
Systems Reference Library

IBM System/360
Operating System
Oueued Telecommunications Access Method
Message Processing Program Services

Program Number 3605-CO-519

File No. S360-30
Form C30-2003-3 OS

This publication provides information on how to use the
Queued Telecommunications Access Method (QTAM) within
Option 2 (Multiprogramming with a Fixed Nurrcer of
Tasks) or Option 4 (Multiprogramming with a Variable
Number of Tasks) of the System/360 Operating System to
support a telecommunications application. Services
provided by QTAM in support of a message processing
program are described in detail, including the facilities
provided to establish the interface to a QTAM message
control program.

For detailed information on the QTAM facilities
provided for the construction of a rressage control
program" refer to the publication.q .!BM system/360
Operating system: QTAM Message Control Program, Form
C30- 2005.

PREFACE

This publication is intended fer the prob­
lem programmer assigned to write a rressage
processing program to support a QTAM­
controlled telecorrmunications system
operating under the IBM System/360 Cper­
ating System. Included is a general dis­
cussion of message Frocessing frograms,
followed by a detailed description of the
services QTAM provides in surpcrt of a rres­
sage processing program. The CTAM services
are provided. through standard rracro­
language statements such as GE~, PU~, OPEN,
and CLOSE.

Fourth Edition (November 1968)

The first four sections of a companion
publication, IBM System/360 Operating Sys­
tem: QTAM Message Control Program, Forrr
C30-2005, contain general information of
interest to the programmer writing a mes­
sage processing program" i.e., telecomITu­
nications applications# concepts and ter­
minology_ and message formats.

The prerequisite fer a thorough under­
standing of this publication is a basic
knowledge of System/360 machine concepts
and of the systern/360 operating System.

This edition, Forrr C30-2003-3, is a major revision of, and renders
obsolete, Form C30-2003-2. New information has been added throughout
the publication; changes and additicns to the text, and small changes to
illustrations, are indicated by a vertical line to the left of the
change; changed or added illustrations are denoted by a bullet (e) to
the left of the caption.

Significant changes or additions to the specifications contained in this
manual are continually being made.. when using this publication in
connection with the operation cf IBM equiprrent, check the latest SRL
Newsletter for revisions or contact the local IBM branch office.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back cf this publication for reader's
comments. If the form has been removed, corrrrents may be addressed to
IBM Corporation, Programming Documentation, P.O. Box 12275, Research
Triangle Park, North Carolina 27709.

€Dcopyright International Business Machines Corporation 1966, 1967,
1968.

INTRODUCTION .. •

GENERAL CONCEPTS OF A MESSAGE
PROCESSING PRCGRAM • .. • • ••
Message Flow within the Systerr.

MESSAGE PROCESSING PROGRAM SERVICES
Defining The Message Control Prcgram
Interface

Data control Block (DCB) Macro
Instruction
EODAD Routine

Handling the Message Control Prcgram
Interface ... '. • • • • • •

OPEN Macro Instruction • 0 • • • 0

CLOSE Macro Instruction 0 • .. 0 •

Obtaining Messages And Placing Response

5

6
8

12

• 12

• 13
• 17

.. 17
• 18
• 18

Messages • • • • _ . • • • .. 19
GET Macro Instruction • 19
PUT Macro Instruction • 21

NETWORK CONTRCL FACILI~IES • 23
Line Activation and Deactivation .. 0 • 23

stop Line (STOPLN) Macro
Instruction • • 23
Start Line (STARTLN) Macro
Instruction • .. 0 0 • 24

Examining and Modifying the Terminal
Table • • • • • • • • .. • • • • • 25

Copy Terminal-Table Entry (COPYT)
Macro Instruction • • • • • ... • 25
Change Terminal-Table Entry
(CHNGT) Macro Instruction .. 25

Figure 1. Sample Structure for a
Message Processing Program 7
Figure 2. CTAM Message Flew
(Part 1 of 2) • 10
Figure 3. Keyword Operands for
the Main Storage Process Queue DeB
Macro Instruction \ (Part 1 of 2) •• 14
Figure 4. Keyword Operands for
the Main Storage Destination Queue
DCB Macro Instruction • 16

CONTENTS

Release Messages (RELEASEM) Macro
Instruct ion • • • • • • • • 26

Examining and Modifying ~olling Lists 26
Copy Polling List (COPYP) Macro
Instruction .. • • 0 • • 0 • •• 0 27
Change Polling List (CHNGP) Macro
Instruction • • 27

Examining Queue Control Blocks • .. M n 28
Cony Queue Control Block (COPYQ)
Macro Instruction .. • • 28

Retrieving Messages 29
Retrieve Message Segment
(RETRIEVE) Macro Instruction • 29

CHECKPOINTING THE MESSAGE CONTROL
PROGRAM • .. • co .. • 32

DEACTIVATING THE TELECOMMUNICATIONS
SYSTEM • •• • • .. • _

CLOSEMC Macro Instruction
33

.. 33

APPENDIX A: QTAM CHECKPOINT DATA RECORD 35

APPENDIX B: FORMAT AND SUMMARY OF
~ACRO INSTRUCTIONS 36

APPENDIX C: RETURN CODES FOR MACRO
INSTRUCTIONS USED TO MODIFY AND
EXAMINE SYSTEM STATUS ... • .. co 39

APPENDIX D: QTAM SAMPLE PROGRAM .. 40

INDEX .. 41

FIGURES

Figure 5. Meaning of the Bytes
in the GET/PUT Prefix .. 21
Figure 6. Format of Queue
Control Block <QCB) • 29
Figure 7. Example of the Use of
the RETRIEVE Macrc Instruction .. 31
Figure 8. Return Codes for Macro
Instructions Used to Modify and
Examine System Status '" 39

In the IBM System/360 Operating System, an
access method is a procedure for transfer­
ring data between main storage and an
input/output device. A variety of access
methods is available to the user of the
operating system. One of these, the Queued
Telecommunications Access Method (QTAM),
controls data transfer between main storage
and remote terminals.

QTAM is a generalized input/output con­
trol system that extends the techniques of
data management to the telecomrrunications
environment. Data sets accessed by the
problem programmer are queues of messages
incoming from, or outgoing to, remote ter­
minals via comwunication lines. Even
though the time and order of the arrival
and departure of messages to and from the
central processing unit (CPU) are unpre­
dictable, the programmer handles them as if
they were organized sequentially.

Unlike other cO~T1only used access
methods, QTAM furnishes more than just the
mechanics for input/output operations. In
addition to the standard GET/PUT macro in­
struction support for message processing
programs, QTAM provides a high-level and
flexible message control language. QTAM­
supplied macro instructions can be used to
construct a complete message control pro­
gram that controls the flow of message
traffic from one rewote terminal to another
(message switching application), and
between remote terminals and any message
processing programs (message processing
applications).

A QTAM message control program is com­
pletely device-dependent, with all communi­
cation lines and terminals identified to
the system. Through data set definition
and control information macro instructions,
the user specifies his equiprrent configura­
tion and the main storage areas (buffers)
required for his applications. These
macros generate the tables and lists of

INTRODUCTION

control information that define the
environment of the system for the QTAM
logic. The number and size of the buffers
required are specified by the user, and are
one of the primary resources in the tele­
communications system. The buffers are
allocated to a common buffer pool from
which QTAM automatically and dynamically
uses them in accordance with immediate
requirements.

The message processing program services
of QTAM enable a programmer to process mes­
sages from a telecommunications network
with the same easy-to-use macro instruc­
tions that he uses for his local input/
output devices. Because a QTAM message
control program performs the input/output
operations, a completely device-independent
message processing program can be written.
The programmer is shielded from the time
and device-dependent aspects of the tele­
communications environment.

For a QTAM message control program to
handle the flow of message data between a
message processing prcgram and the remote
terminals in a system, there must be an
interface between the message control pro­
gram and the message processing program.
QTAM (in the form of macro instructions)
provides facilities that enable the pro­
grammer to establish this interface from
the message processing program.

This publication describes in detail the
services QTAM provides in support of a mes­
sage processing program. The message con­
trol program is discussed in general terms
when necessary to give a complete picture
of how a message processing program fits
into a QTAM-controlled telecommunications
system. For detailed information on the
message control program, refer to the pub­
lication IBM System/360 Operating System:
QTAM Message Control Program, Form
C30-200S.

Introduction 5

GENERAL CONCEPTS OF A MESSAGE PROCESSING PROGRAM

In telecommunications terminology, a mes­
sage is the unit of work with which the
programmer is concerned when he writes a
processing program. A message is composed
of two parts: the message header and the
message text. The header portion contains
control information about a particular mes­
sage used by the message control program in
performing its functions. This information
can include a destination code (for
example, a message processing program), the
code name of the originating terminal
(source code), a message-type indicator,
and other fields containing control-type
data. The text portion of a message con­
sists of the information of concern to the
party receiving the message. This party
can be a message processing program.

A message processing program normally
consists of an analysis routine and/or pro­
cessing routines that take action on the
text portion of a message. A response mes­
sage mayor may not be generated.

An analysis routine is user-written cod­
ing that examines the content of a message
to determine which course of action is to
be taken. With this decision, the analysis
routine establishes linkage to the process­
ing routine required to perform the neces­
sary action on the message. The complexity
of the analysis routine varies directly
with the total number of courses of action
that can be required by the inccming mes­
sages. The same method should be used for
detecting all message types. Fer example,
a message-type character can always appear
in a prespecified position in the message
header or in the first position of the
text.

The processing required may be standard
for all messages routed to a message pro­
cessing program. In this case, an analysis
routine is not required.

All processing routines are also user­
provided. There must be one precessing
routine for each specific course of action
required by a message. A message process­
ing routine is required when the user
wishes to cause a shutdown of the QTAM mes­
sage control program. At execution time, a
processing routine resides either in main
storage, as an integral part of the message
processing program, or on a DASD library.
If the latter method is selected, each pro­
cessing routine is assembled or compiled
independently of the rest of the message
processing program. It is linkage edited
onto a DASD library and brought into main

storage dynamically as needed via a LINK
macro instruction. Unlike a message con­
trol program, the message processing pro­
gram may contain control program services
(CPS> macro instructions as well as QTAM
macro instructions.

Note: The user must insure that the
operating system subroutine error trace
scheme can function. This may be done by
making a SAVE macro the first instruction
in each message processing program. For
detailed information, see IBM System/360
Operating System: Supervisor and Data
Management Services. Form C28-6646.

QTAM provides certain functions in sup­
port of a message processing program and
the telecommunications system. These func­
tions include:

1. Obtaining a message for processing,

2. Placing a response message, if any, on
a destination queue or another process
queue.

These two functions (unlike the functions
performed by the processing routine and the
analysis routine) are peculiar to QTAM,
which provides macro instructions to aid in
performing them.

The GET macro instruction obtains a mes­
sage from the main storage process queue
and places it in a user-specified work
area, where it is then analyzed and pro­
cessed. The PUT macre instruction causes a
response message to be placed on a destina­
tion queue. These macro instructions are
described in detail under the Obtaining
Messages and Placing Response Messages
section.

A QTAM message control program performs
the actual input/output operations required
by a message processing program. The mes-

I sage control program must be executed in
the highest priority partition or region.
As many message processing programs as
there are partitions er regions remaining
can operate concurrently with the message
control program. Each message processing
program must operate in a partition or
region separate from ether message process­
ing programs and from the message control
program in order for QTAM to provine asyn­
chronous operation for all programming com­
ponents of the system.

6 OS QTAM Message Processing Program Services

After being assembled, linkage edit-ed,
and placed on a library, a message process­
ing program can be executed by placing the
appropriate job control cards in the input
job stream, following the job centrol cards
for the message control prograro, or for a
different message processing prcgram.

Figure 1 shows a sample structure for a
message processing program. The DCB macro
instructions define the data control block
for the main storage process and destina­
tion queues. The user must define all
queues referred to by his program. The
OPEN macro instruction prepares these data
control blocks for use in processing. The
statement "other initialization instruc­
tions" represents any instructions the user
wishes to include to clear storage areas.
etc. GET obtains a message. The "analy­
sis" instructions determine which process­
ing routine is needed to process the mes­
sage. The appropriate LINK rracro instruc­
tion brings the specified processing rou­
tine into main storage and executes the
routine. Response messages generated by
the processing routine are placed on the
appropriate destination queue by the PUT
macro instruction.

The user then performs a test to deter­
mine whether processing should terminate.
If processing should continue, the program
branches to GET to obtain the next message.
If processing should terminate, the program
performs any necessary termination
functions.

The program structure shown in Figure 1
assumes that no EODAD keyword operand was
specified in the DCB macro instruction for
the main storage process queue. If no mes­
sage has been placed in the main storage
process queue by the message control pro­
gram, the message processing program enters
a wait state, and is reentered enly when a
message arrives for this main storage pro­
cess queue.

