IBM System/360 Operating System
Utilities

'Program Logic Manual

Program Number 360S-UT-5086

This publication describes the internal logic of
the utility programs provided for the IBM System/
360 Operating System:

e System utilities, which are executed under the
operating system to manipulate system data
sets such as catalogs.

e Data set utilities, which are executed under
the operating system to work with data sets at
the logical-record level.

e Independent utilities, which are executed out-
side of the operating system to dump, restore,
and recover data, and to initialize and assign
alternate tracks on direct access devices.

In addition to descriptive text, this publica-
tion contains flowcharts of the programs, figures
showing the formats of the major tables and reco-
rds, and an appendix that lists the rodules of the
utility programs.

Program Logic Manuals are intended for use by
IBM customer engineers responsible for program
maintenance, and by system programmers involved in
altering the program design. Because program
logic information is not necessary for program
operation and use, distribution of this manual is
restricted to persons with program maintenance or
modification responsibilities.

Restricted Distribution

File No. S360-32
Form Y28-6614-4

Program Logic

Preface

‘The purpose of this publication is to
enable the reader to locate specific areas
of the utility programs provided for the
IBM System/360 Operating System, and to
relate those areas to the corresponding
program listings.

The publication is divided into three
major sections, corresponding to the three
major types of utility programs: system
utilities, data set utilities, and indepen-
dent utilities. Each section contains
descriptions of the programs of the corres-
ponding type; these descriptions consist of
text, flowcharts, and figures showing rec-
ord and takle formats.

The introduction provides a brief
description of each utility program, and an

appendix lists the modules of the utility
programs.

To use this publication effectively, the
reader should have an understanding of the
material in the following publications:

IBM System/360 Operating System:

Principles of Operation, Form A22-6821

Utilities, Form C28-6586

Concepts and Facilities, Form C28-6535

System Control Blocks, Form C28-6628

Introduction to Control Program Logic
Program Logic Manual, Form ¥28-6605

Fifth Edition (November, 1968)

This is a major revision of, and obsoletes, Y28-6614-3, It
contains the. following new or modified material.

e IEBDG. This is an added Data Set Utility Program. This
program is used to generate test data sets to be used as
a debugging aid.

e IEHMOVE, IEBUPDTE, IEBCOMPR, IEBGENER, IEBPTPCH. These
programs have been modified for variable spanned records
and/or user label exits. :

e JEBCOPY. This program has been modified for data set
compression.)

e The klocking factor for data set utility programs and for
system utility programs that use QSAM has been modified. |

Other changes to text, and small changes to illustrations,
are indicated by a vertical line to the left of the change;
changed or added illustrations are denoted by the symbol e to
the left of the caption.

This edition applies to release 17 of IBM System/360
Operating System and to all subsequent releases until other-
wise indicated in new editions or Technical Newsletters.
Changes are continually made to the specifications herein;
before using this publication in connection with the opera-
tion of IBM systems, consult the latest IBM System/360 SRL
Newsletter, Form N20-0360, for the editions that are
applicable and current.

A form for readers' comments is provided at the back of’
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems Publica-
tions, Department D58, PO.Box 390, Poughkeepsie, N. Y. 12602

© Copyright International Business Machines Corporation 1966, 1967, 1968

INTRODUCTION « o o o o o o o o o o @« =

SYSTEM UTILITY PROGRAMS ¢ &« « « o« « «
Auxiliary Parameters . « o o o o o« o
Device Allocation and Volume Mounting
(IEHMVSSF and IEHMVXSF) . . o o« « «
Control Card Scanner (RDCDRT) . . .

Modifying System Control Data

(IEHPROGM) < v o o o o o o o »
Program Structure . . . « ¢ o o . .
Control Load Modules

The Root (IEHEBASE) e o e = o ° =
The Parameter List Builder
(IEHEUP1, IEHEDC1, IEHEDC2) « o =
The Volumre Mounter (IEHMOUNT,
IERVCLMT, DEVMASKT) e o o o o =
The SVC Return Analyzer (IEHEUPlA)
Sukordinate Load Modules . . . <« . .
The Auxiliary Parameter Analyzer
(IEHINVOC) 4 o o o o o o o o o o o
The Message Writer (IEHEMSGX) . .
Volume Look-up (IEHDTTLU, DEVNAMET)
Program F1lOW « v ¢ o o ¢ o o o o o »
Phase 1 . . « o« « & .
Phase 2 . ¢ ¢« @ o o o« o o o« «
Fhase 3 . ¢ « o o .
Moving and Copying Data (IEHMOVE)
Overall FIOW « o « o o o« o o o =
Program Structure
Program Set—-up (IEHMOVE, IEHMVXSE,
IEHMVXSF) « ® o s o s e e o @ =
Reguest Set-up (IEHMVEST, IEHMVESJ,
IEHMVESS) - o e e o o o o ° @
Message Writing (IEHMVESA,
IEHMVESU) e ® ® o ® * o ® e e o o
DSGROUP Set-up (IEHMVESI, IEHMVESC,
IEHMVESH) o ¢ o o o o o o o o o o
Data Set and Volume Set-up
(IEHMVESZ, IEHMVXSF, IEHMVESX,
IEHMVESV, IEHMVESY) ¢ ¢ o« « o o o
PDS Sukroutines (IEHMVESR,
IEHMVETG, IEHMVXSF) e o o o . o
Copying, Unloading, and Loadlng .
DSGRCUP Wrap-up (IEHMVESH,
IEHMVETA) o o o o o a e o o o
Data Set Wrap—up (IEHMVESN,
IEHMVESO, IEHMVESP, IEHMVESQ,
IEHNMVESK) « o o o o o e o o e ®

Cormmunication Area (IEHMVV) “ o e e

IEHMOVE Work Data Set Record Formats
Obtaining Space for a Work Data Set
Releasing Space Used by a Work
Data Set «. « « « « &

Listing System Control Data (IEHLIST)
Progran Structure«
Updating XCTL Tables for OPEN, CLOSE,
and EOV (IEHIOSUP) . . ¢ « o « « « =
Program FIlow « <« « ¢ o« o o o & -

Finding the Load Module
Updating the XCTL Table .
Initializing the SY¥S1.LOGREC Data Set
(IFCDIPOO0) o ¢ o o o « o o s s o o o =

e & 3 & »
s 2 o s s @

30

31
32

35

Contents

Program FIOW . . o o o o o« o « o « &
First PasS o o o« o = o s o o o o &«
Second Pass e« o o o @

SYS1.LCGREC Record Format « e e e
Header Recoxrd . . .« o & o o o « @
Statistical Data Records
Record Entry Area . . . « .« o

Editing and Printing Env1ronmenta1
Records (IFCEREPO) .« « o ¢ o v o « o &
Ooverall FI1OW « « « o o o o o = « «
SYS1.LOGREC Input . . « « « « o« «
Accumulation Input . « o o o o
Control Module Subroutlnes « e e
Loading the 2821 Generator Storage
(IEHUCSLD) « v « ¢ « o o o « o « o o =
Program Flow . . .
Writing Tape Labels (ILHINITT) .
Program F1OW « « « « o « «
Program Structure
Dumping, Restoring, and Initializing
Direct Access Volumes (IEHDASDR) . . .
The Control Routine (IEHDASDS) . .
Performing the Dump Function . . .
Performing the Restore Function .
Performing the Analyze and Format
Functions . . « ¢ o « « o« o = s @
Performing the Label Function . .
Performing the GETALT Function . .
IEHDASDR Service Routines

DATA SET UTILITY PROGRAMS
Updating Partitioned and Sequential
Data Sets (IEBUPDTE) . ¢ « o « « « o« =
Program Structure . .« ¢ « ¢ «. 0 o o
The Root Segment « « ¢« o« o & o « o«
The Control Card Analyzer Segment
Initialization and Exit Routine
Modules . . &« & ¢ o & o o o o « @
Program FIOW « o « o o o o o « o o @
Processor Data Flow . . . - -
Copying and Mexging Partltloned Data
Set Members (IEBCOPY) . . o « « « « o«
Program Structure
The Root Segment .« « « « o« « « o o«
The Control Card Analyzer Segment
The Processor Segment . . . « . .
Program FIOW . « o o« ¢ ¢ ¢ o« o « o =
Copying Without Data Set
Compression « o e o @
Copying With Data Set Compres51on
Comparing Records (IEBCOMPR)
Program Structure < & . .
The Root Segment *© ¢ « « ¢ c o « &
The Control Card Analyzer Segment
The Processor Segment « e e e e
Program Flow « o o =
Copying and Modlfylng Records
(IEBGENER) . @ o ¢ ¢ 2 a o a « « o o =
Program Structure < o .
The Root Segment - -
The Control Card Analyzer Segment
The Processor Segment

. 85
. 85

.101

.101
.101
.101
.102

.102
.102
.103

.108
.108
.108
.108
.108
.109

.110
.110
.113
-113
.113
.113
.113
.114

.117
.117
.117
117
117

Printing and Punching Records

(IEBPTPCH) ¢ o o « o o o =« o = = « = « 2121
Progran Structure . . « . « « o« <« - o121
The Root Segment e o o <121
The Control Card Analyzer Segment .121
The Processor Segment . « « « « « 121
Program FlOW « « o o o« = o = o « o o 2122
Operating on an Indexed Sequential
Data Set (IEBISAM) . . « « o « « « « « 2125
Initializing IEBISAM . « o « « « = « 2125
Copying an Indexed Sequential Data
SEt ¢ ¢ ¢ ¢ o e o o s e o = = e = « <125
Unloading an Indexed Sequential Data
SEE ¢ 4 o 4 e 4 e e e o o s e o o = <4126
Cbtaining Indexed Sequential
RECOXAS o« o o o o o o o o o o o o <126
Building the Output Data Set126
Loading an Indexed Sequential Data
SEL 4 ¢ 4 e e e e e e o e « o o = o $129
Printing Logical Records of an
Indexed Sequential Data Set129
Terminating the IEEBISAM PFrogram . . .130
Updating Symkolic Libraries (IEBUPDAT) .140
Program Structure 140
Initialization « « « <« <« « « <« <« < 2140
Member ProCessOr « « o« « « « « « = 140
Within Memker Processor . . « . . 141
Program FIOW ¢ o« o o o o o s o o« o « o1U2
Creating a Modified Input Stream
(IEBEDIT) =« o o « « o o o o « « = « « 2145
Program Structure o« . « . <145
The Initializing Routine145
The Main Routine . . . « . « . « . 145
The Post Processing Routine147
IEBEDIT Subroutines . . . e . e <147
The Data Generator (IEEDG) Program - - 153
Program Functions153
Control Card Scanning154
The Base Module (IEBDG) Charts
60,61,62 o o o & ¢ ¢ ¢ o ¢« s . « o o 2154
Initialization . « . « « « . .« . . .154
Cpening Data Sets . . « « « « « . .154
Messages e o o o o o o 155
Reading Control Cards e « « =« o « <155
BRase Module card-Processing156
The Clean—-up Module (IEBDGCUP) Chart
63 « « o <156
The FD Ana1y51s Module (IEBFDANL)
Charts 64,65 . ¢« ¢ ¢ &« ¢ o « o « « « 2157
FD Card Scanning « « « « « « « « « «157
The FD Takle Module (IEEFDTBL)
Charts 66,67 « « o« o o o« « « o « o « 4157
FD Pattern Construction157
The Create Analysis Module (IEBCRANL)
Charts 68,69,70,71,72 « .161
Table Construction ,161
Nodule Entries « « &« « « ¢ « o« o« o 161
Module Sukroutines162
Keyword Processing . « e e e e o 4163
THE CREATE MODULE (IEBCREAT) CHARTS
3,74 @ o« & o o o« o« o 2 =« « o« o« = o« <165
Cutput Record Modifications165
Updating the FD Table166

The Message Module (IEBDGMSG) Chart

T5 @ o « o o o o o « o o o o « o = « 2167

SERVICE AIDS « 2 « = o « o« o o o« « o 2168
Tables and Work Areas Used by
Modules of Data Generator Program .175

INDEPENDENT UTILITY PROGRAMS193

Supervisory Routines of the Independent

Utilities . ¢ ¢ @ ¢ ¢ o ¢ o o & o « « 2193
Checking the Input Device193
Data Input Routine . . . « . « « « « 193
Control Statement Analysis193
Volume Label Checking « . . .194
Message Cutput Routine194
Write to Operator Routine194
I/0 Control Routine .« . « « « « « « 194
I/0 Interruption Analysis . .«195

Initializing and Assigning Alternate

Tracks on Direct Access Volumes

(IBCDASDI) &+ « « o o o = s o « =« o « =« <197
Program FIOW « « ¢ « « ¢ « o « « « - .197

Initializing a volume198
Obtaining Alternate Tracks . . . - .199

Dumping and Restoring a Direct Access

Volume (IBCDMPRS) . & « o o & « « « « 201
Dumped Data Format . . « . « «201
Program F1OW . « « o o « o o « « « « 2202

DUDPING o o o « o = « o « o o « « 2202
Restoring . « ¢« ¢ ¢ ¢« &« o & o « o« .203
Recovering and Replacing a Track
(IBCRCVRP) . ¢ o o o « o o« o o « & « =« 206
Overall FIOW « v =« ¢ o« o o « o « « 206
Recovering . « « « « ¢ o o « o « « 2207
Replacing .« « o« o « o ¢ o o o « o« 207

APPENDIX A: MODULES OF UTILITY

PRCGRAMS &+ o o o o o o o o o s = o o« « 2214

JEBCOMPR ¢ o o o o o o o o o« =« « « « o o214

TEBPTPCH o+ o o o o o o o s« o o « « » o 2214

JEBCOPY ¢ « o o o o o o o o« a o o » o« <214

TJEBEDIT =+ « o o o o o = o« o o o o o « +214

JEBGENER ¢ o o o o o o o o o s « » » o o214

JEHUCSID . ¢« @ o « o o o « o o « o « « 2215

TEHIOSUP o v v« o o v« o o = =« o o s « « 2215

IEHINITIT . o ¢ o o o« o = a o 2 « « = o« 215

TIEHDASDR ¢ o o « o o = o o s o o« o o« « 2215

TJEHMOVE 4 4 4 o o o o o « o« = o« o o o <216

IEBISAM o o o o o« o o o o s« o o o o« o 2217

IEHPROGM .« ¢ o o o 4« o o o« o o s o o« o 217

TEHLIST o o o o « o o o« o« s « « « o « <218

JEBUPDAT o « « o o o o o o o o o « » o 2218

JEBUPDTE ¢ o« o o « o o « o « o« « s « o« <218

IBCDMPRS o « « o o o o o s o o = o« o s« +218

IBCRCVRP . ¢ ¢ ¢ o« o « o o « o « o « « 218

IBCDASDI « ¢ o o o o o o o = o o o « « 2218

TEBDG o o o o o o o o o o o o « o « « 2218

APPENDIX B: USER LABEL-PROCESSING . . .219

Parameter List . ¢ ¢ ¢ ¢ ¢ o o ¢ o« o o 221
Parameter List Modification221

Return Codes « « o o o o o o o = o o o 222
Return Code Modifications222

INDEX o o ¢ o o o o« o o o o o o o « « 2225

Figures

Figure 1. Auxiliary Parameter Format
for IEHPRCGM, IEHMCVE, IEHLIST,
IEHIOSUP, IEHUCSLD, IEHINITT, and
IEHDASDR © o e o o e e e o e e ° o o o
Figure 2. Internal Takle Header . . .
Figure 3. Volume Mounting Request . .
Figure 4. Internal Table Maintained
by IEHVOLMT < o o o o o o o o « o o « @
Figure 5. The General De31gn of

the IEHPRCGM PXOgYXall . o« e o o o o o o
Figure 6. The Overlay Structure cf
the IEHPRCGM Program (Each block
represents one control secticn)
Figure 7. The Structural Flow of
IEHPROGM Program (Each block represents
one load module) c e s e e e a .- .
Figure 8. Linkage Procedure Used by
the IEHPRCGM Program to Invoke a
Subordinate Load Module « . .« &
Figure 9. IEHECHAR, the

cormunication Table for
FNDECODE , KCDECODE, IEBESCAN, and IEHETLU
Figure 10. The CATALOG Routing Table .
Figure 11. Parameter Lists Built by
IEHPROGM for Data Management Routines .
Figure 12. The Return-Indexing Entry
(for the Catalog SvC) of the Catalog

operation . . . ¢ ¢« 4 e 4 e e 0 e e o .

Figure 13. The Design of the IEHMCVE
Progralm o« « « « « o « o o« o = o« o« o« o s
Figure 15. SYSUT2 Record Format (for
a PDS Request only)« .
Figure 14. SYSUT1 Record Format (for
a PDS request only) . « o « « o o o o o

Figure 16. SYSUT3 Record Format .« s .
Figure 17. Load Module Groupings for
Copy - - e o = @ s o s s e e e a e & =
Figurxe 18. SYSUT1 and SYSUT2 Record

Formats for DSGROUP; SYSUT1 Recoxd
Forrats for CATALOG . « o o o o o o o
Figure 19. Label Save Area Pointers .
Figure 20. Where to Find Record
FOXrmatsS o« o« o o o o « o o e o o o o o o
Figure 21. The Overlay Structure of
the IEHLIST Program . « « - « « o « .
Figure 22. The Structural Flow of the
IEHLIST Program . « « » = . .

Figure 23. Embedded XCTL Table Format
Figure 24. SYS1.LOGREC After First and
Second Passes of IFCD1P00 . . . « « o =«
Figure 25. Control Flow Between

MOAULES o o o o o « o o o o o = o o o &«
Figure 26. EREP Machine-Dependent
MOAULES o« v v o o © o o o o o o o o

Figure 27. Writing Tape Labels
Figure 28. IEHDASDR Common Work Area .
Figure 29. IEHDASDR Function Block . .
Figure 30. IEHDASDR Copy Block
Figure 31. IEHDASDR Control Routine
Processing at Functional Routine

Return e ® ® ® @ 8 = ® ®w % s e @« o o o

11
12
13

16

17

17

18

21

22

23

24
29
30

30
32

33
34
36
36
43
4y
47

50

Illustrations

Figure 32. IEHDASDR Function Block --
Dump/Restore Area . o« o« « o o o o « « « 18
Figure 33. 24-Byte Limits Record . . . 78
Figure 34. Restore Tape Format 80
Figure 35. IEHDASDR Function Block --
Analyze/Format Area . . « . « = - o . 82
Figure 36. Analyze/Format Channel

Programs e o e e o 2 e o s o o o e o« o 82
Figure 37. Format of Track 0, Records

0 and 1 .« ¢ ¢ ¢ e o« o o o 2 o « « « o« « 84
Figure 38. IEBRDASDR Function Block --
Label Area e o e 2 e a @ s = « o « -« o 85
Figure 39. IEBDASDR Function Block --
GETALT AY€A o « o o o o o « o o o« o« « o 85
Figure 40. SVC 82 Parameter Lists . . 86
Figure 41. IEBUPDTE Overall Flow . .
Figure 42. IEBUPDTE Principle of
Operation . 4 ¢ ¢ o 4 o« ¢ o o o o o «
Figure 43. Overlay Structure of the
IEBCOFY Progranm . . - - o« o
Figure 44. Overlay Structure of the -
IEBCCMPR Program « o . « o « o
Figure 45. Overlay Structure of the
IEBGENER Program “ e e & e @ ® o & @
Figure 46. Overlay Structure of the
IEBPTPCH Program « e e
Figure 47. Work Area Settings for
Support of Variable Spanned Records
Figure 48. Module Directory, Summary,
and Chart IDs for IEBISAM Program . .
Figure 49. Unloading and Loading an
Indexed Sequential Data Set
Figure 50. Functional Structure of

the IEBUPDAT Program e« o o o e o o
Figure 51. EXEC Statement
Include/Exclude Processing « e e o e
Figure 52. Scan Routine Operation Code
Table Entry . ¢ ¢ ¢ ¢ ¢ o ¢ o o o « =«
Figure 53. Scan Routine Parameter
Table ENtry =« « « ¢ o o o o o o« o o @
Figure 54. Scan Routine Fixed Operand
Table ENtTY o o ¢ ¢ « o o o o o o o @
Figure 55. Information Summary and
Overall Flow of Data Generator Program
Figure 56. Storage Area Obtained by
Base Module for Current DCB
Figure 57. FD Table Constructed by FD
Analysis Module and FD Table Module .
Figure 58. Create Table Constructed -
by Create Analysis Module
Figure 59. FD Address Table
Constructed by Create Analysis Module
Figure 60. User Exit Name Table
Constructed by Create Analysis Module
Figure 61. Picture Takle Constructed
by Create Analysis Module
Figure 62. The Use of UCBs in the
Independent Utilities . . . « ¢« &« . .
Figure 63. Track Zero e e e o @ .
Figure 64. Dumping and Restoring a
Direct Access Track . ¢ « o o & o o @

.105

.109

114
.118
B B
<122
.126
.128
<141
.146
147
.148
.148
152
.156
.159
.162
.163
.164
.165

.195
.197

.203

Figure 65.

for Recover Replace . ¢ ¢ ¢ o o o o =«

Figure 66.
Tape o« o
Figure 67.

Recover—-Replace Cycle « o .

Tables

Table 1.
Comparing
Table 2.
Parameter
Values
Table 3.
Fields in
Table 4.
Values as
Records .

Assigned, if Required

Main Storage Management

.206
Format of Recovery Output

«207

- e ®© © e s ® a ® e =

An Example of the
.208

Access Methods Used for
RECOYAS o o o o o o o o » =
FD Control Card Keyword
Processing, and Default

.113

.160
Values of Increment-Restore
the FD Table . . . « « « o &
Changes Made to FD Table

Create Module Builds Output

.166

<167

Figure 68. General Logic of Utility
Program With User Label-Processing
Routine Exits e e e e e e e o s o
Figure 69. Parameter List Passed to
User-Label Exit Routine
Figure 70. Return Code Modification
for IEBCOMPR Program « e e e .

.220
.221

. 224

Table 5. .169

.172

Common Communication Area .
Table 6. Data Control Block
Takle 7. Defined Constants for

Modules of the Data Generator Program
Table 8. Equated Symbols for Modules
of the Data Generator Program
Takble 9. Data Generator Modules

Information Tables, and Areas
Table 10.

173
<174

.175
Module Inputs and Outputs . .176

Chart 01. IEHVOLMT - Volume Mounting
LOGIC v v o o o 6 o o o o o o o o o =
Chart 02. IEHPROGM Phase 1 -
Modifying System Control Data
Chart 03. IEHPROGM Phase 2 -
Modifying System Control Data

Chart 04.
Modifying

IEHPROGM Phase 3 -
System Control Data

Chart 05. IEHMOVE Overall Loglc « o e
Chart 06. IEHMOVE DSGROUP logic . . .
Chart 07. IEHMOVE VOLUME Logic . . .
Chart 08. IEHMOVE PDS Logic . +. « . .
Chart 09. IEHMOVE DSNAME Logic . . .
Chart 10. IEHMOVE CATALOG Logic . . .
Chart 11. IEHLIST - Listing System :

Control Data '« . . . e e & e o .« .
Chart 12. IEHIOSUP - Updatlng I/O
Support XCTL Tables .« « « « « & .
Chart 13. IFCDIPOO - Inltlallzlng the
SYS1.LOGREC Data Set . . . « .« . .- .
Chart 14. IFCEREPO In1t1allzat10n and
Linkage to Editing Modules . . . <« <« .
Chart 15. EREP - Input From

SYS1.LCGREC Data Set ¢ « o« ¢ o o o » o

Chart 16. EREP - Input From
Accumulation Data Set . .« « o« o o o o
Chart 17. EREP - Accumulation Input -

End of Data . « o o ¢ o o o = o o »

Chart 18. EREP Termination
Chart 19. IFCSDROC - Editing SDRs . .
Chart 20. IFCOBR0OO — Editing OBRs . .
Chart 21. IFCMCHOO - Editing Inboard

and CPU Records (Part 1 of 2) . . .

Chart 22. IFCMCHO0 - Editing Inboard
and CPU Records (Part 2 of 2)
Chart 23. IEHUCSLID - Loading the 2821
Generator Storage . « <« « o . « v .

Chart 24. IEHINITT (Parxrt 1 of 2) « e
Chart 25. IEHINITT (Part 2 of 2) . .
Chart 26. SVC 39 Tape Label Routine .
Chart 27. IEHDASDR Cverall Flow . . .
Chart 28. IEHDASDR Contxol Routine
(Part 1 of 2) . . . <« « . . .« e
Chart 29. IEHDASDR Control Routlne
(Part 2 0f 2) 2 2 4o o o o o = o o » «
Chart 30. IEHDASDR Dump Routine . =
Chart 31. IERDASDR EXCP Routine « o
Chart 32. IEHDASDR Restore Routine .
Chart 33. IEHDASDR Analysis Routine
Chart 34. IEHDASDR VTOC Routine . . .
Chart 35. IEHDASDR Data Cell Analysis
ROULINE & o o o o o o o o o o o o o o
Chart 36. IEHDASDR Label Routine . .
Chart 37. IEHDASDR GETALT Routine . .
Chart 38. IEHDASDR Password
Protection Routine . « « . « .« . o o
Chart 39. IEHDASDR SVC 82 ROUtlne .
Chart 40. IEBUPDTE (Paxt 1 of 2) . .
Chart 41. IEBUPDTE (Part 2 of 2) . .
Chart 42. IEBCOPY - Copying and

Merging Partitioned Data Set Members
(Part 1 of 2) . ¢ ¢ o o o o « o o = o«

L R T S T S
w
A(=]

59
60
61
62

. ¢« & o
~
iy

e o s 8 s &
0
N

.
O
w

Charts

Chart 43. TIEBCOPY - Copying and
Merging Partitioned Data Set Members

(Part 2 0f 2) o o o o o o o« o o« o « « <112

Chart 44, IEBCOMPR - Comparing Records 116
Chart 45. IEBGENER - Copying and

Modifying Records (Part 1 of 2)119
Chart 46. IEBGENER - Copying and

Modifying Records (Part 2 of 2)120
Chart 47. IEBPTPCR - Printing and

Punching ReCOXAS « o« o« « « o o = « o« « 124
Chart 48. IEBISAM - uUverall Flow . . .131
Chart 49. IEBISAM - Initialize

IEBISAM PYOQIXaAM o « o s o = o o « o «132
Chart 50. IEBISAM - Copy Indexed
Sequential Records (IEBISC) . . « « . .133
Chart 51. IEBISAM - Retrieve Indexed
Sequential Records (IEBISU)134
Chart 52. IEBISAM - Unload Physical
Sequential Records (IEBISSO)135
Chart 53.. IEBISAM - Reconstruct

Indexed Sequential Records (IEBISL) . .136
Chart 54. IEBISAM - Retrieve Physical
Sequential Records (IEBISSI)137
Chart 55. IEBISAM - Print logical

Records (IEBISPL) . o« o« o « » « « « « 2138
Chart 56. IEBISAM - Terminate IEBISAM
Program (IEBISF) « « « « « o o « « « « 2139
Chart 57. IEBUPDAT - Updating)
Symbolic Libraries « « « « « o « o« « « <144
Chart 58. IEBEDIT Main Routine (Part

1 O0f 2) & v ¢ 4 o o o e o o e « o o « <150
Chart 59. IEBEDIT Main routine (Part

20f 2) i i i e e i v e e e e e e s e <151
Chart 60. IEBDG Base Module (Part 1

OFf 3) v v 4 4 e e e e e e e e oe s o« 177
Chart 61. IEBDG Base Module (Part 2

Of 3) ¢ 4 @ o ¢ o ¢ ¢ o o o o o « « « 178
Chart 62. IEBDG Base Module (Part 3

OFf 3) & ¢ ¢ @ e 4 o o o o o o o o o - 2179
Chart 63. IEBDG Clear-Up Module,

IEBDGCUP . o « « o s « = « « o « « o« « 180
Chart 64. IEBDG FD-Analysis Module,
IEBFDANL (Part 1 of 2) . . « & « . « «181
Chart 65. IEBDG FD-Analysis Module,
IEBFDANL (Part 2 of 2) «182
Chart 66. IEBDG FD-Table Module, :
IEBFDTBL (Part 1 of 2) e o o <183
Chart 67. IEBDG FD-Table Module,

IEBFDTBL (Part 2 of 2) '« « « .184
Chart 68. IEBDG Create Analysis

Module, IEBCRANL (Part 1 of 5)185
Chart 69. IEBDG Create Analysis

Module, IEBCRANL (Part 2 of 5)186
Chart 70. IEBDG Create Analysis

Module, IEBCRANL (Part 3 of 5)187
Chart 71. IEBDG Create Analysis

Module, IEBCRANL (Part 4 of 5)188
Chart 72. IEBDG Create Analysis

Module, IEBCRANL (Part S of 5)189
Chart 73. IEBDG Create Module,

IEBCREAT (Part 1 of 2) . o ¢ « « o « « .190.

Chart 74. IEBDG Create Module,

IEBCREAT (Part 2 of 2) . & o« . o o « o« 2191
Chart 75. IEBDG Message Module,

TEBDGMSG « o « = o o o o o o « = « » « 2192
Chart 76. IBCDASDI - Initializing and
Assigning Alternate Tracks on Direct

Access VOlUumes « v o o« o o o o « o « « 200

chart 77.

IBCDMPRS - Dumping and

Restoring a Direct Access Volume .

Chart 78.
Chart 79.

‘Chart 80.

Routine
Chart 81.

IBCRCVRP Overall Logic
IBCRCVRP Recover Logic

.IBCRCVRP Recover Data Check

IBCRCVRP

Recover Count

-

Check and End-of-Track Routines

Chart 82.

IBCRCVRP Replace Logic

-

-

-

. 205
.209
.210

.211

.212
.213

IBM System/360 Operating System provides
the user with utility programs that perform
basic operations. These programs are
grouped in three categories: system utili-
ties, data set utilities, and independent
utilities.

System utilities are executed under the
operating system; these programs treat data
associated with the structure of the
operating system. They are:

e IEHPROGM, a program that modifies con-
trol data contained in catalog and
volume structures.

e TEHMOVE, a program that duplicates
collections of data sets to produce
extra copies or rearrange existing
ones.

e IEHLIST, a program that lists a catalog
(or a portion thereof), a volume table
of contents, and the directory of a
partitioned data set.

e IEHIOSUP, a program that updates the
Transfer Control (XCTL) tables embedded
within load modules and access executor
modules for the I/O0 support functions
OPEN, CLOSE, and EOV.

e IFCDIP00, a progran that writes the
SYS1.LCGREC data set in initialized
format..

e IFCEREPO, a program that edits and
prints environmental records from
SYS1.LCGREC.

e IEHUCSLD, a program that loads the 2821
generator storage with user-supplied
character images.

. IEHINITT, a program that creates volume
labels on magnetic tape.

e IEHDASDR, a program that dumps,
restores, and initializes direct access
volumes.

‘Data set utilities are executed under
the operating system and perform operations
on data sets at the logical record level.
They are:

Introduction

e IEBCOPY, a program that copies all or a
specified portion of a partitioned data
set.

e IEBCOMPR, a program that compares two
data sets at the logical record level.

¢ IEBGENER, a program that copies or con-
verts a sequential data set to a parti-
tioned data set.

e IEBPTPCH, a program that prints or
punches all or selected portions of a
sequential data set, a partitioned data
set, or specified members of a parti-
tioned data set.

e TEBISAM, a program that copies,
ulegds, loads and prints indexed
sequential data sets.

e IEBUPDAT, a program that modifies the
symbolic library.

e IEBUPDTE, a prograr that incorgporates
source language modifications into
sequential and partitioned data sets.

e TEBEDIT, a program that produces an
edited input job stream data set from a
master input job stream data set.

e TEBDG, a program that produces test
data sets for use in program debugging
procedures.

Independent utilities are executed out-
side and in support of IBM System/360
Operating System. They are:

e IBCDASDI, a program that initializes
and assigns alternate tracks on direct
accesgs volumes.

e IBCDMPRS, a program that dumps and re-
stores the data contents of a direct
access volume.

¢ IBCRCVRP, a prod}am that recovers data
from a track on direct access storage,
replaces defective records with data
supplied by the user, and writes the
composite data on an operative track of
the original volume.

Introduction 9

System Utility Programs

System utility programs are executed under
the operating system in the problem program
mode. These utilities treat data asso-
ciated with the structure of the operating
system. They are:

e IEHPROGM, a program that modifies con-
trol data in volume and catalog
structures.

e IEHMOVE, a program that duplicates
collections of data sets to provide
backup copies or to rearrange existing
ones.

e IEHLIST, a program that lists the cata-
log or a portion thereof, a volume
table contents, and the directories of
partitioned data sets.

e IEHIOSUP, a program that updates the
transfer control (XCTL) tables con-
tained within the I/0 support routines
OPEN,, CLOSE, and EOV.

e IFCDIP00, a program that writes the
SYS1.LOGREC data set in initialized
format.

° IfCEREPO, a program that edits and
prints environmental records from
SYS1.LOGREC.

e IEHUCSLD, a program that loads the 2821
generator storage with user-supplied
character images.

¢ IEHINITT, a program that creates volume
labels on magnetic tape.

e IEHDASDR, a program that dumps, re-
stores, and initializes direct access
volumes.

The system utility programs IEHPROGM,
IEHMOVE, IEHLIST, IEHIOSUP, IEHUCSID, and
IEHINITT use the queued sequential access
method (CSAM) to read and write the SYSIN
and/or SYSPRINT data sets or their (user-
designated) equivalents. For these pro-
grams, SYSIN and SYSPRINT data sets also
may have a blocking factor that is other
than one.

AUXILIARY PARAMETERS

IEHPROGM, IEHMOVE, IEHLIST, IEHIOSUP,
IEHUCSLD, IEHINITT, and IEHDASDR may be
invoked by a problem program. In this
case, the calling program provides the uti-
lity program with certain auxiliary parame-
ters in main storage, as shown in Figure 1.
If the utility program is invoked by job
scheduler, only the pointer to the EXEC
statement parameters is present.

10

DEVICE ALLOCATION AND VOLUME MOUNTING
(IEHMVSSF AND IEHMVXSF)

IEHAPROGM, IEHMOVE, and IEHLIST require that
volumes be mounted dynamically. However,
the serial numbers and device types of
these volumes are not necessarily known to
the user at the time the job is submitted.
For example, in moving a group of data
sets, the names of individual data sets in
the group and their corresponding volume
information are not known to the IEHMOVE
program until it scans the catalog for the
information. Once this information is
known, data control blocks may be con-
structed within the program itself contain-
ing ddnames associated with units on which
the appropriate volumes may be mounted,
using the OPEN (type=J) routine.

In order to ensure that necessary
volumes are mounted or mountable, two rou-
tines reside on LINKLIB: '

e IEHMVSSF, which is used by IEHPROGM and
IEHLIST.
e IEHMVXSF, which is used by IEHMOVE.

Each contains the control section IEH-
VOLMT. The difference between the two rou-
tines is that linkage to the first is via
branch-and-link, whereas linkage to the
second is via transfer control (XCTL).

The logical flow of IEHVOLMT is shown in
Chart 01. Figures 2 and 3 show the format
of data supplied to IEHVOLMT by the calling
routine. Figure 4 shows the format of an
internal table maintained by IEHVOLMT in
allocated main storage; the internal table
is built once for each execution of IEHMOVE
and IEHLIST, and once for each time IEH-
PROGM gives control to the volume mounter.

For each volume mounting request, IEH-
VOLMT returns to the calling routine a
pointer to a ddname associated with a unit
on which the desired volume may be mounted.
The ddname is inserted into a field of the
DCB and the desired volume is mounted by
the open routine (type J). Actual mounting
is accomplished by either IEHVOLMT or the
calling routine, as indicated by Field 3 of
the internal table header (Figure 2).

The essential processing in IEHVOLMT
lies in the comparison of two masks: the
first is obtained from the device mask
table, using the device type supplied by
the calling routine; the second is con-
structed by IEHVOLMT, using the UCBs allo-

cated to the current task.! In each nask,
each bit represents a unit: in the first
mask, an "on" condition means that the unit
will accept the device type under consi-
deration; in the second, an "on" condition

1The UCBs are found as follows: location
16 in main storage points to the communica-
tions vector table, which in turn contains
a pointer to a list of UCB pointers. The
task I/0 table (TIOT) is then used to dis-
tinguish the appropriate UCBs.

means that the unit has been allocated to
the current task. When both conditions
occur for a given unit, IEHVOLMT checks to
see if the desired volume is already
mounted; if it is, an indication to that
effect is returned. 1If the volume is not
already mounted, the ddname associated with
that unit (as found in the TIOT) can be
used by the open routine (type J) to mount
the desired volume on the allocated unit.
As explained earlier, the open routine may
be invoked by either IEHVOLMT or the cal-
ling routine.

IEHUCSLD, IEHINITT,

and IEHDASDR

r 1
| Reg.l |
| (=== 1 |
I I
[— i |
| |
] 4 |
| T 1 |
| |code| |
| t + 1 |
| | code| |
| + { |
| code| |
| |
| |
| code=x"'80" |
| for last entry |
| and x'00" otherwise |
| |
| T 1|
| count | EXEC statement parameters 1
l t 1 Jl
| 2 max.40 |
| |
| 2 8 |
| r] 1 l
| count | ddname | |
| L } 1 |
| | ddname | |
| 5 1 |
| | ddname | |
| k { |
| jddname i |
| b , i |
	alternative SYSIN ddname	
g		
	alternative SYSPRINT ddname	
t .		
	ddname	
b -		
1	alternative SYSUT1 ddname	
t 1		
	alternative SYSUT2 ddname	
t 4		
2		
r 1= 3		
count	first output page number	
L 1 J I		
L 3
eFigure 1. Auxiliary Parameter Format for IEHPROGM, IEHMOVE, IEHLIST, IEHIOSUP,

Syster Utility Programs 11

-f
=

T

| I
L

e

T
|

N

—_————
-
————

e — P

l? .@
|
I

L——-1-byte count of volume
mounting requests

L 1-byte count of internal

table entries

S R

2 bytes unused

e &

3-byte pointer to internal
table

1-byte indicator

3-byte pointer to list of

volumes not to be dis-
mounted (e.g. SYSIN)

|
|
| Legend: * denotes field is set by IEHVOLMT
L

1-byte count of volumes
not to be dismounted

b e e i e . e " " e e S . s S S, e, S S e, o, .

Fiéure 2. Internal Table Header

-
|

Ll T
I I
A4 L

*

e e d

e

A

Le————--2-byte relative pointer to
internal table entry

¥
|
|
|
|
{

6-byte volume serial

r
|
i
|
|
[
i
|
|
|
i
I
| Legend: * denotes field is set by IEHVOLMT
L

4-byte device type

b o i s S e v A S— —— — t— — ——)

Figure 3. Volume Mounting Request

12

Indicator Settings: Field 3 of the inter-
nal table header (Figure 2) may have the
following settings:

Bit Value Meaning
0 0 No mounting is to be done.
1 Mounting is to be done.
1 0 No dismounting.

1 Volume mounting requests having
the high-order bit of the rela-
tive table address set to 1 are
to be dismounted (the units
made available).

2 0 Ignore o0ld requests (ignore
usage code, Figure 4).
1 01d requests are valid.
3 0 Build internal table.
1 Internal table is already
built.
4 Unused.
5 . Unused.
6=7 01 All volume mounting requests
acconplished.
10 No volume mounting requests
accomplished.
11 Some volume mounting requests
accomplished: those volume

mounting requests having a
relative takle address of zero
were not accomplished.

CONTROL CARD SCANNER (RDCDRT)

IEHMOVE and IEHLIST contain copies of a
control card scan routine, RDCDRT. Each
call to RDCDRT results in the return of the
item scanned, together with an indication
of the type (operation, keyword, or parame-
ter). In IEHMOVE, the routine has the lcad
module name IEHMVESJ; in IEHLIST, it has
the name RDCDRT.

This routine reads control cards (using
QSAM), checks syntax, and returns to the
calling routine a command word, a keyword,
or a parameter.

The calling routine supplies a 192-byte
work area (on a fullword boundary) followed
by the DCB for the control card data set.

The calling routine must open this data
set. The control card routine inserts the
address of the end-of-file routine KEOF in
the DCB.

The calling sequence for RDCDRT is as
follows:

* Register 13 points to the first byte of
the work area.

® Register 14 points to the return
address in. the calling routine.

e Register 15 points to the entry point

device maskt

RDCDRT.
Lo 2 bytes > < 2 bytes————— >
F R k) R -1
| internal | displacement |
| table length | to mask |
[L 4
) 1 b
| usage | pointer to ddname |
| code | |
i L 4
v L . 1
| wusage | rointer to ddname |
| code | |
L 1 d
B] 1
b + - - i
| usage | pointer to ddname |
| code | |
L L 4
) 1
| mask length? |
| |
L d
3 A
| |
L J

iDevice mask length, in bytes, is equal
to the number of UCB pointers in the UCB
pointer table.
Figure 4. Internal Table Maintained by
IEHVOLMT

Upon returning control to the calling
routine, the control card routine returns
the following information:

¢ Register 1 points to the starting
address of the item scanned.

e Register 2 contains the length of the
item scanned.

e The first byte of the 192-byte work

area is labeled SWITCHRD; its kits have
the following meanings when set to 1:

System Utility Programs 13

Bit Meaning

Syntax error

Bypass switch
End-of-file

Initial entry
Command word

Keyword

Parameter

Parameter or keyword
delimited by a right
parenthesis.

NouvswNnpRE o

The control card routine contains the
following subroutines:

RDCARD
resets switches and saves registers
3-14.

KGTCD
reads a card into the work area, using
QSAM.

KTRT
saves the "start" address of the scan,
and scans for a delimiter.

KPPARQ
stores the address and length (of the
item scanned) in registers 1 and 2.

KINVAL
is entered when an invalid delimiter
is found.

. .
Chart 01. IEHVOLMT - Volume Mounting Logic
ERAR LSRR
* ENTRY *
* *
AR R
FOR IEHPROGM, IEHMOVE,AND IEHLIST
4 *
KHB2 4Rk Rk B ATy LA Lt
* * PLACE
* GETMAIN FOR * *GLNEAIC DDWAME *
->% INTERNAL * >* IN I@TERN Lo %
. I . * TABLE * EXCLUDED o ¥ * :
Tw, % PETTI I T ‘%, * Aok ARk Ok Rk R
NO * YES
Ak
* *
* C1l >
nk
c1’ . AR RO KA ARk Rk
ok E
O YES >: ADJUST_ VOLUME :
H "% INDICATOR x
Cal e P LT T e
I NO
¥,
D1~ . AR Rk R
*
. YES * ADJUST VOLUME *
—>% S H—
F * INDICATOR :
R AR TR A
* NO
<
‘s
FEREAEL F kR R
* SEARCH DEVICE *
*MASK TABLE HITH‘
: DEVICE TYPE
FERRR R
g YES
FL' Cx, AR ARk Rk F3° “a,
o * *. * SCAN UCBS FOR #* o* HEERP QAR KRR KK
Is NO *DEVC TYPE, BLD . NO *
*DEVICE MASK IN L >*MASK INDG UCBS *————meex >¥*MORE VOLS TO BE#———————- >* RETURN *
« TABLE .* *CORRESPOND. TO * *
. . *ACCEPT, DEVICES* . . L
Lk TR e .
+"YES
<
ok
Rk kGl RR Rk Rk G2 *,
* MP; *
* DI E S AN -
* F . 'ABLE .*
*ERNI TABLE MSK#¥ *,UCB FOUND.*
* COWSTRUCTED * *, ok
P e T *, L*
* NO
[T I TR
* *
NO * INDICATE *
#oimmeee>% VOLUME NOT = #——m——m—mmmmmmmmmam e >
MOUNTED :
P
¥,
R *. FRRRSTIELaR AR L ERS
.*ANY OF THE *. YES LINDICATE VOLUMES
*.UNITS CONTAIN. *. >*MOUNTED , AND RTN*
THE VOLUME. * DI *
=, o * ER *
. P t e
I NO A
RS
. FEREIRI TR RI AR LESL HRK IR R ARG R
.* *. *PREPARE_TQO. OPEN' * *INDICATE VOLUME*
o* S *. YES * USING DDNAME * OPEN * * IS MOUNTABLE, *
*, *————————)‘ CORRESPONDING *——————ﬁ—>‘ (TYPE EQ. J) * * AND RETURI *
*, REQUESTED * . ‘ TO_MATCHING IT: *‘ “ :DDNAME POINTER *
T ot PERE I M S P RO T T L T
* NO A

|

.k
*" o
kkkkCO Rk bk kR REk
* *
* PREPARE TO *
*CONSTRUCT MASK *
* "REFLECTING _ *
DDNAMES 'IN TAB,
kEkE EEEE L 2]

HEAARDS R AR
* *

* SELECT A *
~=>% DDNAME FROM *
*INTERNAL TABLE *

otk Rk Rk Kk

vV
Es' R
L+ IS
NO_ . *THERE A U
<--t.gon¥sspommc *
'*DDNAME *

e ¥Es

EEEERFS R AR IR RNk

SET BIT Id
INTERNAL
TABLE MASK

LR R RIS S L P i

XX R
e

System Utility Programs

Modifying System Control Data
(IEHPROGM)

The IEHPRCGM program is a convenient inter-
face between the user and data management
routines which modify volume and catalog
structures. By means of utility control
statements, the user may request the IEH-
PROGY. program to:

e Scratch, rename, catalog, or uncatalog
a data set.

e Scratch or rename a PDS member.

e Scratch a data set assigned by the
operating system.

e Build or delete an index level, index
alias, or generation data group.

e Connect or release a control volume.

The general design of the program is
shown in Figure 5. For each request listed
above, the program issues one or more
supervisor calls (SvCs) for data management
routines which perform the requested ser-
vice; the IEHPROGM program interfaces with
these routines by kuilding parameter lists
for them, invoking them, and analyzing
their returns.

Following the return from a data manage-
ment routine, further processing by the
JEHPROGM program may include additional
calls to data management routines, as in
the case, for instance, of supplying the
catalog with index levels needed to catalog
a data set by its specified, fully-
qualified name.

PROGRAM STRUCTURE

The program consists of seven load modules
and a dynamically allocated work area:

s The Root resides in main storage
throughout the program's executicn. It
contains V-type address constants
needed by the overlay supervisor.

e The Parameter List Builder initializes
the program, obtains and analyzes
requests, and kuilds a parameter list
for the appropriate data management
routine.

e The Volume Mounter ensures that all
volumes needed to service the request
are mounted or mountable.

e The SVC Return Analyzer issues the
appropriate SVC and analyzes its
return. In some instances, additional
SVCs may be issued by this module.

16

ENTRY

Get a request;

set up a major
routing table to
handie the request

!

Build a parameter
list by decoding
the routing

table

Issue SVC to
data managemen
routine, and pass
parameter
list

Analyze the return

from dota manage- _’
ment and prepare }—m —— ——— —

to issue another
SVC if necessary

there another
request

RETURN

Figure 5. The General Design of the

IEHPROGM Program

e The Auxiliary Parameter Analyzer ana-
lyzes auxiliary parameters supplied to
the IEHPROGM program by a calling pro-
gram, and also opens SYSIN and
SYSPRINT. '

e The Message Writer writes all diagnost-
ic messages and operator instructions
issued by the program.

e The Volume Look-up obtains volume
information from the device name table
when the keyword parameter VOL occurs
in a request.

e The Work Area is obtained dynamically
by the Parameter List Builder.

The overlay structure of the program is
shown in Figure 6; each block represents a
control section (CSECT).

The structural flow of the program is
shown in Figure 7. The Auxiliary Parameter
Analyzer, Message Writer, and Volume Lookup
are sukordinate load modules; the others
are control load modules.

IEHEBASE DSECT
Root Work Area
IEHEUPI IEHEMSGX IEHINVOC IEHMOUNT IEHEUP1 A IEHDTTLU
Parameter Message Auxiliary Volume SVC Return Volume
List Writer Parameter Mount Analyzer Look-up
Builder Analyzer Initiator Y
IEHEDCI DEVMASKT DEVNAMET
Control Device Rlea\:]:e
Tables Mask Table Table
IEHEDC2 IEHVOLMT
Control Volume
Tables Mounter
Figure 6. The Overlay Structure of the IEHPROGM Program (Each block represents one con-
trol section)
IEHEBASE The linkage procedure used to execute a
subordinate load module and shown in
Root Figure 8 is as follows:
1. Module A loads -the address (coded as a
V-type address constant) of an entry
IEHEUP] IEHINVOC point, Bl, to module B in register 15;
> Auxiliary A branch-and-link instruction is then
Parameter issued by module A, resulting in the
Analyzer following action:
IEHEMSGX a. The address of the next sequential
Parameter |~ * instruction is loaded intc regis-
IEHRESET List \ Cvl\e.sfscge ter 14, and
Builder e b. A branch is made to the overlay
[EHDTTLU supervisor.
—— .
Volume 2. The overlay supervisor then causes
‘\‘\\\\\\\ Look-up module B to be loaded and gives con-
trol to entry point Bl. The return
address in register 14 is now meaning-
less, since module B has overlaid
IEHMOUNT § module A.
Kim; 3. Module B returns control (indirectly)
(with to module A by loading the address of
Initiator) an entry point to module A in register
15 and branching to it, resulting in a
branch to the overlay supervisor.
IEHEUPTA IEHEMSGX .
I —— 4. The overlay supervisor then causes
;‘F Message module A to be loaded and gives con-
;&Qm. ‘\\\\\\\\\ Writer trol to entry point Al. Since module
A has now overlaid module B, the
[return address in register 14 is
re-established.
Figure 7. The Structural Flow of IEHPROGM
Program (Each block represents 5. The instruction at entry point Al

one load module)

gives control to the instruction at
the return address.

»

System Utility Programs: IEHPROGN 17

Module A Module B
B} o
.
. .
.
L]
L15, Bl
’ Overla
BALR 14, 15 O Supervi);or
L]
L]
.
L]
. .
. .
: L15, Al
Al BR 14 BR 19

Figure 8. Linkage Procedure Used Ly the
IEHPRCGM Program to Invoke a

Subordinate Load Module
CONTROL 1IOAD MODULES
The Root, the Parameter List Builder, the
Volume Mounter, and the SVC Return Analyzer

are control load modules.

The Root (IEHEBASE)

The Root consists of one CSECT, IEHEEASE.
It contains V-type address constants needed
by the overlay supervisor, and a branch
instruction to the Parameter List Builder.

The Parameter List Builder (IEHEUP1,
IEHEDC1, IEHEDC2)

The Parameter List Builder contains three
CSECTIS: IEHEUP1, IEHEDC1, and IEHEDC2.

IEHEUP1
builds the parameter list for the ini-
tial SVC to the appropriate data mana-
gement routine. It contains seven
routines: COMMENCE, IEHRESET, FNDE-
CODE, FDLD, KODECODE, IEHESCAN, and
IEHETLU. The parameter list (Figure
11) is built at location IEHEMAC1l in
the work area.

COMMENCE
initializes the program by estab-
lishing addressability and obtaining
a work area of 4416 bytes in main
storage.

IEHRESET
initializes for a new request by
resetting switches.

FNDECCDE
determines the operation (e.qg.
SCRATCH) requested, and stores the
address of its routing table at
location FINUSE in the work area.
The use and format of the routing
tables are discussed under "Program
Flow."

18

FDLD
decodes the routing table in use.
Each routing takle indicates a
sequence of operations to be per-
formed; FDLD effects these opera-
tions by decoding the routing table.

KCDECODE
causes keyword parameters to ke
scanned from a utility control sta-
tement, and successively directs
control to subroutines which move
parareter data to the parameter list
for the data management SVC. The
list is at location I1IEHMAC1 in the
work area.

IEHESCAN
scans a control statement for an
operation or an operand.

IEHETLU

performs a table look-ug for the
address of a routine or a routing
table: if the search argument used
is an operation, a routing table
address is retrieved; if the search
argument used is an operand, a rou-
tine address is retrieved.

IEAEDC1

contains seven takles: TABLEN3, TAB-
LEN4, TABLENS, TABLEN6, TABLEN7, CATA-
LOG, and UNCATLG.

Each of the tables TABLENn consists
of a variable number of entries: the
first n bytes of each entry is an
operation or keyword operand, and the
last four bytes of each entry is the
address of a routing table (for an
operation) or a routine (for a keyword
operand). As an example, TABLEN6 con-
tains as typical entries

C*" RENAME"
C'DSNAME"

ALY (RENAME)
ALY (DSNAME)

where RENAME is the symbolic location
of the RENAME routing table, and
DSNAME is the sywbolic location of the
routine given control when the data
set name is scanned.

The tables CATALOG and UNCATLG are
major routing tables for the catalog
and uncatalog orerations.

IEAJEDC2

contains the major routing takles
DELETEX, CONNECT, RELEASE, BUILDA,
CELETEA, SCRATCH, BLDX, and RENAME.
The use and format of all routing
tables are discussed under "Program
Flow."

The Volume Mounter (IEHMCUNT, IEHVOLNT,
DEVMASKT)

This segment ensures that all volumes
needed by the data management routine are
mounted or mountable. Three CSECTs are
present: IEHMOUNT, IEHVOLMT, and DEVMASKT.

IEHBMQUNT

is entered from IEHEUP1 when the para-
meter list for the initial data mana-
gement SVC has been built. IEHMOUNT
then calls IEHVOLMT, if necessary, to
ensure that a needed volume is already
mounted or is mountable. IEHVOLMT is
called in the following cases:

1. For a SCRATCH or RENAME request,
the volume ID from the control
statement is passed to IEHVOLMT,
together with an indication that
the volume is not to be mounted.
(The scratch and rename data
management routines themselves
perform volume mounting.) The
call to IEHVOLMT serves as a
check that the voluwe is
mountable.

2. For any other request, if CVOL is
specified, IEHVOLMT is passed the
volume ID, together with an indi-
cation that the volume is to be
mounted. IEHVOLMT is not called
otherwise.

For cases (1) and (2) above, IEH-
VOLNMT normally returns a pointer to a
ddname associated with a channel-unit
on which the volume is mounted or can
be mounted. IEHMOUNT then inserts the
ddname into the data control block
(DCB) needed to perform I/0 operations
on the volume. Control is then given
to IEHEUPI1A.

If the volume is not mountable, as
indicated by the return from IEBVOLMT,
IEHMOUNT aborts the request, giving
control to IEHEUP1 to honor the next
request.

IEHVOLMT and DEVMASKT are discussed under
the heading "Volume Mounting and Device
Allocation.”

The SVC Return Analyzer (IEHEUP1Aa)

This segment issues, and analyzes the
returns of, all data management SVCs used
by IEHPROGM to perform a requested opera-
tion. The SVC Return Analyzer segment con-
sists of a single control section, IEHEUP-
1A, which contains ten routines: LATAB,
FDLD, OPENVTOC, GETADSCB, SVCRET, SVC26RET,
INDEX8, NEEDINDX, SCANIT, and VTOCRET.

LATAB
stores the address of the routing

table in use at location FINUSE in the
work area.

FDID
decodes the routing table, directing
control to the routines indicated by
the table. (This is the same FDLD
present in IEHEUP1l, the Parameter List
Builder.)

OPENVIOC
constructs a DCE for the VTOC to be
opened for a Scratch VTOC request, and
then opens the VTOC.

GETADSCB
reads the VTOC and scratches the fol-
lowing DSCBs for a Scratch VTCC
request:

1. If the SYS keyword was specified,
each system-assigned data set (a
data set having a name beginning
with the 36 characters AAAARAAA.
AAAAAAAA.AAADAAAAA.BARAAAARRAA.) is
scratched.

2. If the SYS keyword was not speci-
fied, each Format 1 DSCB is
scratched.

The VIOC is closed when an EOF is
detected in reading it.

SVCRET
interprets the returns from the
scratch (SVC 29) and rename (SVC 30)
routines. The return is used as an
indexing factor on the branch takle
BRANTAB, giving control to an appro-
priate diagnostic routine.

SVC26RET
interprets returns from the catalog
and index (SVC 26) routines. SVC26RET
uses BRANTAB in the same manner as
SVCRET; the difference between the two
routines is that SVC26RET also inter-
prets the return from the locate rou-
tine (locate is used by both catalog
and index).

INDEX8
gives control to SVC26RET to interpret
an error return from the Locate
routine.

NEEDINDX
is entered the first time SVC26RET
detects that an index level supplied
in a utility control statement was not
found in the catalog. NEEDINDX passes
the index name to SCANIT.

SCANIT
constructs a parameter list for an SVC
to the index routine each time a
return shows that an index level was
absent.

System Utility Programs: IEHPROGM 19

VTOCRET .
effects the writing of diagnostic mes-
sages following a return from the
scratch routine on a SCRATCH VTCC
request.

SUBORDINATE LOAD MODULES
The subordinate load modules of the program

are the Auxiliary Parameter Analyzer, the
Message Writer, and the Volume Look-up.

The Auxiliary Parameter Analyzer (IEHINVOC)

The Auxiliary Parameter Analyzer (IEHINVCC)
analyzes any auxiliary parameters passed to
the IEHPRCGM program by a calling rrogram
and moves the DCBs for the data sets SYSIN
and SYSPRINT (or their substitutes) to the
work area and opens them.

The Message Writer (IEHEMSGX)

The Message Writer (IEHEMSGX) writes all
messages issued by the program. Messages
are written on the SYSPRINT data set unless
a calling program specifies otherwise; con-
sole messages are written using the job
management WTO routine.

Input to the message writer consists of
a full word in register O:

Byte 0 is unused.

Byte_ 1 Bits 0-5 are unused.
Bit 6 is set to one if the message
to ke written is to be placed at
the next available location in the
output buffer; otherwise it is set
to zero.
Bit 7 is set to zero if the mes-
sage is to be written during the
current execution of the message
writer, and to one otherwise.

Byte 2 contains the relative position in
the buffer of the message.

Byte 3 contains the message number.

Volume Lcok-up (IEHDTTLU, DEVNAMET)

This segment obtains volume information for
use by IEHVOLMT and data management. It is
called only when information specified by
the VOL keyword is encountered by IEHESCAN.
The segment consists of two CSECTs: IEHDT-
TLU, a takle look-up, and DEVNAMET, the
device name table maintained at the instal-
lation. At the time IEHDTTLU is entered,
register 2 points to a 28-byte field in the

20

work area consisting of the following
subfields:

1. (Bytes 0-7) contain the value supplied
to the keyword operand VOL (left-
justified and padded with blanks), as
scanned from a utility control
statement.

2. (Bytes 8-11) are initially blank.

3. (Bytes_12-15) contain the return
address (coded as a V-type address
constant).

4. (kytes 16-27) are initially blank.

IEHRDTTLU then stores registers 3-5 in
subfield 4, and performs a table look-up in
DEVNAMET, using subfield 1 as a search
argument. The table value of the argument
is moved to subfield 2, and control is
returned to the location specified by sub-
field 3.

Subfield 2, the table value of the
search argument, is of the following
format:

Byte_ 8 contains a bit configuration used
by the I/0 Supervisor.

Byte 9 contains a device option code.

Byte 10 contains a device class code.

Byte 11 contains a device type code.

PROGRAM FLOW

The logical flow of the program proceeds
in three phases:

s Phase 1 (Chart 02), during which a
major routing table is established for
the operation to be performed.

e Phase 2 (Chart 03), during which the
major routing table is decoded, causing
the parameter list to be built for the
SVC to a data management routine, and
causing appropriate volumes to be
mounted. The parameter list (Figure
11) is built at location IEHEMAC1 in
the work area.

e Phase 3 (Chart 04), during which the
initial sSVC is issued, its return ana-
lyzed, and any additional SVCs issued
in order to complete the request.

Phase 1

The program receives control of the CPU
when the keyword operand PGM=IEHPRCGM is
encountered in an EXEC statement, or when
the program is invoked by a calling pro-

gram. The Root segment immediately gives
control to the Parameter List Builder seg-
ment. The registers are saved and the work
area is obtained. Any auxiliary parameters
are analyzed, and SYSIN and SYSPRINT are
opened. A new request is initialized for,
and then oktained (using BS2AM).

FNDECCDE then directs control to IEHES-
CAN to scan the operation name (e.g.,
SCRATCH) from the utility control statement
image. IEHETLU then uses the name thus
obtained to look up the address of the
major routing table corresponding to the
given operation. FNDECCDE then places this
address at location FINUSE in the work
area, for use in Phase 2.

Communication between FNDECODE, IEHES-
CAN, and IEHETLU is effected through the
use of the communication table. IEHECHAR (in
the work area), shown in Figure 9. IEHE-
CHAR is also used in Phase 2 in scanning
keyword operands.

Phase 2

This phase of the program decodes the major
routing takle established during Phase 1.
Decoding of the routing table results in
the scanning of keyword operands, the
volume look-up, the building of the para-
meter list for the data management routine
to be used, and the mounting of volumes.

Major routing tables appear in CSECTs
IEHEDC1 and IEHEDC2 in the Parameter List
Builder segment. There is one major rout-
ing table for each operation of the IEH-
PROGM prcecgram; the symkolic name of the

routing table is the same as the name of
the operation it supports. Each major
routing table consists of a variable number
of entries; the first byte of each entry
contains a routine code, and the remaining
bytes of the entry contain information use-
ful to the routine. Figure 10 shows the
format of the routing table for the cCatalog
operation.

As indicated on Chart 03, FDLD decodes
the successive entries of the major routing
table in use, directing control to the
indicated routines.

Note: It is possible for the sequence of
operations indicated by a routing takle to
be interrupted, possibly even broken. For
example, if a syntax error on a control
statement is encountered, the address of
the major routing table will be replaced by
the address of a routing table which will
effect the writing of appropriate messages.
FDLD would then decode this table, causing
IEHEMSGX to write the selected messages.
The last entry in tables of this nature
will then either cause the address of the
original major routing table to be
restored, or will cause the request to be
aborted, depending on the severity of the
situation.

The scanning of keyword operands takes
place when a routine code of hexadecimal 01
is encountered. KODECODE directs control
to IEHESCAN to scan a keyword or keyword
value. If VOL is present as a keyword, the
value supplied to it in the control state-
ment is passed to IEHDITLU, the Volume
Look-up, and the device information retri-
eved from the look-up is saved for the

| i
|Format Contents |
"1 . '
| | 1-byte character for which to scan |
-1 |
| | 1-byte condition code on which scan should stop |
|

l1-byte code for last character scanned |

|

1-byte length of item scanned |

N t 1 |
L i 4-pbyte address of where to begin scan |
I 1 |
I | 4-byte address of where to end scan if condition not found|
It i ' |
| i | 4-byte address of last item scanned |
It 1 I
I 4-byte address of table (for IEHETLU; otherwise zero) |
It : I
11 4-byte address found in table by IEHETLU (or zero) |
|t |
| |
L d
Figure 9. IEHECHAR, the Communication Table for FNDECODE,KODECODE,IEHESCAN, and IEHETLU

System Utility Programs: IEHPRCGM 21

| The CATALOG Routing Table

—

Explanation of Table Entries

Ll
|
4
T
I
r k] 1 T L) l
] 01 { 00 | 70 00 24 00 | 00 00 | DSNAME, CVOL, and VOL are acceptable
} + + L 1 | parameters. |
| 02 | 00 | S0 0ocC | DSNAME and VOL are required. 1
L 4 4
r 1] T I
| o4 | x | x b4 | ®xxx = address of error routine.
[1 + |
08 y y |y | yyy is unused.
4
} |
0a 00 00 | 01 | The number of this major routing table
1 | is 1.
| Routine Code {
| I
L 1
Figure 10. The CATALOG Routing Table

Volume Mounter and data management rou-
tines. When a value supplied to another
keyword is detected, a look-up is performed
by IEHETLU, using the keyword (e.g.,
DSNAME), to retrieve the address of a key-
word routine, which is then given control.
(The synmkolic address of a keyword routine
is identical to the keyword name. For
example, the symbolic address of the DSNAME
routine is DSNAME.) The keyword routine
then enters the keyword value information
into the parameter list for the data mana-
gement routine. Control is then given back
to IEHESCAN to scan the next keyword para-
meter, and the cycle continues until an EOF
condition is detected in reading SYSIN (or
its substitute).

When the control statement has been
scanned, control is given back to FDLD to
decode the next entry in the major routing
table. Successive entries in the major
routing takle may test for the presence of
minimum allowable parameters (TESTLDUP),
estaklish a temporary routing table to
write messages (LINKSAVE), restore the
major routing table (DCRETURN), or read and
log the remaining cards (READALL). If an
error has keen found in the utility control
statement, the request is aborted, and con-
trol is given to IEHRESET to honor the next
request.

If no error has been found, the last
entry of the major routing table will have
been decoded. The last entry of each major
routing table causes FDLD to give control
to GETAVOL, which places the number of the
major routing table at location FINUSE in
the work area, and then gives control to
the Volume Mounter. If any required volume
is not mounted or mountable, control is
given to IEHRESET; otherwise, control is

22

given to the SVC Return Analyzer (IEHEU-
PIA), and Phase 3 is entered.

At the completion of Phase 2, the para-
meter list for the initial SVC to a data
management routine has been built at loca-
tion IEHEMAC1l in the work aréa. The for-
mats of the various parameter lists for the
data management routines are shown in
Figure 11.

Phase 3

Phase 3 issues, and analyzes the returns
of, all SVCs to data management routines
used to accomplish IEHPROGM functions. At
the time Phase 3 is entered, the parameter
list for the initial SVC has been built,
and all volumes are mounted or mountable.

Using the routing table number placed at
FINUSE (in the work area) during Phase 2 by
routine GETAVOL, routine LATAB replaces the
routing table number with the address of a
carry-over routing table, to be decoded by
FDLD. If the current request is a SCRATCH
VTOC request, the carry-over routing table
will cause itself to be replaced with the
routing table VTOCDCS. Otherwise, the
carry-over routing table will simply cause
the SVC to be issued, by means of the entry

X'00" AL3(SVC instruction)

FDLD then decodes the carry-over routing
table, establishing the VTOCDCS routing
table only if the request is to scratch a
VvTOC.

SVCRET and SVC26RET decode the return
from the data management routine used,
directing control through the branch table
BRANTAB to diagnostic routines (NEEDINDX,
SCANIT, INDEX8), or to message-effecting
routines.

r -
| SCRATCH (SVC 29) RENAME (SVC 30) CATALCG (SVC 26) |
I 1) 1 I 1 I
SVC bit configuration| | sVC bit configuration| |SVC bit configuration| i

4 k 4
] - 1 1 | l
| tDSNAME | tDSNAME i | tDSNAME | |
i L | t 4 I

) r 1 v]
| UNUSED { | tNEWNAME | | tcvoL | |

[J 4 L 4
T 1 1 L] 1 l
| tVOLLIST | tVOLLIST | | tVOLLIST | |
L J J L 4 l
‘ I
UNCATALOG (SVC 26) BUILD INDEX (SVC 26) DELETE INDEX (SVC 26) |
r 1 P 1 I 1 I
| |SVC bit configuration]| | SVC bit configuration| |SVC bit configuration| |
| k i k { t 1 I
| | tDSNAME | | tINDEX | | tINDEX | |

L 4 [R L 4
L} 1 r v 1 |
| tcvoL | | tcvoL | tcvoL | I
k 1 k I i |
i | UNUSED | | UNUSED | | UNUSED | i
I L J L J L J l
| |
| BUILD ALIAS (SVC 26) DELETE ALIAS (SVC 26) BUILD GENERATION (SVC 26) |
' I 1] 1] 1 l
| | SVC bit configuration| | SVC bit configuration} |SVC bit contiguration| |
| k 1 k 1 i i |
| | tINDEX | | tALIAS | | tINDEX | |
| r 1 k { F 4 i
| | tCVOL | | tcvor i | tcvoL | |
| 1 b 1 t i
| | tALIAS | | UNUSED | | UNUSED i |
l L] L J L 4 I
| I
| CONNECT (SVC 26) RELEASE (SVC 26) i
l T 1 I I
| |SvC bit configuration| | SvC bit configuration i
| b 1 |
| | *INDEX i tINDEX | {
| k i I
{ | tcveL (| tcvol i
. { - !
| | tvoL | | UNUSED | i
I L Jd L N I
; !
| Notes |
| I
| ¢ At time of SVC, register 1 contains the address of the parameter list. |
| I
| ® Each parameter list is constructed at IEHEMAC1 in DSECT, the work area. {
| |
| ® The addresses in the above parameter lists point to the following items: |
I I
| DSNAME 44-byte data set name |
| NEWNAME U44-byte new name of data set |
i INDEX 44-byte index name |
| ALIAS 8-byte alias |
i VOL 6-byte volume ID |
| CVOL 6-byte volume ID {
| VCLLIST 2-byte count followed by a variable number of fields of the following |
| format: |
| ‘ I
| 4-kyte takle value from DEVNAMET |
| 6-byte volume ID |
| 2-byte sequence number (for taped volumes) |
L J

Figure 11. Parameter ILists Built by IEHPROGM for Data Management Routines

System Utility Programs: IEHPROGM 23

Control is directed in the following
way:

1. The return code (in register 15) is
used by routine SVCRET or SVC26RET
(derending on the SVC) as an indexing
factor to retrieve a code number from.
the current entry of the active rout-
ing table. (The current entry is the
entry following that entry designating
the svVC.)

2. The code number thus retrieved is used
as an indexing factor to give control
to the appropriate IEHPROGM diagnostic
routine to treat the type of return.
control is given to a diagnostic rou-
tine by means of a branch table,

BRANTAB.
Example: Figure 12 shows the return-

indexing entry of the CATALOG routing
table. This entry is at location CATALOG+
28, immediately following the SVC entry.
Following the return of control to the pro-

24

gram from the catalog routine (SVC 26),
routine SVC26RET would use the contents of
register 15 to retrieve a code number from
this return-indexing entry. If the return
code from the catalog routine were 28, for
example, a code numkber of eight would pe
retrieved. Routine SVC26RET would then
give control (via the branch table BRANTAB)
to the diagnostic routine indicated by a
code number of eight.

CATALOG+28

r T T T] T T T T T h) LB |
[01]02].03|04]00|06{07|{08[00{00]00|00]
L L 1 L A 1 L 1 L. L L L d

0O 4 8 12 16 20 24 28 32 36 40 44
Return code from Catalog (Reg.15)
Indexing factor for BRANTAB

[v ——— ——
g ——

Figure 12. The Return-Indexing Entry (for
the Catalog SVC) of the Catalog

Operation

Chart 02.

*

LR WELI I L L L E L

ENTRY
Aok gk ok Aok kR Rk

TS

* *

* C3

* *
LTy
A

IEHEMSG.

»*

*
*
*
*

X l‘
ARRRRGLERR kR EEE
* *

*o

SE
S VR L L2 2L 22 1]
*

* SAVE
e—ee—e—> REGISTERS.
* G N

MMENCE
SRREFAIA AR R R RRR
* *

ETMAL

*

FNDECODE

1IE

IE

HINVOC V
FESERBIRRARERRRHE

OPEN
SYSIN _AND
SYSPRINT

ek kdokokkkkkkkokoky

LR X X 2
L T X 2

*
ESET v
FRERCIRkRE R h ek

*

[L

NITIALIZE
FOR A NEW
REQUEST
ELITE I I e L g

* NN

v
JHAD3RRNRREy
#*GET A CONTROL*
* STATEMENT *
‘FROM SYSIN ‘

kR khk Rk

EODAD

IE

IE

N

HESCAN
FERAEEI SRR b RARRR
* *

SCAN
OPERATION
NAME

L L X

*
*
*
*
kkdkkhhkbbhkkkkkk

HETLU v
HERREF IHERR R ERBEE

* *
LOOK_UP ADDRESS
* OR *
: ROUTING TABLE :
EE RS LS At 2 22 2Lt d

A’

G3

*.
*
o

WRITE *
APPROPRIATE *<
MESSAGE *

*
LA RISt it

i*l’*.%’*l‘***&&*&i‘ A EAZETEZI I I LIS EXEI SRR SE ST RN Y)

0 % Ig T¥.
*OPERATION IN .+
., TAELE _.

*, 0%
* YES

FERREHI R AR RE R TR
* *
PLACE ROUTING *
TABLE ADDRESS *
IN WORK AREA

RE2I ST LS L2222 2]

LEZ 2]

BERBREBERERBRER R R ERRBERRREER R ESEFERRREREFERRERRE RN E®

System Utility Programs:

SYSINEND

IEHPROGM Phase 1 - Modifying System Control Data

FFXFBDY $h AR T F Bk
:CLOSE SYSIN AND:

SYSPRINT,
FREEMAIN, [I—— Y}
RESTORE *

—
*

* REG
PP

SISTERS. *
Ekkkkkk kR

*RHRDS RkkkkkokkE
* RETURN *

*

TO
SUPERVISOR
HEREERREERR SRRk

*
*

ILHFROGM

25

Chart 03.

FDLD

SEEREA] Bh Rk hk kg

*EXAMINE ROUTINE'
CODE 0

__>c ENTRY I —

: ROQUTINE TABLE :

L3RI LSS s]

R TR L TR

* GO TO ADDRESS

<--*IN LAST 3 BYTES‘(-
*OF TABLE ENTRY *

HEERERRRERR RN R

TESTDUP ¥,
FARRECL kR Ak kR c2 *e
* * ¥ -
* TEST TO SEE # YES_ .* CODE *,
<--% 1F MINUMUM *<Cm =02 *
* PARAMS ARE * *. .

* PRESENT *
EREEEEERERERR R R

LINKSAVE
FRRRADLFRRERR AR
*
* GET A NEW *
— ROUTING L
* TABLE (FO 9

* MESSAGES
tatttas«-ttmﬂttc

DCRETURN ¥,
tttttglttlttttttt E2 *.
* o *.
RESTORE PDINTER‘ CODE *,
t(_ = 05 ok
ABLE -
, o
:t*wntunuototu- *. *
NO

GETAMSG o *.
EERFRF] SRR ER S F2 *,
* * * *,

* PRINT CODE .
<——* INDICATED = 06 ¥
* MESSAGE .

* (IEHEMSGX) * *, . ¥
R T T e T *, .*
* NO
EXECUTE o ¥,
EERRGL kbR Rkdok G2 *,
* * o *.

* ENTER ALIAS * YES .* COD] *,
L=k PARAMETER e —, =0 ¥
: INTO DELETEA * '.. *.‘

ERRERREERRRARER RN “k, L

* NO

READALL ¥,

AEEARHL A AR R H2 .,
* o .
* READ AND LOG * YES .* CODE *,
* REMAINING e ¥ = 08 ¥
* CARDS

*
EREARRRRRRRERRRRE

kR
ABORT THE *02 #*
REQUEST * A3*

t

Lty VAL LI T AL T
* *
* PLACE NUMBER *
* F TAB.

: USE AT FINUSE :

AR AR AR R AR

26

LISTEC I
HRFFEAT ARk
*- *
SET UP TO *
ANALYZE. *-
RANDS *

» *
R RIS LS R L2

*
—#
*

NOTE - ROUTINES

MAJOR ROUT.
TABLE IN USE

ARKERTIHEERAE RN
‘ INTE ACE

WITH VOLUME
——>* MOUNT ROUTINE *—--

‘ (IEHVOLMT ‘
ERRRARRERREA SRR

KODECODE
\Htt*ﬂuattitt:ttt
*

‘ SET UP_PARAN *
>* FOR SCAN AND *
: TABLE LOOK-UP :

Aok kR kR Rk ok K

IEHESCAN
ntﬂﬂ;ut--taat#‘**
*

*SCAN AN OPERAND:

IEHPRCGM Phase 2 - Modifying System Control Data

—->* FIELD FROL
* CONTROL *
* STATEMENTS = *
LR PR T PRI S L)
cy’ Tl
o* *. *#4% CONTINUE
-+ END OF 4. VES % * DECODING
* P S TABLE
*. STATEMENT. * *
*, X ok
.
I wo
¥,
Dy *, ***ttDS*"t****t#
T *.
*7 VOLUME = “#. YES PREFORM :
*1 KEYWORD . #mmm——mmo > VOLORE DOOKUP *
. PRESENT . * IN DEVNAMEL *
*, W% AR ER R R R AR kAR R
+'NO
ELE 2
* *
=>% F4 *
* *
ELE 22
.*. IEHETLU
E4 * EEEE T NSRS L]
18 * *
+ ADDRESS "#. YES * LOOK_UP *
{OF DARAF RTN .#m———m—m—m >+ ADDRESS OP *
*. NEEDE! * * PARAMETER *
. * ROUT TNk *
*, ¥ dkkkkkk kR kbR ek Rk
*"No
REE
* *
* FU *->
* * <.
FhEX
FEETEANE PRSI S S TS LY
* *
* PARAMETER *
— ROUTINE *
*+ (SEE WOTE *
* BELS *
EIE 2 PR L LI I 2

BERE_IS ONE PARAMETER

OTE -~
ROUTINE FOR EACH ALLO!
PARAMETE]

R. ROUTINE MOVES

EACH ROUT,
IS IDENTICAL TO ITS CORRESPONDING
Y WO] PARAMET! AME ,

ER, E.G.,

KEYWORD
NEWNAME, ETC.

*.
*. YES
« *

GO TO
IEBEUPDA

. .
Chart O4. IEHPRCGM Phase 3 - Modifying System Control Data
i
*OY *
* *
* ¥
»
LATAB l FDLD
2% kkRk kR K
* * *
* ACTIVATFE * * DECODE
* ROUTING | S >* ROUTING N
: TABLE * M 'ABLE *
P T e P T T
o,
#tttc 1RREREER R FRD A REE B3 .
REN, * RENAME * IS THIS*
*ROUT NE SHOULI] E_PI YES A SCRATCH OR¥.
HAVE MOUNTLD e et * USING ITS OWN *<e—mm—e—— *o EN .
: THE PROPER . AME *. ME?BER *.*
LA T e R R L L] FhkkkkErhkk *, 9*
1 NO
ok, ok, OPENVTOC GETADSC!
c1” e, c3 HERRRCYFRRR R ERRA "tttcstt“ttt.a‘
ok Dk, koK * IS . * *
.* WAS THE *. NO * -* 1S *, YES * OPER_VTOC * *
*. ME R D>¥ F2 % *,SCRATCH VTOC ., ¥———wmmm] >%* OF SELECTED *-- —>% A DSCB *(--
, MOUNTED .# * * *. QUEST . * * VOLUME * * *
. s ARAK . . * * * *
L% *, % P T P B T
*"YES *"No
P
* *
* DY ke
* *
vV LEEL
D1 *, *ED2 Rk R R RER SCRATCH D3 *, MODIFY DY R KA D5 *,
-k * * A _DATA . HE * * .
. IS THE Te. * % * EQDAD *,
*. PDS ON_TI *-—- * svc 29 2 . sVC 26 * ol o
. * *. * . VIOC %
., * * * * . o
*,]7 AR AR RE *, L% PR e L%
*EEE RENAME A bt * KO
* * DATA SET *Q2 *
* F2 * P * C3%
* * * %
2 o O *
y [wo
E1 %, FRE2HRRF AR AAEIR Ak R Rk B4 e, LS
«*IS THIS*. * * * IS oF WAS ¥,
.*"A SCRATCH *. SCRATCH __* STOW (WITH * * .% THE DA’ * S .* 'SYS' KBY *.
#. OR RENAME .#--——=lo_ >* ETE * * svc 30 * * SE : : W .
*. REQ P OPTION) * * * * ASSIGNE o* *.SPECIFIED.*
*. % * * * X .t *. Y
.o kR K P L] *, *, L x
*RENAME % YES * NO
ok
* * >
* F2 %>
* *
L
IEHEMSGX SVCRET N . ¥
ARFLkkkkkRk FhE ARk kk Rk k ko EEXS LS i P EEL T2 F5 *,
* * * . *
* STOW (WITH PRINT * ZE * . Is . NO
* HANGE [, >%* APPROPRIATE %——e * RETURN CODE * DSCB Eam>
"‘ OPTION) ** MESSAGE M]] : IN REG. 15 : *.FORMAT 1
ARk Rk P P e R e e Aok kbR Rk *
el * YES
*02 *
* C3% P S——
>
SVC2RET N SVCRET s
FHREAGIRAA R R NOTE- THE NAME HRGH Rk kA
* * OF A SYSTEM-ASSIGNED * *
*ANALYZE RETURN * DATA SET BEGINS WITH svC *
—>%CODE_IN REG, 15% THE 3 CTERS * 29 *
* OR REG. 1 * AAAAA} . . * (SCRATCH) *
* * AAAPAARA. AAAARAAA. * *
P T T P T e
3
X, ¥ SVCRET v
H3__ ¥ *, FERFRES KA R Rk A
.* IS *, «* BAVE * RESET POIWTER *
. A NEW *, S «*WE BUILT A #*. YES * ANALY.
#. INDEX LEV: e¥mmm————=>%, NEW INDEX _.o*——— * RETURN CODE *
- NE! D o *-‘ LEVEL : N G.15 *
*, % £, ¥ P T T
* NO N
INDEX8 X, NEEDINDEX VTOCRET
EEEART 2% Mahddddid J3° T, FERRETURRFRRRAARR tt‘ttJSt -t.'t#ttt
* - * *, * * WRITE
* PREPARE TO YES .%* ERROR ON *. * FIRST-TINE * ‘ RESBT POINTER *
*ANALYZE LOCATE < ———————— *, LOCATE SVC .* *ENTRY FOR INDEX* DIAGNOSTIC
: SVgE(R;ETURNS : *, RETURN *.* :LEVEL BUILDING : : ROUTINE TABLE :
PR T T *, ok EEE TR ST PRE T PR T T e
* NO
K e v
IEHEMSGX SCANIT IEHEMSGX
FhkR KSRk R R kR kR KK L ok Rk AOK FETT R Y I
* * * SCAN AN INDEX "‘ * *
* PRINT * LEVEL * APPROPRIATE *
* APPROPRIATE * “FROM STATEMENT * * MESSAGE FOR *
* AGE * *AND PREPARE TO * DSCB HANDLED *
* * ISSUE SVC *
P T e T PR L SR
I e ia ok
202 % * *
* C3* * D4 *
* * * *
* Ak

System Utility Programs:

IEHPROGM 27

Moving and Copying Data (IEHMOVE)

The IEHMOVE utility program reproduces one
or more data sets. The move operation
relocates a.collection of data and
scratches the source data; the copy opera-
tion produces a replica of the source data,
and leaves the source data intact. ,
Throughout this discussion, the word "copy"
will refer to both the MCVE operation and
the COPY operation.

The program is serially reusable. It
copies the following collections of data:

A data set

A volume

e A group of data sets related by a
catalog

A catalog

Depending on the compatibility of the
source and receiving volumes, the movabili-
ty of the source data set, and the alloca-
tion of space on the receiving volume, an
attempt to copy a data set may result in an
"unloaded" version of the data set. This
version of the data set is in a format
recognizakle to the IEHMOVE program, but is
not directly usable by other programs. An
attermpt to copy an unloaded data set onto a
volume that would have originally surported
a successful operation results in the
"loading"” of the unloaded data set, that
is, the reconstruction of the original data
set.

If a user has requested the processing
of input/output header/trailer labels, this
program will handle the direct moving orx
copying of such labels as they exist on the
data sets to be moved or copied.

OVERALL FLCW

Figure 13 shows the design of the IEHMOVE
program; each of the smaller blocks repre-
sents a load module, while each of the
larger blocks represents a grouping of load
modules ky function:

Program Set-up

Request Set-up

Message Writing

Data Set Group (DSGROUP) Set-up

Data Set and Volume Set-up
Partitioned Data Set (PDS) Subroutines
Copying, Unloading, and Loading

Data Set Wrap-up

DSGROUP Wrap-ugp

Charts 05 through 10 show the logical
flow of the program as follows:

Chart 05
Chart 06

Overall Flow
DSGROUP Logic

28

VOLUME Logic Chart 07
PDS Logic Chart 08
DSNAME Logic Chart 09
CATALOG Logic Chart 10

Control is passed between loads almost
always by means of Transfer Control (XCTL)
with the following exceptions:

1. The stem, IEHMOVE, links to IEHMVXSE.
The corresponding return to the stem
is issued at the conclusion of the
program by IEHMVESK.

2. The message writer, IEHMVESU, is
always linked to.

3. IEHMVESR, a PDS subroutine which
retrieves directory entries from a
work data set, is always linked to.

PROGRAM STRUCTURE

Program Set-up (IEBEMOVE, IEHMVXSE,

IEHMVXSF)

The function of initializing the program
for a job is performed by three loads:
IEHMOVE, IEHMVXSE, and IEHMVXSF.

IEHMOVE
is the stem, which is present during
the entire execution of the program.
It obtains main storage for a work
area (IEHMVV) to be used by the rest
of the program.

IEBMVXSE

allocates space for the work data sets
and opens them, clears the work area,
and sets up an initial call- to
IEHMVXSF.

IEHBMVXSF |
is the volume mounter, descrikbed under
the heading, "Device Allocation and
Volume Mounting." The first-time
entxy of this routine builds the
internal table used by the volume
mounter.

Request Set-up (IEHMVEST, IEHMVESJ,

IEHMVESS)

The program is initialized to handle a
single request by three loads: IEHMVEST,
IEBMVESJ, and IEHMVESS.

IEHMVEST
initializes the work area: for a requ-
est and sets up an initial call to
IEHMVESJ.

IEHMVESJ
is the control statement scanner, de-
scribed under the heading "Control
Card Scanner."

| Mewsaga Writing el

ENTRY
GETMAIN for

work area s
L IEHMV! - >
° - ¢ V) . RETURN [IEHMVESA

& Contains linkage

and messages

[EHMVESI

1 Open catalog

Read catolog;
write on
SYSUT!

Allocate space First=time
for work data entry builds
sefs internal table

1EHMVESZ IEFMVXSE

Set up to copy

a single data Mount Volumes
set

° Clear work
area; and initialize

Close catalog;
set up request
for a data set

Scan a field
from control
statement

Analyze field
scanned IEHMVESX
Test for
feasibility
of copying

Al but
DSGROUP

IEHMVESV

Allocate
for "TO" data set

IEHMVETG IEHMVXSF

Get directory Write directory Mount volume
entry from entries of for PDS of

SYSUT3 , Inclyded members Included member

IEHMVESY

Build DCBs
for_"FROM" and
*TO"data sets

>
RETURN

IEHMVETJ IEHMVESM

X
IEHMVERA

{EHMVETL

IEHMVESC

Copy BSAM.or Copy Type F Copy type V Load Copy, unload, Read catalog,
PDS - No BSAM or PDS- BSAM or PDS- BSAM or PDS or load write on
reblocking Reblock Reblock BDAM SYSUT2

JEHMVETA Another

Copy, unload,
or load
catalog

& BT
Another | DSGROUP [EHMVESO
Data sof Close "FROM" Check error
b and "TO" data abort job or
sets request

JEHMVETA ! Move
DSGROUP
Read SYSUT2,

catalog on *TO" Another |
volume. -

Do cataloging or
uncataloging for
data set moved

Do catalogine or
uncataloging for

Request data set copied

No More
Requests

_IEHMVESK
Close SYSIN,
SYSPRINT; close
and scratch
work files

Notes

Return to Stem

1. XCTL from IEHMVXSE, IEHMVEST, or IEHMVESS

2, Write 'TO' data set info on SYSUT2. When group a
has been moved, set up to catalog.

Figure 13. The Design of the IEHMCVE Program

System Utility Programs: IEHMOVE 29

IEHMVESS
analyzes the inforrmation scanned by
IEHNVESJ. For a PDS request, IEHMVESS
writes the following information:

e Member names to be included or to
replace on SYSUT1 (the format is
shown in Figure 14).

e Memker names to be excluded or to
ke replaced on SYSUT2 (the format
is shown in Figure 15).

KEY DATA
[mo—=—= —1 e
I | o |
L$T,___,J L.$_L.§_-_-_

| [
L——8-byte |

nemker name | L—-9 bytes unused

L__1-kyte indicatocr
E=excluded memker
R=replaced memker

SYSUT2 Record Format (for a PDS
Request only)

Figure 15.

Message Writing (IEHMVESA, IEHMVESU)

All ressages are written by IEHMVESU.
Whenever IEHMVESS effects a message, it
first interfaces through IFHMVESA, which
contains messages and linkage to IEHMVESU.

DSGROUP Set-up (IEHMVESI,
IEHAMVESH)

IEHMVESC,

Preliminary operations needed to copy a
grour of data sets are performed by three

IEHMVESI
opens the catalog and sets up a call
to IERAMVESC.

IEHMVESC
reads the catalog and writes data set
information on SYSUT1 (see Figure 18).

IEHMVESH
closes the catalog and sets up a regu-
est to copy a single data set, using
data from SYSUT1.

Data Set and Volume Set-upr (IEHMVESZ,

IEHMVXSF, IEHMVESX, IEHMVESV, IEHMVESY)

Prelirinary operations needed to ccpy a
single data set are performed by five
loads: IEHMVESZ, IEHMVXSF, IEHAMVESX, IEHM-
VESV, and IEHMVESY.

IEHMVESZ
examines the request and sets up a
call to IEHMVXSF. For a VOLUME requ-
est, IEHMVESZ reads the VTOC and
obtains a DSCB; if a catalog is
detected on the volume, its presence
is noted, but no request to copy it is
set up until the data sets are copied.

If an abnormal termination is indi-
cated as the result of an error in
either this module or a called subrou-
tine, this module initiates termina-
tion of the program. User lakel exits
are not processed at this time.

IEHMVXSF
is the volume mounter, descriked under
the heading "Device Allocation and
Volume Mounting."™ This execution of
the volume mounter effects volume

loads: IEHMVESI, IEHMVESC, and IEHMVESH. mounting.
KEY DATA
I T L | L} T T) T h T h) a
| | | | | | | | | | | | |
[41 L 4 L 1 L L 4 _ 1 J
1 1

| |

| L--2-byte

| sequence number
|

L

———————-—6-byte volume ID

4-byte device type

A

8-byte memkber name--J
Or new name

* Same as Key + T
i

|

|

|

J

4 bytes unused

[—— — . s

———8-byte memker name

44-byte data set name

S

Figure 14.

30

1-byte indicator

I=include this member

R=this membker will replace a
mrember

S=select this wember

SYSUT1 Record Format (for a PDS request only)

IEHMVESX
performs tests on the data set to be
copied. Tests include movability,
unlcad or load, access method type,
compatible block size, and corpatible
receiving device. If a catalog had
been detected in IEHMVESZ, space is
allocated for it on the 'TO' volume.

When user-label processing has Lkeen
specified, this module processes the
input header labels as it opens the
input data set. If storage in which
to save the labels is required, it is
obtained in this module.

IEHMVESV
causes space to be allocated for the
'TO' data set. If user labels exist
in the 'T0' data set and user-label
processing has keen requested, an
additional track will be allocated for
the user labels. The DS1EXT1 field of
the DSCB is modified for this purpose.
(For a preallocated 'TO' data set,
(i.e., one that has been allocated
before the execution of the IEHMOVE

program) the user must provide a user-

label track to permit the labels to be
moved.) If the 'FROM' data set is a
PDS, the directory entries of members
to ke copied are written on SYSUT3.
During abnormal terminations that are
handled by this module, no user-lakel
exits are processed. If a user-label
track has not been allocated, the mes-
sage text in this load module informs
the user that labels cannot be moved
or copied.

IEHMVESY
builds, using DCB and label informa-
tion specified by FROMDD and TODD (if
given in an operation involving 7-
track or 9-track unlabeled tape), the
DCBs for the 'FROM' and ‘'TO' data sets
and directs control to the approrriate
module to copy, unload, or load the
data set.

When user-label processing has Leen
specified, this module processes the
output of the user header labels that
have been saved by the program, as it
opens the output DCB.

If this module encounters errors such
that an aknormal termination is indicated,
the module initiates termination of the
program. If user-label processing has been

specified, the processing operations are
not performed during the abnormal termina-
tion procedures.

If variable spanned records are indi-
cated, this module will identify the
record format and determine to which
module control is to be given for pro-
cessing each record. If logical
copies involving changes in the record
format (RECFM), the block size
(BLKSIZE), or the logical record
length (LRECL) of data set records are
attempted, an error is indicated and a
message is printed. The program will
then attempt to move the rest of the
data sets as requested.

