File No. S360-36
Form Y28-6613-1

Program Logic

IBM System/360 Operating System

Job Management

Program Number 360S-CI-505

This publication describes the internal logic within
the job management portion of the IBM System/360 Operat-
ing System Primary Control Program. Job management
prepares jobs for execution, and directs the disposition
of data sets created during job execution. It also
handles all communication between the operator and the
primary control program. Included in the publication are
descriptions of tables and work areas used by the job
management routines and a directory of names and purposes
of control sections, assembly modules, and load modules.

This publication is intended for wuse by persons
involved in program maintenance, and system programmers
who are altering the program design. Program logic
information is not necessary for the use and operation of
the program; therefore, distribution of this publication
is 1limited . to persons with program maintenance or modi-
fication responsibilities.

The information contained in this publication applies
only to the primary control program.

Restricted Distribution

PREFACE

This publication describes the structure
of the sequential scheduler level of job
management, its functions, and the control
flow between its major routines. It is
divided into an introduction in which job
management is briefly described and three
major sections, master scheduler, reader/
interpreter, and initiator/terminator, in
which the corresponding components are de-
scribed in greater detail. Included are
three appendixes. Appendix A describes two
subroutines used frequently by job manage-
ment routines. Appendix B shows job man-
agement tables and work areas that are not
described in the body of the publication.
Appendix C lists job management 1load
modules and the assembly modules that each
contains. Further information on job man-
agement may be obtained from the program
listings.

Readers should have a thorough under-
standing of IBM System/360 programming and

Second Edition (March 1967)

This publication is a major revision of Form Y28-6613-0
it. In addition to incorporating
Newsletters ¥28-2184 and Y28-2191, this
changes made to

edition' also

should be familiar with the following pub-
lications:

IBM System/360 Operating System: Intro-
duction, Form C28-6534

IBM System/360 Operating System: Con-

cepts and Facilities, Form C28-6535

IBM System/360 Operating
Operator's Guide, Form C28-6540

System:

IBM System/360 Operating System: Job
Control Language, Form C28-6539

IBM _System/360 Operating System: Intro-

duction to Control Program Logic, Pro-
gram Logic Manual, Form Y28-6605

IBM System/360 Operating System: System
Control Blocks, Form C28-6628

and obsoletes
information released in Technical
describes the
job management in release 11 of the operating system.

These changes are primarily concerned with automatic volume recognition

(AVR) . Vertical bars
illustration captions indicate changes and additions.

specifications contained herein are subject to change
time. Any such change
technical newsletters.

at the left of affected text and bullets beside

from time to
will Dbe reported in subsequent revisions or

This publication was prepared for production using an IBM computer to

update the text and to
impressions for

Printer using a special print chain.

control the page and line

format. Page
photo-offset printing were obtained from an IBM 1403

Copies of this and other IBM publications can be obtained through IBM

Branch Offices.

A form for readers' comments appears at the back of this publication.

It may be mailed directly to IBM. Address any

additional

comments

concerning this publication to the IBM Corporation, Programming Systems

Publications, Department D58, PO Box 390, Poughkeepsie, N. Y.

12602

INTRODUCTION . .« « « ¢ o « o o @
Job Scheduler Functions.
Master Scheduler Functions . . .
Job Processing « e

Entry to Job Management
Initial Program Loading. . .

Entry to Job Management Follow1ng

Step Execution
Control Statement Processing.
Step Initiation
Job and Step Termination. . .
Operator-System Communication

Processing«

Command Processing
WTO/WTOR Macro-Instruction
Processing. . « « « « « .

External Interruption Processing

Load Modules. . « « ¢ « <« o .
MASTER SCHEDULER . . « « « <« « .
Master Scheduler Control Flow. .
Console Interrupt Routine. . . .
Master Command EXCP Routine. . .
Master Command Routine
Write-To-Operator Routine. . . .
External Interrupt Routine . . .
READER/INTERPRETER
Reader/Interpreter Control
Job Routine. <« . . .
Execute Routine.
DD Routine ¢ ¢« =« ¢« ¢« « « .
INITIATOR/TERMINATOR . <« o« « «
Initiator Control.

‘System Control Routine. . .

Execute Statement Condition

Routine. . . . - .

JFCB Housekeeplng Routlnes. .
JFCB Housekeeping Control

Routine

Following

Routine ¢« « ¢ ¢ <« . .
Allocate Processing Routine.
Fetch DCB Processing Routine . .
GDG Single Processing Routine. .
GDG All Processing Routine . . .
Patterning DSCB Processing

Routine ¢ « ¢« ¢ &« « . .
Error Message Processing Routine

11
11
12
13
13
14
14
15
15
16
16
17

21

APPENDIX A:
Table Store

Disposition

APPENDIX B:

CONTENTS

Allocation and Setup « « « « « « o+ o .

Allocation Control Routine.
Demand Allocation Routine
Allocate Work Table Construction
Volume Affinity Resolution . . .
Data Set Device Requirement
Calculation « ¢« ¢« ¢« « &« o« o o =«
Channel Load Table Construction.
Allocation of Resident Devices .
Device Range Reduction
SYSIN Allocation
Specific Device Allocation . . .
Exits From Demand Allocation . .
Automatic Volume Recognition. . . .
Processing Requests for
Previously Mounted Volumes. . .
Processing Requests for Newly
Mounted Volumes . . . <« « « «
Processing Requests for
Unmounted Volumes
Decision Allocation Routine
Data Set Selection . . « « « « «
Device Selection
Device Allocation.
TIOT Construction Routine
External Action Routine
Space Request Routine
Obtaining Space If a Device Was
Allocated . « ¢ <« ¢ ¢ o o o o
Obtaining Space If a Device Was
Not Allocated . « « « o o« « o «
Allocation Error Routines

Step Initiation. . « « « <« <« <

TerminatioN. .« « « « « « ¢ o o o o « =«

Step Termination Routine.
Job Termination Routine

MAJOR SUBROUTINES
Subroutine

and Unallocation
Subroutine. ¢ . ¢ ¢ . o . .
Entry From the Step Termination
Routine. . « o« o ¢ o ¢ o o o o « &«
Disposition Processing
Device Availability Processing .
Entry From the Job Termination
Routine. . ¢ « ¢ ¢ ¢ ¢ o ¢ o o « &

TABLES AND WORK AREAS . .

Account Control Table. . e« e o o
DD List Table. « ¢« ¢« ¢ ¢« « ¢ « « =
DD Major Field Table

Ddname Table . « « ¢ ¢ o o o o « «

40
40
41
41
42
42
43
43

43

DD Parameter List Tabie. o« o e
Device Mask Table.
DSNAME Table .« . « « ¢« « ¢« « «
EXEC Key Field Table
Generation Data Group Bias Count
Job Control Table.
Job Keyword Table.
New Reader or Writer Table . . .
Passed Data Set Queue.
Reader/Interpreter TTR Table . .

Step Control Table

Step Input/Output Table.

4y
45
45
46

46

4e

48
48
48
51
52

54

System Message Block . . « « « « « o«
Volume Table . . . ¢« ¢ ¢ ¢ ¢« ¢ o o o« «

APPENDIX C: LOAD MODULES AND ASSEMBLY
MODULES ¢ =« &« o « o o o 2 2 o o o« o =

Load Modules . . & o &« o o o o o « o« «
Load Modules Contained in the
SYS1.NUCLEUS Data Set. « .
Load Modules Contained in the
SYS1.SVCLIB Data Set . .+« « .« <« <« .
Modules Contained in the
SYS1.LINKLIB Data Set. . « « « o

Assembly Modules and Control Sections.
control Sections and Assembly Modules.
CHARTS ¢ ¢ ¢ .« o o o o o a o o o« o o »

INDEX: ©¢ ¢ o o o o o o o o o o o o o

54
54

57
57
57
58
58
70
76

78

.123

FIGURES

Figure 1. Job Management Control
FIOW. ¢ o ¢ v ¢ o o o o o o o o o o @
Figure 2. Attention Interruption
Processing F1OoWw . . ¢« ¢ o o o o o o «
Figure 3. WTO/WTOR Macro-Instruction
Processing Flow ¢« « « « . .
Figure 4. External Interruption
Processing Flow ¢« « « . .
Figure 5. Master Scheduler - Command
Processing Network.
Figure 6. Master Scheduler
Interruption Queue Element.
Figure 7. JOB Statement Parameter
Dispositions. « « ¢ o 4 ¢ ¢« « o o .
Figure 8. EXEC Statement Parameter
Dispositions. . « « « ¢ ¢ ¢ ¢ ¢ o o .
Figure 9. DD Statement Parameter
Dispositions. . « <« « . o .« .« . o« o
Figure 10. Linkage Control Table. . .
Figure 11. Selected Job Queue.
Figure 12. Formulas for Determining
Allocation Table Sizes. . . « <« « . .
Figure 13. Relative Positions of
Tables Used for Allocation. . . o o
Figure 14. Allocate Control Block .- .
Figure 15. Allocate Volume Table. . .
Figure 16. Allocate Work Table Entry.
Figure 17. Allocate Work Table Entry
SOUXCES « « ¢ o o o o o o o o o o o =
Figure 18. Channel Load Table
Figure 19. Potential User on Device
Table . . . « ¢ ¢« ¢ o ¢ o ¢« o o o o =«

10
10
10
12
13
16

Figure

Task Input/Output Table Space

20.

ILLUSTRATIONS

Formulas for Determining

Requirements. . . .
Task Input/Output'Table.

Figure
Figure

21.
22.

Task Input/Output Table

Entry Sources « .«
Macro Parameter List .
Table Store Subroutine
Parameter Area.

Figure
Figure

Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

23.
24,

25.
26.

27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

Tables. .

Figure

Table
Figure
Figure
Figure
Figure

4o.
41.
u2.
43.
4y,

Format. .

Figure

45.

QMPCA-QMPEX LlSt

Table Store Subroutine
Parameter Requirements. .
Account Control Table.

DD List Table.

DD Major Field Table Entry

Ddname Table .

-

DD Parameter List Table.
Device Mask Table.

Dsname Table .

EXEC Key Field Table
GDG Bias Count Table

-

Job Control Table.
JOB Keyword Table.

New Reader or Writer
Passed Data Set Queue

e e o e o o

T

Reader/Interpreter TTR

Step Control Table .

Step Input/Output Table.
System Message Block .

SMB Data Set Message

Volume Table .

able

34
34

35
37

CHARTS

Chart 01. Job Management
Chart 02. Master scheduler
Chart 03. Console Interrupt Routine. .
Chart O4. Master Command EXCP Routine.
Chart 05. Master Command Routine . . .
Chart 06. Write-to-Operator Routine. .
Chart 07. External Interrupt Routine .
Chart 08. Reader/Interpreter
Chart 09. Reader/Interpreter Control
Routine« . e e e e e o o o
Chart 10. Job Routlne. e o+ e o a o @
Chart 11. Execute Routine.
Chart 12. DD Routine
Chart 13. Initiator/Terminator
Chart 14. Initiator Control.
Chart 15. System Control Routine . . .
Chart 16. Execute Statement Condition
Code Routine. o . .
Chart 17. JFCB Housekeeplng Routlnes .
Chart 18. JFCB Housekeeping Control
Routine
Chart 19. Allocate Processing Routine.
Chart 20. Fetch DCB Processing Routine
Chart 21. GDG Single Processing
Routine ¢ & ¢ ¢ ¢ ¢ & o o o .
Chart 22. GDG All Processing Routine .
Chart 23. Patterning DSCB Processing
Routine . . . ¢« ¢ ¢« ¢ ¢ ¢ ¢ o o« o . .
Chart 24. Error Message Processing
Routine ¢ « ¢« ¢ ¢ ¢ o . .

Chart 25.
Chart 26.
Chart 27.

Allocation and Setup
Allocation Control Routine .
Demand Allocation Routine. .
Chart 28. Automatic Volume Recognition
Chart 29. Process Any Requests for
Previously Mounted Volumes.
Chart 30. Process a Request for a
Newly Mounted Volume.
Chart 31. Obtain Devices
Chart 32. Decision Allocation Routine.
Chart 33. TIOT Construction Routine. .
Chart 34. External Action Routine. . .
Chart 35. Space Request Routine. . . .
Chart 36. Step Initiation.
Chart 37. Termination.
Chart 38. Step Termination Routine . .
Chart 39. Job Statement Condition Code
Routine . . . ¢ ¢ & & ¢ o o o o o o
Chart 40. Job Termination Routine. . .
Chart 41. Disposition and Unallocation
Subroutine - Entry From Step
Termination Routine . . . « e e .

Chart 42. Disposition and Unallocatlon
Subroutine - Entry From Job
Termination Routine « e e

Chart 43. 18K Configuration Load
Module Control Flow

Chart 44, 44K Configuration Load
Module Control Flow « o .

Chart 45. 100K Conflguratlon Load
Module Control Flow . « . . « « o« « &

.102
103
.104
.105

.106

.107
.108
.109
.110
.111
112
.113
.114
.115

.116
.117

.118

.119
.120
.121

.122

Job management (Chart 1) is the first
and last portion of the control program
that a job encounters. Its primary func-
tion 1is to prepare job steps for execution
and, when they have been executed, to
direct the disposition of data sets created
during execution. Prior to step execution,
job management:

¢ Reads control statements from the input
job stream.
e Places information contained in the
statements into a series of tables.
¢ Analyzes input/output (I/0) require-
ments.
e Assigns I/0 devices.
e Passes control to the job step.
Following step execution, job management:
e Releases main storage space occupied by
the tables.
¢ Frees I/O devices assigned to the step.
e Disposes of data sets referred to or
created during execution.

Job management also performs all pro-
cessing required for communication between
the operator and the control program.
Major components of job management are the
job 'scheduler, which introduces each job
step to System/360, and the master schedul-
er, which handles all operator-system-
operator communication.

JOB SCHEDULER FUNCTIONS

The job scheduler includes two programs:
the reader/interpreter and the initiator/
terminator. The reader/interpreter is
given control whenever a job step is to be
obtained from the input job stream and
processed. It directs the reading of con-
trol statements and from them constructs:

e A job control table (JCT) to describe
the job.

* A step control table (SCT) to describe
the job step.

control table (ACT) to de-
information related

e An account
scribe accounting
to the job.

e Job file control blocks (JFCB) (one for
each DD statement) to describe the data
sets to be used by the job.

INTRODUCTION

e Step input/output tables (SIOT) (one
for each DD statement) to describe the
I1/0 requirements of the job step.

e Volume tables (VOLT) (one for each
step, with an entry for each DD
statement) containing serial numbers of
volumes to be used by the job step.

e Data set name (DSNAME) tables (one for
each step, with an entry for each DD
statement) containing names of pre-
viously defined data sets to be used by
the job step.

In addition to the above, the
reader/interpreter creates system message
blocks, in which diagnostic messages to the
programmer are stored before they are writ-
ten onto the system output data set.

control statements for a job
or when data is

After all
have been processed,
encountered in the input job stream, the
reader/interpreter gives control to the
initiator/terminator. The latter analyzes
the 1I/0 requirements of the job step and,
upon considering such factors as requests
for specific units, volumes, and channels
and their current employment, it assigns
devices in such a way as to achieve maximum
overlap of I/0 activity during step execu-
tion.

When all devices requested for the step
have been assigned, the initiator/termina-
tor issues mounting messages (if any are
required) and verifies for direct-access
requests that the operator has mounted
volumes on the correct units. Control is
then passed to the job step. When the step
has been executed, control is again given
to the initiator/terminator, which performs
data set dispositions and releases 1I/0
resources.

MASTER SCHEDULER FUNCTIONS

The routines of the master scheduler
process any communication between the oper-
ator and the system. The master scheduler
processes:

e Operator commands, whether they are
issued through the console or through
the input job stream.

e Write-to-operator (WTO)
operator with reply
instructions.

e Interruptions caused when the INTERRUPT
key is pressed.

and write-to-
(WTOR) macro-

Introduction 7

JOB PROCESSING

Figure 1 shows the major components of

job management and illustrates the general
flow of control.

Control 1is passed to job management
whenever the supervisor finds that’ there

are no program request blocks in the
request block queue. This can occur for
two reasons: either the initial program
loading (IPL) procedure has just been com-

pleted or a job step has just been execut-

ed.

ENTRY TO JOB MANAGEMENT FOLLOWING INITIAL
PROGRAM LOADING

Following IPL, certain actions must be
taken by the operator before job processing
can begin. Therefore, control passes to
the master scheduler, which issues a mes-
sage to the operator instructing him to
enter commands. These "initialization"
commands include a SET command, a start
writer (START WTR) command, and a start
reader (START RDR) command. When a START
command with a blank operand is issued,
control is passed to the reader/inter-
preter.

ENTRY TO JOB MANAGEMENT FOLLOWING STEP
EXECUTION

Following step execution, control is
routed to the step termination routine of

the initiator/terminator. If the job had
been completed, control is also passed to
the job termination routine of the

initiator/terminator. Both routines are
described under "Job and Step Termination."

CONTROL STATEMENT PROCESSING
° After completion of the processing that

immediately follows IPL, or after termina-
tion of a job or of a step containing data

in the input job stream, control is passed
to the reader/interpreter. The reader/
interpreter reads and processes control

statements until one of the following
ditions is encountered:

con-

A DD * or DD DATA statement.

Another JOB statement.

A null statement.

An end-of-data set (EOF) on the system
input device.

Meanwhile, if the operator has pressed
the REQUEST key and has entered a request
(REQ) command during execution of the job
step or any of the above processing, the
master scheduler sets a command-pending
indicator in the nucleus during the ensuing

interruption. The indicator is now checked
and, if found to be on, control is passed
to the master scheduler, which issues a
message instructing the operator to enter
commands, and then processes the commands.

STEP INITIATION
Control next passes ‘to the
initiator/terminator, which examines I/0O
device requirements, assigns (allocates)
I/0 devices to the job step, issues mount-
ing instructions, and verifies that direct-
access volumes have been mounted on the
correct units. Finally, the initiatoxr/
terminator passes control to the job step.

JOB AND STEP TERMINATION

When processing program execution is
completed, the supervisor, finding no
program request blocks in its request block
queue, passes control to the job management
routines. Entry is first made to the step
termination routine.

The step termination routine performs
end-of-step housekeeping and passes control
to the user's accounting routine, if one
was provided. When the accounting routine
has been executed, the supervisor returns
control to the step termination routine.
Control is then passed to the job termina-
tion routine if there are no more steps in
the job; to the reader/interpreter if the
next step of this job has not been read yet
(i.e., the step just terminated had data in
the input stream); or to the step initia-
tion routine if the next step of this job
has been read.

The job termination routine performs
end-of-job housekeeping. It exits to the
user's accounting routine, if one was pro-
vided. After the accounting routine is

executed, the supervisor returns control to
the job termination routine, which passes
control to the reader/interpreter.

OPERATOR-SYSTEM COMMUNICATION PROCESSING

The routines that handle operator-system
communication are contained in the master
scheduler. Communication may take one of
two forms: commands, which allow the opera-
tor to change the status of the system or
of a job or job step; and the WTO or WTOR
macro-instructions, which allow processing
programs or system components to issue
messages to the operator. The master
scheduler also switches functions from the
primary console device to an alternate
console device when the INTERRUPT key is
depressed.

INITIATOR/
TERMINATOR

MASTER READER/
SCHEDULER - INTERPRETER

3 % 3 XN % W B 4 K KKK
* *

* *
* ENTRY * * ENTRY *
* * * *

E2 2222222222 2223 33 3 I 3 I X K XXX
|

| FROM NIP FROM
|(AFTER IPL) | SUPERVISOR
i (AFTER STEP
| IEXECUTION)

v v
WX C2 XWX RN XK C 3N K ER L SIS R 2 2
* * * *

L T T T T T T O

* DO POST-STEP *
* PROCESS * * INITIALIZE * * HOUSEKEEPING, ¥*
INITIALIZATION ¥< * MAIN * ¥*EXECUTE USER®'S *
* COMMANDS * - * STORAGE * * ACCOUNTING *
* * - * * * ROUT INE *
3 I I A WX RN K - EE 2 222 RS 2T 22T 2 2 3 3 3 X] X NN K
- |
. i
| -
XD TN RN D4 *,
* * *
* OPEN * o LAST *o NO
> * SYSTEM * *q STEP OF o ¥
* DEVICES * *o JoB o¥*
* * ° ¥
I IR *y o¥
T YES
|
|
|
v

HEXRKELEHX XX REXXX
* DO POST-JOB

* HOUSEKEEPING,
< *EXECUTE USER'S
* ACCOUNTING

* ROUTINE
HREEREEEREXERERR

LT T T T T T T T T T T O T O O Y A |

* ok ok ok ok ok

v
LR RS S IcE R L S R
* *

* READ AND
* PROCESS JOB
* CONTROL
* STATEMENTS
EE RS ST S L SR 2T
|
|

* K ok K K

|
|
Ve

I e G3 *,
* *

LI T T T T T A T O M |

¥
YES <% COMMAND

REQUEST AND *

* PROCESS b SEm— PENDING
* COMMANDS * *

* *

L e T T

L T T T T T T T T T O A A B |

‘<

v
33 33 H 4 I X X KK H X
* *

* INITIALIZE
* TABLES FOR
*¥STEP, ALLOCATE

* 1/0 DEVICES
L e]

* ok ok K

i
v
K G NN
* *
* EXIT *
* *
NI XKW N

TO PROCESSING
PROGRAM

N

L T T O T T T T T T T T T T T T T T T T T T O T O I O I A O B A}

LI T T T T T T T O O A O A |
L T T U T T T I A O

Figure 1. Job Management Control Flow
Introduction 9

Command Processing

Commands

in two ways: he may insert

may be issued by the operator

command state-

ments between job steps in the input job

stream, or he may
the console input device.

issue

commands through
Commands encoun-

tered in the input job stream cause control
to be passed to the master scheduler, which

processes them.

Before entering commands

through the console, however, the operator
the REQUEST key to cause an

must press

attention interruption.

Figure 2 shows the

actions taken after the key is pressed.

Operator Presses

Supervisor

REQUEST Key

Master Scheduler

Requests
Asynchronous
Exit Processing

Identifies
Type of
Interruption

Issues Message
Requesting
a Command

Dispatches
the
Request

Operator Enters

Command

Processes
Command

Figure 2.

Returns Control
to Point

of Interruption

Attention Interruption Process-
ing Flow

WTO/WTOR Macro-Instruction Processing

Whenever

occurs.

External Interruption Processing

the WTO
instruction is issued, an SVC
(See Figure 3.)

WTOR macro-
interruption

When the operator presses the INTERRUPT

key, an
following

10

external
which

interruption occurs,
the

scheduler

switches functions from the primary to the
alternate console I/0 device. (See Figure

4.)
Supervisor
Program Issues
WTO/WTOR Macro-Instruction
Master Scheduler Identifies
Type of
Interruption
Writes Message
Waits for B
Reply (If Any) Returns
Control to
Point of
. Interruption

Figure 3. WTO/WTOR Macro-Imnstruction Pro-
cessing Flow

Supervisor

Operator Presses

INTERRUPT Key

Identifies
Master Scheduler Type of
Interruption,
Posts to
Switches from M/S ECB
Primary to
Alternate Console

Returns Control
to Point
of Interruption

Figure 4. External Interruption Process-
ing Flow

LOAD MODULES

Most job management routines exist as a
series of load modules that reside in the
link 1library (SYS1.LINKLIB). The excep-
tions are the interruption-handling rou-
tines of the master scheduler, which reside
in the nucleus and the master command EXCP
routine which is in the svC 1library
(SYS1.SVCLIB). Appendix C contains a 1list
of the routines that make up each job
management load module.

The master scheduler (Chart 2) processes
all operator commands and messages directed
to the operator through use of the WTO and
WTOR macro-instructions. It also performs
console switching when the secondary con-
sole is to be used in place of the primary
console.
of the

The five major routines master

scheduler are:

e Console interrupt routine, which pro-
vides the supervisor with the informa-
tion necessary to gueue a request for
processing an attention interruption.

e Master command EXCP routine, which
reads commands from the console input
device and processes all commands

except SET, START RDR, and START WTR.

e Master command routine, which analyzes
command verbs and routes control to
appropriate command execution routines.

e Write-to-operator routine, which pro-
cesses messages to the operator and all
operator replies to these messages.

¢ External interrupt routine, which
switches to the alternate console
device when an external interruption

occurs.

MASTER SCHEDULER CONTROL FLOW

Commands are issued through either the
console I/0 device or the input reader.
(See Figure 5.) Before entering commands
through the console I/0 device, the opera-
tor must cause an I/0 interruption by
pressing the REQUEST key. When he does,
control is given to the supervisor. The
supervisor determines that an I/0 interrup-
tion has occurred and passes control to the
I/0 supervisor. The I/0 supervisor deter-
mines that an attention interruption has
occurred and passes control to the master
scheduler console interrupt routine.

The console interrupt routine resides in
the nucleus. It passes to the supervisor
the address of an interruption queue ele-
ment to be added to an asynchronous exit
queue. The interruption queue element con-
tains the address of an interruption
request block that points to the master
scheduler interrupt request block routine.
Control is passed to the interrupt request
block routine when the request is honored
by the supervisor. A description of the

MASTER SCHEDULER

asynchronous exit gqueue and the manner in
which it is used is contained in the
publication IBM System/360 Operating Sys-
tem: Fixed-Task Supervisor, Program Logic

Manual, Form Y28-6612. The format of the
master scheduler interruption queue element
is given in the section entitled "Console
Interrupt Routine."

The interrupt request block routine
causes the master command EXCP routine to
be brought into the supervisor «call (SVC)
transient area of the nucleus, where con-
trol is passed to it.

The master command EXCP routine uses an
EXCP macro-instruction to read the command.
(The PROCEED 1light on the 1052 Printer-
Keyboard is turned on at this time.) Eight
commands, the REQ, START (blank), CANCEL,
DISPLAY, MOUNT, STOP, UNLOAD, and VARY
commands, are always accepted and
processed. All other commands are ignored
(control is returned to the supervisor) if
issued at any time other than in response
to a message issued by the master command
routine. If the command is acceptable, it
is moved from the buffer into which it was
read to a local buffer, and control is
passed to the master command routine.

The master command routine analyzes com-
mands and routes control to appropriate
command execution routines. If a command
is issued through the input job stream,
control is passed directly to the master
command routine by the reader/interpreter.
When all commands have been entered and
processed, control returns to the
reader/interpreter.

The write-to-operator routine is entered
from the SVC handler when a WTO or WTOR
macro-instruction is issued. When either
macro-instruction is issued, an SVC inter-
ruption occurs and the write-to-operator
routine is brought into the SVC transient
area of the nucleus. Basically, the write-
to-operator routine uses an EXCP macro-
instruction to write the message on the
console output device and, if a reply is
expected, to read the reply, which is

placed into an area designated by the
requester. Control is returned to the
supervisor.

The external interrupt routine assigns
the functions performed by the primary
console device to the alternate console
device. When the operator presses the

INTERRUPT key on the console, an external
interruption occurs and control is given to

Master Scheduler 11

Reader/Interpreter
Control Routine
7 Y T
I 1
A 4
— > Master
— > Command
] Routine
r
| X T
1 I 1
| | A 4
: Commands
! SET
! START RDR
) START WTR
-
|
A
L Fault
* Subroutine
(Message
Processor)

Attention Supervisor
——— e ———— ——
Interruption l'
|
|
1/0 —= —t ————— e ——
S i | rfTT T
upervisor L IR e —E
1 [
1 1!
Console | Pl
Interrupt : : |
i I
Routine [R o
|
o R -—-
Interrupt Request “4——— ——f-———————— -1
Block Routine rt-——— - ————————— —r——
I R 3 | =
P | :
1 | H
1 T |
: Program Fetch | |
I i !
| |
] ! !
| Nucleus | |
) Transient Area : |
|
Cdem o 4 :
|
|
Master |
Command |
EXCP |
Routine
Commands
CANCEL
DISPLAY
MOUNT
REQ
START (blank)
STOP
UNLOAD
VARY
Write-to-Operator
Routine,REPLY
Command
Figure 5. Master Scheduler - Command Processing Network
the supervisor, which identifies the

interruption and passes
external interrupt routine.

control to the
The external

interrupt routine then switches consoles
and returns control to the supervisor.
Console functions may later be reassigned

to the primary console device if the opera-
tor causes another external interruption
(the external interrupt routine will again
switch functions).

CONSOLE INTERRUPT ROUTINE

The console interrupt routine (Chart 3)
provides the supervisor with the address of
the routine to be given control when the
supervisor processes an attention interrup-
tion. The console interrupt routine is
part of the nucleus and is entered from the

12

I/0 supervisor each time an attention
interruption occurs.

Upon entry to the console interrupt
routine, the console flag switch is
checked. If this switch is on, either the
master command routine or the console
interrupt routine 1is processing a prior

request, and a RETURN is made to the I/O
supervisor.

When an interruption is not being proc-
essed by either routine, the console flag
switch 1is turned on, the address of the
master scheduler interruption gqueue element

is placed into general register 1, and
control is passed to the supervisor. The
interruption queue element is shown in
Figure 6.

| |
| <--4 Bytes--> |
| —mm 1 |
| | Link | |
I 1 |
| | Parameter | |
eyt — |
| | IRB address| |
T |
| | TCB address| |
| (IS |
| |
| Legend |
| |
| Link |
| used by the supervisor to link mem-|
| bers of the queue. |
| |
| Parameter |
| contains the interrupt request block]|
| routine. |
| |
| IRB address |
| address of the interruption request|
I block. |
| |
|TCB address |
| address of the task control block. |
L J
Figure 6. Master Scheduler Interruption

Queue Element

The interruption request block contains
the address of the interrupt request block
(IRB) routine to which control is passed by
the supervisor when it dispatches the
request. The IRB routine uses an SVC 34
instruction to cause the master command
EXCP routine to be brought into the tran-
sient area of the nucleus.

MASTER COMMAND EXCP ROUTINE

EXCP routine
CANCEL, DISPLAY,

master command
(Chart 4) processes ' the
MOUNT, REQ, START (blank), STOP, UNLOAD,
and VARY commands. It resides in
SYS1.SVCLIB, and is brought into the tran-
sient area of the nucleus by the supervisor
when an SVC 34 instruction is issued by the
master scheduler interrupt request block
routine or the master command routine.

The

If entry to this routine was from the
interrupt request block routine, an EXCP
macro-instruction is used to read the com-
mand from the console and place it into the
command buffer. If the command is one of
the eight previously mentioned commands, it
is processed.

SET, START RDR, and START WTR commands
are ignored unless they were issued in
response to a message from the master
command routine. If so, control is passed

to the master command routine, which pro-
cesses them.

Following return from the master command
routine, or after execution of the REQ or

START (blank) commands, the console flag
switch is turned off to indicate to the
console interrupt routine that another

attention interruption can be processed.

If entry to the master command EXCP
routine was from the master command rou-

tine, the command is available in a buffer
(placed there by the master command
routine). The command is processed.

The master command EXCP routine returns
control to the supervisor.

MASTER COMMAND ROUTINE

The master command routine (Chart 5)
analyzes command verbs and routes control
to appropriate command execution routines.
It also issues a message to the operator,
informing him that commands will be accept-
ed from the console. The master command
routine is brought into main storage and
entered when:

e The readers/interpreter encounters a
command in the input job stream.

e The reader/interpreter is performing
the initialization procedures that fol-
low IPL.

e The reader/interpreter finds the com-
mand pending switch on. (The command
pending switch is +turned on by the

routine that processes the REQ
command..)
¢ The reader/interpreter encounters an

end-of-data set condition in the input
job stream, indicating the end of a job
step or job. Control is passed to the
master command routine after the job
step has been processed.

Upon entry, general register 0 is exam-
ined. If it contains zeros, entry was made
because the reader/interpreter encountered
a command in the input job stream. The
command is moved to the master command
routine buffer and is written out on the
console output device for the operator's
records. The command verb is then ana-
lyzed, and if it is a SET, START RDR, or
START WTR command, control is passed to an
appropriate command execution routine.
Otherwise, an SVC 34 instruction is used to
pass control to the master command EXCP
routine.

If general register 0 does not contain
zeros upon entry to the master command

Master Scheduler 13

routine, the IPL pending, new reader pend-
ing, and new writer pending switches are
checked. If any of these switches are on,
the command pending switch is turned on and
a message is issued requesting the operator
to enter commands. Control is then passed

to the initialization command routine,
which provides certain commands, specified
by the installation during system genera-

tion (SYSGEN), to relieve the
entering initialization commands. Each of
these commands, if there are any, is moved
to the master command routine buffer, writ-
ten on the console output device for the
operator's records, and executed.

operator of

If general register 0 does not contain

zeros and none of the previously mentioned
pending switches are on, entry to this
routine was made because the

reader/interpreter found the command pend-
ing switch on, or encountered an end-of-
data set condition in the input job stream.
A message 1is issued requesting commands
from the operator. After the operator has
issued commands and they have been
processed, control 1is returned to the
reader/interpreter.

WRITE-TO-OPERATOR ROUTINE

The write-to-operator routine (Chart 6)
writes messages: to the operator on the

14

console output device when a WTO or WTOR
macro-instruction is issued. These macro-
instructions may be issued by system
component programs and processing programs.
Issuance of either macro-instruction causes
an SVC interruption to eccur. When the
interruption is handled, thé supervisor has
the routine read into the transient area of
the nucleus and passes control to it.

The message is written by using the EXCP
macro-instruction. Replies (if any) are
processed in the following manner. After
an attention interruption, the EXCP macro-
instruction is issued and a WAIT occurs
until the operator responds with a REPLY
command. When the reply is received, it is
moved to the storage location whose address
was supplied as a parameter in the WTOR
macro-instruction, and the requester's
event control block (ECB) is posted.

The write-to-operator routine 'returns
control to the supervisor.

EXTERNAL INTERRUPT ROUTINE

The external interrupt routine (Chart 7)
switches to an alternate console device
when the operator presses the INTERRUPT key
on the console. This routine resides in
the nucleus.

The primary function of the
reader/interpreter (Chart 8) is to read job
control statements, analyze their contents,
and build tables that are wused during
initiation and execution of job steps.

Control is passed to the
reader/interpreter following:

e The IPL procedure.

e Execution and termination of a job step
that was followed by data in the input
job stream.

e Execution and termination of the last
step of a job.

In each case, the reader/interpreter begins
reading and processing control statements.

The reader/interpreter consists of four
routines: A control routine that
statements from the input job stream, and
three routines that process the control
statements. Entry to the reader/interpre-
ter is always to the control routine.

The four routines of the reader/
interpreter are:

e Control routine, which begins reading
and processing statements, determines
which type of statement was read, and
passes control to the appropriate
routine.

e Job routine, which analyzes the JOB
statement and constructs a job control

table (JCT) from the information in the
Statement.

¢ Execute routine, which analyzes the
EXEC statement and constructs a step
control table (SCT) from the informa-
tion in the statement.

e DD routine which analyzes the DD state-
ment and constructs a job file control
block (JFCB), a step input/output table
(sI0T) and, if necessary, a volume
table (VOLT) and a dsname table from
the information in the statement.

Major subroutines include:
e Breakout Routine, which scans state-

ments and isolates each field as
requested by the calling routine.

e Qualified name routine, which separates
the elements of fully qualified data
set names.

reads.

READER/INTERPRETER

e Message routine, which builds system
message blocks in which job management
error messages are stored. :

READER/INTERPRETER CONTROL ROUTINE

The reader/interpreter control routine
(Chart 9) reads statements from the input
job stream or procedure library, identifies
the verbs, checks their validity, and for
JOB, EXEC, and DD statements transfers
control to the appropriate routine to pro-
cess the statement. When the control rou-
tine encounters a second JOB statement, a
DD *, DD DATA or null statement, or an EOF
in the input job stream it passes control
to the initiator/terminator.

The reader/interpreter control routine
is entered from:
¢ The nucleus initialization program,

when the master scheduler is to perform
the actions immediately following IPL.
The control routine begins reading
statements from the input 3job stream
after the actions are completed.

e The initiator/terminator, when termina-
tion procedures have been completed for
a job step that was followed by data in

the input job stream, or for the last
step of a job. The control routine
begins reading and processing state-

ments for the next job step or job.

When a statement has been read from the
input device (or pxocedure library when a
procedure has been specified), it is exam-
ined. If it 1is a control statement, the
control routine determines the 1length and
starting address of the name, operation,
and operand fields. This information is
passed to the routine that processes the
statement. The control routine then iden-
tifies the statement. For JOB, EXEC, and
DD statements, exit is made to the
appropriate statement processing routine.
For commands, exit is made to the master
scheduler's master command routine. When a
second JOB or EXEC statement is read, or
when a DD *, DD DATA, or null statement is
read, or when an EOF is encountered in the

input job stream, the step control table
(SCT) for the completed step is stored by
the table store subroutine. (It is either

stored in auxiliary storage or, if the
resident job queue option was specified
during system generation, into a job queue
area of main storage if the area is not
full.) If a volume table (VOLT) or dsname

Reader/Interpreter 15

table exists for the step, it is also
stored by the table store subroutine.

If either an EOF condition or a JOB,
DD *, DD DATA, or null. statement caused the
SCT to be stored, control is passed to the
initiator/terminator. Otherwise, the con-
trol routine continues reading and process-
ing statements until it encounters such a
statement or an EOF condition.

When control returns from the
initiator/terminator, the control routine
restores pointers to the previous state-
ment, or reads the next statement and
processes it.

Exits are to the job, execute, and DD
routines when these control statement oper-
ation fields are recognized; to the initia-
tor control function of the
initiator/terminator after an SCT is stored
when a second JOB, DD *, DD DATA, or null
statement has been encountered; and to the
master scheduler (a) when a command is
recognized in the input job stream, (b)
after return from job termination if an EOF
occurred in the input job stream, and (c)
before an SCT is stored if a command is
pending.

JOB ROUTINE

The job routine (Chart 10) analyzes the
JOB statement and, from the information it
contains, constructs a job control table
(JCT) and an account control table (ACT).

The job routine is entered from the
reader/inteérpreter control routine when a
JOB statement is recognized.

Wwhen it receives control, the

JCT. Using the length and starting address
parameters passed to the job routine by the
control routine, the jobname is inserted in
the JCT. Assumed JOB statement values are
also inserted in the table at this time.

The breakout routine separates fields so
that the list portion of the job statement
can be examined. If accounting information
is specified, it is put into the ACT for
later use by an accounting routine.

As each keyword parameter is broken out,
it is matched with the JOB keyword table.
This table contains an entry for each
keyword parameter which may appear in the
JOB statement. The table also indicates if
the parameter is supported in a given
environment and gives the branch address
for the routine which processes that param-
eter.

16

job rou-
tine initializes main storage space for the -

When the statement has been completely
scanned, the job routine ascertains that
all required fields are present and returns
to the control routine which reads another
statement. If any t*equired fields are
missing, an error message is written via
the message routine, the job-failed bit in
the JCT is set to indicate that the job has
failed, and exit is made to the control
routine. (Remaining control statements for
the failed job are read and interpreted,
but the job steps are not executed.)

Parameters in the JOB statement result
in table entries shown in Figure 7.

r T T . H
|JOB Statement | Table | Table Item |
| Parameter | | |
b———- -———1+ + -4
| jobname |JdCT |Jobname |
b 4 4 {
account number	ACT	Account number,
		length of account
		number
L 4 +- 4		
v T 1		
programmer's	ACT	Programmer's name
name		
b $ L {		
TYPRUN	Ignored in primary	
	control program	
— $ -~ 1		
PRTY	Ignored in primary	

| | control program |
|"—"" + T {
| COND }JgcT |Code, operator |
t 4 + {
| MSGLEVEL |JCcT |Message level |
[N 4 4 4
1) T 1
| MGSCLASS | Ignored in primary |
| | control program |
% t {
| REGION | Ignored in primary |
| |control program |
Lo 1 Jd

Figure 7. JOB Statement Parameter Dispo-

sitions

EXECUTE ROUTINE

The execute routine (Chart 11) analyzes
the execute statement and, from the infor-
mation it contains, constructs a step con-
trol table (SCT).

The routine includes a control subrou-
tine that breaks out the fields and iden-
tifies the parameters, subroutines that
process each keyword parameter, a subrou-
tine that processes the statement if it
indicates a cataloged procedure, and a
subroutine that handles a reference to a
previous step.

Entry to the execute routine is from the
reader/interpreter control routine when an

EXEC statement is
execute routine (control subroutine)
receives control, it initializes main stor-
age space for the SCT, regardless of wheth-
er the SCT was stored into the job queue
area of main storage or into auxiliary
storage, and then checks for the presence
of parameters in the operand field. If
none have been specified, an error message
is issued, the job is failed, and control
returns to the reader/interpreter control
routine to continue processing the input
job stream. If there are parameters in the
operand field, the SCT is initialized and
the stepname is inserted into the SCT.

recognized.

The first parameter in the operand is
then broken out. If it identifies a cata-
loged procedure, the execute routine finds
the specified procedure in the procedure
library and sets a switch to indicate that
statements should be read from the proce-
dure 1library as well as from the input job
stream. Control is returned to the control
routine to read and analyze the cataloged
statements.

If the first parameter in the operand
identifies a program, the execute routine
checks first for a reference to a previous
step (*.stepname.ddname) and, if such a
reference 1is present, the refer-back sub-
routine is called. This subroutine scans
the SCTs and SIOTs belonging to the current
job to find the specified step and ddname.
The auxiliary storage address of . the SIOT
is inserted into the programname field of

the current SCT and processing of the
statement continues. If there is no back-
ward reference, the control subroutine

inserts the specified program name into the
SCT.

Before scanning of the statement contin-

ues, condition subparameters are placed
into the SCT, and the parameter fields are
set to zero. Scanning continues to an
equal sign (=). When one is found, the

preceding parameter is matched with the
EXEC key field table. This table indicates
if a parameter 1is supported in a given
system and gives the branch address for the
routine which processes that parameter. If
a parameter is invalid, a message is
issued, the parameter is ignored, the job-
failed indicator is turned on, and scanning
of the rest of the statement continues.
(Remaining control statements for the
failed job are read and interpreted, but
the job steps are not executed.) If a
parameter is not supported by the system, a
message is issued but the job-failed
cator 1is not turned on. Scanning of the
rest of the statement continues.

statement is
the

When
reached,

the
control is

end of the
returned to

When the

e Figure 8.

indi--

reader/interpreter control routine, which
continues processing the input job stream.

The parameters in the EXEC statement
result in table entries shown in Figure 8.

- T T

| EXEC | |

| Statement |Table| Table Item
| Parameter| |

- + 1

| stepname |SCT |Stepname

o -

| PGM |SCT |Programname

8 4 L

+
| |Cataloged control statements

| PROC |are interpreted and merged with
| | input statements.
4
- T |
| TIME | Ignored in the primary control
| |program
’ fm——g -
| COND |sCcT |code, operator, auxiliary
| | | storage address
| | |of referenced SCT
P
| PARM |SCT |Initializing parameter
| | | values
N —_—d 1
T T T
|ACcCT |ACT |Step accounting fields
L 1 L
T T
"|REGION Ignored in primar
I g p Y

e e Rt SRR P WP WISSES SIS S S WU ———

| control program
1

,.
|
|

EXEC Statement Parameter Dispo-
sitions

DD ROUTINE

The DD routine (Chart 12)
DD statement and, from the
contains, constructs a JFCB,
necessary, a VOLT and dsname

analyzes the

information it
SI0T, and, if
table.

The
_tines that process the various
delimiters on a DD statement. The header
and scan subroutines control the operation
of the DD routine. They break out the
fields in the statement and pass control to
an appropriate subroutine. There are sub-
routines to process fields bounded by each
type of delimiter which may appear, to
convert the contents of each field to
internal format where necessary, and to put
the result in the tables. When the entire

DD routine includes several subrou-
fields and

statement has been analyzed, the output
subroutine uses the table store subroutine
to store the completed tables. The tables

are stored either in auxiliary storage or,
if the resident job queue option was speci-
fied during system generation, into a job
queue area of main storage if the area is
not full.

Reader/Interpreter 17

Entry to the DD routine is made from the
reader/interpreter control routine through
the DD header subroutine. The subroutine
checks entry conditions and processes any
special ones that may exist (continuation
received, DD statement expected but not
received, JOBLIB DD statement). It also
checks for a DD sequence error. If such an
error is found, the job-failed indicator is
turned on, a message is written, and the
entire statement is ignored. (Remaining
control statements for the failed job are
read and interpreted, but the job steps are
not executed.) If no syntactical or
sequence errors are found, normal process-
ing of the statement continues.

The name field is interpreted and broken
down into its levels of qualification. The
breakout subroutine scans the list portion
of the statement for delimiters; i.e.,
comma, blank, equal sign, right parenthesis
and 1left parenthesis. When a delimiter is
encountered, control goes to the subroutine
that processes the delimiter. These sub-
routines break out the contents of each
field and insert them into the appropriate
table. The DD major field table and the DD
parameter 1list table provide the informa-
tion necessary to treat each field.

The DD routine places flags into the
step input/output table (SIOT, Figure 42),
to denote requests for nonshareable and
private volumes. (A device allocated to
satisfy a request for a nonshareable volume
may not be used to satisfy any other
request for nonshareable volumes.)

A private volume is requested with a DD
statement containing the PRIVATE subparam-
eter.

