
Systems Reference Library

IBM System/360
Operating System
Queued Telecommunications Access Method
Message Processing Program Services

Program Number 360S-CO-S19

File No. S360-30
Order No. GC30-2003-4 OS

PREFACE

This publication is intended for the prob­
lem programmer assigned to write a message
processing program to support a QTAM­
controlled telecommunications system
operating under the IBM System/360 Oper­
ating System. Included is a general dis­
cussion of message processing programs.
followed by a detailed description of the
services QTAM provides in suppo~t of a mes­
sage processing program. The Q~AM services
are provided through standard macro­
language statements such as GET, PUT, OPEN,
and CLOSE.

Fifth Edition (June 1971)

The first four sections of a companion
publication., IBM system/360 operating Sys­
tem: QTAM Message Control Program. GC30-
2005,. contain general information of inter­
est to the programmer writing a message
processing program, i. e.,. telecommunica­
tions applications. concepts and
terminology, and message formats.

The prerequisite for a thorough under­
standing of this publication is a basic
knowledge of System/360 machine concepts
and of the System/360 Operating System.

This is a major revision of" and obsoletes, C30-2003-3 and
Technical Newsletter GN30-2532. Besides general maintenance
changes. an appendix has been added that contains QTAM error
messages and abend codes.

Significant new material has been added throughoutw and existing
material has been changed extensivelY1 therefore, no vertical
lines or bullets appear in the margins. and the manual should be
reread in its entirety.

Changes are periodically made to the information herein, before
using this publication in connection with the operation of IBM
systems or equipment, refer to the latest SRL Newsletter for the
editions that are current and applicable.

Requests for copies of IBM publications should be made to your
IBM representative or to the IBM branch office serving your
locality.

This ~nual has been prepared by the IBM Systems Development
DiviSion, Publications center" Department E01., P.O. Box 12275.
Research Triangle Park. North Carolina 27709. A form for
reader's comments is provided at the back of this publication.
If the form has been removed" comments may be sent to the above
address. comments become the property of IBM.

© Copyright International Business Machines corporation 1966. 1967, 1969, 1971

INTRODUCTION • •

GENERAL CONCEPTS OF A MESSAGE
PROCESSING PROGRAM • • •• '. •
Message Flow Within the System

5

6
8

MESSAGE PROCESSING PROGRAM SERVICES 12
Defining The Message Control Program
Interface _ • _ 12

Data Control Block (DCB) Macro
Instruction • ,. • • • 13
ECDAD Routine •• 0 • • • , • 17

Handling the Message Control Program
Interface • • • • • • • • • • • • • 17

OPEN Macro Instruction • • • 0 18
CLOSE Macro Instruction • • • • • 0 19

Obtaining Messages And Placing Response
Messages • • • • • • • Q • •

GET Macro Instruction • • • •
PUT Macro Instruction

• • • 19
• •• 19
• •• 21

NETWORK CONTRCL FACILITIES • • • 23
Line Activation and Deactivation • • • 23

stop Line (STCPLN) Macro
Instruction •••• • • _ 23
Start Line (STARTLN) Macro
Instruction • • • • • • • •• • 24

Examining and Modifying the Terminal
Table • • • • • • • _ • • • • • • • • 25

Copy Terminal-Table Entry (COPYT)
Macro Instruction • • • • • • • • • 25
Change Terminal-Table Entry
(CHNGT) Macro Instruction • •• 25
Release Messages (RELEASEM) Macro
Instruction ••••••••• • • • 26

Figure 1. Sample Structure for a
Message Processing Program '.... 7
Figure 2. QTAM Message Flow
(Part 1 of 2) ••• _ • • • • • 10
Figure 3. Keyword Operands for
the Main Storage Process Queue DCB
Macro Instruction (Part 1 of 2) •• 14
Figure 4. Keyword Operands for
the Main Storage Destination Queue
DCB Macro Instruction • 16

CONTENTS

Examining and Modifying Polling Lists 27
Copy Polling List (COPYP) Macro
Instruction • ,. • • • • '. • '. • • '. 27
Change Polling List (CHNGP) Macro
Instruction '. • • '. ,. • 0 • • • • '. 27

Examining Queue Control Blocks 0 • .0 28
Copy Queue Control Block (COPYQ)
Macro Instruction '0 0 • 0 • • 28

Retrieving Messages 29
Retrieve Message Segment
(RETRIEVE) Macro Instruction • • 29

CHECKPOINTING THE MESSAGE CONTROL
PROGRAM • • • • .0 0 • • • 0 '. 33

DEACTIVATING THE TELECOMMUNICATIONS
SYSTEM • 0 • '.. 0 ,. ., 0 • 34

CLOSEMC Macro Instruction • 0 • • • 35

APPENDIX A: QTAM CHECKPOINT DATA RECORD 37

APPENDIX B: FORMAT AND SUMMARY OF
MACRO INSTRUCTIONS • • • 38

APPENDIX C: RETURN CODES FOR MACRO
INSTRUCTIONS USED TO MODIFY AND
EXAMINE SYSTEM STATUS • ., '. 0 • .., • 41

APPENDIX D: QTAM SAMPLE PROGRAM •• 42

APPENDIX E: QTAM ERROR MESSAGES AND
ABEND CODES • • • ••
Abend Codes ,. 0 ,. 0 • ,0 0 _ • •

Assembly Error Messages

INDEX

• 43
43

o 44

• 47

FIGURES

Figure 5~ Meaning of the Bytes
in the GET/PUT Prefix ,... 0 • .0 21
Figure 6. Format of Queue
Control Block (QCB) o. 0 • •• • 29
Figure 7. Example of the Use of
the RETRIEVE Macro Instruction 32
Figure 8. Return Codes for Macro
Instructions Used to Modify and
Examine System Status ••••••• 41

iii

In the IBM system/360 Operating system, an
access method is a procedure for transfer­
ring data between main storage and an
input/output device. A variety of access
methods is available to the user of the
operating system. One of these. the Queued
Telecommunications Access Method (QTAM).,
controls data transfer between main storage
and remote terminals.

QTAM is a generalized input/output con­
trol system that extends the techniques of
data management to the telecommunications
environment. Data sets used by the problem
programmer are queues of messages incoming
from, or outgoing to, remote terminals via
communication lines,. Even though the time
and order of the arrival and departure of
messages to and from the central processing
unit (CPU> are unpredictable, the program­
mer handles them as if they were organized
sequentially.

unlike other commonly used access
methods, QTAM furnishes more than just the
mechanics for input/output operations. In
addition to the standard GET/PUT macro in­
struction supPQrt for message processing
programs, QTAM provides a high-level and
flexible message control language. QTAM­
supplied macro instructions can be used to
construct a complete message control pro­
gram that controls the flow of message
traffic from one remote terminal to another
(message switching application), and
between remote terminals and any message
processing programs (message processing
applications).

A QTAM message control program is COm­
pletely device-dependent, with all communi­
cation lines and terminals identified to
the system. Through data set definition
and control information macro instructions"
the user specifies his equipment configura­
tion and the main storage areas (buffers)
required for his applications. These

INTRODUCTION

macros generate the tables and lists of
control information that define the
environment of the system for the QTAM
logic. The number and size of the buffers
required are specified by the userw and are
one of the primary resources in the tele­
communications system. The buffers are
allocated to a common buffer pool from
which QTAM automatically and dynamically
uses them in accordance with immediate
requirements.

The message processing program services
of QTAM enable a programmer to process mes­
sages from a telecommunications network
with the same easy-to-use macro instruc­
tions that he uses for his local input/
output devices. Because a QTAM message
control program performs the input/output
operations" a completely device-independent
message processing program can be written.
The programmer is shielded from the time­
and device-dependent aspects of the tele­
communications environment.

For a QTAM message control program to
handle the flow of message data between a
message processing program and the remote
terminals in a systeme there must be an
interface between the message control pro­
gram and the message processing program.
QTAM (in the form of macro instructions)
provides facilities that enable the pro­
grammer to establish this interface from
the message processing program.

This publication describes in detail the
services QTAM provides in support of a mes­
sage processing program. The message con­
trol program is discussed in general terms
when necessary to give a complete picture
of how a message processing program fits
into a QTAM-controlled telecommunications
system. For detailed information on the
message control program., refer to the pub­
lication IBM System/360 Operating System:
QTAM Message Control Program,. GC30-2005.

Introduction 5

GENERAL CONCEPTS OF A MESSAGE PROCESSING PROGRAM

In telecommunications terminology, a mes­
sage is the unit of work with which the
programmer is concerned when he writes a
processing program. A message is composed
of t~o parts: the message header and the
message text. The header portion contains
control information about a particular mes~
sage used by the message control program in
performing its functions. This information
can include a destination code (for
example, a message processing program).g the
code name of the originating terminal
(source code), a message-type indicator.,
and other fields containing control-type
data. The text portion of a message con­
sists of the information of concern to the
party receiving the message. This party
can be a message processing program.

A message processing program normally
consists of an analysis routine or process­
ing routines (or both) that take action on
the text portion of a message. A response
message mayor may not be generated.

An analysis routine is user-written cod­
ing that examines the content of a message
to determine which course of action is to
be taken. With this decision, the analysis
routine establishes linkage to the process­
ing routine required to perform the neces­
sary action on the message. The complexity
of the analysis routine varies directly
with the total number of courses of action
that can be required by the inccming mes­
sages. The same method should be used for
detecting all message types. For example,
a message-type character can always appear
in a prespecified position in the message
header or in the first position of the
text.

The processing required may be standard
for all messages routed to a message pro­
cessing program. In this case" an analysis
routine is not required.

All processing routines are also user­
provided.. There must be one processing
routine for each specific course of action
required by a message. A message process­
ing routine is required when the user
wishes to cause a shutdown of the QTAM mes­
sage control program. At execution time., a
processing routine resides either in main
storage, as an integral part of the message
processing program, or on a DASD library.
If the latter method is selected" each pro­
cessing routine is assembled or compiled
independently of the rest of the message
processing program. It is link-edited onto
a DASD library and brought into main

storage dynamically as needed via a LINK
macro instruction. Unlike a message con­
trol program" the message processing pro­
gram may contain control program services
<CPS) macro instructions as well as QTAM
macro instructions,.

Note: The user must ensure that the
operating system subroutine error trace
scheme can function. This may be done by
making a SAVE macro the first instruction
in each message processing program. For
detailed information, see IBM System/360
operating system: supervisor and Data
Management Services, GC28-6646.

QTAM provides certain functions in sup­
port 'of a message processing program and
the telecommunications system. These func­
tions include:

1. Obtaining a message for processing"

2. Placing a response message" if any., on
a destination queue or another process
queue.

These two functions (unlike the functions
performed by the processing routine and the
analysis routine) are peculiar to QTAM,
which provides macro instructions to aid in
performing them.

The GET macro instructio'n obtains a mes­
sage from the main storage process queue
and places it in a user-specified work
area. where it is then analyzed and pro­
cessed. The PUT macro instruction causes a
response message to be placed on a destina­
tion queue. These macro instructions are
described in detail under the Obtaining
Messages and Placing Response Messages
section.

A QTAM message control program performs
the actual input/output operations required
by a message processing program. The mes­
sage control program must be executed in
the highest priority partition or region .•
As many message processing programs as
there are partitions or regions remaining
can operate concurrently with the message
control program. In MFT" each message pro­
cessing program must operate in a partition
separate from other message processing pro­
grams and from the message control program
in order for QTAM to provide asynchronous
operation for all programming components of
the system. In MVT, each processing pro-

6 OS QTAM Message Processing Program Services

gram may operate in a separate region or
may be attached by the message control pro­
gram. If the processing programs are
attached, the message control program must
be the calling program and must have the
highest priority.

After being assembled, link-edited, and
placed on a library, a message processing
program can be executed by placing the
appropriate job control cards in the input
job stream, following the job control cards
for the message control program, or for a
different message processing program.

Figure 1 shows a sample structure for a
message processing program. The DCB macro
instructions define the data control block
for the main storage process and destina­
tion queues. The user must define all
queues referred to by his program. The
OPEN macro instruction prepares these data
control blocks for use in processing. The
statement ·other initialization instruc­
tions" represents any instructions the user
wishes to include to clear storage areas,
etc. GET obtains a message. The ·analy­
sis· instructions determine which process­
ing routine is needed to process the mes­
sage. The appropriate LINK macro instruc­
tion brings the specified processing rou­
tine into main storage and executes the
routine. Response messages generated by
the processing routine are placed on the
appropriate destination queue by the PUT
macro instruction.

The user then performs a test to deter­
mine whether processing should terminate.
If processing should continue, the program
branches to GET to obtain the next message.
If processing should terminate, the program
performs any necessary termination
functions.

The program structure shown in Figure 1
assumes that no EODAD keyword operand was
specified in the DCB macro instruction for
the main storage process queue. If no mes­
sage has been placed in the main storage
process queue by the message control pro­
gram, the message processing program enters
a wait state, and is reentered only when a
message arrives for this main storage pro­
cess queue.

DCB

DCB

•

(other definition macro instructions)

•

•

OPEN

•

(other initia lization macro instructions)

•

~---·GET

•

(macro instructions for analyzing message)

No

•

LINK A

•

LINK B

•
LINK C

•

PUT

Request
for

Shutdown

Yes

(perform termination functions)

•
CLOSE MC
•
CLOSE
RETURN

Figure 1. Sample Structure for a Message
Processing Program

General Concepts of a ~essage processing program 7

MESSAGE FLOW WITHIN THE SYSTEM

This section describes the flow of a mes­
sage between a remote terminal and a mes­
sage processing program operating under
QTAM. The manner in which a QTAM message
control program acts as an intermediary
between the terminal and the message pro­
cessing program is discussed in some
detail. Figure 2 illustrates this flow.

