT * * PREPARES FULL * * ENDS TASKe IF *
* TG AND FROM % * INFORMATION ¥ * AN EVENT HAS * * STORAGE DUMP * * DUMP REQ,USES *
* REQUESTED RTN * * FROM TCB * * OCCURRED * * FOR ABEND * *ABDUMP OR GIVES*
3 XN RN #*INDICATIVE*DUMP*
ER 22 RS 2222222 2 222
IEAAPX0O IEAAWT
* SPIE * * WAIT *
LR el e e e et s St Eat et B B e et et e
——>*ESTABL ISHES PIE* * STOPS TASK * L
* AND SETS PSW * * UNTIL EVENT *
* PROGRAM MASK * * 1S POSTED *
* LA R 222
%
|
| v
EEE A2 2 2SS s
v \' *#J0B MANAGEMENT *

<

-<

*
¥ *o

+ NO *
P

¥
*e TYPE 1 SVC
*

PP S—

HERHHEEREE R RN

* *
* TYPE 1 EXIT *

EERFEERERERRHRR
SVC ENTRY AND EXIT PROCEDURES ARE SHOWN ON CHART 01
IEAAABOO

R H N RHE RN
R S e * ABTERM *
* FROM * B e kAl L *
* ANY SERVICE * >* SCHEDULES Frm D%
* TIN * * A D * *

HXHKEHEERRRHHNR * *
FRE R R ERRHEHRERR

e e e
*

EXIT

HERRRERERRNEENR

NI EHR R
RETURN
TO

CALLER
L e e]

*
*

*
*

* GO *
* MODULE *
EEEEXARREEH NN

Charts

47

Chart 03.

FOR MODULES IEAAMSO00sIEABMS00, IEACMS00,IEADMSO0

Main Storage Supervision Control Flow

(Described in Chapter 3)

PARAMETER-LIST GETMAIN REQUESTS

HERE NI EHRRENNN

FROM *
* SVC FLIH *
* *

NN NN NN

v

o¥e
¥ *o

1GC004 GETMAIN

L T T T U T U T T I A A O |

v
NN HIK IR NN IR K
*

ANALYZES
PARAMETER
LIST

* %k Xk
ek ok ok Xk

FREEIEREERE RN RR

v
faaaa s T2 22 TR T2 220
* *

FINDS

LT T T T T T O I O A

PARAMETER-LIST FREEMAIN REQUESTS

¥ *e
* REQUEST %o
TYPE o
*g ¥
* ok
*a o
*

REQUESTS

v
16C010 o¥e
* *

*
SPACE *#<:
*

* ok kK

*
LR R IR T TS T

v
92NN NI
* SETS UP QUEUE *
ELEMENT SHOWING¥
* GE + *

L T T)

REGISTER-TYPE

16C005

FREEMAIN

L T T T T T T T O T I I A O

o *e
NO <% . *. YES
< FREEMAIN .
*g ¥
* g ¥
¥y o¥
*
OPTIONS

1. VALIDITY CHECKING.

2. CODING TO FREE ALL STORAGE
AREAS OCCUPIED BY INACTIVE
D TO

ROUTINES IF REQUIRE
SATISFY THE REQUESTe

L T T T T T O T I O Y B A

I

v
HRRRERREIHKEREXHEHR
* *

ANALYZES
PARAMETER
LIST

* ok
*k kK

KNI LR NN NN

v
B3 30 3696 36 3636 36 36 3 6 3 W
* *

* MAKES AREA
>* PART OF FREE
* AREA

* % k%

*
I NN N

v
HEEERERRHKEERHRRH
* *

* COMBINES AREA *
* WITH ADJACENT ¥
* AREA *

*
HRERERR RN ERRX RN

L T T T T B A |

SVC ENTRY AND EXIT PROCEDURES ARE SHOWN ON CHART 01

48

v
HHHHEEHREKEXRNR
*
* TYPE 1 EXIT *
* *

e e e

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

» Chart 04.

IEAADLOO
IEABDLOO

Contents Supervision Control Flow

(Described in Chapter 4)

EHEEEABHEERLRERN
* FROM sSvC *
* FLIH OR *

* SLIH *
e s e

DELETE

LI T T T T e T T T T T T T T T T T O O I A |

HRERHCLHRRERHHERN
*

REDUCES
USE COUNT

EEE L XY

*
*
*
*
*

FHEFEEREERERRE RN

*o
u *o NO
COUNT=0 ey
. .
*o o
e o
? YES

v
*&**»E‘*i**i*&*i*

*FREEMAIN
W e Hm Hm e H *
* CLEARS RBS *

FEERRHKER KR HHRRR

LI T T T O T T T T T T T O T I O I A

IEAAIDOO]

HEEHF] HERRXRN RN
*

*
* TYPE 1 EXIT *
* *

EEEBERERERNNERR

OPTION

IDENTIFY

IEAASY0O

IEAATC Lo

AD

Prrerrer v r bt bt bbb e b r bbb r b

-
«* ROUTINE
*e PREVIUUSLV

*o

*oq

HEEERDIHEEE RS RR R
*

* INCREASES
USE "COUNT

ko
* %k %k ok Kk

EE e T

v
HERRKEIRRERR KR AR
*FINCH =
L Bt B B T T e 2
* USES FETCH. *
* QUEUES RB_ *
* ON LOAD LIST *
R)

NO

——

L T T T T T T T T T T T A A O

1

3
<
z
[a}
I

L U T T T T I A I

v
’{***Hl******i*i*
*GETMAIN
R W R K K *_
* CREATES MINOR *
* LPRBe QUEUES *
* ON LOAD LIST %
WHERERHRKRHAKRRNRR

L T O I O O

v
FREER Y] REREER R RS
*
QUEUES *
LPRB.ON *
MINOR LIST *
*
*

FRAXNEEEEERRHERR

LER R 2

L T T T O T A

Frrrrrdnt

v
HREXRHD R HHE R RTER
*GETMAIN *

Hom e e N e e Bom Foe
* OBTAINS *
* SPACE *
* FOR PRB *
a2 e T T

v
EREER ORI IR ERRN
*

CREATES AND
INITIALIZE
PRB

EEE XY

*
*
*
*
*

L e R

L T T T O T T T I A O B O)

svc

|
\

IEAATC L INK

L T T T T T O T T T T T T T T T T T T T I O Y A O

IEAATC l
|
v

XCTL
Ve
cs *o
¥ .
YES <% XCTLOR *o
%o ON LOAD ¥
*o LIST
- .
e o¥
* NO

v
EXERRDSHIRRERERRR
*

* PLACES RB

* OF XCTLOR

* INACTIVE L!ST

* Kk kK

NOTE TH
PERFDRMED ONLY IF

OPTION I

*oRESIDENT
*o .
%y o

v
FRRERGSHEHHEHENRN
*FINCH *
e W e e W N N R —
* USES FETCH *
* QUEUES RB ON *
* ACTIVE LIST

S TEST IS

SELECTED

VE *,
EREEEFEEXEEREERRN

L T T T T T T T T O

LN T T T T T T T A R O I A)

]
I

v
li*HQ********
#FREEMAIN
*k— K *-*-*-*-*-&
* MAKES SPACE %
* FOR LINKEEe. *
*

*
L e S e T Y

v
*i***JA***i*l**!*
*FINCH
i—*—*—*—*—!—*—*—*
* USES FETCH TO *

E e e e]

L T T T T O I A

LN T T T T T T I T I A B R A A O O R I I I |

ENTRY AND EXIT PROCEDURES

ARE SHOWN ON CHART

01

v
WIS W XN
* *
* EXIT *
* *
R 22222222222 22

Charts

49

Chart 05.

Program Fetch Control Flow

(Described in Chapter 5)

1EWBOSV
WA NN NN
FRREALRARRERRNR * *

* ENTRY FROM * * RECEIVE *
* OVERLAY »*. >* NOTE LIST *
* SUPERVISOR * * ADDRESS *
e A T e s g * *

R e e

FHRENAT NN RN
*

*
*INITIALIZE I/0 *
>% BLOCKS AND *<
* CHANNEL *
* PROGRAM(S) *
ES 22222 RS2 S s

IEWMSEPT
RN AL NN RN RN
* *

HRREASHERRAEERN
* RECEIVE * *ENT FR CONTENTS¥*
¥ DCB, BLDL *< * SUPERVISOR *

* PARAMETERS *
* *

KK HEXEK R

* FINCH *
EE 2222222223

3 CHANNEL
PROGRAMS
FOR PCI
v
ot
LR SIS S LS S HREREBDHH R RE XN B3 * g
* EXTRACT * * IF PROGRAM IS * *o
* RELATIVE DISK * *DVERLAY STRUCT-* YES <% *o
*ADDR (TTR) FOR *< * URE, UP %< *o ENTRY FRDM o*
* FIRST TEXT * CHAN PRDG AND * *e FINCH %
*READ NOTE LIST * *e .*
lili&&l*l*& FEI NN RN RN ¥y o ¥
* NO
X XN
* C1 *—>
* *
%
v v
HRERRC] HHRRERRERE HRHERCTHERRXAHREN
* FETCH LOADING * * EXTRACT *
* SET UP CHAN * * RELATIVE DISK *
* PROGs 108, *< *ADDR (TTR) FOR *
* EXEC EXCP, * * SEG FROM NOTE *
* AND WAIT * * LIST *
ER 2 S LTSl s s E2 2222222222222 22
R 22
* *
* D3 *
* *
v R v
¥ ¥ ¥ ke
Dl &. D2 *, D3 - D4 *q EEARRDSHEEREXRNXN
o *a o o * *
YES ox° IAS FETCH *« NO o* *. YES “x. YES o « NO * WAIT FOR *
*oLAST IND SET % >*e. PCI FETCH % *e RECDRD READ o >%e BUFFER FULL o¥%———————>% BUFFER TO BE *
I *o IN RLD o% *e o l *o A *e o * FILLED *
*o BUF % *gq ¥ *o o | *o ¥ * *
v *e oF e oF *e ¥ He o¥ Y R Ty
ERER * * NO XRRR * NO YES
* * * * E2 223
* g1 * * E4 * * *
* * * * * E4 *#—>
EXXE r R]
v - v K v
¥ oo o*e
El *g R P e e s E3 - E4 - EERRKESHHIFHKEXXN
o* *. * TURN ON FETCH * o . o* *o * *
o* *. CONTROL * LAST IND IF * o * o® RLD *o YES * RELOCATION *
*e RECDRD TYPE o%——————>% NEXT RCD IS * *.1/0 COMPLETE ——>*.PROCESS!NG TO.* >¥ADJUST VALUE OF ¥
* LAST. SET UP * *o . 'BE DONE_o% ADDRESS *
* PROG FR CTRL % *e o “xo * CONSTANTS %
EA 2222222 2 222 22223 *, o e o¥ EEZ 2 RS S22 222t s
* YES * NO
] | I |
| | |
v ' |
NN <
1 * * v v
v * C1 o* o* FREE « ¥« BUFFER
HRRERF L HRHRRREE RN * * F3 F4 *, EARRERESHH R XRNRR
* * EX RN ¥ o *q * *
* RELOCATION * * *o YES * *. YES * WAIT FOR *
ADJUST VALUE OF BUFFER FULL o% > LAST BUFFER % >*LAST 1/0 TO BE *
ADDRESS * *o . - ¥ * POSTED *
* CONSTANTS * * X *e o* *. ¥ *
EE 2222222222222 R * * Wy o * g * E2 2222222 22 222 22
* C1 * * NO * NO
* *
R l
A v
XX
v * *
o¥g v v * g1 *
G1 - RG22 RN R RN NN NN E2 222 TckcE T R 22 222 22) HERERGH HHEXNRXEEX * *
.i * SET * * * * ° * EZ 223
*. YES * CHAN PROG TO * * * * ROTATE *
%2 RLD/CDNTRDL o *READ RLD AND/OR¥ * EXCP * *BUFFER POINTERS¥
%o RECORD o * CONTROL RCD * * * * *
- o* * * * * * *
He ¥ LR R 222 22 ST 22t LR 2 2 S S RS R sl I3 IR N
* NO
| |
{ v
EE 2 2]
v v * *
o*e i . o * D3 *
H1 . H3 %, * *
¥ * - ¥ *q EZ T
* NO o¥ *. YES
*e LAST RECORD o *.PRIOR BUFFER o >
. o* *e FULL %
* g ¥ *g -
*g * *e o
* YES * NO
R 22
* *
* g1 *—> | .
* |
X XE |
v v
*****J]**ilil*ﬂil EZ 22 NkE S22 ST E 32
COMPUTE * *
RELDCATED ENTRY * WAIT FOR *
POINT. INITIAL- *THIS BUFFER TO *
* BE FILL *

*IZE SEGTAB FOR *
* OVERLAY PROG %
R e IR 2)

v
HRERK L RRREREERR
* *
* RETURN *
* *

NN RHN NN

50

ED

* *
e S a T e

e Chart O05A.

FRERET] KRR RN RN
* PUT *
CCW IN NEXT *

CHAN PROG. * L

*
*
* RELOCATE ADDR *
*
*

*
EREREEEREERRRRERN
|
%
v
o ¥,

c1 x.
o *o

PCI and Channel End Appendages
(Described in Chapter 5)

PCI APPENDAGE

AREEADKEXERERRR
* ENTRY *
* FROM *

* 10s *
R e e ST

o *.

YES o% *.

.CCW IN RECORD.
*

- *. NO « YES
*o LAST RECORD o%———y o %
*o . - .
x, o *, o*
¥y o% o« ¥
* YES NO

EAERED] HERREERERS
* *
* SET CHAN PROG *
* TO READ TEXT *
* AND STOP *
* *
* *

EEERERERERRR NN

v
FREREDD X NN R R RN
* *
* SET CHAN *
* PROG TO READ ¥
* RLD AND STOP *

*

*

*
EERREREEREARNERR

b

1
v
¥

E2 *o
*

*o
BUFFER *o. NO
AVAILABLE ¥
*a o ¥
*, o¥
*q

o
* YES

’|
v
EERERFOARERREEERR
* *

* REPLACE NOP %
* WITH TIC TO *————
*NEXT CHAN PROG *
* *

E 2 R T2 T T

A
|
I

| A —

W C NN
* *
* POST *
>*LAST RECORD ECB*
* *

* *
R I T T T T

v
EREEFEZHEREERER KRR
* POST ECB *
* TO ALLOW »

>* NECESSARY *
* RELOCATION TO *
* BE DONE *
EEE 2222 22 S22 S 2T

|

v
EEHRKF IR RREXERAR
* *
ROTATE

*

* CHAN PROG.
* POINTERS
*
*

EEE RS

HREAEREERN R R ARN

v
EEEXGIHR R RNX
RETURN *
70 *

* 10s *
FREXKEEEHREERERR

*
*

CHANNEL END
APPENDAGE

HHHEAL HH KRR RHR
* ENTRY *
* FROM *
*

10S *
HERRERHEHRHRRER

C——————

HRHEHDY R NN RRR
* *
*SET UP RESTART *
* OF CHANNEL *
* PROGRAM *

*

*

*
HEE R NIN KRN RN

o “x.
*. MISSED PCI <%
* *

*

« *CHANNEL * o
NO o% END FOR
%o LAST

*o. BUFFER
*, o ¥

%, o

* YES

<

EEE SN SR SRS SR LS
* *
* POST *
LAST RECORD ECB
* *

* *
L

v
HRAAFGHHEHRXXRR
NORMAL *
RETURN *

*oxx

TO 10s
S S s

——

z
Q

G4 *o
* NEXT *

Lm—>%, BUFFE -
,AVAILABLE«
*. o ¥

YES

CHANNEL END
OCCURED BEFORE
PCI APPENDAGE
COULD CHANGE
NOP TO TICe.