A nonshareable volume is requested with
a DD statement that:
for the

e Specifies a volume

request.

private

18

* Requests a specific volume by serial
number (VOLUME=SER=x), by reference
(VOLUME=REF=x), or by referring to a
cataloged or passed data set by data
set name (DSNAME=x).

e Specifies a multivolume
giving a volume count
greater than one.

data set by
subparameter

The DD routine also places a flag into
the job file control block (JFCB, shown in
the publication System Control Blocks) to
denote each request for temporary data set
space. (The demand allocation routine
later transfers the nonshareable and pri-
vate flags from the step input/output table
into the allocate work table entry for the
request.)

When the statement has been completely
scanned, an output subroutine completes the
JFCB and SIOT, and uses the table store
subroutine's write and assign functions to
store the JFCB either in the job queue area
of main storage or onto auxiliary storage.
(If a job queue area was specified during
system generation and is not full, the I/O
supervisor causes the table to be stored in
main storage.) If all interpreting for a
job step is complete, or if data is encoun-
tered in the input job stream, the output
routine also causes the SCT of the current
step to be stored.

If information in the DD statement is to
override information in a cataloged DD

statement, a composite DD statement is
created.

The DD routine exits to the
reader/interpreter control routine when

interpretation of a statement is complete
and when an SCT is to be written out.

The parameters and subparameters of the
DD statement result in table entries shown
in Figure 9.

[o e S e — e S . St S S, S S, S . S S . S T, S o — T— —— — — ———— — —— — —— —— . S . S . U St S . . . it ., S S, S . o . S S S, S S

r T T T | r T T T 1
|DD Statement | | Table | | |DD Statement | | Table | |
|Parameter | Table| Item |Bits]| |Parameter |Table| Item |[Bits]|
. - -t $---—1
*, DATA | SIOT |SCTUTYPE | | |DCB— (cont) | | | 1
| SIOT |SCTSBYT1|1 | | OPTCD=E |JFCB | JFCOPTCD| 2
| SIOT |SCTSDISP|U | | OPTCD=F |JFCB |JFCOPTCD|3 [
|SIOT |SCTSBYT3|7 | | OPTCD=I1 | JFCB |JFCOPTCD|3 |
| SCT |SCTSTYPE| | | OPTCD=L | JFCB | JFCOPTCD| 6 1
|JFCB |JFCBTSDM|2 | | oPTCD=M | JFCB |JFCOPTCD| 2 |
|JFCB |JFCBIND2|1 | | OPTCD=P | JFCB | JFCOPTCD| 2
| JFCB | JFCBDSNM| | | OPTCD=R | JFCB |JFCOPTCD|7 |
DUMMY , DDNAME= | SIOT |SCTSBYT1|0 | | OPTCD=W | JFCB | JFCOPTCD| 0 [
| JFCB |JFCBDSNM | | | PRTSP | JFCB |JFCPRTSP | [
DSNAME= | SIOT |SCTSBYT4|0 | | RECFM=A |JFCB | JFCRECFM|5 |
| JFCB | JFCBDSNM| | | RECFM=B |JFCB |JFCRECFM|3 |
| JFCB | JFCBELM | | | RECFM=F | JFCB | JFCRECFM| 0 1
JFCB	JFCBIND1	6		RECFM=G	JFCB	JFCRECFM	5
JFCB	JFCBIND1	7		RECFM=K	JFCB	JFCRECFM	7
JFCB	JFCBIND2	7					
DCB= | | RECFM=M | JFCB | JFCRECFM| 6 |
dsname | SIOT |SIOTDCER| | | RECFM=R | JFCB | JFCRECFM| 6 |
BFALN=D '|JFCB | JFCBFALN| 6 | | RECFM=S | JFCB | JFCRECFM| 4
BFALN=F | JFCB |JFCBFALN|1 | | RECFM=T |JFCB |JFCRECFM| 2 |
BFTEK=D |JFCB |JFCBFTEK |4 i | RECFM=U | JFCB |JFCRECFM|01 |
BFTEK=E |JFCB |JFCBFTEK|3 | | RECFM=V | JFCB |JFCRECFM|1 |
BFTEK=S |JFCB |JFCBFTEK|1 | | RKP |JFCB |JFCRKP |
BLKSIZE | JFCB | JFCBLKSI | | | SOWA | JFCB |JFCSOWA | |
BUFL | JFCB | JFCBUFL | | | STACK {JFCB |JFCSTACK | |
BUFNO |JFCB | JFCBUFNO| | | TRTCH=C |JFCB |JFCTRTCH|367 |
BUFRQ | JFCB |JFCBUFRQ| | | TRICH=E |JFCB |JFCTRTCH|267 |
CODE=A | JFCB |JFCCODE |5 | | TRTCH=ET | JFCB |JFCTRTCH|2u467|
CODE=B | JFCB |JFCCODE |3 | | TRTCH=T | JFCB |JFCTRTCH|2346|
CODE=C | JFCB | JFCCODE |4 | | | | |7 i
CODE=F | JFCB |JFCCODE |2 | | TRTCH=TE |JFCB |JFCTRTCH| 2467 |
CODE=I |]JFCB |JFCCODE |1 | | SEP= | SIOT |SCTCSADD]| |
CODE=N | JFCB |JFCCODE |0 | | | SIOT |SCTSBYT2|1 |
CODE=T | JFCB |JFCCODE |6 | | AFF= | SIOT |SCTCSADD| |
CPRI | JFCB | JFCCPRI | | | | SIOT |SCTSBYT2|0 |
CYLOFL | JFCB |JFCCYOFL|] | UNIT= i | | |
DBUFNO | JFCB | JFCDBUFN | | | name | SIOT |SCTUTYPE| |
DEN=0 | JFCB |JFCDEN |67 | | n | SIOT |SCTNMBUT| |
DEN=1 |JFCB |JFCDEN [167 | | P | SIOT |SCTSBYT1|5 |
DEN=2 |JFCB |JFCDEN |067 | | DEFER | SIOT |SCTSBYT2|6 |
DSORG=CQ | JFCB | JFCDSORG | 4 | | SEP= | SIOT |SCTUSADD| [
DSORG=CX | JFCB |JFCDSORG|3 | | | SIOT |SCTSBYT1|7]
DSORG=DA | JFCB | JFCDSORG]| 2 | | POOL | NO Tables Affected]
DSORG=IS | JFCB |JFCDSORG |0 | | poolname | SIOT |SCTSPOOL| |
DSORG=MQ | JFCB | JFCDSORG| 5 | | 0 | SIOT | SCTNMBUT | |
DSORG=PO | JFCB |JFCDSORG| 6 | | 1 | SIOT |SCTNMBUT| |
DSORG=PS | JFCB | JFCDSORG|1 | | AFF= | SIOT |SCTUSADD| |
DSORG=U | JFCB |JFCDSORG|7 | | | SIOT |SCTSBYT1|6 |
EROPT=ABE | JFCB |JFCEROPT|2 | | SPACE= | |
EROPT=ACC |JFCB |JFCEROPT|0 | | TRK |JFCB |JFCBCTRI|O |
EROPT=SKP | JFCB | JFCEROPT|1 | | CYL | JFCB |JFCBCTRI}01 |
INTVL | JFCB |JFCINTVL| | | average rec. length|JFCB |JFCBCTRI|1 |
KEYLEN | JFCB |JFCKEYLE | i | | JFCB | JFCBDRLH| |
LIMCT | JFCB | JFCLIMCT| | | primary gty. |JFCB |JFCBPQTY| |
LRECL | JFCB |JFCLRECL | | | secondary qty. |JFCB | JFCBSQTY | |
MODE=C |JFCB |JFCMODE |0 | | directory qty. |JFCB |JFCBDQTY |
MODE=E |JFCB |JFCMODE |1 | | RLSE | JFCB |JFCBIND1|1 |
NCP |JFCB |JFCNCP | | | MXIG |JFCB |JFCBCTRI|5 |
NTM |JFCB |JFCNTM | | | ALX |JFCB |JFCBCTRI|6 |
OPTCD=A | JFCB |JFCOPTCD|4 | | CONTIG |JFCB | JFCBCTRI |4 |
OPTCD=C |JFCB |JFCOPTCD | 4 | | ROUND |JFCB |JFCBCTRI|7 |
—_— 4 1. 4 d L 4 1 L J
® Figure 9. DD Statement Parameter Dispositions
(Continued)

Reader/Interpreter

19

r L] T L) A} r T T T k]
|DD Statement | | Table | | |DD Statement | | Table | |
| Parameter | Table] Item |Bits]| | Parameter | Table| Item |Bits]|
F S t—-1 e $-——
SPACE= (cont.) -					DISP= (cont.)			
ABSTR	No Table Affected		MoDp	{JFCB	JFCBIND2	O0		
primary gty.	JFCB	JFCBQTY	i		SIOT	SCTSBYT3	6	
beginning address	JFCB	JFCBABST			DELETE	SIOT	SCTSDISP	5
directory qty.	JFCB	JFCBDQTY			KEEP	SIOT	SCTSDISP	4
SPLIT=	SIOT	SCTSBYT1	23		PAss	SIOT	SCTSDISP	3 [
n	JFCB	JFCBSPTN			CATLG	SIOT	SCTSDISP	6
CYL	JFCB	JFCBCTRI	01		UNCATLG	SIOT	SCTSDISP	7

| average rec. length|JFCB |JFCBCTRI|1 | | SHR | JFCB |JFCBIND2|1 |
| | JFCB |JFCBDRLH | | | | SIOT |SCTSBYT3|7 |
| primary qty. |JFCB |JFCBPQTY| | | SHARE | JFCB |JFCBIND2|1 [
| secondary qty. | JFCB | JFCBSQTY | | | | SIOT |SCTSBYT3|7 |
| SUBALLOC= | SIOT |SCTSBYT1|U4 | | sYsouT= | JFCB | JFCBDSNM| [
| TRK | JFCB |JFCBCTRI|0 | | |JFCB | JFCBTSDM| 2 |
| - CYL |JFCB |JFCBCTRI|O01 | | |JFCB |JFCBLTYP|4

average rec. length	JFCB	JFCBCTRI	1			SIOT	SCTSBYT3	u4
	JFCB	JFCBDRLH				SIOT	SCTSBYT1	0
primary qty.	JFCB	JFCBPQTY			classname	SIOT	SCTOUTPN	
secondary qgty.	JFCB	JFCBSQTY			progname	SIOT	SCTOUTNM	
directory gty.	JFCB	JFCBDQTY			form number	SIOT	SCTOUTNO	
stepname.ddname	SIOT	SIOTVRSB						

ddname	SIOT	SIOTVRSB						
	SIOT	SCTSBYT3	3					
VOLUME=	I I							
PRIVATE	SIOT	SCTSDISP	02					
RETAIN	SIOT	SCTSDISP	1					
vol. seg. no.	JFCB	JFCBVLSQ	1					

| vol. count | JFCB | JFCVOLCT| | | | | | |
| SER= | SCT |SCTVOLTB| | | | | |

	SCT	SCTVOLTL						
	SIOT	SCTVOLCT						
	SIOT	SCTVLTPR						
	SIOT	SCTSDISP	0					
	JFCB	JFCBNVOL						

	JFCB	JFCBEXAD						
	JFCB	JFCBVOLS						
	VOLT	INDMVOLT						
REF= dsname	INDMDSNT							
	SCT	SCTVLPTR						
	SCT	SCTVOLCT						
	SCT	SCTADSTB]		
	SCT	SCTLDSTB						
	SIOT	SIOTVRSB						
	SIOT	SCTSBYT2	2					
	SIOT	SCTSBYT3	0]				
	SIOT	SCTSDISP	O					
LABEL=]			
data set seg. no.	JFCB	JFCBFLSQ						
NL	SIOT	SCTSBYT2	4					
	JFCB	JFCBLTYP	7					[
SL	JFCB	JFCBLTYP	6					
NsL	SIOT	SCTSBYT2	u I				[
	JFCB	JFCBLTYP	5		I			
suL	JFCB	JFCBLTYP	U4					
EXPDT	JFCB	JFCBCRDT						
	JFCB	JFCBXPDT						[
RETPD	JFCB	JFCBCRDT	i					
	JFCB	JFCBXPDT						
DISP=			i					
NEW	JFCB	JFCBIND2	01					
	SIOT	SCTSBYT3	5					
oLD	JFCB	JFCBIND2	1					
	SIOT	SCTSBYT3	7					
L L L L P | Lo Lo L 4 ¥ |

-Figure 9. DD Statement Parameter Dispositions

20

The initiator/terminator (Chart 13)
ensures that all I/0 resources needed by a
job step are available before control is
passed to the step. The initiator/
terminator analyzes the I/O device require-
ments of job steps and allocates devices to
them. If necessary, it issues mounting
instructions and verifies that volumes were
mounted on the correct units.

Control is passed to the
initiator/terminator from:

e The reader/interpreter, when the
reader/interpreter encounters a second
JOB statement, a DD %, DD DATA, or null
statement, or an EOF in the input job
stream.

¢ The supervisor, following execu-

tion.

step

The initiator/terminator passes control to:

e The 3job step, when all 1I/0 devices
needed by the step have been assigned
and the step is ready for execution.

e The reader/interpreter, when termina-
tion procedures have been completed for
a step or job.

Initiator/terminator routines are
arranged into four groupings:

e Initiator control.

e Allocation and setup.
e Step initiation.

¢ Termination.

Initiator control routines perform
housekeeping functions, analyze condition
codes specified by the programmer in the
EXEC statement, and update JFCBs and other
tables associated with the step.

Allocation and setup routines analyze a
step's 1I/0 requirements (taking into con-
sideration, for example, requests for abso-
lute assignments and unit and volume
affinity). They then allocate devices and
issue messages instructing the operator to
mount required volumes.

Step initiation routines open the job

library data set for each step if a JOBLIB
DD statement is included with the job.
Also, if the step being initiated consists

of a program that was created by a previous

INITIATOR/TERMINATOR

step (commonly known as "compile, load, and
go"), a step initiation routine opens the
data set containing the program. Before
passing control to the job step, a step
initiation routine takes two preparatory
steps. It loads control information that
followed the PARM keyword of the EXEC
statement into main storage. It also uses
the table store subroutine to store all
tables associated with the job step, there-
by protecting them for use by the termina-
tion routines.

Termination routines are entered after
each job step is executed. They supervise
entry to the user's accounting routine (if
one exists) and, upon return, dispose of
data sets referenced by the step during

execution and release devices allocated to
the step.
Information is passed between

initiator/terminator routines by means of
the linkage control table (LCT) (see Figure
10). The LCT is built and initialized
during IPL. It is stored before processing
program execution and, following execution,
is retrieved by initiator/terminator termi-
nation routines. The beginning address of
the LCT is maintained in general register
12 during execution of the
initiator/terminator.

INITIATOR CONTROL

Initiator control
certain housekeeping functions
initiator/terminator, and also checks EXEC
statement condition codes (if any). Condi-
tion codes appearing in EXEC statements
determine whether or not a job step is to
be executed.

(Chart 14) performs
for the

Routines that comprise initiator control
are:

e System control routine, which is the
entry point for the initiator/termina-
tor. Control is passed to the initia-
tor/terminator when a step is ready for
initiation and also after one has been
executed and terminated, 1if another
step is to be initiated. Housekeeping
is performed and control is passed to
the execute statement condition code
routine.

® Execute statement condition code rou-
tine, which checks any dependencies
encountered in EXEC statements.

Initiator/Terminator 21

¢ JFCB housekeeping routines, which com-
plete portions of JFCBs and SIOTs that
describe the volumes to be used during
step execution. These routines also
construct a passed data set queue (PDQ)
to describe data sets being passed and
update the PDQ for data sets being
received by the step being processed.

r
| Length of LCT

|Address of I/0 supervisor UCB lookup
|table
1

T
|Address of TCB
[

r
|Not used in the primary control program
b

L}
|Address of JCT

|Address of SCT
I8

v
| Storage address of SCT

|Not used in the primary control program

|Error code
[N

L)
| Parameter 1

| Parameter 2
t

r
|Parameter 3

— X

| Parameter 4
[N

¥

|Address of register save area
| S T
i | JFCB hsk

|Reserved|indicators
L

e e e e e S i e i) e S— i — . —— C— b — . — ki c—— i o ke — . — i — — - w—)

T T

| current |Action
| step no. |code

1 4

|Address of current system message block
| (SMB)
L

Figure 10. Linkage Control Table

SYSTEM CONTROL ROUTINE

The system control routine (Chart 15) is
entered from the reader/interpreter when it
completes the processing of a step that was
followed by data in the input job stream,
or when it reads the last step of a job.
It is also entered from the step termina-
tion 7routine if additional steps remain to
be initiated.

Upon entry, the system control routine
updates the step number in the LCT. Then,
if the step is the first step of the job,
its job name is placed into the selected
job queue. (See Figure 11.)

22

r T 1
| Jobname | Cancel ECB |
L 1 J
Figure 11. Selected Job Queue

If the step being processed is the first
step of the job, and if a DISPLAY JOBNAMES
command has been issued, the WTO macro-
instruction is used to write the message:

IEF401T jobname STARTED

Control is
statement

on the console output device.
then passed to the execute
condition code routine.

EXECUTE STATEMENT CONDITION CODE ROUTINE

The execute statement condition code
routine (Chart 16) processes any step con-
dition codes that were specified in the
EXEC statement.

If, upon entry, it is found that the
current step is the first step of the job
or that no condition codes were specified
in the EXEC statement, exit is made to the
JFCB housekeeping routines. If neither of
the above situations exists, each of the
step conditions that were specified in the
EXEC statement is compared with the corre-
sponding return code.

Should the results of the comparison
agree with the condition operator specified
in the EXEC statement, the job step is
canceled. (The step status indicator in
the SCT is set to cancel.) The message
subroutine is used to write a message to
the programmer. Exit from this routine is
made to the step termination routine if the
step was canceled, or to the JFCB house-
keeping routine if the step was not can-
celed.

JFCB HOUSEKEEPING ROUTINES

The JFCB housekeeping routines (Chart
17) complete volume information within cer-
tain tables, in preparation for their use
by allocation routines. This information
is generally the type that requires ref-
erence to the catalog (use of the LOCATE
and OBTAIN macro-instructions) or to passed
data sets. Tables in which entries are
made include:

Job file control block.
Step input/output table.
Step control table.
Volume table.

For passed data sets, a PDQ is con-
structed and entries are made for the first
occurrence of each data set being passed to
a subsequent step. The existing data set

queue entries are then updated when a data
set is received from a previous step.

The JFCB housekeeping routines include
the following:

e JFCB housekeeping control routine.
e Allocate processing routine.

e Fetch DCB processing routine.

® GDG single processing routine.

e GDG all processing routine.

e Patterning DSCB processing routine.
e Error message processing routine.

JFCB Housekeeping Control Routine

The JFCB housekeeping control routine
(Chart 18) determines what processing (if
any) is required, and directs control to
the first appropriate processing routine.
Upon return of control, it redirects con-
trol to the next required processing rou-
tine. This routine places each SIOT for a
job step into a main storage work area,
examines it, and, depending on the type of
information required, passes control to the
processing routine which performs the
actions necessary to retrieve the required
information.

When all SIOTs for a job step have been
examined, the JFCB housekeeping control
routine passes control to the allocation
and setup function of the initiator/termi-
nator.

Allocate Processing Routine

The allocate processing routine (Chart
19) completes information about data sets
which reference another data set by data
set name (indicating a passed or cataloged
data set) or by ddname or stepname.ddname

(indicating a data set described in a
previously processed DD statement).
When the data set reference is a data

set name, the passed data set queue is
examined and, if it contains an entry for
the referenced data set, the SIOT and JFCB
for that data set are placed into a main
storage work area and are used to complete
device and volume information for the
subject data set.

If there is no entry for the referenced
data set in the PDQ, a LOCATE macro-
instruction is issued to find that data set
in the catalog. Its volume control block
or data set pointer entry is then used to
complete the volume and device information
for the subject data set.

When the data set reference is by ddname
or stepname.ddname, a check 1is made to
determine if the DD statement appeared in
the step being processed. If so, the SIOT
and JFCB associated with the referenced DD

statement
work area.
device and volume
subject data set.

are placed into a main storage
These are used to complete the
information of the

If the DD statement appeared in a pre-
vious step of the job being processed, the
SIOT and JFCBs constructed by the last step
to reference the data set are placed into a
main storage work area and are used to
complete the volume and device information
of the subject data set.

When a unit name is specified in the DD
statement, the unit name is converted to
unit type, through use of the device name
table.

Fetch DCB Processing Routine

The fetch DCB processing routine (Chart
20) completes volume and device information
when the data set referred to contains a
program that was created in a previous step
and is to be executed as the current step.

GDG Single Processing Routine

The GDG single processing routine(Chart
21) obtains the data set name of a genera-
tion data group (GDG) member and completes
volume and device information entries for
that member.

GDG All Processing Routine

The GDG all processing routine (Chart
22) builds an SIOT, JFCB, volume table
entry, and PDQ entry for each GDG member

when the entire generation data
specified by the programmer.

group is

Patterning DSCB Processing Routine

The patterning DSCB processing routine
(Chart 23) completes control information in
a JFCB when a new data set 1is to be
patterned after a previously cataloged data
set. The volume control block or data set
pointer entry, which contains the volume
serial number of the volume that contains
the data set, is placed into a main storage
work area. Fields in the JFCB are checked
for zeros. If a field contains zeros, the

corresponding field from the DSCB is moved
into the JFCB.
Exrror Message Processing Routine

The error message processing routine
(Chart 24) is entered and issues error

messages Whenever an error condition is
encountered within a JFCB housekeeping rou-
tine.

Initiator/Terminator 23

ALLOCATION AND SETUP

The allocation and setup function of the
initiator/terminator (Chart 25) allocates
I/0 devices, issues any necessary mounting
instructions to the operator, and ensures
that enough I/0 requirements have been
satisfied to begin execution of a job step.
The routines in the allocation and setup
function are:

¢ Allocation control routine, which per-
forms housekeeping for the allocation
and setup function by obtaining space
for tables used during allocation.

e Demand allocation routine, which con-
structs the allocate tables and begins
actual allocation by assigning devices
to any data sets for which the program-
mer requested specific devices.

e Automatic volume recognition routine,
(optional) which can determine that
named volumes have been mounted on
certain devices and which allocates
those devices to satisfy requests for
the volumes.

e Decision allocation routine, which per-
forms allocation when a choice of de-
vices is to be made.

e TIOT construction routine, which builds
a task input/output table (TIOT) that
will be used by data management rou-
tines during step execution.

e External action routine, which issues
mounting instructions, verifies that
volumes are mounted on the correct
units, and unloads incorrectly mounted

volumes.

e Space request routine, which obtains,
from the direct-access device space
management (DADSM) routines, space on
direct-access devices, and which satis-
fies requests for data set space.

e Allocation error routines, which proc-
ess error conditions encountered during
allocation.,

ALLOCATION CONTROL ROUTINE s

The allocation control routine (Chart
26) performs housekeeping operations for
the allocation and setup function of the
initiator/terminator. It determines the
size of certain tables to be constructed by

subsequent allocation routines, obtains
main storage space for the tables, and
places the addresses of the portions of

each table onto a
called the allocate

storage reserved for
directory of tables
control block.

24

Entry to the allocation control routine
is made from the JFCB housekeeping control
routine. Exit is to the demand allocation
routine.

Upon entry, the storage requirements of
the tables needed by allocation routines
are calculated (see Figure 12). First, all
requirements except those for the allocate
volume table and TIOT are determined. The
required amount of main storage space is
requested and the addresses of the areas
assigned to each table are calculated.
(The first table is assigned the first
available byte. Other addresses are deter-

mined by incrementing the last assigned
address by length of the the respective
table.) The relative position of each

table except the device mask table is shown
in Figure 13. The device mask table is
included with the coding and-is not posi-
tioned relative to the tables shown. As

each address is determined, it is: placed
into the allocate control block.
{ T 1
[P-Y	
DD number table*	4 [4]
Buffer	176
Allocate control block	44
I I	
Channel load table	16
	1D_
Allocate work table	(20 + 8
Potential user on	ID
device table	&
Separation strikeout	
pattern	132]
Each SIOT	68
Volume table	6s
TIOT	Determined by the
	TIOT construction
	routine
Allocate volume table	8B
	ol
Device mask table	4+ (8 +
L i J	
r 1	
Legend	
* = Not used.	
	l = Next higher integer if a fraction.
i A = Number of DD statements.	
B = Number of volumes or devices	
(whichever is greater).	
D = Number of entries in the	
I/0 supervisor UCB lookup table.	
F = Number of entries in device mask	
table.	
S = Number of volume serial numbers.	
L 4
Figure 12. Formulas for Determining Allo-

cation Table Sizes

When storage areas have been assigned
for all but the allocate volume table (AVT)
and task input/output table (TIOT), all
step input/output tables (SIOTs) are placed
into the area assigned to them. The size
of the allocate volume table may then be
determined. The number of volumes required
by each data set (DD statement) is obtained
from each SIOT and is used to calculate the
number of AVT entries (one per volume)
required. A second request for main stor-
age space is issued and the address of the
assigned area 1is placed into the allocate
control block.

The storage requirements for the TIOT
are calculated by the TIOT construction
routine.

&

r
|Channel load table address
S
|Address of first empty slot in allocate “
| volume table
}

r
|Potential-user-on-device table address *

|Allocate work table (AWT) address
L .

&

£

r
|Allocate volume table address

|Volume table address
b

&

&

s
| Separation strikeout pattern address

T
2| Number of requests 2
|not satisfied2
iR

|Number of satis-
|fied requests?
b

+
2|Length of allocate 2
| volume table
+

s
| Number of bytes
|per AWT entry

L

=
—
(@]
=]

r
| DD number table
| (not used)

b-—
| Buffer

|Allocate control block

|Channel load table

Allocate volume
table

|Allocate work table
|Potential user on
| device table

L
v

| Separation strikeout
| pattern

b

e e e B el

SIOT

e o ooy

|volume table
L

Relative Positions of Tables

Used for Allocation

Figure 13.

If, after a request for space, the
required amount of main storage space is
not available, the job is canceled.

Figure 14 shows the completed allocate
control block. In addition to table
addresses, the allocate control block con-
tains other entries, initialized by the
allocate control routine.

All allocation tables are described in
the descriptions of routines in which they
are completed. When the allocate control
block has been completed, control is passed
to the demand allocation routine.

e e s . . s S s S — —— {—t— — ——] — o ——— oo oomone]

~o Figure 14.

r T
| Length of bit 2 |Number of DD state-2

|patterns3 |ments in job step*

! _— 1

i T

|Not Used 2|Number of devices 2
|in configurationS

L L

Notes: (Entry length is shown in upper

right corner of field.)

i1Set to zero initially and incremented by
one each time a request is satisfied.

——— —— o—— . cvnn. st i s . b — — . w—— . w——— — b —— e w— —— — i —— . c—)

2Initially set to the number of data sets|
to be allocated (the number of DD state-|
ments in the step). This number is]|
decremented by one each time a request|
is satisfied.

|

|

|

|

| , . .
| 3The length (in words) of the primary bit
pattern.

|

|

|

L

|
)
|
|
]
| “The number of DD statements to be proc-
essed.

|

|°The number - of UCB addresses in the 1/0
supervisor UCB lookup table.

bt o o e e — —————

Allocate Control Block

DEMAND ALLOCATION ROUTINE

The demand allocation routine (Chart 27)
constructs the allocate work table and the
allocate volume table. It also begins the
allocation process by assigning devices to
data sets that require specific devices. A
specific device may be required because (1)
the programmer specified it in a DD state-
ment, or (2) all device requirements for a
step could be met with only one combination
of devices. The demand allocation routine
performs the following eight functions:

Initiator/Terminator 25

e Allocate work table construction.
Volume affinity resolution.
Data set device requirement
tion.

e Channel load table construction.
e Allocation of resident devices.
e Device range reduction.
[]
[]

calcula-

System input device (SYSIN) allocation.
Specific device allocation.

Allocate Work Table Construction

Two tables, the allocate volume table
(see Figure 16) and the allocate work table
(see Figure 15), are constructed by this
function. The allocate work table contains
information that describes a data set and
certain other information that is wused in
allocating a device (or devices) to it.
One entry, as shown in Figure 16, is built
for each DD statement. The allocate volume
table describes the volume on which the
data set resides or will reside. One entry

is made in the allocate volume table for
each volume required by a data set.

! T - T 1
| DD | Status E |UCB address |
| number | | |
% L t -1
| Pointer to volume serial|Volume affinity |
| number in volume table |link |
L L i |

Figure 15. Allocate Volume Table

entries made in the allocate work
table are obtained directly from other
tables. The source of each such entry is
shown in Figure 17. The device type is
obtained from the SIOT and placed into the
device type field of the allocate work
table. It is then used as a search argu-
ment and a search of the device mask table

Most

mask table is placed into the primary and
secondary bit pattern fields of the allo-
cate work table. These bit patterns indi-
cate devices that are eligible for alloca-
tion to a data set.

The demand allocation routine moves the
private and nonshareable flag bits from the
step input/output table (SIOT) to the allo-
cate work table (AWT). The demand alloca-
tion routine also sets the nonshareable bit
in the allocate work table entry for a
request if the request does not specify a
direct-access device, and sets the private
bit if the request is specifically for a
nondirect-access device (unless request
applies to passed data sets).

Data sets that have similar I/0 device
requirements are then 1linked together.
Similar requirements are implied when the
programmer specifies the following in a DD
statement:

¢ POOL=poolname, which indicates that an
output data set is to share a pool of
tape units with other data sets.

e SPLIT=, which indicates that two or
more data sets in the same job step are
to share a cylinder of a direct-access
device.

e SUBALLOC=stepname.ddname or ddname,
which indicates that space for the data
set will be suballocated from the space

allocated to the data set described in
the DD statement named ddname.
Pointers are placed into the

POOL/SPLIT/SUBALLOC 1link field and unit

is made. When a matching device type is affinity 1link field of the allocate work
found, the bit pattern field of the device table to link all such groups together.

r X T T K T 1
| Number of devices | POOL/SPLIT/ | Number of devices | Number of volumes |
| available | SUBALLOCATE link | requested | |
t + t - 1 - - -1
| Status A | Status B | Status C | Status D |
— - 1- I e , 1
| Number of devices | Number of devices | Number of devices | Unit affinity |
| allocated | shared | required | 1link |
3 i . - 4 4 4
v T B T 1
| | Possible number of | DD

| Address of first entry in | devices in second- | number |
| volume table | ary bit pattern | |
o - S L 1
| Device type |
L ——— e e ———— 4
r 1
| Primary bit pattern (initially, a duplicate of secondary bit pattern) |
N ——— e o e e 4
r 1
| Secondary bit pattern |
L —_— _ 4
Figure 16. Allocate Work Table Entry

26

r——- T]
| Entry | Source |
e 1
Number of devices	Device mask table
available	
	I
POOL/SPLIT/SUBALLOC	SIOT
link I	
[.	
Number of devices	sIoT
requested	
Number of volumes	sI0T i
Status A	SIOT
Status B	sI0T
Sstatus C	sIOoT
I	
Status D	sIoT
]
Number of devices	Inserted as devices
lallocated	are allocated
I	
Number of devices	Calculated
shared	
]	
Number of devices	Calculated
required	
Unit affinity 1link	SIOT
Address of first	Calculated
entry in volume	
table	
Possible number of	Device mask table
devices in secondary	
bit pattern	
DD number	sIOT
	I
Device type	sI0T
Primary bit pattern	Device mask table
Secondary bit	Device mask table
pattern	
I L 4	
Figure 17. Allocate Work Table Entry
Sources

Volume Affinity Resolution

Volume affinity means that a certain

volume is requested for more than one data
set. Volume affinity may be requested
explicitly by use of the REF parameter of
the VOLUME field of the DD statement, or
implicitly by specifying the same volume
serials in one or more other DD statements.
In either case, the subject volumes are
linked with pointers placed into the volume
link field of the allocate volume table by
the demand allocation routine. All
requests for the same volume that appear in

the volume affinity chain subsequently will
be satisfied with allocation of the device
that bears the named volume.

Data Set Device Requirement Calculation

Information obtained from the allocate
work table is used to determine the number
of devices required by each data set. The
following calculations are used:

1. For a data set marked parallel mount

(the P subparameter of the UNIT key-
word was specified in the DD
statement):
Dy =V,

2. For data sets not marked parallel
mount :

a. If vy =V, then D; = V,

b. If V; < V, and

if V;, < D, then D, = D, or
ifVlzthhenD1=V1+1
where:
D, = Number of devices actually to be
used for the data set.
D = Number of devices requested for the
data set.
Vi = Number of volumes to be shared by
two or more data sets.
Vo = Number of volumes on which the data

set exists.

The number of devices to be used (D) is
placed into the number of devices required
field of the allocate work table.

Channel Load Table Construction

Fach unit control block (UCB) is exam-
ined to determine the number of data sets
presently allocated on each channel. The
totals are placed into the channel load
table (see Figure 18). The channel 1load
table is wused tO allocate devices so that
channel usage is optimized.

{ Load Channel 0 E Load Channel 1 j
[Load Channel 2 1 Load Channel 3 1
{ Load Channel 4 [Load Channel 5 j
{—Load Channel 6]

Figure 18. Channel Load Table

Initiator/Terminator 27

Allocation of Resident Devices

The resident device allocation routine
allocates direct-access devices containing
reserved and permanently resident volumes
to satisfy requests by serial number for
these volumes. The devices that contain
these volumes are ‘-known as resident de-
vices.

A volume is placed into the reserved
status either when the operator issues a
MOUNT command specifying the device on
which the volume is mounted or when the
volume is so listed in the PRESRES member
of the procedure library data set
(SYS1.PROCLIB). This type of volume cannot
be dismounted unless its device is unloaded
by means of an UNLOAD command.

A permanently resident volume has at
least one of the following characteristics:

e The volume cannot be physically dis-
mounted from its device.

e The volume is a system residence volume
that contains the initial program load-
er (IPL) program.

e The volume contains the linkage library
(sYysl.LINKLIB) data set, procedure
library data set, or any part of the
job queue (SYS1.SYSJOBQE) data set.

e The volume is 1listed as permanently
resident in the PRESRES member of
SYS1.PROCLIB.

For more information about the PRESRES data
set member, refer to IBM System/360 Operat-
ing System: System Programmer's Guide, Form
C28-6550. For more information about res-
erved and permanently resident volumes,
refer to IBM System/360 Operating System:
Job Control Language, Form C28-6539.

The resident device routine determines
which direct-access devices are resident
and then allocates them to satisfy any

requests for the volumes they contain.

From the device mask table (DMT, Figure
32), the resident device outine first
creates a special bit pattern that rep-
resents all direct-access devices in the
system. It sets a bit in the pattern to
one for each direct-access device. It then
searches for unit control blocks represent-
ing direct-access devices, using this bit
pattern to identify the unit control
blocks.

The routine compares the volume serial
number in each request with the serial
number im each unit control block in which
the permanently resident bit or the res-
erved bit is one. If the serial numbers

28

match, the routine passes control to the
device strikeout routine to allocate the
device. (That is, it places the address of
the unit control block into the allocate
volume table entry, Figure 15, and increas--
es, by one, the count of allocated devices
in the allocate work table entry that
represents the data set, Figure 16.)

Device Range Reduction

The device range reduction routine redu-
ces the number of devices that can be
allocated to satisfy certain requests. In
addition, this routine allocates devices
containing reserved tape volumes.

The device range reduction routine pre-
vents allocation of devices that are ineli-
gible to satisfy certain requests. Devices
are ineligible under the following condi-
tions:

e The device is the primary console.

e The device is off-line or is
changed to off-line status.

being

e The device has either been allocated or
is resident, and the request is for an
unspecified private volume. (Each such
request requires an unused volume.)

e The device has either been allocated or
is resident; the device contains a
private volume; and the request is for
temporary data set space on a volume
that is neither specific nor private.

¢ The device is a resident, direct-access
device, and the request is for a spe-
cific volume.

¢ The device is neither a direct-access
device nor a tape device (unit record
or graphic equipment, for example) and
is allocated, wunless one of the two
following conditions exists:

e The device 1is the system output
device, and the request is for a
SYSOUT data set.

e The device is the system input
device, and the request is for a
SYSIN data set.

¢ The device does not contain a storage

volume, and the request has all of the
following characteristics:

e The request is not for temporary data
set space.

e The request is not for a specific
volume.
o The request is not for a private

volume.

A storage volume is a permanently resi-
dent or reserved volume that may be used to
keep any data set specified in a DD state-
ment in which KEEP has been specified.

To prevent allocation of these ineligi-
ble devices, the device range reduction
routine alters primary bit patterns rep-
resenting devices that are available for
allocation. In each bit pattern, ones
represent devices that can be allocated,
and zeros represent those that can not. A
primary bit pattern forms part of each
allocate work table (AWT) entry. (Each
entry stands for one request.) The device
range reduction routine eliminates each
device that 1is ineligible to satisfy a
particular request by changing the bit
corresponding to the device from a one to a
zero in the bit pattern corresponding to
the request. The final bit pattern thus
represents only devices that can satisfy
the request.

As each ineligible device
fied, a
affected allocate work table entry is
reduced by one. If this count becomes less
than the number of devices needed to satis-
fy the request represented by the entry,
the device range reduction routine passes
control to the allocation error recovery
routine. If recovery is possible, this
routine provides a list of devices that can
satisfy +the request. The operator may
either reply with a three-character device
name or cancel the job. (If allocation
error recovery 1is necessary, the entire
allocation procedure is repeated.)

is disquali-

If, during this processing, the dewvice
range reduction routine finds a unit con-
trol block representing a tape unit with a
reserved volume mounted on it, it allocates
the device if the volume was requested.

SYSIN Allocation

If the device range reduction routine
encounters a request for the device desig-
nated as the system input device, it allo-
cates that device.

Specific Device Allocation

Allocation is next. made: to requests for
specific devices or requests which, because
of range reduction or previous allocation,
can be satisfied only by a specific device.

Exits From Demand Allocation

When all processing is completed in the
demand allocation routine, all requests
within the step may have been satisfied.
If so, exit is made to the TIOT construc-
tion routine. If, however, some requests
remain outstanding, control is passed to

unallocated

count of eligible devices in each

" during

the automatic volume recognition routine if
it was specified during system generation.
If additional requests remain, control is
passed to the decision allocation routine.
When allocation is complete, the "number of
entries" field in the allocate
control block (ACB) reaches zero. If the
number of devices requiﬂed exceeds the
number of devices available, control is
passed to an allocation error routine.

AUTOMATIC VOLUME RECOGNITION

The automatic volume recognition (AVR)
routine decreases the time required for job
step initiation by enabling the operator to.
mount volumes needed for subsequent job
steps as soon as devices become available.
During subsequent job step initiation, the
AVR routine recognizes that volumes needed
for the current job step are mounted, thus
saving the time that the system otherwise
would spend waiting for the operator to
find and mount them.

Before the next job step after a volume
has been mounted, the AVR routine reads the
volume label and associates the volume with
the device containing it, using information
from the label. When the volume is needed
for a subsequent job step, the AVR routine
can then identify and allocate the device
on which it is mounted.

The AVR routine, which may be specified
during system generation, allocates devices

to satisfy requests that specify 2311 and
2314 direct-access volumes, 7-track tape
volumes having a tape density specified

system generation, and 9-track tape

These volumes must be specified
by either a serial number or a data set
name that implies a serial number. The
order in which the AVR routine allocates
these devices depends upon when the volumes
are mounted.

volumes.

The AVR routine (Chart 28) first allo-
cates devices containing volumes mounted
before the start of the last job step. It
can do this immediately, since these
volumes already have been associated by
serial number with the devices containing
them.

The AVR routine then allocates devices
containing volumes mounted after the start
of the preceding job step. It reads the
labels of these volumes to obtain their
serial mnumbers and allocates any of the
devices containing volumes requested for
the current job step.

Finally, the AVR routine attempts to
satisfy any remaining requests for 2311 and
2314 direct-access volumes and 9-track tape
volumes. The AVR routine attempts to

Initiator/Terminator 29

obtain devices to satisfy all requests
either by selecting devices that are not
being used or, if necessary, by unloading
volumes that are mnot needed for the job
step. If the AVR routine can obtain enough
devices, it prints a list of the requested
volume serial numbers and allocates the
devices as the operator mounts the volumes.
If enough devices are not available or if
all of the needed volumes cannot be mount-
ed, however, the operator must cancel the
job.

Processing Requests for Previously Mounted
Volumes

The AVR routine first satisfies requests
for volumes that were mounted before the
start of the last job step (Chart 29). The
AVR routine can identify these volumes
immediately, because the system already has
associated the volumes with the devices
containing them.

The AVR routine first determines which
devices contain volumes that were mounted
before the start of the last job step. The
AVR routine searches for such volumes by

examining all wunit control blocks that
represent on-line, ready 2311 and 2314
direct-access devices, 9-track tape de-
vices, and 7-track tape devices. The AVR

routine can identify previously mounted
volumes, because each unit control block
containing a volume serial number rep-
resents a device containing such a volume.

If the AVR routine finds such a volume,
it next determines whether the volume is
needed for the current job step. To make
this determination, it searches in the
volume table (VOLT) for the serial number
of the mounted volume. (Each entry in this
table represents a volume that has been
specifically requested.) If the AVR rou-
tine locates the serial number, the volume
is needed for the job step. The AVR
routine then uses the device strikeout
routine to allocate the device to satisfy
all requests for the volume. If the serial
number is not in the volume table entries
for this job step, however, the volume is
not presently needed. The AVR routine
subsequently ignores the device and looks
for another previously mounted volume.

Processing Requests for Newly Mounted
Volumes

The AVR routine next allocates devices
to satisfy requests for volumes mounted
since the last job step was initiated (see
Chart 30). The AVR routine determines the
serial number of each of these newly mount-
ed volumes and then allocates its device to
fulfill any unsatisfied requests for the
volume. If any request for a newly mounted
volume is already satisfied or if any

30

‘number can be found,

device containing such a volume is already
allocated, the AVR routine determines
whether the volume was improperly mounted
during demand allocation. If so, it takes
corrective action.

IDENTIFYING A NEWLY MOUNTED VOLUME:
Because the control program could not have
previously read the labels of newly mounted
volumes, the AVR routine must identify each
of these volumes to the system and asso-

‘ciate the volume with its device.

The AVR routine identifies these volumes
by searching for a serial number in each
unit control block that represents an on-
line, ready device. If the serial number
is zero, the volume was mounted after the
start of the last job step.

To associate the device with the volume
serial number, the AVR routine reads the
volume label into main storage, extracts
the serial number from the 1label, and
records it in the wunit control block
representing the device. (To extract the
serial number from a nonstandard label, the
AVR routine uses a volume serial number
routine, IEFXVNSL, which must be supplied
by the user. A routine with the same name
is supplied by IBM to indicate an error if
the user has provided a nonstandard 1label
but has not substituted his own routine to
read it.)

The AVR routine uses the external action
routine to unload the device, if no serial
because the volume
cannot be identified.

If the device already has been allocated
but the volume was mounted on the wrong
device during the demand allocation proce-
dure, the AVR routine notifies the operator
and takes corrective action.

ALLOCATING A DEVICE: The AVR routine de-
termines whether it should allocate the
device by searching for a request for the
mounted volume (Chart 30). To determine
whether the volume was requested, the AVR
routine searches for the serial number in
the volume table entries for the job step,
as before. If the serial number can be
found, the device containing the volume can
be allocated. The request must not have
been previously satisfied, however. If the
serial number is not found in the volume
table, the volume is not needed for the job
step, and the AVR routine searches for
another newly mounted volume.

To determine whether the request is
unsatisfied, so that it <can allocate a
device, the AVR routine searches for the
address of a unit control block in the
allocate volume table entry for the request
(see Figures 15 and Uu5). If the AVR

routine finds no unit control block
address, the request was not previously
satisfied. The AVR routine then uses the
device strikeout routine +to allocate the
device and to satisfy any other requests
for the same volume.

If the volume request was already satis-
fied, but the volume was mounted on the
wrong device during the demand allocation
procedure, the AVR routine takes action to
correct the error.

Processing Requests for Unmounted Volumes

The AVR routine finally attempts to
satisfy all remaining specific volume
requests. For these requests to be satis-
fied, enough devices for all of the
requests either must be available or must
be made available. If enough devices
become available, the AVR routine provides
the operator with a 1list of volumes to
mount and allocates the devices as he
mounts the volumes on them. If sufficient
devices for the job step cannot be made
available or if all of the required volumes
cannot be mounted, the operator must cancel
the job.

OBTAINING DEVICES: Before the AVR routine
requests that the operator mount any
unmounted volumes, it determines whether
enough devices to contain them are avail-
able (see chart 31). If there are not
enough devices without mounted volumes to
begin with, the AVR routine determines
whether it can unload enough devices. The
devices it considers for unloading contain
mounted volumes not needed for the job
step. If it can, it unloads these devices
so that the operator can replace the mount-
ed volumes with volumes needed for the job
step. Otherwise, the AVR routine attempts
to have enough off-line devices placed into
on-line status to satisfy the remaining
specific requests.

To determine whether there are enough
devices, the AVR routine compares, by
device type, a count of available devices
with a count of needed devices. Because
the need for each device type is filled
separately, a shortage of any one type
means that not enough devices are available
for the job step.