The input message is prepared at the
remote terminal location. Messages are of
variable length and consist of two parts:
header and text. The terminal sends the
message to the computer via a communication
line. Step 1 of Figure 2 shows the message
passing through an IBM 2701, 2702, or 2703
control unit and the multiplexer channel,
and filling available buffers from the QTAM
buffer pool defined in the message control
program.

The user defines the size of his buffers
in the message control program. QTAM
inserts control information (known as a
prefix) in the first portion of each buf­
fer. The first 32 bytes of a buffer" used
to contain a message header, are set aside
for a header prefix generated by QTAM.
This buffer may contain text data in addi­
tion to the header. However, the entire
header must be contained in this buffer.
The characters transmitted by the remote
terminal begin to fill the buffer in the
thirty-third byte. The first 22 bytes of a
buffer used to contain text data only, are
set aside for a text prefix generated by
QTAM. Message data begins to fill the buf­
fer in the twenty-third byte.

The user transmits single-segment or
multisegment messages. A message segment
is message data that occupies one buffer.
In single-segment messages, the entire mes­
sage is contained within one buffer. In
multi segment messages, more than one buffer
is needed for a message.

In all but the last buffer for a multi­
segment message, the segment containing a
header is shorter than a segment containing
text only, because the header prefix
generated by QTAM is ten bytes longer than
the text prefix. In each buffer used to
contain intermediate text, the segments are
the same size. In the last buffer for a
multi segment message, the message text por­
tion of the segment can be any length equal
to, or less than, the buffer length minus
22.

The buffers shown in Figure 2 are each
80 bytes. The first input buffer thus
accommodates a message segment of 48 char­
acters (26 constitute the header portion of
the message and 22 constitute the text por-

tion).. In the second input buffer" the
message segment is 58 characters. all of
which are text data. The third and last
input buffer contains the remaining charac­
ters in the message.. Because the input
message is 150 characters~ the message seg­
ment size for this buffer is 44.

As soon as a buffer is filled with the
first segment of a message. the receive
group portion of the line procedure speci­
fication (LPS) section of the message con­
trol program performs user-selected func­
tions such as code conversion. logging,
updating of message counts., incorporation
of time-received and date-received informa­
tion., and input-sequence-number cheCking.
The first three functions can also be per­
formed for text segments. In the example
shown in Figure 2. the user has specified
that six characters of time-received infor­
mation be incorporated into the message
header (see Step 2).

After performing these functions, the
receive group of the LPS routes the prefix
(minus the first eight bytes1) and message
segment to a DASD process queue on the DASD
message queues data set. Each DASD process
queue is associated with a message process­
ing program. Messages requiring text pro­
cessing should be routed to the DASD pro­
cess queue associated with the message pro­
cessing program that processes that type of
message.. The user controls this routing
either via the message header (the destina­
tion code is the name of the DASD process
queue) or via LPS macro instructions (which
direct messages of a particular type to a
particular queue). Step 2 shows the LPS
routing a message to a DASD process queue.

For each DASD process queue maintained,
QTAM maintains a corresponding queue in
main storage. Each main storage (MS) pro­
cess queue is maintained in buffers from
the QTAM buffer pool in the message control
program. The number of buffers allocated
to a MS process queue is specified in a
data control block defined in the message
processing program that gets messages from
that queue. After the data control block
for the MS process queue has been opened by
the message processing program, a QTAM rou­
tine in the message control program auto­
matically passes the message segment from
the DASD process queue to a buffer in the
MS process queue (see Step 3). In moving
the prefix and segment to the buffer. the
eight bytes that were deleted when the pre­
fix and segment were placed on the DASD

----~~--------------
1The first eight bytes of a header or text
prefix contain control information used
only in main storage buffer handling.
Therefore. these bytes are not placed on
the direct access device.

8 OS QTAM Message Processing Program Services

process queue are restored, so that the
prefix length is once again 32 (header pre­
fix) or 22 (text ~refix).

Each time the message processing program
gains control and issues a GET (Step 4).
QTAM passes message data from the MS pro­
cess queue to a user-specified work area in
the message processing program. Message
data is provided in the work unit specified
by the user in the data control block. The
work unit may be a complete message. a mes­
sage segment, or a record. Before moving
the message data to the work area, QTAM
strips the header and text prefixes from
the message segments. QTAM places a four­
byte ~refix in the first four bytes of this
work area. This prefix indicates the size
and type of the work unit on which the pro­
cessing program is to operate. After
receiving the message data, the message
processing program processes it as required
by the application.

A message processing program that
generates a response message must define
and open a data control block governing
message transfer before it attempts to
place the message on a DASD destination
queue. This data control block contains
information needed by QTAM to establish an
MS destination queue. When a PUT macro in­
struction is issued by a message processing
program (step 5), QTAM moves the message
data from the user-specified work area into
the MS destination queue. The header and
text prefixes are attached to the message
segments in the buffer areas that make up
the MS destination queue.

As the message data fills the buffers,
QTAM inserts chaining addresses and other

necessary control information into the pre­
fix fields. The response message generated
by a message processing program can be any
size. (The one used in Figure 2 is 120
characters.)

After the header or text prefixes have
been added in the MS destination queue,
QTAM places the segment into the appropri­
ate DASD destination queue on the DASD mes­
sage queues data set (Step 6).

QTAM retrieves message segments from the
DASD destination queues on a first-in
first-out basis within priority groups.
The message segments are brought in from
the direct access device and placed in
available buffers (Step 7). The "send
group" of the LPS section in the message
control program then performs user-selected
functions such as converting the code of
the message to the transmission code of the
terminal, incorporating time-sent and date­
sent information in the header, message
logging, and updating of message counts.
These operations are performed in the buf­
fers that receive the message segments from
the direct access device. QTAM then strips
the header and text prefixes from the mes­
sage segments and transmits the message to
the appropriate terminal (Step 8).

The header and text prefixes described
in this section are generated automatically
and are used by QTAM routines~ No program­
ming considerations are required by the
user for the manipulation of the buffers
and their prefixes. They are described
here to give a complete view of the message
flow through the system.

General Concepts of a Message Processing Program 9

.~

.~

.2'
<5
E

~

1
.~

GO
0-

e
.51
<;
"E ;:
0
0 ...

Figure 2.

Telecommunicotions
Control Unit

Multiplexor
Chonnel

QTAM Message Flow (Part 1 of 2)

Messoge Control Progrom

(Buffer Pool) I- - _ _ _ _ _ _ _ _ _______ -I

I :
I I

: First Input Buffer I

Header

I
I

I I
I I
t"" - ---- --- - ------ --"1

Receive Group
of LPS

I- - - - - - - - - - - - - - - --;
I I Send Group

of LPS
I I

: First Output Buffer :

1 4
8

Text

I

: I

t""------- - -- ------ --~

(Buffer Pool)

10 OS QTAM Message processing program Services

Figure

DASD- Message Queue,

Message Control Program

(Buffer Pool) r- - - - - - - - - - - - - - - - - - -1
I I
I I

I

I I

~------------------~
tJ

MS Process Queue

MS Destination Queue

r-------~-------~
I

I 22 Bytes I

r - - - - - - - - - - - - - - - --i
(Buffer Pool)

2. QTAM Message Flow (Part 2 of 2)

GET

Message Processing Program

Work Area

Message Charocters

General Concepts of a Message Processing Program 11

MESSAGE PROCESSING PROGRAM SERVICES

The routing of messages between a message
processing program and remote terminals is
handled by the QTAM message control pro­
gram. Because a message processing program
depends on the message control program to
perform its input/output operations, an
interface must be established between a
message processing program and the message
control program. Q~AM provides the follow­
ing services that allow this interface to
be established from a message processing
program:

• Defines the message control program
interface (DCE macro instruction)

• Initializes and activates the message
control program interface (OPEN macro
instruction)

• Obtains messages and transfers response
messages (GE~ and PUT macro
instructions)

• Deactivates the message control program
interface (CLOSEMC macro instruction)

Unlike the functions performed by the
analysis and processing routines of a mes­
sage processing program. these functions
are partially or wholly peculiar to QTAM
and the telecommunications environment.
Therefore, Q~AM provides routines to accom­
plish these functions. Linkage to these
routines is established by QTAM macro
instructions in a message processing pro­
gram. The remainder of this section dis­
cusses these macro instructions in detail.

DEFINING THE MESSAGE CONTROL PROGRAM
INTERFACE

Message transfer from a main storage (MS)
pr~ce~s queue to a message processing pro­
gram 1S controlled by a data control block.
If the message processing program generates
a response message" message transfer from
the message processing program to a main
storage (MS) destination queue is governed
by another data control block. The user
must define, open, and close these data
control blocks in the message processing
program.

A DCB macro instruction must be speci­
fied for each MS process queue (queue pro­
viding input to the message processing pro­
gram) and for each MS destination queue
(output queue) referred to by a message

processing progranh A DD statement must be
provided for each DCB. The DD statement
must contain only DUMMY in the operand
field,. This indicates that no I/O device
is being assigned. The name of the DD
statement must be identical with the name
specified in the DDNAME keyword operand of
its associated DCB macro instruction.

Examples of DD statements for a message
processing program are:

r--------T---------T----------------------, I Name I Operation I Operand I
~--------+---------+----------------------~ I MAINPQ I DD I DUMMY I
~-------+---------+---------------------~ I RESPMT I DD I DUMMY I L ________ ~ ________ ~ _____________________ _J

The data control blocks generated by the
expansion of these macro instructions are
not associated with data sets themselves.
Instead, they contain the necessary control
information to establish the interface to
the QTAM message control program. which
uses this control information in transfer­
ring data to and from the message process­
ing program.

The message control program performs the
actual input/output operations needed to
receive and send messages over communica­
tion lines. The incoming messages that
must be routed to a message processing pro­
gram are first placed in the DASD process
queue associated with the message process­
ing program. After the data control block
for the MS process queue has been opened.
and the first GET macro instruction is
issued in the message processing program.
the message control program begins trans­
ferring messages from the DASD process
queue to the MS process queue. While the
MS process queue remains open. the message
control program automatically replenishes
it with messages from the DASD process
queue in anticipation of the next GET.

Similarly, the MS destination queue must
be defined (by a DCB macro instruction) and
opened in the message processing program if
a response message is to be sent. When a
PUT macro instruction is issued. the PUT
routine transfers the message to the MS
destination queue and signals the message
control program that a message is ready to
be placed on a DASD destination queue. The
message control program places the message
on the appropriate DASD destination queue.
Finally, the message control program

12 OS QTAM Message Processing Program Services

retrieves the message from the DASD
destination queue and transmits the message
to the appropriate terminal.

Messages generated by the message pro­
cessing program can also be sent to another
message processing program. ~his is accom­
plished via a PUT macro instruction. The
data flow is identical with that described
previously for sending a message to a ter­
minal, except that message transfer from
the MS destination queue is to a DASD pro­
cess queue.

Thus, the MS process and MS destination
queues defined in the message processing
program serve as the connectors between the
message control program and the message
processing program. When the Q~AM message
control program is used as an intermediary
between the message processing program and
the remote terminals, the message process­
ing program is completely device­
independent.

Data Control Block (DCB) Macro Instruction

In a message processing program, 'the DCB
macro instruction defines two types of data
control blocks.

One data control clock contains the in­
formation needed to create the MS process
queue from which messages can be obtained
for processing. ~he other data control
block contains the information needed to
create the MS destination queue, and is
required only if response messages are to
be generated.

Normally" only one MS process queue is
defined in a message processing program,.
All message types to be processed by a par­
ticular message processing program are
obtained from the same MS process queue.
An analysis routine determines the type of
each message and establishes linkage to the
appropriate processing routine. However,
it is possible to have multiple MS process
queues in the same message processing pro­
gram~ that is, one MS process queue for
each type of message to be processed. In
this case, the ECDAD keyword operand should
be used to regain control if no message
appears in this MS process queue. Execu­
tion of another GE~ from a different MS
process queue can be effected, and so
forth.

Only one MS destination queue is
required (and only if a response message is
to be generated), regardless of the number
of MS process queues.

The DCB macro instruction causes the
allocation of main storage space for a data
control block at assembly time,. Parameters
based on the operands in the macro instruc­
tion are included in the data control
block. No executable code is generateo
through this macro.

Figures 3 and 4 show the operands for
DCB macro instructions for two data control
blocks: the MS process queue DCB, and the
MS destination queue DCBg respectively.

r-----T----------~-----------------------,
IName I Operation I Operand I
~-----+-----------+-----------------------i
I dcb I DCB I keyword operands I L _____ ~ __________ ~ _______________________ J

dcb
The address of the DCB macro instruc­
tion. The name must be specified.

keyword operands
The operands that can be included to
facilitate the control of message
transfer between the message process­
ing program and a DASD process or DASD
destination queue. The operands for
the two types of DCB macro instruc­
tions in the message processing pro­
gram are described in Figures 3 and 4.

When a parameter is provided by an
alternate source, one or more symbols
appear in the table. When there is no
alternate source, no symbolS are shown.
The symbols have the following meanings:

Symbol

PP

OE

Meaning

The value of the operand can
be provided by the user's
problem program any time
before the data control
block exit at open time.