DCB

DCB

•

(other definition macro instructions)

•

•

OPEN

•

(other initialization macro instructions)

•

-----4 ~GET

(macro instructions for analyzing message)

•

LINK A

•

LINK B

•

LINK C

•

PUT

Request
for

Shutdown

(perform termination functions)

•
CLOSE MC
•
CLOSE

RETURN

Figure 1. Sample Structure for a Message
Processing Program

General Concepts of a Message Processing Program 7

MESSAGE FLOW WITHIN THE SYSTEr1

This section describes the flow of a mes­
sage between a remote terminal and a mes­
sage processing program operating under
QTAM. The manner in which a QTAM message
control program acts as an intermediary
between the terminal and the message pro­
cessing program is discussed in some
detail. Figure 2 illustrates this flow.

The input message is prepared at the
remote terminal location. Messages are of
variable length and consist of two parts:
header and text. The terminal sends the
message to the computer via a ccmmunication
line. Step 1 of Figure 2 shows the message
passing through an IBM 2701, 2702, or 2703
control unit and the multiplexer channel"
and filling available buffers from the QTAI-1
buffer pool defined in the message control
program.

The user defines the size of his buffers
in the message control program. QTAM
inserts control infermation (known as a
prefix) in the first portion of each buf­
fer. The first 32 bytes of a buffer, used
to contain a message header, are set aside
for a header prefix generated ty QTAM.
This buffer may contain text data in addi­
tion to the header. However, the entire
header must be contained in this buffer.
The characters transmitted by the remote
terminal begin to fill the buffer in the
thirty-third byte. The first 22 bytes of a
buffer used to contain text data only, are
set aside for a text prefix generated by
QTAM. Message data begins to fill the buf­
fer in the twenty-third byte.

The user transmits single-segment or
multisegment messages. A message segment
is message data that occupies one bufferQ
In single-segment messages, the entire mes­
sage is contained within one buffer. In
multisegment messages, more than one buffer
is needed for a message.

In all but the last buffer fer a multi­
segment message, the segment containing a
header is shorter than a segrrent containing
text only, because the header prefix
generated by QTAM is ten bytes longer than
the text prefix. In each buffer used to
contain intermediate text, the segments are
the same size. In the last buffer for a
multisegment message, the message text por­
tion of the segment can be any length equal
to, or less than, the buffer length minus
22.

The buffers shown in Figure 2 are each
PO bytes in length. The first input buffer
thus accommodates a message segment of 48
characters (26 constitute the header por­
tion of the message and 22 constitute the

8 as QTAM Message Processing Program Services

text portion). In the second input buffer,
the message segment is 58 characters; all
of which are text data. The third and last
in~ut buffer contains the remaining charac­
ters in the message. Because the inout
message is 150 characters, the messa~e seg­
ment size for this buffer is 44.

As soon as a buffer is filled with the
first segment of a message, the receive
group portion of the line procedure speci­
fication (LPS) section of the message con­
trol program performs user-selected func­
tions such as code conversion, logging"
updating of message counts, incorporation
of time-received and date-received informa­
tion, and input-sequence-number checking.
The first three functions can also be per­
formed for text segments. In the example
shown in Figure 2, the user has specified
that six characters of time-received infor­
mation be incorporated into the message
header (see Step 2).

After performing these functions, the
receive group of the LPS routes the prefix
(minus the first eight bytes 1) and message
segment to a DASD process queue on the DASD
message queues data set. Bach DASD process
queue is associated with a message process­
ing program. Messages requiring text pro­
cessing should be routed to the DASD pro­
cess queue associated with the message pro­
cessing program that processes that type of
message. The user controls this routing
either via the message header (the destina­
tion code is the name of the DASD process
queue) or via LPS rracro instructions (which
direct messages of a particular type to a
particular queue). step 2 shows the LPS
routing a message to a DASD process queue.

For each DASD process queue maintained,
QTAM maintains a correspon1ing queue in
main storage. Each main storage (MS) pro­
cess queue is maintained in buffers from
the QTAM buffer pool in the message control
program. The number of buffers allocated
to a MS process queue is specified in a
data control block defined in the message
proceSSing program that gets messages from
that queue. After the data control block
for the MS process queue has been opened by
the message processing program, a QTAM rou­
tine in the message control program auto­
matically passes the message segment from
the DASD process queue to a buffer in the
MS process queue (see Step 3). In moving
the prefix and segrrent to the buffer, the
eight bytes that were deleted when the pre­
fix and segment were placed on the DASD

1The first eight bytes of a header or text
prefix contain control information used
only in main storage buffer handling.
Therefore, these bytes are not placed on
the direct access device.

process queue are restored, so that the
prefix length is once again 32 (header pre­
fix) or 22 (text prefix).

Each time the message processing program
gains control and issues a GET (Step 4),
OTAM passes message data frorr the MS pro­
cess queue to a user-specified work area in
the message processing program. Message
data is provided in the work unit specified
by the user in the data control block. The
work unit may be a complete rressage, a mes­
sage segment, or a record. Before moving
the message data to the work area, QTAM
strips the header and text prefixes from
the message segments. QTAM places a four­
byte prefix in the first four bytes of this
work area. This prefix indicates the size
and type of the work unit on which the pro­
cessing program is to operate. After
receiving the message data, the message
processing program processes it as required
by the application.

A message processing program that
generates a response message must define
and open a data control block gcverning
message transfer before it attempts to
place the message on a DASD destination
queue. This data control block contains
information needed by QTAM to establish an
MS destination queue. When a PUT macro in­
struction is issued by a message processing
program (step 5), QTAM moves the message
data from the user-specified work area into
the MS destination queue. The header and
text prefixes are attached to the message
segments in the buffer areas that make up
the MS destination queue.

As the message data fills the buffers n
QTAM inserts chaining addresses and other

necessary control information into the pre­
fix fields. The respcnse message generated
by a message processing program can be any
size. (The one used in Figure 2 is 120
characters.)

After the header or text prefixes have
been added in the MS destination queue,
QTAM places the segment into the appropri­
ate DASD destination queue on the DASD mes­
sage queues data set (step 6).

QTAM retrieves rressage segments from the
DASD destination queues on a first-in
first-out basis within priority groups.
The message segments are brought in from
the direct access device and placed in
available buffers (Step 7). The "send
group" of the LPS section in the message
control program then performs user-selected
functions such as converting the code of
the message to the transmission code of the
terminal, incorporating time-sent and date­
sent information in the header, message
logging, and updating of message counts.
These operations are performed in the buf­
fers that receive the message segments from
the direct access device. QTAM then strips
the header and text prefixes from the mes­
sage segments and transmits the message to
the appropriate terminal (Step 8).

The header and text prefixes described
in this section are generated automatically
and are used by QTAM routines. No program­
ming considerations are required by the
user for the manipulation of the buffers
and their prefixes. They are described
here to give a complete view of the message
flow through the system.

General Concepts of a Message Processing Program 9

g
.~

GI
to-
e

.2
o
.~

~ o
o

to-

Figure 2.

Telecommunications
Control Unit

Header

Multiplexor
Channel

Text

QTAM Message Flow (Part 1 of 2)

Message Control Program

(Buffer Pool)
I- - - ______________ -I

I I

I I

: First Input Buffer

Header

I

I

I I
I I
r- - - - - - - - - - - - - - - - --

Send Group
of lPS

~---------
I
I
: First Output Buffer

10 as QTAM Message Processing Program Services

Receive Group
of lPS

--------1
I

I
I

Figure

DASD- Message Queues

Message Control Program

(Buffer Pool)
i------------------1
I I

I :
I I

I
I
I I

r------------------~
1it

MS Process Queue

MS Destination Queue

~-------~-------~
I

I 22 Bytes I

~----------------~
(Buffer Pool)

2. QTAM Message Flow (Part 2 of 2)

GET

Message Processing Program

Message Charocters

PUT

General Concepts of a Message Processing Program 11

MESSAGE PROCESSING PROGRAM SERVICES

The routing of messages between a message
processing program and remote terminals is
handled by the QTAM message control pro­
gram. Because a message processing program
depends on the message control program to
perform its input/output operations, an
interface must be established between a
message processing program and the message
control program. QTAM provides the follow­
ing services that allow this interface to
be established from a message processing
program:

• Defines the message control program
interface (DCB macro instruction)

• Initializes and activates the message
control program interface (OPEN macro
instruction)

• Obtains messages and transfers response
messages (GET and PUT macro
instructions)

• Deactivates the message control program
int2rface (CLOSEMC macro instruction)

Unlike the functions performed by the
analysis and processing routines of a mes­
sage processing program, these functions
are partially or wholly peculiar to QTAM
and the telecommunications environment.
Therefore, QTAM provides routines to accom­
plish these functions. Linkage to these
routines is established by QTAM macro
instructions in a message processing pro­
gram. The remainder of this section dis­
cusses these macro instructions in detail.

DEFINING THE MESSAGL CONTROL PROGRAM
INTERFACE

Message transfer from a main storage (MS)
process queue to a message processing pro­
gram 1S controlled by a data control block.
If the message processing program generates
a response message, message transfer from
the message processing program to a main
storage (MS) destination queue is governed
by another data control block. The user
must define, open, and close these data
control blocks in the message Frocessing
program.

A DCB macro instruction must be speci­
fied for each MS process queue (queue pro­
viding input to the message processing pro­
gram) and for each MS destination queue
(output queue) referred to by a message

processing program. A DD statement must be
provided for each DCB. The DD statement
must contain only DUMMY in the operand
field. This indicates that no I/O device
is being assigned. The name of the DD
statement must be identical with the name
specified in the DDNAME keyword operand of
its associated DCB macro instruction.

Examples of DD statements for a message
processing program are:

r--------T---------T----------------------,
1 Name I Operation) Operand I
t--------+---------+----------------------~
\MAINPQ IDD I DUMMY I
r--------+---------+----------------------~
IRESPMT IDD I DUMMY I l ________ ~ _________ ~ ______________________ J

The data control blocks generated by the
expansion of these macro instructions are
not associated with data sets themselves.
Instead. they contain the necessary control
information to establish the interface tp
the QTAM message control program, which
uses this control information in transfer­
ring data to and from the message process­
ing program.

The message control program performs the
actual input/output operations nee~ed to
receive and send messages over communica­
tion lines. The incoming messages that
must be routed to a message processing pro­
gram are first placed in the DASD process
queue associated with the message process­
ing program. After the data control block
for the MS process queue has been opened,
and the first GET rracro instruction is
issued in the message processing program,
the message control program begins trans­
ferring messages from the DASD process
queue to the MS process queue. While the
MS process queue remains open, the message
control program automatically replenishes
it with messages from the DASD process
queue in anticipation of the next GET.

Similarly, the MS destination queue must
be defined (by a DCB macro instruction) and
opened in the message processing program if
a response message is to be sent. When a
PUT macro instruction is issued, the PUT
routine transfers the message to the MS
destination queue and signals the message
control program that a message is ready to
be placed on a DASD destination queue. The
message control program places the message
on the appropriate DASD destination queue.
FinallYn the message control program

12 OS QTAM Message Processing Program Services

retrieves the message from the DASD
destination queue a~d transmits the message
to the appropriate terminal.

Messages generated by the message pro­
cessing program can also be sent to another
message processing program. This is accom­
plished via a PUT macro instruction. The
data flow is identical with that described
previously for sending a message to a ter­
minal" except that roessage transfer from
the ~S destination queue is to a DASD pro­
cess queue.

Thus, the MS process and MS destination
queues defined in the message processing
program serve as the connectors between the
message control program and the message
processing program. When the QTAM message
control program is used as an intermediary
between the message processing program and
the remote terminals, the message process­
ing program is completely device­
independent.

Data Control Block (DCB) ~acro Instruction

In a message processing program, the DCb
macro instruction defines two types of data
control blocks.

One data control block contains the in­
formation needed to create the ~S process
queue from which messages can be obtained
for processing. The other data control
block contains the information needed to
create the MS destination queue" and is
required only if response messages are to
be generated.

Normally, only one MS process queue is
defined in a message processing program.
All rr,essage types to be processed by a par­
ticular message processing program are
obtained from the same MS process queue.
,n.n analysis routine determines the type of
each message and establishes linkage to the
appropriate processing routine. However,
it is possible to have multiple MS process
queues in the same message processing pro­
qram; that is, one MS process queue for
each type of message to be processed. In
this case, the EODAD keyword o~erand should
be used to regain control if no message
appears in this MS process queue. Execu­
tion of another GET from a different MS
process queue can be effected, and so
forth.

Only one MS destination queue is
required (and only if a response message is
to be generated)" regardless of the number
of MS process queues.

The DCB macro instruction causes the
allocation of main stcrage space for a data
control block at assembly time. Parameters
based on the operands in the macro instruc­
tion are included in the data control
block. No executable code is generated
through this macro.