HRRXTSHEE XN RERN
RETRY

* *
* RETURN *
*

TO 10S *
LRSS ST 2SS eSS
A
ﬂ
|
4

Charts

50A

EEEAKEREEEERHEERR

*
RN W EIR I RE AR

Chart 06. Overlay Supervision Control Flow
. .
(Described in Chapter 6)
1GC04S
EZ 22222222222 23
* FROM *
* SVC SLIH *
* *
ER X2 22222222222 LE 2]
* *
* B4 *
* *
L2
16C037 v v
R 2SS 2 2 s s #CHKS TO SEE IF * #* EXTRACTS ADDR * * * EE 222 2SS 2RSS
* FROM *REFERRED TO AD—* * OF CURRENT * * RESTORES *

* SvVC SLIH * >%CON IS RESOLVED* >% SVRB, ADDR OF % * REGISTERS *—————>% EXIT *
* * TO AN ENTAB. * *SEGTAB AND REQD* * * A * *
BTN N * SEGLD=NOP * #*# SEG'S NUMBER * * * ' O I)

SEGLD s SEGWT *xk
* *
] * BS *
v * *
* R X
* *
* BS *
* *
L a2l
RESIDENT OVERLAY SUPERVISOR 1 —— IEWSVOVR
NON-RESIDENT OVERLAY SUPERVISOR 2 —- IEWSVOVRs IEWSXOVR - xex
L -
1 - * *
N - * D5 *
K - * *
IEWSXOVR ONLY - Lt
- - v - |
- OVRL18 - o¥e - v
- RS2 22 2222222 22 - ¥ * g - 336 33 3 I IE I NI KN RN
- * CHECKS SEGWT * — o* 1 *e - * IF PROGRAM *
~ ERROR* REQ TO SEE IF * ~ NO «* REQUESTED *. YES - * SUNDER TEST' *
- * REQUESTED SEG ¥<————————%SEGMENT IN MAIN® *SETS UP + LINKS*
- I * WILL OVERLAY * - *. STORAGE % - * TO TESTRAN *
- *REQUESTING SEG * — . . - * INTERPRETER *
- v RS2 222222222 222 2T - e o - 336 3 36 I 3 I XX H K
- XRWE - - AR
. * - - L|E
- % H3 * - - (T
P, * - - Nlu
— xxxx - - KIR
- - - v N
- - - OVRL60 ¥ v
- o¥ *o EE a2 2]
- - - * *
INITIALIZATION - «%* WHERE *. SEGWT * TESTRAN %
WAS ENTRY o%—— * INTERPRETER *
- « FROM ¥ _] * (IEGTTRNO) *
- *q o * *
- *e o v HRRER XK XERH
- *1GC045 *RXE
- (ENTAB) * *
- * B4 *
- * *
> | < - LR 22
v -
OVRL30 ke OVRL40 - v
. *e -
o% ANY %, * RESETS SEGTAB * - * UPDATES ENTAB * *xxx
<% TABLE *. YES *STAT INDRS FOR * - *HIERARCHY INFO * * *
.ENTRIES TO BE. >% OVRLD SEGS, * - *IF REGIONS THE * >* B4 *
*. RESET % *XENTAB ENTRIES * - * SAME OR_ENTAB * * *
*o - *IN CALLER CHAIN* - * IN ROOT SEG % EXXE
*e ¥ -
* NO A* IF -
INECESSARV ~ TERMINATION
v -
ER S22 22222222222 -
*OVERL80 * -
LR B B St St Bt Bt T -
* COMPUTES AND % -
*VALIDATES ADDR * -
0OF SEGTAB ENTRY -
363 IR -
E -
EE 22 R -
* * R -
* H3 *=>|0 -
* * R -
ES 22] -
v -
I NI NN RA -
EE 2 23 * * -
* * * SETS * -
* Ba *< * ERROR * -
* * * CODE * -
W WX * * -
36 I I I I WK N -
UPDATE TABLES -
v z
N -
I W NN ¥ * g -
* MARKS SEGTAB * «% OTHER *. -
#ENTRY. SUBSTI-% YES o% SEGS THAT *. -
* TUTES NO. OF *<—— *MUST BE MARKED.* -
* PREV SEG FOR * <FOR LOAD-.* -
VAL OF LAST SEG *. ING o% -
EE 2222222222222 22 *e o¥ -
* NO -
-SVC ENTRY AND EXIT PROCEDURES ARE SHOWN ON CHART 01
OVRLS0 v -
e e T KR D KNI NI NN -
*FETCH * * SCANS SEGTAB * *xxn -
B ™ *REQUEST LOADING* * -
* (IEWRTMIN) * L D> % OF MARKED * >*% DS * -
*LOADS REQUESTED® * SEGMENTS * * * -
* SEGMENTS * * XXX -

SEGMENT LOADING

Charts

51

Chart 07. Time Supervision Control Flow

(Described in Chapter 7)

HEHERHRXNENRKN
* FROM *
* T/E FLIH *
* *

KNI NH

IEAQTIO0O v
XK XK

L s e e

* FROM *
* SVC SLIH *
* *

HHEKEREIHERR RN

IEAQSTOO v

HHEHEREERERRAKR
* F

* SVC FLIH *
* *

L e

IEAQTTOO v

*TIMER SLIH *
Hm W K N R N N K N
*UPDATES TIMER. *
*¥POSTS ECBSe *
*QUEUES + DEQUEUES *
*TIMER ELEMENTS. *
R e T

v
HEHE K KRR H KRR
* *
* T/E FLIH *
* *

EE T R

SVC ENTRY AND EXIT PROCEDURES ARE SHOWN ON CHART 01

52

*STIMER *
LR B Bt Bt Bt T B e Bt e
*SETS TIMER *
*ELEMENT + EXIT *
*ADDRSe USES *
*T/E SLTH TO *
*QUEUE + DEQUEUE. *

v
LR e e e
*
* EXIT *
* *

HHEERRERRERRERN

HH R
*TTIMER *
Hm e N N W N KN K
*¥RTNS INTERVAL
*LEFTe MAY CANCEL
*BY USING T/E SLIH
*TO DEQUEUE .

L e e e L]

* % Xk K

IEAQRTO0O v

IN SYSTEMS WITHOUT
A HARDWARE TIMER

RN NN RN RN
FROM

* SVC SLIH *

* *

IR NN RN

IEAQRTOO v

FRH N XX
*TIME * *TIME

e e ot S L B s et e S
* OBTAINS * * OBTAINS *
* DATE AND * * DATE. *
* TIME. * * *

v
HAEXREREREERERRRR
*
* TYPE 1 EXIT %
* *

R

v
R e
* *
* EXIT *
* *

EEREEEEREEERNRR

Chart 08.

Initial Program Loader Control Flow

(Described in Appendix A)

PRELIMINAR

OPERAT!DNS AND CONDITIONS

R HERRRETRRN
*SYSTEM LOCATED *
* ON A DIRECT- *
* ACCESS DEVICE *
HEHEHHEREHEREEN

OPERATOR
KKK TR RN
*SELECTS SYSTEM *

RESIDENCE *
* DEVICE WITH ¥
* LOAD UNIT *
* SWITCHES *
PR ST e T s A

v
I H NI RN
SETS ADDRESS %

K HHHERHEEE NN

v
***********;*****
* PRESSES LOAD
* KEY ON THE
*SYSTEM CONTROUL

* PANEL
I

KRk KK K

HARDWARE \
RN E K
* SYSTEM RESET
*READS IPL CTRL
* RCD FROM
* INPUT DEVICE
* INTO LOC O
AR KKK

1

* KKk kK

1PL CONTROL |
RECORD
PR
*
* READS IPL

*BOUTSTRAP INTO
* MAIN STORAGE

ok K KKk

*
R s

SUDTSTRA v
FHHFHHEHEREHHEERH
*LDCATES IPL ON *
SYSTEM RES— ¥
* IDENCE_AND *
*
*

EREEHKEEXRHEH LR RE

TEAIPL

IEASTARL V
T
* *
* CLEARS *
* GENERAL *
* REGISTERS *
* *
* *

AR E KT RN H

o¥e
o* *
«¥ HAS ¥,
«* ALTERNATE *- YES
*oNUCLEUS BEEN
. CHOSEN -
*e ox

B et
*

*USES ASSEMBLED
* UCLEU!

*

KK Kk

*
P eI T

*xRR
*X R

IEAMAIN
****&&{****{li*&*

"CLEARS FLOATING*
*POINT REGISTERS¥
* *

* *
HHEARETHERHIEEHER

v
¥,
*

o

«% PROGRAM *, YES

*o INTERRUPTION o
*

*o %

IEAPCRET V
P s
*CHANGES NEW PI ¥
XPSw_TO IEARQUND¥
TO HANDLE *<

STORAGE-CLEARED
* INTERRUPTION ¥

P T

FOR IEAIPL MODULE

P T Ty,
% MACHINE Has x
Fp

* REGSs. *
>*RETURNS CONTROL*
_To TIEAPCRET *

«{****a*{n«;;****

L

IEALOOPS v
HEEREEEERHLEREERN
CLEARS 256 BYTE
* BLK OF MAIN *
*STORAGE BEYOND *:
* IPL PRG AND ¥
*COUNTS IN REGS *
FHEREHHREHEERHHERN

e et
* APPENDS BYTE

*0OPERATOR KEYED
>* INTD L C TO

* NUCLEUS NAME
AR H TR XN

EXTEE Y

P —

1
| No
ok o¥q
o* *a o® *,
«* HAS ¥, ¥ *o
«* COUNT REG *. NO «¥ PROGRAM ¥,
>%. RETURNED NTERRUPT!ON -
*. TO ZERO *o
o o *o -*
*e o He o
* YES T YES
IEAMXLOC IEARCUND v

v
P
*

*
* READS SVL AND *
* THEN VTOC TO *
*LOCATE NUCLEUS *
* *

*

FEEEREEEERRERTEN
|

IEACOMPR
ERRRRRRIFRREEERRR
* READS IN AND *
SEARCHES PDS *
DIRECTORY FOR *
-NUCLEUS *
MEMBER NAME

*
*
*
*
P T st

IEARET1 v
EERRREREEERRREERR
* READS THE *
* TRANSLATION *

TABLE AN
#* SCATTER TABLE *
* BEHIND IP *

R e e e e

*
*
*
* FROM TT/ST
*
*

" A
ERAXXEIEEEEHNXR

IEAADDRS v
EEREEREERRXEREL AR
* MOVES PART OF *
* IPL NOT YET *
* EXECUTED TO *
* OF MAIN ¥
* STORAGE *

EREEREEEEEREREERS

IEARD1 M

v
EEEEERREEEEEERRRE
* * ROUNDS OFF
* MAXIMUM MAIN * MAIN STORAGE
* STORAGE SIZE * SIZE IN THE
* ASSUMED
*
*

HRHEEEEH AL LK

LR Y

*
*
*

*COUNT REGISTER *

* *

*

EHEXEEEEEREERRER

.

HEEHEREHEEE LR RN
CHANGES NEW
PI PSW TO

PI ON SET
STORAGE KEY

* *
* *
* IEAPCKEY FOR *
* *
* *
AEAEREENEHEEERRRR

IEAKYLP v
HEEE AR RRERE SRR
* *

* SETS STORAGE *
*
* STORAGE TO :
*

*SUPERVISOR KEY
EREEEFEXEEHEEERR

*READS TXT INTO *
* LOWER MAIN *
* STORAGE.NIP *
* ESDID=1 AT *
*
*

* TOP OF NUC
EAXAXEHEXREEREERRR

TEARDRC2
EEREEEREERRERELES
* READS TXT *
CONTROL RECORDS#
*INTO IPL BUFFER¥
*THEN MOVES RLD *
*DATA BELOW IPL *
AAEXEAREEERRREERR

IEATYPE
FHEEXEXBRREERRRRRR
* WHEN LAST
*NUCLEUS RECORD
* READ,UPDATES
*ADDR CONSTANTS
* BY RLF TABLE
P e T e

EEE T

*
* SETS NEW PI
>* PSW TO POINT

TO IEAPCRET

kK Kk

v
e¥a v
¥ *o
*o *MACHINE HAS NO * LOADS MACHINE *
GRAM *, YES *PROTECTION KEYS#* * SIZE IN A *
.lNTERRUPTlON ¥ >*#0R ARE ALL SET #* * REGISTER AND *
- *TO TOP OF MAIN * * GIVES UP *
ORA #*CONTROL TO NIP *
|
IEAPCKEY
*CHANGES PI NEW * EERXEREREREERRR
* PSW TO GIVE * * * .
*TYPE 9 ERR AND <l’(* NIP *
* HALTS ON ANY * *
* MORE PI ’ EEEAEAXRERERRRRE
SEE CHART 09
v
FEE®
= *
* A5 *
- *
ERE

Charts

53

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

e Chart 09. Nucleus Initialization Program Control Flow

(Described in Appendix B)

1EUCBO

e e e Y
FROM

* ok K

IPL
(CHART 08)
A3 3 3 IR

kK

IEAANIPO

*
*
* IN THE
*
*

CcVvT
33 KKK

v
R HEC] R HEI IR
INITIALIZES
BOUNDARY
BOX

FEREE R
EEEE R

HHH KR RHRNH R

v
EEERED]HAREXRRERR
INITIALIZES

* 3*
* FREE AREA %
* QUEUE ELEMENT *
* 3*
* *
* *

AR KR NN

|

v
WHHHEE] R H RN
INITIALIZES
2 BYTE ADDR

*
*

* WITHIN
* RQE TABLE
*
*

* ok K kK

T

v
HRRHNF] HHHAR RN RN
* *

INITIALIZES
UCB TABLE

kK

*
*
*
*
*

e e s

C

HRHHHG] HEHRERHERH
* READS *
* STD VOLUME *
* LABEL FROM *
* SYS RES *
* *
* *

OLUME
R e e]

I

IEAUCBS8 v
FHRHHEH L H KRR H N
* READS *
* vTOC *
* DSCB *
* DATA *
* *
HHEHEE R R KL N RN

1

|

v
HERHRY] HRRRHERERR
* DETERMINES *
* UCB ADDR *
* FOR THE *
* SYS RES *
* ¥*
* *

DEVICE
HRHURERRHEERXHER

54

* OF DATA
r—>%(TO 2E OPENED)
* IN THE

R RIAD RN R
* SETS NAME
SET

* CHNL PROG

*
*
*
*
*

LR S e e Y

PP

IEASTRIO
HEREKB2RRERRRRES

*
*
* DIRECTORY OF *
* THE DATA SET *
* *

*

R e TR T

v
HERRHCO2HEREHRARER
#* INITIALIZES

*

*

Lc—x FIELDS IN *
E DEB *

*

*

B e s

i
v
TEATIMER <%,
D2 .