The available devices comprise all on-
line 9-track tape units, 2311 disk wunits,
and 2314 disk wunits that have not been
allocated. Separate counts are made of
devices not in the ready status (which
normally do not contain mounted volumes)
and devices that
have mounted volumes).

To eliminate any unnecessary unloading
of devices, the AVR routine compares,

are ready (all of which

the number of devices needed with
devices mnot having

first,
the number of on-line
mounted volumes (that is, those that are
not in the ready status). If there are
enough such devices, none need be unloaded,
and the AVR routine can immediately print a
list of volumes to be mounted.

If ready devices must be unloaded, the
AVR routine determines the number of ready
devices still needed and whether enough can
be unloaded.

If the AVR routine has determined that
enough ready devices can be unloaded, it
stores the identities of a sufficient
number of devices and then unloads them.
To fill the quota, it first tries to obtain
enough ready devices not containing
retained volumes or volumes with data sets.
If the AVR routine cannot find enough
devices, it obtains the remainder needed
from among devices containing these kinds
of volumes. The AVR routine unloads the
devices with the external action routine,
which also prints a list of unit addresses
so that the operator will know which de-
vices have volumes to be dismounted. The
AVR routine then provides the operator with
a list of the serial numbers of volumes to
mount.

In an
available,
ready devices
routine uses the allocation error
routine (IEFXJIMP) to print a 1list of
off-line devices that can be made avail-
able. The operator either may reply with a
three-character device name to place each
device into on-line status or «cancel the
job. (If allocation error recovery is
necessary, the entire allocation procedure
is repeated.)

attempt to make more devices
if it is apparent that enough
cannot be unloaded, the AVR
recovery

ALLOCATING DEVICES ON WHICH VOLUMES HAVE
BEEN MOUNTED: When the AVR routine has
determined that the required number of
devices is available for allocation, it
provides the operator with a list of serial
numbers of the needed volumes (Chart 28).
As the operator mounts these volumes, the

AVR routine allocates the corresponding
devices to satisfy requests for these
volumes.

After printing the list, the AVR routine
waits for the operator to mount a volume.
A device-end I/0 interruption releases the
AVR routine from its waiting status when
the operator mounts the first volume and
presses the START button on the device.
The AVR routine extracts the new serial
number from the volume 1label (Chart 30),
removes the serial number from the list of
required volumes, and allocates the device.
Then the AVR routine waits for the operator
either to mount the next volume or to

Initiator/Terminator 31

cancel the job. It repeats the procedure
until either all specific volume requests
have been satisfied or the job is canceled.

When the devices have been allocated,
the AVR routine passes control to the TIOT
construction routine, unless there are more

volume requests. If there are, the AVR
routine passes control to the decision
allocation routine, which satisfies the

remaining requests.

DECISION ALLOCATION ROUTINE

The decision allocation routine (Chart
32) allocates devices to most data sets for
which devices have not yet been allocated
by either the demand allocation or the
automatic volume recognition routine. This
includes all remaining requests except
requests for space on unspecified public or
unspecified storage volumes. The latter
requests are fulfilled by the space request
routine.

Upon entry to the decision allocation
routine, an attempt is made to reduce the
number of devices that are candidates for
allocation. A request for unit or channel
separation from devices allocated by either
the demand allocation or automatic volume
recognition routines eliminates the units
or additional devices on the selected chan-
nels from further consideration. If this
is the case, the separation strikeout sub-
routine is entered. This subroutine, by
changing corresponding bits in the primary
bit pattern, eliminates these devices from
consideration for allocation.

The number of data sets directed to each
channel is then determined and added to the

totals in the channel 1load table (see
Figure 18). This table is 1later used to
"spread the 1load" across the channels,

thereby:

e Obtaining maximum overlap of I/0 activ-
ity.

e Reducing the possibility of making a
channel ineligible because all of its
devices had been allocated too early.
(Some channel separation requests would
then be impossible to satisfy.)

The maximum number of data sets that
could use each device is next determined
and placed into the potential user on
device table (see Figure 19). This table
is later used to determine the order in
which devices will be selected for data
sets. (Devices first selected are those
with the fewest potential users.)

32

T T
No. of data | | No. of data
|

sets for first| sets for nth
device { | device
i —1

Potential User on Device Table

P e cme
e e e e d

Figure 19.

The remainder of the decision allocation
routine allocates devices. First, devices
are allocated to data sets for which only
one device is eligible. Then all other
requests (except those for unspecified pub-
lic or wunspecified storage volumes) are
processed in the following manner. A data
set 1is selected and then a device for the
data set is selected and allocated to it.
Another data set is then processed.

Data Set Selection

Data sets are selected by considering
the number of devices eligible for alloca-
tion to them. That is, the first data set
selected is the one for which the smallest
number of devices is eligible.

The decision allocation routine selects
two kinds of requests, both of which must
be satisfied with the allocation of devices
containing nonshareable volumes:

¢ Requests for nonshareable volumes.
(Each such request has a nonshareable
flag in its allocate work table entry,
shown in Figure 16.)

* Requests that may be satisfied with the
allocation of either a direct- or
sequential-access device, if
sequential-access devices are available
for them. (As each of these requests
is satisfied, a nonshareable flag is
placed into its allocate work table
entry to mark the allocation of a
device containing a nonshareable vol-
ume.)

Selection is performed by
allocate work table. If two or more data
sets have the same number of eligible
devices, they are selected in the following
order:

scanning the

1. Data sets with separation requests.
2. Data sets with affinity requests.
3. Passed data sets.

4. All others.

Device Selection

When a data set has been selected, a
device is selected and allocated for it.
Devices are considered in the following
order:

1. If the possible devices for a data set
exist on more than one channel, the
channel with the greatest number of

free devices of the type requested is
chosen.

2. If two channels have the same number
of free devices of the requested type,
the channel with the lightest load is
chosen; the device which has the few-
est possible users is chosen.

3. To satisfy requests for public non-
specific (scratch) tape volumes, de-
vices with mounted tape volumes are
given preference. To satisfy requests
for direct-access volumes and specific
tape volumes (including private
volumes and volumes which are used for
multi-volume public data sets), de-
vices without mounted volumes are
given preference.

4. If two devices have the same number of
possible users, the first one in the
I/0 supervisor UCB lookup table is
chosen.

Device Allocation

As indicated previously, the decision
allocation routine selects a data set and
an eligible device, allocates the device,
and then selects another data set. To
allocate a device, the decision allocation
routine places the address of the unit
control block representing the device into
the allocate volume table entry (Figure 15)
representing the required volume and adds
one to the "number of devices allocated"
field of the allocate work table entry for
the data set (Figure 16).

While a request is being satisfied, the
same device is also allocated to satisfy
any other requests that specify the same
volume. Multiple allocations may be per-
formed in this case, because all requests
for the same volume appear in a volume
affinity chain, which is a series of linked
allocate volume table entries (Figure 15).
The decision allocation routine satisfies,
in the same way, requests that specify unit
affinity or that have a split or suballo-
cate relationship (Figure 16).

When a device is allocated, the decision
allocation routine alters bit patterns in
the allocate work table entries for certain
other requests. Each bit pattern specifies
the devices that are eligible to contain
the data set represented by the allocate
work table entry.

If a private volume request was satis-
fied, the decision allocation routine chan-
ges the bit representing the allocated
device to zero in all primary and secondary
bit patterns so that the device cannot be
selected to satisfy another request. Such
devices are exempted from further alloca-

tion because each private volume may not
contain other data sets and must be removed
after use.

If the request was satisfied with a
device containing a nonshareable volume,
the decision allocation routine changes the
bit representing the device to zero in the
primary and secondary bit patterns of the
allocate work table entries that represent
all other data sets that require nonsharea-
ble volumes. A device allocated to satisfy
a request for a nonshareable volume thus
cannot satisfy additional requests of this
kind.

If all eligible devices are allocated
before all data sets for a step have been
selected for allocation, the decision allo-
cation routine passes control to an alloca-
tion error routine.

Upon successful completion of processing
by the decision allocation routine, exit is
made to the TIOT construction routine.

TIOT CONSTRUCTION ROUTINE

The task input/output - table (TIOT) con-
struction routine (Chart 29) obtains space
for and builds the processing program's
task input/output table. The primary func-
tion of the TIOT is to provide the data
management open, close, and end-of-volume
(EOV) routines with pointers to JFCBs and
allocated devices.

Entry to the TIOT construction routine
is made when all requests for I/0 devices
have been satisfied except requests for
unspecified public or unspecified storage
volumes. Therefore, entry may be from the
demand allocation routine, the automatic
volume recognition routine, or the decision
allocation routine. Exit is to the exter-
nal action routine.

Upon entry, main storage space required
to build the TIOT is calculated wusing the
first formula shown in Figure 20, and space
is requested. The standard TIOT is shown
in Figure 21. TIOT entries are constructed
for each data set in a step. Entries are
also constructed when use of the job
library is requested or when a program,
created in a previous step, 1is to be
executed as the current step. Figure 22
shows the sources of entries in the TIOT.

The TIOT construction routine deter-
mines, for each request for an unspecified
storage or unspecified public volume, which
devices are eligible to be allocated by the
space request routine. It obtains this
information from the allocate work table

Initiator/Terminator 33

entry (Figure 16) for the request, which
contains a primary bit pattern representing
the devices that are eligible to satisfy
the request.)

r 1
| Space required to build TIOT = |
| 28 + 16N; + 4N, + 12N5 + 4N + 4(N x N)|
[N J
v 1
| Space occupied by completed TIOT = |
| 28 + 16N, + 4N, + 12Nz + 4N |
b i
| where: |
| |
| N, = Number of DD statements. |
| |
| N, = Number of devices allocated to |
| the step. |
| |
| N3 = Number of pools of devices. |
| |
| N = Number of slots for all pools |
| entries in the step. |
| |
| N = Number of requests for public |
| volumes. |
| |
| N = Number of devices available for |
| public volumes. |
L J
Figure 20. Formulas for Determining Task
Input/Output Table Space
Requirements
The TIOT construction routine places

pointers to all unit control blocks rep-
resenting eligible devices into the TIOT
entry for each such request. If more than
one device can satisfy a request, it sel-
ects, first, the channel with the 1lightest
load, and, on this channel, the device that
has been allocated to satisfy the smallest
number of requests. When the first device
has been selected, it places other devices
in order, using the following criteria:

1. Devices on the same channel as the
first device selected, but which do
not contain passed data sets.

2. Devices that do mnot contain passed
data sets and do not violate requests
for separation.

3. Devices that contain passed data sets
and do not violate separation
requests.

34

4. Devices that do not contain passed
data sets and violate separation
requests.

5. All other devices eligible to receive
public volumes.

Should more than one device have similar
attributes, their pointers are arranged in
the order in which the devices are rep-
resented in the primary bit pattern.

Jobname

Stepname Control Portion

Name of step in which
procedure was requested

o d

L |
|
4
1
|
4
1
|
|
4

[— o Sy e ey

r L) T

|Length |Status|Relative

| of | A |location

|entry | | of pool
L

L

Ddname DD Entry

Address of
JFCB

acw
[~
iy

L

T
| Address

| of UCB#*
L

*Address of sub- UCB if
device is 2321 Data Cell
drive

B

b e e i e ——— e c—— s a—— —]

T
Status |
!

[—— e — . e o e

T

| Number
| devices
| in

| pool

1

Pool Entry
Poolname

Slot for UCB

[e e S s e et e oy
O e

Figure 21. Task Input/Output Table

| B | I
| Entry | Source |
| | |
— } 1
Jobname	JCT
Stepname	sCT
	I
Stepname of step	sCT
in which procedure	
was requested	
Length of entry	Calculated
status A	Calculated
Relative location	Calculated
of pool	
I	
Ddname	SIOT
Address of JFCB	sIOT
I I	
status C	Calculated
status B	Calculated
Address of UCB	I/0 supervisor UCB
	Lookup Table
[No. of slots in	Calculated
pool	
]	
No. of devices in	SIOT
pool	
	I
Poolname	s1I0T
Slot for UCB	I70 supervisor UCB
	Lookup Table
L L J
Figure 22. Task Input/Output Table Entry

sSources

EXTERNAL ACTION ROUTINE

The external action routine (Chart 34)
issues mounting instructions, verifies that
the correct volumes have been mounted, and
unloads incorrectly mounted volumes.

Entry to the external action routine is
made from the TIOT construction routine.
Exit is made to the space request routine.

Upon entry, devices allocated to each
data set are checked and any required
dismounting is requested. (The operator is
notified of volume dispositions.) Messages
instructing the operator to mount the
required volumes are then issued, and
checks are made to ensure that volumes were
mounted on the correct units.

SPACE REQUEST ROUTINE

The space request routine (Chart 35)
processes requests for space on direct-
access volumes. It determines whether a
volume has enough space fpr the data set
specified in a particular request, and, if
so, it obtains space on the volume for the

data set. If space 1is not available
initially, the space request routine
attempts to 1locate another volume with
sufficient space.

The space request routine, which
receives control from the external action
routine, searches among the task

input/output table (TIOT) entries for
requests for direct-access volume space.
It processes these requests in two differ-
ent ways, depending on whether or not a
device was previously allocated to satisfy
the request.

Obtaining Space If a Device Was Allocated

If a device has been allocated to satis-

fy the request (because a specific device
or volume was named), the space request
routine attempts to obtain space on the

volume that is mounted on the device. It
passes control to the direct-access device
space management (DADSM) routines, which
record the 1limits of an extent on the
volume into a data set control block (DSCB)
if space is available. If the mounted
volume does not have space for the data
set, and is not being used to contain
another data set for the job step, the
space request routine passes control to the
external action routine, which directs the
operator to mount another volume on the
allocated device.

Obtaining Space If a Device Was Not

Allocated

If a device has not been allocated to
satisfy the request, the space request
routine attempts to obtain space on an
unspecified public or unspecified storage
volume, depending on the type of request.
(Either unspecified public or unspecified
storage volumes can contain temporary data
sets, but only storage volumes are eligible
to contain data sets that are to be kept.)
If the space request routine determines
that a volume has space for a data set, it
allocates the device containing the volume.

The space request routine first attempts
to obtain space for the data set on a
volume that is mounted on an eligible
device. (The devices that are eligible to
satisfy a particular request are indicated
in the task input/output table entry for
the request. Each entry contains pointers
to the unit control blocks representing
eligible devices.) To determine whether

Initiator/Terminator 35

space is available, the space request rou-

tine passes control to the direct-access
device space management (DADSM) routines,
which attempt to specify an extent on the

volume, as indicated previously. If space
is not available on the first volume
checked, the space request routine deter-
mines whether the volume is unused and is
removable (that is, not reserved or perman-
ently resident). If so, it gives control
to the external action routine, which
directs the operator to mount another vol-
ume on the same device. If the volume is
being used for other data sets for the job
step or if it is not removable, the space
request routine attempts to obtain space on
another mounted volume.

If no volumes can be dismounted, the
space request routine passes control to the

external action routine. The external
action routine requests the operator to
mount a volume on an eligible device that

does not contain a volume. If the operator
mounts a volume, the space request routine
allocates the device.

If no eligible devices are free to have
volumes mounted on them, however, the space
request routine determines whether any
unused, reserved volumes are mounted on
eligible devices. If any are, the space
request routine prints out a list of unit
addresses. The operator may either cancel
the job if a reserved volume cannot be
dismounted or reply with one of the 1listed
unit addresses. In the latter case, the
external action routine issues a dismount-
ing message that indicates the reserved
volume and a mounting message for a new
volume to replace it. (A volume thus
mounted assumes both the volume and use
attributes of the dismounted volume, or, in
other words, the reserved attribute and
either the public or storage attribute.
These attributes are described in Job Con-
trol Lanquage, Form C28-6539.) If all
reserved volumes on eligible devices are
being used, the job is cancelled, because
space for the data set cannot be obtained.

There are three exits from this routine:

e Exit 1 is taken when all requests for
space were satisfied. Exit is to the
step initiation routine of the
initiator/terminator.

e Exit 2 1is taken when space was not
available on a volume that was request-
ed. Exit is to the external action
routine, if the request could be satis-
fied by having another volume mounted.

e Exit 3 is taken when space could not be
obtained on any direct-access devices.
Exit is to an allocation error routine,
which passes control to the termination

36

function of the initiator. The step is
canceled, and subsequent steps of the
job are interpreted, but are not ini-
tiated.

ALLOCATION ERROR ROUTINES

Allocation error routines are entered
when error conditions are encountered by
allocation and setup routines. There are
two error routines: the recovery routine
and the nonrecovery routine.

is entered if an
a TIOT

The recovery routine
error condition is detected before

is built for the step. It may be entered
from the demand allocation, automatic vol-
ume recognition, decision allocation, or
TIOT construction routine. If allocation

requirements can be satisfied by changing
the status of a device from off-line to
on-line (determined by checking the secon-
dary bit pattern), the recovery routine
issues a message to the operator requesting
him to place additional devices on-line.
If he does, allocation for the step is
begun anew by entry to the allocation
control routine. If the operator does not
or cannot add devices to the configuration,
the recovery routine cancels the job.

The nonrecovery routine is entered when
an error condition is detected after the
TIOT has been built for the step. It
passes control to the step termination
portion of the initiator/terminator.

STEP INITIATION

‘sysout subroutine,

The step initiation routine of the
initiator/terminator (Chart 36) makes pre-
parations for passing control to the proc-
essing program. If a JOBLIB DD statement
is included in the 3job, the job 1library
data set is opened. If the program to be
executed exists on a data set created in a
previous step, a DCB is created for that
data set and is opened. Also, several
tables are stored, releasing to the proc-
essing program the space they occupied.
Step initiation passes control to the proc-
essing program.

The step initiation routine is entered
from the space regquest routine. Upon
entry, control is passed to the pseudo-
sysout subroutine, which writes the
contents of system message blocks (SMBs)
onto the system output data set.

When control returns from the pseudo-
the step initiation
routine inserts the address of the UCB for
the device containing the system output
data set into each TIOT entry that indi-
cates a SYSOUT disposition. The LCT and

JCT are then stored and the space that they
occupied is released.

Main storage space to be used by the
processing program 1is then obtained. A
portion of this area is reserved for the
following:

e Job library DCB (if any).

e Fetch DCB (if any).

e Macro-parameter list.

e TIOT.

e Processing program register save area.
First, the TIOT is moved from the
initiator/terminator work area to the area
of processing program storage assigned to
it. The TIOT is also stored, and the space
it occupied is released. The macro parame-
ter 1list (see Figure 23) is then built and

the programname entry and initializing
parameter values entry (PARM information)
are 1inserted. The SCT is then stored, and

the space it occupied is released. If a
job library has been requested for the job,
the job library data set is opened, and the
address of its DCB is placed into the TCB.
If a fetch DCB is required
(PGM=%*.stepname.ddname was specified in the

EXEC statement) a DCB is created and
opened, and its address is placed into the
macro parameter list.
r - 1
| Address of programname entry “1
E
k -—
| Address of fetch DCB “|
i
| Programname (obtained from SCT) 8]
s 4
r T 1
| Hexadec-1|Address of "initializing 3
| imal 80 |parameter values" length field|
|8 41 i |
r T 1
| Not used 2| Length of initial. 2]
| | parameter values entry|
b 41 4
r 1
| Initializing parameter values 40|
| (obtained from SCT) |
J

Figure 23. Macro Parameter List

The cancel ECB in the selected job
queuel is then set up for the processing
program: i.e., the 1low-order byte is

changed to the number 255. If a CANCEL
command was issued, the step initiation
routine issues the ABEND macro-instruction.

1Just prior to passing control to the job
step, the low-order byte of the cancel ECB
in the selected job queue is changed to all
ones. This causes issuance of an ABEND or
ABTERM rather than a POST by the master
scheduler if the operator issues a CANCEL
command for the job.

If a CANCEL command was not issued, an XCTL
macro-instruction is used to pass control
to the processing program.

TERMINATION

The termination function of the
initiator/terminator (Chart 37) performs
post-step and post-job housekeeping. It is

normally given control following step exe-
cution, but is also given control when a
job management routine encounters an
irrecoverable error while processing a job
step. Termination routines:

¢ Release space occupied by tables.
e Free I/0 devices.

e Dispose of data sets referred to or
created during execution.

Major components of termination are:

which
func-

e The step termination routine,
performs post-step housekeeping
tions.

e The job termination routine, which per-
forms post-job housekeeping functions.

The disposition and unallocation subroutine
is used by both the step and job termina-
tion routines. Basically, this subroutine
handles disposition of data sets and frees
devices allocated to a step. The disposi-
tion and unallocation subroutine is des-
cribed in Appendix A.

STEP - TERMINATION ROUTINE

The step termination routine (Chart 38)
performs its functions when a step has been
terminated either normally due to success-
ful completion of execution or abnormally
due to an error condition. It wuses five
major routines:

e Step termination control routine.

e Step termination data set driver rou-
tine.

¢ Job statement condition code routine.

. Dispositidn and wunallocation subrou-
tine.
e User's accounting routine (if included

in the configuration).
Upon successful execution of a step or
abnormal termination of execution, control
is passed from the supervisor to the step
termination control routine. In addition,
when a job management routine encounters an

Initiator/Terminator 37

irrecoverable error, it immediately passes
control to the step termination control
routine.

First, the initiator/terminator TIOT and
the LCT are placed into a main storage work
area. Next, the cancel ECB in the selected
job queue is set to zero. The JCT and the
SCT are then placed into a main storage
work area (if they are not in this area at
the time), and a step status code is
inserted into the SCT.
then

The step data set driver routine is

entered. It places the SIOT for each data
set into a main storage work area and
branches to the disposition and unalloca-

tion subroutine. The loop through the data
set driver routine and the disposition and
unallocation subroutine is then repeated
for each SIOT.

When all data sets have been processed
by the disposition and unallocation subrou-
tine, the updated SCT is stored. Control
is then passed to the job statement condi-
tion code routine, unless it is known that
there are no further steps for the job (the
reader/interpreter had encountered a JOB or
null statement). In the latter case the
job statement condition code routine is
bypassed.

The job statement condition code routine
(Chart 39) processes condition codes speci-
fied in the JOB statement.

If, upon entry, it is found that there
were no condition codes specified in the
JOB statement, control is returned to the
step termination routine. Each condition
code in the JCT for the job is in turn
compared with the step completion code of
the previous step, which appears in its
SCT. Up to eight conditions are checked by
this routine for each step. Any additional
condition codes are ignored. If any of the
condition operators are satisfied by the
codes, the job-failed indicator in the JCT
is updated to indicate that the job failed,
the message subroutine is used to issue a
message to the programmer, and control is
returned to the step termination routine.

Upon return from the job statement con-
dition code routine, or if it had been
bypassed, exit 1is made to the user's
accounting routine, if one is present. On
return from the accounting routine, or if
there was none, control is passed to:

e The job termination routine, if the
current step is known to be the 1last
step of the job.

38

e The initiator/terminator system control
routine, if additional steps have been
interpreted and are ready to be ini-
tiated.

e The reader/interpreter control routine,
which resumes processing the input job
stream.

JOB TERMINATION ROUTINE

The job termination routine (Chart 40)
performs its functions when an entire job
has been executed and step termination for

its last step has been, completed. It
consists of four major routines:

e Job termination control routine.

e Release job queue routine.

e Disposition and wunallocation subrou-
tine.
e User's accounting routine (if included

in the configuration).

Ccontrol is passed to the job termination
control routine from the step termination
routine.

The Jjob termination control routine de-
termines if a passed data set queue exists
and, if sq, places each block into main
storage work area and tests for unreceived
data sets. (An unreceived data set is a
passed data set to which no reference is
made after PASS 1is specified.) When an
unreceived data set is found, entry is made
to the disposition and unallocation subrou-
tine. When all unreceived data sets have
been processed, or if no passed data set
queue exists, the job termination control
routine passes control to the accounting
routine, if there is one.

When the accounting routine returns, or
if there 1is none, the completed job's
control tables are removed from the system
by the release job queue routine. This
routine releases the auxiliary storage
space (or, if the resident job queue option
was selected during system generation, the
main storage space) occupied by all control
tables for the job. If the job notifica-
tion switch is on, the message

IEF402I jobname ENDED
is written on the console device. Control

is then passed to the reader/interpreter
control routine.

TABLE STORE SUBROUTINE

The table store subroutine stores
records into and retrieves records from the
SYS1.SYSJOBQE data set. This data set may
be either completely on a resident direct-
access device, or partly in main storage
and partly on such a device, depending on

whether the resident job queue (RESJQ)
option was specified during system
generation. The table store subroutine

provides the following services on request:

e Supplies the requester with an auxil-

iary storage address or addresses into
which records may later be written.
e Writes a record (or records) onto

SYS1.SYSJOBQE locations
the requester.

specified by

records) from
specified by

e Reads a record (or
SYS1.SYSJOBQE locations
the requester .
The table store subroutine is used by job
management routines to temporarily store
tables and work areas that need to be
communicated from one routine to another.

As part of the preparation for system
generation (initializing system data sets),
a specified number of tracks is assigned to
data set SYS1.SYSJOBQE. During IPL, this
extent is formatted for 176-byte records.
(All records handled by~ the table store
subroutine are 176-byte records.)

If the resident job queue option was
selected during system generation, a speci-
fied number of records, starting at the
beginning of the data set, will occupy a
main storage area, thus saving time when
tables are to be stored or retrieved. If
there is room within this area of main
storage, the I/0 supervisor causes the
records to be moved in response to the
table store subroutine's WRITE macro-
instruction; if desired records are stored
in this main storage area, the I/0
supervisor causes them to be moved in
response to a READ macro-instruction.

The calling routine may request one of
five functions. These are:

e Assign and start. The requested number
of track addresses are assigned, begin-
ning with the first assignable address
in the extent.

APPENDIX A: MAJOR SUBROUTINES

The requestea number of track
are assigned, beginning with
available address in the

e Assign.
addresses
the first
extent.

e Write and assign. The requested number
of records are written, and the
requested number of addresses are
assigned.

e Write. The requested number of records
are written.

e Read. The requested number of records
are read.

Before passing control to the table
store subroutine, calling routines must
construct a parameter area (see Figure 24)
and place its address into general register
1. Calling routines must also provide a
OMPCA-QMPEX list (see Figure 25). Figure
26 shows the parameters required when a
function is requested. The parameters are:

e OMPOP. A function code that indicates

the function to be performed.

e OMPCM. The number of records (maximum
of 15) for which addresses are to be
assigned.

e OMPNC. The number of records (maximum

of 15) to be stored into or retrieved

from SYS1.SYSJOBQE.

e OMPCL. The beginning address of the
QOMPCA-QMPEX list.
e OMPCA. The main storage address from

which the record is to be read or into
which the record is to be written.

* OMPEX. The record address (in
SYSJOBQE) into which the record is to

be written or from which the record is
to be read.

An entry in the QMPCA-QMPEX list is
required for each record when a read or
write function is requested. For assign
functions, the table store subroutine
returns the assigned track addresses in
these parameters. The first assigned
record address is placed into QMPCAl, the
second into QMPEX1l, and the remaining
record addresses into ...QMPCAn, QMPEXn.

Appendix A: Major Subroutines 39

Byter 1
0 | |
L J
r 1
4| |
|8 '}
] L) - |
8 | QMPOP | |
[N i
v
12 |
|8
r
16 | |
L 3
r 1
20 | |
b {
24 | |
t 1
28 | |
b]
v T T 1
32 |QMPCM|QMPNC| QMPCL |
L 1 I I ———d
Figure 24. Table Store Subroutine Parame-
ter Area
Byter 1
0 | QMPCA1 |
I J
r 1
4| QMPEX1 I
L 1
r L]
n | QMPCAN |
b {
n+4 | QMPEXn |
e e 1
Figure 25. QMPCA-QMPEX List
r === 1
| Input Parameters |
b= T T T 1
e loloelaoaleoelal
I M | M| M| M| M]|M]|
| || P|P|P|P|P]|
lo JcINjc]c]|E|
I'P | M| C|]L|A|X]
_ [Lo
Assign and start | 00 | X | | X | X | X |
———- T e e S e
Assign | 01 | X | | X | X | X |
T e S e S S A
Write and assign | 02 | X | X | X | X | X |
—————- e e s S S
Wwrite | 03 | | X1 X | X | X |
- T et S o St R
Read | ou | | X | X | X | X |
-—— .11__ L 4 L 1 4 J
Figure 26. Table Store Subroutine Parame-

ter Requirements

DISPOSITION AND UNALLOCATION SUBROUTINE

The disposition and unallocation subrou-
tine is divided into two sections: disposi-
tion processing, which performs data set

40

dispositions specified in the DISP field of
DD statements, and device availability
processing, which makes the associated de-
vices available for allocation to the next
job step. . Control enters the disposition
and unallocation subroutine from the step
termination routine and the job termination
routine. In all cases, disposition proc-
essing is performed, followed by device
availability processing. A message con-
taining the data set name, its disposition,
and the serial numbers of the volume (or
volumes) in which it is contained, is
always issued to the programmer.

ENTRY FROM THE STEP TERMINATION ROUTINE

When the step termination routine passes
control to the disposition and unallocation
subroutine (Chart 37), it provides pointers
to the TIOT and SIOT of a data set. The
disposition field of the SIOT indicates the
disposition to be performed.

Disposition Processing

Dispositions that may have been speci-
fied in the DD statement are DELETE, KEEP,
PASS, CATLG, and UNCATLG.

If the disposition is DELETE and the
data set 1is cataloged, and if the JFCB
housekeeping routine obtained volume infor-
mation from the catalog, the UNCATALOG
macro-instruction is issued. If the de-
vices containing the data set are not
direct-access devices, no SCRATCH macro-
instruction is issued. If the devices are
direct-access devices, a check is made to
determine if the SCRATCH macro-instruction
can be issued. It can be issued if one of
the following conditions exists:

e All volumes containing the data set are
mounted.

e All volumes containing the data set are
not mounted, but at least one
dismountable volume is mounted.

If neither of these requirements is met, an
error message is issued. 1l-ity

If the disposition specified in the DD
statement is KEEP, the disposition subrou-
tine issues a message to the operator and
passes control directly to device availabi-
lity processing.

If the disposition is PASS, no message
is issued to the operator. Control is
passed to device availability processing.

If the disposition is CATLG, the dispo-

sition subroutine determines if the data
set 1is already cataloged. If not, the
CATALOG macro-instruction is issued. If it

is cataloged, a further check is made to
determine whether its volume 1list was
altered during execution of the job step.
(The data management OPEN, CLOSE, or EOV
routines may have altered the volume 1list.)
If the volume list was altered, a RECATALOG
macro-instruction is issued. If the volume
list was not altered, control passes
directly to device availability processing.

An UNCATLG disposition causes an UNCATA-
LOG macro-instruction to be issued.

If a disposition is not specified in the
DD statement, but if the SYSOUT keyword is
specified, control returns directly to the
step termination routine.

When neither a DISP nor a SYSOUT keyword
is specified in the DD statement a check is
made to determine if an entry for the data
set exists in the passed data set queue
(PDQ), and if so, the status indicator in
that entry is checked. If the status is
old (the data set was created by a previous
step or job), a KEEP disposition is
assumed. If the status is new, a DELETE
disposition is assumed. If there is no
entry for the data set in the PDQ, the
status indicator in the step input/output
table is examined, and as in the conditions
for a PDQ entry, either a KEEP or DELETE
disposition is assumed.

Device Availability Processing

After the disposition of a data set is
determined and processed, the device
availability portion of the disposition and
unallocation subroutine is entered. First,
a check is made to determine if the opera-
tor has issued a VARY or UNLOAD command.
If so, the status of the device is changed,
and a message indicating that the command
was processed is issued to the operator.

When there are no pending VARY or UNLOAD
commands or when these commands have been
processed, tests are made to determine if
any of the volumes containing the data set
can be dismounted. Dismount messages are
issued for any that can be dismounted. The
following volumes are not dismountable:

e Public volumes.

s Volumes on system residence or RESERVED
devices.

e Volumes on permanently resident de-

vices.
e Volumes whose status is RETAINED.

e Volumes on system input or system out-
put devices.

¢ Volumes containing data sets with PASS
dispositions.

The addresses of appropriate UCBs are
obtained from the TIOT, and the status of
the devices used is changed to ALLOCATABLE.
When device availability processing of a
data set is completed, the disposition and
unallocation subroutine returns control to
the step termination routine.

ENTRY FROM THE JOB TERMINATION ROUTINE

When the job termination routine passes
control to the disposition and unallocation
subroutine (Chart 38), only two types of
data sets remain to be processed:

e Data sets that were passed but were not
received.

e Data sets contained on volumes that
were retained but to which reference
was never made.

Each time that the job termination rou-
tine passes control to the disposition and
unallocation subroutine, it passes a point-
er to an entry in the PDQ describing a data
set that was passed but not received. Only
two dispositions may exist when entry is
made from the Jjob termination routine --
DELETE and KEEP. If the data set ' existed
before the job, a KEEP disposition is
assigned, otherwise a DELETE disposition is
assigned. These dispositions are processed
in the same manner as when entry is from
the step termination routine.

When the job termination routine has
scanned all PDQ entries for a job, it
enters the disposition and unallocation

subroutine, but provides no pointer to a
PDQ entry. The disposition and unalloca-
tion subroutine scans all UCBs and issues
dismount messages for any dismountable

volumes on devices whose UCB contains the
current job identification. Control is
then returned to the job termination rou-

tine.

Appendix A: Major Subroutines 41

APPENDIX B: TABLES AND WORK AREAS

This appendix contains descriptions and
formats of major tables and work areas that
are used by job management routines and
that are not described in the body of this
publication. Most table entries are self-
explanatory. Those entries that require
further explanation are described with each
table. Tables are shown here four or eight
bytes wide for convenience, but are not
necessarily drawn to scale.

The length of each field of the tables is
given in bytes in the upper right corner of
the field, and each table is limited to a
176-byte length by convention. The tables
are presented in the following alphabetical
order:

Account control table
DD list table

DD major field table

DD name table

DD parameter list table
Device mask table
Dsname table

EXEC key field table
Generation data group
table

Job control table

JOB keyword table

New reader or writer table
Passed data set queue
Reader/Interpreter TTR table
Step control table

Step input/output table
System message block

Volume table

(GDG) bias count

Auxiliary storage addresses appearing in

SYS1.SYSJOBQE data set, whether the table

is stored into main storage or into
auxiliary storage by the table store sub-
routine and the I/O supervisor. All TTRs

are three bytes long and begin on a full-
word boundary. The format of all storage
addresses appearing in the following tables
is:

r- T T - 1
Relative 2	Relative 1	Not 1
track	record	used
address	address	
- - 4 4 J
ACCOUNT CONTROL TABLE

The account control table (ACT), shown
in Figure 27, contains accounting
information obtained from JOB and EXEC
statements. This information is made
available to user accounting routines. One
or more ACTs are created for each job. The

job routine of the reader/interpreter
creates one ACT for each JOB statement, and
the execute routine creates an ACT whenever
the accounting (ACCT) parameter with its
subsequent information is specified on- an
EXEC statement. The "number of accounting
fields" entry contains the number of ele-
ments of accounting information specified
in the ACCT parameter of the EXEC state-
ment, or in the first positional parameter
of the JOB statement (see IBM System/360
Operating System: Job Control Langquage).

the tables are relative track addresses ACTs are stored by the table store subrou-
(TTRs), in relation to the beginning of the tine.

r T T - 1
| 3 1] 41
| Storage address of ACT | Table | Not used |
| | ID=01 | |
k -= to—me b - 1
| 20|
| Programmer's name if JOB ACT; blanks if step (EXEC) ACT |
I"'-— T T L] {
3] No. of 1	Length 1] Variable		
Not used	account-	of first	First accounting field
	ing	accounting]	
	fields	field	
L 4 1 L 4			
3 T 1 . 1			
	Length 1] Variable		
Other accounting	of Nth ac-	Nth accounting field	
i fields (if any)	counting		
	field		
L L 4 4
.Figure 27. Account Control Table

42

DD LIST TABLE

The DD 1list table (DDLT), shown in
Figure 28, contains ddnames specified in
the DDNAME parameters of DD statements for
one job step, and pointers to associated
dummy JFCBs and dummy SIOTs. When a DDNAME
parameter is encountered in the operand
field of a DD statement, a dummy JFCB and
dummy SIOT are created by the DD routine of
the readers/interpreter, and the ddname and
pointers to the dummy tables are entered in
the DDLT. The DDLT may contain five ' unre-
solved ddnames at any one time. After a
ddname is used in the name field of a DD
statement, its information is deleted from
the DDLT and the space is made available
for a new table entry.

When a DD statement is encountered, the
DD routine scans the DDLT to determine
whether the ddname in the name field of
that statement had been specified previous-
ly in a DDNAME parameter. If so, the
routine processes the new DD statement
parameters and places them into the corre-
sponding JFCB and SIOT, which are no longer
dummy tables. If the ddname was not speci-
fied in a DDNAME parameter of a previous
statement, the parameters of the new state-
ment are processed and a new JFCB and SIOT
are formed by the reader/interpreter.

The DDLT is initialized for each job
step, and the maximum size of the table is
82 bytes.

DD MAJOR FIELD TABLE

The DD major field table (DDMFT), an
entry of which 1is shown in Figure 29,
contains one entry for each keyword that
defines a major field (e.g., DCB, DSNAME,
UNIT) in a data definition (DD) statement.
The DD routine of the reader/interpreter
refers to the DDMFT to check the validity
of keywords, and also to obtain pointers to
an appropriate entry in the DD parameter
list table (DDPLT), which contains entries
that relate to the parameters that may
follow the keyword.

DDNAME TABLE

The ddname table (DDNT), shown in Figure
30, is wused by the DD routine of the
reader/interpreter to resolve ddname ref-
erences during creation of the JFCB and
SIOT. Ddnames, references to previous DD
statements, and dsname references are
placed in the ddname table by the DD scan
routine of the reader/interpreter. The
pointers to ddname or dsname entries in the

r 1

| 2|

| Number of bytes |

use or DD 1list
d £ 1i

| table entries |
r—=- L 1
| . 8|
| First ddname (left justified) |
ll' T T ‘1l
| . 31 31 1]
| Storage address of first | Not Storage address of first | Not]
| dummy JFCB for this job | used dummy SIOT for this job | used |
L L 1 J
r - 1
l . s 8l
| Fifth ddname (left justified) |
b= T -~ T {
| . 31) 3] 1}
| Storage address of fifth | Not Storage address of fifth | Not |
| dummy JFCB for this job | used dummy SIOT for this job | used |
L —_— L 1 J
Figure 28. DD List Table
r T T T 1
| 1] 2] No. of entries 2] Variable]|
| Length of | Relative address | in DDPLT that refer | Keyword |
|this entry| of DDPLT entry | to this keyword | |
! ! . !)

Figure 29. DD Major Field Table Entry

Appendix B: Tables and Work Areas 43

table are relative to byte 15, which is the
"not used" portion following the lu-byte
table header, which, except for the "number
of bytes®™ count, consists entirely of
pointers to the table entries. After the
entire DD statement has been scanned, ref-
erences entered in the ddname table are
resolved to complete the JFCB and SIOT.

DD PARAMETER LIST TABLE

The DD parameter 1list table (DDPLT),
shown in Figure 31, contains one entry for
each parameter that may appear in each DD
statement field. The DD routine of the
reader/interpreter refers to the DDMFT,
which points to a block of DDPLT entries
(corresponding to one DD major keyword), to
determine which entries to make in the SIOT
or the JFCB for DD statement parameters.

r T T T - Each DDPLT entry consists of a foundation
| 1} 1| 1] 1] and an extension, both of which are
|Channel |[Channel |Unit |Unit | variable-length fields, and which contain
|separa- |affinity |separa- |affinity | attributes of the entry to be made in the
|tions | |tions | | dummy SIOT or dummy JFCB (e.g., length of
t——-- + + 4 -—q the entry and its location in the SIOT or
| 1| 1) 1} 1} JFCB table). Because the dummy JFCB fol-
| Pool | Dsname | SUBALLO- | VOLUME=*. | lows the dummy SIOT in storage, all" loca-
|ddname | =#. | CATE=#. | | tions in the dummy SIOT or JFCB are defined
b= + + + i relative to the start of the dummy SIOT.
| 1] 1 1} 1) The dummy tables are used to form the 'SIOT
| VOLUME= | DCB=%*. | DCB= | Number of| and JFCB by the DD output routine, after
| REF= | | dsname | unit sep-| the DD scan routine.

| dsname | | | arations |

b + + 4 { The syntax type (key), contained in byte
| Number 1} 1) 1) 1] 3 of each entry may be one of 11 keys,
fof chan- | Number | Not | Length of| corresponding to 11 different formats for
|nel sepa-| of bytes| used | first | the entry extensions. Each format depends
|Irations | in table| | entry | upon the form of the information that
- i e L | appears in each DD statement field.

| Variable|

| First entry | Within a DDPLT entry, the start of an
| | extension is found by incrementing the
t-—- T 1 foundation start location by the foundation
|Length 1} Variable| length contained in the first byte. Infor-
|of | Second entry | mation from the DD statement either is
| second | | inserted directly into the table, or is
|entry | | converted into binary (CVB), or the bit
L - 1 1 configuration representing the value is
Figure 30. Ddname Table ORed into the dummy JFCB or dummy SIOT.

r T L) L) Ll 1
| 1| Length 1] 1] SIOT 1] 1 to 8]
| Length | of found-|SYNTAX |Conversion| location | Field name or count |
J]of this | ation and|type (key) |type for DD | |
|foundation| extension| | entry | |
% L _}__‘L_____ 1 L _JI
| Variable]
| First extension |
| |
| |
L J
- g
| variable|
{ Last foundation 6 to 13 |
| (same format as first foundationm) |
| |
L) 1
| Variable|
| Last entry extension |
! !

Figure 31. DD Parameter List Table

4y

. DEVICE MASK TABLE

The device mask table (DMT), shown in
Figure 32, is built at SYSGEN time, and
permits system access to the unique group
of I/0 devices represented by one unit
name. This group may consist of any combi-
nation of device types or device numbers,
and will be unique for any user's system.
The user may determine specific device
assignment bit patterns for his system from
a symbolic listing taken after system gen-

eration. There is one table entry for each
device. Within each entry, the bit pattern
signifies the devices associated with a

particular device name. The bit pattern
within any entry is extended in full-word
increments when the number of devices
exceeds 32 or a multiple of 32. The entry

At SYSGEN time, device type codes are
obtained from tables internal to the SYSGEN
program, or are generated, and placed in
the device mask table. The DMT is used as
a source of device-type,K codes for the
device name table (DNT) (sde IBM System/360
Operating System: System Control Blocks).
During device allocation, these codes are
used as search keys to gain access to the
DMT for device groups or single devices.

DSNAME TABLE

The dsname table, (see Figure 33), con-
tains the volume reference data set names
for one step as found in the DD statement.

status byte, bit 0, if 1, signifies that The table 1is created by the DD routine of
the group of devices is a homogeneous the reader/interpreter for each job step.
group. One entry is made in the dsname table for
each DD statement containing the VOLUME=
r . T 1 REF=dsname parameter.
| Numbers of 2|Pointer to mask 2}
| entries Jof direct-access |
i | devices | The step control table (SCT) points to
L L 4 the dsname table, and also contains a count
Entry (typical) of the total bytes occupied in the dsname
r——- r “-r Y 1 table by dsnames for the current step. The
| 1|DMT 1|Number of 2] SIOT for each data set also contains a
|Not used {entry | possible | pointer to the dsname table entry for this
| | status | devices | SIOT before volume resolution and a pointer
t 1 1 4 to the volume table (VOLT) after volume
| iy information has been resolved.
| Device type |
| |
| | The dsname table is used by the JFCB
t | housekeeping routine of the initiator/ter-
| 4 minator to retrieve volume information con-
| Bit pattern of | cerning data sets referred to by data set
| possible devices | name in the DD statement VOLUME=REF parame-
| | ter. The dsname table is fragmented into
L 4 176-byte blocks before being stored, prior
Figure 32. Device Mask Table to job step execution.
r - T T k)
I 3] 1 31 1|
Storage address of	Table	Not
dsname table	ID=07 Chain address	used
t L L {		
i Variable		
Dsname 1 (1 through 44-byte length)		
I		
I		
L J		
r — 1		
Variable]		
] Dsname N		
L : a
Figure 33. Dsname Table

Appendix B: Tables and Work Areas 45

First key field name

= o c—

T

T
1]
Support | Address of key field
I
L

routine

b e . e

-

I
| Fourth key field name
|

Lm0

e o e e

1
Support Address

routine

of key field

o e o e o
e e e e e

Figure 34. EXEC Key Field Table

EXEC KEY FIELD TABLE

Each entry in the EXEC Key Field Table,
(see Figure 38), contains one of four EXEC
statement key field names, an indication of
whether the key field is supported (that
is, processed and inserted in the appropri-
ate table by means of a key field process-
ing routine), and the address of the rou-
tine appropriate to the particular key
field.