This module also writes the first
records of an unloaded data set and
determines the module that next
receives control to perform the actual
move/copy operation.

PDS Subroutines (IEHMVESR, 1EHMVETG,

IEHMVXSF)

If a partitioned data set is being copied
or unloaded, IEHMVESR ‘is always used by the
copying wodule, whereas IEHMVETG (which
uses IEHMVXSF, the volume mounter) is used
if the request specifies PDS. Figure 13
shows which loads use PDS subroutines.

IEHMVESR
is used to obtain a directory entry
from the work data set SYSUT3. If the
directory entry is from the PDS being
copied, it was placed on SYSUT3 by
IEHMVESV (Data Set and Volume Set-up);
if the directory entry is from an
INCLUDE or REPLACE option, it was
placed on SYSUT3 by IEHMVETG. The
format of a directory entry on SYSUT3
is shown in Figure 16.

IEHMVETG
places directory entries of members
from INCLUDE, REPLACE, or SELECT
options on SYSUT3. Each execution of
IEHMVETG places the directory entries
to ke included from one PDS. When
there are no more members to ke
included in the copy, IEHMVETG gives
control tc IEHMVESN. IEHMVXSF, the
volume mounter, is used as needed.
The logic of IEHMVXSF is described
under the heading "Device Allocation
and Volume Mounting."”

System Utility Programs: IEHMOVE 31

KEY DATA

T

L

- —
-—

= e

—

e o

8-byte new
memker nam
or, if non

L—-8-kyte member name

L—— maximum 74-byt
--5-byte CCHHR of this re

F—F
| |
| |
| |
|
|

Figure 16. SYSUT3 Record Format

Copying, Unloading, and Loading

%he load modules used to copy, unload,
and ‘load data are grouped according to the
type of data set and format condition as
shown in Figure 17. The modules are de-
scriked kelow:

IEHMVETA
copies, unlocads, or loads a catalog.
If the catalog is to be loaded, it is
in the format shown in Figure 18. The
entries are then cataloged on the
receiving volume. If the catalog is
to be unloaded or copied, IEHMVESC
first writes catalog entries on SYSUT1
as shown in Figure 18; IEHMVETA then
catalogs them on the receiving volume
(for a copy) or else simply writes
them in the same format (for an
unload).

IEHEMVETL .
copies, unloads, or loads a BDAM data
set. The data set is copied using
BDAM read and BSAM write (load mode)
routines. If the input data set reco-
rd format is type U, the block length
of each physical record is read and
calculated and then passed to BSAM
write. This calculation is unneces-
sary for types F and V and is
bypassed.

If user-label processing has been spe-
cified, this module obtains any neces-
sary storage in which to save the

lakels. This is done when either the
end of a data set has been reached or

e
e, 0ld member name

e directory entry
cord on SYSUT3

data set wrap-up routines. For a PDS,
at the time IEHMVETJ receives control,
the directory entries of members (bar-
ring any EXCLUDEs or REPLACEs) of the
'FRCM' PDS are on SYSUT3, where they
were written by IEHMVESV (Data Set and
Volume Set-up). The 'FROM' PDS is
then copied as follows:

1. IEHMVETJ directs control to LEHM-
VESR, which reads from SYSUT3 one
directory entry of the PDS.

2. If the entry indicates a note
list is present, IEHMVETJ reads
the note list. Using BSAM, IEHM-
VETJ then reads and writes member
records up to the note list. The
note list is then updated and
written with the new TTRs of the
members.

3. when all note lists and member
records have been written, the
directory entry is updated with
the new note list addresses and
then stowed. This process is
repeated for each directory entry
on SYSUT3. When the 'FRCM' PDS
has been copied, control is given
to IEBMVETG to write on SYSUT3
the directory entries for all
members to be included, selected,
or to replace from another PDS.
IEHMVETJ then copies these wem-
bers as outlined. IEHMVXSF (the
volume mounter) is given control
by IEHMVETG as needed.

a switch to another volume is to be IEHMVESL and IEHMVESM

made. The saved labels will be passed
to the data set wrap-up routines.

IEHMVETJ
copies a BSAM data set or a PDS. A
BSAM data set is copied using BSAM in
a simple read-write loop. When either

copy partitioned and BSAM data sets if
the 'TO' data set has been pre-
allocated (that is, before execution
of IEHMOVE) and the 'FROM' and 'TO'
DsCBs indicate that reblocking is
necessary in order to perform copying.

the end of a data set or the end of a IEHMVESL

volume has been reached in reading,
storage will ke obtained, if neces-
sary, for saving any labels for which
processing has keen requested. The
saved labels will be passed to the

32

copies (with reblocking) a PDS or BSAM
data set having type F record format.
Blocks are read (using BSAM) until the
output block size is surpassed, and
then logical records are sectioned

from the high-order end of the buffer
until the output klock size is
reached. The block is then written,

using BSAM. The last block (of a BSAM .

data set or of a member of a PDS) is
written as a truncated block if neces-
sary. For a PDS, any user TTRs are
ignored.

If user-label processing has been
requested, this module will, when
reaching either the end of a data set
or the end of a volume, obtain neces-
sary storage in which to save the
labels. When the module passes con-
trol to the data set wrap—up routines,
the saved labels are passed to the
routine that receives control.

IEBEMVESM

copies (with reblocking) a PDS or BSAM
data set having type V record format.
The operation is similar to that of
IEHMVESL: blocks are read using BSAM
until the maximum output block size is
surpassed, and then logical records
are sectioned from the high—-order end
of the buffer until the size of the
output buffer is not greater than the
maximum block size. As with IEHMVESL,
any user TTRs are ignored in a FPDS.

If user-label processing has been
requested, this module will, when
reaching 2ither the end of a data set
or the end of a volume, obtain neces-
sary storage in which to save the
labels. When the module passes con-
trol to the data set wrap-up routines,
the saved labels are passed to the
routine that receives control.

IEHMVERD

unloads a PDS or a BSAM data set. For
a BSAM data set, the data set is read
one klock at a time. After .each read,
the klock is prefixed by three-to-six
bytes of control information, and then
deklocked into 78-kyte sections. Each
section is then prefixed with a 2-byte
physical sequence number. The resul-
tant 80-byte blocks are then written,
or, if the receiving device permits,
ar2 reblocked in groups of ten to be
written out as 800-byte blocks. The
last block written is padded with
blanks. For a PDS, the directory
entry of a member is first read into
the ruffer. Each note list is read
and followed by member records which
precede it in the PDS. Aliases are

read last.

The buffer is sectioned

and control information inserted. The
process is rereated for each directory
entry and its member blocks. Direc-
tory entries are read from SYSUT3 by
VESR. The options INCLUDE,
REPLACE and SELECT are ignored in
unloading; the option EXCLUDE is not

IEHM

igno

red.

If user-label processing has Leen
requested, this module will, when
reaching either the end of a data set

or the end of a volume,

obtain neces-

sary storage in which to save the

ls. Wwhen the module passes con-
trol to the data set wrap-up routines,
the saved labels are passed to the
routine that receives control.

labe

r T T 1
| Type of | |Load Modules |
|Data Set| Format Condition | Used |
[1 R 4
3 T T 1
|Catalog |Normal | ILHMVETA with]|
| [| IEHNVESC |
F : $ 1
|Catalog |Previously | ILHMVETA |
| | unloaded | |
L 1 i N |
) 1) T 1
| | | i
| BDAM | Any | IEHMVETL |
k t + 1
|PDS or |[Normal, copiable |IEHMVETJ with]
BSAM	no reblocking	IEHMVETG
		(PDS only)
		IEHMVESR
		IEHMVXSF
k + + 1		
PDS or	Type F, copiable	IEHMVESL with
BSAM	with reblocking	IEHMVETG
		(PLS only)
		IEHMVESR
		(PDS only)
		IEHMVXSF
b + + 1		
PDS or	Type V, copiable	IRHMVESM with
BSAM	with reblocking	IEHMVETG
		(PDS only)
		IEHNMVESR
		IEHNVXSR
k t i 1		
PDS or	Normal, uncopiable	IEHMVERD with
BSAM	must be unloaded	IEHMVESR
		IEHMVXSF
t 1 4 i		
r k) . 1] 1		
PDS or	Previously	IEHMVERA
BSAM	unloaded	
L 1L i | ¥
Figure 17. Load Module Groupings for Copy-

ing, Unloading, and Loading

System Utility Programs: IEHMOVE 33

KEY DATA
{ 1 r LI | 1
| I | DEPENDENT ON CODE (see below) |
L J L L_ 1 d
L—-12 bytes | L—_1-byte code (0,4,8,C)
unused L 2-byte length

CODE=0 (DATA SET ENTRY)

]
|
L

T T
|| P
1

A1

rF————
—_

CODE=4 (ALIAS ENTRY)

r
|
L

LI Ll 1

1.1 1 d

f

| L-_8-byte alias
. 8-byte name

CODE=8 (CVOL ENTRY)

up to 50 12-byte
volume entries

L——-2-byte number of

volume entries
44-byte data set name

Figure 18.

i LI | T
| I |
L

1L L

f

| L——-6-byte
e 8-byte

CODE=C (GDG ENTRY)

volume 1D
name

T

1

L———Model DSCB
b maximum generation number
b current generation number

CATALOG

IEHMVERA

34

loads a PDS or BSAM data set. For a
BSAM data set, a block is read, the
control information is removed and
analyzed, and successive blocks are
read until a block from the original
data set is reconstructed. The block
is then written, and the process is
repeated until the original data set
is loaded. For a PDS, the process is
similar: the directory entry is first
reconstructed, but is not stowed until
memker blocks have keen written and
note lists updated and written. At

35~-byte name

SYSUT1 and SYSUT2 Record Formats for DSGROUP; SYSUT1 Record Formats for

the time the data set was unlcaded, an
entry was written, followed by member
blocks (in unloaded format).

If user-label processing has keen
requested, this module will, when
reaching either the end 6f a data set
or the end of a volume, obtain neces-
sary storage in which to save the
labels. When the module passes con-
trol to the data set wrap-up routines,
the saved labels are passed to the
routine that receives control.

DSGROUP Wrap-up_ (IEHMVESH, IEHMVETA)

After each data set of a DSGROUP has
been corpied, control is given to IEHMVESN
of the Data Set Wrap-up portion of the pro-
gram. If scratching of the 'FROM' data set
is necessary (for a MOVE DSGROUP, for
example), control is given to IEHMVESQ,
which scratches the *FROM' data set, and
then gives control to IEHMVESH. If
scratching is not necessary, control goes
directly from IEHMVESN to IEHMVESH.

IEHMVESH
'TO' data set writes °*FROM' data set
information on SYSUT2 in the same for-
mat in which the information was ori-
ginally written on SYSUT1 (see Figure
18). This information is written so
that the catalog can be updated as
needed. If there is another data set
in the group to be copied, IEHMVESH
gives control to IEHMVESZ to set up
the next copy; if all the data sets
have keen copied, IEHMVESH sets up a
request to catalog the updated data
set information on SYSUT2 and gives
control to IEHMVETA.

IEHMVETA
reads SYSUT2 and catalogs the informa-
tion. The process is the same as that
followed by IEHMVETA in copying a
catalog.

Data_ Set Wrap-up (IEHMVESN, IEHMVESC,
IEHMVESP, IEHMVESQ, IEHMVESK)

Load modules in this group perform ter-
minal operations following the copying,
unloading, or loading of a data set pro-
cessed for a PDS, DATA SET, or VOLUME requ-
est. In addition, when all requests have
keen serviced, control is given to
IEHMVESK.

IEHMVESN
completes the moving or copying of a
data set and closes the 'TO' and
‘FRCM' data sets.

If user labels have Lkeen specified,
and if output trailer lakels have keen
saved in storage, these labels are
written out and the storage area is
released. If a user-label track has
not been allocated, the message text
in this load mrodule informs the user
that labels cannot be moved or coried.

IEHMVESC
is entered following an unsuccessful
copying, unloading, or loading opera-
tion, or following a test ((Data Set
and Volume Set-up) indicating a requ-
est could not be honored. IEHMVESC
prints a diagnostic message and
scratches the 'TC' data set.

IEHMVESP
performs terminal operations following
a COPY request, including any speci-
fied or inmplied cataloging, uncatalog-
ing, and scratching.

IEHMVESQ
rperforms terminal operations following
a MOVE request, including any speci-
fied or implied cataloging, recatalog-
ing, and scratching.

IEHMVESK

- is entered when all requests have been
serviced, or when a permanent I/O
error has been detected on the print-
er. IEHMVESK closes SYSIN and SYS-
PRINT, closes and scratches the work
data sets, frees main storage, and
returns control to the stem, IEHMOVE.
During abnormal termination handled by
this module, user-label exits are not
processed.

COMMUNICATION AREA (IEHMVV)

The cormunication area for the program
is defined at assembly time by the macro
instruction IEHMVV, which is internal to
the IEHMCVE program. Register 12 contains
a pointer to the communication area whenev-
er a request for a module is issued.

The macro instruction IEHMVV generates a
dumny section (also IEHMVV) containing work
areas and control data for all object
modules of the program. Main storage tfor
the dummy section IEHMVV is obtained dynam-
ically by the stem.

The comrmunication area consists of the
following parts:

e A work area of 512 Lbytes (IEHMVO0O).

e The addresses of the beginning and end
of an 800-oyte work area (IEHMVV1O0).

¢ A takle of switches controlling the
flow of the program (IEHMVV20).

e A control table containing the return
codes of the control statement scan
routine (IEHMVESJ).

e A table of control data for volume
lists and include-exclude-replace lists
(IEHNVV21-IEHMVV26).

e A table of addresses of the FRCM data
set's DCB, DSCEB, DECB and ddname
(IEHMVV30) and the TO data set's DCE,
DECB and ddname (IEHMVV31l). Fach
address is stored in a fullword.

System Utility Programs: IEHMCVZ 35

A takle of the addresses of the LCBs
and DECBs of SYSPRINT (IEHMVV33), SYSIN
(IEHMVV32), and SYSLIB (IEHMVV34).

A takle of work data set control data
(IEHNMVV39) .

A takle of addresses of work areas for
loading, unloading, including, reglac-
ing, and copying a PDS.

The DCB exit list (for user-label pro-
cessing) defined by the macro instruc-
tion IEHDCBXL. This list is found in
the 40-byte section IEHMVV70 of the
communication area. Included in the
list are symbolic names for the input
and output header-label processing sub-
routines, the input and output trailer-
label processing subroutines, the DCB
exit, and the OPENJ JFCB exit.

e An area containing pointers both to the
storage area (the lakel save area)
obtained for user labels and to the
current label keing processed. These
pointers are in the 20-byte section
IEHMVV72. For the first label being
processed, both pointers will indicate
the same address. Figure 19 indicates
these relationships.

IEHMVV72 Label Save Area
0 0
Pointer to Label Label 1
+4 Save Area +80
, Label 2
Pointer to Current L~ +160
Label Label 3
+240
Label 4

+320
Etc.

Etc. rm— ———— ~—/

Example of pointers when third label is being processed

e Figure 19. Label Save Area FPointers

IEHMOVE WORK DATA SET RECORD FORMATS

The program uses three work data sets:
SYSUT1, SYSUT2, and SYSUT3. How a work
data set is used depends on the function
being performed by the program. The fol-
lowing table (Figure 20) shows where record
formats may ke found. A blank entry indi-
cates that the work data set is not used
for the indicated function. The entry lo*
indicates that SYSUT3 is used for any par-
titicned data sets found within a group of
data sets or a volume.

36

Function SYSUT1 SYSUT2 SYSUT3
I ¥] L) 1
| single Data Setj| | | |
| (not a PDS) | | | |
: { t 4 {
| Single Data Set]| | | |
| (PDS) |Fig. 14{Fig. 15|Fig. 16 |
b : ¥ Eeram—
| Volume | | |Fig. 16%*|
L] 1 1 J
3 f‘ T. LI 1
| DSGroup |Fig. 18|Fig. 18|Fig. 16%*|
b f—————t t 4
| catalog |Fig. 18| | |
L L 4 1 J
Figure 20. Where to Find Record Formats

The device on which the work data sets
reside is allocated by job management and
is associated with the ddname SYSUT1. The
spaces occupied by the work data sets spe-
cified by the names SYSUT1, SYSUT2, and
SYSUT3 are dynamically allocated.

Obtaining Space for a Work Data Set

Space for a work data set (e.g., SYSUT3) is
obtained from DADSM in the following way:

1. The first time space is requested, it
is requested for the data set
**SYSUT3.

2. If the return from DADSM indicates
that a DSCB for the requested data set
space already exists on the VTOC, the
name previously sukmitted to DADSM is
qualified by the index name consisting
of the single character * and the
modified request is submitted to
DADSM.

Step 2 is repeated until space is allo-
cated or until 44 bytes have been used with
no success. Thus, the first request for
space for SYSUT3 either results in space
being allocated for the 8-byte name
**SYSUT3 or an indication that a data set
of the name **SYSUT3 already resides on the
subject volume. If the latter, space is
requested for the data set **SYSUT3.*. The
third request, if necessary, would specify
the name **SYSUT3.#*.*. A count of the
number of times the name has been qualified
is maintained in the communication area,
IEHEMVV.

After space has been allocated for the
work data sets, they are opened in the
order: SYSUT1l, SYSUT2, SYSUT3.

Releasing Space Used by a Work Data Set

The work data sets are not closed until
final wrap-up. At this time, SYSUT3 is
first closed and scratched, then SY¥SUT2 is
renamed to SYSUT3 and closed and scratched,
and then SY¥SUT1 is renamed to SYSUT3 and
closed and scratched.

»Chart 05.

IEHMOVE Overall logic

SRR RD 2R ERAR AR
EE L) SR L 22T * GETMAIN *
. * * INITIALIZE *
* ENTER #omeeee—>¢ GET WORK [R >
* * * DATA SETS *

EEERERERERRR Rk

ttostnztttnttaatn
i

‘ OPEN_SYSIN
* SYSPRINT, AND t
HORK DATA SETS :

PP

AR B R

HEEEKDS REARERERRE

% GET A REQUEST * 4 ALLOCATE FOR %
* SET TAL *
->% PARRMETERS IN ~ o —$INDICATE GHAT A%
WORK ARE *CATALOG IS PRES*
*ON THI ME %
kb kak kb hkh LI R PR RSP L L]
Ei 1] * & Ei L L] A
* * *05 * * *
* C2 ¥em * B3 * ClU x>
* L2 T2 L *
Rk { ETTT) YES
. v R
ARRERC2RER AR RREE c3 *, untcutuaunt" c5 *,
* READ CATALOG, * o .. * .
* WRITE INFO ON * DSGP_.* TYDE *. VoL % OBTAIN A DSCB t *THE DSCE %,
SYSUTL, SET UP #<————————%. (#mcmmeeee>#% SET UP FOR = #——mmmmma] >. FOR A CATALOG s
« FOR ONE * *. REQUEST .* ¥ ONE DATA SBT ¥
* DATA SET * - o * k. "
EE LI TR PR L2 L) *, ¥ LRI TR LR L2 2] *, %
*GTHER *" RO
>|<
3
D3" s,
* * hkk
.+ caN *. NO _* *
* REQUEST BE _.%———->% B3 *
«.SERVICED .* M *
. o* L2 1)
*, ¥
YES NOTE: IF USER LABELS ARE
EXBSENT, EXIT FaOM
THIS BLOCK T 0 PROCESS THEM.
RETORN 30 THLS BLOCR
4 NOTE
EEESAETRREE AR S REE
*
* JFROM' DATA *
* SETS, GO TO =*
*PROPER'ROUTIRE *
EETEE SIS TSR 1Y
L *kkEEF2 l EE LIS EEL EE L2 2]
* copy UNLOAD % * * * *
*« OrR LOAD PDS * * COPY, UNLOAD * * COPY, UNLOAD *
* Of BSAM DAEA * * OR | LOAD BDAM * * ok LOAD *
* SET * DATA SET * * CATALOG *
* * * * *
LTI EI LT EI LS 223
<.
.. NOTE
G1 *, t‘t‘#G2i*‘itttott
% IS *CLOSE 'TO' *
.+ THIS A . No 1CLORE oMY patA”
#. DSGROUP _ <#-——mmee- >*SETS, CATALOG, *
. REQUEST . * "UNCATALQG, - *
. . SCRATCH Ko HEC ¥
x, % LR TR T L T PP L)
YES
v
J NOTE N N
ke ahHLER Rk R H2 . H“ *,
*CLOSE TO 8_ FROM# P - ., S
*SETS, WRITE, * 7 THIS *. NO .+"Is THERE YES
* uP-DAYED) *. A VOLUME [% >nANo'mER REQUEST‘———->' B3 *
* DATA GET INFO * *. REQUEST ,* *.
* ON SYSUT2 _ * *. o *. o LTTEY
LR R T e L e L) *, ¥ *, ¥
YES fo
v
R RS v
J1i _ J2 *, ﬁt“‘.}lﬂ"lt“*“**
. .+ HAVE e FREEMAINECLOSE *
.. sz%fs'l‘m GROUP & *SETS nYoR *': >% o * IBRINT QLOSE ANDE
- *BEEN PROC,.*" * +PECRATCH WORK "%
. * ok * DATA SETS *
*, *, .l LT R T R 22 2
+"YES o YES
* *
* C2 *
* * .
¥k
v
wkk kK1 ARk ZIS. *, **#N‘KB**"*‘***: AR 7*""“
*UPDATE CAT . .. *
NECESSARY * .+ CATALOG “#. YES * COPY THE * * RET *
+ TurTH SYEUT2 » - { DRESENT ON l#-—————— >* CATALOG ~ *-—- % SOPERVISON *
* RMAT -
* INFO ToN * . ¥ * » ELEZI LI 222 2222
RIS S St S LT) x, % EL RS IS L2 R 2L]
*"NO
N

System Utility Programs:

IEHMOVE 37

® Chart 06.

IEHMOVE DSGROUP Logic

R
* ENTER :
FREREERS R RNk

P T Rs e T
* *

» OPEN *
* CATALOG *
* *
* *
R AR RN

L Sl A hhdrbbditd

: BE INCLUDED :
RRE R ARk

\
et Y At il
*READ A CATALOG *
* ENTRY FOR A *
* DATA SET IN *<--
* THE GROUP *
ERERRRARERRERRREE

%
*,
.*3215 L
.* THE DATA *. YES
« SET TO BE «*==>
‘.EXCLUDE‘.D..'

*

L
* NO

AR RF2 R Rk bk E

*

WRITE THE

ENTRY ON
SYSUT1

EIT R TP S R

-
LT YR

-*.
G2

«* I *.
2* THERE *. NO
*ANOTHER CATALG.%———
*. IN THE _.¥
*.GROUP. *
*, . *
* YES

NOTE: IF USER LABELS ARE PREgBNT,

EXIT FROM THIS BLOC]
PROC!

K T

E! s
RETURN TO THIS BLOCK.

38

Ll L) TEL I L LS 1]
* *
* GET AN -
* ENTRY FROM #<~-
: SYSUT1 *

*
R I E Lt 2]

LTI e P e T T
* SET LzP WORK =~ *
* AREA (IEZHMVV) *
* TO TREAT *
: DATA SET :
LRL R AT e LI RS]

NOTE

EERERDY
*

* OPEN THE *
'TO" AND "FROM®
* DATA SETS :
P T PR

ERESRELIRRR R AR
* CHART 09 *
* DATA SET *
T T P

V.
SERERFUEERRRREREE
* DATE THE *
* ENTRY TO *
* REFLECT NEW *

WRIT

* STATUS 1TE *
ENTRY ON SYSUT2¥
L Pt M P

4
ERRREGY S ERRE
-

»* CLOSE THE

**'TO' AND 'FROM'*
: DATA SETS :
EE 22 i 2 2 I 2]

AR FTURREB R kb
» *
* MANIPULATE
* THE CATALOG
: AS NECESSARY
LA 2SS L P LR L 2]

Py

et
*Q5 %
* B3*
*
*

e Chart 07.

IEHMOVE VOLUME Logic

ERL Y BRI SR T L]
*
* ENTER :
RN ARk

\
ERRARBIEARARRRRAK
*

* SR.K A&l *
* (IEHMVV) TO
:TREAT DATA SETS*
RIS L2 SRS SRR LSS

N’
HRERRCIRRRR R koh kb
*
OPEN *
THE *
Vo :
sk okokk Rk kR kok ok

EXX T

>

ERERKERRERRRAAKH
* ALLOCATE FOR *

* CAT
* INDICATE TBATS*< —————

*CATALOG IS P!
* JOLUME
i&t“‘t"#t.*‘*‘*‘

L

*

COPY *
THE AL

CATALOG :

T S e L L T Y

ERERR

utnpat nuun
* SET U

* AREA (IEHMW) *
* OBTAIN A DSCB *
* DATA SETS *

. *
wEnkkkrkhkr kiR kkE

ERAR AP IRk ke kRkd
* CHART 09 *

HEEARE R RRERRRRER

NOTE
RERRRGIEE R RER RN
* *
* CLOSE *
:"I.‘O' AND T%ROM'*

v
Rk kR Rk kR ko

Rk 3Ok A R kR

* *
* MANI PULATE *
% CATAL *
: NECESSARY :

*hektbrhbhbhbkdks

.J3 *.
-#* IS THERE
*,ANOTHER DS!
*, IN oC .
*, ok
*, %
NO
K3 *.
¥
IS -
. CATALOG .
. PRESENT .
*, %
*, %
*

NOTE: IF USER LABELS ARE PRESENT,
EXIT FROM THIS BLOCK TO
PROCE S THEM.
ETURN TO THIS BLOCK.
kARl hdokk kR R
* *
* CLOSE
-—>: vToC Homrem
* *
P eI R 1Y

System Utility Programs:

IEHMOVE

39

.
Chart 08. IEHMOVE PDS Logic
bk
* *
* Ay *
* *
Ll L]
NOTE. THE RECORD
PENDING Wi
PROCESSED DURING
. o, LAST PASS, BECAUSE
..t.tkzt‘*“....i A3 Al *, OF A 'YES' IN
RA AL VT I LT ET) - ¥ *, ¥ *, BLOCK DU
. » SOPEN THE *FROM'S *. YES .*' THERE A_ *. YES
* ENTER . ~~>* AND 'TO' PDS ‘—-——-——>¥'SBLEL'I" S PP IO e >#RECORD PENDING . *——.
* * . -SPECIFIED. * [N o
ARSEERRERRSRR RS * - *, *
‘.'..".“.‘.“*‘ ‘. R *, ¥
NO NO e
ok * *
* * * E4 »
* Bl *-> - M
* * LEZ]
ek
.‘*"Bl..*l.*“i‘ LIE 2SR T2 1 L L 2L L]
* * *
t SCAN_CONTROL * SEARCH ON ~ *
STATEMENT FOR * * KEY IN SYSUT1 *<—-
: PDS OPTION * ¥ FOR'VOL ID %
HERRREORREN RNk kb BEhRRb kb hkkES
ik
- *
* By *
* *
wkkk
v
., v .
c1 'R ERRRRCITHERRRS RS cy t,
¥ *, * * *,
R END *. YES * READ A * HIS THE ~*. YES
N P # DIRECTORY *<— + FIRGT *FROM! [#-—-
*.STATEMENT . % : ENTRY * o, PDS .¢ l
*, % PRt il S22 i P 2] - o ¥
*"NO * NO P Y
* *
* B4y *
* *
EE Ll 1]
4 3
SR D2 RERRE AR kS p3" x, py" "k, AREERDS FhR AR Rk
* WRITE MEMBER % o *. s HAS %. « N *
S AND PDS -* 1s *. YES +THE YFROM'“*. YES * CLOSE QLD *
>+ OF MEMBERS TO * +MEMBER NAME ON.*-—3> «. "PDS D >+ 'FROM' PDS *
REPLACED * *. SYSUT2 _.* . CHANGED .* * *
SYSUT2 + » o . . * *
LA PR iy 1 L ., % *, ¥ LI LRI R L L L)
No NO
1 \ v
El Ll E3 HRERRESERRREERERE
N * . BLDL . . *
L - YES * WRITE * L e e I e T Pl o] * OPEN NEW *
*ia 'sm.ac'r' > $DIRECTORY ENTRYY # GET DIRECTORY *<—- + CFROM' BDS *
*. OPTION . * ON SYS * * ENTRY * * :
¥, ¥ LA Rt RIS L L 2] PR RS T2 2L 2 d kR RREE SRR Rk
* NO ik
* *
* E4 *
- *
4 LRl
\
... v .*.
Fl * ‘t#“Fz."#““ii‘ F3 * *Fy
IS e, * WRITE MEMBER * e) . * *
.+ THIS ‘s, YES * NAMES AND VOL # ERE " +. YES # WRITE DIR. *
AN *INCLUDE! [#emm--—-->21DS OF MEMBERE &-—— * ANM'HER ENTRY 8= * ENTRY ON [—
. OPTION _.% 17T0 BE PROCESSED l . DIR H SYSUT 3 * l
*, % REZ PR PR 2L] L ELL AL LE L2
* NO RS * NO Rk
* = * *
* Bl * * By *
* *
ELL L] hER
o
Gl .'Qt'Gz‘.i‘i*"ﬁ.. AREERGI R e BRI AR R kS
18 * WRITE MEMBER * »
.+" THIS .. Y] 3 NAMES AND PDS ‘ * GET AN ENTRY *
AN "EXCLUDE® #—m—emeeo + OF MEMBERS + FROM SYSUT3 #<.
*. OPTION .+ 4BE EXCLUDED & 0 l x :
, % ."""’..‘...“ ERRPEERRERRREER R
* NO %
L L
l * Bl %
* *
"R xeht
* Bl %
AR AR kAR
Rk * -
* COPY MEMBER *
+ (FIND, READ, *
* WRITE STOWS '
ERLAE R SR 2 Ll 2]
A’
33
. I -,
YES
.ANCYHIER ENTRY.‘———
*.ON"SYSUT]
x, ¥
:l NO
¥,
‘.'.‘Kz*“'""."
* m nnn
* CLOSE NO_ .+ THERRCANY'*. YES
----- — THE -t<--------t MEMBERS TQ BE n----» A r
¢ « *T0 DED . *
Er il l] PDi - N ""
*05 * ‘..."“‘1“‘*.“ ¥, L
» B3 »
* »
-

40

e Chart 09.

L S e T
*
* ENTER *
* *
kR AEERE R

\
EE Y- AR LL LR EE T2

LUMES
LER LR L ALl L]

T Ty

*
*
*
: PROPER
*
*

IEHMOVE DSNAME Logic

o, ¥, ok, NOTE
c1’ “#, c2’ T, c3” s, badde ittt D] ERRERCE Hkk AR RA R
*, * I *, ¥ *. * IEHMVESL *
. CE FOR *, YES «* REBLOCK- *., YES «*" RECORD *. TYPE F ‘ BUIU? DCBS mH— Kk —k -k
,'TQ' DATA SET.—————wwu] >%,ING NECESSARY. *—--—————)*.FORMAT TYPE F.#¥emmmm——- >* PEN YTO' ARD * ———————— >*COPY AND REBLK *
- PRE-. *, o* *. OR TYPE .* 'ROM' DATA SET* *TYPE F_BSAM OR *
.CATED. *, ¥ . ¥ * * *
. L ERERRAR R AR R
* NO NO *TYPE V
ek
L *
~>% H3 *
* *
» s
NOTE
FhRRRDL AR Rk R LEESIDUERE R R A S FHEEIDOARELE LR LK
* * * IE sm Lk
* ALLOCATE * QUILD DCBS OPEN‘ --------
3PACE FOR 'tO » | e > * TO' AND 'FROM'#*————— >'COPY AND REBLK ‘
* DATA SET * DATA SET * AM OR
P T T P t*'t.ttggitttit‘*
<
¥ k. ok,
El *, E2 *. E3 *,
. *, o* .. oE *.
«* ACCESS *, BSAM o MUST *, NO *. COPY
L METHOD e —>%. DATA SET BE .#%——————e >“THIS A LOAD e D e —
*, * * UNLOADED ¥ «_ COP: . ¥
*, ¥ *, - o*
* ., % *, .*
* BDAM "YES LOAD
NOTE v NOTE "V NOTE NOTE
AU RRFLAREERR R R ERERAF2RR AR SRS Faveras seeriiin :ttitpului*ltt#t:
* * * *
* BUIL? ? * * BULLD DCBS * * BUILD DCBS * UL ? D(;BS
* OPEN YTOY 'AND * * OPEN 'TOYAND * *+ OPEN 'TO'AND * : ogm T8 RND
* 'FROM' DATA * * FROM' DATA * FROM' DATA * M' DATA *
- SETS * * SETS * SETS * SLT *
PR T T A R PR TR T T DN 2.+ T U - N
\
BERRRGLER AR AR FERRECIEREERRERRE G Gl R ARk
IE] * 1EEMVE. * * IEHMVERA * * IE: *
P s e T R B et e e et pe e EL e SE S B ttyer et b 0
"COPY UNLOAD OR ‘ * UNLOAD BSAM # *LOAD BSAM DATA * *COPY BSAM DATA *
LOAD BDAM * DATA SET OR * * OR P * SET OR PLS *
' DATA SETS * PDS * * *
P P T T L T T LT
E T
* H3 *%->
seen
\ NOTE
HRARKEIRR AR BeesrALETLLEL LY
; IEBI IEHMVESO
#m o ¥ ¥ —#— ¥ %~ *ERROR e PEMERO ek
>¥CLOSE "TO' AND #emmmmeew >* ANALYZE ERROR *

ARRRRT 2H R SRRk
* IEHMVESQ *
g_‘_ -*-t-t-t-g-.

*SCRATCHING AND *
* CA *
L T e r e L

NOTE: IF USER LABELS ARE PRESENT,
EXIT FROH THIS BLOCK TO

‘%
PROCESS

M.
RETURN TO THIS BLOCK.

#SEVERITY ABORT *
* TF NECESSARY *

33" s,

¥ *.
MOVE o TYPE *. COPY

P e, 4

*QF OPERATION
“x, o
. .+

LR L2
* *

L2t
l * *
->% K3 *
* *

(212
HEERRTY RS RS RE Rk
* IEHMVESP *
‘-#—#-#-t-t-t-t-t

RM AN

*SCRATC ING AND *

it“t#t#ﬂtttt“t#

* K3 *——.
* <
Shk l

I - T
YES .* THERE " #.
——%ANOT!

P ot *
Ld *
* B3*

BRRBER USSR R R R RR Rk
* EH SK *
e e o e e R

~>#FREEMAIN, CLOSE *-.

+SYSIN, , SYSFRINT :
LRSS SIS LR S

System Utility Programs:

FEEETS kb mkkk Rk
* RETUR] 0
: SUPERVISOR :
EREREERRA AR
A

HEERRKS R EB ARk RE

* *
EEL SRt TP 2

IEHMOVE 41

Chart 10.

FERARL SRR R AR
*
* ENTER *
*
aeh kb gk kkkk

s
SEkeRBl Sk skhb bk
»

IEHMVXSF
et St I 2]
* MOUNT *
* NECESSARY *
* VO
R e L2 Il

IEHMOVE CATALOG

Logic

¥

c3” s, AR EAC R
., * *
. Is *, YE: *COPY & REELOCK *
Dk, REBLOU(ING o —>‘ THE_UNLOADED ‘——
T, . NECESSARY. %~ CATALOG ONTO
. ¥ * THE 'TO' VOL
*, % *, % *, tttt.#it.#tt!*t##
* NO YES * NO
kR
* *
* D2 *->
* *
LTS
ARRORDL BE R AR ARRRRD2 R R R AR ARERRD IR RN R
* HMVE * * * * *
B P oL * GET A REBUILT * * COPY UNLOADED *
* SCAN CAS * *CAT ENTRY FROM * * CATALOG ONTO #——————e
4 WRITE BNRRIES + + TFROM' VOL * * THE 'T0' VOL * ¥
* N SYsuTl | e * * ot L
TP *05_*
B3#*
-
-
M 4
E1 *. itttthttttttttv* £3° ‘s, SRy kR
* 4 IS *, * INDEX sve
- copPY *. COPY READ A * «* THE ENTRY *. YES bt bt Pk vk -‘-‘-‘
OR B >" CATALOG_ENTRY *———————>#*_A GENERATION .#%———wwo—-! >¥ B ON
. UNLOAD . A : FROM SYSUT1 : l'lfm'l.‘A INDEX. "'TO VOLUME“
e, ™ 't, o Rakh kR
* UNLD hadbd * NO
* Lok
+ E2 *
*
*krd
SRS F] dkdd e kk bk *ERPLkkkkdx
* * * INDEX SVC #*
* READ A * LI I Nt e et Y)
* CATALOG ENTRY *<-—- l-s‘“(x ON
: FROM SYSUT1 : *"TO VQLUME*‘
LRI IR S22 222 d wkkbgk kb
FARSAGLE AR ERE R FRGUAR RS
‘WRITE THE ENTRY‘ * INDEX SVC #
UNLOAD! LR et e U
‘FORMAT ON 'TO' ‘ BpA OoN Fmmm e
: t"m VOLUME‘*
‘0*“..0*#“*’#** wkkk SRk
H1 W *. FRHYFEE RN R
«.* IS *, *CATALOG SVC
.+" THERE *. YES W e o B
* .ANOTHER ENTRY oend o b >% TRY TO CATA- #
. ON SYSUTl A LOG T DS"IAME‘
ON 'TO
R t#.tt.tti'i
l NO
*hbkn
*05 %
* B3is L,
* % JiT T
- o#

42

x, %
* YES

WRRKYBE R Rk

- B OoN *
*. 'TO VOLUME’O
LIS AT L

*,
g WAS *
, INDEX LEVEL .%-——
#*. ABSENT .¥

____________ >
J5
o
YES
——D% .THERE ANOI‘ :IER * e
N ‘
*,
NO
b i
*05
—>*% H3 %
*
Ak
.
IS *.
COPY .* LOADING *.
——*%..OR COPYING _ .*<--
- EING .
*.DONE . *
wkdk * LOAD
* *
* E2 *
* *
2hEE T
* *
* D2 *
* *
REk

Listing System Control Data
(IEHLIS

The IEHLIST utility program performs three
functions:

e It prints a catalog or partial catalog.

e It prints a volume table of contents
(VTOC) ..

o It prints the directories of up to ten
rartitioned data sets (PDSs).

The program is serially reusable, tut
not reenterable.

PROGRAM STRUCTURE

The overlay structure of the program is
shown in Figure 21. The program consists
of the following control sections (CSECTs):

e IEHROOT performs basic program initia-
lization. It is resident in main

storage throughout the program's execu-

tion, unlike the other CSECTS. IEHRCOT
contains V-type address constants
needed by the overlay supervisor.

e IEHMSG contains only messages.

e IEHPSEG analyzes requests.

e DEVNAMET is the device name takle.

e TEHINSEG interprets parameters supplied
by a calling program.

e IEHCSEG scans and prints cataloged
data.

e TEHRSEG scans and rrints VIOC data.

e IEHSSEG scans and prints PDS directory
data.

e IEHVOLMT mounts necessary volumes. 1t
is described under the heading "Device
Allocation and Volume Mounting."

¢ DEVMASKT is a device mask table used by
IEHVOLMT.

Chart 11 shows the logical flow of con-
trol through the program. Figure 22 shows
the structural flow of the program, includ-
ing the successive phases of the contents
of main storage during the program's execu-
tion. The logic of each control section
(CSECT) of the program is described in the
following paragraphs.

IEAROOQOT
contains miscellaneous routines needed
in main storage throughout the pro-
gram's execution (PERRPR, WORKERR,
PTERM, LINEPR, DOPOINT, and PBEGIN),
together with several communication
areas (CARDIN, PRINTOUT, WORKIN, and

e RDCDRT scans control statements. RONTAB) .
IEHROOT
Initialization
IEHVOLMT
IEHMSG Volume
Messages Mounter
DEVMASKT
Device
Mask Table
IEHINSEG - IEHSSEG
IEHPSEG ohe IEHQSEG IEHRSEG E
Request ;\:::ru::eyr Catalog VTOC P[?S Directory
Analyzer Analyzer Printer Printer Printer
RDCDRT DEVNA
Control Device
Statement Name
Scan Table
Figure 21. The Overlay Structure of the IEHLIST Program

System Utility Programs: IEHLIST 43

IEHROOT IEHROOT IEHROOT IEHROOT IEHROOT IEHROOT IEHROOT IEHROOT IEHROOT
]
IEHMSG IEHMSG IEHMSG IEHMSG [EHVOLMT IEHMSG IEHMSG IEHMSG
IEHQSEG,
IEHINSEG IEHPSEG IEHPSEG IEHPSEG DEVMASKT IEHPSEG IEHRSEG, IEHPSEG
or
P IEHSSEG
RDCDRT DEVNAMET
The root is load- Abranch to a The request The control The device name The volume The message The appropriate The request
ed. Subsequent V-type address analyzer statement scanner table mounter table and the information analyzer
loading is constant causes (IEHPSEG) is (RDCDRT) is (DEVNAMET) (IEHVOLMT) request printing routine* overlays the
caused by the overlay loaded as in (). loaded, Contro! overlays the and the device analyzer overlays the segment loaded
branching to a supervisor to cycles between scanner by means mask table overlay all but request analyzer. in . The
branch table in load the message the request of the segwait (DEVMASKT) the root. . program
the root, table (IEHMSG) analyzer and routine. overlay all * |EHQSEG terminates or a
and the the scanner but the root. prints the new request is
auxiliary para- until all catalog analyzed, as
meter decoder parameters are |EHRSEG in é.
(IEHINSEG). analyzed. prints a
VTOC
IEHSSEG
LEGEND: prints a PDS
directory

—» specifies flow of control

specifies a
control section

(CSECT)

specifies a phase of
main storage contents

IEHSSEG

Figure 22.

PERRPR
causes any invalid control statement
to be printed, and gives control to
PTERM or PBEGIN, depending on wheth-
er there are any more control
statements.

WORKERR
treats all SYNAD exits.

PTERM
receives control when all job
requests have been serviced or
akorted, and ends the job.

LINEPR
prints all program output.

DOPCINT
issues all POINT supervisor calls
used by the program.

PBEGIN
directs control to the segments by
means of a kranch table of V-type
address constants.

uy

The Structural Flow of the IEHLIST Program

The following areas are located in the
root:

CARDIN
is the DCB for reading control
statements.

PRINTOUT
is the DCB for printing the catalog,
VTOC, or PDsS.

WORKIN
is the DCB for reading the catalog,
VTIOC, or PDS directory.

RONTAB
is the parameter list for the volume
mounting routine.

IEHPSEG
analyzes requests and directs control
to the appropriate routine to print
the requested information. It con-
tains the following subroutines:

PBEGIN
directs control to IEHINSEG to
interpret calling program parame-
ters, and to open SYSIN and
SYSPRINT.

PON
directs control to RDCDRT to obtain
control card information.

PKEY
is given control when a keyword is
returned by RDCDRT.

PPARAM

is given control when a parameter is
returned by RDCDRT. When the param-
eter supplied to the (optional) VCL
keyword is returned, the parameter
is used as a search argument in the
device name table. The value retri-
eved is used by PWORKIN.

PWORKIN
constructs the calling sequence for
IEHVOLMT.

PHEAD
prints a header and gives control to
the appropriate routine to print
catalog, VIOC, or PDS directory
information.

PTERM
receives control following the
printing of catalog, VTOC, or PDS
directory information. If there is
another request, PTERM directs con-
trol to PON; otherwise, PTERM closes
SYSIN and SYSPRINT, and returns con-
trol to the supervisor.

RDCDRT

scans utility control statements. It
is described under the heading "Con-
trol Card Scanner."

IEHINSEG

interprets auxiliary parameters supp-
lied by a calling program (these
parameters are descriked under the
heading "Auxiliary Paramweters"), and
also opens SYSIN and SYSPRINT or their
substitutes, as specified in the cal-
ling sequence to the program.

IEHCSEG

prints the catalog. It gains ccntrol
indirectly from the request analyzer,
IEHFSEG, by means of a kranch tc a
branch table in the root. IEHQSEG
contains the following routines:

QCHECK1
scans the catalog for general infor-
mation and prints it. Actual print-
ing is done via a branch-and-link to
LINEPR in the root.

QHEAD
prints a catalog header after the
general information is printed.
Actual printing is done via a
kranch-and-1ink to LINEPR.

CALL
scans high-level node points in the
catalog and passes them to CLOCATE.
QALL is used only in the case of an
entire catalog printout.

QLOCATE
scans from a node point to succes-
sive index levels until a data set
pointer is found. A fully qualified
data set name is placed at location
INDXNAME for routine LPRDATA.

LPRDATA
prints information pertinent to a
data set.

QCATREAD
performs all the reading of a cata-
log for the catalog function of the
program.

IEHRSEG

prints a VTOC. Control is gained
indirectly from IRHPSEG by means of a
kranch to a branch table in the root.
IEHRSEG contains the following
routines:

RPARTIAL
treats requests for partial VTOC
printouts. Successive DSCBs are
printed by linking to RPRDSCB.

RENTIRE
treats requests for entire VTOC
‘'printouts and differs from RPARTIAL
in that the VTOC must be opened.

REOCDAD
calculates and prints volume space
information for an entire VTOC
printout.

RPRDSCB
prints a DSCB that has been read by
RPARTIAL or RENTIRE.

RREAD
reads the VTOC.

IEHSSEG

prints PDS directories. Control is
gained indirectly from IEHPSEG by
means of a branch to a branch takle in
the root. IEHSSEG contains the fol-
lowing routines:

SSTART
obtains the directory of a given
PDS.

SRESCAN
prints the member names of the dire-
ctory. Actual printing is done by
linking to LINEPR.

System Utility Programs: IEHLIST U5

Chart 11.

IEHLIST - Listing System Control Data

IEHINSEG
ERRERL TR AR
v e * *
ENTER * * *
| — >* INITIALIZE *
* * * *
AR R R * *
AEEEFR R R AR R IR R R
EE L L]
* *
* B3 *->
* *
By
RDCDRT 4
FHAREBIHFRFRRE SR
* *
* SCAN *
* CONTROL *
: STATEMENTS :
RERE R R RO R KRRk
KEY
FRRRRCTER AR N RE
* *
* ANALYZE *
* *
: PARAMETERS :
FREERREERERE R Rk
IEKVOLMT
AREERDTHA AR SRR AR
* *
* MOUNT *
* PROPER *
: VOLUMES :
P LT TP
¥, QSTART o . SRESCAN SUNPKPDS
E1T T#. FEERRE R F RN R Rk . FARRARL RSP R A RRRRE SRR Rk
* *. * * ¥ I %, * * *
PARTIAL ENTIRE *, * PRINT GENERAL * CAT .*THE REQUEST*. PDS * OBTAIN A * * EDIT AND *
it~ T S [it CAT VIOC = ihmmmm—mma>® ¥emmmm——e>% PRINT MEMBEK *
‘.*PARTIAL‘.‘ : INFORMATION : *. OR PDS *-* : DIRECTORY : * NAMES :
R L T TP P EFN FRERERRARARRE R FERERRERR R AR RS
*ENTIRE * VTOC t
QALL v ¥, o *.
FEIE SRR PR TR T Y F3 *, F5 *,
* * ¥ . L* *,
* SCAN * .*" PARTIAL *. ENTIRE NO .*° LAST ..
* HIGH-LEVEL * *! D St —————— - L———2%PDS_DIRECTORY.*
: NODES : ‘-‘ENTIRE ‘n‘ *. PRINTED .*
EREREARRERRR R R T, L%
*PARTIAL * YiS
S
L e ETTT
* x*
QLOCATE 4 RPARTIAL v * K3 *
ARERAGL AR FEERRGI AR AR R RG AR R R R * *
* * * * * * ren
* CAN * * OBTAIN * * READ *
* FROM A * ——D% A * ——>% *
* NODE * * DSCB * * DSCB *
* * * * * *
R R HEBEREARFFR AR RS AR AR
LPRDATA RPRDSCB v RPRDSCB s
ARARRGL AR EETT TR P PP [T e ST T
- * * * * *
* PRINT * * EDIT_AND * * EDIT_AdD *
* DATA SET * * PRINT * * PRINT *
: INFORMATION : : DSCB : : DSCB :
R AR RS AR R K
1" e, g3 sl Ju s,
¥ * * *, *,
¥ LAST *, NO .* LAST *. NO_ .¥ END *.
*. DATA SET PR - NAME —%, OF ¥
*. PRINTED ‘-*PRINTED . -« VTOC *-*
. e B .
* YES * YES YES
>l
PTERM PTERM ¥, RuCORD
AEERK2HF R A ARk k3™ s, ARG AR
FRARK AR R Rk * o * * *
* RETURN TO * TERMINATE * NO .* IS THERE *. * CALCULATE *
% SUPERVISOR e o THE *. ANOTHER o ¥<emy <——~*AND PRINT SPACE*
* JOB * *. REQUEST .* * TINFORMATION *
AR * * . Tx
AR R AR . .x T T T TR
* YES whwk
* *
¥ K3 *
* *
Ak oank
* *
* B3 *
* *
EE L2

46

UEdating XCTL Tables for OPEN,
CLOSE, and EOV (IEHIOSUP)

The IEHICSUP program updates the XCTL
tables erkedded within various load modules
of the I/0 support functions OPEN, CLCSE,
and EOV. The program is executed as a
result of jok control statements in the job
stream at the time of system generation.
The program is not serially reusable. It
consists of one load module, IEHIOSUP.

The name of the load module for the
first phase of each of the I/0 support
functions listed above is of the form
IGCOOnnn, where nnn is the decimal SVC code
for the data management function. The
names of subsequent load modules are of the
form IGGnnnxx, where nnn is the deciral SVC
code for the data managerent function, and
xx is a load module identifier. If the
seventh character of the load module name
is alphaketic, the load module contains no
XCTL takle.

An XCTL takle is always present in the
first type of load module, but not always
present in the second. If present, the
table may be embedded anywhere within the
load module (see Figure 23). The last byte
of the load module is a relative pointer
(in double words) to the table.

IGCO0nnn
or
IGGnNNnxx

T 1

| |

i g

| doubleword boundary |

L

¥ 1]

| ID | TTR | L
XCTL takle} + +
(variable | | | |

length) ¢ $ + 4

| | | |

L 1 L g

[] 1] a

i 00 | |]

8 L L 4

r T 1

| 4.1nd1cates end of takle |

| |

| r T 1

| | svC | P |

L 1 i Jd
ID = 2-kyte entry identifier of a subse-

quent load

TTR = 3-kyte relative track address of the
suksequent load

L = 1-kyte length (double-words) of the
suksequent load

SVC = 3-Lkyte decimal SVC number of support
function

P = 1-Lkyte relative pointer (double-
words) to XCTL takle

Figure 23. Embedded XCTL Table Format

Each entry within an XCTL table consists
of the identifier of a subsequent load
module, the location of the load module
(TTR), and the length (in double words) of
the load mocdule.

PROGRAM FLOW

The flow of the IEHIOSUP program is shown

in Chart 12.

Finding the Load Module

Load modules of the first type (IGCOOnnn)
are updated first. If a load niodule of
this type is not found, an appropriate mes-
sage is printed and the program is aborted.
Load modules of the second type are pro-
cessed only after successful processing of
the first type; during this processing, the
program ends normally if either all load
nodule XCTL tables are updated oxr the end
of the directory is reached in searching
for a load module entry.

Entries for load modules are sought for
in order of increasing binary value (in
accordance with the organization of the
directory) by reading a directory record
and comparing the record key to the name of
the desired load module. When the record
key compares higher than or equal to the
load module name, the entry is sought tor
(sequentially) in the record. If the load
module is of the first type (IGC00nnn) and
no entry is found for it in the record, the
program aborts. Load module names whose
seventh character is alphabetic are
ignored, since the load modules they name
have no XCTL tables.

When the entry for the load module is
found in a directory record, the location
(TTR) of the load module is extracted from
the entry and converted to an absolute
address (MBBCCHHR). The conversion is
effected via the execution of the program
IECPCNVT, which is passed the ITR to be
converted and the address of the appropri-
ate DEB. The address of the ILCPCNVT pro-
gram is found in the Communications Vector
Takle at absolute (decimal) location 44,

Updating the XCTL Table

The aksoclute address of the load module
desired is then used to read the load
module into the buffer BUFFER. Reading of
the load module is dcne via the EXCP macro
instruction; the channel program is at
location CCWREAD, and the DCB is at loca-
tion EXCPDCB. When the load module has
been read into main storage, the address of
its last byte is determined using the count
field of the CCW and the residual count of

System Utility Prcgrams: IEHIGCSUP 47

the CSW and is used to calculate the
address of the beginning of the XCTL table
within the load module. Up to 40 entry
identifiers are then moved from the XCTL
table and sorted in the area SORTAREA. If
more than 40 entries are in the XCTL table,
a switch (SWITCH + 1) is set. After the
entry IDs are sorted, each is expanded to
its full 8-byte form (i.e., IGGnnnxx). The
sorted, expanded IDs are then passed to the
BLDL macro instruction, which returns in
BLDLAREA the new entry values (TTR and
length) for each ID. The values are then
moved to XCTL table. Any remaining entry
IDs in the table are sorted, expanded, and

48

passed to BLDL, 40 at a time, and updated
in the same manner.

The entire load module containing the
updated XCTL table is then written at its
original location. If there are no more
load modules to be processed, the SVCLIB-
data set is closed and the program ter-
minates. Otherwise, control cycles as
indicated in Chart 12 until all load
modules are processed or an error condition
is returned by BLDL or EXCP. Such an error
condition results in abnormal termination
of the program.

Chart 12.

KEADMORE

AR RN KRR KR EE T

T NE T * * * *
* * RE. *

* ENTRY Fosmm m e >%* INITIALIZE DIRECTORY *
* * RECORD *

*EFERRRABREERRE

f J—
*

* * * *
LETI RIS TS SR T LY e e e e Y

FINDKEY o*,
B3 *

<* IS *.
NO_ .*RECORD KEY *.
——*.GREATER THAW .*

.FCN NAME .

L
* YES

ok

c3 *,
kIS *,
- *CURR_ENTRY *.
. N CORD .*
*.THE JAME
*, o
*, L
YES

*
¥

N FOunD N

FARAD IR AR R R KRR
*

* MBBCCHR *
LR T T T P

MBBCCHHR
L3 %
* EXCP *
B s ot
READ THE
** MODULE “
FAk Rk

4
Rk

* *

HHR R RARR
*

*
m
Z|
H
=z
<
H
U_P 1=}
L]
3
(]
LTS

STEPUP v
Tk RGIRF RN
*

SORT AND EXPAND
* UP TO 40 ID'S *
:FROM XCTL TABLE:

ERTT PR SR RS

GOTOUBLDL
FEI AR
* *

Kok kK ==Kk
* OBTAIN NEW *
** TTR'S AND #

*

LENGTH
SRR ARk

TRYNEXTL
FAERRTIERRARE KRR
* *

*PLUG NEW TTR'S *
* AND LENGTHS *
:INTO XCTL TABLE:

EE T e e PR T2y

K3 *
KA .
YES .* ANY ID'S *,
———% LEFT IN .
* TABLE
*, .k

<

IEHIOSUP - Updating I/O Surport XCTL Tables

NO

kR B RRRR kR
* *
EXAMINE *
NEXT ENTRY *
IN RECORD :
*

AREE R RRE RN
A

NO YES

. *.
¥ IS * «* HAVE ¥,
«* DIRECTORY *. YES * T4E 18T 6 *.
RECORD eHmmmmmee>¥ . 1/0 MODULES .*
*. !i:XHAUSTELz. * * EE|

"%.DONE_.*"
*, ¥ *. o,
* * NO
A
FRREEY AR SR E R
* INCREMENT TO *
* NAME OF NEXT *
MODULE *
T E *
* UPDATED *
P T T T T
A
NO
Ju" x, RIS R AR K
- *, * *
.* HAVE ALL *. * CLOSE *
, NAMES BEEN . =>% ThHkE SVCLIBE *
.EROCESSE?. * DATA SET *
“k. L4 RO KR R
*
A
SWITCH
HRKY R Rk
* EXC: * HERRKSE R ARk
[*
—->* WRITE OUT THE * * KETURN *
* UPDAT * *
* MODULE = * HRAEEREEE RS R
AahkR R

System Utility Programs:

Initializing the SYS1.LOGREC Data
Set (IFCDIPOO)

The IFCDIP00 program is executed during
system generation to initialize the SYSl1.
LOGREC data set (a data set used by systems
environment recording modules to record
CPU, channel, and I/O device errors).

This program is executed as a result of
job control statements provided by the GEN-
ERATE macro instruction during the SYSGEN
process. Input to the program (as speci-
fied in the EXEC statement) consists of the
(decimal) number* of unit control blocks
(UCBs) in the system, and the system resi-
dent device type code (for an explanation
of the code, see "SYS1.LOGREC Record
Format").

The output of this program at normal
completion is of three types:

e The initialized data set SY¥S1.LOGREC.
(See the section "S¥YS1.LOGREC Record
Format.")

e Information to be used as parameters
for executing the environment recording
edit and print (EREP) program.

e Information to be used for recording
CPU, channel, and I/0 device errors by
the systems environment recording
modules.

PROGRAM FLCW

Chart 13 shows the flow of the program,
which consists of one load module (IFC-
DIP00). The data set S¥YS1.LOGREC to be
written consists of three subsets:

e A header record, written by this
program.

e A variable number of statistical data
records (STAT/RECs), written by this
program with data fields of zeros.

e A record entry area keginning on the
first track following the STAT/RECs,
not written by this program.

SYS1.LOGREC records are written using
BSAM WRITE. Diagnostic messages are writ-
ten using the WTO macro instruction.

The program is executed in two passes:
the first pass (see Figure 24) initializes
the program, writes a dummy header record,

1This numker is equal to the number of
uniquely addressakle I/0 devices in the
system.

50

and writes as many statistical data records
as there are UCBs for the system; the
second pass (see Figure 24) uses the data

-obtained in the first pass to write a

genuine header record over the dummy, and
then writes as many statistical data reco-
rds (over and following those written dur-
ing the first pass) as are necessary to
£ill out the track occupied by the last
statistical data record written during the
first pass.

SYS1.LOGREC After First Pass of IFCD1P0OO

) L T T 1
| DuMMY | STAT. | STAT. | STAT. |
| HEADER | REC. | REC. | REC. |
L L L L J
I T T 1
| sTAT. | STAT. | |
| REC. { REC. | |
L L] J
I 1
I |
| |
L J
SYS1.LOGREC After Second Pass of IFCD1P0OO

1 Ll 1 ¥ 1
| GENUINE |REWRITTEN|REWRITTEN|REWRITTEN |
| HEADER |[STAT.REC.|STAT.REC.|STAT.REC. |
L L L L J
] T T T) |
| RERRITTEN |REWRITTEN| STAT. | STAT. |
| STAT.REC. |STAT.REC.| REC. | REC. |
L L L] J

[}

| UNWRITTEN

| (RECORD ENTRY AREA)
L

T

SYS1.LOGREC After First and
Second Passes of IFCD1P0O

Figure 24.

First Pass

Program initialization consists of saving
registers and analyzing the input from the
EXEC statement. The dummy header is then
initialized and written. The location (in
TTR format) of the dummy headexr is saved
for the second pass. The first pass sta-
tistical data records are then written,
each of which consists of a 2-byte key
(ascending sequence) and a 38-byte data
field of zeros. The location of the last
statistical data record written during the
first pass is saved for the second pass,
where it will be used to compute informa-
tion necessary to complete the genuine
header record. The program then enters the
second pass.

Second Pass

A switch (PASS) is set, indicating that the
program has entered the second pass. This
switch will be interrogated following the
rewriting of the statistical data records

in this pass. First, however, data neces-
sary to the genuine header record is com-
puted. A description of the fields of the
header record may be found under "SYS1.
LOGREC Record Format." The values supplied
to these fields are computed using the
track nunkexr obtained by the NOTE routine
following the writing of the last statist-
jcal data record written during the first
pass.

The genuine header is then written.
Following this, the original statistical
data records are rewritten. The switch
PASS is interrogated, and indicates that
the second pass has been entered. The
track containing the last statistical data
recoxrd is then padded with additional sta-
tistical data records. SY¥S1.LOGREC is
closed, and IFCD1P00 returns control to the
supervisor.

SY¥S1.LOGREC RECORD FORMAT

The SYS1.LOGREC data set consists of three
subsets:

e A header record, written by this
prograne.

e A variable number of statistical data
records (STAT/RECs), written by this
program and initialized to zero.

e A record entry area (RE), not written
by this program.

Header Recorxd

The header record is a 38-byte data field
preceded by a 2-byte key of hexadecimal
FFFF. The header record contains the fol-
lowing fields:

1. A four-byte field containing the:
address (CCHH) of the first track in
the SYS1.LOGREC extent.

2. A four-byte field containing the
address (CCHH) of the last track in
the SYS1.LOGREC extent.

3. A one-byte constant containing the
highest address of a track on a
cylinder of the system resident
device.

4. A seven-byte field containing. the
address and ID (BECCHHR) of the first
track of the RE area. The ID is set
to zero.

5. A two-byte field containing the number
of remaining bytes on the last RE
track written. This field is initial-
ly identical to field 6.

6. A two-byte constant equal to the track
byte capacity for the system resident
device.

7. A seven-byte field containing the
address and ID (BBCCHHR) of the last
track written in the RE area. This is
initially identical to field 4.

8. A two-byte field containing the number
of UCBs in the system.

9. A two-byte field containing the number
of tracks occupied by the SYS1.LOGREC
data set.

10. A one-byte code for the type of system
resident device:

DEVICE CODE
2311 X'o01°
2301 X'02"
2302 X'04°

11. A five-byte expansion field.

12. A one-byte field of hexadecimal FF
used to detect a previous overrun con-
dition caused by a machine check or
channel inboard failure while writing
the header record.

Statistical Data Records

This program writes each statistical data
record with a 2-byte key field and a 38-
byte data field of zeros.

Record Entry Area

This area begins on the first available
track following the last track on which a
statistical data record is written. Noth-
ing is written in this area by this pro-
gram. The address of this track is written
by this program in field 4 of the header
record.

System Utility Programs: IFCDIP0O0 51

Chart 13. IFCDIP00 - Initializing the SYS1.LOGREC Data .Set

IFCIDOQ

FEEERR2EERFRRRERF L ada bty CEELILESEL LY
* * *
* * * SET UP
* ENTRY Fmm] >% INITIALIZE S >* DUMMY
* * * * HEADER

HRERRRERR RN * *
AEEEREERR R RN R Rk Bk R R R

EERRAL AR AR
* *

Ty

\
AABIRRER AR
* *
* OPEN *
‘ SYS1.LOGREC .

* *
AR R AR

>

DWRITE v
FACIEERERES
* *

* WRITE *
* HEADER *
* *

* *
ok R KKK

HADIERARE RS
* *
* NOTE *
* (FOK LA?ER *
* POINT *

PRI L L]

\’
AEAERRE IR AR Rk
*

SET UP 15T
STAT/REC
KEY

LT
LT T

ERE s P T T Y

<

WRSTAT
HEFIERFRRE
* *

* WRITE *
* A
‘ STAT/REC ‘
ETTT T IS

*

. WRITTEN .
*, *

L
* YES

Lad:eLEa L L1 Rl VS L EEE L LY
* * * *

* NOTE * * GET NUMBER OF *
* (FOR_HEADER * * ADDITIONAL *
* DATA) * *# STAT/REC'S *
* FROM TABLE *

AR AR LR e L
A

fad]

\’ NO
¥, CKPASS2 *. DONRE

L yRLE L 2] J3 *, Ju * EENEEEIL S L]
* * * *

o *. .*% ARE %,
*+ POINT TO + .% 15 SECOND *. YES .*ADDITIONAL #. YES * CLOSE *
* THEADER * +. PASS FLAG .¥-——-—m—v! >+ STAT/REC'S . #=—mmm—mm >+ SYSI.LOGREC _*
*, RECORD * *., SET .+ *. WRITTEN .* * *

* * *
FERRRERRRRE . o* *, % kAR ERE TR
A *

v
hhbdd PR LS L L L LS L] L hdads LTI IEETL LY
* * *

*GATHER DATA FOR¥ SET SECOND
*GENUINE HEADER *<- PASS FLAG
* RECORD *

HARALS AR Rk

* *
* * RETURN *
* * *

R

* AR ROk KRRk
FEEEERR AR R R AR R Rk RK

52

Editing and Printing Environmental
Records (IFCEREPO)

The IFCEREPO ("EREP") program edits and
prints records from the SYS1.LOGREC data
set. (These records were originally writ-
ten Ly systems environment recording pro-
grams and provide the error environment of
CPU, channel, and device errors.) EREP
opticnally saves certain SYS1.LOGREC error
records on an accunulation (history) data
set to provide comprehensive error statis-
tics. The accumulation data set may then
be used as input to EREP. Records from
SYS1.LOGREC (except SDRs) or from an accu-
mulation data set are printed in sumrarized
form when the summary option is selected.

EREP operates in the problem state and
is serially reusable. It consists of the
following machine-independent modules:

e IFCEREPO and IFCEREP1 (Charts 14-18),
the control modules.

e IFCMSG00, the message module.

e IFCSDRO0O (Chart 19), which edits sta-
tistical data records (SDRs).

¢ IFCOER00 (Chart 20), which edits I/0
outboard records (OBRs).

e IFCOBRSM, which edits the outboard
record summary.

s IFCMCHOO (Charts 21 and 22), which per-
forms preliminary editing of channel
inboard records and machine check
records.

Figure 25 illustrates the communication
between modules of the EREP program.
Figure 26 lists the machine-dependent
modules of the EREP program.

r 1 LOAD .
| IFCEREPO p—-———-»{ IFCEREP1 |
(Model	(Model
Independent	Dependent
Control Module)	«---—-—{Control Module)
L d L J

A

I E|
N| | T|
K| | u|

| | R{

vy v

|

Process and Edit
Modules

o ——

Figure 25. cControl Flow Between Mcdules

All communication between record
processing/editing modules and control
modules is through IFCEREPO, the model-
independent control module. This module
then may communicate with IFCEREP1, which
is model dependent, to handle sunmary/
process/edit requests.

Overall Flow

The control module first scans and analyzes
parameters from the execute statement, and
then performs basic initialization, such as
loading the second control module and the
message module. Module IFCEREP(Q also
determines the input and output data sets
to be used and opens their associated DCBs.
When the parameters specify the summary
option, the control module obtains via a
GETMAIN macro instruction from 1.7 to 4K
bytes of storage. (The size oi obtained
storage depends on the amount of free
storage.) '

The record-processing path determined by
the control module depends on whether the
input data set is SYS1.LCGREC or an accumu-
lation data set. When the input is an
accunulation data set, program flow also
depends on whether a record data summary is
requested. (The control modules indicate
program flow by setting bits or bit-
combinations in four switch bytes.)

S¥S1.LCGREC Input

When SYS1.LOGREC is the input data set,
EREP processes all records of a type before
processing another type. . The program reads
a record from SYS1.LOGREC and the appropri-
ate editing module is given control by
means of the Link routine. When all rec-
ords of the selected type have been read
and the appropriate ones edited and writ-
ten, the options are checked to see if
another type of record is to be processed;
if so, all the records of this type are
read and the appropriate ones edited and
written. For record types other than SDR,
optioned summary and accumulation functions
are performed before EREP begins processing
another record type. (Unlike other record
types, OBRs are written into the accumula-
tion data set in blocks of ten. Space for
record blocking is reserved in the message
module.)

When all records of the selected types
have been processed, the S¥Sl1l.LOGREC header
record is checked by the control module to
see if any additional records were stored
in SYS1.LOGREC while EREP was processing.
If any were stored, the program enters a
second pass and the additional records are
edited and written regardless of the
options selected. No sunmary of these rec-
ords is performed.

System Utility Programs: IFCEREPO 53

Accumulation Input edits and prints OBRs, if requested. Since
available space may be insufficient for an
OBR summary, more than one summary pass may

When an accumulation data set is the input, be necessary. After OBR processing is com-

EREP minimizes the number of access cycles plete, INB and machine check records are

by processing more than one record type on processed in a single pass each.

a pass if a summary was not requested or if

the maximum 4K bytes of storage for a

requested summary was oktained from the control Module Subroutines

GETMAIN routine.

The control module and the editing modules
make use of the following subroutines,

If the summary was requested or maximum located in the control module, to gperform

storage was unavailable, the program first I/0 operations:
1) !] T 1
| MACHINE | MODULE ID | MODLIB ID | FUNCTICN |
] | | (*%%) | |
L L 4 i 4
r T L) T 1
|Model 40 | IFCMC140 | IFCEP400 | Edits CPU records. |
| | IFCMC340 | IFCEP401 | Completes editing of CPU records. |
| | IFCSUM4O | IFCEP104 | Summarizes CPU and inboard records. |
| | IFCMCS40 | IFCEPO41 | Edits the CPU records summary. |
| | IFCINS40 | IFCEP072 | Edits the inboard records sunmary. |
b 1 + + - {
|Model 50 | IFCMC150 | IFCEP500 | Edits CPU records. |
| | IFCMC250 | IFCEP501 | Completes editing of CPU records and edits |
| | | | inboard records. |
| | IFCSUMS0 | IFCEP105 | Summarizes CPU inboard records. |
| | IFCHCS50 | IFCEP051 | Edits the CPU records summary. |
| | IFCINSS0 | IFCEP052 | Edits the inboard records sunmary. |
[4 i 4 d
T ¥ Ll T 1
|Model 65/67 | IFCMC165 | IFCEP650 | Edits CPU records. |
| (%) | IFCMC265 | IFCEP752 | Edits inboard reécords. |
| | IFCMC365 | IFCEP651 | Continues editing CPU recorxds. |
| | IFCMCL65 | IFCEP652 | Completes editing CPU records. |
| | IFCSUM65 | IFCEP106 | Summarizes CPU and inbkoard records. |
| | IFCMCS65 | IFCEP061 | Edits CPU records summary. |
| | IFCINS65 | IFCEP072 | Edits inboard records summary. |
| | IFCASROO(**) | IFCEP655 | Edits machine check handler portion of CPU |
| | | | records. I
| | IFCASRO1 (**) | IFCEP656 | Edits channel check handler portion of inboard|
| | : | | records. |
- ¢ : : !
|Model 75 IFCMC175 | IFCEP751 | Edits CPU records. | |
| IFCMC275 | IFCEP752 | Edits inboard records. |
| IFCMC375 | IFCEP753 | Completes editing CPU records. |
| IFCSUM75 | IFCEP107 | Summarizes CPU and inboard records. |
| IFCMCS75 | IFCEP071 | Edits CPU records summary. |
| | IFCINS75 | IFCEP072 | Edits inboard records surmary. |
L. (R l |
1] T L] A
|Model 91 IFCMC191 | IFCEP950 | Edits CPU records. | |
| IFCMC291 | IFCEP952 | Edits inboard records. |
| IFCMC391 | IFCEP951 | Continues editing CPU recorxds. |
| IFCMCH91 | IFCEP953 | Completes editing inboard records. |
| | IFCSUM91 | IFCEP109 | Summarizes CPU and inboard records. |
| | IFCMCS91 | IFCEP091 | Edits CPU records summary. |
| | IFCINS91 | IFCEP072 | Edits inboard records summary. |
L L L L 4
1 a
| (¥) Except for modules IFCASRO0 and IFCASR01, all modules in this group have aliases of |
| IFCxxx67, where xxx represent the fourth, fifth, and sixth characters in the module |
| iD. |
| (¥*)These modules occur only in systems having the machine check handler and the chan- |

nel check handler feature. |
| (#**)This is the module identification kefore it is link-edited onto the Link Library. |
1 J

Figure 26. EREP Machine-~Dependent Modules -

54

XWRTPRT
writes edited data, using BSAM, on the
specified output device. Records are
written in 120-byte blocks from the
buffer XPRTBUF, also ,in the control
module.

XRDDISK
reads, using EXCP, a record from SYS1.
LOGREC into the buffer XDADBUF, also
in the control module.

XWRTDISK
writes, using EXCP, a record of zeros

on SYS1.LOGREC. The buffer XDADBUF is
zeroed out by the editing module. If
disk writing is prohibited, this rou-
tine returns control immediately.

XWRTOP
writes, using WTO, messages to the
operator.

XACCSUM
accumulates and summarizes records, if

necessarye.

System Utility Programs: IFCEREPO 55

Chart 14.

RERARL kAR A
*
: IFCEREPO :
SRR ERARERER R

b Sl L EL L L L]
* *

* AND ANALYZE %
*EXEC_STATEMENT *
* P ETERS

ARAM *
* *
Rk

*XCLEeeRRIS

LOAD IFCMSGO0
* AND STORE *
* ADDRESS *

EhEEERERREE

y
*ED1kresr®k
* *
LOAD IFCEREPL1
* 'ORE. _*
* ADDRESS *

IFCEREPO

LTI
E1L" %, SEE2 Rk
o . * *
- IS *. YES * OPEN *
#* . ACCUMULATION .#¥———————=>* ACCUMULATION *
‘-REQU'ESTEI.).‘ * OUTPIS" TDATA‘*
, . LT T Ty
NO
<
v
F1° s, FAF2RRARER SAF3H Rk H R
¥ IS *, *
.*SUMMARY OR #*. YES * OPEN * * WRITE *
- B) >% PRINT OUTPUT #——~~-——-->%* QUTPUT HEADER *
'-&EQUESTEE.. * DATA SET * '. .’
. L kR LR e
* NO
<
¥
Gl~ *. FHG2EH Fk bk
e IS * .
% INPUT AN *. YES * OPEN *
% ACCUMULATION «#————m—m >% ACCUMULATION #———mmoemmmmeemm
.DATA SET . "“INPUT DATA *
*, . T T P
* NO
>y
EEHLFRREREE ARE2 BRRHAEH H3 #.
* * EE 4 * o *,

* OPEN * MAIN STORAGE * NO .* Is *.
* SYS1.LOGREC * * FOR LINK FLm ¥, SUMMARY o*
*+ DATA SET * *‘ MODULES ‘t '.i:EQUESTEB.‘

PR FRERSRERERE *. L%
* YES
LTS
- *
* J2 k>
]
TS
. N
A TLeRrRekE *. FETIHRREAEH
* R * B4 . * GET 4K *
* SYS1.LOGREC * -* INPUT AN *, YES *MAIN STORAGE *
* HEADER * * ACCUMULATION .%-——— * FOR LINK *
» RECORD * *. DAT; % * MODULES *
* * *. SET .* - .
SRR SRR P FAERERRRRRS
+"No aE
* *
* BY *
* *
HRRRE Sk
*15 *
v * B1* \
L e e T - REKIERRERE R
* DETERMINE * * Liasd *GET 1.5K TO*
* IF HDR RECORD * * * * K *
* IS CORRECT-- # * J2 #<————% STORAGE FOR *
* IF NOT WRITE * * * SUMMARY *
* TO OPERATOR * kR * COUNTERS _*
ERAREER AR RR AR SRRIARAERNE

56

Initialization and Linkage to Editing Modules

EEL 2]
* *
* Bl #——
* *
hk¥
Fo
B4 T,
o *.
NO . % 1S *,
——] MMARY (%
[* . REQUESTED. *
*, o
*, Lk
* YES
.
cy *, AR CS kKRR
¥ . * *
.*" IS OBR ' #. NO * SET 'SKIP *
*. SPECIFIED .#=——-——mem >*OBR PROCESSING' *
., o 3+ NOP ACTIVE %
TS SRR
1 YES
o, k.
D4~ k. ps’ .
ok *, . *,

o WaS *. NO NO .*° IS INB _*.
#. UK STORAGE _.¥%-——q r———*. SPECIFIED _.*
* RECEIVED .+ . o
*, ¥ *, ¥
*, L F *_ ¥
* YES ‘*/ YES
$. RS

E4 4. ES .
o *, * *,
¥ I *, NO o* WAS *, YES
*. SELECTION [%--> #. UK STORAGE _.%=—-
#.BY CUA'S .* *.RECEIVED .*
, o . o
. o
YES

NG TN
%" SELECTION *. YESV

. BY DEVICE .#———=—
*TYPE .
T

No
TR
. ..
NO_.*" IS INB *.
<—=. SPECIFIED .*
*, ¥
*, .
L
YES
v
a4 x
can
.*OBR AND INB¢. NO
#.BE_PROCESSED . #——m—oe—
*.TOGETHER . *
.. e
+"YES
L Ju” s,
O AR
NO .* MACHINE *.
——y<=el CHECK . *
l - " %_SPECIFIED.*
>, ¥
*. .k
EkEE * YES

v

*.BE_PROCESSED .%-—-
“TOGET .
R
* NO
EEFRRGSERERREKH KK
* * ;
+ SET 'INB_ % W
* ONLY' NOP *~-m
* ACTIVE *
R ROk Rk ROk R
t“t“ﬂst‘tt‘tttt:
M
* SET YOBR *
>%* ONLY' NOP *
¥ ACTIVE *
LI LA RS LR L 2L L)
L i i td
*16 *
* AL
* ¥
*
ouuxsuuuut:
*
* SET 'INB_ *
* ONLY' NOP *
* TACTIVE *
AEBBRRkEERERREF R
P O—

L
*16 *
* Al%
* ¥

Chart 15. EREP - Input From SYS1.LOGREC Data Set
* *
* & * %
*18 * 18 *
AL * AL+
kR kkkE
A A
1 NO NO
AR REQ 2 ek kkk R ARk A3 ' .‘t##Au"##ti#ttt A5 *
* * - *, * I *
* SET PRINI * YES %" ENTRIES . H SET * YES .# THIS THi *.
% SWITCH ON = #<emmmemeo *IN SYS1.LQGREC.*<——=m==—-* FIRST PASS #<—————=—u RET PASS _ *
* Y SWITCH * DURING .+ * SWITCH ON # .
[T T * ,EREP .* * * *, o
kE X ERL L 22 2 PRSI L 2] . . Rk RkR Rk Rk ok PR
* RkE *
* % oREE A ETT Y
» * * * *
* B3 #*—- <-%* AS *
* . * *
*kkk l NO**%%
4. N . .
B1® s, B2 %, B3 %, BS. *.
158 EDIT. .*ARE OBR*. .*ARE INB*. ARE *.
.+ AND PRINT *. NO .#" _RECORDS *. NO *" RECORDS ~*. NO .+ MCH CHK
#. INDIV. RECS «#m———mwe- >%. SELECTED _ «#=—m—m—e—m >*. SELECTED .+ >+. RECORDS _.#
*.REQUESTED .+ A A .. o - o A *.SELECTED .*
*, 3 . *, o *, ok *, ok
*, L 1 L *, ok *, %
*"YES R +"YES *"YES *"YES
*15 *
* po*
ELEEL]
.*. .x.
Cc1 - "i‘#czi"t#‘ﬁ‘t# AR AC IR r ke dokkRk cy FEERRCSEFRRERERR R
R *. * DETERMINE * * DETERMINE * Sy * DETERMINE *
Is I SRARRYGR * * START OF * . UMMARY “*. NO * _ STAR’ *
.SDR SPECIFIED.%—->l- % RECORD ENTRY * % RECORD ENTRY * —>+" REQUEGTED ~xto-> % RECORD ENTRY *
. . * AREA IN * * *. o* * AREA *
*. o * SYS1.LOGREC, * SYS1,LOGREC _* *. o+ * SYS1,LOGREC *
_— R e E e e e S L] *tttt*#t*“#tttt‘ *, .k R T S L L L
*"YES YES
#'#' Ekk
15 * * *
* *=>> * D3 *=>
+ D2, I, P
Qt'c kkk v
kDL R EeRkkk D2 *, D3 D4 *. D5 *, .
*__READ * * ANY “#, . PR .* WERE *. RN
SDR_RECORD * . *MORE_RECORD*. KO <% MORE *. NO .7 ANY INB "+, NO MORE *.
* Fl * #. ENTRIES _.#-— *RECORD ENTRIES . *——mmm- «. RECORDS r-‘RECORD ENTRIES . *
* 5YS1.LOGREC * .. - l . % *+. PROCESSED. * .
*, o *, o F *, o Tx, *
ARERR kR ERRK *, * *, ¥ *, ¥ . o
*"YES S YES YES YES
* H1 #
* *
4 EEE
\ v
BebREE] dkEh kbR *AE2* e kkk®k *¥E3 5%k s k¥ LRI R E 2222 L 2] t*E5tntt'tt
*IFCSDRO * * * *IFCINB * *
B el] *READ_A RECORD* *READ_A RECORD* e e) «* xeap 2 *
* SELECT, EDIT *———we-d # r * * Fi * *EDIT AND PRINT *- * RECORD FRON %
* T AND PRINT * * SYS1.LOGREC * * §YS1.LOGREC_ * * SUMMARY OF = * * SYS1.LOGREC *
* SDR RECORDS _* * * * * * INB RECORDS _*
R LRI e T e L L ER2 22222223 AERRKEERE RN LEL LS PR T T L] EEREL S22 L2 L)
v
12 e, F3~ k.,
hhx .4 Is IT s, L+ Is IT #.
NO .+ AN OBR *. NO .* AN INB .
- RECORD > -=+., RECORD i+
ok *, ¥ *, . ¥
L .
*"YES (2313 *"YES
* *
* D3 *
* * P
*hEk
SR ERG kR R AR RRRE AR ARG R RERRRERR GQ #. EERERGHER R Rk Rk Rk
er RO * #IECNCHOQ * ot obSary” *IFCMCHOQ
* * E P T T e ok Y *. NO e k2 B
* D2 #<—m * ¥ START * 2" REQUERRED —aeo_ * START *
* * * * PROCESSING # *. o * PROCESSING *
bk kR * * * *, ¥ *
* - EIZ RIS L2 2] EIL A2 S22 SRS 22 d *, JF EE L P R e Sl L]
* HL # *"YES
* * L i * kK
*hRE xRk ¥ kK
* kk kD> * Ak kD>
* R G —— *
*EAE Ty v
¥ .. N ¥,
H1 . H3 s, ETLE HS
i L L2 R RS L OBNY W, s
o+ SUMMARY “#. NO * # NO .+ MORE *. .+" MCH CHK “#. NO . . i
#. REQUESTED _.%--- * D3 ¥<————k. EDITING _.¥% *. _RECORDS LS *l EDI‘I‘ING e
.. o * - *. NEEDED _.* *.PROCESSED . * . .NEED! .
*, ¥ *kkk *, ok *, ok - ,t
*, % *, ¥ *, . *, %
«"YES +"YES *"yES YES
o,
Ji *, FEII I N LRI ST L] EEEFRTURRREE Rk REIEINLE SR T 2]
.* WERE “*. * * * T SM * * *
.*" ANY OBR *. NO * LINK TO *EDIT AND PRINT * LINK TO *
*. _RE LHeo> * NECESSARY *—-— s Y OF ——% NECESSARY *
*.PROCESSED. * * MGDULE " * NCH RECORDS ¥ i MODULE M
*, % P R T T T LT
* YES EEE
* *
___________ * HS *
*
kR EEL LS
* *
* A5 *
tt.ttKl"‘.l.“‘"ﬁ * *
#XFPCOBRSM * ttto Hkokk
'-C-.—t-‘—.—'—t—
* EDIT SUMMARY t--—->t B3 %
#OF OBR RECORDS ¥ AL
'tl#'ttttt‘t'#'t. -
System Utility Programs: IFCEREPO

57

Chart 16.

L NETTEE LY

* READ A *
* RECORD FROM *
* ACCUMULATION _#*<
* DATA SET *

EREP - Input From Accumulation Data Set

AEkk kR kk
BL® “#.
.+ EsD *. YES
*, OF PREET
*. DATA .
*, ok
*, .
NO PTLIT
*17 *
* Bl*
* %
. & .
c1 *, AARRRC2 R MR R R Rk c3 *.
3 * S: * ¥ IS *,
. Is *, YES * FIRST READ * « *RECORD READ*. YES
*. THIS THE P ittt > SWITCH e e ->#%, CORRECT ID . *—-.
FIRST READ.¥ : ON M *, CORD o
TN FRERRER R AR P
* NO * NO
%
D1 *, *&D IR SRRk
. ¥ *, * WRITE TQO *
YES .*'SKIP OBR' *, OPERATOR- *
———+%*, NOP ACTIVE .* * INCORRECT *
*. ¥ * INPUT *
*, o
. ¥ EEIIS LS T2
*"No
rEER
. %18 %
l ~>% Al *
* *
R
¥ ok,
El *. E2 *,
o *, oF .
.* I8 THIS *. YES «* IS OBR *, NO
#. KECORD OBR . *mmm—m——- >#. SELECTED _.*
. _* *. o*
. o *, o*
L L%
j{ NO *"YES
P
F1 *, R RRF2 kR Rk ko kE
. ¥ *, *IFCOBRO
.*'OBR_ONLY' *, YES =Rk k-
. NOP ACTIVE _.=—=> PROCESS *
'.* ‘.‘ * OBR RECORD :
T ERR Rk
* NO
——————————— > >
61’ e,
¥ *,
YES .*'SKIP INB' *.
———%, NOP ACTIVE ‘.‘
KR o
. ¥
* NO
. g- ¥
H1 *, H2 *, *ok ok RH kb dok ok Rk
-* * *° Is IN SIECHCHOD e
«* IS THIS *. YES . B %, YES = k-k—kokdodogoko
*. RECORD INB o *=w————— >%, SELECTED —_—% START *
*. . *, . * PROCESSING *
*, ¥ *, . *
P *, L% R PR E L L L
* NO 1 NO
L T T (R —— >
* *
ko * Al * ¥
J1 *, * * J3 *,
iTnp onLy? '+ e T ubEE Taono 2 ts
o* . -
, NOP ACTIVE . *, EDITING > Al %
*, ¥ *, NEEDED .* » *
*. o .. . e
« o ¥ LR
* NO * YES
——————————— >
¥ ¥
K1 *, K2 * AR AKIE bRk bk
. . . * *
‘.‘ Is T%S *. YES >..‘ MCl]':isCH.K : Té%NK gg :
. ECO] . « - RRE!
‘-*MCH CHK‘.‘ -§ELECTED MODULE ’:
N Tw. FRRARRR R R
hkh LR L]
l * * * *
->% Al * ->% Al *
* * *
e nEEE

58

Chart 17.

EREP - Accumulation Input -

End of Data

ok,
as’ .
. *,
¥ «% IS OBK *
, —->'. REQUESTED .
EEEEE . . T, Ky
*17 * . o¥ *, ¥
* Bl* * NO * YES
* *
. L l
ARRK
l *18 *
BN P * Alx* o E,
Bl *, B3 *, *x B5 *,
* *, .* * * .
YES .#'SKIP INB' *. .*% IS OBR .* 1S OER
<-—-%, NOP ACTIVE .* ~=>%, SELECTED *. SUMMARY
, o . . *. EDITED
*, o *, . . o
« . ¥ L LK *, %
* NO YES * NO
y
c1’ Cx, c3’ s, R RKC L Bk KRk s .
«* '"INB *. o ¥ . * IFCOBRSM * «* WERE .
¥ ONLY" *. YES .* IS OBR *, YES o ettt b YES .* ANY O] *
. NOP ACTIVE . *. SUMMARY - *EDIT AND PRINT *<———————n *, RECORDS o
*, . *, EDITED .* * UMMARY OF * *.PROCESSED. *
LS o *, ¥ * OBR RECORDS * . ¥
*, L% *, ¥ kR B AOR R RO Rk R Rk kR *, L%
NO * NO * NO
oo
>
. .
TR D2 MRk kR D3 *, D5 *
.‘ 'SK;P *. * IFCOBRSM * +* WERE %, o*
ok OBR ", e N e o e = YES .% ANY OBR * ¥ IS
(———‘- NOP ACTIVE .* *EDIT AND PRINT *<———————— *. RECORDS ¥ *.INB SELECTEI
. . * SUMMARY OF = * *. PROCESSED. * *.
*. ¥ ECORD: * *, ¥ *,
ok PO TP T+ I o .k
* NO * NO * YES
P I—
>
.‘- ¥, ¥
E3 *, E5 *.,
t ¥ . o »
YES .*i0BR ONLY Tk, «% IS INB #*. NO o .Ls INB
<===*%, NOP ACTIVE _.¥* *. SELECTED PR *, UMMARY
*, . *, .k *. EDI'].ED
*, o¥ *, oF *, . *
kK, Lk s o ¥ %
* NO * YES * NO
!‘7 v
F1~ e, FREERT2RR R R AR K F3~ T, Akl koo KAk K Fb Tk,
. *, * IFCINBSM * o *, * FCINBSM * N :* WERE *.
NO .* IS OBR *. Db gt e ekt YES ¥ WERE *. ettt G ddutcind YES % ANY 1Nd *
——-%. SELECTED ¥ *EDIT AND PRINT #<-——————o *. ANY OBR ¥ *EDIT AND PRINT *<-—e—e——= *, KECO ¥
*, * * S Y OF * *. RECORDS .* * Syl Y O] *, PROCESSED *
*, * INB RECOKDS # *. ¥ * IN8 RECORLS * .
BRI T A PR L *, ¥ PR R P R T 2] . ,‘
NO *"NO
Lmrmmmm e i e e
>, >
4 *
Gl . utucznuuuu 63" s, 65" %,
ok *. IFCOBRSM * * *,
¥ ANY *. YES ""“'"“'"""‘ ¥ *. NO NO .* S
OBR RECORDS . #———=w——- >*EDIT AND PRINT * *, MCH CI o ¥ e p——%. MCH CHK .
* ,PROCESSED. * * SUMMARY OF * #* REQUESTED. * .\|I * SELECTLIJ .
. . * OBR RECORDS # *, ¥ Lt .
« o¥% ERL SRS E L STl d *, % *18 %
* NO * YES * Tx"
* ¥
___________ > *
<
oE, ¥,
H1® #. FEREREI R R R 5
¥ *, * ET 'SK WLRE
«* INB OR *, NO * BR' NO * NO . *ARY MCH CHK‘
*. MCH CHK «¥—m—=mm=m * ACTIVE SET * <t G
* . REQUESTED. * a * 'SKIP INB' * "‘.PROCESS):‘D.‘l
*, ¥ bbb * NOP ACTIVE * *, ok
A *18 * e T *, %
* YES * Alx * Y8
%
AERRRTLERREERRE AR HEREETS RS
* * * IFCMCHSM *
* SET * Fmhm B h e W Hm e W
*'SKIP OBR' WoP * L e 'bDIT AND PNINT ‘
* ACTIVE * ¢
oot ‘ MCH CH!\ RCDS
LR TSR LTI 2L L] *18 * ﬁ*‘***i*t**“#i.‘
* Al#
F
¥, ¥
K1 *, LTI VAT R IR L) K3 . .*‘i‘](u“*‘l“‘i‘ KSR FFRRRE
«*CAN INB*. * * o *. * LS(TYPE=T)
«*AND MCH CHK*. NO * SET "INB * . IS *. NO * * INPUT DATA
.BE PROCESSED .¥——=——w—= >k ONLY' NOP H e >%,INB SELECTED .*—=—w—=-- >1"SKIP INB NOP ¥ > T TO REPOS., *
.TOGETHER . * ACTIVE * *, ¥ * A *VOL TO STARI *
*, o * * L o* " * OF DATA SET*
¥, % R A2 SIS LI 2L L] *, % FRE Rk kkoR kR Rk Rk EEEE L
* YES * YES
L sl
L3l sl
*16 *
* AL
* ¥
*

System Utility Programs:

59

Chart 18.

EREP Termination

Al - *EA 2Kk Rk Rk
<F IS * * CLOSE *
«* INPUT AN *, YES *ACCUMULATION *
* . ACCUMULATION ,¥*—=———m * *
*.DATA S ¥ ‘. DATA SET **
R PTTIIII I
NO
*¥BLAEkNEE
* *
* CLOSE *
* SYS1.LOGREC #
* DATA SET “
HEEAAR RN
<
¥,
ci T, HRC2 R AR
Pl - * CLOSE *
¥ WAS *. YES *ACCUMULATION *
* .ACCUMULATION . *w=———— >%* *
‘.gEQUESTEE.* DATA SET *‘
Ck, L kR Rk
*
<
¥,
YR TTTTITY
* *

.* EDIT '#.
.* AND PRINT *. YES

*. AND SUMMARY ,#——————

*, ¥
-RQSTD-

L
* NO

* CLOSE *
>*20TPUT DATA SEE‘

* *
kR bk bRk k

FEEREEL FEAEREERE
* RETURN TO *
: SUPERVISOR :

AEERERERRRREREE

60

Chart 19.