«*¥CHECKS *.
«* IF TIMER *
*+1IS ENABLED 7/
*o WORKING o%
*o

e

He oF
T YES

v
HERRHEDHR R XXX RH RN

* SETS *
* TIMER *
* WITH A *<
* VALUE *
* OF 6 HOURS *
e T ey S]

v
L L e e T

* DETERMINES *
* PROTECTION *
* KEY FOR THE *
* PARTITION *
* *
R e S T

IEASETK Vv
FHRERHG2 FHRHE R NR
*

SETS
STORAGE KEY *
OF THE

HEHEHDIHHHNIRHHXR
* SENDS

* A MESSAGE
>* TO THE
* OPERATOR

* kR K KK

*
e e T

L

SvaLnNi)
FHI N QLI RK TR KR
* OBTAINS

®
TRANSIENT SvVC *
—>% NUMBER FROM *
* RELOCATION *
* *
*

TABLE
HRH KRN NH R KH KRR

P —

HHE DL KRR KKER
CONVERTS SVC *
NOe INTO *
BYTE SVC *
MEMBER NAME *
*

*

e ok ok ok Ok Ok

RN R RN

|

|
HH RN K C LR KRR R
* USES *
ELDL MACRD *
Y0 GET *
DATA EXTENT *
*
*

kKK

FOR THE SVC
e s e

SVXFOUND
ERERRRELRRERRRRRRR

¥* MOVES TTR *
* AND LENGTH *
*

* SVC INTO *
* TTR TABLE *
FHH RN AK KRR R RN

i
|
RS

3
3*
*
* PARTITION *
*
*

*
HEEERERLRRHR KT XX

Fa
*

END OF
RELOCATUON
TABL

.
*e ok

* YES

i

v
HHEHHGHHERRXRE AR
* APPENDS *
* OPTIONAL *
* ROUTINES TO *
* THE NUCLEUS *
* *
HERREEREAREERRRHH

|

IEANIP1

P e
% INITIALIZES *
* PARTITION *
* WITH *
* PRB + *
* XCT ODE *
HHEERERHRKEHARHHH S

v
HERKJLERRRRERER
*®

*
DISPATCHER *
* *

R T 2

HHEHEDSHIER R HEE RN

* SENDS
* A MESSAGE
> %

TO. THE
* OPERATOR

K K K

*
R e e T

|
|
|
|
|

OF TRANSIENT * L

Chart 10.

SERO Link Library Resident

(Described in Chapter 8)

EEEEUD]RERERRNE RN
* *

= *
*DIAGNOSE LOCAL *<;
* STORE *

» *
ERREERREERRNRE RN

AR RRAZRERKAE RN
*

o KB
*.MODEL NUMBER %
*,

40,50

ERBREE] HRERRRRERNE
* SET UP *
* R.E. FOR *
* CHANNEL CHECK *<
= (INBOARD) *
* *
*

R I e T T Y

>
E2. ERERFEIRERR RN RN
¥ * *
S o* *¥SET UP ReEes FOR¥*
*oLOCATI * *
- Fi * MACHINE CHECK *
*, * *

EEEREERERRRHRINRR

|

65475 % *,
——*<MODEL NUMBER «¥*<
*, ¥

*, ¥

v
EERRREDRRERERRERE
* *
* LPSW. A *
* PSEUDD MeCo *
* ENABLE *
* *
* *

T

I

v
AERERG2RFKEEXRNNR
*

*
* SETUP *
* M.C. HANDLER *
* ADDRESS *
* *
HEEEERERR RN R RN

|
! EEERRH]FEEERRERER
1 * GENERAL *
l * PURPOSE *
>*REGISTER PARITY*
» TEST *

» *
EREERRBERERRRER R

v
EREERJ]HERAERRERR
- *

* LOAD
#*POINTER TO CVT
ol MACRO

EXEE Y

=
EEEERERER RN RN R

v
AA 2 VRS RS S 2L 2 2]
* *
* ADJUST *
* CCW ADDRESS *
* *
* *
* *

EEFRRERERERRRRR

v
HREREJOHEHERE RN RN
*

*

*LOAD REMAINDER *
*0F MODULE INTO *
* *

* *
L R I T T e

XX KRR

XX XX

RECORD ENTRY
CHANNEL AND UNIT ADDRESS
UNIT CONTROL BLOCK

Module Control

YES %

Flow

*
* START *
* *
EEREARREENRERRR RN
%10 *
* Bax
* *
*
v v
o¥, ¥
B2 *o B4 *e
- *q o * *, .
YES % *o 50 % *. 65,75
. MODEL S0 o ——.MODEL NUMBER o %¥—
. . | *. h o*
*. o %, ¥
*e o¥ v *e o¥
* NO EXEE * 40
* *
I * F4 *
i * *
>l "R
v
RERERCOERRERRHARR
* *
SET *
UP SERO PASS *
* DSECT *
* »
P e
v
ot
FREERDHERERR RN D&
* * EREN o
* LOAD * * * ok *o
>*% PTRe TO CVT * * F4 *< *o FLOAT ING ¥
* MACRO * * * *o POINT hd
* * * e .
EREEREEEERRRR RN *, o
* YES
P

v
HERRREL R XN XN HE RN
* *
* FLOATING *
*POINT REGISTER *
* PARITY TEST *
* *
EE 22222 S E 22 S R 22

LS 2 2] |
* I
* Fa *—>
* »*

xxn]

v
E e e
* *

* GET *
* UCB ADDRESSES *(——1
* *
* *
HERRHERERERERRRR
*
* %
%10 *
* Fax
EEERR
v
¥
Ga .
o *o e
o* 1/0 *o * *
UNIT ACTIVE .%* >* F4 *
o o * »*
*, o RN
*e ok
* YES
. .
, o
*e o
* NO
v
¥,
Ja *, FERHERJSEEREE RN RN
o* . * *
® UA= *. YES * EXTRACT *
*. CUA OF 1/0 % >*FIRST CCW, FAIL*
o o® * CCW AND CsSw *
* *

R R S T

Charts

54A

e Chart 11.

LSS 2]
*11 *
* B2*
* *®
*
v
o¥a
B2 *.
o ¥ *o
NO o END *. YES
[*-0F UCB ADDRS ¥
* g ¥
| *. o* |
v *o .
R *
*10 * |
* Fax i
* *]
* |
v
¥ ’
HRRERC] RRERRRER RN c3 *g
* * ok
» * NO o *. NO_o* MACHINE *.
SET FLAG IN RE.< *o FAILING CUA o*<——————*CHECK INTERRUPT*
* * *o FOUND % *. o
* * - . * g ¥
BN NN *e o¥ *, o
* YES * YES
i
>‘<
v
ER 22 VRS S S S22 s
* *
* EXTRACT *
*PGMID DATE TIME¥
* *

REBHEG] HEXRRE NN

* *

* SET UP 10S * NO
* WAIT— STATE *<{—

* CODE X 'FO7%' *

*

*
R s

I
v
RN] RN NN
* PRINT *
ERROR MESSAGE
* *

ERRERERXNRRRR

v
RREE IR R XA N
* *
* WAIT STATE *
*

HERERERRRRR RS

54B

* *
LR RS2 S 2222222 S
R 2 2]
* *
* E2 *=>|
* *
RN

v
HREERED R TR NN
* *
* *
*READ RO RECORD *
* *
*
*

*
R

EEERRF2RRREREER AR
* *

* READ *
* HEADER RECORD *
* *
*
*

*
EREERERERREER RN

v
oo
G2 *o
Ed *o
«%* HEADER *o
¢RECORD SAFETY.
*oBYTE =FF %
* o
. o
* YES

|

|

v
EEEEEHD KK KRR ERRN
* *
* UPDATE *
* SEEK ADDRESS *
= *
*
*

*
LR e e I s

l

v
EREREJDOHKRRAR AR KRR EEREEJTHE KRR TR XN
* * * *

* * * RE-ENABLE *
*WRITE ReEe DATA¥ * MACHINE *<
* * * CHECKS *
* * * *
R s HEREEERERERRR XL RR

%
| I

v v
XX L2 2 2]
* * * *
* B4 * €2 *
* * * *
EE 223 XX

EEEE

ERXR

v
o¥e
B4 *o
o* *.
o* ReEe *s N
¥eON LAST TRACK.#
*o .
* o
*.

ox
* YES
|
i

v
HARERCHERREARRRRN
* *

WRITE
EOF AS NEXT

* *
* *
* R.E. *
* *
* *

EEREAERTERERERR

o

SERO Link Likrary Resident Module Control Flow (Continued)

EXRERDSEER AR RR R
* *

* WRITE
>* EOF ON LAST
* TRACK

ok ok ok

*
EREEERRERERRRRRR

i<

|

v
FERERDARRRENAEE RN
* *
* WRITE *
*UPDATED HEADER *
* RECORD *
*
*

*
R

|

v
FEXBRELARREERTRRER
* *
* SET UP 10S *
* WAIT- STATE *
* CODE X*FO05+¢ *
* *
* *

R e T

v
AEXRXEEFLRRERXERRRRE
* PRINT END *
OF JoB
* MESSAGE *

EERERRERERERR

v
EEERGLEE XXX
* *
* WAIT STATE *
* *

EEEERRERERRERER

HEBXHOE R R R RRR
ADDITIONAL
MACHINE
HECKS
EREEAFRREERRERR

*
*

* kK

e
*
* STATE *<

EEEERRERRERRARR

EEEEE JSEEREERE RS
* *
* SET uP *

>* INTERFACE *
* WITH SEREP *
* *

*

EEREERAREREERR RN

|
I
v
EEEEREKSHERREREERER
* PRINT *
ERROR
* MESSAGE ¥

EEREREERERERR

Chart 12.

* XN
R

MODEL 50 v
EEARABERAFRRHHRR
* *

* DIAGNOSE *
* LOCAL STORE *
* SECTOR *
* »
* *

FERENA R NRR RN

SER1 Control Flow

ERERADREEXRE KRR
* ENTRY FROM *
* MC PSW *
*

*
R I e T

v
ERRERB2ARRAERERER
* *

SAV *

* E REG
#13 IN LOCATION
* 372
* *
e
EERE

*
#* C2 *—>
* *
ERRE i

v
AEERRC2RBRERR SRS
* *

*
*

o *. NO * LOAD *
#oINITIAL ENTRY o #%— * BASE REG FROM *
o o i * NEW MC PSW *
, o | * *
*e o¥ v EEEEEERRRERELRRRN
* YES ERER
* *
* g1 *
* *
ERRR
v
v ok,
HREERDLRIHERANERN D2 *o
* * o % .
#CLEAR POTENTIAL* o* *. YES
BAD PARITY IN #* *oCHANN FAILURE. *
ALL REGISTERS * *o o
* * *o o®
e v *o oF
EERE * NO
* *
* Cc2 *
* *
R I
v
ERRRFEDRRRRAERRRR
* *
* MOVE LOG *
#AND MC OLD PSW *
* TO RE AREA *
= *
e]
v
P Y e
* *
* CLEAR *
PENDING MACHINE®#
* CHECKS *
* *
T e
MODEL S50 v v MODEL 40 v
EREREG] HEERRAEN RN I e T EEREEGIREERRRNA AR
= * * * * *
* COMPACT * # PARITY TEST * * STORE *
GP REGS IN RE * ® AND SAVE GP # GP REGS IN RE *
* AREA * #REGS IN RE AREA#* * AREA *
- * * * * *
EREERARRRRERBES R 2 s R L ERRRBREEERRRRBRRR
v
v v o¥e
BERERHEERERRRE RN HREAEHDEFRERNRRRE H3 »
* MODIFY * * * ¥ FP *o
* DIAG. * * PARITY TEST #* o REGS *o YES
INSTRUCTION FOR #* AND SAVE FP # *o AVAILABLE o¥®
#* LS SECTOR 2 #* #REGS IN RE AREA#* * .
* * * * *q o ¥
REEREAANEERRR RN v P *o o
(222 * NO
EEE * *
- » * Bl *
* g1 #— * *
* » xan
EREw
v
[N T T
* *
* COMPACT *
FP REGS IN RE * >
* AREA *
* . *
ERERERRAE RN AN
<
v
T
RER * *
* * * MOVE DATE *
* K2 * >*AND TIME TO RE *
* * * AREA *
EREE * *
e T
Exan
#13 »
>* A2 *
* *
xR

P T
* *
* TORE *
>* FP REGS IN RE *
* AREA *

* *
LI R T T T Y

P S —.

HRERRESHE R X R LR X AR
* ®
* MOVE *
*LOG AND CSW TO *
* RE AREA *
* *
EE 2222 22222 22

|

4
RRRRRE SRR RN R
* *
* MOVE FIRST *
* AND FAILING *
CCWS TO RE AREA
* *

I T

v
FERBRGSHERHERER R
* *

* MOVE CuA

* FROM 1,0 OLD
*PSW TO RE AREA
*

IR LR

ERRERRERRRERRRER

Charts

Chart 13.