GENERATION DATA GROUP BIAS COUNT TABLE

The generation data group: (GDG) bias
count table, shown in Figure 35, makes GDG
information available to the data manage-
ment portion of the system, and allows the
user to refer to a particular GDG member by
the same number in different steps of the
same job. The programmer refers to GDG
members serially from the start of a job,
but data management refers to GDG members
serially from the last-cataloged member.
The last member cataloged in a previous
job, if any, is referenced as member number
zero. The programmer will refer to the
first new data set in the present job as
number +1. This table is used to convert a
reference that is relative to the start of
the present job, as specified by the pro-
grammer, to a reference that is relative to
the last-cataloged member, as required by
data management.

created by the GDG single processing
routine of JFCB housekeeping when a single
GDG is requested by the user. When a step
is completed by JFCB housekeeping, the JFCB
housekeeping control routine transfers the
GDG work bias byte to the GDG bias byte
location if +the value of the work byte is
greater than that of the bias byte. In
subsequent steps of the same job, any
reference by the programmer to a GDG member
will be decremented by the value of the
bias count, which is contained in the GDG
bias byte, to obtain a corrected member
number for data management reference.

46

w
[y

Not
used

address
table

Storage
of this

|

1

|

w |
i S ———

[EY

Not
used

address
table

Storage
of next

£

Number of entries in this table

w
(=)

GDG dsname

N

GDG work
bias byte

GDG bias byte

e e e e o

=
o

Second entry

=
o
b e s e o o e e e S . e S S . v ek e, e, s . ol — — — v —— — i w———— b c—— ——)

Third entry

=
[e]

Fourth entry

=

Not used

e e e e e e e o e e e S e o Y S o Sy S S S o o S o o o)
|
|
|

[
Figure 35.

GDG Bias Count Table

JOB CONTROL TABLE

The job control table (JCT), shown in
Figure 36, is created by the job routine of
the reader/interpreter upon receipt of a

job statement. It contains information
taken from the job statement, and also
storage addresses of major tables. After
all steps within a job have been

JCT 1is stored by the
The JCT is used by the
in preparing a job

interpreted, the
reader/interpreter.
initiator/terminator

step for execution, and is stored by the
step initiation routine of the
initiator/terminator, before control is

passed to the job step.

The JCT includes the following entries:

Job Status Indicators:

Bit 0: The job library indicator con-
tains a 1 if a JOBLIB DD statement is
included with the job.

Bit 5: The job-failed indicator con-
tains a 1 if an error condition
caused the job to be terminated.

0-3 contain zeros
1

Message Level: Bits
for message level 0; bit 3 contains a

Job Serial Number: Always contains 1 in for message level 1. Bits 4-7 are not
the primary control program. used.
| T LB T T T 1
|) 3 1] 1] 1] 1] 1]
Storage address of job	Table	Job	Job	Message	Message
control table	ID=00	serial	status	class	level
		number	indicators		
L 4 1 . 1 1 4					
v 1					
, 8					
Jobname (padded with blanks)					
L 4					
T 1					
I . . 8l					
Not used in the primary control program					
I					
f___ - - T T T {					
3] 1] _ 3] 1]					
Storage address of PDQ	Not	Storage address of GDG bias	Not		
jused	count table	used			
t—-—- + + - + .					
. 3] 1] . 3	1]				
Storage address of first step	Not	Storage address of first	Not		
control table	used	system message block	used		
I		I			
L —_— 4 1 ——— L 4					
[) T T 1 1					
l _ 3 1} . 3	1]				
Storage address of job	Not	Storage address of first	Not		
account control table	used	data set SYSOUT block	used		
	I				
t -—- + $ - =7 L 1					
3] 1] 2] 2]					
storage address of last data	Not	Not used	First job		
set SYSOUT block	used i	condition code			
I					
L L 4 —— 4					
1B T T T T T 1					
1] 1]	, 2	1] 1]			
First job	[Not used	c o o o o o o o	Eighth job	Eighth job	Not
condition			condition code	condition	used
operator				operator	
——— 4 ——d 4 ——— L — J
Figure 36. Job Control Table
Appendix B: Tables and Work Areas 47

JOB KEYWORD TABLE

All JOB statement keywords are listed in
the JOB Keyword Table, (see Figure 37).
Bytes 14 through 16 of each entry contain
the address of the routine which processes
the keyword parameters.

r L] L L]
No. of 1	Account number and 1	Not 2
entries	programmer's name	used
"N"	required	
L s L_ J
e

11

| Keyword=

| (entry No.1)

e 1
| |[No. of 1}
	char in
	keyword
	(-1)
o - 4	
Bit 1] 3]	
10=1 in-	Address
dicates	constant
support	
[— L -4	
r 1	
_ [
(Typical of	
N entries)	
[— _— i

Figure 37. JOB Keyword Table

NEW READER OR WRITER TABLE

The new reader or writer table (NRWT),
shown in Figure 38, is a control block that
contains OPEN requirements for reader and
writer routines. At initial program load
time, the table is written onto auxiliary
storage. The table is read into main
storage from auxiliary storage and is wused
by the reader/interpreter and SYSOUT rou-
tines. Each entry (except jobname) con-
sists of an active section and an inactive
section. Whether the lower or higher order
part of the entry is active is indicated by
a 1l in bit 0 of the flag 1 byte in the
active section. When a NRWT entry is
active, the data set has been opened, and
the device indicated by the applicable UCB
pointer is active. The currently inactive
section of the entry receives information

from new START commands. The table is
always available in the SYS1.SYSJOBQE data
set.

48

The bits in location Flags 1 have the

following meanings:

Bit 0 -- 1= active
0= inactive.

Bit 1 -- 1= START RDR at jobname
0= START RDR at first job

The bits in 1location Flags 2 are not
used in the sequential scheduling system.

PASSED LCATA SET QUEUE

The passed data set queue (PDQ), shown
in Figure 39, contains information regard-
ing previously processed data sets which
have been passed from executed steps of the
job, that may be referenced by subsequent
steps of the same job. Each PDQ contains a
set of tables, consisting of three types of
blocks: the PDQ directory block, the PDQ
block, and the PDQ overflow block (if
required). The PDQ directory block and the
PDQ block are created by the initiator/
terminator JFCB housekeeping routine. The
directory blocks are chained together with
pointers, and each PDQ directory block also
points to 1its respective PDQ block. If
more than ten additional UCB pointers are
needed for any one PDQ entry, one Or more
PDQ overflow blocks are added in a chain to
each such PDQ block entry by allocation
routines.

Initiator/terminator routines
PDQ to obtain pointers to UCBs when allo-
cating devices to passed data sets. Step
termination routines use the PDQ to obtain

use the

UCB allocation pointers and disposition
information.
When control passes to the

initiator/terminator, the JFCB housekeeping

routine inspects the disposition field of
the SIOT for the disposition "PASS" to
determine whether a new entry may be

required in the PDQ.

If a PASS disposition is found and the
dsname 1is not in the PDQ directory because
it was not placed into the directory by a
prior PASS, an entry is made in the PDQ for
this dsname. If the 1last PDQ directory
block and PDQ block already contain the
maximum number of three entries, auxiliary
storage space is assigned for a new PDQ
directory block and a new PDQ block, there-
by providing space for three more dsname
entries.

When a passed data set 1is to be ref-
erenced by a subsequent step in the same
job, the dsname is specified in the DD
statement. The JFCB housekeeping routine
checks for the dsname in the PDQ directory

to see if the data set was received (passed
from a previous step).

If the dsname is found in the PDQ
directory, the existing PDQ entry for this
dsname is updated to identify the reference
as the latest reference to this dsname and
the data set is marked as being received in
the PDQ entry. If no entry is found, the
data set must have been cataloged, so the
JFCB routine searches the catalog for this
dsname, assuming that this is an initial
reference for this job to a cataloged data
set.

sig

Bit

0

Bits of the terminate work area byte of
the PDQ block have the following status

nificance:
Significance
Initial status
Current status

Pass satisfied

SYSIN specified

SYSOUT specified

Status

1 = old

1 = old

1 = passed

0 = received
1 = SYSIN

1 = SYSOoUuT

Appendix B: Tables and Work Areas 49

Start Reader Entry

13 T ¥ R) 1
| 3 1] 2 , 2|
Track address	Flags 1	Flags 2	UCB pointer
		(not used)	
L 4 4 4 4			
} T T T 1			
3	1	2) 2
Track address	Flags 1	Flags 2	UCB pointer
		(not used)	
L P L L —— L]			
. Jobname Entry .			
== 1			
81			
Jobname from START command			
of operator			
I			
L - -d			
. Start Writer Entry .			
T T T			
31 1] 2) 2		
Track address	Flags 1	Flags 2	UCB pointer
		(not used)	
			I
R —— 1 L 4 4			
r T k] T 1			
3	1] 2	. 2	
Track address	Flags 1	Flags 2	UCB pointer
		(not used)	
		I	
L - . I i J			
. Cataloged Procedures Entry .			
[mo———mm T oo T T -T - 1			
31 1] 2	2		
Track address	Flags 1	Flags 2	UCB pointer
		(not used)	
t m———— $ } - —t-- -1			
3	1] 2	2	
Track address	Flags 1	Flags 2	UCB pointer
		(not used)	
	I]		
L — L L —— [I, -d
Figure 38. New Reader or Writer Table

50

T (T——= T T 1
| 4y | 1 1] 1 |Number 1}
Dsname 1		Current	Current	Terminate	of UCB ptrs
		step	DD	work arealhere and inj	
		number	number		overflow
- - 1 k- L L + i
| by | 3 4
| Dsname 2 | | Storage address of | Not |
| | | current job file control | used |
| | | block | |
| | | | |
- - —————— i p-————— t-—————————= 1
| L | 3] 1]
| Dsname 3 | | Storage address of |Current |
i | | current step input/output |step
| | | takle | number |
| | | | |
S it ~i- -4
| Number 1] 35] | 40| | |
|of | Not used | | Space for ten 4-byte unit control |
|entries | | | block pointers |
|in block | | | |
| | | | |
L 4 ———— . J I, d
r T 1 T 1
| 31 1] | 3 4]
| Storage address of | Not | | Storage address of | Not |
|PDQ block for these three | used | | first overflow block (if | used |
| Dsnames | | | needed) | |
| | | | | |
b= 1 —{ b L 1
| 3] 1| 112| | |
| Storage address of | Not | | Space for two additional PDQ entries |
| next PDQ directory block | used | | |
| (if needed) | | | |
| | | | |
L—— —_ 41 -_d lf ‘1|
, [8]
PDQ Directory Block | Not used |
| I
L J
r _— - - 1 PDQ Block
| 172]
| Space for 43 additional UCB pointers |
| |
p--- T 1
| 3] 1]
| Storage address of | Not |
| next overflow block | used |
| (if needed) | |
| | |
L —— 1 J
PDQ Overflow Block
Figure 39. Passed Data Set Queue Tables
READER/INTERPRETER TTR TABLE 15 3-byte addresses, and the

The reader/interpreter TTR table (see
Figure 40) provides a means of chaining
certain tables by allowing routines to
insert a chain address into a table before
that table is stored, prior to job step
execution. The 16-word TTR table is built
and updated by the reader/interpreter.
First, the table-store subroutine assigns

reader/interpreter places them into the TTR
table left-justified on a full-word bounda-
ry. When a table 1is to be stored, the
reader/interpreter DD, job, or execute rou-
tine places the secondary address into the
chaining field of the table to be stored.
The routine then uses the table store
subroutine write-and-assign function to
place the table into the storage location

Appendix B: Tables and Work Areas 51

specified by the primary address. The
present secondary address, which specifies
the next available storage location, is
then moved into the primary address field
of the TTR table, and a new secondary
address, assigned by the table store sub-
routine, is placed into the TTR table.

Primary Address Secondary Address

r L 1
| 4 4
| Job control table | None |
p-— -——1 - :
| 41 4]
| Account control table |
% — {
| 41 41
] Step control table |
L . 1 ¥ |
v T 1
| 4] 41
| Step I/0 table |
|8 N 4
v T 1
| Y 4
| Job file control block |
[+ {
| 4 4]
| System message block |
F + -
I 4] 4
| Volume table |
8 —_— —_— 1 —_— 3
r T 1
| 41 4y
| Dsname table |
L. - i J
Figure 40. Reader/Interpreter TTR Table
STEP_ CONTROL TABLE

The step control table (SCT), shown in

Figure 41, is used to pass control informa-
tion to the DD routine of the
reader/interpreter and to the initiator/
terminator routines, which also contribute
information to the table. This table is
created and initialized by the execute
routine of the reader/interpreter when an
EXEC statement is read. One SCT is created
for each step of a job, and is stored by

the reader/interpreter control routine and
the initiator/terminator step initiation
routine.

52

If the
cataloged procedure, the name of the
that
entered.
and

step 1is part of a previously
step
procedure, if any, is
following variable-content

fields are included in the

called the
The
indicator

table:

Internal Step Status Indicators:

Bit 7 contains a one if an error
condition caused the step to be termi-
nated.

PARM Count or Step Status Code:

a. Reader/Interpreter: The number of
characters specified in the PARM
parameter of the EXEC statement is
placed in this entry.

b. Initiator/Terminator: This table
entry contains the condition code
returned by the processing pro-
gram.

Step Type Indicators:

Bit 0 contains a one if the following
parameter definition appears in the
EXEC statement:

PGM=#%.stepname.ddname

Bit 1 indicates SYSIN 1is specified
(DD *).

Bit 2 indicates SYSOUT is specified.

Bit 3 contains
ing is complete.

a 1 if JFCB housekeep-

Bits 4, 5, and 6 are unused.

Second through seventh step condition entries.

w
=)

r L] T L} 1
| Storage address 30 1|Inter- 1} 3]
of step control	Table	nal step	Maximum step running time
table	ID=02	status	
	l	indicators]	
L L 4 L d			
3 T T LB 1			
2	Length of 2	3] 1}	
PARM count or step	allocate work area	Storage address of	Not
status code	or number of SIOTs	first SIOT entry	used
L L 4 4 4			
1 3 T T T			
3] 1] 3 1]			
Storage address of	Not	Storage address of	Not
allocate work area	used {next SCT	used]	
b 1 1 [J			
1} T T T 1			
3 1] 3 1			
storage address of	Not	Storage address of	Not
first SMB for next step	used	last SMB for this step	used
L L 4 1 d			
T T T T			
31 1] 3 1]			
Storage address of	Not	sStorage address of	Not
first ACT entry for this step	used	volume table jused	
	1		
L 4 4 R 4			
r 1 T 1			
3 1] 8]			
storage address of	Not	Name of step that called procedure	
dsname table for this step	used	(if any)	
I8 L. 1 J			
L) 1			
8			
Stepname			
b —1
[) LE T T T T

| 2| 2] 1] 1| 1| 1]
| Not used | Length of volume | No. of | No. of | No. of | Step |
| | table | SIOTs in | setup | JFCBs to |type |
| | | this step| messages’ | allocate |indicators]
% L 4 . L L L {
| 40|
| Initializing parameter |
| values |
(. |
L d
T 1
| 8]
| Programname i
| |
| |
L — 4
v T T T |
| 2| 2|First 1] 3]
Length of dsname	First step condition	step	Storage address
table in bytes	code	condition	of first condition SCT
	joperator		
L i L L 4			
1 3 1			
L N]			
r N T T 1			
2} Eighth 1y 3} 2]			
Eighth step	step	Storage address	Not used
condition code	condition	of eighth condition SCT	
I | operator | | |
L L 3 L 4 S |

Figure 41. Step Control Table

‘Appendix B: Tables and Work Areas

‘53

STEP INPUT/OUTPUT TABLE

The Step Input/Output Table
shown in Figure 42, makes DD
information available to the initiator/
terminator for use as a source of informa-
tion for the TIOT and for providing DD
information to allocation and disposition
routines. When a DD statement is read, the
reader/interpreter creates a new SIOT and
places the DD information into it. The
individual bits of indicator bytes 56
through 60 in +the SIOT are set to one to
indicate the following conditions:

(s10T),
statement

BYTE 56: Disposition Status Byte
(SCTSDISP)

Bit 0 Nonshareable volume

Bit 1 Retain volume

Bit 2 Private volume

Bit 3 Pass data set

Bit 4 Keep data set

Bit 5 Delete data set

Bit 6 Catalog data set

Bit 7 Uncatalog data set
BYTE 57: Status Byte 1 (SCTSBYT1)

Bit 0 Dummy data set

Bit 1 SYSIN data set

Bit 2 Split (primary)

Bit 3 Split (secondary)

Bit 4 Suballocate

Bit 5 Parallel mount

Bit 6 Unit affinity

Bit 7 Unit separation
BYTE 58: Status Byte 2 (SCTSBYT2)

Bit 0 Channel affinity

Bit 1 Channel separation

Bit 2 Volume affinity

Bit 3 Not used

Bit 4 Unlabeled

Bit 5 Pool DD statement

Bit 6 Defer mounting

Bit 7 Received data set
BYTE 59: Status Byte 3 (SCTSBYT3)

Bit 0 Volume reference is dsname

Bit 1 SYSIN expected

(procedures -only)
Bit 2 No associated volume
serial in volume table
Bit 3 Intra-step suballocate

54

Bit 4 SYSOUT was specified

Bit 5 New data set

Bit 6 Modified data set

Bit 7 01d data set

BYTE 60: Status Byte 4 (SCTSBYT4)

Bit 0 Set by reader/interpreter
to indicate GDG single

Bit 2 Volume serial was found
in passed data set queue
(PDQ)

Bit 4 Step processed

Bit 5 Intra-step volume affinity

Bit 6 Data set is in PDQ

Bit 7 1 = 01d or modified data

set
0 = new data set

SYSTEM MESSAGE BLOCK

The system message block (SMB), shown in
Figure 43, temporarily stores all control

statements and diagnostic error messages
before they are printed via the system
output writer routine.. The reader/

interpreter control routine creates and
initializes one or more SMBs for each job
step. Initiator/terminator routines also
may add messages to the SMB. The chain
address of the next SMB is given in bytes U4
through 8 of each table but the last,
resulting in a chain of SMBs for each job.
The status byte of each entry concerns the
following entry, and contains the message
length, zero if there are no more messages,
or all ones if a data set entry follows,
the format of which is shown in Figure u4.

VOLUME TABLE

The volume table (VOLT), shown in Figure
45, consists of a series of chained blocks,
and contains the 1list of volume serial
numbers to be used in a given step. Use of
the 1list reduces the number of times that
the SYS1.SYSJOBQE data set must be ref-
erenced during allocation. The table is
built by the DD routine for each step, and
is modified by the JFCB housekeeping rou-
tine. The maximum extent of each block of
the table is 176 bytes, and the maximum
number of volumes listed per block is 28.

r T h

| 31 1]

| Auxiliary storage address | Table

| of SIOT | ID=03 |

| | |
r L - L 1
| 8]
| Ddname |
| |
| |
[N 4
L] 1
| . . 81
| Channel separation and affinity |
| |
| |
p--- 1
l . . . 8l
| Unit separation and affinity |
| |
| |
L J
v T T T 1
| 3 1] 3] 1]
Storage address of	Not	Storage address of	Not
next SIOT in chain	used	JFCB (left adjusted)	used
b= + + +			
3	1	3] 1]	
Storage address of	Not	Storage address	Not
SIOT for VOLREF/SUBALLOCATE	used	of SIOT system	used
		output / dependency block	
‘“‘ 1 % T T 1 {			
4] 1] 1] . 2			
Not used	Internal	No. of	Relative pointer
	No. of	volumes	to volume table
	pool DD		entry
l‘_""— T T T L L - {			
1] 1	1] 5]		
Internal	No. of	Not	Status bytes (see text)
DD	units	used	
number			
._____ L L 4L {			
, 8			
Unit type			
b e o e o e o e 4			
1])			
61			
Not used			
L —_— ’)			
3 T 1			
I 4	2		
DCB reference dsname	Not used]		
L 4L J

Figure 42. Step Input/Output Table

Appendix B: Tables and Work Areas

55

56

v T T T }
| ‘ 3p 1] 3 1]
| Storage address of this SMB | Table | Storage address of next SMB, | Not |
| | ID=5 | or zero if last SMB in chain | used |
o L t T t 1
4	Pointer to 1] 1	Part of	
Not used	next available	Status	first
	byte	byte	message
[L —d 4. i			
r . T 1			
A Variable	1]		
First message	Status		
	byte		
L 4 J			
r . H H			
Variable	1		
Last message	Zero after		
	last		
	message		
L _— _ L ¥
Figure 43. System Message Block

r T T - r T L}
[1] 1] . o2 | 3) 1]
|Entry | status | Relative location | | Storage address | Table |
|1ength | A | of pool | | of this block | ID=0 |
I | I P | |
k L L - L i
| G 41
| Ddname | | Storage address]
| | | of next block |
[N - —— 4 | I
r T 1

| ‘ 31 1t i
| JFCB address (TTR) | status | | 6|
| | C | | First volume serial |
| | | I I
b T T L -— | |
| 1] 1) 2| I r i
Status	Not	UCB			6
B	used	address			Second volume
		I	serial		
f-—- L " ——{					
Variable	p————————————————e e 4				
Additional TIOT information					
I					
I r T B i					
i	1] 1] 1] I				
	Class	Step	Delete	L 1	
		I - .			
- i i 1 4 . .
| 4] . .
| Form number | r 1
| | | 28th volume 6|
- e 4 | serial |
| 8| | r -—= 4
| Programname | | |

| | I I

L —_ J L - J

Figure 44. SMB Data Set Message Format Figure 45. Volume Table

APPENDIX C:

LOAD MODULES AND ASSEMBLY MODULES

This appendix lists job management load
modules and indicates the assembly modules
that are processed by the 1linkage editor
into each load module during system genera-
tion. Included is a separate list that
shows the load modules in which each assem-
bly module is contained.

Job management routines for sequential
scheduling systems are packaged in three
configurations: 18K, 44K, and 100K (where K
is 1024 bytes of main storage). The num-
bers represent the maximum amount of main
storage occupied by job management routines
and work areas at any time. All three job
management configurations function identi-
cally but differ in both the number of
their load modules and the number of assem-
bly modules within each load module. Job
management routines occupy the dynamic por-
tion of main storage alternately with proc-
essing programs, and therefore these size
designations bear a direct relationship to
the main storage required for each configu-
ration.

LOAD MODULES

In each configuration, all load modules
are contained in three data sets:
SYS1.NUCLEUS, SYS1.SVCLIB, and
SYS1.LINKLIB. These data sets also contain
other parts of the control program. The
load modules in the first two data sets
remain the same for all three job manage-
ment configurations, but the SYS1.LINKLIB
data set contains a different set of load
modules for each configuration, depending
on which one was selected at system genera-
tion time. In the 18K configuration, LINK-
LIB contains 36 load modules; in the 44K
configuration, it contains 25 load modules;
and in the 100K configuration, 18 1load
modules.

Charts 43 through 45 show the control
flow among load modules. The decision to
transfer control (XCTL) to a particular
succeeding load module is made in the
previous load module. Each subsequent
module loaded in response to an XCTL macro-
instruction is read into main storage
directly over the previous load module.
Such load modules are read into the low-
numbered end of the dynamic, or problem-
program, area of main storage.

Modules that are brought into storage
with LINK macro-instructions and LOAD
macro-instructions occupy separate storage
areas within the problem program area; such

Appendix C:

are shown on the control-flow
charts. Because storage is used in this
manner, the load module lists may be used
with Charts 43, 44 or 45 to determine the
approximate layout of main storage at dif-
ferent times during the execution of job
management routines. Other items present
in the problem program area at the same
time as the load modules are not shown on
the control flow charts because, although
these items are necessary, control is not
passed among them. They are, generally,
the tables and control blocks, work areas,
access methods, buffers, and register save
areas.

modules

In the following 1load module 1lists,
entry points are shown if a 1load module
contains more than one assembly module. If
only one assembly module is named, the
entry point is the same as the assembly
module's control section (CSECT) name given
in the Assembly Modules and Control Sec-
tions table in this appendix.

LOAD MODULES CONTAINED IN THE SYS1.NUCLEUS
DATA SET

The load modules and assembly modules in
the following list are contained in the
SYS1.NUCLEUS data set, and are always pres-
ent in the nucleus, or fixed area of main
storage, regardless of the job management
configuration.

Load Module Name: SYS1.NUCLEUS

Assembly Modules:

IEEBC1PE External interrupt routine.
IEECIRO1 Console interrupt routine.
IEERSCO01 Master scheduler buffers,
switches, input/output block
(IOB), event control block
(ECB), channel control word
(CCW), and data extent block
(DEB). This load module forms
master scheduler resident main
storage in the nucleus area when
the primary or alternate console
(1052) is used.

Master scheduler buffers,
switches, IOB, ECB, CCW, and
DEB. This load module forms
master scheduler resident main
storage in the nucleus area when
the composite console is used.
Unsolicited interrupt routine.
Table store subroutine work
area.

IEERSRO1

IEFDPOST
IEFKRESA

Load Modules and Assembly Modules 57

LOAD MODULES CONTAINED IN THE SYS1l.SVCLIB
DATA SET

The load modules and assembly modules in
the following 1list are contained in the
SYS1.SVCLIB data set, and are called in
response to SVC instructions.

Load Module Name: IGC0003D

Assembly Modules:

IEEMXCO01 Master command EXCP routine
(Part 1) -- primary/alternate
console.

Master command EXCP

routine (Part 1) -- composite
console.

IEEMXRO1

Load Module Name: IGCO0O3E

Assembly Modules:

IEEWTCO01 Write-to-operator (WTO) routine
-- primary/alternate console.
IEEWTRO1 Write-to-operator (WTO) routine

-- composite console.

IGC0103D command processing routine for -
'MOUNT, VARY ONLINE/OFFLINE, and
UNLOAD. This routine issues an
XCTL to IGC0203D if command is
other than listed.’'

Command processing routine for
'DISPLAY JOBNAMES, STOP JOB-
NAMES, CANCEL' (SHIFT command
not used primary control pro-
gram.)

IGC0203D

Load Module Name: IGCOQO3F
Assembly Module:
IEEBHIPE ©Not used in sequential schedul-

ing systemn.

MODULES CONTAINED IN THE SYS1.LINKLIB DATA
SET

The load modules and assembly modules in
the following 1lists are contained in the
SYS1.LINKLIB data set. A list is provided
for each of the three packaging configu-

Load Module Name: IGC0103D rations in which Jjob management routines
Assembly Modules: are available.
18K CONFIGURATION

Load Module Name: IEFSTERM IEFSD002 Exit to IEFO08FAK or IEF09FAK
Alias: IEFYN (both in this load module).
Alias: GO IEFSD006 converts record number to logi-
Entry Point: IEFSDO11 cal track address (TTR).
Assembly Modules: IEFSD007 Call to table store subroutine.
IEFSDO011 Entry to job management from IEFYSSMB Message enqueuing routine,

supervisor. engueues SMBs.
IEFWU42SD Passes control to IEFIDUMP (in IEFQMSSS Table store subroutine.

IEFIDUMP Load Module) if neces- IEFVJIMSG Contains initiator/terminator

sary, or to IEFYNIMP (in this messages.

module). IEFYNMSG Contains initiator/terminator
IEFYNIMP Step termination routine. messages.
IEFYPJB3 Step data set driver routine. IEFYPMSG Contains initiator/terminator
IEFVJ IMP Job statement condition code messages.

routine. IEFZGMSG Contains initiator/terminator
IEFZGST1 Disposition and unallocation messages.

subroutine. IEFZHMSG Contains initiator/terminator
IEFACTLK Linkage to user's accounting messages.

routine. IEFIDFAK Linkage to IEFIDUMP (in IEFIDUMP
IEFACTRT Dummy, to be replaced by user's load module).

accounting routine. IEFZAFAK Linkage to IEFZAJB3 (in IEFJTERM
(The preceding two modules may be replaced load module).
by IEFACTFK assembly module if no account- IEF08FAK Linkage to IEFSD008 (in IEFINTFC
ing routine is specified as a system gene- load module).
ration option.) IEFO09FAK Linkage to IEFSD009 (in IEFSELCT

IEFSD017 Places logical track address
(TTR) of first system message
block (SMB) into job control
table (JCT).

IEFW22SD Passes control to IEFYNIMP (in

this load module), then to
IEFSD002 (in this load module)
or to IEFZAJB3 (in IEFJTERM load
module).

58

load module).
Load Module Name: IEFSELCT

Alias: IEFSD009
Entry Point: IEFSD009
Assembly Modules:

IEFSD006 Converts record number to logi-
cal track address (TTR).
IEFSD009 Initializes initiator/termina-

tor.

Load Modules
(18K Configuration, Continued)

IEFW21SD System control routine.

IEFVKIMP Execute statement condition code
routine.

IEFVMLS1 JFCB housekeeping (H/K) control
routine.

IEFVM2LS JFCB H/K fetch DCB routine.

IEFVM3LS JFCB H/K generation data group
(GDG) single routine.

IEFVM4LS JFCB H/K generation data group
(GDG) all routine.

IEFVMSLS JFCB H/K patterning data set
control block (DSCB) routine.

IEFVM76 Processes passed, non-labeled
tape data sets.

IEFWSTRT Job started message routine.

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFWMAS1 Device name table.

IEFVKMSG Contains initiator terminator
messages.

IEFVMLK5 Linkage to IEFVMLS6 (in IEFERROR
load module).

IEFXAFAK Linkage to IEFXCSSS (in IEFALOC1
load module).

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

Load Module Name: IEFALOC1

Alias: IEFXJ000

Alias: IEFXA

Entry Point: IEFXA

Assembly Modules:

IEFXCSS Allocation control routine.
IEFXJIMP Allocation error recovery rou-
tine.
IEFYSSMB Message enqueuing routine.
_ IEFQMSSS Table store subroutine.
IEFXAMSG Contains initiator/terminator
messages. '
IEFXJMSG Contains initiator/terminator
messages.
IEFWAFAK Linkage to IEFWA0OO (in IEFALOC2
load module).
IEFWCFAK Linkage to IEFWCIMP (in IEFALOC3
load module).
IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).
Load Module Name: IEFALOC2
Alias: IEFWA000
Alias: IEFX5000
Entry Point: IEFWAO000

Assembly Modules:

IEFWAOO00 Demand allocation routine.
IEFWSWIN Passes control to decision allo-
cation or automatic volume
recognition (AVR) routine.
IEFX5000 Decision allocation routine.
IEFX300A Device strikeout routine.
IEFXHO000 Separation strikeout routine.
IEFWMSKA Device mask table.
IEFXVFAK Linkage to IEFXV001l (in load

module IEFALOCU4).

Appendix C:

Load Modules
(18K Configuration, Continued)

IEFWCFAK Linkage to IEFWCIMP (in IEFALOC3
load module).
IEFXJFAK Linkage to IEFXCSSS (in IEFALOC1

load module).

Load Module Name: IEFALOC3
Alias: IEFWCO000
Entry Point: IEFWC000

Assembly Modules:

IEFWCIMP Task Input/Output Table con-
struction routine.

IEFXHO000 Separation strikeout routine.

IEFWDFAK Linkage to IEFWD000 (in IEFALOCH
module) .

IEFXJFAK Linkage to IEFXCSSS (in IEFALOC1
module).

Load Module Name: IEFALOCHY

Alias: IEFWDO0O0O

Alias: IEFXV001

Entry Point: IEFWDO0O0O

Assembly Modules:

IEFWDO0O0O External action routine.

IEFWDO001 Message directory for external
action routine.

IEFXKIMP Allocation error non-recovery
routine.

IEFYSSMB Message enqueuing routine,
enqueues SMB's.

IEFQMSSS Table store subroutine.

IEFXKMSG Contains initiator/terminator
messages.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

IEFSDO006 converts record number to logi-

‘ cal track address (TTR).

IEFXTFAK Linkage to IEFXT000 (in load
module IEFALOCS5).

IEFXV001 Automatic volume recognition.

IEFXV002 Processes new volumes (AVR).

IEFXV003 Processes specific requests for
unmounted volumes.

IEFXVO004 AVR unloading routine.

IEFXVNSL AVR volume serial routine.

IEFXVMSG AVR message routine.

IEFX1FAK Linkage to IEFXJIMP (in load
module IEFALOC1).

IEFX2FAK Linkage to IEFX5000 (in load
module IEFALOC2).

IEFX3FAK Linkage to IEFWCIMP (in load
module IEFALOC3).

IEFX300A Device strikeout routine.

Load Module Name: IEFALOCS

Alias: IEFXTO000

Entry Point: IEFXT000

Assembly Modules:

IEFXKIMP Allocation error non-recovery
routine.

IEFXTDMY Queue overflow routine.

IEFXTO0OD Space request routine.

IEFYSSMB Message engueuing routine,

enqueues SMBs.

Load Modules and Assembly Modules 59

Load Modules
(18K Configuration, Continued)

IEFQMSSS Table store subroutine.

IEFXKMSG Contains initiator/terminator
messages.

IEFXTMSG Contains initiator/terminator
messages.

IEFWU41SD Exit to IEFO4FAK (in this load
module) .

IEFSDO0O06 converts record number to logi-
cal track address (TTR).

IEFOU4FAK Linkage to IEFSD004 (in IEFATACH
load module).

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

IEFWDFAK Linkage to IEFWD000 (in IEFALOCH

load module).

Load Module Name:
Alias: IEFSDOO4
Entry Point: IEFSDOOU4

Assembly Modules:

IEFSDOO4 Step initiation routine, with
exit to processing program.
Converts record number to logi-
cal track address (TTR).

Call to table store subroutine.
Dequeues and writes out system
message blocks (SMBs).

Table store subroutine.

IEFATACH

IEFSD006

IEFSDOO07
IEFSDO010

IEFQMSSS

Load Module Name:
Alias: IEFS5DDHD
Alias: IEFMF
Alias: IEFMC
Alias: IEFKA
Entry Point: INDMRTN
Assembly Modules:

IEFCNTRL

IEFSPIE Program check handling routine.

IEF7KAXX Reader/interpreter control rou-—
tine.

IEF6DDHD DD routine.

IEF6BOCM Breakout routine.

IEF6MFXX Verb identification routine.

IEF6MCXX Scans job control language (JCL)
statements.

IEF6STNM Scan stepname routine.

IEF6NAME Qualified name routine.

IEF6 FRRS Resolves DD forward references.

IEF6DCBO DCB refer-back routine.

IEF6 MKXX Continuation routine.

IEF7MMCM Reader/interpreter message rou-

: tine.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

IEFK4DUM Linkage to IEFKUENT (in IEFK4
load module).

IEF6DHX1 Linkage to IEF6SCAN (in IEFDD
load module).

~IEFKLDUM Linkage to IEF6KIXX (in IEF1STMT

load module).

60

Load Modules
(18K Configuration, Continued)

IEFJMDUM Linkage to IEF6NCJB (in IEFJOB
load module). ’

IEFEMDUM Linkage to IEF6NJEX (in IEFEXEC
load module).

IEF60UT2 DD output routine, with exit to
IEF7KAXX (in this load module).

IEFKGDUM Linkage to IEF7KGXX (in IEFINTFC
load module).

IEFKPDUM Linkage to IEF7KPXX (in IEFCOMND
load module).

IEFK3DUM Linkage to IEF7K3XX (in IEFEOF

load module).
Load Module Name: IEFDD
Alias: IEFS5SCAN
Entry Point: INDMON
Assembly Modules:

IEFSPIE Program check handling routine.

IEF6SCAN DD scan routine.

IEF6BOCM Breakout routine.

IEFSD012 DD* statement routine.

IEF6DDNM DD name routine.

IEF6DSNM DS name routine.

IEF6RFWD Processes DD forward references.

IEF6RTPR Right parenthesis routine.

IEF6LFPR Left parenthesis routine.

IEF6EQUL Equal sign routine.

IEF6LIST Subparameter list routine.

IEF6NLST Routine for no subparameter
list.

IEF6NDDP DD parameter list table.

IEF6NDDX Alternative DD parameter list
table (DDPLT).

IEF6DCDP Data control block (DCB) DD
parameter list table.

IEFSDO013 Assigns unit to system output
(SYsouT) .

IEF60RDR Order subroutine.

IEF6INST Insert routine.

IEF6VALU Value subroutine.

IEF6CLNP Clean up after DD routine.

IEFSD006 Converts record number to logi-

. cal track address (TTR).

IEF6ERR1 DD error-handling routine.

IEF7MMCM Reader/interpreter message xyou-
tine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS

IEFQMSSS Table store subroutine.

IEF6CN17 Linkage to IEF6DDHD (in IEFCNTRL
load module).

Load Module Name: IEFINTFC

Alias: IEFSDO0O0S8

Alias: IEFSD001

Alias: IEFKG

Entry Point: IEFSDO008

Assembly Modules:

IEFSPIE Program check handling routine.
IEFSD008 Initiator/terminator to
reader/interpreter interface.
IEF7KGXX Output tables for step.
IEFSD006 Converts record number to logi-

cal track address (TTR).

Load_Modules
(18K Configuration, Continued)

IEFSD007 Call to table store subroutine.

IEEMCRO1 Master command routine.

IEF7TMMCM Reader/interpreter message rou-
tine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

IEFSD001 Reader/interpreter entry to
IEF09FAK or to IEFW23SD (both in
this load module).

IEFO09FAK Linkage to IEFSD009 (in IEFSELCT
load module).

IEF23FAK Linkage to IEFW23SD (in IEFJTERM
load module).

IEFMFDUM Linkage to IEF6MFXX (in IEFCNTRL
load module) .

IEFKADUM Linkage to IEF7KAXX (in IEFCNTRL
load module).

IEFK3DUM Linkage to IEF7K3XX (in IEFEOF

load module).

Load Module Name:
Alias: IEFEM
Entry Point: IEFEM
Assembly Modules:

IEFEXEC

IEFSPIE Program check handling routine.

IEF6NJEX Execute (EXEC) statement rou-
tine.

IEF6BOCM Breakout routine.

IEF6STNM Scan stepname routine.

IEF6NAME Qualified name routine.

IEF6RFBK Refer-back routine.

IEF6PROC Procedure name routine.

IEF6TIME TIME keyword routine.

IEF6COND Condition (COND) keyword rou—
tine.

IEF6PARM Parameter (PARM) keyword rou-
tine.

IEF6NFCM Accounting information routine.

IEF7MMCM Reader/interpreter message rou-
tine.

IEF6 MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

IEF8LINK Linkage to IEF6COND {(in this
module).

IEFMFDUM Linkage to IEF6MFXX (in IEFCNTRL

load module).

Load Module Name: IEFJOB
Alias: IEFJM
Entry Point: IEFJM

Assembly Modules:

IEFSPIE Program check handling routine.
IEF6NCJB Job (JOB) statement routine.
IEF6 BOCM Breakout routine.

IEF6STNM Scan stepname routine.

IEF6NAME Qualified name routine.
IEF6NFCM Accounting information routine.
IEF6NIJB TYPRUN keyword routine.

IEF6NYJB Priority (PRTY) keyword routine.
IEF6COND Condition (COND) keyword rou-

tine.

Appendix C:

Load Modu;es
(18K Configuration, Continued)

IEF6NXJB Message level (MSGLEVEL) keyword
routine.

IEF6NZJB Message class (MSGCILASS) keyword
routine.

IEF6NIJB Parenthesis routine.

IEF7MMCM Reader/interpreter message rou-
tine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

IEFMFDUM Linkage to IEF6MFXX (in IEFCNTRL
load module).

Load Module Name: IEFJTERM

Alias: IEFW23SD

Alias: IEFZA

Entry Point: IEFZA

Assembly Modules:

IEFW23SD Initializes for job termination,
exits to IEFZAJB3 (in this load
module).

IEFZAJB3 Job termination routine.

IEFWTERM Job ended message routine.

IEFZGJB1 Disposition and unallocation
subroutine.

IEFACTLK Linkage to user's accounting
routine.

IEFACTRT Dummy module to be replaced by

user's accounting routine.
(The preceding two modules may be replaced
by IEFACTFK assembly module if no account-
ing routine is specified as a system gene-
ration option.)

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSD007 Call to table store subroutine.

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFZHFAK Call to ZPOQMGR1 subroutine, in
IEFZGJB1 of this load module.

IEFZGMSG Contains initiator terminator
messages.

IEFZHMSG Contains initiator terminator
messages.

IEFW31SD Exit to IEFSD003 (in this 1load
module).

IEFSD003 Passes control to IEFSD010, then
to IEF08FAK, (both in this load
module).

IEFSD010 Dequeues and writes out system

’ message blocks (SMBs).

Load Module Name: IEFCOMND

Alias: IEFKP

Entxry Point: IEFKP

Assembly Modules: :
Processes commands in input

IEF7KPXX
stream.
IEEMCRO1 Master command routine.
IEEILCDM Prevents unresolved IEEICCAN
symbol after initialization.
IEFSD006 Converts record number to logi-

cal track address (TTR).

Load Modules and Assembly Modules 61

Load Modules
(18K Configuration, Continued)

IEF7MMCM Reader/interpreter message rou-
tine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

IEFKADUM Linkage to IEF7KAXX (in IEFCNTRL

load module).

Load Module Name: IEF1STMT
Alias: IEFKL
Entry Point: IEFKL

Assembly Modules:

IEFSPIE Program check handling routine.

IEF6KLXX First statement routine.

IEF7MMCM Reader/interpreter message rou-
tine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

IEFMCDUM Linkage to IEF6MCXX (in IEFCNTRL
load module).

IEFKADUM Linkage to IEF7KAXX (in IEFCNTRL
load module).

Load Module Name: IEFEOF

Alias: IEFK3

Entry Point: IEFK3

Assembly Modules:

IEFSPIE Program check handling routine.

IEF7MMCM Reader/interpreter message rou-
tine.

IEF7K3XX Input stream end-of-file (EOF)
routine.

IEF7RU4XX Close devices routine.

IEF7K2XX Open devices routine.

IEFSD006 converts record number to logi-
cal track address (TTR).

IEFSDO007 Ccall to table store subroutine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

IEEMCRO1 Master command routine.

IEFKADUM Linkage to IEF7KAXX (in IEFCNTRL
load module).

IEEILCDM Prevents unresolved IEEICCAN
symbol after initialization
(IPL).

Load Module Name: IEFKU4

Entry Point: IEFK4DUM

Assembly Modules:

IEFSPIE Program check handling routine.

IEF7TMMCM Reader/interpreter message rou-
tine.

IEFK4ENT Switch input readers routine.

IEF7R4XX Close devices routine.

IEF7K2XX Open devices routine.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSD007 Call to table store subroutine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

62

Load Modules
(18K Configuration, Continued)

Load Module Name: IEFERROR
Alias: IEFVM6LS
Entry Point: IEFVMSGR

Assembly Modules:

IEFVMLS6 JFCB housekéeping error message

processing routine.
- IEFYSSMB Message enqueuing routine,

enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFVMLS7 Contains initiator terminator
messages.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM

load module).

Load Module Name: IEFIDUMP
Entry Point: IEFIDUMP
Assembly Modules:

IEFIDUMP Indicative dump routine.

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFIDMPM Contains initiator terminator
messages.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM

load module).

Load Module Name: IEFDCB

Alias: IEF5DCDP

Assembly Module:

IEF6DCDP Data control block (DCB) DD

parameter list table.

Load Module Name: IEFMSGO1
Assembly Module:
IEF3MSG1 Contains reader/interpreter

messages.

Load Module Name: IEFMSGO02
Assembly Module:
IEF3MSG2 Contains reader/interpreter

messages.

Load Module Name: IEFMSGO3
Assembly! Module:
IEF3MSG3 Contains reader/interpreter

messages.

Load Module Name: IEFMSGOY4
Assembly Module:
IEF3MSGU Contains reader/interpreter

messages.

Load Module Name: IEFMSGO5
Assembly Module:
IEF3MSG5 Contains reader/interpreter

messages.

Load Module Name: IEFMSGO06

Assembly Module:

IEF3MSG6 Contains reader/interpreter
messages.

Load Modules
(18K Configuration, Continued)

Load Module Name: IEFMSGOQ7

Assembly Module:

IEF3MSG7 Contains reader/interpreter
messages.

Load Module Name: IEFINITL

Alias: IEFK1

Assembly Modules:

IEFSPIE Program check handling routine.

IEF7MMCM Reader/interpreter message rou-
tine.

IEF7K1XX Entry to job management from
nucleus initialization program
(NIP).

IEFK1MSG Reader/interpreter message rou-
tine.

IEEMCRO1 Master command routine.

IEEILCO1 Automatic command routine.

IEF7K2XX Open devices routine.

IEFWSDIP Linkage control table (LCT)
initialization routine.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSD007 Call to table store subroutine.

IEF6MIXX Reader/interpreter call to
IEFQMSSS.

IEFQMSSS Table store subroutine.

IEFPRFAK Linkage to IEFPRES load module.

Load Module Name: IEFPRES

Load Modules
(18K Configuration, Continued)

Assembly Module:

IEFINTQA Initializes SYS1.SYSJOBQE data
set.

Load Module Name: IEETIME

Alias: IEEQOTO00

Assembly Module:

IEEQOTO00 Sets time and date.

Load Module Name: IEEFAULT

Alias: IEEGK1GM

Assembly Module:

IEEGK1GM Fault routine -- issues master
scheduler messages.

Load Module Name: IEESTART

Alias: IEEIC1PE

Entry Point: IEEIC1PE

Assembly Modules:

IEESTART START command routine.
IEEREADR Start reader routine.

IEEWRITR Start writer routine.

Load Module Name: IEEJFCB

Alias: IEEIC3JF

Assembly Module:

IEEIC3JF Contains preformatted JFCB for

one START command.