IFCSDROO - Editing

SDRs

EERE
*19 *
* Rk
* ¥
*
IFCSDROQ KDSDR ...
*k Al Fk bk A2 *,
* * .
* * YES .# IS LAST "#.
*SAVE REGISTERS * ——% _RECORD_SWITCH. *<:
* * 0N o A
* * . .
R RRRRRR R *,
Rk * NO
* *
* K2 *
* *
*HEE
ENT
Rk RD] kbkhkkhdkkk EEZ RS : A RS2 T L T
COM. NO. OF ENT * *
* IN DEVC TYPE * * READ *
* TBL COM. KEY * *THE NEXT RECORD*
FOR T * *
* STAT/REC * *
TTIT] % *RkE
CONVRT CHKREC x. L*
R RRC IRk kkhkkk c2 *, C *,
PR.STAT, EDITOR .*I5_KEY XIS e,
* [DR. IF CUA * .+ OF RECORD *. qO . % EXPECTED "*. YES
*OPTN WAS_SELEC. * —->+1, EQUAL 10" l#-———o—oe >%.KEY EQUAL TO «¥~————mmmmm—mmmmmmq
* CONV CUA'S TO * .EXPECTED .* *.IAST KEY .*
* PAC . HEX * *.VALUE. * *. o*
BhkkkERkkkkk Rk k .« o ¥ *, %
*"YES *"NO
<
¥ ®.
D1 *, kD2 ¥R kR kR Rk D3 *, *ERERDYFR R Rk R R RS
¥ - * * ¥ *, * - *
.*WAS DEVICE *# * UPDATE * .*" KEY OF *. YES * SET *
*. TYPE OPTION * EXPECTED KEY #—m—-——mc >*IRECORD EQUAL (#---————- >% LAST RECORD *
.SELECTED . * VALUE * *. TO_LAST .* * SWITCH *
*, - * * *, KEY .* *
*, % EEI RIS SRS R L L] s khkkkkkdork kR Rk
* YES * NO
<
ENTRY1 v
ARk AkE] Rk dkF R Rk FEERREJREREREE R KR
* s * * MO!
* DEVICE TYPE * STATISTICAL *
* TABLE FOR *+ *DATA RECORD_TO *
: DEVICE TVPE % *EDITING AREA ¥
ko kkkkkR Rk Rkk ok ok ok ok ok Aok ROk S0k k.
4 ['4
¥ .. o
F1© s, F3~ s, Fi .
. .. “*{AS_CUA¥, ¥ .,
NO_.* Is *. YES .* ON DEVICE #. YES .* ANY *. NO
—-—%. DEVICE TYPE .#% #. TYPE_OPTION .#<——=——r—u#. DATA IN . ¥=~o-
. INTABLE ¥ *. SELECTED . *. RECORD _.*
X, o *, ¥ *, ¥
*"YES 1 NO *
; Rk
\ * *
. * J2 % S
ERRREGLERRRE R ER G2 *, * * GY *
* * . TE, REE o *,
* SAVE DEVICE * .+" WAS CUA “#. NO <*WAS_DEVICE *. NO J
* TYPE, PRINT *————> «. OPTION I >+, TYPE QPTION .%-—-
: MESSAGE * *.SELECTED .* A *. SELECTED . * A
Ak Rk ARk kR Rk *, ¥ *, ¥
+"YES 1 YES
¥ *,
EET LI PR L RS S L) . a4 *,
* .* DOES " *. ¥ *,
* PRINT * .COA_OF RECORD. NO . *DOES DEVICE*. NO
——>% MESSAGE, NO * *_EQUAL EITHER .*¥ *TYPE OF RECORD. ¥———
* DEVICE TYPE + . o EGUAL_THAT OF
* * * CUA'S.* *. REQ .*
wxErkkkkkhhkkE k¥ *, ¥ ..
*"YES * YES
*¥k¥
* *
* J2 4>
* * <
*kER
o* TDEC WRTSDR
J1 *, EENPAI LI T EITE S AKELL L] ok Tl kR kR kK EETIINCEI IS S LS 2
o *. * aT % * * * ou * * WRITE *
.+° WAS CUA "%. YES * STAT REG * * DPRINT ALL * TATISTICAL * RCD BACK IN *
*. OPTION o * SOURCE, TYPE, #——————==>% COUNTERS IN #mmmmm—mc! >¥DATA RECORD AND¥—m——mmmm! >* g *
.SELECTED . * CUA, DEVICE '* * DECIMAL * $RESTORE_PROPER * + TSYS1.IOGREC ¥
*, Lk kR ROk LR L * * EE 222 T2 22 2 2]
*"No
FINISH N IN
K2 *, HAK3x ek KRN AR Y ko kk
.* HAVE "% * *
ANY STAT “%. NO * PRINT * *
---------------- >%, RECS BEEN, .¥———————->% MESSAGE, WONE %--—ew===>% RETURN SVC _ #———=m—-.
A . TED - * EDLTED * * 4
- - * * ko Ek
l) ETTI T FT T Y Rk kR *15_¥
Rk * YES A * B2%*RETURN TO
* * | * % CONTROL
* K2 * * MODULE
* *
R R

System

Utility Programs: IFCEREPO

61

Chart 20. IFCOBROO Editing OBRs
P]
*20 *
* Al¥
* *
*
IFCOBROO ENTRYO %, ENTRY1
HERLERERTE uuq\aauttntu
EARCH
«*WAS DEVICE * ‘ DEVICE TYPE ‘
‘SAVE REGISTERS * ~D%, ->* TA| R *
“ "“ *. T: : DEVICE TYPE :
R AREES R R R AR AR
NO
%, ¥
Bl *. B3 . *RBYEREF TR
o *, o* *. * *
O .* *. . Is *. PRINT *
—~—%_.INITIAL ENTRY.* *. DEVICE TYPE . MESSAGE, NO *
[., ot #.IN TABLE .* * DEVICE $YPE +
R EY PETLr TS
* YES * YES
ENTRY3 \’ A
FACLHRRE KRR AEERACTHR RN R AR TE W
* * * *. rnk
* PRINT * * DEVICE * r WAS CUA ¥ *
OUTBOARD EDITOR * TYPE CODE * *. OPTION
* HEADING * : PRINT MESSAGE * *.%nLECﬁED L P
FEEERERTERE L. .,
T YES
oo >
>l<
NT OBROUT __.*.
tunnlt--onuttt
* COMPUT!
* NUM.BER OF ‘*
* ENTRIES *
* DEVICE TYPE *
* TAB! *
FEERERERRRRRR KRR
4
ELT T4l E3T T
o* *. o* .
«* WAS DATE #*. * WAS DATE *.
- OPTION ¥ [®) ¥
* . SELECTED .* *.SELECTED .*
*. ok hAE *, ¥
*, % * * . %
YES * F2 * * YES
* *
e
v
CONVRT ¥,
FRERATLERREAR AR AR ARHRERE F3_ x,
*CONVERT EBCDIC * * SUMMARY # o* - t'##
* ATE.! * * AND * . DATE *, NO
* (LOW-HIGH) TO * *ACCUMULATION IF*<: * ,RECORD WITHIN “——‘->‘ Js *
*HEX, SAVE, PRINT * * NEEDED * . MIT: *
» & * *, .c nu
AkERRAERRRE . .
* YES
o
G4 *,
¥ *,
«* WAS CUA *.
—————k OPTION -
t.§m CTED .*
.. et .. .'.
l NO]‘ NO
M
/ -*. o'
t*'t*ﬂlttttattttt FRHIFEEFREEE H3 ., dal *,
o -x L *. ¥ *, %
('CONVI’.RT EBCDIC * -*WAS DEVICE *. YES - *DOES RECORD* *
TO, Feee. *HDGS MODEL SOUR' *. TYPE OPTION . DEVICE TYPE .*——w->% F2 *
‘HEX,SAVE PRINT * *CE TYPE CbA, *,SELECTED .* EQUAL THAT REQ *
* v, * 'DEVI . . o *hkk ok
ARRERRRRREE SRR Tertiviarent .. Tx, ok * *
* NO * NO * Jb ¥
L Lad il l EARK * *
* * ERER
>* J5 * —>% J5 * L
* * * *
- akk LE2 2
3 OBR11 FINISH n
e FRRRATIER AR R FRTYEEERERE *HT5RR kKK
* PRINT THE * * * JIRITE THE * * *
* REMATNING * ZER(RECORD_ EBACK * *
* FIELDS OF THE *——w———w-! >*QUT THE RECORD *—~—w——-] >*IN SAME AREA OF¥——me———— >* RETURN SVC
* OUTBOARD * SYS1.LOGREC * *
* RECORD * * * * *
I er e Ty EAEBERR R AR ARk
RETURN TO
CONTROL FRAk
MODULE *15 %
->*12
*
T

62

Chart 21.

IFCMCHOO
FEB kR Rk
* *

* SAVE *
* . REGISTERS ‘*

* *
R EEAEF

ENTRY .,
c2” .
¥ *,
NO .* INITIAL *
== ENTRY
N o
*
*"YES

ENTRYQ l7
FRRAAD2 KR EREEE
*

RINT
* APPROPRIATE *
* HE R *
:INBOARD OR CPU :
AT R R R Rk

b >
E2° ‘%
W, *,
NO .* DATE .
—— OPTION ¥

*. SEA.ECTED‘ .

*,
*" YES

\
P R R LT T T ST Y

* TO HEX, SAVE, *
3 PRINT HESSAGE *

MR RRREE R R R ARRE

'LIMITS *
“x YES

.
*"YES

HET AR AR
SUMMARY AND
*ACCUMULATION *
* IF NEEDED *

* *
EEERERERRA A

IFCMCHOO - Editing Inboard and CPU

*INDIVIDUAL *

*. RECH
*, RLQUESTED *°

x YLS

BFOUTO o*.

Ccl *.
% T *.

YES .* RECORD *,

———%. COMPLETE oF
*, *
, o
*

*ADY ARk H
* PRIJT *
** MESSAGE **
M;JOT COMPLETE.**

HxEERdk Rk

----------- >
4 Tk,
OTHEK _.* *.
. e
.« ¥
cpU
SERC
FRRRXEURER R chrE
ERIAT CPU
HEADING- - *
tmopm.’iw SOURCE, %
*
LELEEEE SRS L2222 22
“Gu****"*
B

p ¥
«"EER% CHANNEL' *
SONFiG ACTIVE#

kAR ROR Rk

SERI

Records (Part 1 of

HREERFOHRERRF R RR
* PRINT INBUARD *
* RCD HEADING- *
*MODEL, SOUKCE, *
* dypE *

* *
EERERRRERER KRN

ProGE TboDaTE)+
*, TINE, éc
+ TCSW'TI

CCW,
t***t&saai*

System Utility Programs:

2)

IFCEREPO 63

Chart 22.

IFCMCHO0 - Editing

Inboard and CPU Records (Part 2 of 2)

NOTE 1 - INCLUDES NODULES IFCHCHAQL AsD IFCNMCHO3

*

v
AR Rk R R KR
* T

* MESSAGE- *
* NO CHANNEL *
* LOG *
* *
Ak Rk

R

*22 *

* F2 *->

* *

EER

EEERRFOEEEERERER A
*

ZERO OUT

RECORD
AREA
P P T

[T XY
LR

Laleri LS L]
* REWRITE *
* RCD IN SAME *
* SYS1.LOGREC #
* AREA IF *

* NEEDED
LA TR E ELd

>

64

AREERE2RRANAR AR
INDICATE
EDIT OF

THIS RCD
ENDED

[TETT XY

*
*
*
*
*
*

HERRREERERRI R,

B3] Tx.
IS T
. THIS A *. NO
*L CCH
. RECORD .
* *

.,
* YES

4
F AR EF 34ROk RE
* PRINT *
ERPIB
(CCH)
ANALYSIS

AERARERRRRRRE RN

EX T)
"

<

kAR HI R AR Rk

*
g
264
el
O
£

%

* (IFCiCA02) *
ELe LR Tt A T

FEMRE
S TN
NO ¥ THIS Aw *.
—-—+1, MCH RCD I+
Txl o
*, %
*" YES

FEEERRS FERA AR AR
* IFCASX

=3
1o
*

ok ok ok kR kR

NOT
FREEEGORERRRRARRR
* *

Hm e K s K K KR

* EDIT & PRINT *
A R KRR

FHERK S Ak Rk kR Rk
* IFCMCHSM *

B s o B P
* EDIT & PRLINT *
* MACH. KCD *
* S R *
P R T T T

> <
T IHAAR Rk T4 Tk, ARG REKAEEE
* * . ¥® . * *
* sVC % INBOARD .* OPTION . CPU 5VC *
* RETURN i . BEIWG o Fmm e ¥ RETURW *
* * *.PROCESSED. * *
* * *. o * *
PETPEPP TP *. Lk AR
*
P Lo e
*15 % *15 *
* H3* * H5#%
% + %
* *

e 1

Loading the 2821 Generator Storage
(IEHUCSLD)

The IEHUCSLD program reads records that
contain user-specified character images,
requests the operator to change the print
chain or train, loads the images into 2821
generator storage, and prints the images so
that the operator can verify the operation.
Options allow the user to specify folding
or non-folding mode, permit him to use non-
standard ddnames and to bypass the verifi-
cation procedure.

The IEHUCSLD program may be executed as
an independent job step or it may be
entered via the LINK or ATTACH macro
instruction. 1In either case the user may
specify alternate ddnames and bypass veri-
fication procedures. Program flow is shown
in Chart 23.

PROGRAM FLOW

When IEHUCSLD is given control it examines
the parameter list to determine which (if
any) option has been specified. If no
option has been specified it assumes the
VERIFY option.

The next step is to determine whether an
alternate ddanme is specified for either
the input or printer data set. If an
alternate name is specified, IEHUCSLL moves
the specified name to the DCB; otherwise it
moves the standard names.

The program then initializes the printer
DCB for use with the EXCP macro instruc-
tion, and opens the input and printer DCBs.
It checks to see that both DCBs are proper-—
ly oren, then inspects the printer UCE to
insure that the universal character set
feature is available.

If either DCB is not properly open, or
if the universal character set feature is
not available on the requested printer, the
ddname specification (or other information
in the DD statement) is incorrect. 1In
either case, IEHUCSLD closes both DCBs and
returns with a return code of 8.

If koth DCBs are prorerly open and the
universal character set feature is avail-
able, the IEHUCSLD program copies the
printer unit name from the UCB into the
operator message and print line texts, and
prepares to read the four control records.

IEHUCSLD uses the Read routine four
times to bring the control records into
main storage. When the first record has
been read, there is some initial processing
done before the normal processing takes
place.

The initial processing includes a check
for an asterisk in position 1 and a com-
parison of the two type ID fields. The
type ID is then copied into the operator
message and print line texts, the mode
option field is inspected, and the printer
CCW is initialized (to folding or non-
folding mode) accordingly.

The normal processing is done for all
four records. The images field is moved to
an internal buffer, the record is sequence
checked and its format is veritied. Then,
unless four records have been read, a
branch is executed to the expansion of the
READ macro instruction.

If it finds an error in a contrcl rec-
ord, IEHUCSLD uses the WTO macro instruc-
tion to issue message IEH503I, the control
card error message. It closes the DCBs,
loads return code 8, and returns.

When IEHUCSLD has processed all four
records, it closes the input DCB and checks
for the LOADONLY option. If the LCADONLY
option is specified, the program branches
to the EXCP macro expansion; otherwise it
requests the operator to change the print
chain or train. It issues message IEH500A
and waits for the operator to reply with
the type ID or 'SKIP'.

If the operator replies 'SKiP', the
IEHUCSLD program issues the no action mes-
sage, IEH506I, closes the printer DCB and
returns with code 0.

If the reply specifies the type ID
requested, IEHUCSLD uses the EXCP macro
instruction to load the character images
into 2821 generator storage, and waits for
completion of the channel program.

When completion of the channel program
is posted in the ECB, the IEHUCSLD program
inspects the completion code bits to deter-
nine whether a permanent error has occured.
If so, and the error is a parity error,
IEHUCSLD closes and reopens the printer DCB
and retries the channel program.

If the error is a permanent error, but
not a parity error, the program clcoses the
printer DCB and returns with code 12.

If the error is not a permanent error,
but completion is not normal, or if the
retry fails, IEHUCSLD closes the printer
DCB and returns with code 12.

If the channel program is successfully
completed, the IEHUCSLD program closes the
printer DCB and checks for the LOADONLY or
NOVERIFY option. If either option is spe-
cified, the program writes message IEH502I
to the operator to tell him that the images

System Utility Programs: IkHUCSLD 65

have been loaded, issues return code 0 and
returns.

If neither the LOADCNLY or NOVERIFY
option is specified, IEHUCSLD opens the
printer DCB for BsSAM. It skips the printer
to the next page and prints a header line
that specifies the unit, type ID, and mode
(folding or non-folding). Then IEHUCSLD
spaces two lines and prints two 120
character lines to display the images it
has loaded into the 2821 generator storage.

If the header line requires images that
were not supplied by the user, and the
reset block data check mode is specified in
the printer DD statement, the IEHUCSLD pro-
gram does not space two lines after the
header. If the user does not specify reset
block data check mode in his printer DD

66

statement, the space will occur; in either
case the images that were not supplied will
print as blanks.

When the three lines have been printed,
IEHUCSLD skips the printer to the next page
and tells the operator to check the images,
using message IEHS501A.

The operator must reply, "OK' or 'NG'.
If the reply is 'NG' the images are printed
once more, and the operator is again
requested to check the images. A& second
'NG' reply causes the program to close the
printer DCB and return with code 4.

If the reply is 'OK', IEHUCSLD closes
the printer DCB, loads return code 0, and
returns.

Chart 23.

Pl S L L L
* ENTRY FROM *
: SCHEDULER *

OR CALLER *
ARk Rk

*HEREBLF
* ANALYZE PARAM *
*AND SET OPTION *
: SWITCHES :
P T

TTET I 2 TY
*

SETUP1
HADLFRR AR
*

*

* OPEN INPUT *
* AND PRINTER *
DCB'S *

*
EEI IS 21T 2

v
el Tx.
.* %,
.+ BOTH OPEN *.
%1 TAND_UCS
*.AVAILABLE. *
*, K
LI 2
*"YES

[————

READATA1
REFL Rk ARk
* *
* *
* READ INPUT *
* *

* *
kR Rk

MOVEDATA 1
FRFRRGLER AR AR R RE

*
* V.
* IMAGES TO
: OUTPUT AREA
kRO R Rk

LY TRy

*
% *.
NO .* WAS *.
———%_ THIS FOURTH .*
. EAD .

*.

., ¥
* YES

CLGSE2
HAK] Rk Rk
* *
* *
* sLOS E INPUT DC?*

* *
AR ER KRRk

EELT)

-
w
[Y)

-

Ll]

o Fm—

ok s
* - * *
* B2 # * B3 ¥
* * * *
ARk Hrkk
¥
B2 Tx, EAB 3 Hk ARk
.k * * *
¥ *, YES * *
*. LOADONLY o ¥ * CLOSE_PRINTER *
*, *OPTI on . * * DCB *
ek e T
* NO Rk
* *
* E2 %
* *
*EEE
MCHERR
*RC2 bk k kb bk
* * FRHRC TR AR A

* WTOR * * RETURN *
*IEHS00A CHANGE * * WITH CODE 12 *
* CHAIN * *

ok kAR R Rk
B
v
D2
. *.
4 REPLY *, SKIP
*,SPECIFIED ID . ¥—m———eee e
.OR °SKIP'.
*. ¥
*, . *
* ID
kR
* *
* E2 *->
* *
Py
MSSG1 SKIPMSG
HRE2RRRRRRK FAEIRFRE AR
* * * *
* EXCP_TO * * W%‘O
*LOAD GENERATOR * * IiH506I NO
* STORAGE * ‘}‘XCTION TAKEN“
e ERERARER R
Rk
*
J2 *
*
LTS
ok,
F2 *.
K *, FREEFIFRRERRRAR
o¥ *, YES * ENTRY FROM *
. PERMANENT ,———— * SYNAD ROUTINE *
*. ERROR % * *
- - ERS ST R 22 L]
*, ¥
*"NO
———————>
¥, ERRORS
G2 *. ERGIERARERR
.* *, * *
.% NORMAL * * *
. COMPLETION * CLOSE PRINTER *
*, . * DCB *
*, *
* ook ko Rk
Rk * ok
* * * *
* B3 % * BS *
* * * *
Rk RN

SKIPPR

END

xRk kN kk J3 *,
* o *,
* CLOSE INPUT * o *. NO
* AND PRINTER * *.PARITY ERROR . *mmm
* cDB'sS * *. R
* *, o
P *, .*
* YES
*RK 3Rk
kR kRKD FRE Rk * *
* RETURN WITH * * *
* CODE B * * OPEN PRINTER *
* * * DCB *
P e
B T
ey
* *
* E2 %
* *
ook

IEHUCSLD - Loading the 2821 Generator Storage

LEMTERTE SIS
* *
* WIO *
*IEH502I IMAGES *
* LOADED *

koK kR Rk

R R
* *
* *
* CLOSE PRINTER *
* pes *

HERERRRRRRE

woh kKT
* RETURN *
: WITH CODE 0 :
Rk kR kR

Aok koK

System

CLOSEL
HEFERDOFRF R R F AR
* *
*
CLOSE_PRINitR *
DCB *

*
EE e P T

TS

¥,
c5 *.
¥ * .
% LOADONLY *.
. OR NOVERIFY .¥
*, OPTION ¥

OPEN2
**

DSk Rk
*

* OPEN *
* PRINTER DCB _#*
* ~(BSAM) *
RN EEREREEE
*Ekk
* *
* E5 *->
*
*hEk
PRINT
E S RSS2 E L
* *
$WRITE HeADER *
+ LINE aND_iWo *
¥ IMAGE LINES *
HEEEREERRRS

RAFSEEXEFEE

* *
* WIOR *
* IEHS01A CHECK *
*IMAGES *

Fhk Rk kR kR

65" Tw,
Ml

OK_ .* Is Tx.
* ,REPLY *WNG' OR.*
Yokt
*

Tx
ERROR3 ¥
15 *, .

*
NG

kkk
* *
* E5 *
* *
]

ERRORY
EENEEELE LSS
* *
* *
* CLOSE PRINTER *
* DCB *

EELE R ST

FEERKS KR ARARRR
RETURN *
WITH

*

*
*

CODE 4 *
L e e L

Utility Programs: IEHUCSLD

67

Whriting Tape Labels (IEHINITT)

The IEHINITT program provides the user with
a convenient means of writing volume label
sets on tapes to conform to Operating
System/360 specifications. The program
reads control cards, builds a parameter
list, calls an SVC routine to write a tape
volume label set, and informs the user of
the result of the lakeling attempt.

Program Flow

The general flow of the program and its
relationship to the operating system are
shown in Figure 27. Charts 24 and 25 show
more detailed flow. Chart 26 shows the
logic of SvC 39, the tape-labeling SVC
routine.

Program Structure

The program consists of four modules:
IEHINITT, the control module; IGC0003I, the
SVC 39 rcoutine; IEHSCAN, the control state-
ment scan routine; and IEHPRNT, the message
writer.

The Control Module (IEHINITT): The control
module kuilds two DCBs (SYSIN and SYSOQUT)
for the tape-labeling operation and moves

IEHINITT
Control
Statement

DD Statements

Main Storage

d

Writing Tape Labels

TIOT
IEHINITT

?

uCB

O,

Figure 27.

68

the DCBs to the work area. It then links
to the message writer (IEHPRNT) to write a
header, and links to the control statement
scan (IEHSCAN) to read a control statement
into main storage. IEHPRNT then prints the
control statement. Control cycles between
IEHINITT and IEHSCAN until the parameters
are analyzed or an error is detected. If
there are no erxors, IEHINITT builds an
image of the tape label in main storage,
and then builds a parameter list for the
tape-labeling SVC by referring to the JFCB,
TIOT, and UCBs for DD statement informa-
tion. The symbolic link needed by the pro-
gram to gain access to this information is
the ddnare, supplied in both the DD state-
ment and the utility control statement.
IEHINITIT then issues the SVC 39, invoking
the tape-labeling routine. When control is
returned, IEHINIIT analyzes the return code
and links to IEHPRNT to print the label or
an error message. The process of building
the parameter list, issuing the SVC, and
interpreting the return code is repeated
for each tape to be lakeled. When the last
tape has been labeled, IEHINITT returns
control to the supervisor.

The SVC 39 Routine (IGC0003I): The SVC

routine writes the specified volume label,
a dummy header label (HDR1 followed by 76
EBCDIC zeros), and a tapemark on a desig-

O

Before IEHINITT has gained control, information
from the data definition (DD) statements has been
entered in the task 1/O table (TIOT) and job

file control blocks (JFCB)

®

IEHINITT gains control and reads a control
statement. The dd name from the control
statement indicates which collection of tape
drives to use from the TIOT

®

A drive is selected and its relative position in

the TIOT is described in the parameter list for

the tape-labelling SVC. The parameter list

is built by extracting:

a) the device type (dual-density, 7-track, or
9-track) from the UCB

b) the density for dual-density or 7-track from
the JFCB

©

The SVC is issued and the tape label is written

®

The return from the SVC is analyzed and the result is
logged. If the request being processed shows more
tapes to be labeled, go to If another control
statement is to be read, goto (D).

nated drive. By issuing a GETMAIN, the
routine oktains 204 + X bytes, where X is
the amount by which the volume label
exceeds the standard length of 80 bytes.
This area is used for building a DCB, DEB,
ECB, IOB, and a channel program, and also
holds messages and labels. Upon entry to
the SVC routine, register one contains the
address of a 4-word parameter list:

Word Bytes Contents

0 0-1 Xx*coo0"

2 X'04' to rewind tape
X"06" to unload tape

3 a binary number from 0 to n-1,
where n is the number of UCB
addresses in the DD entry por-
tion of the TIOT indicating
which device to use for volume
mounting

a pointer to an 8-byte area
containing the ddname corres-
ponding to the ddname in the
DD entry portion of the TIOT;
the ddname is left-justified
and padded with blanks

a pointer to one volume label
image to be written on the
tape

the binary length of a volume
label

the binary number one

command code for the control
CCW to set mode

wWN

The SVC routine extracts the UCB address
from the DD entry portion of the TIOT.
This UCB is checked to verify that the tape
is not SYSIN or SYSOUT, that the tape is
online and not scheduled to go offline,
that the tape is not reserved, and that the
data management count is zero. If a tape
is already mounted on the device and its
volume serial number is in the UCB, it is
unloaded. After the volume label has been
written and verified, the dummy header
label and tape mark are writtem. If the
tape is not to be unloaded, its volume
serial number is left in the UCB. If a
non-standard label was written, the pseudo
volurme serial number LGLO00 is left in the
UCB. If an I/0 error or a file-protected
tape is encountered in the labeling pro-
cess, the operator is given one attempt to
correct the situation. (He may strip off a
few feet of tape or add the file protect
ring.) When returning control to IEHINITT,
the SVC routine issues a FREEMAIN to free
the work area, and loads register 15 with
one of the following return codes:

Meaning

00 labeling successful

o4 operator has cancelled labeling
08 unacceptable parameter list

ocC permanent I/0 error

The Control Statement Scan Routine (IEHS-
CAN): This routine reads, using QSAM, con-
trol statements, checks syntax, and returns
to IEHINITT an indication of the item
scanned. IEHINITT supplies a work area (on
a fullword boundary) containing the DCB for
the control statement data set, which is
opened by IEHINITT before calling IEHSCAN.
IEHSCAN inserts the address of the end-of-
file routine KEOF in the DCB and the EOF
routine for IEHINITT is restored when con-
trol is returned to IEBINITT. After scan-
ning a field from the control statement,
IEHSCAN returns to IEHINITT the following
information:

¢ Register 1 points to the starting
address of the field.

e Register 2 contains the length of the
field.

e A setting of a byte, SWITCHRD, in the
work area, as follows:

Bit=1 Meaning
Syntax error
Bypass switch
EOF
Initial entry
Command word
Keyword
Parameter
Not used

NousEwhR O

Unlike other control statement fields,
the owner name field (when enclosed in apo-
strophes) is moved from the control state-
ment image to the label image by the con-
trol statement scan routine. The owner
name is considered to begin at the first
byte following the first apostrophe; two
consecutive apostrophes are considered a
single embedded apostrophe and counted as
one byte of a maximum of ten for the field.
The scan is terminated when the count is
exceeded or when a single (i.e., not fol-
lowed immediately by another) apostrophe is
encountered.

The Message Writer (IEHPRNT): This routine
writes, using QSAM, page numbers, headings,
and messages. Upon entry to the message
writer, register 3 contains the address of
the message minus one. If a permanent I/0
error is detected in writing the message,
the one-byte switch SWITCH2 is set to X'01°
before control is returned and a code of 4
is returned to IEHINITT in register 15.

System Utility Programs: IEHINITT 69

Chart 24.

RRAALERR AR
*
* ENTRY *
* *
SRAARERR SRR

IFHINIT

INVOC

FEERRBLERAREEERAE
* *

Vi
* REGISTERS *
* ESTABLISH *
:ADDRESSABILITY :

LR e T Pl

v
HEREFCLEFSAREERRS
* *
* GETMAIN AND *
MOVE DCB'S INTO
* WORK AREA *

FEITTE TR SRS E v

EEK
A e e
AND %

ouT

PARAME'
* MAIN STORAGE
#ttt‘t"tttttttit

20
©
(=24
z

L2 X R

AFSRHELAFFRARUERE
* *
* *
:OPEN DATA SETS :

* *
LA LSS L2l 2]

HRERRFL R FRRFREE RS
*

* IEHPRINT

e o Hm K K
* PRINT *
* HEADER M
HEEERREEBRREEEERE
ek

*24 *

*GL *->

* ¥

EREE

EDO
tta*tGl*ntttttto*

ScaN 1

* IN IALIZE *
* WORK AREA ~ #
* TO DEFAULT *
: OPTIONS :
FRRRERERB R EERN KK

* kR[] *d

T *
* UP PARAMETERS *
: - TO PASS :-——)

*HERES RS

* ROUTINE *
EEE AL PR 2L 2

70

IEHINITT (Part 1 of

xncttnza.uwsttu\
Ci

2)

IEHSCAN *
roa s IEECRY, et
——>% SCAN_CARD *<
» E AND *

E.

*RETURN A FIELD *
L T

ERR ox.
B2 * Rk BI R eR R kb dk
o * * IEHPRINT *
oK is *, YES N R T
*#., ERROR BIT l#—————-—>% PRINT QUT ¥---
*. ON o ERROR
.. o* MESSAGE
*, % *’\i*""#"“‘t‘t
* NO Hhkk
* *
* [*
* *
hkkh
DNAM 2%
HEREIC IRk ETRRE
_i - * *
o Is *. YES * MOVE *
%. DDNAME BIT _.%-————e-->%DDNAME_TO WORK ¥——my<—m=m—mm—w——m
*. ON o+ * AREA *
*, ok * *
*, X FERERRRERER R RN
* NO Ak
* *
* H2 *
* *
R E
COMDWRD __.%. o*
D2 ", D3
¥ *, ¥
. 1s *. YES Is . YES
COMMAND WORD . #%=—e———mee >%_COMMAND WORD .o emmmm—m e o]
#. BIT ON _.* . INI
. .* .. .
*, ¥ - %
N *"NO
L2 1
l * *
—>% H3 #*
J * *
*hhk
o ERL
E2 *, *EFRREIRRR Rk kb RkE
o ., *TURN ON BIT IN *
. YES * _"BYTE FOR *
*l KEYWORD BIT N 4 % KgLHORD FOUND ¥
e o
*, ¥ PR P T P L
NO
NOTE - KEYWORDS ARE CHECKED
AS_FOLL SERIAL
DIsp. “GUNER, - NUMBCARD,
v . NUMBTAPE, SECURITY.
F2 *, F3 *,
¥ *, ok *, EEE]
R 1S *. NO .+ IS _BYPASS #. YES _*
PARAMETER BIT.*-—-----= >+. "BIT ON *ZZ2o>% J3
*, ¥ « . wkkk
* ¥ *, ¥
«"YES ‘[NO
v Lx.
tstttgzu--:ttctt## G3 *,
* ‘HECK FOR R -
% KEYWORD AND : .#" IS EOF ~*. YES
* FILL IN * *. BIT ON .
* AREA TO * . .x
* WITH KEYWORD * * o hEk
LR R R PR S L *, ¥ * *
NO * HU4 *
RN Ed L 2] L *
* * * * rERK
* H2 *-> * H3 *->
* * * -
R LI 22
THRU H2 * AR IR R AR YT (R TITTIETY
1S . * TEHPRNT * 5 TO *
.*" BYPASS #. ¥YES Lt R e R NEXT CARD *
* BIT i Jmiate % PRINT OUT #*m——mem —>* WITHOUT *
.. ON .x * ERR * *CONTINUATION Ii*
. . * MESSAGE * * . *
*, ¥ ER AR ERERERFEEEREE ERERE Rk kR Rk
+"No A
l NO
% o S
J2 J3 - J4 . ke kTS R E R RR Nk RFR
I el ¥ WAS *. o *. * CLOS T *
NO .* THIS . .*3SERIAL NO. *. o * * SETS, PICK UP *
<==+. THE END OF (% ————>%_ SPECIFIED _.* *. END OF FILE >+ RETURN CODE, *
. CARD . Iy . o *, o * FREEI AND *
*.IMAGE. * *. ¥ * R * RESTORE RGST, *
*, ¥ *, *, ¥ R R E T L L
*“YES e YES *"No
* J3 * ‘L
* *
Rkk¥ kK
* *
¥, \" * Gl #*
K2 *, LR R S RS 22 2 * *
¥ *, * * *kkk EE IS CT 2 222 2
NO_.* 1s *. ¥YES * PICK UP * *
——=%. COLUMN 72 (#-—2 * POINTER TO * * RETURN *
. BLANK _. * UCB'S *
*, ¥ * RS 2R E RS RS 1
*, ¥ ER IR LS L LY
*

SET UP FOR
SVC ROUTIKE

Chart 25.

FkokRHL AR RR AR

* MESSAGE *
BRI ST Tt rt 2L T 1

FINISH
WAk WA Kk ko
DETERMINE_ NO. *
OF UCB'S AND *
SEE_IF DD
AS
SPECIFIED *
FRAERRRFERER TR

*x

* *
* *
*
*

IEHINITT (Part 2 of 2)

BN
A3" T,
* DUAL
-*" DENSETY "#. NO
e e e e o ¥, OR o Fomm e,
*. TRK ¥
. o
x, Lk
* YES

HAB A AR AR K

* READ JFCB *
* AND EXTRACT *
DENSITY YOR"'
WITH CONSTANT#

ODE *
kR Rk RRRE

faai I VELELI LI TLY
* MOVE IN

* CONSTANT FOR
>* 9 TR,

: DENSITY &
LER LI IR LR 1Y

23T

<

FILL 4
ARERRC2ER AR RR AR

T UP *

* PARAMETER *

——————— >* LIST *
* FOR sSVC :

EEE I L T PR T T

v
HAD2 R Rk kR
* *

R AR CY kR kR ok Rk
*
INCREMENT *

SERIAL NUMBER ¥
BY ONE *

EX Y

R R Rk R
A

YES

AGAIN .,
DY *.

Lk IS5 k.
* 3VC 39 * % SERIAL *. NO
WRITE TAPE _* *. NUMBER A
*‘ LABEL * *.‘NUMERIC*.*
P e .k
A
4 o
. 00D S EOF o*. SeT UP,
B2 *. FERRAE RN R R KRRk B4, E5 *. FOR NEXT
S+ WAS H, * IEHPRN * - *. o* *.REQUEST
o* SVC . YES i et et bk L «* HAVE ALL *. YES o* *.°NO
*. SUCCESSFUL _.#%——=—m———v >% PRINT OUT *——-———u->#%. TAPES BEEN . #=-——w—m-] >*, END OF FILE .%-——
*. o * LABEL * *. LABELED .* *. . x
*, ok * * ') *, o
*, ok FkRRE RN RN R *, .k *, x
* NO * * YuS 3111
A *24 *
* Gl¥
* *
*
PERIO WE } RETURY
F2 *, ARKERFYIREERRE kR FEREEFEREERRRREFE
¥ *, * * *¥CLOSE DATA SETS*
ox NO ¥ SKIP TO NEXT * *FREEMAIN, PICK *
* . PERMANENT I/Q.#%—=-———m—mmome e * LABEL TO BE * * REfURN *
. ERRO * WRITTEN * * CODE, RESTORE *
. . * * * REGISTERS *
*, % ERE LSS S 2 L L] R e e LT
YES A
DDTIOT \ -,
FEERRC2RRF R R RREK G3 *, HRRRRGYFREE TR RRR
* * o ¥ IEHPRAT * FRHEGH EE kKK
* ZERO * YES . *., B . Lo i S) *
* oUT UCB FLmmmmm e *#. INVALID .%—~—————->% PRINT QUT * * KETURN *
* POINTER * *., DEVICE .* * APPROPRIATE * * *
* * ¥ * ERROR MESSAGE * HEEEFREEE R AR
LA LIS L L L e *, ¥ Rk kRkkok Rk R ROk ¥
*
CONT o,

NO . ALL UCB *.
________ #. PTRS BEEN .*
. ZEROED _.*
. OUT .
“x"vES

Hkd kTR ok kb
* IEHPRNT *
e o e o et T
* PRINT OUT *
* ERROR *

* MESSAGE *
LA R L P S

System Utility Programs:

IEHINITT

71

Chart 26.

FRARRAL RN
* ENTRY *
* *

kR kTR R AR ERE

kR

* *

* Bl *->

* *

ok

N

BL %,
* *,

YES .* *.
f—==%. SECOND TIME .*
, LOGIC .

Tx, L%
* NO

HRERRCL R ERA AR N
*

*
*CALCULATE WORK
* AREA SIZE

X ETEs

*
ERAS 2SS T R TE St g

HRDLHAAERAE
* a*

* GETMAIN *
‘.FOR WORK AREA*‘

* *
AEFERREERER
XXXXAAKAXXXXXXXXXKXXXX

DETERMINE

X1. DDNAME "IN TIOT

2. UCB ADDR IS IN TIOT
ucB I TAPE

H. I OT FOR
SYSIN OR SYSOUT

5. DRIVE IS ON-LINE

6. DRIVE I.
CHEDULED R
OFF-LINE

7. UCB IS NOT RE-
SERVED

XXXXXXXXXXXXXAXXXXXXXXX

Rk
e

SET ERROR
CODE =

R
R X TR

bSO
T
* *
* J1 %>
* *
Ak
PR EE T RS
* *

* *
—-->* FREEMAIN <
[. *

* *
FEEERRAERRR

kKL ARk kR
* RETURN *
* *
FEEF R AR R

SvC

39 Tape Label Routine

kkk *hkE
* * * *
* A3 * * A4 *
* * * *
wkEE R AR
X,
HEEERAD KRN RN EREFRATRERERE RN Al *, kR AS kK kok koo
* * * * * * * *
* BUILD * * BUILD * .+ was * *
————>*CONTROL BLOCKS * *CHANNEL PROGRAM* +. TAPE MARK . -->SET ERROR CODE *
[* IN WORK AREA #* * * *. WRITTEN % * =0 *
* * * *, o * *
Rkh kR R * Wk ok kK . o ERFAE R R R R kR
.
*EXK
* *
—>* J1 %
* *
. S
B3 .
ox L+ WAS e,
. YES .* ZERQ .+ DUMMY s+
* =24 LENGTH mms * +. HEADER .
l . *. WRITTEN .*
*, ,‘ *, ¥
* ok
ey * NO *" NO
* *
* H1 *
* *
*ERE
X 4 v
*¥C2% ““ﬁ c3 * Ccu4 * *EERECHER R R E R KKK
¥ *, T U *
« Exce o s *. VES *CHANNEL PROGRAM¥
+ REWIND AND_ * *. LABELS i * TO WRITE TAPE *
* UNLOAD TaPE * ot #HARKAND REWINDY
’*“'**#’l‘* * LIRS TS L2222 2
NO Rk
* *
% H1 *
* D3 *—> * *
EE Ll
J EERE
p2° ‘. HADIHREREE DYy . ps k.
o * * o* s *, s *
.+ PERM. . YE *EXCP_TO LABEL* NO_.* LAST USER +.
#] I/6 ERROR . *—- * AND READ % ——+.VOLUME LABEL .* — % {UNLOAD OPTION.*
. . * BACK LABEL _* BEEN wanvmm . .
*, L * * . *, o
P I LI eL . . L%
NO FTITY * yEs Ty * YES
* * * *
----------- > * K3 = * D3 *
* * * *
L EE S 2 LT L2
E2 *, R RRE YRR RFRE IR FkdRkES Rk kkFkokkkk
% - * $NODIFY CHANNEL ¥
NO .+ STANDARD *. * CONSTRUCT * % PROGRAM 10 . *
*. LABELS = * * DUMMY HEADER * *NRITE RAPE MARK*
. . * LABEL * AND
. .x * * UNLOAD TAPE
* * HEERERFRERE R RREF ‘**“*“"'tt‘!"
*"YES
<
R EEF2R Rk Rk Rk k F3 *,
* * ¥ - EEE¥
* INSERT VOLUME * TAPE *. e
* SERIAL NUMBER * : FILE #ooo >k K3
* CUINTO UCB | * *. PROTECTED. * ok
* *, - ¥ HEE
EEI IS R 22 RS 2 20 *, ¥
*"YES
---------- >
S >
REG2REFRN RS FRGIRFREEXF
* * * *
* WTOR * % WIQ 'TAPE *
* YMOUNT VOL _* * IS FIL *
* 70 * PROTECTED' _*
* IABELLED' * * * e
EET TR T T L ER T2 IS 22T * *
* HU4 *
* *
*RER
N
H2 . AEERE IR R E R BRYEERRERE
It AT * * * WTO %
.+’ REPLY %. YES - SET * ' LAB] *
*1 'MOUNTING' _.%—-. * SECOND-TIME #<————nmee * CANNOT BE _*
- . * LOGIC SWITCH % *, VERIFIED' +
o« ¥ PR LS TR L2 L L L L L] FhkEEBEEEEE
NO e
* *
* A3 *
* *
E2 21 *kkk
v * *
. * BL *
J2 *, * *
* -, EEE LS
o .
——=% REPLY 'SKIP
voL' .
*, ¥ EEEF
*, L * * *
+ YES * K3 *
* *
EE i1
\
EEERRK 2R RERE SRS E A ERK IR
* * * *
* SET * * SET *
----- *ERROR CODE = 04% +ERROR CODE = 123

* *
EER T PR T P e T

* *
AREREE R AR RRAER

72

Dumping, Restoring, and Initializin
Direct Access Volumes (IEHDASD%)

The IEHDASDR program dumps, restores, and
initializes direct access volumes according
to parameters specified in control state-

ments. The functions that may be specified
are:
e Dump. When the DUMP operation is spe-

cified, the IEHDASDR program creates a
copy (or copies) of the direct access
volume on one or more tape or direct
access volumes, or as a system output
data set.

e Restore. When the RESTORE operation is
specified, the program copies "dumped"”
data from a tape volume to one or more
direct access volumes, thus making one
or more copies of the dumped volume.

e Initialize. There are four initializ-
ing functions that may be speciﬁéed:
1. Specifying ANALYZE causes the pro-

gram to perform a complete initia-
lization of one or more direct
access volumes. The program per-
forms a surface analysis by
inspecting each volume for defec-
tive tracks, it obtains alternate
tracks for all defective tracks, it
formats acceptable tracks, and it
constructs a volume label, volume
table of contents (VTOC), and
(optionally) an IPL program for
each volume.

2. Specifying FORMAT causes the pro-
gram to perform all of the initia-
lizing functions (except surface
analysis) for one or more volumes.

3. Specifying LABEL causes the program
to write a new volume serial (and
optionally an owner name) on a
direct access volume.

4. Specifying GETALT causes the pro-
gram to assign an alternate for the
specified disk or data cell track.

The user specifies the functions to be
performed by writing control statements and
placing them in the input stream data set.
He must also supply DD statements defining
the data sets, devices, and volumes
required for the program, and may also spe-
cify program parameters either in the EXEC
statement PARM field or in a parameter area
(see the section "Auxiliary Parameters" in
this puklication).

The IEHDASDR program can perform certain
functions concurrently on several volumes
of the same type. The user can specify
more than one volume in a DUMP, RESTORE,
ANALYZE, or FORMAT statement; the program
processes the volumes concurrently in the
sense that I/0 operations are overlapped.
This type of concurrent processing is known
as "making copies"; in the case of a dump
or restore there can be only one input
volume, and the output volumes are copies
of one another. 1In the case of an analysis
or format, all volumes specified in the
control statement are processed the same
way, and if a new serial is specified all
are given the same volume serial. In eith-
er case, the program uses only one set of
buffers and internal tables.

The IEHDASDR program can also perform a
Dump, Restore, Analyze or Format function
concurrently on several volumes which may
be of different types. The user specifies
the same operation (e.g. DUMP,) on several
successive control statements; if enough
main storage is availakble for buffers and
internal tables (a set is required for each
statement), and if enough I/0 devices are
available, the volumes will be processed
concurrently. Concurrent in this sense
(and as it is used in the remainder of this
section) means that a processing routine
will be reentered to process a different
set of volumes when it waits for the com-
pletion of certain I/0 operations, as well
as when its processing of one set of
volumes is completed.

The IEHDASDR program may be executed as
a job step, or it may Lbe executed as a part
of a program performing a job step. The
user invokes the program by using 1EHDASDR
as the program name parameter in an EXEC
statement, or by using it in the operand of
an LINK or ATTACH macro instruction. The
IEHDASDR program, which consists of an
initialization routine, a control routine
and a set of functional routines, is
entered at the Initialization routine
(module IEHDASDR). The Initialization rou-
tine obtains main storage for the common
work area (Figure 28), initializes it
according to any parameters passed from the
caller, then uses the XCTL macro instruc-
tion to pass control to the Control routine
(module IEHDASDS). When it has performed
the specified functions, the Control rou-
tine returns control to the caller.

The Control Routine (IEHDASDS)

The Control routine is entered via an XCTL
or ATTACH macro instruction issued in the
Initialization routine. The Control rou-

System Utility Programs: IEHDASDR 73

tine uses the Scan routine to read control
statements, and based on the specifications
in the statements, the Control routine
passes control to the appropriate function-
al routine. (Control flow among the
modules of the IEHDASDR program is shown in
Chart 27.) When all statements have been
processed, the Control routine issues a
RETURN macro instruction.

Initialization

When the Control routine (Charts 28 and
29) is entered, it uses the OPEN (type J)
macro instruction to open the SYSIN (con-
trol) and SYSOUT (message) data sets. It
uses the LINK macro instruction to pass
control to the Print routine (module IEHD-
PRINT) which places a header record in the
message data set, then uses the LINK macro
instruction to pass control to the Scan
routine (module IEHDSCAN).

0 28] 8

2

Output (Message) Buffer >l

o

g

128 | SWITCHRD ! 80| g

Input (Control Statement) Buffer 5

I— 9] &

Scan Routine Work Area 2

268 Switch1 1 Pointer to Current Function Block 314
272 lqueve Code 1! Pointer to First Function Block 3
pout Queue Codes and Pointers to Second - Fifth Function Blocks et

288 [Queve Code 6]‘ Pointer to Sixth Function Block 3

292 Pointer to Last Available Queue Slot 4 1
296 Page Switch ! |Reserved ! | Number of Function Blocks Enqueued 2
300 Pointer to IPL Program Text ,4
304 Address of SYSOUT DCB 4
308 Address of SYSIN DCB 4
312 8

DDNAME of Input Data Set
320) 8
" DDNAME of Output Data Set

Figure 28. IEHDASDR Common Work Area

Notes: The common work area resides in an
area of main storage obtained via a GETMAIN
macro instruction in the Initialization
routine (module IEHDASDR). Although the
names of most fields are self-explanatory,
the following fields require further
description:

74

e SWITCHRD indicates the result of scan-

ning a field of a control statement.
When set to 1, the bits have the fol-
lowing meanings:

Bit 0 Syntax Error

Bit 1 Bypass Switch

Bit 2 End-of-Data, SYSIN Data Set
Bit 3 Initial Entry

Bit 4 Operation Field

Bit 5 Keyword Field

Bit 6 Parameter Field

Bit 7 Reserved

Switch 1 indicates the status of the

function queue. The bits have the fol--
lowing meanings when set to 1:

Bit 0 Reserved

Bit 1 Parameter processed

Bit 2 Multiple parameter possible
Bit 3 Looking for IPL text

Bit 4 Reserved

Bit 5 TODD=cuu
Bit 6 Concurrent processing
Bit 7 Looking for operation field

e Queue Code indicates the status of the

function block. The bits have the fol-
lowing meanings when set to 1:

Bit 0 Entry active (this slot not
available)

Bit 1 Processing complete

Bit 2 Processing includes copies
Bit 3 Processing interrupted

Bit 4 Processing started

Bit 5 Reserved

Bit 6 Reserved

Bit 7 No main storage available .

Processing and Control

The Control routine uses a scan routine
to read and check the syntax of the control
statements. Each time the Scan routine is

entered it checks one field; on the return,
the Control routine validates the scanned
field.

If either the Control routine or the
Scan routine encounters an error, the Con-
trol routine places a message in the mes-
sage data set, and starts to scan the next
control statement.

If the operation field (which specifies
the function to be performed) is wvalid, the
Control routine obtains main storage and
constructs a function block (Figure 29).
The function block specifies the function
to be performed on a set of volumes, speci-
fies the volumes, and contains Control
information. If the statement specifies
nmultiple volumes, the Control routine con-
structs a copy block (Figure 30) for each
additional volume. The copy blocks are
chained to the function klock; they contain
specifications for the additional volumes
in the set.

DDNAME (FROMDD)

DDNAME (TODD)

16 Function 1 SEQSW 2 Durgpe:?:;puf !
20 Pointer to First Copy Block
24 Return Point Address 4

28 Device Constants Address

8 Pointer to Input Device UCB 4

2

36

Function Block Size Reserved

40 Pointer to Output Device UCB 4

44

~ Function = Dependent Area:

I Size and Format Variable T

Figure 29. IEHDASDR Function Block

Notes: A function block is created, and
enqueued in the function queue, each time
the Control routine processes a control
statement. The function block, which con-
tains the information necessary to perform
the function, is dequeued (and its rain
storage released) when performance of the
function is terminated.

Although the names of most of the fields:
of the function block are self-explanatory,
the following fields require further
explanation:

e Function is a 1-byte field containing a

code that represents the function to be
performed. The codes (in hexadecimal)
are:

DUMP 10
RESTORE 20
GETALT 30
LABEL 40
ANALYZE 50
FCRMAT 60

SEQSW is a 2-byte field that indicates
which keywords were present in the con-
trol statement. If a bit is on, its
meaning is as described below:

Byte 1: Bit 0: FROMDD, TRACK, NEWVOLID
Bit 1: TODD
Bit 2: CPYVOLID, EXTENT
Bit 3: BEGIN, VTOC
Bit 4: END, IPLDD
Bit 5: OWNERID
Bit 6: FLAGTEST
Bit 7: PASSES

Byte 2: Bit 0: PURGE
Bits 1-7: Reserved

e Dump Output is a 1-byte field used dur-

ing the performance of the DUMP func-
tion to indicate the type of output
device. The codes (in hexadecimal)
are:

Tape 00

System Output FO

Direct Access FF

Return Point Address is a u-byte field
used during concurrent processing to
contain the address at which the func-

tional routine is to continue
processing.

Device Constants Address is a U4-byte
field that initially contains the
address of the control section IEHD-
CONS. This control section contains
information about each type of direct
access device, and the field is updated
t0 point to the IEHDCONS entry pertain-
ing to the device type involved in per-
forming the function.

Function Dependent Area is a field
whose format and size depend on the
function to be performed. The format
used in each case is shown with the
description of the way the function is
performed.

System Utility Programs: IEHDASDR 75

0 DDNAME (Copy Device) 8

4

Pointer to Previous Block in Chain4 Address of Next Block in Chain

16 Address of UCB 4 Trailer Label Control 4
2
24 Error Retry Count Error 1 Alternate Track Information
Found
32 6 Home Address Buffer 51 Reserved
40 116
DCB, 108, and ECB for Copy Device T
156 Reserved 4 120
L
~ Channel Program

Figure 30. IEHDASDR Copy Block

When it has constructed the function
block and any necessary copy blocks, the
Control routine enqueues the function block
in the function queue by creating a func-
tion queue entry for the block. The func-
tion queue is a FIFO queue; each entry
points to a function block, and the Control
routine attempts to initiate performance of
functions in the order in which they are
enqueued. When performance of a function
on a set of volumes has terminated, the
Control routine deletes the corresponding
entry from the function queue, and pushes
all lower priority entries toward the top
of the queue.

When it has enqueued the function klock
corresponding to the first control state-

76

ment, the Control routine initiates perfor-
mance of the function. The routine loads
the appropriate functional routine, loads
registers with pointers to the common work
area and the function block, then branches
to the functional routine.

Subsequently, when the Control routine
initiates performance of a function, it
must first determine whether the correct
functional routine is loaded. If so, it
loads the pointers and branches to the
functional routine; if not, the Control
routine deletes the o0ld functional routine
and loads the new one before branching to
it.

Once a functional routine has been
entered, it may return to the Control rou-
tine under the following circumstances:

e The required main storage is not
available.

e An I/0 operation has been started but
not completed, and concurrent opera-
tions can take place.

e Performance of the function has been
terminated, either because processing
is complete or because an unrecoverable
error has been encountered. In the
latter case, the functional routine
passes a return code greater than zero.
The Control routine stores the highest
return code and passes it to the user
at the end of the run.

The logic and processing performed in
the Control routine when a functional rou-
tine returns control to it is shown in
Figure 31.

Functional Routine Returns to Control Routine

1

|

. . T LI L)] T T 7T T T T T T 71T T =.I
Main Storage Not Available lejyjyeiyjyy + vt bbbt

B S TSN W UGN TN ST TR NN IO I B W PR W W

i LT T T T rTTTTT T + + + + "

| Processing Interrupted [I I I 4 4 4 e T T T I I |
L I OO U N | 1 /] | I I IS N TN IS S IS T T |
1] . T Tt TTTTT T T 11
| Processing Complete PP bbb eyl y|yjyjyj
L ! | R T IO SN WU N | 1 i } i +_+_+_+_{

|] . 1 T T TTTTTTT T

| Current Entry is at Top of Queue INJY Y Y Yy | | IYJY[Y[|Y|N|N|N|N]|

i (| Il L (1 | I — | [i [1445 _ 41
L] N - =+ttt
| Current Entry is Last in Queue | TYJPYININ] | | JYJYIN|N|Y|Y|N|N]
L U TN U SN N SN IO | bbbt bt —-3_1
L 3 . _ . . | L I D L . DL L L ¥ T T1T7T1T71
| Additional Queue Space is Available [T T T T ' I e I I I |
b i o S e B S S B B S S o
| Next Entry Can be Processed (O O I R 4 1 T T T T I I
b S oo v o o o B B o o o
| End-of-Data on SYSIN | 1YIN|YINJY|Y] (YIN|Y[N|Y|N|Y[N]
L I I T | } 1 1 [[] |4 | I W I |
I L U D D R R R R R IO DU BN BN B SR RN R |
| DO ACTICN NUMBER 1417{918191212]217|918]°218}9]|8]91
s : IS NS WY SN AR SN S SO S S T Y S WY ST S |
| 1. Initiate the function specified in the function block corresponding to the next |
| queue entry. |
| [
| 2. Initiate the function specified in the function block corresponding to the entry |
| at the top of the queue. |
| |
| 3. Release the main storage obtained in the Control routine, close the SYSIN and SYS-|
| OUT data sets, and return control to the caller. |
| |
| 4. Mark the entry "No Main Storage Available" and do Action 2. |
| |
| 5. Free the main storage occupied by the function block and delete the entry from the|
| function queue. |
| I
| 6. Scan, and enqueue a function block for the next control statement. |
| |
| 7. Do Actions 5 and 3. |
| |
| 8. Do Actions 5 and 2. |
| ~ |
| 9. Do Actions 5, 6, and 2. |
| |
|Note: The next entry can be processed if the functions are the same, the devices are |
|availakle, and main storage is available. |
L 3

Figure 31. IEHDASDR Control Routine Processing at Functional Routine Return

Performing the Dump Function

When the Dump function is specified, the
Control routine passes control to the Dump
routine (module IEHDDUMP). This routine
(see Chart 30) initializes the input device
and the output devices, then passes control
to the I/0 routine (wmodule IEHDEXCP).
Module IEHDEXCP performs the I/0 opera-
tions, except that when the output is a
SYSOUT data set, it uses module IEHDACUT as
a subroutine to format and write the dumped

information.

The dump routine returns control to the
Control routine whenever processing is
interrupted to await completion of an I/C
operation, and when the function is ter-
minated, either because the dump is com-

plete or because an uncorrectable 1/0 error
makes it impossible to continue.

When it is entered, the Dump routine
verifies that the input device is a direct
access device, then issues a conditional
GETMAIN racro instruction to optain main
storage for a buffer and a work area. If
enough storage is not available, the rou-
tine returns control to the Control

routine.

If the Dump routine is able to obtain
the required main storage, it constructs an
ECB, IOB, and DCB for the input device, and
stores them in the function-dependent area
of the function block (see Figure 32). It
uses the RDJFCB and OPEN (type J) macro
instructions to read the JFCB and open the

System Utility Programs:

IEHDASDR 77

VTOC data set, then sets the dump extents
to correspond to the tracks specified in
the function block by converting the track
specifications to CCHH format and storing
them in the limits record (Figure 33). If
no dump extents are specified, the routine
stores the CCHH of the first and last
tracks on the volumes.

44 4 4
CCHH of First Track CCHH+1 of Last Track

52

CCHH of First Track on This Vol. Restore Tape Identifier

60 8

Dump ! Device !
Restore Tape Identifier (con't.)

Switch Type Reserved

68 4

Reel Check Alternate Track Information

76 6| Dump 1 1 256
Alt. Trk. Info (con't) |Formatied |Reserved

Switch

Qutput and Input ECBs, 1OBs, DCBs, and
i Channel Programs to Write and Read Tape
3

)L
4

Pointer to Read CCWs (Dump), or
to First Restore Buffer

Z
Ptr. to Write and Read CCWs (Dump)
or to Second Restore Buffer

348 4
Pointer to Data Buffer

Pointer to Dump Count Field Buffer

Pointer to Unused Track Table

356 4
Temporary Work Area

Figure 32. IEHDASDR Function Block —-
Dump/Restore Area
Notes: This figure shows the format of the

function-dependent area of the function
block as it is used in the performance of
the DUMP and RESTCRE functions. Although
most of the field names are self-
explanatory, the following fields require
further explanation:

e The first seven fields in the area are
the 24-byte limits record.

e The reel check field contains the first
4-bytes of the restore tape trailer
label; it indicates whether the reel is
the last reel required to complete the
restore.

e The Alternate Track Information field
is extracted from the Format 4 DSCB of
the primary output volume and contains
two sukfields: the first four bytes
contain the CCHH of the next alternate
track available, and the last two bytes

78

contain the number of alternate tracks
availakle.

e The field containing the pointer to the
first RESTORE buffer may also contain
X'FF' in the high order byte. If so,
it indicates that there are two RESTORE
buffers, and the next field points to
the second buffer.

e The last 16 bytes of the area are pre-
sent only for the Dump function.

0 CCHH of First Track Dumped 4
4 CCHH#1 of Last Track Dumped 4
8 CCHH of First Track of Volume 4
12 8

Restore Tape Identifier

(X'F4006Q1663B24D")

20

Dump Switch ! Reserved

Device Type ! [

Notes: 1. Dump Switch settings:

X'FO' = Full Dump
X'00' - Partial Dump
2. Device Type Codes:

0=2321

1=2311

2 =2314

3 =2302

4 =2303

5 =2301

Figure 33. 24-Byte Limits Record

If the output is a SYSOUT data set, it
is the only output permitted; the Dump rou-
tine performs no further initialization,
but passes control to the I/0 routine. If
the output is to tape or direct access,
there may be multiple output volumes, and
further initialization must be performed
for each of the output volumes.

The routine constructs an ECB, ICB, and
DCB for the first output volume, and stores
them in the function block. If the volume
is a tape volume, the routine opens the
tape, and uses the EXCP macro instruction
to write the limits record. If the volume
is a direct access volume, the routine
verifies that it is not System Residence,
then uses the RDJFCB and OPEN (type J)
macro instructions to read the JFCB and
open the VTOC data set. The routine then
reads the Format 4 DSCB and saves the
alternate track information so that it can
be placed in the VIOC of the output volume
when the dump is complete.

When it has initialized the first output
volume, the Dump routine determines whether
additional volumes have been specified. If
so, it verifies that the next volume is of
the same type, then initializes it. The
procedure is the same as that used for
. initializing the first volume, except that
the IOB, ECB, and DCB are stored in the
copy block associated with the volume. Any
other output volumes are then initialized,
one at a time.

When all of the output volumes have been
initialized, the routine passes control
(via a LINK macro instruction) to module
IEHDPASS to have the required security
checks made. On the return, the Dump rou-
tine reads and inspects the Format 5 DSCB
from the input device. The routine
extracts the available extent information,
converts it to CCHH form, and builds a
table of unused tracks. The I/0 routine
uses the table to insure that (unless the
output is a SYSOUT data set), only those
tracks that are in use (listed in the DSCB
as "not available for allocation") will ke
dumped. When it has built the table, it
passes control to the I/0 routine.

The function of the I/0 routine is to
read information from the input volume and
(if the output volume is a tape or direct
access volume) to write the information
out. If the output is a SYSOUT data set,
the I/0 routine uses module IEHDAOUT as a
subroutine %o format and write the data.

When the I/0 routine has determined that
a track is within the specified limits, and
that it is either in use or that the output
is a SYSCUT data set, it issues the EXCP
macro instruction to execute a channel pro-
gram that reads the data field of record 0,
the count, key and data fields of record 1
(if it exists), and the count fields of any
additional records on the track. When it
has issued the EXCP, the I/0 routine
returns control to the Dump routine, which
in turn returns control to the Control rou-
tine. When it is re-entered to continue
pexforming the function, the I/O routine
waits for the channel program to be
completed.

When the channel program is complete,
the I/O0 routine determines whether the
track contains a home address and only one
record (RO), a home address and two records
(RO and R1), or a home address and more
than two records:

e If the track contains only a home
address and record 0, the routine

address and more than two records.

determines the output device type,
writes out the contents of the record,
and erases the remainder of the track.

e If the track contains a home address,
record 0, and record 1, the I/C routine
determines the output device type, and
writes out the contents of the records.

e If the track contains a home address,
record 0, record 1, and additional
records, the I/0 routine rxreads the key
and data fields of record 2 and the
count, key, and data fields of the
additional records. It then determines
the output device type, and writes out
the contents of the records.

If the output is a SYSOUT data set, the
I/0 routine passes control to module InH-
DACUT, which formats and writes the track
contents.

If the output volume is a direct access
volume, the I/0 routine writes to every
(primary) track on the volume. Those
tracks on the input volume that are in use
are copied onto the output volume; each
track corresponding to an unused input
volume track is formatted with a home
address and record 0. The remainder of the
track is cleared.

If the output volume is a tape volume,
the I/0 routine writes a control record for
each track on the input volume. The con-
trol record contains the channel program
used by the Restore routine to write one
track; it is followed by the track image
recoxrd, which contains the data field of
record 0, and all fields of any other rec-
ords on the track.

At end-of-volume, a trailer record is
written following the tapemark. The first
4 bytes of this 24-byte record indicate
whether this volume is the last volume of
the restore data set.

The I/O routine (module IEHDEXCP)
returns control to the Dump routine under
two conditions:

'If the Dump routine is performing func-
tions concurrently, module IEHDEXCP returns
control to it whenever processing is inter-
rupted to wait for the completion of an I/0
operation on a track that contains a home
In this
case, the Dump routine returns control to
the Control routine; when it is re-entered
to perform the same function, the Dump rou-
tine again passes control to the I/0
routine.

System Utility Programs: IEHDASDR 79

If the I/0 routine has terminated its
processing, either because the dump is com-
plete or because of an unrecoverable 1I/0
error, it returns control to the Dump rou-
tine. 1In this case the Dump routine closes
the input and output data sets, releases
the main storage it obtained for buffers,
places a completion message in the message
data set, and returns control to the Con-
trol routine.

Performing the Restore Function

When the restore function is specified, the
Control routine passes control to the
Restore routine (module IEBDREST), which is
shown in Chart 32. The input to the
Restore routine is a restore tape, which
may have been created by performing the
Dump function in this program, or in the
IBCDMPRS program. A restore tape (see
Figure 34) contains the information neces-
sary to make a copy of the direct access

volume used to create it; the kRestore rou-
tine makes one or more such copies. The
Restore routine returns control to the Con-
trol routine when the restore is comglete,
when an uncorrectable error makes it
impossible to continue processing, or when
processing is interrupted while awaiting
completion of an output operation.

When it is first entered, the Restore
routine attempts to obtain main storage for
two buffers. If it is able to obtain
enough storage for at least one buffer,
processing continues; if not, the routine
sets a switch and returns control to the
control routine.

If storage is available for at least one
buffer, the routine determines the wvalidity
of the output volume specifications. The
output volumes must all be of the same
type, but the system residence volume(s)
may not be specified.

TAPE MARK
24-BYTE CONTROL RCD i
LABEL IRG IRG LIMITS RCD :
(OPTIONAL) . (TRACK 1)

CONTROL RCD

TRACK 3 IMAGE IRG (TRACK 3)
TRACK n IMAGE IR 24-BYTE IRG IRG §
6 IRG TRAILER RCD.
TAPE MARK

Limits Record:

A 24-byte record containing extent limits and restore tape identifier,

located after the initial tape mark on the first volume of the restore

tape.

Control Record:

A variable-length record containing the channel program required to

write the associated track, located immediately before the track image

record for the track.

Track Image Record:

A variable~length record containing the count, key, and data fields

of the records on the track.

Track Record:

Figure 34. Restore Tape Format

80

A 24-byte record containing, in the first 4 bytes, the reel number
and termination code.

If the output volume specifications are
valid and the volumes are available, the
routine opens the input tape, checks the
limits record to insure that the tape is a
restore tape and that the volume used to
create it is the same type as that speci-
fied for output.

If so, the routine builds an ECB, IOB,
and DCB for each output volume. If there
are multiple output volumes, the control
blocks for the first are stored in the
function block, and those for the addition-
al devices are stored in the copy blocks.

When it has constructed the control
blocks, the routine uses the RDJFCB and
OPEN (type J) macro instructions to read
the JFCB and open the VTOC data set on each
output volume, and uses the Password Pro-
tection routine (IEHDPASS) to make the
required security checks on the volume's
data sets.

The Restore routine uses the EXCP macro
instruction to read the Format 4 DSCB from
each output volume, then extracts and saves
the alternate track information. Since the
VTOC will be replaced with the VTOC from
the volume used to create the restore. tape,
the alternate track information from the
output volume must be placed in the new
VTOC.

When initialization is complete, the
Restore routine uses the EXCP macro
instruction to read a control record and a
track image record from the restore tape.
The control record contains the channel
program necessary to write the track image
record to the output volumes. The Restore
routine updates the channel program with
the correct data addresses, then issues the
EXCP macro instruction for each output
volume.

When it has issued the EXCP, the routine
returns control to the Control routine.
When it is re-entered to continue perform-
ing the function, the routine waits for the
output operations to be completed. When
the operations are completed, the routine
again reads from the restore tape and
repeats the procedure.

At end-of-volume, the routine reads the
trailer record from the restore tage and
determines whether thexe are additional
tape volumes to process. If the first four
bytes of the trailer record contain
X'FFFFFFFE', the restore is complete. The
routine updates the Format 4 DSCBs in the
output volumes, places a completion message
in the message data set, releases the main
storage it obtained, closes the input and
output DCBs, and returns control to the
Control routine. If the trailer record
does not indicate that the restore is com—

plete, the return issues the EOV macro
instruction to have the next volume
mounted, and continues processing.

Performing the Analyze and Format Functions

When the Analyze or Format function is spe-
cified, the Control routine passes control
to the Analyze/Format routine (module IEH-
DANAL). This routine (shown in Chart 33)
performs surface analysis and formatting
functions for disk and drum volumes (or
passes control to module IEHDCELL to per-
form these functions if the device is a
data cell drive) -and passes control to
module IEHDVTOC to construct and write IPL,
volume label, and VTOC records. When pro-
cessing is terminated, either because the
function has been completed or because a
computing system error has made it impossi-
ble to continue, the routine returns con-
trol to the Control routine. The routine
also returns control to the Control routine
during concurrent operations when proces-
sing is interrupted for an I/0 wait.

Initialization

When the Analyze/Format routine is first
entered, it is given the address of the
function block specifying the function to
be performed.

Note: The format of the function-dependent
area of the function block, as is used in
the performance of the Analyze and Format
routines, is shown in Figure 35.

If the function is to be performed on
more than one device, copy blocks have been
chained to the function block; the routine
constructs an IOB, ECB, and DCB for each
volume. It stores the blocks for the first
volume in the function block, and stores
the blocks for the additional volumes in
the copy blocks. If a volume is new (unla-
beled) the routine makes sure that the
device containing that volume is offline,
then uses the SVC routine to construct a
DEB in protected storage, but performs no
open. Otherwise, the routine uses the
RDJFCB and OPEN (type J) macro instructions
to read the JFCBs and open the VTOC data
sets.

When it has performed the open or con-
structed the DEB, the routine uses the Pas-
sword Protection routine to make security
checks on the volume. On the return, it
initializes a channel program to analyze
and format or to format each device, then
stores the channel program in the appropri-
ate function or copy block. If the devices
are 2321 Dbata Cell Drives, the construction
and storing of the channel program, as well
as the execution of the surface analysis

System Utility Programs: IEHDASDR 81

and formatting procedures is performed in
module IEHDCELL; if the devices are disks
or drums, these functions are performed in
module IEHDANAL.

48 10
Owner Identification

Surface Analysis and Formatting Procedures 60

: Volume Serial
-- Disk and Drum Volumes bt

64 Alternate Track Information 6
The nature of the channel program used 5
depends on whether a surface analysis or
formatting operation is being performed, 72 5
S s Relati
whether a flag test has been specified, elative Track Address of VTOC

whether multiple passes are to be made on
each track, and whether the volume is a 80
disk or drum. The sequence of commands in
each case is shown in Figure 36. Note that g4
the two Analyze/Format channel programs are
virtually identical, except for the first 88
two commands, as are the two Format Only .
channel programs. The first two commands Number of Passes Made
are different because an unused disk has no ¢ 5
home addresses, and no successful search Home Address Buffer

could be made. Also, since defective
tracks on a drum are not flagged, rewriting

Number of Tracks for VTOC

Pointer to ANALYZE Bit Pattern Buffer or to FORMAT Work Arec:4

4

Pointer to IPL Text (In Main Storage)

CCHH of End of Function 4

2

Number of Passes Specified 2

2

Error Switch | l Number of Retries Made

the home address will not destroy any pre- ' n4

viously written flags. o~ Output DCB, 10B and ECB L
The first part of the Analyze/Format

channel program is executed on each pass; 218

maximum length ROs are written twice and 1 , L

read back twice, and the home addresses are Channel Program

read twice. If a flag test is to be donmne, —T .T

the data is transferred on the second home
address read, and the field is checked for
the presence of a defective track flag.

IEHDASDR Function Block ==
Analyze/Pormat Area

Figure 35.

F T T h |
| Analyze/Format | Format only. |

k T 1 r 1

| Drum or | |

| Disk (no flag test) | Disk (flag test) | Drum Disk |

| b 1 i |
| | Write Ha | Search Ha | |
} | TIC *+8 | TIC *-8 | |
| Write RO% | Write RO | |

i Read Ha | Read Ha | |

All | Read RO | Read RO | 1

Passes	Search Ha	Search Ha	
	TIC #*-8%	TIC *-8	
	Write RO i Write RO		
	Read Ha	Read Ha=2	
	Read RO	Read RO	
b 1 : 1 {			
	Search Ha	Search Ha	Write Ha Search Ha
last	TIC *-8	TIC *-8	TIC #+8 TIC *-8 [
Pass	Write RO3	Write RO3	Write RO3 Write RO3
Only	Read Ha	Read HaZ2	Read Ha Read Ha=z2
	Read RO	Read RO	Read RO
1 L L L IR 4			
] 1			
*Write maximum length possible (full track).			
?Transfer Ha into main storage and test for flags (no data transferred on other reads).			
*Write standard (8-byte) RO.			
L J

Figure 36. BAnalyze/Format Channel Programs

82

The second part of the Analyze/Format
channel program (which duplicates the For-
mat Cnly channel program for the corres-
ponding device type) is executed only on
the last pass. A standard (8-byte) RO is
written, and in the case of a disk device,
the home address is tested for flags.

During concurrent operations, the rou-
tine returns control to the Control routine
when the EXCP macro instruction for each
device has been issued; it is eventually
reentered to wait for completion of a chan-
nel program.

When a channel program is completed, the
Analyze/Format routine determines whether
any errors have occurred. If not, and if
there are other channel programs that have
not been completed, the routine enters the
wait again. It repeats this procedure
until either an error occurs, or until all
channel programs have keen completed.

When all channel programs have keen com-—
pleted, the routine determines whether
additional passes have been specified. If
so, it re-issues the EXCP racro instruction
for each device and repeats the procedure
until all required passes have been made.

When the last pass has keen made, the
routine reinitializes the channel programs
for each device so that they apply to the
next track, and repeats the entire
analysis/format procedure.

Error Procedures -- Disk and Drum Volumes’

There are two classes of errors that can
occur during a surface analysis operaticn:
erroxrs that indicate a failure of the com-
puting system, and errors that indicate a
defect in the volume being analyzed. Those
errors that indicate machine malfunctions
are handled ky the normal I/0 Supervisor
erroxr routines. If such an error cannot be
corrected, the Analyze/Format routine ter-
minates the function, closes the volumes,
and returns control to the Control routine.
If the function being rerformed is the for-
mat function, all errors arehandled in this
manner.

When a surface analysis is being per-
formed, however, a distinction is made
ketween the two types of errors. The
errors that indicate that a track is defec-
tive, and are handled by the Analyze/Format
routine, are Data Check and (for the 2314
Direct Access Storage Facility only) Track
Ooverflow.* When such an error is encoun-

10n the last "READ RO", the routine also
handles a No Record Found/Missing Address
Markers condition.

tered, the Analyze/Format routine retries
the channel program until an error is
encountered again or until the channel pro-
gram has been retried ten times with no
errors. If an error occurs the track is
declared defective, and the routine places
a message describing the defective track in
the message data set. If the device is a
drum, no alternate track can be assigned by
the program, and the IBM Field Engineer
should be notified. If the device is a
disk, the Analysis/Format routine issues
SVC 82 and the Alternate Track Assignment
routine is used to assign an alternate
track. If the track is in the alternate
track area, however, no alternate will be
assigned; the track will be flagged defec-
tive to prevent its future assignment.

When an alternate track is assigned, the
Analyze/Format routine places a message
describing the alternate track in the mes-
sage data set.

Surface Analysis and Formatting Procedures
-- Data Cell Volumes

The surface analysis and formatting of a
data cell volume is performed by module
IEHDCELL, which is used as a subroutine by
the Analyze/Format routine. Module
IEHDCELL writes a home address, a standard
length (8-byte) RO, and a maximum length R1
on each track of a cylinder, then reads
each home address, RO, and R1 back to check
for errors. The channel programs used for
writing and reading are as follows:

Writing Reading
Write HA Read HA
Write RO Read RO

Write Count-Key-Data Read Count-hey-Data
The routine repeats the procedure,
cylinder by cylinder, until each track on
the volume has been read and verified.
When the analysis of a strip, subcell or
cell is complete, the routine makes addi-
tional (address compare) checks to verify
correct positioning.

Error Recovery Procedures -- Data Cell
Volumes

Most of the errors that may be encoun-
tered while performing the surftace analysis
of a data cell volume are handled by normal
I/0 Supervisor error procedures, and if
they cannot be corrected, the function is
terminated. There are two exceptions to
this procedure:

e No Record Found and Missing Address
Markers: The I/0 Supervisor error
recovery routine is used, but if the
errors occur together, and no recovery

System Utility Programs: IEHDASDR 83

is possible, module IEHDCELL places a
message describing the defective track
in the message data set, and causes an
alternate track to be assigned.

e Data Check: If this error occurs,
module IEHDCELL retries the channel
program up to 113 times. If the chan-
nel program is executed successfully
once, the track is considered good. If
no successful execution occurs the
track is considered defective. 1In that
case a message describing the defective
track is placed in the message data
set, and an alternate track is
assigned.

The alternate track assignment procedure
is the same as that used for disk volumes.
The alternate track area of the volurme is
checked first, and defective tracks found
in that area are flagged. No alternate
tracks are assigned to defective tracks in
the alternate track area. If the defective
track is not in the alternate track area,
module IEHDCELL places a message describing
the defective track in the message data
set, issues SVC 82 to have an alternate
track assigned, then places a message
describing the alternate in the message
data set.

Supplying a VTOC and IPL Records

When the last track on each device has
been analyzed or formatted, the Analyze/
Format routine passes control to module
IEHDVTOC (see Chart 34). This module con-
structs and writes the IPL Bootstrap, IPL
Text, VTOC, and Volume Label records.

When it is entered, module IEBDVTOC
determines whether it is to write an IPL
record on the output volumes. If so, and
if the IPL text is on external storage, the
routine opens the appropriate data set and
reads the text into main storage.?

If it is to write an IPL program, the
routine constructs two IPL Bootstrap rec-
ords and writes them to records 1 and 2 on
track 0 of each output volume. The IPL
program itself is written on track 1 before
the bootstrap records are written (if the
devices are 2303s or 2311s) or on record 4
of track 0, with the same channel program
used to write the bootstrap records (if the
devices are 2301s or 231u4s).

iThe IPL program may be supplied in the
input stream (in which case it is in main
storage when IEHDVTOC is entered), it may
be in a sequential data set, or it may ke
a memker of a partitioned data set, e.g.,
memker IEAIPLOO of SYS1.SAMPLIB.

84

If no IPL program is to be written,
module IEHDVTOC writes a program on record
1 of track 0 that will cause the computing
system to enter the wait state if an
attempt is made to execute the IPL proce-
dure using that volume. The format of the
records is shown in Figure 37.

Whether it writes an IPL program or not,
module IEHDVTOC constructs and writes a
standard volume label and a VIOC. The
standard volume label is written on record
3 of track 0; it contains the voluwme serial
provided by the user or (if none was pro-
vided) the original volume serial. If an
owner name has been supplied, the routine
places it in the label; if not, the field
remains blank. The VTOC constructed and
written by IEHDVTOC consists of a Format 4
DSCB, a Format 5 DSCB, and enough dummy
(Format 0) DSCBs to £ill out the VTOC.

Performing the Label Function

When the label function is specified, the
Control routine passes control to the Label
routine (module IEHDLABL). The Lakel rou-
tine (Chart 36) replaces the volume serial
and, optionally, the owner identification
fields of the volume label.

[(w [w [w®[] e™] =« [|f
Track Standard
Descriptor Volume
Record Label
Note: R1 for a non-IPL volume is a 24-byte record having the following
format:
PSW X*000600000000000F"
CCW1 X'03000000000000001* (NOP)
CCW2 X'00000000000000000" (Dummy CCW)
R1 for a volume that can be loaded contains a 24-byte IPL bootstrap
record having the following format:
PSW X'0000000000000000"
CCW1 X'06003A9860000060' (Read Record 2)
CCW2 X'08003A9800000000" (Transfer to Record 2)
R2 is always a 144-byte record having the following format:
CCW1 X'07003AB840000006* Seek IPL Track
CCW2 X'31003ABE40000005' Search for IPL Record
CCW3 X'08003AA000000000" Repeat until found
CCW4 X'0600000020000E29* Read IPL Program
Seek X'00000000000" Seek Address
Search X'0000000101' Search Address
101 bytes of zeros for padding
Figure 37. Format of Track 0, Records 0

and 1

When it is entered, the routine identi-
fies the device to be labeled and verifies
that the device is a direct access device.

It uses the RDJFCB macro instruction to
read the JFCB into a buffer in the
function-dependent area of the function
block (Figure 38). It then uses the OPEN
(type J) macro instruction to open the VIOC
data set.

48 10
Owner Identification

58

Volume Serial

o4 176

Buffer for JFCB and Volume Label

IEHDASDR Function Block --
Label Area

Figure 38.

The routine reads the volume label (the
data portion of record 3 of track 0) by
issuing an EXCP macro instruction. The
initial request causes the special End-of-
Extent appendage to be entered; the appen-
dage changes the extent limits in the DEB
to permit access to track 0, and the volume
label is brought into main storage.

When the I/0 operation is complete, the
Label routine stores the new volume serial
and, if one is provided, it stores the
owner name. It uses the EXCP macro
instruction to write the label, uses the
SVC 82 routine to place the new volume
serial in the UCB, places a message in the
output data set, and returns control to the
Control routine.

Performing the GETALT Function

When the GETALT function is specified, the
control routine passes control to the
GETALT routine (module IEHDGETA). This
routine (which is shown in Chart 37) uses
the Alternate Track Assignment routine (SVC
82) to assign an alternate track for the
specified disk or data cell track. If the
specified track is an assigned alternate
track, another alternate track will ke
assigned in its place. No records will ke
transferred from the specified track to its
alternate. If the specified track is an
unused track in the alternate track area,
however, no alternate will be assigned; the
specified track will be flagged to prevent
its future use.

When module IEHDGETA is entered, it
verifies that the specified volume is a
disk or data cell volume, then uses the
RDJFCB and OPEN (type J) macro instructions

to read the JFCB into the function-
dependent area of the function block
(Figure 39) and open the VTOC data set. If
the open is successful, the routine checks
to see that the specified track is not
track 0 or does not contain system data
such as a volume label or VTOC.

CCHH of Specified Track

RESERVED

176

Buffer for
- JFCB and Format 4 DSCB

)1
(
)}

IEHDASDR Function Block --
GETALT Area

Figure 39.

If the volume is not a disk or data cell
volume, if the open was not successful, or
if the specified track is either track 0 or
the first track of the VTOC , the routine
places an error message in the message data
set, terminates the performance of the
function, and returns control to the Con-
trol routine. If the specified track is a
part of the VTOC (other than the first
track), the routine issues a warning mes-
sage and assigns an alternate track.

If the specified track does not contain
a volume label or VTOC, the Control routine
places a message describing the specified
track in the message data set, and issues
SVC 82 to execute the Alternate Track Assi-
gnment routine.

On the return from the Alternate Track
Assignment routine (SVC 82) the GETALT rou-
tine places a message describing the
alternate track assignment in the message
data set, closes the VTOC data set, and
returns control to the Control routine.

IEEDASDR Service Routines

There are several service routines used by
the IEHDASDR program in the performance of
its functions:

e IEHDMSGB, the Message Builder routine,
is entered with a pointer to the common
work area and a number corresponding to
the message. The routine selects the
message from the message CSECT.
(IEHDMSGS), then moves the message to
the output buffer in the common work

System Utility Programs: IEHDASDR 85

area. Certain messages contain "empty"
areas that must be filled in by the
caller of the Message Builder routine;
when this is the case, the Message
Builder routine loads a pointer to the
empty area, and passes the pointer to
its caller.

IEHDPRINT, the Message Writer routine
is entered with a pointer to the common
work area (which contains the output
buffer and the address of the SYSOUT
DCB). The routine uses QSAM to write a
header record at the beginning of each
page, a copy of each control statement,
completion messages, error messages,
and (optionally) the contents of a
direct access device.

IEHDDATE, the Date routine, is entered
via a CALL macro instruction from the
Message Writer routine. The Date rou-
tine uses the TIME macro instruction to
determine the date, and stores the date
(in the form MM/DD/YY) in an 8-kyte
area furnished by the Message Writer
routine.

IEHDSCAN, the Scan routine, is entered
via a LINK macro instruction issued in
the Control routine. It reads a con-
trol statement (if necessary) and per-
forms a syntax check on one field, then
stores the result of the scan in a 1-
kyte field (SWITCHRD) in the common
work area. On the return, it passes
the control routine the length of the
field and a pointer to the beginning
address of the field.

IEHDPASS, the Password Protection rou-
tine (Chart 38), is entered with: 1)
an indication of the operation being
performed, 2) an indication of whether
the purge option was specified in the
control statement, 3) a pointer to the
function klock, and 4) a pointer to a
buffer area for reading DSCBs. It uses
the Open or Scratch routine to check
the password required for access to
each security protected data set
against the password supplied by the
operator. If an incorrect password is
issued, or if no password is issued,
the routine returns a condition code te
its caller, which then terminates the
function. In addition, the Password
Protection routine determines whether
there are any data sets on the output
volumes whose expiration dates have not
passed. If so, and if the PURGE param-
eter is specified, it gives the orera-
tor the opportunity to terminate the
function or to override the expiration

dates of all unexpired data sets and
continue processing. If the PURGE
parameter is not specified, and if an
unexpired data set is encountered, the
function in terminated.

IGG019P8, the End-of-Extent Appendage
routine is entered from the Input/
Output Supervisor. The routine modi-
fies the extent limits and file masks
in the DEBs for each direct access
volume to be processed, to permit
access to the entire volume.

IGG019P9, the Abnormal-End Appendage
routine, is entered from the Input/
Output Supervisor. It is used during
performance of the Analysis function to
bypass normal IOS Error routine proces-
sing of Data Checks for all direct
access devices.

IGCO0008B, the Alternate Track routine
(svCc 82), is entered with a pointer to
the parameter list shown in Figure 40.
The routine has three basic functions:

(1) It builds a DER for handling new
direct access volumes,

(2) It assigns an alternate track for a
specified (defective) track, and

(3) It updates UCBs to reflect new
volume serials or VTOC location

changes.
Build DEB for New Volume 8F UCB Address
80 DCB Address
Assign Alternate Track Function l UCB Address

CCHH of Defective Track

80 Ptr, to Alternate Track
Information (GETALT)

Update UCB 08 | UCB Address

New Volume Serial (or Zero)

80 l MBCCHHR of VTOC
(if new volume)

Figure 40. SVC 82 Parameter Lists

\Chart 27. IEHDASDR Overall Flow

LINK OR ATTACH

[ierocera |

= e [EHDREST
;lﬂﬁiiglv‘? 1h FHHEEEH.: tIHﬂMﬂ§l

o |
oo §

1GC0008B

IEHDMSGB

IEHDMSGS

[EHDMSGS

{EHDPRNT

IEHDPRNT

IEHDDATE

[1cconms B8 (o cors |

IGGO19P8

1GC0008B

i §0 | 1ocoooss
IGGO19P8 f5 : 1GGO19P8 F R F | iGcotoss [AE K

S 1GC0208B
i) 1GCo1088 ¢

IEHDPASS

“ _IG'IP ‘

ierorass

System Utility Programs: IEHDASDR - 87

Chart 28. IEHDASDR Control Routine (Part 1 of 2)

LLT NI 22T
* *
: ENTRY :
L T P PP T T P i
*28 *
* B2%
* *
*
NOTE: ENTRY FROM CALLER IS TQ INITIALIZING ROUTINE
(IEHDASDR) , WHICH TRANSFERS TO CONTROL
ROUTINE (IEHDASDS)
AR REB] kR R RER AR SRR R KRR RRERRK
* IEHDASDR * * IEHDSCAN *
P ot ot e TR R I Tt et S

* INITIALIZING * * SCAN *
* ROUTINE * :CDNTROL RECORD :

REEERERRRBRERE R R T P T e e
v
Cc2 *,
o
XCTL «* SYNTAX
TO *. ERROR
IEHDASDS *, o
, o
*, .
NO L]
* *
* Gl ¥
* *
*aokk
s { *
ARDL#R R e AR D2" T *, D3 . ARERRDY AR R R
* * o *. . * VALID *. BUILD AND bbbt
* OPEN * -* OPERATION *. YES «* FUNCTION *. YES * ENOUEUE * * *
* SYSIN AND * *. FIELD ¥ > % SPECIFICATION. ¥——————— >*FUNCTION BLOCK ¥———->% H2 *
* SYSOUT * * o *. . ¥ * * * *
* *, o *, ok * * R Ak
bR RRREREE *, ¥ L] EIE T A P
* NO
R
* *
—>% Gl *
v R
v ¥ ¥
SRS HRE] Sk R hR kR Rk B2 %, E3 *. REBRELFR Rk
* IEHDPRNT * o *, o E *, * * ARk
bttt Aot ek «* KEYWORD #*. YES * VALID *. YES * PROCESS * * *
* WRITE * *, FIELD KEYWORD o ¥ > * KEYWORD Fem—m>% H2 ¥
* HEADER * *, o *, o * * * *
* * *. . *. . * * ko
FRERERRRRFERRRERS L] *, ¥ ER LI R e et
* NO * NO
EEEE
l. *
>® GL *
*hEd *
* * EER
* B2 * ¥, ¥,
* * F2 -, F3 %, R FLRRERR Rk R
EE TS o *, % ANY ¥, * *
B4 EOF *. YES .* FUNCTION *. YES * FIND *
* SYSIN P SRR >%. BLOCKS IN .#—Zcoe—_ ># FIRST [
*, B *, QUEUE .* * ENTRY * b
R *, .* -, . * * Bt
* * *, *, % L e P T *29 *
* Gl * * NO * NO * Bl#
* * ik * ¥
PRIt L *29 * *
>% D3 #
* *
hkk
ok, L
RAEREGTRERRER R IR G2 %, G3 %, LR LI I DL LT
* IEHDMSGB * ¥ *, P *, * *
Dt S ving gtk b 4 -* PARAMETER *. YES -* PARAMETER *. YES * STORE *
: ASSEMBLE : *. . FIELD o Fm e >*, . VALID . H e e >: PARAMETER :
* MESS * *, o* *, o * *
R T e e T L) L) P s P P T
* NO * NO
ok
* * i
* H2 *.>
ek
P * *
o*. * Gl ¥ o,
AR ERHL Rk H2 *, * * 4 *,
TEHDPRNT * o *, ok ok ¥ *, Rk
i bk ek Ak 4 o* SCAN *. NO * * «*ADDITIQWAL *. NO * *
* WRITE * *, COMPLETE o ¥—e—D% B2 * *, PARAMS o D> H2 ¥
* * *, o * * *, ok * *
* MESSAGE * *, .* ok . o *Hhk
AREEERRERRRE TR *, ¥ L
1 YES * YES
¥,
L adaa s DL LT TR J2° T #, B e e T T
* * «* ALL ¥, ELT L) * BUIL *
* TO] * «* REQUIRED #, * * COPY BLOCK *
* RETURN * * ,KEYS PRESENT .#-———->% Gl * « CHAIN IT TO *
* CODE * *, o * * *FUNCTION BLOCK *
* * *, % TN * *
ARERERRERRR R *, .x EE TR T L T
“L YES
ke ok
»] *29 #
* B2 * * Bl*
* * * ¥
han *

88

Chart 29. IEHDASDR Control Routine (Part 2 of 2)

LEdEld hEk
%29 * * *
* B+ * B2 *
* ¥ * *
* ok Rk
¥, .é.
Bl s, 82" #.
.* IS * ¥ *,
-+kegeD RINE'+. vES .x_ MORE ' ¥. NO
*. ""LOADED _.#-— *. FUNCTION Q _+%——
*. *, ENTRIES .* l
. . . ;
e ..
* N *EEk * YES kK
* * *28 *
* Gl * B2
* *
EE L]
v
N ..
c1’ T, 2" Tx,
15 * ..
.+' ANOTHER *. NO .+REXT ENTRY *. NO
.l RTNE e *. FOR SAME _.%——
LOADED _.#* +.FONCTION .+
*ox o
S kEE * YES *hkE
* * * *
x F1 * * D5 *
* * * *
ok y *hEE
RN R
D1’ T*. p2° ¥,
¥ I *, ¥ L
«* THE RTNE *. YES ¥ REQ'D *,
*. WAITING _.#-—— %] DEVICES .#---
.. o l * .AVAILABLE. *
¥ *, ¥
. oLk
NO L2t YES L L L]
* * * *
* gL * # D5 *
* * b * *
ok EL L3 EE 1 L]
* *
* Bl *
AR KE AR RE * *
* DELETE * *k¥k
* PREVIOUS *
* LOAD *
* *
* *
kpkkkhkkkkk
EL 22
* F1 #->
ek kk
SAFLRkR kR
* OAD *
* REQUIRED +
+ ROUTINE *
* *
* *
Ak rkokkkkk
EX 2
* *
* Gl #—> NOTE 1:
* *
Rkk
R ERGL ARk R

* NOTE 1 *

B T el)
* EXECUTE *
* FUNCTIONAL *
* QUT. *
ko Rk ok

o*.