Figures 3 and 4 show the operands for
DCB macro instructions for two dat.a control
blocks: the MS process queue DCB, and the
~s destination queue, respectively.

r-----T-----------T-----------------------,
jName 1 Operation I Operand I
r-----+-----------+-----------------------~
]dcb 1 DCB I keywor~ operands I l _____ ~ ___________ ~ _______________________ J

dcb
The address of the DCB macro instruc­
tion. The narre must be specified.

keyword operands
The operands that can be included to
facilitate the centrol of message
transfer between the message process­
ing program and a DASD process or DASD
destination queue. The operands for
the two types of DCB macro instruc­
tions in the rressage orocessing pro­
gram are described in Figures 3 and 4.

When a parameter is provided by an
I alternate source, one or more symbols

appear in the table. When there is no
alternate source, no symbols are shown.
The symbols have the following meanings:

Symbol

PP

OE

Meaning

The value of the operand can
be provided by the user's
problem program any time
before the data control
block exit at open time.

The value can be provided by
the user's problem program
any time up to and including
the data control block exit
provided at open,time.

Message Processing Program Services 13

r---------------T---------T--,
I Keyword I Alternate I 1
I Operands I Source IValue Description I
~---------------+---------+--~
I DSORG=t".lQ I I MQ I
I I I I
I I I Identifies the data control block as one I
I I Igoverning message transfer to or from a I
I I Itelecommunications message processing queue. I
I I IIf this operand is omittedg the telecommuni-I
I I Ications job o when executed" is terminated. I
~---------------+---------+--~
IMACRF=G I I G I
I I I I
I 'ISpecif.ies that access to the MS process I
I I ,queue is to be gained with the GET macro in-I
I I Istruction. If this operand is omittej" the I
I I Itelecommunications job, when executed, is I
, I 1 terminated. I
~---------------+---------+--~
IDDNAME=ddndme IPP Iddname I
I I I I
I I lIS the name that appears in the DD statement I
I I lassociated with the data control bloct. I
I I IThis name is also the name used in the I
I I IPROC£SS macro instruction to identify the MSI
I I Iprocess queue. If this operand is omitted I
I I land the value is not provided through an I
I I lalternate source, the telecommunications I
I I Ijob, when execute1. is terminatej. I
~---------------+---------+--~
f~UFRQ=absexp l IOE labs exp I
IbBUFRQ=O J I I I
I I lIS the number of buffers to be requested in I
I I ladvance for the GET macro instruction. I
I I I"absexp" must be less than 256. If this I
I I loperand is omitted anc the value not sup- I
I I Iplied by an alternate sourceo BUFRQ=O is 1
I I I assumed. I
~---------------+---------+--1
ISOWA=absexp 10E labsexp I
I I I I
I I]Is the size in bytes of the user-provided I
I I I input work area; "absexp" must be less than I
I I 132 0 7680 This value must include the four- I
I I Ibyte user prefix. If this operand is I
I I lomitted and the value is not provided by an I
I I lalternate source, the telecommunications I
I I Ijob, when execute1 n is terminated. I L _______________ ~ _________ ~ __ J

Figure 3. Keyword Operands for the Main storage Process Queue ryCB
Macro Instruction (Part 1 of 2)

14 OS QTAM Message Processing Program Services

r---------------T---------T--,
I Keyword I Alternate] I
I Operands I Source IValue Description I
~---------------+---------+--~

~
RECFM=G~ OE I G, S, or R J
RECFM=S I I
RECFM=R I I

ISpecifies the work unit as follows: I
I I
IG message (defined by the end-of- I
I transmission character). I
I I
IS segment (defined by the buffer size). I
I I
IR record [defined by the carriage return I
I (CR), line feed (LF). new line (NL). ort
I end-of-block (EOB) characterl. ,
I I
IIf this operand is omitted and the value is I
Inot supplied by an alternate source, RECFM=SI
lis assumed. I

~---------------+---------+--~
'[EODAD=relexpl IOE Irelexp ,
I I I I
I I lIS the symbolic address of a user-provided I
, 'Iroutine to be entered if no messages are I
I I 'available when a GET macro instruction is ,
I 'Iissued. If this operand is orritted and the I
I I Ivalue not supplied through an alternate 1
I I Isource. a WAIT macro instruction is implied. I
~---------------+---------+--~
I [TRMAD=relexpl OE relexp , , ,
, Is the symbolic address of a user-provided ,
, area to contain the terminal name. When a I
, GET macro instruction is issued, QTAM places,
, the source terminal name at the specified I
I address. The length of the area must be I
I equal to or larger than the maximum size 1
I terminal name or process queue name usedq ,
, If the Auto Poll facility or switched line)
, groups are being used, the SOURCE macro in- ,
I struction is required in the LPS for these]
, line groups. If this operand is omitted andl
I the value is not provided through the I
I alternate source, the telecommunications ,
I job, when executed, is terminated. I
~---------------+---------+--~

[SYNAD=relexpl IOE Irelexp ,
I I I
I lIS the symbolic a1dress of a user-provided I
I]routine to be entered if a work unit is I
I Ilonger than the work area provided for I
I I input. If this operand is omitted and the 1
I Ivalue is not provided through the alternate I
I Isource, the remainder of the work unit is I
, Isupplied when the next GET macro instruction I
I Jis issued. Data remaining in the buffer" I
I I however, will be lost for a GET segment. I _______________ ~ _________ ~ __ J

Figure 3. Keyword Operands for the Main Storage Process Queue DCB
Macro Instruction (Part 2 of 2)

Message Processing Program Services 15

r---------------T---------T--,
I Keyword I Alternate I I
I Operands I Source IValue Description I
~---------------+---------+--i
I DSORG=MC I IMQ I
I I I I
I I IIdentifies the data control block as one I
I I Igoverning message transfer to or from a I
I I Itelecommunications message processing queue. I
I I IIf this operand is omitted. the telecoromuni-j
I I Ications job, when executedu is terminated. I
~---------------+---------+--~
IMACRF=P I IP I
I I I I
I I ISpecifies that messages are to be trans- I
I I Iferred to an MS destination queue by the PUTI
I I Imacro instruction. If this operand is I
I I lomitted" the telecommunications jobu when I
I I I executed, is terminated. I
~---------------+---------+--i
I [DDNAME=ddname]IPP Iddname I
I I I I
I I lIS the name that appears in the DD statement I
I I 1 associated with the data. control block. If I
I I Ithis operand is omitted and no value is pro-I
I I Ivided through an alternate source. the tele-I
I I I communications jobu when executed." is I
I I I terminated. I
~---------------+---------+--~
I ~ECFM=ru OE I G, S, or R I
I RECFM=S I I
I RECFM=R ISpecifies the work unit as follows: I
I I
I IG
I J

I
IS
I
I
I
I
IR
I
I

message (the contents of the work area
is considered to be a full message).

segwent (the contents of the work area
is considered to be a segment and it
should fit into the buffer an even num­
ber of times).

record (the contents of the work area
is considereo to be a complete record).

IIf this operand is omitted and the value not
lprovided through an alternate source,
IRECFM=S is assumed.

~---------------+---------+--~
[TRMAD=relexp] PP Irelexp I

I I
lIS the symbolic a 0 dress of a user-provided I
larea to contain the terminal table entry I
Iname. The length of the area must be equal I
Ito, or larger than, the maximum size termi- I
Inal name or process queue name used. If I
Ithis operand is omitted u the telecommunica- I
Itions jobo when executed, is terminated. I
lWhen a. PUT macro instruction is issue~u the I
Idestination terminal name must be provided I
Jat the specified address. The name must be I
Idefined in a terminal table entry within thel
Imessage control program. I _______________ i _________ i __ J

Figure 4. Keyword Operands for the Main Storage Destination Queue DCB
Macro Instruction

16 as QTAM Message Processing Program services

Examples:

1. A DCB macro instruction that defines
the parameters of a data control block
associated with a main storage process
queue (see Figure 3 above).

Note: For optimum perforroance, the
message control program should always
attempt to read ahead to keep one full
work unit ready to be transferred in
response to a GET. To achieve this,
the BUFRQ operand should specify twice
the number of buffers required to hold
a single work unit. For example, a
message of 200 data characters would
require three lOO-character buffers
(200 data characters plus 76 charac­
ters of QTAM control information).
The BUFRQ operand" in this case g

should specify six buffers.

r-------T---------T-----------------------,
I Name I Operation I Operand I
~-------+---------+-----------------------~
IPPMQIN IDCB IDDNAME=PRCIN, ,
I , I DSORG=MQ, I
I I jrJIACRF=G, I
I I I BUFRQ=6,SOWA=300, ,
I 'lRECFM=G, I
I I !TRMAD=SOURCE g ,

I I , SYNAD=ERROR I L _______ ~ _________ ~ _______________________ J

2. A DCB macro instruction that defines
the parameters of a data control block
to govern response message transfer
(see Figure 4 above).

r-------T---------T-----------------------,
'Name I Operation I Operand I
~-------+---------+-----------------------~
I PPMQOUTIDCB IDDNAME=PRCOUT, I
I I IDSORG=MQ,~~CRF=P, I
I I IRECFM=G. ,
I I , TRMAD=DESTN I L _______ ~ _________ ~ _______________________ J

EODAD Routine

The EODAD operand of the DeB for the
main storage process queue allows the user
to specify a routine that will receive con­
trol when a GET is issued for that queue
and there is no message there. This rou­
tine may do some processing and then
attempt to get messages from some other
queue. For example:

PRCPROG

GET QUEUE1 EODAD=SUBRTN1

SUBRTNl

GET QUEUE2 EODAD=SUBRTN2

SUBRTN2

GET QUEUE3 EODAD=PRCP"ROG

In this situation, if all the queues are
empty, this process program loops continu­
ally, relinquishing control only for I/O
interrupts.

It is suggested that the user issue some
sort of wait before ccmpleting the loop.
This might be accomplished by issuing an
SVC STIMER for 3 milliseconds or so to
allow the higher priority partition to get
controln This will allow the message con­
trol program to process at least one mes­
sage before giving control back to the pro­
cessing program.

If this GET-EODAD loop is absolutely
necessary, then the jeb in which it occurs
must be in the lowest priority job in the
system.

HANDLING THE MESSAGE CONTROL PROGRAM
INTERFACE

QTAM provides macro instructions to handle
the interface between the message process­
ing program and the message control pro­
gramo These macro instructions have the
following functions:

• Initializing and activating (OPEN macro
instruction)

• Deactivating (CLOSE and CLOSEMC macro
instructions)

Initialization and activation of the
interface to the message control program is
accomplished by issuing an OPEN macro in­
struction for the MS process queue(s), and
if response messages are to be generated,
for the MS destination queue. The OPEN
routine performs the initialization func­
tions that are necessary to activate the
interface. No QTAM macros (including OPEN,
CLOSE, GET o and PUT) may be processed
before the DCB for the direct access device
message queue has been opened or after it
has been closed. After the MS process and
~S destination queues have been openedn the
transfer of data to and from the message
processing program can commence .•

Message Processing Program Services 17

When not required for further opera­
tions, the MS process and MS destination
queues should be deactivated. The CLOSE
macro instruction accomplishes this by
removing the queues from active use. The
interface to the message control program is
effectively destroyed, and no further mes­
sages may be obtained from the MS process
queue or placed on the MS destination
queue.

The deactivation of the MS process and
MS destination queues can be performed in a
special deactivation routine within the
message processing program. This special
routine can be entered as the result of a
message received from a terminal operator
directing that termination functions be
performed. The analysis routine is coded
to recognize this message (by a unique
character indicating the message-type) as
one requiring the execution of the deacti­
vation routine. Linkage is established to
the deactivation routine, which includes
the necessary CLOSE macro instructions and
instructions to perform other required ter­
mination functions.

OPEN Macro Instruction

The data control blocks for MS process
queues must be opened before the message
processing program can issue GET instruc­
tions to receive messages from the queue.
The MS destination queue must be opened
before the message processing program can
~UT response messages to any destination.
The OPEi:~ macro instruction causes the
initialization of the message centrol pro­
gram interface to be completed.

All data control blocks in the message
processing program can be opened collec­
tively with one OPEi.~ or opened separately
by individual OPEN macro instructions.

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
I [symbol] I OPEN I ({dCb1., [INPUT J '} ...) I
I I I OUTPUT I
I I I I
I I I [, MF=L l I
I I I , MF= (E, listname)J I l ________ ~ _________ ~ ______________________ J

symbol
Either the name of the first instruc­
tion, generated by OPEN or the name of
a parameter list created by OPENo If
the MF=L operand is specified, "sym­
bol" must be included. It becomes the
name of the parameter list. If no MF
operand is specified, or the MF=(E,
listname) operand is specified, "sym-

INPUT

bol" is optional. If included 6 it
becomes the name of the first instruc­
tion generated by OPEN.

The address of the data control block
to be opened. If register notation is
used, the register must contain the
address.

Specifies that this data set can be
used for input. INPUT should be spec­
ified for MS process queue data sets.

OUTPUT

~F=L

Specifies that this data set can be
used for output. OUTPUT should be
specified for MS destination data set.

