
IBM System/360 Operating System

Basic Direct Access Method

Program Logic Manual

Program Number 360S-DM-50S

File No. 8360-30
Form Y28-6617-3

Program Logic

This publication describes the internal logic of the
IBM System/360 Operating System basic direct access
method (EDAM). The functions and structures of the
routines are described, as are their relationships to
other portions of the operating system.

The manual is intended for use by IBM customer
engineers involved in program maintenance, and system
programmers who are altering the program design. It
can be used to locate specific areas of the program,
and it enables the reader to relate these areas to the
corresponding program listings. Program logic informa­
tion is not necessary for the use and operation of the
program; therefore, distribution of this publication is
limited to those with the aforementioned requirements.

Restricted Distribution

Fourth Edition (July 1967)

This publication corresponds to Release 12.

This publication is a major revision of Form Y28-6617-2 and rnakes that
form and prior forms obsolete. In addition to the reorganization of
some parts of the text, new material has been added to describe the
enqueuing and dequeuing of requests that require either the read­
exclusive option or the adding of new blocks of records of variable
length or undefined length. Two figures have been added to Appendix A
to describe the read-exclusive list. Figures 7 and 16 and Chart 02 have
been modified, and Chart 05 has been deleted. Chart 04 has been
~eplaced with a new chart for exclusive control under the MVT form of
the operating system.

Changes (including deletions) in the text are indicated by a vertical
line to the left of the change. Changes in illustrations are denoted by
the symbol • to the left of the caption.

This publi~ation was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
IBM Corporation, Programming Systems Publications, Department D58,
PO Box 390, Poughkeepsie, N. Y. 12602

The information contained in this manual
is intended for programmers engaged in
maintenance of BDAM routines.

This publication is divided into three
main parts. The first part describes the
organization and function of the basic
direct access method and its relationship
to other portions of IBM System/360 Operat­
ing System. The second part describes the
main components of the basic direct access
method and their interaction. Part three
contains reference material that is not
necessary to an understanding of the logic
of the access method but may be useful in
understanding a storage dump or in other­
wise analyzing the listings for this access
method.

To provide the prerequisite knowledge
for understanding the contents of this
publication, the following publications are
recommended:

For information regarding the primary
control program, see:

IBM System/360 Operating System: Intro­
duction to Control Program Logic, Pro­
gram Logic Manual, Form Y28-6605

For information regarding the MVT con­
figuration of the control program, see:

IBM System/360 Operating System: Control
Program Logic Summary, Form Y28-6658

The following publications are listed as
suggested reading:

PREFACE

IBM System/360 Operating System: Super­
visor and Data Management Services, Form
C28-6646

IBM System/360 Operating System: Super-
visor and Data Management Macro-
Instructions, Form C28-6647

IBM System/360: component Description,

2841 Storage Control Unit

2302 Disk Storage, Models 3 and 4

2311 Disk Storage Drive

2321 Data Cell Drive, Modell

7320 Drum Storage, Form A26-5988

This publication also makes references
to routines that are described in one of
the following publications:

IBM System/360 Operating system:
Input/Output Support (OPEN/CLOSE/EOV),
Program Logic Manual, Form Y28-6609

IBM System/360 Operating System:
Seguential Access Methods, Program Logic
Manual, Form Y28-6604

IBM System/360 Operating System: Direct
Access Device Space Management, Program
Logic Manual, Form Y28-6607

IBM System/360 Operating System: MVT
Supervisor, Program Logic Manual, Form
Y28-6659

INTRODUCTION 5

Relationship of the Basic Direct
Access Method to the Operating System • 5

Structure of the Basic Direct Access
Method. • • . • • • 6

Opening a DCB • • • • 6
Controlling the Processing. 6
Converting Addresses. • . • 6
Generating Channel Programs . 6

Reading or Updating Blocks • 6
Adding New Blocks. • • • • • 6
Verifying Written Data • • • 7

I/O Supervisor Appendages • • • 7
Maintaining Exclusive Control • 7
Providing Dynamic Buffer Allocation. 7
Checking for Request Completion • 7
C losing the DCB • • • • • • 7

PROGRAM COMPONENT DESCRIPTION. 8

The BDAM Open Executor Program
(Modules IGG0193A, IGG0193C, and
IGG0193E) • • • • • • • •

Periods of an Extent

The BDAM Foundation Module

8
. . • 11

(Module IGG019KA) • • • • • • • • • • • 13
Base Component. . • • • . • • • . • . 13
Asynchronous Interrupt Component .•• 13
Error Component • • • • . • • • 14

Invalid Requests • • • • • • 14
Abnormal Completion of a Request • 14

Address Conversion • • . • • • .• • 17
Relative Track Conversion

(Module IGG019KC). • • . • •• 17
Relative Block Conversion (Modules

IGG019KE and IGG019KF) . • 17
Track Overflow Not Specified

(Module IGG019KE) • • • .. . 18
Track Overflow Specified (Module

IGG019KF) • • • • • • •• •• 19
Feedback for Relative Block

Addressing (Modules IGG019KG and
IGG019KH). . • •. 20

Channel Programs for BDAM. • • • 20
Update Programs (Modules IGG019KI,

IGG019KK, and IGG019KW) .•.•••• 21

CONTENTS

Format Programs • • • • • • • • • • • 22
Pre-Format Channel Programs

(Modules IGG019KO and IGG019LA) • 22
Self-Format Channel Programs

(Modules IGG019KM and IGG019KY) • 23
Verification Program

(Module IGG019KQ).

Appendages • • • • • •
Start I/O Appendage

(Module IGG019KS).
Buffer Needed. •

Channel End Appendage
(Module IGG019KU) •••

End of Extent Appendage

• • 25

• 25

• 25
• 27

• • • • 27

(Module IGG019LC). • • • • 28
Supervisory Mode • • • • 28
Non-Supervisory Mode • • . 29

Exclusive Control (Module IGG019LG) • 29
Releasing Blocks Under Exclusive
Control • • • • • • • • • • • • • 30

Dynamic Buffering (Module IGG019LE) • 31
Buffer Assignment. • • • • • • • • 31
Releasing Buffers. • • • • • • • • 32

Check Module (Module IGG019LI) •••• 33

The BDAM Close Executor Program
(Module IGG0203A) •

BDAM FLOWCHARTS. • •

33

35

APPENDIX A: CONTROL BLOCKS FOR BDAM • • 39

lOB. • • 39

DECB • • • 44

DEB. • • 45

DCB. • • 46

BCB. • • 48

Read-Exclusive List Segment. • • 49

APPENDIX B: MODULE IDENTIFICATION AND
USAGE • • 51

APPENDIX C: CHANNEL PROGRAMS FOR BDAM • 53

INDEX •• • 64

ILLUSTRATIONS

Figure 1. Relationship Among
Processing Program, Data Management
Open Routine, and BDAM. • . • . • . • • 10

Figure 2. Illustration of Track
Overflow. • . • • . . . • • • • • • 12

Figure 3. Relationship Among
Processing Program, I/O Supervisor,
and BDAM for Processing a Request • • • 15

Figure 4. Relationship Among
Processing Program, Related
System/360 Routines, and BDAM When a
Request is Completed. . • . • . 16

Figure 5. Structure of a Block on a
Direct-Access Storage Device. • • • • • 21

Figure 6. Data Field of a Capacity
Record for a BDAM Data Set. • • • . •. 23

Figure 6A. Module Relationships for
Write-Add Requests in Multi-Task
Environment • • • . • . • . • . . . • . 26

Figure 7. Relationship Among
Processing Program, I/O Supervisor,
and BDAM for Executing ••...•.•. 27

Table 1. BDAM Module Addresses as
Stored by Phase 2 of BDAM Open
Executor Program. . . . • . • .• . 10

Table 2. DEB Information for Example
Without Track Overflow. . . . • . . .• 18

Table 3. DEB Information for Example
With Track Overflow • . • . • • . • •. 20

Table 4. Channel Programs for Reading
or Writing an Updated Block • .• . 21

Table 5. Requirements for Channel
Programs to Add New Blocks to an
Existing Data Set . • . . . • . • . . . 22

Table 6. Functions of the Exclusive
Control Module for Specified
Conditions. . . • . • . . . • . • . .. 31

Chart 01. BDAM High Level Flow.
Chart 02. BDAM High Level Flow

(Continued) . • • . • . • • .
Chart 03. Module Flow for Block
Updating.

Chart 04. Exclusive Control - MVT
System. •

· . 35

• 36

· . 37

· • 38

Figure 8. Relationship Among
Processing Program, Data Management
Close Routine, and BDAM at Close Time . 34

Figure 9. Fields of the lOB for BDAM .. 40
Figure 10. Fields of the DECB for

BDAM. ••..•.•..•..•• • 44
Figure 11. Fields of the DEB for BDAM . 45
Figure 12. Fields of the DCB for BDAM . 46
Figure 13. Fields of the BCB for BDAM • 48
Figure 14. Description of a Segment
of the Read-Exclusive List. . . . • . . 49

Figure 15. Description of an Entry in
the Read-Exclusive List . . • • .• 49

Figure 16. Relationship Among
Processing Program, BDAM Routines,
and Other Components of the Operating
System. . • . • . • . • . • • . . • . • 62

Figure 16. Relationship Among
Processing Program, BDAM Routines,
and Other Components of the Operating
System (Continued) •.....•...• 63

Table 7. Fields, Field Size, and
Field Contents of the lOB for BDAM
(Part 1 of 4) • • . . • • • • • • • • • 40

Table 8. Fields, Field Size, and
Field Contents of the DECB for BDAM • . 44

Table 9. Fields, Field Size, and
Field Contents of the DCB for BDAM. 47

Table 10. Fields, Field Size, and
Field Contents of the BCB for BDAM. 48

Table 11. Coding and Functional Names
of BDAM Modules • . . • • • • . .• 51

Table 12. Passage of Control Among
BDAM Modules. • . • . • . • . • .. 51

Table 13. BDAM Modules Required to
Satisfy DCB Macro Instruction Options . 52

A listing of text page references for
Figures, Tables, and Charts follows the
index.

The basic direct access method (BDAM)
consists of routines used in retrieving
data from, and storing data onto, direct
access devices. In this capacity, the BDAM
routines are a part of the IBM System/360
Operating System control program, and they
operate 1n conjunction with the
input/output supervisor (I/O supervisor).
The BDAM routines link a processing program
to system supervisor routines in order to
satisfy input/output requests for data in
direct-organization data sets.

The BDAM routines are grouped into
modules and placed in the supervisor call
(SVC> library at system generation time.
This library is part of the system resi­
dence library that resides on direct-access
storage. When the BDAM routines are to be
used by a processing program, the necessary
modules are brought from the system resi­
dence volume and loaded into main storage.
The loaded BDAM modules are linked by
module storage addresses. Each address is
placed in one of the following:

• The data control block (DCB) for the
data set.

• Another previously loaded BDAM module.

• The BDAM appendage list that is in
protected main storage.

Essentially, BDAM may be divided into
three general sections: an opening section,
a processing section, and a closing sec­
tion.

The opening section initializes the
access method by determining storage
requirements, by determining and loading
the required modules from system residence,
and by building control blocks and control
lists for further program usage.

The processing section does the follow­
ing:

• converts address to a form required by
a channel program.

• Constructs, and initiates execution of,
a channel program for fulfilling an
input or an output request macro
instruction.

• Maintains exclusive control of informa­
tion in a block as long as requested.

INTRODUCTION

• Assigns buffers for input/output opera­
tions.

• Indicates errors related to
input/output operations.

The closing section performs the func­
tions that are necessary to terminate nor­
mal processing of a BDAM data set.

Throughout this publication, references
are made to control blocks or to fields of
a control block. Appendix A contains a
description of the major control blocks
used by BDAM.

RELATIONSHIP OF THE BASIC DIRECT ACCESS
METHOD TO THE OPERATING SYSTEM

When a data set· to be processed using
BDAM is opened, the open routine of data
management (discussed in the publication
IBM Systemv360 Operating System:
Input/Output Support (OPEN/CLOSE/EOV), Pro­
gram Logic Manual) gives control to one of
the BDAM modules that initialize the access
method routines for the type of processing
indicated in the DCB.

The basic direct access method also has
interfaces with the processing program and
with the supervisor. When either a READ or
a VlRITE macro instruction in the processing
program is encountered, the BDAM routines
begin satisfying the request. The actual
execution of a request requires a channel
program that has been constructed by one or
more BDAM routines.

When an input/output operation termi­
nates, the processing program is interrupt­
ed. The I/O supervisor then obtains the
address of a BDAM appendage module and
gives control to that module to schedule
the remaining processing required for the
request. When all processing for the
request has been completed, the supervisor
returns control to the processing program.

Note: The BDAM start I/O appendage module
is always given control just before the
execution of a request begins. If dynamic
buffering is specified, control is given to
the BDAM dynamic buffering module.

When a data set is closed, the data
management close routine gives control to
the BDAM close executor module, which then
completes the BDAM functions.

Introduction 5

STRUCTURE OF THE BASIC DIRECT ACCESS METHOD

The modules of BDAM can be grouped into
several categories that are related to the
purpose or function of the module. These
categories are:

• Opening a DCB.
• Controlling the processing.
• Converting addresses.
• Generating channel programs.
• I/O supervisor appendages.
• Maintaining exclusive control.
• Providing dynamic buffer allocation.
• Checking for request completion.
• Closing the DCB.

OPENING A DCB

To open a DCB for a BDAM application,
two, and sometimes three, modules are
required. These modules are the BDAM open
executor modules, and they are used when a
DCB for a direct organization data set is
opened. The need for three modules depends
on the options selected in the DCB macro
instruction. The collective functions of
these modules are to determine the need for
other modules and to establish control
blocks.

CONTROLLING THE PROCESSING

The module that controls the processing
functions of BDAM is called the foundation
module. This module is given control when
either a READ or a WRITE macro instruction
that uses BDAM is encountered in a process­
ing program. It is used to complete the
preparations necessary before a request can
be executed and completed. The foundation
module checks the validity of each request
and contains the linkage to some of the
other required modules.

An additional function of the foundation
module is to complete the processing of a
request after an input/output operation has
terminated. (Refer to the section
"Asynchronous Interrupt Component" for
further information about this function.)

CONVERTING ADDRESSES

Five modules are used for address con­
version. Two of these modules are used to
convert a block address that has been
specified as a relative block address into

6

an actual device address. The choice of
which one is to be used depends on whether
or not track overflow is specified in the
DCB macro instruction. Another of the five
modules converts addresses from a relative
track specification to an actual device
address. The other two conversion modules
are used only if the programmer specifies
feedback with relative block addressing.
Again, the choice depends on the track
overflow specification.

GENERATING CHANNEL PROGRAMS

Several channel program generation
modules are available as part of BDAM. At
least one of these modules is used for
every BDAM request that is normally com­
pleted. These channel programs either
search auxiliary storage volumes for infor­
mation to be brought into main storage or
search auxiliary storage volumes for space
on which to place information that is
transferred from main storage. The selec­
tion of the required module is based on
whether an existing block is being read or
updated or a new block is being added to a
data set. One additional channel program
is used if it is required to verify data
that is written on secondary storage
volumes.

Reading or Updating Blocks

There are three modules used to generate
channel programs for block reading or
updating purposes. The choice of modules
depends both on which part (either the key
field or the block identification portion
of the count field) of the data block is
used as a search argument in the data
retrieving function of the channel program
and on whether an option has been selected
to permit extending the search of a data
set beyond a given track.

Adding New Blocks

There are three modules available to
generate channel programs for adding new
blocks to an existing data set. These
modules are referred to as format modules
since the use of a particular module
depends on the block format in the data set
being processed. The modules used for
fixed-length (pre-format) blocks are dif­
ferent from those used for variable-length
(self-format) blocks. Blocks whose lengths
are undefined also are called self-format
blocks. The number of modules required

when adding new blocks depends on whether
the extended search option has been speci­
fied.

Verifying Written Data

If written data is to be verified, there
is one module used to generate the required
channel command words. This channel pro­
gram contains channel command words that
are appended to the appropriate "write­
type" channel program. The module is
required if the write-validity-check option
has been specified in the DCB.

I/O SUPERVISOR APPENDAGES

There are three BDAM modules to which
I/O supervisor may pass control, depending
on the stage of execution of a request.

The first is the start I/O appendage
module. If the dynamic buffering option
has been specified, the appendage module
permits the allocation or release of buffer
areas. I/O supervisor accordingly passes
control to this module before beginning the
channel program for such requests.

The second appendage module is the chan­
nel end appendage module. This module
schedules further processing on a request
after a channel program has terminated.

The third I/O supervisor appendage
module is the end of extent appendage
module. This module is loaded if the
extended search option has been specified.
It receives control if the channel program
in control is required to switch from one
extent to another while reading a block,
writing an updated block, or adding a new
block.

MAINTAINING EXCLUSIVE CONTROL

The exclusive control module provides
protection for the data portion of a block

requested under exclusive control by ensur­
ing that subsequent duplicate requests for
the block are not posted as complete before
the initial request for the block has
released control. A read-exclusive list is
established to help ascertain if a given
request is a duplicate request.

In a multi-task environment, this module
places blocks on, and removes blocks from,
an inter-task queue to provide block pro­
tection during updating. In this capacity,
the module serves requests for adding new
blocks as well as requests using the exclu­
sive control option.

PROVIDING DYNAMIC BUFFER ALLOCATION

The dynamic buffer module obtains,
assigns, and releases buffer areas for
input/output requests that use the dynamic
buffer option. A buffer control block and
a buffer queue are established to handle
the buffer requests.

CHECKING FOR REQUEST COMPLETION

The check module contains provisions
both for determining if (and waiting, if
necessary, until) a request has been posted
as complete and for g1v1ng control to a
user's error routine if errors have been
indicated during the input or output opera­
tion.

CLOSING THE DCB

The BDAM close executor module is the
only module in this category. This module
is required to release, to the system, the
main storage obtained by BDAM.

The second function of this module is to
restore the fields of the DCB that have
been changed by BDAM routines.

Introduction 7

PROGRAM COMPONENT DESCRIPTION

The main components of BDAM are de­
scribed in the following paragraphs. The
modules required within each component, the
conditions under which the modules are
used, and the inter-module relationships,
are discussed. Where appropriate, figures
are used to illustrate the text descrip­
tion. Figure 16, following Appendix C, is
a composite of Figures 1, 3" 4, 7, and 8
that are referred to in this section of the
publication. It may be useful in gaining
an overall general concept of BDAM and its
relation to a processing program and to the
operating system.

THE BDAM OPEN EXECUTOR PROGRAM
(MODULES IGG0193A, IGG0193C, AND IGG0193E)

The BDAM open executor program consists
of up to three modules that are given
control during the opening of a data con­
trol block specifying BDAM. The routines
in these modules obtain storage for, set
up, and initialize control blocks used by
BDAM routines, and load the required BDAM
processing modules into main storage.

When the OPEN macro instruction is
encountered in a processing program that
specifies BDAM, the expansion of the macro
instruction causes control to be passed to
the open routine of data management. (See
Figure 1.) This routine uses the BDAM open
executor modules as subroutines. It gives
control to module IGG0193A (referred to as
phase 1 of the BDAM open executor program)
to initiate the BDAM processing. Paramet­
ers specified in the DCB to which the OPEN
macro instruction refers and in the data
set control block (DSCB) for this data set
enable phase 1 to determine the protected
main storage requirements for the data
extents to be added to the base of a data
extent block (DEB). Phase 1 then obtains
main storage for an I/O supervisor appen­
dage list, a read-exclusive list (a list of
the addresses of blocks still under exclu­
sive control), and the DEB, and places
necessary control information in the fields
of the DEB. As each current DEB is being
constructed, it is attached to the
appropriate task control block for future
reference.

In allocating storage for the DEB,
phase 1 also provides space for the iden­
tification of BDAM modules that are
required as a result of specifications
given in the DCBMACRF field, the DCBOPTCD
field, and the DCBRECFM field of the DCB.

8

After the preceding functions have been
completed, phase 1 checks the where-to-go
table, which is created by the data manage­
ment open routine, to determine whether it
includes other DCBs that require the use of
this phase. If there are no more current
requirements for the use of phase 1, con­
trol is given to module IGG0193C (referred
to as phase 2 of the BDAM executor
program).

Phase 2 loads into main storage the BDAM
modules used for the particular applica­
tion. The foundation module is loaded
first. Phase 2 places in the foundation
module the addresses of certain optional
BDAM modules that have been selected. The
addresses of the remaining BDAM modules are
p1aced either in the DCB, in the I/O
supervisor appendage list, or in other
designated modules. Table 1 shows where
the module addresses are placed. Each time
BDAM is used, the addresses of the selected
modules are placed in the same designated
pOSitions in the control blocks, modules,
or lists.

The major activity of phase 2 is the
selecting 6f required modules. There is a
routine within the module for each of the
following activities:

• Selecting and loading
addressing module.

the proper

• Determining and loading the proper
channel program generating module(s).

• Determining and loading the optional
module(s) required.

• Determining and loading the required
appendage modules.