*.
X WAS ¥,
<% FUNCTION *,

, COMPLETED _.
., *

YES

R

ok E

*xn

*
B3 =*

*
Ehnk

LY

-
g
@

-

*hkE

*ARRFBI kR kR Rk Rk
*

* DEgUEUE *
:FUNCTI N BLOCK :

* *
e L T
ok,
Cc3 *.
. * *,
¥ *, NO
*. EOF SYSIN . *——-
*, o
*, ¥
*, %
* YES *akkokok
e *28 %
*29 % * B2¥
* D3 #-> * *
* *
Rk

HAD3k kR R K

* *
* *
*FREEMAIN (WORK *
* ARER) *

EEREEEREEE

*AEIRREERRR
* *

* CLOSE *
* SYSIN AND *
* SYSOUT *

*
P e L]

v
EokkkF 3k dokkokkkokk
*
* RETURN *
* *
ok kR kR Rk

RIS

L R
o F NOT *.
, ENQUGH MAIN .
, STORAGE .

*_ L%
* YES

cu” Tk,
L * .
. *CONCURRENT *.
BROCESSING _.*

*

LK
* NO

otk kDY Aok kAR kK
* IEHDMSGB *

: MESSAGE :
LR i L e R R L S

kR EHEY REER R Rk
* IEHDPRY

%HE FUgCTIONAL ROUTINES ARE -

IEdDLABL
IEHDGETA

System Utility Programs:

YES

HhRRRDSERR R RR AR
* *
* FIND *
*FIRST FUNCTION #
* Q ENTRY *

* *
R R L e R E2 L i)

IEHDASDK

89

Chart 30.

EEE SR LT 2
*
* ENTRY :
FREEERRRERE AR

.* INITIAL #*. NO
*. ENTRY o Hme e
Nt
]
* YES LR 2]
> *
* D4 *
* *
R
o *.
C1 *.
.*¥ IS *.
*.‘ FROM DEV ‘.*NO
D/A DEVICE.
, o
. L*
* YES R
* *
* B5 #*
* *
ey
*AD] AR REEEE
* *

* *
* GETMAIN FOR *
* BUFFER *

RLEL AT ild

.*
*.
*

RFL
*

(21220
*

* OPEN *
‘iTYPE I INPUT**

* *
AR R R

AREEKGLARRRAEREEE
*

* SET
: DUMP EXTENTS

LT

*
AR EAERRERRER AR

H1

¥ *.
ok s *. YES
.;I‘ODEV a TAPE‘.——-

*., o
. ok
«"NO Ee T
* *
4 B2 %
* *
Ak
J1 *
¥ IS .
¥ ‘TODEV *. YES
D/A DEVICE.
*. ¥
L%
* NO hak
* *
* B3 *
* *
kK
K1 *
¥ I8
. 'OD] *. YES
*1 SYSOUT i#———
*. ¥
. Lk
=" NO *EEE
* *
j’ * D4y =
* *
Ak RAE
* *
* B5 *
* *
P

90

IEHDASDR Durp Routine

L L] ok
* * * *
* B2 * * B3 *
* * * *
ok Ak
¥
*EPERERARE B3 *.
* * *

* QPEN *

*‘ OUTPUT TAPE "

* * * ¥
ARE ARk *, %

* NO

v A
HRC A RAREE FRCIHRREREE
* * *

* WRITE * * OPEN (TYPE *
*(EXCP) CONTROL * * J) QUTPUT D/A *
* RECORD * * DEVICE *
L AR

bk
* *
* D2 *->
Rk
o, \
D2 *. *AD3RE R KKK
* *

* *.
< *ADDITIONAL *. NO
. ou PR

* READ *
* (EXCP) FORMATY *
* DSCB *

*, *DEVICES‘ o
ER ERRERER R R K
:‘; YES
¥,
E2 *, HAAEREI R R AR A
o* *, *

. SAME * *STORE ALTERNATE*
l"-‘DEVICE TYPE' * *

* INFORMATION :

L P P T A)
e
* *
* D2 %
* *
. *, ek
¥ *, YES
#. OUTPUT TO .*———
*. TAPE ¥
. . *
«"NO Rk
* *
* B2 *
* *
*hEE
¥,
G2 *.
QUTPUT *, YES
*. TO A D/A o
*. DEVICE
. . R
3 * *
* NO EEhE * f3 *
* * * *
L * B3 * R
* *
hkk ErE
* *
* BS *
* * e
hAk *
*SET NO STORAGE *
* & WAITING *
: SWITCHES :
P LI T S e

HRARET IR REAERREE
- *
* *
SET RETURN CODE
* ="y *

* *
L e e L S

R

*en
=
[t}

FLxs

ETT Y

. *,
¥ IS *. YES
‘.EEVICE SYSRE§-‘-——-

Ak

waw
»
=

*

hkh

Sk kAR Fokokd ok ok ok
*IEHDPASS *
e T
* CHECK *
* PASSWORD *

* PROTECTION *
ok dkERk ok ko kR

ERBLARFEEAE
* *
* READ *
* (EXCP) FORMAT 5%
* DSCB *

*
EEEERRERFEE

EREEFCYTRRRRR AR R K
* *
* SET UP *
TABLE OF UNUSED
: TRACKS :
KRR RERERRERRAR R
ErTs
* *
¥ DU x>
* *
ETTTS
AR ADY REREK AR E
* IEHDEXCP *
* DUMP *
* REQUESTED *
* CKS *
AERRABERA KRR

4" Tx,
¥ *,
+DPROCESSING *. NO
®. COMPLETE . %——o
T, o
*, Lk
+'yes
*
*
*
FREY R kE Rk
* *

* CLOSE *
* ISPUT AND *
* OUTPUT *

ok kR R

FAGUERE AR
* *

* *
* FREEMAIN FOR *
* BUFFER *

FEREREA R

HHERRTL SRR AR AN
* IEHDMSGB *

kA KBS kR Rk kR R
* IFHDMSGB *
P B T T e P
* ASSEMBLx *
* MESSAGE :

*
EEL AR ST P L0

*KC5%
*
* CLOSE *
* INPUT AND *
** OUTPUT **

LR EL S22 1 2

kK
*

AADSRRE AR AR

* *

* *
* FREEMAIN FOR *
* BUFFER *

EEE 22 2]

ERRARES AR R

* TE *
* MESSAGE *
* *

L
* *
* *
SET RETURN CODE
* =8 *

* *
EE I I T A R LT 1

RRRRRTS AR R R
* *

ke b e Kk k¥ * *
* ASSEMBLE * *SET RETURN CODE*
* MESSAGE : : =0 :
LRI EL LS LR E L 22 EFREERREFR AR RR R
v

KRRk R K
* IEHDPRNT * ERAEN GRS 2l
Rk ok kK k *
* WRITE Fm ¥ RETURN *
* MESSAGE * A *
* * P s P T
B L

LA L B

Chart 31.

HRAER TR RR RS
*

* ENTRY *
* *
kR R R

¥
Bl *.

% *.
.* INITIAL *. NO
B ENTRY %

NOTE 1
JHICLE b
LOAD
*ILHDAOUT AND *
IEHDPRNT IF *
‘ DUMPING TO _*
* SYSOUT _ *
ERREFERRREE
Ak EE
*
* D1 *->
*
EEEN

Aok kR D] kR Rk Kk

EX TR

BUILD
READ COUNT
CCH'S

*

Aok ok Rk kok Rk
Rk
* *
* E1 *->
* *
ARk

E1 *.

oF *.
- * THIS *, YES
*, TRACK TO

P
NO LEL L)
ERE *
* D2 *
* F1 *=> * *
LR L]
L1l 2]
F1° *.
¥ *,
,-* puMPING 4. vES
. D/a l
..
®, %
* NO LR L L)
* *
* B2 *
* *
*hEk
v
“Gltﬂ"*‘*
WRITE
(EXCP)
*ch's AN, DATA
0 TABE(S) *
LR 222222 2]
Rk
* *
* HL o>
* *
ok

] SRR
* *

LTI
ok

* *

* J1 ¥->

* *
ok

ARRRRTLRERRR R
UPDATE
TRACK
ADDRESS

LT 2R
X TR

AR R R

E
NO ke
EL LY *
[* * % D5 ¥
~>% E1 % * *
* * ARk
ko

HAB2RK AR
* *
* WRITE *
DATA
*‘ON D/A VOLS**
hkR R ARk

*

*AD2 REF R
* *

* EXECUTE *
* READ COUNT *
* CCW'S *

ETT T e LT EE Y

v
Aok D ok KK
*IGGOlB *
B e kB B
* UPDATE *
* DEB *

* EXTENTS *
LA R T L S L]

J
pz' '*.
*CONCURRENT R

*, .k
. ¥
NO

G2 Rk ekhk
* *
* WAILT *
* EXCP AT *
* D2 *

* *
EERL R TR T

2" Tl

.*" MORE
*. THAN ONE
. RECORD. .

2" e,

* TRAS *
dkk kR kRRk Rk kR Rk
L1 23

* *

—>* J1 *

* *

*kEE

YES
PERATIONS _ «%———

rAokk

IEHDASDR EXCP Routine

* B5 *
*
LTS

R BIRE TR
* *

* EXECUTE *
*READ COUNT/KEY *
* AND DATA *

* cCcs's
R Tt Ty

3’ Tx,

o *.
.*" DUMPING *.
“¥. SYSOUT .

* *

ox
NO

*

.

v
HRRRR D3R F Rk

BUILD
WRITE/READ/
COUNT KEY

ke
[T TS

AND DATA
REES T T I FE L L S LS L

E3" s,
*

¥ .
.* DUMPING *.
*. T P

ERFIER kK
* WRITE *

* (EXCP) *
* CCW RECORD *
**TO TAPE(S) ‘*
P T ETPEr

v
Gs' .,

*CONCURREVT *.
*.‘ PERATIONS -

*, ok
*

* A IRk
* *

* WAIT *
* EXCP'S AT *
** B3 AND F3 ¥
EEEE LSS 2 2

v
AT IERAK K
* I
* (EXCP) *
* DATA TO *
*‘ TAPE (S) *

*
ARk ok ok AOk

NOTE 1:

YES

EXIT)
* *

ERETY

YES

YES

RN
* *
* BY *

Hokk

OINT

IN BLOCK B>

* B *
FER AR R

FRCYRFEE K

A CCW'S **
FHRRERERAEF

ou’ Tk,
. *CONCURRENT ' *.
OPERATIONS 1+

*,

**EY
*
* AIT
* EXCP'S AT
* C4 AND J3
i**tt*ttttt

vV
fhhaa A RE L LEEEL T L

* *
* UPDAlE *
* *
* ADDRLSS *
* *

Aok R Rk ROk Rk

LESUE ST LS
* *

* WAIT *
* EXCP AT *
* B3 *

* *
LRSI R EL 1Y

AT SUBSEQUENT ENTKIES, GO
TQ RETURI

SAVED

System

*

*<mm

‘ l
EEEE

NO

B L
* SAVE *
* RETURN POlwl *
* =1 *
CODE = 0 :
HEE R AR RN

* KbT.

*EEE
* *
* kb ¥

RER

¥ *.
.* DUMPING *.
. TO o
Jo7¢:N ¥
. ¥
. L%
* YeS
*
*
*

FRRRELS R Ak kR

* *
* UPDATL *
* FORMAT 4 *
: DSCB'S :

EE I e e D 2L T

L bbbt Stk t s s LT
8 *

*1GCO008B
e it

FREERRERRRERIRERR

*kEX
* *
* G5 *->
* *
*EEE

FAR ARG kAR

SET
RETUgNOCODE

TR
* R

R R L R R L L L e
*kwk
*
* d5 *->
* *
FhAE

dRREOSR Rk REEEEK
*
* RETURN *
* *
FRREREER R AR RN EF

Utility Programs:

91

Chart 32.

E L N

*

* ENTRY :
ERREREERE RS

81T s,
.* *,
o* INITIAL *.
ENTRY

NO
*

NOTE 1

v
SRCL kR R
* *
" GETMAIN *
* BUFFERS *
* -
SEERRRREREE

*

.‘.
+*soRage” . N

. AVAILABLE »-—-],
.

o’
‘

I

*" YES EReTy
* *
* ES *
* *
Ak
E1l *,

- *,
.* VOLUME “#. NO
*SPECIFICATIONS . %~
*. TVALID .¥ l
*

*, k¥
* YES *EEE
- *
* Gh *
* *
TRER
‘*Fl'"'.‘.‘
OPEN *
*INPUT TarE
* AND *
« Pihuize’ o
FEERERRRE R
b
61" .
Rl ..
47 AL .
*. RESTOI W20
». FERERSE l
Tx. .s-
hEE
* *
* Ki *
* *
*kkE

*#Hltuttttt
‘ (TYPE’J)
* OUTPU' *
"VOLUN.ES(S) '*
P Y

V
FRREE TRk R R RRE
*

*IEHDPASS

P o 2

* CHECK »
PASSWORD :

PROTECTION
EEL Rt T L 2 0

ttxltlttttt

READ FORMAT “
B'S FROM ‘
' OUTPUT
VOLUME (S) *
ttitttttttt

* *
* B2 *
* *

EET

92

3‘3*‘52&.#:“:&‘&&

!' AVE
* ALTER‘IATE TRK *
* INFORMATION :

ERE R LSS ST I e

EEL L]
* *
* C2 >
* *
EEE
FEC2 R R RE RN
* _EXCP
* READ CTL.
*AND TRK. ThAce *
NT *
N
EE TR T T L]

EXD2EFFRAER
*

* WAE{T FOR
*‘ BUFFER 1

ELE L P22 2]
ok
* *
* B2 %>
* *
*hEE

v

AR RE D ARk Aok kK
SeT UP
CCW'S FOR
QUTPUT
DEVICES
AEREREE AR kR R kE

LTy
XN

REF2 ek k kAR

*
* EXCP *
WRITE BUFFER 1 #
* TO OUTPU *

* VOLUME(S) #
LR Ty

ER2R R R

X *
* READ CIL. *
*AND TRK. IMAGE #
* RCDS. TO *

BUFFER 2 *
AREEREERESE

L% .
#*CONCURRENT *.
+. PROCESSING

YES

Lel_l

*
No

ARR 20k RN R
* WAIT hd
* FOR *
* WRITE *
*t BUFFER 1 *
AR RE SRR R

IEHDASDR Restore

Routine

ERCIHEFRRRE
* *
* WAIT *
* FOQR READ *
*‘ BUFFER 2 *

*
ko ko

4

*.
*

D3
* .
EOQV *.

o
*,
*

YES
INPUT . e
*, o l
*, %
*

v
FRRRAE TRk

T UP
CCW'S FOR
QUTEUT
DEVICES

AERERERAERR RN

EREN
e

\
EHFIRRER RS
* *

* EXCP *
*WRITE BUFFER 2 *
* TO OUTPUT *
* VOLUME(S) *

R TR TR

v
EREEE
C. *

FER 2 *
LT a2

Ha' .,
.*CONCURRENT *, YES
*.‘PROCES L N e
.]]

*. .
*

LETE)

-
Zl

*
* K5
*

EHAE

N

SR TIRERR kKA

* WALT *

* FOR READ *

* BUF. 1 AND *

‘ERITE BUF. 2**
AR ER R

LR R RE
* EXCP *
* EAD *
* TRAILER *
* LABEL *

B K

NO

P ot

o
*, AESTOK
* COMPLLTL

*YES

kD r ltt*t‘tt
* UPDATE
FORMAT 4 DSCB® s
* FOR QUTPU

* VOLUME (S :

FEEREERRAF TR

4

E’-l *.
¥ CPWOLID *,
*. SPECIFIED ‘-——
*. E
T l
“xt y};,b e
*
* Gl
*
Eres

* POST *
* UCB's *
* *
kAR KRR R RN
ok
* *
* GY >
* *
EEE

FREAAGY AR R R TR E
*

S, AGE :
ERERARF R R

ARk L) 'ttt‘ttt!

AREREREERAAE RN

Aok BT Lk Rk

SET
RETURN
CODE

T
Ty

LRSI R L P SRR L2
Ak

* *

* Kb *->

* *
*hkE

ttK * «atto
EEMAT
* FOR BUFFER!: *
* AND e
"*CLOSE DCB‘S‘t
ERT LR T

FRCSRERKEFR
* *

*
—>% EOV *
*

* *
FIZTETE ST LY

Rk

* *
* E5 ¥——

*

K

AEEFEEDRRKASRKRES

SE: *
* 40 STORAGE — *
* AND WAITING *
* ITC *
* *
HEEER Rk R Rk Rk
*
*
*
*
*
HREFRFS Rk kR Rk Rk
* *
* SET *
* RETUKN CODE *
* = *
* *
HREEREREFRRRRR K
SOTE 13

AT SUBSEQUERT
RETURN

T BLOCKS K2 AND J3.

LEL R GEL e T
*
RETURN :
1 FAFARR R RN
ko

—D

Chart 33.

PN R LR T

*

* ENTRY *
* *
L T Y

Bl s,
*

INITIAL ~*. NO
* . ENTRY o Fmme

J
EEI T IR FITT TR L S
*NOTE 1
k- ke ke

* *
: INITIALIZE :
P e T T T
¥,
D1 .
o *.
ok NEW *
*. VOLUME(S) *.
*, W x
*, .k l
—
* YES EE]
* *
* J2 *
* *
T
*t'tsﬁlttt**t*t‘#

+I6C
R e B T 2 P
* VO *
R kokF Rk Rk Rk Rk
L L L
* F1 ¥->
* *
*EEE
.*,
I~1
o DATA CELL *.

*,
*,
NO

PR LUNMES P o
B l
*,
*,
*

+*Yes *
* *
* B2 *
* *
*EEHK

**

TEEIIGLET I kSRR S

‘IEHDCELL
SE—%— _*—t-t—t-*
*ANALYZE/FORMAT i

OL t
*itt'****tt**.*tt

*,
«* WAS ¥,
.* OPERATION *. YES
*, SUCCESSFUL _.#%——-
*, %
*, ¥]7
E
* NO R
* *
L * J3 ¥
* *
P *EER
* *
* BS ¥
* *
hkE

IEHDASDR

Analysis Routine

kA ARk
* * * *
* B2 * * B3 *
* * *
*k kR *kkk
\
L T VAR L s LI LT Hokis 3 KRR K
UPDATE CCW'S * WAT'
PER FLAGTEST * * FOR Bd I/0 *
* AND DE * * REQUEST TO *
* DA AND * * COMPLETE *
* FUNCTION CODE * * *
Wk KRRk R KK PR T
v ¥
Ak ECD KR dokdkok R Ak c3 *,
* INITIALIZE * COMPUTING .¥ .
* PASS COUNT * SYSTEM . ¥ ERROR *, TRK
* AND * ~%. TYPE o Fo
* TRACK ADDRESS * *, o¥ l
* * *, Lk
Aok ok Kk ko Kok *, Lk
Hk ok * NONE oAk
AR * * *
* * * B5 * * BY
* D2 *=> * * *
* * ok ERE
*EEF
.
*ED ARk K D3~ k.
* * . *
* * ¥ WAS
* EXCP * *. TRACK
** ‘* *. FLAGGED
R R RRREK *, K
* NO EE LY
*
* E4
*
Hkdok
s
¥, ok
E2 *, E3 *.
¥ *, ¥ *,
ok MORE *. YES o *. YES
*o VOLUMES oK *, REQUIRED e
*. o *, o
*, ¥ *, ¥],
*, L% ., .
* NO Rk * NO ko
* * EEL L] *
* D2 * * 4 D2
* * % F3 k> *
rEE % * Rk
*hkk
¥, .*.
F2 *, "3
P *,
< *CONCURRENT *. NO .I/O UESTS*. YES
. PROCESSING '.——- *, OUTSTANDING o Fmm,
*, ¥]] *, ¥
* ..
YES *kkk * NO kkkk
ok * * *
* B3 * * B3
* G2 *-> * * *
*Ekk ok
EEITS 3
FARERG2 KRR AR [
* * «¥ MORE *,
* STORE * .* PASSES ON *. YES
* RETURN * *, THIS TRACK .%~——
: POINT 1‘ *.’ REQ'D .*
kR k Rk RR K *, X
* NO Rk
*
* D2
*
J S
H3
ELI I TwE S EL S L
* * MO *,
: RETURN : *, " TRACKS .
kR KRRk K *, o
*, ¥
NO kkk
P L] *
* + D2
* J3 *=> *
* * wokkk
EE L L
T2 ¥Rk FAERETIR KRR R R R AR
* RDJFCB * 'IErlDVTOL
* AND * e I o)
* OPEN_(TYPE=J) *<-- *BUIID IPL, VOL *
* EACH * *LABEL, AND VTOC*
* VOLUME * * RECORDS *
FRERREEERE K EE RS SRR S 22 L 2]
1)
* *
* J2 %
* *
*EEE *Ekk
* *
* B5 *
it T odad et i * *
‘IEHDPASS FEA¥

—k =k —t-:-t—#-t
* CHECK *
* PASSWORD *
* PROTECTION *
kR R Rk

*n

ook *Rkk
* * * *
* BY ¥ * BS5 #
* * * *
ok Rk
¥
B4 *. b bbb b AL L LY
¥ *, *I):.HDP, GB
PR FIKST *, NO L bttt dutn et
. e * ASSEMBLE *
*, 'I‘nlS PASS * : MESSAGE :
EEEER R R
“x ygs *hEk
* *
* g4 ¥
* *
Rk
ERAEEC Y kKRR K RS F kA kR
* * *ILHDPRJT *
* INITIALIZE * 0 F—kokeke ke =k
* TQ RETRY * * *
: 10 TIMES : * WRITE *

PR e e T Y

ko
* *
* By *
FHk K

R bbtd L Db bt L

*ILHDMSGB
k-

* ASSEM.BLE *
* BAD TKACK *

* ME GE
AR RS TR P L L L b

tt#t‘Fq$**#t*ittt
*IEHDPRNT

ek t-t v —k ke :
* *
: MESS)\GE :
LSRR SIE S Y

NOTE 1

P e
*

Hok— ke bk kK k
* ASSIGN ALT. *
* TRK. (DISK *
* VOLS. ONLY) *
dokkdok Rk kR

vV
FAR Rl R AR K
* IEHD] *

* MES SAGE *
LR T LS T L L L

KAk kT WA KRR R
*IEHOPRNT *
[t e EL e B
* ITE *
: MESSAGE :
LR R e e i T

System Utility Programs:

* MESSAGE *
HERRERERRERRRR KR

FRRRRS RS AR

* *
* SuT *
* RETURN *
* CODE *
* *
ek kkkk Rk kkk¥kRk
*EESERRERKE
*

* CLOSE *
"* VOLUME= (S) . *

* *
ARk kK

EET RIS

*

* RETU&N *

* *
L

et T

INITIALIZING INCLUDES
VAL T

EXTENTS, AND g

MATN STORAGE_FO. "y BUFI-E..\.
AN ERROR IS

BRANCHT6 B

Chart 34.

IR wRERR R
* ENTRY *
* *

PR e T

v
BL® %,
.
- 1s *, NO
*, IPL TEXT P Jtni—

,REQUIRED .

B

YES

+"THE TexT Tk,

IEHDASDR VTOC

*l bt
*. ‘SNRAGE .+]’

Te,
* NO

*ADL S EHEEHE

EA LSS L d)

.*%. NOTE 1
E1 *.
ok *.

.*
*, OPEN
*.

ERER

* *
* Gl *
* *

EEEL]

t-_-
OK l
*,
*,

* YES

HRFL R bk dk
*

*
FEERERRRBREE
LEZ 1S
* *
* Gl *->
* *
Rk

tttt*Gltuo#tttott

UILD *
* IPL RECORD *
* FOR RECORD 1 #
: OF TRACK 0 :
Rk koK
kA
* *
* C2 *
* *
kAR
aHRE
* *
* J1 *
* *

P
SHEERTLRRRRRRERRR
* *
* BUILD CCW'S *
* TO WRIT! *
: RCD'S 1-3 :

AERRARRERRRR SRR

AR

*
@
~

L2 2]

Eny

94

* ok

*
*
* *
* TRACK 0 *
* *
AR RR R ERK

FREREC2RF
BUILD
RECORD 2

FOR TRACK 0

B L e]

ERREERRE

XN
EX X T TS

v
REREED2 KA KRR KRR KR

*
L T e e e Y

*EZ' T,
.+ IPL'ABLE *.
DD 2301 0R -
« 2314 .
*, *
*, .k
*"YES
N
tt»ttpzt-a:tatttt
4+ BUILD cow's X
wx'gt *
* ReDVS L

: IPL TEXT RCD *
I S T T

EHG2REER A

* *
* WRITE *
* TRACK 0 OF *
‘*ALL COPIES “

HREABE AR K

s
ERH2REEERRR
* *
* WAIT *
* COMPLETION *
* OF I/0 *

*
EIEEIg S 212 Y

Routine

““*CJ#‘
:BUILD FORMaT 4, a
*FORMAT 0 bSCB'S:
'.’**#"‘3.‘*"‘.

ttt"*t*

*ADIRERK AR
* ITE *
* VTQC TRACK *
* OF ALL
‘* COPIES *
AR EREE RN

*

FREI RS RRERE
* *
* WAIT *
*FOR COMPLETION *
* OF I/0 *

AEEERRERR R

¥,
F3 .,
*

. * ANY
‘.‘ ERRORS

fadadd: LA L L EL T
BUI

FULL TRACK

[0 RMAT 0
DSCB'S

R e P S L P 2 b

LR
N w

AR
* D3 *
hEk

*
*. YES

P S

t*BMtt*tttt
* IPLCTEXT ON #*
* ALL COPIES “
ttttttatttt

v
SRCURERRA kK
* *

* WAIT *
FOR COMPLE1ION #
* OF I/0 *

RREEERRRRE
v
4" T,
* *
NO . ANY *,
ERRORS ix
T, "
*,Lx
YES
LR]

* *
* E4 #->
* *
k¥
QtttiEU‘ﬂ‘#*i‘ttt
*+IERDNSGR
e -‘—‘—‘ O-‘
* LD *
* ERRoR *

5. *
AEEARRRRR kR R R

P RN S A s 2L E T
*

*ITEHDPRNT

Fm o Fm KR —F ek
* WRITE *
* ERROR *

* MSG . *
ook ok kb k ko ok

EEERRGY R RN

)

SET
RETUEN CODE

XS

P L LT T TR T

SRk Al R R
* *
* RETURN *
* *

FRERRRRE R

EEAK
* *
* B ¥
* *

Hkk
Rk BS kR R Rk
*IEHDMSGB

B e s 2t]
* ASSEMB
* EREOR *

* MSG, *
EE T R e T e e 2

HEEERCS KRR AR EA K

NOTE 1
AREAR LD TR AR K

IR

*
SET *
RETURN CODE *
=0 *

*

*

HAOR R R ROk R kR

D

*

* RETURN *
* *
AR R K

NOTE 1 IF IPL TEXT DATA SggEOPEN Is

NOT OK A
NOT 0, IS

RET

OF 8,

Chart 35.

RDCY.

wRERQ] Rk Kk
* *
* ENTRY *
-

PR S L E et L]

LI SRR IL 2 AL LY

*
* SET UP *
* CCW'S IN *
*FUNCTION BLOCK *
RRRRR R Rk E

v
eI Y ETEE R
*

SET UP
FOR
FIRST %LT
PRI Pr T T e

LT XY
X

*EEE
* *

* D1 %->
*

C
ARERADL AR E AR E

ITE
ALL “RﬁCKS

XYy

NDER
FERRRAR AR

FERRREL SRR AR
* *
* READ *
* ALI, TRACKS OF *
: CYLINDER *
LRSS RIS 2 L)

o* END

“k, L*
* NO

ARRARGL AR bR R bk
* *

* *
* MODIFY FOR *
: NEXT CYLINDER :
Fkprbkkkkkkkrhkh

* *
* D1 *

Rk

HDPOSCK

.
+. YES
OF P
%, STRIP _.*],
* ok

*HkE

IEHDASDR

Data Cell Analysis Routine

ok ok
* * * *
* B2 * * B3 *
* * * *
*EEE *ERE
FNGERCH
*EEREB2¥ B.
- * * *
* PERFORM * * PERFORM *
* * * STRIP *
* POSITION * * TEST *
* CHECK * * *
P T e P LT R L e T L
v
c2 *. Cc3 *.
o* PR
END OF *. YES ¥ END
*. SUBCEL o Fmmm *, OF .
. *ATTERNATES. *
*. * ¥, o
*, o ¥, WX
* NO EEEA * YES
* *
* B3 *
* *
Rk
v
FakkRD2 Rk R RR R Rk HAkk D3RR FE AR
* * *
* MODITFY * * SET UP_FOR *
* FOR_NEXT * * FIRST PRIMARY *
: STRIP : * TRACK :
*
B e P T TP Y
Ak kK Aokokk
* * * *
* DI * * DL %
* * * *
*kkk EE Ty
EEETY
* *
* F3 *
* *
ok
¥,
F3 *,

rahak kL EL L EE LT L
*

: NEXT SUBCELL

*
*
* *
* MODIFY FOR *
*
*
Aok Aok Rk ok Rk kR kK

*hkk

* . x
=}
P
*ew

T2

R3]

Rk

Rk
* *
* By *
* *
R
SUBCHK
P e PR PR
* *
* PERFORM *
* SUBCELL *
* TEST *
* *
P L L T
FEAHC YRR A RRERRE
*
: RETURN :
FRRRRRE R
*
*
*
*
*
*

System Utility Programs:

IEHDASDR

95

Chart 36.

IEHDASDR Label Routine

L LT
*
: ENTRY *
FEERERER R IR *kk
* *
* B3 *
. *
hEE
B2 ‘#, EREEB3 KRR R
+* VALID *. * *
«* DEVICE *, NO * UPDATE *
*,SPECIFICATION, #——— * SERIAL AND *
*. ¥ l * OWNER FIELDS *
*. o M *
.. FERREEEERERRRRREE
* YES EET TS
* *
* D4 *
* *
rrE
h
HEC2HR RS AACTRRRELEE
* * *
READ IN * * WRITE *
* JFCB * * (EXCP) *
* (RDJFCB) _* * 5 *
* * *VOL. LABEL * Hhkok
ErrrRkERREE et * *
* Du *
* *
xex
v
ARRAAD2RE SRR R FADIFEREE R AERESDUREE RN
* * * *IEHDMSGB *
* MODIFY * WAIT B ot et bd
* DATA SET * * COMPLETION * * ASSEMBLE *
* NAME FIELD * OF EXCP * " ERROR *
* * * MESSAGE *
B T P M T]
b
I E3" ‘s, ARGk R kR
* * . . *TERDPRNT *
* OPEN * o *. YES Pt i
(TYPE J) * *. ERRORS ¥ * WRITE *
* *, ok * MESSAGE *
. * *, . * *
FERERR R . % KRR R R K
NO xRk
* *
* D4 *
* *
Enx
\ v
HRF2EN KRR FEERRPIERERERARRE AR ATl kb
* * *IEHDMSGB * * *
READ * ot it * SET *
* (EXCP) * * ASSEMBLE * * RETURN CODE *
‘*VO . LABEL ¥ * COMPLETégN : : =8 :
TRy P T AR Rk
2 % 3
*IGGO1 9P *IEHDPRNT *
P P -
* MODI * WRITE *
* DEB * MESSAGE- *
* EXTENTS * *
v v
SEH2EE RS TRt I
* * * *
* WALIT * * SET *
* COMPLETION OF * * RETURN CODE *
* EXCP * * =0 *
* *
EEERE AR FRER R
<
v
J2° s, FRTIRERRRRE
- * *
* *
ERRORS ‘* CLOSE "'
"k, o * *
*, . T T T
*"NO ke
* *
‘L * D4y *
* *
R *EEE
* *
* B3 *
* *
P RARRKIRAIR AR
*
* RETURN *
* *
EEIST PRS2 22 22 20

926

Chart 37. IEHDASDR GETALT Routine)

BRESRL RS ESBRRN
: ENTRY ¢
R AR AR AR Rk LT ezl ok
* * * * * *
* B2 * * B3 * * B4 *
* * * * * *
LT Fhkk Rk
.
Bl %, FREFEB KR RRERKAEE i Ehaaad LELELY Dbz aha e LT 2L
* * *I1GCO08B * *TEHDMSGB * *IEHDMSGB
. VALID f i e bt 2L KH— KRk Rk B T e et T
*, DEVICE —— * ASSIGN * * ASSENMBLE * * ASSEMBLE *
. SPEC. _. * ALTERNATE * * ERROR * * WRITLNG *
* ¥ * * MESSAGE * * MESSAGE *
] kR Ak Rk HREERRREERKR R LR R R T T e L P
* YES A
* *
* B3 *
* *
R
%,
ERCLAkRRAER c2 *, HEERACTERREA AR K e Lt T LS T
* * o *, *IEHDPRNT * *IEHDPRANT *
* READ IN * . *ASSIGNMENT *. NO T el 2L S g e e e e B T
* JFCB * *. SUCCESSFUL _. - * WRITE * * WRITE *
*‘ (RDJFCB) "" ‘.‘ '.‘l : MESSAGE : : MESSAGE :
EEE 2T Ll . FRRAKR R AR R AR R L T LT
* YES ke
* *
* B3 *
* * 4
hk hak
* *
v * H1 *
HAREEDL KRR ERE RS SRRHRD2 KRR RN ARk SRk RD Ik Rk ko
* * *IEADMS * * * Rk
* MODIFY * e T it 1 * SET *
* DSNAME * ASS! LE * * RETURN CODE *
* * * ALT. TRACK * * =8 *
* * * MESSAGE * * *
R ER RO oR kR *REEEES EEES L L) l
Rk
* *
* K2 *
*REL#SFhREE L hhtd Vhtbt bt L L L L * *
* *IEHDPRNT * bk b

e

* WRITE *
* MESSAGE *

* OPEN *
* (TYPE J) *
* *

* * * *
LT T TS T P T
¥,
.. HAP2RR NSRS
* *
* *
e * CLOSE *
. OC OR . * *
#.TRK 0.* * *
P B T
NO ranE
* *
* B3 *
* *
LT
ok,
Gl =, ARHERG2RRRAKAFERR
«* IS *. * *
.* BAD TRACK # * SET *
*. ANOTHER : RETURNOCODE :
, TRK . l * *
. T e P
0 ErTTs
e * *
* * * BY *
* HL *—> * *
* * an
ok
Pt WL ST EY AR AKH 2Rk kAR
* TEHDMSGB * *IEHDMSGB
B e d Ak o M B K K
* ASSEMBLE TRK. * * ASSEMBLE *
* - DESCRIPTION * * COMPLETION *
* * * MESSAGE *
P T T T M AREERERRA AR R AR R
e aa e e T T SRR T2 AR AR
* IEHDPRNT * *IEHDPRNT *
e Kb R K K K
» WRITE * * WRITE *
* MESSAGE * * MESSAGE *
* * * *
LETTL
e
* *
* K2 #->
ok * *
* * LTS
* B2 %
* *
T HARRR2 SR AR AR R
*
: RETURN :
TR T

System Utility Programs: IEHDASDR 97

Chart 38.

ARREALREEESRERE

*

* ENTRY *

* *
PR L L T T

BL %,
#ANALYZE*.
.+" FORMAT %.
. OR p
. RESTORE . l

-, o
*, ¥
*"NO 't

v NOTE
*HDL R R R
* GETMAIN *
FOR *
* DSNAME *
‘t TABLE *

*
R

tttttEltuttttat:t

*BUILD TABLE OF

‘ DDNAMES FROM *
TI! AND *

: DSNAMES o, FROM :

tt.t‘t#.#t#tttttt

AP FAERR A
* *

* *
R EEE et 21 1 2

EL
G1 *.
IN ¥ *. NOT IN
TBL _.* PROTECTED #*.

—— .

*. SETS
*

* *
—>% B2 *
* *

Frr

RRHLEERRR R
*
* (TYPE=J)

—>% PROTECTED *

* DATA *

* SETS *
kA EEE R R

o
*.
*

ttKl*tiittt
* LOSE *
* AND SET *
‘ SECUR!TY '

*
‘ttt*t*t**t

haE

nw
o
N

*ww

R

98

kR
ko
* *

* F2 %>
* *
PEe TS
Pt L PP T

SET

RETUBNSCODE

e
LT XY XY

AL L E2 L2 2l)

B ARG R Rk
‘IEHDMSGE *

* *
EERFRRRRRRAER R

ER R HE
*IEHEDPRNT
e e bt it o]
* WRITE *
: MESSAGE :

e RaERRR RN b d

FRERBRRR
*

v
EEERT2RRRERR AR
*
: RETURN *
ERRFRRRRRR R

o *.
c3 >,
- *QUTPUT *.
* TO
RECT

*. DI
ACCESS .+
* L

*.
, .
* YES
AEF
*
* D3 *->
* *
EEL L
*ADIEARR R
» E: *
* (EXCP)
* FORMAT 1
DSCB's “
LRI IR ST L]

nnaa‘
*
* UNEXPIRED *
* DATA -
* MES: SAGE
FEERERRERR

Ak
*

EREEFERD R R

FEREE N
ok *.
+*ADDITIONAL *.
*, OUTPUT .
'VOLUMES‘.‘

NO
[oty
*.

*, %

* YES whEE
* *
* ES *

LElT) bk

rew
o
@

.

LT

P SRS, ¥

IEHDASDR Password Protection Routine

S
cl *,
¥
.*" OUTPUT
TO
PRINTER .
.. .
..

*o

l
* NO

*

‘..

V
e

SET
RETURN CODE

2T

XYY

REEASREPERRRAE R

YES

St

EEE

- %
B
(L]

" ww

ELILY

AR LSRR R

SET
RETURN CODE
=0

LT
EREEY

APRRRRRRRERR kR R

R

*
* RETURN
*

*
*

ELE LI A2 ST L]

NOTE -

CONDIAIONAL GETMAIN
MAIN S

SET RLTURN
RETURN

RAGE VOT AXAILABLL,

Chart 39.
SRERR TR
*
. ENTRY *
SE bbbk nhk bbbk
ok,
BL" x,
. R
. YES
*. NEW VOL _+%—o
. R
*, ¥
« NO [Ty
* *
* Bl *
* *
1 LR L2
¥,
c1” e,
.*" POST #. YES
. UCB a2
*. REQUEST .%
L
NO e
* *
DY *
* *
ke
D1 e,
° . NO
*. GETALT _%——
. . 1
¥, &
* YES ko
* *
* GL *
* *
LI LT
*eEL #h et e
* *

READ
* (EXCP) *
* FORMAT 4 *
* DSCB *

P T Ty

¥,
F1 »,
*

*,
% ANY *, YES
*, ERRORS - B
.. o
|
*, ¥

*"NO Py
LTy
* *

* Gl *->
* *
L]

LX X

*
Fi *
*
LEL L]
¥,
Gl *.
«* MORE %,
+* ALTERNATE *. NO
. TRACKS Jt—
. L
. *
*"YES see
* H4 *
«
ek
oty
H1 *,
-¥ IS *,
«* SPECIFIED #. YES
*, TRACK AN - e
.ASSIGNED .
*q o
- L
*"no Ly
. ®
* *
223
e
LereeTLebeaseee
*
FLAG THE
TRACK °
DEFECTIVE

CEEER RN ERREE NSRS S

LX XX
E2 X X

e
- *

* E2 %
. *
ek

LIS
* *
* B2 *
* *

s

L1yl 2L L2]

* READ (EXCP) ¢
HA OF NEXT *

+ AVAIL. ALT.‘*
SRR EEARRRE
¥,
c2” s,
»
- GOOD -« _NO
*, TRACK ‘.‘
.. . "'1
L%
« YES Ly
* *
* GL *
* *
“oae
SED2EFFEREE
* *

* (EXCP *
* HA AND RO ON *
* PRT. TRK. _*

SR RE L e
hEEE
* *
* E2 *->
* *
*hEd
%,
E2 .
. *,
o *, YES
. UNCORRECTABLE. ¢ ———
#, ERROR _.*
.
* NO. *heE
* *
* G *
l kg
R
F2. e,
o %15 Ca,
.+ SPECIFIED *. YES
. CK AN <#—
.ASSIGNED .
*. ok
“+"NO wher
* H2 *
* *
kbt
REG2R R TR
S owwr *
o B
* ALT. TRK.
SEEES R RSN E S
L2 L]
*
« H2 *->
* *
¥
52" T,
. ANY . YES
*.- ERRORS A—
. .
*, %
* NO ,EkE
* *
* Fi} *
* *
Rl L)
R
32 .
. .
*. GETALT _.#
‘e, o
L s .
I YES
*heE
*
*« R3 *
*hRy

IEHDASDR SVC 82 Routine

LEeT LT
- . -
* B3 * By *
- * * *
ET T ek
*EBIsSekEtE REREIBYESEEBEEERE
bR *e i oERR s
* CP.
* A * * PROTECTED *
" FORHA% 4 “ : STORAGE :
EREERE RS ERE CEEEREEREARERR RS S
J E2T
* »
¥, * E3 *
c3 -, L *
sane
o ANY *. YES
*, ERRORS .
. o
-, . ek
., L%
* NO *hEs * D4 *
FT T * * * *
* * * FYy * T
* D3 *-> *
* - LT
L)
\
SRSEUDIHESRE SR O EEREEDYEEREER S R0 S
* * * PLACE SERIAL *#*
* RETUBR.CODE $< + OPgrsc v
* = 0 DE § * S IF *
* * * NECESSARY *
AR AR R SR EEEREREE AR ER R
LTy
* E3 #=>
ok
v
*HEREI B b e b
* -
* RETURN *
*
L T T T L.,
* FYy *
* *
L]
ERRRSFYEReR ke e B EE
* : *
- SET *
* RETURN CODE *
* =12 *
- *
EEREAREER RS AR SR
PR
. *
* E3 *
*« *
Ty
s
* HY *
* *
R
eSS HHY E SR SRR
* *
* RETURN CODE *
* = 16 *
* -
- *
SRR HAER RN ARG S S
T
* *
* E3 *
ERHE AT IR E Rk E * *
* * [T
* UPDATE *
>* ALT. TRK. *
: INFORMATION :
P PR I T T Y
e
* *
* D3 *
-
sEee

System Utility Programs:

IEHDASDR 99

This section of the manual describes the
nine data set utility programs: IEBCOPY,
IEBCOMPR, IEBGENER, IEBPTPCH, IEBUPDAT,
IEBUPDTE, IEBISAM, IEBEDIT, and IEBDG.
These programs are executed under the
Operating System/360. For their operation,
however, they require user-supplied control
statements in the input job stream.

IEBCOPY, IEBCOMPR, IEBGENER, and
IEBPTPCH are designed as overlay programs,
each consisting of three segments: the
root segment, the control card analyzer
segment, and the processor segment. The
root segment alone is loaded initially; it
links to the control card analyzer segment.
When the control statements have been ana-
lyzed, control is returned to the root,
which links to the processor segment.

The data set utility programs use QSAM
for both reading the SYSIN data set and
putting out the SYSPRINT data set. Both
data sets may have a blocking factor that
is other than one.

The storage requirements for buffers and
tables are dynamically determined at execu-
tion time to optimize space allocation and
thus permit the data set utility program to
take full advantage of any storage that is
available. If more storage is requested
than can be supplied by the Main Storage
Superxvisor routines, the task is automatic-
ally terminated. 1If, however, the request
cannot ke filled immediately because of
priority scheduling within a multi-tasking
environment, the execution of the utility
program can be delayed until its storage
requirements are met.

Updating Partitioned and Sequential
Data Sets (IEBUPDTE)

The IEBUPDTE utility program incorporates
both IBM and user—generated source language
modifications into sequential data sets or
into partitioned data sets. The input and
output data sets contain blocked or
unblocked logical records of 80 bytes or
less.

The program can:

e Add, copy, and replace members of data
sets.

e Add, delete, replace, and renumber the
records within an existing member or
data set.

Data Set Utility Programs

e Assign sequence numbers to the records
of a member or data set.

e Create a sequential master data set
from an input partitioned data set, and
vice versa.

At the completion or termination of the
program, the highest return code encoun-
tered within the program is passed to the
calling program. The utility program can
also produce a message data set containing
a listing of the contents of the output
data set, the control statements submitted
to the utility program, and, if applicable,
error messages.

Data definition (DD) statements needed
to run the program are as follows:

e SYSUT1, which defines the o0ld master
data set (sequential or partitioned).

e SYSUT2, which defines the new (updated)
master data set (sequential or
partitioned).

e SYSIN, which defines a sequential data
set containing the transactions to be
applied to the o0ld master data set.

¢ SYSPRINT, which defines a sequential
data set containing either changes to
the old master or contents of the new
master, as well as utility control sta-
tements used and any error messages
generated.

PROGRAM STRUCTURE

The program consists of three segments (or
load modules): the root segment
(IEBUPDTE), the control card analyzer seg-
ment (IEBASCAN and IEBBSCAN), and the
intialization and exit routine modules
(IEBUPNIT and IEBUPXIT).

The Root Segment

The main functions of the root segment are
the processing of records and the printing
of messages. The segment contains three
control sections (CSECTs): IEBUPDTE, IEBU-
PLOG, and IEBUPDT2. The following text
discusses the functions of each CSECT.

¢ IEBUPDTE receives initial control from
the supervisor, obtains storage for the
communication region IEBUPCON, and
passes control to module IEBUPNIT for
initialization. For writing a header

Data Set Utility Programs: IEBUPDTE 101

message on the SYSPRINT output device,
CSECT IEBUPDTE passes control to CSECT
IEBUPLOG. After the return (of con-
trol) from CSECT IEBUPLOG, CSECT
IEBUPDTE gives control to CSECT
IEBUPDT2 to begin the actual processing
of records.

e IEBUPLOG is a closed subroutine, which
writes messages and records on SYS-
PRINT. The first execution of IEBUPLOG
opens SYSPRINT and the last closes it
and returns control to the supervisor.

e IEBUPDT2, the heart of the program,
opens the old and new master data sets,
reads, processes, formats and writes
the output records, and stows member
names if the new master is partitioned.
If user labels are to be processed on
either SYSUT1 or SYSUT2, CSECT IEBUPLT2
passes control to module IEBUPXIT
through data management routines during
open, close, or end of volume proces-
sing. CSECT IEBUPDT2 passes control to
the segment IEBASCAN to scan and ana-
lyze control statements, and to CSECT
IEBUPLOG to log messages and records on
SYSPRINT.

The Control Card Analyzer Segmwent

The main functions in analyzing control
cards are performed by two CSECTs in this
segment: IEBASCAN and IEBBSCAN. The fol-
lowing text discusses the functions of each
CSECT.

e IEBASCAN scans and analyzes control
statements and sets appropriate flags
in the region IEBUPCCN. CSECT IEBASCAN
gives control to CSECT IEBUPLOG to
print a copy of the control statement.
To scan the individual parameters of
each control statement, CSECT IEBASCAN
gives control to CSECT IERBSCAN with a
doubleword parameter list, located at
address STOREG in the communication
region. For the reading of a control

102

statement continuation card, CSECT I1EB-
BSCAN gives control to CSECT IEBUPDT2.
The first word in the list is the
length of the last parameter analyzed
by CSECT IEBBSCAN. The last word con-
tains a pointer to the same parameter's
location in a buffer area, SWITCHRD.

e IEBBSCAN, which is a closed sukroutine,
receives control from CSECT IEBASCAN
and returns control either to CSECT
TEBASCAN or to CSECT IEBUPDT2 (for
reading another control card). CSECT
IEBBSCAN scans the individual parame-
ters on each control statement. If
diagnostic ressages are required as a
result of the scanning, control is
given to CSECT IEBUPLOG.

Initialization and Exit Routine Modules

There are two modules in this groug.
are descriked in the following text.

They

e IEBUPNIT is the initialization module.
This module is a closed subroutine that
receives control from CSECT IEBUPDTE
for the purpose of initializing the
region IEBUPCON, analyzing the parame-
ters on the EXEC card, and opening the
SYSIN data set.

e TEBUPXIT is the module containing the
program's exit routines. For each of
the three DCBs (SYSIN, S¥YSUT1, and SYS-
UT2), this module contains an entry
point for each of the following closed
subroutines: DCB exit, header-label
exit, trailer-label exit, SYNAD exit,
and end-of-data exit (there is no end-
of-data exit for the SYSUT2 data set).

PRCGRAM FLOW

Figure 41 shows the overall flow of the
program; more detailed flow is shown in
Charts 40 and 41.

(Entry >

IEBUPDTE

Get IEBUPCON
Storage using OBTAIN
macro instruction

IEBUPXIT

IEBUPDTZ

Program exits
(DCB, labels, EOD,
SYNAD).

Open data sets.
Process requests,

IEBUPNIT IEBUPLOG
Initialize [EBUPCON. Open SYSPRINT.
Open SYSIN. Analyze Write header
EXEC Card. message.

IEBUPLOG

Write Records,

and messages.
Close SYSPRINT.

IEBUPLOG

IEBASCAN

Print copy of
Control statement.

Analyzes Control
statements. Sets
flags in IEBUPCON,

Return

IEBUPDT2

{EBUPLOG IEBBSCAN
Write Parameter Scan card
Diagnostic messages. parameters.

e Figure 41. IEBUPDTE Overall Flow

PROCESSOR DATA FLOW

Figure 42 indicates the paths taken by data
from SYSUT1 and SYSIN. The following is a
breakdown of data flow within the processor
(IEBUPDT2) according to the type of run:
NEW or MCD.

NEW: This type of tramsaction involves
reading data from SYSIN and writing it on
SYSUT2 and (if specified) on SYSPRINT.
Logical records are read in turn from SYSIN
into the input buffer at SWITCHRD+1l; rec-
ords are then stacked in the SYSUT2 output
buffer at NMWRITEP until the desired bklock-
ing factor is reached. A physical record
is then written on the new master (SYSUT2).
This process is repeated until SYSIN has
been exhausted. If the SYSUT2 data set is
partitioned (as indicated by the NAME key-
word) the member name is stowed.

MOD: This type of transaction involves
reading data from SYSUT1 (the old master
data set) and SYSIN, merging them as indi-
cated on function and detail statements,
and writing the resultant data on SYSUT2.
The updated master is written on SYSUT1
only when UPDATE=INPLACE is specified.

Read continuation of
Control statement.

For a REPRO run, a physical record is
read from SYSUT1 into the buffer
OMREADP, logical records are then moved
individually to OMINAREA for inspection
and then to the output buffer NMWRITEP
until the desired output blocking fac-
tor is reached; the output record is
then written on SYSUT2.

For an ADD run, records are read from
SYSIN and are stacked in the output
buffer NMWRITEP until the desired
blocking factor is reached. The output
record is then written on SYSUT2. If
the data set is partitioned, the member
name specified is stowed in the direc-
tory of the new master. If nunbering
of records is specified, it is per-
formed in the input buffer, SWITCHRD+1.

For a REPL run, the flow is similar,
except that the new data from SYSIN
replaces the member specified. Number-
ing, if specified, is performed in the
input buffer SWITCHRD+1.

For a CHANGE run, which operates within
a data set or member of a partitioned
data set, records may be changed,

Data Set Utility Programs: 1EBUPDTE 103

104

deleted, numbered or added, depending
on the detail statements and data cards
following the change statement. When
one of these statements (DELETE, NUMB-
ER, or DATA) has been read from SYSIN
into the buffer SWITCHRD+1l, a record is
read from the o0ld master (SYSUT1) into
the kuffer OMREADP and is processed as
follows (see also Figure 42).

1. A logical old master record is
moved from the buffer OMREADP to
OMINAREA, and its sequence number
(OM) is compared against SEC1, if
number or delete is in effect, and
otherwise against the SYSIN record
sequence number.

2. If OM is less than SEQ1, the old
master logical record is moved to
the output buffer NMWRITEP, and
the next 0ld master record is
moved into OMINAREA.

3. If SEQ1l is less than or equal to
OM, and OM is less than or equal
to SEQ2, the old master is
updated:

e If the old master logical record
is to be deleted, the next old
master logical record is moved
to overlay it in OMINAREA.

e If data is to be inserted, (if
the SYSIN sequence number is
less than OM) the SYSIN data
statement in SWITCHRD+1 is re-
numbered if necessary and moved
to the output buffer NMWRITEP,
and the next SYSIN record is

read. If OM equals the SYSIN
sequence numker, the SYSIN reco-
rd replaces the old master
record.

e If the SYSIN sequence number
equals OM and COLUMN UPDATE was
specified, the portion of the
record in OMINAREA not to be
updated is moved to its corres-
ponding relative position in the
buffer SWITCHRD+1l, this updated
record is renumbered if neces-
sary and then moved to the out-
put buffer NMWRITEP, and the
next SYSIN and old master rec-
ords are read.

e If the o0ld master record is to
be numbered, the indicated
sequence number is stored in it,
and the updated master record is
moved to the output buffer
NMWRITEP. The next old master
logical record is then moved
into OMINAREA.

When OM is greater than SEQ2,
IEBUPDTE checks to see that record
SEQ1 was actually processed
(deleted or numbered), if it was
not, an error message is written
and the member update terminates.
If it was, the next record from
the o0ld master is moved into
OMINAREA, and the next record from
SYSIN is read into SWITCHRD+1.
Processing of the previous number
or delete statement is considered
finished.

Pre-Processing

Initialization (IEBUPDTE,

IEBUPNIT)

Control Statement Analysis (IEBASCAN)

/ SYSIN (changes to master)

SYSPRINT (messages and
statements)

{ SYSUT2 (new master)

/ SYSUTT (old master)

EXEC PGM=IEBUPDTE

PARM= { INHDR

These modules analyze

parameters from |

EXEC statement, get
main for IEBUPCON
work area, clear
switches, prepare to
open data sets

IEBUPCON
DSECT

NEW, MOD
‘ [

INTLR

. . 1EBBSCAN scans
Function or detail d d
statement from SYSIN @ command wor

or keyword

SWITCHRD+1
./ ADD NEW=PO

[./ ADD NEW=PO

Keyword or
command word

Processor (IEBUPDT2)

READOM
reads old
master

(MOD run only)

%,

OPENCHK checks

for

DSORG, blocking
blocksize, user
header label;

open errors—

(&

also gets main

for

Buffer
OMREADP

buffers

—

NOTSHORT
moves logical
record to

(—

temporary area

analysis routine — T
primes work area
for fransaction
COMDTAB
—={ ADD
/3
/
8 | 4
OPRLUP uses KEVTAS
keyword or
command word
to look up L] NEW
address of
analysis routine
e 8 -—r<—4 L

Program exits as required (IEBUPXIT)

Message Log - also opens SYSPRINT DCB, spaces, prints

Buffer head, tc. (IEBUPLOG
SWITCHRD+1 OMINAREA N ory et)
Data Card T Me . .
(SYSIN) ! ssages are built by passing a message number (3 here)
TTNEW SYSIN and branching to MSGSTART
run, -
is sole input) G‘I’;D%’E'-’UMN —— = MSGSTART
WRITEREP moves l
unupdated part of { BAL GRé ,MSGTEST
record onto data 1 |D1
card image when MSGTEST 2 | D2
SWITCHRD+1 scans table
D3
equals OMINAREA for message 3 (Vg)h?snf:j:;ig;::gz:s
nember (MSGSTART+8) is
added to displacement
ilaniie factor (D3) to form
TESTLIST moves old address of message
T:ZT';IfI [;r:,of‘fl:: fcc:rd record directly to MSGnnBLD builder
;NSE;ERT REPIAC()ZE buffer if no update (MSGO3BLD here)
N svxfer CHRD+1 needed; OMINAREA sefs up message
VL E)nMINAREA < SWITCHRD+1 text address and
N size from tables L. Message Table
Buffer L
NMWRITEP MSGWRTE tacks 03 | Text
LOGOUTAR message number
NMLSTWRT n on text, moves
writes the to buffer
updated
record WRITELOG l Header
writes message
or header
eFigure 42. IEBUPDTE Principle of QOperation
Data Set Utility Programs: IEBUPDTE

105

®* Chart 40.

IEBUPNIT
ii"‘Ali.tt‘!*t’t
* SET WOR!(

SE' T &
+PE VY swz:cca, X
* ANALYZE EXEC® *

* PARMS *
LRSS R T T L LT B

IEBUPNIT vV
ot =) Rkt
* REINITIALIZE
* SWI

XY

* INITIAL ENTRY
FEREEERRRRREE RN
Bkkk

*40 %

* CL %>
* *

*REk
READSW1 ¥

.
% READ- *.
.+ NO-MORE *
->+] FROM SYSIN
[*. SWITCH .*
*

*
. SET .
D
NO

READSW1 o *.
D1

PR iR ST L L L
it St S S BT]
* READ A *
* RECORD
* FROM SLSIN *
LR e e

*

F1~ ",
* *,
EQF ON *.
SYSIN .

YES %’

wkkkk *
¥4l *
* E2%

61’

* ¥,
FUNCTION #*,
STATEMENT . *

“x. .
*, %
+"YES

o*
———,
*

ttt!tﬂl'l.tt‘t*#t
SET UP DCB

+ "FOR PS OR _ *

—>+ PDS FROM DATA *
[* INITIAL =+
*

i
2+
&)

* FUNCTION CARD *
L L e
*k

. *,
O .* FULL *.
» LIST OPTION .*

L *. *
. ¥

Rk + YES

* *

* A2 *

* *

EEEE
FEERRKLEERERRERRE
* TEBUPLOG
W ke F e N Rk
* SET LIST Sw %
* WRITE THE

SYSOUT RECORD *
mtt*tav»**#ustt*

ekE

*
*

*
*

Rk

IEBUPDTE (Part 1 of 2)

OPENOM NOTE
ELL Iy VIS PR+ BRI SRS LAY
*INITIALLY OPEN * *
OLD AN * * NUMBER SWITCH * YES
—>% NEW MASTER “ SEABLISH ‘<— -
* ATA * STAR
* SYSUTl/SYSUTZ ’ * INCRJ.MENT
»% T ut»t
*kkE
* *
* A2 *
* *
EEE 2]
¥
B2 #. *EERABIRRRR R RRE
* * R THIS *
. SEQFLD * FUNCTION *
* PARAMETER ~—>* SUBSTITUTE ID *
. - * SIZE AND LOC *
*, ¥ 73-8 *
* . ¥ ERREEERRREREFFF S
NO P
Eak *41 *
* E2%
* C2 *-> * *
*
ok
o,
c2 *. ERERRC IR E K
.* ADD *.
+* OR REPL
N *, FUNCTION
, o REPL IF F
*, L% b hRARE KRR
b id * NO
*4] *
* Au*
* X
*
v
. ¥
D2 *, D3 *.
¥ ¥ .
-* CHANGE *, NO * REPRO *, NO
L *. FU‘!CTION e)*.‘ FUNCTION . S
*, o+ *, o*
*. % . ¥
* YES * YES
* *
*40 *
* D1*
SRR
v
AkRHE2 Rk Rk Rk H AR RE I kbR Rk
* * * *
* SET * * SET *
* CHANGE e * REPRO SWITCH *
+ SWITch * l : *
B B L P
Pl
EEE T 41 *
* * A
* 02 *<-
* *
kR l NO
F2_ ., tttt#i‘3tl*titii#t
-* FIRST *.
. SYSIN . P, s
——>%. STATEMENT .¥* r——)*RE}\D OLD MAS'I‘ER‘l
*.FUNCTION .+ + RECO M
*, L% R L e
* YES
bt Y L bl g3~ s
* IEBUPLOG * B
NO B Tt e e o *,
..... STATEMENT * *.0ON OLD MASTER.*¥———
* SEQUENCE * . .
* .RRO! * *, ¥
ELAE R e L 2L L 1 L
* NO ok
41
* H1*
* ¥
*
FLUSHALL _ V
;otat}lz*--t:atttot Aok ok [3ok ok ko
* IEBUPLOG * N
Hr e e W R e t—* el o e B o K
>' GIVE_INITIAL * ——— LOCK/WRITE *
FLUSH * * RECORD ONTO *
MESSAGE * * W MASTER *
ereaine *
* %
40 *
* H2%
P
v
J2°© e, xﬂ-u‘aatu":ttu
. *, *
-* UPDATING *. NO CLEAR CONTROL *
* ., PHYSICAL SEQ ‘——-————--)* CARD SWITCHES *—=————w- >
*. ATA . * SET_FLUSH *
. SET .=
- . ER R PR R S L 2
* YES
P v s e T T
* EBUPLOG *
L B it s bl YES
* CANNOT UPDATE *——- o
* MULTIPLE PS ‘
* PER JOB STEP
43 JOLL IR 1
Ak P i
*41 *41 *
* H2% * E2%
%
*

*
* &
*41 *
* H1¥*
R
A
¥ l .
A4 *, Lanady G LTI LT LY
¥ *. * *
+* NUMBER *, NO * SET *
. STATEMENT . —— *COMMAND PENDING¥
*, . * SWITCH *
*, ¥ * *
*, % ERRR kR
* N
A
NO YES
BY *, B5 *.
o* *, «* NEXT *,
* EOF *. <% FUNCTIOWN *.
OoN sYsid o* —>%, STATEMEJNT .¥
*, ¥ *, %
*, il *. ¥
*, % * ¥
T NO
IS
um-mcutjnunn FREFRCSTRR AR RRA AN
* N TWR! *
L s —ke ke KAk Rk

MA!
EELETEE et 2T Y FREERER R RO RERRE

4w,
*
YES
*“-l
kkER
41 *
* E2%
* %
*
‘?**'Lﬁ.‘t*“‘ﬁ“
% IEBUPLOG _ *
. NO ke o K K Hm K Hm
. —---—-->t . STATEMRNT f
+ SEQUENC *
REREEERERE R R RRF
EL L 2]
* *
->% H2 *
* *
k&K
ELE 2T LS ST T T g
* *
. NO * IGNORE *
*. PARTITIONED . *———m—mme >*ALIAS STATEMENTY
* *
. . ERIET T2 R R L2 2 2
+"YES
R
*
->% Cc1 *
* *
*ERE
HREERGUEEREEREE kK
* *
*
+ SET ALIAS #——o
+ " SWITCH]7
AEEEEEREE KRR EEE R F
ek
* *
*Cl ¥
* *
¥k
NOTE: INCLUDES EXIT
ENCODTE WE TEBUBXIT.
(SEE NOTE ON CHART 41.)
Ak Tl ok kAR K EREESTSRARRERER R
* READCC * * IEBUPLOG _ *
L e e e et =L] A e K e M i B
* READ NEXT fCemm—omme * GIVE FLUSH *
* ONTROL ~ * * ScAN »
* STATEMENT ok * NMESSAGE %
A
50
RN RN
K4 e x5~ s,
.x . * ..
- *. NO . FUNCTION “%.
+1, ON SYSIN | l#e—mmeoo >+, STATEMENT _.*
.. 0 N o
*, ¥ x, ¥
* ' ypsg
t- L2 L]
* *
>+ HL *
* *
FREF

e Chart 41.

IEBUPDTE (Part 2 of 2)

ok HodoR R
1l * *4y] *
* Al* * Al
* * ¥
* *
NOTH: BETWELN THESE
TWO BLOCKS,
CHNGEANL
(IEBASCAN) . *. ¥, N
Al s, a2 RSy Al e,
. . o * SET D: Is * .
«* DELETE . *. YES YES *PENDING SWITCH." . E. NO l". YES
, STATEMENT . #———————=D>%, DELETE SWI‘I‘CH.‘—— —————— >* READ NO_M e >*, MORE OLD —
*. ¥ * SYSIN A * MASTER SW.*
. o Tx, o * SWITCH SET *. SET o*
ook *. ¥ BOR-L 4 2 .
NO * NO *" 3o
4
LTS PR LR TR T tuugutxuuuu
* * M
* DELETE SWITCH * *-*-: t-* i t
* BND ESTABLISH *—-
DELETE RAN ¥ ReSORD Prow +
* * * OLD MASTER *
P S T P T Y T T T T
RRERE
*4Q *
* D1¥ PAN—
¥, o*. ¥ OMEODX
ct” T, c2 tl*ttc3t*tt***lt* [R RRCS k kR Rk Rk k
-* . ¥ . *SET mND-QF- *
*. YES "%, YES *, YES *MASTER SWITCh, *
*. NUMBER e >¥ . NUMBER SWITCH) >*PENDING SWITCH *—-—-—- *.0N OLD MASTER.*¥—————e— >* READ-J0- 4OR|
. . READ-NQ-MORE A . % NOTE * OLD MA: *
*, * T, .* SYSIN SWITCH *. - * SWITCH *
*, * *, L% “ununntu*t *, o* R Rk
NO *"NO NO
Rk
* *
* HL *<—
* *
R NO
- ok, P
Erk AR 2R E R RRAAE D3 x, b4’ s, L5 .
* * . *, * *,
NUMBER RANGE .*" CHANGE *. YES 0 . * Is *, NG .* ALREADY *.
AND ESTABLISH #——- *. FUNCTION .#--"J __“#(DELETE swaCaw(-------- *. HAD EOD ON .*
MENT l .. o* * 7o * S UsYSIN J*
*, ok *, ok *, oK
Aok ok kR R *, % *, ¥ *. ¥
ERERE * * YES * ¥nS
Py g 40 * A FHrr
*4] * * D1* * *
* B2 #—— * % —>* H1 *
J * * L * *
hEk Rk
L *NOTE o ¥,
E1T . *, FRAAKEI R LAttt 4w,
« *, ¥ . * SET END OF o IS OM *.
. SYSIN *, YES *. NO * SYSIN SWITCH, * «* RECORD *., YES
*. E.ND OF FILE . %=——————e] >%, IGNORE EOF . ¥——w—————-] >% READ-NO-MORE ™ * *.WITHIN DELETE.*——-
[920) . .* NOTE * SWITCH ON *" ; SYSIN SWITCH : *, RANGE .*
.*. .*. ‘ EER ISR LRSS LR LSS 2] *, .t.
NO " YES * K
* *
| ----------- > * Ay *
* *
*E Ak
4 *
F1 %, F2 *, P T LI L T T X FREREES FRR AR RRK
¥ *, ¥ *, * RESET EOF * * *
-* V LID *, o DATA *, YES * SWITCH * HIGH *DATA RLCOAD‘ Low LOAD REGISTER *
*. NCTION . ——D% RECORD ¥ * RESET DC * 22110 OM RECORD . %= X
* STATEMBNI‘ *. (NO ./) .* * IFLGS TO RERD * *. ¥ UATA RECOKRD
. o . . * MORE CARDS * *. * * *
., % EI Fok Aok R R d R kR ROk K *, % ARk KRR
" YES *"NO kK ok *EQUAL
* * * *
* By * * {3 *
* * * *
ok Ak
s SCANERR
FrORACLERtEL L ARG ARk KK AR AR RGS Rk Rk Rk R AR ARG FA ok ¥Rk THERIGSERE knppy
SET COMMAND * * IEBUPLOG * * . * * * * SAVE OLD
PE N * o e ok K R * LOAD REGISTER * * LOCAD REGISToR * * MASTEE ‘
* SWITCH, AND *-—— * INVALID e * TO_/*DATA * * TO POINT TO * * XECORD-SkT *
"‘ READ-NQ-MORE CONTROL * RECGRD * DATA RECURL * * READ—NO ORL ¥
SYSIN Sl C] STATEMENT * * * * WITCH *
PIREE P Rk RO R kR ook Rk kR ok ok Hok kR Rk kR kKK AR R AR Rk
HEEE Rk
Rk * * EERR *4Q ¥ *Hkk
* * * AU * *41 % * H2% * *
* HL ¥ * * * H2 Kee * * * H3 #——
* * 11 . * * l <
TR EEEK LTS
k. LASTLEG .
H1 *, ko kD &k Rk ok ok Rk Akokok ok] 3 koK ok ok ROk ok d4 M ARk RLS kR Rk kR R ¥
¥ *. 5] * SAVE SYSIN * ¥ * *
o* *. * DATA RECORD, * I * RENUMBER *
~>%, PARTITIONED . * SET READ-NO=- % —=>%,NUMBER SWITCH . *-. ~>¥RECORD POGINTLD *
.DATA SET . * MESSAGES * MORE_SYSIN * ON *TO BY KEGISTLR *
. . * * * SWITCH * *, ¥ *
*, . T T T e SRRk Rk ok .k SRR AR R AR R
* YES * NO
*
*41 *
* Hlk
e <
v .
Aok TR Rk dokok ok T 3k ko Rk kK au" Tk, FHRRRIS AR Lkt k
* ST 1 * kT 2Rk ARk * * oK *, IEBUPLOG
L il At S B L B * RETURN * * LOAD REGISTER * ok 1S *, " YES ek -t-t-‘-#-t—#
* STOW * * TO SUPERVISOR * *WITH POINTER TO¥—w—m——=d *. LIST SWITCH . ¥=—=—m——w > ¥ TE *
* MEMBER * * * * OLD MASTER * *o ON o* * RECORD o *
* N * LT TP PR P P * KECORD * * o * SYS: W *
AR R Rk R R KR kAR R AR AR . .x AR AR OR KRk K
* NO
<
v
K1l *, Aok kKK D ok R ok ok ok K oo KK ok ko kR ROk
* * STOWNAME * * NMLSTWRT *
o LIAS He ke kK ¥ ke = M Kk
. SWITCH > STOW * * BLOCK/WRITE *—e-
. SET * ALLAS * * .COR] *
*, . NAME Tk, o * MA: *
*ouk B L R T E AR AR R K SRRk
NO * ok Aok Aok
*Y40 * *U4() *
Cl * Cl¥
* ¥
EEEEE *
*4Q =
* C1x
* *
*

Data Set Utility Programs:

IEBUPDTE 107

Copying and Mergin%Partitioned
Data Set Members (IEBCOPY)

The IEBCCPY program reproduces all or
selected members of a partitioned data set.
During the copy operation, physical data
set compression (in-place recovery of unus-
able partitioned data set space) can occur
since only the currently active members are
processed. In addition, this program may
be used to merge members from one data set
into an already existing data set.

Input to the IEBCOPY program must ke a
partitioned data set. The data set must
reside on a direct access device and be
contained within one physical volume. The
input records can be U, F, or V format. If
F or V format, they can be blocked or
unblocked. Keys, relative track address
pointers (TTRNs) within the directory, and
note lists are permitted.

The output of the IEBCOPY program is
also a partitioned data set. It must
reside on a direct access device and be
contained within one physical volume.

PROGRAM STRUCTURE

The program (Figure 43) consists of three
segments: the root segment, the control
card analyzer segment, and the processor
segment.

The Root Segment

The root segment initializes the program.
It consists of routine IEBCOPYA.

IEBCOPYA
stores optionally specified data
definition (DD) names in a common
table area for later insertion into
their corresponding data control
blocks (DCB) and inserts an optionally
supplied initial page number into the
page line to ke written on the system
print (SYSPRINT) data set.

The Control Card Analyzer Segment

The contreol card analyzer segment,
IEBCCPYC, reads and processes the control
cards. It consists of two routines: ANALY
and ACTCCS.

ANALY
calls ACTCCS to process the control
cards. Based on the parameters supp-
lied in the control cards the ANALYZER
sets switches and builds parareter
takles.

108

ACTCCS
opens SYSIN; reads the control cards
and passes the location, length, and
identification of the parameters to
the ANALY routine; and then closes
SYSIN.

The Processor Segment

The processor segment, IEBCOPYD, performs
the copying operation. It consists of nine

routines: MAIN, BDIF, REJECT, TOTAL,
FIRST, REBLOCK, SETOPSWO, EOD, and COMREAD.
MAIN

saves the length of the member name
table and performs initialization to
force the reading of the entire input
directory if member exclusion is
requested. This routine also opens
the input data set (SYSUT1) for read-
ing by means of BPAM and determines,
during the DCEB exit, whether a total
or a selective copy is requested. 1If
a total copy is requested, the DCB
parameters are saved and the accessing
method (BPAM) is changed to BSAM to
allow the directory to be read.

BDIF
employs user-supplied member names and
aliases to extract the corresponding
entries from the input directory when
an inclusive copy is requested.

REJECT
compares all the namwes in the input
directory against the list of user-
supplied names when an exclusive copy
is requested. If a match is obtained,
the corresponding member is not
processed.

TCTAL
reads the input directory a block at a
time into a buffer, calculates the
length of the table required to store
the directory entries, requests
storage for the takle, and rereads the
input directory (exclusive of user
data) into the takle. At the conclu-
sion of TCTAL, the input buffer is
released and the address and length of
the table is saved.

FIRST
tests for TTRNs in the user data field
of the directory and reads the note
list, (if one exists) into the note
list buffers. (See the publication,
IBM System/360 Operating System:
Supervisor and Data Management Ser-
vices, Form C28-6646 for a description
of note lists.) Then, except for the
compress function, the routine reads a
normal record. Fcr the compress func-
tion, this routine then gives control
to the COMREAD routine.

REBLCCK
initiates read and write operations as
required by the status of the in/out
buffer and supplies the move (HMCVE)
subroutine with the logical record
length and the "from"™ and "to"
addresses. .

SETOPSWO .
writes the merber record (in original
form, reblocked, or as an update note
list) on the output data set (SYSUT2).
(For the compress function, this rou-
tine is not used. The COMREAD routine
does the writing of records in this
case.)

EOD
stores the required data in the output
directory (member names, aliases, user
data, etc.).

COMREAD
performs the reading and writing
operations when the compress function
is specified. If note lists (records
which contain pointers to blocks
within a given mermber of a rartitiomned
data set) are present, this routine
will update them. The routine also
reads and writes the member records
(of a PDS) one track at a time and
updates the TTRNs of a user data field
when necessary.

———d

| Control |

| carxd |

| Analyzer]| {
¥

SE——

|
| Pxrocessor|
|
L

-
-
U g S ——

' Cverlay Structure of the IEBCO-
PY Program

Figure 43.

PROGRAM FLOW

Charts 42 and 43 show the flow of control
through the program. After the program is
entered, it sets switches, assigns data
areas, and opens SYSPRINT. The header line
is written on SYSPRINT at this time using
the optionally supplied initial page
nember.

The control card analyzer routine picks
up the control statements from SYSIN and
places them in tables within the IEBCOPY
program.

A test is then made to determine if an
exclusive copy was requested. For an
exclusive copy, the user lists the names of
the members that are not to be copied. The
input data set directory is then read to
determine the names of the members that are
to be copied. If an inclusive copy is spe-
cified, all mewbers listed are copied.

Next, the input data set (SYSUT1) is
opened. If a total, an exclusive, or a
compress copy is to be performed, the DCB
parameters are saved and the basic sequen-
tial access method (BSAM) is used to read
the directory. For the compress function,
storage areas will alsc be allocated for
use as buffers. Once the directory is read
and all the entries are stored in a table,
the access functions are performed either
by using BPAM (for all but the compress
function) or by using the XDAP (execute
direct access program) racro instruction
(for the compress function). For a
description of the XDAP macro instruction,
see the publication IBM System/360 Operat-
ing System: System Programmer's Guide,

Form C28-6550.

The output data set is then opened and,
during the DCB exit, the DCBs of the input
(SYSUT1) and output (SYSUT2) data sets are
checked for valid reblocking requests.

For a valid reblocking request, switches
are set to establish a.linkage to the
reblocking routine. Space for the in/out
buffer is also allocated at this time. If
there is to be reblocking, a second buffer
(in/out) is obtained. The length of the
in/out buffer is equal to the input block
size plus the key length.

The program is now ready for the names
of the members that are to be copied. If
the copry is to be either total, exclusive,
or compress, the entire directory has
already kbeen read and saved. If the copy
is inclusive, however, the member names and
aliases which were provided by the user in
the control statements and the correspond-
ing entries are extracted from the direc-
tory at this time.

Directory entries, related to the mem-
bers that are to be copied, are sorted and
grouped by member name and physical disk
address (TTR). A member name precedes all
its aliases. If member exclusion is
requested, the names in the directory are
compared against the user-supplied names.
When a match occurs, that member is not
processed.

The user data field for the member name
extracted from the input directory is
interrogated. If the user data field con-
tains note list pointers, a note list buff-

Data Set Utility Programs: IEBCOPY 109

er is allocated and the note list is read
to determine its length.

After the note list (if one exists) is
read, the next processing steps depend ugon
whether the compress function has been
specified.

Copying Without Data Set Compression

If data sets are to be copied without com-
pression, a physical record is read into
the in/out buffer. If reblocking is
requested, a reblocking routine affects the
new block size. The HMOVE subroutine is
used to transfer logical records from the
in/out buffer to the reblocking buffer from
which the new block is written. When
reblocking is not requested, physical rec-
ords are written directly from the in/out
buffer.

Before writing records for which
reblocking has not been requested, the
track address (TTR) for each physical reco-
rd is compared to the entries within the
note list. If a match occurs, a switch is
set to indicate that pointers have been
found that will require updating. BAfter
each physical record is written, the track
address pointer (TTRN) for the output reco-
rd is noted. This new (output) pointer
replaces the former (input) pointer in
either the directory entry or the note list
(or toth) depending on where it appeared in
the input.

110

When the end-of-data for a wrember is
reached, the member name and all aliases
pertaining to that memker are stored in the
output directory. If the member name table
indicates that more members remain to be
copied, the copying process resumes. If
the member name takle is exhausted, job
termination is initiated; registers are
restored, a termination (normal or abnorm-
al) message is written onto SYSPRINT, the
proper return code is set, and control is
returned to the control program.

Copying With Data Set Compression

When data set compression has been speci-
fied (by the PARM = COMPRESS parameter on
the EXEC control card), the COMREAD routine
first uses a subroutine to convert the
relative track address of a member record
to an actual track address. Then the uti-
lity program obtains the blocksize (from
the data set parameters) and uses the XDAP
macro instruction to read the record into a
buffer. The actual numker of bytes read
into the buffer is calculated from the
residual byte count appearing in the chan-
nel command word. If the record ccntains
TTRNs or is a note list, an indicating
switch in the buffer table is set. After
all records on a track have been read and
inspected, they are written on the output
data set (SYSUT2). When all the records of
a member have been written, any TTRNs in
the directory and any note lists are
updated. Processing then continues as
described for copying without the compress
specification.

e Chart 42.

IEBCOPY -~ Copying

ek
* *
* A2 %
* *
T
ENTRY ‘L
IBEBECOPYA .‘. -,
kR A] wkERdokkk Rk A2 Al *,
* SET SWITCHES, * . *.)
* ASSIGN DATA * ‘RLBLOCRING *, YES o * COMPRESS '. YES
RAREAS, ANALYZE ‘ +, REQUESTED _ «¥~————w=—-, S>, FUNCTION o #¥——=e——y
* LENKAGE . . *.SPECIFIED.* Hhrer
% paRAMETERS o* ware 2042 &
PR 410 L €, .k . * % Bl
* NO * NO * B4 * *
* * *
IEBCOPYC NOSETV o SeTOC
HRERFL] Rk R R Rk B2 *, ttttt:ﬁttttttat‘t tttitm;'#ttunn:t*
* ANALYZER x .4 .
Xk kRN YES .* COMPRE:S *. ‘ STORAGE FOR " *-"-*-*"‘-"—'-*'*
§ PROCESS * —-—%, FUNCTION % leee——* REBLOCKING * * ERROR | am—
* CONTRQL CARDS * * . SPECIFLED.* BUFFER * * ROUTINE *
* OPEN SYSPRINT * . o * * M
KRR KK *, FERE R RR R FAERE R RERE KRR
A “x” NO
* * Ere
* C3 % * *
* C3 e
*Hkk * * s
L
(I&BCOPYA) NOTR: TEST BDIF .,
FRRERCL R rrkkknkk SWITCH *ttt#CZttt#‘tttt‘ c3” =,
* IF ANALYZER %‘ALY{ ALLOCAT .
* FINDS ERROR * ER ‘ STORAGE FOR * TOTAL *. YES
ET C. . * N/OUT W >*. _ COPY o F———
*QTRERWISE GO TO‘!KRO:(* DUE’FER * *.REQUESTED. *
* IEBCOP * * *, .*
FEEARE o L
*"NO R
PrrTs * *
* * * P4 *
* D2 ¥em * *
* * L2l 2]
MAIN hid i l N
(IEBCOPYD) . *. Y o ¥, EXLST
D1 *, D2 *, D3 *, Ak D) Rk oK Ok
¥ *, ¥ *. o ., * DETERMINE
NO .* EXCLUSIVE *. NO .* COMPRESS *. «* EXCLUSIVE *. EXCL * ERS Q0T *
=% - ~==%, FUNCTIO o* *, ke ————>% TO BE COPIED. *
%, REQUESTED. * [*+.SPECIFIED. * * INCLUSIVE. * * Up_TAELE *
*, o *. ¥ *,COPY . % * ' SAME, *
. Lk *, L% . 0 HERERERBERE R KRR E
* YES YES INCL
DECOMP \
E1 c“#tE3t":0tt‘*#tt
* SRVE LENGTH * GET MAXIMUM * FOR MEMBERS *
* F MEMBER * TRACK CAPACITY * TO BE COPIED *
* NAME TABLE. * QF DEVIC. *EXTRACT ENTRIES‘
* ‘ SPECIFIED. * FROM INPUT
*READ DIRECTORY CALCULATE SIZE ¥ DIRECTORY.
t.‘t#i‘ti#t‘ttt** NTERNAL t."tumtwu.tmn
ok
_— *
* Fit *->
* *
V hkx
OPEN ¥, PREBEG1L
FEFLERRERK F3 s, [da L aadidbd
* OPEN * «* ERROR *. *)(T
* INPUT * YES .*_ DURING *, NO * RECTORY *
* CATA SET * ——%, EXTRACTION .#*———————- > * ENTRI LS (SEn #*
* (SYSUT1) * *, ¥ * NOTE 2 AT *
* * *. o* * K LGHT *
P .. ERRRAE AR AR
whaw *
* * R
* B4 % 2 *
* * * Gl *—>
SR > P * ok [S S—
- b v
S TOTAL 1 TVAL .
Gl . FEEERC2 AR HEER AR E utuensnotcut a4 Tx,
* E, INPUT e * FR INPUT - *,
¥ OPEN *. NO *DIRECTORY. CALC* * DIRECTORY NO .#* REJECT *,
*, OK PR et SIZE OF BUFFER * * EXTRACT USER *(————--—--* THIS o ¥
- . * TABLE. SET UP ‘ # DATA FOR THIS * MEMBER
, o * DIRCT LE * MEMLBER * *o ¥
*. ok MRS L2 S * .k
*"YES LTS * YES
* *
* By *
* *
LT T
* *
TOTEST .*. SEE NOTE 1, BELOW: * J1 * ¥,
HL® T, * * H3 . t*ttwﬂqtuunut
. - ok ¥ . SKIL HIS *
" TOTAL *. YES * * YES gR R *, " MbMBnR. *
., COPY o Ko * Bl #<ammo k] * * GET NEXT Hmemm
*.REQUESTED. * * * EXTRACTION » * MEMBER
*, o o * *
., . ‘%, FER R KKK
*"NO O * uo
Ex * *
* * * D2 *
* J1 %> * *
* * R
*HE
OPENOQUT o,
kT LRk J *, AR TRk
* OPEN * % DOES #*., * *
* QUTBUT * .+ THIS *. YES SET SWITCH *
* DATA SE * —*, ENTRY o Hmmme e ¥ FOI! NUMBER et
* (SYSUT2 * *. CONTAIN .* * TTRN *
* * *,TTRNS. * * *
AR L R Rk
* NO
IR
*y2 kk
* J3#¥ K3 ‘->
P
RS ERO R GETNL
K1 *, K3 *, EI T FOET DI TR L)
. L *, * *
. . NO YES .*% COMPRESS *. NO * READ THE *
*. OPEN o —, ¥ * NOTE LIST *
OK l l *. SPEGIFLED. * l * *
. * ¥ o * *
. o . % P TP Y
*"YES e e * ERRRE
* * *43 43 *
* By * * A2% * D1*
* * * % * ¥
(1) sxxk NOTE 1: * *
* * ———— .
* A2 * WHEN COMPRESS FUNCTION
* * IS SPECIFIED, A TOTAL
hr COPY IS AUTOMATIC.

and Merging Partitioned Data

Data Set Utility Programs:

Set Members (Part 1 of 2)

Y Al

* ReTURN 1O *
——> CALLING *
* PKOGKAn *
tt‘#*#*tt‘ttt#t
VIA IFE

AND THL SUP}:,RVI!:O:(

PROCESSING ON
RECORDS IS DONE
ACCORDING TO
NUMLRICAL SE ULNEL

Y

IEBCOPY

111

*Chart 43.

MREAD
tttitﬁzttt*t**ttt

* GET *
3 TRACK SDBRESS »
—>% RECORD ~ *
. * FROM CONVERT %
* x tt*‘ﬁ‘*i"'t*"ﬁ&
*42 *
* BU¥ * ¥ *kkE
*HEREE #U3 k¥
A * A2%% B2 *->
L ET2 13
l YES LiLd
Bl *, HEERFEE KR kAR ARk
* *, USING XDAP,
NO .* ERROR “*. READ *
———%. IN READING _.#<-- PHYSICAL
*e e 4+ RECORD *
*, * LRI 122 22 2 1]
*
1 NO Y
. k.
[R c2 .
¥ ¥ *.
END - X .* RECORD *. NO J
——>%. OF INPUT _ .¥-— *. FOUND FROM _.%-—-——
ATA *. XDAP .*
* . .k
ok * YES
Rk * *
*43 * * A5 *
* DI #—— * *
* k¥
ok k 7
HERFESFD] FEREREEFRFE tttttthHQ!##*“*
READ PHYS
* RECORD FROM * : ACTUAL BYTES :
D * READ Al *
SET * PLACE NO. IN *
(SYSUT1) * BUFFER TABLE *
R TR 2 22] EERRRRERRFEEEEE RS

.*" END OF
I DATA
. .
*, Lk
%" NO
*
*
*
K 't.

ERRAEH]RR R
* *

* PERFORM *
* REBLOCKING *
* *
* *

AREEREREERBEERR R,

VTYPESW
PR T] R R
* INDICATE ANY *
TRACK ADDRESS *
*POINTER (TTRN) #--
EQUIRES *

UPDAT
;tazt*att»#ttttts

112

%15 Twl
" THIS A +. NO
: TTR .
], *. RECORD _.*
Y
ok *'YES
*
E5 *
*
kkEN

itttth***#ttvt*t

* INDICATOR IN
TERNAL

BUFF

* TABLE *

LA T T L L e

*
*

t

SETOPSW
SRR AT HAARR R R
WRITE A
* PHYSICAL *
. RECORD ON
DATA SET
EEERERRTRBEFR
)
K2 s,
¥ *,
YES .* ERROR *
—~%. IN WRITING .
.. e
FEEE T
42 %
* BY*
* ¥
*

IEBCOPY - Copying and Merging Partitioned Data Set Members (Part 2 of

LT
* *
* A5 #——

* *
Rk
EOF1
FEEREQL KA KA RN K
" SE.T I‘lDICA‘I‘OR :

"IT RAAL
t ER *
* BLE M
ERF * = *
* * * ¥ Ak kk Rk kR Rk R kK
* B3 * *42
* * * Bly*
Ll 13 L2 2]
A
___________ > lf
YES
COMWRITE R *
*HkFFRRICRIR KRR R Rk BY *, 5 *,
¥ . VE *,
WRITE A * .+" ERROR *. .
PHYSICAL = — =——————- D>* ., . —-—* MEMBERS BEEN .¥
* RECORD #. WRITING .* i #.PROCESSLD. *
BEFERRAREERRH ®, ¥ ¥
* NO HRER ' NO
* *
l * A2 *
* *
kR
FIRFRC IR AR EREF
* *
% UPDATE * .
*+ TTR'S AND * Ix
« NOTE LIST *
* * ARkk *, o ¥
EE222 SR LRSI P22 2 2] P
* NO
**t‘
U
> gu *
*
\ HERE
D3 s,
. * EREE
.* THIS LAST *. *
*. RECORD IH _.#---->% B3 *
ME . *
. . *hkE *
*, % * %
* YES *42 *
EZ L L] * BU* *kkE
* * RERk * *
+ E3 *-> A * ES %
* * *
ok l YES *EER
*. £OD
FERRRE IRk kR BY * LR LT IR EL 22 L L]
* * - * *
* UPDATE * ERROR *. + STOW THE ~ *
: e DURING -* * DIRECTORY *
* DIRECTORY # ». JUPDATE .* * INFORMATION *
HEEFEE R R R *, ¥ EREREEEER RNk R
*NO
¥,
¥5° .
¥
. ERROR
.l %1 DURING
. : . . . BT .
. . * .
*, L% %, .x
* NO YE:
Rk
[*
->% B3 *
*
kR
.,
63 s
¥
.- *.
-, I
*) . .+
. * *. .
-« o¥ *, ¥
* YES LELE L * YRS
w2 x
* GU*
* &
*
0S
R R RHINE R R R AR ERE R CL L 2R LT 2]
* * * *
+ INDICATOR IN * * PREPARE *
+ " INTERNAL _ * o> TO_END *
* BUFFER TABLE ¥ : *
Rk ANGRER RS HRTE R R RRRR R Rk
EX L2
* [N [SUSS——
* I3 #->
EEEF
*FRk ke keRk

J 3%
' UPDATE BUFFER “
DRESS

NEXT RECORD _*
EEI T TR e

NONOTE .,
*ERE R I AE AR AR K4 *,
* UPDATE * . *
TRACK * MORE
ADDRESS #—eeew—ee>%, POLNTERS
* POINTERS * *, .
* * *, ¥
T e T T *, .
l YES
L ad
*42 *
* J

tt##Jbt--#t**#'t
RETURN
‘CONTROL PROGRAM‘
“tttttti"'*#*

VIA IEBCOPYA AND
THE SUPERVISOR.

P b

2)

Comparing Records (IEBCOMPR)

The IEBCCMPR program compares either two
sequential or two partitioned data sets at
the logical record level. With one excep-
tion, data sets containing records greater
than 32,756 bytes in length are compared at
the physical record level. The recoxds
being compared can be U, F, V, or VS for-
mat. F, V, and VS format records may be
either blocked or unblocked. For parti-
tioned data sets, VS format records are not
compared. If keys are present they are
compared.

The utility program will use either CSAM
(move mode) or BSAM processing to compare
the records, depending on the following
parameters descriking the records of the
data set: RECFM, logical record length,
presence of record keys. (See Table 1 for
details.) :

All user header and trailer labels are
compared unless dontrol statements indicate
otherwise. The program prints the lakels
if they are unequal. Optional user exits
are provided so that the user can process
his own lakels.

PROGRAM STRUCTURE

The IEBCOMPR program (Figure U44) consists
of three segments: the root segment, the
control card analyzer segment, and the pro-
cessor segment.

The Root Segment

The root segment consists of two control
sections (CSECTS): IEBCOMPM and IEBCROCT.
CSECT IEBCOMPM contains the standard mes-
sages for the IEBCOMPR utility program.

