File No. S$360-30
Form Y28-6617-3

- Program Logic

IBM System/360 Operating System
Basic Direct Access Method

Program Logic Manual

Program Number 360S-DM-509

This publication describes the internal logic of the
IBM System/360 Operating System basic direct access
method (BDAM). The functions and structures of the
routines are described, as are their relationships to
other portiocns of the operating system.

The manual is intended for use by IBM customer
engineers involved in program maintenance, and system
programmers who are altering the program design. It
can be used to locate specific areas of the program,
and it enables the reader to relate these areas to the
corresponding program listings. Program logic informa-
tion 1s not necessary for the use and operation of the
program; therefore, distribution of this publication is
limited to those with the aforementioned requirements.

Restricted Distribution

Fourth Edition (July 1967)

This publication corresponds to Release 12.

This publication is a major revision of Form ¥Y28-6617-2 and makes that
form and prior forms obsolete. 1In addition to the reorganization of
some parts of the text, new material has been added +to describe the
enqueuing and dequeuing of requests that require either the read-
exclusive option or the adding of new blocks of records of variable
length or undefined length. Two figures have been added to Appendix A
to describe the read-exclusive list. Figures 7 and 16 and Chart 02 have
been modified, and Chart 05 has bpeen deleted. Chart 04 has been
replaced with a new chart for exclusive control under the MVT form of
the operating system.

Changes (including deletions) in the text are indicated by a vertical
line to the left of the change. Changes in illustrations are denoted by
the symbol ¢ to the left of the caption.

This publitcation was prepared for production using an IBM computer to
update the text and to control the page and 1line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments.. If the form has been removed, comments may be addressed to
IBM Corporation, Programming Systems Publications, Department D58,
PO Box 390, Poughkeepsie, N. Y. 12602

The information contained in this manual
is intended for programmers engaged in
maintenance of BDAM routines.

This publication is divided into three
main parts. The first part describes the
organization and function of the basic
direct access method and its relationship
to other portions of IBM System/360 Operat-
ing System. The second part describes the
main components of the basic direct access
method and their interaction. Part three
contains reference material that is not
necessary to an understanding of the 1logic
of the access method but may be useful in
understanding a storage dump or in other-
wise analyzing the listings for this access
method.

To provide the prerequisite knowledge
for understanding the contents of this
publication, the following publications are
recommended:

For information regarding the primary
control program, see:

IBM System/360 Operating System: Intro-

duction to Control Program Logic, Pro-
gram Logic Manual, Form Y28-6605

For information regarding the MVT
figuration of the control program, see:

con-

IBM System/360 Operating System: Control

Program Logic Summary, Form Y28-6658

The following publications are listed as
suggested reading:

PREFACE

IBM System/360 Operating System: Super-
visor and Data Management Services, Form
C28-66U46

IBM System/360 Operating System:
visor and Data Management
Instructions, Form C28-66u47

Super—
Macro-

IBM System/360: Component Description,

2841 Storage Control Unit

2302 Disk Storage, Models 3 and 4

2311 Disk Storage Drive

2321 Data Cell Drive, Model 1

7320 Drum Storage, Form A26-5988

This publication also makes references
to routines that are described in one of
the following publications:

IBM System/360 Operating System:
Input/Output Support (OPEN/CLOSE/EOV),
Program Logic Manual, Form Y28-6609

IBM System/360 Operating System:
Sequential Access Methods, Program Logic
Manual, Form Y28-6604

IBM System/360 Operating System: Direct
Access Device Space Management, Program
Logic Manual, Form Y28-6607

IBM System/360 Operating System: MVT
Supervisor, Program Logic Manual, Form
¥28-6659

INTRODUCTION . @ v & o o o o o o o o «

Relationship of the Basic Direct
Access Method to the Operating System

Structure of the Basic Direct Access
Method. . . . « . . ¢ ¢« ¢ ¢« ¢ o o . .
Opening a DCB « « v « « 4 « o « + @
Contreolling the Processing.
Converting Addresses. . . . « « . .
Generating Channel Programs
Reading or Updating Blocks . . .
Adding New Blocks.
Verifying Written Data
I/0 Supervisor Appendages
Maintaining Exclusive Control . . .
Providing Dynamic Buffer Allocation
Checking for Request Completion . .
Closing the DCB ¢ & .+ v & « o o « .

PROGRAM COMPONENT DESCRIPTION.

The BDAM Open Executor Program
(Modules IGG0193A, IGG0193C, and
IGGO193E) « +« o o o o « e e e e e

Periods of an Extent e e e e e .

The BDAM Foundation Module
(Module IGGO19KA) . . . « « « o o « .
Base Component. . « « « « « « « . .
Asynchronous Interrupt Component. .
Error Component . . . <« « « « « o .
Invalid Requests
Abnormal Completion of a Request

Address Conversion . « « « « « « o «
Relative Track Conversion
(Module IGGO19KC). . . . & <« .+ « .
Relative Block Conversion (Modules
IGGO19KE and IGGO19KF) . «
Track Overflow Not Specified
(Module IGGO19KE) . .
Track Overflow Spe01f1ed (Module
IGGO19KF) . . .« . . . e e e e
Feedback for Relative Block
Addressing (Modules IGGO019KG and
IGGO19KH) . =« ¢ ¢ & o o o o o o o «

Channel Programs for BDAM. . . .
Update Programs (Modules IGG019KI
IGGO019KK, and IGGO19KW).

NNNNdIdoacOOONON O

[ee]

17

18

19

20

20

21

CONTENTS

Format Programs « e e e .
Pre-Format Channel Programs
(Modules IGG019KO and IGGO19LA)
Self-Format Channel Programs
(Modules IGGO19KM and IGG019KY)
Verification Program
(Module IGGO19KQ). . & «v o o o« « =

Appendages « « « ¢ « « o o @ « o o o @
Start I/0 Appendage
(Module IGGO19KS). . . .« . « o« . .
Buffer Needed.
Channel End Appendage
(Module IGGO19KU). . . .+ . <« . . .
End of Extent Appendage
(Module IGGO19ILC).« .
Supervisory Mode
Non-Supervisory Mode « o o
Exclusive Control (Module IGG019LG)
Releasing Blocks Under Exclusive
Control ¢« ¢ o ¢ o o &
Dynamic Buffering (Module IGGO19LE)
Buffer Assignment.
Releasing Buffers.- .
Check Module (Module IGG019LI). .« .

The BDAM Close Executor Program
(Module IGG0203A) « o« o « & &

BDAM FLOWCHARTS. « ¢ « o ¢ o « « « «
APPENDIX A: CONTROL BLOCKS FOR BDAM .
TOBe & « o« o o a 4 o o o o o o o o =
DECB ¢ ¢ « ¢ o o o o o o o o o « o o «
DEB:e & ¢ ¢ ¢ 4 4 4 o ¢ o o o o o o o =
DCBe v ¢ o o o & o o o o o o o o o o @
BCB: « o o 4 ¢ o o o o o o o « o o o 4

Read-Exclusive List Segment.

APPENDIX B: MODULE IDENTIFICATION AND
USAGE + « «o o o o o o o o o = o o« = =
APPENDIX C: CHANNEL PROGRAMS FOR BDAM

INDEX. 2 o o ¢ o o o 2 o o o o o o o =

22
22
23
25
25

25
27

33
35
39
39
4y
45
46
48
49

51
53

64

ILLUSTRATIONS

FIGURES

Figure 1. Relationship Among
Processing Program, Data Management
Open Routine, and BDAM.

Figure 2. Illustration of Track
Ooverflow. . . ¢« o ¢« o & o o « o « o

Figure 3. Relationship Among
Processing Program, I/0 Supervisor,
and BDAM for Processing a Request . .

Figure 4. Relationship Among
Processing Program, Related
System/360 Routines, and BDAM When a
Request is Completed.

Figure 5. Structure of a Block on a
Direct-Access Storage Device.

Figure 6. Data Field of a Capacity
Record for a BDAM Data Set.

Figure 6A. Module Relationships for
Write-Add Requests in Multi-Task
Environment « ¢ « ¢ ¢ ¢ . .

Figure 7. Relationship Among
Processing Program, I/0O Supervisor,
and BDAM for Executing.

TABLES

Table 1. BDAM Module Addresses as
Stored by Phase 2 of BDAM Open
Executor Program.

Table 2. DEB Information for Example
Without Track Overflow.

Table 3. DEB Information for Example

With Track Overflow
Table 4. Channel Programs for Reading
or Writing an Updated Block
Table 5. Requirements for Channel
Programs to Add New Blocks to an
Existing Data Set . o e e
Functions of the Exclusive

Table 6.
Control Module for Specified
ConditionsS. « .« ¢ & ¢ ¢ 4 4 4 . e . .
CHARTS
Chart 01. BDAM High Level Flow. . . .

Chart 02. BDAM High Level Flow
(Continued)
Chart 03. Module Flow for Block
Updating. « . ¢ ¢ ¢ &« & . . .
Chart O4. Exclusive Control - MVT
System. 000 . 0 e e ...

i0

12

15

16

21

23

26

27

10
18
20

21

22

31

35
36
37

38

Figure 8. Relationship Among
Processing Program, Data Management
Close Routine, and BDAM at Close Time

Figure 9. Fields of the IOB for BDAM.
Figure 10. Fields of the DECB for

BDAM. o ¢ ¢ ¢ 4 ¢ 4o ¢ 4 « e o o o« o @
Figure 11. Fields of the DEB for BDAM
Figure 12. Fields of the DCB for BDAM
Figure 13. Fields of the BCB for BDAM
Figure 14. Description of a Segment

of the Read-Exclusive List.
Figure 15. Description of an Entry in

the Read-Exclusive List
Figure 16. Relationship Among

Processing Program, BDAM Routines,
and Other Components of the Operating
System. ¢ ¢ e e @ 4 4. . .
Figure 16. Relationship Among
Processing Program, BDAM Routines,
and Other Components of the Operating
System (Continued).

Table 7. Fields, Field Size, and
Field Contents of the IOB for BDAM
(Part 1 of U) . . . ¢ v ¢ v « o o o

Table 8. Fields, Field Size, and
Field Contents of the DECB for BDAM .

Table 9. Fields, Field Size, and
Field Contents of the DCB for BDAM. .

Table 10. Fields, Field Size, and
Field Contents of the BCB for BDAM. .

Table 11. Cocding and Functional Names
of BDAM Modules « . +« v ¢ o o o « « .

Table 12. Passage of Control Among
BDAM ModAUleS. ¢ « o « ¢ ¢ o o o o o

Table 13. BDAM Modules Required to
Satisfy DCB Macro Instruction Options

A listing of text page references
Figures, Tables, and Charts

index.

62

63

40
o
47
48
51
51

52

for
Follows the

The basic direct access method (BDAM)
consists of routines used in retrieving
data from, and storing data onto, direct

access devices. In this capacity, the BDAM

routines are a part of the IBM System/360
Operating System control program, and they
operate in conjunction with the

input/output supervisor (I/O supervisor).
The BDAM routines link a processing program
to system supervisor routines in order to

satisfy input/output requests for data in
direct-organization data sets.
The BDAM routines are grouped into

modules and placed in the supervisor call
(svC) library at system generation time.
This 1library is part of the system resi-
dence library that resides on direct-access
storage. When the BDAM routines are to be
used by a processing program, the necessary
modules are brought from the system resi-
dence volume and loaded into main storage.
The loaded BDAM modules are 1linked by
module storage addresses. Each address is
placed in one of the following:

e The data control block (DCB) for the
data set.

¢ Another previously loaded BDAM module.

e The BDAM appendage 1list that is in
protected main storage.
Essentially, BDAM may be divided into

three general sections: an opening section,

a processing section, and a closing sec-
tion.

The opening section initializes the
access method by determining storage

requirements, by determining and 1loading
the required modules from system residence,
and by building control blocks and control
lists for further program usage.

The processing section does the follow-
ing:

e Converts address to a form required by
a channel program.

¢ Cconstructs, and initiates execution of,
a channel program for fulfilling an
input or an output request macro
instruction.

¢ Maintains exclusive control of informa-
tion in a block as long as requested.

INTRODUCTION

e Assigns buffers for input/output opera-
tiomns.

¢ Indicates errors related to

input/output operations.

The closing section performs the func-
tions that are necessary to terminate nor-
mal processing of a BDAM data set.

Throughout this publication, references
are made to control blocks or to fields of
a control block. Appendix A contains a
description of the major control blocks
used by BDAM.

RELATIONSHIP OF THE BASIC DIRECT ACCESS
METHOD TO THE OPERATING SYSTEM

When a data
BDAM is opened, the open
management (discussed in the publication
IBM System/360 Operating System:
Input/Output Support (OPEN/CLOSE/EOV), Pro-
gram Logic Manual) gives control to one of
the BDAM modules that initialize the access
method routines for the type of processing
indicated in the DCB.

set to be processed using
routine of data

The basic direct access method also has
interfaces with the processing program and
with the supervisor. When either a READ or
a WRITE macro instruction in the processing

program is encountered, the BDAM routines
begin satisfying the request. The actual
execution of a request requires a channel

program that has been constructed by one or
more BDAM routines.

When an input/output operation termi-
nates, the processing program is interrupt-
ed. The I/O supervisor then obtains the
address of a BDAM appendage module and
gives control to that module to schedule
the remaining processing required for the
request. When all processing for the
request has been completed, the supervisor
returns control to the processing program.

Note: The BDAM start I/O appendage module
is always given control just before the
execution of a request begins. If dynamic
buffering is specified, control is given to
the BDAM dynamic buffering module.

When a data set 1is <closed, the data
management close routine gives control to
the BDAM close executor module, which then
completes the BDAM functions.

Introduction 5

STRUCTURE OF THE BASIC DIRECT ACCESS METHOD

The modules of BDAM can be grouped into
several categories that are related to the
purpose or function of the module. These
categories are:

Opening a DCB.

Controlling the processing.
Converting addresses.

Generating channel programs.

I/0 supervisor appendages.
Maintaining exclusive control.
Providing dynamic buffer allocation.
Checking for request completion.
Closing the DCB.

OPENING A DCB

To open a DCB for a BDAM application,
two, and sometimes three, modules are
required. These modules are the BDAM open
executor modules, and they are used when a
DCB for a direct organization data set is

opened. The need for three modules depends
on the options selected in the DCB macro
instruction. The collective functions of

these modules are to determine the need for
other modules and to establish control
blocks.

CONTROLLING THE PROCESSING

The module that controls the processing
functions of BDAM is called the foundation
module. This module is given control when
either a READ or a WRITE macro instruction
that uses BDAM is encountered in a process-
ing program. It is used to complete the
preparations necessary before a request can
be executed and completed. The foundation
module checks the validity of each request
and contains the 1linkage to some of the
other required modules.

An additional function of the foundation
module is to complete the processing of a
request after an input/output operation has
terminated. (Refer to the section
"Asynchronous Interrupt Component" for
further information about this function.)

CONVERTING ADDRESSES

Five modules are used for address con-

version. Two of these modules are used to
convert a block address that has been
specified as a relative block address into

an actual device address. The choice of
which one is to be used depends on whether
or not track overflow is specified in the
DCB macro instruction. Another of the five
modules converts addresses from a relative
track specification to an actual device
address. The other two conversion modules
are used only if the programmer specifies
feedback with relative block addressing.

Again, the choice depends on the track
overflow specification.
GENERATING CHANNEL PROGRAMS

Several channel program generation
modules are available as part of BDAM. At

modules is wused for
every BDAM request that is normally com-
pleted. These channel programs either
search auxiliary storage volumes for infor-
mation to be brought into main storage or
search auxiliary storage volumes for space
on which to place information that is
transferred from main storage. The selec-
tion of the required module is based on
whether an existing block is being read or
updated or a new block is being added to a
data set. One additional channel program
is used if it is required to verify data
that is written on secondary storage
volumes.

least one of these

Reading or Updating Blocks

There are three modules used to generate
channel programs for block reading or
updating purposes. The choice of modules
depends both on which part (either the key
field or the block identification portion
of the count field) of the data block is
used as a search argument in the data
retrieving function of the channel program
and on whether an option has been selected
to permit extending the search of a data
set beyond a given track.

Adding New Blocks

There are three modules available to
generate channel programs for adding new
blocks to an existing data set. These
modules are referred to as format modules
since the use of a particular module
depends on the block format in the data set
being processed. The modules used for
fixed-length (pre-format) blocks are dif-
ferent from those used for variable-length
(self-format) blocks. Blocks whose lengths
are undefined also are called self-format
blocks. The number of modules required

when adding new blocks depends on whether
the extended search option has been speci-
fied.

Verifying Written Data

If written data is to be verified, there
is one module used to generate the required
channel command words. This channel pro-
gram contains channel command words that
are appended to the appropriate "write-
type" channel program. The module is
required if the write-validity-check option
has been specified in the DCB.

I/0 SUPERVISOR APPENDAGES

There are three BDAM modules to which
I/0 supervisor may pass control, depending
on the stage of execution of a request.

The first is the start I/O appendage
module. If the dynamic buffering option
has been specified, the appendage module
permits the allocation or release of buffer
areas. I/0 supervisor accordingly passes
control to this module before beginning the
channel program for such requests.

The second appendage module is the chan-
nel end appendage module. This module
schedules further processing on a request
after a channel program has terminated.

The third 1I/O supervisor appendage
module is the end of extent appendage
module. This module 1is 1loaded if the
extended search option has been specified.
It receives control if the channel program
in control is required to switch from one
extent to another while reading a block,
writing an updated block, or adding a new
block.

MAINTAINING EXCLUSIVE CONTROL

The exclusive control module provides
protection for the data portion of a block

requested under exclusive control by ensur-
ing that subsequent duplicate requests for
the block are not posted as complete before
the initial request for the block has
released control. A read-exclusive list is
established to help ascertain if a given
request is a duplicate request.

In a multi-task environment, this module
places blocks on, and removes blocks from,
an inter-task queue to provide block pro-
tection during updating. 1In this capacity,
the module serves requests for adding new
blocks as well as requests using the exclu-
sive control option.

PROVIDING DYNAMIC BUFFER ALLOCATION

The dynamic buffer module obtains,
assigns, and releases buffer areas for
input/output requests that use the dynamic
buffer option. A buffer control block and
a buffer queue are established to handle
the buffer requests.

CHECKING FOR REQUEST COMPLETION

The check module contains provisions
both for determining if (and waiting, if
necessary, until) a request has been posted
as complete and for giving control to a
user's error routine if errors have been
indicated during the input or output opera-
tion.

CLOSING THE DCB

The BDAM close executor module 1is the
only module in this category. This module
is required to release, to the system, the
main storage obtained by BDAM.

The second function of this module is to
restore the fields of the DCB that have
been changed by BDAM routines.

Introduction 7

PROGRAM COMPONENT DESCRIPTION

The main components of BDAM are de-
scribed in the following paragraphs. The
modules required within each component, the
conditions under which the modules are
used, and the inter-module relationships,
are discussed. Where appropriate, figures
are used to illustrate the text descrip-
tion. Figure 16, following Appendix C, is
a composite of Figures 1, 3, 4, 7, and 8
that are referred to in this section of the
publication. It may be useful in gaining
an overall general concept of BDAM and its
relation to a processing program and to the
operating system.

THE BDAM OPEN EXECUTOR PROGRAM
(MODULES IGG0193A, IGG0193C, AND IGGO193E)

The BDAM open executor program consists
of up to three modules that are given
control during the opening of a data con-

trol block specifying BDAM. The routines
in these modules obtain storage for, set
up, and initialize control blocks used by
BDAM routines, and load the required BDAM
processing modules into main storage.

macro instruction is
encountered in a processing program that
specifies BDAM, the expansion of the macro
instruction causes control to be passed to
the open routine of data management. (See
Figure 1.) This routine uses the BDAM open
executor modules as subroutines. It gives
control to module IGG0193A (referred to as
phase 1 of the BDAM open executor program)
to initiate the BDAM processing. Paramet-
ers specified in the DCB to which the OPEN
macro instruction refers and in the data
set control block (DSCB) for this data set
enable phase 1 to determine the protected
main storage requirements for the data
extents to be added to the base of a data
extent block (DEB). Phase 1 then obtains
main storage for an I/0 supervisor appen-
dage list, a read-exclusive list (a list of
the addresses of blocks still under exclu-
sive control), and the DEB, and places
necessary control information in the fields
of the DEB. As each current DEB is being
constructed, it is attached to the
appropriate task control block for future
reference.

When the OPEN

In allocating storage for the DEB,
phase 1 also provides space for the iden-
tification of BDAM modules that are
required as a result of specifications
given in the DCBMACRF field, the DCBOPTCD
field, and the DCBRECFM field of the DCB.

After the preceding functions have been
completed, phase 1 checks the where-to-go
table, which is created by the data manage-
ment open routine, to determine whether it
includes other DCBs that require the use of
this phase. If there are no more current
requirements for the use of phase 1, con-
trol is given to module IGG0193C (referred
to as phase 2 of the BDAM executor
program) .

Phase 2 loads into main storage the BDAM

modules used for the particular applica-
tion. The foundation module is loaded
first. Phase 2 places in the foundation
module the addresses of certain optional

BDAM modules that have been selected. The
addresses of the remaining BDAM modules are
placed either in the DCB, in the 1I/0
supervisor appendage 1list, or in other
designated modules. Table 1 shows where
the module addresses are placed. Each time
BDAM is used, the addresses of the selected
modules are placed in the same designated
positions in the control blocks, modules,
or lists.

The major activity of phase 2 is the
selecting ¢f required modules. There is a
routine within the module for each of the
following activities:

¢ Selecting and loading the proper
addressing module.
e Determining and loading the proper

channel program generating module(s).

e Determining and loading the optiomnal
module(s) required.

e Determining and loading the required
appendage modules.

If main storage already contains some
BDAM modules from a previous data set
opening, phase 2 obtains their main storage
addresses from the supervisor, and these
modules are not reloaded. There are two
situations to consider:

1. If BDAM modules have been included in
the link pack area, then they are
accessible to all jobs requesting them
(since the BDAM modules are
reenterable).