Causes creation cf a parameter list
based on the OPEN operands. No
executable code is generated. The
user must specify this form of the
OPEN with his program constants. The
parameters in the list are not used
until the problem program issues an
OPEN (or CLOSE) macro with an MF=(E n
listname) operand referring to the
list (see following text). The name
specified in the name field of the
OPEN macro becomes the name assigned
to the parameter list.

MF={E,listname)
Causes execution of the OPEN routine,
using the parameter list referred to
by "listname." This list was created
by a macro having the MF=L operand
specified o as described previously.
Parameters specified through a macro
having an MF={E~listname) operand
override correspcnding parameters in
the list. An OPEN macro with the
M~=(Enlistname) cperand can also refer
to a parameter list created by a CLOSE
macro with an MF=L operand.

CLOSE Macro Instruction

The CLOSE macro instruction is used to
deactivate the interface between the mes­
sage processing program and the message
control program. After the MS process
queue has been closed, no further messages
can be obtained from it for processingo
Similarlyg after the MS destination queue
has been closed6 no further response mes­
sages can be placed on it. When a CLOSE is
issued, main storage and subroutines
acquired at open time are released; fields
in the data control block that were ini­
tialized at open time are cleared.

18 OS QTAM Message Processing Program Services

r--------T---------T----------------------,
I Name IOperationlOperand I
~--------+---------+----------------------~
I [symbol] I CLOSE I ({ dcb1., , } •••) I
I I I I
I I I r, MF= L] I
I I I ~MF=(E,listname) I l ________ ~ _________ ~ ______________________ J

symbol

dcb1.

MF=L

Either the name of the first instruc­
tion generated by CLOSE or the name of
a parameter list created by CLOSE. If
the MF=L operand is specified, "sym­
bol" must be included. It becomes the
name of the parameter list. If no MF
operand is specified, or the
MF=(E,listname) operand is specified,
"symbol" is optional. If included, it
becomes the name of the first instruc­
tion generated by CLOSE.

The address of the data control block
to be closed. If register notation is
used, the register must contain the
address.

Causes creation of a parameter list
based on the CLOSE operands. No
executable code is generated. The
user must specify this form of the
CLOSE with his program constants. The
parameters in the list are not used
until the problem program issues a
CLOSE (or OPEN) macro instruction with
an MF=(E,listname) operand referring
to the list (see following text). The
name specified in the name field of
the CLOSE macro becomes the name
assigned to this parameter list.

MF=(E,listname)
Causes execution of the CLOSE routine
by using the parameter list referred
to by "listname." This list was
created by a macro having the MF=L
operand specifiedw as previously
described. Parameters specified
through a macro having an MF=(E,
listname) operand override correspond­
ing parameters in the list. A CLOSE
macro with the MF=(E,listname) operand
can also refer to a parameter list
created by an OPEN macro with an MF=L
operand.

OBTAINIdG lv'1.ESSAGES AND PLACING RESPONSE
MESSAGES

QTAM provides the message processing pro­
gram user with facilities for obtaining
messages for processing and placing
response messages on a DASD destination

queue. Even though the messages are
received from Cand sent to), remote termi­
nals via communication lines, the program­
mer uses GET/PUT macro instructions for
obtaining and sending messages. A QTAM
message control program performs the
device-dependent input/output operations
for the message processing program.

The main connectors between a message
control program and a message processing
program are the MS process and MS destina­
tion queues. After the MS process queue
has been defined and opened, a message is
obtained from this queue by issuing a GET
macro instruction. Once obtained, the mes­
sage is analyzed and processed as required
by the application. If a response message
is generated, it is placed on the MS
destination queue (after it has been
define1 and opened) by a PUT macro instruc­
tion. The message control program then
transfers the message to the appropriate
DASD destination queue" and finally sends
the message to the remote terminal.

GET Macro Instruction

GET obtains the next sequential work unit
from the MS process queue indicated by the
first operand. This cperand is the name of
the data control block associated with the
~S process queue. The user specifies in
the DCB macro instruction for the MS pro­
cess queue" the work unit with which he is
operating (message segment, record, or com­
plete message).

If the user specifies "segment" in the
DCB, the work area must be large enough to
accommodate an entire segment. Thus, for a
buffer of 100 bytes, the work area must be
at least 82 bytes.

Maximum text segment = buffer size
- size of text prefix = 78

Work area size = maximum text segment
+ work area prefix = 82

If all the data in a segment cannot be
accommodated in a work area N the remaining
data is lost. There is no advantage in
defining a work area cf greater size. since
no more than one text segment is trans­
ferred into the work area for each GET.

If the EOT character happens to be the
last character in the message, an addition­
al buffer with no data in it will be car­
ried through the LPS with the other buffers
for that message. If the user has speci­
fied segment in the DCB and issues a GET
for that data set, this empty buffer will
be placed in the work area. This co~dition

Message ProceSSing Program Services 19

can be detected by checking the first two
bytes of the GET/PUT prefix of that segment
for a count of four.

If the user specifies "message" in the
DCB, the data is transferred until the work
area is full or the entire message is
moved, whichever occurs first. For a given
application, if the size of a ~essage is
known, the work area size should be set
equal to this value. If the work area can
not accommodate the full message, the
remaining data is moved into the work area
when the next GET is issued. since a mes­
sage is the logical unit being considered.
the question of whether the work area
should be smaller, equal to, or greater
than a segment (buffer) size is not
relevant.

If the user specifies "record" in the
DCB, the message data is moved into the
work area until one of the following
occurs:

1. EOB, new line (NL), carriage return
(CR), or line feed (LF) is encoun­
tered. (Data is transferred up to and
including the first of these
characters.)

2. An entire message has been
transferred.

3. The work area has been filled.

Since the logical unit considered is a
record, the size of the work area should be
defined to accommodate a complete record.

When "record" has been specified in the
DCB, the record must have been translated
to EBCDIC in the Receive group cf the LPS.

The synchronous error exit (SYNAD) will
be taken, if specified, whenever any of the
three forms of the GET macro is completed
with data remaining in the buffers.

The second operand is the address of the
work area into which the work unit is to be
placed. The user must define this work
area in his problem program, and the size
of the work area is specified in the SOWA
keyword operand of the DCB macro instruc­
tion for the MS process queue.

If there is no work unit on the MS pro­
cess queue, and no user-written routine is
provided for this situation, the message
processing program in which the GET appears
enters a wait state. A user-written rou­
tine can be specified via the EODAD keyword
operand in the DCB rr.acro instruction for
the MS process queue.

If the work unit has been received via a
nonswitched line, GET causes the name of

the source terminal tc be placed in the
area specified by the TRMAD keyword operand
of the DCB macro instruction for the MS
process queue. If a processing program
puts the work unit in a process queue,
zeros are placed in the user-specified
area. If the work unit has been received
over a switched line cr a nonswitched line
with the Auto Poll feature n GET causes the
name of the source terminal to be placed in
the user-specified area only if the SOURCE
macro instruction is included in the mes­
sage control program LPS section that
governs that terminal. If the SOURCF macro
instruction has not been included, GET
causes zeros to be placed in the user­
specified area. (See the IBM System/360
Ooerating System: QTAM Message Control
Program publication.)

GET uses the first four bytes in the
user-specified work area to record informa­
tion about the work unitft The first two
bytes of the four-byte prefix <called the
GET/PUT prefix), contain the number of
characters in the work unit. The third
byte identifies the type of segment or
record (see Figure 5). As shown in the
figure, all completed messages are identi­
fied by a one in bit position 6. The last
byte of the four-byte prefix is not modi­
fied by QTAM. The user's message data
starts with byte five of the work area.

If ~ECFM=R is specified in the MS pro­
cess queue DCB macro instruction~ the GET
routine transfers to the work area all
characters up to and including the first of
the following characters: carriage return,
line feed, new line" cr end-of-block.

r--------T---------T----------------------,
] Name I operation1 Operand I
t--------+---------+----------------------~
I [symbol]IGE~ J dcb,workarea I L ________ ~ _________ ~ ______________________ J

symbol

dcb

The name of the macro instruction.

The symbolic address of the data con­
trol block associated with the ~S pro­
cess queue from which the processing
program is to obtain a work unit. If
register notation is used, the regis­
ter must contain the address of the
DCB.

workarea
The address of the user-defined area
in which the work unit is to be
placed. If register notation is used,
the address of the work area must have
been previously loaded into the regis­
ter specified.

20 os QTAM Message Processing Program Services

PUT Macro Instruction

The PUT macro instruction causes the pro­
cessed message, message segment, or record
to be transferred from the work area speci­
fied to an MS destination queue. The mes­
sage control program then transfers the
work unit to the appropriate DASD destina­
tion queue. Before issuing a PUT, the user
must insure that the name of the terminal
(to which the work unit is being sent) is
in the location specified by the TRMAD key­
word operand in the DCB macro instruction
for the MS destination queue. Data
transfer starts with the fifth byte of the
work area.

Prior to issuing a PUT, the user must
also place the necessary information in the
four-byte GET/PUT prefix. The length of
the work unit to be transferred (including
the four bytes in the prefix) wust be spec­
ified in bytes one and two, and the type of
work unit must be specified in byte three
(see Figure 5). The fourth byte may con-
tain a priority to be associated with the
message. The value for this priority is
chosen in the same way as for rressages
originating at remote terminals.

The PUT macro instruction is concerned
with one of three logical units, i.e., seg­
ment, message, or record.

If the user specifies "segment" in the
DCB, the data will be transferred from a
work area to a buffer. If the work area is

(Bytes 1 and 2)
Number of characters in the unit
(i nc I ud i ng the four-byte user prefix)

larger than the buffer, an error code of
X'10' is set in register 15, right­
adjustedn and no data is transferrp.d. If
the work area is srraller than the buffer,
the buffer will not be completely filled
and the extra space wasted. It is recore­
mended that the same relationship exist
between work area size and buffer size as
with the GET segmento If the segments are
not in correct sequence, that is" a segm(nt
with EOM does not come before a header seS­
ment, an error code of x'40' is set in reg­
ister 15, right-adjusted.

If the user specifies "roessage" in the
DCB, the contents of the work area are con­
sidered to be a full message. If the work
area is larger than the buffer q the con­
tents of the work area will be transferred
to several buffers. If the work area is
smaller than a buffer, space is wasted
because the partially filled buffer is
transmitted. The size of the work area
should therefore be defined to accommodate
a single message.

If the user specifies "record" in the
DCB n the contents of the work area are con­
sidered to be a corrplete record. PUT does
not check EOB , line feed (LF) " new line
(NL), or carriage return (CR) to deliroit
the record. If the work area is larger
than the buffer, the contents of the work
area are transferred to several buffers.

I
If the work area is smaller than the buf­
fern the buffer is filled in with other
message blocks by succeeding PUT macros.

(Byte 3) (Byte 4)
work unit type priority

-- ----------
Th i rd Byte Contents RECFM=G RECFM=S RECFM=R

(complete messages) (message segments) (message record)

XIOO I Multiple - segment message. This Multiple - block message. This
segment contains a header. block contains a header.

XIOll Multiple - segment message. This Multiple- block message. This
is an intermediate segment con- is an intE:lrmediate block con-
taining text only. taining text only.

X I02 1 complete messages Sing Ie - segment complete message. Single- block complete message.

X I03 1 Multiple- segment message. This Multiple- block message. This
is the last segment and contains is the last block and contains
text only. text only.

Figure 5. Meaning of the Bytes in the GET/PUT Prefix

Message Processing Program services 21

The format of a record being PUT from a
message processing program must be consid­
ered in defining the send sections of the
LPS in the message control program. For
example, if the TIMESTMP, DATESTMP, or
SEQOUT macro instructions are used in the
SENDHDR section of the LPS, the number of
bytes required by these macros must be
reserved at the beginning of the record
before issuing the PUT. These fields must
be filled with idle characters (X'1?' in
EBCDIC). Any other macro instructions in
the SENDHDR section of the LPS will bypass
these idle characters in scanning for the
beginning of the header field.

Note also that if a message is to be PUT
just as it was received by a GET. the
SENDHDR section of the LPS should not
include macro instructions that refer to
the header portion of the message. Alter­
natively, if the header must be worked on
in the SENDHDR section, those fields that
were processed in the RCVHDR section prior
to the GET should be overlaid with idle
characters before the subsequent PUT.

Another point to be noted is that an EOA
(end of address) sequence should not be
generated in a header by a message process­
ing program prior to a PUT. If required,

the EOA should be placed in the header by
the SENDHDR portion of the LPS after execu­
tion of any 'IIMESTMP g DATESTMP,,0rSEQOUT
macro instructions.

A message cannot be routed to multiple
destinations or a distribution list entry
by a PUT macro instruction.

r--------T---------T----------------------,
I Name I Operation] Operand I
r--------+'---------t----------------------~
I [symbolJ!PU'I I dcbqworkarea I l ________ ~ _________ ~ ______________________ J

symbol

dcb

The name of the macro instruction.