R
*12 *
* A2 Ay
» *
EREE
v
e T S

MOVE
CUA OF ALL
ACTIVE 1/0
UNITS TO RE

ok ok ok
LR R R RN

AREA
LR 2222 2T S22 22 2

v
RN RRB D EE R NR AR RE
* *
* MOVE CHANN =
*TYPE ASSIGN. TO¥
* RE AREA *
*

BN I NN

v
o¥e
c2 *o
*

o ¥ -
YES <% CHANN. *o
%, FAILURE o ¥
* *

v
XN
*14 *
* A2
*
»*
v
o¥o
02 *e
«* *o
YES <% 1s *o
———————%.SCHEDULER IN .#%
v *oOPERATION. *
Ea 2 L 2] * g ¥
*14 * *e o¥
* A2 * NO
*
. |
v
¥
E2 *o
o* *o
YES <% OLD MC %,
———————%*,PSW = TO SUP..*
v *o MODE ¥
RN * g ¥
*14 * *e o
* A2 * NO
* *
*
|
i
v
HREERE2RE AR RERN
* *
* PARITY TEST *
* ALL _OF MAIN *
* STORAGE *
* *
IR NN
|
v
¥
G2 *e
o* BAD *.
YES o%* PARITY *o
— *o OUTSIDE PP %
v *. AREA o
XX * g o ®
*14 * PR
* A2 * NO
* x
»*
|
v
H R D R RN
*

* *
* PURGE 1/0 *
* *

»* *
RN REN RN

|
v
REYORREEFRR
* *
* EXCP TO *
READ HEADER *
RECORD *

*
*

*
HEREEREERRN

|
v
*

K2 *o
o *.
o *o
*e 1/0 FAILURE o¥%—
‘. et
Xo ok
* YES
R R
*14 *
>* A2 *
* *
*RR

54D

NO

L N Ty Y
*

* UPDATE
—>%* HEADER RECORD
* IN CORE

LERE R E R

*
IR IR H R

v
ARCIHERRRNRR
* »

* EXCP *
* WRITE RECORD *
* ENTRY *

* *
AR NN NN

« YES
*—
v
LSS 2]
*14 *
* E3%
* *
*
v
EREIHERRR NN
* *
* EXCP *
* WRITE HEADER *
* RECORD *
*
LRI TR TR TS
v
ok
F3 .
o* *o
* *, YES
e 1/0 FAILURE -
*, - |
*e o |
o oF v
* NO EE 222
*14 *
‘ * E3%
| * *
| *
v
ARGIERERERR

* EXCP *
* WRITE END OF *
* FILE
* *
EE 222 222 X2

RN

* »

* H3 *—>

* * |

EARR |

EE I SRR TR TS
* *
* RESTORE TASKS *
* TO A *
* DISPATCHABLE *
* TE *
*

R e T e

v
EENEE 222 220
* *
* wTO *
MESSAGE TO *
* OPERATOR *
* *

L T

i

v
ERCIREHE AR

* BRANCH *

* TO ABTERM *
* *

* *
EHRM NN NN

o ¥ .*- NO *
*oRECORD ENTRY o#———>% H3 *
*, FI * * *

SER1 Control Flow (Continued)

ENRN

*

*REW

LR 22 2SS RS SR L2
*

* HOUSKEEP
>* SER1 FOR

* REUSABILITY

*
R e]

*
*

*
*.
*
*
*

*
>%
*

LTI GE I T TR 2 2

EXIT

EEEREXERERRRE R

TO
DISPATCHER

*
*
*

Chart 14.

v
RBRRBADERERRE RN
» *
* *
* HALT ALL 1,0 *
* *
»
*

»
AERRAEREEERRNRRN

v
EERRERBOREERRR RN RN
» *

* READ
* HEADER RECORD
-

EEEEEY

»
EERBREE R AR RNN

*
1/0 FAILURE
q o

» *

*e o

i
l
!

v
HEEREDD REHEEEHA RN
* *

*
NO

* UPDATE *
* HEADER RECORD *
* IN CORE *

* *
EEERERREERRRNRE RN

SER1 Control Flow (Continued)

X XE

v
HREENE JHHHNNHRE NN
* *
* *
* HALT ALL I/0 *
* *
*
*

*
EERRERNENN R AR N

]
1<
I
v
EEEERF2RARARRERRR
* *

b WRITE *
* RECORD ENTRY *
» *
- *
* *

ERRBERERRRRERER

v
EEERRHOAR RN AT RN
* *

* WRITE *
* HEADER RECORD #
» *
»
»

»*
EAXEERBERERRERE AR

v
o,
J2 *
o® *o

-® *o
%o I1/0 FAILURE .¥%*
- *

» o
*o o

*
* NO
|
|
v
xax

BS

* K
* kK

EX 2 Y

YES

S—

e

EER]
@
[l

LR R

RER

v
EREEEBS RN EE RN
*

*
* WRITE END OF
* FILE

LEER S]

*
a2

L2 23
* *
* C5 *—>
* *

E2 222

v
EERRRCSHREENNE R XN
* »

*
* HALT ALL I/0
*

*

*
*
*
*
*

EEREEEERRAE R

v
R HD SN NN
* *

* SOUND *
* CONSOLE ALARM *
* *
* *
* *

e T T T ey

I
I

v
ARRRRESEERREER NN
*

*
* WRITE *
* MESSAGE TO *
* OPERATOR *
* *
EE 2222 22222222222

I

i
HREKESHER RN R XN
* *
* WAIT *
* *

NN NN RN

Charts

S4E

Chart 15. SER1 Control Flow (Centinued)
SECOND
MC
ENTRY
ERBRRADERARRRRR RS
M
LOAD BASE *
REGISTER FROM *»

»
*
*
* LOCAT. 372 »
»
»

HRRBER RN NN

v
oo
82 *e
3 -,
o* LER
#oSECOND ENTRY o ¥y
#. HERE o%
», o
LI
* NO
v
ot
c2 *, RRRRRCTRRRERA NN
o *, * »
* USING » »
STAND ALONE >* HALT ALL 170 *
*e i/0 o * »
. o » »
L AERRBEBRBBRRRRD RS
i NO
v
o¥e v
D2 ., FRRRADIHRRENN RSN
ot *. » »
YES o% *q * SOUND e
r—%*sHEADER RECORD.*® #* CONSOLE ALARM #*
*o READ ¥ » *
, . » »
v E, oW T R T e
L e a2 d * NO
*#14 *
* E3N
* * v
AR R
*14 *
* A% v
* HARERETHERNAE NN RN
* * *
* WRITE *
* MESSAGE TO *
* OPERATOR *
»* *
s T T
v
ot
L e F3 *,
» * o *.
* » NO %
SETUP FOR SEREP< *e RE WRITTEN
* * .
* * ' o
R e e *o o
I YES
|
>
v

EEREGEHREEN AR
* *
* WAIT *
*

*
FRMRBA AN NN N RN

S54F

The initial program loader (IPL) is a
service routine that loads into main stor-
age the nucleus and the nucleus initializa-
tion program (NIP -- described in Appendix
B). IPL is initiated by the operator when
he presses the LOAD key on the system
control panel. The hardware loads IPL into

main storage, IPL loads the nucleus and
NIP. On completion, IPL branches to an
LPSW instruction in the nucleus, which

gives control to NIP.

IPL performs the following major func-
tions:

e Clears main storage and machine reg-
isters to correct parity.

e Sets the storage key of main storage to
the supervisor protection key, in sys-
tems with the protection feature.

e Locates the nucleus on the system resi-
dence device.

e Loads the nucleus and NIP.

e Gives control to NIP.

HOW IPL IS ORGANIZED

IPL is made up of two records and eight
subroutines:

o IPL Control Record =-- This 2U4-byte
record, consisting of an IPL-PSW and
two IPL-CCWs, is loaded into main stor-
age at location zero by the hardware
circuitry when the operator presses the
LOAD key. This record and the IPL
bootstrap record are located at track
zero, cylinder zero of the system resi-
dence device; the IPL subroutines are
contained in one record elsewhere on
the system residence device.

e IPL., Bootstrap Record =-- This record,
consisting of a chain of CCWs, is
loaded into main storage at a location
specified by the IPL control record.
The IPL bootstrap record loads the IPL
subroutines into main storage at 1loca-
tion zero.

e Nucleus Selection (IEACOMPR)
subroutine selects the nucleus
loaded.

-- This
to be

Appendix A:

APPENDIX A: INITIAL PROGRAM LOADER (IPL)

e Hardware Initialization (IEAMAIN) --
This subroutine clears main storage,
machine registers and, where applica-

ble, initializes the storage keys.

e Nucleus Location (IEACOMLP) =-- This
subroutine locates the nucleus on the
system residence device.

e Control Section Data Organization
(IEAHOOP) -- This subroutine computes
and sequentially arranges nucleus con-
trol section data so the nucleus can be
loaded into main storage.

e IPL Relocation (ITEAADDR) -- This sub-
routine moves the unexecuted part of
IPL to the upper end of main storage to
make room for the nucleus.

¢ Nucleus Load (IEALOAD) -- This subrou-
tine 1loads the nucleus and NIP into
main storage.

e RLD Relocation (IEARELOC) -- This sub-
routine relocates RLD items within the
nucleus text read into main storage.

o Common I/O (IEASTRIO) -- This subrou-
tine, used by IEACOMLP and IEALOAD,
issues and tests for the successful

completion of START I/0 operations.

IPL CONTROL INFORMATION

NIP and the nucleus are combined into
one load module and written on +the system
residence device by the linkage editor at
system generation time. IPL is supplied
with the fixed name of this "nucleus" load
module, but not with its 1location or the
location of its DSCB within the VTOC.

The structure of the nucleus load module
on the system residence device 1is the
standard structure described in the publi-
cation IBM System/360 Operating System:
Linkage Editor, Program Logic Manual. That

is, its records and text are ordered as
follows:

e Composite ESD Record (CESD).
e Scatter/Translation Record.
e Control Record.

e Text Record (TXT).

Initial Program Loader (IPL) 55

e Control/RLD Record (here and elsewhere,
RID data on this type of record depends
on the presence of RID items in the
previous text).

e TXT.

e Control/RLD Record.

e TXT.

¢ and so on, until the end of the 1load
module.

The scatter/translation record is made

up of the translation table and the scatter

table. The translation table corresponds,
entry for entry, to the CESD, where each
entry represents one control section
(CSECT) made up of a control (or

control/RLD) record and TXT. Entry 0 of
both the translation table and the scatter
table is a dummy entry containing zZeros.
Entry 1, corresponding to an ESDID of 1,
represents NIP, which is the first CSECT of
the nucleus load module. The translation
table contains 2-byte pointers to the
4-byte entries in the scatter table.

IPL TABLES

Since the order of nucleus CSECTs on the
system residence device is not fixed until
system generation time, IPL organizes the
information available for the CSECTs before
loading the text within CSECTs into main
storage. IPL organizes the data by
creating three tables:

e SIZTABLE -- a table of CSECT sizes.

e ADRTABLE -- a table of addresses
the CSECTs are to be loaded.

where

e RLFTABLE
tors.

-- a table of relocation fac-

These tables are arranged in the same
sequence as the CSECT entries in the scat-
ter table and have 4-byte entries, making
each table the same length as the scatter
table.

To make up the SIZTABLE,
the following:

IPL performs

¢ Indexes the scatter table by the con-
tents of the translation table entry to
determine the address of the scatter
table entry corresponding to a CSECT.

e Loads 1in a register the assembled ori-

¢ Loads in another register the assembled
origin "01" of the next CSECT from the
consecutive entry in the scatter table.

e Computes the size of the CSECT by
subtracting origin "0" from origin
"01."

e Stores the size in SIZTABLE in a posi-
tion relative to the CSECT position in
the scatter table.

The size of the CSECT whose linkage-
editor assigned origin is available in the
last U4-byte entry of the scatter table is
computed by subtracting origin "0" from the
size of the nucleus which is available in
the PDS directory and stored by IPL in the
first word of the SIZTABLE which IPL builds
behind the scatter table.

To make up the ADRTABLE,
the following:

IPL performs

e Stores the address where the second
CSECT is to be loaded (assumed to be
location 0) in the same position in the
ADRTABLE as the CSECT occupies in the
scatter table.

e Computes the address for the third
CSECT by adding the size of the second

CSECT to the address of +the second
CSECT.
¢ Stores the address for the third CSECT

in the same position in the ADRTABLE as

the CSECT occupies 1in the scatter
table.

® Repeats the second and third steps
above for each ordered CSECT. (Ordered

CSECTs are those which must be loaded
first and in the order in which they
appear in the translation table.)

e Stores the addresses for non-ordered
CSECTs, after computing them as they
are encountered sequentially following
the last of the ordered CSECTs.

The RLFTABLE is similar in structure to
the SIZTABLE and ADRTABLE. Its entries are
computed by subtracting the linkage-editor
assigned origin from the address at which
the CSECT is to be loaded.

IPL CONTROL FLOW

As shown in Chart 08, IPL begins with
several operator actions and prior
conditions (see the publication IBM
System/360 Operating System: Operator's

gin "0" of the CSECT from the scatter
table entry.

56

Guide, Form C28-6540). The operator se-
lects the system residence device with the

LOAD-UNIT switches and presses the LOAD
key. The hardware circuitry resets the
CPU, locates track 0, cylinder 0, and loads
the IPL control record into location 0.
The control record loads the IPL bootstrap
record, which, in turn, loads IPL and
passes control to the first subroutine via
an LPSW instruction. IPL is executed disa-
bled for all interruptions except program
interruptions.

IPL clears storage and registers, se-
lects the nucleus or allows the operator to
select a non-standard nucleus, sets storage
keys where applicable, searches the VTOC
and locates the data set containing the
nucleus load module. IPL loads the trans-
lation table and the scatter table into
main storage, relocates part of IPL (if
necessary), calculates relocation con-
stants, and loads the nucleus load module.
IPL. passes control to NIP by branching to
an LPSW instruction in the nucleus.

NUCLEUS SELECTION

This subroutine (IEACOMPR) selects the
nucleus for loading or allows the operator
to choose a different nucleus, by using the
ADDRESS-COMPARE switch and the DATA switch.
The procedure for operator-selection of the
nucleus is given in the publication IBM
Systen/360 Operating System: Operator's
Guide.

HARDWARE INITIALIZATION

This subroutine (IEAMAIN) sets correct

parity in the:
e General registers.
e Floating point registers, if present.
e Main storage beyohd IPL.

In addition, IEAMAIN sets storage keys
to the supervisor protection key.

Program interruptions will occur while
setting storage keys in machines without
the protection feature, or while correcting
parity in machines without floating point
registers or without maximum main storage
capacity. These interruptions are automat-
ically handled by IEAMAIN. Further program
interruptions are unexpected, and this sub-
routine places the machine in a wait state
if they occur.

Appendix A:

NUCLEUS LOCATION

This subroutine (IEACOMLP) searches for
the 1location of the specified nucleus name
on the system residence device and posi-
tions the read head of the system residence
device at the first text record of the
nucleus. IEACOMLP takes the following
steps to lcoate the nucleus:

e Picks up the system residence device
address stored at 1location 2 by the
hardware circuitry.

e Reads the standard volume label to find
the VIOC DSCB address.

e Reads the VTOC DSCB data to determine
the number of tracks per cylinder on
the system residence device.

e Searches the VTOC to find the DSCB for
the partitioned data set (PDS) name.

¢ Seeks the track where the PDS directory
starts.

e Searches the directory for a record
containing the name of the nucleus,
using the SEARCH EQUAL HIGH KEY com-
mand.

e Reads the PDS directory record.
e Determines the address of the scatter

translation record on the system resi-
dence device from the PDS directory

record.

e Finds the scatter translation record
and reads it into main storage above
IPL.

The nucleus location subroutine uses the
common I/O subroutine, IEASTRIO, when read-
ing the standard volume label, VTOC, etc.,
from the system residence device into main
storage. Before using the common I/O sub-
routine, IEACOMLP sets up a channel program
with an appropriate chain of CCWs to SEEK,
SEARCH, TIC and READ.