If main storage already contains some
BDAM modules from a previous data set
opening, phase 2 obtains their main storage
addresses from the supervisor, and these
modules are not reloaded. There are two
situations to consider:

1. If BDAM modules have been included in
the link pack area, then they are
accessible to all jobs requesting them
(since the BDAM modules are
reenterable).

2. If a given task loads a BDAM module
into a reg10n assigned to that task,
only that task or a subtask attached
by that task has access to the module.
If another main task requires the same

module, it must load the module into
its own region.

The MVT Supervisor Program Logic Manual
contains more detailed information concern­
ing these situations.

As modules are loaded into main storage,
their corresponding identifications are
placed in the DEB. (After processing has

been completed on a data set, the close
routine uses this information for releasing
storage areas.) Space for the module iden­
tifications was allotted by phase 1 of the
BDAM open executors.

Phase 2 also initializes
exclusive list and some of the
the DeB.

the read­
fields of

Program Component Description 9

Processing
Program

Related System/360
Routines

OPEN DCB - - - - - - - - - -,

--"---, t
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I

Data
Management

Open
Routine

-- - -

I I

--I

1

I
I
I
I
I
I
I
I
L ___ _

- --"I
I
1

t
IGG0193A, 3C, 3E

BDAM Open
Executors

I
I

---~

BDAM Routines and Functions

Get Storoge for,
and Initialize,
Read-Exclusive

list

Get Storage for
Buffers and BCB

Create IRB

Link Buffers Together

Get Storage
for DEB

I
Build DEB Extents

Initialize DCB

Load Processing
I Modules and

Store Addresses

Legend
·1 Attach DEB to TCB

L ______ --!

- - - - ~ Main Flow of Control
___ ... Functions Performed

Figure 1. Relationship Among Processing Program, Data Management Open Routine, and BDAM
at Open Time

Table 1. BDAM Module Addresses as Stored by Phase 2 of BDAM Open Executor Program
r--T--,
I I Module, Control Block, or List I
I Module Name I in Which Address Is Placed I
~--+--~

FDundation DCB
Relative Track Foundation Module
Relative Block Foundation Module
Write-Verify Foundation Module
Relative Block Feedback DCB
Key Foundation Module
Key Extended Search Key Module
ID Foundation Module
Self-Format DCB
Self-Format Extended Search Self-Format Module
Pre-Format DCB
Pre-Format Extended Search Pre-Format Module
Start 1/0 Appendage List1
End of Extent Appendage List
Channel End Appendage List
Check DCB
Dynamic Buffer DCB
Exclusive Contro12 DCB

~-- --i
I 1The address of the Appendage List is in the DEB. I
I 2The address of the read-exclusive list is also in the DCB. I l ____________________________________ ~ __ J

10

The remaining function of phase 2 of the
open executor program is the branching to a
supervisor routine to build the interrupt
request block (IRB).

Before giving control to the next
routine, phase 2 determines if any more
DCBs associated with the current OPEN macro
instructions require the use of this
module. If so, this module is reentered
and does the required processing. Other­
wise, two situations are considered:

1. If neither the dynamic buffer option
nor the relative block addressing
option has been specified in the DCB
macro instruction, the data set is
considered to be opened as far as BDAM
is concerned. and control is returned
either to an open executor routine for
another data set or to the open rou­
tine of input/output support1.

2. If the DCB macro instruction specifies
either the relative block addressing
option or the dynamic buffering
option, or specifies both options,
phase 2 gives control to module
IGG0193E (phase 3 of the BDAM open
executor program).

If it is indicated in the DCBOPTCD field
of the data control block that BDAM should
handle all buffer management for a given
data set, module IGG0193E uses the buffer
information in the DCB macro instruction to
obtain the required amount of main storage
for the buffers and a control block (the
buffer control block) to contain buffer
information. The buffer area in storage is
then divided into the requested number of
buffers, and the buffers are chained
together so that the dynamic buffer module
may satisfy the buffer requirements for
individual read or write requests. (Refer
to "Dynamic Buffering.")

To gain access to a data set block
located on a direct-access device, the
block's actual location on the device must
be known. If a programmer has specified
that the blocks in a data set are to be
referred to by relative block number (i.e.,
relative block addressing), then these num­
bers must be converted to actual block
locations (i.e., device addresses). For
use in this conversion, phase 3 of the BDAM
open executor program constructs a set of
fields (known as relative extent fields) in
the DEB. These fields of the DEB are

1.The next routine is determined from the
where-to-go table. (Refer to the publica­
tion IBM System/360 Operating System:
Input/Output Support (OPEN/CLOSE/EOV), Pro­
gram Logic Manual.)

described in Appendix A. There is a one­
to-one correspondence petween the actual
data set extents in the DEB -and the
relative data set extents. (Refer to
"Relative Block Conversion.")

If relative block addressing and track
overflow are indicated in the DCBOPTCD and
DCBRECFM fields of the DCB respectively,
phase 3 constructs a modified relative
extent portion of the DEB. In addition,
phase 3 inserts two other fields between
the last actual extent and the first rela­
tive extent in the DEB. These fields are
referred to as the overflow section of the
DEB and are related to the concept of a
period as discussed in the following para­
graphs.

Periods of an Extent

When the basic sequential access method
(BSAM) places blocks on a direct-access
device, it is possible that a block may
start on one track and finish on a follow­
ing track within the same extent. Such a
block is called an overflow block, and for
this to occur, at least one byte of the
data portion of a block must fit on a track
in order for the block to overflow onto the
next track. For purposes of calculation,
the track on which a block begins is
considered to contain the block. When a
track is reached in which block length and
track conditions do not permit at least one
byte of the data portion of a new block to
be written, the end of a period has been
reached.

Thus, a period constitutes that group of
tracks containing a group of blocks such
that the first track does not begin with an
overflow block from another track and the
last track does not contain a block that
overflows to another track. Example 1
illustrates the concept of a period.

Example 1: In this example, assume the
following:

• A given data set is on a device that
permits 3625 bytes per track to be
allocated to data blocks, excluding a
track capacity record (RO).

• The block length for the data set is
844 bytes, divided as follows:

14 bytes for address marker plus count
area

100 bytes for the block key portion
730 bytes for the block data portion

Program Component Description 11

• There are no inter-record gaps on the
tracks. (This assumption is to simpli­
fy the calculations in the example.)

• Part of the given data set occupies an
extent consisting of contiguous tracks
beginning with track 47 on this device.

From the second assumption, it is deter­
mined that at least the first 115 bytes of
a block must fit on a track in order for
track overflow to occur. Figure 2 illus­
trates the manner in which the data blocks
would appear on the tracks of the extent.

The identifications Bl, B2, ••• , B32
represent the first 32 blocks placed in
this extent. The numbers above the block
identifications represent the number of
bytes of the block appearing on a track.
Arrows at the end of a track and at the
beginning of a track indicate where track
overflow occurs.

As shown in Figure 2, track overflow
occurs from track 47 to track 48 (via block
B5), from track 48 to track 49 (via block
B9), and so on till the end of track 53.
Since track overflow (in this example)
requires at least the first 115 bytes of a
block to appear on a track and only 55
bytes remain on track 53 after block B30
has been placed there, track overflow can­
not occur using block B31. Therefore,
tracks 47-53 constitute a period, and a new
period begins with block B31 on track 54.
For purposes of calculating relative block
addresses (see Examples 2 and 3 in the
section "Relative Block Conversion"), the
number of blocks on each track is given in
Figure 2 as the 'Track Block Count'.

Based on block characteristics (key
length and data length) and device charac-

teristics, the third phase of the BDAM open
program computes the size of the period for
the data set. Phase 3 then computes both
the number of blocks in a period and the
number of tracks in a period and places the
computed values in the two fields of the
overflow section of the DEB. These fields
are each one word in length, and they occur
only once for a given data set. The values
placed in these fields are constant for a
given data set.

Since the allocation of actual extents
to members of a data set is performed by
space management routines (refer to the
publication IBM System/360 Operating Sys­
tem: Direct Access Device Space Management,
Program Logic Manual), and since the period
is a concept used by BDAM, the boundaries
of extents and periods may not always
coincide. However, the end of an extent
terminates the last period in the extent.
In this case, the last period may be
complete or it may be only partially com­
plete. In either case, the start of a new
extent coincides with the start of a new
period.

Before returning control to the next
routine, phase 3 determines if any more
DCBs require the use of this module. If
so, this module is reentered and does the
required processing. If not, the data set
is considered to be opened as far as BDAM
is concerned, and control is returned eith­
er to an open executor routine for another
data set or to the open routine of
input/output support. 1

1The next routine is determined from the
where-to-go table. (Refer to the publica­
tion IBM System/360 Operating System:
Input/OUtput Support (OPEN/CLOSE/EOV), Pro­
gram Logic Manual.)

844 844 249 Track Block Count
B3 B4 I B5"': 5 Blocks L-~~ __ J-____ ~~ ____ ~ ______ ~ ______ ~ ____ ~~ ____ ~ ____ ~~ ____ ~ __ ~

844
B12

844
B8

498
B9 -.\ 4 Blocks

747
B13 -...: 4 Blocks

152
844 844 IB 1 8 I

L---.-:.:.::::....-__ J--L ____ ~...:..::::..... ___ --L ______ .::....:..:=__ __ ____IL_ ____ ..::;,B.:..:16:_.. ____ ..J.._ ____;B:...:l..:....7 ______ ... i ---+t~1 4 Blocks

844
B25

844
B21

401 I

B22 --:

650
B26

5 Blocks

4 Blocks

(55
L-~::..-_..L.~L_ __ ~:....-___ ..L. __ ~~ __ ~ _____ ~~~:..!.~ ___ _'__ ___ __'~"""~""'_~ __ __'_'II 4 Blocks

4 Blocks

THE BDAM FOUNDATION MODULE
(MODULE IGG019KA)

When either a READ or a WRITE macro
instruction in the processing program is
encountered, the BDAM foundation module
receives control. (See Figure 3.) This
module, IGG019KA, is the basic module of
BDAM. As such, it is required in all
processing that requires the basic direct
access method. This module provides the
initialization, housekeeping, and control­
ling functions for the BDAM processing
routines. The foundation module consists
of three main functional components:

• The base component.
• The asynchronous interrupt component.
• The error component.

BASE COMPONENT

The base routine is the first main
component of the foundation module. All
requests made through either a READ or a
WRITE macro instruction enter BDAM in the
base routine. <See Chart 01.) The base
routine has two primary functions:

• Establishing the validity of options
that have been specified in the request
macro instruction for the application.

• Combining the options specified in the
type field of the READ or the WRITE
macro instruction with the options
specified in the DCBOPTCD field of the
DCB. The result of the combination is
placed in the data event control block
(DECB) and later transferred to the
input/output block (lOB) for future
reference by the BDAM routines.

The base routine then tests the type
field of the DECB that results from the
expansion of either the READ or the WRITE
macro instruction, to determine the form of
the channel program to be constructed.
This routine then determines the main stor­
age requirements for the lOB to be used by
the request. (The lOB used by a request
for the BDAM program is described in Appen­
dix A.) The base routine then either (a)
obtains an available lOB of the necessary
size from an existing pool of lOBs or, (b),
obtains an amount of main storage, through
the use of the GETMAIN macro instruction,
in which to construct a new lOB for the
request and builds the lOB.

The base routine next determines the
type of block addressing that has been
specified for the data set. If actual
addressing has not been specified, control

is given to one of the BDAM modules that
are used to convert the address form used
to an actual address. (The main storage
address of the required address conversion
module was placed in the foundation module
by the BDAM open executor program when the
data set was opened.) The conversion
module returns control to the base routine.

The base routine again determines the
form of channel program required, this time
by checking fields in the lOB and in the
DCB. The indicated module is given control
and generates the proper channel program.
If the extended search option has been
specified, the channel program will reflect
the search limits established in the
DCBLIMCT field of the DCB. At the comple­
tion of channel program generation, the
base routine again receives control.

After establishing an expected end for
the channel program, the base routine
issues a request to the I/O supervisor by
means of the execute channel program (EXCP)
routine. After the 1/0 supervisor has
scheduled the request, control is returned
to the base routine, which then returns
control to the processing program.

ASYNCHRONOUS INTERRUPT COMPONENT

The asynchronous interrupt (ASI) routine
is the second main component of the founda­
tion module. Before a request is consid­
ered completed, certain processing func­
tions must be performed by the foundation
module. When the processing program is
interrupted by the completion of an
input/output operation, the I/O supervisor
gives program control to the BDAM channel
end appendage routine. The control rela­
tionships involved at this time are shown
in Figure 4. The ASI routine 1S scheduled
by the supervisor after the BDAM channel
end appendage module, IGG019KU, has indi­
cated the need for the ASI routine. The
appendage module then returns control to
the I/O supervisor which, in turn, returns
control to the supervisor.

The main functions (see Chart 02) of the
ASI routines are:

• To determine the cause of interrup­
tions.

• To either initiate a restart of a
channel program if necessary or branch
either to error subroutines or to other
processing modules (such as self­
format, address conversion for relative
block feedback, or address conversion
for relative track feedback).

Program Component Description 13

• If the request currently being process­
ed is a request to write a block and if
the dynamic buffer option has been
specified, then the ASI routine will
use the dynamic buffer module as a
subroutine to free the buffer that has
been allocated for the corresponding
'read' request.

• If either the exclusive control option
has been specified or a request to add
new blocks of variable or undefined
length has been specified, the ASI
routine uses the exclusive control
module either to place blocks on a
queue or to remove blocks from a queue.

• To release the request's lOB to the
pool of lOBs. (This function is per­
formed by the check module if both a
CHECK macro instruction is encountered
and the DCB macro instruction specifies
the check function.) After the lOB has
been released, the request is posted as
complete by means of the post routine,
and control is returned to the supervi­
sor.

For each request, only those functions
that are applicable are performed.

ERROR COMPONENT

The third major component of the founda­
tion module consists of error routines both
for processing invalid requests and for
processing errors resulting from abnormal
completion of a request. Figures 3 and 4
indicate the error-processing functions.

Invalid Requests

Invalid requests are based upon differ­
ences between the parameters specified in
the DECB related to an individual READ or
WRITE macro instruction and the parameters
specified in the DCB at the time it was
opened for processing with BDAM. Invalid
requests can occur in the base routine of
the foundation module, in the module for
converting a relative track address to an
actual address, in the module for convert­
ing a relative block address to an actual

14

address, and in the module for generating a
write-type channel program to add a block
to a data set of fixed-length (or
preformatted) records.

When an invalid request is encountered,
an error routine releases the lOB associat­
ed with the request, posts an indication in
the DECB that an invalid request has
occurred, and returns control to the pro­
cessing program.

Abnormal Completion of a Reguest

There are two situations in which abnor­
mal completion of a request is related to
BDAM. The first situation results from
device errors. Errors included in this
category are those relating either to the
actual input/output devices and control
units or to end-of-data-set conditions
(which are received by the channel end
appendage module as unit exception
conditions). An error condition also
results from not finding a dummy record in
the case of a request to add a fixed-length
block to an existing data set. An indica­
tion of abnormal completion is established
when the I/O supervisor enters the excep­
tional end routine of the BDAM channel end
appendage module, IGG019KU.

The second situation can occur when a
request is given to write a new block whose
length is either variable or undefined. If
it is determined that there is no available
space in which to add the new block, a BDAM
routine sets an indicator to inform the
processing program so that appropriate
action may be taken.

When an abnormal completion is encoun­
tered, the error routine releases the
related lOB to the lOB pool associated with
the data control block, posts an indication
of the type of error and an indication of
the completion of the request, and returns
control to the supervisor.

Note: The lOB is released to the lOB pool
by the check module if applicable. (Refer
to the section "Asynchronous Interrupt Com­
ponent.")

Processing
Program

Related System 360
Routines

BDAM Routines and Functions

READ/vVRITE ---------- ------ -- --I
--... ----------------, I

I
I
I
I
I
I

I

IGG019KA

BDAM
Foundation

(Base
Component)

I :
L _____ .J

I

I
I
I
I
I
I
I __________ ...J

I

Check Request
Validity

Convert Address

Build lOB

Process
Request
Errors

Generate
Channel
Program

L ___________ ~
Legend
-------..... Main Flow of Control

----_ .. Functions Performed

- -- --+- Linkage to Routines to Perform Functions

I

I I
I L
I
I
L

IGG019KC

Relative Track

IGG019KE

Relative Block,
No Overflow

IGG019KF

Relative Block,
Track Overflow

IGG019KK

Read/vVri te
by Block ID

IGG019KI

Read/vVrite
by Block Key

IGG019KO

Write-Add,
Format F

IGG019KM

Write-Add,
Format U or V

IGG019KQ

Write-Verify

IGG019KW

-+ Key Extended
Search

IGG019LA - Pre-Format
Extended Search

IGG019KY - Se I f- Format
Extended Search

Figure 3. Relationship Among Processing Program, I/O Supervisor, and BDAM for Processing
a Request

Program Component Description 15

Processing
Program

I/O
- - Interrupt
- - --------~
- -~--,

I
I
I
I
I

I
I
I
I
I

Related System/360
Routines

lOS

lOS

Error Routine

I
I
I
'f

Channel
Program

Terminates

Exit Effector

--------@

--------0

I
L_

Schedule
BDAM

Asynchronous
Interrupt
Routine

t

L--_s_u_p_e_rv_i_so_r __ ...J~ --- - --------

~

I

i L--_s_u_p_e..,rv_i_so_r __ ...Jr--- -- -------
I
I I
L ___________ J

Legend
--------~ Main Flow of Control

-----~.. Functions Performed

-- -- ----.. Linkage to Routine to Perform Functions

lOS Input/Output Supervisor

BDAM Routines and Functions

IGG019KU·

BDAM Channel
End Appendage

IGG019KA

BDAM
Foundation

(ASI
Component)

Check for Error
Retry Procedure
Requirement

Release Buffers

Set
Completion

Codes

Provide Exclusive
Control of

Block

Schedule Rest of
Write-Add

Channel Program

Compute Feedback

Release lOB to Pool

Post Request
Completion

Process
Completion

Errors

i-

-

IGG019LG

Exclusive
Control

IGG019KC

Track Feedback

IGG019KG

Block Feedback,
No Overflow

IGGOJ9KH

Block Feedback,
Track Overflow

• Figure 4. Relationship Among Processing Program, Related System/360 Routines,
When a Request is completed

and

16

BDAM

ADDRESS CONVERSION

If the user specifies either relative
track or relative block addressing, one of
the BDAM relative address conversion
modules is used. Each conversion module
initiates transformation of the user's
block address specification into an actual
device location for the block so that the
channel program can use the location when
searching for the block. If the block
address is given in terms of a relative
track position, the relative track conver­
sion module (IGG019KC) is used. If the
address of a block is given as a relative
block number within a data set, one of the
two relative block conversion modules
(IGG019KE or IGG019KF) is used. If
required, an address conversion module is
loaded into main storage by the BDAM open
executor phase 2 module at the time the
data control block is opened.

RELATIVE TRACK CONVERSION (MODULE IGG019KC)

The relative track conversion module,
IGG019KC, is entered from either the base
component or the ASI component of the
foundation module. {See Figures 3 and 4.>
Entry is from the base component if the
purpose is to initiate a conversion from a
relative track address to an actual device
address. Entry is from the ASI component
if the purpose is to initiate a conversion
from a block's actual device address to a
relative track address. The latter conver­
sion is for purposes of feedback if speci­
fied by the user.

Entry From Base Component: The actual
converting of track addresses is done by a
conversion routine (referred to as the
convert-to-actual routine) of the basic
partitioned access method (BPAM). {Refer
to the publication IBM System/360 Operating
System: Seguential Access Methods, Program
Logic Manual.> This routine is resident in
main storage. When the BDAM conversion
module gives control to the BPAM routine,
it supplies the address of the location at
which the actual address is to be placed
(it is placed in the IOBSEEK field for use
by the channel program), the relative track
number that the user has indicated in the
blkref field of the request macro instruc­
tions , and the address of the DEB so that
the BPru~ routine can refer to the actual
extents in the DEB.

The DEB extents contain the cylinder and
track information for the various sections
of the data set (which is stored on a
direct access device); from the extents,
the BPAM routine obtains the actual start-

ing address of each extent and the number
of tracks in each extent. From this infor­
mation, the BPAM conversion routine derives
the actual address of the block whose
address is to be converted. This address
is then placed in the specified location
(i.e., IOBSEEK), and the BPAM routine
returns control to the BDAM relative track
conversion module, which gives control to
the base component of the foundation
module.

If the extended search option has been
specified, the foregoing procedure is used
to determine the actual address of the
upper limit of the search. The starting
track address and the number of tracks to
be searched (as specified in the LIMCT
parameter of the DCB macro instruction>
enable the search limit to be computed.
This limit is placed in the IOBUPLIM field
of the lOB.

Entry From ASI Component: The ASI routine
receives program control after the channel
program ends. If the user requests rela­
tive track feedback, the ASI routine gives
control to the BDAM relative track conver­
sion module, which gives control to another
resident BPAM conversion routine (referred
to as the convert-to-relative routine).
The BDAM module gives the BPAM routine both
the address of the location of the actual
block address (i.e., the address of
IOBSEEK) and ,the address of the DEB. After
the BPAM routine completes the address
conversion and places the converted address
in a parameter register, program control is
returned to the relative track conversion
module. This module stores the relative
track address in the blkref area of the
processing program and gives control to the
ASI routine.