The symbolic address of the data con­
trol block associated with the MS
destination queueo If register nota­
tion is used, the register must con­
tain the address of the DCB.

workarea
The address of the user-defined area
from which the work unit is to be
transferred. If register notation is
used, the register must contain the
address.

22 OS QTAM Message Processing Program Services

The user may find it advisable during pro­
cessing to examine control information used
by QTAM and to make necessary modifications
to the system. QTAM provides a set of
macro instructions for this purpose. The
macro instructions enable the user to
dynamically:

• Activate or deactivate a particular
line in a communication line group
(STARTLN and STOPLN macro
instructions).

• Examine and modify terminal-table
entries (COPYT, CHNGT, and RELEASEM
macro instructions).

• Examine and modify polling lists (COPYP
and CHNGP macro instructions).

• Examine queue control blocks for DASD
destination and process queues (COPYQ
macro instruction).

• Retrieve for retransmission messages
previously sent to terminals (RETRIEVE
macro instruction).

In order to dynamically exarr.ine and
modify the status of the system, these
macro instructions must be used in a mes­
sage processing program.

Routines containing the examination and
modification macro instructions can be
executed at any time during the operation
of the system as the result of a message
sent to the message processing program by a
terminal operator. Such messages are
handled in the same manner as any other
message that enters the system from a
remote terminal. In other words, the mes­
sage control program performs the necessary
control functions and routes the message to
the appropriate message processing program.
The message processing program is specified
as the destination in the message header.
At some prespecified position in the mes­
sage (for example, in the header or in the
first position of the text), a message-type
character is specified that identifies the
message as one requiring the execution of
an examination or modification routine.
The analysis routine of the rressage pro­
cessing program can be written to recognize
this message-type character and branch to
the desired routine.

The terminal sending such a message is
usually located on the same premises as the
CPU and is designated as the "control" ter­
minal. The operator of the control termi-

NETWORK CONTROL FACILITIES

nal and the CPU could be the same individ­
ual. This centralizes the overall control
of the telecommunications systemo However,
the user can designate any terminal in the
system as the control terminal.

Some of the macro instructions discussed
in this section may also be issued in the­
message control program. Execution of
these macro instructions in the message
control program must cccur between the CPEN
and ENDREADY macro instructions.

WARNING: It is possible that the mes­
sage control program might access the
terminal table. polling list, queue con­
trol -block. or threshold counters at the
same time that the processing program is
executing a copy or change macro in­
struction. Accordingly" the line should
first be stopped by issuing a STOPLN
macro instruction. The change or copy
macro instruction is then issued and
followed by a STARTLN to restart the
line.

LINE ACTIVATION AND DEACTIVATION

Normally~ the lines in a line group are
automatically prepared for message trans­
mission when the line group is opened in
the message control program. When issued
in a message processing program" the STOPLN
and STARTLN macro instructions enable the
user to dynamically deactivate and reac­
tivate a specific line (or all the lines)
within the line group at any point during
the operation of the system.

STOPLN is used to effect a temporary
deactivation of a specific line when the
line is expected to be reactivated by a
subsequent STARTLN macro instruction.

stop Line (STOPLN) Macro Instruction

STOPLN removes a communication line from
active use. This rracro instruction causes
operations on the designated line to stop
immediately after completion of any message
currently being received or transmitted.
Transmission of any messages remaining in
the queue for the line resumes when a
STARTLN macro instruction reactivates the
line.

Network Control Facilities 23.

r--------T---------T----------------------,
I Name I operation I operand I
~--------+---------+----------------------~
I [symbollISTOPLN Itermname,{rln} I
I I I ALL I L ________ ~ _________ ~ ______________________ J

symbol
Is the name of the macro instruction.

termname

rln

ALL

Is the name of any terminal in the
line group, but not necessarily the
name of a terminal on the line being
stopped. If register notation is
used, the register must contain th~
address of the data control block for
the line group. It cannot contain the
terminal name.

If an invalid terminal name is speci­
fied, an error code of X'20'" right­
adjusted, is set in register 15. If
the DCB for the line group has not
been opened, an error code of X'Ol' is
set in register 15. In either case,
the STOPLN has no effect.

Is the relative line nurrber (within
the line group) of the line to be
deactivated. If register notation is
used, the general register specified
must contain the relative line number
in binary form. If an invalid rln is
specified, a code of X'08', right­
adjusted, is set in register 15.

Specifies that all lines in the line
group are to be deactivated.

If no errors were detected in the STOPLN
macro~ register 15 contains all zeros.

Start Line (STARTLN) Macro Instruction

STARTLN can be used to:

1. Allow message transmission to,resume
on a particular line in a communica­
tion line group.

2. Allow message transmission to resume
on all lines in a communication line
group. The user must have previously
opened the line group in the message
control program.

If a line is deactivated by a STOPLN
macro instruction, STARTLN must be issued
before message transmission on that par­
ticular line can resume.

In each of the preceding cases n if poll­
ing is used, the presence of an active
polling list is a prerequisite for message
transmission. (An active polling list is
one in which the second byte of the list is
a non-zero character -- this character is
initialized as a 1 and can be changed by
the CHNGP macro instruction.) If STARTLN
is used" polling or enabling of input lines
begins after the execution of that macro
instruction. Initial polling or enabling
of input lines in a line group begins when
the line group is opened in the message
control program. If activation of a line
group was deferred by inclusion of the IDLE
operand in the OPEN macro for the line
group, a STARTLN macro must be issued to
activate the lines.

An attempt to initiate input/output
operations on a line on a control unit that
is not operational will result in the fol­
lowing sequence of system error messages:

IEC804I CONTROL UNIT NOT OPERATIONAL
IEC804A REPLY CONT OR POST

If CONT is replied, the operation will be
retried. If the action taken is not suc­
cessful, the series of messages will be
issued again. If POST is repliedn the line
will be ignored until a STARTLN macro is
issued to that line, or a STARTLN control
message for that line is sent. If the con­
trol unit is still not operational, the
entire sequence will be repeated. As with
any WTOR message" the control program is in
the wait state until the reply is received.

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
] (symbolllSTARTLN I termname,{rln} I
I I I ALL I L ________ ~ _________ ~ ______________________ J

symbol
Is the name of the macro instruction.

termname

rln

Is the name of any terminal in the
line group, but not necessarily the
name of a terminal on the line being
started. If register notation is used
the register must contain the address
of the data control block for the line
group. It cannot contain the terminal
name. If an invalid terminal name is
specified, an error code of X'20',
right-adjusted. is set in register 15.
If the DCB for the line group has not
been opened. an error code of X'Ol' is
set in register 15. In either case,
the STARTLN has no effect.

Is the relative line numbern within
the line grouPn cf the line to be

• 24 OS QTAM Message Processing Program Services

ALL

reactivated. If register notation is
used, the general register specified
must contain the relative line number
in binary form. If an invalid rela­
tive line number is specified, a code
of X'08', right-adjusted, is set in
register 15.

specifies that all lines in the line
group are to be activated.

If no errors were detected in the STARTLN
macro, register 15 contains all zeros.

EXAMINING AND MODIFYING THE TERMINAL TABLE

QTAM provides macro instructions that
enable the user to examine and dynamically
change the control information contained in
a terminal-table entry.

The COPYT macro instruction causes the
contents of a specified terminal-table
entry to be copied into a work area. This
macro instruction can be used in conjunc­
tion with the CHNGT macro instruction,
which substitutes a new terminal-table
entry for a superseded one. The user
issues a COPYT, Examines the information,
changes it if necessary, and issues a
CHNGT.

The user can also change terminal-table
information via the RELEASEM macro instruc­
tion. RELEASEM causes the intercept bit
for a specified terminal-table entry to be
set to o. All messages intercepted for
that terminal are then transmitted to the
terminal.

Copy Terminal-Table Entry (COPYT) Macro
Instruction

COPYT moves the information contained in a
specified terminal-table entry into a des­
ignated work area. (The information copied
into the work area remains in the same form
as in the terminal table: binary fields
remain binary and EBCDIC fields remain
EBCDIC.) The terminal-table entry can be
either a single-terminal, group-code, dis­
tribution-list, or process program entry.
Formats for each of these entries are shown
in Appendix A of the OS QTAM Message Con­
trol Program publication.

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
I [symbolllCOPYT Itermname,workarea I L ________ ~ _________ ~ ______________________ J

symbol
Is the name of the macro instruction.

termname
Is the name of the terminal whose
terminal-table entry is to be copied.
If register notation is used, the gen­
eral register designated must contain
the address of a location containing
the name of the terminal. The field
containing the name must be "n" bytes
in length, where "n" equals or exceeds
the longest name of any terminal-table
entry. The name must be left-adjusted
and must be padded with blanks to the
length of the longest TERM entry in
the terminal table. If an invalid
terminal name is specified" no data
movement takes place; the routine
linked by the COPYT macro instruction
returns an error code of X'20' right­
adjusted, in register 15. If no error
is detected, register 15 contains
zero.

workarea
Is the address of the area into which
the information is placed. The first
byte of the work area receives the
first byte of data from the terminal­
table entryo The maximum size of the
work area is 252 bytes (the maximum
size of a terrrinal-table entry). If
register notation is used, the general
register designated must contain the
address of the wcrk area.

Change Terminal-Table Entry (CHNGT) ~acro

Instruction

CHNGT moves the information for a terminal­
table entry from a designated work area to
the terminal-table area allocated for that
entry. CHNGT causes the entire contents of
the superseded terrrinal-table entrYn except
for the TSEQUIN and TSEQOUT fields, to be
changed. The TSEQUIN and TSEQOUT fields
are not changed because of the possibility
that a message may be received between the
time the entry is copied and the time it is
changed. This would cause a sequence num­
ber error to occur. In order to change the
entire contents n including TSEQUIN and
TSEQOUT~ the user must precede the CHNGT
macro with a STOPLN macro for the line on
which the affected terminal is located.

CHNGT is normally preceded by the COPYT
macro instruction and instructions to
examine and modify the contents of the
copied terminal-table entry. The user must
be certain that the new terminal-table
entry contains all the information required
for proper execution of QTAM. The informa­
tion copied into the terminal table should

Network Control Facilities 25-"

be formatted appropriately in binary or
EBCDIC form. The format of the terminal­
table entries and the information contained
in each field are contained in Appendix A
of the OS QTAM Message Control Program
publication.

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~
I [symbolllCHNGT Itermname,workarea I l ________ ~ _________ ~ ______________________ J

symbol
Is the name of the macro instruction.

termname
Is the name of the terminal whose
terminal-table entry is to be
replaced. It must be the same as a
name that appears in the name field of
a TERM, PROCESS, or DLIST macro in­
struction. If register notation is
used, the address of a location con­
taining the name must be in the gener­
al register designated. The field
containing the name must be "n" bytes
in length, where "n" equals or exceeds
the longest name of any terminal-table
entry. The name must be left-adjusted
and must be padded with blanks to the
length of the longest TERM entry in
the terminal table.

If an invalid name is specified, the
routine generated by CHNGT returns an
error code of X'20', right-adjusted,
in register 15. QTAM subsequently
disregards the new terminal-table
entry and continues to use the old.

workarea
Is the address of the area from which
the information is moved. If register
notation is used, the general register
specified must contain the address of
the work area. If the new entry does
not equal the size of the old entrYI1
no data movement takes place. An
error code of X'10' is returned in
register 15, and QTAM continues to use
the old entry .•

If no errors were detected in the CHNGT
macro, register 15 contains all zeros.

Release Messages (RELEASEM) Macro
Instruction

RELEASEM sets to zero the intercept bit in
the terminal-table entry for the specified
terminal. This results in the sending of
all intercepted messages with that terminal
as the destination; all suppressed messages
are sent, as well as any new messages.

The intercept bit is turned on (that is,
set to one) by the INTERCPT macro instruc­
tion in the LPS section of the message con­
trol program.

It should be noted that messages for
this terminal that were intercepted and
later released will not be transmitted
immediately. The queue of messages for
this terminal must be "primed" by having
another message put on that queue. The
presence of this message on the queue
causes QTAM to attempt to contact the ter­
minal. If the terrrinal is free" the mes­
sages on the queue are transmitted by
priority. If the terminal is busy" the
messages will not be transmitted at that
time.

r--------T---------T----------------------,
lName 10peration]Operan~ I
~--------+---------t----------------------1
) [symboIJIRELEASEM Itermname I l _______ ~ _________ ~ ______________________ J

symbol
Is the name of the macro instruction.

termname
Is the name of the terminal that can
now receive its intercepted messages.
It must be the same as a name that
appears in the name field of a TERM
macro instruction. If register nota­
tion is usedg the address of a loca­
tion containing the name must be in
the general register designated. The
field that contains the name must be
"n" bytes in length, where "n" equals
or exceeds the longest name of any
terminal-table entry. The name must
be left-adjusted and must be padded
with blanks to the length of the lon­
gest TERM entry in the terminal table.
If termname is invalidfl an error code
of X'20', right-adjusted, is set in
register 15. If the line was never
intercepted~ an error code of X'04 9

will be returned in register 15. If
RELEASEM is issued d~ring a restart"
an error code of XV 02'o right­
adjusted, is set in register 15.
RELEASEM should be issued until a
normal return code is receivedo A
normal return code indicates that the
RELEASEM macro instruction is being
executed.