CONTROL SECTION DATA ORGANIZATION

This subroutine (IEAHOOP) computes the
address for loading the ordered CSECTs and

also computes the relocation factor and
size of each CSECT. This data is arranged
in tables -- SIZTABLE, ADRTABLE, and

RLFTABLE -- for wuse by the nucleus load
subroutine. The tables and the procedures
IEAHOOP uses to make them are described

under the earlier heading, "IPL Tables."

Initial Program Loader (IPL) 57

IPL RELOCATION

This subroutine (IEAADDR) relocates that
part of IPL not executed at the time of the

loading of the nucleus into the
numerically-lower end of main storage. The
tables created at the top of IPL are

included in the relocation. Space for the
RLD information concerning the nucleus is
assigned from the top of NIP to the bottom
of the relocated portion of IPL.

NUCLEUS LOAD

This subroutine (IEALOAD)
nucleus into main storage, placing the
relocatable modules into main storage in
the order of their position in the transla-
tion table. Unless INSERT cards are used
for each nucleus CSECT prepared by linkage
editor, the order of the loading of the
relocatable nucleus CSECTS will vary. IPL
sets a buffer of 256 bytes in IPL for
reading control/RLD records, and performs
the following actions:

loads the

e Reads a control/RLD record into the
buffer and interrogates the record.

e Picks up from the control/RLD record
the ESDID of the text record that
follows the control/RLD record.

e Determines the address, L, at which the
text record of the CSECT is to be read,
by adding the relocation factor from
the RLFTABLE to the assigned origin of
the record.

¢ Reads the TXT record of the CSECT at
address L.

e Adds the number of text bytes read, T,
to address, L, to compute the address
where the next text record of the same
CSECT is to be read. Sets L =L + T.

e Reads into the buffer the control/RLD
record following the text record.

e Builds a table of RLDs by moving RLD

information bytes from the control/RLD
record and keeps a count of the RLD

58

bytes moved into the RLD table above
NIP.

¢ Repeats the above steps until all the
records of the nucleus are read into
main storage.

The nucleus 1load subroutine uses the
common I/O subroutine when reading the CCW,
control/RID and TXT records of the nucleus
load module from the system residence
device into main storage. Before using the
common I/O subroutine, IEALOAD sets up a
channel program with an appropriate CCW to
READ the particular record.

RLD RELOCATION

This subroutine (IEARELOC) scans the RLD
table created by IEALOAD and relocates the
load constants in the nucleus text, using
relocation factors stored by IPL in the
RLFTABLE. At the completion of IEARELOC,
IPL's work is done and control is passed to
NIP.

COMMON 1I/0

This subroutine (IEASTRIO), wused by
nucleus locate and nucleus load, issues and
tests for the successful completion of
START I/O operations. Nucleus 1locate and
nucleus 1load set up the CAW and CCWs and
then branch and link to IEASTRIO. After
execution of IEASTRIO, control is returned
to the IPL subroutine that branched to it.

Error conditions encountered during the
execution of IEASTRIO are indicated to the
operator by the WAIT light, and the error
type is stored in the address field of the
WAIT PSW.

The operator can retry IPL when the WAIT
light is on. If IPL is unsuccessful after
a few trials, the operator displays the
address field of the PSW to determine the
error type, and informs the customer engi-
neer. The ten error types are shown in
Figure 20.

Form Y28-6612-0,-1,-2, Page Revised by TNL ¥28-2174, 4/10/67

1 T T 1
|Exror |Bit Pattern| Meaning |
|Type | Displayed | |
t + + 1
1	00000001	IZO is not operational.
2	00000010	I/O operation is not initiated. CSW is stored. Unit is not busy.
3] 00000011	I/O operation is not initiated. CSW is not stored. Channel is	
		not busy.
	00000100	During TEST I/O. Channel is not busy. CSW is not stored.
5	00000101	During TEST I/O. Unit check condition is indicated. Location
] X'4C"' contains the address of the CCW causing the original unit	
		check, and X'54' contains the first four sense bytes.
6	00000110	During TEST I/0. Any of these conditions are indicated:
		Interface control check.
		Channel control check.
		Channel Data check.
		Channel chaining check.
		Program Check.
8	00001000	Available space for reading RLD records has been exceeded.
9	00001001	Unexpected program interruption. IPL contaminated.
FF	OOOOQOOOFF	No IPL on this direct-access device.
L 1 L ¥}
Figure 20. IPL Error Types

Appendix A: Initial Program Loader (IPL) 59

Form ¥Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

APPENDIX B:

NUCLEUS INITIALIZATION PROGRAM (NIP)

The nucleus initialization program (NIP)
consists of several subroutines, each of
which performs an initialization function
required by the resident portiomn (nucleus)
of the primary control program. Such func-
tions include opening of the SVC and Link
libraries, setting the protection key of
main storage and placing the addresses of
the upper and 1lower boundaries of the
partiticn into the boundary box.

The NIP sub-routines are packaged in one
non-resident module. The NIP module is
processed by the 1linkage editor together
with the nucleus modules. It 1is 1loaded
into main storage immediately following the
nucleus, by the IPL program. NIP is
entered from the IPL program and, on com-
pletion, passes control to the dispatcher,
after which it is overlaid by the process-
ing programs.

NIP cperates partially under its own
stand-alone input/output routine and par-
tially under system routines including the
I/0 supervisor. NIP has its own TCB, RB
and boundary box, all of which are pre-
assembled within NIP code. The location
NEW contains the address of the TCB.

The NIP module initializes - the
following:

e Communication Vector Table (CVT).

e Partition.

e Boundary Box.

e Free Area Queue Element.

e UCB Table and Request Element Table.

e SYS1.SVCLIB, SYS1.LINKLIB, SYS1.LOGREC

DEB.

e SVC Table Extension (optional).

e Protection Key (optional).

e Timer (optional).

e Resident Access Method Routines

(optional).

Resident BLDL Table (optional).

¢ Resident Type 3 and 4 SVC Routines
(optional).

¢ Resident Job Queue (optional).

NIP CONTROL FLOW

When entered from the IPL program, NIP
saves the address of the system residence
device, stored in register 10 by the IPL
program. (See Chart 09.) It rounds up the
address of the end of nucleus to a
2048-byte boundary and stores this value in
the CVT for use by the system environment
recorder (SER 0).

60

NIP examines the parameters provided by
the wuser in the boundary box, and
determines the addresses of the free area
queue element and lower and upper bounda-
ries for the partition. It stores these
addresses in the boundary box. It also
stores the number of free bytes in the

"partition in the free area queue element.

NIP changes the 2-byte displacements of
each "Forward Link" from the start of the
I/0 supervisor into absolute addresses and
stores them into the request element table.
It also changes the 2-byte displacements of
each UCB from the start of the I/0O supervi-
sor into absolute addresses and stores them
into the UCB table.

It dinitializes
for SYS1.SVCLIB,
SYS1.LOGREC data set.

the pre-assembled DEB-
SYS1.LINKLIB, and

NIP optionally determines if the timer
is enabled and working. If +the timer is
not enabled and working, NIP sends a timer-
status message to the operator. If the
timer is enabled and working, it sets the
timer with a value of six hours.

NIP optionally determines the protection
key for the partition from the "protect
key" field within the TCB associated with
the partition. It sets the storage key of
the partition.

NIP optionally extends the SVC table to
contain the TTR and the 1length of each
transient SVC routine.

It moves a PRB and the XCTL code from

the NIP module to the beginning of the
partition and relocates the address
constants within the XCTL code. The PRB

and XCTL code have been pre-assembled with-
in the NIP module. The code moved into the
partition passes control to the job schedu-
ler through an XCTL macro-instruction..

After completing all the initialization
procedures, NIP passes control to the dis-
patcher.)

CVT INITIALIZATION

NIP rounds up the address of the end of
nucleus to a double-word boundary and
stores it in entry 33 in the CVT. This
information is used by system environment
recorder.

PARTITION INITIALIZATION

The main storage area outside the fixed
area is called the partition.

The boundary between the fixed area and
the partition is on a double word for a
system without the protection feature.

The initialization of the partition con-
sists of:

e Moving pre-assembled code from NIP to
the beginning of the partition. This
code includes a PRB and the XCTL code
that causes loading of the job schedul-
er through an XCTL macro-instruction.

e Relocating the address constants in the
PRB and XCTL code.

NIP may be overlaid when the pre-
assembled code is moved to the beginning of
the partition. To eliminate this
possibility, NIP code is assembled 2048
bytes from the beginning of the NIP module.

Main storage before and after initializ-
ing the partition is shown in Figure 21.

| —— [T 1

| | | I

| | | I

| | | | p

| | | | A

| | | I R

| | | | T

| | | | I

| | I I T

| | I | I

l-=-=-=-- | I-=-=-=-- | o

| NIP Code | | NIP Code | N

I----- | |- - - - - |

| | | PRB and |

| NIP DS of| | XCTL Code| Boundary

| 2K Bytes | p-————— {------

2 | | |

|- =-=-=-- | I | FA

| I I | IR

| | | | X E

| Resident | | | EA

| Nucleus | | | D

| | |

[ISP | [NV [
Before After

Figure 21. Main Storage Initialization

Appendix B:

BOUNDARY BOX INITIALIZATION

A 12-byte boundary box specifies the
boundary of the partition. The parameters
specified by the customer are assembled in
the boundary box at System Generation time
(Figure 22).

r 1
| | FA
F i
| Minimum Partition | LB
L. 3
r T 1
| 0 | Main Storage Size | UB
1 1 J
Figure 22. Boundary Box

The initialization of the boundary box

consists of computing and storing the fol-

lowing addresses into the boundary box:
Upper boundary of the partition - UB
Lower boundary of the partition - LB
Free area queue element - FA

The boundary box initialization for the
single-task supervisor is shown in Figure

23.

r 2 UB
| | A

1 | I

| | | P
| I | A
| | L R
| | I T
I | I I
I | | T
b1 1-- | I
| 0 | Free Area = L | FQE \% o
b { - ---- FA N
| PRB and |

i XCTL Code |

b f--------- LB
| r—————- 1 |

| | UB | I

I | F A
| | LB | | IR
| f—-—1 ! X E
| | FA | | EAa
| | S 4 | D

| Boundary |

| Box |

L d = e e m e e e - - -
Figure 23. Boundary Box Initialization

Nucleus Initialization Program (NIP) 61

The boundary box addresses are computed
as follows:

UB = highest address in the main stor-
age, computed dynamically.

LB = address of the end of nucleus

rounded up to a double word

boundary for a system without

protection feature.

or address of the end of nucleus
rounded up to 2048-byte boundary
for a protected system.

FA = address of free area queue ele-
ment (FQE), described in the fol-
lowing section.

FREE AREA QUEUE ELEMENT INITIALIZATION

The free area queue element (FQE) is a
double word after the PRB and XCTL code
within the partition. The initialization
of the FQE consists of the following:

e Computing the length of the free area
(L) and storing this value in the right
half of the FQE. The free area is
defined as the partition minus the area
occupied by PRB and XCTL Code (see
Figure 23).

e Storing in the left half of the

FQE.

zZeros

UCB TABLE AND REQUEST ELEMENT TABLE
INITIALIZATION

UCB Table: NIP changes the 2 byte dis-
placements within the UCB table and request
element table into 2-byte absolute address-
es after these tables are loaded into main
storage.

When loaded into main storage, the UCB
table contains the displacement (D) of each
UCB from the start (X) of the I/O supervi-
sor (IECIOS00). NIP adds X to D and stores
the sum into the UCB table.

The start of the UCB table is available
in entry 11 within the CVT. The end of the
UCB table is indicated by 'FFFF' in the
last entry within the UCB table.

Figure 24 shows the UCB table before and
after the initialization.

62

T 1 r h)
| D1 | | D1 + X |
I i S —
T 1

| D2 | | D2 + X |
1] L d
v 1 1) 1
| D3 | | D3 + X |
L J L g
) 1 v a
| D4 | | D4 + X |
I] L 4
r 1 r |
.		.
. [.	
.		.
prmmmm oo 1 % 1		
FFFF		FFFF
L J L J		
2 Bytes		

Before After

Figure 24. UCB Table Initialization

Request Element Table: The request element

table consists of a number of request
elements (I/0 supervisor's name for IQEs
with 2-byte link fields; see Chapter 1)
that are used to represent 1I/0 interruption
requests. The number of elements in the
table is determined at system generation
and remains fixed.

When loaded into main storage, the
request element table contains the dis-
placement (L) of each *'Forward Link' from
the start of the I/O supervisor (X). NIP
adds X to L and stores the sum into the
request element table.

The start of the request element table
is available in entry 31 within the CVT.
The end of the request element table is
indicated by 'FFFF' in the first two bytes
of the last entry in the request element

table. Figure 25 shows the request element
table before and'after the initialization.
r T 1 13 T 1
| 11 | (| 11 + X | |
L] 4 1 L J
L) T 1 U T 1
| L2 | || L2 + X | |
L [] ___' L 1 4
13 T L3 T 1
| L3 | |1 L3 + X | |
1 i __," 1 (] J
L3 T v T b
.	I .		
. I Il .			
. I		.	
1 1 4 1 iR			
13 T 1 T			
FFFF			FFFF
L L J L 1 J			
2 Bytes		12 Bytes	
Before After
Figure 25. Request Element Table Initiali-

zation

In addition to the initialization proce-
dures described above, NIP stores the
address of the request element table at the
next request element address, which is
available in entry 32 in the CVT.

SYS1.SVCLIB, SYS1.LINKLIB, AND SYS1.LOGREC
DEB INITIALIZATION

Although the DEB's for these data sets
are assembled within the nucleus, some of
the DEB fields are not pre-assembled. The
data in these fields is stored by NIP to
simulate the OPEN function.

The initialization of the DEB consists
of determining the following data and stor-

ing them into the corresponding fields in
the DEB:
e Start cylinder address and track

address (CCHH) of the data set.
e End CCHH of the data set.

* Number of tracks occupied by the data
set.

e UCB address
device.

for the system residence

e Appendage address.

Figure 26 shows the DEB fields which are
initialized by NIP.

r 1

0] |

| !

| I

I |

| |

b]

r T 1

28| | Appendage Address |

F + 4

32| | UCB Address |

b L T {

36| | CC start |

t i J

L} T 1

40| HH | CC End |

- + 1

LTy HH | Number of Tracks |

L L i
Figure 26. DEB Initialization

NIP executes in a stand-alone environ-

ment using its own input/output routine and
performs the following functions to accom-
plish the DEB initialization:

Appendix B:

)

1. Reads the standard volume 1label to
determine the volume table of contents
(VTOC) address on the system residence
device.