2. If a given task loads a BDAM module
into a region assigned to that task,
only that task or a subtask attached
by that task has access to the module.
If another main task requires the same

module, it must load the module into
its own region.

"The MVT Supervisor Program Logic Manual
contains more detailed information concern-
ing these situations.

As modules are loaded into main storage,
their corresponding identifications are
placed in the DEB. (After processing has

been completed on a data set, the close
routine uses this information for releasing
storage areas.) Space for the module iden-
tifications was allotted by phase 1 of the
BDAM open executors.

Phase 2 also initializes the read-
exclusive list and some of the fields of
the DCB.

Program Component Description 9

Processing Related System/360
Program Routines
OPENDCB— — — ~— = = — — — =
——t— — ¥
- } Data
T | Management
- | Open
- | Routine
- | -
- | -
i -
- I
— | -
| -
| _-
! _
! -
| -
|
I |
Legend L - 4

- — — — - Main Flow of Control
__ 5 Functions Performed

BDAM Routines and Functions

Get Storage for,
and Initialize,

Read-Exclusive
List

Get Storage for

Buffers and BCB

Create IRB

1GGO193A, 3C, 3E

Link Buffers Together

Get Storage

for DEB

Build DEB Extents

BDAM Open

Executors

Initialize DCB

Load Processing
—_—l——v Modules and

Store Addresses

Attach DEB to TCB

Figure 1. Relationship Among Processing Program, Data Management Open Routine, and BDAM
at Open Time

Table 1. BDAM Module Addresses as Stored by Phase 2 of BDAM Open Executor Program

r - H 1
| | Module, Control Block, or List |
| Module Name | in Which Address Is Placed

[- t 1
Foundation	DCB
Relative Track	Foundation Module
Relative Block	Foundation Module
Write-Verify	Foundation Module
Relative Block Feedback	DCB
Key	Foundation Module
Key Extended Search	Key Module
D	Foundation Module
Self-Format	DCB
Self-Format Extended Search	Self-Format Module
{ Pre-Format	DCB
Pre-Format Extended Search i Pre-Format Module	
Start I/0 i Appendage List?	
End of Extent	Appendage List
Channel End	Appendage List
Check	DCB
Dynamic Buffer	DCB
Exclusive Control?2	DCB
[L 4	
3 1	
1The address of the Appendage List is in the DEB.	
2The address of the read-exclusive list is also in the DCB.	
L —_ ——— B e e e e e e e e e e e e e e e o o e e e o e 4

10

The remaining function of phase 2 of the
open executor program is the branching to a
supervisor routine to build the interrupt
request block (IRB).

Before giving control to the next
routine, phase 2 determines if any more
DCBs associated with the current OPEN macro
instructions require the use of this
module. If so, this module is reentered
and does the required processing. Other-
wise, two situations are considered:

1. If neither the dynamic buffer option
nor the relative block addressing
option has been specified in the DCB
macro instruction, the data set is
considered to be opened as far as BDAM
is concerned, and control is returned
either to an open executor routine for
another data set or to the open rou-
tine of input/output supportil.

2. If the DCB macro instruction specifies

either the relative block addressing
option or the dynamic buffering
option, or specifies both options,
phase 2 gives control to module
IGG0193E (phase 3 of the BDAM open

executor program) -

If it is indicated in the DCBOPTCD field
of the data control block that BDAM should
handle all buffer management for a given
data set, module IGG0193E uses the buffer
information in the DCB macro instruction to
obtain the required amount of main storage
for the buffers and a control block (the
buffer control block) to contain buffer
information. The buffer area in storage is
then divided into the requested number of
buffers, and the buffers are chained
together so that the dynamic buffer module
may satisfy the buffer requirements for
individual read or write requests. (Refer
to "Dynamic Buffering.")

To gain access to a data set block
located on a direct-access device, the

block's actual location on the device must
be known. If a programmer has specified
that the blocks in a data set are to be

referred to by relative block number (i.e.,
relative block addressing), then these num-
bers must be converted to actual block
locations (i.e., device addresses). For
use in this conversion, phase 3 of the BDAM
open executor program constructs a set of
fields (known as relative extent fields) in
the DEB. These fields of +the DEB are

iThe next routine is determined from the
where-to-go table. (Refer to the publica-
tion IBM System/360 Operating System:
Input/Output Support (OPEN/CLOSE/EQOV), Pro-
gram Logic Manual.)

described in Appendix A. There is a one-

to-one correspondence between the actual
data set extents in the DEB -‘and the
relative data set extents. (Refer to

"Relative Block Conversion.")

If relative block addressing and track
overflow are indicated in the DCBOPTCD and
DCBRECFM fields of the DCB respectively,
phase 3 constructs a modified relative
extent portion of the DEB. In addition,
phase 3 inserts two other fields between
the last actual extent and the first rela-
tive extent in the DEB. These fields are
referred to as the overflow section of the
DEB and are related to the concept of a
period as discussed in the following para-
graphs.

Periods of an Extent

When the basic sequential access method
(BSAM) places blocks on a direct-access
device, it 1is possible that a block may
start on one track and finish on a follow-
ing +track within the same extent. Such a
block is called an overflow block, and for
this to occur, at 1least one byte of the
data portion of a block must fit on a track
in order for the block to overflow onto the

next track. For purposes of calculation,
the track on which a block begins is
considered to contain the block. When a

track 1is reached in which block length and
track conditions do not permit at least one
byte of the data portion of a new block to

be written, the end of a period has been
reached.
Thus, a period constitutes that group of

tracks containing a group of blocks such
that the first track does not begin with an
overflow block from another track and the
last track does not contain a block that
overflows to another track. Example 1
illustrates the concept of a period.

In this example, assume the

Example 1:
following:

e A given data set is on a device that
permits 3625 bytes per track to be
allocated to data blocks, excluding a
track capacity record (RO).

e The block length for the data set is
844 bytes, divided as follows:

14 bytes

area
100 bytes for the block key portion
730 bytes for the block data portion

for address marker plus count

Program Component Description 11

s There are no inter-record gaps on the
tracks. (This assumption is to simpli-
fy the calculations in the example.)

Part of the given data set occupies an
extent consisting of contiguous tracks
beginning with track 47 on this device.

From the second assumption, it is deter-
mined that at least the first 115 bytes of
a block must fit on a track in order for
track overflow to occur. Figure 2 illus-
trates the manner in which the data blocks
would appear on the tracks of the extent.

The identifications Bl1, B2, ..., B32
represent the first 32 blocks placed in
this extent. The numbers above the block
identifications represent the number of
bytes of the block appearing on a track.
Arrows at the end of a track and at the
beginning of a track indicate where track
overflow occurs.

2, track overflow
track 48 (via block
track 49 (via block

As shown in Figure
occurs from track 47 to
B5), from track 48 to
B9), and so on till the end of track 53.
Since track overflow (in this example)
requires at least the first 115 bytes of a
block to appear on a track and only 55
bytes remain on track 53 after block B30
has been placed there, track overflow can-
not occur using block B31l. Therefore,
tracks 47-53 constitute a period, and a new
period begins with block B31 on track 54.

For purposes of calculating relative block
addresses (see Examples 2 and 3 in the
section "Relative Block Conversion"), the

number of blocks on each track is given in
Figure 2 as the 'Track Block Count®.

teristics, the third phase of the BDAM open
program computes the size of the period for
the data set. Phase 3 then computes both
the number of blocks in a period and the
number of tracks in a period and places the
computed values in the two fields of the
overflow section of the DEB. These fields
are each one word in length, and they occur
only once for a given data set. The values
placed 1in these fields are constant for a
given data set.

Since the allocation of actual extents
to members of a data set is performed by
space management routines (refer +to the

publication IBM System/360 Operating Sys-
tem: Direct Access Device Space Management,
Program Logic Manual), and since the period
is a concept used by BDAM, the boundaries
of extents and periods may not always
coincide. However, the end of an extent
terminates the 1last period in the extent.
In this case, the 1last period may be
complete or it may be only partially com-
plete. 1In either case, the start of a new
extent coincides with the start of a new
period.

Before returning control to the next
routine, phase 3 determines if any more
DCBs require the use of this module. If
so, this module is reentered and does the
required processing. If not, the data set
is considered to be opened as far as BDAM
is concerned, and control is returned eith-
er to an open executor routine for another
data set or to the open routine of
input/output support.?l

1iThe next routine 1is determined from the

where-to-go table. (Refer to the publica-
tion IBM System/360 Operating System:
Based on block characteristics (key Input/Output Support (OPEN/CLOSE/EOQOV), Pro-
length and data length) and device charac- gram Logic Manual.)
844 844 844 844 249 Track Block Count
Track 47 |___RO | Bl B2 L B3 | B4 5 > 5Blocks
595 844 844 844 498 .
Track 48 |__RO > 85 | B6 B7 BS B9 - 4 Blocks
346 844 844 844 747
Track 49 | RO By | 810 | B | BI2 | 813 i 4Blocks
97 152
BI3 844 844 844 844 BI8,
Track 50 | RO Bl B14 | B15 | B16 | B17 =™ 4 Blocks
692 844 844 844 401
Track 51 |__RO b= 818 | B19 | B20 | B21 | B2 5Blocks
443 844 844 844 650 \
Track52 | RO =822 | B23 | B24 | B25 L B26 __—» 4 Blocks
B 844 844 844 844 ¥
Track 53 | RO = | 827 | B28 | B29 i B30 11 4Blocks
844 844 « o e H
Track 54 | RO | B31 | B32 | ! 4Blocks
Figqure 2. Illustration of Track Overflow

12

THE BDAM FOUNDATION MODULE
(MODULE IGGO019KA)

When either a READ or a WRITE macro
instruction in the processing program is
encountered, the BDAM foundation module
receives control. (See Figure 3.) This
module, IGG019KA, is the basic module of
BDAM. As such, it is required in all
processing that requires the basic direct

access method. This module provides the
initialization, housekeeping, and control-
ling functions for the BDAM processing
routines. The foundation module consists

of three main functional components:

¢ The base component.
* The asynchronous interrupt component.
¢ The error component.

BASE COMPONENT

The base routine is the first main
component of the foundation module. All
requests made through either a READ or a
WRITE macro instruction enter BDAM in the
base routine. (See Chart 01.) The base
routine has two primary functions:

e Establishing the validity of options
that have been specified in the request
macro instruction for the application.

e Combining the options specified in the
type field of the READ or the WRITE
macro instruction with the options
specified in the DCBOPTCD field of the
DCB. The result of the combination is
placed in the data event control block
(DECB) and later transferred to the
input/output block (IOB) for future
reference by the BDAM routines.

The base routine then tests the type
field of the DECB that results from the
expansion of either the READ or the WRITE
macro instruction, to determine the form of
the channel program to be constructed.
This routine then determines the main stor-
age requirements for the ICB to be used by
the request. (The IOB used by a request
for the BDAM program is described in Appen-
dix A.) The base routine then either (a)
obtains an available IOB of the necessary
size from an existing pool of IOBs or, (b),
obtains an amount of main storage, through
the use of the GETMAIN macro instruction,
in which to construct a new IOB for the
request and builds the IOB.

routine next determines the
type of block addressing that has been
specified for the data set. If actual
addressing has not been specified, control

The base

is given to one of the BDAM modules that
are used to convert the address form used
to an actual address. (The main storage
address of the required address conversion
module was placed in the foundation module
by the BDAM open executor program when the
data set was opened.) The conversion
module returns control to the base routine.

The base routine again determines the
form of channel program required, this time
by checking fields in the IOB and in the
DCB. The indicated module is given control
and generates the proper channel program.
If the extended search option has been
specified, the channel program will reflect
the search 1limits established in the
DCBLIMCT field of the DCB. At the comple-
tion of channel program generation, the
base routine again receives control.

After establishing an expected end for
the channel program, the base routine
issues a request to the I/0 supervisor by
means of the execute channel program (EXCP)
routine. After the 1I/O supervisor has
scheduled the request, control is returned
to the base routine, which then returns
control to the processing program.

ASYNCHRONOUS INTERRUPT COMPONENT

The asynchronous interrupt (ASI) routine
is the second main component of the founda-
tion module. Before a request is consid-
ered completed, certain processing func-
tions must be performed by the foundation
module. When the processing program is
interrupted by the completion of an
input/output operation, the I/0 supervisor
gives program control to the BDAM channel
end appendage routine. The control rela-
tionships involved at this time are shown
in Figure 4. The ASI routine is scheduled
by the supervisor after the BDAM channel
end appendage module, IGG019KU, has indi-
cated the need for the ASI routine. The
appendage module then returns control to
the I/0 supervisor which, in turn, returns
control to the supervisor.

The main functions (see Chart 02) of the
ASI routines are:

e To determine the cause of

interrup-
tions.
¢ To either initiate a restart of a

channel program if necessary or branch
either to error subroutines or to other
processing modules (such as self-
format, address conversion for relative
block feedback, or address conversion
for relative track feedback).

Program Component Description 13

e If the request currently being process-
ed is a request to write a block and if
the dynamic buffer option has been
specified, then the ASI routine will
use the dynamic buffer module as a
subroutine to free the buffer that has

been allocated for the corresponding
'read' request.
e If either the exclusive control option

has been specified or a request to add
new blocks of variable or undefined

length has been specified, the ASI
routine uses the exclusive control
module either to place blocks on a

queue or to remove blocks from a queue.

¢ To release the request's IOB to the
pool of 1I0Bs. (This function is per-
formed by the check module if both a
CHECK macro instruction is encountered
and the DCB macro instruction specifies
the check function.) After the IOB has
been released, the request is posted as
complete by means of the post routine,
and control is returned to the supervi-
sor.

For each request, only those functions
that are applicable are performed.

ERROR COMPONENT

The third major component of the founda-
tion module consists of error routines both
for processing invalid requests and for
processing errors resulting from abnormal
completion of a request. Figqures 3 and U
indicate the error-processing functions.

Invalid Requests

Invalid requests are based upon differ-
ences between the parameters specified in
the DECB related to an individual READ or
WRITE macro instruction and the parameters
specified in the DCB at the time it was
opened for processing with BDAM. Invalid
requests can occur in the base routine of
the foundation module, in the module for
converting a relative track address to an
actual address, in the module for convert-
ing a relative block address to an actual

14

address, and in the module for generating a
write-type channel program to add a block
to a data set of fixed-length (or
preformatted) records.

When an invalid request is encountered,
an error routine releases the IOB associat-
ed with the request, posts an indication in
the DECB that an invalid request has
occurred, and returns control to the pro-
cessing program.

Abnormal Completion of a Request

There are two situations in which abnor-

mal completion of a request is related to
BDAM. The first situation results f£from
device errors. Errors included in this

category are those relating either to the
actual input/output devices and control
units or to end-of-data-set conditions
(which are received by the channel end
appendage module as unit exception
conditions). An error condition also
results from not finding a dummy record in
the case of a request to add a fixed-length
block to an existing data set. An indica-
tion of abnormal completion is established
when the I/0 supervisor enters the excep-
tional end routine of the BDAM channel end
appendage module, IGG019KU.

The second situation c¢an occur when a
request is given to write a new block whose
length is either variable or undefined. If
it is determined that there is no available
space in which to add the new block, a BDAM
routine sets an indicator to inform the
processing program so that appropriate
action may be taken.

When an abnormal completion is encoun-
tered, the error routine releases the
related IOB to the IOB pool associated with
the data control block, posts an indication
of the type of error and an indication of
the completion of the request, and returns
control to the supervisor.

Note: The IOB is released to the IOB pool
by the check module if applicable. (Refer
to the section "Asynchronous Interrupt Com-
ponent.")

Processing Related System 360 BDAM Routines and Functions

Program Routines
- Check Request
- Velidity IGGOT9KC
- ’__’4 Relative Track
:: ™ Convert Address [
READ/WRITE ———-—————— = ————] _l 1GGO19KE
T y]' , sl Relative Block,
- : [GGO19KA] ‘ No Overflow
. | [- "ﬂ Build 1OB
- | BDAM
. : Foundation
. | (Base IGGO19KF
__ | Component) Process 1 Relative Block
: . Request Track Overflow
| ! R Errors
| I a :
I
|
|
I
; 1GGO19KK
| — Read/Write
: I by Block ID
1
' |
|
i 1GGO19KI IGGO19KW
| ,] Read/Write l— o Key Extended
: l I_ by Block Key Search
|
| | [
| -
IGGOT9LA
: Generate S LSISAbSS)
| > Channel - — — Write-Add, — —> Pre-Format
: Program 7 Format F Extended Search
| 1
! ‘ i
| -
: L 1GGO19KM 1GGO19KY
| | —> Write-Add, —— —» Self-Format
: | Format U or V Extended Search
|
|
| |
I 1GGO19KQ
Input/Output | Jl |_] .]
Supervisor Write-Verify
} Schedule 1/0O
| Request
e -
Legend

——————— - Main Flow of Control
————» Functions Performed

—— —— —» Linkage to Routines to Perform Functions

Figure 3. Relationship Among Processing Program, I/0 Supervisor, and BDAM for Processing
a Request

Program Component Description 15

Processing
Program Routines

10s

Related System/360

Error Routine

i
|
108 v

Channel
Program
Terminates

Exit Effector

Lﬁ_\

i
|

T
|
!
|
!
!
1
|
I
1
|
1
|
1
|
|

h 4

Supervisor l

BDAM Routines and Functions

IGGOI9KU -

BDAM Channel
End Appendage

Check for Error

Schedule

L_ BDAM
——| Asynchronous

Interrupt
Routine

Input/Output
Supervisor

|

y

Supervisor

Supervisor

________ » Main Flow of Control

——————— Functions Performed

—— —— — Linkage to Routine to Perform Functions

108 Input/Output Supervisor

e Fiqure 4.

Retry Procedure
Requirement

Release Buffers

1GCOI9KA_

BDAM
Foundation
(ASI
Component)

Compute Feedback

When a Request is Completed

16

Release 1OB to Pool

IGGOI9LG
Set)
Completion Exclusive
Codes Control
A
Provide Exclusive
Control of -
Block
Schedule Rest of
Write-Add
Channel Program
IGG019KC

I__. Track Feedback

IGG019KG

Block Feedback,
No Overflow

Post Request
Completion

Process
Completion
Errors

IGGO19KH

Block Feedback,
Track Overflow

Relationship Among Processing Program, Related System/360 Routines, and

BDAM

ADDRESS CONVERSION

If the user specifies either relative
track or relative block addressing, one of

the BDAM relative address conversion
modules is used. Each conversion module
initiates transformation of the user's

block address specification into an actual
device location for the block so that the
channel program can use the 1location when
searching for the block. If the block
address is given in terms of a relative
track position, the relative track conver-
sion module (IGGO19KC) 1is used. If +the
address of a block is given as a relative
block number within a data set, one of the
two relative Dblock conversion modules
(IGGO19KE or IGGO19KF) is used. If
required, an address conversion module is
loaded into main storage by the BDAM open
executor phase 2 module at the time the
data control block is opened.

RELATIVE TRACK CONVERSION (MODULE IGGO19KC)

track conversion module,
IGG019KC, is entered from either the base
component or the ASI component of the
foundation module. (See Figures 3 and 4.)
Entry is from the base component if the
purpose is to initiate a conversion from a
relative track address to an actual device
address. Entry is from the ASI component
if the purpose is to initiate a conversion
from a block's actual device address to a
relative track address. The latter conver-

The relative

sion is for purposes of feedback if speci-
fied by the user.
Entry From Base Component: The actual

converting of track addresses is done by a
conversion routine (referred to as the
convert-to-actual routine) of the Dbasic
partitioned access method (BPAM). (Refer
to the publication IBM System/360 Operating
System: Sequential Access Methods, Program
Logic Manual.) This routine is resident in
main storage. When the BDAM conversion
module gives control to the BPAM routine,
it supplies the address of the location at
which the actual address is to be placed
(it is placed in the IOBSEEK field for use
by the channel program), the relative track
number that the user has indicated in the
blkref field of the request macro instruc-
tions , and the address of the DEB so that
the BPAM routine can refer to the actual
extents in the DEB.

The DEB extents contain the cylinder and

track information for the various sections
of the data set (which is stored on a
direct access device); from the extents,

the BPAM routine obtains the actual start-

ing address of each extent and the number
of tracks in each extent. From this infor-
mation, the BPAM conversion routine derives
the actual address of the block whose
address is to be converted. This address
is then placed in the specified location
(i.e., IOBSEEK), and the BPAM routine
returns control to the BDAM relative track
conversion module, which gives control to
the base component of the foundation
module.

If the extended search option has been

specified, the foregoing procedure is used
to determine the actual address of the
upper 1limit of the search. The starting

track address and the number of tracks to
be searched (as specified in the LIMCT
parameter of the DCB macro instruction)
enable the search 1limit to be computed.
This 1limit is placed in the IOBUPLIM field
of the IOB.

Entry From ASI Component: The ASI routine
receives program control after the channel
program ends. If the user requests rela-
tive track feedback, the ASI routine gives
control to the BDAM relative track conver-
sion module, which gives control to another
resident BPAM conversion routine (referred
to as the convert-to-relative routine).
The BDAM module gives the BPAM routine both
the address of the location of the actual
block address (i.e., the address of
IOBSEEK) and ,the address of the DEB. After
the BPAM routine completes the address
conversion and places the converted address
in a parameter register, program control is
returned to the relative track conversion
module. This module stores the relative
track address in the blkref area of the
processing program and gives control to the
ASI routine.

RELATIVE BLOCK CONVERSION (MODULES IGGO19KE
AND IGGO19KF)

Each of the relative block conversion
modules is entered from the foundation
module to initiate the conversion of a
relative block address to an actual device
address. The data control block is exam-
ined to determine if track overflow has
been specified. If it has not been speci-
fied, module IGGO19KE is used. If it has

been specified, module IGGO19KF is used.
(See Figure 3.) 1In either case, the actual
conversion regquires two routines. The

first routine is a BDAM routine that con-
verts a relative block address to a rela-
tive track address, and the second routine
is a BPAM routine that converts a relative
track address to an actual track address.