RELATIVE BLOCK CONVERSION (MODULES IGG019KE
AND IGG019KF)

Each of the relative block conversion
modules is entered from the foundation
module to initiate the conversion of a
relative block address to an actual device
address. The data control block is exam­
ined to determine if track overflow has
been specified. If it has not been speci­
fied, module IGG019KE is used. If it has
been specified, module IGG019KF is used.
(See Figure 3.> In either case, the actual
conversion requires two routines. The
first routine is a BDAM routine that con­
verts a relative block address to a rela­
tive track address, and the second routine
is a BPAM routine that converts a relative
track address to an actual track address.

Program Component Description 17

To convert relative block addresses to
relative track addresses, the BDAM modules
use information from the relative extent
areas of the DEB. For each actual extent
area in the DEB, there is a relative extent
area whose fields (or field, if track
overflow is specified) contain information
related to a specific actual extent. One
field contains the number of blocks on a
track for the device used, and the other
field contains the number of blocks in the
actual extent. If track overflow is speci­
fied, the first of these two fields is not
present.

Track Overflow Not Specified (Module
IGG019KE)

To determine the relative track address
from a relative block number given in the
blkref field of a READ macro instruction,
module IGG019KE goes through a repeating
cycle of reducing the relative block number
by a given number of blocks and recording
the corresponding number of tracks as fol­
lows.

The relative block number reduction
process involves successively subtracting
the number of blocks in each extent of the
data set until an extent that contains more
blocks than needed to reach the blkref
field value is reached. For each full
extent that can be subtracted, the number
of tracks in the extent is added to a
cumulative total of tracks representing
previously subtracted extents. The first
full extent that cannot be subtracted as
indicated is referred to as a terminal
extent.

When the terminal extent is reached,
there will remain a number of blocks equal
to the difference between the blkref value
and the number of blocks already subtract­
ed. This remaining number is divided by
the "blocks per track" field of the DEB.
The quotient in this division is the number
of full tracks to be added to the cumula­
tive total of tracks. The remainder in
this division represents the number of
blocks from the next track (called the
terminal track) that are required to reach
the value indicated by the blkref parame­
ter.

The relative track address, in the form
of a TTR address (where TT is the relative
track number and R is the block number of
track TT), is composed of (1) the sum of
the tracks required from all extents (if
any) up to the terminal extent plus the
number (the quotient in the above division)
of full tracks required from the terminal
extent and (2) the number of remaining

18

blocks (if
(terminal)
track.

any) required from the
track following the last full

Control is then given to the BPAM
convert-to-actual routine that is resident
in main storage. This is the routine
required for the relative track address
conversion process, and it requires the
same information that was needed for the
relative track conversion process. (Refer
to "Relative Track Conversion.")

The BPAM conversion routine places the
converted address in the IOBSEEK field of
the lOB and returns control to the BDAM
relative block conversion module, which
then gives control back to the foundation
module.

In a manner similar to that described in
the section "Relative Track Conversion," an
extended search limit, if necessary, is
computed for relative-block-addressing con­
ditions. The actual address of this upper
limit also is placed in the IOBUPLIM field.

Following is an example of calculating a
relative track address for the case of a
data set without track overflow when a
relative block number is given in the
blkref parameter of a READ macro instruc­
tions •

Example 2: Assume the data set is con­
tained in four extents identified as I, II,
III, and IV. Let extent I contain 10
tracks with 80 data blocks: extent II
contain 14 tracks with 112 data blocks;
extent III contain 8 tracks with 64 data
blocks; and extent IV contain 12 tracks
with 96 data blocks. (This assumes that
the data set is on a device permitting 8
data blocks to be placed on one track.)
The information needed from the DEB for
this data set can be summarized in Table 2
below:

Table 2. DEB Information for Example With-
out Track Overflow

r-------------T------T------T------T------,
I DEB Field I Extent I Extent I Extent I Extent I
I I I I II I III I IV I

~-------------+------+------+------+------i
I Blocks per I 8 I 8 I 8 I 8 I
I Track I I I I I
~-------------+------+------+------+-~----~
I Tracks per I 10 I 14 I 8 I 12 I
I Extent I I I I I
~-------------+------+------+------+------~
I Blocks per IB1 =80 IB 2 =112 IB3=64 IB~=96 I
I Extent I I I I I L _____________ i ______ i ______ i ______ i ______ J

If the blkref field contains a relative
block number of 284, the calculations to
find the relative track address are indi­
cated below:

blkref value - BJ,.. = RJ,.. (remainder)

284 - 80 = 204 The 80 blocks from Extent
I are on 10 tracks

RJ,.. - B2 R2

204 112 92 The 112 blocks from Extent
II are on 14 tracks

R2 B3 R3

92 64 28 The 64 blocks from extent
III are on 8 tracks

R3 - B". R".

28 - 96 < 0

Since R". is less than zero, the full extent
(IV) cannot be subtracted. Extent IV is
called the terminal extent. The previous
remaining value (R3 = 28) is divided by the
blocks per track value (8) to give a
quotient of 3 and a remainder of 4. The 3
represents the number of tracks of the
terminal extent that must be added to the
sum of the underlined numbers of tracks
from extents I, II, and III. The 4 rep­
resents the number of data blocks that must
be counted from the beginning of the termi­
nal track. Thus, the relative track
address (TTR) of the block in this example
is equivalent to 35 tracks (the TT value)
and 4 blocks (the R value) from the begin­
ning of the data set.

Track Overflow Specified (Module IGG019KF)

To determine the relative track address
from a relative block number given in the
blkref field of a READ macro instruction,
module IGG019KF uses the overflow section
of the DEB as well as the single field in
each required relative extent area of the
DEB. The track overflow option implies
that overflow blocks may be present in an
extent. For purposes of block addressing,
the track on which an overflow block begins
is considered to contain the block. The
DEB information used for calculating the
relative track address of an overflow block
is contained in the following fields of the
DEB:

• Tracks per extent
• Tracks per period
• Blocks per period
• Blocks per extent

The process of converting a relative
block number to a relative block address
(in the TTR format) involves successively
subtracting the number of blocks in each
data set extent until an extent that con­
tains more blocks than needed to reach the
blkref field value is reached. For each
full extent that can be subtracted, the
corresponding number of full tracks is
added to a cumulative total of tracks
representing previously subtracted extents.
The first full extent that cannot be sub­
tracted as indicated is called the terminal
extent.

Upon reaching the terminal extent, the
periods in that extent are considered as
follows. The 'blocks per period' value is
subtracted successively until reaching a
period, the block count of which cannot be
subtracted as indicated. This period is
the terminal period. For each period for
which the full number of blocks can be
subtracted, the number of tracks is added
to the cumulative total of tracks.

The individual tracks in the terminal
period are then added in successively until
a track containing a number of blocks that
is equal to or greater than the remaining
number of blocks needed to equal the blkref
value is reached. This track is the termi­
nal track. The total of all the tracks
(taken in considering full extents, full
periods, and partial periods) and blocks
(taken in considering the blocks on the
terminal track in the terminal period)
determines the relative track address cor­
responding to the relative block number
given in the blkref field.

After the relative track address haS
been determined for a block where the track
overflow specification exists, control is
given to the BPAM convert-to-actual routine
and processing proceeds as described for
the no-overflow case.

Following is an example
relative track address for
data set having overflow
relative block number is
blkref field.

of calculating a
the case of a
blocks when the
given in the

Example 3: Assume the data set is con­
tained in three extents identified as I,
II, and III. Let extent I contain 20
tracks with 114 data blocks; extent II
contain 10 tracks with 57 data blocks; and
extent III contain 27 tracks with 153 data
blocks. Further, assume that phase 3 of
the BDAM open program has established that
each period contains 3 tracks with a total
of 17 blocks and that the blocks are placed
on the tracks so that the first two tracks
each contain 6 blocks and the third track
contains 5 blocks.

Program Component Description 19

The information needed from the DEB for
this data set is summarized in Table 3
below:

Table 3. DEB Information for Example With
Track Overflow

r-----------------T-------T-------T-------,
1 DEB Field 1 Extent 1 Extent 1 Extent 1
1 1 I 1 II 1 III 1
~-----------------+-------+-------+-------1
ITracks per Extent I 20 1 10 1 27 1
~-----------------+-------+-------+-------1
ITracks per Periodl 3 I 3 1 3 I
~-----------------+-------+-------+-------1
IBlocks per Periodl 17 1 17 I 17 I
~-----------------+-------+-------+-------1
IBlocks per Extent 1 B1 =114 1 B2 =57 1 B3=1531 L _________________ ~ _______ L _______ L _______ J

If the blkref field of a READ macro
instruction contains a relative block num­
ber of 211, the calculations to find the
relative track address are indicated below:

blkref value - B1 = R1 (remainder)

211 - 114 = 103 The 114 blocks (from
Extent I) are on 20 tracks

103 51 46 The 51 blocks (from Extent
II) are on 10 tracks

46 - 153 < 0

since R3 is less than zero, the full extent
(III) cannot be subtracted. Extent III
becomes the terminal extent. Now the per­
iods in the terminal extent are considered.

Let the periods of Extent III be desig­
nated as IlIa, IIIb, IIIc, etc. The calcu­
lations proceed as follows:

46

29

12 -

IlIa

11 29

IIIb = R""

17 12

17 < 0

The 17 blocks (from period
IlIa) are on 3 tracks

The 17 blocks (from period
IIIb) are on 3 tracks

Since R is less than zero, the full period
(IIIc) 5cannot be subtracted. Period IIIc
becomes the terminal period. NOW, the
blocks on the tracks in the terminal period

20

are subtracted to arrive at the final
required number of equivalent tracks and/or
blocks to equal the relative block number.
In this example, the 12 remaining blocks
(the R"" value) are equivalent to one track
(of 6 blocks) plus six blocks (on the
terminal track).

The total number of tracks plus addi­
tional blocks thus is equal to the sum of
the underlined numbers of tracks in the two
full extents (I and II) and the two full
periods (IlIa and IIIb) in extent III plus
the one track and 6 blocks from period
IIIc. This value is 31 tracks and 6
blocks, giving a TTR value that can be used
by the BPAM routine to obtain an actual
address for the block.

FEEDBACK FOR RELATIVE BLOCK ADDRESSING
(MODULES IGG019KG AND IGG019KH)

The feedback modules, IGG019KG and
IGG019KH, are used when feedback and rela­
tive block addressing have been specified.
(See Figure 4.> Entry to the proper module
is from the ASI routine at the completion
of a channel program. The actual address
of the block was obtained when the channel
program made access to the block.

The actual device address of the block
is given to the BPAM convert-to-relative
routine by the feedback module. The rela­
tive track address determined by the BPAM
routine is given to the appropriate BDAM
feedback module. Using information that is
contained in the actual extents, the rela­
tive extents, and, if track overflow has
been specified, the overflow section of the
DEB, the feedback module constructs the
relative block address for the block and
places the result in the blkref area speci­
fied in the DECB. The method used in
obtaining the relative block number is
basically a reversal of the technique used
to convert to an actual address. The
feedback module then gives program control
to the ASI routine.

CHANNEL PROGRAMS FOR BDAM

To perform the input and output opera­
tions required by BDAM processing, several
channel programs are available. For each
request to read or write a block, the
appropriate channel program is constructed
dynamically when the base routine of the
foundation module gives control to a BDAM
channel program generating module. (See
Figure 3.> Appendix C contains the actual
channel programs that are generated.

The foundation module uses parameters
specified in the DCB and in the individual
request macro instruction to determine
which channel program is to be constructed.
The type field of the lOB is tested for
this purpose. The channel command words,
of which the channel programs are con­
structed, contain the following types of
operation codes: write information, read
information, search for equal argument,
transfer in channel, and track seek. The
channel programs permit BDAM to read or
write blocks based on either a key or a
block identification search argument.

As a channel program is constructed, it
becomes a logical part of the lOB associat­
ed with the request. (The structure of an
lOB as it relates to BDAM is given in
Appendix A.) There are three categories of
channel programs: update programs, format
programs, and the verification program.

UPDATE PROGRAMS (MODULES IGG019KI,
IGG019KK, AND IGG019KW)

The update programs are those that read
or write information for purposes other
than adding a new block to an existing data
set. control is given to the proper chan-

nel program generating module by the foun­
dation module.

Basically, there are three BDAM channel
programs available for reading or for
updating an existing block. Each channel
program can take one of two forms depending
on whether it is generated in response to a
read request or in response to a write
(update) request. These forms are shown in
Table 4. The search arguments indicated in
this table correspond to the fields of a
block as it appears on a direct-access
storage device. (See Figure 5.) If the
extended search option has been specified,
module IGG019KW modifies the channel pro­
gram that has been generated by module
IGG019KI, to search additional tracks or
blocks beyond that which is specified in a
READ or a WRITE macro instruction.

For channel programs to satisfy a write
request for which the write-validity-check
option has been specified, control is given
to the write-verify module, IGG019KQ, at
the completion of the channel-program gen­
erating function of the appropriate update
program module. After generating the veri­
fication channel program, the write-verify
module returns control to the foundation
module.

Table 4. Channel Programs for Reading or Writing an Updated Block
r---------------------T---------------------T---------------------T---------------------,
I Channel Program I I Extended Search I Generating I
I Form I Search Argument I Option specified I Module(s) I
~---------------------+---------------------+---------------------+---------------------~
I Read Data or I Key Field I No I IGG019KI I
I Write Data I I I I
~---------------------+---------------------+---------------------+---------------------~
I Read Data or I Key Field I Yes I IGG019KI and I
I Write Data I I I IGG019KW I
~---------------------+---------------------+---------------------+---------------------~
I Read Data or I Block ID of I Not a Factor I IGG019KK I
I Write Data I Count Field I I I L _____________________ L _____________________ L _____________________ L _____________________ J

r---,
r-----------------------------Tr--------Tr-------------------------,
I II II I
I COUNT FIELD I I KEY I I DATA I
~----------T--------T---------~ I II I
I Block ID I Key I Data I I I I I
I (CCHHR) I Field I Field I I FIELD II FIELD I
I I Length I Length I I I I I L __________ L~-------L---------J L-_______ JL _________________________ J

< 5 bytes > <1 byte> <2 bytes>

CCHHR gives the physical position of the block on the device.
The Key Field Length specification may be from 0 to 255 bytes.
The Data Field Length specification may be from 0 to 32760 bytes.

Figure 5. Structure of a Block on a Direct-Access Storage Device

Program Component Description 21

Each channel-program generating module
returns control to the foundation module's
base component after the last channel com­
mand word has been generated and placed in
the lOB for the request. Chart 03 summari­
zes the flow of control among BDAM modules
for updating (or reading) information.

FORMAT PROGRAMS

There are three BDAM format channel
programs. These programs are used for
writing a new block from main storage onto
a direct-access device. For adding fixed­
length blocks to an existing data set, two
of the three channel programs are
available. The choice of which one will be
used depends on whether the extended search
option has or has not been specified.
Since the block length is known or prede­
termined, these channel programs are called
pre-format programs.

If the processing program specifies
adding either variable-length blocks or
blocks of an undefined length to an exist­
ing data set, the remaining format channel
program is required. When the extended
search option is specified, this channel
program is repeated as many times as neces­
sary until either track space for the
record is found or the search limit is
reached. Since BDAM itself must establish
the space requirements for writing these
blocks, these channel programs are called
self-format programs.

The format channel programs are some­
times referred to as 'write-add' programs
to distinguish them from the write programs
described as update programs.

As with the update channel programs, the
format channel programs incorporate channel
command words for searching either on the

key field or on the count field of a block,
and they mayor may not require the verifi­
cation channel program (generated by module
IGG019KQ). The pre-format and self-format
programs are respectively generated by
either the pre-format modules or the self­
format modules, depending on the block
format of the data set.

Table 5 shows the factors that determine
which format modules are required to
generate the format channel programs. Note
that when the extended search option is
specified for fixed-length blocks, two
modules are required. The second module
listed is given control by, and returns
control to, the first module. The function
of the second module is to modify the
channel program generated by the first
module. The foundation module gives con­
trol to either IGG019KO or IGG019KM
(depending on the block format), and when
the channel programs have been generated,
the format module returns control to the
foundation module.

Pre-Format Channel Programs
(Modules IGG019KO and IGG019LA)

The pre-format channel programs are used
when a new fixed-length block is to be
added to an existing data set. In order to
add fixed-length blocks, the user must have
initially placed his data blocks on the
direct-access device by means of the basic
sequential access method (BSAM) write rou­
tine for creating a direct organization
data set. As blocks were placed on the
direct-access device, dummy records may
have been provided to allow the BDAM chan­
nel program to search for an area in which
to place a new block. A dummy record is
one in which the first byte of the key
field is a hexadecimal FF, and the first
byte of data has a value indicating the
position of the dummy record on the track.

Table 5. Requirements for Channel Programs to Add New Blocks to an Existing Data Set
r---------------------T---------------------T---------------------T---------------------,
I I Channel Program I Extended Search I Generating I

I Block Length I Format I Option Specified I Module(s) I

~-------------~-------+---------------------+---------------------+---------------------~
I I I No I IGG019KO I
I Fixed I Pre-format .---------------------+---------------------~
I I I Yes I IGG019KO, I
I I I I IGG019LA I

~---------------------+---------------------+---------------------+---------------------~
I Variable or I Self-format I No I IGG019KM I

I Undefined I ~---------------------+---------------------~
I I I Yes I IGG019KM I L _____________________ ~ _____________________ ~ _____________________ ~ _____________________ J

22

Without Extended Search Option: If the
extended search option has not been spec~­
fied, the pre-format channel program 1S
generated by module IGG019KO. This module
is entered from, and returns control to,
the foundation module's base component.
The module constructs the necessary channel
command words and, by incrementing a base
address in the lOB, positions the fields of
the channel command words as they are
developed.

The channel program first searches an
indicated track for a dummy record. This
search starts at the first block encoun­
tered on the proper track. If a dummy
record is not found on the indicated track,
the search is not satisfied. An indication
of 'no-space-found' is then given to the
processing program. This indication
appears in the DECB. The search is suc­
cessful if a dummy record is encountered.

After the key field of a dummy record
has been found, the first byte of the data
field is read into the lOB to provide the
position of the dummy record on the track.
The same dummy record is next located by a
search on the ID portion of the count
field. The new block key and data fields
can then be written to replace those of the
dummy record.

With Extended Search Option: If the
extended search option has been specified,
the pre-format channel program is generated
by modules IGG019KO and IGG019LA. The
function of module IGG019LA is to modify
the channel program generated by module
IGG019KO so that the search for a dummy
record will extend across multiple tracks
(up to the limit specified in the IOBUPLIM
field of the lOB). If the extended search
comes to an end and a dummy record is not
found, the procedure is the same as de­
scribed for the case without the extended
search option.

If a dummy record is found, the search
is successful and the dummy record's posi­
tion is read into the lOB as before. The
channel program then continues as in the
case without the extended search option.

If the block that is being written by
the request must be verified (because of an
option specified in the DCB macro­
instruction), the appropriate pre-format
channel program is enlarged to include
additional channel command words. Module
IGG019KQ is given control to perform this
function. (Refer to "Verification
Program.")

Self-Format Channel Programs
(Modules IGG019KM and IGG019KY)

The self-format channel programs are
used when new blocks of either undefined
length (format U) or variable length
(format V) are to be added to an existing
data set. As with fixed-length records,
the basic sequential access method's write
routine for creating a direct-organization
data set must have been used to initially
place the data blocks on the direct access
device. When the data set is initially put
on the direct access device, a capacity
record (block 0) is also placed on each
track. The capacity record contains both
the ID of the last block on the track and
the number of usable bytes remaining on the
track. These are the available bytes that
may be used for new blocks. Figure 6
illustrates the data portion of the capaci­
ty record.

r-------------T-------------T-------------,
I ID of IUsable bytes I Unused I
I last block Iremaining on I I
I I track I I L _____________ ~ _____________ ~ _____________ J

<---5 bytes--> <--2 bytes--> <---1 byte--->

Figure 6. Data Field of a Capacity Record
for a BDAM Data Set

The foundation module gives control to
BDAM module IGG019KM to generate the chan­
nel program for both format U and format V
records. The channel program consists of
(1) one section that reads the capacity
record from the indicated track into main
storage and (2) another section that writes
the new block and updates the capacity
record to reflect inclusion of the new
block on the track. Generation of the
self-format channel program involves moving
constants representing elements of channel
command words into assigned positions of
the request's lOB to form the required
channel command words. If record verifica­
tion is required, the self-format channel
program is enlarged by module IGG019KQ to
include the verification program channel
command words.

The last channel command word of the
section of the channel program that reads
the capacity record does not include a
command chaining flag. This permits the
I/O supervisor to give control to the
channel end appendage module after the
capacity record has been read. The appen-

Idage module then branches to a supervisor
routine to schedule the ASI routine.