2. Reads the data portion of VTOC DSCB to
determine the tracks per cylinder for
the system residence device.

the UCB address of the
device through UCB

3. Determines
system residence
table look up.

4. Determines the DEB address through the
use of CVT and DCB. The DEB Address
is available within the corresponding
DCB. The DCB addresses for
SYS1.SVCLIB, S¥YS1.LINKLIB, and
SYS1.LOGREC data sets are available in
the CVT at entries 22, 3, and 30,
respectively.

5. Searches the VTOC and reads, into a
buffer, the data portion of the DSCB
for the data set.

6. Moves Start CCHH and End CCHH for the
data set from the buffer into the DEB.

7. Computes the number of tracks con-
tained within the data set extent and
stores this value in the DEB.

8. Stores the UCB address into the DEB.

9. Moves the I/0 appendage address from
entry 6 of the CVT into the DEB.

10. Repeats steps 4-9 for each data set.

SVC TABLE EXTENSION (TTR TABLE)
INITIALIZATION

This is an optional NIP function that is
selected at system generation time.

The TTR address and length (L) of each
non-resident SVC routine are available in
the partitioned data set (PDS) directory of
the SVC library.

The TTR table initialization consists of
the following:

e Searching the PDS directory of the SVC
library to fincé the TTR and length of
each transient SVC routine.

e Storing TTR and L of each transient SVC
routine in a table within the nucleus.
The assigned area for this table is
within the SVC handler routine.

The TTR table consists of a 4-byte entry
for each transient SVC routine. The format

Nucleus Initialization Program (NIP) 63

of each 4-byte entry in the table, is shown
in the diagram below:

Bits: 10 8 11 3

] T T LR 1
| T | R | LENGTH |ESA|
L 4 L L J
< -4 Bytes >
where

TT = Track address of the transient
SVC routine relative to the start
of the SYS1.SVCLIB data set.

R = Record number on the track.

L = Length in bytes of the transient
SVC routine.

ESA = Extended save area in double
words. This field is pre-
assembled in the table.

NIP uses the following information

available in the SVC handler routine to
accomplish the initialization function:

e Relocation table
index number for
table.

containing 1-byte
each SVC in the SVC

e Highest number assigned to an SVC pro-
vided by IBM.

e Highest number assigned to a resident
SVC.

To initialize the TTR table, NIP follows
the procedure described below:

1. Constructs an eight byte name for the
transient SVC by using the relocation
table and the highest resident SVC
number, as explained below:

e Picks up the entry in the relocation
table which corresponds to a tran-
sient SVC.

e Translates the entry number in the
relocation table to ‘a SVC number.

e Converts the SVC number from binary
to decimal.

® Unpacks the decimal number to a
4-byte number.

e Constructs an 8-byte name for the
SVC routine by placing the Uu-byte
unpacked decimal number beside a
pre-assembled four character prefix
for the SVC names, as follows:

64

IGCO XXXX

pre-assembled
prefix

unpacked
decimal number

2. Loads the following registers:

e Address of the input parameter list
to the BLDL macro-instruction is
placed in register 0.

e Address of the SYS1.SVCLIB DCB is
placed in register 1.

3. 1Issues the BLDL macro-instruction to
search the SYS1.SVCLIB directory.

4, Tests for the successful execution of
the BLDL macro-instruction.

5. On successful completion, BLDL returns
the data extent for the SVC routine in
a return area. NIP moves the TTR and
length of the SVC routine from the
return area into the TTR table, in a
format shown in the diagram above.

6. When unsuccessful, BILDL returns an
error code in register 15. NIP tests
the error code and sends one of the
following error messages to the opera-
tor:

"IEA101I SVC ROUTINE IGCOXXXX NOT
AVAILABLE - PERMANENT I/O ERROR ON SVC
LIBRARY."

"IEA102I SVC ROUTINE IGCOXXXX NOT
AVAIIABLE - NOT FOUND ON SVC LIBRARY."

7. Scans the relocation table and repeats
the above procedure for each transient
SVC routine.

PROTECTION KEY INITIALIZATION

Main storage protection is an optional
hardware feature. When protection is
selected, the storage keys are set accord-
ing to the following criteria:

e The storage occupied by the nucleus has
a storage key of zero.

e The partition has a non-zero storage
key, specified in the TCB associated
with the partition.

NIP obtains the storage key for the
partition from the "protect key" field
within the TCB corresponding to the parti-
tion, and sets the partition to the
appropriate storage key.

TIMER INITIALIZATION

The timer is an optional hardware fea-
ture. It can ke enabled or disabled by a
switch on the systemr control panel.

The timer initialization consists of the
following:

e Testing to check if the timer is ena-
bled and working.

e Setting the timer to six hours when
control is given tc the job scheduler.

NIP performs the following functicns to

initialize the Timer:

1.

Tests check if the timer is wcrk-

ing:

to

e Sets location 80 with value of six

hours (X'6309109E).
e Waits for the timer to decrement.

e Compares the contents of location 80
with the original value of six
hours. If the contents of location
80 are equal to six hours, sends the
following message to the operator:

"IEA100A TIMER IS NOT WORKING.
TIMER SWITCH ON."

PUT

Resets locaticn 80 with the 6-hour

value.

BUILDING A RESIDENT DIRECTORY FOR
SYS1.LINKLIB

This section is applicable only if the
resident BLDL table option was selected at
system generation time. :

Each time an ATTACH,
macro-instruction is
issues a BLDL with a subsequent program
fetch of the module. When the resident
BLDL table option is selected, all or any
portion of the SYS1.LINKLIB directory can
be made resident as a part cf the nucleus
by the nucleus initialization program. Any
linkage to a SYS1.LINKLIB module causes a
scan of the resident table before a direct
access device search 1is initiated in the
BLDL routine.

LINK, XCTL,
issued, the system

or LOAD

The message:
IEA101A SPECIFY SYSTEM PARAMETERS
is issued to the operator if COMM was

specified in the SUPRVSOR system generation
macro-instruction. The operator may then:

Appendix

B:

Specify an alternate list of
SYS1.LINKLIB modules whose directory
entries are to be made resident.

2. Request a listing of the names of the
modules whose directory entries were
nade resident.

3. Cancel the option for the current IPL.

If a list is selected, NIP then:

1. Reads the specified list from member
IEABLDxx in SYS1.PROCLIB (where xx=00
or is replaced by two alphanumeric
characters supplied by the operator).

2. Places the names in a takle which is
filled in by the BLDL routine.

3. Issues a BLDL.

If a normal return 1is received from the
BLDL routine, the boundary box is adjusted
to include the resident directory table as
a part of the nucleus.

If an error code is returned from the
BLDL routine, NIP issues one of the follow-
ing messages:

IEA108I PERMANENT I/O ERROR DURING BIDL
NIP

The BLDL function is not performed.
continues to initialize the nucleus.

IEA109I BLDL FAILED FOR FOLLOWING MODULES

This message is followed by list of
names of the modules whose directory
entries were not made resident because they
were not found in SYS1.LINKLIB. NIP
adjusts the Lkoundary box to include the
incomplete BLDL table and continues as
though the table had been completed.

a

NIP places the address of the BLDL takle

into an ar:a in the BLDL routine, IECPFND1.
RESIDENT ACCESS METHOD (RAM) INITIALIZATION
When the RAM option is selected at

systemr generation time, a group of access
method modules is preloaded as part of the
nucleus by the nucleus initialization pro-
gram, thus creating a permanent system load
list. Each time a LOAD is issued for any
access method module, the system load 1list
is checked. A program fetch is not per-
formed if the module is found in the system
load 1list. Otherwise, the system loads the
module in the standard manner.

the SUPRVSOR
generation

in
system

If COMM was specified
macro-instruction at

Nucleus Initialization Program (NIP) 65

Form Y28-6612-0,-1,-2, Page Revised by TNL Y28-2174, 4/10/67

time, NIP issues the following message to
the operator:

IEA101A SPECIFY SYSTEM PARAMETERS
The operator may then:

1. Specify an alternate 1list of access
method modules to be loaded.

2. Request a listing of the names of the
access method modules that were load-
ed.

3. Cancel the option for the current IPL.

If a list was selected, NIP then:

1. Reads the specified 1list of access
method modules from member IEAIGGxXX in
SYS1.PROCLIB.

2. 1Issues a LOAD macro-instruction for
each module in the list. This creates
a load list attached to the TCB. The
list pointer is moved to an area in
the nucleus which is reserved for the
system load list pointer.

If NIP is unable to load an access
method module, it issues the following
message:

IEA110I LOAD FAILED FOR (module name)

NIP continues to initialize the
nucleus even though the named access
method module was not loaded as part
of the RAM option.

3. The boundary box is adjusted to
include the system load 1list and
access method modules as part of the
nucleus.

RESIDENT TYPE 3 AND 4 SVC ROUTINE
INITIALIZATION

When the resident +type 3 and U4 SVC
routine option is selected at system gener-
ation time, type 3 and 4 routines wmay be
loaded as part of the nucleus by NIP. If
COMM was specified in the SUPRVSOR macro-
instruction at system generation time, NIP
issues the following message to the
operator:

IEA101A SPECIFY SYSTEM PARAMETERS
The operator may then:

1. Specify an alternate list of type 3
and 4 SVC routines to be loaded.

2. Request a listing of the names of the
routines that were loaded.

3. Cancel the option for the current IPL.

If a list was selected, NIP then:

1. Reads the specified list of SVC rou-
tines from member IEARSVxX in
SYS1.PROCLIB.

2. Issues a LOAD macro-instruction for
each module in the list. This creates
a load 1list attached to the TCB. If
the module is a type 3 routine or the
first module of a type 4 routine, its
entry point is placed in the SVC table
as discussed in the section entitled
"Resident Type 3 and U4 SVC Routine
Option." After all loading has been
completed, the 1load 1list contains
entries for routines requested by type

4 SVC routines via XCTL macro-
instructions. Following these
entries, regardless of the order in

which the routines were actually load-
ed, are entries for the first loads of
type 3 or 4 SVC routines. The 1list
pointer is moved to an area in the
nucleus which is reserved for the RSVC
system load list pointer. If NIP is
unable to load an SVC routine, it
issues the following message:

1EA11011 LOAD FAILED FOR (module name)

NIP 'continues to initialize the
nucleus even though the named routine
was not loaded as part of the resident
type 3 and 4 SVC routine option.

If a requested SVC routine is not
supported at the installation, NIP
issues the following message:

IEA114I SVC (xxx) NOT SUPPORTED

The named SVC routine is defined but
cannot be loaded becuase it is not
supported at the installation.

If a requested SVC routine is unde-
fined, NIP issues the following mes-
sage:

IEA115I SVC (xxx) NOT DEFINED

Indicating that no such SVC routine

exists.

3. The boundary box 1is adjusted to
include the RSVC load 1list and SVC
routines as part of the nucleus.

65A

Form Y28-6612-0,-1,-2, Page Added by TNL Y28-2174, 4/10/67

RESIDENT JOB QUEUE INITIALIZATION

When the resident job queue option is
selected at system generation time, NIP
must obtain the area needed to hold a
specified number of job queue records. If
COMM was specified in the SUPRVSOR macro-
instruction at system generation time, the
number of resident Jjob queue records
specified at system generation time may be
overridden when the nucleus is initialized.
In this case, NIP issues the following
message to the operator:

Appendix B:

IEA101A SPECIFY SYSTEM PARAMETERS

The operator may then vary the number of
job queue records for the current IPL.
After the operator responds, NIP obtains an
area whose size is based on the number of
records to be made resident. The area
becomes part of the nucleus. A pointer to
the area 1is saved in a portion if the
nucleus that was reserved for this purpose
when the resident job queue option was
selected.

Nucleus Initialization Program (NIP) 65B

APPENDIX C: GUIDE TO THE LINKAGE EDITOR MAP OF THE NUCLEUS

r 1 L]

|Csect Names|Sysgen Output|

|in Order of|Macro. to be |Microfiche
|Appearance | Checked for | Module

. Routine Name
(oxr Other Specified Function; e.g., Table)

T 1
| |
I I
| |
|]on L.E. Map| Module Name | Name | |
L 1 1 1 J
) 1 T T b
| IEAAIHOO | IERAIH | * | First Level Interruption Handlers (FLIHS) |
| | IEAAPS | * | Dispatcher and Exit Effector
| | IECIOS | * | I/0 Supervisor
I8 1 [l 1 4
L 1)) 1
| 1IGC009 | - | IEAADLOO | Delete |
== + 1 + i
| IGCO012 | - | IEAASYO00 | Synch |
N 4 1 4 J
r T T T . A
| IGCo10 | -—- | IEAAMSO00 | Getmain |
L 1 4 4 4
v T T T 1
| IEAOPLOO | -—- | IEAAPLOO | Prolog |
b 1] 1 4
T T T 1 1
| IGCco11l | -— | IEAORT10 | Timexr SVC |
t 1- 1 + : 1
| IEEBAl | - | IEECIRO1 | Console Interruption (Job Management) |
 — + + 1 i
| IEAOABOO | -—- | IEAAABOO | Abterm |
. 1 t $—— 1
| Iccool | IEAAWT | * | wait |
[N 4 1 1 3
v T T T 1
| IHASVCOO | SGIEA2SV | * | svC Table |
b + 1 1 i
| IEAATAOO0 | IEAATA | * | Attach]
L 1 1 1 4
r T T T 1
| IEACVT | cvT | * | Communications Vector Table |
1 1 + i
| 1IGCo02 | IEAAPT | * | Post |
— ¥ t == 1
| IGCO006 | IERATC | * | Link |
k + 1 + i
| IEATCBOO | IEATCB | * | Task Control Block |
L 1 J- 1 J
r T T T 1
| IEWFTMIN | -—- | IEWFTMIN | Program Fetch |
L + 1 1 4
) 1 1 1 |
| IEWFTPCI | -—— | IEWFTPCI | Program Controlled Interrupt Fetch |
% 1 [l 1] 4
r T T T 1
| IEFJOB] -—- | IEFKRESA | Job Scheduler Tables and Work Area |
| | | | (Job Management) |
L 4 4 4 . 3

66

(Continued)

(

Continued)

1

i

|*Variable module names, dependent on macro-instruction's use.

v T T T 1
|Csect Names|Sysgen Output| | |
{in Order of|Macro. to be |Microfiche| Routine Name |
|Appearance | Checked for | Module | (or Other Specified Function; e.g., Table) |
|on L.E. Map| Module Name | Name | |
b t t t {
| IFBDCBOO | -— | IFBDCB00 | System Environment Recorder (SER) Data Control |
| | | | Block |
8 4 1 + 4
r T T T . 1
| IGC018 | -—- | IECPFIND | Find (Data Management) |
8 iR 1 1
T T T T _"
| IGC037 | - | IEWSVOVR | Cverlay Supervisor |
[N 4 4 1 4
1) T I T 1
| IEEBC1PE | -—- | IEEBC1PE | External Interrupticn (Job Management) |
b 1 4 +__ —_— 4
LB T 1 1
| IEC2311A | -— | IEC2311A | Disk Error Routine (I/O Supervisor) |
t 1 1 1
v T {
| IEFDPOST | -——— | IEFDPOST | Unsolicited Interruption (Job Management) |
L 4 1 1 4
r T T T 1
| IEEMSLT | SGIEE001 | * | Master Scheduler Resident Control Data Area |
I | | | (Job Management) |
t ¥ + L {
| IECZDTAB | SGIECODT | * | Direct Access Device Table (I/0 Supervisor) |
e — e 1 t - -4
| IECINTRP | --- | IECINTRP | Sense and Status Interpreter (I/0 Supervisor) |
N 4 1 4 4
1 T T T 1
| IEAANIPO | IEAANIP | * | Nucleus Initialization Program |
x 1
|
1

L

APPENDIX D

CONTROL_RECORD - (LOAD MODULE)

o
o
|
w
fo e e e
-
e e o
©
t
=
w
S

Record length is 20 bytes

r._.__q
b ——f
|

|

PR
T——
S——

|

L—-Length of control section - specifies the length of the
control section (in bytes) that the text in the
following record belongs to (2 bytes)

R ——

CESD entry number - specifies the composite
external symbol dictionary entry that
contains the control section name of the
control section that this text is part
of (2 bytes)

L——Channel Command Word (CCW) - that could be used to read the text
record that follows. The data address field contains
the linkage editor assigned address of the first byte
of text in the text record that follows. (8 bytes)

--Count - contains two bytes of binary zeros. The count field contains the
length of the record.