Program Component Description 17

To convert relative block addresses to
relative track addresses, the BDAM modules
use information from the relative extent
areas of the DEB. For each actual extent
area in the DEB, there is a relative extent
area whose fields (or field, if track
overflow is specified) contain information

related to a specific actual extent. One
field contains the number of blocks on a
track for the device used, and the other

field contains the number of blocks in the
actual extent. If track overflow is speci-
fied, the first of these two fields is not
present.

Track Overflow Not Specified (Module
IGG019KE)

To determine the relative track address
from a relative block number given in the
blkref field of a READ macro instruction,
module IGGO19KE goes through a repeating
cycle of reducing the relative block number
by a given number of blocks and recording
the corresponding number of tracks as fol-
lows.

The relative block number reduction
process involves successively subtracting
the number of blocks in each extent of the
data set until an extent that contains more
blocks than needed to reach the blkref
field value 1is reached. For each full
extent that can be subtracted, the number
of tracks in the extent is added to a
‘cumulative total of tracks representing
previously subtracted extents. The first

full extent that cannot be subtracted as
indicated is referred to as a terminal
extent.

When the terminal extent is reached,
there will remain a number of blocks equal
to the difference between the blkref value
and the number of blocks already subtract-
ed. This remaining number is divided by
the "blocks per track" field of the DEB.
The quotient in this division is the number
of full tracks to be added to the cumula-
tive total of tracks. The remainder in
this division represents the number of
blocks from the next track (called the
terminal track) that are required to reach
the value indicated by the blkref parame-
ter.

The relative track address, in the form
of a TTR address (where TT is the relative
track number and R is the block number of
track TT), is composed of (1) the sum of
the tracks required from all extents (if
any) up to the terminal extent plus the
number (the quotient in the above division)
of full +tracks required from the terminal
extent and (2) the number of remaining

18

blocks (if
(terminal)
track.

any) required from the
track following the last full

Control is then given to the BPAM

convert-to-actual routine that is resident
in main storage. This is the routine
required for the relative track address

conversion process, and
same information that was

it requires the
needed for the

relative track conversion process. (Refer
to "Relative Track Conversion.")
The BPAM conversion routine places the

in the IOBSEEK field of
the IOB and returns control to the BDAM
relative block conversion module, which
then gives control back to the foundation
module.

converted address

In a manner similar to that described in
the section "Relative Track Conversion," an
extended search 1limit, if necessary, is
computed for relative-block-addressing con-
ditions. The actual address of this upper
limit also is placed in the IOBUPLIM field.

Following is an example of calculating a
relative track address for the case of a
data set without track overflow when a
relative block number is given in the
blkref parameter of a READ macro instruc-
tions .

Example 2: Assume the data set is con-
tained in four extents identified as I, II,
IITI, and 1IV. Let extent I contain 10
tracks with 80 data blocks; extent II
contain 14 tracks with 112 data blocks;
extent III contain 8 tracks with 64 data
blocks; and extent IV contain 12 tracks

with 96 data blocks. (This assumes that
the data set is on a device permitting 8
data blocks to be placed on one track.)

The information needed from the DEB for

this data set can be summarized in Table 2
below:

Table 2. DEB Information for Example With-

out Track Overflow

r . T T T T h]
| DEB Field |Extent|Extent|Extent|Extent|
| | I | II | III | IV |
b 1 fom—mt t {
| Blocks per | 8 | 8 | 8 | 8 |
| Track | | | | |
p-=- + fromemr mmmv o
| Tracks per | 10 | 14 | 8 | 12 |
| Extent | | | | |
t ¥ =mmmes =mmm- fommom 1
I Blocks per IB1=80 |Ba=112IB3=64 IB“=96 l
| Extent | | | | |
t 41 L 4 L 4

If the blkref field contains a relative
block number of 284, the calculations to
find the relative track address are indi-
cated below:

blkref value - By = R; (remainder)

284 - 80 = 204 The 80 blocks from Extent
I are on 10 tracks

Ry = B2 = Rz

204 - 112 = 92 The 112 blocks from Extent
II are on 14 tracks

R - Ba = Rj

92 -~ 64 = 28 The 64 blocks from

III are on 8 tracks

extent

Ry - B, = R

28 - 96 < 0

Since R, is less than zero, the full extent
(IV) cannot be subtracted. Extent IV is
called the terminal extent. The previous
remaining value (R; = 28) is divided by the
blocks per track wvalue (8) to give a
quotient of 3 and a remainder of 4. The 3
represents the number of tracks of the
terminal extent that must be added to the
sum of the underlined numbers of tracks
from extents I, II, and III. The U4 rep-
resents the number of data blocks that must
be counted from the beginning of the termi-
nal track. Thus, the relative track
address (TTR) of the block in this example
is equivalent to 35 tracks (the TT value)
and U4 blocks (the R value) from the begin-
ning of the data set.

Track Overflow Specified (Module IGG019KF)

To determine the relative track address
from a relative block number given in the
blkref field of a READ macro instruction,
module IGGO019KF uses the overflow section
of the DEB as well as the single field in

each required relative extent area of the
DEB. The track overflow option implies
that overflow blocks may be present in an
extent. For purposes of block addressing,

the track on which an overflow block begins
is considered to contain the block. The
DEB information used for calculating the
relative track address of an overflow block
is contained in the following fields of the
DEB:

e Tracks per extent
e Tracks per period
¢ Blocks per period
e Blocks per extent

The process of converting a relative
block number to a relative block address
(in the TTR format) involves successively
subtracting the number of blocks in each
data set extent until an extent that con-
tains more blocks than needed to reach the
blkref field value is reached. For each
full extent that can be subtracted, the
corresponding number of full tracks is
added to a cumulative total of tracks
representing previously subtracted extents.
The first full extent that cannot be sub-
tracted as indicated is called the terminal
extent.

Upon reaching the terminal extent, the
periods in that extent are considered as
follows. The 'blocks per period' value is
subtracted successively until reaching a
period, the block count of which cannot be
subtracted as indicated. This period is
the terminal period. For each period for
which the full number of blocks can be
subtracted, the number of tracks 1is added
to the cumulative total of tracks.

The individual tracks in the terminal
period are then added in successively until
a track containing a number of blocks that
is equal to or greater than the remaining
number of blocks needed to equal the blkref
value is reached. This track is the termi-
nal track. The total of all the tracks
(taken in considering full extents, full

periods, and partial periods) and blocks
(taken 1in considering the blocks on the
terminal +track in the terminal period)

determines the relative track address cor-
responding to the relative block number
given in the blkref field.

After the relative track address has
been determined for a block where the track
overflow specification exists, control is
given to the BPAM convert-to-actual routine
and processing proceeds as described for
the no-overflow case.

Following is an example of calculating a
relative track address for the case of a
data set having overflow blocks when the
relative block number is given in the
blkref field.

data set is con-
identified as I,

Example 3: Assume the
tained in three extents

IT, and III. Let extent I contain 20
tracks with 114 data blocks; extent II
contain 10 tracks with 57 data blocks; and
extent III contain 27 tracks with 153 data
blocks. Further, assume that phase 3 of
the BDAM open program has established that
each period contains 3 tracks with a total
of 17 blocks and that the blocks are placed
on the tracks so that the first two tracks
each contain 6 blocks and the third track
contains 5 blocks.

Program Component Description 19

The information needed from the DEB for

this data set is summarized in Table 3
below:

Table 3. DEB Information for Example With

Track Overflow

r] T -T T it |
| DEB Field | Extent| Extent| Extent]
| ' S II | III |
t Y 1 1
| Tracks per Extent| 20 | 10 | 27 |
L Jee 4 o - .l
[) . T T T

|Tracks per Period| 3 | 3 | 3 |
t ————ot -4 fmmmmm 1
|Blocks per Period| 17 | 17 | 17 |
| R —— —_—t —— KR 1 R
r T T 1
{Blocks per Extent| By;=114#| B,=57 | B3=153|
L -1 _—r j I 4

If the blkref field of a READ macro
instruction contains a relative block num-
ber of 217, the calculations to find the
relative track address are indicated below:
blkref value - By = Ry (remainder)

217 - 114 = 103 The 114 blocks (from
Extent I) are on 20 tracks
R1 - Bz = Rz

The 57 blocks (from Extent
II) are on 10 tracks

103 - 57 = U4é

Rz - B3 = R3
46 - 153 <0

Since Rz is less than zero, the full extent
(III) cannot be subtracted. Extent III
becomes the terminal extent. Now the per-
iods in the terminal extent are considered.

Let the periods of Extent III be desig-
nated as IIIa, IIIb, IIIc, etc. The calcu-
lations proceed as follows:

R, - IIla = R,

46 - 17 = 29
IIIa) are on 3 tracks

Ry - IIIb = R,

29 - 17 = 12 The 17 blocks (from period

IIIb) are on 3 tracks
R,- IIIc = R4
12 - 17 < 0
Since R, is less than zero, the full period
(IIIc) “cannot be subtracted. Period IIIc

becomes the terminal period. Now, the
blocks on the tracks in the terminal period

20

The 17 blocks (from period .

are subtracted to arrive at the final
required number of equivalent tracks and/or
blocks to equal the relative block number.
In this example, the 12 remaining blocks
(the R, value) are equivalent to one track
(of 6 Dblocks) plus six blocks (on the
terminal track).

The total number of tracks plus addi-
tional blocks thus is equal to the sum of
the underlined numbers of tracks in the two
full extents (I and II) and the two full

periods (IIIa and IIIb) in extent III plus
the one track and 6 blocks from period
IIIc. This value 1is 37 tracks and 6

blocks, giving a TTR value that can be used
by the BPAM routine to obtain an actual
address for the block.

FEEDBACK FOR RELATIVE BLOCK ADDRESSING
(MODULES IGGO019KG AND IGGO019KH)

The feedback modules, IGGO019KG and
IGGO019KH, are used when feedback and rela-
tive block addressing have been specified.
(See Figure 4.) Entry to the proper module
is from the ASI routine at the completion
of a channel program. The actual address
of the block was obtained when the channel
program made access to the block.

The actual device address of the block
is given to the BPAM convert-to-relative
routine by the feedback module. The rela-
tive track address determined by the BPAM
routine is given to the appropriate BDAM
feedback module. Using information that is
contained in the actual extents, the rela-
tive extents, and, if track overflow has
been specified, the overflow section of the
DEB, the feedback module constructs the
relative block address for the block and
places the result in the blkref area speci-
fied in the DECB. The method wused in
obtaining the relative block number is
basically a reversal of the technique used
to convert to an actual address. The
feedback module then gives program control
to the ASI routine.

CHANNEL PROGRAMS FOR BDAM

To perform the input and output opera-
tions required by BDAM processing, several
channel programs are available. For each
request to read or write -a block, the
appropriate channel program is constructed
dynamically when the Dbase routine of the
foundation module gives control to a BDAM
channel program generating module. (See
Figure 3.) Appendix C contains the actual
channel programs that are generated.

The foundation module uses parameters
specified in the DCB and in the individual
request macro instruction to determine

which channel program is to be constructed.
The type field of the IOB is tested for
this purpose. The channel command words,
of which the channel programs are con-
structed, contain the following types of
operation codes: write information, read
information, search for equal argument,
transfer 1in channel, and track seek. The
channel programs permit BDAM to read or
write blocks based on either a key or a
block identification search argument.

As a channel program is constructed, it
becomes a logical part of the IOB associat-
ed with the request. (The structure of an
IOB as it relates to BDAM is given in
Appendix A.) There are three categories of
channel programs: update programs, format
programs, and the verification program.

UPDATE PROGRAMS (MODULES IGGO19KI,
IGG019KK, AND IGGO019KW)

The update programs are those that read

or write information for purposes other

nel program generating module by the foun-
dation module.

Basically, there are three BDAM channel
programs available for reading or for
updating an existing block. Each channel

program can take one of two forms depending
on whether it is generated in response to a
read request or 1in response to a write
(update) request. These forms are shown in
Table 4. The search arguments indicated in
this table correspond to the fields of a
block as it appears on a direct-access
storage device. (See Figure 5.) If the
extended search option has been specified,

module IGGO019KW modifies the channel pro-
gram that has been generated by module
IGGO19KI, to search additional tracks or

blocks beyond that which is specified in a
READ or a WRITE macro instruction.

For channel programs to satisfy a write
request for which the write-validity-check
option has been specified, control is given
to the write-verify module, IGGO019KQ, at
the completion of the channel-program gen-
erating function of the appropriate update
program module. After generating the veri-
fication channel program, the write-verify

than adding a new block to an existing data module returns control to the foundation
set. Control is given to the proper chan- module.
Table 4. Channel Programs for Reading or Writing an Updated Block
-------- - T T T - 1
| Channel Progra | | Extended Search | Generating
| Form | Search Argument | Option Specified | Module(s) |
—-- et S - 4 . |
| Read Data or | Key Field | No | IGGO19KI |
| Write Data | | i |
prmm o - -———- + ——mmmet -
| Read Data or | Key Field | Yes | IGGO019KI and |
| Write Data | | | IGGO19KW |
L 4+ - _—t —_—
T T + + .|
| Read Data or | Block ID of | Not a Factor | IGGO019KK |
| Write Data | Count Field | | |
b — — 4L - I K L —_ J
r——- e 1
| |
| m=—===="" - Tr Tr -1 |
	Il I		
	COUNT FIELD il KEY] DATA	
b T T -—11 I			
]	Block ID	Key	Data Il Il
	(CCHHR)	Field	Field
		Length	Length
[, i 1 - S JLo__ 1			
< 5 bytes > <1 byte> <2 bytes>			
CCHHR gives the physical position of the block on the device.			
The Key Field Length specification may be from 0 to 255 bytes.			
The Data Field Length specification may be from 0 to 32760 bytes.			
L .)
Figure 5. Structure of a Block on a Direct-Access Storage Device

Program Component Description 21

Each channel-program generating module
returns control to the foundation module's
base component after the last channel com-
mand word has been generated and placed in
the IOB for the request. Chart 03 summari-
zes the flow of control among BDAM modules
for updating (or reading) information.

FORMAT PROGRAMS

There are three BDAM format channel
programns. These programs are used for
writing a new block from main storage onto

a direct-access device. For adding fixed-
length blocks to an existing data set, two
of the three channel programs are
available. The choice of which one will be
used depends on whether the extended search
option has or has not been specified.
Since the block length is known or prede-
termined, these channel programs are called
pre-format programs.

If the processing program specifies
adding either variable-length blocks or
blocks of an undefined length to an exist-
ing data set, the remaining format channel
program 1is required. When the extended
search option is specified, this channel

program is repeated as many times as neces-
sary until either track space for the
record is found or the search limit is
reached. Since BDAM itself must establish
the space requirements for writing these
blocks, these channel programs are called
self-format programs.

The format channel programs are some-
times referred to as 'write-add' programs
to distinguish them from the write programs
described as update programs.

As with the update channel programs, the
format channel programs incorporate channel
command words for searching either on the

key field or on the count field of a block,
and they may or may not require the verifi-
cation channel program (generated by module
IGGO019KQ) . The pre-format and self-format
programs are respectively generated by
either the pre-format modules or the self-
format modules, depending on the block
format of the data set.

Table 5 shows the factors that determine
which format modules are required to
generate the format channel programs. Note
that when the extended search option is
specified for fixed-length blocks, two
modules are required. The second module
listed is given control by, and returns
control to, the first module. The function
of the second module is to modify the
channel program generated by the first
module. The foundation module gives con-
trol to either IGGO019KO or IGGO19KM
(depending on the block format), and when
the channel programs have been generated,
the format module returns control to the
foundation module.

Pre-Format Channel Programs
(Modules IGG019KO and IGGO019LA)

The pre-format channel programs are used
when a new fixed-length block is to be
added to an existing data set. In order to
add fixed-length blocks, the user must have
initially placed his data blocks on the
direct-access device by means of the basic
sequential access method (BSAM) write rou-

tine for creating a direct organization
data set. As blocks were placed on the
direct-access device, dummy records may

have been provided to allow the BDAM chan-
nel program to search for an area in which
to place a new block. A dummy record is
one in which the first byte of the key
field is a hexadecimal FF, and the first
byte of data has a value indicating the
position of the dummy record on the track.

Table 5. Requirements for Channel Programs to Add New Blocks to an Existing Data Set
r-———-- T - T T -
| | Channel Program | Extended Search | Generating

| Block Length | Format | Option Specified | Module(s) |
- B s -+ :
| | | No I IGG019KO |
| Fixed | Pre-format p—————- + - -
i | | Yes | IGG019KO, |
| | | | IGGO19LA |
t e B - -4 -4
| Variable or | Self-format | No | IGGO19KM |
| Undefined | b - + - q
| I | Yes | IGGO19KM |
L L —— L L J

N
8]

Without Extended Search Option:

If the
extended search option has not been speci-
fied, the pre-format channel program is
generated by module IGGO19KO. This module

is entered from, and returns control to,
the foundation module's base component.
The module constructs the necessary channel
command words and, by incrementing a base
address in the IOB, positions the fields of
the channel command words as they are
developed.

The channel program first searches an
indicated track for a dummy record. This
search starts at the first block encoun-
tered on the proper track. If a dummy
record is not found on the indicated track,
the search is not satisfied. An indication
of ‘'no-space-found' is then given to the
processing program. This indication
appears in the DECB. The search is suc-
cessful if a dummy record is encountered.

After the key field of a dummy record
has been found, the first byte of the data
field is read into the IOB to provide the
position of the dummy record on the track.
The same dummy record is next located by a
search on the ID portion of the count
field. The new block key and data fields
can then be written to replace those of the
dummy record.

With Extended Search Option: If the
extended search option has been specified,

the pre-format channel program is generated
by modules IGG019KO and IGGO19LA. The
function of module IGGO19LA is to modify
the channel program generated by module
IGG019KO so that the search for a dummy
record will extend across multiple tracks
(up to the limit specified in the IOBUPLIM
field of the IOB). If the extended search
comes to an end and a dummy record is not
found, the procedure is the same as de-
scribed for the case without the extended
search option.

If a dummy record is found, the search
is successful and the dummy record's posi-
tion is read into the IOB as before. The
channel program then continues as in the
case without the extended search option.

If the block that is being written by
the request must be verified (because of an
option specified in the DCB macro-
instruction), the appropriate pre-format
channel program is enlarged to include
additional channel command words. Module
IGG019KQ is given control to perform this
function. (Refer to "Verification
Program.")

Self-Format Channel Programs

(Modules IGG019KM and IGG019KY)

The self-format channel programs. are
used when new blocks of either undefined
length (format U) or variable 1length
(format V) are to be added to an existing
data set. As 'with fixed-length records,
the basic sequential access method's write
routine for creating a direct-organization
data set must have been used to initially
place the data blocks on the direct access
device. When the data set is initially put
on the direct access device, a capacity
record (block 0) 1is also placed on each
track. The capacity record contains both
the ID of the last block on the track and
the number of usable bytes remaining on the
track. These are the available bytes that
may be used for new Dblocks. Figure 6
illustrates the data portion of the capaci-
ty record.

= T

| ID of |Usable bytes Unused
| last block |remaining on
| | track

L I

<---5 bytes--> <--2 bytes--> <---1 byte--->

o s s =
I

Figure 6. Data Field of a Capacity Record

for a BDAM Data Set

The foundation module gives control to
BDAM module IGG019KM to generate the chan-
nel program for both format U and format V
records. The channel program consists of
(1) one section that reads the capacity
record from the indicated track into main
storage and (2) another section that writes
the new block and updates +the capacity
record to reflect inclusion of the new
block on the track. Generation of the
self-format channel program involves moving
constants representing elements of channel
command words into assigned positions of
the request's IOB to form the required
channel command words. If record verifica-
tion 1is required, the self-format channel
program is enlarged by module IGGO019KQ to
include the verification program channel
command words.

The last channel command word of the
section of the channel program that reads
the capacity record does not include a
command chaining flag. This permits the
I/0 supervisor to give control to the
channel end appendage module after the
capacity record has been read. The appen-
dage module then branches to a supervisor
routine to schedule the ASI routine.

Program Component Description 23

24

In the performance of two or more tasks,
concurrent requests to add a block to the
same track on a direct-access device may be
made. All but one of these requests
(called ‘write-add' requests) must be
placed on an inter-task queue to prevent
undesired interference. This interference
would result from other requests obtaining
the same track capacity record for interro-

gating and updating before a first request
was finished with it. Concurrent requests
for the same track may also occur in the

performance of a single task.

(numbers in ()
Figure 6A3)

When the ASI routine (1)
refer to points indicated on
gets control after the track capacity
record has been read for a write-add
request, 1it, in turn, gives control to the
exclusive control module IGGO19LG (2).
Module IGGO19LG either places the record on
an inter-task queue by using the ENQ macro

instruction (3) or places the IOB for the
record on the unposted queue (4). (The
functions of the exclusive control module

are described more fully in the section
"Exclusive Control.") In either case, con-
trol is then given to the supervisor.

After the channel program reads the
capacity record in connection with a given
write-add request, the supervisor again
gives control to the ASI routine (5). The
ASI routine then gives control to module
IGG019KM so that the information in the
capacity record can be tested (6) to deter-
mine if the block to be written will fit on
the indicated track.

If the track can contain the new
calculations are made to update the
ty record. The channel program
modified to reflect +the correct

block,
capaci-
is then
search

argument, and an EXCP macro instruction is
issued to write the new block and the
updated capacity record. Module IGG019KM

then gives control to the exclusive control
module (7). If the new block will not fit
on the track, control is given to the
exclusive control module immediately.