The value can be provided by
the user"s problem program
any time up to and including
the data control block exit
provided at open time. •

Message Processing Program Services 13

r---------------T---------T--I
I Keyword I Al tern ate I I
I operands 1 Source IValue Description I
~---------------+---------+--i
I DSORG=MQ I I MQ I
I I I I
I I IIdentifies the data control block as one I
I I Igoverning message transfer to or from a I
I I Itelecommunications message processing queue. I
I I IIf this operand is omitted~ the telecommuni-I
I I I cations job, when executed. is terminated. I
~---------------+---------+--i
IMACRF=G I IG I
I I I I
I I Ispecifies that access to the MS process I
I I Iqueue is to be gained with the GET macro in-,
I I Istruction. If this operand is omitted, the I
I I Itelecommunications job. when executed. is I
I I I terminated. I
~---------------+---------+--i I DDNAME=ddname I PP I ddname I
I I I I
I I lIS the name that appears in the DD statement)
I I I associated with the data control block. I
I I IThis name is also the name used in the I
I I IPROCESS macro instruction to identify the MSI
I I Iprocess queue. If this operand is omitted I
I I land the value is not provided through an I
I I lalternate source. the telecommunications I
I I Ijob, when executed, is terminated. I
~---------------+---------+--I I BUFRQ=absexpl 10E I absexp I
I BUFR =1 J I I I
I I lIs the number of buffers to be requested in I
I I I advance for the GET macro instruction. I
I I IWabsexpw must be less than 256. When BUFRQ=I
I I 10 or if this operand is omitted and the I
I I Ivalue is not supplied by an alternate 1
1 I 1 source. BUFRQ=l is assumed. I
~---------------~---------+--i I SOWA=absexp 10E I absexp 1
I I 1 I
I I lIS the size in bytes of the user-provided I
I I 1 input work area: wabsexpw must be less than I
1 I 132,768. This value must include the four- 1
1 I Ibyte user prefix. If this operand is I
I 1 lomitted and the value is not provided by an 1
1 1 lalternate sourcev the telecommunications I
1 1 Ijob, when executed, is terminated. I L ______________ -~ _________ ~ __ J

Figure 3. Keyword Operands for the Main storage Process Queue DeB
Macro Instruction (Part 1 of 2)

14 OS QTAM Message Processing Program services

r---------------T---------T--,
I Keyword I Alternate I I
I Operands I Source IValue Description I
~---------------+---------+--i
I ~RECFM=G~ OE G, S, or R I
I RECFM=S I
I RECFM-R I
I Specifies the work unit as follows: I
I I
I G -- message (defined by the end-of- I
I transmission character). I
I I
I S segment (defined by the buffer size). I
I I
I R record [defined by the carriage return I
I (CR), line feed (LF), new line (NL)w orl
I end-of-block (EOB) character]. I
I I
I If this operand is omitted and the value is I
I not supplied by an alternate source_ RECFM=SI
I is assumed. I
~---------------+---------+--i
I (EODAD=relexp] IOE I relexp I
I I I I
I I lIS the symbolic address of a user-provided I
I I Iroutine to be entered if no messages are I
I I I available when a GET macro instruction is I
I I I issued. If this operand is omitted and the I
I I Ivalue is not supplied through an alternate I
I I Isource, a WAIT macro instruction is implied. I
~--------------+---------+--i
I lTRMAD=relexp] OE I relexp I
I I I
I lIS the symbolic address of a user-provided I
I larea to contain the terminal name. When a I
I IGET macro instruction is issued, QTAM placesl
I Ithe source terminal name at the specified I
I I address. The length of the area must be I
I lequal to or larger than the maximum size I
I I terminal name or process queue name used.. I
I IIf the Auto Poll facility or switched line I
I Igroups are being used, the SOURCE macro in- I
I Istruction is required in the LPS for these I
I Iline groups. If this operand is omitted and I
I Ithe value is not provided through the I
I I alternate source.. the telecommunications I
I I job" when executed, is terminated. I
~---------------+---------+--i

[SYNAD=relexp] IOE I relexp I
I I I
I lIs the symbolic address of a user-provided I
I Iroutine to be entered if a work unit is I
I Ilonger than the work area provided for I
I I input. If this operand is omitted and the I
I Ivalue is not provided through the alternate I
I Isource. the remainder of the~work unit is I
I Isupplied when the next GET macro inst+uctionl
I lis issued. Data remaining in the bufferw I
I Ihowever, will be lost for a GET segment. I _______________ ~ _________ ~ __ J

Figure 3. Keyword Operands for the Main Storage Process Queue DCB
Macro Instruction (Part 2 of 2)

Message Processing Program Services 15

r---------------T---------T--,
I Keyword I Alternate I I
I Operands I Source Ivalue Description I
~---------------+---------+--i
I DSORG=MQ I I MQ I
I I I I
I I I Identifies the data control block as one I
I I Igoverning message transfer to or from a I
I I Itelecommunications message processing queue. I
I I IIf this operand is omitteds the telecommuni-I
I I I cations job, when executed" is terminated. I
~---------------+---------+~---i
IMACRF=P I I P I
I ' I I I
I I I specifies that messages are to be trans- I
I I Iferred to an MS destination queue by the PUT I
I I Imacro instruction. If this operand is I
I I lomitted" the telecommunications job., when I
I I I executed, is terminated. t
~----------~----+---------+--i I lDDNAME=ddname] I PP I ddname I
I I I I
I I lIS the name that appears in the DD statement)
I I I associated with the data control block. If I
I I Ithis operand is omitted and no value is pro-I
I I I vided through an alternate source" the tele-I
I I Icommunications job, when executed, is I
I I I terminated. I
~---------------+-------+--i

~RECFM=G~ OE G, S, or R
RECFM=S
RECFM-R specifies the work unit as follows:

G -- message (the contents of the work area
is considered to be a full message).

S -- segment (the contents of the work area
is considered to be a segment and it
should fit into the buffer an even num­
ber of times).

R -- record (the contents of the work area
is considered to be a complete record) •

• If this operand is omitted and the value is I
not provided through an alternate source" I
RECFM=S is assumed. I

~---------------+---------+--i [TRMAD=relexpl PP relexp

Is the symbolic address of a user-provided
area to contain the terminal table entry
name. The length of the area must be equal
to, or larger than, the maximum size termi­
nal name or process queue name used. If
this operand is omitted, the telecommunica­
tions job, when executed., is terminated.
When a PUT macro instruction is issued" the
destination terminal name must be provided
at the specified address. The name must be
defined in a terminal table entry within thel
message control program,. I _____________ -_~ _______ ~ __ J

Figure 4. Keyword operands for the Main Storage Destination Queue DCB
Macro Instruction

16 os QTAM Message processing Program Services

Examples:

t. A DCB macro instruction that defines
the parameters of a data control block
associated with a main storage process
queue (see Figure 3 above).

Note: For optimum performance. the
message control program should always
attempt to read ahead to keep one full
work unit ready to be transferred in
response to a GET. To achieve this"
the BUFRQ operand should specify twice
the number of buffers required to hold
a single work unit. For example, a
message of 200 data characters would
require three tOO-character buffers
(200 data characters plus 76 charac­
ters of QTAM control information).
The BUFRQ operand. in this case,
should specify six buffers.

r-------T---------T-----------------------,
I Name I Operation I Operand I
~-------+---------+-----------------------i
IPPMQIN IDCB IDDNAME=PRCIN, I
I I I DSORG=MQ, I
I I IMACRF=G, I
I I I BUFRQ=6,SOWA=300 v I
I I I RECFM=G, I
I I ITRMAD=SOURCE, I
I I I SYNAD=ERROR I L _______ ~ _________ ~ _______________________ J

2. A DCB macro instruction that defines
the parameters of a data control block
to govern response message transfer
(see Figure 4 above).

r-------T---------T-----------------------,
I Name I Operation I Operand I
~-------+---------+-----------------------i
IPPMQOUTIDCB IDDNAME=PRCOUT, I
I I I DSORG=MQ,MACRF=P. I
I I I RECFM=G, I
I I I 'IRMAD=DESTN I L _______ ~ _________ ~ _______________________ J

EODAD Routine

The EODAD operand of the DCB for the main
storage process queue allows the user to
specify a routine that will receive control
when a GET is issued for that queue and
there is no message there. This routine
may do some processing and then attempt to
get messages from some other queue.

For example:

PRCPROG

GET QUEUEl EODAD=SUBRTNl

SUBRTNl

GET QUEUE2 EODAD=SUBRTN2

SUBRTN2

GET QUEUE3 EODAD=PRCPROG

In this situation, if all the queues are
emptyv this process program loops continu­
ally, relinquishing control only for I/O
interrupts.

It is suggested that the user issue some
sort of wait before completing the loop.
This might be accomplished by issuing an
SVC STIMER for 3 milliseconds or so to
allow the higher priority partition to get
control. This will allow the message con­
trol program to process at least one mes­
sage before giving control back to the pro­
cessing program.

If this GET-EODAD loop is absolutely
necessary. then the job in which it occurs
must be in the lowest priority job in the
system.

HANDLING THE MESSAGE CONTROL PROGRAM
INTERFACE

QTAM provides macro instructions to handle
the interface between the message process­
ing program and the message control pro­
gram. These macro instructions have the
following functions:

• Initializing and activating (OPEN macro
instruction>

• Deactivating (CLOSE and CLOSEMC macro
instructions)

Initialization and activation of the
interface to the message control program is
accomplished by issuing an OPEN macro in­
struction for the MS process queue(s). and
if response messages are to be generated.
for the MS destination queue. The OPEN
routine performs the initialization func­
tions that are necessary to activate the
interfaceu No QTAM macros (including OPEN,
CLOSE" GET, and PUT) may be processed
before the DCB for the direct access device
message queue has been opened or after it
has been closed. After the MS process and
MS destination queues have been opened, the
transfer of data to and from the message
processing program can commence.

Message Processing Program Services 17

When not required for further opera­
tions, the MS process and MS destination
queues should be deactivated. The CLOSE
macro instruction accomplishes this by
removing the queues from active usev The
interface to the message control program is
effectively destroyed, and no further mes­
sages may be obtained from the ~S process
queue or placed on the MS destination
queue.

When a processing program abends or is
canceled and adequate main storage is not
available, the abend may take a part of the
processing program storage. If the area
taken contains the processing program's
DCB, the DCB will not be closed, causing
either a program check when the next check­
point is taken or an abend with a system
completion code of OA5 when the processing
program is reloaded. To avoid such a
situation, more main storage must be allo­
cated or the DCBs placed at the end of the
processing program.

The deactivation of the MS process and
MS destination queues can be performed in a
special deactivation routine within the
message processing program. This special
routine can be entered as the result of a
message received from a terminal operator
directing that termination functions be
performed. The analysis routine is coded
to recognize this message (by a unique
character indicating the message-type) as
one requiring the execution of the deacti­
vation routine. Linkage is established to
the deactivation routine, which includes
the necessary CLOSE macro instructions and
instructions to perform other required ter­
mination functions.

OPEN ~acro Instruction

The data control blocks for MS process
queues must be opened before the message
processing program can issue GET instruc­
tions to receive messages from the queue.
The MS destination queue must be opened
before the message processing program can
PUT response messages to any destination.
The OPEN macro instruction causes the
initialization of the message control pro­
gram interface to be completed.

All data control blocks in the message
processing program can be opened collec­
tively with one OPEN or opened separately
by individual OPEN macro instructions.

r--------~---------~---------------------. I Name I operation I Operand I
~--------+---------+----------------------~ I (symbolliOPEN I ([dcb",'1 [INPUT l ') ., ..) I
I I I ~ LOUTPU~ I
I I I I
I I I r. MF=L l I
I I I L"MF=(E"listname)J I L ________ ~ ________ ~ _____________________ _J

symbol
Either the name of the first instruc­
tion generated by OPEN or the name of
a parameter list created by OPEN.. If
the MF=L operand is specified" "sym­
bol" must be included.. It becomes the
name of the parameter list. If no MF
operand is specified" or the MF=(E"
listname) operand is specified, "sym­
bol" is optional. If included, it
becomes the name of the first instruc­
tion generated by OPEN.

The address of the data control block
to be opened. If register notation is
used" the register must contain the
address.

INPUT
Specifies that this data set can be
used for input. INPUT should be spec­
ified for MS process queue data sets .•

OUTPUT

MF=L

Specifies that this data set can be
used for output. OUTPUT should be
specified for MS destination data
setsv

Causes creation of a parameter list
based on the OPEN operands. No
executable code is generated. The
user must specify this form of the
OPEN with his program constants. The
parameters in the list are not used
until the problem program issues an
OPEN (or CLOSE) macro with an MF= (E"
listname) operand referring to the
list (see following text). The name
specified in the name field of the
OPEN macro becomes the name assigned
to the parameter list.

MF= (E" listname)
Causes execution of the OPEN routine,
using the parameter list referred to
by "listname." This list was created
by a macro having the MF=L operand
specified, as described previously.
Parameters specified through a macro
having an MF=(E,listname) operand
override corresponding parameters in
the list. An OPEN macro with the
MF=(E,listname) operand can also refer
to a parameter list created by a CLOSE
macro with an MF=L operand.

18 OS QTAM Message Processing Program services

CLOSE Macro Instruction

The CLOSE macro instruction deactivates the
interface between the message processing
program and the message control program.
After the MS process queue has been closed,
no further messages can be obtained from it
for processing. Similarly, after the MS
destination queue has been closed, no
further response messages can be placed on
it. When a CLOSE is issued,. main storage
and subroutines acquired at open time are
released~ fields in the data control block
that were initialized at open time are
cleared.

r--------T---------T----------------------, I Name I Operation I operand I
~--------+---------+----------------------i
I [symbol] I CLOSE I ({dcbu .}·· .) I
I I I I
I I I r. MF=L J I
I I I ~MF= (E" listname) I L ________ ~ _________ ~ ______________________ J

symbol

dcbs.

MF=L

Either the name of the first instruc­
tion generated by CLOSE or the name of
a parameter list created by CLOSE. If
the MF=L operand is specified" "sym­
bol" must be included. It becomes the
name of the parameter list. If no MF
operand is specified, or the
MF=(E,listname) operand is specified,
"symbol" is optional. If included" it
becomes the name of the first instruc­
tion generated by CLOSE.

The address of the data control block
to be closed. If register notation is
used, the register must contain the
address.