——Count - in bytes of the control information (CESD ID, length of
control section) following the CCW field (2 bytes)

L__Spare - contains three bytes of binary zeros

P e e e ——

——Identification - specifies that this is: (1 byte)

e A control record - 0000 0001

e The control record that precedes the last text record of this overlay
segment - 0000 0101

e The control record that precedes the last text record of the module -
0000 1101

68

RELOCATION DICTIONARY RECORD -

(ILOAD MODULE)

16-255

-
P
o
[
=
(%)
T—

Record length can be
between 24 and 256 bytes

Y

.

I

I L--RLD
I

| t--Spare - cont
|

L

——Count - in byte

|
|
|
|
|
I
I
| the spa
L

——Count - contains t

|
|
|
|
|
|
|
|
I
!
!
L

—-Spare - contains three

data -- see below

ains 8 bytes of binary zeroes

s of the relocation dictionary information following
re 8 byte field (2 bytes)

wo bytes of binary zeroes

bytes of binary zeroes

L-—Identification - specifies that this is: (1 byte)

¥ A rel
* The 1
* The 1

ocation dictionary record - 0000 0010
ast record of the segment - 0000 0110
ast record of the module - 0000 1110

[—— e =y
b e S o 4]

O
R —

A

e e e o o
po s v o 4
TR ——
b —— —
SR ——
e e o e

o —

--Flag - speci
when

L—-Address - linkage editor assigned
address of the address
constant (3 bytes)

fies miscellaneous information as follows: (1 byte)

byte format is xxxxLLST:

specifies the type of this RID item (address constant)

~- non-branch type in assembler language,a DC A(name)

-- branch type (in assembler language, a DC V(name)

-- pseudo register displacement value

-- pseudo register cumulative displacement value

and 1001 -- this address constant is not to be relocated,

because it refers to an unresolved symbol.
LL specifies the length of the address constant

01 --
10 --
11 --

oHPrP o

-

[y

P
r
|
|
I
I
|
|
I
I
|
I
|
|
| 1000
|
|
|
|
|
|
I
|
I
|
|
|
|
|
L

two byte
three byte
four byte

specifies the direction of relocation

positive
negative

specifies the type of RLD item following this one

the following RLD item has a different relocation
and/or position pointer

the following RLD item has the same relocation and
position pointers as this one, and therefore is omitted

—--Position pointer - contains the entry number of the CESD entry (or trans-

la

tion table entry) that indicates which control section

the address constant is in (2 bytes)

--Relocation pointer - contains the entry number of the CESD entry (or transla-
tion table entry) -that indicates which symbol's value

is

to be used in the computation of the

address constant's value (2 bytes)

Appendix D 69

CONTROL_AND RELOCATION DICTIONARY RECORD - (LOAD MODULE)

70

CToTTTToT
I A R
| A R
I AR (R I

Ll 1 __ 1t __J

= —— e —— -
b e e e, e

[e e s e . e, o o — o — o C— ——— — — — —— — — —

|
| t--Length of control
| section (2 bytes)
—-Fla |
L—-CESD entry number
(2 bytes)

|
I
|
I
|
|
|
I
L

—-Address (3 bytes)

—-Flag (1 byte)

——Position pointer (2 bytes)

|
|
I
I
|
|
I
|
|
[
|
I
L

I
I
|
I
|
|
I
I
I
I
|
|
|
[
L

—--Relocation pointer (2 bytes)

I
I
|
I
I
|
I
|
|
I
|
I
|
I
I
|
L

——Channel Ccommand Word (8 bytes)

I
|
|
|
l
|
|
I
I
I
|
|
|
|
I
I
|
|
L

--Count of RLD information (2 bytes)

--Ccount of control information (2 bytes) - the control information contains the
ID and length of control sections in the following text record.

L—_Spare (3 bytes)
——Identification (1 byte) - specifies that this record is:
e A control and RLD record - 0000 0011

e A control and RLD record that is followed by the
last text record of a segment - 0000 0111

e A control and RLD record that is followed by the
last text record of a module - 0000 1111

Note: For detailed descriptions of the data fields see:

Relocation Dictionary Record
Control Record

The record length will vary from 20 to 260 bytes.

PARTITIONED ORGANIZATION DIRECTORY RECORD - (AS RECEIVED FROM BLDL)

Byte

r 1
of , !
| Name of load module (member or alias name) |
4| |
; T 4
8| Relative (to beginning of data set) disk address of | Concatenation |
| module (TTR) | number |
}"“ T T L %
12| Byte of binary |Alias indicator and| Relative (to beginning of data set) |
| zeroes. ** |miscellaneous info.| disk address of first text record. |
L] 1 4
r T T 1
16| continuation of | Byte of binary |Relative (to beginning of data set) |
|disk address | zeroes | disk address of NOTE List or Scatter-|
L 1 1 d
r T T 1
20| translation record|Number of entries | Module attributes (see below) |
| |in NOTE List ++ |0,1,2,3,4,5,6,7,8,9,10,11,12,13,+,+ |
[] 4 [
r T 1
24| Total contiguous quantity of main storage required by the|Length(in bytes) of|
| module | first text record. |
8 1 1
r T 1
28| continuation of |Module's linkage editor assigned entry point address |
| Length. | |
l|= L T J

32| Linkage editor assigned origin of first text record. |

| I

| I

L 3
r 1
| Length of scatter |
For load modules in scatter format add: | |
1 4
r 1 T 1
36| List (in bytes) |Length of translation table (in bytes) |ESDID (CESD entry |
| | | number of control |
L } _Jr 3

r

40|section name) for |ESDID (CESD entry number of control
| first text record. |section name) containing entry point.
L i

r 1
For load modules with RENT or REUS attribute and Alias |Entry point address|
names add: . | |
r T L |
36| of the member name. | |
| I I
| | I
F 4 |
40| Member name |
| r !
4y | |
L]
r 1
| SSI Bytes - Aligned on a half-word boundary at the end of the PDS |
| record. |
L]
Alias indicator and miscellaneous Information:
1. Alias indicator -- 0 signifies none,l1 signifies alias -- bit 0
2. Number of relative disk addresses (TTR)in user data field -- bits 1,2
3. Length of user data field (in halfwords) -- bits 3-7
PDS Directory Record size (for SSI, add 4 bytes to sizes):
Block format 36 bytes * Scatter format 44 bytes
Block format with alias names 46 bytes Scatter format with alias names 54 bytes

+ Reserved
++ This byte contains zero if load module is not in overlay

Appendix D 71

MODULE ATTRIBUTES

Bit Number Attribute Bit setting Indication

0 RENT Not reenterable

Reenterable

Not reusable

Reusable

Not an overlay module

Overlay module

Not under test

Under test

Not only loadable

Only loadable *

Block format

Scatter format

Not executable

Executable

Module contains more than one text
record and/or RLD record(s).
Module contains only one text
record and no RLD record.

Module can be processed by all
levels of linkage editor.

Module cannot be reprocessed by
linkage editor-E.

Linkage editor assigned origin of
first text record is not zero.
Linkage editor assigned origin of
first text record is zero.
Linkage editor assigned entry
point is not zero.

Linkage editor assigned entry point
is zero.

Module contains RID record(s)
Module does not contain an RID record.
Module can be reprocessed by
linkage editor.

Module cannot be reprocessed by
linkage editor.

Module does not contain TESTRAN
symbol records.

Module contains TESTRAN symbol
records.

REUS

OVLY

w N P

TEST

£

LOAD
Format

Executable

SN o »

Format

8 Compatibility

9 Format

10 Format

11 Format

12 Editability

13 Format

oo e

14 Reserved
15 Reserved

* Module can only be loaded with the LOAD macro-instruction. When the module is
in main storage it will be entered directly, and not through the wuse of an
XCTL, LINK, or ATTACH macro-instruction.

** This is normally a zero byte inserted to maintain half-word boundaries. If the

DCB operand was specified as zero, this byte will contain a 1 if the name was
found in the link library, and a 2 if the name was found in the job library.

72

ENTRY TABLE (ENTAB)

APPENDIX E

r k] h) T 1
|Unconditional branch to last |address of referred | "to"seg|Previous Caller |
| entry BC 15,DISP(15,0) |to symbol. | number | (zero initially) |
L 1 1 1 d
H T T T 1
|Unconditional branch to last |Address of referred | "to"seg |Previous Caller |
| entry BC 15,DISP(15,0) |to symbol | number | (zero initially) |
L L 4 L J
| | | I I
I | I I |
I I | I I
r T T T R h]
|Unconditional branch to last |Address of referred | "to"seg |Previous Caller |
| entry-BC 15,DISP(15,0) |to symbol | number | (zero initially) |
t 1 4 4]
L T T T T 1
| SVC 45 |L 15,4(0,15) Loads GR15 with | BCR 15,15 | "from" |Address of segment |
| |the value of the ADCON. | | seg.no.| table (SEGTAB) |
L L 41 L L F]
| <==-2 bytes-->|<--2 bytes--->|<--2 bytes--->|<---2 bytes-->|<lbyte>|<----- 3 bytes----- >|
DISP -- is the displacement, in bytes, of this entry from the last entry.
"to" segment number -- is the number of the segment containing the symbol being
referred to.
"from®™ segment number -- is the number of the segment that contains this entry
table.
Appendix E 73

SEGMENT TABLE (SEGTAB)

r T T - 1
| TEST| |Address of Data Control Block (DCB) used to load module * |
|ind. | | |
L L 1 1
r T . 1
| | Address of note list * |
| | I
% 1 T 1
| Last segment |Highest segment no. |Last segment | Highest segment no. |
| number of region 1 |in storage-region 1|number of region 2 |in storage-region 2 |
8 1 } i Jd
r T T T 1
| Last segment |Highest segment no. |Last segment |Highest segment no. |
| number of region 3 |in storage~region 3 |number of region 4 |in storage-region 4 |
L 1 1 4 1
t I 1
| Zero | (Not used in the Fixed-Task Supervisor) * |
I | |
t 1 1
| (Not used in the Fixed-Task Supervisor) * |
| I
L i
1) T 1
| Previous segment *| Zero |status|
| number for segmentl| |indctr|
L 1 1]
r T T h]
| Previous segment |Address of entry table entry (when caller |status]|
| number for segment2|chain exists) * |indctr|
L 4 L]
r . T T 1
| Previous segment |Address of entry table entry (when caller | status|
| number for segmentN|chain exists) * |indctr|
L L1 — L]
| < 4 bytes——— >|
TEST indicator -- specifies that this module 1is "under test"™ wusing TESTRAN.

(Bit 1) Initijialized by program fetch.
Highest segment no. in storage -- is initially set to 00 except for region 1 which

is initially set to 01 by linkage editor.
Status indicator -- indicates the status of this segment with the two last bits of

the entry table address field as follows:

00 -- segment is in main storage as a result of a branch to the segment.

10 -- segment is in main storage, no caller chain exists.

01 -- segment is not in main storage, but is scheduled to be loaded.

11 -- segment is not in main storage.

The status indicator for segment 1 is initially set to 10, all the rest are
initially set to 11.

* Set to zero by linkage editor.

74

APPENDIX F: SYSTEM ENVIRONMENT RECORDING RECORD ENTRY FORMATS

There are two types of record entries corresponding to the two types of errors SER
processes: machine check and channel error. Record entry size varies with the type of
record and the model number. The formats of the record entries are:

Machine Check Record Entry Format Channel Error Record Entry Format

v T T T T L] r T T T T -
| | SYS | MOD |R.E.| | | | SYs | MOD |R.E. | |
| R.E. LABEL | ID | NO. |TYPE| FLAGS | | R.E. LABEL | ID | NO. |TYPE| FLAGS |
L _ L ——1 L i ____{ }_ 1 n n 1 1
r T T 1
I				
DATE I TIME		DATE	TIME	
pmm e L 1 - L 1				
I				
PROGRAM IDENTITY		PROGRAM IDENTITY		
	I I			
T B				
MACHINE CHECK OLD PSW		FIRST CCW OF FAILING CHAIN		
'		I		
F 1k - -1				
ACTIVE I/O UNITS	[FAILING CCW I			
		I		
- 1t i				
	CHANNEL TYPE			
	ASSIGNMENTS		CSW	
i _— 1 4				
r 1				
	I :			
GENERAL PURPOSE				
REGISTER CONTENTS		ACTIVE I/0 UNITS		
I				
I8 3 I 4				
r 1 I .				
I		CHANNEL TYPE		
FLOATING POINT			ASSIGNMENTS	
REGISTER CONTENTS	t T —4- 4			
		CHANNEL		
t {	and UNIT	FLAGS	1/0	
		ADDRESS		
GENERAL PURPOSE REGISTER PARITIES	t i 4			
f ? ? { HARDWARE LOGOUT }				
FPR PARITIES	CPU	s {		
	HARDWARE LOGOUT			
b 1		MODEL BYTES		
I	40 0			
MODEL BYTES		50 48		
		65,75 24 I		
40 256		I		
50 164 r S	I I			
65 176		r -— 4		
75 152				
L J l I

(o 1

Appendix F: System Environment Recording Record Entry Formats TJuA

The fields in the
interpreted as follows:

record entry are

Record Entry Label - 3 bytes
Identifies the record as output from
SER. It is set to SER in EBCDIC.

System Identifier - 1 byte
Identifies the version
created the record.

0 = SERO, 1 = SER1

of SER which

Model Number - 1 byte
Identifies the System/360 model on
which the record was created.