If the unposted queue does not contain
an IOB waiting for the capacity record that
was just updated, the capacity record is no
longer needed for the performance of the
current task. Module IGG019LG issues a DEQ
macro instruction to release the record to
other tasks that may require it, and con-
trol is given to module IGGO19KM (8). If
an IOB for this capacity record is on the
unposted queue, both the address of the IOB
and program control are given to module
IGGO19KM.

The self-format module determines wheth-
er the block was placed on the track (i.e.,
if the track had room for the block). If
it was, and if the unposted queue contained

another IOB for the capacity record
(%, the value in the I0B fiel!
(IOBDBYTR...see Appendix A) that contain

the number of remaining bytes on the track
is moved from the IOB of the current
request to the IOB of the next request for
this same capacity record. 1In this situa-
tion, the capacity record is still retained

same

as a result of the ENQ macro instruction
issued for the current task. Therefore,
the self-format module can immediately

begin processing this next request at the
point of determining whether the block will

fit on the track (6). If the block was
placed on the track and if the unposted
queue did not contain any more IOBs for

this capacity record, module IGGO19XM gives
control to the supervisor (10).

If the block was not placed on the track
because of space limitations, and if the
extended search option has not been speci-
fied, an indication that no space is avai-
lable 1is placed in the IOB (11). The ASI
routine then gets control to post the
request as complete and to place a no-
space-found indication in the DECB (12).

The self-format module then determines if
the unposted queue contained another IOB
for the same capacity record (13) and

either returns control to the supervisor or
moves the value in the IOBDBYTR field and
continues as described in the precediqg.
paragraph.

If the block has been kept from the
track because of space limitations but the

extended search option has been specified,
control is given to the self-format
extended search module IGGO019KY. This

module updates the current track address by
one and proceeds according to the condi-
tions given in the following paragraphs:

A. If the updated track address is equal
to the search limit indicated in the
JOBUPLIM field of +the IOB, the no-
space-found indication is set for this
request (14). Control then returns to
the self-format module and processing
continues as if the extended search
option had not been specified.

B. If the updated track address is beyond
the current extent, control is given
to the BDAM end-of-extent module,
IGG019LC. This module determines if
nore extents are available for
searching. There are two possibili-
ties for consideration.

1. 1If there are more available
extents and if the upper limit of
the search has not been reached,
the address of the first track o
the next extent 1is given to trg
self-format module. Since acces

to this new track may be required

in the performance of other tasks,
it is necessary to give control to
the exclusive control module at
this point (2). The exclusive
list is checked for the occurrence
of the new track address and pro-
cessing continues as previously
described (in the beginning of
this section) for the first capac-
ity record.

2. If either the search 1limit has
been reached or there are no more
available extents, the procedure
is as described for condition (Ad).

C. If the updated track address is within
the current extent and the search
limit has not been reached, the pro-
cessing of condition (B1l) 1is contin-
ued, commencing with giving control to
the exclusive control module.

Where applicable, the procedures described
in the preceding paragraphs are repeated as
many times as necessary until either track
space on which to write the block is found
or the search limit is reached.

If the unposted queue contained another
IOB for the same capacity record (point 9
on Figure 6A), processing of that IOB then
continues from point D in Figure 6A.

VERIFICATION PROGRAM (MODULE IGGO019KQ)

If the processing program specifies the
write-validity-check option in the DCB for
the data set, the write-verify module,
IGGO19KQ, is used to generate additional
channel command words to verify information
that has been written by a write-type
channel program. These channel command
words are added to the existing channel
program.

If required, the BDAM open executor
program brings the write-verify module into
main storage at the time the data set is
opened. This module is entered from the
module that generates the particular type
of writing channel program required by the
request macro instruction. As data blocks
are written, the control unit develops a
check code for each field of the block.
This code is based on the information that
is written in the field. As each field is
written, the check code developed for it is
appended to it. Verification is accom-
plished by reading back the block to be

checked to permit the control unit to
recompute the check codes. The control
unit then compares the check code written

on the track with that developed by the
read-back. If the two codes are not equal,
a data check indication is set. The skip
flag-command-code is set to 1 (on) in the
last channel command word of the verifica-
tion program so that the data that is read
back is not placed into main storage.

The write-verify module returns control

to the base component of the foundation
module.
APPENDAGES

The basic direct access method contains
appendage modules to which program control
is given at various stages during the
execution of a read or a write request.
The combined functions of the several
appendage modules are to make tests, to set
switches, to schedule the BDAM ASI routine,
and to obtain new extents for extended
search operation.

When the DCB is opened, phase 2 of the
BDAM open executor routine issues the LOAD
macro instruction to 1load the appendage
modules into main storage and places the
addresses of the modules into an appendage
list, which phase 1 has built in an area of
protected main storage. (See Figure 1.)
This list, which is also referred to as the
I0OS Appendage Address Table, is located in
subpool 254 of the supervisor queue area.

The BDAM program uses three appendage
modules: the start I/0 appendage module,
the channel end appendage module, and the
end-of-extent appendage module. (See Chart
01.)

The start I/0 appendage module and the
channel end appendage module are entered
from the I/O supervisor and return control
to the I/0 supervisor. The end-of-extent
appendage module may be entered from either

the BDAM self-format module or the I/0
supervisor. On returning from the end-of-
extent appendage module, control may be

given to either the BDAM self-format module
or the I/O supervisor.

START I/0 APPENDAGE (MODULE IGGO019KS)

The BDAM
IGGO19KS,

start I/0 appendage module,
is placed in main storage if the
dynamic buffering option has been
specified. This module is entered from the
I/0 supervisor before a channel program is
initiated. (See Figure 7.)

Program Component Description 25

Write~Add Foundation
{on Track X) Module
Request Base Routine

Issue
Build
F—— — — % Channel [———~—— > ;g(ng for
Program Track X
I
e e __ J

Processing
Program

Interrupt. @ .
Chan Prog ;l\)u:dluhon
Complete N ;I ule
fR?)r Routine
O
@ Exclusive
Control
Module
(1GGOI9LG)
1

RO

(O—

on
Exclusive
List

@ Put RO on

Exclusive List

Put 10B Enqueue RO -
for RO on on Inter-Task I
Unposted Queve :
(supervisor) Queye !
A 4
Issue EXCP
nterrupt.Chon / N[——™—™—— b ___ Yoo o to Read
Prog Complete Foundation RO for
for Re-Read Module ASI Track
of Routine
RO l
Self-Format | T TTTTTTTTTTTTTTT
Module
0GGOIKM) |l _ . __ -
! l
O et [T '
Exclusive 1
—— Inter-Module Control : Issue FXCP
Flow Module le— e ———— - L ;o Write
! No lock and
— — — — & Intra-Module | 10B on Unposted —===q Updated RO
Flow | Queue Waiting ! on Track X
|
@ = Dequeue
g | 1Yes RO from
N\ ::Jgj:mm b —— - Inter-Task
A Y S q and Intra~-
i Task Queues

Foundation ‘ Supervisor ’
Module
AS| Routine

Post the

Request and Move

lSe‘;FDEGB 1OBDBYTR

ndication @n— from Ist RO's
10B to New

RO's IOB

sFigure 6A.

26

Did
Block Fit
on Track

Another
Track
Avdilable (If Yes,
Get
1t)

Extended

Yes
Search -

Was
Another |OB
Waiting on
Unposted
Queve

Set No-
Space-Found
Indicator

Module Relationships for Write-Add Requests in Multi-Task Environment

Processing Related System/360 BDAM Routines and Functions
Program Routines

—~ 1o

—— Interrupt

IGGO19KS IGGOI9LE
Get Buffer if Dynamic
Buffering Specified

1/O Request
at Topof f-—-- ~ BDAM Start
Request Queue 1/O Appendage

r"—"'—> Dynamic
Buffering

Buffer not | i See Text

108 Available |
o]
emove IS

Request from 10S -4--__

Scheduled Queue

e mmm e

Begin Channel .
le — ——
Program Execution B

——————— » Main Flow of Control
———— Functions Performed
— —— — Linkage to Routine to Perform Functions

108 Input/Output Supervisor

® Figure 7. Relationship Among Processing Program, I/O Supervisor, and BDAM for Executing
a Request

Buffer Needed Entry to First Section: The first section
is entered under one of the following
conditions:

When a request with the dynamic buffer
specification 1is ready to be executed, I/0
supervisor gives control to the BDAM start e A channel program terminates normally.
I/0 appendage module. This module deter-
mines if a buffer has already been assigned

to this request or if it 1is necessary to ¢ A channel program encounters a unit
obtain a buffer from a buffer queue. 1If a exception condition, which 1is inter-
buffer must be obtained, module IGGO019KS preted by the BDAM program as an end-
gives control to the dynamic buffer module, of-data-set condition.

IGGO19LE. If the buffer request does not
have to be placed on a queue by the dynamic

buffer module, the start I/0 appendage ¢ The execution of a channel program
module will receive control after a buffer results in a block length different
has been allocated. The request is then from that specified in the READ or
ready for execution, and control passes to WRITE macro instruction.

the I/0 supervisor for channel program

execution.

I1f the channel program terminated
normally, the channel end appendage module
schedules the BDAM asynchronous interrupt

CHANNEL END APPENDAGE (MODULE IGGO19KU) routine and then gives control to the 1I/0
supervisor.

When a channel program is terminated,
either normally or abnormally, the I/0 Note: To schedule the ASI routine, the
supervisor gives control to the channel end channel end appendage module branches to
appendage module, IGGO019KU. (See Figure the exit effector routine of the task
4.) This module is always placed in main supervisor. (Refer to the publication IBM
storage by the BDAM open executor phase 2 System/360 Operating System: MVT Supervi-

module. There are two general sections to sor, Program Logic Manual.) The exit
the channel end appendage module. The effector routine then schedules the ASI
sections are entered under the conditions routine and returns control to the channel
described in the following paragraphs: end appendage module.

Program Component Description 27

end-of-data-set condition, the
appendage module sets indica-

For an
channel end

tors in the IOB, schedules the BDAM asyn-
chronous interrupt routine, and returns
control to the I/0 supervisor. (Refer to

preceding note.)

If the
entered

channel end appendage module is
because of an incorrect-length
indication (given in the IOB when the
number of bytes read or written is not
equal to the number of bytes specified in
the channel program), a test is made to
determine the type of request being pro-
cessed. Three cases are possible:

e If the request was a read request for a
variable-length block, the 1length of
the block being read is compared to the
number of bytes of data actually read
by the channel program. (The length of
the block is specified by the first two
bytes of the data field of the block
read into the designated area. The
number of bytes actually read is deter-
mined from a calculation involving the
bytes-remaining field of the channel
status word.) If the length values are
equal, the incorrect-length indication
is set to 0 (off), and the ASI routine
is scheduled by the exit effector rou-
tine. Control is then returned to the
I/0 supervisor.

e If the request was a read request for
format-U records, the incorrect-length
indication 1is set to 0 (off), and the
ASI routine is scheduled by the exit
effector routine. Control is then
returned to the I/O supervisor.

e If the request was a write request or a
read request for format-F records, or
if the block lengths in the first case
are unequal, the ASI routine is not
scheduled, the incorrect-length indica-
tion is left set at 1 (on), and the
channel end appendage module gives con-
trol to the I/0 supervisor.

Entry to the Second Section: The second
section of the channel end appendage module
is entered when either a device-type error
or a permanent error has been encountered.
If a device error occurs, the I/0O supervi-
sor receives control and uses a standard
IBM error-recovery procedure. If the error
condition remains after this procedure, the
error is classed as a permanent error.

For permanent errors, the channel end
appendage module sets an indicator in the
IOB, schedules the BDAM asynchronous inter-
rupt routine, and returns program control
to the I1/0 supervisor.

28

END OF EXTENT APPENDAGE (MODULE IGGO019LC)

The BDAM end-of-extent appendage module
is required if the extended search option
has been specified in the DCB macro
instructions . At the time the data set is
opened, phase 2 of the BDAM open executor
program determines the need for this end-
of-extent module and loads it if necessary.
There are two extended-search-type
situations that require this module. In
one situation, the module functions as an
I/0 supervisor appendage. In the other
situation, the module appears as a BDAM
routine without supervisory functions.

Supervisory Mode

JOBUPLIM field of the IOB. The

The I/0 supervisor gives control to the
BDAM end-of-extent module when a channel
program comes to the end of a data set
extent while searching for a block to be
read or written or while searching for a
dummy record in which to write a new
pre-format type block. Under either of
these situations, module IGG019LC estab-
lishes the address of the next extent to be
searched. Note that if a search has begun
at some point other than the beginning of
the first extent in the DEB, the address of
the next extent may, at some point in the
search, become that of the first extent.

If the search limit (as determined from
the LIMCT parameter in the DCB macro
instruction) is not in this next (or new)
extent, the end-of-extent module either
returns control to the I/0 supervisor to
restart the channel program using the new
extent or, if the new extent refers to
another device, indicates the need for the
BDAM asynchronous interrupt routine to re-
schedule the channel program using a search
address in the new extent.

is found in the
limit 1is
defined as the first track beyond the last
actual track that may be searched for the
given data set.

Note: The search 1limit

search 1limit is in this new
address 1is not

If the
extent but the new search
equal to the search 1limit, the channel
program will be rescheduled by either the
I/0 supervisor or the ASI routine as
before.

If the search 1limit is in this extent
but the new search address equals the
search 1limit, the search has ended unsuc-
cessfully. An indication is then set to

show that either no space was found or no
block was found, and control is given to
I/0 supervisor, which, in turn, will go to

the abnormal end component of the BDAM
channel end appendage.
Non-Supervisory Mode

The BDAM self-format extended search
module may at some time, in the process of
establishing search addresses, recognize

that the end of a given data extent has
been reached. If this happens, the extend-
ed search module gives control to the
end-of-extent module.

As when in the supervisory mode, module
IGG019LC determines the availability of
other extents to be searched, establishes a
new search address, and determines whether
or not the search limit has been reached.

If the search limit has not been reached,
the end-of-extent module wuses the new
search address related to a new extent and

reschedules the channel program (to read in
the capacity record of the next track) and
then gives control back to the self-format
module.

If the search limit has been reached, an
indication that no space has been found is
placed in the request's IOB. When the
request is posted, this indication is
placed in the DECSDECB field of the DECB.

EXCLUSIVE CONTROL (MODULE IGG019LG)

If a programmer has specified that the
exclusive control feature be applied to
blocks that are read and that may or may
not be subsequently written, the ASI rou-
tine gives control to module IGGO019LG to
handle both the block queuing and the block
dequeuing that 1is required with this fea-
ture.

In addition, module IGGO019LG is used to
place records on a queue when the process-
ing program encounters a request to add a
new block of either variable-length records
or records of undefined length. (Refer to
Chart 04.)

With exclusive control in effect, a
given block may not be updated (or other-
wise acted upon) by processing associated
with other requests until exclusive control
for that block has been removed. If the
MACRF operand of a DCB macro instruction
for BDAM contains the exclusive control
specification, the following BDAM macro-
instructions require the exclusive control
module:

e READ (with an exclusive control
specification).
e WRITE (with an exclusive control

specification).
¢ RELEX.

Until the exclusive control module is
first given control, the read-exclusive
list (see Appendix A) consists of an
80-byte segment of main storage obtained by
phase 1 of the BDAM open executor program.
This segment contains space for nine
entries, each entry consisting of the UCB
pointer and the device address of a block
for which exclusive control is required.
When more than nine entries are needed on
the read-exclusive 1list, additional main
storage is obtained in increments of
80-byte segments, each of which can contain
nine entries. The address of the first
segment is contained in the DCBXARG field
of the DCB, and each succeeding segment is

chained to the one preceding it. The
read-exclusive list is an intra-task 1list
of device addresses of blocks (i.e.,

capacity records and data blocks) that are
requested for the performance of the cur-
rent task.

There are two situations in which a
block is to be read under exclusive con-
trol.

e A self-format ‘'write-add' request is

encountered. (See the section

"Self-Format Channel Programs.")

e A READ macro instruction that requests
exclusive control is encountered.

When either of these situations occurs,
module IGG019LG determines if the device
address of the appropriate block is on the
read-exclusive list. The appropriate block
is the track capacity record in the case of
a 'write-add' request; in the case of a
read-exclusive request, it is the block to
be read. 1If the block address 1is on the
list, the IOB for the request is placed on
a queue called the unposted queue. This is
an intra-task queue of IOBs representing
requests for blocks whose addresses are
currently on the read-exclusive 1list and
are associated with the current task. The
data control block contains the addresses
of the first and the last IOBs on this
queue, and each intermediate entry is
chained to the one preceding it. Control
is then given to the routine from which
module IGGO19LG was entered.

If the block address is not on the
read-exclusive list, it signifies that this
is the first request for the record for the
current task. The IOB contains the block
address. The UCB pointer and the CCHHR

Program Component Description 29

bytes of the device address of the block
are put on the read-exclusive list. Since
the same block may be required in the

performance of another concurrent task, it
is necessary to provide protection against
unwanted changes to the block. Therefore,
the exclusive control module causes the
block to be placed on an inter-task queue
by issuing an ENQ macro instruction for the

block. (Before an entry can be removed
from this queue, a DEQ macro instruction
must be issued for the entry by a routine

associated with the task for which the
entry had been enqueued. Since a block on
this inter-task queue cannot be used in the
" performance of one task until it is disas-
sociated from another task, a waiting per-
iod of indeterminate 1length may result.)

Module IGGO19LG then issues an EXCP macro
instructions for the re-reading of the
block that has just been enqueued. Control

is then given to the ASI routine which, in
turn, gives control to the supervisor.

Note: For systems operating under the
primary control program, there is no need
for an inter-task queue. Therefore, when
either the enqueue routine or the dequeue
routine is given control, the routine
returns control directly to the routine
that had invoked it (i.e., the effect is
the same as a no-operation). The Supervi-
sor and Data Management publications con-
tain further information regarding the use
of the ENQ and DEQ macro instructions.

In searching the read-exclusive list for
either an address equal to the address of
the block to be read or, having found that
the block address is not on the list, a
place on the list in which to place the
block address, it may be necessary to scan
through several segments of the read-
exclusive list. A new segment is obtained
if the second part of the search does not
locate a place in which to place the block
address.

Releasing Blocks Under Exclusive Control

Blocks that have been read under
exclusive control may be released from
exclusive control either by use of a WRITE

macro instruction that specifies the exclu-
sive control feature or by use of a RELEX
macro instruction. The RELEX macro
instruction is used for blocks that have
not been updated or modified (i.e., their
data fields remain unchanged).

RELEASE BY WRITING: When a request (called
a write-exclusive request) to write a block

that has been previously read under exclu-
sive control 1is encountered, the read-
exclusive list is scanned to 1locate the

block's address. When the address is

30

found, the unposted queue is searched for
other requests (associated with the current
task) that may have been issued for the
same block.

If a write-exclusive request is given to
release a block from exclusive control and
the block had not been read under exclusive
control, the write request is invalid.
Module IGGO019LG sets an exception code in

the IOCBDSTAT field of the IOB so that the
user may identify the error. Control is
then given to the ASI routine to free the

IOB and post the request as complete.

If the wunposted queue does not contain
IOBs for other intra-task requests for the
block, module IGGO019LG clears the block's
address from the read-exclusive list. This
permits another entry to be made to the
list at that space. To free the block for
another task, the exclusive control module
then issues a DEQ macro instruction for the
block. Module IGGO19LG then returns
control to the supervisor.

If the search of the unposted queue
indicates the presence of other requests
for the block that is being written out, it
is necessary that these other requests be
provided with the most current version of
the data portion of the block. Therefore,
before the current write-exclusive request
is posted as complete, the exclusive con-
trol module moves the data portion of the
current block into the input data area of
each "duplicate" request on the queue.
Control then passes to the ASI routine so
that the first of these "“"duplicate"
requests may be posted as complete and its
IOB made available. The ASI routine then
gives control back to the exclusive control
module and processing continues as 1if the
unposted queue did not contain any read-
exclusive requests for the block.

When a RELEX macro
instruction is given to release a block
that was read under exclusive control, it
is assumed that the data portion of the
block has not been changed. Therefore,
data is not moved into input areas of other
"duplicate"” requests. The procedures
performed by the exclusive control module
are otherwise similar to those performed in
the case of a write request for blocks read
exclusively.

RELEASE BY RELEX:

The RELEX module, IGC0005C, receives
control when a RELEX macro instruction is
encountered. After initialization, deter-
mination of the type of addressing that has
been specified, and conversion of a block
address to an actual address if it 1is not
already in that form, module IGC0005C gives
control to the exclusive control module.
If the block specified for release from
exclusive control is not found by searching

the addresses on the read-exclusive 1list,
an error condition is indicated; the pro-
grammer has requested the release of a
block that was not under exclusive control.
The exclusive control module sets an error
code 1in register 15 and gives control to

Table 6.

the RELEX module. The RELEX module gives
control back to the processing program.

Table 6 summarizes the exclusive control
module's main functions as they have been
described in the preceding paragraphs.