Assembly Modules: Load Module Name: IEESJFCB
IEFPRES Volume attribute initialization Alias: IEEIC2NQ
routine.
IEFKIMSG IEFPRES messages. Entry Point: IEEIC2NQ
IEFKADUM Linkage to IEFKA load module. Assembly Modules:
IEEIC2NQ Saves START command JFCBs.
Load Module Name: TIEESET IEFQMSSS Table store subroutine.
Alias: IEEGESTO
Assembly Module:
IEEGESO1 Master scheduler SET command Load Module Name: IEFPRINT
routine. Alias: SPRINTER
Alias: IEFPRT
Load Module Name: IEFJOBQE Assembly Module:
Alias: IEFINTQS IEFPRTXX Tape SYSOUT to printer.
44K CONFIGURATION
Load Module Name: IEFSTERM IEFVJIMP JOB statement condition code
Alias: IEFYN routine.
Alias: IEFSD009 IEFZGST1 Disposition and unallocation
Alias: GO subroutine.
Entry Point: IEFSDO011 IEFACTLK Linkage to user's accounting
Assembly Modules: routine.
IEFSDO011 Entry to job management from IEFACTRT Dummy user's accounting routine.
supervisor. (The preceding two modules may be replaced
IEFW42SD Passes control to IEFIDUMP (in by IEFACTFK assembly module if no account-
IEFIDUMP load module) if indica- ing routine is specified as a system gener-
tive dump is needed, or to IEF- ation option.)
YNIMP (in this load module).
IEFYNIMP Step termination routine. IEFSD017 Places logical track address
IEFYPJB3 Step data set driver routine. (TTR) of first system message

Appendix C:

Load Modules and Assembly Modules 63

Load Modules
(44K Configuration, Continued)

block (SMB) in job control table
(JCT) .

IEFW22SD Passes control to IEFYNIMP (in
this load module), and then to
IEFSD002 (in this load module)
or to IEFZAJB3 (in IEFJTERM load
module) .

IEFSD002 Exit to IEF08FAK or IEFSD009
(both in this load module).

" IEFSD009 Initiator/terminator
initialization of output unit,
passes control to IEFW21SD (in
this load module).

IEFW21SD System control routine.

IEFVKIMP EXEC statement condition code
routine.

IEFVMLS1 JFCB housekeeping control rou-
tine.

IEFVM2LS Fetch DCB routine.

IEFVM3LS GDG single routine.

IEFVM4LS GDG all routine.

IEFVM5LS Patterning DSCB routine.

IEFVM76 Processes passed nonlabeled tape
data sets.

IEFWSTRT Job started message routine.

IEFWMAS1 Device name table.

IEFSD006 converts record number to logi-
cal track address (TTR).

IEFSD007 Call to table store subroutine.

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFVJMSG Contains initiator/terminator
messages.

IEFVKMSG Contains initiator/terminator
messages.

IEFYNMSG Contains initiator/terminator
messages ..

IEFYPMSG Contains initiator/terminator
messages.

IEFZGMSG Contains initiator/terminator
messages.

IEFZHMSG Contains initiator/terminator
messages.

IEFIDFAK Linkage to IEFIDUMP (in IEFIDUMP
load module) .

IEFVMLK5 Linkage to IEFVMLS6 (in IEFERROR
load module).

IEFXAFAK Linkage to IEFXCSSS (in IEFALLOC
load module).

IEFZAFAK Linkage to IEFZAJB3 (in IEFJTERM
load module).

IEF08FAK Linkage to IEFSD008 (in IEFCNTRL
load module).

Load Module Name: IEFALLOC

Alias: IEFXA

Entry Point: IEFXA

Assembly Modules:

-IEFXCSSS Allocation control routine.

IEFXJIMP Allocation error recovery rou-
tine.

IEFWAQQ00 Demand allocation routine.

IEFWSWIN Passes control to decision allo-

cation or AVR routine.

64

Load Modules

(44K Configuration, Continued)

IEFXV001 Automatic volume recognition.

IEFXVvV002 Processes new volumes (AVR).

IEFXV003 Processes specific requests for
unmounted volumes.

IEFXV004 AVR unloading routine.

IEFXVNSL AVR volume serial routine.

IEFXVMSG AVR message routine.

IEFX5000 Decision allocation routine.

IEFX300A Device strikeout routine.

IEFXHO000 Separation strikeout routine.

IEFWMSKA Device mask table.

IEFWCIMP Task input/output table (TIOT)
construction routine.

IEFWDO00O External action routine.

IEFWD0O0O1 Message directory for external
action routine.

IEFXTOO0D Space request routine.

IEFXKIMP Allocation error nonrecovery
routine.

IEFW41SD Exit to step initiation routine.

IEFSDOO4 Step initiation routine, with
exit to processing program.

IEFSD006 convert record number to logical
track address (TTR).

IEFSD007 call to table store subroutine.

IEFSD010 Dequeue and write out system
message blocks (SMBs).

IEFXTDMY Queue overflow routine.

IEFYSSMB Message enqueuing routine.

IEFQMSSS Table store subroutine.

IEFXAMSG Contains initiator/terminator
messages.

IEFXJIMSG Contains initiator/terminator
messages.

IEFXKMSG Ccontains initiator/terminator

" ‘messages.

IEFXTMSG Contains initiator/terminator
messages.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM

load module).

Load Module Name: IEFCNTRL

Alias: IEF5DDHD
Alias: IEFZA
Alias: IEFSD008
Alias: IEFMC

Entry Point: IEFKA
Assembly Modules:

IEFSPIE Program check handling routine.

IEF7KAXX Reader/interpreter control rou-
tine.

IEF6MCXX Scans job control language (JCL)

. statements.

IEF6BOCM Breakout routine.

IEF6NAME Qualified name routine.

IEF6STNM Scan stepname routine.

IEF6MFXX Verb identification routine.

IEF6MKXX Continuation routine.

IEF6NCJB JOB statement routine.

IEF6NFCM Accounting information routine.

IEF6N1JB TYPRUN keyword routine.

IEF6NYJB Priority (PRTY) keyword routine.

IEF6COND Condition (COND) keyword rou-
tine.

IEF6NXJB MSGLEVEL keyword routine.

Load Modules
(44K Configuration, Continued)

IEF6NZJB
IEF6NIJB
IEF6NJEX
IEF6RFBK
IEF6PROC
IEF6TIME
IEF6 PARM

IEF6DDHD
IEF6SCAN
IEFSD012
IEF6DDNM
IEF6 FRRS
IEF6DSNM
IEF6RFWD
IEF6LFPR
IEF6RTPR
IEF6EQUL
IEF6LIST
IEF6NLST

IEF6NDDP
IEF6NDDX
IEF6DCBO
IEF6DCDP
IEF60ORDR
IEF6 INST
IEF6VALU
IEF6CLNP
IEF6ERR1
IEF7KPXX

IEEMCRO1
IEF7MMCM

IEF6 MIXX
IEFQMSSS
IEF7KGXX
IEFSD013

IEFSDO008

IEFSD001

IEFW23SD

IEFSDO006

IEFSD007
IEEILCDM

IEFK4DUM
IEFO9FAK
IEF8LINK

IEFKLDUM

MSGCLASS keyword routine.
Parenthesis routine.

EXEC statement routine.
Refer-back routine.

Procedure name .routine.

TIME keyword routine.

Parameter (PARM) keyword rou-
tine.

DD statement routine.

DD scan routine.

DD* statement routine.

DD name routine.

Resolves DD forward references.
DS name routine.

Processes DD forward references.
Left parenthesis routine.

Right parenthesis routine.
Equal sign routine.
Subparameter list routine.
Routine for no subparameter
list.

DD parameter list table.
Alternative DD parameter list
table (DDPLT).

DCB refer-back routine.

DCB DD parameter list table.
Order subroutine.

Insert routine.

Value subroutine.

Clean up after DD routine.

DD error-handling routine.
Processes command in input
stream.

Master command routine.
Reader/interpreter message rou-
tine.

Reader/interpreter call to table
store subroutine.

Table store subroutine.

Output tables for step.

Assigns unit for system output
(sysouT).

Initiator/terminator to
reader/interpreter interface
routine.

Reader/interpreter entry to
IEFO9FAK or to IEFW23SD (both in
this load module).

Performs initialization for job
termination routine and exits to
IEFZAJB3 (in this load module).
Converts record number to logi-
cal track address (TTR).

Call to table store subroutine.
Prevents unresolved IEEICCAN
symbol after IPL time.

Linkage to IEFK4ENT (in IEFK4
load module).

Linkage to IEFSD009 (in IEFSTERM
load module).

Linkage to IEF6COND (in this
load moduie).

Linkage to IEF6KIXX (in IEF1STMT
load module).

Appendix C:

Load Modules
(44K Configuration, Continued)

IEF60UT2 Linkage to IEF6SCAN (in this
load module).

IEFK3DUM Linkage to IEF7K3XX (in IEFEOF
load module).

IEFZAFAK Linkage to IEFZAJB3 (in load

module IEFJTERM)
Load Module Name: IEFJTERM
Alias: IEFZA
Entry Point: IEFZA
Assembly Modules:

IEFZAJB3 Job termination routine.

IEFWTERM Job ended message routine.

IEF2GJB1 Disposition and unallocation
subroutine.

IEFACTLK Linkage to user accounting rou-
tine.

IEFACTRT Dummy routine to be replaced by

user's accounting routine.
(The preceding two modules may be replaced
by IEFACTFK assembly module if no account-
ing routine is specified as a system gener-
ation option.)

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSD007 Call to table store subroutine.

IEFYSSMB Message enqueuing routine
enqueues SMB's.

IEFQMSSS Table store subroutine.

IEFZGMSG Contains initiator/terminator
messages.

IEFZHMSG Contains initiator/terminator
messages.

IEFW31SD Job termination exit to IEFSD003
(in this load module).

IEFSD003 Passes control to IEFSD010, in
this load module.

IEFSDO010 Dequeue and write out system
message blocks (SMBs).

IEF08FAK Linkage to IEFSD008 (in IEFCNTRL
load module).

IEFZHFAK Linkage to subroutine ZPOQMGRI1,

in IEFZGJB1 of this load module.

Load Module Name: IEF1STMT
Alias: IEFKL
Entry Point: IEFKL

Assembly Modules:

IEF6KLXX First statement routine.

IEF7MMCM Reader/interpreter message rou-
tine.

IEF6MIXX Reader/interpreter call to table
store subroutine.

IEFQMSSS Table store subroutine.

IEFMCDUM Linkage to IEF6MCXX (in IEFCNTRL
load module).

IEFKADUM Linkage to IEF7KAXX (in IEFCNTRL
load module).

Load Module Name: IEFEOF

Alias: IEFK3

Entry Point: IEFK3

Assembly Modules:
IEFSPIE Program check handling routine.

Load Modules and Assembly Modules 65

Load Modules
(44K Configuration, Continued)

IEF7MMCM Reader/interpreter message rou-
tine.

IEF7K3XX Input stream end-of-file (EOF)
routine.

IEF7R4XX Close devices routine.

IEF7K2XX Open devices routine.

IEFSD006 converts record number to logi-
cal track address (TTR).

IEFSD007 Call to table store subroutine.

IEF6MIXX Reader/interpreter call to table
store subroutine.

IEFQMSSS Table store subroutine.

IEEMCRO1 Master command routine.

IEEILCDM Prevent unresolved IEEICCAN
symbol after IPL.

IEFKADUM Linkage to IEF7KAXX (in IEFCNTRL

load module).

Load Module Name: IEFKU
Entry Point: IEFK4DUM

IEFSPIE Program check handling routine.

IEF7MMCM Reader/interpreter message rou-
tine.

IEFKU4ENT Switch input readers routine.

IEF7K4XX Close devices routine.

IEF7K2XX Open devices routine.

IEFSDO006 Convert record number to logical
track address (TTR).

IEFSD007 Call to table store subroutine.

IEF6MIXX Reader/interpreter call to table
store subroutine.

IEFQMSSS Table store subroutine.

Load Module Name: IEFERROR

Alias: IEFVM6LS

Entry Point: IEFVMSGR

Assembly Modules:

IEFVMLS6 JFCB housekeeping error message
processing routine.

IEFYSSMB Message enqueuing routine,
enqueues SMBS.

IEFQMSSS Table store subroutine.

IEFVMLS7 Contains initiator terminator
messages

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM

load module).

Load Module Name: IEFIDUMP
Entry Point: IEFIDUMP
Assembly Modules:

IEFIDUMP Indicative dump routine.

IEFYSSMB Message enqueuing routine,
enqueues SMBs.

IEFQMSSS Table store subroutine.

IEFIDMPM Contains initiator terminator
messages.

IEFYNFAK Linkage to IEFYNIMP (in IEFSTERM
load module).

Load Module Name: IEFDCB

Alias: IEF5DCDP

Assembly Module:

IEF6DCDP DCB DD parameter list table.

66

Load Modules
(44K Configuration, Continued)

Load Module Name: IEFMSGO1

Assembly Module:

IEF3MSG1 Contains reader/interpreter
messages.

Load Module Name: IEFMSGO02
Assembly Module:
IEF3MSG2 Contains reader/interpreter

messages.

Load Module Name: IEFMSGO3

. Assembly Module:

IEF3MSG3 Contains reader/interpreter

messages.

Load Module Name:

Assembly Module:

IEF3MSGU Contains reader/interpreter
messages.

IEFMSGOU4

Load Module Name: IEFMSG05
Assembly Module:
IEF3MSG5 Contains reader/interpreter

messages.

Load Module Name: IEFMSGO06
Assembly Module:
IEF3MSG6 Contains reader/interpreter

messages.

Load Module Name: IEFMSGO7
Assembly Module:
IEF3MSG7 Contains reader/interpreter

messages.

Load Module Name: IEFINITL

Aljias: IEFK1

Entry Point: IEFK1

Assembly Modules:

IEFSPIE Program check handling routine.

IEF7MMCM Reader/interpreter message rou-
tine.

IEF7K1XX Entry to job management from
nucleus initialization program
(NIP).

IEFPRES Volume attribute initialization
routine.

IEFKIMSG IEFPRES messages.

IEFK1MSG Reader/interpreter message rou-
tine.

IEEMCRO1 Master command routine.

IEEILCO1 Automatic command routine.

IEF7K2XX Open devices routine.

IEFWSDIP Linkage control table (LCT)
initialization.

IEFSDO006 Converts record number to logi-
cal track address (TTR).

IEFSD007 Call to table store subroutine.

IEF6MIXX Reader/interpreter call to table
store subroutine.

IEFQMSSS Table store subroutine.

IEFKADUM Linkage to IEF7KAXX (in IEFCNTRL

load module).

Load Modules
(44K Configuration, Continued)

Load Module Name: IEESET

Alias: IEEGESTO

Assembly Module:

IEEGESO01 Master scheduler SET command
routine.

Load Module Name: IEFJOBQE

Alias: IEFINTQS

Assembly Module:

IEFINTQA Initializes SYS1.SYSJOBQE data
set.

Load Module Name: IEETIME
Alias: IEEQOTO00

Assembly Module:

IEEQOT00 Sets time and date.

Load Module Name: IEEFAULT

Alias: IEEGK1GM

Assembly Module:

IEEGK1GM Fault routine, issues master
scheduler messages.

Load Module Name: IEESTART
Alias: IEEIC1PE

Load Modules
(44K configuration, Continued)

Entry Point: IEEIC1PE
Assembly Modules:

IEESTART START command routine.
IEEREADR Start reader routine.
IEEWRITR Start writer routine.

Load Module Name: IEEJFCB

Alias: IEEIC3JF

Assembly Module:

IEEIC3JF Contains preformatted JFCB for
one START command.

Load Module Name: IEESJFCB
Alias: IEEIC2NQ

Entry Point: IEEIC2NQ
Assembly Modules:

IEEIC2NQ Save JFCBs for START commands.
IEFQMSSS Table store subroutine.

Load Module Name: IEFPRINT

Alias: SPRINTER

Alias: IEFPRT

Assembly Module:

IEFPRTXX Tape SYSOUT to printer.

100K CONFIGURATION

Load Module Name: IEFCNTRL

Alias: IEFKA
Alias: GO
Alias: IEFYN

Entry Point: IEFSDO11
Assembly Modules:

IEFSPIE Program check handling routine.

IEFSDO11 Entry to job management from
supervisor.

IEFW42SD Passes control to IEFIDUMP if
needed, or to IEFYNIMP (both in
this load module).

IEFIDUMP Indicative dump routine.

IEFYNIMP Step termination routine.

IEFYPJB3 Step data set driver routine.

IEFVJIMP JOB statement condition code
routine.

IEFZGST1 Disposition and unallocation
subroutine.

IEFSD017 Places logical track address of
first system message block (SMB)
into job control table (JCT).

IEFW22SD Passes control to IEFYNIMP
assembly module, and then to
IEFSD002 or IEFZAJB3 (all in
this load module).

IEFSD002 Exit to IEFSD008 or to IEFSD009
(both in this load module).

IEFSD008 Initiator/terminator to
readers/interpreter interface.

IEF7TRAXX Reader/interpreter control rou-
tine.

IEF6 MCXX Job control language (JCL)

Appendix C:

statement scan routine.

IEF6BOCM Breakout routine.

IEF6NAME Qualified name routine.

IEF6STNM Scan stepname routine.

IEF6MFXX Verb identification routine.

IEF6MKXX Continuation routine.

IEF6NCJB JOB statement routine.

IEF6NFCM HEccounting information routine.

IEF6N1JB TYPRUN keyword routine.

IEF6NYJB Priority (PRTY) keyword routine.

IEF6COND Condition (COND) keyword rou-
tine.

IEF6NXJB MSGLEVEL keyword routine.

IEF6NZJB MSGCLASS keyword routine.

IEF6NIJB Parenthesis routine.

IEF6NJEX EXEC statement routine.

IEF6RFBK Refer-back routine.

IEF6PROC Procedure name routine.

IEF6TIME TIME keyword routine.

IEF6PARM Parameter (PARM) keyword rou-
tine.

IEF6DDHD DD statement routine.

IEF6SCAN DD scan routine.

IEFSD012 DD* statement routine.

IEF6DDNM DD name routine.

IEF6FRRS Resolves DD forward references.

IEF6DSNM DS name routine.

IEF6RFWD Processes DD forward references.

IEF6LFPR Left parenthesis routine.

IEF6RTPR Right parenthesis routine.

IEF6EQUL Equal sign routine.

IEF6LIST Subparameter list routine.

IEF6NLST No subparameter list routine.

Load Modules and Assembly Modules 67

Load Modules
(100K Configuration, Continued)

IEF6NDDP
IEF6NDDX

IEF6DCBO
IEF6DCDP
IEF60RDR
IEF6 INST
IEF6VALU
IEF6 CLNP
IEF6ERRL
IEF7KPXX
IEF7TK3XX

IEFTR4XX
IEFK4ENT
IEF7K2XX
IEF6KLXX
IEEMCRO1
IEFTMMCM
IEF60UT2

IEF7TKGXX
IEFSD013

IEFSD001

IEFSD009

IEFW21SD
IEFVKIMP

IEFVMSL1
IEFVM2LS
IEFVM3LS
IEFVM4LS
IEFVM5LS
IEFVMLS6
IEFVM76
IEFWSTRT
IEFWMAS1
IEFXCSSS
IEFXJIMP
IEFWAOO0O
IEFWSWIN
IEFXV001
IEFXV002
IEFXV003
IEFXV004
IEFXVNSL
"IEFXVMSG

IEFX5000
IEFX300A

68

DD parameter list table.
Alternative DD parameter list
table (DDPLT).

DCB refer-back routine.

DCB DD parameter list table.
Order subroutine.

Insert routine.

Value subroutine.

Clean up after DD routine.

DD error-handling routine.
Command in input stream.

Input stream end-of-file (EOF)
routine.

Close devices routine.

Switch input readers routine.
Open devices routine.

First statement routine.
Master command routine.
Reader/interpreter message rou-
tine.

Linkage to IEF6SCAN (in this
load module).

Output tables for step.

Assign unit for system output
(sysouT).

Reader/interpreter entry to
IEFSD009 or to 'IEFW23SD (both in
this load module).
Initiator/terminator
initialization of output unit.
System control routine.

EXEC statement condition code
routine.

JFCB housekeeping control rou-
tine.

JFCB H/K fetch data control
block (DCB) routine.

JFCB H/K generation data group
(GDG) single routine.

JFCB H/K generation data group
(GDG) all routine.

JFCB H/K patterning data set
control block (DSCB) routine.
JFCB H/K error message process-
ing routine.

Processes passed, non-labeled
tape data sets.

Job started message routine.
Device name table.

Allocation control routine.
Allocation error recovery rou-
tine.

Demand

allocation routine.

Passes control to decision allo-
cation or AVR routine.
Automatic volume recognition.
Processes new volumes (AVR).
Processes specific requests for
unmounted volumes.

AVR unloading routine.

AVR volume serial routine.

AVR message routine.

Decision allocation routine.
Device strikeout routine.

Load Modules

(100K Configuration, Continued)

IEFXHO000
IEFWMSKA
IEFWCIMP

IEFWDO00O
IEFWDOO01

IEFXTOOD
IEFXTDMY
IEFXKIMP

IEFW41SD
IEFSDOO4

IEFW23SD
IEFZAJB3
IEFWTERM
IEFZGJB1
IEFACTLK

IEFACTRT

Separation strikeout routine.
Device mask table.

Task input/output table (TIOT)
construction routine.

External action routine.
Message directory for extermnal
action routine.

Space request routine.

Queue overflow routine.
Allocation error nonrecovery
routine.

Exit to step initiation routine.
Step initiation routine, with
exit to processing program.
Initializes for job termination
and exits to IEFZAJB3 (in this
lcad module).

Job termination routine.

Job ended message routine.
Disposition and unallocation
subroutine.

Linkage to user's accounting
routine.

Dummy routine to be replaced by
user's accounting routine.

(The 'preceding two modules may be replaced
by IEFACTFK assembly module if no account-
ing routine is specified as a system gene-
ration option.)

IEFW31sD

IEFSD003

IEFSD010
IEFYSSMB
IEFSD006

IEFSD007
IEF6MIXX

IEFQMSSS
IEEILCDM
IEF8LINK
IEFIDMPM
IEFVJIMSG
IEFVKMSG
IEFVMLS7
IEFXAMSG
IEFXJMSG
IEFXKMSG

IEFXTMSG

Job termination exit to
IEFSD003.

Passes control to IEFSD010 and
then goes to IEFSD008 (both in
this load module).

Dequeues and writes out system
message blocks (SMBs).

Message enqueuing routine,
engqueues SMBs.

Converts record number to logi-
cal track address (TTR).

Call to table store subroutine.
Reader/interpreter call to
IEFQMSSS.

Table store subroutine.
Prevents unresolved IEEICCAN
symbol after initialization (Job
management IPL).

Linkage to IEF6COND (in this
module).

Contains initiator/terminator
messages.

Contains initiator/terminator
messages.

Contains initiator/terminator
messages.)
Contains initiator/terminator
messages.

Contains initiator/terminator
messages.

Contains initiator/terminator
messages.

Contains initiator/terminator
messages. .
Contains initiator/terminator
messages.

Load Modules
(100K Configuration, Continued)

IEFYNMSG Contains initiator/terminator
messages.

IEFYPMSG Contains initiator/terminator
messages.

IEFZGMSG Contains initiator/terminator
' messages.

IEFZHMSG Contains initiator/terminator

messages.

Load Module Name: IEFDCB

Alias: IEF5DCDP

Assembly Module:

IEF6DCDP Data control block (DCB) DD
parameter list table.

Load Module Name: IEFMSGO1

Assembly Module:

IEF3MSG1 Contains reader/interpreter
messages.

Load Module Name: IEFMSGO02

Assembly Module:

IEF3MSG2 Contains reader/interpreter
messages.

Load Module Name: IEFMSGO03

Assembly Module:

IEF3MSG3 Contains reader/interpreter
messages.

Load Module Name: IEFMSGO4

Assembly Module:

IEF3MSGY4 Contains reader/interpreter
messages.

Load Module Name: IEFMSG05

Assembly Module:

IEF3MSG5 Contains reader/interpreter
messages.

Load Module Name: IEFMSGO06

Assembly Module:

IEF3MSG6 Ccontains reader/interpreter
messages.

Load Module Name: IEFMSGO07

Assembly Module:

IEF3MSG7 Contains reader/interpreter
messages.

Load Module Name: IEFINITL
Alias: IEFK1

Entry Point: IEFK1
Assembly Modules:

IEFSPIE Program check handling routine.

IEF7TMMCM Reader/interpreter message rou-
tine.

IEF7K1XX Initial entry to job management
from nucleus initialization
program (NIP).

IEFPRES Volume attribute initialization
routine.

IEFKIMSG IEFPRES messages.

IEFK1MSG Reader/interpreter message rou-

tine.

Appendix C:

Load Modules
(100K Configuration, Continued)

IEEMCRO1 Master command routine.

IEEILC011 Automatic command routine

IEF7K2XX Open devices routine.

IEFWSDIP Linkage control table (LCT)
initialization.

IEFSD006 Converts record number to logi-
cal track address (TTR).

IEFSDO007 Call to table store subroutine.

IEF6MIXX Reader/interpreter call to table
store subroutine.

IEFQMSSS Table store subroutine.

IEFKADUM Linkage to IEF7KAXX (in IEFCNTRL

load module).

Load Module Name: IEESET

Alias: IEEGESTO

Assembly Modules:

IEEGESO01 Master scheduler SET command
routine.

Load Module Name: IEFJOEQE

Alias: IEFINTQS

Assembly Module:

IEFINTQA Initializes SYS1.SYSJOBQE data
set.

Load Module Name: IEETIME

Alias: IEEQOTO00

Assembly Module:

IEEQOTO0 Sets time and date in response
to SET command.

Load Module Name: IEEFAULT

Alias: IEEGK1GM

Assembly Modules:

IEEGK1GM Fault routine, issues master
scheduler messages.

Load Module Name: IEESTART
Alias: IEEIC1PE

Entry Point: IEEIC1PE
Assembly Modules:

IEESTART START command routine.
IEEREADR Start reader routine.

IEEWRITR Start writer routine.

Load Module Name: IEEJFCB

Alias: IEEIC3JF

Assembly Module:

IEEIC3JF Contains preformatted JFCB for

one START command.

Load Module Name: IEESJFCB
Alias: IEEIC2NQ

Entry Point: IEEIC2NQ
Assembly Modules:

IEEIC2NQ Save START command JFCB.
IEFQMSSS Table store subroutine.

Load Module Name: IEFPRINT

Alias: SPRINTER

Alias: IEFPRT

Assembly Module:

IEFPRTXX Transfers tape system output

(SYSOUT) to printer.

Load Modules and Assembly Modules 69

ASSEMBLY MODULES AND CONTROL SECTIONS

The following table shows in which load
modules each assembly module is used in the
three configurations of job management.
The first column lists the assembly module
names in alphameric order. Except as indi-
cated, all assembly modules are contained
in load modules in the SYS1.LINKLIB data
set. The second column lists the control
section names that correspond to the assem-

bly module names in the first column. The
next three columns of the table indicate
which 1load modules of each configuration
contain each assembly module. The two
right-hand columns refer to the CHARTS
section. If a control section is shown as
a subroutine block, the flowchart number is
listed in the "Appears As Subr. Block"
column; if the flow within a control sec-

tion is given in a chart, the flowchart
number is listed in the "Flow is Defined"
column.

Assembly Modules and Control Sections (Part 1 of 6)

{ T I I Load Modules in Which T Chart Number]
| | | | Assembly Modules are Used t T :
| Assembly | | Control b T T { Appears As | Flow is |
|Module Name |Notes|Section Namej| 18K | 4yx | 100K | Subr. Block| Defined |
- ¢ $ t ¥ + $- } 1
| IEEBC1PE | * | IEEBC1PE | | | | 02 | 07 |
| IEEBHIPE |[Not | IEEBH1 | IGCO003F | IGCO0O03F | IGCOOO3F | | |
| |Used | | I | | | |
| IEECIRO1 | * | IEEBaAl | | | | 02 | 03 |
| IEEGESO01 | | IEEGESTO | IEESET | IEESET | IEESET | 05 | |
| IEEGK1GM | | IEEGK1GM | IEEFAULT | IEEFAULT | IEEFAULT | 05,15 | |
| IEEIC2NQ | | IEEIC2NQ | IEESJFCB | IEESJFCB | IEESJFCB | | |
| IEEIC3JF | #* | IEEIC3JF | IEEJFCB | IEEJFCB | IEEJFCB | | |
| IEEILCDM | | IEEICCAN | IEFINTFC | IEFCNTRL | IEFCNTRL | 05 i |
| | | | IEFCOMND | IEFEOF | | | |
| | | | IEFEOF | | | | |
| IEEILCO1 | #*% | IEEICCAN | IEFINITL | IEFINITL | IEFINITL | | I
| IEEMCRO1 | | IEEBB1 | IEFINTFC | IEFCNTRL | IEFCNTRL | 02,09 | 05 |
| | | | IEFCOMND | IEFINITL | IEFINITL | | |
| | | | IEFINITL | IEFEOF | | | |
| [| | IEFEOF | | | [|
| IEEMXCO1 | #** | 1IGCO3D | I6C0003D | IGC0003D | IGC0003D | 02 | ou |
| IEEMXRO1 | #** | IGCO3D | IGC0003D | IGCO003D | IGCO003D | 02 | ou |
| IEEQOTO00 | | IEEQOT00 | IEETIME | IEETIME | IEETIME | | |
| IEEREADR | | IEEICRDR | IEESTART | IEESTART | IEESTART | | |
| IEERSCO1 | * | IEEMSLT | | | | | |
| IEERSRO1 | * | IEEMSLT | | | | | |
| IEESTART | | IEEICIPE | IEESTART | IEESTART | IEESTART | [|
| IEEWRITR | | IEECWIR | IEESTART | IEESTART | IEESTART | | |
| IEEWTCO1 | *** | IGCO3E | IGCOOO3E | IGCOOO3E | IGCOOO3E | | 06 |
| IEEWTRO1 | *** | IGCO3E | IGCO003E | IGCOO0O3E | IGCOO003E | | 06 |
| IEFACTFK |[#**** | IEFACTFK | IEFSTERM | IEFSTERM | IEFCNTRL | | |
| | | | IEFJTERM | IEFCNTRL | | | |
| IEFACTLK |**** | IEFACTLK | IEFSTERM | IEFSTERM | IEFCNTRL | | |
| | | | IEFJTERM | IEFJTERM | | | |
| IEFACTRT |#**% | IEFACTRT | IEFSTERM | IEFSTERM | IEFCNTRL | 34 | |
| | | | IEFJTERM | IEFJTERM | | | |
| IEFDPOST | * | IEFDPOST | | | | | |
| IEFEMDUM | | IEFEM | IEFCNTRL | | | | |
| IEFIDFAK | | IEFIDUMP | IEFSTERM | IEFSTERM | | | |
| IEFIDMPM | | IEFIDMPM | IEFIDUMP | IEFIDUMP | IEFCNTRL | | |
| IEFIDUMP | | IEFIDUMP | IEFIDUMP | IEFIDUMP | IEFCNTRL | | |
| IEFINTQA | | IEFINTQS | IEFJOBQE | IEFJOBQE | IEFJOBQE | | |
| IEFJMDUM | | IEFJM | IEFCNTRL | | [| |
| IEFKADUM | | IEFKA | IEFPRES | IEFINITL | IEFINITL | | |
| | | | IEFEOF | IEFEOF | | | |
| | | | IEFINTFC | IEF1STMT | | | |
| | | | IEFCOMND | | I [|
| IEFKGDUM | | IEFKG | IEFCNTRL | | | | |
| P JR— 1 i L 1 L 1 J

(Part 1 of 6)

70

Assembly Modules and Control Sections (Part 2 of 6)

r T T T 1
| | | | Load Modules in Which | Chart Number |
| | | | Assembly Modules are Used [T 4
| Assembly | | Control b T { Appears As | Flow is |
|Module Name |Notes|Section Name| 18K | 44K | 100K | Subr. Block| Defined |
t t t . — t -1 } 1
IEFKLDUM		IEFKL	IEFCNTRL	IEFCNTRL			
IEFKPDUM		IEFKP	IEFCNTRL]	
IEFKRESA		IEFJOB					
IEFKIMSG		IEFKIMSG	IEFPRES	IEFINITL	IEFINITL		[
IEFK1MSG		IEFKIMSG	IEFINITL	IEFINITL	IEFINITL		
IEFK3DUM		IEFK3	IEFCNTRL	IEFCNTRL			
'			IEFINTFC				
IEFK4DUM		IEFK4	IEFCNTRL	IEFCNTRL			[
IEFK4ENT		IEFK4DUM	IEFKY4	IEFK4	IEFCNTRL	I I	
IEFMCDUM		IEFMC	IEF1STMT	IEF1STMT			
IEFMFDUM		IEFMF	IEFINTFC				
			IEFEXEC				
[[[IEFJOB	[[
IEFPRES		IEFPRES	IEFPRES	IEFINITL	IEFINITL		[
IEFPRFAK		IEFPRES	IEFINITL				
IEFPRTXX		SPRINTER	IEFPRINT	IEFPRINT	IEFPRINT		[
IEFQMSSS		IEFQMSSS	IEFSTERM	IEFSTERM	IEFCNTRL	12,16	[
			IEFSELCT	IEFALLOC	IEFINITL		I
			IEFALOC1	IEFCNTRL			I
I I		IEFALOC4	IEF1STMT		I		
I			IEFALOCS		I I		
I		IEFATACH	IEFEOF				
			IEFCNTRL	IEFKU4		I	
			IEFDD	IEFERROR			[
			IEFINTFC	IEFIDUMP			
			IEFEXEC	IEFINITL			
			IEFJOB	IEESJFCB			
			IEFJTERM	IEFJTERM			I
	[IEFCOMND	[[
			IEF1STMT	[
[[[IEFEOF	[[[
			IEFKY4		I		
[IEFERROR	I I [[
	I	IEFIDUMP			I		
	I	IEFINITL					
	I	IEESJFCB					
IEFSD001		IEFSD001	IEFINTFC	IEFCNTRL	IEFCNTRL	09	[
IEFSD002		IEFSD002	IEFSTERM	IEFSTERM	IEFCNTRL		I
IEFSD003		IEFSD003	IEFJTERM	IEFJTERM	IEFCNTRL		[
IEFSDO04		IEFSDOO4	IEFATACH	IEFALLOC	IEFCNTRL		36 [
IEFSD006		IEFSD006	IEFSTERM	IEFSTERM	IEFCNTRL		[
			IEFALOC2	IEFALLOC	IEFINITL		[
			IEFALOC4	IEFCNTRL			
	I	IEFALOCS					
			IEFATACH	IEFEOF			
			IEFCNTRL	IEFK4		l I	
			IEFDD	IEFINITL			
			IEFINTFC	IEFJTERM			[
[[IEFJTERM					
]	IEFCOMND					
			IEFEOF		I		
			IEFKU4				I
			IEFINITL				
IEFsSD007		IEFSD007	IEFSTERM	IEFSTERM	IEFCNTRL		
			IEFATACH	IEFALLOC	IEFINITL		[
			IEFINTFC	IEFCNTRL			
	I	IEFJTERM	IEFEOF				
			IEFEOF	IEFK4			
			IEFK4	IEFINITL		I	
L 4 L L -4 L L 4 J
(Part 2 of 6)

Appendix C: Load Modules and Assembly Modules 71

Assembly Modules and Control Sections (Part 3 of 6)

r LB T T T R |
| | | | Load Modules in Which | Chart Number i
| | | | Assembly Modules are Used I T i
| Assembly | | Control } T T { Appears As | Flow is |
|Module Name |[Notes|Section Name| 18K | 44K | 100K | Subr. Block| Defined |
e et { 4 } $ t {
| | 1 | IEFINITL | IEFJTERM | | | |
| IEFSD008 | | IEFSD008 | IEFINTFC | IEFCNTRL | IEFCNTRL | | 09 |
| IEFSD009 | | IEFSD009 | IEFSELCT | IEFSTERM | IEFCNTRL | | [
IEFSD010		IEFSD010	IEFATACH	IEFALLOC	IEFCNTRL		
			IEFJTERM	IEFJTERM	I		
IEFSD011		IEFSD011	IEFSTERM	IEFSTERM	IEFCNTRL	37	4o
IEFsD012		IEFSD012	IEFDD	IEFCNTRL	IEFCNTRL		[
IEFSD013		IEFSD013	IEFDD	IEFCNTRL	IEFCNTRL		
IEFSD017		IEFSD017	IEFSTERM	IEFSTERM	IEFCNTRL		
IEFSPIE	x	IEFSPIE	IEFINITL	IEFINITL	IEFINITL		
			IEFCNTRL	IEFCNTRL	IEFCNTRL		
			IEFEOF	IEFEOF			
			IEFISTMT	IF1STMT			
			IEFINTFC	IEFNEWRD			
			IEFJOB				
1			IEFEXEC			[
			IEFDD				
			IEFK4				
IEFVJIMP		IEFVJ	IEFSTERM	IEFSTERM	IEFCNTRL	38	39
IEFVJIMSG		IEFVIMSG	IEFSTERM	IEFSTERM	IEFCNTRL		
IEFVKIMP		IEFVK	IEFSELCT	IEFSTERM	IEFCNTRL	14	16 [
IEFVKMSG		IEFVKMSG	IEFSELCT	IEFSTERM	IEFCNTRL		
IEFVMLK5		IEFVM6	IEFSELCT	IEFSTERM			
IEFVMLS1		IEFVM1	IEFSELCT	IEFSTERM	IEFCNTRL	17	18 [
IEFVMLS6		IEFVM6	IEFERROR	IEFERROR	IEFCNTRL	17,18	24 [
IEFVMLS7		IEFVM7	IEFERROR	IEFERROR	IEFCNTRL		
IEFVM2Ls		IEFVM2	IEFSELCT	IEFSTERM	IEFCNTRL	17,18	20 [
IEFVM3LS		IEFVM3	IEFSELCT	IEFSTERM	IEFCNTRL	17,18	21 [
IEFVM4LS		IEFVM4	IEFSELCT	IEFSTERM	IEFCNTRL	17,18	22 [
IEFVM5LS		IEFVMS	IEFSELCT	IEFSTERM	IEFCNTRL	17,18	23 [
IEFVM76		IEFVM76	IEFSELCT	IEFSTERM	IEFCNTRL		
IEFWAFAK		IEFWAOOO	IEFALOC1				
IEFWA000		IEFWA7	IEFALOC2	IEFALLOC	IEFCNTRL	25	27
IEFWCFAK		IEFWC000	IEFALOC1				
			IEFALOC2				
IEFWCIMP		IEFWC000	IEFALOC3	IEFALLOC	IEFCNTRL	25	33 [
		IEFWC002	IEFALOC3	IEFALLOC	IEFCNTRL		
IEFWDFAK		IEFWD000	IEFALOC3				
			IEFALOCS				
IEFWD00O		IEFWD000	IEFALOC4	IEFALLOC	IEFCNTRL	25,28	34 [
IEFWD0O1l		IEFWD001	IEFALOC4	IEFALLOC	IEFCNTRL		
IEFWMAS1	**	DEVNAMET	IEFSELCT	IEFSTERM	IEFCNTRL		
IEFWMSKA	**	DEVMASKT	IEFALOC2	IEFALLOC	IEFCNTRL		
IEFWSDIP		IEFWSDIP	IEFINITL	IEFINITL	IEFINITL		
IEFWSTRT		IEFWSTRT	IEFSELCT	IEFSTERM	IEFCNTRL		
IEFSWIN		IEFSWIT	IEFALOC2	IEFALLOC	IEFCNTRL		i
IEFWTERM		IEFWTERM	IEFJTERM	IEFJTERM	IEFCNTRL		
IEFW21SD		IEFW21SD	IEFSELCT	IEFSTERM	IEFCNTRL	14	15 [
IEFW22SD		IEFW22SD	IEFSTERM	IEFSTERM	IEFCNTRL	38	
IEFW23SD		IEFW23SD	IEFJTERM	IEFCNTRL	IEFCNTRL		
IEFW31SD		IEFW31SD	IEFJTERM	IEFJTERM	IEFCNTRL		
IEFW41SD		IEFW41SD	LEFALOCS5	IEFALLOC	IEFCNTRL		
IEFW42SD		IEFW42SD	IEFSTERM	IEFSTERM	IEFCNTRL		
IEFXAFAK		IEFXA	IEFSELCT	IEFSTERM			
IEFXAMSG		IEFXAMSG	IEFALOC1	IEFALLOC	IEFCNTRL		
IEFXCsSss		IEFXA	IEFALOCLl	IEFALLOC	IEFCNTRL	25	26
IEFXHO000		IEFXH000	IEFALOC2	IEFALLOC	IEFCNTRL	i	
			IEFALOC3				
I 1 1 L i i 1 L b							

(Part 3 of 6)

72

Assembly Modules and Control Sections (Part 4 of 6)

| — T T T T 1
| | | | Load Modules in Which | Chart Number |
| | | Assembly Modules are Used b T 4
| Assembly | | Control b T T { Appears As | Flow is |
|Module Name |Notes|Section Name| 18K | 44K | 100K | Subr. Block| Defined |
N i IR 1 4 1 4 4
r T + T + T T T 1
| IEFXJFAK | | IEFXJ000 | IEFALOC2 | | | | |
| I | | IEFALOC3 | | I I I
IEFXJIMP		IEFXJ000	IEFALOC1	IEFALLOC	IEFCNTRL	28	
IEFXJMSG		IEFXJMSG	IEFALOC1	IEFALLOC	IEFCNTRL		
IEFXKIMP		IEFXK000	IEFALOC4	IEFALLOC	IEFCNTRL		
			IEFALOCS			I	
IEFXKMSG		IEFXKMSG	IEFALOC4	IEFALLOC	IEFCNTRL		
	I	IEFALOCS					
IEFXTFAK		IEFXT000	IEFALOCY4				
IEFXTDMY		IEFXTDMY	IEFALOC5	IEFALLOC	IEFCNTRL		
IEFXTMSG		IEFXTMSG	IEFALOC5	IEFALLOC	IEFCNTRL		
IEFXTO0OD		IEFXT000	IEFALOC5	IEFALLOC	IEFCNTRL	25	35
IEFXVMSG		IEFXVMSG	IEFALOCY4	IEFALLOC	IEFCNTRL		
IEFXVNSL		IEFXVNSL	IEFALOCY4	IEFALLOC	IEFCNTRL		
IEFXv001		IEFXV001	IEFALOC4	IEFALLOC	IEFCNTRL		28
IEFXvV002		IEFXvV002	IEFALOC4	IEFALLOC	IEFCNTRL		
IEFXvV003		IEFXV003	IEFALOC4	IEFALLOC	IEFCNTRL		
IEFXvV0O04		IEFXV004	IEFALOCY4	IEFALLOC	IEFCNTRL		
IEFXVFAK		IEFXV001	IEFALOC2				
IEFX1FAK		IEFXJ000	IEFALOCH				
IEFX2FAK		IEFX5000	IEFALOCH				
IEFX3FAK		IEFWC000	IEFALOCH				
IEFX300A		IEFX3000	IEFALOC2	IEFALLOC	IEFCNTRL		
I		IEFALOCH		I I			
IEFX5000		IEFX5000	IEFALOC2	IEFALLOC	IEFCNTRL	25	32
IEFYNFAK		IEFYN	IEFSELCT	IEFALLOC			
			IEFALOC1	IEFERROR			
			IEFALOC4	IEFIDUMP			
			IEFALOCS]
			IEFERROR				
	I	IEFIDUMP	I I I I				
IEFYNIMP		IEFYN	IEFSTERM	IEFSTERM	IEFCNTRL		
IEFYNMSG		IEFYNMSG	IEFSTERM	IEFSTERM	IEFCNTRL		
IEFYPJB3		IEFYP	IEFSTERM	IEFSTERM	IEFCNTRL	38	41
IEFYPMSG		IEFYPMSG	IEFSTERM	IEFSTERM	IEFCNTRL		
IEFYSSMB		IEFYS	IEFSTERM	IEFSTERM	IEFCNTRL		
			IEFSELCT	IEFALLOC			
			IEFALOCL			I	
			IEFALOC4	IEFERROR			
			IEFALOCS		I I I		
			IEFJTERM	IEFIDUMP			
			IEFERROR	IEFTERM			
I		IEFIDUMP		I			
IEFZAFAK		IEFZA	IEFSTERM	IEFSTERM			
IEFZAJB3		IEFZA	IEFJTERM	IEFTERM	IEFCNTRL	37	40
IEFZGJB1		IEFZGJ	IEFJTERM	IEFTERM	IEFCNTRL	40	42
IEFZGMSG		IEFZGMSG	IEFSTERM	IEFSTERM	IEFCNTRL		
			IEFJTERM	IEFTERM			
IEFZGST1		IEFZG	IEFSTERM	IEFSTERM	IEFCNTRL		
IEFZHFAK		IEFZPOQM	IEFJTERM	IEFTERM			
IEFZBMSG		IEFZH	IEFSTERM	IEFSTERM	IEFCNTRL	41,42	
			IEFJTERM	IEFTERM			
IEFO4FAK		IEFSD004	IEFALOCS				[
IEFO8FAK		IEFSD008	IEFSTERM	IEFSTERM			
			IEFINTFC	IEFTERM			
			IEFJTERM				
IEFQ9FAK		IEFSD009	IEFSTERM	IEFCNTRL		i	
			IEFINTFC	I			
L L 1 1 4 4 1 4 J
(Part 4 of 6)
Appendix C: Load Modules and Assembly ‘Modules 73