Program Component Description 23

24

In the performance of two or more tasks,
concurrent requests to add a block to the
same track on a direct-access device may be
made. All but one of these requests
(called 'write-add' requests) must be
placed on an inter-task queue to prevent
undesired interference. This interference
would result from other requests obtaining
the same track capacity record for interro­
gating and updating before a first request
was finished with it. Concurrent requests
for the same track may also occur in the
performance of a single task.

When the ASI routine (1) (numbers in ()
refer to points indicated on Figure 6A)
gets control after the track capacity
record has been read for a write-add
request, it, in turn, gives control to the
exclusive control module IGG019LG (2).
Module IGG019LG either places the record on
an inter-task queue by using the ENQ macro
instruction (3) or places the lOB for the
record on the unposted queue (4). (The
functions of the exclusive control module
are described more fully in the section
"Exclusive Control.") In either case, con­
trol is then given to the supervisor.

After the channel program reads the
capacity record in connection with a given
write-add request, the supervisor again
gives control to the ASI routine (5). The
ASI routine then gives control to module
IGG019KM so that the information in the
capacity record can be tested (6) to deter­
mine if the block to be written will fit on
the indicated track.

If the track can contain the new block,
calculations are made to update the capaci­
ty record. The channel program is then
modified to reflect the correct search
argument, and an EXCP macro instruction is
issued to write the new block and the
updated capacity record. Module IGG019KM
then gives control to the exclusive control
module (7). If the new block will not fit
on the track, control is given to the
exclusive control module immediately.

If the unposted queue does not contain
an lOB waiting for the capacity record that
was just updated, the capacity record is no
longer needed for the performance of the
current task. Module IGG019LG issues a DEQ
macro instruction to release the record to
other tasks that may require it, and con­
trol is given to module IGG019KM (8). If
an lOB for this capacity record is on the
unposted queue, both the address of the rOB
and program control are given to module
IGG019KM.

The self-format module determines wheth­
er the block was placed on the track (i.e.,
if the track had room for the block). If
it was, and if the unposted queue contained

another lOB for the same capacity recorJd
(9), the value in the lOB fie
(IOBDBYTR .•• see Appendix A) that contain
the number of remaining bytes on the track
is moved from the lOB of the current
request to the lOB of the next request for
this same capacity record. In this situa­
tion, the capacity record is still retained
as a result of the ENQ macro instruction
issued for the current task. Therefore,
the self-format module can immediately
begin processing this next request at the
point of determining whether the block will
fit on the track (6). If the block was
placed on the track and if the unposted
queue did not contain any more lOBs for
this capacity record, module IGG019KM gives
control to the supervisor (10).

If the block was not placed on the track
because of space limitations, and if the
extended search option has not been speci­
fied, an indication that no space is avai­
lable is placed in the lOB (11). The ASI
routine then gets control to post the
request as complete and to place a no­
space-found indication in the DECB (12).
The self-format module then determines if
the unposted queue contained another lOB
for the same capacity record (13) and
either returns control to the supervisor or
moves the value in the IOBDBYTR field and
continues as described in the precedinjl
paragraph.

If the block has been kept from the
track because of space limitations but the
extended search option has been specified,
control is given to the self-format
extended search module IGG019KY. This
module updates the current track address by
one and proceeds according to the condi­
tions given in the following paragraphs:

A. If the updated track address is equal
to the search limit indicated in the
IOBUPLIM field of the lOB, the no­
space-found indication is set for this
request (14). Control then returns to
the self-format module and processing
continues as if the extended search
option had not been specified.

B. If the updated track address is beyond
the current extent, control is given
to the BDAM end-of-extent module,
IGG019LC. This module determines if
more extents are available for
searching. There are two possibili­
ties for consideration.

1. If there are more available
extents and if the upper limit of
the search has not been reached,
the address of the first track 01
the next extent is given to tt
self-format module. Since acces
to this new track may be required

in the performance of other tasks,
it is necessary to give control to
the exclusive control module at
this point (2). The exclusive
list is checked for the occurrence
of the new track address and pro­
cessing continues as previously
described (in the beginning of
this section) for the first capac­
ity record.

2. If either the search limit has
been reached or there are no more
available extents, the procedure
is as described for condition (A).

C. If the updated track address is within
the current extent and the search
limit has not been reached, the pro­
cessing of condition (B1) is contin­
ued, commencing with giving control to
the exclusive control module.

Where applicable, the procedures described
in the preceding paragraphs are repeated as
many times as necessary until either track
space on which to write the block is found
or the search limit is reached.

If the unposted queue contained another
lOB for the same capacity record (point 9
on Figure 6A), processing of that lOB then
continues from point D in Figure 6A.

VERIFICATION PROGRAM (MODULE IGG019KQ)

If the processing program specifies the
write-validity-check option in the DCB for
the data set, the write-verify module,
IGG019KQ, is used to generate additional
channel command words to verify information
that has been written by a write-type
channel program. These channel command
words are added to the existing channel
program.

If required, the BDAM open executor
program brings the write-verify module into
main storage at the time the data set is
opened. This module is entered from the
module that generates the particular type
of writing channel program required by the
request macro instruction. As data blocks
are written, the control unit develops a
check code for each field of the block.
This code is based on the information that
is written in the field. As each field is
written, the check code developed for it is
appended to it. verification is accom­
plished by reading back the block to be
checked to permit the control unit to
recompute the check codes. The control
unit then compares the check code written

on the track with that developed by the
read-back. If the two codes are not equal,
a data check indication is set. The skip
flag-command-code is set to 1 (on) in the
last channel command word of the verifica­
tion program so that the data that is read
back is not placed into main storage.

The write-verify module returns control
to the base component of the foundation
module.

APPENDAGES

The basic direct access method contains
appendage modules to which program control
is given at various stages during the
execution of a read or a write request.
The combined functions of the several
appendage modules are to make tests, to set
switches, to schedule the BDAM ASI routine,
and to obtain new extents for extended
search operation.

When the DCB is opened, phase 2 of the
BDAM open executor routine issues the LOAD
macro instruction to load the appendage
modules into main storage and places the
addresses of the modules into an appendage
list, which phase 1 has built in an area of
protected main storage. (See Figure 1.)
This list, which is also referred to as the
lOS Appendage Address Table, is located in
subpool 254 of the supervisor queue area.

The BDAM program uses three appendage
modules: the start 1/0 appendage module,
the channel end appendage module, and the
end-of-extent appendage module. (See Chart
01.)

The start 1/0 appendage module and the
channel end appendage module are entered
from the 1/0 supervisor and return control
to the I/O supervisor. The end-of-extent
appendage module may be entered from either
the BDAM self-format module or the I/O
supervisor. On returning from the end-of­
extent appendage module, control may be
given to either the BDAM self-format module
or the I/O supervisor.

START 1/0 APPENDAGE (MODULE IGG019KS)

The BDAM start I/O appendage module,
IGG019KS, is placed in main storage if the
dynamic buffering option has been
specified. This module is entered from the
I/O supervisor before a channel program is
initiated. (See Figure 7.)

Program Component Description 25

Write-Add
(on Track X)
Request

_ Inter-Module

Flow

- - - - Intra-Module
Flow

-Figure 6A.

26

Foundation
Module
Base Routi ne

t
Processing
Program

C I----~

CD

f4 -----------------~

- - - --- --------------------,

- - - - - - - -- ----------1
L ____ .., I , ,

o
I ,

, ,
I
I

~0 --1 , , , , ,
, y

i I Issue EXCP
L ___ ---4-- _______________ to Read

RO for
Track

----~----------------------------,

--------------------------, ,
,
,
,

I

: No,
------, L-------lc---

~----,-----~ ,
I
I ,
I ,
I 'Yes
L ___ ---tC- ---

-----------,

Ye~

--0

Module Relationships for Write-Add Requests in Multi-Task Environment

Processing
Program

Related System/360
Routines

BDAM Routines and Functions

-- I/O
- - Interrupt
------- ---- -- - --,
- -~-A--' lOS ~

I
I
I
I

I
I
I
I

I
I
I
I

I/O Request
at Top of

Request Queue

lOS

Remove This
Request from lOS
Scheduled Queue

I I
I I
L ________ --1

lOS

Begin Channel
Program Execution

I I
I I L __________ --1

IGG019KS

----., BDAM Start

I/O Appendage

~----0

f+----ill

I
Buffer not :

Get Buffer if Dynamic
Buffering Specified

Available I1J ~eeT~t

-------~ Main Flow of Control

----.~ Functions Performed

-- -----.. Linkage to Routine to Perform Functions

lOS Input/Output Supervisor

IGG019LE

Dynamic
Buffering

-Figure 7. Relationship Among Processing Program, I/O Supervisor, and BDAM for Executing
a Request

Buffer Needed

When a request with the dynamic buffer
specification is ready to be executed, I/O
supervisor gives control to the BDAM start
I/O appendage module. This module deter­
mines if a buffer has already been assigned
to this request or if it is necessary to
obtain a buffer from a buffer queue. If a
buffer must be obtained, module IGG019KS
gives control to the dynamic buffer module,
IGG019LE. If the buffer request does not
have to be placed on a queue by the dynamic
buffer module, the start I/O appendage
module will receive control after a buffer
has been allocated. The request is then
ready for execution, and control passes to
the I/O supervisor for channel program
execution.

CHANNEL END APPENDAGE (MODULE IGG019KU)

When a channel program is terminated,
either normally or abnormally, the I/O
supervisor gives control to the channel end
appendage module, IGG019KU. (See Figure
4.) This module is always placed in main
storage by the BDAM open executor phase 2
module. There are two general sections to
the channel end appendage module. The
sections are entered under the conditions
described in the following paragraphs:

Entry to First Section:
is entered under one
conditions:

The first section
of the following

• A channel program terminates normally.

• A channel program encounters a unit
exception condition, which is inter­
preted by the BDAM program as an end­
of-data-set condition.

• The execution of a channel program
results in a block length different
from that specified in the READ or
WRITE macro instruction.

If the channel program terminated
normally, the channel end appendage module
schedules the BDAM asynchronous interrupt
routine and then gives control to the I/O
supervisor.

Note: To schedule the ASI routine, the
channel end appendage module branches to
the exit effector routine of the task
supervisor. (Refer to the publication IBM
System/360 Operating System: MVT Supervi­
sor, Program Logic Manual.) The exit
effector routine then schedules the ASI
routine and returns control to the channel
end appendage module.

Program Component Description 27

For an end-of-data-set condition, the
channel end appendage module sets indica­
tors in the lOB, schedules the BDAM asyn­
chronous interrupt routine, and returns
control to the I/O supervisor. (Refer to
preceding note.)

If the channel end appendage module is
entered because of an incorrect-length
indication (given in the lOB when the
number of bytes read or written is not
equal to the number of bytes specified in
the channel program), a test is made to
determine the type of request being pro­
cessed. Three cases are possible:

• If the request was a read request for a
variable-length block, the length of
the block being read is compared to the
number of bytes of data actually read
by the channel program. (The length of
the block is specified by the first two
bytes of the data field of the block
read into the designated area. The
number of bytes actually read is deter­
mined from a calculation involving the
bytes-remaining field of the channel
status word.) If the length values are
equal, the incorrect-length indication
is set to 0 (off), and the ASI routine
is scheduled by the exit effector rou­
tine. Control is then returned to the
I/O supervisor.

• If the request was a read request for
format-U records, the incorrect-length
indication is set to 0 (off), and the
ASI routine is scheduled by the exit
effector routine. Control is then
returned to the I/O supervisor.

• If the request was a write request or a
read request for format-F records, or
if the block lengths in the first case
are unequal, the ASI routine is not
scheduled, the incorrect-length indica­
tion is left set at 1 (on), and the
channel end appendage module gives con­
trol to the I/O supervisor.

Entry to the Second Section: The second
section of the channel end appendage module
is entered when either a device-type error
or a permanent error has been encountered.
If a device error occurs, the I/O supervi­
sor receives control and uses a standard
IBM error-recovery procedure. If the error
condition remains after this procedure, the
error is classed as a permanent error.

For permanent errors, the channel end
appendage module sets an indicator in the
lOB, schedules the BDAM asynchronous inter­
rupt routine, and returns program control
to the I/O supervisor.

28

END OF EXTENT APPENDAGE (MODULE IGG019LC)

The BDAM end-of-extent appendage module
is required if the extended search option
has been specified in the DCB macro
instructions. At the time the data set is
opened, phase 2 of the BDAM open executor
program determines the need for this end­
of-extent module and loads it if necessary.
There are two extended-search-type
situations that require this module. In
one situation, the module functions as an
I/O supervisor appendage. In the other
situation, the module appears as a BDAM
routine without supervisory functions.

Supervisory Mode

The I/O supervisor gives control to the
BDAM end-of-extent module when a channel
program comes to the end of a data set
extent while searching for a block to be
read or written or while searching for a
dummy record in which to write a new
pre-format type block. Under either of
these situations, module IGG019LC estab­
lishes the address of the next extent to be
searched. Note that if a search has begun
at some point other than the beginning of
the first extent in the DEB, the address of
the next extent may, at some point in the
search, become that of the first extent.

If the search limit (as determined from
the LIMCT parameter in the DCB macro
instruction) is not in this next (or new)
extent, the end-of-extent module either
returns control to the I/O supervisor to
restart the channel program using the new
extent or, if the new extent refers to
another device, indicates the need for the
BDAM asynchronous interrupt routine to re­
schedule the channel program using a search
address in the new extent.

Note: The search limit is found in the
IOBUPLIM field of the lOB. The limit is
defined as the first track beyond the last
actual track that may be searched for the
given data set.

If the search limit is in this new
extent but the new search address is not
equal to the search limit, the channel
program will be rescheduled by either the
I/O supervisor or the ASI routine as
before.

If the search limit is in this extent
but the new search address equals the
search limit, the search has ended unsuc­
cessfully. An indication is then set to

show that either no space was found or no
block was found, and control is given to
I/O supervisor, which, in turn, will go to
the abnormal end component of the BDAM
channel end appendage.

Non-Supervisory Mode

The BDAM self-format extended search
module may at some time, in the process of
establishing search addresses, recognize
that the end of a given data extent has
been reached. If this happens, the extend­
ed search module gives control to the
end-of-extent module.

As when in the supervisory mode, module
IGG019LC determines the availability of
other extents to be searched, establishes a
new search address, and determines whether
or not the search limit has been reached.
If the search limit has not been reached,
the end-of-extent module uses the new
search address related to a new extent and
reschedules the channel program (to read in
the capacity record of the next track) and
then gives control back to the self-format
module.

If the search limit has been reached, an
indication that no space has been found is
placed in the request's lOB. When the
request is posted, this indication is
placed in the DECSDECB field of the DECB.

EXCLUSIVE CONTROL (MODULE IGG019LG)

If a programmer has specified that the
exclusive control feature be applied to
blocks that are read and that mayor may
not be subsequently written, the ASI rou­
tine gives control to module IGG019LG to
handle both the block queuing and the block
dequeuing that is required with this fea­
ture.

In addition, module IGG019LG is used to
place records on a queue when the process­
ing program encounters a request to add a
new block of either variable-length records
or records of undefined length. (Refer to
Chart 04.)

With exclusive control in effect, a
given block may not be updated (or other­
W1se acted upon) by processing associated
with other requests until exclusive control
for that block has been removed. If the
MACRF operand of a DCB macro instruction
for BDAM contains the exclusive control
specification, the following BDAM macro­
instructions require the exclusive control
module:

• READ (with an exclusive control
specification).

• WRITE (with an exclusive control
specification).

• RELEX.

Until the exclusive control module is
first given control, the read-exclusive
list (see Appendix A) consists of an
SO-byte segment of main storage obtained by
phase 1 of the BDAM open executor program.
This segment contains space for nine
entries, each entry consisting of the UCB
pointer and the device address of a block
for which exclusive control is required.
When more than nine entries are needed on
the read-exclusive list, additional main
storage is obtained in increments of
SO-byte segments, each of which can contain
nine entries. The address of the first
segment is contained in the DCBXARG field
of the DCB, and each succeeding segment is
chained to the one preceding it. The
read-exclusive list is an intra-task list
of device addresses of blocks (i.e.,
capacity records and data blocks) that are
requested for the performance of the cur­
rent task.

There are two
block is to be read
trol.

situations in which a
under exclusive con-

• A self-format 'write-add' request is
encountered. (See the section
"Self-Format Channel Programs.")

• A READ macro instruction that requests
exclusive control is encountered.

When either of these situations occurs,
module IGG019LG determines if the device
address of the appropriate block is on the
read-exclusive list. The appropriate block
is the track capacity record in the case of
a 'write-add' request; in the case of a
read-exclusive request, it is the block to
be read. If the block address is on the
list, the lOB for the request is placed on
a queue called the unposted queue. This is
an intra-task queue of lOBs representing
requests for blocks whose addresses are
currently on the read-exclusive list and
are associated with the current task. The
data control block contains the addresses
of the first and the last lOBs on this
queue, and each intermediate entry is
chained to the one preceding it. Control
is then given to the routine from which
module IGG019LG was entered.

If the block address is not on the
read-exclusive list, it signifies that this
is the first request for the record for the
current task. The lOB contains the block
address. The UCB pointer and the CCHHR

Program Component Description 29

bytes of the device address of the block
are put on the read-exclusive list. Since
the same block may be required in the
performance of another concurrent task, it
is necessary to provide protection against
unwanted changes to the block. Therefore,
the exclusive control module causes the
block to be placed on an inter-task queue
by issuing an ENQ macro instruction for the
block. (Before an entry can be removed
from this queue, a DEQ macro instruction
must be issued for the entry by a routine
associated with the task for which the
entry had been enqueued. Since a block on
this inter-task queue cannot be used in the
performance of one task until it is disas­
sociated from another task, a waiting per­
iod of indeterminate length may result.)
Module IGG019LG then issues an EXCP macro
instructions for the re-reading of the
block that has just been enqueued. Control
is then given to the ASI routine which, in
turn, gives control to the supervisor.

No~e: For systems operating under the
pr1mary control program, there is no need
for an inter-task queue. Therefore, when
either the enqueue routine or the dequeue
routine is given control, the routine
returns control directly to the routine
that had invoked it (i.e., the effect is
the same as a no-operation). The Supervi­
sor and Data Management publications con­
tain further information regarding the use
of the ENQ and DEQ macro instructions.

In searching the read-exclusive list for
either an address equal to the address of
the block to be read or, having found that
the block address is not on the list, a
place on the list in which to place the
block address, it may be necessary to scan
through several segments of the read­
exclusive list. A new segment is obtained
if the second part of the search does not
locate a place in which to place the block
address.

Releasing Blocks Under Exclusive Control

Blocks that have been read under
exclusive control may be released from
exclusive control either by use of a WRITE
macro instruction that specifies the exclu­
sive control feature or by use of a RELEX
macro instruction. The RELEX macro
instruction is used for blocks that have
not been updated or modified (i.e., their
data fields remain unchanged).

RELEASE BY WRITING: When a request (called
a write-exclusive request) to write a block
that has been previously read under exclu­
sive control is encountered, the read­
exclusive list is scanned to locate the
block's address. When the address is

30

found, the unposted queue is searched for
other requests (associated with the current
task) that may have been issued for the
same block.

If a write-exclusive request is given to
release a block from exclusive control and
the block had not been read under exclusive
control, the write request is invalid.
Module IGG019LG sets an exception code in
the IOBDSTAT field of the lOB so that the
user may identify the error. Control is
then given to the ASI routine to free the
lOB and post the request as complete.

If the unposted queue does not contain
lOBs for other intra-task requests for the
block, module IGG019LG clears the block's
address from the read-exclusive list. This
permits another entry to be made to the
list at that space. To free the block for
another task, the exclusive control module
then issues a DEQ macro instruction for the
block. Module IGG019LG then returns
control to the supervisor.

If the search of the unposted queue
indicates the presence of other requests
for the block that is being written out, it
is necessary that these other requests be
provided with the most current version of
the data portion of the block. Therefore,
before the current write-exclusive request
is posted as complete, the exclusive con­
trol module moves the data portion of the
current block into the input data area of
each "duplicate" request on the queue.
Control then passes to the ASI routine so
that the first of these "duplicate"
requests may be posted as complete and its
lOB made available. The ASI routine then
gives control back to the exclusive control
module and processing continues as if the
unposted queue did not contain any read­
exclusive requests for the block.

RELEASE BY RELEX: When a RELEX macro
instruction is given to release a block
that was read under exclusive control, it
is assumed that the data portion of the
block has not been changed. Therefore,
data is not moved into input areas of other
"duplicate" requests. The procedures
performed by the exclusive control module
are otherwise similar to those performed in
the case of a write request for blocks read
exclusively.

The RELEX module, IGC0005C, receives
control when a RELEX macro instruction is
encountered. After initialization, deter­
mination of the type of addressing that has
been specified, and conversion of a block
address to an actual address if it is not
already in that form, module IGC0005C gives
control to the exclusive control module.
If the block specified for release from
exclusive control is not found by searching

the addresses on the read-exclusive list,
an error condition is indicated; the pro­
grammer has requested the release of a
block that was not under exclusive control.
The exclusive control module sets an error
code in register 15 and gives control to

the RELEX module. The RELEX module gives
control back to the processing program.