Functions of the Exclusive Control Module for Specified Conditions

v T -
| |Block Address

|Macro instruction |Already on

v v
|other IOBs for|
|Same Block on |
|That Requests Action|Read-Exclusive List|Unposted Queue|
L 1 14

Action Taken

__.._+_.

.
I
|
|
4
1
I
I
4
1
|

T T

{1. READ] Yes | -- | Place request's IOB on unposted
| (Exclusive) | | |gueue. Go to supervisor.
P $-- 1
|2. READ | No | - |Add Dblock's address to read-
| (Exclusive) | | |exclusive list. Enqueue block]
| [| |]on inter-task queue. Schedule|
| | | |the block for reading. Go to]
| | | | supervisor i
e ¢ et 1 {
|3. WRITE | No | - | Exxror exit to ASI. |
] (Exclusive) | | | |
b $ -{- e -
j4. WRITE | Yes | Yes |Remove read request from queue. |
(Exclusive)			Move data into all read request
			areas. Go to ASI routine to
	i	post first read request on	
			queue and free its IOB. Go tof
			ASI routine to post write
I			request and free its IOB.
b t t t i			
5. WRITE	Yes } No	Go to ASI routine to post write]	
(Exclusive)			request and free the IOB.
			Remove entry from read-
i			exclusive list and from inter-
			task queue. GO to supervisor.
t o ¢ $ - {			
6. RELEX	No	--	Return to RELEX routine with
		jerror code.	
¢ 4 e -4			
}7. RELEX	Yes	Yes	Remove read request from queue.
			Go to ASI routine to post read
			request and free the IOB.
]]	Return to RELEX routine.		
b= —t-— ¥ -1 -- -1			
8. RELEX	Yes } No	Remove block from read-	
		lexclusive 1list and from inter-	
			task queue. Return to RELEX
		j routine.	
L 1 1 1 1
DYNAMIC BUFFERING (MODULE IGGO19LE) uses either after a request has been

completed or when the FREEDBUF macro

The handling of all buffer requirements

for BDAM requests is done by module
IGGO19LE if the dynamic buffering feature
is specified. These requirements include:

obtaining and assigning buffers into which
data may be read; placing buffer requests
on a gqueue if there are mno available
buffers; and releasing buffers for other

instruction is used.

Buffer Assignment

As each request to read data is about to
be executeqd, the start I/0 appendage
module, IGG019KS, checks the IOBDTYPE field
of the IOB to see if there is a requirement
for a buffer to be assigned to the request.

Program Component Description 31

If a buffer is required, a check is made to
determine if a buffer has already been

assigned to the request. Note that
requests for dynamic buffer assignment may
occur whether or not the exclusive control

is specified for read requests. If
assigned buffer, the
channel program may be initiated. If a
buffer is needed, the start I/0 module
gives control to the dynamic buffer module.

option
a request has an

The dynamic buffer module ascertains
whether all buffers in the buffer pool (the
buffer pool was established and initialized
by the open executor program) for the data
set have been allocated to other requests
or if one is available. If a buffer is
available for the current request, it is
assigned to the request, and the entries in
the buffer pool are updated to reflect the
effective removal of the buffer. The asso-
ciated channel program 1is completed by
placing in it the buffer addresses into
which information is to be read, and then
the channel program is ready for execution.

If no buffers are available to satisfy a
buffer request, the IOB is placed on a
queue of requests waiting for buffer
assignment. The elements of this queue are
chained to each other through addresses
given in the IOB. The addresses of both
the first and the last request on the queue
are given in the buffer control block. As
buffers subsequently become available, they
are allocated to the requests on the queue.
As each request is added to the queue, it
becomes the last request of the queue.
Wwhen a buffer becomes available, it is
allocated to the request currently at the
top of the queue (i.e., the first request
on the queue), and that request is removed
from the queue.

Releasing Buffers

When a request using a dynamically-
assigned buffer has been completed (either
successfully or unsuccessfully), the buffer
that has been assigned to the request may
be made available for other requests. This

32

can happen in one of two ways: control may
be given to the dynamic buffer routine
either by the ASI routine or as the result
of a FREEDBUF macro instruction being
encountered in the processing program.

Note that a Dbuffer assigned to a read
request for a block that 1is not to be
updated will be released when the request

is completed only if the FREEDBUF macro
instruction is issued for that request's
buffer. For a block that is to be updated,
a buffer is retained until freed by a
corresponding write request that specifies
dynamic buffering.

After the ASI routine receives control
at the completion of a write request, it
gives control to the dynamic buffer module
if dynamic buffering is being used. If a
dynamic buffer routine finds an IOB on the
buffer queue waiting for a buffer, it
assigns the buffer from the just-completed
request to the top request of the queue.
The buffer quewne is updated by moving each
request up one position on the queue. The
channel program for the selected request is
then completed (as described in the section
"Buffer Assignment"), and the dynamic buf-
fer module issues an EXCP request to exe-
cute the channel program.

If there are no entries on the buffer
queue waiting for buffers, the buffer from
the completed request is placed on the list
of available buffers. The buffer control
block and its entries are then updated as
required to include the added buffer. The
dynamic buffer module then gives control
back to the ASI routine.

When a FREEDBUF macro instruction is
encountered in the processing program, the
supervisor gives control to the dynamic
buffer module. A routine in this module
then checks for other queued requests and
assigns the freed buffer or makes it avail-
able for future buffer requests as dis-
cussed for the entrance from the ASI rou-
tine. The dynamic buffer module then gives
control back to the supervisor.

CHECK MODULE (MODULE IGGO19LI)

To ensure that a given read or write
request is completed before a certain point
in the associated processing program, eith-
er a CHECK macro instruction or a WAIT
macro instruction must be coded following
the request in the processing program. The
BDAM check module, IGGO19LI, is used when
the CHECK macro instruction has been speci-
fied and the DCB macro instruction for the
data set includes the check specification.
The address of a user's synchronous error
recovery (SYNAD) routine should be given in
the same DCB macro instruction that con-
tains the check specification.

When the check module receives control,
it establishes a wait condition if the
associated request has not been posted as
complete. If the request is complete at
this point or is subsequently completed
while the processing program 1is in the
'wait' state, and if no errors have been
indicated 1in the DECB, the IOB for the
request is released to the IOB pool, and
control is given to the processing program.
(When the DCB macro instruction includes
the check specification, the CHECK macro
instruction must be used to effect the wait
condition; if the WAIT macro instruction is
used, the IOB for the request is not
released.)

After a request is posted as complete
and if error indications have been placed
in the DECB, the check routine identifies

both the type of request and the types of
errors listed. The error types are placed
in a register and control is given to a
SYNAD routine if one 1is present. The

publication IBM System/360 Operating Sys-
tem: Supervisor and Data Management Macro-
Instructions, indicates the contents of
registers when the BDAM check module gives
control to a SYNAD routine. The absence of
a SYNAD routine causes BDAM to terminate
the processing program.

THE_BDAM CLOSE EXECUTOR PROGRAM
(MODULE IGG0203A)

The BDAM close executor program consists
of module IGGO0203A. This module is given
control during the closing of a DCB that
specifies BDAM. (See Figure 8.) When the

CLOSE macro instruction is encountered in a
processing program, the expansion of the
macro instruction causes program control to
be given to the data management close
routine. This routine uses the BDAM close
module as a subroutine.

The main purpose of the BDAM close
executor program is to release to the
system all BDAM-acquired storage areas that
have been associated with the DCB to which
the CLOSE macro instruction refers. This
is done in from two to four steps depending
on the type of requests used in the
application.

The first step consists of removing from
the I/0 supervisor scheduled queue of
requests any requests that have been sche-
duled but whose operations (i.e., channel
programs) have not yet completed. The
purge routine of the I/0 supervisor accom-
plishes this removal. The BDAM close exe-
cutor program then releases the main stor-
age area assigned to the IOBs for these
requests. These requests are chained
together, beginning with an address placed
in the DEB by the purge routine.

The second step is the releasing of main
storage areas assigned to available IOBs on

the 1list of IOBs. The IOB 1list also
includes the IOBs that are on either the
I/0 supervisor scheduled queue or a buffer

gueue. Therefore,
not currently being
this time.

only storage for IOBs
used is released at

The third step 1is the
storage that has been allotted to any IOBs
remaining on the unposted queue. These
I0OBs were placed on the queue by the
exclusive control module.

releasing of

As a fourth step, the storage that has
been allotted to IOBs remaining on the
buffer queue is released. (The IOBs on the
buffer queue are those waiting for buffers
to be made available to them.) The main
storage areas that have been obtained both
for the buffer control block and for buf-
fers to be assigned dynamically are also
released in this fourth step.

In addition to releasing the storage
areas assigned to 1IOBs, the BDAM close
executor program clears from the DCB all
fields that the BDAM program has built up
for, and that specifically refer to, the
current use of the DCB to which the CLOSE
macro instruction refers.

Program Component Description 33

Figure 8.

34

Processing
Program

__ —————

CLOSE DCB— — -

——-———q

|
[
!
[
|
[
[
[
|
l
|
[
[
|
l

Related System/360
Routines

Y

Data
Management
Close
Routine

— — — — — Main Flow of Control
———————» Functions Performed

at Close Time

BDAM Routines and Functions

Purge
Scheduled
~ 10Bs

1GG0203A

BDAM Close
Executor

Release
IOB Storage
Areas

Clear DCB
BDAM Fields

Free All Buffer
Storage Areas

Free Read -
Exclusive List
Storage Area

Relationship Among Processing Program, Data Management Close

Routine,

and BDAM

eChart 01.

HRERALER RN ERN
* READ/WRITE *
* MACRO *

HERERERERERER NS

&&»*nalix{n§:i-la
* SAVE USER *
* REGISTERS *

#SET UP CONTROL #*
'BLDCK ADDRESSES*

Qi{lﬁiiiﬁlﬁ‘illii

¥,
C1 *q
*

¥
o* VALID
'.* REQUEST

"%, NO

v
ERRBAD L RARERRRRRR

* FOR THIS *
* REQUEST *
» *
ERREEEERERE RN

v

a¥y
El *e
.* IS *e
*q. NO

RE
.AVA]LABLE 108 ¢ #——
T *

. H .

hliiiczliiilnlall
ERROR
l—i—l-l-.-i-l—i—{

———

' ERROR ROUTINE *
* *

222 2 2 T2 2 22 2]

v
il&*ng*in&i&lll

’RETURN TO USER *
*

ill{!**i*&hi*ll

HERBRED RS RERE RN

*
>“ GET AMOQUNT OF #*
: CORE REQUIRED :

EERRRERRERRREEE R

v
EERERF | RARBRRRERE

INITIALIZE
108 FIELDS

LR R R D]
[LEE X2

FRREREEREREERRRES

v
oty
6! *o

.
¥ RELATIVE *o YES
*o. ADDRESSING ¥
. .
*, ¥
*e oF
* ND

ERERACORERRRE RN

ONVERT *
#RELATIVE ADDRs %
>#T0 ACTUAL ADDR.*
* *

* *
R 222222222222 222

<
ERRRRH] FRRRRREREE
* *
* CONSTRUCT *
:CHANNEL PRDGRAM:

* IN 108 *
RERERBEREERR SRR

v
EREERE P RRERRRRRERR
EXCP

SCHEDULE YHIS
- REQ! *

HERARREERRR R

v
LA RIS L 2222222 2]
- -

RESTORE USER
» REGISTERS :———

- »
ARRRRRERARER AR ERR

EERBCORARRERARE
* RETURN TD *
USER *

* *
FERABRRRRERRRNS

BDAM High Level Flow

!'OOAQ"”I"'
*
* APPENDAGE *
* *
AE2 222222222 2224

BDAM FLOWCHARTS

v
FREBADTHRRRERR SR
* -

» START 1/0 *
* APPENDAGE »
* »
* *
» *

RHERRATRRER LN

oty
c3 *,

.
BUFFER *a
REQUIRED o®

- o®
*, o
*o

.
NO o %
r——*.

o*
* YES

v
ERERRDTHERE R RR RN
* *

ASSIGN BUFFER
: TO THIS 108 :

* »
WA RE R RN RN

-
E3 *,

0
YES .' SC
%o H!S REOUEST e

v
HERRGIRERRRRERR
* 10S_SKIP *
* RETURN *
* »

ERRRRERRRE RN RRR

 —

v
RERRHIERARRRERE
* 105 NORMAL »
* RETURN *
» *

REERERREERRERE

LA 2 - YT T 22 22 23]
- *

* END OF EXTENT *
bl APPENDAGE :
*

* *
HEREERRREBERENRRN

HERBRCHERRRRRBRER
* *

#SET UP STARTING#*
ADDRESS OF NEXT#
* EXTENT *

» *
AERREREEERRRTRRE

oo
4 %,
«*¥SHOULD *
YES o®

*o PROGRAM
o CONTINUE
*e .

*, oM
* NO

v
lll"E‘l'l.ii!*!i

' SET EXCEPTION ’
* CODE IN DECB *

= *
FEBRRRERRERER R RN

<

RRRRUEGARRBEBEREN
* SCHI

*
-
z
=]
m
ol
»
c
b
-

wnn

* FOR THIS 108
»
RRBBERERRRRRRRRER

RERUGARNERAEERY
10S IGNDRE *
- RETURN *

*
FRARARRARRERR R

v
HREEJERERERRNRE
* 105 _EXCP *
* RETURN *

RERBERTREERRERE

v
RERRRDSHERERRRREN
*

CHANNEL END
APPENDAGE

LEEE X

-
*
-
*
*

FHERERRERERRRRERS

v
HRERRCSERSRERRERE
- SCHEDWYLE *
* ASYNCHRONOUS *
* INT UPT *
* FOR THIS 108 #
» *

*

FEREERRERERRRERNR

v
HRERDSEERRRRREN
* 10S_IGNORE *
- RETURN *
» *

HEERRR AR RRNN

ERRERESHERRR S SN
»

* EXCEPTIONAL
CHANNEL END
* APPENDAGE
-

REERERBERRRRARRRSE

LR E]

.
FS *o
*,
. PERMANENT *e YES
ERROR

v
ERRRCSHMEREERRR
* 10S_ERROR *
* RETURN *

»
ARRERERRERNRRRR

ARREFHSRERRR SR ERE
* SCHEDULE *
* ASYNCHRDNDUS *
* INTERRUPT *Qmem
* FOR THIS 103 ¥
» *

EERERREREREREREEE

v
RN SRR RSN
* 10S_IGNORE b
* RETURN »*

HBREXRBERBRRERS

Charts

35

e Chart 02. BDAM High Level Flow (Continued)

FEEEERDORRRERRERERR
*
RESTART THE <=
* CHANNEL *

PROG «
LR s e T s T

v
HERRC2HE R RNN

* *
* SUPERVISOR *
* *

T

FRRERD2HERRAENRNN
* *

* UNQUEUE *
* WAITING hh Satans
* REQUEST *
* *
KNI IR RN

v
EEERENREDRREAERRRERR

cP
* *

PASS THE NEW
* REQUEST *

TQ 10S
HUEREXRRRERRR

EE ey R Y R
* *
MAKE THE BUFFER¥
* AVAILABLE FOR #<——
ANOTHER REQUEST#

*

*
FEEEEREERRERE RN

*
as” w. RRERRASERREREREEE
ITITY I TS S A o* 1 *, * IGGO19LG *
* ASYNCHRONQUS % +% EXCLUSIVE #*,., YES ittt ki St At
* INTERRUPT * >, CONTROL s ———D>% ENQUEUE *
* ENTRY * %4 NEEDED % * THE BLOCK *
IR NN N RN *q o* * *
%y o ¥ P e e et T2

* N

v

*e

¥
NO % 1s
—%o OPERATION
*4 COMPLETE

- ¥
*e o¥
* YES

v

o¥a
c3 *o
*

.% ABNORMAL ~*. YES

*o COMPLETION %
*, o
*, ok
®e o¥

+ NO

ERERRCHEHRAR R RN
* *

* ANALYSE THE
—>% ERROR, SET A
* CODE FOR USER

EEE R

*
P T Y Y

v
o¥a
D03 *,

. *q
YES «* REQUEST *,
—* ¢ AWAITING THIS.*
COMPLETIONG#
. .
*a o¥
* NO

ote
E3 *o
o

*o OPTION %
*. o
Tk, %
* NO

*
FEEDBACK -¥————

EREEREQRENREERNRS
* *

* DEVELOP AND
—>#*STORE FEEDBACK
*

o

* *
HRERERRERE RN RNRRS

<
v

a¥e
F3 *o
% READ %,
o* EXCLUSIVE %.
*o OPTION O
#oWRITE-ADDo*
* *

fws ot
* NO

v

ok,
G3 *a
*

*o
DYNAMIC %,

* 3LOCK
———>%#, ALREADY IN
*, CORE

Fé4
* *.

. *o YES
s

ok

*. ¥

HERRRGHERERRERENE
* POST *
BLOCK ID 7O

* PREVENT

* SIMULTANEDUS

* UPDAT ING

LR R T I ST a

ok Kk

36

v
LTI NI T)
*

* MAKE I0B AREA
* AVAILABLE TO
* THE POOL OF

FEEE]

* AREAS
X RS S S ST I I]

b

v
ERKTEERR TN
» *
* POST *
* THIS REQUEST *
* COMPLETE *
*

*
HREERARRN NN

E e

* -
>% SUPERVISOR *
* *

L T]

XRNRRESEERNNRNNN R

*

*
*
*

QUEUE THIS

PREVIJUS
REQUESTOR FREES
THE BLOCK

*
*
*
*
*

ERRRBERERERRERERR

*
*
*

i

v
ARREGSRRERREEER

SUPERVISOR

L e T

*
*
*

Chart 03.

REAEAB]RERERERRRR

Module Flow for Block Updating

FRERRADFERRE LR

* IGGO19KA *
L it S S St Bt
* *
* FOUNDATION *

* BASE *
HENR RN TN AN

ARG TE RN RN

» 1GG019KK * * 1G6GO19KI *
LR L B Bt It St It Bt LAt D Bt B 2d Bt Bt T
* 1D (GENERATE #<—— >* KEY *
* CHANNEL * . . *(GENERATE CHAN *
* PROGRAM) * * o * PROGRAM) *
LR 2222 22222222223 *y o HERRERRRTERRERR R
*
v v
o¥e ok ¥
ct g c3 *q ERRERCHHEXRUR RSN cs *,
* *q . *e * 1GGO19KW * o ¥ .
¥ WRITE *o NO 4 EXT *, YES Bt ottt ehg bl ¥ WRITE *o NO
#VERIFY OPTIONe¥#————————————————y *¢SEARCH OPTION.¥#———————>% KEY EXTENDED ¥ >%# ¢ VERIFY OPTIDNe¥*——
*e o *a 4 #SEARCH {MODIFY * e o
*e o *. . * CHAN PROGRAM) # *. o
*e ok *e ok FRREAARIINE RN *e oM
* YES * NO * YES
r
v |
v ¥ v
HEERED] RN RN D3 * g HENRND YRR RN R NN
* 1GG0O19KQ * . *q * 1GG019KQ *
E T L RN T TeE e ¥ WRITE *, YES L R e ot et TS 3
* VERIFY (ADD * ¥ VERIFY OPTION.#* >#* VERIFY (ADD *
TO CHAN * *a 4 * TO CHAN *
* PROGRAM * *o ¥ * PROGRAM) *
HERERREREREE R RN He o I ey S A s
* NO
v v
>|<

v
HERERFEDRRERENRRRR
* 1GG019KA *
b At S PR R e

*

FOJNDATION *
* *
2 T P 2T 2]

v
HEEERRGO2RRHERRRERENR
* EXCP TO READ #
OR WRITE
* (VERIFY) »

LA T)

Charts

37

eChart 04.

ERRREC] HAERFRERRR
* PUT ADDR *

* ON *
*READ~EXCLUSIVE #<—
* LIST *

*
NN RN

v
HREREDEHEHRERENRE
* *
* ENQUEVE *
* ON INTER TASK #
* QUEUE bl

*
L e e e 2 T

v
FREREREL KRR EERHHRE
#* ISSUE EXCP L
TO RE-READ
* BLOCK *

WA NN NN

v
HRRIE LT NN

* *
* SUPERVISOR *
* »

RN NN

38

FROM
RERRAERHRNREEE OR RELEX
* *

* ENTRY *
* *

EREEERRERNN N RRR

v
¥y
32 *o
- *
o® READ
*e EXCLUSIVE
*o
o o
*o

.

o
* YES

v
oo
c2 *q
«*ADDR DON#*.

* READ-
EXCLUSIVE ¥
LIST ¥

v
ERRREDDIE R NN NRENR
* *

PUT 10B
ON UNPOSTED
QUEUE

LR X

*
*
*
*
*

e T R e R e

v
RRRREDRERRERRRN
*

*
* SUPERVISOR *
» »

TN NN

.
*o. NO
- ®—

Exclusive Control - MVT System

AS1

o*e
B3 .
«*ADDR ON#*.
*.

«* WAITING

*o ON UNPOSTED
*o QUEUE %
. ¥

He oW
* YES

lii**o3i¥****!*l*
* *
* REMOVE *
#FIRST 108 FROM *
* QUEUE *

* *
FRF NN N TRNE

ez’ e,

WRITE— o *.
ADD o TYPE

OF REQUEST

Tx. o’

*, o¥
#RELEX

o ¥ READ- NO
>#e EXCLUSIVE %
*e LIST o

EXCLUSIVE®*

RERREBLERRXRERERS

* *

* *
—>% ERROR *—
* INDICATION *
*

*
ERBERERREEERRRERR

HRBRRCHEERRXRRNRR
* *
* REMOVE ENTRY ¥
* F *
READ-EXCLUSIVE #
* LIST *

*

ERREREEEERERN RN

v
HRRREDAREEARRENER
* *

* DEQUEUE *
*¥FROM INTER TASK¥®—————
* QUEUVE *

® *
HEERRBERRERRAER S

ERERREGHERRAERERRE
* MOVE DATA *

TO ALL *
>% DUPLICATE 108 ¥
* INPUT AREAS ¥

* *
ET TR R T 2 Y

R RE DR NR RN
* *
>* SELF FORMAT *
* MODULE *

RERRREERRERERRN

>

v
FRRRRT LN EERERRR
* *
* POST THIS *
* CURRENT READ *
* REQUEST *
* *
* *

T

v
ER 22 JY R 2 X228 2 2]
» »
* RETURN *
* *
EA R3S 2222 222

TO AS1
*DR RELEX

A

*
>#
*

FEERDSHEE RN RRRE
*

RETURN

ERRERBERRRE AR

TO ASI
OR RELEX

*
*

10B

The IOB is constructed by the foundation
module base component. The fields of the
IOB are constructed dynamically as a pro-
cessing program is executed. The storage
area used for the IOB is obtained either
from a pool of available IOBs for which
storage has been previously obtained or by
use of the getmain routine. If the area is
taken from a pool of IOBs, that area is
made unavailable to the pool during the
life of the associated request.