CSECT IEBCROOT consists of the two routines
COMPARE, and LLEORI.

COMPARE
sets all switches and tables to their
starting or original values.

LLEORI
opens SYSPRINT, writes the header line
using the optionally supplied initial
page number on SYSPRINT.

The Control Card Analyzer Segment

The control card analyzer segment reads and
processes the control cards. It consists
of two routines: IEBCANAL (containing con-
trol section ANALY) and IEBCCS02 (contain-
ing control section ACTCCS).

ANALY
calls ACTCCS to process the control
cards and then, based on the parame-
ters supplied in the control cards,
sets switches and creates parameter
tables.

ACTCCS
opens SYSIN, reads the control cards,
and passes the location, length, and
identification of the parameters to
ANALY.

The Processor Segment

The processor segment performs the actual
compare operation. It consists of the rou-
tines IEBCMAIN, IEBCQSAM, and IEBCULET.

The routine IEBCMAIN contains six subrou-
tines: DIRBUFF1l, STARTBSA, SDSOBEG, READ-
SET1, COMPAR, and BLPRT.

DIRBUFF1
compares the directories of the input
data sets if they are partitioned by

*Table 1. Access Methods Used for Comparing Records
Logical A
Level of Data Set Recorc:<s RECFM Record Mcc::ssd
Comparison Have Keys . Length etho
Physical { SYSUT1 Yes 'S } Not a factor f BSAM
Block SYSUT2 Yes Vs 1
Greater than (
Physical { SYSUT1 No 'S 32,756 bytes BSAM
Block 1 SYSUT2 No Vs in at least
one data set.
Logical SYSUTI No VS Vs \ Less than 32,756
Record { SYSUT2 No VS \ VS } bytes for both { QSAM
data sets.
Logical SYSUTI Not a F u \ Less than 32,756
Record { SYSUT2 } Factor { F u \'% bytes for both BSAM
data sets.

Data Set Utility Programs: IEBCOMPR 113

reading the directories and comgares
the member names.

STARTBSA
uses BSAM to open the data sets, SYS-
UT1 and SYSUT2, being compared, and
obtains the necessary DCB information
from each: block size, record length,
record format, and key length. If
user input header or trailer lakels
are saved to be compared as data when
user input header or trailer lakel
exits are taken during Open or End-of-
Data processing, this routine compares
the user header labels from both data
sets and prints the labels if they are
unequal.

SDSOBEG
examines the key lengths, the logical
record lengths (F and VS formats
only), and record formats of koth data
sets. Any discrepancy in the data
sets results in an error message and
termination of the task. If this rou-
tine determines that QSAM is required
to process variable spanned (VS) rec-
ords, it closes the data sets SYSUT1
and SYSUT2 and gives control to the
routine IEBCQSAN to perform the
processing.

READSET1
reads and deklocks physical records.
Note: Deblocking on data sets with VS
records is not done when comparing
recoxrds whose length is greater than
32,756 bytes.

CCMPAR
conpares logical records. Unequal
records are identified and printed.
If a user routine is not provided and
ten consecutive records fail to com-
pare equally, this routine skips to
the next member in each partiticned
data set or terminates the task if the
data sets are sequential.

BLPRT
prints internal hexadecimal data in
Extended Binary-Coded-Decimal Intex-
change Code (EBCDIC) characters.

The routine IEBCQSAM contains the control
section ¢SAM and processes data sets con-
taining records that: do not have keys,
are less than 32,756 bytes long, and are of
format VS (see Takle 1). 1In effect, this
routine functions as a closed subroutine
for routine IEBCMAIN, and it uses the sub-
routines CCMPAR and ELPRT.

The routine IEBCULET contains the control
section USERLAB. This routine, which func-
tions as a closed subroutine of routine
IEBCMAIN, saves, in main storage, the input
header and trailer labels for both the SYS-

114

UT1 and SYSUT2 data sets. Routine IEBCULET
is entered during the opening of, and when
reaching the end of, the data sets SYSUT1
and SYSUT2. Exits to user input header and
trailer label processing routines are taken
from this routine.

r 1
| [————————= 1 |
I |
| | Rcot | |
I I I |
| O s Sttt |
I L} 1 | I
St	r———=t-——m			
	Control			
	caxd		Processor	
	Analyzer			
I S 4 [3 |
L J
Figure 44. Overlay Structure of the

IEBCOMPR Program

PRCGRAM FLOW

Chart 44 shows the flow of control through
the IEBCOMPR program. After this program
is entered, it sets switches and tables to
their original or starting values and opens
SYSPRINT. A header is written on SYSPRINT
at this time, using the optionally supplied
initial page number.

The control card analyzer, ANALY, picks
up the control statements from SYSIN and
places them in tables within the IEBCOMPR
program.

The ddnames for each data set are picked
up from the ddname 1list and saved for later
in the messages. Switches are also set at
this time for each user exit that is
specified.

The organization of the input data sets
SYSUT1 and SYSUT2, can be either sequential
or partitioned. If it is partitioned,
storage must be allocated for tables. To
determine the amount of storage needed, the
program opens SYSUT1 with BSAM, reads the
directory, and scans the user data field
for member names, aliases, track address
pointers, and note lists. When this is
done, SYSUT1 is closed.

If SYSUT1 and SYSUT2 are partitioned,
they are opened with BSAM and the direc-
tories are compared. Menmber names that
compare equally are stored in the TNSET
table. Member names that do not compare
cause the member name with the lower binary
value to be printed and assumed missing
from the other data set. Also, user data
fields for either nember names or aliases
that do not compare are printed.

Note list pointers associated with mem-
ber names that compare equally are stored
in tables TTRSET1 and TIRSET2 for SYSUT1
and SYSUT2, respectively. When the direc-
tory comparison is complete, SYSUT1 and
SYSUT2 are closed.

At this point the program begins to com-
pare logical records. The input data sets
are opened and the necessary information is
extracted from each DCB; i.e., block size,
record length, record format, and key
length. If a user exit is taken to com-
pare, as data, the user input header labels
from two sequential data sets, this routine
rexforms the comparison of the appropriate
labels. If the input data sets are sequen-
tially organized, the user header lakels
from both data sets are compared unless
control statements indicate otherwise. The
program prints the labels if they are
unequal.

The record formats, the key lengths, and
the logical record length (F and VS format
records only) of the input data sets are
compared. If there is any inconsistency, a
message is printed and processing is
terminated.

A physical record is read fror each
input data set and deklocked. (Note:

Deblocking is not done when the data sets
being cormpared have records whose lengths
are greater than 32,756 bytes.) If there
is no user pre-comgare routine, a record
from each data set is compared a character
at a time until all the records are
compared.

Records that do not compare are identi-
fied and printed. If a user error routine
is provided, control is transferred to it.
If a user error routine is not provided and
this is the tenth consecutive error, pro-
cessing either terminates if the input data
sets are sequential or skips to the next
member if the input data sets are
partitioned.

After the last record is processed, the
input data sets are closed; the total num-
ber of records compared is printed. If a
user exit is taken to compare, as data, the
user input trailer labels from two sequen-
tial data sets, this routine performs the
comparison of the appropriate labels. If
the input data sets are sequentially
organized, the user trailer labels from
both input data sets are compared unless
control statements indicate otherwise. The
program prints the labels if they are
unequal.

Data Set Utility Programs: IEBCCMER 115

®* Chart 44.

P NET TR TR 2
*
* ENTRY *
* *
RIS RIS 2]

IEBCOMPR
RFEABLAR R bR K

*
* SWITCHES AND
* TABLES TO
* STARTING

*
*
*
*
*

* VALUES *

EELI LTS R E L

SEEEDL AR R R
* *
L O B ol o e ki 4
* READ AND +
:PROCESS CONTROL:
LRSI PR s 2 L 2]

BEGINL v
FERRAE] RERRRE RS
: SAVE DDNAMES :

'OR SAGE
*WRITER AND SET *
* USER EXIT *

* SWITCHES *
LRI i T L 1

TESTA .*.*
.+ DATA *.
" SET
* [ORGANIZATION,
Ta. Rt
*, ¥
+"pDS
‘ﬁtﬁtGlﬁ“‘**!*':
* Dmscromz FoR ¥
* PURPOSE
¥ RILocArING t

* STORAGE
“##“#C#‘!O#“’i

DIRBUFF1
RS A L IL 2T 2L 2

COMPARE
DIRECTORIES
ARk

.

*
*
*
*
*
*

STARTBSA
tttttalt#ttva*tit
*

*
READ DATA SET 1‘
:AND DATA SET 2 :

LR e L T S

Hknk

ew
>
w

e

kE

116

IEBCOMPR

svc
*RATR AR EK
* OPEN *,
Jr o sISUT 1k

Comparing Records

19

IEBCULET .*.
as’ s

. ARE *.
* THERE *.
*.HEADER LABELS. *
*. TO COI

2 *<oae
* SYSUT 2 * . . ‘i
* * . *.PARE . ¥
EREEETERAAS . *ooLx
- * YES
.. RN . INHDR
B2 “#. B3 4. N t*tt#ﬂqk#tt*ttttt
* o ARE £ . * LLEC' *
, YES . LABELS *, . * AND SAVE *
—— LAB}:.LS PR T S—— *, TO BE e . * *.
« EQUAL * *, sOMPA.RED‘ ¥ . : COWA.RI SON :
“x, A . FERRRRERRERAR R
* YES * NO .
N > .
| spsoBEG .
ARRRAC2RARRRRNERE | AERRKCIERRR R AR hRE |
*ZZ * | * CHECK_KEY * .
B et ol o ST i *LENGTH, LOGICAL* -
—=>% PRINT USER ¥ *RECORD _LENGTH, * .
* HEADER RECORD * .
* LABELS * * FORMATS * .
P T T Y I I] P T T T T T T
——————————— >
TESTBUF1 _.*.
D3 *. HADY P bR R
.* ANY *, * END OF *..
MOKRE *. NO * DATA FOx *
. RECORD TO BE,%——====-=>* SYSUT 1 OR *
*,COMPARED * SYSUT 2 *<
“x ot FERRRREE R
* YES
READSET1 V o*.
ARESREI SRR R LB
* * ARE
* DEBLOCK A * YES % LABELS TO *,
PHYSICAL RECORD —2#. BE COMPARED .*
*FROM BOTH DATA * *, .
* SETS * *, W
F kR Rk . .
whan *"NO
* * ok
* H4 * ‘.
* * —>% KU *
ko * *
Fhkk

* ROUTINE *
LRSI AT E L 22

o
* R R AP Kk ko kok koK
o ¥ USER x, *
. *#PRE= COMPARL* YES B o e
*. DAT, o ¥ * USER *
*, (SYSUTI) ¥ * PRE-COMPARE *
. * QUT INE *
Se. Pt T
* NO
<
COMPAR ok
G3
. t.
S .
—=Cel THL RLCORDS ¥
A EQU . ¥
. . e
., . * *
* NO * HY *
* *
P
*.
P et ELL LT a4 Tk,
‘LRRCOMP . *
—k—k—F—k—h ke t—a o ARE *,
, BELS o
: ERROR ROUTINE : *, EQUAL .
AR)
* NO
\
337 T, EERRRTY R ARk
* .,
RO .#* USER *, Lt L et Dt L L S
ek ERROR L * PRIAT *
EXIT ¥ * TRAILER *
. .* * LABELS *
*, .x AR AR RN
* YES
hen
» * <
* K4 ¥->
* *
Pere
P
* * AR LR R
B *
—— USER * * RETURN *
* * * *
LT

(]

s s aassnaes

*. ROUTINE
*.

EEEERES R RRRk R Rk Rk
*
L St B B 2 B 2 2
* USER'S
* HEADEK LABEL

A\
Rl e P e R R L]

XS

ttttc:ittt#t‘t*

* PKOCESS USEx
* R UESTS AND
: RETUxN CODE
R EE LT ST L L

X

IEBCULET _.*.
D5

Sk,
HER £ *, 0
'TRAILER LABLLS
TO COUM- .

«PARE . ¥
« ¥
* YuS

INTLR
P e T P
* *

COLLECT A *

* SAVE LaBELS #
:FOR COMPARISON *
*

LA e e P A
[SS—
k.
F5 k.
L u
NO _.*IS THER .
cees®. USER TRAI h .‘
ROUT
‘v .*.
* Yes
FHAREGS Rk
* *

L e e L B 2]

* USER'S *
* TRAILER LABEL *
* KQ N *
R AR R

P e TR
*

*
* PROCESS USER *
————% REQUESTS AND ¥
: RETURN CODE :
EEERORRE R R

*.-40
-

*ome

and Modifying Records
(IE G ER)

The IEBGENER program copies a sequential
data set, or converts a sequential data set
into a partitioned data set, or adds mem-
bers to an existing partitioned data set.
Editing facilities are available with all
operations of this program.

The input to the IEBGENER program must
be a sequential data set. The data set can
reside on any device. The input records
can ke U, F, V, or VS format. If F, V, or
Vs format, they can ke klocked or
unblocked.

The output of the IEBGENER program can
be either a sequential or a partitioned
data set. If the output data set is parti-
tioned, it must reside on a direct access
device and note lists will not be
permitted.

PROGRAM STRUCTURE

The IEBGENER program (Figure 45) consists
of three segments: the root segment, the
control card analyzer segment, and the pro-

cessor segment.

The Root Segment

The root segment initializes the program

and writes messages on SYSPRINT. It con-
sists of three routines (IEBGENER, HWRMSG,
and HCDWR) and a message module, IEBLGMSG.

IEBGENER
sets switches, assigns data areas,
opens SYSPRINT, and writes the header
line with a user supplied initial page
nunmber (if any) on SYSPRINT.

HWRMSG
writes error messages on SYSPRINT.

HCDWR
writes, on SYSPRINT, the control cards
that are read by the control card
scanner (IEBGSCAN) routine.,

IEBGMESG
contains the text of error messages
that are written by HWRMSG.

The Control Card Analyzer Segment

The control card analyzer segment reads and
processes the control cards. It consists
of two routines: IEBGSCAN and IEBCCS02.

IEBGSCAN
calls IEBCCS02 to process the control
cards and then, based on an analysis
of the parameters supplied in the con-
trol cards, IEBGSCAN sets switches and

creates parameter tables for use by
the processing modules IEBGENR3, IEB-
GENS3, and IEBGEN(03. The addresses of
the tables are in a list to which gen-
eral register 1 points when this rou-
tine-has finished its processing.

IEBCCS02
opens SYSIN, reads the control cards
and then passes the location, length,
and identification of the parameters
to IEBGSCAN.

The Processor Segment

The processor segment consists of a root
module, IEBGENR3, and two processing
modules, IEBGENS3 and IEBGENO3. The root
module opens and closes the data sets and
performs all label processing. It gives
control to either of the other two modules
(IEBGENS3 and IEBGENO3) for editing and
copying functions. Module IEBGENS3 is used
for variable spanned records and IEBGENO3
is used for all other record formats. The
entire segment consists of these three
modules and the following routines: IEBE-
DIT2, IEBLENP2, IEBMOVE2, IEBCONH2, IEB-
CONP2, and IEBCONZ2.

IEBGENS3
for variable spanned recoxds, this
processing module either gets and puts
logical records or reads and writes
physical blocks, depending on DD card
rarameters ands/or information in the
data set control block. The module
links to editing and/or conversion
subroutines as required by control
statements. It returns control to the
root module.

IEBGENO3
for all but variable spanned records,
this module reads the input from the
SYSUT1 data set, deblocks the recorxds,
edits them if required, and writes the
output on SYSUT2 with proper tlocking.
The module links to editing and/or
conversion subroutines as required by
control statements. It returns con-
trol to the root module.

IEBEDIT2
moves the logical records from the
input buffer to the output buffer with
field editing. One field is moved at
a time, and converted if necessary.

IEBLENP2
calculates the total length of the
output records based on the lengths of
the fields to be moved. Conversion is
then performed on each.

IEBMOVE2
moves bytes of data from one area of
main storage to another.

Data Set Utility Programs: I1EBGENER 117

Root Segment

Control Card
Analyzer Segment

Processor Root Processing for
Segment (IERGENR3) User Labels

Processor (IEBGENS3)

eFigure 45. Overlay Structure of the
IEBGENER Program

IEBCCNH2
converts the data from H-set BCD to
EBCDIC characters.

IEBCCNP2
converts the data from packed to zoned
decimal format.

IEBCCNZ2
converts the data from zoned to packed
decimal format.

Charts 45 and 46 show the flow of con-
trol through the IEBGENER program. After
the program is entered, it sets switches,
assigns data areas, analyzes linkage para-
meters, and opens SYSPRINT. A header line
with user initial page number (if any) is
written on SYSPRINT at this time.

The control card analyzer, IEBGSCAN,
picks ur the control statements from SYSIN
and places them within the IEBGENER
program.

The DD name for each data set is picked
up from the DD name list and stored in the
HDDNAMES table. Then the input (SYSUT1)
and the ocutput (SYSUT2) data sets are
opened. A user exit may be taken at this
point to process user header labels.

Next, a physical record is read into the
read buffer and then moved to the input
work area for deblocking and processing.

At this point, the record is available to
the user via a user exit

118

Spanned Record o« — — — — T Mo A Y e — —

These modules are mutually exclusive Non-Spanned Record

Processor (IEBGENO3)

The program reads the next physical
record from the input data set to refill
the vacated input buffer.

Logical records are moved one at a time
to the output work area. If editing is
requested by the user, the requested conv-
ersion of each field of each logical record
is performed.

A test is performed before a record is
moved from the input work area to the out-
put work area to determine whether space is
available in the output work area. If
space is not available or if the output
work area contains the last record of a
partitioned data set, records in the output
work area are moved to the output kuffer
and written on the output data set. If the
output contains keys, the keys are also
written out. A user exit perrits the user
to insert keys.

A test follows the movement of each
record from the input to the output work
areas to determine whether the output data
set is partitioned or sequential. If the
output data set is partitioned and the last
record for a member was previously written,
the member name and aliases are stored in
the directory.

After the last record is processed and
written, the input and output data sets are
closed. During the closing a user exit may
be taken to process user trailer labels.
Control is then returned to the invoker.

® Chart 45.

IEBGENER - Copying and Modifying Records (Part 1 of 2)

*rkk
* *
* A3 *
* *
e
IEBGENR \
FARRRAD R R P e
LN L e * SET SWITCHES. * *
* * ASSIGN DATA =* A R e R
* ENTRY H e e e e >* AREAS. OPEN * * USER DATA *
* * * SYSPRINT * * ROUTINE *
L I TP e * * * Rk P
- hEE * * * *
* Bl * * BS *
* * * *
ok e
HROOT9 \
BERRRBLkRRRRR kR b - b L kAR R 40h BS
* * *TEBGSC *
* ANALYZE * = e e e - R * READ * * WRITE *
* PARAMETERS *C——ecee—m * CONTROL * A KECORD
* * * RECORD * *
* * * ANALYZER *
P L T e R T T PO [R T T Y e L P
EXIT IF
] SUL IS v
IEBGENR3 SPEC.[FIED ¥, ok, ¥,
J¥RCLeeeeaas ON DD CARD tttttczt [t c3’ T, TS c5” T,
---------- \VE * . *, %, *,
OPEN * LABE ‘ NO .* USER *, YES . OVERFLON *, O . ENI .
* INPU * NFORMATIO! ———k, LABEL I —, LABEL. ¥ —— OF DATA ok
L ‘ IE‘ NECESSARY ‘ *. EXIT ¥ . . -
* * * * * o . o> *, o
Ak ok ok P T T Y *, Lk 4 . ¥
* YES Rk NO ko + YES
* * * *
* F4 * * H3 *
* * * *
okkk Rk RERE
46 *
ok * GlU*
Aok KD 3Kk kK D4~ T, * *
* * 3 *, *
Eo ke kK kR Rk NO . *PARTITLONED*.
* USER_INPUT * ——*. DATA SET o*
+ “READ * ‘[. .
* . *, N
IR ST P e *, %
ok Ek * YES
*46 *
& Bux
%
EXIT_IF
SUL 18 v
SPECIFIED ¥, .
JHYEL¥¥s#4x ON DD CARD *#%*¥E2 # ¥ bddk bk k E3° T*, =
---------- >* MOVE LABEL * .
‘ OPEN * IN TION % NO .* USER - 0 . A5’ .
* OUTPUT * INTO BUFFER * ey LABEL ¥ ——%*. RECORD OF ..*
*, DCB Cmmm e v 15 NOCBOGARY * ., EXIT .+ . MEMBER .
R R P P e T T . ¥ . .
*"YKS S hd *"YES
*UYH B EREE
* BlUs*
* & % Fi 2>
ohEE
41*:#?3:""."‘::: ARRREY $R Aok kR
* * MOVE *
a- o D e e) * QUTPUT *
* USER OUTPUT * * WORK AREA *
* HEA - : : TO BUFFER :
RS 1T P T
% IEBGENS3 _.*.
G2 *, G3 . FRRRRRGY FRR Rk
*,
- VS *, YES COPY *, NO * WRITE *
————————————————— >k, FORMAT KDk, ONLY oK OUTPUT
*. o *, ¥
*, % * * LI LTI EE 2]
NO * YES Bt
ek *UG *
* * E2%
* H3 *=> * %
*
R
EBGENO03 \ ¥ o%.
P TR v DT Y P R T P e Hy' o Tk, 85" *,
. *,
* INITIAL * * RBA A * . USER *. JO
READ 'CORD *, KEYS Fm i D ¥ KEY ¥
. . EXIT B
*, o *
R Rk AERE AR R *, ¥ I
*'YES *"yis
ok
45 *
* J2 %>
*
EEEE
ARRRRT 2R R R ARk J3° T, HER AT AR AR EREAET SRR Rk KRR
* * *, * * * *
* MOVE * - USER . NO * MOVE * Hm e i e kX
* BUFFER TO * *, DATA e * KEY TO * * USER *
* WORK AREA * . EXT B * OUTPUT * * KEY *
* » N ¥ * * * ROUTINE *
B T *, .k P LT TR R R Rk
YES
<
ok
/ *46 *
¥, * Bux
K2~ . banaa AL LAl * %
LT ¥ *, * *
* NO .* USER *. YES t-t-th‘-t-#-t-*-#
* BY *<mmmek, DATA o Ko, USE:! *
* * - "%, EXIT _.* : RODTINE *
ok . o * *
*, ¥ B T)
* Rk
* *
% A3 * [S—
P ok
* *
* BS *
* *
EE L]

Data Set Utility Programs:

IEBGENER 119

sChart 46. IEBGENER

S ——

AR RB2 R R AR AR

* GET A *
RECORD
L e L
¥,
Cc2 -
*
NO .* us .
———, DATA o ¥
EXIT .
- ¥
« o ¥
* YES
EAKRRD2RRERRE R
*
P T S T RE ST
* USER *
: ROUTINE :
TRR R RIRAR AR
>

v
FREEEE2 SR RRRRRARE
* *
MQOVE

AND
EDIT
AEEEBEEREEERFEEEH

RS
LEY RS

FERERRF R RS R TN R
* PUT_OUT *
* REC%RD *
HABEEERRERKAE

v
G2 T
L+ *
NO_.+#BARTITIONED*.
———*.‘ DATA SET ‘-

*. .
LN

/ NO_.# _ LAST *.
REC

R 2R R SRR
* *

* STOW *
* THE *
* MEMBER *
* *

FEEERFERRRE RN RR RS

‘4
FRERRBY SRR E R R
* *
MOV
EDIT
AR AR R R F

-
P22

.cu' 't.‘
NO_.*DPARTITIONED*.
DATA SET -*

—

D4 *.
¥ *.
NO .* LAST *.
———%_, RECORD OF .*
.;MEMBER ‘.

*, ¥
* YES

fidad AL LI LT L]
* STOW *

AND
ALIASES

AR REFFRER SR AR

L2 T Y]
Xz}

e
4
k2" T,
' END *. 8O
* oF P
*. DATA ¥
. *
. %
+"yES
ko
l*
—>% G4 *
kR

120

Copying and Modifying Records (Part 2 of 2)

——————————— >
FYy *.
)
. NO
*, RECORD o ¥
*, .
*, L%
* YES i i dd
L *45 *
e * * J2%
* GY #> *
* *
Xk
v IEBGENR3
FRGUREERERS FREARGOER AR R R
CLOSE *SEE NOTE 1 * BMOVE LABEI. *
* INPUT & #...003.02->% INFORMATION *
* OUTPUT * * _INTO BUFFER *
* DCBS *1(__._1 : IF NECESSARY :

ERFRRERAEER

FRERKY F RN

*

* RETURN *

* *
AR R R

: AREBER KRR
1
|
|
|

¥,
+H5 -,
*

g .
NO .* USER *.
Teaeaks TRAILER ¥
A *., LABEL .*
.EXIT .
*, L
* YiS

LS LI NLEIE P LR 1Y
* *

*
—_———
* *

* ROUTINE *
HERERER R AR

NOTE 13
EXIT IF

SUL IS
SPECIFIED ON
DD CARD

Printin .Ig and Punching Records
(IEBPTPCH)

The IEBPTPCH program prints or punches all
or selected portions of a sequential data

set, a partitioned data set, or specified

members of a partitioned data set.

The input to the IEBPTPCH program can be
either a sequential or a partitioned data
set. The input records can be U, F, or V
format. If F or V format, they can ke
blocked or unklocked.

The output of the IEBPTPCH program is
put on a printer or a card punch. Note
lists are permitted in the output only when
the standard format is used.

PROGRAM STRUCTURE

The program (Figure 46) consists of three
segments: the root segment, the control
card analyzer segment, and the processor
segment.

r 1
| e 1 |
| | |
| | Root | |
[. |
| I L)| I
| f———t———o fm———t-—=—q |
| | Control | | | (
| | card | | Processcr| |
| | Analyzer[| | |
| [[4 i
L J

Figure 46. Overlay Structure of the

IEBPTPCH Program

The Root Segment

The root segment initializes the pro-
gram, and consists of one routine, PRPCH,
which links to PPANAL.

The Control Card Analyzer Segment

The control card analyzer segment reads and
processes the control cards. It consists
of two routines: PPANAL and ACTCCS.

PPANAL
calls ACTCCS to process the control
cards and then, based on the parame-
ters supplied in the control cards,
sets switches and creates parameter
tables.

ACTCCS
opens SYSIN, reads the control cards
and then passes the location, length,
and identification of the parameters
to PPANAL.

The Processor Segment

The processor segment performs the printing
and punching operations. It consists of
twelve routines: PRPUN, TOTAL, MEMBLOC,
PPSDS1, RDCH, PREFORM, RECDLOC1, RECPROC,
RECPREP, FORMS, FORMU, and CLOSEIO.

PRPUN
examines the parameters supplied by
the PPANL routine in the control card
analyzer segment and performs initia-
lization based on these parameters.

TOTAL
reads the directory, extracts the name.
and location of each entry, and sorts
the entries by TTR and alias indicator
so that members can be written in the
order of their physical occurrence in
the data set and written only once.

MEMBLOC
obtains the name and location of the
next partitioned data set member to be
written and then positions the data
set so that the member can be read.

PPSDS1

determines whether there are user
written record groups. If no editing
is indicated, it prepares to write the
sequential data set or the member in
the standard format. It also prepares
to skip logical records within the
member or the sequential data set.

RDCH
reads a physical record. If note
lists are to be omitted and the cur-
rent record is a note list, another
physical record is read.

PREFORM
deblocks and writes out the records if
PREFORM is specified.

RECDLOC1
deblocks the physical record.

RECPROC
initiates logical record processing,
examines the identification (ID) of
the record to determine if it is last
record in a group, examines the logic-
al record count to determine if the
record should be skipped, and provides
the user access to the input record.

RECPREP
tests for the end of page on printed
output and determines the format for
the current logical record.

FORMS
writes a logical record in the stan-
dard format. If necessary, it seg-

Data Set Utility Programs: IEBPTPCH 121

ments the input record into multiple
output records.

FORMU
edits a logical record in accordance
with user specifications. Before the
record is written, the user can again
access the output record.

CLOSEIO
prepares to end the task and relin-
quish control to the control program
or the invoker.

PROGRAM FLCW

Chart 47 shows the flow of control
through the IEBPTPCH program. After the
program is entered, it sets switches,
assigns data areas, and analyzes the
internal system-provided parameters. A
header is written on SYSPRINT at this time,
using the optionally sugplied initial page
number.

The control card analyzer routine (PPAN-
AL) picks up the control statements from
SYSIN and places them in tables within the
IEBPTPCH program. The output data set,
(SYSUT2) is then opened for printing or
punching.

If the input data set, SYSUT1, is parti-
tioned and the entire data set is to be
read and processed, the program reads the
directory and extracts the name and loca-
tion of each entry. The entries are then
sorted ky TTR and alias so that members can
be written in the order of their physical
occurrence on the direct access device.

Next, initialization is performed to
enable the input data set to be read. A
user exit can be taken at this point to
process the user header label on the input
data set if it is sequentially organized.

If the user's routine returns an action
code of 16, the utility program will com-
plete the opening of the input data set,
print and punch (if so specified) any head-

er labels that have already been read (up
to the point for which the action code was
set), close the input data set, and termin-
ate the processing. The utility will then
return control to the supervisor.

If the input data set contains variable
spanned records, the DCB exit routine, dur-
ing the opening of the SYSUT1 data set,
tests the record length and the record for-
mat parameters. The action taken is indi-
cated in Figure 47.

After the data set has been opened, the
access method indicator field in the DCB is
set to indicate the use of the QSAM MOVE
mode.

If the input data set is partitioned,
the name and location of the memkber that is
to be processed is obtained and the data
set is positioned so that the member can be
read.

Any user-supplied titles are written at
this time. If the input is partitioned,
the member currently being processed is
identified. A new page is started for
printed output or a new sequence number is
initiated for punched output. The program
then determines whether there are user
written record groups and performs initia-
lization accordingly. If there is no edit-
ing, initialization is performed to process
the t2quential data set or member in the
standard format.

The RDCH routine reads a physical record
and determines whether a note list is pre-
sent. If the physical record is a note
list and it is to be omitted, the routine
reads the next physical record when the
kasic sequential access method is Leing
used. When the queued sequential access
method (QSAM) is used, the routine gets a
logical record. QSAM is used only for a
sequential data set having both a logical
record length that does not exceed 32,756
bytes and variable spanned records.

The PREFORM routine deblocks and writes
out records if the user has control charac-

DCB Parameter

Action Taken

RECFM

P S S

T
| LRECL
4

Work Area for IEBPTPCH

4
VS or VBS |Greater than 32,756

| |

|VS or VBS |Equal to or less than
132,756

|

L

| RECFM field in utility work area is set to U.
| |LRECL field in utility work area is filled with the
|DCB blocksize.

|RECFM field in utility work area is set to V.

| BLKSIZE field in utility work area is filled with
|the DCB logical record length.

L

b s o et s, . s, vt ki v bt s 0l

eFigure 47.

122

Work Area Settings for Surport of Variakle Spanned Records

ters in the input data set and specifies
the keyword PREFORM. All other control
statement requests are ignored, but are
checked for validity.

The RECDLOC1 routine deblocks the phys-
ical record and obtains the length and
location of the next logical record. When
no logical records remain in a block, the
RECDLOC1 routine returns to the RDCH rou-
tine, and another physical record is read.

A user exit can be taken at this point
to process a logical record before it is
processed by the program.

The processing of a logical record
includes checking the record ID to deter-
mine whether it is the last record in a
record group and testing the record count
to see if the record should be skipped. If
the record is the last record of a record
group, a switch is set for subsequent test-
ing. If the record is to be skipped, con-
trol is passed to the end of record group
test.

Next, the output format of the logical
record is tested to determine if it is to
be standard or user defined. The FORMS

routine writes a logical record in the
standard format; and when necessary, seg-
ments the input record into multiple output
records. The FORMU routine edits a logical
record a according to user specifications.
A user exit may be taken before the record
is written to allow the user to perform
additional editing.

After the last record in each record
group is written, the NEXTGR routine per-
forms reinitialization to allow the next
record group to be processed.

When the end of data is reached on an
input partitioned data set, the name and
location of the next member is obtained and
the data set is positioned to the next mem-
ber. When the end of data for the last
member or for a sequential data set is
reached, the input data set is closed. A
user exit can be taken at this point to
process the user trailer on the input data
set if it is sequentially organized.

The processing of trailer labels employs
the same use of return action code 16 as
described in this section for header label
processing.

Data Set Utility Programs: IEBPTPCH 123

e Chart 47.

EEERRLRERRERRER
* ENTRY *
* *

L L e e L

l';

Y
FERRPLEERRRERR R

INITIALIZE

Y s

PENTR!
*
*
*
*
*
*
*

FERERRTRRERERRER

fbhdda AL T EE S L2
ANAL *
t_t—t-‘—t—t-‘—‘-‘

*
* ANALYZE THE *
: (.EONTROL CARDS #

IEBPTPCH - Printing and Punching Records

PREFORM
REEEBC2S B A RN

* DEBLOCK *
: AND WRITE OUT :
* PREFORMATTED #
* RECORD *
L) *%

PREPRPUN
HERRRDL Ak kb h b
* *

* ANALYZE THE *
PRINT OR PUNCH #
* OUTPUT *

* *
BERER R AR

PPOPEN

ttl*tEltrititttat
*

*PRINT OR PUNCH ‘
OQUTPUT :

ELIA SIS R TS T T 2

A

YES
p2_ .

% T *,

il INPUT *

‘.EREFDRMATTED. -

. L

NO

TAL
t‘il'?2t!tt$t‘#$*
READ ‘
DIRECTORY AND

pr P

A

nn
-

EREE

PPSDS1

AERERBIRARER TRk
PREPARE TQ

WRITE ONE OR

MOKE RECORD
GROUPS

LY
EEENE

EEERAERRRARRRA R

H v
WAk ACT RS R Rk
*

* LOCATE THE *
—>%* NEXT PHYSICAL *

* RECORD :
1 P T T T Y
* %

D3 s,
. *,

. * *
- END OF DATA
* *

e, et
* *

o

REC!

LOC1
s e T
* *

* LOCATE THE
—>* NEXT LOGICAL
* RECORD

*
FREEFRERE RS
.
F3© s,
YES . ol .
——#. PHYSICAL .*
. G .
.t
T * NO
c3 *
*k%
c3" s,
o* -
YES
USER EXIT .*
R £
Lk
*"No

-k 't
.‘ >'SORT EN‘I‘RIES BY
t t
.« o* FHAA RO R
* NO
<
PPOPENIN
FRERHGL G2%#* ¥
* * * *
* PREPARE _TQ * s H o e K R
*READ THE INPUT * —
* DATA SET : : USER ROUTINE *
EEEE TS EI T 2 kAR Rk R R
- EEEARH2 R R R R R AR
*
YES

*. EXIT *
* *

L S S L S 2 S

* INE *
FEERE R AR Rk

ME

J2
ATl

MBLOCK
Ji E P
o ., * *
. *. YES * LOCATE THE
'-' PDS INPUT ‘,g_.____ - NEXT MEMBER L=
R e * * l
L% B T L T
* NO LA LL]
*
*
*
<
PPHEAD
E T W TP
* *

* WRITE ANY *
* USER SUPPLIED *
* HEADERS *

* *
ERERRERR Rk

LTIy

Ex X3
o
¥}
L X3

ok

124

RECPROC
FARRHI R AR AR ARk
*

* PROCESS
* LOGICAL
: RECORD

HREERRERRRR TR

N

J3 -

- *,
* SKIP *
THIS RECORD .
* ¥
o
*
NO

.l

‘.
*

xS

*
*<e
*

FORMS
Ota.tgutttt#tt#t#

* RECORD IN Tﬂb *<
:STANDARD FORMA'
ERRERRRAA AR

LT
* *
* E5 *

EEL 2]

kR CY Rk kR
*
LBt SR S

£
: USER ROUTINE :

dh kR R

FO!

RMU
FERKABS RRERR R ERA
*

*

* *
* THE LOGICAL *
: RECORD :
ook ko K

[
o *.
oW *
I USER EXIT
*, *
*.

o*

>

NEXTGR
FERRRGURRKER B Rk
*

* PREPARE FOk
NEX T RECORD

R

LR XY

*
LA AL EL SR II LT Y

ELL T IR TE T A

*
B B bl T T
*

Ak Rk Rk

USER *<e
: TRAILER LABEL :

YES

-
*

L2 L)
CLO!

Laddad ' SEAL LR L LEE LY

RITE
THE LOGICAL
RECORD

HAER R R R R Rk R

[T Y
X TS

*,

*.
o*
*

G5
¥ *,
o MORE *.
MEMBERS . *
L
* {0

P S ———

SEIO
ERERKS KRR R
*

* PREPARE TU
: END THE TASK

=% w

*
LRI Z Ry s e s T P

LS TGRSR RS L 1)
* RETURN *
* *

EE R EE LSS S L L L]

Operating on an Indexed Sequential
Data Set (IEBISAM)

The IEBISAM program is executed under the
operating system to copy, unload, load, or
print an indexed sequential data set. As
examples, this program can be used to cre-
ate a kack-up copy of a data set, or to
improve the accessibility of a data set by
eliminating wasted track space and overflow
areas. The program, which may be either
executed as a job step or called by an
executing program, consists of six load
modules (see Chart 48) that reside in the
linkage library, LINKLIB.

The Initializing routine determines
which function has been specified, then
passes control to one of four functional
(or processing) modules. The selected pro-
cessing rodule performs its specified func-
tion, then passes control to the Terminat-
ing routine, which writes messages, ter-
minates processing, and returns control to
the calling routine. (Note: If invalid
specifications or parameters have been spe-
cified, the Initializing routine sets the
appropriate message and completion code
indications and gives control directly to
the Terminating routine.)

The IEBISAM program may be executed as a
job step, or it may be called by a program
executing a job step. If it is to be
executed as a job step, the step's EXEC
statement specifies the program IEBISAM,
and the EXEC statement's PARM field speci-
fies the function to be performed as a
parameter (COPY, UNLOAD, LOAD, or PRINTL).
If the IEBISAM program is to be called by a
program executing a job step, the calling
program must specify the function by pro-
viding 'EXEC statement parameters®' and
ddnames as shown in this publication in the
section "Auxiliary Parameters." In either
case, the job control language statements
that describe the step during which IEBISAM
is to be executed must include DD state-
ments to define the input, output, and mes-
sage data sets.

Figure 48 gives a module directory and
summary for the IEBISAM program, and Charts
49-56 outline the individual routines of
the program. For more information regard-
ing the use of the program, refer to the
SRL publication IBM System/360 Operating
System: Utilities; Form C28-6586.

INITIALIZING IEBISAM

The Initializing routine is in the load
module (IEBISAM) that is entered whenever
the IEBISAM program is requested. This
routine (Chart 49) obtains main storage for

a work area, then inspects the specifica-
tions under which the program is to run.

If no options have keen specified in the
PARM field of the EXEC statement, the pro-
gram assumes the (default) option to unload
the data set. If a function specification
is not valid, this routine stores a comple-
tion code, assembles a message, and uses
the XCTL macro instruction to pass control
to the Terminating routine, IEBISF.

In all other situations (i.e., those in
which correct procedures have been fol-
lowed), the Initializing routine assembles
the necessary information and gives control
to the appropriate module.

COFYING AN INDEXED SEQUENTIAL DATA SET

If the copy function was specified, control
is passed to the Copy routine in module
IEBISC. This routine creates an output
data set containing the same records as the
input data set, but with newly built inde-
xes and empty overflow areas. The Copy
routine (Chart 50) opens the input data set
(SYSUT1) and the output data set (SYSUT2)
for use by QISAM and checks the DCB
parameters:

e The DCBLRECL parameters must be the
same for both the input and the output
data sets.

e The DCBRECFM parameters must- be the
same (F or V) for both the input and
the output data sets.

e For the output data set, the DCBBLKSI
parameter must be a multiple of the
DCBLRECL parameter.

e The DCBRKP parameter must be smaller
than the DCBRECL parameter minus the
DCBKEYLE parameters.

If the input and output data sets are
opened successfully, and the DCB parameters
are valid, the Copy routine uses the PUT
(locate mode) and the GET (move mode) macro
instructions to read the records in logical
sequence from the input data set and write
them into the output data set.

If the data sets are not dpened success-
fully, if the DCB parameters are not valid,
or if an unrecoverable input/output error
is encountered, the routine stores both a
completion code and a message code. Pro-
cessing on the data set is terminated; the
data sets are closed; and control is given
to the Terminating routine.

Data Set Utility Programs: IEBISAM 125

] L T T)
Module ID|CSECT | Summary |Chart ID]
4 [4]
] T T B]
IEBISAM |IEBISAM|Receives control from calling routine. | 49 |
]	Gets work area used by processing modules.	
	Gets program parameters, alternate ddnames, page number.	
	Passes control to aprropriate module.	
4 1 1		
H T T -—1		
IEBISC	IEBISC	Produces copy of input data set with new indexes.
(Copy)		Uses PUT and GET macro instructions.
1 1 4 4		
L) T L) 1		
IEBISU	IEBISU	Retrieves an indexed sequential record and passes its length
(Unload)	{and address to IBISSC.	
	Analyzes return code from IEBISSO and sets success or error	
	indication for IERISF.	
b 1 : . - : + 1		
	IEBISSO	Unloads the indexed sequential record(s) into physically
		sequential 80-byte card images.
b { 1		
IEBISL	IEBISL	Reconstructs an indexed sequential record from 'unloaded'
(Load)		data passed by IERISSI.
		Checks DCB parameters OPTCD, RECFM, LRECL, BLKSIZE, RKP, i
		NTM, KEYLEN, and CYLOFL against corresponding DD statement
	-	information.
1 b S , + {		
	IEBISSI	Retrieves unloaded (80-byte card images) records
		Maintains pointer to current input area.
l		Maintains number of bytes remraining to be processed on a
		given card image.
		Checks each card image for proper sequence.
L [l i 4 i		
N ¥ b T 1		
IEBISPL	IEBISPL	Produces printed copy of input data set.
(Print)		Provides for user exit and/or suppression of data
		conversion.
I	: + 1	
IEBISF	IEBISF	Receives control from initializing or processing module.
		Prints appropriate message and returns completion code to
		calling routine. [
L L L L 4
Figure 48. Module Directory, Summary, and Chart IDs for IEBISAM Program

UNLOADING AN INDEXED SEQUENTIAL DATA SET

If the unload function was specified, con-
trol is passed from the Initializing rou-
tine to the Unload routine (in module IEBI-
SU) to create a physical sequential data
set containing the information from the
input (indexed sequential) data set. This
information is put in 80-byte card images
on either a magnetic tape volume or a
direct access volume. Figure 49 illus-
trates the data flow and format during
unloading operations.

Module IEBISU contains two control sec-
tions (CSECTs): IEBISU (Chart 51), which
reads records in logical sequence from an
indexed sequential data set; and IEBISSO
(Chart 52), which reblocks the records and
writes them into a physical sequential data
set.

Obtaining Indexed Sequential Records

After module IEBISU is entered at CSECT
IEBISU, the Unload routine opens the input

126

data set and determines the format of the
records. (If the relative key position is
the high-order byte of the record (i.e.,
DKBRKP equals zero), the key field is
treated separately when the records are put
into the output data set.)

CSECT IEBISU uses CSECT IEB1ISSO as a
subroutine; initially, IEBISU passes con-
trol to IEBISSO to open the output
(unloaded) data set, then again to write
the input (indexed sequential) DCB into the
output data set. After the DCB has been
written, IEBISU uses the GET (locate mode)
macro instruction to oktain a record from
the input data set, then passes control to
CSECT IERBISSO.

Building the Output Data Set

CSECT IEBISSO performs the reblocking and
writing of the input indexed sequential
recoxds into the output data set. The out-
put data set is a physical sequential data
set consisting of 80-byte logical records.
The 80-byte records contain the key and

data fields of the indexed sequential data
set, together with length indicators and
sequence numbers (see Figure 49).

The first 154 bytes of DCR information
for the indexed sequential data set are
written in the first two physically sequen-
tial records (those with sequence numbers
zero and one) of the output data set. The
first 80-byte logical record contains the
physical sequence number zero, followed Ly
the length indicator 154. (The length
indicator represents the number of bytes
between one length indicator field and the
succeeding length indicator field.) The
first 76 bytes of the DCB for the input
data set complete the first logical record.
The second 80-byte logical record contains
the sequence number one, followed by the
next 78 kytes of the input data set's DCB.
The information in the first 154 bytes of
the input DCB includes the following
fields: CPTCD, RECFM, LRECL, BLKSIZE, RKP,
NTM, KEYLEN, and CYLOFL. (See Figure 47,
and the section "Data Control Block--ISAM"
in the publication IBM System/360 Cperating
System: System Control RBlocks, Form C28-
6628.) The remaining 80-byte logical rec-
ords (beginning with sequence nurber two)
contain the images of the records in the
input data set. The last 80-byte logical
record of the unloaded (physical sequen-
tial) data set contains from zero to two
bytes of zeros following the last byte of
input record data.

At the first entry to CSECT IEBISSO, the
Unload routine opens the output DCB and

checks the DSORG and BLKSIZE parameters:
the DSCRG parameter must be PS, and the
BLKSIZE parameter must be multiple of 80.
If the opening is successful and the para-
meters are valid, the routine issues a PUT
(locate mode) macro instruction to write
the DCB in the output data set. This
information and control of the Unload rou-
tine are then returned to CSECT IEBISU.

On subsequent entries to CSECT IEBISSO,
the output buffer is filled with indexed
sequential records obtained by CSECT IEBI-
SU. The routine stores the record length
indicator first, then it stores the record
key and data fields. When the routine
finds the end of an input record, it
returns control to CSECT IEBISU to obtain
another record; when it has filled the
input buffer, the routine issues a PUT
(locate mode) macro instruction to write
the contents of the buffer into the output
data set. The physical sequence number for
the output data set records is then
updated.

If CSECT IEBISSO encounters an error
condition (e.g., unsuccessful open, invalid
DCB parameters, or an uncorrectable I/0
error), it closes the output data set, sets
the appropriate return code (see Chart 51),
and returns control to CSECT IEBISU.

IEBISU then sets both a message and a com-
pletion code, closes the input data set,
and passes control to the Terminating
routine.

Data Set Utility Programs: IEBISAM 127

Direct-Access Storage

Main Storage

-

Unloaded ISAM Record
(Physical Sequential)

()
=
A9
N

RN
ON }
-byte LRECL

2-byte sequence number

LRECL=0
(end of record)

©

UWsing successive GETs,
an indexed sequential
record is read, Each
logical record is prefixed
with a 2-byte LRECL
(Logical Record Length)

@

The prefixed ISAM
logical records are
reblocked into 78-byte
logical record images,
each of which is
prefixed with a 2-byte
physical sequence
number

®

The 80-byte unloaded
records are written
using successive PUTs

®

During a subsequent
LOAD execution,
unloaded records are

read (using GET) in
sequence until an
ISAM record can be

rebuilt

Note: The cument version of ISAM supporis only fixed-length records,

The sequence numbers
are stripped and the

® ©

The record is written
using successive PUTs

record is rebuilt

l< 80 Bytes N
[(logical record length) ”
S ipts indicat ber of byt
Sequence 2 154 2 Input DCB Data 15 A i:ze?i:::jp, indicate number of bytes
Number 0 (Beginning through DCBMSHI)
2
Sequence Input DCB Data 78
Number 1 (DCBSETL through DCBRORG3)
Sequence 2 Length
i Ki
Number 2 Indicator § First Input Record udl
2 2 Note: A complete record consisting
Sequence Length _ of data and key is included
Number 3 Indicator 2 Second in between successive length
indicators.
s 2
Nejr:;::'i put Record Key2
Sequence 2 Length
hi t Record K
Number 5 Indicator 3 Third Input Reco Y3
~ ~ ~
2 2
stlejr:f,::eN Key m End of Last Input Record Zero Bytes

1llustration of M indexed sequential input records

contained in (N-1) unloaded output records.

Figure 49.

128

Last record indicator

Unloading and Loading an Indexed Sequential Data Set

LOADING AN INDEXED SEQUENTIAL DATA SET

The Load routine is used to reconstruct an
indexed sequential data set from an
unloaded copy of the physical sequential
data set. The output data set resulting
from the loading function is placed on a
direct access volume. If the original
indexed sequential data set contained rec-
ords in an overflow area, these records
will appear sequentially arranged with the
records from the original primary area when
the unloaded data set is reloaded.

To perform the load function, the
Initializing routine gives control to CSECT
IEBISL of module IEBISL (see Chart 53).

The Load routine performs its own initia-
lizing functions, then branches to CSECT
IEHISSI of the same load module to get the
length and address of an input record from
the unloaded data set. If the return to
CSECT IEBISL from CSECT IEHISSI indicates a
return code other than zero, the appropri-
ate message number and/or completion code
are estaklished, the output data set (if it
had been opened as described later on) is
closed, and control is given to the Ter-
minating routine.

If CSECT IEHISSI returns the requested
information and a return code of zero when
it gives control back to CSECT IEBISL,
CSECT IEBISL opens the output data set and
checks the validity of the DCB fields. An
inconsistency (or error) detected during
either of the latter operations leads to
procedures for closing the data set as pre-
viously described. Otherwise, if no error
is detected, the PUT macro instruction is
used to place the record information in the
new indexed sequential (output) data set.

When all records from the unloaded (o0ld)
data set have been transferred to the new
data set, the 0ld data set is closed and
control is given to the Terminating
routine.)

In reconstructing the new data set, the
information in the first two logical rec-
ords of the unloaded data set is used in
estaklishing the DCB for the new data set.
The last 78 bytes of each subsequent 80-
byte logical record are used to build the
records of the new data set.

CSECT IEBISSI (Chart 54) opens the input
(unloaded) data set and checks for the
validity of the DCB parameters for that
data set. Should either the opening be
unsuccessful or a DCB parameter be invalid,
the data set is closed and return is made
to CSECT IEBISL. Ctherwise, CSECT IERISSI
proceeds to get information from the logic-
al records of the unloaded data set and to
transmit it to CSECT IEBISL so that it may
be placed in the new indexed sequential

data set. The GET and PUT macro instruc-
tions are used for these operations. The
preceding procedures continue until either
the end of the input data set is reached or
a terminating error condition is reached.
For both situations, -the input data set is
then closed, and control is returned to
CSECT IEBISL.

PRINTING LOGICAL RECCORDS OF AN INDEXED
SEQUENTIAL DATA SET

In order to obtain a printed copy of an
indexed sequential data set, a user speci-
fies the keyword PRINTL in the PARM field
of an EXEC statement. The queued indexed
sequential access method (QISAM) is used to
obtain the records from the input data set.
The records are selected in logical
sequence from both the prime and the over-
flow areas of the input data set. To write
the records, the queued sequential access
method (CSAM) uses a PUT macro instruction.
Record conversion (to hexadecimal notation)
and/or user exits before record printing
may be specified as options.

After module IEBISAM gives control to
the print module IEBISPL (Chart 55), both
the input and the output data sets are
opened, the success of the openings is
determined, and the DCE parareters are
checked for validity. If an error is
encountered in any of the preceding opera-
tions, steps are taken to close the data
sets and give control to the Terminating
routine.

If the data sets have been opened suc-
cessfully and the DCB parameters are valid,
the Print routine proceeds to place a rec-
ord in a buffer area prior to printing it.
At this point, a user's routine may gain
access to the record if the proper specifi-
cation has been given on the EXEC state-
ment. Upon return from the user's routine
with a return code of either 0 or 4 (see
the return code table on Chart 55), or if
no user exit was taken, the data in the
buffer is converted to hexadecimal notation
unless the no-conversion option has been
specified. The PUT macro instruction is
then issued to print the record on a SYSOUT
device. After all input data records have
been printed, or if the routine encounters
an unrecoverable error, the input and out-
put data sets are closed and the Terminat-
ing routine is given control.

Note: A more complete interpretation of
the codes returned to the print module
IEBISPL by a user's exit routine is given
below:

Code 0: The record currently in the
buffer is to be printed, and processing
of the input data set is to continue.

Data Set Utility Programs: IEBISAM 129

Code 4: The record currently in the
buffer is to be printed, but processing
of the input data set is to be ter-
minated after the printing.

code 8: The record currently in the
buffer is not to be printed. Processing
of the input data set is to continue.

Code 12: The record currently in the
buffer is not to be printed, and proces-
sing of the input data set is to ke
terminated.

1

TERMINATING THE IEBISAM PROGRAM

Each of the other routines of the IEBISAM
program may give control and a completion
code to the Terminating routine (in module
IEBISF). The basic function of the Ter-
minating routine is to write an appropriate
message on the SYSPRINT data set. This
message indicates the result of the use of
the IEBISAM program.

130

When module IEBISF (see Chart 56) gains
control, it opens the output (SYSPRINT)
data set. If the opening is unsuccessful,
the approriate completion code (16) is set,
the SYSPRINT data set is closed, and con-
trol is returned to the source from which
the IEBISAM program was initially given
control.

After a successful opening of the output
data set, the PUT macro instruction is used
to write the message concerning the pro-
gram's result. If an error is encountered
during writing, a completion code of 8 is
set and returned to the caller of the
IEBISAM program. (The completion codes
shown on Chart 56 are those resulting from
processing actvity by module IEBISF.) If
no error is encountered during writing, the
Terminating routine established a comple-
tion code based upon the results of the
routine from which the Terminating routine
received control. This code, and program
control, are then given to the caller of
the IEBISAM program.

chart 48. IEBISAM - Overall Flow

itttBB‘#‘*.‘t‘*‘

* ENTRY *

* -

Rk hk kR Rk

BREERC T RN R

TEBISAM 9

By e ik et Dok et Dot]

* INITIALIZE *

* PROGRAM :

PRI S SRR 22 2223

4 v
wRdkkD] ke bk sdhdk ek ID2 ek hkbh bk ek DY Rk ke rhkkk kB EDE R X R R R kR k
*IEBISU 1% *IEBISL 51#* *IEBISC 50% *IEBISPL 55%
L e e e Tt] L e ok o e LT Tt T P L R B B T R
* * * LOAD * * COPY * * PRINT *
* * RECORDS * * DATA SET * * LOGICAL *
* DATA SET * * * * * * RECORDS *
(22X TR P2 LS L L] kb kb kR Rk k hrkdkokkkkkk kR kkkk *kkkkhkkkbkhkbkhkk
>

3
ARAEAEI KRR RSk AR
6%

*
kR kokkkkokrRokk

v
FEREF IRk kk Rk
*
* RETURN *
TO CALLER _ *
BERERRRERE ARk

Data Set Utility Programs:

IEBISAM

131

Chart 49.

KRR

R

ONAME
B e Y
*

»
* USE

* STANDARD b S
: DDNAMES *

*

*
SRR RR R KRR EE

o ¥
* * NO .* ARE *.
* B5 #<————%_ OPTIONS _.*
* * *. VALID *

FEARD D ARk R Rk
*
* ENTRY *
* *
HEEREEEEREE A

IEBISAM
FAREXBY RRARER AR R
* *

* ESTABLISH *
*ADDRESSABILITY *
* (REGISTER) *
FRE R AR

FEC2 R KRR

*
* PROGRAM *
FERKEBEERA K

AR EDD R R R AR RK

* PROGRAM
:INITIALI ZATION
*

EREEn

*
ARk RER kR KRR

OPTION 2 *.

LABELUN

. ARRERES KRR R R
. *. * *
.% OPTIONS *. NO * ASSUME *
* "y SPECIFIED . e >: UNLOAD OPTION :
“x. e * *
- AEERRR R
I YES
¥,
F2 *.

*, L
. ¥
* YES
<
kR RG2 R R RN Rk
* FLE! *
* OPTIONS *
* BY SETTINGS *
: IN WORK :
P R T T TR
ONWARD ¥,
H2 -

o* .
DDNAMES *.

NO ¥
——— PROVIDED *-‘
N ot
*. ok
* YES
TESTALL
FAREFT2RERRRRRERE
* *
* USE *
* DDNAMES *
: PROVIDED :

ARE AR RERR R RK

132

DA0OQ

IEBISAM - Initialize IEBISAM Program

HEEEAR G FEREA R
PAGE

*
*
*
*
*
*

EEERR RO

HERRACYRRR R KRR
*

* UPDATE AND

* RESTORE *
* PAGE NUMBER *
* FOR CALLER *
HREKEXRRKEERRRERN R

P T e
* *
* *
:CHECK THE DATE :

* *
ARk kR Rk E

ONWARD 1

FEFEKEYRRREEEREK
* *
* PREPARE *
FOR_PROPER EXIT
* VIA XCTL *
RREE AR AR

e L

* *

* BY *

* *

ok k

ASSUMECY

P T T T L e
SET MESSAGE *
* NUMBER AdD *
* COMPLET ION *
* ODE *
* *
R ROk R R R kK
HEARHCHRE KRRk
* PREPARE *
* FOR_XCTL *
* EXIT TO *
: TERMINATE :
B

FRERLYFREERFEFE
SVC 7. XCTL *
TOMRE UIRED :

R L s

*
*

NOTE 13
MESSAGE NUMBLER
COMPLETION COUE = 16

SEE NOTE 1

Chart 50. IEBISAM - Copy Indexed Sequential Records (IEBISC)

ENTRY IS VIA REHDD R ER ARk
XCT: * *
MODULE IEBISAM * ENTRY *
(CHART 49) * *
EEEE 22 LRSI L]

IEBISC

FERRAPLRE KRR RS AR
* *
* ESTABLISH *
* BASE REGISTER *
* ADDRESS *

ARk AR R KRR

LT e s PR
* *

* MOVE DCBS TQ *
WORK_AREA. LOAD
: DDNAMES . *

R R
*+D2 *
* SVC 19. *
* QPEN *
* INPUT AND *
* QUTPUT DCBS“
AEEEEEA AR
W F. GETPTR SYNADOUT
E2° *. HREIHEAFREE FREGFREEATE
ok *, * * SVC 68, *
¥ OPEN *. YES * PUT. * ERROR * SET MESSAGE *
, SUCCESSFUL .——-——~—->% LOCATE BUFFER *ccsneess2¥ AND o
lr,* ._* * ADDRESS * *‘COMPLETION ""
T AR K EEEE AR
NO
SETSW GETREC ‘lr SYNADIN
FEEEAEHEF R RS E HATIER AR FAFY SRR AF
* * * GET. * SVC 68. *
* SET MESSAGE * * PLACE ERROR * SET MESSAGE *
* NUMBER AND * * RECORD_IN ¥eveonaan
*COMPLETION CODE¥ * BUFFER ‘*COP@LETION **
FEERAR R AR AR ETE erre
e
> [<
EODADIN

FRRRRG IR E R KA
* N *
% INPUT DATA. *
*LAST BUFFER TO *
* BE PURGED. *

Aok kR ARk Rk Rk

\
FH ARk NK
* SVC 20. *
CLOSE *
* INPUT AND *
"OUTPUT DCBS:
HERERRRERRR

*

ahadEL BT LLE 2T DY
*

*
* PREPARE FOR *
* XCTL EXIT TO *
: TERMINATE :
FERERREE R R RO

*Ek AR IR R RTRK
*

XC *
* MODULE IEBISF *
* (CHART 56) *
wkkd kR Kok ok

Data Set Utility Programs:

IEBISAM

133

Chart 51.

IEBISAM - Retrieve Indexed Sequential Records (IEBISU)

ThIS IS CSECT IEBISU
F LOAD MODULE IEBISU

FEFED2 R R R E R Rk
* *
ENTRY IS VIA XCTL * ENTRY *
FROM MODULE IEBISAM
(CHART 49) PR T T P FhEE
* * * *
* B3 ¥ * B4 *
* * * *
ke xR
IEBISU L ¥, WOTL 2 COMPLY
EEERRB R KA E R A 83" x, PRI 5 45 - FRBL AR
* * *ANALYZE RETURN * * SVC 20. ¥
* * IS NO ODE AND SET * * CLOS £ *
% INITIALIZE * *, RETURN o Fmm e >* MESSAGE AND #————e——e) >¥ INPUT *
* * .CODE = . COMPLETION * DCB *
* * *. . » CODES * * *
FRRRRR R R % RS A R RRR R KRR AR R
* YES
l EEREE
* %
OBTAIN oF, * 56%
AHC2ERREREE c3” Tx, %
* SVC 19. * % IS *, *
* OPEN - TU - YES EXIT VIA XCTL
* INPUT * *. FROM FIRST .¥—c——smemm ey TO_MODULE
. B . NTR! IEBISF
P Ty S
*"NO
¥ ¥ OBTAINL
D1 D2 %, Q#D3*--$t‘t#
* *, ¥ WAS ¥, GE' *
1s YES .+ OPEN *. ‘ RECORD *
————%*. DCB _RECFM _ . #<——————— #, SUCCESSFUL . %———. * (LOCATE *
=F . *, o * MODE} *
*, ¥ -, ¥
. . . 0x PLLTTT ey
* YES * Rk
* *
* BY *
* *
ah
v
Bl .. SHERHREIRFER SRR
*, STORE *
S + NO * RECORD ADDR. *
«. DCB RECFM .+ #¥——e—o—mmmeeemem . :
=B . * RECORD LENGTH *
*, ¥ * *
. ¥ P T T
YES
¥ WNOT.
F2 *, ARRERFLRR RN
* *. * STORE *
NO 1S5 - RO *. *ISAM DCB ADDR. *
fm———¥ DCBRKP ¥ ——h o* * *
= - -x * IsAM DCB *
*. o * LE H *
Lx AERRARERRRE AR
* YES
V NOTE 1 ADDKEY
BERREGHRRRRE MR ARRRAGIEERR R RN
*SAVE DCBKEYLE, * ' TORE *
* INDICATE KEY * * REY ADDRESS *
* NEE AND * *ADD_KEY LENGIH *
* SET 'F,O%MI.\T : :TO RCD. LENGTH :
FEREEERRRRRRR RO P L LT e
4 4
> <
s
HEERRE 2 R R AAN R
*IEBISE0 2
L et ot B Dt Tt o
* REBLOCK AND *
*WRITE PSYS.SEQ.:
EREEEERER LR ER IR NOTE 1 - °'FORMAT':X *11' IS FIXED UNBLOCKED RECOKDS WITH
THE KEY IN ThE BIGH - ORDER POSITIONS
NOTE 2 - RETURN COMPLETION MESSAGES MEARINGS
““** CODE CODE NUMBER
: B3 : 4 8 2 I/0 ERROR
e 8 16 7 BAD OPEN
12 8 1 BAD DCB PARAMS
NOTE 3 - THE FIRST TWO (PHYS.SE! RECORDS H?ITTEN CONTAIN
E DCB FOR THE INPUT (iS AM) DATA SE

134

Chart 52.

IEBISAM - Unload Physical Sequential

Records (IEBISSO)

COMPRE
bk VAL LS LS L Ll THIS IS CSECT IEBISSO
TRy NELTTT T T * * GCF LOAD MODULE IESISU
* * STORE *
* ENTRY * ——>% RECORD *
* * LENGTH *
P T T e Ty * wkokok
R E R R EEE kK * *
* B4 *
* *
e
IESISSO - ¥, *.NOTE 1 ONE k.
LB e B -, tutt53ttuuuu 847 T, e
. *. ¥ . ORE * * ORE *
o* INI‘I‘IAL *, NO o DOES *, WO ‘ H O. BYTE OF * SAVE . * SAVE RCD, LGTd. *
*. ENITR! Hmm e *, 'SAVE' = 0 .%—— LGTH Hm e Vs Do L *
. . *. o ORRE & LESS *. 2 GUTEUT *
*, ¥ *. ok * BUFFER * . . BUFFER *
*, % *, ¥ EEE L T r TR T *, EEERFERERERE AR
* YES * YRS x aAVE.
EQUAL rAk
* *
* C5 *=>
* *
*ERE
RO Lk Rk P e s T T P HRARRCIFFRREERRER RAAEAC [k HEREHCSRERRREERRE
* SVC 19, * # OPEK’I‘N 52 GH * * OPERTN 52 Gh * * S L * * F. *
* OPEN ~ * ek k—kodk—do * R i ek et St * RCD. _LGTH. * * OUTPUT *
* QUTPUT * ' PU * * PUT * * N * * BUFFER W1lTh *
DCi * PHYS. SEQ. * * PHYS. SEQ. * * OUTPUT * * RCD. KEY *
* * * o) * * BUFFER * * AnD DATA *
HEEEEERERERE ERERRERERERERRE K LRI TS SRS S 22 L] AOEEE R R ERRIOR HEERFERR AR R REE
V
- \ KacTion v
1" T, P v L SRR IDIHRRERERRAK R ADY ok FRARED kR Rk
-* A’b *. * * * STCRE * * OPERTN 52 G4 * * OPERT:
NO *. * SET * * L.Q. BYTH * bk e ettt bk
——] SUCCESSFUL oF * 'SAVE' = 78 * * OF RCD. * * PuT * x PUT
r o ¥ * * * LGTH. FLD. * * PRYS, S'Q. * * PHYS. SEQ. *
Tk, o * * * IN FFER * * RECORL
*. Lk P L T P L] L I T 2o L PITIR .
* YES
P S
, ;
ok, AOWMCH o ¥. MORE
5 * E *, FEREIEISFLensbart kR KRG Rk bk Freseusersestiss
«* DSORG * SAVE «**SAVE' *, * UPDATE RCD. * * * UPLATE RCD.
NO_ .#* ND . . VS * ADDRESS AND : * SET * * ADDKESS, ®CD. M
==k, BLKSIZE oF -, RCD. o ¥ * SAVE' * * *SAVE' * LGTH. AnD *
. VALID . -, LGTH. .o * = 77 * * =78 * * SET "SAVE' =
. o* * o * * * * = *
ok ., ok e L T T AR AR B
*"YES ExEE * SAVE
* * GR. OR
* BY * EQUAL
* *
A >] <
ALRITE L NOTE 1 ENUF .
FARRETL AR AR R ey Y ittt 4
* INITIALIZE * * 'ORE * * SAVE *.
* SEQ NO. * * RCD._ LGTH. * . Vs .
* 0 * * N * . RCD. N
* *SAVE! * * QUTPUT * *, LGTH. .
* O 78 * * BUFFER * . .
M e R T . u*
*SAV. Ll
GR. OR * *
EQ * C5 :
< *hkk
EASYMVE
G2%¥ o L e e e R L] OPERTH -
STOR] * * DECREMENT * FEEAGH RNk SUBROUTIiE OF
* RCD. KEY *SAVE' B * * * CSECT IEBISSO
* AND DATA IN RECORD * * ENTRY *
* NG * * *
* BUFFER * * + 2 * EII T I TR Y
T T P T e
CHECK OPERTN NOT& 2
LW LI 2 2] EREERHORR AR R TR EH R US SIS 2 LA RS LY R BBt Y
* SUC 20. * * * * *
L * CLOSE * * * * PUT * SYNAD * SET *
e OUTPUT * - WITH UP 'I‘O *< * (LOCATE) *e —>% RETURN *
“ DCB * * 2EROS * "‘ ‘* * CODE :
PR TR P T T T P P T
D
NOTOK NOTE 2 NOTE 1 - THE FIELD !SAVE' CONTAINS THE P /
t.titJ1\h-t#.ttttl BYTES LEFT IN THE LR P e Y AR5 HR AR
* R CUREoTS shbFER. + UpDATE AND s sVc 20. *
* * * STORE SE * * CLOSE *
* RETURN * NOTE 2 - RETURN CODE SETTINGS ARE * NUMBLR, * * OUTPUT *
* CODE * DESCRIBED IN CHART 51. * ESET * * DCB *
* * * POINTL!(S * * *
AR R R AR ONLY RETURN CODES 0 ARE HRRIA KA ERRE Rk HEREE R R
SET AT 'NOTOK.
v
FHRRK] R RN t*tt]\ut"tttt‘t# HRARKS #h kR
* * i TO * * RETURN
* RETURN * * O_AS * * TO IEBISU *
* * * APRPRIAT * * (CHART 51) *
P e T T Lrrrs FEEERE R R R

Data Set Utility Programs:

IEBISAM 135

Chart 53.

#kRRAL KR RRRREK ENTRY 1&.
*VIA XC

* ENTRY "FROM MODULE

* SAM

‘t**#tttt*tt*‘t (CHART 49)

TdIS IS CSECT IHBISL
OF MODULE IEBISL

IEBISAM - Reconstruct Indexed Sequential Records (IEBISL)

IEBISL TSTALL ¥, RESUMEL
kKR FE R RS R KR B3 tlgu**i*’i*" EA R L L L PR s L L
* T UP BASE I3 * * *
* REGISTER. * . UTPUT . (.DOCATF). * * LOAD *
ESTABLISH * -, DATA SET . LOAD -% LIMIT *
* PO, * *. RECORD * * ADDRESS *
#OTHER KEGISTERS* *, . LENGTH *
T T TR T *, . Farrare e B L e T P
NO R
Rk Sk * *
* * * B4 %
* C1 *=> * C3 *-> * *
* * < * * ok AR
Li b Fhkk *
TOWARD J. cl #*
HEEERC] * R bk hhE R & EERERCLAE S KA F R FRCIRERRREN *
‘IEBISSI St* * SET REG 0 FOR ¥ * SVC 19. * bl i
————— *-k—d—k * LIMIT VALUE., * * OPEN # DCB EXIT
I * ‘ OAD 8UI AM * * OUTPUT * .
* RECORD LENGTH * L S * DATA * .
* AND ADDRESS * 'OUTPUT U"JOPENED* * SET * .
P T T T SRERFRRAR R AR RRERA .
N .
YES v -
L COMPET ¥ ¥, ISLEXT A
Dl *, D2 *, D3 *, EERRRDY Rk kkkkk
.*IEBISSI*. L INITIALS. . .. * MOVE SOME *
«* QETURN - YES ¥ ENTRY * ¥ OPEN * * C3 FIELDS
*. COD: A H e >% . (REG 0 = P *. SUCCESSFUL * FrOM UNLOADED *
. E. UAL . . 0) ¥ *, . * L SET TO
RO .* *, . *, ¥ * N TA SET
oK . % *, Lk ok Rk kR kIR Rk Rk kK
“+"No * * YES *EEE
* *
l * F2 %
* *
SETA, SETAS *EEE
seTaf, “SETALL
S, SEE NOTE 1 ¥ TLRECL
unsm,uuuuu:p ANY ”nt,_z-ntunut E3° * FERAAE [k kK
* SUCCESSIVELY *T * . DCB * CHECK 'OLD* *
* CHECK FOR *POSITIVE * APPROPRIATE * «* FIELDS *, NO * (UNLOADED) AJD *
* RETURN CODES #e—c—m—ee >* e *. ALL o Fmme NEwW®' (OUTEUT) *
OF 4, 8, 12, 16* A *x ‘UJMBER * *. RIGHT .* *RECORD _LENGTHS *
* 1 * * *, ¥ AND FORMATS *
AR ARk AR RR AR K *, L% P L P e T M
IF ALL % ok * YES LT
TESTS * * * * *
NEGATIVE : B2 * : J1 : * E2 ¥
e AR TS Ak
N’ * * SETAL2
SE' * BY * ARBLE ok
B *, LR st WAL S AL ST 2] * * Y .
+*RETURN *. *SET COMPLETION * Rk ¥ TNEW' ¥, BLKSLZE***
.+" CODE *. YES *CODE AND MESS— .* BLOCKSIZE *. LESS *
*, EQU. e * AGE. (DD * *, VS LOGICAL .*———=>% C3 *
. 0 . A TSMISSING OR OPENS *. RECORD _.* *
*, ¥ l * UNSUCCESSFUL) * *.SI1ZE . R
. PRt ¥, 0%
* NO *hk *> OR =
* *
* F2 *
* *
rkE
.o
Gl T, KRR RRGURRRRER R
*RETURN * . CHECK SIZE
- CODE *, YES * OF RECORD KEY *
*. Egum, Py S * "LENGTH AuD ~ #—=u
. 4 . * RELATIVE KEY
*, ok * POSITION *
*, % R T P T T T T
* NO ok
* *
E2 *SETAL2
* *
ErL e
NO‘AL 1
;s EE LTS
* * KETURN)
* SET MESSAGE * CODE MEANING MESSAGE NO.
* NUMBER = *
: (NO ERRORS) : 0 NORMAL (NO ERROR) RETU=xN -
FEREREERR Rk 4 SYNCHRONOUS ERROR AT INPUT 2
‘*'**‘ 8 END OF INPUT DATA 20
* J1 *—> 12 CHARACTER TRANSMISSION
‘*.‘** LIMIT EXCEEDED 4
FINI MITE 16 INPUT OUT OF SEQUENCE 6
N ugzt et] FREERT IR RET R
* * * 3VC 20. * N * 24 INVALID DCB PARAMETER 1
* STORE * * CLOSE * PREPARE FOR *
* MESSAGE et >* OUTPUT e % EXIT TO *
* NUMBER * DATA * TERMINATE *
* * SET * *
P LT P LI FhRkR AR P L LT T

136

P S L e LT T

XCTL_TO *
* MODULE IEBISF #
* (CH) *

*

FEERERRRRE R

Chart 54.

¥R kkkeERE4s ENTRY IS
* * B,

ALR
* ENTRY *FROM CSECT
* *IEBISL
L e T TN
EBISSI COMP

FRRF B ERRRR R K FAA KRB AR RR R
* * PI.AC? *
* SAVE * * INFORMATION *
* REGISTERS * ~->% IN REGISTERS *
* * * FOR REFERENCE #*
* * * *

* AR

¥, ok
c1 *, c2 *,
<¥INITIAL*. »¥ CARD _
NO .* ENTRY *, i IMAGE *, NO
———%, (REG 0 = 0) .* *. PROCESSING +¥————
. o * .COMPLETE .*
, o . -*
*, ¥ *, ¥
* YES * YES

ok kD] H kR E kR Rk

FRRRADD KR REAR RN

* *
* GET POINTER *
* TO_WORK *
* AREA *
* *
EEEERREER
----------- >

IP v

FE iR LA LI e Tl
' SET POINTERS *
D ADI DRLSSES *
FOR ORK

AND SA\SIE :
Aok ok kA ok

LYY

F1o *,
L *INITIAL*.

B ENTRY *, NO

. (REG 0 = 0) .
*, o

*. o
*, ¥
* YES

ARG FR KRR R
sV

* SE* *
CEETr T T ey

o*
——>%, FIELDS
*. V
*

INVALD
E S VA LS A R L L]

* SET RETURN *

-* * CODE EQUAL *
* . * . B *
. . *FIELDS INVALID)*
*, . * *
P B e ST T
* NO
HEE
* *
NOTOK * K1 #*
:tataa1tutatt::ta * *
RETURN * hEx
* CODE EBUAL *
* 0. *
: OPENED) :
ARk ok
R EE
* *
* K1 #=>
* *
ek
ouT
t](l!’l.tt't
* c 20. %, PR Pl idiicnd
* OSE RE
“ INPUT *-—-———-——)* M(()DULE IEBISL :
* SET o RS S L
EERERR AR

THIS 1S CSECT
IEBISSI OF
MODULE IEBISL

. BYTES _.
*

FEHRRC kR RN
*

CHECK
* BYTES TO
: BE PROCESSED
kR kR koo

LYYy

D3 *.
. IORE *. YES
*, BYTES o Hm————
*. ok
*, Lk
* NO

Dt F bbbt d
* ROC HY

P]
W b K o
* GET A
: RECORD :
EEAS LR LS L2

bareAcElt bAL T LAt

*
HARAREREERRAAR N R

##:’#H}}t‘na!i#ttt
SET RETURN
EQUAL 0.
e I T R T

I T Es
XTI

HEAT tu:#tttt
* RETUK

* MODULE IEBISL *
* (CHART 53) *
TRk E KRRk

IEBISAM - Retrieve Physical Sequential Records (IEBISSI)

* RETURN TO
* POINT OF

DEPARTURE
R e L

*
*
*

FINI
FRRRABUEERRE R AR
* SET RETURN * hhs
* CODE EQUAL * * *
> ¥ . ND HemeD>¥ K1 *
* OF INPUT) * * *
* * Rk
PR P
ETees
* *
* Dy *
* M
ok
MAX R EXCEED
D4 . KARHADSRAA AR A RS
S * SET RETURN *
<% RECORD *,. YES * CODE EQUAL *
] FO0 et >x 2. (LENGTH. *
A *, LONG *." :EXCEEDS LIMIT) :
Tw, oL FRERERRERR AR E R R
* NO
EhE¥ EEX
* * * *
* Bl *=D> ->% K1 *
* * *
* *kokx
CHECK .
ek k LSk kk kR bRokokk
«*¥ENTIRE *. * *
oF .CORD *. NO MOVE BYTES. *
. N CARQD o e > INCREM:. NT *
*. IMAGE . : OINTER. :
A LT R P
* YBS
Py e P R Rt A
* PROC 54 #4
* MO * R e S
* RECORI * * GET A *
* FOR OUTPUT : : RECORD :
EEREFRRERF R KKK Rk FEREEFEEREEEFRERER
s
* *
* E4 *
* *
FERAGY R A A A K hrn
% RETURN TO *
* MODULE IEBISL *
* (CHART 53) *
ek ook dokoR kR ok ok
PROC —
SUBROUTINE
PROC OF CSECT
‘*aﬂu*tiit**‘ IEBISSI
GET
* INPUT *
** RECORD
Ly
ok NOTSEQ
Ju’ s, FATRATE AR
¥ *, * SET RETURN *
.* RECORD *
. . lb. (UI‘ *
‘.§EQUENCE‘.‘ : OF SEQUENCE) :
R ARRRERE R
YES
EER
* *
* K1 *
* *
Ak AK R R KK xkk

Data Set Utility Programs:

IEBISAM 137

THIS IS CSECT IEBISPL
OF MODULE IEBISPL

Chart 55. IEBISANM -
tttt}\lttttttt‘t ENTRY IS
VIA XCTL,
: ENTRY " FROMSMODULB
PO (CHART 49)
IEBISPL
EEE TS SRS EL 2L R L]
* *
* ESTABLISH *
* BASE *
: KEGISTER :
RS L 2R 22 2R
v
*#t“cl*r AERBRRRE FEC2RFAEEER
LOAD DCB * * SVC 19. =*
POINTERS OPEN *
* MOVE DDNAMES #————wmwe > INPUT AND *
TO DCBS. * , OUTPUT © *
Ehkk kbR kR Rk e kol o o ok R
L ¥
D1 *, D2 *,
Lk *, . *,
YES .* DCB *. YES .* OPEN *,
———%, PARAMETERS _ .*<{————=———%, SUCCESSFUL .*
. VALID . *, ok
- ¥ *, o
. u* .k
*"No *"NO
*ERE
* -
* G2 * SETSW
* * Sk RE 2 ok dok ko Rk
EERE t SET MESSAGE "
R _AND
‘COMPLETION CODE'
’ti‘tttt‘ttﬁtt*’.t
EEE
* *
* F2 %>
* *
Ak
EODADIN
AERENPLSRERRRRREE tt#.tFZ. ST
* CHECK FORMAT * * *
% AND LENGTH * * WVE *
—->* OF RECORDS * * M.ESSAGE *
* AG. * L *
* 2] NG! * * *
EA LT LTRSS bt SEEEEEE R R REE R
Rk
* »*
* G2 *=>
* *
*dkk ‘
CHEKEXIT .*. CLOSEQUT
G1 *, REGREF AR F
- *. * SVC 20.
NO .* USER *, * CLOSE *
. XIT * INPUT AND *
{ *.SPECIFIED. * * uT
*, ¥ * S *
. .k FEREEERRRAK
* YES
FEH] kbkRERS "HZ*"““’
* SVC 8. * *
* LOAD, * * FREEMAIN.
* EBRING IN * * AREA OBTAINED *
* USER * * FOR_RECORD *
* ROUTINE * *
EE RS TS T 1] Rk kd kR
----------- >
DOGET COMEBCK v
tttﬁtJZt——

HRTLEERRREE

* SvC 10. *
* GETMAIN. *
*BUFFER AREA FOR#¥
* INPUT DATA '*

*SET REC
R R

138

EE2 S LS 2
t

* PREP
* FOR XCTL EXIT ‘
* TO TERMINATE

*
RIS A P L i

R o T T
* XCTL_TO,

* MODULE IED')[SF *
* (CHART 56 *
PR e g L T

Print logical Records (IEBISPL)

*hkk
* *
* B3 *
* *
EREE
3 SYNADOUT
FRBIREER A FRBLRRREERK
* P * *
* (LOCATE). * ERRCR * SVC 68.
* GET OUTPUT Hoaonana ¥ ERROR e
* BUFFER * * ANALYSIS
* ADDRESS * *
AR AR P T
LI A
* * * *
* B4 * * F2
* * * *
EE L L] R
GETNEXT SYNADIN
FACIHRAHRR RRCURRRR R R
*GET (MOVE) . * *
* PLACE NEXT # ERROR * SVC 68. *
* RECORD_IN Fonnaaea> * ERROR e
+ WORK AREA _* *, ANALYSIS _*]7
HEERREEE RN EEREFRREREE
ok
* *
* F2 *
* *
Hdokk
*ARR DI R Rk Rk
* CHECK_ouT *
* RECORD *
:CHARACTERISTICS:
* *
P e T Y
TESTEXIT _.*. SETUPEX
E3 * HRE YRR EREK
+* TAKE *, *
NO .* USER *. YES GO TO
e EXIT P S S, >% USER *
. -* ROUTINE *
*. o *
*, % EEREEEERRRE
LTS *
* *
* G3 *
* *
hEk
CHERNEXT .*. N
B e A Fy k. F5~ %,
% CHECK RETURN * -% MAKE *, -* I8 *.
* CODES ANDTAKE * * INPUT *, <% DATA SET *.
* APPROPRIATE * -D>%, DATA TO BE - -—D¥ L .
* ACTION * ‘e . - *. CLOSED ‘.‘
T T P P T e * L* *.
Rk * YES * NO
EL 2L * L d
* * * FU *
* G3 *-> * *
* * hxE e
i * *
TESTCVRT .‘. * G3 *
G3~ * * T LT e e
. ok * *
NO .* DATA ‘e, * RESET *
~%. CONVERSION .* *BUFFER POINWTERS*
[~ #_REQUIRED .* « *
. o * *
*. .t LA I s 2L L2 el 2 ad
* YES
CONVERT
FERRKHIRERERRREER
* *
* CONVERT DATA_ * NOTE 1: CODES AND MESSAGE NUMBERS
:TO HEXADECIMAL : -
* *
ELETEL LIS LIS L TL S L] COMPLETIOR
RETURN [« 1 MESSAGE
N CODE MEANING (HEXADECIMAL) NUMBER
0 JPARNT CONTINUE - =
4 PRIn 4 5
8 O ER LT CONTINUE - =
12 NO PRINT; CLOSE 4 5
RRCERAEL
* ERROK 8 i
ERROR * {LOCATE). ' DD STATEMENT io 7
WRITE RECORD * MISSING OR
FROM ‘ UNSUCCESSFUL OPEN
BUFFER 8Y ERROR 8 2
:tttnt.tmn INVALID RETURN 0 6
‘*"“ CODE ISSUED.
*= B4 *
* *
P Ertes
* *
* FYy *
* *
kR

Chart 56. IEBISAM - Terminate IEBISAM Program (IEBISF)

ENTRY IS VIA
XCTL FROM ANY ha il VAL S S Ll L i
IEBISAM PROGRAM * *
MODULE

b ENTRY *
* M
IEBISF %
[T I -V L LTI
* *

* PREPARE *
*TO OPEN OUTPUT *
* DCB *

* *
R EREE R AR RN EE

4
HRC2EHRRERE
% 8SVC 19. *

* OPE *
* SYSPRINT DATA *
* SET *

LAd A 2L 1 2]

v

SETSWOT ¥,
TeREDLassesreees p2" . :‘tt*pat*ntttiit: Dl sy
* SET * NO .* OPEN "%, YES * SET * * PUT (MOVE). * ERROR
COMPLETION CODE#<{———————— %, SUCCESSFUL ,——————=>%* UP FOR HEADER *-——————- >% WRITE HEADER #*cccosvnconcnnannas
p =16 . 0 ot : LINE * * LINE * A .
* 'l . . -
T e e ot P T P PR PETE T YTy T Y . .
Ty . .
* * . .
* Bl #-> . .
* M N .
hEE . -
CLOSEOUT 4 4 « ERROR v
FEEL RS ERF Rk SRERKEYRERERREREE . EERRRES RS ERREREE
sVC . * * . * *
* CLOSE * * SET * B * SYNAD *
* SYSPRINT DATA * *UP FOR MESSAGE * . * ROUTINE FOR *
* SET * : : . : SYSPRINT :
AERERRAERER P e TP . P e iy
. COMPLET%ON
. CODE =
. T
. * *
1 PUTOUT . * E1 *
ERRRRFL R R FRFUREEEEEE . * »
* * * - PUT * . sxe
* * * (MOVE) . * -
*RESET POINTERS * * WRI *eavoe
: : “ MESSAGE ‘* ERROR
P T ERRERRREERE
Ak
* »
\'4 * E1 *
FEGLAEERR R FEEERGLRERERR SRR * *
* sUc 10, * * PREPARE FOR * hr
* FREEMAIN * * RETURN (ES- #
* PROGRAM Fmm e >% TABLISH COM- #
* WORK * * PLETIO! COD? *
* AREA * * FOR CQLLER *
FRERRSERR AR SRRERAAFRERER AR

ARRRE R AR RS RRE
RETURN TO

LX

*
* IEB1SAM *
LS LTS T L2 1

Data Set Utility Programs: IEBISAM 139

Updating Symbolic Libraries
(IEBUPDAT)

The IEBUPDAT program modifies a symbclic
library. The program can:

e Add, copy, and replace members.

e Add, delete, replace, and renurber the
records within an existing member.

e Assign sequence nurbers to the records
of a new memker.

The input to the IEBRUPDAT program con-
sists of two data sets: the old master
data set (SYSUT1) and the current transac-
tion data set (SYSIN). The old master is a
partitioned data set that contains all of
the library members; the current transac-
tion is a sequential data set that contains
all of the transactions that are to ke app-
lied to the library wembers. The logical
record length for both data sets is 80
bytes, blocked or unblocked.

The output of the IEBUPDAT program con-
sists of two data sets: the new master
(SYSUT2) and the log (SYSPRINT). The new
master is a partitioned data set that con-
tains the updated version of the symkolic
library; the log is a sequential data set
that contains the latest changes to the old
master or, optionally the currently updated
version of the o0ld master. The logical
record length on the new master is 80
bytes, klocked or unklocked; on the log it
is 120 bytes, unblocked. The blocking fac-
tors of the 0ld and new masters may be
different.

The program obtains main storage for
buffers ky means of the getmain routine,
which is called once for each buffer; the
amount of storage requested is the same as
the block size specified by the utility
keyword parameter BLKSIZE. If the amount
of storage requested is not available, the
program terminates.

The current transaction is the control-
ling data set. Only those members of the
old master for which there are current
transaction entries will be processed. 0ld
master members without current transaction
entries will not appear in the new master.

PROGRAM STRUCTURE

The IEBUPDAT program (Figure 50) can ke
logically divided into three parts:
initialization, menker processor, and
within-member processor.

Initialization

Initialization sets switches, assigns work
areas, and opens the input and output data

140

sets. It consists of four functions:
AHEAD, ANALPRAM, OFEN1l, and OPLNINPT.

AHEAD
initializes switches, work areas, and
ECBs so that they can be reused.

ANALPARM
analyzes input specifications and user
header and trailer label exit routine
name specifications. Erxrrors cause
termination of the program with a
message.

OPEN1
opens output data sets.

OPENINPT
opens one or two input data sets
according to optional parameter input
specifications.

Member Processor

The member processor updates whole members
at a time. It reads the current transac-
tion data set and does preliminary proces-
sing of all headers: ADD, REPL, REPRO, and
CENGE. Further processing of the CHNGE
header is done by the Within Mewmber Proces-
sor. The ADD, REPL, and REPRO headers and
their associated current transaction reco-
rds are processed by the Member Processor.

A new-master is created by the Member-
Level Prccessor for ADDs, KREPLs, and REPRO
headers. A REPRO header will cause the
new-master to be written from the old-
master instead of from the current transac-
tion data set as is done for ADD and REPL
headers. Processing of the current trans-
action header includes sequence checking of
mexber names, determination of proper
directory entry (or lack of), stowing of
ALIASes, sequencing of ADDs and REPLs
(through presence cf NUMBR), and detection
of invalid transactions (i.e., transactions
that logically are out of sequence or are
incorrectly prepared). The merber proces-
sor consists of eight routines: READCT,
SOURCECK, MAINBODY, SOURCERT, OMREADRT,
LOGROUTE, NUMBRRTE, and STOWNAME.

READCT
reads the current transaction data set
and deblocks if necessary. It then
checks for two illegal headers in a
row (ADD, REPL, or CHNGE).

SQURCECK
determines the type of transaction.

MAINBODY
processes headers. It checks the
member name of the current transaction
header stream for rroper sequence and
sets up the STOWAREA area with the

directory image. If the header is an
ADD, MAINBODY ensures that there is no
directory entry on the old master;
conversely, if the header is a REPL,
REPRC, or CHNGE, a directory entry
must already be on the old master.

SOURCERT
processes all source line transactions
in a member following an ADD or REPL
header.

OMREADRT
processes the source line transactions
in a member following a REPRO header.

LOGROUTE
writes headers, ALIAS and NUMBR trans-
actions, and error messages, on
SYSPRINT.

NUMBRRTE
processes NUMBR transaction following
either a REPL or ADD header.

Within Member Processor

The Within Member Processor updates the
records within a member. It inserts,
deletes, reproduces,
quences source code images. Control is
given to the Within Member Processor when

rerlaces and/or rese-

the Member Level Processor detects a CHNGE

transaction and verifies the existence of
the named member on the o0ld master data
set. The Within Member Processor retains
control, processing a rmember of the old
master as specified by the record of the

current transaction data set until another

header record or the ENDUP record is read.

control is then returned to the Memker
Level Processor.

The within member processor consists of

four routines: RRFINDOM,
LET, and RRNUMBER.

RRSOURCE, RRDE-

RRFINDCM
reads the first record of the old
master member being changed; then

reads and checks the current transac-

STOWNAME tion for the type of transaction.
stores a memker name in the outrut Control is passed to the appropriate
directory. transaction routine.

r 1

| |

[1 e . l

| |] Initialize Switches and DCBs (AHEAD) |

| | Initialization } T |
| | | |Analyze option parameters (ANALPRAM) |
| L T 4 ¥ |
| i | Open data sets (OPEN1) |
| | L |
| r + 1 A . |
		Determine Type of Transaction (SOURCECK)
	Memberx 3 -	
i Processor	Process headers (MAINBODY)	
L T 4 - i		
		Process source lines-ADD,REPL (SOURCERT)
	¥	
		Process source lines-REPRO (CMREADRT)
	t	
	Write log (ZZPR)	
	Sequence members (NUMBRRTE)	

I | |

Il | Stow directory names (STOWNAME) |

| | L |

[[1 - 1 |

| | Within | Read old master (FINDOM) |

| | Member T |
| | Processor |Change records per transactions (CKCMSW) |
| L b |
| |Wwrite in log (ZZPR) |
| t |
| |[Write in member (NMWRITE) |
| t |
| |
L , . 1
Figure 50. Functional Structure of the IEBUPDAT Program

Data Set Utility Programs:

IEBUPDAT 141

RRSOURCE
compares the sequence numbers of the
0ld master record and the source
transaction record to determine wheth-
er the source record is an insertion
or a replacement.

RRDELET
deletes o0ld master records whose
sequence nunkers are within the range
of numbers on the DELET transaction.

RRNUMBR ,
provides the sequence numbers for old
master records and inserted source
transaction records that follow a
NUMEBR transaction.

PROGRAM FLCW

Chart 57 shows the flow of control through
the IEBUPDAT program. After the program is
entered, it sets switches, assigns work
areas, and checks DCBs for reusability.

The output data sets SYSPRINT (log) and
SYSUT2 (new master) are opened. The log
header is written, using the optionally
specified initial page number, and mwessages
indicating error conditions found during
ddname or initial page number interrogation
are issued. Option parameters supplied ky
the user via the EXEC statement are
analyzed.