EXAMINING AND MODIFYING POLLING LISTS

QTAM provides macro instructions that
enable the user to examine and modify the
contents of the polling list for a line •

• 26 OS QTAM Message Processing Program Services

The COPYP macro instruction causes the
contents of a specified polling list to be
copied into a work area. This macro in­
struction can be used in conjunction with
the CHNGP macro instruction, which can sub­
stitute a new polling list for a superseded
one (the new list must be the same size as
the old one). The user issues a COPYP,
examines the information, changes it if
necessary, and issues a CHNGP. CHNGP can
also be used to stop or restart polling of
the terminals on a line.

copy Polling List (COPYP) Macro Instruction

COPYP causes the polling list fer a speci­
fied line to be copied into a user­
designated work area. The forrrat of the
polling list is shown in Appendix A of the
os QTAM Message control Progra~
publication.

r--------T---------T----------------------,
I Name I operation I Operand I
~--------+---------+----------------------1
I [symbolllCOPYP Itermname,rln,workarea I L ________ ~ _________ ~ ______________________ J

symbol
Is the name of the macro instruction.

termname

rln

Is the name of any terminal in the
line group, but not necessarily the
name of a terminal in the polling list
being copied. If register notation is
used, the general register deSignated
must contain the address of the data
control block for the line group. It
cannot contain the terminal name.

If an invalid terminal name is speci­
fied, an error code of ~'20', right­
adjusted, is set in register 15. If
the DCB for the line group has not
been opened, an error code of X'Ol' is
set in register 15. In either ease.
the COPYP has no effect.

Is the relative line nurrbero within
the line group, of the line whose
polling list is to be copied. If reg­
ister notation is used, the user pre­
viously must have placed the relative
line number (in binary form) in the
general register deSignated. If the
rln specified is invalid, a code of
X'OS', right-adjusted, will be set in
register 15.

workarea
Is the address of the work area into
which the polling list is to be
copied. The first byte of the work

area receives the first byte of data
in the polling list. The size of the
area necessary can be determined from
the polling list format shown in
Appendix A of the OS QTAM Message Con­
trol Program publication. If register
notation is used, the general register
specified must contain the address of
the work area.

If no errors were detected in the COPYP
macro, register 15 contains all zeros.

Change Polling List (CHNGP) Macro
Instruction

CHNGP can either:

1. Place a new polling list in the poll­
ing list area for a specified line.

2. Change the status of a polling list
for a specified line.

r--------T---------T----------------------,
I Name lOperationl Operand I
~--------+---------+----------------------1
I [symbolllCHNGP) termname.rln. I

I I I =C' 0' ~ I
I I '{WOrkarea) I

I I I =C'l' J I L ________ ~ _________ ~ ______________________ J

symbol
Is the name of the macro instruction.

termname

rln

Is the name of any terminal in the
line groupo but not necessarily the
name of a terminal in the polling list
being changed. If register notation
is used, the general register desig­
nated must contain the address of the
data control block for the line group.
It cannot contain the terminal name.

If an invalid terminal name is speci­
fied, an error cede of X'20' right­
adjusted, is set in register 15. If
the DCB for the line group has not
been opened, an error code of X'Ol' is
set in register 15. In either case.
the CHNGP has no effect.

Is the relative line numbero within
the line group, of the line whose
polling list is to be modified. If
register notation is used, the user
previously must have placed the rela­
tive line number (in binary form) in
the general register specified. If
the relative line number is invalid
(the line group has no such line num­
ber) an error code of X'OS'~ right­
adjusted, is set in register 15.

Network Control Facilities 27.

workarea

=C'O'

=C'l'

Is the address of the area that con­
tains the new polling list. The first
byte of the polling list area receives
the first byte of data in the work
area. If the new polling list does
not equal the size of the old. no data
movement takes place. An error code
of X'10' is set in register 15. QTAM
subsequently disregards the new poll­
ing list and continues to use the old.

Causes the second byte of the polling
list be changed to a zero. This
results in the deactivation of the
polling list. No further messages are
received until the list is
reactivated.

Causes the second byte of the polling
list to be changed to a one. This
results in the activation of the poll­
ing list. QTAM begins polling the
terminals on the line and accepting
incoming messages.

If no errors were detected in the CHNGP
macro, register 15 contains all zeros.

EXAMINING QUEUE CONTROL BLOCKS

Each terminal-table entry defined by a TERM
or PROCESS macro instruction contains the
address of the queue control block <QCB)
for the DASD destination or DASD process
queue on which outgoing messages are
placed. QTAM uses the QCB for:

1. Placing each message on its appropri­
ate DASD queue.

2. Maintaining information on the status
of the queue.

The COPYQ macro instruction enables the
user to examine a QCB to ascertain ~he sta­
tus of the DASD destination or DASD process
queue associated with the QCB.

Figure 6 shows the contents and relative
displacement of each field in the QCB that
is of interest to the user. After issuing
a COPYQ macro instruction to copy the QCB
into a user-specified work area, the user
can determine the contents of the fields
from which he needs information. For
example, the user can determine the number
of messages in the queue, or can use the
address of the queue on the disk to
retrieve a message (see the RETRIEVE macro
instruction description).

Copy Queue Control Bleck (COPYQ) Macro
Instruction

COPYQ places the contents of a QCB in a
specified work areao The user indicates
the QCB desired by specifying the name of a
terminal or the narre cf a DASD process
queue. If the name of a terminal is speci­
fied, COPYQ places the QCB for the DASD
destination queue associated with that ter­
minal in the work area. If the name of a
DASD process queue is specifiedD the QCB
for the DASD process queue is placed in the
work area. In both cases, the entire con­
tents of the 32-byte QCB are provided.
However. certain fiel~s are used internally
by QTAM routines and are not of concern to
the user (see Figure 6).

r--------T---------T----------------------,
I Name I Operation I Operand I
r--------+---------+----------------------1
I [symbol]\COPYQ]termnaroeuworkarea I l ________ ~ _________ ~ ______________________ J

symbol
Is the naroe of the macro instruction.

termname
Is the name of the terminal or DASD
process queue whcse associated QCB is
to be copied. Only the name of a
single-terminal er process program
terminal-table entry can be specified,
that is, the name specified in a TERM
or PROCESS macro instruction. If
specified u no data movement takes
place. If register notation is used,
the address of a location containing
the name must be in the designated
general register. The field contain­
ing the name rrust be Un" bytes in
length, where "n" equals or exceeds
the longest name of any terminal table
entry. The name must be left-adjusted
and must be padded with blanks to the
length of the longest TERM entry in
the terminal tableQ If an invalid
termname is specified, a code of
X'20'u right-adjusted, is set in reg­
ister 15.

workarea
Is the address of the area in which
the contents of the QCB are placed.
The area must be 32 bytes long (the
size of the QCB). If register nota­
tion is used" the general register
specified must contain the address of
the work area.

If no errors were detected in the COPYQ
macro, register 15 contains all zeros •

• 28 OS QTAM Message Processing Program Services

r---,
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I
I
I
I
I
I
I
I
I
I
I

r----T--------------T---,
I I QFAC I I L ____ ~ ______________ ~ ___ J

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
r----T--------------T---------T--------------T-------------------T--------------,
IQRLNI QDCB I QSIZE I QNASEG I I QBACK I L ____ ~ ______________ ~ ________ ~ ______________ ~ ___________________ ~ ______________ J

ILegend:
I
IQFAC
I
I

Is the relative record address of the next message to be read from this DASD
queue; that is, the next message to be processed or transmittedo

I
IQRLN
I

QDCB

QSIZE

Is the relative line number of the line associated with this queue.
only for a DASD destination queue.)

Is the address of the data control block associated with this QCB.
only for a DASD destination queue.)

Is the number of complete messages on this queue,.

1
(Field used I

(Field used

I
I
I
I
I
I
I
I
I

QNASEG I
Is the relative record address on the DASD message queue data set where the
segment of the next message for this queue will be placed.

header I
I
I

IQBACK I
I Is the relative record address of the last message placed on this DASD queue. I L ___ J

Figure 6. Format of Queue control Block (QCB)

RETRIEVING MESSAGES

During the operation of a telecommunica­
tions system, it may be necessary to
retrieve a message that has already been
placed on a DASD destination or DASD pro­
cess queue. The RETRIEVE macro instruction
is used to perform this function.

For example, a terminal operator may
misplace a message that was previously sent
to his terminal. He can send a message
(with a message processing program as the
destination) requesting that the missing
message be sent again. In the request mes­
sage, he provides the name of his terminal
and the sequence number of the message to
be retransmitted. The message processing
program uses the provided information to
RETRIEVE the message from the DASD destina­
tion queue that contains messages for that
terminal. Subsequently, the message is
retransmitted to the terminal via a PUT
macro instruction.

Retrieve Message segment (RETRIEVE) Macro
Instruction

RETRIEVE transfers a message segment
already placed in a DASD destination queue
or DASD process queue to a user-provided
work area.

A message segment can be retrieved
either by specifying the terminal name to
which the message was sent, or by providing
the relative record address of the message
segment on the direct access storage
device. In the first method~ the input or
output sequence nurrber must be specified.
The relative record address in the second
method is based on zero and reflects the
pOSition of the segment in relation to
other segments on the storage device. In
operation, the second method is faster.

The most common implementation of the
RETRIEVE macro instruction uses both of
these methods. A terminal name and input
or output sequence number are specified for
retrieval of the first message segment.
This segment contains the header prefix and
header portion of the message. RETRIEVE

Network Control Facilities 29.

uses the input or output sequence number to
find the desired message. When found g the
segment containing the header prefix and
message header is placed in the work area
specified by the user. The header prefix
(the first 24 bytes of the segment contain­
ing the header1) contains, in the MSLINK
field~ the relative record address of the
next segment of the message. The user can
load the contents of this field into a reg­
ister and obtain the next segment by issu­
ing a RETRIEVE macro that specifies the
relative record address. Subsequent text
segments can be retrieved by means of the
relative record address found in the MSLINK
field of the text prefix (first 14 bytes of
the segment containing the text1) in each
previous segment. The last segment of a
message can be detected by examining the
seventh bit (X'02') of the status field
(MSTATUS) in the buffer prefix. This bit
is set on for the last segment cf each mes­
sage. The formats of the header and text
prefixes are shown in Appendix A of the OS
QTAM Message Control Program publication.
Figure 7 gives an example of the use of
RETRIEVE.

r--------T---------T----------------------,
I Name I Operation I operand I
~--------+---------+----------------------i
I [symbol] I RETRIEVE I {termname } I
I I I (dasdaddr) n workarea, I
I I I I
I I I [{IN}] I I I lOUT onumber n I
I I I I
I I I TYPE={S} I
I I I D I L ________ ~ _________ ~ ______________________ J

symbol
Is the name of the macro instruction.

termname
Is the name of the destination point
of the message segment to be re­
trieved. This is the name specified
in the TERM or PROCESS macro instruc­
tion and included in the entry in the
terminal table. The type cf entry
referred to can be either a single­
terminal, group-code, or process pro­
gram entry. (The name of a distribu­
tion list cannot be specified nor can
the name of a process program entry
that is defined with the EXPEDITE
operand.) If this operand is speci­
fied, the first segment of the message
is retrieved. If register notation is
used, the address of a location con­
taining the name must be in the gener-

1When the segment was placed on the direct
access queue, the first eight bytes of the
32-byte header prefix (or of the 22-byte
text prefix) were deleted •

al register designated. The field
that contains the name must be "n"
bytes in length." where "n" equals or
exceeds the longest name of any termi­
nal table entryu The name must be
left-adjusted and must be padded with
blanks to the length of the longest
TERM entry in the terminal table. If
an invalid termname is specified, a
return code of X'20' is placed in reg­
ister 15.

(dasdaddr)
Is the parenthesized name or number of
a register containing the relative
record address of the message segment
to be retrieved. The user must have
previously placed the 3-byte record
address in this designated register.
If an invalid termname is specified."
an error code of X'20'o right­
adjusted" is returned in register 15.

workarea

IN

OUT

Is the address of the user-provided
work area in which the message segment
is to be placedo If register notation
is used, the general register speci­
fied must contain the address of the
work area. The work area must be at
least the size of the record defined
in the disk initialization process.
If an invalid relative record number
has been specified" a return code of
X'02', right-adjusted, is placed in
register 15.