When a request is completed, the asso-
ciated IOB is either replaced in the pool
or assigned to the pool for the first time,
depending on how the IOB was obtained for
the request. If the IOB was obtained from
the pool, it 1is returned to its former
position in the pool by setting the availa-
bility byte in the IOB to '0'. If the IOB
was obtained by the getmain routine, it is
placed in the pool according to:'its size,
the 'next IOB' pointers are updated as
necessary, and the availability byte is set
to '0°.

areas assigned to IOBs are
control system by the
at the time the DCB is

All storage
released to the
freemain routine
closed.

If the first usage of an I0QB storage
request, then

Note:
area occurs with an invalid

APPENDIX A: CONTROL BLOCKS FOR_BDAM

the area is returned to the system by using
the freemain routine rather than being

placed on the pool when the request com-
pletes.
Various BDAM routines use some of the

fields in the IOB as temporary Wwork areas
until such time as these fields are filled
in with information as described in Table
7.

There are three main sections to the IOB
as used by the basic direct access method.
(See Figure 9.) The first part is a
standard U40-byte section and is described
in the publication IBM System/360 Operating
System: System Control Blocks, Form
C28-6628. BDAM refers to this part, for
example, to determine the status of a
completed channel program and to 1locate
addresses of storage areas to be used as
work areas.

The second part of the IOB is a U40-byte
section that contains information needed by
BDAM to process the related request. The
11 fields in this part are described in
Table 7.

The third part contains the channel
program that is constructed for the input
or output request. The channel command
words are placed in this part of the IOB as
they are formed.

Appendix A: Control Blocks for BDAM 39

+0 +1 +2 +3 +4 +5 +6 +7

i) T T 1 A
+0 | Flag 1 | Flag 2 | Sense | IOBECBPT | |
t i L s ——— i |
+8 | Channel Status Word | |
| s
r T T 1 I
+16 | | Channel-Program | IOBDCBPT | Standard
| | Starting Address | | I0B
t b 4 T i
+24 | IOBRESTR | IOBINCAM | IOBERRCT | |
’ -~ — L e N
T
+32 | IOBSEEK | |
| (M B B C C H H R) I v
:’ I T T - { =
+40 | IOBDBYTR { IOBDIOBS | IOBDAVLI| IOBDPLAD i A
L 4 4 1
r 1 - T - 1 l
+48 | IOBDTYPE I IOBDSTAT | IOBDCPND | |
I8 1 4 4
L) T T === 1 |
+56 | IOBDBYTN I | IOBDQPTR | [
b i L i
+64 | IOBUPLIM | BDAM
b - —_— {4 Extension
+72 | IOBDNRCF | to
p——————- S —— { IOB
+80 | CHANNEL | |
< PROGRAM I |
- | | |
- . , I
. | (Length varies according to channel program. Refer to Appendix C.) | |
- I [
- | I
L— —_ _— 1 v

Figure 9. Fields of the IOB for BDAM

Table 7. Fields, Field Size, and Field Contents of the IOB for BDAM (Part 1 of 4)
r

Field size

|
| Field (in bytes) Field Contents and Comments

IOBDBYTR

Number of unused bytes remaining on a track on which a new
variable-length block or a new undefined- length block is to
be written. This value is initially placed in IOBDBYTR when
the channel program reads the capacity record. Subsequent
updating of the IOBDBYTR field is done by the self-format
module, IGGO19KM. The channel program later updates the
capacity record before the input/output operation is complet-
ed.

2

I
|
+
|
|
|
|
|
|
|
}
IOBDIOBS | Overall size of the 1IOB, specified in bytes. The base
| component of the foundation module places this value in
| IOBDIOBS after the main storage area for an IOB has been
|
|
|
|
|
|
|
|
|
|
|
|
|
L

obtained.

Indication of the availability of the IOB. When the IOB is
taken from the pool of available IOBs, the value of IOBDAVLI
is set to a hexadecimal FF to indicate that the IOB is being
used (i.e., unavailable). This is done by the base component
of the foundation module. When an input/output operation is
posted as complete, and an IOB 1is either returned to or
placed on the pool of available 1IOBs, the value of the
IOBDAVLI field is set to zero. Depending on the cause of the
completion of the I/O operation, the zero value is set by
either the asynchronous interrupt component or the invalid
request routine of the foundation module.

IOBDAVLI

e e e e e e . i e — i, — . o . S e S e S, s s, i it st e e, et]

|
I
+
|
I
I
|
|
|
I
|
[
|
|
|
I
|
|
|
|
I
|
I
|
|
I
|
|
L

[— e —— —— T — — — — — —— — ——— i W . S— i s i ci:

=
(o]

T

r

|
|
I
|
|
|
I
I
I
|
|
|
|
I
I
|
I
|
I
|
I
|
|
|
|
I
|
I
|
I
|
|
I
!
I
!
|
|
|
|
|
I
|
|
|
|
I
I
!
|
|
|
|
!
|
|
I
|
|
|
!
|
L

bits of the IOBDSTAT field and their interpretations for BDAM
are as follows. (When the bit is set to '1', the interpreta-
tion is in effect. When the bit 1is set to '0', the
interpretation is not in effect.)

able 7. Fields, Field Size, and Field Contents of the IOB for BDAM (Part 2 of 4)
T T -
| Field Size |
Field | (in bytes) | Field Contents and Comments
—— } b .

IOBDPLAD | 3 | Address of the next IOB area in the pool of IOBs attached to
| | the current DCB. If there are no more IOBs on the pool, the
| | value of this field is zero. Each IOB on the pool became a
| | member of the pool after the first usage of the IOB. When a
| | new IOB is added to the pool, the IOBDPLAD field of the
| | preceding IOB is updated.
| | ‘

IOBDTYPE | 2 | Indication of the request type and indication of any options
l | specified in the DECB related to the request. The contents
| | of the DECTYPE field (see DECB block) are placed in the
| | IOBDTYPE field when the IOB is initialized. Significant bits
i | of the IOBDTYPE field and their interpretations for BDAM are
| | as follows. (When the bit is set to '1', the interpretation
| | is in effect. When the bit is set to '0', the interpretation
| | is not in effect.)
| |
| | First Byte:

I |

| | Bit 0: Indicates verification of written block is desired.

| | Bit 1: Indicates track overflow (i.e., overflow blocks are
| | being used). (Refer to the publication IBM
| | System/360 Operating System: Sequential Access Meth-
i | ods, Program Logic Manual.)

| | Bit 2: Indicates extended search is desired.

| | Bit 3: Indicates feedback of block address is desired.

| | Bit 4: 1Indicates actual block addressing is being used.

| | Bit 5: Indicates dynamic buffering is being used.

| | Bit 6: Indicates exclusive control is being used.

| | Bit 7: Indicates relative block addressing is being used.

| |

| | Note: If Dboth bit four and bit seven are 0, the interpreta-
| | tion is that relative track addressing is being used.

| |

| |

| | Second Byte:

| I

| | Bit 0: Indicates that an 'S' has been specified in the key
| | address operand of the READ or WRITE macro instruc-
i | tion. For dynamic buffering, a buffer is to be
| | allocated for a read request, and the key part of a
| | buffer is to be freed after a write request.

| |] Bit 1: Indicates that an 'S' has been specified in the
| | length operand of the READ or WRITE macro instruc-
| | tion. The setting of this bit is ignored (i.e., not
| | tested) when writing variable-length blocks since the
| | block 1length 1is given in the first two bytes of the
| | data field.

| | Bit 2: Reserved for future use.

| | Bit 3: Reserved for future use.

| | Bit 4: Indicates a read request. (A '0' indicates a write
| | request.)

| | Bit 5: Indicates the search argument is the block key. (A
| | '0' indicates the search argument is the block ID.)

| | Bit 6: Indicates a write request to add a new block.

| | Bit 7: Reserved for future use.

i |

IOBDSTAT | 2 | Indication of status of the related request. Significant
| |
| I
| |
| |
1 L

b oo s . e e s — — — — —— ———— — — —— s, —— —— — — —— —— t— —— Vo——— S— —— —— —— o—— — — ——— ———" S— — — ——-. T— — o— — — — —— —_—— S o {p. qron, s i seeli. e, s, sk

Appendix A: Control Blocks for BDAM 41

Table 7.

Fields,

Field Size,

and Field Contents of the IOB for BDAM (Part 3 of 4)

-

Field size
(in bytes)

Field Contents and Comments

IOBDSTAT
(Cont.)

|
|L_
|
I
I
I
!
|
|
|
|
|
|
|
|
|
I
I
!
I
I
!
|
!
I
|
|
|
I
|
|
I
|
!
|
|
|
| IOBDSTAT
|
i
!
|
|
|
|
|
|
I
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
|
L

T
|
|
+
|
!
l
I
|
I
|
!
I
|
I
|
I
!
|
|
|
|
I
|
|
!
|
|
|
|
I
I
|
|
|
|
|
|
I
|
[
|
!
I
I
|
|
|
I
I
I
I
|
|
|
|
I
I
|
|
|
|
|
|
|
|
1

2

Bit

Bit

Bit
Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit
Bit

Bit

Bit

Bit

0:

1:

2:
3:

4s

5:

6:

7:

0:

First Byte:

Indicates an abnormal completion of the request. See
second byte for details.

On extended search, this indicates that the ASI
routine is to issue the EXCP macro instruction after
the end-of-extent appendage has determined that the
next extent is on a new volume. The end-of-extent
appendage cannot issue an EXCP macro instruction in
this case.

Reserved for future use.

Oon extended search, indicates to relative block
conversion routine that the second pass of a two-pass
conversion routine has been completed.

Note: The first pass of the routine converts the
starting address for a track search, and the second
pass converts the address for the search limit. The
bit is set to 'l' when the second pass begins. This
bit is also set by the self-format module after the
module has calculated the number of bytes required in
order to write a block on a track. Then, if
additional tracks must be examined for space, the
calculation of bytes required is bypassed.

Indicates that the read-exclusive request related to
this IOB has been placed on an inter-task queue by
the exclusive control module.

Indicates that a buffer has been assigned to this
IOB.

Indicates that a given block (to be written) can fit
on the track associated with the capacity record that
has just been read into storage. Module IGG019KM
sets this indicator.

Indicates to dynamic buffer module that it was
entered from, and is to return control to, the start
I/0 appendage module.

Second Byte: This byte contains indications of an abnormal
completion of a request. When the request is posted as
complete, these indications are placed in byte 1 (the second
byte) of the DECSDECB field of the DECB.

Indicates that the requested block was not found on
the indicated track.

Indicates that the length of the block was incorrect.
(Refer to the section "Channel End Appendage
Module.")

Indicates that no space was found in which to write a
new block.

Reserved for future use.

Indicates that a read operation (either to bring data
into main storage or as a verification of written
data) has resulted in a data check error that has not
been corrected by the standard IOS error retry proce-
dure. (Refer to the section "Verification Program.")
Indicates that the request has been completed but
that the block the user has requested to be read or
written 1is an end-of-data set record (indicated as
having a data field length of zero). (Refer +to the
section "Channel End Appendage Module.")

Indicates an error that cannot be attributed to any
other cause as indicated by the bits in this byte.
Indicates no match has been found on the read-
exclusive list.

42

o e s o - — . S t——- G o—— ——_ W— — — A— T— —— — — — — —— ————— S— — — — — o— — —" — T — —— ——; —— o— S———" S—— {— {— ——t ot ooo— et S i S e ot S sttt e, . s s s st o e, v

Table 7.

Fields,

Field size, and Field Contents of the IOB for BDAM (Part 4 of 4)

r

|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
I
|
|
|
|
|
|
|
I
|
|
|
L

Field

Field size
(in bytes)

Field Contents and Comments

IOBDCPND

IOBDBYTN

IOBDQPTR

IOBUPLIM

IOBDNRCF

T
|
|
+
|
I
|
|
!
|
I
|
|
|
|
I
l
I
|
|
I
|
|
|
|
I
|
|
|
|
|
|
I
|
I
L

y

|
|
-+
|
!
|
|
|
|
I
!
l
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
!
|
|

The main storage address of the expected end of the related
channel program if the program goes to a normal completion.
This address is placed in IOBDCPND by the base component of
the foundation module.

At the completion of a request, the I/0 supervisor routine
places an address in the channel status word. This address
is equal to the address of the last channel command word
executed plus eight bytes.

A normal completion is indicated if the two addresses are
equal and there have been no error indications.

Indication of the required number of bytes to contain a new
block. This value - is calculated by the self-format module
after control has been given to this module by the ASI
routine. '

Address of the next IOB on the dynamic buffer queue of IOBs.
This value is determined either by the dynamic buffer
routine.

Address to be wused as the location in which to begin the
search for the start of a track on which the indicated block
is contained or is to be written. On extended search, this
field indicates the address of the first track following the
last track to be searched.

The count field developed by the self-format module when a
new block of either variable-length records or records of
undefined length is to be added to a track.

b e e s . —— —— —— — — — — — —— —— S——— — — — ———— — ——— — b, o, vt]

Appendix A: Control Blocks for BDAM 43

DECB

they relate to BDAM are explained in the
publication IBM System/360 Operating

System: Supervisor and Data Management

The DECB results from the expansion of Macro Instructions. A summary of the con-

either a READ or a WRITE macro instruction. tents of the fields is given in Table 8,
The contents of the fields of the DECB as with reference to Figure 10.
+0 +1 +2 +3 +4 +5 +6 +7

[~ s T T - 1
+0 | DECSDECB i DECTYPE | DECLNGTH [

: - ¥ 1 1
+8 | DECDCBAD | DECAREA |

L 1 4

13 1 1
+16 | DECIORPT | DECKYADR I

i _ - J

t 4
+24 | DECRECPT i

L J
Figure 10. Fields of the DECB for BDAM
Table 8. Fields, Field Size, and Field Contents of the DECB for BDAM
13 L) - - - 3
| Field | Field size | Field Contents |
| | (in bytes) | |
} $ - - 1
| DECSDECB | 4 | standard Event Control Block (ECB). (Refer to the IOBDSTAT |
| | | field of the IOB.) |
| | I]
| DECTYPE | 2 | Type of request operation. The contents of this field are |
| | | described in the discussion of the IOBDTYPE field. |
] | | |
{ DECLNGTH | 2 | Length of data portion of the block being processed. |
DECDCBAD	4	Address of the DCB to which a request is related.
DECAREA	4	Area into which the data portion of a block is to be written
		or from which it is to be read.
DECIOBPT	4	Address of the IOB associated with this DECB.
DECKYADR	4	The contents of this field vary as the type of request to
		which the DECB refers.
		Type of Request DECKYADR Contents
I	'	
		Write by ID Address of the Key to be written.
I	I I	
		Write-Add Address of the Key to be written.]
1		Read by ID Address of the area into which the Key is to
		be read.
		I
		Read by Key Address of the ZKXey to be used as a search
		argument.
i		I
		Write by Key Address of the Key to be used as a search
		argument.
I I		
		Write-Add Key to be written to replace the dummy key.
		(Format F) (Searching is done on the hexadecimal 'FF'
]		of the dummy record.)
		I
DECRECPT	4	Address of the blkref field.
L L e e e e e e e e e et e e e e e 1

uy

DEB

The DEB is constructed during Phase 1 of

the BDAM open executor program. The fields

of the DEB that are specifically related to

BDAM
field,
extent
complete description of the
publication IBM System/360
System Control Blocks.

tained
Operating System:

are
and the
areas.

in the

(See

of the
Figure 11.)
DEB

the DEBAMLNG field, the DEBNMTRK
fields

relative
A more

is

con-

storage

The DEBAMLNG field is a
containing the number of
contain the

that

areas.

words

one-byte

field

of main

relative extent

If track overflow has not been speci-
fied, each relative extent area consists of
a one-byte field that contains the number

of blocks on a track (for the device used)
and a three byte field that contains the
number of Dblocks in the extent. This
latter value is obtained by multiplying the
number of tracks in the extent (given as
the value in the 1last two bytes of the
associated actual extent) by the number of
blocks on a track.

If track overflow has been specified,
each relative extent area consists of only
a three-byte "blocks per extent" field.

The DEBNMTRK field is a two-byte field . "

T s . The byte preceding each "blocks per extent"
contalnlng_ the tnuTbert oﬁ tracks in the £y.9153" {5 unused. 1In addition, two one-word
corresponding actual extent. fields constituting an overflow section are

h lati tent fo d inserted between the last actual extent
lT € ﬁe a 1v§ t?X enbl a;easddare . rggs area and the first relative extent area.
gn y w en_f;eda 1V§h ocs ao resiéﬁgt've The values in these fields are based on the
eiigntspzizalgo; eachegitu;i exEZnt arealin size of the period that is calculated by
hase 3 of the BDA .
the DEB. P h M open program
+0 +1 +2 +3 +0 +5 +6 +7
- - T T 1
+0 | Basic | DEBAMLNG | I
| Data b 4 |
| Extent |
| Block {

- T - T - T 'JI -
+32 | DEBVMOD| DEBUCBAD | DEBBINUM | DEBSTRCC | A

________ L _—— S I

T T
+40 | DEBSTRHH | DEBENDCC | DEBENDHH | DEBNMTRK | Actual
- et Lo — 1 - -{ Extents
| | |
L - - e _— -4 i
. . |
. . [
. . v
r == N T . 1 -
| Tracks per Period? | Blocks per Period?t | Overflow
| [| Section
t T - e 1 -
| Blocks | Blocks | | A
| per | per | | |
| Track! | Extent | l |
L 1 - Bt 4 Relative
. . Extents
. - |
. . v
r- T - - T T - -—— -
| | | | | A
L 1 ————1 1 -1 |
. . |
. . Subroutine
- . IDs
r————"7="7""">">">"7>""" T - T Tt 1 '
| | | | I I
L 1 R —1_ - ——d v

Figure 11.

isee text.

Fields of the DEB for

BDAM

Appendix A: Control Blocks for BDAM 45

Table 9. F

DCB the DCB is contained in the publication IBM

System/360 Operating System: System Control

Blocks. The fields of the DCB that are of

The DCB (see Figure 12) contains infor- particular interest to programmers con-

mation relating to the current use of a cerned with BDAM applications are indicated
data set. A more complete description of in Table 9.

+0 +1 +2 +3 +4 +5 +6 +7

r 1

+0 | |

L 4

r 1

+8 | |

L —_— ————— 4

T T T 1

+16 | DCBKEYLE | DCBREL | |

k- A e ! |

| _ |

+24 | Basic |

I |

| Data Control |

I |

| Block |

| |

| r=-- H T 1

+48 | | DCBREAD or DCBWRITE | DCBOPTCD | DCBCHECK [

L 1 L L 4

r T T 1

+56 | DCBSYNAD | | DCBBLKSI |

pr e - + L i

+64 | | |

t-- S - 1

+72 | DCBIOBUQ | DCBUQND |

F T mmmmmmmm— oo -—--—14 T - 1

+80 | | DCBLIMCT | | DCBXARG |

'L L % - i _%

+88 | DCBDRDX | DCBDFOR |

prmmmm e S - i

+96 | DCBDFBK | DCBDYNB |

L 4 J

Figure 12. Fields of the DCB for BDAM

ields, Field Size, and Field Contents of the DCB for BDAM

46

[~———————== T-——————" T - 1
| Field | Field size | Contents and Comments |
| | (in bytes) | |
— . - , . 1
| DCBKEYLE | 1 | Length of Key field for each block in the data set. |
| | I I
DCBREL	3	Number of relative tracks or blocks in the data set. This
		number is placed in the DCBREL field by the BDAM open
]	executor phase 2 routine, and it can be wused by the	
		processing program in the process of conversion of a relative
		address.
I		
DCBREAD		
or	3	Address of the BDAM Foundation module, IGGO019KA,
DCBWRITE		
	l	
DCBOPTCD	1	Indication of options specified for the data set. Signifi-
		cant bits of the DCBOPTCD field and their interpretations for
		BDAM are as follows. (When the bit is set to 'l', the
		interpretation is in effect. When the bit is set to '0', the
		interpretation is not in effect.)
L L Lo — 4

(Continued)

Table 9. Fields, Field Size, and Field Contents of the DCB for BDAM (Continued)

r T - T 1
| Field | Field size | Contents and Comments |
| | (in bytes) | |
e — i . : e —
DCBOPTCD		Bit 0: Write-validity-check option has been specified.
(Cont'd.)		Bit 1: Reserved for future use.
		Bit 2: Extended search has been specified.
		Bit 3: Feedback has been specified.
		Bit 4: Actual addressing has been specified.?]
		Bit 5; Dynamic buffering has been specified. (This bit is
		set by BDAM.)
		Bit 6: Reserved for future use.
		Bit 7: Relative block addressing has been specified.?
	I	
		*If neither actual addressing nor relative block addressing
		has been specified (i.e., if bits four and seven are both 0),
		relative track addressing is specified.
DCBCHECK	3	Address of the check module, IGGO19LI.
DCBSYNAD	3	Address of user's SYNAD routine.
DCBBLKSI	2	Maximum size of a record block in the data set.
] 4	Reserved for future use.	
]
	y	Reserved for future use.
DCBIOBUQ	4	Address of the first IOB on the unposted queue.
DCBUQND	4	Address of the last IOB on the unposted queue.
DCBLIMCT	3	Number of tracks (for relative track addressing) or number of
		blocks (for relative block addressing) to be searched when
		extended search option is specified.
	1	Reserved for future use.
DCBXARG	3	Address of the read-exclusive list.
DCBDRDX)	Address of the exclusive control module, IGG019LG.
DCBDFOR	4	Address of the format channel program generating module that
		is required for the block format indicated in the DCB macro
		instruction. This address is placed in DCBDFOR by the BDAM
		open executor phase 2 routine.
DCBDFBK	4	Address of the feedback module, IGGO019KG. This address is
		used only for relative block feedback specification.
DCBDYNB)	Address of the dynamic buffer module, IGG019LE. i
L L L 4

The initial value of each of the address storage address of the module; the values
fields in Table 9 is '00000001.* When the of address fields corresponding to modules
data set is opened, the value of each that are not required remain at '00000001°;
address field that corresponds to a | and the values of the DCBIOBUQ and DCBUQND
required BDAM module is changed to the main fields are set to '00000000.°

Appendix A: Control Blocks for BDAM 47

BCB

buffers is released by the BDAM clo
executor routine. Figure 13 depicts t
fields of the BCB, and Table 10 describ

The buffer control block (BCB) is built the field contents.
if the dynamic buffering option has been
specified. Phase 3 of the BDAM open execu-

se
he
es

tor routines obtains contiguous main stor- +0 +1 +2 +3 +4 +5 +6 +7
age for both the BCB and the required r T !
number of buffers. The BCB is initialized +0 | BCBFRQT | BCBFRQB |
by the open executor phase 3 routine, but t + 4
subsequent entries are placed in the BCB by +8 | BCBNABFR | BCBTBFRS

the dynamic buffering module. The main L ———d- J
storage area for both the BCB and the Figure 13. Fields of the BCB for BDAM
Table 10. Fields, Field Size, and Field Contents of the BCB for BDAM

r T T |
| Field | Field sSize | Field Contents and Comments |
| | (in bytes) | |
e } -- 1
BCBFRQT	4	Contains the address of the first IOB waiting to be assigned
		a2 buffer from the buffer queue. The dynamic buffer module
		inserts this address.
	I	
BCBFRQB	4y	Contains the address of the last IOB waiting to be assigned a
		buffer from the buffer queue. The dynamic buffer module
		inserts this address.
	[I	
BCBNABFR	4	Contains the address of the next buffer that is available for
		assignment to an IOB. Initially,. the open executor phase 3
		module inserts this address. Subsequent addresses are
		inserted by the dynamic buffer module.
	[I	
BCBTBRS	4	Contains an indication of the total size of the buffer pool
		and the buffer control block. The open executor phase 3
		module inserts this value.
L L —_— ——— J		

48

READ-EXCLUSIVE LIST SEGMENT

The read-exclusive 1list is composed of
one or more 80-byte segments of storage.
Each segment contains identifying and
chaining information and has Space for nine
8-byte entries that identify the blocks for

which exclusive control is required. Phase
1 of the BDAM open executor routine
requests storage for the initial 80-byte

required, the read-exclusive module,
IGG0191G, requests the storage. The BDAM
close executor routine releases the storage
area(s) that may have been obtained for the
read-exclusive list segments.