Assembly Modules and Control Sections (Part 5 of 6)

r b T L) L] a
| | | | Load Modules in Which | Chart Number |
| | | Assembly Modules are Used I -r]
| Assembly | | Control } T T { Appears As | Flow is |
|Module Name |Notes|Section Name| 18K | 4uxK | 100K | Subr. Block| Defined |
t pommmmt et + 4 + 4
IEF23FAK		IEFW23SD	IEFINTFC				
IEF3MSGl		IEFMSGl	IEFMSGO1	IEFMSGO01	IEFMSGO1		
IEF3MSG2		IEFMSG2	IEFMSG02	IEFMSG0O2	IEFMSGO02		
IEF3MSG3		IEFMSG3	IEFMSG03	IEFMSGO3	IEFMSGO3		
IEF3MsGH4		IEFMSG4	IEFMSGO4	IEFMSGO4	IEFMSGOU4	i [
IEF3MsSG5		IEFMSG5	IEFMSGO5	IEFMSGO5	IEFMSGO5		
IEF3MsSG6		IEFMSG6	IEFMSG06	IEFMSG06	IEFMSG06		[
IEF3MsSG7		IEFMSG7	IEFMSGO07	IEFMSGO7	IEFMSGO7		l
IEF6BOCM		IEFBM	IEFCNTRL	IEFCNTRL	IEFCNTRL		[
n		IEFDD			I		
1		IEFJOB					
'			IEFEXEC				
IEF6CLNP		IEFMO2	IEFDD	IEFCNTRL	IEFCNTRL	i	
IEF6CN17		INDMRTN	IEFDD i		1		
IEF6COND		IEF6COND	IEFEXEC	IEFCNTRL	IEFCNTRL	i	
	[IEFJOB			[[
IEF6DCBO		IEF6DCBO	IEFCNTRL	IEFCNTRL	IEFCNTRL		[
IEFé6DCDP		INDMB	IEFDD	IEFCNTRL	IEFCNTRL		1
			IEFDCB	IEFDCB	IEFDCB		
IEF6DDHD		INDMRTN	IEFCNTRL	IEFCNTRL	IEFCNTRL	12	[
IEF6DDNM		INDMOl	IEFDD	IEFCNTRL	IEFCNTRL		
IEF6DHX1		INDMON	IEFCNTRL				
IEF6DSNM		INDMO3	IEFDD	IEFCNTRL	IEFCNTRL		
IEF6EQUL		INDMOP	IEFDD	IEFCNTRL	IEFCNTRL]	
IEF6ERR1		IEF6ERR1	IEFDD	IEFCNTRL	IEFCNTRL	l [
IEF6FRRS		IEF6FRRS	IEFCNTRL	IEFCNTRL	IEFCNTRL		
IEF6INST		INDMOZ	IEFDD	IEFCNTRL	IEFCNTRL		[
IEF6KLXX		IEFKL	IEFISTMT	IEF1STMT	IEFCNTRL		
IEF6LFPR		INDMOS1	IEFDD	IEFCNTRL	IEFCNTRL		
IEF6LIST		INDMOY	IEFDD	IEFCNTRL	IEFCNTRL		[
IEF6MCXX		IEFMC	IEFCNTRL	IEFCNTRL	IEFCNTRL	09	
IEF6MFXX		IEFMF	IEFCNTRL	IEFCNTRL	IEFCNTRL	09	
IEF6MIXX		IEFMI	IEFCNTRL	IEF1STMT	IEFCNTRL		
]			IEFDD	IEFK4	IEFINITL		
			IEFINTFC	IEFEOF			
IEF6MIXX			IEFEXEC	IEFINITL			
(cCont.)			IEFJOB	IEFCNTRL			
			IEFCOMND				
			IEFLSTMT				
			IEFEOF			[
[IEFR4				[
			IEFINITL				
IEF6MRXX		IEFMK	IEFCNTRL	IEFCNTRL	IEFCNTRL		1
IEF6NAME		INNAME	IEFCNTRL	IEFCNTRL	IEFCNTRL		
			IEFEXEC				
[[IEFJOB						
IEF6NCJIB	**	IEFJM	IEFJOB	IEFCNTRL	IEFCNTRL	08	10
IEF6NDDP		INDMA	IEFDD	IEFCNTRL	IEFCNTRL		
IEF6NFCM		IEFAM	IEFEXEC	IEFCNTRL	IEFCNTRL		1
	[IEFJOB					
IEF6NIJB		IEFNI	IEFJOB	IEFCNTRL	IEFCNTRL		
IEF6NJEX		IEFEM	IEFEXEC	IEFCNTRL	IEFCNTRL	08	11 [
IEF6NLST		INDMOX	IEFDD	IEFCNTRL	IEFCNTRL		
IEF6NXJB		IEFNX	IEFJOB	IEFCNTRL	IEFCNTRL		
IEF6NYJB		IEFNY	IEFJOB	IEFCNTRL	IEFCNTRL		
IEF6NZJB		IEFNZ	IEFJOB	IEFCNTRL	IEFCNTRL		
[IEF6N1JB		IEFN1	IEFJOB	IEFCNTRL	IEFCNTRL]
IEF60RDR		INDMOV	IEFDD	IEFCNTRL	IEFCNTRL		
IEF60oUT2		INDMOH	IEFCNTRL	IEFCNTRL	IEFCNTRL	12	
L 1 1 i 1 1 I —_——t 3

(Part 5 of 6)

74

Assembly Modules and Control Sections (Part 6 of 6)

r T T T T - 1
| | | | Load Modules in Which | Chart Number |
| | | | Assembly Modules are Used F T 4
| Assembly | | Control b——- T —_——7 { Appears As | Flow is |
|Module Name |Notes|Section Name| 18K | 44K | 100K | Subr. Block| Defined |
— + + + —1 1 1 4 -1
| IEF6PARM | | IEFPARM | IEFEXEC | IEFCNTRL | IEFCNTRL | | [
| IEF6PROC | | IEFPROC | IEFEXEC | IEFCNTRL | IEFCNTRL | | |
| IEF6RFBK | | IEFRFBK | IEFEXEC | IEFCNTRL | IEFCNTRL | | [
| IEF6RFWD | | IEF6RFWD | IEFDD | IEFCNTRL | IEFCNTRL | | |
| IEF6RTPR | | INDMOR | IEFDD | IEFCNTRL | IEFCNTRL | | [
| IEF6SCAN | | INDMON | IEFDD | IEFCNTRL | IEFCNTRL | 08 | 12 [
| IEF6STNM | | IEFSTNM | IEFCNTRL | IEFCNTRL | IEFCNTRL | | |
| | | | IEFEXEC | | | | |
| | I | IEFJOB | | I | I
| IEF6TIME | | IEFTIME | IEFEXEC | IEFCNTRL | IEFCNTRL | | [
| IEF6VALU | | INDMOT | IEFDD | IEFCNTRL | IEFCNTRL | | |
| IEF7RAXX | | IEFKA | IEFCNTRL | IEFCNTRL | IEFCNTRL | 09 | [
IEF7KGXX		1EFKG	IEFINTFC	IEFCNTRL	IEFCNTRL	09	
IEFTKPXX		IEFKP	IEFCOMND	IEFCNTRL	IEFCNTRL	09	
IEF7R1XX		IEFK1	IEFINITL	IEFINITL	IEFINITL	08	09
			IEFK4 I	I			
IEF7TK2XX		IEFK2	IEFINITL	IEFINITL	IEFINITL		[
			IEFK4	IEFKU4	IEFCNTRL		
]	IEFEOF	IEFEOF				
IEF7K3XX		IEFK3	IEFEOF	IEFEOF	IEFCNTRL		[
IEF7K4XX		IEFK4	IEFK4	IEFK4	IEFCNTRL		[
I	I	IEFEOF	IEFEOF		I		
IEF7MMCM		IEFWMSG	IEFCNTRL	IEFCNTRL	IEFCNTRL		
			IEFISTMT	IEFL1STMT			
	I	IEFDD					
	I	IEFINTFC		I			
	I	IEFEXEC		I]			
I		IEFJOB					
I		IEFCOMND		I			
IEFSLINK		IEFLINK	IEFEXEC	IEFCNTRL	IEFCNTRL		
1IGC0103D	***	1IGC0103D	IGC0103D	IGC0103D	IGC0103D	02,04	
IGC0203D	***	1IGC0203D	IGC0203D	IGC0203D	IGC0203D		
% 4 -4 L L 4L 1 —_— i _JI							
Notes: *Assembly modules in SYS1.NUCLEUS data set.							
**Modules are assembled during system generation.							
***Assembly modules in SYS1.SVCLIB data set.							
***%*IEFACTFK may replace both IEFACTLK and IEFACTRT during system generation.							
x This assembly module must be first in any load module in which it is included.							
- —_—— —_— J							

Appendix C: Load Modules and Assembly Modules 75

CONTROL_SECTIONS AND ASSEMBLY MODULES alphameric order, and the corresponding

assembly module names. Control section

The following 1list provides a cross- names are also 1listed in the preceding

reference between job management control assembly module to load module cross
section (CSECT) names, which appear in reference table.

ASSEMBLY ASSEMBLY
CSECT MODULE CSECT MODULE
NAME NAME NAME NAME
DEVMASKT IEFWMSKA IEFMSG1 IEF3MsSGl
DEVNAMET IEFWMAS1 IEFMSG2 IEF3MSG2
IEEBA1 IEECIRO1 IEFMSG3 IEF3MSG3
IEEBB1 IEEMCRO1 IEFMSGUY IEF3MSGU
IEEBC1PE IEEBC1PE IEFMSG5 IEF3MSG5
IEEBH1 IEEBH1PE IEFMSG6 IEF3MSG6
IEEGESTO IEEGESO1 IEFMSG7 IEF3MSG7
IEEGK1GM IEEGK1GM IEFNI IEF6NIJB
IEEICCAN IEEILCDM IEFNX IEF6NXJB
IEEICCAN IEEILCO1 IEFNY IEF6NYJB
IEEICRDR IEEREADR IEFNZ IEF6NZJB
IEEICWTR IEEWRITR IEFN1 IEF6N1JB
IEEIC1PE IEESTART IEFPARM IEF6PARM
IEEIC2NQ IEEIC2NQ IEFPRES IEFPRES
IEEIC3JF IEEIC3JF IEFPRES IEFPRFAK
IEEMSLT IEERSCO1 IEFPROC IEF6PROC
IEEMSLT IEERSRO1 IEFQMSSS IEFQMSSS
IEEQOTO00 IEEQOTO00 IEFRFBK IEF6RFBK
IEFACTLK IEFACTLK IEFSD001 IEFSD001
IEFACTRT IEFACTRT IEFSD002 IEFSD002
IEFAM IEF6NFCM IEFSD003 IEFSDO003
IEFBM IEF6BOCM IEFSDOO4 IEFSDOO4
IEFCOND IEF6COND IEFSDOO4 IEFO4FAK
IEFDPOST IEFDPOST IEFSD006 IEFSD006
IEFEM ‘ IEFEMDUM IEFSD007 IEFSD007
IEFEM IEF6NJEX IEFSDO008 IEFSD008
IEFIDMPM IEFIDMPM IEFSD008 IEFO8FAK
IEFIDUMP IEFIDFAK IEFSD009 IEFSD009
IEFIDUMP IEFIDUMP IEFSD009 IEFO9FAK
IEFINTQS IEFINTQA IEFSD010 IEFSDO010
IEFIM IEFJMDUM IEFSDO11 IEFSDO11
IEFJM IEF6NCJB IEFSDO012 IEFSDO012
IEFJOB IEFKRESA IEFSD013 IEFSDO013
IEFKA IEFKADUM IEFSDO017 IEFsSDO017
IEFKA IEF7TKAXX IEFSPIE IEFSPIE
IEFKG IEFKGDUM IEFSTNM IEF6STNM
I1EFKG IEF7TKGXX IEFTIME IEF6TIME
IEFKL IEFKLDUM IEFVJNSG IEFVJIMSG
IEFKL IEF6KLXX IEFVJ IEFVJIMP
IEFKP IEFKPDUM IEFVKMSG IEFVKMSG
IEFKP IEF7KPXX IEFVK IEFVKIMP
IEFK1 IEF7K1XX IEFVM1 IEFVMLS1
IEFKIMSG IEFKIMSG IEFVM2 IEFVM2LS
IEFK2 IEFTK2XX IEFVM3 IEFVM3Ls
IEFK3 IEFK3DUM IEFVMY4 IEFVMULS
IEFK3 IEF7K3XX IEFVM5 IEFVM5LS
IEFKU4 IEFK4DUM IEFVMé6 IEFVMLKS5
IEFKU4 IEF7TR4XX IEFVM6 IEFVMLS6
IEFK4DUM IEFKUENT IEFVM76 IEFVM76
IEFLINK IEF8LINK IEFVM7 IEFVMLS?7
IEFMC IEFMCDUM IEFWAQ00 IEFWAFAK
IEFMC IEF6MCXX IEFWA7 IEFWA000
IEFMF IEFMFDUM IEFWC000 IEFWCFAK
IEFMF IEF6MFXX IEFWC000 IEFWCIMP
IEFMI IEF6MIXX IEFWC002 IEFWCIMP
IEFMK IEF6MKXX IEFWDO0O0O IEFWDFAK
IEFMO2 IEF6CLNP IEFWDO0O0O IEFWDO0O0O

76

ASSEMBLY ASSEMBLY

CSECT MODULE CSECT MODULE
NAME NAME NAME NAME
IEFWD001 IEFWD0O1 IEFYPMSG IEFYPMSG
IEFWMSG IEF7MMCM IEFYP 1IEFYPJB3
IEFWSDIP IEFWSDIP IEFYS IEFYSSMB
IEFWSTRT IEFWSTRT IEFZA IEFZAFAK
IEFWSWIT IEFWSWIN IEFZA IEFZAJB3
IEFWTERM IEFWTERM IEFZGMSG IEFZGMSG
IEFW21SD IEFW21SD IEFZG IEFZGJB1
IEFW22SD IEFW22SD IEFZG IEFZGST1
IEFW23SD IEFW23SD IEFZH IEFZHMSG
IEFW23SD IEF23FAK IEFZPOQM IEFZHFAK
IEFW31SD IEFW31SD IEF6DCBO 1EF6DCRO
IEFW41SD IEFW41SD IEF6ERR1 IEF6ERR1
IEFW42SD IEFWU42SD IEF6FRRS IEF6FRRS
IEFXAMSG IEFXAMSG IEF6RFWD IEF6RFWD
IEFXA IEFXAFAK IGC0103D 1IGC0103D
IEFXA IEFXCSSS IGC0203D IGC0203D
IEFXHO000 IEFXH000 IGCO03D IEEMXCO01
IEFXJMSG IEFXJIMSG IGCO3E IEEWTCO1
IEFXJ000 IEFXJFAK INDMA IEF6NDDP
IEFXJ000 IEFXJIMP INDMB IEF6DCDP
IEFXKMSG IEFXKMSG INDMOH IEF60UT2
IEFXK000 IEFXKIMP INDMON IEF6DHX1
IEFXTDMY IEFXTDMY INDMON IEF6SCAN
IEFXTMSG IEFXTMSG INDMOP IEF6EQUL
IEFXT000 IEFXT00D INDMOR IEF6RTPR
IEFXT000 IEFXTAK INDMOS1 IEF6LFPR
IEFXVMSG IEFXVMSG INDMOT IEF6VALU
IEFXVNSL IEFXVNSL INDMOV IEF60RDR
IEFXV001 IEFXV001 INDMOX IEF6NLST
IEFXV002 IEFXV002 INDMOY IEF6LIST
IEFXV003 IEFXV003 INDMOZ IEF6INST
IEFXV004 IEFXVOO0Uu INDMO1 IEF6DDNM
IEFX3000 IEFX300A INDMO3 IEF6DSNM
IEFX5000 IEFX5000 INDMRTN IEF6CN17
IEFYNIMP IEFYNIMP INNAME IEF6NAME
IEFYNMSG IEFYNMSG SPRINTER IEFPRTXX
IEFYN IEFYNFAK

‘Appendix C: Load Modules and Assembly Modules 77

CHARTS

Chart 01. Job Management

I3 D 2 N WX KN

* *

CONSOLE
* DEVICE *

IR RN

v
X X C 2 WX KK NN HE
*

02%
L e R it ot
* MASTER *X

* SCHEDULER *

* *
363 3 I I 3 3 I I I XX KK

78

I XD T XN E NN

* SYSTEM *
INPUT
* DEVICE *
L R R 2 s 2]

HHXH
* *
* C3 *—>
* *

%33 %

XRRRKCIHRERRIRRER

* og*
[20 2 301 B % et
>* READER/ *

* INTERPRETER *
*

*
EE 22222 RS2 2222 2]

v
33 33 K D J 3 XX XX H*

* 13%
L S B O ek S e
* INITATOR/ *
* TERMINATOR *
* *

33633 I K W I I XN

v
AR KEIXRRREXHNXE
* *

* Jos *
* STEP *
* *
* *
333 I KN

v
¥ % %%

* % %k
0
w

* %k %

%% XX

I3 3 3 ¥ D4 X XK KX K
* SYSTEM *
> oUTPUT

* DEVICE *

3 3 3 3 % ¥ I XK XXX

HEEERRELRERXREARXNR
* JoB *
> STEP

* OUTPUT *

EVIC
L S e s]

Chart 02.

HRHHALREHENEXER
* *
* ENTRY *
* *

KRN NN ER R

| FROM INPUT/QUTPUT
’ SUPERVISOR

Py —

HREERB] HEEERIRRHR
*IEEBAL 03%
s e e a1
* CONSOLE *
* INTERRUPT *
* ROUTINE *
LR e e 2]

|
I
I
I

v
R C] NN RN N
* *
* EXIT *
* *
Ea 2 22T 2222 222

TO
SUPERVISOR

EEERD]HEEAREERR
*

Master Scheduler

EARHATHREERINRR
* *
* ENTRY *
* *

B R e

FROM
SUPERVISOR

[P ——

EEREEBIHREER NN
1GC0103D o6
B e e e e
* PROCESS THE *
*MOUNT, UNLOAD, *
* VARY COMMAND *
EEEEREREEEERRRRNR

|
|

v
ERERCIRHEXERERRR
* *

* EXIT *
* *
HHEEEEXHHHHR AR

T0
SUPERVISOR

FEERDIHERRXERER
*

* *

* ENTRY * * ENTRY *
* *

333NN K IR NRR

FROM
lSUPERVISOR

v
WHRNHE] KRN RN

*IGCO3D 04%

B o T
* MASTER *
* M *

COMMAND
* EXCP ROUTINE *
R e e

v
R KW
*
* EXIT *
* *
R s 22 2222 L2 S

T0
SUPERVISOR

XEERGLRREXRERER
*

* ENTRY *
* *

e

v
ERREREIHERA R RERR

* 16C0203D *
R RN KK NNk
* DISPLAY/STOP, *
*#J0B NAMES, AND *
CANCEL COMMANDS#
LR e e

I
I
I
v

EEERFIHEERRERRRE
*
* EXIT *
* *
R

TO
SUPERVISOR

FROM
SUPERVISOR

*****Hl*zill**i*l
*IEEBB1 [134
Hm KW R R R N N R
#MASTER COMMAND *<
* ROUTINE :

HEREREEEEEERERERR

v
R NPER S22 L 2
* *
* EXIT *
*

AN XX R
TO SUPERVISOR OR

R IR
*

*
ENTRY *
*

HEEREREEXERRHRR
FROM READER/
INTERPRETER

HEERASHEE RN RE
*

*

* ENTRY *
* *
EE 222222222222 23

| FROM

‘ SUPERVISOR

|

v -
FERRXBSEERER
*1EEBC1PE
Lt Bt B B B B Bt e
* EXTERNAL *
* INTERRUPT *
* ROUTINE *
R 222222222222 22 2

v
HEERCSEREREER RS
*
* EXIT *
* *
P e

T0
SUPERVISOR

Charts

79

e Chart 03. Console Interrupt Routine

IEEBA1
HHEEADHERRHE RN W
*

*
* ENTRY *
*

EE 2 e st
FROM INPU
OUTPUT sul

c2 *o

.
*o SWITCH o%
*e ON %

e o

T NO

v
HRRRHD 2R KRN R
* *
* TURN ON %
*

* FLAG *
*
*

SWITCH
S

v
HRRRRE2 R RERE XA XS
* *
* PASS IRB *
* POINTER TO *
* EXIT EFFECTOR *

*

e T T Y

l

v
L L I S)
*

*
* EXIT *
* *
KRR RN N

TO SUPERVISOR
(EXIT EFFECTOR)

1EEBA1

EEEHG2AXERERHEN

INTERRUPT *
REQUEST ENTRY *
BLOCK ROUT INE *

R

FROM SUPERVISOR

\
HRH 2 HE R R R
* *
* *
* ISSUE *
* SVC 34 *
* *

L

v
FRHEYDHERRHEERR
* *
* EXIT *

*
ERHERH KRNI R

TO
SUPERVISOR

80

o* IS *o
«* CONSOLE *. YES
FLAG

T/
PERVISOR

EAREHBIREREH NN
* *
* TURN OFF *

> * WTOR
* SWITCH *
*

*
NN RRN RN

*

v
HHERCIHERNRRRER
* *
> RETURN *
* *
IR

TO INPUT/OUTPUT
SUPERVISOR

|

Chart 0O4. Master Command EXCP Routine
1G6C03D NOTE1
FEREA] RN
* *
* ENTRY *
* *
Ea 22222222 222 223
lFROM
ISUPERVISOR
v
o¥, NOTE 2 o¥e
B1 *q B2 *o
«* DID *, *EER
¥ «* OPERATOR *. NO *
o CALLED BY F———————> % ,CAUSE AN ATTN. >* g1 *
*. MC| o %, INTERRUP— o * * *
*o o *.TION o% *XAR
*, * *e o¥
* YES * YES
v
ERC2REERRRE
* *
* READ *
* CONSOLE *
* *
* *
L2 22 22 222223
v
AEEXXD2HERERREXEE
* *
* MOVE *
< * COMMAND TO *
* BUFFER *
* *
Ea 2222 22222222223
FHXERERED R HXREX
* * X XR
* TURN ON * * *
> % COMMAND *. S>* g1 *®
* PENDING * * *
- - * SWITCH * XXX
e o ¥ L]
i NO
v
¥, o¥q
F1 P F2 * g HEFJHREREENR
- *g -* * g * *
¥ SET *. YES «%* IS MCR IN *, YES * POST
o OMMAND - S¥o STORAGE -¥ > MASTER
- o ¥® A * SCHEDULER
I * ECB *
22222222223
EENR
* * I
* F2 *
* *
*XHR
v
o¥y o¥e
G2 *, EEEERGIHFXEXXXX
* . *
*. YES * START *, YES * TURN OFF
- >*e (BLANK) o* >33 COMMAND
o ¥® *o COMMAND o% * PENDING A
*q - * SWITCH |
*g ¥ EE 222222 22 2222
* NO

* COMMAND *
* PROCESSING *
* ROUTINE *
* (16C0103D) *

*

EXER

v
HEREJ]HEEEREERR
* *
* EXIT *

*
HEEEREERXEREETR

TO SUPERVISOR

NOTE 1

NOTE 2 -

X"

R

>% J1 *
* *

IF PRIMARY OR ALTERNATE CONSOLE
IS IN USE, ENTRY IS TO IEEMXCO1l.

IF COMPOSITE ~CONSOLE IS IN USE,
ENTRY IS TO IEEMXRO1l.

MCR = MASTER COMMAND ROUTINE.

Charts

81

Chart 05. Master Command Routine

1EEBB1
HEERALHRERERERR
* *
* ENTRY *
* *
*i{&ll*T**l{ili

FROM SUPERVISOR OR
l READER/ INTERPRETER

I

v
*lbilall{l**{*
*
CONSOLE *
FLAG *
SWITCH *
*

* ok ok Kk

EHEEEEERRRERRN

l

1
v
o¥e
c1 *o
o%¥ WAS ¥, XN
¥ COMMAND *, YES * *
o ISSUED FROM .
*, INPUT %
*STREAM. * XXX
*, oF
* NO

P —

REXEAD] HEXXHRR
TURN ON ¥
COMMAND *
PENDING *
SWITCH *

*
EREEEREI XL RN

* Kk kK ok

R
*
* E1l *—>
* *

XXX v

«* DID %o XX

*, o ERRE

«* WAS ¥, EEEE

eISSUD. EREX
E, o

L 22

* *

>* A3 *

*

RN

o¥e
H1 *o
o¥ EOF %, XXX
«* CONDITION *. YES * *
. IN . >* D3 *
*. READER %

*q * EEXR
Ea 2 2
* *

HEEER

v
EEERRK]RREEERR
* *

* TURN OFF *
* CONSOLE > %
* FLAG * *
* SWITCH
EEEREEERRREREE
XXX
* *
* K2

8 2 *i****

AEREK2HEXERRRER
* *

A *
* | B b tebetbtobittad
1 TO SUPERVISOR OR
*

RN

* % Xk
»
w

* Kk

XXX

v
i{’AS*{}Ii{}*
*IEEICCAN

L s s = S *
* OBTAIN ANY *
*INITIALIZATION *
* COMMANDS *
LR e e e s s

B3 *o
o¥ ANY *,
«*INITIALIZA-*, YES
oTION COMMANDS.———]

*q ¥
o o |
*, o v
* NO X%
*HRR 1 *
* * AS
* C3 *—> *
* * R
XXX v
o%o
c3 *,
o* IS %,

o READY *o NO
%o MESSAGE TO o¥%—
eBE ISSUEDe
* o¥

o« ¥
* YES
*RXR |
* * ‘
* D3 *—>

EEER

v
HEEREDIHERERRER RN

*IEEGK1GM

B e It
* wTO *
* READY *

* *
EAZ 22322 222 R 2 2 822
X R

* * |<
* E3 *—>

* *

ERER
v
ERREREIRRRRE XN
*

TURN OFF *
CONSOLE *
FLAG *

*

KKk kK K

SWITCH
HREXEEEXEERAR

v
****lF3**l***l

N ON *
* MASTER *
* COMMAND *
* ROUTINE *
* SWITCH *
EXEEEREEXERERN

v
FHRGIEHEER XX

* WAIT *

* FOR *

* TENTI *

*INTERRUPTION *
* *

EE 22222 222 2]
|
v
R R TR RR
* *
* TURN ON *
* CONSOLE *
* FLAG *
* WITC *
FEERRRRRRERRRE
|
v
FEEREJITEERRRRR
* *

* TURN OFF *
* MASTER *
*COMMAND ROUTINE
H *
EEEREREREARRER

v
EXER

RXE

* ok ok

{i***BAi*il*ll*ll

*IEEGKXGM

e &—*
* wTOo *<
* ILLEGAL *

* COMMAND *
HXERREXREXRRERRR

v
X XK

* % %
I
[

LR

FH XX

&****EA********}*
*!EEGKIGM
—— l—i—*—i-*-{—*
& *<
* ISSUE SET *
* COMMAND
&*‘*i*l*******l**
ERER
* *
>% E3 *
* *
EEXR
EXFLARRERER
* *
* 1SSUE *
svcC
* 34 *

*
I I

E 2

XXX

EEER

*

* K2 *<
* *

FEER

XN

* K ¥
>
(4]

* Kk

RRR

v
11;&{A5i§i****;i*

MOVE *
M COMMAND *
* TO LOCAL *
* BUFFER *
* *
RAZ 2222222222 2222
XN
*
* BS *—>
* *
L2 2 2] v
.
BS *o
* IS IT =*,

NO % A VALID *
. COMMAND o
*. .

*e o
*e
* YES
*o
ID %,
ENTRY *. NO
FOLLOW o ¥—
¥
¥
o
I YES
|
v
e¥o
05 *-
HA .
¥ THE DATE *o YES
*o EEN .
*q SET ¥
*g o ®
*e o#
* NO
v
o¥e
ES *o
e*IS THIS*.

NO o% A SET *o
* o COMMAND o
*q ¥
*o o
*e o

* YES
<
*o
NO *o
¥

.

.- ¥
* YES

I

v
R G SRR NN NN
* LINK TO APPR *
*CDMD EXECUTION *
R

OUTINE *
* (lEEGESTOEgR *

XX
* *
* HS *—>
* *
XA v

oo
HS %,

% WAS ¥,
NO <% COMMAND #*,
%o ISSUED FROM %
*o CONSOLE o%

. .

*e o®

t *® YES
v
XX

XX

Chart 06. Write-to-Operator Routine

IGCO3E NOTE 1

LR RS VRSS2 22 S
* *
* ENTRY *
* *

36 3 3% 9 3 3 I I 33 K % H

FROM
SUPERVISOR

v
AXEXAB2ARERXERENN

PSEUDO-
DISABLE

% %k %k %k %
* %K ok %k %

336 3 3 3636 3 I X KN

v
*****cz*&********

*
: WAIT *
* FOR *
* FREE *
* UFFER *
333 33 363 3 3 % I KX XX

}****Dz*X********
* MOVE *
* MESSAGE *
* TO RESIDENT *
* BUFFER *
* *
* *

I3 I I3 I K R XXX

Po—

ERE2HX AR R

* WRITE ' *
* MESSAGE *
*

* ON
* CONSOLE *
* *

336 33 3 3 3 KX K

W33 XX G 2 W KRR
* *
PSEUDO *

I3 3% K 3 ¥ XX X%

* *
33363 36 3 3 I I K XX

L2 2 23

ko
>
S
* ok ok

L X 24

EZ 2SS FVE LRSS S s s
*

* WAIT FOR

* ATTENTION
* INTERRUPTION
*

%k %k % %k %

36 3 I I NI I AKX R

v
HREERDEXFREXRRER
*

*
* WAIT *
* FOR *
* CHANNEL *
* END *
L2 s S R S s

<
|
v
FXCHHHXEXRR
* READ *

* REPLY *
* FROM *
* CONSOLE *
* *

3 % 33 36 % 3K ¥

v
*****DA**********

FOR
CHANNEL
END

% ok Kk ok k

*
*
*
*
*
*

3636 3 3 I I3 I XX

*<

E4 *o

¥ *o NO
*o VALID o F——
*e REPLY o%
*

Xy o
* YES

v
ER 22212 222y S
* *
* MOVE REPLY *
* TO USERS *
* AREA *
* *
* *

3 3 3 3 I I I X XXX

v
FHGH XX RXH

* POST *

*
* ENABLE *<
* *
*
*

*
s R 22 22 22 22 2L 2]

i
v
3 3 H 2 W KX
* *
* EXIT *
* *
3333 X X I XX H
TO SUPERVISOR

% USERS *
* ECB *
* *

33 N X X XXX

NOTE 1 IF PRIMARY OR ALTERNATE CONSOLE

IS IN USE,

ENTRY IS TO IEEWTCOle.

IF COMPOSITE CONSOLE IS IN USE,
ENTRY IS TO IEEWTRO1le

Charts

83

Chart 07. External Interrupt Routine

IEEBC1PE
AT RN NN
* *
* ENTRY *
* *
RN IH R
ROM
SUPERVISOR
v
o¥e
R RC DR NRN N c3 *, HERRKCHEREXRER
* TURN ON * o* IS *e * TURN OFF #*
* ALTERNATE #* NO o* ALTERNATE #*. YES * ALTERNATE *
* CONSOLE b St Y CONSOLE o ¥ > CONSOLE *
* SWITCH * *e SWITCH o% * SWITCH *
* * *o ON o *
TR N e o¥ HREEDERRERERER

v
AXEEAD IR XA XREH
* MARK UCB

* POINTER
*

1

\
KKK DGR K KN KN
MARK UCB
POINTER

*

*

ABLE, *
*ADJUST PRIMARY *
* *
*

A9 I I I I I XXX

*o
¥ *e YES
*e o H——
- ¥
v
LR R R doicE £ 2 L 2 22

* TURN ON *
* EXTERNAL *
* INTERRUPT *
* SWITCH *
* *
*

NI N

<

v
HEERGIH AR ERR

* *

* RETURN - *

* *
HRFFERERRLERERR
TO SUPERVISOR

84

* *
* *
* TABLE, *
* ADJUST ALTER. *
* *
* *

P33 I IR

Chart 08. Reader/Interpreter

I3 33 % C 39 3 I3 XKk

FHHRIC 2NN KN NN R *IEFK1 09 % X———l
* * W W W W W W W N

* ENTRY W > % READER/ *X
* * * INTERPRETER *

T e #CONTROL ROUT INE % X——
FROM 3693696339696 3 R
MASTER SCHEDULER,

INITIATOR/TERMINATOR, OR

NUCLEUS INITe PROGRAM

v
33 D F NI KRN
* *

I3 K B4 W NN H NN

*IEFJM 10%
L T L S Tt Bt B St
—> % JoB *
* ROUT INE »*

* *
I I I I I RN

36 3 C 4 W 3 N 3 33 %%

*IEFEM 11%
R e e e
>* EXECUTE *
* ROUTINE *

* *
e 3 36 I 3 W I I NN

R DG RN NN R

* EXIT *
* *
E2 222222222 222 T3

*INDMON 12%
W Y I I W W W W W
L—>* DD *
* ROUTINE *

*
TO MASTER SCHEDULER OR KNI NN

INITIATOR/TERMINATOR

Charts

85

Chart 09.

IEFK1
REEEA]REEERREER
* *
* ENTRY *
* *
R 22222 22222222

FROM NIP

v
‘INI{'IB‘ E2 222222223
* INITIALIZE *
* MAIN STORAGE, *
PROC_INIT CMDS.
* OPEN SYSTEM #
*INPUT DATA SET *
LS 2222 222222222223

v
li***cll*&{i.*’ll
*IEFPRES

-l—l—l—l—’—l—l—l
INITIALIZE VOL.
* ATTRIBUTES *
* FROM PRESRES *
LS 222222 22222222 2]

EERE
* *
* D1 *—>
* *

R
I

GET A
* STATEMENT *

PROC LIBRARY
HEEREREXERRRRE

IEFMF
*o
o* JOB ¥,
o* STATEMENT *,
« OR JOB CONT
*oSTATEMENT o %
*

.

*

-
*y o¥
* NO

v
¥,
F1 *o
o* EXEC #*,
e¥* STATEMENT #*,
*¢0OR EXEC CONT .
*oSTATEMENT o *
*o ok
Ee o¥
* NO

¥
Gl *.

DD
¥ STATEHENT *o
*¢ OR DD CONT %
*oSTATEMENT . *
*, *
*, o¥
* NO

EFKA v
HEFRERD] HEEREERERRR

AFTER IPL

YES ¥ *

>* G3 *
* *

XEER

YES
V TO EXECUTE
*%XXXROUTINE
*11 *
* A2%
* x
*
YES

v
%x%¥%TQ DD ROUTINE
*12 *

% A3*
* *
*

. . *%¥*¥ROUT INE
*, o ¥ *05 *
* NO * A1%
* ¥
1
v
1EFMC ox.
*g
EEER
o% NULL *. YES * *
*e STATEMENT % >% B3 *
*o o * *
o o EEEE
P
* NO
{
!
IEFKD v
R 222 TSR 22 223
* * EXER
*ISSUE MESSAGE. * *
ERB NOT * >* D1 *
* BE RECOGNIZED * * *
* * La 2 23

FEEEEERREEERARERR

86

TO MASTER SCHEDULER
V_ MASTER COMMA

* KK

1EF

NOT
—>
i

ERER

XX

Reader/Interpreter Control Routine

KG IEFSD008
EERRATERERRRERR XN AL N RN
* * * *
* ENTRY * * ENTRY *
* *
KRR RE R e e
FROM JOB, FROM INIT/TERM
EXECUTEs DDs 0B OR STEP
OR COMMAND TERMINATION
PROCESSING ROUTINES
|ROUTINES |
v v
E 1 o¥e ¥,
*eo B4 *q NOTE 1-PROCESSING OF
o¥® CAN ¥, STATEMENTS STOPS
+*¥ADDITIONAL *, YES Jos *4 NO WHEN A JOBs DD *,
%o STATEMENTS BE%*—— DD DATA, OR NULL
.PROCESSED« STATEMENT IS
*g - ENCUUNTERED' OR
*e o¥ v WHEN AN
* NO *RER * YES DATA SET DCCURS
* | * *
* | * D1 *
* *. *
EXXR
v v
o¥ae o¥o
c3 C4 -
¥ IS - -* IS *o
«% COMMAND #*. NO o8B *e NO V
*eo PENDING - ¥— -NOT!FICATION o ¥—
*e SWITCH ¥ *eo SWITCH ¥
*e ON o *eo ON o%
*e o¥ . ok
* YES * YES
v v
EEEERDIHHERHEERXR XADLERRERRE
IEEBB1 os * *
Fm R RN RN * wTO *
* MASTER SCHED. * * JOBNAME *
MASTER COMMAND # * ENDED *
* ROUTINE * * *
P T T R A R HERRK
< ,(
|
v v
E4
*lEFSDOOl * * GET STORAGE *
H— KN XN — N * FOR RDR/INTRP *
*WRITE OUT RDR/ * * WORK AREA *
INTRP WORK AREA * AND TIOT *
* AND TIOT * *
|
v
*XXXXTO INIT/TERM
*#14 *SYSTEM CONTROL
* A3*ROUTINE v
* *® FREERFLRERRRER RN
* * *
* PLACE WORK *
* AREA AND TIOT *
* INTO STORAGE *
xRN AREA *
* * B i
* G3 *
* *
EEEE
v 1
oo v
G3 *. ERERRGARRERHENEER
o ¥ *, * *
<% FIRST JOB ¥, YES * PLACE TIOT *
*o STATEMENT o ¥—y * ADDRESS *
*o AFTER IPL % | * INTO TCB *
*q - | * *
*o o¥ v EEREERERERRREIERN
* NO XXX
| %10 *
| * A3%
* * l
*
TO JoB 1
ROUTINE v
ERHA XX RERRR
* OPEN GET *
*o NO *ACCESS METHOD*
o *— * AND PROCEDURE *
* * PDS *
l * *
v ERERREERERN
XXX
* *
* B3 *
* *
XXX
| v
v ¥
E kT s Ja *,
!EFSDOOI o *o
F— RN R R NN «¥% WAS ENTRY ¥, YES
*'RITE OUT RDR/ * *o FROM JOB o
INTRP WORK AREA *o TERM ¥ v
* AND TIOT *. * XXX
;*&&*{*&*n{*& X, ok %10 *
1 * NO * A3
* *
2 | .
v TO JoB
EEERR l ROUTINE
%40 *
* AL* 1EFKA \
* * ERERRKLHERHEREERR
* * READ INPUT *
* STREAM TO *
TO INIT/TERM * NEXT CONTROL *
JOB TERMINATION * STATEMENT *
ROUTINE * *
HEEEEEEERERREXREN

l

v
EEEX

XX

Chart 10. Job Routine

1IEFJM
N ATZ NN
*
* ENTRY *
* *
IR NN

FROM READER/
INTERPRETER

CONTROL ROUTINE

INJMNCC1 v
XHHE BTN RNN NN
* *

*
INITIALIZE *
JCTs ACT *
*
*

*
*
*
3636 3 I 3 3 I I X

<
INJMNDA1 v
HHEREKCIHERERRRNAR
* *
* SCAN JOB bl
* STATEMENT *
* FOR KEYWORD %
* PARAMETER *
LR e e e S

I
I

v
D TR XR
*

*

* PROCESS *
* KEYWORD *
* PARAMETER *
* *
Ea 222222222222 22 23

v
o¥e
E3 *o
«*ARE ALL*,
«* KEYWORDS
*o PROCESSED

TO READER/
INTERPRETER
CONTROL
ROUTINE

Charts

87

Chart 11.

1EFEM
E2 22V VEZ S 22 2223

* ¥*

* ENTRY *

* *

3 363 I I KX XX

Execute Routine

FROM READER/
INTERPRETER

& ——.

o¥ o
B2 *o
«* DOES *,
«*STMNT CALL *. YES
e A CATALOGED eo
#o.PROCEDURE « *
*q o¥
Xy o
* NO
*XXR i
* *
* C2 *—>
* ¥*
*HXH 1

v
FHHERCD HHHHHNXXRR
SCAN EXECUTE
STATEMENT
FOR KEYWORD
PARAMETER

* ok ok ok Kk ok
%k kK ok k

36 3396 33 3 XXX

|
1
\
o¥,
D2 *o
¥ IS *o
«*THIS STMNT *, YES
*o FROM A o
* o PROCEDURE o« *
- ¥
#, ¥

* NO

CONTROL ROUTINE

FHHRHB IR NN RN RNR

* INDICATE *
* THAT A *
>%* PROCEDURE *
* IS BEING *
* ALLED *
HEEEREEFRARRRREHR

KN D WX R
* *

* MERGE
>% OVERRIDING
* INFORMATION

* % %k %k

*
I 3369 336 3 H XN

J

l<
|
v
EEEXRRE XX HXXE XX RS
*
PROCESS

*

* KE YWORD
* PARAMETER
*
*

* ok ok k ok kK

363 33 I XX

|
|
|
v
o ¥ g
F2 *o
o ¥ *q
o ¥ ARE *o NO
*oALL KEYWORDS o#
#* o PROCESSED %
*, o
Xe o
« YES

O H
>* C2 *

33 3% 3¢

XK B RN XRE
* *

* SCAN EXECUTE
>%* STATEMENT FOR
* PARAMETERS

% ok ok ok ok

*
363636 3 3 3 I 3 XX XH

A
33 I H I C G N F XN NN
*

SAVE
OVERRIDING
INFORMATIGN

36 36 3 3 3 3 36 33 I I 3 XX

* ko kK
* Kok K

| <
v
L2 2 23
*09 *
* A3
* *
*

TO READER/

INTERPRETER
CONTROL ROUTINE

88

Chart 12. DD Routine

INDMON
ERERAZERRREHR AN
* *
* ENTRY *
* *
R
FROM READER/

INTERPRETER
CONTROL ROUTINE

B3

% IS
YES % THIS A *o
%o PROCEDURE ¥
*oOVERRIDE %
*o

HEARRCIHRREN RN RN
*

*
* INITIALIZE *
* JFCB,SIOT *
* *
* *
R s e s]

>
| e
1

v
FRREEDIHFHREHHERR
* *

* SCAN DD *
* STATEMENT *
* FOR KEYWORD #
* PARAMETER *

R o e]

v
HEEERET AN RRIE T
* *
* PROCESS
* KEYWORD
* PARAMETER
*
*

* ok kX

R s e S S

i
v
¥,

F3 *e

o* *e
% ARE ALL *. NO
%o KEYWORDS o%—

#oPROCESSED %
*e o¥
*e

o*
* YES

INDMOH LV
HERRRGIHHRHHHAXXR
* *

* COMPLETE JFCB
* (REFERENCES)
*
*

K ok K

Ry

!

v
INDMRTN ¥
H3 *o
¥ IS A ¥,
YES «%* PROCEDURE #*.
———*«0OVERRIDE EX— <%
*o T .
*e o
* NO

v
WH IR P TR NN RN NN
*TEFQMSSS
A Fm N Fm R R R
*#WRITE JFCB AND *
* SIOT ONTO EX— *
*TERNAL STORAGE *
LR R

>

v
*REEE
*09 *
* A3%

* %

*

TO READER/

INTERPRETER
CONTROL. ROUTINE

Charts 89

Chart 13. Initiator/Terminator

W A T KN
* . *
* ENTRY *
* »*

3 IR R

FROM READER/
INTERPRETER

v
LR RS R KRR 2 2222 22
* 14%
e e e e Y W W — N —
* INITIATOR *
* CONTROL *

*

*
33 3 I KN WX E XN

v
3 3% 33 % C 3 % KX XX
* 25%
LT 2ot Bt R s T R 2
* ALLOCATION *
* AND SETUP *

* *
3 33 3 3 3 I I I XWX XX

l

v
KRR T RN NN RN
* 36%
L R e B s Dt ST
* STEP *
* INITIATION *
* *

33 I I I I I XXX

I
I
I

|
v
I E F K kWK XXX
* *
* EXIT *
* *
3363 K W I I XXX

TO PROCESSING
PROGRAM

ER 22 aacE R 2 L L2
* *
* ENTRY *
*
I3 36 36 I I I XX
FROM
SUPERVISOR
OR AN INIT/TERM
ROUTINE

i
HRHERGIH RN XX NR
* 37*
L e e e SR
* *
* TERMINATION *
* *

63 I 36 I I I XXX

v
HEARRHIERERR RN
* *
* EXIT *
* *
IR N RRR

TO READER/

INTERPRETER OR
INITIATOR CONTROL

90

Chart 14. Initiator Control

I AT
* *
* ENTRY *
* *

RN RR
FROM READER/
INTERPRETER OR
STEP TERMINATION
ROUTINE

*****33*1**§*****
TEFW21SD 15%
RN R NN
*SYSTEM CONTROL *
* ROUTINE *

* *
336363 3 I 36 3 I N I XXX

v
ERERRCTHHRRRRRRER
IEFVK 16%
L s DT B S S
* EXECUTE STMNT *
*CONDITION CODE *
* ROUT INE *
LR s s a2

v
HHER XD IR XHNNRAR KRN
*IEFVM1 17%
L ek L L SR SRR
* JFCB *
* HOUSEKEEPING *
* ROUTINES *
ERREXRREEERERXRRH

v
EXRKREIHRXREREER
* *
* EXIT *
* *

NN K
TO ALLOCATION
AND SETUP

ENTRY IS FROM THE READER/INTERPRETER
WHEN A JOBs NULLs DD *, OR DD DATA
STATEMENT 1S ENCOUNTERED IN THE
INPUT JOB STREAM

Charts

91

Chart 15. System Control Routine

IEFW21SD

HHI R AL RN
* *
* ENTRY *
* *
L e

FROM READER/
INTERPRETER
OR STEP TERMINATION
| ROUTINE

v
B] XKW KRR
INCREMENT
STEP NUMBER
BY ONE

3 39 3 I 3 I3 36N

* ok Kk Xk k

3*
*
*
*,
*
*

|
v
*

o¥,
c1” Tx. HRHERHC RN HHRRHEXH Cc3. *e EREEKCHERHEERERRXR
¥ *q * * o* . *IEEGK1GM *
o IS THIS *., YES *PLACE JOB NAME * «* IS JOB *o YES W W N R N
THE FIRST STEP. >* *. >¥¢NOTIFICATION o¥———D>% WTO JOB NAME *
*, OF THE % * INTO SJaQ * *oSWITCH ONo.* * STARTED *
¥o JOB o% * * *, ¥ * *
*e o 2 e] He o XXREEHR LRI RENR
T NO * NO
’ v
<
v
e¥a
[>31 *e EXXREDD HHXRNX XXX
¥ *o * *
«¥JOB-FAILED *, YES *REMOVE JOB NAME*
*o INDICATOR ¥ * ¥*:
*o ON o * FROM SJQ *
* .o ¥ * *
o ok I e v
* NO HRRER
*38 ®
!, % ALR
v * *
L2222 *
*16 * TO STEP
* AL¥ TERMINATION
* ¥ ROUTINE

*
TO EXECUTE STATEMENT
CONDITION CODE
ROUTINE

92

Chart 16. Execute Statement Condition Code Routine

1EFVK
WAL W R
* ENTRY *
* *

I RN RN

*e

c1
*

- *o
«*CONDITIONS *. NO

v
*xxx® TO JFCB
*17 * HOUSEKEEP]NG
* A3* ROUTIN

*

.73 BE CHECKED o ¥————y
o

*,
*, o

g ok
T YES

v
VK220 o¥e
D *o

o* DOES %o
*COND FIELD *. YES
OF SCT CONTAIN.
-, 25RO .
X, o¥
*"NO

* X
* *
* E1 . *=>
»* * |

i*%**gl*X**»u***;
* !EFQMSSS

R B e et et *—*—*
*PLACE APPR SCT *
* INTO STORAGE :

* AREA
HAEERHHEE KRN RN RN

R
*

v
EXARE TO JF
*17 * HDUSEKEEP!NG
* A3% ROUTINES
* %

*

VK650
R ED D HE IR
* TEFQMSSS *

L e

—————)*P%ACE FIRST SCT*

NTO STORAGE *
*

AREA
HRE KRN N RN AR

*

* F1 %>
* * <
EREX]

VK240 v
FERERE L REREERERHHR
* COMPARE *
*CONDITION CODE ¥
* WITH RETURN *
* CODE hd
*
*

*
EREEEEIEEERIRRHR

v
VK400 o¥e
G. *o

«* DO *q
<¥RESULTS OF %o YES
o COMP AGREE %

eWITH CONDo
*oOPER %
¥e oF

* NO

*

“x. YES
.REQUEST GIVEN-

|
v
VK260 *o
*.
o *o
<*HAVE EIGHT *. NO
#. CODES BEEN .
*o TESTED %
* *

VK450
EXRRRG2RHXEXER HEXERGIHERERE RN
* * *

*

*SET STEP STATUS * *
>%* FIELD OF SCT ¥——————>% JSSUE MESSAGE *
* TO CANCEL % * *
* *

* *
FHEFAEEERREXENR Ea 22222222222 222 3
L2 22
*17 * |
v
LA S22
*38 *
* Al¥
* *®
*
T0
— STEP
I TERMINATION
. ¥ ROUTINE
e o% v
* HRXR
*, *
* E1 ¥
* *
Ea 223
o¥o
J2 *.
- * o XX
«%* ANY MORE ¥, YES ¥ *
>%*o COND CODES -
- o
e ¥
* g *
* NO

- .
VK280 ¥e o¥
VK300 * YES
<
v
XXHRR
%17 *
* A3®
* *

*

TO JFEB HOUSEKEEPING
ROUTINES

Charts

93

Chart 17.