Record Entry Type - 1 byte

Identifies the type of error that
caused the reccrd to be created.
C = machine check
I = channel error
Flags - 2 bytes
Byte O
Bit 0 = Spare bit
Bit 1 = 0 Record entry is com-
plete
= 1 Record entry is not
complete
Bit 2 = 0 Channel and unit
address matches a sys-
tem UCB
= 1 Channel and unit
address does not match
any system UCB
Bit 3 = 0 The operating system
could not continue
after the error
= 1 The operating system
could continue after
the error
Bit 4 = 0 The scheduler was not
in control when the
machine check
occurred.
=1 The scheduler was in
control when the
machine check
occurred.
Byte 1
Bit 0 = 0 Program data was
obtained

= 1 Program data could not
be obtained because
the area from which it

would have been
extracted was over-
laid. (Applies only
to SERO.)

Other bits - unused

74B

Date - 4 Lytes
Identifies the year and day in packed
deciral as follows:

00 xX XXX F

Unused Year Day Zone

Time - 4 bytes
Identifies the time of dJday when the
record entry was created.

XX XX XX X X
Hour Minute Second Tenths Hundredths

If the model does not have an interval
timer, this field is zero.

Program Identity - 8 bytes
Identifies the program in process or
the program requesting service -when
the error occurred.

Machine Check 0ld PSW - 8 bytes
The field is taken directly from loca-
tions 48-55.

Active I/0 Units - 20 bytes
Identifies by channel and unit address
a maximum of ten devices that were
busy when the error occurred.

Channel Type Assignments - U4 bytes

Identifies the channel configuration
of the system as follows: ’
BYTE 0 BYTE 1
r T T T T >
|CHAN O|CHAN 1|CHAN 2|CHAN 3|ETC.
L i 1 i 1 >
Bit 0 = 0 Channel not present
= 1 Channel present
Bit 1 = 0 Multiplexor channel
= 1 Selector channel
Bit 2 = 0 Low speed
= 1 High speed
Bit 3 = 0 Not a storage channel
= 1 Storage channel
General Purpose Register Contents - 64

bytes

Identifies the contents of the GPRs at

the time the error occurred. For the
Model 50, only bits 0-27 and the
parity bits are stored for each reg-

ister. For Models 65 and 75, GPRs are

- tested for parity errors and corrected
if necessary before being stored in
this field.

Floating Point Register Contents - 32 bytes
Identifies the contents of all FPRs at
the time the error occurred. The
field is zero for Models 30 and 40 not
equipped with the floating point fea-
ture.

General Purpose Register Parities - 8 bytes
For Model 40, this field is zero
because hardware corrects parity dur-
ing part of the machine check inter-

rupt cycle, making parity indications
unavailable. For Model 50, the field
contains the 1last four bits of each

register with the exception of reg-
isters 13, 14, and 15. (Applies only
to SERO.) For Models 65 and 75, the
field identifies the GPRs that con-
tained parity errors when the error
occurred. Only the first two bytes of
the field are used. They are inter-
preted as follcws:

Byte 0 Byte 1

00000100
A
Register 0

0010000O00
A
Register 15
Registers 5 and 10 had parity errors.
Note: If this information is stored by
the SERO program for the model 75, no
parity errors will be indicated for
registers 13, 14, and 15 because SERO

cannot determine the parity in these
registers.

Appendix F:

Floating. Point Register Parities - 4 bytes
Identifies the FPRs that contained
parity errors when the error occurred.
The contents of the field differs
according to model and is interpreted
in the same manner as the GPR parity
field. The field is zero for a Model
40 record.

CPU Hardware Logout - 152 to 256 bytes
Represents all or part cf the contents
cf locaticns Hex 80 through Hex 17F.

First CCW of Failing Chain - 8 bytes
Identifies the first CCW of a chain of
CCWs being executed when an error
occurred.

Failiing CCW - 8 bytes
Identifies the specific CCW Leing exe-
cuted when an error occurred.

CSW - 8 bytes
Identifies the CSW that was
when an I/0 error occurred.

stored

Channel and Unit Address - 2 bytes
Identifies the device being serviced
at the time of the channel failure.

Flags - 2 bytes
Not used.

I/0 Hardware Logout - 0 to 48 bytes

Identifies the status of the failing
channel when an I/0 error interrupt
occurred.

System Environrent Recording Record Entry Formats 74C

Abdump 20,23

Abend 20,22,23

Abterm 13,14,19-25

Active request block dqueue (see Queue)
Address constants 29,31,34,40,60,61

Algorithm
main storage allocation 24
timing 41

Alias 71

Appendage 33,63

Area

extended save (ESA) 14,15,64

fixed or system 7,24,61

free 23-25,60-62

I/0 supervisor transiemt 7,12,17,18

processing program (partition)
7-9,17,20,23-28,60-62,64

program interruption control (PICA)

SvC transient 7,12,15,16,27

Asynchronous exit queue (AEQ) (see Queue)

Attach 8,20,21,24,26-29,72

B1ldl 18,26,28,6u4,71
Block
data control (DCB)
23,29,30,33,34,36,63,64,72
data extent (DEB) 33,60,63
data set control (DSCB) 55,57,63
event control (ECB) 20-22,30
input/output (IOB) 30
request (RB)
interruption (IRB) 8,9,16-18
loaded (LRB) 8
loaded program (LPRB) 8,9
minor 26,28
program (PRB)
8,9,14-18,20-22,25-28,60-62
supervisor (SVRB) 8,9,15,20,27,28
system interruption (SIRB)
8,9,16-18,23,26
task control (TCB)
8,9,13,15-23,25,26,28,60, 64
unit control (UCB) 33
Block loading 29,30,32,33,34
Boundary box 25,60-62

Call 29
Channel scheduler (see Scheduler)
Check
machine 13,14,18,19,24
validity 13,21,23
Clock 41-43
Communication vector table (CVT) (see
Table)
Contents supervision (see Supervision)
Control block (see Block)
cpuU 8,9,43,57
Csect 56-58

Data control block (DCB) (see Block)
Data extent block (DEB) (see Block)
Data management (see Management)

INDEX

Data set control block (DSCB) (see Block)
Delete 7,26,28
Dispatcher 12,14-19,21,43,60
Dump, storage
full 20,23
indicative 23

ECB list (see List)
Editor, linkage (see Linkage editor)
Element
free area queue (FQE) 60-62
interruption queue (IQE) 16-18,62
program interruption (PIE) 16,19,21
timer queue 17,42,43
End of task
abnormal 14,19,22-25
normal 16,20,23,25
(see also Abdump; Abend; Abterm)
Entry procedures, SVC 14
Entry table (ENTAB) (see Table)
Error routines, I/0 supervisor
7,8,17,18,27
Event control block (ECB) (see Block)
Excp 12,32,33
Exit
asynchronous 8,16-18,43
svc 12,15-18,20,21,26-28,38,42
type 1 12,15-17,21,22,24,25,27,28,u42

.Exit effector 16-18,28,43

Extended save area (ESA) (see Area)
Extract 20,21

Fetch, program 9,13,18,26,28-35,40,51,74
Finch 15,18,20,26-28
Fixed area (see Area)
Flih (first level interruption handler)
70 12,17,18,46
MK (machine check) 13
P (program) 13,19,u46

svCc 12,14,15,21,22,24,27,28,42,46-49,52

T/E (timer/external)
12,17-19,42,43,46,52
Free area (see Area)
Free area queue (see Queue)
Free area queue element (FQE) (see
Element)
Freemain 12,24,25,28

Getmain 12,15,23-25,28

Handler
interruption (see Flih; Slih)
set command 43
SVC (see Flih; sSlih)

Identify 8,12,26,28
Inactive program list (see List)
Initial program loader (IPL) (see Loader)
Initialization
boundary box 61,62
communication vector table 60
fetch 29

Index

hardware 55,57
main storage 61,62
nucleus 1,8,25,54,55,60
overlay supervision 38,40
partition 61
protection key 64
request element table 62
SVC table extension 63
SVRB 15
timer 65
UCB table 62
Input/output block (IOB)
Input/cutput supervisor
7-9,12,16-18,27,33,60,62
Input/output supervisor transient area
(see Area)
Interrupt key 18
Interruption handling (see Flih; Sl1lih)

(see Block)

Interruption queue element (IQE) (see
Element)

Interruption request block (IRB) (see
Block)

Interruption supervision (see Supervision)
Job management
Job scheduler
Job step 23

(see Management)
(see Scheduler)

Link 7,8,24,26-29,34,38,40,58,72
Linkage editor 2,9,34-36,40,56,58,60,72,74
List
ECB 21,22
inactive program 8,9,20,25-28
loaded program 9,20,26,27,28
note 29,30,33,34,36
(see also Queue)
Load 7,12,26-29,38

Loaded program list (see List)

Loaded program request block (LPRB) (see
Block)
Loaded request block (LRB) (see Block)
Loader
initial program (IPL) 1,53,55-58,60
relocating (see Fetch)

Machine check (see Check)
Main storage supervision
Management
data 7,9,18,23,26,28
job 7-9,12,18,23,43,60,61
task 1,2,7
(see also Supervision)

(see Supervision)

Note list (see List)

Nucleus 7,15,24-26,29,38,55-58,60,62-64

Nucleus initialization (see
Initialization)

Nucleus initialization program (NIP)
1,8,55-58,60-65

Open 12,23,63
Operator 41,42,55-58,60,64,65
Overlay supervision (see Supervision)

Partition (see Area, processing program)
Post 20-22,u43

Processing program area (see Area)

76

Program interruption control area (PICA)
(see area)

Program interruption element (PIE)
Element)

Program request block (PRB)

Prolog 13,19

Protection 2,9,13,28,55,57,60-62,64

(see

(see Block)

Queue
active request block
8,9,15-18,20,22,23,26-28
asynchronous exit queue (AEQ) 17
free area 25,60-62
TCB ready 17
timer 41-43
(see also List; Elements)
Relocation dictionary (RLD) 34,35,69,70
Relocation table (see Table)
Request block (RB) (see Block)
Request element (interruption queue
element) (see Element)
Request element table (see Table)
Return 7,15,19,27

Scheduler
channel 18
job 60,61,65
Segld 35,38,40
Segment table (SEGTAB)
Segwt 29,35,38,40
Slin
svc 12,14,15,21,27,28
timer 41-43
Spie 19-21
Stimer 41-43
Subpool 24
Supervision
contents
I/0 9
(see also Input/output supervisor)
interruption 9,12,14,18,20-22,27,46
main storage 9,24,48
overlay 9,29,30,35,38,51
task 9,13,20,47
time 9,18,41-43,52
Supervisor request block (SVRB)
Block)
SVC table (see Table)
SVC transient area (see Area)
Synch 26,28
System area (see Area)
System generation 2,13,14,21,55,56,61-63
System interruption request block (SIRB)
(see Block)

(see Table)

9,23,26,27,29,31,38,49

(see

Table
communication vector (CVT)
entry (ENTAB) 35-38,40,73
relocation 13,64
request element
segment (SEGTAB)
svc 13-15,63
extension 14,60,63,64
task input/output (TIOT) 21,23
unit control block (UCB) 62
Pask control block (TCB) (see Block)
Task management (see Management)
Task supervision (see Supervision)

60,62,63

60,62,63
33-38,40,74

Task switching 17

TCB ready queue (see Queue)
Termination, task (see End)

Testran 33,35,40,72,74

Text record 14,29,31-33,56-58,68,70,72
Time 41,43

Time supervision (see Supervision)
Timer queue (see Queue)

Timer queue element (see Element)
Transient area (see Area)

Unit control block (UCB)

Validity check (see Check)

Volume table of contents (VTOC)

Wait

Xctl

12,13,16-23,43,57,58

8,12,15,23-29,60-62,72

(see Block)

55,57,63

Index

77

Y28-6612-2

TSIV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017
[International]

IBM Technical Newsletter

Re: FormNo. Y28-6612-0,-1,-2
This Newsletter No. >Y28—2174
Date April 10, 1967

Previous Newsletter Nos. Y28-2141
Y28-2161

IBM SYSTEM/360 OPERATING SYSTEM
FIXED TASK SUPERVISOR
PROGRAM ILOGIC MANUAL

This technical newsletter amends the publicaticn IBM System/360
Operating System: Fixed-Task Supervisor, Program Logic Manual,
Form Y28-6612-0,-1. Additions and changes are marked with kars to
the left of the text.

Pages to be Pages to be
Inserted Removed
Cover,Preface Cover,Preface
Contents Contents
Illustrations Illustraticns
7-14,14A 7-14
15-18,18A 15-18

21,22 21,22

27,28 27,28

45,46 us5,u46

49,50 49,50

53,54 53,54

59,60 59,60
65A,65B, 66 651,66

Summary of Amendment

A discussion of the Resident Type 3 and 4 SVC Routine Option is
added to Chapter 1.

Discussions of Resident Type 3 and 4 SVC Routine Initialization

and Resident Job Queue Initialization are added tc Appendix B:
Nucleus Initialization Program.

Note: Please file this cover letter at the back of the puklica-
tion. Cover letters provide a quick reference to changes and a
means of checking receipt of all amendrents.

IBM Corporation, Programming Systems Publications; P.O. Box 390, Poughkeepsie, N.Y. 12602

PRINTED IN U.S.A.

CUL ALUVING LiNno

Y28-6612-2

READER'S COMMENTS

Title: IBM System/360 Operating System
Fixed-Task Supervisor
Program Logic Manual

Is the material: Yes No
Easy to Read? - .
Well organized? S -
Complete? - S
Well illustrated? - _
Accurate? _ _
Suitable for its intended audience? —_ _
How did you use this publication?
___As an introduction to the subject ___ For additional knowledge
Other fold
Please check the items that describe your position:)
___Customer personnel . ——Operator __Sales Representative
— IBM personnel — Programmer ___Systems Engineer
- Manager —_Customer Engineer ___Trainee
_—__ Systems Analyst ___Instructor Other

Please check specific criticism(s), give page number(s),and explain below:
___Clarification on page(s)
—___Addition on page(s)
— Deletion on page(s)
—__ Error on page(s)

Explanation:

fold

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

Y28-6612-2

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017

[International]

st
fold
r 1
| FIRST CLASS |
| PERMIT NO. 81 |
| |
| POUGHKEEPSIE, N.Y. |
L J
r - 1
| BUSINESS REPLY MAIL |
| NC POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. |
: ——— -) NI
NRRRN
POSTAGE WILL BE PAID BY
(RERRN
IBM CORPORATION
P.0O. BOX 390 BERER
POUGHKEEPSIE, N. Y. 12602 .
RERRN g,
5
ATTN: PROGRAMMING SYSTEMS PUBLICATIONS BERRR e
=
NENRE 5
s
i - 0
fold >
=
[\S]
o
[
[e)}
[e)}
=
N
1
N
T
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]
S