Causes creation of a parameter list
based on the CLOSE operands. No
executable code is generated. The
user must specify this form of the
CLOSE with his progra~ constants. The
parameters in the list are not used
until the problem program issues a
CLOSE (or OPEN) macro instruction with
an MF=(E,listname) operand referring
to the list (see following text). The
name specified in the name field of
the CLOSE macro becomes the name
assigned to this parameter list.

MF=(E,listname)
Causes execution of the CLOSE routine
by using the parameter list referred
to by "listname." This list was
created by a macro having the MF=L
operand specified" as previously
described. Parameters specified
through a macro having an MF= (E"

listname) operand override correspond­
ing parameters in the list,. A CLOSE
macro with the MF=(E.listname) operand
can also refer to a parameter list
created by an OPEN macro with an MF=L
operand.

OBTAINING MESSAGES AND PLACING RESPONSE
MESSAGES

QTAM provides the message processing pro­
gram user with facilities for obtaining
messages for processing and placing
response messages on a DASD destination
queue.. Even though the messages are
received from (and sent to). remote termi­
nals via communication lines, the program­
mer uses GET/PUT macro instructions for
obtaining and sending messages. A QTAM
message control program performs the
device-dependent input/output operations
for the message processing program.

The main connectors between a message
control program and a message processing
program are the MS process and MS destina­
tion queues. After the MS process queue
has been defined and openedw a message is
obtained from this queue by issuing a GET
macro instruction. Once obtained. the mes­
sage is analyzed and processed as required
by the application. If a response message
is generated. it is placed on the MS
destination queue (after it has been
defined and opened) by a PUT macro instruc­
tion. The message control program then
transfers the message to the appropriate
DASD destination queue, and finally sends
the message to the remote terminal.

GET Macro Instruction

GET obtains the next sequential work unit
from the MS process queue indicated by the
first operand. This operand is the name of
the data control block associated with the
MS process queue. The user specifies in
the DCB macro instruction for the MS pro­
cess queue, the work unit with which he is
operating (message segment., record. or com­
plete message).

If the user specifies "segment" in the
DCB, the work area must be large enough to
accommodate an entire segment. Thus, for a
buffer of 100 bytes, the work area must be
at least 82 bytes .•

Maximum text segment = buffer size
- size of text prefix = 78

Message Processing Program Services 19

Work area size = maximum text segment
+ work area prefix = 82

If all the data in a segment cannot be
accommodated in a work area. the remaining
data is lost. There is no advantage in
defining a work area of greater size,. since
no more than one text segment is trans­
ferred into the work area for each GET.

If the EOT character happens to be the
last character in the message, an addition­
al buffer with no data in it will be car­
ried through the LPS with the other buffers
for that message. If the user has speci­
fied segment in the DCB and issues a GET
for that data set, this empty buffer will
be placed in the work area. This condition
can be detected by checking the first two
bytes of the GET/PUT prefix of that segment
for a count of four.

If the user specifies "message" in the
DCB, the data is transferred until the work
area is full or the entire message is
moved, whichever occurs first. For a given
application, if the size of a message is
known, the work area size should be set
equal to this value. If the work area can
not accommodate the full message, the
remaining data is moved into the work area
when the next GET is issued. Since a mes­
sage is the logical unit being considered.
the question of whether the work area
should be smaller, equal to, or greater
than a segment (buffer) size is not
relevant.

If the user specifies "record" in the
DCB, the message data is moved into the
work area until one of the following
occurs:

1. EOB, ETX (X' 03'·), new line (NL), car­
riage return (CR), or line feed (LF)
is encountered. (Data is transferred
up to and including the first of these
characters.)

2. An entire message has been
transferred.

3. The work area has been filled.

Since the logical unit conSidered is a
record, the size of the work area should be
defined to accommodate a complete record.

When "record" has been specified in the
DCB, the record must have been translated
to EBCDIC in the Receive group of the LPS.

The synchronous error exit (SYNAD) will
be taken, if specified, whenever any of the
three forms of the GET macro is completed
with data remaining in the buffers.

The second operand is the address of the'
work area into which the work unit is to be
placed. The user must define this work
area in his problem program, and the size
of the work area is specified in the SOWA
keyword operand of the DCB macro instruc­
tion for the MS process queue.

If there is no work unit on the MS pro­
cess queue" and no user-written routine is
provided for this Situation, the message
proceSSing program in which the GET appears
enters a wait state. A user-written rou­
tine can be specified via the EODAD keyword
operand in the DCB macro instruction for
the MS process queue.

If the work unit has been received via a
nonswitched line" GET causes the name of
the source terminal to be placed in the
area specified by the TRMAD keyword operand
of the DCB macro instruction for the MS
process queue,. If a processing program
puts the work unit in a process queue.
zeros are placed in the user-specified
area. If the work unit has been received
over a switched line or a nonswitched line
with the Auto Poll feature, GET causes the
name of the source terminal to be placed in
the user-specified area only if the SOURCE
macro instruction is included in the mes­
sage control program LPS section that
governs that terminal,. If the SOURCE macro
instruction has not been included. GET
causes zeros to be placed in the user­
specified area. (See the IBM System/360
Operating System: QTAM Message Control
Program publication.)

GET uses the first four bytes in the
user-specified work area to record informa­
tion about the work unit. The first two
bytes of the four-byte prefix (called the
GET/PUT prefix), contain the number of
characters in the work unit. The third
byte identifies the type of segment or
record (see Fig ure 5) '. As shown in the
figure, all completed messages are identi­
fied by a one in bit position 6. The last
byte of the four-byte prefix is not modi­
fied by QTAM. The user"s message data
starts with byte five of the work area.

If RECFM=R is specified in the MS pro­
cess queue DCB macro instruction, the GET
routine transfers to the work area all
characters up to and including the first of
the following characters: carriage return,
line feed, new line. or end-of-block.

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------~ I (symbol 1 I GET I dcb,workarea I L ________ ~ _________ ~ ______________________ J

symbol
The name of the macro instruction.

20 OS QTAM Message processing Program Services

dcb
~he symbolic address of the data con­
trol block associated with the MS pro­
cess queue from which the processing
program is to obtain a work unit. If
register notation is used, the regis­
ter must contain the address of the
DCB.

workarea
The address of the user-defined area
in which the work unit is to be
placed. If register notation is used,
the address of the work area must have
been previously loaded into the regis­
ter specified.

PUT Macro Instruction

The PUT macro instruction causes the pro­
cessed message, message segment. or record
to be transferred from the work area speci­
fied to an MS destination queue. The mes­
sage control program then transfers the
work unit to the appropriate DASD destina­
tion queue. Before issuing a PUT. the user
must ensure that the name of the terminal
(to which the work unit is being sent) is
in the location specified by the TRMAD key­
word operand in the DCB macro instruction
for the MS d€stination queue. Data

(Bytes land 2)
Number of characters in the unit
(including the four-byte user prefix)

transfer starts with the fifth byte of the
work area .•

Prior to issuing a PUT~ the user must
also place the necessary information in the
four-byte GET/PUT prefix. The length of
the work unit to be transferred (including
the four bytes in the prefix) must be spec­
ified in bytes one and two" and the type of
work unit must be specified in byte three
(see Figure 5). The fourth byte may con­
tain a priority to be associated with the
message. The value for this priority is
chosen in the same way as for messages
originating at remote terminals.

The PUT macro instruction is concerned
with one of three logical units.., that is"
segment, message. or record.

If the user specifies "segment" in the
DCB, the data will be transferred from a
work area to a buffer·. If the work area is
larger than the buffer, an error code of
X'10' is set in register 15.., right­
adjusted, and no data is transferred. If
the work area is smaller than the buffer"
the buffer will not be completely filled
and the extra space wasted. It is recom­
mended that the same relationship exist
between work area size and buffer size as
with the GET segment. If the segments are
not in correct sequence, that is" a segment

(Byte 3) (Byte 4)
work unit type priority

-- -- -------- -------- --- ---
Third Byte Contents RECFM=G RECFM=S RECFM=R

(complete messages) (message segments) (message record)

X'OO' Multiple - segment message. This Multiple - block message. This
segment contains a header. block contains a header.

X'Ol' Multiple - segment message. This Multiple- block message. This
is an intermediate segment con- is an intermediate block con-
taining text only. taining text only.

X'02' complete messages Sing Ie - segment complete message. Sing Ie - block complete message.

X'03' Multiple - segment message. This Multiple- block message. This
is the last segment and contains is the last block and contains
text only. text only.

Figure 5. Meaning of the Bytes in the GET/PUT Prefix

Message Processing Program Services 21

with EOM does not come before a header seg­
ment, an error code of X'40' is set in reg­
ister 15, right-adjusted.

If the user specifies "message" in the
DCB, the contents of the work area are con­
sidered to be a full message. If the work
area is larger than the buffer, the con­
tents of the work area will be transferred
to several buffers. If the work area is
smaller than a buffer, space is wasted
because the partially filled buffer is
transmitted.. The size of the work area
should therefore be defined to accommodate
a single message.

If the user specifies "record" in the
DCB, the contents of the work area are con­
sidered to be a complete record. PUT does
not check EOB , line feed (LF), new line
(NL)., or carriage return (CR) to delimit
the record. If the work area is larger
than the buffer, the contents of the work
area are transferred to several buffers.
If the work area is smaller than the buf­
fer., the buffer is filled in with other
message blocks by succeeding PU~ macros.

Restriction: Avoid the interleaving of
message segments or message records of two
different messages being put into the same
MS destination queue. For example, assume
two MS process queues., A and B. Also
assume one MS destination queue, C. Mes­
sage segments obtained from A and B must
not be intermixed while being PUT to C.
However, the interleaving of complete mes­
sages is permissible.

The format of a record being put from a
message processing program must be consid­
ered in defining the send sections of the
LPS in the message control program.. For
example, if the ~IMESTMP, DATESTMP. or
SEQOU~ macro instructions are used in the
SENDHDR section of the LPS, the number of
bytes required by these macros must be
reserved at the beginning of the record
before issuing the PU~. These fields must
be filled with idle characters (X'17' in
EBCDIC). Any other macro instructions in

the SENDHDR section of the LPS will bypass
these idle characters in scanning for the
beginning of the header field .•

Note also that if a message is to be
written just as it was received by a GETe
the SENDHDR section of the LPS should not
include macro instructions that refer to
the header portion of the message. Alter­
natively. if the header must be worked on
in the SENDHDR section, those fields that
were processed in the RCVHDR section prior
to the GET should be overlaid with idle
characters before the subsequent PUT.

Another point to be noted is that an EOA
(end of address) sequence should not be
generated in a header by a message process­
ing program prior to a PUT. If required.
the EOA should be placed in the header by
the SENDHDR portion of the LPS after execu­
tion of any TIMESTMP" DATESTMP., orsEQOUT
macro instructions.

A message cannot be routed to multiple
destinations or a distribution list entry
by a PUT macro instruction..

r--------r---------T----------------------, I Name I Operation I Operand I
~-------~+---------+----------------------i I [symbol] I PUT I dchy workarea I L ________ ~ ________ ~ ______________________ J

symbol

dcb

The name of the macro instruction.

The symbolic address of the data con­
trol block associated with the MS
destination queue. If register nota­
tion is used., the register must con­
tain the address of the DCB .•

workarea
The address of the user-defined area
from which the work unit is to be
transferred. If register notation is
used. the register must contain the
address .•

22 OS QTAM Message Processing Program Services

The user may find it advisable during pro­
cessing to examine control information used
by QTAM and to make necessary modifications
to the system. Q~AM provides a set of
macro instructions for this pur~ose. The
macro instructions enable the user to
dynamically:

• Activate or deactivate a particular
line in a communication line group
(STARTLN and STOPLN macro
instructions).

• Examine and mOdify terminal-table
entries (COPY~, CHNGT, and RELEASEM
macro instructions).

• Examine and mOdify polling lists (COPYP
and CHNGP macro instructions).

• Examine queue control blocks for DASD
destination and process queues (COPYQ
macro instruction) .•

• Retrieve for retransmission messages
previously sent to terminals (RETRIEVE
macro instruction).

In order to dynamically examine and
modify the status of the system, these
macro instructions must be used in a mes­
sage processing program.

Routines containing the examination and
modification macro instructions can be
executed at any time during the operation
of the system as the result of a message
sent to the message processing program by a
terminal operator. such messages are
handled in the same manner as any other
message that enters the system from a
remote terminal. In other words, the mes­
sage control program performs the necessary
control functions and routes the message to
the appropriate message proqessing program.
The message processing program is specified
as the destination in the message header.
At some prespecified position in the mes­
sage (for example, in the header or in the
first position of the text), a message-type
character is specified that identifies the
message as one requiring the execution of
an examination or modification routine .•
The analysis routine of the message pro­
cessing program can be written to recognize
this message-type character and branch to
the desired routine.

The terminal sending such a message is
usually located on the same premises as the

i CPU and is designated as the -control- ter­
minal. The operator of the control termi-

NETWORK CONTROL FACILITIES

nal and the CPU could be the same individ­
ual. This centralizes the overall control
of the telecommunications system. However.,
the user can designate any terminal in the
system as the control terminal.

Some of the macro instructions discussed
in this section may also be issued in the
message control program. Execution of
these macro instructions in the message
control program must occur between the OPEN
and ENDREADY macro instructions.

WARNING: It is possible that the mes­
sage control program might use the ter­
minal table, polling list, queue control
block. or threshold counters at the same
time that the processing program is
executing a COPY or CHANGE macro in­
struction. Accordingly. the line should
first be stopped by issuing a STOPLN
macro instruction. The change or copy
macro instruction is then issued and
followed by a STARTLN to restart the
line.

LINE ACTIVATION AND DEACTIVATION

Normally. the lines in a line group are
automatically prepared for message trans­
mission when the line group is opened in
the message control program. When issued
in a message processing program. the STOPLN
and STARTLN macro instructions enable the
user to dynamically deactivate and reac­
tivate a specific line (or all the lines)
within the line group at any point during
the operation of the system.