JFCB Housekeeping

EREERB2EX KRR RN XX

Routines

RERRATERERERRER
* *
* ENTRY *
* *

EEREREERERE RN

FROM EXECUTE
STMNT CONDITION

v
EEXRRBIERERERERHR

*IEFVM6 24% *IEFVM1 18%
Bt B St B T B e e Lot St B B e T 2 e
r——————%* ERROR MESSAGE *<: * JFCB
v * PROCESSING * * HOUSEKEEPING
EREXX * ROUT INE * *CONTROL ROUTINE*
*38 * EE 22222 22222222223 E2 2222222222222 22
* AL* TO APPROPRIATE
* PROCESSING
* ROUTINE
T0 STEP
TERMINATION
ROUTINE

CODE ROUTINE

)

|
v
E2 22 2]
*26 *
* A3
* *
* TO ALLOCATION
CONTROL ROUTINE

X
HRRRRD]FEEHXRERR
*

1
L e s
* ALLCCATE
* PROCESSING
* ROUTINE
XEEXERXREEERRRERR

94

v
* L
9% *ITEFVM2 20%
* KRR RN KRN
* * FETCH DCB *

* *
* * *
* RN EIN NN NN

i

v
R R

PROCESSING *
ROUT IN!

B3

XXX

* ok
* Kok

&*&*¢93*¥&*i¢}*i&
*IEFVM3 21%
— kR R RN
* GDG SINGLE *
* PROCESSING *

* ROUTINE *
L s R e T

I

v
*HXR

* % %
@
w

* ok K

EERR

!

v
* D5
*IEFVM 2% *IEFVMS 23%
R it ek 2 LN Hm R W e N R W R
* GDG ALL * *PATTERNING DSCB*
* PROCESSING * * PROCESSING *
* ROUTINE * * ROUTINE *
|
v
XXER ERH
* * * *
* B3 * * B3 *
* * * *
HEXR ERE X

Chart 18.

JFCB Housekeeping Control Routine

IEFVM1
I AL IR
* *
* ENTRY *
* *
R 2222222222223 EXEER *XXE *
FROM EXECUTE * * * * *
STMNT CONDITION * B2 * * K3 * *19 *
CODE ROUTINE * * * * * E3%
XN Eaz 2 R
A A
v v | ' YES
¥, o¥q ERROR o¥e
B1 *e B2 * g WD T NN NR BS *g
ox 1 *. o *. *IEFVM3 21% o . X IS ¥,
% JFCB HSK *. YES * SINGLE %o YES LINK *—¥—¥—¥—¥—¥—%_¥_% <% DISP OF #%. NO % VOL INFO *.
#o. INDR SET TO o¥%—— *o GD: o ¥o————>% GDG SINGLE > %, DATA SET - ¥ >, FOUND VIA -*
* COMPLETE o% I *.SPECIFIED.* * PROCESSING * *. NEW % *.PDQ ENTRY.®
*e . *e o* * ROUTINE * *o o* *e o*
*y o v *, ¥ RE2 2222222222222 2 Hg o *y ¥
* NO % * NO * *
* I R E 3 * R 22
* KS * * * * * * * CATALOG
* * * U3 *<— * K3 *<— * C5 *—
EE 2 23 *
v v . EX YES ET Y ET 2 v
ok, o¥a o¥e ERROR o¥e
Cc1 *q c2 *q 3 *4 WK C G KRN cS *q
o% ANY %, o* *o o *VOLSERS*, *READ IN JFCB IF* o *e
NO «*SIOT TABLES*. «* DISP OF *, NO «*0OR UNITREC %, NO #*NOT IN STORAGE,* NO % ARE ALL *o
. T0 BE o *,DATA SET NEW o% >%. DEVICE SPEC >* SCAN PDQ FOR * *o SIOT/JFCBS o%
! * ¢PROCESSED * *o ¥ *o BY PGMR % #* THIS DSNAME * l *oPROCESSED.*
* g ¥ *q o¥® * o ¥ * * *g o
v e o¥ Ko oF *e o¥ I I NN v *e o
EEER * YES * YES EXRE * YES
* R Ea 223 * *
K5 * * * * * * E1 *
* | * D2 *—> * K3 *< * *
*RXR] * * *XXK |
v R v XX v
N ke ERROR *
D1 *, D2 *, ERREXDIERXREXER RS
o* . * *o *1EFVMS 23%
OUG *q . REF %4 NO LINK ¥—%—%—%—¥_¥_¥_%_¥%
STORAGE FOR * >% PATTERNING * *

eWORK AREA.
*

DSCB PROCESSING

. o* * UTI * *. . . .
*e oF v W RHNRERRRR v *e o¥ *e o
* YES HRNR XXX * NO * YES
XEER] * * | *19 * XXX
* * * K3 * { * E3% * *
* E1 ¥—> * * l l * * * ES *—>
* * EERR < * * *
R v NOTE 1 HRXE
v o*.
R ISR T R E2 %, HHERRESHERNRRRNR
* * o* *, *RER * READ NEXT GDG *
ERR¥* READ IN * YES «% VOLUME *. * *ERROR* BIAS TABLE _ *
* NEXT SIOT * e« AFFINITY o* * K3 *< * BLOCKs UPDATE *
* * *oSPECIFIED.* * * * BIAS COUNT *
* * *. o *RER * IF REQUIRED *
EE 2222222222222 A\ *e o 36 336 3 36 3 3 3 3 I I X
L2222 * NO
*19 * |
* Bl
* *
* |
NOTE 1 v I v
¥ v ¥
F2 * g, R RN RN FS * g
¥ * g * * LE 2 23 - ¥ *g
YES o% SUB- *e * * OTHER* * o* WAS *a
r——————%. ALLOCATE o* —% LOCATE * >* g4 * e UPDATE o*
v *.SPECIFIED.# * * *<REQUIRED o%
ERRR R *g ¥ * * E AR *q ¥
*#19 * He ¥ RN NE *e o
* B3# * NO IREG 15=12 * YES
* ¥ | |
*
NOTE 1 v l
hidad HLINK
v * * SUCCESSFUL |
o¥g * g3 * I(REG. 15=0) v v
G *. * * G3 G4 G5
% IS %, *RER *xER * OBTAIN vOL * *IEFVM4 22% * *
* INFO FOR * ERROR¥—¥—¥—¥—%—%—%—%—% |ERROR * REENQUEUE *
>* JFCB AND SCT * * GDG ALL * * BIAS TABLE *
A * FROM vCB *] * PROCESSING * * BLOCK *
* * * ROUTINE * * *
v
EE 2 2
i | * * l
| | * K3 * * |
] ' * *
R 1
‘ | >v
1 a¥e
I | HS .
ok *o l «% ANY %,

o 1s *. NO «* MORE *e
*o FETCH DCB % %o BIAS TABLE %
.SPECIFIED *. BLOCKS %

* g ¥ E2 2223 - .

H, oF *18 * He ¥
* YES * J3% * NO

i | 3 ,
| I * <
|LINK

|

|

v
I N s
* *

v
HHK Y LRI RR
20%

*IEFVM2
W B e e o B e e N * REENQUEUE *
* FETCH DCB e ———> % JFCB *
* PROCESSING * A * *
* ROUTINE * | * *
3336 I I IR N I 3NN NN NN
ERROR * iERROR
* ¥
> *18 * |
* g2% |
RS 22
i
t, !
v

v
HEEARJSHEXXE RN RXR
* SET JFCB HSK *
* INDR IN SCT *
* TO COMPLETE, *
RELEASE STORAGE
* *

v
R N e T
* *

* MAKE PDQ *
>%* TABLE ENTRY *

A * IF REQUIRED * l
*REENQUEUE SIOT *

NI NN N NI NNHN NN XNR

NOTE 1 CONTROL IS PASSED
TO THE JFCB HOUSEKEEPING
ALLOCATE PROCESSING ROUTINE

ERXR ERROR
* * LS 223
#* J3 *
* * XCTL * KS *—>|
E2 2 2] * *
R R
\
K3 K4 KS
*IEFVM6 24% * * *
KoKk KKK * SET DISP * * SET ACTION
>* ERROR MESSAGE * * TO NEW * * CODE_INTO *
* PROCESSING % * * * LCT TABLE *
* ROUTINE * * * * *
R 70 STEP | TO ALLOCA-
* * TERMIN— l TION CON-
* K3 * ATION RTN TROL RTN
* * v v v
EE 223 LE 2 2 2 * % £33 2 2
%*#38 * * *26 *
* AL® * D2 * * A3%*
* * * * * *
* B H *

Charts

95

Chart 19.

Allocate Processing

Routine

YES

R KBS MR NN R
* *
*SET INTRA STEP *
>% SUBALLOC BIT #*
* IN sIOT *

*
R e R

>
v
oo
c5 *e
. *e
«% VOL SER *. YES
%o AVAILABLE o%——
g o

*4 ¥

HHAEEDSHK KRR RRNRR
* SET REF DD *
* INTO CURRENT
* SIOT FOR

* ALLOCATE

*
*

FIN NN RERNR

* % kK

—_—
v

o¥e
Fs *e
*

. *o
NO o* INTRASTEP #*.

>* S10

* o SUBALLOC o*
eSPECIFIEDe

*o ¥

*o o®
* YES

v
HHRKKGSENR TR X NN
* SET REF DD
* INTO CURRENT *

T FOR *
* ALLOCATE :
*

*
HERREINEEN AN TR R

RE 2 23 L2 220 I RER
*19 * *19 * *19 *
* B1% * B2* * B3%*
** * ¥ * %
* * *
’ |
v i v
ok, v o ko ok
1 *o HHERRB2HREREXNRER B3 *q B4 *q
«*DeAs OF %, * PLACE * S *o T *o
e* VOL REF/ *. NO * REFERENCED * «* INTRA- *, YES ¥ 1s *o
#eSUBALLOC FLD o%——————>#% SIOT AND JFCB # >* ¢ STEP SUBALLOC.* >%, SUBALLOC o *
*e IN SIOT o% * INTO STORAGE * *e OR VOL * *SPECIFIED«*
IS 0 o% * AREA * *o AFF o% *eo o
o o¥ NN NN e ¥ 'I'L ¥
* YES ERROR * NO DIFFERENT *
I i STEP
v
L2 2 2]
l I
v *18 *
ok * K3* oy
c1 *o * ® Cc4 *e
¥ *o * % ENTRY #,

«¥% POINTER YES PDQ *o
*e IS TO VOLT o¥—— FOR THIS ¥
*o TABLE % I *o DSNAME o
. - *o .

*e o v e ok

* NO, ET T2 * YES
| DSNAME *18 ¥
ITABLE * J3¥
* *
I *
v v
HHRHHD] IR KRR HHEERDLERRHRERRHR
* * * MP Al *
* READ JFCB * * SI1I0T ADDR IN *
INTO STORAGE IF# * PDQ ENTRY *
* NOT THERE * *WITH REFERENCED#*
* * RN * s *
I I I NI IR R *19 * 33 I NN N
* E3%
* *
*
v |
¥ v
E %o HEARHETHERREEERER
o* ENTRY * *
«* IN PDQ *e YES * READ IN *
o FOR THIS . >% CORRESPONDING *
*o DSNAME ¥ * PDQ BLOCK *
- - ¥ * *
Koy o¥ KN N AR RN
* NO
LS 2 2
* *
* F3 *—> v
HHXR
L2 L) * *
v * H3 *
ERE RSt S 2T 2222 S 2 * *
* PLACE * FRAR
ERROR¥* REFERENCED *
—————% SI10T AND JFCB *
v * INTO STORAGE *
NN * AREA *
*18 * e e e 2]
* K3%
*
*
v
v o¥a
FHGLRREXREE G4 .
* * o*

* * ERROR 1s -
* LOCATE *: *o VOLUME ON ¥
* v *o TAP -

* HRERR *o o*
FHEERR NN *18 * o e
| SUCCESSFUL * K3%* * YES
] * ® EREE |
* * *
* H3 *—> v
. XXX
v v
FERERH]HEREFHRN R e N T R
* * * *
* GET VOL INFO *ERROR ERROR* GET VOL INFO *
* FOR JFCB AND * FOR JFCB AND *
* SCT FROM VCB * v v * SCT FROM JFCB *
* * EXEAR HERRN * *
PR S T T *18 * %18 * HREI NI NI RN
* K3 * K3%*
J * % *
*
v
EEEER
#18 *
* gow
* *

ALL ENTRIES/EXITS ARE FROM/TO THE JFCB HOUSEKEEPING CONTROL ROUTINE

96

Chart 20. Fetch DCB Processing Routine

1EFVM2
I WA T3 KX
* *
* ENTRY *
* *
EZ2 T2 X2 2 22222

FROM JFCB HOUSEKEEPING
CONTROL ROUTINE

KN KBTI IR

* *

INITIALIZE
SIOT
FIELDS

%* %k %k %k
* %k % X

W36 36 3 I I I I I K N XN

v
LE S ekt 2 2 S S 22 S
* PLACE JFCB %*
*AND REFERENCED ¥ERROR

* SIOT TABLES * —
* INTO STORAGE * v
* AREA * *%%¥%* TO JFCB HOUSEKEEPING
L e T #24 * ERROR MESSAGE
* A3% PROCESSING ROUTINE
* *

*

v

KK DI WK HHNR
* UPDATE VOLT *
* WITH NEW *ERROR
* VOL SER, *
* STORE vOLT * v
* * xX¥¥* TO JFCB HOUSEKEEPING
I TN RN *24 * ERROR MESSAGE

* A3% PROCESSING ROUTINE

* *

*

VM7127
EE 22 a R R 2 2 2 8 2
* *
* RETURN *
* *
3 3 I I 3 K I I XK

TO JFCB HOUSEKEEPING
CONTROL ROUTINE

Charts 97

Chart 21.

IEFVM3
RN AL HII NN
* *
* ENTRY *
*
AN I

FROM JFCB HOUSEKEEPING
ICDNTRDL ROUTINE

t

v
HRWNND] NN NN NN
* *

RN
* PLACE *ERROR* *
* JFCB INTO * >* H4 *
* STORAGE *
* * LR 22
ERE X IR 222222 2T

v

¥,
c1 *, R HC 2NN IR N
¥ *, * *
«* IS THERE *. NO
e A GDG BIAS o
COUNT TABLE#

*ASSIGN RECORD, *
>% CLEAR STORAGE *
* FOR NEW TBL *
*

*e ¥ *
*e o ¥ L s T T T Y
* YES I
v
> L
* *
VM7150C v * gy o*
HHHHRDY RN NN NN * *
* PLACE GDG * RN XX
* BIAS COUNT *ERROR¥* *
* TABL D% H4 *
* INTO STORAGE * * *
* * XN
B e
v
VM7154 oy
*o
o* IS *, RN
* *, YES * *

. THIS
*o. GDG DSNAME
*eIN TABLE %
q o R
*o

o ¥————>% B3 *
* *

o*
* NO

RN

ERR

e¥e
G1 *o

o* 1 -
YES o% THERE *o
o ANOTHER o
*e TABLE %
. -
%y o
* NO

v
I H]I NN
*ASSIGN RECORDs *
* CLEAR NEW TBL
* UPDATEs WRITE
* QUT OLD TBL *

* *
LR R 2 e e S s
a2
* *
* J1 *=>
* *
LSl

VM7158
LR A NP s i e
* INSERT GDG
* UPDATE COUNT

*
RN ATT N NWNW R

* K kKKK

98

GDG Single Processing Routine

HRRR

* ok k
o
w

* % %

XX

VM7160

*o
¥ 1s *o
*o NAME
*e VALID o%
* *

VM7164 v
HREHRCTH RN KRN
* SETUP *
*MEMBER NOe AND *ERROR¥
NEW BIAS COUNTe >*
* STORE GDG * *
*BIAS COUNT TBL *
LR e e s

v
I D T I

*
* ISSUE LOCATE
* MACRO FOR
* DATA SET *

* *
[I T

*
*ERROR
e

v
vM7180 o¥e
-k *o
YES o% 1s *eo
%o STATUS o
NEW o

v
L2 ke T
* *

v *
——%

F*

o* *
U300 330 96 96 3360 2 0
NOT FOUND

SEARCH PDQ *ERROR*
FOR _DSNAME * >*
ENTRY * *

o]

vM7182 oo
*o
¥ *o
VYES o% 1s *o
——%e THERE A ¥
e VOLT o
*q ¥
%y o
* NO

VM7184 v
R R TR RRR
*

*WITH VOL ID'S,
* BUILD VOLT

* *
RN N NN

>

*
* FILL IN JFCB #*ERROR
Frihibiuhi—

HREEED A NN RN
*

* SET ERROR
>* MESSAGE
* CODE

*
N IR NN

v
XEER

* % %
I
®

LER

L2 22 R 223
*

Ha *
*

XN

E2 2 2
*
Ha *
*

RN

ERER

* kK
I
>

* % X

ERER

VM7188

LEa TS S g 222
*

* SET _UP FOR

>* ERROR

* RETURN

*

R T e T s

VM7186
R JTHERE IR
*
* RETURN *
* *
FRERRIRRRR R XRR N

TO JFCB HOUSEKEEPING
CONTROL ROUTINE

*
*

*
*
*
*
*

*
*

*
*
*
*
*

Chart 22.

1EFVM4
HEWEADREHHNERRE
* *
* ENTRY *
* *
EREEREREERRRRRR

FROM JFCB HOUS!
CONTROL ROUTIN

vM7208
EXRRERB2EERREE RS RN
* INITIALIZE

GDG INDEXs

SET_UP DSNAME
IN JFCB

Xk ok kK K

*
*
*
*
*

RN R NN

EXEAEF P EEEERXREER
* *

UPDATE DD
NUMBER COUNT
IN WORK AREA

ok K
* Kok X

*
EEERERREERRREELER

[TR
* SET CHAIN

ERROR* POINTERsSTORE

—% COMPLETED

| o sIoT

| =

V ORREREEREERREERER
EXER

EERE R R]

FRRERHHEERERERRE
* *

ERROR¥* ASSIGN *
r—* STORAGE SPACE *

| * FOR NEW SIOT *

* AND JFCB *

Vo OEREARREERRREEERRR

* R
* *
x* g4 *
* *

XXX

<
SUCCESSFUL
ERRERKCEEEEXREE RN
* *
* ISSUE A *
* LOCATE *<
* MACRO *
* =
ER R 222 222 2222222
f OTHER
i
v
EREE
* *
* J4 *
* *
RN

.
¥ 1s
. A vCB
*#¢REQUIRED <%
*q *

*

*e o
*

>
*

vM7218
P P e
* MOVE VOLS *
* FROM INDEX *
* 0 veB *
* WORK AREA *
* *
* *

R e S R

|

GDG All Processing Routine

EKEEPING
E

vM7220
EXEERCTHEIEENNNNR
* EERR
ISSUE A *OTHER¥* *
LOCATE * >* J4 *
MACRO- * * *
INSTRUCTION * EHEE
R e e
SUCCESSFUL

EE R]

EERR

Js *

EERR

I<

vM7222 v
EXRERF2HEXRARXRRRR
*

*
ERROR
>*

*

* SET vOL 1IDs
* FROM vCB *.
* INTO JFCB *
* *
*

S22 222 222222222
| NORMAL

EEEXRG2HAREEX LR RS
*MAKE PDQ ENTRY *
* FOR GDG ALL *ERROR¥
* MEMBER DS IF % >*
*PASS SPECIFIED * *
* *

60NN
NORMAL

VM7226 v

HEEERH2HEREEH LN NN

* UPDATE *

* JFCBsSIOT. *ERROR*
* WRITE OUT *. >*
* JFCB * *
*
*

*
333 I R
| NORMAL

o¥e
J2 *o
o* IS *o
S ¥ THE
*ANOTHER
*o TIO
*o
*o

RE *o
GENERA-#*
N -

R 22
*
Ja *
*

R

L2 22
*
Ja
*

ERER

RS 22
*
Ja
*

EERR

ARERE JLREEXRERRER
222 * *
* SET uP *
* Jg4 * >* ERROR MESSAGE *———
* * * INDICATION *
EERR

* *
HEEEERREEEREERRER

VM7240 vM7250
K
* FOR EACH SIOT *
READ IN, UPDATE#
>*SEP 4 AFF FIELDS*
* CHAIN AND *
* STORE SIO0OT *

K3
* SET CHAIN *
* POINTERS *
> % STORE *.
*
*

P ——

HERRKSEREHHERRE
*

>* RETURN *
* *

* S10T

* HEREREEEEERERER

ERROR ERROR TO JFCB HOUSEKEEP ING
CONTROL ROUTINE

| |
v
*XXR
* * * *
* g4 *
* *
*ERR

Charts

929

Chart 23.

IEFVMS

Py s
* *
* ENTRY *

3 3 3K K I KKK X

FROM JFCB HOUSEKEEPING
CONTROL ROUTINE

\
XXH KD XX NN
PLACE JFCB *

Patterning DSCB Processing

INTO STORAGE *ERROR
IF NOT *
ALREADY THERE *
*

*
*
*
*
*
393 36 I3 I I I I WK KX

VM7316

v
3 % 36 3 . C 2 W KX %K K E2 22 E et B2 22 22
* 1SSUE * * *
* LOCATE *ERROR * SET UP ERROR *
* AND OBTAIN * >* MESSAGE *
* MACROS * DISPLACEMENT *
* * * *
E2 2T IS E L EX IS S L2 22 22

<

v VM7344 v
R XD 2 WKW XX RN 3 3 3 3 KD F ¥k K KW HX
* * * *
* MERGE DSCB * * SET uP *
*WITH OVERRIDES * * FOR ERROR *
* IN JFCB * * RETURN *
* * * *
EE 22T ST LT LT 3 3 36 3 3 3 3 2 I KK ®

VM7340

K HE D KK KRN XNH
* *
* RETURN *
* *
IR IR

TO JFCB HOUSEKEEP ING
CONTROL ROUTINE

100

Routine

Chart 24.

IEFVM6

HERRATERERREREE
* *
* ENTRY *
* *

Ei sl a2 22222222

FROM ANOTHER JFCB
HOUSEKEEPING ROUTINE

v
LRSS ke I e 2 2
* *
* *
* SET UP TO ¥*
* PRINT MSG *
* *
* *

3 I I I I IR

v
EE 22 et 2 222 2 2 2
* *

* ISSUE *
* ERROR *
* MESSAGE *
* *

L2 2 2 22 22222222222

|

v
ERXRRRDIHERREX XX XK
* *
* RELEASE *
* STORAGE b
* *
* *
* *

I I I I I WX

VMMSGC

[T 2 -kt 2 T XX T

*SET JOB-FAILED

* INDICATOR IN *

* JCT, ERROR *

* CODE IN LCT *
*

LR 22 2 22 222 222

'
EXNER
*#38 *

* Al%*
* *

*

TO STEP
TERMINATION
ROUTINE

Error Message Processing Routine

Charts

101

Chart 25. Allocation and Setup

HRERATE R RRXRR
*

ENTRY *

*

*
*

*
RE 2 222 222222l

FROM INITIATOR

CONTROL

i****33*¥*§*&**!§
TEFXA 26%
W Hm Hom Fom N N N K
* ALLOCATION *
* CONTROL *

* ROUTINE *
LR e e e E 2

\
X XHHHC TN NN R RN NN
*1EFWA7 27%
R s ot B
* DEMAND *
* ALLOCATION *
* ROUTINE *
E e

*o
o ¥ DOES *e YES

*¢ CONFIGURAT ION« %
*e INCLUDE o%
*e AVR o%

e ¥

* NO

DG RN
*1EFXVOO01 28%
EE T B B 2 L L N
>% AUTOMATIC *
* VOLUME *
* RECOGNITION *
EZ TSR 22222 2 2 23

I
|

1<
|

v
HEXEREIHEEXREXRER
*TEFX5000° 32%
Hm R R W W W RN — W
* DECISION *
* ALLOCATION *
* ROUTINE *
L R R R e e 2 e

P~ ——

HERERFIHEREREXRAR
*IEFWCO000 33%
KRN RN NN
* TI1O0T *
* CONSTRUCTION *
* ROUTINE *

R A2 2222 22222222

\
XX RGIH NN R RN

*I1EFWD00O 34%
W e Y P P W Y N
* EXTERNAL *
* ACTION *
* ROUT INE *

E2 2222 222222222 22

v
33 R H T WX KX

*IEFXT000 35%
e O e e S SRS
* SPACE *
* REQUEST *
* ROUT INE *

33 I 3 I XX N

|

v
HEREJIEERRRRRER
* *
* EXIT *
* *
W IR

T0
INITIATION

102

chart 26. Allocation Control Routine

IEFXA
AT R
* *
* ENTRY *
* *
)
FROM JFCB
HOUSEKEEP ING
CONTROL ROUTINE

v
Q*.
B3 *.
o* ANY ¥,
«* DD STMNTS *. NO
*oIN THIS STEP o¥%——y
*e o v
*q o T2 3
*o o *33 *
* YES * A2%
* *
*

TO TIOT
CONSTRUCTION
XAAO021 v ROUTINE
HREXERCI RN XN
* GET STORAGE *
* FOR TABLES *
* INITIALIZE *
* POINTERS *
* *
* *

EE 2222 222222l

XAA030 v
HHEEEDIHRRHHRER XN
*

*
* PLACE VOLT *
* AND SIOTS *
* INTO STORAGE *
*
*

* AREA
KRR RN

XX XEKE

%27 *

* A3%
* *
*

TO DEMAND
ALLOCATION
ROUT INE

Charts

103

XCF200

Chart 27.

IEFWA7
FRERATHERERRRER
* *
* ENTRY *
* *

FRERRERRRERRRER R

FROM ALLOCATION
CONTROL ROUTINE

XBF110

v
R RDTHEN RN

BUILD
WORK TABLE

>k kK
LEE R 2]

RN RN

XBF30

0 v
HRRRRCIHEREXRRE RN
* *

*RESOLVE VOLUME *
* AFFINITIES *
*

*
HRRERER R R RN

XCF100

*aaiuna*ii&l*ui*{
lCALCULATE DATA ’
* SET DEVICE *
* REQUIREMENTS #*
* *

RN NN

HREERETE NN RE RN
*

* CONSTRUCT
CHANNES LOAD

*
*
*
*

TILL]

e

XCF300

v
HRERRF IR EEEREE RN
* ALLOCATE *
RESIDENT DIRECT
*ACCESS DEVICES *
* REQUESTED BY *

* VOL SERIA
LR R S E s T

XCFS00

v
EREREGIHENR R XHXR
* *
*PERFORM DEVICE *
* RANGE *
* REDUCTION *
* »

HEREEREEREER R RN

XCF890

v
l’lliﬂ}llllllii’l
*ALLOCATE SYSIN
* AND RESERVED
* TAPE DEVICES
*

EREEERERXRERRRRERE

* ok kK Kk

XDF100

v
EEEEEJIERERRERERR
ALLOCATE
SPECIFICALLY
REQUESTED
DEVICES

HRERERTRRRERERR

I

v
HERRKSERRRERREE
* *

Ak kKK

*
*
*
*
*
*

* EXIT *
* *

EEARXEREREERERER

104

Demand Allocation Routine

EXITS ARE TO THE DEC!S]ON ALLOCATION ROUTINE.

!NCLUDED IN CONFIGURATION) lF

2+ (OR AVR CHART 28

ALLOCATION IS INCOMPLETE.

THE TIOT CONSTRUCTION ROUTINESs
IF ALLOCATION IS COMPLETE.

33,

CHART

e Chart 28. Automatic Volume Recognition

W TAD NN XN

¥ MORE NO
>*SPECIFIC VOLUME®*

FREHALHEEEEEERR * 29%
* DEMAND * R e e A e o
* ALLOCATION >#* PROC ANY REQ. *
* *FOR PREVIOUSLY *
e e * MOUNTED VOLSe *
IR
o ¥
B3 *o
o¥% DID %o
NO +% OPERATOR %*. YES
< *, CANCEL JOB *-
e o
*. o¥®
> *e o¥
*
XXX A
* *
* C2 *=>
* *
XXX v | YEs
*o o¥o
*eo Cc3 *o
o% ANY ¥, o* HAS %,

* NEWLY *o NO ¥ AVR *e NO
MOUNTED - ¥ >*e REQUESTED %
VOLUMES % *e VOLUMES %

- *o ¥
* g * ¥
M
E e
* READ THE *
VOLUME
* LABELS *
L e e 2
v
¥
E2 *g ERRRRETHREERXRRRE
«% ARE ¥, * 30%
¥ MORE *, YES EE B B B e S B e
#¢SPECIFIC VOLSe¥ >*PROC A REQUEST *
*o NEEDEI ¥ * FOR A NEWLY *
*o o * MOUNTED VOLe % |
* gy ¥ TN NN \"2
NO LA L
Ea 22 ' * *
* * * C2 *
* F2 *—> * *
X RKE
E2 T v
o¥a
F2 *o
«* ARE HEERFIHRREREEER
MORE %o NI * TIOT *
DATA SETS % >* CONSTRUCTION %
NEEDED « * *
*g - P TN WX E KRN
*o o¥
* YES
v
HEERG2HREREEXRN
* DECISION *
* ALLOCATION *
* *
R 22222222222t
NO

IEFXJIMP

HHRRBLHEERERENR
*

>%* CANCEL JoOB *
* *

FH KNI NH

R
*

*
>* F2 *
* REQUESTS .* * *
*q ¥ XN
X, o
* YES

¥ ANY ¥,
*o

Iii**D4&¥i*i**li§
* 31
D e et it SEL L
* OBTAIN *
* DEVICES *

*

*
RN R R XHR K

v
XXEXRELHERERRRRNN
* *

REQUEST *
VOLUMES FROM *
OPERATOR *

*

*

* ok ok

*
HREREREEEHEHAENR

|
v
ok IEFXJIMP
Fa *o
. [} *e EREEESHEEREEE X
«* OPERATOR *. YES *
%o CANCEL JOB o ¥———D>%
*o o¥ *
*, o¥
*e %
* NO

*
CANCEL JOB *
*

IR NN

v
HERERGE HH TN R RERR
* *
* *
OPERATOR MOUNTS
* VOLUME *
*

R 222 22 22222t s s

|

v
HRHEEHG R R L RN
* *
WAIT FOR DEVICE#
* END I/0 *®
* INTERRUPTION #*
*

*
FEEREHEEERERERERN

IEFXJIMP

REEEJSHRERERERR
*

*
*o CANCEL JOB >% CANCEL JOB *
*, * *

¥

, o
®e oF
*

IR

Charts

105

» Chart 29. Process Any Requests for Previously Mounted Volumes

2222

#29 *

* B2%
* *
*

>

v
G1 o¥e
B2 *o
o% WAS ¥,
% LAST UCB #*, YES
*o EXAMINED - ¥——y

*o ¥ v
*q o NN
e o *28 *
NO * C2%

*
| * *®
| *
9
XREERC2HXXRXHXRXR
* *
* LOCATE NEXT
#yCB IN ADDRESS
* TABLE

*
EE 22222 22 22 22 L 22

* ok k ok K

|
v
CHECKSER o%.
D2

.
e* DOES %o

NO +*DEV CONTAIN¥.

*eA PREVIOUSLY o%

A *o MOUNTED o%

eo VOL o

*e o
* YES

v
GS o,
E2 *o
o* IS *o
NO «* VOLUME *,
L——%*, NEEDED FOR %
A *oJ0B STEP <%
*

*o

.
%, oF
T YES

|
G12 VIEFX3000
PR 2ot L s
DEVICE STRIKOUT#
ot S SR e
—% ALLOCATE *
* DEVICE *

* *
336 3 333 3 3 XXX XX XN

106

Chart 30. Process

e
*30 *
* Ba2*
*

D30 v
R HRBD RN T IREN
* *

* IDENTIFY *
* VOLUME BY *
* SERIAL NUMBER *
* . *

3 I I 33 I I W ®

a Request for a Newly Mounted Volume

v
¥,
c2 %,
¥ WAS * o ¥ 3 3%
«*% SERIAL *. NO * *
. NUMBER o >* E4 *
%o FOUND o% * *
*q o ¥ E2 2 23
*, ¥
? YES
v
D17 ox E2 ox
D2 *. D4 *.
o* IS ¥, o* IS ¥,
«* DEVICE *. YES <% VOLUME *, YES
o ALLOCATED . >%, ON CORRECT %
*. o *, DEVICE %
*q ¥ * 4 o ¥
Fg ¥ *e o¥
* NO * NO
DEVICE WAS ALLOCATED
BY DEMAND ALLOCATION
IEFWDOOO V
N4 RN RN
*Exw *EXTERNAL ACTION#*
* * W I W N e W NN W
* E4 * >%*NOTIFY OPERATOR* >
* * * AND UNLOAD *
*xwn * DEVICE *
. 33 I I I I I I KX
|
v NO
D44 o* o*.
F2 %, Fa .
¥ 1 * «* DO *.
«* VOLUME *. NO <% ENOUGH *, YES
. NEEDED o ># AVAILABLE DEV. >
. o *o REMAIN .*
* g ¥ * g ¥
K, oF e o¥
* YES *
|
|
v
D43 ¥ 1EFX3000
G2 * g EE 22 2R 2T T2 L 2L 2]
o* WAS %, *DEVICE STRIKOUT#*
o ¥ REQUEST *o NO W e e ¥ W W N W —
o FOR VOLUME % >% ALLOCATE DEV. * >
* SATISFIED.* *TO SATISFY ANY *
o o * REQ FOR VOLS *
*e oF 336 3 3 3 I 3 I I XX NX
* YES
|
|
v
¥,
H2 %, G1
e¥* IS *, %%
«* SERIAL *. NO * *
. NUMBER DUP— % > E4 *
#*. LICATED o* * *
*q . R
*e oF
* YES VOLUME WAS
| MOUNTED ON
i INCORRECT
DEVICE DURING
{ DEMAND ALLOCATION
IEFWD00O Vv
366 WK JD I XX FHRNRN
EXTERNAL ACTION
W W W Y e e e e
NOTIFY OPERATOR# >
* AND UNLOAD *
* BOTH DEVICES *
I I 3 I I I I I W I X
v
E2 22 2 3
*28 *
* F2ox

Charts

107

e Chart 31. Obtain Devices

*D30,D31,D80
TEFXVNSL

108

22
#31 *
* A2%
* *

v
3363 K A D ¥ I KKK N
*

*
* COUNT *
* AVAILABLE *
* DEVICES *
* *
e s e e e I]

I

v
KK HD 2NN
* COUNT *
*DEVICES NEEDED *
* FOR SPECIFIC *
* VYOL REQUESTS *
*

*
3 36 336 3 I I I I I I K

v
ek
c2 *o
«¥* ARE %,
UGH *e YES

«® ENO
DEVICES IN NOT—#
*e READY %
#STATUS.
*e o
* NO

v
¥
D2 *o
o¥ CAN %,

«* ENOUGH *o YES
oREADY DEVICESe
BY UNLOAD—.
*e ED %

*e o¥

* NO

v
I HE DX KN RNHR
*IEFXJIMP *
L e B s N
* ALLOCATION *
* ERROR *
* RECOVERY *
I I IR RN

JEFXCSSS

[T EIFEEEEEE T
* ALLOCATION *
* CONTROL *
*

*
36 36 3 3 I 3 I XX R H

39 %% XD IR XN IR NK
* *

* IDENTIFY *

>* DEVICES TO BE *

* UNLOADED *
3* ¥*

33 33 I3 K ¥ I I I N HE XK

IEFWDOOO
XREREDLHHXER TR
EXTERNAL ACTION
oot e ot Bueaae)

>* UNLOAD *
NECESSARY READY
* DEVICES *

233 3 3 I I3 WX R

v
)
*28 *
* C2%

Chart 32.

TIEFX500Q

6 A D R RN
* *
* ENTRY *
* *

33 3E 3 36 36 I 3 3 I X3 X

Decision Allocation Routine

| FROM DEMAND ALLOCATION ROUTINE

v
XGGC29 e¥o
. B2 ¥eo
¥ ANY ¥,
«* DEVICES *e. YES

OR AUTOMATIC VOLUME
‘RECOGNITION ROUTINE

XGGC25
RaA b ad-kE S S22 222 2 s
»* *

HHH K

XX X— H—R—A—X—%BUSY *

*

*,ALLOCATED BY o% > PERFORM * >* F3 *
*.DEM ALLOC o% * SEPARATION * * *
*e o * STRIKEQUT * (2T
He o B3 36 36 36 36 I I I I KX
I NO NORMAL
1< ’
X11830 v
HHERHC DR R ERRH
3 %3¢ 3% 3* *
* * #CALC POTENTIAL *
* c2 * >* USERS PER *
* * DEVICE *
363 % 3* *
FE W I IR RN
|
|
|
v ALLOCATION
XI1C30 ¥ X55A0000) COMPLETE
D2 *, HHEXXDIH IR EL TR RE
o *, * *
¥ NY *, NO Fm e Hm W R T e N
o UNIQUENESS o% > PERFORM *
*e o * NON-UNIQUE *
y ¥ # ALLOCATION *
e o¥F 336 3 I 36 363 3 I XN H X
i YES | NORMAL
XGGG30 v XGGGS0 o ¥, XGGG5A
HXXHHE2HHHERNR RS E3 *, WA WL LR RER
* * ok *e * *
COMP¥—#—%—¥—¥—¥—%—%—% ERROR .* MIXED *. YES * RESTORE *
PERFORM DEVICE #—-— >*e DEVICE TYPE o% - >* PRIMARY BIT *
* STRIKEOUT * . . * PATTERN *
* * * g o ¥ 3* *
6 3 36 3 I I I I XK *e ¥ 3636 I 36 I I I I XXX
* NO
|
|
!<
XGGG40 v XKKB30
I R D NN XX 33 3 3 H 7 ¥ 3 3 %X ¥ H
#3% %% NORMAL * * * *
* * Hm R R—H—H— K- %—%—¥ERROR * £
* c2 *< * PERF ORM * > *
* * * SEPARATION * A % PROCESS ERROR *
R # STRIKEQUT * * *
3636 9 36 6 3 36 I K K H 39369 3369 I3 3 IR
COMPLETE * R
* *
* F3 * l
* * v
E2 2 23 E2 2222
*#38 *
* Al1*
* *
3*
T0
STEP
N TERMINATION
ROUTINE
v
EE 2 2 23
*#33 *
* A2%
* 3
*
TO TI1OT
CONSTRUCTION
ROUTINE

3333

>* C2 *
* *
e

Charts

109

Chart 33.

IEFWC000

QD R R RER

* *
* ENTRY *
* *

E2 222222 2222222

TIOT Construction Routine

FROM ALLOCATION CONTROL ROUTINE,
DEMAND ALLOCATION ROUTINE,
DECISION ALLOCATION ROUTINE,

OR AUTOMATIC VOLUME

RECOGNITION ROUTINE

XLMO0O1

v
3% W B 2 XWX XX KK
* *

GET STORAGE
FOR. TIOT

* %k ok %
* %k ok K

336 3 3 I 3 I 3 K I K

*<—

XLMO10AC o¥ o XLMO10AC
c2 *q HHRRRCIH IR XXN R
o * *
ok *eo YES * CONSTRUCT *
*o ANY POOLS o ¥——————>% POOL ENTRY *
*q - * *
*q ok * *
*, oF L e T
i NO
!<
XLMO020 v
HHERED2HRERERRNXN
* *
* INITIALIZE *
* LOOP TO BUILD *
* TIOT *
* *
33696 3 336 96 9 9 3 33 XN X
kR
* * |
* E2 *—>
* *
EHHR v
XLMO032 o ¥ XLM400
E2 *q EREEXREIHHRREXXEER
e *REQUEST*, * * LA A
«*FOR DEVICE #*. YES * BUILD POOL * * *
o FROM POOL o ¥——————>%¥ENTRY FOR TIOT % >% H2 *
*q ¥ * * * *
*q ¥ * * XXX
e o¥ 2 e e e s
* NO
v
XLMO31 o¥e XLM140 NOTE 1
F2 *, E ek Y o
¥ *q * * ERER
«* REQUEST *. YES *PROCESS PUBLIC * * *
*eFOR A PUBLIC o¥%————>#VOLUME REQUEST * >* H2 *
*o VOLUME o% * * * *
*q o ¥ * * XX
*e o 2
I NO
XNNOOO v NOTE 1 — OUTSTANDING PUBLIC VOLUME

XLMO98 -
H

I NG 2 KRN
* *
* BUILD DD *
*ENTRY FOR TIOT *
3* *
* *
3 3 36 I 336 3 36 3 I I I K E*

R

* *

* H2 *—>

* *

* 3 XH v
*

110

REQUESTS ARE RESOLVED HERE.

TO EXTERNAL
ACTION ROUTINE

Chart 34.