Indicates that the "number" operand
that follows specifies the input
sequence number cf the message to be
retrieved. If the "termname" operand
is includedo either the IN or OUT
operand and the "number" operand must
be specified. If the "(dasdaddr)"
operand is includedg IN (as well as
OUT and "number") must be omitted ..

Indicates that the "number" operand
that follows specifies the output
sequence number cf the message to be
retrieved. If the "termname" operand
is included" either the OUT or IN
operand and the "number" operand must
be specified. If the "(dasdaddr)"
operand is included g OUT (as well as
IN and "number") must be omitted. If
the sequence number is invalid, an
error code of X~40g. right-adjusted n
is set in register 15.

number
Is the input or output sequence number
of the message tc be retrieved. If
the "termname" operand is included.
the "number" operand must be speci­
fied. If the "(dasdaddr)" operand is

• 30 as QTAM Message Processing Program Services

included w the "number" operand must be
omitted. If the sequence number is
invalid~ an error code of X'40'w
right-adjusted, is set in register 15.
This number must be in binary form.
Messages sent from the telecommunica­
tions control or alternate terminal
may not be retrieved by sequence
number.

TYPE=S
Specifies that the message segment is
to be retrieved using the terminal
name-sequence number method.

TYPE=D
Specifies that the message segment is
to be retrieved using the relative
record address method.

r--------T----------T--------------------------T--1
I Name IOperation IOperation I Comments I
~--------+----------+--------------------------+--~
IRETRMSG RETRIEVE BOS wCNSLPRT.,IN w121 wTYPE=S IRetrieves the first segment of a message I
I with input sequence number 121, destined
I for the Boston terminal, and places the
I segment in the CNSLPRT area. The seg-
I ment contains the QTAM shortened header
I prefix and the message header.

TEST

OUT

LA 5,CNSLPRT

USING IECKPREF+8 w5

TM MSTATUS,2

BO OUT

l~VC LINKINFO+l(3)oMSLINK

L 4,LINKINFO

RETRIEVE (4),CNSLPRT,TYPE=D

B TEST

Loads the address of the user's work
area into general register 5.

Establishes addressability with respect
to the DSECT for the QTAM header prefix.

processing of the header segment accord­
ing to the current application.

Tests the status field of the buffer
prefix to determine if this is the last
segment of the message.

If yes, branches out of the loop.

Moves the MSLINK field of the QTAM head­
er prefix (containing the address of the
next segment of the message) into an
area from which it can be loaded into a
general register.

Loads the contents of MSLINK into gener­
al register 4.

Retrieves the next segment of the mes­
sage and places it in the work area.

Processing of the text segment according
to the current application .•

LOop back to test for last segment.

PREFIXD Generates the DSECT of the QTAM header
I prefix.
~--------~----------i--------------------------i------_______________ -------------------~
IThis example assumes that each segment is processed after retrieval so that the work I
larea may be reused in retrieving the next segment. I l ___ J

Figure 7. Example of the Use of the RETRIEVE Macro Instruction

Network Control Facilities 31e

CHECKPOINTING THE MESSAGE CONTROL PROGRAM

QTAM provides the facility for writing
checkpoint records either at specified
intervals of time or at certain points in
one or more processing programs (see the OS
QTAM Message Control Program publication)-,.-

The checkpoint records contain the in­
formation necessary to record the status of
the queues and the telecommunications net­
work. In particular, the checkpoint record
includes the polling lists, the terminal
table, disk pointers and status information
associated with each queue, and disk point­
ers and status information associated with
each line. Note that the data in the buf­
fers is not included in the checkpoint
record. Two such checkpoint records are
maintained in the checkpoint data set along
with a pointer to the most recent record.
The format of the checkpoint records is
shown in Appendix A.

The user may specify that checkpoint
records are to be taken at desired points
in the processing programs by:

1. Allocating space on the DASD for the
checkpoint data set.

2. Defining the data set.

3. Opening and closing the data set.

4. Using the CKPART operand in the
TERMTBL macro instruction in the mes­
sage control program and issuing a
CKREQ macro instruction in each pro­
cessing program that is to be used in
determining when to take the check­
point records.

The control program is checkpointed when
all the required partitions have issued the
CKREQ macro instruction. For instance, if
CKPART=2 is specified in the TERMTBL macro
instruction, and Processing Program 1
issues a CKREQ macro instruction" it will
go into a wait state until some other par­
tition also issues a CKREQ macrc instruc­
tion. At that point the checkpoint will be
taken. This puts both of these processing
programs in synchronization with the mes­
sage control program. The processing pro­
grams know the exact circumstances at the
checkpoint and can take steps to guard
against duplicatE messages following a
restart •

It should be noted that the CKREQ macro
instruction cannot be issued in the message
control program. The CPINTV and CKPART
operands may not both be s?ecified; if both
are specified, CPINTV will take precedence
and CKPART will be ignored. If the CPINTV
keyword is used and the processing program
issues a CKREQ macro instruction» the
checkpoint records will be taken at the
intervals of time specified by the CPINTV
operand.

r---------T---------T---------------------,
I Name I Operation I Operand I
r---------+---------+---------------------~
] (name) ICKREQ 1 I l _________ ~ _________ ~ _____________________ J

name
Is the name of the first instruction
generated by CKREQ.

When the correct number of CKREQ macro
instructions have been issued~ checkpoint
records are written on a checkpoint data
set maintained on a direct access storage
device (DASD). A new checkpoint record is
written over the oldest existing record and
the pointer is updated to reflect the most
recent record. Should a system failure
occur during checkpoint itself, restart may
still be accomplished using the alternate
checkpoint record.

Restart allows the user to reestablish
the queues and the telecommunications net­
work to its status just prior to the last
che ckpoint.

For information on allocating space for
the checkpoint data set~ definingg opening,
and closing the checkpoint data set, and
restarting the message control programq see
the OS QTAM Message Centrol Program
publ icat ion .•

Note: If checkpointing is specified at
time intervals (CPINTV operand in TERMTBL
macro), no additional instructions are
necessary in the processing programs;
checkpointing is thus made independent of
the processing programs.

• 32 OS QTAM Message Processing Program Services

In order to terminate operation of the
telecommunications system, the communica­
tion line group, checkpoint, and direct
access message queues data sets must be
closed. Before they may be closedo all
message traffic in the system must cease.
To accomplish this, the user issues a
CLOSEMC macro instruction in a user-written
termination routine. CLOSEMC controls and
monitors line activity and checks the sta­
tus of all data sets opened in the message
processing programs. When all data sets
opened in the message processing programs
are closed, and line activity has ceased,
the routine returns control to the user to
permit him to close the line group and mes­
sage queues data sets. (See A~pendix D for
a sample program.) Deactivation of the
system proceeds in the following manner.

when the system is to be deactivated, a
CLOSEMC macro instruction must be issued in
a program other than the message control
program. A recommended procedure is to
send a special message to a process queue
from which a message processing program,
containing a user-written termination rou­
tine, may obtain the message.

This termination routine should do the
following:

1. Ensure that all other message process­
ing programs, and all their QTAM data
sets, are closed.

2. Issue the CLOSEMC macro instruction
(only one CLOSEMC is required to deac­
tivate the entire systerr).

3.. Close the MS destination and MS pro­
cess queues data sets and any other
data sets opened in that message pro­
cessing program. If the processing
program does not require a main
storage queue data set, a dummy one
must be supplied and opened. When
this data set is closed, the message
processing program requests the mes­
sage control program to close down.

4,. Issue a RETURN macro instruction in
order to end the message processing
job.

When the QTAM termination routine that
is called by the CLOSEMC macro is entered o
the following action occurs. Outgoing mes­
sage traffic continues on any lines that
are not currently receiving messages.
Meanwhile, incoming message traffic on each
line is limited to the message currently

DEACTIVATING THE TELECOMMUNICATIONS SYSTEM

being received over that line. When the
last block of the current message is
received6 no more incoming messages are
accepted (i.e., the line is not repolled or
reenabled). As each such line becomes
freeD any outgoing messages that have been
queued for that line are sent. In this
manner, incoming message traffic declines
to nothing, while outgoing message traffic
continues until all messages have been
sent.,

The QTAM terminaticn routine monitors
the closing of the QTAM data sets opened in
the message processing programs. When it
finds that all of these data sets have been
closedv and all outgoing message traffic
has ended, the routine issues a STOPLN
macro instruction for each line in the sys­
tem. When all lines have been stopped.
control returns to the first instruction
following the ENDREADY macro instruction in
the message control program. This instruc­
tion must begin a user-written routine (or
branch to a routine) that deactivates the
message control program. This deactivation
routine must issue CLOSE macro instructions
for each of the data sets opened in the
message control program (i.e., the line
group, checkpoint. and direct access mes­
sage queues data sets).

The last QTAM data set to be closed must
be the direct access message queues data
set. This is important" because closing
this data set constitutes deactivation of
the telecommunications system. After the
message queues data set has been closed. no
further references can be made to queues.
control blocks n terminal table, polling
listso etc.

The deactivation rcutine should end with
a RETURN macro instruction in order to end
the message control jcb., Each of the mes­
sage processing programs should also end
with a RETURN.

CLOSEMC Macro Instruction

r--------T---------T----------------------,
~Name I Operation] Operand I
t--------+---------+----------------------~
I [symbolJICLOSEMC I I L ________ ~ _________ ~ ______________________ J

symbol
Is the name of the macro instruction.

Deactivating the Telecommunications System 33e

Note: The user is cautioned against using
the CLQSEMC macro instruction in the mes­
sage control program. A cornwunications
line on a transmission control unit may not
be in CE mode when the CLOSEMC macro in­
struction is issued. If the TCU is in CE

mode" the close procedure will never com­
plete" and the QTAM message control program
will remain in a wait state. A line may
not be in conversational mode (see the MODE
rracro instruction in the MCP) when the
CLOSEMC macro instruction is issued.

e34 os QTAM Message Processing Program Services

APPENDIX A: QTAM CHECKPOINT DATA RECORD

r---,
I i
IRecord Format: I
I I
I 1 2 341
I r--------T-----T------------~----------T----------T-----------7-----------, I
I It Next It 1stiTERM ENTRIESIQCB ENTRIESIPOLL LISTSlLCB ENTRIES~DEAD LETTERJ I
I IDisk Loci QCB I I I I]QCB ENTRY#] I
1 ~--------+-----+------------L-----------~----------~----_______ ~ ___________ J I
I L----4---~--4--J I
I I
I I
IFormats of Fields:]
I I

1. Save all terminal entries (except distribution lists). I

2.

r-----------------------------,
TERM ENTRY ITerroinal Table Entry]

r-----------------------------~
l---size of TERM entry + 1----J

Save QCBs only if current QCB is not the same as the last QCB saved.

QCB ENTRY

I PROCESS
IQCB ONLY

r-----T-------T-----~---+---------,
'QSIZEI QNASE JQBACFIQFAClt CURREN~1
I I I I IMSG HDR I
r-----+-------+-----+----+---------i
L--2--~---3---~--3--L--3-~-----3---J

I
\
I
I
I
I , ' ,
!
I
!
I
I
I ,
I

3. Save polling list only if the list is not the same as the last polling list saved.!
r----T------T-------------, I

1 POLLING LIST ISIZE\STATUS\VARIAELE INFO] I
I ~----+------+-------------~ I
I L--1-~---1--~---variable--J I
I ,
I 4. Save LCB information based on QRLM of current QCB being checkpointed. I
I r------~-------T--------T--------T---------, I
I ILCBHDRILCBTTINDILCBSTATEILCBNASEGIUNIT ADDRI ,
I r------+--------+--------+--------+---------i I
, L---3--~-----2--~----1---~-----3--~-----2---J ,
I ,
I I
IControl Record: l
I I
I r-------T---------, status I
I 'STATUS I Not Usedl 00 Normal Close I
I L _______ ~ _________ J 01 Abnormal Termination: (checkpoint reccrd 1 is good) I
I 02 Abnormal Termination: (checkpoint record 2 is good) I
, I l ___ J

Appendix A 35e

APPENDIX B: FORMAT AND SUMMARY OF MACRO INSTRUCTIONS

A format illustration accoffipanies each macro instruction description
in this publication. The illustrations indicate which operands must be
coded exactly as shown, which are required, which are variableo etc.
The conventions stated to describe the operands are as follows:

1. Keyword operands are described either as the single word that must
be coded as shown or by a three-part structure that consists of
tne keyword operand, followed by an equal sign (both of which must
be coded), followed by a value mnemonic or a coded value.

Examples:

a. ALL
b. TYPE=PQ

2. Positional operands are described by a lowercase name that is
merely a convenient reference to the operand and is never coded by
the programmer. The programmer replaces the positional operand by
an allowable expression. Expressions allowed are indicated at the
left of the foldout page. The chart shows what expressions are
allowable for each operand.

3. Uppercase letters and punctuation marks (except as described in
these conventions) represent information that must be coded
exactly as shown.

4. Lowercase letters and terms represent information that must be
supplied by the programmer. More specifically, n indicates a
decimal number, nn a decimal number with at most two digits q nnn
with at most three digits, etc.