STOPLN effects a temporary deactivation
of a specific line when the line is
expected to be reactivated by a subsequent
STARTLN macro instruction.

Note: The STARTLN/STOPLN module (IECKLNCH)
must be included in the same overlay as the
STARTLN or STOPLN macro instructions.

Stop Line (STOPLN) Macro Instruction

STOPLN removes a communication line from
active use. This macro instruction causes
operations on the designated line to stop
immediately after completion of any message
currently being received or transmitted.
Transmission of any messages remaining in

Network Control Facilities 23

the queue for the line resumes when a
STARTLN macro instruction reactivates the
line.

A message processing DCB must be opened
before a STOPLN can be issued.

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------t---------+----------------------i
I [symbolllSTOPLN Itermname,{rlnl I
I I I ALLJ I L-_______ ~ _________ ~ ______________________ J

symbol
Is the name of the macro instruction.

termname

rln

ALL

IS the name of any terminal in the .
line group, but not necessarily the
name of a terminal on the line being
stopped. If register notation is
used, the register must contain the
address of the data control block for
the line group. It cannot contain the
terminal name. (The COPYQ macro in­
struction may be used to locate the
DCB.)

If an invalid terminal name is speci­
fied, an error code of X'20', right­
adjusted .• is set in register 15. If
the DCB for the line group has not
been opened, an error code of X'Ol' is
set in register 15. In either case,
the STOPLN has no effect.

Is the relative line number (within
the line group) of the line to be
deactivated. If register notation is
used, the general register specified
must contain the relative line number
in binary form. If an invalid rln is
specified, a code of X·OS', right­
adjusted. is set in register 15.

Specifies that all lines in the line
group are to be deactivated.

If no errors were detected in the STOPLN
macro, register 15 contains all zeros.

Start Line (STARTLN) Macro Instruction

STARTLN:

1. Allows message transmission to resume
on a particular line in a communica­
tion line group.

2. Allows message transmission to resume
on all lines in a communication line
group. The user must have previously

opened the line group in the message
control program .•

If a line is deactivated by a STOPLN
macro instruction. STARTLN must be issued
before message transmission on that par­
ticular line can resume .•

In each of the preceding cases. if poll­
ing is used. the presence of an active
polling list is a prerequisite for message
transmission. (An active polling list is
one in which the second byte of the list is
a nonzero character -- this character is
initialized to 1 and can be changed by the
CHNGP macro instruction.) If STARTLN is
used, polling or enabling of input lines
begins after the execution of that macro
instruction. Initial polling or enabling
of input lines in a line group begins when
the line group is opened in the message
control program. If activation of a line
group was deferred by inclusion of the IDLE
operand in the OPEN macro for the line
group. a STARTLN macro must be issued to
activate the lines.

Restriction: When a STARTLN is issued for
a stopped line, QTAM loops for a maximum of
30 seconds waiting for the line to indicate
• ending" status. If no interrupt has been
received after 30 seconds.. the following
system error message will be printed .•

IECS06I XXX LINE UNAVAILABLE. ENDING STA­
TUS NOT RECEIVED.

An interrupt must be forced on the line
before attempting another STARTLN.

The line will be ignored until a STARTLN
macro is issued to that line or a STARTLN
operator control message for that line is
sent.

An attempt to initiate input/output
operations on a line on a control unit that
is not operational will result in the fol­
lowing system error message:

IECS09I xxx CONTROL UNIT NOT OPERATIONAL

Where xxx is the line address of the
attempted I/O operation.

The line will be ignored until a STARTLN
macro is issued to that line or a STARTLN
operator control message for that line is
sent.

r--------T---------T----------------------,
I Name I operation I Operand I
~--------+---------t---------------------_i
I [symbol] I STARTLN I termname, r rln} I
I I I '--ALL I L ________ ~ ________ ~ _____________________ J

24 OS QTAM Message Processing Program Services

symbol
Is the name of the macro instruction.

termname

rln

ALL

Is the name of any terminal in the
line group, but not necessarily the
name of a terminal on the line being
started. If register notation is used
the register must contain the address
of the data control block for the line
group. (The COPYQ macro instruction
may be used to locate the DCB.) It
cannot contain the terminal name. If
an invalid terminal name is specified,
an error code of X'20', right­
adjusted, is set in register 15. If
the DCB for the line group has not
been opened, an error code of X'Ol' is
set in register 15. In either case,
the STARTLN has no effect.

Is the relative line number, within
the line group" of the line to be
reactivated. If register notation is
used, the general register specified
must contain the relative line number
in binary form. If an invalid rela­
tive line number is specified, a code
of X'OS', right-adjusted, is set in
register 15.

Specifies that all lines in the line
group are to be activated.

If no errors were detected in the STARTLN
macro, register 15 contains all zeros.

EXAMINING AND MODIFYING THE TERMINAL TABLE

QTAM provides macro instructions that
enable the user to examine and dynamically
change the control information contained in
a terminal-table entry.

The COPYT macro instruction causes the
contents of a specified terminal-table
entry to be copied into a work area. This
macro instruction can be used in conjunc­
tion with the CHNGT macro instruction,
which substitutes a new terminal-table
entry for a superseded one. The user
issues a COPYT, examines the information,
changes it if necessaryg and issues a
CHNGT.

The user can also change terminal-table
information via the RELEASEM macro instruc­
tion. RELEASEM causes the intercept bit
for a specified terminal-table entry to be
set to O. All messages intercepted for
tbat terminal are then transmitted to the
terminal.

copy Terminal-Table Entry (COPYT) Macro
Instruction

COPYT moves the information contained in a
specified terminal-table entry into a
designated work area. (The information
copied into the work area remains in the
same form as in the terminal table: binary
fields remain binary and EBCDIC fields
remain EBCDIC.) The terminal-table entry
can be either a single-terminal. group­
code, distribution list. or process program
entry. Formats for each of these entries
are shown in Appendix A of the OS QTAM Mes­
sage Control Program publication.

r--------~--------T----------------------,
I Name I Operation I operand I
~--------+---------+----------------------i
I [symbol11COPYT ItermnameDworkarea I L ________ i _________ i ________________ ~ _____ J

symbol
Is the name of the macro instruction.

termname
Is the name of the terminal whose
terminal-table entry is to be copied.
If register notation is usedD the gen­
eral register designated must contain
the address of a location containing
the name of the terminal. The field
containing the name must be "n" bytes,
where -n- equals or exceeds the
longest n~e of any terminal-table
entry. The name must be left-adjusted
and must be padded with blanks to the
length of the longest TERM entry in
the terminal table. If an invalid
terminal name is specifiedw no data
movement takes place; the routine
linked by the COPYT macro instruction
returns an error code of X'20' right­
adjusted o in register 15,. If no error
is detected, register 15 contains
zero.

workarea
Is the address of the area into which
the information is placed. The first
byte of the work area receives the
first byte of data from the terminal­
table entry. The maximum size of the
work area is 252 bytes (the maximum
size of a terminal-table entry). If
register notation is used. the general
register designated must contain the
address of the work area.

Change Terminal-Table Entry (CHNGT) Macro
Instruction

CHNGT moves the information for a terminal­
table entry from a designated work area to

Network Control Facilities 25

the terminal-table area allocated for that
entry. CHNGT causes the entire contents of
the superseded terminal-table entryw except
for the TSEQUIN and TSEQOUT fields, to be
changed. The TSEQUIN and TSEQOUT fields
are not changed because of the fossibility
that a message may be received between the
time the entry is copied and the time it is
changed. This would cause a sequence num­
ber error to occur. In order to change the
entire contents, including TSEQUIN and
TSEQOUT" the user must precede the CHNGT
macro with a STOPLN macro for the line on
which the affected terminal is located.

CHNGT is normally preceded by the COPYT
macro instruction and instructions to
examine and modify the contents of the
copied terminal-table entry. The user must
be certain that the new terminal-table
entry contains all the information required
for proper execution of QTAM. The informa­
tion copied into the terminal table should
be formatted appropriately in binary or
EBCDIC form. The format of the terminal­
table entries and the information contained
in each field are contained in Appendix A
of the OS QTAM Message Control Program
publication.

r--------T---------T----------------------, I Name I Operation I Operand I
~--------+---------+----------------------i I [symbolllCHNGT Itermname,workarea I l _____ ~ __ ~ _________ ~ ______________________ J

symbol
Is the name of the macro instruction.

termname
Is the name of the terminal whose
terminal-table entry is to be
replaced. It must be the same as a
name that appears in the name field of
a TERM, PROCESS, or DLIST macro in­
struction. If register notation is
used, the address of a location con­
taining the name must be in the gener­
al register designated. The field
containing the name must be "n" bytes.
where wnw equals or exceeds the
longest name of any terminal-table
entry. The name must be left-adjusted
and must be padded with blanks to the
length of the longest TERM entry in
the terminal table.

If an invalid name is specified, the
routine generated by CHNGT returns an
error code of X' 20·, right-adjusted"
in register 15. QTAM subsequently
disregards the new terminal-table
entry and continues to use the old.

workarea
IS the address of the area from which
the information is moved. If register
notation is used, the general register

specified must contain the address of
the work area. If the new entry does
not equal the size of the old entryw
no data movement takes place. An
error code of X'10· is returned in
register 15, and QTAM continues to use
the old entry.

If no errors were detected in the CHNGT
macro., register 15 contains all zeros .•

Release Messages (RELEASEM) Macro
Instruction

RELEASEM sets the 'release pending' bit in
the terminal table entry for the specifieq
terminal to one. This causes all inter­
cepted messages with that terminal as the
destination to be sent. All suppressed
messages are sent as well as any new mes­
sages. The 'release pending' bit and the
'intercept' bit in the terminal table entry
are set to zero and the "send" bit is set
to one when the first intercepted message
is read from the disk for sending to the
terminal.

The intercept bit is turned on (that is,
set to one) by the INTERCPT macro instruc­
tion in the LPS section of the message con­
trol program.

If the terminal is free, the messages on
the queue are transmitted by priority. If
the terminal is busy, the messages will not
be transmitted at that time.

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----~-----------------~
I (symbollIRELEASEM Itermname I l ________ ~ ________ ~ ______________________ J

symbol
Is the name of the macro instruction.

termname
Is the name of the terminal that can
now receive its intercepted messages.
It must be the same as a name that
appears in the name field of a TERM
macro instruction. If register nota­
tion is usedo the address of a loca­
tion containing the name must be in
the general register deSignated. The
field that contains the name must be
"n" bytes, where "n" equals or exceeds
the longest name of any terminal-table
entry. The name must be left-adjusted
and must be padded with blanks to the
~ength of the longest TERM entry in
the terminal table. If termname is
invalid, an error code of X·20', ~
right-adjusted, is set in register 15. i~
If the line was not interceptedn an

26 OS QTAM Message ProceSSing Program Services

error code of X'04" will be returned
in register 15. If RELEASEM is issued
during a restart, an error code of
X'02', right-adjusted, is set in reg­
ister 15. RELEASEM should be issued
until a normal return code is
received. A normal return code indi­
cates that the RELEASEM macro instruc­
tion is being executed.

EXAMINING AND MODIFYING POLLING LISTS

QTAM provides macro instructions that
enable the user to examine and Fodify the
contents of the polling list for a line.

The COPYP macro instruction causes the
contents of a specified polling list to be
copied into a work area. This rracro in­
struction can be used in conjunction with
the CHNGP macro instruction" which can sub':'
stitute a new polling list for a superseded
one (the new list must be the same size as
the old one). The user issues a COPYP.
examines the information, changes it if
necessary, and issues a CHNGP. CHNGP can
also be used to stop or restart polling of
the terminals on a line.

~Polling List (CCPYP) Macro Instruction

COPYP causes the polling list for a speci­
fied line to be copied into a user­
designated work area. The format of the
polling list is shown in Appendix A of the
OS QTAM Message Control Program
publication.

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------i
I [symbolllCOPYP Itermname,rln,workarea I L ________ ~ _________ ~ _____________________ -J

symbol
Is the name of the macro instruction.

termname
Is the name of any terminal in the
line group, but not necessarily the
name of a terminal in the polling list
being copied. If register notation is
used, the general register designated
must contain the address of the data
control block for the line group. It
cannot contain the terminal name.

If an invalid terminal name is speci­
fied, an error code of X'20', right­
adjusted, is set in register 15. If
the DCB for the line group has not
been opened, an error code of X'Ol' is

rln

set in register 15. In either casew
the COPYP has no effect.

Is the relative line numberw within
the line group,. of the line whose
polling list is to be copied. If reg­
ister notation is used" the user pre­
viously must have placed the relative
line number (in binary form> in the
general register designated. If the
rln. specified is invalid q a code of
X'OS", right-adjusted q will be set in
register 15.

workarea
Is the address of the work area into
which the polling list is to be
copied. The first byte of the work
area receives the first byte of data
in the polling list. The size of the
area necessary can be determined from
the polling list format shown in
Appendix A of the OS QTAM Message Con­
trol Program publication. If register
notation is used. the general register
specified must contain the address of
the work area.

If no errors were detected in the COPyP
macrow register 15 contains all zeros.

Change Polling List (CHNGP) Macro
Instruction

CHNGP can either:

1. Place a new polling list in the poll­
ing list area for a specified line.

2. Change the status of a polling list
for a specified line,.

r--------T---------T----------------------,
I Name I opera tion I operand I
~--------+---------+----------------------~
I [symbolllCHNGP I {termname}rlnw I
I I I workarea I
I I I =C· O' I
r I I =C"l"1 L ________ ~ ________ ~ ______________________ J

symbol
Is the name of the macro instruction.

termname
Is the name of any terminal in the
line group, but not necessarily the
name of a terminal in the polling list
being changed. If register notation
is used, the general register desig­
nated must contain the address of the
data control block for the line group.
It cannot contain the terminal name.