IEFWD00O

I H A DWW KRR N
* *
* ENTRY *
*

333 3 I I I 3N XX N
FROM TIOT
CONSTRUCTION ROUTINE,
SPACE REQUEST ROUTINE,
OR AUTOMATIC VOLUME
RECOGNITION ROUTINE

I
XPS090 V_ NOTE 1

XPS

XPS6

v
XPS620 e*s NOTE 3 XPS750
E2 * *

*****32**********
*
* 1SSU *
* DISMOUNT *
* MESSAGES *
* *
FE 36 3 36 I I I I X I H XX
285 v
X C 2 NN
* *
* I1SSUE *
* MOUNT *
* MESSAGES *
* *
* *

3 36363 I 636 I XX H

<

30 V NOTE 2
FHHHRDD KR HER KRN
*

%* PERFORM
* VERIFICATIONS
*

* %k ok ok ok

*
936 3 36 36 3 I I I I X XN

*o

>%* WAIT
*

External Action Routine

NOTE 4
XEIRERRERR

- . * *
Ko o 2

* YES

)
ET 232
%#35 *
* A2®

* *

*

TO SPACE
REQUEST
ROUTINE

NOTE 1 INCLUDES A SCAN TO DETERMINE
IF THE REQUIRED VOLUMES ARE

MOUNTED ON UNALLOCATED DEVICES.

NOTE 2 UNLOAD COMMANDS FROM MASTER

SCHEDULER ARE HONORED. UCB'S ARE

UPDATED IF REQUIRED.

NOTE 3 THE STEP IS COMPLETE WHEN ALL

SETUP MESSAGES HAVE BEEN ISSUED
AND VERIFICATION HAS BEEN PERFORMEDe.

COUNTS IN THE SCT CONTROL THIS

MECHANISMe.

NOTE 4 EITHER OF TWO EVENTS IS WAITED UPON.

ISSUANCE OF A CANCEL COMMAND OR

A DEVICE BEING MADE READY.

Charts

111

Chart 35. Space Request Routine

IEFXTO000 XUUAOO
X RIAL NI KN
XERKAD KK HIEREER * *
*

* * UPDATE *

* ENTRY * * JFCB, TIOT *
* * * AND PDQ *
KKK HNNR RN * *
KNI KXW RN N NN

FROM EXTERNAL
i ACTION ROUTINE

v v
XTTBA2 e¥ g XTTEAO XUUuGoo o¥e
2 *q HRHRRBIHHRRERXE RS B4 *o EXTERNAL
«¥ ANY %, * * ¥ *o ACTION
NO % DADSM *o H— KN N — NN OTHER % DETERMINE *. REQUIRED
* o ALLOC o ¥ ¥* PROCESS F LR, ACTION TO o ¥%——
%o PENDING o% * ERROR * *oeBE TAKEN o% v
*q o * * *, ¥ XX RH
e o I IR RN e o *34 *
* YES * * A2
XX * *
* * . *
* C2 *—> v
* * R HHR MULTI TO EXTERNAL
%% i NO *38 * TYPE ACTION ROUTINE
XTTBEO v SPACE * AL¥ XUuJoo V REQUEST
ERXRHCO2¥RXXRRRXERX AVAILABLE * * ERERRCLRRERERRRERR
* REQUEST SPACE * RN * * *
* ON AND * * #* TO STEP * SELECT *
ALLOCATE DIRECTH >% A4 * TERMINATION * NEXT *
*ACCESS DEVICES * * * ROUTINE * ‘DEVICE *
* * ET T2 * *
P I I e R TR e]
NORMAL
>
\
*XXR
* *
XTTMA1 v * c2 *
HRFHWD 2K KRN RN * *
* * XXX
* CLEANUP *
* TIOT *
* *
* *
NI N N

XTTMBO v
W D IR

UPDATE
SCRATCH vOL
INFORMATION

IN JFCB
L2 e a T

* %k Kk
%k ok ok Kk ok Xk

XTTPOO v
HEAEHHF2HE XX RRRN
* *
* WRITE *
* MESSAGES *
* ON SYSOouT *
* *

36 36 36 9 36 3 36 I 3 I 3 I I ¢

XTTROO
HHRERG2HR KN AENX
*

COMPRESS
TIOT

* K Kk Kk

*
*
*
*
*
NN R RRNR
|
|
|
\
RN
*37 *
* A3
* *
*

TO STEP
INITIATION

112

Chart 36. Step Initiation

1EFSD0O04
HERRADENKERR NS
* *
* ENTRY *
* *
EEXRREFEREXEERER

|FROM ALLOCATION
AND SETUP

P —

SD4000
HERERB2HEHREHHRNE
* WRITE OUT *
* SCHEDULER *
* MESSAGES *
* FOR STEP *
* *
* *

R

|

SD4100 v
HEERRC2HEEHEN X RE
* SET UP UCB *
* POINTER FOR *
* ALL DATA SETS *
GOING TO SYSOUT
* *

R e T T

SD4120 v
EEXRRRD2ERERREXXNR
* STORE *
* LCTs JCTs *
RELEASE STORAGEX
* THEY OCCUPIED *
*

*
HEREEEERERREEXERR

SD4200 v NOTE 1

* COMPUTEs GET *
* P/P STORAGE *
* NEEDED BY *
* THE SYSTEM *
* *
* *

R

P —

SD4240
ERRERE2HHEEEEREXE
* MOVE TI1O0T
*

T0
*UPPER STORAGESs
* “STORE TIOT

LEREEE R

*
ERXREREEENRENRAR

v
EEERRG2EXREREXRER
*

* SET UP XCTL
* PARAMETERS

*AND PARM INFO,
* STORE SCT *
L e e e

LR R

SD4300 v
EEEXRHOERRXRERE L
*

OPEN JOBLIB
AND FETCH DCB
1F PRESENT

EEEEY
* ok ok ok

*
e e T R

v
SD4350 ot
J2 *o

% HAD ¥,
<% JOB BEEN *. YES
*CANCELED BY THE¥—7M—————y
*oOPERATOR %
*q -
*e o¥
* NO

v SD4400
ERKREEERR
* * *
* * *
* XCTL * * ABEND
* * *
* *
ERERREREEER

TO PROCESSING PROGRAM

NOTE 1

v
ERKIRERERER
*

* *
EREEEERERER

DURING STEP EXECUTION, PROCESSING
PROGRAM (P/P) STORAGE IS NEEDED FOR

« A JOBLIB DCB, IF PRESENT

« A FETCH DCBs IF PRESENT

« AN XCTL PARAMETER LIST

. PARM FIELD INFORMATION

« A STEP TIOT

« A P/P REGISTER SAVE AREA

Charts

113

Chart 37. Termination

3K A T K NN XK N
*
* ENTRY *
* *
333 33 I I I XXX KX

FROM SUPERVISOR OR
AN INIT/TERM ROUTINE

v
KERRXBIHHRRREXRNR
*IEFSDO11 38%
¥R NN R-K—%—F%—-%NO MORE STEPS
* *

STEP
* TERMINATION *TO BE RUN
* ROUTINE *
e e

v
HRRRCIHRERNRRNN
* *
* EXIT *
* *
NI XIN N

TO0 READER/
INTERPRETER OR

SYSTEM CONTROL
ROUTINE

FRERDIHEREHHRRR
* *
* ENTRY *
* *

NN NN

FROM READER/
INTERPRETER

v
XRREREIHRREXXXEER
*TEFZA 40%
R e S et A
* Jos *<
* TERMINATION *
* ROUTINE *
IR KRN AR

Prr——

3% HF 33K K
* *
* EXIT *
* E 3

JE 96 3 2 I I I X

TO READER/
INTERPRETER

114

Chart 38.

IEFSDO11
EEREAL R RNRR
* *
* ENTRY *
* *
RN RN

FROM SUPERVISOR
AFTER P/P COMPLETION

OR AN INIT/TERM ROUTINE

EXISTS

v
YNO200 o¥e
B1

'AS

WHEN AN ERROR CONDITION

Step Termination Routine

v
IEFACTLK o%,
YNO409 B3 *o
o* IS *o
«* THERE A *, NO
*USER'S ACCUUNT *—

-EXECUTED o¥* I *o
e | '*. ..'
* NO i * YES
I
v
YNO203 o¥e YNO210 v
Cci *o c2
o *e * * *lEFACTRT *
* *, YES V * MOVE RETURN ¥ e -’—*—*—*—i
*o TIDT BEEN o ¥ > CODE FROM * * SER *
*o o * TCB TO SCT * * ACCUUNTING *
. * * ROUT INE *
PR
* NO |
I <
1
v
YNO20S v ¥
ERERRD]HEXERERRERE 03 *.
* *
* SAVE DUMMY * Y RDR/INTRP *e NO
* ERROR CODE * *oFIND OR
* * *o NULL -
* * *oSTMNT o *
HHERHEEERHNE R R NE o ¥
* YES
v
EEXRR
*40 *
YNO224 * Al*
* *
o* *. *
* NORMAL *. YES 0 Jos
TERMINATION o%* TERMINATION
*o - ¥ ROUTINE
*, ¥
X, o¥
* NO
|
i
i
YND224A v
HXEERF] HEREIEE
* *
* SET ERROR *
* INDICATOR *
* *
* *
P
1

<

v

YNO240 o ¥e
G1 .

*,

*o NO
- ¥—

SIOT'S FDR
*o ST ¥

HEERRH L HEREERRERR
*IEFYP 41%
o o 2
*DISPOSITION AND¥
* UNALLOCATION *
* PROCESSING *
EREREEEREERERRRER

i
|
1
v
M

YNO260 oxe YNO40S
J1 HEEEEJDORRXHERE EREERJIHEEXERERRR
* * * *
* SET J0B- * STORE *
* FAILED >* SCT, IF *
* INDICATOR ON_* * IN STORAGE *
* * * WORK AREA ¥
FEERR X ERHRRNR 3NN X
|
i
{ .
| I
YNO300 v YNO340
HREREC] FEERERNERE WM TN N NN
* * *IEFVJ 39%
WRITE % RORJINTRE *+ NO HoR— KR H—R—N—X_X
oUT SCT >%. FIND JOB OR

* *
* *.
* *
* *
= *

XK REH TR XK

NuLL
*oSTMNT & *
*e o
*

>% PROCESS JOB *
* COND CODES *
*

*
EE T]

IEFACTLK o%,
YNO409 B4 *-
*

HERE A “x. NO
lUSER'S ACCUUNT.*———
*, ROUTI
*

v
il&ilc4*il*i*l***
*IEFACTRT
WX —l—i—!—i

OUT INE *

* USER®* *
* ACCDUNTING *
* R

LR e e S g

—

w22SD

v
IR HE 4 KKK RN
* *

* REINITIALIZE *
* MAIN STORAGE *
* *
* *
* *

e R e TS 2

«* DID
o® RDR/INTRP *eo YES

%, DD DATA % v
*.STMNT o * EXEER
*e ok *09 *
* NO * A4x
‘ * x
| *
v
*REEE TO _READER/
*15 * INTERPRETER
* Al* CONTROL
* * ROUTINE
*
70 INITIATOR/
TERMINATOR
SYSTEM
CONTRDL
ROUT I
(MORE STEPS
HAD BEEN

INTERPRETED)

R

>* B3 *
* *

EERR

R

HERE

Charts

115

Chart 39. Job Statement Condition Code Routine

IEFVJ

AERKA2KH XXX R
*

* ENTRY *
* *

L2 2222222222 22 %)
FROM STEP
TERMINATION
ROUTINE

v
vJ200 o¥g
B2 *o

¥ *q ExER
e% ANY COND *. NO * *
#*#, CODES TO BE ¥ >* F2 *
#*, CHECKED <% * *
*q ¥ * %X

2223
* *
* C2 *—>
» *
*XN v
vJ220 o¥e vJ500
c2 *q EERRRCIHERERER EREERCLHIXXERXEERS
¥ *, * . * * %
«* COMPARE *. EQUAL * SET JOB * * * * *
#COMP CODE WITHe# >% STATUS FIELD *———>% ISSUE MESSAGE #—>% F2 #
#oCOND CODEe* * OF JCT TO * * * * *
*o ¥ * CANCEL * * *
s] P T T e

*

33 % X
*

.« o*
TUNEQUAL
|

vJ240 o¥ e
D2 *o
¥ *q XN
«*HAVE EIGHT #*. YES * *
%o CODES BEEN %
*, TESTED % * *
* o XN

.
Xy o¥
* NO

R —

¥
E2 *o
- ¥ * g R
«* ANY MORE *. YES * *
o CODES TO - ¥ > C2 *
%o CHECK % * *
*g ¥ ¥ 3% %
*q ¥
* 'NO

XXRE
* *
* F2 *—>|
* *
HXRR
vJaoo]
;*Fz*X*****
* *
* RETURN *
* .
HEEREREREXXRRERR

T0
TERMINATTION
ROUTINE

Chart 40. Job Termination Routine

1EFZA
FERRALRRKERRRES
* *
* ENTRY *
* *
Ea 2222 222222 2223
IFROM READER/ INTERPRETER

CONTROL ROUTINE
STEP TERMINATION RDUTINE

ZAA100 v
XXBLEXREERR

* GETMAIN *
FOR REGe SAVE¥
*AREAs PDQs, AND *
* DISP/UNALOC *
* WORK AREA *

*eo

ZAA400 v
ERRRECHEERRRRRRN
* *

* SET UP LCT *
* PARAMETERS *
* *
* *
* *

e

v

EEEARRELHERXERE

* *
* TURN ON *
* De Ae
* SWITCH *
* *
*

EEEARERREXELRS

P —

ZAA420 v
ARKREFLEXREERHERER
*1EFZG 42%

* UNALLOCATION *
R e e

R 2 2]
* *
* G4 x—>
* *

330 v
FRERRGAREIEERRNES
*

* INCREMENT
* DATA SET
* POINTER
*
*

* ok K ok X

RN R IR XW

I

v
AR

XX

FHEEERERERR
|
|
|
v
o¥e
EREE
* *
>* H1 *
XXX
o®
* YES
EREE |
* * |
* D1 *—>|
* *
222 |
ZAA300 v
XEEEHD]EFEEHRRRER
*IEFZA *
B e St S S
* READ PDQ *
* DIRECTORY *
* BLOCK *
EEREREEEEEERRRERR
|
i
I
ZAA3150 v
***E*Eliiiillil*l
*IEFZA
l—&-i-*-*—i—»~i—*
* READ PDQ *
* ENTRY BLOCK *
* =
HEHENEEEEEERRRRER
*H e]
* *
* F1 *=>|
*
XX XX v
ZAA320 a¥a
*o
o HXEE
o* AST * *
e PDQ ENTRY > B4 *®
*, BLOCT
*e o EXRR
X o¥
* YES
v
¥
G1 *e
LAST
PDQ@ DIR
BLOCK <%
o o XXX
*. oF
* YES
XERR i
* * }
* H1 ¥
*
XXXR 1
ZAAS20 v
l{ll*H]iil*i**’li
*1EFZG
[*-*—:_{-9
* JOB TERMINATE #*
* SRT CLEANUP *
* *
REREEEEREERHREERR
i
ZAA600 v IEFACTLK ¥
ERYPEFEERRR J2 *,
* * o* IS

.
«* THERE A %o
>*USER'S ACCOUNT*
*. ROUTINE <%

* * *e o
REEERERERER e ¥
* NQ
v
WX
*09 *
* AA’

* *
* FREEMAIN *.
* *

T0 READER/!NTERPRETER
CONTROL ROUT
IEFSD0O08

YES

il{’*J3&*'i**i*ﬂQ

*IEFACTRT

Em X R R ihﬁ—i—!—l
% USER® *
* ACCDUNT!NG *

ROUTINE *
Ili***ilili*l*lli

v
ERERE
*09 *
% A4%

l »

To READER/!NTERPRETER
CONTROL ROUTIN
IEFSD008

Charts

117

Chart 41. Disposition and Unallocation Subroutine - Entry From Step Termination
IEFYP
EAZ S FSE L2 22 22 2]
* *
* ENTRY *
* *
RS 22 2222222 22] e XR
FROM STEP * *
TERMINATION * B2 *
ROUTINE * *
RERE
v
et ot
B1 *#4NOTE 1 HAERERB AR RERR RS R B4 *q
¥ * o * * ¥ *g HRRRBS RN E
o 1s *o YES GET NEXT * ¥ *. YES * *
*e UNALLOCATE *————————)* UCB POINTER D>k UCB POINTER *————————)* EXIT *
*e SWITCH o% *eFOR STEP % *
*e ON o % * *q ¥ ll***lln*i&lil*
*o o ****’************ *e o¥ TO STEP TERMINATION
* NO * NO ROUTINE
|
v v
¥y 2G0B1 oo
Cc1l *g RRRHHC2HHHEER NN C4 * g
* * ¥ 1S * g
o ¥ Is *o YES * PROCESS * «* THERE A *. NO
o DISP= o F e ¥ PASS ey #PENDING COMMAND ¥——
*o PASS ¥ * DISPOSITION * *e¢ FOR THE %
*o ¥ * * *DEVICE.*
g o EASZ 222 S22 sl s *e ok
T NO * YES
v
¥y Z10C15 ZKOE1 v
D1 - FRERND D XN R RN RN DGR RN
¥ *, * * * *
¥ is %o YES * PROCESS * v * PROCESS *
*o DISP= o F——————> % CATALOG * * PEND ING *
*e CATALOG o% * DISPOSITION * * COMMANDS *
* o o * * * *
*, o 3 W I I REZ S SRR s
T NO
|
v
¥, ziocza zJoB1 v
El * g I NE 2 X XNRN E2 S R RS A2 S 22222
¥ *q * * * *
o 1s *o YES * PROCESS * v * *
eo DISP= ¥ > UNCATALOG Wy * PERFORM el S
*oUNCATALOG. * * DISPOSITION * * UNALLOCATION *
* g ¥ * * * *
*, o RS RS2 2222t 333 I IR RENR
* NO
v
N
v * *
ete zios2 * B2 *
F1 * g EAE R 2 o2 222 LR L e s * *
¥ * * * XX E2 223
- 1s *eo YES * PROCESS * v * *
*o DIspP= o ¥ KEEP *. >* gy *
*o KEEP - * DISPOSITION *
* g - ¥ * * X
*e oF I NN NN
T NO A
v
o¥o oo
G1 . G2 *o
¥ * g - ¥ * g
o* IS *e NO o* *o YESI
*o 1sP= o >¥*e STATUS OLD %
*e DELETE ¥ *a DR MoD o ¥
.* o*
*. *. ¥
* YES * NO
i |
h ‘
ZHOB10 v
EE ISR S22 22 T2
* *
* PROCESS *
* DELETE *
* DISPOSITION *
* *

LR e s a2

ERERE
*

NOTE 1

v
*****Jl*******i**

*1EFZHMSG
L Rt T B S *

* %
o
-
v
o
oxn
w~
-
4
-
[=]
z

*
*
*
LR e]

{
I
I

)
v
HHERK LR RRRR
* RETURN *
* FOR NEXT SIOT *
* POINTER *
XHEHERHHEEN AR XN

TO STEP TERMINATION
ROUTINE

118

THE UNALLOCATE SWITCH IS SET ONCE FOR
EACH STEP, BY THE DATA SET DRIVER ROUTINE.
THIS GCCURS AFTER DISPOSITION PROCESSING
HAS BEEN PERFORMED FOR EVERY DATA SET

IN THE STEP.

Routine

Chart 42.
1IEFZG
WA DN NN N
* *
* ENTRY *
* *
E2 22222222222 223
FROM JOB
TERMINATION
ROUT INE

v
«*, NOTE 1
B2 *o
¥ *q
¥ 1s *e YES
*o UNALLOCATE *

Disposition and Unallocation

Subroutine - Entry From Job Termination

L2 2 2

* ok ok
o
&

* ok K

%

WX B G W NN RN
*

*e SWITCH o%
*e ON o%
*e ok

* NO

\
Ea s 2leb- R 2 22 2 st
* *

* EXAMINE *
* LAST PDQ *
* ENTRY *
* *
* *

336 3 36 36 36 I I I 3 3 6% %

|
v
kg
D2 *o
% DID %,
«* DATA SET *. YES
*¢EXIST BEFORE <%

*e THE JOB %
- ¥
Xy o
T NO

ZHOB10 v
HRXRRED XXX HHEXNHR
*

*
* PROCESS *
* ELETE *
* DISPOSITION *
* *
* *

3 3 3 33 3 I I XX K

|-

Z10B2

v
HHREHE IR W NE RN
* *
* PROCESS *
* KEEP *
* DISPOSITION *
* *

3363 I I H NN NN

v
R 2 2o R S 2222 222

*1EFZHMSG

W W W W W — N NN
* WRITE *
* DISPOSITION *
* MESSAGE *

336 3636 36 I 3 I3 KX NN

v
X HEHGD XN X NN
* RETURN FOR *
*NEXT PDQ ENTRY *
* POINTER *
E e a2
TO JOB TERMINATION
ROUTINE

* GET NEXT
>#* ucsB
: POINTER

33 3 I 3 I I I I NN X

* ok k% Kk

v
o¥,
C *o
o¥* LAST ¥,
¥ ucs *o YES
*o POINTER IN %
*o SYSTEM %
- .
e oF
T NO

v
oty
D4

o% 1 *,

«* JOB ID IN *. NO
UCB (IS IT LEFT
oIN RETAING
STATUS)
¥, ¥

* YES

v
o¥ge
E4 *q
% IS *o
«* THERE A %, NO
#*PENDING COMMAND %*——
*¥e FOR THE %
¥DEVICE.
e o
T YES

ZKOE1 v
Ea 2 S XS 22222 s
*

*
* PROCESS *
* PENDING *
* COMMANDS *
* *
* *

3 39 I I I KN

<

ZJ08B50 v
L2 2 S S 2 8 2 2 22
* *
* PERFORM *
* UNALLOCATION *
* (DISMOUNT *
* IF POSSIBLE) *
E2 222222222 22222 33

3% C S MM XX H®
*

D> *
*

X

* WX

EXIT

*
*

*
RE A S22 222 S LS]

TO JOB
TERMINATION
ROUTINE

*

>* B4 *
* *

Charts

Routine

119

Chart 43. 18K Configuration Load Module Control Flow
HHHEADHHEARHNNE HHERAGHE KN XN
ENTRY * * ENTRY *
* FROM * * FROM *
* NIP * #* SUPERVISOR *
e s e HHHERAI R XN
XCTL {xcTL
v v
ERHKEBLRHEREXXRX¥LOAD HREERBDHEHEERHT RN *XRRRBL XCTL BS
* 1EFDCB *AND * !EF!NITL * * 1EF IDUMP *< >* IEFSTERM *
--*_*_*—u-*-i-*DELETE Em e W K K e o B e = e e e
* * READER/!NTRPR * * INDICATIVE * *JOB MANAGEMENT *
* REFERENCE I *SN!T!AL!ZAT!ON * ¥* bDuMP * ———*INTERFACEs STEP¥<—
ROUTINE * I ROUT INE * ROUTINE * *TERMINATION RT *
************l&*ii **ii************* —
| XCTL XCTL A
r
|
NOT v v | XCTL
*****C]*****i**** *l***czl****i**** XCTL AREXRRCIHEREFRXXXE XCTL
* IEFMSGOI 07 * lEFCNTRL * IEFINTFC < 3 lEFJTERM * * IEFERRDR *
e e o = 20 R St e e e e e] Bt Tt St et M > B e e e O >
* x READER/INTRPR * * READER/INTRPR * * *< *JFCB HOUSEKEEP—*
* MESSAGES *LUAD AND # CONTROL AND * XCTL * RE-ENTRY #* XCTL * TERMINAT!DN *XCTL * ING ERROR *
* *DELETE #* DD ROUTINES #¥———————>% INTERFACE *. >* ROUT INE * * ROUTINES *
L 2 R X 8 L 2ttt S I I I I I NN N LR R R 2
XcTi | A XCTL XCTL XCTLA
l XCTL
1 r
| I XCTL | XCTL
X
HRERHD] H R K ERRK I I 4
* IEF1STMT * * lEFSELCT > % !EFALDC] * T
o g - XKWk —H e KK *—% XCTL Hm R R N e K W *ed L
—D% RST * SYSTEM * * ALLDCATION *
* STATEMENT *—> * CONTROL * >* CONTROL *—>
ROUTINE * * ROUTINE * * ROUTINE *
l***l*l******
I NO DD
A STATE- | XCTL
| V MENTS,
OPERATOR] OR
ACTION ERROR
PERMITS XCTL
ALLOCATION
HREHHE L HRHEHHRH KRR RECOVERY RS R TNK K NN
IEFK4 * AND RETRY * 1EFALOC2 *
— ——*—*—*—i-i—* I e
—>% OPE ND *— * DEMAND AND *
* CLDSE DEVICES * * DECISION *
* ALLOCN RTNS #
{i*iii******i*l’}l ER 22T 22222 T)
XCTL
1 LOAD AND v
*****Fl********** W DWW KRR LINK DELETE
IEFJOB * * IEEMCRO1 *- >* !EESTART * >* IEEJFCB * —>* lEFALOC3 *
l—*—*—i-*-&—i—*—* *e —*-*—*— —%—%—% LINK L e Dt o T T ek e e e 2 B chL&—*—*—w— e
— > * MAS —— * START * * JFCB'S FOR * * *
* JOB ROUTINE * * SCHEDULER * * COMMAND * LINK * START COMMAND * * CDNSTRUCTIDN *
* * * *< * ROUTINE Foee—y * ROUTINE * XCTL* ROUTINE *
AT R IIK NN AN RN IR KR
A XCTL XCTL
IF
ERROR
v v X
WHRENG] KRN N AR G3 GS C
* 1EFEXEC * I > * IEEFAULT * a—g IEESJFCB * * 1IEFALOCS * T
f e St ama A R Hm N K K N R * [-t B T et e e A
—>* EXECUTE > l * * *INTERFACE WITH #* *EXTERNAL ACTION#*
* ROUTINE * —* ROUTINE * ————>% TABLE STORE ¥ * ROUTINE W]
x * Sve % * I * SUBROUTINE #* *
T Y EXIT * *
AXCTL XCTL
IF
ERROR
v X
LR 22 SR S22 2 22 22 EAZ 22t kE 2SS 2222 EREHEHG C
* 1EFD * * IEESET *— IEFJOBGE * * IEFALDCS * T
LRl Dt B S e B S B Fm N F RN —H—% | INK W o W I e e W - W Y e I e e P *— L
—D>% DD SCAN *—> -> ¥ SET * * * * SPACE s
* ROUTINE * LINK* COMMAND * LINK *INITIAL!ZAT!ON * * REQUEST *
* * ROUTINE e arE—— ROUTINE * * ROUTINE *
ERERERRERREEH R (AT IPL)
XCTL XCTL
v v
LA S E MR Z ST ST EE 22 I N 22 222l HERRRJSHEEX R XXX
* TIEFCOMND * SVC * IEETIME * * IEFATACH *
L i EXTTHm W km W e e B e
—>% SCAN *—> % SUPERVISOR * »* STEP *
* COMMAND * * TIME * *INITIALIZATION *
ROUT INE * ROUTINE * * ROUT INE *
«i****a**»;***i** R H R RH RN P e I
CTL
NOTE 1 THE ASSEMBLY MODULE IEEMCRO1 IS INCLUDED
IN LOAD MODULES IEFINITL, IEFEOF, IEFCOMND,s
AND IEFINTFCe v
Rl S S A S S A S LS 8 NOTE 2 THE MESSAGE MODULES IEFMSGO1 THROUGH Bt LA LS R S b
* IEFEOF * IEFMSGO7 CAN BE LOADED AND DELETED BY FERRKGRRRR TR EH * *
Fm R R f R W N K> ANY OF THE FOLLOWING MODULES IEFCNTRL * X TO * RETURN * PROCESSING *
—>% END OF * 1EF1STMT,s IEFK4, IEFJOB, IEFEXEC, IEFDDs * SUPERVISOR ¥ e it PROGRAM *
* DATA SET * 1EFCOMNDs AND IEFEOF. * #OR ABEND * *
P T * *

* ROUTI
LR e S e

120

Py Sum—
XCTL

HRERTEERREERRREER

Chart u4.

OAD

L
HRERRG] HEERRRRREE AND
* 1EFDCB
EEd B2 B B B Bt 2 B
» ocs *<—y
* REFERENCE *
* OUTINE *
ER 2222222 2 22 2T

* DELETE

HRREADEER RN RRN
ENTRY
FROM

NIP
R R il
XCTL

* % %
* ke ke

v
HRREXBREERERARRR

* IEFINITL *
LIS R s

* RDR/INTERP *
*INITIALIZATIDN *

ROUT INE *
l&**i**&*iﬁ******
XCTL

v
EERRRC2EHREER R XN

44K configuration Load Module Control Flow

HREERDHHEF R AN RNH

* 1EF IDUMP *
B e
* INDICATIVE *
* DuUMP *
* ROUTINE *

NI N RN

HERRASHEEHEXERR
ENTRY

*
*

* %k

SUPERVISOR
R e e

I C] NN NN XCTL
* , IEFMscol * m— IEFCNTRL *
Lo et S S e e e L o e e N W e W XCTL
* *L— * RDR/!NTERP *<
* MESSAGES * * * XCTL
* * ——%* JOB TERMINATE *
BN NN FRERRRERRRREERXRRNC——— XCTL
LOAD AND XCTL
DELETE
(NOTE 2)
v l
HREEEDY HRRENE RN XRRXEDD KR RNHRERE HREREDL HEHRERHINKE
* !EFMSGOZ * * IEFISTMT * * IEFERRGR *
s vt B - R e e e F e 2R P
* *— —>¥* RS —> * JFCS HOUSE— * i
* MESSAGES * * STATEMENT * XCTL * KEEPING ERR— %
* * * ROUT INE * * OR ROUTINES * |
HREEREHERRERRERN e e e L T e
, |
i XCTL
v v
ERERREDHRREER RN %
¥, IEFMSGO3 * !EFNE&RD * * IEFJTERM *
e e B e e B W e L 22 W W W W W e W e e Y Y W W Y e 3
* *<— > DPEN/CLOSE *—> * *
* MESSAGES * * DEVICES * TERMINATE *
* * * *

ERREREERRRANERIRER

* ROUTINE
HEREREEEEXEXRRRES

XRREREEERERERERER

vV XCTL
HEXERCSEEXEERERRN
* IEFSTERM *
L e e e kS

>* INTERFACE *
* AND STEP *
>% TERMINATION *

R T T

HRRERDSEEE R E KX H N
* IEFALLOC *
L R S
* *
* ALLOCATION i
* *

EEEEXEREEEERERERR

VvV XCTL
EHERRESH R HR R RHR

* *
* *
* PROCESSING *
* PROGRAM *
* *
HRHHR KRR RH XX AR
RETURN
ABEND

FRENRF] XN ERNE R R 2NN XX RN v
IEFMSGO04 * * 1 * ERFRFSEXERRERRR
T e e it L N e * EXIT
* *=<— L—>% END OF *—>. * T0 *
#* MESSAGES * * DATA SET * * SUPERVISOR %
» * * ROUT INE * RN KNI RH NN
E2 2222222222 222223 E2 22222222222 22X 2
LOAD AND
DELETE
(NOTE 2)
<
LOAD
AND
NOTE 1 DELETE
EARRRG] HRHERERRRE ***liG3l*ii****'l LINK EREERGLEXRRRERRERR HRRERGCSHEN XXX HNAN
* IEFMSGOS * % IEEMCRO1 >% 1EESTART * >% EEJFCB *
Lot Bt Bt 2t B 2T 2 Bt *—*—*—l—*—*—*—*c* LINK PR St B B Bt Bt S Bt LR B —’—*—*—i—*—*
» *<— * MASTER A % START = * JFCB* OR
MESSAGES * * SCHEDULER * * COMMAND * LINK * START COMMAND *
» * * *< * ROUT INE ROUTINE
KRR RER RN » li’il*ii’i**l&**{
A f] XCTL
1F
ERROR
v
EEZ 2 IR 222 22222 2] HHEREHY EXRERHNXRR NS NHHRRRR
IEFMSGO06 * L——>* IEEFAULT >x IEesyrce o x
i e e e L ek e [S Y . B B e Bt Bt e s L Lt Bt 2 Bt e et o
*<— * FAULT * ’INTERFACE NITH *
M MESSAGES * * ROUTINE * * TABLE STORE *
* * svc * >% SUBROUTINE ¥
R 2222 2122222222 22 EXIT #EREFREHEXHEXEFRR L2222 2222222 S 8222
XCTL
IF
ERROR
R LA NRR ST 2Ll *****J4*—*ll§**** HENRE JSH RN KT RTRER
¥, lEFmsco7 % LINK * ESET * , IEFJoBGE %
E R R W — NN g —i—i—l—i—*—*—* * LINK Lt e S e *—%
» L meh >* SET * *
MESSAGES * * COMMAND M)*lNlTlALIZATlDN *
* * * ROUTINE * * ROUTINE *
EEE 22 S22 2222222 RRAERREFRERREERXXE | INK R 22222 ST RS Lttty
XCTL (AT 1PL)
NOTE 1 THE ASSEMBLY MODULE
IEEMCRO1 IS INCLUDED IN
LOAD MODULES IEFINITL,
IEFEOF, AND IEFCNTRL
v
NOTE 2 THE MESSAGE MODULES HEREHKLHRHEXEEENHH
CAN BE LOADED AND * IEETIME =
DELETED BY IEFCNTRL AND F R K XK Fm R
IEFEOF « # SUPERVISOR #
svc_ ¥ TIME *
EXIT # ROUTINE *

EI e]

Charts 121

Chart 45. 100K Configuration Load Module Control Flow

REREA2ERERERRRR
* ENTRY *
* FROM *

* NIP *
369 3 3 I I X XXX
XCTL

v
R D IR WX
* TEFINITL
e e W e N e e —
* RDR/INTERP
*¥INITIALIZATION
* ROUT INE
K IR HRXH

XCTL

* % Xk % k

v

1
* IEFDCB *
Lt 2 *-*—&—*—* *
* XL
* REFERENCE *

* ROUT INE *
ER e e

W RD] KRN KRN
* IEFMSGOI *
W R W W R Hm *—%
* *
* MESSAGES *
* *

F RN KRR RN RRERRR

REHERELHHHHIERNXE
* lEFMSGOZ *
L e e e e *—%
* *<——
* MESSAGES *
* *

EE I T e Y

HERERFE L ERAREEEERR
* IEFMSGO3 *
Lt R B O R N
* *L—
* MESSAGES *
* *

a2 e T s

WG] RN
* 1EFMSGO4 *
LR B B S B Bt 2 2t 3
* *<—
* MESSAGES *
* *

EREERHERE TR ERKR RN

HRRERH L HEREERRR R

* IEFMSGOS *
Fm K W R N R R W W

*
* MESSAGES *
* *

LR 2 e T e

R J]RR AR R
* IEFMSGO6 *
o s St R
* *L—
* MESSAGES *
* *

I IR NN

LRI SR TR T

* IEFMSGO7 *
L L = 1

* *g—
* MESSAGES *
* *

R T

122

LOAD
AND
DELETE

* !EFCNTRL *
L2 - —l— B

ERP *<:

% RDR/INT
*AND INIT!ATOR/ *
* TERMINATOR *
LRI AR T 2

XCTL

v
HRRHRDD N KRR NN

PROCESSING
PROGRAM

EE T Y
* KKKk

E2 222222222
| RETURN
OR

ABEND

v
HRHEE D HRHRHIERR
* EXIT TO *
* SUPERVISOR *
* *

P T e T

NOTE 1

NPT NN NRN
* ENTRY FROM *
* SUPERVISOR *
* *

633 WX N

XCTL

OTE 1
RS A= L 22 TR 2

* IEEMCROI *
* - *

J

* SCHEDULER *
*

i*l**’i!*i**i!*l*
LINK

LINK
—>
* LINK

4
I

LOAD
XN RRE L NN NN DELETE W RE SN W NN RN NN
* _LEESTART * 1EEJFCB *
e !—*—*—*—* - —i—*—*—*—i-*
* * * JFCBY
* CDMMAND % LINK * START COMMAND x
l * ROUTINE ROUTINE *
EE 22222 22 2l li******l*******‘
I XCTL
IF
| ERROR
v
RN G RN RN RSN N R XN
>% TEEFAULT * >* IEESJFCB *
o Y o e W W= P o o Y Y e W W W
* FAULT * *INTERFACE WITH *
* ROUTINE * * TABLE STORE *
* * (———>%* SUBROUTINE %
SVC #¥%EHEXEREERREXXEX R2 2222222222222
EXIT AXCTL
IF
ERROR
REXXERGYEEHERRRERRER EAZ 2RSS S22 222 2 22
* IEESET *— * 1EFJOBQE *
W R KW N —R— K% | INK B e e e e et St
> SET QUEUE *
* COMMAND * *INITIALIZATION *
ROUT INE * >* ROUTINE *
********’*****'** LINK EEE A 2 22 222 L L]
XCTL (AT 1PL)

v
Fa e e 2]

* IEETIME *
B e e i ot ot ot 2

THE ASSEMBLY MODULE
EEMCR

RO1 IS INCLUDED IN LOAD

MODULES IEFINITL AND IEFCNTRLe

SUPERVISOR *
SVC * TIME *

EXIT* ROUTINE *
e e e T)

Accounting routine
entry to 8,21,37,38
information for 16,42
ACT
construction of 7,16
description of 42
Affinity
unit 21,26
volume 21,26,27
Allocate control block 24,25,29
Allocate processing routine 23,96
Allocate volume table 24-28,30
Allocate work table 25-29
Allocation 28,33-35
Allocation and setup 21,24-29,102
Allocation control routine 24,103
Allocation error routines 24,36
Attention interruption 10,12-14
Automatic volume recognition (AVR)
24,29-35,105

CANCEL command 11,13,36,37
Cancel ECB 37
Channel load table 27,32
Channel separation 32
Commands

CANCEL 11,13,36,37

DIsPLAY 11,13,22

MOUNT 11,13,28

REPLY 14

REQ 8,11,13

SET 8,11,13

START (blank) 8,11,13

START RDR 8,13

START WTR 8,13

UNLOAD 11,13,28,41

VARY 11,13,41
Completion code 38
Condition codes

EXEC statement 21,22

JOB statement 38
Condition operators

EXEC statement 22

JOB statement 38
Console interrupt routine 11-13,80

Data set name table 7
(see also dsname table)

Data sets
device requirements of 25,27
disposition of 40
selection of 32

DD list table
description of 43

DD major field table
description of 43
use of 18

Ddname table
description of 44

DD parameter list table
description of 44
use of 18

INDEX

DD routine 17-20,89
DD statement
analysis of 17-20
JOBLIB 18,21,36
Decision allocation routine 24,32,33,109
DELETE disposition 40,41
Demand allocation routine 24-29,104
Device mask table
- description of 45
storage requirements 24
use of 26,28
DISPLAY command 11,13,22
Disposition and unallocation subroutine
37,38,40,41,118,119
Dsname table
construction of 7,15,16
description of 45
Dummy JFCB 43,44
Dummy SIOT 43,44

18K configuration 58-63,120
End-of-data set 8,13,14
(see also EOF)
EOF 8,15,16,21
EXCP macro-instruction 11,13,14
EXEC key field table
description of 46
use of 17
EXEC statement
accounting information 42
ACCT parameter 42
analysis of 15-17
condition codes 21,22
key fields 46
parameter dispositions 18
Execute routine 15-17,88
Execute statement condition code routine
21,22,93
External interruption 11,12,14

Fetch DCB 23,37
Fetch DCB processing routine 23,97
44K configuration 63-67,121

GDG all processing routine 23,99

GDG single processing routine 23,98
Generation data group 23

Generation data group bias count table U6

Initialization commands 8,14
Initiator/terminator 21-38,90
Interruption
attention 10,12-14
external 11
IPL 8,13,15,21,28,39

JcT 37,38
construction of 7,16
description of 46,47
JFCB
completion of 7,23
construction of 15,17

Index 123

JFCB housekeeping routines 22,23,40,94,95 Null statement 8,15,16,38
JOBLIB DD statement 18,21,36
Job library 21,33,36,37

Job library DCB 36,37 Off-line devices
Jobname 16,48,49 allocation of 28,36
JOB statement 16,38 Operator commands 7,8,10,11
(see also commands)
KEEP disposition 29,40,41 PASS disposition 38,40,41,48
Passed data set queue
cT 21,22,36,38 construction of 23,24
Library description of 48-50
job 21,33,36,37 Primary console
procedure 15,17,28 allocation of 28
svCc 10,13,57,58 switching functions of 11,12,14
Linkage control table Procedure library 15,17,28
(see LCT) Programname
IEEFAULT 63,67,69 entry in macro parameter list 35
IEEJFCB 63,67,69 ' Public volumes
IEESET 63,67,69 allocation of 28,35
IEESJFCB 63,67,69 disposition of 41
IEESTART 63,67,69 requests for space on 33,35,36
IEETIME 63,67,69
IEFALLOC 64 Reader/interpreter 7,8,13-20,85
IEFALOC1 59 Reader/interpreter TTR table 51,52
IEFALOC2 59 REPLY command 14
IEFALOC3 59 REQ: command 8,11,13
IEFALOCH4 59 REQUEST key 8,10
IEFALOCS 59
IEFATACH 60 scT 37,38
IEFCNTRL 60,6u4,67 construction of 7,16,17
IEFCOMND 61 description of 52,53
IEFDCB 62,66,69 Separation
IEFDD 60 channel 32
IEFEOF 62,65 unit 32
IEFERROR 62,66 SET command 8,11,13
IEFEXEC 61 SIOT
IEFIDUMP 62,66 construction of 7,16,17
IEFINITL 63,66,69 description of 54,55
IEFINTFC 60 disposition field 40,54
IEFJOB 61 SMB
IEFJOBQE 67,69 (see system message blocks)
IEFJTERM 61,65 Space request routine 35,36,112
IEFK4 62,66 START command
IEFMSGO01 62,66,69 START (blank) 8,11,13
IEFMSG02 62,66,69 START RDR 8,13
IEFMSG03 62,66,69 START WTR 8,13
IEGMSGO4 62,66,69 Step control table 7
IEFMSGO5 62,66,69 (see also SCT)
IEFMSG06 62,66,69 Step initiation 21,36,37,113
IEFMSG07 62,66,69 Step input/output table 7
IEFPRES 62 (see also SIOT)
IEFPRINT 63,67,69 Stepname
IEFSELCT 58 field in scT 17
IEFSTERM 58,63 Step termination routine 37,38,41,11%
IEF1STMT 62,65 Supervisor 8,11-14
IGCO003D 58 svc library 10,13,57,58
IGCO003E 58 SVC 34 instruction 13
IGCO0003F 58 SVC transient area 11,13,14
IGC0103D 58 SYSIN
allocation of 28
Macro-instruction SYSoUuT 28,36,41
EXCP 11,13,14 System message blocks
wro 7,8,10,11,14,22 construction of 7
WTOR 7,8,10,11,14 description of 56
Master command EXCP routine 10,11,13,81 use of 7
Master command routine 11-13,82 S¥si.LINKLIB 10,57,58,70
Master scheduler 7,8,10-15,79 SYS1.NUCLEUS 57

124

SYSt.SVCLIB 10,13,57,58
SYS1.SYSJOBQE 39

Task input/output table
(see TIOT)
Termination 8,21,37,38,114
TIOT
format of 34
functions of 33
storage requirements of 25
use of 35-37,40
TIOT construction routine 29,33,34,110
TTR table 51,52
(see readers/interpreter TTR table)

ucB 27,28,33,35,36,41
UNCATLG disposition 40,41
UNLOAD command 11,13,28,41
Unreceived data sets 38

VARY command 11,13,41
Volume affinity 21,26,27
Volume control block 23
Volume 1list 40

Volume takle 7,22,23,56

WTO macro-instruction 7,8,10,11,14,22

WTOR macro-instruction 7,8,10,11,14

Index

125

Y28-6613-1

TSI

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017
[International]

READER'S COMMENTS

Title: IBM System/360 Operating System Form: Y28-6613-1
Job Management
Program Logic Manual

Is the material: Yes No

Easy to Read? S —

Well organized? - -

Complete? —_ I

Well illustrated? - —_

Accurate? _ I

Suitable for its intended audience? P —_
How did you use this publication?

___As an introduction to the subject ___ For additional knowledge

Other fold

Please check the items that describe your position:

— Customer personnel —Operator —_Sales Representative

— IBM personnel — Programmer ——Systems Engineer

—— Manager — Customer Engineer — Trainee

— Systems Analyst — Instructor Other

Please check specific criticism(s), give page number(s),and explain below:
——Clarification on page(s)
—_ Addition on page(s)
— Deletion on page(s)
— Error on page(s)

Explanation:

fold

FOLD ON TWO LINES,STAPLE AND MAIL
No Postage Necessary if Mailed in U.S.A.

¥28-6613-1

staple sta
fold | £

r 1

| FIRST CLASS |

| PERMIT NO. 81 |

| |

| POUGHKEEPSIE, N.Y. |

L 4

1
BUSINESS REPLY MAIL |

NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. |
4

[w——

POSTAGE WILL BE PAID BY

IBM CORPORATION N
P.0. BOX 390 RERRR! 5
POUGHKEEPSIE, N. Y. 12602 P
RERRE! o
;.
ATTN: PROGRAMMING SYSTEMS PUBLICATIONS RERRN a
DEPARTMENT D58 t
RRRRN 5
fold w £
N
©
1
(<4
2
w
l‘

BIVI

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017 ste
[International]