Table 6 summarizes the exclusive control
module's main functions as they have been
described in the preceding paragraphs.

Table 6. Functions of the Exclusive control Module for Specified Conditions
r--------------------T-------------------T--------------T-------------------------------,
I IBlock Address IOther lOBs fori I
IMacro instruction IAlready on ISame Block on I Action Taken I
IThat Requests Action I Read-Exclusive ListlUnposted Queuel I
~--------------------t-------------------t--------------t-------------------------------~
11. READ I Yes 1 IPlace request's rOB on unpostedl
1 (Exclusive) I I I queue. Go to supervisor. I
~--------------------t-------------------t--------------t-------------------------------~
12. READ I No I IAdd block's address to read-I
I (Exclusive) I I lexclusive list. Enqueue blockl
I I I Ion inter-task queue. Schedule I
I I I Ithe block for reading. Go tol
I I I I supervisor I
~--------------------t-------------------t--------------t-------------------------------~
13. WRITE I No I IError exit to Asr. I
I (Exclusive) I I I I
~--------------------t-------------------t--------------t-------------------------------i
14. WRITE I Yes I Yes IRemove read request from queue. I
1 (Exclusive) I I IMove data into all read request I
I I I I areas. Go to ASI routine tol
I I I I post first read request onl
1 I I Iqueue and free its lOB. Go tol
I I I IASr routine to post writel
1 I I Irequest and free its lOB. I
~--------------------t-------------------t--------------+------~------------------------~
15. WRITE I Yes I No IGO to Asr routine to post write I
I (Exclusive) I I Irequest and free the rOB. I
1 I 1 I Remove entry from read- I
I I I lexclusive list and from inter-I
I I I Itask queue. Go to supervisor. I
~--------------------t-------------------t--------------t-------------------------------i
16. RELEX I No I IReturn to RELEX routine with I
I I I lerror code. I
~--------------------t-------------------t--------------t-------------------------------~
11. RELEX 1 Yes I Yes 1 Remove read request from queue. I
I I I IGO to ASI routine to post readl
I I I I request and free the rOB. I
I I I IReturn to RELEX routine. I
~--------------------t-------------------t--------------t-------------------------------~
18. RELEX 1 Yes 1 No I Remove block from read-I
I I I I exclusive list and from inter-I
I I 1 1 task queue. Return to RELEX 1
I I I I routine. I L ____________________ ~ ___________________ ~ ______________ ~ _______________________________ J

DYNAMIC BUFFERING (MODULE IGG019LE)

The handling of all buffer requirements
for BDAM requests is done by module
IGG019LE if the dynamic buffering feature
is specified. These requirements include:
obtaining and assigning buffers into which
data may be read; placing buffer requests
on a queue if there are no available
buffers; and releasing buffers for other

uses either after a request has been
completed or when the FREEDBUF macro
instruction is used.

Buffer Assignment

As each request to read data is about to
be executed, the start I/O appendage
module, IGG019KS, checks the lOBDTYPE field
of the lOB to see if there is a requirement
for a buffer to be assigned to the request.

Program Component Description 31

If a buffer is required, a check is made to
determine if a buffer has already been
assigned to the request. Note that
requests for dynamic buffer assignment may
occur whether or not the exclusive control
option is specified for read requests. If
a request has an assigned buffer, the
channel program may be initiated. If a
buffer is needed, the start I/O module
gives control to the dynamic buffer module.

The dynamic buffer module ascertains
whether all buffers in the buffer pool (the
buffer pool was established and initialized
by the open executor program) for the data
set have been allocated to other requests
or if one is available. If a buffer is
available for the current request, it is
assigned to the request, and the entries in
the buffer pool are updated to reflect the
effective removal of the buffer. The asso­
ciated channel program is completed by
placing in it the buffer addresses into
which information is to be read, and then
the channel program is ready for execution.

If no buffers are available to satisfy a
buffer request, the lOB is placed on a
queue of requests waiting for buffer
assignment. The elements of this queue are
chained to each other through addresses
given in the lOB. The addresses of both
the first and the last request on the queue
are given in the buffer control block. As
buffers subsequently become available, they
are allocated to the requests on the queue.
As each request is added to the queue, it
becomes the last request of the queue.
When a buffer becomes available, it is
allocated to the request currently at the
top of the queue (i.e., the first request
on the queue), and that request is removed
from the queue.

Releasing Buffers

When a request using a dynamically­
assigned buffer has been completed (either
successfully or unsuccessfully), the buffer
that has been assigned to the request may
be made available for other requests. This

32

can happen in one of two ways: control may
be given to the dynamic buffer routine
either by the ASI routine or as the result
of a FREEDBUF macro instruction being
encountered in the processing program.
Note that a buffer assigned to a read
request for a block that is not to be
updated will be released when the request
is completed only if the FREEDBUF macro
instruction is issued for that request's
buffer. For a block that is to be updated,
a buffer is retained until freed by a
corresponding write request that specifies
dynamic buffering.

After the ASI routine receives control
at the completion of a write request, it
gives control to the dynamic buffer module
if dynamic buffering is being used. If a
dynamic buffer routine finds an lOB on the
buffer queue waiting for a buffer, it
assigns the buffer from the just-completed
request to the top request of the queue.
The buffer queue is updated by moving each
request up one position on the queue. The
channel program for the selected request is
then completed (as described in the section
"Buffer Assignment"), and the dynamic buf­
fer module issues an EXCP request to exe­
cute the channel program.

If there are no entries on the buffer
queue waiting for buffers, the buffer from
the completed request is placed on the list
of available buffers. The buffer control
block and its entries are then updated as
required to include the added buffer. The
dynamic buffer module then gives control
back to the ASI routine.

When a FREEDBUF macro instruction is
encountered in the processing program, the
supervisor gives control to the dynamic
buffer module. A routine in this module
then checks for other queued requests and
assigns the freed buffer or makes it avail­
able for future buffer requests as dis­
cussed for the entrance from the ASI rou­
tine. The dynamic buffer module then gives
control back to the supervisor.

CHECK MODULE (MODULE IGG019LI)

To ensure that a given read or write
request is completed before a certain point
in the associated processing program, eith­
er a CHECK macro instruction or a WAIT
macro instruction must be coded following
the request in the processing program. The
BDAM check module, IGG019LI, is used when
the CHECK macro instruction has been speci­
fied and the DCB macro instruction for the
data set includes the check specification.
The address of a user's synchronous error
recovery (SYNAD) routine should be given in
the same DCB macro instruction that con­
tains the check specification.

When the check module receives control,
it establishes a wait condition if the
associated request has not been posted as
complete. If the request is complete at
this point or is subsequently completed
while the processing program is in the
'wait' state, and if no errors have been
indicated in the DECB, the lOB for the
request is released to the lOB pool, and
control is given to the processing program.
(When the DCB macro instruction includes
the check specification, the CHECK macro
instruction must be used to effect the wait
condition; if the WAIT macro instruction is
used, the lOB for the request is not
released.)

After a request is posted as complete
and if error indications have been placed
in the DECB, the check routine identifies
both the type of request and the types of
errors listed. The error types are placed
in a register and control is given to a
SYNAD routine if one is present. The
publication IBM Systern/360 Operating Sys­
tem: Supervisor and Data Management Macro­
Instructions, indicates the contents of
registers when the BDAM check module gives
control to a SYNAD routine. The absence of
a SYNAD routine causes BDAM to terminate
the processing program.

THE BDAM CLOSE EXECUTOR PROGRAM
(MODULE IGG0203A)

The BDAM close executor program consists
of module IGG0203A. This module is given
control during the closing of a DCB that
specifies BDAM. (See Figure 8.) When the

CLOSE macro instruction is encountered in a
processing program, the expansion of the
macro instruction causes program control to
be given to the data management close
routine. This routine uses the BDAM close
module as a subroutine.

The main purpose of the BDAM close
executor program 1S to release to the
system all BDAM-acquired storage areas that
have been associated with the DCB to which
the CLOSE macro instruction refers. This
is done in from two to four steps depending
on the type of requests used in the
application.

The first step consists of removing from
the I/O supervisor scheduled queue of
requests any requests that have been sche­
duled but whose operations (i.e., channel
programs) have not yet completed. The
purge routine of the I/O supervisor accom­
plishes this removal. The BDAM close exe­
cutor program then releases the main stor­
age area assigned to the lOBs for these
requests. These requests are chained
together, beginning with an address placed
in the DEB by the purge routine.

The second step is the releasing of main
storage areas assigned to available lOBs on
the list of lOBs. The lOB list also
includes the IOBs that are on either the
I/O supervisor scheduled queue or a buffer
queue. Therefore, only storage for lOBs
not currently being used is released at
this time.

The third step is the releasing of
storage that has been allotted to any lOBs
remaining on the unposted queue. These
lOBs were placed on the queue by the
exclusive control module.

I As a fourth step, the storage that has
been allotted to lOBs remaining on the
buffer queue is released. (The rOBs on the
buffer queue are those waiting for buffers
to be made available to them.) The main
storage areas that have been obtained both
for the buffer control block and for buf-

Ifers to be assigned dynamically are also
released in this fourth step.

In addition to releasing the storage
areas assigned to rOBs, the BDAM close
executor program clears from the DCB all
fields that the BDAM program has built up
for, and that specifically refer to, the
current use of the DCB to which the CLOSE
macro instruction refers.

Program Component Description 33

Processing
Pro!!,"~m

Related System/360
Routines

,----1
I '
I

CLOSE DCB - - -.J
--·---l

I

I
I
I
I
I

Data
Management

Close
Routine

1------
I
I
I

--.-- - --,
I
I
I
I
I

I
I
I L __ _

I
I
I
L _____ -.l

Legend

- - - - - - ~ Main Flow of Control

------+. Functions Performed

BDAM Routines and Functions

Purge
Scheduled

---1
I

lOBs

IGG0203A Release
BDAM Close lOB Storage

Executor

I
Areas

I

- - _ ----l

Clear DCB
BDAM Fields

Free A II Buffer
Storage Areas

Free Read -
Exclusive List
Storage Area

Figure 8. Relationship Among Processing Program, Data Management Close Routine, and BDAM
at Close Time

34

.Chart 01. BDAM High Level Flow

·-·-At-· .. ·-.. ·-· • READ/WRI TE •
: MACRO :

*********.**.*.

V
·.*SI ***.**.***
• SAVE USER •
• REGISTERS •
.SET UP CONTROL •
:BLOCK ADDRESSES:

** •• ****** •• *****

1
V .•.

Cl *. • ••• *C2**********
.* *. .. ERROR* VALID •• NO .-.-*-*-.-.-.-.-. •• REQUEST •• ---->* *

•• .* * ERROR ROUTINE *
..

. . .* ... *********.**

j'"
V

·····01······*··*
• CALCULATE 103 •
• SIZE REQUIRED *
• FOR THIS •

REQUEST

V
.****02.**** ••• *.
:RETURN TO USER :

.. .. *._._--_ ... _-----
········r·······

V .*. EI *. .****E2* •••••••••
•• IS *. • GETMAIN *

•• THERE AN *. NO .-*-*-*-*-.-.-.-.
.AVAILABLE IOB.-------->* GET AMOUNT OF *

•• IN THE •• • CORE REQUIREO •
-.POOL .* '. i :~~ ______ *_.=J

V
·****Fl·····**·** · . • INITIALIZE •
: lOB FIELDS

· j
V .•.

Gl •• ~* ••• G2*.* ••••• **
•• *. * CONVERT *

•• RELATIVE *. YES .RELATIVE ADOR. *
•• ADDRESSING •• ------>.TO ACTUAL AODR.*

.
..

·l~-------==:J········
V

··Hl**··*·*
• * • CONSTRUCT *
:CHANNEL PROGRAM:

• IN lOB *

········1········

V
****.*J 1**********.

EXCP

SCHEDULE THIS
• REQUEST *

• *.****.** •••

1
V

:* ••• Kl *********: ****K2*********
• RESTORE USER * * RETURN TO *
: REGISTERS :------>: USER

* * ••• ******** •••• *.

I
V

·····S3**········ * * * START I/O *
* APPENDAGE *
*
• * ***************

1
V .*.

C3 *.
.* ••

NO.. BUFFER ••

r
---*. REQUIRED .*

. .
. .

* •• *

j'"
V

:****03** •••••• *:
• ASSIGN BUFFER *
: TO THIS lOB *

. •••••• *.**

<--->1
V .*.

E3 *.
.*

YES • * SCHEDULE ••
- •• THIS REQUEST .*

. .
. .

* •• *
* NO

V
··G3···*·**

• lOS SKIP *
• RETURN :

****.**** ••• * ••

I
V

••• .. H3 .. *****·**
* lOS NORMAL *

RETURN :

****** .. ********

****A4*********
* lOS •
* APPENDAGE
* ENTRY *

*****.*.*******

V
*****84*·******** · . * END OF EXTENT •
• APPENDAGE •
* · .

• *****************

1
V

:*.**C4*********:

SET UP STARTING
*ADDRESS OF NEXT.
: EXTENT :

1
V .*.

04 *.
.*SHOULD ••

YES.* CHANNEL *.
. PROGRAM .

·.CONTINUE .*
. .

* •• *

j"'
V

*****E4**********
* * * SET EXCEPTION *
* CODE IN DECB *

• * * * *****.***********

1<-,
V

*****F4**********
* SCHEDULE *
• ASYCHRONOUS •
• INTERRUPT •
* FOR THIS lOB *
* •
.************

V
****G4*·*******

* lOS IGNORE *
: RETURN :

•••• ********.**

.•.
H4 *.

•• IS -.
•• THIS EXTENT*. NO

>*. ON THE SAME .*­
. DEVICE .

. .
* •• *

j'"
V

···*J4*********
* lOS EXCP *
: RETURN

•• **********.* •

BDAM FLOWCHARTS

-I
V

·····85········**

• * CHANNEL END
APPENDAGE

* •• ***************

1
V

*****cs***·******
* SCHEDULE *
• ASYNCHRONOUS
* INTERRUPT
: FOR THIS loa

V
·***05*·····**­

* lOS IGNORE *
: RETURN :

*****£5**********
* * * EXCEPTIONAL *

->* CHANNEL ENi> *
: APPENDAGE

****** .. *.* .. ******

1
V .*. F5 ••

.* *.
.* PERMANENT *. YES

*. ERROR •• ---
. .

. .
* •• *

j"
V

****G5*********
* lOS ERROR *
: RETU~N *
••• **** •••••• * •

··***H5*·*·*··***
* SCHEDULE *
* ASYNCHRONOUS *
* INTERRUPT *<-­
* FOR THIS lOB *
* * *.***************

V
·*J5*******

• lOS IGNORE *
: RETURN :

* •••••••• * •••••

Charts 35

• Chart 02. BDAM High Level Flow (Continued)

.*.
A4 *. *****A5*****"**"*

****A3*********
* ASYNCHRONOUS *
* INTERRUPT *

ENTRY

.* IS *. * IGG019LG *
.* EXCLUSIVE *. YES *-*-*-*-*-*-*-*-*

r->*. CONTROL .*---->* ENQUEUE
. NEEDED . * THE BLOCK

******a2 ***********
EXCP

r
V .*.

B3 * •
• * *.

. .
* •• *

* NO

* NO.* IS *.
RESTART THE <-------*. OPERATION .*

CHANNEL *.COMPLETE .*

****~~~~:**** --*- -.. --

V
****C2*********

* * SUPERV I SOR *
*

i YES

V .*.
C3 *.

.* * • :****C4*********:
• * ABNORMAL *. YES * ANALYSE THE *

. COMPLETION .------->* ERROR, SET A *
. . * COOE FO~ USER *
.. * *

. . *****************
i NO I
I < _________ J
V .*.

:****D2*********: • * 03 *. *.

*
*

UNQUEUE
WAITING
REQUEST

* YES.* REQUEST *.
<-----.AWAITING THIS.*
* *COMPLETION.*
* *..*

***************** *. . *
I * NO

I
V

******E2 ****** ***** EXCP

I
V .*.

E3 *. *****E4**********
.* *. * *

.* *. YES * DEVELOP AND *
PASS THE NEW ----->*. FEEDBACK .*----->*STORE FEEDBACK *

* REQUEST *. OPTION .* * *

!~*!~;* ~. * •• *.* :***************:

i<NO ~
V

.*. .*.

********* ... *******

J

*****F2********** F3 ... F4 *. *****F5**********
* * .* READ *. .* *. * QUEUE THIS *
MAKE THE aUFFER .* EXCLUSIVE *. YES .* aLOCK *. YES READ UNTIL *

~::~::::::::~::::<--ll ····:;::j:;!~····-------->···~~:::i~:::····------->~:::~~I:~I,~;~~:::l

.*. v
G3 *. *****G4********** V

.* *. * POST * ****G5*********
YES.* DYNAMIC *. BLOCK ID TO *

--*. BUFFER TO .* * PREVENT SUPERVI SOR

36

. RELEASE . * SIMULTANEOUS
.. * UPDATING

I *. .* *****************
* NO I L _______________ > I < _______________ 1
V .*.

H3 * •
• * *.

YES.* CHECK *.
-*. USED .*

. .
. .

* •• *
* NO

I
V

*****J3**********
* * * MAKE lOB AREA *
* AVAILABLE TO *
* THE POOL OF *
* AREAS *

------->1
I
V

K3*****
* * POST * * * ****K4********* *

* THIS REQUEST *------->* SUPERVISOR
* COMPLETE * *

* ***************

Chart 03. Module Flow for Block Updating

*****A2 **********
" IGG019KA "
-~*-*-*-*-*-*-*

" " " FOUNDATION "

:****~=!;;2*****:

I
v .".

*****81********** 82 *****93**********
" IGG019KK" ." ". " IGG019KI "
--*-*-*-*-*-*-* ID .* *. KEY *-*-*-*-*-*-*-*-*
" 10 (GENERATE ''<------''. KEY OR 10 • ,,----> " KEY "
" CHANNEL" ". ." "(GENERATE CHAN"
" PROGRAM)" *.." * PROGRAM) " j........ j

v v .*. .*. .*.
Cl *. C3 *. *****C4********** C5 * • • * *. .* *. ... IGG019KW'" .* * •

• * WRITE *. NO .* EXT *. YES *-*-*-*-*-*-*-*-* .* WRITE *. NO
.VERIFY OPTION.------------l *.SEARCH OPTION.*--->* KEY EXTENDED *---->*.VERIFY OPTIDN.*--,

". .* *. .* *SEARCH (MODIFY * ~. .* I
. . *..* ... CHAN PROGRAM) ... *..* '.j.;" I ··i·:O •••••••• ;........ '.j.;"

"01 *~******** I 03· *. *. * .. ***D4 .. ~***" .. ***
" IGG019KQ * I .* *. * IGG019KQ *
--*-*-*-*-*-*-* .* WRITE *. YES *-*-*-*-*-*-*-*-*
* VERIFY (ADD *.VERIFY OPTION.*---->* VERIFY (ADD ..

: p~gG~:~' * I,,'* :""**P,,~*g*G*~ .. :*:*N*),,**,,"
***************** * •• *

.. NO

I
I I
I I

I I 1 _____________________ > I < __________________ V ________________ '!. ____________________ _
I
v

*****F2**********
" IGG019KA *
--*-*-*-*-*-*-*
* * FOJNDATJDN *

:****~~:~;l*****:

I
V

******G2***********

* EXCP TO READ
OR WRITE
(VERIFY)

Charts 37

-Chart 04. Exclusive Control - MVT System

FROM ASI
****A2********* OR RELEX

* * * ENTRY *

1
v .*. .*.

32 *. 63 *. *****a4**********
•• -* READ *-*. NO .*.*Ag~~D~N*.*. NO : SET : .****65*********.

. EXCLUSIVE .------->*. EXCLUSIVE • *-------> * ERROR *------->* RETURN
. . *. LIST.* * INOICATION * A *
.. *..* ... *************** * •• * * •• * ***************** i YES i YES

V V
.*. .*.

*****Cl****~***** C2 *. C3 *. :****C4*********: * PUT AODR * .*ADDR ON*. .* lOB *.
* ON * NO.* READ- *. .* WAITING *. NO * REMOVE ENTRY
*READ-EXCLJSIVE *<------*. EXCLUSIVE .* *. ON UNPOSTED .*------>* FROM *
* LIST * *. LIST .* *. QUEUE .* *READ-EXCLUSIVE *
* .. *..* *..* .. LIST ..
***************** * •• * * •• * *****************

1 i '" i '" I I
*****0 1 *~******** *****D2*~******** *****03*~******** *****D4*~********~ * *.. ...
* ENQUEUE * PUT lOB * REMOVE * * DEQUEUE *
* ON INTER TASK * ON UNPOSTED * *FIRST lOB FROM * *FROM INTER TASK*
: QUEUE: * QUEUE * * QUEUE: : QUEUE :

***************** ***************** ***************** *****************

1
V

******El ***********
ISSUE EXCP
TO RE-REAO

BLOCK

V
****F 1 *********

* * SUPERVI SDR *

38

v
.. ****E2********* *

SUPERVISOR

WRITE­
ADD

I
V .*.