Network Control Facilities 27

rln

If an invalid terminal name is speci­
fied,. an error code of X'20' right­
adjusted, is set in register 15. If
the DCB for the line group has not
been opened, an error code of X'Ol' is
set in register 15. In either case,.
the CHNGP has no effect.

Is the relative line number, within
the line group, of the line whose
polling list is to be modified. If
register notation is used, the user
previously must have placed the rela­
tive line nuwber (in binary form) in
the general register specified.. If
the relative line number is invalid
(the line group has no such line num­
ber> an error code of X, 08 • " r ight­
adjusted, is set in register 15.

workarea

=C'O'

=C'l'

Is the address of the area that con­
tains the new polling list. The first
byte of the polling list area receives
the first byte of data in the work
area. If the new polling list does
not equal the size of the old. no data
movement takes place. An error code
of X'10' is set in register 15. QTAM
subsequently disregards the new poll­
ing list and continues to use the old.

Causes the second byte of the polling
list to be changed to a zero. This
results in the deactivation of the
polling list. No further messages are
received until the list is
reactivated.

Causes the second byte of the polling
list to be changed to a one. This
results in the activation of the poll­
ing list. QTAM begins polling the
terminals on the line and accepting
incoming messages.

If no errors were detected in the CHNGP
macro, register 15 contains all zeros.

EXAMINING QUEUE CONTROL BLOCKS

Each terminal-table entry defined by a TERM
or PROCESS macro instruction contains the
address of the queue control block (QCB)
for the DASD destination or DASD process
queue on which outgoing messages are
placed. QTAM uses the QCB for:

1. Placing each message on its appropri­
ate DASD queue.

2. Maintaining information on the status
of the queue ..

The COPYQ macro instruction enables the
user to examine a QCB to ascertain the sta­
tus of the DASD destination or DASD process
queue associated with the QCB.

Figure 6 shows the contents and relative
displacement of each field in the QCB that
is of interest to the user. After issuing
a COPYQ macro instruction to copy the QCB
into a user-specified work area. the user
can determine the contents of the fields
from which he needs information,. For
example, the user can determine the number
of messages in the queue. or can use the
address of the queue on the disk to
retrieve a message (see the RETRIEVE macro
instruction description).

copy Queue Control Block (COPYQ) Macro
Instruction

COPYQ places the contents of a QCB in a
specified work area. The user indicates
the QCB desired by specifying the name of a
terminal or the name of a DASD process
queue.. If the name of a terminal is speci­
fied, COPYQ places the QCB for the DASD
destination queue associated with that ter­
minal in the work area. If the name of a
DASD process queue is specified. the QCB
for the DASD process queue is placed in the
work area. In both cases. the entire con­
tents of the 32-byte QCB are provided.
However, certain fields are used internally
by QTAM routines and are not of concern to
the user (see Figure 6),.

r--------T---------T----------------------,
I Name I Operation I Operand I
~--------+---------+----------------------i I [symboll\COPYQ Itermnameoworkarea" I L ________ ~ _________ ~ ______________________ J

symbol
Is the name of the macro instruction.

termname
Is the name of the terminal or DASD
process queue whose associated QCB is
to be copied. Only the name of a
single-terminal or process program
terminal-table entry can be specified,
that is, the name specified in a TERM
or PROCESS macro instruction. If
specified, no data movement takes
place. If register notation is used,
the address of a location containing
the name must be in the designated
general register.. The field contain­
ing the name must be "n" bytes where ~
"n" equals or exceeds the longest name ~
of any terminal table entry. The name

28 OS QTAM Message processing program Services

r---, ,
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ,

r----T--------------T---, , , QFAC , , L ____ ~ _________ -----~ ___ J

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

r----T--------------T---------T--------------T-------------------T--------------,
'QRLN' QDCB ,QSIZE' QNASEG , ,QBACK, L ____ ~ ______________ ~ _________ ~ _____________ ~ ___________________ ~ ______________ J

Legend:

QFAC
Is the relative record address of the next message to be read from this DASD
queue; that is, the next rressage to be processed or transmitted.

QRLN
Is the relative line number of the line associated with this queue. (Field used
only for a DASD destinaticn queue.)

QDCB
Is the address of the data control block associated with this QCB_ <Field used
only for a DASD destination queue.)

QSIZE
Is the number of complete messages on this queue.

QNASEG
Is the relative record address on the DASD message queue data set where the
segment of the next message for this queue will be placed.

header, ,
'QBACK

, ,
, Is the relative record address of the last message placed on this DASD queue.. , L ___ J

Figure 6. Format of Queue Control Block <QCB)

must be left-adjusted and must be
padded with blanks to the length of
the longest TERM entry in the terminal
table. If an invalid termname is
specified, a code of X'20', right­
adjusted, is set in register 15.

workarea
Is the address of the area in which
the contents of the QCB are placed.
The area must be 32 bytes long <the
size of the QCB). If register nota­
tion is used, the general register
specified must contain the address of
the work area.

If no errors were detected in the COPYQ
macro, register 15 contains all zeros.

RETRIEVING MESSAGES

During the operation of a telecommunica­
tions system, it may be necessary to
retrieve a message that has already been
placed on a DASD destination or DASD pro­
cess queue. The RETRIEVE macro instruction
is used to perform this function.

For example, a terminal operator may
misplace a message that was previously sent
to his terminal. He can send a message
(with a message processing program as the
destination) requesting that the missing
message be sent again. In the request mes­
sage, he provides the name of his terminal
and the sequence number of the message to
be retransmitted. The message processing
program uses the provided information to
RETRIEVE the message from the DASD destina­
tion queue that contains messages for that
terminal. Subsequently, the message is
retransmitted to the terminal via a PUT
macro instruction.

Retrieve Message segment (RETRIEVE) Macro
Instruction

RETRIEVE transfers a message segment
already placed in a DASD destination queue
or DASD process queue to a user-provided
work area.

A message segment can be retrieved
either by specifying the terminal name to

Network Control Facilities 29

which the message was sent, or ty providing
the relative record address of the message
segment on the direct-access storage
device. In the first method, the input or
output sequence number must be specified.
The relative record address in the second
method is based on zero and reflects the
position of the segment in relation to
other segments on the storage device. In
operation, the second method is faster.

The most common implementation of the
RETRIEVE macro instruction uses both of
these methods. A terminal name and input
or output sequence number are specified for
retrieval of the first message segment.
This segment contains the header prefix and
header portion of the message. RETRIEVE
uses the input or output sequence number to
find the desired message. When found, the
segment containing the header prefix and
message header is placed in the work area
specified by the user. The header prefix
(the first 24 byr,s of the segment contain­
ing the header1) contains, in the MSLINK
field, the relative record address of the
next segment of the message. The user can
load the contents of this field into a reg­
ister and obtain the next segment by issu­
ing a RETRIEVE macro that specifies the
relative record address. Subsequent text
segments can be retrieved by means of the
relative record address found in the MSLINK
field of the text prefix (first 14 bytes of
the segment containing the text1) in each
previous segment. The last segment of a
message can be detected by examining the
seventh bit (X'02') of the status field
(MS~A~US) in the buffer prefix. This bit
is set on for the last segment of each mes­
sage. ~he formats of the header and text
prefixes are shown in Appendix A of the as
QTAM Message Control Program publication.
Figure 7 gives an example of the use of
RETRIEVE.

r--------T---------T----------------------,
I Name I Operation I operand I
~--------+---------+----------------------i
I [symbol] I RETRIEVE I rtermname l I
I I Il.. (dasdaddr~ ,workarea, I
I I I I
I I I rfIN l J I
I I I ~OUTJ ,number, I
I I I I
I I I ~YPE= r s) I
I I I \p I L ________ ~ _______ --~ _______________ ----___ J

symbol
Is the name of the macro instruction.

1when the segment was placed on the direct
access queue, the first eight bytes of the
32-byte header prefix (or of the 22-byte
text prefix) were deleted.

termname
Is the name of the destination point
of the message segment to be re­
trieved. This is the name specified
in the TERM or PROCESS macro instruc­
tion and included in the entry in the
terminal table. The type of entry
referred to can be either a single­
terminal" group-code" or process pro­
gram entry. (The name of a distribu­
tion list cannot be specified nor can
the name of a process program entry
that is defined with the EXPEDITE
operand.) If this operand is speci­
fied, the first segment of the message
is retrieved. If register notation is
used" the address of a location con­
taining the name must be in the gener­
al register designated. The field
that contains the name must be "n"
bytes where "n" equals or exceeds the
longest name of any terminal table
entry. The name must be left-adjusted
and must be padded with blanks to the
length of the longest TERM entry in
the terminal table. If an invalid
termname is specified, a return code
of X'20' is placed in register 15.

(dasdaddr)
Is the parenthesized name or number of
a register containing the relative
record address of the message segment
to be retrieved. The user must have
previously placed the 3-byte record
address in this deSignated register.
If an invalid termname is specified"
an error code of XU 20·, right­
adjusted, is returned in register 15.

workarea

IN

OUT

Is the address of the user-provided
work area in which the message segment
is to be placed. If register notation
is used, the general register speci­
fied must contain the address of the
work area. The work area must be at
least the size of the record defined
in the disk initialization process.
If an invalid relative record number
has been specified, a return code of
X'02', right-adjusted" is placed in
register 15.

Indicates that the "number" operand
that follows specifies the input
sequence number of the message to be
retrieved. If the "termname" operand
is included. either the IN or OUT
operand and the "number" operand must
be specified. If the "(dasdaddr)"
operand is includedw IN (as well as
OUT and "number") must be omitted.

Indicates that the "number" operand
that follows specifies the output

30 as QTAM Message Processing Program services

sequence number of the message to be
retrieved. If the "termname" operand
is included, either the OUT or IN
operand and the "number" operand must
be specified. If the "(dasdaddr)"
operand is included, OUT (as well as
IN and "number") must be omitted. If
the sequence number is invalid. an
error code of X' qO· I right-adj usted"
is set in register 15.

number
Is the input or output sequence number
of the message to be retrieved. If
the ·termname" operand is included.
the "number" operand must be speci­
fied. If the "(dasdaddr)" operand is
included, the "number" operand must be
omitted. If the sequence number is

invalid. an error code of x·qO'.
right-adjusted" is set in register 15.
If register notation is used6 the user
must have placed the number (in binary
form) in the general register speci­
fied. Messages sent from the telecom­
munications control or alternate ter­
minal may not be retrieved by sequence
number .•

TYPE=S
Specifies that the message segment is
to be retrieved using the terminal
name-sequence number method.

TYPE=D
Specifies that the message segment is
to be retrieved using the relative
record address method,.

NQtwork Control Facilities 31

r--------T-~--------~------------------------T--,
I Name 10peration I Operand I Connnents I
~---~----+----------+--------------------------+_--------------------~-----------------_i
RETRMSG RETRIEVE IBOS,CNSLPRT,IN.121.TYPE=S IRetrieves the first segment of a messagel

LA

USING

TEST TM

BO

MVC

L

RETRIEVE

B

OUT

I Iwith input sequence number 121., destined I
I Ifor the Boston terminal. and places the I
I Isegment in the CNSLPRT area. The seg- I
I lment contains the QTAM shortened header I
I Iprefix and the message header. I
I I
j 5,. CNSLPR'I I Loads the address of the user- s work
I larea into general register 5.
I I
IIECKPREF+8,5 Establishes addressability with respect
I to the DSECT for the QTAM header prefix.
I
I
I
I
I
I MS'IATUS,2
I
I
I
OU'I

Processing of the header segment accord­
ing to the current application.

Tests the status field of the buffer
prefix to determine if this is the last
segment of the message,.

If yes. branches out of the loop.

'I
I
I
I

LINKINFO+l(3).MSLINK Moves the MSLINK field of the QTAM head-I

4" LINKINFO

(4),CNSLPR'I,TYPE=D

'IEST

er prefix (containing the address of the
next segment of the message) into an
area from which it can be loaded into a
general register.

Loads the contents of MSLINK into gener­
al register 4.

IRetrieves the next segment' of the mes­
Isage and places it in the work area.
I
IProcessing of the text segment according
Ito the current application.
I
I
ILoOp back to test for last segment.

• I

•

I
I
I
I
I
I
I

I I
~--------~----------~--------------------------~--~ IThis example assumes that each segment is processed after retrieval so that the work I
larea may be reused in retrieving the next segment. I L __ ~

Figure 7. Example of the Use of the RETRIEVE Macro Instruction

32 OS QTAM Message Processing Program Services

QTAM provides the facility for writing
checkpoint records either at specified
intervals of time or at certain points in
one or more processing programs (see the os
OTAM Message Control Program publication).

The checkpoint records contain the in­
formation necessary to record the status of
the queues and the telecommunications net­
work. In particular, the checkpoint record
includes the polling lists, the terminal
table, disk pointers and status information
associated with each queue, and disk point­
ers and status information associated with
each line. Note that the data in the buf­
fers is not included in the checkpoint
record. TWo such checkpoint records are
maintained in the checkpoint data set along
with a pointer to the most recent record.
The format of the checkpoint records is
shown in Appendix A.

The user may specify that checkpoint
records are to be taken at desired points
in the processing programs by:

1. Allocating space on the DASD for the
checkpoint data set.

2. Defining the data set.

3. Cpening and cloSing the data set.

q. Using the CRPART operand in the
~ERMTBL macro instruction in the mes­
sage control program and issuing a
CRREQ macro instruction in each pro­
ceSSing program that is to determine
when to take the checkpoint records .•

The control program is checkpointed when
all the required partitions have issued the
CKREQ macro instruction. For instance, if
CRPART=2 is specified in the TERMTBL macro
instruction, and processing program 1
issues a CKREQ macro instruction, it will
go into a wait state until some other par­
tition also issues a CRREQ macro instruc­
tion. At that point the checkpoint will be
taken. This puts both of these processing
programs in synchronization with the mes­
sage control program. ~he processing pro­
grams know the exact circumstances at the
checkpoint and can take steps to guard
against duplicate messages following a
restart.