Figure 14 indicates the contents of the
fields of a typical segment of the read-
exclusive 1list. Figure 15 indicates the
contents of the fields of each of a
segment’'s nine entries representing members

segment, and if additional segments are of the read-exclusive list.
+0 +1 +2 +3 + +5 +6 +7
[1
+0] Identifying Self-Pointer Pointer to Next Segment if one Exists
| |
b oo i
| _ _ |
+8] First Entry on List (See below) |
| |
t - - i
A’ Space for Seven More Entries l’
T 0
pomme oo e - -
| _ , |
+72| Last Entry in This Segment |
| l
L ——— _— —_ J
Figure 14. Description of a Segment of the Read-Exclusive List
+0 +1 +2 +3 +14 +5 +6 +7
| T =TT 1
0]Address of the UCB| Address (CCHHR) of the block placed on the | Zero]
| for the block | exclusive list?] |
L L L 1

iThis is the address of the track

capacity record (RU) in the case of write-add

requests for variable length or undefined length blocks.

Figure 15.

Description of an Entry in the Read-Exclusive List

Appendix A: Control Blocks for BDAM 49

APPENDIX B: MODULE IDENTIFICATION AND USAGE

In Table 11, the BDAM modules are listed performed, the subroutine returns program
ing to their coding control to either the module listed at the

alphabetically accord
(listing) names. 0
coding name is the
module.

listed underneath
After the subroutine

pposite each module head of the column ovr, in the case

of

functional name of the module IGG018KQ, to the foundation module.

In Table 13, options that may be speci-

In Table 12, the module 1listed at the fied in the MACRF field, the OPTCD field,
head of each column may use the module(s) and the RECFM field of a DCB macro instruc-
it as a subroutine. tion are related to the BDAM modules that

functions have been are required to fulfill the options.

Table 11. Coding and Functional Names of BDAM Modules

——=-- T 1
| Coding Name | Functional Name |
o $ -- - —mmm s {
| IGG019KA | Foundation Module |
| IGGO19KC | Relative Track Conversion Module |
| IGGO19KE | Relative Block Conversion Module without Track Overflow

| IGGO19KF | Relative Block Conversion Module with Track Overflow |
| IGGO19KG | Relative Block Feedback Module without Track Overflow

| IGGO19KH | Relative Block Feedback Module with Track Overflow

| IGGO019KI | Channel Program Generating Module for Searching by Block Key

IGG019KK	Channel Program Generating Module for Searching by Block ID
IGG019KM	Channel Program Generating Module for writing New Blocks of
	Variable- or Undefined-Length Records
IGG019KO] Channel Program Generating Module for writing New Blocks of	
	Fixed-Length Records
IGGO19KQ	Channel Program Generating Module for Verification

IGG019KS	Start I/O Appendage Module
IGGO19KU	Channel End Appendage Module
IGGO19KW	Key Extended-Search Module
IGGO19KY	Self-Format Extended-Search Module
IGG019LA	Pre-Format Extended-Search Module !
IGGO19LC	End-of-Extent Appendage Module
IGGO19LE	Dynamic Buffering Module
IGGO019LG	Exclusive Control Module
IGGO019LI	Check Module
IGG0193a	Open Executor Phase 1 Module
IGG0193cC	Open Executor Phase 2 Module
IGGO0193E	Open Executor Phase 3 Module
IGG0203A	Close Executor Module
[— L —— - -4
Table 12. Passage of Control Among BDAM Modules

r T T T - - T T T T 1
| IGGO19KA| IGGO19KI| IGGO19KK| IGG019KM| IGGO019KO| IGGO19KS| IGGO019KW|IGGO019KY|IGGO19KH|
— — e e s St S == - fommmmmme
IGGO19KC	IGGO19KW	IGG019KQ	IGG019KY	IGGO19LA	IGGO19LE	IGGO19KQ	IGGO19LC]IGGO19KF
IGGO19KE	IGGO019KQ		IGGO19KQ	IGGO19KQ				
IGGO19KFj{		IGGO19LG]			
IGGO19KG				[[
IGGO19KH			[
IGGO19KI			[[[[[
IGGO19KRK	I		I	I	I			
IGGO19KM	[[[[l				
IGGO019KO			[[[
IGG019LG				[
[- —d ———1 4 4 1 1 4 -4

Appendix B: Module Identification and Usage

51

BDAM Modules Required to Satisfy DCB Macro Instruction Options

Table 13.

- e ————— — T T T e o e o T T e o o o o s T o e Y T e e M e A e ey T Y S e e e e e i e b e e e e e e Tt -
) | W
o] o o
| Q
=1] el
o I =1 1<)
3 p 18 s : :
M 3] | W m
- n = | g o @
W u | [u m)
| 1 - |
18 <1y 1 el] I 0
P I LT] I »
0} ol 20 .4 e Il [}
+ 8188 101 Q - M M
=] [V I I o) 1 ¥ 1 Q ie} | 0
19} - | HH Yy | w @ | L] | f
m V] [3) | A Q | a
X | 8T | g <10 |)
[} 3} cm =] | o™ oM |] 0
O o010 () 3] PO | 3} =t
- | | @ © o 1 | g0
Q1 QH | o 101wy 0 - (Y] | 0 A
S100 1S AP -~ Q IS o 4
g1 8 =Y [T] | FERoH
V|90 |mao 1 1 MO MO | [[3e)]
1S3 10w ERECES US| 1> o
3 ww =] O @A @ - | | A Q@ w8
ol =} | i 1. QP QP i | P E 3]
g | T |50 I 10 1O g 1 | @3 | 0 M
Q| OH | QO | 1€) 0 [) 1= w | o~
w | e g | 101 oWl 0o | N a9
DiIPP IR | 12 1 R By MO 1 @ | B0
[e g e g e e e i ey e e
IHOVO AN H I | | | | | | | | | | i | | |] | 1 1 i]
b o e e e e +—t——t———t—t—at — e e e e e e e e e e e e |
IMHOVo = U | | > | | | N | | i | | | | | | | I |]] | |
b——— e —— e e e o e
IHOVO AWK | | | | | | [| 1 | | [| | | 1 | |] I I |
o o e e e +—t——t——at—t——t———t— ———r e b e e e e e e e e e e}
IHOVO=H AU | 1 1 | 1 1 | | [| | | 1 1 | | 1 R 1 1% |
llllllll e e e e e e e o e o e e]
HOUVWO =L | | | I l 1 1 | | | I | | i I 1 | I | > (] | |
o ————— —— e e i et e e et e s sl ats H: e e A E i NSESH S RYRRRN A S
IHOVOHO XM | | | | | | [| i | | | 1 |] 1 |]] 1% | 1 |
p——— e e ——— e e e e e e e e e e e e e e e b e e e e e e e e e e e e e e e e e o e e e e e
IHOVO O | | | | | | | | i | | | | 1 1 i | | | | > [|
o e e e — e +—t——t————t —_——t———t —_——t——————t ——t - —— — —— —— b —— e
|HOVO N O | | | 1 | | | | 1 | | | | | | > I | | | 1 | |
b — e e e e = e]
I HOVOANNXO | X | | 1 | | | | | i | | [I I |] 1%) 1 > | |
——— e — +—t——t——t—t —t — e e e e e e e e e e e e e e e
IHOVOAHONM S | 1 >4 | i | | |] | | | | | I [i I | | 1> 1 1 |
b ——— . — e et e S i el e i R e el I . | el il ST NP SRS S S/ PN Sy R |
IHOVWO AN | | | I | | | | | | | | | | i |] | [| | |
b e e e o +—t——rt——t——t———— - ————t——— b — b — — b e e e e e —
IHOVO NN H | 1 | 1 [| i 1 | | | 1 | | | | 154 i [1% 1
p———— e — ——tr e — A e o]
|HOVOHONT | | | | | | 1 | 1 | 1> | i | | | 1 | | | |]
e e — et el e e D e sl L s tt o s et Sh T ST RS SR SUCIF SAE SRSy S S —"
IHOVOHONU | | | i] i | | 1 | | N | | | | i | | 1 1 i
o e — e — B bt e e e e L bt n at iy sl e e LT |
IHOOVO N I |] | | I 1 [| | |] | P | I 1 | | | | | i
e e e — B e e e e e L e st Tt T ST NPt SR SIS SN B S — |
I HOVOdHNNME | 1 i i I [| | | |] 1 l 1% 1 I |] | | I |
T T e et e D e i s o as A s St S A El e ol ST TSI SRS BYR RRSURED SRS S —
IHOVOoOHONX U | i | | |] 1 | P I | | | i 1| | I |] I |
p—————————t—t— — - ——t — -t — — — —— b — e — e — e e e e
| o BRI R I - T e
A | | | | i | | | 1O ® | & 1R B) M 1O 110> | M; o> |
1 g 1 | RN i | | =R | | | | | o [] | | | | 1
| 5] | | 1010 | i i | | X | | | I i 1SN i | (=] | [=T
0 ot | <) 1 | I 101 p——te——de— e ek R | P O p—— e e e e e e e e]
@ 2 | = | IH I | M| | | | lord & | | | | (=] g |
- g 0 | AR i | | | | (K o | | | | = 18
30 o | | | | | | | | fy | ™ | 12 1 O®w IMI| [A S |
T N l | | | | | | | | | | Mi_ [[| | |
0 - | | | | | | | | | | | | | | [[
=9 o e e s i i e e e ki e s e e s e e e e e e s ke o e e i e e . e s B T S s T e e T e ol |
ot ° | | | |
Me IS | | |]
g I om l fry | a | =) |
200§ | 3 | : | 2 |
Q| m | Ay &0 |
o | | o O-H® |
IIIII Lr-lllllrllllllll'lllllllllrlllllllllII'II"III'L.IIIII":I'II'IIllllllIL

52

The channel program for

module and placed in the IOB for that request.
each word having the following format:

channel command words (CCWs),

APPENDIX C: CHANNEL PROGRAMS FOR BDAM

each request using BDAM is constructed by the appropriate

A channel program consists of a group of

r T T T - L] T 1
| Command Code | Address | Flags | 000 | (ignored) | count |
| (1 byte) | (3 bytes) | (5 bits) 1 (3 bits) | (1 byte) | (2 bytes) |
L L A L [T 1 ¥
Note: The last U4 bytes are ignored by a K. Skip the transferring of data.

Transfer-in-Channel (TIC) command word.

The entry in the 'Address' field is onme

of the following:

e The main storage address of where data
is to be placed or found; this is for a
Read or a Write command word.

e The location of the search argument;
this is for a Search command word.

¢ The CCW to which a transfer is made;
this is for a Transfer-in-Channel con-
mand word.

The entry (or entries) in the 'Flags®
field have the following meanings:

C. Command chaining.

D. Data chaining between gaps of a
record.

S. Suppress incorrect 1length indica-

tion.

The entry in the ‘'Count' field repre-
sents either the number of bytes of data
that are to be transferred or the number of
bytes of data on which a search is to be
made for comparison.

The function or purpose of each command
word is given in the comment following the
'‘Count' field. The channel command words
are identified by the number to the left of
the command code.

If track overflow has been specified,
the applicable form of the channel program
will end with a CCW having NOP as the
command code and ignoring the other fields.
The preceding CCW will also have the com-
mand chaining (C) flag bit set on.

Appendix C: Channel Programs for BDAM 53

r - == - h)
| Channel Program for Reading or Writing by Block ID (Type DI) |
_____ —— J— 4
T T T T T T -)
| CCW |Command Code | Address | Flags| |Count |Comments |
| vo._ | 1 [4
___________ T - T T T

| 1. | Search ID Equal | IOBSEEK + 3 | € J000] 5 | Search for an |
| | | | | | |equal CCHHR. |
I —— - oo s et : 1
| 2. | TIC jccw 1 | | | |Transfer if unequal. |
I I | | [| | I
t ¥ G — ¥ - G S O p ¥ 1
| 3. |Read (or Write) Key-Data |Key Address=2 | D |000|Key |Read (or Write) |
| | | | | | Length|Key portion. |
T e oo s - 1
| 4. |Read (or Write) Data |Area Address=? | |000|Data |Read (or Write) |
| | | | i |Length|Data portion. |
—— 1 S e + 1
| 5.3 “4|Seek cylinder head | TOBDNRCF | ¢ {000 6 | Seek back to track |
| | (CCHH) | i | | | containing beginning|
{ i 1 i i l |of block. |
______ J— - _— —_ - —_ -_ 4
T S S 1
| 6. | Search ID Equal | IOBSEEK + 3 | € }000f 5 | Locate the block |
| | | | | | | just updated. |
pmo-mmt -- } T Gt S 1
| 7. |TIC |ccCw 5 | | | |Transfer if unequal. |
S— ; RS S S J
——————————————————— - T T T T 1
| 8. |Read Key-Data] | s,K J]000| 256 |Read to validity |
{ 1 l | | | | check. |
———de e 4 AL i L1 4

! —_— -
|*CCW 3 is omitted if either the field DCBKEYLE or the field DECKYADR is zero. }
| 2This address is obtained from the DECB. |
|3CCWs 5-8 are included only if the field DCBOPTCD specifies the write-validity-check |
| option. |
|“This CCW is present only if track overflow has been specified. |
J

b

54

)
| Channel Program for Reading or Writing by Block Key (Type DK)

1

|
l'___ T T T T T - T e|I
| CCW |Command Code |Address |Flags| |Count |Comments |
| No. | I | [| |
pm=m-—t -t It e $ {
| 1. | Read Count | IOBDNRCF + 2 | ¢c,s {000] 5 |Read CCHHR for
| | | | | | | Eeedback. |
o - Pt P t 4
| 2. | Search Key Equal | Key Address? | ¢,S |000|Key |Search for an equal |
| | | | | | Length|Key. |
b $ —t -ttt $. |
| 3. | TIC |jcCwW 1 | | | | Transfer if unequal. |
| | | | | | | |
b 4 - 4 ___+__ ! L] - —_— _l
r 1 T T T T
| 4. |Read (or Write) Data |Area Address? | |000|Data |Read (or Write) |
{ 1 l l i lLengthiData portion. j
== L e S Y EE B T T -
| 5.2 3|sSeek Cylinder head | TOBDNRF | C |000] 6 |Seek back to track |
| | (CCHH) | | | | |containing beginning|
= : : : l : }of block. :
p—----1 4 e ot ¢ 1
| 6. | Search Key Equal | Key Address? | ¢,S |000|Key |Locate the block
{ l l l i lLengthljust updated. }
1] T B I E T T T 1
| 7. | TIC |CCW 5 | | | |Transfer if unequal.|
| | | | | I | |
bt 1 {1 $ 1
| 8. |Read Data | | S,K |000| 256 |Read to validity |
| | |] | I | check. |
kL L L 4 R 1 1
t -—- -4
|*This address is obtained from the DECB. |
|2CCWs 5-8 are included only if the field DCBOPTCD specifies the write-validity-check |
| option. }

4

|2This CCW is present only if track overflow has been specified.

| I

Appendix C:

Channel Programs for BDAM 55

1
| Channel Program for Writing a New Block of Fixed-Length Records (Type DA) |
}'--- T - T T T T =TT 'Jl
| CCW |Command Code |Address | Flags| |Count |Comments |
| No. | I | I I |
i o S 4 4 e 4 - N |
T T T T + + T h]
| 1. |Read Count | IOBDNRCF + 2 | ¢,s jo00} 5 |Read CCHHR for |
| | | | | | | feedback. |
p-nt - t po———f——t t 1
i 2. | Search Key Equal | Dummy Key | ¢,s |000] 1 |Search for a |
| | | | | | | dummy record. |
i 1 - ¥ s S pommmee 1
| 3. |TIC jccw 1 | | | |Transfer if unequal. |
| I | I [I |
i ¥ - 1 R 3 1
| 4. |Read Data | IOBDNRCF + 6 | C,s |000] 1 |Read dummy record's |
| | I | | | |position (i.e., R) |
i + L _I_ _____ _I_ 4 1l 4
r T . T T T 1
5.+	Seek cylinder head	IOBDNRCF	C o000} 6	Seek back to track		
	(CCHH)					containing beginning
	I				of block.	
{ —_— —_ —_———— 1 - + + + 4 4						
1} T T T 1}						
6.	Search ID Equal	IOBDNRCF + 2	€ 000 5	Search for the		

| | | | | I | dummy record. |
e e - i e 1
| 7. |TIC |ccw 5 | | | |Transfer if unequal. |
| | | | | | I |
pom - e -4 ot ettt 1
| 8. |Write Key-Data | Key Address?2 | C |000|Key |Update the Key

] | | | | |Length|portion. |
L 1 4 1 1 4 i - 4
v T T T 1 T T A
| 9. |Write Data | Area Address=? | |000|Data |Update the Data |
| | | | | | Length|portion. |
L 1 P T Pt L 1 - 1

r I . + T T T T '|
|10.* 3|Seek cylinder head | IOBDNRCF | € {o000| 6 |Seek back to track |
| | (CCHH) | | | | |containing beginning]
i | | i | | |of block.

e e - to——t T 1
|11. | Search ID Equal | TOBDNRCF + 2 | C |j000] 5 |Locate the block

| | | | | | | just written. |
e + o t—-- $-—1 S :
|12. | TIC jccw 9 | | | |Transfer if unequal. |
| I I | | | I I
S B At st St S : 1
j13. | Read Key-Data | | S,K |000] 256 |Read to validity |
| | | | | | | check. |
*, ______ | ——— L £ 1 L L —_ .1l
|2This CCW is present only if track overflow has been specified. |
|2This address is obtained from the DECB. |
| 2CCWs 10-13 are included only if the field DCBOPTCD specifies the write-validity-check |
| option. |
L J