Next, the current transaction data set
(SYSIN) and the old master data set (SY¥YS-
UT1) are opened. (the DCB exit is taken to
determine the block size so that a buffer
area can be dynamically obtained for the
SYSIN data set. A user header label exit
may be taken at this point to process user
header lakels.

The READCT routine is the starting point
for the NMember Processor part of the pro-
gram, and is executed each time processing
is completed on a current transaction and a
new current transaction is needed. READCT
passes control to the READCTA subroutine
which reads and deklocks a record from
SYSIN. The record can be one of the fol-
lowing: a header record, a source record,
a NUMBR record, or an ALIAS record. A
header record is processed by the HEADERCK
routine; a source record is processed by
the SOURCERT routine; a NUMBR record is
processed by the NUMBRRTE routine; and an
ALIAS record is processed by the STCWNAME
routine.

The HEADERCK routine determines whether
the header is valid and then sets appropri-
ate switches depending on the type of head-
er. If the header is not valid, an error
wessage is logged and control is passed to
the READCT routine. Valid headers are pro-
cessed ky MAINBODY.

142

The SOURCERT routine processes all
source line transactions that are in a
member whose header is either an ADD or
REPL. A check is made to see if the source
is in its proper place by checking the
ALREPOSW switch which is turned on when
either an ALIAS or REPRO is encountered.

If the ALREPOSW switch is on, the souxce is
out of sequence and a message is logged via
the LCGRCUTE. Control is then passed to
the READCT routine. If the ALREPOSW is
off, the CTINAREA area which contains the
source image, is moved to the OMINAREA
area. Then, if the NSW switch is off (no
NUMBR preceding the source), the current
transaction is written on the new master.
The full list switch, FLLISTSW is checked
and if it is on, the record is logged and
control is returned to REALDCT.

The NUMBRRTE routine processes the NUMBR
transaction which may have followed either
a REPL or an ADD header. A check is made
of the ADDREPSW switch, which will be on if
the previous transaction was an ADD or
REFL. If ADDREPSW is off, an error message
is logged and control is passed to the
READCT routine. If ADDREPSW is on, the
NUMBR transaction is checked for its proper
sequence within the stream of current
transaction records referencing a member.
Sequence numbers are converted and placed
in the proper work areas. The NUMBR trans-
action is logged after which control is
passed to the READCT routine.

The STOWNAME routine causes the previous
merber name or alias to be stored in the
directory with the system status indicator
(SSI) bytes (if any) via the STOWREPL sub-
routine. If the current transaction in
CTINAREA is an alias, the alias, TTR, and
user information are moved to STOWAREA.

The alias is logged via the LOGROUTE rou-
tine and control is passed to the READCT
routine which reads the next transaction.
If the current transaction is not an alias,
control is passed to the HEADERCK routine.

By reaching MAINBODY, it has been deter-
mined that the header is in proper sequence
with a member. The mernber name, however,
is compared with the previous member name
to determine if the member is in sequence.
If the member is out of sequence, an errxor
message is logged and control is passed to
the READCT routine. If the member is in
sequence, the directories from the old
master and the new master are compared.
There should be entries in both directories
for REPL, REPRO, or CHNGE headers kut no
entry in the old master for an ADD header.
In the event of an error, an error message
is logged, the entire member is rejected,
and control returns to the READCT routine.
If there are no errors, the header is
logged.

If the header is a REPRO, the old master
is read into OMINAREA; the record is logged
if the full list switch (FLLISTSW) is on;
and the record is then written on the new
master. If the header is an ADD or REPL,
control is passed to the REALCT routine.

If the header is a CHNGE, control is passed
to the within member processor RRFINDCM.

Beginning at RRFINDOM, the within member
processor handles the transactions follow-
ing a CHNGE header; i.e., source, DELET,
and NUMBRER. The member being changed is
located on the old master data set and the
first record is read. The current transac-
tion file is also read and checked for the
type of transaction.

If the transaction is a source, the
sequence number of the new master record
and of the current transaction record are
compared. When the old master is low, it
is rewritten onto the new master and the
next record on the old master is read and
compared. When the o0ld master is equal to
the source transaction, the current trans-
action is written on the new master.

If the transaction is a DELET, the
sequence number of the old master record is
compared to the 'start' sequence number of
the DELET transaction. When the o0ld master
is low, it is written onto the new master
and the next record on the old master is
read and compared. When the o0ld master is
equal to or greater than the ‘'start*
sequence number, the old master records are
read and deleted until a record is read
whose sequence number is higher than the
'end' sequence number in the DELET
transaction.

If the transaction is a NUMBR, the old
master is read and resequenced according to
the range of sequence numbers in the NUMBR
transaction. The current transaction is
also read and any DELET or source transac-
tion is processed as described above.
Source transaction may also be numbered
sequentially.

As the current transactions are read and
processed, each current transaction detail
record is logged as is the record or reco-
rds it referenced. If a complete log is
requested, all records placed in the new
master data set are logged. Any errors
detected during processing are also logged.

Utilizing the EODAD exits, the end of
member on the 0ld master and the end of
data on the current transaction data set
are determined. Processing continues until
the new master member is completed. 2All
switches are reset and work areas are
cleared before returning to the member
level processor at STOWNAME.

After the last member is processed, as
indicated by a /ENDUP or EOD exit on SYSIN,
the 0ld master, the new master, and SYSIN
data sets are closed. A user trailer label
exit, if one was specified by the user via
the EXEC card may be taken at this point to
process user trailer lakels. When this is
done, a final message is logged indicating
the highest concode obtained in the pro-
gram. The SYSPRINT data set is closed and
control is returned to the invoker.

Data Set Utility Programs: IEBUPDAT 143

Chart 57.

LRSI NEL LI L2
* *
* ENTRY *
* *

AR S L L b

IEBUDAT
* 4R R B Ak kR KRRk R

* AREAS, OPEN
: SYSPRINT AND

*
*
*
*

SYSUT2 *

LR LT e e LT S g

ANALPRAM
HERRACT RERFRARRER
* *
* ANALYZER *
* OPTION *
: PARAMETERS :

L e T

%
w1
*

ARRREE] Rk Rk R
* OPEN

LT XY

* CURRENT
TRANSACTION
* A_SET
*
*

(SYSINK)
AR R R KRR

READCT .*.
F1
o*
*
USER EXIT .

..

N _ -
s .

*, ¥
* *

"*"YES

SOURCECK v
“#ttGltutttt*t*t
*

t t—t-t—t-t-t -1

SER
+ HEADER FABEL :
dEEREEEFRERRRR kR E

----------- >

SOURCECK . *.

a1 .
¥ *
o NEW *. YES
*. SPECIFIED _.%-—-->
*, ok
*, ¥

*, .k
* NO

tt‘#'Jl!tt*tttﬁtt
PEN THE OLD
tMAS?ER DAT SET*

FRERRERRRRRRERR R

STOWNAME

EEEE LEEE
* *
* E2 *
* *
LT
EADCT
REERRE2 R KRRk R A
* READ DEBLOCK *
* AND CHECK *

* DAT:
R d T IR L A L L L

SOURCECK__.*.
F2 *.

¥ *.
B I8 cT *,

NO
*, A SOURCE P e ——
* *

144

HRRRRDTRA RN
* *
* STOW PREVIOUS *
*MEMBER NAME OR *
* ALIAS *

* *
ERERRE R EERR R

Rk RC IR AR

MOVE
ALIAS TO
STOWAREA

FEAk R R Rk

R RN
XTI}

FHEERDIREFRERERER
*LOGROUTE
fa e A e o

* <
* LOG ROUTINE *
* *

ER LT ST P T2

. e
. L
* YES
v
SOURCERT .
PrEp PR G3" Cw.
* * .
* APPLY * NO .* Is5 CT
* SEQUENCING IF * -, NUMBER-
* QUIRED * .
* * * *
SRR *, .t
e *“ygs
* *
* A3 *
* *
kR ok
WRITENM v NUMBRRTE
F AR RIERR R R EEE
* * * M
* WRITE * * NVERT *
* NEW MASTER * * SE UENCE *
: : : NUMBERS AND :
R PR T P
327 s Sk kR 3R Rk Ak
% *, ’LOGROUT& *
¥ *. :—a Kk k—k
#. LIST SW ON . *meom——em> ! .
*, ¥ ‘LOG THE RECORD *
%, 3 * *
. R
* NO
< ! |
*

IEBUPDAT - Updating Symbolic Libraries

#**t
*

whkE

HEADERCK .*.
el

0 .+ VALID

HEADER

—

o
P
|

IN SEQUENCE .
o

N
*, Lk
* YES

B4 *,
*

‘.
* E2 t(—-__t N HEADER ‘-*

NO o CHAJNGE

*
oF
* YES
RRFINDOM
HRERKBS K FE RS KR KRR
* *

* *
:READ OoLD MASTER:

* *
ARk AR Rk kK

tt#ttcst**ttttttt
* READ CURRENT *
* TRANSACTION *
* DATA SET *
RS TR E L TS 2T L)

HH AR DS R KRRk
* *
* WRITE *
:THE NEW MASTER :
*
*

*
AREERERERR AR

% .
* _AND OM .
DIRECTORIES .*
CONSISTEN?.

No .
ekl

. ¥
* YES

¥ .
o* REPRO *.
*. HEADER

OMREADRT

s
t*ttigut kAR
*

MASTER*
* AND WRITE NEW '

*t*ttttitttit#ttt

TR
* *,

S——

* *.
FULL LIST ‘.*

EE T

* *
* E2 #
Ri L L)

S
JHFWITHIN *.
YES .* MEMBER ¥,
______ . OCESSING o Hammm
." ‘*.
S
NO
t--—_)t A5 t
#twt ok
* *
* GhH ¥
* *
*hkk
EOJROUTE
t'*itgs#tttttttt#

¢ s
* EOJ ROUTINE *
* *

*

*
R 2

. T

*. USER EXIT oK
*. o

*, ¥ }

« ok
* YRS

#*###JS*‘#‘#*&#**
t-t-#—t-t—*—t-#—*

ISER *
* TKAILER LABEL :

*
SRR ERE RN

<

L T
*

¥ KETURN *
* *
L

Creating a Modified Input Stream
(IEBEDIT)

The IEBEDIT program creates a sequential
data set containing Jok Control Language
(JCL) statements and system input data by
extracting sets of statements representing
jobs or jok steps from a master file. The
input to the program is in two data sets:

e SYSIN, which contains control state-
ments that allow the user to control
the editing of the master file of JCL
statements and data.

e SY5UT1, which contains the master file
of JCL statements and data.

The output of the program is in two data
sets:

e SYSUT2, which is the primary output
data set. It is composed of 80-
character logical records containing
the JCL statements and data records
extracted from the nmaster file.

e SYSPRINT, which contains a listing of
the control statements, and (optional-
ly) a listing of the contents of the
SYSUT2 data set. '

The IEBEDIT program is executed as a job
step; the EXEC statement used to call it
specifies the program IERBREDIT.

PROGRAM STRUCTURE

The IEBEDIT program is contained in one
load module whose entry roint name is IERE-
DIT. The module contains three major pro-
gram sections as well as a number of sub-
routines. The three major sections of the
program are:

o The Initializing routine, which obtains
main storage for tables and work areas,
initializes them, and opens the gro-
gram's data sets.

e The Main routine, which passes control
among the subroutines to analyze con-
trol statements, to inspect master file
recoxds, to determine which records
should ke written out, and to write
output records.

e The Post Processing routine, which
stores condition codes, frees main
storage, closes the program's data
sets, and returns control to the
supervisor.

The Initializing Routine

The entry point for the IEBEDIT program is
the Initializing routine. When it is
entered, the routine obtains main storage

for an active save area and a work area,
and opens the SYSPRINT, SYSUT1, SYSUT2, and
SYSIN data sets.

The Initializing routine checks the
block size specification of each data set
except SYSPRINT to insure that it is a mul-
tiple of 80 characters. If the SYSUT2 blo-
cksize specification is not a multiple of
80 characters, it is changed to match the
SYSUT1 specification, and a message is
written to SYSPRINT. If the SYSUT1 data
set is not a multiple of 80 characters, a
message is written to the SYSPRINT data set
and the step is terminated.

If any data set cannot be opened, the
Initializing routine passes control (via a
branch instruction) to the Post Processing
routine. Otherwise, it uses the GET macro
instruction (locate mode) to obtain the
first SYSUT1 record, and branches to the
Main routine.

The Main Routine

The Main routine (Charts 58 and 59) passes
control among subroutines that analyze con-
trol statements from the SYSIN data set and
nmaster file records from the SYSUT1 data
set. Based on the specifications in the
control statements, the Main routine deter-
mines which records are to be extracted
from the master file, and uses the Update
subroutine to write those records to the
SYSUT2 and (optionally) to the SYSPRINT
data sets.

When the Main routine is entered (via a
branch from the Initializing routine), the
first record from the SYSUT1 data set is in
main storage. The Main routine uses the
Scan subroutine to obtain a record from the
SYSIN data set, and to analyze the record.

If there are no control statements in
the SYSIN data set, the Scan subroutine
encounters an end-of-data condition, indi-
cating that a total copy of the master file
is to be performed. Control is passed to
the Update subroutine to write the record
to the output data sets, them back to the
Main routine to get the next master file
record. When the master file has keen com-
pletely copied, the Main routine passes
control to the Post Processing routine.

If the Scan subroutine obtains a control
statement, a selective copy is performed,
based on the specifications in the control
statement. The Main routine passes control
to the Startjob subroutine, which gets
master file records until it finds the
proper JOB statement:

Data Set Utility Programs: IEBEDIT 145

e If the parameter START=jobname was used
in the control statement, the Startjob
subroutine searches the master file for
a JOB statement with the specified
name.

e If no job name was specified, the Star-
tjok subroutine searches the master
file for the next JCB statement.

When the proper JOB statement has keen
found, the Startjob subroutine passes con-
trol to the Update subroutine, which writes
the statement to the SYSUT2 and, optional-
ly, to the SYSPRINT data set. When control
is returned to it, the Startjob subroutine
reads the next record and uses the Cardtype
subroutine to determine whether the record
is a JOBLIB DD statement.

If the record is a JOBLIB DD statement,
the Update subroutine writes it to the out-
put data sets. The Startjob subroutine
then obtains another waster file record
from the SYSUT1 data set and returns con-
trol to the Main routine.

Cn the return from the Cardtype subrou-
tine, the Main routine analyzes the
switches set by the Cardtype subroutine and
pexrforms the processing indicated by the
record type and control statement
specifications.

If the record is an EXEC statement, its
disposition depends on the use of the TYPE
and STEPNAME parameters in the control
statement.

If TYPE=PCSITICN, and no stepname was
specified, the Main routine passes control
to the Update subroutine, and the record is
written to the output data sets. If a ste-
pname was specified, and the corresponding
EXEC statement is found, the Main routine
passes control tc the Update subroutine,
and the record is written to the output
data sets.

If TYPE=INCLUDE or EXCLUDE, the Main
routine must determine whether the current
record represents a step within an incliu-
sive set, and if not, whether it represents
a step whose name was specified singly.

The routine does this with the aid of two
tables (the inclusive stepnames takle and
the single stepnames table) and the
inclusive/exclusive switches.

Each entry in the inclusive stepnames
takle contains the names of the first and
last steps in a set as specified in the
STEPNAME parameter; each entry in the
single stepnames table contains the rdame of
a step specified singly. The include/
exclude switches indicate whether inclusive
or exclusive processing is taking place.

- The decisions made in the program, and

the resultant processing, are shown in
Figure 51. The upper section of the table
shows the conditions that may exist; the
lower section shows the action that is
taken as a result of each set of condi-
tions. The action "Write" means that the
Main routine uses the Update routine to
write the record containing the EXEC state-
ment, and the remaining records represent-
ing that step, to the output data sets.
The action, "No Write" means that the Main
routine searches for the end of the current
step, but does not write the records to the
output data sets.

The end of the current step is indicated
by the presence of a JCB statement, another
EXEC statement, or an end-of-data condi-
tion. If a DD DATA statement is encoun-
tered, a switch is set; subsequent records,
although they may appear to be JCL state-
ments, are treated as data in the input
stream. When a delimiter statement is
encountered, the DD DATA switch is set off;
and if the other records in the step were
written out, so is the delimiter statement.

When a JOB statement is encountered, or
when an end-of-data condition exists in the

r L} Ll T T T T T T T T a
Include/Exclude Switch is On	X	X	X	X						
Include/Exclude Switch is Off					X	X	X	X		
Match 1st Name in Inclusive Stepnames Table							X	X		
Match 2nd Name in Inclusive Stepnames Table	X	X								
No Match in Inclusive Stepnames Takle			X1 X	X	X			X	X	
Match in Single Stepnames Table									X	X
No Match in Single Stepnames Table		X	X	X	X	X	X	X		
TYPE=INCLUDE	X		X		X		X		X	
TYPE=EXCLUDE		X		X		X		X		X
b +-—t-—t————t———4———4—-—										
write Fx1 1 xt rxrxp x										
No Write		X		X	X			X		X
Set Include/Exclude Switch On							X	X		
Set Includes/Exclude Switch Off	X	X					}			
L 4 L L L 1 41 L L 1 1 J

Figure 51.

146

EXEC Staterent Include/Exclude Processing

"SYSUT1 data set, the Main routine scans the
list of step names constructed from the
control statement. If any of the names in
the list were not found, a message contain-
ing the step name is written to the SYysS-
PRINT data set for each missing step. If a
JOB statement was encountered, the Main
routine then passes control to the Scan
subroutine to analyze the next control sta-
tement; if there was an end-of-data condi-
tion, the Main routine passes control to
the Post Processing routine.

The Post Processing Routine

The Post Processing routine is entered when
no more processing is to be performed; at
end-of-data in the SYSUT1 data set, when
all SYSIN statements have been processed,
or when an unrecoverable I/0 error occurs.
When it is entered, it determines whether
an end-of-data condition exists for the
SYSIN data set; if not, it uses the Scan
subroutine to process the remaining control
statements.

‘When all records in the SYSIN data set
have been processed, the Post Processing
routine uses the Update subroutine to write
a terminal message (including the condition
code) to the SYSPRINT data set. It then
closes the program's data sets, frees the
main storage that had been obtained, and
returns control to the supervisor.

IEBEDIT Subroutines

The IEBEDIT program contains four major
subroutines: Scan, Startjob, Cardtype, and
Update. Linkage to each subroutine is via
a BAL instruction; return is via a BR
instruction.

The Scan Subroutine

" The Scan subroutine is entered to obtain
and analyze a complete control statement:
the initial record and any continuation
records. When the Main routine is first
entered, the Scan subroutine determines
whether a total copy is required; if not,
and when a job has been processed, it
determines the processing required for the
next job; and when an end-of-data condition
occurs on the SYSUT1 data set, it is
entered to scan the remaining SYSIN
records.

When the Scan subroutine is entered, it
attempts to obtain a record from the SYSIN
data set. If it obtains a recoxd, it scans
the record, converting the control state-
ment parameters to switch settings that can
be tested Ly the Main routine, and when it
has processed the entire statement, it
returns control to its caller. If it
encounters an end-of-data condition, and no
statements have previously been processed,

" the routine sets a switch indicating that a

total copy is to be performed, and returns
control to its caller. If it encounters an
end-of-data condition, and statements have
previously been processed, it passes con-
trol to the Post Processing routine.

When the routine is entered, it uses a
search routine to set pointers to the
fields in the statement, then scans the
field. The Scan routine has five phases:
Initialization, Name/Operator Handling,
Operand Handling, Operand Value Handling,
and Scan Post Processing.

The Initialization phase clears switches
and ‘resets pointers; the search routine
finds the Name and Operator fields, and
control passes to the Name/Operator Handl-
ing phase.

In the Name/Operator Handling phase of
the Scan subroutine, the name field of the
statement is checked for validity (it must
be 8 characters long or less). Then, the
contents of the Operator field is used as a
search argument in a search of the Opera-
tion Code Table (see Figure 52). When a
match is found, the Turn-On Box of the
table is used to set the appropriate
switches in the IEBEDIT work area, and
pointers to the operator and to the appro-
priate Parameter Table (see Figure 53) are
placed in the work area.

0 8
Operation Code

8 2 2
Turn=On Box Required Box

12

Information Box ! Parameter Table Address

Reserved

20 1 3
Reserved Diagnostic Routine Address

Figure 52. Scan Routine Operation Code

Table Entry

Operation Code: This field contains the
Operation Code, left justified, and padded
with blanks.

Turn-On Box: This field contains the dis-
placement (byte 1) in the IEBEDIT Work Area
and the bit pattern (byte 2) to be set at
that displacement.

Required Box: This field contains a dis-
placement (byte 1) in the IEBEDIT Work
Area, and a bit pattern (byte 2) to be
found at that displacement. This bit pat-
tern is required for processing of this
statement.

Data Set Utility Programs: IEBEDIT 147

Information Box: If bit 0 of this field is
set to 1, this entry is the last entry in
the table.

Parameter Table Address: This field con-
tains the address of the Parameter Table
that corresponds to this operation. -

Diagnostic Routine Address: This field
contains the address of a routine used to
perform additional processing on the
statement.

Operand Value

Turn-On Box Assume Box

12 1
Information Box

Address of Fixed Operand Table or Action Routine

Scan Routine Parameter Table
Entry

Figure 53.

Operand Value: This field contains the
value of the operand, left justified, and
padded with blanks.

Turn-On Box: Byte 1 of this field contains
a displacement in the IEBEDIT Work Area;
byte 2 contains a bit pattern to be set at
that displacement as a result of encounter-
ing this parameter.

Assume Box: Byte 1 of this field contains
a displacement in the IEBEDIT Work Area;
byte 2 contains a bit pattern to be set at
that disglacement if this parameter is
omitted.

Address of Fixed Operand Table or Action
Routine: If the orerand is a fixed
operand, this field contains the address of
the appropriate Fixed Cperand Table entry,
if the operand is a variable operand, this
field contains the address of the routine
that is to process the operand.

Information Box: The bits in this field
have the indicated meanings when set to 1:

Bit Meaning

Last entry in table
Fixed operand
Variakle operand
Reserved

Allow subparameters
Keyword-only operand

Reserved

N~NounEWwhhE=O

6—

Each operand in turn is used as a search
argurent, in the Operand Handling phase, to
scan the Parameter Table. When a match is
found, the Turn-On Box of the Parameter
Table is used to set the arpropriate
switches in the IEBEDIT work area, and a

148

pointer to the Parameter Table entry is
placed in the work area. If the operand is
a keyword-only operand, and there are addi-
tional operand fields, the routine pro-
cesses the next field. If there are no
additional operands, the routine passes
control to the Scan Post Processing phase.

If there are parameters associated with
the keyword, the routine passes control to
the Operand Value Handling phase. In this
phase, the Scan subroutine inspects the
Parameter Table entry to determine whether
the parameter has a fixed value, or whether
the value may vary. If the parameter is a
variable value parameter, the Action Rou-
tine Address field of the Parameter Table
entry contains the address of the routine
that is to process the parameter, and a
branch is executed to give that routine
control. If the parameter is a fixed value
parameter, the routine uses the value spe-
cified as a search argument in a search of
the Fixed Operand Table (see Figure 54).
When a match is found, the Turn-On Box
field of the table is used to set the
appropriate switches in the work area.

Fixed Operand Value

1
Turn-On Box Reserved Information Box

Figure 54. Scan Routine Fixed Operand

Table Entry

Fixed Operand Value: This field contains
the value of the operand, left justified,
and padded with blanks.

Turn-Cn _Box: Byte 1 of this field contains
a displacement in the IEBEDIT Work Area;
byte 2 contains the bit pattern to be set
at that displacement when this operand is
encountered.

Information Box: If bit 0 of this field is
set on, it indicates that this entry is the
last entry in the table.

When the parameters associated with a
keyword have been processed, control is
passed to the Operand Handling phase to
process the next operand; if there are no
more operands to process, control is passed
to the Scan Post Processing phase.

When a complete statement has been pro-
cessed, the Scan Post Processing phase
scans the Parameter Table for the current
operator, then sets the assumed (default)
value switches for any parameters not supp-
lied. The current Operation Code Table
entry is then inspected to determine wheth-
er any diagnostic routine has been supp-

lied. If so, the diagnostic routine is
given control, and when its processing is
complete, the Scan routine returns control
to its caller.

The Startjob Subroutine

The Startjob subroutine is entered from
the Main routine with the first recoxd of a
master file statement in the buffer. It
uses the Cardtype subroutine to determine
the statement type, and it uses the Update
subroutine to write a JOB statement and a
JOBLIB DD statement to the output data
sets.

If the first statement encountered by
the Startjob subroutine is not a JOB state-
ment, the routine gets records from the
master file until it finds a JOB statement.
The Startjob subroutine then determines
whether the START=jobname parameter was
used, and if not, it uses the Update sub-
routine to write the statement (including
its continuations) to the output data sets.

If START=jobname was specified, the rou-
tine compares the specified job name to the
name in the JOB statement. If they are not
equal, the routine searches the master file
until the proper JCB statement is found.

In either case, the JOB statement having
the specified name is written to the output
data sets, and the Startjob subroutine
reads the next mastexr file record.

Once a JCB statement has been written
out, the Startjob routine looks for a JCB-
LIB DD statement. If it encounters one,
the routine uses the Update subroutine to
write the statement to the output data
sets; if the next statement is not a JOBLIB
DD statement, the Startjob subroutine
returns control to its caller.

The Cardtype Subroutine

The Cardtype subroutine classifies 80-
character records by type. It stores a
code for each type except system input data
records, and if the record is a JOB or EXEC
statement, it stores the statement name.
When it has analyzed a record, it returns
control to its caller.

The routine first examines the first two
positions of the record. The characters //
indicate that the record is a JCL state-
ment, and the routine performs further
‘analysis. The characters /* indicate that
the recoxrd is a delimiter statement; the
routine determines whether the statement is
continued by checking for a nonblank
character in position 72, then returns to
its caller.

If the statement is a JCL statement, the
routine classifies it as one of the follow-
ing types:

e JOBLIB DD Statement: A statement is a
JOBLIB DD statement if the name field
contains JOBLIB and the operation
field contains DD.

e JCB Statement: The statement is a JOB
statement if the operation field con-
tains JOB.

e EXEC Statement: The statement is an
EXEC statement if the operation field
contains EXEC.

e DD Statement: The statement is an DD
statement if the operation field con-
tains DD.

e DD DATA Statement: A statement is a DD
DATA statement if it is a DD statement,
and the first operand field contains
DATA.

e Continued Statement: A statement is a
continued statement if it is a JCL sta-
tement or a delimiter (/#*) statement,
and if it has a nonblank character in
position 72.

The Update Subroutine

The Update subroutine is a control rou-
tine for the output functions of the IEBE-
DIT program. It contains the Put routine,
which writes records to the SYSUT2 data
set, and the Print routine, which writes
records to the SYSPRINT data set. There
are two entry points to the Update
subroutine:

e UPDATE is the entry point used to write
records to the SYSUT1 and, optionally,
to the SYSPRINT data set.

e PRINT is the entry point used to write
records to the SYSPRINT data set.

When it is entered at the UPDATE entry
point, the routine inspects the first three
positions of the record in the buffer. If
it finds the characters period, period,
asterisk (..*), it substitutes the charac-
ters /*; in either case, it branches to
the Put routine.

The Put routine contains the PUT macro
instruction, which causes the record to be
written to the SYSUT2 data set. When the
PUT macro instruction has been executed,
the routine determines whether NOPRINT was
specified, and if so, it returns control to
the caller. If NOPRINT was not specified,
the routine branches to the PRINT- entry
point of the routine.

When it is entered at the PRINT entry
point, the routine is given the address of
a record or a message code. It issues the
PUT macro instruction to write the record
or message to the SYSPRINT data set, then
returns control to the caller.

Data Set Utility Programs: IEBEDIT 149

Chart 58. IEBEDIT Main Routine (Part 1 of 2)

PtV B3 AR L Aok oK
LI NELTT R 2 *SCAN * *UPDATE * * *
* Sk —F—k k= k%= TOTAL W e K e W * SET *
* ENTRY ettt >¥ ANALYZE *——eoe—ea>® PUT RECORD * ——2% EOF SW *
* * A X CONTROL *COPY A * TO_SYSUTL * !’ * ON *
L T * STMT * * § SYSPRINT * *
PP L e e e Y
*EEE SELECTIVE
Y hEk
* A2 * * »
'S * *® Bl >
REL 2 * *
-k
HERFHED B3%# tttttautttsttﬁmt ﬂrtotgsmumnctu
*STARTJOB * * * RINT * UPDA *
B e e et et * GET * M NAM.ES OF P -t—t—t-t-t—t
* FIND § WRITE * - NEXT Fmmm > * ANY SPECIFIED '(———————— * RCD *
* PROPER JOB & * NORMAL * RECORD *EOF * TEPS N * TO SUT1 *
* JOBLIB STMTS * * * ‘ * & SYSPRI‘\IT *
EREREEEA SRR RERE P L L T e Ak
A
58 #
* C2 #=>
* *
prees
o,
LaaisTebI 2T 220 2210 c4 *.
* * * *, ERECS RRE R RRRK
* GET NEXT * EOF -* EOF *. YES *
* SYSUT1 * *, SYSUT1 K D> # EXIT *
* RECORD * *. ¥ * *
* * *, o B T e T
P L T T T e *, %
* NO TO POST PROCESSING
& ROUTINE
AL 2]
* *
4 * A2 *
bl heha s T * *
*CARDTYPE ok
B e]
* ANALY%E STMT *
* STORE CODES ¥
HAEEERAERERRRRT N R
% - ¥
E2° %, E3° *. SRR YRRk Ak
«* HAS *, «* IS *, * *
.* A DD DATA *. YES «* THIS A *. YES * SET DD *
#*. STMT BEEN .#%<———wee->*, DELIMITER .*==—————- >* DATA SWITCH *
‘.‘ FOUND ‘.‘ *-STATEMEN?.* : OFF :
“x. L% Lk R AR Rk
NO * NO
4 *
F2 %, el T P Fu~ %,
EkE IS %, * * .* *,
* * JOB .* _THIS A *. DD DATA * SET DD * o * TYPE *. NO
* BY *<———-%, JOB OR DD .* * DATA SWITCH *————w——=D*, = -
* * *.DATA STMT.* * oN * #*,POSITION .*
R *_ o * * *, o
*, % *nrkbkbEERs bk kEky *, ¥
NO * YES LAl sl
e P TS * *
* * * * * J2 %
* G2 *->|->% G2 * * *
* % * * ek
*hwk ek ¥
L ¥,
G2 *. G3 *,
¥ *. «* IS *.
-’ TYPB *. YES «* THIS A *. NO
P T >*. JCL S —
*, POSITION.. * A A . STMT ¥
% 1 LI
*"NO * YES
8
G.
*
¥,
H2 W % brhad: Uittt
pec} ‘UPDATE
YES .* THIS AN *. H-k—k -*-‘-*-‘-‘-‘
————— EXEC ¥ ~——>% PUT RECORD ¥
*, STMT o * TO SYSUT1 *
bt *. B *. ¥ * & SYSPRINT *
59 * *, % *, % AR R E K
* B2¥ = NO * NO LT
. * Skkk L * *
* * * C2 ¥
* J2 *-> * J3 *-> * *
*hEE
EEE ey
¥ ¥
J2 *. J3 *,
L *, IS *.
¥ TYPE *. YES - THIS
. = ¥ *. STATEMENT
‘.‘INCLUDE‘.* *, CONTINUED "
. .* *,
* NO “x YES
Rk
*59 %
*F2%
. % BEECIRSakannsent EEREEKY % KAk R R
* *UPDATE * * *CARDIYPE
B ey * GET NEXT * e F e A K Rk
* PUT RECORD et > * SYSUTL ¥ ¥ ANALYZE *
* TO_SYSUT1 * * RECORD * * <) AND *
* g SYSPRINT * * * STORE COLES *
LT T L P kR KK kK
ok
* *
->% J3 *
* *
ok

150

Chart 59. IEBEDIT Main

*.
* WAS *.

routine (Part 2 of

2)

*
- YES -* TYPE *. YES
#*, STEPNAME ¥ —~>% = — —————)
* . SPECIFIED. * *. INCLUDE .*
*, ¥ *, . ¥
*, % . %
1 NO
ek
* v
* E3 * -
* * [} *,
2T *
OTHER .* CURRENT *. FIRST
Ko . STEPNAME F s —
, . OF SET
*, ¥
. ¥
* LAST
OF SET
¥, o ¥
D2 %, D3_ %, kR DU SRR E AKX ERERRDSRRE R ER R
. *. <& IS *, * * * *
YES .* TYPE NO .¥ THIS *. * SET * * SET *
——%. = - ¥< ———%*, STEPNAME o * INCLUSIVE * * INCLUSIVE *
* ,POSITION .% *.SPECIFIED.* * SWITCH OFF * * SWITCH ON *
e %, ¥ EN 3 * * * *
, . *, L% M
*="No *"YES 1
FHEE
* E3 ¥->
<-
*hEk
N
EEEEEED R ERRRERES E3 %, FHERREL RS RRRRE R
* * - *, * *
* SET * OTHER _.* *. POSITION * SET *
INCLUDE/EXCLUS T # <o, TYPE oa¥=e———> POSITION COPY *
* VESWITCH OFF : ‘. = *.* : SWITCH ON :
P LTS PR N N B e TR TR
P *INCLUDE >l
*59 %
* F2 ¥-> ’—_
* % EkkEE
gk *58 %
¥ * G3%*
F2 . PR T P TR Y * &
Is . * * *
NO .¥ THIS A *. * SET *
<—*. JCL - ¥ *INCLUSE/EXCTUDE*=——m—and
*, STMT . * SWITCH ON *
Ty *¥EEREERERE AR
* YES
.l.
G2 .
-* HAS ¥,
YES .¥ A DD DATA *.
—%. STMT BEEI o*
- UND _ .*
*, .
%, %
* NO
l<
¥l
H2
.* IS -
HO .* THIS *.
* . A .
*.CONTINUED. *
, o
*, ¥
xEEE *
*58 * |
* C2% |
* ¥
* l
SRR T2 R ARk ok FREERT IR TR TR R E
* * *CARDTY] *
* GET * B Attt
* NEXT MASTER * ———Dk ANRLYZE *
* RECORD * * STMT & STORE #*
* * DES *

Data Set Utility

Programs:

IRBEDIT 151

Functions:

Get storage for FD table.

Analyze FD card keywords and
parameters.

Place FD card keyword parameter
values in FD table entry.

Place FD picture in a temporary
storage area.

Macro Instructions Used:

LINK (SVC é)
FREEMAIN (SVC 5)
GETMAIN (SVC 4)

FD ANALYSIS MODULE (IEBFDANL) Charts 64, 65

Entry Points: |EBFDANL (via LINK from |EBDG).
Also, on return from module IEBFDTBL.

FD table module
Base module

Subroutines Used:

Validity check; EP = VALCHECK.

Convert decimal to binary;
EP = CONVB.

Move characters;
EP = MOVEROUT.

Messages (Numbers) Used:

3,5,6,10, 11, 12, 13, 15, 21.

(CALLING PROGRAM ’

Job Control } EXEC
Language

LINK
ATTACH

Invocation

Return

LINK

Refurn Functions:

LINK

Return

Functions:

Complete the construction of
an FD table entry.

Assign defaults for FD keyword
parameters if necessary .

Place picture or format pattern
in storage.

Macro Instructions Used:

GETMAIN (SVC 4)
FREEMAIN (SVC 5)

FD TABLE MODULE (IEBFDTBL) Charts 66, 67

Entry Point: IEBFDTBL (via LINK from IEBFDANL).

Exit Taken:
FD analysis module
Subroutines Used:

Convert EBCDIC to binary;
EP = CONVB.

Move characters; EP = MOVEROUT.

Validity check; EP = VALCHECK.

Messages (Numbers) Used:

3, 6,8, 10, 21.

Get storage for common work area.
Initialize work area.
Assign defaults
Open input and message data sets.
Get storage for output work area.
Scan all control cards:
Process DSD, REPEAT, DUMP,
ond END cards.
Pass control to process FD
and CREATE cards.
Pass control to other modules as -
required.
Cause display of error messages.

Macro instructions Used:

GET

GETMAIN (SVC 4)
LINK (SVC 6)
OPEN (SVC 19)
SYNADF (SVC 68)
SYNADRLS (SVC 68)

BASE MODULE (IEBDG) Charts 60, 61, 62

Entry Points: IEBDG (from Calling Program).
Also, on return from modules IEBFDANL,
IEBCRANL, IEBDGMSG, AND IEBDGCUP.

Exits Taken:

Message Module

FD Analysis Module
Create Analysis Module
Clean-up Module
Calling Program

Subroutines Used:
Convert decimal to

binary; EP = CONVERTB.
DCB exit (at open time);

EPs = DCBROUT1, DCBROUT2,

and DCBROUTS.
Synchronous error;
EP = ERRORS.

Messages (Numbers) Used:

1,2,3,5,10, 12, 14, 15, 18,
20, 21, 24, 25, 26, 28, 30.

LINK

Return

LINK Return

LINK Return

CREATE ANALYSIS MODULE (IEBCRANL) Charts 68, 69, 70, 71, 72

Entry Points: IEBCRANL (via LINK from IEBDG).
Also, on return from module IEBCREAT.

Functions:

Analyze create card keywords
and parameters.

Build create table entries.

Get storage for create tables.

Build picture table.

Build FD address table.

Build exit name table.

Give confrol fo create module.

Macro Instructions Used:

GETMAIN (SVC 4)
LINK (SVC 6)
LOAD (SVC 8)

Exits Taken:

Create Module.
Base module.

Subroutines Used:
Convert; EP = CONVDB.
FD name search; EP = FDSRCH.
Parameter scan; EP = SPSCAN.

Messages (Numbers) Used:

3,4,5,6,7,8, 10, 12, 20, 21

LINK

Return

MESSAGE MODULE (IEBDGMSG) Chart 75
Entry Point: IEBDGMSG (via LINK from IEBDG)

Functions: Exit Taken:

Print heading information. Base Module
Print control card images.
Print program messages. Macro Instruction
Print error flags. Used:
Keep page count.
PUT

CLEAN-UP MODULE (IEBDGCUP) Chart 63

Entry Point: IEBDGCUP (via LINK from IEBDG)

Functions:

Close user output and input
DCBs.
Close data generator input
and message DCBs.
Free storage for DCBs and
buffer pools.

Exit Taken:
Base Module

Macro Instructions
Used:

CLOSE (SVC 20)
FREEMAIN (SVC 5)
FREEPOOL (SVC 10)

CREATE MODULE (IEBCREAT) Charts 73, 74

Entry Poinf: IEBCREAT (via LINK from IEBCRANL).
T Also, on return from user exit routine.

Functions:

Read records from input data sets.
Generate output records (test data).
Permit user to modify output records.
Release storage used for following
tables:

Create

Picture

FD Address
Delete user routine from storage.

Messages (Numbers) Used:

9,10, 16, 17, 29, 30.

Exits Taken:

Create Analysis Module.
User Exit Routine

Macro Instructions Used:

FREEMAIN (SVC 5)
GET

GETMAIN (SVC 10)
PUT

SYNADF (SVC 68)
SYNADRLS (SVC 68)

Note: EP= Entry Point

® Figure 55.

152

Information Summary and Cverall Flow of Data Generator Program

The Data Generator (IEBDG) Program

The data generator program (IEBDG) provides
test data that can be used in program
debugging procedures. The program will
construct multiple data sets within a job
that uses either the physical sequential or
the partitioned access method. The recorxds
within these output data sets may consist
of fields that are defined by any one of
seven IBEM character formats, each of which
may be modified by any one of eight types
of action. Alternatively, a user may elect
to provide his own output pattern in the
form of a 'picture' instead of an IBM for-
mat. If desired, a user may also inspect
and/or modify the output records before the
records are written in the test data set.

The IEBDG program acts as a problem pro-
gram, which may be executed as a job step
by use of the job control language, or
which may be invoked by a calling program
using either the LINK or the ATTACH racro
instruction. Specification of either the
program name (IEBDG) or the procedure name
on the EXEC statement causes control to be
given to the data generator program. In
the case of invocation of the IEBDG pro-
gram, the entry point (EP) parameter in the
macro instruction operand specifies the
program's symbolic name. Job control sta-
tements or parameter list information, and
the IEBDG utility control statements, main-
tain control of the program and describe or
specify the functions to be rerformed.

They also describe or define the input and
output data sets to be used. Depending on
the specifications of the user, the records
of the input data set may be either klocked
or unblocked.

In the case of output records, the
fields within a record may be repeated as
desired, and the output records may ke a
part of a logical block, which may also ke
repeated. If an existing data set is used
as the input data to the program, the
fields within the individual records of the
data set may be retained, modified, or
replaced as desired. Also, the IEBDG pro-
gram may generate output records that can
be imbedded within the records of an exist-
ing (input) data set. The contents of the
output (test data) records are defined by
the utility program control statements.

Program Functions

The functions of the IEBDG program are per-—
formed by seven modules, which reside in
the link library, SYS1.LINKLIB. At any
given time, at least two modules (the con-
trol module and one or more other modules)
will reside in the region assigned to the
program. (If the region has enough space,
all seven of the modules may be resident at

the same time in the region.) The program
contains a control module, a clean-up
module, a message module, two analysis
modules, a table-building module, and an
output record generating module. Control
passes within the modules of the program by
means of the LINK macro instruction. If an
exit to a user routine is specified, a
branch-and-1link procedure is used. Figure
55 indicates how control is passed Letween
the modules of the IEBDG program.

The control (or base) module receives
initial program control from the calling
program and returns control to the calling
program at the completion of the IEBDG pro-
gram. This module scans the utility con-
trol cards for the function (e.g., FD card
analysis, REPEAT card analysis) to ke per-
formed and passes control to the appropri-
ate module that performs the function.

The clean-up module (IEBDGCUP) receives
control from the base module to close the
input and output data sets and to release
the storage areas that were used by the
program. This module returns control to
the base module.

The message module (IEBDGMSG) has the
prime function of gputting out the images of
the control cards, and of putting out the
messages required as a result of program
operation. It receives control from, and
passes control to, the kase module.

The message module places information
akout the operation of the data generator
on the system output (SYSOUT) device. This
information includes processed control
cards, heading and paging information, and
norral completion messages. Error messages
caused by abnormal conditions encountered
by the data generator program also appear
on the SYSOUT device. Incorrect control
card parameters cause messages that will be
printed immediately below the printout of
the control card. Messages begin at print
position one, and the printout of control
cards starts at print position ten.

Both the create analysis (IEBCRANL) and
the FD analysis (IEBFDANL) modules analyze
the parameters found on one of the two
field- or record-defining control cards.
Using the parameters found, these modules
construct tables for use by subsequent
modules that may require the information in
the takles. In the case of the FD analysis
module, control is given to the FD table
building module, IEBFDTEL, to complete the
construction of the table.

The output record generating module, or
create module, IEBCREAT, controls the
generation of the test (output) data reco-
rds for the user. This module also passes

Data Set Utility Programs: IEBDG 153

control to a user exit routine if output
record modification is to be performed.

control Card Scanning

Whenever any control card scanning is to be
done, all modules within the IEBDG program
employ the same general scanning techni-
ques. The information to be scanned is
placed in an input work area to which a
register points. Information within this
work area is scanned one byte at a time as
the scan method looks for a non-blank
character in a given column. If a nonblank
character is encountered in column one of a
card image, a control card name has been
found. This name is of no significance to
the program, and it may be up to 8 bytes in
length; but it must be followed by a blank
column. The card tyre (DSD, FD, END, etc.)
is then deterwined. If the type is not
valid, the program is terminated.

Following the card type and klank
column, the finding of a nonblank indicates
the presence of a keyword. As the scan
encounters a keyword, an attempt is made to
match the keyword with valid keywords in
the program. If a match is made, a kranch
is made to the appropriate routine to pro-
cess the keyword. If no match is made, or
if incorrect parameters are associated with
a given valid keyword, an error is indi-
cated and a wmessage is printed. A comma or
a blank signifies the end of a parameter.

A continuation card is to follow when eith-
er a nonklank character in column 72 of a
card, or a comma followed by a blank column
is encountered. The scan of a continuation
card begins in column 4 of the card.

Except for the continuation of the scan
of a PICTURE parameter, the first nonblank
character in a continuation card indicates
the presence of a keyword. In the case of
the PICTURE parameter scan continuation,
the character (or blank) in column 4 and
any succeeding column(s) are recognized as
belonging to the PICTURE parameter. This
permits the presence of imbedded blanks and
delimiter characters in the PICTURE
parameter.

THE BASE MODULE (IEBDG) CHARTS 60,61,62

Module IEBDG is the first module of the
data generator program to be placed in main
storage. It is entered from a calling pro-
gram and returns control to the calling
program at the completion of the data
generator prograr. Derending on the
requirements encountered during the proces-
sing performed by this module, it will give
control to (and receive control from) one
of the following modules: the message
module, the clean-up module, the FD analy-
sis module, or the create analysis module.

154

The primary functions of the base module
are:

e To get storage for a work area (the
common communication area).

e To open the input, output, and message
data sets.

e To read the utility control cards.

e To cause error messages to be
displayed.

e To pass control to the appropriate
module as required.

Initialization

Upon entry to this module, registers are
saved for a later return to the caller. By
use of an SVC 10 instruction, storage is
oktained for a common communication area.
This area is then given initial (default)
values for ddnames, line count (for printer
control), and paging information. To pro-
vide for the specification of a random
binary number format for the output data
set, an initial multiplier value is estab-
lished for a random number generatcr and
placed in the communication area.

If a calling program has invoked the

IEBDG program by means of a LINK or an
ATTACH macro instruction, the previously
assigned default values in the communica-
tion area are replaced by the values speci-
fied in the parameter list for the invoca-
tion. The assigned names of SYSIN for the
utility input control data set and SYSPRINT
for the utility output control data set may
be changed as a result of an invocation.
If so, the changed names are effective for
the duration of the job. After invocation,
the input and output control data sets are
then opened.

Cpening Data Sets

If the IEBDG program is called by use of
the job control language statements, the
input (SYSIN) and message (SYSPRINT) data
sets are opened and default values assigned
as required.

Each time a data set is opened, a DCB
exit routine in the base module is entered.
The entry points to this routine are deter-
mined by the function (input, output,
SYSIN, or SYSOUT) of the data set Leing
opened. At each entry, the routine estab-
lishes default values for the record for-
mat, the logical record length, and the
blocksize for the data set.

A cormon section of the DCB exit routine
is then entered to inspect the actual

values of record format, logical record
length, and blocksize. These values norm-
ally have already been placed in the re-
spective fields of the DCB by the open
routine.

For data sets having a fixed record for-
mat, the common routine determines if the
block size is an integral multiple of the
logical record length. An integral mul-
tiple is required; otherwise, default
values are assigned (if not previously
assigned) so that an integral multiple is
assured.

As the DCB exit routine evaluates the
preceding record parameters for input or
output data sets, it sets the FLUSHSW
switch (at COMMON + 572)1 to one if default
values are assigned. (If the switch is
set, then, when the base module again
receives control, it flushes the control
cards and procedes to terminate the job.)
The exit routine then returps control to
the open routine to complete the opening of
the data set.

In testing for a successful data set
opening, only the input (SYSIN) data set is
tested by the base module. Because a user
may not desire any messages, Or may not
have enough space available for an output
data set for messages, the testing for a
successful opening of the output (SYSPRINT)
data set is done by the message module when
the module is first needed.

Messages

When messages are required during the pro-
cessing by the base module, a linkage is
made to the message module. Upon return
from the message module, processing will
continue or, depending on the severity of
the situation causing the message, a return
is made to the calling program. [When any
of the modules of the data generator pro-
gram require the printing of an error mes-
sage, control is returned from the module
in command to the base module, which will
then 1link to the message module. Depending
on the severity of the error causing the
ressage, control may or may not be returned
from the base module to the module that was
in command.] A condition code, CONDCODE,
(at the field COMMON+404), is set prior to
giving control to the message module. Upon

—————— i —————— o 2 > o o o

1Tn the discussion of the modules of the
data generator program, references to
locations in the common communicaticn area
are indicated by giving the decimal value
of the displacement, or offset, from the
start of the area. As an example, the
offset of the field CCNDCODE (condition
code setting) would be given as COMMON +
404.

return from the message module, this code
is checked to determine the severity of the
situation. The base module returns control
to the calling program by freeing the
storage space for the common communication
area, restoring the calling program's
environment (registers), and issuing a BCR
instruction.

After the input data set has been
opened, a program heading message and an
indication of any PARM field (on the EXEC
card for the program) errors that may be
present are placed on the SYSPRINT data
set.

Reading Control Cards

The GET macro instruction is used to place
a control card in the input work area. The
card image is printed on the SYSPRINT data
set, and tests are made to determine the
type of card in the input area. For either
an FD control card or a CREATE control

_card, the base module will give control to

the appropriate processing module.

For any new group of data generator con-
trol cards, the first nonblank card must be
a DSD control card. [If a blank card is
present, it is merely flushed through and
the next card is checked.] In order to ind-
icate when a DSD control card is detected,
a switch, DSDSW (at COMMON+550), is set to
1. This switch is tested for all but the
DSD card in a group of control cards. If
the first card in a group is not a DSD
card, the syntax of the other control cards
may be checked, but the program will not be
executed. An error message will indicate
the reason.

Following the test for a DSD card, the
other utility control cards are checked for
card types. The finding of a particular
type causes the base module to give control
to the proper module for processing of that
control card. If a continuation card
belonging to a given control card, is
encountered, the base module gives control
to the appropriate control card processing
module to scan the card. Should a DSD con-
trol card have no CREATE control card(s)
between it and either an END card or a /%
card, the resulting output data set that is
created will be a null data set (i.e., no
picture or pattern will be produced).

As the base module continues its scan, a
check is made for a blank following the
card type (DSD, FD, etc.) as well as for
improper control card names or name length.
Errors in one of these areas will cause a
message to be printed and the program will
not be executed.

Included within the routines of the base
module is a SYNAD routine for the SYSIN

Data Set Utility Programs: IEBDG 155

data set. The SYNAD routine obtains unre-
coverable I1/0 error information that is to
be printed on the SYSPRINT data set. (The
message module contains a SYNAD routine for
the SYSPRINT data set; the create module
contains a SYNAD routine for input and out-
put data sets.) After the informaticn is
printed, control is given to the clean-up
module.

Base Module Card-Processing

The following data generator control cards
are processed by the base module: The DSD
card, the REPEAT card, the END card, and
the DUMP card.

DSD CARD PROCESSING: In requesting storage

for the user's DCB, allowance is made for
future implementation to satisfy an indexed
sequential data set. Figure 56 indicates
the allocation of the storage area's 272
bytes for the current supgort.

Hex Dec € 4 bytes >

0 0

Current Data Control Block
60 96
Currently Unused
100 256 b—m—— —— — —
Address of next DCB DDname for ...
108 264
+++ Current DCB (8 bytes) Switches

110 272

Figuie 56. Storage Area Obtained by Base

Module for Current DCB

A storage area is obtained as required for
each of the data sets described by the
DDnames on the DSD control card. In the
case of storage for the last data set's
DCB, the four-byte field beginning at loca-
tion 256 (hex. 100) is zero.

REPEAT CARD_PROCESSING: When the base
module scans the parameters of the REPEAT
card, it sets an indicator, QUANSW (at
COMMCN+576), to record the finding of the
required keyword. After each valid keyword
is found, the numerical value of its param-
eter is packed and converted to binary.
Since 65,535 is the largest nurber that can
be held in a 2-byte storage field, any
parameter value that is greater than that
results in a message to the programmer.
Acceptakle values for the CUANTITY and the
CREATE gparameters are stored for use by the
create analysis mwodule.

156

END CARD PROCESSING: When an END control

card is encountered, the base module gives
control directly to the clean-up module if
all of the required number of entries spe-
cified on the REPEAT control card have been
processed. Otherwise, a message is printed
and then control is given to the clean-up
module. Upon return from the clean-up
module, the base module reads the next con-
trol card (which may be either a data
generator control card or a /* delimiter
card). There may be one or more additional
groups of data generator control cards
before a /* card.

DUMP_CARD PROCESSING: The reading of a

DUMP control card causes a printout of the
user's program and/or storage areas
assigned 0 to his program. When the DUMP
control card ‘is encountered, the base
module places a zero in register 15 and
forces an ABEND dump by branching to that
register. Further descripticn of the use
of a DUMP control card is given in the sec-
tion Service Aids.

THE CLEAN-UP MODULE (IEBDGCUP) CHART 63

When either an END control card, indicating
the end of a group of data generator con-
trol cards, or a /% delimiter card, indi-
cating the end of a job, is encountered,
the base module gives control to the clean-
up module.

All user input and output data control
blocks (DCBs) that have been opened are
closed. For each of these DCBs, any buffer
pools that data management routines had
obtained for use by the data generator pro-
gram are released to the system. The 272-
byte storage area(s) that the base module
obtained for each of these DCBs are also
released to the system.

If the entry to this module was the
result of encountering an END control card,
this module returns control to the Lase
module for the purpose of checking for
another group of control cards.

If the entry to this module resulted
from encountering a /* delimiter card, this
module will close both the system input
(SYSIN) and the system output (SYSPRINT)
DCBs of the data generator program, and
free any related buffer pools for these
data sets.

The storage area that was obtained for
the data generator program's input and out-
put DCBs (96 bytes each) was initially
oktained as a part of the common comrmunica-
tion area by the base wrodule. Therefore,
the base module will release this area
after it receives contrecl from the cleanup
module.

THE FD ANALYSIS MODULE (IEBFDANL) CHARTS
64,65

This module scans and analyzes the parame-
ters on the FD control card. Module IERF-
DANL is initially entered from the base
module. If module IEBFDANL does not
encounter a condition that causes termina-
tion of the job, it will use the FD table
module (described later on) as a subrou-
tine. After the FD table module returns
control to the FD analysis module, the
latter module returns control to the Lkase
module.

The FD analysis module tegins the assig-
nment of information to a table called the
FD table. This table is used by both the
create analysis module and the create
module. The FD table module comgpletes the
construction of the taktle.

An FD table entry has 64 bytes. Storage
for the FD table is obtained in increments
of 512 kytes (enough for eight table
entries) by the FD analysis module. Each
entry contains most of the parameter infor-
mation (or a processed version of the
information) from one FD control card. If
a PICTURE keyword has been specified on the
FD control card, the picture information is
placed in another area of main storage.

The FD takle is shown in Figure 57.

Upon entry to the FD analysis module,
tests are made to determine whether or not
the entry is due to a continuation card.
Such an entry may ke due to the continua-
tion of the parameter string on a card, or
to the continuation of the PICTURE parame-
ter on a card. If the entry is due to
either a continuation card or a picture
continuation, storage for an FD table entry
may already be available as the result of
processing a previous FD control card in
the same set of data generator control
cards. If the entry is not due to a con-
tinuation card, an FD table entry is to ke
constructed. A GETMAIN macro instruction
is issued to obtain storage for an FD
table.

FD Card Scanning

The scan of the actual FD card keywords and
their associated parameters is then per-
formed. BAs each keyword is encountered,
its parameter is scanned, validated and/or
converted if required, and then placed in a
reserved spot in the FL table. If a key-
word error or a parameter error is encoun-
tered, an appropriate message will ke
printed on the system output device. The
severity of the error determines whethex
the program is terminated at that point or
whether modified processing (e.g., syntax
checking only) will continue. Control and

storage tables are constructed even for
syntax checking procedures.

A user may specify either the FORMAT or
the PICTURE keyword, but not both, on the
same control card. The FD analysis module
sets a switch, either FDFMTSW (at COMMON+
539) or FDPLSW (at COMMON+540), when it
encounters one of these keywords. If the
other keyword is then encountered in the
scan of the same card, a test of the
previously-mentioned switch for the keyword
first encountered reveals the error.

Table 2 lists the keywords of the FD
control card and indicates the processing
done on the parameters of the keywords by
the FD analysis module.

After the keyword parameters on the FD
control card have been scanned and placed
in the FD table, the FD analysis module
gives control to the FD table module to
complete the construction of the FD table
entry. The FD analysis module assigned
only the initially specified values of
parameters to the FD table. If any keyword
except LENGTH and NAME was omitted from the
FD control card, the FD analysis module
does not perform processing for the keyword
and does not fill in the appropriate space
in the FD table entry. Default values for
keyword parameters are assigned by the FD
table module.

THE FD TABLE MODULE (IEBFDTBL) CHARTS 66,67

This module completes the construction of
the FD table, which was begun by the FD
analysis module, At the time of entry into
this module, an FD card has been completely
scanned and initial values from the card
have been placed in the FD table. The FD
analysis module uses a LINK macro instruc-
tion to give control to the FD table
module, which is then used as a subroutine
by the FD analysis module. The FD table
module returns control to the FD analysis
module.

FD Pattern Construction

Initially, module IEBFDTBL determines the
type of picture or format specified in an
FD control card. (This field will ke used
by the create module when it constructs the
output records.) If neither a picture nor
a format is specified, the FD table module
assigns a default value to the field.

Before further processing is done on a
non-EBCDIC picture, the picture numbers are
checked for validity by comparing the zone
bits of the numbers against a hexadecimal
"F". An incorrect value results in an
error message indication, and control is
returned to the calling module. [A picture

Data Set Utility Programs: IEBDG 157

having a packed decimal specification must
have a length specification that is less
than or equal to 16 since the Pack instruc-
tion can handle up to 16 bytes.] Otherwise,
the numbers are converted to the specified
form, storage is obtained for the picture,
and the picture is moved into the storage
area (from the temporary storage area into
which the picture had keen placed by the FD
analysis module). The temporary storage
area is then released and the FD table
module gives control back to the FD analy-
sis module.

Except for the NAME and LENGTH keywords,
the FD takle module assigns default parame-
ter values for each keyword that is omitted
from an FD control card. The values
assigned are shown in Table 2, and they are
placed in the FD table.

For a pattern, which may be either a
user EBCDIC picture specification or an IBM

158

format specification, module IEBFDTBL
determines the action that is specified on
the FD ccntrol card. Based on this deter-
mination (including a possible default
determination), the module makes an entry
in the FDACTION field of the appropriate FD
table and sets the appropriate bit in the
FDSWITCH field of the table to one.

The module then determines the amount of
storage required to hold the pattern. The
amount of storage required depends on the
action which the create module will later
apply to the pattern. By means of the GET-
MAIN macro instruction, the FD table module
obtains the necessary storage. To provide
for a wave or a ripple type of action, the
storage area must contain two contiguous
copies of the pattern. If the action is a
roll, three contiguous copies of the pat-
tern must fit in the storage area. The
create module requires the rereated pat-
terns when it generates the output records.

Hex Dec
0 0
8 8
10 16
18 24
20 32
28 40
30 48
38 56
40 64
200 512
208 520

® Figure 57.

)}

8 bytes
8
FDNAME (FD Field Name)
8
Unused at Present
4 | 4
Unused at Present FDINDNUM (index number)
2 2 2 2
FDLGTH FDCYCLE FDACTION FDFORMAT One FD
(FD Field Length) (Cycle Number) {Action) (Format Patterns) table
. eniry
Foswitch ' ForiL Y FpsioN | FpcHAR ! : (64
4] ” \FDRANGE- Bytes)
(Action * (EBCDIC or (Decimal or (Starting Char. {Range Number)
Switches) Hex Char.) Binary Field) |[of field) One
FDOBUF 2 FDFRINC 2 4 f?)l
. Lo N FDFRDMAD b€
(Starting Location in (*From' Address ('From" Add for Patt Picture) 520
QOutput Record) Increment Counter) rom ress for Fattern or Ficture Bytes
2 2 2
FDMLGTH FDTOINC FDCYCCNT FDSLGTH
(Move Length Counter) ('To' Address Increment Counter) (Cycle Count) (Sequence Length)
. 2 2
FDSLGTHR FDFRINCR FDTDINCR LTDFREE
(Sequence Length ('From' Increment| ('To' Increment (Length of Storage Unused
Restore Value) Restore Value) Restore Value) to Free)
Room For Seven More 64-Byte FD Table Entries (as above) :r
4 4
Unused NXTFDTAB
Address of Next FD Table. (If none, value is Zero)
*OFFSET 32(]0) BIT 0 1 2 4 5 6 7
SWITCH INDBYNAM PASS FXACTION RPACTION RDACTION WVACTION STACTION NUACTION
FD Table Constructed by FD Analysis Module and FD Table Module
Data Set Utility Programs: IEBDG 159

P T SONIE I S S I SYNISION Sy I SR WO SN SN B S Y

Table 2. FD Control Card Keyword Parameter Processing, and Default Values Assigned, if
Required
I L]
| FD | Processing Applied to Keyword Parameter Default Value
I } ™ T T
| Keyword [validity| Value | Other Processing | (If any) #**
| |Checked |Converted] |
I -+ ¥ : 1
| NAME # | Yes | No |Length checked for maximum of eight |[None.
| | | | characters. |
[4 1 [}
) L} T L] T
| LENGTH #* | Yes | Yes | None. | None.
b 1 1 t +
| STARTLOC | Yes | Yes | Subtract one from value. |First available
| i | |byte in record.
[l] 1 |
T T] T
PICTURE | Yes | Yes |Check for occurrence of FORMAT | None.
(length) | i | keyword. |
. (] (| (1
T]]]
| PICTURE | No | No | Get storage for picture. |Fill character.
(£field)			Determine type of picture.
			Move picture to storage.
			(Include continuation
			cards.)
t 1 } t 1			
FORMAT	No	No	Check for occurrence of PICTURE
			keyword.
			Check for two-character pattern.
t [[5 1			
1 v T L] L}			
ACTION	No	No	Check for two-character type.
L (1 (1 I 1			
T 1 L]]]			
FI1IL	No	Yes	Check for EBCDIC or Hex type with
		(Hex	+two digits.
		only)	
L. [i 1			
] T) T			
CYCLE Yes	Yes	None.	One.
t (] [1			
1] L} 1]			
RANGE Yes	Yes	None.	None.
L 1 '} [4			
¥ 1 T] T			
CHARACTER	No	No	None.
(of FCRMAT)			and alphameric).
			*blank' (for
			collating).
% 4 + 4			
SIGN No	No	Determine if sign value is valid.	Plus.
t L I (]			
v] L} L]			
INDEX	Yes	Yes	None. None.
L ' L			
1 § N			
* These keywords are required to be present in the FD control card. If not present,			
the program will be terminated.			
** Default values assigned by FD table module.			
L

After storage is obtained to accommodate
the desired pattern action, the module
places the specified fill character or a
default £ill character in each byte of the
area. It then moves the pattern into the
storage area the required number of times.
Any leftover space (due to differences in
field length and picture length specifica-
tions) contains the fill character.

If a PICTURE keyword had been specified,

the temporary storage area that the FD
analysis module had used to hold the pic-

160

ture is released before the FD table module
returns control to the FD analysis module.
If a FORMAT keyword had been specified, the
starting character for an alphabetic,
alphameric, or a collating sequence field
is resolved before control is returned to
the FD analysis module. For other formats,
the storage field is initialized to a value
that depends on the format specified. (For
binary format, the value is a binary 1; for
packed decimal, the value is a packeéd .
decimal 1; for zoned decimal, the value is
a zoned decimal 1.)

;For the FD table module, a 63-byte
sequence of characters resides in storage
at location COPAT. The 28th byte of this
sequence is at location ALPAT. After
resolving the starting character for an AL,
AN, or CC format, the module fills the pat-
tern field using the characters of this
sequence. If the starting location value
is a default value, a collating sequence
pattern kegins at location COPAT, and an AL
or AN pattern begins at location ALPAT.

The pattern field is filled only in
increments that are equal to or less than
the length of the sequence that is being
used for the format pattern. If the length
of the field (given at decimal offset 24 in
the FD table) to be moved is less than the
indicated sequence length, the numker of
characters moved will be equal to the
FDLGTH field value. If the length of the
field to be moved is greater than Lut not
an integral multiple of the indicated
sequence length, the number of characters
moved for all moves but the last will be
equal to the sequence length. The last
move will contain the characters remaining
after an integral number of moves have been
made, each move containing the number of
characters in the given sequence. If the
FDLGTH value is equal to an integral mul-
tiple of the sequence length, the number of
moves is equal to the integral numbex.

THE CREATE ANALYSIS MODULE (IEBCRANL)
CHARTS 68,69,70,71,72

This module scans and analyzes the parame-
ters on the CREATE control card. The ini-
tial entry to module IEBCRANL is from base
module when a CREATE card is encountered.
Other entries to the module occur when cre-
ate continuation cards or create card com-
ments cards are encountered. If the create
analysis module does not encounter a condi-
tion that suppresses the creation of output
records, it will use the create module as a
subroutine to generate output records. The
create module will return control to the
create analysis module, which will, in
turn, return control to the base module.

Table Construction

The create analysis module constructs four
types of tables that are used by the create
module: :

The create table

The picture table
The FD address table
The exit name table

The create table is the largest of the
four. It may contain one or more create
entries. Module IEBCRANL establishes a
28-kyte create entry for each CREATE con-

trol card that it processes. (See Figure
58.) One create table may contain up to 18
create entries. These entries contain
pointers to picture tables and FD address
tables. More than one create table may be
constructed.

The picture table contains information
about, as well as thé actual, picture str-
ing that may be specified on a CREATE card.

The FD address table contains the
addresses of the FD table that have been
constructed to contain information from FD
cards.

The fourth type of table that the create
analysis module constructs is the exit name
table. This table contains the nanmes of
any user exit routines that have been spe-
cified. When a user's exit routine is
loaded into main storage, the storage
address of the routine is placed in the
create table.

Module Entries

Since the create anaysis module may have
been entered before in processing a given
group data generator control cards, the
initial analysis performed upon entry to
the module consists of determining the
cause for the module's receiving control.
The create continue switch, CRCSW (at
COMMON+564), is tested for this purpose.

If the entry to the module is the first ome
for a given CREATE control card, storage
for a create entry is obtained either from
an existing create table or by the issuance
of a GETMAIN macro instruction for space
for another 512-byte create table. (As
each new create table space is obtained, it
is 'chained' to the previous space and
initialized to all zeros.) Then, the
module scans the control card keywords one
at a time. If an invalid keyword is
encountered, the create analysis module
indicates a message, sets the NOGOSW switch
(at COMMON+551) to suppress the creation of
output records, and gives control back to
the ‘base module to continue the checking of

syntex on other control cards.

If the entry to the create analysis
module is due to a continuation of a CREATE
control card, a check is made to determine
if the parameters of either the NAME key-
word or the PICTURE keyword were inter-
rupted. (Except for the NAME and PICTURE
keyword parameters of the CREATE card, all
other CREATE card parameters must ke on the
same card as their associated keywords.

The picture string parameter of the PICTURE
keyword is the only one that may in itself
be continued to another card.) The name
continue switches, NAMCSW1l and NAMCSW2 (at
CCMMON + 561), and the picture continue
switches, PICCSW1l, PICCSW2, and PICCSW3 (at

Data Set Utility Programs: IEBDG 161

Hex Dec 8 bytes
4
Address of next create table
0 0
4 4
NXTCRTE QUAN
(Address of next create entry in this table) (Quantity value for this entry)
8 8
4 4
IDCBPTR EXITADDR
(Address of input DCB for this DSD group) (User's exit routine address for this entry) gne
reate
10 16 2 1 Entry
FILLCH 3| (28
PICPTR Eill oh bytes)
Picture table address for this entry 1l character (Not used) V'
for this entry One
18 24 1 Create
FDADTAB) Mb?
(Address of FD Address table) (begin next create entry) f)s]r)
es
20 32 Y
,‘J: space for 17 more create entries ‘"L
200 512 T
4
last FDADTAB in Create Table
204 516 ~——J'—
Figure 58. Create Takle Constructed by Create Analysis Module

COMMCN + 562), are tested to determine if a
parameter may be on a continuation card.
For a continuation card, the scan begins in
column 4.

If the entry to the create analysis
module is because of a comments continu-
tion, control is given to the base module,
IEBDG, to process the comments, and to read
the next control card.

Module Sukroutines

As the create analysis module processes
each valid keyword, it may branch to sub-
routines within the module. These subrou-
tines perform functions of parameter scan-
ning (SPSCAN routine), packing and/or conv-
ersion (CCNVDB routine), and table search-
ing (FDSRCH routine). When the processing
for a given keyword is completed, the key-
woxrd scanning section of the module scans
the next keyword unless a continuaticn card
has been indicated. If the latter action
has occured, module IEBCRANL gives control
to the kase module to read the next control
card.

THE SPSCAN SUBROUTINE: The function of the
SPSCAN sukroutine is to check the validity
of a keyword parameter. The routine moves
a pointer across each character in the
parameter and checks for cormas, blanks,
and parentheses. It also determines wheth-
er a parameter has been extended into
coluxwn 72 of a control card. If so, an

162

error message is indicated and control is
given back to the base module.

After a corma or a klank is encountered,
the parameter length is determined and
checked for an invalid length of zero, and
the routine returns control to the calling
section of the module. (An invalid parame-
ter length causes the module to indicate a
message and return control to the kase
module.)

THE CCNVDB SUBROUTINE: The convert subrou-
tine, CCNVDB, performs two functions: it
converts a decimal numker to a packed
deciral number, and it converts a decimal
nunber to a binary numker. The sukroutine
is used in processing the parameters of the
QUANTITY, the NANME, and the PICTURE key-
words. The convert sukroutine processes a
numnber that can be contained in 4 bytes or
less. Therefore, a decimal value that is
greater than 2,147,483,647 will not be pro-
cessed, and a message will be indicated.
Module IEBCRANL then returns control to the
base module.

In order to determine if a parameter to
be converted is numeric, the zones of its
characters are comgared against a hexade-
cimal 'F.' Valid nurmeric characters are
then converted to a packed decimal format
and placed in the storage area Q (at
COMMON+ 216). For all cases except a
packed deciral picture specificatiocn, the
parameter value is then converted to a

binary value and placed in a general
register.

THE FDSRCH SUBRQUTINE: Module IEBCRANL
contains and uses the FDSRCH subroutine in
| processing the NAME keyword parameter. The
subroutine places a valid name fromr the
CREATE control card into storage and then
compares this name against the names of the
FD tables (which have keen established by
the FD analysis module). If the list of FD
takles does not contain a name that matches
the name on the CREATE card, a message is
indicated and the create analysis module
returns control to the base mrodule.

When an FD table name that compares with
a CREATE card name parameter is found, the
address of the FD table bearing that name
is rlaced in an FD address table. (See
Figure 59.) If there is no room in an
existing ¥D address takle, the FDSRCH suk-
routine will obtain storage for a new
table. The current create entry, whose
address is given at CURCRTE (COMMON + 316)
contains the address of the first FD
address table. All FD address tables are
chained together by pointers in the tables
themselves.

Keyword Processing

To determine if all keywords on a given
CREATE card have been processed, module
IEBCRANL tests the column after the last
paranmeter of each keyword. If this column
is blank and if columrn 72 of the control
card is klank, the last parameter on the
card has been processed. The module then
estaklishes a default value for the CUANTI-
TY keyword parameter if a value has not
already keen supplied on a CREATE control
card.

If there are no more continuation cards
for a given CREATE control card and if the
create value (from a preceding REPEAT con-

trol card group) is equal to one, module
IEBCRANL gives contrcl to the create
module, IEBCREAT. Ctherwise, if the create
value (Jdetermined by testing the field
CREATENO at COMMON + 18) is greater than
one, the create analysis module gives con-
trol to the base module to read the next
CREATE control card. (The field CREATENO
is initially set to one in case a CREATE
card is not part of a REPEAT card group.)

If the column after the last parameter
contains a comma, the next card column is
checked. If this next column either is
column 72 or contains a blank, the module
gives control to the base module to read a
continuation card. Otherwise, either a
message would have been indicated and con-
trol returned to the base module or the
subroutine for scanning the next keyword
will ke entered.

When the create analysis module pro-
cesses the parameter of the DDNAME keyword,
it tests the number of characters in the
DDNAME and determines whether the parameter
value is SYSIN. If the name length is
valid and the name is SYSIN, the address of
the SYSIN data control block (at COMMON +
116) is placed in the create entry (whose
address is given at COMMON + 316) for the
CREATE card being processed. If the name
is not SYSIN, the input DCB(s) are scanned
to find a name equal to the CREATE card's
ddname. In doing the scanning, the address
of the first input DCB is placed in the DCB
pointer (at COMMON + 300). The name of the
DCB (at DCBD + 260) is compared to the
ddname given on the CREATE card. Unless an
equal name is found, the process repeats
with the next input DCB until there are no
more input DCBs to check. If a successful
DCB name comparison is made, the input DCB
address is placed in the create entry.
Otherwise, a message is indicated and the
create analysis module gives control to the
base module.

Hex Dec e 8 bytes
0 0 4 4
ADDRESS OF NEXT TABLE FD TABLE ADDRESS
8 8 4 4
FD TABLE ADDRESS FD TABLE ADDRESS
10 16
! !
! i
1
' E :L space for 16 more FD table addresses Pt
. i
Lo
i i 4 4
1
P FD TABLE ADDRESS 0000
] I
) |
58 88

‘OFigure 59.

FD Address Table Constructed by Create Analysis Module

Data Set Utility Programs: IEBDG 163

If the ddnawme search was successful,
either the given delimiter or a default
delimiter is placed in the DELIM field (at
COMMCN + 344), or a message signifying an
invalid delimiter is indicated and the cre-
ate analysis module returns control to the
base module.

When the EXIT keyword is encountered,
the length of the user's exit routine name
is checked for validity. If the length is
valid, the name is placed in a table called
the exit name table (see Figure 60). The
user's routine is then placed (via a LOAD
macro instruction) into main storage, and
the storage address of the routine is
placed in the create entry.

THE NAME KEYWORD: In processing the para-
meters of the NAME keyword, module IEBCRANL
searches for multiple names, for ‘'copy'
groups (based on the COPY keyword), and for
breaks or interruptions in series of names
within outer and/or inner parentheses. If
the COPY keyword is not present and if mul-
tiple names have keen indicated (by
encountering a left parenthesis in the
scan), a default value of one is assigned
to the CCPYVAL field (COMMON + 640).

The complete processing of the NAME key-
word parameter(s) includes the use of the
subroutines FDSRCH, SPSCAN, and, if the
COPY keyword is present, the CONVDB subrou-
tine. If multiple names are present, the
SPSCAN and FDSRCH subroutines are used for
each name that is encountered. The create
analysis module indicates that there is a
continuation in the parameters of the NAME
keyword by setting switches in the NAMCSW
field (CCMMON + 561) of the communication
area. If the continuation occurs after a
'name' subparameter within only the outer
set of parentheses, the high-order bit (kit
0) of the NAMCSW field is set to one. For
a continuation indication that occurs after
either the COPY keyword or a 'name' sub-
parameter within the inner set of paren-
theses, the second bit (bkit 1) of the
NAMCSW field is set to one.

If an inner group of names is to ke
copied more than once, the create analysis
module checks the current FD address takle

Hex Dec 8 byt

for enough space each time a name is to be
copied. If space is not available, storage
for a new 88-byte FD address table is
obtained, and the new table is chained to
the previous one by the first word in the
current FD address table located at the
address given in the CURFDGM field (COMMON
+ 632).

THE PICTURE KEYWORD: This section
describes the processing of the PICTURE
keyword parameters., The PICTURE length
parameter is processed first; the start
location of the picture string is then pro-
cessed; and the actual picture processing
is done last. 1In the case of the PICTURE
keyword parameters, there are three ways in
which a continuation card may be
encountered.

1. The PICTURE parameter list may be
interrupted after the length parame-
ter. In this case, the first (high-
order) bit of the PICCSW field (COMMON
+ 562) is set to cne.

2. The PICTURE parameter list may be
interrupted after the startloc parame-
ter. In this case, the second bit of
the PICCSW field is set to ome.

3. The actual picture string may be
interrupted. 1In this case, the third
kit of the PICCSW field is set to one.

Chart 70 indicates the entxry points to the
section of the module in which processing
for the continuation card relating to each
of the above ways of interruption takes
Flace.

In processing the length parameter, the
module first scans the length and then
coverts the length value to a binary equi-
valent. Based on this length, the module
obtains a storage area called the picture
table. (See Figure 61.) The binary length
value is then placed in the field PICLGTH,
which begins at the fifth byte of the asso-
ciated picture table. The picture table is
located at an address given in the PICBASE
field (at COMMON + 664) of the communica-
tion area. This same picture table address
is also placed in the create entry for the
current CREATE card.

0 0

4

Address of next exit name table

user exit routine. ..

®)

..-name

user exit routine. ..

@®)

+..name

®
N
PN

Space for & more user exit routine names

4
0000

- seYy EX1

[]
bz
s
g
A
AV

164

me Table Cconstructed by Create-Analysis Module

Hex Dec

8 bytes
) y
o 4 2 2

Start-of-Picture offset from

boginming of record PICTURE LE(IEI)GTH (Bytes) PICTURE STRING
g8 8
: I
' !
oA PICTURE STRING (Conti L
! [~ (Continued) =
l |
] t
L¥6 L*

Niote: L is equal to the value specified as'the length subparameter of the PICTURE keyword on the related CREATE control card.

Figure 61.

The start location (startloc) parameter
is scanned; if valid, it is converted to a
binary value; and the value is then placed
in the associated create entry. As it does
after the length parameter, the module then
checks to see if the next parameter is on
the same or a continuation card. If a con-
tinuation card is indicated, the module
returns control to the base module to read
the next card. Otherwise, the picture
string will be processed.

If the picture string is specified as
being in EBCDIC (character), the string
characters are moved directly from the card
to the picture table. If the picture
string is to be continued, the continuation
switch (second bit of the field PICCSW) is
set to one, and control is returned to the
base module to read the next card.

If the picture string is specified as
being in either packed decimal or binary,
the comrplete string must ke on one card.
The card format is checked, and if valid,
the string value is converted either to a
packed decimal value or to a binary value
as specified on the control card. The con-
verted value is then placed in the picture
table for use by the create module.

After each parameter on the CREATE con-
trol card has been processed, the create
analysis module checks for a valid delimit-
ing character and for an indication of a
continuation card.

THE CREATE MODULE (IEBCREAT) CHARTS 73,74

The create module maintains control over
the generation of ocutput records. This
module receives control from the create
analysis module after create entries (in
one or more create tables) and related
tables have keen constructed. If, ugon
entry to this module, the switch, NCGOSW
(at COMMON + 551), is on as the result of
the action of a previous module, the
generation of output records will be sup-
pressed and the create module will perform
only its clean-up functions. Module IEB-

Picture Takle Constructed by Create Analysis Module

CREAT always returns ccntrol to the create
analysis module, which then returns control
to the base module for the printing of mes-
sages and/or the reading of the next con-
trol card.

Output Record Modifications

Upon entry to the create module, the NOGOSW
switch is tested to determine whether to
continue processing or whether to immedi-
ately release storage areas and return con-
trol to the create analysis module. 1If
processing is to continue, the record
characteristics (length, format) are deter-
mined; a counter, RECREM (at COMMON + 348),
is initialized with the quantity value from
the create entry; and the input record size
(if present) is compared to the output
record size. The output record field is
then filled with the create entry fill
character prior to reading in a record from
an input DCB.

FD TABLE MODIFICATION: If there is no
input DCB, modifications based on values in
the FD table(s) are made directly to the
output area containing the fill character.
Otherwise, the modifications are made to
the input record that has overlaid the fill
characters in the output area.

The modifications based on the FD table
values involve the action, index, cycle,
and range parameters from the FD control
card. Initially, an FD pattern at the
storage address given in the field FDFROMAD
of an FD table is moved to the output area,
which, at this point, contains either a
fill character or an input record. The
create module then inspects other FD tables
that may have been indicated by the CREATE
control card as belonging to the current
create entry and moves the patterns from
these takles into the output area. The
output record starting location for each FD
pattern is given in the field FDOBUF of the
FD table. Note, that as each modification
is made to the output record, it may over-
lap part or all of a previous modification
depending on the starting location specifi-
cations involved.

Data Set Utility Programs: IEBDG 165

PICTURE AND USER MODIFICATIONS: After the
create module moves the FD pattern(s) to
the output record area, the module moves in
the picture string from the CREATE control
card, if the PICTURE parameter has Lkeen
specified. Otherwise, or after the ricture
string has been moved, module IEBCREAT
determines if a user exit routine is pre-
sent. If so, it indicates that a user may
desire to inspect and/or modify the record
before it is placed on the output device.
An exit is taken to permit user modifica-
tion if this is the case. After the user
routine (if one is used) gives control back
to the create module, the create module
checks the return code that has been placed
in register 6 by the user's routine. If
the job is not to be terminated at this
point, the create module places in the out-
put data set the record that is in the out-
put area. If termination is to take place,
an indicating switch (FLUSHSW or FLUSHSW1
depending on the return code) is set,
storage areas are released, and control is
given to the create analysis module, which
then gives control to the kase module.

Updating the FD Takle

After each record is placed in the output
data set, certain values in each applicable
FD table are updated to prepare for the
next output record that is to be created.
Multiple references, by the same create
entry, to the same FD table are indicated
by the setting of a 'pass' switch (bit one
of the FDSWITCH field). If this occurs,
the FD table is processed (and updated)
only once.

For the binary, packed decimal, and
zoned decimal patterns, the create module
pexforms the following actions by using FD
table values:

e The cycle count field (FDCYCCNT) value
is incremented if the cycle value
(FDCYCLE) is other than zero.

e The pattern values are then converted
to a kinary equivalent, if not already
binary, and placed in a work area
(register 4). The module then incre-
ments the binary-equivalent pattern
value by using the index number
(FDINDNUM) .

e The incremented pattern value is then
tested against the range value given in
the field FDRANGE. If the range value
has keen exceeded, the current pattern
value in the storage area to which the
FD takle refers is not changed. Other-
wise, the indexed binary value is
reconverted to a decimal form if neces-
sary and placed in the storage area.

166

For a random number format, the random
generator routine of the create module pro-
vides another value to be used for the next
record and places the value in the pattern
storage area to which the FD table refers.

For alphabetic or character patterns,
the generation of the pattern to be placed
in the output area for the next record
requires that values of the 'from' address
in the FD table and the 'to' (or output
work area) address be changed. These
addresses are used in moving the pattern
(or a part of it) from the pattern storage
area to the output record area. In the FD
table, there are two fields (FDFRINC and
FDTOINC) that contain the increment values
used to modify the 'from' and the ‘to’
addresses. These fields initially contain
a value of zero for the first output rec-
ord. For subsequent records, the values
may be incremented by values given in the
increment restore fields (FDFRINCR and
FDTOINCR) of the FD table.

The FD table module established the
values of the increment-restore fields
after the specified action had been deter-
mined. Table 3 lists the values of the
increment-restore fields for the various
actions that may be specified.

Table 3. Values of Increment-Restore
Fields in the FD Table

I T T 1
| | FDFRINCR | FDTOINCR |
| | ("From' Incre- | ('To' Incre-
|Pattern |ment Restore) | ment Restore)

[N 1 i 3

r]]

|Sshift | 1 | 0

|Left | |

|shift | 0 | 1

[Right | | |
|Truncate | 1 | 1 |
|Left l |

| Truncate | 0 | 0

Right |

Roll | +1 (%) 0

-1

Ripple 1 0

[Wave 1 0

Fixed 0 0

L

| *This value will alternate between +1 andj|
| -1 as the roll pattern is developed in |
| first one direction and then the other. |
L J

Depending on the action specified in the
FD table, the create module may vary the
values of the move length counter field,
FDMLGTH, and the sequence length counter
field, FDSLGTH, to prepare for the next
output record. Table 4 summarizes the
changes that may occur to values of fields
in the FD table as the create module
generates output records.

e Table 4. Changes Made to FD Table Values as Create Module Builds Output Records
h
Field Format Change i
4
1
FDCYCCNT |Numeric Increase by 1. When = FDCYCLE value, set to 0. |
[d
B] ’ 1
FDMLGTH Alphabetic|Initially = FDLGTH value. If FDMLGTH > 1, decrease by 1. When |
(shift or |FDMLGTH < 1, set = FDLGTH value. |
Truncate) |
4
1
FDFRINC Alphabetic|If FDMLGTH > 1, increase by value in FDFRINCR field. When |
| | (shift or |FDMLGTH < 1, set = 0. |
| Truncate) | |
t t {
FDTCINC	Alphabetic	If FDMLGTH > 1, increase by value in FDTOINCR field. When
(shift or	FDMLGTH < 1, SET = 0.	
	Truncate)	
b t t		
FDSLGTH Alphabetic	Initially = FDSLGTHR. If FDSLGTH > 1, decrease by 1. When	
(Ripple)	FDSLGTH < 1, set = FDSLGTHR value.	
[N 4 d		
L] T 1		
FDFRINC	Alphabetic	If FDSLGTH > 1, increase by 1. When FDSLGTH < 1, set to 0.
	(Ripple)	
I- + t , {		
FDFRINC	Alphabetic	If FDSLGTH > 1, increase by 1. When FDSLGTH < 1, restore to 0.
i (Wave)		
F + i		
FDMLGTH Alphabetic	When FDSLGTH < 1, restore to FDLGTH value.	
(Wave)		
b } . {		
FDFRINC	Alphabetic	Increase by 1 for roll to left. Decrease by 1 for roll to right.
	(Roll)	
L A1 1 4

After all FD tables to which a given
create entry refer have been updated, the
create module inspects the NXTCRTE field
(in the create table) to determine the
address, if any, of the next create entry
to be processed. (When there are no more
create entries to be processed, the NXTCRTE
field of the current create entry contains
zeros.) If there is another to be pro-
cessed, the create module will process the
entry in the manner already described.

If there is a repeat function to per-
form, the entire list of create entries
must be processed as many times as neces-
sary to satisfy the repeat requirement.
When that is done, the clean-up functions
of the create module will be performed. If
there is no REPEAT card function to perform
for the current set of data generator con-
trol cards, the field REPEATNO (at COMMCN +
16) contains zeros.

After the last create entry has been
processed, the create module will release
the storage areas that have been obtained
for create tables, FD address tables, and
the CREATE card picture string. The module
then resets switches and communication area
field values for an initial entry to the
create analysis module, and returns control
to the create analysis module.

THE MESSAGE MODULE (IEBDGMSG) CHART 75
Message module IEBDGMSG is entered from the
base module whenever there is an indication
of a message to be printed, or placed on
the output device. To indicate the need
for a message, the other modules of the
data generator program set a message number
in the Ms field (at COMMON + 406) of the
communication area.

This module places four types of mes-
sages on the output device: heading mes-
sages, control card images, error messages,
and error flags (wessages). The messages
used for headings and errors exist as 121-
byte entries within the message module.

The location of each message within the
module is contained in a 4-byte address
entry in a message pointer table.

Before any messages are placed on the
output device, module IEBDGMSG determines
if the output data set has been successful-
ly opened. If it has not been opened, con-
trol is returned to the base module and the
job is terminated. If the data set is
open, the value in the MS field is checked
to determine the reason for requesting the
module.

Initially, the module is requested to
print a heading message (MS field value =

Data Set Utility Programs: IEBDG 167

1). Thereafter, a heading message is
printed when the module finds an indication
of either a channel 12 printer carriage
tape or the correct line count. All head-
ing messages will begin at position cne on
the output device. BAfter each heading mes-
sage printout, the line count value is
reset to either the user-specified value or
the default value, and the page numker
value is incremented. Before printing a
heading message, a printer will skip to
channel one to set up a new page. When any
other message is to be printed, a printer
will space one line before printing the
message.

If the MS field value is not 1, the
module determines if the carriage control
tape indication is 12 and, if the indica-
tion is not 12, if the line count value has
reached its maximum value. If either
situation has occurred, a heading message
will ke printed, the line count will be
reset, and the page number will be
incremented

Otherwise, the module tests the MS field
to determine if a control card image is to
be printed from the input buffer. If this
is the case, the image is printed at rposi-
tion ten on the output device. If a card
image is not printed, the module tests for
a regular error message indication from the
processing modules. These messages have
message numbers from 2-28. For each mes-
sage to be printed, the printer is placed
at positicn one to receive the message.

The message module places a flag message
(consisting of the word ERROR) in the mes-
sage data set when one of the other modules
of the data generator program requests an
error flag. This message begins on the
line below the corresponding control card
image and in the column corresponding to
the card column that is in error.

After a message has been placed on the
output device, the message module incre-
ments the line count value, determines if a
heading message has just been placed on the
device, and either continues processing or
returns control to the kase module.

SERVICE AIDS

A customer or systers engineer can
obtain useful information for use in debug-
ging a (non-executed) run of the data
generator program by re-running the program
with a DUMP control card inserted in the
grougp of control cards. When the Lase
rodule recognizes a DUMP control card, it
takes the action descriked in the micro-
fiche copy of the base module code.

168

The publication IEM System/360 Cperating
System, Programxer's Guide to Debugging,
Form C28-6670, describes both types of
dumps that may be obtained when one uses a
DUMP card. An indicative dump is a limited
dump that results from an incorrect, or
from a lack of a proper, SYSABEND DD state-
rent. For a complete storage dump, a
correct SYSABEND DD statement to define a
dump data set must be included in the con-
trol cards for the program.

In using the contents of a dump, you
will find that register 5 contains the
address of the common communication area
(common area). This area contains pointers
to control blocks and to tables constructed
by the data generator program; and it con-
tains parameter values that the modules of
the program (1) have obtained from control
cards, (2) have assigned as default values,
or (3) have arrived at through computation
and/or conversion. Table 5 indicates the
contents of the fields corresponding to the
more frequently used labels in the common
area.

Certain debugging information is avail-
able as the result of processing the con-
trol card(s) preceding a DUMP control card.
In the following text, the information
given for a specific location of the DUMP
card is in addition to any information
resulting from processing any control cards
that may have preceded the specified
location.

1. DUMF card preceding a DSD card:
The common area contains values for
printer action.
The open list is initialized.
The input DCB is open.
Much of the common area contains
ZEXos.

|

2. DUMP card follows a DSD card:
Addresses of DCBs have keen
determined.
Work area for output record has been
established and the area's address is
located in comrmoen area.

3. DUMP card follows an FD card:
Storage area dump contains the FD
table entry relating to that FD card.
If other FD cards have been processed,
the corresponding FD table entries are
also included in the dump.

4. DUMP card follows a CREATE card:
Storage area dump contains takles
created by the corresponding CREATE
card. An updated copy of any related
FD tables is also included. The most
recent create table is contained in
the dump and the CURCRTE field of the
cormon communication area contains the
address of this takle.

al appearing in the program listings for the data generator program.

The following sections contain information that summarizes or further explains materi-

This information

supplements the overall view of the program as supplied by Figure 55.

®Table 5 lists the entries in the Common Communication Area. This area is used by all
modules of the data generator utility progtam.