E3 *****E4**********
.* *. WRITE * MOVE DATA *

.* TYPE *. EXCLUSIVE* TO ALL *
-*. OF REQUEST .*------>* OUPLICATE lOB *

. . * INPUT AREAS *
. .

. . *****************

[_EX _>1
****F3*********

* * >* SELF FORMAT

*****=~~~;;*****

V
*****F4**********
* * * POST THIS
* CURRENT READ
* REQUEST

V
****G4 *********

* * * RETURN •

TO AS!
·OR RELEX

TO ASI
OR RELEX

lOB

The lOB is constructed by the foundation
module base component. The field$ of the
lOB are constructed dynamically as a pro­
cessing program is executed. The storage
area used for the lOB is obtained either
from a pool of available lOBs for which
storage has been previously obtained or by
use of the getmain routine. If the area is
taken from a pool of lOBs, that area is
made unavailable to the pool during the
life of the associated request.

When a request is completed, the asso­
ciated lOB is either replaced in the pool
or assigned to the pool for the first time,
depending on how the lOB was obtained for
the request. If the lOB was obtained from
the pool, it is returned to its former
position in the pool by setting the availa­
bility byte in the lOB to '0'. If the lOB
was obtained by the getmain routine, it is
placed in the pool according to its size,
the 'next lOB' pointers are updated as
necessary, and the availability byte is set
to '0'.

All storage areas assigned to lOBs are
released to the control system by the
freemain routine at the time the DCB is
closed.

Note: If the first usage of an lOB storage
area-occurs with an invalid request, then

APPENDIX A: CONTROL BLOCKS FOR BDAM

the area is returned to the system by using
the freemain routine rather than being
placed on the pool when the request com­
pletes.

various BDAM routines use some of the
fields in the lOB as temporary work areas
until such time as these fields are filled
in with information as described in Table
7.

There are three main sections to the lOB
as used by the basic direct access method.
(See Figure 9.> The first part is a
standard 40-byte section and is described
in the publication IBM System/360 Operating
System: System Control Blocks, Form
C28-6628. BDAM refers to this part, for
example, to determine the status of a
completed channel program and to locate
addresses of storage areas to be used as
work areas.

The second part of the lOB is a 40-byte
section that contains information needed by
BDAM to process the related request. The
11 fields in this part are described in
Table 7.

The third part contains the channel
program that is constructed for the input
or output request. The channel command
words are placed in this part of the lOB as
they are formed.

Appendix A: Control Blocks for BDAM 39

+0 +1 +2 +3 +4 +5 +6 +7

r---------T--------T-----------------T------------------------------------,
+0 I Flag 1 I Flag 2 I Sense I IOBECBPT I

A

I
I
I
I

~---------~--------~-----------------~------------------------------------~
+8 I Channel Status Word I

~---------T--------------------------T------------------------------------i
+16 I I Channel-Program I IOBDCBPT I Standard

I I Starting Address I I lOB
~---------~--------------------------+------------------T-----------------~ I

+24 I IOBRESTR I IOBINCAM I IOBERRCT I I
~------------------------------------~------------------~-----------------~ I

+32 I IOBSEEK I I
I (M B B C C H H R) I V

~------------------T-----------------T---------T--------------------------~
+40 I IOBDBYTR I IOBDIOBS I IOBDAVLII IOBDPLAD I A

I
I
I
I
I

~------------------+-----------------+---------~--------------------------~
+48 I IOBDTYPE I IOBDSTAT I IOBDCPND I

~------------------+-----------------+------------------------------------~
+56 I IOBDBYTN I I IOBDQPTR I

~------------------~-----------------~------------------------------------~
+64 I IOBUPLIM I BDAM

~---~
+72 I IOBDNRCF I

Extension
to

~---~ lOB
+80 I CHANNEL I I

· I PROGRAM I I
· I I I
· I I I
• I (Length varies according to channel program. Refer to Appendix C.) I I
· I I I
· I . I I L ___ J

V
Figure 9. Fields of the lOB for BDAM

Table 7. Fields, Field Size, and Field Contents of the lOB for BDAM (Part 1 of 4)
r----------T------------T---,
I I Field Size I I
I Field I (in bytes) I Field Contents and Comments I
~----------+------------+---~

IOBDBYTR I 2 Number of unused bytes remaining on a track on which a new
I variable-length block or a new undefined-length block is to
I be written. This value is initially placed in IOBDBYTR when
I the channel program reads the capacity record. Subsequent
I updating of the IOBDBYTR field is done by the self-format
I module, IGG019KM. The channel program later updates the
I capacity record before the input/output operation is comp1et-
I ed.
I

IOBDIOBS I 2 Overall size of the lOB, specified in bytes. The base
component of the foundation module places this value in
IOBDIOBS after the main storage area for an lOB has been
obtained.

I

IOBDAVLI

40

1 Indication of the availability of the lOB. When the lOB is
taken from the pool of available lOBs, the value of IOBDAVLI
is set to a hexadecimal FF to indicate that the lOB is being
used (i.e., unavailable). This is done by the base component
of the foundation module. When an input/output operation is
posted as complete, and an lOB is either returned to or
placed on the pool of availab1e lOBs, the value of the
IOBDAVLI field is set to zero. Depending On the cause of the
completion of the I/O operation, the zero value is set by
either the asynchronous interrupt component or the invalid
request routine of the foundation module.

------------~---

Table 7. Fields, Field Size, and Field Contents of the lOB for BDAM (Part 2 of 4)
r----------T------------T---,
I I Field Size I I
I Field I (in bytes) I Field Contents and Comments I
~----------+------------+--~--------------------~

IOBDPLAD 3 Address of the next lOB area in the pool of lOBs attached to

IOBDTYPE 2

the current DCB. If there are no more lOBs on the pool, the
value of this field is zero. Each lOB on the pool became a
member of the pool after the first usage of the lOB. When a
new lOB is added to the pool, the IOBDPLAD field of the
preceding lOB is updated.

Indication of the request type and indication of any options
specified in the DECB related to the request. The contents
of the DECTYPE field (see DECB block) are placed in the
IOBDTYPE field when the lOB is initialized. Significant bits
of the IOBDTYPE field and their interpretations for BDAM are
as follows. (When the bit is set to '1', the interpretation
is in effect. When the bit is set to '0', the interpretation
is not in effect.)

First Byte:

Bit 0:
Bit 1:

Bit 2:
Bit 3:
Bit 4:
Bit 5:
Bit 6:
Bit 7:

Indicates verification of written block is desired.
Indicates track overflow (i.e., overflow blocks are
being used). (Refer to the publication IBM
System/360 Operating system: sequential Access Metli=
ods, Program Logic Manual.)
Indicates extended search is desired.
Indicates feedback of block address is desired.
Indicates actual block addressing is being used.
Indicates dynamic buffering is being used.
Indicates exclusive control is being used.
Indicates relative block addressing is being used.

Note: If both bit four and bit seven are 0, the interpreta­
tion is that relative track addressing is being used.

Second Byte:

Bit 0: Indicates that an'S' has been specified in the key
address operand of the READ or WRITE macro instruc­
tion. For dynamic buffering, a buffer is to be
allocated for a read request, and the key part of a
buffer is to be freed after a write request.

Bit 1: Indicates that an'S' has been specified in the
length operand of the READ or WRITE macro instruc­
tion. The setting of this bit is ignored (i.e., not
tested) when writing variable-length blocks since the
block length is given in the first two bytes of the

Bit 2:
Bit 3:
Bit 4 :

Bit 5:

Bit 6 :
Bit 7:

data field.
Reserved for future use.
Reserved for future use.
Indicates a read request. (A '0' indicates a write
request.)
Indicates the search argument is the block key. (A
'0' indicates the search argument is the block ID.)
Indicates a write request to add a new block.
Reserved for future use.

IOBDSTAT 2 Indication of status of the related request. Significant
bits of the IOBDSTAT field and their interpretations for BDAM
are as follows. (When the bit is set to '1', the interpreta­
tion is in effect. When the bit is set to '0', the
interpretation is not in effect.) __________ i ____________ i ______________________________ -----------______________________ J

Appendix A: Control Blocks for BDAM 41

Table 7. Fields, Field Size, and Field Contents of the lOB for BDAM (Part 3 of 4)
r----------T------------T---,
I I Field Size I I
I Field I (in bytes) I Field Contents and comments I
~----------+------------+---~

IOBDSTAT 2 First Byte:
<Cont.) Bit 0: Indicates an abnormal completion of the request. See

IOBDSTAT 2

second byte for details.
Bit 1: On extended search, this indicates that the ASI

routine is to issue the EXCP macro instruction after
the end-of-extent appendage has determined that the
next extent is on a new volume. The end-of-extent
appendage cannot issue an EXCP macro instruction in
this case.

Bit 2: Reserved for future use.
Bit 3: On extended search, indicates to relative block

conversion routine that the second pass of a two-pass
conversion routine has been completed.
Note: The first pass of the routine converts the
starting address for a track search, and the second
pass converts the address for the search limit. The
bit is set to 11' when the second pass begins. This
bit is also set by the self-format module after the
module has calculated the number of bytes required in
order to write a block on a track. Then, if
additional tracks must be examined for space, the
calculation of bytes required is bypassed.

Bit 4: Indicates that the read-exclusive request related to
this lOB has been placed on an inter-task queue by
the exclusive control module.

Bit 5: Indicates that a buffer has been assigned to this
lOB.

Bit 6: Indicates that a given block (to be written) can fit
on the track associated with the capacity record that
has just been read into storage. Module IGG019KM
sets this indicator.

Bit 7: Indicates to dynamic buffer module that it was
entered from, and is to return control to, the start
1/0 appendage module.

Second Byte: This byte contains indications of an abnormal
completion of a request. When the request is posted as
complete, these indications are placed in byte 1 (the second
byte) of the DECSDECB field of the DECB.

Bit 0:

Bit 1:

Bit 2:

Bit 3 :
Bit 4:

Indicates that the requested block was not found on
the indicated track.
Indicates that the length of the block was incorrect.
(Refer to the section "Channel End Appendage
Module.")
Indicates that no space was found in which to write a
new block.
Reserved for future use.
Indicates that a read operation (either to bring data
into main storage or as a verification of written
data) has resulted in a data check error that has not
been corrected by the standard lOS error retry proce­
dure. (Refer to the section "Verification Program.")

Bit 5: Indicates that the request has been completed but
that the block the user has requested to be read or
written is an end-of-data set record <indicated as
having a data field length of zero). (Refer to the
section "Channel End Appendage Module.")

Bit 6: Indicates an error that cannot be attributed to any
other cause as indicated by the bits in this byte.

Bit 7: Indicates no match has been found on the read­
exclusive list. __________ i ____________ i ___ J

42

Table 7. Fields, Field Size, and Field contents of the lOB for BDAM (Part 4 of 4)
r----------T------------T---,
I I Field Size I I
I Field I (in bytes) I Field contents and comments I
~----------+------------+---~

IOBDCPND 4 The main storage address of the expected end of the related

IOBDBYTN 4

IOBDQPTR 4

IOBUPLIM 8

channel program if the program goes to a normal completion.
This address is placed in IOBDCPND by the base component of
the foundation module.

At the completion of a request, the I/O supervisor routine
places an address in the channel status word. This address
is equal to the address of the last channel command word
executed plus eight bytes.

A normal completion is indicated if the two addresses are
equal and there have been no error indications.

Indication of the required number of bytes to contain a new
block. This value is calculated by the self-format module
after control has been given to this module by the ASI
routine.

Address of the next lOB on the dynamic buffer queue of lOBs.
This value is determined either by the dynamic buffer
routine.

Address to be used as the location in which to begin the
search for the start of a track on which the indicated block
is contained or is to be written. On extended search, this
field indicates the address of the first track following the
last track to be searched.

IOBDNRCF 8 The count field developed by the self-format module when a
new block of either variable-length records or records of
undefined length is to be added to a track. __________ L ____________ ~ __ _

Appendix A: Control Blocks for BDAM 43

The DECB results from the expansion of
either a READ or a WRITE macro instruction.
The contents of the fields of the DECB as

they relate to BDAM are explained in the
publication IBM System/360 Operating
System: Supervisor and Data Management
Macro Instructions. A summary of the con­
tents of the fields is given in Table 8,
with reference to Figure 10.

+0 +1 +2 +3 +4 +5 +6 +7
r---T--------------------~-------------------,

+ 0 I DECSDECB I DECTYPE I DECLNGTH I
~---+--------------------~--------------------~

+ 8 I DECDCBAD I DECAREA I
~---+---~

+16 I DECIOBPT I DECKYADR I
~---+-----------______________________________ J

+ 24 I DECRECPT I L ___ J

Figure 10. Fields of the DECB for BDAM

Table 8. Fields, Field Size, and Field Contents of the DECB for BDAM
r----------T------------T---,
I Field I Field Size I Field Contents I
I I (in bytes) I I
~----------+------------+---~

DECSDECB 4 Standard Event Control Block (ECB). (Refer to the IOBDSTAT

DECTYPE

DECLNGTH

DECDCBAD

DECAREA

DECIOBPT

DECKYADR

DECRECPT

44

2

2

4

4

4

4

4

field of the lOB.)

Type of request operation. The contents of this field are
described in the discussion of the IOBDTYPE field.

Length of data portion of the block being processed.

Address of the DCB to which a request is related.

Area into which the data portion of a block is to be written
or from which it is to be read.

Address of the lOB associated with this DECB.

The contents of this field vary as the type of request to
which the DECB refers.

TYEe of Reguest

Write by ID

Write-Add

Read by ID

Read by Key

Write by Key

Write-Add
(Format F)

DECKYADR Contents

Address of the Key to be written.

Address of the Key to be written.

Address of the area into which the Key is to
be read.

Address of the Key to be used as a search
argument.

Address of the Key to be used as a search
argument.

Key to be written to replace the dummy key.
(Searching is done on the hexadecimal 'FF'
of the dummy record.)

Address of the blkref field.
------------~---

The DEB is constructed during Phase 1 of
the BDAM open executor program. The fields
of the DEB that are specifically related to
BDAM are the DEBAMLNG field, the DEBNMTRK
field, and the fields of the relative
extent areas. (See Figure 11.) A more
complete description of the DEB is con­
tained in the publication IBM System/360
Operating System: System Control Blocks.

If track overflow has not been speci­
fied, each relative extent area consists of
a one-byte field that contains the number
of blocks on a track (for the device used)
and a three byte field that contains the
number of blocks in the extent. This
latter value is obtained by multiplying the
number of tracks in the extent (given as
the value in the last two bytes of the
associated actual extent) by the number of
blocks on a track.

The DEBAMLNG field is a one-byte field
containing the number of words of main
storage that contain the relative extent
areas.

The DEBNMTRK field is a
containing the number of
corresponding actual extent.

two-byte
tracks

field
in the

The relative extent areas are formed
only when relative block addressing has
been specified. There is one relative
extent area for each actual extent area in
the DEB.

If track overflow has been specified,
each rElative extent area consists of only
a three-byte "blocks per extent" field.
The byte preceding each "blocks per extent"
field is unused. In addition, two one-word
fields constituting an overflow section are
inserted between the last actual extent
area and the first relative extent area.
The values in these fields are based on the
size of the period that is calculated by
phase 3 of the BDAM open program.

+0 +1 +2 +3 +4 +5 +6 +7
r-----------------------------------T--------T--------------------------,

+0 I Basic I DEBAMLNG I I I Data L ________ J I
I Extent I
I Block I
~--------T--------------------------T-----------------T-----------------~

+32 I DEBVMODI DEBUCBAD I DEBBINUM I DEBSTRCC I
~--------~--------T-----------------+-----------------+-----------------~

+ 4 0 I DEBSTRHH I DEBENDCC I DEBENDHH I DEBNMTRK I
~-----------------~-----------------~-----------------~-----------------~
I I L ___ J

r-----------------------------------T-----------------------------------,
I Tracks per Period1 I Blocks per Period1 I
I I I
~--------T--------------------------+-----------------------------------~
I Blocks I Blocks I I
I per I per I I
I Track1 I Extent I I L ________ ~ __________________________ ~ ___________________________________ J

r-----------------T-----------------T-----------------T-----------------,
I I I I I L _________________ ~ _________________ ~ _________________ i _________________ J

r-----------------T-----------------T-----------------T-----------------,
I I I I I L _________________ ~ _________________ ~ _________________ i _________________ J

1See text.

Figure 11. Fields of the DEB for BDAM

1\

I
Actual
Extents

I
I
I
I
V

Overflow
Section

1\

I
I

Relative
Extents

I
V

1\

I
I

Subroutine
IDs

I
I

V

Appendix A: Control Blocks for BDAM 45

The DCB (see Figure 12) contains infor­
mation relating to the current use of a
data set. A more complete description of

the DCB is contained in the publication IBM
Systeml360 Operating System: System ControI
Blocks. The fields of the DCB that are of
particular interest to programmers con­
cerned with BDAM applications are indicated
in Table 9.

+0 +1 +2 +3 +4 +5 +6 +7
r---,

+0 I I
~---~

+8 I I
~----------T------------------------------T---~

+ 16 I DCBKEYLE I DCBREL I I
~----------~------------------------------J I
I I

+24 I Basic I
I I
I Data Control I
I I
I Block I
I I
I r------------------------------T----------T------------------------------~

+ 4 8 I I DCBREAD or DCBWRITE I DCBOPTCD I DCBCHECK I
~----------~------------------------------+----------~---------T--------------------~

+56 I DCBSYNAD I I DCBBLKSI I
~---+--------------------~--------------------~

+64 I I I
t---+---i

; + 7 2 I DCBIOBUQ I DCBUQND I
~----------T------------------------------+----------T------------------------------~

+ 8 a I I DCBLIMCT I I DCBXARG I
~----------~------------------------------+----------~------------------------------~

+88 I DCBDRDX I DCBDFOR I
~---+---~

+ 9 6 I DCBDFBK I DCBDYNB I L ___ ~ ___ J

Figure 12. Fields of the DCB for BDAM

Table 9. Fields, Field Size, and Field Contents of the DCB for aDAM
r----------T------------T---,
I Field I Field Size I Contents and Comments I
I I (in bytes) I I
~----------+------------+---~

DCBKEYLE 1 Length of Key field for each block in the data set.

DCBREL

DC BREAD
or

DCBWRITE

3

3

Number of relative tracks or blocks in the data set. This
number is placed in the DCBREL field by the BDAM open
executor phase 2 routine, and it can be used by the
processing program in the process of conversion of a relative
address.

Address of the BDAM Foundation module, IGG019KA.

DCBOPTCD 1 Indication of options specified for the data set. Signifi­
cant bits of the DCBOPTCD field and their interpretations for
BDAM are as follows. (When the bit is set to '1', the
interpretation is in effect. When the bit is set to '0', the
interpretation is not in effect.)

----------~------------~---
(Continued)

46

Table 9. Fields, Field Size, and Field Contents of the DCB for BDAM (Continued) , r----------T------------T---,
I Field I Field Size I Contents and Comments I
I I (in bytes) I I
~----------+------------+---i

DCBOPTCD Bit 0: Write-validity-check option has been specified.
(Cont'd.) Bit 1: Reserved for future use.

DCBCHECK 3

DC BSYNAD 3

DCBBLKSl 2

4

4

DCBlOBUQ 4

DCBUQND 4

DCBLlMCT 3

1

DCBXARG 3

DCBDRDX 4

DCBDFOR 4

DCBDFBK 4

Bit 2: Extended search has been specified.
Bit 3: Feedback has been specified.
Bit 4: Actual addressing has been specified. 1
Bit 5: Dynamic buffering has been specified. (This bit is

set by BDAM.)
Bit 6: Reserved for future use.
Bit 7: Relative block addressing has been specified. 1

1lf neither actual addressing nor relative block addressing
has been specified (i.e., if bits four and seven are both 0),
relative track addressing is specified .•

Address of the check module, lGG019Ll.

Address of user's SYNAD routine.

Maximum size of a record block in the data set.

Reserved for future use.

Reserved for future use.

Address of the first lOB on the unposted queue.

Address of the last lOB on the unposted queue.

Number of tracks (for relative track addressing) or number of
blocks (for relative block addressing) to be searched when
extended search option is specified.

Reserved for future use.

Address of the read-exclusive list.

Address of the exclusive control module, lGG019LG.

Address of the format channel program generating module that
is required for the block format indicated in the DCB macro
instruction. This address is placed in DCBDFOR by the BDAM
open executor phase 2 routine.

Address of the feedback module, lGG019KG. This address is
used only for relative block feedback specification.

DCBDYNB 4 Address of the dynamic buffer module, lGG019LE. __________ i ____________ i ______________________________ --_______________________________ J

The initial value of each of the address
fields in Table 9 is '00000001.' When the
data set is opened, the value of each
aqdress field that corresponds to a
required BDAM module is changed to the main

storage address of the module; the values
of address fields corresponding to modules
that are not required remain at '00000001';
and the values of the DCBlOBUQ and DCBUQND
fields are set to '00000000.'