5. An ellipsis (a comma followed by three periods) indicates that a
variable number of iterrs may be included.

6.

7.

{ }
[]

8. _ [~

options contained within braces represent alternatives.
one of which rrust be chosen.

Information contained within brackets represents an
option that can be included or omitted, depending on the
requirements of the program. If more than one option is
contained within brackets" anyone or none of the options
may be chosen.

Underlined elements represent an assu~ed value in
the event a parameter is omittec •

• 36 OS QTAM Message Processing Program Services

Abbreviations used in Chart

Abbreviations Meaning

SYM Any symbol valid in the Assembler Language.

DEC DIG Any decimal digits. up to the value indicated in the
associated macro instruction description.

REGIS~ER A general register. always coded within parentheses,
as follows:

RX type

REL EXP

ABS EXP

CHAR

HEX CHAR

w/s

(2-12) one of general registers 2 thrcugh 12, previously
loaded with the right-adjusted value or address
indicated in the macro instruction description. The
unused high-order bits must be set to zero. The
register may be designated symbolically or with an
absolute expression4

(1) general register 1, previously loaded as indicated
above. The register can be designated only as (1).

(O)general register 0, previously loaded as indicated
above. The register can be designated only as CO).

Any address that is valid in the RX form of instruc­
tion (e .• g., LA) may be designated.

A relocatable expression (acceptable as an A-type or
v-type address constant by the assembler).

Any absolute expression as defined by the assembler:
self-defining terms (decima16 hexadecimal~ binary~
character), length attributes. absolut-e symbols.,
paired relocatable terms in the same CSECT. and
arithmetic combinations of absolute termso

A character string (the frarring characters# C' "
are not coded unless specifically indicated in the
individual macro instruction description).

Concatenated hexadecimal digits (the framing charac­
tersp x' " are not coded unless specifically indi­
cated in the macro instruction description).

Written as shown.

Appendix B 37.

MACRO
INSTRUCTION

CHNGP

CHNGT

CLOSE

COPYP

COPYQ

COPYT

GET

OPEN

PUT

RELEASEM

RETRIEVE

STARTLN

STOPLN

OPERANDS

termname

rln , workarea

=C'G'

=('J'

termname

workarea

deb

MF=

term name

rln

workarea

termname

workarea

termname

workarea

deb

(workarea

(0)

deb

INPUT

OUTPUT

MF=

deb

workarea

(G)

termname

termname

(dasdaddr)

workarea

IN 1
OUT)

number

SSt

type= t D

termname

rln)

ALL)

termname

rln)

ALL j

WRITTEN AS

REGISTER

Dee (2- RX Rei Abs Hex
Sym Dig J2) (1) Type Exp Exp Char Char W/S

X X

X X

X X

X

X

X X

X X

X X

X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X

X X

X

X

X

X X

X X

X

X X

X X

X X

X X

X

X

X X

X

X

X X

X X

X

X X

X X

·X

APPENDIX C: RETURN CODES FOR MACRO INSTRUCTIONS USED TO MODIFY AND EXAMINE SYSTEM STATUS

Upon return to the message processing rou­
tine that issued the macro instruction~ the
following return codes are set in the low-

order byte. right-adjusted" in register 15.
All numbers in Figure S appear in hexadeci­
mal notation.

r-----------T------T--------T-------T--------T-----------T-------T------------T---------,
I Macro I Normal I Unopened I Invalid ILine notlInvalid I Invalid) Invalid Ter-]Invalid I
I I ReturnlDCB IDisk I Inter- ~Relative JCount Jminal Table JSequence I
I I I IAddresslcepted I Line Number I I Entry or DCBINumber I
I I I I I I I JName I I
~-----------+------+--------+-------+--------+-----------+-------+------------+---------~
I C HN G P I X' 0 0 ' I X, 01 'I I J X ' OS ') X' 10 ' I X ' 20' I I
~-----------+------+--------+-------+--------+-----------+-------f------------+---------i
ICHNGT Ix'OO'1 I I I IX'10·]X'20" J I
~-----------+------+--------+-------+-------_+-----------+-------+------------f---------i
ICOPYP IX'OO· IX'Ol' I I IX'OS' 1]X'20'] I
~-----------+------+--------+-------+-------_t-----------f-------f------------t---------i
I COPYQ I x' 00 U I I I I I] X '20'] I
r-----------+------+--------+-------+--------t-----------+-------+------------f---------i
ICOPYT IX'OO' I I I I l)X'20V I I
~-----------+------+--------+-------+--------+-----------t-------t------------+---------i
I RELEASEM I X ' 00 ' I I I X' 04 'J I I X ' 20'] I
~--------.---+------+--------+-------+-------_+-----------+-------+------------+---------i
I RETRIEVE I X' 00' I I X ' 02 'I I J) 1 I
I By disk I I I I I I J I I
I address I I I I I ~ I l I
~-----------+------+--------+-------+--------+-----------f-------f------------+---------i
I RETRIEVE IX'OO'I I I I I IX'20' IX'40' I
I By termi-I I I I I J I I I
I nal table I I I I I I 1 I I
I entry I I I) I 1 I I I
~-----------+------+--------+-------+--------+-----------t-------+------------+---------~
ISTARTLN IX'OO' IX'Ol' I I lX'OSII I IX'20' 1 I
r-----------+------+--------+-------+-------_+-----------+-------+------------+---------i
ISTOPLN IX'OO' IX"Ol' I I IX'OSv 1 lX'20' I I L ___________ ~ ______ ~ ________ ~ _______ ~ _______ ~ ___________ ~ _______ ~ ____________ ~ _________ J

Figure S. Return Codes for Macro Instructions Used to Ivlodify and
Examine System status

Appendi~ C 39.

APPENDIX D: QTAM SAMPLE PROGRAM

* * PROGRAM: OS QTAM CLOSE ROUTINE MPP *

*
* * * OBJECTIVE: SySTEM CLOSEDOWN * * *

* PROCEDURE: THE GET MACRO INSTRUCTION CAUSES QTAM TO PASS M~SSAGE *
OATA (DESTINED FUR THE CLOSE ROUTINE) FROM THE MS PROCESS*
QUEUE TO THE USER-SPECIFIED WORK AREA (WORKAREA). IF NO *
MESSAGE DATA IS AVAILABLE FOR THE CLOSE RUUTINE, THE GET *
MACRO INSTRUCTION IS UNSUCCESSFUL AND CONTROL RETURNS TO *
THE SUPERVISOR *

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

* IF THE GET MACRO INSTRUCTION IS SUCCESSFUL THE CLOSEMC *
MACRO INSTRUCTION IS EXECUTED. CLOSEMC STOPS ALL *
INCOMING MESSAGE TRAFFIC AS SUON AS ALL CURRENTLY *
INCOMING MESSAGES ARE RECEIVED. THEN CLOSEMC CAUSES ALL *
OUTGOING MESSAGES TO BE SENT. *

* THE CLOSE MACRO INSTRUCTION CLOSES ALL DATA SETS OPENED *
IN THE CLOSE ROUTINE. *

* THE RETURN MACRO INSTRUCTION RETURNS CONTROL TO THE FIRST*
INSTRUCTION AFTER ENDREADY IN THE MCP. *

*

CLOSRTN CSECT Remarks

SAVE (14,12)

BALR 12,0

USING *,12

ST 13,SAVEAREA+4

LA 13,SAVEAREA

B OPENN

WORKAREA DC CL20' ,

SAVEAREA DC 18F'O'

SOURCE DC CL3' , Location provided for the name of the sending terminal.

INDCB DCB DSORG=MQ, * Data set organization is a TP message process queue.

MACRF=G, * A GET is used to gain access to the message process queue.

DDNAME=EOJ, * Name of DD card and process macro instruction in term table.

SOWA =20, * Size of the user-provided work area.

RECFM=R, * Name of the work unit is a record.

TR MA D=SOURC E Location provided for the name of the sending terminal.

OPENN OPEN (INDCB, (INPUT» Opens the MPP data set.

GET INDCB,WORKAREA GET is performed when a message is sent to EOT.

FINISH CLOSEMC Stops the message traffic in the MCP.

CLOSE (INDCB) Closes the MPP data set.

RETURN Return to the MCP.

END CLOSRTN

• 40 OS QTru~ Message Processing Program Services

Where more than one page reference a~pears~
the major reference appears first.

Access method 5
Analysis routine 6,13

Buffers 8,5,17

Checkpoint data record format 35
Checkpointing the message contrel program

32
CHNGP macro instruction 27-28
CHNGT macro instruction 25-26
CHREQ macro instruction 32
CLOSE macro instruction 18

ICLOSEMC macro instruction 33-34
Closing the message control program 33-34
Code

destination 6,8
message type 6

Contrql terminal 23
COPYP macro instruction 27
COPYQ macro instruction 28
COPYT macro instruction 25

DASD destination queue 9,12,19,20
DASD process queue 8,12
DCB macro instruction 12-17

examples 17
for MS destination queue 13,16
for MS process queue 13-15

DD statement 12
example 12

GET macro instruction 19,7-20,6,9
GET/PUT prefix 20,21

Header, message 6,8,9
prefix 8,9

I L~ne activation 24-25,23
Llne deactivation 23-24
Line procedure specification (LPS) 8

I LINK macro instruction 6,7

I Macro instructions, format and summary
36-37

Main storage (MS) destination queue
13,9,18,19,20

Main storage (MS) process queue 13,8,18.19
Message 6

flow 8-11
obtaining for processing 19~6
priority 9
response 6
retrieval 29-30
routing 8,12
segment 8-9
text 6,8,9
type 6,8
work unit 9,15,19

~essage control program 5
functions 8
LPS 8

Message processing program
analysis routine 6
assembling 6
general concepts 6-7
initiation 6
interface to message control program

5,17
linkage editing 6
processing routines 6
structure 7

~ltiplexer channel 8

Obtaining messages for processing 19,6
OPEN macro instruction 17-18 0 7

IPolling lists, examining and modifying
26-27

Prefix 8-9,10,11
header 8,9
text 8 0 9

Processing routine 6
PUT macro instruction 20-21.6,13,7

QTAM message control language 5

I

Queue control block (QCB)
examining 28
format 29

Queue
DASD destination 9g 13 0 19 0 20
DASD process 8,13
MS 1estination 9n18~19.20
MS process 13 0 80 18,l9

IRELEASEM macro instruction 26
Response message 6
RETRIEVE macro instruction 29-31
Retrieving messages 29
Return codes g after examining or modifying
the system status 39

RETURN macro instruction 33

SAVE macro instruction 6
Segmento message 8-9
STARTLN macro instruction
STOPLN macro instruction

24- 2 51} 23
23~24

Terminal table. examining and modifying
25-26

Text, message 6,8,9
prefix 8 0 9

Work area, message processing 19-20,6 0 8,9
size 14

Work area, response message 20
Work unit 80 15,19,20

complete message 15
record 15
segment 15

Index 41

READER'S COMMENT FORM

IBM System/360 operating Systerr
QTAM Message Precessing Prograrr Services

• How did you use this publication?

As a reference source 0
As a classroom text 0
As a self-study text 0

• Based on your own experience, rate this publication.

As a reference source: Very Good Fair Poor Very

Good Poor

As a text: Very Good Fair Poor Very

Good Poor

• What is your occupation?

• We would appreciate your other comments; please give specific page and line
references where appropriate. If you wish a reply, be sure to include your name

and address.

• Thank you for your cooperation. No postage necessary if mailed in the U. S. A.

C30-2003-3

C30-2003-3

YOUR COMMENTS, PLEASE ...

This publication is one of a series that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your answers to the questions on the
back of this form, together with your comments, help us produce better publications
for your use. Each reply is carefully reviewed by the persons responsible for writing and
publishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in using your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

Fold

Staple

Fold • ______ _____ 8d,.. __ ____ ~_~ __ ~ \IU!:III _____________ ... _____ e.: _________-..- ____ _

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY ...

I BM Corporation
P.O. Box 12275
Research Triangle Park
North Carolina 27709

Attention: Programming Documentation, Dept. 844

FIRST CLASS
PERMIT NO, 569
RESEARCH TRIANGLE PARK
NORTH CAROLINA

,-------~_ _-=- ~ I ~~U&:oI\ ... &.a..~.;.·,,~_._"·.ha.._,tMIY __ .w._....:. ... ___ ... _______________________ _

Fold

International Business Machines Corporation
Data Processing Division .
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Fold

Q)

c
:,:j

O'l
c
0
~ ('5
u ----w

0\
0

0
V)

{)
....]
;t>
~
~
'1j
'1j
CIl

'1j
'"1

8'
rt
(1)

0..

8'
c::
~

~

n
w
0
I
N
0
0
W
I
W

C30-2003-3

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International L

::» .
()
w
o
I
N
o o
W
I
W

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	39
	40
	41
	replyA
	replyB
	xBack