56

r - 1
| Channel Program for Writing a New Block of Variable-Length Records or Undefined- |
| Length Records (Type DA) |
% T - T T T =TT 1 {
| CCW |Command Code |Address | Flags| |Count |Comments |
| No. | | | I | | |
o 1 = 1 t e A 1
| 1. | Search ID Equal | IOBSEEK + 3 | C]000] 5 |Search for track
| | | | | | | capacity record. |
o oo ommmmmm oo S s B —4- _ 1
| 2. | TIC |ccw 1 | | | | Transfer if unequal. |
| | | i | | | |
" -- e B T et ——-- -4
| 3. | Read Data | IOBDNRCF | s (000} 7 |Read capacity |
| | | | | | |record into IOB. |
o mmm—v $ —mm - - e ¥ 1
| u. | Search ID Equal | IOBUPLIM | C |000] 5 |Locate track |
| | | | | | |capacity record. |
Y $ —- S ——- 1
| 5. |TIC jCCW &4 | | | |Transfer if unequal. |
| [| I I I |
o P $ e O e 1
| 6. |Write Data | IOBSEEK + 3 | ¢,s (000] 7 |Update capacity |
| | | | | | | record. |
e oo - i oot 1 ¥ - -——{
| 7. | Search ID Equal jccw 12 | C |000] 5 |Locate current last |
| | | | | | | block on track. |
I — oo + - -4 -——1 - _ -
| 8. | TIC |jccw 7 | | | | Transfer if unequal. |
| | | | | | | |
" -- 1 e B 1
| 9. |Write Count-Key-Data | IOBDNRCF | D |j000] 8 | |
| | I | | | | |
P S i O e A | |
|10.2 |Write Count-Key-Data |Rey Address?3 | D |000|Key | |
] | i | | | Length|Write new block. |
o P —— 1 ot S s 1 |
j11.4 |Write Count-Key-Data |{Area Address?3 | |000|Data | l
|] | | | | Length| |
o fomom e fomomm oo $ommem oS O i
|112.5 |Search ID Equal | IOBSEEK + 3 | € |000] 5 |Locate new block. |
| | | | | | | |
— -- ommmmeee . B promtomes ¥ — .
[13. |TIC |cCw 12 | | | | Transfer if unequal. |
I | I | | | | |
" —mmm e t-- S et St S -—
|14. |Read Key-Data | [C,S,K|000| 256 |Read to validity |
| | i | | | | check the block. |
— $-- - - ¥ e 1
15.	Read RO		K	000] 16	Read to validity	
						check the capacity
						record.
p-———-) T, _— i __ Y i_ - 4						
*The IOB area that initially contained CCW 1 has been overlaid with 5 bytes (the CCHHR						
part) of the capacity record that was read by CCW 3.						
2CCW 10 is omitted if keys are not present in the block format.						
3This address is obtained from the DECB.						
#CCW 11 is omitted if Data Length is 0 (i.e., end-of-data-set mark).						
SCCWs 12-15 are included only if the field DCBOPTCD specifies the write-validity-check						
option.						
e e e e ———— — — - — J
Appendix C: Channel Programs for BDAM 57

r - - — - 1
| Channel Program for Reading or Writing by Block Key Using Extended Search (Type DK) |
l' ______ & T i 1 T === JI
| CCW |Command Word |Address | Flags| |Count |Comments |
| Yo | ! T)
r =TT L U T T 1
| 1. | Search ID Equal | IOBSEEK + 3] € 000} 5 | Search for an
[[| [| | equal CCHHR. |
F + - } i + 1
| 2. | TIC jccw 1 | | | | Transfer if unequal. |
I | | | [| I
e - ommoom I oo S y
| 3. |Multiple Track Search | IOBUPLIM + 3 | C 000 5 | Stop search at |
| | ID Equal | | | | |1imit. |
p--—--—1 -—- . R S S 1
| 4. |TIC |CCW 6 | | | | Transfer if unequal. |
- 1 . |
______ —— -—— - -— - J
T T T - 1
| 5. | NOP | | s | | 1 |Search limit |
{ { 1 l l i | reached. |
——— —— —_— P S A —— 4
T T T T a
| 6. | Search Key Equal | Key Address | C,S |000|Key | |
| | | | | | Length]| |
b=t —- —3 - e -
| 7. |TIC jcCw 3 | | | |Transfer if unequal. |
I 1 T I R |
—— —— - —_—t - 4
T T T T 1
| 8. |Read Home Address? | jc,s,Kjo00} 1 | |
— SRR S S S .
| 9. |Read Count | IOBDNRCF + 2 | C,s |000] 5 |Read CCHHR for
| | | | | | | feedback. |
t i -- ¥ e ¥ -- 1
}10. =Search Key Equal ,Key Address?2 : c :OOO}Key h:iearch for equal |
Lengt ey. |
t frmmmmm e I et e ¥ 1
j11. |TIC |CCW 9 | | | |Transfer if unequal. |
- ! S N J
__________ - T -T T T 1
j12. |Read (or Write) Data | Area Address?2 | |000|Data |Read (or Write) data]
| | | | | |Length|portion of block. |
e $-——- —t f——t-——1 { 1
|13.3 “|Seek cylinder head | IOBDNRCF | C (o000} 6 |Seek back to track |
} | (CCHH) | | | | jcontaining beginning|
| [[| I |of block. |
-t — $- T oo ¥ -—- -4
| 14. |Search Key Equal | Key Address=2 | C,S |000|Key | Locate the block |
| | | | | | Length| just updated. |
prmmmem fommnnm - $ - f—-——p-—-t - !
|15. |TIC |CCw 13 | | | jTransfer if unequal. |
| I] I I I I |
¢ ¥ oo 1 o e $ _ i
|16. |Read Data | | s,K |000] 256 |Read to validity |
i | I | | I | check. !
——— 41 e ot o 4L - - 1 —_—d L L 1
b
|*CCWs 8-11 are included if feedback is requested. |
|2This address is obtained from the DECB. |
|3This CCW is present only if track overflow has been specified. |
|4CCWs 13-16 are included only if the field DCBOPTCD specifies the write-validity-check |
| option. |
—— -1

L

58

v == k)
| Channel Program for Writing a New Block of Fixed-Length Records Using Extended Search |
{ (Type DA) I
e N ot . 1
| cCWw |Command Code | Address |Flags| |Count |Comments |
| No. | | I | | | |
ot $- — —————f-——1 + 1
| 1. |Search ID Equal | TOBSEEK + 3 | C 000} 5 |Search for track
l i | ! 1 1 lcapacity record. }
“““ - == - I =T T T 1
| 2. |TIC J]CCW 1 | | | |Transfer if unequal. |
P 1 S e S !
| 3. |Read Data | IOBDNRCF + 2 | ¢c,s |000] 5 |Read highest ID from|
|] | | | | |capacity record. |
t f=——-- 1 R ot I |
| 4. | Search ID Equal | IOBDNRCF + 2 | € }000] 5] |
——— 4 e e e e e e e e o e e - RN S [P, 4 4
b 3 + + S . , {
| 5. | TIC |cCw 12 | | | |Transfer if unequal |
e . - 1 o e 1
| 6. | Search Key Equal |Dggmy Key | ¢,s |000) 1 |Searcg for dummy |
Address record.
S S N O é
. T (e ransfer if unequal.
| 7 |TIC jccw 9 | | IT £ if 1.}
t t - t B $ 1
| 8. | TIC jcCwW 14 | | | |Transfer if equal. |
t $ommme ¢ S e 1 1
| 9. |Multiple Track Search | IOBUPLIM + 3 | ¢ o000} 5 | Stop search at |
ID Equal limit.
il - ; S U — j
|10. | TIC jCCW 3 | | | | Transfer if unequal. |
e + e s 3 4
|11. | NOP | | s | | 1 |Search limit |
| | | | I | | reached. |
e 1 s S ¥ —- 1
|12. | Search Key Equal | Dummy Key | ¢,s |000} 1 | |
| | |Address | | I I |
e } ¥ ¥ t-—1 frommmm e |
|13. | TIC |CCW 4 | | | | Transfer if unequal. |
| | | | I ! | |
po—mmm- } - -+ ==t rmmmmm oo 1
j14a. |Read Data | IOBDNRCF + 6 | ¢,s 000 1 |Read dummy record's |
osition (i.e., R).
A —— | I D |
]15.* |Seek cylinder head | IOBDNRCF | € {oo00] 6 |Seek back to track |
| | (CCHH) | | | | |containing beginning|
{ | 1 1 1 | lof block. |
r -TTT T T T '_+ “““ T "
|16. | Search ID Equal | IOBDNRCF + 2 | C 000 5 | Search for dummy
record.
S - S O i
117. | TIC jcCwWw 15 | | | |Transfer if unequal. |
| I I | o I |
p=—-——t + + Bt St 1
I18. IWrite Key-Data }Key Address? ’ C :0001§ey th%gpd:Fe the Key
eng ortion.
pommmm $==- + Pt et 1
|19. |Write Data |Area Address2 | |000|Data |Update the Data |
| | | | | | Length|portion. |
b= -—- 4 g e $-——4- $ —- 1
]20.* 3|Seek cylinder head | IOBDNRCF | C (000} 6 | Seek back to track |
| | (CCHH) | | | | | containing beginning|
| | | | | | |of block.
| i —_— R, L I I J J
(Continued)
Appendix C: Channel Programs for BDAM 59

r R
| Channel Program for Writing a New Block of Fixed-Length Records Using Extended Search |
| (Type DA) (Continued) |
L — —_— e e e g e e e o e o o . e e e e o o e e g e e e e e e o o Jd
r T T T T T 1
|21. | Search ID Equal | IOBDNRCF + 2 | C |000f 5 |Locate the block

| | | | | | | just written. |
o --- - -4- e St S ¥ - 1
|22. | TIC |ccw 19 | | | | Transfer if unequal. |
| | | ! | | | |
L i _— 1 1 Y NN

13 T + T T T . "
|23. |Read Key-Data | | S,K |000] 256 |Read to validity |
| | | I I | | check. |
_____ 1 1 —_Ll 1 4 L ___________._,1

|*This CCW is present only if track overflow has been specified.

|2This address is obtained from the DECB.

| 3CCWs 20-23 are included only if the field DCBOPTCD specified the write-validity-check
| option.

| I —_

60

z9

Get Storage for,
— and Initialize,
r ‘Read - Exclusive
Basic Direcf Access Method Routines I List
Processing Program Related System360 — e e e — — J—
- Routines
OPEN DCB Get Storage for DEB ——— Get Storage for
- P / e . Buffers and BCB
— l -
- gafu "Qanu'gement /2 — -~ o ,yl Build DEB Extents l
_ pen oihne IGGOI93A, 3C, 3Ef- . — I "I Create IRB
= = BDAM Open = ..
- - Executors <~ - - {nitialize DCB |
_ p— ~_ T — T o —"[Link Buffers Together |
= p— N~ Tre—me m————— =
= = | N
- — S \\ Load Processing Modules
p— — ~ and Store Addresses r— "{ Attach DEB To TCB
~
- ~— - — — — — _
p— Check Request Validity—l 1GGOI9KC
— - Relative Track
— / /'l Convert Address E — |GGOI9KE
S—

- T~ Relative Block
— No Tra::k Overflow
AW '| Build 108 I —

RE RITE
-, // - IGGOI9KF
= g ~ - \ Relative Block
= IGGOI9KA e | Process Request Errors l Track Overflow
— [— -
j— BDAM Foundation 1GGOIKK
- (Base Component)
- y ~ __»| Read/Wite by Block ID
—_ S -
_ \ ~N "
\ ~N |-~ IGGO19KM
\ Generate Channel [~ 7~ ——-—#] Write Add,Format V,U
\ Program T
— N
— Input/Output | — AN \\\\\ 1GGOI9KY
= ervi T . —Seli-Formaf
_ Supervisor : \ Schedule 1/O Reguest by \\\ \ e °§'§°Lh
— 1/O Interrupt | Placing It on /O Queue \ N
i O\ IGGOI9KI
= oSy - "\ ————
— 1/O Request at Top \\ Read/Write by Block Key
- of Request Queue 7 2
- [IGGO19KW
= l___—IOS 1GGO19KS | l Key Extended Search
— Remove This Request !
- from 10S Scheduled BDAM Start 1/O ! 1GGOIKQ
— Queve Appendage S~ - | L
= ~ H Write = Verify
— ~ ~< Get Buffer if Dynamic l
— 105 ™ Buffering Specified ! IGG019KO
- Begin Channel \ Lo Write-Add, Format F
- Program Execution \ 2
- N 1GGOI9LA
- No Buffer Buffer \\ Exrrﬁngrg‘:utrch
— . Available Available .ﬂ \
= \\ IGGOI9LE
E Dynamic Buffering

® Figure 16. Relationship Among Processing Program, BDAM Routines, and Other Components
of the Operating System

€9

105

1/O Interrupt

S]

Channel Program

I Error Routine I"—.

IGGO19KU

Terminates

Exit Effector

4

Input/Output
Supervisor

Schedule BDAM

(ASI Component)

Supervisor

CUVLTEER e e e e i e

1GGOI19LI

CLOSE DCB
= K //
= Data Management V4 ARe lease 1OB Storage Areas I
- Close Routine / e
= — i
= = ¥ s /'I Clear DCB BDAM Fields l
- = s
- = 1GG0203A It
- ~— L - 4| Free All Buffer Areas l
— —_ BDAM Close | -
- - Executor -
- — T —— Free Read-
- Exclusive List Area
Legend * If a WAIT is encountered as indicated, the supervisor returns

— Main flow of control
— — - Functions performed by main block
—-—-# Linkage to routines that perform indicated functions
and return to point of departure
10S: Input/Output Supervisor

® Figure 16.

Check for Error Retry

Release Buffers

/
/ ;l Set Completion Codes]
7 s

' Asynchronous
\\ Interrupt Routine // // Provide

: o > Py Exclusive Control -

N o4 -~ of Block

a
~
IGGOI9KA //
_____ Schedule Rest of Write-
BDAM Foundation [~ _ Add Channel Program

~ ’

N /
T \\:\\ N -
——

N\ N
AN \l Release 108 to Pool '
N

BDAM Check |—— — \ N
Module \\ Post Request Completion

|
N
{ \{Process Completion Errors
|

L

Check for Request

Completion

4 Purge Scheduled 10B's l

1f No, | : |
* BDAM Channel [~ — 7 7 7 ™ Procedures Requirement i vo
End Appendage

IGGOI9LG
— - Exclusive Control
/
IGGOI9KC
/ Track Feedback
.
/ 1GGO19KG

Block Feedback,
" No Track Overflow

IGGO19KH

T~ Block Feedback,
Track Overflow

None,
Check for Errors | Yes

Release
108

control to the processing program. If a WAIT is encountered
before the request is posted as complete, (i.e., before the
second indicated I/O interrupt) the processing program
relinquishes control until posting occurs.

A Either a WAIT of a CHECK may be specified. (Refer to text
at "Check Module".)

of the Operating System (Continued)

Relationship Among Processing Program, BDAM Routines, and Other Components

INDEX

Abnormal completion of request 14,43
Actual DEB extents 17
Adding fixed length blocks 22
Adding new blocks 5,6
Adding variable length blocks 22
Address conversion
feedback with relative block addressing
6
relative block 6
relative track 6
Address specifications 47
Appendage list 5,26
subpool 26
Appendages 8,25
ASI component 13,17,20,23,24,27-32,40,42

Base component 13,17,22,23, 40
Basic partitioned access method convert
routine 17,20

Basic sequential access method routine

11,22,23

BDAM appendage list 5

BDAM module addresses 10

BDAM module linkage 5

Block device address 20

Block updating 6

Block gqueueing 29,30

Block referencing 11

BPAM routine
(see basic partitioned access method

convert routine)

BSAM routine

(see basic sequential access method
routine)

Buffer addresses 32

Buffer control block 11,33
description 48

Buffer pool 32

Buffer queue 27,31,32

Capacity record 23-25
Categories of BDAM modules 6
Channel command words 21
Channel end appendage 13,14,25,27,28
Channel program 8,13,20,21,53
categories 21
end 13
ending address 43
restart 13
search arguments 21
Check code 25
Check feature 7
CHECK macro instructions
Check module 14,33
CLOSE macro instructions 33
Close module 8,9,33
Coded names for modules 51
Control blocks
buffer control block (BCB)
data control block (DCB)
6-9,12-14,25,29,33,39,46,47
data event block (DEB)

14,33

11,33,48

64

8,9,12,17,20,28,33, 45
data event control block (DECB)
13,14,20,23,24,33,41,42,44
data set control block (DSCB) 8
input/output block (IOB)
13,14,21-24,28,32,33,39-43
input request block (IRB) 11
task control block (TCB) 8

Data check indication 25
Data control block

address 44

(see also control blocks)
Data event block

(see control blocks)
Data event control block

(see control blocks)
Data set control block

(see control blocks)
Data set extents 8,11
Data verification 7
DCB macro instructions
Device address 20
Device-type errors 28
Dummy record 14

data field 22
Dynamic buffer module

5,7,14,27,29,31,32, 48
Dynamic buffer queue 43
Dynamic buffering option
5,7,11,14,25,27,31

6,11,21,23,28,33

End-of-data-set condition
End-of-extent appendage
Error code 30
Error component 14
Error-recovery procedure 28
Exclusive control 5-7,14,24,25,28-31, 41
Exclusive list 25
EXCP macro instructions
Exit effector routine 27
Extended search
key 21
pre-format 23
self-format 28
Extended search option
7,13,17,22,23,24,27,28
Extent
availability 28
periods of 11,12

27,28
24,25,28,42

13,42

Feedback module 20,47
Fields of relative extents
Format modules 7
Foundation niodule 6,8,13,17,21-23
FREEDBUF macro instructions 31,32
Functions of channel programs 6
Functions of close executor module 7
Functions of foundation module 6
Functions of open executor modules

phase 1 8

phase 2 8,11

vhase 3 12

11,20,45

5,6,8

GETMAIN macro instructions 13

IGC0005C 30
IGGO19KA 13
IGGO19KC 17
IGGO19KE 17-19
IGGO19KF 17,19,20
IGGO19KG 20
IGGO19KH 20
IGGO19KI 21
IGGO19KK 21
IGGO19KM 23,24
IGG019KO 23
IGGO19KQ 21,25
IGGO19Ks 25,27
IGG019KU 13,27
IGGO19KW 21
IGGO19KY 24
IGG019LA 22,23
IGGO19LC 24,28
IGGO19LE 31
IGGO19LG 29,30,49
IGG0O19LI 33
1660193A 8
IGG0193C 8
IGGO193E 11
IGG0203A 33
Incorrect length indication 28
Initial value of address fields in data
control block 47
Input/output block 29,30
address 44
availability indication 40
description 39-43
list 33
pool 13,33
release 14
storage for 13
(see also control blocks)
Input/output operation termination 5
Input/output supervisor 5,7,13,23,27,28, 43
Input/output supervisor scheduled queue 33
Interrupt request block 11
Inter-task queue 7,24,30
Intra-task queue 30
Invalid requests 14

List of available buffers 32

Module

addressing 13,17
relative block 17,20
relative track 17

appendage 8
channel end 7,13,14,25,27,28
end-of-extent 7,24,25,28, 42
start I/0 5-7,25,27,31

channel program 8,13,20,21
fixed write (pre-format) 22,23
search by ID 21
search by key 21
variable write 22,23,32,40
write-verify 7,21,25

check 14,32

close 7,8,32,33

dynamic buffering 5,14,27,31,32, 47

extended search
key 21

pre-format 23
self-format 24
feedback 20, 47
foundation 6,8,13,20-22
ASI component
13,17,20,23,24,26-28,32,40,42
base component 13,17,22,23,140
error component 14
open 6,20
prhase 1 8,9,25,29
phase 2 8,9,11,27,28,47
phase 3 11,12
Module addresses 10
Module linkage 5
Modules and DCB options 52
Modules as subroutines (table) 51
Multiple track search 23

Normal completion of channel program 43
Number of relative blocks 46

Number of relative tracks 46

Number of unused bytes on track 40

Obtaining an IOB 39

OPEN macro instructions 8,11
Open module (see module)
Option specifications 41,46
overflow block 11

Overflow section of DEB 45

Period

computation of 12

end of 11,12

of an extent 11,12
Permanent error 28
Phase 1 of open 8,9,25
Phase 2 of open 8-11,27,28,48
Phase 3 of open 12
Post routine 14
Pre-format channel program 22,23
Pre-format extended search 23
Purge routine 33

Queue
buffer 27,31-33, 43
scheduled 33
Queued requests for new block 2u4

Read-exclusive 1list 7,8,29,30,31,42,50
address of 47
nunber of entries 47
segment 49
READ macro instructions
5,6,13,14,21,27,29,41,44
Relative block addressing 17
Relative block number 17
Relative block option 11
Relative extent fields 11,20, 45
Relative track address 17-20
Relative track number 17
RELEX macro instruction 29-31
RELEX module 30,31
Request status indicator 41,42

Search limit 25,28

Search limit for extended search 24
Self-format channel program 22-24,29, 40
Self-format extended search 24

Index

Supervisor call (SVC) library 5
Synchronous error recovery (SYNAD) routine
33

Task control block 8
Track overflow 12,17,19, 41,45

UCB pointer 29

Unposted queue 24,25,29,30,33
address of entries on 47

Update programs 21

Update track address 24

WAIT macro instructions 33

Where-to-go table 8,12

WRITE macro instructions
5,6,13,21,27,29,30, 41,44

'Write-add' program 22,29
'Write-add' requests 24

Write-exclusive request 30

Write-validity check option 21,25

Write-verify channel program 7,21,25

Writing new blocks 22

TEXT REFERENCES FOR FIGURES, TABLES, AND CHARTS

Figure Page

1 8,25 1
2 12 2
3 8,13,14,17,20 3
4 8,13,14,17,20,23,27 4
5 21 5
6 23 6
6A 24,25 7
7 8,25 8
8 33 9
9 39 10
10 by 11
11 us 12
12 46 13
13 48

14 49

15 49

16 8

66

Chart Page

8 01 13,25
18 02 13
20 03 22
21 o4 29

READER'S COMMENT FORM

IBM System/360 Operating System .
Basic Direct Access Method Form Y28-6617-3

Program Logic Manual

® Is the material: Yes No
Easy toread? O 0O
Well organized? O O
Complete? ... O O
Well illustrated? . 0O 0O
Accurate? ... O O
Suitable for its intended audience?l O 0O

e How did you use this publication?
[J As an introduction to the subject Other .
O For additional knowledge

e Please check the items that describe your position:

[] Customer personnel [0 Operator [Sales Representative

J IBM personnel 0 Programmer [0 Systems Engineer

O Manager] Customer Engineer [0 Trainee

[J Systems Analyst] Instructor Other
e Please check specific criticism(s), give page number(s), and explain below:

[J Clarification on page(s) L 0 Deletion on page(s)

0 Addition on page(s)] Error on page(s)
Explanation:

e Thank your for your cooperation. No postage necessary if mailed in the U.S.A.

Y28-6617-3

YOUR COMMENTS PLEASE . . .

This publication is one of a series which servesas reference for systems analysts, program-
mers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use.
Each reply will be carefully reviewed by the persons responsible for writing and publish-
ing this material, All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

FIRST CLASS
PERMIT NO. 81
POUGHKEEPSIE, N.Y.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S. A.

POSTAGE WILL BE PAID BY

IBM Corporation
P.O. Box 390
Poughkeepsie, N.Y. 12602

Attention: Programming Systems Publications
Department D58

BBV

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

seesssacan

CVUSTN U pajuld 098/S W

€-£199-8TA

Y28-6617-3

B

International Business Machines Corporation

Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

" IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

09e/S Wil

VSN UL pauny

€-L199-8TA

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	replyA
	replyB
	xBack