Appendix A: Control Blocks for BDAM 47

The buffer control block (BCB> is built
if the dynamic buffering option has been
specified. Phase 3 of the BDAM open execu­
tor routines obtains contiguous main stor­
age for both the BCB and the required
number of buffers. The BCB is initialized
by the open executor phase 3 routine, but
subsequent entries are placed in the BCB by
the dynamic buffering module. The main
storage area for both the BCB and the

buffers is released by the BDAM close
executor routine. Figure 13 depicts the
fields of the BCB, and Table 10 describes
the field contents.

+0 +1 +2 +3 +4 +5 +6 +7

r------------------T------------------,
+0 I BCBFRQT I BCBFRQB I

~------------------+------------------~
+8 I BCBNABFR I BCBTBFRS I L __________________ i __________________ J

Figure 13. Fields of the BCB for BDAM

Table 10. Fields, Field Size, and Field Contents of the BCB for BDAM
r----------T------------T---,
I Field I Field Size I Field contents and Comments I
I I (in bytes) I I
~----------+------------+---~

BCBFRQT 4 contains the address of the first lOB waiting to be assigned

BCBFRQB 4

BCBNABFR 4

BCBTBRS 4

a buffer from the buffer queue. The dynamic buffer module
inserts this address.

Contains the address of the last lOB waiting to be assigned a
buffer from the buffer queue. The dynamic buffer module
inserts this address.

Contains the address of the next buffer that is available for
assignment to an lOB. Initially,. the open executor phase 3
module inserts this address. Subsequent addresses are
inserted by the dynamic buffer module.

Contains an indication of the total size of the buffer pool
and the buffer control block. The open executor phase 3
module inserts this value. __________ i ____________ i __ _

48

READ-EXCLUSIVE LIST SEGMENT

The read-exclusive list is composed of
one or more 80-byte segments of storage.
Each segment contains identifying and
chaining information and has space for nine
8-byte entries that identify the blocks for
which exclusive control is required. Phase
1 of the BDAM open executor routine
requests storage for the initial 80-byte
segment, and if additional segments are

+0 +1 +2 +3

required, the read-exclusive module,
IGG019LG, requests the storage. The BDAM
close executor routine releases the storage
area(s) that may have been obtained for the
read-exclusive list segments.

Figure 14 indicates the contents of the
fields of a typical segment of the read­
exclusive list. Figure 15 indicates the
contents of the fields of each of a
segment's nine entries representing members
of the read-exclusive list.

+4 +5 +6 +7
r---T--,
I I I

+01 Identifying Self-Pointer 1 Pointer to Next Segment if one Exists 1
I 1 1
~---~--~
I I

+81 First Entry on List (See below) I
I 1
~--~

~ Space for Seven More Entries t
~ ~
~--~
I I

+721 Last Entry in This Segment I
I I L __ J

Figure 14. Description of a Segment of the Read-Exclusive List

+0 +1 +2 +3 +4 +5 +6 +7
r------------------T---T---------,

OIAddress of the UCBI Address (CCHHR) of the block placed on the 1 Zero I
I for the block I exclusive list1 I I L __________________ ~ ___ ~ _________ ~

1This is the address of the track capacity record (RO) in the case of write-add
requests for variable len~th or undefined length blocks.

Figure 15. Description of an Entry in the Read-Exclusive List

Appendix A: Control Blocks for BDAM 49

APPENDIX B: MODULE IDENTIFICATION AND USAGE

In Table 11, the BDAM modules are
alphabetically according to their
(listing) names. Opposite each
coding name is the functional name
module.

listed
coding
module
of the

performed, the subroutine returns program
control to either the module listed at the
head of the column OD, in the case of
module IGG018KQ, to the foundation module.

In Table 12, the module listed at the
head of each column may use the module(s)
listed underneath it as a subroutine.
After the subroutine functions have been

In Table 13, options that may be speci­
fied in the MACRF field, the OPTCD field,
and the RECFM field of a DCB macro instruc­
tion are related to the BDAM modules that
are required to fulfill the options.

Table 11. Coding and Functional Names of BDAM Modules
r-----------------T---,
I Coding Name I Functional Name I
~-----------------+---i

IGG019KA Foundation Module
IGG019KC Relative Track Conversion Module
IGG019KE Relative Block Conversion Module without Track Overflow
IGG019KF Relative Block Conversion Module with Track Overflow
IGG019KG Relative Block Feedback Module without Track Overflow
IGG019KH Relative Block Feedback Module with Track Overflow
IGG019KI Channel Program Generating Module for Searching by Block Key
IGG019KK Channel Program Generating Module for Searching by Block ID
IGG019KM Channel Program Generating Module for writing New Blocks of

IGG019KO

IGG019KQ
IGG019KS
IGG019KU
IGG019KW
IGG019KY
IGG019LA
IGG019LC
IGG019LE
IGG019LG
IGG019LI
IGG0193A
IGG0193C
IGG0193E
IGG0203A

Variable- or Undefined-Length Records
Channel Program Generating Module for writing New Blocks of
Fixed-Length Records
Channel Program Generating Module for verification
Start I/O Appendage Module
Channel End Appendage Module
Key Extended-Search Module
Self-Format Extended-Search Module
Pre-Format Extended-Search Module
End-of-Extent Appendage Module
Dynamic Buffering Module
Exclusive Control Module
Check Module
Open Executor Phase 1 Module
Open Executor Phase 2 Module
Open Executor Phase 3 Module
Close Executor Module _________________ ~ ___ J

Table 12. Passage of Control Among BDAM Modules
r---------T---------T---------T---------T---------T---------T---------T--------T--------,
I IGG019KAI IGG019KII IGG019KKI IGG019KMI IGG019KOI IGG019KSI IGG019KWIIGG019KYIIGG019KHI
~---------+---------+---------+---------+---------+---------+---------+--------+--------i
I IGG019KCI IGG019KWI IGG019KQI IGG019KYI IGG019LAI IGG019LEI IGG019KQIIGG019LCIIGG019KFI
I IGG019KEI IGG019KQI I IGG019KQI IGG019KQI I I I I

I I IGG019KFI I I IGG019LG I I I I I I
I IGG019KGI I I I I I I I I
I IGG019KHf I I I I I I I I
I IGG019KII I I I I I I I I
I IGG019KKI I I I I I I I I
I IGG019KMI I I I I I I I I
I IGG019KOI I I I I I I I I
f IGG019LGI I I I I I I I I L _________ ~ _________ ~ _________ ~ _________ ~ _________ ~ _________ ~ _________ ~ ________ ~ ________ J

Appendix B: Module Identification and Usage 51

Table 13. BDAM Modules Required to Satisfy DCB Macro Instruction Options
r-------------------T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T---------------------------------,
I IIIIIIIIIIIIIIIIIIIII!IIIII!III!III I
I BDAM Modules IGIGIGIG\GIGIGIGIGIGIGIGIGIGIGIGIGI I
I Required ---> IGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGIGI I
I 10101010101010101010101010101010101 I
~-------T-----------~111111111111111111111111111111111I Comments I
I I 1919191919191919191919\919\9\9\9191 I
1 Operand \ Option IKIKIKIKIKIKIKIKIKIKIKIKILILILILILI I
I I ICIEIFIGIHIIIKIMIOIQIWIYIA\CIEIGIII I
~-------+-----------+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---------------------------------~

I I I I I I I I I IXI I I I I I I 1 IUsed when block length fixed \
I WA ~-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---------------------------------~
I I I I I I I I IXI I I I I I I IXI I Used when block length is I
I I \ I 1 \ I I I 1 I I \ I I I 1 1 I variable or undefined. I
~-----------+-t-t-+-+-+-+-+-+-+-+-+-t-+-+-t-+-+---------------------------------~
I C I I I I I I I I I I I I I I I I IXIWhen CHECK macro instruction isl
I I I I I I I I I I I I \ I I \ I I I encountered I

MACRF ~-----------+-+-t-+-+-+-+-+-+-t-+-+-+-t-+-+-t-+---------------------------------~
I RI or WI I I I I I I I X I I I I I I I I I \ \ I
~-----------+-+-+-+-+-+-+-+-+-+-t-t-t-+-t-+-+-+---------------------------------i
I RK or WK I I I I \ I X \ \ \ \ \ I I \ I I 1 \ I
~-----------+-+-+-t-+-+-+-+-t-+-+-+-+-+-+-+-+-+---------------------------------~
I RX I \ I I I I \ \ I I \ \ I \ I IXI \ I
~-----------+-+-t-+-+-+-+-+-+-t-t-+-+-t-t-+-t-+---------------------------------~
I RS I I I I I I I I I I I \ I I IXI I I I

r-------+-----------+-+-+-+-+-+-+-+-+-+-+-+-t-+-+-t-+-+---------------------------------~
I A I I I I I I I I I I I I I I I I I INone of those listed I
~-----T-----t-+-t-+-t-+-t-+-+-+-+-+-t-+-+-+-+-+---------------------------------~
I I IXI I I I I I I I I I I I I , , I IFeedback is to be in form ofl
I I I I I \ \ I I I I I I I 1 I I I I Irelative track I
I ~-----+-+-t-+-+-+-+-+-+-+-+-+-+-t-t-t-t-+---------------------------------i
I IRECFM\ \ I \ \ \ I \ I I I I 1 I \ I I I 1
I F I is I I I I I \ \ I I I I I I I I I I I I
I ~-----+-+-t-+-+-+-t-+-+-t-t-+-+-t-t-+-+-+---------------------------------i
I \ FT I I I \ \X\ \ \ \ \ I \ I \ \ \ I \Feedback is to be in form of I

OPT CD I ~-----+-+-+-+-t-+-t-+-+-+-+-t-t-+-+-+-t-~relative block I
\ I F I \ I IXI I \ I I I I \ \ \ I I \ I I
~-----+-----+-+-t-+-+-+-t-+-+-t-t-+-t-+-t-+-t-+---------------------------------~
I I FT \ I IX\ I I I I I I I I I I I I I I I
I R ~-----+-+-+-+-+-+-t-+-+~+-+-+-t-+-+-+-t-+---------------------------------~
I I F I IXI I I I I I I I I I I \ I I I I 1
~-----~-----+-+-t-+-t-+-t-+-+-+-t-+-+-+-t-+-t-+---------------------------------~
I W I I I I I I I I I \X\ \ I \ \ \ \ \ ,
~-----------+-+-+-t-t-+-t-+-+-+-+-+-+-+-+-t-+-+---------------------------------i
, Neither \X\ \ \ I \ \ \ \ \ 1 \ \ \ \ I I IRelative track addressing is I
I A nor R \ I \ \ I I \ \ \ I \ I I I , I I ,assumed I

~-------+-----T-----+-+-t-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+---------------------------------i
\ MACRF \ RECFM \ \ \ I \ \ I 1 I 1 1 1 1 1 1 1 \ I I
I is 1 is 1 1 1 I I 1 I I 1 1 1 I I I I I I I I
~-----+-----+-+-+-+-+-t-+-+-+-+-+-+-+-+-+-t-t-~ 1
I K I I I 1 I I IXI I I I IXI I IXI I I I I
~-----+-----+-+-+-+-+-+-t-+-+-+-+-+-+-+-+-t-+-i \
I A I F I I I \ I I \ I \X\ I I IX\XI I I I I

OPTCD ~-----+-----+-+-+-+-t-+-+-+-+-t-t-+-+_+-+-+-+-iThis section is for the extended l
is I A IU or I I I I I \ I IXI I I IXI IXI IXI I search options I
E I I V I \ I I \ \ I I I I \ I I I I I \ I I

~-----+-----+-t-+-+-+-+-+-+-t-+-+-+-+-+-+-t-t-i I
IK AND I F \ \ I \ \ IX\ \ \X\ \XI \X\X\ \ I \ \
I A \ 1 I 1 1 \ I \ I \ 1 I I I I I 1 I 1 I
~-----t-----+-+-+-+-+-+-+-+-+-+-+-+-+-+-t-+-t-i I
IK andlU or \ I I I I IXI IXI I IXIXI IXI I I I I
I A 1 V I I I I 1 \ \ \ I \ I I \ I I I I I I L _______ ~ _____ ~ _____ ~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~_~ _________________________________ J

52

APPENDIX C: CHANNEL PROGRAMS FOR BDAM

The channel program for each request using BDAM is constructed by the appropriate
module and placed in the lOB for that request. A channel program consists of a group of
channel command words (CCWs), each word having the following format:

r--------------T-------------T-------------T--------------T--------------T--------------,
I Command Code I Address I Flags I 000 I (ignored) I count I
I (1 byte) I (3 bytes) I (5 bits) I (3 bits) I (1 byte) I (2 bytes) I L ______________ ~ _____________ ~ _____________ ~ ______________ ~ ______________ ~ ______________ J

Note: The last 4 bytes are ignored by a
Transfer-in-Channel (TIC) command word.

The entry in the 'Address' field is one
of the following:

• The main storage address of where data
is to be placed or found; this is for a
Read or a Write command word.

• The location of the search argument;
this is for a Search command word.

• The CCW to which a transfer is made;
this is for a Transfer-in-Channel com­
mand word.

The entry (or entries) in the 'Flags'
field have the following meanings!

C. Command chaining.

D. Data chaining between gaps of a
record.

K. Skip the transferring of data.

S. Suppress incorrect length indica­
tion.

The entry in the 'Count' field repre­
sents either the number of bytes of data
that are to be transferred or the number of
bytes of data on which a search is to be
made for comparison.

The function or purpose of each con~and
word is given in the comment following the
'Count' field. The channel command words
are identified by the number to the left of
the command code.

If track overflow has been specified,
the applicable form of the channel program
will end with a CCW having NOP as the
command code and ignoring the other fields.
The preceding CCW will also have the com­
mand chaining (C) flag bit set on.

Appendix C: Channel Programs for BDAM 53

r---,
I Channel Program for Reading or Writing by Block ID (Type Dr) I
~------T-------------------------T----------------T-----T---~------T--------------------~
,CCW ICommand Code I Address I Flags I ICount IComments I
I No. , " I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
,1. ISearch ID Equal IIOBSEEK + 3 ,C 10001 5 ,Search for an I
I I I I I I I equa 1 CCHHR. ,
~------+-------------------------+----------------+-----+---+------+--------------------~
I 2. ITIC ICCW 1 I I I ITransfer if unequal. I
, , " " I I
~------+-------------------------+----------------+-----+---+------+--------------------~ ,3. 1 IRead (or Write) Key-Data ,Key Address 2 ,D 1000lKey IRead (or Write) ,
I I I " ILengthlKey portion. I
~------+-------------------------+----------------+-----+---+------+--------------------~
,4. IRead (or Write) Data IArea Address2 I 1000lData IRead (or Write) I
I I I I I ,LengthlData portion. ,
~------+-------------------------+----------------+-----+---+------+--------------------~
, 5. 3 ~ISeek cylinder head ,IOBDNRCF ,C 10001 6 ISeek back to track I
I I <CCHH) I I " ,containing beginning'
, I " " I of block. ,
~------+-------------------------+----------------+-----+---+------+--------------------~
I 6. ISearch ID Equal ,IOBSEEK + 3 I C 10001 5 ILocate the block I
, I I I I I I just updated. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 7. ITIC ICCW 5 '" ITransfer if unequal. I
, I I I I I I ,
~------+-------------------------+----------------+-----+---+------+--------------------~
I 8. IRead Key-Data I I S,K 10 001 256 ,Read to validity ,
I , I I " , check. ,
~------~-------------------------~----------------~-----~---~------~------~-------------~
11 CCW 3 is omitted if either the field DCBKEYLE or the field DECKYADR is zero. I
12This address is obtained from the DECB. I
,3CCWS 5-8 are included only if the field DCBOPTCD specifies the write-validity-check ,
I option. ,
I~This CCW is present only if track overflow has been specified. , L ___ J

54

r---,
I Channel Program for Reading or Writing by Block Key (Type DK) I
~------T-------------------------T----------------T-----T---T------T--------------------~
I CCW ICommand Code I Address IFlagsl ICount IComments I
I No. I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 1. IRead Count IIOBDNRCF + 2 I C,S 10001 5 IRead CCHHR for I
I I I I I I I feedback. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 2. ISearch Key Equal IKey Address1 I C,S 1000lKey ISearch for an equal I
I I I I I ILengthlKey. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 3. ITIC ICCW 1 I I I ITransfer if unequal. I
I I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 4. IRead (or Write) Data IArea Address1 I 1000lData IRead (or Write) I
I I I I I ILengthlData portion. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 5. 2 31Seek Cylinder head I IOBDNRF I C 10001 6 ISeek back to track I
I I (CCHH) I I I I Icontaining beginning I
I I I I I I I of block. I
I I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 6. ISearch Key Equal IKey Address1 I C,S 1000lKey ILocate the block I
I I I I I I Lengthl just updated. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 7. I TIC I CCW 5 I I I I Transfer if unequal. I
I I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 8. IRead Data I I S,K 10001 256 IRead to validity I
I I I I I I I check. I
~------~-------------------------~----------------~-----~---~------~--------------------~
11This address is obtained from the DECB. I
12ccws 5-8 are included only if the field DCBOPTCD specifies the write-validity-check I
I option. I
13This CCW is present only if track overflow bas been specified. I L ___ J

Appendix C: Channel Programs for BDAM 55

r---,
I Channel Program for Writing a New Block of Fixed-Length Records (Type DA) I
~------T-------------------------T----------------T-----T---T------T--------------------~
I CCW ICommand Code I Address IFlagsl ICount IComments I
I No. I I \ I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 1. IRead Count IIOBDNRCF + 2 \ C,S 1000\ 5 IRead CCHHR for \
I I I I I I I feedback. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 2. I Search Key Equal IDummy Key I C,S 10001 1 ISearch for a I
I I I I I I Idummy record. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 3. I TIC I CCW 1 I I I I Transfer if unequal. I
I I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 4. IRead Data IIOBDNRCF + 6 I C,S 10001 1 IRead dummy record's I
I I I I I I Iposition (i.e., R) I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 5. 1 ISeek cylinder head I IOBDNRCF I C 10001 6 ISeek back to track I
I I (CCHH) I I I I Icontaining beginning I
I I I I I I lof block. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 6. ISearch ID Equal IIOBDNRCF + 2 I C 10001 5 ISearch for the I
I I I I I I Idummy record. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 7. I TIC I CCW 5 I I I I Transfer if unequal. I
1 I I 1 I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 8. IWrite Key-Data IKey Address 2 I C 1000lKey IUpdate the Key I
I I I I I I Length I portion. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 9. IWrite Data IArea Address 2 I 1000lData IUpdate the Data I
I I I I I I Length I portion. I
~------+-------------------------+----------------+-----+---+------+--------------------~
110. 1 31Seek cylinder head I IOBDNRCF I C 10001 6 ISeek back to track I
I I (CCHH) I I I I Icontaining beginning I
I I I I I I I of block. I
~------+-------------------------+----------------+-----+---+------+--------------------~
111. I Search ID Equal IIOBDNRCF + 2 I C 10001 5 ILocate the block I
I I I I I I I just written. I
~------+-------------------------+----------------+-----+---+------+--------------------~
112. I TIC I CCW 9 I I I I Transfer if unequal. I
I I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
113. IRead Key-Data I I S,K 10001 256 IRead to validity I
I I I I I I I check. I
~------i-------------------------i----------------i---__ i ___ i ______ i ____________________ ~
11This CCW is present only if track overflow has been specified. I
12This address is obtained from the DECB. I
13 CCWS 10-13 are included only if the field DCBOPTCD specifies the write-validity-check I
1 option. I L ___ J

56

r---,
I Channel Program for Writing a New Block of Variable-Length Records or Undefined- I
I Length Records (Type DA) I
~------T-------------------------T----------------T-----T---T------T--------------------~
I CCW ICommand Code I Address IFlagsl ICount IComments I
I No. I I I I I I I
~------+----------------~--------+----------------+-----+---+------+--------------------~
I 1. Isearch ID Equal IIOBSEEK + 3 I C 10001 5 ISearch for track I
I I I I I I I capacity record. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 2. ITIC ICCW 1 I I I ITransfer if unequal. I
I I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 3. IRead Data I IOBDNRCF I S 10001 7 IRead capacity I
I I I I I I I record into lOB. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 4. ISearch ID Equal I IOBUPLIM I C 10001 5 ILocate track I
I I I I I I Icapacity record. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 5. ITIC ICCW 4 I I I ITransfer if unequal. I
I I I I I 1 1 I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 6. IWrite Data 1 IOBSEEK + 3 I C,S 10001 7 IUpdate capacity 1
I I I I 1 I I record. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 7. ISearch ID Equal ICCW 11 I C 10001 5 ILocate current last I
I I I I I I I block on track. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 8. I TIC I CCW 7 I I 1 I Transfer if unequal. I
I I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 9. IWrite Count-Key-Data I IOBDNRCF I D 10001 8 I I
I I I I I I I I
~------+-------------------------+----------------+-----+---+------~ I
110.2 IWrite Count-Key-Data IKey Address 3 I D 1000lKey I I
I I I I I ILengthlWrite new block. I
~------+-------------------------+----------------+-----+---+------~ I
111.~ IWrite Count-Key-Data IArea Address 3 I 1000lData I I
I I I I I I Length I I
~------+-------------------------+----------------+-----+---+------+--------------------~
112.5 ISearch ID Equal I lOB SEEK + 3 I C 10001 5 ILocate new block. I
I I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
113. I TIC I CCW 12 I I I I Transfer if unequal. I
I I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
114. IRead Key-Data I IC,S,KIOOOI 256 IRead to validity I
I I I I I I I check the block. I
~------+-------------------------+----------------+-----+~--+------+--------------------~
115. IRead RO I I K 10001 16 tRead to validity I
I I I I I I I check the capacity I
I I I I I I I record. I
t------~-------------------------~----------------L---__ i ___ L ______ L ____________________ ~