CHECRPOINTING THE MESSAGE CONTROL PROGRAM

Note that the CRREQ macro instruction
cannot be issued in the message control
program. The CPINTV and CRPART operands
may not both be specifiedi if both are
specified" CPINTV will take precedence and
CRPART will be ignored. If the CPINTV key­
word is used and the processing program
issues a CKREQ macro instruction. the
checkpoint records will be taken at the
intervals of time specified by the CPINTV
operand.

r--------~---------T---------------------, I Name I operation I operand I
~---------+---------+-------------~------i I (name) I CKREQ I I L ________ -L _________ ~ ____________________ ~

name
Is the name of the first instruction
generated by CKREQ.

When the correct number of CKREQ macro
instructions have been issued, checkpoint
records are written on a checkpoint data
set maintained on a direct access storage
device (DASD). A new checkpoint record is
written over the oldest existing record and
the pointer is updated to reflect the most
recent record. Should a system failure
occur during checkpoint itself, restart may
still be accomplished using the alternate
checkpoint record.

Restart allows the user to reestablish
the queues and the telecommunications net­
work to its status just prior to the last
checkpoint.

For information on allocating space for
the checkpoint data set. defining. opening,
and clOSing the checkpoint data set. and'
restarting the message control program, see
the OS QTAM Message Control Program publi­
cation., GC30-2005.

Note: If checkpointing is specified at
time intervals (CPINTV operand in TERMTBL
macro), no additional instructions are
necessary in the processing programs;
checkpointing is thus made independent of
the processing programs.

Checkpointing the Message Control Program 33

DEACTIVATING THE ~ELECOMMUNICATIONS SYSTEM

In order to terminate operation of the
telecommunications system, the communica­
tion line group" checkpoint" and direct
access message queues data sets must be
closed. Before they may be closed. all
message traffic in the system must cease.
To accomplish this" the user issues a
CLOSEMC macro instruction in a user-written
termination routine. CLOSEMC controls and
monitors line activity and checks the sta­
tus of all data sets opened in the message
processing prograRs. When all data sets
opened in the message processing programs
are closed, and line activity has ceased,
the routine returns control to the user to
permit him to close the line group and mes­
sage queues data sets. (See Appendix D for
a sample program.) Deactivation of the
system proceeds in the following manner,.

When the system is to be deactivated, a
CLOSEMC macro instruction must te issued in
a program other than the message control
program. A recommended procedure is to
send a special message to a process queue
from which a message processing program,
containing a user-written termination rou­
tine, may obtain the message.

~his termination routine should do the
following:

1. Ensure that all other message process­
ing programs, and all their QTAM data
sets, are closed.

2. Issue the CLCSEMC macro instruction
(only one CLOSEMC is required to deac­
tivate the entire system).

3. Close the MS destination and MS pro­
ceSS queues data sets and any other
data sets opened in that message pro­
cessing program. If the processing
program does not require a main
storage queue data set, a dummy one
must be supplied and opened. When
this data set is closed. the message
processing program requests the mes­
sage control program to close down.

q. Issue a RE~URN macro instruction in
order to end the message processing
job.

When the Q~AM termination routine that
is called by the CLCSEMC macro is entered"
the following action occurs. Outgoing mes-

sage traffic continues on any lines that
are not currently receiving messages.
Meanwhile. incoming message traffic on each
line is limited to the message currently
being received over that line. When the
last block of the current message is
received, no more incoming messages are
accepted (that is, the line is not repolled
or reenabled). As each such line becomes
free. any outgoing messages that have been
queued for that line are sent,. In this
manner, incoming message traffic declines
to nothing" while outgoing message traffic
continues until all messages have been
sent.

Note: Since CLOSEMC issues STOPLN and
STARTLN macro instructions. the STARTLN/
STOPLN module (IECKLNCH) cannot be in a
different overlay than the CLOSEMC module
(IECKCLOS).

The QTAM termination routine monitors
the closing of the QTAM data sets opened in
the message processing programs. When it
finds that all of these data sets have been
closed, and all outgoing message traffic
has ended. the routine issues a STOPLN
macro instruction for each line in the sys­
tem. When all lines have been stopped,
control returns to the first instruction
following the ENDREADY macro 'instruction in
the message control program,. This instruc­
tion must begin a user-written routine (or
branch to a routine) that deactivates the
message control program. This deactivation
routine must issue CLOSE macro instructions
for each of the data sets opened in the
message control program (that is. the line
group. checkpoint. and direct access mes­
sage queues data sets).

The last QTAM data set to be closed must
be the direct access message queues data
set. This is important, because closing
this data set constitutes deactivation of
the telecommunications system. After the
message queues data set has been closed, no
further references can be made to queues,
control blocks, terminal table, polling
lists. etc.

The deactivation routine should end with
a RETURN macro instruction to end the mes­
sage control job. Each of the message pro­
cessing programs should also end with a
RETURN.

3q OS QTAM Message Processing Program Services

CLOSEMC Macro Instruction

r--------T---------T----------------------,
I Name I operation I Operand I

~--------+---------+----------------------i
I [symbclJICLOSEMC I I L ________ ~ _________ ~ ______________________ J

symbol
Is the name of the macro instruction.

Note: The user is cautioned against using
the CLOSEMC macro instruction in the mes­
sage control program. A communications
line on a transmission control unit may not
be in CE mode when the CLOSEMC macro in­
struction is issued,. If the TCU is in CE
mode, the close procedure will never com­
pletew and the QTAM message control program
will remain in a wait state. A line may
not be in conversational mode (see the MODE
macro instruction in the MCP) when the
CLOSEMC macro instruction is issued.

Deactivating the Telecommunications system 35

APPENDIX A: QTAM CHECKPOINl' DATA RECORD
< ,

r---,
I

I
I

Record Format:

1 2 3 4

r---~----T-----T~-----------T-----------T----------T-----------T-----------l It Next It 1stl~ERM ENTRIESIQCB ENl'RIESIPCLL LIST51LCB ENTRIESIDEAD LETTER I
I Disk Loc I QCB I I I I I QCB ENTRY# I
~-------+-----+------------~---------~----------~---~-------~----------~ L __ ..,._4 ___ ~ __ 4 __ J

Formats of Fields:

1. Save all terminal entries (except distribution lists),.

r--~--------------------------,
TERM ENTRY ITerminal Table Entry I

~-------------------~---------i
L---size of TERM entry + 1----J

2. Save QCBS only if current QCB is not the same as the last QCB saved.

QCE ENTRY

I PROCESS
IQCB ONLY

r-----T------~-----T----+-----~---,
IQSIZEI QNASE IQBAC~IQFAClt CURRENT I
I I I I IM5G HDR I
~-----+-------+-----+----+---------1
L--2--~---3--~-3--~--3-~-----3---

3. Save polling list only if the list is not the same as the last polling list saved.
r----T------T-------------,

POLLING LIS~ I 51 ZE I S~ATUS I VARIABLE I NFO I
~----+_-----+-------------i
L--1-~--1--~---variable--J

4. Save LCB information based on QRLN of current QCB being checkpointed.

r------T--------~------~--------~----~--,
ILCBHDRILCB~~INOILCBSTATEILCBNASEGIUNIT ADDRI
~------+--------+_-------+--------+---------i
L---3--~---2--~---1---~-----3--~-----2---J

Icontrol Record:
I
I r------~T---------, status
I IS~ATUS I Not Usedl 00 Normal Close
I L _______ ~ _________ J 01 Abnormal Termination: (checkpoint record 1 is good)
I 02 Abnormal Termination: (checkpoint record 2 is good)
I I
L~ ___ --____ -----------------------------~----------------______________________________ J

Appendix A 37

APPENDIX B: FORMAT AND SUMMARY OF MACRO INS~UCTIONS

A format illustration accompanies each macro instruction description in
this publication. The illustrations indicate which operands must be
coded exactly as shown, which are requi~ed, which are variable, etc.
The conventions stated to describe the operands are as follows:

1. Keyword operands are described either as the single word that must
be coded as shown or by a three-part structure that consists of the
keyword operand, fOllowed by an equal sign (both of which must be
coded). followed by a value mnemonic or a coded value.

Examples:

a. ALL
b. TYPE=PQ

2. Positional operands are described by a lowercase name that is mere­
ly a convenient reference to the operand and is never coded by the
programmer. ~he programmer replaces the positional operand by an
allowable expression. Expressions allowed are indicated at the
left of the foldout page. The chart shows what expressions are
allowable for each operand.

3. Uppercase letters and punctuation marks (except as described in
these conventions) represent information that must be coded exactly
as shown.

4. Lowercase letters and terms represent information that must be sup­
plied by the programmer. More specifically, n indicates a decimal
number, nn a decimal number with at most two digits, nnn with at
most three digits" etc.

5. An ellipsis (a comma followed by three periods) indicates that a
variable number of items may be included.

6.

7.

8.

()
[]

options contained within braces represent alternatives"
one of which must be chosen.

Inforrration contained within brackets represents an
option that can be included or omitted., depending on the
requirements of the program. If more th~ one option is
contained within brackets. anyone or none of the options
may be chosen.

Underlined elements represent an assumed value in
the event a parameter is omitted.

38 OS QTAM Message processing program Services

WRITTEN AS

Register

MACRO Dee (2- RX Rei Abs Hex
INSTRUCTION OPERANDS Sym Dig 12) (1) Type Exp Exp Char Char W/S

CHNGP termnome X X

rln X X

workarea X X

=C'O' X

=C'1 ' X

CHNGT termname X X

workarea X X

CKREQ

CLOSE deb X X

MF= X

CLOSEMC

COPYP termname X X

rln X X

workarea X X

COPYQ termnume X X

workarea X X

COPYT termname X X

workarea X X

GET deb X X

workarea X X

(0) X

OPEN deb X X

INPUT X

OUTPUT X

MF= X

PUT deb X X

workarea X X

(0) X

RELEASEM termname X X

RETRIEVE termname X X

(dasdaddr) X X

workarea X X

IN l X

(OUT J X
number X X

IS X

type = (D X

STARTLN termname X X

f rln I X X

ALL J X

STOPLN termname X X

rln I X X

ALL J X

Appendix B 39

o

o

•

o

Abbreviations used in Chart

Abbreviations

SYM

DEC DIG

REGISTER

RX type

REL EXP

ABS EXP

CHAR

HEX CHAR

~/s

Meaning

Any symbol valid in the Assembler Language.

Any decimal digits, up to the value indicated in the
associated macro instruction description.

A general register. always coded within parentheses,
as follows:

(2-12)one of general registers 2 through 12. previously
loaded with the right-adjusted value or address
indicated in the macro instruction description. The
unused high-order bits must be set to zero. The
register may be designated symbolically or with an
absolute expression.

(l)general register 10 previously loaded as indicated
above. The register can be designated only as (1).

(O)general register O. previously loaded as indicated
above. The register can be designated only as (0).

Any address that is valid in the RX form of instruc­
tion (for example, LA) may be deSignated.

A relocatable expression (acceptable as an A-type or
v-type address constant by the assembler).

Any absolute expression as defined by the assembler:
self-defining terms (decimal, hexadecimal. binary.
character), length attributes, absolute symbols,
paired relocatable terms in the same CSECTw and
arithmetic combinations of absolute terms.

A character string (the framing charac~erslJ C' .1 f1

are not coded unless specifically indicated in the
individual macro instruction description) •.

Concatenated hexadecimal digits (the framing charac­
ters, X" '. are not coded unless specifically indi­
cated in the macro instruction description).

~ritten as shown.

o

()

o

APPENDIX C: RE~URN CODES FOR MACRO INSTRUCTIONS USED TO MODIFY AND EXAMINE SYSTEM STATUS

Upon return to the message processing rou­
tine that issued the macro inst~ction. the
following return codes are set in the low-

order byte. right-adjusted. in register 15.
All numbers in Figure S appear in hexadeci­
mal notation.

r-----------T------T--------T-------T--------T-----------~-------T------------T---------,
IMacro I Normal I unopened I Invalid I Line notlInvalid IInvalidlInvalid Ter-IInvalid I
I IReturnlDCB IDisk I Inter- I Relative Icount Iminal Table Isequence I
I I I I Address I cepted ILine Numberl IEntry or ocBINumber I
I I I I I I I I Name I I
r-----------+------+--------+-------+--------+_----------+-------+------------+--------_i
ICHNGP IX'OO' IX'Ol' I I IX'OS" IX'lO' Ixu 20' I I
~-----------+------+--------+------~+--------+-----------+-------+------------+-~-------~
ICBNG~ IX'OO' I I I I IXD10' IX"20' I I
~-----------+------+--------+-------+--------+-----------+-------+------------+---------~
ICOPYP IX"OO' IX'Ot' I I IX'OS" I IX·20· I I
~-----------+------+--------+-------+--------+_.---------+-----~+----.. -------+--------_i
I COPYQ IX· 00' I I I I I I X·D 20" I I
~-----------+----.. -+--------+-------+--------+-----------+-------+------------+---------~
ICOPY~ IX"OO' I I I I I IX"20' I I
~-----------+------+--------+-------+--------+-----------+-------+---------~-+--------~
IRELEASEM IX·OO" I I IX"04" I I IX"20· I I
~-----------+------+--------+-------+--------+-----------+-------+------------+---------~
I RETRIEVE I X" 00· I I X' 02' I I I I I I
I By disk I I I I I I I I I