?able 5, ComTon Communication Area |
| Offset From| |
| start of | |
Common Area | |

T ! 1
Deci-|Hex. | Label Notes }
mal | | |

0 0 |coMMON |

0 0 |PAGENO Number of next page to be printed. |

4 4 |LINECT Number of lines to print on a page. |

8 8 |LINECTR |Number of lines already printed on current page. |

12 C |PARM Used during invocation. Also used by Create module to save SYNAD|

| addresses. |

| 16 10 |REPEATNO|'Quantity' value from REPEAT card. |
18 12 |CREATENC|'Create' value from REPEAT card. |

20 14 SYSP Data Generator SYSPRINT DCB. |
116 74 SYSI Data Generator SYSIN DCB. |
216 D8 Q Work. Area |
216 D8 |QFILL |
223 DF |QSIGN |
224 E0 |QFILIL1 |

231	E7	QSIGN1
232	E8 COUNTER	Used in scanning for continuations.
236	EC OPENLIST	Used during DCB open processing.
236	EC	OPTIBYTEL [
240	FO	OPTBYTE2
244	F4	EXLST
244 F4	INHDR	
245 F5	INHDR1	
{ 248 F8 |OUTHDR | i
249 F9 |OUTHDR1 | |
252 FC |INTRL | |
253 FD |[INTRL1 | I
256 100 |OUTITRL | i
257 |101 |OUTTRLI1 | I
260 104 EXITDCB | |

| 261 105 EXITDCE1L | |
264 }108 |TOTAL- | i
265 109 TOTAL1 | |
268 10cC EXLST1 | |
268 10C EDCB1 i |

| 269 |10D |EDCB2 | i
| 272 |110 |[EXIST2 | |
| 272 110 EDCB3 | i
|} 273 111 EDCBY | l
| 276 114 |EXLST3 |]
| 276 |114 |EDCB5S | |
| 277 115 |Epcee | Y i
| 280 |118 DLRECL |Default value of record length for DCB opening. |
282 |11a DBLKSI |Default value of block size for DCB opening. |
284 |11C |DRECFM |Default value of record format for DCB opening. |
288 |120 |LEFTOVER]| |
292 |124 OFFSET | {
296 |128 LPTR |
300 |12c DCBPTR |Address of current DCB. |
304 (130 |COMMON1 | |
304 |130 |[|SAVEMS |Save area for message number if more than one message. |

| 306 |132 |CONCODE |Condition code to be returned to caller. . i
L 4 L L 4
(Continued)

Data Set Utility Programs: IEBDG 169

. T 1
offset From	
start of	
Common Area	
k —=1 T 1	
Deci-	Hex.
mal	i
b $-———t + 1	
308	134
312 138	CRTABPT
316 13C	CURCRTE
320	140
324 144	CURPIC
table.	
328 148	PICCTR :Counter to keep track of length of picture remaining to be moved.
332 14C	EXITTAB
336 150	EXITGM
340 154	CUREXIT
344	158
348	15C {
352	160
356	164
360	[168

364 |16C |GETMLIST|Parameter list for GETMAIN macro instruction. |

364 |16C |GLENGTH |

368 |170 |ADRLIST |
| 372 |174 |IND |
} 372 |174 |GCODE |

373 |175 |SPOOL |

374 |176 |CCODE | |

376 |178 |GCADDR |Address of last storage obtained by a GETMAIN macro instruction. |
| 380 |17C |FIRSTIGMC|Address of first output DCB storage area.
| 384 |180 |CURRGMO |Address of current output DCB storage area.
| 388 |184 |LASTGMC |Address of last output DCB storage area.
] 392 188 |FIRSTGMI|Address of first input DCB storage area. i
396 18C	CURRGMI	Address of current input DCB storage area.	
400 190	LASTGMI	Address of last input DCB storage area.	
4ou 194	CONCCDE		
806 196	MsS	Current message number.	
408 198	INBUFAl	Starting address of input work area (121 bytes).	
408 [198	INFILL	(10 Bytes)	
u418 1A2	INBUFA	Control card is read into this (111-byte) section of INBUFAl.	
532 214	DDPTIR		
536	[218	COMMCN2	
536 [218	SWITCH	Start of 52-switch area.	
536 218	FDCSW	FD-card continuation switch.	
537	219	FDNAMESW]	
538 21A	FDPCSW	FD picture-continuation switch.	
539 21B	FDFMISW	FD format switch. only one of these	
540 21C	FDPLSW	FD picture switch.} should ke on.	
541	21D	RANGESW	
542	21E	[FILLSW	
543 21F	REPSW	» FD card keyword indicator switches.	
Suu 220	INDEXSW		
545 221	INDNMSW		
546 (222	BQUOTESW	Binary picture indicator.	
547 {223	PQUOTESW	Packed decimal picture indicator.	
548	224	EQUCTESW	ERCDIC (character-string) picture indicator.
549	225	FDSW	‘
550	226	DSDSHW	
551 {227	NOGOSW	'No-execution' switch. (Indicates syntax checking only.)	
552 [228	CREATESW	First CREATE-card switch.	
553	229	DSDCSW	DSD continuation card switch.
554	22A	CRCSW	CREATE continuation card switch.
555	22B	EXITSW	Indicator that an initial exit-name table exists.
556	22C	EODSTOF	Switch to stor generation on input end-of-data.
L 1 1 L 3

170

(Continued)

T 1
Of fset From| |
Start of | |
Common Area | |
i J

k] T
Deci-|Hex. | Label Notes]
mal | | |
[l i
L} . L) 1
557 22D |DSDNULSW |
558 22E |DSDORGSW Not used. |
559 |22F |DSDDDSW |]
560 230 CRTBLK |Indicator for a blank CREATE card. |
561 231 NAMECSW |Name continuation switch. |
562 232 PICCSW |CREATE card picture-continuation switch. |
563 |233 |BUFPSW |
564 |234 |ENDSW |
565 235 COMCSW |Comments continue switch. |
566 236 FLAGSW |
567 |237 |PAGESW |
- 568 |238 |EPSW |
569 |239 |SYSISW |
570 23a SYSPSW |
571 23B OLDNEWSW | Input/output data set indicator. |
572 23¢C FLUSHSW |
573 23D FLUSHSW1 |
574 23E |DSDOSW |
575 |23F |DSDISW |
576 240 QUANSW CREATE card 'quantity' switch. |
577 241 PARENSW |Indicates detection of a left parenthesis. |
578 | 242 REPEATSW|Used to test if a REPEAT card remains to be processed.]
579 243 SYSINEOD |Address of end of SYSIN data. |
588 24¢ FDPLGTH |FD-picture length. |
592 250 SGCADDR |Save Area for address of storage obtained by GETMAIN macro |
instruction. |
596 254 |FDPTR Address of current FD-table entry. |
600 258 |FDPTR1 Address of first FD table. |
604 25C | FDPTR2 Address of current FD table. |
608 |260 |COMMON3 ' |
608 260 FDCTR count of number of entries in current FD table. |
612 264 LREMAIN |Length of FD picture remaining at end of scanning an FD card. |
616 }268 |COMPCIR | |
620 |26C |LMOVED I
624 270 U Current random number value. |
628 274 PICEND Location of end of picture in output record. |
632 278 CURFDGM |Address of current FD-address table.]
636 27¢ SWTCH | |
636 |27C |FIRSTSW | |
637 |27D |FRSTSW | |
638 27E STOPSW |
640 280 COPYVAL |Value of COPY parameter from a CREATE card. |
64y 284 COPYFD |Pointer to FD address used in copying a 'name* groug. |
648 288 COPYFDGM | Address of FD-address table. |
652 28C NAMCTR - |[Number of FD addresses to be copied for a 'name' group. |
654 28E NAMCTR1 |Counter used in copying a 'name' group. |
656 290 INRECSZ |Logical record length of an input record. |
658 292 |OUTRECSZ|Logical record length of an output record. |
660 294 |INRECFM |Input record format. i
661 295 |RECCFFST|Offset to start of data in output record. |
662 |296 |OUTRECFM|Ouput record format. |
664 |298 |PICBASE |Address of start of picture takle. |
668 |29C |MESSAGE | |
AL L L d
Data Set Utility Programs: IEBDG 171

Table 6 lists the fields of the Data Con-
trol Block (DCB). The labels, as given in
this dummy section, may vary in nare from
the levels for the DCB fields as given in
the System Control Blocks rublication.
However, the offsets from zero correspond
in meaning with those given in the System
Control Blocks puklication.

e Table 6. Data Contxrol Block

I

i OFFSET FROM START OF DCB

L

) T i]

| DECIMAL | HEX i LABEL
k t +

| 0 | 0 [DCBD

| 0 I 0 i FILL

! 17 I 11 | DEVT

| 18 | 12 | FILL1
| 26 | 1A I DSORG1
| 26 | 1A | DSORG
i 28 | 1c I FILLER
i 28 1 1c 1 IOBAD
| . 32 [20 I BFTEK
| 33 I 21 | EODAD
| 36 | 24 | RECFM
| 37 | 25 | EXLIST
1 40 [28 I DDNAME
| 40 i 28 | DEBAD
1 40 1 28 | IFLGS
| 48 | 30 1 GETAD
1 48 | 30 1 OFLGS
| 49 1 31 I OFLGS1
i 50 | 32 | MACRF
1 52 i 34 | FILL2
1 56 | 38 | SYNAD
| 60 | 3¢ | CIND

| 62 | 3E | BLKSI
| 64 1 40 | FILL3
| 82 I 52 I LRECL
| 84 | 54 | FILLY
1 256 | 100 | NEXTDCB
1 260 | 104 | DDNAME1
| 268 1 10C I EODSW
| 269 | 10D 1 DCESW1
| 270 | 10E | DCBSW2
| 271 i 10F 1 DCBSW3
L i Y

e o G e o s —— — — ——— —————— — — — —— {—— — —— —— —— f— {— a— {—

172

Table 7 lists the defined constants (DCs) that are used by the various modules of the
data generator program.

*Table 7. Defined Constants for Modules of the Data Generator Program

Label Base Clean-up FD_Analysis FD Table Create Analysis Create
'C1 C'FX!
'c2 crsi
'C3 c'TL
'C4 C'sR!
'C5 C'NAME=' C'TR! C'QUANTITY="
'C6 C'LINECT= C'LENGTH= C'NAME=' C' (see 'C30 for base)
'c7 C'STARTLOC=' C'PICTURE="
'C8 C'PICTURE=" C'RP* C'FiLL=* C'RA
'C9 C'FORMAT=! C'RO' C'INPUT= c'zp!
'C10 C'ACTION=' C'wv! C'EXIT= C'PD!
cn C'FiLL=' c'sl*
'c12 C'CYCLE= C'BY’
'C13 C'END* C'RANGE="' C'PD!
'C14 C'FD" C'CHARACTER=" caL C'COPY='
'C15 C'CREATE' C'SIGN=" C'AN!
'C16 C'REPEAT C'INDEX=" c'co' cpn
'C17 C'DUMP! C'REPLACE= c'g
'C18 C'OUTPUT=("
'c19 CINPUT=("
'C20 C'RA!
'C22 C'ZD!
'C24 C'SYSIN
'C25 C'QUANTITY=! C'$$$E
'C26 C'CREATE='
\c28 cpint
'C29 copt
'C30 C' [EB7291 PERMANENT
1/O ERROR'
D1 H'256" H'-64' H-1' H'-1* F'o!
‘D2 F'123456" H'32767' H'256' F'0* H'-1'
‘D3 F'65535" H'256" H'2* H'256" H'8'
‘D4 H'-2! H'1 H'4!
'D5 1 H H'16' F'524291"
'Dé H'-4! F H'-4
'D7 H'-3' H'256'
'D8 H'32767°
'X2 X'FOFOFOF1*
'X5 X'000B* X'0000*
X7 X'0030' X'0000'
'X8 X'0000000000000000"
‘X9 X'0028"
X7 X'001A*
*X18 X'0024'
'X19 X'003F"
'X23 X5000"
'X26 X'02147483647F"
'X30 X'0000"
'X31 X'0000000000000000* X'0004'
'X32 X'000002147483647F" X'0003"
'X36 X'000002147483647F"
FOXZEROS X'FOFOFOFOFOFOFOFQ! X'FOFOFOFOFOFOFOFQ"
NO X*'00' T
OFF X'00" X'00' X'00' X'00* X'00
ON X'FF X'FF* X'FF X'FF! X'FF?
ONE FL4'0’
'$1Z001" A('DATEND-'DATD) .
M F'0 F'o'
'TEMP4 F'o' F'o' F'o F'0
YES X'FF

Data Set Utility Programs: IEBDG 173

Takle 8 lists the equated symbols (ECUs) that are used by the various modules of the Jdata
generator program.

eTable 8. Equated Symbols for Modules of the Data Generator 'Program

Label
Base Clean-up FD Analysis FD Table Create Analysis Create

A2J7 'ELOT
F6D3 FgB4
'L 1 1 1 1 1
RET 'ELO1

'9CE 'ELOT
'9D4 A7AT2
'9D7
'9EC F4G11
'9EF 'ELOT
'9E2 A2B3
'9E9 'EL02
'9FC PDD INAMER

'9FD PDDNAMER
'9F0 A6C5

'9F2 'ELO2 A7A18
'9F3 LABEL1
'9F4 SCANI AbATT

'9F5 F9E5
'9F7 KEYSCAN

CARDSCAN

174

Tables and Work Areas Used by Modules of Data Generator Program

Table 9 is a grid indicating the modules that establish, use, and modify the major work
areas and information tawles of the datz generator program. Mnemonic names for the
tables or area are placed in parentheses and correspond with the names given in the
module cross-references on microfiche listings.

e Table 9. Data Generator Modules Information Tables and Areas

Modules BASE FDANL FDTAB CRANL CREAT MSG CLNUP

Module Action Code: B = Module gets storage for, and/or enters data into.

Table/Area U = Module uses or modifies the area.

Common Comm. Area
(COMMON) 8 u u u u u u

Create Table B
(CRTAB)

Exit Name Table 5 U
(EXITTAB)

FD Table
(FDTBL)

FD Address Table 8 U
(FDADTAB)

Input Buffer
(INBUF) B, U v v

Input/ Output
DCB

Message Table U
(MESSAGE)

Message Pointer Table B U
(MSGPTR) .

Create Picture Table B U
(CRPICT)

* Closes and releases storcge for:

Data Set Utility Programs: IEBDG 175

Table 10 contains a summary of the input and output information to be found on microfiche
listings of the data generator program.

e Table 10. Module Inputs and Cutputs

INPUTS OUTPUTS

i BASE MODULE '
Data Generator Control Cards. | Reg. 5, pointing to a common communication

DD cards for all data sets used. area.
Either: Parameter List Address for Message indicator in the common area.

|
|
invocation | Reg. 9, pointing to a data generator
or Job Control Language EXEC | control card operation field in an input
card parameters. | Buffer--this is for output to an analysis
| module.

CLEAN-UP MODULE

Reg. 5 and other pointers (in the commun- | DCB storage areas and associated buffer
ication area) indicating, respectively, | areas are released to the system.

the addresses of the communication area |

and control tables. |

MESSAGE MODULE

Reg. 5, pointing to the communication Heading and paging information.
area. Program messages.

Message number indicator. | Error return codes.

Actual or default values for linecount Control card images.

and page number.
|Output DCB name.
|Indicators for: Output DCB open or not.
Channel 9 carriage con-

v e A o— —— — — — —— — $—— — cp——_. S — — —— f— — — — — t—— o e, g crmn wa)

|
trol. |
Channel 12 carriage con- |
trol. |
FD ANALYSIS MODULE
|
|Reg. 9, pointing to a control card image One or more FD tables...520 bytes each.
| in an input buffer. FD table entry with some parameter values.
1 Temporary storage with a picture or format
§ pattern. |

FD TABLE MODULE
FD takle entry. | Completed FD table entry...64 bytes.
Reg. 5, pointing to communication area.
| SGCADDR pointer to picture temporary
storage.
Switch indicating picture type, if any.

CREATE ANALYSIS MODULE

Reg. 5, pointing to communication area.
Reg. 9, pointing to control card image
in input buffer.

Cne or more create tables..512 bytes each.
Create table entry...28 bytes.

Picture table...(L + 6)* bytes.

FD address table(s)...88 bytes each.

Exit name table(s)...72 bytes each.

=
s
b o e e e e e . e — — — —— — ——— ———— v—

*Note: See Figure 61 for definition of

|
CREATE MODULE

Reg. 5, pointing to communication area. Records written on an output device as
Create takles(s). specified by DD name on a DSD control
|Picture table(s). card.

|FD address table(s). |
|Exit name table(s). |
L -

176

® Chart 60.

From: 64/)5

|EBDG Ent
Al ntry
Erogmm Point Switch
tr On
81 [B2

Register and IEBDGMSG 75C2
Common Area Print

Initialization. Indicated
Assign Defaults Message
Cl
Execution E .
or xecution
Invocation
D1 Invocation
PLINECTR
Options:
Process Line Count,
Parameter List DD Nomes,
Options Page Number
AFTER SvC 19 E2
Open SYSIN . DCBEXIT 61B4 .
(input) and N Check DCB 72‘7:12
SYSPRINT (message) J Parameter 71-G3
Data Set — T idi y
ata Sets Validity 68/C1
69/H2
E2 65/G3
68/J2
70/K3

Is Input Set Condition

Data Set Code 12
Open (MSG 24) for User @
From:
70/K2
Yes 68/D2
Gl SVC 6 69§ E2 G2 SVC 6 From:
65/H1 ; 62/82
: 5
IEBDGMSG 75C2 61/H1 |IEBDGMSG 75C2 62/Ch
Place Heading 23;515 . 62/12
on SYSPRINT Print Message 62/F2
| 60 I Eé’
H1
H1
A2B3
Get Next
Card from <12 Test

SYSIN
Data Set

Condition

J SVC 6
IEBDGMSG 75C2

Print Control
Card on
SYSPRINT

Load Condition
Code for User
in Register 15

'ELOT
K2 Return to
Caller

To Control Card Scan (By way of the Supervisor)

IEBDG Base Module (Part 1 of 3)

CONTROL CARD SCAN

For a given control card type, check for the initial card,
a continuation card, and a comments card.

The first control card of a set of control cards for this utility
program must be a DSD card. In the following table, the
indicated switches are tested, or the indicated tests are
preformed. The action taken depends on whether a switch
is "on" (= 1) or "off" (= 0), or whether a test result is "yes"

or "no",
Switch or Switch or "On" or "Yes" "Off" or "No"
Test No. Test Name Action (¥) Action
SW1 Comments Continue| Test SW 2 or go to | Test SW 2
SW Chart 60, Box H1.
SW 2 FD Continue SW Go to Chart 64, Test SW 3
Box Al
SW3 Create Continue Go to Chart 68, Test Sw 4
SW Box A2
SW 4 DSD Continue Go to Chart 62, Test SW 5
SW Box C3
SW5 FD Picture Go to Chart 64, Test SW 6
Continue SW Box Al
SWé Create Picture Go to Chart. 68, Test for DSD
Continue SW Box A2 Control Card
Test 1 DSD Control Go to Chart 62, Test for FD
Card Box B3 Control Card
Test 2 FD Control Go to Chart 64, Test for CREATE
Card Box Al. Control Card
Test 3 CREATE Control Go to Chart 68, Test for REPEAT
Card Box Al Control Card
Test 4 REPEAT Control Go to Chart 62, Test for END
Card Box B1 Control Card
Test 5 END Control Go to Chart 61, Test for DUMP
Card Box BI1 Control Card
Test 6 DUMP Control Terminate the Return to
Job Supervisor

Card

To Point Indicated
in Above Table.

(*) Chart Designations:

68-72 Create Analysis Module

60-62
64,65

75 Message Modu le

Base Module
FD Analysis Medule

Data Set Utility Programs: IEBDG

177

eChart 61. IEBDG Base Module (Part 2 of 3)

END ROUTINE
ENTERED ON:
{1) READING END CARD.
(2) END OF SYSIN
DATA (/*

SARERCLASS S SRS
*

TURN ON *
END SWITCH “

XY TS

*
KEREEREBRAE SR

y sve
EEAREE] ke kR RRBERK

* *
: MESSAGE 14 :
ERI Sl e t e LT 2o

>

At PRI LTI I T Y
‘IEBCLUP 63B2%
e R o
* CLOSE DCBS *
* AND *

* FREE STORAGE #
LRI P TR e 2 2

8VC 6

SYNAD ROUTINE

ENTERED ON:
PERMANENT ERRORS
ENCOUNTERED
DURING PROCESSING
OF SYSIN.

ERRORS
#ttttszt‘tttt‘t't

*

* ZATIQN OF
: REGISTERS
*
*

EX T TS

FEAFRREA RSN RN

svc
ERCORRRRER K
*

ANALY:
* I/0 ERRORS,*
PUT _INFORMATION
% IN BUFFER _*

*9D9

LS PR LTl

8ve

RAREKDZ R AR AR
‘IEBDGMSG 75C2%
————— Lt
" PRINT BUFFER *
: INFORMATION :

HEBFRDI R RN AR AR R
ASS o *.
*DEFAULT VALUES * INVALID -‘I TEST *,

Rk

8svC

x»EzmItixnt
* RELEASE *

* SSAGE *
* BUFFER AND *
O'SAVE AREAS *

EREL AT T AL]

ISER v
ttt"pztnttttnttt

LOAD RETURN

CODE_FOR
USER

R

*
*
*
*
*
EREERREREERRERRD

Gl e,
E
*, SWITCH [
. TON .
. o*
. ok
+'YES
ER IR0 E L L
*
* TURN_OFF *
* *
: SWITCHES “
LR i P2t]
L2l 1]
*60 *
* Hiw*
* %
*
'ELO1
HRRAKL AR

* RE‘TURg TO *
* CALLER *
HEEERRR R RN

PROGRAM FINISHED

178

DCBEXIT ROUTINE

ENTERED AT EVERY DCB OPEN TIME
TO TEST FOR ISVALID CONDITIONS.

ENTERED FROM ‘ENTRY POINT

SYSIN DCB
SYSPRINT DC:

DCBROUT1
? DCEROUT 2
SYSUT (USER) DCB|DCBROUT3

ADoK
ENT.

* OPEN ROUTINE :

B RE R

e

ERRRRCUAEREE Sk
* PLACE DEFAULT *
* VALUES IN *
* COMMON AREA, *
: (SEE NOTE.) :
WA E AR

DCBEXIT .
DY

RETDCB
ttttzut#t.##t#t
* RETURN .o*
b OPEN ROUTINE 3

"#"U‘.‘t“"t -

BLKSIZE DEFAULT
LRECL VALUES
RECFM

TEST FOR VALIDITY OF:

BLOCKSIZE.
IC, RECORD LENGTH.

E
TO LOGICAL RECORD LENGTH.

e Chart 62.

IEBDG Basé Module (Part 3 of 3)

o
*

SVC 6
FRERRCSRRREREERRA
IEBDGMSG ‘ Z5(‘32

* ________ *
: MESSAGE #24 :
FHERR RN R R R

SRS ERES Rk R R SRR

SCAN OUT
KeST_OF DSD
CARD

LY
X e)

AR R R RNk

FERKEGS FRR R
*

ST *
COMMENTS *
SWITCH *

LYy

REPEAT CARD SCAN DSD CARD SCAN
ARk *
*62 * * %
‘égl" *60 *
* % * H2% Fhkk
* EITT *62 *
\L A * C3 %
* w
Rk I
A3C1y ¥, SVC 6 A3C3
Bl L) B3k kAdok ko kk
oF 'IEBDGMSG 75C2‘ *
.* Te. N0 ATE—RIa— ke bt * TEST ERROR *
, OPERATION . t *) Al *
*. FORMAT * * CONTINUATION *
*. OK % * *
*l ok P PP T TP PR P T T
* YES
PrE : 6*2“
* *
* CL %> ¥ Caur—>
* * *
LA ¥ svC 6
¥ .*.
A3c143 c1 t, C2 ‘*"*Cjti**tttitt FRRRFCURKRRAE Ak
A . : ADVANCE *ILBDGMSG 7502‘
NO %’ REgUIRED *, YES . ALE‘% POIN'I‘ER AND "ERRORS B s L
—] *, ER .'—-- : TEST FOR H-————=-< > % PRINT MESSAGE *
‘-‘PRESENT*.‘ ‘.*PRESENT o*] by KEYWORDS :' ##SA #l?\b #20:
Cx, L% - N EEEEE R AR AN G50 INGL!
ko * Tt YES
* *
* D2 *
* *
rEE AR
*60 *
iVC 6 A3Cuy * H2*
Rk kDL ok koK ARARAD2 # E Rk E Rk A stttaD3a t*ﬁttttt * %
* * ‘IEBDGMSG 75C2*
* RESOLVE * kR b gt *DDNME (INPUT '
* REPEAT CARD # —>" PRINT MBSSAGB “(-— OR
: PARAMETER : ‘ * APPROPRIATL) : .
. SO * &
E 2 ¢6g *
* * 2%
* D2 * L U— T
* * A
P ko J
60 *
CONVERTB * H2# . ¥ l C 6
FERREEL KRR K % E3" Tx, BB SRR Rk
* CONVERT * il *, *IEBDGMSG 75C2%
*PACKED DECIMAL * «% COL 72 *. NO Rk Rk ke *—
*PARAMETER VALUE# *. BLANK . ————-—--—>* I *
* TO BINARY * : MFSSAGE #21 :
PRI PR P T B T T T P
Exak
*60 *
* H2:<—
9 K
. SVC 6 SVC 6
FLT Te b Yl L et 30 AR PY kR ARk
- . *IEBDGMSG 7502* *IEBDGMSG T5C2%
.#" NUMBER %, YES *=¥-A-%-%- h-#EE | ot DDNAME e YES eSe-aaoso L St
*. TOO LARGE LA — - 1 *
e . : MESSAGE #6 : : MESSAGE #3 :
T AREERRERREA RN N AR AR R R
*"NO * NO
l Lt e
*60 *
.“. * H2* SVC 4 8VC 6
'R % ttG3tt*tt¢t HAERRG Y AR RA R
.* . *kd * ‘?ET :uTORA *IEBDGMSG 75C2%
¥ ANOTHER *, YES * NOTE * (CON, ON- * IF NOT e e e s
*. KEYWORD TO .#———->% Cl * 272 BYTES *ALLY) ?01 -------- PRINT *
*. SCA N o * * REQUESTED * DCE * DONE * MESSAGE #10 =
*, . P * *
. .k
* NO l
AR
*60 *
. \ * H2¥*
P abdas bbbt bttt * k
* * * *
* CHECK FOR * COPY _DCB.
* MME * *INITIALIZE THE "
: CONTINUATION : t OPEN L. :
P P L e T P L L T Ry
ot
*60 % !
* H1* a3c77 v svc 19
* % FETIRRRERHK
* * OPEN THE

*
* DCB_FOR *
INPUT OR OUTPU’.['
“ AS NEEDED

B

rhk
* ¥
* B5 %
hkk

Data Set Utility Programs: IEBDG 179

Rk

P CE———

® Chart 63. IEBDG Clean-Up Module,

FROM
CHART 61
IEBDGCUP BOX F1
ttntazttttt#t‘t'
* ENTRY *
* £l
FERFERERRERRER

vV __.8vC 20
BRC26R kbR

ks nkkEhkkk

SVC 10 AND
V. __SVC 5
SED2RESEEEF

* FREE DCB _*

BUFFERS AND *
* STORAGE AREA _*

% FOR DCI

REERERFRERE

v

.% MORE *.
YES_.*OUTPUT DCBS*.
L__Z#. "TO CLOSE .

A274 SvCc 20
ARF2RERRERE

* CLOSE AN
* OPEN_INPUT

DCB ONE
* EXISTS “

ShEERDERERE

*

SVC 10 AND
SVC 5
REGREEBEE &
* FREE DCB ¥
* BUFFERS AND *
* STORAGE AREA *
* FOR DCB "

EFREEEERREE

¥

.* MORE _*.
YES .*INPUT DCBS *.
L--Z«. "m0 E _.*

*, ¥
*

180

IEELGCUP

*EkE
*
* BY
*
Rbkk.

A2J6 ¥

BY *,
END *.
CARD

*n%

+* REASON *,
———+%, FOR CLEANUP .*
*. ¥
.. o
*. .
* /%
CARD

NOTE

svg %0 AND
HRCL AR AR

HEREAEEERER

S

*ELO1
"ltDu#tt‘ttt*#*
* RETURN *
* *
HERRERERR R R
TO_END ROUTINE,

CHART 61
BOX F1

BASE MODULE
IEBDG, FREES
STORAGE, FOR
SYSIN AND
SYSPRINT DATA
SETS.

e Chart 64. IEBDG FD-Analysis Module, IEBFDANL (Part 1 of 2)
FROM IEBDG
(CHART 60)
SRBRQL EERRRRRRE
: ENTRY :
P T T TP P TS Rk
- * * *
* B3 * * B5 *
* * * *
saak P
A2 SCANOUT Fual SVC 4
FREERBL AR EEAS RS SRR RBIEHRE KRR RRK SABSRRERE R
* CHECK PICTURE * SWITCHES SE H * SCAN _KEYWORD *INVALID NOT * *
* AND CONTINUE * * PARAMETER *PARAMETER SUCCESSFUL * . GET *
* SWITCHES. * * VALUE. SET * STORAGE FOR *
* BRANCH AS * FDFMTSW: IF FORMAT * APPROPRIATE *(MSG.3) (MSG.1M * PICTURE *
* REgUIRED * * SW. * * *
LRI T T O FRERRREERTE R R RN PP SR
*pkk
Fic3 SVC 4 ¥, * J3 % FuBS
SRCLHAARREE EERRRCD KRRk Rk c3 T, L FRECSFFE AR AR EKK
GET , STORAGE ‘VALCHECK * CHECK PICTURE *
FOR_ (ANOTHER) ot ol o itk d . TYPE. TURN
* 5]12-BYTE FD #* * CHECK o* *ON APPROPRIATE *
BLE, IF * * 'ARAMET: . SWITC.
+ NECESSARY * * VALIDITY *
AR ERRRERE P R *, .k PETTT T T T T
>
o*. B F4GY
D1 *, *kEEAD2 kR kkh R kB kS D3 *, FRRKRDS Kk R kAR ERE
CONVB 65B5% o *, *SCAN CHARACTERS*
. Fo Bk W Kk k= K YES_ .* CONVERT *. * IN PICTUR *
. *LENGTH, PICTURE*<—- —————] ROUTINE ¥ * (COLUMNS 4-T71).*
o] RANGE, CYC. NEEDED .* *MOVE CHARACTERS
. . #ST, e INDEY * . . TO STORAGE _ _*
*, F ShERERRRERERR RS *, % PR YT ITITII I]
S EXT LY * NO
ok * *
* * J3 #
* E1 *-> * *
ey >
LT] A
F2B1 o, v %
E1 *, AR AEI RS kERE ES
¥ *. * PLACE VALUE * BLOCK_ES NCOR-
* *, J(MSG.S) * IN FD TABLE. * USED IF *RECT LENGTH* NO
* . KEYWORD FOUND.#*NO- * INCREMENT * PICTURE CONTIN- ARAMETER o ¥
* * A 'ER * UATION CARD “%.CARD FOR-.*
NTE. * IS ENCOUNTERED *, ok

.. et
* *

o* *.
* MUTUALLY *. YES

. (MSG.13)
*, EXCLUSIVE _.%———
.KEYWORDS .
. . FORMAT
*, ¥ AND
l NO PICTURE
RS L]
* *
* B3 *
* *
wkkk

t. & *REE
*. . * * *
* NO * kK * GY *
###t * * * *
* B5 * LT T
- G3 t_ l * *
Rk
tt##
F2a1 .*.
*, SRR RGYER KRRk
. *, * *
YES .* __ MORE *, NO * SET FOR *
——#%. PARAMETERS .%-—- * MESSAGE 21 *
. TO SCAN . : :
*, ¥ EEREETTT T PRSI
ek * A
* * *65 *
* E1 * * Bl#
* * * ¥
kk *
F4E1 SVC 5
FRHY Rk
* STORAGE *
* OBTAINED FOR *
* PICTURE *
LT
* * LR T T
* J3 *
* * FROM; #
2Ty 65/D1*6“ *
T4 %>
*
i
F1B411
REEERTIREREERRREE tttttJutut#ttt
* TURN ON %
l * SET * * El Y POINT *
————ww>® APPROPRIATE *——e——e. -—)* SWITCH. CLEAR #——-——
: MESSAGE : FD SWITCHES.*
CETT TR R T L LETT TR RIS 2

* POT
*hkkFRhdRkkkdhdkk

v
F2E2 ¥
F3 *.
* *

.%" DICTURE *.
+., KEYWORD (+

YES

Data Set Utility Programs:

e YES
l *‘t*

_>¥ GY ‘
*tti
F4HL
tt##tFS###lttttt*
* MOVE REST
* OF PICTURE TO *(—-
‘TORAGE

#*t#t**#**#***l**

*kwk

.
@
w

-

*kkk

*ELO1
AEERTSEER R SR EE

N
.

T 60 BOX A
Rt D L P R

IEBDG

181

eChart 65. IEBDG FD-Analysis Module, IEBFDANL (Part 2 of 2)

FROM 64/B3
e
*65 *
* B1#
* *
*
F5D2
4R kEBlLebES ke nnRE

* CHECK_FOR *
* REQUIRED *
* .TERS, *
* DETERMINE *
* FORMAT TYPE _*
PRI RS IR T L L3 23 2o

.
cl *,
+* ERROR *.
NO .* MESSAGE *.

———%. REQUIRED .*
*, .x
'Y o
*, L%
* YES
F5D3
FEE R EE TR
* *
* SET FOR *
* MESSAGE 15 *
* *
* *
FRRAARRRRERRE RS
L i
*64 *
* Jyx
* *x
*
SREEEGLEEREERRREN
66A1%

*IEBFDTBL
e e N e R
*
TABLE ENTRY *
* ASSIGNMENTS *
FREEXRERFRERAB RS

*ELO1
*ERRHL SRR SRS RN
* RETURN TO
* IEBDG
*CHART 60 BOX H1

*
*
Cl *
FREERERERERRERE

182

REQUIRED:
LENGTH
‘9E4
*RRRED Rk RkhER
* RETURN TO *
: POINT OF

DEPARTURE
LT T 2 Y

*

VALIDITY ROUTINE

FREEDINRRR R Rk
* ENTRY TO *
:VALIDITY CHECK :

REERERA R R R R

VALCHECK _ V
BEEBRCIHRREFRRREE
* *
CLEAR

WORK AREA
TO ZERO

FRRE AR R Rk

XY XY
k%R

\'
R LS ki REL L L S
* *

* MOVE NUMBER ¥
- ZONES_TO *
: ORK AREA :
kb kER kR kEE R Rk
¥
E3

o * B
YES .* ZONES *,
#<L—mmmmw——% ,CHECK AGAINST.
*. X'F' .¥

*, L E
*, %

* NO
[y Y ST
* *
* SET FOR *
* MESSAGE *
* 3 *
* *
P P T T

F1BY4
HEEFGIRRRE R RN R
* RETURN TO *
* BASE MODULE *
* A *
FERERERERREREAE

1957

MAX. VALUE:
32,737

CONVERSION ROUTINE
HRRARSRkR kR RRF
* ENTRY TO
* CONVERT
* ROUTINE *
LRI FTTTEE L l L2]

%

FERERCH AR RRREFEE
* CHECK FIELD

X, *
2,147,483,647% LENGTH PUT *ERROR
* VALUE 1IN ¥ —

* PACKED *
* DECIMAL *
HRRRERERE RN RER

Ea i ey et d
: CHECK FOR *

*
REEEEFEFRERRRRERS

ltttEStLt#t**##
* RETURN TO *
* POINT OF *

* DEPARTURE *
LA A TTTI T T T2 1 2

®*Chart 66. IEBDG FD-Table

Module, IEBFDTBL

(Part 1 of 2)

EFEEK
* *
ENTERED. FROM * A5 *—o
‘D ANALYSIS MODULE * * 1]
TCHART 64 BoX Ho) Lt
IEBFDTBL F6Al Ho
FRRRRAIRE R RN A5 * .
Er TN LTI T T TS * * 3 ¥,
* TEST FOR * NELTHER .4 ACDION: 4. KOLL
* ENTRY * >* ACTION e LL, WAVE OR.*-——
* M * SPECTFIED * 6(vsG. 35 EIT HER
EAE LR LS R L] * *
AEREERRRRRERKERRE *67 * *
* BY* « ReVE
* ¥ *REX
* *
—>% J3 x
* *
LSS
RN k. FOF4 SVC 4
Bl *, B3 *, *EKBOREERF AR
*, * *
Y NO O ¥ . * GET STORAG: *
%, OR PACKED _.#————J e300 3r, S8R s Tk * FOR_TRIPLL — *<—m
CI e, éTION o* *FIELD LENGTH *
tPIc]’:URE,t ¥ k¥ * *
.k * * Fh kR KKKk
"+'YES "x"YEs *C4 *
* * kK
Ak FROM _*66 *
07/C2%C 4>
7D1*
Y (e
F5G3 V L F6A2 F7Al .
AR RRFCL e Rk Rh kS c2 *, REERRCIHERRE R R KR it#tth*%ttt**ttt c5 *,
VALCHECK _ 67E5 .+ *. SET FD swirch. ¥ *PUT_FIL *.
e e et] o *. SET *FROM I * *ACTER IN TOR- » YES .* STORAGE *.
% CHECK PICTURE * #. TR ACTION _.#-—"-m— *RESTORE' AND/OR*--— * BGE, MAX OF *<————me " *. OBTAINED .*
BER . TO_INC REST * 256 BYTES PER * *. o
* VALIDITY * *. .* p VALUE(S) TO 1 M * * .x
kkkk kR EkR kR ¥ *k *)*tt’t**’h‘*tt# RS RS S RS S AL B L
* NO kK H *
hEx %67 * (MSG. 10)
* Cl*
* D3 *—— * ¥
* * * LESE LS
kkkk *67 *
L*. F7A5 . * H5%
D1 *, FokkRDI kKKK R *, * ¥
P .* *. * * P ORB .+ *. *
TYPE .* PICTURE *. * SET FD * PICTURE .* PICTURE *. FORMAT
—_— TYPE o* -->* SWITCH FOR * ——*. OR FORMAT -
. o * ACTION * *. .
*, * * * *, ¥
*, .k dkkkkkR Rk R kkk *, ¥
B *okk kR *EBCDIC ok kK
TYPE %67 * PICTURE *67 %
* F2* * B3%
* ¥ * ok
kR *
*67 *
* Cl* FIAT N
kkkrkE] kkkkk ek * ¥ EY4 *,
* * * ¥ *,
* CONVERT * ROLL .* ACTION ' #. OTHEK
* PICTURE VALUE *--—1 —*. TYPE P D
* ©TO BINARY * l . .
* * *_ .4
FRRERRERERERRERE N *
*kokk :,JAVE
* *
* b ’¥PeLe
* *
ok kk
v
FSHY *9FF e F7EL
"'t)*Flt**"t***‘ F3 *, LR S s L R EFS kR R Rk
b IS TH, y * MOVE PICTURE * * *
FIXED .* ACTION "%, NEITHER * TWIChL INTO * * MOVE PICTURE *
—-—>‘DECIMAL ROHBER * [~——=—=——=—m——>(——#% .FIXED, 0, OR_ .¥-—= * STORAGE AREA * -->% INTO STORAGE
STORAGE +. NEtTHER . % * ~ (BOX BY) * ARER (BOX B5) :
EES L PRI E ST L L] *, % kR FRR kR kKRR E R LRSS L RS
*EEF * 0
* *
PI——— * D3 *
* *
Aok ok
F6FU SVC 4
t'Glt“ttt*t FREREGIRERF Rk Rk
* NOT * *
< T * SUCCESSFUL * DEFAULT *
* STORAGE FOR ¥——w —*T0 FIXED ACTION* >
* ""PICTURE _*(MSG * *
* * 0) * * *kk
REEEEREE R R FERREREFERRRREREFF * FROM:
*hEE¥ £ 21 * H4 * 67/H3
*67 * * * * Kk kk
* H5* * D3 * R 66 *
* * * * * H5 ke
EEL 2] * *kdok e — e — *
* * ¢ R
*cy * F6F2 . F7C3 F7G3 sve 5
* * T R L FT TR Y H3 t. Fhok KR AR Rk Rk bk KRS kKKK KK
LAt * * MOVE_PICTU! * GEREE PIC-
* DEFAULT * NEITHER RIPPLE ACTION PICTURE * _THREE TIMES * STORAGE *
$TO FIXED ACTION#<-———————t Pl # INTO STORAGE ~#—=mm——mn >+ lCHART 64, DOX *
* R NEITHER * * AREA (BOX B5) * * B3), CL *
* X *. o * * * SWITCEES
EEERRERREEFRREEER L EEE R I L LS LR 222 EEEEREREE R
+RIPPLE kkk
LEE L] * *
* * * A5 *
* J3 *—> * *
* * Rk
*kkE
F6K2
ERL I NEE RS RS L L2 v
* * RS RS R KRR
% _ SET 'FROM * * RETUKA TO *
* INC RESTORE' * * TEBFDANL *
* "VALUE TO 1. * *CHART 65 BOX GL#¥
* KERRREERERE LR KK

FAR kAR Rk K ROk E

Data Set Utility Programs: IEBDG

183

*Chart 67. IEBDG FD-Takle Module, IEEFDTBL (Part 2 of 2)
FoAL F9A3
ER 22 UEL ISR L] ok ok 2y 5 ook Aok ok ok koK
* RESOLVE * % USE SPECIFIED *
) *STAKTING CHAR- * CHARACTEK
FROM CHART 66 ~~>% ACTER FOx_AL, * -->*INITIALIZL FoE *
FKOM 6633 BOX D& *AN ¥ OK CO FIELD H FORMAT FIBLD
FERRE EEREE
*67 * *67 * t“t‘tt‘ttt‘t*‘ti Rk ek okkkk
* Bl1* * RB3*
* ¥ * ¥
* *
k. F8G1 . o,
BL %, B3 . 84
- USEK "#. FORMAT #+»+ * IS S N
R *. * * ORMAT . NO o+ ING CHAR— *. YES
* PICTUFJ., OR lt-—-—>* GI ¥ *. RA, BI, PD, .¥=———m L
* * R £D *x.SPROTFTED.+ "
'UFORMAT . *rEK - * *, ¥
* * *, Lk
*+pICTURE * YES * NO
From s
66/C3%67_*
* Cl %>
*k Kk
F8BU4 *. F6FU svC 4 F8H2 NOTE 1 F9Ch s
Cc1l *, FRC2hk ke Rk EE T i fext I IS T LS t‘t‘tcl‘*‘*t.‘.‘tt *‘tt*CS* EEE 2T 2]
. . +GET STORAGE* * RESOLVE_FIELD * SET UP FOx *
.#" RIPPLE *. NO * FOR LENGTH # * VALUES AND/QR * * CHAGACTER OF ¥ p MOVING *
#. OR WA A >#VALUE REQUIRED *--- ESIGNSTAS REQD. FORMAT Hmme e >% CHARACTExS — *
. ACTION . * 10 dOLD _* NOTHING p SEQUEWCE * * 70 FLELD *
*_ ok * PATTERN * * ¥OR * * * »
*, * EEEEREERREK HERRRERERF RO EE HEEE R R R HERR R R Rk kR R
*"YES IF NOT
SUCCESSFUL
(MSG 10)
REE
F8BS V. e >* B5 * r8G2 MOVEROUT
kD] kkkkkkE ‘ti‘!p3tt'!‘tt EREKEEDUFRR R AR
GET STORAGE Txre SET ACTION * * FILL F1ELD =
+EOR TWICH ThEs for 1 SWiTCh. ELEAR* * WITH *
* RE ELD * ’ * * CHARACTEKS — +
| * SWLTCHES % * FROM *
) » * szgm wCL =
FEEERERERERERF £ 2 ST ELLL E
] } EEE z f
<. . ~ * H
4 s B3 x> i
e * i
x50 * Rk H /
* Chw 'ELUL - FTHS s VALCJECK
* ¥ v xttn*xl)*h**!** TREER O R R R AR R
® HEE K JEAREEE R v * *
L ATl 70 % ~ " * LER *
¥ CLBeANL *) . ooRE R
FROM _66/D4 *CHART B6x nus * SWITCHES * ¥ TG 2EROS *
*hk Rk dkkkkkkkkkokkkx * * *
*67 * AR R KRR R F HEAREERERRRR R R R
* F2*
L kR
* *
L F10A4 * E3 *
Ekkk kT IR Rk kR Rk * * *#***ra‘t‘*tatlt*
* GET LENGTH TO * rhE * *
. oa PACKED *. BINAKY 4 MOVE. OBTAIN * * *
. ——--->* ADDRESSES. * * *
. . SET SIGN * * *
kK - .k * * *
* * * AEEERREERRE R Rk kR ok kR dok kR Rk Rk kk
* Gl * *PACKED
* * ECT
*kE
FBAL x F10A2 ' 9ED E.
. EREREGIREFERREREE FRERRGI AR R GS *,
* I Tk, * GET LENGTH 10 LT 1O REEAGUEE KRS ARE S
% FORWAT “*. NO MOVE. * % INDICATOR AsD* * RETURN TO * yEs o'
*. AL, AN, OR _.¥%——- : ADDRE“SES. ——— ACTION * * G — * CHECK AGAIuST *
*. " o o 1 * + SWITCHES _* *CHART 66 BOX C1% FO
*, 3 * * #‘*‘#1‘##‘*‘11‘ “x, e
*, ¥ Fhkkkkkkkk bRk ERbk ERZ L i L 2L 2L L) *, ¥
* YES e)
* * EROMN; *¥*¥ (56 3)
* B3 * 66/B5 *o7
* * 66/C5 * HS *->
*Ekk 66/G1 *
*kokk
F8aY NOTE 1 F10H2
R LR AR LR L LT 2 FxRRFHI ke Rk RNk kk HEERRHSER AR R AR R Rk
* * *MOVE NUMBERS TO* * *
* RESOLVE * * STORAGE FOR * * SEY_FOx *
FINAL FIELD * * FD PICTURE *——- % APPROPRIATL *
* LENGTH * * FIELD. SET # * NMESSAGE *
* *FIELD ADDRESS. *
dhkkkEkhk kR kR R EE TR TR L Ak ok R OR Rk R R RR
NOTE 1: EHEEE
______ *66 *
* H5%
FIELD RESOLUTION L
v ,SVC 4 FORMAT | RESOLUTION OF FINAL FIELD F1E4
AL LENGTH SET TO FIELD LENGTH SPECIFIED (FL) Ry bbb
STORAGE FOR * AN F EL > SEQUENCE LENGTH (sx.) IN STORAGE, OR # RETURS TO *
* FIELD LENGTH _* co TO FL PLUS™SL IF Fi * TEBFDANL *
* * *CHAKT 63 BOX G1¥
* RA EXLE I T e TS
KRN BI NEGATIVE. OR POSITIVE BINARY 1.
PD NEGATIVE OR PGSITIVE PACKED DECIMAL 1.
zD ZONED DECIMAL 1.
EEE L
*66 ¥
* O5%
* %
*

184

.
®*Chart 68. IEBDG Create Analysis Module, IEBCRANL (Part 1 of 5)
FROM IEBDG
CHART 60
IEBCRANL
LTIy R L 222222 T2
RIS WEI T I E S * *
* * *
* ENTRY 4-—------>*INITIALIZATION %
kR R Rk Rk k * * *
dkkkkbk kR kR kkokE * *
*69 %
* C3%
EEEE K
A
v 1 Y8
R6A1S ox. A6AL R '9FD o A6A31 ., RN
BLT %, B2 ¥, B3" k. B 85" T,
. e, . *. CREATE o - o *. ot -
YES .+ VALID “#. CREATE _.* TYPE *. CONFINUE_ .* PICIURE *. NO * ME "%, YES .
~——#. CARD FORMAT .¥<=—mmmewem F CARI bt >+, STRING PR e > SUBPARAMETER . %=—————— > INNER *
N ox * . *.CONTINUED. * *.CONTINUED.* . NAMES .
. o* ., o* * o* . K . o
L R *, L * ¥, ok *, L%k *, %
*"No COMMENTS YES N +"No
(MSG 20) CONTINUE L
J ok ko
4 4 *69 *
ERRORF A6P01 RS R6D7 S, *9F9 S, * C5%
c2” s, 3’ T, cu’ tw, . x
kAR C Rk R R R o % IS * ok Tk, *
* RETURN TO * FURTHER .* THIS LAST *. NO . CTURE _*. NO
* BASE MODULE _# .comm ATION et #STRING CONT. .¥——- * SUEP, TER < %———.
CHART 60 BOX G2+ <INDICATED. *. CAR . *_CONTINUED.*
bbbt bbbl btd - - *, - . %
TO PRINT MESSAGE . . %
. * YES . YES whkk * YES LEE 2]
Rk * *
* D2 * * E1 *
* D2 *=> * * * *
S —— * * Rk LA 2 1]
¥ . v
A6A3 .. RETURN2 *.
D1 T*. 4" Tx,
ok *, kD2 kR kb kb kR ¥ *,
o . YES * * . %" STARTLOC STRING
* CONTINUATION . #=—m—mmm-! >* BASE MODULE * :
#.INDICATED. %" . *CHART 60 BOX H1¥ *. STRING _.*
- ¥ *hbhkkkhkbkk k¥ *, ok
o FOR NEXT CARD L
*"No START- #h¥k%
ok LoC *70 *
* E3%
* Bl *=> * %
* «- 1 —————— okkkk *
ok *70 *
A6A10 CREATE * G1x
HEREEE] kR kEkihRkE FEFSEE20 N RERERER * ¥
* _DEFERMINE * SET DEFAU * *
* IF THIS IS * * VALUES FOR *
* FIRST CREATE * —>% QUANTITY AND *
* CARD IN ~ * * FILL IF ~ *
* DSD GROUP _ * * NECESSARY % FROM KEYWORD
ELZE TR PR eI L] FRERRRRRERER R RN AR PROCESSING ON
I CHARTS 69,70,
* * Er i s
* E2 + *68_*
* * * F3 %>
EX 1] * *
ek
A6A11 sve *9D1 .. CARDSCAN
wRF] kkokk kR F2 HER RT3k bk kR Rkdk
GET STORAGE = 1g . CARDS* TEST FOR LAST *
#OF 512 B * YES_.* THIS A k. ONE » * KEYHORD. * COMMENTS
* FOR CREATE * *.REPEAT GROUP .* — EST FO) b bt
* TABLE I * * WITH MORE.* z CONTINUATION *
* NECES: * *.CARDS. * S * ks
LT R T “« . Ui“ltﬁ‘#“'**.“ * *
FHhk * NO wokkk JORE kR * G5 *
EEE * * * KEYWORDS* * * *
* * * D2 * * E2 * D2 * ok
* Gl *=> * * *
* * hkk *hRE EE T 2] kK
o * * SEE_NOTE 1.
KEYSCAN v 19CF SVC 6 * GL *
ERRRAGL FR kR RNk EERRRGORBRRRE Rk R * * ETTT IS PT R 22 TS Y)
* * *IEBCREAT _ 73, o * *
* SCAN CREATE * e e = * GO T =
* Fi * » WRITE * * sCAN A *
* NEXT KEYWORD. * * OUTBUT * * REYWORD *
* * # RECORDS * * *
* * ARHREERREERE R R RS
* x4 ¥ 4SER
4 *2% #RKOTE 1.
.5 .. * Yy
HL . B2 %, MICROFICHE LISTING LABEL XXXX AND **
. . o *, HE OFF-PAGE CONNECTOR 22/YY
. *. YES -*+" RETURN “+. O HAVE THE ABPROPRIATE VALUE TAKEN
*l P s : WIT! s FROM THE TABLE BELOW.
. xvaom o ., BRRoR ot l
*. .c *,
* *EEE *" YES kR KEYWORD BEING VALUE OF VALUE OF
M 5 * * » | PROCESSED XXXX 72/YY
* G5 * * D2 *
* + * * | QUANTITY A6B; 71/B1
EREE *hEk A6C 69/A1
PICTURE A6D1 10781
ERRORF FILL R6EL 71/B
DDNAME A6F1 9/Bh
T2 oRRER R Rkk EXIT A6G1 1/BS
RETURN TO

TO PRINT MESSAGE

Data Set Utility Programs: IEBDG 185

*Chart 69. IEBDG
*kkkh
%69 *
* Al%
t‘t
OM NAME PROCESSING
68/G5
A6C1 ¥,
*, tttttAZ*ttttttttt
SP S 2B1
.* MULTIPLE *. NO e e v
- N, o ¥ >% SCAN *
*, . ETER :
- ¥
*, L% AREEREE AR RRR R
* YES
M *
68/CU*69 *
* -2
Py
A6CS ¥,
Bl *, wkkkkBRkk kbR R bkAR
*, 'FDSRCH T2B5#
YES .* INNER *, Fm i m o Fm i
—, NAME o* * SEARCH_FD *
. LIST o * TABLES FOR *
*, ok * EQUAL NAME *
*, ¥ RERERR R R R TR
* NO
L3id 2]
*68 *
A6C2 * F3#%
B RRCLERRRRRRE R * X
SPSCi 72B1# *
K H o TO CARD SCAN
* SCAN *
* NEXT *

* NAME *
PRI RS 2T L2 L Ll

t#tttD1#t*llititt
*FDSRCH T2B5%
a4

LR X X)

* SEARCH FD
* TABLES FOR
* EQUAL NAMES

EEFEFEREERRR BN

Create Analysis Module, IEBCRANL

Ens
B3

#:
§
u R
% CONTINU- "#.
» TO] ¥

CARD
*.}NDICATEB-‘

-
LX)

*EEE

A6C61 3"

* NO

A6C8
FRRKECTHRRR RN

*SPSCAN I2B1xEROM
FomEotoesodokone8/C

FHREADIRRAF SR EEEK
*FDS&CH 5%

hd Eg NAME = *
R LT P T L L L]

¥, *ELO1
El *, /

o .. FEARE2RRERRR AR
«* CONTINU- *. YES * RE' TO *
- ATION o#~meeee—w>* BASE MODULE. *

* . INDICATED.* * BOX Hl*

¥, o Pl Rt Tt T

*, ¥
NO FOR NEXT CARD
AR
*68 *
* F3#
. *

EEEE

* *
* G2 *
* *
hkk
A6C6 ¥,
Gl *. RRRRFG2ERERBRER XN
«*_ COPY * *
«* PARAMETER *. NO * T FOR *
—_D%, AFTER D> MBSSAGE *
*. SEC?ND .+ (MSG 3) : :
° Ky P T T
* YES
whkk
* Ll
* H2 *=>
* *
ok
ERRORF
SRR R
#SCAN, CONVERT, * EEERHI SR BREAERE
* AfiD STORE * * RETURN TO *
* COPY VALUE. * * BASE MODULE _*
* (USE SPSCAN * *CHART 60 BOX G2#*
* AND CONVDB) * T T T T
SRS REFARB R REE
TOQ PRINT
MESSAGE
haE
* *
* B3 *
* *
hEk

186

A6C82 ¥,

o* *,
YES .* MORE *,
. NAMES IN
.COPY LIST.
%, o
*, %
S, *'N
4 B3 .
* *
TS

*9ED
e RREPIE R SR b ARk
* REP,
NAME LIST AS
REQUIRED BY
COPY VALUE

B ERRERah b ke kkE

LT XY

*
*
*
*

SVC 4
FHGIEEHE RN
*

*
* STORAGE FOR *
* FD ADDREES *'

D *
*hREk kb bkE

(Part 2 of 5)

DDNAME PROCESSING

FROM_ 68/G5
hbkkk
*69 *
* BO4*
* ¥
*
A6F1
*bkkRBY R b E Rk ok E
*S, 72B1%
S n-plar > e
* SCAN OUT *
bD :
LI EL 2222222 23
REREECU RS EbbkebhE
* *IF INVALID
* CHECK *(MsG 12)
* DDNAME | e
* LENGTH * l
e RER R ERRE R TRk
¥
* *
* H2 *
* *
*EEE
‘9DB ok,
*,
.+’ DDNAME *. YES
¥, = BYSIN a¥em—mmmmmemmeeeem .
*, ok
*, ¥
*, %
*"NO
EXT ISR L2 22 2 223
* *
* SCAN ALL *
¢« INBUT DCBS *
+ FOR EQUAL. #
*hk bbb kb sk s kb k
R F2 \
F4 *, Fe L et
* STORE INPUT *
. EQUAL *. YES * (OR SYSIN *
. FOUND P it DCB ADDRESS *
. . IN CREATE *
*, .+ R *
*, % E2 I 2 TR L2 2L 2
*'NO
L(Mss 4)
Li 2 1]
* * &
* G2 * *9p8 ..
* * G5 *,
Ll L2] ¥ *,
0 %" SYSIN *. YES
e e e ———%. DELIMITER _.%——-
*, FOUND _.
EN
TO_CARD
v X
#Q’#*Bu'“#tttltt: HS *,
*
* ASSIGN * YES ¥ *DELIMITER *.
* DEFAULT o> . VALID v
* DELIMITER * *, *
* * .. .
P TP R T T *, %
P21l * NO
68 * L(MSG 3)
* F3*
* %
* wkhk
* *
* H2 #*
* *

¢ Chart 70.

FROM 68/G5
Wk

an
*70 * * *
* Bl#* * B3 *
¥ » * hxk
* e *
* Bl k-
* *
*nk l
A6D1 '9El
t*t#tB1t'tt*ttttt 3 *
*g SCA 72B1% * STORE START * * CLEAR PICTURE *
-------- *LOCATION VALUE * *STRING AREA IN ¥
* SCAN FOR * * IN TE * * PICTURE TABLE *
M iICTU%E * : TABLE ENTRY : : TO ZERCS :
HRAAREE AR e FEEREER AR AT R R
' ¥, A6D87
FAEARCL KRR AR c3” T, tttntcu‘ttt‘t#.#t
*CON 72B3% o * *, ONVER'
Wk W=k kR * ES .% INVALID *. " STRING VALUES *
* CONVERT * * H L ¥, ELIMITER _.* BINARY OR *
* LENGTH TO * * *(MSG 3)#. -* =‘PACKED DECIMAL *
* BINARY * *¥ « B CESSARY
PETTEY TTrrr TIE . PR
* NO
N
SVC ¥,
D4 %kk D3" T, HEERAD YRR AR
'GET STORAGE NOT ##*% o . * *
" FOR PICTURE * * .* PIC *. YE! * STORE *
TABLE. PUT Homee ‘ J3 * *,CONTINUATION ,¥—=— * STRING VALUE *
‘LENGTH VBLUE * (MS * * . INDICATED.* * IN PICTURE *
IN TABLE 10 “‘* * ¥ * TABLE *
Ferdaiaesses . L% Pt T
NO e
ke * *
*70 * * K2 *
FROM * E3 *-> * *
68/Dux ¥ LT bk
* *68_*
A6D6 * F3*
HERERE] FR Rk Rk FERRREIOR R KA R *
» RE LE ok * * *
* ADDR. * * *DETERMINE TYPE * TO CARD SCAN *
* CREATE TABLE. *———->% J3 * % OF STRING. * *
* CHECK * * * * *
* DELIMITERS * bbbl * ACCORD. *
sukERARSERFRERE® TNVALID ARRR Rk
DELIMITERS
(MSG 3)
¥ .
F1 *. F3 *,
¥ *, . EkEE
-* PICTURE *. YES DECIMAL _.* STRING *. EBCDIC *
*ICONPIMOATION 1#—=2y e *] TYP] >t :
*, x *. ok T
 .x . .
NO hk NEITHER
FROM *%%# * (MSG 3)
68/DU*70 * * K2 *
* Gl *=> *
P
R
A6DY 26D65 ..
FRERRCLEETEEE IR G2 *
SPSCAN 72Bl1 - ERROR *. Rk
Fo B A e R R B <% IN CARD *. NO * *
* SCAN START * % PARAMETER _.*-—-->* By *
* LOCATION * *. o¥ *
VAIOE * *. T T
P T TR I e T x x
* YES
v
SERRRHL o 2%
CONVDB 72B3% * *
B el =] * SET_FOR *
*CONVERT START- * * APPROPRIATE *
*LOCATION VALUE ‘ * MESSAGE *
* * (3 OR 21) *
PRS2 L PRI T P A
kh
* J3 #*>
Hokr
* * hkk
* B3 *
AREERTIRRRKE AR NN
e * *
* *
* SET *
: MESSAGE :
P T
>
'ELO1 ERRORF
t‘#txza*t#ttttt AR AR IEAF R
ETURN * RETURN_TO *
-~ D BASE MODULE * BASE MODULE _*
ART 60 BOX * *CHART 60 BOX G3%
FRRERRRR AR ARk ER R
e FOR NEXT CARD TO PRINT MESSAGE
* *
* K2 *
* *
wkRk

PICTURE PROCESSING

IEBDG Create Analysis Module, IEBCRANL (Part 3 of

*
ok

Data Set Utility Programs: IEBDG 187

M
EE TR SR L L
Rkk
* *
* E5 -
* *
ok J
A6D71 R
ES" .
LT Ty o *,

4 YES .+ INVALID *.
3 #<————%. DELIMITERS _.%
*(MSG 3)+. o

* - ok
LI
*"No
LR L Ll
*G68 *
* F3%
* *
*
TO CARD SCAN
A6

5)

Lt

* B5 e
* * l
EREk
.*
BS
¥

.

*

«* STRING *,

*.CONTINUATION
*, INDICATEQ. *

NO

- ——

*, %
* YES

A6D68
t*##icstttttt**tt

‘ MOVE _PICTURE

STRING FROM
CARD TO

* PICTURE TABLE

ERE T Rt 2

——

o

EakE
*

* K2 *<—

* *

R

A6D73

FRREEDSE PR R kR
*

* SET *
—=>% CONTINUATION *
* SWITCH *

D71

FEEER GOFR AR R R
* MOVE ALL OF *
*PICTURE STRING *
* FROM CARD *
* TO PICTURE *
‘lt##*“."#t*ttt

*hEk

hEE

e Chart 71.

QUANTITY PROCESSING

FROM 68/G5
[i

*71 *
* Bi#*
* *

A6BL
uauspununa
72B

* SCAN .
* UANTITY *
* ARAMET |

SRR RRRESERRE R

ntn.~c1.#;ttsottt
0 T2B3*

CONVERT
‘QUANTITY VALUE t

*“ 70 B *
SEEEESEERR KRR R RS

AEEEEDLREFRRERR RN
- 5 *

* CREAT) ABLE *
Rl T TR DTt 2 1)

IEBDG Create Analysis Mcdule,

FILL PROCESSING

188

FRBEE
*71 %
* B3*
x
*
A6EL ¥,
B3H *
WO .FILL CHARAC-*.
e . TE! i
. ¥
., ok
*, *
YES
A6E3 . AGES .
* 3
+* VALI * VALID *
+* EBCDIC *. NO . B
.‘C CTE! o *, CHARACTER Fme
. - l(HSG) *, - ¥
* 3 *.
* YES LEE L * YES
* * *
% F3 % *
* * *
PR
R6E35 A6ES3 \
BREEED2RRR SR SRR EE tttttD3t"ttt‘#tit
* CE * * *
* CHARACTERS * ocuA AHACTER ¢
* IN_CREATE * * IN CREA *
: ENTRY x * ENTR! *
FRERERE RS RRE R RE LRI TP P
<
AG6E36 ¥,
E2
* CARD *.
¥ 'ORMAT .
* VALID o H e e e e e e
. . (MSG)
. ¥ 21
. L%
* YES
LTy
>
* F3 #->
EEER
*68 * ok
* F3¥ \’
¥ EEEERF IR RR AR
* * *
TO CARD SCAN * APPROPRIATE #*
* MESSAGE *
* *
* *
P L L PP
ERRORF
.tt*g3t~tat:ttt
*
* BASE MODULE
*CHART 60 BOX G2%
PErTET A F T

TO PRINT MESSAGE

IEBCRANL (Part 4 of 5)

EXIT PROCESSING

A6GL
FREAEBSERR AR AR
SPSCAN T2BL#

B et

* SCAN USER'S *

: EXIT ROUTINE :

P P Er T PR M

RN
cs .
¥ *.
ES_. N
—Z*1 TOO LONG _.*
(MsG 12)£ Tk "
L
Rk NO
* *
* F3 *
* *
Rk
SVC 4
n6G2
HkDS Rk Rk Rk
L *GET STORAGES
S BOREXILT s
* NECESSMY
#(72 BYTES)
t*t‘*'it!i*
ok ok 5 ok koK Rk Rk

* *
* ADJUST EXIT *
* NAME TABLE *
: POINTERS :
EEI S SR RIS L L L]

6G5

l"‘*f‘ﬁ“‘i“'l'.
LACE R'S *

* BETENRNE I\i *
* "EXIT TABL *
* *
*

*

*
HRARERE R R R

svC 8

HEGH ® Rk
#LOAD USER'S*
*EXIT ROUTINE *
* AND STORE *
* ADDR.

IN
CREATE EJT,
t##i* EEEREE

TO CARD SCAN

®*Chart 72. 1IEBDG Create Analysis Module, IEBCRANL (Part 5 of 5)

CONVERT FD TABLE SEARCH
SUBROUTINE SUBROUTINE
PARAMETER SCAN
SUBROUTINE
i e e ild
*72 * *72 % *72 *
* Bl* * B3* * B5*
* * * % * *
* *
WOTE: 16 BYTES
PERMITS DECIMAL
VALUE 2,147,483,647.
SPSCAN CONVDB ¥ FDSKCH v
kAL Rk R b B3' Ta.. Fhdads it iit il
* * . .
* CHECK FOR * YES .* PARAMETE% *, * MOVE CREATE *
* PARAMETER * (————m——m—————————%, LENGTH > 16 .* * NAME TO *
: COLUMN VALUE : (MSG 6) '-* BYTES .* : STORAGE :
B T T T e T T PR PRy
* NO
A6M11 %, A6C93
cl L FheERCIkkEEREREER REERECS kR RERRERER
¥ *. * * * COMPARE *
«* INVALID * * TEST ZONES * * FD TABLE, *
*, COLUMN e L e g * OF CHARACTER * * NAMES WITH *
%, VALUE .* {MSG 21) *TQ BE CONVERTED* * AME ON *
*, o * * % CREATE CARD *
., ¥ P T) P T IR
* NO
A6M12 ¥, * ok
Dl *, D3 L D5 *,
. *, oE ., kK . x,
o* VALID *. NO NO .=* *, * * NO_ .* MATCH *.
DELIMITERS CHARACTERS * * E2 #<———_x, FOUND o
*. ¥ (MSG 3) (MsG 3) *, VALID .* * * *. ¥
*. . . o Rk *, o
. % LS. (MSG 7) *, ¥
l YES YES * Yes
A6M13 ¥ JY A6N12 A6C92 l SVC 4
E1- "%, P Ty EETE TS kT e FRES hkk b kk
¥ *, 3 * * P * *
«* PARAMETER *. NO * SET * * PUT PACKED * * * * GET STORAGE *
. LENGTH OK «#——————=- > APPROPRIATE #<—- * DECIMAL VALUE * #* E2 #<--—-%FOR FD ADDRESS *
. ¥ (MSG 3) * MESSAGE * * TN STORAGE * * * * TABLE IF *
*, ok * * * D * REQUIRED #*
LI PR T R S TR LRI R e T e T LT T NOT SUCCESSFUIL ¥ hd
* YES . at‘ (MSG 10)
* E2 %
* *
[T .
ERRORF ¥, ADC98
F3° "%, FHEERFS RRRERABRES
LRI SRR PR ARER2 AR R o *, * »
* * RETURN TO * ¥ *, PACKED DECIMAL * STORE FD *
* RETURN TO * * BASE-MODULE _* *, FIELD o * TABLE ADDRESS *
CHART 60 BOX G2% *. TYPE o PICTURE * IN FD ADDRESS *
LT A T FRRRER AR Rk *, ok * *
TO PRINT MESSAGE *, ¥ EERRREREE AR R R
* OTHER
 mmmaeet b d
v
a3~ s,
L2 L] ¥ *, XERRCHREE R ERER®
* * YES .* DECIMAL *. *
* E2 #<——~-%, VALUE TO ok * RETURN TO *
* * *. LARGE _.* * ; *
ok *, o LTt 2 P
(MSG 6) . .F
* NO
'9CB
EERERHIRARKRERRA

*
*CONVERT PACKED *
* EC T *
: BINARY VALUE *
LAl ISR L s L2

SRR T IR RE Rk
*
: RETURN TO :
P T T T PR

Data Set Utility Programs: IEBEDG 189

.
Chart 73. IEBDG Create Module, IEBCREAT (Part 1 of 2)
EiLEdd
*73 &
* A1e
* ¥
*
IEBCREAT
HERAA] kR EERER R
.
* ENTRY *
EEE SRS RSS2 222) Rk wkEkk
* * * *
* B3 * * B *
*kkk - * * *
*73 * kK kR
FROM_* BL *->
Tu/B3% %
*kkk
A . ATA18 ATab
TBST Bl *, *ERRABIREEE R R EEE HhkRR kRS kkkokk kkokokkk
o *INITIALIZE FOR * WRITE
SATERH. « Conrwme. . FD ADDR, * * oUTRUT *
T pRoCESSTRG oS *FOR THIS ENTRY, * CORD .
*. o+ v * IF THERE * FROM__74/G1 « OBO *
, o RERE * M * *kkRE
¥ *TY * kR RRE R R R AR *73 * EIIII 22 SRS
* YES * Blx * Cl#
*E k% * ¥ * ¥
* * * *
* Cc1o*->
* * [S ———
*EEE vV
A7A11 . ATAS RN a7cl .
R REC] RFERRE RN c3 *, *, *
$INITIALIZE FOR % . FD %, % STOP ' *, tan
T ENIRY NO .*° FIELD *. NO_.*GENERATION #. YES NO_ % .
: : k] i ——#. SWITCH ey Ll EE PROCLSSED *
£ HOD Oies ok (M55 1634. LARGE .+ . . -, .
PP *, P ok
* NO ** *"YES
* EEEEE i
* *
T
T * '\[’ P
hE TEST *74 *
9EF v .. RECR * A1*
*ERRAD] RERFRRRR KR HRRRRDIRE KR R R R . * %
* DETERMINE * * E FD * LAS *
* _QUTP * % PATTERN TO _ * NO_ . +RECORD .
* INPUT RECORD * QUTBUT RECORD * N TS CrERRE |+
*cl C‘I‘ERISTICS: * l LUBNTRY L%
RREERREAERR R RN 3"‘*“*!.“‘#*“ *, _t.
REE *
- *
* Gl * P S
* *
ok
V
*9F9 S, ATA56 R
RAFFRE] ke R AR R ‘, *,
* INITIALIZE _ * % MORE " *. TEST o* *.
*RECORD COUNTER * 0 .FD ADDRESSES*. HXTCRTE+" MORE ~"+. NO
* WITH QUANTITY * (———-%. TO PROCESS _. *. CREATE e
* VALUE, OR : *. . *. ENTRIES .+ ¥
STOP ' SWIT *. o . ol
““"#“.“"‘#‘ .« oF *, ,‘ *7Y4 *
*"YES YES * B3*
Rk * ¥
* * *
* F2 *->
* * LR L]
& *EEE * *
19§57 R OR1 * B3 *
EERFRF2RRRE AR * * *ERRRPY R r kR Rk *
.+ Inpur * SET MESSAGE* e * PROCESS NEXT *
Y RECORD > “#. YES * PRINT . * EATE *
I e D% WITC * *ENTRY IN TABLE *
». DUCORD .+ 'TMBE 170 * (EPSW * *
. - * * * EEE
*, .k EREEEFERERRERE AEREREERFREF SRR K * *
NO * G5
*kkk * *
* * *kEk
* Gl *—> v
* * REEEF ko
*h gk *T4 * * *
ATA12 v * By ATALY o+ % Cl A7A2
1“*.@1#““*‘***‘ * ¥ G3 *, * * *.*t‘GS‘ LRSI 22 1)
* FIL] * * N kAR USER *
* cHARAcm.R : I .*" CREATE *. NO ¥ ROUTENE TO ¥
* IN QUIPUT * ~—>*. PICTURE %~ *PROCESS OUTPUT *
* RECORD : *. PRESENT * KECORD *
ERL RS RS T L2 .- . LRI 22 SR LR RS 2
‘.[YES
"9F4 S LE.
H1 *, H3 *, ttn-tdst i*t‘titt
TEST o . trnt . tttt X *, AN *
IDCBPTR* INPUT ~*. NO YES .#* " PICTURE *. . JJsER EE20an
*. W ies ¥ r2 e tB TG0 N ODE. BRAWCH *
. PRESENT . * * *. LARGE .* t SoCSRDINGLY . %
*, . * EEE 1] *+k% (MSG 10) *. % *
, ¥ ., ¥ ‘.“."*‘ﬁ*"‘*‘
*"YES *'NO
RETURN | _ GO TO
ACTION CODE | CHART/BOX
A7A13 Y9EE
EARBRRT]FRERRREREEE REKERTIRF AR R FRAE PUT OUT RECORD 0 13/B5
GET INPUT FROM_EITHER * *» SKIP_RECORD 4 73783
* RECORD FOR * A SYSIN OR * MOVE PICTURE * D! 12 74780
GUTPUT A NON-SYSIN * TO_OUTPU * JOB STEP_END 16 74784
* RECORD * DATA SET. % "RECORD : BET M5G 9 INVALID) 73/F2
R ER Ak RS LI ISR L2222 2
PR
ATA15 e ATA2 R
TEST o o “x. hAk
EODSTOP* END OF ok UEER *, * *
*. INPUT = *l a2l >k @5
*. DATA . *. ROUTINE o *
- - i. kR
*, . ¥
* NO kR * NO
* *
o 1,
* *
EEE LR L 1] wkEE
* * * *
* B3 * * B5 *
* * * *
kR EE L L]

190

®* Chart 74.

hokkR
*Ty *
* Al*
* ¥
*
FROM 73/C5
A7
[T e T T T
*

* XT *
*UNPROCESSED FD *
* NAME *

*
EL IS EE L Pl S L Tl

4
Rk C LRk R RNk
* *

* DETERMINE *
INDEX AND CYCLE
* VALUES *

* *
LR LIS] *¥

ATR6
AREREC2RERAR R FRE K
* *

® *
GENERATE RANDOM¥
: NUMBERS :

7R1
wdkED] Sk kEkhEkk

DETERMINE

FORMAT, IF

DECIMAL

CONVERT To
BINAR

ERE I FE R ET IR L L 2]

LY
e

ATR3 \
kAR EL Rk Rk koh ok
* ADJUST FOR *
* INDEX AND *
: VALUES
KRR RN R

SEE NOTE 2 ~—————)

ATRY

R FL Sk ok
*
* RECONVERT *
*TO_DECIMAL FORM¥
: AS REQUIRED :
AR AR

Ak
* *
* Gl *
* *
* kR
SEE
NOTE 1
FERRRE2 R A AR

SS *
* NON NUMERIC *
* FORMAT EXCEPT *
* RANDOM *

EERRRRERRERE R

ok

*,
TEST *. 'rmams .t
ADDRESS 4. L%
TABLE

-k
*73 *
* C
Rk
* *
* Al *
* *
LET

FORMAT ,PROCESS LABEL
SHIFT OR ATRS
TRUNCATE

RIPPLE ABCD1

WAVE ABCDS

ROLL ABCD2

v
Ere IV T T 22 Y
BUT BINARY

Ty
EEE R

STORAGE
A Q

R R S e e e e

IEBDG Create Module, IEBCREAT (Part 2 of 2)

FROM 73/Cl
FROM 73/E4 T3/F2
i b LY
* 7Y * *7Y * * *
* B3# * Bl¥ * B5 *
* % * % * *
I *Exk
'9D2 L A7A6
B3 *, * ARRAEDE RR kR ARk
e % FLUSH OUT * + REINITIALIZE *
.* PEAT *. NO * SYSIN * * FOR CREATE *
*, FUNCTION TO . * DCB_IF * * ANALYSIS *
. FULFILL‘. * ANY EXISTS * ‘; IODULE :
., L% Rk RRAREERARE RN R
1 YES
Lt A
*73 ¥
* Bl A7A7 sve 5 'ELOL
* % FRC YR FRAEEE
» *) * FRERCS R R KRR RF

Fl
* PICTURE *
* TAB’ *
** STORAGE - *
HhERRREERRE

'9D1
*ADY AR R
* *
* FREE *
* FD ADDRESS *
* TABLE(S) *

ERERER Rk

hb TR L ELE SE L]
*

* DELETE USER
* EXIT ROUTINE
: FROM STORAGE
HEEEEARAIAE R AR AA

A

Y9CF svC 5
“F U w¥ #*'*‘

FREE
*CREATERTABLL *

NOTE 23
PROCESSING IN BLOCK
F1 IS EXPANDED

*
* AREAS *
* *
HERE SRR KK
ok
* *
ATRY Sk, * B5 ¥
G. *. * *
.*#BINARY *. Ak
YES_ .* FORMAT *,
REQUIRED ok
*, 3
*, o
L.
* NO

*9DF \
#t#‘tﬂ3\kut*¥#t¥$t

* CONVERT *
*PACKED DECIMAL *

: IN REGISTER :

* *
LR R T PR R T

FEDEN bt Ch bttt
«*PACKED ¥, UNPACK_TO
¥ DECIMAL *. NO *ZONED DECIMAL. *
*. FORMAT #—Z__—_ >% PLACE IN FD
*a REQUIRED B * FIELD ADDRESS *
*, [P
* YES
S Y
> EX Y
* *
ATRS * Gl *
P L L L e T * *
MOVE VALUE * *hkk
FROM Q AREA *

*

*

* TO FD FIELD *-——n-l
* AREA *

*

*

R AR R Rk

Data Set Utility Programs:

* RBTU RN TO *

CRANL *
CHA.’RT 68 BOX G2
ARk ok R R
TO READ NEXT
CARD

IEBDG 191

e Chart 75.

ENTERED FROM IEBDG
TO PUT OUT HEAD
CONTROL CARD IMAGES,
RROR ML%SAGES AND

IEBDGMSG
FEREBEk kR kR REE
*
* ENTRY *
* *
R E Rk R Rk

*

*ELO1 C ok
SERRCLARRRAKREE *.
- RETURN * NO .* SYSPRINT
* 1EBDG *< ~%, (0 UTPUT) DATA *(
* * *,SET OPEN

PR PR R ey *. o

“x"YES

MSGO1 ¥
D2 *

TEST % IS *, [¢
YES

FLAGSW _ .* HEADING *.

(2ND BIT)+. MESSAGE

* . INDICATED. *

*, -k
*, ¥

*"NO

R

* *

* E2 *->

* *

EE 2L

totatzzatttttt#t:
CHECK FO! *

L CHANNAL 33 %

* AND LINECOUNT *

* MAXIMOM *

* (NOTE 1) +

R 2 LR EE S L L]

L2l
* *
* F2 *->
* *
bk
G03
#"t.Fz! ti!tt‘t#
RESET LINE
t COUNTER QBT *
HEADING ADDR. *
* *
ARk ok ROk Rk
ek kR
* G2 *->
* *
hkxk
MSGO2 v
BEREEC2 ST RR bRk kR d
* CHECK FOR_ *
* CONTROL CARD *
TMA *
*ERROR MBSSACE Bt
““tt.t“**“t“

MSGOII
GOS
a**ttﬂzctat*atttc
: GET
* MESSAGE
: ADDRESS
LTI PRI

R

MSGO6 PUT
SRFRERT 2Rk R RN RERKK
WRITE QUT
*MESSAGE, USING *
SYSPRINT

DCB *

R
PRI r T L

R R

ERE

192

IEBDG Message Module,

IEBCGMSG

MSGO7
ttittc3ttitttt*#t

INCREMENT
PAGE NUMBER
COUNTER

a
EEESIS S 2L 222

TE T
CBOFLGS
‘LTH BIT) '

LT

\
P
*

HERE R RR Rk

kR

‘ELO1
FEE AP HAAREEERE
* RETURN TO *

*
*
EELER LI 2R 222 L)

IS THERE A
CONTROL CARD
IMAGE TO BE
PRINTED.

(MSG 30)

USES
MOVE
MODE OF PUT
INSTRUCTION

Ak
*

NOTE 23

NOTE 3:

NOTE b3

ERROR FLAG MUST BE
URNED OFF,

GO TEST FOR

CHANNEL 12 INDICATION.
HEADING MESSAGE HAS
BEEN PUY ON_SYSPRINT,
GO TO_TEST FOR CONTROL
CARD IMAGE.

NO ER{OR FLAG HAS
BEEN SET AND EITHER
1. HEADING SWITCH IS

OR
HEADING SWITCH IS
OFF AND HEADIRG
MESSAGE IS INDICATED.

~

Independent utility programs are executed
outside and in support of IBM System/360
Operating System. They are:

e IBCDASDI, which initializes a direct
access volume and obtains alternate
tracks on initialized disk storage.

e IBCDMPRS (dump-restore), which dunmps
and restores the data contents of a
direct access volume.

¢ IBCRCVRP (recover-replace), which reco-
vers data from a track on direct access
storage, replaces defective records
with data supplied by the user, and
writes the composite data on an opera-
tive track of the original volume.

Independent utilities are discussed in
four parts:

e Supervisory Routines of the Independent
Utilities

¢ IBCDASDI
¢ IBCDMPRS

¢ IBCRCVRP

Supervisory Routines of the
Independent Utilities

The independent utility programs contain
copies of supervisory routines to check the
input device, read control statements, ana-
lyze control statements, check volume
labels, print diagnostic messages, type
diagnostic messages to the operator, con-
trol I/0, and analyze I/0 interrupticns.

CHECKING THE INPUT DEVICE

The entry point to this routine is CKINPUT.
The routine is entered immediately after
IBCDASDI, IBCDMPRS, or IBCRCVRP is loaded.
The program assumes a WAIT state (by means
of LPSW) until the input device is defined
by the operator. The orerator then enters
a code Ly means of typewriter or console.
This routine then checks the code to verify
that the input device is 1442, 1402, 2400,
or 2540 (or 1052 for IBCRCVRP) and that the
channel number is not greater than six. If
these conditions are satisfied, the appro-
priate UCB is selected and control is given
to the control statement analysis routine

Independent Utilities:

Independent Utility Programs

at location CLRSCAN. If an error is
detected in the coded information, an error
message is printed or displayed and the
WAIT state is entered with E's displayed on
the console lights.

DATA INPUT ROUTINE

The entry point to this routine is SYSIN.
Linkage to the routine is by a BAL LINK1S5,
SYSIN. Register GR2 contains the address
of the calling routine's buffer. This sub-
routine stores the buffer address in the
channel command word SYICCW, sets a read
command and 1links to subroutine STAR-
TIC via a BAL LINK9, STARTIO. Reading is
then performed by the defined input. device.
When control is returned to this routine,
it in turn returns control to the calling
routine via a BR LINK15.

CONTROL STATEMENT ANALYSIS

The entry point to this routine is CLRSCAN.
Housekeeping functions are first performed
on program switches and buffer areas
required by the routine. This routine then
links to the control statement scan routine
at RDCARD. RDCARD returns a pointer to a
field and the length of the field in regis-
ters SCANADR and LENGTH, respectively, and
an indication of the field type in location
SWITCHRD. SWITCHRD is a one-byte switch
with the following settings:

Bit Value Meaning

control statement error
byrass

first control statement has
been read

operator found

keyword found

parameter found

w
BRR RRR

e

Validity checks are then performed on
the scanned data. If an error is detected
in the input data, an attempt is made to
print a message on the defined message out-~
put device. If the message output device
is not defined, an attempt is made to issue
the message using the Write to Operator
routine. If neither device is defined, the
WAIT state is entered. If the message is
successfully issued, the WAIT state is
entered, and the program must be rein-
itiated and the corrected statement
submitted.

Supervisory Routines 193

Following completion of control state-
ment analysis, control is given to the
appropriate routine in IRCDASDI, IBCLCMPRS,
or IBCRCVRP.

VOLUME LABEL CHECKING

The IBCDASDI program compares the volume
serial number of the object volume to that
specified by the VOLID parameter, if both
numkers are present. If the VOLID parame-
ter specifies SCRATCH, no comparison
occurs. If a serial number is specified,
and it is not equal to that in the volume
label, or if the volume .label is not pre-
sent, this routine causes an approrriate
message to be printed and terminates the
program.

The IBCDMPRS program compares the volume
serial number of the TC volume to that spe-
cified ky the VOLID parameter, if both num-
bers are present. If the TO device is
tape, and there is no volume label present,
there must be a tape mark at lcad point, or
SCRATCH must be specified, in order for the
program to continue. If the TO device is
tape and a volume label is present and
VOLID does not specify SCRATCH, the volume
serial number in the label must equal that
specified by VOLID in order for the program
to ‘continue. If the TO device is direct
access storage, VCLID must be specified and
an equal comparison of serial numbers must
occur in order for the program to continue.

The IBCRCVRP program compares the serial
number of the direct access volume to that
specified Ly the VCLID parameter. If there
is no volume label, or if the serial num-
bers are not equal, a message is written
and the request is akorted.

Entry point to the volume label checking
routine in all three of the independent
utility programs is at location CKVOLLBL.

MESSAGE CUTPUT ROUTINE

The entry point to this routine is SYSOUT.
This routine writes messages using the mes-
sage output device as defined by the MSG
control statement. The address of the
fixed-length message to be printed is
passed to this routine in register GR2.

The appropriate CCW is then constructed,
and its address is passed in register GR2

194

to routine STARTIO. Upon regaining con-
trol, this routine returns to the calling
routine.

WRITE TO OPERATOR ROUTINE

The entry point to this routine is OPPRNT.
This routine writes messages which need to
be brought to the immediate attention of
the operator. The message is given on the
console typewriter if one is available.

I/C CONTROL ROUTINE

This routine controls every I/C operation
performed by the independent utility pro-
grams. It is entered at STARTIO, at which
time register UCBREG contains the address
of the appropriate UCB, and register CSR3
contains the address of the CCW to be
executed. The channel-unit number is
loaded into register CSR4. This routine
stores the CCW address in the CAW and
issues the SIO instruction. If the unit is
unavailable, the WAIT state is entered and
the program is terminated. If the unit is
busy, the SIO is issued until the command
is accepted, at which time the TIO instruc-
tion is issued repeatedly until the unit is
not busy. At this time control is given to
CKCSW, the entry point to the 1/0 interrup-
tion analysis routine. The IBCDMPRS pro-
gram returns control to the calling rou-
tine, however, to continue processing as
soon as the I/0 is started.

UNIT CCNTROL BLOCKS: The independent uti-
l1ity programs each contain one unit control
block (UCB) for each device in use. Figure
62 lists the UCBs and their uses. UCBs for
the independent utilities have the follow-
ing format:

Byte Function

00 unit reference number

01 used only by IBCRCVRP; set to X'FF'
if the UCB is for a tape drive, set
to zero when label is checked

02-03 channel-unit

o4 CAW protect

05-07 CAW

08-15 interruption PSW

16-23 interruption CSW

24-31 sense bytes

- T 1
UCB Lakel Use in IBCDASDI Use in IBCDMPRS | Use in IBCRCVRP |
4 4

[] 1

UCBTO *TO' device 'TO* devicel | *TO" device? |
1 d

T 1

UCBFRM unused YFROM' devicel | *FROM' devicel |

- 4 4

M v h)
UCBSYI control statement input |control statement input |control statement input |
|device |device |device |

+ + 1

UCBSYO nmessage output device |message output device |message output device |
1 4 J

T . T 1

UCBOFR operator message device |operator message device |operator message device |
- (]

4

UCBLIST unused unused record data listing |
device |

]

1

UCBSERT |unused unused "DATA' replace state- |
|ments input device |

| | (REPLACE only) |

- : L 4 i
1'70*' and 'FROM' are relative to the operation being performed by the programs. For a |
dump from 2311 disk storage to tape, for example, "TO' refers to tape and *'FROM' |
refers to 2311; whereas for the companion restore, 'TO' refers to 2311 and 'FROM" |
‘refers to tape. A parallel situation exists for recovering and replacing. |
J

Figure 62. The Use of UCBs in the Independent Utilities

I/0 INTERRUPTION ANALYSIS

All I/0 interruptions cause control to be
given to the I/0 interruption analysis rou-
tine, whose entry point is CKCSW. Register
UCBREG contains the address of the applic-
able UCB. This routine checks the nature
of the I/0 interruption:

1. Error: control is given to IOERR.

2. Attention: control is given to ATTN.

3. Busy: the SI0 is reissued.

4. Device end: control is given to
IORTRN.

5. Unit end: the SIO is reissued.

6. Channel end: the TIO is reissued for
device end.

JIOERR: The CSW, PSW, and CAW are saved,

and control is given to SENCHK (in case of
a unit check) or TYPECHK (othexwise).
ATTN: The request is honored.

IORTRN: If a surface check is indicated,
control is given to the appropriate
(device-dependent) surface check routine;
otherwise, control is returned to the rou-
tine which first issued the call to STAR-
TIO. In the case of IBCDMPRS, the UCB is
posted complete and control is returned to
the routine which first issued the call to
STARTIO.

Independent Utilities:

SENCHK: The device address is entered in
SI0 and TIO instructions, a sense CCW
address is stored in the CAW, and the sSIO
is issued until it is accepted, at which
time the TIO is issued. The TIO is reis-
sued until it is accepted, at which time
control is given to TYPECHK.

TYPECHK: The device type causing the:
interruption is determined by interrogating
the UCB, whose address is in register
UCBREG. Control is then given to one of
the following locations:

Device Type Location
2302,2303,2311,2314 ERR100
1442 ERR200
2400 series tape units ERR300
1403 ERR400
1052,2150 ERR500
1402 ERR600
2301 ERR700
1443 ERR800
2321 ERR900

At each of the locations - ERR100,
IER900 - is the instrction

ERR200,

EAL ERRLINK, ERRTEST

followed by a table of two-byte entries.
The instruction loads the address of the
table into register ERRLINK and then gives
control to routine ERRTEST, which uses the
indicated table to interrogate status and/
or sense bits.

Supervisory Routines 195

Each two-byte entry in the indicated
table consists of a one-byte relative
pointer to a status or sense bit and a one-
byte relative pointer to a routine. Rou-
tine ERRTEST successively interrogates the
bit indicated by the first byte of the
table entry; if the kit is on, ERRTEST
directs control to the routine indicated by
the second byte of the table entry; if not,
ERRTEST processes the next entry in the
table.

The settings of the first byte of each
table entry are as follows:

Bits Setting Meaning
Case 1: 0-3 Xx'1 The bit to be tested

is a status bit.

y = the bit position
(hexadecimal) of the
bit to be tested,
relative to bit 32
of the CSW.

4-7 X'y*

196

Bits Setting Meaning
Case 2: 0-3 X*0* The bit to be tested
is a sense bit.
4-7 X'y* y = the bit position

(hexadecimal) of the
bit to be tested,
relative to bit 0 of
sense byte 0.

If the tested half-byte is found to be
on, ERRTEST directs control to location
A+B,

where:

A = the address of the first byte of the
current table entry;

B = the value of the second byte of the
current table entry.

Initializing and Assigning
Alternate %‘racks on Direct
Access Volumes (IBCDASDI)

The direct access storage device initiali-
zation (IBCDASDI) program performs one of
two functions during a single execution:

e Initializes a direct access volume to
conform to Operating System/360
specifications.

s Obtains alternate tracks for specified
defective tracks on an already initia-
lized disk storage volume.

The current version of this program
initializes a volume on:

2301
2302
2303
2311
2314
2321

drum
disk
drum
disk
disk
data

storage
storage
storage
storage
storage
cell storage

The program obtains alternate tracks for
a volume on:

2302 disk
2311 disk
2314 disk
2321 data

storage
storage
storage
cell storage

Initializing a direct access volumre con-
sists of the following:

e Detecting defective tracks.

e Assigning alternates to defective pri-
mary tracks (on disk storage only).

e Writing the standard home address and
record zero on each track.

e Writing track zero, consisting of two
IPL records, a standard volume lakel,
and space for seven additional volume
labels (see Figure 63).

s Writing a standard volume table of con-
tents (VTOC) at a user-specified
location.

e Cptionally writing the IPL initializa-
tion program.

Obtaining an alternate track for a user-
specified defective primary (i.e., nonal-
ternate) track on disk storage consists of
the following:

Selecting the first available opera-
tive alternate track from those indi-
cated in the VTOC of the specified
volume.

Writing the address (CCHHR) of the
primary track in the count field of
the selected alternate track, and
writing the address (CCHHR) of the
alternate track in the count field of
the primary track.

Modifying fields five and six of the
VTOC DSCB to reflect the new status of
available alternate tracks.

1.

PROGRAM FLOW

Chart 76 shows the logical flow of the
DASDI program. This section descrikes the
operations performed by the IBCDASDI pro-
gram relative to its functions: initializ-
ing a volume and obtaining alternate
tracks.