11The lOB area that initially contained CCW 1 has been overlaid with 5 bytes (the CCHHR I
I part) of the capacity record that was read by CCW 3. I
12 CCW 10 is omitted if keys are not present in the block format. I
13 This address is obtained from the DECB. I
I~CCW 11 is omitted if Data Length is 0 (i.e., end-of-data-set mark). I
15CCWs 12-15 are included only if the fitld DCBOPTCD specifies the write-validity-check I
I option. I l ___ J

Appendix C: Channel Programs for BDAM 57

r---,
I Channel Program for Reading or Writing by Block Key Using Extended Search (Type DK) I
~------T-------------------------T----------------T-----T---T------T--------------------~
I CCW I Command Word I Address I Flags I I Count I Comments I
I No. I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 1. ISearch ID Equal I IOBSEEK + 3 I C 10001 5 ISearch for an I
1 I I I I I lequal CCHHR. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 2. ITIC ICCW 1 I I I ITransfer if unequal.!
I I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 3. IMultiple Track Search IIOBUPLIM + 3 I C 10001 5 Istop search at I
I I ID Equal I I I I Ilimi t. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 4. ITIC ICCW 6 I I I ITransfer if unequal. I
I I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 5. INOP I I S I I 1 ISearch limit I
I I I I I I I reached. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 6. ISearch Key Equal IKey Address I C,S 1000lKey I I
I I I I I I Length I I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 7. ITIC ICCW 3 I I I ITransfer if unequal. I
I I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 8. IRead Horne Address 1 I IC,S,KIOOOI 1 I I
I I I I I I! I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 9. IRead Count IIOBDNRCF + 2 I C,S 10001 5 IRead CCHHR for I
I I I I I I I feedback. I
~------+-------------------------+----------------+-----+---+------+--------------------~
110. ISearch Key Equal IKey Address 2 I C 1000lKey ISearch for equal I
I I I I I I Length I key. I
~------+-------------------------+----------------+-----+---+------+--------------------~
111. I TIC I CCW 9 I I I I Transfer if unequal. I
I I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
112. IRead (or write) Data IArea Address 2 I 1000lData IRead (or Write) datal
I I I I I ILengthlportion of block. I
~------+-------------------------+----------------+-----+---+------+--------------------~
113. 3 ~ISeek cylinder head I IOBDNRCF I C 10001 6 ISeek back to track I
I I <CCHH) I I I I Icontaining beginning I
I I I I I I I of block. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 14. ISearch Key Equal IKey Address 2 I C,S 1000lKey ILocate the block I
I I ! I J JLengthJjust updated. I
~------+-------------------------+----------------+-----+---+------+--------------------~
115. ITIC ICCW 13 I I I ITransfer if unequal. 1
I I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
116. IRead Data I I S,K 10 001 256 IRead to validity I
I I I I I I I check. I
~------~-------------------------~----------------~-----~---~------~--------------------~
11 CCWs 8-11 are included if feedback is requested. I
12 This address is obtained from the DECB. I
13 This CCW is present only if track overflow has been specified. I
I~CCWs 13-16 are included only if the field DCBOPTCD specifies the write-validity-check I
I option. I L ___ J

58

r---,
I Channel Program for Writing a New Block of Fixed-Length Records Using Extended Search I
I (Type DA) I
~------T-------------------------T----------------T-----T---r------T--------------------~
I ccw 'Command Code I Address IFlagsl 'Count IComments I
I No. I I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 1. ISearch ID Equal IIOBSEEK + 3 I C 10001 5 ISearch for track I
I I I I I I Icapacity record. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 2. ITIC ICCW 1 I I I ITransfer if unequal. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 3. IRead Data IIOBDNRCF + 2 I C,S 10001 5 IRead highest ID froml
I I I I I I Icapacity record. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 4. ISearch ID Equal IIOBDNRCF + 2 I C 10001 5 I I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 5. ITIC ICCW 12 I I I ITransfer if unequal I
~------+-------------------------+----------------+-----+---+------+--------------------i
I 6. ISearch Key Equal IDummy Key I C,S 10001 1 ISearch for dummy I
I I I Address I I I I record. I
~------+-------------------------+----------------+-----+---+------+--------------------i
17. ITIC ICCW 9 I I I ITransfer if unequal. I
~------+-------------------------+----------------+-----+---+------+--------------------i
I 8. ITIC 'CCW 14 I I I tTransfer if equal. I
~------+-------------------------+----------------+-----+---+------+--------------------~
I 9. IMultiple Track Search IIOBUPLIM + 3 I C 10001 5 IStop search at I
I I ID Equal I I I I Ilimi t. I
~------+-------------------------+----------------+-----+---+------+--------------------i
110. ITIC ICCW 3 I I I ITransfer if unequal.!
~------+-------------------------+----------------+-----+---+------+--------------------i
111. INOP I IS! I 1 ISearch limit I
I I I I I I I reached. !
~------+-------------------------+----------------+-----+---+------+--------------------i
112. ISearch Key Equal IDummy Key 1 C,S 10001 1 I I
I I I Addres s I I I I ,
~------+-------------------------+----------------+-----+---+------+--------------------i
113. ,TIC ICCW 4 I I I ITransfer if unequal. !
I I I I I" I
~------+-------------------------+----------------+-----+---+------+--------------------i
114. IRead Data IIOBDNRCF + 6 I C,S 10001 1 IRead dummy record's I
I , I I I I Iposition (i.e. I R). I
~------+-------------------------+----t-----+---t------t--------------------i
115. 1 Iseek cylinder head I IOBDNRCF I C 10001 6 ISeek back to track I
I I (CCHH) I I I I Icontaining beginning I
I I I I I I I of block. I
~------+~------------------------+----------------+-----+---+------+--------------------i
116. ISearch ID Equal IIOBDNRCF + 2 I C 10001 5 ISearch for dummy !
I , I I I I I record. I
~------+-------------------------+----------------+-----+---+------+--------------------~
117. ITIC ICCW 15 I I I ITransfer if unequal. I

I I " 'I I I
~------+-------------------------+----------------+-----+---+------+--------------------i
118. IWrite Key-Data IKey Address 2 I C 1000lKey IUpdate the Key I
1 I 1 I I 1 Length I Portion. I
~------+-------------------------+----------------+-----+---+------+--------------------i
119. IWrite Data IArea Address 2 I 1000lData IUpdate the Data I
I I I I I 1 Length I portion. I
~------+-------------------------+----------------+-----+---+------+--------------------i
120. 1 31Seek cylinder head I IOBDNRCF I C 10001 6 ISeek back to track I
I I (CCHH) I I I I Icontaining beginning I
I I I I I I lof block. I L ______ L _________________________ L ________________ ~ _____ L ___ L ______ L ____________________ J

(Continued)

Appendix C: Channel Programs for BDAM 59

r---,
I Channel Program for Writing a New Block of Fixed-Length Records Using Extended Search I
I (Type DA) (Continued> I
~------T-------------------------T----------------T-----T---T------T--------------------~
121. ISearch 1D Equal IIOBDNRCF + 2 I C 10001 5 ILocate the block I
I 1 I I I I I jus t wr itt en. I
~------+-------------------------+----------------+-----+---+------+--------------------~
122. ITIC ICCW 19 I I I ITransfer if unequal. I
1 1 I I I I I I
~------+-------------------------+----------------+-----+---+------+--------------------~
123. IRead Key-Data I I S,K 10001 256 IRead to validity 1
1 I I I I I I check. I
~------~-------------------------~----------------~---__ ~ ___ i ______ ~ ____________________ ~

11This CCW is present only if track overflow has been specified. I
12 This address is obtained from the DECB. I
13 CCWs 20-23 are included only if the field DCBOPTCD specified the write-validity-check I
I option. I L ___ J

60

Processing Program

OPEN DCB

Re lated System 360 -
Routines

,-­
Basic Direct Access Method Routines I

.,r---------------'

Get Storage for,
and Initialize,

Read - Exclusive
List

------------------------------~

/' /' J Get Storage for DEB I /'--/PI r--
Get Storage for
Buffers and BCB

agement Data Man
Open Rout ine

I

•
IGGOI93A, 3C, 3E

BDAM Open
Executors

I

~
F

/' /' ~----_--------1
/'....-- ./---:;::-: _ -1 Build DEB Extents I __
-=- ______________ J -1 ___ c_re_a_te_IR_~ __ ---'

f:::- -: -=-_ _=_ ____ -.J Initialize DCB I _ _ .J
, , - __________ S ~ I _L_in_k_B_u_ff_er_s_T_og_e_th_e_r---,

, '--,
Load Processing Modules
and Store Addresses Attach DEB To TCB 1- -,

- ~ ~----------------'

Check Request Validity

/
/ J'-----__ t-----.-)"1 _ __ Convert Address K

IGG019KC

Relative Track

IGG019KE

Relative Block
No Track Overflow

//
/ J I '~,~'.-'
~ Build lOB '. // ./

READ7W~RI~T~E __ --,

IGG019KF

• Figure 16.

'-'--'

I

~./...-_./- -' ------~ / ~ Process Request Errors

""­
\"'",,-

\ '"
\

\

Generate Channel
Program

L. ___ . _________ ._. __ _

IGG019K5

BDAM Start I/O
Appendage

Get Buffer if Dynamic
Buffering Specified

No Buffer
Available

A I+----....J

Buffer
Available

Relative Block
Track Overflow

IGG019KK

Key Extended Search

IGG019KQ

Write - Verify

IGG019KO

Write-Add, Format F

IGG019LE

Dynamic Buffering

Relationship Among Processing Program, BDAM Routines, and Other Components
of the operating System

= I/O Interrupt

IGGOJ9KU

BDAM Channel
End Appendage

Check for Error Retry
Procedures Requirement

J ~elease Buffers
/I--~

/
/ I Set Completion Cades / /""IL.. ____ ~

~ / /
'- / /
'- / /

"\..._._._.--.i / / ./
r-------.,,~/./ /'./

Provide
Exclusive Control

of Block

IGGOJ9KA ./ /
1----......:-....1-------;:... _ _ _ _ Schedule Rest of Write- ,/

BDAM Foundation ... '......... Add Channel Program /

I--{AS_I_C_om..,.po_ne_n_t>_J\." '- '- ' _

~ ______ --.J \\" ,'...... '- ---J V-~---
~=====~ , 1 Compute Feedback !===._ *WA'::'IT __________ ---.j \'" 1..-. _______1 __ ___

~ Supervisor \" ,

b. CH~K " "l_I_G_G_O_J9_U_...J~ \\ ""-" '1 Release lOB to Pool I
___ = '--......... r-lE ,-_':'~~A_D_L r7lF BD~:I:eck - -'/ \\\ u rL..:.J Post Request Completion

CLOSf=D=C~B _____________________ ~

Legend

Main flow of control
- - ~ Functions performed by main block

Linkage to routines that perform indicated functions
and return to point of departure

lOS: Input/Output Supervisor

I
I
I

Process Completion Errors

L __ Check for Request
Completion

~ Purge Scheduled lOB's

/

// Release lOB Storage Areas

/ /' / '" r------------,
/ /' /' ~ Clear DCB BDAM Fields

IGG0203A
-;,'" ///
-/_--- I 1--------01-- ..., Free All Buffer Areas

~------------~ BDAM Close
Executor -----

* If a WAIT is encountered as indicated, the supervisor returns
control to the processing program. If a WAIT is encountered
before the request is posted as complete, (i .e., before the
second indicated I/o interrupt) the processing program
relinquishes control until posting occurs.

b. Either a WAIT of a CHECK may be specified. (Refer to text
at "Check Module".)

Free Read­
Exclusive List Area

Exclusive Control

IGGOJ9KC

Track Feedback

IGGOJ9KH

Block Feedback,
Track Overflow

• Figure 16. Relationship Among Processing Program, BDAM Routines, and Other
of the Operating System <Continued)

Components

Abnormal completion of request 14,43
Actual DEB extents 17
Adding fixed length blocks 22
Adding new blocks 5,6
Adding variable length blocks 22
Address conversion

feedback with relative block addressing
6

relative block 6
relative track 6

Address specifications 47
Appendage list 5,26

subpool 26
Appendages 8,25
ASl component 13,17,20,23,24,27-32,40,42

Base component 13,17,22,23, 40
Basic partitioned access method convert
routine 17,20

Basic sequential access method routine
11,22,23

BDAM appendage list 5
BDAM module addresses 10
BDAM module linkage 5
Block device address 20
Block updating 6
Block queueing 29,30
Block referencing 11
BPAM routine

(see basic partitioned access method
convert routine)

BSAM routine
(see basic sequential access method

routine)
Buffer addresses 32
Buffer control block 11,33

description 48
Buffer pool 32
Buffer queue 27,31,32

Capacity record 23-25
Categories of BDAM modules 6
Channel command words 21
Channel end appendage 13,14,25,27,28
Channel program 8,13,20,21,53

categories 21
end 13
ending address 43
restart 13
search arguments 21

Check code 25
Check feature 7
CHECK macro instructions 14,33
Check module 14,33
CLOSE macro instructions 33
Close module 8,9,33
Coded names for modules 51
Control blocks

64

buffer control block (BCB) 11,33,48
data control block (DCB)

6-9,12-14,25,29,33,39,46,47
data event block (DEB)

8,9,12,17,20,28,33,45
data event control block (DECB)

13,14,20,23,24,33,41,42,44
data set control block (DSCB) 8
input/output block (lOB)

13,14,21-24,28,32,33,39-43
input request block (lRB) 11
task control block (TCB) 8

Data check indication 25
Data control block

address 44
(see also control blocks)

Data event block
(see control blocks)

Data event control block
(see control blocks)

Data set control block
(see control blocks)

Data set extents 8,11
Data verification 7
DCB macro instructions 6,11,21,23,28,33
Device address 20
Device-type errors 28
Dummy record 14

data field 22
Dynamic buffer module

5,7,14,27,29,31,32,48
Dynamic buffer queue 43
Dynamic buffering option

5,7,11,14,25,27,31

End-of-data-set condition 27,28
End-of-extent appendage 24,25,28,42
Error code 30
Error component 14
Error-recovery procedure 28
Exclusive control 5-7,14,24,25,28-31,41
Exclusive list 25
EXCP macro instructions
Exit effector routine 27
Extended search

key 21
pre-format 23
self-format 28

Extended search option
7,13,17,22,23,24,27,28

Extent
availability
periods of

28
11,12

Feedback module 20,47

13, 42

Fields of relative extents 11,20,45
Format modules 7
Foundation n:odule 6,8,13,17,21- 23
FREEDBUF macro instructions 31,32
Functions of channel programs 6
Functions of close executor module 7
Functions of foundation module 6
Functions of open executor modules 5,6,8

phase 1 8
phase 2 8,11
phase 3 12

GETMAIN macro instructions 13

IGC0005C
IGG019KA
IGG019KC
IGG019KE
IGG019KF
IGG019KG
IGG019KH
IGG019KI
IGG019KK
IGG019KM
IGG019KO
IGG019KQ
IGG019KS
IGG019KU
IGG019KW
IGG019KY
IGG019LA
IGG019LC
IGG019LE
IGG019LG
IGG019LI
IGG0193A
IGG0193C
IGG0193E
IGG0203A

30
13
17
17-19
17,19,20
20
20
21
21
23,24
23
21,25
25,27
13,27
21
24
22,23
24,28
31
29,30,49
33
8
8
11
33

Incorrect length indication 28
Initial value of address fields in data
control block 47

Input/output block 29,30
address 44
availability indication 40
description 39-43
list 33
pool 13,33
release 14
storage for 13
(see also control blocks)

Input/output operation termination 5
Input/output supervisor 5,7,13,23,27,28,43
Input/output supervisor scheduled queue 33
Interrupt request block 11
Inter-task queue 7,24,30
Intra-task queue 30
Invalid requests 14

List of available buffers 32

Module
addressing 13,17

relative block 17,20
relative track 17

appendage 8
channel end 7,13,14,25,27,28
end-of-extent 7,24,25,28,42
start I/O 5-7,25,27,31

channel program 8,13,20,21
fixed write (pre-format) 22,23
search by ID 21
search by key 21
variable write 22,23,32,40
write-verify 7,21,25

check 14,32
close 7,8,32,33
dynamic buffering 5,14,27,31,32,47
extended search

key 21

pre-format 23
self-format 24

feedback 20, 47
foundation 6,8,13,20-22

ASI component
13,17,20,23,24,26-28,32,40,42

base component 13,17,22,23,40
error component 14

open 6,20
phase 1 8,9,25,29
phase 2 8,9,11,27,28,47
phase 3 11,12

Module addresses 10
Module linkage 5
Modules and DCB options 52
Modules as subroutines (table) 51
Multiple track search 23

Normal completion of channel program 43
Number of relative blocks 46
Number of relative tracks 46
Number of unused bytes on track 40

Obtaining an lOB 39
OPEN macro instructions 8,11
Open module (see module)
Option specifications 41,46
Overflow block 11
Overflow section of DEB 45

Period
computation of 12
end of 11,12
of an extent 11,12

Permanent error 28
Phase 1 of open 8,9,25
Phase 2 of open 8-11,27,28,48
Phase 3 of open 12
Post routine 14
Pre-format channel program 22,23
Pre-format extended search 23
Purge routine 33

Queue
buffer 27,31-33, 43
scheduled 33

Queued requests for new block 24

Read-exclusive list 7,8,29,30,31,42,50
address of 47
number of entries 47
segment 49

READ macro instructions
5,6,13,14,21,27,29,41,44

Relative block addressing 17
Relative block number 17
Relative block option 11
Relative extent fields 11,20,45
Relative track address 17-20
Relative track number 17
RELEX macro instruction 29-31
RELEX module 30,31
Request status indicator 41,42

Search limit 25,28
Search limit for extended search 24
Self-format channel program 22-24,29,40
Self-format extended search 24

Index 65

Supervisor call (SVC) library 5
Synchronous error recovery (SYNAD) routine

33

Task control block 8
Track overflow 12,17,19,41,45

UCB pointer 29
Unposted queue 24,25,29,30,33

address of entries on 47
Update programs 21
Update track address 24

WAIT macro instructions 33
Where-to-go table 8,12
WRITE macro instructions
5,6,13,21,27,29,30,41,44

'Write-add' program 22,29
'Write-add' requests 24
Write-exclusive request 30
Write-validity check option
Write-verify channel program
Writing new blocks 22

TEXT REFERENCES FOR FIGURES, TABLES, AND CHARTS

Fi2ure Page Table Page Chart

1 8,25 1 8 01
2 12 2 18 02
3 8,13,14,17,20 3 20 03
4 8,13,14,17,20,23,27 4 21 04
5 21 5 22
6 23 6 23
6A 24,25 7 39
7 8,25 8 44
8 33 9 46
9 39 10 48

10 44 11 51
11 45 12 51
12 46 13 51
13 48
14 49
15 49
16 8

66

21,25
7,21,25

Page

13,25
13
22
29

READER'S COMMENT FORM

IBM System/360 Operating System
Basic Direct Access Method
Program Logic Manual

• Is the material:
Easy to read?
Well organized?
Complete?
Well illustrated?
Accurate?
Suitable for its intended audience? .

• How did you use this publication?
D As an introduction to the subject
D For additional knowledge

Other

• Please check the itenls that describe your position:
D Customer personnel D Operator
D IBM personnel D Programmer
D Manager D Customer Engineer
o Systems Analyst D Instructor

Yes

o
o
o
D
o
D

Form Y28-6617-3

No
o
D
D
D
D
D

D Sales Representative
o Systems Engineer
o Trainee
Other

• Please check specific criticism (s), give page number (s), and explain below:
D Clarification on page (s) D Deletion on page (s)
o Addition on page (s) D Error on page (s)

Explanation:

• Thank your for your cooperation. No postage necessary if mailed in the U.S.A.

Y28-6617-3

YOUR COMMENTS PLEASE . . .

This publication is one of a series which serves as reference for systems analysts, program­
mers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use.
Each reply will be carefully reviewed by the persons responsible for writing and publish­
ing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

Fold Fold ... :

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

Attention: Programming Systems Publications
Department 058

POSTAGE WILL BE PAID BY

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

FIRST CLASS
PERMIT NO. 81

POUGHKEEPSIE, N.Y.

..
Fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.106ot
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Fold

Y28-6617..;.3

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10SOt
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

c
ion
):.

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	replyA
	replyB
	xBack