~--:~~=~~~--~------~--------~-------~--------t_----------~-------~------------~--------~
IRE~RIEVE I X" 00" I I I I I I X" 20" IX' 40' I
I By termi-I I I I I I I I I
I nal table I I I I I I I I I
I entry I I I I I I I I I
~-----------+------+--------+-------+--------+-----------+-------+------------+--------~
I STARTLN I X" 00' IX· 01' I I IX'" OS" I I X" 20" I I
~-----------+------+--------+-------+--------+_----------+-------+------------+---------i
ISTOPLN IX'" 00' IX'Ol' I I IX'" OS" I IX·20· I I L ___________ ~ ______ ~ ________ ~ _______ ~ ________ ~ __________ ~ _______ ~ ____________ ~ _________ J

Figure S. Return codes for Macro Instructions Used to Modify and
Examine system Status

Appendix C 41

APPENDIX 0: QTAM SAMPLE PROGRAM

* * * PROGRAM: OS QTAM CLOSE ROUTINE MPP

*
*
*
* *

* OBJECTIVE: SySTEM CLOSEDOWN
*
* PROCEDURE: THE GET MACRO INSTRUCTION CAUSES QTAM TO PASS MeSSAGE *

DATA (DESTINED FUR THE CLOSE RUUTINE) FROM THE MS PROCESS*
QUEUE TO THE USER-SPECIFIED WORK AREA (WURKAREA). IF NO *
MESSAGE DATA IS AVAILABLE FOR THE CLUSE RUUTINE, THE GET *
MACRO INSTRUCTION IS UNSUCCESSFUL AND CONTROL RETURNS TO *
THE SUPERVISOR *

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

* IF THE GET MACRO INSTRUCTION IS SUCCESSFUL THE CLUSEMC *
MACRO INSTRUCTIUN IS EXECUTED. CLOSEMC STUPS ALL *
INCOMING MESSAGE TRAFFIC AS SUON AS ALL CURRENTLY *
INCOMING MESSAGES ARE RECEIVED. THEN CLOSEMC CAUSES ALL *
UUTGOING MESSAGES TO BE SENT. *

* THE CLOSE MACRO INSTRUCTION CLOSES ALL DATA SETS UPENED *
IN THE C LOSE ROUT I NE. *

* THE RETURN MACRO INSTRUCTION RETURNS CONTROL TO THE FIRST*
INSTRUCTION AFTER ENDREADY IN THE MCP. *

* ***

CLOSRTN CSECT

SAVE 114,12)

BALR 12,0

USING *,12

ST 13,SAVEAREA+4

LA 13,SAVEAREA

B OPENN

WORKAREA DC CL20 ' ,

SAVEAREA DC 18F'O'

SOURCE DC CL3' ,

INDCB DCB DSORG=MQ, *
MACRF=G, *
DDNAME=EOJ, *
SOWA =20, *
RECFM=R, *
TRMAD=SOURCE

OPENN OPEN (INDCB, (INPUT))

GET INDCB,WORKAREA

FINISH CLOSEMC

CLOSE (INDCB)

RETURN

END CLOSRTN

Remarks

Location provided for the name of the sending terminal.

Data set organization is a TP message process queue.

A GET is used to gain access to the message process queue.

Name of DO card and process macro instruction in term table.

Size of the user-provided work area.

Name of the work unit is a record.

Location provided for the name of the sending terminal.

Opens the MPP data set.

GET is performed when a message is sent to EOT.

StODS the message traffic in the MCP.

Closes the MPP data set.

Return to the ~CP.

42 OS QTAM Message Processing Program Services

APPENDIX E: QTAM ERROR MESSAGES AND ABEND CODES

ABEND CODES System Action: The system ter­
minated the task but did not pro­
duce a dump.

OAO

OAl

Explanation: The error occurred
during execution of a QTAM OPEN
macro instruction.

The DCB~RMAD field in the data
control block (DCB) had not been
filled cefore the system
attempted to open the block.
(Register 2 contains the address
of the data control block in
error.)

System Action: The system ter­
minated the task but did not pro­
duce a dump.

Programmer Response: Reassemble
the program, specifying the TR~AD
parameter in the DCB rracro in­
struction or filling the DCBTRMAD
field in the data control clock
before the OPEN macro instruction
is executed. Then execute the
job step again.

If the problem recurs, do the
following before calling IBM for
programRing support:

• Execute the stand-alone pro­
gram, IMDSADMP, with TYPE=HI
option to produce a storage
dump to tape. If a tape is not
available, execute the stand­
alone program IMDSADMP TYPE=LO
option to produce a storage
dump to a printer.

• Execute IMDPRDMP with the 'GO'
option after you restart the
system. The input to IMDPRDMP
is the dump tape from IMDSADMP.
Save the formatted dump output.

Explanation: The error occurred
during execution of a QTAM OPEN
macro instruction that specified
the data control block (DCB) for
the main-storage process queue.

The DCBSOWA field in the data
control block had not been filled
before the system attempted to
open the clock. (Register 2 con­
tains the address of the data
control block in error).

OA2

Programmer Response: Reassemble
the program. specifying the SOWA
parameter in the DCB macro in­
struction or filling the DCBSOWA
field in the data control block
before the OPEN macro instruction
is executed. Then execute the
job step again.

If the problem recurs. do the
following before calling IBM for
programming support.

• Execute stand-alone progra~
IMDSADMP, with type=HI option
to produce a storage dump to
tape. If a tape is not avail­
able, execute the stand-alone
program IMDSADMP TYPE=LO option
to produce a storage dump to a
printer.

• Execute IMDPRDMP with the 'GO'
option after you restart the
system. The input to IMDPRDMP
is the dump tape from IMDSADMP.
Save the formatted dump output.

Explanation: The error occurred
during execution of a QTAM OPEN
macro instruction that specified
the data control block (DCB) for
the main-storage process queue.

The data definition name speci­
fied in the name field of the DD
statement or as an entry in the
terminal table is not the name of
the process entry in the terminal
table. (Register 2 contains the
address of the data control block
in error.)

system Action: The system ter­
minated the task. but did not
produce a dump.

Programmer Response: Reassemble
the program. specifying the
correct data definition name in
the DD statement or terminal
table. Then execute the job step
again.

If the problem recurs. do the
following before calling IBM for
programming support:

Appendix E: QTAM Error Messages and Abend Codes 43

OAS

OA6

• Execute the stand-alone pro­
gram, IMDSADMP, with type=HI
option to produce a storage
dump to tape. If a tape is not
available, execute the stand­
alone program IMDSADMP TYPE=LO
option to produce a storage
dump to a printer.

• Execute IMDPRDMP with the uGO'
option after you restart the
system. The input to IMDPRDMP
is the dump tape from IMDSADMP.
Save the formatted dump output.

Explanation: The error occurred
during execution of a QTAM OPEN
macro instruction issued by a
message processing program.

The open routine attempted to
open a data control block (DCB)
for a main-storage process queue
or a main-storage destination
queue that had previously been
opened. (Register 2 contains the'
address of the data control block
in error.)

System Action: The message pro­
cessing program was terminated
with ,a dump.

Programmer Response: Make sure
that a message processing program
does not attempt to o~en a data
control block for a main-storage
queue that had previously been
opened either by itself or anoth·
er message processing program.
Correct the error and execute the
job ste~ again.

If the problem recurs, do the
following before calling IBM for
programming support:

• Have the associated dump and
message processing ~rogram
listings available.

Explanation: The error occurred
during execution of (1) a QTAM
OPEN macro instructuon or (2) a
QTAM CLOSE macro instruction.

This error condition occurred for
either of 2 reasons:

• In case (1), the data control
block (DCB) for the direct
access message queues data set
was o~ened after a data control
block for another QTAM data set
was opened.

• In case (2). the data control
block for the direct access
message queues data set was
closed while a data control
block for a main-storage pro­
cess queue or a main-storage
destination queue was still
open.

system Action: Either the mes­
sage control program or the mes­
sage processing program was ter­
minated with a dump.

Programmer Response: The error.
in case (1). can be corrected by
one of the following:

• Correcting an invalid DD state­
ment for the direct access
storage device.

• Changing the message control
program to open the data con­
trol block for the direct
access message queues data set
before opening any other data
control block in that program.

• Opening the data control block
for the direct access message
queues data set before any mes­
sage processing program opens
any QTAM data control block.

The execute the job step again.

The error,. in case (2). can be
corrected by closing all the data
control blocks in the message
processing programs before clos­
ing the data control block for
the direct access message queues
data set in the message control
program,. Then execute the job
step again.

If the problem in (1) or (2)
recurs, do the following before
calling IBM for programming
support:

• Have the associated dump and
program listings available.

ASSEMBLY ERROR MESSAGES
<

IHBOOl XXX OPERAND REQ"D--NOT SPECIFIED

Explanation: A required posi­
tional or keyword operand was
omitted. The position or name of
the operand is xxx.

44 OS QTAM Message Processing Program Services

IHB002

System Action: The macro in­
struction was partially expanded;
expansion stopped on detection of
the error. severity code=12.

Programmer Response: Probable
User Error. Provide the required
operand and reassemble. If the
problem recurs. do the following
before calling IBM for program­
ming support:

• Have the associated program
listing available.

INVALID XXX OPERAND SPECIFIED -
yyy

Explanation: An operand. whose
position or name is xxx. was
specified as yyy. The specified
operand is invalid.

system Action: The macro in­
struction was partially expanded;
expansion stopped on detection of
the error. Severity code=12.

Proqrammer Response: Probable
User Error. Correct the invalid
operand and reassemble. If the

IHB004

problem recurs, do the following
before calling IBM for program­
ming support:

• Have the associated program
listing available.

REQUIRED OPERAND(S) NOT SPECIFIED

Explanation: One or more
required operands were omitted.

system Action: The macro in­
struction was partially expanded:
expansion stopped on detection of
the error. Severity code=12.

programmer ResEonse~ Probable
User Error. Provide all required
operands and reassemble. If the
problem recurs" do the following
before calling IBM for program­
ming support:

• Have the associated program
listing available.

Appendix E: QTAM Error Messages and Abend Codes 45

Where more than one page reference appears,
the major reference appears first.

Abend codes 43-44
Access method 5
Analysis routine 6,13

Buffers 8,5,17

Checkpoint data record format 37
Checkpointing the message control program

33
CHNGP macro instruction 27-28
CHNGT macro instruction 25-26
CHREQ macro instruction 33
CLOSE macro instruction 19
CLOSEMC macro instruction 35
Closing the message control program 34-35
Code

destination 6,8
message type 6

Control terminal 23
COPYP macro instruction
COPYQ macro instruction
COPYT macro instruction

27
28-29
25

DASD destination queue 9,12,19,20
DASD process queue 8,12
DCB macro instruction 12-17

examples 17
for MS destination queue 13,16
for MS process queue 13-15

DD statement 12
example 12

Error messages 44-45

GET macro instruction 19,7-20,6,9
GET/PUT prefix 20,21

Header, message 6,8,9
prefix 8,9

Line activation 24-25,23
Line deactivation 23-24
Line procedure specification (LPS> 8
LINR macro instruction 6,7

Macro instructions, format and summary
38-39

Main storage (MS> destination queue
13,9,18,19,20

Main storage <MS> process queue 13,8,18,19
Message 6

flow 8-11
obtaining for processing 19,6
priority 9
response 6
retrieval 29-31
routing 8,12
segment 8-9
text 6,8,9

type 6,8
work unit 9,15,19

Message control program 5
functions 8
LPS 8

Message processing program
analysis routine 6
assembling 6
general concepts 6-7
initiation 6

INDEX

interface to message control program
5,17

linkage editing 6
processing routines 6
structure 7

Multiplexer channel 8

Obtaining messages for processing 19,6
OPEN macro instruction 17-18,7

Polling lists, examining and modifying
27-28

Prefix 8-9,10,11
header 8,9
text 8,9

Processing routine 6
PUT macro instruction 20-21,6,13,7

QTAM message control language 5
Queue control block <QCB>

examining 28
format 29

Queue
DASD destination 9,13,19,20
DASD process 8,13
MS destination 9.18,19,20
MS process 13,8,18,19

RELEASEM macro instruction 26-27
Response message 6
RETRIEVE macro instruction 29-31
Retrieving messages 29
Return codes, after examining or modifying
the system status 41

RETURN macro instruction 34

SAVE macro instruction 6
Segment, message 8-9
STARTLN macro instruction
STOPLN macro instruction

24-25,,23
23-24

Terminal table, examining and modifying
25-26

Text, message 6,8,9
prefix 8.,9

Work area, message processing 19-20,6,8,1 9
size 14

Work area. response message 20
Work unit 8,15.19,20

complete message 15
record 15
segment 15

Index 47

GC30-2003-4

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U_S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

C>
(")
w
o
~
o
o w
.h.

READER'S COMMENT FORM

IBM System/360 Operating System Order No. GC30-2003-4
QTAM Message Processing Program Services

• How did you use this publication?

As a reference source 0
As a classroom text 0
As a self-study text 0

• Based on your own experience, rate this publication.

As a reference source: Very Good Fair Poor Very
Good Poor

As a text: Very Good Fair Poor Very
Good Poor

• What is your occupation?

• We would appreciate your other comments; please give specific page and line
references where appropriate. If you wish a reply, be sure to include your name
and address.

• Thank you for your cooperation. No postage necessary if mailed in the U. S. A.

GC30·2003·4

YOUR COMMENTS, PLEASE. . .

Your answers to the questions on the back of this form, together with your comments,
help us produce better publications for your use. Each reply is carefully reviewed by the
persons responsible for writing and publishing this material. All comments and sugges­
tions become the property of IBM.

Please note: Requests for copies of publications and for assistance in using your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY •••

I BM Corpora~ion
P. O. Box 12275
Research Triangle Park
North Carolina 27709

Attention: Publications Center, Dept. E01

(")
c: ...
»
0-
:J co
r::
:J
ct>

I
I
I
I

Fold I

FIRST CLASS
PERMIT NO. 569

-- -...J

RESEARCH TRIANGLE PARK
NORTH CAROLINA

-------------------~
Fold

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold

to
s:
en
W
en o
o en

~ » s:
s:
."
." en