Descriptions of the following supervi-
sory routines of the IBCDASDI program may
be found in this publication in the section
entitled "Supervisory Routines of the Inde-
pendent Utilities."

s Input Device Check (CKINPUT)

e Data Input (SYSIN)

e Control Statement Analysis (€LRSCAN)

s Message Output (SYSOUT)

e Write to Operator (OPPRNT)

e I/0 Control (STARTIO)

e I/0 Interruption Analysis (CKCSW)

After the input device has been defined
-by the operator and checked for validity by
the IBCDASDI program (see "Checking the
Input Device"), control statements are read
and analyzed (see "Control Statement Analy-
sis") and control is given to the appropri-

ate initialization or GETALT section of the
program.

f T T7 TT T TT , 11— CéTT
| B || RO i1 ®RL || R2 i R®R3 || R4 K }Z | R10
L i 14 LL L AL 4l /r L

HOME TRACK IPL IPL STANDARD ADDITIONAL ADDITIONAL
ADDRESS DESCRIPTOR RECORD BOOTSTRAP VOLUME VOLUME VOLUME

RECORD (OR DUNMMY) LABEL LABEL LABEL
(OPTIONAL) (OPTIONAL)

Figure 63. Track Zerxo

Independent Utilities: IBCDASDI 197

Initializing a Volume

The following routines are executed to

initialize a volume:

INTALT, which initializes a track for
disk and drum devices.

WRITECT1, which initializes a track for
data cell storage.

CCNSTR1, which builds an irage of track
zero in main storage.

YESUSER, which places additional volume
lakels in the track zero format.

CONSTR2, which writes track zero.

WRTIPL, which writes the IPL initiali-
zation program, if requested.

FMTVTICC, which builds the VTOC.

WRTVTIOC, which writes the VTOC.

Following execution of WRTVTOC, the pro-

gram initiates normal end-of-job and the

CPU

assumes the WAIT state.

INTALT

198

initializes a track for disk and drum
devices. When the device is disk,
INTALT first checks the track for hav-
ing keen previously flagged as defec-
tive. (This test can be suppressed
for the first initialization on that
volume.) Alternate tracks are immedi-
ately assigned for tracks flagged as
defective.

Disk and drum track initialization may
or may not include surface analysis.
When the recording surface is to be
checked, the alternate tracks are
checked first. (The alternate track
concept is not defined for drum
storage.) If an alternate track is
found to be defective, it is flagged
as such (later, FMTVTOC adjusts field
six of the VIOC DSCB to indicate the
nunber of available alternate tracks).
If a primary track is found to ke
defective, it is assigned an alternate
by ASGNALT, which is the same routine
used to assign alternate tracks for a
GETALT execution of IBCDASDI. After
the track is assigned by ASGNALT and a
message printed, control is returned
to the' initialization section of the
program, at which time the next track
is checked, or, if all tracks have
been checked, track zero is con-
structed. Tracks are checked for a
good recording surface in the follow-
ing way:

1. When the flag test has been sup-
pressed, the home address (HA) is
written followed by a maximum-
length record zero consisting of
data field of identical kytes of
hexadecimal 55.

2. The track is read and checked.

3. A maximum-length record zero is
again written, this time consist-
ing of data field of identical
bytes of hexadecimal 00.

4. The track is read and checked.

5. If no data error has occurred in
steps 2 to 4 and no additional
passes are requested, record uzero
is rewritten (see step 8). If
additional passes are requested
on this track, repeat steps 1 to
4.

6. If either step 2 or step 4 have
indicated a data error, steps 1
to 4 are repeated ten more times,
unless a data error occurs.

7. If any other data error occurs
during step 6, the track is
flagged as defective. An altern-
ate track is assigned when the
device is disk. For drum
devices, a message is given indi-
cating the address of the defec-
tive track. If the HA-RO area is
defective on a 2314 disk storage
volume, an attempt is made to
move the HA-RO fields down the
track approximately 800 Lytes.

8. A track descriptor record (R0O) is
then written and verified as an
8-byte count field followed by an
8-byte data field of zeros.

9. When all tracks have been initia-
lized, control is given to CON-
STR1. Otherwise, the sequence is
repeated for each track. (When
initialization without surface
analysis is requested, only steps
8 and 9, are repeated for each
track.)

WRITECT1

performs data cell track analysis in
the following way:

1. A home address (HA), track
descriptor record (RO), and a
maximum length record one (R1)
are written on each of 20 tracks
of a cylinder. The data field of
Rl consists of identical bytes,
containing hexadecimal ES5.

2. An address compare is made on
each of the tracks written in
step 1, and record one is veri-
fied for each track.

3. Record one is erased for each
track written above.

4. If no errors occur in step 2,
steps 1 to 3 are repeated for
each cylinder with additional
address conmpares made after the
completion of each strip, sub-
cell, and cell.

5. If an error (i.e., data check or
missing address marker) has
occurred during step 2, the track
is rewritten and reread until
either a successful pass is
obtained or 113 errors have
occurred. If this track is in
the alternate area, it is flagged
to prevent its future use.
Otherwise, an alternate track is
assigned by ASGNALT, and a mes-
sage is printed.

6. When all tracks have been initia-
lized, control is given to
CONSTR1.

CONSTR1
constructs track zero. If the IPL
function is selected, records one and
two are written as an IPL bootstrap
program and a program to load the IFL
initialization program. If the IPL
function is not selected, recoxd omne
is written as a program to set the
WAIT state in the CPU in case the
volume is loaded for execution.

Regardless of whether the IPL function
is selected, record two is written as an
IPL kootstrap. (Since record one will set
the WAIT state in the CPU in case a non-IPL
volume is loaded for execution, there is no
danger of executing record two.)

YESUSER
writes up to seven user-supplied addi-
tional volume labels as records u4-10.
Space is allocated for those volume
lakels not supplied.

CONSTR2
writes track zero, consisting of two
IPL records (or a dummy IPL record), a
standard volure label and up to seven
additional lakels.

WRTIPL
writes the user-supplied IPL initiali-
zation program, if requested. The
program is written on the first track
preceding the alternate track area
(track 1999 on 2311), or, if that
track is defective, on its assigned
alternate.

FMIVTOC
constructs the DSCBs needed for the
VTOC. They are the VIOC DSCB (format
4) and the DADSM DSCB (format 5).

WRTVTCC
writes at the user-specified location
of the VTOC the DSCBs constructed by
FMTVTOC.

Obtaining Alternate Tracks

If the IBCDASDI program is executed under
the GETALT option, control is given to
location GETALT following control card
analysis. Routine GETALT performs a track
check on the user-specified track if the
track check bypass is not selected. If the
track is found to be operative, a message
to that effect is printed (or displayed)
and the next GETALT request is processed.
If the track check bypass is selected, or
if the track is found to be defective, the
following routines are executed in the
order in which they appear.

ASGNALT
flags the given track as defective and
assigns it an alternate as described,
if it is a prirary track. If the
given track is an alternate, it is
flagged as defective; if the given
alternate track had been assigned to a
primary, an orerative altermnate is
assigned to the primary.

TRKPRNT
causes a message to be printed stating
the addresses of the defective track
and its assigned alternate.

GETALTHL
decrements field six of the VTOC to
reflect the fact that one less altern-
ate track is available, and increments
field five to point to the next avail-
able alternate track.

Control is then given to location GETALT
to repeat the process for the next user-
specified track, or, if none exists,
initiates normal end-of-job and sets the
CPU to the WAIT state.

Independent Utilities: IBCDASDI 199

Chart 76. IBCDASDI - Initializing and Assigning Alternate Tracks on Direct Access Volumes

CKIJPUT
FERT Ry CEEZ PR L LT
* *

- * DEFINE INPUT *
* START F e >* DEVICE AND *
* * * PERFORM SETUP :

ERRA2 R ERR AR

EERRRkE R R Rk
Shkk kbR kR R Rk
RDCARD V CLRSCAN
R BIRERR T EF K
* *
* READ, SCAN *
+ AND AmaryzE =
% " CONTROL ~ *
* STATEMENTS _ * (22es
* ok * *
* Cl4 *
* *
EE L
k
. INTALT OR WRITECTL ALTANL L, GETALT * GETALTX
Cc1 *, ttczt#ttta##tt c3 *, cy *, **ti%cﬁ*tt#ttt‘xt
¥ *, \K ¥ *, - ¥ *,
YES .* 1s *, * INITIALIZE ‘ INIT .*INITIALIZE *. GETALT «* WAS TRACK *. NO * PEREO&M Tx\ACK t
TRACK Y S » by [R S piinint *. OR il >#%.CHECK BY PASS. #-o———o—mo! >% G
.DEFECTIVE. * TRACK A *. GETALT _.* ¥.SELLCTEL ¥ :spnmlm TI\ACA*
L RS RS LIRS 22 22 2] *, Uk *, .k *‘#t#***#ttttt#ti
“HEE * NO * * YES
* * RER
* ES5 * l *
» * D% 15
*hky *
EREE
¥, GETALT2 ok,
D1 *, ERRRFEDY R R R E KK U5 *,
*, PRINT 'TRACK o ¥ *,
-*" ARE ALL "*. NO * CHECK * qo .+ 18 .
~>*%. TRACKS INDICATES Cmmmmmem * . TRACK
.. PROCESSED- * GO0 * *.DEFECTIVE.
‘. .‘ LR SRR LS L] *, %
EE Y * YES * YES
* * *EEK
* D1 * * *
* * * E5 *aD
hER * *
Ak
ASGNALT
*RERFE] RSB Rb RS FRERRES Rk kRS REREN
‘CONSTRUCT TRI\CK‘ * FLAG OKIGINAL - *
b IPLL % TxACK AND ¥
sEBRORECR TElipry * 2SSIGN *
*REQUESTED,ELSE * + AITERNATE +
* ABD DUMME * * *
LRI e r I Tl 2] EEERERERFEERE R
TRKPRNT
t”tor]_t--t”t‘.tc AR Ok TS Rk kR ok ok
D ADDITIONAL +
' (USBR #* LOG BAD TRACK *
A v AND ALTERNATE
- + ASSIGNED *
* R! U] *
LR X PR L2] ok R EER
CONSTR2 RS
PSR RT Tes R SRS E L 2] G5 *,
o *.
* WKITE * INIT .*° GETALT *.
TRA i .
* ZERG . *INITIALIZE. #
*, . *
whEx *GETALT
* *
* 1 *
* *
* koK
WRTIPL v GETALTY4
k] RRFE bR **t#tnsi—lt#t#itai
IF IPL IS
* REQUESTED * ! RY VI OC
WRITE IPL ‘DSCB ALTERL\AI‘E *
* INITIALIZA- + * THACK UPDATE
LA AT L T 2] FRREEEFEER R RSN
>
ARRERTLRERRERERER Jb *,
* * IS *,
* oSONSTRUCT % YES .+ THERD Awe %,
* YTGC DSCBYS: —Z+OTHER GETALT .*
VIOC, AND mwsm *. REQUEST .+
Oit“t‘#.‘."““ *, ¥
Kok *"NO
* *
* ClY *
* *
L 2 1
WRTVTOC
R R e RIS PR RIS L L]
AR D R R R Rk
* WRITE »
>* EOJ *<
* DSCB's * * (WALT) *
REEFRERERI R Rk
LRI 22 222 L1

200

Dumping and Restoring a Direct
Access Volume (IBCDMPRS)

The direct access storage device dump-
restore program performs one of two func-
tions during a single execution:

e Dumping (copying) data from a direct
access volume to 2311 or 2314 disk
storage or magnetic tape, in a format
recognizable to the restore portion of
the program.

e Restoring (recopying) data which has
keen dumped by this program. Data is
restored only to a volume residing on a
device of the same model number from
which it was dumped.

There is no provision to restore from
2311 to 2311 or from 2314 to 2314.
Instead, another dump of the same type may
be performed.

A dumnp may be either partial (a set of
contiguous tracks is dumped) or entire (the
entire volume is dumped).

The current version of this program
dunps the data contents of a volume from:

e 2301 drum storage to magnetic tape or
2311 disk storage or 2314 disk storage.

e 2302 disk storage to magnetic tape or
2311 disk storage or 2314 disk storage.

e 2303 drum storage to magnetic tape or
2311 disk storage or 2314 disk storage.

e 2311 disk storage to magnetic tare or
2311 disk storage or 2314 disk storage.

e 2314 disk storage to magnetic tare or
2311 disk storage or 2314 disk storage.

e 2321 data cell storage to magnetic tape
or 2311 disk storage or 2314 disk
storage.

DUMPED DATA FORMAT

The format of dumped data depends on the
device configuration of the dump: 2311 to
2311 (or 2314 to 2314), direct access to
tape, or non-2311 direct access to 2311 (or
non-2314 o 2314).

2311 TO 2311 (OR 2314 TO 2314): Data from
the input 2311 (or 2314) is copied record-
for-record and track-for-track. For this
reason a restore from 2311 to 2311 (or 2314
to 2314) is not provided, but can be
effected ky another dump.

DIRECI ACCESS TO TAPE: The following rec-
ords are written on tape for a direct
access-to-tape dump (see Figure 6U4):

e A limits record is written as the first
recoxrd (following any labels) on each
volume of tape. This record contains
the addresses of the first track
dumped, the last track dumped, and the
the first track dumped on this volume
of tape.

* A control record is written for each
track dumped, immediately preceding the
dumped data from the track. The con-
trol record contains a channel program
to be used by a subsequent restore to
write one track.

e A dumped track image is written as a
maximunm—length physical record. A
track image is not split between tapes.

e A trailer label is written at the end
of each tape volume, immediately fol-
lowing the tape mark. During a re-
store, successive oring of trailer
labels indicates whether another FROM
volure is to be mounted. The mounting
of FROM volumes during a restore is
thus order-independent.

NCN-2311 TO 2311 (OR NON-2314 TO 2314):

The records written as record one of track
one of each 2311 (or 2314) volume needed
for the dump are similar to those for tape,
but with the following differences:

e The limits record is written as record
one of track one of each 2311 (or 2314)
volume needed for the dump. The limits
record contains (as with tape) the
addresses of the first track dumped,
the last track dumped, and the first
track dumped onto this 2311 (or 2314)
volume.

e The control record is written immedi-
ately preceding each dumped track
image. The first control record on a
volume is written as record one of
track two; subsequent control records
are each written as record one of the
first track following the image of the
last track dumped. The control record
consists of two subsets: (1) eight
two-byte fields, each containing the
nunber of bytes of the original
(dumped) track written on a track of
the 2311 (or 2314) and (2) a channel
program to be used by a subsequent re-
store to write one track.

e A dumped track image is written in
maximum—-length physical records on as
many 2311 (or 2314) tracks as are
necessary. The nurber of bytes of the

Independent Utilities: IBCDMPRS 201

dumped non-2311 (or non-2314) track
written on each 2311 (or 2314) track is
recorded in the control record for the
track image. A dumped track image is
not split between disk packs.

e The trailer lakel is written as record
one on the last available track of each
2311 (or 2314) disk pack used. The
contents of the trailer label for 2311
(or 2314) are identical to those for
tape.

PROGRAM FLOW

The flow of the direct access storage
device dump/restore program is shown in
Chart 77. Descriptions of the following
supervisory routines of the direct access
storage device dump/restore program may be
found in this publication in the section
entitled "Supervisory Routines of the Sup-
port Utilities."

Input Device Check (CKINPUT)

Control Statement Analysis (CLRSCAN)
Message Output (SYSOUT)

Write to Operator (OPPRNT)

I/0 Control (STARTIO)

I/0 Interruption Analysis (CKCSW)

After the input device has been defined
by the operator and checked for validity by
this program, control statements are read
and analyzed and control is given to the
appropriate dump or restore section of the
program.

Dumping

If the program is dumping, the following
routines are executed in the order listed.

TOTAPE
ensures that the TO volume is mounted,
whether tape or not. If the dump is
not from 2311 to 2311 (or not from
2314 to 2314), this routine also
writes the limits record.

MODTKADF
reads the count fields on one track of
the FROM volume and at the samre time,
if two channels are used, writes head-
er or data records on tape from loca-
tion DTABUFF.

ANALSENS
uses the information obtained from
reading the count field of one track
to construct a channel program capakle
of reading the count, key, and data
fields of the track.

READCCWs

moves the channel program to a higher
area in main storage and executes the

202

channel program constructed by ANAL-
SENS, reading one track of the FROM
volume into the buffer DTABUFF. (In
the buffer, record images are
blocked.)

TSTWRTSP
converts the channel program at loca-
tion DTALENG to a channel program cap-
akle of writing the buffer (with read-
back check) onto a track of the same
device from which it was read in its
original format.

If the dump is 2311-2311 (or 2314-
2314), the channel program is
executed, thus writing one track on to
the 2311 (or 2314).

If the dump is not 2311-2311 (or not
2314-2314), the converted channel pro-
gram is not executed during dumping,
but will be executed during a future
restore. After converting the channel
program, this routine gives control to
DMPDASD if the TO device is tape, or
to STRTDSK if the TO device is 2311
(or 2314).

DMPDASD
writes the control record, consisting
of the channel program at location
DTALENG on the tape. Control is then
given to MODTKADF, EOJ1, EOJRA, or the
program terminates (see Chart 77).

STRTDSK
writes the control record and the
buffer on 2311 (or 2314) disk storage.
The function performed is similar to
that of DMPDASD (writing on tape), but
with the following exceptions (see
Figure 64).

¢ The control record for dumping
from non-2311 to 2311 (or non-2314
to 2314) consists of a 16-byte
field beginning at DTALENG pre-
fixed to the channel program at
location CCWLIST.

e Several 2311 (or 2314) tracks may
be needed to contain the data in
the buffer at DTARUFF. If so, the
buffer is written in maximum-
length physical records on as many
tracks as are needed. A kuffer
image is not split between disk
packs. BAny remaining space on the
last track needed to contain the
buffer image is not used. (The
next control record begins on the
next available track.)

Control is then given to MODTKADF, EQJ1,
EOJAA, or the program is terminated (see
Chart 77).

2311 or 2302 Home ?
Disk Storage Address RO R R2 g R3
A
Main Storage .
) DTALENG DTABUFF
Control
Data Track Image (No Gaps)
DUMP RESTORE
Magnetic Tape
Header E . Next f E E
4| Label o L-mlfsd Control Dumped Track Image Control II:)mcnge zf Nexkr ;} EOF Irillfr o o
{Optional) F Recor Data Dato umped Tracl abe FUAF
Figure 64. Dumping and Restoring a Direct Access Track
E0J1 (or 2314) disk storage. When the

is given control when a new TO volume
is needed. EOJ1 writes the trailerx
label on the current TO volume and
then gives control to routine TOTAPE
to insure that a new volume is
mounted. (See "Dumped Data Format"
for a description of the trailer label
and its location for tape or disk.)

EOJAA

is given control at the conclusion of
‘an entire 2311-2311 (or 2314-2314)
dump. EOJAA updates field six of the
VTCC DSCB to reflect any alternate
track assignments necessitated during
the dump. A WAIT state is then set in
the CPU and the program terminates.

Restoring

After the input device has been verified

and
(see

control statements have been analyzed
"Supervisory Routines of the Indepen-

dent Utilities"), control is given to the
restore section of the program, consisting
of the following routines, which are
executed in the order indicated.

FRMTAPE

ensures that a FROM volume is mounted,
whether tape or disk. The order of
volume mounting is immaterial. After
a FRCM volume is mounted, this routine
reads the limits record (record one).
Control is then given to RSTRTAPE, if
the FROM device is tape, and to
STRTDSK, if the FROM device is 2311

device is not the 2301 drum and if
there is at least 64K of main storage,
buffers are built in upper storage for
the data records and the channel
programs.

RSTRTAPE

reads the control record into location
DTALENG1l, when storage is available.
(The control recoxd consists of a
channel program capable of restoring
the dumped track.) From DTALENG1l, the
record is moved to DTALENG. The image
of the dumped track (in blocked record
format) is read into location DTA-
BUFF1, when storage is available, and
then is moved to DTABUFF. Control is
then.given to MODTKADT.

STRTDSK"

performs the same logical function as
RSTRTAPE, but reads instead from 2311
(or 2314) disk storage. The control
record is first read into location
DTALENG (also causing the channel pro-
gram, the second field of the control
record, to be read into location
CCWLIST). The first field of the con-
trol record is then used to read as
many tracks as are necessary to "f£ill"
the buffer DTABUFF, that is, to com-
plete one dumped track image in the
buffer. cControl is then given to rou-
tine MODTKADT.

Independent Utilities: IBCDMPRS 203

MODTKADT

EOJA

204

executes the channel program at loca-
tion DTALENG, thus restoring one track
in its original format. If the FRCM
volume is not exhausted, control is
given to RSTRTAPE oxr STRTDSK, derend-
ing on whether the FROM device is tape
or disk, respectively. When the FRCM
volume is exhausted, control is given
to EOJA to read the trailer label.

reads the trailer label (for a de-
scription of the trailer label and its
location, see "Dumped Data Format").
Successive oring of trailer labels Ly
this routine controls FROM volume
mounting. If another FROM volume is

to be processed, control is given to
FRMTAPE to insure that it is mounted,
whether tape or disk. If no more FROM
volumes are to be processed, controcl
is given to EOJAA (if the restore is
entire), or the program is terminated
(if the restore is partial). Note: a
restore is entire or partial depending
only on the limits of the companion
dump.

EOJAA

updates field six of the VTOC DSCB to
reflect any alternate track assign-
ments necessitated during the (entire)
restore. No such update is provided
for a partial restore.

. . s
Chart 77. IBCDMPRS - Dumping and Restoring a Direct Access Volume
CKINPUT
tttt*AB*t#\itittlt
AEFFAD ERFRRBRAR *
DEFINE INPUT *
* START #eewee———>*% DEVICE AND *
* * DBRFORY ShRUp *
R RERRR R * *
P
RDCARD
FARRADIHARAR K
* *
AND *
*anALYZE CoNTROLY
* STATEMENTS = *
P
* * RN AR
* C2 *
* *
LTS
3
TOTAPE - ¥ FRMTAPE
c3” s, A RAC TR TR R
* . *
DUMP *, *MOUNT FROM VOL *
: —>% __AwD READ *
M 'RESTORE‘-* * LIMITS RECORD ’
FA AR R R . - S
*
d
> Ko e FOR BLOCK
THE FOLLOWING
MODTKADF LABELS APPLY
ARRRAD2RRER R AR R FARFED YRR RERE R AR READ FXOM TAPE--iSTRTAPE
* READ COUNT * ‘ READ CONTKOL » KEAD FROM 2311--STRDSK
* FIELDS OF ONE * INTO *
* T * ‘ DTALE KEi *
'CONSTRUCT CHAN * * TRACK IMAGE ¥
PROG TO READ TR * INTO DTABUFF _*
PP Y e T M T T T
ANALSENS MODTKADT
FRARKED B ERA R RRE K ERRBAEL Rk kR
EXECUTE CHANNEL * SXECUTE *
* PROGR. JUS! * * CHANNEL *
* CONSTRUCTED * * PROGRAM JUST *
READING TRACK * READ IN "
* INTO DTABUFF ¥ * WRITE A TRACK
P T T YT MRS R
TSTWRTSP oH.
AR N2 RS kK F4 .
CHANGE CHAN PRG ¥ *,
* JUST EXECUTED * . Is .
TO A WRITE PRG * *, FROM VOLUME I
*(TO BE WRITTEN * « EXHAUSTED .
* IN CONT RCD * . .
MR TET T I *.
w"
NOTE
FOR BLOCK G2
THE _FOLLOWING
v LABELS APPLY
R RRG2RRPRdR R R WRITE ON TAPE--DMPDASD #.*‘tGu#‘!t#t‘tlt
* * WRITE ON 2311-~STRTDSK
* WRITE CONTROL #* “ ‘
* RECORD IF * * TRAILER *
* NECESSARY. * * LABEL *
*WRITE DTABUFF, * * *
T T P e TR FREEER AR K
NO ‘4
¥ ¥ ok,
H1 *, H2 . I:0) .
o *, ¥ *. ¥ ARE ‘-

. IS A * NO_ .* ARE *, YES .*¥ HERE
.NEW TQO VOLUME.¥<w——~———-%. DUMP LIMITS . ~—% ANY MORE YROM.
‘.*NEEDED - *, SATISFIEE.‘ *., VOLUMES .
- “¥,)

* YES “et YES [le]
1 v
EOJL .‘. OJAR ¥
Tresagiskesiaeet *. HEREITIHS RS AAE Ju° ",
¥ *, UPDATE VTOC ¥ *,
' WRITE TRAIL% o* IS THIS *, YES * ON TO VOLUME * ES ¥
LABEL (LAST RK *, ENTL *-—---—---)"TO FLECT ANY *<-—m———w—— *THIS AN ESJTIRE. *
*ON DASD, AFT. T, 2311-231 ‘ALTERNATE TRACK¥ *, .
* E N ‘ UMB 4 * SIGNMENTS * *, o*
P T I e MR R - . ¥
* NO NO
e
* *
* C2 ¥
* *
xnn AR I E AR AR
* *
e =D K EOJ # Qe e
(WAIT)
Rk R A

Independent Utilities: IBCDMPRS 205

Recovering and Replacing a

Track (IBCRCVRP

The recover-replace program performs one of
two functions during a single execution:

e Recovering (reading) data from a track
on an initialized direct access volume;
listing defective records, or all reco-
rds, if specified; and writing the good
data on a recovery output tape for use
by the replace portion of the program
during a future execution.

e Replacing a good track image on an
operative track by merging data from
the recovery output tape with replace-
ment data supplied by the user.

Requests may be stacked, but all must
specify the same function -- recover or
replace.

The current version of the program sup-
ports recovery and replacement of data on:

2302 disk
2303 drum
2311 disk
2314 disk
2321 data

storage
storage
storage
storage
cell storage

As a stand-alone program, recover-
replace contains the following supervisory
routines, described under the heading,
"Supervisory Routines of the Independent
Utilities":

Input Device Check (CKINPUT)

Data Input Routine (SYSIN)

Control Statement Analysis (CLRSCAN)
Volume Label Check (CKVOLLBL)
Message Cutput Routine (SYSOUT)
Write to Operator (OPPRNT)

I/0 Control (STARTIO)

I/0 Interruption Analysis (CKCSW)

The logic of the recover and replace
portions of the program is shown in the
following charts:

Chart 78. Overall Logic

Chart 79. Recover Logic

Chart 80. Recover Data Check Routine

Chart 81. Recover Count Check and End-
of-track Routines

Chart 82. Replace Logic

Overall Flow

When the program gains control, it waits
for the operator to define the input device
from which utility control statements are
to be read. The program then verifies that
the input device definition is valid, and
tegins to read, scan, and analyze utility
control statements.

Figure 65 suggests how main storage is
nmanaged by the program. The space occupied
by the replace portion of the program after
initial loading is used as buffer for read-
ing the track to be recovered or replaced.
A recover run causes the replace coding to
be overlaid by the track image; for a
replace run the rerlace coding is first
moved to overlay the recover portion of the
program.

Depending on the request, the appropri-
ate recover or replace coding is then
executed. Following this, listing is per-
formed: for a recover run, if the LIST
option is specified all records on the
track are listed, or otherwise only the
defective records; for a replace run, if
the LIST option is specified all records on
the replacewment track are listed, or other-
wise only the replacement records. When
all requests have been serviced, the pro-
gram issues an end-of-job message, rewinds
and unloads the tapes, and sets the wait
state in the CPU with D's displayed on the
console lights.

BCRCVRP IBCRCVRP
IBCRCVRP (low) 1BC (low)
Supervisory Routines Supervisory Routines Supervisory Routines
VRECOVR VRECOVR VRECOWVR
Recovery Coding Recovery Coding Replace Coding
VRECTAB VRECTAB VRECTAB
Control Data Control Data Control Data
VGOODBUF VGOODBUF VGOODBUF
Replace Coding Buffer Buffer
(high) (high)

Figure 65.

206

A. Program Listing

#. Main Storage Contents for
Recover Execution

Main Storage Management for Recover Replace

C. Main Storage Contents for
Replace Execution

Recovering

The recover portion of the program reads
the specified track of the direct access
volume, gathers control data to be used by
a future replace run, and records the con-
trol data and the successfully recovered
portion of the track on a recovery output
tape. Figure 66 shows the tape format.

Records are read into VGOODBUF. If a
data check is detected in the count field
of a record or an address marker is missing
from a record, the remaining bytes on the
track, including records and gaps, are read
into VGOODBUF using the space count command
and are immediately listed on the message
device. After listing, the records and
gaps are cleared from VGOODBUF and the next
record is read into VGOODBUF immediately
following an 8-byte entry left in place of
the record which had the bad count or mis-
sing address marker. If the count field is
good and the address marker is present, any
key ands/or data fields read, whether good
or defective, will remain in VGOODBUF as
read. (See Figure 67.)

As each record is read into the buffer,
an entry is built in the record control
table VRECTAB. Each entry consists of a
1-byte flag and a 3-byte pointer to the
record image. The settings of the flag
byte in VRECTAB are as follows:

Bit=1 Meaning

Bad count field

Bad key field

Bad data field

Missing address marker
Last record flag
Recovery was aborted

EOF with key

EOF (with or without key)

6—

NNUEWNORO

After reading the track, recover kuilds
at location CCWLIST a channel program which
will be completed and executed by replace
in writing and read-back checking the data

put on the alternate track. Recover then
stores into VALTBUF the address of the
first doubleword boundary following the
recovered data in VGOODBUF. This estab-
lishes the area replace uses to receive
data for records with bad counts or missing
address markers. Recover then writes the
recovery output tape.

Replacing

The replace portion of the program, which
is moved to overlay the recover portion,
reads the recovery output tape, reads
replacement data supplied by the user,
assigns an alternate track (if the volume
resides on disk storage), and writes the
mexged data on the track.

The header record on the recovery output
tape is first read and the serial number of
the direct access volume is checked. The
next two records (control record and reco-
vered data) are then read into the same
absolute storage locations they occupied
during the companion recover run (VRECTAB
and VGOODBUF). Flag bytes in VRECTAB are
then interrogated, and replacement data is
read as needed. Replacement data is read
into the alternative buffer (pointed to by
VALTBUF) if the record to be replaced had a
missing address marker or a bad count
field; otherwise replacement data is read
into VGOODBUF, overlaying the corresponding
defective recovered key and/or data por-
tions. When all replacement data has been
read, an alternate track is obtained on the
volume (if it is non-drum storage), and the
merged recovery and replacement data are
written on the track using the channel pro-
gram at location CCWLIST. If the HA-RO
fields are defective on 2314 disk or 2321
data cell storage, the program attempts to
move these fields approximately 800 bytes
down the track.

Example: Figure 67 illustrates a complete
cycle (two executions of the program) for
recovering and replacing a track.

LABEL / TAPE TAPE
D OL |[TRA DATE| PAD CCWLIST |VALTBUF | VRECTAB VGOODBUF
(Optional) mark [P | VOL [TRACK) & MARK
ID = 4-byte constant "RECV" CCWLIST = Channel program VGOODBUF = Buffer
VOL = 6-byte volume ID of to be used to containing
direct-access device replace data on recovered data

TRACK = 12-byte

BBBBCCCCHHHH VALTBUF =

of recovered track

DATE = 8-byte date of VRECTAB =

assembly MM/DD/YY
PAD = 50 bytes of zeros

Figure 66. Format of Recovery Output Tape

volume

Pointer to buffer

for replacement data
Table of control
dafa for track

Independent Utilities: IBCRCVRP 207

®

During o recover execution,

the track containing defective
records is read into VGOODBUF;
for each record, a flag and
pointer are set in VRECTAB,

In this example, the given track
is found to be in the following
condition:

HA - Good

RO - Good

R1 = Bad count
R2 - Bad key
R3 - Bad data

R4 - Missing address marker
RS - Last record, good

Recovery Output
Tape

Figure 67.

208

®

The recovery output
tape is written,
consisting of a header
record, a control
record, and recovered
data. The recover
execution terminates.

®

During a subsequent
replace - execution, the
recovery output tape is
read into the same
absolute storage
locations from which

it was written.

Using control data from
VRECTAB, replacement
data is read into

(o) VGOODBUF, or
(b) the buffer pointed
to by VALTBUF, in
case of bad count or
missing address marker.

RO Count and Data

R1 Count I
£

R2 Count, Key and Data I'
New R3 Data

R3 Count, Key and Data <

R5 Count, Key and Data

Main Storage _ _ _ __ _
|
I vrecTas VGOODBUF
I { 00000000 HA Address HA and Blanks |
00000000 RO Count Address
10000000 R1 Count Address
01000000 R2 Count Address
00100000 R3 Count Address
i 00010000 | R4 (8 Bytes) Address
I 00001000 RS Co.unr Address R4-8 Bytes
Flag (1) Pointer (3) ———J
VALTBUF
(Next Double-
Word Boundary)

An Example of the Recover-Replace Cycle

New R4 Count,|
J Key and Data

®

Using the channel program
read from the recovery
output tape, the merged
(old and new) data is
written on an alternate
track.

Replacement Data

New R2 Key

New. RT Count,
Key and Data

Chart 78. IBCRCVRP Overall Logic

N et It
* START *

*
ERRERRE R KRRk

*
PR A ET S PSS L L 1
EL L L]
*
* C3 o>
* *
RhkE
CLRSCAN
EEEEE ek E IS L 2]
* R *
* SCaAN, AND x
ANALYZE' CONTROL
* STATEMENTS *

REPLACE

o+,
D4 *,
o* *,
.+" FIRST .
*, REQUEST . ¥

HERRREY RN R R
* *

* TRACK *
ELEEE IS TR L EL L L

LISTDISK

el
* *
* LIST *
*ALL RECORDS ON *
* TRACK *

* *
HERERRER Rk Rk

* *
RERRERE Rk kR R Rk
D3" Tx.
.+ ..
RECOVER .* RECOVER '*
f—m~mwmm——wem-—m—m%. OR REPLACE .
*, ¥
*, ok
*, ¥
*
v
AR RR AR
* CHART 79 *
L o et e Dk
* RECOVER *
* DATA FROM #
* TRACK *
HERERRF B RERER RN E
EE i3l l(
78_
* F3# N
* & F3 *,
* ¥ *,
L .+ WAS LIST *. YES
______ .. _OPTION
*. REQUESTED.
N
*"No
VENTLIST
FEERRGI AR ERE IR,
* s .
* DEFECTIVE *
* RECORDS OR *
+ REPLACEMENT | *
* “RECOR *
ERE SR R e i i T L]
<
H3" e,
Rk * *

. * YES .*" ANOTHER *.
* C3 0(——_—‘,‘ REQUEST *.*

TS *. o

* ¥

* NO

ENDPRINT k'

FERRET IR R R SR
* GIVE *
* EOJ MESSAGE, *
* REWIN *
: UNLOAD TAPES :
P L T
SEREKI R RER RNk
- OJ *
* (WAIT) *
*HEX D'S IN PSW *
ERRRRRER AR

ST
RAKERDS KRR Rk bk *
*
* MOVE REPLACE *
>*CODE TO OVERLAY*
: RECOVER CODE :

St LI L L L

Independent Utilities:

IBCRCVRP 209

Chart 79. IBCRCVRP Recover Logic
REEEE
*79 %
* Al*
* * EE L1
* * *
* A2 *¥e—m.
* *
ok
VRECOVR
t‘i.*Al‘.‘ﬁ“.*l* HERRRA DR EE Rk
* 1SSUE SEEK, *
* RENEW CCWS, =* * SFM, RE, *
¥ CHECKVOLLD, #-mmmmmmm >* READ RO, READ *
» CLEAR BUFFER * * COUNT'R1 *
* * * MULTI-TRACK ¥
FEEERRRR AR RR R Rk LA RIS E SIS L2
¥
¥, . .
B1 . B2" %, B3 .
¥ * .
. YES . EEK) BAD . NO
#. PERMANENT .#——————m >¢ CHECK S >% HOME ADDRESS . *=~—mm
ERROR _ .*
- ¥ *, ¥ *, .
*, % * * *, ¥
KO *"YES YES
*pkk
*79 *
*'C3 %>
* *
Rk
VRET1 VBADHA
ti'ttcl*‘i.ittt*' EEEEETexU 22222222 13
* HRRECFBER R AR * FLAG *
. DETERMINE RO % % ERROR MESSAGE ¥ * VRECTAB GIVE *
SIZE, PUT HA *<—- ABNORMAL EOJ $MESSAGE, TRY TO¥---—-
*mn R ENTRIES * YHER B E (WAID) + AD REST OF *+
IN ECTAB EE T T RS ST T] TRA *
"““‘#i#‘i*#‘#‘ O““‘it"‘#**##t
EE 2]
L idd * *
*79 = * Cl %
*'D1 > M *
* * R
*hkk
00P v
*ttitDltn*ii#t‘i# #*t*‘D3itt#**tit*
UPDATE WR
FOINTERS t MESSAGE AR AND +
-—>tpu'c SKIP L T 2 4RO ONLY on B <
i PREVIOU EXIT TO ¥ 'RACK
TREAD CEda END-OF-TRACK*##x# p
i#ii‘“!tt*ttt‘ ROUTINE *81 * "“ﬁ““"““"
* Gu¥
* ¥
4
. VDISKEOF _.%.
El *, EZ * WERESE IRk ek bk kE
* * . * FLAG
.** IS DATA '*. YES s . YES *READ COUNT WITH*
*.FIELD ABSENT .¥——-———. ——>#. KEY FIELD .%~—————u >+ SKID, READ *
. (EOF . ENT . COUNT NEXT *
. * “RECO *
*, Lk LRI S RIS L2 1]
* NO
VISSUERD
RERFEF] RSk e v e bk bk FREFRF 2R R R ER
* ISSUE COW % * *
*CHAIN WITH READ® * FLAG VRECTAB, *
+ CKD AND END *<——mmmm— *SET EXPECT EOF *
* WITH READ CT * * SWITCH * -
+ MULTI-TRACK *
i“ttt*‘iitit*i*t LA TSI SR RSS2 222 L]
<
A
- ‘itttGZ‘l“t#*“‘
. ., 4 UPDATE TABLE, ¥
PERMANENT - %< tswmca, CHANGE ~
. "ERROR _ . READ ' CKD
.. - i RERD GobwT-
— '#'#*tt""‘tt“‘
*"yEs Hhak A
* *
* Gl *
* *
AR
YES
o B
H2 .
¥ * EE L2
.. 1s *. NO
EXPECT :
SRR ou *
*, *kEk
*, %
o+ ..
J1° s, 32" T
¥ *“t
. DATA No
. CHEC —>tan<:K m COUNT.'--——>‘ FS :
*, ¥ . . *‘ts
- * *, ¥
1 YES j’ YES
whkkE L s i]
*80 * *8]1 *
* Al* * Al*
* ¥ * ¥
* *
EXIT TO EXIT TO
DATA_CHECK COUNT CHECK
ROUTINE ROUTINE

210

VALTS
HEACK YRR ARk
* I UP

*
‘ALTERNA‘IE FROM ‘
‘RO COUNT FIELD ‘
tatttat#ttvﬂtsta

VPRNTALT
t*titFH‘t’**ttt**
*

*

“MESSAGE GIVING *
4RI 1D, FUT ALT*
*ADDRERS TN

R. #

LR L T 22 L
Ak

* *

—>% A2 *

* *

*hk

VSPECOVR

FERERGY BRRERRRREE

* SET OVE.RFLOW *

* SWLITCH,

* END OF TRACK
KOUTL

*(--
‘3‘1“*""‘*‘**‘
Fkk
81 * LXIT 1

—>%
*
e

LEA AL USEEE RS2 L1
* *
* *
: ERROR MESSAGE :(—

* *
EEXERERRR AR BTN

FhkRTUREREFEERE
*

- "

* ABNORMAL, EOJ
*HEX E'S (WAIT)
LRt R P Mt il

* END UF—lRACK

VBZDKO
FERRRLS KRR KR KKK
*GIVE BADRQ MSG, *

* FLAG VRECTAB
—>YREPLACE READ A0+
B

A *BY SPACE COUNT :
1 HEEE AR R R
9
B
*

*
*
5%
¥k
***'*CS#**“““*
SEEK, *
* SPACE cou.wi' *
EAD COUAT' %
: MOLRICPRACK *
Rk EE Rk kR
*
*
*
L
o5 .
¥ %,
NO .* *,
—<%. PERMANENT .%
. "ERROR _.
*, K
P " YES
*
c1 *
*
*hkk
4.

cOUNT .*

l %, FIELD .*
* *
*, ¥
Rk *
*81 *
* A1¥
* %
* XIT %0
ot CHECK
-%. KOUTTNE
¥5
t
MASK'+. YES
->tv101:.A'r10N (?ND [lataass
I * ox
21T * NO AR
* 1 %
F5 * * n3%
* *
F EXIT TO
END-QF-TRACK
. *. ROUTINE
6™ Tl

. .
YES .* IS LAST *.
--=+RECORD OVERFLQW*
. 0
LI
+" %0

HS *,
o* *.
O .* MISSING
* . ADDRESS
. MARKER .

VHMAM

L T
*

*
: FLAG VRECTAB

e

*
AR R R R ROR Rk

hhnted L bbbl bkt

Chart 80.

IBCRCVRP Recover Data Check Routine

A -, ERERRDRERRRERR RN
o* . * *
P4 BAD *. YES *INTERRUPT FROM *
.COUNT SWITCH o #~——emeree >#* END OF SPACE #——————-.
*, OoN . * . TO
*. ¥ * VCNTCKS * ERER
L+ T *81 *
* NO Fi#
¥
*
.‘.
. R RRB2RRAR AR Ak
- - * *
MISSING *. YES *INTERRUPT FROM "
* ADDRESS MARK & #——— e >% END OF SPACE *-—————m
.SWITCH ON * * COUN! 1’
o * Vi * S
Tk, ok P T T T T T *81 *
* N F2
P VERRORBI ATARD
[tuuczn*ntuu FREEACT AN RN KRR
* *, * PUT ACE *
«% PREVIOUS *. YES ' BOTH KEY AND " * COUNT IN FOR ¥
*.DATA CHECK ON. *:
.KEY FIELD. A TO END. Y
. . . * SWITCHES * ook
.k Bk T T I e %79 *
* NO * Dl#
¥
*
o VERRORDT
D1 EERRRD2AR AR RN AF
* *
.PREVIOUS DATA- YES
* CHECK ON DATA. ¥—mm————m >% DATA BAD,FLAG *————.
‘ RECORE.‘ VRECTAB :
“w. oL kR kR
* NO
v L o*.
tt#ttEl#"t*ttt*t* E2 *, E3 *.
R *, X
' DATA CHECK ¢} ¥ . YES
OCCURRED SWITCH————————)'.HOME A.DDRESS P e RO BAD ¥
VBADDT . . v
. b . a .. . EAEEE
AR AR RR R AR .. .o *79 *
* YES * NO * BS*
£ x
*
%k
*79 *
* C ¥ ok,
* F3T e Fu x, TRRRRESERERaRb ALY
* . oK *
DOES *, YES WAS_KE *, *VBADKEY SWITCH *
* RECORD HAVE A. —————— >¥, READ gITHOUT o ¥ D% TO SIG AB KEY
" '# b
NO * YES
<
X
&3 “x. FARARGL RRE AR SRR
* SET EXPECT *
Py WAS LAST _*. YES * EOF SWITCH. *
RECORD_READ" AN. #-——om—mmm ->% MAKE NEXT TO *
‘e EOF % : T CCW A REI\D:
Ta, %" P Iy
* NO
;(
H3® s,
NO .*' IS *. YES
----------------- *. THIS AN EOF .¥—mmmmmm.
. RECORD _. k4
. .* PET e
*, *79 *
* * Dix
*
*
VCOMDMV
FRESRTI Rt ASE MR CEL A LEL LA
* *
‘ ISSUE CWMAND * ¥
>” "— >%, 6
*, B
* MULTI-TRACK * . o* Hkkkk
PR T T T A PP . . F *79 *
* NO * Hl*
O
l .
ok VERRORKY
tt:t*](:arr*ttvntn K4 L tttt:gstttttttttt
LEAR_Bi *
" DATA SWITCH * NO .x ‘%, YES "" FLAG RECORD ‘
—--—-——%READ DATA. GOT *<mmmmmem s * RECORD HAVL iAo BAD KEY, *
¢ RECORD THIS * BAD KEY 23000 oARA’ *
FARAE * Tl . : *
79 * Rk R AR Rk Rk *, .k AR AR
* D1* e
* ¥
*

Independent Utilities:

IBCRCVRP 211

Chart 81. IBCRCVRP Recover Count Check and End-of-Track Routines

Ll il
*g1 *
* B1*
L
*
Eiidl]
. *81 *
VCNTCK * A3+ VEOT o
EAEREAT S RERRE AR A3 . x,
* SET BAD COUNT * o ..
* SWITCH * l TRACK . " *. YES
VCOUNTBD. ROUND# SN 4 FLAGGED BAD . %——o— e
+ UP VRECTAB * #.ORIGINAL .* ¥
ADDRESS * . o ot
LA AL I T e e 22 21] *, % *79 *
+'No * By
*
*
N
Bl - t#“tBZji"t.t‘tt'i
. . TAG *
. *. YES - RBCORD o1 *
*. RO BAD [3 *
. . * cnmum'm ToP *
*, = Il * OF VGOODBUF *
LN *79 % FIITE2 P+ TP
*"No + B5%
* %
*
[T TaRTI T 2 F T .to'tc:gnumuu:.ta
* F!
*« RECORD IN * * STORE HIGHEST .
*VRECTAB AS_BAD * ADDRESS IN
* COUNT FIELD # 4 VGOODBUE INTO :
ETITTI P2 T EA TS Y ERAL P E AT L L L]
VCALCSZ 4 VREPCCI v
SRRl s bbbbb bk tt‘t‘D3‘--t‘Ot"‘0
* MOVE CQUNT _ * * BUILD ocW
* FIELD AS READ * * ST FOI t
+«INTO VGOODBUF. * *REPLACE TO usn
*CALCULATE SIZE * *« TO WRITE
* 0 * * RECORDS 3
EEERERURERERERRER LR e E R TS L it L]
v
t‘tttEltt‘l.tt.t‘ E3 ‘, "“‘E“*““"""
* SET UP SPACE o * MAKE OP
§E. * YES * CODE FORIAST &
+CPNTECOOHE BD oovmn.ou swrrcut-—-—--——»azconn WRITTEN +
tRm m NDER * SPECIAL*
[TRACK * L dind . .0 D *
tt#.l‘t‘--)tt‘.“ *81 * *, ‘t.t’bt"tt'..tttt
* F2+ + Yo
kb * X
*81 * *
*Fl %>
* * <-
[hbd
VCNTCKS v VAMCHK VWRT2RD
EL T R I T LI LY 1] RERREF240 ke kRN RE ARERAF I kR ok ek
* SET UP AND _ * * RETURN * * *
* WRITE MESSAGE # + AFTER DATA _ * 4 CREATE READ *
*OF BAD COUNT OR#<———————— *CHECK ON SPACE * *BACK CHECK CCWS*
MISSING ADDRESS *COUNT REFER TO * *FOR WRITE CCWS *
* MARK * * MAM * * *
P22 r T e s L]
kR
*gl *
v RCVRTAPE * Gyx
..'.tG],#".‘*.‘OO‘ 3‘ GY * ®
RCE . * * USE * .
+ LISTOOF BAD * REQOVER ¥ * TAPECHKS * |
* RECORD ON _ * ‘TAPE ROU‘I‘INE AT¥— e >% ROUTINE TO #<wmmmm—m
*MESSAGE DEVICE * * POSITION TAPE *
* Li3 il ‘ t *
EREEERBARBRREERRY *81 *
* H2#*
* %
»*
Hl' R atntqqztcaumu.t *RRE R IR ARk SRR ERERE YRR,
* RES: + INSERT NOP * * WRITE THREE *
15 MISSING *. JYEs *MISSINE ADDRESS® *COHMAND IN CCW * *RECORDS ON THE *
* .ADDRESS MARK . #mm——mmeme. > MARKER SWITCH *——-mmm->¥% LIST TO * * TAPE, WTM *
*SWITCH SET. . * * SUPPRESS MAM * *REWIND,; UNLOAD *
- o * R_REC * 3 TApg *
», "O‘tt*tt.tttt“t PYTT]
»* NO
*rkEk
7 »
ETRS * F3#
EA LI I NGRS L2 L2 BERERTI Rk RR * *
* * % MOVE READ *
* RESET * * COUNT M/T TO +
* BAD COUNT *=————w--D*END OF CCHS, UP¥<m—mmmmeemmmmeee .
* SWITCH * * RECORD COUNT =
BERRRE RS ERE RN bk LR i T2 L PSPt Lt

212

Chart 82.

VREPLACE
PO TN LT
*
* RESET *
*SWITCHES CLEAR #
: BUFFER AREA *
HEERR R AR R AR RRK

IBCRCVRP Replace Logic

READRECT .
FRESEHDD HRREF A FRRR a3" s,

READ a . B
* RECORD FROM * .* Is 1T *,
RECQVER TAPE ——m—w——a>%, THE HEADER .*
* *. RECORD .*

*

LSS SRR P2 g *. ¥
* YES

CKVOLL
t*#*B3tttitt*tti

ERRT T S ES FEE R R T

TAPEREAD
FRREHRCIRERRR R RRk

* READ IN THE *
NEXT TWO TAPE
* RECORDS *

EEI RIS 2]

CKTABLE __
FRRRADI R RRA kAR R
t CHECK M

* VRECTAB FOR *
(——>*RECORD ENTRIES *
* OF THIS TRACK *

ok Rk Rk Rk

LASTCK ¥
F3 ‘.*

*, o *
*, Lx
* YES
VTOCREAD

FXRERG3 *E
* ASSIGN AN *

* ALTERNATE
* TRACKIF THE *

* STORAGE *
ok ok ok Rk

H3' '#.*
. *" OVERFLOW " *. YES
*. OPTION e
*, .
oE
*, .k
*"No
<

| wo,.x T Is *,
——%.THAIS THE LAST.*<{~——e=—=—
. RECORD .

ko RDCARD

37 . Ell *, tlt*tp{;*ttt*tlttt

o *, AD
o* Is *. YES o IS IT THE N NO 'ANOTHER INSERT “

. THIS A BAD _.¥=———w—=>%. FIRST B, o Ko > CARD_F
%, RECORD %~ *, RECORD .* * REPLBCEMENT "
*, oF *, o* * DATA *
*, ¥ ®, .k P T T
NO * YES
READDATA

L T e L LS

READ
*IN AND PROCESS *(
* REPLACEMENT *

LRSS EE TS L]

CKOV

RLW

RREH R AR R R

* CHANGE LAST *
CCW DE TO

*COUIF -KEY-DATA :

*tt#tttt-

AL TTT LY

MORLIO
FEERAETIRARER AR R

* EXECUTE *
*THE CCW LIST .

LRI E SRl ST 2

K3 Tk,

RT
FRKUFE Rk R R kR E

WRITE *
LAST RECORD
ON TRACK *

EEREL LT I]

Independent Utilities:

IBCRCVRP

213

Appendix A: Modules of Utility Programs

This appendix descrikes the modules of each
utility program. The module names given
are the SYS1.UT506 names. When these names
differ from equivalent SYS1.LINKLIB names,
the latter are given in parentheses. 1In
the case of the independent utilities
IBCDMPRS, IBCRCVRP, and IBCDASDI, the pre-
vious statement is not applicable since
these programs are part of the S¥YS1.SAMPLIB
data set.

IEBCOMPR

IEBCROOT
is the root segment; it opens and
closes SYSPRINT, writes messages, and
calls the proper modules.

IEBCOMPM
is the message module.

IEBCANAL
interprets returns from IEBCCS02.

IEBCMAIN
when the data sets are partitioned,
compares directories to determine
whether one is a subset of the other;
when the data sets are sequential, it
compares the data sets.

IEBPTPCH

IEBPPUN1
is the root segment; it opens and
closes SYSPRINT data set, calls proper
modules, and prints all messages and
control cards.

IEBFPMSG
is the message module.

IEBPPALL
obtains storage for and then con-
structs tables and work areas, calls
and then interprets returns from
IEBCCS02, checks for valid parameters.

IEBCCS02 .
opens and closes SYSIN data set, reads
and scans cards, returns data to
IEBFPALl.

IEBPPCH1
is the processor module; it handles
sequential and partitioned data sets,
opens and closes SYSUT1 and SYSUT2
data sets, checks for valid control
cards, and examines tables built by
IEBFPALl.

214

IEBCOPY

IEBCOFYA)
is the root segment; it gives control
to the proper modules, and prints all
error messages and control cards.

IEBCOPYB
is the message module.

IEBCOPYC
opens and closes SYSPRINT data set,
obtains storage for and constructs
work areas and tables, calls and then
interprets returns from IEBCCS02, and
when control cards are present, checks
them for validity.

IEBCOPYD
is the processor module; it opens and
closes SYSUT1 and SYSUT2 data sets,
analyzes tables from COPYC and: if
total copy, reads in directory and
sorts by TTRs; if exclusive copy,
sorts exclude table by MEMBER NAME
sequence, reads the data set direc-
tory, compares for excludes of direc-
tory names, and sorts directory names
by TTRs; if inclusive copy, copies
included names and moves data from
input buffer to output buffer.

IEBEDIT

IEBEDIT
extracts records from a master file of
JCL statements to create an edited
input stream data set.

IEBGENER

IEBGENRT
is the root segment; it opens and
closes SYSPRINT, writes all messages
and control cards, and gives control
to proper modules.

IEBGMESG v
is the message module.

IEBGSCAN
obtains storage for and then con-
structs tables, calls and then intexr-
prets returns from IEBCCS02, analyzes
control cards.

IEBGENR3
is the processor segment root module;
it opens and closes input and output

data sets and performs label
processing.

IEBGENS3 (IEBGENR3)
perforns I/0 operations for variable
spanned records.

IEBGENO3 (IEBGENR3)
performs I/0 operations for non-
variable spanned records.

IEBMCOVE2
moves logical records from input to
output buffer.

IEBEDIT2
moves, with editing, logical records
from input to output buffer.

IEBCONH2
converts data from H set BCD to
EBCDIC.

IEBCONP2
converts data from packed to zoned
decimal.

IEBCCNZ2
converts data from zoned to packed
decimal.

IEBLENP2
computes total output record whenever
an input record is encountered.

IEHUCSLD

IEHUCSLD
checks for type of operation, for
universal character printer, and for
buffer load characters; issues WTOR to
mount proper chain; loads the buffer
and verifies it, if specified.

IEHIOSUP

IEHIOSUP
finds first load module of SVC routine
then loads succeeding modules, reads
in the member, and updates member's
XCTL table, if present.

IEHINITT

IEHINITT
is the root segment; it opens and
closes SYSIN and SYSOUT, builds tape
lakel image in main storage, extracts
information from the JFCB, and links
to SVC 39 to write the tape label.

IGC0003I (svC 39)
writes a tape volume label followed by
a durmy header label and a tapemark.

Appendix A:

IEHSCAN
reads control statements and scans
them for INITT command and for
keywords.

IEHPRNT
’ is the message module.

IEHDASDR

IEHDAOUT formats and writes dumped informa-
tion to the SYSOUT data set.

IEHDASDR
is the entry point for the program.
It performs initialization and passes
control to the Control routine.

IEHDASDS
is the Control routine. It processes
control statements and passes control
to the functional routines.

IEHDCELL
is the Data Cell Analysis routine. It
performs surface analysis of data cell
volumes.

IEHDDATE
is the Date routine. It obtains the
day's date and passes it to the Print
routine, IEHDPRNT.

IEHDEXCP
is the I/0 subroutine of the Dump rou-
tine. It performs all I/0 operations
during a dump except for those per-
formed by IEHDAOUT.

IEHDGETA
is the control routine for performing
alternate track assignment.

IEHDLABL
writes new volume serials and owner
names on direct access volumes.

IEHDMSGB
is the Message Builder routine. It
selécts, constructs, and stores
nessages.

IEHDMSGS
is the message CSECT. It contains the
messages used by the IEHDASDR program.

IEHDPASS
is the Password Protection routine.
It checks the passwords required for
security protected data sets, and
checks data set expiration dates.

IEHDPRNT

writes messages to the SYSOUT data
set.

Modules of Utility Programs 215

IEHDREST
is the Restore routine. It reads
dunred information from a restore tape
and writes the information on direct
access volumes.

IEBDSCAN
is the Scan routine. It reads control
statements and scans them for syntax
errxors, one field at a time.

IEHDVTOC
is used by the Analysis routine to
write system data on direct access
volumes.

IGCO008RB
is the first load of the SVC 82 rou-
tine. It builds DEBs for new direct
access volumes and passes contrcl,
when necessary, to one of the other
loads.

IGC0108B
is a load of the SVC 82 routine. It
assigns an alternate track on a direct
access volume.

IGC0208B
is a load of the SVC 82 routine. It
updates UCBs to reflect new volume
serials or VTCC location changes.

IGG019P8
is the End-of-Extent appendage rou-
tine. It modifies extent limits and
file masks in DEBs.

IGG0O19P9
is the Abnormal End appendage routine.
It is used to bypass I/0 Supervisor
error processing.

IEHMCVE
IEHMQVE
is the root segment; it obtains a save
area.
IEHMVSRS
loads modules if required.
IEHMVXSE
gets three work files and a work area.
IEHMVXSF
is the first-time control module for
IEHMVSSF.

IEBHMVSSF (IEHMVSF)
mounts volumes.

IEFWNSKA (IEHMVSF)
is the systens device mask takble.

216

IEHMVEST
clears work areas and initializes for
a request.

IEBMVESJ
reads cards.

IEHMVSSS (IEHMVESS)
builds tables and sets switches.

IEHMVEST
opens the catalog for a data set group
operation.

IEHMVESC
reads the catalog and writes it onto
SYSUT1 for a data set group operation,
or writes the catalog onto SYSUT2 for
a move or copy catalog.

IEHMVESH
closes the catalog and sets up for
following request.

IEHMVSSZ (IEHMVESZ)
checks for volume or data set.

IEHMVSSV (IEHMVESZ)
obtains 'FROM' DSCB, links to module
for mounting of °'FROM' volume.

IEHMVMRZ (IEHMVESZ)
writes messages.

IEHMVSRZ (IEHMVESX)
handles routing and errors.

IEHMVSRV (IEHMVESX)
allocates the catalog on two volumes
if necessary.

IEHMVSRK (IEHMVESX)
reads unloaded records.

IEHMVSRY (IEHMVEXV)
handles routing and errors.

IEHMVSSX (IEHMVEXV)
allocates two data sets.

IEHMVSTC (IEHMVEXV)
reads 'FROM' partitioned data set
directory.

IEHMVMRY (IEHMVEXV)
writes messages.

IEHMVSSY (IEHMVESY)
handles routing and errors.

IEHMVSRM (IEHMVESY)
writes first unloaded record when
applicable.

IEHMVSRX (IEHMVESY)
kuilds 'TO' and 'FROM' DCBs, handles
*TO' DD and: 'FROM' DD.

IEHMVMSY (IEHMVESY)
writes messages.

IEHMVMRZ (IEHMVESY)
writes messages.

IEHMVETJ
reads *FROM' and writes 'TO' sequen-
tial or partitioned data set without
performing reklocking.

IEHMVESL
reads °'FROM' and writes 'TO' sequen-
tial or partitioned data set; reblocks
type F records.

IEHMVESM
reads 'FROM' and writes 'TO" sequen-
tial or partitioned data set; reblocks
type V records.

IEHMVSRD (IEHMVERD)
builds unloaded records.

IEHMVSRM (IEHMVERD)
writes unloaded records.

IEHMVSRA (IEHMVERA)
recreates unloaded record in original
state.

IEHMVSRK (IEHMVERA)
reads unloaded recorxds.

IEHMVSTA (IEHMVETA)
builds unloaded record and creates
original record.

IEHMVSRM (IEHMVETA)
writes unloaded records.

IEHMVSRK (IEHMVET2)
reads unloaded records.

IEHMVMTA (IEHMVETA)
writes messages.

IEHMVESR
gets directory entries from SYSUT3
work file.

IEEMVETG
gets directory entries from SYSUT1 of
includes or selects. :

IEHMVESU
writes messages.

IEHMVESN
closes 'TO' and 'FROM' data sets;
determines next module.

IEHMVMSN (IEHMVESN)
writes messages.

IEHMVESQ
catalogs and uncatalogs moved data
sets.

Appendix A:

IEHMVMSQ (IEHMVESQ)
writes messages.

IEHMVESP
catalogs and uncatalogs copied data
sets.

IEHMVESO
checks errors - job abort or request.

IEHMVESK
closes SYSIN; scratches and closes
SYSUT1, SYSuT2, and SYSUT3.

IEBISAM

IEBISAM
is the root segment; it sets up a com-
mon work area, obtains input parame-
ters, sets switches, and passes con-
trol to the required module.

IEBISC
copies records of an indexed sequen-
tial data set.

IEBISU
retrieves logical records sequentially
from an indexed-sequential data set.

IEBISSO (IEBISU)
creates 80-byte logical records with
fields as defined for ‘'unloaded®' data
sets.

IEBISL
reconstructs indexed-sequential data
set from ‘unloaded' data.

IEBISSI (IEBISL)
retrieves logical records from an
'unloaded' data set.

IEBISPL
prints logical records of an indexed
sequential data set.

IEBISF
writes messages, prints error messages
if applicable, and returns completion
code to root segment.

ZIEHPROGM

IEHPROG1 (IEHPROGM)
gets work area, reads SYSIN, mounts
volumes if applicable.

IEHPROG2 (IEHPROGM)
issues SVCs for cataloging, uncatalog-
ing, deleting, connecting, releasing,
BLDA, DELET.

Modules of Utility Programs 217

IEHPROG3 (IEHPROGM)
contains and writes messages.

IEHPROGY4 (IEHPROGM)
opens input and output DCBs.

IEHPROGS (IEHPROGM)
prepares for the volume mounting
module IEHMVSSF.

IEHLIST

IEHQSCAN (IEHLIST)
reads control cards.

IEHPRMSG (IEHLIST)
message module.

IEBPRINT (IEHLIST)
scans and prints requested data from
VTCCs, catalogs, and directories.

IEBUPDAT

IEBUPDAT
updates 80-character logical record
libraries.

IEBUPDTE

IEBUPDT2 (IEBUPDTE)
creates partitioned or sequential data
sets, sequences new data sets, rese-
quences old data sets, replaces or
reproduces data set members, or adds
members to a partitioned data set.

IEBUPLOG (IEBUPDTE)
opens SYSPRINT and writes messages.

IEBUPDTE
reads control cards, and opens SYSUT1
and SYSUT2.

IEBASCAN (IEBUPDTE)
scans and analyzes control statements
and sets appropriate flags.

IEBUPNIT (IEBUPDTE)
initializes the region IEBUPCON and
opens SYSIN data set.

IEBUEFXIT (IEBUPDTE)
contains exit routines for the
program.

IBCDMPRS

IBCDMPRS

creates backup copies of direct access
volumes.

218

IBCRCVRP

IBCRCVRP
recovers usable data from a defective
track, assigns an alternate track, and
nmerges replacement data with the reco-
vered data onto the alternate track.

IBCDASDI

IBCDASDI
initializes and assigns alternate
tracks to a direct access volume.

IFCEREPO
modules for this utility program are
summarized in Figure 25,

IEBDG

IEBDG _
is the control module that is the
interface with a calling program. It
opens the input, output, and message
data sets, and it reads the program's
control cards.

IEBFDANL
analyzes the keywords and parameters
on an FD card and begins construction
of an entry in the FD table.

IEBFDTBL
completes the construction of the FD
entry that was begun by the FD analy-
sis module. It assigns FD card
default values if necessary.

IEBCRANL
analyzes the keywords and parameters
on a CREATE card and builds a create
table entry, a picture table, an FD
address table, and an exit name table.

IEBCREAT
generates output records by using
information from (1) input data sets,
and (2) tables built by previous
modules, as required. It permits user
modifications before final record out-
put. It releases storage obtained for
information tables.

IEBDGMSG
is the message module, and it controls
the paging on a message printer.

IEBDGCUP
is the clean-up module that closes
DCBs and frees storage for DCEs and
buffer pools.

IAppendix B: User-Label Processing

With respect to the processing of user The following text discusses parameter
labels by user routines, Figure 68 shows information passed from a utility program
the general logic of the following utility to a user routine, and return code informa-
programs: IEBCOMPR, IEBEGENER, IEBPTPCH, tion passed from a user routine to a utili-
and IEBUPDTE. ty program.

Appendix B: User Label-Processing 219

LT EETE]
* * *
* 1 x * 6 *
* * *
EPETY T
A ¥
**B3*%%* 4 %% (SEE NOTE A) B4 #, T LTI LET PR TR
SEIABLESRERERRR * * . *, * *
* * OPEN * ¥ USER *, NO * COMPLETE *
* JCL ENTRY * * INPUT e >k LABELS o Hrm e >¥ THE DATA *
* * * DATA SET _* . . SET OPENING *
FERERRRRRERERAE * *, o *
R B ARE £, L * T T T T PR T
* YES
S (VIA DCBEXLST)
* 2 x>
* EE S L]
EETYS *
v . * 2
FRREACT RRRb ARk Rk t#tttc2tt##‘#4ttt c3 FREERCLRE R AR AR R
* * * NTTNUE * IEBXXXXX * *akk
* CONTROL * * UTILITY * NO "“I‘IERMINA'I‘ION“I Hod—k—k—k—k—k ke h
* CARD * * OGRAM'S Flm e REQUESTED _.* * TQ SPECIFIC *
* SCAN * * INTENDED * *, ok * UTILITY *
* * * FUNCTION * *. ¥ * PROGRAM
e e Y 2 PRI E TP e T 1 . ok ttttttt*i*tttt#tt
* YES
*.
AEkEADLAASRARRRES DU *,
* * ttttnzttttttit* SREIDIERRERREAK *,
*INITIALIZATION. * * CONTINUE * TERMINATE * . LABEL *, NO
* SAVE DATA * * UTILITY' ‘ * AND RETURN TO #* *. PR SSING & ¥e—— e g
* * * PROCESSING * * SUPERVISOR * *, REQUESTED *
* * AR ERRRRKEREE T e P .
P e e T T Tk,
“x YES
UTILITY |LABEL EXITS
PROGRAM |TAKEN FOR: :
AERRSAEL AR AR SRS RE TEBCOMPR|INPUT HEADER. EEERFEURKRERRERER F AR ES Kok kR
INPUT TRAILER. * * * POSITION *
* LOAD USER * * SAVE LABELS * * UTILITY *
EXIT IEBGENER |INPUT AND * 1IN STORAGE * * PROGRAM AT *
* ROUTINE * OUTPUT HEADER. * AREA * * DATA *
INPUT AND * * * LABEL GROUP *
TR ERRERR AT RS OUTPUT TRAILER. Bk okok ko ok kR Rk ok Rk Rk
IEBUPDTE [HE
ATA B8t S981n -
OR SYSUT1. TRAILER, FOR
ATA ON SYSUT2. <
FOR UEDATE-INPLACE v
NO OUTPUT LABEL EXITS.) ¥,
Fy *.
Rk ¥
* *
L, t<——--*LABEL ROUTINES-
* -EROVIDED .*
##‘# o
“x. ok
*YES
4
SERARGLERRERE RNk ERGYREREERD
* BUILD DCB * * USER EXIT *
* EXIT LIST * e
* OF USER * * USER *
* ROUTINE * * PROCESSING *
* ADDRESSES _* * *
I T T T ERr T Y
NOTES: 1) ONE ENTRY TO USER
OUT E FOR EACH
LABEL \OCESSED.
3\ SEE TEXT 2) REGISTER CONTENTS
“Hl*‘*"#‘ R RAH2 ARk ka k42 ¥ % FOR RETURN ARE AS_ FOLLOWS:
* CHECK *COD: GR1: PARAMETER LIST
* GET * USER'S *DESCRIPTION (SEE FIGURE TEXT) .
* STORAGE FOR * * RETURN * GR14: RETUR ADDRESS
* USER LABELS * CODE * UTILITY PROGRAM
* ' * (MUS SAVED BY
AR RET T TR P ST T 2 USER
GR15: ENTRY POINT ADDRESS
FOR USER ROUTINE.
LT
* *
* 1 % ok,
* J2 *,
LT Y e
* NO *TERHINATION B
£ 6 t<---t REQUESTED . ¥<--
* *, ¥
ek k *, L*]
*, %
* YES EEETY
*
* U4 o*
NOTE A: FOR CLOSING THE DATA SET OR_FOR
hxE END OF VOLUME, A SEQUENCE SIMILAR
TQ THAT BEGINNING AT POINT 'A'
AND RETURNING TO POINT 2 OCCURS.
ARRAAR2ER R KRSk R
LT * *
* * SET *
* 6 *<———-* TERMINATION *
* INDICATOR *
LTS . *
T TP Y R TP

® Figure 68.

220

General Logic of Utility Program With User Label-Processing

Routine

Parameter List

When the utility gives control to a user label-routine, general register 1 contains the
address of a parameter list whose format is given in Figure 69.

r—— 1 byte > 3 bytes »

Not Used Address of 80-byte label buffer area

Flag byte Address of DCB being processed

Address of status information
(for uncorrectable 1/O errors)

Error flags

Presently not being used

® Figure 69.

A description of the underlined fields
indicated by the parameter list in Figure
69 is given Lelow.

¢ label buffer area: prior to entering a
label routine, user header or trailer
labels are read into this area by the
operating system. When a user's label
routine constructs labels, the labels
are placed (one at a time) in this
area.

e status_information address: if an
uncorrectable I/70 error occurs during
the reading or writing of a user label,
bit 0 of the high-order (exror flags)
byte of this field is set to 1. The
three low-order bytes of this field
contain the address of the standard
status information for SYNAD routines.
(See the publication IBM_System/360
Operating System: Supervisor and Data
Nanagement Serxrvices, Form C28-6646.)

Note: At volume switch time, the utility
routines use the information contained in
the flag bkyte of the second word to indi-
cate end of volume or end of data.

PARAMETER LIST MODIFICATION

For IEBUPDTE, the following modifica-
tions are made to the parameter list:

e When there are user label-processing
routines, the first meaningful field of
the parameter list passed to the user
output-label routine points to the
label buffer. This buffer, which con-
tains a label data record from the
SYSIN data set, is for the user to

Parameter List Passed to User-Label Exit Routine

inspect before the record is written as
a label.

If the error status information in the
parameter list is established as a
result of a reading error, the user
routine must return one of the return
codes (described in the next section)
or the program will be terminated.

If the error status information is
established as a result of a recording
error, bit 1 (of the error-flags byte)
is set to 1 to indicate that the error
occurred during an output operation.
In this case, the user routine must
return a code of either 0 or 4, or the
program will be terminated.

For header labels only, a fifth entry
in the parameter list occurs under the
conditions given below. The first byte
of this entry is meaningless, and the
last three bytes contain the address of
the label that has been replaced from
the 0l1ld master data set (SYSUT1l). The
conditions (all of which must Lke pre-
sent) for the occurrence of the entry
are:

1. BAn update of the o0ld master is
specified via the keyword
UPDATE=INPLACE.

2. A LABEL statement must be speci-
fied for header labels in the
input data set.

3. A user label-routine corresponding
to the LABEL statement is speci-
fied and user labels are encoun-
tered on SYSUT1.

Appendix B: User Label-Processing 221

Return Codes

One of the following return codes must be placed in general register 15 when a user
(lakbel-processing) exit routine gives control back to the utility program. An incorrect
(or no) code results in termination of the program.

Type of Routine Code System (Utility) Response

Input header or 0 Resume normal processing. Ignore additional labels in the label
input trailer group.
label

4 Read next user label into buffer area. Return control to user-

exit routine. Resume normal processing if no more labels.

16 Request termination of label processing. Utility program per-—
forms clean-up functions and terminates.
Output header or 0 Resume normal processing. No label is written from buffer .area.
output trailer
lakel

4 Write label from buffer area. Resume normal processing.

8 Write label from buffer area. If less than eight labels
created, return to exit routine. Otherwise, resume normal
processing.

16 Request termination of label processing. Utility program per-

forms clean-up functions and terminates.

RETURN CCDE MODIFICATICNS

1. For IEBUPDTE, the following modifications are made to the return codes when the key-
word UPDATE=INPLACE is specified.

Type of Routine Code System (Utility) Response

Input header 0 Same as akove.
L} Same as akove.
8 Write label from buffer area. Resume normal processing.
12 Write label from buffer area. Read next label into buffer

area. Return control to user exit routine. Resume normal
processing if no more labels.

16 Request termination of label processing. Utility program
performs clean-~up functions and terminates.

222

2. For IEBCOMPR, the following modifications are made to the return codes, depending on
the operand in the LABELS statement: (See Figure 70)

Tyge of Routine User Return Code LABELS Statement System (Utility) Response
Input header or 16 DATA = ALL Return a code of 4 to
trailer Labels Cpen routine. Take no
additional label exits.
16 DATA # ALL Return a code of 0 to Open
routine.
Ignore rest of lakels.
0* DATA = ALL Same as for code 16.
0% DATA # ALL Same as for code 16.

*After SYSUT1 and SYSUT2 have been opened, the following conditions are tested and the
response indicated is taken.

0, with DATA = ALL Compare the labels,
a previous then terminate the
code of 16 processing.
DATA # ALL Terminate the processing.
0, with Compare available
no previous labels. Then check
code of 16 LABELS statement
operand as follows:
DATA = ONLY Terminate the processing.
DATA # CNLY Compare the data of the

appropriate data sets.

Appendix B: User Label-Processing 223

kkkk kD2 kk bk bk kkkk
* PASS A RETURN *
*CODE OF 0 BACK *
* TO OP.

ROUTINE

* *
dkkkkkkkkokkkkkkkk

*

*EEKFE2RRERE R R RS
* IGNORE

* REST OF
: LABELS

*

*

*
Ak ok k ok dkokAokkokkokk

*RkERT2hk kR kR REE
* *

TERMINATE
LRI LTS S Ll L]

*
*

eFigure 70.

224

*kkkAZEkkkkkkkk

* FROM USER *
* ROUTINE :
SRk kR R R R Rk
¥,
B3 *,
.% CODE *. FEEADYREEEEEERE
. =16 OR *, NO * USE GENERAL *
, 0 e > RETURN CODE *
Tk, 3 ERERER R R
. %
* YES

kR RC IR kR E R R hkk
* *

* SET FLAG *
* TO INDICATE *
* CODE *
L e
o *,
D3 *, ARk ADY KRk kR Rk kK *Hkk kDS H ok kok kKRR E
¥ *, * PASS A RETURN * * READ REST *
NO .* DATA=ALL #*. YES *CODE OF 4 BACK #* * OF LABELS *
P S —— %. PARAMETER .%———————n >* TO OPEN o — > *
. ¥ * ROUTINE * * *
*, ¥ * * * *
. . R AR E R KRk PETT TR TR TR PR T EY
*
*EE3RkFRERE R ERRES R kR AR RER
* COMPLE * * TAKE NO *
DATA SET * * MORE LABEL *
———————— >* OPENING *< * EXITS *
* PROCEDURE * * *
* * * *
*REEEREREE FkkkkokkokkFkok kR kkk
¥,
F *,
.*¥ CODE= *. kxR ERkkkkkokk
. 0 . NO * RESUME *
*, o F e >: PROCESSING :
“x, L% e
x, *
I YES
¥, ¥,
G3 . G4 *, FRRRFGHRER R R RHR
. ¥ S ¥, . ¥ *, * COMPARE *
«*THERE BEEN *. YES .* DATA=ALL *. YES * LABELS *
A PREVIQUS CODE——————~=->%, STATEMENT .*————e———- >* *
OF 16 IN THIS . . * * *
, RUN . *, ¥ * *
.« . *, L% ook o ok ok ok ok ok ok ok K
* NO * NO
>
Sk e T e T R
* COMPARE * kKR ok Kk kAR Kk
* ANY EXISTING * * *
* LABELS : : TERMINATE :
* * Aok ok ok ok ook Kok KK ok
EITTT T T TR TR TS
P
J3 *, wERFETY Rk E Rk
o* * . * COMPARE * *H K T RNk Rk
YES .* DATA=ONLY *. NO * DATA OF THE * * CONTINUL *
L *, STATEMENT .*———————— >: TWO DATA SETS : -------- >* PROCESSIN *
R L SRk ERRR Rk RR kK

* *
kkkkkdokkkkkkkkFk

Return Code Modification

for IEBCOMPR Program

Alternate tracks,
assigning of ...ccaecsccasa 84,197-200,218
Auxiliary parameters for IEHPROGM, IEHMOVE,
IEHLIST, IEHIOSOP, IEHUCSLD, IEHINITT, and
IEHDASDR cecocaccnaccccacacnccsnaanncesse 10

Catalog

1iSting @ cceeeccacccacccccaassnas U43-U46

MOdifying @ eceececcececasccncecas 16-27

MOViING O COPYING @ ccecececccscass 28-U42
Channel programs for IEHDASDR «s..... 82-83
Close

updating XCTL tables of ...c.cc.... U7-49
Communication area

IEBDG cececececosanncacasennnssas 169-171

IEHMOVE ccceccccsnccccnsoanacssasas 35-36
Comparing header and trailer labels ... 113
Comparing labels as data ...ceee... 114-115
comparing reCords c..esecscseseccsessess 113-116
Control card scanner for IEHMOVE and

IJEHLIST ccccecevccocccnccccccccncscoscsnnss 13

Copying and modifying records 117-120

DASDI cecccecccccccncnaancsssacssoas 197-200
Data set
indexed sequential
COEYINgG cveccnccceccaccnnnnsanaes 125
10ading ccceeeaceccncscsccanaesa 129-130
Printing ecececececsccsecsaneas 129-130
unloading cceeceeccccccccencses 126-127
input stream ...ccceceecceca.. 145-151
listing the directory of a
partitionedcccciceaneaae.. U43-46
members, copying and merging 108-112
mOvVing Or COpying ee.iceececeacaecss 28-42
scratching @ cecececececasaccensss 16-27
SYS1.LOGREC ccuscsccscccannccccansas 20-64
Data set compressioncccc.... 108-110
.using XDAP macro instruction ... 109-110
Data set utility programs ..secec... 101-192
DCB exit list
TEHMOVE s ceeescscccnsccccacsascssancacss 36
DCB exit routine

TIEBDG evececccccaasanssaccscaeces 154-155
Debugging aids
IEBDG ccccescancacocacnsconnsceess 168-176

Default values
IEBDG field definition (FD) 160
Device allocation and volume mounting for
IEHPROGM, IEHMOVE, and IEHLIST ecceeasas 10
Direct access storage device initialization
(see DASDI)
Dumping a VOlUME .ceeeecccccscecess 201-203
Dumping direct access volumes 73,77-80

EOV, updating XCTL tables of 47-49

Error procedures N
data Cell .c.ccceccaccccsosnccsaccanass 83-84
disk and AYUN ecececccvcccccncanaasaes 83

Index

Formatting procedureceecsececeas.. 81-84
IPL YeCOYAS ceececanccccancacecaasass 8U
volume 1abels cueecececcacscacccecsaas 84
VTOC reCOrd aseeeececccecacsccsanaaaas 8U

Generator storage (2821), loading of
user-supplied character images 65-72

IBCDASDI cecesaccacoccasanscaces 197-200,218
IBCMPRS cevcasacacnccanascasasaas 201-205,218
IBCRCVRP cuicecesnannsaccnacaanss 206-213,218
IEBCOMPR ceeceencneaccaacsnseass 113-116,214
IEBCOPY ecececaacceacnnconscnasaesas 108-112,214
TEBDG sceecsccocanassaasccsanees 152-192,218
clean-up function ..ececececceccncececeass 156
FD pattern construction 157-161
FD table
CONStYUCLiON sceeccccaacaanaasas 157-161
modification ..c.eeeeccccecscccaces 165
updating ceccccececcccccnsceas 166-167
generalized module functions 153
inVoCation cecececncecccacesonacaaaa 154
modifying the output record 165-167
module residenceceecececacecca.. 153
output data set recordscecce... 153
processing control cards
CREATE ecccceseccccccccccssasa 161-165
DSD cececcocccnancccacacacasncaaaas 156
DUMP ceeasccccacsaansaacsceses 156,168
END cenccecscscacacascsscanasanass 156
FD ceeeeccncceanaaccncsascanannanaa 157
REPEAT ccceccecccccscccccancnaasnaasa 156
reading control Cards ...c.ceeaeccasa. 155
scanning control cardsS s..asecececaes 154
tables used by create
modulecceeeceecee. 161-162,164-165
IEBEDIT ecccaceeccacsanasaceaesss 145-151,214
IEBGENER cecececsaccaaanees 117-120,214-215
IEBISAM ccacecccscnsassscsansse 125-139,217
intialization Oof ...cececcaccecnceass 125
termination Of ...ecececcccecaaacaca 130
JEBPTPCH cececcecncccancecacaaasas 121-124,214
TEBUPDAT cceceococeacccccccsaaas 1U40-144,218
IEBUPDTE +eeicececsssaaacecaass 101-107,218
IEHDASDR ccecesscscncsassassas 73-100,215-216
concurrent processing, deflnltlon of 73
service routines .. .i.iii.eeeeee.. 85-86
abnormal end Appendage cececssaass 86
alternate track .cececseecssccscaaaas 80
dat@ ceeececccnccecacacacacacnaaas 86
end-of-extent appendage 86
message builder .c.c.cccececece... 85,86
mesSsage Writereececcecesssaeas 86
password protectionccceeec... 86
SCAN cececeaccnoncsscccsnscssssanssas 86
JEHINITT eceveccacccascananceacaas 68-72,215
TEHTOSUP cceceeccscascascsncnsasas U7-49,215
IBHLIST eveecceccccccansccsnaaaaaas U3-46,218
IEHMOVE ceecececceacanancsesas 28-82,216-217
IEHPROGM ccecececencacacaceaa 16-27,217-218

Index 225

JEHUCSLD .cccenccccscscncsnsccasas 65-67,215
IFCDIPOO @savecoeecssncENeenesRsNBONSNS 50-52
IFCEREPO .cccecsccececacannacasnnsnnas 5364
Independent utility programs 193-213
Initializing direct access volumes 73
analyze and format ..ceccecescececsa. 81-84
channel pPrograms <.cecescecceacsaes 83
GETALT ceceecccecccccanassnanannncnss 85
l‘a.vbel‘---c.-.--o--coo--o-co-n-o--- 8“"85
Initializing SYS1.LOGREC .ieececeeseas 50-52
Invoking system utilitiescevceecaces 10
I/0 support, updating XCTL tables for 47-49

Libraries, updating symbolic 101-107
Listing system control datacsa.. U43-U6

"Making COpPiesS®™ .ceeescenccescsscsccnnes 13
Modifying system control data eee..... 16-27
Moving and copying data ..eeecececsees 28-42

Null data set
TEBDG cesaceccccscsccsosscccsnscsanscas 155

Open, updating XCTL tables Of ..ca... U7-49

Paraneters, auxiliary for IEHPROGM,
IEHMOVE, IEHLIST, and IEHUCSID ..ec.... 10
Partitioned data set

listing the directory of U43-U46
nenmbers, copying and merging
IEBCOPY .ccceccccccnacscncansaeceas 108-112

JEHMOVE c.cccccvncncoccnsnacsee 28-U42
modifying the directory of 16-27
moving Or COpPYing @ eceecceccececaeaes 28-42
Updating @ ecececceccencasceccscssss 101-107

Physical sequential data set
record format ecceceececeeccceceeeecs 126-127
Printing and punching records 121-124

RDCDRT avcecccassecacacscnconancsscanscansa 13
Record formats
and variable spanned records for
JEBPTPCH ccvceacacocccenscsacncnssess 122
Cat3lOg ecceecncnncnacncsccccccncccecas 34
how to find .sceceeecccececacncncacans 36
of DASLLCR dumped data ccecceemcaseces 201
recovery output tape ...ccccecencee. 208
SYS1.LOGREC cccosccceccccsccncscssacccs 50
SYSUT]1 cecevccccoccccccsasnsscsnsese 30,34
SYSUT2 ceeeeccccccceacssscsncscsscsncese 30
SYSUT3 cecececvosascssssncansconscacs 32
track Z€ro .c.ceccececnccccoccencnneaces 197

226

Records
CONPAYiNg eeeeecncsaccoascacsnss 113-116
copying and modifying e.cecec... 117-120
printing and punching ceceeeceas. 121-124
Recovering and replacing a track .. 206-207
Restore a vOluUmE ceccececeesecsecaes 73,80-81

Stand-alone utility programs

(see independent utility programs)
Supervisory routine

of independent utilities 193-196
Support utility programs o

(see independent utility programs)
Surface analysis procedure

"data Cell .cicecieccccceccscanacannaes 83

disk and AruUl cceeececscancvecscss 82-83
Symbolic libraries, updating «..... 101-107
SYS1.LOGREC

initializing cceccecccscccccsacesses 50-52

writing records fYXOM cceeeeccecsees 53-64
System control data

listing Of ccieeeceacsccssasceacas U3-U6

modification Of ceceevcccecsccaces 16-27
System utility programs cccecceeces.. 10-100

Updating symbolic libraries 101-107
User-label processing/exits 219-224
IEBCOMPR «cececcoccscncasensscaes 114-115
IEBPTPCH ccccvacacocscancennseses 122-123
IJEHMOVE .cccecacccacncsacscnscanccsssas 31-35
RetUrn COAES ceevcecescecccacees 222-223

Varible spanned records
IEBGENER <cccecccensscescssasccanncsanss 117
IEBPTPCH cccecccccnaconccsasccacancass 122
IEHMOVE ccecccccsnncssscsascscscanaccasee 31
Volume
dumping Of cceecececccecssnsaasass 201-203
initializing Of ccecececcacecanesss 197-200
moving Or COpPYing @ eceececescecesccecss 28-42
restoring Of cceccencececncesasass 203-205
scratching a data set from 16-27
table of contents, listing of 43-46
modifying Of c.ecececeaccacaeaess 16-27
writing Oof ececccceccacaccess 197-200
Volume mounting for
IEHPROGM, IEHMOVE, and IEHLIST 10
Volume table of contents
listing Of c.eeeeecncsccccsceacasas U43-U6
mOodifying Of eceeceeececcncacseceacees 16-27
Writing Of cececcecececccccccanss 197-200

Work data set record
formats for IEHMOVE ...ceceesnsceae 30=-34

XCTL tables, updating

fOor I/0 SUPPOTrL eccececcccccvoccaces UH7-U49
XDAP macro instruction

used in data set compression ... 109-110

IBM

Technical Newsletter

File Number S5360-30

Re: Form No. Y28-6616-4
This Newsletter No. ¥28-2363
Date February 1, 1969

Previous Newsletter Nos. None

IBM Corporation, Programming Systems Publications, P.O. Box 390, Poughkeepsie, N.Y. 12602

IBM SYSTEM/360 OPERATING SYSTEM
INPUT/OUTPUT SUPERVISOR
PROGRAM LOGIC MANUAL

This Technical Newsletter, a part of release 17 of IBM
System/360 Operating System, provides replacement pages
for Input/Output Supervisor Program Logic Manual,

Form Y28-6616-4. _These replacement pages remain in

effect for subsequent releases unless specifically altered.
Pages to be inserted and/or removed are listed below.

65,66
A change to the text or a small change to an illustration
is indicated by a vertical line to the left of the change:
a changed or added illustration is denoted by the symbol e
to the left of the caption.

Summary of Amendments

Changes have been made to correct printing
errors.

Note: File this cover letter at the back of the manual to
provide a record of changes.

PRINTED IN U.S.A.

When processing is complete, the DEVTYPE
routine places a return code in general
register 15. An error return code of 04
indicates one of the following conditions:

e No output area specified: the area pa-
rameter is missing from the DEVTYPE
macro instruction.

¢ DD name not found: there is no TIOT
entry that corresponds to the DD name
supplied.

e Invalid UCB unit type field: the UCB
unit type field (byte 4 of the device
code field) does not specify a direct
access, tape, or unit record device.

If the request is completed satisfactorily,
the DEVTYPE routine places a return code of
00 in general register 15, and exits via
SVC 3.

Section 1IV:

IOHALT ROUTINE

When the IOHALT routine (SVC 33) receives
control, it is given the address of the UCB
associated with the device to be stopped.
It checks that address for validity, then
inspects the UCB device code field to make
sure that the device is not a direct access
device.

IOHALT branches to a resident I/0 Super-
visor subroutine to issue the HIO instruc-
tion and examine the resulting condition
code. If no error occurs, control returns
to IOHALT.

The appropriate condition code is placed
in general register 15. If the operation
was successful, the IOHALT routine places a
post code (X*48') in the ECB code ftield ot
the IOB and issues SVC 3 to exit.

SVC Transient Area Routines 65

Form Y28-6616-4, Page Revised by TNL Y28-2363, 2/1/69

SECTION V: CONTROL BLOCK AND TABLE FORMATS

The 1I/0 supervisor uses control blocks and
tables to communicate with itself, with the
rest of the control program, with proces-
sing programs, and with I/0 devices.

This section of the publication
describes in detail the characteristics of
the control blocks and of the tables used
by the I/0 supervisor.

Figures 8 through 21 show control block
and table formats. Where pertinent, a dis-
cussion of the fields follows the figures.

ATTENTION TABLE

For convenience, the tollowing control
blocks and tables are presented in alpha-
betical order:

Attention Table

Channel Search Table

Data Control Block

Data Extent Block

Device Table

Error Recovery Procedure Intertace
Bytes (ERPIB)

Event Control Block

Input/Output Block

L.ogical Channel Word Table

Request Element Table

Statistics Table

UCB Lookup Table

Unit Control Block

e & 9 & 0 ¢ @

The attention table is used by the I/0 supervisor to obtain the addresses of the atten-

tion routines required to service the I/0 devices

The
e Creation.

¢ Storage Area. The table resides,

attached to the systemn.

attention table has the following characteristics:
The table is created at system generation time.

as a permanent part of the resident supervisor,

in protected resident storage (when protection is available).

® Size.
of 64 entries.

e Means of Access. The ATNTAB byte,

The table contains one 4-byte entry per attention routine,

supplied by the user in the UCB,

is added to

up to a maximum

the starting address of the attention table to obtain the proper attention routine

entry in the table for the device.

e Format.

The format of an attention table entry is shown in Figure 8.

L]

Unused |
4

Attention Routine Address

I

|

L

|<--—-1 byte-——->|<
| <

[St e i it o R Wt g kD

4 bytes

3 bytes

— b ——

vV Vv

b e e — ——— — — ——)

Figure 8. Attention Table Entry Format

66

READER'S COMMENT FORM

IBM System/360 Operating System
Utilities Form Y28-6614~4
Program Logic Manual

® Is the material: Yes No
Easy toreadP ...l O O
Well organized? O O
Complete? ... O 0O
Well illustrated? ... O 0O
Accuratel ...l O 0O
Suitable for its intended audience? 0O O
e How did you use this publication?
[0 As an introduction to the subject - Other TP PP PR
[For additional knowledge
e Please check the items that describe your position:
] Customer personnel 0 Operator [J Sales Representative
[J IBM personnel [0 Programmer [J Systems Engineer
[0 Manager [0 Customer Engineer [Trainee
[J Systems Analyst [J Instructor Other ...
o Please check specific criticism (s), give page number(s), and explain below:
7 Clarification on page(s) [] Deletion on page(s)
[J] Addition on page(s) ... [] Error on page(s) ...
Explanation:

e Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

Y28-6614-4

YOUR COMMENTS PLEASE . . .

This publication is one of a series which servesas reference for systems analysts, program-
mers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use.
Each reply will be carefully reviewed by the persons responsible for writing and publish-
ing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N.Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A.

POSTAGE WILL BE PAID BY

IBM Corporation
P.O. Box 390
Poughkeepsie, N.Y. 12602

Attention: Programming Systems Publications
Department D58

B,

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
(USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

seeecseces

esecsacsan

cesescess

¢ sssesnn

09¢/S Wl

V" ST Ul patung

-7199-8ZA

Y 28-6614-4

TSIV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
{USA Only]

I1BM World Trade Corpaoration

821 United Nations Plaza, New York, New York 10017
[International]

09e/S Wil

¥ §°n Ul pajuiig

P-y199-8TA

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	Y28-2363_1
	Y28-2363_2
	Y28-2363_3
	replyA
	replyB
	xBack

